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Behcet syndrome (BS) is a multisystemic perivasculitis whose genetic susceptibility is linked to HLA region. We first meta-
analysed all HLA class I and II genes involved in BS susceptibility in all ethnic groups worldwide. We identified 1141 articles
and finally included 31 case-control studies after multiple rounds of selection. We analysed frequencies for 24 HLA-A alleles (3
alleles for HLA-A∗26 at four digits), 50 HLA-B alleles (11 alleles for HLA-B∗51 at four digits), 15 HLA-C alleles, 16 HLA-
DRB1 alleles, 6 HLA-DQB1 alleles, and 15 HLA-DPB1 alleles. We meta-analysed only HLA allelic frequencies from at least
three studies; therefore, we investigated 21 alleles out of 140. Going from 7.00 to 1.6 OR, we found 11 class I alleles conferring
risk for BS: B ∗ 51 : 08, B ∗ 51, B ∗ 51 : 01, B ∗ 51 : 02, DQB1 ∗ 03, A ∗ 26 : 01, Cw ∗ 14, Cw ∗ 15, Cw ∗ 16, B ∗ 15, and A ∗ 26.
Overall, the studies included populations from Europe (Greece, Spain, Italy, Germany, and Ireland), Asia (Korea, China, China
Han, and Thailand), Middle East (Israel, Saudi Arabia, and Iran), and Morocco (as no other North-African population was
included). We collected a number of ethnical groups sufficient to conduct an ethnic-specific meta-analysis where Europeans
showed 11.25 OR for B∗51:08 and Japan 3.50 OR for A ∗ 26 : 01. A remarkable result was that the most frequent HLA − B ∗
51 two-digit alleles associated with BS were different among populations: HLA − B ∗ 51 : 08 in Europe, HLA − B ∗ 51 : 01 in
Turkey, and HLA − B ∗ 51 : 02 in Japan. Overall, we discussed our real-world results with other imputation studies.

1. Introduction

Behcet syndrome (BS) is an autoinflammatory multisystemic
neutrophilic perivasculitis characterized by recurrent inflam-
matory flares causing protean clinical manifestations [1].

Although the diagnosis is based only on clinical signs set
by the International Criteria for Behçet’s Disease (ICBD),
from a genetic point of view, the disease has been historically
linked first to human leukocyte antigen- (HLA-) B5 sero-
type, then to the HLA-B51 molecule/allele [2].

The geographic distribution of BS over the centuries
shows a connection with specific populations, in particular

those ones settled along the Silk Road, which is a network
of trade routes connecting East Asia with Southern Europe
passing through Middle East lands and East Africa [3].

The HLA region shows an extensive variation in the
number of both genes and alleles. HLA genes are the most
polymorphic ones in the human genome, and more than
8450 alleles have been discovered at the HLA-B locus. It is
worldwide accepted that the extensive polymorphism of
the HLA region is the result of selective pressures driven
by the functional role of HLA molecules in the immune
response. In fact, the highest degree of polymorphism is
toward the peptide-binding region [4].
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From 2009 onwards, seven genome-wide association
studies (GWAS) in BS have been published. Overall, the fol-
lowing subjects were analysed in worldwide GWAS: 2576
Turkish BS with 2728 healthy controls; 975 Japanese BS with
1013 healthy controls; 336 Western Europeans, Middle East-
ern, and Turkish BS with 5843 healthy ethnically matched
controls; 379 Korean BS with 800 healthy controls; and
703 Chinese BS with 2110 healthy controls [5–11].

Fei and colleagues performed the first genome-wide
association study in a cohort of 152 Turkish BS patients
and 172 healthy ethnically matched controls [5]. They iden-
tified genetic associations between BS and the following
single-nucleotide polymorphisms (SNPs): rs317711 (7p15-
p14) in CPVL (carboxypeptidase vitellogenic-like, expressed
on human macrophages and trimming peptides for antigen
presentation); rs4936742 (11q24) in UBASH3B (ubiquitin-
associated and SH3 domain containing B, promotes accu-
mulation of T-cell receptors and EGFR on the cell surface);
rs9513584 (13q32) in UBAC2 (ubiquitin-associated domain
(UBA) containing 2, negatively regulates the canonical Wnt
signaling pathway in the lymphocytes); and rs2061634
(9q22) in KIAA1529 and rs11206377 (1p34) in
LOC100129342 that both do not have known function up
to now [5]. Overall, although identifying novel candidate
SNPs, they did not find the disease-causing polymorphisms.

Remmers and colleagues performed a GWAS with
311,459 SNPs in 1215 Turkish BS and 1278 controls. They
confirmed the known association of BS with the HLA-B∗
51 alleles and identified an association at rs1518111 (Intron
Variant chr1:206771300) IL10 (interleukin-10, controls
cytokine activity and the inflammatory response of macro-
phages). The rs1518111 A allele was associated with dimin-
ished mRNA expression and low protein production [6].

Mizuki and colleagues conducted a GWAS in a Japanese
cohort of 612 BS patients and 740 controls. They identified
two associations: rs12119179 (1p31.3) in IL23R-IL12RB2
and rs1554286 (1q32.1) in IL10 [7].

Hou and colleagues enrolled 149 Chinese BS patients
and 951 controls in the initial GWAS and 554 patients and
1159 controls in the replication study. They identified that
the susceptibility SNPs rs7574070, rs7572482, and
rs897200 around 2q32.2-q32.3 were maps STAT4 (signal
transducer and activator of transcription 4, involved in
IL12 signaling). Carriers of rs897200 risk genotype AA
showed increased expression of STAT4 and increased levels
of IL17 messenger RNA and protein. Mainly, the clinical dis-
ease severity score was higher in carriers of the rs897200 risk
genotype AA [8].

Lee and colleagues performed a GWAS in 379 Korean
BD and 800 controls. A replication study was performed in
363 BD Japanese and 272 controls. They found a novel asso-
ciation of BD with SNIPs located in the GIMAP (GTPase
IMAP family) cluster (7q36.1): the rs1608157 in a minor
allele dominant model and the rs11769828 allele based. Fur-
thermore, using a fine mapping study, they also identified an
association with rs1522596 in GIMAP4 (GTPase IMAP fam-
ily member 4), rs10266069 and rs10256482 in GIMAP2
(GTPase IMAP family member 2), and rs2286900 in
GIMAP1 (GTPase IMAP family member 1). Overall, their

results suggest that the GIMAP cluster may be involved in
BS, even though without any verified connection [9].

Kirino and colleagues performed a GWAS of 779,465
SNPs with imputed genotypes in 1209 Turkish BS individ-
uals and 1278 controls. They identified associations at
CCR1 (C-C chemokine receptor type 1) (3p21.31), STAT4,
and KLRC4 (NKG2-F type II integral membrane protein, a
receptor for the recognition of MHC class I HLA-E mole-
cules by NK cells) (12p13.2). They also found two SNPs in
ERAP1 (endoplasmic reticulum aminopeptidase 1 that trims
peptide for the generation of most HLA class I-binding pep-
tides) (5q15). They also found evidence for interaction
between HLA-B∗51 and ERAP1 [10].

Kappen and colleagues performed a GWAS on 336
Turkish, Western Europeans, and Middle Eastern BD cases
and 5843 multiethnic birth cohort (from the Netherlands),
using linear regression models corrected for population
stratification. They identified SNPs mapping to the HLA
region (6p21.33) [11].

Overall, all these GWAS showed a limited number of
novel locus associations. In fact, also using the most
advanced molecular techniques, the HLA region still
remains the most involved in BS susceptibility, mostly in
Turkish patients.

Another issue concerns the unequal distribution of BS
among different ethnic groups, and the use of GWAS and
bioinformatics tools in cohorts of mixed ethnicity does not
seem to be an effective solution.

This is the first meta-analysis that considers all HLA
class I and II genes involved in BS susceptibility in all ethnic
groups worldwide.

2. Materials and Methods

This study followed the PRISMA guidelines [12].

2.1. Protocol. We drafted a protocol including: review ques-
tion, eligibility criteria, primary and secondary endpoints,
search strategy, methods for data extraction, study quality
assessment, risk of bias assessment, strategy for data synthe-
sis, and statistical methodology.

On April 29th 2019, the protocol entitled “Association
between HLA class I (A, B, and C) and class II (DRB1,
DQB1, and DPB1) polymorphisms and Behcet Syndrome:
a meta-analysis” was published in the PROSPERO Interna-
tional prospective register of systematic reviews (http://
www.crd.york.ac.uk/PROSPEROCRD42019130390).

2.2. Search Strategy. We performed a systematic search in
PubMed, Embase, Web of Science, and Scopus databases,
retrieving all publications (case-control, cross-sectional,
and retrospective cohort studies or mixed design like nested
case-control and cohort studies) on the association between
HLA class I and II alleles and Behcet Syndrome (BS) in adult
patients (>18 years).

We searched all English, Italian, Spanish, French, and
Turkish-written articles published in up to December 2020.
An expert librarian performed the search using the following
MeSh terms: (“Behcet Syndrome”) AND (“HLA” OR
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“human leukocyte antigen”) AND (“polymorphism” OR
“variant” OR “genotype” OR “allele”).

Selection criteria were as follows:

(1) HLA class I and II genes and any A, B, C, DRB1,
DQB1, DQA1, and DRB1 alleles or molecules

(2) BS diagnosed following the clinical criteria set by the
following:

(i) International study group for Behcet’s disease,
Criteria for diagnosis of Behcet’s disease, Lan-
cet, 1990; 335: 1078-1080 [1]

(ii) International Team for the Revision of the
International Criteria for Behcet’s Disease. Eval-
uation of the International Criteria for Behcet’s
disease (ICBD) Clinical and Experimental
Rheumatology. 2006; 24(supplement 42): p.
S13 [13]

(iii) International Team for the Revision of the
International Criteria for Behcet’s Disease. Revi-
sion of the International Criteria for Behcet’s
Disease (ICBD) Clinical and Experimental
Rheumatology. 2006; 24(supplement 42):S14–
S15 [14]

(iv) International Team for the Revision of the
International Criteria for Behçet’s Disease
(ITR-ICBD). The International Criteria for Beh-

çet’s Disease (ICBD): a collaborative study of 27
countries on the sensitivity and specificity of the
new criteria. J Eur Acad Dermatol Venereol.
2014; 28(3):338-347 [15]

(v) Behcet’s Disease Research Committee of Japan.
Behcet’s disease guide to the diagnosis of Beh-
cet’s disease (1972) Japanese Journal of Oph-
thalmology. 1974; 18 : 291–294 [16]

(vi) Mizushima Y. Recent research into Behcet’s dis-
ease in Japan. International Journal of Tissue
Reactions. 1988; 10(2):59–65 [17]

2.3. Risk of Bias Assessment. Following a quality assessment
tool for genetic data (Quality Assessment of Genetic Studies
in Systematic Reviews, QUAGENS) [18], proposed by our
multidisciplinary panel (statisticians, clinical epidemiologists,
immunogeneticists, clinicians, and meta-analysts), three pairs
of reviewers (one for the clinical criteria, one for laboratory
issues, and one for methodology tools) working independently
and with adequate reliability verified the following aspects:

(1) Clinical data: the presence of spectrum disease
biases, the possible enrollment of incident or preva-
lent cases, the inclusion of controls not selected from
the same source population as the case-subjects, and
the occurrence of differential participation in cases
and controls

Database online searching identifies 1141 records
(PubMed, EMBASE, Web of Science, Scopus databases) 

Duplicate records:
573 

Id
en

tifi
ca

tio
n

568 potentially relevant citations to be screened by title and abstract

Exclusion criteria:
reviews, conference communications,

letters, case reports, editorials, 
and clearly irrelevant studies

157 abstracts to be evaluated by a multidisciplinary team

Sc
re

en
in

g
El

ig
ib

ili
ty

Exclusion criteria:
lack of clarity in clinical diagnostic 

criteria or genetic data

68 full-text identified for data evaluation

Exclusion criteria:
unclear methods, duplicate published 

study, incomplete genetic data

In
cl

ud
ed

31 articles included in the meta-analysis

Figure 1: Flow diagram of the study following the PRISMA guidelines.
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(2) Laboratory issues: the misclassification of genotypes
or serotypes (including the types and quality of sam-
ples, timing of collection, and the method used for
HLA typing), the actual laboratory staff blinded to
outcome, and the mention of quality controls

(3) Methodological features: the possible population
stratification, the presence of multiple testing and
prestudy odds of true finding (it would be useful
interpreting the results in the context of how many
polymorphisms have been studied), and the assess-
ment of HW equilibrium in controls

Each question was answered as “yes,” “no,” or “unclear.”

2.4. Data Extraction. After a critical reading of full-text arti-
cles, two investigators independently performed data extrac-
tion according to the selection criteria. The third participant
was consulted for discussion to reach agreement concerning
discrepancies. The following items were extracted from each
study: first author’s last name, publication date, country of
origin, numbers of cases and controls, and typing method.

2.5. Data Synthesis and Meta-Analysis. STATA and Meta-
DiSc was used for statistical analysis to perform the meta-
analysis. Heterogeneity was checked by the chi-squared test
and the I-squared statistics [19]. Statistical heterogeneity

was defined by a P value < 0.10 for the chi-squared test
and an I − squared statistics > 50%.

When there was no statistical evidence for heterogeneity
in effect sizes, the fixed-effect model was used [20] to meta-
analyze ORs or RRs in probands; when significant heteroge-
neity was identified, the random-effects model was used [21]
to explore sources of significant heterogeneity. Also, a sub-
group analysis stratified by ethnicity was performed.

3. Results

3.1. Study Characteristics and Quality Assessment. Following
the search strategy, we identified 1141 articles, and after
multiple rounds of selection, 68 articles were chosen for a
full-text evaluation, of which 31 were included in the meta-
analysis; 26 of them reported only the frequencies for the
HLA − B ∗ 51 allele [22–47].

Figure 1 shows the flow diagram according to the
PRISMA statement [12].

The quality of studies in terms of laboratory method
description, statistical methodology, and clinical features is
depicted in Figure 2.

3.2. Meta-Analysis on the Association between Behcet
Syndrome Susceptibility and HLA Alleles from Class I (HLA-
A, B, and C) and II (HLA-DRB1, DQB1, and DPB1) Genes.
We collected HLA genetic data from 31 case-control studies

Were methods used to address and correct for relatedness among subjects clearly defined? 

Were methods used to address multiple comparisons clearly defined? 

Were methods for inferring genotypes or haplotypes clearly defined? 

Was Hardy-Weingberg equilibrium considered? 

In case-control study, do authors explain how matching of cased and controls was addressed? 

Do authors explain how missing data were addressed? 

Are so�ware version used and options (or settings) chosen appropriated? 

Are the statistical methods used to control for confounding clearly described? 

Are the statistical methods clearly described? 

Is the methods of control selection clearly described? 

Included patients match the meta-analytic question? 

Could the selection of patients have introduced bias? 

Was a consecutive or random sample of patients enrolled? 

Is the methods of patient selection clearly described in terms of sources of selection (setting)? 

Is the methods of patient selection clearly described in terms of clinical eligibility criteria? 

Are pathogenetic mechanisms suggested? 
Are the patients and controls enrolled in the same period? 

Do authors explain how they managed the lost data? 

Do authors describe any error rates? 

Do authors clearly define whre the testing has been carried out (laboratory or center)? 
Are genotyping methodss clearly defined? 

Is the method of DNA extraction clearly defined? 

Is the source of biologibal samples clearly defined? 

0

No
Unclear
Yes

10 20 30 40 50
(%)

60 70 80 90 100

Are the exclusions of patients from study appropriate? 

Figure 2: Quality assessment of studies. A series of questions were answered about laboratory methods, methodology, and clinical features.
For each question, the answer is yes, no, or unclear.
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and retrieved frequencies for 24HLA-A alleles and 3 alleles for
HLA −A ∗ 26 at four digits, 50 HLA-B alleles and 11 alleles
for HLA − B ∗ 51 at four digits, 15 HLA-C alleles, 16 HLA-
DRB1 alleles, 6 HLA-DQB1 alleles, and 15 HLA-DPB1 alleles.

We evaluated the strength of the association between
specific HLA alleles and the susceptibility to BS considering
both predisposing and protective alleles. We meta-analysed
only HLA allelic frequencies from at least three studies;
therefore, we investigated only 21 alleles out of 140. Egger’s
regression test showed no evidence of publication bias
(Egger’s regression test P values > 0.1).

Table 1 lists the number of Behcet syndrome (BS)
patients and the ethnically matched controls and the results
of the meta-analyses carried out for each HLA allele to verify
the correlation with susceptibility or protection to BS.

Going from 7.00 to 1.6 OR, we found 11 class I alleles
conferring risk for BS: B ∗ 51 : 08, B ∗ 51, B ∗ 51 : 01, B ∗
51 : 02, DQB1 ∗ 03, A ∗ 26 : 01, Cw ∗ 14, Cw ∗ 15, Cw ∗
16, B ∗ 15, and A ∗ 26. On the contrary, going from 0.36 to
0.69, we found 11 class I alleles conferring a protective role
to BS: B ∗ 54, DQB1 ∗ 05, DRB1 ∗ 13, A ∗ 33, B ∗ 18, Cw
∗ 03, B ∗ 07, B ∗ 52, B ∗ 35, and Cw ∗ 07 (Table 1).

Figure 3 depicts the forest plot for the HLA − B ∗ 51
allele, as it has been considered the most relevant genetic

marker of the disease. All nationalities are listed on the left
side for each included study.

3.3. Ethnicity-Specific Meta-Analysis. Overall, the studies
included populations from Europe (Greece, Spain, Italy,
Germany, and Ireland), Asia (Korea, China, China Han,
and Thailand), Middle East (Israel, Saudi Arabia, and Iran),
and Morocco (as no other North-African population was
included).

Due to the higher frequency of BS among Japanese and
Turkish people, we considered studies from Japanese and
Turkish samples separately.

We collected a number of ethnical groups sufficient to
conduct an ethnic-specific meta-analysis. Table 2 lists the
OR from the HLA alleles for each ethnic-subgroup.

4. Discussion

Since 1978, the autoinflammatory Behcet syndrome (BS) has
been linked to the HLA (human leukocyte antigen) genetic
system. Using serotype tests, BS was first linked to the
HLA-B5 molecule; later, using molecular testing, BS was
linked to the HLA-B51 allele, which is still the strongest
genetic BS marker [43].

Going from the HLA-B gene to the telomere region of
chromosome 6, we have HLA-C and HLA-A genes, while
going from the HLA-B gene to the centromere region, we
have HLA class III genes (not included in this study) and
HLA class II genes, such as HLA-DRB1, HLA-DQB1, and
HLA-DPB1.

Here, for the first time, we meta-analysed the HLA class
I and II genes involved in BS susceptibility in all ethnic
worldwide groups, collecting HLA genetic data from 31
case-control studies and retrieved allelic frequencies for the
HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and
HLA-DPB1 genes.

Our data confirmed the HLA-B51 allele as the genetic
HLA marker mostly associated with BS development all over
the world among all different ethnic samples (OR 5.81, P
< 0:0001) (Figure 3).

Notably, considering high-resolution two-digit analysis
of the HLA-B51 allele, we observed that the HLA − B ∗ 51
: 08 variant showed the highest OR associated with BS
(OR = 7:00, P < 0:001) (Table 1), followed by the two-digit
HLA − B ∗ 51 : 01 and HLA − B ∗ 51 : 02 alleles (Table 1).
Moreover, in our set of Europeans, the HLA − B ∗ 51 : 08
variant showed a 11.25 OR (Table 2).

Our results are in line with the work by Guasp and col-
leagues where high-resolution HLA − B ∗ 51 alleles were
associated with epistasis with Hap10, a low-activity variant
of ERAP1 (endoplasmic reticulum aminopeptidase 1),
although its pathogenic role in BS is still unclear. In particu-
lar, the authors studied the effects of Hap10 on the HLA −
B ∗ 51 peptidome aiming at distinguishing the different
effects of this epistasis with high-resolution HLA − B ∗ 51
polymorphisms in BS [47]. The HLA − B ∗ 51 : 08 BS-
associated peptidome expressed in a Hap10-positive cell line
was compared with the HLA − B ∗ 51 : 01 peptidome from
cells expressing more active ERAP1 variants. The authors

Table 1: HLA alleles involved in susceptibility/protection in Behcet
syndrome (BS). Number of studies, number of BS patients and the
ethnically matched controls, OR, and P values for each HLA allele
included in the meta-analysis.

HLA OR P N of BD N of CTR N of studies

B ∗ 51 : 08 7.00 <0.0001 503 962 8

B ∗ 51 5.81 <0.0001 1895 7799 26

B ∗ 51 : 01 5.54 <0.0001 988 1571 13

B ∗ 51 : 02 3.14 0.008 544 625 8

DQB1 ∗ 03 2.60 <0.0001 153 399 4

A ∗ 26 : 01 2.48 <0.0001 432 1705 4

Cw ∗ 14 2.35 0.001 279 260 4

Cw ∗ 15 2.34 0.001 279 260 4

Cw ∗ 16 2.23 0.014 279 260 4

B ∗ 15 1.79 0.004 433 5479 5

A ∗ 26 1.70 <0.0001 523 1781 7

B ∗ 35 0.69 0.008 691 5763 10

Cw ∗ 07 0.69 0.035 370 400 5

B ∗ 52 0.58 0.007 715 855 10

B ∗ 07 0.55 0.007 658 5698 9

Cw ∗ 03 0.55 0.002 237 302 3

A ∗ 33 0.53 <0.0001 661 1852 6

B ∗ 18 0.53 0.017 580 623 8

DRB1 ∗ 13 0.51 0.015 267 554 6

B ∗ 54 0.36 <0.0001 445 501 3

DQB1 ∗ 05 0.36 0.002 121 89 3
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estimated that peptide-binding affinity and the HLA − B ∗
51 : 08 peptidome generated longer peptides. They con-
cluded that the BS-associated Hap10 haplotype induces
changes in the repertoire of peptides presented to HLA − B

∗ 51 altering its antigen-presenting specificity and generat-
ing a lower affinity peptidome [45].

In our analysis we also observed an association with BS
with the HLA −A ∗ 26 : 01 allele (HLA class I), the HLA

Note: weights are from random effects analysis
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Figure 3: Forest plot from the meta-analysis for the HLA − B ∗ 51 allele.

Table 2: Meta-analysis for ethnic subgroups. Values are odds ratio (OR) and confidence interval (CI) in parentheses.

Overall Asia Europe Middle East Morocco Turkey Japan

A ∗ 26 : 01 2.48
(1.8-3.5)

1.89
(1.2-2.8)

3.50
(2.1-5.8)

B ∗ 15 1.79
(1.2-2.7)

2.53
(0.8-7.6)

1.92
(1.0-3.5)

1.51
(0.8-2.7)

B ∗ 51 6.07
(4.8-7.8)

5.99
(3.1-12)

8.22
(5.6-12)

5.03
(1.7-15)

2.46
(1.5-4.1)

5.97
(3.2-11)

6.44
(4.3-9.6)

B ∗ 51 : 01 5.57
(4.5-6.8)

5.16
(3.7-7.2)

5.98
(3.7-9.8)

6.12
(4.5-8.3)

B ∗ 51 : 02 3.14
(1.3-7.3)

2.91
(1.0-8.2)

5.39
(0.6-47)

B ∗ 51 : 08 7.00
(3.8-13)

11.25
(4.9-26)

3.96
(1.6-9.9)

B ∗ 52 0.58
(0.4-0.9)

0.69
(0.2-2.7)

0.25
(0.1-5.4)

1.01
(0.2-4.8)

0.93
(0.2-4.7)

0.63
(0.3-1.5)

0.51
(0.3-0.9)

B ∗ 54 0.36
(0.2-0.6)

0.36
(0.1-9.0)

0.36
(0.2-0.6)
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− Cw ∗ 14, HLA − Cw ∗ 15, and HLA − Cw ∗ 16 alleles
(HLA class I) and with HLA −DQB1 ∗ 03 allele (HLA class
II) (Table 1).

As to HLA −A ∗ 26 risk allele, our real-world data are a
confirmation of the results imputed by Ombrello and col-
leagues, who inferred in 2014 the independent role of
HLA-B51 and HLA-A26 in BS susceptibility by imputed
MHC-region SNPs and also found HLA − B ∗ 15 to be an
independent BS risk [48]. Moreover, we observed in a
sample of 600 healthy subjects (personal unpublished data)
that the HLA −A ∗ 26;B ∗ 51 haplotype was not the most
frequent among HLA-A;B haplotypes (seventh place), thus
further confirming with our real-world data the results by
Ombrello and colleagues [48].

Regarding the association between BS and HLA-C
alleles, Hughes and colleagues genotyped 8572 SNPs to infer
classical HLA alleles in the HLA-A, HLA-B, HLA-C, HLA-
DQA1, HLA-DQB1, and HLA-DRB1 genes from 2 ancestry
groups, and they imputed data suggesting a robust HLA −
B ∗ 51 association with BS and an additional independent
genetic association with HLA − Cw ∗ 16 : 02 [49]. In agree-
ment with imputed data by Hughes and colleagues, in our
sample of 600 healthy Caucasian subjects (personal unpub-
lished data), we observed that the HLA − B ∗ 51;Cw ∗ 15
and HLA − B ∗ 51;Cw ∗ 14 haplotypes were the second and
third most frequent haplotypes, while the HLA − B ∗ 51
;Cw ∗ 16 haplotype was the sixth place, thus supporting an
independent role of HLA − B ∗ 51 and HLA − Cw ∗ 16 in
BS.

Finally, we found that the HLA −DQB1 ∗ 03 was a BS
risk allele (Table 1). To take into account all possible bias
due to some linkage, we also observed in the same sample
of 600 healthy subjects (personal unpublished data) that
the frequency of the B ∗ 51;DQB1 ∗ 03 haplotype was the
second place.

Piga and colleagues found the HLA-A2; Cw2; B ∗ 5101;
DRB1 ∗ 11; DQA1 ∗ 05; DQB1 ∗ 03 haplotype in a subset
of BS patients; however, the authors also found that the
HLA-A2; Cw2; B ∗ 5101; DRB1 ∗ 04; DQA1 ∗ 03; DQB1 ∗
03 haplotype was not associated with BS, thus highlighting
the importance of studying extended HLA haplotypes rather
than single alleles [50].

Finally, we considered populations from Europe (Greece,
Spain, Italy, Germany, and Ireland), Asia (Korea, China,
China Han, and Thailand), Middle-East (Israel, Saudi Ara-
bia, and Iran), and Morocco (as no other North-African
population was included), and we separately considered
studies from Japanese and Turkish samples due to their
higher frequency of BS.

In our study, the most remarkable result was that the
most frequent HLA − B ∗ 51 two-digit alleles associated with
BS were different in different populations: in Europe, the
HLA − B ∗ 51 : 08 (OR 11.25 C.I. 4.9-26), in Turkey the
HLA − B ∗ 51 : 01 (OR 5.98 C.I. 3.7-9.8), and in Japan the
HLA − B ∗ 51 : 02 (OR 5.39 C.I. 0.6-47) (Table 2).

On the whole, HLA − B ∗ 51 is no more the only flag
tagging a genetic marker to BS susceptibility; in fact, we
observed that HLA-A and HLA-C variants also play an
independent role in BS risk.

Beyond the distribution of HLA variants related to dif-
ferent ethnicities, we suggest that a further study ought to
be focused on the correlation between these HLA − B ∗ 51
two-digit variants (in particular HLA − B ∗ 51 : 08) and
clinical signs.

5. Conclusion

Despite remarkable different results on the distribution of
the two-digit HLA − B ∗ 51 alleles associated with BS among
populations, unfortunately, we could not find sufficient data
on the association between HLA alleles and different clinical
features. This comparison should be a further goal in order
to find also clinically relevant differences in treatment
response.
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Selective IgA deficiency (SIgAD) is the most frequent primary immune defect. Since SIgAD is not characterized by relevant
infectious issues in most cases, it is often diagnosed during the diagnostic work up of several and different autoimmune
disorders, which are associated with this primary immune defect. The genetic background of SIgAD is complex and three
HLA haplotypes resulted to be more frequently associated with it; in detail, two of them include HLA-DQB1∗02 allelic
variants, which are essential predisposing factors to develop Celiac Disease (CD). Here, we discuss the evidence regarding
the role of HLA in the etiopathogenesis of SIgAD and its association with CD. Actually, the HLA region seems to play a
modest role in the genetic predisposition to SIgAD and we may speculate that the association with the HLA-DQB1∗02
alleles (or haplotypes including them) could derive from its link with CD. Indeed, SIgAD and some related immunological
alterations are likely to predispose to several autoimmune diseases (with and despite different HLA backgrounds),
including CD, which is relatively common and directly associated with the HLA-DQB1∗02 allelic variants coding the DQ2
heterodimer. Further and specific studies are needed to make final conclusions in this regard.

1. Introduction

Celiac disease (CD) is a gluten-related systemic immune-
mediated disorder characterized by a very variable clinical
expression, including both gastrointestinal and extra-
gastrointestinal manifestations. It is diagnosed by the dem-
onstration of specific autoantibodies, such as anti-tissue
transglutaminase antibody and anti-endomysium antibody
(which mainly belongs to the IgA isotype), along with the
presence of atrophic (small bowel) enteropathy at the histo-
pathological level [1–2].

Selective IgA deficiency (SIgAD) is the most common
primary immune deficiency worldwide [3]. Notably, SIgAD
is significantly associated with CD [1], which can make the
diagnosis of the latter disease be more difficult, since the
main serological markers are IgA autoantibodies. Indeed,
the assessment of total serum IgA concomitantly to the sero-

logical screening for CD is a mandatory test in the suspicion
of CD [4–5].

The HLA (human leukocyte antigen) system represents a
relevant component of the genetic predisposition to autoim-
munity in general, even if the implicated loci and allelic var-
iants are different according to the specific autoimmune
disorder [6]. Notably, several studies described a significant
association between SIgAD and a few HLA haplotypes [7].

In general, primary immune deficiencies and autoimmu-
nity are linked: several autoimmune diseases may complicate
the same immune deficit [8]; moreover, the diagnosis of one
autoimmune disorder increases the risk of developing other
autoimmune diseases and/or different autoantibodies, as it
happens in CD as well [9–10].

In this review, we discuss SIgAD and CD in the perspec-
tive of the HLA system, in order to analyze and assess the
specific contribution of these loci in the etiology and
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pathogenesis of the epidemiological association between
these diseases.

2. Selective IgA Deficiency

Immunoglobulin A (IgA) is the most abundant antibody iso-
type in the human body, overall. Indeed, even though IgG
have the highest blood concentration by far, IgA is also pres-
ent in the mucosal surfaces of respiratory, intestinal, and
genitourinary systems and then account for >70% of the
total immunoglobulin pool [11]. Secretory IgA is dimeric
and contributes to limit the epithelial adherence and pene-
tration of endogenous bacteria through the mucosal sur-
faces, in addition to preventing infections by pathogenic
microorganisms [12–13]. Serum IgA actually circulates in
monomeric form, and its function in the systemic immune
response has not been completely elucidated; however, it
may have an immunomodulatory role, and form immune
complexes with foreign antigens and clear them through
the phagocytic system, but without activating the comple-
ment cascade [14–15]. However, it is clear that IgA plays a
fundamental role in maintaining the homeostasis at the
mucosal surfaces. In detail, secretory IgA is supposed to pro-
mote an immune exclusion by entrapping dietary antigens
and microorganisms in the mucus, downregulate the expres-
sion of proinflammatory bacterial epitopes on commensal
bacteria, and maintain the appropriate bacterial communi-
ties, especially in the gut [16].

Serum IgA levels are age-related: IgA is basically absent
at birth and its concentration gradually increases during
the pediatric age until reaching the adult levels during the
adolescence (with normal levels ranging between 61 and
365mg/dl) [17]. Total IgA deficiency is defined by serum
IgA levels < 7mg/dl. IgA deficiency is defined as partial
when serum IgA levels are >7mg/dl, but below the lower
limit of the normal range according to the age [3, 17–18].

In infants and young children, low levels of serum IgA
can be observed in the general context of transient hypo-
gammaglobulinemia of infancy or their level can be selec-
tively reduced due to delayed ontogeny of the immune
system after birth in terms of IgA production. Therefore, a
threshold of 4 years of age is commonly accepted to make
a final diagnosis of SIgAD, which is then diagnosed in chil-
dren older than 4 years, who show low IgA levels, but nor-
mal levels of IgG and IgM (in addition to normal vaccine
responses and, importantly, after exclusion of secondary
causes of hypogammaglobulinemia and T cell defects), even
if it may be associated with IgG subclasses deficiency. Indeed,
additional immunological abnormalities indicate different dis-
orders, such as common variable immunodeficiency, second-
ary hypogammaglobulinemia, and unclassified antibody
deficiencies [3, 19]. SIgAD is the most common immunodefi-
ciency: worldwide, its prevalence is estimated to be around
1 : 400, despite significant variations according to the ethnicity.
Indeed, it is considered more common in Caucasian popula-
tions (1 : 134–1 : 875), whereas the lowest prevalence is
described in (East) Asian populations (China, 1 : 4100; Japan,
1 : 18500) [3, 20].

However, SIgAD prevalence studies are still lacking in
many countries and, importantly, almost 90% of individuals
with IgA deficiency have no specific symptoms or are
completely asymptomatic. Overall, less than 30% of patients
present with overt clinical manifestations of immunodefi-
ciency, such as recurrent respiratory or gastrointestinal tract
infections. Moreover, most patients with evident sinopul-
monary infections (caused by encapsulated bacteria, such
as Haemophilus influenzae and Streptococcus pneumoniae)
are more likely to also have IgG subclass deficiency, espe-
cially IgG2 and IgG3 [3, 20–21]. However, an important
clinical characteristic of SIgAD is its frequent association
with allergy and autoimmunity, which may be the only
“clinical manifestation” of this primary immune defect [19].

3. Allergy and Autoimmunity in Selective
IgA Deficiency

A wide range of allergic disorders (including allergic con-
junctivitis, rhinitis, urticaria, eczema, food allergy, and
asthma) are often diagnosed in SIgAD patients [3, 22]. In a
recent report, allergy was evidenced in 84% of patients with
SIgAD (age range: 4–32 years) [23]. However, although a
significant epidemiological association is supported by most
studies on this topic, the actual prevalence of allergy among
SIgAD patients is debated and may vary according to several
factors, including the ethnical background [24]. In practice,
allergic manifestations are the presenting symptoms in at
least 25–50% of SIgAD patients [18, 21]. It is speculated that
IgA deficiency by itself may bring to an increased prevalence
of allergic disorders. Indeed, IgE concentrations are often
increased in patients with SIgAD (and, in detail, atopic chil-
dren), which may be due to a compensatory mechanism for
a low secretory IgA level. Conversely, reduced IgA to gastro-
intestinal antigens were described in the mucosa of atopic
children, which led to the hypothesis that gut luminal IgA
deficiency may promote eczema and food allergy [25–27].

Similarly, a number of autoimmune diseases are associ-
ated with SIgAD. Indeed, according to different studies, at
least 5–30% of SIgAD patients are diagnosed with concomi-
tant autoimmune disorders, including idiopathic thrombo-
cytopenic purpura, Graves’ disease, autoimmune hemolytic
anemia, type 1 diabetes mellitus, rheumatoid arthritis, thy-
roiditis, systemic lupus erythematosus (SLE), autoimmune
hepatitis, and CD [21, 28–29].

The pathogenesis of this relationship between SIgAD
and autoimmunity is not completely understood. However,
considering the number of different autoimmune disorders
linked to SIgAD, multiple mechanisms could be variably
implicated to explain this link. Odineal et al. recently sum-
marized the potential mechanisms involved in SIgAD-
related autoimmunity [30]. As mentioned, serum IgA can
bind antigens and clear them without activating the comple-
ment and, thus, limiting the inflammatory responses:
accordingly, IgA deficit may predispose the immune system
to become sensitized to autoantigens through mechanisms
of molecular mimicry [7, 31]. In this regard, the concomi-
tant deficit of mucosal IgA can expose the adaptive immune
system to some pathogenic or commensal microorganisms,
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promoting cellular and humoral responses that may cross-
react with self-antigens [3, 30].

Moreover, SIgAD definitely recognizes a background of
genetic predisposition, which is heterogenous and not well
defined, yet. Mutations in transmembrane activator and cal-
cium modulator and cyclophilin ligand interactor (TACI,
TNFRSF13B) have been found in a subset of patients with
IgA deficiency, but also in patients with common variable
immunodeficiency (CVID). Even though the pathogenic role
TACI mutations in SIgAD is controversial, it is clear that
SIgAD can be associated with B cell, T cell, or cytokine
abnormalities, which in turn may be implicated in the sus-
ceptibility to autoimmunity [30, 32–34].

Finally, the potential role of the HLA system was also
considered, which may favor the development of SIgAD
and concomitantly predispose to autoimmunity. As dis-
cussed later, specific HLA haplotypes resulted to be associ-
ated with SIgAD, and some HLA allelic variants also
appeared to be independently associated with several auto-
immune diseases, including SLE, CD and dermatitis herpeti-
formis, type I insulin-dependent diabetes, myasthenia gravis,
and scleroderma [27, 30].

4. The HLA System in Selective IgA Deficiency

SIgAD usually occurs sporadically, but familial cases are
described, even though no Mendelian inheritance pattern
can be clearly defined. Indeed, the pedigrees of IgA-
deficient-related individuals can be both autosomal recessive
and autosomal dominant [18]. However, the genetic compo-
nent appears to be relevant: the risk of developing SIgAD
can be up to 50-fold higher in first-degree family members
of patients with SIgAD compared to the general population.
Moreover, this risk is 4-fold greater when the affected parent
is the mother compared to the father [34–35]. In sum-
mary, SIgAD is likely to recognize a multifactorial etiology
with a multigenic inheritance, where epigenetic aspects
also play a role.

In such a not well-defined genetic background, the HLA
loci have been investigated to understand if they could play a
direct role in the pathogenesis of the SIgAD. Indeed, specific
HLA haplotypes, including both class I and II HLA genes,
were found to be more frequently represented in patients
with SIgAD [3]. In detail, three major haplotypes resulted
to be associated with SIgAD. HLA-B∗0801/DRB1∗03/
DQB1∗0201 was strongly associated with SIgAD in Cauca-
sian populations, especially in Northern Europe (Sweden,
Norway, Iceland, Finland, and Germany) [36–37]. Indeed,
a 13% prevalence of SIgAD was initially reported in individ-
uals who are homozygous for the HLA B8/DR3 haplotype,
corresponding to an extremely high relative risk (RR = 77:8)
[38]. However, eventual and larger studies evidenced a much
moremodest effect (RR = 11:1 for homozygosity,RR = 3:4 for
heterozygosity) of this haplotype on the risk for SIgAD than
what was previously suggested [39]. Interestingly, some
authors suggested that the SIgAD association with this haplo-
type could have been actually due to a class III HLA region
allele, based on a study comparing this haplotype across
SIgAD patients from Sardinia (Italy), North Europe, Austra-

lia, and USA [38, 40–42]. A second haplotype (HLA-DRB1∗
0701/DQB1∗0202) has been associated with SIgAD, again in
Northern Europe, whereas a third haplotype (HLA-DRB1∗
0102, DQB1∗0501) has been described more frequently in
Southern Europe (Spain and Italy) and in Southwest Asia
(in detail, Iran) [37, 43–45]. Conversely, some authors
explained the low prevalence of SIgAD in Chinese population
with the lower frequency of these disease-related haplotypes/
alleles in China [46].

Despite the number of studies describing the increased
frequency of these haplotypes in SIgAD patients, a recent
genetic analysis showed that the influence of HLA in SIgAD
genetics is likely to be modest, and suggested that other non-
HLA genes and/or other epigenetic influences from environ-
mental factors may be more relevant for the development of
SIgAD. However, at the same time, these researchers
observed that some specific HLA allelic variants may have
some influence on the IgA serum levels. For instance,
HLA-A∗01 and HLA-B∗14 alleles were associated with an
increased IgAD risk and carriers resulted to have a signifi-
cantly lower mean serum IgA concentration; conversely,
HLA alleles B∗07 and DRB1∗15 were found to confer pro-
tection against SIgAD and, accordingly, carriers showed a
significantly increased mean serum IgA concentration [47].

Notably, a recent study proposed an “epigenetic” role for
the HLA region. A specific micro-RNA (miR-6891-5p),
which is encoded by an intronic sequence inside HLA-B,
resulted to regulate the expression of the immunoglobulin
heavy chain alpha 1 and 2 (IGHA1 and IGHA2) genes at
the post-transcriptional level, thus potentially affect IgA
levels and contribute to the development of SIgAD [48].

Therefore, non-HLA loci seem to be as important as—or
actually more than—HLA genes in the determination of the
genetic susceptibility to SIgAD. Recent studies proposed
associations with several non-HLA loci (e.g., CLEC16A,
CTLA4, ICOS, FAS, IL6, and IL10), but conclusive evidence
for their role in the pathogenesis of SIgAD is still lacking [49].

5. HLA-DQ Genes in Selective IgA Deficiency
and Celiac Disease

The prevalence of SIgAD in CD patients is estimated to be
around 1 : 40 (2–2.5%). Indeed, IgA levels should be syste-
matically measured in patients diagnosed with CD and, even
earlier, during the diagnostic work up for CD, considering
the implication of low serum IgA levels for the reliability
of CD serological tests based on the detection of specific
IgA autoantibodies, such as anti-tTG, EMA, anti-gliadin
antibody, and antibody to deamidated gliadin peptides [5,
50–51].

Similarly, CD is more frequent in children with SIgAD
than in the general population and, actually, their associa-
tion looks even stronger in this direction. Meini et al.
reported a 7.7% prevalence in children affected with SIgAD
[52]. In other studies, CD prevalence reached values of 15–
30%, when SIgAD patients had been already diagnosed with
other autoimmune disorders [53–54]. Another study by
Lenhardt et al. confirmed a similar prevalence of CD
(8.7%, n = 11 CD patients) in their cohort of 126 patients
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with SIgAD (age range: 2–20 years). Additionally, these
authors also described the HLA-DQ genetic background
of these patients (DQ2 : n = 9, DQ8 : n = 2) [55].

As mentioned, the necessary environmental trigger for
CD is well known, namely, the dietary exposure to gluten.
Indeed, the pathogenesis of CD can be summarized as a
gluten-induced activation of the adaptive immune response:
gluten-reactive T lymphocytes are found in the lamina pro-
pria, which display a Th1 phenotype with a cytokine produc-
tion dominated by IFN-γ, even though gliadin-specific Th17
cells and CD8+ T cells have been described, too [56].

A key finding supporting the central role of the adaptive
immune response in CD pathogenesis is the constant associ-
ation with specific HLA class II molecules. Indeed, CD is
strongly associated with the carriage of DQ2 and/or DQ8
MHC heterodimers. In detail, almost 100% of CD patients
carry the specific HLA alleles DQA1∗0501-DQB1∗02 (cod-
ing the DQ2 MHC heterodimer) and/or DQA1∗0301-
DQB1∗0302 (coding the DQ8 MHC heterodimer) [1–2].
Among these HLA-DQ genes, recent studies showed the epi-
demiological importance of HLA-DQB1∗02 alleles in the
pediatric CD population [57–58]. In detail, our group high-
lighted that around or >95% of CD patients (and especially
children) carry at least one copy of HLA-DQB1∗02 variants
[59–61]. However, such an HLA immunogenetic predisposi-
tion to CD is quite common in the general population (since
30%–40% of the individuals in Europe, North America, and
other populations have been demonstrated to carry HLA-
DQB1∗02 alleles) and, thus, it is not sufficient for developing
CD: indeed, only a minority of these MHC DQ2/DQ8 car-
riers (around 3%) actually develop CD during life, despite
a comparable dietary exposure to gluten [62–64].

Interestingly, the main SIgAD-associated HLA haplo-
types (HLA-B∗0801/DRB1∗03/DQB1∗0201 and HLA-
DRB1∗0701/DQB1∗0202) included the allelic variants cod-
ing for the MHC-DQ2 heterodimer. In detail, 45% of SIgAD
patients have the haplotype 8.1 (HLA-A1, B8, DR3, and
DQ2) compared to 16% of the general population [39, 65].
These HLA-DQ genes may concomitantly favor the develop-
ment of SIgAD and predispose to CD. Even though the most
recent evidence seems to reappraise the role of HLA in the
pathogenesis of SIgAD, some correlations between a few
HLA alleles and the level of serum IgA were actually
observed, as previously explained [47].

Moreover, SIgAD could be a risk factor for CD regard-
less of the common HLA genetic background, through a
series of immunopathogenic mechanisms. In detail, the low
levels of secretory IgA to protect mucosal barriers could
increase the exposure to pathogens and foreign antigens.
Also, IgA may also play a regulatory role in the general
homeostasis of the immune system: T regulatory cell defi-
ciency was evidenced in 64% of SIgAD patients, and a num-
ber of alterations of (memory) B cells were described in these
patients, all of which may potentially contribute to autoim-
munity [66–69]. In this sense, SIgAD may favor the gluten
sensitization in patients who are HLA-predisposed to mount
an immune response against gluten-derived peptides. Then,
the association between SIgAD and HLA haplotypes, includ-
ing DQB1∗02 alleles, may indirectly result from the pathoge-

netic role of SIgAD by itself in CD development, considering
the greater prevalence of CD compared to other autoim-
mune disorders and its strong and direct association with
HLA-DQB1∗02 alleles.

Actually, the concept of SIgAD itself as a risk factor for
CD and, in general, for autoimmune diseases, appears to
be more likely than a general association between SIgAD
and autoimmunity based on a common HLA genetic back-
ground, which should concomitantly promote both SIgAD
and CD or other autoimmune disorders. Indeed, SIgAD
has been described in numerous and very diverse autoim-
mune diseases, which differ in terms of immunopathogenic
mechanisms and HLA predisposition [7, 30]. For instance,
the prevalence of SIgAD among children with juvenile idio-
pathic arthritis (JIA), which is one of the most frequent
rheumatic disorders in children, was reported to range from
1 to 4.35% (weighted average of 2.7%) [30], which is as sig-
nificant as the frequency of SIgAD in CD patients. However,
the HLA genetic predisposition in JIA is variable and not
much linked to HLA-DQ alleles [70–71].

Moreover, the recent advances in the understanding of
the interplay between gut microbiota and immune system
suggested that IgA may contribute to the establishment
and maintenance of beneficial interactions with the microbi-
ota [72]. Therefore, SIgADmay affect the microbiota compo-
sition in the gut, and that may be an additional mechanism
for such a strong association between SIgAD and CD, consid-
ering the growing evidence that supports the role of microbi-
ota in the pathogenesis of several autoimmune disorders
[30]. Very recently, spontaneous inflammation in the ileum
(but not the other parts of the gastrointestinal tract) was
described in IgA−/− mice, which was also associated with
skewed intestinal microbiota composition [73]. In the human
counterpart, Moll et al. described a perturbed microbiota in
individuals affected with SIgAD, which resulted to be
enriched of species with increased proinflammatory potential
[74]. Previously, other studies suggested a critical and nonre-
dundant role of IgA in controlling gut microbiota composi-
tion in humans and maintaining a diverse and stable gut
microbial community, even though there were differences
in terms of phyla-relative abundance and diversity in SIgAD
patients across these studies [75–77].

Even though no clear “celiac” signature has been identi-
fied in the microbiome of CD patients, the lack of secretory
IgA is likely to alter the mucosal homeostasis of the local
microbiota along the gastrointestinal tract [78–80]. In the
small bowel, the alterations of the gut microbiota could per-
turb the mucosal barrier, impair its permeability to antigens,
and finally promote immunological phenomena of cross-
reactivity [81–82]. Modifications of the salivary and gut
microbiome could affect the digestion of nutrients (includ-
ing gluten proteins) and, thus, their ability to be recognized
by the immune system and trigger the immunopathological
events leading to CD [83–84].

In this regard, it is also worth to mention that several
studies highlighted the potential and direct role of HLA-
DQB1 in driving the gut microbial colonization process.
De Palma et al. first investigated a cohort of newborns and
infants being first-degree relatives of CD patients: they were
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analyzed for their HLA class II (DQA1 and DQB1) geno-
type. They found an association between higher proportions
of the Bacteroides-Prevotella group and the high genetic risk
group, basically represented by those individuals being
DQB1∗02 homozygous or double heterozygous for DQB1∗
02 and DQB1∗0301. Total Gram-negative bacteria and E.
coli, Streptococcus-Lactococcus spp., the E. rectale-C. coc-
coides group, C. lituseburense, and the C. histolyticum group
proportions followed a similar trend when comparing the
high- versus the low-genetic risk groups [85].

The larger PROFICEL study further supported this con-
cept, in addition to investigating the concomitant contribu-
tion of breastfeeding. Indeed, specific features of fecal
microbiota were associated with the genetic risk of develop-
ing CD, based on the HLA-DQ genotype, regardless of the
milk-feeding type. In detail, the authors here described an
increased number of Bifidobacterium spp. and B. longum
in the microbiota of infants with the lowest genetic risk,
whereas increased numbers of bacteria belonging to the
Staphylococcus spp. and B. fragilis group were observed in
infants with the highest genetic CD risk [86].

A more recent study also supported the hypothesis that a
reduced abundance of B. longum, dependent on both genetic
(also HLA-related) and environmental factors, may favor
CD development. Additionally, this study evidenced a faster
reduction in secretory IgA fecal levels in children who devel-
oped CD over time compared to healthy ones: this might
suggest that a premature reduction of secretory IgA levels
in the group of CD children could be related to shifts in bac-
terial community development, which in turn may affect the
maturation of the mucosal immune functions, possibly

increasing the risk for autoimmune dysfunctions as well
[87]. Indeed, in a previous study, reduced IgA-coated bacteria
in CD patients were associated with intestinal dysbiosis [88].

6. Conclusion

Several aspects and mechanisms can be theoretically impli-
cated in the association between CD and SIgAD, including
the HLA system (in detail, HLA-DQ2-related allelic vari-
ants), non-HLA genes, and environmental factors, as sche-
matically summarized in Figure 1.

Despite a number of studies describing the association
between a few HLA haplotypes and SIgAD, the most recent
evidence suggested that the direct influence of HLA genes in
its pathogenesis is likely to be modest, supporting a hetero-
geneous genetic background in the context of an etiologic
and pathogenic picture where non-HLA genes and/or epige-
netic influences from environmental factors play a relevant
role for the development of SIgAD.

The two main haplotypes associated with SIgAD both
include HLA-DQB1∗02 alleles, which are known to be the
genetic predisposing factor to CD in >90% of patients. The
prevalence of SIgAD in CD patients is around 2–2.5%,
whereas pediatric studies show up to 10% prevalence of CD
in SIgAD patients. We may speculate that such an association
between SIgAD and HLA-DQB1∗02 could be driven by the
higher population prevalence of CD compared to other
SIgAD-associated immune diseases, all of which may recog-
nize a direct pathogenic contribution from low blood/mucosal
levels of IgA. However, some influence of HLA genes and, in
detail, HLA-DQB1∗02 alleles on the development of SIgAD

Selective IgA deficiency

Celiac disease

HLA system Non-HLA genes Environmental factors?

HLA system 
Non-HLA genes

Environmental factors

HLA-DQ2
haplotypes

(Gut) dysbiosis?

Gluten

Others? 

(Gut) dysbiosis?

(Gut) dysbiosis?

Figure 1: Schematic overview of the etiologic factors and aspects that are implicated in the pathogenesis of SIgAD and CD and may variably
interplay to explain the association between these two diseases. HLA-DQ2 allelic variants are the necessary genetic background in CD
patients and are also associated in part of SIgAD patients. Non-HLA genes (such as TACI, TNFRSF13B, CLEC16A, CTLA4, ICOS, FAS,
IL-6, and IL-10) seems to mainly contribute to the genetic predisposition to SIgAD. A number of environmental factors are supposed to
be implicated in both diseases; however, these are not well defined, except for dietary gluten exposure, which is a mandatory condition
for developing CD. In addition to a direct role, all these factors might impact on the risk of developing CD and/or SIgAD by affecting
(gut) microbiome; the potential dysbiosis associated with each disease might also contribute to pathogenesis of the other one.
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(maybe through microbiome alterations and related epige-
netic/immunological mechanisms) cannot be definitely ruled
out. Further and specific studies are needed to make final con-
clusions in this regard.
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