
Scienti	c Programming

Scienti	c Programming
Approaches to Deep Learning for
Source Code Transformation

Lead Guest Editor: Sikandar Ali
Guest Editors: Jiwei Huang, Zhongguo Yang, Muhammad Arif Shah,
Dayang Norhayati Abang Jawawi, and Najeeb Ullah

Scientific Programming Approaches to Deep
Learning for Source Code Transformation

Scientific Programming

Scientific Programming Approaches
to Deep Learning for Source Code
Transformation

Lead Guest Editor: Sikandar Ali
Guest Editors: Jiwei Huang, Zhongguo Yang,
Muhammad Arif Shah, Dayang Norhayati Abang
Jawawi, and Najeeb Ullah

Copyright © 2021 Hindawi Limited. All rights reserved.

is is a special issue published in “Scientific Programming.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Chief Editor
Emiliano Tramontana  , Italy

Academic Editors
Marco Aldinucci  , Italy
Daniela Briola, Italy
Debo Cheng  , Australia
Ferruccio Damiani  , Italy
Sergio Di Martino  , Italy
Sheng Du  , China
Basilio B. Fraguela  , Spain
Jianping Gou  , China
Jiwei Huang  , China
Sadiq Hussain  , India
Shujuan Jiang  , China
Oscar Karnalim, Indonesia
José E. Labra, Spain
Maurizio Leotta  , Italy
Zhihan Liu  , China
Piotr Luszczek, USA
Tomàs Margalef  , Spain
Cristian Mateos  , Argentina
Zahid Mehmood  , Pakistan
Roberto Natella  , Italy
Diego Oliva, Mexico
Antonio J. Peña  , Spain
Danilo Pianini  , Italy
Jiangbo Qian  , China
David Ruano-Ordás  , Spain
Željko Stević  , Bosnia and Herzegovina
Kangkang Sun  , China
Zhiri Tang  , Hong Kong
Autilia Vitiello  , Italy
Pengwei Wang  , China
Jan Weglarz, Poland
Hong Wenxing  , China
Dongpo Xu  , China
Tolga Zaman, Turkey

https://orcid.org/0000-0002-7169-659X
https://orcid.org/0000-0001-8788-0829
https://orcid.org/0000-0002-0383-1462
https://orcid.org/0000-0001-8109-1706
https://orcid.org/0000-0002-1019-9004
https://orcid.org/0000-0001-8396-7388
https://orcid.org/0000-0002-3438-5960
https://orcid.org/0000-0002-8438-7286
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0002-9840-4796
https://orcid.org/0000-0003-0643-0565
https://orcid.org/0000-0001-5267-0602
https://orcid.org/0000-0003-4399-0326
https://orcid.org/0000-0001-6384-7389
https://orcid.org/0000-0001-5761-1898
https://orcid.org/0000-0003-4888-2594
https://orcid.org/0000-0003-1084-4824
https://orcid.org/0000-0002-3575-4617
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0003-4245-3246
https://orcid.org/0000-0002-6050-373X
https://orcid.org/0000-0003-4452-5768
https://orcid.org/0000-0002-2017-0029
https://orcid.org/0000-0002-0900-6500
https://orcid.org/0000-0001-5562-9226
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0003-3687-1812
https://orcid.org/0000-0002-9663-9743

Contents

Frame Duplication Forgery Detection and Localization Algorithm Based on the Improved
Levenshtein Distance
Honge Ren  , Walid Atwa, Haosu Zhang, Shafiq Muhammad, and Mahmoud Emam 

Research Article (10 pages), Article ID 5595850, Volume 2021 (2021)

An Intelligent Analytics Approach to Minimize Complexity in Ambiguous So!ware Requirements
Fariha Ashfaq  , Imran Sarwar Bajwa  , Rafaqut Kazmi  , Akmal Khan  , and Muhammad Ilyas 

Research Article (20 pages), Article ID 6616564, Volume 2021 (2021)

Analyzing the Classification Techniques for Bulk of Cursive Languages Data: An Overview
Mu Hong  , Shah Nazir  , Zhang Shuo, and Wang Guan
Review Article (11 pages), Article ID 6624397, Volume 2021 (2021)

So!ware Birthmark Usability for Source Code Transformation Using Machine Learning Algorithms
Keqing Guan, Shah Nazir  , Xianli Kong  , and Sadaqat ur Rehman
Research Article (7 pages), Article ID 5547766, Volume 2021 (2021)

Applying Code Transform Model to Newly Generated Program for Improving Execution Performance
Bao Rong Chang  , Hsiu-Fen Tsai  , and Po-Wen Su 

Research Article (21 pages), Article ID 6691010, Volume 2021 (2021)

Key Performance Indicators for the Integration of the Service-Oriented Architecture and Scrum
Process Model for IOT
Mengze Zheng  , Islam Zada, Sara Shahzad, Javed Iqbal, Muhammad Shafiq, Muhammad Zeeshan, and
Amjad Ali
Research Article (11 pages), Article ID 6613579, Volume 2021 (2021)

Analysis of Service-Oriented Architecture and Scrum So!ware Development Approach for IIoT
Yanqing Cui  , Islam Zada, Sara Shahzad, Shah Nazir  , Shafi Ullah Khan, Naveed Hussain, and
Muhammad Asshad
Research Article (14 pages), Article ID 6611407, Volume 2021 (2021)

A Review on Multicriteria Decision Support System and Industrial Internet of 1ings for Source Code
Transformation
Qinxia Hao  , Shah Nazir  , Xiaoxu Gao, Li Ma, and Muhammad Ilyas
Review Article (9 pages), Article ID 6661272, Volume 2021 (2021)

So!ware Piracy Awareness, Policy, and User Perspective in Educational Institutions
Zitian Liao  , Shah Nazir  , Anwar Hussain, Habib Ullah Khan  , and Muhammad Shafiq
Research Article (14 pages), Article ID 6647819, Volume 2020 (2020)

https://orcid.org/0000-0002-5334-7636
https://orcid.org/0000-0002-1290-4272
https://orcid.org/0000-0002-9302-2940
https://orcid.org/0000-0002-5161-6441
https://orcid.org/0000-0002-8111-1911
https://orcid.org/0000-0003-3636-8053
https://orcid.org/0000-0003-2531-6485
https://orcid.org/0000-0002-9551-9635
https://orcid.org/0000-0003-0126-9944
https://orcid.org/0000-0003-0126-9944
https://orcid.org/0000-0002-4070-4091
https://orcid.org/0000-0002-0952-3591
https://orcid.org/0000-0002-7444-753X
https://orcid.org/0000-0001-8348-3324
https://orcid.org/0000-0003-2345-5748
https://orcid.org/0000-0003-0082-1987
https://orcid.org/0000-0003-0126-9944
https://orcid.org/0000-0003-4161-4984
https://orcid.org/0000-0003-0126-9944
https://orcid.org/0000-0001-6672-0412
https://orcid.org/0000-0003-0126-9944
https://orcid.org/0000-0001-8373-2781

Research Article
FrameDuplication Forgery Detection and Localization Algorithm
Based on the Improved Levenshtein Distance

Honge Ren ,1,2 Walid Atwa,3 Haosu Zhang,2 Shafiq Muhammad,4

and Mahmoud Emam 5

1College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
2Heilongjiang Forestry Intelligent Equipment Engineering Research Center, Harbin 150040, China
3Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shebin El-Koom 32511, Egypt
4Cyberspace Institute of Advance Technology, Guangzhou University, Guangzhou, China
5Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511, Egypt

Correspondence should be addressed to Honge Ren; nefu_rhe@163.com and Mahmoud Emam; ma7moud_emam@yahoo.com

Received 12 January 2021; Revised 3 March 2021; Accepted 20 March 2021; Published 1 April 2021

Academic Editor: Sikandar Ali

Copyright © 2021 Honge Ren et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this digital era of technology and software development tools, low-cost digital cameras and powerful video editing software
(such as Adobe Premiere, Microsoft Movie Maker, andMagix Vegas) have become available for any common user.*rough these
softwares, editing the contents of digital videos became very easy. Frame duplication is a common video forgery attack which can
be done by copying and pasting a sequence of frames within the same video in order to hide or replicate some events from the
video. Many algorithms have been proposed in the literature to detect such forgeries from the video sequences through analyzing
the spatial and temporal correlations. However, most of them are suffering from low efficiency and accuracy rates and high
computational complexity. In this paper, we are proposing an efficient and robust frame duplication detection algorithm to detect
duplicated frames from the video sequence based on the improved Levenshtein distance. Extensive experiments were performed
on some selected video sequences captured by stationary andmoving cameras. In the experimental results, the proposed algorithm
showed efficacy compared with the state-of-the-art techniques.

1. Introduction

In our daily life, digital videos are playing a vital role in
many fields of applications such as surveillance systems,
medical fields, and criminal investigations. Because of the
availability of low-cost digital video cameras and powerful
video editing tools (such as Adobe Premiere, Microsoft
Movie Maker, and Magix Vegas), it is now easy for
common users to edit the video contents without leaving
any visual traces of forgeries. So, we cannot trust in the
authenticity of such videos anymore. *erefore, the au-
thentication of such videos is becoming a very important
research area these days. Digital video forensics is an
emerging research area which aims at validating the au-
thenticity of such videos [1]. *e classification of digital
video forensics is shown in Figure 1, where it can be divided

into 3 categories: identification of the source camera,
discrimination of computer-generated videos, and video
forgery detection (video tampering detection) [1].

Video forgery manipulations can be acted in the three
domains: spatial domain (intraframe forgery), temporal
domain (interframe forgery), and spatio-temporal domain.
Intraframe forgeries may include region duplication (copy-
move) and splicing inside the frame itself whereas inter-
frame forgeries include frame duplication, frame insertion,
frame shuffling, and frame deletion [1].

Digital video forgery detection algorithms aim to detect
the traces of forgeries in the digital video sequence. As in
digital images, digital video forgery detection techniques also
can be classified into active and passive (blind) techniques.
In the passive video forgery detection techniques, the au-
thenticity of a forged video is verified without the existence

Hindawi
Scientific Programming
Volume 2021, Article ID 5595850, 10 pages
https://doi.org/10.1155/2021/5595850

mailto:nefu_rhe@163.com
mailto:ma7moud_emam@yahoo.com
https://orcid.org/0000-0002-5334-7636
https://orcid.org/0000-0002-1290-4272
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5595850

of the original video and only depends on extracting some
features or footprints from the forged video which have been
left by the editing operations [1]. *ese footprints may
include the high spatio-temporal correlation among frame
intensity values [2], noise and motion residues [3], artifacts
in optical flow [4], motion-compensated edge artifact
(MCEA) [5], and frames quality assessments [6] whereas
active techniques require embedding information into the
video such as digital watermarking [7], but this kind of
techniques is not preferable by many researchers because it
requires the existence of the original video along with the
tampered one which is usually unavailable.

Frame duplication forgery is a common forgery types in
digital videos, and it is an interframe forgery which occurs in
the temporal domain. It can be performed by copying and
pasting some frames in another location in the same video
sequence in order to hide or replicate some events from the
video. Figure 2 shows the process of frame duplication at-
tack, where frames from 1 to 6 are copied and then pasted at
another location instead of frames from 7 to 12 in order to
remove the existence of a moving car crosses a parking area
and passes behind a lamppost, without leaving any visual
traces of forgeries. *e original video example is taken from
the LASIESTA dataset [8].

Cloning frames from the same video sequence raise the
difficulty of frame duplication forgery detection, making it
uneasy to detect color changes and illumination condition
[9]. Although a variety of methods have been proposed,
these methods still face the following challenges in frame
duplication forgery:

(1) High computational complexity
(2) Low detection rate in the static scenes
(3) Unable to locate the location of the duplicated frame

pairs

In this paper, we proposed an efficient and robust frame
duplication detection technique to detect duplicated frames
from the video sequence based on the improved Levenshtein
distance. At First, we divided the video sequence into small

overlapping subsequences and measure the similarity of
them by using the improved Levenshtein distance (ILD).
Next, the value of ILD is used to detect the duplication
forgery frame, in which the higher the value, the lower the
similarity between the frame pair. Hence finally, the du-
plicated frames are located. In the experimental results, the
proposed algorithm showed efficacy compared with the
state-of-the-art techniques.

*e rest of this paper is organized as follows. In related
work section, an overview of the related work and contri-
butions in the field of frame duplication forgery detection
are provided. Proposed Method section delineates the
conceptual and implementation details of the proposed
method. *e experiments used during performance vali-
dation and the obtained results are discussed in Experi-
mental Results section, and the paper is concluded in the last
section.

2. Related Work

*e frame duplication attacks can be detected from the
tampered videos by using the existing digital image forgery
detection techniques [10] as the video is a sequence of se-
quential images in one temporal (time t) and two spatial (x, y)
dimensions. However, it may not seem a good idea due to the
huge computational complexity obtained rather than the
complex scenarios that the videos have such as static scenes
[11]. Wang and Farid [12] proposed the first frame duplication
forgery detection algorithm by using the spatial and temporal
correlations between video frames. A coarse-to-fine compar-
isonmanner was used to compare the video subsequences.*e
high similarities in the temporal correlation coefficients lead to
the spatial correlation coefficients comparison. However, their
method was unable to detect the frame duplication forgeries in
the static scenes and in case of postprocessing attacks such as
adding noise on the duplicated frames. Using the previous
framework, Yang et al. [6] proposed another two-stage simi-
larity analysis-based method. In the first stage, they extracted
the features from each video frame by using the singular value

Digital video forensics

Identification of the imaging
device Video forgery detection

Active techniques

Digital
watermarking-

based

Digital signature-
based

Passive techniques

Interframe forgery

Frame
insertion

Frame
duplication

Frame
Deletion

Frame
shuffling

Multiple
compression Intraframe forgery

Region
Duplication Splicing

Discrimination of
computer

generated videos

Figure 1: Digital video forensics and forgery detection techniques classification.

2 Scientific Programming

decomposition (SVD). *en, the Euclidean distance similarity
was calculated between the features of reference frame (first
frame of the video) and each frame. In the second stage, a
random block matching was used to indicate the candidate
duplications. However, their method failed to detect the
forgeries when frame duplications were done in different order
and also when the duplicated frames were less than the window
size [1]. Singh et al. [13] divided each video frame into four sub-
blocks and then nine features were extracted from each frame.
*en, they lexicographically sorted the extracted features to
group the most similar frames. Root mean square error
(RMSE) was then calculated between the features of adjacent
sorted frames to identify the suspicious frames. *en, to detect
the frame duplications, the correlation among suspicious
frames was performed.*eir method failed to detect the forged
videos taken by a stationary camera and when duplication was
done in different order [1]. Lin and Chang [14] presented an
approach for frame duplication detection with four steps:
candidate segment selection followed by spatial similarity
measurement then frame duplication classification and finally
postprocessing. However, many subsequence candidates were
selected for the video that results in a significantly high
computational time. Li and Huang [15] proposed another
frame duplication forgery detection method based on the
structural similarity (SSIM) [16]. *e similarities between the
video subsequences were calculated to find the duplicated
frames. However, their method also failed to detect the frame
duplication forgeries in the static scenes. D’Amiano et al. [17]
proposed an algorithm for frame duplication forgery detection
based on the dense-field method with invariant features. *ey
used a suitable video-oriented version of patch-match to limit
complexity. Jia et al. [9] proposed a novel approach to detect
frame copy-move forgeries based on optical flow (OF), and
stable parameters was designed.

*e aforementioned methods used predefined fixed
global thresholds during the candidates’ selection or

duplication detection stages. *ese thresholds may calibrate
for a certain condition and may not work for other situa-
tions. Moreover, it makes these methods less generalized.
Additionally, time complexity is one of the most challenging
problems for frame duplication detection algorithms, which
increases dramatically with increasing the number of frames
within a given video sequence. Furthermore, there is in-
ability to differentiate between the duplicated frame pairs
and highly similar frame pairs (misdetected or false positive
frame pairs) for the videos with long time static or still
scenes.

3. Proposed Method

In interframe forgery (frame duplication), some frames from
the video timeline are replaced by a copy from other frames
from the same timeline (as shown in Figure 2). In this
section, the proposed method for frame duplication forgery
detection and localization is introduced in detail. *e
proposed method includes four stages as shown in Figure 3.

First, the video sequence is divided into small over-
lapping subsequences; second, similarity measurements
based on Levenshtein distance [18] is calculated; third, frame
duplication forgery is detected; and fourth, frame duplica-
tion forgery is located. To calculate the similarity between
the video frames and identify the high similarities of the
subsequences, the improved Levenshtein distances for all
overlapping subsequences are calculated first. For the ex-
periments, we tampered the video sequences with frame
duplication forgery by randomly selecting the location in
each video timeline.

3.1. Partition of Video Subsequence. In the experiments, the
tampered video sequence V is first divided into overlapping
subsequences (Seqi; i � 1, 2, 3, . . . , L), which begin at time ζ.

(a)

(b)

Figure 2: *e process of frame duplication attack: an example. (a) *e original video sequences. (b) *e tampered video sequences.

Scientific Programming 3

L is the total number of all overlapping subsequences. We
assumed that each subsequence length from the overlapping
subsequences is (r) frames and the length of the test video is
(N) frames. So, the total number of all overlapping subse-
quences (L) can be given by

L � N − r + 1; 1≤ r≤N. (1)

Next, we detect the potentially duplicated candidates by
calculating the similarities among these subsequences. *e
similarity of each subsequence has to be calculated with the
rest of the other subsequences. *e improved Levenshtein
distance is adopted and used as a measure of similarities in
the proposed method, to measure the similarities between
the corresponding frame pairs for each two candidates.

3.2. Similarity Measurements Based on the Improved Lev-
enshtein Distance. *e Levenshtein distance is a metric for
measuring the similarities between two sets A and B as a
simple function of their lengths (|A| and |B|) [18]. *e
generalized Levenshtein distance (GLD) is the most com-
mon usedmeasure to compare sets of different edit processes
such as insertion, deletion, and substitution of sets elements
[19]. *e GLD can be obtained from the methods presented

in [18, 20]. It shows a distinct tool in some applications as
error correction and pattern recognition [21, 22].

Assume that a pair of subsequences Seqi and Seqj from
the tampered video V is denoted as Seqi � F1i F

2
i . . . Fri and

Seqj � F1j F
2
j . . . Frj , respectively, where F

m
i is the mth frame

of Seqi and Fnj is the nth frame of Seqj. *e length of Seqi is
given by |Seqi|. We set up the length of each subsequence to
r = 5 and the length of overlap is r − 1.

TFmi ,Fnj
� T1T2 . . .Tl is used to show the edit transfor-

mation of Fmi into Fnj which is a sequence of elementary edit
processes transforming Fmi into Fnj . Suppose an elementary
edit process is (x, y), if a weight function γ assigns to x⟶ y
a real number (non-negative) γ(x⟶ y), the edit transfor-
mation weight TFmi ,Fnj

can be computed by c(TFmi ,Fnj
) �

r
i�1 c(Ti). Given Fmi and Fnj are the two frames fromV, then

the generalized Levenshtein distance (GLD) is calculated as
in the following equation:

GL D Fmi , Fnj � min c TFmi ,Fnj . (2)

If c is a metric over the sequence of elementary edit
processes, Marzal and Vidal in [23] defined the GLD as in
the following equation:

Seq 1 Seq 2 Seq 3 Seq N – t + 1

Tampered
video sequence

Frame 4Frame 3Frame 2Frame 1 Frame 5 Frame N

Seq 1

Seq 2

Seq 3

Merge the subsequences

Perform duplication localization

Improved Levenshtein distance

Improved Levenshtein distance

Calculate the
similarities?! Authentic videoNo

Yes

Dividing the
video into

overlapping
subsequences

Calculate
the similarities

between the
subsequences

frame by frame

Output the duplicated frame pairs

Figure 3: Proposed method steps.

4 Scientific Programming

GL D Fmi , Fnj � min W PFmi ,Fnj
 , (3)

where PFki ,Fkj
is an editing path between Fmi and Fnj and

W(PFmi ,Fnj
) �

L(PFmi ,Fnj
)

k�1 c(Fm
ik−1+1...ik
⟶ Fn

jk−1+1...jk
) is the

weight of PFmi ,Fnj
, which is a set of points or ordered pairs

(ik, jk), 0≤ k≤ L(PFmi ,Fnj
) � l satisfying the following

conditions:

(1) 0≤ ik ≤ |Fmi |; 0≤ jk ≤ |Fnj |; (i0, j0) � (0, 0); (il, jl) �

(|Fmi |, |Fnj |)

(2) ∀k≥ 1, 0≤ ik − ik−1 ≤ 1; 0≤ jk − jk−1 ≤ 1
(3) ik − ik−1 + jk − jk−1 ≥ 1

*e improved Levenshtein distance similarity (ILD) is
normalization for the GLD, and it can be easily computed
through GLD. *e improved Levenshtein distance between
two frames Fmi and Fnj can be given as follows:

ILD F
m
i , F

n
j �

2.GLD Fmi , Fnj

α. Fi

 + Fj

 + GLD Fmi ,Fnj

, (4)

where |Fi| and |Fj| are the length of Fi and Fj, respectively.
*e final value of the improved Levenshtein distance cal-
culated for two frames is included in the [0, ∞) where 0
means that the two frames are identical (duplicated or
replica) whereas any integer number between 1:∞ indicates
the number of the different intensities in the corresponding
frames.

To illustrate the advantages of ILD, we cut two consecutive
frames representing a static scene in an authentic video, as
shown in Figure 4.*ey have a high correlation coefficient that
may cause misdetection. For example, the structural similarity
(SSIM) between these two frames is calculated and it is equal to
0.9935, which means that if the threshold value in the SSIM-
based algorithms [14, 15] is set to be smaller than or equal
0.9935, the detection performance of these frame duplication
forgery detection algorithms will decrease dramatically due to
the existence of falsely detected frame pairs as duplicated
(misdetected frame pairs). Furthermore, they fail to detect the
duplication in the static scenes whereas the improved Lev-
enshtein distance between these two authentic frames is equal
to 109, which means that there are 109 different pixel intensity
values between these frames, and this indicates that these two
frames are different and not a duplication from each other.

3.3. Merging Subsequences and Duplication Localization.
A helpful distance metric technique significantly improves the
performance of localization, clustering, and classification
processes [24]. *erefore, the distance metric techniques help
algorithms to measure the similarities between the video
contents. *e tampered video sequence has been divided into
small overlapping subsequences to detect frame duplication
forgery. In order to form a set of candidate duplicated frames,
several duplicated subsequences should be merged to form a
complete duplicated sequence. Also, we need to identify which
subsequence is original and which subsequence is duplicated
(replica).

Due to the small overlapping subsequences, one or more
subsequence could match with two or more duplicated
subsequences. So, the subsequences with distances equal to 0
between their corresponding frame pairs are selected as a
duplicated frame pairs to merge these subsequences in order
to form a complete candidate subsequence of duplicated
frames. In each subsequence, the similarities between each
frame and all other frames of the other subsequences are
calculated. *erefore, in this paper, we used the improved
Levenshtein distance to calculate the similaritiesD[i] among
the corresponding candidate frames (fi, fi

′) as follows:

D[i] � ILD fi, fi
′(, (5)

where i � 1, 2, . . . r.
Assume that (S, T) is a duplicated subsequence, S and T

have the same number of frames (same length), and (Si,Ti) is
a pair of corresponding matched frames. If all the ILD
distances Di between (Si, Ti) are equal to 0, then S is
considered to be the source subsequence and T is the du-
plicated one.

4. Experimental Results

4.1. 7e Dataset. In the experiments, we selected some test
video sequences from the commonly used video test se-
quences from video trace library (VTL) dataset which is
available at http://trace.eas.asu.edu/yuv/index.html. *e
selected videos are captured with stationary and moving
camera modes.*e resolution of each one is 352× 288 pixels
and has the frame rate of 30 fps. Table 1 shows the details of
the test tampered videos.

4.2. PerformanceEvaluationandAnalysis. *e Precision and
Recall rates are used as in equations (6) and (7) to evaluate
the detection capability of the proposed method. We also
calculate another measure F1 score that combines both
Precision and Recall as shown in equation (8).

Precision �
TP

TP + FP

× 100%, (6)

Recall �
TP

TP + FN

× 100%, (7)

F1 score � 2 ×
Precision × Recall

Precision + Recall
, (8)

where TP (true positive duplicated frame pairs) represents
the number of correctly detected frame pairs as duplicated
frames, FP (false positive duplicated frame pairs) represents
the number of falsely detected frame pairs as duplicated
frames, and FN (false negative duplicated frame pairs)
represents the number of duplicated frame pairs which are
classified as authentic.

To evaluate the performance of our proposed method,
we compared our proposed method with Wang and Farid
[12] and Li and Huang [15]. *e Precision, Recall, and F1
score rates are calculated for all of the forged videos in the

Scientific Programming 5

http://trace.eas.asu.edu/yuv/index.html

Table 1: Details of the selected test videos.

Video Video frames Video duration (sec) Frame duplication location
Akiyo 300 10 1∼20 are copied to 301∼320
Bus 150 05 1∼20 are copied to 151∼170
Coastguard 300 10 1∼20 are copied to 301∼320
Container 300 10 1∼20 are copied to 301∼320
Flower 250 09 1∼20 are copied to 251∼270
Foreman 300 10 1∼20 are copied to 301∼320
Hall 300 10 1∼20 are copied to 301∼320
Mobile 300 10 1∼20 are copied to 301∼320
Silent 300 10 1∼20 are copied to 301∼320
Waterfall 260 09 1∼20 are copied to 261∼280

(a) (b)

Figure 4: A comparison between SSIM and the improved Levenshtein distance for two consecutive frames of an authentic video. (a) Frame
no. 2887. (b) Frame no. 2888. (SSIM�0.9935 and improved Levenshtein distance�109).

Table 2: Detection results of the proposed method for the tested video sequences.

Tampered
video

Detection results
Proposed method Wang and Farid [12] Li and Huang [15]

Akiyo
Original: 1∼20

Authentic video
Original: 1∼20

Duplicates:
301∼320

Duplicates: 301∼320, with 192 misdetected frame
pairs

Bus
Original: 1∼20 Original: 1∼20 Original: 1∼20
Duplicates:
151∼170 Duplicates: 151∼170 Duplicates: 151∼170

Coastguard
Original: 1∼20

Authentic video, with 6 misdetected frame pairs
Original: 1∼20

Duplicates:
301∼320 Duplicates: 301∼320

Container
Original: 1∼20

Authentic video
Original: 1∼20

Duplicates:
301∼320

Duplicates: 301∼320, with 39 misdetected frame
pairs

Flower
Original: 1∼20 Original: 1∼20 Original: 1∼20
Duplicates:
251∼270

Duplicates: 251∼270, with 61 misdetected frame
pairs Duplicates: 251∼270

Foreman
Original: 1∼20 Original: 1∼20 Original: 1∼20
Duplicates:
301∼320

Duplicates: 301∼320, with 17 misdetected frame
pairs Duplicates: 301∼320

Hall
Original: 1∼20

Authentic video
Original: 1∼20

Duplicates:
301∼320 Duplicates: 301∼320

Mobile
Original: 1∼20 Original: 1∼20 Original: 1∼20
Duplicates:
301∼320

Duplicates: 301∼320, with 407 misdetected frame
pairs Duplicates: 301∼320

6 Scientific Programming

dataset. *e higher the Precision as well as the Recall rates
and F1 score are, the better performance will be.

Table 2 shows the detection results of the proposed
method for the tested video sequences. It seems that the
proposed method is not only able to achieve a high detection
of frame duplication forgeries but also accurately locate the
duplicated video clips in the video sequences. Table 3 in-
dicates the comparison for the detection capabilities and
location of duplication between the proposed method and
the methods in [12, 15].

For the test tampered video Akiyo, the frames from 1 : 20
are duplicated in the location from 301 : 320. *is video has a
static (still) scene as shown in Figure 5, where the first four
frames inside that video are visually the same (authentic
frames-not duplicated). Figure 6 and Table 2 indicate that the
proposed method is able to detect the frame duplication
forgeries in the static scenes where the proposed method can
correctly detect and locate the frame duplication forgeries
(precision rate of 100%). However, the method in Wang and
Farid [12] failed and identified this tampered video as an
authentic video sequence whereas the method in Li and Huang
[15] detected the frame duplication forgeries with low precision
rate (9.43%) due to the existence of 192misdetected frame pairs
(false positive duplicated frame pairs). *erefore, the perfor-
mance of our proposed method is much better than that of the
other state-of-the-art methods in [12, 15], as shown in Tables 2
and 3 and Figure 6.

4.3. 7e Running Time. *e comparison between the
running time of the proposed method and the methods in
Wang and Farid [12] and Li and Huang [15] is shown in
Table 4. From that table, we can notice that the method
proposed in Wang and Farid [12] has the lowest average
time than others. *e main reason is that the method
proposed by Wang and Farid [12] was unable to locate the
location of the duplicated frame pairs, which cost the
other methods more time to localize the location of the
duplicated frames. However, the method proposed in [12]
has the worst detection accuracy than the other algo-
rithms for frame duplication forgery detection (see Fig-
ure 6 and Table 2).

All the experiments are conducted on a workstation with
Intel Core i7-8750H CPU and 32GB RAM. We imple-
mented the three methods on MATLAB R2018a.

Generally, the results presented in this paper reveal that
the proposed algorithm offers a good performance in
comparison with the state-of-the-art techniques. For the
future directions, recently, deep learning approaches have
been introduced in different fields of detection and iden-
tification problems [25–27]. It showed an efficacy and ro-
bustness against malicious attacks. Furthermore, copy-move
forgery detection (CMFD) algorithms that have been pre-
sented for digital images can be used for video frame du-
plication forgery detection [28–30].

Table 2: Continued.

Tampered
video

Detection results
Proposed method Wang and Farid [12] Li and Huang [15]

Silent
Original: 1∼20 Original: 11∼18 Original: 1∼20
Duplicates:
301∼320 Duplicates: 311∼318 Duplicates: 301∼320, with 24 misdetected frame

pairs

Waterfall
Original: 1∼20 Original: 186∼190 Original: 1∼20
Duplicates:
261∼280 Duplicates: 193∼197 Duplicates: 261∼280

Table 3: Detection capability and location of duplication comparison.

Method Precision (%) Recall (%) F1 score (%) Location of duplication
Wang and Farid [12] 28.34 44 34.47 No
Li and Huang [15] 78.88 100 88.19 Yes
Proposed method 99.50 100 99.75 Yes

(a) (b) (c) (d)

Figure 5: Snapshot for the first 4 frames in the test tampered video sequence (Akiyo).

Scientific Programming 7

5. Conclusion

*is paper introduces a frame duplication forgery detection
and localization approach based on the similarity analysis of

the improved Levenshtein distance. *e tampered video
sequence is first divided into overlapping subsequences.
Next, each subsequence has to calculate the similarities with
the rest of the other subsequences. *e improved

0

20

40

60

80

100

A
ki

yo Bu
s

C
oa

stg
ua

rd

C
on

ta
in

er

Fl
ow

er

Fo
re

m
an

H
al

l

M
ob

ile

Si
le

nt

W
at

er
 fa

ll

Wang et al. [12]
Li et al. [15]
Proposed method

(a)

0

20

40

60

80

100

A
ki

yo Bu
s

C
oa

stg
ua

rd

C
on

ta
in

er

Fl
ow

er

Fo
re

m
an

H
al

l

M
ob

ile

Si
le

nt

W
at

er
 fa

ll

Wang et al. [12]
Li et al. [15]
Proposed method

(b)

0

20

40

60

80

100

A
ki

yo Bu
s

C
oa

stg
ua

rd

C
on

ta
in

er

Fl
ow

er

Fo
re

m
an

H
al

l

M
ob

ile

Si
le

nt

W
at

er
 fa

ll

Wang et al. [12]
Li et al. [15]
Proposed method

(c)

Figure 6: Comparison results with other algorithms. (a) Precision rates. (b) Recall rates. (c) F1 score.

Table 4: *e running time of each tampered video in the dataset.

Tampered video Video frames (count) Video duration (sec.)
Average running time (sec.)

Proposed method Wang and Farid [12] Li and Huang [15]
Akiyo 300 10 16.55 01.10 44.80
Bus 150 05 04.62 02.37 12.47
Coastguard 300 10 16.63 04.46 44.92
Container 300 10 16.40 01.06 45.53
Flower 250 09 11.68 09.12 32.12
Foreman 300 10 16.72 01.94 45.17
Hall 300 10 16.41 01.10 45.67
Mobile 300 10 16.46 14.09 45.66
Silent 300 10 16.17 01.22 45.80
Waterfall 260 09 12.57 0.93 35.01

8 Scientific Programming

Levenshtein distance is adopted and used as a measure of
similarities in this paper. *e similarities between all the
subsequences are measured to find out the potentially du-
plicated frame pairs. *ese duplicated frame pairs are
combined together into a complete duplicated sequence, and
hence the location of the frame duplication forgeries is
located. Extensive experiments are conducted on some
tampered videos downloaded from VTL dataset. *e results
show that the precision of the proposed method can achieve
99.5% which is higher than the state-of-the-art methods.
Furthermore, the proposed method is able to locate the exact
location of the replica in addition to the detection capa-
bilities of frame duplication forgeries from the static scenes.

Data Availability

No private data were used to support this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported by the Fundamental Research
Funds for the Central Universities under grant nos.
2572018BH09 and 2572017PZ10 and Postdoctoral Research
Program of Northeast Forestry University under grant no.
203822.

References

[1] K. Sitara and B. M. Mehtre, “Digital video tampering de-
tection: an overview of passive techniques,” Digital Investi-
gation, vol. 18, pp. 8–22, 2016.

[2] G.-S. Lin, J.-F. Chang, and C.-H. Chuang, “Detecting frame
duplication based on spatial and temporal analyses,” in
Proceedings of the 2011 6th International Conference on
Computer Science & Education (ICCSE), pp. 1396–1399,
Singapore, August 2011.

[3] R. C. Pandey, S. K. Singh, and K. K. Shukla, “Passive forensics
in image and video using noise features: a review,” Digital
Investigation, vol. 19, pp. 1–28, 2016.

[4] W. Wang, X. Jiang, S. Wang, M. Wan, and T. Sun, “Identi-
fying video forgery process using optical flow,” in Proceedings
of the 12th International Workshop on Digital-Forensics and
Watermarking (IWDW), pp. 244–257, Auckland, New Zea-
land, October 2013.

[5] Q. Dong, G. Yang, and N. Zhu, “A MCEA based passive
forensics scheme for detecting frame-based video tampering,”
Digital Investigation, vol. 9, no. 2, pp. 151–159, 2012.

[6] J. Yang, T. Huang, and L. Su, “Using similarity analysis to
detect frame duplication forgery in videos,”Multimedia Tools
and Applications, vol. 75, no. 4, pp. 1793–1811, 2016.

[7] Y. Shi, M. Qi, Y. Yi, M. Zhang, and J. Kong, “Object based dual
watermarking for video authentication,” Optik, vol. 124,
no. 19, pp. 3827–3834, 2013.

[8] C. Cuevas, E. M. Yáñez, and N. Garćıa, “Labeled dataset for
integral evaluation of moving object detection algorithms:
Lasiesta,” Computer Vision and Image Understanding,
vol. 152, pp. 103–117, 2016.

[9] S. Jia, Z. Xu, H. Wang, C. Feng, and T. Wang, “Coarse-to-fine
copy-move forgery detection for video forensics,” IEEE Ac-
cess, vol. 6, pp. 25323–25335, 2018.

[10] O. M. Al-Qershi and B. E. Khoo, “Passive detection of copy-
move forgery in digital images: state-of-the-art,” Forensic
Science International, vol. 231, no. 1–3, pp. 284–295, 2013.

[11] A. Bovik, “Handbook of image and video processing,” Sensor
Review, vol. 62, no. 4, pp. 4632–4636, 2005.

[12] W.Wang and H. Farid, “Exposing digital forgeries in video by
detecting duplication,” in Proceedings of the 9th Workshop on
Multimedia & Security, pp. 35–42, Dallas, TX, USA, Sep-
tember 2007.

[13] V. K. Singh, P. Pant, and R. C. Tripathi, “Detection of frame
duplication type of forgery in digital video using sub-block
based features,” in Proceedings of the International Conference
on Digital Forensics and Cyber Crime, pp. 29–38, Seoul, Korea,
October 2015.

[14] G.-S. Lin and J.-F. Chang, “Detection of frame duplication
forgery in videos based on spatial and temporal analysis,”
International Journal of Pattern Recognition and Artificial
Intelligence, vol. 26, no. 7, p. 1250017, 2012.

[15] F. Li and T. Huang, “Video copy-move forgery detection and
localization based on structural similarity,” in Proceedings of
the 3rd International Conference on Multimedia Technology
(ICMT 2013), pp. 63–76, Springer, Berlin, Germany, 2014.

[16] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: from error visibility to structural
similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, 2004.

[17] L. D’Amiano, D. Cozzolino, G. Poggi, and L. Verdoliva, “A
patch match-based dense-field algorithm for video copy-
move detection and localization,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 29, no. 3,
pp. 669–682, 2018.

[18] K. N. S. Behara, A. Bhaskar, and E. Chung, “A novel approach
for the structural comparison of origin-destination matrices:
Levenshtein distance,” Transportation Research Part C:
Emerging Technologies, vol. 111, pp. 513–530, 2020.

[19] J. Beernaerts, E. Debever, M. Lenoir, B. De Baets, and
N. Van de Weghe, “A method based on the Levenshtein
distance metric for the comparison of multiple movement
patterns described by matrix sequences of different length,”
Expert Systems with Applications, vol. 115, pp. 373–385, 2019.

[20] W. J. Masek and M. S. Paterson, “A faster algorithm com-
puting string edit distances,” Journal of Computer and System
Sciences, vol. 20, no. 1, pp. 18–31, 1980.

[21] J. L. Peterson, “Computer programs for detecting and cor-
recting spelling errors,” Communications of the ACM, vol. 23,
no. 12, pp. 676–687, 1980.

[22] G. Navarro, “A guided tour to approximate string matching,”
ACM Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[23] A. Marzal and E. Vidal, “Computation of normalized edit
distance and applications,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, no. 9, pp. 926–932,
1993.

[24] D. A. Adjeroh,M.-C. Lee, and I. King, “A distance measure for
video sequences,” Computer Vision and Image Understanding,
vol. 75, no. 1-2, pp. 25–45, 1999.

[25] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani,
“Corrauc: a malicious Bot-Iot traffic detection method in Iot
network using machine learning techniques,” IEEE Internet of
7ings Journal, vol. 8, no. 5, pp. 3242–3254, 2020.

[26] M. Shafiq, Z. Tian, Y. Sun, X. Du, and M. Guizani, “Selection
of effective machine learning algorithm and Bot-IoT attacks

Scientific Programming 9

traffic identification for internet of things in smart city,”
Future Generation Computer Systems, vol. 107, pp. 433–442,
2020.

[27] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “IoT
malicious traffic identification using wrapper-based feature
selection mechanisms,” Computers & Security, vol. 94,
p. 101863, 2020.

[28] M. Emam,Q. Han, andH. Zhang, “Detection of copy-scale-move
forgery in digital images using SFOP and MROGH,” in Pro-
ceedings of the International Conference of Pioneering Computer
Scientists, Engineers and Educators, pp. 326–334þ, Harbin, China,
August 2016.

[29] M. Emam, Q. Han, L. Yu, Y. Zhang, and X. Niu, “A passive
technique for detecting copy-move forgery with rotation
based on polar complex exponential transform,” in Pro-
ceedings of the Seventh International Conference on Digital
Image Processing (ICDIP 2015), Los Angeles, CA, USA, April
2015.

[30] M. Emam, Q. Han, L. Yu, and H. Zhang, “A keypoint-based
region duplication forgery detection algorithm,” IEICE
Transactions on Information and Systems, vol. E99.D, no. 9,
pp. 2413–2416, 2016.

10 Scientific Programming

Research Article
An Intelligent Analytics Approach to Minimize Complexity in
Ambiguous Software Requirements

Fariha Ashfaq ,1 Imran Sarwar Bajwa ,1 Rafaqut Kazmi ,1 Akmal Khan ,1

and Muhammad Ilyas 2

1Department of Computer Science, �e Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
2Department of Computer Science, University of Malakand, Chakdara, Pakistan

Correspondence should be addressed to Imran Sarwar Bajwa; imran.sarwar@iub.edu.pk

Received 16 November 2020; Revised 13 January 2021; Accepted 8 March 2021; Published 23 March 2021

Academic Editor: Fabrizio Riguzzi

Copyright © 2021 Fariha Ashfaq et al.0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An inconsistent and ambiguous Software Requirement Specification (SRS) document results in an erroneous/failed software
project. Hence, it is a serious challenge to handle and process complex and ambiguous requirements. Most of the literature work
focuses on detection and resolution of ambiguity in software requirements. Also, there is no standardized way to write un-
ambiguous and consistent requirements. 0e goal of this research was to generate an ambiguity-less SRS document. 0is paper
presents a new approach to write ambiguity-less requirements. Furthermore, we design a framework for Natural Language (NL) to
Controlled Natural Language (CNL) (such as Semantic Business Vocabulary and Rules (SBVR)) transition and develop a
prototype.0e prototype also generates Resource Description Framework (RDF) representation.0e SBVR has a shared meaning
concept that minimizes ambiguity, and RDF representation is supported by query language such as SPARQL Protocol and RDF
Query Language (SPARQL). 0e proposed approach can help software engineers to translate NL requirements into a format that
is understandable by all stakeholders and also is machine processable.0e results of our prototype are encouraging, exhibiting the
efficient performance of our developed prototype in terms of usability and correctness.

1. Introduction

Requirements engineering (RE) has been dealing with
similar issues since the beginning in software engineering.
RE is a common phase in business process development as
well as software development for user requirement speci-
fication. Typically, the four stages of RE in the software
development process include requirement elicitation,
analysis, requirement validation, and specification. Here,
requirement elicitation and requirement analysis phases are
significant to ensure complete, consistent, and unambiguous
requirement specifications. 0e end product of the RE phase
is the SRS document.0e SRS document becomes the base of
the later stages [1] of the software development process. 0e
initial phases of the software development process have
more impact on the software quality as compared to later
phases [2]. 0e SRS document maintains user end story in
descriptive form using NL [1], because NL is the most

convenient way to communicate while gathering require-
ments in business process development as well as in software
development. Almost 79% of requirement specification
documents are found in “Real Natural Language” [3]. NL is
expressive, universal, flexible, widespread, and above all
understandable for all stakeholders [4]. Along with the key
features, NL is inherently ambiguous [5] and has extensively
been recognized as a challenge [6].

In 0e Ambiguity Handbook, Berry et al. [7] define
ambiguity as, “A requirement is ambiguous if it admits
multiple interpretations despite the reader’s knowledge of
the requirement engineering context.” 0ere are 39 types of
ambiguity, vagueness, or generality [7]. NL such as English is
ambiguous owing to its informal sentence construction.
0ere exists an average of 23 meanings for the 500 most used
English words [8]. Ambiguity is more intractable than other
requirement defects and, thus, results in more frequent
misunderstandings [9].

Hindawi
Scientific Programming
Volume 2021, Article ID 6616564, 20 pages
https://doi.org/10.1155/2021/6616564

mailto:imran.sarwar@iub.edu.pk
https://orcid.org/0000-0002-9302-2940
https://orcid.org/0000-0002-5161-6441
https://orcid.org/0000-0002-8111-1911
https://orcid.org/0000-0003-3636-8053
https://orcid.org/0000-0003-2531-6485
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6616564

If the SRS document contains ambiguous, incomplete, or
contradictory requirements, it results in erroneous software.
According to S. McConnell, more than 50% of corporate
software projects do not fulfill the expectations [10]. CHAOS
report of Standish Group 2015 states that 52% of software
exceed budget as well as time or does not meet the basic
requirements, while 19% of projects are a complete failure
[11]. All such failures are due to misunderstandings while
interpreting stakeholder’s ambiguous requirements.0e SRS
document is considered unambiguous only if there is only
one possible meaning for each software requirement [12].
0e SRS document contains requirements understood and
agreed upon by all stakeholders [13].

Inconsistency and ambiguity in the SRS document
propagate to the next phases of software development [14],
such as software modeling; affect the accuracy of the end
software product; and results in more manual effort and
high-cost budgets. Hence, the functional requirements
gathered and quoted in the SRS documentmust be complete,
consistent, and clear, i.e., unambiguous.

A possible solution to handle ambiguity can be the
exercise of a mathematical formal logic illustration instead of
NL to represent user requirements. However, the use of
formal logic is not only a complex task. A wrongly written
formal logic will be difficult to handle, and it will create a
serious problem in later stages of software development.
Furthermore, stakeholders are usually not able to under-
standmathematical logic. Hence, this solution does not seem
feasible.

Another possible way to deal with the above-discussed
ambiguity problem is the use of CNL [15]. It can work as a
bridge between NL and formal representation. Since Re-
quirement Analysis is based on communication and the
analyst’s experience, it can be modeled up to a certain limit.
0is limit gives birth to controlled language. If the docu-
ment is written in CNL, it will be feasible for a development
team to use a simpler and less costly linguistic tool. Several
CNL could be found in literature such as ACE [16], PENG
[17], CPL [18], Formalized-English [19], SBVR, etc. We
intend to apply an SBVR-based CNL to write stakeholder’s
requirements and generate an SRS document. Such soft-
ware requirements will be syntactically unambiguous as
well as semantically consistent. In this paper, a novel ap-
proach is presented to soften the complex requirements by
representing the requirements in standardized forms such
as SBVR and RDF. By “soften the complex requirement,”
we mean to rewrite a complex requirement in such a
standardized form so that the ambiguity caused by the
complexity of the sentence can be avoided.

2. Literature Review

Two classes’ approach is found in RE to handle ambiguity
[13]. 0e first-class reactive approaches include ambiguity
detection and resolution. Such class deals tend to base on
cases where ambiguity is already present in the SRS docu-
ment’s text. 0e second class is proactive, i.e., ambiguity
prevention/avoidance deals with ambiguity in the first place,
i.e., the requirement elicitation phase. It detects ambiguity in

requirements and demands an explanation from the user.
0e five major approaches in which research work is being
done to deal with both classes of ambiguity include
checklist-based inspection approach; style guides; knowl-
edge-based approach; heuristics-based approach; and con-
trolled language [20]. Bano [6] and Sandhu and Sikka [18]
have conducted a deep survey on ambiguity handling
approaches.

In a literature review [6], the author argued that there is
more focus on ambiguity detection, whereas ambiguity
avoidance and resolution have been largely neglected in
empirical work. Also, more work is done on syntactic and
semantic ambiguities than other types. In literature, different
methods and techniques are proposed to tackle ambiguity in
the SRS document [6, 20].

Friedrich et al. [21] present an automatic approach to
produce Business Process Model and Notation models
from the NL text. 0e purpose is to minimize ambiguities
and time. 0e researchers combined existing tools from
NLP and improved them using an appropriate anaphora
resolution mechanism. 0e generated SVBR specifications
are validated and verified using the SBVR2UML approach
proposed by [22]. 0is tool translates SBVR specifications
documented in the SRS document to Unified Modeling
Language (UML) class diagram. 0e technique extracts
Object-Oriented information from SBVR-SRS and maps it
to a class model.

RESI [23] is an ontology-based “common sense engine”
supporting analysts by providing a dialog-system to make
suggestions and inquires for an ambiguous, faulty, or in-
accurate specification. RESI works in four steps, and utilizes
various ontologies such as ResearchCyc, WordNet, Con-
ceptNet, and YAGO to discover problems and to provide
common-sense solutions. Mich and Garigliano [24] have
proposed a scheme to define indices of structural and se-
mantic ambiguity. Researchers have investigated the ap-
plication of defined indices for the system called LOLITA. It
uses the knowledge base (a kind of conceptual graph) and
output of the parsing phase to calculate the feasibility of
these indices. LOLITA is designed to prevent ambiguity.
LOLITA detects structural and semantic ambiguity.

A tool SREE [25] is designed to detect instances of potential
ambiguity in NL requirement specifications and reports them
back to the user to take appropriate action. SREE uses a lexical
analyzer, searching for instances of only precise words in the
SREE’s database. 0e tool uses guiding rules that help to write
less ambiguousNL SRS documents.0e provided guiding rules
can also serve as an inspection checklist to find ambiguities in
requirement specifications. SREE only detects coordination
ambiguity and semantic ambiguity. Yang et al. [26] constructed
a machine-learning-based antecedent classifier, to detect an-
aphoric ambiguities. 0e antecedent classifier trains itself on a
set of heuristics and human judgments.0e output is then used
to spot nocuous ambiguity. 0e used classifier alerts the re-
quirements analyst about the risk of misinterpretation. A
Comparative Analysis is mentioned in Table 1.

Instead of generating user understandable format of the
SRS document, research focused on NL to model/prototype
generation. All of the abovementioned tools motivate us to

2 Scientific Programming

Table 1: Comparative analysis of work done on ambiguity.

Sr
Source Data type Identified

ambiguities
Proposed
approach

Technologies/
models/methods/
algorithms used

Ambiguity
avoidance

Ambiguity
detection

Ambiguity
resolution

1 Kamsties
et al. [27] NL: English

Lexical, Polysemy,
systematic
Polysemy,
Referential
Discourse,
Domain

Checklist-
based

inspection
approach

UML-based
heuristics-
based

approach

UML Foundation
package, SCR
metamodel

✘ ✓ ✘

2
Mich and
Garigliano

[24]
NL: English Semantic

Syntactic

Knowledge
base, NLP,
indices

LOLITA ✘ ✓ ✘

3

Ashfa and
Imran
Sarwar

Bajwa [11]

NL: English office
time management

system

Syntactic
Semantic

SBVR,
controlled

NL

Stanford POS tagger
v3.0rule-based

bottom-up parser
✓ ✘ ✘

4 Ferrari et al.
[28]

NL:
EnglishOutbreak
Management
Functional

Requirements,
issued in 2005 by the

Public Health
Information

Network (PHIN) of
the Centers for

Disease Control and
Prevention (CDC)

Pragmatic
Knowledge-

based
approach

Least-cost path
search ✘ ✓ ✘

5 Friedrich
et al. [21]

NL:47 text-model
pairs from industry

and textbooks

Referential
anaphora
resolution

NLP-based

Stanford Parser,
FrameNet,

WordNet, World
Model, the

anaphora resolution
algorithm

✘ ✓ ✘

6 Kaiya and
Saeki [29]

NL: Japanese,
software music

player
Semantic Ontology-

Based

Spreadsheet, a
diagram editor with
macro processing

✘ ✘ ✘

7 Gleich et al.
[30]

NL:data set
consisting of

approximately50
German and 50
English sentences

Lexical Syntactic
Semantic
Pragmatic

Automated
ambiguity
detection,
NLP-based

Unix-based grep-
like technique ✘ ✓ ✘

8 Al-Harbi
et al. [31]

NL: English200 NL
questions for the
university domain

from various
universities’ websites

Lexical. semantic
(nouns-based
ambiguity)

Context
knowledge

and concepts
ontology,
shallow NL
processing

based

Rule-based
chunker, rule-based
shallow semantic
analyzer, semantic

role labeling
method, WordNet

Domains

✘ ✘ ✓

9 Verma and
Beg [32] NL: English Syntactic

Incompleteness NLP-based

Shift-reduce style
parser, maximum
entropy parser,
Penn Tree Bank

✘ ✘ ✓

10 Gill et al.
[33] NL: English Lexical Syntactic

Semantic NLP-based

NL Processing,
Word Sense

Disambiguation,
Text Mining
Language

Perceptions,
Human Judgment,

Contextual
Knowledge

✓ ✘ ✘

Scientific Programming 3

design an approach that can assist analysts in creating
ambiguity-less SRS documents from English. 0e above-
mentioned tool tends to deal with a certain type of ambi-
guity, thus others remain a concern. Along with syntactic
and semantic ambiguities, there is a need to work on other
types of ambiguities as well.

To minimize the effect of ambiguity and informality of
NL in the SRS document, the best approach is to use some
sort of combined approach. CNL (a subset of NL) such as
Attempto [37] and SBVR [38] minimize formality as well as
help to generate ambiguity-less SRS document. For business
process modeling, SBVR has emerged as a vital tool for
capturing software requirements. It is an efficient way to get
machine processable and unambiguous rules written in a
formal pattern from NL.

Most of the work is based on the reactive approach;
previous solutions tend to base on cases where ambiguity is
already present in the text. Most of the works deal with
ambiguity detection.0ere is a huge gap in research to find a
way to avoid ambiguity in the first place. Moreover, the
proposed solution deals with a certain type of ambiguities.
0ere is a lack of a standard approach that successfully deals
with all types of ambiguities. Bajwa et al. [39] have proposed
an automated approach, NL2SBVR. NL2SBVR uses the
UML class model as a business domain to map NL to SBVR
vocabulary. It translates NL specifications to formal SBVR
rules. 0e SBVR provides a set of logical formulations that
can help in the semantic analysis of English language text.
NL2SBVR will give efficient results in less time and with

lesser errors. 0e proposed approach achieved an average
accuracy of 87.33%. 0e approach lacks a method to specify
the meaning for entities in the dataset.

Ramzan et al. [40] developed a tool for NL to SBVR
model transformation using the Sitra transformation engine.
To accomplish the transformation, the concept of English
metamodel is introduced. 0e transformation is based on
SBVR 1.0 document. 0e proposed approach achieved an
average recall of 83.22%, average precision of 87.13%, and
average F-value of 85.14. Danenas et al. [41] propose the
M2M conversion. Authors extract data from UML case
diagrams using Text rumblings. Preprocessing is performed
on the extracted result of Text rumblings. In the end, the
SBVR model is generated. A common understanding of
things is the prerequisite for nonautomated parts and, thus,
can cause ambiguity.

Njonko and El Abed [42] transform NL business rules
into SBVR Rules using the NLP framework. SBVR rules are
then transformed into Executable Models. 0e evaluation of
the proposed approach is missing. Hence, the success factor
of the proposed approach is unknown. Siqueira et al. [43]
combine the Behavior-Driven Development approach and
SBVR to refine requirements through iterations. Chittimalli
and Anand [44] check the inconsistencies among SBVR
rules using Satisfiability modulo theories. Arnold and Rahm
[45] propose an approach to identify the semantic similarity
between concepts from Wikipedia articles.

We propose a proactive approach to handle all the
parameters that actively play a role in raising ambiguities in

Table 1: Continued.

Sr
Source Data type Identified

ambiguities
Proposed
approach

Technologies/
models/methods/
algorithms used

Ambiguity
avoidance

Ambiguity
detection

Ambiguity
resolution

11 Massey
et al. [34]

NL: English (23
paragraphs from
HITECH Act, 45
CFR Subtitle A, §

170.302)

Lexical, Syntactic
Semantic,
Vagueness

Incompleteness,
Referential

Manual
guide-based

Case Study
Ambiguity
Taxonomy

✘ ✓ ✘

12 Sandhu and
Sikka [18] NL: English

Lexical Syntactic
Semantic
Pragmatic

Knowledge-
based

approach

Rule-based
framework ✘ ✓ ✘

13 Bhatia et al.
[5] NL: English

Pragmatic
Semantic

Vagueness and
Generality,

Language error

Knowledge-
based

ontology-
based

Ontology-based
framework ✘ ✓ ✘

14 Sabriye and
Zainon [1]

NL: EnglishOpen-
source software
requirements
specification
documents

Syntactic Syntax NLP-based
Stanford POS

tagger, rule-based
ambiguity detector

✘ ✓ ✘

15 Ali et al.
[35]

NL: EnglishServices
Proz: workforce

software
Syntactic Syntax

NLP-based
ontology-
based

IEEE 830 Template,
RUP template,

Pragmatic Quality
Model (PQM), and
Perspective-based
Reading (PBR)

✘ ✓ ✓

16 Popescu
et al. [36] NL SRS Semantic Controlled

NLP-based Dowser parser ✘ ✓ ✘

4 Scientific Programming

NL software requirements. Such a proactive approach fo-
cuses on representing software requirements, represented in
NL, in a CNL such as SBVR that is based on formal logic. It
provides a shared meanings concept. 0e output of our
proposed approach will not only be ambiguity-less and
understandable by all stakeholders but also machine pro-
cessable at the same time. Table 2 presents a comparative
analysis between some existing tools for ambiguity pre-
vention and the proposed approach.

2.1. Semantic Business Vocabulary and Rules (SBVR). 0e
SBVR was first released by Object Management Group
(OMG) in 2008. 0e SBVR can define clear, syntactically,
and semantically unambiguous, meaning-centric business
vocabulary and rules not only in business but also in the
software industry. 0e SBVR has mathematical foundations
(first-order logic), which make it easy to be processed by a
machine. 0e SBVR’s English-like syntax makes it easy to
understand for all stakeholders.

0e SBVR has the same expressive power as standard
ontological languages [24]. 0e produced SBVR XML
schema makes the interchange of information easy among
organizations and software tools. In the end, the use of the
SBVR will reduce the overall cost of the software develop-
ment process. 0e SBVR 1.4 [38] is the latest standard by
OMG. 0e SBVR vocabulary (Concepts, Fact Types) and
rules constitutes a standardized SBVR representation [38].

2.2. How the SBVR Can Help to Eliminate Ambiguity?
0e SBVR vocabulary is not only a set of definitions of terms
(concepts) and other representations but is an organized set
of interconnected concepts. For a particular business do-
main, the SBVR vocabulary defines each term with one exact
meaning in a given context, thus eliminating the chance of
ambiguity. Such definitions are formal enough to be used by
other software tools and informal enough to be understood
and used by all stakeholders.

2.2.1. Removing Lexical Ambiguity. In the SBVR, an ex-
pression represents a concept. Each expression/wording is
uniquely associated with one meaning (concept) in a given
context. 0us, one concept–one meaning association
eliminates the chance of lexical ambiguity. 0e definition of
a concept incorporates delimiting (a concept must hold) and
implied (a concept must not hold) characteristics, elimi-
nating the chances of homonymy lexical ambiguity. Along
with the definition, each concept has a definite description
along with examples and notes, hence removing polysemy
ambiguity. By following the SBVR rules to create a vocab-
ulary, the result will be well-defined concepts that cannot be
taken in multiple senses within the community, thereby
eliminating all types of lexical ambiguities.

2.2.2. Removing Syntactic Ambiguity. 0e SBVR includes
“Verb Concept Wording” to formally specify syntactic
representations of concepts and rules of any domain in
NL. Such a feature makes the SBVR well-suited for

describing syntactically ambiguity-less software require-
ments. 0e SBVR identifies concepts along with the
grammatical roles they play in a certain situation. Such a
feature removes the analytical ambiguity from a given
requirement. For each verb concept, the SBVR identifies
related categorization, classification, characterization,
and situational roles. Such identification will minimize
attachment ambiguity. Furthermore, the SBVR uses
logical formulation such as logical operations and, thus,
eliminates the coordination ambiguity.

2.2.3. Removing Semantic Ambiguity. 0e SBVR provides
semantic formulations to make English statements con-
trolled and semantically ambiguity-less. Such a semantic
formulation includes atomic formulation, instantiate for-
mulation, modal formulation, logical formulation, quanti-
fication, objectification, and nominalizations. 0e use of
logical formulation such as quantification eliminates the
scope of ambiguity. 0e SBVR incorporates “Reference
Scheme.” Such schemes serve as a link for noun phrases and
prepositions to their corresponding concepts and, thus,
eliminate Referential Ambiguity.

2.2.4. Removing Pragmatic Ambiguity. 0e SBVR avoids
pragmatic ambiguity by identifying associative fact types.
0e binary fact type is a typical example of the Associative
Fact Type. In the example “0e car conveys the parts,” there
is a binary association between the car and parts concepts.
0is association is one-to-many as the “parts” concept is
plural. In the conceptual modeling of the SBVR, Associative
Fact Types are mapped to associations.

3. Proposed Methodology

0e main objective of this research is to prevent the SRS
document from inducting ambiguity in the first place. To
achieve this, the proposed methodology comprises four
main phases, i.e., preliminary investigation and analysis,
proposed framework design and implementation, data
collection and experimental evaluation, and research find-
ings and conclusion.

3.1. Preliminary Investigation and Analysis. In the first
phase of the research, existing literature associated with
the study has been studied. 0e purpose is to acquire
knowledge related to RE techniques—the use of NL in SRS
documents and the ambiguity caused by NL. Possible
solutions in the literature to handle ambiguity in NL have
been studied.

3.2. Proposed Approach Design and Implementation.
Based on preliminary investigation and analysis, an ambi-
guity prevention approach is proposed to avoid ambiguity. A
prototype is developed to assess the anticipated approach.

3.3. Data Collection and Experimental Evaluation. In the
third phase, the data for the evaluation of the approach will

Scientific Programming 5

be collected from open-source SRS documents. Once data
collection is complete, it will be analyzed using the devel-
oped prototype.

Evaluation is conducted to validate the research findings
and to measure the performance and accuracy of the pro-
posed approach. Evaluation is conducted in two steps, i.e.,
performance evaluation and output document verification.

3.3.1. Performance Evaluation. To evaluate the performance
of the system, an evaluation methodology is used proposed
by Hirschman and 0ompson [46]. 0e performance
evaluation methodology is based on three aspects, i.e.,
Criterion, Measure, and F-measure. To evaluate the results
of the developed system, each element (Noun concepts, Verb
concepts, and SBVR rules) of the system’s generated output
was compared with the expert’s opinion (Nexpert) (sample
solution). 0e element is classified as correct (Ncorrect),
incorrect (Nincorrect), or missing (Nmissing).

3.3.2. �e Output Document Verification. 0e resultant
output document is stored in the XML format. To verify
XML schema, the XML file is parsed to validation service
W3C RDF/XML validation service [47]. If the document is
correctly formatted, the W3C web service replicates the
document into Triples and the graph format.

3.4. Research Findings and Conclusion. In the end, conclu-
sion, scope, limitations, and further work improvements are
being listed.

4. Design of the Proposed Approach

0is section describes the design of the prototype tool of
semiautomated NL-Requirements–SBVR-Rules transfor-
mation. 0e prototype comprises six basic stages, as shown
in Figure 1.

4.1. Input Documents. 0e proposed approach takes two
inputs:

(a) An English text document (.txt file): the input is
taken as a plain text file containing English written
software requirements. It is assumed that the given
English text is grammatically correct

(b) Software Artifact: the system will accept a software
artifact/model such as the UML class model (.ecore
file) to validate the SBVR vocabulary

(c) Wikipedia: the systemwill useWikipedia’s assistance
to associate meanings to the validated SBVR
vocabulary.

4.2. Stage-1: Parse NL Text of Software Requirements. 0e
parsing phase includes lexical and syntax analysis of the
input software requirements. 0is phase involves processing
units (ordered in a pipeline) to analyze complex English
sentences. 0e parsing steps are as follows:

Lexical processing: this phase takes a plain text file
containing an English SRS document as an input.
Lexical processing has further subphases:
Tokenization: the first subphase of lexical processing is
the tokenization of English text software requirements.
0e text is sliced into tokens. A single token is in fact a
“sequence of characters” with collective meaning.
During the tokenization phase, a sentence is sliced into
token instances. Each such instance is known as
lexemes.
Delimiters are used to identify lexemes: based on our
requirement, each sentence of the English text is
tokenized using StringTokenizer (str) and the output is
stored as an array-list.
An example of input text: “A designer may work on
many projects.” 0e generated tokenized output is: [A]
[designer] [may] [work] [on] [many] [projects] [.].
Such tokenized data will be used in syntactic analysis.

Table 2: A comparative analysis of existing tool with the presented approach.

Feature Support Korner and
Brumm [23]

Mich and
Garigliano

[24]

Ashfa, and Imran
Sarwar Bajwa [11]

Al-Harbi et al.
[31]

Verma and Beg
[32]

Our proposed
approach

Approach used Knowledge-
based to ontology

Knowledge
base

Controlled
language Ontology NLP Controlled

language

Technologies/
Models/Methods/
algorithms/
Approach used

RESI Stanford
parser,

ConceptNet,
WordNet

LOLITA
Indices

SR-Elicitor SBVR,
Stanford POS

tagger rule-based
bottom-up parser

Shift-reduce style
parser, maximum
entropy parser,
Penn Tree Bank

NL Processing,
Word Sense

Disambiguation

SBVR, Stanford
POS tagger, the

rule-based bottom-
up parser
Wikipedia

Syntactic
ambiguity ✘ ✓ ✓ ✘ ✓ ✓

Lexical Ambiguity ✓ ✘ ✓ ✓ ✘ ✓
Semantic
Ambiguity Scope ✓ ✓ ✓ ✘ ✓

Pragmatic
Ambiguity ✘ ✘ ✘ ✘ ✘ ✓

User interaction High Medium Low Low Low Medium

6 Scientific Programming

Sentence splitting: the splitter spots the ends of a
statement usually by a period “.”. It can also be used to
split the sentence itself. We used Java Split() method to
split the strings into substrings. Such substrings are
stored in a String array. 0e Spit() method splits the
string using the regular expression(RE) given inside the
parameters while calling the method. Such split sen-
tences will be used in later stages. Each identified
sentence is stored separately in an array-list.
Parts-of-speech (POS) tagging: a POS Tagger reads text
as an input in some language (in our case English
language), tokenizes the input, and assigns POS tags to
each token, such as nouns, adjectives, etc. In this
subphase, basic POS tags are identified using Stanford
POS tagger v3.0 [48]. 0e tagger is Java implemented
software of the log-linear part-of-speech taggers. 0e
overall accuracy of the Stanford POS tagger is 96.86%
[48]. Penn Treebank is being used for tokenization. 0e
tagger takes requirements as the input. 0e given input
is transformed into tokens. After the completion of the
tokenization stage, the tagger assigns POS tags to each
identified token. 0e generated result is stored in an
array-list for further processing.

An example of the tagger generated output:
[A/DT] [customer/NN] [can/MD] [have/VB] [two/
CD] [Credit/NNP] [Cards/NNP] [./.].
Syntactic processing: in this phase, the input is syn-
tactically analyzed to produce POS tags. 0e above
subphase is also performing syntactically analysis and
generating POS tags using the Stanford POS tagger.0e
output generated by the Stanford POS tagger includes
tagging, parse tree, and universal dependencies. Such
output formats are not enough to perform semantic
analysis and to generate the SBVR vocabulary and
Rules. 0e SBVR generated rules have an English
sentence format. Such format requires tags identifi-
cation to generate an English sentence. 0e desired
structure is

Subject +Verb +Object

Furthermore, the Stanford tokenizer is unable to
identify action verbs (active voice and passive voice),
models, and demonstratives. Stanford tokenizer is
unable to convert English written quantifications to
equivalent decimal numbers. Such identifications are
crucial for SBVR vocabulary and Rules generation. To

Software requirements NL text

Stage 1. parse NL text of software requirements

Stage 2. extracting SBVR vocabulary

Stage 3. validate SBVR vocabulary

Stage 4. associate meaning to SBVR vocabulary

Stage 5. generating SBVR rules

Stage 6. generating SBVR requirements in XML/XSD
format

WikipediaSelection of associate
meanings through user

interface

Validation of SBVR
vocabulary through user

interface Software
artifact/
model

Figure 1: Algorithm of the proposed methodology.

Scientific Programming 7

generate an SBVR rule, we need to do a deep semantic
analysis. Along with the Stanford POS tagger’s gen-
erated tags, our proposed methodology requires ad-
ditional information such as:
Logical formulation: logical formulations comprise
logical operators such as AND, OR, NOT, implies, etc.
Table 3 shows the possible tokens mapping to logical
formulations:
Quantification: quantification specifies the scope of a
subject. Possible quantifications can be identified from
tokens by following mapping rules mentioned in
Table 4:
Modal formulation: modal formulation depicts the
relationship linking the meaning of another logic
formulation and possible words or to acceptable words.
Modal formulation specifies the seriousness of a con-
straint. Table 5 shows possible tokens mapping to the
modal formulation:

To extract such information, based on methodology
requirement, an enhanced version of a Stanford parser,
the rule-based, bottom-up parser proposed by Bajwa et al.
[49], is used to analyze input at the next level. 0e rule-
based, bottom-up parser is based on English grammar
rules. Such a parser takes tagged tokens as the input. Such
tokens were generated in the previous subphase in Section
4.2. 0e enhanced version of the rule-based parser is
capable of accepting more than one requirement at a time.
Such a feature was not available in the original version.
0e parser overcomes the abovementioned limitations of
the Stanford parser and will extract all necessary infor-
mation required to perform semantic analysis. 0e gen-
erated output will be used to perform semantic analysis
and to generate SBVR vocabulary and rules. 0e algorithm
used by the rule-based parser to identify each tag/chunk is
shown in Figure 2.

Sample input for the rule-based parser is [A/DTuser/NN
can/MD have/VB two/CD Debit/NNP Cards/NNP./.]

0e generated output for the given input is shown in
Figure 3. 0e generated output is saved in an array for
further use.

Semantic Analysis: 0e phase identifies the meanings
and inference of a certain string. A program is considered
semantically reliable if all its variables, functions, classes,
etc., must be appropriately defined; expressions and vari-
ables are following the model. 0is is a crucial phase of
analysis as a semantically incorrect requirement will
eventually produce an incorrect system. 0e proposed
semantic analyzer analyzes the tags generated in syntactic
processing and assigns corresponding roles to each tag. 0e
process followed is shown in Figure 4.

0e user uses this semantic table (see Table 6) to verify
the roles of each token/chunk and hence the semantics of
requirements. A single table can display the whole set of
input requirements. Such identified roles assist in iden-
tifying the SBVR vocabulary in the later phase. All
identified roles are stored in an array-list. Figure 5 ex-
emplifies the output generated by the Semantic Parser.

4.3. Stage-2: Extracting the SBVR Vocabulary. 0is stage
identifies primary SBVR vocabulary elements from the
English input that was preprocessed in the previous stage 2.
To write SBVR rules, we need to identify SBVR vocabulary
elements. 0e steps to extract SBVR elements include

(i) Extracting Unitary Noun Concept
(ii) Extracting Individual Noun Concept
(iii) Extracting Individual Verb Concepts
(iv) Extracting Binary Verb Concepts
(v) Extracting Characteristic/Unary Verb Concepts
(vi) Extracting Unitary Verb Concepts
(vii) Extracting Associative Verb Concept
(viii) Extracting Partitive Verb Concept
(ix) Extracting Quantification
(x) Extracting Categorization

0e final step is to create facts. An SBVR fact is a basic
building block of the formal representation [38]. A fact type
is based on identified verb concepts. A list of noun concepts
and verb concepts is available in the SBVR vocabulary array-
list. A fact type is generated by mapping such concepts.
Atomic formalization is used to map the input requirement
to an appropriate fact type. 0e generated list of the SBVR
vocabulary consists of concepts and fact types. Such a vo-
cabulary will be used as a reference throughout the gener-
ation of SBVR rules. A list of possibly extracted vocabulary
elements from English text is shown in Table 7.

4.4. Stage-3: Validation of the SBVR Vocabulary. 0is phase
validates that the elements of the SBVR vocabulary are
consistent with the domain. 0e validation phase takes the
list of the extracted SBVR vocabulary in the form of an array-
list that comes from the previous phase and the second one is

Table 3: Tokens to logical formulations mapping.

Tokens Logical formulation
“not,” “no” negation (⌐ a)
“that,” “and” conjunction (a ˄ b)
“or” disjunction (a ˅ b)
“imply,” “suggest,” “if,” “infer” implication (a⟹ b)

Table 4: Tokens to quantification mapping.

Tokens Quantification
“more than,” “greater than” at least n
“less than” at most n
token “equal to” or a positive statement exactly n

Table 5: Tokens to quantification mapping.

Tokens Modal formulation
Model verbs (“can”, “may”) Structural requirement
Model verbs (“should,” “must”) Behavioral requirement
Verb concept (“have to”) Behavioral requirement

8 Scientific Programming

a software artifact/model such as a UML class model. To
input such a model, the following two options can be used:

(1) 0e user provides a UML class model of the re-
spective business domain that will be used as a
software artifact for the validation process.

(2) 0e approach provides a repository of a large
number of UML class models from various business
domains.0e user will perform a manual selection of
relevant software artifacts/model from the available
repository.

(3) Once the selection of a UML class model has been
made, the selected UML class model is parsed using
the parseEcore parser to extract the metadata.

(4) UML parser performs extraction on the resultant
content. 0e extraction process includes the fol-
lowing steps:

(a) Extract classes
(b) Extract attributes
(c) Extract operations list
(d) Extract associations
(e) Extract generalization

Once the extraction process is complete, nodes are
created and the parseEcoreparser represents the extracted
features of the UML model in a hierarchical tree format, as
shown in Figure 6.

0e user will manually perform the mapping of extracted
metadata to SBVR elements to validate the SBVR vocabu-
lary, as shown in Table 8.

4.5. Stage-4: Associate Meanings. 0e key success of the
SBVR is that it defines every vocabulary element; hence,
eliminate ambiguity in terms and statements. 0is phase
associates meanings to the validated SBVR vocabulary
and eliminates “single word–multiple senses” ambiguity.
Before the conversion of English text to SBVR rules, the
meaning is associated with the input SBVR vocabulary to
ensure that the resultant SBVR rules will be semantically
associated with the relevant business domain. 0e system
will look for associate meaning for each requirement in
the Knowledge Base.

0is phase receives two inputs; the SBVR vocabulary and
Knowledge Base. Wikipedia is used as a knowledge base.
Wikipedia is a reliable and general-purpose Knowledge Base
accommodating all possible sets of meanings from different
domains. Wikipedia is a fast and lightweight application;
requires only an Internet connection; is easily accessible and
has no specific memory requirement. A list of synonyms is
also available on Wikipedia; hence, it eliminates “multiple
words–one sense” ambiguity.

(1) To associate meanings, the user has to select an SBVR
vocabulary element.

(2) 0e proposed system uses a Wikipedia parser to
extract a list of possible meanings from Wikipedia.
All possible scenarios for a selected SBVR vocabulary
element will be displayed from Wikipedia using an
interface, and the final selection will be left to the
domain expert/analyst.

(3) 0e user can select the associated meaning for all
SBVR vocabulary elements.

(4) 0e SBVR vocabulary is updated by adding associ-
ated meanings. Such associated meanings are added
to the SBVR vocabulary for future assistance. 0e
association of meanings will be of great assistance to
the Analysis and Design team. 0ere will be no
ambiguity in the SBVR vocabulary in terms of

(i) Single word–multiple senses
(ii) Multiple words–one sense

Figure 7 shows added associate meanings in the SBVR
vocabulary.

(1.1) Identify is, are, am, was, were as “subject in state”
(1.2) Identify has, have, had as “subject in possession”
(1.3) Identify EX (existential there) as “there”

(1.5) Identify CD (cardinal number) and DT (determiner) as “quantifications”
(1.5.1) Convert english text number to decimal number (‘one’ and ‘a’ –> 1)

(1.6) Identify CC (coordinating conjunction) as “conjunction”
(1.6.1) Convert to equivalent symbol (‘and’ –> $$, ‘or’ –> ||, ‘not’ –> !, ‘,’–? $$)

(1.7) Identify IN and TO: (preposition or subordinating conjunction) as “preposition”
(1.8) Identify NN (noun, singular or mass), NNP (proper noun, singular), NNPS (proper noun, plural,

NNS (noun, plural), POS (possessive ending), and quantification
(1.8.1) Identify “subject” along with a conjunction
(1.8.2) Identify “object” along with conjunction and preposition

(1.9) Identify “helping-verb” and “action-verb” using VB, MD, VBZ, VBD, VBN, VBDN, VBP

(1.4) Identify WDT (Wh-determiner) as “that”

Figure 2: 0e rule-based parser algorithm.

tag Chunk

asb 1 user

hvb can

avb have

ob 2 debit cards

./. eos|

Figure 3: An example of syntax analysis.

Scientific Programming 9

4.6. Stage-5: Generating SBVR Rules. Once the SBVR vo-
cabulary is validated and associated with related meanings,
the System is ready to generate SBVR rules. In this phase,
SBVR rules are generated by using a rule-based parser. Such
rules will be used to get the SBVR-based requirements
specifications. Rule base parser contains a set of rules that
maps SBVR elements with the SBVR vocabulary. 0e SBVR
rule generator follows three steps to rule generation, which
include extracting the SBVR Rule type, applying Semantic
Formulation, and finally applying structured English
notation.

Extracting the SBVR rule type: in this phase, each
requirement is categorized either as a structural or a
behavioral requirement. Such classification will be used
to generate corresponding advice or behavioral rule.
Following rules are applied to classify a requirement
type.
Extracting advices:0e requirements written in English
language having auxiliary verbs, such as “can,” “may,”
etc., are identified and classified as advice. For example,
sentences representing state, e.g., “NBP is a bank,” or
possession, e.g., “Bank cab has two cashiers,” can be

categorized as advice. Moreover, the English written
requirements using general action verbs, such as
consists, composed, equipped, etc., are also classified as
structural requirements.
Extracting behavioral requirements: the English written
requirements having auxiliary verbs such as “should,”
“must” are identified and classified as a behavioral rule.
Furthermore, the requirements having an action verb
can be classified as a behavioral rule, e.g., “Cardholder
provide a valid password.”
Applying semantic formulation: a set of such formu-
lations are exercised to each fact type to generate an
SBVR rule. 0e SBVR version 1.5 proposes two basic
semantic formulations. 0ese include Logical Formu-
lation and Projections. Logic Formulation is further
categorized as Atomic Formulations, Instantiation
Formulations, Modal Formulations, Logical Opera-
tions, Quantifications, Objectification, Projecting
Formulations, and Nominalizations of Propositions
and Questions. Here, we are using the following three
formulations concerning the context of the scope of the
proposed research.
Logical formulation: an SBVR rule may consist of
various Fact Types via logical operators such as AND,
OR, NOT, implies, etc. Table 9 shows the possible
tokens mapping to logical formulations:
Quantification: quantification specifies the scope of a
concept. Possible quantifications can be identified from
tokens by following mapping rules mentioned in
Table 10:
Modal formulation: such formulation stipulates the
weight of a constraint. Table 11 shows possible tokens
mapping to the modal formulation:

0e steps followed by the rule generator are as follows:

(1) Identify new sentence
(2) Identify numeric value
(3) Identify each
(4) Identify object types
(5) Identify individual concept
(6) Identify the verb concept

(7) The identified roles are displayed in the semantic table.

(3) Each token/chunk (an english word) perform a specific role within a sentence such as “subject”, “object”, “adverb”,
“preposition” etc. it is very important to identify such roles to understand the semantics of a requirement written as
english text. The semantic analyzer identifies roles as:

(4) Parser generates higher-order logic-based semantic representation. This will identify status of “subject” and
“object” and label type as “state”, “possession” and “active”.

(5) In the end parser performs atomic formulation. Atomic formulation includes the role binding for a particular
role of the verb concept that is the basis of the atomic formulation. Atomic formulations are labeled as “is a”,
“attribute of ”, “akind of ”, “belongs to”, “quantification” and “relation.”

(6) End of each requirement is marked with “EOS” determiner. It helps to distinguish among different requirements.

(2) Semantic analyzer tokenized the input using java stringtokenizer() method.
(1) The input is an array from the previous syntactic processing phase.

Figure 4: Steps followed for semantic analysis.

Table 6: An example of a semantic table.

Tag Syntax Type
Ssb Subject State
| OR
Avb Verb
For, of, in, on, from, at, etc. Preposition
Integer Quantification
./. Eos

Chunk Syntax Quant Logical Type Prep EOS

1

2

3

4

5

Customer

Can

Have

Credit cards

Visa card

Subject

H.Verb

A.Verb

Object

Object 1

1

2

AND

Active

True

Figure 5: Algorithm for identifying subject part state sentence.

10 Scientific Programming

0e algorithm followed to identify a new sentence is
given in Figure 8.

4.6.1. Applying the SBVR Notation. 0e last phase is to apply
an SBVR notation to generate SBVR-based requirements
specifications. Such a format contains unambiguous and

Table 7: Possible extracted vocabulary elements from English text.

Tags from English text requirement document SBVR elements
Proper nouns Individual concepts
Common nouns appearing in the subject part Noun concepts or general concept
Common nouns appearing in the object part Object type
Auxiliary and action verbs Verb concepts
Auxiliary verbs and noun concepts Fact types

Common nouns in the object part Unary fact type: object type/individual concept without
an action verb

Common nouns in the object part + auxiliary
Action verbs Unary fact type with an action verb
Common nouns in the object part/proper nouns + auxiliary and action
verbs + common nouns in the object part

binary fact type: object type/individual
concept + verb + object type

Characteristic, adjectives or attributes, possessed nouns Characteristic: Is-property-of fact type
Indefinite articles, plural nouns, and cardinal numbers Quantification with the respective noun concept
Associative or pragmatic relations Associative fact types
“Is-part-of,” or “included-in,” or “belong-to” Partitive fact types
“is-category-of,” or “is-type-of,” “is-kind-of Categorization fact types

Figure 6: UML parser output.

Table 8: Equivalence between SBVR elements and UML model components.

SBVR elements UML components
Individual concepts Instances
Noun concepts or general concept Classes
Object type Classes
Verb concepts Methods, operations
Fact types Associations and generalizations
Unary fact type: object type/individual concept without an action verb Attributes of a class
Unary fact type with an action verb Unary relationship
binary fact type: object type/individual concept + verb + object type Associations and generalizations
Characteristic: Is-property-of fact type Attributes of class
Quantification with the respective noun concept Multiplicity
Associative fact types Caption of association
Partitive fact types Generalizations
Categorization fact types Aggregations

Concept type:
General concept type:
Concept type:
Logical term:
Description: (pay from a cash account that has no checkwriting privileges)

prepaid cards

role
Visa card

noun concept
individual concept

Figure 7: An example of associated meaning to the SBVR
vocabulary.

Scientific Programming 11

constant specifications. 0e end document will be an XML
format file that uses the SBVR XMI XSD as its XML Schema.
Such documents will be easy for a machine to process. 0e
proposed approach supports SBVR Structured English. To
apply Structured English:

(i) 0e noun concepts are underlined, e.g., card
(ii) 0e verb concepts are written as italic, e.g., can, has
(iii) 0e keywords are bolded, i.e., SBVR keywords, e.g.,

each, at least, at most, obligatory, etc.
(iv) 0e individual concepts are double-underlined, e.g.,

black cat

For example: “A person’s nationality should be British.”
will be translated as per SBVR rule as: “It is obligatory that
each a person’s nationality should be ‘British’.”

4.7. Stage-6: �e Output. 0e output is saved and exported
in an XML format. 0e file contains the SBVR vocabulary
and SBVR rules. To verify the XML schema, the XML file
can be parsed to any validation service such asW3C RDF
Validation Service [47]. Such a file is an interchangeable,
platform-independent, easy machine process document,
providing a clear, unambiguous, consistent, and complete
SRS document.

5. Implementation of the Approach

To better understand the stages, let us observe the interaction
of the components during their defined scenarios of NL to
SBVR Rules transformation.

(i) 0e system takes two inputs—user requirements
and the UML model for validation. Requirements
are written by the user either in a text file (A1 from
Figure 9) or directly on the SBVR editor pane (A2
from Figure 9). Such requirements are used to

extract the SBVR vocabulary. 0e evaluations of the
proposed approach use a text file to input re-
quirements. 0e UML model was selected from the
available UML model repository. 0e user selects a
domain-specific UML model to perform mapping
from the UML model to SBVR vocabulary set.

(ii) As the “Generate SBVR” button is clicked, the Rule-
Based Parser [24] extracts the SBVR vocabulary
from the NL text software requirements. 0e Parser
identifies the concepts along with the concept type
and its general concept (A3 from Figure 9). Along
with the concepts, the parser also identifies the fact
type of related concepts.

(iii) 0e UML model is used to validate the generated
SBVR vocabulary. 0is validation procedure was
performed manually. 0e user mapped the identi-
fied SBVR vocabulary elements to the UML model
items.

(iv) 0e user can add semantics using the Wikipedia
parser. 0e Wikipedia parser extracts the list of
meanings from the Internet related to the SBVR
vocabulary (A4 from Figure 9). 0e user can select
the domain-specific meaning (A5 from Figure 9).
Such a selected meaning is associated with the
corresponding vocabulary concept (A6 from
Figure 9).

(v) 0e Rule-Based Parser generates the SBVR Rules.
Such SBVR rules include Structural rules and Be-
havioral rules (A7 from Figure 9). Once the SBVR
rules are generated, the SBVR Structured Notation
is applied to the rules.0e SBVR notationmakes the
rules more readable.

XML Parser generates a RDF/XML schema (A8 from
Figure 9). Such a file provides a consistent, interchangeable,
platform-independent schema. 0e generated RDF schema
is also validated through the RDF validator available at
http://www.w3.org. An example is shown in Figures 10 and
11.

6. Results

0e proposed approach of NL to SBVR Rules extraction
was evaluated using seven sets of requirements (T1,
T2,. . ., T7). Each set consists of 50 randomly selected
requirements. 0e selected requirements were syntacti-
cally valid. 0e requirement set was parsed to prototype.
A sample of extracted Noun concepts, Verb concepts,
Fact types, and generated SBVR rules are presented in
Table 12. 0e sampling requirement set T is a subset of the
requirements set T1. T1 is related to the domain “car
rental services.” For 5 sample input sentences of the
requirement set T, our designed prototype has extracted 8
Noun Concepts and 5 Verb Concepts. 0ese Noun
Concepts and Verb Concepts are processed to create 5
Fact types. Once the necessary extraction is performed,
Semantic formulation and SBVR notation are applied on
Fact type to generate SBVR Rules.

Table 9: Tokens to logical formulations mapping.

Tokens Logical formulation
“not,” “no” negation (⌐ a)
“that,” “and” conjunction (a ˄ b)
“or” disjunction (a ˅ b)
“imply,” “suggest,” “if,” “infer” implication (a⟹ b)

Table 10: Tokens to quantification mapping.

Tokens Quantification
“more than,” “greater than” at least n
“less than” at most n
token “equal to” or a positive statement exactly n

Table 11: Tokens to modal formulation mapping.

Tokens Modal formulation
Model verbs (“can,” “may”) Structural requirement
Model verbs (“should,” “must”) Behavioral requirement
Verb concept (“have to”) Behavioral requirement

12 Scientific Programming

http://www.w3.org

Table 13 actually specifies the extracted elements for each
requirement set (T1, T2, . . ., T7) used for the construction of
SBVR rules. First of all, using the prototype, we identify
Noun Concepts and Verb Concepts. Using these concepts,
the prototype generates Fact types. Such fact types are
further processed to generate SBVR rules.

0e Requirement set T1 is processed by the prototype
and 89 Noun Concepts and 48 Verb Concepts are extracted.
0ese concepts are processed to construct 50 Fact types. 0e
prototype finally generates 50 Rules. 0e prototype has
extracted a total of 237 elements for T1. 0e process is
followed for each requirement set T1, T2, . . ., T7. A sample
of such extractions for rule generation is depicted in
Table 12.

After seven iterations of seven case studies, the total
number of extracted elements such as Noun Concept are 624
and Verb Concept are 332. 0e prototype has constructed
the 346 Fact Type. 0e prototype has successfully generated
350 Rules for seven case studies consisting of 350 require-
ments collectively.

7. Analysis and Discussion

To evaluate the results of the approach, we prepared a sample
test case requirements set (T1, T2,. . ., T7). An expert
manually evaluated the requirements sets to create sample
data Nexpert, as shown in Table 14. Nexpert comprises
extracted Noun Concepts, Verb Concepts, constructed fact
type, and generated Rules. 0e purpose is to validate the
prototype-generated output. 0e sum of the output gener-
ated by the prototype is labeled as Ntotal. Ncorrect is the

element correctly identified by the prototype. Nincorrect is the
element that is identified by the prototype but is incorrect
when compared with Nexpert. Nmissing is the element that the
prototype is unable to identify or process. A comparison is
performed in Table 14 between the extracted concepts,
constructed fact types, generated Rules by the prototype, and
with manually evaluated requirements; Nexpert.

0e expert (Nexpert) has identified 94 Noun Concepts and
50 Verb Concepts from requirements set T1. 0e expert
(Nexpert) then constructed 50 fact types based on extracted
Noun and Verb Concepts. In the end, the expert (Nexpert) has
generated 50 SBVR Rules. In comparison, the prototype has
identified 89 Noun Concepts out of which 86 are correct
(Ncorrect), 3 are incorrect (Ncorrect), and 5 are missing
(Nmissing). 0e prototype then extracted 48 (Ntotal) Verb
Concepts, from which 46 are correct (Ncorrect) and 2 are
incorrect (Nincorrec). Two Verb Concepts are missing in the
list. Afterward, the prototype has constructed 50 Fact types
(Ntotal). Two Fact types are incorrect (Nincorrect). In the end,
the SBVR Rules are constructed using Fact types. A total of
237 elements are identified out of which 230 are correctly
identified, 7 are incorrect identifications, while 7 elements
are missing.0e process is repeated for each requirement set
(T1, T2,. . ., T7), as shown in Table 14.

0e expert successfully extracted 1752 elements for
seven case studies. According to the used evaluation
methodology, Table 14 shows 1652 identified elements, of
which 1595 are correct, 57 are incorrect, and 100 are
missing SBVR elements. For each requirement set, the
rules generation rate is 100%. 0e Fact Type identification
results are also very satisfactory. Out of 350 total

(1.1.1) Mark sentence as “negative”

(1.2.1.1) If sentence is negative: add “at most” in rule

(1.5.1) If sentence is negative: add “not exactly” in rule

(1.8) Identify “RB” in POS tags
(1.8.1) If corresponding vocabulary element belongs to {more, greater, less, exactly, least, most}

(2) End

(1) Identify new sentence

(1.1) Identify the negative sentence

(1.2) Identify POS tag as “JJR” and “than” in the sentence
(1.2.1) Identify “more”, “greater” and “most”

(1.2.1.2) Else add “at least” in rule
(1.2.2) Identify “less”, “smaller”, “least”

(1.2.2.1) If sentence is negative: add “at least” in rule
(1.2.2.2) Else add “at most” in rule

(1.3) Identify “maximum” in sentence
(1.3.1) If sentence is negative: add “at most” in rule
(1.3.2) Else add “at least” in rule

(1.4) Identify “minimum” in sentence
(1.4.1) If sentence is negative: add “at least” in rule
(1.4.2) Else add “at most” in rule

(1.5) Identify “equal to” in sentence

(1.5.2) Else add “exactly” in rule
(1.6) Identify “PRP” in POS tags

(1.6.1) Add corresponding vocabulary element in rule
(1.7 Identify “exactly” in sentence

(1.7.1) If sentence is negative: add “not exactly” in rule
(1.7.2) Else add “exactly” in rule

then add new sentence
(1.8.2) Else add corresponding vocabulary element in rule

Figure 8: SBVR rule generation.

Scientific Programming 13

requirements, 339 fact Types are correctly identified. 0e
approach has incorrectly tagged some Noun Concepts as
Verb Concepts and vice versa. 0e reason is the lack of a
strong dataset. For example, in set T1, 3 Noun Concepts
and 2 Verb Concepts are incorrectly tagged. However,
overall initial results are very encouraging.Prototype
performance is measured using three metrics: Recall,
Precision, and F-value. Such metrics are widely used to
assess NL-based data extraction systems. Such metrics
help to have a comparison of system predictions versus
actual values. 0e Recall is a measure of the correctly
identified elements by the system.

R �
Nsystem

Nexpert
, (1)

where Nsystem is the number of the system’s generated
correct results, and Nexpert is the number of human expert’s
generated sample results.

0e precision is a ratio between correct and incorrect
elements identified by the system.

P �
Ncorrect

Nincorrect + Ncorrect
, (2)

A1 A2

A3 A4

A5 A6

A7 A8

Figure 9: Interaction of different components implementing the NL to SBVR rules transformation.

14 Scientific Programming

Figure 10: W3C generated triplets verifying system generated RDF/XML output.

(Pay from a cash account that has no checkwriting privileges)

Prepaid cards

Visa_card

Noun concept

Individual concept

http://www.w3.org/2001/vcard-rdf/3.0#DESCRIPTION

http://www.w3.org/2001/vcard-rdf/3.0#LOGICAL_NAME

http://www.w3.org/2001/vcard-rdf/3.0#TITLE
http://www.w3.org/2001/vcard-rdf/3.0#GTYPE

http://www.w3.org/2001/vcard-rdf/3.0#TYPE

http://www.w3.org/2001/vcard-red/3.0#CLASS
http://somewhere/Visa_Card genid:AB2

Figure 11: W3C-generated graphs verifying system-generated RDF/XML output.

Table 12: Result of executed NL text software requirements.

Requirements
set Result type Extracted result

T

SBVR Noun
Concept company_name, Rent-a-Car, company, drivers, hours, day, cars, Ahmad

SBVR Verb
Concept is, employed, work, owns

SBVR Fact Type company_name is Rent-a-Car company employed drivers drivers work hours company owns cars
Ahmad is driver

SBVR Rules
It is permitted that each company_name is “Rent-a-Car.” each company employed 5 driver.each
driverwork 8 hours each a day.each company owns 5 car. It is permitted that Ahmad is each name of

each a driver.

Table 13: Extracted elements by prototype.

Type/Metrics
Requirements set

T1 T2 T3 T4 T5 T6 T7 Total
Noun Concept 89 93 92 90 87 92 81 624
Verb Concept 48 48 47 47 50 46 46 332
Fact Type 50 48 49 50 50 49 50 346
SBVR Rules 50′ 50 50 50 50 50 50 350

Scientific Programming 15

where Ncorrect is the number of correct results, and Nincorrect
is the number of incorrect results generated by the developed
system.

F-measure is the measure of the prototype’s accuracy.

F �
2(P)(R)

P + R
, (3)

where P is the precision value and R is the recall value.
Table 15 describes the calculated recall, precision, and F-

value of the prototype for each NL requirements set (T1, T2,
. . ., T7). 0e calculation is based on the abovementioned
Equations (1), (2), and (3). Recall, Precision, and F-value are
separately calculated for each set of requirements (T1, T2, . . .,
T7). After that, an average value is calculated.T1 has the highest
Recall (0.97) and F-value (0.97), while T2 has the highest
Precision (0.98). T7 has the lowest Recall (0.91) value, while T6
has the lowest Precision (0.95). 0e reason for such low values
is a weak dataset. 0e average recall for the SBVR SRS doc-
ument is calculated as 0.94, while the average precision is
calculated as 0.97.0e average F-value is computed as 0.95.0e
results of this initial performance evaluation are very en-
couraging.0e results support both the used approach and the
potential of this tool in general. Figure 12 shows the graphical
representation of the tool’s evaluation.

Figure 13 displays the Nsample, Ncorrect, Nincorrect, and
Nmissing evaluation results of the proposed tool for the seven

case studies, T1–T7.0e blue column shows results forNsample,
the red column shows the result for Ncorrect, the green column
shows results for Nincorrect, while the purple column shows the
results forNmissing. T2 has the highest value ofNcorrect elements,
while T6 has the lowest value of Ncorrect elements. T1 has the
lowest value ofNmissing elements, while T7 has the highest value
of Nmissing elements.

0e abovementioned Figure 13 graphically represents
the results of Recall, precision, and F-value generated by the
prototype while processing seven different case studies (T1,
T2, . . ., T7). According to our calculated results, T1 has high
Recall, T2 has high precision, and T1 has high F-Value. In
contrast, T7 has the lowest Recall value, T6 has the lowest
Precision, and T7 has the lowest F-measure value. 0e
reason for such low values is a weak dataset.

0e resultant output is stored in RDF/XML format. To
verify XML schema, the XML file is parsed by an online
validation service named W3C RDF Validation Service [47].
0is web service successfully replicates the output into triples
and graphs. A sample section of web-generated output is
shown in Figure 10.

0e results presented above show that it is convenient and
time-saving to formulate a semantically formal and controlled
illustration using our proposed approach. Figure 10 shows the
validation results and Figure 11 shows the W3C-generated
graphs verifying system-generated RDF/XML output.

Table 14: Comparison of sample and prototype generated results.

Requirements set Type/metrics Nexpert Ntotal Ncorrect Nincorrect Nmissing

T1 (50 requirements)

Noun Concept 94 89 86 3 5
Verb Concept 50 48 46 2 2
Fact Type 50 50 48 2 0
Rules 50 50 50 0 0

T2 (50 requirements)

Noun Concept 105 93 93 0 12
Verb Concept 50 48 45 3 2
Fact Type 50 48 47 1 2
Rules 50 50 50 0 0

T3 (50 requirements)

Noun Concept 100 92 86 6 8
Verb Concept 50 47 44 3 3
Fact Type 50 49 49 0 1
Rules 50 50 50 0 0

T4 (50 requirements)

Noun Concept 99 90 86 4 9
Verb Concept 50 47 45 2 3
Fact Type 50 50 47 3 0
Rules 50 50 50 0 0

T5 (50 requirements)

Noun Concept 100 87 82 5 13
Verb Concept 50 50 49 1 0
Fact Type 50 50 49 1 0
Rules 50 50 50 0 0

T6 (50 requirements)

Noun Concept 102 92 87 5 10
Verb Concept 52 46 42 4 6
Fact Type 50 49 45 4 1
Rules 50 50 50 0 0

T7 (50 requirements)

Noun Concept 100 81 75 6 19
Verb Concept 50 46 44 2 4
Fact Type 50 50 50 0 0
Rules 50 50 50 0 0

Total Identified Elements 1752 1652 1595 57 100

16 Scientific Programming

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Recall
Precision
F‐value

T1 T2 T3 T4 T5 T6 T7

Figure 13: Recall, precision, and F-values of the evaluation result.

0

50

100

150

200

250

300

Nsample

Ncorrect

Nincorrect

Nmissing

T1 T2 T3 T4 T5 T6 T7

Figure 12: Evaluation result of the proposed tool.

Table 15: Evaluation results of prototype.

Input Nexpert Ncorrect Nincorrect Nmissing Recall Precision F-value
T1 244 230 7 7 0.97 0.97 0.97
T2 255 235 4 16 0.94 0.98 0.96
T3 250 229 9 12 0.95 0.96 0.96
T4 249 228 9 12 0.95 0.96 0.96
T5 250 230 7 13 0.95 0.97 0.96
T6 254 224 13 17 0.93 0.95 0.94
T7 250 219 8 23 0.91 0.96 0.94
Total 1752 1595 57 100
Average 0.94 0.97 0.95

Scientific Programming 17

8. Scope and Limitations

We recognize a set of limits of this investigative study, which
would permit the researchers to present a more suitable
design for the succeeding research phase. Our study used
only one expert to create sample data, which is not a rep-
resentative set of the population of experts. Furthermore, the
experience level of the expert can also put limitations on the
credibility of the sample data.

It is assumed that the given English text to the prototype
as the input is grammatically correct. 0e dataset used for
experimental evaluation contains complete sentences, i.e.,
subject–verb–object. Results may be different for incomplete
or incorrect sentences.

9. Conclusion and Future Work

0e major goal of this research work was to automate the
practice of software requirement elicitation and requirement
specification while tackling the ambiguous temperament of NL
such as English. At the same time, we aim to generate a
controlled representation of such requirements, which is do-
main-independent and acceptable for the business industry. To
tackle the challenge, we have proposed an NL-based approach.
We developed a prototype based on the proposed approach.
0e prototype parse English written software requirement and
generate the SBVR-based controlled representation. 0e pro-
totype further extracts the SBVR vocabulary to generate SBVR
rules. 0e proposed prototype performs the lexical, syntactic,
and semantic analyzes concerning SBVR rules. While
extracting the SBVR vocabulary, the assignment ofmeanings to
each vocabulary element removes the chances of ambiguity.
0e prototype generates rules written in the SBVR-based
controlled language. Such rules are clear and unambiguous
among the business community. 0e output of the whole
process is stored in XML format, which is portable and
platform-independent. Also, the generated output document is
easily convertable into any other format for further processing.
Such documents will be easy for the machine to process.

We have, successfully, evaluated the proposed approach on
seven case studies with the aid of a developed prototype to
support our proposed approach. Our proposed prototype can
be used for automated Object-oriented analysis and design
(OOA&D) of NL-software requirements. In addition, the
prototype offers a higher accuracy as compared to other
available NL-based tools. As shown in the Results section, the
recall value of 0.94 and precision value of 0.97 results obtained
from seven case studies for software requirements by using our
prototype are very encouraging. Likewise, the resultant F-value
of 0.95 is also satisfactory. Hence, the results of our assessment
show the encouraging performance of our developed tool in
terms of usability, time, and accuracy.

Beforehand, research has been carried out in large
amount for the automation of SRS document using NLP-
based approaches, but comparatively, little effort has been
done on the approaches based on CNL representing re-
quirement specification. For that reason, countless aspects
need to be investigated while using the SBVR-based con-
trolled representation of requirements specification. 0e

future work is to validate the extracted vocabulary auto-
matically using UML and ontology models. Automated
validation of such data can be helpful in automated con-
ceptual modeling of the NL SRS document.

Data Availability

Data are available upon request to the corresponding author.

Conflicts of Interest

0e authors declare that they have no conflicts of interest.

References

[1] A. O. J. A. Sabriye andW.M. N.W. Zainon, “A framework for
detecting ambiguity in software requirement specification,” in
Proceedings of the 2017 8th International Conference on In-
formation Technology (ICIT), pp. 209–213, IEEE, Amman,
Jordan, May 2017.

[2] T. Hovorushchenko and O. Pomorova, “Methodology of
evaluating the sufficiency of information on quality in the
software requirements specifications,” in Proceedings of the
2018 IEEE 9th International Conference on Dependable Sys-
tems, Services and Technologies (DESSERT), pp. 370–374,
IEEE, Kyiv, Ukraine, May 2018.

[3] M. Luisa, F. Mariangela, and N. I. Pierluigi, “Market research
for requirements analysis using linguistic tools,” Requirements
Engineering, vol. 9, no. 1, pp. 40–56, 2004.

[4] E. Kamsties and B. Peach, “Taming ambiguity in natural
language requirements,” in Proceedings of the �irteenth In-
ternational Conference on Software and Systems Engineering
and Applications, Paris, France, December 2000.

[5] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontology based
framework for detecting ambiguities in software requirements
specification,” in Proceedings of the 2016 3rd International
Conference on Computing for Sustainable Global Development
(INDIACom), pp. 3572–3575, IEEE, New Delhi, India, March
2016.

[6] M. Bano, “Addressing the challenges of requirements am-
biguity: a review of empirical literature,” in Proceedings of the
2015 IEEE Fifth International Workshop on Empirical Re-
quirements Engineering (EmpiRE), pp. 21–24, IEEE, Ottawa,
Canada, August 2015.

[7] D. M. Berry, E. Kamsties, and M. M. Krieger, From Contract
Drafting to Software Specification: Linguistic Sources of Ambi-
guity, University of Waterloo, Waterloo, Canada, 2003, https://
cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf.

[8] V. Basili, G. Caldiera, F. Lanubile, and F. Shull, “Studies on
reading techniques,” in Proceedings of the Twenty-First An-
nual Software Engineering Workshop, vol. 96, p. 002,
Greenbelt, MD, USA, December 1996.

[9] E. Kamsties, “Understanding ambiguity in requirements
engineering,” in Engineering and Managing Software Re-
quirements, pp. 245–266, Springer, Berlin, Germany, 2005.

[10] S. McConnell, Code Complete, Pearson Education, London,
UK, 2004.

[11] A. Umber and I. S. Bajwa, “Minimizing ambiguity in natural
language software requirements specification,” in Proceedings
of the IEEE Sixth International Conference on Digital Infor-
mation Management (ICDIM 2011), pp. 102–107, Melbourne,
Australia, 2011.

[12] A. Takoshima and M. Aoyama, “Assessing the quality of
software requirements specifications for automotive software

18 Scientific Programming

https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

systems,” in Proceedings of the 2015 Asia-Pacific Software
Engineering Conference (APSEC), pp. 393–400, IEEE, New
Delhi, India, December 2015.

[13] F. Zait and N. Zarour, “Addressing lexical and semantic
ambiguity in natural language requirements,” in Proceedings
of the 2018 Fifth International Symposium on Innovation in
Information and Communication Technology (ISIICT),
pp. 1–7, IEEE, Amman, Jordan, November 2018.

[14] A. Chikh and H. Alajmi, “Towards a dynamic software re-
quirements specification,” in Proceedings of the 2014 World
Congress on Computer Applications and Information Systems
(WCCAIS), pp. 1–7, IEEE, Hammamet, Tunisia, January 2014.

[15] R. Schwitter, “Controlled natural languages for knowledge
representation,” in Proceedings of the Coling 2010: Posters,
pp. 1113–1121, Beijing, China, August 2010.

[16] R. Denaux, V. Dimitrova, A. G. Cohn, C. Dolbear, and
G. Hart, “Rabbit to OWL: ontology authoring with a CNL-
based tool,” in Proceedings of the International Workshop on
Controlled Natural Language, pp. 246–264, Springer, Mar-
ettimo, Italy, June 2009.

[17] C. White and R. Schwitter, “An update on PENG light,” in
Proceedings of the Australasian Language Technology Associ-
ationWorkshop 2009, pp. 80–88, Sydney, Australia, December
2009.

[18] G. Sandhu and S. Sikka, “State-of-art practices to detect in-
consistencies and ambiguities from software requirements,”
in Proceedings of the International Conference on Computing,
Communication & Automation, pp. 812–817, IEEE, Greater
Noida, India, May 2015.

[19] P. Martin, “Knowledge representation in CGLF, CGIF, KIF,
frame-CG and formalized-English,” in Proceedings of the
International Conference on Conceptual Structures, pp. 77–91,
Springer, Borovets, Bulgaria, July 2002.

[20] U. S. Shah and D. C. Jinwala, “Resolving ambiguities in
natural language software requirements: a comprehensive
survey,” ACM SIGSOFT Software Engineering Notes, vol. 40,
no. 5, pp. 1–7, 2015.

[21] F. Friedrich, J. Mendling, and F. Puhlmann, “Process model
generation from natural language text,” in Proceedings of the
International Conference on Advanced Information Systems
Engineering, pp. 482–496, Springer, London, UK, June 2011.

[22] H. Afreen and I. S. Bajwa, “Generating UML class models
from SBVR software requirements specifications,” in Pro-
ceedings of the 23rd Benelux Conference on Artificial Intelli-
gence (BNAIC 2011), pp. 23–32, Ghent, Belgium, 2011.

[23] S. J. Korner and T. Brumm, “RESI-a natural language spec-
ification improver,” in Proceedings of the 2009 IEEE Inter-
national Conference on Semantic Computing, pp. 1–8, IEEE,
Berkeley, CA, USA, September 2009.

[24] L. Mich and R. Garigliano, “Ambiguity measures in re-
quirement engineering,” in Proceedings of the International
Conference on Software �eory and Practice, ICS, Beijing,
China, August 2000.

[25] S. F. Tjong, “Avoiding ambiguity in requirements specifica-
tions,” Ph.D. thesis, https://cs.uwaterloo.ca/~dberry/FTP_
SITE/tech.reports/Tjong0esis.pdf, University of Notting-
ham, Nottingham, UK, 2008.

[26] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
“Analysing anaphoric ambiguity in natural language re-
quirements,” Requirements Engineering, vol. 16, no. 3, p. 163,
2011.

[27] E. Kamsties, D. M. Berry, B. Paech, E. Kamsties, D. M. Berry,
and B. Paech, “Detecting ambiguities in requirements doc-
uments using inspections,” in Proceedings of the First

Workshop on Inspection in Software Engineering (WISE’01),
pp. 68–80, Paris, France, July 2001.

[28] A. Ferrari, G. Lipari, S. Gnesi, and G. O. Spagnolo, “Pragmatic
ambiguity detection in natural language requirements,” in
Proceedings of the 2014 IEEE 1st International Workshop on
Artificial Intelligence for Requirements Engineering (AIRE),
pp. 1–8, IEEE, Karlskrona, Sweden, August 2014.

[29] H. Kaiya and M. Saeki, “Ontology based requirements
analysis: lightweight semantic processing approach,” in
Proceedings of the Fifth International Conference on Quality
Software (QSIC’05), pp. 223–230, IEEE, Melbourne, Australia,
September 2005.

[30] B. Gleich, O. Creighton, and L. Kof, “Ambiguity detection:
towards a tool explaining ambiguity sources,” in Proceedings
of the International Working Conference on Requirements
Engineering: Foundation for Software Quality, pp. 218–232,
Springer, Essen, Germany, June 2010.

[31] O. Al-Harbi, S. Jusoh, and N. Norwawi, “Handling ambiguity
problems of natural language interface for question an-
swering,” International Journal of Computer Science Issues
(IJCSI), vol. 9, no. 3, p. 17, 2012.

[32] R. P. Verma and M. R. Beg, “Representation of knowledge
from software requirements expressed in Natural Language,”
in Proceedings of the 2013 6th International Conference on
Emerging Trends in Engineering and Technology, pp. 154–158,
IEEE, Nagpur, India, December 2013.

[33] K. D. Gill, A. Raza, A. M. Zaidi, and M. M. Kiani, “Semi-
automation for ambiguity resolution in open source software
requirements,” in Proceedings of the 2014 IEEE 27th Canadian
Conference on Electrical and Computer Engineering (CCECE),
pp. 1–6, IEEE, Toronto, Canada, May 2014.

[34] A. K. Massey, R. L. Rutledge, A. I. Antón, and P. P. Swire,
“Identifying and classifying ambiguity for regulatory re-
quirements,” in Proceedings of the 2014 IEEE 22nd Interna-
tional Requirements Engineering Conference (RE), pp. 83–92,
IEEE, Karlskrona, Sweden, August 2014.

[35] S. W. Ali, Q. A. Ahmed, and I. Shafi, “Process to enhance the
quality of software requirement specification document,” in
Proceedings of the 2018 International Conference on Engi-
neering and Emerging Technologies (ICEET), pp. 1–7, IEEE,
Lahore, Pakistan, February 2018.

[36] D. Popescu, S. Rugaber, N. Medvidovic, and D. M. Berry,
“Reducing ambiguities in requirements specifications via
automatically created object-oriented models,” in Proceedings
of the Monterey Workshop, pp. 103–124, Springer, Monterey,
CA, USA, September 2007.

[37] N. E. Fuchs, K. Kaljurand, and T. Kuhn, “Attempto controlled
English for knowledge representation,” in Reasoning Web,
pp. 104–124, Springer, Berlin, Heidelberg, 2008.

[38] http://www.omg.org/spec/SBVR/1.5/PDF.
[39] I. S. Bajwa, M. G. Lee, and B. Bordbar, “SBVR business rules

generation from natural language specification,” in Proceed-
ings of the 2011 AAAI Spring Symposium Series, San Francisco,
CA, USA, March 2011.

[40] S. Ramzan, I. S. Bajwa, I. U. Haq, and M. A. Naeem, “A model
transformation fromNL to SBVR,” in Proceedings of the Ninth
International Conference on Digital Information Management
(ICDIM 2014), pp. 220–225, IEEE, Phitsanulok, 0ailand,
September 2014.

[41] P. Danenas, T. Skersys, and R. Butleris, “Natural language
processing-enhanced extraction of SBVR business vocabu-
laries and business rules from UML use case diagrams,” Data
& Knowledge Engineering, vol. 128, Article ID 101822, 2020.

Scientific Programming 19

https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/TjongThesis.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/TjongThesis.pdf
http://www.omg.org/spec/SBVR/1.5/PDF

[42] P. B. F. Njonko and W. El Abed, “From natural language
business requirements to executable models via SBVR,” in
Proceedings of the 2012 International Conference on Systems
and Informatics (ICSAI2012), pp. 2453–2457, IEEE, Yantai,
China, May 2012.

[43] F. L. Siqueira, T. C. de Sousa, and P. S. M. Silva, “Using BDD
and SBVR to refine business goals into an Event-B model: a
research idea,” in Proceedings of the 2017 IEEE/ACM 5th
International FME Workshop on Formal Methods in Software
Engineering (FormaliSE), pp. 31–36, IEEE, Buenos Aires,
Argentina, May 2017.

[44] P. K. Chittimalli and K. Anand, “Domain-independent
method of detecting inconsistencies in sbvr-based business
rules,” in Proceedings of the International Workshop on
Formal Methods for Analysis of Business Systems, pp. 9–16,
Singapore, September 2016.

[45] P. Arnold and E. Rahm, “Automatic extraction of semantic
relations from wikipedia,” International Journal on Artificial
Intelligence Tools, vol. 24, no. 2, Article ID 1540010, 2015.

[46] L. Hirschman and H. S. 0ompson, “Chapter 13 evaluation:
overview of evaluation in speech and natural language pro-
cessing,” in Survey of the State of the Art in Human Language
Technology, R. A. Cole, H. Mariani, J. Uszkoreit et al., Eds.,
pp. 114–126, Cambridge University Press, Cambridge, UK,
1995, http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html.

[47] https://www.w3.org/RDF/Validator/rdfval, 2020.
[48] K. Toutanova and C. Manning, “Enriching the knowledge

sources used in amaximum entropy part-of-speech tagger,” in
Proceedings of the 2000 Joint SIGDAT Conference EMNLP/
VLC, vol. 63–71, Hong Kong, China, 2000.

[49] I. S. Bajwa, A. Samad, and S. Mumtaz, “Object oriented
software modeling using NLP based knowledge extraction,”
European Journal of Scientific Research, vol. 35, no. 1,
pp. 22–33, 2009.

20 Scientific Programming

http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html
https://www.w3.org/RDF/Validator/rdfval

Review Article
Analyzing the Classification Techniques for Bulk of Cursive
Languages Data: An Overview

Mu Hong ,1,2 Shah Nazir ,3 Zhang Shuo,2,4 and Wang Guan2,4

1Hohai University School of Public Administration, Nanjing 210000, China
2Sangmyung University the Graduate School, Seoul 03016, Republic of Korea
3Department of Computer Science, University of Swabi, Swabi, Pakistan
4Nanhang Jincheng College School of Art and Communication, Nanjing 210016, China

Correspondence should be addressed to Mu Hong; clarke@hhu.edu.cn and Shah Nazir; snshahnzr@gmail.com

Received 28 December 2020; Revised 26 January 2021; Accepted 8 February 2021; Published 23 February 2021

Academic Editor: Muhammad Arif Shah

Copyright © 2021 Mu Hong et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e remarkable growth of texts both in online and offline is becoming a challenging issue which need exploration for further
research. Diversities of regional and cultural changes have produced diverse languages as a source of communication. Variations
of styles are existing for handwritten texts which is due to varying writing styles. ,e research area of text recognition is matured
which has increased a number of directions in the area of research. A detail report of the existing literature is needed which can
help practitioners and researchers to use the existing evidence and provide new solutions for identification of cursive languages
and to optimize the ability of recognition for cursive text. For facilitating the researchers and practitioners by providing in-depth
analysis of the existing literature, the proposed study provide a detail report through which researchers can get benefit of the
literature and devise new solutions. ,is study is based on searching various popular libraries for identifying relevant materials
associated with the proposed study.

1. Introduction

With the passage of time, a significant growth of texts arises
both in online and offline. ,is growth is becoming a
challenging issue for researchers which need consideration
for further research. Different diversities exist in the form of
regional and cultural changes which have produced various
languages for communication. ,e growth of computing
devices and facilitations of low-cost access to Internet has
presented new directions of retrieving information from
digital libraries [1]. In accumulation to this, image, audio,
and video archive, the collection of documents be significant
part of digital record. For the last couple of years, several
organizations have digitized their document collections and
havemade them available online to facilitate retrieval and for
community use.,e issue of these documents is that they are
mostly in image format which are neither editable and nor
searchable. Such documents can occupy more storage space
as compared to the textual format. Also, if such images are

accessed/processed through the Internet, it will require more
bandwidth. Keeping in view this issue, it was desired by the
researchers to convert such images into textual format which
can then be easily accessed and processed.

Optical character recognition (OCR) system can facili-
tate the conversion of document image into textual format.
With the advancements, the OCR system for many scripts/
languages is in the early stage of research. Such languages
include Urdu, Pashto, Persian, Arabic, and many others.
With the help of handwriting recognition (HWR), the
written text can be transformed into a symbolic depiction.
,is transformation can facilitate the interaction of human
and computer applications like mail sorting, cheque veri-
fication, image recognition, office automation, and inter-
action of human computer [2–4]. ,e language recognition
of handwriting recognition of Latin and Chinese has been
researched and has achieved significant success. Parallel to
this, the research in other languages like HWR of Urdu,
Arabic, Persian, and Pashto is less. ,e reason is that there

Hindawi
Scientific Programming
Volume 2021, Article ID 6624397, 11 pages
https://doi.org/10.1155/2021/6624397

mailto:clarke@hhu.edu.cn
mailto:snshahnzr@gmail.com
https://orcid.org/0000-0002-9551-9635
https://orcid.org/0000-0003-0126-9944
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6624397

are more variations of writing styles and complexity. ,e
handwriting recognition can be categorized into offline and
online systems. ,e offline text recognition is difficult to
recognize due to the reasons that these are available in the
form of images with written text, while the online recog-
nition of text is easy; as in such system, there is no need of
sequence or order of writing [5].

,e field of text recognition is matured which has
amplified the directions in the area of research. Detail of the
existing literature is desirable which can assist practitioners
and researchers to use the existing evidences and provide
new solutions for identification of cursive languages and to
optimize the ability of recognition for cursive text. For fa-
cilitating the researchers and practitioners by providing in-
depth analysis of the existing literature, the proposed study
provide a detail report through which researchers can get
benefit of the literature and devise new solutions.

,e organization of the paper is as follows: Section 2
shows the related work to the cursive script and language
recognition, and the approaches, techniques, and methods
used are described. Section 3 shows the analysis of the
existing work associated with the text recognition.,e paper
is concluded in Section 4.

2. Approaches for Cursive Script Recognition

Researchers are trying to devise algorithms, novel approaches,
and solutions for the recognition of cursive script and lan-
guages. Shaikh and Shaikh [6] proposed an algorithm of
parallel thinning for cursive or noncursive languages by de-
fining a customized set of preservation rules through pixel
arrangement grid template, producing strong restriction to
noise and speed.,e results of experiments showed significant
achievements over the other cursive languages such as Sindhi,
Urdu, and Arabic and noncursive languages such as Chinese,
English, and numerals. Dhande and Kharat [7] presented an
approach for cursive language recognition of handwriting in
English language.Mostly, in the cursive handwriting of English
script, the word characters are connected to each other. So the
feature extraction and segmentation of English cursive script is
difficult. ,e approach has used the method of horizontal and
vertical projection for segmentation. ,e algorithm of convex
hull is used for extracting features, and support vector machine
is used as algorithm for recognition and classification. Chinese
language is considered to be a widely used language around the
globe. ,e script of Chinese is the most distinctive traditional
culture and calligraphic art of China. Research is needed for its
connecting writing recognition for text on cursive images. Qin
et al. [8] offered a method for cursive text detection for the
dataset and is known as SE-seglink.,e feature extraction from
image is enhanced through this method. ,e authors designed
a dataset containing 523 images for Chinese cursive text.
Comparing to the available approaches, the offered approach is
performing better in terms of recognizing the cursive images.
,e effectiveness of the approach is tested through performing
comparative experiments.

Ueki et al. [9] proposed an approach for recognition of
consecutive Kuzushiji characters through multiple candi-
date regions as input to a neural network. An assessment

through database of images of three consecutive Kuzushiji
characters confirmed that the approach proposed is having
greater rate of accuracy compared to the approach in which
the character of images were cropped according to the
boundary detected. Han and Sethi [10] proposed a method
which uses heuristic rule set for determining probable
boundaries of letter in the image with word curved. ,e
heuristic rules are based on the relations existing between
assured topologic and geometric features and the character
of English language. A system of segmentation has been
built which integrates the proposed system for performing
segmentation on postal address images. Various steps are
involved in the preprocessing of extracting handwritten
words from postal envelope and the step of normalization
for allowing variation in thickness of pen and witting tilt.
,e results obtained from the experiments revealed that the
approach is efficient and able for locating the boundaries of
letter in cursive words accurately. Kim and Lee [11] offered
an approach of unified network for recognition of hand-
written text in different languages. ,e system can be used
for any grouping of phonetic writing systems such as
Japanese, Arabic, and Tai.

Sternby and Friberg [12] presented an approach for
interaction of dictionary in recognition of online cursive
script. With the help of segmentation graph, all the
probable paths are retrieved for corresponding to words in
a dictionary in an effective way. ,e study also deals with
the treating of secondary strokes in online segmentation
graph. ,e approach was tested with huge data with good
results. Ahmad et al. [13] proposed an approach for finding
out the alternate recognizable unit in the cursive script of
Pashto.,e alternatives are primary ligature and ligature. A
corpus of 2313736 words of Pashto is extracted from dif-
ferent sources of web, and 19268 unique ligatures were
identified in the cursive script of Pashto.,e results showed
that 7000 ligatures showed 91% portion of corpus of Pashto
words, and 7681 primary ligatures were identified repre-
senting the shapes of all the ligatures. Hassan [14] proposed
a system for recognition of cursive Arabic writing. ,e
issues arise due to the personal attitude, style variations,
and various levels of writing. ,e system is based on
recognition of hierarchal strategy. With the incorporation
of grammar and parser, a system of linguistic recognition
was developed. Hashemi et al. [15] designed a recognition
system for the Persian text. ,e system contains a stage of
segmentation to separate the character that is constituent.
,is stage is beneficial for italic or highly declined Latin
text. ,e study presented a segmentation algorithm with
two steps. In the first step, nonoverlapped and separate
isolated characters are separated, while the second step
segments nonassociated characters that are overlapped.,e
approach was tested on the script of real world and showed
an accuracy of 99.7%.

3. Analyzing the Existing Studies for
Cursive Script/Languages

,e following subsections present the related work and
analysis of the cursive script/languages.

2 Scientific Programming

3.1. Existing Research for Supporting Recognition of Cursive
Script. Recognition of cursive languages in effective way is
become challenging issue for researchers and practitioners.
Diverse approaches have been proposed to tackle the issue of
cursive languages from different perspectives. Erdogan and
Ozge [16] suggested a study for analyzing the cursive
handwriting of likely primary school teachers from the
legibility viewpoint. ,e nature of the study is perspective
with the aim to portray the available state of affairs, making
use of qualitative methods.,e study consist of 130 potential
primary school teachers and were asked for copying the text
presented by researchers using cursive handwriting. ,e
cursive handwriting was examined through “cursive
handwriting basement form.” ,e study showed that the
handwriting of teachers was sufficiently legible. Samanta
et al. [17] proposed a hidden Markov model-based online
unconstrained word recognition of handwritten samples.
,e system involved the key steps which are the handwriting
segmentation into substrokes, extracting features from
substrokes and recognition. For the task of segmentation, a
strategy of discrete curve evolution is proposed. ,en var-
ious linear and angular features are extracted from sub-
strokes of samples of word and are modelled as feature
vectors produced from amixture distribution.,e algorithm
of Baum–Welch parameter estimation was used for handling
the spherical linear correlated data for constructing the
hidden Markov model. At last, the recognition classifier was
designed for handwritten word samples. ,e results dem-
onstrated that Bangla and Latin scripts have good perfor-
mance of the suggested scheme of recognition. Camastra
[18] proposed a recognizer approach for cursive characters
which is a module in the recognition of any cursive word
based on the approach of segmentation and recognition.
With the help of support vector machine and neural gas, the
classification of character is achieved. For verification of
lower and upper case version of various letters, the neural
gas was used, while for recognition of character, the SVM
was used.,e dataset of 57293 characters was considered for
training and testing of the recognizer for cursive characters.
,e results reveal good performance by the use of SVM and
showed better efficiency.

Darwish and ELgohary [19] presented an approach of
bio-inspired expert system for printer forensics that in-
corporate both the features of texture and niching genetic
search for selecting effective sufficient minimized feature set.
,e approach k-nearest neighbours was used for differen-
tiating the printer brand for its simplicity. ,e results reveal
that the approach is having high accuracy of classification
and can take less time. Wen et al. [20] proposed a model of
hierarchal deformation for describing the online cursive
Chinese character deformation. ,e approach includes two
levels: firstly, matching two sequences of turn points which
are extracted from the reference and input characters for
describing the matches of stroke. ,en, the constrained
parabola transformation is used for reducing the difference
between the matched strokes correctly.,e results show that
hierarchal deformation approach is effective to the defor-
mation of cursive Chinese character with less computational
cost. Lee and Verma [21] proposed a new binary

segmentation algorithm for reducing the issue of chain
failure risk in the course of validation and improved the
accuracy of segmentation. ,e binary segmentation algo-
rithm is a combination segmentation approach including
validation and over-segmentation. ,e validity of the re-
search was carried out on benchmark of CEDAR database,
and the results showed better performance. EL-SHEIKH and
GUINDI [22] designed a recognition system for Arabic text.
,e approach contains segmentation stage for recognition of
Arabic cursive words that are typewritten. ,e system
showed 99% recognition rate. Bhunia et al. [23] presented an
approach of cross language platform for recognition and
spotting of handwritten word. ,e approach is presented for
scripts of low resource where training is done with huge
dataset of an accessible script and test is done on the other
script. ,e approach was tested on three Indic scripts in-
cluding Devanagari, Bangla, and Gurumukhi.

Chandio et al. [24] presented a dataset for the detection of
Urdu text, and recognition in natural scene images is ana-
lyzed. Above 2500 natural scene images were collected for
developing dataset through the digital camera and with a
mobile camera. ,ree datasets were developed including
cropped word images, isolated Urdu character images, and
end-to-end text spotting.,e emphasis was given to the Urdu
text instances. ,e approach can be used for performing
detection and recognition of Urdu text as well as end-to-end
recognition in natural scenes. Development of these datasets
can provide help in developing Persian and Arabic natural
scene text recognition and detection. Aisyah et al. [25] carried
out a research for designing and developing learningmaterials
for students for learning Japanese language as foreign lan-
guage at the Universiti Kebangsaan Malaysia. ,e research
carried out a survey of commercially produced text book and
preproduction stage focusing on needs analysis from students.
Abuhaiba [26] presented an approach for identification of
cursive language or discrete script enclosed in an image
document.,e approach is based on extraction of set of global
templates shared between languages and scripts with com-
mon shapes of symbols. It saves time of processing and re-
quirement of memory in the execution of program. ,e
approach performed one-dimensional normalization like
retaining width-to-height ratio. ,e authors recommended
the approaches that have good accuracy and speed for
commercial use of OCR products Table 1 shows some of the
approaches/methods used for recognition of cursive script/
languages from different perspectives.

3.2. Analyzing the Literature for Cursive Script Recognition.
Recognition of cursive script/language is considered to be
important for different purposes. ,is recognition of cursive
script from the images can save time and storage memory.
As these are in textual format, different approaches have
been proposed. AlKhateeb et al. [37] have used the hidden
Markov models for recognition of word-based offline text.
,ree stages are involved in the method including pre-
processing, feature extraction, and classification. Initially,
the words from the scripts of input are segmented and
normalized, then features are extracted from the segmented

Scientific Programming 3

words, and then these features are integrated for classifi-
cation purpose. ,e database of IFN/ENIT was used which
contains 32492 words of Arabic handwritten notes. ,e
approach delivered better performance compared to the
existing approaches. Abu-Ain et al. [38] proposed a de-
tection approach for baseline and straightness for the text of
cursive handwritten notes. ,e approach is based on the
analysis and extraction of directions features from subwords
of the text skeleton. ,e text of Arabic language was con-
sidered as a case study. ,e results revealed that the ap-
proach is efficiently working and tested on Arabic dataset.
Mouhcinea et al. [39] proposed a method of Arabic hand-
written cursive text based on the hidden Markov model. ,e
experimental results of the images of IFN/ENIT database
benchmark revealed that the suggested approach enhanced
recognition. Manjusha et al. [40] proposed an approach
which aimed for building the databases of handwritten
character image for the script of Malayalam language. ,e
samples of handwritten collected from 77 native Malayalam
writers. ,e contour model-based image segmentation al-
gorithm was used for extracting the character images from
the data sheets of handwritten. Features extraction tech-
niques were used for extracting features. ,e scattering
convolution network-based feature descriptors achieved a
recognition accuracy of 91.05% which is the highest among
the available feature descriptors. Naz et al. [41] reviewed the
literature on OCR associated with the Urdu cursive scripts.
,e Pashto, Urdu, and Sindhi languages are described with
focus on the script of Nasta’liq and Naskh.

Apart from the above literature, various popular libraries
such as ScienceDirect, IEEE, Springer, and Wiley Online

were used to search for achieving the most relevant mate-
rials. ,ese libraries were only considered due to the reasons
that these are only publishing peer reviewed and quality
research. Figure 1 shows the initial results of the search
process in the mentioned libraries. ,e figure shows that
more materials were obtained in the library of Springer
followed by the ScienceDirect.

Initially the library of ScienceDirect was searched, and
the results were depicted in figures. Figure 2 shows the
publication titles with the number of articles.

Figure 3 represents the type of articles in the given
library.

Figure 4 represents the number of articles in the given years.
Figure 5 shows the subject areas in the given libraries.
,e library of IEEE was searched and the topics of ar-

ticles are shown in Figure 6.
,e article type is shown in Figure 7 where most of the

papers are published as conference papers.
,e locations where the conferences held were identified

in the study conducted. Figure 8 depicts the locations of
conferences held.

After this, the library of Springer was searched
for identification of relevant materials and their analysis.
Figure 9 represents the various disciplines of articles. ,e
figure shows that more articles were published in the area of
Computer Science.

Figure 10 shows the subdisciplines of the areas with total
of publications.

,e article type was identified in the given library.
Figure 11 shows the total number of publications based on
the article types.

Table 1: Approaches used for cursive text/script/language recognition.

Reference Authors Method Year Article type
[27] J. B. Hellige and M. M. Adamson Hemispheric differences in processing handwritten cursive 2007 Journal

[28] A. Jalali and M. Lee High cursive traditional Asian character recognition using integrated
adaptive constraints in ensemble of DenseNet and inception models 2020 Journal

[29] W. Cho, S.-W. Lee, and J. H. Kim Modeling and recognition of cursive words with hidden Markov
models 1995 Journal

[30] S. Naz et al. Offline cursive Urdu-Nastaliq script recognition using
multidimensional recurrent neural networks 2016 Journal

[31] M. Schambach Recurrent HMMs and cursive handwriting recognition graphs 2009 Conference
[32] T. G. Rose and L. J. Evett Semantic analysis for large vocabulary cursive script recognition 1993 Conference

[33] R. J. Kannan, R. Prabhakar, and
R. M. Suresh Off-line cursive handwritten Tamil character recognition 2008 Conference

[34] A. A. Chandio, M. Asikuzzaman,
and M. R. Pickering

Cursive character recognition in natural scene images using a
multilevel convolutional neural network fusion 2020 Journal

[35] J. Danna, D. Massendari,
B. Furnari, and S. Ducrot

,e optimal viewing position effect in printed versus cursive words:
Evidence of a reading cost for the cursive font 2018 Journal

[36] B. Verma and H. Lee Segment confidence-based binary segmentation (SCBS) for cursive
handwritten words 2011 Journal

4 Scientific Programming

0 1000 2000 3000 4000 5000 6000 7000

ScienceDirect

IEEE

Springer

Wiley

Articles
Li

br
ar

ie
s

Figure 1: Search process of libraries.

0 20 40 60 80 100 120 140 160 180 200
Pattern Recognition

Pattern Recognition Letters

Neuropsychologia

Journal of Pragmatics

Artificial Intelligence

�eoretical Computer Science

Procedia Computer Science

Cortex

Image and Vision Computing

Neural Networks

Information and Control

�e Lancet

Journal of Computer and System …

Numbers

Pu
bl

ic
at

io
n

tit
le

Figure 2: Publication title along with the papers.

Encyclopedia
Book reviews
Data articles
Mini reviews
Product reviews

Review articles
Book chapters
Conference info
Discussion
News
Short communications

Research articles
Conference abstracts
Correspondence
Editorials
Patent reports
Other

Figure 3: Type of articles.

Scientific Programming 5

0

10

20

30

40

50

60

70

80

1995 2000 2005 2010 2015 2020 2025
N

um
be

r o
f p

ap
er

s
Years

Figure 4: Number of publications in the given years.

Computer Science

Engineering
Mathematics Social Sciences

Arts and Humanities

Decision Sciences

Figure 5: Subject areas.

0
10
20
30
40
50
60
70
80
90

100

H
an

dw
rit

te
n

…

N
at

ur
al

 …

O
pt

ic
al

 …

Fe
at

ur
e …

Im

ag
e …

H

an
dw

rit
in

g
…

Te

xt
 an

al
ys

is
Le

ar
ni

ng
 …

N

at
ur

al
 …

D

oc
um

en
t …

H

id
de

n
m

ar
ko

v
…

Im

ag
e …

N

eu
ra

l n
et

s
Ch

ar
ac

te
r …

Re

cu
rr

en
t …

Im

ag
e …

W

or
d

pr
oc

es
sin

g
Su

pp
or

t v
ec

to
r …

Te

xt
 d

et
ec

tio
n

Ch
ar

ac
te

r s
et

s
C

on
vo

lu
tio

na
l …

Vi

su
al

 …

Fe
ed

fo
rw

ar
d

…

Im
ag

e m
at

ch
in

g
N

at
ur

al
 sc

en
es

N
um

be
rs

Topics

Figure 6: Topics of publications.

6 Scientific Programming

Papers

Conferences
Journals
Magazines

Figure 7: Publication types.

Papers

Barcelona
Bari
London, UK
Niagara Falls, NY
Beijing, China
Chennai
Heraklion
London

Islamabad
Sydney, Australia
Parana
Tunis
Cambridge
Edinburgh, UK
Kuala Lumpur
Montreal, Que.

Montreal, Quebec, Canada
Ulm, Germany
Shenzhen
Agadir
Chengdu
Gold Cost, QLD
Liverpool
Nancy

Figure 8: Location of conferences held.

Scientific Programming 7

Papers

Computer Science
Engineering
Mathematics
Education

Social Sciences
Linguistics
Literature
Cultural and Media Studies

Figure 9: Discipline of publications.

0 200 400 600 800 1000 1200 1400
Artificial Intelligence

Mathematical Logic and Formal…
Logics and Meanings of Programs

Programming Languages, Compilers,…
So�ware Engineering

�eory of Computation
Pattern Recognition

Programming Techniques
Image Processing and Computer Vision
So�ware Engineering/Programming…

Algorithm Analysis and Problem…
Computer Communication Networks

Computation by Abstract Devices
Information Systems Applications (incl.…

Mathematical Logic and Foundations
Information Storage and Retrieval

Political Science
Sociology, general

Database Management
Natural Language Processing (NLP)

Numbers

Su
bd

isc
ip

lin
e

Figure 10: Subdisciplines of the areas with publications.

8 Scientific Programming

Papers

Chapter
Article
Protocol

Conference paper
Reference work entry
Book

Figure 11: Article types with publications.

0
1000
2000
3000
4000
5000
6000
7000

English

German

FrenchItalian

Polish

Papers

Figure 12: Languages of publications.

0

100

200

300

400

500

600

700

Journals Books Reference works

Pa
pe

rs

Types of publications

Figure 13: Types of publications with total numbers.

Scientific Programming 9

,e study also focused on the language of publications.
Figure 12 shows the language of articles with the total
number.

Figure 13 depicts the type of publications in the Wiley
online library.

Figure 14 represents the papers published in with the
number of articles.

4. Conclusion

With the recent advancements of modern technology and
innovation in the field of machine translation, a significant
growth of texts arises both in online and offline scripts.
,is growth is becoming a challenging issue for re-
searchers which need consideration for further research
and exploration. Diversities exist in the form of regional
and cultural changes. ,e diversities of regional and
cultural changes have produced diverse languages as a
source of communication. Variations of styles exist for
handwritten texts which are due to varying writing styles.
,e research area of text recognition is matured which has
increased the directions in the area of research for ex-
ploration. A detail report of the existing literature is
necessary which can support practitioners and researchers
to use the existing literature as evidence and provide new
solutions for identification of cursive languages and to
optimize the ability of recognition for cursive text. ,e
current study has provided a detail report through which
researchers can get benefit of the literature and devise new
solutions. ,e study is further facilitating the researchers
and practitioners by providing in-depth analysis of the
existing literature.

Data Availability

No data are available.

Conflicts of Interest

,e authors declare no conflicts of interest.

References

[1] A. Bhardwaj, A. ,omas, Y. Fu, and V. Govindaraju, “Re-
trieving hand writing styles: a content based approach to hand
written document retrieval,” in Proceedings of the 2nd In-
ternational Conference on Frontiers in Handwriting Recog-
nition (ICFHR10), pp. 265–270, Kolkata, India, November
2010.

[2] S. Alma’Adeed, C. Higgins, and D. Elliman, “Off-line rec-
ognition of handwritten Arabic words using multiple hidden
Markovmodels,”Knowledge Based Systems, vol. 17, pp. 75–79,
2004.

[3] Y. Kessentini, T. Paquet, and A. M. Benhamadou, “Multi-
script handwriting recognition with n-streams low level
features,” in Proceedings of the 19th Internet. Conf. Pattern
Recognition (ICPR), Tampa, FL, USA, December 2008.

[4] M. R. Al-Hajj, L. Likforman-Sulem, and C. Mokbel, “Com-
bining slanted-frame classifiers for improved HMM-based
Arabic handwriting recognition,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 31, pp. 1165–1177,
2009.

[5] A. Amin, “Off-line Arabic character recognition,” Pattern
Recognition, vol. 31, no. 5, pp. 517–530, 1998.

[6] N. A. Shaikh and Z. A. Shaikh, “A generalized thinning al-
gorithm for cursive and non-cursive language scripts,” in
Proceedings of the 2005 Pakistan Section Multitopic Confer-
ence, pp. 1–4, Karachi, Pakistan, December 2005.

[7] P. Dhande and R. Kharat, “Recognition of cursive english
handwritten characters,” in Proceedings of the 2017 Interna-
tional Conference on Trends in Electronics and Informatics
(ICEI), pp. 199–203, Tirunelveli, India, May 2017.

[8] X. Qin, J. Jiang, W. Fan, and C. Yuan, “Chinese cursive
character detection method,” ;e Journal of Engineering,
vol. 2020, no. 13, pp. 626–629, 2020.

[9] K. Ueki, T. Kojima, R. Mutou, R. S. Nezhad, and Y. Hagiwara,
“Recognition of Japanese connected cursive characters using
multiple softmax outputs,” in Proceedings of the 2020 IEEE
Conference on Multimedia Information Processing and Re-
trieval (MIPR), pp. 127–130, Guangdong, China, August 2020.

[10] H. Ke and I. K. Sethi, “Off-line cursive handwriting seg-
mentation,” in Proceedings of 3rd International Conference on
Document Analysis and Recognition, pp. 894–897, Montral,
Canada, August 1995.

0 50 100 150 200 250 300 350

Wiley Online Books
Major Reference Works

American Anthropologist
Art History

�e Modern Language Journal
Transactions of the Philological Society

British Journal of Special Education
Bulletin of the Institute of Classical Studies

�e Muslim World
Literacy

Papers

Pu
bl

ish
ed

 in

Figure 14: Papers published in with the number of articles.

10 Scientific Programming

[11] J. H. Kim and J. J. Lee, “A unified network-based approach for
recognition of cursive handwritings in mixed languages: a
case study on Hangul and Roman mixture,” in Proceedings of
the IEEE Colloquium on Handwriting and Pen-Based Input,
pp. 6/1–6/4, London, UK,, March 1994.

[12] J. Sternby and C. Friberg, “,e recognition graph-language
independent adaptable on-line cursive script recognition,” in
Proceedings of the Eighth International Conference on Docu-
ment Analysis and Recognition (ICDAR’05), pp. 14–18, Seoul,,
South Korea, August 2005.

[13] R. Ahmad, M. Z. Afzal, S. F. Rashid, M. Liwicki, A. Dengel,
and T. Breuel, “Recognizable units in Pashto language for
OCR,” in Proceedings of the 2015 13th International Confer-
ence on Document Analysis and Recognition (ICDAR),
pp. 1246–1250, Tunis, Tunisia, August 2015.

[14] N. Hassan, “Recognition of Arabic cursive handwriting,” in
Proceedings of the Geometric Modeling and Imaging--New
Trends (GMAI’06), pp. 135–140, London, UK, July 2006.

[15] M. R. Hashemi, O. Fatemi, and R. Safavi, “Persian cursive
script recognition,” in Proceedings of the 3rd International
Conference on Document Analysis and Recognition, pp. 869–
873, Montreal, Canada, August 1995.

[16] T. Erdogan and O. Erdogan, “An analysis of the legibility of
cursive handwriting of prospective primary school teachers,”
Procedia - Social and Behavioral Sciences, vol. 46, pp. 5214–
5218, 2012.

[17] O. Samanta, A. Roy, S. K. Parui, and U. Bhattacharya, “An
HMM framework based on spherical-linear features for
online cursive handwriting recognition,” Information Sci-
ences, vol. 441, pp. 133–151, 2018.

[18] F. Camastra, “A SVM-based cursive character recognizer,”
Pattern Recognition, vol. 40, no. 12, pp. 3721–3727, 2007.

[19] S. M. Darwish and H.M. ELgohary, Building an Expert System
for Printer Forensics: A New Printer IdentificationModel Based
on Niching Genetic Algorithm, Wiley, Hoboken, NJ, USA,
2020.

[20] W.-T. Chen and T.-R. Chou, “A hierarchical deformation
model for on-line cursive script recognition,” Pattern Rec-
ognition, vol. 27, no. 2, pp. 205–219, 1994.

[21] H. Lee and B. Verma, “Binary segmentation algorithm for
english cursive handwriting recognition,” Pattern Recogni-
tion, vol. 45, no. 4, pp. 1306–1317, 2012.

[22] T. S. El-Sheikh and R. M. Guindi, “Computer recognition of
Arabic cursive scripts,” Pattern Recognition, vol. 21, no. 4,
pp. 293–302, 1988.

[23] A. K. Bhunia, P. P. Roy, A. Mohta, and U. Pal, “Cross-lan-
guage framework for word recognition and spotting of Indic
scripts,” Pattern Recognition, vol. 79, pp. 12–31, 2018.

[24] A. A. Chandio, M. Asikuzzaman, M. Pickering, and
M. Leghari, “Cursive-text: a comprehensive dataset for end-
to-end Urdu text recognition in natural scene images,” Data
in Brief, vol. 31, Article ID 105749, 2020.

[25] A. Aisyah, N. Hieda, M. Nezu, and N. Ibrahim, “Designing
hiragana learning materials for Japanese language course in
UKM,” Procedia-Social and Behavioral Sciences, vol. 59,
pp. 451–458, 2012.

[26] I. S. I. Abuhaiba, “Discrete script or cursive language iden-
tification from document images,” Journal of King Saud
University - Engineering Sciences, vol. 16, no. 2, pp. 253–268,
2004.

[27] J. Hellige and M. Adamson, “Hemispheric differences in
processing handwritten cursive☆,” Brain and Language,
vol. 102, no. 3, pp. 215–227, 2007.

[28] A. Jalali and M. Lee, “High cursive traditional Asian character
recognition using integrated adaptive constraints in ensemble
of densenet and Inception models,” Pattern Recognition
Letters, vol. 131, pp. 172–177, 2020.

[29] W. Cho, S.-W. Lee, and J. H. Kim, “Modeling and recognition
of cursive words with hidden Markov models,” Pattern
Recognition, vol. 28, no. 12, pp. 1941–1953, 1995.

[30] S. Naz, A. I. Umar, R. Ahmad et al., “Offline cursive Urdu-
Nastaliq script recognition using multidimensional recurrent
neural networks,” Neurocomputing, vol. 177, pp. 228–241,
2016.

[31] M. Schambach, “Recurrent HMMs and cursive handwriting
recognition graphs,” in Proceedings of the 2009 10th Inter-
national Conference on Document Analysis and Recognition,
pp. 1146–1150, Barcelona, Spain, July 2009.

[32] T. G. Rose and L. J. Evett, “Semantic analysis for large vo-
cabulary cursive script recognition,” in Proceedings of 2nd
International Conference on Document Analysis and Recog-
nition (ICDAR, pp. 236–239, Tsukuba, Japan, October 1993.

[33] R. J. Kannan, R. Prabhakar, and R. M. Suresh, “Off-line
cursive handwritten Tamil character recognition,” in Pro-
ceedings of the 2008 International Conference on Security
Technology, pp. 159–164, Hainan Island, China, December
2008.

[34] A. A. Chandio, M. Asikuzzaman, and M. R. Pickering,
“Cursive character recognition in natural scene images using a
multilevel convolutional neural network fusion,” IEEE Access,
vol. 8, pp. 109054–109070, 2020.

[35] J. Danna, D. Massendari, B. Furnari, and S. Ducrot, “,e
optimal viewing position effect in printed versus cursive
words: evidence of a reading cost for the cursive font,” Acta
Psychologica, vol. 188, pp. 110–121, 2018.

[36] B. Verma and H. Lee, “Segment confidence-based binary
segmentation (SCBS) for cursive handwritten words,” Expert
Systems with Applications, vol. 38, no. 9, pp. 11167–11175,
2011.

[37] J. H. AlKhateeb, J. Ren, J. Jiang, and H. Al-Muhtaseb, “Offline
handwritten Arabic cursive text recognition using Hidden
Markov Models and re-ranking,” Pattern Recognition Letters,
vol. 32, no. 8, pp. 1081–1088, 2011.

[38] T. Abu-Ain, S. N. H. S. Abdullah, B. Bataineh, W. Abu-Ain,
and K. Omar, “Text normalization framework for handwritten
cursive languages by detection and straightness the writing
baseline,” Procedia Technology, vol. 11, pp. 666–671, 2013.

[39] R. Mouhcine, A. Mustapha, and M. Zouhir, “Recognition of
cursive Arabic handwritten text using embedded training
based on HMMs,” Journal of Electrical Systems and Infor-
mation Technology, vol. 5, no. 2, pp. 245–251, 2018.

[40] K. Manjusha, M. A. Kumar, and K. P. Soman, “On developing
handwritten character image database for Malayalam lan-
guage script,” Engineering Science and Technology, an Inter-
national Journal, vol. 22, no. 2, pp. 637–645, 2019.

[41] S. Naz, K. Hayat, M. Imran Razzak, M. Waqas Anwar,
S. A. Madani, and S. U. Khan, “,e optical character rec-
ognition of Urdu-like cursive scripts,” Pattern Recognition,
vol. 47, no. 3, pp. 1229–1248, 2014.

Scientific Programming 11

Research Article
Software Birthmark Usability for Source Code Transformation
Using Machine Learning Algorithms

Keqing Guan,1 Shah Nazir ,2 Xianli Kong ,3 and Sadaqat ur Rehman4

1Institute for Big Data Research, Liaoning University of International Business and Economics, Dalian 116052, China
2Department of Computer Science, University of Swabi, Swabi, Pakistan
3School of Economics, Dongbei University of Finance & Economics, Dalian 116025, China
4Department of Computer Science, Namal Institute, Mianwali 42250, Pakistan

Correspondence should be addressed to Shah Nazir; snshahnzr@gmail.com and Xianli Kong; kongxianli@dufe.edu.cn

Received 14 January 2021; Revised 24 January 2021; Accepted 30 January 2021; Published 9 February 2021

Academic Editor: Sikandar Ali

Copyright © 2021 Keqing Guan et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Source code transformation is a way in which source code of a program is transformed by observing any operation for generating
another or nearly the same program.-is is mostly performed in situations of piracy where the pirates want the ownership of the
software program. Various approaches are being practiced for source code transformation and code obfuscation. Researchers
tried to overcome the issue of modifying the source code and prevent it from the people who want to change the source code.
Among the existing approaches, software birthmark was one of the approaches developed with the aim to detect software piracy
that exists in the software. Various features are extracted from software which are collectively termed as “software birthmark.”
Based on these extracted features, the piracy that exists in the software can be detected. Birthmarks are considered to insist on the
source code and executable of certain programming languages. -e usability of software birthmark can protect software by any
modification or changes and ultimately preserve the ownership of software. -e proposed study has used machine learning
algorithms for classification of the usability of existing software birthmarks in terms of source code transformation.-e K-nearest
neighbors (K-NN) algorithm was used for classification of the software birthmarks. For cross-validation, the algorithms of
decision rules, decomposition tree, and LTF-C were used. -e experimental results show the effectiveness of the
proposed research.

1. Introduction

Source code transformation is performed in a manner in
which the source code of a program is transmuted by
spotting any operation for creating an alternative or nearly
same program. -is is mostly performed in situation of
piracy where the pirates want the ownership of the software
program. From different perspectives, the transformed
source code is mostly equivalent to the original program in
terms of semantics. For transforming the source into an-
other program, one usually needs the incorporation of whole
front end of programming language, data structure of in-
ternal program representation, parsing of source code,
understanding of the program, meaningful static analysis,
and generation of useable source code for representation of

program. Software industry is immensely in front of the
software piracy issues.-is piracy performed in software can
badly affect the software business and eventually big loss to
the owner organizations. Stoppage of software piracy is
extremely important for the rising economy of the software
industry. Different methods are used to prevent piracy of
software. -ese methods include techniques of finger-
printing [1, 2], watermarking [3–5], and software birthmarks
[6–11]. -e watermark has the weaknesses as it can be re-
moved by approaches of code obfuscations and semantic
preserving transformation. -e similar concerns are existing
in the software fingerprints. To overawe these limitations,
the idea of birthmark was presented and is broadly ac-
knowledged and known approach for preventing source
code transformation and piracy of software.

Hindawi
Scientific Programming
Volume 2021, Article ID 5547766, 7 pages
https://doi.org/10.1155/2021/5547766

mailto:snshahnzr@gmail.com
mailto:kongxianli@dufe.edu.cn
https://orcid.org/0000-0003-0126-9944
https://orcid.org/0000-0002-4070-4091
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5547766

Birthmark of software is considered as necessary features
which can be employed for focusing the identification and
uniqueness of software. -e common uses of birthmarks are
for software theft, identification of transformations in source
code, and Windows API. More features of a software
birthmark can eventually present the robustness and ef-
fectiveness which will further show the precise detection of
transformations or theft made in the software or program.
Birthmark of software is established on imperative prop-
erties, resilience, and credibility [6]. Credibility depicts that
the birthmark of software entails that two programs, which is
written independently, should be different. Whereas, the
resilience should be preserved and not be damaged in any
case. Various approaches were considered to show the ef-
fectiveness and usability of software birthmark [6, 12–14].
-ese approaches talk about various applications of software
birthmark including source code transformation, code ob-
fuscations, software theft, piracy, and many others. -e use
of software birthmark can protect software by any adapta-
tion and ultimately preserve the ownership of software.

-e proposed study endeavored to use machine learning
algorithms for classification of the usability of existing
software birthmarks in terms of source code transformation.
-e K-nearest neighbors algorithm was used for classifica-
tion of the software birthmarks. For cross-validation, the
algorithms of decision rules, decomposition tree, and LTF-C
were used.-e experimental results show the effectiveness of
the proposed research.

-is study is divided into different sections. Section 2
represents the related work associated to the existing ap-
proaches of source code transformation, software theft, and
so on. -e research methodology of the proposed study is
presented in Section 3. Results and Discussion are given in
Section 4. -e study is concluded in Section 5.

2. Related Work

Researchers frequently attempt to devise diverse approaches,
methods, and solutions to proficiently and successfully
analyze the source code transformation and software piracy.
Numerous practices have been adopted in software industry
to detect and prevent software theft. -e idea of software
birthmark was presented to overcome the downsides of
software fingerprint, watermarks, and digital signature as
these can be modified or removed by using approaches of
code obfuscation and transformation of semantic preser-
vation. Birthmark of software was established to powerfully
recognize the software theft. First, the birthmark was de-
veloped by Tamada et al. [15], which extracts four types of
birthmarks: inheritance structure, sequence of method calls,
constant values in field variables, and the used classes. With
the advancements in the field, birthmark was well thought
out as a significant measure of the software in serving to
identify software piracy.-e field was discovered, and lots of
researchers tried to grow a strong and further trustworthy
birthmark for finding of software piracy. Software birthmark
knowledge was initially considered as sole identification of
object by Neufeld [16] in 1992. Derrick [17] discovered the
idea and gave the importance to the use of birthmark details

for “protecting” software. -is was later termed as theft
protection of software.

-e primary software birthmark was allied with software
theft which was offered as a birthmark for Java program theft
detection [15]. In the same way in 2004, Tamada et al.
considered birthmark of software that was used for detecting
the theft in Windows applications. Myles and Collberg
proposed “whole program path birthmarks” for detecting
software theft [18]. -at birthmark method was created on
the whole control flow of the software program. Diverse
categories of birthmark were planned for software theft
detection. -e proposed study identified a number of im-
portant birthmarks which have been proposed by different
researchers for different purposes mostly for theft detection.
Spafford and Weeber [19] discovered dissecting executable
code for analyzing the structure of data, library calls, and
system calls. -e idea of software forensics was offered for
thoughtful source of virus and malware infection. Birthmark
was aimed to facilitate detection of transformation in source
code and software theft [20–23]. -ese studies have con-
sidered the design of own birthmark according to some
defined features of software and then evaluated the effec-
tiveness in term of creditability and resilience of software for
identification of theft exists in copies of software.

-e authors [24] offered a dynamic program slicing tool
built on dynamic birthmark with some inputs; a union of
k-gram instruction-sequence sets as birthmark is used for
identification of program. Formal description of software
birthmarks was offered by Tamada et al. [25] where they
proposed an approach of extracting birthmark from the class
files of Java. -ey are sightseen on comparable perception
and proposed a framework for evaluating the two significant
properties of birthmarks that is resilience and credibility.
Zeng et al. [26] devised a framework of semantic-based
abstract interpretation for evaluating software birthmark.
-is model defines two important properties resilience and
credibility. -e success of the framework is confirmed by
static API birthmark and static-gram birthmark.-e authors
presented a dynamic birthmark for Java that perceives how a
program uses objects providing by the Java standard API
[27].

For transmuting the source code into an alternative
program, commonly, it needs the integration of data
structure of internal program representation, whole front
end of programming language, meaningful static analysis,
parsing of source code, understanding of the program, and
generation of useable source code for representation of the
program. Various approaches are being used to change the
source code. To overcome this issue, the researchers have
devised different solutions. -e proposed study has used
machine learning algorithms for classification of the soft-
ware birthmarks usability in terms of source code trans-
formation. -e K-nearest neighbors algorithm was used for
classification of the software birthmarks.

3. Research Methodology

Efforts are made to overcome the issues raised from the
transformation of source code and software theft.

2 Scientific Programming

Researchers mostly considered software ownership and
safety as one of themost priorities under consideration. A lot
of research studies have been shown for shaping the idea of
software birthmarks. Maximum of the birthmark ap-
proaches are related to Java source code, which are used for
detecting Java theft. Further significant birthmark ap-
proaches and techniques works for Windows API [28], for
detecting software theft. One of the significant notions used
in describing a software birthmark is the usage of software
features. Software can be divided into various parts (mostly
features) of software [23]. Together, all these features of the

software can deliver a faster and reliable identification of the
software and then eventually be used for detection of theft.
To detect transformation in source code or software theft,
the birthmarks of software applications are matched, and
similar birthmark identifies software piracy. A number of
birthmarks were identified in the literature. -e details are
given in Table 1.

Figure 1 represents the flowchart of the approach used
in the proposed study for software birthmark usability for
source code transformation. -e figure represents the
information table (dataset) containing objects, attributes,

Table 1: Software birthmark.
S. no. Ref. Approaches of software birthmark
1 [8] Birthmark-based approach for intellectual software asset management
2 [9] DKISB
3 [10] Instruction-words based software birthmark
4 [11] JSBiRTH
5 [29] API call structure
6 [15] CVFV, SMC, IS, and UC
7 [18] Detecting software theft via whole program path birthmarks
8 [30] Birthmark-based android application filtering
9 [31] System call dependence graph
10 [24] Dynamic k-gram-based software birthmark
11 [32] k-gram-based software birthmarks
12 [33] Dynamic key instruction sequences
13 [23] Features-based software birthmark
14 [34] Method-based static software birthmarks
15 [35] CHI-based instruction-words based software birthmark
16 [36] -read-aware software birthmarks
17 [37] System call-based birthmarks

Inormation table

Objects Attributes Decision

Machine learning
algorithms

“So�ware birthmark”_SUB_EA

“So�ware birthmark”
“So�ware birthmark”

“So�ware birthmark”

“So�ware birthmark”
“So�ware birthmark”

Core

Figure 1: Flowchart of the proposed approach.

Scientific Programming 3

and their decision. After the information table, the ma-
chine learning algorithms were applied. -e K-NN al-
gorithm was applied for the classification purpose. After
that, the algorithms of decision rules, decomposition tree,
and LTF-C algorithms were applied as cross-validation
algorithms.

-e dataset developed during higher studies programme
was considered for validation purpose of the proposed re-
search. Total of 150 entries were existing with three features.
Figure 2 shows the visualization of the dataset for user
understanding.

Once the information table was imported to the pro-
posed system, initially, the reduct was applied. After that,
rules set were generated. Figure 3 depicts the publications
with the year in the given dataset.

Figure 4 depicts the rules set generated from the pro-
posed study.

After doing this process, in last, the algorithm of K-NN
was applied to the proposed research. Some cross-validation
algorithms were used which are discussed in the Results and
Discussion Section.

4. Results and Discussion

Several research studies have been conducted for refining
software birthmarks for detection of piracy. -e existing
approaches used for detection of piracy are given as

Figure 2: Dataset visualization.

–5

0

5

10

15

20

25

1990 1995 2000 2005 2010 2015 2020 2025

N
um

be
r o

f p
ap

er
s

Years

Figure 3: Publications with years based on dataset.

4 Scientific Programming

intellectual software asset management [8], detection of
software theft [18], plagiarism detection [38], detecting
java theft [39], detecting binary theft [40], semantics-
based repackaging detection for mobile apps [41], mal-
ware detection [42], detecting code theft [43], detecting
the theft of natural language [44], credible, resilient, and
scalable detection of software plagiarism using authority
histograms [45], detecting plagiarized mobile apps [46],
efficient similarity measurement technique of Windows
software [47], detecting common modules in Java pack-
ages [48], measuring similarity of android applications
[49], identify similar classes and major functionalities
[50], moreover, for the source code level [48], and so on.

-e proposed study has used the application of machine
learning for software birthmark usability for transforma-
tion of source code. Initially, the K-nearest neighbors al-
gorithm was used for classification of the software
birthmarks. -e experimental results of K-NN were ef-
fective and showed an accuracy of 98%. Figure 5 represents
the frequencies of the dataset in term of conference,
journals, books, and thesis.

Figure 6 shows the comparisons of the algorithms used
in the proposed research. -e algorithm decision rule has
0.91%, decomposition tree algorithm is having 0.96%, and
the LTF-C algorithm is having 0.64% accuracy.

Figure 7 graphically represents the coverage of the al-
gorithms used.

5. Conclusion

Software industry is growing with the passage of time. New
innovations are offered to cater diverse issues of real life. -e
role of software applications has evidenced the success of
software industry. Pirates are engaged with code transfor-
mations and gaining profit from the code obfuscation,
transformation of source code, and piracy of software.-is is
mostly carried out in situations of piracy where the pirates
want the ownership of the software program. Various ap-
proaches are being practiced for source code transformation

Figure 4: Rules set supported.

90
80
70
60
50
40
30
20
10

0

Pa
pe

r t
yp

e

Conference Journal PhD
Paper type

Book Thesis

Conference
Journal
PhD

Book
Thesis

Comparison of attribute “Paper type” and “Paper type”
from table “Software birthmark”

Figure 5: Frequencies of the dataset used.

0

0.2

0.4

0.6

0.8

1

1.2

Decision rule Decomposition tree LTF-C

A
cc

ur
ac

y

Algorithms

Figure 6: Algorithm used along with the accuracy.

0 0.2 0.4 0.6 0.8 1 1.2

Decision rule

Decomposition
tree

LTF-C

Coverage

A
lg

or
ith

m
s

Figure 7: Coverage of the algorithms used.

Scientific Programming 5

and code obfuscation. Among the present approaches,
software birthmark was one of the approaches developed
with the aim to detect software piracy exists in the software.
Birthmarks are considered to insist on the source code and
executable of certain programming languages. -e proposed
study has usedmachine learning algorithms for classification
of the usability of existing software birthmarks in terms of
source code transformation. -e K-nearest neighbors al-
gorithm was used for classification of the software birth-
marks. For cross-validation, the algorithms of decision rules,
decomposition tree, and LTF-C were used.-e experimental
results show the effectiveness of the proposed research. -e
algorithm decision rule has 0.91%, decomposition tree al-
gorithm is having 0.96%, and the LTF-C algorithm is having
0.64% accuracy.

Data Availability

No data were used to support this study.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was sponsored in part by the Research Fund for
the Doctoral Program of Liaoning University of Interna-
tional Business and Economics (2019XJLXBSJJ002).

References

[1] C. Gottschlich, “Curved-region-based ridge frequency esti-
mation and curved gabor filters for fingerprint image en-
hancement,” IEEE Transactions on Image Processing, vol. 21,
no. 4, pp. 220–227, 2012.

[2] C. S. Collberg, C. -omborson, and G. M. Townsend, “Dy-
namic graph-based software fingerprinting,” ACM Transac-
tions on Programming Languages and Systems, vol. 29, no. 6,
p. 35, 2007.

[3] R. -abit and B. E. Khoo, “Robust reversible watermarking
scheme using Slantlet transform matrix,” Journal of Systems
and Software, vol. 88, pp. 74–86, 2014.

[4] Y. Zeng, F. Liu, X. Luo, and C. Yang, “Software watermarking
through obfuscated interpretation: implementation and
analysis,” Journal of Multimedia, vol. 6, no. 4, pp. 329–340,
2011.

[5] C. Collberg and T. R. Sahoo, “Software watermarking in the
frequency domain: implementation, analysis, and attacks,”
Journal of Computer Security, vol. 13, no. 5, pp. 721–755, 2005.

[6] S. Nazir, S. Shahzad, R. Wirza et al., “Birthmark based
identification of software piracy using Haar wavelet,”
Mathematics and Computers in Simulation, vol. 166,
pp. 144–154, 2019.

[7] T. Yokoi and H. Tamada, “A beforehand extraction method
for dynamic software birthmarks using unit test codes,” in
Proceedings of the 2018 19th IEEE/ACIS International Con-
ference on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing (SNPD),
pp. 169–175, Busan, South Korea, June 2018.

[8] D. Kim, J. Moon, S. J. Cho et al., “A birthmark-based method
for intellectual software asset management,” in Proceedings of

the 8th International Conference on Ubiquitous Information
Management and Communication, Siem Reap, Cambodia,
January 2014.

[9] Z. Tian, Q. Zheng, T. Liu, and M. Fan, “DKISB: dynamic key
instruction sequence birthmark for software plagiarism de-
tection,” in Proceedings of the High Performance Computing
and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing (HPCC_EUC),
pp. 619–627, Zhangjiajie, China, November 2013.

[10] L.Ma, Y.Wang, F. Liu, and L. Chen, “Instruction-words based
software birthmark,” in Proceedings of the 2012 Fourth In-
ternational Conference on Multimedia Information Net-
working and Security, Nanjing, China, November 2012.

[11] P. P. F. Chan, L. C. K. Hui, and S. M. Yiu, “JSBiRTH:
dynamic JavaScript birthmark based on the run-time
heap,” in Proceedings of the 2011 IEEE 35th Annual
Computer Software and Applications Conference, Munich,
Germany, July 2011.

[12] S. Nazir, S. Shahzad, and L. S. Riza, “Birthmark-based soft-
ware classification using rough sets,” Arabian Journal for
Science and Engineering, vol. 42, no. 2, pp. 859–871, 2016.

[13] S. Nazir, S. Shahzad, R. B. Atan, and H. Farman, “Estimation
of software features based birthmark,” Cluster Computing-:e
Journal of Networks Software Tools and Applications, vol. 21,
no. 1, pp. 1–14, 2017.

[14] S. Nazir, S. Shahzad, and N. Mukhtar, “Software birthmark
design and estimation: a systematic literature review,” Ara-
bian Journal for Science and Engineering, vol. 44, no. 4,
pp. 3905–3927, 2019.

[15] H. Tamada, M. Nakamura, and A. Monden, “Design and
evaluation of birthmarks for detecting theft of java programs,”
in Proceedings of the IASTED International Conference on
Software Engineering, pp. 17–19, Innsbruck, Austria, February
2004.

[16] G. Neufeld, “Descriptive name resolution,” Computer Net-
works and ISDN Systems, vol. 23, no. 4, pp. 211–227, 1992.

[17] G. Derrick, Protection of Computer Software: Its Technology
and Application, p. 224, Cambridge University Press, New
York, NY, USA, 1992.

[18] G. Myles and C. Collberg, “Detecting software theft via whole
program path birthmarks,” in Proceedings of the Information
Security: 7th International Conference, ISC 2004, Palo Alto,
CA, USA, September, 2004.

[19] E. H. Spafford and S. A. Weeber, “Software forensics: can we
track code to its authors?” Computers & Security, vol. 12,
no. 6, pp. 585–595, 1993.

[20] S. Nazir, S. Shahzad, and S. B. S. Abid, “Selecting software
design based on birthmark,” Life Science Journal, vol. 11,
no. 12, pp. 89–93, 2014.

[21] S. Nazir, “Design and estimation of features based software
birthmark,” Ph. D. -esis, University of Peshawar, Peshawar,
Pakistan, 2015.

[22] S. Nazir, S. Shahzad, S. A. Khan, N. B. Ilya, and S. Anwar, “A
novel rules based approach for estimating software birth-
mark,” Scientific World Journal, vol. 2015, Article ID 579390,
8 pages, 2015.

[23] S. Nazir, S. Shahzad, Q. U. A. Nizamani, R. Amin, M. A. Shah,
and A. Keerio, “Identifying software features as birthmark,”
Sindh University Resarch Journal (Science Series), vol. 47,
no. 3, pp. 535–540, 2015.

[24] Y. Bai, X. Sun, G. Sun, X. Deng, and X. Zhou, “Dynamic
k-gram based software birthmark,” in Proceedings of the 19th
Australian Conference on Software Engineering, Perth, Aus-
tralia, March 2008.

6 Scientific Programming

[25] H. Tamada, M. Nakamura, A. Monden, and K.-I. Matsumoto,
“Detecting the theft of programs using birthmarks,” Technical
Report NAIST-IS-TR2003014, Nara Institute of Science and
Technology, Ikoma, Japan, 2003.

[26] Y. Zeng, F. Liu, X. Luo, and S. Lian, “Abstract interpretation-based
semantic framework for software birthmark,” Computers & Se-
curity, vol. 31, no. 4, pp. 377–390, 2012.

[27] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birth-
mark for java,” in Proceedings of the Twenty-Second IEEE/
ACM International Conference on Automated Software
Engineering, Atlanta, GA, USA, November 2007.

[28] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and
K.-I. Matsumoto, “Dynamic software birthmarks to detect the
theft of windows applications,” in Proceedings of the Inter-
national Symposium on Future Software Technology, Xi’an,
China, October 2004.

[29] S. Choi, H. Park, H.-I. Lim, and T. Han, “A static birthmark of
binary executables based on API call structure,” in Proceedings
of the 12th Asian Computing Science Conference on Advances
in Computer Science: Computer and Network Security, Doha,
Qatar, December 2007.

[30] S. Kang, H. Shim, S.-J. Cho, M. Park, and S. Han, “A robust
and efficient birthmark-based android application filtering
system,” in Proceedings of the 2014 Conference on Research in
Adaptive and Convergent Systems, Towson, MD, USA, Oc-
tober 2014.

[31] K. Liu, T. Zheng, and L. Wei, “A software birthmark based on
system call and program data dependence,” in Proceedings of
the 2014 11th Web Information System and Application
Conference, Tianjin, China, September 2014.

[32] G. Myles and C. Collberg, “k-gram based software birth-
marks,” in Proceedings of the 2005 ACM Symposium on
Applied Computing, Santa Fe, NM, USA, March 2005.

[33] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang,
“Software plagiarism detection with birthmarks based on
dynamic key instruction sequences,” IEEE Transactions on
Software Engineering, vol. 41, no. 12, pp. 1217–1235, 2015.

[34] Y.Mahmood, S. Sarwar, Z. Pervez, andH. F. Ahmed, “Method
based static software birthmarks: a new approach to derogate
software piracy,” in Proceedings of the Computer, Control and
Communication, 2009. IC4 2009, Karachi, Pakistan, February
2009.

[35] Y. Wang, F. Liu, D. Gong, B. Lu, and S. Ma, “CHI based
instruction-words based software birthmark selection,” in
Proceedings of the Fourth International Conference on Mul-
timedia Information Networking and Security, Nanjing,
China, November 2012.

[36] Z. Tian, Q. Zheng, T. Liu, M. Fan, X. Zhang, and Z. Yang,
“Plagiarism detection for multithreaded software based on
thread-aware software birthmarks,” in Proceedings of the 22nd
International Conference on Program Comprehension,
Hyderabad, India, June 2014.

[37] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Detecting software
theft via system call based birthmarks,” in Proceedings of the
Computer Security Applications Conference, pp. 149–158,
Honolulu, HI, USA, December 2009.

[38] D.-K. Chae, S.-W. Kim, J. Ha, S.-C. Lee, and G. Woo,
“Software plagiarism detection via the static API call fre-
quency birthmark,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, Coimbra, Portugal, March
2013.

[39] H. Park, S. Choi, H.-I. Lim, and T. Han, “Detecting java theft
based on static API trace birthmark,” in Proceedings of the
Advances in Information and Computer Security, :ird

International Workshop on Security, IWSEC 2008, Kagawa,
Japan, November 2008.

[40] S. Park, H. Kim, J. Kim, and H. Han, “Detecting binary theft
via static major-path birthmarks,” in Proceedings of the 2014
Conference on Research in Adaptive and Convergent Systems,
Towson, MD, USA, October 2014.

[41] Q. Guan, H. Huang, W. Luo, and S. Zhu, “Semantics-based
repackaging detection for mobile apps,” in Proceedings of the
Engineering Secure Software and Systems: 8th International
Symposium, ESSoS 2016, London, UK, April 2016.

[42] S. Vemparala, F. D. Troia, V. A. Corrado, T. H. Austin, and
M. Stamo, “Malware detection using dynamic birthmarks,” in
Proceedings of the 2016 ACM on International Workshop on
Security and Privacy Analytics, New Orleans, LA, USA, March
2016.

[43] H. Park, S. Seokwoo Choi, H.-I. Lim, and T. Taisook Han,
“Detecting code theft via a static instruction trace birthmark
for Java methods,” in Proceedings of the 2008 6th IEEE In-
ternational Conference on Industrial Informatics, pp. 551–556,
Daejeon, South Korea, July 2008.

[44] J. Yang, J. Wang, and D. Li, “Detecting the theft of natural
language text using birthmark,” in Proceedings of the 2006
International Conference on Intelligent Information Hiding
and Multimedia, Pasadena, CA, USA, December 2006.

[45] D.-K. Chae, J. Ha, S.-W. Kim, B. Kang, E. G. Im, and S. Park,
“Credible, resilient, and scalable detection of software pla-
giarism using authority histograms,” Knowledge-Based Sys-
tems, vol. 95, pp. 114–124, 2016.

[46] D. Kim, A. Gokhale, V. Ganapathy, and A. Srivastava,
“Detecting plagiarized mobile apps using API birthmarks,”
Automated Software Engineering, vol. 23, no. 4, pp. 591–618,
2015.

[47] P. Daeshin, J. Hyunho, P. Youngsu, and H. JiMan, “Efficient
similarity measurement technique of windows software using
dynamic birthmark based on API,” Smart Media Journal,
vol. 4, no. 2, pp. 34–45, 2014, http:////KJD:ART002028547, in
Korean.

[48] H. Park, H.-I. Lim, S. Choi, and T. Han, “Detecting common
modules in java packages based on static object trace birth-
mark,” :e Computer Journal, vol. 54, no. 1, pp. 108–124,
2009, in English.

[49] J. Ko, H. Shim, D. Kim et al., “Measuring similarity of android
applications via reversing and k-gram birthmarking,” in
Proceedings of the 2013 Research in Adaptive and Convergent
Systems, Montreal, Canada, October 2013.

[50] T. Kakimoto, A. Monden, Y. Kamei, H. Tamada, M. Tsunoda,
and K.-i. Matsumoto, “Using software birthmarks to identify
similar classes andmajor functionalities,” in Proceedings of the
2006 InternationalWorkshop onMining Software Repositories,
Shanghai, China, May 2006.

Scientific Programming 7

Research Article
Applying Code TransformModel toNewlyGenerated Program for
Improving Execution Performance

Bao Rong Chang ,1 Hsiu-Fen Tsai ,2 and Po-Wen Su 1

1Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan
2Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan

Correspondence should be addressed to Hsiu-Fen Tsai; sftsai@kmu.edu.tw

Received 20 November 2020; Revised 17 January 2021; Accepted 20 January 2021; Published 2 February 2021

Academic Editor: Sikandar Ali

Copyright © 2021 Bao Rong Chang et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

,e existing programs inside the voice assistant machine prompt human-machine interaction in response to a request from a user.
However, the crucial problem is that the machine often may not give a proper answer to the user or cannot work out the existing
program execution efficiently. ,erefore, this study proposes a novel transform method to replace the existing programs (called
sample programs in this paper) inside the machine with newly generated programs through code transformmodel GPT-2 that can
reasonably solve the problem mentioned above. In essence, this paper introduces a theoretical estimation in statistics to infer at
least a number of generated programs as required so as to guarantee that the best one can be found within them. In addition, the
proposed approach not only imitates a voice assistant system with filtering redundant keywords or adding new keywords to
complete keyword retrieval in semantic database but also checks code similarity and verifies the conformity of the executive
outputs between sample programs and newly generated programs. According to code checking and program output verification,
the processes can expedite transform operations efficiently by removing the redundant generated programs and finding the best-
performing generated program. As a result, the newly generated programs outperform the sample programs because the proposed
approach reduces the number of code lines by 32.71% and lowers the program execution time by 24.34%, which is of
great significance.

1. Introduction

Alpha Go was developed by Google DeepMind in London in
2014, and it defeated all other Go masters. Since then, re-
search in artificial intelligence has been increasing again.
Accordingly, research about human-computer interaction is
meant to imitate human behavior, especially natural lan-
guage representation and interpretation in the voice assis-
tant machine [1]. ,e use of artificial intelligence for
human-computer interaction in voice assistant machines-
related tools have flourished, such as Tesla’s NoA, Apple’s
Siri, Amazon Echo and Alexa, and Google Home. ,ese
tools not only function as the basis of human language
imitation but also play a key role for API offerings in AI
applications. Nowadays, there are quite a lot of brands and
types of voice assistant machines in the world, and their

existing programs are used for human-computer interaction
in response to user requests. However, some voice assistant
machines have encountered certain problems, that is, the
machine may not be able to answer the questions correctly
[2], or the existing programs have low execution efficiency
[3]. It is worth exploring as to how to solve the above
problems, and thus we have formulated the following idea.
Can the machine transform an existing program to a newly
generated program that can runs programs with higher
efficiency and produce correct results?

Even though the deep learning model is relatively mature,
imitation of human natural language behavior through deep
learning is still a difficult task. Language model is a technology
that allows machines to understand and predict human lan-
guage. ,e use of recently developed language models with
large-scale data and huge computing power can help solve

Hindawi
Scientific Programming
Volume 2021, Article ID 6691010, 21 pages
https://doi.org/10.1155/2021/6691010

mailto:sftsai@kmu.edu.tw
https://orcid.org/0000-0002-0952-3591
https://orcid.org/0000-0002-7444-753X
https://orcid.org/0000-0001-8348-3324
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6691010

various applications of human natural language. Famous open-
source pretrained language models, such as ELMo, BERT, and
GPT-2 [4], can implement the best level of Natural Language
Processing (NLP) tasks, and they have the ability required for
huge hierarchical models. ,rough transfer learning and few-
shot learning on such powerful natural language models, the
solution to the complex NLP problem can be obtained.

,e objective of this study was to explore ways to solve the
following two problems. First, how to construct a complete
semantic database that can implement data retrieval quickly and
respond correctly. Second, how to generate high-performance
programs through the code transform model to replace the
existing programs inside the machine to improve execution
performance. ,e natural language processing involves un-
derstanding and generating. Regarding the technology involved
in the improvement method, a complete and quickly searchable
semantic database using MariaDB is constructed with the
Natural Language Toolkit (NLTK) model of sentence seg-
mentation [5] to provide correct answers to users. At present,
the most fluent open source natural language model is the
Generative Pre-trained Transformer 2 (GPT-2) [6], which is a
natural language simulation machine developed by using
OpenAI. It is currently being used to generate fake news [7]. In
this study, Python [8] provides the run-time environment for
the aforementioned tools, namely, MariaDB, NLTK, GPT-2,
and Tensorlfow. Python combined with Hadoop Streaming to
provide big data processing and distributed storage in Hadoop,
and it can also be used with PySpark to provide big data an-
alytics in Spark.

,ere is so far no way to infer how many programs
generated from GPT-2 can guarantee a pass ratio over 90%
without which we cannot find the best one among them.
Nevertheless, this paper introduces a theoretical estimation
in statistics to infer at least a number of generated programs
produced by GPT-2, which guarantee that the best one can
be found within them. ,is approach refers to the pre-
determined the number of generated programs statistically.
In order to improve the efficiency of keyword retrieval, both
the parameters of filtering redundant keywords and adding
new keywords are used to optimize keyword-search in the
semantic database in order to improve the hit rate of key-
words from the database. In addition, we present cosine text
similarity algorithm Simhash [9] to check the code similarity
of generated programs and example programs and use the
longest common subsequence (LCS) [10] to verify the
conformity between the execution results of generated
programs and example programs.

,e following paragraphs of this paper are arranged as
follows. In Section 2, related work in word segmentation
processing and language generation model will be described.
,e way to system implementation is given in Section 3. ,e
experimental results and discussion is given in Section 4.
Finally, we drew a brief conclusion in Section 5.

2. Related Work

A particular voice assistant machine, Amazon Alexa [11], is a
smart assistant and Echo smart speaker developed in recent
years. ,e audio system relies on a set of complex AI

technologies that use automatic speech recognition (ASR) to
receive sound waves and to convert them into words. ,en,
natural language understanding (NLU) is used to translate
these words into meanings. In order to respond to people,
smart speakers and the technology of natural language
generation (NLG) [12] for suggestions, content determi-
nation, conversation planning, sentence aggregation, vo-
cabulary, citation expression generation, language
experiment, and descriptions of basic NLG task have been
developed. While exploring various emerging issues of AI,
some researchers are pondering the possibility of machines
automatically producing programs [13]. In reality, people
are often pressurized to complete programming or modify
the codes of a program before the deadline or the challenge
of improving the execution of a program. As a result, the
program execution speed may be too slow to get the job
done, and there may still be deficiencies when running the
program in real-time. In contrast, a high-performing new
program can be generated through the code transform
model, and it will operate faster than the original one [14].
,is would be a great progress in the application of AI, and
the audio-text conversion technology would further apply in
the sound-controlled related products, such as drones, ro-
bots, and flying iron men.

,ere is not much literature on source-code to source-
code transform model. First, Li et al. (2011) used XML and
XSLT technology to generate a web page code [15]. ,ey
will be automatically converted into target code after being
exported via XML files. However, they did not provide any
data to show how the results were generated. Next, Li et al.
(2020) employed Java code transform models, Java-
Codetool, and CodeGeneration to produce newly generated
java programs and evaluate their performance [16]. ,ey
took the Binary tree traversal program as an example and
divided the program into 4 parts to produce newly gen-
erated source-code programs individually. ,e experi-
mental results show that the average time to generate a code
line in a program using Java-Codetool is about 0.17 sec-
onds, and CodeGeneration takes 0.15 seconds. No matter
whether it is using Java-Codetool or CodeGeneration, the
number of code lines is not reduced. In fact, the compi-
lation of all generated programs can be done successfully.
However, it did not show further information about the
execution results of their generated programs. In this paper,
the proposed approach will present the code similarity
check and make sure the conformity of the execution re-
sults between generated programs and sample programs
that resulted in the credibility and validity of the findings in
this study.

Uncertainties will exist depending on the situation.
Despite this, the system can generate similar programs in-
stantly to greatly reduce the possibility of errors or in-
complete programs with GPT-2. In order to realize the
“applying code transform model to newly generated pro-
gram for improving execution performance”, this study will
use the following key technologies: Anaconda (Data Science
Platform with Virtual Environment Conda), Tensorflow
(Dataflow andDifferentiable Programming), NLTK (English
Text Segmentation), GPT-2 (Text Generating Model), and

2 Scientific Programming

Simhash (Cosine Text Similarity Algorithm), etc., to achieve
the goal of this research.

2.1. Word Segmentation Processing-NLTK. Natural Lan-
guage Processing (NLP) [17] is regarded as a branch of AI
and linguistics. ,is field discusses how to process and use
natural language, including multiple steps, basically for
cognition, understanding, generation; cognition and un-
derstanding are to let the computer turn the natural lan-
guage input into interesting symbols and relationships.
Natural Language Toolkit (NLTK) is a Python library
commonly used in NLP research. ,is is an open source
project, including data sets, Python modules, tutorials, etc.

,e main functions of NLTK are English word seg-
mentation processing, part-of-speech tagging [18] called
pos, font restoration called lemmatization, stopword, named
entity recognition called ner, etc. In NLTK, the text is usually
stored as a list, that is, a text is a huge list. If additional
information such as part-of-speech is attached, it can be
converted into a dictionary. ,e Latin language system is a
little troublesome because they like to add a modifier to the
words to describe different tenses, actions, part-of-speech,
mood, and quantity. So we will consider all the same words
in different tenses or different changes into the same word
for processing. Finally, we filter out unnecessary words. and
the English word segmentation flowchart is shown in
Figure 1.

2.2. Language Generation Model-Generative Pre-Training 2.
,e second generation of Generative Pre-Training (GPT-2) is
an unsupervised [19] transformer language generation model
[20], released by OpenAI in 2019. Researchers believe that the
language model of unsupervised learning is a general lan-
guage model. Furthermore, GPT-2 proves that the model is
not meant for any specific task to predict the next word as the
training target. It is used to adopt the sentence database
WebTex [21] for data training, which contains 8 million web
pages as the training data.,ese web pages are part of the data
from Reddit [22] and are more than 40GB. Compared with
other text-generating models, such as ELMo and Bert for
producing texts, its main advantage is that the code is in
English and the one-way language model is easier to train and
understand. ,e traditional Transformer model is composed
of Encoder and Decoder, called the Transformer architecture
stack.,e transformer architecture stack is shown in Figure 2.
,is model solves the problem of machine translation.

In many subsequent studies, the Transformer architec-
ture removes either the Encoder or the Decoder, uses only
one Transformer stack, and provides a large amount of
training text and machine equipment. GPT-2 is composed of
the Decoder architecture according to the Transformer
model. As shown in Figure 3, the stacking height is the size of
various GPT-2 models. Currently, there are four sizes of
models: GPT-2 Small, GPT-2 Medium, GPT-2 Large, and
GPT-2 Extra Large [23].

2.3. Cosine Text Similarity Algorithm-Simhash. ,e tradi-
tional Hash [9] algorithm is only responsible for mapping
the original content into a signature value equally and
randomly. ,e principle is only equivalent to a pseudo-
random number generating algorithm. Even if the two
original contents differ in only one byte, the generated
signature value may be very different. ,erefore, tradi-
tional Hash cannot measure the similarity of the original
content in the dimension of signature. Simhash algorithm
[24] is a locally sensitive Hash algorithm, and its main
idea is to reduce the dimensionality of feature vector. ,at
is, Simhash algorithm is used to convert the high-di-
mensional feature vector into f-bit fingerprint [25] and to
determine the similarity of two f-bit fingerprints by
calculating the Hamming distance [26] of these finger-
prints. ,e smaller the Hamming distance, the higher the
similarity. ,e overall process is shown in Figure 4, which
includes word segmentation, hash calculation, weighting,
merging, and dimensionality reduction. Word segmen-
tation is used to obtain N-dimensional feature vectors
(64-dimensional default) for the word segmentation of
the text; Hash is to perform the Hash calculation on all
the obtained feature vectors. Weighting refers to
weighing all the obtained feature vectors. Merging refers
to accumulation of all the obtained vectors. Dimensional
reduction changes the accumulated result greater than
zero to one and less than zero to zero, obtains a text
Fingerprint as shown in Figure 5, and finally calculates
the Hamming distance between the two text fingerprints.

In the Information ,eory, the Hamming distance be-
tween two equal-length character strings is the number of
different characters at the positions corresponding to the
two characters. ,e Hamming distance is the number of
characters that need to be replaced to convert one string into
another for a fixed length. Moreover, Hamming distance is a
distance measure for the character vector space, and it
maintains the measured distance with nonnegative, unique,
and symmetrical. In Hamming distance formula equation
(1) [27], dHAD is the Hamming distance between objects i
and j, and k is the index of the corresponding variable
reading y in the total number of variables n. In equation (2)
and equation (3), [yi,k ≠ yj,k] is the value of 1 or 0 given by the
logical value True or False determined according to internal
conditions yi,k ≠ yj,k. ,e Hamming distance itself gives the
number of mismatches between variables paired by k.

d
HAD

�
n−1

k�0
yi,k ≠yj,k , (1)

yi,k ≠yj,k � 1 if yi,k ≠yj,k is True, (2)

yi,k ≠yj,k � 0 if yi,k ≠yj,k is False. (3)

If the Hamming distance is used to measure the simi-
larity of the original content, the similarity can be converted
into a pass ratio as a measure that tests the object based on

Scientific Programming 3

the original standard. According to the Hamming distance
dHAD and the total number of variables n, the qualification
ratio formula equation (4) can be obtained.

q � 1 −
d
HAD

n
 × 100%. (4)

2.4. Longest Common Subsequence (LCS). ,e Longest
Common Subsequence [10], abbreviated LCS, is the problem
of finding the longest common subsequence in all sequences
in a sequence set (usually two sequences). ,is is different
from the problem of finding the longest common substring
(Longest Common Substring) in that the subsequence does
not need to occupy consecutive positions in the original
sequence. To solve the LCS problem, we cannot use the brute
force search method. We need to use dynamic programming
to find the length of the LCS and backtracking strategy to
find the actual sequence of the LCS.

We assume that z�< z1,z2,· · ·,zk> is the LCS of x and y,
and we observe that if xm � yn, then zk � xm � yn, and zk−1 is
the LCS of xm−1 and yn−1; If xm≠ yn, then zk is the LCS of xm−1
and yn−1, or the LCS of xm−1 and yn. ,erefore, the problem
of solving LCS becomes two sub-problems of a recursive
solution. However, in the abovementioned recursive solu-
tion method, there are many repeated sub-problems and the
efficiency is low.,e improved method uses space instead of
time and uses an array to store intermediate states to fa-
cilitate subsequent calculations. ,erefore, using the two-
dimensional array c [i, j] to record the LCS lengths of the
strings x1, x2,· · ·, xi and y1, y2, · · ·, yj, the state transition
equation can be obtained in equation (5).

c[i, j] �

0, i � 0 or j � 0,

c[i − 1, j − 1] + 1, i, j> 0 and xi � yj,

max(c[i, j − 1], c[i − 1, j]), i, j> 0 and xi ≠yj.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

,e longest common subsequence is used to measure the
similarity of the execution results of two programs [28]. In
order to illustrate the degree of conformity of the respective
output results of the two programs, the similarity is renamed
as text conformity. First, convert the output results of in-
dividual programs into ASCII code, and then store them into
arrays a and b individually, and then calculate the c array
according to the longest common subsequence. Here, the
lengths of the a, b, and c arrays are recorded as |a|, |b| and |c|,
and the length of the above array is substituted into the
formula equation (6) to obtain the text conformity. Here, the
lengths of arrays a, b, and c are denoted as |a|, |b|, and |c|, and
the length of the above array is substituted into equation (6)
to obtain LCS conformity, denote as f.

StemmingStrings that need
to be processed Stopwords Result of

segmentation

NLTK

Figure 1: NLTK word segmentation process.

Encoder

The transformer

Input

Decoder stack

Decoder

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Output

Encoder stack

Figure 2: Transformer architecture stack.

Feed forward nerual network

Encoder-decoder self-attention

Masked self-attention

Decoder block

The transformer

<S> Robot Must Obey <S>Obey ……
1 2 3 4 5 512

Figure 3: GPT-2 Decoder architecture.

4 Scientific Programming

f �
2 · |c|

|a| +|b|
× 100%. (6)

3. Research Method

,e purpose of this study was to produce newly generated
programs for improving program execution speed using the
code transform mode. In other words, in order to increase
the efficiency of human-machine interaction like voice as-
sistant machine, the existing programs (called sample
programs in this paper) inside the machine is replaced with a
new high-performance program using GPT-2. Nevertheless,
the proposed approach, as shown in Figure 6, consists of
three parts: prior keyword retrieval optimization, code
transform model, and posterior verification of generated
program.,e first part is to imitate a voice assistant machine
to segment a sentence, select keywords, and find sample
programs. Next, a transform model is used to produce a
number of new candidate programs according to the cor-
responding sample programs. ,e last one is to test and
verify the new candidate programs and choose the one with
the best quality as a pocket program. A pocket program is the
one with the best performance among new candidate
programs.

3.1. Newly Generated Program System. ,e objective of this
paper is to explore the use of the second generation of
Generative Pre-Training (GPT-2) as a code transformmodel
to produce newly generated high-performance programs. In
this way, the sample program in the semantic database can
be replaced with a new program called the pocket program
to implement high-performance execution due to reduced
code lines and less execution time. With GPT-2 transform
model, the proposed approach has to imitate a voice as-
sistant system with prior optimization of keyword retrieval
associated with the semantic database, and to build a content
checker using posterior verification of program execution
results between a sample program and the newly generated

program. ,e system includes model generation stage and
model use stage, as shown in Figure 7. In the model gen-
eration stage, the user sends spoken sentences using text or
voice and then proceeds with word segmentation to select
keywords and find corresponding sample programs. After
that, the system trains the model and generates preliminary
programs in which some of the programs are chosen as
qualified programs. Finally, a generative program model is
confirmed and saved in the semantic database. During the
model use stage, the user sends a spoken sentence in text or
voice, and searches the semantic database for pocket pro-
grams that could be made earlier in the model generation
stage. If not, it will go back to the step of generating pre-
liminary programs, and then go through test and verification
steps to get a new pocket program for execution.

,e model generation stage is divided into the training
phase and the test phase. Phase diagrams are shown in
Figures 8–10. In the training stage, there are four units: word
segmentation unit, sample program unit, generative pro-
gram model unit, and the generated program unit. ,e
inputs/outputs during training phase are natural language
sentences, keywords, sample programs, generative program
models, and preliminary programs. Natural language sen-
tences are initially sent by a user. ,e word segmentation
model NLTK is used to perform word segmentation. ,e
system is used to select the keywords and then search the
semantic database for the sample program that is corre-
sponding to the keywords. Semantic database is built in the
XAMPP [29] cloud server. System puts the sample program
into GPT-2 for the first pass. GPT-2 uses a sample program
to train and generate the generative program model. After
modeling is completed, the model will be provided as
feedback to GPT-2 again for the second pass on which a
number of preliminary programs are produced. In the test
phase, there are three units: test unit, verification unit, and
the storage unit. Simhash algorithm is used to compare the
similarity between the preliminary program and the sample
program. Qualified programs are obtained as the prelimi-
nary program with the similarity pass ratio higher than the

Word
segmentation Hash Weighted Merge Dimensionality

reduction

Figure 4: Simhash algorithm process flow.

Doc.

feature w1

feature w2

...

feature wn

100100 w1

110000 w2

001001 wn

...

w1, –w1, –w1, w1, –w1, –w1

–w2, –w2, w2, w2, w2, w2

...

wn, wn, –wn, wn, wn, –wn

13, 108, –22, –5, –32, 55
add

110001

Fingerprint

sign

Figure 5: Calculate fingerprint.

Scientific Programming 5

predetermined one, and they are compiled with Python.
Next, in the verification unit, we select the qualified program
with the highest similarity pass ratio to compare with the
corresponding sample program using LCS conformity that
measures the conformance of their execution results, and
chooses a qualified program that meets the predetermined
conformity ratio as a pocket program. Finally, in the storage
unit, the keywords, pocket programs, and generated pro-
gram models will be stored in the semantic database.

With the trained generative program model found in
semantic database, the corresponding selected keyword will
be directed to the process of model use stage after the word
segmentation. ,e stage diagram is shown in Figure 10. In
the model use stage, there are five units: word segmentation
unit, generative program model unit, generated program
unit, test and verification unit, and storage unit. Likewise,

the word segmentation unit initially allows the user to send
natural language sentences and use NLTK algorithm to
segment a sentence and select keywords. ,en, it will use
keywords to search the semantic database for generative
programmodels or pocket programs. If pocket programs are
found, they will be executed directly. If not, it will go back to
the step of generating preliminary programs, and then go
through test and verification steps to get a new pocket
program for execution.

3.2. System Execution Flow. Figure 11 shows the overall
execution flow of the proposed approach. In the model
generation stage, the user sends sentences or articles into the
word segmentation model NLTK to perform word seg-
mentation and select keywords from all separated words.

Newly generated program system

Natural language
sentences

Code transform
model to generate

new program

Similarity
checking and

execution
verification

Run high-performance
program

Pause high-performance
program

Word segmentation,
keywords selection

and sample
programs

Prior optimization Posterior verificationCode transform

Figure 6: Applying the code transform model to the newly generated high-performance programs.

Model generation stage

Select keywords and
find sample program

Train
model

Generate preliminary
programs

Test qualified
programs

Confirm generative
program model

Model use stage

Select keywords and
find sample programs

Is there a pocket
program Run pocket

program

Generate programs
form model Run the program

Yes

No

Figure 7: Diagram of newly generated program system.

Train generative
program model

First pass
GPT-2

Word segmentation
unit

Generative program
model unit

Select keywords
after word

segmentation

NLTK algorithm

Ke
yw

or
ds

Training phase

Generated program
unit

Generate
preliminary
programs

Second pass
GPT-2G

en
er

at
iv

e p
ro

gr
am

m
od

el

Sa
m

pl
e p

ro
gr

am

Search semantic
database for the
sample program

Sample program unit

Test phase

Pr
el

im
in

ar
y

pr
og

ra
m

s

N
at

ur
al

 la
ng

ua
ge

se

nt
en

ce
s

Re-train to generate a
model without similarity

Re-generate preliminary
programs if the pass ratio is not

reached

Figure 8: Model generation stage-training phase diagram.

6 Scientific Programming

Compilation, LCS
conformity, the

qualified program
with the highest pass
ratio is selected as a

pocket program
LCS algorithm

Test unit

Pick preliminary
programs that

exceed the
predetermined

similarity pass ratio

Simhash algorithm

Test phase

Verification unit

Training phase

Storage unit

Pr
el

im
in

ar
y

pr
og

ra
m

s

Q
ua

lif
ie

d
pr

og
ra

m
s

Po
ck

et
 p

ro
gr

am

Keyword, pocket
program, and

generative
program model

saving in the
semantic database

Retrain generative program
model without similarity

Regenerate preliminary
programs if the pass ratio is not

reached

Figure 9: Model generation stage-test phase diagram.

Generate
preliminary

programs

Second pass
GPT-2

Start
Word segmentation

unit
Generated program

unit

Select keywords
after word

segmentation

NLTK algorithm

Ke
yw

or
ds Pr

el
im

in
ar

y
pr

og
ra

m
s

G
en

er
at

iv
e

pr
og

ra
m

 m
od

el

Search semantic
database for
generative

program model

Generative program
model unit

N
at

ur
al

 la
ng

ua
ge

 se
nt

en
ce

s

Test & verification
unit

Save
pocket

program

Re
su

lts
 o

f p
ro

gr
am

 ex
ec

ut
io

n

End
Find qualified

programs
and get pocket

program
Simhash and LCS

algorithms

Search semantic
database for

pocket program Po
ck

et
pr

og
ra

m

Po
ck

et
 p

ro
gr

am

Storage unit

Figure 10: Model use stage diagram.

Execution flow of model generation stage

Natural
language
sentences

Add keywords

Hit
keywords

successfully?

Keywords
after word

segmentation

Existing keywords

Yes

No

Semantic
database

Keywords

Use keywords from the semantic database to regularly train natural
language models to enhance the ability of keyword retrieval

Start

Find
generative
program

model
Semantic
database

Search for
generative
program

model of the
sample

program?

Yes

First pass
GPT-2

Output generative
program model

No

Confirm generative
program model Enter the use stage

Save sample
program

temporarily

Sample
programs

Semantic
database

Keyword
search

example
program

successful?

Yes

No

Give back to the
administrator

Search again

Sample programs
corresponding to
selected keywords

Keywords

Sample
programs

Generative program model
Second pass

GPT-2
Based on generative

program model

Preliminary program
Binary

encoding Similarity ≧
predetermined

similarity

Sample program

Simhash
Algorithm

Sample program
stored earlier

Hamming distance
yield similarity

percentage

Similarity
percentage Yes

No

Qualified
programs

Retrain generative program model

Natural
language
sentences

Add keywords

Hit
keywords

successfully?

Keywords
after word

segmentation

Existing keywords

Yes

No

Semantic
database

Keywords

Use keywords from the semantic database to regularly train natural
language models to enhance the ability of keyword retrieval

Start

Contact in the use stage;
not contact in the training

phase

Keyword and
generative program model

Program
generative

model
found?

Semantic
database

Go to train generative
program model

Keyword

Search

Pocket
program

found?

Yes

NoRun pocket
program

Keyword and
pocket program

Go to generate the
preliminary program

User
judges

whether to
run it?

Run program
and save the

final program in
the semantic

database

Store it
waiting
for the

next run?

Program Enqueue

Merge
Pocket

Program
End

Final program Evaluation and
execution unit

Dequeue

Execution flow of model use stage

YesNo

Yes

No

Qualified
ratio ≧

Predetermined
pass ratio

One with the
highest pass ratio
is selected as the
pocket program

Calculate the
number of
qualified
programs

Regenerate preliminary program

Semantic
database

End

Keyword,
pocket program,
and generating

program
model

Is any qualified
program
compiled

successfully?

The qualified
program with

the LCS conformity
acceptable?

Yes Yes Yes

No No No

Text
sentence

segmentation
model
Jieba

Text
sentence

segmentation
model
NLTK

Figure 11: ,e overall execution flow of the program generation system.

Scientific Programming 7

,en, the selected keywords are checked against the se-
mantic database to check if the same keywords exist. If not,
the keywords are added to the semantic database. After the
keywords are presented, the sample program path in the
same row of the keywords in a table is obtained and judged.
If there is a sample program path, we output the sample
program according to the path to the next step. If there is no
sample program, it is expected that a new sample program
can be obtained through the web crawler to collect the
proper sample program and store it into the semantic da-
tabase. ,e procedure is then going to search for whether
there is already a trained generative program model. If not,
the sample program is put into GPT-2 as the first pass to
produce the generative program model. If yes, the second
pass is taken to feed the generative programmodel to GPT-2
so as to decode the model and generate 100 preliminary
programs fromGPT-2.,e preliminary programs have been
brought to the next test and verification steps. In the be-
ginning, the 100 preliminary programs are sent individually
to compare with the corresponding sample program and
both are calculated with the Simhash signature value.
Moreover, they are compared using Hamming Distance, and
the similarity ratio is judged by the distance. After checking
the code similarity between any one preliminary program
and the sample program, this preliminary program will be
viewed as the qualified program if its similarity exceeds the
predetermined pass ratio (e.g., ≥90%). If so, it then will be
sent to the next step for the verification of its execution
result. However, if no preliminary program exceeds the
predetermined pass ratio, it has to get back to the previous
step to retrain a new generative program model and then try
to regenerate 100 preliminary programs. Once all qualified
programs have been produced, we need to check whether the
number of qualified programs produced is enough. If there
are only fewer qualified programs produced, it goes back to
the previous step to re-generate a model. If the ratio of the
number of qualified programs to 100 preliminary programs
is big enough (e.g., ≥80%), the qualified programs are a
majority and they are naturally compiled with Python. After
the compilation is successful, LCS conformity between the
execution result of the qualified program with the highest
similarity pass ratio and the execution result of the corre-
sponding sample program is computed to check whether
their conformance meets the predetermined conformity
(e.g., ≥95%). If so, such a qualified program serves as a
pocket program. Finally, the pocket program, the generative
program model, the keyword, and sample program are
stored into the same row in a specific table in the semantic
database.

In the model use stage, NLTK not only applies to seg-
ment words but also implements keyword drop-out and
addin to optimize keyword retrieval. After the word seg-
mentation, the useless keywords are not selected and the
accuracy of the keyword hit is improved. Similarly, new
keywords are added to the semantic database to improve the
accuracy of the keyword hit. Next, we will check if a cor-
responding pocket program in the semantic database has
been executed before. If the corresponding pocket program
exists, the pocket program will be provided to the user for

execution. On the other hand, if the corresponding pocket
program does not exist, it moves on to the step of training a
new generative program model. After that, the subsequent
step is to pick up several pocket programs corresponding to
the respective keywords in the database and then merge
them together to form a complete final program. “Evaluation
and execution unit” is a further step to carry out a final
program. It is expected that we can evaluate the execution
performance of the final program to see how long it will take.
In this way, the user may allow it to be taken or aborted.

3.3. Hardware Specification and Recipe of Software Tools.
In the model training phase, a high-level GPU cluster used
for GPT-2 execution is used for rapid model training to
reduce the processing time spent on traditional CPU. In
Table 1, the operation would be carried out by the following
tools: (1) NLTK word segmentation model, (2) unsupervised
Generative Pre-Training second-generation transformer
language model, (3) Simhash algorithm as an advanced
version of Hash algorithm, and (4) LCS algorithm as an
advanced version of DP algorithm.

,e hardware equipment for running the program is
based on two Nvidia-brand GPU P100 and two RTX2080Ti.
Four GPU cluster workstations are connected through a
high-speed local network to accelerate the calculation [30].
Cluster workstations have higher availability, reliability, and
scalability than a workstation. Each workstation server
transmits data through the high-speed network QPI, and
uses a hardware interface PCIe x16 channel to connect both
CPU and GPU. ,e GPU link uses NVLink [31] developed
by Nvidia to allow four GPUs to share memory by using a
point-to-point structure and serial transmission. Not only
between CPU and GPU, but the connection between mul-
tiple Nvidia GPUs are also established. Under multiple
GPUs, SLI, Surround, and PhysX options will show in the
Nvidia system panel. Turning on the SLI, the users can share
the graphics card memory for more data calculation. ,e
detail hardware specifications are shown in Table 2. ,e
overall architecture diagram is shown in Figure 12.

3.4. Evaluation of the Performance of Keyword Retrieval.
An experiment of the feasibility of generating the program
model was conducted in two parts: keyword selection from a
sentence and keyword retrieval optimization [32], and the
estimation of the number of programs generated from code
transform model GPT-2 and the calculation of the pass ratio
of similarity checking between a generated program and a
sample program. ,e first part is used to optimize the
keyword-searching in a semantic database in order to im-
prove the success of hit keywords from the database. ,ere
are two ways to optimize keyword-searching. ,e first one is
to filter the redundant keywords in a sentence after word
segmentation, and the second one is to add the new key-
words into the semantic database so as to increase the
success of hit keyword hits from the database. ,e first one
filters keywords to select the keywords that were separated
from the NLTK word segmentation. ,e nonrelated con-
nectives or auxiliary words are deleted to improve the

8 Scientific Programming

accuracy of hit keywords form the semantic database. ,e
second one is to add keywords to check if the necessary
keywords exist in the semantic database, to add keywords to
the semantic database, and to notify the users to find and add
the corresponding sample programs in the database as well.
To improve the hit ratio of keyword retrieval if the user
submits the same keyword again, it is necessary to check
whether the hit ratio of keyword retrieval in the semantic
database is increased. Because F1-Score [33] is often used as
a measure of accuracy in pattern recognition, sample survey,
and information retrieval, this study used F1-Score as an
Evaluation Metric to measure the accuracy. F1-Score is a
harmonic average calculated using Precision and Recall. To
find the F1-Score, the user must firstly define the positive
class, negative class, and consider whether it is retrievable.
,e definition of the Confusion Matrix [34] is shown in
Table 3.

In the confusion matrix about the keyword-searching
issue, there are four terms. True positive (TP) is positive and
judged to be positive. False positive (FP) is negative but
wrongly judged to be positive. False negative (FN) is positive
but wrongly judged to be negative. True negative (TN) is
negative and judged to be negative. ,e accuracy is defined
in equation (7), which is to calculate the ratio of TP to
TP+FP. ,e recall is defined in equation (8), which is to
calculate the ratio of TP to TP+FN. ,e recall is defined in
equation (8), which meant is to calculate the proportion of
all results (TP+ FN) retrieved by the positive results (TP).
After finding the accuracy and recall, F1-Score is the har-
monic average of accuracy and recall. It is defined in
equation (9). After adjusting equation (9), F1-Score is

concise in equation (10). Corresponding to the F1-Score
evaluated after word segmentation, the default keywords are
selected to check the performance of keyword retrieval from
the semantic database. TP refers to those keywords that are
retrieved and positively related. ,e nonrelevant retrieved
keywords are FP. ,e nonretrieved but related keywords are
FN. For evaluation metrics, the process of calculating ac-
curacy, recall, and F1-Score is conducted.

P �
TP

TP + FP
, (7)

R �
TP

TP + FN
, (8)

2
F1

�
1
P

+
1
R

, (9)

F1 �
2 · P · R

P + R
�

2 · TP
2 · TP + FP + FN

. (10)

3.5. Performance Evaluation of Program Execution. ,is
section evaluates the performance improvement of newly
generated programs produced by GPT-2. In other words, we
are going to compare the execution performance between
sample program and each generated program individually.,e
performance evaluation includes (1) comparing the number of
code lines of the sample program and the average number of
code lines of generated programs and (2) comparing the ex-
ecution time between them as well. Two indicators are used to
explain how much performance would be improved for any
program executionwhere the first one is tomeasure the ratio of
average code lines of the generated program to the code lines of
the sample program, and the second one is to evaluate the ratio
of average execution time of the generated program to the
execution time of the sample program. Reducing the per-
centage of the program lines rl is shown in equation (11).,e lo
and lg represent the number of code lines of the sample
program and the average number of code lines of the generated
programs, respectively. ,e reduction in program execution
time percentage rt is shown in equation (12).,e to and tg stand
for the execution time of the sample program and the average
execution time of the generated programs, respectively.

rl � 1 −
lg

lo
 × 100%, (11)

rt � 1 −
tg

to

 × 100%, (12)

3.6. Predetermining the Number of Generated Programs
Statistically. ,is section is to explore how many of the
generated programs produced by GPT-2 can guarantee at
least a few predetermined programs existing and having the
pass ratio of code similarity checking with sample program
over 90%. ,erefore, we first take a count of code the
generated programs that have been generated from a single

Table 1: Open-source software tools.

Package Version
Anaconda2 5.2.0
Python 3.7.5
Tensorflow 1.14
CUDA 10
XAMPP 3.2.4
NLTK 3.5
GPT-2 0.6
SimHash 2.0.0
LCS Unknown

Table 2: Hardware specification.

Hardware Specification Amount

Server HP Z8 G4 workstation 2
HP Z4 G4 workstation 2

CPU Xeon silver 4108 4
I9-7900X 2

Ram DDR4-2666 8G 16
DDR4-2666 16G 12

Disk
MDFDDAK512TBN-1AR1ZABHA 2
SAMSUNG-MZVPV256HEGL 2

TOSHIBA-DT01ACA200 2

GPU NVIDIA Quardro GP100 2
NVIDIA GeForce RTX 2080 Ti 11G 2

Network Intel ethernet connection X722 for 1GbE 4

Scientific Programming 9

sample program, having the pass ratios of code similarity
checking over 90%, and then make it possible to calculate
the percentage qi as shown in equation (13). Among them,
Nsi is the total number of generated programs produced
from a single sample program in which xsi is the number of
generated programs whose pass ratio of similarity checking
is more than 90%. After every percentage qi mentioned
above has been obtained, equation (14) represents the
average percentage of qi where t stands for the total number
of sample programs in a single example sentence. ,en, we
make a judgment to determine how many misjudgments
are there in xsi, and then calculate the percentage of
misjudgments qmi, as shown in equation (15), where xmsi is
the number of misjudgments within the generated pro-
grams having a pass ratio of code similarity checking over
90%. ,en, the average percentage of misjudgments qm can
be obtained as shown in equation (16).

qi �
xsi

Nsi

, i � 1, 2, . . . , t, (13)

q �

t
i�1 qi

t
, (14)

qmi �
xmsi

xsi

, i � 1, 2, . . . , t, (15)

qmi �

t
i�1 qmi

t
. (16)

Next, we count how many of the generated programs ysi,
which are generated from a single sample program, have pass

ratios of below 90%, and then make it possible to calculate the
percentage ui, as shown in equation (17). After all of the
existing percentages mentioned above have been calculated,
equation (18) can give an average percentage u of the gen-
erated programs having the pass ratio of code similarity
checking less than 90%. ,en, we make a judgment to de-
termine how many misjudgments are there in ysi and then
calculate the percentage of misjudgments umi, as shown in
equation (19), where ymsi is the number of misjudgments
within the generated programs having the pass ratio of code
similarity checking below 90%. ,en, the average percentage
of misjudgments um can be obtained as shown in equation
(20).

ui �
ysi

Nsi

, i � 1, 2, . . . , t, (17)

u �

t
i�1 ui

t
, (18)

umi �
ymsi

ysi

, i � 1, 2, . . . , t, (19)

um �

t
i�1 umi

t
. (20)

,en, we add up the number of programs generated
from all the sample programs to get as shown in equation
(21). After obtaining Ng, q, qm, u, and um through the above
calculations, equation (22) can calculate an average prob-
ability Pgq [35] of the generated programs having the pass
ratio over 90%, and they are generated from the sample
programs. We assume that there are j programs with a pass
ratio of code more than 90%, so P(Kj|Pgt) represents the
probability of the pass ratio of similarity checking more than
90% for these j programs is real, as shown in equation (23)
[36], where P(Kj ∩Pgt) means the probability of there are at
most j programs having the pass ratio of code similarity

RTX2080Ti
GPU

P100
GPU

NVLinkP100
GPU

NVLink NVLinkRTX2080Ti
GPU

PCIe PCIe PCIe PCIe

Network switch

QPI

CPU CPU CPU CPU

QPI QPI QPI

Figure 12: GPU cluster workstation.

Table 3: Keyword search confusion matrix.

Relevant, positive
class

Nonrelevant, negative
class

Retrieved True positives (TP) False positives (FP)
Not retrieved False negatives (FN) True negatives (TN)

10 Scientific Programming

checking over 90% in the generated programs, and Kj

indicates there are j programs having the pass ratio of code
similarity checking over 90% within the generated programs
produced by the code transform model at a time. According
to the abovementioned statistics, we know that the proba-
bility of j programs having the pass ratio of code similarity
checking over 90% is P(Kj|Pgt). We can deduce how many
programs must be generated to guarantee that there are j
programs having the pass ratio of code similarity checking
more than 90%, as shown in equation (24), where N is the
total number of programs to be generated.

Ng �
t

i�1
Nsi, (21)

Pgq �
Ng · q · 1 − qm(+ Ng · u · um

Ng

, (22)

P Kj|Pgt �
P Kj ∩Pgt

Pgt

, (23)

N · P Kj|Pgt ≥Kj. (24)

Let’s take 4 sample programs as an example. Each sample
program generates 500 programs individually and then
counts how many programs have the pass ratio of code
similarity checking more than 90% among the 500 pro-
grams, and then calculates the pass ratio of each generated
program to have more than 90%, the average percentage can
be calculated to be 3%. ,en, we judge the programs whose
pass ratio of code similarity checking is over 90%. After
judging the number of misjudgments, we calculate the in-
dividual percentages, and finally the average percentage of
misjudgments is 1%.

Moreover, we judge how many of these 500 programs
have the pass ratio of code similarity checking not more than
90%, and then calculate their percentages. After calculation,
we can find that the pass ratio of code similarity checking for
4 sample programs does not have an average of more than
90%.,e percentage is 97%, and then we judge the programs
whose pass ratio of code similarity checking is not more than
90%, judge the number of misjudgments, and then calculate
the percentage. Finally, we can get the average misjudgment
ratio of 2%.

Based on the above statistics, we can find that the pass
ratio of code similarity checking in the generated program is
really over 90% and the average probability is 4.91%. ,en
we want to know how many programs need to be generated
to guarantee 5 programs having the pass ratio of code
similarity checking over 90%. ,e above related values can
be substituted into equation (24) to obtain the answer. As a
result, at least 100 generated programs must be produced to
guarantee 5 of them having the pass ratio of code similarity
checking more than 90%.

4. Experimental Results and Discussion

4.1. Experimental Design. Four experiments are carried out
in the following. ,e first experiment is to make word
segmentation to select keywords and to optimize keyword
retrieval. ,e second experiment is to search for sample
programs and generate a number of preliminary programs
based on the predetermined number of generated programs
statistically. ,e third experiment is to analyze the pass ratio
of code similarity checking and classify few preliminary
programs as qualified programs. Finally, applying LCS
conformity checking between each qualified program and
sample program intents to find out the one with the highest
LCS conformity, and this qualified program denotes a pocket
program in the last experiment.

,e experimental setting has exampled four sample
sentences into practice for all experiments. After word
segmentation, the keyword retrieval optimization was
implemented in two aspects. ,e first one is to filter the
redundant keywords, and the second is to add the required
keywords. Evaluation metrics, such as accuracy, recall, and
F1-Score, are used to measure the performance of keyword
retrieval.,e sample programs associated with keywords are
obtained from GitHub [37] and both of them are stored in a
semantic database. In the XAMPP server, the correlation
table of a semantic database consists of the several fields:
keyword, sample program names, sample program paths,
generated model paths, and pocket program path, as shown
in Figure 13. ,e objective of this paper is to improve the
performance of sample programs by transforming them into
newly generated programs produced by GPT-2 based on two
indicators: (1) to reduce the number of program code lines
and (2) to decrease the program execution time.

,e sample program of example 1 is related to a web
crawler [38], and the corresponding keywords were
“weather, traffic”. ,e purpose of the sample program 1 was
to crawl the corresponding data on the Internet to get
weather forecast on that day from the Weather Center and
automatically allocate the traffic congestion spots on Google
Map. Next, in the sample program of example 2, the cor-
responding keywords are “stock, currency” that are related
to exchange rate [39]. ,e main purpose of the sample
program was to display the current currency exchange rate
or the current index of the stock to the users. ,ird, in the
sample program of example 3, the corresponding keyword is
a “pets” and it’s related to the web camera [40].,e objective
of the web camera programming was to have the camera
installed on the desktop computer at home for the video of
the pet. Finally, the corresponding keywords of the sample
program of example 4 are “invest, don’t, insure”. ,e system
would give the user the market data analysis as per the
request from investment exploration [41].

In the experimental settings, four example sentences are
used to optimize keyword retrieval by filtering redundancy
and adding new keywords.,e example sentences are shown
in Table 4.

Scientific Programming 11

4.2. Experimental Results

4.2.1. 9e Experiment #1. ,e above four sentences were
used as the word segmentation model NLTK to select the
keywords. ,e results of keyword selection are shown in
Table 5. ,e screenshot is shown in Figure 14.

As mentioned above, NLTK operation that carried out
word segmentation was not optimized in key words re-
trieval. All segmented words except for punctuation marks
were selected as keywords. ,e selected keywords are shown
in Table 6, and the screenshot is shown in Figure 15.

,e initial selected keywords were consistent with the
existing keywords in the semantic database as shown in
Table 7. Hit keywords were “weather, traffic” in example 1,
“stock, currency” in example 2, “pets” in example 3, and
“invest, don’t, insure” in example 4.

After selecting keywords out of the sample sentences, the
accuracy of keyword-searching was on the basis of the
number of hit keywords in the semantic database. ,ose
related keywords were retrieved and denoted as true positive

(TP), and those retrieved but unrelated keywords were
denoted as false positive (FP). ,e confusion matrix for
keyword retrieval from example 1 to example 4 is shown in
Tables 8–11.

After initial keyword-searching using NLTK, the first
optimization method is to filter out the unrelated auxiliary
words or conjunctions in the sentences. ,e detailed results
of hit keywords in the semantic database are shown in
Table 12. ,e related screenshot is shown in Figure 16. After
the screening process, the confusion matrices after opti-
mization for keyword retrieval from Example 1 to Example 4
are shown in Tables 13–16.

,e second keyword search optimization method was to
add related keywords and sample program of the semantic
database. Furthermore, the number of keywords that re-
flected the semantic database was newly optimized. Added
keywords are “today, very, good, know, flow” in Example 1,
“Recently, continue, fall, gold, trading” in Example 2, “home,
How, shop, know, what” in Example 3, and “want, but,
deposit” in Example 4. ,e details of keywords in the

Figure 13: Correlation table of four sample programs.

Table 4: Example sentences.

Example Sentence context
Example 1 ,e weather is very good today, I want to know the traffic flow.
Example 2 Recently, the stock has continued to fall and is not stable, looking for currency trading or gold trading.
Example 3 How are your pets at home? I don’t know what’s going on in the shop.
Example 4 If you want to invest in financial management, don’t insure, but deposit.

Table 5: NLTK word segmentation.

Example Word segmentation
Example 1 [“,e”, “weather”, “is”, “very”, “good”, “today”, “,”“, “I”, “want”, “to”, “know”, “the”, “traffic”, “flow”, “.”“]

Example 2 [“Recently”, “,”“, “the”, “stock”, “has”, “continued”, “to”, “fall”, “and”, “is”, “not”, “stable”, “,”“, “looking”, “for”, “currency”,
“trading”, “or”, “gold”, “trading”, “.”“]

Example 3 [“How”, “are”, “your”, “pets”, “at”, “home”, “?”, “I”, “do”, “n”“t”, “know”, “what”, “s”, “going”, “on”, “in”, “the”, “shop”, “.”“]
Example 4 [“If”, “you”, “want”, “to”, “invest”, “in”, “financial”, “management”, “,”“, “do”, “n”t”, “insure”, “,”“, “but”, “deposit”, “.”“]

Figure 14: Screenshot of NLTK word segmentation.

12 Scientific Programming

Table 15: Example 3: keyword retrieval confusionmatrix with filter
optimization in Experiment 1.

Related Unrelated
Retrieved 1 0
Not retrieved 0 0

Table 14: Example 2: keyword retrieval confusionmatrix with filter
optimization in Experiment 1.

Related Unrelated
Retrieved 2 1
Not retrieved 0 0

Table 12: ,e result of filter keywords in the semantic database in
Experiment 1.

Example Hit keyword in semantic database
Example 1 Weather, traffic
Example 2 Stock, currency
Example 3 Pets
Example 4 Invest, don’t, insure

Table 11: Example 4: Confusion matrix for keyword retrieval in
Experiment 1.

Related Unrelated
Retrieved 3 4
Not retrieved 0 0

Table 10: Example 3: Confusion matrix for keyword retrieval in
Experiment 1.

Related Unrelated
Retrieved 1 7
Not retrieved 0 0

Table 9: Example 2: Confusion matrix for keyword retrieval in
Experiment 1.

Related Unrelated
Retrieved 2 7
Not retrieved 0 0

Table 8: Example 1: Confusion matrix for keyword retrieval in
Experiment 1.

Related Unrelated
Retrieved 2 6
Not retrieved 0 0

Table 7: Hit keyword in semantic database.

Example Hit keyword in semantic database
Example 1 Weather, traffic
Example 2 Stock, currency
Example 3 Pets
Example 4 Invest, don’t, insure

Table 6: Keywords selection out of the example sentences.

Example Keyword
Example 1 [“,e”, “weather”, “is”, “very”, “good”, “today”, “I”, “want”, “to”, “know”, “the”, “traffic”, “flow”]

Example 2 [“Recently”, “the”, “stock”, “has”, “continued”, “to”, “fall”, “and”, “is”, “not”, “stable”, “looking”, “for”, “currency”, “trading”,
“or”, “gold”, “trading”]

Example 3 [“How”, “are”, “your”, “pets”, “at”, “home”, “I”, “don”, “t”, “know”, “what”, “s”, “going”, “on”, “in”, “the”, “shop”]
Example 4 [“If”, “you”, “want”, “to”, “invest”, “in”, “financial”, “management”, “do”, “n”t”, “insure”, “but”, “deposit”]

Figure 15: Screenshot of selected keywords.

Figure 16: ,e screenshot of keywords retrieval with filter
optimization.

Table 13: Example 1: keyword retrieval confusionmatrix with filter
optimization in Experiment 1.

Related Unrelated
Retrieved 2 1
Not retrieved 0 0

Scientific Programming 13

semantic database are shown in Table 17. ,e confusion
matrices for the keyword search from Example 1 to Example
4 are shown in Tables 18–21.

,e Evaluation Metrics such as the accuracy, recall, and
F1-Score of the initial keywords retrieval, filter keywords
retrieval, and newly added keywords retrieval were evalu-
ated. ,e results are shown in Tables 22–25. Since all key-
words in the segmented words in sample sentences were
selected by default, the recall was 100%.

4.2.2. 9e Experiment #2. ,e second experiment was based
on four sample programs obtained from GitHub. Corre-
sponding to the keywords found in the experiment #1, the
corresponding keywords were extracted from the natural
language sentences and will be applied to the sample pro-
grams. ,e correspondence of the sample programs and
keywords are listed in Table 26.

In order to transform sample programs to the
high-performance generated programs, a code transform
model GPT-2 generated 100 preliminary programs, and
its time consuming was also recorded at the same time. In
this experiment, a total of five rounds was performed, and
the estimated average time to generate a program in
real-time was summarized in Table 27.

4.2.3. 9e Experiment #3. In experiment #3, the com-
parison of Simhash similarity checking between the above
four sample programs and the programs generated by
GPT-2 were performed on a cluster GPU workstation.
,e aim of this experiment was to find out how many
completed programs would have similarity percentage
greater than or equal to the default pass ratio set by the
user earlier. In this experiment, the diagram of qualified
ratio distribution set the X-axis as the similarity per-
centage, ranging from 0% to 100% with 20% as the
separation interval. ,e Y-axis was set as the number of
programs in the percentage ratio interval. For each
corresponding sample program, code transform model
GPT-2 will generate 100 programs denoted as

Table 20: Experiment 1: Example 3: Added optimized keyword
search confusion matrix.

Related Unrelated
Retrieved 6 2
Not retrieved 0 0

Table 21: Experiment 1: Example 4: added optimized keyword
search confusion matrix.

Related Unrelated
Retrieved 6 1
Not retrieved 0 0

Table 22: Evaluation indexes of Example 1 in Experiment 1.

Evaluation
index (%)

Initial
selection

(%)

Filter
optimization

(%)

Add
optimization

(%)
Average (%)

Accuracy 25 67 75 94
Recall 100 100 100 100
F1-score 40 80 86 97

Table 23: Evaluation indexes of Example 2 in Experiment 1.

Evaluation
index (%)

Initial
selection

(%)

Filter
optimization

(%)

Add
optimization

(%)
Average (%)

Accuracy 22 67 78 89
Recall 100 100 100 100
F1-score 36 80 88 94

Table 24: Evaluation indexes of example 3 in Experiment 1.

Evaluation
index (%)

Initial
selection

(%)

Filter
optimization

(%)

Add
optimization

(%)
Average (%)

Accuracy 13 100 75 88
Recall 100 100 100 100
F1-score 22 100 86 93

Table 25: Evaluation indexes of Example 4 in Experiment 1.

Evaluation
index

Initial
selection

(%)

Filter
optimization

(%)

Add
optimization

(%)
Average (%)

Accuracy 30 75 86 89
Recall 100 100 100 100
F1-score 46 86 92 94

Table 16: Example 4: keyword retrieval confusionmatrix with filter
optimization in Experiment 1.

Related Unrelated
Retrieved 3 4
Not retrieved 0 0

Table 17: ,e result of added keywords in the semantic database in
Experiment 1.

Example Hit keyword in semantic database
Example 1 today, weather, very, good, know, traffic, flow
Example 2 recently, continue, stock, fall, currency, gold, trading
Example 3 home, pets, how, shop, know
Example 4 want, invest, don’t, insure, but, deposit

Table 18: Experiment 1: Example 1: added optimized keyword
search confusion matrix.

Related Unrelated
Retrieved 7 1
Not retrieved 0 0

Table 19: Experiment 1: Example 2: added optimized keyword
search confusion matrix.

Related Unrelated
Retrieved 7 2
Not retrieved 0 0

14 Scientific Programming

Figure 18: Sampled preliminary program associated with sample program 2 in Experiment 3.

Table 26: ,e list of example programs in Experiment 2.

Example Sample program Keyword
Example 1 Web crawler Weather, traffic
Example 2 Exchange rate Stock, currency
Example 3 Web camera Pets
Example 4 Market-analysis Invest, don’t, insure

Table 27: Estimated time to generate one hundred programs (unit: second).

Sample program First round Second round ,ird round Fourth round Fifth round Average
Sample program 1 170 185 163 183 147 170
Sample program 2 142 188 176 150 178 167
Sample program 3 171 144 168 196 183 172
Sample program 4 162 186 175 144 152 164

Figure 17: Sampled preliminary program associated with sample program 1 in Experiment 3.

Scientific Programming 15

preliminary programs. Samples of the preliminary pro-
grams are shown in Figures 17–20. ,e pass ratios of the
preliminary programs are shown in Figures 21–24. We
define the pass ratio as how many programs out of 100
preliminary programs would have the similarity falling
within the range of 80%–100%. In other words, the pass
ratios of this experiment associated with sample pro-
grams 1, 2, 3, and 4 were 40%, 30%, 38%, and 37%, re-
spectively, based on 100 generated preliminary programs,
and those preliminary programs are referred to as
qualified programs instead.

4.2.4. 9e Experiment #4. According to 4 examples demon-
strated in the experimental setting, the fourth experiment first
attempts to verify whether the execution result of the qualified
program meets a certain proportion of conformity with the
sample program. After qualified programs have been compiled
successfully, the qualified programs are executed individually,
and then the execution result of each qualified program is
compared with the execution result of a corresponding sample
program using LCS conformity. ,eir execution results are
shown in Figures 25–28. ,e program execution result is
converted into ASCII code through LCS algorithm to compare

Figure 20: Sampled preliminary program associated with sample program 4 in Experiment 3.

Figure 19: Sampled preliminary program associated with sample program 3 in Experiment 3.

16 Scientific Programming

the conformance. As a result, the qualified program with the
highest pass ratio of LCS conformity is called the best qualified
program and is also designated as a pocket program. ,e ex-
perimental result is listed as shown in Table 28.

Next, we have compared the performance of the above
four best qualified programs produced by GPT-2 with their
corresponding sample programs.,e evaluation includes (1)
to compare the number of code lines between the sample

N
um

be
r o

f p
ro

gr
am

s

13 12
17

21

38

0~20% 20%~40% 40%~60% 60%~80% 80%~100%
Similarity interval

Pass ratio of preliminary programs in example 3

0
5

10
15
20
25
30
35
40

0~20%
20%~40%
40%~60%

60%~80%
80%~100%

Figure 23: ,e pass ratio of the preliminary programs associated with sample program 3 in Experiment 3.

N
um

be
r o

f p
ro

gr
am

s

10

20
16

25
30

0~20% 20%~40% 40%~60% 60%~80% 80%~100%
Similarity interval

Pass ratio of preliminary programs in example 2

0
5

10
15
20
25
30
35

0~20%
20%~40%
40%~60%

60%~80%
80%~100%

Figure 22: ,e pass ratio of the preliminary programs associated with sample program 2 in Experiment 3.

4

14
9

34
40

0~20% 20%~40% 40%~60% 60%~80% 80%~100%
N

um
be

r o
f p

ro
gr

am
s

Similarity interval

Pass ratio of preliminary programs in example 1

0
5

10
15
20
25
30
35
40
45

0~20%
20%~40%
40%~60%

60%~80%
80%~100%

Figure 21: ,e pass ratio of the preliminary programs associated with sample program 1 in Experiment 3.

Scientific Programming 17

program and the corresponding best qualified program and
(2) to compare the execution time of the sample program
and the corresponding best qualified program. To under-
stand how much improvement was made in the speed of
program execution, the average number of code lines of 100

preliminary programs and the average execution time for the
best qualified programs were carefully examined. ,e esti-
mation results are listed in Tables 29 and 30, respectively.

Regarding the credibility and validity of the findings
in this study, the comparison of performance evaluation

(a)

(b)

Figure 27: Program execution result in example 3, (a) Execution result of sample program 3. (b) Execution result of the best qualified
program.

(a)

(b)

Figure 26: Program execution result in example 2, (a) Execution result of sample program 2. (b) Execution result of the best qualified
program.

(a)

(b)

Figure 25: Program execution result in example 1. (a) Execution result of sample program 1. (b) Execution result of the best qualified
program.

N
um

be
r o

f p
ro

gr
am

s

14
19

16 15

37

0~20% 20%~40% 40%~60% 60%~80% 80%~100%
Similarity interval

Pass ratio of preliminary programs in example 4

0
5

10
15
20
25
30
35
40

0~20%
20%~40%
40%~60%

60%~80%
80%~100%

Figure 24: ,e pass ratio of the preliminary programs associated with sample program 4 in Experiment 3.

18 Scientific Programming

among source-code to source-code transform models is
listed in Table 31. ,e performance evaluation includes
(1) average time of generating a single instruction (s), (2)
reduced the percentage of code lines (%), and (3) con-
formity of program execution results (%). As a result, the
proposed approach with GPT-2 outperforms Java-
Codetool and CodeGeneration. Java-Codetool and
CodeGeneration introduced in the paper [16] are of Java
code transform models. However, this article didn’t
present the execution results of generated programs.
,us, there is no information about the conformity of
program execution results for Java-Codetool and
CodeGeneration models in Table 31.

5. Discussion

In the first experiment, after NLTK word segmentation,
keyword-searching optimization has shown that if there
were fewer hit keywords, filtering operation would re-
quire screening more irrelevant keywords to improve the

F1-Score. In contrast, the alternative was to add keywords
to the semantic database and improving the accuracy and
F1-Score of keywords retrieval significantly. In the sec-
ond experiment, the number of generated program was
produced through GPT-2 based on predetermined the
number of generated programs statistically and an av-
erage of 100 programs were generated for every corre-
sponding sample program and on average, each program
was generated for about 1 second. ,e number of code
lines for generating 100 programs was reduced by an
average of 32.71%, so that the code review could save
about 30% of time due to less number of code lines. After
the code similarity checking for the generated prelimi-
nary programs was completed in the third experiment,
the fewer programs having the highest pass ratio were
selected as the qualified programs in this part. After the
qualified programs were compiled successfully, the last
experiment is the LCS conformity checking between the
qualified programs and the sample program where the
ratio of conformity in fact exceeds 97.60% on average and

Table 28: Comparison of program execution results based on LCS conformity (unit: %).

Number of ASCII code Example 1 Example 2 Example 3 Example 4
Number of ASCII code counted from the sample program execution output 62 89 57 51
Number of ASCII code counted from the best qualified program execution output 62 87 57 51
Number of ASCII code counted from LCS output 61 86 56 49
LCS conformity 98.38% 97.72% 98.24% 96.07%
Average LCS conformity 97.60%

Table 29: Number of code lines comparison.

Number of code lines or percentage Example 1 Example 2 Example 3 Example 4
Number of source code lines of the sample program 291 175 138 153
Average of number of code lines of 100 preliminary programs 174 117 99 108
Reduced the percentage of code lines 40.34% 32.96% 28.02% 29.54%
Average percentage reduction 32.71%

Table 30: Program execution time comparison (unit: second).

Time or percentage Example 1 Example 2 Example 3 Example 4
Sample program execution time 8.35 11.83 9.74 11.86
Best qualified program execution time 6.97 8.05 7.07 9.32
Reduced the percentage of program execution time 16.59% 31.93% 27.40% 21.43%
Average percentage reduction 24.34%

(a)

(b)

Figure 28: Program execution result in example 4, (a) Execution result of sample program 4. (b) Execution result of the best qualified
program.

Scientific Programming 19

the one with the highest ratio of conformity is chosen as a
pocket program. Regarding the performance of the
qualified programs, the average execution time of the
generated program was reduced by 24.34%.

,e experiments have shown that the system could not
only quickly generate programs but also greatly improve the
program execution efficiency. Based on transfer learning and
few-shot learning, GPT-2 has implemented the best level of
code transform task to produce newly generated programs
for significantly improving its execution efficiency. Fur-
thermore, with the powerful cloud platform, Hadoop or
Spark, people in the future can realize collective learning to
integrate all of the small data sets provided from different
units, evolve into sophisticated machine learning applica-
tions, create a large enough semantic database, and achieve a
great computing power.

6. Conclusion

,is study proposes a novel transform method to replace
the existing programs inside the voice assistant machine
with high-performance generated programs through
GPT-2 reasonably. In particular, this paper introduces
theoretical estimation in statistics to infer at least a
number of generated programs needed so as to guarantee
the best one can be founded within them. As a result, in
terms of performance evaluation, the average number of
newly generated code lines decreased by 32.71%, and the
average execution time of the program decreased by
24.34%. ,is proved that the system could not only
quickly generate programs but also greatly improve the
performance of program execution. In the future, we are
looking for developing a new method to speed up data
retrieval in the semantic database and finding the revision
of Simhash and Longest Common Subsequence (LCS) to
achieve better accuracy of measuring the code similarity
and the conformity of program execution results.

Data Availability

,e Sample Program.rar data used to support the findings of
this study have been deposited in the https://drive.google.
com/file/d/1KYDeoO9s8kA94U9-CW1AsdB0ZZNr4Hcy/
view?usp�sharing repository.,e sample sentence data used
to support the findings of this study are included within the
article.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Authors’ Contributions

B.R.C. and P.-W.S. conceived and designed the experiments;
H.-F.T. collected the experimental dataset and proofread the
paper; and B.R.C. wrote the paper.

Acknowledgments

,is work was fully supported by theMinistry of Science and
Technology, Taiwan, Republic of China, under grant
numbers MOST 105-2221-E-390-013-MY3 and MOST 109-
2622-E-390-002-CC3.

References

[1] F. Nasirian, M. Ahmadian, and O. K. D. Lee, “Ai-based voice
assistant systems: evaluating from the interaction and trust
perspectives,” in Proceedings of the Twenty-third Americas
Conference on Information Systems, pp. 1–10, Boston, MA,
USA, 2017.

[2] H. Shah, K.Warwick, J. Vallverdú, and D.Wu, “Canmachines
talk? Comparison of Eliza with modern dialogue systems,”
Computers in Human Behavior, vol. 58, pp. 278–295, 2016.

[3] S. Arora, V. A. Athavale, H. Maggu, and A. Agarwal, “Ar-
tificial intelligence and virtual assistant—working model,”
Mobile Radio Communications, vol. 140, pp. 163–171, 2020.

[4] K. Ethayarajh, “How contextual are contextualized word
representations? comparing the geometry of BERT, ELMo,
and GPT-2 embeddings,” 2019, http://arxiv.org/abs/1909.
00512.

[5] NLTK, https://github.com/nltk/nltk.
[6] GPT-2: 1.5B Release, https://openai.com/blog/gpt-2-1-5b-

release/.
[7] D. M. J. Lazer, M. A. Baum, Y. Benkler et al., “,e science of

fake news,” Science, vol. 359, no. 1360, pp. 1094–1096, 2018.
[8] W. Wagner, S. Bird, E. Klein, and E. Loper, “Natural language

processing with Python, analyzing text with the natural
language toolkit,” Language Resources and Evaluation, vol. 44,
no. 4, pp. 421–424, 2010.

[9] J. Park, M.-S. Chen, and P. S. Yu, “Using a hash-based method
with transaction trimming for mining association rules,” IEEE
Transactions on Knowledge and Data Engineering, vol. 9,
pp. 813–825, 1997.

[10] Longest common subsequence problem, https://en.wikipedia.
org/wiki/Longest_common_subsequence_problem.

[11] H. Chung, J. Park, and S. Lee, “Digital forensic approaches for
Amazon Alexa ecosystem,” Digital Investigation, vol. 22,
pp. S15–S25, 2017.

[12] E. Reiter and R. Dale, “Building applied natural language
generation systems,” Natural Language Engineering, vol. 3,
no. 1, pp. 57–87, 1997.

[13] M. Geittle and R. Olsson, “Using automatic programming of
design improved variants of differential evolution,” in Pro-
ceedings of the 2017 21st Asia pacific symposium on intelligent

Table 31: Performance evaluation of code generation model.

Time or percentage Java-codetool CodeGeneration Proposed approach with GPT-2
Average time of generating a single instruction (s) 0.17 0.15 0.01
Reduced the percentage of code lines (%) 0% 0% 24.34%
Conformity of program execution results (%) — — 97.60%
,e symbol “−” stands for the information that is not available so far.

20 Scientific Programming

https://drive.google.com/file/d/1KYDeoO9s8kA94U9-CW1AsdB0ZZNr4Hcy/view?usp=sharing
https://drive.google.com/file/d/1KYDeoO9s8kA94U9-CW1AsdB0ZZNr4Hcy/view?usp=sharing
https://drive.google.com/file/d/1KYDeoO9s8kA94U9-CW1AsdB0ZZNr4Hcy/view?usp=sharing
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
https://github.com/nltk/nltk
https://openai.com/blog/gpt-2-1-5b-release/
https://openai.com/blog/gpt-2-1-5b-release/
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

and evolutionary systems(IES), Hanoi, Vietnam, December
2017.

[14] Á. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and K. K
arsisto, “Survey of code-size reduction methods,” ACM
Computing Surveys (CSUR), vol. 35, no. 3, pp. 223–267, 2003.

[15] L. Li, J. Yang, Z. Liu, and L. Bao, “,e research and application
of web page code automatic generation technology,” in
Proceedings of the IEEE 2nd International Conference on
Artificial Intelligence, Management Science and Electronic
Commerce, pp. 5246–5249, Zhengzhou, China, August 2011.

[16] Z. Li, Y. Jiang, X. J. Zhang, and H. Y. Xu, “,e metric for
automatic code generation,” Procedia Computer Science,
vol. 166, pp. 279–286, 2020.

[17] R. Collobert, J. Weston, B. Leon, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, “natural language processing (almost) from
scratch,” Journal of Machine Learning Research, 2011.

[18] K. Gimpel, N. Schneider, B. O’Connor et al., “Part-of-speech
tagging for twitter: annotation, features, and experiments,” in
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Shortpapers, pp. 42–47, Portland,
OR, USA, 2011.

[19] Y. Cui, S. Ahmad, and J. Hawkins, “Continuous online se-
quence learning with an unsupervised neural networkmodel,”
Neural Computation, vol. 28, pp. 2474–2504, 2016.

[20] B. Myagmar, J. Li, and S. Kimura, “Cross-domain sentiment
classification with bidirectional contextualized transformer
language models,” IEEE Access, vol. 7, pp. 163219–163230,
2019.

[21] S. Schoenmackers, J. Davis, O. Etzioni, and D. Weld, “Learning
first-order horn clauses from web text,” in Proceedings of the
2010 Conference on Empirical Methods in Natural Language
Processing, vol. 10, pp. 1088–1098, EMNLP, Brussels, Belgium,
2010.

[22] E. Gilbert, “Widespread underprovision on reddit,” in Pro-
ceedings of the 2013 Conference of Computer Support Coop-
erative Work (CSCW’13), pp. 803–808, San Antonio, TX,
USA, 2013.

[23] GPT-2 size, https://kknews.cc/zh-tw/tech/5rlolbk.html.
[24] C. Sadowski and G. Levin, “Simhash: hash-based similarity

detection,” 2007, https://www.webrankinfo.com/dossiers/wp-
content/uploads/simhash.pdf.

[25] K. Anil, “Jain and jian-jiang feng, “latent fingerprint
matching,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 33, pp. 88–100, 2010.

[26] L. Zhang, Y. Zhang, J. Tang, Ke Lu, and T. Qi, “Binary code
ranking with weighted hamming distance,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 1586–1593, Portland, OR, USA, 2013.

[27] Hamming distance, http://www.code10.info/index.php%
3Foption%3Dcom_content%26view%3Darticle%26id%3D59:
hamming-distance%26catid%3D38:cat_coding_algorithms_
data-similarity%26Itemid%3D57.

[28] J. Tiedemann, “Automatic construction of weighted string
similarity measures,” in Proceedings of Joint SIGDAT Con-
ference on Empirical Methods in Natural Language Processing
and Very Large Corpora, pp. 213–219, 1999.

[29] D. D. Dvorski, Installing, Configuring, and Developing with
XAMPP,” Skills Canada, Skills, Waterloo, Canada, 2007.

[30] M. Bouache, J. L. Glover, and J. Boukhobza, “Analysis of
memory performance: mixed rank performance across
microarchitectures,” in Proceedings of the International
Conference on High Performance Computing, pp. 579–590,
Innsbruck, Austria, 2016.

[31] D. Foley and J. Danskin, “Ultra-performance pascal GPU and
NVLink interconnect,” IEEE Micro, vol. 37, pp. 7–17, 2017.

[32] M. Abdullahi, M. A. Ngadi, and S. i. M. Abdulhamid,
“Symbiotic organism search optimization based task sched-
uling in cloud computing environment,” Future Generation
Computer Systems, vol. 56, pp. 640–650, 2016.

[33] H. Huang, H. Xu, X. Wang, and W. Silamu, “Maximum F1-
score discriminative training criterion for automatic mis-
pronunciation detection,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 23, pp. 787–797, March
06, 2015.

[34] X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved
method to construct basic probability assignment based on
the confusion matrix for classification problem,” Information
Sciences, vol. 340, pp. 250–261, 2016.

[35] D. E. Over, C. Hadjichristidis, J. St, B. T. Evans, S. J. Handley,
and S. A. Sloman, “,e probability of causal conditionals,”
Cognitive Psychology, vol. 54, no. 1, pp. 62–97, 2007.

[36] T. Flaminio, L. Godo, and H. Hosni, “Boolean algebras of
conditionals, probability and logic,” Artificial Intelligence,
vol. 286, Article ID 103347, 2020.

[37] E. Kalliamvakou, G. Gousios, B. Kelly, L. Singer, and
M. Daniel, “German, and daniela damian, “the promises and
perils of mining GitHub,” MSR,” in Proceedings of the 11th
Working Conference on Mining Sofrware Repositories 2014,
pp. 92–101, Hyderabad, India, 2014.

[38] Web-crawler, https://github.com/jwlin/web-crawler-tutorial.
[39] Exchange-rate, https://github.com/wert30678/Repo/blob/

master/exchange-rate.
[40] Web camera, https://github.com/chinaev/python-video-st

reaming.
[41] Market-analysis, https://github.com/HowardNTUST/Mar

keting-Data-Science-Application/blob/master/Python-
RFM-RF-basics/.

Scientific Programming 21

https://kknews.cc/zh-tw/tech/5rlolbk.html
https://www.webrankinfo.com/dossiers/wp-content/uploads/simhash.pdf
https://www.webrankinfo.com/dossiers/wp-content/uploads/simhash.pdf
http://www.code10.info/index.php%3Foption%3Dcom_content&view%3Darticle&id%3D59:hamming-distance&catid%3D38:cat_coding_algorithms_data-similarity&Itemid%3D57
http://www.code10.info/index.php%3Foption%3Dcom_content&view%3Darticle&id%3D59:hamming-distance&catid%3D38:cat_coding_algorithms_data-similarity&Itemid%3D57
http://www.code10.info/index.php%3Foption%3Dcom_content&view%3Darticle&id%3D59:hamming-distance&catid%3D38:cat_coding_algorithms_data-similarity&Itemid%3D57
http://www.code10.info/index.php%3Foption%3Dcom_content&view%3Darticle&id%3D59:hamming-distance&catid%3D38:cat_coding_algorithms_data-similarity&Itemid%3D57
https://github.com/jwlin/web-crawler-tutorial
https://github.com/wert30678/Repo/blob/master/exchange-rate
https://github.com/wert30678/Repo/blob/master/exchange-rate
https://github.com/chinaev/python-video-streaming
https://github.com/chinaev/python-video-streaming
https://github.com/HowardNTUST/Marketing-Data-Science-Application/blob/master/Python-RFM-RF-basics/
https://github.com/HowardNTUST/Marketing-Data-Science-Application/blob/master/Python-RFM-RF-basics/
https://github.com/HowardNTUST/Marketing-Data-Science-Application/blob/master/Python-RFM-RF-basics/

Research Article
Key Performance Indicators for the Integration of the
Service-Oriented Architecture and Scrum Process Model for IOT

Mengze Zheng ,1 Islam Zada,2 Sara Shahzad,2 Javed Iqbal,2 Muhammad Shafiq,3

Muhammad Zeeshan,4 and Amjad Ali2

1College of Digital Technology and Engineering, Ningbo University of Finance and Economics, Ningbo, Zhejiang 315175, China
2Department of Computer Science, University of Peshawar, Peshawar, Pakistan
3Cyberspace Institute of Advance Technology, Guangzhou University, Guangzhou, China
4Kohat University of Science and Technology, Kohat, Pakistan

Correspondence should be addressed to Mengze Zheng; zhengmengze@nbufe.edu.cn

Received 10 November 2020; Revised 28 December 2020; Accepted 7 January 2021; Published 2 February 2021

Academic Editor: Muhammad Arif Shah

Copyright © 2021Mengze Zheng et al.*is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An important aspect in any business process lifecycle is management of the performance, where performance requirements on
business processes are specified as Key Performance Indicators (KPIs) with target values which are to be achieved in a certain
analysis period. A KPI is a business metric used tomeasure and evaluate the individual capability, maturity, complexity, and agility
of a business process in the development environment. *is study designed four general KPIs for the integration of SOA and
scrum to bring further advancement in these approaches for IIoT.*e study also identified some commonmetrics which will give
help to software developers and, especially, to those who want to apply SOA and scrum integration. *ese metrics will play a
critical role of bridging the strategy and concepts of improvements with operational activities. *e identified KPIs will help to
measure the business agility, quality and value, team efficiency, and complexity of scrum- and SOA based projects. Software
development organizations can also practice these KPIs to know where to focus their resources to deliver the ultimate business
profit. So, software business organizations could better align their business projects and IT investments with the rapid market
change and deliveries.

1. Introduction

In the present era of dynamic business environment, flex-
ibility to welcome change and adapting to it efficiently and
cost effectively is pertinent to the success of any business
organization. Flexibility and change adoption are key at-
tributes of Service-Oriented Architecture (SOA) and agile
software development processes [1]. Although the notion of
agility is quite visible on both sides, still the integration of the
two diverse concepts (architectural frame work and devel-
opment process) should be well thought of before employing
them for a software development project [2]. *erefore, use
of an appropriate agile process for the SOA-based appli-
cation development to adopt major requirements, modifi-
cations, and changes even during application building along
with the conservation of software superiority and quality is

essential [3]. Scrum is one of the agile software developments
techniques, through which a system is developed efficiently
and rapidly by means of regular, frequent, and complete
releases permitting the participants and stakeholders in the
project to get their hands on the application in order to
review and test it through a retrospective meeting. A pro-
totype concept or model can be developed into a useful
progressive and creative system by means of an iterative and
incremental process whereby feedback is given by the
stakeholders, based upon the rapid successive releases of the
software.

*e scrum method openly addresses design and goes up
with disparaging such as big design up print (such as the
water fall approach) to depress this attitude. While most
Service-Oriented Architecture (SOA) teams are almost
predominantly serviceable players gathered around circles of

Hindawi
Scientific Programming
Volume 2021, Article ID 6613579, 11 pages
https://doi.org/10.1155/2021/6613579

mailto:zhengmengze@nbufe.edu.cn
https://orcid.org/0000-0003-2345-5748
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6613579

services. *e SOA’s nature inspires specific team makeup
and styles of communication in the interior teams which are
the dominion of policies such as scrum practices. We can say
that scrum is like the human hands that work in the mitt.
While SOA is like the mitt, where the scope is enterprise
wide, the scrum process is about the mode you can built the
application part that is supported by software. Up to our
study effort, most of the scrum and SOA principles are not in
conflict with each other. Applications development thor-
ough scrumwithout a clear and strong idea of the aims of the
organization will be useless. SOA without a strong image of
exactly how to design and build it genuinely using scrum
process model rules is a waste of resource and time.

Estimation and measurement of system development
cost and revenue impact, as well as other scrum and SOA
metrics, is vital to any prominent business organization.
Measuring the value and tracking changes to the metrics are
critical as your system’s services progress grows and its range
increases. A confirmed manner to prove an SOA and
scrum’s industry value is through their respective KPIs. We
can say that metrics are the language of KPIs, KPIs using it
where your business associates understand it.*ese KPIs can
give the means to measure the agility, complexity, efficiency,
and value of the scrum and SOA team for those who want to
use the scrum and SOA combination. We have identified
sixteen different metrics for SOA and scrum which are
discussed in detail in the coming section of this paper. Some
of these are most important to keep on track the business
value for the cross combination of scrum and SOA. In light
of the using the SOA and scrum combination, we have
combined the individually identified metrics into four
common metrics, which make the KPIs for cross combi-
nation of SOA and scrum. *e team velocity, business
agility, product quality, and effort review become the Key
Performance Indicators (KPIs) for the scrum and SOA
development approach (SSDA).

*e first part of this paper generally explains the SOA
and scrum as an agile process model, and the secondary
source for this study is the existence work of different
scholars which is discussed as a literature review in the
second part. *e identified scrum, SOA metrics, and the
integration of these two approaches are discussed in the
third and fourth sections. *e identified KPIs are presented
in the fifth section. *e sixth part of this study describes the
analysis and discussion, while conclusions, implications, and
limitations and future work are presented in sections seven,
eight, and nine, respectively.

2. Literature Review

Researchers and professionals have a mixed opinion about
the estimation and measurement, similarity, and compati-
bility of the scrum and SOA approaches. Critics emphasize
differences among SOA and agile approaches, arguing that
SOA and agile are standing at different development di-
rections: SOA is an architecture and agile is a methodology
[4], SOA working in a top-down manner and agile as in-
herently a bottom-up approach [5]. SOA is an architectural
framework and follows a set of principles, whereas agile is a

process model and more at the practice level. Some of the
researchers also claim that SOA-based systems are devel-
oped and deployed differently from traditional develop-
ments [1]. Also, there are many challenges such as
stockholders involvement, business and IT alignment, and
reuse of assets. To overcome such type of problems, agility
and service orientation are better integrated. It is notable
that scrum and SOA share similar concerns, such as re-
sponsiveness to changes, new ways of working, flexibility,
and business understanding [6]. Different authors discussed
these two terminologies and their in titrations in different
ways, which are discussed individually in the following
subsections as:

2.1. Service-Oriented Architecture (SOA). SOA is an archi-
tectural framework and approach to design, develop,
manage, and deploy a software application and software
infrastructure in which all applications are structured into
business logic called services that are network executable and
accessible. In other words, SOA agrees to the integration of
applications, users, and existing system into a flexible ar-
chitecture that can easily accommodate changes when it is
needed in a system [7]. SOA is regarded as one of the best
approaches for distributed application development.

SOA allows reusing the functionality of existing systems,
rather than building again from scratch. *is feature of
reusability in the SOA-based applications maximizes eco-
nomic benefits for the organization [8]. Each service in SOA
performs autonomously but is not isolated from the whole.
Each service encapsulates a specific logic in the problem
domain. *e main features of SOA are reusability, loose
coupling, service contract, autonomy, abstraction, discov-
erability, and statelessness [9]. SOA agrees to the integration
of applications, users, and existing system into a flexible
architecture that can easily accommodate changes when it is
needed in a system [10]. SOA is regarded as one of the best
approaches for distributed application development [11].

2.2. Scrum as Agile Software Development. An agile process
model tends to focus on iterations and client suggestions to
improve performance and allow for the predictability of
varying requirements. Agile software development (ASD) is
the development process through which a system is de-
veloped efficiently and rapidly by means of regular, frequent,
and complete releases permitting the participants and
stakeholders in the project to get their hands on the ap-
plication in order to review and test it through an agile
retrospective meeting. A prototype concept or model can be
developed into a useful progressive and creative system by
means of an iterative and incremental process whereby
feedback is given by the stakeholders, based upon the rapid
successive releases of the software. Scrum is an agile
methodology which is the most standard way of introducing
agility due to its flexibility and straight forwardness [12] and
a popular management agile method in industry. Agile
development of applications in an enterprise surrounding
can be challenging because of the compound nature team
members and their environments [13]. *e agile software

2 Scientific Programming

development process facilitates discovery of better ways of
developing software by promoting individual and teamwork
[14]. Agile processes are planned to maintain early and fast
development of software application. *is is made possible
by dividing the development process into sprints (or iter-
ations) where sprint stresses on the delivery of working
product that provides value to both the project and customer
[15, 16]. Scrum, as the most commonly used agile process,
highlights empirical feedback, team self-management, and
struggling to build properly tested product increments
within short iterations [17].

2.3. Integration of Scrum and SOA and KPIs. Flexibility and
change adoption are key attributes for Service-Oriented
Architecture (SOA) and agile software development pro-
cesses. Although the notion of agility is quite visible on both
sides, still the integration of the two diverse concepts (ar-
chitectural frame work and development process) should be
well thought of before employing them for a software de-
velopment project. *erefore, the use of an appropriate agile
process for the SOA-based application development, to
adopt major requirements modifications and changes even
during application building along with the conservation of
software superiority and quality, is essential [18]. SOA and
scrum are both the development approaches but following
different directions. In the services development scenario,
the SOA approach follows the bottom-top approach while
scrum follows the top-bottom approach as using a process
development methodology. Here, some questions arise such
as how these different approaches can be compatible and
measurable with each other when applying on the same task
simultaneously? Is SOA also following the same measure-
ment approach like the scrum process? If the answer is yes,
then why not to use the same measurement approach for
both scrum and SOA? How these two approaches could be
integrated with each other?

Today, estimation and measurement of system devel-
opment cost and revenue impact, as well as other scrum and
SOA metrics, is vital to any prominent business organiza-
tion. Measuring the value and tracking changes to the
metrics are critical as your system’s services progress grows
and its range increases. A sure way to validate software
development business value is through measurements
metric which will make the Key Performance indicators
(KPIs). KPI uses some type of terminologies or language that
can be understood by your business colleagues, which are
metrics. *ey can provide you the resources and knowledge
to measure an SOA and scrum-related project to real
business enlargements.

Here, we are using metrics to estimate software devel-
opment progress in getting a continuing vision and short-
range quarterly objectives. *ese metrics can make KPIs
which will be the leading and guidance force that could
synchronize goals with daily operating performance. Dif-
ferent authors have discussed different metrics for SOA and
scrum individually using different terminologies, but among
those metrics, we have discussed the most important metrics
which can give more benefits to market and those people

applying the combination of SOA and scrum in a software
development project. We have discussed the most important
scrum and SOA metrics which are summarized in this
section.

2.4. Research Problem and Research Contribution.
Although, SOA allows reusing the functionality of existing
systems, rather than building again from scratch. *is
feature of reusability in SOA-based applications maximizes
economic benefits for the organizations [3]. Each service in
SOA performs autonomously but is not isolated from the
whole. Each service encapsulates a specific logic in the
problem domain. *e other features of SOA are loose
coupling, service contract, autonomy, abstraction, discov-
erability, and statelessness, while scrum is an agile meth-
odology which is a standard way of introducing agility due to
its flexibility and straight forwardness [4]. It is a popular
agile management method in industry. Agile development of
applications in an enterprise surrounding can be challenging
because of the compound nature of teammembers and their
environment [5]. *e scrum process facilitates discovering
better ways of developing software by promoting individ-
uals, as well as teams [6].

Although SOA and agile approaches are generally
viewed with related concerns, still there is no clear definition
of organization and setup of both approaches in a single
environment. Very little information is provided as to what
will be the impact of this integrated implementation on the
important factors such as productivity, quality, agility, and
innovativeness. Understanding of key performance indica-
tors of the maturity of scrum and SOA integration is also an
issue. *erefore, the proposed study is aimed at analyzing
the compatibility of scrum and SOA with rules and practices
for scrum and SOA integrated application. *is can be
carried out by defining KPIs of the integrated scrum and
SOA environment using which an organization can go ahead
with a successful management of the SOA project using the
scrum process model. SOA and scrum are two different
approaches that follow different directions. In the services
development scenario, the SOA approach follows the top-
down approach (services are built on the top of the SOA
system) while scrum follows the bottom-up approach
(starting from initial planning to prototype delivery) as using
a process development methodology [19, 20]. Question
arises that how these different approaches are compatible
with each other when employed together for a development
process? Another question is whether SOA also follows the
agility just like scrum process. If the answer is yes, then how?
Finally, how these two approaches could be integrated with
each other to get benefits offered by both individually?

In this study, an SOA based application development
project is selected as a case study, for which the scrum
process model is used as a development methodology. *is
SOA-based industrial project is named as M4S (Mineral
resource, Mapping, Modeling, and Management System).
*e project development and deployment perspective in-
cludes eight core modules that constitute the overall project
framework. Large modules are subdivided into smaller

Scientific Programming 3

modules for better organization and management. *e
system is developed following standard phases of the scrum
development approach. *e researcher has participated in
this project to analyze and evaluate the development pro-
cesses. As already discussed that scrum and SOA are
working on different directions, the researcher has analyzed
the compatibility, diversity, and similarity of these different
approaches. Scrum and SOA metrics are analyzed to mea-
sure their flexibility, complexity, agility, and team efficiency.
After the analysis of scrum and SOA metrics, four general
KPIs are designed for the measurement of these different
approaches.

*e identified KPIs are team velocity, business agility,
quality assurance, and effort review. *ese KPIs will help
software business organizations to understand where to
commit resources in order to deliver the optimal business
value. It will also help to align software development
business projects and IT investments with respect to market
change. *ese KPIs will guide practitioners to measure and
improve their integrated scrum and SOA approach.

3. KPIs for Scrum and SOA Integration

An important aspect in the business process lifecycle is
estimation, measurement, and management of the perfor-
mance of business processes. Performance requirements on
business processes are specified as Key Performance Indi-
cators (KPIs) with target values which are to be achieved in a
certain analysis period [21]. *e KPI is a business metric
which measures the individual capability, maturity, com-
plexity, and agility of a business process in development
environment. To bring further advancement in both SOA
and agile approaches, we have identified some common
metrics which might give help to software developers and,
especially, to those who want to apply SOA and agile
combination, as metrics plays the critical role of bridging the
strategy and concepts of improvements with operational
activities [22, 23]. It encapsulates the process, people, tools,
and techniques that result in seamless reporting and the
governance of the metrics to the required stakeholders in-
cluding the executive leadership that eventually owns and
directs Continual Service Improvement in an organization.
Metrics is concerned with the process, procedures, tools, and
templates that integrate to provide the benefits to the
organization.

*e main purpose of using metrics for the software
development process is

(i) To align business objectives with IT

(ii) To help achieve compliance requirements for
business operations

(iii) To drive operational excellence of IT services

SOA and scrum metrics are designed to measure and
evaluate the complexity, agility, effort estimation, and
flexibility of an organization’s business solution [64]. *ese
metrics are grouped into two major categories: scrummetric
and agile SOAmetrics, which are depicted in Figures 1 and 2.

3.1. Scrum Metrics. *e flexibility and ability to quickly
respond to market fluctuations makes agile development
methods attractive for companies operating in a market-
driven context, despite the fact that the long-term impact
of adopting these principles and their applicability in the
market-driven context are, to a large extent, unknown.
Existing studies and experience reports from application
of agile methods are mostly isolated to evaluating the
performance of these methods on software development
activities, such as increasing the developer’s efficiency
and producing better quality code. For this purpose, this
study identified and analyzed the eight scrum metrics
given in Table 1, which will keep a scrum team on track,
where X1, X2, X3, X4, X5, X6, X7, and X8 represent the
completed stories vs. committed stories, team velocity,
quality delivered to the customer, team enthusiasm,
proper and improper use of scrum practices, retrospec-
tive process improvement, team communication, and
reduction in the project and maintenance expenses eighth
metric, respectively.

3.2. SOAMetrics. In the selection of applicable metrics and
estimated KPIs to define the level of realization of business
organization goals, during deployment, system factors need
to be perfected to boost SOA KPIs. Also, the system
managing arrangement is set up to bring together dimen-
sions to support demarcated metrics, monitoring, service-
level agreement parameters, and runtime reworking. *e
purpose of SOA metrics is to measure and evaluate the
complexity, agility, effort estimation, and flexibility of the
SOA and agile solution system. SOA measurements are
taken to acquire the maximum consideration and openly
relate to successful SOA implementations in any develop-
ment organization. *ere are a small number of measure-
ment regions that should be looked into by any group and
could be used as a starting point. *is study also identified
the eight SOA metrics which are given in Table 2, where Y1,
Y2, Y3, Y4, Y5, Y6, Y7, and Y8 represent the revenue per
service, development time for a service, service quality as-
surance, new created and used as a percentage of total,
service accessibility and usability, average time to service
development, number of services reused, and violations of
architecture policies, respectively.

*ese are the measures that appear to acquire the
maximum consideration and openly relate to fruitful SOA
employments and implementation using scrum as the de-
velopment process model.

4. Integration of Scrum and SOA

As already discussed, SOA and scrum are two different
approaches that follow different directions. In the services
development scenario, the SOA approach follows the top-
down approach (services are building in the top of SOA
system) while scrum follows the bottom-up approach
(starting from initial planning to prototype delivery) as using
a process development methodology [19, 20]. Question
arises that how these different approaches are compatible

4 Scientific Programming

with each other when employed together for a development
process? Another question is whether SOA also follows the
agility just like the scrum process. If the answer is yes, then
how? Finally, how these two approaches could be integrated
with each other to get benefits offered by both individually?
*is section refers to these questions and also discusses SOA
and scrum metrics having commonalities. *is study
identified different metrics; among them, some are most
important which can provide more value to business and to
those whose aim is to use SOA and scrum together in a
software development venture. Some of the scrum and SOA
metrics are used for common purpose sharing common
features. Table 3 shows the scrum and SOA metrics which
share some of the common features and goals.

5. Key Performance Indicators of Scrum
and SOA

Measuring of revenue and other process, product, and
project metrics is essential for the development and im-
provement of software development organizations [24].
Measuring scrum and SOA individually and tracking
changes to these metrics are very difficult but critical for
business process success and improvement [25]. *e success

and improvement of scrum and SOA integration can be
analyzed through their respective KPIs, which are designed
from their individual metrics. KPIs translate the business
performance in terms where the business associates un-
derstand. *ese KPIs provide a way to measure the agility,
complexity, efficiency, and value of scrum and SOA teams
[26]. *is study has identified different metrics for scrum
and SOA (discussed in detail in the previous section). *e
individual metrics of scrum and SOA which share features
are mapped into commonmetrics to provide KPIs for scrum
and SOA integration. *e four resulting KPIs are meant to
keep the business value on track for the cross combination of
scrum and SOA. *erefore, Team Velocity (TV), Business
Agility (BA), Product Quality (PQ), and Effort Review (ER)
are the key performance indicators for the integrated scrum
and SOA approach (ISSA), which are the scrum develop-
ment process applied to develop SOA, based software ap-
plication. *e summary of these KPIs is given in Table 4.

Details about each KPI are provided in the following
sections.

5.1. Team Velocity (TV). Table 4 identifies team velocity as
the first KPI which is evaluated from the combined scrum
and SOA metrics, namely, team velocity, completed stories

Quality
delivered to

customer

Scrum
metrics

Team
communication

Team velocityCompleted vs.
planned stories

Team
enthusiasm

Retrospective
process

improvement

Figure 1: Scrum metrics.

SOA metrics

New created and
used as a percentage

of total services

Revenue per
service

Service accesibility
and usability of

new services

Development
time

Average time to
service

development

Number of
services reused

Violation of
architecture

polices

Service quality
assurance

Average time to
service

development

Figure 2: SOA metrics.

Scientific Programming 5

Table 1: Summary of the scrum.

Scrum metrics Description

Completed stories vs. committed stories
(X1)

*is metric is capable of identifying the team capabilities to compare and measure the
committed stories planned per sprint and actual progress of scrum team that howmany stories

are completed by the team per sprint

Team velocity (X2)
*e velocity metric measures the consistency of the team’s estimates from sprint to sprint.*e
measure is made by comparing story points completed in this sprint with points completed in

the previous sprint

Quality delivered to the customer (X3)

*is metric is related to the efficiency and skills of developers, customer needs, and project
requirements. In this metric, we measure whether the product is built according to the

customer needs or not and does every sprint provide value to the customer and become a
potentially releasable piece of the product?

Team enthusiasm (X4)

*e enthusiasm measurement is carried out by observing various sprint meetings or simply
asking team members the following questions included in a questionnaire which was

distributed among the teammembers: Do you feel happy? If not, then why? Howmotivated do
you feel?

Proper and improper use of scrum
practices (X5)

*is metric measures whether team members follow the scrum rules and manifes properly or
not

Retrospective process improvement (X6)
*is type of metrics measures the team’s capability to revise, within the scrum process

improvement, context, and practices, its development process to make it more effective for the
coming sprint

Team communication (X7)

*is metrics is an individual measure of how are the product owner, scrummaster, customers,
and other team members directed straightforward and exposed to communications. *e
scrum master’s responsibility was to observe and listen to the team members and product
owner, and other stockholders will get indications as how everyone is well collaborating and

communicating throughout the sprint

Reduction in the project and maintenance
expenses (X8)

*is metric will be used to compute the intact project’s expenses avoidance amount and just
sum the total expenses for all the SOA services being leveraged. Also, to predict the total
potential expenses evading at any stage and point of stage, we multiply the number of times
each SOA service is planned to be leveraged by its designed expenses and sum these total

Table 2: Summary of the SOA.

SOA metrics Description

Revenue per service (Y1)

*is metric is concerned with the release of a sprint; it is the imperative measure for a business
organization as income for a service. *is quantity takes up together the charge an organization
provides and the output/efficiency accomplished based on the charge generated by the service

base

Development time for a service� (Y2)

*is type of metrics measures the time required for delivering a new application, process, or
service. As each scrum story card was designed in such a way that it consists of only one service/
piece of work and each story was assigned 10 to 16 hours to be completed, some services were

finished before the specified time and some were finished after the specified time

Service quality assurance (Y3)

In software engineering, the complexity is generally measuring through cycloramic complexity,
and the cycloramic complexity of software is the single measurement that will regulate if your
system’s service is maintainable and testable. Many authors claimed that services with cycloramic
complexity greater than fifty are not testable and often result in ten to twenty percent more

maintenance effort than those services whose cycloramic complexity is less than ten

New created and used as a percentage
of total (Y4)

Organizations with poor SOA domination and governance usually see out-of-control service
growth, by means of high ratio of new services as a percentage of total services. Uncontrolled
software development scrum teams often look to build new service after new service, not thinking
about redesigning the existing established services in order to achieve the desired value. Not only
does this drive increase the services total cost but also decrease the average revenue per service,

showing low development production

Service accessibility and usability (Y5)

*is metric defines the time in percent at which percent the services are used by the end users. It is
the measurement of the complete build and delivered services system, from the bugs-free services
to functional data centers. Less than 99.9% needs to be carried on instantly since they bear

customer agreement
Average time to service development
(Y6)

Average time to service development provides a statistical calculation for measurement of
services with some certainty of the mean time to arise an individual service

6 Scientific Programming

versus committed stories, new services created and used as
percentage of total services, and services development time.
All of these metrics measure output performance of teams
or, in other words, production of a team, which is a common

goal of the scrum and SOA approach. *erefore, these
metrics are combined in the form of an integrated KPI for
the scrum and SOA approach. Figure 3 and equation (1)
show participating factors of team velocity.

Table 2: Continued.

SOA metrics Description

Number of services reused (Y7)

Here, the reusability of service means reusing of existing services when they are needed in other
parts of the SOA system because many services are accruing in multiple places which are already
build for that purpose. Reusability of services is the main property of the SOA system, through
which we can get the agility and can remove the complexity, as well as the service development

time, cost, and resources

Violations of architecture policies (Y8)

*is measure defines the violations of architecture policies during the development process and
its frequencies that how much rules and regulations are violated. *e development process will
have control points that will check adherence to the specific architecture policies that have been

selected

Table 3: Scrum and SOA metrics which share the common features and goals.

S.N Scrum SOA Commonalities

1 Completed stories vs.
planned stories

New created and used as a percentage
of total services

*e main purpose of these two metrics is to measure the ratio and
percentage of completed work (services) developed in one sprint

2 Team velocity
Development time and average
development time to develop a

service

*ese three metrics measure the team progress in terms of per
sprint and time required for a service which is to be completed in a
particular sprint within time. So, these metrics could be combined
into a team velocity metric which will be considered as a metric for

SOA and scrum integration

3 Quality delivered to the
customer Service quality assurance

*e aim of this metric is to measure the service quality when
applying the scrum development process model. *e quality is a
common feature for these both metrics which can be combined to
make a metric for SOA and scrum integrations measurements

4 Team enthusiasm 4. Violation of architecture policies When the team members are happy, satisfied, and working in a
comfortable environment, then they will communicate with each
other friendly and collaboratively. *ey will have full attention and
focus on product development, and through this, product quality

will remain standard. Also, they will willingly follow the
preplanned architecture policies and rules. We can also see that
when the scrum team is happy and in a restful environment, they
can develop large number of services of high quality in a small
amount of time. So, we can say that the “team enthusiasm and
communication” metrics of scrum and “violations of architecture
policies” and “average time to service development” metrics are
dependent on each other; these can have an effect on project when
these are not concentrated. *ese metrics are used to measure to
measure the behavior that how they follow rules and policies in the

development environment

5 Team communication 5. Average time to service
development

6 Retrospective process
improvement Service accessibility and usability

*ese two metrics can be integrated together to represent a
commonmetric for both scrum and SOA because the retrospective
meeting is held at the last of all practices of scrum in which the
overall activities could be revived. When the services are developed
in a sprint, a review meeting will be arranged in which we can test
the developed service functionality and usability that how to access

the service and how it is working

7 Technical debt
management

Reduction in the project and
maintenance expense

*e main purpose of these two metrics is to reduce the product
development cost through best management and utilization of
resources and team members’ skills. *ese two metrics can be
integrated in one common metric for the combined use of scrum

and SOA approaches

Scientific Programming 7

TV � X1 + X2 + Y2 + Y4. (1)

5.2. Business Agility. Figure 4 and equation (2) show the
participating factors of SOA and scrum in “Business Agility.”

BA � X1 + X7 + Y1 + Y2. (2)

Business agility is the second KPI which is designed from
the combined of scrum and SOA metrics named as devel-
opment time of a service, team velocity, team enthusiasm,
and revenue per sprint. *is KPI shows rapid development
of SOA services and scrum “team velocity.” It shows the
numbers of story points completed by the scrum team in a
particular sprint. Scrum and SOA agility depend upon the
progress of the scrum team and service development.
Business agility and participating metrics are shown in
Figure 4.

5.3. Product Quality.

PQ � X1 + Y1 + Y3 + Y5. (3)

*e four metrics of scrum and SOA, namely, quality
delivered to the customer, service quality assurance, service

accessibility and usage, and revenue per sprint indirectly
measure the software product quality. *erefore, these
metrics are mapped to define product quality KPI, which will
represent the service quality delivered by the scrum team in a
specific sprint within time and budget. *e mapped metrics
to present the product quality KPI are shown in Figure 5.

5.4. Effort Review. Figure 6 and equation (4) show the
participating factors of SOA and scrum in “Effort Review.”

ER � X4 + X6 + X7 + Y8. (4)

Effort review is the fourth KPI designed by combining
scrum and SOA metrics such as retrospective meeting, vi-
olation of architecture policies, team communication, and
enthusiasm metrics. *is KPI will present the review of a
sprint’s daily scrum process which examines the perfor-
mance in previous sprints with respect to people, rela-
tionships, process tools, and violation of architecture
policies during the development of SOA services. It will also
present the scrum team’s behavior and communication that
they followed in the development process. *is KPI along
with its mapped metrics is depicted in Figure 6.

6. Analysis and Discussion

Software measurement and estimation is important for any
process improvement initiative. Software metrics allow
qualities of interest to be measured and evaluated in order to
identify potential problems. Metrics provide insight into the
costs and benefits of a potential solution. Unfortunately,
existing individual scrum and SOA metrics are compara-
tively immature, and there is no generic measurement and
metrics available for the integrated application of scrum and
SOA for a software development project [27]. *ere is also a
misunderstanding in identifying desired measureable
properties of both scrum and SOA in the context of

Table 4: Integrated KPIs for scrum and SOA.

S. NO Name of the KPI Common metrics of scrum and SOA

1 Team velocity (TV)

(i) Team velocity
(ii) Completed stories vs. committed stories
(iii) New services created and used, as the percentage of total services
(iv) Services development time

2 Business agility (BA)

(i) Development time of a service
(ii) Team velocity
(iii) Team enthusiasm
(iv) Revenue per sprint

3 Product quality (PQ)

(i) Quality delivered
(ii) Service quality assurance
(iii) Service accessibility and usage
(iv) Revenue per service

4 Effort review (ER)

(i) Retrospective meeting
(ii) Violation of architecture policies
(iii) Team communication
(iv) Enthusiasm

Team velocity

Service development
time

Team
velocity

New services created and
used as percentage of

total

Completed vs.
committed stories

Figure 3: KPI No.3. Participating factor of SOA and scrum in team
velocity.

8 Scientific Programming

integration. Another problem for identifying metrics for
integrated use of scrum and SOA is that both focus on
respective properties, factors, and tools and then collection
of data for individual specific factors measured in the in-
tegrated environment. Hence, individual factors do not work
in this context [28].

*e KPIs identified in this study solve these problems
and provide a basis to measure business agility, quality value,
team efficiency, and complexity of scrum- and SOA-based
projects. *ese KPIs will help to understand where to
commit resources in order to deliver the optimal business
value. It will also help to align software development
business projects and IT investments with respect to market

change. *ese KPIs will guide practitioners to measure and
improve their integrated scrum and SOA approach.

As some of the authors have discussed different metrics
for SOA and scrum individually in different papers, among
them, we have identified the most important metrics which
can give more benefits to market and those people applying
the combination of SOA and scrum in a software devel-
opment project. *rough these metrics, the development
process can be streamlined when a proper measure is taken.
Among these scrum and SOA metrics, some of metrics
present common goals which can provide more agility,
flexibility, and compatibility.

*e scrum process model and service-oriented archi-
tecture (SOA) approaches buoy up business people to be
liable for the significance and value provided by different
software development experts and effort. *ese metrics will
support endorsed organizations and businesses that can
make insolent software investments and scrum teams that
provide software services with highest value repeatedly and
rapidly. One benefit of value-driven work is to deliver
valuable features to customers quickly in the development
may come to be self-funding during the progress of the plan
[29, 30]. “Business Value Delivered” is that what the scrum
team would be optimizing and enhancing for and what the
business organization will be following as a key performance
indicator [31]. Software services value can be best deter-
mined by the interested parties and scrum team together, at
the level of specific software development groups that can be
given a specific cost and customer value measure [32].

In this study, we have identified the most critical and
important metrics because measuring too many metrics may
not lead to project success. *ese metrics will give valuable
information by not only minimal effort but also correct
information that helps the development team to progress in
their learning and reaching the objectives. Some common
properties or features are found between scrum metrics and
SOA metrics are the general organization of a metric, but
variances in the methods to measure, for example, mea-
suring the scrum team velocity and SOA services developed
per unit time. Some of the scrum metrics use individual
measurements for computing metrics such as progress of a
member. Basing user stories on story points that are esti-
mated by a team, it cannot be compared between different
teams because the developed features may not have the same
behavior and functions. Some common measures should be

Product
quality

Service accessibility
and usage

Quality delivered to
customer

Service quality
assurance

Revenue per service

Figure 5: Participating factors of SOA and scrum in “Product
Quality.”

Effort
review

Retrospective meeting

Team communication

Team enthusiasm

Violations of
architecture

 policies

Figure 6: Participating factors of SOA and scrum in “Effort
Review.”

Business
agility

Team velocity

Team
communication Development time

Revenue per sprint

Figure 4: Participating factors of SOA and scrum in “Business Agility.”

Scientific Programming 9

taken to connect the scrum and SOAmetrics, e.g., the scrum
team velocity metric and number of services developed per
unit time. As described earlier, agile has the focus on people
and should, therefore, include this factor in future mea-
surements. *e main purpose of Service-Oriented Archi-
tecture (SOA) is to make the whole enterprise agile by using
services as the building blocks for software applications.
Also, software development through the scrum process
model means to increase organization agility by bring to-
gether scrum practices that could increase communication,
collaboration, and feedback. Which is accurate and better?
We have identified different metrics for SOA and scrum
which are discussed in detail in previous sections. Some of
these are most important to keep on track the business value
for the cross combination of scrum and SOA. In light of the
using the SOA and scrum combination, we have combined
the individually identified metrics into four common met-
rics, which make the KPIs for the cross combination of SOA
and scrum. *e team velocity, business agility, product
quality, and effort review become the Key Performance
Indicators (KPIs) for the scrum and SOA development
approach (SSDA).

Many practitioners successfully applied agile processes,
especially scrum for enterprise system development. SOA is
also a favored architecture for enterprise system develop-
ment in many cases; therefore, the proposed integration
approach will definitely come with improved results. *e
KPIs presented will help in identifying and also facilitating
the improvement of the benefits.

7. Conclusions

Scrum and SOA are about agility that can be applied to a
number of rules and principles that do not crash each
other. Scrum is about delivering rapid and SOA is about
architectural configuration. *is way, they maintain each
other in balance. One does not make sense without the
other. A confirmed manner to prove SOA and scrum’s
industry value is through their respective KPIs. We can
say that metrics are the language of KPIs. KPIs used it in
the way the business associates understand it. *ese KPIs
give a means to measure the agility, complexity, effi-
ciency, and value of the scrum and SOA team for those
who want to use the scrum and SOA in an integrated
environment; the identified metrics for SOA and scrum,
discussed in detail in the previous sections, are important
to keep on track the business value for the integration of
scrum and SOA. In light of using the SOA and scrum
integration, the individually identified metrics are
combined into four common metrics, which make the
KPIs for integrated scrum and SOA. “Team velocity,”
“Business Agility,” “Product Quality,” and “Effort Re-
view” are the key performance indicators (KPIs) for the
scrum and SOA development approach (SSDA).

*ese KPIs will help to measure the business agility,
quality and value, team efficiency, and complexity of scrum-
and SOA-based projects. *ese KPIs can be practiced to
know where to focus the resources to deliver the ultimate

business profit to better align your business projects and IT
investments with the market change.

8. Implications of the Study

SOA and agile are a major planning and design decisions;
both require proper planning and management throughout
the lifecycle of the system development. *e KPIs will help
all stakeholders to understand imperatives of the proposed
technique and will help them in planning resources, as well
as major milestones for testing the performance. *ese
metrics will play a critical role of bridging the strategy and
concepts of improvements with operational activities. *e
identified KPIs will help to measure the business agility,
quality and value, team efficiency, and complexity of scrum-
and SOA-based projects. Software development organiza-
tions can also practice these KPIs to know where to focus
their resources to deliver the ultimate business profit. So,
software business organizations could better align their
business projects and IT investments with the rapid market
change and deliveries.

9. Limitations and Future Work

It will require expertise in both SOA and agile. A man-
agement overhead in the start of the agility of the approaches
will enable the teams to come up with a proper application
design and smooth development process. Also, we did not
apply these KPI on a real case study due to the lack of
funding and time barred the application of the proposed
process in a real-world scenario at the time of research. We
are in the process of designing a case study for validating the
research contribution. Although the proposed research
shows that the presented process will havemany long-lasting
and awaited benefits, it can further be improved by
extending it for green and sustainable software development
in future.

Data Availability

No data are available to support the study.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding this paper.

References

[1] K. A. Abdelouhab, D. Idoughi, and C. Kolski, “Agile and user
centric SOA based service design framework applied in di-
saster management,” in Proceedings of the 2014 1st Interna-
tional Conference on Information and Communication
Technologies for Disaster Management (ICT-DM), IEEE,
Algeria, North Africa, March 2014.

[2] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, “Ex-
ploring software development at the very large-scale: a re-
velatory case study and research agenda for agile method
adaptation,” Empirical Software Engineering, vol. 23, no. 1,
pp. 490–520, 2018.

10 Scientific Programming

[3] F. Rago, “Self-organizing business networks, SOA and soft-
ware maintenance,” in Proceedings of the International
MultiConference of Engineers and Computer Scientists, Hong
Kong, China, March 2008.

[4] J. Sedeno, G. Vázquez, M. J. Escalona, and M. Mej́ıas, “*e
systematic discovery of services in early stages of agile de-
velopments: a systematic literature review,” Journal of
Computer and Communications, vol. 07, no. 7, pp. 114–134,
2019.

[5] T. Uslander and T. Batz, “Agile service engineering in the
industrial internet of things,” Future Internet, vol. 10, no. 10,
p. 100, 2018.

[6] B. Fitzgerald and K.-J. Stol, “Continuous software engineer-
ing: a roadmap and agenda,” Journal of Systems and Software,
vol. 123, pp. 176–189, 2017.

[7] A. Ivanyukovich, A. Yanchuk, and M. Marchese, “Towards a
service-oriented development methodology,” Journal of In-
tegrated Design and Process Science, vol. 9, no. 3, pp. 53–62,
2005.

[8] M. Swientek, U. Bleimann, and P. Dowland, “Service-oriented
architecture: performance issues and approaches,” in Proceedings
of the Seventh International Network Conference (INC 2008), Lulu.
com, Plymouth, UK, July, 2008.

[9] N. Joachim, A Literature Review of Research on Service-Ori-
ented Architectures (SOA): Characteristics, Adoption Deter-
minants, Governance Mechanisms, and Business Impact,
AMCIS, Detroit, MI, USA, 2011.

[10] A. N. Fajar and N. Legowo, “Services modeling based on SOA
and BPM for information system flexibility improvement,”
International Journal of Electrical and Computer Engineering
(IJECE), vol. 8, no. 4, p. 2451, 2018.

[11] A. Suryatmojo, E. R. Kaburuan, A. N. Fajar, S. Sutarty, and
A. S. Girsang, “Financial technology integration based on
service oriented architecture,” in Proceedings of the 2018
International Conference on Orange Technologies (ICOT),
IEEE, Bali, Indonesia, October 2018.

[12] Þ. Reynisdottir, Scrum in Mechanical Product Development,
2013.

[13] P. Kutschera and S. Schafer, Applying Agile Methods in
Rapidly Changing Environments, DTIC Document, Fort
Belvoir, Virginia, 2004.

[14] M. Awad, A Comparison between Agile and Traditional
Software Development Methodologies, University of Western
Australia, Perth, Australia, 2005.

[15] W. *eunissen, A. Boake, and D. G. Kourie, “In search of the
sweet spot: agile open collaborative corporate software de-
velopment,” in Proceedings of the 2005 Annual Research
Conference of the South African Institute of Computer Sci-
entists and Information Technologists on IT Research in De-
veloping Countries, South African Institute for Computer
Scientists and Information Technologists, White River, South
Africa, September 2005.

[16] D. Turk, R. France, and B. Rumpe, “Limitations of agile
software processes,” in Proceedings of the @ird International
Conference on eXtreme Programming and Agile Processes in
Software Engineering (XP 2002), Cambridge University Press,
Alghero, Italy, May 2002.

[17] S. Roy and M. K. Debnath, “Designing SOA based e-governance
system using eXtreme Programmingmethodology for developing
countries,” in Proceedings of the 2010 2nd International Confer-
ence in Software Technology and Engineering (ICSTE), IEEE, San
Juan, PR, USA, October 2010.

[18] Z. Dragičević and S. Bošnjak, “Agile architecture in the digital
era: trends and practices,” Strategic Management, vol. 24,
no. 2, pp. 12–33, 2019.

[19] J. Schiefe, G. Saurer, and A. Schatten, “Testing event-driven
business processes,” Journal of Computers, vol. 1, no. 7,
pp. 69–80, 2006.

[20] A. Fuhr et al., Model-Driven Software Migration: Process
Model, Tool Support. Migrating Legacy Applications: Chal-
lenges in Service Oriented Architecture and Cloud Computing
Environments: Challenges in Service Oriented Architecture and
Cloud Computing Environments, p. 153, 2012.

[21] A. del-Rı́o-Ortega, M. Resinas, C. Cabanillas, and A. Ruiz-
Cortés, “On the definition and design-time analysis of process
performance indicators,” Information Systems, vol. 38, no. 4,
pp. 470–490, 2013.

[22] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven
software engineering in practice: second edition,” Synthesis
Lectures on Software Engineering, vol. 3, no. 1, pp. 1–207, 2017.

[23] M. Minelli, M. Chambers, and A. Dhiraj, Big Data, Big An-
alytics: Emerging Business Intelligence And Analytic Trends For
Today’s Businesses, Vol. 578, John Wiley and Sons, Hoboken,
NJ, USA, 2013.

[24] H. Alahyari, T. Gorschek, and R. Berntsson Svensson, “An
exploratory study of waste in software development organi-
zations using agile or lean approaches: a multiple case study at
14 organizations,” Information and Software Technology,
vol. 105, pp. 78–94, 2019.

[25] S. Bente, U. Bombosch, and S. Langade, Collaborative En-
terprise Architecture: Enriching EA with Lean, Agile, and
Enterprise 2.0 Practices, Morgan Kaufmann, Waltham, MA,
USA, 2013.

[26] A. W. Brown, S. Ambler, and W. Royce, “Agility at scale:
economic governance, measured improvement, and disci-
plined delivery,” in Proceedings of the 2013 International
Conference on Software Engineering, IEEE Press, Bari, Italy,
August 2013.

[27] V. Bendinskas, “Towards mature software process,” Infor-
mation Technology And Control, vol. 34, no. 2, 2015.

[28] T. P. Wise and R. DanieL, Agile Readiness: Four Spheres of
Lean and Agile Transformation, Gower Publishing, Ltd,
Aldershot, UK, 2015.

[29] P. Krogdahl, G. Luef, and C. Steindl, “Service-Oriented
Agility: an initial analysis for the use of Agile methods for
SOA development,” in Proceedings of the 2005 IEEE Inter-
national Conference on Services Computing, IEEE, Oriando,
FL, USA, July 2005.

[30] J. Bloomberg, @e Agile Architecture Revolution: How Cloud
Computing, REST-Based SOA, and Mobile Computing Are
Changing Enterprise IT, JohnWiley and Sons, New Jersey, NJ,
USA, 2013.

[31] O. Ktata and G. Levesque, “Designing and Implementing a
Measurement Program for Scrum Teams: what do agile de-
velopers really need and want?,” in Proceedings of the@ird C∗
Conference on Computer Science and Software Engineering,
ACM, Montreal, Canada, May 2010.

[32] A. Juneja, Value Creation and Value Capture in Software
Product Business: Analyzing Product Development, B2B Sales
and Software Process Methodologies, 2011.

Scientific Programming 11

Research Article
Analysis of Service-Oriented Architecture and Scrum Software
Development Approach for IIoT

Yanqing Cui ,1 Islam Zada,2 Sara Shahzad,2 Shah Nazir ,3 Shafi Ullah Khan,4

Naveed Hussain,3 and Muhammad Asshad5

1College of Computer Information, Inner Mongolia Medical University, Hohhot, China
2Department of Computer Science, University of Peshawar, Peshawar, Pakistan
3Department of Computer Science, University of Swabi, Swabi, Pakistan
4Kohat University of Science & Technology, Kohat, Pakistan
5Department of IT, University of Haripur, Haripur, Pakistan

Correspondence should be addressed to Yanqing Cui; 1653446869@qq.com and Shah Nazir; snshahnzr@gmail.com

Received 7 December 2020; Revised 22 December 2020; Accepted 8 January 2021; Published 23 January 2021

Academic Editor: Sikandar Ali

Copyright © 2021 Yanqing Cui et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Flexibility and change adoption are key attributes for service-oriented architecture (SOA) and agile software development
processes. Although the notion of agility is quite visible on both sides, still the integration of the two diverse concepts (ar-
chitectural framework and development process) should be well thought of before employing them for a software development
project. For this purpose, this study is designed to analyze the two diverse software architectural framework and development
approaches, that is, SOA and Scrum process model, respectively, and their integrated environment in software project devel-
opment setup perspective for Industrial Internet of /ings (IIoT). /is study also analyzes commonalities among Scrum process
model and SOA architectural framework to identify compatibility between Scrum and SOA so that the Scrum process can be
constructively used for SOA based projects. /is study also examines the proper design and setup of Scrum process suitable for
large-scale SOA based projects. For this purpose, an SOA based research and development project is selected as a case study using
Scrum as the software development process./e project development and deployment perspective include eight core modules that
constitute the overall project framework.

1. Introduction

In the present era of dynamic business environment, flex-
ibility to welcome change and adapting to it efficiently and
cost effectively are pertinent to the success of any business
organization. Service-oriented architecture (SOA) is an
architectural approach to design, develop, manage, and
deploy a software application and infrastructure in which all
the applications are structured into business services that are
network accessible and executable [1]. Flexibility and change
adoption are key attributes for SOA and agile software
development processes. Although the notion of agility is
quite visible on both sides, still the integration of the two
diverse concepts (architectural framework and development
process) should be well thought of before employing them

for a software development project [2]. /erefore, the use of
an appropriate agile process for the SOA based application
development, to adopt major requirements modifications
and changes even during application building along with the
conservation of software superiority and quality, is essential
[3]. Agile processes (based on agile manifesto [4]) tend to
focus on iterations and client suggestions to improve per-
formance and allows for the predictability of varying re-
quirements. Agile software development (ASD) is the
development process through which a system is developed
efficiently and rapidly by means of regular, frequent, and
complete releases permitting the participants and stake-
holders to get their hands on the application [5, 6]. /e
application and process are reviewed and tested through
agile retrospective meetings. In this way, a prototype is

Hindawi
Scientific Programming
Volume 2021, Article ID 6611407, 14 pages
https://doi.org/10.1155/2021/6611407

mailto:1653446869@qq.com
mailto:snshahnzr@gmail.com
https://orcid.org/0000-0003-0082-1987
https://orcid.org/0000-0003-0126-9944
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6611407

developed into useful progressive and creative system by
means of an iterative and incremental process, whereby
feedback is given by the stakeholders, based upon the rapid
successive releases of the software.

Iteration stresses on the delivery of working software
that provides grade and value to customers as well as to
project. It also produces other concerned artifacts which are
valuable to both customer and project. /e aim of agile
process is to provide workable deliverables in a dynamic
way. Proponents believe that in an agile process the main
concern is to provide deliverables and working products in a
dynamic way without emphasizing on design models and
documentation perspective [7, 8]. Scrum is one of the agile
methodologies, which is a standard way of introducing
agility due to its flexibility and straightforwardness [9]. It is a
popular agile management method in industry. Agile de-
velopment of applications in an enterprise surrounding can
be challenging because of the compound nature of team
members and their environment [10]. Scrum process fa-
cilitates discovering better ways of developing software by
promoting individuals as well as teams [11]. Scrum divides
the development process into iterations, called sprints,
where a sprint stresses on the delivery of working product
that provides value to both the project and customer [12].
Scrum, as the most used agile process, highlights empirical
feedback, team self-management, and struggle to build
properly tested product increments within short iterations
[13]. /e product owner, Scrum team, and Scrummaster are
the main three roles in Scrum. /e responsibilities of the
traditional project manager role are split among these three
Scrum roles [14]. Scrummaster is the one who maintains the
process of the team, leads Scrum meetings, and makes sure
that the process esteems all rules and principles of Scrum.
Scrum team is a cross-functional team (having different
expertise in different areas) involving developers, designers,
testers, and analysts. /is team is responsible for the project
as a whole and is also involved in the development. Product
owner is the one who represents the interest of end users and
others interested in the product parties.

Scrum is based on regular meetings in which Scrum
masters, product owner(s), the developers, and third parties
discuss different issues concerning the development process.
/ese meetings are the following: sprint planning meeting,
daily Scrum meeting, sprint review meeting, and sprint
retrospective meeting. Sprint planning meeting is held at the
beginning of every sprint cycle. During this meeting, the
product owner and the Scrum team define sprint goal which
the sprint will attempt to achieve [15]. /e success of the
sprint will later be assessed during the sprint review meeting
against the sprint goal. In sprint reviewmeeting at the end of
each sprint, the team demonstrates completed functionality
and shows what they have accomplished during the sprint.
In sprint retrospective meeting, team members review the
way the team works and interacts, behavioral aspects, and
improving technical skills, so that the subsequent sprint is
faster, and so forth.

/e Scrum process is a black box approach, where the
team and processes are built and discovered dynamically
during the project working, whereas nonagile approaches

such as waterfall model are signified as a white box nature of
process model from the management viewpoint [14].
Planning and postmortem phases are important because
these identify goals and outputs produced in a sprint.
Planning is vital for overcoming any blockage in any phase
or process during development. In agile terminology, the
postmortem meeting known as retrospective is important
for looking at the processes and creating knowledge base
through best practices. Figure 1 shows the analogy of white
box and black box nature of processes models.

Nonagile development methodologies are heavy-weight
processes for developing software. /ese methodologies are
based on a successive sequence of steps, for example, re-
quirements explanation, solution structure, testing, and
deployment. Traditional methodologies impose heavy
documentation and define a fixed set of requirements at the
start of a project. /ere are various traditional methodol-
ogies such as waterfall, spiral model, win-win spiral model,
and unified process. /e heavy-weight processes require
detailed upfront plan, heavy documentation, and broad
upfront design. Still traditional methodologies have their
utility for large-scale projects that have predefined and
considerably fixed set of requirements, although practi-
tioners have also started to adopt agile approaches for these
projects [16].

SOA is an architectural framework and approach to
design, develop, manage, and deploy a software application.
It is a software infrastructure in which all applications are
structured into business logic called services that are net-
work executable and accessible. In other words, SOA agrees
to integration of applications, users, and existing system into
a flexible architecture that can easily accommodate changes
when they are needed in a system [13]. SOA is regarded as
one of the best approaches for distributed application de-
velopment. SOA allows reusing the functionality of existing
systems rather than building again from scratch./is feature
of reusability in SOA based applications maximizes eco-
nomic benefits for the organizations [14]. Each service in
SOA performs autonomously but is not isolated from the
whole. Each service encapsulates a specific logic in the
problem domain. /e other features of SOA are loose
coupling, service contract, autonomy, abstraction, discov-
erability, and statelessness [17].

Although SOA and agile approaches are generally
viewed with related concerns, still there is no clear definition
of organization and setup of both approaches in a single
environment for IIoT. Truly little information is provided as
to what will be the impact of this integrated implementation
on the important factors such as productivity, quality,
agility, and innovativeness.

Based on the above claims and current market needs, this
study analyzes commonalities among Scrum process model
and SOA architectural framework to identify compatibility
between Scrum and SOA so that the Scrum process can be
constructively used for SOA based projects. /is study also
examines appropriate design and setup of Scrum process
suitable for large-scale SOA based projects. For this purpose,
an SOA based research and development project is selected
as a case study using Scrum as the software development

2 Scientific Programming

process. /e project development and deployment per-
spective includes eight core modules that constitute the
overall project framework.

/is study is organized in seven sections. /e current
section introduces major terminologies used in this study.
/e second section presents analysis of existing research in
Scrum and SOA approach for an in-depth understanding.
/e third section is dedicated to studying design and setup,
analysis of SOA and Scrum, and integration of Scrum and
SOA./e fourth section is about the integration analysis; the
fifth section is the discussion about SOA and Scrum inte-
gration, while the conclusion and future work of overall
study are presented in the sixth and seventh sections,
respectively.

2. Literature Study

Agile processes are planned to upkeep early and fast de-
velopment of software applications. /is is made possible by
working in iterations [9]. Iterations stress on the delivery of
working software that provides value to customers as well as
to the project. An iteration is a short development cycle that
produces working software and other artifacts which are
valuable to both customer and the project [9]. Main concern
of agile processes is to provide deliverables and working
products in a dynamic way without emphasizing on design
models and documentation perspective [7].

Experts of traditional development process conclude
that when documentation and analysis process is neglected,
it leads to corporate memory loss, especially when complex

and large-scale software are developed. But the experts of
agile confirm that, by following agility for software devel-
opment global software delivery, it has led to better out-
comes in gaining concerned objectives [18, 19]. It is clear
that organizations will have to face some sort of challenges in
coordinating and integrating agility and global service de-
livery, but also it makes organizations able to deliver quick
and error-free software that meets concerned business re-
quirements [20].

Agile software development methodologies are intro-
duced to provide answers to the concerned business com-
munity which asks for light-weight, more rapid, and more
flexible software development methods [21]. /erefore, agile
development methodologies are dedicated for agility,
quickness, and eagerness for development [22]. According
to Oxford dictionary, agile processes are devoting the im-
portance of being agile, willingness for motion, nimbleness,
activity, and dexterity in motion [12]. Some of the agile
methodologies like extreme programming and Scrum have
acknowledged that customer satisfaction could be achieved
through the lightness of concerned processes [12].

Scrum is one of the most used agile management
methods. According to last three agile adoption surveys,
Scrum highlights empirical feedback, team self-manage-
ment, and struggling to build thoroughly tested product
increments within short iterations [23, 24]. Scrum is an agile
methodology which is the most standard way of introducing
agility due to its flexibility and straightforwardness and a
popular management agile method in industry. Agile soft-
ware development process facilitates better ways of

Use cases

Design

Implementation

Integration

Review & release

1. Traditional white box
(water-fall model)

Product requirements

Project planning

(a)

Review & release

Project planning

Product requirements

2. Black box
(agile Scrum)

SP
RI

N
T

(b)

Figure 1: Analogy of white box and black box processes.

Scientific Programming 3

developing software by promoting individual work as well as
teamwork [11]. Agile processes are planned to maintain
early and fast development of software application. /is is
made possible by dividing the development process into
sprints, where sprint stresses on the delivery of working
product that provides value to both the project and customer
[25]. Agile development of applications in an enterprise
surrounding can be challenging because of the compound
nature team members and their environments [11].

SOA agrees to the integration of applications, users, and
existing system into a flexible architecture that can easily
accommodate changes when they are needed in a system
[14]. SOA is regarded as one of the best approaches for
distributed application development [26]. SOA allows
reusing the functionality of existing systems rather than
building again from scratch [27]. /is feature of reusability
in the SOA based applications maximizes economic benefits
for the organization. Each service in SOA performs au-
tonomously but is not isolated from the whole system. Each
service encapsulates a specific logic in the problem domain.
/e main features of SOA are reusability, loose coupling,
service contract, autonomy, abstraction, discoverability, and
statelessness [28].

Researchers and professionals have a mixed opinion
about similarity and compatibility of the two approaches.
Critics emphasize differences among SOA and agile ap-
proaches, arguing that SOA and agile are standing at dif-
ferent development direction: SOA is architecture and agile
is a methodology [24, 26]; SOA works in a top-down
manner, while agile is inherently a bottom-up approach
[29, 30]. SOA is an architectural framework and follows a set
of principles, whereas agile is a process model and works at
practice level [31]. Based on this view, advocates of SOA and
agile integration suggest that one way of combining them is
to use SOA framework and guiding principles of agile
practices for service development [32, 33]. Some researchers
also claim that SOA based systems are developed and
deployed differently from traditional Systems [21]. Also,
there are many challenges like stakeholders’ involvement,
business and ITalignment, and reuse of assets. To overcome
such type of problems, agility and service orientation are
better integrated [34, 35]. It is notable that Scrum and SOA
share similar concerns, such as responsiveness to change,
new ways of working, flexibility, and business understanding
[36].

SOA and Scrum assessment and specification need at-
tention of technology factors along with their relationships
to IT related business organization [37] and to individual
information consumers. Other requirements such as flexi-
bility and ease of use are defined in terms of such type of
system features that can be measured and designed [38, 39].

3. Design of SOA and Scrum Based
Environment for IIoT

Scrum as a development process and SOA as an architecture
framework deal with similar concerns, for example, flexi-
bility and quick response to change with profound business
orientation. Even though this inherent operational similarity

is quite obvious, still not enough research has been made in
analyzing the most optimal solution for the integration of
these two approaches in order to receive the combined
benefits [40, 41]. Also, there is a need to investigate the
impact of employing SOA with regard to improving pro-
ductivity and efficient utilization of time and resources using
Scrum methodology.

To investigate this context, a case study has been selected,
where Scrum process model is used as a development
methodology for the development of an SOA based software
system. /e SOA based project is named M4S (Mineral
resource, Mapping, Modeling, and Management System).
/e project development and deployment perspective in-
cludes eight core modules that constitute the overall project
framework. /e system is developed following the system-
atic steps which are discussed in detail in the following
paragraphs.

/is study is evaluated through identifying, determining,
and using one of the best combinations in software engi-
neering, which is designed based on SOA, using highly
productive open-source frameworks and tools, development
through agile development methodologies, and deployment
as a combination of client and cloud applications.

Scrum has been used as an agile process for continuous
development and improvement to following changing re-
quirement to refine working prototypes in iterations
[42, 43]. /e application is designed using SOA to ensure
that the case study system modules can be used as inde-
pendent subsystems through service interface. SOA facili-
tates exploiting the characteristics and capabilities of both
Scrum and SOA for integration, customization, and binding
of the desired designed frameworks and tools, the Mineral
resource, Mapping, Modeling, and Management System
(M4S); ultimately the deployment phase of this system has
infrastructure having properties of interactive communi-
cation, scalability, and dependability of services.

/ese deployment requirements are achieved through
cloud infrastructure and distributed computing. Modules of
the developed application are designed to act as interoperable
services and can be used independently and recombined in
other modules resulting in an integration of multiple coherent
modules. Data banks for mineral, resources, and application to
manage those data banks are specifically designed for M4S
system. /ese databanks, libraries, and applications are
designed to be used as open-source utilities.

Scrummethodology is used to ensure having a transparent
process of analysis and design of M4S and engagement of
stakeholders and also ensures a dynamic interaction among the
different components of the project. /e use of agility and
Open-Source System (OSS) principles for the development and
project management has permitted targeting a diverse com-
munity of stakeholders through multilateral liaison of acade-
mia, government, and industry. A collaborative work of these
diverse actors played a prime role in M4S development, along
with a minor role of individual contributors.

As discussed in ICT R&D project named M4S [https://
www.openm4s.org], the core framework of M4S utilizing
open-source libraries, services, servers, applications, database
management system, and an open-source Enterprise resource

4 Scientific Programming

https://www.openm4s.org/
https://www.openm4s.org/

planning (ERP) is shown in Figure 2. Client-server architecture
and browser-based clients are based on the principles of in-
teroperability and open standards. /e figure also shows
components and information flow within proposed M4S.

Scrum-driven agile software development methodology is
used for managing and organizing the development of modules
[15]. Scrum used in the context of this case study along with
specified roles and team organization is given in the following
section: /e process setup is decided according to the specifi-
cation of agile Scrum./e following is a brief description of roles
as these are present and work in a Scrum process environment.

(a) Scrum master is the one who leads Scrum meetings,
maintains the processes of team, and makes sure that
the process respects all principles of Scrum [44, 45].

(b) Scrum coach also facilitates meetings, helps the team
to reach consensus, and takes care of quality aspects
of the development environment and team.

(c) Scrum team is a cross-functional team consisting of
developers, testers, architects, and analysts. /is
team is responsible for project results as a whole and
is fully involved in development. /e team takes care
of developing features according to quality and
functional requirements [46].

(d) Product owner is a person who represents the in-
terests of end users and the stockholders. /e
product owner takes care of quality aspects related to
user requirements. A typical sprint cycle is presented
in Figure 3.

3.1.TeamOrganizationofM4SProcess. Team organization of
M4S process is shown in Table 1 for the project development.
Product owners provide the roadmap, business case, release
plans, and architectural direction. Scrum masters have the
knowledge on the architectural framework, usage context of
the requirements, and features of M4S. /ey performed the
business analysis and quality assurance tasks, apart from
managing the sprint cycles.

Key roles and responsibilities of each member in the
project are as follows:

PD (project director) was responsible for planning,
monitoring, and managing project activities.
Co-PD (coproject director) was responsible for mon-
itoring project activities, establishing liaison, and co-
ordination with government and industrial partners.
Software and computer systems experts were respon-
sible for directing software architecture design and
quality assurance.
Engineering management expert was responsible for
directing project management activities and quality
assurance.
Team leads were responsible for scheduling and exe-
cution of design, development, and deployment tasks.
Developer teams were responsible for development,
testing, verification, and documentation of modules.

Coproject director was responsible for maintaining
liaison and coordination with government and in-
dustrial partners.
Mining and software experts (part time) were responsible
for testing and validation of M4S and its modules.
Mentors (student supervisors) were responsible for
supervision and guidance to UG and PG students,
working on M4S related projects.
Part-time developers were responsible for develop-
ment, testing, and verification of modules.
Internees were working on various features of M4S as
their research projects and developed and documented
the assigned projects.

Work breakdown structure (WBS), along with the re-
sponsible personnel for each block of activity, of M4S project
is shown in Figure 4.

/e following are the details of the Scrum process and its
different features which are applied in the project.

(a) User stories
A user story captures what the user wants to achieve
through the system. /is objective is transformed
into a user story from the customer’s point of view
[47]. In accordance with the user stories, acceptance
test card is prepared by the product owners (project
director and codirector) and the developers imple-
ment those stories. /e acceptance test card com-
prises a set of test cases against which the
implemented user stories are tested. A user story will
be considered complete only if the acceptance tests
are satisfactory. Once ready, the user stories are
turned into system features [17]. A feature means
“work to be done” or a piece of functionality to be
implemented in the system.
InM4S project, individual features are decomposed into
smaller tasks. /en story cards are designed for each
individual task. /e completion time for a task was
recommended to be from five to fifteen working days,
and a working day was normally consisting of eight
hours. Normally one or two teammembers are working
on only one story card at a time. Each story or task is
assigned priority according to its importance. Team
members select stories on their priority base to finish.
Figure 5 depicts two stories that are finished before
the selection of next story.

(b) Sprint
According to Scrum process, development is orga-
nized into two- or four-week-long periods called
sprints. A sprint is a time-boxed development iter-
ation within which selected tasks are implemented
[37]. Tasks are assigned to sprints during a sprint
planning session at the beginning of each sprint
based on the status of the backlog. A one-week sprint
(also called sprint 0) is recommended before starting
with the M4S project development. /is allows the
developers to get acquainted with the development

Scientific Programming 5

environment, technological solutions, and the
existing components that are reused.
/e first module of M4S is completed in seven
sprints. /e first sprint consists of total nine stories,
in which seven stories were completed within sprint
time box, while the remaining two stories were in-
cluded in the second sprint to be completed next.
Each sprint is designed in Microsoft Excel sheet,
which contains all the information about each story,
team members who worked on a particular story,
time required for a particular story to be completed,
and so forth. Figure 6 depicts the first sprint as a
sample as follows.

Scrum methodology is based on regular meetings
where product owner, Scrum team, third parties, and

Scrum master discuss different issues faced/accrued
during development time. /e meetings are held for the
purpose of ensuring smooth running of the project and
preserving/maintaining the overall quality phases of the
developed system. Scrum process model employs five
types of meetings which are daily Scrum meeting, sprint
retrospective meeting, sprint review meeting, sprint
planning meeting, and sprint release meeting. /ese five
meetings are also held and maintained during the M4S
implementation in different situations. /ese meetings
are discussed one by one in the following subsection.

3.1.1. Sprint Planning Meeting. A total of seven sprint
meetings have been held to plan the work to be finished in a
sprint. Normally a meeting is held after every two weeks.

Graphical user interface

�e
internet

Local area
network

Mapping server Open source ERP GeoData server

Direct connection
WMS, WCS, CSW

Direct connection,
web feature server, CSW

OGR vector library GDALraster library JDBC/ODBC/SQL

Raster data
& image Spatial database

Vector data

DMS
MM
& VS MMS

GPR MP & DS EDH & ESGMS

MCS

M4S

Figure 2: Proposed frameworks of M4S [https://www.openm4s.org].

6 Scientific Programming

https://www.openm4s.org

During this meeting, Scrum team and the product owner
(M4S project director & codirector) define the sprint goals.
/e achievement of the sprint is later evaluated in the sprint
review meeting. Product owner works to prioritize the story
cards, to describe the highest priority story points to the
Scrum team. Finally, Scrum team needs to prepare the sprint
plan and sprint backlog that detail the time it takes to do the
work [48].

3.1.2. Daily Scrum. A daily Scrum meeting is held, the
main purpose of which is to make sure that application’s
features are being implemented in order according to
their planned agenda. Normally this meeting takes place
during each sprint in the starting time of work and lasts
for approximately 20 to 35 minutes. /e meeting is
scheduled at exact regular time. During this meeting,
each member of the team will answer the succeeding three
questions:

(i) What and how much work have you been doing
since yesterday?

(ii) What are the plans for today work?
(iii) What are the impediments that would prevent

accomplishing the goal?

If any issue occurred, then it is the responsibility of the
team leader (formally called Scrum team) to simplify and
resolve these complications. Unsolved issues are rediscussed
in another meeting./is meeting is held in the same place, at
the same time, and for the same duration.

3.1.3. Sprint Review Meeting. /is meeting is held after each
sprint. In this meeting, the team members show what they
have done and achieved during the completed sprint.
Normally, this meeting takes place in the form of demon-
stration of the recently developed features. In M4S project,
Scrum team has finished at least 95% of product backlog
story points fetched to the sprint, and the team achieved
most of the sprint goals. In each module of the M4S project,
98% of the features that meet the “done” criteria are accepted
and marked as complete. /e remaining 2% of the features
that are not complete in the specified sprint are rescheduled
for future sprints. /e project director (product owner) is
satisfied by the 98% completion; then the features are closed,
and next backlog is updated to include the features that need
further development.

(a) /e completed stories for each sprint are accepted by
M4S project director and coproject director (product
owners).

Table 1: Scrum teams for M4S.

Product
owner Product director, coproject director

Scrum master Team leader

Scrum team

Senior developers
Internees (graduate & undergraduate students)

Developers and experts (S/W and CS experts, engineering management experts, mining and software engineers, mentors,
and part-time developers) integrated in the team for special task like testing and quality assurance
Stakeholders and coordinators from industry, government institutions, and academia (analysts)

Sprint planning

Retrospective

�e sprint cycle

Sprint review

Story time Daily Scrum

Product backlog

Sprint backlog

Stories

Tasks

Figure 3: Typical sprint cycle.

Scientific Programming 7

Figure 5: Story cards used in the project.

Documentation, mannuals and training
2. CoD

2. CoD

4. Developers teams3. Team leads
1. PD

Design, Development & Deployment of system

1. Project director (PD)
3. Industry & govt. partners
4. So�ware, engineering management, and computer system experts

Development of management
modules

1. Unified Scrum teams with interchangeable roles
2. Team leads
4. Partners

Development of mapping &
modelling modules

1. Unified Scrum team with interchangeable roles

Planning

1. PD
3. Team leads
4. So�ware and management experts

Design of core framework

3. Team leads

Integration of modules

3. Govt. & industry partners

Optimization of
modules

5. So�ware experts

Testing and validation of
M4S

1. So�ware & mining experts
2. Partners
3. Government & industry partners

Deployment of
M4S

1. CoD
2. Leads & developers
3. Partners

2. Codirector (CoD)

1. PD 2. So�ware experts

3. Internees, UG & PG students 2. Team leads 3. Internees, UG & PG students
5. Developers team I 5. Developers team II4. Partners

2. Team leads

2. Team leads

1. PD

6. So�ware experts5. Internees4. Developers team

4. Developers3. Partners
1. PD

Maintainance and support
1. Team leads
2. Developers teams

Figure 4: Work breakdown structure and resource personnel for M4S project [https://www.openm4s.org].

8 Scientific Programming

https://www.openm4s.org

(b) /e finished features are accepted by project director
during the meeting.

(c) All the acceptance tests run for the stories in con-
cerned sprint.

(d) /e whole code has been passed through code
reviewing process.

(e) No critical bugs are found in the bug backlog.
(f) All finished story points for release are accepted.
(g) /e products are tested properly and have not found

any serious bugs.
(h) A successful backup is made.
(i) Most of the deployment documents are up to date.

3.1.4. Sprint Retrospective. In this meeting, M4S team
members reread the approach team workings, interrelations,
behavioral features, and refining methodological skills, so that
the ensuing sprint is more rapid, and so forth. Scrum team
and team leader (Scrum master) discussed three things: what
went well, what did not go well, and what improvements can
be considered in the next sprint. /e overall performance of
the team is evaluated (in the form of metrics) and im-
provement strategies (in the form of KPIs) are identified,
which are adjusted in our previous article. It is suggested that
team members should have to share technical skills and
knowledge, should keep in continuous communication with
product owner, and so on. /is meeting is held at the end of
each sprint and lasts approximately two to three hours.

3.1.5. Release Planning. A release planning meeting is a
continuous and uninterrupted process of describing,

prioritizing, and splitting the system features in a release
backlog./is involves the identification and commitment on
the following:

(a) Release goals.
(b) Prioritized set of user stories (features to be

developed).
(c) Rough estimates of user stories.
(d) Release dates.

/emain input steps that are held during this meeting in
M4S project are the following:

(a) Team members estimate the user stories, i.e., make
rough estimates of the relative size of the stories.

(b) Establish velocity, i.e., determine how many story
points are completed in each sprint; the details are
given in our other article.

(c) Compute forecast, i.e., date-based release is esti-
mated to complete (velocity× number of sprints)
story points. Functionality-based releases are esti-
mated to complete in (total story points÷ velocity)
sprints.

/e highest priority stories, whose sum is no more than
the number of story points (computed as mentioned above),
are selected. For a functionality-based release, if the esti-
mated completion date (computed above) is acceptable, all
the stories are selected for the release.

4. SOA and Scrum Integration

/is section analyzes the integration of Scrum, a software
development process, and SOA, an architectural style. SOA

Figure 6: First sprint of M4S project designed in MS excel.

Scientific Programming 9

introduces an organized and well-defined software design,
where change is supported through principles of agility
along with the application of design patterns and standards
to achieve the quality, efficiency, and productivity [9].
Service reusability and abstraction are applied for designing
flexible and adaptable systems [16]. SOA uses agility at
design level as new services are designed and old ones are
evolved on the underlying architecture and not by changing
the architecture itself. Scrum allows development in in-
crements, facilitating faster feedback among customer(s)
and development team. Scrum and SOA both support the
corporate process that promotes setting up aligned busi-
nesses and development strategies.

/e analysis of Scrum and SOA process in M4S project
development environment showed that Scrum and SOA use
similar principles to reach the joint goal of required software
development. Even though SOA runs in an organized and
well-controlled setup, it can benefit from agile Scrum at the
same time, without any unsuited overlapping. A clear
strategy to introduce change in increments should, however,
be designed.

Use of Scrum for traditional applications or conven-
tional architectures is also possible by describing require-
ments into a backlog and incremental deliverables for the
customers. Nevertheless, it is expected to get increased
developmental efforts and overall project cost [49].

To get proposed benefits and maximum output through
an agile process, it should be kept in mind that the un-
derlying software architecture and IT organization envi-
ronment also support the process in terms of responsiveness
and costs. Otherwise, the organization may end up getting
only minimal benefit from the agile process.

As already discussed, SOA and Scrum are approaches
that follow different directions. In the services develop-
ment scenario, SOA approach follows from top-down
approach (services are building in the top of SOA system),
while Scrum follows bottom-up approach (starting from
initial planning to prototype delivery) as using a process
development methodology. /e following question arises:
how are these different approaches compatible with each
other when employed together for a development process?
Another question is, does SOA also follow the agility just
like Scrum process? If the answer is yes, then how? Finally,
how could these two approaches be integrated with each
other to get benefits offered by both individually? /is
section refers to these questions and also discusses SOA
and Scrum metrics having commonalities. /e SOA and
Scrum typical developmental framework is depicted in
Figure 7.

Table 2 identifies most important metrics of SOA and
Scrum, which can provide more value to business and to
those whose aim is to use SOA and Scrum together in a
software development venture.

Some of Scrum and SOA metrics are used for common
purpose, which are integrated to be used for Scrum and
SOA combination. /eses metrics are integrated form
Scrum and SOA metrics which are used for the same
purpose but using different terminologies. /rough these
metrics, development process can be streamlined when a

proper measure is taken, which will provide more business
agility, flexibility, and compatibility for SOA and Scrum
environment.

/e “completed stories vs. planned stories” metric of
Scrum and “new service created and used as percentage of
total service” metric of SOA measure the production of
product using ratio and percentage as a scale device. /ey
both are used for service or work measurements but using
different terminologies. Also, the three metrics which are
team velocity, development time, and average development
time to develop a service measure the team progress in terms
of sprint and time required for a service which is to be
completed in a particular sprint within time. Due to com-
mon goals of these metrics, these could be combined into
team velocity metrics which will be considered as a metric
for SOA and Scrum integration. For quality measurement,
Scrum and SOA used separate metrics, but the purpose was
the same; therefore these two metrics can be used as quality
assurance metric for measuring the services’ quality using
Scrum process model.

/e team enthusiasm metric measures whether the team
members are happy and work eagerly or not. When the team
members are happy and work in a comfortable environment,
they will work willingly and will follow the free-planned
architecture policies and rules. /ey will work in a collab-
orative environment. /e communication between team
members will always be positive when they work eagerly due
to happiness.

5. Discussion of Compatibility of Scrum
and SOA

/e main purpose of SOA and Scrum is to make the whole
enterprise agile by using services as the building blocks for
software applications [50]. Also software development
through Scrum process model means to increase organi-
zation agility by bringing together Scrum practices that
could increase communication, collaboration, and feedback
[13, 14]. As already discussed, Scrum and SOA are generally
viewed with similar concerns, but still there exist some
diversities and incompatibility issues between the two ap-
proaches. /e compatibility and commonalities of these two
approaches are discussed in order to make a ground for the
integration of both development approaches.

5.1. Compatibility of Scrum and SOA. It may sound con-
fusing as to why there is a need to find similarities and
compatibilities among Scrum and SOA. Scrum and SOA are
two different paradigms as one is a process and the other is
an architectural style. Still, it is logical and relevant to find
compatibilities of both when used together, for example, to
develop an SOA based system using Scrum as a software
development methodology, while most SOA teams are
subconsciously aware of the way of design and development
of services. /e whole focus revolves around service design
policies. SOA’s nature inspires specific team makeup and
style of communication within teams according to policies
just like Scrum practices [15, 51]. It can be said that Scrum is

10 Scientific Programming

like the human hands that work using gloves, while SOA is
like that glove. It is understood that most of Scrum and SOA
principles are not in conflict with each other because they
both are adaptive approaches [2]. Meanwhile SOA with a
traditional approach, for example, waterfall model, becomes
predictive, as predictive methods completely depend on the
requirement analysis and careful planning at the beginning
of the cycle. Any change that is to be included will go
through a strict change control management and
prioritization.

/e agile model uses an adaptive approach where there is
no detailed planning and only clear future tasks are those
related to the characteristics that must be developed. /e
team adapts to dynamic changes in the product require-
ments. /e product is frequently tested, minimizing the risk
of major faults in the future. Interaction with the clients is
the strong point of agile methodology and open commu-
nication and minimal documentation are typical charac-
teristics of the agile development environment. Teams
collaborate closely and are often located in the same geo-
graphical space. /erefore, an agile model is better suited for
the rapid development of adaptive services in SOA projects
development. Application development through Scrum
without a clear and strong idea of the aims of the organi-
zation will be useless. SOA without a clear image of how
exactly to design and build using Scrum process model rules
is a waste of resource and time. Also using SOA, as a
pervasive strategy, for developing software application is
increasing, since it focuses on the ability to respond to
changes. Since adapting to changes is the indispensable

concept of SOA development as well as agile development, it
seems that using agile methodology is a natural fit to develop
SOA applications.

Hence, Scrum and SOA are about agility that can be used
together by applying a number of rules and principles, which
are not in conflict with each other. /is way they maintain
each other in balance.

5.2. Scrum and SOA Commonalities. As already discussed,
SOA is an architectural approach that focuses on the fact that
business organizations must be intelligent and could re-
spond to rapid changes in business. By developing services,
one can reach closer to the indefinable goal of software reuse.
In SOA approach, different teams build individual services
and then these services are integrated in an application.
[49, 52]. Meanwhile Scrum is an agile process model for
application development, which stresses on responding to
changes [8]. By introducing both technical and nontechnical
practices, teams are able to support businesses to become
agile. Scrum and SOA approaches are paired by nature and
share general objectives. In both cases, change is adaptable,
and organizations need to effectively cope with that change.
/erefore, Scrum could be a choice when building SOA
based applications.

5.3. Adversity of SOA and Scrum. Although Scrum and SOA
are compatible, still there are some major distinctions
among the two approaches, which should be understood and
handled while working with SOA and Scrum together in a

Bo
tto

m
-u

p
ap

pr
oa

ch

Services
designing

New
services

Existing
services

Business logic

Database

Underline architecture

To
p-

do
w

n
ap

pr
oa

ch

Pr
od

uc
t b

ac
kl

og
Sp

rin
t b

ac
kl

og
Sp

rin
t

W
or

ki
ng

 in
cr

em
en

t
of

 th
e s

oft
w

ar
e

24
 h 30

 d
ay

s

Figure 7: Typical developmental framework of SOA and Scrum.

Scientific Programming 11

project [53]. One of the leading causes is that the two ap-
proaches have different origins and diverse directions.
Scrum is traditionally small-project-based, although with
process improvement and experience of practitioners have
gain knowledge and learned experience to adapt the rules of
the Scrum manifesto can also be applied to large software
development projects. SOA is a top-down and divide-and-
conquer approach to applications development./e “divide”
part naturally results in low communication between teams.
/ere are three main areas where Scrum and SOA clash with
each other.

(1) SOA encourages that architecture be designed
upfront, while in Scrum community big design
upfront (BDUF) is considered as an antipattern.

(2) SOA encourages teams to split along functional lines,
while Scrum encourages cross-functional teams.

(3) SOA does not have any formal feedback and com-
munication among development teams, while Scrum

is focused on frequent feedback at both a technical
level and personal level.

When using SOA in a large setup, it may be complicated
to effect any change [54]. /ere may also be other issues
beyond software agility and cost, for example, lack of team
communication and discoverability of services. So instead we
should strive for closer cooperation and openness among
teams. Each team will make available an easy modifiable
version of its service for internal test. /e service team will
separate test data from service, so it survives even if the code is
messed up. /e service team will provide clean and simple
documentation on how to add new calls to the service stub.

6. Conclusion

Service-oriented architecture (SOA) allows reusing the
functionality of existing systems rather than building again
from scratch. /is feature of reusability in the SOA based

Table 2: Scrum and SOA common metrics.

Scrum SOA Commonalities

1 Completed stories versus
planned stories

Newly created & used as a percentage
of total services

/e main purpose of these two metrics is to measure the ratio and
percentage of completed work (services) developed in one sprint.

2 Team velocity Development time & average
development time to develop a service

/ese three metrics measure the team progress in terms of sprint
and time required for a service which is to be completed in a

particular sprint within time. So these metrics could be combined
into team velocity metric which will be considered as a metric for

SOA and Scrum integration.

3 Quality delivered to
customer Service quality assurance

/e aim of these metrics is to measure the service quality when
applying the Scrum development process model. /e quality is a
common feature for both metrics which can be combined to make a

metric for SOA and Scrum integrations measurements.

4 Team enthusiasm Violation of architecture policies

When the team members are happy and satisfied and work in
comfortable environment, then they will communicate with each
other collaboratively and in a friendly way. /ey will have full

attention and focus on product development through this product
quality will remain standard. Also they will willingly follow the
preplanned architecture policies and rules. When the Scrum team is
happy and in restful environment, then they can develop a large
number of services of high quality in small amount of time. So we
can say that the “team enthusiasm & communication” metrics of
Scrum and “violations of architecture policies” & “average time to
service development” metrics are dependent on each other; these
can have an effect on project when these are not concentrated.
/ese metrics are used to measure the behavior of how they follow

rules and policies during development environment.
5 Team communication Average time to service development

6 Retrospective process
improvement Service accessibility & usability

/ese two metrics can be integrated together to represent a
commonmetric for both Scrum and SOA. Because the retrospective
meeting is held in the last of all practices of Scrum in which the
overall activities could be revived, when the services are developed
in a sprint, a review meeting will be arranged in which we can test
the developed service functionality and usability of how to access

the service and how it works.

7 Technical debt
management

Reduction in the project and
maintenance expense

/e main purpose of these two metrics is to reduce the product
development cost through best management and utilization of
resources and team member’s skills. /ese two metrics can be

integrated in one common metric for combined use of Scrum and
SOA approaches.

12 Scientific Programming

applications maximizes economic benefits for organizations.
Scrum process model, on the other hand, tends to focus on
iterations and client suggestions to improve performance
and allow for the predictability of varying requirements. /e
study analyzes a basis for identifying commonalties and
compatibilities in Scrum and SOA process to achieve
maximum benefits of the organized Scrum management
process for SOA based applications development. /e study
establishes that most of the Scrum and SOA principles are
not in conflict with each other. Both Scrum and SOA are
about agility which can be applied using rules and principles
that do not clash with each other. To confirm this com-
patibility, the performance of an integrated Scrum and SOA
development environment can be tested through formal
KPIs based on the individual Scrum and SOA metrics
commonly used by Scrum and SOA practitioners in the
software development industry. /ese KPIs will provide a
formal approach to measure agility, complexity, efficiency,
and value of Scrum and SOA for those teams who want to
use the Scrum and SOA in an integrated environment.
Although the output of the study is complete, the researchers
identify some limitations which should be considered before
applying the results for an industrial Scrum and SOA in-
tegrated project.

7. Future Work

/e following are some of the important points for future
work based on the outcome of this research:

(1) To find out what will be the impact of Scrum and
SOA integration on the project performance if used
in a distributed environment.

(2) To define a formal process for the evaluation of
identified metrics and KPIs in nondistributed and
distributed Scrum and SOA integrated projects.

Data Availability

No data are available.

Conflicts of Interest

/e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] N. Bieberstein, M. Fiammante, K. Jones, S. K. Bose, and
R. Shah, Service-Oriented Architecture Compass: Business
Value, Planning, and Enterprise Roadmap, FT Press, Indi-
anapolis, IN, USA, 2006.

[2] M. Lankhorst, Agile Service Development: Combining Adap-
tive Methods and Flexible Solutions, Springer Science &
Business Media, Berlin, Germany, 2012.

[3] F. Rago, “Self-organizing business networks, SOA and soft-
ware maintenance,” in Proceedings of the International Multi
Conference of Engineers and Computer Scientists, Hong Kong,
China, March 2008.

[4] A. Manifesto, “Agile manifesto,” Haettu, vol. 14, p. 14, 2012.

[5] R. Kumar, P. Maheshwary, and T. Malche, “Inside agile family
software development methodologies,” International Journal
of Computer Sciences and Engineering, vol. 7, no. 6,
pp. 650–660, 2019.

[6] V. Jiménez, P. Afonso, and G. Fernandes, “Using agile project
management in the design and implementation of activity-
based costing systems,” Sustainability, vol. 12, no. 24, p. 10352,
2020.

[7] S. Mohanarajah and M. A. Jabar, “An improved adaptive
and dynamic hybrid agile methodology to enhance soft-
ware project success deliveries,” Journal of 5eoretical &
Applied Information Technology, vol. 75, no. 3, pp. 301–325,
2015.

[8] I. Zada, S. Shahzad, and S. Nazir, “Issues and implications of
scrum on global software development,” Bahria University
Journal of Information & Communication Technology, vol. 8,
no. 1, 2015.

[9] N. Naik and P. Jenkins, “Relax, it’s a game: utilising gami-
fication in learning agile scrum software development,” in
Proceedings of the 2019 IEEE Conference on Games (CoG),
IEEE, London, UK, August 2019.

[10] P. Kutschera and S. Schäfer, “Applying agile methods in
rapidly changing environments,” in Proceedings of the 1st RTO
Symposium on Technology for Evolutionary Software Devel-
opment, Citeseer, Bonn, Germany, September 2002.

[11] M. Awad, A Comparison between Agile and Traditional
Software Development Methodologies, University of Western
Australia, Perth, Australia, 2005.

[12] W. M. /eunissen, A. Boake, and D. G. Kourie, “In search of
the sweet spot: agile open collaborative corporate software
development,” ACM International Conference Proceeding
Series, vol. 150, pp. 268–277, 2005.

[13] S. W. Ambler,5e Agile Scaling Model (ASM): Adapting Agile
Methods for Complex Environments, IBM Corporation,
Armonk, NY, USA, 2009.

[14] S. W. Ambler and M. Lines, Disciplined Agile Delivery: A
Practitioner’s Guide to Agile Software Delivery in the Enter-
prise, IBM Press, Indianapolis, IN, USA, 2012.

[15] A. Bhagwat, “Role of beacon architecture in mitigating en-
terprise architecture challenges of the public sector,” in Ad-
vances in Government Enterprise Architecture, p. 502, IGI
Global, Hershey, PA, USA, 2008.

[16] H. Kerzner, Project Management: A Systems Approach to
Planning, Scheduling, and Controlling, John Wiley & Sons,
Hoboken, NJ, USA, 2017.

[17] D. Gabioud, E. László, G. Basso et al., D3.2–Overall System
Requirements and Functional Specifications, Scalable Energy
Management Infrastructure for Aggregation of Households
(SEMIAH) project, 2015.

[18] C. Verma, 5e Effects of Organizational Culture on Risk
Management during Software Development, /e British
University in Dubai (BUiD), Dubai, UAE, 2009.

[19] G. Borrego, A. L. Morán, R. R. Palacio, A. Vizcaı́no, and
F. O. Garcı́a, “Towards a reduction in architectural
knowledge vaporization during agile global software de-
velopment,” Information and Software Technology, vol. 112,
pp. 68–82, 2019.

[20] J. McGovern, O. Sims, A. Jain, andM. Little, Enterprise Service
Oriented Architectures: Concepts, Challenges, Recommenda-
tions, Springer Science & Business Media, Berlin, Germany,
2006.

[21] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile
software development methods: review and analysis,” 2017,
http://arxiv.org/abs/1709.08439.

Scientific Programming 13

http://arxiv.org/abs/1709.08439

[22] M. Singh, N. Chauhan, and R. Popli, “A technique for
transitioning of plan driven software development method to
distributed agile software development,” in Proceedings of the
International Conference on Innovative Computing & Com-
munications (ICICC) 2020, Delhi, India, February 2020.

[23] M. Perkusich, L. Chaves e Silva, A. Costa et al., “Intelligent
software engineering in the context of agile software devel-
opment: a systematic literature review,” Information and
Software Technology, vol. 119, p. 106241, 2020.

[24] S. Moyo and E. Mnkandla, “A novel lightweight solo software
development methodology with optimum security practices,”
IEEE Access, vol. 8, pp. 33735–33747, 2020.

[25] M. S. Nazare, Evaluation of Agile Software Development
Methodologies and its Applications, California State Poly-
technic University, Pomona, CA, USA, 2019.

[26] O. Philipp, K. Stefan, and S. Eric, “Model-based resource
analysis and synthesis of service-oriented automotive software
architectures,” in Proceedings of the 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), IEEE, Munich, Germany,
September 2019.

[27] O. Goubali, A. Idir, L. Poinel, L. Boulhic, D. Kesraoui, and
A. Bignon, “Service-oriented control-command components
for designing complex systems,” in Proceedings of the Inter-
national Conference on Human-Computer Interaction. 2019,
Springer, Orlando, FL, USA, July 2019.

[28] M. Rehan and G. A. Akyuz, “Enterprise application inte-
gration (EAI), service oriented architectures (SOA) and their
relevance to e-supply chain formation,” African Journal of
Business Management, vol. 4, no. 13, pp. 2604–2614, 2010.

[29] Y. Baghdadi, “A comparison framework for service-oriented
software engineering approaches,” International Journal of
Web Information Systems, vol. 9, no. 4, pp. 279–316, 2013.

[30] F. Kamoun, “/e convergence of business process manage-
ment and service oriented architecture,” Ubiquity, vol. 8,
no. 14, p. 1, 2007.

[31] Z. Dragičević and S. Bošnjak, “Agile architecture in the digital
era: trends and practices,” Strategic Management, vol. 24,
no. 2, pp. 12–33, 2019.

[32] J. T. F. Chaves, “Service-oriented architecture (SOA), agile
development methods and quality assurance (QA): a case
study,” Master’s /esis, University of Braśılia, Brasilia, Brazil,
2019.

[33] S. Abidi, M. Fakhri, M. Essafi, and H. Ben Ghazela, “A
comprehensive framework for evaluating web services com-
position methods,” International Journal of Web Information
Systems, vol. 15, no. 3, pp. 324–345, 2019.

[34] M. Fischer, F. Imgrund, C. Janiesch, and A. Winkelmann,
“Directions for future research on the integration of SOA,
BPM, and BRM,” Business Process Management Journal,
vol. 25, no. 7, pp. 1491–1519, 2019.

[35] A. Plugge, S. Nikou, and H. Bouwman, “/e revitalization of
service orientation: a business services model,” Business
Process Management Journal, 2020.

[36] J. Paramanathan, “Security of lightweight-and heavyweight-
IT in a high-tech hospital,” Master /esis, University of Oslo,
Oslo, Norway, 2019.

[37] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using
Scrum in distributed agile development: a multiple case
study,” in Proceedings of the 2009 Fourth IEEE International
Conference on Global Software Engineering, IEEE, Limerick,
Ireland, July 2009.

[38] M. Farsi, M. Badawy, N. Abdelmoneim, H. Arafat Ali, and
Y. Abdulazeem, “QoS-aware framework for performance

enhancement of SOA in enterprise IT environments,” IEEE
Access, vol. 7, pp. 107699–107715, 2019.

[39] J. Bloomberg, 5e Agile Architecture Revolution: How Cloud
Computing, Rest-Based SOA, and Mobile Computing Are
Changing Enterprise IT, John Wiley & Sons, Hoboken, NJ,
USA, 2013.

[40] C. Ardito, M. T. Baldassarre, D. Caivano, and R. Lanzilotti,
“Integrating a SCRUM-based process with human centred
design: an experience from an action research study,” in
Proceedings of the 2017 IEEE/ACM 5th International Work-
shop on Conducting Empirical Studies in Industry (CESI),
IEEE, Buenos Aires, Argentina, May 2017.

[41] H. Yang, A Quest to Solve Information System Agility Prob-
lems: A SaaS Experience, Victoria University of Wellington,
Wellington, New Zealand, 2018.

[42] A. Alhazmi and S. Huang, “Integrating design thinking into
scrum framework in the context of requirements engineering
management,” in Proceedings of the 2020 3rd International
Conference on Computer Science and Software Engineering,
Beijing, China, May 2020.

[43] S. Al-Saqqa, S. Sawalha, and H. AbdelNabi, “Agile software
development: methodologies and trends,” International
Journal of Interactive Mobile Technologies, vol. 14, no. 11,
p. 246, 2020.

[44] K. S. Rubin, Essential Scrum: A Practical Guide to the Most
Popular Agile Process, Addison-Wesley, Boston, MA, USA,
2012.

[45] K. Schwaber, Agile Project Management with Scrum, Micro-
soft Press, Redmond, WA, USA, 2004.

[46] G. R. King, “Using the agile development methodology and
applying best practice project management processes,”
Master’s /esis, Naval Postgraduate School, Monterey, CA,
USA, 2014.

[47] C. O’hEocha and K. Conboy, “/e role of the user story agile
practice in innovation,” in Proceedings of the International
Conference on Lean Enterprise Software and Systems, Springer,
Helsinki, Finland, October 2010.

[48] K. Beck, J. V. Sutherland, K. Schwaber et al., 5e Agile
Manifesto, 2001.

[49] A. Andriyanto and R. Doss, “Problems and solutions of
service architecture in small and medium enterprise com-
munities,” 2020, http://arxiv.org/abs/2004.10660.

[50] Z. Stojanović and A. Dahanayake, Service-Oriented Software
System Engineering: Challenges and Practices, IGI Global,
Hershey, PA, USA, 2005.

[51] X. Wang, Agile and Lean Service-Oriented Development:
Foundations, 5eory, and Practice: Foundations, 5eory, and
Practice, IGI Global, Hershey, PA, USA, 2012.

[52] S. Graham, G. Daniels, D. Davis et al., Building Web Services
with Java: Making Sense of XML, SOAP, WSDL, and UDDI,
SAMS Publishing, Indianapolis, IN, USA, 2004.

[53] A. S. Dadras, “IT agility through service-oriented architec-
ture” Ph.D. /esis, /e University of New South Wales,
Kensington, Australia, 2016.

[54] A. Kumar, R. Liu, and Z. Shan, “Is blockchain a silver bullet
for supply chain management? technical challenges and re-
search opportunities,” Decision Sciences, vol. 51, no. 1,
pp. 8–37, 2020.

14 Scientific Programming

http://arxiv.org/abs/2004.10660

Review Article
AReviewonMulticriteriaDecision Support Systemand Industrial
Internet of Things for Source Code Transformation

Qinxia Hao ,1,2 Shah Nazir ,3 Xiaoxu Gao,4 Li Ma,1 and Muhammad Ilyas5

1School of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
3Department of Computer Science, University of Swabi, Swabi, Pakistan
4School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
5Department of Computer Science and IT, University of Malakand, Malakand, Pakistan

Correspondence should be addressed to Qinxia Hao; hao_qinxia@sina.com and Shah Nazir; snshahnzr@gmail.com

Received 19 December 2020; Revised 30 December 2020; Accepted 7 January 2021; Published 13 January 2021

Academic Editor: Sikandar Ali

Copyright © 2021 Qinxia Hao et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

.e large scale increase of communication and number of devices in the Industrial Internet of .ings (IIoT) has rapidly enabled
practitioners tomake decisions based onmulticriteria. Multicriteria decision support systems (MCDSSs) play an important role in
decision-making for a particular situation based on several criteria. Making of decision based onmulticriteria is themain issues for
research community and practitioners of the IIoT. Several decision support systems (DSSs) are offered for making decisions which
have the potentiality to support the activities of the decision-making process. .e suggested study shows a review on the existing
decision support systems for the IIoT for source code transformation which will enable research community and practitioners of
the industry to use the existing methods, tools, approaches, and techniques and to provide novel solutions for the smooth industry
of Internet of .ings.

1. Introduction

.e expansion in the communications and increase of smart
devices in the Industrial Internet of .ings (IoT) has speedily
empowered practitioners and researchers for making decisions
according to several criteria. With the passage of time ad-
vancements in communication of diverse smart devices in
network, rise in population Sensors, actuators, IoT, and others,
size of data is increasing. Recent methodologies and ap-
proaches on the way to solving issues of the increase of data
into diverse natures including value, volume, variety, velocity,
and veracity, extracting significant information are challenging
issues, DSS is furnished with the control of MCDSS for
supporting the decisions maker in right decision in complex
situations. Based on the success of MCDSS, practitioners and
researcher are endeavouring to incorporate the control of
intelligent decision-making for the available alternative [1–3].

DSSs are used in diversity of domains and applications
for supporting the decision maker in taking right and

appropriate decision. .e DSS applications are evidenced in
different areas of life. Such applications include the DSS in
agriculture, business, energy, and so on [4–15]. Numerous
domains and applications have explored methods and
theories regarding decision-making for alternatives in-
cluding from simple to advance, intelligent, and smart
systems [16, 17]. DSS is a dynamic field of research where
studies find new approaches for evaluating various criteria,
proposing frameworks which are intelligent and robust for
improving the potentiality of DSS. Owing to the success of
DSS in the process of decision-making, researchers are
trying to provide more trustworthy, effective, and robust
mechanisms for solving the current as well as the upcoming
issues. MCDSS plays an important role in the process of
decision-making for a particular situation based on diverse
criteria. Decision-making based on multicriteria is the main
issue for practitioners and researchers in the area of IIoT.
Source code transformation is done for various purposes
such as to optimize the efficiency of the source code,

Hindawi
Scientific Programming
Volume 2021, Article ID 6661272, 9 pages
https://doi.org/10.1155/2021/6661272

mailto:hao_qinxia@sina.com
mailto:snshahnzr@gmail.com
https://orcid.org/0000-0003-4161-4984
https://orcid.org/0000-0003-0126-9944
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6661272

minimize the source code, and mostly to hide the identity of
source code. Various preservation techniques are used for
changing or modifying the source code [18–22]. Practi-
tioners are mostly embedding the watermark or digital
signature for protecting the identity and ownership of the
source code. But due to the advancement of information
technology, such watermark and digital signature can be
removed. Several DSSs are available for making decisions
which have the potentiality for supporting the activities of
decisions-making and provide solutions for it. A compre-
hensive review of the existing approaches should be pre-
sented for showing the approaches, tools, and techniques
practiced.

.e proposed study presents an overview on the avail-
able decision support systems for IIoT which will enable
practitioners and researchers to study the present methods,
tools, approaches, and techniques and to provide novel
solutions for the smooth industry of IoT..e study provides
a comprehensive report of the existing approaches of DSS
used for IIoT.

.e paper is organised as follows: Section 2 shows the
related work of the existing literature to the proposed study
and the approaches for Industrial Internet of .ings.

2. Approaches for IIoT

Diverse solutions of approaches, techniques, methods,
and tools of decision support systems are devised by
researchers to tackle different situations of IIoT. .ese
solutions consist of dealing the problems from simple to
more complex with various criteria of handling. Liu et al.
[23] proposed a framework of IIoT cloud-fog hybrid
network for data processing of industry. Based on the
experimental results, it was revealed that the planned
framework can reduce delay processing of industry data
effectively. Sahal et al. [24] studied the strong point and
flaws of open source technologies for big data and stream
processing to setup its applications for use cases of in-
dustry 4.0. Khan et al. [25] offered the idea of IIoT in a
novel manner for supporting readers to comprehend the
IIoT. Studies presented for research in the area of IIoT
are reported and shown. .e research highly spots the
empowering technologies for the IIoT and the issues to
the IIoT. Gulati and Kaur [26] analysed the main op-
portunities assimilated from the idea of IoT into industry
with suggesting reference architecture. A model of on-
tology was planned to propose the model from a semantic
perception. For the relationship management, a method
among industrial resources was offered.

Aceto et al. [27] elaborated the comprehensive ex-
planation of the main approaches and technologies used
in support of Healthcare 4.0, benefits, the key scenario
applications, multidisciplinary issues, and the deriva-
tions. Rehman et al. [28] examined the existing tech-
nologies of big data analytics, algorithms, and strategies
that can rapid the progress of perceptive IIoT framework.
Important factors from the literature including appli-
cations of industrial analytics, types of analytics, ana-
lytics techniques, analytics tools, requirements, and

sources of data were classified and characterised. .e
frameworks and case studies of the diverse accom-
plishments were reported that have turn a profit by BDA.
Ordieres-Meré et al. [29] examined the functional
properties and structure of cloud manufacturing and
planned a business intelligent architecture for empow-
ering dispensing pertinent KPIs recognized with in-
trigued process data with the support layer of
dependability. .e authors [30] offered the concept of
IoT data management, the literature associated with data
IoTmanagement, and the related way-out and identified
challenges of open research.

Alexopoulos et al. [31] proposed the architecture of
IIoT, and its detail of expansion to help the service of
industrial product system life cycle. Mobile phone services
are used as mobile computing in the IoTwith mobile apps
or through M-Health care system [32]. Younan et al. [33]
offered a research with a wide-ranging analysis of the
current issues in the literature and recommended the use
of technologies for allowing the data study and search in
upcoming IoT search engines. .ey offered two case
studies for showing encouraging development on intel-
ligence and smartness of IoT presentations based on the
incorporation of information and communication tech-
nologies. .e smart phone applications were presented for
the identification of patients’ diseases in the fields of
gynaecology and paediatrics [34]. Ge et al. [35] showed a
report on the big data technologies in diverse IoTdomains
for enabling and motivating distribution of knowledge
through the domains of IoT. .e similarity and difference
among the big data technology in dissimilar domain with
the technology reusability in the IoT domain were pre-
sented. Souza et al. [36] proposed digital twin architecture
design guidelines through the incorporation of existing
technologies and IIoT.

3. Analysis of the DSS for IIoT Based on
Popular Libraries

DSS plays a significant role in every field of life. With the
advancements of technology and information communi-
cation, decision-making on right and appropriate time is a
challenging issue for the industrial Internet of things. Taking
decision on the right and appropriate time can ultimately
lead the industry into success. Diverse approaches have been
practiced in order to provide solutions for different situa-
tions of the IIoT. Jiang [37] offered a method which initially
studies the developments of IoT, technologies associated
with smart cities and cloud computing and then emphasized
on technology of IoT and cloud computing. Urquhart and
Mcauley [38] offered a method for risks lying for IIoTdrawn
both on the perspectives of technical and regulatory.
Humayun et al. [39] showed a wide-ranging description of
the growth, prevention, and moderation of Ransomware in
the background of IoT. Dachyar et al. [40] presented a
comprehensive detail of the 26420 articles published in the
IoT field. Gierej [41] offered the concept of the business
model for corporations applying technologies of the IIoT.
.e model is established to support traditional companies in

2 Scientific Programming

the evolution of the digital market. Different applications of
DSS exist in various areas of research. Figure 1 depicts
applications of DSS with studies in different areas.

.e proposed study is endeavoured to identify the areas
of DSS from diverse perspectives including the type of
publications, year of publication, title of publication, and so
on. For the initial search process, the query (“multi-criteria”)
AND (“decision support system” OR “DSS”) AND (“In-
dustrial Internet of .ings” OR “IIoT”) was searched in the
most popular libraries including ScienceDirect, Springer,
IEEE, and ACM. Details of each library are given below. For
ScienceDirect, the following information was gathered.
Figure 2 represents the year-wise paper distributions with
the amount of papers published.

Figure 3 depicts publications titles with the total number
of publications in the given library. From the figure, it is clear
that the higher number of publications were done in the
journal of Cleaner Production than in the journal of Future
Generation Computer Systems followed by others.

Figure 4 presents the subject areas with the total number
of publications in given library.

Figure 5 presents article types with the total number of
articles. .e figure reveals that the higher number of pub-
lications is research articles.

Guo et al. [42] proposed an intelligent DSS on ground of
technology of data mining-applied enterprises for estab-
lishing of IoT-based smart DSS for the industry of
manufacturing. .e system supports the decision makers in
early decision-making. .e experimental results of the study
show that the proposed technique of mining technology can
analyse the data from various perspective of classifying,
clustering, and modelling huge volume of data and identify
the correlation between data. Mashal et al. [43] proposed a
hybrid approach of multicriteria decision-making which
relay on the analytic hierarchy process and simple additive

weight methods. .e results of the study show that the
application criterion is significantly important. .e reli-
ability, privacy, and availability were considered as the most
crucial criteria of the applications of IoT.

After searching the library of ScienceDirect, the library
of IEEE was searched in order to get significant information.
Kashef et al. [44] proposed a tool of decision support for
finding the cost optimum virtual machine settlement on
multiclouds. .e tool supports the model of cost estimation
and optimization algorithm. Various simulations were done
for examining the results achieved by the working of tool.
Wan and Liao [45] proposed a coupling information system
on ground of IoT and DSS exploring the research on the
complete framework and design level of integration system.
.e authors [46] attempted for looking at the requirement of
secure IIoT ecosystem in the standard of industry such as
OpenFog consortium and industrial Internet consortium.

2016
9% 2017

13%

2018
18%

2019
24%

2020
36%

2016
2017
2018

2019
2020

Figure 2: Years along with the total number of publications.

Agriculture
Business sector
Computer field

General problem solving
Law

Indistrial domain
Media evaluation

Medical field
People safety
Supply chain

Sustainable computing
Tranportation

University or company
Waste management

Water resource management
Geography

Energy sector
Disaster management

Information about DSS
Environmental side

Hydrogeological sciences
Refugees settlement

A
pp

lic
at

io
ns

 o
f D

SS

42 6 8 10 12 14 160
No. of studies

Figure 1: Application of the DSS and the studies published.

Scientific Programming 3

.e study discussed the future directions of research for
enhancing the privacy, security, and safety of the IIoT.
Different types of information were obtained in the library.
Figure 6 presents publication topics with the articles pub-
lished in the IEEE library.

Figure 7 presents publications type with the total number
of articles published in the given library. .e figure depicts
that the most number of paper types were conference fol-
lowed by journal and then others.

.e Springer library was part of the search process for
obtaining the associated information. Sha et al. [47] pro-
posed a system called IIoT-SIDefender which measures the

degree of security of sensitive information with the support
of the AHP and TOPSIS. Silva and Jardim-Goncalves [48]
proposed an approach for analysing a set of hardware
choices according to the user requirements based on mul-
ticriteria and advice on appropriate solution of hardware for
a particular situation. Figure 8 depicts the types of contents
with papers published.

Figure 9 represents the discipline covered by given li-
brary with total number of papers.

.e ACM library was considered as the relevant library
for searching the associated information. Most of the IIoT

Journal of Cleaner Production
Future Generation Computer Systems
Journal of Network and Computer…

Procedia Manufacturing
Technological Forecasting and Social…

Computers & Industrial Engineering
Computer Networks

Procedia CIPR
IFAC-PapersOnLine

Computers in Industry
Computer Communications
Procedia Computer Science

Journal of Systems and So�ware
Industrial Marketing Management

Sustainable Cities and Society
Renewable and Sustainable Energy…

International Journal of Information…
Information and So�ware Technology
International Journal of Production…

Expert Systems with Applications
Journal of Business Research

Advanced Engineering Informatics
Ad Hoc Networks

Automation in Construction
Robotics and Computer-Integrated…

Pu
bl

ic
at

io
n

tit
le

10 20 30 40 50 60 70 80 900
Papers

Figure 3: Title of publications with total number of publications.

Decision
sciences

12%

Business,
management,

and
accounting

9%

Social
sciences

8%

Energy
7%

Environmental
science

7%

Mathematics
3%

Agricultural
and

biological
sciences

2%

Psychology
2%

Engineering
26%

Computer
science

24%

Figure 4: Subject area with articles.

0
200
400
600
800

1000
1200
1400

Re
vi

ew
 ar

tic
les

Re
se

ar
ch

 ar
tic

les

En
cy

clo
pe

di
a

Bo
ok

 ch
ap

te
rs

Ed
ito

ria
ls

N
ew

s

Sh
or

t c
om

m
un

ic
at

io
ns

O
th

er

Figure 5: Type of articles with the total number of publications.

4 Scientific Programming

based on DSS approaches were considered as part of this
library. .e study proposed an intelligent approach for fa-
cilitating the daily life with the technology of IoT. .e
ecosystem based on the application of particular network
protocol for facilitating the transporting operation [49]. An
approach was proposed based on multisensing integrating
diagnosis system for real-time and accurate monitoring of
large-scale machinery. .e approach endeavours capturing

and modelling the temporal and spatial structure in se-
quential data and uses the mode-effective prediction of
machinery [50]. Different types of information were gath-
ered from the library of ACM. Figure 10 represents the total
number of publications in given years with the total number
of papers in the ACM library.

Figure 11 depicts the content types with the papers
published.

Internet of �ings
22%

Production engineering
computing

12%

Decision-making
11%

Decision support systems
7%

Cloud computing
5%

Data analysis
4%

Big data
3%

Learning (artificial
intelligence)

3%

Wireless
sensor

networks
3%

Internet
3%

Cyber-
physical systems

3%

Maintenance
engineering

3%

Manufacturing systems
3%

Security of data
3%

Factory
automation

2%

Intelligent
manufacturing

systems
2%

Manufacturing
industries

2%

Quality
control

2%
Agriculture

1%

Artificial
intelligence

1%

Condition
monitoring

1%
Data acquisition

1%

Manufacturing
processes

1%
Scheduling

1%

Support
vector

machines
1%

Internet of Things
Decision support systems
Big data
Internet
Manufacturing systems
Intelligent manufacturing systems
Agriculture
Data acquisition
Support vector machines

Production engineering computing
Cloud computing
Learning (artificial intelligence)
Cyber-physical systems
Security of data
Manufacturing industries
Artificial intelligence
Manufacturing processes

Decision-making
Data analysis
Wireless sensor networks
Maintenance engineering
Factory automation
Quality control
Condition monitoring
Scheduling

Figure 6: Publication topics along with total number of articles.

Conference Journals Early access
articles

Magzines Books

Publication type

0

10

20

30

40

50

60

70

N
um

be
r o

f p
ap

er
s

Figure 7: Article type with total number of publications.

Scientific Programming 5

Engineering
Computer Science

Business and Management
Environment

Economics
Energy

Geography
Mathematics

Psychology
Education

Life Sciences
Philosophy

Biomedicine
Chemistry

Medicine & Public Health
Political Science and International…

Social Sciences
Earth Sciences

Physics
Religious Studies

D
isc

ip
lin

e

20 40 60 80 100 120 140 1600
Papers

Figure 9: Discipline covered with articles.

48%

33%

18%

1%

Chapter
Conference paper

Article
Reference work entry

Figure 8: Content type with papers.

6 Scientific Programming

4. Conclusion

DSSs are playing a significant role in every field of life.
With innovation in technology and information com-
munications, decision-making on right and appropriate
time is a challenging issue for the industrial Internet of
things. Taking decision on the right and appropriate time
can ultimately lead the industry into success. Different
libraries were searched in order to identify the applica-
tions and domain areas of DSS in various fields of the IIoT.
Based on the search process, numerous studies were
identified associated with the DSS based on multicriteria
in the area of IIoT. .e study has exploited the power of
DSS as an efficient alternative for solving complex
problems of the IIoT based on various criteria for source
code transformation. .e study has analysed the searched
papers from different perspectives of the contributions
achieved by researchers in the field. .e presented study
provides beneficial understanding to the readers and
experts of the domain to know the current status of re-
search in order to provide more intelligent and effective
solutions to cope with more complex decision-making
issues in the field of IIoT.

Data Availability

No data are available.

Conflicts of Interest

.e authors declare no conflicts of interest.

Acknowledgments

.is work was sponsored in part by Youth Program of
National Natural Science Foundation of China (51804248)
and Special Project of Education Department of Shaanxi
Province, China (14JK1457).

References

[1] M. Jemmali, M. Alharbi, and L. K. B. Melhim, “Intelligent
decision-making algorithm for supplier evaluation based on
multi-criteria preferences,” in Proceedings of the 2018 1st
International Conference on Computer Applications & In-
formation Security (ICCAIS), pp. 1–5, IEEE, Riyadh, Saudi
Arabia, April 2018.

[2] I. Aouadni and A. Rebai, “Decision support system based on
genetic algorithm and multi-criteria satisfaction analysis
(MUSA) method for measuring job satisfaction,” Annals of
Operations Research, vol. 256, no. 1, pp. 3–20, 2017.

[3] S. Safdar, S. Zafar, N. Zafar, and N. F. Khan, “Machine
learning based decision support systems (DSS) for heart
disease diagnosis: a review,” Artificial Intelligence Review,
vol. 50, no. 4, pp. 597–623, 2018.

[4] I. Petkovics, J. Simon, A. Petkovics, and Z. Covic, “Selection of
unmanned aerial vehicle for precision agriculture with multi-
criteria decision making algorithm,” in Proceedings of the 2017
IEEE 15th International Symposium on Intelligent Systems and
Informatics (SISY), pp. 000151–000156, IEEE, Subotica, Ser-
bia, September 2017.

[5] C. Fleig, D. Augenstein, and A. Maedche, “Designing a
process mining-enabled decision support system for business
process standardization in ERP implementation projects,”
Business Process Management Forum, Springer, Cham,
Switzerland, pp. 228–244, 2018.

[6] A. Schwenk-Ferrero and A. Andrianov, “Nuclear waste
management decision-making support with MCDA,” Science
and Technology of Nuclear Installations, vol. 2017, Article ID
9029406, 20 pages, 2017.

[7] T. Ahmad, Y. Ma, M. Yahya, B. Ahmad, and S. Nazir, “Object
detection through modified YOLO neural network,” Scientific
Programming, vol. 2020, Article ID 8403262, 10 pages, 2020.

[8] Hanif-Ur-Rahman, H. K. Bamma, S. Nazir, S. Shahzad, and
T. Hodosi, “A sourcing decision model for application
maintenance services,” in Proceedings of the 3rd International
Conference on Science in Information Technology (ICSITech),
October 2017.

[9] A. Khan, L. Jian Ping, H. Amin ul et al., “Partial observer
decision process model for crane-robot action,” Scientific
Programming, vol. 2020, Article ID 6349342, 14 pages, 2020.

[10] J. Li, A. Ullah, L. Jun et al., “Attributes based decision making
for selection of requirements elicitation techniques using the
analytic network process,” Mathematical Problems in Engi-
neering, vol. 2020, Article ID 2156023, 13 pages, 2020.

[11] S. Nazir, S. Ali, M. Yang, and Q. Xu, “Deep learning algo-
rithms and multi-criteria decision making used in big data: a

2016 2017 2018 2019 2020
Year

0

2

4

6

8

10

12

N
um

be
r o

f p
ap

er

Figure 10: Publications based on the year.

85%

12%

3%

Research article
Tutorial
Extended abstract

Figure 11: Content types along with the number of papers.

Scientific Programming 7

systematic literature review,” Complexity, vol. 2020, Article ID
2836064, 18 pages, 2020.

[12] S. Nazir, S. Shahzad, S. Mahfooz, and M. N. Jan, “Fuzzy logic
based decision support system for component security
evaluation,” International Arab Journal of Information and
Technology, vol. 15, no. 2, pp. 1–9, 2015.

[13] S. Nazir, S. Shahzad, A. Ullah, and A. Hussain, “Identification
and analysis of project attributes affecting the decision of
requirement elicitation technique,” in Proceedings of theNa-
tional Graduate Conference, Islamabad, Pakistan, March 2017.

[14] H. U. Rehman, M. Khan, Palwasha, H. U. Khan, and S. Nazir,
“Analyzing factors that influence offshore outsourcing deci-
sion of application maintenance,” IEEE Access, vol. 8, 2020.

[15] J. Zhang, S. Nazir, A. Huang, and A. Alharbi, “Multicriteria
decision and machine learning algorithms for component
security evaluation: library-based overview,” Security and
Communication Networks, vol. 2020, Article ID 8886877,
14 pages, 2020.

[16] L. S. R. Supriadi and L. Sui Pheng, “Knowledge based decision
support system (KBDSS),” in Business Continuity Manage-
ment in Construction, pp. 155–174, Springer, Singapore, 2018.

[17] A. Alaeddini and K. G.Murty, “DSS (decision support system)
for allocating appointment times to calling patients at a
medical facility,” in Case Studies in Operations Research:
Applications of Optimal Decision Making, K. G. Murty, Ed.,
Springer, New York, NY, USA, pp. 83–109, 2015.

[18] M. Li, S. Nazir, H. U. Khan, S. Shahzad, and R. Amin,
“Modelling features-based birthmarks for security of end-to-
end communication system,” Security and Communication
Networks, vol. 2020, Article ID 8852124, 9 pages, 2020.

[19] S. Nazir, S. Shahzad, R. B. Atan, and H. Farman, “Estimation
of software features based birthmark,” Cluster Compu-
ting—<e Journal of Networks Software Tools and Applica-
tions, vol. 21, no. 1, pp. 1–14, 2017.

[20] S. Nazir, S. Shahzad, S. A. Khan, N. Binti Alias, and S. Anwar,
“A novel rules based approach for estimating software
birthmark,”<e Scientific World Journal, vol. 2015, Article ID
1579390, 8 pages, 2015.

[21] S. Nazir, S. Shahzad, and N. Mukhtar, “Software birthmark
design and estimation: a systematic literature review,” Ara-
bian Journal for Science and Engineering, vol. 44, no. 4,
p. 3905, 2019.

[22] S. Nazir, S. Shahzad, R. Wirza et al., “Birthmark based
identification of software piracy using Haar wavelet,”
Mathematics and Computers in Simulation, vol. 166,
pp. 144–154, 2019.

[23] W. Liu, G. Huang, A. Zheng, and J. Liu, “Research on the
optimization of IIoT data processing latency,” Computer
Communications, vol. 151, pp. 290–298, 2020.

[24] R. Sahal, J. G. Breslin, and M. I. Ali, “Big data and stream
processing platforms for Industry 4.0 requirements mapping
for a predictive maintenance use case,” Journal of
Manufacturing Systems, vol. 54, pp. 138–151, 2020.

[25] W. Z. Khan, M. H. Rehman, H. M. Zangoti, M. K. Afzal,
N. Armi, and K. Salah, “Industrial internet of things: recent
advances, enabling technologies and open challenges,”
Computers & Electrical Engineering, vol. 81, p. 106522, 2020.

[26] N. Gulati and P. D. Kaur, “Towards socially enabled internet
of industrial things: architecture, semantic model and rela-
tionship management,” Ad Hoc Networks, vol. 91, p. 101869,
2019.

[27] G. Aceto, V. Persico, and A. Pescapé, “Industry 4.0 and health:
internet of things, big data, and cloud computing for

healthcare 4.0,” Journal of Industrial Information Integration,
vol. 18, p. 100129, 2020.

[28] M. H. Rehman, I. Yaqoob, K. Salah, M. Imran,
P. P. Jayaraman, and C. Perera, “.e role of big data analytics
in industrial internet of things,” Future Generation Computer
Systems, vol. 99, pp. 247–259, 2019.

[29] J. Ordieres-Meré, J. Villalba-Dı́ez, and X. Zheng, “Challenges
and opportunities for publishing IIoT data in manufacturing
as a service business,” Procedia Manufacturing, vol. 39,
pp. 185–193, 2019.

[30] B. Diene, J. J. P. C. Rodrigues, O. Diallo, E. L. H. M. Ndoye,
and V. V. Korotaev, “Data management techniques for in-
ternet of things,” Mechanical Systems and Signal Processing,
vol. 138, p. 106564, 2020.

[31] K. Alexopoulos, S. Koukas, N. Boli, and D. Mourtzis, “Ar-
chitecture and development of an industrial internet of things
framework for realizing services in industrial product service
systems,” Procedia CIRP, vol. 72, pp. 880–885, 2018.

[32] S. H. Almotiri, M. A. Khan, and M. A. Alghamdi, “Mobile
health (m-health) system in the context of IoT,” in Proceeding
of the 2016 IEEE 4th International Conference on Future In-
ternet of <ings and CloudWorkshops (FiCloudW), pp. 39–42,
IEEE, Vienna, Austria, August 2016.

[33] M. Younan, E. H. Houssein, M. Elhoseny, and A. A. Ali,
“Challenges and recommended technologies for the industrial
internet of things: a comprehensive review,” Measurement,
vol. 151, p. 107198, 2020.

[34] Y. Karaca, M. Moonis, Y.-D. Zhang, and C. Gezgez, “Mobile
cloud computing based stroke healthcare system,” Interna-
tional Journal of Information Management, vol. 45, pp. 250–
261, 2019.

[35] M. Ge, H. Bangui, and B. Buhnova, “Big data for internet of
things: a survey,” Future Generation Computer Systems,
vol. 87, pp. 601–614, 2018.

[36] V. Souza, R. Cruz, W. Silva, S. Lins, and V. Lucena, “A digital
twin architecture based on the industrial internet of things
technologies,” in Proceedings of the 2019 IEEE International
Conference on Consumer Electronics (ICCE), pp. 1-2, Las
Vegas, NV, USA, Janaury 2019.

[37] D. Jiang, “.e construction of smart city information system
based on the Internet of .ings and cloud computing,”
Computer Communications, vol. 150, pp. 158–166, 2020.

[38] L. Urquhart and D. McAuley, “Avoiding the internet of in-
secure industrial things,” Computer Law & Security Review,
vol. 34, no. 3, pp. 450–466, 2018.

[39] M. Humayun, N. Z. Jhanjhi, A. Alsayat, and V. Ponnusamy,
“Internet of things and ransomware: evolution, mitigation
and prevention,” Egyptian Informatics Journal, In press.

[40] M. Dachyar, T. Y. M. Zagloel, and L. R. Saragih, “Knowledge
growth and development: internet of things (IoT) research,
2006–2018,” Heliyon, vol. 5, no. 8, p. e02264, 2019.

[41] S. Gierej, “.e framework of business model in the context of
industrial internet of things,” Procedia Engineering, vol. 182,
pp. 206–212, 2017.

[42] Y. Guo, N. Wang, Z.-Y. Xu, and K. Wu, “.e internet of
things-based decision support system for information pro-
cessing in intelligent manufacturing using data mining
technology,” Mechanical Systems and Signal Processing,
vol. 142, p. 106630, 2020.

[43] I. Mashal, O. Alsaryrah, T.-Y. Chung, and F.-C. Yuan, “A
multi-criteria analysis for an internet of things application
recommendation system,” Technology in Society, vol. 60,
p. 101216, 2020.

8 Scientific Programming

[44] M. M. Kashef, H. Yoon, M. Keshavarz, and J. Hwang, “De-
cision support tool for IoT service providers for utilization of
multi clouds,” in Proceedings of the 2016 18th International
Conference on Advanced Communication Technology
(ICACT), pp. 91–96, Pyeongchang, South Korea, February
2016.

[45] H. Wan and L. Liao, “A coupling system design based on the
internet of things and intelligent decision support system in
industrial enterprises,” in Proceedings of the 2016 3rd Inter-
national Conference on Information Science and Control
Engineering (ICISCE), pp. 753–757, Beijing, China, July 2016.

[46] T. Gebremichael, L. P. I. Ledwaba, M. H. Eldefrawy et al.,
“Security and privacy in the industrial internet of things:
current standards and future challenges,” IEEE Access, vol. 8,
pp. 152351–152366, 2020.

[47] L. Sha, F. Xiao, W. Chen, and J. Sun, “IIoT-SIDefender:
detecting and defense against the sensitive information
leakage in industry IoT,” World Wide Web, vol. 21, no. 1,
pp. 59–88, 2018.

[48] E. M. Silva and R. Jardim-Goncalves, “Multi-criteria analysis
and decision methodology for the selection of internet-of-
things hardware platforms,” in Proceedings of the Doctoral
Conference on Computing, Electrical and Industrial Systems,
pp. 111–121, Springer, Costa de Caparica, Portugal, May 2017.

[49] F. Z. Chafi and Y. Fakhri, “.e integration of multi agent
systemwithin the internet of things: the use of SigFox shield as
a network,” in Proceedings of the 3rd International Conference
on Smart City Applications, pp. 1–8, Tetouan, Morocco,
October 2018.

[50] H. Liu, “A multi-sensing collaborative diagnosis system for
the reliability of industrial IoT,” in Proceedings of the 2019
International Conference on Embedded Wireless Systems and
Networks, pp. 391–400, Beijing, China, 2019.

Scientific Programming 9

Research Article
Software Piracy Awareness, Policy, and User Perspective in
Educational Institutions

Zitian Liao ,1,2 Shah Nazir ,3 Anwar Hussain,3 Habib Ullah Khan ,4

and Muhammad Shafiq5

1University of Sydney, School of Architecture Design & Planning, New South Wales 2006, Sydney, UK
2School of Electronic Engineering, Xidian University, Xi’an 710126, China
3Department of Computer Science, University of Swabi, Swabi, Pakistan
4Department of Accounting & Information Systems College of Business & Economics Qatar, Qatar University, Doha, Qatar
5Cyberspace Institute of Advance Technology, Guangzhou University, Guangzhou, China

Correspondence should be addressed to Zitian Liao; zitianliao@sina.com

Received 10 October 2020; Revised 17 November 2020; Accepted 27 November 2020; Published 11 December 2020

Academic Editor: Sikandar Ali

Copyright © 2020 Zitian Liao et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Software theft and piracy are rapidly ever-increasing problems of the present-day software industry. Software piracy is the illegal
copy and use of software in a way other than that is officially documented by exclusive rights of the developer in the form of an
individual or organization as described in the relevant sale agreement (license). Owing to the evolution in software development
and Internet, software piracy has become a main concern for many software companies. Software companies are confronted with
extremely high losses due to the piracy of software. Pirates achieve a lot of money by doing business with pirated software. General
end-users of the software are not aware of this serious crime and of the legal consequences of breaking the law. Even most of the
time, end-users and consumers think that it is none of their concern and not an important issue for them. Although, in reality, if an
organization is working with pirated software, there is a risk of failure of the software, and it might put their organization at risk as
pirated software does not receive any support from the development organization.(is ultimately puts the consumer organization
in huge financial loss. Due to these reasons, software piracy has turned out to be a major concern, more emergent due to the
extravagant development of the software industry and the availability of software(s) on the Internet. In this paper, we analyzed and
identified the ratio of software piracy, awareness regarding piracy, and the policy of the licensed software provided. Based on the
results of the study, some suggestions are proposed by which the level of piracy can be reduced.

1. Introduction

Software piracy is the illegal copying, installation, use,
distribution, or sale of software in any way other than that is
expressed in the license agreement. (e software industry is
facing huge financial losses due to the piracy of software.
Piracy of software is performed by end-users as well as by the
dealers. It causes serious problems that hinder the success of
the software industry nationwide and globally. (e pirates
gain effortless benefits from the sale of pirated software and
this ultimately affects the business of the software industry.
Piracy of software is the legal consequences of breaking the
law. Piracy is performed in different ways, such as hard-disk

loading, soft lifting, counterfeit goods, rental software, and
bulletin board piracy [1–4]. (e original licensed software
offers a number of high valued benefits to the customers and
users, like upgrades are available, assurance of quality and
reliability, technical support, manuals or documentation, no
exposure of your network to security breaches, while the
pirated software fails to do so [5]. An organization with the
use of pirated software might put them at a huge financial
loss, as they are using pirated software that does not provide
the mentioned benefits.

Researchers have been attempting to develop techniques
to easily detect, prevent, and identify piracy performed in the
software [6–10]. Still, there is a shortage of knowledge about

Hindawi
Scientific Programming
Volume 2020, Article ID 6647819, 14 pages
https://doi.org/10.1155/2020/6647819

mailto:zitianliao@sina.com
https://orcid.org/0000-0001-6672-0412
https://orcid.org/0000-0003-0126-9944
https://orcid.org/0000-0001-8373-2781
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6647819

the intricate details of piracy and methodologies, which
could aid to notice software piracy in a resourceful way.
Along with this, there is a need to create social awareness
about the piracy of software and to create a culture of being
honest by using only original and legal software. Piracy of
software is an observable fact that causes problems for all
stakeholders involved, from owners to developers, distrib-
utors, vendors, to end-users as well. Organizations and end-
users are to be disheartened from consuming pirated soft-
ware which is not only the theft of rights of the owners and
developers of the software, but it might also put them in
serious difficulty and high losses. With this kind of social
awareness, along with the technical protection against pi-
racy, there will be a gradual decrease in the use of pirated
software which will ultimately result in bringing lost profits
back to the software industry and the industries will work in
a better way.

(e cognition process behind software piracy and one of
themain reasons for piracy is the psychological factor for not
considering it as a crime, which is ultimately a threat to the
software industry. So, in order to reduce the piracy of
software, it is more important to address that, what are the
cognitive reasons or psychological factors behind it. In order
to tackle these limitations, the proposed study identifies the
main factors of piracy, and then based on these factors, some
suggestions are proposed.

(e contribution of this paper is to find the existing level of
software piracy performed by customers and users, awareness
of the piracy, policy of the licensed software, and user per-
spectives in educational institutions of Pakistan. Furthermore,
the main contribution of this paper is given below:

(i) To identify the level of existing software piracy in
educational institutions done by users

(ii) To quantify the existing awareness regarding the use
of illegal software

(iii) To find the level of awareness of the policy regarding
original and licensed software

(iv) To identify the reasons behind software piracy in
academia

(v) To propose suggestions/solution for how to reduce
software piracy based on the above discussion

Based on the experimental results, some suggestions are
proposed by which the level of piracy can be reduced. (ese
suggestions include “suitable methods of payment for
software purchasing,” “availability of Internet in academic
institutions,” “conducting seminars on software piracy in
academia,” “awareness of piracy,” “HEC visits for ensuring
the implementation of their policies in the academia,”
“decreasing software costs and licenses prices,” and
“implementation of software policy in academia.”

(e remainder of the paper is organized as follows.
Section 2 represents related work to software piracy issues
and their possible solutions. Section 3 shows the details of
the proposed methodology carried out. Section 4 gives re-
sults and discussions of the proposed methodology. Section
5 mentions the conclusions of this research.

2. Related Work

(e software industry and community of researchers have
been attempting to develop techniques that can easily detect,
prevent, and identify piracy in software. Several diverse
techniques are available for the same, but still, there is a lack
of knowledge about piracy and the methodologies used for
piracy to detect software piracy in an efficient way. Apart
from this, there is a need to create awareness for avoiding
software piracy and to develop a tradition of being honest by
using only original, legal, and licensed software.

(e existing methodologies provide enough details for
piracy detection and avoidance. Peukert et al. [11] have
evaluated the heterogeneous effects of online copyright
enforcement. Robertson et al. [12] analyzed the patterns of
software piracy for the 20 nations of Latin America. Gan and
Koh [2] used a survey technique at the three universities of
Singapore for examining the perception of software piracy
and to discover the mentioned factors. Mumtaz et al. [13]
developed a methodology for piracy protection of secure
electronic software distribution.

Mo et al. [14] investigated the opportunity and the
setting for their revenue sharing by online content piracy
monitoring for Internet service providers and content
providers. (ey further investigated the ISP’s piracy mon-
itoring cost level, the value of contents, and control provider
access fee. Lowry et al. [15] conducted a meta-analysis of the
literature and analyzed 257 studies with 126,622 participants
for investigating the main constructs and covariates. (eir
meta-analysis results suggest four key sets of factors max-
imize predictions which are outcome expectations, social
learning, self-efficacy, and moral disengagement. Kumar
et al. [16] presented a secure split test with functional test
capability to mitigate the counterfeits coming from
untrusted foundries.

Huang et al. [17] presented a study that considers a single
supplier who may sell pirated goods through two inde-
pendent and different retails channels (traditional and
digital). A Stackelberg game is utilized to determine the
optimal gain sharing ratio and the equilibrium price for all
channel members. (eir study found that an increase in
piracy would force retailers to compete in a smaller market
and lead to a decrease in profits for members of the channel.
Chang et al. [18] presented a study that examines the factor
effects of software piracy at the country level. From their
study, it was found that economic development, trade,
education, freedom, regulatory protection, and computer
penetration all drastically affect the level of software piracy
within the country.

Rasch and Wenzel [19] worked on a two-sided market
setting of the impact of software piracy, which includes
software platforms that attract developers and users to
maximize their profits. Banerjee [20] analyzed the impact of
instantaneous increase in piracy and network externalities
on research and development investment. Siponen et al. [21]
developed a model that explains the effects of neutralization
techniques on the intention of software piracy. (e results
showed that appeal to higher loyalties and condemn the

2 Scientific Programming

condemners highly predict the intention of software piracy.
Andrés and Goel [22] examine the effect of software piracy
onmedium term growth using cross-country data from 2000
to 2007. (eir findings suggest that piracy of software re-
duces economic growth over the medium term. Kariithi [23]
describes the related work to music, film, and piracy of
software around the globe, with the attention to data sources,
research scope, and generic findings. (e author finds that
the absence of methodologies utilizing critical theory in this
broad literature has constricted the world view of piracy.

Martı´nez-Sanchez [24] analyzed the government and
incumbent role in preventing the pirate entry. (e frame-
work used a sequential duopoly model of vertical product
differentiation with price competition. (e results show that
both the government and the incumbent have amajor role in
preventing pirate entry. Al-Rafee and Rouibah [25] reports
experiments to prevent digital piracy in Arab and Middle
Eastern countries.(e experimental results showed that only
the religion and awareness treatments contributed to
turning down piracy. Nill and Shultz [26] provided an
overview of international legal, systematic, and economic
considerations and shared an analysis of the drivers of
software piracy consumers. (e authors discussed strategic
considerations and a decision-making typology is intro-
duced which helps legitimate companies to plan strategies in
the face of widespread piracy. Peitz and Waelbroeck [27]
provided a critical review of the theoretical literature which
addresses the economic consequences of end-user copying.

Hamade [28] described the legal and political aspects of
software piracy in general and specifically in the Arab
world. Banerjee [29] used a framework to address the issue
of public policy regarding anticommercial piracy. Bae and
Choi [30] developed a model of software piracy to analyze
the short-run effects of piracy on the usage of software and
the long-run effects of development incentives. Fung and
Lakhani [31] analyzed the potential end-user copyright
violations linked with peer to peer file sharing and anti-
piracy efforts. Png [32] concluded that the consultant and
methodology change in Business Software Alliance in 2002-
2003 had systematic effects on published piracy rates. (e
decrease trend rate of piracy falls from 2.0% to 1.1% points
per year. (e proposed research is an endeavor toward
identifying the level of existing software piracy in educa-
tional institutions done by users, finding the level of how
much information is there about awareness of software
piracy, finding the level of awareness of the policy re-
garding original and licensed software, identifying the
reasons behind software piracy in academia, and proposing
suggestions/solution for how to reduce software piracy
based on the above discussions.

3. Proposed Approach

(e following sections discuss the proposed approach and
experimental study.

3.1. Software Piracy. (e piracy of software causes serious
problems that hinder the success of the software industry in

the national and international markets. (e comparison of
original licensed software with pirated software shows what
benefits the user gets. (e original software offers a number
of high valued benefits to the customers, including assurance
of software quality, availability of upgrades, technical and
manual documentation, and less bandwidth consumption.
On the other hand, pirated software fails to do so. (ere
might be a risk of failure of the system if an organization was
using pirated software, and pirated software might put the
organization at the risk of huge financial loss. Some software
is available in the form of open-source. But this open-source
software is mostly licensed and needs a proper license
agreement. Pirates are doing piracy of such software, which
ultimately gives loss to the owners [9].

3.2. Protocol of the Study and Experimental Setup. (e
proposed study was conducted to identify the impact of
software piracy in educational institutions. (e first step of
the study is to find the current level of piracy, its awareness,
and the reasons behind why people are doing piracy. (is
paper addresses the following research questions which are
based on a study of the literature and market:

(a) Is the software piracy rate high in academia?
(b) Are people aware of the software piracy issue?
(c) Why do people commit piracy and what are themain

reasons behind this issue?
(d) What could be the possible solutions to reduce

software piracy in academic institutions?

(e study has the following research hypotheses:

(i) Null hypothesis�Ho: piracy rate is not high in
educational institutions

(ii) Alternative hypothesis�H1: piracy rate is high in
educational institutions

(iii) Null hypothesis�Ho: people do have much
awareness of software piracy

(iv) Alternative hypothesis�H2: people do not have
much awareness of software piracy

(v) Null hypothesis�Ho: academic institutions are
fully utilizing the Higher Education Commission
(HEC) software facilities for its employees

(vi) Alternative hypothesis�H3: academic institutions
are not fully utilizing HEC software facilities for
their employees

Rejection of the null hypotheses will lead to the ac-
ceptance of our alternative hypotheses which will validate
the need and relevance of the conducted study. Figure 1
shows the protocol followed in the proposed study.

In this context, a survey has been conducted through a
questionnaire consisting of total of 38 questions related to
software piracy. Questions are divided into five sections,
which are shown in Table 1.

For conducting a survey of proposed research work, a
questionnaire was designed and sent to the faculty members,
students, and administrative staff of different universities of

Scientific Programming 3

So�ware piracy awareness, policy, and user perspective in
educational institutions

Formulation of research problem

Research framework

Research methodology

Research
questions

Research
hypothesis

Research
purpose

Research
objectives

Research
variables

Demographic
information

Existing
so�ware
piracy

Awareness of
so�ware
piracy

HECso�ware
policy

Piracy(user
perspective)

Data collection

Conclusions

Demographic
information

Existing so�ware
piracy

Awareness of
so�ware piracy HEC so�ware policy Piracy (user

perspective)

Age
Gender
Profession

HEC provide so�ware facility
Respondents being facilitated by free so�ware
Availing licensed so�ware from their institution
Participants wants seminar on so�ware piracy

So�ware piracy with cost factor
Piracy can be reduced by lower so�ware cost
Lack of awareness
Alternative increasing awareness
Easy payment methods
Piracy save significant amount of money
So�ware are expensive
Consider it normal Cheap
Economic factor of so�ware agreed
Do not know
Disagree
Unfamiliarity and unavailability of purchasing
Favor of so�ware piracy
Warning messages of fake with no too o�en
Warning messages of fake with very o�en
Warning messages of fake with do not at al
Feeling bad a�er doing piracy
Find it easy activation codes on internet
Registration from internet is the easiest way
Low probability of getting caught during piracy
So�ware policy to be implemented in institutions

Use pirated so�ware
Activation by online payment
Buying CD/DVD
Cracking the so�ware
Online facility to buy the so�ware
Piracy of more than 6 so�ware products
Piracy of 4-6 so�ware products
Piracy of 1-3 so�ware products
Participants do piracy

Importance to piracy
Aware of the demerits of piracy
Knowledge about the penalties of piracy
Functionalities are different
Participant prefer to use the so�ware
Participant did not attend any seminar on piracy
Caught/warned
Participant do not care about warning
Sharing so�ware is not a good act
Participants are aware of the side effects

Figure 1: Protocol of the proposed study.

4 Scientific Programming

the country. A total of 110 responses were received. (ese
responses were analyzed using SPSS software.

4. Results and Discussion

(e questionnaire was sent to more than 500 hundred
people including faculty members, students, and adminis-
trative staff of different universities. (ey were contacted
through their official e-mail. A total of 110 responses were
received from 37 universities in Pakistan. (e data has been
analyzed bymeans of the SPSS tool to determine whether the
results had statistically significant differences. For the tests,
we used a confidence interval of 90% and a significance level
of 0.05. Null hypotheses Ho became rejected when the p

values were less than 0.05. Summary of the test for the
existing level of piracy, piracy awareness, utilization of HEC
software facilities, and reasons are provided in the following
sections.

It is important to note that SPSS test summary tables are
aimed to show whether the difference in the responses is
significant or not. Null hypothesis terminology in Tables 2–5
refers to the different null hypotheses of the study repre-
sented as Ho. Based on the responses received, the following
subsections show the results achieved from the study
conducted.

4.1. Existing Level of Piracy. Most of the people in univer-
sities are using pirated software. Statistics of the present
study shows that 67.3% of people do use pirated software.
(e activation of the software is done by using fake (illegal)
cracks and other activation methods. (e fake key is used as
an alternate for showing the software is original, while in the
actual original software, it is allowed only to those users who
purchased the license of the software. Using fake keys is the
piracy of software is a serious crime. According to the
statistics of the study, the activation by online payment is too
low, which is 7.3%. Buying CD/DVD from the market is still
less (38.2%) compared to activation by cracking the software
(54.5%). (e online payment facility in educational insti-
tutions shows that 81.8% of the participants do not have to
buy the software online and pay for it, while only 18.2% have
the facility to buy the software online. (e rates of the total
number of pirated software were identified to be much
higher from the survey. According to the survey, 49.1% of
each participant uses more than six pirated software. Other
participants are not exempted from piracy but differ only in
less number of pirated software, and their ratio is 18.2% for

(4–6) number of pirated software and 32.7% for (1–3)
number of pirated software. (e study shows that the
existing piracy is too high and the majority of people use
pirated software. About 80% of participants think that
people do piracy. Figure 2 shows the details of a different
aspect of the existing level of piracy.

(e summary statistics for the existing level of piracy can
be seen in Table 2. (e null hypothesis has been rejected for
each variable aimed at identifying the existing level of piracy
which shows that the difference among the responses is
significant. By summarizing the results, we can say that the
Null hypothesis “piracy rate is not high in educational in-
stitutions” is rejected.

Figure 3 shows the representation of different groups of
variables in the area from the current research perspectives.
(ese variables include the use of pirated software, activa-
tion by online payment, buying CD/DVD, cracking the
software, online facility to buy the software, piracy of more
than 6 software products, piracy of 4–6 pieces of software,
piracy of 1–3 software, participants doing piracy, impor-
tance of piracy, aware of the demerits of piracy, knowledge
about the penalties of piracy, different functionalities, par-
ticipant preferring to use the software, participants not at-
tending any seminar on piracy, caught/warned, participants
not caring about warning, sharing software not considered a
good act, and participants being aware of the side effects.
(ese variables were taken as important considerations of
the proposed research. (e relevant values of these variables
are given in Figure 3.

4.2. Awareness about Software Piracy. (e awareness of
software piracy is analyzed through the questionnaire. Piracy
of software is an important issue for participants to be
stopped. (e survey statistics show that only 1% does not
give importance to piracy. (e disadvantages and ethics of
piracy show that most of the participants, 70.9%, are aware
of the demerits of piracy, while the rest of the participants are
not aware of the disadvantages of piracy. (ey agree that
piracy is ethically wrong to do. (e people know about the
disadvantages of piracy but not their penalties for doing
piracy. Only 34.5% have knowledge about the penalties of
piracy, while the rest are unaware of it. (e pirated software
is functionally different from the licensed software. Among
all participants, 58.2% agree that their functionalities are
different, while 29.1% do not notice that they are different at
all. (e selection criteria for software products shows that

Table 1: Categories of questions.

S. no. Section No. of
questions Purpose

1 Demographic information 3 Information about age, gender, and profession
2 Existing level of software piracy 6 To identify what is the existing level of software piracy

3 Awareness of software piracy 12 To know how much people are aware of software piracy, its merits, and
demerits, etc.

4 HEC software policy awareness and its
availability 4 To identify the awareness of people about HEC policies for software

facilities to academic institutions
5 Reasons behind software piracy 13 To know why people do software piracy

Scientific Programming 5

61.8
7.3

38.2

54.5
18.2

49.1

18.2

32.7

80

38.2

92.7

61.8

45.5
81.8

50.9
81.8

67.3

20

Use pirated so�ware

Activation by online payment

Buying CD/DVD

Cracking the so�ware

Online facility to buy the so�ware

Piracy of more than 6 so�ware products

Piracy of 4–6 so�ware products

Piracy of 1–3 so�ware products

Participants do piracy

No
Yes

Figure 2: Different aspects of the existing level of piracy.

Table 2: Different aspects of the existing level of piracy.

S. no. Null hypothesis Test Sig. Decision

1 (e categories defined by soft_use� Pirated and licensed occur with
probabilities 0.5 and 0.5

One-sample binomial
test 0.000 Reject the null

hypothesis

2 (e categories of friend_use occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

3 (e categories of soft_active occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

4 (e categories defined by online_pay�No and yes occur with probabilities
0.5 and 0.5

One-sample binomial
test 0.000 Reject the null

hypothesis

5 (e categories of Pirated_soft_use occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

6 (e categories of people_piracy occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

61.8
7.3

38.2
54.5

18.2
49.1

18.2
32.7

80
99

70.9
38.2

58.2
70.9

85.5
74.5

29.1

78.2
27.3

38.2
92.7

61.8
45.5

81.8
50.9

81.8
67.3

20
1

29.1
61.8

41.8
29.1

14.5
25.5

70.9
21.8

72.7

Use pirated so�ware
Activation by online payment

Buying CD/DVD
Cracking the so�ware

Online facility to buy the so�ware
Piracy of more than 6 so�ware products

Piracy of 4–6 so�ware products
Piracy of 1–3 so�ware products

Participants do piracy
Importance to piracy

Aware of the demerits of piracy
knowledge about the penalties of piracy

Functionalities are different
Participant prefer to use the so�ware

Participant did not attend any seminar on piracy
Caught/warned

Participant do not care about warning
Sharing so�ware is not a good act

Participants are aware of the side effects

No
Yes

Figure 3: Tree representation of different groups of variables in the area.

6 Scientific Programming

70.9% of the participants prefer to use the software that
provides rich number of features and additional features
come with more expensive license cost. (e responses re-
garding the conduction of awareness seminars show that
85.5% of participants did not attend any seminar on piracy
and its related issues. (e users have been caught/warned
while using pirated software. (e statistics of this study for
caught/warned participants show that most of them have
been caught at least 1–3 times (74.5%) and 16.4% of par-
ticipants have a much higher rate of warning (more than 6
times). People do not feel embarrassed while using pirated
software. But the difference between the frequency of the
response is not significant enough. People share their pirated
software with other friends and colleagues, but still, they
agree that this is not a good act, 78.2%. Participants are not
aware of all side effects of software piracy and only a few of
the participants have awareness, 27.3%, while 72.7% of
participants are not aware at all. Figure 4 shows the
awareness of software piracy.

(e statistics of awareness about piracy are shown in
Table 3. (e null hypothesis is rejected for all the variables
except feeling shame while using pirated software. From the
results, it can be concluded that the null hypothesis “people
do have awareness about software piracy” is not being fully
retained; the results show that people have awareness about
software piracy on the basic level. (e awareness is lacking
penalties that can be given to those who commit piracy of
software. (ey do not know all the side effects of software
piracy. (ey have not attended any seminars on software
piracy and the most important thing they are involved in
piracy because of only having basic knowledge.

4.3. HEC Software Policy Facility Utilization. (e HEC
provides the facility of the licensed software to use and have
different plans for academic institutions. A total of 45.5% of
the survey respondents know about this facility of HEC and
54.5% are not aware of it. (e difference between their
responses is not significant enough. So, it cannot be con-
cluded that participants know about the HEC software fa-
cility. (e institution’s role in software availability was
studied. It has been noticed that people use their own
software and the academic institutions do not provide them
any free software facility. A total of 67.3% of respondents is
not being facilitated by any kind of free software from their
institution. Most of the academic institutions do not facil-
itate their faculty members, students, and other staff by
purchasing licensed software. Only 29.1% of participants
have been availing of licensed software from their institu-
tion. Participants do not have enough knowledge about
software facilities that they can avail of and can be provided
by their institutions. In this regard, almost all participants
(96.4%) want to have a seminar on software piracy. Figure 5
shows the details of the HEC software facility policy
utilization.

(e statistics for utilization of HEC software facilities are
shown in Table 4. HEC has software policies to provide
software to academic institutions. From the statistics given
in Table 4, the ratio of awareness about HEC software

facilities is not significant enough. Other measures for
utilization of HEC software facilities by academic institu-
tions are still the main point of concern. In Table 4, it can be
seen that the null hypothesis is rejected for the similarity of
the responses for variables. It shows that participants are not
being facilitated by academic institutions and seminars are
required to be conducted both for academic institutions,
along with participants. So, the main null hypothesis “ac-
ademic institutions are fully utilizing HEC software facilities
to its employees” is being rejected, which means academic
institutions are not fully utilizing HEC software facilities to
its employees.

4.4. Software Piracy and 9eir Cause from User Perspective.
High software cost is one of the reasons behind software
piracy. From the survey statistics, about 70% of participants
consider it because of the price, while another reason is lack
of awareness that has statistics of 23.6%. Software piracy
ratio can be reduced by lower software cost, as in survey its
statistics are high (54.5%) as compared to other alternative
increasing awareness (30.9%) and easy payment methods
(14.5%). Piracy of software saves money and prices of paid
software as most of the participants (72.7%) say that piracy
saves a significant amount of money for them because
software prices are high. From statistics, the software is
expensive for 85.5% of the survey members, while others
consider it normal (10.9%) or cheap (4.6%). (e economic
factor of software was studied and the study shows that
economy is an incentive for purchasing pirated software.
52.7% of participants agreed, while others did not know
(30.9%) or disagreed (16.4%).

Unfamiliarity and unavailability of online purchasing is
a factor of the survey in whichmost of the people (67.8%) are
not able to buy software directly from the Internet because
they do not have an online buying facility. (e participants
were not in favor of software piracy. Only 32.7% of the
participants are on the other side. (e participants receive
fake software registration notifications not too often
(50.9%), while only 25.5% of participants receive notifica-
tions very often and 23.6% do not receive them at all. Re-
ceiving warnings and notifications also has a psychological
bad effect on the participants. (ey do not like at all the
warning they receive for doing piracy. A total of 61.8% of
participants feel bad after this, while 29.1% do not care. Still,
some of them feel happy to receive it.

Finding fake/pirated software activation codes and
licenses on the Internet is easy and statistics do not differ
significantly (54.5%). In contrast, 45.5% of participants find
it easy to find activation codes on the Internet.(e difference
is not significant enough and we cannot say that activation
codes can easily be found on the Internet based on the higher
percentage of responses (54.5%). Also, registration of soft-
ware from the Internet is the easiest way (70.9%) for people
are compared to other alternatives. (e low probability of
getting caught during piracy is medium for 49.1% of par-
ticipants, while 41.8% of the participants’ probability of
being caught is low. Poor implementation of software policy
has been studied and the execution of software policy needs

Scientific Programming 7

45.5

32.7

29.1

96.4

54.5

67.3

70.9

3.6

HEC provide so�ware facility

Respondents being facilitated by free so�ware

Availing licensed so�ware from their institution

Participants wants seminar on so�ware piracy

Figure 5: Details of the HEC policy facility.

99

70.9

38.2

58.2

70.9

85.5

74.5

29.1

78.2

27.3

1

29.1

61.8

41.8

29.1

14.5

25.5

70.9

21.8

72.7

Importance to piracy

Aware of the demerits of piracy

Knowledge about the penalties of piracy

Functionalities are different

Participant prefer to use the so�ware

Participant did not attend any seminar on piracy

Caught/warned

Participant do not care about warning

Sharing so�ware is not a good act

Participants are aware of the side effects

Figure 4: Awareness about software piracy.

Table 3: Awareness about software piracy.

S. no. Null hypothesis Test Sig. Decision

1 (e categories defined by soft_use�Pirated and licensed occur with
probabilities 0.5 and 0.5

One-sample binomial
test 0.000 Reject the null

hypothesis

2 (e categories of friend_use occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

3 (e categories of soft activate occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

4 (e categories defined by online _pay�No and yes occur with probabilities
0.5 and 0.5

One-sample binomial
test 0.000 Reject the null

hypothesis

5 (e categories of pirated_soft_use occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

6 (e categories of function_diff occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

7 (e categories defined by attend seminar�No and yes occur with
probabilities 0.5 and 0.5

One-sample binomial
test 0.000 Reject the null

hypothesis

8 (e categories of caught_piracy occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

9 (e categories of feel_shame occur with equal probabilities One-sample chi-
square test 0.000 Retain the null

hypothesis

10 (e categories defined by sharing_piracy�Agree and disagree occur with
probabilities 0.5 and 0.5

One-sample binomial
test 0.000 Reject the null

hypothesis

11 (e categories defined by side effect�No and yes occur with probabilities 0.5
and 0.5

One-sample binomial
test 0.000 Reject the null

hypothesis

8 Scientific Programming

to be implemented in the academic institutions. 90.9% of the
respondent agreed to have a software policy to be imple-
mented in academic institutions. Figure 6 shows software
piracy and its causes from user perspectives.

A detailed discussion about the reasons behind software
piracy is being discussed. Summary statistics are given in
Table 5. We can see that difference among responses is
significant for all variables (null hypothesis rejected) except
the availability of software activation codes on the Internet.
(e reasons that retained after statistical analysis are high
software cost, piracy being a way to save a significant amount
of money, unavailability of online payment facilities, and
poor implementation of HEC software policies in academia.

4.5. Issues Identified in the Study. Software piracy is a big
issue to be considered. From the study conducted, it is
obviously shown that piracy rates in academic institutions
are high enough. (is survey mainly includes faculty
members and students from academic institutions. Al-
though people were aware of the knowledge that piracy has
several disadvantages, they do consider it an important issue
and discourage piracy and also feel functionality differences
between pirated and licensed software. However, there are
still some issues in the awareness of software piracy. (e
main issues that have been identified in the survey regarding
the high rate of software piracy and people awareness about
software piracy are listed below:

(i) High rate of software piracy
(emain issue found in the current study is the high
rate of software piracy. (e study aimed to focus on
academic institutions where the participants are
faculty members, students, and administrative staff.
Still, it is observed that software piracy is high in
educational institutions which are very important
issues to be considered. It has been noticed that the
majority of the people use pirated software and each
of the faculty members uses pirated software in
several different forms.

(ii) Unavailability of the online payment facility
Another issue is the availability of an online pay-
ment facility which is necessary to be available to at
least faculty members of the institution. As a matter
of fact, the latest and updated software are available
on the Internet and mostly need online buying

procedure of purchasing. If one does not have an
online payment facility, then the only choice seems
to be piracy if available on the Internet because
purchasing from the market is not a feasible choice.
Cracks and activation codes are available on the
Internet and with some searching and time spent,
these can be downloaded, which is also a serious
issue behind increasing software piracy.

(iii) Lack of awareness about software piracy
People are unaware of the penalties for software
piracy. (ey only know piracy has disadvantages
and licensed software provides rich functionality
which is not enough. (ere is also a lack of
knowledge about the advantages of licensed soft-
ware. Similarly, almost all participants did not at-
tend any workshop or seminar on the issue of
software piracy that may lead to higher software
piracy.

(iv) Poor utilization of HEC available software facilities
People know that HEC has a policy for software
in academic institutions, but they do not have
enough knowledge to avail their offers and benefit
from it. Academic institutions do not get benefits
from HEC services and we have seen in the study
that these services are not facilitated for
participants.

4.6. Main Reason for Issues behind Software Piracy and
Awareness. We have identified some of the reasons behind
software piracy.(ese are discussed in detail in the following
subsections.

(i) Unsuitable payment methods for software
purchasing
One of the reasons behind software piracy is the
unavailability of online payment methods for
people. Credit card or other ways are not widely
being used by student(s) and all the faculty members
for online transactions which forces them to use
another way of registering or getting registered
software.

(ii) Basic knowledge about software piracy
(e people have only basic knowledge about soft-
ware piracy which is not enough. (e people do not

Table 4: Awareness about software piracy.

S. no. Null hypothesis Test Sig. Decision

1 (e categories defined by know_HEC_facility�No and yes occur with
probabilities 0.5 and 0.5

One-sample
binomial test 0.391 Retain the null

hypothesis

2 (e categories defined by institute_soft_facility�No and yes occur with
probabilities 0.5 and 0.5

One-sample
binomial test 0.000 Reject the null

hypothesis

3 (e categories defined by institute_provide_facility�No and yes occur with
probabilities 0.5 and 0.5

One-sample
binomial test 0.000 Reject the null

hypothesis

4 (e categories defined by want _seminar�No and yes occur with probabilities
0.5 and 0.5

One-sample
binomial test 0.000 Reject the null

hypothesis

Scientific Programming 9

know the penalties for software piracy and there-
fore, it seems like a normal act, although it is a crime
too.

(iii) Conduction of seminar/workshops
One of the reasons for the lack of awareness includes
less or lack of awareness program about software
piracy. Not enough seminars or workshops have

been conducted to spread awareness about software
piracy. As a result, they do not know the penalties
that can be given to the person doing piracy.

(iv) Poor implementation of HEC software policies by
academic institutions
(e people use pirated software inside academic
institutions, although the HEC provides facilities

70 54.5 23.6 30.9 14.5
72.7

85.5
10.94.6

52.730.916.461.832.750.9
25.5

23.6

61.8

45.5
70.9

49.1 90.9

Software piracy with cost factor
Lack of awareness
Easy payment methods
Software are expensive
Cheap
Do not know
Unfamiliarity and unavailability of purchasing
Warning messages of fake with no too often
Warning messages of fake with do not at al
Find it easy activation codes on internet
Low probability of getting caught during piracy

Piracy can be reduced by lower software cost
Alternative increasing awareness
Piracy save significant amount of money
Consider it normal
Economic factor of software agreed
Disagree
Favor of software piracy
Warning messages of fake with very often
Feeling bad after doing piracy
Registration from internet is the easiest way
Software policy to be implemented in institutions

Figure 6: Software piracy and its causes from user perspectives.

Table 5: Awareness about software piracy.

S. no. Null hypothesis Test Sig. Decision

1 (e categories of piracy_because occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

2 (e categories of reduce_ratio_ piracy_ occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

3 (e categories defined by piracy_huge_money�Agree and disagree occur with
probabilities 0.5 and 0.5

One-sample
binomial test 0.000 Reject the null

hypothesis

4 (e categories of expensive_cheap occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

5 (e categories of econo_incentives occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

6 (e categories defined by online_buy_facility�No and yes occur with
probabilities 0.5 and 0.5

One-sample
binomial test 0.000 Reject the null

hypothesis

7 (e categories defined by favor_voilation�Yes and No occur with probabilities
0.5 and 0.5

One-sample
binomial test 0.000 Reject the null

hypothesis

8 (e categories of warning occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

9 (e categories of notification_feel occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

10 (e categories defined by find_active_code�Yes and No occur with
probabilities 0.5 and 0.5

One-sample
binomial test 0.391 Retain the null

hypothesis

11 (e categories of easy_soft_reg occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

12 (e categories of piracy_caught_prob occur with equal probabilities One-sample chi-
square test 0.000 Reject the null

hypothesis

13 (e categories defined by implement_soft_policy�Disagree and agree occur
with probabilities 0.5 and 0.5

One-sample
binomial test 0.000 Reject the null

hypothesis

10 Scientific Programming

Table 6: Questionnaire.

Question no. Question description Option (A) Option (B) Option (C)
Demographic information
1 Age 10–25 25–35 >35
2 Gender Male Female
3 Profession Student Faculty Other
Existing software piracy
4 Which type of software do you use? Pirated Licensed
5 How many of your friends use licensed software? All of them Few of them None
6 How you activate the software? Online payment Buying CD/DVD Cracking it
7 Have you any facility for online payment for software? Yes No
8 What are your selection criteria for choosing software? Lower cost Rich number of features
9 How much pirated software do you use? 1–3 4–6 >6
Awareness of software piracy
10 How much software piracy is an important issue? Unimportant Somehow Very important

11 Do you think using pirated software has any
disadvantages? Yes No

12 Do you know about penalties for software piracy? Yes No
13 Is piracy against ethics? Yes No Do not know

14 Do you feel any functionality difference between pirated
software and the original one? No difference Much difference Do not know

15 Have you ever attended any seminar/workshop on
software piracy? Yes No

16 While using pirated software, the probability you will be
caught is Low Medium High

17 Majority of people use pirated software? Agree Disagree
18 Do you feel ashamed/guilty while using pirated software? Yes No Somehow
19 Sharing pirated software with others is a good act? Yes No
20 Intellectual property law is beneficial for the customer Agree Disagree
21 Do you know all the side effects of software piracy? Yes No Somehow
HEC software policy
22 Do you know about HEC software providing facilities? Yes No
23 Is your academic institution providing any free software? Yes No

24 Is any licensed software purchased by your institution for
you? Yes No

25 Are you in favor of organizing seminars/workshops on
software piracy? Yes No

Piracy (user perspective)

26 People use pirated software because of? Lack of
awareness High software cost Other (please

mention)

27 (e ratio of software piracy can be reduced by Increasing
awareness

Decreasing software
license prices Easy payment

28 Software piracy saves a significant amount of our money? Agree Disagree
29 Prices of the paid software are Expensive Normal Cheap

30 (e economic factor is an incentive for me to purchase
pirated software Agree Disagree

31 Do you have any facility for buying online software and
products? Yes No

32 Are you in favor of giving a violation of software piracy? Yes No

33 How often you receive warnings about fake software
registrations? Very often Few time Never received

34 What is your feeling when you got a notification about
pirated software Normal

35 Is it easy for you to find activation codes/cracks for
software on the Internet? Yes No

36 What is the easiest way to register your software? From the
Internet From friends Any other source

37 While using pirated software, the probability you will be
caught is Low Medium High

38 Employees & students need the implementation of S/W
policy in an academic institution Agree Disagree

Scientific Programming 11

of free access for some important software
products.

(v) High software cost
(e main and key reason is software cost. People
have to get paid a significant amount of money
while getting pirated software to save much of it. As
a result, along with some knowledge and awareness,
the people do piracy.

4.7. Proposed Suggestions to Stop/Reduce Software Piracy.
Based on the experimental study of the proposed research
and results obtained, we have proposed some of the solu-
tions/suggestions that can help in reducing software piracy.
Details of each one are discussed below.

(i) Introducing suitable methods of payment for
software purchasing
As most of the people do not have payment facility
or do not use online payment/transaction as a
primary method for purchasing. So, new methods
of payment need to be adopted to reduce software
piracy. It is necessary to use other methods that are
available in the current market like Easypaisa, Mobi
cash, and so on in the context of Pakistan as an
example.

(ii) Availability of high-speed Internet in academic
institutions
Internet speed is also a limiting factor. Low speed of
Internet also creates problems for downloading big
size of software which compels people to take from
other sources instead of wasting much of their time
on downloading.

(iii) Conducting and arranging seminars on software
piracy in academia
Different academic programs like seminars,
workshops, and training for promoted awareness
about software piracy need to be initiated. In this
regard, workshops or seminars to be conducted in
educational institutions like universities on the
highest priority. (ese programs should be aimed
to be more focused on highlighting the bright as-
pects of the licensed software product.

(iv) Awareness of need-based products
On one side, people do piracy because they think
the price of licensed software is much high. On the
other hand, they prefer software for a high number
of features. As a matter of fact, it is not necessary
that software with rich features will be the best for
each and every user. Each and every user has dif-
ferent requirements and popular software products
available on the Internet have different user plans
too. So, if the user is aware of his/her work needs,
then he/she will pay only for these features and not
for all possible features. For example, windows have

different categories like home-edition, proedition,
and ultimate-edition. Prices do vary for these
products based on user-specific need. Another
example is Microsoft Office, which has different
prices product for different user’s need like students
and professionals.
It is important to highlight suitable product features
for specific needs. If it is done, users will download
and pay for customized products with lower prices
and according to their needs.

(v) HEC visits for ensuring the implementation of their
policies in the academia
(e HEC need visits to academic institutions to
ensure how much awareness about piracy of soft-
ware people have. Based on the visits to the uni-
versity, the needs of software can be identified and
HEC can add more software products in their plan
for the future or can exclude obsolete software
products that could have less importance.

(vi) Decreasing software costs and licenses prices
As one of the suggestions to attract people to li-
censed software mentioned above is to pay for
need-based customized software product. Another
good step could be to decrease software licensing
prices for the user. Because despite of the aware-
ness, people still do piracy. (ey claim software
prices are too high.

(vii) Implementation of software policy in academia
It is important for academic institutions to get
benefit from the HEC software facility. From the
survey, participants are not facilitated by institu-
tions for software products and they buy or do
piracy of it by themselves.

5. Conclusions

Software piracy is an ever-increasing problem of the
modern-day software industry. Owing to the evolution in
software development and the Internet, software piracy has
become a main concern for many software companies.
Software companies are confronted with extremely high
losses due to the piracy of software. Pirates gain a lot of
money by doing business with pirated software, and they do
not think what they are doing is a crime. General end-users
and the community of the software are not well aware of this
serious crime. Even most of the time, end-users and con-
sumers think that it is none of their concern and not an
important issue for them to worry about. If an organization
is using pirated software, there is a risk of failure of the
software, and it might put the organization into a big loss of
risk. Open-source software is available, but some of this
software needs a proper license from the concerned owner
agencies and the user needs to pay for it. Most people cannot
afford these license charges which become a burden on
them. So they do piracy of the software. On the other hand,
people use crack software (registered by the user through
unfair way) for their needs as they do not have enough

12 Scientific Programming

money to pay for licensing the software, although they are
aware of the real problems that pirated software have which
include upgrades are not available, no assurance of quality
and reliability, no technical support, no manuals or docu-
mentation, exposure of network to security breaches, and
many others.

(e pirated software does not receive any technical
support from the organization which is developed. Due to
these reasons, software piracy has turned out to be a major
concern-more emergent due to the extravagant development
of the software industry and the availability of software(s) on
the Internet. (is paper elaborates on the awareness of
piracy, policy of the licensed software, and user perspective
regarding the original licensed and pirated software. A
questionnaire of about 38 questions was given to the stu-
dents, faculty members, and administrative staff of different
intuitions, and after the collection of data, analysis was
performed. (ese questions were designed and finalized as
per the discussions of the members of the project approved
by the higher education commission. (e results of the
analysis are shown in Figures 2–6 and Table 6.

(e current study identified some of the reasons for
software piracy. (ese reasons are “unsuitable payment
methods for software purchasing,” “basic knowledge about
software piracy,” “conduction of seminar/workshops,” “poor
implementation of HEC software policies by academic in-
stitutions,” “high software cost.”

Based on the above reasons, some suggestions are
proposed by which the level of piracy can be reduced. (ese
suggestions include “introducing suitable methods of pay-
ment for software purchasing,” “availability of high-speed
Internet in academic institutions,” “conducting and
arranging seminars on software piracy in academia,”
“awareness of need-based products,” “HEC visits for en-
suring the implementation of their policies in the academia,”
“decreasing software costs and licenses prices,” and
“implementation of software policy in academia.” By
adopting the proposed suggestions, the level of piracy can be
reduced.

Data Availability

No data were used to support this study.

Conflicts of Interest

(e authors declare no conflicts of interest.

References

[1] T. T. Moores and J. Dhaliwal, “A reversed context analysis of
software piracy issues in Singapore,” Information & Man-
agement, vol. 41, no. 8, pp. 1037–1042, 2004.

[2] L. L. Gan and H. C. Koh, “An empirical study of software
piracy among tertiary institutions in Singapore,” Information
& Management, vol. 43, no. 5, pp. 640–649, 2006.

[3] A. Mishra, I. Akman, and A. Yazici, “Software piracy among
IT professionals in organizations,” International Journal of
Information Management, vol. 26, no. 5, pp. 401–413, 2006.

[4] D. Curtis, “Software piracy and copyright protection,” in
Proceedings of Wescon/94: Idea/Microelectronics, pp. 199–203,
New York, NY, USA, September 1994.

[5] R. C. Rife, “Software piracy,” in Proceedings of Northcon/94
Conference Record, pp. 364–366, Seattle, WA, USA, October
1994.

[6] S. Nazir, S. Shahzad, and L. S. Riza, “Birthmark-based soft-
ware classification using rough sets,” Arabian Journal for
Science and Engineering, vol. 42, pp. 1–13, 2016.

[7] S. Nazir, S. Shahzad, I. Zada, and H. Khan, “Evaluation of
software birthmarks using fuzzy analytic hierarchy process,”
in Proceedings of the Fourth International Multi-Topic Con-
ference, pp. 171–175, Jamshoro, Pakistan, February 2015.

[8] S. Nazir, S. Shahzad, Q. U. A. Nizamani, R. Amin, M. A. Shah,
and A. Keerio, “Identifying software features as birthmark,”
Sindh University Research Journal (Science Series), vol. 47,
pp. 535–540, 2015.

[9] S. Nazir, S. Shahzad, S. A. Khan, N. Binti Alias, and S. Anwar,
“A novel rules based approach for estimating software
birthmark,”9e Scientific World Journal, vol. 2015, Article ID
579390, 8 pages, 2015.

[10] S. Nazir, S. Shahzad, and S. B. S. Abid, “Selecting software
design based on birthmark,” Life Science Journal, vol. 11,
pp. 89–93, 2014.

[11] C. Peukert, J. Claussen, and T. Kretschmer, “Piracy and box
office movie revenues: evidence from Megaupload,” Inter-
national Journal of Industrial Organization, vol. 52, pp. 188–
215, 2017.

[12] C. J. Robertson, K. M. Gilley, V. Crittenden, and
W. F. Crittenden, “An analysis of the predictors of software
piracy within Latin America,” Journal of Business Research,
vol. 61, no. 6, pp. 651–656, 2008.

[13] S. Mumtaz, S. Iqbal, and I. Hameed, “Development of a
methodology for piracy protection of software installations,”
in Proceedings of 9th International Multitopic Conference,
IEEE INMIC 2005, pp. 1–7, Karachi, Pakistan, December
2005.

[14] J. Mo, J. Park, N. Im, J. Park, and H. Kim, “Why internet
service provider and content provider do not collaborate via
monitoring of digital piracy,” Socio-Economic Planning Sci-
ences, vol. 60, pp. 1–13, 2017.

[15] P. B. Lowry, J. Zhang, and T.Wu, “Nature or nurture? Ameta-
analysis of the factors that maximize the prediction of digital
piracy by using social cognitive theory as a framework,”
Computers in Human Behavior, vol. 68, p. 104e120, 2017.

[16] K. S. Kumar, G. H. Rao, S. Sahoo, and K. K. Mahapatra,
“Secure split test techniques to prevent IC piracy for IoT
devices,” Integration, vol. 58, pp. 390–400, 2017.

[17] Y.-S. Huang, S.-H. Lin, and C.-C. Fang, “Pricing and coor-
dination with consideration of piracy for digital goods in
supply chains,” Journal of Business Research, vol. 77, pp. 30–
40, 2017.

[18] B.-H. Chang, S.-H. Namb, S.-H. Kwon, and S. M. Chan-
Olmsted, “Toward an integrated model of software piracy
determinants: a cross-national longitudinal study,” Telematics
and Informatics, vol. 34, no. 7, pp. 1113–1124, 2017.

[19] A. Rasch and T. Wenzel, “Piracy in a two-sided software
market,” Journal of Economic Behavior & Organization,
vol. 88, pp. 78–89, 2013.

[20] D. Banerjee, “Effect of piracy on innovation in the presence of
network externalities,” Economic Modelling, vol. 33,
pp. 526–532, 2013.

[21] M. Siponen, A. Vance, and R.Willison, “New insights into the
problem of software piracy: the effects of neutralization,

Scientific Programming 13

shame, and moral beliefs,” Information & Management,
vol. 49, no. 7-8, pp. 334–341, 2012.

[22] A. R. Andrés and R. K. Goel, “Does software piracy affect
economic growth? Evidence across countries,” Journal of
Policy Modeling, vol. 34, no. 2, pp. 284–295, 2012.

[23] N. K. Kariithi, “Is the devil in the data? A literature review of
piracy around the world,” 9e Journal of World Intellectual
Property, vol. 14, no. 2, pp. 133–154, 2011.

[24] F. Martı´nez-Sánchez, “Avoiding commercial piracy,” Infor-
mation Economics and Policy, vol. 22, pp. 398–408, 2010.

[25] S. Al-Rafee and K. Rouibah, “(e fight against digital piracy:
an experiment,” Telematics and Informatics, vol. 27, no. 3,
pp. 283–292, 2010.

[26] A. Nill and C. J. Shultz, “Global software piracy: trends and
strategic considerations,” Business Horizons, vol. 52, no. 3,
pp. 289–298, 2009.

[27] M. Peitz and P. Waelbroeck, “Piracy of digital products: a
critical review of the theoretical literature,” Information
Economics and Policy, vol. 18, no. 4, pp. 449–476, 2006.

[28] S. N. Hamade, “(e legal and political aspects of software
piracy in the Arab world,” in Proceedings of 9ird Interna-
tional Conference on Information Technology: New Genera-
tions, pp. 137–142, Las Vegas, NV, USA, April 2006.

[29] D. S. Banerjee, “Lobbying and commercial software piracy,”
European Journal of Political Economy, vol. 22, no. 1,
pp. 139–155, 2006.

[30] S. H. Bae and J. P. Choi, “A model of piracy,” Information
Economics and Policy, vol. 18, no. 3, pp. 303–320, 2006.

[31] W. M. J. Fung and A. Lakhani, “Combatting peer-to-peer file
sharing of copyrighted material via anti-piracy laws: issues,
trends, and solutions,” Computer Law & Security Review,
vol. 29, no. 4, pp. 382–402, 2013.

[32] I. P. L. Png, “On the reliability of software piracy statistics,”
Electronic Commerce Research and Applications, vol. 9, no. 5,
pp. 365–373, 2010.

14 Scientific Programming

