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In recent years, the partial differential equations, both frac-
tional and integer orders, have been recognized as a powerful
modelingmethodology.They are inspired by problemswhich
arise in diverse fields such as biology, fluid dynamics, physics,
differential geometry, control theory, materials science, and
engineering.

The purpose of this special issue is to report and review
some recent developments in methods and applications of
partial differential equations. The majority of the papers
contained in this special issue are based on areas of research
ranging from functional analytic techniques and singularity
methods as well as numerical methods that are applied
to both partial and ordinary differential equations. There
are papers which deal with fractional partial differential
equations and in addition papers analyzing equations that
arise in engineering as well as classical and fluid mechanics.

This special issue contains the papers addressing the
recent theoretical advances and experimental results on
the topics such as operational calculus and inverse differ-
ential operators, global existence and energy decay rates
for a Kirchhoff-type wave equation, nonsymmetric system
of Keyfitz-Kranzer type, different methods for numerical
solution, recent progress on nonlinear Schrödinger systems
with quadratic interactions, upper semicontinuity of pullback
attractors, numerical modeling, mean-variance portfolio
selection, a novel iterative scheme, and the iterative methods
of linearization.

The guest editors very much hope that the papers pub-
lished in this special issue will be useful to a large community
of researchers and will arouse further research in the topics
presented as well as in the connected fields.
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The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension
partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a
dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical
techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid
points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount
introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional
Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of
the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the
image denoising is decreased to O(4J+2j) from O(43J), (𝑗 ≪ 𝐽). The experiment results show that the dynamic choice scheme of the
external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with
the classical interval wavelets numerical methods.

1. Introduction

The nonlinear difference equation has been widely used in
various fields in the past few decades such as the option
pricing [1], stochastic analysis [2], hydrodynamics [3], and
image processing [4]. Many powerful and efficient methods
to find analytic solutions of nonlinear equation have drawn
a lot of interest by a diverse group of scientists. These
methods include the tanh-function method, the extended
tanh-function method [5, 6], the sine-cosine method [7], the
variational iteration method [8, 9], the homotopy perturba-
tion method [10, 11], and Exp-function method [12].

As an excellent medical image processing model, the
Perona-Malik model [4] has been widely used in image
denoising in recent years. Perona-Malik model is a non-
linear 2-dimension partial differential equation in itself,
which overcomes the drawback of the scale-space technique
introduced by Witkin which involves generating coarser
resolution images by convolving the original image with

a Gaussian kernel. In this approach, a new definition of
scale-space was suggested, and a class of algorithms was
introduced; then accurately the locations of the “semantically
meaningful” edges at coarse scales using a diffusion process
can be obtained; that is, a high quality edge detector which
successfully exploits global information was obtained with
this new method.

It is very difficult to find the exact analytical solution of
the Perona-Malikmodel as it is a nonlinear partial differential
equation. Conventional methods for numerical solutions of
partial differential equations mostly fall into three classes:
finite difference methods, finite element methods, and spec-
tral methods. Briefly, the finite difference method consists in
defining the different unknowns by their values on a discrete
grid and in replacing differential operators by difference
operators using neighboring points. In the finite element
method, the equations are integrated against a set of linear
independent test functions with small compact support, and
the solution is considered as a linear combination of this
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set of test functions. In spectral methods, the unknown
functions are developed along a basis of functions having
global support. This development is truncated to a finite
number of terms which satisfy a system of coupled ordinary
differential equations in time. The advantage of using either
of the first two numerical techniques is the simplicity in
adapting to complex geometries, while the main advantage
of spectral methods is the greater accuracy [13, 14].

If the solution of a partial differential equation is regular,
any of the three above-mentioned numerical techniques
can be applied successfully. It is obvious that most of the
images are irregular. This makes the Perona-Malik equation
particularly difficult to resolve numerically using the above-
mentioned methods. Spectral methods are not easily imple-
mented because the irregularity of the solution causes the loss
of high accuracy. Moreover, the global support of the basis
function induces the well-known Gibbs phenomenon, which
appears as the artifacts in images. Wavelet analysis is a new
numerical concept which allows one to represent a function
in terms of a set of basis function, called wavelets, which
are localized both in location and in scale. Up to now, the
finite difference method is the primary numerical algorithm
for Perona-Malik model, which can bring artifact into the
images due to the nonsmoothness of the basis function of
the finite difference method [15, 16] as has been said before.
The multilevel wavelet numerical method for the nonlinear
PDEs has been proposed over ten years, which can take full
advantage of the adaptability of the wavelet analysis [17].
The artifacts in image can be eliminated with the wavelet
numerical algorithm instead of the finite difference method,
as wavelet basis function possesses many excellent properties
such as smoothness and compact support. But the support
range of wavelet function is much wider than the basis
function in the finite difference method [18, 19]. This leads
to a lower computational efficiency of wavelet transform in
solving 2Dnonlinear PDEs. Besides,most of thewavelet algo-
rithms for solving partial differential equations can handle
periodic boundary conditions easily.The treatment of general
boundary conditions is still an open question especially in
solving the nonlinear problems. Construction of the wavelet
defined in the interval (interval wavelet) is another good
choice to handle the boundary conditions [20, 21]. Compared
to the interpolation wavelet, a linear mapping between the
external collocation points and the interval ones was supplied
in the interval wavelet. The choice of the external collocation
points depends on the smoothness and the gradient near each
collocation point of the solution of the PDEs. Besides, the
condition number of the system of equations obtained by the
wavelet collocation method should be taken into account.

To an image with 2𝐽 ∗2𝐽 pixels (𝐽 ∈ 𝑍), the Perona-Malik
equation can be discretized into a system of ODEs with 4𝐽-
dimension by the coupling technique of HPM [22–27] and
the wavelet collocation method [28, 29]. The corresponding
time complexity is about 𝑂(43𝐽) with the variational iterative
method for the system of ODEs [30]. Obviously, it does
not meet the requirement of the larger image processing.
Partitioning technique is the effective measure to improve
the efficiency of this problem. In other words, the image

should be divided into several blocks before denoising to the
images. In each of image blocks, themultiple programs can be
executed simultaneously. This is similar to the finite element
method to some extent. Obviously, if the size of the image
blocks is adaptive to whole image, the algorithm efficiency
can be improved furthermore. Our research focuses on the
general frame of sparse grids and the dynamic choice scheme
of the external grid points, which can be used to decrease the
boundary effect of each image block, and so,we just talk about
the even partitioning in this paper for simplification.

The sparse representation of functions via a linear com-
bination of a small number of basic functions has recently
received a lot of attention in several mathematical fields
such as approximation theory as well as signal and image
processing. The advantage of the sparse grid approach is
that it can be extended to nonsmooth solutions by adaptive
refinement methods; that is, it can capture the steep waves
that appeared in the solution of the PDEs.Themain objective
of the paper is to present a dynamic choice scheme of
the external grid points and a general sparse grid operator
for solving the Perona-Malik equation. In other words, the
dynamic sparse grid approach provides an adaptive choice
scheme on both of the external and the internal grid points.
In the presentation of the method, we try to be as general
as possible, giving only the main philosophy of the method
and leaving some freedom for further exploration of its
applications. Both the boundary condition and the condition
number are addressed in this work. The first is how to
incorporate the dynamic choice scheme on external grid
points with the interpolation wavelet basis to construct an
effective algorithm of solving partial differential equation.
The second is how to construct a stable, accurate, and efficient
numerical algorithm for the image denoising model.

2. Construction of Dynamic Sparse
Grid Operator

There are many ways to eliminate the boundary effect from
themultiscale basis. A simple solution is the even 2-periodical
extension𝑓 of function𝑓 : [0, 1] → R, which is usually used
in image analysis. Unfortunately, this extension generally
produces discontinuities at the integers that are indicated by
the large transform coefficients near the endpoints 0 and 1.
Thus the constructed multiscale basis cannot exactly analyze
the boundary behavior of a given function. To solve this
problem, the popular method is using special boundary and
interior scaling functions such as the interval wavelet to
reduce the numerical problem at the boundaries. To the inter-
polation basis function, the common approach is to define
the interpolation basis in the interval with the Lagrange
multiplier. In fact, the Lagrange multiplier can be viewed as
a map operator, which maps the external collocation points
into the definition domain in the multiscale interpolation
method. The choice of the amount of the external points
relates to the smoothness and gradient near the boundary
of the approximated function. In addition, another factor
that we should take into account is the condition number
of the system of ODEs obtained by the multiscale numerical
method.
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Obviously, the amount of the external collocation points
should be different to different boundary conditions such
as the smoothness, gradient near the boundary, and the
condition number. In the partition technique about the image
processing, the boundary conditions of the different image
blocks are obviously different as the randomness of the image.
In the representation, we try to give a dynamic choice scheme
about the external collocation points tomeet the requirement
of the image partition technique, in which all above 3 factors
are taken into account.

In the presentation of the method, we try to be as general
as possible, giving only the main philosophy of the method
and leaving some freedom for further exploration of its
applications. We illustrate the method using two classical
interpolation wavelets: Shannon wavelet and the autocorrela-
tion function of Daubechies scaling functions. But we do not
try to predict what wavelet is the best for our algorithm (it
is simply impossible, due to the fact that some wavelets work
better for some problems and worse for others).

2.1. Basis Functions with Interpolation Property. There are
many wavelet functions which possess the interpolation
property. The familiar interpolation wavelets family includes
Shannon wavelet, Haar wavelet, and Faber-Schauder. Fur-
thermore, it is easy to understand that the autocorrelation
function of the orthogonal wavelet function also has the
interpolation property. So, the autocorrelation function of the
Daubechies scaling function is often employed to construct
the wavelet collocation method.

The representation of Shannon wavelet [31, 32] is based
upon approximating the Dirac delta function as a band-
limited function and is given by

𝜙 (𝑥) =
sin (𝜋𝑥)

𝜋𝑥
. (1)

The Shannon wavelet possesses many excellent numerical
properties such as interpolating, relative sparse, and orthogo-
nal properties. A perceived disadvantage of (1) is that it tends
to zero quite slowly as |𝑥| → ∞. A direct consequence of this
is that there are a large number of grid points will contribute
to the derivatives calculation of approximated function. For
this reason Hoffman et al. [33] have suggested using the
Shannon-Gabor wavelet as follows:

𝑤 (𝑥) =
sin (𝜋𝑥)

𝜋𝑥
exp(− 𝑥2

2𝜎2
) , 𝜎 > 0, (2)

where 𝜎 is the width parameter (or called window size). It
has been proofed that (2) can improve the localized and
asymptotic behavior of the Shannon scaling function. A
consequence of this is that it ensures that derivatives at any
one point are more dependent on the neighboring nodal
values than on the nodal values further away from the
point considered. However, the presence of the Gaussian
window destroys the orthogonal properties possessed by the
Shannon wavelet, effectively worsening the approximation to
a Dirac delta function. In the following, the Shannon wavelet
representation of the Dirac delta function is adopted, and it

is shown that this representation ensures that the approach is
identical to the weighted residual approach.

The autocorrelation functions of compactly supported
scaling functions were first studied in the context of the
Lagrange iterative interpolation scheme in [34]. Let 𝜙(𝑥) be
the autocorrelation function:

𝜙 (𝑥) = ∫
∞

−∞

𝜑 (𝑦) 𝜑 (𝑦 − 𝑥) 𝑑𝑦, (3)

where 𝜑(𝑥) is the scaling function which appears in the
construction of compactly supported wavelet. The function
𝜙(𝑥) is exactly the “fundamental function” of the sym-
metric iterative interpolation scheme introduced in [35].
Thus, there is a simple one-to-one correspondence between
iterative interpolation schemes and compactly supported
wavelet. In particular, the scaling function corresponding to
Daubechies’s wavelet with two vanishing moments yields the
scheme in [36]. In general, the scaling functions correspond-
ing to Daubechies’s wavelets with𝑀 vanishingmoments lead
to the iterative interpolation schemes which use the Lagrange
polynomials of degree 2M. Additional variants of iterative
interpolation schemes may be obtained using compactly
supported wavelets described in [37].

2.2. Construction of Dynamic Interpolation Wavelet in Inter-
val. According to the definition of the interval wavelet, the
interval interpolation basis functions can be expressed as

𝑤
𝑗𝑘
(𝑥) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{
{

𝜙(2𝑗𝑥 − 𝑘) +
−1

∑
𝑛=−𝐿+1

𝑎
𝑛𝑘
𝜙 (2𝑗𝑥 − 𝑛) ,

𝑘 = 0, . . . , 𝐿

𝜙 (2𝑗𝑥 − 𝑘) ,

𝑘 = 𝐿 + 1, . . . , 2𝑗 − 𝐿 − 1

𝜙 (2𝑗𝑥 − 𝑘) +
2
𝑗
+𝐿−1

∑

𝑛=2
𝑗
+1

𝑏
𝑛𝑘
𝜙 (2𝑗𝑥 − 𝑛) ,

𝑘 = 2𝑗 − 𝐿, . . . , 2𝑗,

(4)

where

𝑎
𝑛𝑘

=
−1

∏
𝑖=𝐿−1

𝑖 ̸=𝑘

𝑥
𝑗,𝑛

− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘

− 𝑥
𝑗,𝑖

, 𝑏
𝑛𝑘

=
2
𝑗
+1+𝐿

∏

𝑖=2
𝑗
+1

𝑖 ̸=𝑘

𝑥
𝑗,𝑛

− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘

− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘

= 𝑘
𝑥max − 𝑥min

2𝑗
, 𝑘 ∈ Z,

(5)

where 𝐿 is the amount of the external collocation points;
the amount of discrete points in the definition domain
is 2𝑗 + 1 (𝑗 ∈ Z); and [𝑥min, 𝑥max] is the definition
domain of the approximated function. Equations (4) and
(5) illustrate that the interval wavelet is derived from the
domain extension. The supplementary discrete points in the
extended domain are called external points. The value of the
approximated function at the external points can be obtained
by Lagrange extrapolationmethod.Using the interval wavelet
to approximate a function, the boundary effect can be left
in the supplementary domain; that is, the boundary effect is
eliminated in the definition domain.
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According to (4) and (5), the interval wavelet approxi-
mant of the function 𝑓(𝑥) 𝑥 ∈ [𝑥min, 𝑥max] can be expressed
as

𝑓
𝑗
(𝑥) = ∑𝑓

𝑗
(𝑥
𝑛
) 𝑤
𝑗
(2
𝑗

𝑥 − 𝑛) ,

𝑥
𝑛
= 𝑥min + 𝑛

𝑥max − 𝑥min
2𝑗

,

(6)

where 𝑓
𝑗
(𝑥
𝑛
) is the given value at the discrete point 𝑥

𝑛
. At the

external points, 𝑓
𝑗
(𝑥
𝑛
) can be obtained by extrapolation; that

is,

𝑓
𝑗
(𝑥
𝑛
) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{
{

𝐿−1

∑
𝑘=0

(𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑖 ̸=𝑘

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

),

𝑛 = −1, . . . , −𝐿

2
𝑗

∑

𝑘=2
𝑗
−𝐿+1

(𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏

𝑖=2
𝑗
−𝐿+1

𝑘 ̸= 𝑖

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

),

𝑛 = 2𝑗 + 1, . . . , 2𝑗 + 𝐿.

(7)

So, the interval wavelet approximant of 𝑓(𝑥) can be rewritten
as

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

(
𝐿−1

∑
𝑘=0

𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2
𝑗

𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑

𝑛=2
𝑗
+1

(
2
𝑗

∑

𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏

𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2
𝑗

𝑥 − 𝑛) .

(8)

Let

𝐿𝑆
𝐿
(𝑥
𝑛
) =
𝐿−1

∑
𝑘=0

𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

,

𝐿𝐸
𝐿
(𝑥
𝑛
) =

2
𝑗

∑

𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏

𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

.

(9)

Then,

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

𝐿𝑆
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛) +
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑

𝑛=2
𝑗
+1

𝐿𝐸
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛) ,

(10)

where 𝐿𝑆
𝐿
(𝑥
𝑛
) and 𝐿𝐸

𝐿
(𝑥
𝑛
) correspond to the left and the

right external points, respectively. They are obtained by
Lagrange extrapolation using the internal collocation points

near the boundary. So, the interval wavelet’s influence on the
boundary effect can be attributed to Lagrange extrapolation.
It should be pointed out that we did not care about the
reliability of the extrapolation. The only function of the
extrapolation is enlarging the definition domain of the given
function which can avoid the boundary effect that occurred
in the domain. Therefore, we can discuss the choice of 𝐿 by
means of Lagrange inner- and extrapolation error polynomial
as follows:

𝑅
𝐿
(𝑥) =

𝑓(𝐿+1) (𝜉)

(𝐿 + 1)!

𝐿

∏
𝑖=0

(𝑥 − 𝑥
𝑖
) ,

for some 𝜉 between 𝑥, 𝑥
0
, . . . , 𝑥

𝐿
.

(11)

Equation (11) indicates that the approximation error is related
to both the smoothness and the gradient of the original
function near the boundary. Setting different 𝐿 can satisfy the
error tolerance.

2.3. Adaptive Interval Interpolation Wavelet. The interval
interpolation wavelet is often used to solve the diffusion
PDEs with Neumann boundary conditions. The smoothness
and gradient of the PDE’s solution usually vary with the
time parameter. If the parameter 𝐿 is a constant, we have
to take a bigger value in order to obtain result with higher
calculation precision. But the bigger 𝐿 usually introduces
the famous Gibbs phenomenon into the numerical solution,
which usually makes the algorithm become invalid. In
addition, the bigger 𝐿 will bring much more calculation. To
keep higher numerical precision and save calculation, the best
way is to design a procedure that 𝐿 can vary with the curve’s
smoothness and gradient dynamically.

In this dynamic procedure, the error estimation equation
(11) can be taken as the criterion about 𝐿. But in most cases,
we cannot know the smoothness and the derivative’s order
of the original function. This can be solved by substituting
the difference coefficient for the derivative.This is coincident
with the Newton interpolation equation which is equiva-
lent with Lagrange interpolation equation. In addition, the
Lagrange interpolation algorithm has no inheritance which
is the key feature of Newton interpolation. So, the basis
function has to be calculated repeatedly as interpolation
points are added into the calculation, which increases the
computation complexity greatly. In contrast to the Lagrange
method, the advantage of Newton interpolation method is
that the basis function need not be recalculated as one point
is added except only one more term which is needed to be
added, which reduces the number of computed operations,
especially the multiplication. So, it is convenient using the
Newton interpolation method to construct the dynamic
procedure.

2.3.1. Newton Interpolation. The expression of Newton inter-
polation can be written as

𝑁
𝑛
(𝑥) = 𝑓 (𝑥

0
) + (𝑥 − 𝑥

0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
) + ⋅ ⋅ ⋅
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+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) .

(12)

Substitute the Newton interpolation instead of the Lagrange
interpolation into (29), which can be rewritten as

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

(𝑁𝑆
𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗

𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑

𝑛=2
𝑗
+1

(𝑁𝐸
𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗

𝑥 − 𝑛) ,

(13)

where
𝑁𝑆
𝐿
(𝑥
𝑛
) = 𝑓 (𝑥

0
) + (𝑥

𝑛
− 𝑥
0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
) + ⋅ ⋅ ⋅

+ (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) ⋅ ⋅ ⋅ (𝑥

𝑛
− 𝑥
𝐿−1

)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝐿
) ,

𝑁𝑆
𝑅
(𝑥
𝑛
) = 𝑓 (𝑥

2
𝑗) + (𝑥

𝑛
− 𝑥
2
𝑗) 𝑓 (𝑥

2
𝑗 , 𝑥
2
𝑗
−1
)

+ (𝑥
𝑛
− 𝑥
2
𝑗) (𝑥
𝑛
− 𝑥
2
𝑗
−1
) 𝑓 (𝑥

2
𝑗 , 𝑥
2
𝑗
−1
, 𝑥
2
𝑗
−2
)

+ ⋅ ⋅ ⋅ + (𝑥
𝑛
− 𝑥
2
𝑗)

× (𝑥
𝑛
− 𝑥
2
𝑗
−1
) ⋅ ⋅ ⋅ (𝑥

𝑛
− 𝑥
2
𝑗
−𝐿
)

× 𝑓 (𝑥
2
𝑗 , 𝑥
2
𝑗
−1
, . . . , 𝑥

2
𝑗
−𝐿
) .

(14)

2.3.2. Relation between the Newton Interpolation Error and the
Choice of 𝐿. It is well known that the Newton interpolation is
equivalent to the Lagrange interpolation. The corresponding
error estimation can be expressed as

𝑅
𝑛
(𝑥) = (𝑥 − 𝑥

0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
) 𝑓 (𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) .

(15)

And the simplest criterion to terminate the dynamic choice
on 𝐿 is |𝑅

𝑛
(𝑥)| ≤ 𝑇

𝑎
(𝑇
𝑎
is the absolute error tolerance).

Obviously, it is difficult to define 𝑇
𝑎
which should meet the

precision requirement of all approximated curves. In fact, the
difference coefficient 𝑓(𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) can be used directly as

the criterion; that is,
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑥

0
, . . . , 𝑥

𝑛
)
󵄨󵄨󵄨󵄨 < 𝜀. (16)

As mentioned above, once the curves with lower order
smoothness are approximated by higher order polynomial
expression, the errors will become bigger on the contrary.
In fact, even if the 𝐿 is infinite, the computational precision
cannot be satisfied except increasing computational complex-
ity. To avoid this, we design the termination procedure of
dynamic choice about 𝐿 as follows:

if 𝑓(𝑥
0
, 𝑥
1
) < 𝑇
𝑎
, then 𝐿 = 1,

else, if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
) < 𝑇
𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
) < 𝑓(𝑥

0
, 𝑥
1
),

then 𝐿 = 2,

else, if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) < 𝑇

𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) <

𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
), then 𝐿 = 3,

2.3.3. L and the Condition Number of the System of Algebraic
Equations. In the field of numerical analysis, the condition
number of a function with respect to an argument measures
how much the output value of the function can change for a
small change in the input argument. This is used to measure
how sensitive a function is to changes or errors in the input
and how many errors in the output result from an error in
the input. There is no doubt that the choice of 𝐿 can change
the condition number of the system of algebraic equations
discretized by the wavelet interpolation operator or the finite
difference method. Therefore, the choice of 𝐿 should take
the condition number into account. In fact, if the condition
number cond(𝐴) = 10𝑘, then you may lose up to 𝑘 digits
of accuracy on top of what would be lost to the numerical
method due to loss of precision from arithmetic methods
[34]. According to the general rule of thumb, the choice
should follow the rule as follows:

Cond (𝐴
𝐿+1

)

Cond (𝐴
𝐿
)

< 10. (17)

2.3.4. Relation between 𝐿 and Computation Complexity. The
computational complexity of interpolation calculation is not
proportional to the increasing points. The former is mainly
up to the computation amount of (𝑥 − 𝑥

0
)(𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
)

and the derivative operations. Obviously, according to (2),
the increase in computational complexity is 𝑂(𝐿3) when the
number of extension points𝐿 increases by 1. But the computa-
tional complexity of adaptively increasing collocation points
is related to the different wavelet functions. For the wavelet
with compact support property such as Daubechies wavelet
and Shannon wavelet, the value of 𝐿 is impossible to be
infinite. For Haar wavelet which has no smoothness property,
L can be taken as 0 at most since it need not be extended.
For Faber-Schauder wavelet, L can be taken as 1 at most.
For Daubechies wavelet, L can be taken as different values
according to the order of vanishing moments, but it must
be finite. For the wavelets without compact support property,
L can take value dynamically, such as Shannon wavelet. The
computational complexity of increasing points is mainly up
to the wavelet function of itself.

3. Construction of the Multilevel Interpolation
Operator Based on the Interval Wavelet

Let the definition domain of the image be (𝑥min, 𝑥max) ×
(𝑦min, 𝑦max); the discretization points can be defined as
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(𝑥
𝑗

𝑘1
, 𝑦
𝑗

𝑘2
), where 𝑗 is a scale parameter and 𝑘

1
and 𝑘

2
are

position parameters. So,

𝑥
𝑗

𝑘1
= 𝑥min + 𝑘

1

𝑥max − 𝑥min
2𝑗

,

𝑦
𝑗

𝑘1
= 𝑦min + 𝑘

2

𝑦max − 𝑦min
2𝑗

,

𝑗, 𝑘
1
, 𝑘
2
∈ Z.

(18)

In addition, 𝑤𝑗(𝑚,𝑛)
𝑘1 ,𝑘2

(𝑥, 𝑦) denotes the multiscale wavelet
function and the corresponding 𝑚th and 𝑛th derivatives
with respect to 𝑥 and 𝑦, respectively. The level set function
𝜙(𝑥, 𝑦, 𝑡) and the corresponding derivative function can be
discretized as follows:

𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦, 𝑡)

=
1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0(𝑚,𝑛)

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=0

2
𝑗
−1

∑
𝑘11=0

2
𝑗
−1

∑
𝑘12=0

[𝛼
1

𝑗,𝑘11 ,𝑘12
(𝑡) 𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12
(𝑥, 𝑦)

+ 𝛼
2

𝑗,𝑘11 ,𝑘12
(𝑡) 𝑤
𝑗+1(𝑚,𝑛)

2𝑘11 ,2𝑘12+1
(𝑥, 𝑦)

+ 𝛼
3

𝑗,𝑘11 ,𝑘12
(𝑡)

× 𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12+1
(𝑥, 𝑦) ] ,

(19)

where 𝑗 and 𝐽 are constants, which denote the wavelet scale
number and the maximum of the scale number, respectively.
𝛼1
𝑗,𝑘11 ,𝑘12

, 𝛼2
𝑗,𝑘11 ,𝑘12

, and 𝛼3
𝑗,𝑘11 ,𝑘12

are the wavelet coefficients at
the points (𝑥𝑗

𝑘1
, 𝑦
𝑗

𝑘2
). According to the interpolation wavelet

transform theory, the wavelet coefficients can be written as

𝛼
1

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1,2𝑘1+1
, 𝑦
𝑗+1,2𝑘2

) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1,2𝑘1+1

, 𝑦
𝑗+1,2𝑘2

) ,

𝛼
2

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1,2𝑘1
, 𝑦
𝑗+1,2𝑘2+1

) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1,2𝑘1

, 𝑦
𝑗+1,2𝑘2+1

) ,

𝛼
3

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1,2𝑘1+1
, 𝑦
𝑗+1,2𝑘2+1

)

− 𝐼
𝑗
𝜙 (𝑥
𝑗+1,2𝑘1+1

, 𝑦
𝑗+1,2𝑘2+1

) ,

(20)

where 𝐼
𝑗
denotes the multilevel interpolation operator.

In order to obtain the multilevel interpolation opera-
tor, it is necessary to express the wavelet coefficients
𝛼1
𝑗,𝑘1 ,𝑘2

, 𝛼2
𝑗,𝑘1 ,𝑘2

, and 𝛼3
𝑗,𝑘1 ,𝑘2

as a weighted sum of 𝑢 in all of the
collocation points in the J level.Therefore, we should give the
definition of the restriction operator as follows:

𝑅
𝑙,𝑙,𝑗,𝑗

𝑘1 ,𝑘2 ,𝑚1 ,𝑚2
= {

1, 𝑥𝑙
𝑘1
= 𝑥𝑗
𝑚1
, 𝑦𝑙
𝑘2
= 𝑦𝑗
𝑚2

0, otherwise.
(21)

Using the restriction operator, 𝑢(𝑥𝑗+1
2𝑘1+1

, 𝑦
𝑗+1

2𝑘2
), 𝑢(𝑥

𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
),

and 𝑢(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
) can be rewritten as

𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) =
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2 ,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) ,

𝜙 (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
) =
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1 ,2𝑘2+1,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) ,

𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
) =
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2+1,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) .

(22)

Introducing the extension operators C1, C2, and C3, and
substituting (22) into (20), the wavelet coefficients can be
rewritten as

𝛼
1

𝑗,𝑘1 ,𝑘2

=
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2 ,𝑛1,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

− [

[

2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

2
𝑗0

∑
𝑘01=0

2
𝑗0

∑
𝑘02=0

𝑅
𝑗0,𝑗0 ,𝐽,𝐽

𝑘01 ,𝑘02 ,𝑛1 ,𝑛2

× 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)𝑤
𝑗0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑
𝑗1=𝑗0

2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝐶1
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1 ,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶2
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1 ,𝑛2
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝑢 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶3
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1 ,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

× 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
))]

]

=
2
𝐽

∑
𝑛1=0

2
𝐽

∑
𝑛2=0

𝐶1
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1 ,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) .

(23)

𝛼2
𝑗,𝑘1 ,𝑘2

and 𝛼3
𝑗,𝑘1 ,𝑘2

are similar with 𝛼1
𝑗,𝑘1 ,𝑘2

. From above equa-
tion, the extension operator can be obtained as

𝐶1
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2

= 𝑅
𝑗+1,𝑗+1,𝐽,𝐽

2𝑘1+1,2𝑘2 ,𝑛1 ,𝑛2
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− [

[

2
𝑗0

∑
𝑘01=0

2
𝑗0

∑
𝑘02=0

𝑅
𝑗0 ,𝑗0,𝐽,𝐽

𝑘01 ,𝑘02 ,𝑛1,𝑛2
𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)𝑤
𝑗0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑
𝑗1=𝑗0

2
𝐽

∑
𝑛2=0

2
𝑗1

∑
𝑘11=0

(𝐶1
𝑗1,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

× 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶2
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1,𝑛2
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶3
𝑗1 ,𝑗1,𝐽,𝐽

𝑘11 ,𝑘12 ,𝑛1,𝑛2
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
))]

]

.

(24)

𝐶2 and𝐶3 can be obtained with the samemethod.Therefore,
the calculation time complexity of the wavelet transform
coefficients 𝛼1

𝑗,𝑘11 ,𝑘12
, 𝛼2
𝑗,𝑘11 ,𝑘12

, and 𝛼3
𝑗,𝑘11 ,𝑘12

is 𝑂((1/3)42𝐽−1).
Substituting 𝛼1

𝑗,𝑘11 ,𝑘12
, 𝛼2
𝑗,𝑘11 ,𝑘12

, and 𝛼3
𝑗,𝑘11 ,𝑘12

and C1, C2,
and C3 into (2), the multilevel wavelet interpolation operator
can be obtained as

𝐼
𝑛1,𝑛2

(𝑥, 𝑦)

=
2
𝑗0

∑
𝑘01=0

2
𝑗0

∑
𝑘02=0

𝑅
𝑗0,𝑗0 ,𝐽,𝐽

𝑘01 ,𝑘02 ,𝑛1 ,𝑛2
𝑤
𝑗0

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=𝑗0

2
𝑗

∑
𝑘1=0

2
𝑗

∑
𝑘2=0

(𝐶1
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2
𝑤
𝑗+1

2𝑘1+1,2𝑘2
(𝑥, 𝑦) 𝜙 (𝑥

𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶2
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2
𝑤
𝑗+1

2𝑘1 ,2𝑘2+1

× (𝑥, 𝑦) 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)

+ 𝐶3
𝑗,𝑗,𝐽,𝐽

𝑘1 ,𝑘2 ,𝑛1,𝑛2
𝑤
𝑗+1

2𝑘1+1,2𝑘2+1

× (𝑥, 𝑦) 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
)) .

(25)

Then, (10) can be rewritten as

𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦, 𝑡) =
2
𝐽

∑
𝑛1

2
𝐽

∑
𝑛2

𝐼
𝑛1 ,𝑛2

(𝑥, 𝑦) 𝜙 (𝑥
𝐽

𝑛1
, 𝑦
𝐽

𝑛2
) . (26)

Substituting (26) into (13), the multilevel wavelet discretiza-
tion scheme of Perona-Malik model can be obtained.

The purpose of constructing the multilevel sparse grid
approach is to decrease the amount of the collocation points
and then improve the efficiency of the algorithm. But the
efficiency will be eliminated if the computation complexity of
the multilevel wavelet interpolation operator is too high. It is

easy to understand that the interpolationwavelet coefficient is
the error between the interpolation result and the exact result
at the same collocation point. And so, the wavelet coefficient
must be the function of the parameter 𝑡. In other words, the
wavelet coefficient should vary with the time parameter 𝑡.
Then, the interpolation operator can be viewed as a nonlinear
problem. HPM is an efficient and effective tool to solve
nonlinear problem. Aiming to improve the efficiency of the
multilevel wavelet interpolation operators, HPM would be
employed to construct a novel interpolation operator in this
section.

For convenience, 𝜙 and its derivative in (5) should be
rewritten as

𝜕𝜙

𝜕𝑡
= 𝐹(𝑡, 𝑥, 𝑦, 𝜙,

𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
,
𝜕2𝜙

𝜕𝑥2
,
𝜕2𝜙

𝜕𝑥𝜕𝑦
,
𝜕2𝜙

𝜕𝑦2
)

(𝑡 > 0)

𝜙 (𝑥, 𝑦, 0) = 𝜙
0
(𝑥, 𝑦) ,

(27)

𝑑𝜙𝐽 (𝑥, 𝑦, 𝑡)

𝑑𝑡

= 𝐹 [𝑡, 𝑥, 𝑦, 𝜙
𝐽

(𝑥, 𝑦, 𝑡) ,

𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡) , 𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡) ,

𝜙
𝐽(2,0)

(𝑥, 𝑦, 𝑡) , 𝜙
𝐽(1,1)

(𝑥, 𝑦, 𝑡) , 𝜙
𝐽(0,2)

(𝑥, 𝑦, 𝑡)] ,

(28)

respectively, where

𝜙
𝐽

(𝑥, 𝑦, 𝑡)

=
1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=0

2
𝑗
−1

∑
𝑘11=0

2
𝑗
−1

∑
𝑘12=0

[𝛼
1

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1

2𝑘11+1,2𝑘12
(𝑥, 𝑦)

+ 𝛼
2

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1

2𝑘11 ,2𝑘12+1
(𝑥, 𝑦)

+ 𝛼
3

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1

2𝑘11+1,2𝑘12+1
(𝑥, 𝑦)] .

(29)

The value of 𝜙𝐽(𝑥, 𝑦, 𝑡
𝑛
) at 𝑡
𝑛
is denoted by 𝜙

𝑛
, and

𝐹 [𝑡
𝑛
, 𝑥, 𝑦, 𝜙

𝐽

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(2,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(1,1)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(0,2)

(𝑥, 𝑦, 𝑡
𝑛
)]

(30)

is denoted by 𝐹
𝑛
. And then, a linear homotopy function can

be constructed as

𝜙
𝐽

(𝑥, 𝑦, 𝑡) = (1 − 𝜀) 𝐹
𝑛
+ 𝜀𝐹
𝑛+1

. (31)
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It is easy to identify the homotopy parameter as

𝜀 (𝑡) =
𝑡 − 𝑡
𝑛

𝑡
𝑛+1

− 𝑡
𝑛

𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] ∴ 𝜀 ∈ [0, 1] . (32)

According to the perturbation theory, the solution of (31) can
be expressed as the power series expansion of 𝜀:

𝜙
𝐽

= 𝜙
𝐽

0
+ 𝜀𝜙
𝐽

1
+ 𝜀
2

𝜙
𝐽

2
+ ⋅ ⋅ ⋅ . (33)

Substituting (29) into (27) and rearranging based on powers
of 𝜀-terms, we have

𝜀
0: 𝜙
𝐽

0
= 𝐹
𝑛

𝜀
1: 𝜙
𝐽

1
= 𝐹
𝑛+1

−𝐹
𝑛

...

(34)

According to HPM, we obtain the wavelet coefficients
𝛼1
𝑗,𝑘1 ,𝑘2

(𝑡
𝑛+1

), 𝛼2
𝑗,𝑘1 ,𝑘2

(𝑡
𝑛+1

), and 𝛼3
𝑗,𝑘1 ,𝑘2

(𝑡
𝑛+1

) at 𝑡
𝑛
as follows:

𝛼
1

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

= 𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

− [

[

1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑
𝑗1=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝛼
1

𝑗1,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
2

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
3

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
))]

]

,

𝛼
2

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

= 𝜙 (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

− [

[

1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑
𝑗1=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝛼
1

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
))]

]

,

𝛼
3

𝑗,𝑘1 ,𝑘2
= 𝜙 (𝑥

𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
) − 𝐼
𝑗
𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

= 𝜙 (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

− [

[

1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0

𝑘01 ,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑
𝑗1=0

2
𝑗1

∑
𝑘11=0

2
𝑗1

∑
𝑘12=0

(𝛼
1

𝑗1 ,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11 ,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1,𝑘11 ,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
))]

]

.

(35)

Obviously, the calculation time complexity of the wavelet
transform coefficients 𝛼1

𝑗,𝑘1 ,𝑘2
, 𝛼2
𝑗,𝑘1 ,𝑘2

, and 𝛼3
𝑗,𝑘1 ,𝑘2

is 𝑂(4𝐽),
which is decreased greatly than in (11) which is𝑂((1/3)42𝐽−1).

Substituting the wavelet transform coefficient (35) into
(29), we obtain

𝜙
𝐽

(𝑥, 𝑦, 𝑡
𝑛+1

)

= 𝜙
𝐽

(𝑥, 𝑦, 𝑡
𝑛
)

+
󳵻𝑡

2
[𝐹 (𝑡
𝑛
, 𝑥, 𝑦, 𝜙

𝐽

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(2,0)

(𝑥, 𝑦, 𝑡
𝑛
) , 𝜙
𝐽(1,1)

(𝑥, 𝑦, 𝑡
𝑛
) ,

𝜙
𝐽(0,2)

(𝑥, 𝑦, 𝑡
𝑛
))

+ 𝐹 (𝑡
𝑛+1

, 𝑥, 𝑦, 𝜙
𝐽

0
(𝑥, 𝑦, 𝑡

𝑛+1
) ,

𝜙
𝐽(1,0)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) , 𝜙
𝐽(0,1)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) ,
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𝜙
𝐽(2,0)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) , 𝜙
𝐽(1,1)

0
(𝑥, 𝑦, 𝑡

𝑛+1
) ,

𝜙
𝐽(0,2)

0
(𝑥, 𝑦, 𝑡

𝑛+1
))] .

(36)

And the derivative function
𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦)

=
1

∑
𝑘01=0

1

∑
𝑘02=0

𝜙 (𝑥
0

𝑘01
, 𝑦
0

𝑘02
)𝑤
0(𝑚,𝑛)

𝑘01 ,𝑘02
(𝑥, 𝑦)

+

𝐽−1

∑
𝑗=0

2
𝑗
−1

∑
𝑘11=0

2
𝑗
−1

∑
𝑘12=0

[𝛼
1

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12
(𝑥, 𝑦)

+ 𝛼
2

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1(𝑚,𝑛)

2𝑘11 ,2𝑘12+1
(𝑥, 𝑦)

+ 𝛼
3

𝑗,𝑘11 ,𝑘12
𝑤
𝑗+1(𝑚,𝑛)

2𝑘11+1,2𝑘12+1
(𝑥, 𝑦)] .

(37)

Obviously, the computation complexity is decreased greatly
comparing with (26).

4. Numerical Experiences and Discussion

In this section, we take some images as examples to illustrate
the efficiency of the dynamic interval wavelet interpolation
operator based on HPM in partitioning technique on the
image processing. In fact, the partitioning technique is a
scheme to divide the image into several subimages in themul-
tiscale wavelet numerical method to improve the efficiency.
The dynamic interval wavelet provides an adaptive choice
scheme for the external collocation points to eliminate the
boundary effect of the subimages. Perona-Malik equation is
employed as the denoising model, which is an anisotropic
diffusion image denoising model that was proposed by
Perona and Malik. It has been widely used in various image
processing fields. It can be represented as the nonlinear
partial differential equations:

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div (𝑐 (|∇𝑢|) ∇𝑢) ,

𝑢 (𝑥, 𝑦, 0) = 𝑓 (𝑥, 𝑦) ,

(38)

where (𝑥, 𝑦) denotes pixel position, 𝑡 is the time parameter,
𝑓(𝑥, 𝑦) is the 2D image being processed,𝑢(𝑥, 𝑦, 𝑡) is the image
after diffusion processing, and 𝑢(𝑥, 𝑦, 0) is the initial value.
div denotes the divergence operator, ∇𝑢 denotes the gradient
operator, and 𝑐(|∇𝑢|) denotes the diffusion coefficient, which
is nonnegative decreasing function of the image gradient
modulus. It is usually taken as

𝑐 (|∇𝑢|) =
1

1 + (∇𝑢/𝑘)
2

(39)

or

𝑐 (|∇𝑢|) = exp [−(∇𝑢
𝑘
)
2

] , (40)

where 𝑘 is a constant.

Twodifferentmedical images are taken as examples to test
the characteristic of different interpolation wavelets, which
is showed in Figure 1. One is the human brain (Figure 1(a)),
which has so clear contour that that image cannot be repre-
sented as a continuous function near the contour. The Gibbs
phenomenon is possible to be introduced into the image near
the boundary. So, this can be used to test the advantages
of the multiscale wavelet approximation comparing with the
difference operator. Another one is the image of the locust
coelom, which has many microgrooves without clear bound-
ary. This image is used to test the characteristic of different
interpolation wavelets, which is showed in Figure 1(b).

4.1. Comparison between the Sparse Grid Approach and the
Finite Different Method. It has been mentioned above that
the brain image is used to test the difference between the
sparse grid approach and the finite difference method and
the difference between different wavelet functions which are
taken as the basis functions in the sparse grid approach. In
this experiment, all the results are obtained by solving the
Perona-Malik equation with different methods, which have
been showed in Figure 2.

Two interpolationwavelet scaling functions are employed
to test the dynamic sparse grid approach for image denoising
proposed in this paper. The Shannon wavelet possesses the
smoothness andor the orthogonality but has no compact sup-
port property. Daubechies scaling function possess almost
all the excellent properties in numerical algorithm such as
smoothness, orthogonality, and compact support property.
But what we utilized in this research is the autocorrelative
function of the Daubechies scaling function, which keeps
the better edge preserving property although it loses the
orthogonality. It can be easily observed from Figure 2(c) that
the evident artifacts appeared in the denoised image obtained
by the Shannon sparse grid approach. That is, the Gibbs
phenomenon has appeared in the Shannon scaling function
representation of the image near the boundary. In contrast
to the Shannon wavelet, the denoised image (Figure 2(b))
obtained by the Daubechies wavelet sparse grid approach has
clear boundary. It is easy to understand that the compact
support property of the wavelet scaling function is helpful
to eliminate the Gibbs phenomenon and so to improve the
numerical performances of the wavelet numerical methods.

Comparing with the sparse grid approaches, the finite
difference method utilizes the difference operator to approx-
imate the derivative in Perona-Malik equation, which
decreases the value of the derivative to some extent. There-
fore, the edge of the brain contour is smoothed in denoised
images; this is showed in Figure 2(d). It should be noticed
that the edge of the denoised image obtained by the Shannon
wavelet sparse grid approach is more clear than that obtained
by the finite difference method, in despite of the appearing
artifacts.

4.2. Comparison between the Dynamic Interval Wavelet and
the Static Interval Wavelet. For convenience of comparison,
we call the interval interpolation wavelet constructed by the
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(a) Image of human brain (b) Image of locust coelom

Figure 1: Original images.

(a) Original image (b) Autocorrelation function of Daubechies scaling
function

(c) Shannon scaling function (d) Finite difference method

Figure 2: Comparison between different numerical methods for image denoising (time step 𝜏 = 0.00001, terminal time 𝑡 = 0.00005).
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Table 1: Condition number of each image block at different times.

Block number Condition number
𝑡 = 0.00001 𝑡 = 0.00002 𝑡 = 0.00003 𝑡 = 0.00004 𝑡 = 0.00005

1 9.6829 7.7193 6.7935 6.8257 5.9730
2 13.7539 12.8756 11.8760 11.8703 11.3319
3 9.2841 8.8832 8.1376 7.8737 6.8713
4 9.6829 7.7193 6.7935 6.8257 5.9730
5 1.6816 1.6931 1.7153 1.7378 1.8923
6 13.9357 12.9657 11.8891 11.8757 10.3356
7 13.7543 12.8757 11.8765 10.8701 9.3318
8 13.7556 12.8781 11.8776 11.8734 11.3329
9 43.9354 32.9663 31.8882 28.8749 21.3346
10 3.2389 2.9137 2.2917 1.9365 1.2919
11 8.5692 6.9416 6.6971 5.2875 4.3907
12 31.9823 29.3266 28.8330 25.6736 20.1976
13 15.1617 14.7818 13.8967 12.5738 12.3428
14 12.9614 12.1973 10.9887 10.1725 9.3189
15 4.6593 3.7938 2.5476 2.3789 1.9916
16 14.6835 13.9864 13.1838 12.8897 11.3156
17 12.8113 12.1031 10.1763 9.5627 8.2474
18 14.9834 13.6523 12.7719 12.1658 11.7829
19 13.6689 12.1791 11.1782 10.5977 8.9664
20 125.4782 110.3379 98.9073 89.7761 80.2749
21 1.6816 1.6931 1.7153 1.7378 1.8923
22 2.4589 2.6623 3.7662 3.8955 4.5811
23 43.2983 39.6744 36.7943 32.1079 28.6179
24 211.5877 198.7219 180.7089 86.9125 81.8510
25 185.7428 170.5897 160.0987 52.1757 83.0421

Lagrange interpolator as static interval wavelet and the inter-
val interpolation wavelet based on the Newton interpolator
as the dynamic interval wavelet. The difference between two
interval wavelets above is the choice of the parameter 𝐿. The
value of 𝐿 is constant to the static interval wavelet, and it
varies with both of the boundary condition and the condition
number of the system ODEs obtained from the sparse grid
approach.

The purpose of constructing of the interval wavelet is to
eliminate the boundary effect in the partitioning technique
on the image denoising process. In this section, the image
of locust coelom (300 ∗ 300 pixels) is taken as example
to compare the difference between the dynamic and static
interval wavelets. According to the partitioning technique,
the image is divided evenly into 25 parts for simplification.
So, the size of each image block is 60 ∗ 60 pixels (Figure 3).
According to the sparse grid approach based on HPM, the
calculation amount decreases from (300 ∗ 300)3 to 25 ∗
(60 ∗ 60)3. It has been mentioned that there are many
ways to eliminate the boundary effect such as the extension
method and the interval wavelet method. There is no doubt
that the interval wavelet method is more efficient than the
extension method. According to the interval interpolation
wavelet based on the Lagrange interpolator, the amount of the
external collocation points 𝐿 is a constant.With increase of 𝐿,
the calculation amount will increase correspondingly.

L is taken as 1, 2, and 3, respectively, in the experiments.
It is easy to be observed from Figures 3(a)–3(c) that there

are more collocation points near the boundary of each of
block images in all 3 cases. In fact, the adaptive increase
of the collocation points can also eliminate the boundary
effect. Therefore, there are no artifacts appearing in the
denoised images in the first two cases. But the increase of
the collocation points can increase the calculation amount
greatly. According to the definition of the interval interpo-
lation wavelet based on the Lagrange operator, the increase
of 𝐿 can improve the smoothness and the precision of the
approximated function near the boundary. This is helpful to
decrease the boundary effect in theory. In contrast to the
theory, the collocation points in the whole image domain
increased so much that the artifacts appeared in the denoised
subimages when 𝐿 = 3 comparing to other two cases
(Figure 3(c)). As amatter of fact, this is caused by the increase
of the condition number of the system of ODEs obtained by
the sparse grid approach. That is, the increase of the value
of 𝐿 can induce the condition number change greatly; this is
showed in Table 1. It has been pointed out in Section 2 that
if the condition number cond(𝐴) = 10𝑘, then you may lose
up to 𝑘 digits of accuracy on top of what would be lost to the
numerical method due to loss of precision from arithmetic
methods. This also illustrates that the condition number
must be taken into account in the dynamic interval wavelet.
Figure 3(d) is the result obtained by the dynamic interval
sparse grid approach. The distribution of the collocation
points in Figure 3(d) is just correlative with the image content
itself and is not correlativewith the partitioning scheme of the
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(a) Static interval wavelet (𝐿 = 1)
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(b) Static interval wavelet (𝐿 = 2)
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(c) Static interval wavelet (𝐿 = 3)
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(d) Dynamic interval wavelet

Figure 3: Comparison between the dynamic interval wavelet and the static interval wavelet.
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(b) 𝑡 = 0.001

Figure 4: Adaptability of the multiscale sparse grid approach in image denoising (time step 𝜏 = 0.00001).

image anymore.The amount of the wavelet collocation points
also decreased accordingly.

4.3. Adaptability of the Wavelet Collocation Points. In this
research, the dynamic interpolation operator was viewed as a
nonlinear problem, and so HPM is employed in construction
of the dynamic interpolation wavelet defined in interval.This
is helpful to improve the efficiency of the multilevel wavelet
interpolation operators. In this section, the autocorrelation
function of the Daubechies scaling function is employed
to construct the dynamic interval wavelet. The brain image
is taken as example to test the precision and efficiency of
the HPM-based dynamic interval wavelet proposed in this
research. The experiment results were showed in Figure 4. It
is easy to be observed that the noise pixels of the brain images
were smoothed completely and the edges of the brain contour
were preserved perfectly. With the increase of the iteration
times, more and more trivial objects such as the noise pixels
are being smoothed, and more areas in the brain image are
becoming smoother. Accordingly, the amount of the wavelet
collocation points should be smaller and smaller. This has
been illustrated in Figures 4(a) and 4(b). In this experiment,
the time step 𝜏 = 0.00001; the definition domain of the
parameter 𝑡 is [0, 0.001]. The experiment results show that
the amount of the wavelet collocation points decreases from
23488 to 19413 with the parameter 𝑡 increasing from 0.0005 to
0.001. According to the finite difference method, the amount
of the collocation points should be 90000, which is greater

than the sparse grid approach, evidently. This illustrates that
the dynamic interval sparse grid approach proposed in this
paper is more efficient than the finite difference method.

5. Conclusions

The dynamic interval wavelet and the corresponding numer-
ical method proposed in this paper are intrinsically an
adaptive choice scheme on the external collocation points.
In partitioning technique about the image processing, the
dynamic sparse grid approach can be used to eliminate the
boundary effect and improve the algorithm efficiency. In this
method, the wavelet interpolation operator is constructed
based on the homotopy perturbation method, which can
decrease the calculation amount greatly. In addition, compar-
ing with the finite difference method, the dynamic interval
sparse grid approach can preserve the object edge more
clear, especially in the case that the edge is sharper. For
simplification, the image is divided evenly into several parts
according to the partitioning scheme in the experiments. It is
obvious that the partitioning scheme can be adaptive, which
can improve the efficiency furthermore.
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The paper presents the optimal homotopy perturbation method, which is a new method to find approximate analytical
solutions for nonlinear partial differential equations. Based on the well-known homotopy perturbation method, the optimal
homotopy perturbation method presents an accelerated convergence compared to the regular homotopy perturbation method.
The applications presented emphasize the high accuracy of the method by means of a comparison with previous results.

1. Introduction

A significant part of the natural technological processes
and phenomena are usually modelled by means of partial
differential equations. Thus it is very important to find
solutions of these equations. However, as in many cases the
computation of exact solutions is not possible; numerical or
approximate solutions must be computed.

In the present paper we present a new approximation
method named optimal homotopy perturbation method
(OHPM). As the name suggests, the method is based on
the homotopy perturbation method [1, 2] and its main
feature is an accelerated convergence compared to the regular
homotopy perturbation method.

The applications presented show that the approximate
solutions obtained by using OHPM requires less iterations
in comparison with other iterative methods for approximate
solutions of partial differential equations.

2. The Optimal Homotopy
Perturbation Method

We consider the following problem:

L (𝑢 (𝑥, 𝑡)) +N (𝑢 (𝑥, 𝑡)) − 𝑓 (𝑥, 𝑡) = 0, 𝐵 (𝑢) = 0.

(1)

Here L is a linear operator, 𝑢(𝑥, 𝑡) is the unknown function,
N is a nonlinear operator, 𝑓(𝑥, 𝑡) is a known, given function,
and 𝐵 is a boundary operator.

If 𝑢̃ is an approximate solution of (1), we evaluate the
error obtained by replacing the exact solution 𝑢 with the
approximate one 𝑢̃ as the remainder:

𝑅 (𝑥, 𝑡, 𝑢̃) = L (𝑢̃ (𝑥, 𝑡)) +N (𝑢̃ (𝑥, 𝑡)) − 𝑓 (𝑥, 𝑡) . (2)
The first step in applying OHPM is to attach to the

problem (1) the family of equations (see [1, 2]):
(1 − 𝑝) [L (Φ (𝑥, 𝑡, 𝑝)) − 𝑓 (𝑥, 𝑡)]

+ 𝑝 [L (Φ (𝑥, 𝑡, 𝑝)) +N (Φ (𝑥, 𝑡, 𝑝)) − 𝑓 (𝑥, 𝑡)] = 0,

(3)
where 𝑝 ∈ [0, 1] is an embedding parameter and Φ(𝑥, 𝑡, 𝑝) is
an unknown function.

When 𝑝 = 0, Φ(𝑥, 𝑡, 0) = 𝑢
0
(𝑥, 𝑡) and when 𝑝 = 1,

Φ(𝑥, 𝑡, 1) = 𝑢(𝑥, 𝑡). Thus, as 𝑝 increases from 0 to 1, the
solutionΦ(𝑥, 𝑡, 𝑝) varies from 𝑢

0
(𝑥, 𝑡) to the solution 𝑢(𝑥, 𝑡),

where 𝑢
0
(𝑥, 𝑡) is obtained from the following:
L (𝑢
0
(𝑥, 𝑡)) − 𝑓 (𝑥, 𝑡) = 0, 𝐵 (𝑢

0
) = 0. (4)

We consider the following expansion of Φ(𝑥, 𝑡, 𝑝):

Φ(𝑥, 𝑡, 𝑝) = 𝑢
0
(𝑥, 𝑡) + ∑

𝑚≥1

𝑢
𝑚
(𝑥, 𝑡) 𝑝

𝑚

. (5)
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Substituting the relation (5) into (3), collecting the same
powers of 𝑝, and equating each coefficient of the powers of 𝑝
with zero we obtain

L (𝑢
𝑚
(𝑥, 𝑡)) = −N

𝑚−1
(𝑢
0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , . . . , 𝑢

𝑚−1
(𝑥, 𝑡))

𝑚 ≥ 1, . . . , 𝐵 (𝑢
𝑚
) = 0,

(6)

where N
𝑖
, 𝑖 ≥ 0 are the coefficients of 𝑝𝑖 in the nonlinear

operatorN:

N (𝑢 (𝑥, 𝑡))

= N
0
(𝑢
0
(𝑥, 𝑡)) + 𝑝N

1
(𝑢
0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡))

+ 𝑝
2

N
2
(𝑢
0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , 𝑢

2
(𝑥, 𝑡)) + ⋅ ⋅ ⋅ .

(7)

We remark that 𝑢
𝑚
, 𝑚 ≥ 1 are obtained from the

linear equations (6), which are easily solved together with the
boundary conditions.

We denote 𝑓
𝑚
= 𝑢
0
+ 𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑚
.

We consider the set 𝑆
𝑚
(𝑚 = 0, 1, 2, . . .) containing the

functions 𝜑
𝑚0
, 𝜑
𝑚1
, 𝜑
𝑚2
, . . . , 𝜑

𝑚𝑛𝑚
, chosen as linearly inde-

pendent functions in the vector space of the continuous
functions on the real domain Ω such that 𝑆

𝑚−1
⊆ 𝑆
𝑚
and

𝑢
0
+𝑢
1
+⋅ ⋅ ⋅+𝑢

𝑚
is a real linear combination of these functions.

We remark that such a construction is always possible. For
example we can choose 𝑆

𝑚
= {𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
},𝑚 = 0, 1, 2, . . ..

In this case 𝜑
𝑚0

= 𝑢
0
, 𝜑
𝑚1

= 𝑢
1
, 𝜑
𝑚2

= 𝑢
2
, . . . , 𝜑

𝑚𝑛𝑚
= 𝑢
𝑚
.

Definition 1. We call an HP-sequence of the problem (1) a
sequence of functions {𝑠

𝑚
(𝑥, 𝑡)}

𝑚∈N of the form 𝑠
𝑚
(𝑥, 𝑡) =

∑
𝑛𝑚

𝑘=0
𝛼𝑘
𝑚
𝜑
𝑚𝑘
, where𝑚 ∈ N, 𝛼𝑘

𝑚
∈ R.

A function of the sequence is called anHP-function of the
problem (1).

We call the HP-sequence {𝑠
𝑚
(𝑥, 𝑡)}

𝑚∈N, convergent to the
solution of the problem (1) if lim

𝑚→∞
𝑅(𝑥, 𝑡, 𝑠

𝑚
(𝑥, 𝑡)) = 0.

Definition 2. We call an 𝜖-approximate HP-solution of the
problem (1) on the real domain Ω an HP-function 𝑢̃ which
satisfies the following condition:

|𝑅 (𝑥, 𝑡, 𝑢̃)| < 𝜖 (8)

together with the boundary conditions from (1).

Definition 3. We call a weak 𝛿-approximate HP-solution of
the problem (1) on the real domain Ω an HP-function 𝑢̃
satisfying the relation ∫

Ω
𝑅2(𝑥, 𝑡, 𝑢̃)𝑑𝑥 𝑑𝑡 ≤ 𝛿, together with

the boundary conditions from (1).

We will find a weak 𝜖-approximate HP-solution of the
type 𝑢̃ = ∑

𝑛𝑚

𝑘=0
𝑐𝑘
𝑚
𝜑
𝑚𝑘

where 𝑚 ≥ 0 and the constants 𝑐𝑘
𝑚
are

calculated using the following steps.

(i) We substitute the approximate solution 𝑢̃ in (1) and
obtain the following expression:

R (𝑥, 𝑡, 𝑐
𝑘

𝑚
) = 𝑅 (𝑥, 𝑡, 𝑢̃) . (9)

(ii) We attach to the problem (1) the following real
functional:

𝐽 (𝑐
𝑘

𝑚
) = ∫
Ω

R
2

(𝑥, 𝑡, 𝑐
𝑘

𝑚
) 𝑑𝑥 𝑑𝑡, (10)

where, by imposing the boundary conditions we can
determine 𝑙 ∈ 𝑁, 𝑙 ≤ 𝑚 such that 𝑐𝑚

0
, 𝑐𝑚
1
, . . . , 𝑐𝑚

𝑙
are

computed as functions of 𝑐𝑚
𝑙+1
, 𝑐𝑚
𝑙+2
, . . . , 𝑐𝑚

𝑛
.

(iii) We compute the values of 𝑐𝑚
𝑙+1
, 𝑐𝑚
𝑙+2
, . . . , 𝑐𝑚

𝑛
as the

values which give the minimum of the functional (10)
and the values of 𝑐𝑚

0
, 𝑐𝑚
1
, . . . , 𝑐𝑚

𝑙
again as functions of

𝑐𝑚
𝑙+1
, 𝑐𝑚
𝑙+2
, . . . , 𝑐𝑚

𝑛
by using the boundary conditions.

(iv) Using the constants 𝑐𝑚
0
, . . . , 𝑐𝑚

𝑛
thus determined, we

consider the HP-sequence

𝑠
𝑚
(𝑥, 𝑡) =

𝑛𝑚

∑
𝑘=0

𝑐
𝑘

𝑚
𝜑
𝑚𝑘
. (11)

The following convergence theorem holds.

Theorem 4. The HP-sequence 𝑠
𝑚
(𝑥, 𝑡) from (11) satisfies the

following property:

lim
𝑚→∞

∫
Ω

𝑅
2

(𝑥, 𝑡, 𝑠
𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 0. (12)

Moreover, ∀𝜖 > 0, ∃𝑚
0
∈ N such that ∀𝑚 ∈ N, 𝑚 > 𝑚

0
it

follows that 𝑠
𝑚
(𝑡) is a weak 𝜖-approximate HP-solution of the

problem (1).

Proof. Based on the way the HP-function 𝑠
𝑚
(𝑥, 𝑡) is com-

puted, the following inequality holds:

0 ≤ ∫
Ω

𝑅
2

(𝑥, 𝑡, 𝑠
𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

≤ ∫
Ω

𝑅
2

(𝑡, 𝑓
𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡, ∀𝑚 ∈ N.

(13)

It follows that

0 ≤ lim
𝑚→∞

∫
Ω

𝑅
2

(𝑥, 𝑡, 𝑠
𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

≤ lim
𝑚→∞

∫
Ω

𝑅
2

(𝑥, 𝑡, 𝑓
𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 0, ∀𝑚 ∈ N.

(14)

We obtain

lim
𝑚→∞

∫
Ω

𝑅
2

(𝑥, 𝑡, 𝑠
𝑚
(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 = 0. (15)

From this limit we obtain that ∀𝜖 > 0, ∃𝑚
0
∈ N such

that ∀𝑚 ∈ N, 𝑚 > 𝑚
0
it follows that 𝑠

𝑚
(𝑥, 𝑡) is a weak 𝜖-

approximate HP-solution of the problem (1).
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Remark 5. Any 𝜖-approximateHP-solution of the problem (1)
is also a weak approximate HP-solution, but the opposite is
not always true. It follows that the set of weak approximate
HP-solutions of the problem (1) also contains the approxi-
mate HP-solutions of the problem.

Taking into account the above remark, in order to find 𝜖-
approximate HP-solutions of the problem (1) by the OHPM
method we will first determine weak approximate HP-
solutions, 𝑢̃. If |𝑅(𝑥, 𝑡, 𝑢̃)| < 𝜖 then 𝑢̃ is also an 𝜖-approximate
HP-solution of the problem.

3. Applications

In this sectionwe applyOHPM to find approximate analytical
solutions for the regularized long wave (RLW) equation.

The RLW equation is a nonlinear evolution equation.
These kind of equations are frequently used tomodel a variety
of physical phenomena such as ion-acoustic waves in plasma,
magnetohydrodynamics waves in plasma, longitudinal dis-
persive waves in elastic rods, pressure waves in liquid gas
bubble mixtures, and rotating flow down a tube.

The RLW equation was introduced in [3] where it was
used to describe the behaviour of the undular bore.

For some restricted initial and boundary conditions,
exact analytical solutions for the RLW equation were com-
puted (see, e.g., [4]). However, in most cases it is not
possible to find such exact analytical solutions and usually
numerical methods are used. Among the numerical methods
recently employed for RLW-type equations we mention finite
difference methods [5–8], multistep mixed finite element
methods [9], the method of lines [10], and meshless finite-
point methods [11].

Taking into account the usefulness of analytical solutions
versus numerical ones, various approximation methods were
also employed to find approximate analytical solutions for
various RLW-type equations, such as the homotopy pertur-
bation method [12], the variational iteration method [12],
the homotopy asymptotic method [13, 14], and the Riccati
expansion method [15].

In the following, for two test problems presented in [12],
we compare solutions obtained by using OHPM with pre-
vious results obtained by using the homotopy perturbation
method and the variational iteration method.

3.1. Application 1. Our first application is the following RLW
problem [12]:

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ (
𝑢2

2
)
𝑥

= 0,

𝑢 (𝑥, 0) = 𝑥.

(16)

In [12] approximate solutions of (16) are computed
using the homotopy perturbation method (HPM) and the
variational iteration method (VIM).

The exact solution of this problem is 𝑢
𝑒
(𝑥, 𝑡) = 𝑥/(𝑡 + 1).

The fifth order solution computed in [12] by using the
variational iteration method is

𝑢VIM (𝑥, 𝑡)

= 𝑥 ⋅ (−
𝑡31

109876902975
+

𝑡30

3544416225
−

𝑡29

236294415

+
13𝑡28

315059220
−

2𝑡27

6751269
+

𝑡26

595350
−

5309𝑡25

675126900

+
16927𝑡24

540101520
−

2447𝑡23

22504230
+

557𝑡22

1666980

−
207509𝑡21

225042300
+
16511𝑡20

7144200
−
162179𝑡19

30541455
+
2588𝑡18

229635

−
1080013𝑡17

48580560
+
43363𝑡16

1058400
−
63283𝑡15

893025
+
1019𝑡14

8820

−
13141𝑡13

73710
+
17779𝑡12

68040
−
1477𝑡11

4050
+
27523𝑡10

56700

−
3497𝑡9

5670
+
943𝑡8

1260
−
13𝑡7

15
+
43𝑡6

45

− 𝑡
5

+ 𝑡
4

− 𝑡
3

+ 𝑡
2

− 𝑡 + 1) .

(17)

The fifth order solution computed in [12] by using the
homotopy perturbation method is of the form (5)

𝑢HPM (𝑥, 𝑡)

= 𝑥 ⋅ (−
1382𝑡11

155925
−
1382𝑡10

14175
−
326𝑡9

567

−
626𝑡8

315
−
1303𝑡7

315
−
199𝑡6

45

− 𝑡
5

+ 𝑡
4

− 𝑡
3

+ 𝑡
2

− 𝑡 + 1) .

(18)

Using OHPM, the following steps are performed.

(i) Choosing the same homotopy (3) as used in [12] we
obtain the same solutions:

𝑢
0
(𝑥, 𝑡) = 𝑥 ⋅ (𝑡 + 1)

𝑢
1
(𝑥, 𝑡) = −𝑥 ⋅ 𝑡 ⋅ (2 + 𝑡 + 𝑡2/3)

𝑢
2
(𝑥, 𝑡) = 2 ⋅ 𝑥 ⋅ 𝑡2 ⋅ (15 + 15 ⋅ 𝑡 + 5 ⋅ 𝑡2 + 𝑡3)/15.

It follows that we obtain the sets 𝑆
0
= {𝑥, 𝑥 ⋅ 𝑡}, 𝑆

1
=

{𝑥 ⋅ 𝑡, 𝑥 ⋅ 𝑡2, 𝑥 ⋅ 𝑡3}, 𝑆
2
= {𝑥 ⋅ 𝑡2, 𝑥 ⋅ 𝑡3, 𝑥 ⋅ 𝑡4, 𝑥 ⋅ 𝑡5}.

We will compute a second order approximate solu-
tion, by taking into account the terms from 𝑆

0
, 𝑆
1
,

and 𝑆
2
andwewill compare this solutionwith the fifth

order solutions from [12]. Our second order approxi-
mate solution will have the expression 𝑢OHPM(𝑥, 𝑡) =
𝑐
0
⋅ 𝑥+ 𝑐
1
⋅ 𝑥 ⋅ 𝑡 + 𝑐

2
⋅ 𝑥 ⋅ 𝑡2 +𝑐

3
⋅ 𝑥 ⋅ 𝑡3 +𝑐

4
⋅ 𝑥 ⋅ 𝑡4 +𝑐

5
⋅ 𝑥 ⋅ 𝑡5.



4 The Scientific World Journal

0.0

0.0

0.5

0.5

1.0

1.0

0.0000

0.0005

0.0010

0.0015

0.0020

Figure 1: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (16).

(ii) Imposing the boundary condition 𝑢OHPM(𝑥, 0) = 𝑥
we obtain 𝑐

0
= 1.

Replacing this expression of 𝑐
0
in the expression of

𝑢OHPM we obtain the following:

𝑢OHPM(𝑥, 𝑡) = 𝑥 + 𝑐1 ⋅ 𝑥 ⋅ 𝑡 + 𝑐2 ⋅ 𝑥 ⋅ 𝑡
2 + 𝑐
3
⋅ 𝑥 ⋅ 𝑡3 + 𝑐

4
⋅

𝑥 ⋅ 𝑡4 + 𝑐
5
⋅ 𝑥 ⋅ 𝑡5.

We introduce 𝑢OHPM in the remainder R given
by (2) and (9) and we compute the functional
𝐽(𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
) of (10).

We remark that while the expression of the functional
is too long to be included here, the computation is
simple and straightforward using a dedicated mathe-
matical software (we used the Wolfram Mathematica
9 software).

(iii) We compute theminimum of the functional 𝐽 and, by
replacing the corresponding values of the parameters
𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
, we obtain the following second order

approximation:
𝑢̃OHPM(𝑥, 𝑡) = −0.109895𝑡5𝑥 + 0.434798𝑡4𝑥 −
0.789112𝑡3𝑥 + 0.961938𝑡2𝑥 − 0.997729𝑡𝑥 + 𝑥.

Figure 1 presents the comparison of the absolute errors
(computed as the absolute values of the differences between
the exact solutions and the approximate solutions) cor-
responding to the fifth order approximation obtained by
using HPM (red surface), to the fifth order approximation
obtained by usingVIM (blue surface) and to the second order
approximation obtained by OHPM (green surface).

Table 1 presents the same comparison for several values of
𝑥 and 𝑡.

It is easy to see that, overall, the approximations obtained
by using OHPM are much more accurate than the ones
previously computed by using HPM andVIM.Moreover, our
approximate solutions are not only more accurate but also, at
the same time, present a much simpler expression since they
are second order approximate solutions while the previous
ones are fifth order approximate solutions.

Table 1: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (16).

HPM VIM OHPM
𝑥 = 𝑡 = 0 0 0 0
𝑥 = 𝑡 = 0.2 7.894 10−5 3.256 10−7 1.081 10−5

𝑥 = 𝑡 = 0.4 1.171 10−2 2.555 10−5 1.398 10−5

𝑥 = 𝑡 = 0.6 2.346 10−1 2.819 10−4 9.787 10−6

𝑥 = 𝑡 = 0.8 2.075 1.420 10−3 3.280 10−5

𝑥 = 𝑡 = 1 1.172 101 4.700 10−3 2.408 10−7

3.2. Application 2. Our second application is the RLW prob-
lem (also from [12]):

𝑢
𝑡
− 𝑢
𝑥𝑥𝑥𝑥

= 0,

𝑢 (𝑥, 0) = sin (𝑥) .
(19)

Again in [12] approximate solutions of (16) are computed
using the homotopy perturbation method (HPM) and the
variational iteration method (VIM).

The exact solution of this problem is 𝑢
𝑒
(𝑥, 𝑡) = 𝑒−𝑡 sin(𝑥).

The fourth order solution computed in [12] by using the
variational iteration method is 𝑢VIM(𝑥, 𝑡) = (1/24)(𝑡

4 − 4𝑡3 +
12𝑡2 − 24𝑡 + 24) sin(𝑥).

The third order solution computed in [12] by using
the homotopy perturbation method is of the form (5)
𝑢HPM(𝑥, 𝑡) = −(1/24)(𝑡

4 + 4𝑡3 − 12𝑡2 + 24𝑡 − 24) sin(𝑥).
Using OHPM, the following steps are performed.

(i) Choosing the same homotopy (3) as used in [12] we
obtain the same solutions:

𝑢
0
(𝑥, 𝑡) = (𝑡 + 1) ⋅ sin(𝑥)

𝑢
1
(𝑥, 𝑡) = (1/2) ⋅ 𝑡 ⋅ (𝑡 + 4) ⋅ (− sin(𝑥))

𝑢
2
(𝑥, 𝑡) = (1/6) ⋅ 𝑡2 ⋅ (𝑡 + 6) ⋅ sin(𝑥).

It follows that we obtain the sets 𝑆
0
= {sin(𝑥), sin(𝑥) ⋅

𝑡}, 𝑆
1
= {sin(𝑥)⋅𝑡, sin(𝑥)⋅𝑡2}, 𝑆

2
= {sin(𝑥)⋅𝑡2, sin(𝑥)⋅𝑡3}.

Hence we will compute a second order approximate
solution of the following form:
𝑢OHPM(𝑥, 𝑡) = 𝑐

0
⋅ sin(𝑥) + 𝑐

1
⋅ sin(𝑥) ⋅ 𝑡 + 𝑐

2
⋅ sin(𝑥) ⋅

𝑡2 + 𝑐
3
⋅ sin(𝑥) ⋅ 𝑡3.

(ii) Imposing the boundary condition 𝑢OHPM(𝑥, 0) = 𝑥
we obtain 𝑐

0
= 1.

Replacing this expression of 𝑐
0
in the expression of

𝑢OHPM we obtain the following:

𝑢OHPM(𝑥, 𝑡) = sin(𝑥) + 𝑐
1
⋅ sin(𝑥) ⋅ 𝑡 + 𝑐

2
⋅ sin(𝑥) ⋅ 𝑡2 +

𝑐
3
⋅ sin(𝑥) ⋅ 𝑡3.

We introduce 𝑢OHPM in the remainderR given by (2)
and (9) and we compute the functional 𝐽(𝑐

1
, 𝑐
2
, 𝑐
3
) of

(10).
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Figure 2: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (19).

Table 2: The absolute differences corresponding to the HPM
solution (red surface), VIM solution (blue surface), and OHPM
solution (green surface) for problem (19).

HPM VIM OHPM
𝑥 = 𝑡 = 0 0 0 0
𝑥 = 𝑡 = 0.2 2.598 10−5 5.126 10−7 3.268 10−5

𝑥 = 𝑡 = 0.4 7.996 10−4 3.113 10−5 9.737 10−5

𝑥 = 𝑡 = 0.6 5.766 10−3 3.322 10−4 1.279 10−4

𝑥 = 𝑡 = 0.8 2.276 10−2 1.725 10−3 1.233 10−4

𝑥 = 𝑡 = 1 6.413 102 5.992 10−3 9.511 10−7

(iii) We compute theminimum of the functional 𝐽 and, by
replacing the corresponding values of the parameters
𝑐
1
, 𝑐
2
, 𝑐
3
, we obtain the following second order

approximation:
𝑢̃OHPM(𝑥, 𝑡)=−0.102902𝑡

3 sin(𝑥)+0.465235𝑡2 sin(𝑥)−
0.994455𝑡 sin(𝑥) + sin(𝑥).

Figure 2 presents the comparison of the absolute errors
corresponding to the third order approximation obtained by
using HPM (red surface), to the fourth order approximation
obtained by using VIM (blue surface), and to the second
order approximation obtained by OHPM (green surface).

Table 2 presents the same comparison for several values
of 𝑥 and 𝑡.

Again, overall, the approximations obtained by using
OHPM aremore accurate than the ones previously computed
by using HPM and VIMwhile, at the same time, they present
a much simpler expression.

4. Conclusions

In the present paper the new optimal homotopy perturbation
method is introduced as a straightforward and efficient
method to compute approximate solutions for nonlinear
partial differential equations.

The optimal homotopy perturbation method has an
accelerated convergence compared to the regular homotopy

perturbation method, fact proved by the included applica-
tions. The method is a powerful one since not only were we
capable to find more accurate approximations, but also the
approximations computed consist of fewer terms than the
previous solutions.
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We present a generalmethod of operational nature to analyze and obtain solutions for a variety of equations ofmathematical physics
and related mathematical problems. We construct inverse differential operators and produce operational identities, involving
inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We
develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations.
Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials
and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are
demonstrated.

1. Introduction

Most of physical systems can be described by appropriate
sets of differential equations, which are well suited as models
for systems. Hence, understanding of differential equations
and finding its solutions are of primary importance for
pure mathematics as for physics. With rapidly developing
computer methods for the solutions of equations, the ques-
tion of understanding of the obtained solutions and their
application to real physical situations remains opened for
analytical study. There are few types of differential equations,
allowing explicit and straightforward analytical solutions. It
is common knowledge that expansion into series of Hermite,
Laguerre, and other relevant polynomials [1] is useful when
solvingmany physical problems (see, e.g., [2, 3]). Generalised
forms of these polynomials exist with many variables and
indices [4, 5]. In what follows, we develop an analytical
method to obtain solutions for various types of partial differ-
ential equations on the base of operational identities, employ-
ing expansions in series of Hermite, Laguerre polynomials,
and their modified forms [1, 6]. The key for building these
solutions will be an operational approach and development
of the formalism of inverse functions and inverse differential
operators, already touched in [7, 8]. We will demonstrate
in what follows that when used properly and combined,

in particular, with integral transforms, such an approach
leads to elegant analytical solutions with transparent physical
meaning without particularly cumbersome calculations.

2. Inverse Derivative

For a common differential operator 𝐷 = 𝑑/𝑑𝑥 we can define
an inverse derivative, such that upon the action on a function
𝑓(𝑥) it gives another function 𝐹(𝑥):

𝐷
−1

𝑓 (𝑥) = 𝐹 (𝑥) , (1)

whose derivative is 𝐹󸀠(𝑥) = 𝑓(𝑥). Evidently, the inverse
derivative 𝐷−1 is executed by an integral operator being the
inverse of differential operator, acting on𝑓(𝑥), and its general
form is ∫𝑓(𝑥) = 𝐹(𝑥) + 𝐶, where 𝐶 is the constant of
integration. The action of its 𝑛th order

𝐷
−𝑛

𝑥
𝑓 (𝑥) =

1

(𝑛 − 1)!
∫
𝑥

0

(𝑥 − 𝜉)
𝑛−1

𝑓 (𝜉) 𝑑𝜉,

(𝑛 ∈ 𝑁 = {1, 2, 3, . . .})

(2)
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can be complemented with the definition of the action of zero
order derivative as follows:

𝐷
0

𝑥
𝑓 (𝑥) = 𝑓 (𝑥) , (3)

so that evidently

𝐷
−𝑛

𝑥
1 = 𝑥

𝑛

𝑛!
, (𝑛 ∈ 𝑁

0
= 𝑁 ∪ {0}) . (4)

In what follows we will appeal to various modifications of the
following equation:

(𝛽
2

− 𝐷
2

)
]
𝐹 (𝑥) = 𝑓 (𝑥) . (5)

Thus, it is important to construct the particular integral 𝐹(𝑥)
with the help of the following operational identity (see, e.g.,
[6]):

𝑞
−]
=
1

Γ (])
∫
∞

0

exp (−𝑞𝑡) 𝑡]−1𝑑𝑡,

min {Re (𝑞) ,Re (])} > 0.
(6)

For the operator 𝑞 = 𝛽2 − 𝐷2 we have

(𝛽
2

− 𝐷
2

)
−]
𝑓 (𝑥)

=
1

Γ (])
∫
∞

0

exp (−𝛽2𝑡) 𝑡]−1 exp (𝑡𝐷2) 𝑓 (𝑥) 𝑑𝑡.
(7)

We will also make explicit use of the generalized form of
the Glaisher operational rule [9]; action of the operator 𝑆 =
exp(𝑡𝐷2

𝑥
) on the function 𝑓(𝑥) = exp(−𝑥2) yields

𝑆𝑓 (𝑥) = exp(𝑦 𝜕
2

𝜕𝑥2
) exp (−𝑥2)

=
1

√1 + 4𝑦
exp(− 𝑥2

1 + 4𝑦
) .

(8)

Exponential operator mentioned above is closely related to
Hermite orthogonal polynomials:

𝐻
𝑛
(𝑥, 𝑦) = 𝑛!

[𝑛/2]

∑
𝑟=0

𝑥𝑛−2𝑟𝑦𝑟

(𝑛 − 2𝑟)!𝑟!
, (9)

as demonstrated in [4, 5, 10] by operational relations:

𝐻
𝑛
(𝑥, 𝑦) = exp(𝑦 𝜕

2

𝜕𝑥2
)𝑥
𝑛

. (10)

Moreover, the following generating function for Hermite
polynomials exists:

exp (𝑥𝑡 + 𝑦𝑡2) =
∞

∑
𝑛=0

𝑡𝑛

𝑛!
𝐻
𝑛
(𝑥, 𝑦) . (11)

Note also an easy to prove and useful relation [11]:

𝑧
𝑛

𝐻
𝑛
(𝑥, 𝑦) = 𝐻

𝑛
(𝑥𝑧, 𝑦𝑧

2

) . (12)

Laguerre polynomials of two variables [4]

𝐿
𝑛
(𝑥, 𝑦) = exp(−𝑦 𝜕

𝜕𝑥
𝑥
𝜕

𝜕𝑥
)
(−𝑥)
𝑛

𝑛!
= 𝑛!
𝑛

∑
𝑟=0

(−1)
𝑟𝑦𝑛−𝑟𝑥𝑟

(𝑛 − 𝑟)!(𝑟!)
2

(13)

are related to the following operator 𝜕
𝑥
𝑥𝜕
𝑥
[10]:

𝐿
𝐷
𝑥
=
𝜕

𝜕𝑥
𝑥
𝜕

𝜕𝑥
=

𝜕

𝜕𝐷−1
𝑥

, (14)

sometimes called Laguerre derivative
𝐿
𝐷
𝑥
. Note their non-

commutative relation with the inverse derivative operator:

[
𝐿
𝐷
𝑥
, 𝐷
−1

𝑥
] = −1, ([𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴) . (15)

They represent solutions of the following partial differential
equation with proper initial conditions:

𝜕
𝑦
𝐿
𝑛
(𝑥, 𝑦) = − (𝜕

𝑥
𝑥𝜕
𝑥
) 𝐿
𝑛
(𝑥, 𝑦) , (16)

where

𝐿
𝑛
(𝑥, 𝑦) = 𝑛!

𝑛

∑
𝑟=0

(−1)
𝑟𝑦𝑛−𝑟𝑥𝑟

(𝑛 − 𝑟)!(𝑟!)
2
, (17)

with proper initial conditions:

𝐿
𝑛
(𝑥, 0) =

(−𝑥)
𝑛

𝑛!
. (18)

In the following sections, we will investigate the possi-
bilities to solve some partial differential equations, involving
the differential operators studied above. Now we just note
how the technique of inverse operator, applied for derivatives
of various orders and their combinations and combined
with integral transforms, allows for easy and straightforward
solutions of various types of differential equations.

3. Diffusion Type, Heat Propagation Type
Problems, and Inverse Derivatives

Heat propagation and diffusion type problems play a key role
in the theory of partial differential equations. Combination
of exponential operator technique and inverse derivative
together with the operational identities of the previous
section is useful for the solution of a broad spectrumof partial
differential equations, related to heat and diffusion processes.
Some of them have been already studied by operational
method (see, e.g., [10, 12]). Below we will focus on the
generalities of the solution of the following problem:

𝜕

𝜕𝑦
𝐹 (𝑥, 𝑦) = (𝑃̂ + 𝑀̂) {𝐹 (𝑥, 𝑦)} , (19)

with initial conditions

𝐹 (𝑥, 0) = 𝑞 (𝑥) . (20)
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We will employ operational approach, combined with inte-
gral transforms and exponential operator technique. Formal
solution for our generic formulation reads as follows:

𝐹 (𝑥, 𝑦) = exp (𝑦 (𝑀̂ + 𝑃̂)) 𝑞 (𝑥) . (21)

We would like to underline that operators 𝑃̂ and 𝑀̂may not
commute, so, dependently on the value of their commutator,
we will obtain different sequences of operators in (23),
disentangling 𝑃̂ and 𝑀̂ [13, 14]. In the simplest case, when
operators 𝑀̂ and 𝑃̂ are multiplication and differentiation
operators, respectively, they can be easily disentangled in the
exponent with account for

[𝑃̂, 𝑀̂] = 1, (22)

which yields

𝐹 (𝑥, 𝑦) = exp (𝑦 (𝑀̂ + 𝑃̂)) 𝑞 (𝑥)

= exp(−
𝑦2

2
) exp (𝑦𝑃̂) exp (𝑦𝑀̂) 𝑞 (𝑥) .

(23)

Explicit expressions for the action of these operators on the
initial condition function 𝑔(𝑥) can be obtained by integral
transforms, series expansions, and operational technique to
be evaluated in every special case. This formulation, simple
in its essence, nevertheless has wide application and allows us
to frame either some of integrodifferential equations in this
scheme. An elegant and interesting example is given by the
following equation:

𝜕

𝜕𝑡
𝐹 (𝑥, 𝑡) = −

𝜕

𝜕𝑥
𝑥
𝜕

𝜕𝑥
𝐹 (𝑥, 𝑡) + ∫

𝑥

0

𝐹 (𝜉, 𝑡) 𝑑𝜉,

𝐹 (𝑥, 0) = 𝑔 (𝑥) .

(24)

Its formal solution reads

𝐹 (𝑥, 𝑡) = exp (𝐴 + 𝐵) 𝑔 (𝑥) , (25)

where operators

𝐴 = −𝑡
𝐿
𝐷
𝑥
= −𝑡

𝜕

𝜕𝐷−1
𝑥

, 𝐵 = 𝑡𝐷
−1

𝑥
(26)

do not commute:

[𝐴, 𝐵] = −𝑡
2

. (27)

Evidently, operators in the exponential disentangle:

𝐹 (𝑥, 𝑡) = exp (𝐴 + 𝐵) 𝑞 (𝑥)

= exp(𝑡
2

2
) exp (𝑡𝐷−1

𝑥
) exp(−𝑡 𝜕

𝜕𝐷−1
𝑥

)𝑔 (𝑥) .

(28)

Thus, we have obtained the solution of the integrodifferen-
tial equation (24) as a sequence of exponential operators,
transforming the initial condition 𝑔(𝑥). Our further steps

depend on the explicit form of this function. In the most
general case of 𝑔(𝑥) we may take advantage of the inverse
derivative technique. First, consider the action of the operator
exp(−𝜕/(𝜕𝐷−1

𝑥
)) on 𝑔(𝑥):

𝑓 (𝑥, 𝑡) = exp(−𝑡 𝜕
𝜕𝐷−1
𝑥

)𝑔 (𝑥) , (29)

where𝐷−1
𝑥

is defined in (2). Equation (29) represents, in fact,
the diffusion process and it is the solution of the following
initial value problem:

𝜕

𝜕𝑡
𝑓 (𝑥, 𝑡) = −

𝜕

𝜕𝑥
𝑥
𝜕

𝜕𝑥
𝑓 (𝑥, 𝑡) , 𝑓 (𝑥, 0) = 𝑔 (𝑥) . (30)

Relevant studies were performed in [10, 12]. The initial
condition function 𝑓(𝑥, 0) = 𝑔(𝑥) can be written as follows:

𝑔 (𝑥) = 𝜑 (𝐷
−1

𝑥
) 1, (31)

and the image 𝜑(𝑥) is explicitly given by the following
integral:

𝜑 (𝑥) = ∫
∞

0

exp (−𝜁) 𝑔 (𝑥𝜁) 𝑑𝜁, (32)

which is supposed to converge. Then the result of the
Laguerre diffusion (29) appears in the form of the translation
of the image function 𝜑:

𝑓 (𝑥, 𝑦) = 𝜑 (𝐷
−1

𝑥
− 𝑡) 1. (33)

Consequently, we have to apply the exponential operator
exp(𝑡𝐷−1

𝑥
), which can be expanded in series:

𝐹 (𝑥, 𝑡) = exp(𝑡
2

2
)
∞

∑
𝑛=0

𝑡𝑛𝐷−𝑛
𝑥

𝑛!
𝑓 (𝑥, 𝑡) . (34)

The simplest example of the initial function 𝑔(𝑥) =
exp(−𝑥) demonstrates the technique sketched above, result-
ing in

𝜑 (𝑥) =
1

(1 + 𝑥)
when |𝑥| < 1, (35)

and the Laguerre diffusion contribution (29) produces the
following function:

𝑓 (𝑥, 𝑡) =
1

1 − 𝑡
exp (− 1

1 − 𝑡
𝑥) . (36)

The inverse derivative action on the exponent reads
𝐷−𝑛
𝑥

exp(𝛼𝑥) = exp(𝛼𝑥)/𝛼𝑛 and eventually we obtain

𝐹 (𝑥, 𝑡) = exp(𝑡
2

2
)
1

1 − 𝑡

∞

∑
𝑛=0

𝑡𝑛𝐷−𝑛
𝑥

𝑛!
exp (− 1

1 − 𝑡
𝑥)

=
1

1 − 𝑡
exp (− 𝑥

1 − 𝑡
) exp(−𝑡 (1 − 𝑡) + 𝑡

2

2
) .

(37)
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In conclusion of the present chapter we consider the
example of the solution of a heat propagation type equation
by operational method, involving the inverse derivative
operator and exponential operator technique. We recall that
the common heat equation with initial condition problem

𝜕

𝜕𝑡
𝑓 (𝑥, 𝑡) = 𝜕

2

𝑥
𝑓 (𝑥, 𝑡) , 𝑓 (𝑥, 0) = 𝑔 (𝑥) (38)

can be solved by Gauss transforms:

𝑓 (𝑥, 𝑡) =
1

2√𝜋𝑡
∫
∞

−∞

exp(−(𝑥 − 𝜉)
2

4𝑡
) 𝑔 (𝜉) 𝑑𝜉. (39)

In complete analogy with the above statements, we can solve
the heat-type equation with differential operator

𝐿
𝐷
𝑥
(14)

with, for example, the following initial condition:

𝜕

𝜕𝑡
𝑓 (𝑥, 𝑡) =

𝐿
𝐷
2

𝑥
𝑓 (𝑥, 𝑡) , 𝑓 (𝑥, 0) = 𝑔 (𝑥) . (40)

The Laguerre heat-type propagation problem (40) possesses
the following solution (see the Appendix):

𝑓 (𝑥, 𝑡) =
1

2√𝜋𝑡
∫
∞

−∞

𝑒
−𝜉
2
/4𝑡

𝐻
𝐶
0
(
−𝜉𝑥

2𝑡
, −
𝑥2

4𝑡
)𝜑 (𝜉) 𝑑𝜉.

(41)

4. Operational Approach and Other Types of
Differential Equations

Operational approach to solution of partial differential equa-
tions, demonstrated on the examples of diffusion-like and
heat-like equations with 𝜕

𝑥
𝑥𝜕
𝑥
derivatives, can be further

extended to other equation types. Consider the following
example of a rather complicated differential equation:

1

𝜌

𝜕

𝜕𝑡
𝐴 (𝑥, 𝑡) = 𝑥

2 𝜕
2

𝜕𝑥2
𝐴 (𝑥, 𝑡) + 𝜆𝑥

𝜕

𝜕𝑥
𝐴 (𝑥, 𝑡)

− 𝜇𝐴 (𝑥, 𝑡) , 𝑔 (𝑥) = 𝐴 (𝑥, 0) ,

(42)

where 𝜌, 𝜆, and 𝜇 are some arbitrary constant coefficients
and function 𝑔(𝑥) = 𝐴(𝑥, 𝑡 = 0) is the initial condition. By
introducing operator𝐷 = 𝑥𝜕

𝑥
and distinguishing the perfect

square, we rewrite (42):

1

𝜌

𝜕

𝜕 𝑡
𝐴 (𝑥, 𝑡) = ((𝐷 +

𝜆

2
)
2

− 𝜀)𝐴 (𝑥, 𝑡) , (43)

where

𝜀 = 𝜇 + (
𝜆

2
)
2

. (44)

Thus, the following exponential solution for (42) appears:

𝐴 (𝑥, 𝑡) = exp{𝜌𝑡((𝐷 + 𝜆
2
)
2

− 𝜀)}𝑔 (𝑥) . (45)

Now making use of the operational identity

exp (𝑝2) = 1

√𝜋
∫
∞

−∞

exp (−𝜉2 + 2𝜉𝑝) 𝑑𝜉 (46)

and applying exp(𝑎𝐷) according to

exp (𝑎𝑥𝜕
𝑥
) 𝑓 (𝑥) = 𝑓 (𝑒

𝑎

𝑥) , (47)

we obtain the following compact expression for 𝐴(𝑥, 𝑡):

𝐴 (𝑥, 𝑡) =
exp (−𝜌𝜀𝑡)
√𝜋

× ∫
∞

−∞

exp [−𝜎2 + 𝜎𝛼 𝜆
2𝜌
] 𝑔 (𝑥 exp (𝜎𝛼)) 𝑑𝜎,

(48)

where

𝛼 = 𝛼 (𝑡) = 2√𝜌𝑡. (49)

Consider two simple examples of initial condition functions.
The first one is

𝑔 (𝑥) = 𝑥
𝑛

. (50)

Then we immediately obtain the solution of (42) as follows:

𝐴 (𝑥, 𝑡) = 𝑥
𝑛 exp {𝜌𝑡 (𝑛2 + 𝜆𝑛 − 𝜇)} . (51)

The second example is given by the following initial condition
function:

𝑔 (𝑥) = ln𝑥. (52)

Trivial computations yield the following solution:

𝐴 (𝑥, 𝑡) = (ln𝑥 + 𝜌𝑡𝜆) exp (−𝜌𝑡𝜇) . (53)

Thus, operational technique, combined with integral
transforms, operational identities, and extended forms of
orthogonal polynomials, represents powerful tool for finding
solutions of various classes of differential equations and initial
value problems. Note that within the framework of inverse
differential operators, developed and described above, the
usage of the evolution operator method opens new possibili-
ties, which we will elucidate in what follows.

Let us consider the following generalization of the heat
equation:

𝜕
𝑡
𝐹 (𝑥, 𝑡) = 𝛼𝜕

2

𝑥
𝐹 (𝑥, 𝑡) + 𝛽𝑥𝐹 (𝑥, 𝑡) , (54)

with the initial condition:

𝐹 (𝑥, 0) = 𝑓 (𝑥) . (55)

The evolution type equation (54) contains linear coordinate
term in addition to the second order derivative. Its formal
solution can be written via the evolution operator 𝑈̂:

𝐹 (𝑥, 𝑡) = 𝑈̂𝑓 (𝑥) , (56)
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where

𝑈̂ = exp (𝐴 + 𝐵) , 𝐴 = 𝛼𝑡𝜕
2

𝑥
, 𝐵 = 𝛽𝑡𝑥. (57)

The exponential of the evolution operator 𝑈̂ in (56) is the
sum of two noncommuting operators and it can be written
as the ordered product of two exponential operators. Indeed,
the commutator of 𝐴 and 𝐵 has the following nonzero value:

[𝐴, 𝐵] = 𝑚𝐴
1/2

= 2𝛼𝛽𝑡
2

𝜕
𝑥
, 𝑚 = 2𝛽𝑡

3/2

𝛼
1/2

. (58)

Then we can apply the disentanglement operational identity:

𝑒
𝐴+𝐵

= 𝑒
(𝑚
2
/12)−(𝑚/2)𝐴

1/2
+𝐴

𝑒
𝐵

, (59)

and the following chain rule:

𝑒
𝑝𝜕
2
𝑥𝑒
𝑞𝑥

𝑔 (𝑥) = 𝑒
𝑝𝑞
2

𝑒
𝑞𝑥

𝑒
2𝑝𝑞𝜕𝑥𝑒
𝑝𝜕
2
𝑥𝑔 (𝑥) , (60)

where𝑝, 𝑞 are constant parameters.With their help, we obtain
the evolution operator 𝑈̂ for (54):

𝑈̂ = 𝑒
Φ(𝑥,𝑡;𝛽)

Θ̂𝑆. (61)

Note that we have factorized two commuting operators: the
operator of translation in space

Θ̂ = 𝑒
𝛼𝛽𝑡
2
𝜕𝑥 (62)

and operator

𝑆 = 𝑒
𝛼𝑡𝜕
2
𝑥 , (63)

which is, in fact, operator 𝑆 = exp(𝑡𝐷2
𝑥
). The phase in 𝑈̂ is

written as follows:

Φ(𝑥, 𝑡; 𝛼, 𝛽) =
1

3
𝛼𝛽
2

𝑡
3

+ 𝛽𝑡𝑥. (64)

The action of 𝑈̂ on the initial condition function 𝑓(𝑥) yields
the following solution for our problem:

𝐹 (𝑥, 𝑡) = 𝑒
Φ(𝑥,𝑡;𝛼,𝛽)

Θ̂𝑆𝑓 (𝑥) . (65)

Thus, we conclude from the form of (65) that the problem
(54) with the initial condition (55) can be solved by the
consequent application of commuting operators Θ̂ (62) and 𝑆
(63) to 𝑓(𝑥), apart from the factor 𝑒Φ(𝑥,𝑡;𝛼,𝛽). Now the explicit
form of the solution (65) can be obtained by recalling that Θ̂
acts as a translation operator

𝑒
𝑠𝜕𝑥𝑔 (𝑥) = 𝑔 (𝑥 + 𝑠) (66)

and that the action of 𝑆 on the function 𝑔(𝑥) yields the
solution of the ordinary heat equation, through Gauss-
Weierstrass transform (A.1). Accordingly, we denote

𝑓 (𝑥, 𝑡) ≡ 𝑆𝑓 (𝑥) ≡ 𝑒
𝛼𝑡𝜕
2
𝑥𝑓 (𝑥) , (67)

and we write

Θ̂𝑓 (𝑥, 𝑡) = 𝑓 (𝑥 + 𝛼𝛽𝑡
2

, 𝑡) . (68)

Thus, (54)with initial condition (55) has the following explicit
solution:
𝐹 (𝑥, 𝑡)

= 𝑒
Φ(𝑥,𝑡;𝛼,𝛽) 1

2√𝜋𝛼𝑡
∫
∞

−∞

𝑒
−(𝑥+𝛼𝛽𝑡

2
−𝜉)

2
/4𝑡𝛼

𝑓 (𝜉) 𝑑𝜉,
(69)

provided that the integral converges. Summarizing the above
outlined procedure, we conclude that a solution for (54)
consists in finding a Gauss transformed function 𝑓 with a
shifted argument:

𝐹 (𝑥, 𝑡) = 𝑒
Φ(𝑥,𝑡;𝛼,𝛽)

𝑓 (𝑥 + 𝛼𝛽𝑡
2

, 𝑡) . (70)

Moreover, this is a general observation for this type of
equation, valid for any function 𝑓(𝑥) (provided the integral
converges). In other words, we have obtained the solution of
Fokker plank equation as a consequent action of operator 𝑆
of heat diffusion and operator Θ̂ of translation on the initial
condition function.Note that𝑓(𝑥, 𝑡) is the solution of the heat
equation, representing a natural propagation phenomenon.

The effect, produced by the translation operator Θ̂ and the
operator 𝑆, is best illustrated with the example of Gaussian
𝑓(𝑥) = exp(−𝑥2) evolution, when (69) becomes

𝐹(𝑥, 𝑡)|
𝑓(𝑥)=exp(−𝑥2) =

exp (Φ (𝑥, 𝑡))
√1 + 4𝑡

exp(−
(𝑥 + 𝛽𝑡2)

2

1 + 4𝑡
) ,

𝑡 ≥ 0.

(71)

The above result is exactly the generalization of Gleisher
rule (8), considered earlier in the context of the heat equation.
Thus, (71) is the solution of the ordinary heat equation with
𝛽 = 0, when the initial function is Gaussian.

Another interesting example of solving (54) appearswhen
the initial function𝑓(𝑥) allows the expansion in the following
series:

𝑓 (𝑥) = ∑
𝑘

𝑐
𝑘
𝑥
𝑘

𝑒
𝛾𝑥

. (72)

In this case, we refer to the identity

exp (𝑦𝐷2
𝑥
) 𝑥
𝑘

𝑒
𝛾 𝑥

= 𝑒
(𝛾 𝑥+𝛾

2
𝑦)

𝐻
𝑘
(𝑥 + 2𝛾𝑦, 𝑦) , (73)

which arises from

exp(𝑦 𝜕
𝑚

𝜕𝑥𝑚
)𝑓 (𝑥) = 𝑓(𝑥 + 𝑚𝑦

𝜕𝑚−1

𝜕𝑥𝑚−1
) 1 (74)

with account for the generating function of Hermite polyno-
mials (11). Then the action (67) of operator 𝑆 on the initial
function (72) produces

𝑓 (𝑥, 𝑡) = ∑
𝑘

𝑐
𝑘
𝑓
𝑘
(𝑥, 𝑡) .

𝑓
𝑘
(𝑥, 𝑡) = 𝑒

𝛾(𝑥+𝛾𝑎)

𝐻
𝑘
(𝑥 + 2𝛾𝑎, 𝑎) , 𝑎 = 𝛼𝑡.

(75)
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In addition, the translation, operated by Θ̂, shifts the argu-
ment: 𝑓(𝑥, 𝑡) → 𝑓(𝑥 + 𝑎𝑏, 𝑡), 𝑏 = 𝛽𝑡. Thus, we obtain the
solution in a form of Hermite polynomial as follows:

𝐹 (𝑥, 𝑡) = ∑
𝑘

𝑐
𝑘
𝑒
Φ+Φ1𝐻

𝑘
(𝑥 +

𝛼𝛾2

𝛽
(2𝑡
𝛽

𝛾
+ 𝑡
2
𝛽2

𝛾2
) , 𝛼𝑡) ,

(76)

where Φ is defined by (64) and

Φ
1
= 𝛾(𝑥 +

𝛼𝛾2

𝛽
(𝑡
𝛽

𝛾
+ (𝑡

𝛽

𝛾
)

2

)) . (77)

It is now evident that, for a short time, when 𝑡 ≪ 𝛾/𝛽, the
solution will be spanning in space off the initial function,
modulated by 𝐻

𝑘
(𝑥, 𝛼𝑡) and exponentially depending on

time:

𝐹(𝑥, 𝑡)|
𝑡≪𝛾/𝛽

≈ ∑
𝑘

𝑐
𝑘
exp (𝛼𝛾2𝑡 + 𝛾𝑥)𝐻

𝑘
(𝑥, 𝛼𝑡) ,

𝐹(𝑥, 𝑡)|
𝑡≪𝛾/𝛽,𝑡≪1

≈ ∑
𝑘

𝑐
𝑘
𝑒
𝛼𝛾
2
𝑡

𝑒
𝛾𝑥

𝑥
𝑘

.

(78)

Note that for extended times 𝑡 ≫ 𝛾/𝛽 we have dominance
of time variable: Φ ≫ Φ

1
, and the solution asymptotically

behaves as exp(𝛽𝑡𝑥), while𝑥 playsminor role in𝐻
𝑘
(𝑥+2𝛾𝛼𝑡+

𝛼𝛽𝑡2, 𝛼𝑡).
The same operational technique as employed for the

treatise of (54) can be easily adopted for the solution of the
Schrödinger equation:

𝑖ℏ𝜕
𝑡
Ψ (𝑥, 𝑡) = −

ℏ2

2𝑚
𝜕
2

𝑥
Ψ (𝑥, 𝑡) + 𝐹𝑥Ψ (𝑥, 𝑡) ,

Ψ (𝑥, 0) = 𝑓 (𝑥) ,

(79)

where 𝐹 is constant (𝐹 has the dimension of force). Indeed,
rescaling variables in (79), we obtain the form of equation,
similar to (54):

𝑖𝜕
𝜏
Ψ (𝑥, 𝜏) = −𝜕

2

𝑥
Ψ (𝑥, 𝜏) + 𝑏𝑥Ψ (𝑥, 𝜏) , (80)

where

𝜏 =
ℏ𝑡

2𝑚
, 𝑏 =

2𝐹𝑚

ℏ2
. (81)

Following the operational methodology, developed for (54),
we write the following solution of (80) in the form (56):

Ψ (𝑥, 𝜏) =
̂
𝑈𝑓 (𝑥) , (82)

where
̂
𝑈 = exp (𝑖𝜏𝐻̂) , 𝐻̂ = 𝜕

2

𝑥
− 𝑏𝑥. (83)

Then, on account of the substitution 𝑡 → 𝑖𝜏, 𝛽 → −𝑏,
operators

̂
Θ = exp (𝑏𝜏2𝜕

𝑥
) ,

̂
Θ𝑓 (𝑥, 𝜏) = 𝑓 (𝑥 + 𝑏𝜏

2

, 𝜏) , (84)

̂
𝑆 = exp (𝑖𝜏𝜕2

𝑥
) ,

̂
𝑆𝑓 (𝑥) = 𝑓 (𝑥, 𝑖𝜏) (85)

arise.Thus, the solution of the Schrödinger equation is a result
of consequent action of the operator ̂𝑆 and further action of
̂
Θ on the initial condition function:

Ψ (𝑥, 𝑡) = exp (−𝑖Φ (𝑥, 𝜏; 𝑏)) ̂Θ ̂𝑆𝑓 (𝑥) , (86)

where Φ is defined by (64). The integral form of the solution
then is written as follows:

Ψ (𝑥, 𝑡) = exp (−𝑖Φ (𝑥, 𝜏; 𝑏)) 1

2√𝑖𝜋𝜏

× ∫
∞

−∞

exp(−
(𝑥 + 𝑏𝜏2 − 𝜉)

2

4𝑖𝜏
)𝑓 (𝜉) 𝑑𝜉.

(87)

Again, as well as in (70), without any assumption on
the nature of the initial condition function 𝑓(𝑥) of the
Schrödinger equation, its solution

Ψ (𝑥, 𝜏) = exp (−𝑖Φ (𝑥, 𝜏; 𝑏)) 𝑓 (𝑥 + 𝑏𝜏2, 𝑖𝜏) , (88)

where 𝑓(𝑥, 𝑡) is given by (85) and is expressed in terms of
the function of two variables, obtained by the consequent
application of the heat propagation and translation operators
(85) and (84) to𝑓(𝑥). So far we have demonstrated as
Gauss-Weierstrass transform (A.1) describe the action of ̂𝑆
on the initial probability amplitude and how the shift (84)
finally yields the explicit form of the solution of Schrödinger
equation. It means that the result of the action of evolution
operator (83) on 𝑓(𝑥) is the product of combined action
of translation operator ̂Θ and heat propagation operator ̂𝑆,
representing the evolution operator of the free particle.

Now let us consider another Fokker-Plank type equation,
that is, the following example:

𝜕
𝑡
𝐹 (𝑥, 𝑡) = 𝛼𝜕

2

𝑥
𝐹 (𝑥, 𝑡) + 𝛽𝑥𝜕

𝑥
𝐹 (𝑥, 𝑡) , (89)

with initial condition (55). Proceeding along the above
outlined scheme of the solution of (54), we write the solution
of (89) in general form (56):

𝐹 (𝑥, 𝑡) = 𝑈̂𝑓 (𝑥) , 𝑈̂ = exp (𝐴 + 𝐵) , (90)

where operators 𝐴 and 𝐵 are defined as follows:

𝐴 = 𝑡𝛼𝜕
2

𝑥
, 𝐵 = 𝑡𝛽𝑥𝜕

𝑥
. (91)

Quantities 𝐴 and 𝐵 evidently do not commute:

[𝐴, 𝐵] = 2𝛼𝛽𝑡
2

𝜕
2

𝑥
= 𝑚𝐴, 𝑚 = 2𝑡𝛽. (92)

It allows disentanglement of the operators in the exponential
according to the following rule:

exp (𝐴 + 𝐵) = exp(1 − exp (−𝑚)
𝑚

𝐴) exp (𝐵) . (93)
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Thus, the evolution operator 𝑈̂ action on 𝑓(𝑥), given below:

𝑈̂𝑓 (𝑥) = exp (𝜎𝜕2
𝑥
) exp (𝛽𝑡𝑥𝜕

𝑥
) 𝑓 (𝑥)

= exp (𝜎𝜕2
𝑥
) 𝑓 (𝑒

𝛽𝑡

𝑥) ,

(94)

simply reduces to a Gauss transforms, where the parameter
𝜎 = 𝜎(𝑡) reads as follows:

𝜎 (𝑡) =
(1 − exp (−2𝛽𝑡)) 𝛼

𝛽
. (95)

Upon the trivial change of variables, we obtain

𝑈̂𝑓 (𝑥) = 𝑆𝑓 (𝑦) , 𝑦 = 𝑥 exp (𝑏) , 𝑆 = exp(
𝜌

2
𝜕
2

𝑦
) ,

(96)

where

𝜌 (𝑡) =
𝛼

𝛽
(𝑒
2𝛽𝑡

− 1) (97)

and, eventually, we end up with the following simple solution
of (89):

𝐹 (𝑥, 𝑡) =
1

√2𝜋𝜌
∫
∞

−∞

𝑒
−(exp(𝛽𝑡)𝑥−𝜉)2/2𝜌

𝑓 (𝜉) 𝑑𝜉. (98)

The same example of the initial Gaussian function 𝑓(𝑥) =
exp(−𝑥2) as in the case of (54) yields (compare with (71))

𝐹(𝑥, 𝑡)|
𝑓(𝑥)=exp(−𝑥2) =

1

√1 + 2𝜌 (𝑡)
exp(− 𝑒2𝛽𝑡𝑥2

1 + 2𝜌 (𝑡)
) ,

(99)

where 𝜌 is defined in (97). Note that we can meet the
following modified form of Fokker-Plank type equation (89):

𝜕
𝑡
𝐹 (𝑥, 𝑡) = 𝛼𝜕

2

𝑥
𝐹 (𝑥, 𝑡) + 𝛽𝜕

𝑥
𝑥𝐹 (𝑥, 𝑡) , (100)

in problems, related to propagation of electron beams in
accelerators. Its solution arises from (99) immediately and
differs from it just by a factor exp(𝛽𝑡), as written below for
a Gaussian 𝑓(𝑥):

𝐹(𝑥, 𝑡)|
𝑓(𝑥)=exp(−𝑥2) =

𝑒𝛽𝑡

√1 + 2𝜌 (𝑡)
exp(− 𝑒2𝛽𝑡𝑥2

1 + 2𝜌 (𝑡)
)

=
1

√𝜂 (𝑡)
exp(− 𝑥

2

𝜂 (𝑡)
) ,

𝜂 (𝑡) = 2
𝛼

𝛽
(1 − 𝑒

−2𝛽𝑡

+
𝛽

2𝛼
𝑒
−2𝛽𝑡

) .

(101)

However, differently from the solution of (54), where we had
consequent transforms of the initial condition function 𝑓(𝑥)
by operators of translation and heat diffusion 𝑆 (63) (see also
[15]), here we have just the action of 𝑆 alone with much more
complicated dependence of the solution on time.

5. Conclusions

Operational method is fast and universal mathematical tool
for obtaining solutions of differential equations. Combina-
tion of operational method, integral transforms, and theory
of special functions together with orthogonal polynomi-
als closely related to them provides a powerful analyti-
cal instrument for solving a wide spectrum of differential
equations and relevant physical problems. The technique of
inverse operator, applied for derivatives of various orders
and combined with integral transforms, allows for easy
and straightforward solutions of various types of differential
equations. With operational approach, we developed the
methodology of inverse differential operators and derived
a number of operational identities with them. We have
demonstrated that using the technique of inverse derivatives
and inverse differential operators, combinedwith exponential
operator, integral transforms, and special functions, we can
make significant progress in solution of variousmathematical
problems and relevant physical applications, described by
differential equations.

Appendix

In complete analogy with the heat equation solution by
Gauss-Weierstrass transform [16]:

exp (𝑏𝜕2
𝑥
) 𝑔 (𝑥) =

1

2√𝜋𝑏
∫
∞

−∞

exp(−(𝑥 − 𝜉)
2

4𝑏
)𝑔 (𝜉) 𝑑𝜉,

(A.1)

accounting for noncommutative relation for operators of
inverse derivative 𝐷−1

𝑥
and
𝐿
𝐷
𝑥
, defined through the opera-

tional relation (14) and accounting for (31) and (32), we write
the solution of (40) in the following form:

𝑓 (𝑥, 𝑡) =
1

2√𝜋𝑡
∫
∞

−∞

exp(−
(𝐷−1
𝑥
− 𝜉)
2

4𝑡
) 1𝜑 (𝜉) 𝑑𝜉, (A.2)

where 𝜑 is the image (32) of the initial condition function
𝑔. The kernel of the integral in the above formula can be
expanded into series of two-variable Hermite polynomials
𝐻
𝑛
(𝑥, 𝑦):

exp(−
(𝐷−1
𝑥
− 𝜉)
2

4𝑡
) 1

= 𝑒
−𝜉
2
/4𝑡

∞

∑
𝑛=0

𝐷−𝑛
𝑥

𝑛!
𝐻
𝑛
(
𝜉

2𝑡
, −
1

4𝑡
)

= 𝑒
−𝜉
2
/4𝑡

∞

∑
𝑛=0

𝑥𝑛

(𝑛!)
2
𝐻
𝑛
(
𝜉

2𝑡
, −
1

4𝑡
) .

(A.3)

Taking into account formula (12) for 𝑥𝑛𝐻
𝑛
(𝜉/2𝑡, −1/4𝑡) in

the operational identity above, which can be viewed as
a generating function in terms of inverse derivative for
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𝐻
𝑛
(𝑥, 𝑦), we obtain the following expansion for the kernel of

the integral:

exp(−
(𝐷−1
𝑥
− 𝜉)

4𝑡
) 1 = 𝑒−𝜉

2
/4𝑡

∞

∑
𝑛=0

1

(𝑛!)
2
𝐻
𝑛
(
𝑥𝜉

2𝑡
, −
𝑥2

4𝑡
) ,

(A.4)

where the series of Hermite polynomials of two arguments
𝐻
𝑛
(𝑥, 𝑦) can be expressed in terms of Hermite-Bessel-

Tricomi functions
𝐻
𝐶
𝑛
(𝑥, 𝑦)—generalization of Bessel-

Tricomi functions—and related to Bessel-Wright functions
and to common Bessel functions [17]:

𝐻
𝐶
𝑛
(𝑥, 𝑦) =

∞

∑
𝑚=0

𝐻
𝑚
(−𝑥, 𝑦)

𝑟! (𝑛 + 𝑚)!
, 𝑛 ∈ 𝑁

0
. (A.5)

In particular, for 𝑛 = 0, we immediately find our series:

𝐻
𝐶
0
(𝑥, 𝑦) =

∞

∑
𝑚=0

𝐻
𝑚
(−𝑥, 𝑦)

(𝑚!)
2
, (A.6)

which obviously leads to the solution of the heat-type
propagation problem (40) by the following appropriate Gauss
transform:

𝑓 (𝑥, 𝑡) =
1

2√𝜋𝑡
∫
∞

−∞

𝑒
−𝜉
2
/4𝑡

𝐻
𝐶
0
(
−𝜉𝑥

2𝑡
, −
𝑥2

4𝑡
)𝜑 (𝜉) 𝑑𝜉.

(A.7)
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The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with
nonlinear dissipation of the form Ku󸀠󸀠 +𝑀(|𝐴1/2𝑢|

2

)𝐴𝑢 + 𝑔(𝑢󸀠) = 0 under suitable assumptions on 𝐾,𝐴,𝑀(⋅), and 𝑔(⋅). Next, we
derive decay estimates of the energy under some growth conditions on the nonlinear dissipation 𝑔. Lastly, numerical simulations
in order to verify the analytical results are given.

1. Introduction

A mathematical model for the transverse deflection of
an elastic string of length 𝐿 > 0 whose ends are held a
fixed distance apart is written in the form of the hyperbolic
equation

𝜕2𝑢 (𝑥, 𝑡)

𝜕𝑡2
− (𝛼 + 𝛽∫

𝐿

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)
𝜕2𝑢 (𝑥, 𝑡)

𝜕𝑥2
= 0, (1)

which was proposed by Kirchhoff [1], where 𝑢(𝑥, 𝑡) is the de-
flection of the point 𝑥 of the string at the time 𝑡 and 𝛼 > 0, 𝛽
are constants. Kirchhoff first introduced (1) in the study of the
oscillations of stretched strings and plates, so that (1) is
called the wave equation of Kirchhoff type. The Kirchhoff-
type model also appeared in scientific research for beam or
plate [2–5]. Such nonlinear Kirchhoffmodel gives one way to
describe the dynamics of an axially moving string. In recent
years, axially moving string-like continua such as wires, belts,
chains, and band saws have been the subject of study of
researchers [6–14].

Themathematical aspects of the natural generalization of
the model (1) inΩ ⊂ R𝑛:

𝑢
󸀠󸀠

−𝑀(∫
Ω

|∇𝑢|
2

𝑑𝑥)Δ𝑢 + 𝑔 (𝑢
󸀠

) = 0, (2)

𝑢 (0) = 𝑢
0
, 𝑢

󸀠

(0) = 𝑢
1
, (3)

under some assumptions on 𝑀(⋅), 𝑔(⋅), have been studied,
using different methods, by many authors [6, 8, 15–22].

When 𝑔(⋅) = 0 and 𝑛 = 1, the problem (2)-(3) was studied
by Dickey [16] and Bernstein [15] who considered analytic
functions as the initial data (see also Yamada [21] and Ebihara
et al. [17]). In case when 𝑔(⋅) = 0 and 𝑛 ≥ 1, Pohožaev [22]
obtained the existence and uniqueness of global solutions for
the problem (2)-(3). Lions [20] also formulated Pohožaev’s
results in an abstract context and obtained better results.

Equation (2) with linear dissipative term, that is, 𝑔(𝑢󸀠) =
𝛿𝑢󸀠 (𝛿 > 0), was investigated by Mizumachi [23], Nishihara
and Yamada [24], Park et al. [25], and Jung and Choi [26]. In
fact, they studied the existence, uniqueness, and the energy
decay rates of solutions for the problem (2)-(3). On the other
hand, related works to a Kirchhoff-type equation with 𝐾𝑢󸀠󸀠

instead of 𝑢󸀠󸀠 can be found in Levine [19]. Jung and Lee [27]
got the result for a Kirchhoff-type equation with strong
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dissipative term. But they studied a simple form with the
coefficient𝑀(⋅)≡ 1. In case of the equation concerning non-
linearKirchhoff-type coefficient, recently, Kim et al. [8], Ghisi
and Gobbino [28], and Aassila and Kaya [29] have studied
existence and energy decay rates of global (or local) solutions
for the equation. By giving some suitable smallness condi-
tions on the sizes of the initial data, they assured global exis-
tence and energy decay rates for the solutions.

In this paper, we study the existence, uniqueness, and the
decay estimates of the energy for a class of Kirchhoff-type
wave equations in a Hilbert space𝐻:

𝐾𝑢
󸀠󸀠

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢 + 𝑔 (𝑢
󸀠

) = 0 in 𝐻,

𝑢 (0) = 𝑢
0
, (𝐾𝑢

󸀠

) (0) = 𝐾
1/2

𝑢
1
,

(4)

where𝐾 and𝐴 are linear operators in𝐻 and𝑀(⋅)∈𝐶1[0,∞).
For global existence of this problem, we give some suitable
smallness conditions. So, the main contribution of these
results is to consider a general model which contains the con-
crete model (2)-(3) and to improve the results of Kouémou-
Patcheu [30] and Jung and Choi [26]. Moreover, as an
application, we give some simulation results about solution’s
shapes and the algebraic decay rate for a Kirchhoff-type wave
equation with nonlinear dissipation.

Themethod applied in this paper is based on themultipli-
ers technique [31], Galerkin’s approximate method, and some
integral inequalities due to Haraux [32].

This paper is organized as follows. In Section 2, we recall
the notation, hypotheses, and some necessary preliminaries
and prove the existence and uniqueness of global solutions
for the system (4) by employing Feado-Galerkin’s techniques
under suitable smallness condition. In Section 3, we derive
the energy decay rates by using the multiplier technique
under suitable growth conditions on 𝑔. Finally, in Section 4,
we give an example and its numerical simulations to illustrate
our results.

2. Preliminaries and Existence

Let Ω be a bounded open domain in R𝑛 having a smooth
boundary Γ and 𝐻 = 𝐿2(Ω) with inner product and norm
denoted by (⋅, ⋅) and |⋅|, respectively. Let𝐾 be a linear, positive,
and self-adjoint operator on 𝐻; that is, there is a constant
𝑐 > 0 such that

(𝐾𝑢, 𝑢) ≥ 𝑐|𝑢|
2

, ∀𝑢 ∈ 𝐻. (5)

Let𝐴 be a linear, self-adjoint, and positive operator in𝐻, with
domain 𝑉 := 𝐷(𝐴) dense in 𝐻, 𝐾𝐴 = 𝐴𝐾 on 𝐷(𝐴) ∩ 𝐷(𝐾),
and the graph norm denoted by ‖ ⋅ ‖. We assume that the
imbedding 𝑉 ⊂ 𝐻 is compact. Identifying𝐻 and its dual𝐻󸀠,
it follows that 𝑉 ⊂ 𝐻 ⊂ 𝑉󸀠, where 𝑉󸀠 is the dual of 𝑉. Let
⟨⋅, ⋅⟩
𝑉
󸀠
,𝑉

denote the duality pairing between 𝑉󸀠 and 𝑉 and
𝑊:= 𝐷(𝐴1/2).

Throughout the paper we will make the following
assumptions.

(M) 𝑀(𝑠) is a 𝐶1[0,∞) real function and 𝑀󸀠(𝑠) ≥
0. Furthermore, there exist some positive constants

𝛽 and 𝛾
0
such that 𝑀(𝑠) ≥ 𝛽 > 0 for all 𝑠 ≥ 0 and

|𝑀󸀠(𝑠)𝑠|/𝑀(𝑠) ≤ 𝛾
0
.

(G) 𝑔 : R → R is a nondecreasing continuous function
such that 𝑔(0) = 0 and there is a constant 𝑘 > 0 and
𝑞 ≥ 1 such that

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑘 (1 + |𝑥|

𝑞

) ∀𝑥 ∈ R. (6)

And (𝑔(𝑢), 𝐴𝑢) ≥ 0 for all 𝑢 ∈ 𝐷(𝐴) ∩ 𝐷(𝐴1/2). Note
that the last assumption of (G) makes sense. In fact,
when 𝐴 = −Δ and 𝑔(𝑢) = |𝑢|𝛼𝑢, 𝛼 ≥ 1, we can easily
show that (𝑔(𝑢), 𝐴𝑢) ≥ 0 for all 𝑢 ∈ 𝐷(𝐴) ∩ 𝐷(𝐴1/2).

(H) 𝑀󸀠(𝑠) > 𝑀(𝑠)|𝑔(𝑥)|, 𝑠 ∈ [0,∞), 𝑥 ∈ R.
(S) 𝑉 ⊂ 𝐿𝑞+1(Ω) for some 𝑞 ≥ 1.

Let𝑀(𝑡) and 𝐸(𝑡) be defined as follows:

𝑀(𝑡) = ∫
𝑡

0

𝑀(𝑠) 𝑑𝑠 (7)

𝐸 (𝑡) =
1

2
[
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)] . (8)

And also let us consider the functions

𝑃 (𝑡) :=

󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝑢󸀠 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑀(
󵄨󵄨󵄨󵄨𝐴
1/2𝑢

󵄨󵄨󵄨󵄨
2

)
+
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢 (𝑡)
󵄨󵄨󵄨󵄨󵄨

2

,

𝑄 (𝑡) :=

󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝐴1/2𝑢󸀠 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑀(
󵄨󵄨󵄨󵄨𝐴
1/2𝑢

󵄨󵄨󵄨󵄨
2

)
+ |𝐴𝑢 (𝑡)|

2

,

𝐺 (𝑡) :=

󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝑢󸀠 (𝑡)

󵄨󵄨󵄨󵄨󵄨

𝑀 (
󵄨󵄨󵄨󵄨𝐴
1/2𝑢

󵄨󵄨󵄨󵄨
2

)
.

(9)

Theorem 1. Let the initial conditions (𝑢
0
, 𝑢
1
) ∈ 𝑊 × 𝐿2𝑞(Ω)

satisfy the smallness assumption

󵄩󵄩󵄩󵄩󵄩𝑀
󸀠󵄩󵄩󵄩󵄩󵄩𝐿∞([0,𝑃(0)])

𝐵 (𝑢
0
, 𝑢
1
)√𝑄 (0) <

1

4
, (10)

where𝐵(𝑢
0
, 𝑢
1
) = max{|𝐾1/2𝑢

1
|/𝑀(|𝐴1/2𝑢

0
|2),𝑀(|𝐴1/2𝑢

0
|2)/

((𝑀(|𝐴1/2𝑢
0
|2))
󸀠

− 𝑔(𝑢
1
)𝑀(|𝐴1/2𝑢

0
|2)))√𝑄(0)}. Then there is

a unique function 𝑢 ∈ 𝐿∞(0, 𝑇;𝑊)∩𝑊1,∞(0, 𝑇; 𝑉)∩𝑊2,∞(0,
𝑇;𝐻) such that, for any 𝑇 > 0,

𝐾𝑢
󸀠󸀠

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢 + 𝑔 (𝑢
󸀠

) = 0

𝑖𝑛 𝐿
(𝑞+1)/𝑞

(0, 𝑇; 𝑉
󸀠

) ,

(11)

𝑢 (0) = 𝑢
0
, (𝐾𝑢

󸀠

) (0) = 𝐾
1/2

𝑢
1
. (12)

Proof. Assume that, for simplicity,𝑉 is separable; then there is
a sequence (𝑒𝑗)

𝑗≥1
consisting of eigenfunctions of the opera-

tor𝐴 corresponding to positive real eigenvalues 𝜇
𝑗
tending to

+∞ so that 𝐴𝑒𝑗 = 𝜇
𝑗
𝑒𝑗, 𝑗 ≥ 1.

Let us denote by 𝑉
𝑚
the linear hull of 𝑒1, 𝑒2, . . . , 𝑒𝑚. Note

that (𝑒𝑗)
𝑗≥1

is a basis of𝐻, 𝑉, and𝑊 and hence it is dense in
𝐻, 𝑉, and𝑊.
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Approximate Solutions. We search for a function 𝑢
𝑚
(𝑡) =

∑
𝑚

𝑗=1
𝑔
𝑗𝑚
(𝑡)𝑒𝑗 such that, for any V ∈ 𝑉

𝑚
, 𝑢
𝑚
(𝑡) satisfies the

approximate equation

(𝐾𝑢
󸀠󸀠

𝑚
(𝑡) + 𝑀(

󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
𝑚
+ 𝑔 (𝑢

󸀠

𝑚
) , V) = 0

(13)

and the initial conditions as the projections of 𝑢
0
and 𝑢

1
over

𝑉
𝑚
satisfy

𝑢
𝑚
(0) = 𝑢

0𝑚
=
𝑚

∑
𝑗=1

(𝑢
0
, 𝑒
𝑗

) 𝑒
𝑗

󳨀→ 𝑢
0

in 𝑊 (14)

(𝐾𝑢
󸀠

𝑚
) (0) = 𝐾

1/2

𝑢
1𝑚

=
𝑚

∑
𝑗=1

(𝑢
1
, 𝑒
𝑗

) 𝑒
𝑗

󳨀→ 𝐾
1/2

𝑢
1

in 𝐿
2𝑞

(Ω) .
(15)

For V = 𝑒𝑗, 𝑗 = 1, 2, . . . 𝑚, the system (13)–(15) of ordinary
differential equations of variable 𝑡 has a solution 𝑢

𝑚
(𝑡) in an

interval [0, 𝑡
𝑚
).

Now we obtain a priori estimates for the solution 𝑢
𝑚
(𝑡)

and it can also be extended to [0, 𝑇) for all 𝑇 > 0.

A Priori Estimate I. Let us consider V = 𝑢󸀠
𝑚
in (13). Using (7),

we have

𝑑

𝑑𝑡
(
󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝑢󸀠
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

))

+ 2 (𝑔 (𝑢
󸀠

𝑚
(𝑡)) , 𝑢

󸀠

𝑚
(𝑡)) = 0.

(16)

Integrating (16) over (0, 𝑡), 𝑡 ≤ 𝑡
𝑚
, and using (8), we have

2𝐸 (0) = [
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

)]

+2∫
𝑡

0

(𝑔 (𝑢
󸀠

𝑚
(𝑠)) , 𝑢

󸀠

𝑚
(𝑠)) 𝑑𝑠.

(17)

Using (5) and (7), we deduce that

2𝐸 (0) ≥
󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝑢󸀠
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+ 𝛽
󵄨󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

+ 2∫
𝑡

0

∫
Ω

𝑢
󸀠

𝑚
(𝑠) 𝑔 (𝑢

󸀠

𝑚
(𝑠)) 𝑑𝑥 𝑑𝑠,

(18)

where the left-hand side is constant independent of 𝑚 and 𝑡.
Thus estimation (18) yields, for any 0 < 𝑇 < ∞,

𝑢
󸀠

𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) , (19)

𝐾
1/2

𝑢
󸀠

𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) , (20)

𝐴
1/2

𝑢
𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) , (21)

𝑢
󸀠

𝑚
𝑔 (𝑢
󸀠

𝑚
) bounded in 𝐿

1

([0, 𝑇] × Ω) . (22)

Now we show that 𝑢
𝑚
(𝑡) can be extended to [0,∞). We

need the following smallness assumption:

󵄩󵄩󵄩󵄩󵄩𝑀
󸀠󵄩󵄩󵄩󵄩󵄩𝐿∞([0,𝑃(0)])

×max
{

{
{

󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝑢
𝑚1

󵄨󵄨󵄨󵄨󵄨

𝑀 (
󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚0

󵄨󵄨󵄨󵄨
2

)
, (𝑀(

󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚0

󵄨󵄨󵄨󵄨󵄨

2

))

× ((𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚0

󵄨󵄨󵄨󵄨󵄨

2

))
󸀠

− 𝑔 (𝑢
𝑚1
)

× 𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚0

󵄨󵄨󵄨󵄨󵄨

2

))
−1

√𝑄 (0)
}

}
}

× √𝑄 (0) <
1

4
,

(23)

where𝑃(0) = (|𝐾1/2𝑢
𝑚1
|
2

/𝑀(|𝐴1/2𝑢
𝑚0
|
2

))+|𝐴1/2𝑢
𝑚0
|
2

,𝑄(0)=
(|𝐾1/2𝐴1/2𝑢

𝑚1
|
2

/𝑀(|𝐴1/2𝑢
𝑚0
|
2

)) + |𝐴𝑢
𝑚0
|
2.

Let [0, 𝑇∗) be the maximal interval where the solution
exists. Set 𝑍(𝑡) := 𝑀(|𝐴1/2𝑢

𝑚
(𝑡)|2) and

𝑇 := sup{𝜏 ∈ [0, 𝑇
∗

) |

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑍󸀠 (𝑡)

𝑍 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
1

2
, 𝑍 (𝑡) > 0, ∀𝑡∈[0, 𝜏)} .

(24)

With simple computations it follows that

𝑃󸀠 (𝑡) = −
1

𝑍 (𝑡)
(2 (𝑔 (𝑢󸀠

𝑚
(𝑡)) , 𝑢󸀠

𝑚
(𝑡)) +

𝑍󸀠 (𝑡)

𝑍 (𝑡)

󵄨󵄨󵄨󵄨󵄨𝑢
󸀠

𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

)

≤ 0,

(25)

𝑄󸀠 (𝑡)

= −
1

𝑍 (𝑡)
(2 (𝑔 (𝑢

󸀠

𝑚
(𝑡)) , 𝐴𝑢

󸀠

𝑚
(𝑡)) +

𝑍󸀠 (𝑡)

𝑍 (𝑡)

󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󸀠

𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

)

≤ 0,

(26)

(𝐺
2

)
󸀠

(𝑡)

≤ −𝐺 (𝑡) {2(
𝑍󸀠 (𝑡)

𝑍 (𝑡)
−
󵄨󵄨󵄨󵄨󵄨𝑔 (𝑢
󸀠

𝑚
(𝑡))

󵄨󵄨󵄨󵄨󵄨)𝐺 (𝑡) − 2
󵄨󵄨󵄨󵄨𝐴𝑢𝑚 (𝑡)

󵄨󵄨󵄨󵄨} ,

(27)

for all 𝑡 ∈ [0, 𝑇).
Next, we show that 𝑇 = 𝑇∗. Let us assume by contradic-

tion that 𝑇 < 𝑇∗. Since |𝑍󸀠(𝑡)| ≤ (1/2)𝑍(𝑡) in [0, 𝑇), we have
that

0 < 𝑍 (0) 𝑒
−𝑇/2

≤ 𝑍 (𝑇) ≤ 𝑍 (0) 𝑒
𝑇/2

. (28)
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Since 𝑍(𝑡) and 𝑍󸀠(𝑡) are continuous functions, by the maxi-
mality of 𝑇 we have that necessarily

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑍󸀠 (𝑡)

𝑍 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
1

2
. (29)

From (88) and (89) it follows that 𝑃 and 𝑄 are nonincreasing
functions; hence

󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑃 (𝑡) ≤ 𝑃 (0) ,

󵄨󵄨󵄨󵄨𝐴𝑢𝑚 (𝑡)
󵄨󵄨󵄨󵄨
2

≤ 𝑄 (𝑡) ≤ 𝑄 (0) .

(30)

Moreover by Lemma 3.1 in [28] we have that

𝐺 (𝑡) ≤ max{𝐺 (0) ,
𝑍 (0)

𝑍󸀠 (0) − 𝑔 (𝑢
𝑚1
) 𝑍 (0)

√𝑄 (0)} ,

∀𝑡 ∈ [0, 𝑇] .

(31)

By (91)–(31), and the smallness assumption (23), we have that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑍󸀠 (𝑇)

𝑍 (𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑀󸀠 (
󵄨󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

) (𝑢󸀠
𝑚
(𝑇) , 𝐴𝑢

𝑚
(𝑇))

𝑍 (𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2 max
0≤𝑟≤𝑃(0)

󵄨󵄨󵄨󵄨󵄨𝑀
󸀠

(𝑟)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝑢
󸀠

𝑚
(𝑇)

󵄨󵄨󵄨󵄨󵄨
𝑍 (𝑇)

󵄨󵄨󵄨󵄨𝐴𝑢𝑚 (𝑇)
󵄨󵄨󵄨󵄨

≤ 2 max
0≤𝑟≤𝑃(0)

󵄨󵄨󵄨󵄨󵄨𝑀
󸀠

(𝑟)
󵄨󵄨󵄨󵄨󵄨

×max{𝐺 (0) ,
𝑍 (0)

𝑍󸀠 (0) − 𝑔 (𝑢
𝑚1
) 𝑍 (0)

√𝑄 (0)}

× √𝑄 (0)

<
1

2
.

(32)

This contradicts (29). Therefore it follows that 𝑢
𝑚
(𝑡) can

be extended to [0, 𝑇) for any 𝑇 ∈ (0,∞).
Furthermore, putting V = 𝐴𝑢󸀠

𝑚
in (13), we get

(𝐾𝑢󸀠󸀠
𝑚
, 𝐴𝑢󸀠
𝑚
)

𝑀(
󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚

󵄨󵄨󵄨󵄨
2

)
+ (𝐴𝑢

𝑚
, 𝐴𝑢
󸀠

𝑚
) +

(𝑔 (𝑢󸀠
𝑚
) , 𝐴𝑢󸀠

𝑚
)

𝑀(
󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚

󵄨󵄨󵄨󵄨
2

)
= 0.

(33)

From this we obtain

1

2

𝑑

𝑑𝑡
(

(𝐾𝑢󸀠
𝑚
, 𝐴𝑢󸀠
𝑚
)

𝑀(
󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚

󵄨󵄨󵄨󵄨
2

)
+
󵄨󵄨󵄨󵄨𝐴𝑢𝑚

󵄨󵄨󵄨󵄨
2

) +
(𝑔 (𝑢󸀠
𝑚
) , 𝐴𝑢󸀠

𝑚
)

𝑀(
󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚

󵄨󵄨󵄨󵄨
2

)

= −
(𝐾𝑢󸀠
𝑚
, 𝐴𝑢󸀠
𝑚
)𝑀󸀠 (

󵄨󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

) (𝐴1/2𝑢󸀠
𝑚
, 𝐴1/2𝑢

𝑚
)

{𝑀(
󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚

󵄨󵄨󵄨󵄨
2

)}
2

.

(34)

Integrating (34) over (0, 𝑡) and taking into account assump-
tions (M) and (G), and applying Gronwall’s inequality, we
obtain

𝐴𝑢
𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) . (35)

From (6) and (22), it follows that

𝑔 (𝑢
󸀠

𝑚
) bounded in 𝐿

(𝑞+1)/𝑞

([0, 𝑇] × Ω) . (36)

A Priori Estimate II. Taking V = 𝑢󸀠󸀠
𝑚
(𝑡) in (13) and choosing

𝑡 = 0, we obtain
󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝑢󸀠󸀠
𝑚
(0)

󵄨󵄨󵄨󵄨󵄨

2

+ (𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2𝑢
0𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
0𝑚

+ 𝑔 (𝑢
1𝑚
) , 𝑢󸀠󸀠
𝑚
(0))

= 0.

(37)

Thus we have
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠󸀠

𝑚
(0)

󵄨󵄨󵄨󵄨󵄨

2

≤ (
󵄨󵄨󵄨󵄨𝑔 (𝑢1𝑚)

󵄨󵄨󵄨󵄨+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑀(

󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
0𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
0𝑚

󵄨󵄨󵄨󵄨󵄨󵄨
)
󵄨󵄨󵄨󵄨󵄨𝑢
󸀠󸀠

𝑚
(0)

󵄨󵄨󵄨󵄨󵄨

≤ (
󵄨󵄨󵄨󵄨𝑔 (𝑢1𝑚)

󵄨󵄨󵄨󵄨+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑀(

󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
0

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
0

󵄨󵄨󵄨󵄨󵄨󵄨
)

×
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠󸀠

𝑚
(0)

󵄨󵄨󵄨󵄨󵄨 .

(38)

Thanks to the assumption (6), we deduce from (15) that

(𝑔 (𝑢
1𝑚
)) is bounded in 𝐿

2

(Ω) . (39)

Therefore we conclude that the right-hand side is bounded;
that is,

𝐾
1/2

𝑢
󸀠󸀠

𝑚
(0) bounded in 𝐻. (40)

APriori Estimate III. For 𝑡 < 𝑇, we apply (13) at points 𝑡 and 𝑡+
𝜁 such that 0 < 𝜁 < 𝑇 − 𝑡. By taking the difference V = 𝑢󸀠

𝑚
(𝑡 +

𝜁) − 𝑢󸀠
𝑚
(𝑡) in (13) and the assumption (G), we obtain

0 ≥ (𝐾𝑢
󸀠󸀠

𝑚
(𝑡 + 𝜁) − 𝐾𝑢

󸀠󸀠

𝑚
(𝑡) , 𝑢
󸀠

𝑚
(𝑡 + 𝜁) − 𝑢

󸀠

𝑚
(𝑡))

+ (𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚
(𝑡 + 𝜁)

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
𝑚
(𝑡 + 𝜁)

−𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
𝑚
(𝑡) , 𝑢
󸀠

𝑚
(𝑡 + 𝜁) − 𝑢

󸀠

𝑚
(𝑡)) .

(41)

Thus we have

0 ≥
1

2

𝑑

𝑑𝑡
[
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

(𝑢
󸀠

𝑚
(𝑡 + 𝜁) − 𝑢

󸀠

𝑚
(𝑡))

󵄨󵄨󵄨󵄨󵄨

2

]

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚
(𝑡 + 𝜁)

󵄨󵄨󵄨󵄨󵄨

2

)

× (𝐴𝑢
𝑚
(𝑡 + 𝜁) − 𝐴𝑢

𝑚
(𝑡) , 𝑢
󸀠

𝑚
(𝑡 + 𝜁) − 𝑢

󸀠

𝑚
(𝑡))

+ [𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚
(𝑡 + 𝜁)

󵄨󵄨󵄨󵄨󵄨

2

) −𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

)]

× (𝐴𝑢
𝑚
(𝑡) , 𝑢
󸀠

𝑚
(𝑡 + 𝜁) − 𝑢

󸀠

𝑚
(𝑡)) .

(42)

Set

Φ
𝜁𝑚

(𝑡) =
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

(𝑢
󸀠

𝑚
(𝑡 + 𝜁) − 𝑢

󸀠

𝑚
(𝑡))

󵄨󵄨󵄨󵄨󵄨

2

. (43)
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By using (42), Young’s inequality, the assumption (M), and
the fact that 𝐾 is positive self-adjoint operator, we see that
Φ
󸀠

𝜁𝑚
(𝑡) ≤ 𝑐Φ

𝜁𝑚
(𝑡). Therefore we deduce

Φ
𝜁𝑚

(𝑡) ≤ Φ
𝜁𝑚

(0) exp (𝑐𝑇) ∀𝑡 ∈ [0, 𝑇] . (44)

Dividing the two sides of (44) by 𝜁2, letting 𝜁 → 0, and using
(43), we deduce

𝑐
󵄨󵄨󵄨󵄨󵄨𝑢
󸀠󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠󸀠

𝑚
(0)

󵄨󵄨󵄨󵄨󵄨

2

. (45)

From (40), it follows that |𝑢󸀠󸀠
𝑚
|2 ≤ 𝐶.

Since 𝑢
𝑚
∈ 𝐶2[0, 𝑇], the previous inequality is verified for

all 𝑡 ∈ [0, 𝑇]. Therefore we conclude that

𝑢
󸀠󸀠

𝑚
bounded in 𝐿

∞

(0, 𝑇;𝐻) . (46)

Moreover, using (19) and (46), it follows that

𝑢
󸀠

𝑚
bounded in 𝐿

2

(0, 𝑇;𝐻) ,

𝑢
󸀠󸀠

𝑚
bounded in 𝐿

2

(0, 𝑇;𝐻) .
(47)

Applying a compactness theorem given in [33], we obtain

𝑢
󸀠

𝑚
precompact in 𝐿

2

(0, 𝑇;𝐻) . (48)

Passage to the Limit. Applying the Dunford-Pettis theorem,
we conclude from (19), (21), (36), and (46)-(48), replacing the
sequence 𝑢

𝑚
with a subsequence if needed, that

𝑢
𝑚
󳨀→ 𝑢 weak-star in 𝐿

∞

(0, 𝑇; 𝑉) , (49)
𝑢
󸀠

𝑚
󳨀→ 𝑢
󸀠 weak-star in 𝐿

∞

(0, 𝑇;𝐻) , (50)
𝑢
󸀠󸀠

𝑚
󳨀→ 𝑢
󸀠󸀠 weak-star in 𝐿

∞

(0, 𝑇;𝐻) , (51)
𝑢
󸀠

𝑚
󳨀→ 𝑢
󸀠 a.e in Ω × [0, 𝑇] , (52)

𝑔 (𝑢
󸀠

𝑚
) 󳨀→ 𝜓 weak-starin 𝐿

(𝑞+1)/𝑞

(0, 𝑇;𝐻) , (53)

𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
𝑚
󳨀→ 𝜒 weak-star in 𝐿

∞

(0, 𝑇;𝐻)

(54)

for suitable functions 𝑢 ∈ 𝐿∞(0, 𝑇; 𝑉), 𝜒 ∈ 𝐿∞(0, 𝑇;𝐻), and
𝜓 ∈ 𝐿(𝑞+1)/𝑞(Ω × [0, 𝑇]).

Now we are going to show that 𝑢 is a solution of the
problem (11)-(12). Indeed, from (49) to (51), we have

∫
Ω

𝑢
𝑚
(0) 𝑒
𝑗

𝑑𝑥 󳨀→ ∫
Ω

𝑢 (0) 𝑒
𝑗

𝑑𝑥,

∫
Ω

𝑢
󸀠

𝑚
(0) 𝑒
𝑗

𝑑𝑥 󳨀→ ∫
Ω

𝑢
󸀠

(0) 𝑒
𝑗

𝑑𝑥

(55)

for each fixed 𝑗 ≥ 1. So we conclude that, for any 𝑗 ≥ 1,

∫
Ω

(𝑢
𝑚
(0) − 𝑢

0
) 𝑒
𝑗

𝑑𝑥 = ∫
Ω

(𝑢
󸀠

(0) − 𝑢
1
) 𝑒
𝑗

𝑑𝑥 = 0

as 𝑚 󳨀→ ∞,

(56)

which shows that (12) holds.

We will prove that, in fact, 𝜒 = 𝑀(|𝐴1/2𝑢|2)𝐴𝑢; that is,

𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
𝑚
󳨀→ 𝑀(

󵄨󵄨󵄨󵄨󵄨𝐴
1/2𝑢

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢

weak-star in 𝐿
∞

(0,∞;𝐻) .

(57)

For V ∈ 𝐿2(0, 𝑇;𝐻), we have

∫
𝑇

0

(𝜒 −𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢, V) 𝑑𝑡

= ∫
𝑇

0

(𝜒 −𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
𝑚
, V) 𝑑𝑡

+ ∫
𝑇

0

𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

) (𝐴𝑢
𝑚
− 𝐴𝑢, V) 𝑑𝑡

+ ∫
𝑇

0

(𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

) −𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

))

× (𝐴𝑢
𝑚
, V) 𝑑𝑡.

(58)

We deduce from (49) and (54) that the first and second
terms in (58) tend to zero as 𝑚 → ∞. For the last term,
using the fact that𝑀 is𝐶1 and (21), we can derive (with some
positive constants 𝑐

1
, 𝑐
2
)

∫
𝑇

0

(𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

) −𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)) (𝐴𝑢
𝑚
, V) 𝑑𝑡

≤ 𝑐
1
∫
𝑇

0

󵄨󵄨󵄨󵄨𝐴 (𝑢
𝑚
+ 𝑢) , 𝑢

𝑚
− 𝑢

󵄨󵄨󵄨󵄨 𝑑𝑡

≤ 𝑐
2
(∫
𝑇

0

󵄨󵄨󵄨󵄨𝑢𝑚 − 𝑢
󵄨󵄨󵄨󵄨
2

𝑑𝑡)

1/2

.

(59)

Since 𝑢
𝑚
is bounded in 𝐿∞(0, 𝑇; 𝑉) and the injection of 𝑉 in

𝐻 is compact, we have

𝑢
𝑚
󳨀→ 𝑢 strongly in 𝐿

2

(0, 𝑇;𝐻) . (60)

From (58) to (60), we deduce (57). It follows from (49), (51),
and (57) that, for each fixed V ∈ 𝐿𝑞+1(0, 𝑇; 𝑉),

∫
𝑇

0

(𝐾𝑢
󸀠󸀠

𝑚
+𝑀(

󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢
𝑚
, V) 𝑑𝑡

󳨀→ ∫
𝑇

0

(𝐾𝑢
󸀠󸀠

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢, V) 𝑑𝑡

(61)

as𝑚 → +∞.
For the nonlinear term, 𝑔(𝑢󸀠), it remains to show that, for

any fixed V ∈ 𝐿𝑞+1(0, 𝑇; 𝑉),

∫
𝑇

0

∫
Ω

V𝑔 (𝑢󸀠
𝑚
) 𝑑𝑥 𝑑𝑡 󳨀→ ∫

𝑇

0

∫
Ω

V𝑔 (𝑢󸀠) 𝑑𝑥 𝑑𝑡 (62)

as𝑚 → ∞.
At this moment we use the following lemma due to Jung

and Choi (see [26, page 12]).
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Lemma 2. Suppose thatΩ× [0, 𝑇] is a bounded open domain
ofR𝑛×R; 𝑔

𝑚
and 𝑔 are in 𝐿𝑞(Ω×[0, 𝑇]), 1 < 𝑞 < ∞, such that

𝑔
𝑚

→ 𝑔 a.e., in Ω × [0, 𝑇]. Then 𝑔
𝑚

→ 𝑔 weakly in 𝐿𝑞(Ω ×
[0, 𝑇]).

From (53), 𝑔(𝑢󸀠
𝑚
) → 𝑔(𝑢󸀠) a.e. in Ω × [0, 𝑇]. By (36), we

can use the above lemma and so we have 𝜓 = 𝑔(𝑢󸀠); that is,

𝑔 (𝑢
𝑚
) 󳨀→ 𝑔 (𝑢) weak in 𝐿

(𝑞+1)/𝑞

(Ω × (0, 𝑇)) , (63)

which implies (62). Therefore we obtain

∫
𝑇

0

(𝐾𝑢
󸀠󸀠

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢 + 𝑔 (𝑢
󸀠

) , V) 𝑑𝑡 = 0,

∀V ∈ 𝐿
𝑞+1

(0, 𝑇; 𝑉) .

(64)

The uniqueness is obtained by a standard method, so we
omit the proof here.

3. Energy Estimates

In this section we study the energy estimate under suitable
growth conditions on 𝑔.

Let us assume that there exist a number𝑝 ≥ 1 and positive
constants 𝑐

1
, 𝑖 = 1, 2, such that

𝑐
1
min {󵄨󵄨󵄨󵄨󵄨𝐾

1/2𝑥
󵄨󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨𝐾
1/2𝑥

󵄨󵄨󵄨󵄨󵄨

𝑝

}

≤
󵄨󵄨󵄨󵄨𝑔 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑐
2
max {󵄨󵄨󵄨󵄨󵄨𝐾

1/2

𝑥
󵄨󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑥
󵄨󵄨󵄨󵄨󵄨

1/𝑝

}

(65)

for all 𝑥 ∈ R.

Theorem 3. Assume that (65) holds. Then one obtains the
following energy decay:

𝐸 (𝑡) ≤
{

{
{

𝑐
0
𝐸 (0) 𝑒−𝑤𝑡 ∀𝑡 ≥ 0, 𝑖𝑓 𝑝 = 1,

𝑐
0
(1 + 𝑡)

−2/(𝑝−1) ∀𝑡 ≥ 0, 𝑖𝑓 𝑝 > 1,
(66)

where 𝑐
0
, 𝑤, and 𝑐

0
are some positive constants.

Proof. Let 𝑇 > 0 be arbitrary and fixed and let 𝑢 ∈ 𝐿∞(0,

𝑇; 𝑉)∩𝑊2,∞(0, 𝑇;𝐻) be a solution of (11) and (12). Multiply-
ing (11) by 𝑢󸀠 and integrating by parts inΩ×(𝑠, 𝑇) (0 ≤ 𝑠 < 𝑇),
we obtain that

𝐸 (𝑇) − 𝐸 (𝑠) = −∫
𝑇

𝑠

(𝑔 (𝑢
󸀠

(𝑡)) , 𝑢
󸀠

(𝑡)) 𝑑𝑡. (67)

By (𝑔(𝑢󸀠(𝑡)), 𝑢󸀠(𝑡)) ≥ 0 and being the primitive of an inte-
grable function, it follows that the energy 𝐸 is nonincreasing,
locally absolutely continuous and

𝐸
󸀠

(𝑡) = − (𝑔 (𝑢
󸀠

(𝑡)) , 𝑢
󸀠

(𝑡)) a.e. in [0,∞) . (68)

Here and in what follows we will denote by 𝑐 diverse positive
constants. We are going to show that the energy of this sol-
ution satisfies

∫
𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

≤ 𝑐𝐸 (𝑠) ∀0 ≤ 𝑠 ≤ 𝑇 < ∞. (69)

Once (69) is satisfied, the integral inequalities given in
Komornik [31] and Haraux [32] will establish (66).

Now, multiplying (11) by 𝐸(𝑡)
(𝑝−1)/2

𝑢 and integrating by
parts, we have

0 = ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

(𝐾𝑢
󸀠󸀠

+𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)𝐴𝑢 + 𝑔 (𝑢
󸀠

) , 𝑢) 𝑑𝑡

= [𝐸(𝑡)
(𝑝−1)/2

(𝐾𝑢
󸀠

, 𝑢)]
𝑇

𝑠

−
𝑝 − 1

2
∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−3)/2

𝐸
󸀠

(𝑡) (𝐾𝑢
󸀠

, 𝑢) 𝑑𝑡

− ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2󵄨󵄨󵄨󵄨󵄨𝐾

1/2

𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

(𝑀(
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨󵄨𝐴
1/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

, 𝑢) 𝑑𝑡

+ ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

(𝑔 (𝑢
󸀠

) , 𝑢) 𝑑𝑡.

(70)

Note that by the assumption (M) and (21), we can choose
some positive number

𝛼 = max
𝑠∈[0,|𝐴

1/2
𝑢|
2
]

{𝑀 (𝑠)} < ∞ (71)

so that 2𝐸(𝑡) ≤ |𝐾1/2𝑢󸀠|2 + 𝛼|𝐴1/2𝑢|2. Thus we deduce that

2𝛽

𝛼
∫
𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

𝑑𝑡

≤ −[𝐸(𝑡)
(𝑝−1)/2

(𝐾𝑢
󸀠

, 𝑢)]
𝑇

𝑠

+
𝑝 − 1

2
∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−3)/2

𝐸
󸀠

(𝑡) (𝐾𝑢
󸀠

, 𝑢) 𝑑𝑡

+ ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

((1 + 𝛼
−1

)
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

− (𝑔 (𝑢
󸀠

) , 𝑢)) 𝑑𝑡

≡ 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(72)

Using the continuity of the imbedding 𝑉 ⊂ 𝐻, the Cauchy-
Schwarz and the Young inequalities, we obtain

󵄨󵄨󵄨󵄨󵄨(𝐾𝑢
󸀠

, 𝑢)
󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐

󵄨󵄨󵄨󵄨󵄨𝐾𝑢
󸀠󵄨󵄨󵄨󵄨󵄨 ‖𝑢‖ ≤ 𝑐𝐸 (𝑡) . (73)

Hence, since 𝐸(𝑡) is nonincreasing, we obtain

𝐼
1
≤ 𝑐𝐸
(𝑝−1)/2

(0) 𝐸 (𝑠) ,

𝐼
2
≤
(𝑝 − 1)

2
∫
𝑇

𝑠

𝑐𝐸(𝑡)
(𝑝−1)/2

𝐸
󸀠

(𝑡) 𝑑𝑡

≤ 𝑐𝐸
(𝑝−1)/2

(0) 𝐸 (𝑠) .

(74)

In order to estimate the last term 𝐼
3
of (72), we set

Ω
1
= {𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨 ≤ 1} ,

Ω
2
= {𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨 > 1} .

(75)
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Then we have

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫
Ω1

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
Ω2

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(76)

The Hölder inequality yields

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝑐(∫
Ω1

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥)
2/(𝑝+1)

+ ∫
Ω2

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≡ 𝐽
1
+ 𝐽
2
.

(77)

Using (65) and (68), we deduce that

𝐽
1
≤ 𝑐(∫

Ω1

𝑢
󸀠

𝑔 (𝑢
󸀠

) 𝑑𝑥)
2/(𝑝+1)

≤ 𝑐
󵄨󵄨󵄨󵄨󵄨𝐸
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

2/(𝑝+1)

,

𝐽
2
≤ 𝑐∫
Ω2

󵄨󵄨󵄨󵄨󵄨𝑢
󸀠

𝑔 (𝑢
󸀠

)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝑐 (−𝐸

󸀠

(𝑡)) .

(78)

Combining these two inequalities with (77), we obtain

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠

(𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝑐(−𝐸
󸀠

(𝑡))
2/(𝑝+1)

+ 𝑐 (−𝐸
󸀠

(𝑡)) .

(79)

Applying Young’s inequality, it follows that, for any 𝜖 > 0,

∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2󵄨󵄨󵄨󵄨󵄨𝐾

1/2

𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 𝜖𝑐 ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

𝑑𝑡

+ 𝑐 (𝜖
(1−𝑝)/2

+ 𝐸
(𝑝−1)/2

(0)) 𝐸 (𝑠) .

(80)

It remains to estimate the second term of 𝐼
3
. Using (88) we

have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω1

𝑢𝑔 (𝑢
󸀠

) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐‖𝑢‖
𝐿
(𝑝+1)/𝑝
(Ω1)

󵄩󵄩󵄩󵄩󵄩𝑔 (𝑢
󸀠

)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝+1(Ω1)

≤ 𝑐‖𝑢‖
𝐿
(𝑝+1)/𝑝
(Ω1)

(∫
Ω1

𝑢
󸀠

𝑔 (𝑢
󸀠

) 𝑑𝑥)
1/(𝑝+1)

≤ 𝑐𝐸(𝑡)
1/2

(−𝐸
󸀠

(𝑡))
1/(𝑝+1)

.

(81)

Similarly, using (6), we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω2

𝑢𝑔 (𝑢
󸀠

) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐‖𝑢‖

𝐿
2
(Ω2)

󵄩󵄩󵄩󵄩󵄩𝑔 (𝑢
󸀠

)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω2)

≤ 𝑐‖𝑢‖
𝐿
2
(Ω2)

󵄩󵄩󵄩󵄩󵄩𝑢
󸀠

𝑔 (𝑢
󸀠

)
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
1(Ω2)

≤ 𝑐𝐸(𝑡)
1/2

(−𝐸
󸀠

(𝑡))
1/2

.

(82)

From (81) and (82), we deduce
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝑢𝑔 (𝑢
󸀠

) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐𝐸(𝑡)1/2(−𝐸󸀠 (𝑡))

1/(𝑝+1)

+ 𝑐𝐸(𝑡)
1/2

(−𝐸
󸀠

(𝑡))
1/2

.

(83)

Using Young’s inequality and

𝐸(𝑡)
𝑝/2

(−𝐸
󸀠

(𝑡))
1/2

= 𝐸(𝑡)
(𝑝+1)/4

(𝐸(𝑡)
(𝑝−1)/4

(−𝐸
󸀠

(𝑡))
1/2

) ,

(84)
it follows from (82) that, for any 𝜖 > 0,

− ∫
𝑇

s
𝐸(𝑡)
(𝑝−1)/2

(𝑔 (𝑢
󸀠

) , 𝑢) 𝑑𝑡

= −∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

∫
Ω

𝑢𝑔 (𝑢
󸀠

) 𝑑𝑥 𝑑𝑡

≤ 𝑐∫
𝑇

𝑠

𝐸(𝑡)
𝑝/2

(−𝐸
󸀠

(𝑡))
1/(𝑝+1)

𝑑𝑡

+ 𝑐∫
𝑇

𝑠

𝐸(𝑡)
𝑝/2

(−𝐸
󸀠

(𝑡))
1/2

𝑑𝑡

≤ 2𝜖𝑐 ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

𝑑𝑡

+ 𝑐 (𝜖
−𝑝

+ 𝜖
−1

𝐸(0)
(𝑝−1)/2

)

× ∫
𝑇

𝑠

(−𝐸
󸀠

(𝑡)) 𝑑𝑡

≤ 2𝜖𝑐 ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

𝑑𝑡

+ 𝑐 (𝜖
−𝑝

+ 𝜖
−1

𝐸(0)
(𝑝−1)/2

) 𝐸 (𝑠) .

(85)

Combining (80) with (85) and setting 𝛼̃ = 1 + 𝛼−1, we obtain

𝐼
3
≤ ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

2
󵄨󵄨󵄨󵄨󵄨𝐾
1/2

𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝−1)/2

∫
Ω

𝑢𝑔 (𝑢
󸀠

) 𝑑𝑥 𝑑𝑡

≤ (𝛼̃ + 2) 𝜖𝑐 ∫
𝑇

𝑠

𝐸(𝑡)
(𝑝+1)/2

𝑑𝑡

+ 𝑐 (𝛼̃𝜖
(1−𝑝)/2

+ 𝜖
−𝑝

+ (𝛼̃ + 𝜖
−1

) 𝐸(0)
(𝑝−1)/2

) 𝐸 (𝑠) .

(86)

Therefore we conclude that

(
2𝛽

𝛼
− (𝛼̃ + 2) 𝜖𝑐)∫

𝑇

𝑠

𝐸
(𝑝+1)/2

≤ 𝑐 (𝛼̃𝜖
(1−𝑝)/2

+ 𝜖
−𝑝

+ (𝛼̃ + 𝜖
−1

) 𝐸(0)
(𝑝−1)/2

) 𝐸 (𝑠) .

(87)

Now we choose 𝜖 as 𝜖 ∈ (0, 2𝛽/(3𝛼 + 1)𝑐); then (69) follows.
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Table 1: Simulation parameters which are satisfied by theoretical conditions.

Symbols Definition Values Reference
𝐴(𝑥) Cross-sectional area 0.7853 (10−4 sin (210𝜋𝑥) + 1) cm2 [34]
𝜌 Mass density of the unit length 7.850 g/cm2 [34]
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Figure 1: Solution shapes and contour lines with respect to 𝜅 = 10 and 𝜅 = 10−0.3.

4. Numerical Result

In this section, we consider a Kirchhoff-type equation with
heterogeneous string as an application:

(𝐴 (𝑥) 𝜌) 𝑢
󸀠󸀠

(𝑥, 𝑡) − (1 + ∫
1

0

|∇𝑢 (𝑥, 𝑡)|
2

𝑑𝑥)Δ𝑢 (𝑥, 𝑡)

+ 𝜅
󵄨󵄨󵄨󵄨󵄨𝑢
󸀠

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑢
󸀠

(𝑥, 𝑡) = 0,

(88)

in (𝑥, 𝑡) ∈ (0, 1) × (0, 3) , (89)

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0 on (0, 3) , (90)

𝑢
0
= 𝑢 (𝑥, 0) = exp(−64(𝑥 −

1

2
)
2

) in (0, 1) , (91)

𝑢
1
= 𝑢
𝑡
(𝑥, 0) = 0 in (0, 1) , (92)

where 𝜅 is a positive constant and𝐴(𝑥), 𝜌 are given in Table 1.

Then, the operators 𝐾 = 𝐴(𝑥)𝜌𝐼(𝐼 : 𝐻 → 𝐻;
identity operator), 𝐴 = −Δ, and the functions 𝑀(𝑠) = 𝑠 +

1 and 𝑔(𝑥) = 𝜅|𝑥|2𝑥 so that we can easily check that the
hypotheses (M), (G), (H), and (S) in Preliminaries are sat-
isfied.The smallness condition satisfies (‖∇𝑢

0
‖
2

+1)‖Δ𝑢
0
‖
2

≈
0.213 ≤ 1/4. Therefore, by Theorem 1, we can deduce the
following results.
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Figure 2: Algebraic decay rates of the energy in case of 𝜅 = 10 and
𝜅 = 10−0.3.

Theorem 4. For any 𝑇 > 0, there is a unique solution 𝑢 ∈

𝐿∞(0, 𝑇;𝐻2(0, 1)) ∩ 𝑊1,∞(0, 𝑇;𝐻1
0
(0, 1)) ∩ 𝑊2,∞(0, 𝑇; 𝐿2(0,

1)) to the system (88)–(92).

The energy for the system (88)–(92) is given by

𝐸 (𝑡) =
1

2
[∫
1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
√𝐴 (𝑥) 𝜌𝑢

󸀠

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
1

0

|∇𝑢 (𝑥, 𝑡)|
2

𝑑𝑥

+
1

2
(∫
1

0

|∇𝑢 (𝑥, 𝑡)|
2

𝑑𝑥)

2

] .

(93)

Next, in order to get the energy decay of (88)–(92), we need
the value of the parameter 𝑝 in (65). We can easily check that
𝑝 = 3 when 𝑔(𝑥) = 𝜅|𝑥|2𝑥.

Therefore, byTheorem 3, we get the energy decay rates for
the energy 𝐸(𝑡) as follows.

Theorem 5. We obtain the following energy decay:

𝐸 (𝑡) ≤ 𝑐
1
(1 + 𝑡)

−1

∀𝑡 ≥ 0, (94)

where 𝑐
1
is a positive constant.

For the numerical simulation, we use the finite difference
methods (FDM) which are the implicit multistep methods in
time and second-order central difference methods for the
space derivative in space in numerical algorithms (see [8, 9,
11]).

Figures 1(a)–1(d) show displacements of solutions to the
system (88)–(92) with 𝜅 = 10 and 𝜅 = 10−0.3, respectively.

In case of 𝜅 = 10 and 𝜅 = 10−0.3, we deduce the algebraic
decay rate for the energy as shown in Figure 2, respectively.
The blue line and red dotted circled line (or blue circled line)

show 𝑐
1
(𝑡+1)
1 and𝐸(𝑡) per the two values, respectively, where

the parameter value 𝑐
1

= 30.2 in (94). This result shows
that the energy decay rates for solutions are algebraic in case
that the system (88)–(92) with the nonlinear damping term
𝜅|𝑢
𝑡
|
2

𝑢
𝑡
.
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The limit of Riemann solutions to the nonsymmetric system of Keyfitz-Kranzer type with a scaled pressure is considered for both
polytropic gas and generalizedChaplygin gas. In the former case, the delta shockwave can be obtained as the limit of shockwave and
contact discontinuity when 𝑢

−
> 𝑢
+
and the parameter 𝜖 tends to zero.The point is, the delta shock wave is not the one of transport

equations, which is obviously different from cases of some other systems such as Euler equations or relativistic Euler equations. For
the generalized Chaplygin gas, unlike the polytropic or isothermal gas, there exists a certain critical value 𝜖

2
depending only on the

Riemann initial data, such that when 𝜖 drops to 𝜖
2
, the delta shock wave appears as 𝑢

−
> 𝑢
+
, which is actually a delta solution of

the same system in one critical case. Then as 𝜖 becomes smaller and goes to zero at last, the delta shock wave solution is the exact
one of transport equations. Furthermore, the vacuum states and contact discontinuities can be obtained as the limit of Riemann
solutions when 𝑢

−
< 𝑢
+
and 𝑢

−
= 𝑢
+
, respectively.

1. Introduction

The nonsymmetric system of Keyfitz-Kranzer type can be
written as

𝜌
𝑡
+ (𝜌𝜙 (𝜌, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
))
𝑥
= 0,

(𝜌𝑢
𝑖
)
𝑡
+ (𝜌𝑢

𝑖
𝜙 (𝜌, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
))
𝑥
, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where

𝜙 (𝜌, 𝑢) = 𝜙 (𝑢) − 𝑝 (𝜌) (2)

is a nonlinear function. A more general form of system (1)
was first derived as a model for the elastic string by Keyfitz
and Kranzer [1].

When 𝑛 = 1, 𝜙(𝜌, 𝑢) = 𝑢 − 𝑝, and 𝑝 = 𝑝(𝜌), system (1)
can be read as

𝜌
𝑡
+ (𝜌 (𝑢 − 𝑝))

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢 (𝑢 − 𝑝))

𝑥
= 0.

(3)

Let 𝑢 = V+𝑝; system (3) can be rewritten as theAw-Rascle
model [2]:

𝜌
𝑡
+ (𝜌V)

𝑥
= 0,

(𝜌 (V + 𝑝))
𝑡
+ (𝜌V (V + 𝑝))

𝑥
= 0,

(4)

where 𝜌, V represent the density and the velocity of cars on the
roadway, respectively; the state equation 𝑝(𝜌) = 𝜌𝛾, 𝛾 > 0 is
smooth and strictly increasing with

2𝑝
󸀠

(𝜌) + 𝜌𝑝
󸀠󸀠

(𝜌) > 0 for 𝜌 > 0. (5)

The Aw-Rascle model (4) resolves all the obvious inconsis-
tencies and explains instabilities in car traffic flow, especially
near the vacuum, that is, for light trafficwith few slow drivers.
In 2008, Berthelin et al. [3] studied the limit behavior which
was investigated by changing 𝑝 into 𝜖𝑝 and taking 𝑝(𝜌) =
(1/𝜌 − 1/𝜌∗), 𝜌 ≤ 𝜌∗, where 𝜌∗ is the maximal density
which corresponds to a total traffic jam and is assumed to be
a fixed constant although it should depend on the velocity in
practice. Then, Shen and Sun [4] studied the limit behavior
without the constraint of the maximal density, in which
the delta shock and vacuum state were obtained through
perturbing the pressure 𝑝(𝜌) suitably.
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For the nonsymmetric systemofKeyfitz-Kranzer type (3),
under the following two assumptions on 𝑝(𝜌),

𝑝 (0) = 0, lim
𝜌→0

𝜌𝑝
󸀠

(𝜌) = 0,

𝜌𝑝
󸀠󸀠

(𝜌) + 2𝑝
󸀠

(𝜌) > 0 for 𝜌 > 0,

lim
𝜌→0

𝜌𝑝 (𝜌) = 0, lim
𝜌→∞

𝜌𝑝
󸀠

(𝜌) ≥ 𝐴,

𝜌𝑝
󸀠󸀠

(𝜌) + 2𝑝
󸀠

(𝜌) > 0 for 𝜌 > 0,

(6)

Lu [5] established the existence of global bounded weak
solutions of the Cauchy problem by using the compensated
compactness method. Recently, Lu [6] studied the existence
of global entropy solutions to general system of Keyfitz-
Kranzer type (3). In 2013, Cheng [7] considered the Riemann
problem and two kinds of interactions of elementary waves
for system (3) with the state equation for Chaplygin gas:

𝑝 (𝜌) = −
1

𝜌
. (7)

In this paper, our main purpose is to study the limit
behavior of Riemann solutions to the nonsymmetric system
of Keyfitz-Kranzer type (3) as the parameter 𝜖 goes to zero.
In 2001, Li [8] was concerned with the limits of Riemann
solutions to the compressed Euler equations for isothermal
gas by letting the temperature go to zero. Then Chen and
Liu [9, 10] presented the results of the compressible Euler
equations as pressure vanishes. There are many results on
the vanishing pressure limits of Riemann solutions; we refer
readers to [4, 11–13] and the references cited therein for more
details.

As the pressure vanishes, system (3) formally transforms
into the so-called pressureless gas dynamics model or trans-
port equations:

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, (𝜌𝑢)

𝑡
+ (𝜌𝑢

2

)
𝑥

= 0, (8)

where 𝜌 and 𝑢 stand for the density and the velocity of the
gas, respectively. System (8) is also called zero-pressure gas
dynamics. It can be derived from zero-pressure isentropic
gas dynamics [14]. System (8) is referred to as the adhesion
particle dynamics system to describe the motion process of
free particles sticking under collision in the low temperature
and the information of large-scale structure in the universe
[15, 16]. It is easy to see that the delta shock and vacuum do
occur in the Riemann solutions of (8); see [17]. We also refer
readers to [4, 18–23] and the references cited therein for some
results on delta shock waves.

By letting 𝑝 be 𝜀𝑝, system (3) can be changed to

𝜌
𝑡
+ (𝜌 (𝑢 − 𝜖𝑝))

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢 (𝑢 − 𝜖𝑝))

𝑥
= 0.

(9)

In the present paper, we focus on system (9)with equation
of state for both polytropic gas and generalizedChaplygin gas.
Firstly, we study limit of Riemann solutions to system (9) with
the state equation

𝑝 (𝜌) = 𝜌
𝛾

, 𝛾 > 0, (10)

as 𝜖 tends to zero. If 𝑢
−
> 𝑢
+
, we found that the Riemann

solution tends to a delta shock wave solution when 𝜖 →
0. However, the propagating speed and the strength of the
delta shock wave in the limit situation are different from
the classical results of transport equations (8) with the same
Riemann initial data. If 𝑢

−
< 𝑢
+
, the Riemann solution

tends to a two-contact discontinuity solution to the transport
equations (8) as 𝜖 → 0. The intermediate state between the
two-contact discontinuities is a vacuum state.When 𝑢

−
= 𝑢
+
,

the Riemann solutions converge to one-contact discontinuity
solutions of system (8). Then, we investigate system (9) for
generalized Chaplygin gas:

𝑝 (𝜌) = −𝜌
−𝛼

, 0 < 𝛼 ≤ 1, (11)

where 𝛼 = 1 is for Chaplygin gas.We find that, as 𝜖 arrives at a
certain critical value 𝜖

2
depending only on the given Riemann

initial data (𝑢
±
, 𝜌
±
), the solution involving one shock and one

contact discontinuity converges to a delta shock solution of
system (9) and (11). Eventually, when 𝜖 tends to zero, the
delta shock wave solution is exactly the solution of transport
equations (8). Thus we can see that the process of delta shock
wave formation is obviously different from those in [4, 8–13]
and so forth.

The paper is organized as follows. In Section 2, we give
some preliminary knowledge for system (8). In Section 3, we
present the Riemann solutions to system (9). In Section 4, we
display the limit of Riemann solutions to the nonsymmetric
system of Keyfitz-Kranzer type (9).

2. The Riemann Solutions of System (8)
In this section, we briefly review the Riemann solutions of (8)
with initial data:

(𝑢 (𝑥, 0) , 𝜌 (𝑥, 0)) = (𝑢
±
, 𝜌
±
) , ±𝑥 > 0, (12)

where 𝜌
±
> 0, the detailed study of which can be founded in

[17].
Transport equations (8) have a double eigenvalue 𝜆 = 𝑢

with only one corresponding right eigenvector 𝑟 = (1, 0)⊤. By
simple calculation, we obtain ∇𝜆 ⋅ 𝑟 = 0, which means that
system (8) is linearly degenerate.

Given any two constant states (𝑢
±
, 𝜌
±
), we can construc-

tively obtain the Riemann solutions of (8) and (12) containing
contact discontinuities, vacuum, or delta shock wave.

For the case 𝑢
−
< 𝑢
+
, the solution containing two contact

discontinuities and a vacuum state can be expressed as

(𝑢, 𝜌) (𝑥, 𝑡) =
{{

{{
{

(𝑢
−
, 𝜌
−
) , 𝑥 ≤ 𝑢

−
𝑡,

(𝜉, 0) , 𝑢
−
𝑡 ≤ 𝑥 ≤ 𝑢

+
𝑡,

(𝑢
+
, 𝜌
+
) , 𝑥 ≥ 𝑢

+
𝑡.

(13)

For the case 𝑢
−
= 𝑢
+
, we connect the constant states

(𝑢
±
, 𝜌
±
) by one contact discontinuity.

For the case 𝑢
−
> 𝑢
+
, a solution containing a weighted

𝛿-measure supported on a line will be constructed to connect
the constant (𝑢

±
, 𝜌
±
). So we define the solution in the sense of

distributions as follows.
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Definition 1. A pair (𝑢, 𝜌) constitutes a solution of (8) in the
sense of distributions if it satisfies

∫
+∞

0

∫
+∞

−∞

(𝜌𝜙
𝑡
+ (𝜌𝑢) 𝜙

𝑥
) d𝑥 d𝑡 = 0,

∫
+∞

0

∫
+∞

−∞

((𝜌𝑢) 𝜙
𝑡
+ (𝜌𝑢

2

) 𝜙
𝑥
) d𝑥 d𝑡 = 0,

(14)

for any test function 𝜙 ∈ 𝐶∞
0
(𝑅+ × 𝑅).

Moreover, we define a two-dimensional weighted delta
functions as follows.

Definition 2. A two-dimensional weighted delta function
𝑤(𝑠)𝛿

𝑙
supported on a smooth curve 𝐿 parameterized as 𝑡 =

𝑡(𝑠), 𝑥 = 𝑥(𝑠) (𝑐 ≤ 𝑠 ≤ 𝑑) is defined by

⟨𝑤 (𝑠) 𝛿
𝑙
, 𝜙⟩ = ∫

𝑑

𝑐

𝑤 (𝑠) 𝜙 (𝑡 (𝑠) , 𝑥 (𝑠)) d𝑠, (15)

for all test functions 𝜙 ∈ 𝐶∞
0
(𝑅+ × 𝑅).

With these definitions, one can construct a 𝛿-measure
solution as

(𝑢, 𝜌) (𝑡, 𝑥) =
{{

{{
{

(𝑢
−
, 𝜌
−
) , 𝑥 < 𝑢

𝛿
𝑡,

(𝑢
𝛿
, 𝜔 (𝑡) 𝛿 (𝑥 − 𝑢

𝛿
𝑡)) , 𝑥 = 𝑢

𝛿
𝑡,

(𝑢
+
, 𝜌
+
) , 𝑥 > 𝑢

𝛿
𝑡,

(16)

where 𝜔(𝑡) and 𝑢
𝛿
are weight and velocity of the delta

shock wave, respectively, satisfying the generalized Rankine-
Hugoniot condition:

d𝑥 (𝑡)
d𝑡

= 𝑢
𝛿
,

d𝜔 (𝑡)
d𝑡

= 𝑢
𝛿
[𝜌] − [𝜌𝑢] ,

d𝜔 (𝑡) 𝑢
𝛿

d𝑡
= 𝑢
𝛿
[𝜌𝑢] − [𝜌𝑢

2

] ,

(17)

with initial data 𝜔(0) = 0, where [𝜌] = 𝜌
+
− 𝜌
−
. By simple

calculation, we obtain

𝑢
𝛿
=
√𝜌+𝑢+ + √𝜌−𝑢−

√𝜌+ + √𝜌−
,

𝜔 (𝑡) = √𝜌
−
𝜌
+
(𝑢
−
− 𝑢
+
) 𝑡,

(18)

for 𝜌
−
̸=𝜌
+
, and

𝑢
𝛿
=
𝑢
+
− 𝑢
−

2
,

𝜔 (𝑡) = 𝜌
+
(𝑢
−
− 𝑢
+
) 𝑡,

(19)

for 𝜌
−
= 𝜌
+
.

We can also justify that the delta shock wave satisfies the
entropy condition:

𝑢
+
< 𝑢
𝛿
< 𝑢
−
, (20)

which means that all the characteristics on both sides of the
delta shock are incoming.

3. The Riemann Solutions for System (9)
In this section, we analyze some basic properties and solve
the Riemann problem for (9).

3.1.The Riemann Solutions for System (9) and (10). System (9)
and (10) have two eigenvalues

𝜆
1
= 𝑢 − 𝜖 (𝛾 + 1) 𝜌

𝛾

, 𝜆
2
= 𝑢 − 𝜖𝜌

𝛾

, (21)

with corresponding right eigenvectors

𝑟
1
= (1, 0)

𝑇

, 𝑟
2
= (𝜌, 𝜖𝛾𝜌

𝛾

)
𝑇

, (22)

satisfying

∇𝜆
1
⋅ 𝑟
1
= −𝜖𝛾 (𝛾 + 1) 𝜌

𝛾−1

̸=0, ∇𝜆
2
⋅ 𝑟
2
= 0. (23)

So the 1-characteristic field is genuinely nonlinear, and the
2-characteristic field is always linearly degenerate.

Since (9)-(10) and (12) remain invariant under a uniform
expansion of coordinates 𝑡 → 𝛽𝑡 and 𝑥 → 𝛽𝑥, 𝛽 > 0, the
solution is only connected with 𝜉 = 𝑥/𝑡. Thus we should seek
the self-similar solution

(𝑢, 𝜌) (𝑥, 𝑡) = (𝑢, 𝜌) (𝜉) , 𝜉 =
𝑥

𝑡
. (24)

Then, the Riemann problem (9)-(10) and (12) can be reduced
to

−𝜉𝜌
𝜉
+ (𝜌 (𝑢 − 𝜖𝜌

𝛾

))
𝜉
= 0,

−𝜉(𝜌𝑢)
𝜉
+ (𝜌𝑢 (𝑢 − 𝜖𝜌

𝛾

))
𝜉
= 0,

(25)

with (𝑢, 𝜌)(±∞) = (𝑢
±
, 𝜌
±
).

For smooth solutions, system (25) can be rewritten as

(
𝑢 − 𝜖 (𝛾 + 1) 𝜌𝛾 − 𝜉 𝜌

0 𝑢 − 𝜖𝜌𝛾 − 𝜉
)(

d𝜌
d𝑢) = 0, (26)

which provides either the general solutions (constant states),

(𝑢, 𝜌) (𝜉) = const, (𝜌 > 0) , (27)

or rarefaction wave, which is wave of the first characteristic
family,

𝑅 : {
𝜉 = 𝑢 − 𝜖 (𝛾 + 1) 𝜌𝛾,

𝑢 = 𝑢
−
, 𝜌 < 𝜌

−
,

(28)

or contact discontinuity, which is of the second characteristic
family,

𝐽:{𝜉 = 𝑢 − 𝜖𝜌
𝛾,

𝑢 = 𝑢
−
+ 𝜖 (𝜌𝛾 − 𝜌

𝛾

−
) .

(29)

For a bounded discontinuity at 𝜉 = 𝜎
𝜖
, the Rankine-

Hugoniot condition

−𝜎
𝜖
[𝜌] + [𝜌 (𝑢 − 𝜖𝜌

𝛾

)] = 0,

−𝜎
𝜖
[𝜌𝑢] + [𝜌𝑢 (𝑢 − 𝜖𝜌

𝛾

)] = 0,
(30)
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holds, where [𝜌] = 𝜌 − 𝜌
−
and 𝜎

𝜖
is the velocity of the

discontinuity. From (30), we obtain either shock wave, which
is wave of the first characteristic family,

𝑆:
{{

{{
{

𝜎
𝜖
= 𝑢 −

𝜖 (𝜌𝛾+1 − 𝜌
𝛾+1

−
)

𝜌 − 𝜌
−

,

𝑢 = 𝑢
−
, 𝜌 > 𝜌

−
,

(31)

or contact discontinuity, which is of the second characteristic
family,

𝐽:{𝜎𝜖 = 𝑢 − 𝜖𝜌
𝛾,

𝑢 = 𝑢
−
+ 𝜖 (𝜌𝛾 − 𝜌

𝛾

−
) .

(32)

Here we notice that the shock wave curve and the rarefaction
wave curve passing through the same point (𝑢

−
, 𝜌
−
) coincid

in the phase plane; that is, (9)-(10) belong to “Temple class”
[24].

Through the point (𝑢
−
, 𝜌
−
), we draw the curve 𝑢 = 𝑢

−
for

𝜌 > 0 in the phase plane, which is parallel to the 𝜌-axis. We
denote it by 𝑅 when 𝜌 < 𝜌

−
and 𝑆 when 𝜌 > 𝜌

−
. Through the

point (𝑢
−
, 𝜌
−
), we draw the curve (29) which intersects the 𝑢-

axis at the point (𝑢
−
− 𝜖𝜌
𝛾

−
, 0), denoted by 𝐽. Then the phase

plane is divided into four regions (see Figure 1). Thus we can
construct the Riemann solutions of system (9)-(10) as follows:

(1) when (𝑢
+
, 𝜌
+
) ∈ I(𝑢

−
, 𝜌
−
), that is, 𝑢

+
> 𝑢
−
and 𝑢

+
<

𝑢
−
+ 𝜖(𝜌𝛾 − 𝜌

𝛾

−
), the solution is 𝑆 + 𝐽;

(2) when (𝑢
+
, 𝜌
+
) ∈ II(𝑢

−
, 𝜌
−
), that is, 𝑢

+
> 𝑢
−
and 𝑢

+
>

𝑢
−
+ 𝜖(𝜌𝛾 − 𝜌

𝛾

−
), the solution is 𝑅 + 𝐽;

(3) when (𝑢
+
, 𝜌
+
) ∈ III(𝑢

−
, 𝜌
−
), that is, 𝑢

+
< 𝑢
−
and 𝑢

+
>

𝑢
−
+ 𝜖(𝜌𝛾 − 𝜌

𝛾

−
), the solution is 𝑅 + 𝐽;

(4) when (𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
), that is, 𝑢

+
< 𝑢
−
and 𝑢

+
<

𝑢
−
+ 𝜖(𝜌𝛾 − 𝜌

𝛾

−
), the solution is 𝑆 + 𝐽.

3.2.The Riemann Solutions of System (9) and (11). Systems (9)
and (11) have two eigenvalues:

𝜆
1
= 𝑢 + 𝜖 (1 − 𝛼) 𝜌

−𝛼

, 𝜆
2
= 𝑢 + 𝜖𝜌

−𝛼

, (33)

with corresponding right eigenvectors:

𝑟
1
= (1, 0)

𝑇

, 𝑟
2
= (𝜌, 𝜖𝛼𝜌

−𝛼

)
𝑇

, (34)

satisfying

∇𝜆
1
⋅ 𝑟
1
= −𝜖𝛼 (1 − 𝛼) 𝜌

−𝛼−1

, ∇𝜆
2
⋅ 𝑟
2
= 0. (35)

Thus the 1-characteristic field is genuinely nonlinear and 2-
characteristic field is always linearly degenerate as 0 < 𝛼 <
1, while both the two characteristic fields are fully linearly
degenerate as 𝛼 = 1.

When 0 < 𝛼 < 1, we get rarefaction wave and shock wave
which can be expressed by

𝑅:{𝜉 = 𝑢 + 𝜖 (1 − 𝛼) 𝜌
−𝛼,

𝑢 = 𝑢
−
, 𝜌 < 𝜌

−
,

𝑆:
{{

{{
{

𝜎
𝜖
= 𝑢 +

𝜖 (𝜌1−𝛼 − 𝜌1−𝛼
−
)

𝜌 − 𝜌
−

,

𝑢 = 𝑢
−
, 𝜌 > 𝜌

−
,

(36)

or contact discontinuity which can be expressed by

𝐽:{𝜏𝜖 = 𝑢 + 𝜖𝜌
−𝛼,

𝑢 = 𝑢
−
+ 𝜖 (𝜌−𝛼

−
− 𝜌−𝛼) .

(37)

When 0 < 𝛼 < 1, through the point (𝑢
−
, 𝜌
−
), we draw the

curve 𝑢 = 𝑢
−
for 𝜌 > 0 in the phase plane, denoted by𝑅when

𝜌 < 𝜌
−
and 𝑆 when 𝜌 > 𝜌

−
. Through the point (𝑢

−
, 𝜌
−
), we

draw the curve (37) which has two asymptotes 𝑢 = 𝑢
−
+ 𝜖𝜌−𝛼
−

and 𝜌 = 0, denoted by 𝐽. Through the point (𝑢
−
− 𝜖/𝜌𝛼

−
, 𝜌
−
),

we draw the curve (37), which has two asymptotic lines 𝑢 =
𝑢
−
and 𝜌 = 0, denoted by 𝑆

𝛿
. Then the phase plane is divided

into five regions; see Figure 2.
For any given (𝑢

−
, 𝜌
−
), the Riemann solution is showed as

follows:

(1) when (𝑢
+
, 𝜌
+
) ∈ I(𝑢

−
, 𝜌
−
), that is, 𝑢

+
> 𝑢
−
and 𝑢

+
<

𝑢
−
+ 𝜖(𝜌−𝛼
−
− 𝜌−𝛼), the solution is 𝑆 + 𝐽;

(2) when (𝑢
+
, 𝜌
+
) ∈ II(𝑢

−
, 𝜌
−
), that is, 𝑢

+
> 𝑢
−
and 𝑢

+
>

𝑢
−
+ 𝜖(𝜌−𝛼
−
− 𝜌−𝛼), the solution is 𝑅 + 𝐽;

(3) when (𝑢
+
, 𝜌
+
) ∈ III(𝑢

−
, 𝜌
−
), that is, 𝑢

+
< 𝑢
−
and 𝑢

+
>

𝑢
−
+ 𝜖(𝜌−𝛼
−
− 𝜌−𝛼), the solution is 𝑅 + 𝐽;

(4) when (𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
), that is, 𝑢

+
< 𝑢
−
and 𝑢

+
<

𝑢
−
+ 𝜖(𝜌−𝛼
−
− 𝜌−𝛼), the solution is 𝑆 + 𝐽.

The nonvacuum intermediate constant state (𝑢
∗
, 𝜌
∗
) is given

by

(𝑢
∗
, 𝜌
∗
) = (𝑢

−
, 𝛼√

𝜖

𝑢
+
− 𝑢
−
+ 𝜖𝜌−𝛼
+

) . (38)

When (𝑢
+
, 𝜌
+
) ∈ V(𝑢

−
, 𝜌
−
), we introduce a definition of

𝛿-measure solution, in which we introduce a definition of a
generalized solution [19, 20, 22, 25] for system (9) and (11).

Suppose that Γ = {𝛾
𝑖
| 𝑖 ∈ 𝐼} is a graph in the closed upper

half-plane {(𝑥, 𝑡) | 𝑥 ∈ R, 𝑡 ∈ [0, +∞)} ⊂ R2 containing
smooth arcs 𝛾

𝑖
, 𝑖 ∈ 𝐼, and 𝐼 is a finite set. 𝐼

0
is subset of 𝐼 such

that an arc 𝛾
𝑘
for 𝑘 ∈ 𝐼

0
starts from the point of the 𝑥-axis;

Γ
0
= {𝑥0
𝑘
| 𝑘 ∈ 𝐼

0
} is the set of initial points of arc 𝛾

𝑘
, 𝑘 ∈ 𝐼

0
.

Consider the 𝛿-shock wave type initial data
(𝑢0(𝑥), 𝜌0(𝑥)), where

𝜌
0

(𝑥) = 𝜌
0
(𝑥) + 𝑤

0

𝛿 (Γ
0
) , (39)

𝑢0, 𝜌
0
∈ 𝐿∞(R;R), 𝑤0𝛿(Γ

0
) = ∑

𝑘∈𝐼0
𝑤0
𝑘
𝛿(𝑥 − 𝑥0

𝑘
), and 𝑤0

𝑘
are

constants for 𝑘 ∈ 𝐼
0
. Furthermore, the pressure 𝑝 = −𝜌−𝛼 in

(11) is a nonlinear termwith respect to 𝜌 defined by 𝑝0(𝑥, 𝑡) =
−𝜌−𝛼
0
.

Definition 3. A pair of distributions (𝑢(𝑥, 𝑡), 𝜌(𝑥, 𝑡)) and a
graph Γ, where 𝜌(𝑥, 𝑡) and 𝑝(𝑥, 𝑡) have the form

𝜌 (𝑥, 𝑡) = 𝜌 (𝑥, 𝑡) + 𝑤 (𝑥, 𝑡) 𝛿 (Γ) , 𝑝 (𝑥, 𝑡) = −𝜌(𝑥, 𝑡)
−𝛼

,

(40)

𝑢, 𝜌 ∈ 𝐿∞(R × R
+
;R), 𝑤(𝑥, 𝑡)𝛿(Γ) = ∑

𝑖∈𝐼
𝑤
𝑖
(𝑥, 𝑡)𝛿(𝛾

𝑖
),

𝑤
𝑖
(𝑥, 𝑡) ∈ 𝐶(Γ) for 𝑖 ∈ 𝐼 is called a generalized 𝛿-shock wave
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(u−, 𝜌−)

II
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J
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𝜌
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𝛾
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(u−, 𝜌−)

Figure 1: The upper half (𝑢, 𝜌) plane with 𝑝 = 𝜌𝛾 is divided into 4 regions for both cases 𝛾 > 1 and 0 < 𝛾 < 1.

type solution of system (9) with the initial data (𝑢0(𝑥), 𝜌0(𝑥))
if the integral identities

∫
+∞

0

∫
+∞

−∞

(𝜌𝜙
𝑡
+ 𝜌 (𝑢 − 𝜖𝑝) 𝜙

𝑥
) 𝑑𝑥 𝑑𝑡

+∑
𝑖∈𝐼

∫
𝛾𝑖

𝜔
𝑖
(𝑥, 𝑡)

𝜕𝜙

𝜕𝑙
𝑑𝑙

+ ∫
+∞

−∞

𝜌
0
(𝑥) 𝜙 (𝑥, 0) 𝑑𝑥 + ∑

𝑘∈𝐼0

𝑤
0

𝑘
𝜙 (𝑥
0

𝑘
, 0) = 0,

∫
+∞

0

∫
+∞

−∞

(𝜌𝑢𝜙
𝑡
+ 𝜌𝑢 (𝑢 − 𝜖𝑝) 𝜙

𝑥
) 𝑑𝑥 𝑑𝑡

+∑
𝑖∈𝐼

∫
𝛾𝑖

𝑤
𝑖
(𝑥, 𝑡) 𝑢

𝛿
(𝑥, 𝑡)

𝜕𝜙

𝜕𝑙
𝑑𝑙

+ ∫
+∞

−∞

𝜌
0
(𝑥) 𝑢
0
(𝑥) 𝜙 (𝑥, 0) 𝑑𝑥

+ ∑
𝑘∈𝐼0

𝑤
0

𝑘
𝑢
0

𝛿
(𝑥
0

𝑘
) 𝜙 (𝑥

0

𝑘
, 0) = 0

(41)

hold for any test functions𝜙(𝑥, 𝑡) ∈ D(R×R
+
), where 𝜕𝜙/𝜕𝑙 is

the tangential derivative on the graph Γ, ∫
𝛾𝑖

𝑑𝑙 is a line integral
along the arc 𝛾

𝑖
, 𝑢
𝛿
(𝑥, 𝑡) is the velocity of the 𝛿-shock wave,

and 𝑢0
𝛿
(𝑥0
𝑘
) = 𝑢
𝛿
(𝑥0
𝑘
, 0), 𝑘 ∈ 𝐼

0
.

Theorem4. When (𝑢
+
, 𝜌
+
) ∈ 𝑉, for the Riemann problem (9),

(11), and (12), there is a 𝛿-shock wave solution (𝑢(𝑥, 𝑡), 𝜌(𝑥, 𝑡))
with form

𝑢 (𝑥, 𝑡) = 𝑢
−
+ [𝑢]𝐻 (𝑥 − 𝑥 (𝑡)) ,

𝜌 (𝑥, 𝑡) = 𝜌
−
+ [𝜌]𝐻 (𝑥 − 𝑥 (𝑡)) + 𝑤 (𝑡) 𝛿 (𝑥 − 𝑥 (𝑡)) ,

(42)

which satisfies the integral identities (41) in the sense of
Definition 3, where Γ = {(𝑥, 𝑡) | 𝑥 = 𝑥(𝑡) = 𝜎𝑡, 𝑡 ≥ 0},
𝜌(𝑥, 𝑡) = 𝜌

−
+ [𝜌]𝐻(𝑥 − 𝑥(𝑡)),

∫
Γ

𝑤 (𝑥, 𝑡)
𝜕𝜙 (𝑥, 𝑡)

𝜕𝑙
= ∫
∞

0

𝑤 (𝑥, 𝑡)
𝑑𝜙 (𝑥, 𝑡)

𝑑𝑡
, (43)

and𝐻(𝑥) is the Heaviside function𝐻(𝑥) = 0(1), 𝑥 < (>)0.

u

S

R

I

II
III

IV

V

(u− − 𝜖𝜌
−𝛼

−
, 𝜌

−
)

𝜌

u− − 𝜖𝜌
−𝛼

−
u− + 𝜖𝜌

−𝛼

−
u−

S𝛿

(u−, 𝜌−)

Figure 2: The upper half (𝑢, 𝜌) plane with 𝑝 = 𝜌𝛼 (0 < 𝛼 < 1) is
divided into 5 regions.

Suppose that Ω ⊂ R × R
+
is a region cut by a smooth

curve Γ = {(𝑥, 𝑡) | 𝑥 = 𝑥(𝑡)} into left and right hand
parts Ω

±
= {(𝑥, 𝑡) | ±(𝑥 − 𝑥(𝑡)) > 0}; (𝑢(𝑥, 𝑡), 𝜌(𝑥, 𝑡))

is a generalized 𝛿-shock wave solution of system (9) and
(11); functions 𝜌(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are smooth in Ω

±
and have

one-side limits 𝜌
±
, 𝑢
±
on the curve Γ. Then the generalized

Rankine-Hugoniot conditions for 𝛿-shock wave are

d𝑥 (𝑡)
d𝑡

= 𝑢
𝛿
,

d𝜔 (𝑡)
d𝑡

= 𝑢
𝛿
[𝜌] − [𝜌 (𝑢 + 𝜖𝜌

−𝛼

)] ,

d (𝜔 (𝑡) 𝑢
𝛿
)

d𝑡
= 𝑢
𝛿
[𝜌𝑢] − [𝜌𝑢 (𝑢 + 𝜖𝜌

−𝛼

)] ,

(44)

with initial data 𝜔(0) = 0, where [𝜌] = 𝜌
+
− 𝜌
−
, 0 < 𝛼 < 1.

From (44), we obtain

𝑢
𝛿
= ( [2𝜌𝑢 + 𝜖𝜌

1−𝛼

]

+√[2𝜌𝑢 + 𝜖𝜌1−𝛼]
2

− 4 [𝜌] [𝜌𝑢 (𝑢 + 𝜖𝜌−𝛼)])

× (2 [𝜌])
−1

,
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𝜔 (𝑡) = (( − [𝜖𝜌
1−𝛼

]

+ √[2𝜌𝑢 + 𝜖𝜌1−𝛼]
2

− 4 [𝜌] [𝜌𝑢 (𝑢 + 𝜖𝜌−𝛼)])

× (2)
−1

) 𝑡,

(45)

as 𝜌
−
̸=𝜌
+
, and

𝑢
𝛿
=
𝑢
+
− 𝑢
−
+ 𝜖𝜌−𝛼
+

2
,

𝜔 (𝑡) = 𝜌
+
(𝑢
−
− 𝑢
+
) 𝑡,

(46)

as 𝜌
−
= 𝜌
+
.

We also can justify that the delta shock wave satisfies the
entropy condition:

𝜆
2
(𝑢
+
, 𝜌
+
) ≤ 𝑢
𝛿
≤ 𝜆
1
(𝑢
−
, 𝜌
−
) , (47)

which means that all the characteristics on both sides of the
delta shock are not outcoming.

When 𝛼 = 1, the detailed study can be found in [7]; we
omit it.

Thus, we have obtained the solutions of the Riemann
problem for (9).

4. Limit of Riemann Solutions to the Keyfitz-
Kranzer Type System

In this section, our main purpose is to consider the limits
of the Riemann solutions of (9) and compare them with the
corresponding Riemann solutions to transport equations (8).
Our discussion depends on the order of 𝑢

−
and 𝑢

+
.

4.1. The Limits of Riemann Solutions of (9)-(10). Firstly, we
display the limit of Riemann solution to (9)-(10) for 𝑢

−
< 𝑢
+
.

Lemma 5. In the case 𝑢
−
< 𝑢
+
, when 𝜌

−
≥ 𝜌
+
, (𝑢
+
, 𝜌
+
) ∈

II(𝑢
−
, 𝜌
−
) for arbitrary 𝜖; when 𝜌

−
< 𝜌
+
, there exists 𝜖

0
= (𝑢
+
−

𝑢
−
)/(𝜌
𝛾

+
− 𝜌
𝛾

−
) > 0, such that (𝑢

+
, 𝜌
+
) ∈ II(𝑢

−
, 𝜌
−
) when 0 <

𝜖 < 𝜖
0
.

This lemma shows that the curve 𝐽 becomes steeper as 𝜖
is much small. As 𝑢

−
< 𝑢
+
, from Lemma 5, we know that

(𝑢
+
, 𝜌
+
) ∈ II(𝑢

−
, 𝜌
−
) when 0 < 𝜖 < 𝜖

0
. Then the Riemann

solutions of (9)-(10) consist of the rarefaction wave 𝑅 and the
contact discontinuity 𝐽 with the intermediate constant state
(𝑢
∗
, 𝜌
∗
) besides the two constant states (𝑢

±
, 𝜌
±
) as this form:

(𝑢
𝜖

, 𝜌
𝜖

) (𝜉) =

{{{{

{{{{
{

(𝑢
−
, 𝜌
−
) , −∞ < 𝜉 ≤ 𝜆

1
(𝑢
−
, 𝜌
−
) ,

𝑅, 𝜆
1
(𝑢
−
, 𝜌
−
) ≤ 𝜉 ≤ 𝜆

1
(𝑢
∗
, 𝜌
∗
) ,

(𝑢
∗
, 𝜌
∗
) , 𝜆

1
(𝑢
∗
, 𝜌
∗
) ≤ 𝜉 < 𝜏

𝜖

(𝑢
+
, 𝜌
+
) , 𝜏
𝜖
< 𝜉 < +∞,

(48)

where 𝜆
1
is determined by (21),

𝜏
𝜖
= 𝑢
+
− 𝜖𝜌
𝛾

+
, (49)

(𝑢
∗
, 𝜌
∗
) = (𝑢

−
, 𝛾√
𝑢
−
− 𝑢
+

𝜖
+ 𝜌
𝛾

+
) . (50)

When 𝑢
−
< 𝑢
+
, from (50), and when 𝜖 is small enough to

satisfy 0 < 𝜖 ≤ (𝑢
+
− 𝑢
−
)/𝜌
𝛾

+
, we know that a vacuum state

appears in the Riemann solutions of (9)-(10). By (21), (49),
and (50), it is easy to get that

lim
𝜖→0

𝜆
1
(𝑢
−
, 𝜌
−
) = lim
𝜖→0

(𝑢
−
− 𝜖 (𝛾 + 1) 𝜌

𝛾

−
) = 𝑢
−
,

lim
𝜖→0

𝜆
1
(𝑢
∗
, 𝜌
∗
) = lim
𝜖→0

(𝑢
∗
− 𝜖 (𝛾 + 1) 𝜌

𝛾

∗
) = 𝑢
−
,

lim
𝜖→0

𝜏
𝜖
= lim
𝜖→0

(𝑢
+
− 𝜖𝜌
𝛾

+
) = 𝑢
+
,

(51)

which mean that the rarefaction wave 𝑅 and the contact
discontinuity 𝐽: 𝑢

∗
− 𝜖𝜌𝛾
∗
= 𝑢
+
− 𝜖𝜌
𝛾

+
become the contact

discontinuities 𝐽
1
: 𝑢 = 𝑢

−
and 𝐽
2
: 𝑢 = 𝑢

+
, respectively, as 𝜖 →

0. Meanwhile the vacuum state will fill up the region between
the two contact discontinuities, which is exactly identical
with the corresponding Riemann solutions of system (8).

Secondly, when 𝑢
+
= 𝑢
−
, the Riemann solution contains a

shock wave 𝑆with the propagating speed 𝜎
𝜖
besides the states

(𝑢
±
, 𝜌
±
) for 𝜌

+
> 𝜌
−
, or a rarefaction wave 𝑅 with the speed

𝜆
1
(𝑢, 𝜌) (𝜌

−
≥ 𝜌 ≥ 𝜌

+
) for 𝜌

+
< 𝜌
−
; see Figure 1. From (31)

and (50), we obtain

lim
𝜖→0

𝜎
𝜖
= lim
𝜖→0

(𝑢 −
𝜖 (𝜌𝛾+1 − 𝜌

𝛾+1

−
)

𝜌 − 𝜌
−

) = 𝑢
−
, (52)

or from (21) and (50), we have

lim
𝜖→0

𝜆
1
(𝑢
−
, 𝜌
−
) = lim
𝜖→0

(𝑢
−
− 𝜖 (𝛾 + 1) 𝜌

𝛾

−
) = lim
𝜖→0

𝜆
1
(𝑢
+
, 𝜌
+
)

= lim
𝜖→0

(𝑢
+
− 𝜖 (𝛾 + 1) 𝜌

𝛾

+
) = 𝑢
−
.

(53)

We conclude that, when 𝑢
−
= 𝑢
+
, the Riemann solution of

system (9)-(10) containing one shock wave or one rarefaction
wave converges to the contact discontinuity solution of the
transport equations (8) as 𝜖 → 0.

Finally, we display the limit of Riemann solutions to (9)-
(10) for 𝑢

−
> 𝑢
+
.

Lemma 6. In the case 𝑢
−
> 𝑢
+
, when 𝜌

−
≤ 𝜌
+
, (𝑢
+
, 𝜌
+
) ∈

IV(𝑢
−
, 𝜌
−
) for arbitrary 𝜖; when 𝜌

−
> 𝜌
+
, there exists 𝜖

1
=

(𝑢
−
−𝑢
+
)/(𝜌
𝛾

−
−𝜌
𝛾

+
) > 0, such that (𝑢

+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
) when

0 < 𝜖 < 𝜖
1
.

From this lemma we know that the contact discontinuity
𝐽 becomes steeper and steeper when 𝜖 decreases; that is,
(𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
) for small 𝜖. In this case, the Riemann

solution of (9)-(10) consists of a shock wave 𝑆 and a contact
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discontinuity 𝐽 with the intermediate constant state (𝑢
∗
, 𝜌
∗
)

as

(𝑢
𝜖

, 𝜌
𝜖

) =
{{

{{
{

(𝑢
−
, 𝜌
−
) , −∞ < 𝜉 < 𝜎

𝜖
,

(𝑢
∗
, 𝜌
∗
) , 𝜎

𝜖
< 𝜉 < 𝜏

𝜖
,

(𝑢
+
, 𝜌
+
) , 𝜏
𝜖
< 𝜉 < +∞,

(54)

where (𝑢
∗
, 𝜌
∗
) is given by (50) and

𝜎
𝜖
= 𝑢
−
−
𝜖 (𝜌𝛾+1
∗

− 𝜌
𝛾+1

−
)

𝜌
∗
− 𝜌
−

. (55)

When 𝑢
−
> 𝑢
+
, from (50), it is easy to see that

lim
𝜖→0

𝜌
∗
= lim
𝜖→0

𝛾√
𝑢
−
− 𝑢
+

𝜖
+ 𝜌
𝛾

+
= ∞. (56)

By (55), we obtain

lim
𝜖→0

𝜎
𝜖
= lim
𝜖→0

(𝑢
−
−
𝜖 (𝜌𝛾+1
∗

− 𝜌
𝛾+1

−
)

𝜌
∗
− 𝜌
−

) = 𝑢
+
. (57)

From (56)-(57) and

lim
𝜖→0

𝜏
𝜖
= lim
𝜖→0

(𝑢
+
− 𝜖𝜌
𝛾

+
) = 𝑢
+
, (58)

we know that 𝑆 and 𝐽 coincide with a new type of nonlinear
hyperbolic wave which is called the delta shock wave in [23].
Compared with the corresponding Riemann solutions of (8),
it is clear to see that the propagation speed of the delta shock
wave here is 𝑢

𝛿
= 𝑢
+
which is different from that of (8).

From (30), we have

𝜎
𝜖
(𝜌
∗
− 𝜌
−
) = 𝜌
∗
(𝑢
∗
− 𝜖𝜌
𝛾

∗
) − 𝜌
−
(𝑢
−
− 𝜖𝜌
𝛾

−
) ,

𝜏
𝜖
(𝜌
+
− 𝜌
∗
) = 𝜌
+
(𝑢
+
− 𝜖𝜌
𝛾

+
) − 𝜌
∗
(𝑢
∗
− 𝜖𝜌
𝛾

∗
) ,

(59)

which mean that

lim
𝜖→0

(𝜎
𝜖
− 𝜏
𝜖
) 𝜌
∗
= 𝑢
+
[𝜌] − [𝜌𝑢] = 𝜌

−
(𝑢
−
− 𝑢
+
) . (60)

It is obvious that

𝜔 (𝑡) = lim
𝜖→0

∫
𝜏𝜖𝑡

𝜎𝜖𝑡

𝜌
∗
𝑑𝑥 = lim

𝜖→0

(𝜎
𝜖
− 𝜏
𝜖
) 𝜌
∗
𝑡 = 𝜌
−
(𝑢
−
− 𝑢
+
) 𝑡.

(61)

From (61), we obtain that the strength of the delta shock
wave is also different from transport equations (8), whichmay
be due to the different propagation speed of the delta shock
wave. For the limit situation of (9)-(10), the characteristics on
the left side of the delta shock wave will come into the delta
shock wave line 𝑥 = 𝑢

+
𝑡while the characteristics on the right

side of it will be parallel to it. For transport equations (8), the
characteristics on the two sides will come into the delta shock
wave curve𝑥 = 𝑢

𝛿
𝑡. So, the Riemann solution of (9)-(10) does

not converge to solution of (8) as 𝜖 → 0 when 𝑢
−
> 𝑢
+
.

4.2. The Limit of Riemann Solutions of System (9) and (11). In
this subsection, we deal with the limit behavior of Riemann
solutions to system (9) and (11).

Firstly, we display the limit of Riemann solutions to (9)
and (11) for 𝑢

−
< 𝑢
+
.

Lemma 7. For the case 𝑢
−
< 𝑢
+
, when 𝜌

−
≥ 𝜌
+
, (𝑢
+
, 𝜌
+
) ∈

II(𝑢
−
, 𝜌
−
) for arbitrary 𝜖; when 𝜌

−
< 𝜌
+
, then there exists 𝜖

0
=

(𝑢
+
− 𝑢
−
)/(𝜌−𝛼
−
− 𝜌−𝛼
+
) > 0 such that (𝑢

+
, 𝜌
+
) ∈ II(𝑢

−
, 𝜌
−
) as

0 < 𝜖 < 𝜖
0
.

From Lemma 7, we know that the contact discontinuity
𝐽 becomes steeper as 𝜖 becomes smaller and smaller; that is,
(𝑢
+
, 𝜌
+
) ∈ II(𝑢

−
, 𝜌
−
) for small 𝜖. Then the Riemann solution

of (9) and (11) consists of a rarefaction wave 𝑅 and a contact
discontinuity 𝐽 with the intermediate constant state (𝑢

∗
, 𝜌
∗
)

besides the two constant states (𝑢
±
, 𝜌
±
), which has this form:

(𝑢
𝜖

, 𝜌
𝜖

) =

{{{{

{{{{
{

(𝑢
−
, 𝜌
−
) , −∞ < 𝜉 < 𝜆

1
(𝑢
−
, 𝜌
−
) ,

𝑅, 𝜆
1
(𝑢
−
, 𝜌
−
) ≤ 𝜉 ≤ 𝜆

1
(𝑢
∗
, 𝜌
∗
) ,

(𝑢
∗
, 𝜌
∗
) , 𝜆

1
(𝑢
∗
, 𝜌
∗
) < 𝜉 < 𝜏

𝜖
,

(𝑢
+
, 𝜌
+
) , 𝜏
𝜖
< 𝜉 < +∞,

(62)

where 𝜆
1
, (𝑢
∗
, 𝜌
∗
) are determined by (33) and (38), respec-

tively, and

𝜏
𝜖
= 𝑢
+
+ 𝜖𝜌
−𝛼

+
. (63)

From (38), we obtain

lim
𝜖→0

𝜌
∗
= lim
𝜖→0

𝛼√
𝜖

𝑢
+
− 𝑢
−
+ 𝜖𝜌−𝛼
+

= 0, (64)

and then a vacuum state appears in the Riemann solution of
(9)–(11).

By (33), (38), and (63), we get

lim
𝜖→0

𝜆
1
(𝑢
−
, 𝜌
−
) = lim
𝜖→0

𝜆
1
(𝑢
∗
, 𝜌
∗
) = 𝑢
−
,

lim
𝜖→0

𝜏
𝜖
= 𝑢
+
,

(65)

which mean that the rarefaction wave 𝑅 and the contact
discontinuity 𝐽 become the contact discontinuities 𝐽

1
: 𝑢 =

𝑢
−
and 𝐽

2
: 𝑢 = 𝑢

+
, respectively, as 𝜖 → 0. Meanwhile

the vacuum state will fill up the region between the two
contact discontinuities, which is exactly identical with the
corresponding Riemann solution of system (8).

Secondly, when 𝑢
+
= 𝑢
−
, as done in Section 4.1, it is easy

to see that the Riemann solution of (9) and (11) converges to
the contact discontinuity of system (8); we omit it.

Finally, we discuss the limit of Riemann solutions of (9)
and (11) when 𝑢

−
> 𝑢
+
.

Lemma 8. If 𝑢
−
> 𝑢
+
, then there exist 𝜖

1
, 𝜖
2
> 0 such that

(𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
) when 𝜖

2
< 𝜖 < 𝜖

1
; (𝑢
+
, 𝜌
+
) ∈ V(𝑢

−
, 𝜌
−
)

when 0 < 𝜖 < 𝜖
2
.

Proof. When 𝜌
−
≤ 𝜌
+
, it is easy to find that (𝑢

+
, 𝜌
+
) ∈ IV ∪

V(𝑢
−
, 𝜌
−
) for arbitrary 𝜖 directly from Figure 2. On the other
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hand, when 𝜌
−
> 𝜌
+
and (𝑢

+
, 𝜌
+
) ∈ IV ∪ V(𝑢

−
, 𝜌
−
), see

Figure 2 together with (37), we can get that 𝜖 should satisfy
𝑢
+
+𝜖𝜌−𝛼
+
< 𝑢
−
+𝜖𝜌−𝛼
−
, which gives 𝜖 < (𝑢

−
−𝑢
+
)/(𝜌−𝛼
+
−𝜌−𝛼
−
).

In one word, (𝑢
+
, 𝜌
+
) ∈ IV ∪ V(𝑢

−
, 𝜌
−
) for small 𝜖.

If (𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
), (𝑢
+
, 𝜌
+
) should satisfy 𝑢

+
< 𝑢
−
,

𝑢
+
+ 𝜖𝜌−𝛼
+
< 𝑢
−
+ 𝜖𝜌−𝛼
−
, and 𝑢

+
> 𝑢
−
− 𝜖𝜌−𝛼
+
. From the above

inequalities, we obtain (𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
) when 𝜖

2
< 𝜖 <

𝜖
1
, and (𝑢

+
, 𝜌
+
) ∈ V(𝑢

−
, 𝜌
−
) when 0 < 𝜖 < 𝜖

2
, where

𝜖
1
=

𝑢
−
− 𝑢
+

𝜌−𝛼
+
− 𝜌−𝛼
−

, 𝜖
2
= (𝑢
−
− 𝑢
+
) 𝜌
𝛼

+
. (66)

The results have been obtained.

When 𝑢
−
> 𝑢
+
and 𝜖
2
< 𝜖 < 𝜖

1
, the Riemann solution

of (9) and (11) consists of a shock wave 𝑆 and a contact
discontinuity 𝐽 with the intermediate state (𝑢

∗
, 𝜌
∗
) besides

the two constant states (𝑢
±
, 𝜌
±
), which is as this form:

(𝑢
𝜖

, 𝜌
𝜖

) =
{{

{{
{

(𝑢
−
, 𝜌
−
) , −∞ < 𝜉 < 𝜎

𝜖
,

(𝑢
∗
, 𝜌
∗
) , 𝜎

𝜖
< 𝜉 < 𝜏

𝜖
,

(𝑢
+
, 𝜌
+
) , 𝜏
𝜖
< 𝜉 < +∞,

(67)

where (𝑢
∗
, 𝜌
∗
), 𝜏
𝜖
are determined by (38) and (63), respec-

tively, and

𝜎
𝜖
= 𝑢
−
+
𝜖 (𝜌1−𝛼
∗

− 𝜌1−𝛼
−
)

𝜌
∗
− 𝜌
−

. (68)

It is easy to see that

𝜖𝜌
−𝛼

∗
= 𝑢
+
− 𝑢
−
+ 𝜖𝜌
−𝛼

+
. (69)

For given 𝜌
+
> 0, letting 𝜖 → 𝜖

2
= (𝑢
−
− 𝑢
+
)𝜌𝛼
+
in (69) yields

lim
𝜖→𝜖2

𝜖𝜌
−𝛼

∗
= lim
𝜖→𝜖2

(𝑢
+
− 𝑢
−
+ 𝜖𝜌
−𝛼

+
) = 0. (70)

Hence, we deduce that

lim
𝜖→𝜖2

𝜌
∗
= ∞. (71)

Thus we have the following result.

Lemma 9. Consider

lim
𝜖→𝜖2

𝑢
∗
= lim
𝜖→𝜖2

𝜎
𝜖
= lim
𝜖→𝜖2

𝜏
𝜖
= 𝑢
−
, (72)

where 𝜎
𝜖
, 𝜏
𝜖
is given by (63) and (68), and

lim
𝜖→𝜖2

∫
𝜎𝜖𝑡

𝜏𝜖𝑡

𝜌
∗
𝑑𝑥 = (𝑢

−
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝑡. (73)

Proof. Due to (63) and (68), we get

lim
𝜖→𝜖2

𝜎
𝜖
= lim
𝜖→𝜖2

(𝑢
−
+
𝜖 (𝜌1−𝛼
∗

− 𝜌1−𝛼
−
)

𝜌
∗
− 𝜌
−

) = 𝑢
−
,

lim
𝜖→𝜖2

𝜏
𝜖
= lim
𝜖→𝜖2

(𝑢
+
+ 𝜖𝜌
−𝛼

+
) = 𝑢
−
.

(74)

Thus it can be seen from (74) that shock wave 𝑆 and contact
discontinuity 𝐽 will coalesce together when 𝜖 arrives at 𝜖

2
.

Using the Rankine-Hugoniot condition for shock 𝑆 and
contact discontinuity 𝐽, we have

𝜎
𝜖
(𝜌
∗
− 𝜌
−
) = 𝜌
∗
(𝑢
∗
+ 𝜖𝜌
−𝛼

∗
) − 𝜌
−
(𝑢
−
+ 𝜖𝜌
−𝛼

−
) ,

𝜏
𝜖
(𝜌
+
− 𝜌
∗
) = 𝜌
+
(𝑢
+
+ 𝜖𝜌
−𝛼

+
) − 𝜌
∗
(𝑢
∗
+ 𝜖𝜌
−𝛼

∗
) ,

(75)

which implies that

lim
𝜖→𝜖2

(𝜎
𝜖
− 𝜏
𝜖
) 𝜌
∗
= (𝑢
−
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) . (76)

It is obvious that

lim
𝜖→𝜖2

∫
𝜏𝜖𝑡

𝜎𝜖𝑡

𝜌
∗
𝑑𝑥 = lim

𝜖→𝜖2

(𝜎
𝜖
− 𝜏
𝜖
) 𝜌
∗
𝑡=(𝑢
−
[𝜌]−[𝜌 (𝑢 − 𝜖𝑝)]) 𝑡.

(77)

The proof is completed.

From Lemma 5, it can be concluded that the shock wave
𝑆 and contact discontinuity 𝐽 will coincide when 𝜖 tends to
𝜖
2
. On the other hand, for 𝜌

+
̸=𝜌
−
, by substituting 𝜖 = 𝜖

2
=

(𝑢
−
− 𝑢
+
)𝜌𝛼
+
into (45), we have

𝑢
𝛿
= 𝑢
−
,

𝜔 (𝑡) = (𝑢
𝛿
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝑡.

(78)

So, we obtain that the quantities 𝑢
𝛿
, 𝜔(𝑡) and the limits

of 𝑢
∗
, 𝜎
𝜖
and 𝜏
𝜖
are consistent with (45) as proposed for the

Riemann solutions of (9) and (11) for 𝜌
+
̸=𝜌
−
when we take

𝜖 = 𝜖
2
. Otherwise, the assert is obviously true when 𝜌

+
= 𝜌
−
.

Thus, it uniquely determines that the limit of the Riemann
solutions to system (9) and (11) when 𝜖 → 𝜖

2
in the case

(𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
) is just the delta shock solution of (9) and

(11) in the case (𝑢
+
, 𝜌
+
) ∈ 𝑆
𝛿
, where the curve 𝑆

𝛿
is actually the

boundary between the regions IV(𝑢
−
, 𝜌
−
) and V(𝑢

−
, 𝜌
−
).

Theorem 10. In the case 𝑢
−
> 𝑢
+
, for each fixed 𝜖 ∈ (𝜖

2
, 𝜖
1
),

assume that (𝑢𝜖, 𝜌𝜖) is a solution containing the shock wave 𝑆
and contact discontinuity 𝐽 of (9) and (11)with Riemann initial
data, constructed in Section 3.2. Then, (𝑢𝜖, 𝜌𝜖) converges in the
sense of distributions, when 𝜖 → 𝜖

2
, and the limit functions

𝜌 and 𝜌𝑢 are the sum of step function and a 𝛿-measure with
weights

(𝑢
𝛿
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝑡, (𝑢

𝛿
[𝜌𝑢] − [𝜌𝑢 (𝑢 − 𝜖𝑝)]) 𝑡,

(79)

respectively, and then form a delta shock solutions of (9) and
(11) when 𝜖 → 𝜖

2
.

Proof. When (𝑢
+
, 𝜌
+
) ∈ IV(𝑢

−
, 𝜌
−
), let 𝜉 = 𝑥/𝑡; then for each

fixed 𝜖 > 0, the Riemann solutions are determined by

(𝑢
𝜖

, 𝜌
𝜖

) (𝜉) =
{{

{{
{

(𝑢
−
, 𝜌
−
) , −∞ < 𝜉 < 𝜎

𝜖
,

(𝑢𝜖
∗
, 𝜌𝜖
∗
) , 𝜎

𝜖
< 𝜉 < 𝜏

𝜖
,

(𝑢
+
, 𝜌
+
) , 𝜏
𝜖
< 𝜉 < ∞,

(80)
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which satisfy

∫
∞

−∞

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

+ ∫
∞

−∞

𝜌
𝜖

(𝜉) 𝜙 (𝜉) 𝑑𝜉 = 0,

∫
∞

−∞

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝑢
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

+ ∫
∞

−∞

𝜌
𝜖

(𝜉) 𝑢
𝜖

(𝜉) 𝜙 (𝜉) 𝑑𝜉 = 0,

(81)

for any test function 𝜙 ∈ 𝐶∞
0
(−∞,∞).

The first integral in (81) can be decomposed into

{∫
𝜎𝜖

−∞

+∫
𝜏𝜖

𝜎𝜖

+∫
∞

𝜏𝜖

} (𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉.

(82)

The sum of the first and the last terms in (82) is

∫
𝜎𝜖

−∞

(𝜉 − (𝑢
−
− 𝜖𝑝
−
)) 𝜌
−
𝜙
󸀠

(𝜉) 𝑑𝜉

+ ∫
∞

𝜏𝜖

(𝜉 − (𝑢
+
− 𝜖𝑝
+
)) 𝜌
+
𝜙
󸀠

(𝜉) 𝑑𝜉

= −𝜌
−
(𝑢
−
− 𝜖𝑝
−
) 𝜙 (𝜎
𝜖
) + 𝜌
+
(𝑢
+
− 𝜖𝑝
+
) 𝜙 (𝜏
𝜖
)

+ 𝜌
−
𝜎
𝜖
𝜙 (𝜎
𝜖
) − 𝜌
+
𝜏
𝜖
𝜙 (𝜏
𝜖
)

− 𝜌
−
∫
𝜎𝜖

−∞

𝜙 (𝜉) 𝑑𝜉 − 𝜌
+
∫
∞

𝜏𝜖

𝜙 (𝜉) 𝑑𝜉.

(83)

Letting 𝜖 → 𝜖
2
in (83), we have

lim
𝜖→𝜖2

(∫
𝜎𝜖

−∞

+∫
∞

𝜏𝜖

) (𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

= ([𝜌 (𝑢 − 𝜖𝑝)] − 𝑢
𝛿
[𝜌]) 𝜙 (𝑢

𝛿
)

− ∫
∞

−∞

𝜌
0
(𝜉 − 𝑢

𝛿
) 𝜙 (𝜉) 𝑑𝜉,

(84)

where 𝜌
0
(𝜉) = 𝜌

−
+ [𝜌]𝐻(𝜉 − 𝜎) and 𝐻 is the Heaviside

function.
The second term in (82) can be calculated by

∫
𝜏𝜖

𝜎𝜖

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

= −𝜌
𝜖

∗
(𝑢
𝜖

∗
− 𝜖𝑝 (𝜌

𝜖

∗
)) (𝜙 (𝜎

𝜖
) − 𝜙 (𝜏

𝜖
))

− 𝜌
𝜖

∗
∫
𝜏𝜖

𝜎𝜖

𝜙𝜉 𝑑𝜉 + 𝜌
𝜖

∗
(𝜏
𝜖
𝜙𝜏
𝜖
− 𝜎
𝜖
𝜙 (𝜎
𝜖
)) .

(85)

By lim
𝜖→𝜖2

𝑢𝜖
∗
= lim

𝜖→𝜖2
𝜎
𝜖
= lim

𝜖→𝜖2
𝜏
𝜖
= 𝑢
𝛿
= 𝑢
−
, we

obtain

lim
𝜖→𝜖2

∫
𝜏𝜖

𝜎𝜖

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉 = 0. (86)

Then, from (81)
1
, (84), and (86), we get that

lim
𝜖→𝜖2

∫
∞

−∞

(𝜌
𝜖

(𝜉) − 𝜌
0
(𝜉 − 𝑢

𝛿
)) 𝜙 (𝜉) 𝑑𝜉

= (𝑢
𝛿
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜙 (𝑢

𝛿
)

(87)

holds for any test function 𝜙 ∈ 𝐶∞
0
(−∞,∞).

With the same reason as above, we have

lim
𝜖→𝜖2

∫
∞

−∞

(𝜌
𝜖

(𝜉) 𝑢
𝜖

(𝜉) − 𝜌
0
𝑢
0
(𝜉 − 𝑢

𝛿
)) 𝜙 (𝜉) 𝑑𝜉

= (𝑢
𝛿
[𝜌𝑢] − [𝜌𝑢 (𝑢 − 𝜖𝑝)]) 𝜙 (𝑢

𝛿
) .

(88)

Finally, we study the limits of 𝜌𝜖 and 𝜌𝜖𝑢𝜖 as 𝜖 → 𝜖
2
, by

tracing the time-dependence of weights of the 𝛿-measure.
Let 𝜑(𝑥, 𝑡) ∈ 𝐶∞

0
((−∞,∞) × [0,∞)) and set 𝜑(𝜉, 𝑡) :=

𝜑(𝜉𝑡, 𝑡)); then we obtain

lim
𝜖→𝜖2

∫
∞

0

∫
∞

−∞

𝜌
𝜖

(
𝑥

𝑡
) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= lim
𝜖→𝜖2

∫
∞

0

𝑡 (∫
∞

−∞

𝜌
𝜖

(𝜉) 𝜑 (𝜉, 𝑡) 𝑑𝜉) 𝑑𝑡.

(89)

On the other hand,

lim
𝜖→𝜖2

∫
∞

−∞

𝜌
𝜖

(𝜉) 𝜑 (𝜉, 𝑡) 𝑑𝜉

= ∫
∞

−∞

𝜌
0
(𝜉 − 𝑢

𝛿
) 𝜑 (𝜉, 𝑡) 𝑑𝜉

+ (𝑢
𝛿
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜑 (𝜉, 𝑡)

= 𝑡
−1

∫
∞

−∞

𝜌
0
(𝑥 − 𝑢

𝛿
𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥

+ (𝑢
𝛿
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜑 (𝑢

𝛿
𝑡, 𝑡) .

(90)

By (89) and (90), we get

lim
𝜖→𝜖2

∫
∞

0

∫
∞

−∞

𝜌
𝜖

(
𝑥

𝑡
) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫
∞

0

∫
∞

−∞

𝜌
0
(𝑥 − 𝑢

𝛿
𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫
∞

0

𝑡 (𝑢
𝛿
[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜑 (𝑥, 𝑡) 𝑑𝑡.

(91)

With the same reason as before, we obtain

lim
𝜖→𝜖2

∫
∞

0

∫
∞

−∞

𝜌
𝜖

(
𝑥

𝑡
) 𝑢
𝜖

(
𝑥

𝑡
) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫
∞

0

∫
∞

−∞

𝜌
0
𝑢
0
(𝑥 − 𝑢

𝛿
𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫
∞

0

𝑡 (𝑢
𝛿
[𝜌𝑢] − [𝜌𝑢 (𝑢 − 𝜖𝑝)]) 𝜑 (𝑥, 𝑡) 𝑑𝑡.

(92)

Thus the result has been obtained.
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When 𝑢
−
> 𝑢
+
and 0 < 𝜖 < 𝜖

2
, (𝑢
+
, 𝜌
+
) ∈ V(𝑢

−
, 𝜌
−
). So

the Riemann solution of (9) and (11) consists of a delta shock
wave besides the constant states (𝑢

±
, 𝜌
±
). We want to observe

the behavior of strength and propagation speed of the delta
shock wave when 𝜖 decreases and finally tends to zero.

For 𝜌
+
̸=𝜌
−
, letting 𝜖 → 0 in (45), we have

lim
𝜖→0

𝑢
𝛿
(𝜖) =

√𝜌+𝑢+ + √𝜌−𝑢−

√𝜌+ + √𝜌−
,

lim
𝜖→0

𝜔 (𝑡, 𝜖) = √𝜌
−
𝜌
+
(𝑢
−
− 𝑢
+
) 𝑡.

(93)

For the special situation 𝜌
+
= 𝜌
−
, by (46), we can obtain the

same result as above.
From the above discussion, we can conclude that the limit

of the strength and propagation speed of the delta shock wave
in Riemann solution of system (9) and (11) are in accordance
with those of transport equations (8) with the same Riemann
initial data. That is to say, the delta shock solution to system
(9) and (11) converges to the delta shock solution to transport
equations (8) as pressure vanishes.

Combining the results of the above, when (𝑢
+
, 𝜌
+
) ∈

IV(𝑢
−
, 𝜌
−
), we conclude that the shock wave and a contact

discontinuity coincide as a delta shock wave when 𝜖 →
𝜖
2
. As 𝜖 continues to drop and goes to zero eventually, the

delta shock solution is nothing but the Riemann solution to
transport equations (8).

5. Conclusion

So far, the discussion for limit of Riemann solutions to the
nonsymmetric system of Keyfitz-Kranzer type with both
the polytropic gas and generalized Chaplygin gas has been
completed. From the above analysis, as the pressure vanishes,
there appear delta shock wave, vacuum state, and contact
discontinuity when 𝑢

−
> 𝑢
+
, 𝑢
−
< 𝑢
+
, and 𝑢

−
= 𝑢
+
,

respectively. For the polytropic gas, different from cases of
some other systems such as Euler equations or relativistic
Euler equations, the delta shock wave is not the one of
transport equations as parameter 𝜖 tends to zero. For the
generalized Chaplygin gas, the delta shock wave appears as
parameter 𝜖 tends to 𝜖

2
, depending only on the Riemann

initial data. Then as 𝜖 becomes smaller and goes to zero at
last, the delta shockwave solution is the exact one of transport
equations.
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A numerical solution of the modified Burgers’ equation (MBE) is obtained by using quartic B-spline subdomain finite element
method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM)
method. The accuracy and efficiency of the methods are discussed by computing 𝐿

2
and 𝐿

∞
error norms. Comparisons are made

with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve
the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of
convergence analysis is also given for the DQM.

1. Introduction

The one-dimensional Burgers’ equation first suggested by
Bateman [1] and later treated by Burgers’ [2] has the form

𝑈
𝑡
+ 𝑈𝑈
𝑥
− V𝑈
𝑥𝑥

= 0, (1)

where V is a positive parameter and the subscripts 𝑥 and
𝑡 denote space and time derivatives, respectively. Burgers’
model of turbulence is very important in fluid dynamics
model and study of this model and the theory of shock waves
has been considered by many authors for both conceptual
understanding of a class of physical flows and for testing
various numerical methods [3]. Relationship between (1) and
both turbulence theory and shock wave theory was presented
by Cole [4]. He also obtained an exact solution of the
equation. Analytical solutions of the equation were found for
restricted values of Vwhich represent the kinematics viscosity
of the fluid motion. So the numerical solution of Burgers’
equation has been subject of many papers. Various numerical
methods have been studied based on finite difference [5,
6], Runge-Kutta-Chebyshev method [7, 8], group-theoretic
methods [9], and finite element methods including Galerkin,
Petrov-Galerkin, least squares, and collocation [10–13].

The modified Burgers’ equation (MBE) which we discuss in
this paper is based upon Burgers’ equation (BE) of the form

𝑈
𝑡
+ 𝑈
2

𝑈
𝑥
− V𝑈
𝑥𝑥

= 0. (2)

The equation has the strong nonlinear aspects and has been
used in many practical transport problems, for instance,
nonlinear waves in a medium with low-frequency pumping
or absorption, turbulence transport, wave processes in ther-
moelastic medium, transport and dispersion of pollutants in
rivers and sediment transport, and ion reflection at quasi-
perpendicular shocks. Recently, some numerical studies of
the equation have been presented: Ramadan and El-Danaf
[14] obtained the numerical solutions of the MBE using
quintic B-spline collocation finite element method. A special
lattice Boltzmannmodel is developed by Duan et al. [15]. Daǧ
et al. [16] have developed a Galerkin finite element solution of
the equation using quintic B-splines and time-split technique.
A solution based on sextic B-spline collocation method is
proposed by Irk [17]. Roshan and Bhamra [18] applied a
Petrov-Galerkin method using a linear hat function as the
trial function and a cubic B-spline function as the test func-
tion.AdiscontinuousGalerkinmethod is presented byZhang
et al. [19]. Bratsos [20] has used a finite difference scheme
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based on fourth-order rational approximants to the matrix-
exponential term in a two-time level recurrence relation for
calculating the numerical solution of the equation.

Recently, DQM has become a very efficient and effective
method to obtain the numerical solutions of various types
of partial differential equations. In 1972, Bellman et al. [21]
first introduced differential quadrature method (DQM) for
solving partial differential equations. The main idea behind
the method is to find out the weighting coefficients of the
functional values at nodal points by using base functions of
which derivatives are already known at the same nodal points
over the entire region. Various researchers have developed
different types of DQMs by utilizing various test functions;
Bellman et al. [22] have used Legendre polynomials and
spline functions in order to get weighting coefficients. Quan
and Chang [23, 24] have presented an explicit formulation
for determining the weighting coefficients using Lagrange
interpolation polynomials. Zhong [25], Guo and Zhong
[26], and Zhong and Lan [27] have introduced another
efficient DQM as spline based DQM and applied it to
different problems. Shu and Wu [28] have considered some
of the implicit formulations of weighting coefficients with the
help of radial basis functions. Nonlinear Burgers’ equation
is solved using polynomial based differential quadrature
method by Korkmaz and Daǧ [29]. The DQM has many
advantages over the classical techniques; mainly, it prevents
linearization and perturbation in order to find better solu-
tions of given nonlinear equations. Since QBDQM do not
need transforming for solving the equation, the method has
been preferred.

In the present work, we have applied a subdomain
finite element method and a quartic B-spline differential
quadrature method to the MBE. To show the performance
and accuracy of the methods and make comparisons of
numerical solutions, we have taken different values of V.

2. Numerical Methods

To implement the numerical schemes, the interval [𝑎, 𝑏] is
splitted up into uniformly sized intervals by the nodes 𝑥

𝑚
,

𝑚 = 1, 2, . . . , 𝑁, such that 𝑎 = 𝑥
0
< 𝑥
1
⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝑏, where

ℎ = (𝑥
𝑚+1

− 𝑥
𝑚
).

2.1. Subdomain Finite Element Method (SFEM). We will
consider (2) with the boundary conditions chosen from

𝑈 (𝑎, 𝑡) = 𝛽
1
, 𝑈 (𝑏, 𝑡) = 𝛽

2
,

𝑈
𝑥
(𝑎, 𝑡) = 0, 𝑈

𝑥
(𝑏, 𝑡) = 0,

𝑈
𝑥𝑥

(𝑎, 𝑡) = 0, 𝑈
𝑥𝑥

(𝑏, 𝑡) = 0, 𝑡 > 0,

(3)

with the initial condition

𝑈 (𝑥, 0) = 𝑓 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, (4)

where 𝛽
1
and 𝛽

2
are constants. The quartic B-splines 𝜙

𝑚
(𝑥)

(𝑚 = −2(1) 𝑁 + 1) at the knots 𝑥
𝑚
which form a basis over

the interval [𝑎, 𝑏] are defined by the relationships [30]

𝜙
𝑚
(𝑥)

=
1

ℎ4

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{
{

(𝑥 − 𝑥
𝑚−2

)
4

, 𝑥 ∈ [𝑥
𝑚−2

, 𝑥
𝑚−1

] ,

(𝑥 − 𝑥
𝑚−2

)
4

− 5(𝑥 − 𝑥
𝑚−1

)
4

, 𝑥 ∈ [𝑥
𝑚−1

, 𝑥
𝑚
] ,

(𝑥 − 𝑥
𝑚−2

)
4

− 5(𝑥 − 𝑥
𝑚−1

)
4

+10(𝑥 − 𝑥
𝑚
)
4

,
𝑥 ∈ [𝑥

𝑚
, 𝑥
𝑚+1

] ,

(𝑥
𝑚+3

− 𝑥)
4

− 5(𝑥
𝑚+2

− 𝑥)
4

, 𝑥 ∈ [𝑥
𝑚+1

, 𝑥
𝑚+2

] ,

(𝑥
𝑚+3

− 𝑥)
4

, 𝑥 ∈ [𝑥
𝑚+2

, 𝑥
𝑚+3

] ,

0, otherwise.
(5)

Our numerical treatment for solving the MBE using the
subdomain finite element method with quartic B-splines is
to find a global approximation 𝑈

𝑁
(𝑥, 𝑡) to the exact solution

𝑈(𝑥, 𝑡) that can be expressed in the following form:

𝑈
𝑁
(𝑥, 𝑡) =

𝑁+1

∑
𝑗=−2

𝛿
𝑗
(𝑡) 𝜙
𝑗
(𝑥) , (6)

where 𝛿
𝑗
are time-dependent parameters to be determined

from both boundary and weighted residual conditions. The
nodal values 𝑈

𝑚
, 𝑈󸀠
𝑚
, 𝑈󸀠󸀠
𝑚
, and 𝑈󸀠󸀠󸀠

𝑚
at the knots 𝑥

𝑚
can be

obtained from (5) and (6) in the following form:

𝑈
𝑚

= 𝑈 (𝑥
𝑚
) = 𝛿
𝑚−2

+ 11𝛿
𝑚−1

+ 11𝛿
𝑚
+ 𝛿
𝑚+1

,

𝑈
󸀠

𝑚
= 𝑈
󸀠

(𝑥
𝑚
) =

4

ℎ
(−𝛿
𝑚−2

− 3𝛿
𝑚−1

+ 3𝛿
𝑚
+ 𝛿
𝑚+1

) ,

𝑈
󸀠󸀠

𝑚
= 𝑈
󸀠󸀠

(𝑥
𝑚
) =

12

ℎ2
(𝛿
𝑚−2

− 𝛿
𝑚−1

− 𝛿
𝑚
+ 𝛿
𝑚+1

) ,

𝑈
󸀠󸀠󸀠

𝑚
= 𝑈
󸀠󸀠󸀠

(𝑥
𝑚
) =

24

ℎ3
(−𝛿
𝑚−2

+ 3𝛿
𝑚−1

− 3𝛿
𝑚
+ 𝛿
𝑚+1

) .

(7)

For each element, using the local coordinate transformation

ℎ𝜉 = 𝑥 − 𝑥
𝑚
, 0 ≤ 𝜉 ≤ 1, (8)

a typical finite interval [𝑥
𝑚
, 𝑥
𝑚+1

] is mapped into the interval
[0, 1].Therefore, the quartic B-spline shape functions over the
element [0, 1] can be defined as

𝜙
𝑒

=

{{{{{{{

{{{{{{{
{

𝜙
𝑚−2

= 1 − 4𝜉 + 6𝜉2 − 4𝜉3 + 𝜉4,

𝜙
𝑚−1

= 11 − 12𝜉 − 6𝜉2 + 12𝜉3 − 𝜉4,

𝜙
𝑚

= 11 + 12𝜉 − 6𝜉2 − 12𝜉3 + 𝜉4,

𝜙
𝑚+1

= 1 + 4𝜉 + 6𝜉2 + 4𝜉3 − 𝜉4,

𝜙
𝑚+2

= 𝜉4.

(9)

All other splines, apart from 𝜙
𝑚−2

(𝑥), 𝜙
𝑚−1

(𝑥), 𝜙
𝑚
(𝑥),

𝜙
𝑚+1

(𝑥), and 𝜙
𝑚+2

(𝑥), are zero over the element [0, 1]. So, the
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approximation equation (6) over this element can be written
in terms of basis functions given in (9) as

𝑈
𝑁
(𝜉, 𝑡) =

𝑚+2

∑
𝑗=𝑚−2

𝛿
𝑗
(𝑡) 𝜙
𝑗
(𝜉) , (10)

where 𝛿
𝑚−2

, 𝛿
𝑚−1

, 𝛿
𝑚
, 𝛿
𝑚+1

, and 𝛿
𝑚+2

act as element param-
eters and B-splines 𝜙

𝑚−2
(𝑥), 𝜙

𝑚−1
, 𝜙
𝑚
, 𝜙
𝑚+1

, and 𝜙
𝑚+2

as
element shape functions. Applying the subdomain approach
to (33) with the weight function

𝑊
𝑚
(𝑥) = {

1, 𝑥 ∈ [𝑥
𝑚
, 𝑥
𝑚+1

] ,

0, otherwise
(11)

we obtain the weak form of (2)

∫
𝑥𝑚+1

𝑥𝑚

1. (𝑈
𝑡
+ 𝑈
2

𝑈
𝑥
− V𝑈
𝑥𝑥
) 𝑑𝑥 = 0. (12)

Using the transformation (8) into the weak form (12) and
then integrating (12) term by term with some manipulation
by parts result in

ℎ

5
( ̇𝛿
𝑚−2

+ 26 ̇𝛿
𝑚−1

+ 66 ̇𝛿
𝑚
+ 26 ̇𝛿

𝑚+1
+ ̇𝛿
𝑚+2

)

+ 𝑍
𝑚
(−𝛿
𝑚−2

− 10𝛿
𝑚−1

+ 10𝛿
𝑚+1

+ 𝛿
𝑚+2

)

−
4V
ℎ

(𝛿
𝑚−2

+ 2𝛿
𝑚−1

− 6𝛿
𝑚
+ 2𝛿
𝑚+1

+ 𝛿
𝑚+2

) = 0,

(13)

where the dot denotes differentiation with respect to 𝑡, and

𝑍
𝑚

= (𝛿
𝑚−2

+ 11𝛿
𝑚−1

+ 11𝛿
𝑚
+ 𝛿
𝑚+1

)
2

. (14)

In (13) using the Crank-Nicolson formula and its time deriva-
tive that is discretized by the forward difference approach,
respectively,

𝛿
𝑚

=
𝛿𝑛
𝑚
+ 𝛿𝑛+1
𝑚

2
, ̇𝛿

𝑚
=

𝛿𝑛+1
𝑚

− 𝛿𝑛
𝑚

Δ𝑡
(15)

we obtain a recurrence relationship between the two time
levels 𝑛 and 𝑛 + 1 relating two unknown parameters 𝛿𝑛+1

𝑖
and

𝛿𝑛
𝑖
, for 𝑖 = 𝑚 − 2,𝑚 − 1, . . . , 𝑚 + 2,

𝛼
𝑚1

𝛿
𝑛+1

𝑚−2
+ 𝛼
𝑚2

𝛿
𝑛+1

𝑚−1
+ 𝛼
𝑚3

𝛿
𝑛+1

𝑚
+ 𝛼
𝑚4

𝛿
𝑛+1

𝑚+1

+ 𝛼
𝑚5

𝛿
𝑛+1

𝑚+2

= 𝛼
𝑚6

𝛿
𝑛

𝑚−2
+ 𝛼
𝑚7

𝛿
𝑛

𝑚−1
+ 𝛼
𝑚8

𝛿
𝑛

𝑚
+ 𝛼
𝑚9

𝛿
𝑛

𝑚+1

+ 𝛼
𝑚10

𝛿
𝑛

𝑚+2
,

𝑚 = 0, 1, . . . , 𝑁 − 1,

(16)

where

𝛼
𝑚1

= 1 − 𝐸𝑍
𝑚
− 𝑀, 𝛼

𝑚2
= 26 − 10𝐸𝑍

𝑚
− 2𝑀,

𝛼
𝑚3

= 66 + 6𝑀, 𝛼
𝑚4

= 26 + 10𝐸𝑍
𝑚
− 2𝑀,

𝛼
𝑚5

= 1 + 𝐸𝑍
𝑚
− 𝑀, 𝛼

𝑚6
= 1 + 𝐸𝑍

𝑚
+ 𝑀,

𝛼
𝑚7

= 26 + 10𝐸𝑍
𝑚
+ 2𝑀, 𝛼

𝑚8
= 66 − 6𝑀,

𝛼
𝑚9

= 26 − 10𝐸𝑍
𝑚
+ 2𝑀, 𝛼

𝑚10
= 1 − 𝐸𝑍

𝑚
+ 𝑀,

𝐸 =
5Δ𝑡

2ℎ
, 𝑀 =

20VΔ𝑡
2ℎ2

.

(17)

Obviously, the system (16) consists of 𝑁 equations in the
𝑁+4 unknowns (𝛿

−2
, 𝛿
−1
, . . . , 𝛿

𝑁+1
). To get a unique solution

of the system, we need four additional constraints. These are
obtained from the boundary conditions (3) and can be used to
eliminate 𝛿

−2
, 𝛿
−1
, 𝛿
𝑁
, and 𝛿

𝑁+1
from the system (16) which

then becomes a matrix equation for the 𝑁 unknowns 𝑑 =
(𝛿
0
, 𝛿
1
, . . . , 𝛿

𝑁−1
) of the form

𝐴𝑑
𝑛+1

= 𝐵𝑑
𝑛

. (18)

A lumped value of 𝑍
𝑚
is obtained from (𝑈

𝑚
+ 𝑈
𝑚+1

)
2

/4 as

𝑍
𝑚

=
1

4
(𝛿
𝑚−2

+ 12𝛿
𝑚−1

+ 22𝛿
𝑚
+ 12𝛿

𝑚+1
+ 𝛿
𝑚+2

)
2

. (19)

The resulting system can be solved with a variant of Thomas
algorithm and we need an inner iteration (𝛿∗)

𝑛+1

= 𝛿𝑛 +

(1/2)(𝛿𝑛+1 − 𝛿𝑛) at each time step to cope with the nonlinear
term 𝑍

𝑚
. A typical member of the matrix system (16) is

rewritten in terms of the nodal parameters 𝛿𝑛
𝑚
as

𝛾
1
𝛿
𝑛+1

𝑚−2
+ 𝛾
2
𝛿
𝑛+1

𝑚−1
+ 𝛾
3
𝛿
𝑛+1

𝑚
+ 𝛾
4
𝛿
𝑛+1

𝑚+1
+ 𝛾
5
𝛿
𝑛+1

𝑚+2

= 𝛾
6
𝛿
𝑛

𝑚−2
+ 𝛾
7
𝛿
𝑛

𝑚−1
+ 𝛾
8
𝛿
𝑛

𝑚
+ 𝛾
9
𝛿
𝑛

𝑚+1
+ 𝛾
10
𝛿
𝑛

𝑚+2
,

(20)

where

𝛾
1
= 𝛼 − 𝛽 − 𝜆, 𝛾

2
= 26𝛼 − 10𝛽 − 2𝜆,

𝛾
3
= 66𝛼 + 6𝜆, 𝛾

4
= 26𝛼 + 10𝛽 − 2𝜆,

𝛾
5
= 𝛼 + 𝛽 − 𝜆, 𝛾

6
= 𝛼 + 𝛽 + 𝜆,

𝛾
7
= 26𝛼 + 10𝛽 + 2𝜆, 𝛾

8
= 66𝛼 − 6𝜆,

𝛾
9
= 26𝛼 − 10𝛽 + 2𝜆, 𝛾

10
= 𝛼 − 𝛽 + 𝜆,

𝛼 = 1, 𝛽 = 𝐸𝑍
𝑚
, 𝜆 = 𝑀.

(21)
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Before the solution process begins iteratively, the initial
vector 𝛿0 = (𝛿

0
, 𝛿
1
, . . . , 𝛿

𝑁−1
) must be determined by means

of the following requirements:

𝑈
󸀠

(𝑎, 0) =
4

ℎ
(−𝛿
0

−2
− 3𝛿
0

−1
+ 3𝛿
0

0
+ 𝛿
0

1
) = 0,

𝑈
󸀠󸀠

(𝑎, 0) =
12

ℎ2
(𝛿
0

−2
− 𝛿
0

−1
− 𝛿
0

0
+ 𝛿
0

1
) = 0,

𝑈 (𝑥
𝑚
, 0) = 𝛿

0

𝑚−2
+ 11𝛿

0

𝑚−1
+ 11𝛿

0

𝑚
+ 𝛿
0

𝑚+1
= 𝑓 (𝑥) ,

𝑚 = 0, 1, . . . , 𝑁 − 1,

𝑈
󸀠

(𝑏, 0) =
4

ℎ
(−𝛿
0

𝑁−2
− 3𝛿
0

𝑁−1
+ 3𝛿
0

𝑁
+ 𝛿
0

𝑁+1
) = 0,

𝑈
󸀠󸀠

(𝑏, 0) =
12

ℎ2
(𝛿
0

𝑁−2
− 𝛿
0

𝑁−1
− 𝛿
0

𝑁
+ 𝛿
0

𝑁+1
) = 0.

(22)

If we eliminate the parameters 𝛿0
−2
, 𝛿0
−1
, 𝛿0
𝑁
, and 𝛿0

𝑁+1

from the system (16), we obtain 𝑁 × 𝑁 matrix system of the
following form:

𝐴𝛿
0

= 𝐵, (23)

where 𝐴 is

𝐴 =

[
[
[
[
[

[

18 6
11.5 11.5 1
1 11 11 1

1 11 11 1
2 14 8

]
]
]
]
]

]

, (24)

𝛿0 = [𝛿0
0
, 𝛿0
1
, . . . , 𝛿0

𝑁−1
]
𝑇, and 𝐵 = [𝑈(𝑥

0
, 0), 𝑈(𝑥

1
, 0), . . . ,

𝑈(𝑥
𝑁−1

, 0)]
𝑇. This system is solved by using a variant of

Thomas algorithm.

2.2. Linear Stability Analysis. We have investigated stability
of the scheme by using the vonNeumannmethod. In order to
apply the stability analysis, theMBE needs to be linearized by
assuming that the quantity 𝑈 in the nonlinear term 𝑈2𝑈

𝑥
is

locally constant. The growth factor of a typical Fourier mode
is defined as

𝛿
𝑛

𝑗
= 𝜉
𝑛

𝑒
𝑖𝑗𝑘ℎ

, (25)

where 𝑘 is mode number and ℎ is the element size. Substitut-
ing (37) into the scheme (20), we have

𝑔 =
𝐴
1
+ 𝑖𝑏

𝐴
2
− 𝑖𝑏

, (26)

where
𝐴
1
= (𝛼 − 𝜆) cos (2𝑘ℎ) + (26𝛼 − 2𝜆) cos (𝑘ℎ) + 66 + 6𝜆,

𝐴
2
= (𝛼 + 𝜆) cos (2𝑘ℎ) + (26𝛼 + 2𝜆) cos (𝑘ℎ) + 66 − 6𝜆,

𝑏 = sin (2𝑘ℎ) + 10 sin (𝑘ℎ) .

(27)

We can see that𝐴2
1
< 𝐴2
2
and taking themodulus of (38) gives

|𝑔| ≤ 1, so we find that the scheme (20) is unconditionally
stable.

2.3. Quartic B-Spline Differential Quadrature Method
(QBDQM). DQM can be defined as an approximation to a
derivative of a given function by using the linear summation
of its values at specific discrete nodal points over the solution
domain of a problem. Provided that any given function 𝑈(𝑥)
is enough smooth over the solution domain, its derivatives
with respect to 𝑥 at a nodal point 𝑥

𝑖
can be approximated

by a linear summation of all the functional values in the
solution domain, namely,

𝑈
(𝑟)

𝑥
(𝑥
𝑖
) =

𝑑𝑈(𝑟)

𝑑𝑥(𝑟)
|
𝑥𝑖

=
𝑁

∑
𝑗=1

𝑤
(𝑟)

𝑖𝑗
𝑈(𝑥
𝑗
) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑟 = 1, 2, . . . , 𝑁 − 1,

(28)

where 𝑟 denotes the order of the derivative, 𝑤
(𝑟)

𝑖𝑗
repre-

sent the weighting coefficients of the 𝑟th order derivative
approximation, and 𝑁 denotes the number of nodal points
in the solution domain. Here, the index 𝑗 represents the
fact that 𝑤(𝑟)

𝑖𝑗
is the corresponding weighting coefficient of

the functional value 𝑈(𝑥
𝑗
). We need first- and second-order

derivative of the function 𝑈(𝑥). So, we will find value of (28)
for the 𝑟 = 1, 2. If we consider (28), then it is seen that the
fundamental process for approximating the derivatives of any
given function throughDQM is to find out the corresponding
weighting coefficients 𝑤

(𝑟)

𝑖𝑗
. The main idea of the DQM

approximation is to find out the corresponding weighting
coefficients 𝑤(𝑟)

𝑖𝑗
by means of a set of base functions spanning

the problem domain. While determining the corresponding
weighting coefficients different basis may be used. Using the
quartic B-splines as test functions in the fundamental DQM
equation (28) leads to the equation

𝑑(𝑟)𝑄
𝑚
(𝑥
𝑖
)

𝑑𝑥(𝑟)
=
𝑚+2

∑
𝑗=𝑚−1

𝑤
(𝑟)

𝑖,𝑗
𝑄
𝑚
(𝑥
𝑗
) ,

𝑚 = −1, 0, . . . , 𝑁 + 2, 𝑖 = 1, 2, . . . , 𝑁.

(29)

2.4. First-Order Derivative Approximation. When DQM
methodology is applied, the fundamental equality for deter-
mining the corresponding weighting coefficients of the first-
order derivative approximation is obtained as Korkmaz used
[31]

𝑑𝑄
𝑚
(𝑥
𝑖
)

𝑑𝑥
=
𝑚+2

∑
𝑗=𝑚−1

𝑤
(1)

𝑖,𝑗
𝑄
𝑚
(𝑥
𝑗
) ,

𝑚 = −1, 0, . . . , 𝑁 + 1, 𝑖 = 1, 2, . . . , 𝑁.

(30)

In this process, the initial step for finding out the correspond-
ing weighting coefficients 𝑤(1)

𝑖,𝑗
, 𝑗 = −2, −1, . . . , 𝑁 + 3, of the

first nodal point 𝑥
1
is to apply the test functions 𝑄

𝑚
, 𝑚 =

−1, 0, . . . , 𝑁 + 1, at the nodal point 𝑥
1
. After all the 𝑄

𝑚
test
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functions are applied, we get the following system of algebraic
equation system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 11 11 1
1 11 11 1

d d d d

1 11 11 1
1 11 11 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

1,−2

𝑤
(1)

1,−1

𝑤
(1)

1,0

𝑤
(1)

1,1

𝑤
(1)

1,2

...
𝑤
(1)

1,𝑁+2

𝑤
(1)

1,𝑁+3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
4

ℎ

−
12

ℎ

12

ℎ

4

ℎ

0
...
0
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(31)

The weighting coefficients 𝑤
(1)

1,𝑗
related to the first grid

point are determined by solving the system (31). This system
consists of 𝑁 + 6 unknowns and 𝑁 + 3 equations. To have
a unique solution, it is required to add three additional
equations to the system. These are

𝑑(2)𝑄
−1

(𝑥
1
)

𝑑𝑥(2)
=
1

∑
𝑗=−2

𝑤
(1)

1,𝑗
𝑄
󸀠

−1
(𝑥
𝑗
) ,

𝑑(2)𝑄
𝑁+1

(𝑥
1
)

𝑑𝑥(2)
=
𝑁+3

∑
𝑗=𝑁

𝑤
(1)

1,𝑗
𝑄
󸀠

𝑁+1
(𝑥
𝑗
) ,

𝑑(3)𝑄
𝑁+1

(𝑥
1
)

𝜕𝑥(3)
=
𝑁+3

∑
𝑗=𝑁

𝑤
(1)

1,𝑗
𝑄
󸀠󸀠

𝑁+1
(𝑥
𝑗
) .

(32)

By using these equations which we obtained by derivations,
three unknown terms will be eliminated from the system.
Consider

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2
1 11 11 1

d d d d

1 11 11 1
2 23 23

6 18

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

1,−1

𝑤
(1)

1,0

𝑤
(1)

1,1

𝑤
(1)

1,2

𝑤
(1)

1,3

...
𝑤
(1)

1,𝑁

𝑤
(1)

1,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
7

ℎ

−
12

ℎ

12

ℎ

4

ℎ
0
...
0
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(33)

To determine the weighting coefficients, 𝑤
(1)

𝑘,𝑗
, 𝑗 =

−1, 0, . . . , 𝑁 + 1, at grid points 𝑥
𝑘
, 2 ≤ 𝑘 ≤ 𝑁 − 1, we got

the following algebraic equation system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2
1 11 11 1

d d d d

1 11 11 1
2 23 23

6 18

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

𝑘,−1

...
𝑤
(1)

𝑘,𝑘−3

𝑤
(1)

𝑘,𝑘−2

𝑤
(1)

𝑘,𝑘−1

𝑤
(1)

𝑘,𝑘

𝑤
(1)

𝑘,𝑘+1

𝑤
(1)

𝑘,𝑘+2

...
𝑤
(1)

𝑘,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]
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=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
...
0
−4

ℎ

−12

ℎ

12

ℎ

4

ℎ
0
...
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(34)

For the last grid point of the domain 𝑥
𝑁
, determine

weighting coefficients, 𝑤(1)
𝑁,𝑗

, 𝑗 = −1, 0, . . . , 𝑁 + 1, we got the
following algebraic equation system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2
1 11 11 1

d d d d

1 11 11 1
2 23 23

6 18

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(1)

𝑁,−1

𝑤
(1)

𝑁,0

...
𝑤
(1)

𝑁,𝑁−3

𝑤
(1)

𝑁,𝑁−2

𝑤
(1)

𝑁,𝑁−1

𝑤
(1)

𝑁,𝑁

𝑤
(1)

𝑁,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
0
...
0
−4

ℎ

−12

ℎ

53

2ℎ

17

ℎ

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(35)

2.5. Second-Order Derivative Approximation. The general
form of DQM approximation to the problem on the solution
domain is

𝑑2𝑄
𝑚

𝑑𝑥2
(𝑥
𝑖
) =
𝑚+2

∑
𝑗=𝑚−1

𝑤
(2)

𝑖,𝑗
𝑄
𝑚
(𝑥
𝑗
) ,

𝑚 = −1, 0, . . . , 𝑁 + 1, 𝑖 = 1, 2, . . . , 𝑁,

(36)

Table 1: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.005, Δ𝑡 = 0.01, and

V = 0.001 (SFEM).

Time 𝐿
2
× 103 𝐿

∞
× 103

2 0.0054945 0.0282049
3 0.0082404 0.0422421
4 0.0109858 0.0562280
5 0.0137296 0.0701566
6 0.0164729 0.0840427
7 0.0192154 0.0978975
8 0.0219573 0.1116934
9 0.0246985 0.1254466
10 0.0274379 0.1391304

where 𝑤
(2)

𝑖,𝑗
represents the corresponding weighting coeffi-

cients of the second-order derivative approximations. Simi-
larly, for finding out the weighting coefficients of the first grid
point 𝑥

1
all test functions 𝑄

𝑚
,𝑚 = −1, 0, . . . , 𝑁 + 1, are used

and the following algebraic equations system is obtained:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 11 11 1
1 11 11 1

d d d d

1 11 11 1
1 11 11 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

1,−2

𝑤
(2)

1,−1

𝑤
(2)

1,0

𝑤
(2)

1,1

𝑤
(2)

1,2

...
𝑤
(2)

1,𝑁+2

𝑤
(2)

1,𝑁+3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

12

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2
0
...
0
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(37)

Here, the system (37) consists of 𝑁 + 6 unknowns and
𝑁 + 3 equations. To have a unique solution, it is required to
add new equations to the system. These are

𝑑3𝑄
−1

(𝑥
1
)

𝑑𝑥3
=
1

∑
𝑗=−2

𝑤
(1)

1,𝑗
𝑄
󸀠

−1
(𝑥
𝑗
) , (38)
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𝑑3𝑄
𝑁+1

(𝑥
1
)

𝑑𝑥3
=
𝑁+3

∑
𝑗=𝑁

𝑤
(1)

1,𝑗
𝑄
󸀠

𝑁+1
(𝑥
𝑗
) . (39)

If we used (38) and (39) we obtain the following equations
system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2
1 11 11 1

d d d d

1 11 11 1
2 14 8

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

1,−1

𝑤
(2)

1,0

𝑤
(2)

1,1

𝑤
(2)

1,2

𝑤
(2)

1,3

...
𝑤
(2)

1,𝑁+1

𝑤
(2)

1,𝑁+2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

18

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2

0
...
0
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(40)

Quartic B-splines have not got fourth-order derivations at
the grid points so we cannot eliminate the unknown term
𝑤
(2)

1,𝑁+2
by the one more derivation of (39). We will use

first-order weighting coefficients instead of second-order
weighting coefficients which are introduced by Shu [32]

𝑤
(2)

𝑖,𝑗
= 2𝑤
(1)

𝑖,𝑗
(𝑤
(1)

𝑖,𝑖
−

1

𝑥
𝑖
− 𝑥
𝑗

) , 𝑖 ̸=𝑗. (41)

After we use (41),

𝐴
1
= 𝑤
(2)

1,𝑁+2
= 2𝑤
(1)

1,𝑁+2
(𝑤
(1)

1,1
−

1

𝑥
1
− 𝑥
𝑁+2

) ,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2
1 11 11 1

d d d d

1 11 11
2 14

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

1,−1

𝑤
(2)

1,0

𝑤
(2)

1,1

𝑤
(2)

1,2

𝑤
(2)

1,3

...
𝑤
(2)

1,𝑁

𝑤
(2)

1,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

18

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2
0
...

−𝐴
1

−8𝐴
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(42)

system (42) is obtained. To determine the weighting coeffi-
cients 𝑤(2)

𝑘,𝑗
, 𝑗 = −1, 0, . . . , 𝑁 + 1, at grid points 𝑥

𝑘
, 2 ≤ 𝑘 ≤

𝑁 − 1, we got the following algebraic system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2
1 11 11 1

d d d d

1 11 11
2 14

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

𝑘,−1

...
𝑤
(2)

𝑘,𝑘−3

𝑤
(2)

𝑘,𝑘−2

𝑤
(2)

𝑘,𝑘−1

𝑤
(2)

𝑘,𝑘

𝑤
(2)

𝑘,𝑘+1

𝑤
(2)

𝑘,𝑘+2

...
𝑤
(2)

𝑘,𝑁−1

𝑤
(2)

𝑘,𝑁

𝑤
(2)

𝑘,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]
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Table 2: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.005, Δ𝑡 = 0.001, and

V = 0.005 (SFEM).

Time 𝐿
2
× 103 𝐿

∞
× 103

2 0.0246966 0.0845689
3 0.0370384 0.1266222
4 0.0493707 0.1684362
5 0.0616997 0.2101319
6 0.0740253 0.2516392
7 0.0863444 0.2930178
8 0.0986573 0.3341922
9 0.1109636 0.3752457
10 0.1232629 0.4160477

Table 3: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.005, Δ𝑡 = 0.01, and

V = 0.01 (SFEM).

Time 𝐿
2
× 103 𝐿

∞
× 103

2 0.0978574 0.2806243
3 0.1467089 0.4185981
4 0.1955072 0.5550286
5 0.2442506 0.6898713
6 0.2929396 0.8238629
7 0.3415703 0.9566688
8 0.3901436 1.0881289
9 0.4386580 1.2182231
10 0.4871136 1.3469237

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
...
12

ℎ2

−
12

ℎ2

−
12

ℎ2

12

ℎ2

0

...
0

−𝐴
𝑘

−8𝐴
𝑘

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(43)

where𝐴
𝑘
equals𝐴

𝑘
= 𝑤
(2)

𝑘,𝑁+2
= 2𝑤
(1)

𝑘,𝑁+2
(𝑤
(1)

𝑘,𝑘
−1/(𝑥

𝑘
−𝑥
𝑁+2

)).
For the last grid point of the domain 𝑥

𝑁
with the

same idea, determine weighting coefficients 𝑤
(2)

𝑁,𝑗
, 𝑗 =

Table 4: 𝐿
2
and 𝐿

∞
error norms for ℎ = 0.02, Δ𝑡 = 0.01, and V =

0.01 (SFEM).

Time 𝐿
2
× 103 𝐿

∞
× 103

2 0.0973818 0.2802526
3 0.1460008 0.4184872
4 0.1945704 0.5554121
5 0.2430873 0.6910062
6 0.2915506 0.8252312
7 0.3399602 0.9580433
8 0.3883156 1.0894413
9 0.4366131 1.2194111
10 0.4848547 1.3479880

−1, 0, . . . , 𝑁 + 1, we got the following algebraic equation
system:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

8 14 2
1 11 11 1

d d d d

1 11 11
2 14

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑤
(2)

𝑁,−1

𝑤
(2)

𝑁,0

...
𝑤
(2)

𝑁,𝑁−3

𝑤
(2)

𝑁,𝑁−2

𝑤
(2)

𝑁,𝑁−1

𝑤
(2)

𝑁,𝑁

𝑤
(2)

𝑁,𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
0
...
0
12

ℎ2

−
12

ℎ2

−
12

ℎ2
− 𝐴
𝑁

18

ℎ2
− 8𝐴
𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(44)

where 𝐴
𝑁
equals 𝐴

𝑁
= 𝑤
(2)

𝑁,𝑁+2
= 2𝑤
(1)

𝑁,𝑁+2
(𝑤
(1)

𝑁,𝑁
− 1/(𝑥

𝑁
−

𝑥
𝑁+2

)).

3. Test Problem and Experimental Results

In this section, we obtained numerical solutions of the MBE
by the subdomain finite element method and differential
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Table 5: 𝐿
2
and 𝐿

∞
error norms for V = 0.01, Δ𝑡 = 0.01, and ℎ = 0.02.

Time QBDQM [ℎ = 0.02] Ramadan et al. [13] [ℎ = 0.02]

𝐿
2
× 103 𝐿

∞
× 103 𝐿

2
× 103 𝐿

∞
× 103

2 0.7955855586 1.3795978925 0.7904296620 1.7030921188

3 0.6690533313 1.1943543646 0.6551928290 1.1832698216

4 0.5250528343 0.9764154381 0.5576794264 0.9964523368

5 0.4048512821 0.7849457015 0.5105617536 0.8561342445

6 0.3452210304 0.6374950443 0.5167229575 0.7610530060

7 0.3638648688 0.6705419608 0.5677438614 1.0654548090

8 0.4337013450 0.9863405006 0.6427542266 1.3581113635

9 0.5197862999 1.2551335234 0.7236430257 1.6048306653

10 0.6042925888 1.4747885309 0.8002564201 1.8023938553

Table 6: 𝐿
2
and 𝐿

∞
error norms for V = 0.01,Δ𝑡 = 0.01, and𝑁 = 81

at 0 ≤ 𝑥 ≤ 1.3.

Time QBDQM
𝐿
2
× 103 𝐿

∞
× 103

2 0.7607107169 1.3704182195
3 0.6480181273 1.1854984190
4 0.5604986926 1.0052476452
5 0.4927784148 0.8654032419
6 0.4359075842 0.7531551023
7 0.3885737191 0.6601326512
8 0.3520185942 0.5833334970
9 0.3282544303 0.5201323663
10 0.3187570280 0.4691560472

quadrature method. The accuracy of the numerical method
is checked using the error norms 𝐿

2
and 𝐿

∞
, respectively,

𝐿
2
=
󵄩󵄩󵄩󵄩󵄩𝑈

exact
− 𝑈
𝑁

󵄩󵄩󵄩󵄩󵄩2
≃ √ℎ

𝑁

∑
𝐽=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑈exact
𝑗

− (𝑈
𝑁
)
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

2

,

𝐿
∞

=
󵄩󵄩󵄩󵄩󵄩𝑈

exact
− 𝑈
𝑁

󵄩󵄩󵄩󵄩󵄩∞
≃ max
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑈

exact
𝑗

− (𝑈
𝑁
)
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑗 = 1, 2, . . . , 𝑁 − 1.

(45)

All numerical calculations were computed in double pre-
cision arithmetic on a Pentium4PCusing a Fortran compiler.
The analytical solution of modified Burgers’ equation is given
in [33] as

𝑈 (𝑥, 𝑡) =
(𝑥/𝑡)

1 + (√𝑡/𝑐
0
) exp (𝑥2/4V𝑡)

, (46)

where 𝑐
0
is a constant and 0 < 𝑐

0
< 1. For our numerical

calculation, we take 𝑐
0
= 0.5. We use the initial condition for

(46), evaluating at 𝑡 = 1, and the boundary conditions are
taken as 𝑈(0, 𝑡) = 𝑈

𝑥
(0, 𝑡) = 0 and 𝑈(1, 𝑡) = 𝑈

𝑥
(1, 𝑡) = 0.

3.1. Experimental Results for FEM. For the numerical sim-
ulation, we have chosen the various viscosity parameters
V = 0.01, 0.001, 0.005, space steps ℎ = 0.02, 0.005, and

0.000
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0.015

0.020

0.025

U
(
x
,
t
)

0.0 0.2 0.4 0.6 0.8 1.0

x
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t = 2

t = 4

t = 6
t = 8

Figure 1: Solution behavior of the equation with ℎ = 0.005, 𝑡 = 0.01,
and V = 0.01.

time steps Δ𝑡 = 0.01, 0.001 over the interval 0 ≤ 𝑥 ≤ 1.
The computed values of the error norms 𝐿

2
and 𝐿

∞
are

presented at some selected times up to 𝑡 = 10. The obtained
results are tabulated in Tables 1, 2, 3, and 4. It is clearly seen
that the results obtained by the SFEM are found to be more
acceptable. Also, we observe from these tables that if the
value of viscosity decreases, the value of the error norms will
decrease.When the value of viscosity parameter is smaller we
get better results.The behaviors of the numerical solutions for
viscosity V = 0.01, 0.005, 0.001, space steps ℎ = 0.02, 0.005,
and time steps Δ𝑡 = 0.01, 0.001 at times 𝑡 = 1, 2, 4, 6, and 8
are shown in Figures 1, 2, and 3. As seen in the figures, the top
curve is at 𝑡 = 1 and the bottom curve is at 𝑡 = 8. Also, we
have observed from the figures that as the time increases the
curve of the numerical solution decays.With smaller viscosity
value, numerical solution decay gets faster.

3.2. Experimental Results for QBDQM. We calculate the
numerical rates of convergence (ROC) with the help of the
following formula:

ROC ≈
ln (𝐸 (𝑁

2
) /𝐸 (𝑁

1
))

ln (𝑁
1
/𝑁
2
)

. (47)
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Table 7: 𝐿
2
and 𝐿

∞
error norms for V = 0.001, Δ𝑡 = 0.01, and ℎ = 0.005.

Time QBDQM Ramadan et al. [13]
𝐿
2
× 103 𝐿

∞
× 103 𝐿

2
× 103 𝐿

∞
× 103

2 0.1370706949 0.4453892504 0.1835491190 0.8185211112
3 0.1168507335 0.3842839811 0.1441424335 0.5234833346
4 0.1019761971 0.3258391192 0.1144110783 0.3563537207
5 0.0920706001 0.2816616769 0.0947865272 0.2549790058
6 0.0849484881 0.2484289381 0.0814174677 0.2134847835
7 0.0794570772 0.2225471690 0.0718977757 0.1880048432
8 0.0750035859 0.2019577762 0.0648368942 0.1682601770
9 0.0712618898 0.1851510002 0.0594114970 0.1524074966
10 0.0680382860 0.1711033543 0.0551151456 0.1394312127

Table 8: Error norms and rate of convergence for various numbers
of grid points at 𝑡 = 10.

𝑁 𝐿
2
× 103 ROC(𝐿

2
) 𝐿

∞
× 103 ROC(𝐿

∞
)

11 0.43 — 0.98 —
21 0.35 0.31 0.88 0.16
31 0.22 1.19 0.52 1.35
41 0.17 0.92 0.39 1.02
51 0.14 0.88 0.30 1.20
81 0.10 0.72 0.19 0.98
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Figure 2: Solution behavior of the equation with ℎ = 0, 005, 𝑡 =

0, 01, and V = 0.001.

Here 𝐸(𝑁
𝑗
) denotes either the 𝐿

2
error norm or the 𝐿

∞

error norm in case of using 𝑁
𝑗
grid points. Therefore, some

further numerical runs for different numbers of space steps
have been performed. Ultimately, some computations have
been made about the ROC by assuming that these methods
are algebraically convergent in space. Namely, we suppose
that 𝐸(𝑁) ∼ 𝑁𝑝 for some 𝑝 < 0 when 𝐸(𝑁) denotes the
𝐿
2
or the 𝐿

∞
error norms by using𝑁 subintervals.

For the numerical treatment, we have taken the different
viscosity parameters V = 0.01, 0.001 and time step Δ𝑡 = 0.01
over the intervals 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑥 ≤ 1.3. As it
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Figure 3: Solution behavior of the equation with ℎ = 0, 02, 𝑡 = 0, 01,
and V = 0.01.

is seen from Figure 4 when we select the solution domain
0 ≤ 𝑥 ≤ 1 the right part of the shock wave cannot be seen
clearly. By using the larger domain like 0 ≤ 𝑥 ≤ 1.3 as
seen in Figure 5 solution is got better than narrow domain
0 ≤ 𝑥 ≤ 1 shown in Figure 4. The computed values of the
error norms 𝐿

2
and 𝐿

∞
are presented at some selected times

up to 𝑡 = 10. The obtained results are recorded in Tables
5 and 6. As it is seen from the tables, the error norms 𝐿

2

and 𝐿
∞

are sufficiently small and satisfactorily acceptable.
We obtain better results if the value of viscosity parameter is
smaller, as shown in Table 7. The behaviors of the numerical
solutions for viscosity V = 0.01 and 0.001 and time step
Δ𝑡 = 0.01 at times 𝑡 = 1, 3, 5, 7, and 9 are shown in Figures
4–6. It is observed from the figures that the top curve is at
𝑡 = 1 and the bottom curve is at 𝑡 = 9. It is obviously
seen that smaller viscosity value V in shock wave with smaller
amplitude and propagation front becomes smoother. Also,
we have seen from the figures that, as the time increases, the
curve of the numerical solution decays.With smaller viscosity
value, numerical solution decay gets faster. These numerical
solutions graphs also agree with published earlier work [13].
Distributions of the error at time 𝑡 = 10 are drawn for solitary
waves, Figures 7 and 8, from which maximum error happens
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Table 9: Comparison of our results with earlier studies.

Values and methods 𝐿
2
× 103 𝐿

∞
× 103 𝐿

2
× 103 𝐿

∞
× 103

𝑡 = 2 𝑡 = 2 𝑡 = 10 𝑡 = 10

V = 0.005, Δ𝑡 = 0.001, ℎ = 0.005

SFEM 0.02469 0.08456 0.12326 0.41604
[14] 0.25786 0.72264 0.18735 0.30006
[17] SBCM1 0.22890 0.58623 0.14042 0.23019
[17] SBCM2 0.23397 0.58424 0.13747 0.22626

V = 0.001, Δ𝑡 = 0.01, ℎ = 0.005

SFEM 0.00549 0.02820 0.02743 0.13913
QBDQM 0.13707 0.44538 0.06803 0.17110
[13] 0.18354 0.81852 0.05511 0.13943
[14] 0.06703 0.27967 0.05010 0.12129
[17] SBCM1 0.06843 0.26233 0.04080 0.10295
[17] SBCM2 0.07220 0.25975 0.03871 0.09882
[18] 0.06607 0.26186 0.04160 0.10470

V = 0.01, Δ𝑡 = 0.01, and ℎ = 0.005

SFEM 0.09785 0.28062 0.48711 1.34692
[14] 0.52308 1.21698 0.64007 1.28124
[17] SBCM1 0.38489 0.82934 0.54826 1.28127
[17] SBCM2 0.39078 0.82734 0.54612 1.28127
[18] 0.37552 0.81766 0.19391 0.23074

V = 0.01, Δ𝑡 = 0.01, and ℎ = 0.02

SFEM 0.09738 0.28025 0.48485 1.34798
QBDQM 0.79558 1.37959 0.60429 1.47478
[13] 0.79042 1.70309 0.80025 1.80239
[17] SBCM1 0.38474 0.82611 0.55985 1.28127
[17] SBCM2 0.41321 0.81502 0.55095 1.28127

at the right hand boundary when greater value of viscosity
V = 0.01 is used, andwith smaller value of viscosity V = 0.001,
maximum error is recorded around the location where shock
wave has the highest amplitude. The 𝐿

2
and 𝐿

∞
error norms

and numerical rate of convergence analysis for V = 0.001 and
Δ𝑡 = 0.01 and different numbers of grid points are tabulated
in Table 8.

Table 9 presents a comparison of the values of the error
norms obtained by the present methods with those obtained
by other methods [13, 14, 17, 18]. It is clearly seen from the
table that the error norm 𝐿

2
obtained by the SFEM is smaller

than those given in [13, 14, 17, 18] whereas the error norm 𝐿
∞

is very close to those given in [14, 17, 18]. The error norm 𝐿
∞

is better than the paper [13]. For the QBDQM both 𝐿
2
and

𝐿
∞

are almost the same as these papers.

4. Conclusion

In this paper, SFEM and DQM based on quartic B-splines
have been set up to find the numerical solution of the MBE
(2). The performance of the schemes has been considered
by studying the propagation of a single solitary wave. The
efficiency and accuracy of the methods were shown by
calculating the error norms 𝐿

2
and 𝐿

∞
. Stability analysis of

the approximation obtained by the schemes shows that the

0.00

0.01

0.02

0.03

0.04

0.05

U

0.0 0.2 0.4 0.6 0.8 1.0

x

t = 1

t = 5

t = 3 t = 9

t = 7

Figure 4: Solutions for V = 0.01, ℎ = 0.02, Δ𝑡 = 0.01, and 0 ≤ 𝑥 ≤ 1.

methods are unconditionally stable. An obvious conclusion
can be drawn from the numerical results that for the SFEM
𝐿
2
error norm is found to be better than the methods cited in
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Figure 5: Solutions for V = 0.01, ℎ = 0.02, Δ𝑡 = 0.01, and 0 ≤ 𝑥 ≤

1.3.
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Figure 6: Solutions for V = 0.001, Δ𝑡 = 0.01,𝑁 = 166, and 0 ≤ 𝑥 ≤

1.

[13, 14, 17, 18] whereas𝐿
∞
error norm is found to be very close

to values given in [13, 14, 17, 18]. The obtained results show
that our methods can be used to produce reasonable accurate
numerical solutions of modified Burgers’ equation. So these
methods are reliable for getting the numerical solutions of the
physically important nonlinear problems.
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The study of nonlinear Schrödinger systems with quadratic interactions has attracted much attention in the recent years. In this
paper, we summarize time decay estimates of small solutions to the systems under the mass resonance condition in 2-dimensional
space. We show the existence of wave operators and modified wave operators of the systems under some mass conditions in 𝑛-
dimensional space, where 𝑛 ≥ 2. The existence of scattering operators and finite time blow-up of the solutions for the systems in
higher space dimensions is also shown.

1. Introduction

In this paper we survey recent progress on asymptotic
behavior of solutions to nonlinear Schrödinger system,

𝑖𝜕
𝑡
V
𝑗
+
1

2𝑚
𝑗

ΔV
𝑗
= 𝐹

𝑗
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, . . . , V

𝑙
) + 𝐺

𝑗
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𝑗
) ,
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𝑛

,
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𝑗
(0, 𝑥) = 𝜙

𝑗
, 𝑥 ∈ R

𝑛

,

(1)

based on papers [1–9], where 1 ≤ 𝑗 ≤ 𝑙, V
𝑗
is the complex

conjugate of V
𝑗
, 𝑚
𝑗
is a mass of particle, and nonlinearities

have the form

𝐹
𝑗
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(2)
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𝑚,𝑘
, 𝜇
𝑗
∈ C.

(3)

Nonlinear Schrödinger systems with quadratic interac-
tions are physically important subjects (see, e.g., [10] and
references cited therein). The quadratic nonlinearities of
nonlinear Schrödinger systems in two space dimensions are
interesting mathematical problems since they are regarded
as the borderline between short range and long range inter-
actions. In this case, asymptotic behavior of solutions to
nonlinear systems is different from that to linear systems
under mass resonance conditions and is the same as that to
linear systems undermass nonresonance conditions. Namely,
it is impossible to find solutions of nonlinear systems in
the neighborhood of those of linear systems under mass
resonance conditions.

If𝐹
𝑗
(V
𝑗
) ≡ 0, then we have a single nonlinear Schrödinger

equation:

𝑖𝜕
𝑡
V
𝑗
+
1

2𝑚
𝑗

ΔV
𝑗
= 𝜇

𝑗

󵄨󵄨󵄨󵄨󵄨V𝑗
󵄨󵄨󵄨󵄨󵄨 V𝑗. (4)

There are a lot of works on this subject since the work by
Ginibre and Velo [11] which is considered a milestone of the
field. We refer the text book by Cazenave [12] concerning the
development on studies of (4) for details.
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It is interesting to compare (1) with the system of nonlin-
ear Klein-Gordon equations
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(5)

in (𝑡, 𝑥) ∈ R × R𝑛 for 1 ≤ 𝑗 ≤ 𝑙, under the gauge invariant
condition
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for any 𝜃 ∈ R, where 𝑐 is the speed of light. If we let 𝑢
𝑗
=

𝑒−𝑖𝑡𝑚𝑗𝑐
2
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in (5), then by the condition (6) we find that V

𝑗

satisfies
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(7)

with 𝜃 = 𝑡𝑐2 for 1 ≤ 𝑗 ≤ 𝑙. Therefore nonrelativistic version
of (5) can be obtained by letting 𝑐 → ∞ in (7) formally,
which is (1). The first breakthrough on asymptotic behavior
of solutions to (5) with 𝐺

𝑗
≡ 0 was made by Klainerman [13]

and Shatah [14] independently when 𝑛 = 3. Their result was
improved by a paper [15].

It is natural to require the L2(R𝑛) conservation law of
solutions to (1) from the point of view of quantummechanics.
A sufficient condition is

Im
𝑙

∑
𝑗=1

𝑐
𝑗
𝐹
𝑗
V
𝑗
= 0, (8)

where 𝑐
𝑗
> 0 for 1 ≤ 𝑗 ≤ 𝑙; then we have L2(R𝑛) conservation

law and as a result global existence in time of solutions to
(1) is obtained by combining the conserved identity and the
Strichartz estimate for 𝑛 ≤ 4 (see [16] in which a single
equation was considered and the proof used in [16] works for
the system).

We now introduce some function spaces to present exact
statements of our results. For any 𝑚, 𝑠 ∈ R and 1 ≤ 𝑝 ≤ ∞,
weighted Sobolev spaceH𝑚,𝑠

𝑝
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that Ḃ𝑠
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(R𝑛) = Ḣ𝑠,0(R𝑛) (see [17]). We let C(I;E) be the

space of continuous functions from an interval I to a Banach
space E. Different positive constants might be denoted by the
same letter 𝐶. The homogeneous Sobolev spaces Ḣ𝑚,0(R𝑛)
and Ḣ0,𝑠(R𝑛) are defined by
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respectively. We define the dilation operator by
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where F, F−1 are the Fourier transform and the inverse
Fourier transform, respectively. We also have
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where 𝑗 ∈ {1, . . . , 𝑙} and 𝑘 ∈ {1, . . . , 𝑛} is an important tool
to study time decay of solutions to nonlinear Schrödinger
equations satisfying the gauge invariant condition (6) since
it acts as a differential operator. Fractional power of 𝐽

1/𝑚𝑗
is

defined as
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for 𝑡 ̸=0. Moreover, for 𝐿
1/𝑚𝑗

= 𝑖𝜕
𝑡
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)Δ, we have

commutation relations such that
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Remark 1. The system (1) includes some important nonlinear
Schrödinger systems from the physical point of view. For
example, the following system appears in a physical model
(see e.g., [10, 19]):
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𝑖𝜕
𝑡
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+
1

2𝑚
3

ΔV
3
= −
󵄨󵄨󵄨󵄨V3
󵄨󵄨󵄨󵄨 V3 − V1V2,

(21)

in (𝑡, 𝑥) ∈ R×R2, where𝑚
𝑗
is amass of particle for 𝑗 = 1, 2, 3.

In [10], the system (21) has been derived as amodel describing
nonlinear interactions between a laser beam and a plasma.
In [19], the stability of solitary waves for the system (21) was
investigated.

This paper is organized as follows. Section 2 is devoted to
present our recent works and some remarks. From Section 2.1
to Section 2.5, we consider the asymptotic behavior of solu-
tions to nonlinear Schrödinger systems. In Section 2.1, we
survey the results on the time decay estimates of solutions to
nonlinear Schrödinger systems for 𝑛 = 2 shown in [4–7, 9]. In
Section 2.2, wave operators of nonlinear Schrödinger systems
are investigated for 𝑛 = 2 based on a paper [1]. Section 2.3
is concerned with the study of modified wave operators for
𝑛 = 2 from a paper [1]. In the last two subsections, we survey
the results in [2, 3]. In the last section we consider the related
and open problems.

2. Nonlinear Schrödinger Systems

2.1. Time Decay of Solutions to Nonlinear Schrödinger Systems
in Two Space Dimensions. To state time decay of solutions to
nonlinear Schrödinger systems for 𝑛 = 2, we start with time
decay estimates of solutions to linear Schrödinger systems.

For (1), the corresponding linear system is written as

𝑖𝜕
𝑡
V
𝑗
+
1

2𝑚
𝑗

ΔV
𝑗
= 0, 𝑡 ∈ R, 𝑥 ∈ R

2

,

V
𝑗
(0, 𝑥) = 𝜙

𝑗
, 𝑥 ∈ R

2

,

(22)

where 1 ≤ 𝑗 ≤ 𝑙.
As we know the solution V

𝑗
(𝑡) of (22) is represented as

V
𝑗
(𝑡) = 𝑈

1/𝑚𝑗
(𝑡)𝜙

𝑗
. It is known that V

𝑗
(𝑡) is decomposed into

a main term and a remainder one as

𝑈
1/𝑚𝑗
(𝑡) 𝜙

𝑗
= 𝑒
(𝑖𝑚𝑗/2𝑡)|𝑥|

2𝑚
𝑗

𝑖𝑡
F𝜙

𝑗
(
𝑚
𝑗
𝑥

𝑡
) + 𝑅

𝑗
(23)

for 𝑛 = 2, where 𝑅
𝑗
decays rapidly in time; indeed we have

the estimate
󵄩󵄩󵄩󵄩󵄩𝑅𝑗
󵄩󵄩󵄩󵄩󵄩L∞(R2) ≤ 𝐶|𝑡|

−1−(𝛾/2)󵄩󵄩󵄩󵄩󵄩𝜙𝑗
󵄩󵄩󵄩󵄩󵄩Ḣ0,1+𝛾(R2), 0 ≤ 𝛾 ≤ 1, (24)

for 𝑡 ̸=0. By ‖𝑈
1/𝑚𝑗
(𝑡)V

𝑗
‖
L2(R2)

= ‖V
𝑗
‖L2(R2) and L∞(R2) −

L1(R2) time decay estimate

󵄩󵄩󵄩󵄩󵄩󵄩
𝑈
1/𝑚𝑗
(𝑡)V

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩L∞(R2)
≤ (
2𝜋

𝑚
𝑗

|𝑡|)

−1

󵄩󵄩󵄩󵄩󵄩V𝑗
󵄩󵄩󵄩󵄩󵄩L1(R2)

(25)

for 𝑡 ̸=0, we have the following time decay estimates through
the interpolation theorem (see [12]).

Theorem 2. Let 2 ≤ 𝑝 ≤ ∞, and let 𝑝, 𝑝󸀠 be conjugate indices,
𝑡 ̸=0. Then we have 𝑈

1/𝑚𝑗
(𝑡) : L𝑝

󸀠

(R2) → L𝑝(R2) which are
bounded operators and satisfy

󵄩󵄩󵄩󵄩󵄩󵄩
𝑈
1/𝑚𝑗
(𝑡)V

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩L𝑝(R2)
≤ (
2𝜋

𝑚
𝑗

|𝑡|)

−2((1/2)−(1/𝑝))

󵄩󵄩󵄩󵄩󵄩V𝑗
󵄩󵄩󵄩󵄩󵄩L𝑝󸀠 (R2)

(26)

for 𝑗 = 1, . . . , 𝑙.

Now we consider a special type of the system (1),

𝑖𝜕
𝑡
𝑢
1
+
1

2𝑚
1

Δ𝑢
1
= 𝜆𝑢

1
𝑢
2
,

𝑖𝜕
𝑡
𝑢
2
+
1

2𝑚
2

Δ𝑢
2
= 𝜇𝑢

2

1
,

(27)

in (𝑡, 𝑥) ∈ R×R2, where𝑚
1
and𝑚

2
are themasses of particles

and 𝜆, 𝜇 ∈ C. If we let 𝑢
1
= (1/√|𝜆𝜇|)V

1
and 𝑢

2
= (𝜇/|𝜆𝜇|)V

2

in the above system, then we obtain the system as below

𝑖𝜕
𝑡
V
1
+
1

2𝑚
1

ΔV
1
= 𝛾V

1
V
2
,

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= V2
1
,

(28)

in (𝑡, 𝑥) ∈ R × R2, where 𝛾 = 𝜆𝜇/|𝜆𝜇| ∈ C. Therefore we
survey the results on time decay of solutions to the system
(28). The first result was obtained in [4].

Theorem 3 (see [4]). Assume that 2𝑚
1
= 𝑚

2
and 𝛾 = 1. Then

there exists 𝜀 > 0 such that (28) with the initial data

V (0) = (V
1
(0) , V

2
(0)) = (𝜙

1
, 𝜙
2
) = 𝜙 (29)

has a unique global solution

V = (V
1
, V
2
) ∈ C (R;H2 (R2) ∩H0,2 (R2)) (30)

for any (𝜙
1
, 𝜙
2
) ∈ H2(R2) ∩H0,2(R2) satisfying

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩H2(R2)∩H0,2(R2) =

2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝜙𝑗
󵄩󵄩󵄩󵄩󵄩H2(R2)∩H0,2(R2) ≤ 𝜀. (31)

Moreover the time decay estimate

‖V (𝑡, ⋅)‖L∞(R2) =
2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩V𝑗 (𝑡, ⋅)
󵄩󵄩󵄩󵄩󵄩L∞(R2) ≤ 𝐶(1 + |𝑡|)

−1 (32)

is true for all 𝑡 ∈ R.
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In Theorem 3, the main result is L∞(R2) time decay
estimates of solutions of (28) and which is the same rate as
that of the corresponding free solutions.

When 𝛾 = 1, (28) satisfies the condition (8). Under the
condition, 𝛾 = 1, (28) obeys theL2(R2) conservation law such
that

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩
2

L2(R2) +
󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

L2(R2)) = 0. (33)

In the case of the mass resonance condition 2𝑚
1
= 𝑚

2
,

(28) satisfies the condition (6). Global existence of small
solutions for (28) is obtained from the conservation law and
the Strichartz estimate. L∞(R2) time decay of small solutions
for (28) is proved through a priori estimates of local solutions
in the norm ‖F𝑈

1/𝑚𝑗
(−𝑡)V

𝑗
‖
L∞(R2)

. The similar idea has
been used for construction of H2,2(R2) solutions to a single
nonlinear Schrödinger equation by a paper [20]. Theorem 3
extends this idea to (28). The main point in the proof of the
result is to derive the ordinary differential equation

𝑖𝜕
𝑡
𝜓
1
= 𝛾𝑡

−1

𝜓
1
𝜓
2
+ 𝑂 (𝑡

−1−𝜀

) ,

𝑖𝜕
𝑡
𝜓
2
= 𝑡
−1

𝜓
2

1
+ 𝑂 (𝑡

−1−𝜀

) ,

(34)

under the condition 2𝑚
1
= 𝑚

2
by using the factorization

formulas of Schrödinger evolution group stated in Section 1,
where 𝜓

𝑗
= 𝐷

1/𝑚𝑗
F𝑈

1/𝑚𝑗
(−𝑡)V

𝑗
for 𝑗 = 1, 2 and 𝜀 >

0. Asymptotic behavior in time of solutions of (28) is
determined by that of the ordinary differential equations (34).
The main task is to show that remainder terms are estimated
from above by𝑂(𝑡−1−𝜀)which is integrable in time.This is the
reason why we use the condition such that the data must be
inH0,𝛽(R2), 𝛽 > 1.

The system (1) is a generalization of (28). For the system
(1), we have global existence theorem and time decay esti-
mates as follows.

Theorem 4 (see [5]). One assumes that 𝜙 = (𝜙
1
, . . . , 𝜙

𝑙
) ∈

H2,2(R2) and 𝐹
𝑗
satisfies the conditions (6) and (8) for each

𝑗 ∈ {1, . . . , 𝑙}. Then there exists 𝜀 > 0 such that (1) has a unique
global solution

V = (V
1
, . . . , V

𝑙
) ∈ C (R;H2,2 (R2)) (35)

for any 𝜙 = (𝜙
1
, . . . , 𝜙

𝑙
) ∈ H2,2(R2) satisfying

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩H2,2(R2) =

𝑙

∑
𝑖=1

󵄩󵄩󵄩󵄩𝜙𝑖
󵄩󵄩󵄩󵄩H2,2(R2) ≤ 𝜀. (36)

Moreover the time decay estimate

‖V (𝑡, ⋅)‖L∞(R2) =
𝑙

∑
𝑖=1

󵄩󵄩󵄩󵄩V𝑖 (𝑡, ⋅)
󵄩󵄩󵄩󵄩L∞(R2) ≤ 𝐶(1 + |𝑡|)

−1 (37)

is true for all 𝑡 ∈ R.

Theorem 4 was improved in [6] by replacing the condi-
tion such that 𝜙 ∈ H2,2(R2) by 𝜙 ∈ H𝛽(R2) ∩ H0,𝛽(R2) with
1 < 𝛽.

Now we focus on the following system:

𝑖𝜕
𝑡
V
1
+
1

2𝑚
1

ΔV
1
= 𝜆

1

󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨 V1 + 𝜇1V2V3,

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= 𝜆

2

󵄨󵄨󵄨󵄨V2
󵄨󵄨󵄨󵄨 V2 + 𝜇2V1V3,

𝑖𝜕
𝑡
V
3
+
1

2𝑚
3

ΔV
3
= 𝜆

3

󵄨󵄨󵄨󵄨V3
󵄨󵄨󵄨󵄨 V3 + 𝜇3V1V2,

V
𝑗
(0, 𝑥) = 𝜙

𝑗
(𝑥) , 𝑗 = 1, 2, 3,

(38)

in (𝑡, 𝑥) ∈ R×R2, where𝑚
1
, 𝑚
2
, 𝑚
3
are themasses of particles

and 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜇
1
, 𝜇
2
, 𝜇
3
∈ C \ {0} are constants.

Time decay problem of solutions to (38) is considered in
[7]. By using the similar method as [4, 5], we have global
existence in time and time decay estimates of small solutions
for (38) as below.

Theorem 5 (see [7]). Assume that the mass resonance condi-
tion𝑚

1
+𝑚

2
= 𝑚

3
is satisfied. One also assumes that Im 𝜆

𝑗
≤ 0

for 𝑗 = 1, 2, 3 and 𝜅
1
𝜇
1
+ 𝜅
2
𝜇
2
= 𝜅
3
𝜇
3
with some 𝜅

1
, 𝜅
2
, 𝜅
3
> 0.

Then there exists 𝜀 > 0 such that (38) has a unique global
solution

V = (V
1
, V
2
, V
3
) ∈ C (R;H𝑠 (R2) ∩H0,𝑠 (R2)) (39)

for any 𝜙 = (𝜙
1
, 𝜙
2
, 𝜙
3
) ∈ H𝑠(R2) ∩H0,𝑠(R2) satisfying

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩H𝑠(R2)∩H0,𝑠(R2) =

3

∑
𝑖=1

󵄩󵄩󵄩󵄩𝜙𝑖
󵄩󵄩󵄩󵄩H𝑠(R2)∩H0,𝑠(R2) ≤ 𝜀, (40)

where 1 < 𝑠 < 2. Moreover, the time decay estimate

‖V(𝑡, ⋅)‖L∞(R2) =
3

∑
𝑖=1

󵄩󵄩󵄩󵄩V𝑖 (𝑡, ⋅)
󵄩󵄩󵄩󵄩L∞(R2) ≤ 𝐶(1 + |𝑡|)

−1 (41)

is true for all 𝑡 ∈ R.

If

Im 𝜆
𝑗
< 0 for 𝑗 = 1, 2, 3, (42)

the nonlinear term 𝜆
𝑗
|V
𝑗
|V
𝑗
acts as a dissipation one which

requires logarithmic correction in time of solutions and
the negative time is not considered. We have the following
theorem.

Theorem 6 (see [7]). Suppose that the assumptions of
Theorem 5 are fulfilled. Let V be the solution to the system (38)
constructed in Theorem 5. If

Im 𝜆
𝑗
< 0 for 𝑗 = 1, 2, 3 (43)

is satisfied, then the time decay estimate

‖V(𝑡, ⋅)‖L∞(R2) ≤ 𝐶(1 + 𝑡)
−1

(log (2 + 𝑡))−1 (44)

is true for all 𝑡 ≥ 0.
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This phenomenon was found in [21] for a single equation.
We note here that the method presented in [7] is different
from the one in [21]. It seems that the proof in [21] does not
work for the system.

Define the scaled function by V
𝑗,𝜇
(𝑡) = 𝜇2V

𝑗
(𝜇2𝑡, 𝜇𝑥); then

V
𝑗,𝜇
(𝑡) satisfies the system (1) with the initial data 𝜙

𝑗,𝜇
(𝑥) =

𝜇2𝜙
𝑗
(𝜇𝑥). We have

󵄩󵄩󵄩󵄩󵄩𝜙𝑗,𝜇
󵄩󵄩󵄩󵄩󵄩

2

Ḣ0,2−(𝑛/2)(R𝑛) = ∫
R𝑛
𝜇
4

|𝑥|
4−𝑛󵄨󵄨󵄨󵄨󵄨𝜙𝑗 (𝜇𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

=
󵄩󵄩󵄩󵄩󵄩𝜙𝑗
󵄩󵄩󵄩󵄩󵄩

2

Ḣ0,2−(𝑛/2)(R𝑛),

(45)

which implies that Ḣ0,2−(𝑛/2)(R𝑛) is one of the so-called
invariant spaces for the problem (1). Other invariant spaces
of (1) are given by Ḣ(𝑛/2)−2(R𝑛). We consider the large time
asymptotics of solutions to the system (1) for 𝑛 = 2 in the
function space Ḣ0,𝛼(R2) ∩ Ḣ0,𝛽(R2), where 𝛼, 𝛽 satisfy 0 ≤
𝛽 < 1 < 𝛼 ≤ 2 and can be taken to be close to 1. Therefore
our function space has relation with the invariant space and
the considered data are not necessarily in L2(R2).

Theorem 7 (see [9]). Assume that (6) and (8) hold. One also
assumes that 𝜙 = (𝜙

1
, . . . , 𝜙

𝑙
) ∈ Ḣ0,𝛼(R2) ∩ Ḣ0,𝛽(R2), where

0 ≤ 𝛽 < 1 < 𝛼 ≤ 2. Then there exists 𝜀 > 0 such that (1) has a
unique global solution V such that

𝑈
1/𝑚
(−𝑡) V = (𝑈

1/𝑚1
(−𝑡) V

1
, . . . , 𝑈

1/𝑚𝑙
(−𝑡) V

𝑙
)

∈ C (R; Ḣ0,𝛼 (R2) ∩ Ḣ0,𝛽 (R2))
(46)

for any 𝜙 = (𝜙
1
, . . . , 𝜙

𝑙
) satisfying

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩Ḣ0,𝛼(R2)∩Ḣ0,𝛽(R2) =

𝑙

∑
𝑖=1

󵄩󵄩󵄩󵄩𝜙𝑖
󵄩󵄩󵄩󵄩Ḣ0,𝛼(R2)∩Ḣ0,𝛽(R2) ≤ 𝜀. (47)

Moreover, the time decay estimate

‖V (𝑡, ⋅)‖L∞(R2) =
𝑙

∑
𝑖=1

󵄩󵄩󵄩󵄩V𝑖 (𝑡, ⋅)
󵄩󵄩󵄩󵄩L∞(R2) ≤ 𝐶|𝑡|

−1 (48)

is true for 𝑡 ̸=0.

We note that in [8] we consider the problem (38) under
the initial condition 𝜙 = (𝜙

1
, 𝜙
2
, 𝜙
3
) ∈ Ḣ0,𝛼(R2) ∩ Ḣ0,𝛿(R2)

and the dissipation condition Im 𝜆
𝑗
< 0, where 0 ≤ 𝛿 < 1 <

𝛼 ≤ 2. Then we have the time decay estimate such that

‖V(𝑡, ⋅)‖L∞(R2) ≤ 𝑡
−1

(log 𝑡)−1 (49)

for all 𝑡 ≥ 1.
In the final part of this subsection, we will show that

the assumption (8) is important for obtaining the time decay
estimates of solutions. Let us consider the following system:

𝑖𝜕
𝑡
V
1
+
1

2𝑚
1

ΔV
1
= 0,

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= V2
1
,

V
1
(0) = 𝜙

1
, V

2
(0) = 𝜙

2
,

(50)

in (𝑡, 𝑥) ∈ R × R2, where 𝑚
1
, 𝑚
2
are the masses of particles.

It is obvious that the nonlinearities of (50) do not satisfy
the assumption (8). Since the first equation of this system
with the initial condition V

1
(0) = 𝜙

1
can be considered the

Cauchy problem for the linear Schrödinger equation, we find
the value of V

1
explicitly by V

1
= 𝑈

1/𝑚1
(𝑡)𝜙

1
. Therefore, we

have

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= (𝑈

1/𝑚1
(𝑡) 𝜙

1
)
2

,

V
2
(0) = 𝜙

2
.

(51)

For the system (51), we obtain the following result.

Proposition 8 (see [4]). Suppose that 𝜙
1
∈ H0,2(R2), 𝜙

2
∈

L2(R2). Let

V
2
∈ C ([1,∞) ; L2 (R2)) (52)

be a global solution of (51). Then the following estimate is true:
󵄩󵄩󵄩󵄩V2 (𝑡)

󵄩󵄩󵄩󵄩L2(R2) ≥ 𝑚1
󵄩󵄩󵄩󵄩󵄩𝜙1
󵄩󵄩󵄩󵄩󵄩

2

L4(R2) log 𝑡 − 𝐶
󵄩󵄩󵄩󵄩𝜙1
󵄩󵄩󵄩󵄩
2

H0,2(R2) (53)

for 𝑡 > 1.

This fact was pointed first in [22, 23] in the case of Klein-
Gordon equations and in Remark 3 of [24] in the case of
Schrödinger equations.

2.2. Wave Operators of Nonlinear Schrödinger Systems in Two
Space Dimensions. First, we briefly explain the definition of
the wave operator (see [25]). For a given function V

+
= (V

𝑖+
),

we assume that there exists a unique solution V = (V
𝑖
) of the

system (1) satisfying the asymptotics

lim
𝑡→∞

󵄩󵄩󵄩󵄩V(𝑡) − 𝑈1/𝑚(𝑡)V+
󵄩󵄩󵄩󵄩𝑋 = 0, (54)

where 𝑈
1/𝑚
(𝑡)V

+
is the solution of linear problems with the

initial data V
+
and ‖ ⋅ ‖

𝑋
is the norm of Banach space𝑋. Then

we define the map 𝑊
+
: V
+
󳨃→ V(𝑡) and call it the wave

operator. We also call V
+
the final state (or the final value)

since it is considered the value of 𝑈
1/𝑚
(−𝑡)V(𝑡) at infinity if

𝑈
1/𝑚
(𝑡) is the unitary operator in 𝑋. The same problem can

be considered for negative time.
To study existence of wave operators for (28), we consider

the following problem for given final data (𝜙
1+
, 𝜙
2+
) :

𝑖𝜕
𝑡
V
1
+
1

2𝑚
1

ΔV
1
= 𝛾V

1
V
2
,

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= V2
1
,

󵄩󵄩󵄩󵄩󵄩V1 (𝑡) − 𝑈1/𝑚1 (𝑡) 𝜙1+
󵄩󵄩󵄩󵄩󵄩L2(R2) 󳨀→ 0 as 𝑡 󳨀→ ∞,

󵄩󵄩󵄩󵄩󵄩V2 (𝑡) − 𝑈1/𝑚2 (𝑡) 𝜙2+
󵄩󵄩󵄩󵄩󵄩L2(R2) 󳨀→ 0 as 𝑡 󳨀→ ∞,

(55)

in (𝑡, 𝑥) ∈ R × R2. If there exists a nontrivial solution for
the above system, then we say that there exists a usual wave
operator.

We consider (28) under the mass nonresonance condi-
tions 2𝑚

1
̸=𝑚
2
and𝑚

1
̸=𝑚
2
.
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Theorem 9 (see [1]). Let 2𝑚
1
̸=𝑚
2
and 𝑚

1
̸=𝑚
2
. Then there

exists 𝜀 > 0 such that, for any

𝜙
+
= (𝜙

1+
, 𝜙
2+
) ∈ (H0,2 (R2) ∩ Ḣ−2𝑏 (R2)) ×H0,2 (R2)

(56)

with the norm
󵄩󵄩󵄩󵄩𝜙1+
󵄩󵄩󵄩󵄩H0,2(R2)∩Ḣ−2𝑏(R2) +

󵄩󵄩󵄩󵄩𝜙2+
󵄩󵄩󵄩󵄩H0,2(R2) ≤ 𝜀, (57)

the system (28) has a unique global solution

V = (V
1
, V
2
) ∈ C ([1,∞) ; L2 (R2)) . (58)

Moreover, the following estimate
󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚 (𝑡) 𝜙+

󵄩󵄩󵄩󵄩L2(R2)

=
2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
V
𝑗
(𝑡) − 𝑈

1/𝑚𝑗
(𝑡) 𝜙

𝑗+

󵄩󵄩󵄩󵄩󵄩󵄩L2(R2)
≤ 𝐶𝑡

−𝑏

(59)

holds for all 𝑡 ≥ 1, where 1/2 < 𝑏 < 1.

The mass nonresonance conditions 2𝑚
1
̸=𝑚
2

and
𝑚
1
̸=𝑚
2
are used to obtain better time decay of solutions.

Oscillating properties of nonlinear terms V
1+
V
2+

and V2
1+

are
different from those of solutions to linear problem which
yield an additional time decay from nonlinear terms; namely,
nonlinear interactions are not critical. By combining this fact
and the Strichartz type estimates, the result of Theorem 9 is
obtained.

We next consider (28) under themass condition𝑚
1
= 𝑚

2

which is also the mass nonresonance case and the support
conditions on the data.

Theorem 10 (see [1]). Let𝑚
1
= 𝑚

2
. Assume that

𝜙
+
= (𝜙

1+
, 𝜙
2+
) ∈ (H0,2 (R2) ∩ Ḣ−2𝑏,0 (R2)) ×H1/2,2 (R2) ,

supp 𝜙
1+
∩ supp 𝜙

2+
𝑖𝑠 𝑒𝑚𝑝𝑡𝑦.

(60)

Then there exists 𝜀 > 0 such that, for any 𝜙
+
= (𝜙

1+
, 𝜙
2+
) with

the norm
󵄩󵄩󵄩󵄩𝜙1+
󵄩󵄩󵄩󵄩H0,2(R2)∩Ḣ−2𝑏,0(R2) +

󵄩󵄩󵄩󵄩𝜙2+
󵄩󵄩󵄩󵄩H0,2(R2) ≤ 𝜀, (61)

there exists a unique solution

V = (V
1
, V
2
) ∈ C ([1,∞) ; L2 (R2)) (62)

for the system (28) satisfying the estimate
󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚 (𝑡) 𝜙+

󵄩󵄩󵄩󵄩L2(R2)

=
2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
V
𝑗
(𝑡) − 𝑈

1/𝑚𝑗
(𝑡) 𝜙

𝑗+

󵄩󵄩󵄩󵄩󵄩󵄩L2(R2)
≤ 𝐶𝑡

−𝑏

(63)

for all 𝑡 ≥ 1, where 1/2 < 𝑏 < 3/4.

From the result we have wave operators when the support
of the Fourier transform of the Schrödinger data is restricted.
Restriction on the support of the Fourier transform of the
Schrödinger data was used to obtain an improved time decay
estimate of the nonlinear term V

1+
V
2+
.

We turn to investigate existence of wave operators for
(1). First, we give a necessary condition of existence of
asymptotically free solutions.

Theorem 11 (see [5]). Let 𝜙 = (𝜙
1
, . . . , 𝜙

𝑙
) ∈ H2,2(R2) and let

V be global in time of solutions of (1) satisfying a priori estimates

∫
∞

1

1

𝑠2
󵄩󵄩󵄩󵄩𝑈1/𝑚 (−𝑠) V

󵄩󵄩󵄩󵄩
2

H0,2(R2)𝑑𝑠 < ∞,

󵄩󵄩󵄩󵄩F𝑈1/𝑚 (−𝑡) V
󵄩󵄩󵄩󵄩L∞(R2) ≤ 𝐶.

(64)

We assume that the gauge condition (6) holds for each 𝑗 ∈
{1, . . . , 𝑙}. If there exists 𝜓

+
= (𝜓

1+
, . . . , 𝜓

𝑙+
) ∈ L2(R2) ∩

L∞(R2) such that

lim
𝑡→∞

󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚 (𝑡) 𝜓+
󵄩󵄩󵄩󵄩L2(R2) = 0, (65)

then

𝐹
𝑗
(𝐷
1/𝑚1
𝜓
1+
, . . . , 𝐷

1/𝑚𝑙
𝜓
𝑙+
) = 0 (66)

for every 𝑗 ∈ {1, . . . , 𝑙}, where 𝜓
+
= F𝜓

+
.

If the support condition

𝑙

⋂
𝑗=1

supp 𝜓
𝑗+
(𝑚
𝑗
𝜉) is empty (67)

is satisfied, we have (66).
We give existence of wave operators of the system (1) for

small final states by (66).

Theorem 12 (see [5]). Let 𝜓
+
= (𝜓

1+
, . . . , 𝜓

𝑙+
) ∈ H2,2(R2)

satisfy the so-called support condition (66). Assume that 𝐹
𝑗

satisfies the gauge condition (6) for each 𝑗 ∈ {1, . . . , 𝑙}. Then for
some 𝜀 > 0 there exists a unique global solution V = (V

1
, . . . , V

𝑙
)

of the system (1) such that

V ∈ C ([1,∞) ; L2 (R2)) ,

󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚 (𝑡) 𝜓+
󵄩󵄩󵄩󵄩L2(R2) ≤ 𝐶𝑡

−𝑏

, 1/2 < 𝑏 < 1
(68)

for large 𝑡 and any 𝜓
+
satisfying
󵄩󵄩󵄩󵄩𝜓+
󵄩󵄩󵄩󵄩H2,2(R2) ≤ 𝜀. (69)

Existence of wave operator for a single nonlinear
Schrödinger equation was studied in [26, 27].

2.3. Modified Wave Operators of Nonlinear Schrödinger Sys-
tems in Two Space Dimensions. In Section 2.2, we discuss
the existence of wave operators of the systems (1) and (28).
However, if it is impossible to show existence of the wave
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operator, we have to modify the setting of the problem. We
define themodifiedwave operator (see [25]) as follows. Let us
construct a function V

+
= (V

𝑖+
) from a suitable function space

and define a function 𝑓(V
+
, 𝑡) by V

+
. Then we try to find a

unique solution of nonlinear problems under the asymptotic
condition

lim
𝑡→∞

󵄩󵄩󵄩󵄩V(𝑡) − 𝑈1/𝑚(𝑡)𝑓(V+, 𝑡)
󵄩󵄩󵄩󵄩𝑋 = 0, (70)

where ‖ ⋅ ‖
𝑋
is the norm of Banach space 𝑋. Namely, the

problem is solved if we can define the function 𝑓 satisfying
the asymptotic condition (70) by taking the structure of
nonlinear terms into consideration. If we have a positive
answer, we can define the map𝑀𝑊

+
: V
+
󳨃→ V(𝑡) instead of

the wave operator. We call𝑀𝑊
+
the modified wave operator

since we modified the final states.
We consider (28) again which is written as

𝑖𝜕
𝑡
V
1
+
1

2𝑚
1

ΔV
1
= 𝛾V

1
V
2
,

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= V2
1
,

(71)

in (𝑡, 𝑥) ∈ R × R2. In Section 2.1, we stated the time decay
estimates of solutions to this system in the case of 2𝑚

1
= 𝑚

2

and 𝛾 = 1. Since the nonlinearity is critical in this case, it
is impossible to find a solution in the neighborhood of the
free final state (𝑈

1/𝑚1
(𝑡)𝜙

1+
, 𝑈
1/𝑚2
(𝑡)𝜙

2+
). Indeed we have the

nonexistence of the usual scattering states.

Theorem 13 (see [4]). Let 2𝑚
1
= 𝑚

2
, 𝛾 = 1, and let

V = (V
1
, V
2
) ∈ C ([0,∞) ;H2 (R2) ∩H0,2 (R2)) (72)

be a global solution obtained inTheorem 3.Then there does not
exist any nontrivial scattering state𝜙

+
= (𝜙

1+
, 𝜙
2+
) ∈ H2(R2)∩

H0,2(R2) such that 𝜙
1+
̸=0 and

󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚𝜙+
󵄩󵄩󵄩󵄩L2(R2) =

2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
V
𝑗
(𝑡) − 𝑈

1/𝑚𝑗
𝜙
𝑗+

󵄩󵄩󵄩󵄩󵄩󵄩L2(R2)
󳨀→ 0

(73)

as 𝑡 → ∞.

From the result, we need to modify the final state
with time dependence. We note here that the modified
wave operator for nonlinear dispersive equation was first
constructed in [28] for the cubic nonlinear Schrödinger
equations in one space dimension and then constructed in
[29] for the derivative nonlinear Schrödinger equation, by
changing it via a suitable transformation (see [30]) to a system
of cubic nonlinear Schrödinger equations without derivatives
of unknown function; see also [31] for recent developments.
Two-dimensional case was studied in [32].

In Section 2.2, from (34), we see that the asymptotic
behavior of solutions of (28) under the mass resonance

condition 2𝑚
1
= 𝑚

2
is determined by the solutions of the

following system:

𝑖𝜕
𝑡
𝜑
1𝛾
= 𝛾𝑡

−1

𝜑
1𝛾
𝜑
2𝛾
,

𝑖𝜕
𝑡
𝜑
2𝛾
= 𝑡
−1

𝜑
2

1𝛾
.

(74)

By calculationwe find that the particular solutions of (74)
are

𝜑
1𝛾
(𝑡, 𝜉) = −

𝑖𝜔 (𝜉) 𝑒𝑖𝜃(𝜉)

1 + 𝜔 (𝜉) log 𝑡
,

𝜑
2𝛾
(𝑡, 𝜉) = −

𝑖𝜔 (𝜉) 𝑒2𝑖𝜃(𝜉)

1 + 𝜔 (𝜉) log 𝑡

(75)

in the case of 𝛾 = −1 and the particular solutions of (74) are

𝜑
1𝛾
(𝑡, 𝜉) = 𝜔 (𝜉) 𝑒

𝑖𝜃(𝜉)+(𝑖/√2)𝜔(𝜉) log 𝑡

𝜑
2𝛾
(𝑡, 𝜉) = −

1

√2
𝜔 (𝜉) 𝑒

2𝑖𝜃(𝜉)+𝑖√2𝜔(𝜉) log 𝑡
(76)

in the case of 𝛾 = 1, where 𝜔(𝜉) > 0 and 𝜃(𝜉) is a real valued
given function. We also find that

𝜑
1𝛾
(𝜉) = 0, 𝜑

2𝛾
(𝜉) = 𝜔 (𝜉) 𝑒

𝑖𝜃(𝜉) (77)

are particular solutions of (74) when 𝛾 = ±1.
The following theorem shows existence of the modified

wave operators of (28).

Theorem 14 (see [1]). Let 2𝑚
1
= 𝑚

2
and 𝛾 = ±1. Then there

exists 𝜀 > 0 such that, for any 𝜔, 𝜃 ∈ H2(R2) with norm
‖𝜔‖H2(R2) ≤ 𝜀, (28) has a unique global solution

V = (V
1
, V
2
) ∈ C ([1,∞) ; L2 (R2)) . (78)

Moreover, the following estimate
󵄩󵄩󵄩󵄩󵄩V (𝑡) + 𝑈1/𝑚 (𝑡)F

−1

𝐷
𝑚
𝜑
𝛾
(𝑡)
󵄩󵄩󵄩󵄩󵄩L2(R2)

=
2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
V
𝑗
(𝑡) + 𝑈

1/𝑚𝑗
(𝑡)F

−1

𝐷
𝑚𝑗
𝜑
𝑗𝛾
(𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩L2(R2)

≤ 𝐶𝑡
−𝑏

(79)

holds for all 𝑡 ≥ 1, where 1/2 < 𝑏 < 1.

Using the resonance condition, 2𝑚
1
= 𝑚

2
, we get the exis-

tence ofmodified wave operators by the contractionmapping
principle. Since the identity 𝑈

1/𝑚𝑗
(𝑡) = 𝑀−𝑚𝑗𝐷

𝑡/𝑚𝑗
F𝑀−𝑚𝑗

is known for 𝑗 = 1, 2, we have the estimate from the above
theorem
󵄩󵄩󵄩󵄩󵄩V (𝑡) − 𝑖𝑀

−𝑚

𝐷
𝑡
F𝑀

−1/𝑚

F
−1

𝜑
𝛾
(𝑡)
󵄩󵄩󵄩󵄩󵄩L2(R2) ≤ 𝐶𝑡

−𝑏 (80)

for all 𝑡 ≥ 1, where 1/2 < 𝑏 < 1.
Existence of modified wave operator for a single nonlin-

ear Schrödinger equation was studied in [26, 27]. Asymptotic
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behavior of solutions to nonlinear wave systems was studied
in [33]. It was shown that the asymptotic behavior of solutions
of them depends on the corresponding ordinary differential
equations which are related to (74). In [33], another special
solution was presented and the method can be applicable to
nonlinear Schrödinger systems with a slight modification.

2.4. Nonlinear Schrödinger Systems in Higher Space Dimen-
sions I. In the case of higher space dimensions, 𝑛 ≥ 3, the
scattering theory for (28)

𝑖𝜕
𝑡
V
1
+
1

2𝑚
1

ΔV
1
= 𝛾V

1
V
2
,

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= V2
1

(81)

was studied in [2].
We will explain the scattering problem (See [25]) briefly.

We may assume the existence of wave operator 𝑊
+
which

maps a Banach space 𝑋 into itself. Namely, for any given
V
+
∈ 𝑋, we assume that there exists a unique solution V(𝑡) ∈

C([0,∞);𝑋) of the nonlinear system such that

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑈1/𝑚(−𝑡)V(𝑡) − V+
󵄩󵄩󵄩󵄩𝑋 = 0. (82)

We consider the initial value problem with the data V(0)
which are determined by the solution V(𝑡) in the time interval
𝑡 ∈ [0,∞). If the initial value problem has a unique global
solution V(𝑡) ∈ C((−∞, 0]; 𝑋) and we can find a unique
V
−
∈ 𝑋 from the solution V(𝑡) satisfying

lim
𝑡→−∞

󵄩󵄩󵄩󵄩𝑈1/𝑚(−𝑡)V(𝑡) − V−
󵄩󵄩󵄩󵄩𝑋 = 0, (83)

then we can define the inverse wave operator𝑊−1
−
: V(0) ∈

𝑋󳨃→ V
−
∈ 𝑋. From this operator we can define 𝑆 = 𝑊−1

−
𝑊
+
:

𝑋 → 𝑋. We call the operator the scattering operator.
In the case, 𝑛 ≥ 4, existence of the scattering operator

was proved in the space H(𝑛/2)−2(R𝑛) which is close to the
invariant space Ḣ(𝑛/2)−2(R𝑛). In the case of 𝑛 = 4, we have
the results in the invariant space L2(R4). In the case of 𝑛 = 3,
existence of the scattering operator was proved in the space
H0,1/2(R3), under the mass resonance condition 2𝑚

1
= 𝑚

2
,

which is close to the invariant space Ḣ0,1/2(R3). To state the
following theorem, we introduce

𝐵
𝜀
=
{

{
{

𝜙 = (𝜙
1
, 𝜙
2
) ∈ H(𝑛/2)−2 (R𝑛) ;

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩H(𝑛/2)−2(R𝑛) =

2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝜙𝑗
󵄩󵄩󵄩󵄩󵄩H(𝑛/2)−2(R𝑛) ≤ 𝜀

}

}
}

.

(84)

Theorem 15 (see [2]). Let 𝑛 ≥ 4. Then there exist 𝜀
0
and 𝐶

0

such that 0 < 𝜀
0
≤ 1 ≤ 𝐶

0
with the following property.

(1) For any 𝜀 with 0 < 𝜀 ≤ 𝜀
0
and any 𝜙 = (𝜙

1
,

𝜙
2
) ∈ 𝐵

𝜀
, (28) has a unique global solution V = (V

1
, V
2
) ∈

C(R;H(𝑛/2)−2(R𝑛)). Moreover, there exist unique 𝜙
±
= (𝜙

1±
,

𝜙
2±
) ∈ 𝐵

𝐶0𝜀
such that
󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚 (𝑡) 𝜙±

󵄩󵄩󵄩󵄩H(𝑛/2)−2(R𝑛) 󳨀→ 0 (85)

as 𝑡 → ±∞.
(2)
+
For any 𝜀 with 0 < 𝜀 ≤ 𝜀

0
and any 𝜙

+
= (𝜙

1+
, 𝜙
2+
) ∈

𝐵
𝜀
, (28) has a unique global solution V = (V

1
, V
2
) ∈ C(R;

H(𝑛/2)−2(R𝑛)) such that V(0) = (V
1
(0), V

2
(0)) ∈ 𝐵

𝐶0𝜀
,

󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚 (𝑡) 𝜙+
󵄩󵄩󵄩󵄩H(𝑛/2)−2(R𝑛) 󳨀→ 0, (86)

as 𝑡 → +∞.
(2)
−
For any 𝜀 with 0 < 𝜀 ≤ 𝜀

0
and any 𝜙

−
= (𝜙

1−
, 𝜙
2−
) ∈

𝐵
𝜀
, (28) has a unique solution V = (V

1
, V
2
) ∈ C(R;H(𝑛/2)−2

(R𝑛)) such that V(0) = (V
1
(0), V

2
(0)) ∈ 𝐵

𝐶0𝜀
,

󵄩󵄩󵄩󵄩V (𝑡) − 𝑈1/𝑚 (𝑡) 𝜙−
󵄩󵄩󵄩󵄩H(𝑛/2)−2(R𝑛) 󳨀→ 0 (87)

as 𝑡 → −∞.

Corollary 16 (see [2]). The wave operators𝑊
±
: 𝜙
±
󳨃→ V(0)

are defined as mappings from 𝐵
𝜀
to 𝐵

𝐶0𝜀
for any 𝜀 with 0 <

𝜀 ≤ 𝜀
0
. The scattering operator 𝑆 : 𝜙

+
󳨃→ 𝜙

−
is defined as a

mapping from 𝐵
𝐶
−1
0 𝜀

to 𝐵
𝐶0𝜀

for any 𝜀 with 0 < 𝜀 ≤ 𝜀
0
.To state

the following theorem, we introduce

𝐵
𝜀
=
{

{
{

𝜙 = (𝜙
1
, 𝜙
2
) ∈ H0,1/2 (R3) ;

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩H0,1/2(R3) =

2

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝜙𝑗
󵄩󵄩󵄩󵄩󵄩H0,1/2(R3) ≤ 𝜀

}

}
}

.

(88)

Theorem 17 (see [2]). Let 2𝑚
1
= 𝑚

2
. Then there exist 𝜀

0
and

𝐶
0
such that 0 < 𝜀

0
≤ 1 ≤ 𝐶

0
with the following property.

(1) For any 𝜀 with 0 < 𝜀 ≤ 𝜀
0
and any 𝜙 ∈ 𝐵

𝜀
, (28)

has a unique solution V with 𝑈
1/𝑚
(−𝑡)V ∈ C(R;H0,1/2(R3)).

Moreover, there exist unique 𝜙
±
∈ 𝐵

𝐶0𝜀
such that

󵄩󵄩󵄩󵄩𝑈1/𝑚 (−𝑡) V (𝑡) − 𝜙±
󵄩󵄩󵄩󵄩H0,1/2(R3) 󳨀→ 0 (89)

as 𝑡 → ±∞.
(2)
+
For any 𝜀 with 0 < 𝜀 ≤ 𝜀

0
and any 𝜙

+
∈ 𝐵

𝜀
, (28) has

a unique solution V with 𝑈
1/𝑚
(−𝑡)V ∈ C(R;H0,1/2(R3)) such

that V(0) ∈ 𝐵
𝐶0𝜀

,
󵄩󵄩󵄩󵄩𝑈1/𝑚 (−𝑡) V (𝑡) − 𝜙+

󵄩󵄩󵄩󵄩H0,1/2(R3) 󳨀→ 0 (90)

as 𝑡 → +∞.
(2)
−
For any 𝜀 with 0 < 𝜀 ≤ 𝜀

0
and any 𝜙

−
∈ 𝐵

𝜀
, (28) has

a unique solution V with 𝑈
1/𝑚
(−𝑡)V ∈ C(R;H0,1/2(R3)) such

that V(0) ∈ 𝐵
𝐶0𝜀

,
󵄩󵄩󵄩󵄩𝑈1/𝑚 (−𝑡) V (𝑡) − 𝜙−

󵄩󵄩󵄩󵄩H0,1/2(R3) 󳨀→ 0 (91)

as 𝑡 → −∞.

Corollary 18 (see [2]). The wave operators𝑊
±
: 𝜙
±
󳨃→ V(0)

are defined as mappings from 𝐵
𝜀
to 𝐵

𝐶0𝜀
for any 𝜀 with 0 < 𝜀 ≤

𝜀
0
.The scattering operator 𝑆 : 𝜙

+
󳨃→ 𝜙

−
is defined as amapping

from 𝐵
𝐶
−1
0 𝜀

to 𝐵
𝐶0𝜀

for any 𝜀 with 0 < 𝜀 ≤ 𝜀
0
.
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2.5. Nonlinear Schrödinger Systems in Higher Space Dimen-
sions II. In [3], the finite time blow-up of the negative energy
solutions for the system (28) was discussed in the case of
4 ≤ 𝑛 ≤ 6 under the mass conditions 2𝑚

1
= 𝑚

2
and 𝛾 ∈ R.

To state the blow-up result we need local existence in time of
solutions to (28).

Theorem 19 (see [3]). Let 𝑛 ≤ 6 and𝑚
2
= 2𝑚

1
. Then, for any

𝜙 = (𝜙
1
, 𝜙
2
) ∈ H0,1 (R𝑛) ∩H1 (R𝑛) , (92)

there exists 𝑇(𝜙) > 0 such that (28) has a unique solution V
with
𝑈
1/𝑚
(−𝑡) V (𝑡) = (𝑈

1/𝑚1
(−𝑡) V

1
(𝑡) , 𝑈

1/𝑚2
(−𝑡) V

2
(𝑡))

∈ C ([−𝑇, 𝑇] ;H0,1 (R𝑛) ∩H1 (R𝑛)) .
(93)

From Theorem 19 we have the energy conservation law
such that
1

2𝑚
1

󵄩󵄩󵄩󵄩∇V1 (𝑡)
󵄩󵄩󵄩󵄩
2

+
𝛾

4𝑚
2

󵄩󵄩󵄩󵄩∇V2 (𝑡)
󵄩󵄩󵄩󵄩
2

+ 𝛾Re (V
2
(𝑡) , V

1
(𝑡)
2

)

=
1

2𝑚
1

󵄩󵄩󵄩󵄩∇𝜙1
󵄩󵄩󵄩󵄩
2

+
𝛾

4𝑚
2

󵄩󵄩󵄩󵄩∇𝜙2
󵄩󵄩󵄩󵄩
2

+ 𝛾Re (𝜙
2
, 𝜙
2

1
) ,

(94)

where

(𝑓, 𝑔) = ∫𝑓 ⋅ 𝑔 𝑑𝑥. (95)

We need the virial identity to prove the blow-up result.

Theorem 20 (see [3]). Let 𝑛 ≤ 6 and 𝑚
2
= 2𝑚

1
. Let 𝛾 ∈ R

and let V be the local solution constructed in Theorem 19. Then
󵄩󵄩󵄩󵄩𝑥V1 (𝑡)

󵄩󵄩󵄩󵄩
2

L2(R𝑛) + 𝛾
󵄩󵄩󵄩󵄩𝑥V2 (𝑡)

󵄩󵄩󵄩󵄩
2

L2(R𝑛)

=
󵄩󵄩󵄩󵄩𝑥𝜙1
󵄩󵄩󵄩󵄩
2

L2(R𝑛) + 𝛾
󵄩󵄩󵄩󵄩𝑥𝜙2
󵄩󵄩󵄩󵄩
2

L2(R𝑛) + 𝑃0𝑡 +
𝑛

2𝑚
1

𝐸
0
𝑡
2

+
4 − 𝑛

𝑚
1

∫
𝑡

0

(𝑡 − 𝑠) (
1

2𝑚
1

󵄩󵄩󵄩󵄩∇V1 (𝑠)
󵄩󵄩󵄩󵄩
2

L2(R𝑛)

+
𝛾

8𝑚
1

󵄩󵄩󵄩󵄩∇V2 (𝑠)
󵄩󵄩󵄩󵄩
2

L2(R𝑛))𝑑𝑠

(96)

for all 𝑡 ∈ [−𝑇, 𝑇], where

𝑃
0
=
2

𝑚
1

Im (∇𝜙
1
, 𝑥𝜙

1
) +
𝛾

𝑚
1

Im (∇𝜙
2
, 𝑥𝜙

2
) ,

𝐸
0
=
1

2𝑚
1

󵄩󵄩󵄩󵄩∇𝜙1
󵄩󵄩󵄩󵄩
2

L2(R𝑛) +
𝛾

8𝑚
1

󵄩󵄩󵄩󵄩∇𝜙2
󵄩󵄩󵄩󵄩
2

L2(R𝑛) + 𝛾Re (𝜙2, 𝜙
2

1
) .

(97)

By a standard argument, we have the following result

Theorem 21 (see [3]). Let 4 ≤ 𝑛 ≤ 6. Let𝑚
2
= 2𝑚

1
and 𝛾 > 0.

Let 𝜙 and V be as in Theorem 20. Then the maximal existence
time for V is finite in the following cases:

𝐸
0
< 0,

𝐸
0
= 0, 𝑃

0
< 0,

(98)

where 𝐸
0
and 𝑃

0
are as in Theorem 20.

3. Related and Open Problems

Asymptotic behavior in time of solutions to (28)

𝑖𝜕
𝑡
V
1
+
1

2𝑚
1

ΔV
1
= 𝛾V

1
V
2
,

𝑖𝜕
𝑡
V
2
+
1

2𝑚
2

ΔV
2
= V2
1
,

(99)

is an open problem for one space dimension which is con-
sidered the subcritical case. Existence of scattering operator
is also an open problem for 𝑛 = 1, 2. We now turn to the
relativistic version of (28)

𝜕
2

𝑡
𝑢
1
− 𝑐
2

Δ𝑢
1
+ 𝑚

2

1
𝑐
4

𝑢
1
= −2𝛾𝑐

2

𝑚
1
𝑢
1
𝑢
2
,

𝜕
2

𝑡
𝑢
2
− 𝑐
2

Δ𝑢
2
+ 𝑚

2

2
𝑐
4

𝑢
2
= −2𝑐

2

𝑚
2
𝑢
2

1
.

(100)

We let 𝑐 = 1 in (100); then

𝜕
2

𝑡
𝑢
1
− Δ𝑢

1
+ 𝑚

2

1
𝑢
1
= 𝜆

1
𝑢
1
𝑢
2
,

𝜕
2

𝑡
𝑢
2
− Δ𝑢

2
+ 𝑚

2

2
𝑢
2
= 𝜆

2
𝑢
2

1
,

(101)

where 𝜆
1
, 𝜆
2
∈ C. Asymptotic behavior of solutions to (101)

when 𝑛 = 2 was studied in papers [22, 34, 35] with mass
nonresonance condition 2𝑚

1
̸=𝑚
2
. Scattering operator was

constructed in a paper [36] if 𝑚
2
< 2𝑚

1
. However existence

of scattering operator for (28) is an open problem even if
𝑚
2
< 2𝑚

1
. Global existence and time decay of small solutions

were obtained in [37] for the resonance case 2𝑚
1
= 𝑚

2
,

under some regularity and compactness conditions on the
initial data. However the large time asymptotics and existence
of modified scattering operators are not known for the case.
The asymptotic behavior of solutions to (101) in one space
dimension is also an open problem.

Small data blow-up for a system of nonlinear Schrodinger
equations was studied in [38] under some conditions on
nonlinearities, but it is an open problem for (28).

The asymptotic behavior of solutions to quadratic deriva-
tive nonlinear Schrödinger systems has been considered
recently in papers [39, 40] under some structural conditions
on the nonlinearity. If the structural conditions are not
satisfied, the problem is open.
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We study, in the radial symmetric case, the finite time life span of the compressible Euler or Euler-Poisson equations in 𝑅𝑁. For
time 𝑡 ≥ 0, we can define a functional 𝐻(𝑡) associated with the solution of the equations and some testing function 𝑓. When
the pressure function 𝑃 of the governing equations is of the form 𝑃 = 𝐾𝜌𝛾, where 𝜌 is the density function, 𝐾 is a constant, and
𝛾 > 1, we can show that the nontrivial 𝐶1 solutions with nonslip boundary condition will blow up in finite time if 𝐻(0) satisfies
some initial functional conditions defined by the integrals of 𝑓. Examples of the testing functions include 𝑟𝑁−1ln(𝑟 + 1), 𝑟𝑁−1𝑒𝑟,
𝑟𝑁−1(𝑟3 − 3𝑟2 + 3𝑟 + 𝜀), 𝑟𝑁−1sin((𝜋/2)(𝑟/𝑅)), and 𝑟𝑁−1sinh 𝑟. The corresponding blowup result for the 1-dimensional nonradial
symmetric case is also given.

1. Introduction

The compressible isentropic Euler (𝛿 = 0) or Euler-Poisson
(𝛿 = ±1) equations for fluids can be written as

𝜌
𝑡
+ ∇ ⋅ (𝜌𝑢) = 0,

𝜌 [𝑢
𝑡
+ (𝑢 ⋅ ∇) 𝑢] + ∇𝑃 = 𝜌∇Φ,

ΔΦ (𝑡, 𝑥) = 𝛿𝛼 (𝑁) 𝜌,

(1)

where 𝛼(𝑁) is a constant related to the unit ball in 𝑅𝑁.
As usual, 𝜌 = 𝜌(𝑡, 𝑥) ≥ 0 and 𝑢 = 𝑢(𝑡, 𝑥) ∈ R𝑁 are
the density and the velocity, respectively. 𝑃 = 𝑃(𝜌) is the
pressure function. The 𝛾-law for the pressure term 𝑃(𝜌) can
be expressed as

𝑃 (𝜌) = 𝐾𝜌
𝛾

, (2)

for which the constant 𝛾 ≥ 1. If 𝐾 > 0, it is a system with
pressure. If 𝐾 = 0, it is a pressureless system.

When 𝛿 = −1, the system is self-attractive. The system
(1) is the Newtonian description of gaseous stars (cf. [1,
2]). When 𝛿 = 1, the system comprises the Euler-Poisson

equations with repulsive forces and can be applied as a
semiconductor model [3].When 𝛿 = 0, the system comprises
the compressible Euler equations and can be applied as a
classical model in fluid mechanics [4, 5].

The solutions in radial symmetry are expressed by

𝜌 = 𝜌 (𝑡, 𝑟) , 𝑢 =
𝑥

𝑟
𝑉 (𝑡, 𝑟) =:

𝑥

𝑟
𝑉, (3)

with the radius 𝑟 = (∑𝑁
𝑖=1
𝑥2
𝑖
)
1/2

.
The Poisson equation (1)

3
becomes

Φ
𝑟
(𝑡, 𝑟) =

𝛼 (𝑁) 𝛿

𝑟𝑁−1
∫
𝑟

0

𝜌 (𝑡, 𝑠) 𝑠
𝑁−1

𝑑𝑠. (4)

The equations in radial symmetry can be expressed in the
following form:

𝜌
𝑡
+ 𝑉𝜌
𝑟
+ 𝜌𝑉
𝑟
+
𝑁 − 1

𝑟
𝜌𝑉 = 0,

𝜌 (𝑉
𝑡
+ 𝑉𝑉
𝑟
) + 𝑃
𝑟
= 𝜌Φ
𝑟
.

(5)

The blowup phenomena have attracted the attention
of many mathematicians. Regarding the Euler equations
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(𝛿 = 0), Makino et al. [6] first investigated the blowup
of “tame solutions.” In 1990, Makino and Perthame further
analyzed the corresponding solutions for the equations with
gravitational forces (𝛿 = −1) [7]. Subsequently, Perthame [8]
studied the blowup results for the 3-dimensional pressureless
system with repulsive forces (𝛿 = 1). Additional results of the
Euler system can be found in [9–12].

In this paper, we introduce the nonslip boundary condi-
tion [13], which is expressed by

𝜌 (𝑡, 𝑅) = 0, 𝑉 (𝑡, 𝑅) = 0, (6)

for all 𝑡 ≥ 0 and with the constant 𝑅 > 0.
In 2011, Yuen used the integration method to show the

𝐶1 blowup phenomenon with a “radial dependent” initial
functional:

𝐼
0
= ∫
𝑅

0

𝑟
𝑛

𝑉
0
𝑑𝑟 > 0, (7)

for 𝑛 = 1 [14] and 𝑛 > 0 [15].
Following the integration method, we observe that the

functional (7) could be generalized to have the following
result.

Theorem 1. Define the functional associated with the testing
function 𝑓 by

𝐻(𝑡) = ∫
𝑅

0

𝑓 (𝑟) 𝑉 (𝑡) 𝑑𝑟 (8)

and denote the initial functional 𝐻(0) by 𝐻
0
. Consider the

Euler or Euler-Poisson equations (1) in 𝑅𝑁. For pressureless
fluids (𝐾 = 0) or 𝛾 > 1, and the nontrivial classical𝐶1 solutions
(𝜌, 𝑉) with radial symmetry and the first boundary condition
(6), we have the following results.

(a) For the attractive forces (𝛿 = −1), if 𝐻
0
satisfies the

following initial functional condition:

𝐻2
0

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫
𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟 > 0, (9)

with a total mass𝑀 of the fluid and an arbitrary nonnegative
and nonzero 𝐶1[0, 𝑅] testing function 𝑓(𝑟) satisfying the
following properties:

(1) lim
𝑟→0

(𝑓(𝑟)/𝑟𝑁−1) exists,
(2) 𝑓(𝑟)/𝑟 is increasing,

then the solutions blow up in finite time.
(b) For the nonattractive forces (𝛿 = 0 or 1), if𝐻

0
satisfies

the following initial functional condition:

𝐻
0
= ∫
𝑅

0

𝑓 (𝑟) 𝑉
0
𝑑𝑟 > 0, (10)

then the solutions blow up on or before the finite time 𝑇 =

(2𝑅∫
𝑅

0
𝑓(𝑟)𝑑𝑟)/𝐻

0
.

2. The Generalized Integration Method

The key ideas in obtaining the above results are (i) to design
the right form of generalized functional and find the right
class of testing functions and (ii) to transform the nonlinear
partial differential equations into the Riccati inequality.

Proof. The density function 𝜌(𝑡, 𝑥(𝑡; 𝑥)) conserves its non-
negative nature.

The mass equation (1)
1

𝐷𝜌

𝐷𝑡
+ 𝜌∇ ⋅ 𝑢 = 0, (11)

with the material derivative
𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ (𝑢 ⋅ ∇) , (12)

could be integrated as

𝜌 (𝑡, 𝑥
0
)

= 𝜌
0
(𝑥
0
(0, 𝑥
0
)) exp(−∫

𝑡

0

∇ ⋅ 𝑢 (𝑡, 𝑥
0
(𝑡; 𝑥
0
)) 𝑑𝑡) ≥ 0

(13)

for 𝜌
0
(𝑥
0
(0, 𝑥
0
)) ≥ 0.

For the nontrivial density initial condition in radial
symmetry, 𝜌

0
(𝑟) ̸= 0, we have

𝑉
𝑡
+ 𝑉𝑉
𝑟
+ 𝐾𝛾𝜌

𝛾−2

𝜌
𝑟
= Φ
𝑟

𝑉
𝑡
+
𝜕

𝜕𝑟
(
1

2
𝑉
2

) + 𝐾𝛾𝜌
𝛾−2

𝜌
𝑟
= Φ
𝑟

𝑓 (𝑟) 𝑉
𝑡
+ 𝑓 (𝑟)

𝜕

𝜕𝑟
(
1

2
𝑉
2

) + 𝐾𝛾𝑓 (𝑟) 𝜌
𝛾−2

𝜌
𝑟
= 𝑓 (𝑟)Φ

𝑟
.

(14)

(Here we multiplied the function 𝑓(𝑟) on both sides.)
Subsequently, we take integration with respect to 𝑟 from

0 to 𝑅 for 𝛾 > 1 or𝐾 = 0:

∫
𝑅

0

𝑓 (𝑟) 𝑉
𝑡
𝑑𝑟 + ∫

𝑅

0

𝑓 (𝑟)
𝑑

𝑑𝑟
(
1

2
𝑉
2

)

+ ∫
𝑅

0

𝐾𝛾𝑓 (𝑟) 𝜌
𝛾−2

𝜌
𝑟
𝑑𝑟 = ∫

𝑅

0

𝑓 (𝑟)Φ
𝑟
𝑑𝑟.

(15)

(a) For 𝛿 = −1, we have

∫
𝑅

0

𝑓 (𝑟) 𝑉
𝑡
𝑑𝑟 + ∫

𝑅

0

𝑓 (𝑟)
𝑑

𝑑𝑟
(
1

2
𝑉
2

)

+ ∫
𝑅

0

𝐾𝛾𝑓 (𝑟)

𝛾 − 1
𝑑𝜌
𝛾−1

= −∫
𝑅

0

[
𝛼 (𝑁)𝑓 (𝑟)

𝑟𝑁−1
∫
𝑟

0

𝜌 (𝑡, 𝑠) 𝑠
𝑁−1

𝑑𝑠] 𝑑𝑟,

∫
𝑅

0

𝑓 (𝑟) 𝑉
𝑡
𝑑𝑟 + ∫

𝑅

0

𝑓 (𝑟)
𝑑

𝑑𝑟
(
1

2
𝑉
2

)

+ ∫
𝑅

0

𝐾𝛾𝑓 (𝑟)

𝛾 − 1
𝑑𝜌
𝛾−1

≥ −∫
𝑅

0

[
𝑓 (𝑟)𝑀

𝑟𝑁−1
] 𝑑𝑟,

(16)
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with the total mass

𝑀 = 𝛼 (𝑁)∫
𝑅

0

𝜌 (𝑡, 𝑠) 𝑠
𝑁−1

𝑑𝑠. (17)

Then we apply the integration by parts to deduce

∫
𝑅

0

𝑓 (𝑟) 𝑉
𝑡
𝑑𝑟 −

1

2
∫
𝑅

0

𝑉
2

𝑑𝑓 (𝑟)

+
1

2
[𝑓(𝑟)𝑉

2

(𝑡, 𝑟)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟=𝑅

𝑟=0

− ∫
𝑅

0

𝐾𝛾𝑓󸀠 (𝑟)

𝛾 − 1
𝜌
𝛾−1

𝑑𝑟

+
𝐾𝛾

𝛾 − 1
[𝑓(𝑟)𝜌

𝛾−1

(𝑡, 𝑟)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟=𝑅

𝑟=0

≥ −∫
𝑅

0

[
𝑓 (𝑟)𝑀

𝑟𝑁−1
] 𝑑𝑟.

(18)

Inequality (18) with the first boundary condition (6) becomes

𝑑

𝑑𝑡
∫
𝑅

0

𝑉𝑑𝐹 (𝑟) ≥
1

2
∫
𝑅

0

𝑉
2

𝑓
󸀠

(𝑟) 𝑑𝑟 − ∫
𝑅

0

[
𝑓 (𝑟)𝑀

𝑟𝑁−1
] 𝑑𝑟,

(19)

with 𝑑𝐹(𝑟) = 𝑓(𝑟)𝑑𝑟 and 𝛾 > 1 or𝐾 = 0.
Note that 𝑓(0) = 0 by property 1 and 𝑓 is increasing by

property 2.
Now, we define the assistant functional:

𝐻(𝑡) = ∫
𝑅

0

𝑓 (𝑟) 𝑉𝑑𝑟 = ∫
𝑅

0

𝑉𝑑𝐹 (𝑟) . (20)

We then use the Cauchy-Schwarz inequality to obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑅

0

𝑉 ⋅ 1𝑑𝐹 (𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (∫
𝑅

0

𝑉
2

𝑑𝐹(𝑟))

1/2

(∫
𝑅

0

1𝑑𝐹(𝑟))

1/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑅

0

𝑉 ⋅ 1𝑑𝐹 (𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (∫
𝑅

0

𝑉
2

𝑓(𝑟)𝑑𝑟)

1/2

(∫
𝑅

0

𝑓(𝑟)𝑑𝑟)

1/2

0 ≤

󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑅

0
𝑉𝑑𝐹 (𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨

(∫
𝑅

0
𝑓(𝑟)𝑑𝑟)

1/2
≤ (∫
𝑅

0

𝑉
2

𝑓(𝑟)𝑑𝑟)

1/2

(21)

for 𝑅 > 0,
𝐻2 (𝑡)

∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

≤ ∫
𝑅

0

𝑉
2

𝑓 (𝑟) 𝑑𝑟, (22)

𝐻2 (𝑡)

2𝑅 ∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

≤
1

2𝑅
∫
𝑅

0

𝑉
2

𝑓 (𝑟) 𝑑𝑟. (23)

In view of (23) and (19), we get

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

1

2
∫
𝑅

0

𝑉
2

𝑓
󸀠

(𝑟) 𝑑𝑟 −𝑀∫
𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟

≥
1

2𝑅
∫
𝑅

0

𝑉
2

𝑓 (𝑟) 𝑑𝑟 −𝑀∫
𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟

≥
𝐻(𝑡)
2

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫
𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟,

(24)

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻(𝑡)
2

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫
𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟, (25)

as 𝑓󸀠(𝑟) ≥ (1/𝑟)𝑓(𝑟) by property 2.

It is well known that, with the initial condition

𝐻2
0

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

−𝑀∫
𝑅

0

𝑓 (𝑟)

𝑟𝑁−1
𝑑𝑟 > 0, (26)

the Riccati inequality (25) will blow up on or before the finite
time 𝑇.

(b) For 𝛿 = 0 or 1, by a similar analysis, one can show that

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻(𝑡)
2

2𝑅∫
𝑅

0
𝑓 (𝑟) 𝑑𝑟

. (27)

Finally,

𝐻(𝑡) ≥
−𝐻
0

(𝐻
0
/ (2𝑅 ∫

𝑅

0
𝑓 (𝑟) 𝑑𝑟)) 𝑡 − 1

, (28)

if we set the initial condition

𝐻
0
= ∫
𝑅

0

𝑓 (𝑟) 𝑉
0
𝑑𝑟 > 0. (29)

Thus, the solutions blow up on or before the finite time 𝑇 =
(2𝑅∫
𝑅

0
𝑓(𝑟)𝑑𝑟)/𝐻

0
.

The proof is completed.

Remark 2. For the physical explanation of the functional
𝐻(𝑡), readers may refer to Sideris’ paper [16].

For the construction of testing functions 𝑓 with the
desired properties as required in Theorem 1, one recalls the
class of power series:

∞

∑
𝑖=0

𝑎
𝑖
𝑥
𝑖

, (30)

with the following properties:

(i) all 𝑎
𝑖
≥ 0 for all 𝑖 and 𝑎

𝑖
= 0 for 𝑖 < 𝑁 − 1,

(ii) the radius of convergence is not less than 𝑅.

Actually, power series (or real analytic functions) with the
above properties constitute a large class of examples for 𝑓.
Concrete examples include 𝑟𝑁−1𝑒𝑟 and 𝑟𝑁−1 sinh 𝑟. Moreover,
there are examples with some 𝑎

𝑖
< 0: 𝑟𝑁−1 ln(𝑟 + 1),

𝑟𝑁−1 sin((𝜋/2)(𝑟/𝑅)), and 𝑟𝑁−1(𝑟3 − 3𝑟2 + 3𝑟 + 𝜀), where the
constant 𝜀 > 0 can be arbitrary.

3. The 1-Dimensional Nonradial
Symmetric Case

In the 1-dimensional case, we can apply a similar argument to
gain the result for the nonradial symmetric fluids.

Theorem 3. Suppose 𝑢 and 𝜌 have compact support on [𝑎, 𝑏]
and vanish at the boundaries:

𝑢 (𝑡, 𝑎) = 𝑢 (𝑡, 𝑏) = 𝜌 (𝑡, 𝑎) = 𝜌 (𝑡, 𝑏) = 0, (31)
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for all 𝑡 ≥ 0. By considering 𝑢(𝑡, 𝑥 − 𝑎) and 𝜌(𝑡, 𝑥 − 𝑎) instead,
onemay suppose 𝑎 ≥ 0. Let𝑓(𝑥) be a nonnegative and nonzero
𝐶1[𝑎, 𝑏] testing function, such that 𝑓(𝑥)/𝑥 is increasing for 𝑥 >
𝑎 and the functional is given by

𝐻(𝑡) = ∫
𝑏

𝑎

𝑓 (𝑥) 𝑢 (𝑥, 𝑡) 𝑑𝑥. (32)

(a) For 𝛿 = 1 or −1, if the initial functional𝐻
0
satisfies

𝐻2
0

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

−
𝑀

2
∫
𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 > 0, (33)

then the solutions blow up in finite time.
(b) For 𝛿 = 0, if 𝐻

0
> 0, then the solutions blow up on or

before the finite time 𝑇 = (2𝑏 ∫𝑏
𝑎
𝑓(𝑥)𝑑𝑥)/𝐻

0
.

Proof. For the 1-dimensional case, (1)
2
becomes

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝐾𝛾𝜌

𝛾−2

𝜌
𝑥
= Φ
𝑥
. (34)

For 𝛾 ̸= 1, one has

𝑢
𝑡
+
1

2

𝜕𝑢2

𝜕𝑥
+
𝐾𝛾

𝛾 − 1

𝜕𝜌𝛾−1

𝜕𝑥
= Φ
𝑥
. (35)

Then, we multiply the above equation by 𝑓(𝑥) on both sides,
taking integration with respect to 𝑥 from 𝑎 to 𝑏 and using
integration by parts, to yield

𝑑

𝑑𝑡
𝐻 (𝑡) +

1

2
(𝑓(𝑥)𝑢

2

)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥=𝑎

𝑥=𝑏

−
1

2
∫
𝑏

𝑎

𝑢
2

𝑓
󸀠

(𝑥) 𝑑𝑥

+
𝐾𝛾

𝛾 − 1
[(𝑓(𝑥)𝜌

𝛾−1

)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥=𝑎

𝑥=𝑏

− ∫
𝑏

𝑎

𝜌
𝛾−1

𝑓
󸀠

(𝑥) 𝑑𝑥]

= ∫
𝑏

𝑎

𝑓 (𝑥)Φ
𝑥
𝑑𝑥.

(36)

As 𝑢(𝑡, 𝑎) = 𝑢(𝑡, 𝑏) = 𝜌(𝑡, 𝑎) = 𝜌(𝑡, 𝑏) = 0, for all 𝑡, we get

𝑑

𝑑𝑡
𝐻 (𝑡) =

1

2
∫
𝑏

𝑎

𝑢
2

𝑓
󸀠

(𝑥) 𝑑𝑥

+
𝐾𝛾

𝛾 − 1
∫
𝑏

𝑎

𝜌
𝛾−1

𝑓
󸀠

(𝑥) 𝑑𝑥 + ∫
𝑏

𝑎

𝑓 (𝑥)Φ
𝑥
𝑑𝑥

≥
1

2
∫
𝑏

𝑎

𝑢
2

𝑓
󸀠

(𝑥) 𝑑𝑥 + ∫
𝑏

𝑎

𝑓 (𝑥)Φ
𝑥
𝑑𝑥.

(37)

Using the properties of 𝑓(𝑥) and the Cauchy-Schwarz
inequality (as in the proof of Theorem 1), we obtain

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻2 (𝑡)

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

+ ∫
𝑏

𝑎

𝑓 (𝑥)Φ
𝑥
𝑑𝑥. (38)

On the other hand, by using the following explicit form ofΦ
𝑥
:

Φ
𝑥
(𝑡, 𝑥) =

𝛿

2
(∫
𝑥

𝑎

𝜌 (𝑡, 𝑥) 𝑑𝑦 − ∫
𝑏

𝑥

𝜌 (𝑡, 𝑥) 𝑑𝑦) (39)

and the following estimate:

Φ
𝑥
≥ −

|𝛿|

2
𝑀, (40)

we get the following.
(a) For 𝛿 = 1 or −1,

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻2 (𝑡)

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

−
𝑀

2
∫
𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥. (41)

(b) For 𝛿 = 0,

𝑑

𝑑𝑡
𝐻 (𝑡) ≥

𝐻2 (𝑡)

2𝑏 ∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

. (42)

Thus, the result immediately follows.
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We will study the upper semicontinuity of pullback attractors for the 3D nonautonomouss Benjamin-Bona-Mahony equations
with external force perturbation terms. Under some regular assumptions, we can prove the pullback attractors A

𝜀
(𝑡) of equation

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + ∇⋅

→

𝐹 (𝑢) = 𝜀𝑔(𝑥, 𝑡), 𝑥 ∈ Ω, converge to the global attractorA of the above-mentioned equation with 𝜀 = 0 for
any 𝑡 ∈ R.

1. Introduction

In this paper, we will consider the upper semicontinuity
of pullback attractors for the following 3D Benjamin-Bona-
Mahony equation:

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + ∇⋅

→

𝐹 (𝑢) = 𝜀𝑔 (𝑥, 𝑡) , 𝑥 ∈ Ω, (1)

𝑢(𝑡, 𝑥)|
𝜕Ω

= 0, (2)

𝑢 (𝜏, 𝑥) = 𝑢
𝜏
(𝑥) , 𝜏 ∈ R. (3)

Here Ω ⊂ R3 is a bounded domain with sufficiently smooth
boundary 𝜕Ω; 𝑢(𝑡, 𝑥) = (𝑢

1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), 𝑢

3
(𝑡, 𝑥)) is the

velocity vector field; ] > 0 is the kinematic viscosity;
→

𝐹 is a
nonlinear vector function; 𝜀 ≥ 0 is a small nonnegative para-
meter; the external force 𝑔(𝑥, 𝑡) is locally square integrable
in time for (𝑥, 𝑡) ∈ Ω × R, that is, for any 𝑡 ∈ R, 𝑔(𝑥, 𝑡) ∈

𝐿2loc(R; 𝐻), where𝐻 = (𝐿2(Ω))
3,𝑉 = (𝐻1

0
(Ω))

3, and (⋅, ⋅) and
‖ ⋅ ‖ are the inner product and norm of𝐻, respectively.

The Benjamin-Bona-Mahony (BBM) equation is a well-
known model in physical applications which incorporates
dispersive effects for long waves in shallow water that was
introduced by Benjamin et al. [1] as an improvement of

the Korteweg-de Vries equation (KdV equation) for model-
ing long waves of small amplitude in two dimensions. Con-
trastingwith the KdV equation, the BBMequation is unstable
in its high wave number components. Further, while the KdV
equation has an infinite number of integrals of motion, the
BBM equation only has three. Both KdV and BBM equations
cover cases of surface waves of long wavelength in liquids,
acoustic-gravity waves in compressible fluid, hydromagnetic
waves in cold plasma, and acoustic waves in harmonic
crystals.

For the well-posedness of global solutions for BBM equa-
tion, we can refer to [2–7]. For the long-time behavior, such
as the existence of global attractor and its structure and the
dimension of the attractors, we will discuss the known results
in details.

Biler [8] investigated the long-time behavior of 2D gener-
alized BBM equation

𝑢
𝑡
− Δ𝑢

𝑡
= (𝑏, ∇𝑢) + 𝑢

𝑝

(𝑎, ∇𝑢) (4)

in R2, 𝑡 ∈ R. Here 𝑏 ̸= 0, 𝑎 ∈ R2, and 𝑝 ≥ 3 is an integer.
The author proved the supremumnorms of the solutions with
small initial data decay to zero like 𝑡−2/3 as 𝑡 tends to infinity.
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By energy equation and weak continuous method, Wang
[9] and Wang and Yang [10] investigated the finite-dimen-
sional behavior of solutions and derived the global weak
attractor and the strong attractors for BBM equation:

𝑢
𝑡
− 𝑢

𝑥𝑥𝑡
− ]𝑢

𝑥𝑥
+ (𝑓 (𝑢))

𝑥
= 𝑔 (𝑥) (5)

with period boundary value condition in 𝐻2

per(Ω) and
𝐻1

per(Ω), respectively. Moreover, Wang et al. [11] got the exis-
tence of global attractor for the above BBM equation defined
in a three-dimensional channel; the asymptotic compactness
of the solution operator is obtained by the uniform estimates
on the tails of solutions.

By the decomposition of the semigroup, Wang [12]
studied the regularity of attractors for the BBM equation

𝑢
𝑡
− 𝑢

𝑥𝑥𝑡
− ]𝑢

𝑥𝑥
+ 𝑢

𝑥
+ 𝑢𝑢

𝑥
= 𝑔 (𝑥) . (6)

He proved that the global attractor is smooth if the forcing
term is smooth. In addition, Wang [13] also obtained the
approximate inertial manifolds to the global attractors for the
generalized BBM equations.

Wang [14] considered the stochastic BBM equations on
unbounded domains

𝑑𝑢 − 𝑑 (Δ𝑢) − ]Δ𝑢𝑑𝑡 + ∇⋅
→

𝐹(𝑢) 𝑑𝑡 = 𝑔𝑑𝑡 + ℎ𝑑𝑤 (7)

and concluded the existence of random attractor in𝐻1

0
under

certain assumptions, here 𝑤 is the two-sided real-valued
Wiener process on a probability space. He also proved the
random attractor is invariant and attracts every pulled-back
tempered random set under the forward flow.The asymptotic
compactness of the random dynamical system is established
by a tail-estimates method, which shows that the solutions
are uniformly asymptotically small when space and time
variables approach infinity.

Stanislavova et al. [15] first provided a sufficient condi-
tion to verify the asymptotic compactness of an evolution
equation defined in an unbounded domain, which involves
the Littlewood-Paley projection operators, then they proved
the existence of an attractor for the Benjamin-Bona-Mahony
equation in the phase space𝐻1(R3) by showing the solutions
are point dissipative and asymptotic compact

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + div (𝑓 (𝑢)) = 𝑔 (8)

for 𝑔 ∈ 𝐿2(R3) and 𝑓(𝑢) = 𝑢 + (1/2)𝑢2. Stanislavova [16]
investigated the existence of global attractors of (8) in two
dimension.

By the method of orthogonal decomposition, Zhu [17, 18]
obtained the asymptotic attractor, global attractor, and its
Hausdorff dimension of the damped BBM equations with
periodic boundary conditions in homogeneous periodic
space𝐻1

per(Ω)

𝑢
𝑡
− 𝛿𝑢

𝑥𝑥𝑡
− ]𝑢

𝑥𝑥
+ 𝑢𝑢

𝑥
= 𝑓 (𝑥) (9)

which overcome difficulty coming from the precision of
approximate inertial manifolds. Zhu and Mu [19] deduced

the exponential decay estimates of solutions for time-delayed
BBM equations.

J. Park and S. Park [20] studied the pullback attractors for
the nonautonomous BBM equations in unbounded domains

𝑢
𝑡
− Δ𝑢

𝑡
− ]Δ𝑢 + ∇ ⋅

󳨀󳨀󳨀→
𝐹 (𝑢) = 𝑔 (𝑥, 𝑡) , (10)

by weak continuous method and some priori estimates in
𝐻1

0
(Ω). Qin et al. [21] derived the existence of pullback attrac-

tor of (10) in𝐻2

0
(Ω) by weak continuous method. Zhao et al.

[22] investigated the convergence of corresponding uniform
attractors between averaging BBM and state BBM equations.

Moreover, Çelebi et al. [23] deduced the existence of
attractors with a finite fractal dimension and the existence
of the exponential attractor for the corresponding asymptot-
ically compact semigroup for the periodic initial-boundary
value problemof a generalizedBBMequation. Chueshov et al.
[24] studied the regularity of global attractor for a generalized
BBM equation.

For the upper semicontinuity of corresponding attractors
between autonomous and perturb nonautonomous systems,
we can refer to Bao [25], Hale and Raugel [26], Carvalho
et al. [27], Caraballo and Langa [28], Caraballo et al. [29],
Fitzgibbon et al. [30], Kloeden [31],Miyamoto [32],Wang and
Qin [33], Younsi [34], Wang [35], and Zhou [36].

To our knowledge, there are less results on the upper
semicontinuity of pullback attractors for the 3D nonauto-
nomous BBM equations with the nonautonomous perturba-
tion; we will pay attention to this issue in the sequel.

This paper is organized as following. In Section 2, we will
recall some fundamental theory of pullback attractors for
nonautonomous dynamical systems and give a method
to verify the upper semicontinuity of pullback attractors.
In Section 3, the upper semicontinuity of pullback attractors
for the problems (1)–(3) will be proved.

2. Pullback Attractors of
Nonautonomous Dynamical Systems

In this section, we will consider the relationship between
pullback attractors A

𝜀
= {𝐴

𝜀
(𝑡)}

𝑡∈R for the perturbed non-
autonomous system with 𝜀 > 0 and global attractorA for the
unperturbed autonomous system with 𝜀 = 0 of the following
equation:

𝜕𝑢

𝜕𝑡
= A

𝑓
𝑢 (𝑥, 𝑡) + 𝜀𝑓 (𝑥, 𝑡) . (11)

If the global attractor is unique, then the global attractor is
the pullback attractor when 𝜀 = 0.

Let𝑋 be a Banach space with norm ‖ ⋅ ‖
𝑋
. The Hausdorff

semidistance dist
𝑋
(𝐵
1
, 𝐵
2
) in𝑋 between 𝐵

1
⊆ 𝑋 and 𝐵

2
⊆ 𝑋

is defined by

dist
𝑋
(𝐵
1
, 𝐵
2
) = sup

𝑥∈𝐵1

inf
𝑦∈𝐵2

𝑑
𝑋
(𝑥, 𝑦) for 𝐵

1
, 𝐵
2
⊂ 𝑋, (12)

where 𝑑
𝑋
(𝑥, 𝑦) denotes the distance between two points 𝑥

and 𝑦.
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For an autonomous system, 𝑆(𝑡) : 𝑋 → 𝑋 (𝑡 ∈ R) is
a 𝐶

0
-semigroup defined on 𝑋. If the global attractor A for

𝑆(𝑡) exists, then it has the following properties: (1) A is an
invariant, compact set; (2) A attracts every bounded sets in
𝑋, that is, lim

𝑡→+∞
dist(𝑆(𝑡)𝐵,A) = 0 for all bounded subsets

𝐵 ⊂ 𝑋.
For a nonautonomous system, the two-parameter map-

ping class {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

is said to be a process in𝑋 if

𝑈 (𝑡, 𝑠) 𝑈 (𝑠, 𝜏) = 𝑈 (𝑡, 𝜏) , ∀𝑡 ≥ 𝑠 ≥ 𝜏, 𝜏 ∈ R,

𝑈 (𝜏, 𝜏) = 𝐼𝑑, (identity operator in 𝑋) , ∀𝜏 ∈ R.
(13)

Moreover, throughout the paper, we always assume that the
process 𝑈(⋅, ⋅) is continuous in𝑋.

Now we will recall some definitions and framework on
the existence theory of pullback attractors.

Definition 1. A family of compact setsA = {𝐴(𝑡)}
𝑡∈R is said to

be a pullback attractor for the continuous process {𝑈(⋅, ⋅)} if
it satisfies the following:

(i) A is invariant for all 𝑡 ≥ 𝜏.

(ii) A is pullback attracting, that is, lim
𝜏→+∞

dist(𝑈(𝑡, 𝑡−
𝜏)𝐵, 𝐴(𝑡)) = 0 for all bounded subsets 𝐵 ⊂ 𝑋.

Definition 2. The family of subsetsB = {𝐵(𝑡)}
𝑡∈R is said to be

pullback absorbing for the process 𝑈(⋅, ⋅), if for every 𝑡 ∈ R

and all bounded subsets𝐵 ⊂ 𝑋, there exists a time𝑇(𝑡, 𝐵) > 0,
such that

𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 ⊂ 𝐵 (𝑡) ∀𝜏 ≥ 𝑇 (𝑡, 𝐵) . (14)

Definition 3. Let B = {𝐵(𝑡)}
𝑡∈R be a family of subsets in

𝑋. A process 𝑈(⋅, ⋅) is said to be pullback B-asymptotically
compact in 𝑋 if for all 𝑡 ∈ R, any sequences 𝜏

𝑛
→ ∞ and

𝑥
𝑛
∈ 𝐵(𝑡 − 𝜏

𝑛
); the sequence {𝑈(𝑡, 𝑡 − 𝜏

𝑛
)𝑥
𝑛
} is precompact in

𝑋.

Theorem 4. Let the family of sets B = {𝐵(𝑡)}
𝑡∈R be pullback

absorbing set for the process 𝑈(⋅, ⋅) and 𝑈(⋅, ⋅) is pullback B-
asymptotically compact in 𝑋. Then, the family A = {𝐴(𝑡)}

𝑡∈R

that is defined by 𝐴(𝑡) = Λ(B, 𝑡) is a pullback attractor for
𝑈(⋅, ⋅) in𝑋 for the process {𝑈(⋅, ⋅)}, where

Λ (B, 𝑡) = ⋂
𝑠≥0

⋃
𝜏≥𝑠

𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ∈ R.

(15)

In the following, we will characterize the pullback B-
asymptotic compactness in terms of the noncompact mea-
sure.

Definition 5. Let 𝐵 ⊂ 𝑋,B = {𝐵(𝑡)}
𝑡∈R be a family of sets in

𝑋. A process 𝑈(⋅, ⋅) is said to be pullbackB-𝜅 contracting, if
for any 𝑡 ∈ R, 𝜀 > 0, there exists a time 𝑇B(𝑡, 𝜀) > 0, such that

𝜅 (𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏)) ≤ 𝜀 ∀𝜏 ≥ 𝑇B (𝑡, 𝜀) . (16)

Here 𝜅(𝐵) is the Kuratowski noncompact measure defined as

𝜅 (𝐵)

= inf {𝛿 > 0 | 𝐵 admits a finite cover

by sets of diameter < 𝛿} .

(17)

Lemma 6. LetB = {𝐵(𝑡)}
𝑡∈R, B̂ = {𝐵(𝑡)}

𝑡∈R be two families
of sets in 𝑋 and satisfy that for any 𝑡 ∈ R, there exists a time
𝑇B,B̂(𝑡) > 0, such that

𝑈 (𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏) ⊂ 𝐵 (𝑡) ∀𝜏 ≥ 𝑇B,B̂ (𝑡) . (18)

Then 𝑈(⋅, ⋅) is pullbackB-asymptotically compact, if it is pull-
back B̂-𝜅 contracting.

Proof. See, for example, Wang and Qin [33].

Theorem 7. Assume that the assumptions in Lemma 6 hold. If
the process𝑈(⋅, ⋅) is pullback B̂-𝜅 contracting and the family of
sets B = {𝐵(𝑡)}

𝑡∈R is pullback absorbing for 𝑈(⋅, ⋅), then the
process 𝑈(⋅, ⋅) possesses a pullback attractor.

Proof. See, for example, Wang and Qin [33].

Theorem 8. Let B = {𝐵(𝑡)}
𝑡∈R be a family of sets in 𝑋.

Suppose 𝑈(⋅, ⋅) = 𝑈
1
(⋅, ⋅) + 𝑈

2
(⋅, ⋅) : R ×R × 𝑋 → 𝑋 satisfies

(i) for any 𝑡 ∈ R,
󵄩󵄩󵄩󵄩𝑈1 (𝑡, 𝑡 − 𝜏) 𝑥

𝑡−𝜏

󵄩󵄩󵄩󵄩𝑋 ≤ Φ (𝑡, 𝜏) ∀𝑥
𝑡−𝜏

∈ 𝐵 (𝑡 − 𝜏) , 𝜏 > 0,

(19)

where Φ(⋅, ⋅) : R × R → R+ satisfies lim
𝜏→+∞

Φ(𝑡,
𝜏) = 0 for each 𝑡 ∈ R;

(ii) for any 𝑡 ∈ R and 𝑇 ≥ 0, ⋃
0≤𝜏≤𝑇

𝑈
2
(𝑡, 𝑡 − 𝜏)𝐵(𝑡 − 𝜏)

is bounded and 𝑈
2
(𝑡, 𝑡 − 𝜏)𝐵(𝑡 − 𝜏) is precompact in𝑋

for any 𝜏 > 0.

Then the process 𝑈(⋅, ⋅) is pullbackB-𝜅 contracting in𝑋.

Proof. See, for example, Wang and Qin [33].

We now perturb the nonautonomous term with a small
parameter 𝜀 ∈ (0, 𝜀

0
]; thus we obtain a nonautonomous

dynamical system driven by the process 𝑈
𝜀
(⋅, ⋅).

For each 𝑡 ∈ R, 𝜏 ∈ R, and 𝑥 ∈ 𝑋, we have

(𝐻
1
) lim

𝜀→0

𝑑
𝑋
(𝑈
𝜀
(𝑡, 𝑡 − 𝜏) 𝑥, 𝑆 (𝑡) 𝑥) = 0, (20)

uniformly on bounded sets of𝑋.

Theorem9 (Caraballo et al. [28, 29]). Assume that (𝐻
1
) holds,

and for any 𝜀 ∈ (0, 𝜀
0
], there exist pullback attractors A

𝜀
=

{𝐴
𝜀
(𝑡)}

𝑡∈R for all 𝜀 > 0. If there exists a compact set 𝐾 ⊂ 𝑋,
such that

(𝐻
2
) lim

𝜀→0

𝑑𝑖𝑠
𝑋
(𝐴

𝜀
(𝑡) , 𝐾) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (21)

ThenA
𝜀
andA have the upper semicontinuity, that is,

lim
𝜀→0

𝑑𝑖𝑠
𝑋
(𝐴

𝜀
(𝑡) ,A) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (22)
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In order to apply Theorem 9 to obtain the upper semi-
continuity of pullback attractors A

𝜀
and global attractor A,

we now present a technique to verify (𝐻
2
) for the process

generated by the nonautonomous dissipative system.

Lemma 10. Assume that the familyB = {𝐵(𝑡)}
𝑡∈R is pullback

absorbing for 𝑈(⋅, ⋅), and for each 𝜀 ∈ (0, 𝜀
0
],K

𝜀
= {𝐾

𝜀
(𝑡)}

𝑡∈R

is a family of compact sets in 𝑋. Suppose 𝑈
𝜀
(⋅, ⋅) = 𝑈

1,𝜀
(⋅, ⋅) +

𝑈
2,𝜀
(⋅, ⋅) : R ×R × 𝑋 → 𝑋 satisfies

(i) for any 𝑡 ∈ R and any 𝜀 ∈ (0, 𝜀
0
],

󵄩󵄩󵄩󵄩𝑈1,𝜀 (𝑡, 𝑡 − 𝜏) 𝑥
𝑡−𝜏

󵄩󵄩󵄩󵄩𝑋 ≤ Φ (𝑡, 𝜏) ∀𝑥
𝑡−𝜏

∈ 𝐵 (𝑡 − 𝜏) , 𝜏 > 0,

(23)

where Φ(⋅, ⋅) : R × R → R+ satisfies lim
𝜏→+∞

Φ(𝑡,
𝜏) = 0 for each 𝑡 ∈ R;

(ii) for any 𝑡 ∈ R and any 𝑇 ≥ 0, ∪
0≤𝜏≤𝑇

𝑈
2,𝜀
(𝑡, 𝑡 − 𝜏)𝐵(𝑡 −

𝜏) is bounded, and for any 𝑡 ∈ R, there exists a time
𝑇B(𝑡) > 0, which is independent of 𝜀, such that

𝑈
2,𝜀
(𝑡, 𝑡 − 𝜏) 𝐵 (𝑡 − 𝜏) ⊂ 𝐾

𝜀
(𝑡) ∀𝜏 ≥ 𝑇B (𝑡) , 𝜀 ∈ (0, 𝜀

0
]

(24)

and there exists a compact set 𝐾 ⊂ 𝑋, such that

(𝐻
󸀠

2
) lim

𝜀→0

𝑑𝑖𝑠𝑡
𝑋
(𝐾
𝜀
(𝑡) , 𝐾) = 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (25)

Then for each 𝜀 ∈ (0, 𝜀
0
], there exists a pullback attrac-

torA
𝜀
= {𝐴

𝜀
(𝑡)}

𝑡∈R and (𝐻
2
) holds.

Proof. See, for example, Wang and Qin [33].

3. Upper Semicontinuity of
Pullback Attractors

In this section, firstly, we recall some notations about the
functional spaces which will be used later to discuss the reg-
ularity of pullback attracting set.

The operator 𝐴 is denoted by 𝐴 = −Δ with domain
𝐷(𝐴) = 𝐻2(Ω)⋂𝐻1

0
(Ω) and 𝜆 is the first eigenvalue of 𝐴;

we consider the family of Hilbert spaces

H
𝛼

= 𝐷(𝐴
𝛼/2

) , 𝛼 ∈ R (26)

generated by the Laplacian operator with the Dirichlet
boundary value conditions equipped with the standard inner
product and norm

(⋅, ⋅)H𝛼 = (𝐴
𝛼/2

⋅, 𝐴
𝛼/2

⋅) , ‖⋅‖H𝛼 =
󵄩󵄩󵄩󵄩󵄩𝐴
𝛼/2

⋅
󵄩󵄩󵄩󵄩󵄩

(27)

respectively, then we have 𝐷(𝐴𝑠/2) 󳨅→ 𝐷(𝐴𝑟/2) for any 𝑠 > 𝑟
and the continuous embedding

H
𝑠

≡ 𝐷(𝐴
𝑠/2

) 󳨅→ (𝐿
6/(3−2𝑠)

(Ω))
3 (28)

for all 𝑠 ∈ [0, 3/2),H2 = 𝐻2(Ω)⋂𝐻1

0
(Ω).

Then, applying the Helmholtz-Leray projector P to the
systems (1)–(3), we obtain the following problem which is
equivalent to the original problems (1)–(3)

𝑢
𝑡
+ ]𝐴𝑢 + 𝐴𝑢

𝑡
+ 𝐵 (𝑢) = 𝜀𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω × [𝜏,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × [𝜏,∞) ,

𝑢 (𝜏, 𝑥) = 𝑢
𝜏
(𝑥) , 𝑥 ∈ Ω.

(29)

Here 𝐴 = −PΔ, 𝐵(𝑢) = P(∇⋅
→

𝐹 (𝑢)), and 𝑓(𝑥, 𝑡) =
P𝑔(𝑥, 𝑡).

Assume that 𝑢
𝜏
∈ 𝐻1

0
(Ω), the external force 𝑔 ∈ 𝐿2loc(R,

𝐻). Also we assume that there exist constants 𝛽 > 0, 0 ≤ 𝛼 <
𝜎/2, and 𝜎 = 2]/((2/𝜆) + 2), such that

󵄩󵄩󵄩󵄩𝑔(𝑡)
󵄩󵄩󵄩󵄩
2

≤ 𝛽𝑒
𝛼|𝑡|

, (30)

which implies that

∫
𝑡

−∞

𝑒
𝜎𝑠󵄩󵄩󵄩󵄩𝑔(𝑠)

󵄩󵄩󵄩󵄩
2

𝑑𝑠 < +∞, ∀𝑡 ∈ R,

∫
𝜏

−∞

(∫
𝑡

−∞

𝑒
𝜎𝑠/2󵄩󵄩󵄩󵄩𝑔(𝑠)

󵄩󵄩󵄩󵄩
2

𝑑𝑠) 𝑑𝑡 < +∞, ∀𝜏 ∈ R.

(31)

Moreover, we assume that

lim
𝑘→∞

∫
𝜏

−∞

∫
|𝑥3|≥𝑘

𝑒
𝜎𝑡󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡 = 0, ∀𝜏 ∈ R. (32)

From (31), we can easily derive that the term 𝑓(𝑥, 𝑡) is locally
square integrable in time; that is, 𝑓(𝑥, 𝑡) ∈ 𝐿2loc(R, 𝐻) and
satisfies

∫
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑥, 𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 < +∞ (33)

for 0 < 𝜂 ≤ min{𝜆], ], ]/((2/𝜆) + 2)} and any 𝑡 ∈ R.
For the nonlinear vector function →

𝐹 (𝑠) = (𝐹
1
(𝑠), 𝐹

2
(𝑠),

𝐹
3
(𝑠)) (𝑠 ∈ R), we denote

𝑓
𝑖
(𝑠) = 𝐹

󸀠

𝑖
(𝑠) , F

𝑖
(𝑠) = ∫

𝑠

0

𝐹
𝑖
(𝑟) 𝑑𝑟, (34)

where
→

𝑓 (𝑠) = (𝑓
1
(𝑠) , 𝑓

2
(𝑠) , 𝑓

3
(𝑠)) ,

→

F (𝑠) = (F
1
(𝑠) ,F

2
(𝑠) ,F

3
(𝑠)) .

(35)

Assume that 𝐹
𝑖
(𝑖 = 1, 2, 3) are smooth functions satisfying

𝐹
𝑖
(0) = 0,

󵄨󵄨󵄨󵄨𝐹𝑖 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝐶

1
|𝑠| + 𝐶

2
|𝑠|
2

,

𝐶
1
(1 + 𝜎

2

|𝑠|) ≤
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐶
2
(1 + 𝜎

2

|𝑠|) ,

󵄨󵄨󵄨󵄨F𝑖
(𝑠)

󵄨󵄨󵄨󵄨 ≤ 𝐶
1
|𝑠|
2

+ 𝐶
2
|𝑠|
3

,

(36)

for all 𝑠 ∈ R, where 𝐶
1
, 𝐶
2
, and 𝜎 are positive constants.

At last, we will state the main result and the proof of this
paper as the following.
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Theorem 11. Assume that (30)–(36) hold, and 𝑢
𝜏
∈ 𝑉, then

the pullback attractorsA
𝜀
= {A

𝜀
(𝑡)}

𝑡∈R for (29) (which is equi-
valent to (1)) with 𝜀 > 0 and the global attractorA for (29)with
𝜀 = 0 satisfy

lim
𝜀→0
+
𝑑𝑖𝑠

𝑉
(A

𝜀
(𝑡) ,A) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈ R. (37)

The Hausdorff semidistance 𝑑𝑖𝑠𝑡(⋅, ⋅) is defined on the Banach
space 𝑉.

In order to apply Theorem 9 and Lemma 10 to prove
Theorem 11, wewill introduce the existence of global attractor
for autonomous system (1) with 𝜀 = 0 and pullback attractors
for nonautonomous system (1) with 𝜀 > 0 in the following
lemmas.

Lemma 12. Assume that (34)–(36) hold, and 𝑢
𝜏
∈ 𝑉, then the

semigroup 𝑆(𝑡) (𝑡 ∈ R) generated by problem (29) (or problems
(1)–(3)) with 𝜀 = 0 possesses a global attractorA in 𝑉.

Proof. Using similar technique as in [9–11, 17, 18], we only
need to consider the Dirichlet boundary value condition
instead of the periodic boundary value condition in these
papers which investigated the existence of global attractors.
Thismeans that we can obtain our lemma easily, here we omit
the details.

Lemma 13. Assume that (30)–(36) hold, and 𝑢
𝜏
∈ 𝑉, then

problem (29) possesses a unique global solution 𝑢𝜀(𝑥, 𝑡) (𝜀 ≥ 0)
satisfying

𝑢
𝜀

(𝑥, 𝑡) ∈ 𝐶 ([𝜏, +∞) , 𝑉) ∩ 𝐿
∞

(0, +∞;𝑉) ,

𝑢
𝑡
∈ 𝐿

2

(0, 𝑇; 𝑉) .
(38)

Moreover, the process {𝑈
𝜀
(𝑡, 𝜏)} generated by the global solu-

tions possess pullback attractorsA
𝜀
for all 𝜀 ≥ 0 in 𝑉.

Proof. See, for example, [20].

Nowwedecompose the solution𝑢𝜀(𝑡) = 𝑈
𝜀
(𝑡, 𝜏)𝑢

𝜏
of (29)

with initial data 𝑢
𝜏
∈ 𝑉 as

𝑢
𝜀

= 𝑈
𝜀
(𝑡, 𝜏) 𝑢

𝜏
= 𝑈

1,𝜀
(𝑡, 𝜏) 𝑢

𝜏
+ 𝑈

2,𝜀
(𝑡, 𝜏) 𝑢

𝜏
, (39)

where

𝑈
1,𝜀
(𝑡, 𝜏) 𝑢

𝜏
= V (𝑡) ,

𝑈
2,𝜀
(𝑡, 𝜏) 𝑢

𝜏
= 𝑤 (𝑡)

(40)

solve the following problems:

V
𝑡
+ 𝐴V

𝑡
+ ]𝐴V + 𝐵 (V) = 0, in (𝑥, 𝑡) ∈ Ω × [𝜏,∞) ,

V (𝑥, 𝑡) = 0, on 𝜕Ω × [𝜏,∞) ,

V (𝜏, 𝑥) = V
𝜏
(𝑥) , 𝑥 ∈ Ω,

(41)

𝑤
𝑡
+ 𝐴𝑤

𝑡
+ ]𝐴𝑤

= −𝐵 (𝑢) + 𝐵 (V) + 𝜀𝑓 (𝑥, 𝑡) , in (𝑥, 𝑡) ∈ Ω × [𝜏,∞) ,

𝑤 (𝑥, 𝑡) = 0, on 𝜕Ω × [𝜏,∞) ,

𝑤 (𝜏, 𝑥) = 0, 𝑥 ∈ Ω,

(42)

respectively.

Lemma 14. Suppose that (34)–(36) hold. For any bounded set
𝐵 ⊂ 𝑉 and 𝑡 ∈ R, there exists a time 𝑇(𝐵, 𝑡) > 0, such that

󵄩󵄩󵄩󵄩𝑈𝜀 (𝑡, 𝑡 − 𝜏) 𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

≤ 𝑅
𝜀
(𝑡)

∀𝜏 ≥ 𝑇 (𝐵, 𝑡) , 𝑎𝑙𝑙 𝑢
𝑡−𝜏

∈ 𝐵,
(43)

where 𝑅
𝜀
(𝑡) = 𝐶𝜀𝑒−𝜂𝑡 ∫

𝑡

−∞
𝑒𝜂𝑠‖𝑓(𝑠)‖

2

𝐻
𝑑𝑠, and 𝐶 is a positive

constant independent of 𝐵, 𝑡, 𝜏.

Proof. We choose 𝜎 = 2]/((2/𝜆) + 2), 𝑅
𝜎

= {𝑟 : 𝑅 →

(0, +∞) | lim
𝑡→−∞

𝑒𝜎𝑡𝑟2(𝑡) = 0} and denote by D
𝜎
the class

of families 𝐷 = {𝐷(𝑡) : 𝑡 ∈ 𝑅} ⊂ D(𝐻) such that 𝐷(𝑡) ⊂
𝐵(0, 𝑟

𝐷̂
(𝑡)) for some 𝑟

𝐷̂
, where 𝐵(0, 𝑟

𝐷̂
(𝑡)) denotes the closed

ball in 𝑉 centered at zero with radius 𝑟
𝐷̂
(𝑡).

Let 𝑡 ∈ R, 𝜏 ∈ R, and 𝑢
𝜏
∈ 𝑉 be fixed, and denote

𝑢 (𝑟) = 𝑢 (𝑟; 𝑡 − 𝜏, 𝑢
0
)

= 𝑈 (𝑟 − 𝑡 + 𝜏, 𝑡 − 𝜏, 𝑢
0
) for 𝑟 ≥ 𝑡 − 𝜏.

(44)

Since 𝑢 ∈ 𝐶((𝜏, 𝑇); 𝑉), then for all 𝑢 ∈ 𝑉, we derive that

𝑑

𝑑𝑡
(𝑒
𝜎𝑡

‖𝑢 (𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢 (𝑡)‖
2

)

+ 2]𝑒𝜎𝑡‖∇𝑢 (𝑡)‖2

= −2𝑒
𝜎𝑡

(∇
→

𝐹 (𝑢) , ∇𝑢)

+ 𝜎 (𝑒
𝜎𝑡

‖𝑢(𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢‖
2

)

+ 2𝑒
𝜎𝑡

(𝜀𝑓 (𝑡) , 𝑢 (𝑡))

= 𝜎 (𝑒
𝜎𝑡

‖𝑢(𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢‖
2

)

+ 2𝑒
𝜎𝑡

(𝜀𝑓 (𝑡) , 𝑢 (𝑡))

≤ 𝜎 (
1

𝜆
+ 1) 𝑒

𝜎𝑡

‖∇𝑢‖
2

+
𝜎

𝜆
𝑒
𝜎𝑡

‖∇𝑢‖
2

+
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻

≤ 𝜎(
2

𝜆
+ 1) 𝑒

𝜎𝑡

‖∇𝑢(𝑡)‖
2

+
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻

≤ 2]𝑒𝜎𝑡‖∇𝑢(𝑡)‖2 +
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
,

(45)

that is,

𝑑

𝑑𝑡
(𝑒
𝜎𝑡

‖𝑢(𝑡)‖
2

+ 𝑒
𝜎𝑡

‖∇𝑢(𝑡)‖
2

) ≤
𝜀

𝜎
𝑒
𝜎𝑡󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
, (46)
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which gives

‖𝑢(𝑡)‖
2

+ ‖∇𝑢(𝑡)‖
2

≤ 𝑒
−𝜎(𝑡−𝜏)

(
󵄩󵄩󵄩󵄩𝑢𝜏

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑢𝜏

󵄩󵄩󵄩󵄩
2

)

+
𝜀

𝜎
∫
𝑡

𝜏

𝑒
−𝜎(𝑡−𝜉)󵄩󵄩󵄩󵄩𝑓(𝜉)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝜉

(47)

for all 𝜏 ∈ R.
Let 𝐷 ∈ D

𝜎
be given, choosing appropriate parameter 𝜎,

we easily get

󵄩󵄩󵄩󵄩𝑈(𝑡, 𝜏, 𝑢𝜏)
󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝑒

−𝜎(𝑡−𝜏)

𝑟
2

𝐷̂
+
𝜀

𝜎
∫
𝑡

−∞

𝑒
−𝜎(𝑡−𝜉)󵄩󵄩󵄩󵄩𝑓(𝜉)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝜉,

(48)

for all 𝑢
𝜏
∈ 𝐷(𝜏), 𝑡 ≥ 𝜏.

Setting 𝑒−𝜎(𝑡−𝜏)𝑟2
𝐷̂
≤ (𝜀/𝜎) ∫

𝑡

−∞
𝑒−𝜎(𝑡−𝜉)‖𝑓(𝜉)‖

2

𝐻
𝑑𝜉, then we

denote 𝑅
𝜀
(𝑡) the nonnegative number given for each 𝑡 ∈ R by

(𝑅
𝜀
(𝑡))

2

=
2𝜀

𝜎
∫
𝑡

−∞

𝑒
−𝜂(𝑡−𝜉)󵄩󵄩󵄩󵄩𝑓(𝜉)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝜉, (49)

and consider the family 𝐵
𝜀
of closed balls in 𝑉 defined by

𝐵
𝜀
(𝑡) = {V ∈ 𝑉 | ‖V‖

𝑉
≤ 2𝑅

𝜀
(𝑡)} . (50)

It is straightforward to check that 𝐵
𝜀
∈ D

𝜎
and hence 𝐵

𝜎
is

theD
𝜎
-pullback absorbing for the process {𝑈(𝑡, 𝜏, 𝑢

𝜏
)}.

Setting

𝐵
𝜀
= {𝑢 ∈ 𝑉 | ‖𝑢‖

𝑉
≤ 𝑅

𝜀
(𝑡)} , (51)

then we can check that family B
𝜀
= {𝐵

𝜀
(𝑡)}

𝑡∈R is pullback
absorbing in 𝑉 easily. Moreover,

lim
𝑡→−∞

𝑒
𝜂𝑡

𝑅
𝜀
(𝑡) = 0 for any 𝜀 > 0. (52)

Lemma 15. Let 𝑅
𝜀
(𝑡), 𝐵

𝜀
(𝑡) be given as above. For any 𝑡 ∈ R,

the solution V(𝑡) = 𝑈
1,𝜀
(𝑡, 𝑡 − 𝜏)𝑢(𝑡 − 𝜏) of (41) satisfies

󵄩󵄩󵄩󵄩𝑈1,𝜀(𝑡, 𝑡 − 𝜏)𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝑒

−𝜂𝜏

𝑅
𝜀
(𝑡 − 𝜏) , (53)

for all 𝜏 ≥ 0 and 𝑢
𝑡−𝜏

∈ 𝐷
𝜀
(𝑡 − 𝜏).

Proof. Multiplying equation in (41) with V and integrating
overΩ, we derive

1

2

𝑑

𝑑𝑡
(‖V(𝑡)‖2 + ‖∇V(𝑡)‖2) + ]‖∇V‖2 ≤ 0. (54)

Here we use the property of operator 𝐵(⋅) andF
𝑖
(0) = 0 as

∫
Ω

(∇⋅
→

𝐹 (𝑢)) 𝑢𝑑𝑥 = −∫
Ω

→

𝐹 (𝑢) ⋅ ∇𝑢𝑑𝑥

= −∫
Ω

∇⋅
→

F (𝑢) 𝑑𝑥

= −∫
𝜕Ω

→

F (𝑢) ⋅
→

𝑛 𝑑𝑥 = 0,

(55)

where
→

𝑛 is the outer unit normal vector.

Using Poincaré’s inequality, it follows

𝑑

𝑑𝑡
(‖V(𝑡)‖2 + ‖∇V(𝑡)‖2) + 𝜂 (‖V‖2 + ‖∇V‖2) ≤ 0, (56)

where we set 0 < 𝜂 ≤ min{𝜆
1
], ]}.

Integrating (56) from 𝑡 − 𝜏 to 𝑡, we get

󵄩󵄩󵄩󵄩𝑈1,𝜀(𝑡, 𝑡 − 𝜏)𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

𝑉
≤ ‖V(𝑡)‖2 + ‖∇V(𝑡)‖2

≤ (
󵄩󵄩󵄩󵄩V𝑡−𝜏

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇V𝑡−𝜏

󵄩󵄩󵄩󵄩
2

) 𝑒
−𝜂(𝑡−𝜏)

≤ 𝑒
−𝜂𝜏

𝑅
𝜀
(𝑡 − 𝜏)

(57)

for all 𝑡 ≥ 𝜏, which completes our proof.

Lemma 16. LetB
𝜀
(𝑡) = {𝐵

𝜀
(𝑡)}

𝑡∈R be given by (51) and (52).
For any 𝑡 ∈ R, there exist a time 𝑇

𝜀
(𝑡,B) > 0 and a function

𝐼
𝜀
(𝑡) > 0, such that the solution 𝑈

2,𝜀
(𝑡, 𝜏)𝑢

𝜏
= 𝑤(𝑡) of (42)

satisfies

󵄩󵄩󵄩󵄩𝑈2,𝜀(𝑡, 𝑡 − 𝜏)𝑢
𝑡−𝜏

󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝐼

𝜀
(𝑡) , (58)

for all 𝜏 ≥ 𝑇
𝜀
(𝑡,B) and any 𝑢

𝑡−𝜏
∈ 𝐵

𝜀
(𝑡 − 𝜏).

Proof. Taking the inner product of equation in (42) with
𝐴𝜎𝑤(𝑡) in𝐻, we derive

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩󵄩𝐴
𝜎/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

)

+ ]∫
Ω

󵄨󵄨󵄨󵄨󵄨𝐴
(𝜎+1)/2

𝑤 (𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −⟨𝐵 (𝑢) , 𝐴
𝜎

𝑤⟩ + ⟨𝐵 (V) , 𝐴𝜎𝑤⟩

+ 𝜀⟨𝑓 (𝑡, 𝑥) , 𝐴
𝜎

𝑤⟩.

(59)

By Poincaré’s inequality, Lemma 15, (51), and (34)–(36), we
obtain

− ⟨𝐵 (𝑢) , 𝐴
𝜎

𝑤⟩ + ⟨𝐵 (V) , 𝐴𝜎𝑤⟩

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨∇ ⋅ (

→

𝐹 (V) −
→

𝐹 (𝑢)) , 𝐴
𝜎

𝑤⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
( sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (∇V − ∇𝑢) , 𝐴
𝜎

𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
( sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) ∇𝑤,𝐴

𝜎

𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+(1/2))/2

𝑤
󵄩󵄩󵄩󵄩󵄩
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≤
𝐶 (𝜀)

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ]𝜆
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+(1/2))/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤
𝐶 (𝜀)

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
sup
𝑖=1,2,3

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
(V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→

𝐹
󸀠

𝑖
𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ]
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤
𝐶

𝜆
(2 + 𝜎

2

‖𝑢‖
2

+ 𝜎
2

‖V‖2)

+ ]
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶 (2 + 𝜎
2

𝑅
𝜀
(𝑡) + 𝜎

2

𝑒
−𝜂𝜏

𝑅
𝜀
(𝑡 − 𝜏))

+ ]
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤
󵄩󵄩󵄩󵄩󵄩

2

,

⟨𝑓 (𝑡, 𝑥) , 𝐴
𝜎

𝑤⟩ ≤
1

𝜆

󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
.

(60)

Hence according to (59)–(60) and (31), we have
𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩󵄩𝐴
𝜎/2

𝑤 (𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤 (𝑡)
󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝐶 (1 + 𝜀
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜀
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
) ,

(61)

where the constant 𝐶 depends on ‖𝑢
𝑡−𝜏

‖
2

𝑉
, 𝜎, and the first

eigenvalue 𝜆 of the operator 𝐴.
Integrating (61) from 𝑡 − 𝜏 to 𝑡, we conclude that

󵄩󵄩󵄩󵄩󵄩𝐴
𝜎/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩𝐴
(𝜎+1)/2

𝑤(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶𝑒
𝐶𝑡

∫
𝑡

𝑡−𝜏

(1 + 𝜀
2󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑠)

󵄩󵄩󵄩󵄩
2

) 𝑒
−𝐶𝑠

𝑑𝑠

= 𝐼
𝜀
(𝑡)

(62)

for all 𝑡 > 𝜏. This completes the proof of desiring lemma.

Lemma 17. For any 𝑡 ∈ R, any 𝜏 > 0, if 𝑢
0
varies in bounded

sets, then the solution 𝑢
𝜀
(𝑡) = 𝑈

𝜀
(𝑡, 𝑡 − 𝜏)𝑢

0
of problem (1)

converges to the solution 𝑢(𝑡) = 𝑆(𝑡)𝑢
0
of the unperturbed

problem (1)with 𝜀 = 0 uniformly in𝑉 as 𝜀 → 0+, whichmeans

lim
𝜀→0
+
sup
𝑢0∈𝐵

󵄩󵄩󵄩󵄩𝑢𝜀(𝑡) − 𝑢(𝑡)
󵄩󵄩󵄩󵄩𝑉 = 0, (63)

where 𝐵 is a bounded subset in 𝑉.

Proof. Denote
𝑦
𝜀

(𝑡) = 𝑢
𝜀
(𝑡) − 𝑢 (𝑡) , (64)

then we can verify that 𝑦𝜀(𝑡) satisfies
𝑦
𝜖

𝑡
+ 𝐴𝑦

𝜀

𝑡
+ ]𝐴𝑦𝜀 = −𝐵 (𝑢

𝜀

) + 𝐵 (𝑢) + 𝜀𝑓 (𝑥, 𝑡) , (65)

𝑦
𝜀

󵄨󵄨󵄨󵄨𝜕Ω = 0, (66)

𝑦
𝜀

󵄨󵄨󵄨󵄨𝑡=𝜏 = (𝑢
𝜀
)
𝜏
− 𝑢

𝜏
. (67)

Multiplying (65) by𝑦𝜀(𝑡), using (34)–(36) and noting the
boundary value condition (66), we have

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

) + ]󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

= ⟨𝐵 (𝑢) , 𝑦
𝜀

⟩ − ⟨𝐵 (𝑢
𝜀

) , 𝑦
𝜀

⟩ + ⟨𝜀𝑓, 𝑦
𝜀

⟩

≤
󵄨󵄨󵄨󵄨⟨𝐵 (𝑢

𝜀

) − 𝐵 (𝑢) , 𝑦
𝜀

)⟩
󵄨󵄨󵄨󵄨 + ⟨𝜀𝑓, 𝑦

𝜀

⟩

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨∇ ⋅ (

→

𝐹 (𝑢
𝜀

) −
→

𝐹 (𝑢)) , 𝑦
𝜀

⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
𝜀2

4]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
+
𝜆]
2

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
→

𝐹 (𝑢
𝜀

) −
→

𝐹 (𝑢) , ∇𝑦
𝜀

⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
𝜀2

4𝜆]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
+
𝜆]
2

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

.

(68)

Using (34)–(36) and the Sobolev compact embedding theo-
rem 𝑉 󳨅→ 𝐿6 󳨅→ 𝐿4 󳨅→ 𝐿2, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
→

𝐹 (𝑢
𝜀

) −
→

𝐹 (𝑢) , ∇𝑦
𝜀

⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨(𝐶1

󵄨󵄨󵄨󵄨𝑢
𝜀󵄨󵄨󵄨󵄨 + 𝐶

2

󵄨󵄨󵄨󵄨𝑢
𝜀󵄨󵄨󵄨󵄨
2

+ 𝐶
1
|𝑢| + 𝐶

2
|𝑢|
2

, ∇𝑦
𝜀

)
󵄨󵄨󵄨󵄨󵄨

≤
𝐶

]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝐿
4 + ‖𝑢‖

2

+ ‖𝑢‖
2

𝐿
4)

+
]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

≤
𝐶

𝜆]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢‖

2

𝑉
) +

]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

.

(69)

Hence

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

) + ]󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

≤
𝐶

𝜆]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢‖

2

𝑉
) +

]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
𝜀2

4𝜆]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
+
]
2

󵄩󵄩󵄩󵄩∇𝑦
𝜀󵄩󵄩󵄩󵄩
2

,

(70)

that is,

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

) ≤
𝐶

𝜆]
(
󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢‖

2

𝑉
)

+
𝜀2

4𝜆]
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
.

(71)
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Using Lemmas 13, 14, 15, 16, and (31), noting that 𝜂 = min{𝜆],
], ]/((1/𝜆) + 2)}, we know

𝑢
𝜀

, 𝑢 ∈ 𝐶 ([𝜏, +∞) , 𝑉) ,

∫
𝑡

𝑡−𝜏

(
󵄩󵄩󵄩󵄩𝑢
𝜀

(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢(𝑠)‖

2

𝑉
) 𝑑𝑠

≤ 𝐶𝜀∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓 (𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

+ 𝐶𝜀∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡−𝜏

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

≤ 𝐶𝜀∬
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

+ 𝐶𝜀∬
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡 ≤ 𝐶𝜀.

(72)

Applying the Gronwall inequality to (71) and noting that 𝑓 ∈

𝐿2loc(R, 𝐻), using Lemmas 14, 15, and 16, we conclude

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

𝑉
≤ 𝐶 (

󵄩󵄩󵄩󵄩𝑦
𝜀󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇𝑦

𝜀󵄩󵄩󵄩󵄩
2

)

≤ 𝐶𝜀 [∫
𝑡

𝑡−𝜏

(
󵄩󵄩󵄩󵄩𝑢
𝜀

(𝑠)
󵄩󵄩󵄩󵄩
2

𝑉
+ ‖𝑢(𝑠)‖

2

𝑉
) 𝑑𝑠

+∫
𝑡

𝑡−𝜏

󵄩󵄩󵄩󵄩𝑓 (𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠]

≤ 𝐶𝜀 [∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡

+∫
𝑡

𝑡−𝜏

𝑒
−𝜂𝑡

∫
𝑡−𝜏

−∞

𝑒
𝜂𝑠󵄩󵄩󵄩󵄩𝑓(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠 𝑑𝑡]

+ 𝐶𝜀
2

[∫
𝑡

𝑡−𝜏

󵄩󵄩󵄩󵄩𝑓 (𝑠)
󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠]

≤ 𝐶
󸀠

𝜀 󳨀→ 0

(73)

as 𝜀 → 0+, which implies (63).

Proof of Theorem 11. Since the embedding 𝐷(𝐴𝑠/2) 󳨅→

(𝐿6/(3−2𝑠)(Ω))
3 is compact, combining Lemmas 13–17 with

Theorem 9 and Lemma 10, we can obtain Theorem 11
easily.
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An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire
immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light
and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created
bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the
problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical
and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced.

1. Introduction

In the last years, many researchers are interested in the use of
nanomaterials. In the chemical industry and in the manufac-
tures of nanotubes and nanowires, the usually used materials
are TiO

2
and ZnO [1–3]. Such a use of these nanomaterials

(natural or artificial) increases and these are dispersed in air
or in water [4]. Their impact on the environment and health
must be evaluated (e.g., toxicity analysis) [5]. Therefore, the
detection of the presence of such nanomaterials in the envi-
ronment becomes crucial. Two modes of detections of such
a nanowire/nanotube can be achieved. The first one consists
in a direct detection of the nanowire by optical microscopy
through the measurement of the scattering of light emitted
by the nanomaterial. Due to a weak signal/noise ratio, such
a detection mode can be difficult. The second mode is an
indirect method and consists in studying the bubble created
by the photothermal response of the nanowire immersed
in a liquid and illuminated by an electromagnetic wave. In
such an approach, the nanowire absorbs the electromagnetic
radiation (energy) for a range of wavelengths and heats and,
for temperature exceeding the threshold of vaporization of
the liquid, induces the creation of a nanobubble [6, 7]. The
created bubble grows before being detected. The analysis of
the shape and size of the bubble should permit studying

the morphology of the nanowire. The studied problem
consists in solving a photothermic coupled system (light,
nanowire, and heat) taking into account the physical param-
eters of the system (i.e., permittivity of materials, material
conductivity, laser wavelength, and laser power).

In that context, a numerical multiphysic model, allowing
studying the behavior of the nanowires illuminated by an
incident laser field, is presented.The formation of the bubble,
associated with a nanowire of TiO

2
immersed in water and

illuminated by a laser pulse, is studied. An optimization pro-
cess, including adaptive remeshing scheme, is used to detect
the variations of the temperature, the bubble shape evolution,
ensuring the convergence of the solution to the physical
solution [8, 9]. The paper is organized as follows. Section 2
describes the equations of the model and the numerical
resolution method. The adaptive remeshing process and the
optimization steps are presented in Section 3. In Section 4,
the results of numerical simulations are presented before
concluding.

2. Model and Numerical Methods

The section is devoted to presenting the equation sys-
tems modeling the photothermic process and the numerical
method used to solve the system.
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2.1. Electromagnetic Problem. In electromagnetic system, the
partial differential equations are derived from Maxwell’s
equations. The problem can be reduced to Helmholtz equa-
tion for the harmonic electric E and magnetic H fields (i.e.,
in the form exp(𝑗𝜔𝑡), where 𝜔 is the angular frequency of the
harmonic wave) [10]. In the 2D case of an infinity elliptical
cylinder along the 𝑧-axis, the unknown field is the magnetic
component and, for a polarized illumination in the transverse
magnetic mode TM, the magnetic field can be written as
H(𝑥, 𝑦) = (0, 0,𝐻

𝑧
(𝑥, 𝑦)). Therefore, the electromagnetic

problem is reduced to a scalar problem and the computation
of H(𝑥, 𝑦), in a domain Ω, allows deducing the electric field
E(𝑥, 𝑦) by using the Maxwell-Ampere equation [10]:

E (𝑥, 𝑦) = −𝑗

𝜔𝜖
𝑟
𝜖
0

[∇ ×H (𝑥, 𝑦)] , ∀ (𝑥, 𝑦) ∈ Ω, (1)

where (∇ × ⋅) is the rotational operator, 𝜔 the angular
frequency, 𝜖

0
the permittivity of vacuum, and 𝜖

𝑟
the relative

complex permittivity of the considered materials which are
functions of the spatial coordinates (𝑥, 𝑦).The𝐻

𝑧
component

of the magnetic field satisfies the scalar equation

[∇. (
1

𝜖
𝑟

∇) + 𝑘
2

0
]𝐻
𝑧
(𝑥, 𝑦) = 0, ∀ (𝑥, 𝑦) ∈ Ω, (2)

where 𝑘
0
= 𝜔/𝑐 is the wave number of the monochromatic

incoming wave and 𝑐 the speed of light in vacuum. To com-
pute the solution 𝐻

𝑧
(𝑥, 𝑦) of the electromagnetic problem,

a set of conditions on the boundary Γ of the computational
domainΩmust be imposed.The natural boundary condition
at the interface between materials is the continuity of the
normal component of the electromagnetic excitation:

1

𝜖
𝑟

𝜕𝐻
𝑧
(𝑥, 𝑦)

𝜕𝑛
= −𝑗𝑘

0
[𝐻
𝑧
(𝑥, 𝑦) − (𝑛

𝑦
− 1)𝐻

𝑖
(𝑥, 𝑦)] ,

∀ (𝑥, 𝑦) ∈ Γ,

(3)

where 𝜕/𝜕𝑛 is the normal derivative operator, 𝑛
𝑦
is the normal

vector component along the 𝑦-axis, and 𝐻
𝑖
= 𝐻
0
exp(𝑗𝑘

0
𝑦)

is the incident illumination field along the 𝑦-axis with 𝐻
0
=

1/(𝑐𝜇
0
) and 𝜇

0
being the permeability of vacuum. Such a

boundary condition is used in problems of wave propagation
[11–13].

2.2. Thermic Problem. Under illumination by an electro-
magnetic wave, the nanowire absorbs energy. That energy
produces a heat source given by

𝑄 (𝑥, 𝑦) =
𝜔

2
𝜖
0
𝐼𝑚 (𝜖
𝑟
)
󵄨󵄨󵄨󵄨E (𝑥, 𝑦)

󵄨󵄨󵄨󵄨
2

, ∀ (𝑥, 𝑦) ∈ Ω. (4)

The resolution of the thermal problem requires solving
the heat equation which is a partial differential parabolic
equation describing the evolution of the temperature 𝑇 with
a heat source 𝑄. That equation is written as follows:

[∇ ⋅ (𝑘 (𝑥, 𝑦) ∇)] 𝑇 (𝑥, 𝑦) = 𝑄 (𝑥, 𝑦) , ∀ (𝑥, 𝑦) ∈ Ω,

(5)

with a Dirichlet boundary condition 𝑇 = 𝑇
0
and 𝑘(𝑥, 𝑦)

is the thermal conductivity of the materials. The variation
of the temperature depends on both imaginary part of the
permittivity 𝜖

𝑟
(𝑥, 𝑦) and the intensity of the electric field

|E(𝑥, 𝑦)|2.
The resolution of the coupled electromagnetic and heat

problems allows extracting the spatial distribution of the
temperature in the computational domain. From the map
of temperature and for a fixed threshold of vaporization 𝛼,
the identification of the shape and size of the bubble around
the nanowire can be achieved. Such information on shape
and size of the bubble would be used to construct a relation
between the geometric characteristics of the bubble and the
nanowire.

2.3. The Finite Element Method. The objective is to solve
(2) and (5) for the coupled system in a domain whose
geometry can be complex.The Finite ElementMethod (FEM)
was applied since the 1940s in mechanics, thermodynamics,
electromagnetics, and electrical engineering [14, 15]. The
method is used to solve partial differential equation systems
with boundary conditions in open or close domains. The
resolution of problem necessitates a discrete domain, gen-
erally named mesh of the domain [13]. The solutions of the
problem are computed on the nodes of the mesh. In order
to both control the error on the solution and to decrease the
number of nodes, an improvedmethod, including an iterative
remeshing process, is developed and used. Such an improved
FEM allows describing the complex structures with arbitrary
shapes. Moreover, the stability of the FEM is also improved
by using a weak formulation (or variational formulation) of
(2) and (5).Therefore, the electromagnetic and thermic fields
satisfy

∫
Ω

[∇ ⋅ (
1

𝜖
𝑟

∇𝐻
𝑧
(𝑥, 𝑦)) +

𝜔2

𝑐2
𝐻
𝑧
(𝑥, 𝑦)] ⋅ ]𝑑Ω = 0,

∫
Ω

[∇ ⋅ (𝑘 (𝑥, 𝑦) ∇) 𝑇 (𝑥, 𝑦) − 𝑄 (𝑥, 𝑦)] ⋅ ]̃𝑑Ω = 0,

(6)

where ] and ]̃ are test functions defined on 𝐿2(Ω) (the linear
space of the scalar functions ] and ]̃, being 2-integrable onΩ).
The basis of polynomial functions provides an approximation
of the solutions 𝐻

𝑧
and 𝑇 in each node [16]. The field 𝐻

𝑧

(resp., 𝑇) is a linear combination of such basic polynomial
functions ] (resp., ]̃) and the problem consists in solving a
linear system [15, 17]. The solution verifies exactly the partial
differential equations on each node for the given boundary
conditions. Ritz’s formulation of the variational problem is
used to satisfy the continuity of the tangential components
of the electromagnetic field [13].

3. Optimization Process and
Adaptive Remeshing

Partial differential equations (electromagnetic and thermic)
are formulated and solved on the mesh of the computational
domain through the FEM. But the accuracy of the computed
solution depends on the quality of the mesh [9, 18, 19].
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A remeshing process and adaptive loops have been developed
in order to improve the quality of the solutions by adapting
the size of the mesh elements to the physical solution
[9, 20]. The mesh adaption is required to converge to a
stable solution, in particular where strong variation of the
electromagnetic or temperature fields occurred. For each step
of the adaption process, the approximate solution of the
Helmholtz equation, the electric field E, the heat source 𝑄,
and the temperature 𝑇 are computed [20]. The interpolation
error, based on an estimation of the discrete Hessian of the
solution, is used to limit the maximum deviation between
the exact solution and the solution associated with the mesh
[21, 22]. The a posteriori error estimator, based on the inter-
polation error, allows defining a physical sizemap𝐶

𝑝
(Ω) such

as

𝐶
𝑝
(Ω) = {ℎ

𝑝
(𝑥, 𝑦)} , ∀ (𝑥, 𝑦) ∈ Ω, (7)

where ℎ
𝑝
(𝑥, 𝑦) is the physical size defined at each node and

is proportional to the inverse of the deviation of the Hessian.
For a given maximum tolerance on the physical error 𝛾, the
size ℎ
𝑝
(𝑥, 𝑦) is given by

ℎmin ≤ ℎ
𝑝
(𝑥, 𝑦) =

𝛾

𝜂 (𝑥, 𝑦)
≤ ℎmax, (8)

where ℎmin and ℎmax are the minimum and maximum sizes
of the elements and 𝜂(𝑥, 𝑦) is an estimation of the maximum
deviation obtained from the Hessian of the solution. The
physical size map 𝐶

𝑝
(Ω) is used to govern the adaptive

remeshing of the domain with the BL2D-V2 software (adap-
tive remeshing generating isotropic or anisotropic meshes)
[23]. The domain is then entirely remeshed and a new
mesh𝑀

𝑝
(Ω) is obtained. The resolution of the multiphysics

problem is based on the computation of two physical size
maps: the first one 𝐶

𝑄
(Ω) related to the heat source 𝑄

and the second one 𝐶
𝑇
(Ω) related to the temperature 𝑇.

The adaptive computational scheme consists in iterative and
adaptive loops:

𝐴
1
initial mesh 𝑀

𝑖=0
(Ω) generated with triangular ele-

ments of the computational domainΩ,
𝐴
2
computation of the field (𝐻

𝑧
)
𝑖
(solution of (2)) on

𝑀
𝑖
(Ω),

𝐴
3
computation of the solutions E

𝑖
and 𝑄

𝑖
on𝑀
𝑖
(Ω),

𝐴
4
physical error estimation: computation of the inter-
polation error of the physical solution 𝑄

𝑖
; definition

of a physical size map 𝐶
𝑄𝑖
(Ω) connected to the field

𝑄
𝑖
enabling relating the error to a given threshold 𝛿,

𝐴
5
remeshing of the domain conforming to the size map
𝐶
𝑄𝑖
(Ω),

𝐴
6
if the threshold 𝛿 is not satisfied loop to step 𝐴

2
, with

𝑖 = 𝑖 + 1, in order to obtain a new mesh𝑀
𝑖
(Ω),

else𝑀
𝑄
(Ω) = 𝑀

𝑖
(Ω), and𝑀

𝑖=0
(Ω) = 𝑀

𝑄
(Ω),

𝐵
1
computation of the solutions 𝑇

𝑖
on𝑀
𝑖
(Ω),

𝐵
2
physical error estimation: computation of the inter-
polation error of the physical solution 𝑇

𝑖
; definition

of a physical size map 𝐶
𝑇𝑖
(Ω) connected to the field

𝑇
𝑖
enabling relating the error to a given threshold

𝛿,
𝐵
3
remeshing of the domain conforming to the size map
𝐶
𝑇𝑖
(Ω),

𝐵
4
if the threshold 𝛿 is not satisfied loop to step 𝐵

1
, with

𝑖 = 𝑖 + 1, in order to compute the temperature 𝑇
𝑖
on

the new adapted mesh𝑀
𝑖
(Ω),

else𝑀
𝑇
(Ω) = 𝑀

𝑖
(Ω),

𝐶
1
detection of the new domain (water vapor) on𝑀

𝑇
for

a fixed threshold of vaporization in order to produce
a mesh𝑀

𝑉
(Ω) and𝑀

𝑖=0
(Ω) = 𝑀

𝑉
(Ω),

𝐶
2
computation of the physical solutions 𝑇

𝑖
on𝑀
𝑖
(Ω),

𝐶
3
physical error estimate: computation of the interpo-
lation error of the physical solution 𝑇

𝑖
; definition of

a physical size map 𝐶
𝑉𝑖
(Ω) connected to the field

𝑇
𝑖
enabling relating the error to a given threshold

𝛿,
𝐶
4
remeshing of the domain conforming to the size map
𝐶
𝑉𝑖
(Ω),

𝐶
5
if the threshold 𝛿 is not satisfied loop to step 𝐶

2
, with

𝑖 = 𝑖 + 1, in order to compute the temperature 𝑇
𝑖
on

the last adapted mesh𝑀
𝑖
(Ω),

else𝑀
𝐹
(Ω) = 𝑀

𝑖
(Ω).

4. Numerical Results and Discussion

Here, we consider a TiO
2
elliptical nanowire of semiaxes

(𝑎 = 45 nm and 𝑏 = 10 nm), with thermal conductivity
𝑘(TiO

2
) = 11.7Wm−1 K−1 immersed in water (𝜖

𝑟
(water) =

1.79 and 𝑘(water) = 0.6Wm−1 K−1) at temperature 𝑇
0
=

25∘C(298.15K). The nanowire is illuminated by a TM polar-
ized laser pulse at wavelength 𝜆 = 1050 nm of complex
permittivity 𝜖

𝑟
(TiO
2
)
1050

= 5.4600 + 𝑗0.00148 with a power
density per area units 𝑃

𝑆
= 1.75 × 1012W/m2 [24, 25].

The materials of the system are considered isotropic and
homogeneous.

The results of the adaptive process on mesh and on the
temperature maps are illustrated in Figure 1. Figures 1(a)
and 1(b) show the initial mesh 𝑀

0
and the associated

temperature. The adaptive process on the temperature field
𝑇 (with 𝛾 = 0.0001, ℎmax = 40 nm, ℎmin = 0.03 nm, and
𝛿 = 0.1) produces the mesh 𝑀

𝑇
and the temperature map.

The mesh is adapted on the outline of the nanowire that
presents strong variations of the temperature. For a water
vaporization threshold 𝛼 = 100∘C(373.15K), the detection
of the new material (water vapor) is obtained from the
temperature map computed on the mesh 𝑀

𝑇
. Figure 1(c)

presents the areas of the three materials: TiO
2
(red), vapor

(green), and water (blue). The computation of the tem-
perature on the domain that contains the water vapor
requires including the physical parameters of the vapor
(permittivity 𝜖

𝑟
(vap) = 1.79 and thermic conductivity

𝑘(vap) = 0.05Wm−1 K−1). The spatial distribution of the
temperature field 𝑇 on the mesh 𝑀

𝑉0
after detection of
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Figure 1: Initial mesh𝑀
0
(a) and adaptive meshes𝑀

𝑉0
(c) and𝑀

𝐹
(e) and the associated temperature maps on𝑀

0
(b),𝑀

𝑉0
(d), and𝑀

𝐹
(f)

for nanowire illuminated at 𝜆 = 1050 nm.

the bubble produced around the nanowire is shown in
Figure 1(d). The final mesh 𝑀

𝐹
is obtained, after eight itera-

tions, by applying the adaptive process on the field𝑇 (with 𝛿 =
0.02) taking into account the bubble. That mesh is adapted
in the bubble especially on its outline where variations
in the temperature occur and relaxed inside the nanowire
where the temperature is almost constant (Figure 1(e)). The
remeshing process takes into account the shape and size of the
bubble. Figure 1(f) shows the temperaturemap𝑇 on themesh
𝑀
𝐹
after convergence to a stable solution. The level curves

are smooth where a strong variation of the temperature
is shown (in the vicinity of the boundary of the bubble
and the nanowire). The map also shows an increase of the
temperature in the nanowire due to the creation of the bubble.
Such an increase is due to the diffusion of the temperature,
produced by the nanowire after detection of the bubble (i.e.,
the water vapor has a smaller thermal conductivity than
water).

In order to study the evolution of the shape and size
of the bubble, we also consider the nanowire illuminated
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Figure 2: Adaptedmeshes𝑀
𝐹
((a), (c), and (e)) and temperaturemap𝑇 on𝑀

𝐹
((b), (d), and (f)) for wavelengths 𝜆 = 950, 1000, and 1050 nm,

respectively.

at three wavelengths 𝜆 = 950 nm, 𝜆 = 1000 nm, and
𝜆 = 1050 nm with physical parameters (𝜖(TiO

2
)
950

=
5.500 + 𝑗0.00164, 𝜖

𝑟
(TiO
2
)
1000

= 5.475 + 𝑗0.00154, and
𝜖
𝑟
(TiO
2
)
1050

= 5.460+𝑗0.00148). Figures 2(a), 2(b), 2(c), 2(d),
2(e), and 2(f) present the mesh 𝑀

𝐹
after bubble detection

and distribution of the temperature 𝑇 on the meshes for the
three different wavelengths 𝜆 = 950 nm, 𝜆 = 1000 nm,
and 𝜆 = 1050 nm, respectively. These show the evolution
of the meshes (shape and size of the bubble) and the
temperature as function of the wavelength. For 𝜆 increasing,

the imaginary part of the complex permittivity of the TiO
2

decreases, leading to a decrease of the energy absorbed by
the nanowire. Therefore, the temperature also decreases and
the shape and size of bubble are changing.The created bubble
follows the shape of the nanowire (elliptical) at the beginning
and becomes circular with the increase of the temperature.
Figure 3 shows the evolution of the mean temperature 𝑇 in
the nanowire as function of the aspect ratio 𝑅

𝑛
= 𝑎/𝑏 for

three wavelengths 𝜆 = 950, 1000, and 1050 nm on the mesh
𝑀
𝐹
.
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Figure 3: Evolution of the mean temperature as function of the
nanowire aspect ratio 𝑅

𝑛
after formation of the bubble for the three

wavelengths on𝑀
𝐹
.

Table 1: Fit parameters of the 𝑓 function.

𝜆 NDP NDF FNI Set of parameters
𝜎2

𝑎
0

𝑎
1

𝑎
2

950 42 39 32 1.0036 0.2418 2.2334 1.8111𝑒 − 5

1000 38 35 15 1.0082 0.3659 2.6394 5.5850𝑒 − 5

1050 31 28 23 1.0124 0.6529 3.2416 1.1106𝑒 − 4

Figure 4(a) shows the evolution of the aspect ratio of
the bubble 𝑅

𝑏
= 𝐴/𝐵 (𝐴 and 𝐵 being the semiaxes of

the bubble) as function of the aspect ratio of the nanowire
𝑅
𝑛
for the three wavelengths. From the computed data, a

function 𝑓, satisfying 𝑅
𝑏
= 𝑓(𝑅

𝑛
), can be obtained through a

nonlinear least-squares fit method (LLS) by the Marquardt-
Levenberg algorithm [26–29]. The method is used to find
a set of the best parameters fitting the data. It is based
on the sum of the squared differences or residuals (SSR)
between the input data and the function evaluated at the data.
The applied algorithm consists in minimizing the residual
variance 𝜎2 = SSR/NDF with NDF being the number of
degrees of freedom (number of the data points (NDP) minus
number of the estimated parameters) after a finite number
of iterations (FNI). Therefore, the function can be written as
follows:

𝑓 (𝑥) = 𝑎
0
+

𝑎
1

(𝑥 − 𝑎
2
)
2
, (9)

with 𝑎
0
, 𝑎
1
, and 𝑎

2
being set of parameters varying as function

of the wavelength. The parameter 𝑎
0
concerns the asymptote

value which is related to the maximum ratio for a circular
bubble, 𝑎

1
is the inverse of the decay rate of the function 𝑓

which is related to the speed tending to the circular shape,
and 𝑎

2
is the initial ratio from which the bubble begins to

form. Table 1 shows the fit parameters for each wavelength.
The 𝑓 function is continuous and strictly decreasing for 𝑅

𝑛

in the interval ]𝑎
2
, +∞[; therefore the inverse function 𝑓−1

exists. The measurement of the aspect ratio of the bubble 𝑅
𝑏

allows predicting the aspect ratio of the nanowire 𝑅
𝑛
through

the relation 𝑅
𝑛
= 𝑓−1(𝑅

𝑏
). Figure 4(b) presents the evolution

of the bubble volume (in 2D: 𝑉
𝑏
= 𝜋𝐴𝐵) as function of the

volume of the nanowire (i.e., 𝑉
𝑛
= 𝜋𝑎𝑏) for each wavelength.

From the computed data (vapor bubble for each nanowire
and for each wavelength) and by using the same method and
the same algorithm, a function 𝑔 can be obtained through
a fit. That function 𝑔 allows obtaining the relation between
the volumes ln(𝑉

𝑏
) = 𝑔(ln(𝑉

𝑛
)).The 𝑔 function is continuous

and strictly increasing; therefore the inverse function𝑔−1 also
exists.Themeasurement of the bubble volume𝑉

𝑏
can be used

to determine the volume of the nanowire 𝑉
𝑛
through the

relation ln(𝑉
𝑛
) = 𝑔−1(ln(𝑉

𝑏
)).With the two functions𝑓−1 and

𝑔−1, the size and shape of the nanowire can be obtained from
the information on the bubble:

ln (𝑉
𝑛
) = ln (𝜋𝑏𝑎) = ln (𝜋𝑏2𝑅

𝑛
)

= ln (𝜋𝑏2𝑓−1 (𝑅
𝑏
)) = 𝑔

−1

(ln (𝑉
𝑏
)) ;

(10)

consequently,

𝑏 = [
exp(𝑔−1(ln(𝑉

𝑏
)))

𝜋𝑓−1(𝑅
𝑏
)

]

1/2

,

𝑎 = [
𝑓−1(𝑅

𝑏
) exp(𝑔−1(ln(𝑉

𝑏
)))

𝜋
]

1/2

.

(11)

Therefore, the measurement of the size and shape of the
bubble can be used to obtain information on the geometry
of the nanowire and to reconstruct the size and shape of the
nanowire.

5. Conclusion

The paper focuses on the forming and the evolution of the
shape and size of the bubble through a photothermal process
between a nanowire of TiO

2
immersed in water and an

electromagnetic wave. The increase of temperature is related
to the geometry of the nanowire which leads to an increase in
the shape and size of the bubble. That solution is computed
by developing an adaptive remeshing method. That allows
to compute with accuracy the temperature by adapting the
mesh to the evolution of the bubble. The coupled problem
(light,matter, heat) is solved through an adaptive loop process
allowing converging to a stable solution and decreasing the
number of nodes. The influence of the laser source and the
geometrical parameters (wavelength, size, and shape of the
nanowire) related to the size and shape of the bubble are
presented and analyzed. The aspect ratio and the volume
of the bubble can be expressed as function of the aspect
ratio and the volume of the nanowire. By solving the inverse
problem, two functions are obtained enabling finding the
size and shape of the nanowire from the size and shape of
bubble.
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This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension
funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special
Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for
the optimal investment portfolio as well as the efficient frontier.

1. Introduction

There are two radically different methods to design a pen-
sion fund: defined-benefit plan (hereafter DB) and defined-
contribution plan (hereafterDC). InDB, the benefits are fixed
in advance by the sponsor and the contributions are adjusted
in order tomaintain the fund in balance, where the associated
financial risks are assumed by the sponsor agent; in DC, the
contributions are fixed and the benefits depend on the returns
on the assets of the fund, where the associated financial risks
are borne by the beneficiary. Historically, DB has been more
popular. However, in recent years, owing to the demographic
evolution and the development of the equity markets, DC
plays a crucial role in the social pension systems.

Because the member of DC has some freedom in choos-
ing the investment allocation of their pension fund in the
accumulation phase, they have to solve an optimal investment
portfolio problem. Traditionally, the usual method to deal
with it has been the maximization of expected utility of final
wealth. Consistently with the economics and financial litera-
ture, the most widely used utility function exhibits constant
relative risk aversion (CRRA), that is, the power or loga-
rithmic utility function (e.g., [1–4]). Some papers use the
utility function that exhibits constant absolute risk aversion
(CARA), that is, the exponential utility function (e.g., [5]).
Some papers also adopt the CRRA and CARA utility func-
tions simultaneously (e.g., [6, 7]). However, Zhou and Li [8]

think that in these situations the resulting portfolio policies
are often shown to be myopic optimal policies, the utility
functions from the investors are difficultly elicited, and trade-
off information between the risk and the expected return is
implicit which makes an investment decision much less intu-
itive. The objective of mean-variance can effectively solve the
weaknesses of utility maximization for the optimal invest-
ment of DC. But there have been few pieces of literature on
the mean-variance portfolio selection for DC pension funds.
Thus, this paper studies the optimal investment portfolio
selection of DC pension funds under the mean-variance
model.

Markowitz [9] firstly designed the mean-variance port-
folio selection model based on a trade-off between their
expected return and risk, which ismeasured as the variance of
the return. The most important contribution of this model is
that it quantifies the risk by using the variance, which enables
investors to seek the highest return after specifying their
acceptable risk level. However, the mean-variance portfolio
selection by Markowitz [9, 10] is only a single-period invest-
ment model. There have been continuing efforts in extend-
ing portfolio selection from the static single period model
to dynamic multiperiod (e.g., [11–13]) or continuous-time
models (e.g., [8, 14–16]). In the dynamic setting, Merton [17]
made the successful and fundamental works by stochastic
control methods, but the Merton model does not exactly fit
the structure of mean-variance model. Recently, Zhou and
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Li [8] introduced a stochastic linear-quadratic (LQ) control
framework to study the continuous-time version of themean-
variance problemwithout any constraints by the classical Ric-
cati approach, where they derived closed-form strategy and
obtained an explicit expression of the efficient frontier. After
that, the stochastic LQ technique is widely used which is an
effective method for mean-variance portfolio selection prob-
lems, for example, Li et al. [18], Chiu and Li [19], and Xie et al.
[20]. This paper also adopts the stochastic LQ technique.

In addition, the optimal asset allocation for a pension
fund involves quite a long period, generally from 20 to 40
years, so it follows that it becomes crucial to take into account
the salary risk. Deelstra et al. [2] described the contribution
flowed by a nonnegative, progressive measurable and square-
integrable process and then studied optimal investment
strategies for different examples of guarantees and contribu-
tions under the power utility. Battocchio and Menoncin [5]
assumed that the stochastic salary’s volatility came from both
financial market and nonfinancial market and analyzed the
behavior of the optimal portfolio with respect to salary under
the exponential utility. Cairns et al. [3] considered the same
assumption but used themember’s final salary as a numeraire
and then discussed various properties and characteristics of
the optimal strategies with or without the presence of non-
hedgeable salary risk under the power utility. Based on their
researches, this paper also assumes that the stochastic salary
risk comes from both financial market and nonfinancial
market.

Our main objective in this paper is to find the optimal
investment portfolio selection for DC pension funds with
stochastic salary under the mean-variance model, which has
not been reported in the existing literature. It is characterized
by the following two aspects: (i) the optimal objective is not
for the maximization of expected utility of final wealth but
for themean-variance of final wealth, so the decision-making
process of weighing return and risk can be better understood;
(ii) the stochastic salary’s volatility contains both a hedgeable
volatility whose risk source is the set of the financial market
risk sources and a nonhedgeable whose risk source volatility
does not the set of the financial market risk sources, so
it is more suitable to the realistic economic background.
We construct a special Riccati equation as a continuous
(actually a viscosity) solution to the HJB equation and obtain
an explicit closed form solution for the optimal investment
portfolio as well as the efficient frontier.

2. Mathematical Model

In this section, we introduce the market structure and define
the stochastic dynamics of the asset price and the salary.

We consider a complete and frictionless financial market
which is continuously open over the fixed time interval [0, 𝑇],
where 𝑇 > 0 denotes the retirement time.

2.1. The Financial Market. Given an 𝑛-dimensional standard
Brownian motion (𝑤

1
, . . . , 𝑤

𝑛
)
𝑇, we consider the complete

probability space (Ω, 𝐹, 𝑃) generated by it; that is, to say, 𝐹 is
the filtration {𝐹

𝑡
}
𝑡≥0

, with 𝐹
𝑡
= 𝜎 {𝑤

1
(𝑠), . . . , 𝑤

𝑛
(𝑠); 0 ≤ 𝑠 ≤ 𝑡}.

The plan sponsor manages the fund in the planning
interval [0, 𝑇] bymeans of a portfolio formed by 𝑛 risky assets
{𝑆𝑖}
𝑛

𝑖=1
, which are correlated geometric Brownian motions,

generated by𝑤 = (𝑤
1
, . . . , 𝑤

𝑛
)
𝑇, and a riskless asset 𝑆0, as pro-

posed in Merton [17]; that is, whose evolutions are given by
the following equations:

𝑑𝑆
0

(𝑡) = 𝑟𝑆
0

(𝑡) 𝑑𝑡, 𝑆
0

(0) = 1,

𝑑𝑆
𝑖

(𝑡) = 𝑆
𝑖

(𝑡)(𝑏
𝑖
𝑑𝑡 +

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
𝑑𝑤
𝑗
(𝑡)) ,

𝑆
𝑖

(0) = 𝑠
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛.

(1)

Here, 𝑟 > 0 denotes the short risk-free rate of interest, 𝑏
𝑖
>

0 is the mean rate of return of the 𝑖th risky asset, and 𝜎
𝑖𝑗
is the

covariance between asset 𝑖 and 𝑗, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛. It is
assumed that 𝑏

𝑖
> 𝑟 for all 𝑖, so the sponsor has incentives to

invest with risk.

2.2. The Stochastic Salary. We denote the salary at time 𝑡 by
𝐿(𝑡), which follows the stochastic differential equation (SDE):

𝑑𝐿 (𝑡) = 𝜅𝐿 (𝑡) 𝑑𝑡 + 𝜂𝐿 (𝑡) 𝑑𝐵 (𝑡) , 𝐿 (0) = 𝐿
0
> 0, (2)

where 𝜅 is an expected instantaneous growth rate of the salary
and is a real constant. 𝜂 is the instantaneous volatility of the
salary, and both are constant parameters. Moreover, we
assume that the instantaneous mean of salary is such that 𝜅 =
𝑟 + ], where ] is a real constant.

We suppose that there exists correlation 𝑞
𝑖
∈ [−1, 1]

between 𝐵 and 𝑤
𝑖
, for 𝑖 = 1, 2, . . . , 𝑛. As a consequence, 𝐵 is

expressed in terms of {𝑤
𝑖
}
𝑛

𝑖=0
as 𝐵(𝑡) = √1 − 𝑞𝑇𝑞𝑤

0
(𝑡) +

𝑞𝑇𝑤(𝑡), where 𝑞𝑇𝑞 ≤ 1 for 𝑞 = (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
)
𝑇.

Remark 1. Equation (2) can be rewritten as 𝑑𝐿(𝑡) = 𝜅𝐿(𝑡)𝑑𝑡+
𝜂𝐿(𝑡)𝑞𝑇𝑤(𝑡) + 𝜂𝐿(𝑡)√1 − 𝑞𝑇𝑞𝑤

0
(𝑡). 𝜂𝑞𝑇 is a volatility scale

vector measuring how the risk source of stocks affects the
salary, while 𝜂√1 − 𝑞𝑇𝑞 is a nonhedgeable volatility whose
risk source does not the set of the financial market risk sour-
ces. This nonhedgeable risk source is represented by the one-
dimensional standard Brownian motion𝑤

0
(𝑡) which is inde-

pendent of 𝑤(𝑡). In addition, both Battocchio and Menoncin
[5] and Cairns et al. [3] assumed that the salary was affected
by hedgeable and nonhedgeable risk sources. However, Bat-
tocchio and Menoncin [5] just studied a risky asset, while
Cairns et al. [3] extended the investment opportunity set to 𝑛
risky assets. Obviously, our assumption is similar to Cairns
et al. [3].

2.3.TheWealth Process. According to the viewpoint of Cairns
et al. [3], we consider that the contributions are continuous in
the pension fund at the rate of 𝑘𝐿(𝑡).

Let𝑋(𝑡) denote thewealth of pension fund at time 𝑡.𝜋
𝑖
(𝑡),

𝑖 = 1, 2, . . . , 𝑛 represents thewealth amount invested in the 𝑖th
risky asset at time 𝑡. We suppose that the investment strategy
{Λ(𝑡); 𝑡 ≥ 0}, with Λ(𝑡) = (𝜋

1
(𝑡), 𝜋
2
(𝑡), . . . , 𝜋

𝑛
(𝑡))
𝑇, is
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a control process adapted to filtration {𝐹
𝑡
}
𝑡≥0

, 𝐹-measurable,
Markovian and stationary, stratifying𝐸∫𝑇

0
Λ(𝑡)
𝑇

Λ(𝑡)𝑑𝑡 < ∞,
where 𝐸 is the expectation operator.

Therefore, the dynamics of the pension fund is given
under the investment policy Λ by

𝑑𝑋 (𝑡) =
𝑛

∑
𝑖=1

𝜋
𝑖
(𝑡)

𝑑𝑆𝑖 (𝑡)

𝑆𝑖 (𝑡)
+ (𝑋 (𝑡) −

𝑛

∑
𝑖=1

𝜋
𝑖
(𝑡))

𝑑𝑆0 (𝑡)

𝑆0 (𝑡)

+ 𝑘𝐿 (𝑡) 𝑑𝑡, 𝑋 (0) = 𝑋
0
,

(3)

where𝑋
0
stands for an initial wealth.

By taking into (1), the evolution of pension wealth can be
rewritten as

𝑑𝑋 (𝑡) = (𝑟𝑋 (𝑡) +
𝑛

∑
𝑖=1

𝜋
𝑖
(𝑡) (𝑏
𝑖
− 𝑟) + 𝑘𝐿 (𝑡)) 𝑑𝑡

+
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝜋
𝑖
(𝑡) 𝜎
𝑖𝑗
𝑑𝑤
𝑗
(𝑡) .

(4)

Next, we will assume the matrix notations 𝜎 = (𝜎
𝑖𝑗
), 𝑏 =

(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
)
𝑇, 1 = (1, 1, . . . , 1)

𝑇, and Σ = 𝜎𝜎𝑇. We take as
given the existence ofΣ−1, that is, to say,𝜎−1. Finally the vector
of standardized risk premia or Sharpe ratio of the portfolio is
denoted by 𝜃 = 𝜎−1(𝑏 − 𝑟1).

So, we can rewrite (4) as

𝑑𝑋 (𝑡) = (𝑟𝑋 (𝑡) + Λ
𝑇

(𝑡) (𝑏 − 𝑟1) + 𝑘𝐿 (𝑡)) 𝑑𝑡

+ Λ
𝑇

(𝑡) 𝜎𝑑𝑤 (𝑡) ,

(5)

with the initial condition𝑋(0) = 𝑋
0
.

For a prescribed target expected terminal wealth𝐸𝑋(𝑇) =
𝐾, mean-variance portfolio optimization consists of deter-
mining a dynamic portfolio satisfying all the constraints of a
given framework andminimizing the risk as measured by the
variance of the terminal wealth, that is, minimizing

Var𝑋(𝑇) = 𝐸[𝑋(𝑇) − 𝐸𝑋(𝑇)]
2

= 𝐸[𝑋(𝑇) − 𝐾]
2

. (6)

Remark 2. The investor expects a return above the risk free
investment consisting of 𝜋

𝑖
(𝑡) = 0 for 𝑖 = 1, 2, . . . , 𝑛 and

whose associated wealth process𝑋(⋅) satisfies

𝑑𝑋 (𝑡) = (𝑟𝑋 (𝑡) + 𝑘𝐿 (𝑡)) 𝑑𝑡, 𝑋 (0) = 𝑋
0
, 𝐿 (0) = 𝐿

0

(7)

and has for solution𝑋(𝑇) = 𝑋
0
𝑒𝑟𝑇+∫

𝑇

0
𝑘𝐿(𝑡)𝑒𝑟(𝑇−𝑡)𝑑𝑡, 𝐿(0) =

𝐿
0
.
This leads to the following natural assumption:

𝐾 ≥ 𝑋
0
𝑒
𝑟𝑇

+ ∫
𝑇

0

𝑘𝐿 (𝑡) 𝑒
𝑟(𝑇−𝑡)

𝑑𝑡, 𝐿 (0) = 𝐿
0
. (8)

3. The Optimal Control Problem

In this section, we provide themean-variancemodel and then
derive the Hamilton-Jacobi-Bellman (HJB) equation.

3.1. Mean-Variance Model

Theorem 3. A portfolio Λ(⋅) is said to be admissible if Λ(⋅) ∈
𝐿2
𝐹
(0, 𝑇; 𝑅𝑛) for any 𝑇 > 0 and the corresponding linear

stochastic differential equations (2) and (5) have a unique
solution pair (𝑋(𝑡), 𝐿(𝑡)) corresponding to Λ(⋅). In this case,
(𝑋(⋅), 𝐿(𝑡), Λ(⋅)) is called an admissible (wealth, salary, and
portfolio) triple.

The following optimization problem parameterized by
𝐾 ≥ 𝑋

0
𝑒𝑟𝑇 + ∫

𝑇

0
𝑘𝐿(𝑡)𝑒𝑟(𝑇−𝑡)𝑑𝑡, 𝐿(0) = 𝐿

0
is mean-variance

portfolio selection:

min Var𝑋 (𝑇) = 𝐸[𝑋 (𝑇) − 𝐾]
2

,

subject to 𝐸𝑋 (𝑇) = 𝐾,

(𝑋 (⋅) , 𝐿 (𝑡) , Λ (⋅)) is admissible.

(9)

Problem (9) is called feasible if there exists at least one
admissible pair satisfying 𝐸𝑋(𝑇) = 𝐾. Given 𝐾, the optimal
strategyΛ∗(⋅) of (9) is called an efficient strategy; this leads to
a terminal wealth𝑋(𝑇) and the pair (𝐾,Var𝑋(𝑇)) is called an
efficient point.The set of all efficient points, when the param-
eter𝐾 runs over [𝑋

0
𝑒𝑟𝑇+∫

𝑇

0
𝑘𝐿(𝑡)𝑒𝑟(𝑇−𝑡)𝑑𝑡, +∞),𝐿(0) = 𝐿

0
, is

called the efficient frontier.
Problem (9) is a dynamic quadratic convex optimization

problem and hence has a unique solution. To find the optimal
strategy corresponding to the constraint 𝐸𝑋(𝑇) = 𝐾, we
introduce a Lagrange multiplier 2𝜇 ∈ 𝑅 (the factor 2 is intro-
duced for computational convenience) and after rearranging
terms there arrives at the new cost function

𝐽 (Λ (⋅) , 𝜇) = 𝐸 [(𝑋 (𝑇) − 𝐾)
2

+ 2𝜇 (𝑋 (𝑇) − 𝐾)]

= 𝐸[𝑋(𝑇) − (𝐾 − 𝜇)]
2

− 𝜇
2

.

(10)

Letting 𝛾 = 𝐾 − 𝜇 leads to the following optimal stochas-
tic control problem (with the minimization over the set
of strategies Λ(⋅)):

min 𝐽 (Λ (⋅) , 𝛾) = 𝐸[𝑋(𝑇) − 𝛾]
2

− (𝐾 − 𝛾)
2

,

subject to (𝑋 (⋅) , 𝐿 (𝑡) , Λ (⋅)) being admissible.
(11)

Note that, max
𝜇∈𝑅

min
Λ(⋅)

𝐽(Λ(⋅), 𝜇) =

max
𝛾∈𝑅

min
Λ(⋅)

𝐽(Λ(⋅), 𝛾).

Remark 4. The link between problems (9) and (11) is provided
by the Lagrange duality theorem; see, for example, Fu et al.
[21]

min Var𝑋 (𝑇) = max
𝜇∈𝑅

min
Λ(⋅)

𝐽 (Λ (⋅) , 𝜇)

= max
𝛾∈𝑅

min
Λ(⋅)

𝐽 (Λ (⋅) , 𝛾) .
(12)

Obviously, for a fixed constant 𝛾, problem (11) is clearly
equivalent to

min 𝐽 (Λ (⋅) , 𝛾) = 𝐸[𝑋(𝑇) − 𝛾]
2

,

subject to (𝑋 (⋅) , 𝐿 (𝑡) , Λ (⋅)) being admissible.
(13)
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3.2.TheOptimization Program. By using the classical tools of
stochastic optimal control, we define the value function

𝐻(𝑡,𝑋, 𝐿) = inf
Λ(⋅)

{(𝑋 (𝑇) − 𝛾)
2

|

𝑋 (𝑡) = 𝑥, 𝐿 (𝑡) = 𝑙; s.t. (2) , (5) } ,

0 < 𝑡 < 𝑇.

(14)

The value function can be considered as a kind of utility
function. Kramkov and Schachermayer [22] have demon-
strated that the marginal utility of the value function is a con-
stant. In addition, Jonsson and Sircar [23] have shown that the
value function inherits the convexity of the utility function.

Themaximum principle leads to the following Hamilton-
Jacobi-Bellman (HJB) equation:

𝐻
𝑡
+ inf
Λ(⋅)

{ (𝑟𝑥 + Λ
𝑇

(𝑡) (𝑏 − 𝑟1) + 𝑘𝑙)𝐻
𝑥

+ 𝜅𝑙𝐻
𝑙
+
1

2
𝜂
2

𝑙
2

𝐻
𝑙𝑙

+
1

2
Λ
𝑇

(𝑡) ΣΛ (𝑡)𝐻
𝑥𝑥
+ 𝜂𝑙Λ

𝑇

(𝑡) 𝜎𝑞𝐻
𝑥𝑙
} = 0

(15)

with𝐻(𝑇, 𝑥, 𝑙) = (𝑥 − 𝛾)2, where𝐻
𝑡
,𝐻
𝑥
,𝐻
𝑙
,𝐻
𝑥𝑥
,𝐻
𝑙𝑙
, and𝐻

𝑥𝑙

denote partial derivatives of first and second orders with
respect to time, wealth, and salary.

The first order minimizing conditions for the optimal
strategies Λ∗(𝑡) is

Λ
∗

(𝑡) = −Σ
−1

(𝑏 − 𝑟1)
𝐻
𝑥

𝐻
𝑥𝑥

− 𝜂𝑙𝜎
−𝑇

𝑞
𝐻
𝑥𝑙

𝐻
𝑥𝑥

. (16)

Putting this in (15), we obtain a partial differential equa-
tion (PDE) for the value function𝐻

𝐻
𝑡
+ (𝑟𝑥 + 𝑘𝑙)𝐻

𝑥
−
1

2
𝜃
𝑇

𝜃
𝐻2
𝑥

𝐻
𝑥𝑥

+ 𝜅𝑙𝐻
𝑙
+
1

2
𝜂
2

𝑙
2

𝐻
𝑙𝑙

− 𝜂𝑙𝜃
𝑇

𝑞
𝐻
𝑥
𝐻
𝑥𝑙

𝐻
𝑥𝑥

−
1

2
𝜂
2

𝑙
2

𝑞
𝑇

𝑞
𝐻2
𝑥𝑙

𝐻
𝑥𝑥

= 0,

(17)

with𝐻(𝑇, 𝑥, 𝑙) = (𝑥 − 𝛾)2.

4. Optimal Portfolio and Efficient Frontier

In this section, we find the optimal portfolio and the efficient
frontier for the problems (9), (11), and (13).

4.1. Optimal Portfolio. We conjecture a solution to (17) with
the following form:

𝐻(𝑡, 𝑥, 𝑙) = 𝛽
0
(𝑡) + 𝛽

1
(𝑡) 𝑥 + 𝛽

2
(𝑡) 𝑙

+ 𝛽
3
(𝑡) 𝑥
2

+ 𝛽
4
(𝑡) 𝑙
2

+ 𝛽
5
(𝑡) 𝑥𝑙,

(18)

with the boundary conditions given by

𝛽
0
(𝑇) = 𝛾

2

, 𝛽
1
(𝑇) = −2𝛾, 𝛽

3
(𝑇) = 1,

𝛽
2
(𝑇) = 𝛽

4
(𝑇) = 𝛽

5
(𝑇) = 0.

(19)

Therefore,

Λ
∗

(𝑡) = −Σ
−1

(𝑏 − 𝑟1) (𝑥 +
𝛽
1

2𝛽
3

+
𝛽
5

2𝛽
3

𝑙) − 𝜂𝑙𝜎
−𝑇

𝑞
𝛽
5

𝛽
3

.

(20)

The following ordinary differential equations are obtained
for the above coefficients:

̇𝛽
0
=
1

4
𝜃
𝑇

𝜃
𝛽2
1

𝛽
3

, 𝛽
0
(𝑇) = 𝛾

2

,

̇𝛽
1
= (𝜃
𝑇

𝜃 − 𝑟) 𝛽
1
, 𝛽

1
(𝑇) = −2𝛾,

(21)

̇𝛽
2
= −𝜅𝛽

𝑙
+ (𝑘 +

1

2
𝜃
𝑇

𝜃) 𝛽
1
+
1

2
𝜂𝜃
𝑇

𝑞
𝛽
1
𝛽
5

𝛽
3

, 𝛽
2
(𝑇) = 0,

̇𝛽
3
= (𝜃
𝑇

𝜃 − 2𝑟) 𝛽
3
, 𝛽

3
(𝑇) = 1,

(22)

̇𝛽
4
= − (2𝜅 + 𝜂

2

) 𝛽
4
+ (𝜃
𝑇

𝜃 + 2𝜂𝜃
𝑇

𝑞 + 𝜂
2

𝑞
𝑇

𝑞)
𝛽2
5

4𝛽
3

− 𝑘𝛽
5
,

𝛽
4
(𝑇) = 0,

̇𝛽
5
= − (2𝑟 + 𝜅 − 𝜃

𝑇

𝜃 − 𝜂𝜃
𝑇

𝑞) 𝛽
5
− 2𝑘𝛽

3
, 𝛽

5
(𝑇) = 0.

(23)

Obviously, themethod of resolution of this system is stan-
dard. Equation (21) has, for solution, 𝛽

1
(𝑡) = −2𝛾𝑒(𝑟−𝜃

𝑇
𝜃)(𝑇−𝑡);

(22) also has, for solution, 𝛽
3
(𝑡) = 𝑒(2𝑟−𝜃

𝑇
𝜃)(𝑇−𝑡).

Then, by substituting the expression for𝛽
3
(𝑡) into (23), we

can obtain

𝛽
5
(𝑡) =

2𝑘

𝜅 − 𝜂𝜃𝑇𝑞
(𝑒
(2𝑟−𝜃

𝑇
𝜃)(𝑇−𝑡)

(𝑒
−(𝜅−𝜂𝜃

𝑇
𝑞)𝑡

− 1)

− 𝑒
−(𝜅−𝜂𝜃

𝑇
𝑞)𝑇

+ 1) .

(24)

Finally, by substituting𝛽
1
(𝑡),𝛽
3
(𝑡), and𝛽

5
(𝑡) into (20), the

optimal investment strategy in the risky assets is given by

Λ
∗

(𝑡) = −Σ
−1

(𝑏 − 𝑟1) (𝑥 − 𝛾 +
1

2
𝑓 (𝑡) 𝑙) − 𝜂𝑙𝜎

−𝑇

𝑞𝑓 (𝑡) ,

(25)

where

𝑓 (𝑡) =
2𝑘

𝜅 − 𝜂𝜃𝑇𝑞
(𝑒
−(2𝑟−𝜃

𝑇
𝜃)(𝑇−𝑡)

(1 − 𝑒
−(𝜅−𝜂𝜃

𝑇
𝑞)𝑇

)

+ 𝑒
−(𝜅−𝜂𝜃

𝑇
𝑞)𝑡

− 1) .

(26)
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Proposition 5. With the above notation and for a given 𝛾, 𝑇 >
0 and

𝐾 ∈ [𝑋
0
𝑒
𝑟𝑇

+ ∫
𝑇

0

𝑘𝐿 (𝑡) 𝑒
𝑟(𝑇−𝑡)

𝑑𝑡, +∞) , 𝐿 (0) = 𝐿
0
,

(27)

an optimal investment strategy corresponding to the problems
(11) and (13) is

Λ
∗

(𝑡) = −Σ
−1

(𝑏 − 𝑟1) (𝑋 (𝑡) − 𝛾 +
1

2
𝑓 (𝑡) 𝐿 (𝑡))

− 𝜂𝜎
−𝑇

𝑞𝑓 (𝑡) 𝐿 (𝑡) ,

(28)

where,

𝑓 (𝑡) =
2𝑘

𝜅 − 𝜂𝜃𝑇𝑞
(𝑒
−(2𝑟−𝜃

𝑇
𝜃)(𝑇−𝑡)

(1 − 𝑒
−(𝜅−𝜂𝜃

𝑇
𝑞)𝑇

)

+ 𝑒
−(𝜅−𝜂𝜃

𝑇
𝑞)𝑡

− 1) .

(29)

Remark 6. The optimal portfolio in risky assets for the
investor with mean-variance model can be divided into three
parts.

The first part, −Σ−1(𝑏 − 𝑟1)𝑋(𝑡), is always negative and
decreases with the wealth level, so we can denote it as a
“pension wealth factor.” The higher the wealth level the
investor has the lower the capital amount are invested in risky
assets.

The second part is Σ−1(𝑏−𝑟1)𝛾. It is always positive, while
the parameter 𝛾 depends on the equation 𝛾 = 𝐾 − 𝜇. So we
can denote it as a “terminal wealth expectation factor,” which
reflects themean-variance intrinsic feature, that is, theweigh-
ing between mean and variance.

The third part, −(1/2Σ−1(𝑏 − 𝑟1) + 𝜂𝜎−𝑇𝑞)𝑓(𝑡)𝐿(𝑡), is
mainly relative to the salary and reflects how the plan mem-
ber’s salary affects the optimal investment strategy. So we
call it a “stochastic salary factor.” But we difficultly judge the
sign of the “stochastic salary factor” for the several parame-
ters’ value that cannot be determined.

4.2. Efficient Frontier. In this section, we derive the efficient
frontier for the portfolio selection problem (9); that is, we
specify the relation between the variance and the expected
value of the terminal wealth for every efficient strategy.

By substituting the optimal strategy (25) into the dynam-
ics of the wealth equation (5), we obtain

𝑑𝑋 (𝑡) = ( (𝑟 − 𝜃
𝑇

𝜃)𝑋 (𝑡) + 𝑘𝐿 (𝑡)

− 𝜃
𝑇

𝜃 (
1

2
𝑓 (𝑡) 𝐿 (𝑡) − 𝛾)) 𝑑𝑡

− (𝜃
𝑇

(𝑋 (𝑡) − 𝛾 +
1

2
𝑓 (𝑡) 𝐿 (𝑡))

+ 𝑞
𝑇

𝜂𝐿 (𝑡) 𝑓 (𝑡) ) 𝑑𝑤 (𝑡) ,

(30)

with𝑋(0) = 𝑋
0
.

Next, by applying the Ito’s formula to𝑋2, we obtain

𝑑𝑋
2

(𝑡) = { (2𝑟 − 𝜃
𝑇

𝜃)𝑋
2

(𝑡)

+ 2 (𝑘 + 𝜃
𝑇

𝑞𝜂𝑓 (𝑡)) 𝐿 (𝑡)𝑋 (𝑡) + 𝜃
𝑇

𝜃𝛾
2

− 𝜃
𝑇

(𝜃 + 𝑞𝜂) 𝑓 (𝑡) 𝐿 (𝑡) 𝛾

+ (𝑞
𝑇

𝑞𝜂
2

+
1

4𝜃𝑇𝜃
+ 𝜃
𝑇

𝑞𝜂)𝑓
2

(𝑡) 𝐿
2

(𝑡)} 𝑑𝑡

− 2𝑋 (𝑡) (𝜃
𝑇

(𝑋 (𝑡) − 𝛾 +
1

2
𝑓 (𝑡) 𝐿 (𝑡))

+ 𝑞
𝑇

𝜂𝐿 (𝑡) 𝑓 (𝑡) ) 𝑑𝑤 (𝑡) ,

(31)

with𝑋2(0) = 𝑋2
0
.

In addition, according to (2), we have 𝐸𝐿(𝑡) = 𝐿
0
𝑒𝜅𝑡,

𝐸𝐿2(𝑡) = 𝐿2
0
𝑒(2𝜅+𝜂

2
)𝑡.

So, by taking expectations on both previous stochastic
differential equations, we obtain that functions𝑚

1
(𝑡) = 𝐸𝑋(𝑡)

and 𝑚
2
(𝑡) = 𝐸𝑋2(𝑡) satisfy the linear ordinary differential

equations

𝑚
1
(𝑡) = (𝑟 − 𝜃

𝑇

𝜃)𝑚
1
(𝑡) + 𝑘𝐿

0
𝑒
𝜅𝑡

− 𝜃
𝑇

𝜃 (
1

2
𝑓 (𝑡) 𝐿

0
𝑒
𝜅𝑡

− 𝛾) ,

𝑚
1
(0) = 𝑋

0
,

𝑚
2
(𝑡) = (2𝑟 − 𝜃

𝑇

𝜃)𝑚
2
(𝑡) + 2 (𝑘 + 𝜃

𝑇

𝑞𝜂𝑓 (𝑡)) 𝐿
0
𝑒
𝜅𝑡

𝑚
1
(𝑡)

+ 𝜃
𝑇

𝜃𝛾
2

− 𝜃
𝑇

(𝜃 + 2𝑞𝜂) 𝑓 (𝑡) 𝐿
0
𝑒
𝜅𝑡

𝛾

+ (𝑞
𝑇

𝑞𝜂
2

+
1

4𝜃𝑇𝜃
+ 𝜃
𝑇

𝑞𝜂)𝑓
2

(𝑡) 𝐿
2

0
𝑒
(2𝜅+𝜂

2
)𝑡

,

𝑚
2
(0) = 𝑋

2

0
.

(32)

By solving (32), we can express 𝑚
1
(𝑇) and 𝑚

2
(𝑇) as

explicit functions of 𝛾

𝑚
1
(𝑇) = 𝛼

𝑇
𝑋
0
+

𝜃𝑇𝜃

𝑟 − 𝜃𝑇𝜃
(𝛼
𝑇
− 1) 𝛾 + 𝛼

𝑇
𝛽
𝑇
, (33)

with

𝛼
𝑡
= 𝑒
(𝑟−𝜃
𝑇
𝜃)𝑡

,

𝛽
𝑡
= 𝐿
0
∫
𝑡

0

(𝑘 −
1

2
𝜃
𝑇

𝜃𝑓 (𝑠)) 𝑒
(𝜅−𝑟+𝜃

𝑇
𝜃)𝑠

𝑑𝑠,

𝑚
2
(𝑇) = 𝛼

𝑇
𝑒
𝑟𝑇

𝑋
2

0
+ 𝜙𝛾
2

+ 𝜑𝛾 + 𝜀,

(34)
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and with

𝜙 = −
𝜃𝑇𝜃

2𝑟 − 𝜃𝑇𝜃
(1 − 𝛼

𝑇
𝑒
𝑟𝑇

) ,

𝜑 = 𝛼
𝑇
𝑒
𝑟𝑇

{
𝜃𝑇𝜃

𝑟 − 𝜃𝑇𝜃
∫
𝑇

0

𝜏
1

𝑡
𝜆
𝑡
(1 − 𝛼

−1

𝑡
) 𝑑𝑡 − ∫

𝑇

0

𝜏
2

𝑡
𝜆
𝑡
𝛼
𝑡
𝑑𝑡} ,

𝜀 = 𝛼
𝑇
𝑒
𝑟𝑇

{𝑋
0
∫
𝑇

0

𝜏
1

𝑡
𝜆
𝑡
𝑑𝑡 + ∫

𝑇

0

𝜏
1

𝑡
𝜆
𝑡
𝛽
𝑡
𝑑𝑡 + ∫

𝑇

0

𝜏
3

𝑡
𝛼
𝑡
𝜆
𝑡
𝑑𝑡} ,

𝜏
1

𝑡
= 2 (𝑘 + 𝜃

𝑇

𝑞𝜂𝑓 (𝑡)) ,

𝜏
2

𝑡
= 𝜃
𝑇

(𝜃 + 2𝑞𝜂) 𝑓 (𝑡) 𝐿
0
,

𝜏
3

𝑡
= (𝑞
𝑇

𝑞𝜂
2

+
1

4𝜃𝑇𝜃
+ 𝜃
𝑇

𝑞𝜂)𝑓
2

(𝑡) 𝐿
2

0
𝑒
(𝜅+𝜂
2
)𝑡

.

(35)

By using (33) and (34), we can thus give an explicit expres-
sion for problem (11), as a one parameter family in 𝛾

𝐽 (Λ
∗

(⋅) , 𝛾) = 𝐸𝑋
2

(𝑇) − 2𝛾𝐸𝑋 (𝑇) + 2𝛾𝐾 − 𝐾
2

= 𝑚
2
(𝑇) − 2𝛾𝑚

1
(𝑇) + 2𝛾𝐾 − 𝐾

2

= 𝛼
𝑇
𝑒
𝑟𝑇

𝑋
2

0
+ 𝜙𝛾
2

−
2𝜃𝑇𝜃

𝑟 − 𝜃𝑇𝜃
(𝛼
𝑇
− 1) 𝛾

2

− (2𝛼
𝑇
𝑋
0
+ 2𝛼
𝑇
𝛽
𝑇
− 2𝐾 − 𝜑) 𝛾 + 𝜀 − 𝐾

2

;

(36)

that is, to say,

min
Λ(⋅)

𝐽 (Λ (⋅) , 𝛾) = 𝛼
𝑇
𝑒
𝑟𝑇

𝑋
2

0
+ 𝜙𝛾
2

−
2𝜃𝑇𝜃

𝑟 − 𝜃𝑇𝜃
(𝛼
𝑇
− 1) 𝛾

2

− (2𝛼
𝑇
𝑋
0
+ 2𝛼
𝑇
𝛽
𝑇
− 2𝐾 − 𝜑) 𝛾 + 𝜀 − 𝐾

2

.

(37)

It then follows, using Remark 2, that minimum Var𝑋(𝑇)
is achieved for

𝛾
∗

=
2𝛼
𝑇
𝑋
0
+ 2𝛼
𝑇
𝛽
𝑇
− 2𝐾 − 𝜑

2𝜙 − (4𝜃𝑇𝜃/ (𝑟 − 𝜃𝑇𝜃)) (𝛼
𝑇
− 1)

, (38)

min Var𝑋 (𝑇) = min
Λ(⋅)

𝐽 (Λ (⋅) , 𝛾
∗

)

=
(2𝛼
𝑇
𝑋
0
+ 2𝛼
𝑇
𝛽
𝑇
− 2𝐾 − 𝜑)

2

4 ((2𝜃𝑇𝜃/ (𝑟 − 𝜃𝑇𝜃)) (𝛼
𝑇
− 1) − 𝜙)

+ 𝛼
𝑇
𝑒
𝑟𝑇

𝑋
2

0
− 𝐾
2

+ 𝜀.

(39)

Proposition 7. The efficient strategy of the portfolio selection
problem (9) corresponding to the expected terminal wealth
𝐸𝑋(𝑇) = 𝐾, as a function of time 𝑡, wealth 𝑋(⋅), and 𝛾∗ is
given by

Λ
∗

(𝑡) = −Σ
−1

(𝑏 − 𝑟1) (𝑋 (𝑡) − 𝛾
∗

+
1

2
𝑓 (𝑡) 𝐿 (𝑡))

− 𝜂𝜎
−𝑇

𝑞𝑓 (𝑡) 𝐿 (𝑡) .

(40)

Moreover, the efficient frontier is

Var𝑋(𝑇) =
(2𝛼
𝑇
𝑋
0
+ 2𝛼
𝑇
𝛽
𝑇
− 2𝐸𝑋(𝑇) − 𝜑)

2

4 ((2𝜃𝑇𝜃/ (𝑟 − 𝜃𝑇𝜃 )) (𝛼
𝑇
− 1) − 𝜙)

+ 𝛼
𝑇
𝑒
𝑟𝑇

𝑋
2

0
− 𝐸𝑋
2

(𝑇) + 𝜀.

(41)

Remark 8. Expression (41) shows the familiar quadratic rela-
tion between the wealth and its variance. The minimum pos-
sible variance is attained when

𝐸𝑋 (𝑇) =
2𝛼
𝑇
𝑋
0
+ 2𝛼
𝑇
𝛽
𝑇
− 𝜑

2 + 2 ((2𝜃𝑇𝜃/ (𝑟 − 𝜃𝑇𝜃)) (𝛼
𝑇
− 1) − 𝜙)

. (42)

Remark 9. Consider two wealth levels 𝐾 and 𝐾̃ (∈ [𝑋
0
𝑒𝑟𝑇 +

∫
𝑇

0
𝑘𝐿(𝑡)𝑒𝑟(𝑇−𝑡)𝑑𝑡, +∞), 𝐿(0) = 𝐿

0
) and their corresponding

efficient portfolio Λ(⋅) and Λ̃(⋅) given by the explicit formula
(40). Then, a portfolio Λ∗(⋅) is efficient if and only if Λ∗(⋅) =
𝜆Λ(⋅) + (1 − 𝜆)Λ̃(⋅) for some 𝜆 ∈ 𝑅 and corresponding to the
wealth 𝐾 = 𝜆𝐾 + (1 − 𝜆)𝐾̃.

Proof. Suppose Λ(⋅) and Λ̃(⋅) are efficient and hence satisfy
(40) corresponding to 𝐾, 𝐾̃, 𝛾∗, and 𝛾∗, respectively, and
consider Λ∗(⋅) = 𝜆Λ(⋅) + (1 − 𝜆)Λ̃(⋅), with the corresponding
𝛾∗. By rearranging terms, Λ∗(⋅) can be expressed in the form
Λ∗(⋅) = 𝜆Λ(⋅)+(1−𝜆)Λ̃(⋅) corresponding to𝐾 = 𝜆𝐾+(1−𝜆)𝐾̃
and 𝛾∗ = 𝜆𝛾 + (1 − 𝜆)𝛾 and is therefore efficient. Conversely,
suppose that Λ∗(⋅) is efficient; that is, it satisfies (40) and cor-
responds to some𝐾. Decompose𝐾 into𝐾 = 𝜆𝐾+(1−𝜆)𝐾̃ for
an appropriate 𝜆 ∈ 𝑅. Then, by using (38), write 𝛾∗ = 𝜆𝛾 +
(1 − 𝜆)𝛾 and substitute back into (40) to arrive at the decom-
position Λ∗(⋅) = 𝜆Λ(⋅) + (1 − 𝜆)Λ̃(⋅).

5. Conclusions

Defined-contribution pension funds play a crucial role in the
social pension systems. The utility function is usually
assumed to be a continuous, increasing, and strictly concave
function such as a power, logarithm, exponential, or quad-
ratic function. The risk and return relationship is implicit in
the utility function approach and cannot be disentangled at
the level of optimal strategies. In addition, the optimal asset
allocation for a pension fund involves quite a long period,
generally from20 to 40 years, so it follows that it becomes cru-
cial to take into account the salary risk. So this paper studies
the optimal investment portfolio selection of DC pension
funds with stochastic salary under the mean-variance model.
We construct a special Riccati equation as a continuous (actu-
ally a viscosity) solution to the HJB equation and obtain an
explicit closed form solution for the optimal investment port-
folio as well as the efficient frontier.

In the future research, we will continue to concentrate on
continuous-time portfolio selection problem under the
mean-variance model. It would be interesting to extend our
analysis to those more generalized situation, such as assum-
ing the risky asset to follow constant elasticity of variance
(CEV) models and introducing different stochastic interest
rate model under the research framework. It is noteworthy
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that the optimal solver with the generalized situation is very
difficult.
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In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential
equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form
steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical
boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to
the essential physical parameters of the flow are presented and discussed.

1. Introduction

The study of non-Newtonian fluids involves the modelling
of materials with dense molecular structure such as polymer
solutions, slurries, blood, and paints. These material exhibit
both viscous behavior like liquids and elastic behavior like
solids. Therefore, the understanding of the complex behavior
and properties of non-Newtonian fluids is crucial these
days. The problems dealing with the flow of non-Newtonian
fluids have several technical applications in engineering and
industry. Some of them are the extraction of crude oil from
petroleum products, oil and gas well drilling, food stuff,
extrusion of molten plastic, paper and textile industry, and
so on. The flow properties of non-Newtonian fluids are quite
different from those of the Newtonian fluids. Therefore, in
practical applications, one cannot replace the behavior of
non-Newtonian fluids with Newtonian fluids and it is very
important to analyze and understand the flow behavior of
non-Newtonian fluids in order to obtain a thorough under-
standing and improve utilization in various manufactures.

In the past couple of years, many nonlinear problems
dealing with non-Newtonian fluids have been taken into

account. Some important studies dealing with the flow of
non-Newtonian fluids are due to the studies of Abd-el-Malek
et al. [1], Ariel et al. [2], Chen et al. [3], C. Fetecau and C.
Fetecau [4], Hayat et al. [5, 6], Rajagopal et al. [7], Fosdick
and Rajagopal [8], Rajagopal [9], andmany studies thereafter.
Some researchers have utilized the numerical approaches
[10–12] to tackle these sorts of problems and several nonlinear
problems have recently been solved by the homotopy analysis
method (HAM) [13–15]. The purpose of this study is to
discuss some nonlinear equations arising in the study of
third grade fluids [16–18] analytically in a simplest possible
way instead of using the HAM or other difficult techniques.
The third-grade fluid model represents a further although
inconclusive attempt to study the physical structure of non-
Newtonian fluids. This model is known to capture the very
interesting phenomena like die-swell, rod climbing effect [19],
shear thinning, and the shear thickening that many other
non-Newtonian models do not exhibit. We consider three
different problems, namely, (i) flow of a third grade fluid
over a flat rigid plate within porous medium, (ii) flow of a
third-grade fluid in a porous half spacewith suction/injection
effects, and (iii) magnetohydrodynamic (MHD) flow of
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a third-grade fluid in a porous half space.We solve all of these
problems by imposing the relevant boundary conditions to
make the problems well posed.

The main focus in this work is to construct a class
of closed-form solutions for boundary value problems for
nonlinear diffusion equations arising in the study of non-
Newtonian third- grade fluids thorough a porous medium
with the principle of Lie group method for differential
equations. We also obtain the numerical solutions for the
underlying models to show how various physical parameters
play their part in determining the properties of the flow.

2. Geometry of the Problems

Weconsider aCartesian coordinate system𝑂𝑋𝑌𝑍with the𝑦-
axis in the vertically upward direction. The third-grade fluid
occupies the porous space 𝑦 > 0 and is in contact with an
infinite moved plate at 𝑦 = 0. Since the plate is infinite in the
𝑋𝑍-plane and therefore all the physical quantities except the
pressure depend on 𝑦 only. The flow is caused by the motion
of the plate in its own plane with an arbitrary velocity. Far
away from the plate, the fluid will be considered to be at rest.
We have taken three different problems on the same flat plate
geometry.

3. Problems to Be Investigated

3.1. Unsteady Flow of Third-Grade Fluid over a Flat Rigid
Plate with Porous Medium. By following the methodology of
References. [20, 21], the equation of motion for the unsteady
flow of third-grade fluid over the rigid plate with porous
medium is

𝜌
𝜕𝑈

𝜕𝑡
= 𝜇

𝜕2𝑈

𝜕𝑦2
+ 𝛼
1

𝜕3𝑈

𝜕𝑦2𝜕𝑡
+ 6𝛽
3
(
𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2

−
𝜙

𝜅
[𝜇 + 𝛼

1

𝜕

𝜕𝑡
+ 2𝛽
3
(
𝜕𝑈

𝜕𝑦
)
2

]𝑈.

(1)

Here 𝑈 is the velocity component, 𝜌 is the density, 𝜇 the
coefficient of viscosity, 𝛼

1
and 𝛽

3
are the material constants

(for details on these material constants and the conditions
that are satisfied by these constants, the reader is referred
to [8]), 𝜙 the porosity and 𝜅 the permeability of the porous
medium.

In order to solve (1) mentioned above, boundary condi-
tions are specified as follows:

𝑈 (0, 𝑡) = 𝑈
0
𝑉 (𝑡) , 𝑡 > 0, (2)

𝑈 (∞, 𝑡) = 0, 𝑡 > 0, (3)

𝑈(𝑦, 0) = 0, 𝑦 > 0, (4)

where 𝑈
0
is the reference velocity. The first boundary con-

dition (2) is the no-slip condition and the second boundary
condition (3) says that the main stream velocity is zero. This
is not a restrictive assumption since we can always measure
velocity relative to the main stream. The initial condition (4)
indicates that the fluid is initially at rest.

On introducing the nondimensional quantities

𝑈 =
𝑈

𝑈
0

, 𝑦 =
𝑈
0
𝑦

]
, 𝑡 =

𝑈2
0
𝑡

]
,

𝛼 =
𝛼
1
𝑈2
0

𝜌]2
, 𝛽 =

2𝛽
3
𝑈4
0

𝜌]3
,

1

𝐾
=
𝜙]2

𝜅𝑈2
0

.

(5)

Equation (1) and the corresponding initial and the boundary
conditions take the form

𝜕𝑈

𝜕𝑡
=
𝜕2𝑈

𝜕𝑦2
+ 𝛼

𝜕3𝑈

𝜕𝑦2𝜕𝑡
+ 3𝛽(

𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2

−
1

𝐾
[𝑈 + 𝛼

𝜕𝑈

𝜕𝑡
+ 𝛽𝑈(

𝜕𝑈

𝜕𝑦
)
2

] ,

(6)

𝑈 (0, 𝑡) = 𝑉 (𝑡) , 𝑡 > 0, (7)

𝑈(𝑦, 𝑡) 󳨀→ 0 as 𝑦 󳨀→ ∞, 𝑡 > 0, (8)

𝑈(𝑦, 0) = 0, 𝑦 > 0. (9)

For simplicity, we ignore the bars of the nondimensional
quantities. We rewrite (6) as

𝜕𝑈

𝜕𝑡
= 𝜇
∗

𝜕2𝑈

𝜕𝑦2
+ 𝛼
∗

𝜕3𝑈

𝜕𝑦2𝜕𝑡
+ 3𝛾(

𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2

− 𝛾
∗
𝑈(

𝜕𝑈

𝜕𝑦
)
2

−
1

𝐾
∗

𝑈,

(10)

where

𝜇
∗
=

1

(1 + 𝛼/𝐾)
, 𝛼

∗
=

𝛼

(1 + 𝛼/𝐾)
, 𝛾 =

𝛽

(1 + 𝛼/𝐾)
,

𝛾
∗
=

𝛽/𝐾

(1 + 𝛼/𝐾)
,

1

𝐾
∗

=
1/𝐾

(1 + 𝛼/𝐾)
.

(11)

We know that from the principal of Lie group theory
that if a differential equation is explicitly independent of
any dependent or independent variable, then this particular
differential equation remains invariant under the translation
symmetry corresponding to that particular variable. We
notice that (10) is independent of 𝑡, so it is invariant under
the Lie point symmetry generatorX = 𝜕/𝜕𝑡. So, by the theory
of invariants, the solution of (10) corresponding to operator
X is obtained by

𝑑𝑡

1
=
𝑑𝑦

0
=
𝑑𝑈

0
, (12)

implyingthe steady-state solution given by

𝑈 = 𝐹 (𝜂) , where 𝜂 = 𝑦. (13)

Inserting (13) into (10) yields

𝜇
∗

𝜕2𝐹

𝜕𝜂2
+ 3𝛾(

𝜕𝐹

𝜕𝜂
)
2

𝜕2𝐹

𝜕𝜂2
− 𝛾
∗
𝐹(
𝜕𝐹

𝜕𝜂
)
2

−
1

𝐾
∗

𝐹 = 0, (14)
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and the transformed boundary conditions are given by

𝐹 (0) = 𝑙
1
, where 𝑙

1
is a constant

𝐹 (𝜂) 󳨀→ 0, as 𝑦 󳨀→ ∞.
(15)

We have now transformed the governing nonlinear PDE (10)
into a nonlinear ODE (14) as well as the boundary conditions
(7)–(9) to the boundary conditions (15).

In order to solve (14) for 𝐹(𝜂), we assume a solution of the
form

𝐹 (𝜂) = 𝐴 exp (𝐵𝜂) , (16)

where 𝐴 and 𝐵 are the constants to be determined. Substitut-
ing (16) into (14), we obtain

(𝜇
∗
𝐵
2

−
1

𝐾
∗

) + 𝑒
2𝐵𝜂

(3𝛾𝐴
2

𝐵
4

− 𝛾
∗
𝐴
2

𝐵
2

) = 0. (17)

Separating (17) in the powers of 𝑒0 and 𝑒2𝐵𝜂, we deduce

𝑒
0

: 𝜇
∗
𝐵
2

−
1

𝐾
∗

= 0, (18)

𝑒
2𝐵𝜂

: 3𝛾𝐴
2

𝐵
4

− 𝛾
∗
𝐴
2

𝐵
2

= 0. (19)

From (19), we find

𝐵 = ±
√𝛾∗

√3𝛾
. (20)

We choose

𝐵 = −
√𝛾∗

√3𝛾
, (21)

so that our solution would satisfy the second boundary
condition at infinity. Using the value of 𝐵 in (18), we obtain

𝛾
∗

3𝛾
𝜇
∗
−
1

𝐾
∗

= 0. (22)

Thus, the solution for 𝐹(𝜂) can be written as

𝑈 = 𝐹 (𝜂) = 𝑙
1
exp(−√

𝛾
∗

√3𝛾
𝜂) , (23)

provided that condition (22) holds, where𝐴 = 𝑙
1
by using the

first boundary condition.

3.2. Unsteady Flow of Third-Grade Fluid over a Flat Porous
Plate with PorousMedium. By employing the same geometry
as we have explained in Section 2, we extend the previous
problem by incorporating the effects of plate suction or injec-
tion. We provide the closed-form solution of the problem by
reducing the governing nonlinear PDE into an ODE with the
aid of Lie groups.

Thepresent analysis dealswith a porous platewith suction
or injection and thus the velocity field is given by

V = [𝑈 (𝑦, 𝑡) , −𝑊
0
, 0] , (24)

where𝑊
0
> 0 denotes the suction velocity and𝑊

0
< 0 indi-

cates blowing velocity. One can see that the incompressibility
constraint is identically satisfied; that is,

divV = 0. (25)

So, the unsteady flow through a porous medium and over a
porous plate in the absence of the modified pressure gradient
takes the form

𝜌 [
𝜕𝑈

𝜕𝑡
−𝑊
0

𝜕𝑈

𝜕𝑦
]

= 𝜇
𝜕2𝑈

𝜕𝑦2
+ 𝛼
1

𝜕3𝑈

𝜕𝑦2𝜕𝑡

− 𝛼
1
𝑊
0

𝜕3𝑈

𝜕𝑦3
+ 6𝛽
3
(
𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2
−
𝜙

𝜅

× [𝜇 + 𝛼
1

𝜕

𝜕𝑡
− 𝛼
1
𝑊
0

𝜕

𝜕𝑦
+ 2𝛽
3
(
𝜕𝑈

𝜕𝑦
)
2

]𝑈.

(26)

Theboundary conditions remain the same as given in (2)–(4).
Defining the nondimensional parameters as

𝑈 =
𝑈

𝑈
0

, 𝑦 =
𝑈
0
𝑦

]
,

𝑡 =
𝑈2
0
𝑡

]
, 𝛼 =

𝛼
1
𝑈2
0

𝜌]2
,

𝛽 =
2𝛽
3
𝑈4
0

𝜌]3
,

1

𝐾
=
𝜙]2

𝜅𝑈2
0

, 𝑊 =
𝑊
0

𝑈
0

.

(27)

Equation (28) becomes

[
𝜕𝑈

𝜕𝑡
−𝑊

𝜕𝑈

𝜕𝑦
] =

𝜕2𝑈

𝜕𝑦2
+ 𝛼

𝜕3𝑈

𝜕𝑦2𝜕𝑡

− 𝛼𝑊
𝜕3𝑈

𝜕𝑦3
+ 3𝛽(

𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2
−
1

𝐾

× [𝑈 + 𝛼
𝜕𝑈

𝜕𝑡
− 𝛼𝑊

𝜕𝑈

𝜕𝑦
+ 𝛽𝑈(

𝜕𝑈

𝜕𝑦
)
2

] ,

(28)

with the boundary conditions taking the form as given in (7)–
(9). We rewrite (28) as

𝜕𝑈

𝜕𝑡
= 𝜇
∗

𝜕2𝑈

𝜕𝑦2
+ 𝛼
∗

𝜕3𝑈

𝜕𝑦2𝜕𝑡
− 𝛼
∗
𝑊
𝜕3𝑈

𝜕𝑦3

+ 3𝛾(
𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2
− 𝛾
∗
𝑈(

𝜕𝑈

𝜕𝑦
)
2

+𝑊
𝜕𝑈

𝜕𝑦
−
1

𝐾
∗

𝑈,

(29)

where𝜇
∗
,𝛼
∗
, 𝛾
∗
, 𝛾, and 1/𝐾

∗
are defined in (11). Now,we have

to solve (29) subject to the boundary conditions (7)–(9).
As it can be seen, (29) is invariant under the time-trans-

lation symmetry generator X = 𝜕/𝜕𝑡. The invariant solution
corresponding to 𝜕/𝜕𝑡 is the steady-state solution given by

𝑈 = 𝐺 (𝜂) , where 𝜂 = 𝑦. (30)
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Using (30) into (29) yields

𝜇
∗

𝑑2𝐺

𝑑𝜂2
− 𝛼
∗
𝑊
𝑑3𝐺

𝑑𝜂3
+ 3𝛾(

𝑑𝐺

𝑑𝜂
)
2

𝑑2𝐺

𝑑𝜂2

− 𝛾
∗
𝐺(

𝑑𝐺

𝑑𝜂
)
2

+𝑊
𝑑𝐺

𝑑𝜂
−
1

𝐾
∗

𝐺 = 0,

(31)

with the transformed boundary conditions

𝐺 (0) = 𝑙
2
, where 𝑙

2
is a constant,

𝐺 (𝜂) 󳨀→ 0,
𝑑𝐺

𝑑𝜂
󳨀→ 0 as 𝑦 󳨀→ ∞.

(32)

Following the same methodology as adopted in solving the
previous problem, (31) admits an exact solution of the form
(which we require to be zero at infinity due to the condition
𝐺(∞) = 0)

𝑈 = 𝐺 (𝜂) = 𝑙
2
exp(−√

𝛾
∗

√3𝛾
𝜂) , (33)

provided that

𝛾
∗

3𝛾
𝜇
∗
+ 𝛼𝑊√

𝛾
∗

3𝛾

𝛾
∗

3𝛾
− √

𝛾
∗

3𝛾
𝑊 −

1

𝐾
∗

= 0. (34)

Note that, if we set𝑊 = 0, we can recover the condition given
in (22).

3.3. Unsteady Magnetohydrodynamic (MHD) Flow of Third-
Grade Fluid over a Flat Porous Plate with Porous Medium. In
this problem, we extend the previous one by considering the
fluid to be electrically conducting under the influence of a
uniform magnetic field applied transversely to the flow.

The unsteadyMHDflow of a third-grade fluid in a porous
half space with plate suction/injection is governed by

𝜌 [
𝜕𝑈

𝜕𝑡
−𝑊
0

𝜕𝑈

𝜕𝑦
] = 𝜇

𝜕2𝑈

𝜕𝑦2
+ 𝛼
1

𝜕3𝑈

𝜕𝑦2𝜕𝑡

− 𝛼
1
𝑊
0

𝜕3𝑈

𝜕𝑦3
+ 6𝛽
3
(
𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2
−
𝜙

𝜅

× [𝜇 + 𝛼
1

𝜕

𝜕𝑡
− 𝛼
1
𝑊
0

𝜕

𝜕𝑦
+ 2𝛽
3
(
𝜕𝑈

𝜕𝑦
)
2

]

× 𝑈 − 𝜎𝐵
2

0
𝑈,

(35)

where 𝜎 is the electrical conductivity and B
0
the uni-

form applied magnetic field. Again the boundary conditions

remain the same as given in (2)–(4). We define the dimen-
sionless parameters as

𝑈 =
𝑈

𝑈
0

, 𝑦 =
𝑈
0
𝑦

]
, 𝑡 =

𝑈2
0
𝑡

]
, 𝛼 =

𝛼
1
𝑈2
0

𝜌]2
,

𝛽 =
2𝛽
3
𝑈4
0

𝜌]3
,

1

𝐾
=
𝜙]2

𝜅𝑈2
0

,

𝑀
2

=
𝜎𝐵2
0
]

𝜌𝑈2
0

, 𝑊 =
𝑊
0

𝑈
0

.

(36)

Equation (26) takes the form

[
𝜕𝑈

𝜕𝑡
−𝑊

𝜕𝑈

𝜕𝑦
] =

𝜕2𝑈

𝜕𝑦2
+ 𝛼

𝜕3𝑈

𝜕𝑦2𝜕𝑡

− 𝛼𝑊
𝜕3𝑈

𝜕𝑦3
+ 3𝛽(

𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2

−
1

𝐾
[𝑈 + 𝛼

𝜕𝑈

𝜕𝑡
− 𝛼𝑊

𝜕𝑈

𝜕𝑦
+ 𝛽𝑈(

𝜕𝑈

𝜕𝑦
)
2

]

−𝑀
2

𝑈.

(37)

We rewrite (37) as

𝜕𝑈

𝜕𝑡
= 𝜇
∗

𝜕2𝑈

𝜕𝑦2
+ 𝛼
∗

𝜕3𝑈

𝜕𝑦2𝜕𝑡
− 𝛼
∗
𝑊
𝜕3𝑈

𝜕𝑦3

+ 3𝛾(
𝜕𝑈

𝜕𝑦
)
2

𝜕2𝑈

𝜕𝑦2
− 𝛾
∗
𝑈(

𝜕𝑈

𝜕𝑦
)
2

+𝑊
𝜕𝑈

𝜕𝑦
− (

1

𝐾
∗

+𝑀
2

∗
)𝑈,

(38)

where 𝜇
∗
, 𝛼
∗
, 𝛾
∗
, 𝛾, and 1/𝐾

∗
are defined in (11) and

𝑀
2

∗
=

𝑀2

(1 + 𝛼/𝐾)
. (39)

Now,weneed to solve (38) subject to the boundary conditions
(7)–(9). Since (38) is invariant under the time-translation
symmetry generator X = 𝜕/𝜕𝑡, the invariant solution corre-
sponding to 𝜕/𝜕𝑡 is the steady-state solution. Consider

𝑈 = 𝐻(𝜂) , where 𝜂 = 𝑦. (40)

Invoking (40) in (38) yields

𝜇
∗

𝑑2𝐻

𝑑𝜂2
− 𝛼
∗
𝑊
𝑑3𝐻

𝑑𝜂3
+ 3𝛾(

𝑑𝐻

𝑑𝜂
)
2

𝑑2𝐻

𝑑𝜂2

− 𝛾
∗
𝐻(

𝑑𝐻

𝑑𝜂
)
2

+𝑊
𝑑𝐻

𝑑𝜂
− (

1

𝐾
∗

+𝑀
2

∗
)𝐻 = 0,

(41)

with the transformed boundary condition

𝐻(0) = 𝑙
3
, where 𝑙

3
is a constant,

𝐻 (𝜂) 󳨀→ 0,
𝑑𝐻

𝑑𝜂
󳨀→ 0 as 𝑦 󳨀→ ∞.

(42)
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Utilizing the samemethod adopted to solve the first problem,
(41) admits an exact solution of the form (which we require
to be zero at infinity due to the second boundary condition)

𝑈 = 𝐻(𝜂) = 𝑙
3
exp(−√

𝛾
∗

√3𝛾
𝜂) , (43)

provided that

𝛾
∗

3𝛾
𝜇
∗
+ 𝛼𝑊√

𝛾
∗

3𝛾

𝛾
∗

3𝛾
− √

𝛾
∗

3𝛾
𝑊 −

1

𝐾
∗

−𝑀
2

∗
= 0. (44)

Note that, if we set𝑊 = 𝑀
∗
= 0, we can recover the previous

two conditions given in (22) and (34).

Remark 1. We note that the similarity solutions (23), (33),
and (43) are the same, but the imposing conditions (22),
(34), and (44) under which these solutions are valid are
different. These solutions do show the effects of the third-
grade fluid parameters 𝛾 and 𝛾

∗
on the flow. However, they

do not directly contain the term which is responsible for
showing the effects of suction/blowing and magnetic field on
the flow. The imposing conditions do contain the magnetic
field and suction/blowing parameters. Thus, these closed-
form solutions are valid for the particular values of the
suction/blowing and the magnetic field parameters. To show
the effects of these interesting phenomena, we have solved
the reduced (14), (31), and (41) with the boundary conditions
(15), (32), and (42) numerically using the powerful numerical
solver NDSolve in Mathematica. These numerical solutions
are plotted in Figures 2–4 against the emerging parameters of
the flow.

4. Analysis and Discussion

In order to analyze the behavior and properties of some of
the essential physical parameters of the flow, we have plotted
Figures 1–5.

In Figure 1, the closed-form solutions (23), (33), and (43)
are plotted. Since these solutions physically behave in the
same way, the restrictive conditions (22), (34), and (44) on
the parameters under which these solutions are valid differ
from each other. Therefore, the behavior of these solutions is
indistinguishable in the graph.

In Figure 2, the numerical solution of the reduced ODE
(14) is given.This numerical behavior of the velocity is exactly
the same as observed previously in Figure 1 for the ana-
lytical solutions that velocity is a decreasing function of the
dimensionless parameter 𝜂.

To examine the influence of plate suction/injection on
the flow, Figures 3 and 5 have been plotted. In Figure 3, the
reduced ODE (31) is plotted numerically for varying values
of the parameter𝑊

0
and in Figure 5 the reduced ODE (41) is

plotted numerically for the varying values of the parameter
𝑊
0
. The effect of the parameter𝑊

0
on the velocity field is ex-

actly the same in both of these figures. From these figures,
it is clearly indicated that for the case of suction (𝑊

0
> 0)

the velocity field decreases as the boundary layer thickness
and the effects of injection (𝑊

0
< 0) are totally opposite to
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Figure 1: Profile of the analytical solutions𝐹,𝐺, and𝐻 as a function
of dimensionless coordinate 𝜂, where we have chosen 𝛾 = 1.5, 𝛾
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=
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Figure 2: Numerical solution of ODE (14) subject to the boundary
conditions (15), where we have chosen 𝛾 = 0.5, 𝛾

∗
= 0.75, 𝜇

∗
= 1.5,

and 𝐾
∗
= 𝛼
∗
= 1.

those of suction. This is in agreement with what is expected
physically.

Finally, the influence of the magnetic field on the struc-
ture on the velocity is analyzed in Figure 4. From the figure,
it is observed quite clearly that with the increase of the
Hartman number (magnetic field strength)𝑀

∗
, the velocity

field decreases. This is what we expect physically in this case
as well.

5. Final Remarks

In this note, we have presented closed-form solutions for
some nonlinear problems which describe the phenomena
of third-grade fluids. In each case, the governing nonlinear
PDEs reduced to nonlinear ODEs by using the Lie point
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Figure 3: Numerical solution of ODE (31) subject to the boundary
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Figure 4: Numerical solution of ODE (41) subject to the boundary
conditions (42) for varying values of𝑀

∗
, where we have chosen 𝛾 =
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= 0.5, 𝜇
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symmetry (which is translation) in the 𝑡 direction. The
reduced ODEs are then solved analytically by employing a
very simple approach and also have been solved numerically
to show the effects of some of the interesting emerging
parameters of the flow. The method of solution that we have
used here is helpful for solving a wide range of nonlinear
problems in a simple way instead of using other difficult
techniques.
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Figure 5: Numerical solution of ODE (41) subject to the boundary
conditions (42) for varying values of𝑊
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The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II
proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified
Adomian decompositionmethod in terms of newly proposed variational iterationmethod-II (VIM).Through careful investigation
of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange
multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability
and efficiency of the method.

1. Introduction

Over the last few decades several analytical/approximate
methods have been developed to solve nonlinear ordinary
and partial differential equations. For initial and boundary-
value problems in ordinary and partial differential equations,
some of these techniques include the perturbation method
[1], the variational iterationmethod [2–4], the decomposition
method [5–8], and the homotopy methods [9–11].

The Adomian decomposition method [12–16] for solving
differential and integral equations, linear or nonlinear, has
been the subject of extensive analytical andnumerical studies.
The method, well addressed in [12–16], has a significant
advantage in which it provides the solution in a rapid
convergent series with elegantly computable components. In
recent years, a large amount of literature has been devel-
oped concerning the application of Adomian decomposition
method in applied sciences. In addition, the method reveals
the analytical structure of the solution which is absent in
numerical solutions.

He’s variational iteration method [2–4] is based on a
Lagrange multiplier technique developed by Inokuti et al.
[17]. This method is, in fact, a modification of the general
Lagrange multiplier method into an iteration method, which

is called correction functional. The method has been shown
to solve effectively, easily, and accurately a large class of
nonlinear problems [18–23]. Generally, one or two iterations
lead to high accurate solutions.

In the present study, we have linked up variational iter-
ation method and Adomian decomposition method through
Lagrangemultiplier, which shows thatVIM is another formof
expressing ADM and vice versa. This study reveals that there
is no need to integrate the differential equation again and
again as we do in Adomian decomposition method. Advan-
tage of new iterative scheme over the variational iteration
method is that it avoids the unnecessary calculations and
we can construct Lagrange multiplier very easily without
construction of the correctional functional.

2. New Formulation for Adomian
Decomposition Method and Variational
Iteration Algorithm II

In order to elucidate the solution procedure, we consider the
following 𝑛th order partial differential equation:
𝐿
𝑛

𝑓 (𝑥, 𝑡) = 𝑅𝑓 (𝑥, 𝑡) + 𝑁𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) , 𝑡 > 0, 𝑥 ∈ 𝐿,

(1)
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where 𝐿𝑛 = 𝜕𝑛/𝜕𝑡𝑛, 𝑛 ≥ 1,𝑅 is a linear differential operator,𝑁
is a nonlinear differential operator, 𝑅 and𝑁 are free of partial
derivative with respect to variable 𝑡, and 𝑔 is the source term.
As we are familiar with the fact that in all kinds of iteration
techniques, except the operator rest of the terms, are treated
as a known function on the behalf of initial guess. In this
present newly proposed idea, we have used the same concept.
We have bound all terms in one function except operator.
Consider

𝑔 + 𝑁𝑓 + 𝑅𝑓 = 𝐹(𝑡, 𝑥, 𝑔, 𝑓,
𝜕𝑓

𝜕𝑥
,
𝜕2𝑓

𝜕𝑥2
, . . .) . (2)

By incorporating (2) in (1), we get

𝐿
𝑛

𝑓 = 𝐹(𝑡, 𝑥, 𝑔, 𝑓,
𝜕𝑓

𝜕𝑥
,
𝜕2𝑓

𝜕𝑥2
, . . .) . (3)

On integrating (3), we obtain

𝐿
(𝑛−1)

𝑓 = ∫
𝑡

0

𝐹(𝜉, 𝑥, 𝑔, 𝑓,
𝜕𝑓

𝜕𝑥
,
𝜕2𝑓

𝜕𝑥2
, . . .) 𝑑𝜉 + 𝑐

1
(𝑥) . (4)

Again, by integrating (4), we have

𝐿
(𝑛−2)

𝑓 = ∫
𝑡

0

∫
𝜉

0

𝐹(𝜏, 𝑥, 𝑔, 𝑓,
𝜕𝑓

𝜕𝑥
,
𝜕2𝑓

𝜕𝑥2
, . . .) 𝑑𝜏𝑑𝜉 + 𝑐

1
(𝑥) 𝑡

+ 𝑐
2
(𝑥) ,

(5)

since we know that multiple integral can be reduce to a single
integral by using integral property. Hence, we can write (5) in
the following form:

𝐿
(𝑛−2)

𝑓 = ∫
𝑡

0

(𝑡 − 𝜉) 𝐹(𝜉, 𝑥, 𝑔, 𝑓,
𝜕𝑓

𝜕𝑥
,
𝜕2𝑓

𝜕𝑥2
, . . .) 𝑑𝜉 + 𝑐

1
(𝑥) 𝑡

+ 𝑐
2
(𝑥) .

(6)

If we continue this process of integration, we can get final
form as follows:

𝑓 (𝑥, 𝑡) = ∫
𝑡

0

(𝑡 − 𝜉)
𝑛−1

(𝑛 − 1)!
𝐹(𝑡, 𝑥, 𝑔, 𝑓,

𝜕𝑓

𝜕𝑥
,
𝜕2𝑓

𝜕𝑥2
, . . .) 𝑑𝜉

+
𝑐
1
(𝑥) 𝑡𝑛−1

(𝑛 − 1)!
+
𝑐
2
(𝑥) 𝑡𝑛−2

(𝑛 − 2)!
+ ⋅ ⋅ ⋅ 𝑐

𝑛
(𝑥) .

(7)

By writing the constant of integration in the form 𝑐
𝑘
(𝑥) =

(𝜕𝑓𝑛−𝑘(𝑥, 0+))/𝜕𝑡𝑛−𝑘, 𝑘 = 1, . . . , 𝑛 and substituting (2) in (7)
then (7), we have

𝑓 (𝑥, 𝑡) =
𝑛−1

∑
𝑘=0

𝜕𝑘𝑓 (𝑥, 0+)

𝜕𝑡𝑘
𝑡𝑘

𝑘!

+ ∫
𝑡

0

(𝑡 − 𝜉)
𝑛−1

(𝑛 − 1)!
(𝑅𝑓 + 𝑁𝑓 + 𝑔) 𝑑𝜉.

(8)

In iteration form (8), it can be written as follows:

𝑓
𝑗+1

(𝑥, 𝑡) = 𝑓
0
(𝑥, 𝑡) + ∫

𝑡

0

(𝑡 − 𝜉)
𝑛−1

(𝑛 − 1)!
(𝑅𝑓
𝑗
+ 𝑁𝑓
𝑗
+ 𝑔) 𝑑𝜉,

𝑗 = 0, 1, 2, . . . ,

(9)

where 𝑓
0
(𝑥, 𝑡) = ∑

𝑛−1

𝑘=0
((𝜕𝑘𝑓(𝑥, 0+))/𝜕𝑡𝑘)(𝑡𝑘/𝑘!).

In (9), (𝑡 − 𝜉)
𝑛−1

/(𝑛 − 1)! is Lagrange multiplier of He’s
variational iterationmethod, denoted by 𝜆, if 𝑛 is an odd inte-
ger, and (9) can be written in standard variational iteration
algorithm II [3]

𝑓
𝑗+1

(𝑥, 𝑡) = 𝑓
0
(𝑥, 𝑡) + ∫

𝑡

0

𝜆 (𝑅𝑓
𝑗
+ 𝑁𝑓
𝑗
+ 𝑔) 𝑑𝜉,

𝑓
0
(𝑥, 𝑡) =

𝑛−1

∑
𝑘=0

𝜕𝑘𝑓 (𝑥, 0+)

𝜕𝑡𝑘
𝑡𝑘

𝑘!
, 𝜆 =

(𝑡 − 𝜉)
𝑛−1

(𝑛 − 1)!
.

(10)

Equation (10) is exactly the same as the standard He’s varia-
tional iteration algorithm II [3]. Here is a point to be noted,
if we change our initial guess by adding source term in it, the
resulting formulation will give the results obtained by well-
known Adomian decomposition method by decomposing
the nonlinear term in (10). Consider

𝑓
𝑗+1

(𝑥, 𝑡) = ∫
𝑡

0

𝜆 (𝑅𝑓
𝑗
+ 𝑁𝑓
𝑗
) 𝑑𝜉,

𝑓
0
(𝑥, 𝑡) = 𝐻 (𝑥, 𝑡) , 𝜆 =

(𝑡 − 𝜉)
𝑛−1

(𝑛 − 1)!
,

𝐻 (𝑥, 𝑡) =
𝑛−1

∑
𝑘=0

𝜕𝑓 (𝑥, 0+)

𝜕𝑡𝑘
𝑡𝑘

𝑘!
+ ∫
𝑡

0

𝜆𝑔 (𝑥, 𝜉) 𝑑𝜉.

(11)

Equation (11) is an alternative approach of Adomian decom-
position method, where 𝐻(𝑥, 𝑡) is a term which arises from
prescribed initial condition and source term. Furthermore, if
we decompose the term𝐻(𝑥, 𝑡) in (11) and write the resulting
equation in the form

𝑓
1
(𝑥, 𝑡) = 𝐻

1
(𝑥, 𝑡) + ∫

𝑡

0

𝜆 (𝑅𝑓
0
+ 𝑁𝑓
0
) 𝑑𝜉,

𝐻 (𝑥, 𝑡) =
𝑛−1

∑
𝑘=0

𝜕𝑓 (𝑥, 0+)

𝜕𝑡𝑘
𝑡𝑘

𝑘!
+ ∫
𝑡

0

𝜆𝑔 (𝑥, 𝜉) 𝑑𝜉,

𝐻 (𝑥, 𝑡) = 𝐻
0
(𝑥, 𝑡) + 𝐻

1
(𝑥, 𝑡) , 𝜆 =

(𝑡 − 𝜉)
𝑛−1

(𝑛 − 1)!
,

𝑓
0
(𝑥, 𝑡) = 𝐻

0
(𝑥, 𝑡) ,

(12)

𝑓
𝑗+1

(𝑥, 𝑡) = ∫
𝑡

0

𝜆 (𝑅𝑓
𝑗
+ 𝑁𝑓
𝑗
) 𝑑𝜉, 𝑗 ≥ 1, (13)

equation (12) is an alternative form of modified Adomian
decomposition method.
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3. Illustrative Examples

In order to illustrate the solution procedure, we consider the
following examples for ordinary and partial differential equa-
tions.

Example 1. Consider the Blasius equation

𝑢
󸀠󸀠󸀠

(𝑥) +
1

2
𝑢 (𝑥) 𝑢

󸀠󸀠

(𝑥) = 0, (14)

subject to the boundary conditions

𝑢 (0) = 0, 𝑢
󸀠

(0) = 1, 𝑢
󸀠

󳨀→ 0, 𝑥 󳨀→ ∞. (15)

To solve the above given problem, we consider an extra initial
condition; that is, 𝑢󸀠󸀠(0) = 𝛼. In order to solve (14) with this
extra initial condition, we follow the formulation given in
(10). Consider

𝑢
𝑗+1

(𝑥) = 𝑢
0
(𝑥) − ∫

𝑥

0

𝜆

2
(𝑢
𝑗
(𝜉) 𝑢
󸀠󸀠

𝑗
(𝜉)) 𝑑𝜉,

𝑢
0
(𝑥) = 𝑢 (0) + 𝑥𝑢

󸀠

(0) +
𝑥2

2!
𝑢
󸀠󸀠

(𝑥) = 𝑥 +
𝑥2𝛼

2!
,

(16)

𝜆 =
(𝑥 − 𝜉)

2

2!
. (17)

By using (16), we obtain the following successive approxima-
tions:

𝑢
1
(𝑥) = 𝑥 +

𝛼𝑥2

2
−
𝛼𝑥4

48
−
𝛼2𝑥5

240
,

𝑢
2
(𝑥) = 𝑥 +

𝛼𝑥2

2
−
𝛼𝑥4

48
−
𝛼2𝑥5

240
+
𝛼𝑥6

960
+
11𝛼2𝑥7

20160

+
11𝛼3𝑥8

161280
−

𝛼2𝑥9

193536
−

𝛼3𝑥10

518400
−

𝛼4𝑥11

5702400
,

...

(18)

Equation (18) is the exactly the same as obtained by using
classical VIM in [20] and one can find the value of 𝛼 by using
Padé approximant [21].

Example 2. Consider the nonhomogeneous wave equation

𝜕2𝑢 (𝑥, 𝑡)

𝜕𝑡2
=
𝜕2𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝜂 (𝑥, 𝑡) , (19)

where 𝜂(𝑥, 𝑡) = 2𝑒−𝜋𝑡 sin𝜋𝑥, subject to the initial conditions

𝑢 (𝑥, 0) = sin𝜋𝑥, 𝑢
𝑡
(𝑥, 0) = −𝜋 sin𝜋𝑥, (20)

whose exact solution is

𝑢 (𝑥, 𝑡) = 𝑒
−𝜋𝑡 sin𝜋𝑥. (21)

To solve (19), we follow the formulation, given in (11).
Consider

𝑢
𝑗+1

(𝑥, 𝑡) = ∫
𝑡

0

𝜆(
𝜕2𝑢
𝑗

𝜕𝑥2
)𝑑𝜉,

𝑢
0
(𝑥, 𝑡) = 𝐻 (𝑥, 𝑡) , 𝜆 = (𝑡 − 𝜉) ,

𝐻 (𝑥, 𝑡) = sin𝜋𝑥 − 𝑡𝜋 sin𝜋𝑥

+ ∫
𝑡

0

(𝑡 − 𝜉) (2𝜋
2

𝑒
−𝜋𝜉 sin𝜋𝑥) 𝑑𝜉,

𝑢
0
(𝑥, 𝑡) = 𝐻 (𝑥, 𝑡) = − sin𝜋𝑥 + 𝑡𝜋 sin𝜋𝑥

+ 2𝑒
−𝜋𝑡 sin𝜋𝑥

𝑢
𝑗+1

(𝑥, 𝑡) = ∫
𝑡

0

(𝑡 − 𝜉)(
𝜕2𝑢
𝑗

𝜕𝑥2
)𝑑𝜉,

𝑢
1
(𝑥, 𝑡) = (2 − 2𝜋𝑡 +

𝜋2𝑡2

2!
−
𝜋3𝑡3

3!
) sin𝜋𝑥 − 2𝑒

−𝜋𝑡 sin𝜋𝑥,

𝑢
2
(𝑥, 𝑡) = (−2 + 2𝜋𝑡 − 𝜋

2

𝑡
2

+
𝜋3𝑡3

3
−
𝜋4𝑡4

4!
+
𝜋5𝑡5

5!
) sin𝜋𝑥

− 2𝑒
−𝜋𝑡 sin𝜋𝑥,

𝑢
3
(𝑥, 𝑡) = (2 − 2𝜋𝑡 + 𝜋

2

𝑡
2

−
𝜋3𝑡3

3
+
𝜋4𝑡4

3 (4)

−
𝜋5𝑡5

3 (4) (5)
+
𝜋6𝑡6

6!
−
𝜋7𝑡7

7!
) sin𝜋𝑥

− 2𝑒
−𝜋𝑡 sin𝜋𝑥,

...
(22)

Upon summing these iterations, we observe that

𝑢 (𝑥, 𝑡) = (1 − 𝜋𝑡 +
𝜋2𝑡2

2!
−
𝜋3𝑡3

3!
+
𝜋4𝑡4

4!
−
𝜋5𝑡5

5!

+
𝜋6𝑡6

6!
−
𝜋7𝑡7

7!
+ ⋅ ⋅ ⋅ ) sin𝜋𝑥 ≈ 𝑒

−𝜋𝑡 sin𝜋𝑥.

(23)

Solution (23) is exactly the same as obtained by using ADM
in [22].

4. Conclusion

This paper helps us to gain insight into the idea of Adomian
decomposition method and variational iteration method. By
keeping in view both methods, we propose more simplified
forms to calculate Lagrange multipliers. By introducing
this Lagrange multiplier in ADM and VIM following the
observations that have been made,
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(i) there is no need to do integration process again and
again like we do in Adomian decomposition method
and one can get the same results of Adomianmethod.

(ii) It is easy to calculate the Lagrange multiplier of He’s
variational iteration method.

(iii) This new approach avoids the unnecessary calcula-
tions like we did in He’s variational iteration method
and Adomian decomposition method.

(iv) This study shows that VIM is another formof express-
ing ADM and vice versa.

So we can say that the present method is parallel form of
ADM and can give good results of VIM with less effort.
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Iterative methods to achieve a suitable linearization as well as a decrease of the order and dimension of nonlinear partial differential
equations of the eighth order into the biharmonic and Poisson-type differential equations with their simultaneous linearization are
proposed in this work. Validity and reliability of the obtained results are discussed using computer programs developed by the
authors.

1. Introduction

Mathematical models of continuous mechanical structures
are described by nonlinear partial differential equations
which may be solved analytically only in a few rare cases.
However, a direct application of the numerical methods is
associated also with big difficulties regarding a high order
of both dimension and differential operator, as well as
nonlinearity of the PDEs studied.

This is why it is tempting to develop approaches that offer
a reduction of the input differential equations.Thementioned
methods can be divided into three groups: (1) linearization;
(2) order decrease of the PDEs; (3) order decrease of a
differential operator.

The so far existing methods of solutions of nonlinear
problems, depending on the introduced linearization level,
can be divided into two groups. The first one deals with the
linearization of PDEs, whereas the second one is dedicated to
the linearization of algebraic equations obtained through the
discretization procedures applied to the input PDEs. Below,
we consider the methods associated with the first group.
This group contains the Newton and Newton-Kantorovich
methods [1].

One of the linearization methods is the method of quasi-
linearization, widely illustrated in monograph [2]. It presents
a further development of Newton’s method, and it generalizes
the method proposed by Kantorovich.

On the other hand, there is a seminal approach known
as the Agmon-Douglis-Nirenberg (ADN) theory for elliptic
PDEs still attracting a large number of imitators [3, 4]. In
particular, the abstract least squares theory is developed
satisfying the ADN elliptic theory assumptions [5–7].

Furthermore, in the case of corners in plane domains the
ADN system exhibits singularities, which imply a need for
construction of singular exponents and angular functions [8].
Our approach does not have this disadvantage and it is simple
in direct applications to the real world systems.

The so far briefly addressed approaches linearize the input
problem; that is, they reduce it to the solution of linear
problems. However, there is one more important question to
be solved, that is, a reduction of the space dimension of the
initial problem.

One of the methods to solve the stated problem is
focused on averaging (integration) along such a coordinate
on which the object dimension is lesser in comparison
to the two remaining coordinates. On the other hand, it
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is well known that mathematical problems related to the
theory of material strength can be formulated as variational
problems, that is, the problems of finding extrema of a certain
functional. Variational statements create a foundation for the
construction of direct difference and variational methods, as
it is widely described in monograph [9].

Wemention only a fewworks [10–12] devoted to the third
group, that is, aiming at a decrease of the PDE order.

Note that the so far presented state of the art of the
proposed and applied methods allows us to solve each of
the mentioned problems separately: either a decrease of the
system order or its linearization. However, we show how all
these problems can be solved simultaneously.

Our paper is focusedmainly on themethod of dimension
decrease and linearization of the Karman-type PDEs. How-
ever, the presented approach can be successfully applied to
other nonlinear PDEs. In particular, in the modified version
two variants of the proposed method are presented:

(i) the first iterative method consists of the reduction of
the eighth order linear PDEs to a successive solution
of linear PDEs of the fourth order biharmonic equa-
tions; that is, the system dimension is reduced twice
with simultaneous linearization of the problem;

(ii) the applied second iterative procedure includes a
further order decrease of the earlier obtained (first
iterative method) linear system of biharmonic PDEs
of the fourth order to the successive solution to the
system of the second order Poisson-type equations.

In other words, the application of these two iterative
procedures implies a fourfold reduction of the PDEs order
with the linearization procedure carried out simultaneously.

The proposed iterative procedures regarding the nonlin-
ear PDEs order decrease and linearization can also be applied
to PDEswith a curvilinear boundary.The application of FDM
(finite difference method) to solve biharmonic equations
and PDEs of the Poisson-type requires a solution to the
so-called Sapondzhyan-Babuška problem. The paradox of
Sapondzhyan-Babuška (see [13–15]) was discovered when
studying the asymptotic behavior of solutions to an elasticity
system in a thin polygonal plate (inscribed in the plate with
smooth boundary) as the length of the side of the polygon
tends to zero and the number of sides goes to infinity.
In Section 2 of our work we prove the proposed iterative
procedure to remove this paradox (this problem concerns
smoothness of the curvilinear boundary).

In Section 3 of our work the reliability and validity of
the method of variational iterative procedure to solve PDEs
described by positively defined operators are illustrated and
discussed. Namely, the convergence of the method of varia-
tional iterations generalizes the Kantorovich-Vlasov method
[16] aimed at the reduction of PDEs to ODEs. On the other
hand, as it was pointed out byVorovich [17], the Kantorovich-
Vlasov method generalizes the Galerkin method. It should
be emphasized that the choice of approximating functions
referring either to two variables in the Galerkin method or
to one variable in the Kantorovich-Vlasov method cannot be
applied in the method of variational iterations. The system

q(x, y, t)

y

z

x

Figure 1: A studied plate.

of functions being sought is provided by a solution of the
PDEs with regard to two variables assuming that we deal with
the 2D problem. Furthermore, the proposed approach can be
applied to 3D elliptic equations.

Section 6 of the paper deals with a comparison of the
solutions to the Karman equations obtained via our proposed
iterative procedures with those offered by FEM and FDM, as
well as with experimental results. Good coincidence of the
results is achieved.

2. Mathematical Model of
a Flexible Karman-Type Plate
(Hypotheses, Differential Equations,
and Boundary Conditions)

The objects of our investigation are plates of different shapes
(in particular, rectangular ones), representing a closed 3D
part of space 𝑅3 (Figure 1). The following hypotheses are
introduced: (i) plate material is elastic and isotropic; (ii)
the following Karman relations between deformations and
displacements are introduced:

𝜀
𝑥𝑥

=
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

, 𝜀
𝑥𝑦

=
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥

+
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
,

(𝑢, V, 𝑤) , (𝑥, 𝑦) .

(1)

Equations governing the deflection 𝑤(𝑥, 𝑦, 𝑡) and stress
function 𝐹(𝑥, 𝑦) have the following form [15]:

Δ
2

𝑤 − 𝐿 (𝑤, 𝐹) − 𝑞 = 0,

Δ
2

𝐹 +
1

2
𝐿 (𝑤, 𝑤) = 0.

(2)

The following operators are introduced:

Δ
2

(⋅) =
1

𝜆2
𝜕4 (⋅)

𝜕𝑥4
+ 𝜆

2 𝜕
4 (⋅)

𝜕𝑦4
+ 2

𝜕4 (⋅)

𝜕𝑥2𝜕𝑦2
,

𝐿 (⋅, ⋅) =
𝜕2 (⋅)

𝜕𝑥2
𝜕2 (⋅)

𝜕𝑦2
− 2

𝜕2 (⋅)

𝜕𝑥 𝜕𝑦

𝜕2 (⋅)

𝜕𝑥 𝜕𝑦
+
𝜕2 (⋅)

𝜕𝑥2
𝜕2 (⋅)

𝜕𝑦2
.

(3)

Here and further on the following nondimensional quan-
tities are introduced: 𝑤 = ℎ𝑤; 𝐹 = 𝐸ℎ2𝐹; 𝑡 = 𝑡

0
𝑡;

𝜀 = 𝜀/𝜏; 𝑥 = 𝑎𝑥; 𝑦 = 𝑏𝑦; 𝑞 = 𝑞(12(1 − ]2)𝐸ℎ4/𝑎2𝑏2);
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𝜏 = (𝑎𝑏/ℎ)√𝜌/𝐸𝑔; 𝜆 = 𝑎/𝑏, where 𝑎, 𝑏 are the maximal plate
dimensions regarding 𝑥 and 𝑦, respectively; ℎ is thickness; 𝑔
is acceleration due to gravity; 𝜌 = 𝛾ℎ; 𝛾 is specific gravity
of volume plate material; ] is Poisson’s coefficient; 𝐸 is the
Young modulus; 𝑤, 𝐹 are deflection and stress functions,
respectively.

Let us add boundary conditions of the support on flexible
nonstretched (noncompressed) ribs to the system of plates
[18, 19]:

𝑤|
Γ
=

𝜕2𝑤

𝜕𝑛2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
= 𝐹|

Γ
=

𝜕2𝐹

𝜕𝑛2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
= 0, (4)

where Γ stands for the space boundary occupied by the plate.
The following initial conditions are attached to (2):

𝑤|
𝑡=0

= 𝑤
0
, 𝑤|

𝑡=0
= 𝑤

0
. (5)

Systemof (2) is composed of nonlinear PDEs of the eighth
order. Finding a reliable solution to this problem is still a
serious problem in spite of achievements of the numerical
methods. It should be emphasized that the solution to the
mentioned problem was found earlier via either FDM (finite
differencemethod) or FEM (finite elementmethod), or by the
Bubnov-Galerkinmethod. Below,we propose a novelmethod
of order reduction and linearization of PDEs (2).

3. Methods of Order Decrease and
Linearization of the Karman Equation

There are two ways for construction of the fundamental iter-
ative procedure to solve system (2): (i) system reduction to a
successive solution to the Germain-Lagrange type equations,
in this case the system order is decreased twice; (ii) system
reduction to a Poisson-type equation (in this case the system
order is reduced four times). In both mentioned cases the
linearization procedure of the input PDEs is carried out.

3.1. Iterative Linearization Procedure andReduction of the Kar-
man Equation into Germain-Lagrange Equations. We keep
the biharmonic operator in each of (2), andwe shift nonlinear
terms into their right-hand sides. Assuming that functions
on the right-hand sides are computed with respect to their
previous step and that the equations are solved successively,
the following iterative procedure is proposed:

Δ
2

𝑤
(𝑘)

= 𝐿 (𝑤
(𝑘−1)

, 𝐹
(𝑘−1)

) + 𝑞,

Δ
2

𝐹
(𝑘)

= −
1

2
𝐿 (𝑤

(𝑘)

, 𝑤
(𝑘)

) , {𝑥, 𝑦} ∈ Ω.

(6)

On the first step of the iterative procedure the following
biharmonic equation for a given load 𝑞(𝑥, 𝑦) is solved:

Δ
2

𝑤
(1)

(𝑥, 𝑦) = 𝑞 (𝑥, 𝑦) . (7)

The value of 𝑤(1)(𝑥, 𝑦) is substituted into the right-hand
side of equation system (6), and as a result a biharmonic equa-
tion for𝐹(1)(𝑥, 𝑦)with the known right-hand side is obtained.

The value of the stress function found so far is substituted to
the first system equation. The process of finding solutions is
continued to achieve the required accuracy.

Let us note that as a result of the application of the iterative
procedure, the Germain-Lagrange type system of equations
are obtained.

Let us prove convergence of the constructed iterative
procedure. Let 𝐻2(Ω) refer to a Sobolev space of functions
𝜉 = {𝑤, 𝐹} such that

𝜉 ∈ 𝐿
2

(Ω) ,
𝜕𝜉

𝜕𝑥
𝑖

∈ 𝐿
2

(Ω) ,

𝜕2𝜉

𝜕𝑥
𝑖
𝜕𝑥

𝑗

∈ 𝐿
2

(Ω) ; 𝑖, 𝑗 = 1, 2,

(8)

where 𝐿2(Ω) denotes the space of functions being summed
with a square inΩ.

Let 𝐻2

0
(Ω) denote the closure of functions from 𝐷(Ω)

(space of functions of class 𝐶∞ in Ω, having compact carrier
in Ω) in norm𝐻2(Ω):

𝐻
2

0
(Ω) = 𝐷(Ω)

𝐻
2
(Ω)

= {𝜉 ∈ 𝐻
2

(Ω) | 𝜉
󵄨󵄨󵄨󵄨Γ =

𝜕𝜉

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
= 0} .

(9)

Since spaceΩ is bounded and its boundary Γ is efficiently
regular, then map 𝜉 → ‖Δ𝜉‖

0,Ω
defines the norm in 𝐻2

0
(Ω)

being equivalent to the norm generated by spaces𝐻2(Ω).
Assume that 𝑞 ∈ 𝐻−2(Ω) (𝐻−2(Ω) denotes a conjugation

to𝐻2(Ω)). It is known [17] that in this case problems (2) and
(4) have a solution (it may happen that it shall be nonunique).

Novel Variation Formulation of the Problem. Let us denote
by (⋅, ⋅) a scalar product in 𝐿2(Ω): (𝜉, 𝜂) = ∫

Ω
𝜉𝜂 𝑑Ω, and by

𝛽(𝑤, 𝐹, 𝜇) a three linear form defined on (𝐻2

0
(Ω))

3:

𝛽 (𝑤, 𝐹, 𝜇) = (Δ𝐹, Δ𝜇) +
1

2
(𝐿 (𝑤, 𝑤) , 𝜇) . (10)

Let us define the set

𝑀 = {𝑤, 𝐹 ∈ 𝐻
2

0
(Ω) | ∀𝜇 ∈ 𝐻

2

0
(Ω) , 𝛽 (𝑤, 𝐹, 𝜇) = 0} , (11)

and square function 𝐽(𝑤, 𝐹) : 𝑀 → 𝑅

𝐽 (𝑤, 𝐹) =
1

2
‖Δ𝑤‖

2

0,Ω
+
1

2
‖Δ𝐹‖

2

0,Ω
− (𝑞, 𝑤) . (12)

Theorem 1. The problem of minimizing (12) on set (11) has, at
least, one solution.

Proof. Let {𝑤
𝑛
, 𝐹

𝑛
} ∈ 𝑀 be the minimizing series; that is, we

have
𝐽 (𝑤

𝑛
, 𝐹

𝑛
) 󳨀→ inf

{𝑤,𝐹}∈𝑀

𝐽 (𝑤, 𝐹) , (13)

which exists, since 𝐽 is a square functional.
For arbitrary 𝑤, 𝐹 ∈ 𝐻2

0
(Ω) the following inequality

holds:

𝐽 (𝑤, 𝐹) ≥ 𝑐
1
‖𝑤‖

2

2,Ω
+ 𝑐

2
‖𝐹‖

2

2,Ω
− 𝑐

3
⋅ ‖𝑤‖

2,Ω
, (14)
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where ‖ ⋅ ‖
2,Ω

denotes the norm in 𝐻2(Ω) and 𝑐
𝑖
are certain

positive constants. Then, (13) yields 𝑐
1
‖𝑤

𝑛
‖
2

2,Ω
+ 𝑐

2
‖𝐹

𝑛
‖
2

2,Ω
−

𝑐
3
‖𝑤

𝑛
‖
2,Ω

≤ 𝐽(𝑤
𝑛
, 𝐹

𝑛
) ≤ 𝐽(𝑤

0
, 𝐹

0
) = 𝐴, where 𝑤

0
, 𝐹

0
are the

arbitrary functions (initial approximation).
Then, the following estimation holds:

𝑐
1
(
󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩
2

2,Ω
−

𝑐
3

2𝑐
1

)
2

+ 𝑐
2

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩
2

2,Ω
≤ 𝐴 +

𝑐2
3

4𝑐
1

,

󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩2,Ω ≤ 𝑐
4
,

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩2,Ω ≤ 𝑐

5
.

(15)

Therefore, series {𝑤
𝑛
, 𝐹

𝑛
} is bounded in (𝐻2

0
(Ω))

2. Con-
sequently, one may choose a series {𝑤

𝑘
, 𝐹

𝑘
} that 𝑤

𝑘
→ 𝑤,

𝐹
𝑘

→ 𝐹 is weak in 𝐻2

0
(Ω). Since 𝐻2

0
(Ω) → 𝐿2(Ω) is

compact, then 𝑤
𝑘
→ 𝑤, 𝐹

𝑘
→ 𝐹 is strong in 𝐿2(Ω).

We show that interval {𝑤, 𝐹} of the minimized series
belongs to𝑀; that is, 𝛽(𝑤, 𝐹, 𝜇) = 0, for all 𝜇 ∈ 𝐻2

0
(Ω).

Since (𝐿(𝑤
𝑘
, 𝑤

𝑘
), 𝜇) = (𝐿(𝑤

𝑘
, 𝜇), 𝑤

𝑘
) ∀𝜇 ∈ 𝐻2

0
(Ω),

𝐿(𝑤
𝑘
, 𝜇) → 𝐿(𝑤, 𝜇) is weak in 𝐻2

0
(Ω), and 𝑤

𝑘
→ 𝑤 is

strong in 𝐿2(Ω), we get (𝐿(𝑤
𝑘
, 𝑤

𝑘
), 𝜇) = (𝐿(𝑤, 𝑤), 𝜇) and

consequently, 𝛽(𝑤, 𝐹, 𝜇) = 0 for all 𝜇 ∈ 𝐻2

0
(Ω). This means

that

{𝑤, 𝐹} ∈ 𝑀. (16)

However, 𝐽(𝑤, 𝐹) is half-continuous from below in weak
topology on (𝐻2(Ω))

2, and therefore the following inequality
holds: lim

𝑘→∞
𝐽(𝑤

𝑘
, 𝐹

𝑘
) ≥ 𝐽(𝑤, 𝐹).

Then (13) and (16) imply that 𝐽(𝑤, 𝐹) ≤
inf

(𝑤,𝐹) ∈𝑀
𝐽(𝑤, 𝐹). Therefore, the following equation holds:

𝐽(𝑤, 𝐹) = inf
(𝑤,𝐹) ∈𝑀

𝐽(𝑤, 𝐹), which means that {𝑤, 𝐹} ∈
𝑀 is a solution to the minimization problem.

Let us explain how points of the minimum of functional
(12) are linked with solutions to problems (6) and (4). For this
purpose a notation of weak solution shall be introduced.

A weak solution to problems (6) and (4) is defined by the
pair of functions {𝑤, 𝐹} ∈ 𝑀, satisfying the following:

(Δ𝑤, Δ𝜇) − (𝐿 (𝑤, 𝐹) , 𝜇) = (𝑞, 𝜇) ∀𝜇 ∈ 𝐻
2

0
(Ω) . (17)

Theorem 2. Points of the functional minimum (12) are weak
solutions to problems (6) and (4).

Proof. Let {𝑤, 𝐹} ∈ 𝑀 be one of the functional (12) minimum
points. Let us take 𝜂 = 𝑤 + 𝑡 𝛿𝑤 𝛿𝑤 ∈ 𝐻2

0
(Ω) and let us

choose 𝜉 = 𝐹 + 𝛿𝐹 𝛿𝐹 ∈ 𝐻2

0
(Ω) such that {𝜂, 𝜉} ∈ 𝑀, that

is, in the way that 𝛽(𝑤, 𝐹, 𝜇) = 0 for all 𝜇 ∈ 𝐻2

0
(Ω). Then

𝐽(𝑤, 𝐹) ≤ 𝐽(𝜂, 𝜉). This yields

𝑡 (Δ𝑤, Δ𝛿𝑤) + (Δ𝐹, Δ𝛿𝐹) − 𝑡 (𝑞, 𝛿𝑤) +
𝑡
2

2
‖Δ𝛿𝑤‖

2

2,Ω

+
1

2
‖Δ𝛿𝐹‖

2

2,Ω
≥ 0, ∀𝑡 ∈ 𝑅, 𝛿𝑤 ∈ 𝐻

2

0
(Ω) ,

(18)

and by taking 𝜇 = 𝐹, condition 𝛽(𝜂, 𝜉, 𝜇) = 0 yields

(Δ𝐹, Δ𝛿𝐹) = −𝑡 (𝐿 (𝑤, 𝛿𝑤) , 𝐹) −
𝑡2

2
(𝐿 (𝛿𝑤, 𝛿𝑤) , 𝐹) . (19)

Substituting (19) into (18), dividing the obtained expres-
sion by 𝑡 and going to the limit for 𝑡 → 0, the following
inequality is obtained:

(Δ𝑤, Δ𝛿𝑤) − (𝐿 (𝑤, 𝐹) , 𝛿𝑤) ≥ (𝑞, 𝜇) . (20)

Substituting 𝛿𝑤 by −𝛿𝑤 in (20), one obtains equality, that
is, (17).

Let us use the following notation (Φ(𝑤, 𝐹), 𝜇) =
𝑎
1
(Δ𝑤, Δ𝜇) − (𝐿(𝑤, 𝐹), 𝜇) − (𝑞, 𝜇).
Equation (17) can be given in the following form:

(Φ (𝑤, 𝐹) , 𝜇) = 0, (21)

and it is clear thatΦ(𝑤, 𝐹) ∈ 𝐻−2(Ω).
Therefore, each point of the minimum of functional (17)

on𝑀 satisfies (21), and hence it is a weak solution to problems
(6) and (4).

Therefore, it has been shown that finding a solution to
problems (6) and (4) is equivalent to finding a solution to
the problem of minimization (13) with the occurrence of
constraints {𝑤, 𝐹} ∈ 𝑀. The reduced problem can be solved
by various methods to find a minimum taking into account
the mentioned constarints. Once a solution to the problem
of finding an extreme is chosen, various algorithms to solve
problems (6) and (4) can be applied.

Below, we focus on the method of gradient projection
with a restoring constraint [18], which for linear constraints
allows for essential simplification of finding a solution to the
stated problem.

Let us construct an iteration process of minimizing
𝐽(𝑤, 𝐹) on𝑀 using the following scheme:

(a) element 𝑤
0
∈ 𝐻2

0
(Ω) is taken arbitrarily;

(b) after computation of 𝑤
𝑛
, 𝐹

𝑛
∈ 𝐻2

0
(Ω) and 𝑤

𝑛+1
∈

𝐻2

0
(Ω) is defined successively by solutions to the

following problems:

𝛽 (𝑤
𝑛
, 𝐹

𝑛
, 𝜇) = 0, 𝐹

𝑛
∈ 𝐻

2

0
(Ω) ∀𝜇 ∈ 𝐻

2

0
(Ω) , (22)

(Δ𝑤
𝑛+1

, Δ𝜇) = (Δ𝑤
𝑛
, Δ𝜇) − 𝜌

𝑛
(Φ (𝑤

𝑛
, 𝐹

𝑛
) , 𝜇)

∀𝜇 ∈ 𝐻
2

0
(Ω) ;

(23)

(c) coefficient 𝜌
𝑛
on step (b) is defined by the condition

𝐽 (𝑤
𝑛+1

, 𝐹
𝑛+1

) − 𝐽 (𝑤
𝑛
, 𝐹

𝑛
)

≤ 𝜀 (Φ (𝑤
𝑛
, 𝐹

𝑛
) , 𝑤

𝑛+1
− 𝑤

𝑛
) , 0 < 𝜀 < 1,

(24)

where 𝜀 stands for a parameter of the method.

Theorem 3. For the iteration process (22) to (25) (Φ(𝑤
𝑛
,

𝐹
𝑛
), 𝜇) → 0 for 𝑛 → 0 an arbitrary initial point {𝑤

0
, 𝐹

0
} ∈

𝑀, obtained through this procedure series {𝑤
𝑛
, 𝐹

𝑛
} includes a

subseries convergent to the weak solution to the problem ((6)
and (4)).
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Proof. A possibility of constructing the series {𝑤
𝑛
, 𝐹

𝑛
} is

yielded by an observation that for all 𝜌
𝑛
𝑤
𝑛+1

∈ 𝐻2

0
(Ω) and,

consequently, 𝐿(𝑤
𝑛+1

, 𝑤
𝑛+1

) ∈ 𝐻−2(Ω), ∇2

𝑘
𝑤
𝑛+1

∈ 𝐻−2(Ω)
[19]. It means that the coupling equation 𝛽(𝑤

𝑛+1
, 𝐹

𝑛+1
, 𝜇) = 0

is solvable. Consider the following difference:

Δ𝐽
𝑛
= 𝐽 (𝑤

𝑛+1
, 𝐹

𝑛+1
) − 𝐽 (𝑤

𝑛
, 𝐹

𝑛
)

=
1

2
(Δ (𝑤

𝑛+1
− 𝑤

𝑛
) , Δ (𝑤

𝑛+1
+ 𝑤

𝑛
))

+
1

2
(Δ (𝐹

𝑛+1
− 𝐹

𝑛
) , Δ (𝐹

𝑛+1
+ 𝐹

𝑛
))

− (𝑞, 𝑤
𝑛+1

− 𝑤
𝑛
) .

(25)

Owing to {𝑤
𝑛
, 𝐹

𝑛
} ∈ 𝑀, {𝑤

𝑛+1
, 𝐹

𝑛+1
} ∈ 𝑀, (25) gives

Δ𝐽
𝑛
= (Φ (𝑤

𝑛
, 𝐹

𝑛
) , 𝛿𝑤) +

1

2
‖Δ𝛿𝑤‖

2

0,Ω
+
1

2
‖Δ𝛿𝐹‖

2

0,Ω
, (26)

where 𝛿𝑤 = 𝑤
𝑛+1

− 𝑤
𝑛
, 𝛿𝐹 = 𝐹

𝑛+1
− 𝐹

𝑛
. Taking (23) into

account, one observes that 𝛿𝑤 serves as a general solution to
the boundary value problem:

Δ
2

𝛿𝑤 = −𝜌
𝑛
Φ(𝑤

𝑛
, 𝐹

𝑛
) , 𝛿𝑤 ∈ 𝐻

2

0
(Ω) . (27)

Further on it means that

𝛿𝑤 = −𝜌
𝑛
𝐺 [Φ (𝑤

𝑛
, 𝐹

𝑛
)] , (28)

where 𝐺[∙] : 𝐻−2(Ω) → 𝐻2

0
(Ω) stands for the linear bound-

ed operator being inversed to operator Δ2(∙). Therefore

Δ𝐽
𝑛
= −𝜌

𝑛
(Φ (𝑤

𝑛
, 𝐹

𝑛
) , 𝐺 [Φ (𝑤

𝑛
, 𝐹

𝑛
)])

+
1

2
‖Δ𝛿𝑤‖

2

0,Ω
+
1

2
‖Δ𝛿𝐹‖

2

0,Ω
.

(29)

Let us proceed to the second order terms. Taking in (11)
𝜇 = 𝛿𝑤 and applying (28), one gets

‖Δ𝛿𝑤‖
2

0,Ω
= −𝜌

𝑛
(Φ (𝑤

𝑛
, 𝐹

𝑛
) , 𝛿𝑤)

= 𝜌
2

𝑛
(Φ (𝑤

𝑛
, 𝐹

𝑛
) , 𝐺 [Φ (𝑤

𝑛
, 𝐹

𝑛
)]) .

(30)

Let us estimate the last term in (29). Since {𝑤
𝑛
, 𝐹

𝑛
} ∈ 𝑀

and {𝑤
𝑛+1

, 𝐹
𝑛+1

} ∈ 𝑀, then for 𝛿𝐹 the following equation
should be satisfied:

(Δ𝛿𝐹, Δ𝜇) + (𝐿 (𝑤
𝑛
, 𝛿𝑤) , 𝜇) + (∇

2

𝑘
𝛿𝑤, 𝜇)

+
1

2
(𝐿 (𝛿𝑤, 𝛿𝑤) , 𝜇) = 0

𝛿𝐹 ∈ 𝐻
2

0
(Ω) , ∀𝜇 ∈ 𝐻

2

0
(Ω) .

(31)

This, in particular, yields

‖Δ𝛿𝐹‖
0,Ω

≤ 𝑐
7
(
󵄩󵄩󵄩󵄩𝐿 (𝑤𝑛

, 𝛿𝑤)
󵄩󵄩󵄩󵄩𝐿1(Ω)

+ ‖𝐿 (𝛿𝑤, 𝛿𝑤)‖
𝐿
1
(Ω)

+
󵄩󵄩󵄩󵄩󵄩∇

2

𝑘
𝛿𝑤

󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)
) .

(32)

However, 𝑤
𝑛
belongs to the bounded set in 𝐻2

0
(Ω) for

arbitrary 𝑛. It implies that ‖Δ𝛿𝐹‖
0,Ω

≤ 𝑐
8
‖Δ𝛿𝑤‖

2

0,Ω
or

equivalently

‖Δ𝛿𝐹‖
2

0,Ω
≤ 𝑐

9
𝜌
4

𝑛
(Φ (𝑤

𝑛
, 𝐹

𝑛
) , 𝐺 [Φ (𝑤

𝑛
, 𝐹

𝑛
)])

2

. (33)

Substituting (30), (33) into (29), and taking into
account both positive defiantness (in the sense of (Φ(𝑤

𝑛
,

𝐹
𝑛
), 𝐺[Φ(𝑤

𝑛
, 𝐹

𝑛
)]) ≥ 𝛼‖Φ(𝑤

𝑛
, 𝐹

𝑛
)‖
2) and the constraints of

operator 𝐺[∙], one gets

Δ𝐽
𝑛
≤ −𝜌

𝑛
𝑐
10

󵄩󵄩󵄩󵄩Φ (𝑤
𝑛
, 𝐹

𝑛
)
󵄩󵄩󵄩󵄩
2

× (−1 +
𝜌
𝑛

2
+ 𝑐

1

𝜌3
𝑛

2

󵄩󵄩󵄩󵄩Φ (𝑤
𝑛
, 𝐹

𝑛
)
󵄩󵄩󵄩󵄩
2

) .

(34)

The latter estimation shows that the values 𝜌
𝑛

̸=0 are
responsible for the satisfaction of inequality (24). For this
purpose 𝜌

𝑛
should be chosen in the following way:

𝜌
𝑛

2
+ 𝑐

1

𝜌3
𝑛

2

󵄩󵄩󵄩󵄩Φ (𝑤
𝑛
, 𝐹

𝑛
)
󵄩󵄩󵄩󵄩
2

≤ 1 − 𝜀. (35)

It can always be done, since 0 < 𝜀 < 1.
Taking 𝜌

𝑛
in accordance with the algorithm applied so far,

the following estimations are obtained on each step:

Δ𝐽
𝑛
≤ −𝜌

𝑛
𝜀
󵄩󵄩󵄩󵄩Φ (𝑤

𝑛
, 𝐹

𝑛
)
󵄩󵄩󵄩󵄩
2

, (36)

which means that for the arbitrarily taken 𝑛 we have 𝐽
𝑛+1

−
𝐽
𝑛
≤ 0. Since functional 𝐽 is bounded from below, the last

inequality yields for 𝑛 → ∞ Δ𝐽
𝑛
→ 0. Besides, (36) gives

󵄩󵄩󵄩󵄩Φ (𝑤
𝑛
, 𝐹

𝑛
)
󵄩󵄩󵄩󵄩
2

≤
−Δ𝐽

𝑛

𝜀𝜌
𝑛

. (37)

Let us emphasize that the so far introduced algorithm of
the choice of 𝜌

𝑛
guarantees that for arbitrary 𝑛 we have 𝜌

𝑛
≥

𝜌
0
> 0. In fact, because Δ𝐽

𝑛
≤ 0, then

𝐽 (𝑤
𝑛
, 𝐹

𝑛
) ≤ 𝐽 (𝑤

0
, 𝐹

0
) = 𝐴. (38)

Owing to (38), norms ‖𝑤
𝑛
‖
2,Ω

, ‖𝐹
𝑛
‖
2,Ω

are bounded.
Therefore, also the norm ‖Φ(𝑤

𝑛
, 𝐹

𝑛
)‖ is bounded. In addition,

taking (37) into account, we have ‖Φ(𝑤
𝑛
, 𝐹

𝑛
)‖ → 0 for

𝑛 → ∞, and consequently, also (Φ(𝑤
𝑛
, 𝐹

𝑛
), 𝜇) → 0 for

𝑛 → ∞ for all 𝜇 ∈ 𝐻2

0
(Ω). The occurrence of a convergent

subseries follows now fromaboundof norms ‖𝑤
𝑛
‖
2,Ω

, ‖𝐹
𝑛
‖
2,Ω

(see proof of Theorem 1).

We have shown in the above the convergence of the
reduction procedure of system (2) to the successive solution
to the biharmonic Germain-Lagrange type equation. The
applied procedure linearizes and decreases the order of the
input equations. We have proposed a further development of
this approach on the basis of reduction of the biharmonic
equation to that of the Poisson-type. The latter approach
allows us to decrease four times the order of system (2).
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3.2. Iterative Procedure of Reduction of the Germain-Lagrange
Equations Type to the Poisson Equations Type. The following
original iterative procedure is proposed.

We consider a biharmonic equation given in the bounded
convex space Ω ∈ 𝑅2:

Δ
2

𝑤 (𝑥, 𝑦) = 𝑔 (𝑥, 𝑦) . (39)

On the space boundary the following boundary condi-
tions are given:

𝑤|
Γ
= 0, Δ𝑤 − 𝜒

𝜕𝑤

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
= 0, (40)

where 𝜒 denotes the curvature of boundary Γ.
Let us introduce the following new function 𝑀

𝑤
= Δ𝑤.

Substituting this function into (39) the following system of
two Poisson-type equations is obtained:

Δ𝑀
𝑤
(𝑥, 𝑦) = 𝑔 (𝑥, 𝑦) ,

Δ𝑤 (𝑥, 𝑦) = 𝑀
𝑤
(𝑥, 𝑦) , 𝑥, 𝑦 ∈ Ω.

(41)

Boundary conditions have the following form:

𝑤(𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑥,𝑦∈Γ = 0, 𝑀

𝑤
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝑥,𝑦∈Γ = 0. (42)

Therefore, a solution of the biharmonic equation is
divided into a solution of two Poisson-type equations. Below,
we prove convergence of the proposed procedure.

Let us define the following set for the function 𝜉 =
{𝑤,𝑀

𝑤
}:

𝐸 = {𝜉 ∈ 𝜌
∞

(Ω) | 𝜉
󵄨󵄨󵄨󵄨Γ = 0} , (43)

where 𝜌∞(Ω) is the set of functions infinitely many times
differentiable on Ω ∈ 𝑅2. Closure of set (43) in norm𝐻2(Ω)
is a subspace in 𝐻2(Ω) which is denoted by 𝑉(Ω). It is clear
that 𝑉(Ω) = 𝐻2(Ω) ∩ 𝐻1

0
(Ω).

It is known (see [13]) that a solution to problems (39) and
(40) is equivalent to minimization on 𝑉(Ω) of the following
functional:

𝐽 (V) =
1

2
∫
Ω

󵄨󵄨󵄨󵄨Δ𝜉
󵄨󵄨󵄨󵄨
2

𝑑Ω − ∫
Ω

𝑔𝜉 𝑑Ω −
1

2
∫
Γ

𝜒
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜉

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠. (44)

Hybrid Variation Problem Formulation. We assume that
instead of functional (44) the following one is minimized:

Φ(𝜉, 𝜓, 𝛼) =
1

2
∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨
2

𝑑Ω − ∫
Ω

𝑔𝜉 𝑑Ω −
1

2
∫
Γ

𝜒|𝛼|
2

𝑑𝑠, (45)

on such triads (𝜉, 𝜓, 𝛼) ∈ 𝑉(Ω) ×𝐿2(Ω) × 𝐿2(Γ) that their ele-
ments are coupled through equalities −Δ𝜉 = 𝜓, (𝜕𝑤/𝜕𝑛)|

Γ
=

𝛼.
Let us define the space of the following functions:

𝑃 (Ω) = {(𝜉, 𝜓, 𝛼) ∈ 𝐻
1

0
(Ω) × 𝐿

2

(Ω) × 𝐿
2

(Γ) |

∀𝜇 ∈ 𝐻
1

(Ω) , 𝛽 [(𝜉, 𝜓, 𝛼) , 𝜇] = 0} ,

(46)

where the bilinear form 𝛽[⋅, ⋅] is defined as

𝛽 [(𝜉, 𝜓, 𝛼) , 𝜇] =
1

2
∫
Ω

∇𝜉∇𝜇𝑑Ω − ∫
Ω

𝜓𝜇𝑑Ω − ∫
Γ

𝛼𝜇𝑑𝑠.

(47)

Theorem 4. If the space Ω is convex and has a Lipschitz con-
tinuous boundary Γ, then, first, the map (𝜉, 𝜓, 𝛼) ∈ 𝑃(Ω) →

|𝜓|
2

0,Ω
, now and later |𝜉|

𝑚,Ω
= (∑

|𝑘|=𝑚
∫
Ω
|𝜕𝑘𝜉|

2

𝑑Ω)
1/2

,

‖𝜉‖
𝑚,Ω

= (∑
|𝑘|≤𝑚

∫
Ω
|𝜕𝑘𝜉|

2

𝑑Ω)
1/2

) is the norm on space 𝑃(Ω)

equivalent to the real dot product form (𝜉, 𝜓, 𝛼) ∈ 𝑃(Ω) →

(|𝜉|
2

1,Ω
+ |𝜓|

2

0,Ω
+ |𝛼|

2

0,Γ
)
1/2

transforming 𝑃(Ω) into a Hilbert
space; second, if (𝜉, 𝜓, 𝛼) ∈ 𝑃(Ω), then

(𝜉, 𝜓, 𝛼) ∈ 𝑉 × 𝐿
2

(Ω) × 𝐿
2

(Γ) , −Δ𝜉 = 𝜓,
𝜕𝑤

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ
= 𝛼,

(48)

and if (48) is satisfied, then (𝜉, 𝜓, 𝛼) ∈ 𝑃(Ω).

Proof. In the beginning we show the second statement. Since
Ω has a continuous boundary, then the following Green
formula holds:

∫
Ω

∇𝜉∇𝜇𝑑Ω = −∫
Ω

Δ𝜉𝜇𝑑Ω + ∫
Γ

𝜕𝜉

𝜕𝑛
𝜇𝑑𝑠,

∀𝜉 ∈ 𝐻
2

(Ω) , ∀𝜇 ∈ 𝐻
1

(Ω) .

(49)

Let (𝜉, 𝜓, 𝛼) ∈ 𝑃(Ω). Then 𝜉 ∈ 𝐻1

0
(Ω), 𝜓 ∈ 𝐿2(Ω), 𝛼 ∈ 𝐿2(Γ),

and 𝛽[(𝜉, 𝜓, 𝛼), 𝜇] = 0 for all 𝜇 ∈ 𝐻1(Ω).
The last condition, in particular for ∀𝜇 ∈ 𝐻1

0
(Ω) yields

∫
Ω

∇𝜉∇𝜇𝑑Ω = ∫
Ω

𝜓𝜇𝑑Ω. (50)

It follows from (50) that V appears as a solution to the
Dirichlet problem for the operator −Δ for 𝜉|

Γ
= 0. Since

space Ω is convex, therefore 𝜉 ∈ 𝐻2(Ω) ([13], Section 7.1,
page 373), and consequently 𝜉 ∈ 𝐻2(Ω) ∩ 𝐻1

0
(Ω). Using

now (50) for 𝜇 ∈ 𝐻1

0
(Ω), we get −Δ𝜉 = 𝜓. Using the Green

formula for 𝜇 ∈ 𝐻1(Ω), we find that (𝜕𝜉/𝜕𝑛)|
Γ
= 𝛼. Assume

that (48) holds. We show that (𝜉, 𝜓, 𝛼) ∈ 𝑃(Ω). Since 𝜉 ∈

𝑉(Ω) ⊂ 𝐻2(Ω) and −Δ𝜉 = 𝜓, (𝜕𝜉/𝜕𝑛)|
Γ
= 𝛼, then (49) yields

∫
Ω
∇𝜉∇𝜇𝑑Ω = ∫

Ω
𝜓𝜇𝑑Ω + ∫

Γ
𝛼𝜇𝑑𝑠 for all 𝜇 ∈ 𝐻1(Ω); that

is, 𝛽[(𝜉, 𝜓, 𝛼), 𝜇] = 0 for all 𝜇 ∈ 𝐻1(Ω). Besides 𝜉 ∈ 𝑉(Ω) ⊂

𝐻1

0
(Ω) and the second statement is proved.
Let us prove the first statement. Endowed with the

multiplication norm 𝑃(Ω) is a Hilbert space. Let (𝜉, 𝜓, 𝛼) ∈

𝑃(Ω). Then, as it has been shown, 𝜉 ∈ 𝐻2(Ω) ∩ 𝐻1

0
(Ω). For

𝜇 = 𝜉 condition 𝛽[(𝜉, 𝜓, 𝛼), 𝜇] = 0 yields

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

1,Ω
≤ 𝐶

1

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨0,Ω

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨0,Ω. (51)

Let us introduce space 𝑀 ⊂ 𝐻1(Ω) such that 𝐻1(Ω) =
𝐻1

0
(Ω) ⊕ 𝑀. Besides, let us introduce the following operator

𝐵 : 𝐻1(Ω) → 𝐿2(Ω) defined in the following way: for all
𝜓 ∈ 𝐿2(Ω) 𝛼 = 𝐵𝜓 ∈ 𝐿2(Γ) we have a unique solution to the
following equation:

∫
Γ

𝛼𝜇𝑑𝑠 = ∫
Ω

∇𝜉∇𝜇𝑑Ω − ∫
Ω

𝜓𝜇𝑑Ω ∀𝜇 ∈ 𝑀. (52)
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Under the condition that 𝜉 ∈ 𝐻1

0
(Ω) satisfies the follow-

ing:

∫
Ω

∇𝜉∇𝜇𝑑Ω = ∫
Ω

𝜓𝜇𝑑Ω 𝜇 ∈ 𝐻
1

0
(Ω) . (53)

It is not difficult to verify that under the theorem con-
ditions, 𝐵𝜓 = −𝐵Δ𝜉 = (𝜕𝜉/𝜕𝑛)|

Γ
; that is, 𝐵 stands for the

operator of external normal derivative for 𝜉 ∈ 𝐻2(Ω)∩
𝐻1

0
(Ω). This operator is bounded; that is, 𝜉 ∈ 𝐻2(Ω)∩

𝐻1

0
(Ω). We denote its norm by ‖𝐵‖. Then ‖𝐵‖ =

supV∈𝐻2(Ω)∩𝐻10 (Ω)(‖𝜕𝜉/𝜕𝑛‖0,Γ/|Δ𝜉|0,Ω), where ‖ ∙ ‖ 0,Γ denotes
the norm associated with the scalar product (𝛼, 𝛽)

𝐿
2
(Γ)

= ∫
Γ
𝛼𝛽𝑑𝑠. Therefore, for all 𝜓 ∈ 𝐿2(Ω) ‖𝛼‖

0,Γ
≤ ‖𝐵‖|𝜓|

0,Ω
.

Hence, taking (52) into account we get (‖𝜉‖
1,Ω

+ ‖𝜓‖
0,Ω

+
‖𝛼‖

0,Γ
) ≤ C

2
‖𝜓‖

0,Ω
and the theorem is proved.

Results of this theorem allow us to transit from mini-
mization of functional (45) on space 𝑉(Ω) to minimization
of functional (45) on space 𝑃(Ω).

Theorem 5. Let𝑤 ∈ 𝑉(Ω) be a solution to problem (44), then

Φ(𝑤, −Δ𝑤,
𝜕𝑤

𝜕𝑛
) 󳨀→ inf

(V,𝜓,𝛼)∈𝑃(Ω)
Φ(𝜉, 𝜓, 𝛼) . (54)

In this case the triad (𝑤, −Δ𝑤, 𝜕𝑤/𝜕𝑛) ∈ 𝑃(Ω) is the unique
solution to the problem of minimization of (54).

Proof. We prove that a symmetric bilinear form 𝑎([(𝜉,

𝜓, 𝛼), (𝜂, 𝜑, 𝛽)]) = ∫
Ω
𝜓𝜑𝑑Ω−∫

Γ
𝜒𝛼𝛽𝑑𝑠, (𝜉, 𝜓, 𝛼), (𝜂, 𝜑, 𝛽) ∈

𝑃(Ω) is continuous and elliptic on 𝑃(Ω).
Owing to Theorem 4, if (𝜉, 𝜓, 𝛼), (𝜂, 𝜑, 𝛽) ∈ 𝑃(Ω), then

−Δ𝜉 = 𝜓; (𝜕𝜉/𝜕𝑛)|
Γ
= 𝛼; −Δ𝜂 = 𝜑; (𝜕𝜂/𝜕𝑛)|

Γ
= 𝛽. Then we

have

𝑎 ([(𝜉, 𝜓, 𝛼) , (𝜂, 𝜙, 𝛽)]) = ∫
Ω

Δ𝜉Δ𝜂 𝑑Ω − ∫
Γ

𝜕𝜉

𝜕𝑛

𝜕𝜂

𝜕𝑛
𝑑𝑠. (55)

For 𝜂 = 𝜉, 𝜑 = 𝜓, 𝛽 = 𝛼 from (55) we obtain ([13], Section
1.2, page 38)

𝑎 ([(𝜉, 𝜓, 𝛼) , (𝜂, 𝜓, 𝛼)])

= ∫
Ω

[(
𝜕2𝜉

𝜕𝑥2
)

2

+ 2
𝜕2𝜉

𝜕𝑥2
𝜕2𝜉

𝜕𝑦2
+ (

𝜕2𝜉

𝜕𝑥2
)

2

+ 2(
𝜕2𝜉

𝜕𝑥 𝜕𝑦
)

2

]𝑑Ω

≥
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨
2

0,Ω
.

(56)

Then, elliptic property has been proved by 𝑃. Continuity
of the bilinear form is evident. It means that the problem of
minimization

Φ(𝜉
∗

, 𝜓
∗

, 𝛼
∗

) 󳨀→ inf
(𝑢,𝜑,𝛽)∈𝑃(Ω)

Φ(𝜂, 𝜑, 𝛽) (57)

has a solution which is unique. Let us find a link between a
solution to problem (37) as well as problems (41) and (42). If

(𝜉∗, 𝜓∗, 𝛼∗) ∈ 𝑃(Ω) is a solution to problem (57), then the
following relations should hold:

∫
Ω

𝜓
∗

𝜑𝑑Ω − ∫
Ω

𝜂𝑔 𝑑Ω − ∫
Γ

𝜒𝛼
∗

𝛽𝑑𝑠 = 0

∀ (𝜂, 𝜑, 𝛽) ∈ 𝑃 (Ω) .

(58)

Since (𝜉∗, 𝜓∗, 𝛼∗) ∈ 𝑃(Ω), then −Δ𝜉∗ = 𝜓∗, (𝜕𝜉∗/𝜕𝑛)|
Γ
=

𝛼∗, and 𝜉∗ ∈ 𝑃(Ω).Therefore, taking (58) into account we get
∫
Ω
Δ𝜉∗Δ𝜂𝑑Ω−∫

Γ
𝜒(𝜕𝜉∗/𝜕𝑛)(𝜕𝜂/𝜕𝑛) 𝑑𝑠 = ∫

Γ
𝜂𝑔𝑑𝑠.Therefore,

𝜉∗ coincides with the solution 𝑤 to problems (39) and (40),
and 𝜓∗ = −Δ𝑤, 𝛼∗ = (𝜕𝑤/𝜕𝑛)|

Γ
.

Remark 6. Since the space is convex and its boundary is
regular, then for 𝑔 ∈ 𝐻−1(Ω) a solution to problems (39) and
(40),

𝑤 ∈ 𝐻
3

(Ω) ∩ 𝐻
1

0
(Ω) , Δ𝑤 ∈ 𝐻

1

(Ω) . (59)

Solution to the Minimization Problem (44). We show that a
solution to problem (44) can be reduced to a solution of
successive Dirichlet problems for the operator −Δ.

For further analysis it is suitable to introduce a linear
transformation 𝐴 : 𝐿2(Ω) → 𝐻1

0
(Ω) in the following way:

if 𝜓 ∈ 𝐿2(Ω) is a given function, then the function 𝜉 = 𝐴𝜓 ∈

𝐻1

0
(Ω) is a unique solution to the equation ∫

Ω
∇𝜉∇𝜇𝑑Ω =

∫
Ω
𝜓𝜇𝑑Ω ∀𝜇 ∈ 𝐻1

0
(Ω), for 𝜉 ∈ 𝐻1

0
(Ω). This means that space

𝑃(Ω), defined by (43), can be presented in the following form:

𝑃 (Ω) = {(𝜉, 𝜓, 𝛼) ∈ 𝐻
1

0
(Ω) × 𝐿

2

(Ω) × 𝐿
2

(Γ) |

𝜉 = 𝐴𝜓, 𝛼 = 𝐵𝜓} .

(60)

Problem (44) is equivalent to the following problem of
optimal control:

min
𝜓∈𝐿
2
(Ω)

[
1

2
∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨
2

𝑑Ω − ∫
Ω

𝑔𝜉 𝑑Ω −
1

2
∫
Γ

𝜒|𝛼|
2

𝑑𝑠] , (61)

where the state function 𝜉 and 𝛼 are coupled via control 𝜓 ∈

𝐿2(Ω) through the following state equations:

𝜉 ∈ 𝐻
1

0
(Ω) , 𝜉 = 𝐴𝜓,

𝛼 ∈ 𝐿
2

(Γ) , 𝛼 = 𝐵𝜓.
(62)

As it follows fromRemark 6, although the optimal control
𝜓 is sought on 𝐿2(Ω), its regularity is higher for 𝑔 ∈

𝐻−1(Ω) 𝜓 ∈ 𝐻1(Ω). In this case the following trace is
defined: 𝜓|

Γ
= 𝜆, 𝜆 ∈ 𝑀. Furthermore, besides (62), we

require that ∫
Ω
∇𝜓

𝜆
∇𝜇𝑑Ω = ∫

Ω
𝑔𝜇𝑑Ω for all 𝜇 ∈ 𝐻1

0
(Ω)

and 𝜓
𝜆
− 𝜆 ∈ 𝐻1

0
(Ω). Then, if 𝜉

𝜆
= 𝐴𝜓

𝜆
and 𝛼

𝜆
= 𝐵𝜓

𝜆
, (61)

implies that min
𝜓∈𝐿
2
(Ω)

Φ(𝜉, 𝜓, 𝛼) = min
𝜆∈𝑀

𝐷(𝜆), where

𝐷 (𝜆) = −
1

2
∫
Ω

󵄨󵄨󵄨󵄨𝜓𝜆
󵄨󵄨󵄨󵄨
2

𝑑Ω − ∫
Γ

𝜆𝛼
𝜆
𝑑𝑠

−
1

2
∫
Γ

𝜒
󵄨󵄨󵄨󵄨𝛼𝜆

󵄨󵄨󵄨󵄨
2

𝑑𝑠 ∀𝜆 ∈ 𝑀.

(63)
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The fundamental idea consists now in the application of
a gradient method to the problem of minimization (63).

Let us take 𝑀󸀠 as a dual space for space 𝑀, and let ⟨⋅, ⋅⟩
denote the relation of duality between spaces𝑀 and𝑀󸀠. We
denote by𝐷󸀠 ∈ 𝑀󸀠 a derivative of the functional𝐷(𝜆). Let us
introduce a map 𝑆 : 𝑀 → 𝐻1(Ω) in the following way: for
𝜆 ∈ 𝑀

∘

𝜑
𝜆
= 𝑆(𝜆) is a unique function from𝐻1(Ω) satisfying

the condition

∫
Ω

∇
∘

𝜙
𝜆
∇𝜇𝑑Ω = 0, ∀𝜇 ∈ 𝐻

1

0
(Ω) ,

∘

𝜙
𝜆
− 𝜆 ∈ 𝐻

1

0
(Ω) .

(64)

Theorem 7. For an arbitrary 𝜆 ∈ 𝑀 defined in (63), the
functional is differentiable and its derivative is defined by the
relation

∀𝜇 ∈ 𝑀 ⟨𝐷
󸀠

(𝜆) , 𝜇⟩ = ∫
Ω

∘

𝜑
𝜃

∘

𝜑
𝜇
𝑑Ω,

where ∘𝜑
𝜇
= 𝑆 (𝜇) ,

∘

𝜑
𝜃
= 𝑆 (𝜃

𝜆
) ,

𝜃
𝜆
= 𝜆 + 𝜒𝛼

𝜆
, 𝜃

𝜆
∈ 𝑀.

(65)

Proof. Differentiating (63) yields

⟨𝐷
󸀠

(𝜆) , 𝜇⟩ = − ∫
Ω

𝜓
𝜆

∘

𝜙
𝜇
𝑑Ω − ∫

Γ

𝛼
𝜆
𝜇 𝑑Ω

− ∫
Γ

(𝜆 + 𝜒 𝛼
𝜆
)
∘

𝛽
𝜇
𝑑𝑠,

(66)

where ∘𝜑
𝜇
= 𝑆(𝜇),

∘

𝛽
𝜇
= 𝐵

∘

𝜑
𝜇
.

From (66) and taking (52) into account we get

⟨𝐷
󸀠

(𝜆) , 𝜇⟩ = −∫
Ω

∇V
𝜆
∇
∘

𝜙
𝜇
𝑑Ω − ∫

Γ

(𝜆 + 𝜒𝛼
𝜆
)
∘

𝛽
𝜇
𝑑𝑠. (67)

First term in (67) is equal to zero due to (64). Let us
introduce the function ∘𝜑

𝜃
= 𝑆(𝜃

𝜆
), where 𝜃

𝜆
is defined by

(66) and let ∘𝑢
𝜇

= 𝐴
∘

𝜑
𝜇
. Then, (66) implies ⟨𝐷󸀠(𝜆), 𝜇⟩ =

∫
Ω

∘

𝜙
𝜃

∘

𝜙
𝜇
𝑑Ω − ∫

Γ
∇
∘

𝜙
𝜃
∇
∘

𝑢
𝜇
𝑑Ω.

However, the last term in this equality is equal to zero due
to (64), which ends the proof. The gradient method applied
to minimization (63) consists now in the determination of a
series {𝜆

𝑛
}
∞

𝑛=0
of functions 𝜆𝑛 ∈ 𝑀 via the following iteration

scheme:

𝜇 ∈ 𝑀 (𝜆
𝑛+1

− 𝜆
𝑛

, 𝜇)
𝑀

= −𝜌
𝑛
⟨𝐷

󸀠

(𝜆
𝑛

) , 𝜇⟩ , (68)

where (⋅, ⋅)
𝑀

is the arbitrary scalar product in space 𝑀, 𝜌 is
the positive parameter, and 𝜆0 is the arbitrary function of𝑀.

Therefore, one iteration (68) corresponds to successive
solutions of the following problems:

(a) find for a given function 𝜆𝑛 ∈ 𝑀 a unique function
𝜓𝑛 ∈ 𝐻1(Ω), satisfying the following relations:

𝜓
𝑛

− 𝜆
𝑛

∈ 𝐻
1

0
(Ω) , (69)

∀𝜇 ∈ 𝐻
1

0
(Ω) ∫

Ω

∇𝜓
𝑛

∇𝜇𝑑Ω = ∫
Ω

𝑔𝜇𝑑Ω; (70)

(b) find a function 𝜉𝑛 ∈ 𝐻1

0
(Ω), satisfying the following

relation:

∀𝜇 ∈ 𝐻
1

0
(Ω) ∫

Ω

∇𝜉
𝑛

∇𝜇𝑑Ω = ∫
Ω

𝜓
𝑛

𝜇 𝑑Ω; (71)

(c) find a function 𝛼𝑛 ∈ 𝐿2(Γ), satisfying the following
relation:

∀𝜇 ∈ 𝑀 ∫
Γ

𝛼
𝑛

𝜇 𝑑Ω = ∫
Ω

∇𝜉
𝑛

∇𝜇𝑑Ω − ∫
Ω

𝜓
𝑛

𝜇 𝑑Ω; (72)

(d) find a function 𝜆𝑛+1 ∈ 𝑀, satisfying the following
relation:

∀𝜇 ∈ 𝑀 (𝜆
𝑛+1

− 𝜆
𝑛

, 𝜇)
𝑀

= −𝜌∫
Ω

∘

𝜙
𝑛

𝜃

∘

𝜙
𝜇
𝑑Ω; (73)

where
∘

𝜑𝑛
𝜃
= 𝑆𝜃𝑛

𝜆
, 𝜃𝑛

𝜆
= 𝜆𝑛 − 𝜒𝐵𝜓𝑛, and ∘

𝜑
𝜇
= 𝑆𝜇.

We show that by a proper choice of parameter 𝜌 > 0
the iteration process ((69)–(73)) is convergent for arbitrarily
taken initial approximation.

Let us first define the map 𝐶 : 𝐻1(Ω) → 𝑀 in the
following way: for any function𝜓 ∈ 𝐻1(Ω) function𝐶𝜓 ∈ 𝑀
is unique satisfying the following condition:

∀𝜇 ∈ 𝑀 (𝐶𝜓, 𝜇)
𝑀

= ∫
Ω

𝜓
∘

𝜙
𝜇
𝑑Ω. (74)

Let us take ‖𝐶‖ = sup
𝜓∈𝐻
1
(Ω)

(|𝐶𝜓|
𝜇
/|𝜓|

0,Ω
), where | ⋅ |

𝑀

denotes the norm associated with the scalar product (⋅, ⋅)
𝑀
. It

is clear that this norm exists, since the map 𝜇 ∈ 𝑀 →
∘

𝜑
𝜇
∈

𝐻1(Ω) is bounded.

Theorem 8. If parameter 𝜌 satisfies the following condition:

0 < 𝜌 <
2

‖𝐶‖
2(1 −

󵄨󵄨󵄨󵄨𝜒
󵄨󵄨󵄨󵄨𝐿∞(Ω) ‖𝑆‖ ‖𝐵‖)

2
, (75)

then the iteration process (69)–(73) is convergent in the sense
that

lim
𝑛→∞

𝜓
𝑛

= 𝜓 k 𝐿
2

(Ω) , lim
𝑛→∞

𝜉
𝑛

= 𝜉 k 𝐻
1

0
(Ω) ,

lim
𝑛→∞

𝛼
𝑛

= 𝛼 k 𝐿
2

(Γ) .
(76)

Proof. It is sufficient to show that lim
𝑛→∞

𝜓𝑛 = 0 in 𝐿2(Ω) in
the particular case when 𝑔 = 0. If we use the definition (74)
of map 𝐶, then the recurrent formula (73) gives

𝜆
𝑛+1

= 𝜆
𝑛

− 𝜌𝐶
∘

𝜑
𝑛

𝜃
, where

∘

𝜑
𝑛

𝜃
= 𝑆𝜃

𝑛

𝜆
, 𝜃

𝑛

𝜆
= 𝜆

𝑛

+ 𝜒𝐵𝜓
𝑛

,

(77)

and therefore

󵄨󵄨󵄨󵄨󵄨𝜆
𝑛+1󵄨󵄨󵄨󵄨󵄨

2

𝑀

=
󵄨󵄨󵄨󵄨𝜆

𝑛󵄨󵄨󵄨󵄨
2

𝑀
− 2𝜌(𝐶

∘

𝜙
𝑛

𝜃
, 𝜆

𝑛

)
𝑀

+ 𝜌
2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐶
∘

𝜙
𝑛

𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑀

. (78)
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Consider the term (𝐶
∘

𝜑𝑛
𝜃
, 𝜆𝑛)

𝑀
:

(𝐶
∘

𝜑
𝑛

𝜃
, 𝜆

𝑛

)
𝑀

= ∫
Ω

∘

𝜑
𝑛

𝜃
𝜓
𝑛

𝑑Ω = −∫
Γ

(𝜆
𝑛

+ 𝜒𝐵𝜓
𝑛

) 𝐵𝜓
𝑛

𝑑𝑠

= ∫
Ω

󵄨󵄨󵄨󵄨𝜓
𝑛󵄨󵄨󵄨󵄨
2

𝑑Ω − ∫
Γ

𝜒
󵄨󵄨󵄨󵄨𝐵𝜓

𝑛󵄨󵄨󵄨󵄨
2

𝑑𝑠 ≥
󵄨󵄨󵄨󵄨𝜓

𝑛󵄨󵄨󵄨󵄨
2

0,Ω
.

(79)

Let us estimate the norm |
∘

𝜑𝑛
𝜃
|:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∘

𝜑
𝑛

𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨0,Ω
=
󵄨󵄨󵄨󵄨𝑆(𝜆

𝑛

+ 𝜒𝐵𝜓
𝑛

)
󵄨󵄨󵄨󵄨0,Ω ≤

󵄨󵄨󵄨󵄨𝜓
𝑛󵄨󵄨󵄨󵄨0,Ω

+ ‖𝑆‖
󵄨󵄨󵄨󵄨𝜒
󵄨󵄨󵄨󵄨𝐿∞(Ω) ‖𝐵‖

󵄨󵄨󵄨󵄨𝜓
𝑛󵄨󵄨󵄨󵄨0,Ω

≤ (1 +
󵄨󵄨󵄨󵄨𝜒
󵄨󵄨󵄨󵄨𝐿∞(Ω) ‖𝑆‖ ‖𝐵‖)

󵄨󵄨󵄨󵄨𝜓
𝑛󵄨󵄨󵄨󵄨0,Ω.

(80)

The latter inequalities and (78) imply the following esti-
mation:
󵄨󵄨󵄨󵄨󵄨𝜆

𝑛+1󵄨󵄨󵄨󵄨󵄨

2

𝑀

−
󵄨󵄨󵄨󵄨𝜆

𝑛󵄨󵄨󵄨󵄨
2

𝑀

≤ −𝜌 [2𝜂 − ‖𝐶‖
2

(1 +
󵄨󵄨󵄨󵄨𝜒
󵄨󵄨󵄨󵄨𝐿∞(Ω) ‖𝑆‖ ‖𝐵‖ )

2

𝜌]
󵄨󵄨󵄨󵄨𝜓

𝑛󵄨󵄨󵄨󵄨
2

0,Ω
.

(81)

Hence, in particular, we get

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨
𝑛

0,Ω
= 0, (82)

if 𝜌 satisfies inequalities (75). Besides, we have

lim
𝑛→∞

𝜉
𝑛

= lim
𝑛→∞

𝐴𝜓
𝑛

= 0 k 𝐻
1

0
(Ω) ,

lim
𝑛→∞

𝛼
𝑛

= lim
𝑛→∞

𝐵𝜓
𝑛

= 0 k 𝐿
2

(Γ) ,
(83)

which finishes the proof.

Since convergence of the considered method is guar-
anteed, any choice of subspace 𝑀, satisfying the condition
𝐻1(Ω) = 𝐻1

0
(Ω) ⊕𝑀 and any choice of scalar product (⋅, ⋅)

𝑀

on space is allowed. However, the choice influences para-
meter 𝜌, as well as the computation time on each iterations.
Finally, we point out a few remarks regarding practical
computations of 𝜆𝑛+1 ∈ 𝑀.

If the scalar product in 𝑀 is defined via the following
formula:

(𝜆, 𝜇)
𝑀

= ∫
Ω

𝑆𝜆 ⋅ 𝑆𝜇 𝑑Ω, (84)

then as𝜆𝑛+1 any function from𝑀 can be taken, assuming that
the following condition is satisfied:

𝜆
𝑛+1󵄨󵄨󵄨󵄨󵄨Γ

= (𝜆
𝑛

− 𝜌𝜃
𝑛

𝜆
)
󵄨󵄨󵄨󵄨Γ. (85)

Equality (85) can be understood in the sense of trace
equality on a boundary. In fact, if (85) is satisfied, then

(𝜆
𝑛+1

− 𝜆
𝑛

, 𝜇)
𝑀

= −𝜌∫
Ω

𝑆𝜃
𝑛

⋅ 𝑆𝜇 𝑑Ω = −𝜌∫
Ω

∘

𝜑
𝑛

𝜃

∘

𝜑
𝜇
𝑑Ω,

(86)

which means that conditions of Theorem 7 are satisfied.

We may choose also the following scalar product:

either (𝜆, 𝜇)
𝑀

= ∫
Ω

∇𝜆∇𝜇𝑑Ω.

or (𝜆, 𝜇)
𝑀

= ∫
Ω

𝜆𝜇 𝑑Ω.

(87)

However, in the latter case one needs to compute gradient
⟨𝐷󸀠(𝜆), 𝜇⟩ on each step, which extends the computational
time.

Final Remarks. (1) The proof has been carried out for
equations in the hybrid form (2). It can be relatively easily
extended into equations regarding displacements. (2) Results
can be extended on other types of the differential equations,
including nonlinear ones, consisting of a biharmonic opera-
tor.

3.3. Iterative Procedure for the Reduction of the Karman
Equation into the Poisson Equation. In the preceding sections
we have proved convergence of the iterative procedures for
linearization of (2) by reducing the solution of the eighth
order system of nonlinear differential equations into that of
the solution to a biharmonic equation, aswell as the reduction
of the biharmonic equation to the Poisson-type equation in
the case of a curvilinear boundary using the finite element
method (FEM).

While considering a spacewith the rectangular boundary,
we may extend the procedure reported in Section 3.1 by
introduction of new variables into the iterative procedure of
solution to the Poisson-type equations without difficulties.

In the case of spaces with the curvilinear boundary, the
procedure described in Section 3.2 can be applied to solve (2)
using the iterative procedure, whose convergence has been
proved in Section 3.1.

For this purpose newvariables𝑀
𝑤
(𝑥, 𝑦) and𝑀

𝐹
(𝑥, 𝑦) are

introduced

𝑀
𝑤
(𝑥, 𝑦) = Δ𝑤 (𝑥, 𝑦) , 𝑀

𝐹
(𝑥, 𝑦) = Δ𝐹 (𝑥, 𝑦) . (88)

Then each of differential equations (2) is divided into two
Poisson-type equations.The iterative procedure of solution of
the obtained system of four Poisson-type equations has the
following form:

Δ𝑀
(𝑘)

𝑤
= 𝑞 + 𝐿 (𝑤

(𝑘−1)

, 𝐹
(𝑘−1)

) ,

Δ𝑤
(𝑘)

= 𝑀
(𝑘)

𝑤
,

Δ𝑀
(𝑘)

𝐹
= 𝐿 (𝑤

(𝑘)

, 𝑤
(𝑘)

) ,

Δ𝐹
(𝑘)

= 𝑀
(𝑘)

𝐹
, {𝑥, 𝑦} ∈ Ω.

(89)

Boundary conditions (4) are transformed to the following
form:

𝑤|
Γ
= 𝑀

𝑤

󵄨󵄨󵄨󵄨Γ = 𝐹|
Γ
= 𝑀

𝐹

󵄨󵄨󵄨󵄨Γ = 0. (90)

The given procedure (89) has advantages over procedure
(6), while solving each equation since instead of the fourth
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order equation that of the second order is solved. Because
equations are solved by numerical methods (FDM, FEM)
and the approximation of the biharmonic operator has high
requirements on the approximating functions, then for the
Poisson-type equation one may simplify the procedure (89)
of finding a solution by choosing simple approximating
functions.

In the FDM case, an order of algebraic equations system,
after a discretization of the biharmonic equation, is higher for
the second order equation, and hence higher expectations are
required from computer abilities while solving the problem
numerically.

4. The Method of Variational Iterations (MVI)
of PDEs Solutions

4.1. Validation of Convergence. The method of variational
iterations (MVI) was applied first in 1933 by Shunok who
considered a deflection of cylindrical panels. However, this
work did not meet with the response of others, and then
it was rediscovered in the sixties of the previous century
by Kantorovich and Krylov [20], who applied it in his
investigation of rectangular plates.Then theMVI found wide
application in solving various problems of plates and shells
(see the list of references reported in [21]).

Here we prove validity and reliability of the mentioned
method for a class of equations with positively defined
operators, that is, biharmonic and harmonic ones. In other
words, we prove a theorem on convergence of the MVI for
iterative procedures (6) and (89).

Formally, the MVI scheme is as follows. Assume that our
aim is to find a solution to the following:

𝑇𝜔 (𝑥, 𝑦) = 𝑔 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ Ω (𝑥, 𝑦) , (91)

where 𝑇 stands for a certain operator defined on set 𝐷(𝑇)
of the Hilbert space 𝐿

2
(Ω); 𝑔(𝑥, 𝑦) is the function given for

two variables 𝑥 and 𝑦; 𝜔(𝑥, 𝑦) is the function of these two
variables being sought; Ω(𝑥, 𝑦) is the space of changes of
variables 𝑥 and 𝑦.

If Ω(𝑥, 𝑦) = 𝑋 × 𝑌 (𝑋 is the certain bounded set of
variables 𝑥, 𝑌 is the bounded set of 𝑦), then a solution to (91)
can be given in the following form:

𝜔
𝑁
(𝑥, 𝑦) =

𝑁

∑
𝑖=1

𝑢
𝑖
(𝑥) V

𝑖
(𝑦) , (92)

where functions 𝑢
𝑖
(𝑥) and V

𝑖
(𝑦) are defined by the following

system of equations:

∫
𝑋

(𝑇𝜔
𝑁
− 𝑔) 𝑢

1
(𝑥) 𝑑𝑥 = 0,

...

∫
𝑋

(𝑇𝜔
𝑁
− 𝑔) 𝑢

𝑁
(𝑥) 𝑑𝑥 = 0,

∫
𝑌

(𝑇𝜔
𝑁
− 𝑔) V

1
(𝑦) 𝑑𝑦 = 0,

...

∫
𝑌

(𝑇𝜔
𝑁
− 𝑔) V

𝑁
(𝑦) 𝑑𝑦 = 0.

(93)

It is found in the following way: we have a certain
system composed of 𝑁 functions regarding one variable,
for instance, 𝑢0

1
(𝑥), 𝑢0

2
(𝑥), . . . , 𝑢0

𝑁
(𝑥), and then from the first

𝑁 equations of system (93) the system of 𝑁 functions
V1
1
(𝑥), V1

2
(𝑥), . . . , V1

𝑁
(𝑥) is defined. Then, the so far obtained

functions represent a new choice of the functions regard-
ing the variable 𝑥 − 𝑢2

1
(𝑥), 𝑢2

2
(𝑥), . . . , 𝑢2

𝑁
(𝑥), and the latter

serves to get a new set of functions regarding variable 𝑦 −

V3
1
(𝑥), V3

2
(𝑥), . . . , V3

𝑁
(𝑥), and so forth.

Definition 9. We say that a process of computation, when one
given system of functions is replaced by the second system,
is the MVI step. The number of steps needed to define a
certain choice of functions corresponds to the superscript
(number) of functions being considered. Truncating the
process of finding functions 𝑢

𝑖
(𝑥) and V

𝑖
(𝑦) on the 𝑘th step,

which, for example, corresponds to the choice of functions
V𝑘
1
(𝑦), V𝑘

2
(𝑦), . . . , V𝑘

𝑁
(𝑦), we define the function

𝜔
𝑘

𝑁
=

𝑁

∑
𝑖=1

𝑢
𝑘−1

𝑖
(𝑥) V𝑘

𝑖
(𝑦) , (94)

taken as the approximating solution of (91) obtained byMVI.

Remark 10. Here and further on, we shall take as operator
𝑇 a certain differential operator defined on set 𝐷(𝑇) of the
Hilbert space 𝐿

2
(Ω). Then, on each step system (93) shall be

transformed to a systemofODEswhich can be solved further.

Remark 11. We call function𝜔
𝑁
(𝑥, 𝑦) the𝑁th approximation

to (91) if the number of series terms in (92) is equal to𝑁.

Let us study the case of first approximation; that is, the
following solution of (91) is sought:

𝜔
1
(𝑥, 𝑦) = 𝑢 (𝑥) V (𝑦) , (95)

where functions 𝑢(𝑥) and V(𝑦) are defined through the
illustrated way from the following system of equations:

∫
𝑋

(𝑇𝑢 (𝑥) ⋅ V (𝑦) − 𝑔) 𝑢 (𝑥) 𝑑𝑥 = 0,

∫
𝑌

(𝑇𝑢 (𝑥) ⋅ V (𝑦) − 𝑔) 𝑢 (𝑦) 𝑑𝑦 = 0.

(96)

Let the operator 𝑇 in (91) be positive definite. Let us
introduce the following notation: 𝐻

𝑇
(𝑋 × 𝑌) is the energy

space of the operator 𝑇; [⋅, ⋅] is the scalar product of elements
in𝐻

𝑇
; 𝜔

0
is the exact solution to (91).
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Theorem 12. If 𝑇 is a positive definite operator with the
space of action 𝐷(𝑇) ⊂ 𝐻

𝑇
, then the sequence of elements

𝛼
𝑘
= ‖𝜔𝑘

1
(𝑥, 𝑦) − 𝜔

0
‖
𝐻𝑇

is monotonously decreasing; that is,
for arbitrary 𝑖 and 𝑗 if 𝑖 ≥ 𝑗, then

󵄩󵄩󵄩󵄩󵄩𝜔
𝑖

1
− 𝜔

0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
≤
󵄩󵄩󵄩󵄩󵄩𝜔

𝑗

1
− 𝜔

0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
. (97)

Proof. We consider a subset 𝑀1

1
of the space 𝐻

𝑇
which has

the following form:

𝑀
1

1
= {𝜔 (𝑥, 𝑦) | 𝜔 (𝑥, 𝑦) = 𝑢

0

(𝑥) V (𝑦) ,

𝑢
0

(𝑥) ∈ 𝐻
𝑇
(𝑥) , V (𝑦) ∈ 𝐻

𝑇
(𝑌)} .

(98)

It is clear, that set 𝑀1

1
represents a subspace of space

𝐻
𝑇
(𝑋 × 𝑌) (generally, of infinite dimension). Therefore, one

may define 𝜔
0
projection onto space𝑀1

1
. As it is known that

element 𝑢0(𝑥)V∗(𝑦) ∈ 𝑀1

1
stands for the projection of𝜔

0
onto

𝑀1

1
if the following condition is satisfied:

[𝑢
0

(𝑥) V∗ (𝑦) − 𝜔
0
, 𝑢

0

(𝑥) V (𝑦)]
𝐻𝑇

= 0 (99)

for arbitrary elements 𝑢
0
(𝑥)V(𝑦) ∈ 𝑀1

1
. It is clear that if

𝑢0(𝑥)V∗(𝑦) ∈ 𝑀1

1
, then (99) coincides with the first equation

of system (97).
Since the element 𝑢0(𝑥)V1(𝑦) obtained through the first

step of MVI is a projection of element 𝜔
0
onto the subspace

𝑀1

1
, hence the following inequality holds:

󵄩󵄩󵄩󵄩󵄩𝜔
1

1
(𝑥, 𝑦) − 𝜔

0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
≤
󵄩󵄩󵄩󵄩󵄩𝑢

0

(𝑥) V (𝑦) − 𝜔
0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
(100)

for arbitrary elements 𝑢0(𝑥)V(𝑦) ∈ 𝑀1

1
. An analogous

construction allows us to get a similar inequality for the
subspaces; that is, we have

𝑀
1

2
= {𝜔 (𝑥, 𝑦) | 𝜔 (𝑥, 𝑦) = 𝑢

0

(𝑥) V1 (𝑦) ,

𝑢 (𝑥) ∈ 𝐻
𝑇
(𝑥) , V1 (𝑦) ∈ 𝐻

𝑇
(𝑌)} .

(101)

In the case corresponding to the second MVI step,
󵄩󵄩󵄩󵄩󵄩𝑢

2

(𝑥) V1 (𝑦) − 𝜔
0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
≤
󵄩󵄩󵄩󵄩󵄩𝑢 (𝑥) V

1

(𝑦) − 𝜔
0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
(102)

for arbitrary elements 𝑢(𝑥)V1(𝑦) ∈ 𝑀1

2
. It follows from (100)

and (102) that ‖𝑢2(𝑥)V1(𝑦) − 𝜔
0
‖
𝐻𝑇

≤ ‖𝑢0(𝑥)V1(𝑦) − 𝜔
0
‖
𝐻𝑇
.

Considerations similar to those so far provided and obtained
for the 𝑘th MVI step prove the theorem as well as inequality
(97) with the help of induction.

Remark 13. Results of Theorem 12 are extended into the case
of𝑁th approximation, and therefore inequality (97) is given
in the following form:
󵄩󵄩󵄩󵄩𝜔

𝑛

𝑁
(𝑥, 𝑦) − 𝜔

0

󵄩󵄩󵄩󵄩𝐻𝑇
≤
󵄩󵄩󵄩󵄩𝜔

𝑛

𝑁
(𝑥, 𝑦) − 𝜔

0

󵄩󵄩󵄩󵄩𝐻𝑇
, 𝑚 ≥ 𝑛. (103)

In order to prove the theorem we introduce the following
lemma.

Lemma 14. Let each of elements of the basis system of space
𝐻
𝑇
have the following form:

𝜃
𝑖
(𝑥, 𝑦)=𝜑

𝑖
(𝑥) 𝜓

𝑖
(𝑦) , ∀

𝑖

𝜑
𝑖
(𝑥)∈𝐻

𝑇
(𝑋) , 𝜑

𝑖
(𝑦)∈𝐻

𝑇
(𝑌) .

(104)

If for the initial MVI approximation one takes any
component of a certain basis function 𝜃

𝑖
, that is, 𝑢0(𝑥) ≡

𝜑
𝑖
(𝑥), then for an arbitrary number 𝑘 of the MVI steps the

following inequality holds:
󵄩󵄩󵄩󵄩󵄩𝜔

𝑘

1
(𝑥, 𝑦) − 𝜔

0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
≤
󵄩󵄩󵄩󵄩𝑐𝜑𝑖 (𝑥) 𝜓𝑖 (𝑦) − 𝜔

0

󵄩󵄩󵄩󵄩𝐻𝑇
, (105)

where 𝑐 is the arbitrarily taken real number.

Proof. Since 𝑢0(𝑥)V1(𝑦) ≡ 𝜑
𝑖
(𝑥)V1(𝑦), thenTheorem 12 yields

󵄩󵄩󵄩󵄩󵄩𝜔
𝑘

1
(𝑥, 𝑦) − 𝜔

0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇
≤
󵄩󵄩󵄩󵄩󵄩𝜑𝑖 (𝑥) V

1

(𝑦) − 𝜔
0

󵄩󵄩󵄩󵄩󵄩𝐻𝑇

≤
󵄩󵄩󵄩󵄩𝑐𝜑𝑖 (𝑥) 𝜓𝑖 (𝑦) − 𝜔

0

󵄩󵄩󵄩󵄩𝐻𝑇
.

(106)

On the basis of the given lemma we formulate one of the
MVI convergence criterions. Initially, we identify space 𝐻

𝑇

with space
0

𝑊𝑚

2
(Ω) which is generated through a closure

regarding the norm

‖𝜔‖
𝑊
𝑚
2
= {∫

Ω

𝑚

∑
𝑘=0

∑
(𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑘𝜔

𝜕𝑘1𝑥𝜕𝑘2𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 𝑑𝑦}

2

(107)

of a set of infinitely differentiable functions
0

𝐶∞ (Ω) with a
compact carrier in Ω.

Theorem 15. Let each of elements of the basis system of space
0

𝑊𝑚

2
(𝑋 × 𝑌) have the following form:

𝜃
𝑖
(𝑥, 𝑦) = 𝜑

𝑖
(𝑥) 𝜓

𝑖
(𝑦) , (108)

where {𝜑
𝑖
(𝑥)} stands for the basis system in space

0

𝑊𝑚

2
(𝑋)

and {𝜓
𝑖
(𝑦)} in space

0

𝑊𝑚

2
(𝑌), and in order to get an arbitrary

𝑁th order approximation of the MVI we take components
of the elements of the basis system {𝜃

𝑖
(𝑥, 𝑦)} as the initial

functions.Then, for sufficiently large𝑁 the MVI gives a unique
approximate solution 𝜔

𝑁
, and the sequence {𝜔

𝑁
} is convergent

with respect to the norm of space
0

𝑊𝑚

2
(𝑋 × 𝑌) to the

exact solution 𝜔
0
irrespectively of the number of steps 𝑘. This

construction can be carried out for each 𝑁th approximation;
that is,

󵄩󵄩󵄩󵄩󵄩𝜔
𝑘

𝑁
− 𝜔

0

󵄩󵄩󵄩󵄩󵄩 0
𝑊
𝑚
2

󳨀→ 0, 𝑁 󳨀→ ∞. (109)

Proof. If we prove the theorem regarding approximations
obtained via the first step of MVI, then owing to the Lemma
the obtained results shall be valid for the arbitrary 𝑘th
step. Therefore, let us consider the 𝑁th approximation of
problem (91), obtained on the first step. In a way similar
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to considerations regarding Theorem 12, one may show that
each 𝜔1

𝑁
stands for a projection of element 𝜔

0
onto the

following subspace:

𝑀
1

𝑁
= {𝜔 (𝑥, 𝑦) | 𝜔 (𝑥, 𝑦) =

𝑁

∑
𝑖=1

𝑢
0

(𝑥) V1 (𝑦)} , (110)

where 𝑢0
𝑖
(𝑥) denotes 𝑁 the fixed elements from system

{𝜑
𝑖
(𝑥)}, and for arbitrary 𝑖 and V

𝑖
(𝑦) they cover the whole

space
0

𝑊𝑚

2
(𝑌). Therefore, 𝜔1

𝑁
= 𝑃

𝑁
𝜔
0
, where 𝑃

𝑁
stands

for the operator of an orthogonal projection onto subspace
𝑀1

𝑁
which is bounded. Since elements of the basis system

𝜃
𝑖
(𝑥, 𝑦) have form (108), it is limiting dense ([20], page 191) in
0

𝑊𝑚

2
(𝑋×𝑌). Then the proof is carried out in a way similar to

that of Theorem 16.2 (see [20], page 216), since all conditions
of its application are satisfied.

Remark 16. Results of Theorem 12 and the Lemma indicate
that using the MVI one may get an approximate solution to
(91) in away not worse than that obtained via the Ritzmethod
in accordance with the corresponding subspace.

The MVI can be extended also on the case of a large
number of variables. For instance, a sought solution to (91)
is the function of three variables 𝑥, 𝑦, 𝑧, and hence the
approximate solution of MVI can be sought in the following
form:

𝜔 (𝑥, 𝑦, 𝑧) = 𝑢 (𝑥) V (𝑦, 𝑧) . (111)

Remark 17. Note that during application of the MVI there
is no need to construct the initial condition, satisfying, say,
boundary conditions of the stated problem. Let us assume
that operator 𝑇 defines a certain boundary value problem.
Let us introduce an arbitrary function from a space of the
definition of the differential operator of the studied problem.
Then on the first (second) step we get a system of functions
satisfying boundary conditions regarding one (two) of the
variables.

Observe that the MVI, on each step, defines only one
of the functions appearing in the representation of solution
(108). The following method develops MVI and allows us,
using only a first step, to estimate at once two functions
regarding two directions of the coordinates.

4.2. Numerical Results. Let us consider the following rectan-
gular plate

Δ
2

𝜔 =
𝑔 (𝑥, 𝑦)

𝐷
, (112)

where 𝜔(𝑥, 𝑦) is the normal plate deflection in point 𝑥, 𝑦;
𝑔(𝑥, 𝑦) is the intensity of the normal load; 𝐷 = 𝐸ℎ3[12(1 −

]2)]−1; 𝐸, ] are the Young modulus and Poisson constant,
respectively; 2ℎ is the plate thickness, 𝑦 = 0; 1, 𝑥 = 0; 1,
where 𝑦 = 𝑦/𝑏, 𝑥 = 𝑥/𝑎; 𝑎 and 𝑏 are the plate dimensions;
and 𝑔(𝑥, 𝑦) = 𝑔𝑎2𝑏2[𝐸ℎ4]

−1. Plate space in the plane 𝑥, 𝑦 is

Table 1: Solution methods.

Reduction to the
Poisson-type equation
(MVI)

Bubnov’s
method

Solution in
series

0.004054 0.00416 0.00406

denoted byΩ, and its contour is Γ. Below, we study two types
of boundary conditions.

In the case of a simple support 𝑤 = 𝜕2𝑤/𝜕𝑛2|
Γ

= 0, a
solution obtained via variational iterations is compared with
that obtained through the first order approximation of the
Bubnov method and with the solution represented by double
trigonometric series. The following deflection function has
been assumed: 𝑊(𝑥, 𝑦) = 𝐴 sin(𝜋𝑥) sin(𝜋𝑦), which satisfies
the boundary conditions. Substituting this into (112) and
applying the Bubnov procedure we obtain 𝐴 = (4/𝜋6)𝑞, and
for 𝑞 = 1 we have 𝐴 = 0.00416. The deflection function
𝑤(𝑥, 𝑦) = ∑

𝑚,𝑛
𝐴
𝑚,𝑛

sin(𝑚𝜋𝑥/𝑎) sin(𝑛𝜋𝑦/𝑏) is substituted
into (20) then multiplied by sin(𝑚𝜋𝑥/𝑎), sin(𝑛𝜋𝑦/𝑏), and
integrated regarding the plate surface. The following deflec-
tion value is obtained:

𝑤 (𝑥, 𝑦) =
𝑞

24𝐷
(𝑥

4

− 2𝑎𝑥
3

+ 𝑎
3

𝑥)

−
4𝑞𝑎4

𝜋5𝐷
sin 𝑚𝜋𝑥

𝑎

× ∑
𝑚,𝑛

1

𝑚5
[
𝑎
𝑚
𝑡ℎ (𝛼

𝑚
) + 2

2𝑐ℎ (𝛼
𝑚
)

𝑐ℎ (
2𝛼

𝑚
𝑦

𝑏
)

−
𝛼
𝑚

2𝑐ℎ (𝛼
𝑚
)

2𝑦

𝑏
𝑠ℎ (

2𝛼
𝑚
𝑦

𝑏
)] .

(113)

It should be emphasized that the obtained series con-
verges fast, and in practice it is sufficient to keep only its
first term. For the square plate, the deflection measured in its
center is 0.00406 (Table 1).

In the second case the plate contours are clamped; that
is, 𝑤 = (𝜕𝑤/𝜕𝑛)|

Γ
= 0. Here computations are carried out

in the first approximation, where owing to Remark 16, we
take sin(𝜋𝑥) as the input function; that is, this function
does not satisfy damping conditions on the plate’s contour.
A solution to the obtained ODEs was carried out via the
difference method (FDM) with the plate partition 60 × 60
and successive solution to the obtained algebraic equations by
the Gauss method.

Results of the quarter plate deflection function obtained
on the line 𝑦 = 0.5 are given in Table 2.These results coincide
with the conclusion of Theorem 12 regarding monotonous
series {𝑎

𝑘
} behavior. The exact value of deflection equal to

0.0138 is taken from monograph [20].

5. Numerical Study of the Karman Equations

5.1. Iterative Procedure of Linearization and Variational Iter-
ation for System (6). A simultaneous use of the iterative
procedure is described in Section 3 and the method of
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Table 2: Deflection of the plate quarter.

Step 𝑦 = 0.5, 𝑥 = 0.1 𝑦 = 0.5, 𝑥 = 0.3 𝑦 = 0.5, 𝑥 = 0.5

1 0.55543336 ⋅ 10−3 0.19404364 ⋅ 10−2 0.22896260 ⋅ 10−2

2 0.16923198 ⋅ 10−2 0.79178517 ⋅ 10−2 0.10638649 ⋅ 10−1

3 0.21179814 ⋅ 10−2 0.10124784 ⋅ 10−1 0.13723563 ⋅ 10−1

4 0.21349905 ⋅ 10−2 0.102096 ⋅ 10−1 0.13840985 ⋅ 10−1

5 0.21349905 ⋅ 10−2 0.10211107 ⋅ 10−1 0.13842917 ⋅ 10−1

6 0.21352879 ⋅ 10−2 0.10211157 ⋅ 10−1 0.13843016 ⋅ 10−1

variational iterations of system (6) allows us to carry out three
remarkable procedures:

(1) decrease of the order of the system twice (from the 8th
to 4th order);

(2) linearization of the sought nonlinear systems;
(3) transition from PDEs to ODEs with constant coeffi-

cients.

This result is particularly important in the analysis of
elliptic type PDEs.

Next, we present numerical results of our method using
an example of the computation of flexible isotropic square
plates of constant thickness for three types of boundary
conditions (114)–(116).

Consider the following:

𝑤 =
𝜕2𝑤

𝜕𝑛2
= 𝐹 =

𝜕2𝐹

𝜕𝑛2
= 0, 𝑥 = 𝑦 = 0, 𝑥 = 𝑦 = 1, (114)

𝑤 =
𝜕2𝑤

𝜕𝑛2
= 𝐹 =

𝜕𝐹

𝜕𝑛
= 0; 𝑥 = 𝑦 = 0; 𝑥 = 𝑦 = 1, (115)

𝑤 =
𝜕𝑤

𝜕𝑛
= 𝐹 =

𝜕𝐹

𝜕𝑛
= 0; 𝑥 = 𝑦 = 0; 𝑥 = 𝑦 = 1. (116)

For simplicity, we apply the MVI using its first approxi-
mation𝑁 = 1. ODEs are reduced to AE (algebraic equations)
through FDM with approximation 0(ℎ2), which is solved
using the Gaussmethod.The interval of integration [0, 1]was
divided into 100 parts. Relation 𝑞[𝑤(0.5, 0.5)] is illustrated in
Figure 2. Curves (1), (2), and (3) refer to boundary conditions
(114), (115), and (116), respectively. Curves (2) and (3) are
obtained for the Poisson coefficient ] = 0.33 and curve (1) for
] = 0.1. Circles refer to experimental results [21]; stars refer to
the solution obtained by FDM [22], where FDM was applied
directly to (2) and nonlinear AEs was solved by Newton’s
method. Plane mesh step is 20 × 20. Computations were
carried out with step Δ𝑞 = 10, where in order to accelerate
convergence of the iterative procedure, 𝑤 and 𝐹 were taken
from the previous step.

Dependence of the deflection change in the plate center
on the number of iterations is shown in Figure 3 (curve (1)).
Boundary conditions correspond to the plate support on
flexible noncompressed ribs (114). The remaining parameters
are 𝑁 = 20, 𝑞 = 60, ] = 0.28, and 𝜀 = 10−3. We require 16
iterations to achieve a priori given accuracy.

Onemay see fromFigure 3 that the deflection oscillates in
the vicinity of a certain averaged value, and it tends to it with
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Figure 2: 𝑞 versus 𝑤.
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Figure 3: 𝑤 versus 𝑛.

an increase of the iteration number. It can be explained in the
following way. Since the initial approximation is given by the
linear equations, the observed deflection shall be larger than a
real one. Substitution of𝑤 into the second equation of system
(6) shows that the stress function value is also larger than a
real one. Therefore, taking into account the obtained values
of the stress function 𝐹, the deflection estimated through the
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Figure 4: Load deflection function.

first equation of system (6) is lesser than the real one. In
other words, the deflection obtained via odd (even) iteration
is lesser (larger) than the real one, and it can be estimated by
the following formula:

𝑤 =
𝑤odd + 𝑤even

2
. (117)

Formula (117) allowed us to reduce the number of
iterations up to seven (see Figure 3, curve (2)). However, an
increase of the load implies the convergence decrease.

5.2. Iterative Linearization Procedure (Poisson-Type Equa-
tions). In order to solve system (89) we used the MVI and
FDM. Results of a comparison of solutions for systems (6)
and (89), using theMVI and FDMapplied to system (2) in the
case of a square plate, are shown in Figure 4. Onemay see that
the result obtained by the application of procedure (6)—curve
(2)—and (89)—curve (3)—differs slightly from the result
obtained via the FDM—(1). Furthermore, a comparison of
the results obtained through iterative procedures (6) (dot
curve) and (89) (dashed curve) shows that the compared
results for small deflection practically coincide.

The use of formula (117), in order to increase the conver-
gence, implies that the function “load-deflection” practically
remains unaffected, but the number of iterations increases.
Figure 5 shows results regarding the procedure (89): (i)
without the application of (117)—curve (1)—and (ii) with the
application of formula (117)—curve (2). Onemay observe that
the iterative process converges twice as fast.

6. Summary

In this work we have proposed and theoretically established
(theorems with proofs) some iterative procedures dedicated
to a decrease of the order and then linearization of the
Karman nonlinear PDEs. It has been shown that the result
obtained via the modified Kantorovich-Vlasov method coin-
cides with the exact solution. Furthermore, the theoretical

1.8
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1.2
1 5 9 13 17 21 25 29

(2)

(1)

n

w

Figure 5: Plate deflection versus number of iterations.

considerations have been supported by the numerical anal-
ysis of the Karman equations using two introduced iterative
procedures.
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We consider the three-dimensional Boussinesq equations, and obtain an Osgood type regularity criterion in terms of the velocity
gradient.

1. Introduction

In this paper, we consider the following three-dimensional
(3D) Boussinesq equations with the incompressibility condi-
tion:

u
𝑡
+ (u ⋅ ∇)u − Δu + ∇𝜋 = 𝜃e

3
,

𝜃
𝑡
+ (u ⋅ ∇) 𝜃 − Δ𝜃 = 0,

∇ ⋅ u = 0,

u (𝑥, 0) = u
0
, 𝜃 (𝑥, 0) = 𝜃

0
,

(1)

where u = (𝑢
1
(𝑥, 𝑡), 𝑢

2
(𝑥, 𝑡), 𝑢

3
(𝑥, 𝑡)) is the fluid velocity,

𝜋 = 𝜋(𝑥, 𝑡) is a scalar pressure, and 𝜃 = 𝜃(𝑥, 𝑡) is the scalar
temperature, whileu

0
and 𝜃
0
are the prescribed initial velocity

and temperature, respectively, with ∇ ⋅ u
0
= 0.

In case 𝜃 = 0, (1) reduces to the incompressible Navier-
Stokes equations. The regularity of its weak solutions and
the existence of global strong solutions are important open
problems; see [1–3]. Starting with [4, 5], there have been a lot
of literatures devoted to finding sufficient conditions (which
now are called regularity criteria) to ensure the smoothness
of the solutions; see [6–16] and so forth. Since the convective
terms (u⋅∇)u are the same in theNavier-Stokes equations and
Boussinesq equations, the authors also consider the regularity

conditions for (1). In particular, Qiu et al. [17] obtained Serrin
type regularity condition:

u ∈ 𝐿
𝑝

(0, 𝑇; 𝐿
𝑞

(R
3

)) ,
2

𝑝
+

3

𝑞
= 1, 3 < 𝑞 ⩽ ∞. (2)

The extension to the multiplier spaces was established
by the same authors in [18]. For the Besov-type regularity
criterion, Fan and Zhou [19] and Ishimura and Morimoto
[20] showed the following regularity conditions:

∇ × u ∈ 𝐿
1

(0, 𝑇; ̇𝐵
0

∞,∞
(R
3

)) ,

∇u ∈ 𝐿
1

(0, 𝑇; 𝐿
∞

(R
3

)) .

(3)

Zhang [21, 22] then considers the regularity criterion in terms
of the pressure or its gradient.The readers are also referred to
[23] for generalized models.

Motivated by [24–26], we will improve (3) as in the
following.

Theorem 1. Let (u
0
, 𝜃
0
) ∈ 𝐻1(R3). Assume that (u, 𝜃) is the

smooth solution to (1) with the initial data (u
0
, 𝜃
0
) for 0 ⩽ 𝑡 <

𝑇. If

sup
2⩽𝑞<∞

∫
𝑇

0

󵄩󵄩󵄩󵄩󵄩𝑆𝑞∇u
󵄩󵄩󵄩󵄩󵄩𝐿∞

𝑞 ln 𝑞
< ∞, (4)
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then the solution (u, 𝜃) can be extended after time 𝑡 = 𝑇.
Here, Δ̇

𝑘
denotes the Fourier localization operator and Δ𝑆

𝑞
=

∑
𝑞

𝑙=−𝑞
Δ̇
𝑙
.

Remark 2. TheOsgood type condition (4) is weaker than (3).
Notice that, for 𝑞 ∈ [2,∞), we have

󵄩󵄩󵄩󵄩󵄩𝑆𝑞∇u
󵄩󵄩󵄩󵄩󵄩𝐿∞

𝑞 ln 𝑞
⩽

1

𝑞 ln 𝑞

𝑞

∑
𝑙=−𝑞

󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑙(∇ × u)󵄩󵄩󵄩󵄩󵄩𝐿∞ ⩽ 𝐶‖∇ × u‖ ̇𝐵0∞,∞ . (5)

The rest of this paper is organized as follows. In Section 2,
we recall the definition of Besov spaces and some interpola-
tion inequalities. Section 3 is devoted to provingTheorem 1.

2. Preliminaries

Let S(R3) be the Schwartz class of rapidly decreasing func-
tions. For 𝑓 ∈ S(R3), its Fourier transform F𝑓 = 𝑓 is
defined by

𝑓 (𝜉) = ∫
R3

𝑓 (𝑥) 𝑒
−𝑖𝑥⋅𝜉

𝑑𝑥. (6)

Let us choose a nonnegative radial function 𝜑 ∈ S(R3) such
that

0 ⩽ 𝜑 (𝜉) ⩽ 1, 𝜑 (𝜉) = {
1, if 󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨 ⩽ 1,

0, if 󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ⩾ 2,

(7)

and let

𝜓 (𝑥) = 𝜑 (𝑥) − 2
−3

𝜑(
𝑥

2
) ,

𝜑
𝑗
(𝑥) = 2

3𝑗

𝜑 (2
𝑗

𝑥) , 𝜓
𝑗
(𝑥) = 2

3𝑗

𝜓 (2
𝑗

𝑥) , 𝑗 ∈ Z.

(8)

For 𝑗 ∈ Z, the Littlewood-Paley projection operators 𝑆
𝑗
and

Δ̇
𝑗
are, respectively, defined by

𝑆
𝑗
𝑓 = 𝜑

𝑗
∗ 𝑓, Δ̇

𝑗
𝑓 = 𝜓

𝑗
∗ 𝑓. (9)

Observe that Δ̇
𝑗
= 𝑆
𝑗
− 𝑆
𝑗−1

. Also, it is easy to check that if
𝑓 ∈ 𝐿2(R3), then

𝑆
𝑗
𝑓 󳨀→ 0, as 𝑗 󳨀→ −∞; 𝑆

𝑗
𝑓 󳨀→ 𝑓, as 𝑗 󳨀→ +∞,

(10)

in the 𝐿2 sense. By telescoping the series, we thus have the
following Littlewood-Paley decomposition:

𝑓 =
+∞

∑
𝑗=−∞

Δ̇
𝑗
𝑓, (11)

for all 𝑓 ∈ 𝐿2(R3), where the summation is the 𝐿2 sense.
Notice that

Δ̇
𝑗
𝑓 =

𝑗+2

∑
𝑙=𝑗−2

Δ̇
𝑙
Δ̇
𝑗
𝑓 =

𝑗+2

∑
𝑙=𝑗−2

𝜓
𝑙
∗ 𝜓
𝑗
∗ 𝑓; (12)

then from Young’s inequality, it readily follows that
󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑗𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑞
⩽ 𝐶2
3𝑗(1/𝑝−1/𝑞)󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑗𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
, (13)

where 1 ⩽ 𝑝 ⩽ 𝑞 ⩽ ∞ and 𝐶 is an absolute constant
independent of 𝑓 and 𝑗.

Let −∞ < 𝑠 < ∞, 1 ⩽ 𝑝, 𝑞 ⩽ ∞; the homogeneous Besov
space ̇𝐵𝑠

𝑝,𝑞
is defined by the full-dyadic decomposition such

that

̇𝐵
𝑠

𝑝,𝑞
= {𝑓 ∈ Z

󸀠

(R
3

) ;
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 ̇𝐵𝑠𝑝,𝑞
< ∞} , (14)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ̇𝐵𝑠𝑝,𝑞

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{2
𝑗𝑠󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑗𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
}
+∞

𝑗=−∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℓ𝑞
, (15)

andZ󸀠(R3) is the dual space of

Z (R
3

) = {𝑓 ∈ S (R
3

) ; 𝐷
𝛼

𝑓 (0) = 0, ∀𝛼 ∈ N
3

} . (16)

Also, it is well known that

𝐻
𝑠

(R
3

) = ̇𝐵
𝑠

2,2
(R
3

) , ∀𝑠 ∈ R. (17)

We refer to [27] for more detailed properties.

3. Proof of Theorem 1

This section is devoted to provingTheorem 1. From standard
continuity arguments, we need to only provide the uniform
𝐻1 bounds of the solution (u, 𝜃).

Taking the inner products of (1)
1
with−Δu, (1)

2
with−Δ𝜃,

we obtain by adding together that

1

2

𝑑

𝑑𝑡
‖∇ (u, 𝜃)‖2

𝐿
2 + ‖Δ (u, 𝜃)‖2

𝐿
2

= ∫
R3

[(u ⋅ ∇) u] ⋅ Δu 𝑑𝑥 − ∫
R3

𝜃Δ𝑢
3
d𝑥

+ ∫
R3

[(u ⋅ ∇) 𝜃] ⋅ Δ𝜃 d𝑥

= ∫
R3

𝜕
𝑘
𝜃𝜕
𝑘
𝑢
3
d𝑥

− ∫
R3

𝜕
𝑘
𝑢
𝑗
(𝜕
𝑗
𝑢
𝑖
𝜕
𝑘
𝑢
𝑖
+ 𝜕
𝑗
𝜃𝜕
𝑘
𝜃) d𝑥

≡ 𝐼 + 𝐽.

(18)

For 𝐼, we use Hölder’s inequality to get

𝐼
1
⩽

1

2
‖∇(u, 𝜃)‖2

𝐿
2 . (19)

For 𝐽, applying the Littilewood-Paley decomposition as in
(11), we get

∇u = ∑
𝑙<−𝑞

Δ̇∇u +

𝑞

∑
𝑙=−𝑞

Δ̇∇u + ∑
𝑙>𝑞

Δ̇∇u, (20)
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where 𝑞 is positive integral to be determined later on.
Plugging (20) into 𝐽, we see that

𝐽 ⩽ ∑
𝑙<−𝑞

∫
R3

󵄨󵄨󵄨󵄨󵄨Δ̇ 𝑙∇u
󵄨󵄨󵄨󵄨󵄨 ⋅ |∇ (u, 𝜃)|2 d𝑥

+ ∫
R3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

∑
𝑙=−𝑞

Δ̇
𝑙
∇u

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ |∇ (u, 𝜃)|2 d𝑥

+ ∑
𝑙>𝑞

∫
R3

󵄨󵄨󵄨󵄨󵄨Δ̇ 𝑙∇u
󵄨󵄨󵄨󵄨󵄨 ⋅ |∇ (u, 𝜃)|2 d𝑥

≡ 𝐽
1
+ 𝐽
2
+ 𝐽
3
.

(21)

For 𝐽
1
, we dominate as

𝐽
1
⩽ ∑
𝑙<−𝑞

󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑙∇u
󵄩󵄩󵄩󵄩󵄩𝐿∞‖

∇ (u, 𝜃)‖2
𝐿
2

⩽ 𝐶∑
𝑙<−𝑞

2
3𝑙/2󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑙∇u

󵄩󵄩󵄩󵄩󵄩𝐿2‖
∇ (u, 𝜃)‖2

𝐿
2 (by (13))

⩽ 𝐶(∑
𝑙<−𝑞

2
(3𝑙/2)⋅2

)

1/2

⋅ (∑
𝑙<−𝑞

󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑙∇u
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)

1/2

‖∇ (u, 𝜃)‖2
𝐿
2

⩽ 𝐶2
−3𝑞/2

‖∇u‖
𝐿
2‖∇ (u, 𝜃)‖2

𝐿
2 (by (17))

= [𝐶2
−𝑞/2

‖∇ (u, 𝜃)‖
𝐿
2]
3

.

(22)

For 𝐽
2
, we have

𝐽
2
= ∫

R3

󵄨󵄨󵄨󵄨󵄨𝑆𝑞∇u
󵄨󵄨󵄨󵄨󵄨 ⋅ |∇ (u, 𝜃)|2 d𝑥

⩽
󵄩󵄩󵄩󵄩󵄩𝑆𝑞∇u

󵄩󵄩󵄩󵄩󵄩𝐿∞‖
∇ (u, 𝜃)‖2

𝐿
2 .

(23)

Finally, for 𝐽
3
, we estimate as

𝐽
3
⩽ ∑
𝑙>𝑞

󵄩󵄩󵄩󵄩Δ 𝑙∇u
󵄩󵄩󵄩󵄩𝐿3‖∇ (u, 𝜃)‖2

𝐿
3

⩽ 𝐶∑
𝑙>𝑞

2
𝑙/2󵄩󵄩󵄩󵄩Δ 𝑙∇u

󵄩󵄩󵄩󵄩𝐿2‖∇ (u, 𝜃)‖
𝐿
2‖Δ (u, 𝜃)‖

𝐿
2

(by (13) and Gagliardo-Nireberg inequality)

⩽ 𝐶(∑
𝑙>𝑞

2
−(𝑙/2)⋅2

)

1/2

⋅ (∑
𝑙>𝑞

2
𝑙⋅2󵄩󵄩󵄩󵄩󵄩Δ̇ 𝑙∇u

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2)

1/2

× ‖∇ (u, 𝜃)‖
𝐿
2‖Δ (u, 𝜃)‖

𝐿
2

⩽ [𝐶2
−𝑞/2

‖∇ (u, 𝜃)‖
𝐿
2] ‖Δ (u, 𝜃)‖2

𝐿
2 (by (17)) .

(24)

Gathering (22), (23), and (24) together and plugging them
into (21), we deduce

𝐽 ⩽ [𝐶2
−𝑞/2

‖∇ (u, 𝜃)‖
𝐿
2]
3

+
󵄩󵄩󵄩󵄩󵄩𝑆𝑞∇u

󵄩󵄩󵄩󵄩󵄩𝐿∞‖
∇(u, 𝜃)‖2

𝐿
2

+ [𝐶2
−𝑞/2

‖∇(u, 𝜃)‖
𝐿
2] ‖Δ(u, 𝜃)‖2

𝐿
2 .

(25)

Substituting (19) and (25) into (18), we find

1

2

𝑑

𝑑𝑡
‖∇ (u, 𝜃)‖2

𝐿
2 + ‖Δ (u, 𝜃)‖2

𝐿
2

⩽
1

2
‖∇ (u, 𝜃)‖2

𝐿
2 + [𝐶2−𝑞/2‖∇ (u, 𝜃)‖

𝐿
2]
3

+

󵄩󵄩󵄩󵄩󵄩𝑆𝑞∇u
󵄩󵄩󵄩󵄩󵄩𝐿∞

𝑞 ln 𝑞
⋅ 𝑞 ln 𝑞‖∇ (u, 𝜃)‖2

𝐿
2

+ [𝐶2−𝑞/2‖∇ (u, 𝜃)‖
𝐿
2] ‖Δ (u, 𝜃)‖2

𝐿
2 .

(26)

Taking

𝑞 = [
2

ln 2 ln+ (𝐶‖∇(u, 𝜃)‖
𝐿
2)

] + 1, (27)

where [𝑡] is the largest integer smaller than 𝑡 ∈ R and ln+𝑡 =
ln(𝑒 + 𝑡), then (26) implies that

𝑑

𝑑𝑡
‖∇ (u, 𝜃)‖2

𝐿
2

⩽ ‖∇(u, 𝜃)‖2
𝐿
2 + 𝐶

+

󵄩󵄩󵄩󵄩󵄩𝑆𝑞∇u
󵄩󵄩󵄩󵄩󵄩𝐿∞

𝑞 ln 𝑞
ln+ (‖∇ (u, 𝜃)‖

𝐿
2) ln+ln+ (‖∇ (u, 𝜃)‖

𝐿
2)

× ‖∇(u, 𝜃)‖2
𝐿
2 .

(28)

Applying Gronwall inequality three times, we deduce

‖∇ (u, 𝜃)‖2
𝐿
2 + ∫
𝑡

0

‖Δ (u, 𝜃)‖
𝐿
2 d𝜏

⩽ 𝐶 exp exp exp(∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩𝑆𝑞∇u
󵄩󵄩󵄩󵄩󵄩𝐿∞

𝑞 ln 𝑞
d𝜏) .

(29)

Recalling (4), we see the solution (u, 𝜃) is uniformly bounded
in 𝐿∞(0, 𝑇;𝐻1(R3)). This completes the proof of Theorem 1.
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Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic
equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the
Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear
complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches
are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained
from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic
equations by complex changes of the independent variables. Examples are presented to illustrate the results.

1. Introduction

The general scalar linear second order partial differential
equation (PDE) in two independent variables (𝑥, 𝑦) is of the
form

𝑎𝑤
𝑥𝑥
+ 2𝑏𝑤

𝑥𝑦
+ 𝑐𝑤
𝑦𝑦
+ 𝑑𝑤
𝑥
+ 𝑒𝑤
𝑦
+ 𝑓𝑤 = 𝑔, (1)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, and 𝑔 are given 𝐶2 functions of 𝑥 and 𝑦.
All linear PDEs of the form (1) are hyperbolic, elliptic, or para-
bolic depending on whether 𝑏2 − 𝑎𝑐 is positive, negative, or
zero, respectively, and thus can be simplified to one of the
three canonical forms by introducing new coordinates [1].
The general linear second-order PDE (1) was first classified by
Lie [2] in terms of its symmetry properties. He obtained seven
canonical forms according to their point symmetries and
types of equations. Of these, four belonged to the hyperbolic
class and three to the parabolic class.

The scalar linear second order elliptic equation in two in-
dependent variables in canonical form is

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ 𝑎𝑢
𝑥
+ 𝑏𝑢
𝑦
+ 𝑐𝑢 = 0. (2)

It is well known that by means of the linear complex trans-
formations [1, 3]

𝑥 =
1

2
(𝑡 + 𝑧) , 𝑦 =

−𝑖

2
(𝑡 − 𝑧) , (3)

the elliptic equation (2) can be mapped to the linear hyper-
bolic equation

𝑢
𝑡𝑧
+ 𝐴𝑢
𝑡
+ 𝐵𝑢
𝑧
+ 𝐶𝑢 = 0, (4)

where

𝐴 =
1

4
(𝑎 + 𝑖𝑏) , 𝐵 =

1

4
(𝑎 − 𝑖𝑏) , 𝐶 =

1

4
𝑐. (5)

In 1773, Laplace [4] in his fundamental memoir deduced two
semi-invariants

ℎ = 𝐴
𝑡
+ 𝐴𝐵 − 𝐶,

𝑘 = 𝐵
𝑍
+ 𝐴𝐵 − 𝐶,

(6)

for (4), known as the Laplace invariants.
These Laplace invariants (6) can be transformed, by use

of the inverse of the transformations (3) as well as after



2 The Scientific World Journal

the substitution of (5) into (6) and then splitting the real and
imaginary parts, to arrive at the Cotton invariants

𝜇 = 𝑎
𝑦
− 𝑏
𝑥
,

𝐻 = 𝑎
𝑥
+ 𝑏
𝑦
+
1

2
(𝑎
2

+ 𝑏
2

) − 2𝑐.
(7)

These invariants (7) were first derived by Cotton [5]. Laplace
and Cotton invariants remain unaltered under linear trans-
formations of the dependent variable which, respectively,
map the linear hyperbolic and elliptic equations into them-
selves. The corresponding invariant quantities for the linear
parabolic equations can be found in [6–8]. Ovsiannikov [9]
used the Laplace invariants in the group classification of the
hyperbolic equation (4) bywriting the determining equations
for the symmetries of (4) in terms of these invariants. The
solution of the equivalence problem for scalar linear (1 + 1)
hyperbolic equations and some new invariants are given in
[10, 11]. Laplace-type and joint invariants for a system of two
linear hyperbolic equations are derived in [12] and Laplace-
type invariants for a subclass of a system of two linear
hyperbolic equations obtained from a complex linear hyper-
bolic equation are presented in [13].The approach of complex
symmetry analysis (CSA), was utilized in [14]. This method
provides a connection between a complex scalar ordinary
differential equation (ODE)/PDE and a system of real ODEs/
PDEs by a complex split of the base complex equation into
real and imaginary parts. In this work, we derive Cotton-type
invariants for a subclass of a system of two linear hyperbolic
PDEs. Cotton-type and joint invariants for a general linear
systemof elliptic equations are also determined. Examples are
provided as illustration.

The outline of this note is as follows. In Section 2, Cotton-
type invariants are derived for a subsystem of two linear
elliptic equations by split of the complexCotton invariants for
the corresponding scalar complex linear elliptic equation.
Cotton-type invariants for the same class are also obtained by
transforming the Laplace-type invariants for the correspond-
ing system of two linear hyperbolic equations which are
equivalent to the system of two linear elliptic equations by
means of complex linear transformations of the independent
variables.These are shown to be the same. Moreover, Cotton-
type and joint invariants for a general linear system of two
elliptic equations are derived in Section 3. Then in Section 4
some examples are given to illustrate the results. Finally, in
Section 5, a brief conclusion is given.

2. Cotton Invariants for a Subclass

In this section, Cotton-type invariants for a subsystem of two
linear elliptic equations are first obtained from a complex
scalar linear elliptic equation by splitting the complex Cotton
invariants of the base complex equation into real and imagi-
nary parts. Then for such a system, we determine invariants
from the Laplace-type invariants for the equivalent system of
two linear hyperbolic equations.This is achieved by perform-
ing complex splits of the Laplace-type invariants. It is con-
cluded, as a proposition, that the Cotton-type invariants are

the same for both the approaches.The subsystem of two ellip-
tic equations

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ 𝛼
1
𝑢
𝑥
− 𝛼
2
V
𝑥
+ 𝛽
1
𝑢
𝑦
− 𝛽
2
V
𝑦
+ 𝛾
1
𝑢 − 𝛾
2
V = 0,

V
𝑥𝑥
+ V
𝑦𝑦
+ 𝛼
2
𝑢
𝑥
+ 𝛼
1
V
𝑥
+ 𝛽
2
𝑢
𝑦
+ 𝛽
1
V
𝑦
+ 𝛾
2
𝑢 + 𝛾
1
V = 0

(8)

is obtained by splitting of the complex linear elliptic equation

𝑤
𝑥𝑥
+ 𝑤
𝑦𝑦
+ 𝑎𝑤
𝑥
+ 𝑏𝑤
𝑦
+ 𝑐𝑤 = 0, (9)

where
𝑎 = 𝛼
1
+ 𝑖𝛼
2
, 𝑏 = 𝛽

1
+ 𝑖𝛽
2
,

𝑐 = 𝛾
1
+ 𝑖𝛾
2
, 𝑤 = 𝑢 + 𝑖V.

(10)

The Cotton invariants, corresponding to the complex elliptic
equation (9), are (7) which split into the four invariants

𝜇
1
= 𝛼
1𝑦
− 𝛽
1𝑥
,

𝜇
2
= 𝛼
2𝑦
− 𝛽
2𝑥
,

𝐻
1
= 𝛼
1𝑥
+ 𝛽
1𝑦
+
1

2
(𝛼
2

1
+ 𝛽
2

1
) −

1

2
(𝛼
2

2
+ 𝛽
2

2
) − 2𝛾

1
,

𝐻
2
= 𝛼
2𝑥
+ 𝛽
2𝑦
+ 𝛼
1
𝛼
2
+ 𝛽
1
𝛽
2
− 2𝛾
2
.

(11)

These are precisely the Cotton-type invariants for the linear
elliptic system (8). The simplest case is when the semiinvari-
ants (11) are zero. In this case the elliptic PDE system (8) redu-
ces to the Laplace system by linear transformation of the
dependent variables.This is similar to the scalar linear elliptic
PDE case.

Now for the system of elliptic equations (8), we derive the
Cotton-type invariants by transforming the system of equa-
tions to the corresponding linear hyperbolic equations and
then using the inverse transformations of the independent
variables to convert the Laplace-type invariants to the
Cotton-type invariants. By means of the transformations (3),
the system of elliptic equations (8) can be mapped to the sys-
tem of two linear hyperbolic type equations as follows:

𝑢
𝑡𝑧
+ 𝐴
1
𝑢
𝑡
− 𝐴
2
V
𝑡
+ 𝐵
1
𝑢
𝑧
− 𝐵
2
V
𝑧
+ 𝐶
1
𝑢 − 𝐶
2
V = 0,

V
𝑡𝑧
+ 𝐴
2
𝑢
𝑡
+ 𝐴
1
V
𝑡
+ 𝐵
2
𝑢
𝑧
+ 𝐵
1
V
𝑧
+ 𝐶
2
𝑢 + 𝐶
1
V = 0,

(12)

where

𝐴
1
=
1

4
(𝛼
1
+ 𝑖𝛽
1
) , 𝐵

1
=
1

4
(𝛼
1
− 𝑖𝛽
1
) , 𝐶

1
=
1

4
𝛾
1
,

𝐴
2
=
1

4
(𝛼
2
+ 𝑖𝛽
2
) , 𝐵

2
=
1

4
(𝛼
2
− 𝑖𝛽
2
) , 𝐶

2
=
1

4
𝛾
2
.

(13)

The systemof hyperbolic equations (12) has four Laplace-type
invariants [13]:

ℎ
1
= 𝐴
1𝑡
+ 𝐴
1
𝐵
1
− 𝐴
2
𝐴
2
− 𝐶
1
,

ℎ
2
= 𝐴
2𝑡
+ 𝐴
1
𝐵
2
+ 𝐴
2
𝐵
1
− 𝐶
2
,

𝑘
1
= 𝐵
1𝑧
+ 𝐴
1
𝐵
1
− 𝐴
2
𝐵
2
− 𝐶
1
,

𝑘
2
= 𝐵
2𝑧
+ 𝐴
1
𝐵
2
+ 𝐴
2
𝐵
1
− 𝐶
2
.

(14)
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Now by the application of the transformations (3) and com-
plex splits, the Laplace-type invariants (14) become the
Cotton-type invariants (11). We therefore conclude the fol-
lowing result.

Proposition 1. For a class of a system of two linear elliptic
equations (8) obtained from a complex base linear elliptic equa-
tion (9) or equivalent to a subsystem of two linear hyperbolic
equations (12) by complex linear transformations of the in-
dependent variables (3), Cotton-type invariants either con-
structed by splitting of the complex Cotton invariants (7) of the
complex base elliptic equation into real and imaginary parts or
those computed by split of the Laplace-type invariants (14) of
the system of linear hyperbolic equations are identical to (11).

3. Cotton-Type and Joint Invariants in General

In this section, Cotton-type and joint invariants for a general
system of two linear elliptic equations are obtained. A general
system of two linear elliptic equations is

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ 𝑎
1
𝑢
𝑥
+ 𝑎
2
V
𝑥
+ 𝑏
1
𝑢
𝑦
+ 𝑏
2
V
𝑦
+ 𝑐
1
𝑢 + 𝑐
2
V = 0,

V
𝑥𝑥
+ V
𝑦𝑦
+ 𝑎
3
𝑢
𝑥
+ 𝑎
4
V
𝑥
+ 𝑏
3
𝑢
𝑦
+ 𝑏
4
V
𝑦
+ 𝑐
3
𝑢 + 𝑐
4
V = 0.

(15)

Bymeans of the complex transformations of the independent
variables (3), this system (15) is transformed into the systemof
two linear hyperbolic equations as follows:

𝑢
𝑡𝑧
+ 𝐴
1
𝑢
𝑡
+ 𝐴
2
V
𝑡
+ 𝐵
1
𝑢
𝑧
+ 𝐵
2
V
𝑧
+ 𝐶
1
𝑢 + 𝐶
2
V = 0,

V
𝑡𝑧
+ 𝐴
3
𝑢
𝑡
+ 𝐴
4
V
𝑡
+ 𝐵
3
𝑢
𝑧
+ 𝐵
4
V
𝑧
+ 𝐶
3
𝑢 + 𝐶
4
V = 0,

(16)

where

𝐴
1
=
1

4
(𝑎
1
+ 𝑖𝑏
1
) , 𝐵

1
=
1

4
(𝑎
1
− 𝑖𝑏
1
) , 𝐶

1
=
1

4
𝑐
1
,

𝐴
2
=
1

4
(𝑎
2
+ 𝑖𝑏
2
) , 𝐵

2
=
1

4
(𝑎
2
− 𝑖𝑏
2
) , 𝐶

2
=
1

4
𝑐
2
,

𝐴
3
=
1

4
(𝑎
3
+ 𝑖𝑎
3
) , 𝐵

3
=
1

4
(𝑎
3
− 𝑖𝑏
3
) , 𝐶

3
=
1

4
𝑐
3
,

𝐴
4
=
1

4
(𝑎
4
+ 𝑖𝑏
4
) , 𝐵

4
=
1

4
(𝑎
4
− 𝑖𝑏
4
) , 𝐶

4
=
1

4
𝑐
4
.

(17)

This system of linear hyperbolic equations (16) has five semi-
invariants [12] under the linear change of dependent vari-
ables. They are [12]

𝐼
1
= 𝑘
1
+ 𝑘
4
, 𝐼

2
= 𝑘
5
+ 𝑘
8
,

𝐼
3
= 𝑘
1
𝑘
4
− 𝑘
2
𝑘
3
, 𝐼

4
= 𝑘
5
𝑘
8
− 𝑘
6
𝑘
7
,

𝐼
5
= 𝑘
1
𝑘
5
+ 𝑘
2
𝑘
7
+ 𝑘
3
𝑘
6
+ 𝑘
4
𝑘
8
,

(18)

where

𝑘
1
= 𝐴
1
𝐵
1
+ 𝐴
3
𝐵
2
+ 𝐴
1𝑡
− 𝐶
1
,

𝑘
2
= 𝐴
1
𝐵
3
+ 𝐴
3
𝐵
4
+ 𝐴
3𝑡
− 𝐶
3
,

𝑘
3
= 𝐴
2
𝐵
1
+ 𝐴
4
𝐵
2
+ 𝐴
2𝑡
− 𝐶
2
,

𝑘
4
= 𝐴
2
𝐵
3
+ 𝐴
4
𝐵
4
+ 𝐴
4𝑡
− 𝐶
4
,

𝑘
5
= 𝐴
1
𝐵
1
+ 𝐴
2
𝐵
3
+ 𝐵
1𝑧
− 𝐶
1
,

𝑘
6
= 𝐴
3
𝐵
1
+ 𝐴
4
𝐵
3
+ 𝐵
3𝑧
− 𝐶
3
,

𝑘
7
= 𝐴
1
𝐵
2
+ 𝐴
2
𝐵
4
+ 𝐵
2𝑧
− 𝐶
2
,

𝑘
8
= 𝐴
3
𝐵
2
+ 𝐴
4
𝐵
4
+ 𝐵
4𝑧
− 𝐶
4
.

(19)

The system of linear hyperbolic equations (16) also has the
four joint invariants [12]

𝐽
1
=
𝐼
2

𝐼
1

, 𝐽
2
=
𝐼
3

𝐼2
1

, 𝐽
3
=
𝐼
4

𝐼2
1

, 𝐽
4
=
𝐼
5

𝐼2
1

. (20)

We utilize the same approach as in the previous section.
Indeed via the transformations (3), the Laplace-type invari-
ants (18) transform to the five Cotton-type invariants

𝐻
1
= Im (𝐾

1
+ 𝐾
4
) = Im (𝐾

5
+ 𝐾
8
) ,

𝐻
2
= Re (𝐾

1
+ 𝐾
4
) = Re (𝐾

5
+ 𝐾
8
) ,

𝐻
3
= Im (𝐾

1
𝐾
4
− 𝐾
2
𝐾
3
) = Im (𝐾

5
𝐾
8
− 𝐾
6
𝐾
7
) ,

𝐻
4
= Re (𝐾

1
𝐾
4
− 𝐾
2
𝐾
3
) = Re (𝐾

5
𝐾
8
− 𝐾
6
K
7
) ,

𝐻
5
= Re (𝐾

1
𝐾
5
+ 𝐾
2
𝐾
7
+ 𝐾
3
𝐾
6
+ 𝐾
4
𝐾
8
) .

(21)

And the invariant equation is

Im (𝐾
1
𝐾
5
+ 𝐾
2
𝐾
7
+ 𝐾
3
𝐾
6
+ 𝐾
4
𝐾
8
) = 0, (22)

where

𝐾
1
=
1

42
(𝑎
2

1
+ 𝑏
2

1
+ 𝑎
2
𝑎
3
+ 𝑏
2
𝑏
3
+ 2𝑎
1𝑥
+ 2𝑏
1𝑦
− 4𝑐
1
)

+
𝑖

42
(𝑎
2
𝑏
3
− 𝑎
3
𝑏
2
− 2𝑎
1𝑦
+ 2𝑏
1𝑥
) ,

𝐾
2
=
1

42
(𝑎
1
𝑎
3
+ 𝑏
1
𝑏
3
+ 𝑎
3
𝑎
4
+ 𝑏
3
𝑏
4
+ 2𝑎
3𝑥
+ 2𝑏
3𝑦
− 4𝑐
3
)

+
𝑖

42
(𝑎
3
𝑏
1
− 𝑎
1
𝑏
3
+ 𝑎
4
𝑏
3
− 𝑎
3
𝑏
4
− 2𝑎
3𝑦
+ 2𝑏
3𝑥
) ,

𝐾
3
=
1

42
(𝑎
1
𝑎
2
+ 𝑏
1
𝑏
2
+ 𝑎
2
𝑎
4
+ 𝑏
2
𝑏
4
+ 2𝑎
2𝑥
+ 2𝑏
2𝑦
− 4𝑐
2
)

+
𝑖

42
(𝑎
1
𝑏
2
− 𝑎
2
𝑏
1
+ 𝑎
2
𝑏
4
− 𝑎
4
𝑏
2
− 2𝑎
2𝑦
+ 2𝑏
2𝑥
) ,

𝐾
4
=
1

42
(𝑎
2
𝑎
3
+ 𝑏
2
𝑏
3
+ 𝑎
2

4
+ 𝑏
2

4
+ 2𝑎
4𝑥
+ 2𝑏
4𝑦
− 4𝑐
4
)

+
𝑖

42
(𝑎
3
𝑏
2
− 𝑎
2
𝑏
3
− 2𝑎
4𝑦
+ 2𝑏
4𝑥
) ,
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𝐾
5
=
1

42
(𝑎
2

1
+ 𝑏
2

1
+ 𝑎
2
𝑎
3
+ 𝑏
2
𝑏
3
+ 2𝑎
1𝑥
+ 2𝑏
1𝑦
− 4𝑐
1
)

+
𝑖

42
(𝑎
3
𝑏
2
− 𝑎
2
𝑏
3
+ 2𝑎
1𝑦
− 2𝑏
1𝑥
) ,

𝐾
6
=
1

42
(𝑎
1
𝑎
3
+ 𝑏
1
𝑏
3
+ 𝑎
3
𝑎
4
+ 𝑏
3
𝑏
4
+ 2𝑎
3𝑥
+ 2𝑏
3𝑦
− 4𝑐
3
)

+
𝑖

42
(𝑎
1
𝑏
3
− 𝑎
3
𝑏
1
+ 𝑎
3
𝑏
4
− 𝑎
4
𝑏
3
+ 2𝑎
3𝑦
− 2𝑏
3𝑥
) ,

𝐾
7
=
1

42
(𝑎
1
𝑎
2
+ 𝑏
1
𝑏
2
+ 𝑎
2
𝑎
4
+ 𝑏
2
𝑏
4
+ 2𝑎
2𝑥
+ 2𝑏
2𝑦
− 4𝑐
2
)

+
𝑖

42
(𝑎
2
𝑏
1
− 𝑎
1
𝑏
2
+ 𝑎
4
𝑏
2
− 𝑎
2
𝑏
4
+ 2𝑎
2𝑦
− 2𝑏
2𝑥
) ,

𝐾
8
=
1

42
(𝑎
2
𝑎
3
+ 𝑏
2
𝑏
3
+ 𝑎
2

4
+ 𝑏
2

4
+ 2𝑎
4𝑥
+ 2𝑏
4𝑦
− 4𝑐
4
)

+
𝑖

42
(𝑎
2
𝑏
3
− 𝑎
3
𝑏
2
+ 2𝑎
4𝑦
− 2𝑏
4𝑥
) .

(23)

Note that we have an invariant equation here. This differs
from the invariants of the split elliptic system of Section 2.We
therefore have the following result.

Proposition 2. A general system of two linear elliptic equa-
tions (15) has the five Cotton-type invariants (21) and its coef-
ficients satisfy the invariant condition (22).

Now the four joint invariants (20) reduce to the four
invariants of the elliptic equations (15) and they are

𝜇
1
=
(𝐻2
1
− 𝐻2
2
)𝐻
3
+ 2𝐻
1
𝐻
2
𝐻
4

(𝐻2
1
− 𝐻2
2
)
2

+ 4𝐻2
1
𝐻2
2

,

𝜇
2
=
(𝐻2
1
− 𝐻2
2
)𝐻
4
− 2𝐻
1
𝐻
2
𝐻
3

(𝐻2
1
− 𝐻2
2
)
2

+ 4𝐻2
1
𝐻2
2

,

𝜇
3
=

(𝐻2
1
− 𝐻2
2
)𝐻
5

(𝐻2
1
− 𝐻2
2
)
2

+ 4𝐻2
1
𝐻2
2

,

𝜇
4
=

−2𝐻
1
𝐻
2
𝐻
5

(𝐻2
1
− 𝐻2
2
)
2

+ 4𝐻2
1
𝐻2
2

,

(24)

where the semi-invariants𝐻2
1
and𝐻2

2
are both not zero. The

situation when both are zero occur for the Laplace system
discussed earlier. We have thus obtained the Cotton-type and
joint invariants for a general linear elliptic system of two
equations (15) by using the Laplace-type and joint invariants
of the general system of linear hyperbolic equations (16) by
utilizing the known semi- and joint invariants of [12].We thus
state the following proposition.

Proposition 3. A general system of two linear elliptic equa-
tions (15) has the four joint invariants (24).

4. Applications

Here we present some examples for illustration. We consider
𝑢, V, 𝑢, and V as dependent variables and 𝑥, 𝑦, 𝑠, and 𝑡 as
independent variables.

Example 4. Consider the system of two linear elliptic equa-
tions

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+
2

𝑥
𝑢
𝑥
+
4

𝑦
𝑢
𝑦
+
2

𝑦2
𝑢 = 0,

V
𝑥𝑥
+ V
𝑦𝑦
−
4

𝑥
V
𝑥
−
2

𝑦
V
𝑦
+ 2(

1

𝑦2
+
3

𝑥2
) V = 0.

(25)

This system transforms to the simplest elliptic equations

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
= 0, V

𝑥𝑥
+ V
𝑦𝑦
= 0, (26)

under the transformation

𝑢 = 𝑥𝑦
2

𝑢, V =
V
𝑥2𝑦

. (27)

The systems of elliptic equations (25) and (26) are transform-
able into each other as these systems have the same Cotton-
type semi-invariants

𝐻
1
= 𝐻
2
= 𝐻
3
= 𝐻
4
= 𝐻
5
= 0. (28)

Example 5. The system of elliptic equations

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ (1 − 2𝑦) 𝑢

𝑥
+ (1 − 2𝑥) 𝑢

𝑦

+ (𝑥
2

+ 𝑦
2

− 𝑥 − 𝑦) 𝑢 = 0,

V
𝑥𝑥
+ V
𝑦𝑦
+ (1 − 2𝑦) V

𝑥
+ (1 − 2𝑥) V

𝑦

+ (𝑥
2

+ 𝑦
2

− 𝑥 − 𝑦) V = 0,

(29)

with the Cotton-type invariants

𝐻
1
= 0, 𝐻

2
=
1

4
,

𝐻
3
= 0, 𝐻

4
=
1

64
, 𝐻

5
=
1

32
,

(30)

reduces to the simple system of elliptic equations

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ 𝑢
𝑥
+ 𝑢
𝑦
= 0,

V
𝑥𝑥
+ V
𝑦𝑦
+ V
𝑥
+ V
𝑦
= 0,

(31)

by the application of the transformation

𝑢 = exp (−𝑥𝑦) 𝑢, V = exp (−𝑥𝑦) V. (32)

The system (31) also has the Cotton-type invariants (30).
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Example 6. The uncoupled system two of elliptic equations

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ (

2

𝑥
+ 1) 𝑢

𝑥
+ (1 −

4

𝑦
)𝑢
𝑦

+ (
1

𝑥
+
6

𝑦2
−
2

𝑦
)𝑢 = 0,

V
𝑥𝑥
+ V
𝑦𝑦
+ (1 −

2

𝑥
) V
𝑥
+ (1 +

4

𝑦
) V
𝑦

+ (
2

𝑦2
+
2

𝑦
−
1

𝑥
+
2

𝑥2
) V = 0,

(33)

has the Cotton-type invariants

𝐻
1
= 0, 𝐻

2
=
1

4
,

𝐻
3
= 0, 𝐻

4
=
1

64
, 𝐻

5
=
1

32
.

(34)

Therefore it is reducible to the simple system

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ 𝑢
𝑥
+ 𝑢
𝑦
= 0,

V
𝑥𝑥
+ V
𝑦𝑦
+ V
𝑥
+ V
𝑦
= 0,

(35)

by means of the transformation

𝑢 =
𝑥

𝑦2
𝑢, V =

𝑦2

𝑥
V. (36)

Example 7. Consider now the linear system of elliptic equa-
tions

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ (

2

𝑥
+
1

2
) 𝑢
𝑥
+ (

1

2
−
2

𝑦
)𝑢
𝑦

+
1

2
(
4

𝑦2
−
1

𝑦
+
1

𝑥
)𝑢 = 0,

V
𝑥𝑥
+ V
𝑦𝑦
+ (

2

𝑥
+
1

2
) V
𝑥
+ (

1

2
−
2

𝑦
) V
𝑦

+
1

2
(
4

𝑦2
−
1

𝑦
+
1

𝑥
) V = 0,

(37)

which has the joint invariants

𝜇
1
= 0, 𝜇

2
= −

1

4
, 𝜇

3
= −

1

2
, 𝜇

4
= 0. (38)

By using the transformation

𝑠 =
𝑥

2
, 𝑡 =

𝑦

2
, 𝑢 =

𝑥

𝑦
𝑢, V =

𝑥

𝑦
V, (39)

the above system reduces to the simple system

𝑢
𝑠𝑠
+ 𝑢
𝑡𝑡
+ 𝑢
𝑠
+ 𝑢
𝑡
= 0,

V
𝑠𝑠
+ V
𝑡𝑡
+ V
𝑠
+ V
𝑡
= 0,

(40)

because this system has the joint invariant identical to the
system (37).

Example 8. Finally, the coupled system of elliptic equations

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
+ (2 +

1

𝑥
) 𝑢
𝑥
+ 2𝑦
3

𝑥
−3/2V
𝑥
−
2

𝑦
𝑢
𝑦

+ (
1

𝑥
−
1

4𝑥2
+
2

𝑦2
)𝑢 − 2𝑦

3

𝑥
−5/2V = 0,

V
𝑥𝑥
+ V
𝑦𝑦
+
2𝑥3/2

𝑦3
𝑢
𝑥
+ 2 (1 −

1

𝑥
) V
𝑥
+
4

𝑦
V
𝑦

+
𝑥1/2

𝑦3
𝑢 + 2(

1

𝑦2
−
1

𝑥
+
1

𝑥2
) V = 0,

(41)

with the joint invariants

𝜇
1
= 0, 𝜇

2
= 0, 𝜇

3
= −1, 𝜇

4
= 0, (42)

simplifies to the system

𝑢
𝑠𝑠
+ 𝑢
𝑡𝑡
+ 𝑢
𝑠
+ 𝑢
𝑡
+ V
𝑠
+ V
𝑡
= 0,

V
𝑠𝑠
+ V
𝑡𝑡
+ 𝑢
𝑠
+ 𝑢
𝑡
+ V
𝑠
+ V
𝑡
= 0,

(43)

which has the same joint invariants as the system (41). The
transformation that does this reduction is

𝑠 = 𝑥 + 𝑦, 𝑡 = 𝑥 − 𝑦,

𝑢 =
√𝑥

𝑦
𝑢, V =

𝑦2

𝑥
V.

(44)

5. Conclusion

In this paper, we have derived theCotton-type invariants for a
special class of a system of two linear elliptic equations in two
independent variables which arises from the complex split of
a base complex linear elliptic equation.Moreover, theCotton-
type and joint invariants for a general system of two linear
elliptic equations are also obtained. Laplace 1773, in his fund-
amental memoir, discussed two semi-invariants under the
change of dependent variables of the scalar linear hyperbolic
equation, known as Laplace invariants. Later, Cotton 1900
derived semi-invariants for the scalar linear elliptic equation,
known as Cotton invariants. Linear hyperbolic and elliptic
equations can be transformed into each other by the applica-
tion of linear complex transformation of the independent var-
iables. So do Laplace and Cotton invariants.

By a complex split, a complex scalar linear elliptic equa-
tion has been transformed into a system of two linear elliptic
equations, which is a subclass of the general system of two
linear elliptic equations. Cotton-type semi-invariants for this
system of elliptic equations are obtained by two approaches.
One is by splitting of the complex Cotton invariants that cor-
respond to the complex base scalar linear elliptic equation
into real and imaginary parts and the second by transforma-
tion of the subsystem of the linear elliptic equations into lin-
ear hyperbolic equations and application of the linear inverse
transformations on the Laplace-type semi-invariants of the
hyperbolic equations to deduce the Cotton-type invariants
for the required subsystem of linear elliptic equations. It is
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found that the Cotton-type invariants by both approaches are
the same. For a general system of linear elliptic equations, the
Cotton-type and joint invariants have been constructed by
transformation of the system of two linear elliptic equations
into a system of two linear hyperbolic equations and there-
after applying the linear inverse transformations on the
Laplace-type and joint invariants of [12] to deduce the
Cotton-type and joint invariants for the linear system of ellip-
tic equations.
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