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Computational intelligence and neuroscience play an im-
portant role in robotics applications to improve the robot’s
capacities not only in increasing productivity in
manufacturing but also in intelligence development so that
robots can substitute human’s thinking and planning ca-
pacity. Recently, neuroscience has been applied to robots to
generate intelligence models with biological nervous sys-
tems. The intersection between robotics and neuroscience
highlights many promising approaches and applications, for
example, the neurorobots, brain-inspired algorithms and
devices in robotics, and neural network-based navigation. Al
leads to one of the most significant paradigm shifts and
improvements in the robotics field. The principal aim of this
special issue is to publish quality papers of new de-
velopments and trends, novel techniques, and innovative
methodologies on the theories and applications of com-
putational intelligence and neuroscience in robotics. Po-
tential topics include but are not limited to the followings:
neural networks for biological and biomedical robots,
neuroinspired robot navigation, decision support systems in
neurorobotics, intelligent fault detection and identification
in neurorobotics, clustering and data analysis in neuro-
robotics, swarm robotics based on neural networks, and
neurofuzzy control design for cooperative robots. The fol-
lowing paragraphs summarize the main contents of the best
novelty research papers published in this special issue.
The paper “Coevolution of the Asymmetric Morphology
and the Behaviour of Simple Predator Agents in Predator-
Prey Pursuit Problem” by M. Georgiev, I. Tanev, and K.
Shimohara concentrates on the one of the previous chal-
lenges. It introduced a new standpoint to the well-studied

predator-prey pursuit problem using an implementation of
straightforward predator agents. Genetic algorithm was
implemented that results in a successful capture of the prey
by the team of predator agents. The results were considered
towards the engineering of asymmetric small-scale for de-
livery of medicine, locating and destroying cancer cells,
microscopic imaging, etc.

The paper “Discrimination of Motion Direction in a
Robot Using a Phenomenological Model of Synaptic Plas-
ticity” by N. Berberian, M. Ross, and S. Chartier examines
the possibility of implementation of a bioinspired model of
synaptic plasticity in a robotic agent to allow the discrim-
ination of motion direction of real-world stimuli. The re-
search started with a well-established model of short-term
synaptic plasticity (STP), and then the development of a
microcircuit motif of spiking neurons capable of exhibiting
preferential and nonreferential responses to changes in the
direction of an orientation stimulus in motion was in-
troduced. Overall, the model presented the STP function in
describing the direction selectivity and applied these in an
actual robot to validate the response characteristics in ex-
perimental direction selectivity.

The paper “Spatial Concept Learning: A Spiking Neural
Network Implementation in Virtual and Physical Robots” by
A. Cyr and F. Thériault proposes an artificial spiking neural
network (SNN). The SNN sustained the cognitive abstract
process of spatial concept learning and embedded in virtual
and real robots. The results showed that the robots can learn
the relationship of horizontal/vertical and left/right visual
stimuli. Tests with novel patterns and locations were ef-
fectively completed after the acquisition learning phase. The
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results also presented that the SNN can change its behavior
in real time when the rewarding rule changes.

The paper “Control of a Humanoid NAO Robot by an
Adaptive Bioinspired Cerebellar Module in 3D Motion
Tasks” by A. Antonietti et al. focuses on a bioinspired
adaptive model by a spiking neural network made of
thousands of artificial neurons to control a humanoid NAO
robot in real time. The model moved forward and encoded as
spikes. The generated spiking activity of its output neurons
was decoded in order to yield the suitable correction on the
motor actuators. With different time scales, three bi-
directional long-term plasticity rules have been embedded
for different connections. The neurorobot successfully
learned how to compensate for the external perturbation
generating an appropriate correction during the perturbed
upper limb reaching protocol. Hence, the spiking cerebellar
model was able to duplicate in the robotic platform how
biological systems deal with external sources of error.

The paper “Neurofuzzy c-Means Network-Based
SCARA Robot for Head Gimbal Assembly (HGA) Circuit
Inspection” by S. Kaitwanidvilai and R. Praserttaweelap
describes a decision and control of SCARA robot in HGA
(head gimbal assembly) inspection. The method applied a
general image processing technique, blob analysis, in con-
junction with neurofuzzy c-means (NFC) clustering with the
branch and bound (BNB) technique in order to find the best
structure in all possible candidates to increase the perfor-
mance of the entire system. The results from two clustering
techniques were investigated to show the effectiveness of the
proposed algorithm. Training results from the 30x micro-
scope inspection with 300 samples showed that the best
accuracy for clustering was 99.67% from the NFC clustering
and for testing results showing 92.21% accuracy for the
conventional Kohonen network. This system has been
implemented successfully in the HDD production line at
Seagate Technology (Thailand) Co. Ltd.

The paper “Multilayer Hybrid Deep-Learning Method
for Waste Classification and Recycling” by Y. Chu et al.
studied a multilayer hybrid deep-learning system (MHS) to
automatically sort waste disposed by individuals in the
urban municipal area. This system deployed a high-reso-
lution camera capturing waste image and sensors to detect
another useful feature information. The MHS used a CNN-
based algorithm to remove image features and a multilayer
perceptrons (MLP) method to consolidate image features
and other feature information to classify wastes as recyclable
or the others. The results presented the overall classification
accuracy higher than 90% under two different testing sce-
narios. This significantly outperformed a reference CNN-
based method relying on image-only inputs.

In summary, these six papers have showed the actively
practical research topics in Computational Intelligence and
Neuroscience in Neurorobotics. We thank all authors for
submitting their papers to this special issue and recognize all
reviewers for providing their expertise review and excellent
comments. We hope that all papers in this special issue
would contribute to the research ideas and methodology
development in the related fields.
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The capacity and reliability of biological memory could be exceeded by a constantly growing flux of information to remember and
operate by. Yet, our memory is fragile and could be easily impaired, and the prevalence of memory disorders is increasing in
correlation with the population’s mean age. As expected, auxiliary memory devices (such as writing pads and computers) are
abundant but are operated indirectly using significant effort compared with biological memory. We report a working prototype of
a simplified, 4 KB random-access memory (RAM) that can be written to or read from using thought and could be embedded more
seamlessly than other artificial memory aids. The system analyses EEG signals to extract attention levels, which trained subjects
can use to write messages into an RFID sticker, or read from it on a display. We describe basic modes of using memory by a single
subject, emulate common forms of social communication using this system, and highlight new forms of social usage and allocation
of memories that are linked to specific persons. This preliminary prototype highlights the technical feasibility and the possibilities
of implantable thought-operated memory devices and could be developed further to provide seamless aid to people suffering from

memory disorders in the near future.

1. Introduction

Our ability to store and retrieve information is critical for
learning, social interaction, and experience and hence for our
survival [1]. However, it is also a fragile faculty and could be
damaged or lost relatively easily. Memory disorders and
dementia, which are hallmarks of medical conditions ranging
from mild cognitive impairment (MCI) to Alzheimer’s dis-
ease (AD), are a significant problem which is growing steadily
[2-4], for which treatment is extremely limited and in-
adequate [5]. Our ability to create short-term or long-term
memories could be severely damaged by head trauma, in-
farcts, diseases, and even the side effects of certain drugs [6].

On the other hand, biological memory could be assisted
by simple means such as external documentation, e.g., by
writing and audio recording. However, two challenges could
be anticipated. First, the amount of information that we come
across and are required to remember properly is constantly
increasing, for example, the number of individuals that we

need to maintain direct contact with. Excessive flow of in-
formation could hinder the task of indirectly documenting
this information. Second, auxiliary memory devices such as a
notebook or mobile phone could be easily lost, stolen, or
damaged and are thus of limited reliability. Information can
be stored on a database which is accessible everywhere, such
as a cloud, but this access requires network connectivity,
which is still largely limited and discontinuous.

We could therefore envision an auxiliary memory device
which is direct, in order to allow seamless documentation
and retrieval of information, and has the ability to be em-
bedded or implanted, as to reduce the chances for random
loss of the memory stored on it. Such auxiliary memory
could function in parallel to our native capacity to remember
as a backup or failsafe system that comes into action when
needed.

Comparison to other studies of artificial memory devices
shows prototypes like the implanted silicon chip in the work
of Berger et al. [7] that was implanted in rats and monkeys
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and can process information similar to actual neurons. This
chip does not store data but can serve as a prosthesis for a
damaged part in the hippocampus. Another surgical implant
used for patients with hearing disabilities is the Cochlear
implant which provides a sense of sounds with an electric
device stimulating the auditory nerve [8]. This device does
not store or share data but is used to convert sound waves
into an electrical stimulus of the nerve. Another study was
done by Sum-Gyun Yi et al. which fabricated MoS2-based
flash memory devices by stacking MoS2 and hexagonal
boron nitride (hBN) layers on an hBN/Au substrate and
demonstrated that these devices can emulate various bi-
ological synaptic functions, including potentiation and de-
pression processes, spike-rate-dependent plasticity, and
spike-timing dependent plasticity [9]. This fabricated
memory mimics the work of a synapse in a specific brain.
These studies represent a variety of implant studies in the
field of implants regarding memory or neural abilities. All
are invasive and do not store or share data.

Another era of study deals with how psychology works
or cultures created collective memory in history. These
studies argue on humans’ abilities to work together and
using language as a mean of collaboration [10, 11]. These
studies are theoretical and do not implement but show how
we, as humans, collaborate and create more by using this
ability.

The creation of the Internet, the cloud of data, and the
Internet of things (I0T) enhance our ability to communicate
wildly and store and retrieve data massively while wearing
communicating devices that can monitor, store, and send
data between devices and through the Internet [12, 13]. The
need to help memory disabilities and IOT open the ability to
create new methods of storing memory and sharing it with
others thus helping and enhancing human capabilities.

In this study, we aim to do so with a new and preliminary
artificial memory prototype.

Our purpose in this study was to outline and demon-
strate a working prototype of such memory device. To this
end, we used simple components which were wired as
depicted in Figure 1(a). A commercially available headset
was used to acquire EEG signals from human subjects, and a
custom-written algorithm was used to extract the level of
attention exhibited by each subject as previously described
[14]. A controller recorded and analyzed the data in real
time, and communicated with a “memory,” based on a
simple RFID tag, which was stuck on the subject’s neck
(Figure 1(b)). Based on their level of attention, the controller
carried out one of four functions: none, write 0, write 1, or
read. In the terms of this demonstration, the controller is a
computer capable of communicating with the RFID tag,
writing bits to it, and displaying its content, e.g., as simple
text. The system here has been implemented using either
commercially available Arduino parts, or a standard laptop
computer.

There are several types of RFID tags [15], namely,
passive, active, and semi active. In our experiment, we used a
passive sticker that can be activated and communicated only
by a near electric field. Moreover, there are different tags and
protocols of near field communication (NFC). Here, we used
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a MIFARE Classic ISO/IEC 14443 Type A standard which
enables 4 KB memory divided to 16 sectors. Every sector
holds 4 blocks of 32 hexadecimal memory digits. The first
block of every sector holds a 6-digit security key (16° op-
tions) that prevents access to the data and prevents reading
or writing if it is incorrect, providing a layer of security to the
communication between the controller and the memory
[16].

Moreover, there are different types of RFID frequencies,
the lower frequency 125/134.2 kHz is useful up to 30 cm and
can create distance security; however, it is less optimal for
longer distances. Frequencies of 868/959 MHz (UHF) or
2400 MHz can give longer distance abilities (3 to 100 m) [17].
In our experiment, we used a 13.56 MHz RFID circuit, which
supports communication at up to 1 m.

2. Methods

2.1. Subjects. For this study, 9 subjects (5 women, 4 men,
ages 18-43, average age 31.7 £10.9 years, 0’ 118.27) were
recruited. We chose controlling attention levels since it is a
parameter that is well researched and tested in EEG data and
already used in other works. There are some hardware and
applications that already use it in different ways like com-
puter games or for research [14, 18, 19]. The reason for the
four ranges is to create different letters and mode in a
language of two digits (0/1) and to differ between read, write,
and no request at all as explained in Figure 1. First, each
subject underwent a short (average ~15min) phase of
training of the system until they were able to achieve specific
attention of one of four levels. These levels were defined
based on a scale of 0-100% attention, and each was used to
code a specific function: 0-29% read from memory, 30-59%
baseline for “no action” and to differ between reading and
writing, 60-79% write “0” to memory, and 80-100% write
“1” to memory. Each subject was allowed to achieve her/his
own speed in switching between attention levels, with an
average of 3.5+ 1.2s spent at each level at the end of the
training phase. Attention levels defining the ends of the scale
were achieved by experiencing passive activity versus a
difficult mathematical problem as previously described
[14, 18, 19]. In the testing phase, the subjects were requested
to read or write 0/1 by achieving the desired level of attention
described above. The study design was reviewed and ap-
proved by the Institutional Review Board at Bar-Ilan Uni-
versity. All methods were performed in accordance with the
relevant guidelines and regulations. Informed consent was
obtained from all subjects prior to participating in this study.

2.2. Hardware and Software. EEG data were acquired using a
Neurosky Mindwave mobile plus kit headset that provides
raw-sampled wave values (128 Hz or 512 Hz, depending on
hardware), signal quality metrics, eSense attention meter
values (0 to 100), and EEG band power values for delta,
theta, alpha, beta, and gamma.

EEG signals were obtained from neurosky mobile al-
gorithm analysis. The Attention meter algorithm (eSens)
indicates the intensity of mental “focus” or “attention.” The
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Headset

Subject

0-29%
Read Base

30-59%

60-79%
Write 0

80-100%
Write 1

RFID

(a)

(®)

FIGURE 1: Description of the system used in this study. (a) Schematic representation. An EEG headset was used to directly acquire EEG data
from the subjects. The EEG was processed and classified on a controller connected to the RFID memory circuit. Based on the attention levels
measured from the subject, the controller performed a specific function on the memory: read memory content (0%-29%), no action
(30-59%), write 0 (60-79%), or write 1 (80-100%). (b) The RFID memory chip as a sticker on one of the subjects of this study.

value ranges from 0 to 100. The attention level increases
when a user focuses on a single thought or an external object
and decreases when distracted. Users can observe their
ability to concentrate using the algorithm. In educational
settings, attention to lesson plans can be tracked to measure
their effectiveness in engaging students. In gaming, attention
has been used to create “push” control over virtual objects.

eSense Attention meter indicates the intensity of a user’s
level of mental “focus” or “attention,” such as that which
occurs during intense concentration and directed (but
stable) mental activity. Its value ranges from 0 to 100.
Distractions, wandering thoughts, lack of focus, or anxiety
may lower the Attention meter level. For each different type
of eSense (i.e., Attention and Meditation), the meter value is
reported on a relative eSense scale of 1 to 100. On this scale, a
value between 40 and 60 at any given moment in time is
considered “neutral” and is similar in notion to “baselines”
that are established in conventional brainwave measurement
techniques (though the method for determining a Think-
Gear baseline is proprietary and may differ from other
methods). A value from 60 to 80 is considered “slightly
elevated” and may be interpreted as levels tending to be
higher than normal (levels of Attention or Meditation that
may be higher than normal for a given person). Values from
80 to 100 are considered “elevated,” meaning they are
strongly indicative of heightened levels of that eSense.
Similarly, on the other end of the scale, a value between 20
and 40 indicates “reduced” levels of the eSense, while a value
between 1 and 20 indicates “strongly lowered” levels of the
eSense. These levels may indicate states of distraction, agi-
tation, or abnormality, according to the opposite of each
eSense [20].

The signals were broadcast via Bluetooth to a controller
for processing and classification. We used an Arduino Uno
device connected to BlueSMiRF silver Bluetooth antenna,
which translated the signals from the mindwave mobile
headset device using a custom-written code. To process and
classify the signals, an additional code was written using
Arduino language (based on C/C++). The base program
handles the Attention signals and determines the levels to

classify. An NFC (near field Communication) Reading/
Writing antenna shield (13.56 MHz band) was connected
to the controller. A Mifare classic RFID tag with a 4KB
memory storage was used to store the data written or to
broadcast the data when reading. Arduino and NFC antenna
shields were connected to a DELL 15-4200U (2.3 GHz/4 GB
RAM) laptop with windows 7 operating system which was
used as display monitor.

3. Results

Most subjects were capable of achieving desired levels of
attention to be able to perform reading and writing 0/1 tasks
and in a reproducible manner (Figure 2(a)). Subjects typi-
cally returned to baseline after 1 or 2 writing actions (either
write 0 or write 1) and were able to maintain a maximum of 3
writing actions without returning to baseline (Figure 2(b)).
Analysis of the transitions between attention levels revealed
that all subjects were capable of switching rapidly between
levels, achieving a velocity of up to ~80% per second, but
these transitions became slower with time (Figure 2(c)),
eventually reaching a maximum velocity of 5% per second
after 60 seconds of writing onto the memory. Interestingly,
the ability to maintain transition efficiency did not correlate
with subject age, as hypothesized at an early stage of this
study, bolstering the role of training in subject performance
(Figure 2(d)). Only 25% of the messages were written
without incorrect bits, with most messages having 1 in-
correct bit (Figure 2(e)). No bias to a specific error bit (0 or
1) was found despite the unequal allocation of attention
levels to the different bits.

We used the system to investigate the possibility for
social communication between individuals, mediated by
writing to and reading from neighboring memories. Social
communication presents a prevalent framework of com-
munication (e.g., social networks accessed via mobile de-
vices), which we aimed to emulate using our system. Our
basic purpose was to show that the system not only supports
common modes of social networking, but also allows new
concepts for using memory.
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F1GURE 2: Performance of the thought-operated memory device. (a) Performance histograms of 3 representative subjects, summarizing their
ability to achieve and maintain a specific attention level during 10 writing and reading tasks (green =read, blue =no action, orange = write 0,
yellow = write 1); vertical coordinate, Frequency, indicates the number of times a subject reached a curtain attention level; horizontal
coordinate, Attention, indicates the level of attention reached divided to sections (4-11, 12-19, 20-28, 29-36, 37-44, 45-52, 53-60, 61-68,
69-76, 77-84, 85-92, 93-100). (b) A representative memory task. Here, the subject was asked to write onto her memory the string
“11010101” and then read it. This specific task was carried out without errors (25% of all tasks were error-free). (c) Velocity analysis from 3
representative short tasks, showing the transition between attention levels slowing down with time. (d) A plot of mean velocity vs. subject
age, showing no correlation between these parameters. (e) Analysis of the abundance of errors in writing tasks, showing that ~25% of the

tasks were error-free, and ~33% of the tasks had 1 incorrect bit.

In the first series of tests described above, the basic mode
of operation of this device was studied: subject A writes to A
(same subject) > A reads from A (Figure 3(a)). Sub-
sequently, two subjects (generically termed Bob and Mary)
used the system to write a message from Bob to Mary, by
having Bob write to Mary’s memory and Mary reading from
her Memory (Figure 3(b)), and to emulate “mind reading,”
by having Bob write to his own memory and Mary reading
from Bob’s memory (Figure 3(c)). These tests were handled
and discussed to emphasize the potential of this work not
only to store and retrieve self-memory data but in order to
share memories between subjects as well. Bob reading and
writing his own memory is a self-memory method. Mary
reading from Bob’s memory enables memory sharing from
Bob’s memory to Mary’s.

Other modes that the system can support, although not
investigated here, are sharing of memories between subjects
(Figure 3(d)) or from a single person to a public
(Figure 3(e)), two modes that are enabled in typical social
networks today; however the system also supports the
outsourcing of another person’s memory (Figure 3(e)),
which is not a standard social networking mode. Further
designs are now being tested in our laboratory that im-
plement different compartments, accessible by authorized
individuals other than the one to whom the memory is
linked, which support private allocation of information for
memory outsourcing.

Although the specifications were defined arbitrarily in
this system (e.g., attention levels, free pace and duration
between actions), similar measurements could theoretically
be made in other configurations. However, several principles
were implemented in this particular design. First, the at-
tention levels were nearly evenly distributed across the
complete scale. Second, the writing actions were clustered
together to enable rapid transition between them. Third,
writing and reading actions were separated by the baseline

range. Our findings show that the first and third principles
were important in achieving reproducibility and a flowing
writing uninterrupted by reading, but the second principle
was less successful in ensuring that writing was not inter-
rupted by baseline phases.

4. Discussion

The prototype described here is extremely preliminary in the
sense that it is motivated by seamless embedding of memory
without being seamless in itself. However, this is a technical
barrier that is being tackled, or has been tackled successfully
in some cases. RFID circuits such as the one used here are
completely implantable [15, 21-23], and their interference
with existing devices such as pacemakers has been studied
[22]. The portability of other components of the system is
being improved towards complete implants, or at least
wearable or in patch form. EEG measurements themselves
could be made using sensor pads or implantable sensors
[24-27], eliminating the need for a carried EEG headset.
Display of the content that is retrieved from the memory
could be done by means of contact lens [28, 29], or, less
directly, on glasses such as Google glass. Eventually, a system
similar to the one described here could be entirely im-
plantable. Moreover, the capacity of 4 KB implemented here
could certainly be increased in future designs.

The specific method of writing and reading from the
device could be improved. Attention is a parameter that can
be readily extracted from raw EEG signals [14, 18, 19], and
our observations show that trained subjects could switch
between desired levels of attention sufliciently for the system
to recognize the appropriate function to be carried out.
However, most (~75%) messages contained at least 1 in-
correct bit. This suggests that either there is a better pa-
rameter to guide the system by or that the short training
provided in this study was not sufficient. Further
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FIGURE 3: Social communication emulated with the memory device. (a—c) Three operation modes, top panels show schematic representation
of the network, with histogram overlays below summarizing the reading and writing (both 0 and 1) performance achieved by the subjects
during 10 tasks. Black rectangles represent memory devices. Arrow directions represent writing (arrow leading from person to device) or
reading (arrow leading from device to person). (a) The basic mode of operation where same subject writes on his/her own memory and reads
from it. (b) Two subjects, nicknamed Bob and Mary, emulating social communication. Bob writes onto Mary’s device, and Mary reads from
her device. (c) Bob writes onto his own device, and Mary reads this content from her device. (d-f) Potential modes of social usage of the
memory device described here. (d) Complete sharing of memories between two subjects; (e) sharing memories from a person’s memory to a
public; and (f) a public authorized to use another person’s memory by means of outsourcing.

experiments are underway to investigate additional pa- Implantable memory devices raise their own issues of
rameters within EEG data that could be used and to evaluate ~ privacy, possibilities for unauthorized reading, and in-
the potential precision of their utilization. advertent manipulation. Physical proximity, as required in
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the described prototype, is an important protective factor
but limits the social applications of such devices. To enable
the full scale of uses, implantable memory devices should be
designed with specific layers of security addressing these
special challenges, such as interference from adjacent devices
and other implants and potential attacks made against the
person through the implanted device.

Comparing this work with other artificial memory de-
vices introduced earlier shows the potential of a noninvasive
prototype that can be used to store and share data between 2
or more persons and to use one mind or more as a “cloud”
similar to sharing thoughts and memories in social networks
or the Internet today. The ability to communicate in a
standard network like NFC described here may offer a
connection to other devices and may correlate to other
languages in future work. In contrast, converting this
prototype to an invasive one as other introduced implants
may give other abilities of extending human memory and
brain capacity capabilities that were not found in today’s
implants [30].
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Humanity has long strived to create microscopic machines for various purposes. Most prominent of them employ nanorobots for
medical purposes and procedures, otherwise deemed hard or impossible to perform. However, the main advantage of this kind of
machines is also their main drawback—their small size. The miniature scale, they work in, brings many problems, such as not
having enough space for the computational power needed for their operation or the specifics of the laws of physics that govern
their behaviour. In our study, we focus on the former challenge, by introducing a new standpoint to the well-studied predator-prey
pursuit problem using an implementation of very simple predator agents. Intended to model the small-scale (micro and nano)
robots, these agents are morphologically simple—they feature a single line-of-sight sensor. The behaviour of the predator agents is
simple as well—the (few) perceived environmental variables are mapped directly into corresponding pairs of rotational velocities
of the wheels’ motors. We implemented genetic algorithm to evolve such a mapping that results in a successful capturing of the
prey by the team of predator agents. However, as the preliminary results indicated, the predators that use a straightforward sensor
could not resolve more than just few of the tested initial situations. Thus, to improve the generality of the evolved behaviour, we
proposed an asymmetric sensory morphology of predators—an angular offset to the sensor relative to the longitudinal axis—and
coevolved the amount of such an offset together with the behaviour of predators. The behaviours, coevolved with a sensor offset
between 12° and 38’, resulted in both an efficient and consistent capture of the prey in all tested initial situations. Moreover, some
of the behaviours, coevolved with sensor offset between 18° and 24°, demonstrated a good generality to the increased speed of the
prey and a good robustness to perception noise. The obtained results could be seen as a step towards the engineering of
asymmetric small-scale for delivery of medicine, locating and destroying cancer cells, microscopic imaging, etc.

1. Introduction

With the advancement of technology and invention of the
optical and electric microscopes, the humanity started ex-
ploring the miniature world. With these new discoveries;
however, new problems started to arise. To discover the
solutions to them, humankind turned to creating micro- and
nanomachines on their own [1]. As a species, striving to
survive various lethal conditions, we are exposed to the most
prominent field of use for these new nanomachines, med-
icine. There are many procedures that are hard to perform by
a human medical doctor and for which the newly created
microrobots are perfectly suited [2]. Such procedures, in
which the traditional approaches could harm the

surrounding (healthy) body tissues, include brain surgery,
video diagnostics in hard-to-reach places, and pinpoint drug
delivery (much needed in chemotherapy). Some of the
advantages that nanotechnology provides are continuous
monitoring, rapid response to a sudden change in condi-
tions, minimal trauma to the tissues, relatively short re-
covery time, and minimal posttreatment care [3].

In our research, we are employing a multiagent system
(MAS) as the model of a team of such simple small-scale
robots. The advantage of the developed MAS, compared to
centralized systems with analogical functionalities, is that it
offers an increased modularity, reduced complexity (offering
an intuitive solution to the divide-and-conquer approach of
developing and deploying complex software systems), and
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flexibility to diverse software and hardware platforms. From
the viewpoint of the end-users, the benefits of using MAS are
the superior robustness, increased fault tolerance, scalability,
and performance. The latter is especially true, as the MAS
could solve (inherently parallel or distributed) problems
much faster than centralized (or single agent) systems.
Moreover, due to their complex, nonlinear nature, MAS
could often solve problems that a single agent is unable to
solve. The whole team of multiple agents is expected to
exhibit a behaviour that can be regarded as an emergent
(high-level) property of the much simpler (lower-level)
properties of the agents, or as a whole that is “more than
the sum of its entities” (Aristoteles, 384 a.C.-322 a.C.), and,
therefore, could not be devised by applying the conventional
top-down software engineering approaches.

Currently, there are various challenges that are slowing
the progress of the real-world applicability of MAS mod-
elling the societies of small-scale robots. One of these
challenges stems from the very advantage of these robot-
s—their small size. The physical constrains imply that these
robots could not feature a complex morphology—both the
sensors and moving mechanisms need to be very simple to
be able to fit in the limited space of the bot’s body. The robots
would be behaviourally simple too, in that their decision-
making would involve no computing, but rather a direct
mapping of the (few) perceived environmental states into
corresponding commands to their actuators. Most likely, the
communication (if any) between the individual agents
would be impossible to be realized in a direct manner and
would be fulfilled implicitly, through the corresponding
changes in the environment. Such robots can be regarded as
an ultimate case of Occam’s razor principle, applied both to
their morphology and decision-making. Such simplicity
further widens the gap between the available properties of
the individual robots and the desired complex overall be-
haviour of the team of such robots as a whole. This is es-
pecially true in our case as we focus on creating bots that
could traverse the human body autonomously, rather than
being guided by an external force and continuously mon-
itored [4, 5].

The factors in favour of the possible small-scale
implementation of the robots considered in our work in-
clude (i) their minimalistic implementation, (ii) compati-
bility with the fluid dynamics at very low Reynolds numbers,
and (iii) robustness of the behaviour of the robots to
Brownian collisions (diffusion), as elaborated below.

The minimalistic implementation implies very simple
sensors, control, and effectors of the robots. Indeed, the
single line-of-sight sensor adopted in our work is seen as one
of the examples of “extreme simplicity” in robot (agent)
perceptions in the fields of multiagent systems and swarm
robotics [6-11]. It could be implemented by a single (or just
a few) receptor(s)—pixel (of a camera), nanoparticle, etc.
The control is also very simple—a purely reactive, direct
mapping of the (few) perceived environmental states into
corresponding effectors’ commands. The effectors are
modelled as wheels in our robots, arranged in a differential
drive configuration, which is seen as the minimal configu-
ration for robots in 2D environments that allow both linear
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movement and rotational (steering) movement of the robots
[6-11].

Two of the features of the wheels of the robots con-
sidered in our work are related to their compatibility with the
fluid dynamics at very low Reynolds numbers, pertinent to
the real world of small-scale robots: (i) the wheels control the
movement of robots by the resulting vectors of linear ve-
locities (rather than forces that would require the consid-
eration of torque of motors, mass and rotational momentum
of the robots, resulting acceleration, etc.) applied to each of
the two sides of the robot and (ii) the changes in these
velocities occur instantly (there is no coasting). We in-
troduced these features—controlling the robot by linear
velocities of wheels that change instantly—to bridge the
reality gap between the model of our robots and the very low
Reynolds number dynamics of the small-scale robots. In-
deed, at very low Reynolds numbers, the movement of the
robot is characterized by the dominance of the viscous forces
over the inertial ones [12]. Consequently, the mass (and the
inertia) is not a relevant factor in such a movement, and the
changes of velocities of the small-scale robots would happen
almost instantly. In an eventual 3D implementation, the
wheels could be superseded by more general “thrusters” that
model the actual propulsion source of the small-scale
robots—e.g., bioinspired rotating helical flagellum and a
rotary artificial molecular machine [11, 12].

The robustness to Brownian collisions could be achieved
by just having a sufficiently large size of the robot [12]. From
another perspective, as we shall elaborate later, we tested the
robustness of the proposed MAS to perception noise. The
effects of collision with particles subjected to Brownian
motion is somehow different from just a perception noise;
however, our experiment could be seen as a first step towards
the verification of the system in highly dynamic, uncertain
environments.

Gauci et al. [6] previously modelled similar simple robots
as agents. The agents were able to self-organize in order to
solve the simple robot aggregation problem. The same
framework was also successfully applied for the more
complex object-clustering problem [7] in which the agents
need to interact with an additionally introduced immobile
object. The very possibility of a team of such agents to
conduct an elaborate social (surrounding) behaviour in an
environment featuring dynamic objects was recently dem-
onstrated by Ozdemir et al. [8] in solving the shepherding
problem, where a team of simple agents (shepherds) needs to
guide multiple dynamic agents (sheep) toward an a priori-
defined goal.

In our study, we proposed the use of a similar team of
simple agents for the solution of a different task—the well-
studied, yet difficult to solve predator-prey pursuit problem
(PPPP) [13-17]. In this PPPP, eight identical, simple agents
(predators) are used to capture the single dynamic agent
(prey).

Our objective is to investigate the feasibility of applying
the genetic algorithms (GA) to evolve such direct mapping
of the four perceived environmental states into respective
velocities of the wheels of predator agents that result in a
successful capture of the prey by the team of predator agents.
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Moreover, we are interested in whether coevolving (i) the
asymmetric sensory morphology—an angular offset of the
sensors—of predator agents and (ii) their behaviour would
result in more efficient and general capturing.

Our motive for using the proposed instance of PPPP is
based on the increased complexity of the problem, compared
to the previously studied tasks [6-9]. In comparison to the
previously investigated domains, PPPP requires the agents
to exhibit a more diverse behavioural set, including ex-
ploration of the environment and surrounding and cap-
turing the prey. In contrast to [8], in our implementation of
the PPPP framework, the emergence of such behaviours is
made additionally complicated, by the introduced constrains
to the sensory and moving abilities of the predator agents.
Compared to the unlimited range, assumed in other works,
our predators feature myopic, limited-range sensors, and
their movement speed is equal to that of the prey, instead of
being faster [6, 8]. Furthermore, the initial position of the
predators is such that the prey is not being surrounded,
which may ease the task of capturing it. This can be viewed as
injecting the clustered team of small-scale robots at a certain
point into the human body.

An additional motivation of our research is the recog-
nition that while many real-world scenarios could be, in-
deed, reduced to the previously researched wall-following,
dispersal [9], clustering [6], and shepherding problems [8],
there would be few scenarios—requiring a direct physical
contact with an active prey—that could be modelled by the
proposed instance of PPPP [18-20]. These scenarios might
include pinpoint drug delivery, surrounding and destroying
(cancer) cells or bacteria, gathering around cells to facilitate
their repair or imaging, etc.

The remainder of this article is organized as follows. The
second section describes the entities in the PPPP. In the third
section, we elaborate the GA, adopted for the evolution of
predator behaviours. In the fourth section, we present the
experimental results and introduce the proposed asym-
metric sensory morphology of predators. In the same sec-
tion, we show the results on the robustness and generality of
the evolved predator agents. The fifth section discusses the
advantages of asymmetric morphology and the emergent
behavioural strategies of the predator agents. We draw a
conclusion in the sixth section.

2. Entities

2.1. Predator Agents. Each of the eight (identical) predator
agents models a simple cylindrical robot with a single line-
of-sight sensor featuring a limited range of visibility and two
wheels (controlled by two motors) in a differential drive
configuration.

The single line-of-sight (beam) sensor provides two bits
of information, where each bit encodes whether an enti-
ty—either a (nearest) predator agent or the prey,
respectively—is detected (if any) in the line-of-sight within
the limited range of visibility. The implementation of such
sensor would consist of two photodetectors, sensitive to
two different, nonoverlapping wavelengths of (ultraviolet,
visible, or infrared) light reflected (or emitted) by predators

and prey, respectively. Each of these two photodetectors
provides one bit of information. Equipped with such
sensors, the predators could perceive only four discrete
possible states—<00>, <01>, <10>, and <11>, as shown in
Figure 1—of the environment. The state <11> is the most
challenging one to perceive. It could be sensed, however,
under the following assumptions: (i) the prey is taller than
the predators and (ii) to not obscure the shorter predators,
the cross-section of the prey is either much narrower than
predators or (at least partially) transparent for the light to
be perceived by the predators. Notice that the perceived
environmental states do not provide the predators with any
insight about the distance to the perceived entities, nor
their total number.

In our previous work [21], we noticed that the classical
morphology of the agents—in which sensor is aligned with
the longitude axis of the agents—results in successful so-
lutions of more than a few initial situations. Therefore,
instead of the commonly considered straightforward ori-
entation of the sensor of the predators, we proposed an
angular (e.g., counterclockwise) offset relative to their
longitudinal axis. We speculated that such an asymmetric
sensory morphology would allow the predators to evolve a
more efficient capturing behaviour by implementing an
equiangular (proportional) pursuit of the prey, aiming at
the (estimated) point of the contact with the moving prey,
rather than the currently perceived position of the latter.
The proposed asymmetric morphology does not compro-
mise the intended simplicity of the agents. The main fea-
tures of the agents, used during the evolution of the
behaviour of prey agents, are summarized in Table 1.

The entirely reactive behaviour of the predator agents
could be described as a direct mapping of each of the
perceived environmental states into a corresponding rota-
tional speed of the wheel motors. For simplicity, instead of
mapping into rotational speeds (e.g., RPM) of the motors, we
will assume a mapping into the linear velocities of the
wheels, expressed as the percentage—within the range
(-100%,. . ., +100%)—of their respective maximum linear
velocities (10 units/s, as shown in Table 1). For example, a
velocity of —20% implies that the motor of the wheel is
rotating at 20% of its maximum linear velocity, and the
wheel propels the corresponding side of the robot in a
backward (negative) direction with a linear speed of 2 units/s
(i.e., 20% of the maximum linear speed of the wheel). The
purely reactive decision-making of the predator agents could
be formally defined by the following octet:

A= {VOOL’ Voor> Vo Voirs Viors Viers Vi VIIR}’ (1)

where Vyor and Vg are the linear velocities (as a per-
centage, set within the range (-100%,..., +100%), of the
maximum linear velocity) of the left and right wheels of the
agents for the perceived environmental state <00>, while
Vo, Voire Viors Viors Viir and Vijr are analogical ve-
locities for the perceived environmental states <01>, <10>,
and <11>, respectively.

Our objective of coevolving (via GA) the behaviour and
asymmetric sensory morphology of the agents could be



(a) (b)
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(c) (d)

FiGure 1: The four possible environmental states that are perceived by any given predator agent. (a) State <00>. (b) State <10>. (c) State

<11>. (d) State <01>.

TaBLE 1: Features of the entities used during the evolution of the behaviour of predator agents.

Feature Predator Prey
Number of agents 8 1

Radius (units) 8 8
Length of the axis of wheels (units) 16 16

Max linear velocity of wheels (units/s) 10 10

Max speed of agents (units/s) 10 10

Type of sensor Single line-of-sight Omnidirectional
Range of visibility of the sensor (units) 200 50

Orientation of sensor

Counterclockwise offset (2~40 degrees) —

rephrased as coevolving (i) such values of the velocities,
shown in the octet in equation (1), together with (ii) the
angular offset of the sensor, resulting in an efficient cap-
turing behaviour of the team of predator agents. We shall
elaborate on such a coevolution in the next section.

2.2. Prey. The prey is equipped with an omnidirectional
sensor, with limited visibility range. To balance the ad-
vantage that the omnidirectional sensor gives to the prey,
compared to the single line-of-sight sensor of the predators,
the viewing distance of the prey is only 50 units, compared to
the 200 units of the predators. The maximum speed of the
prey, however, is identical to that of the predators. These
conditions would encourage the predator agents to evolve
cooperative behaviours as they will be unable to capture the
prey alone. Another viewpoint suggests that a successful
solution to PPPP, defined in such a way, could demonstrate
the virtue of the MAS as it could solve a problem that a single
(predator) agent could not.

In contrast to the predator behaviours, we implemented
a handcrafted behaviour for the prey. The prey attempts to
escape from the closest predator (if any) by running at its
maximum speed in the direction that is exactly opposite to
the bearing of the predator. The prey remains still if it does
not detect any predator. Table 1 shows the main features of
the prey agent.

2.3. The World. We modelled the world as a two-
dimensional infinite plane with a visualized part of
1600 x 1600 units. We update the perceptions, decision-

making, and the resulting new state (e.g., location, orien-
tation, and speed) of agents with a sampling interval of
0.1 s. The duration of trials is 120 s, modelled in 1200 time-
steps. We approximate the new state of predators in the
following two steps, as illustrated in Figure 2. First, from
the current orientation, the yaw rate, and the duration of
the sampling interval, we calculate the new yaw (orienta-
tion) angle (as an azimuth t the north) of the agents. The
yaw rate is obtained from the difference between the linear
velocities of the left and right wheels, and the length of the
axis between the wheels. Then, we calculate the new po-
sition (i.e., the two-dimensional Cartesian coordinates) as a
projection (in time, equal to the duration of the sampling
interval) of the vector of the linear velocity of predators.
The vector is aligned with the newly calculated orientation,
and its magnitude is equal to the mean of the linear ve-
locities of the two wheels.

3. Evolutionary Setup

We decide to apply a heuristic, evolutionary approach to
the “tuning” of the velocities of both wheels for each of the
perceived four environmental situations because we are a
priori unaware of the values of these velocities that would
yield a successful behaviour of the team of predator agents.
As we briefly mentioned in Section 1, MAS, as a complex
system, features a significant semantic gap between the
simple, hierarchically lower-level properties of the agents
and the more elaborate, higher-level behaviour of the whole
system. Consequently, we would be unable to formally infer
the values of the octet of velocities of the wheels of agents
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// Global definitions:

type
TEntitiy_in_MAS = record
Yaw : float;  // radians
X :float; //units
Y :float: //units
end;
const
Num_of_ Predators =8;
Pred_Max_Speed =10; // units/s
Sampling_Interval =0.1;  //seconds
Pred_Radius =8; // units

var

Predator: array [0.. Num_of_Predators-1] of TEntitiy_in_MAS;

// The routine Move_Predator estimates the new state of predators

Procedure Move_Predator (ID: integer; V_L,V_R: float);
// ID: the ID of the predator being currently updated, within the range [0..7]

// V_L and V_R: linear velocities of the left and right wheels, respectively.

// Calculated from the evolved genotype (as percentages of the max velocities), the values of max velocities

// (10 units/s), and currently perceived (one of the four: <00>,<01>,<10> or <11>) environmental situations.

// For the evolved sample genotype <10,15,20,25,30,35,40,45> and current situation <01> these values
// are V_L=2.0 units/s, and V_R=2.5 units/s, respectively

begin

// Step #1: Calculating the new yaw angle of the predators #ID as azimuth (to the north) in radians:
Predator[ID].Yaw := Predator[ID]. Yaw + (V_L -V_R)/( Pred_Radius x 2) x Sampling_Interva

// Step #2: Calculating the new position (X,Y) of the predator #ID:
Predator[ID].X := Predator[ID]. X + ((V_L + V_R)/2) x sin(Predator[ID].Yaw) x Sampling_Interval;
Predator[ID].Y := Predator[ID]. Y + ((V_L + V_R)/2) x cos(Predator[ID].Yaw) x Sampling_Interval;

end;

FiGure 2: The pseudocode of estimating the new state of the moving predators.

from the desired behaviour of the team of such agents.
Similarly, we are unaware of the value of the angular offset
of the sensor, resulting in an efficient capturing behaviour
of the agents. Moreover, the values of velocities of both
wheels and the value of the angular offset of the sensor
would, most likely, be dependent on each other.

Alternatively, in principle, we could have adopted an-
other, deterministic, approach, such as, for example, a
complete enumeration of the possible combinations of the
eight velocities of wheels and the sensor offset. If each of
these 8 velocities is discretized into, say, 40 possible integer
values ranging from —100% to +100% and the sensor offset
just into 20 values, then the size of the resulting search space
would be equal to 40° or about 1.3 x 10'*. This would render
the eventual “brute force” approach, based on complete
enumeration of possible combinations of values of velocities
computationally intractable.

As an alternative to the brute force search, we could
apply reinforced learning (RL) in order to define the good
mapping of the four perceived environmental states into the
four pairs of velocities of wheels. However, MAS are
complex, nonlinear systems, and there is a significant gap
between the properties of the entities and the (emergent)
properties of the system. RL would obtain a “reward” from

the system (i.e., the efficiency of the team of predators) and
will try to modify the properties (the four pairs of velocities
of wheels) of the entities. Due to the complexity and non-
linearity of MAS, this is not a straightforward task. This is
also related to the intra-agent credit-(or blame-) assignment
problem, as we could not tell which part of the agents is
responsible (and therefore-should be modified) for the bad
overall behaviour of the system.

Evolutionary computing solves these challenges in an
elegant way, by obtaining the fitness value from the system,
as a whole (i.e., the efficiency of predators in capturing the
prey) and then modifying the properties of entities (pairs of
velocities of wheels of predators) via genetic operations,
crossover and mutations.

Yet another challenge in RL is the delayed reward
problem—the success (if any) of the system (team of
predators) would occur several hundred time-steps into
the trial, but might be related to the earlier behaviour
phases of the team of predators—such as the dispersing
(exploration of the environment) at the very beginning of
the trial. Regarding the delayed reward problem, the
evolution, as a holistic approach, does not care about how
to achieve the success, but rather about the overall (final)
outcome of the trial.



In our work, we apply GA, a nature-inspired heuristic
approach that gradually evolves the values of a set of pa-
rameters in a way similar to the evolution of species in
nature. GA has proved to be efficient in finding optimal
solution(s) to combinatorial optimization problems fea-
turing large search spaces [22-24]. Thus, consonant with the
concept of evolutionary robotics [25], we adopted GA to
evolve the values of the eight velocities of the wheels and the
offset of the sensor that result in an efficient behaviour,
presumably involving exploring the environment and sur-
rounding and capturing the prey, of the team of predators.
The main algorithmic steps of the adopted GA are shown in
Figure 3, and its main attributes, genetic representation,
genetic operations, and fitness function, are elaborated
below.

3.1. Genetic Representation. We genetically represent both
(i) the decision-making (behaviour) of the predator agents
and (ii) their sensory morphology in a single “chromosome”.
The latter consists of an array of eight integer values of the
evolved velocities of wheels of the agents and an additional
allele encoding the angular offset of their sensor. The values
for the velocities are constrained within the range
(=100%. . .+100%) and are divided into 40 possible discreet
values, with an interval of 5% between them. The angular
offset is defined in range between 2° and 40°, counter-
clockwise, divided into 20 possible discreet values, with an
interval of 2° between them. The decided number of discrete
values (and the interval between these values, respectively)
provides a good trade-off between the precision of “tuning”
(i.e., expressiveness of the genetic representation) and the
size of the search space of GA. The population size is 400
chromosomes. The breeding strategy is homogeneous in that
the performance of a single chromosome, cloned to all
predators is evaluated.

3.2. Genetic Operations. Binary tournament is used as a
selection strategy in the evolutionary framework. It is
computationally efficient and has proven to provide a good
trade-off between the diversity of population and the rate of
convergence of the fitness. In addition to the tournament
selection, we also adopted elitism in that the four best-
performing chromosomes survive unconditionally and are
inserted into the mating pool of the next generation. In
addition, we implemented, with equal probability, both one-
and two-point crossover. The two-point crossover results in
an exchange of the values of both velocities (of the left and
right wheels, respectively) associated with a given envi-
ronmental state. This reflects our assumption that the ve-
locities of both wheels determine the moving behaviour of
the agents (for a given environmental state), and therefore,
they should be treated as a whole—as an evolutionary
building block. Two-point crossovers would have no de-
structive effect on such building blocks. The one-point
crossover is applied to develop such building blocks (ex-
ploration of the search space), while the two-point crossover
is intended to preserve them (exploitation).
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Step 1: Creating the initial population of random chromosomes;

Step 2: Evaluating the population;

Step 3: WHILE not (Termination Criteria) DO Steps 4~7:

Step 4:  Selecting the mating pool of the next generation;

Step 5:  Crossing over random pairs of chromosomes of the mating pool;
Step 6:  Mutating the newly created offspring;

Step 7:  Evaluating the population;

F1GUre 3: The main algorithmic steps of the GA.

3.3. Fitness Evaluation. Our aim is to coevolve the behav-
iours and sensory morphology of the team of predators that
are general to multiple initial situations, rather than a be-
haviour that is specialized to a particular one situation. To
facilitate such an evolution, we evaluated each of the
evolving chromosomes in 10 different initial situations. In
each of these situations, the prey is located in the centre of
the world. The predators are scattered in a small cloud
situated south of the prey. A snapshot of a sample initial
situation is shown in Figure 4. The distance of the cluster, of
agents, to the prey is calculated as follows: ID of the current
situation X 2 + (random of 50 units). This helps reduce the
impact of the first few evolutionary runs, when the predators
are learning how to move around the environment to find
the prey.

The overall fitness is the sum of the fitness values, scored
in each of the 10 initial situations. For a successful situation
(i.e., the predators manage to capture the prey during the
120 s trial), the fitness is equal to the time needed to capture
the prey. If the initial situation is unsuccessful, the fitness is
calculated as a sum of (i) the closest distance, registered
during the entire trial, between the prey and any predator
and (ii) a penalty of 10,000. The former component is
intended to provide the evolution with a cue about the
comparative quality of the different unsuccessful behaviours.
We verified empirically that this heuristic quantifies the
“near-misses” well and correlates with the chances of the
predators—pending small evolutionary tweaks in their
genome—to successfully capture the prey in the future. The
second component is introduced with the intension to
heavily penalize the lack of success of predators in any given
initial situation.

Our PPPP is an instance of a minimization problem, as
lower fitness values correspond to better performing team of
predator agents. Since we are aiming to discover the best
possible solution to the problem, no target fitness value is
incorporated in the termination criterion of the evolution.
Instead, this criterion includes the following two conditions:
the number of the evolved generations is equal to 200 or the
best fitness remains unchanged (stagnated) for 32 consec-
utive generations. Table 2 shows the main parameters of the
adopted GA.

4. Experimental Results

4.1. Evolving the Team of Straightforward Predator Agents.
The experimental results of 32 independent runs of the GA
evolving only the behaviour of the predator agents are il-
lustrated in Figure 5. In these runs of the GA, the sensory
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FIGURE 4: A snapshot of a sample initial situation.

TaBLE 2: The main parameters of the GA.

Parameter Value
Eight integer values of the velocities of wheels (Vo
Genotype Voors Voirs Vorrs Viors Viors Vit and Vypg) and an
integer value of the angular offset (@) of the sensor
Population size 400 chromosomes
Selection Binary tournament
Selection ratio 10%
Elite Best 4 chromosomes
Crossover Both single- and two-point
Mutation Single-point (with even distribution)

Mutation ratio
Fitness cases
Duration of the fitness trial

Fitness value

Termination criterion

5%
10 initial situations
120's per initial situation
Sum of fitness values of each situation:
(a) Successful situation: time needed to capture the
prey
(b) Unsuccessful situation: 10,000 + the shortest
distance between the prey and any predator during
the trial
No. of generations =200 or stagnation of fitness for
32 consecutive generations

morphology of predators was fixed, and the sensor offset was  there is one distinguished solution (from now on we will
set to 0. As Figure 5(a) illustrates, the mean value of the refer to it as the fastest evolved solution SFE) which suc-
fitness slowly converges to approximately 60,000, indicating  cessfully solves 8 (of 10) in the first generation. The chro-
that, on average, only 4 (of 10) initial situations could be mosome of this solution encodes for offset of the sensor of
successfully resolved (Figure 5(b)). The best result, achieved ~ 20°. This confirms the findings in our previous research
by the evolved team of predators, is only 6 successful sit- [21, 26] that a team of predators with 20° sensor offset yields
uations. These results suggest that the instance of PPPP  favourable results during evolution. As we will discuss later,
featuring predators with straightforward sensors is, in this is also true in case of additional, unforeseen, situations

general, intractable.

and presence of perception noise. However, from all 32
solutions, this is not the one that has achieved the best
overall fitness value. The best behaviour of agents (man-

4.2. Coevolving the Asymmetric Morphology and the Behav- ifested by the achieved lowest of fitness value) was obtained
iour of Predator Agents. As Figures 6-8 illustrate, just by ~ by the solution SBF featuring a sensory offset of 16°.
adding the offset, the results in number of successful initial ~ Compared to the fastest evolving solution SFE, the solution
situations and overall fitness significantly improve compared ~ SBF evolved a bit slower and solved all 10 situations by 6th
to the evolution of the team straightforward predator agents ~ generation, achieving the terminal fitness of 369 (compared
featuring no angular offset of sensors. On average, the  to 417 of solution SFE).

predators were able to resolve all 10 initial situations by 10th

Figure 9 illustrates the angular offset of the best solutions

generation of the GA. From all 32 independent runs of GA,  obtained from each of the 32 independent runs of the GA. As
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FiGure 5: Convergence of the values of best fitness (a) and the number of successful situations (b) of 32 independent runs of GA evolving the
behaviour of straightforward (without an offset of the sensor) predator agents.
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F1GURE 9: Sensor offset and the fitness value of all 32 solutions obtained form 32 independent runs of the GA. The fastest evolved and the best

overall solutions are denoted as solutions SFE and SBF, respectively.

seen in Figure 9, the fitness of 80% (i.e., 26 of 32) of solutions
is in the range between 369 and 4483, i.e., the team of agents
could capture the prey (on average over all 10 situations)
between 36.9 s and 44.8 s into the allocated 120 s of the trial.
The fitness of the worst solution is 622, meaning that the
team of predator agents captures the prey, on average, at
62.2s, i.e., around the middle of the 120 s trial. Moreover, as
Figure 9 illustrates, for a particular value of the sensor offset,
there are multiple solutions with different fitness values,
meaning that there are variations in the behaviour of the
morphologically identical predators and that the sensory
asymmetry is only a precondition for an efficient capturing
behaviour of the predators. Analogically, very similar fitness
values could be achieved by predators featuring different
sensor offset, suggesting that the combination of both (i) the
morphology and (ii) the behaviour, rather than a particular
instance of each of them, is important for the success of the
behaviour of predator agents.

The breakdown of the number of the successful situa-
tions and the sensor offset of all 32 solutions are illustrated in
Figure 10. As depicted in Figure 10(a), the sensor offset of
90% (i.e., 29 of 32) of solutions is within the range (15°,.. .,
35°). There is no evolved solution that features a sensor offset
lower than 10°, which confirms experimentally our initial
hypothesis about the beneficial effect of the asymmetric

morphology of predators on the efficiency of their behav-
iour. The statistical characteristics of all 32 solutions are
shown in Table 3.

4.3. Generality of the Evolved Solutions. To assess the gen-
erality of the evolved behaviour of the predator agents, we
will examine how their performance (i.e., the number of
successfully resolved initial situations) degrades with the
increase of the speed of the escaping prey. We tested all 32
solutions, obtained via the GA (for the speed of the prey
equal to 10 units/s), for speeds of the prey, unforeseen during
the evolution, of 12, 14, 16, 18, and 20 units/s, respectively.
The number of initial situations successfully solved by each
of the 32 solutions for each of the considered speed of the
prey is shown in Figure 11. The mean (over the whole range
of speeds of the prey) of the successfully solved situations by
each of these solutions, and its breakdown are depicted in
Figure 12. As these figures illustrate, one of these solutions,
denoted as Sy, is most general in that it features no
degradation in the number of successful situations with the
increase of the speed of the prey. Moreover, its fitness value
remains under 500 (i.e., the agents capture the prey earlier
than 50 s into the 120 s trial) for all considered speeds of the
prey. As shown in Table 4, the sensor offset of Sy is 24°.
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TaBLE 3: Statistical characteristics of the 32 solutions obtained form 32 independent runs of the GA.

Parameter Value
Mean of the best fitness values 436
Standard deviation of the best fitness value 63
Mean of the sensor offset (°) 24.7
Standard deviation of the sensor offset (°) 7.2
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F1GURE 11: The number of successfully solved situations by the evolved 32 solutions for the speed of prey being increased from 10 to 12, 14,
16, 18, and 20 units/s, respectively.
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TaBLE 4: Genotype of evolved solutions: the fastest evolved (SFE), with the best fitness (SBF), most general (SMG), most robust to FP

(SMRFP), and FN (SMRFN) noise.

Solution Fitness  Vyor (%) Voor (%) Voir (%) Vor (%) Vier (%) Vier (%) Vi (%) Vi (%) Sensor offset a (°)
Sex (#9) 417 30 95 100 90 -80 -75 50 -95 22
Spr (#32) 369 -95 80 90 85 -90 -90 100 90 16
Sma (#21) 382 -95 80 95 920 -90 -90 60 -10 24
Suppp (#11) 404 -70 70 90 85 ~100 -100 65 70 18
Smren (#14) 421 30 100 100 95 -75 -70 100 100 20

4.4. Robustness to Perception Noise. We evaluated the ro-
bustness of the 32 evolved solutions, evolved in a noiseless
environment, to a random perception noise. We introduced
two types of noise—a false positive (FP) and a false negative,
respectively. The former results in either of the two bits of
perception information to be occasionally (with a given
probability) read as “1” regardless of whether an entity is
detected in the line-of-sight of the predators or not. False
negative noise (FN) results in readings of “0” even if an entity
is seen. We focused on these types of noise as we assume that
the perception subsystem of predators, yet being rather
simple, would require an appropriate thresholding of the
sensory signal. A combination of unfavourable factors, such
as incorrectly established threshold and variable noise levels
in the environment or in sensors, would result in the
considered two types of perception noise. Figures 13 and 14
show the degradation of the number of successfully solved
situations by all 32 solutions for different amount of FP and
FN perception noise, respectively.

As Figures 13 and 14 illustrate, neither the fastest evolved
solution S nor the solution with the best fitness Sgg, which
we previously discussed, features a good robustness to
perception noise. On average, they solve 6.25 initial situa-
tions each, with the introduction of either FP or FN noise.
Both solutions yield similar results with the difference be-
tween them being that Sgp is more robust to FP noise while
Sgg is better in case of FN noise. Instead, the solutions Syrpp
and Syrpn (featuring a genotype as shown in Table 4)
emerge as most robust to FP noise and FN noise, re-
spectively. Solution Sy;rpp manages to solve the tests with FP
noise perfectly, while maintaining satisfactory performance
in the tests with FN noise, being able to solve on average 8.25
initial situations, depending on the level of FN noise. On the
contrary, the agents controlled by Syrpy solve the situations
with FP noise perfectly, while being able to solve an average
of 9.5 initial situations in the situations with FN noise,
resulting in the best overall performance. The sensor offset of
Syrrp and Syrpy is 187 and 20°, respectively (Table 4).

5. Discussion

5.1. Advantage of Asymmetric Morphology. We have shown
that introducing an angular offset to the viewing sensor
facilitates a more effective behaviour of the team of agents
and increases the efficiency of evolution of such behaviour.
The experimental results suggest that the behaviour, evolved
with a sensor offset of 20° (in solution Syrpn), is most robust
to noise and is close enough in terms of fitness to the best-
performing team of agents in noiseless environments. The

fitness of Syrpn is 421 compared to 369 of Sgr. While Sy
shows best results in the generality test, with perfect score in
all initial situations, it falls short in the noise robustness test.
This leads us to believe that Syrpy is an example of a good
combination of coevolved behaviour and asymmetric
morphology of the predator agents. On average, Syren
manages to solve 9.57 and 9.65 situation in the generality
and robustness tests cases. The angular offset of 20° of Syrpn
provides a good trade-off between the tangential and radial
(i.e., towards the prey) components of the speed vector of the
chasing predators.

The beneficial effect of the sensor offset is that it helps the
chasing predator to implicitly determine the position of the
prey if the latter disappears. Having a counterclockwise
displacement means that most of the time the disappeared
prey, due to the parallax induced by the movement of the
predator, would be to the left, and consequently, a slight turn
to the left would allow relocating it again. Therefore, one of
the virtues of the sensor offset is in the more deterministic
direction of the disappearance of the prey, almost certainly to
the left, which in turn facilitates a faster rediscovery and
consequently, a more reliable tracking of the latter by the
predator. Moreover, as shown in Figure 15, the chase by the
predator featuring an asymmetric morphology would result
in a characteristic circular trajectory of both the predator and
the prey. With the rather challenging but realistic as-
sumption that initially the prey is not being surrounded by
the predators (as illustrated in Figure 4), such circular
trajectories would facilitate the surrounding as the prey
would be shepherded (driven) by a single predator towards
the pack of the remaining predators.

5.2. Emergent Behavioural Strategies. Following our pre-
vious work on coevolving behaviour and morphology [27],
in this section, we review the behavioural strategies,
emerging from the team of agents controlled by the evolved
solution that is most robust to noise, the solution has the
greatest success rate, the solution Syrpn. The values of the
evolved velocities of motors and the sensor offset are shown
in Table 4. The team of predator agents manifests the fol-
lowing three types of behaviours, executed in three con-
secutive phases of the trial: (i) exploring the environment by
distancing themselves from each other (controlled by ve-
locities V) or circling around until they find a peer or the
prey (Voo), (i) shepherding (driving) the prey (by some of the
predators) in an circular trajectory (Vi ), and (iii) capturing
the prey (V). Figure 16 illustrates the different phases the
agents go through in the process of catching the prey. A
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Figure 15: Chasing the prey by a sample predator agent A;.

video of how the team of predators deals with all 10 situ-
ations can be found at http://isd-si.doshisha.ac.jp/m.
georgiev/2018-12-08-SA20deg.mp4.

As shown in Figure 16(a), in the beginning, all agents
have no vision of either the prey or any of the peers. Fol-
lowing the mapping of Vo =30% and Vyor =100%, they

start turning around in a circular motion—scanning the
environment in an attempt to find another entity. Detecting
a peer activates the set of velocities Vjop=-75% and
Vior =—70%, which forces the predators to rapidly move
away from the perceived agent, which facilitates a better
dispersion and a coverage of a wider area. This enhances the
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FIGURE 16: Emergent behavioural phases exhibited by the team of predator agents: exploring (a), shepherding (b-d), and capturing (e).

ability of the predators to explore the environment and to
discover the prey. The second stage begins when any of the
predators discovers the prey. The mapping V. = 100% and
Voir =95% results in moving forward at highest speed and
slightly turning to the right, which helps keeping the prey
always in the same relative position to the agent, to the left
side, as shown in Figures 15 and 16(b)-16(d). Once the prey
becomes invisible, as shown in Figure 16(b), the predator
exhibits an embodied cognition that the disappearance is a
result, in part, of its own forward motion; therefore, the new
location of the prey is, due to the counterclockwise offset of
the sensor, most likely on the left of its own orientation. The
evolved Vi =30% and Vyr=100% are activated
(Figure 15(c)) resulting in a circular motion to the left, until
the agent rediscovers the disappeared prey. Moreover, as
Figures 16(b)-16(d) show, a single predator, due to its sensor
offset, shepherds (drives) the prey in a circular, counter-
clockwise trajectory into the (already dispersed) other
predators. The final behavioural phase begins with the
surrounding of the prey from all sides of the world by both
thus far and newly encountered chasing predators, as il-
lustrated in Figure 16(e). When approaching from opposite
sides, the predators are able to see both the prey and a peer,
which activates the mapping V3,1, =100% and V7;r =100%.
Since they have a slight angular offset, it is possible for only
two predators to catch the prey, as illustrated in Figure 16(e).
One of the predators chases the prey from behind and guides
it to its frond left side, while the other intercepts it from the
exactly opposite direction.

At the same time, we can see in Figures 16(d) and 16(e)
that two of the agents keep distancing themselves from the
group. The agents seem to exhibit an emergent knowledge
[28] that not all eight agents are needed to capture the prey.
For the group of agents to be successful, the most important
mission is to capture the prey, rather than which particular
agent does it. As the performance of the predators is cal-
culated based on the success of the group instead of that of
the particular individual agent, such behaviour helps the
team (as a whole) by expanding the search field and finding
the prey faster, especially when it is further away from the
predators. If, instead, the agents were trying to find the prey
and capture it by themselves via “greedy chase,” they would
inevitably fail because (i) the prey is fast enough to run away
from a single predator and (ii) the predators would have

been unable to engage in any organized behaviour that
allows surrounding and ultimately, capturing the prey.

The most significant difference between the evolved
behaviour of straightforward predator agents and that of the
agents with asymmetric morphology is in the second
behavioural phase, shepherding. This phase could not be
observed in the behaviour of the straightforward agents. At
the same time, as we elaborated above, it plays an important
role in the successful capturing of the prey.

5.3. Heterogeneous vs. Homogeneous Systems. During our
research, we considered a different configuration for the
multiagent system featuring several types of predator agents
where each of them has a specific role in capturing the prey.
Our work on performance comparison between heteroge-
neous and homogeneous MAS [29] delves deeper into the
problems that heterogeneity brings: our main concern was
that the heterogeneous system would suffer from inferior
efficiency of evolution due to the inflated search space.
Moreover, the robustness of the evolved behaviour of the
team of specialized predator agents would be questionable
too. The reason for this is that if, for example, the team
employs a dedicated “driver” agent, in real-world situations,
it could be challenging to make sure that the agents would be
deployed in the vicinity of the prey (i.e., a cancer cell) in such
a way that the “driver” is in the most favourable position
relative to the prey and other predators. Instead, we opted
for an implicit behavioural heterogeneity (with genotypic
homogeneity)—the agents that are the closest to the prey
assume the role of the “driver”, and any of the eight predator
agents may turn into this role, if needed. The heterogeneity is
implicit because it arises from the interaction between the
homogeneous genotype (all agents have identical four pairs
of velocities of wheels) and the environment. The dynam-
ically faced environment is what “specialises” the different
predator agents in the team.

6. Conclusions

Nanorobots are newly emerging technology, made possible
by the rapid technological advancements in the last century.
Creating synthetic machines on a miniature level, however,
shows that there are significant problems to overcome, due
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to the differences in physics laws and the limited resources
available due to the small size of the robots. Furthermore, as
medicine is the most prominent field of use for these new
machines, they need to be reliable and precise in their work,
which requires making no compromises in the quality of
their operation. In attempt to solve these restrictions, we
employed a variation of the predator-prey pursuit problem
(PPPP), implementing very simple predator agents, equip-
ped with a single line-of-sight sensor, and a simple control of
the velocities of their two wheels. The predator agents utilize
a direct mapping of the few perceived environmental states
into corresponding velocities for their pair of their wheels.
We applied genetic algorithms to evolve such a mapping that
results in a successful capturing of the prey by the team of
predator agents. However, as the preliminary results in-
dicated, the predators featuring a straightforward sensor
could not resolve more than just few of the tested initial
situations. To improve the generality of the evolved be-
haviour, we proposed an asymmetric sensory morphology of
predators, an angular offset to the sensor relative to their
longitudinal axis, and coevolved both (i) the amount of this
offset and (ii) the behaviour of predators. According to the
experimental results, the behaviour coevolved with a sensor
offset between 12° and 38 resulted in both an efficient and
consistent capture of the prey in all tested initial situations.
Moreover, few of the evolved behaviours for a sensor offset
in the range 18°~24° demonstrated a good generality to the
variations in the speed of the prey and a good robustness to
perception noise.

We believe that the obtained results could be viewed as a
step towards the engineering of nanorobots with asymmetric
morphology for various medical applications including
pinpoint delivery of medicine, locating and destroying
cancer cells, microscopic imaging, etc. In our future work,
we are planning to develop a three dimensional model which
will resemble a more realistic environment such as the
human body.
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Recognizing and tracking the direction of moving stimuli is crucial to the control of much animal behaviour. In this study, we
examine whether a bio-inspired model of synaptic plasticity implemented in a robotic agent may allow the discrimination of
motion direction of real-world stimuli. Starting with a well-established model of short-term synaptic plasticity (STP), we develop a
microcircuit motif of spiking neurons capable of exhibiting preferential and nonpreferential responses to changes in the direction
of an orientation stimulus in motion. While the robotic agent processes sensory inputs, the STP mechanism introduces direction-
dependent changes in the synaptic connections of the microcircuit, resulting in a population of units that exhibit a typical cortical
response property observed in primary visual cortex (V1), namely, direction selectivity. Visually evoked responses from the model
are then compared to those observed in multielectrode recordings from V1 in anesthetized macaque monkeys, while sinusoidal
gratings are displayed on a screen. Overall, the model highlights the role of STP as a complementary mechanism in explaining the
direction selectivity and applies these insights in a physical robot as a method for validating important response characteristics

observed in experimental data from V1, namely, direction selectivity.

1. Introduction

Although a seemingly effortless task for humans, recog-
nizing and tracking the direction of visual objects is based on
an incredible complexity of brain areas involved in visual
processing and attention, as well as learning and memory. In
recent years, the advent of artificial neural networks (ANNs)
has allowed the combination and isolation of the in-
teractions of important biophysical mechanisms in order to
shed light on the nature of biological phenomena. Through a
symbiotic collaboration between neuroscience and artificial
intelligence, the application of ANNSs is in part to unify our
understanding of the underlying mechanisms contributing
to sensory experience. The development of these brain-
inspired computational systems have shown their useful-
ness in revealing novel mechanisms of neuronal circuitry
and in proposing experimental predictions that can be di-
rectly tested in experimental settings. In order to elucidate

the circuit mechanisms underlying visual perception,
mathematical models have been formulated with strong
support from electrophysiological data [1]. Due to their
usefulness and their predictive ability in driving new neu-
roscientific discoveries, brain-inspired ANNs also have the
potential to be implemented in robotic agents in order to
turther assess their ecological validity [2]. Given that
mechanistic models cannot yet capture the full complexity of
the nature of perceptual phenomena, the implementation of
well-established models from neuroscience into the domain
of artificial intelligence opens new avenues for un-
derstanding biological networks exposed to real-world
stimuli [3]. Previous approaches in modelling the percep-
tual phenomena of motion have shown successful attempts
in incorporating natural visual inputs in networks of spiking
neurons [4-6].

In this study, we propose a model of motion discrimi-
nation using a ubiquitous mechanism in neuronal circuits,
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namely, short-term plasticity (STP), whereby the strength of
synaptic connections varies from milliseconds to seconds as
a result of recent activity [7, 8]. These rapid changes in
synaptic strength vary overtime from one spike to the next
due to short-term facilitation (STF) and short-term de-
pression (STD) [9]. Short-term synaptic plasticity serves
diverse functions in bio-inspired networks. For example,
STP can process temporal patterns [10], modify a neuron’s
sensitivity to the temporal coherence of inputs [11, 12],
participate in gain control [12], reduce redundancy [13], act
as an adaptive filter [14], and improve discriminability [15]
among others [16]. Despite the beneficial effects of STP on
cortical computation [7, 8, 10, 16-18], it remains unclear
whether STP contributes independently of sensory experi-
ence or whether it provides a causal contribution to
experience-dependent plasticity. A study in-line with the
former found that alteration in STP has been observed in
cultural neurons, suggesting that endogenous neuronal
activity (i.e.,independent of sensory experience) is sufficient
to drive changes in STP [19]. In contrast, there is evidence to
suggest that STP is a consequence of experience-dependent
plasticity in local neuronal circuits and therefore causally
linked to visually driven inputs [20-25]. For example,
sensory deprivation can alter STP, but in most cases, the
dynamics of synaptic transmission are often inconsistent in
these experiments, as even at the same synapse type, some
promote facilitation while others will exhibit depression.
Nonetheless, evoked and spontaneous vesicle release is likely
to be controlled by two independent and nonoverlapping
mechanisms [26]. Sensory experience can therefore modify
the dynamics of STP, thus pointing towards a causal con-
tribution of STP to experience-dependent plasticity. Indeed,
an important determinant of development and sensory-
driven alteration in STP is the expression of presynaptic
NMDA receptors (preNMDARs) [27, 28]. These are ligand-
gated ionotropic glutamate receptors that serve diverse
functions ranging from the coincidence detection in Heb-
bian learning to excitatory neurotransmission critical for
information processing in the mammalian central nervous
system [29].

In layers 2/3 (L2/3) of the primary visual cortex (V1),
individual neurons respond more strongly to an object
(i.e.,orientation grating) moving in a particular direction
(“preferred”) than the same object moving in the opposite
direction (“null”); a visual response property termed di-
rection selectivity. There is surmounting experimental and
theoretical evidence that STP contributes to the enhance-
ment of motion discrimination [30-33]. In-line with pre-
vious studies, we recently found that rapid changes in
synaptic strength via STP may provide an essential con-
tribution for accurate motion discrimination [34]. Starting
with the well-established Tsodyks-Markram model [1], we
implement STP in the synaptic connections of a microcircuit
motif. We then examine neuronal responses to changes in
the direction of real-world vertical orientation stimuli
moving in bidirectional motion along a single axis of mo-
tion. Furthermore, we compare neuronal responses in real-
time from a robotic implementation to those of a simulated
version of the model whereby units are instead exposed to a
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hypothetical version of real-world stimuli in motion. Finally,
we analyse neuronal responses in V1 to drifting sinusoidal
gratings and compare cortical responses to those observed in
the robotic implementation. The remainder of the paper is
divided as follows: Section 2 describes the architecture of the
microcircuit motif, the setup of the robotic implementation,
and the phenomenological model of STP and summarizes
the experimental data analysis approach. Section 3 illustrates
all findings. In Sections 4 and 5, we summarize the overall
insights of our work, propose future avenues, and highlight
the contribution of our work to neurorobotics research.

2. Materials and Methods

2.1. Architecture. Here, we propose a microcircuit motif of
six units in total, comprised of two subpopulations con-
nected via synapses that exhibit STF (Figure 1). This novel
framework differs from our previously proposed architec-
ture of two units mediated by STD- and STF-dominated
synaptic connections [34]. In our current study, we aim to
provide a more parsimonious approach in highlighting the
contribution of STP by using a single STP mechanism rather
than two distinct STP mechanisms for showing successful
motion discrimination. In addition, we highlight the
structural advantages of the expanded network over the two-
unit microcircuit. Finally, we display the functional ad-
vantages resulting from the topological structure of the
expanded network, which happen to be absent in a two-unit
microcircuit.

In order to assess whether the embodied robot is capable
of displaying response characteristics similar to those ob-
served in local microcircuits in V1, the architecture is ex-
panded by following a constrained network topology
inspired from specific features observed in local cortical
microcircuits. For example, bidirectional connectivity in V1
is a by-product of neighbouring neurons sharing similar
visual responses [35]. In addition, bidirectional connectivity
has been suggested to evolve according to synaptic con-
nections mediated by STF [36]. Furthermore, neurons in V1
that share similar visual features (e.g.similar direction
preference) are more highly connected and less connected to
neurons showing a reduced preference for those similar
visual features [35]. Similarly, in our expanded microcircuit,
there are a greater number of connections amongst units
exhibiting the same direction preference and less connec-
tions between units coding for an opposing direction of
motion (Figure 1) [37]. More specifically, units 1, 2, and 3
within subpopulation 1 are more highly connected amongst
each other and less connected to units 4, 5, and 6 within
subpopulation 2. These topological features of the expanded
network would be absent in a two-unit microcircuit with
bidirectional connections because both units would exhibit
the same number of outgoing and incoming connections,
acting as a single isolated subpopulation. Consequently, we
hypothesized that, in the expanded architecture, units within
subpopulation 1 and subpopulation 2 would exhibit pref-
erential responses to opposing directions of motion. In
contrast, we expected that a microcircuit of two units with
bidirectional connections would have a limited functional
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Right motion preference

Left motion preference

FIGURE 1: Architecture of the microcircuit. There are 6 units in
total. Subpopulation 1 (red) forms a cluster of 3 units, each of which
exhibits a preference for stimuli moving towards the right. The
remaining units in subpopulation 2 (blue) display higher responses
for stimuli moving towards the left. Connections are bidirectional,
with self-connections allowed. Outgoing connections from units
within both subpopulations exhibit STF.

contribution by displaying preference only for a single di-
rection of motion. Finally, it is noteworthy to mention that
the study proposed here has extended the architecture to six
units, as network size from this point forward would not
change the desired behaviour of individual units in the
model but simply increase simulation time.

2.2. Setup. For the robotic implementation, we have
employed the Raspberry Pi 3 Model B-V1.2 micro-
controller (Figure 2(a)). To capture the image of the
stimulus in motion, a Raspberry Pi camera (V2.1) is used
and attached to the device via a ribbon cable. In addition,
two simple circuits are created on a breadboard responsible
for lighting up coloured LEDs (red and blue) and attached
to the Raspberry Pi’s GPIO (general purpose input/output)
pins. The robotic setup is mounted onto a wooden box, and
the camera is placed 12 centimeters away from the front of a
computer monitor whereby real-world stimuli are dis-
played (Figure 2(b)).

2.3. Model. Using the robotic implementation, we in-
corporate the mechanism of STP within the microcircuit,
whereby the neurotransmitter release probability in the
synaptic connections evolves according to

du; U-u,(t) N '
d_tf:Tif]+U(l—uj(t))I§)8(t—t,ij)), (1)

where § (t) is the Dirac delta function. The sum on k spikes is
over all spike times t,ij ! of presynaptic neuron j, and u; (t)

Raspl

FIGURE 2: Robotic setup. (a) Setup of the camera, Raspberry Pi, and
the LEDs. (b) Overview of the robotic setup in front of a computer
monitor displaying an orientation stimulus from the real-world.

reflects presynaptic residual calcium levels. In the absence of
incoming action potentials, the synapse is at a resting state
with residual calcium levels u . (ty) =U. The amount of
residual calcium instantaneously increases immediately after
the first action potential within a spike train, and u; (t,) =
1 -u;(f) is the fraction that remains available immediately
after this first event. Hence, the running variable of U refers
to u; (t), and U remains a parameter that applies to the first
action potential in the spike train, after which uj (t) (the
running variable of U) decays exponentially to its resting
value U with a time constant 7. As a result, each time an
action potential is generated, presynaptic residual calcium
instantaneously rises and then recovers with a time constant
7; between subsequent spikes. As residual calcium levels
increase, a release-ready vesicle along the active zone of the
presynaptic membrane terminal releases neurotransmitters
onto the postsynaptic side of the synapse. During this
process of exocytosis, the neurotransmitter availability
within the presynaptic terminal is described according to

dx. 1-x. oo ‘
5N oS s-), @
pr)
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where x.(t) denotes the fraction of resources that remain
available following vesicle release. Between subsequent
spikes, x; (t) recovers back to baseline to its resting value of 1
with a time constant 74, restoring the amount of synaptic
resources available within the presynaptic terminal. The STP
model allows the examination of synaptic behaviour under a
relatively short timescale. Hence, here we are interested in
the properties and mechanisms of plasticity over the course
of milliseconds to seconds [7]. Depending on the initial
setup of kinetic parameters 7y, 74, and U, the STP model can



mimic the effect of a depressing or a facilitating synapse
(Table 1) [1]. Therefore, the mechanism of STD and STF can
be distinguished using a different parameter setup in the
same governing Equations (1) and (2).

In this study, images that the camera captures from the
sensory environment are used as direct input into the mi-
crocircuit motif. In other words, external inputs directly
generate incoming presynaptic spikes in the STP model. In
order to receive synaptic inputs, the stationary camera is
used to process changes in the visual image captured from
the sensory environment. The generated image is displayed
on a computer monitor and is characterized by a 24 bit
colour scheme. This setup provides the advantage in pre-
senting moving stimuli that follow a spatiotemporal pattern.
Furthermore, we decided to mimic a similar stationary
screen fixation setup used in experimental neuroscience
[38-40], where an anesthetized, paralyzed animal exhibits
minimal eye movements to moving stimuli displayed on the
screen. As for the nature of the stimulus presented, we are
interested in black and white images. Hence, an average of
the three 8 bit RGB planes is taken, and the resulting plane is
then converted such that every pixel inside the plane is coded
by 1 (black pixel) or 0 (white pixel), instead of traditional
values ranging from 0 to 255 (where 255 is the maximal
intensity that could be displayed). The conversion of the
image to a binary scheme allows us to directly feed the
microcircuit with trains of incoming “all-or-none” action
potentials as the camera processes visual images, similar to
previous methods [6]. The Raspberry Pi camera has a native
resolution of 3280 x 2464 (Figure 3). Two steps were applied
to down sample the stimulus image and thus simplify input
to the network. Firstly, the camera resolution was lowered to
100 x 1000, in order to allow a visible preview of the image
processed by the camera. When the stimulus is displayed on
the computer monitor, the vertical line extends across the
entire first dimension and therefore activates all units in the
network (Figure 3). Here, the first dimension of 100 is meant
to represent the number of units to receive the input. Given
that the network is comprised of six units, there are 94
remaining units along the first dimension (i.e.,rows) serving
as redundant information to the network. Hence, to remove
redundant information presented to the network, the di-
mensionality was further reduced to 6 x 1000, where each
row serves as input to a single unit in the network and each
column describes the amount of time needed to evaluate the
activity of each unit during visual information processing.

In this way, the camera captures an image of 6000 pixels
which is then directly introduced as input to the spiking
network. It is noteworthy to mention that the number of
presynaptic spikes that each unit receives is equal to the
number of 1s encoded in the pixelated image processed from
the camera. In other words, the greater the width of the
orientation bar, the greater the number of pixels coded with
Is and, therefore, the higher the frequency of the presynaptic
inputs. In addition, individual shifts in the orientation
stimulus in motion will also shift the timing of presynaptic
spikes. Finally, given the nature of the real-world stimulus,
images were inherently noisy, meaning some units received a
few more input spikes than others. This inherent feature
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TaBLE 1: Short-term synaptic plasticity parameters.

Parameters Values
STF

Facilitation recovery (7y) 750 ms

Depression recovery (74) 50 ms

Initial neurotransmitter availability (x) 1
Multiplicative factor (A) 0.039

potentially originated from fluctuations in luminance and/or
the angle of the monitor relative to the lens of the camera.

In the model, there are a total of 200 direction steps,
where each direction step represents a shift in the orientation
stimulus, which is captured by using the camera. Therefore,
the camera captures 200 images, 100 of which are comprised
of orientation stimuli moving towards the right and the
remaining 100 images are comprised of orientation stimuli
moving towards the left. For individual shifts in the image,
the network receives a new train of incoming presynaptic
inputs for a total of 1000 ms (Table 2). When dealing with
temporal coding tasks, it is necessary to manipulate the
initial vesicle release probability U (Equation 1) [10]. Here,
changes in direction steps introduce changes in the initial
release probability of STF-mediated units in the microcircuit
motif [34]. The range of values used to modulate the initial
vesicle release probability is presented in Figure 4(a). For
every direction step of the stimulus in motion, we recruited a
pair of initial vesicle release probabilities, one of which was
recruited by units within subpopulation 1, and the
remaining one was recruited by units within subpopulation
2. Hence, a single change in the direction step introduced a
new pair of initial release probabilities, which in turn me-
diated neuronal responses across time. Based on the tem-
poral dynamics of synaptic transmission, units would in turn
display preferential and nonpreferential responses to ori-
entation stimuli in motion. The average initial release
probability for left and right motions from each respective
subpopulation shows that units within subpopulation 1
exhibit a higher initial release probability for right motion,
whereas units within subpopulation 2 exhibit a higher initial
release probability for left motion (Figure 4(b)).

As units receive visual input, the kinetic parameters
modulate the interplay between the dynamics of u,; (¢) and
x; (t). In turn, the joint effect of u i (t)x j (t) characterizes the
short-term strength of the synaptic inputs at a given time
step, thus generating an instantaneous current characterized
by

N
()= A Zl wyju ()x; (1), )
£

where the summation is taken over all presynaptic inputs.
Here, w;; is the absolute synaptic efficacy from presynaptic
unit j to postsynaptic unit i mediated by the temporal dy-
namics u; (t)xj (t) of STP [41]. For each direction step, w; is
kept constant and set to 1 if unit j is connected to the unit 4,
otherwise it is set to 0, denoting the absence of a connection.
In this way, the temporal dynamics of the instantaneous
current I;? (t) is mostly mediated by STP. A is a constant
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FIGURE 3: Schematic representation displaying the transformation starting from the native resolution of the Raspberry Pi camera up to the

final image displayed to the robot.

TaBLE 2: Leaky integrate-and-fire parameters.

Parameters Values
Spike emission threshold (6) -55mV
Resting membrane potential (Vi) -70mV
Membrane resistance (R,,) 200 mQ)
Membrane time constant () 30 ms
Absolute refractory period (,rp) 2ms
Integration time step (dt) 1 ms
Stimulus duration (T) 1000 ms

multiplicative factor, modulating the overall gain of the
generated current. The current mediated by STP drives
subthreshold membrane potential depolarization dynamics
of leaky integrate-and-fire (LIF) units according to

dv.
T, dt’ =~V (t) + VR (1), (4)

where 7, is the membrane time constant, I ftp (t) is the
current mediated by the short-term synaptic strength, and
R, is the membrane resistance. Whenever a depolarization
hits a fixed threshold (V;(¢) > 0), the unit emits a spike and
becomes refractory for a period 7,,,,, after which Equation 4
resumes from a subthreshold reset potential V., (Table 2).

2.4. Experimental Data. To draw a parallel between the
responses of spiking units observed in the real-time robotic
implementation versus those observed in an experimental
setting, we analysed data from V1 of visually evoked activity
in anesthetized macaque (Macaca fascicularis) monkeys.
Resulting recordings were mostly confined to layers 2/3, an
area where orientation and direction selectivity are cortical
response properties prominently observed. The data were
collected in the Laboratory of Adam Kohn at the Albert
Einstein College of Medicine and downloaded from the
CRCNS website [42]. Hence, the dataset is taken from
previous work where the experimental procedures are de-
scribed in detail [38-40]. Briefly, extracellular recordings
were performed using Utah microelectrode arrays inserted
0.6 mm into cortex. Animals were paralyzed to minimize eye

movements. All experimental procedures complied with
guidelines approved by the Albert Einstein College of
Medicine of Yeshiva University and New York University
Animal Welfare Committees.

The spiking activity of neurons was recorded while
presenting full-contrast drifting sinusoidal gratings pre-
sented at 12 orientations spaced equally (30°). Drifting
gratings were presented binocularly for 1.28 seconds and
separated by 1.5seconds intervals during which a gray
screen was presented. Stimulus orientation was randomized,
and each stimulus was presented 200 times (i.e.,trials). The
evoked dataset consisted of spiking activity from 59 to 105
neurons from 3 monkeys (dataset 1, 2, and 3, respectively).
To characterize neuronal responses, we chose dataset 3,
which included the most amount of neurons (105) out of all
3 datasets. For each orientation of the stimulus moving in
the bidirectional motion, the trial-averaged firing rate of
individual neurons was computed.

In V1, and other areas of the brain, neurons exhibit high
trial-by-trial fluctuations in firing rate [43]. Regardless of the
nature of the stimulus and the behavioural state of the
animal, a widespread feature of cortical responses is the
reduction in trial-by-trial variability around 100ms fol-
lowing the onset of the stimulus [44]. Given that stimulus
onset quenches neuronal variability, estimated neuronal
responses following a certain delay would in turn provide a
more accurate response representation of visual in-
formation. Hence, we computed the firing rate of individual
cells during the remaining 1 second of the recordings, rather
than the entire 1.28 seconds to ensure a decline in neuronal
response variability. Furthermore, to remain consistent with
the paradigm of the real-time robotic implementation, we
analysed the spiking activity of 6 neurons in the dataset.
While neuronal responses for all orientation gratings were
analysed, we focused on finding neurons exhibiting higher
responses exclusively for the vertical orientation gratings;
the same orientation was processed by using the camera of
the robot. Consequently, we chose 3 neurons (30, 63, and
103) from the dataset exhibiting preferential responses for
vertical sinusoidal gratings moving towards the right and
nonpreferential responses in the opposite null direction.
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FIGURE 4: Initial release probability in the synaptic connections as a function of the direction step number. (a) Pair of initial release
probabilities recruited during left and right motion discrimination. (b) Average initial release probability for left and right motion in the
STF-mediated synaptic connections of subpopulation 1 and subpopulation 2.

Conversely, we chose 3 other neurons (5, 42, and 98) from
the same dataset exhibiting preferential responses to stimuli
moving left and nonpreferential responses in the opposite
null direction.

3. Results

Figure 5 illustrates the visually evoked activity of individual
units, where an orientation stimulus exhibits a rightward
motion along a single axis. In this scenario, the activity of the
microcircuit is dominated by the response of units within
subpopulation 1, where units within this subpopulation
exhibit a preferential response for stimuli moving towards
the right. Higher responses for right motion discrimination
are indicated by the activation of the red LED (Figure 5(a)).
Figure 5(b) illustrates a snapshot of the image captured by
the camera during the time at which the stimulus is moving
towards the right. Figure 5(c) displays the presynaptic input
to each unit within the microcircuit, whereas Figure 5(d)
illustrates the visually evoked activity of individual units
within the microcircuit during right motion discrimination.

Figure 6 illustrates the activity of individual units to a
stimulus moving towards the left. Here, the activity of the
microcircuit is dominated by the response of units within
subpopulation 2. Higher responses from subpopulation 2 are
in turn represented by the activation of the blue LED
(Figure 6(a)). An image of the vertical orientation stimulus is
displayed in Figure 6(b), resulting in direct incoming action
potentials in the microcircuit illustrated in Figure 6(c).
Figure 6(d) illustrates the visually evoked activity of indi-
vidual units within the microcircuit during left motion
discrimination. A video illustration of the real-time robotic
implementation and the corresponding spatiotemporal
patterns of activity of all six units can be found in Sup-
plementary Material (see S1 for video illustration).

Figure 7 displays the average firing rate of units within
subpopulations 1 and 2 exposed to stimuli moving in

bidirectional motion. The visually evoked response of both
subpopulations is shown when the model is exposed to
hypothetical stimuli (Figure 7(a)) and real-world stimuli
(Figure 7(b)). Units within subpopulation 1 exhibit a
preferential response to orientation stimuli moving towards
the right. Conversely, units within subpopulation 2 show a
higher response to stimuli moving towards the left. Under
both scenarios, the average firing rate of units in the pre-
ferred and nonpreferred direction is highly close to that
observed amongst direction-selective neurons in V1
responding to drifting sinusoidal gratings (Figure 7(c)).
Figure 7(d) displays the average response of the direction-
selective cells of interest across all orientations and di-
rections. Among these responses, those resulting from
vertical gratings are displayed in Figure 7(c). In sub-
population 1, the trial-averaged response of 3 cells shows
preferential responses for right motion. In subpopulation 2,
the trial-averaged response of 3 cells displays preference for
left motion.

Figure 8 illustrates the temporal dynamics of the synaptic
variables x i (t) and U (t) as the microcircuit process visual
information. During motion discrimination, units within
both subpopulations display synaptic connections that re-
quire similar amounts of synaptic resources available in
order to properly mediate the response of both sub-
populations. Furthermore, the average amount of neuro-
transmitters available is kept within a high range across the
entire temporal domain (Figure 8(a)). This suggests that
units within the microcircuit are minimizing use-dependent
alterations of synaptic transmission during bidirectional
motion discrimination, a scenario that is particularly ad-
vantageous when future task demands are required for the
robot to perform. Finally, the examination of the release
probability in the synaptic connections suggests that units
within subpopulation 1 exhibit a higher neurotransmitter
release probability for stimuli moving towards the right. On
the contrary, synaptic connections within subpopulation 2
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FIGURE 5: Right motion discrimination. (a) Activation of the red LED in response to a stimulus moving towards the right. (b) Real-world
stimulus processed by using the Raspberry Pi camera. (c) Trains of presynaptic spikes fed to each unit in the microcircuit. (d) Postsynaptic
response of individual units.
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FIGURE 6: Left motion discrimination. (a) Activation of the blue LED in response to a stimulus moving towards the left. (b) Real-world

stimulus processed by using the Raspberry Pi camera. (c) Trains of presynaptic spikes fed to each unit in the microcircuit. (d) Postsynaptic
response of individual units.
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FIGURE 7: Response of 2 subpopulations during the simulation, real-time robotic implementation, and microelectrode recordings of V1. (a)
Responses to hypothetical stimuli tested in the model. (b) Responses to real-world stimuli tested in the robot. (c) Responses to vertical
sinusoidal gratings tested on a macaque monkey. (d) Responses to sinusoidal gratings presented at 12 orientations tested on a macaque
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FIGURE 8: Parameters related to the efficacy of synaptic transmission during left and right motion discrimination. (a) Average synaptic
resources available within each subpopulation. (b) Average neurotransmitter release probability in the synaptic connections within each
subpopulation. Notice that the temporal evolution of the release probability is the same for subpop 1-right motion and subpop 2-left motion
because their average initial release probability recruited for left and right motion is the same (Figure 4(b)).

display a higher neurotransmitter release probability for
stimuli moving towards the left (Figure 8(b)). This suggests
that when the microcircuit is exposed to stimuli moving in a
specific direction, units that exhibit preferential responses to
stimuli moving in the specified direction are most likely to be
mediated by synaptic connections that exhibit a high release
probability [45].

Next, we examined whether the topological structure of
our expanded network adds functionality that would oth-
erwise be absent in a two-unit microcircuit. In order to

maintain a consistent comparison between the expanded
network and the two-unit microcircuit, all of the synaptic
connections were mediated by STF (Figure 9(a)). In addi-
tion, we examined the activity of each unit using the same
kinetic parameters 7, and 74 (Table 1). Furthermore, we
presented the same hypothetical stimulus in motion and
recruited the same pairs of initial release probabilities U
(Figure 4(a)). Under this framework, both units display
highly synchronized spatiotemporal patterns of activity to
stimuli moving in bidirectional motion (see S2 in
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FIGURE 9: Direction selectivity in the two-unit model. (a) Architecture of the microcircuit. There are 2 units in total. (a) Outgoing
connections from unit 1 and unit 2 exhibit STF. Connections are bidirectional, with self-connections allowed. (b) Average response of two
units to a hypothetical stimulus moving in bidirectional motion. Unit 1 and unit 2 exhibit the same preference in response to opposite
directions of motion. Besides keeping all other parameters the same, the default multiplicative factor A (Table 1) was multiplied by 2, in order
to ensure that the mean activity of units falls within a similar range as that of the six-unit microcircuit (Figures 7(a) and 7(b)).

Supplementary Material for video illustration). In addition,
the two-unit microcircuit behaves as a single subpopulation,
displaying preference only for a single direction of motion
(Figure 9(b)). In contrast, the topological structure of the
expanded network divides units into two distinct sub-
populations, each of which displays preference for a di-
rection opposite to that of its neighbouring subpopulation
(Figure 7(a)). Taken together, the two-unit model limits the
functional contribution of the microcircuit by displaying
preference only for a single direction of motion, whereas the
expanded architecture embodies a topological structure that
lays the foundation for displaying preferential responses to
both directions of motion.

In cortical microcircuits including V1, neurons exhibit
shared fluctuations in population activity overtime [46]. In
general, these shared fluctuations are measured between
pairs of neurons over multiple presentations of an identical
stimulus. To examine these coordinated fluctuations in
spiking activity, we used a measure of spike count corre-
lation (SCC) between pairs of neurons in V1 during motion
discrimination [47]. In doing so, we used a nonoverlapping
time window of 1 millisecond to compute the total number
of spikes emitted from each neuron at a given time step. In
this way, we obtained the total spike count of individual
neurons across time over multiple presentations of the
same stimulus in motion. We then computed the pairwise
correlation coefficient matrix between 6 neurons, repre-
senting the SCC between all pairs of neurons. Finally, we
computed the mean SCC observed between pairs of neu-
rons within and between subpopulations. In doing so, we
find a positive SCC within subpopulations, and a negative
SCC between subpopulations (Figure 10(a)). Interestingly,

a positive “within” SCC predicts that fluctuations in the
activity of neurons within subpopulations are accurate
predictors of a shared preference for a particular direction
of motion (Figure 10(b)). Conversely, a negative “between”
SCC predicts the presence of an unshared motion direction
preference between units belonging to distinct sub-
populations (Figure 10(b)). These results were qualitatively
captured by our expanded microcircuit of six units
(Figures 10(c) and 10(d)). In contrast, the microcircuit of
two units displays preference only for a single direction
(Figure 9(b)) and therefore fails to predict the presence of
an unshared motion direction preference (Figure 10(e)).
Taken together, the expanded architecture has a greater
predictive power over the two-unit microcircuit, by
exhibiting fluctuations in population activity that marks
the presence of both shared and unshared motion direction
preferences.

4. Discussion

Our simple and reproducible robotic implementation
highlights the relation between short-term dynamics of
synaptic transmission and motion discrimination. In our
work, real-world stimuli are used and directly in-
corporated in a microcircuit dominated by a ubiquitous
plasticity rule inspired from biological networks. As the
microcircuit receives inputs, spiking units exhibit both
preferential and nonpreferential responses to stimuli
moving bidirectionally along a single axis of motion.
Results from the simulation and the robotic imple-
mentation are in close agreement to analyses of visually
evoked activity in V1, whereby cortical neurons exhibit
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FiGure 10: Spike count correlations predict shared and unshared motion direction preferences. (a) Mean SCC between pairs of V1 cells
within and between subpopulations. (b) Average firing rate of six neurons in V1 responding to drifting vertical sinusoidal gratings. Neurons
30, 103, and 63 exhibit a preferential response for stimuli moving towards the right, whereas neurons 98, 42, and 5 exhibit a preference for
stimuli moving towards the left. (c) Mean SCC between pairs of units within and between subpopulations in the six-unit microcircuit. (d)
Average firing rate of six units responding to a vertical orientation stimulus in motion. Units 1, 2, and 3 exhibit a preferential response for
stimuli moving towards the right, whereas units 4, 5, and 6 exhibit a preference for stimuli moving towards the left. (¢) Mean SCC between
the pair of units within the two-unit microcircuit. Given that both units display fully synchronized spatiotemporal patterns of activity for left
and right motion discrimination (see S2 in Supplementary Material for video illustration), their mean SCC is 1. Notice that the two-unit
model behaves as a single subpopulation; therefore, mean SCC for “Between” and “Within 2” cannot be computed.
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higher responses for stimuli moving in the preferred di-
rection of motion and lower responses for stimuli moving
in the opposite null direction. In addition to accurate
motion discrimination, the firing rate of motion-selective
units in the STP model is close to the firing rate of
direction-selective neurons in V1. As a result, the robotic
implementation and the simulated version of the model
capture both qualitative and quantitative depictions of
typical neuronal responses observed in V1. In addition,
units that exhibited preferential responses to stimuli
moving in the specified direction were more likely to be
mediated by synaptic connections exhibiting a high release
probability. Furthermore, the contribution of STP as a
complementary mechanism for direction selectivity is
validated by the robotic implementation in real-time,
showing successful motion discrimination at the behav-
ioural level. By comparing neuronal responses from the
robotic implementation to those of a simulated version of
the model, accurate motion discrimination is observed
despite the inherent noise of real-world stimuli present in
the real-time robotic implementation. In addition, motion
discrimination is conserved despite hardware constraints
introducing differences in the timescale required to pro-
cess stimuli in real-time (1398 seconds), versus the time
required to run the computer simulation using hypo-
thetical inputs (217 seconds). Here, processing time was
measured using the execution time module named “timeit”
in the Python programming language. In addition, the
term “real-time” in our study referred to the amount of
time it took for the Raspberry Pi microprocessor to run the
STP model during which the camera processed 200
snapshots of the stimulus moving in bidirectional motion
on the computer monitor. Hence, the term “real-time” was
used in order to create a distinction between the robotic
implementation and the simulated version of the STP
model in a laptop computer.

Although visual experience exerts an influence over the
direction preference that neurons acquire, the initial to-
pological structure is an essential determinant of direction
selectivity [48, 49]. In this work, the topological structure of
the six-unit microcircuit expanded the repertoire of di-
rection preferences over the two-unit microcircuit,
allowing two subpopulations of units to exhibit preferential
responses to opposing directions of motion. In contrast,
this functional contribution happened to be absent in both
the current and previously proposed [34] architecture of
two units. In addition, although units in the two-unit
microcircuit  exhibited motion-induced progressive
changes in their spatiotemporal patterns of activity, those
spatiotemporal patterns were synchronized across both
units during opposite directions of motion [34]. This
functional property is in stark contrast to cortical networks,
where asynchronous activity is more commonly observed
across cells [50]. With the addition of more units, our larger
network embodied a topological structure which inevitably
added asynchronous spatiotemporal patterns of neural
activity during motion discrimination. Finally, within the
context of a larger network size, we show that global
fluctuations in population activity can provide an accurate
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prediction of shared versus unshared motion direction
preferences. More specifically, units within subpopulations
displayed a positive SCC and were therefore more likely to
exhibit fluctuations in subpopulation activity that were
accurate predictors of a shared motion direction prefer-
ence. In contrast, units between subpopulations shared a
negative SCC, suggesting that units between sub-
populations were likely to display preference for opposing
directions of motion. This later prediction was absent in the
two-unit microcircuit because the architecture behaved as a
single microcircuit thus preventing neurons from dis-
playing the presence of an unshared motion direction
preference.

A predominant view from recent computational work
suggests that direction biases present at eye opening may
arise purely from “innate” network connectivity [6]. The
onset of this architecture is suggested to be present in the
absence of any explicit coding for direction selectivity and
prior to any self-organizing process facilitated by spon-
taneous activity or motion-induced training [6]. Similarly,
the topological structure of our expanded network was
constructed in the absence of any explicit coding for di-
rection selectivity. Hence, our work is in-line with recent
experimental and computational studies suggesting that
visual experience may serve a permissive role to comple-
ment structural processes that are fully characterized at the
onset of visual experience [6, 48, 51, 52]. Hence, the or-
ganization of the initial architecture may lay the foundation
for the map of direction preference, as observed in the
visual cortex [49].

Visually evoked activity is likely to be mediated by a
variety of mechanisms operating at different timescales and
at distinct developmental stages [53]. Therefore, given the
wide range of plasticity rules [54], it is likely to expect other
candidate mechanisms that are complementary to short-
term changes in synaptic strength. Indeed, there is experi-
mental evidence within the literature largely supporting the
interaction between STP and long-term synaptic plasticity
[55-59]. Amongst long-term changes in synaptic strength,
spike timing-dependent plasticity (STDP) has been pro-
posed as a ubiquitous mechanism that strengthens or
weakens synapses based on the relative timing of action
potentials. Despite operating at different timescales, multiple
experimental studies have shown that STP and STDP in-
teract [11, 59-64]. As a potential application of real-time
learning of visually evoked activity, a future extension of our
work aims to combine STP with STDP. An examination of
the synergistic interaction between STP and STDP would
allow us to highlight the functional role of this interaction
during visual information processing. This issue is of par-
ticular importance because it remains an open question as to
how short-term changes in synaptic plasticity work their way
in reorganizing a local neuronal circuit with STDP [54].
Given the importance of applying real-time learning in
robotic systems, we intend to implement the extended model
in a physical robot as a method for validating the functional
role of the interaction between STP and STDP. This ap-
proach will allow us to examine the synergy between these
two ubiquitous mechanisms, as learning unfolds in the
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developing circuit designed to perform motion discrimi-
nation of real-world stimuli from the sensory environment.

5. Conclusion

It is important to note that the work presented here does not
provide a complete biophysical interpretation of the un-
derlying neural computations observed in the brain. There
are a variety of computational models in the literature that
reside at different levels of description, with various levels of
biological detail. Amongst these models, there are trade-offs
of cognitive fidelity against biological fidelity [65]. The
model proposed here presents itself as a model that exhibits
motion discrimination, with a complementary mechanism
that captures neuronal components designed in aiding the
description of neuronal dynamics that transfer at the
behavioural level. Hence, the phenomenological model is
not designed to capture only cognitive function, nor is it
designed to capture only neuronal components and dy-
namics. For example, synaptic transmission is a stochastic
process whereby neurotransmitter release is unreliable.
Hence, from a biophysical standpoint, an incoming action
potential does not guarantee the triggering of neurotrans-
mitter release. In contrast, the STP model proposed here
captures the phenomenology of vesicular release. In doing
so, the model assumes that the stochastic recovery of the
vesicle is eliminated by either pooling the response from
many independent synaptic connections or by taking a trial-
averaged response of the stochastic recovery of the vesicle
from a single synaptic connection. Hence, the model does
not catch the full complexity of the nature of synaptic re-
lease. Despite the assumption of a deterministic model over a
stochastic one, the phenomenological model has been for-
mulated with strong support from electrophysiological data,
capturing response traces accurately fitted by the averaged
model [1]. Consequently, the phenomenological model of
STP is detailed enough to support analyses of experimental
data and general enough to transfer its applicability in a
neurorobotic domain; capturing some aspects of cognition
at the behavioural level, while staying grounded to funda-
mental biological processes. The proposed model therefore
resides at a level of description that falls between the two
ends of the spectrum, with a characterization of information
processing that is useful when describing the performance of
some task with some level of phenomenological abstraction.
Consequently, the model proposed here turns the trade-oft
between full complexity and full cognitive function into a
synergy between the two ends of the spectrum. At the
theoretical level, the current approach in modelling neu-
robiological components intends to study neuronal dy-
namics and their contribution to cognition and behaviour.
Hence, the phenomenological model is designed to be
interpreted in the context of the cognitive functions it
supports. Currently, cognitive models steer away from
neurobiological fidelity, yet successfully implement task-
performing cognitive models of the brain. These models
take sensory inputs and exhibit motor outputs that per-
form experimental tasks that are well in-line with human-
level performance. Conversely, biophysical models capture
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biologically plausible dynamical components of the brain
with a high degree of fidelity but fail to exhibit cognitive task
performance [65]. Hence, the neurobiological basis of the
work presented here is intended to tie computational
neuroscience to tasks of cognitive science, while being
mindful of the compromise between biological plausibility
and computational feasibility. As behaviour is deeply cou-
pled not only in the underlying neuronal dynamics, but also
by the anatomical constraints of the physical body it con-
trols, the overall aim of this study was to provide a step
forward in applying well-established models from neuro-
science into the domain of neurorobotics. In doing so, it
highlights the contribution of STP predominantly in the
context of a motion discrimination task applied in a neu-
rorobotic domain and uses an embodied robot as a method
for qualitatively and quantitatively capturing the response
characteristics of direction-selective cells in V1.

Data Availability

The experimental data used to support the findings of this
study were supplied by Adam Kohn under license and so
cannot be made freely available. Requests for access to these
data should be made to Jeft Teeters, jteeters@berkeley.edu.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

We are thankful to André Cyr and Matias Calderini for
useful comments and Adam Kohn for allowing access to the
experimental dataset. This research was supported by the
Natural Sciences and Engineering Research Council of
Canada (NSERC) (210663) and the Ontario Graduate
Scholarship (OGS) award program.

Supplementary Materials

S1. A video clip of the real-time robotic simulation setup and
the corresponding spatiotemporal patterns of activity of all
six units. S2. A video clip of the spatiotemporal patterns of
activity of the two-unit model. (Supplementary Materials)

References

[1] M. V. Tsodyks and H. Markram, “The neural code between
neocortical pyramidal neurons depends on neurotransmitter
release probability,” Proceedings of the National Academy of
Sciences, vol. 94, no. 2, pp. 719-723, 1997.

[2] J. L. Krichmar, J. Conradt, and M. Asada, “Neurobiologically
inspired robotics: enhanced autonomy through neuro-
morphic cognition,” Neural Networks, vol. 72, pp. 1-2, 2015.

[3] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick,
“Neuroscience-inspired  artificial intelligence,” Neuron,
vol. 95, no. 2, pp. 245-258, 2017.

[4] M.-J. Escobar, G. S. Masson, T. Vieville, and P. Kornprobst,
“Action recognition using a bio-inspired feedforward spiking


mailto:jteeters@berkeley.edu
http://downloads.hindawi.com/journals/cin/2019/6989128.f1.zip

Computational Intelligence and Neuroscience

network,” International Journal of Computer Vision, vol. 82,
no. 3, pp. 284-301, 2009.

[5] Q. Wu, T. M. Mcginnity, L. Maguire, and J. Cai, “Motion
detection using spiking neural network model,” in Proceedings
of the International Conference on Intelligent Computing,
pp. 76-83, Shanghai, China, September 2008.

[6] S. V Adams and C. M. Harris, “A computational model of
innate directional selectivity refined by visual experience,”
Scientific Reports, vol. 5, no. 1, article 12553, 2015.

[7] R. S. Zucker and W. G. Regehr, “Short-term synaptic plas-
ticity,” Annual Review of Physiology, vol. 64, no. 1, pp. 355-
405, 2002.

[8] L. F. Abbott and W. G. Regehr, “Synaptic computation,”
Nature, vol. 431, no. 7010, pp- 796-803, 2004.

[9] J. S. Dittman, A. C. Kreitzer, and W. G. Regehr, “Interplay
between facilitation, depression, and residual calcium at three
presynaptic terminals,” Journal of Neuroscience, vol. 20, no. 4,
pp. 1374-1385, 2000.

[10] T.P. Carvalho, “A novel learning rule for long-term plasticity
of short-term synaptic plasticity enhances temporal pro-
cessing,” Frontiers in Integrative Neuroscience, vol. 5, pp. 1-11,
2011.

[11] H. Markram and M. Tsodyks, “Redistribution of synaptic
efficacy between neocortical pyramidal neurons,” Nature,
vol. 382, no. 6594, pp. 807-810, 1996.

[12] L. F. Abbott, J. A. Varela, K. Sen, and S. B. Nelson, “Synaptic
depression and cortical gain control,” Science, vol. 275,
no. 5297, pp. 220-224, 1997.

[13] M. S. Goldman, P. Maldonado, and L. F. Abbott, “Re-
dundancy reduction and sustained firing with stochastic
depressing synapses,” Journal of Neuroscience, vol. 22, no. 2,
pp. 584-591, 2002.

[14] M. C. W. Van Rossum, M. A. A. Van Der Meer, D. Xiao, and
M. W. Oram, “Adaptive integration in the visual cortex by
depressing recurrent cortical circuits,” Neural Computation,
vol. 20, no. 7, pp. 1847-1872, 2008.

[15] R. P. Costa, R. C. Froemke, P. J. Sjostrom, and
M. C. W. van Rossum, “Unified pre- and postsynaptic long-
term plasticity enables reliable and flexible learning,” Elife,
vol. 4, pp. 1-16, 2015.

[16] P.-Y. Deng and V. A. Klyachko, “The diverse functions of
short-term plasticity components in synaptic computations,”
Communicative & Integrative Biology, vol. 4, no. 5, pp. 543—
548, 2011.

[17] Z. Rotman, P.-Y. Deng, and V. A. Klyachko, “Short-term
plasticity optimizes synaptic information transmission,”
Journal of Neuroscience, vol. 31, no. 41, pp. 14800-14809, 2011.

[18] A. Klug, J. G. G. Borst, B. A. Carlson, C. Kopp-Scheinpflug,
V. A. Klyachko, and M. A. Xu-Friedman, “How do short-term
changes at synapses fine-tune information processing?,”
Journal of Neuroscience, vol. 32, no. 41, pp. 14058-14063, 2012.

[19] W. X. Chen and D. V. Buonomano, “Developmental shift of
short-term synaptic plasticity in cortical organotypic slices,”
Neuroscience, vol. 213, pp. 38-46, 2012.

[20] R. S. Larsen, I. T. Smith, J. Miriyala et al., “Synapse-specific
control of experience-dependent plasticity by presynaptic
NMDA receptors,” Neuron, vol. 83, no. 4, pp. 879-893, 2014.

[21] J. Urban-Ciecko, J. A. Wen, P. K. Parekh, and A. L. Barth,
“Experience-dependent regulation of presynaptic NMDARs
enhances neurotransmitter release at neocortical synapses,”
Learning & Memory, vol. 22, no. 1, pp. 47-55, 2015.

[22] K.]. Bender, “Synaptic basis for whisker deprivation-induced
synaptic depression in rat somatosensory cortex,” Journal of
Neuroscience, vol. 26, no. 16, pp. 4155-4165, 2006.

13

[23] C.E.]J. Cheetham and K. Fox, “The role of sensory experience
in presynaptic development is cortical area specific,” Journal
of Physiology, vol. 589, no. 23, pp. 5691-5699, 2011.

[24] G.T. Finnerty, L. S. E. Roberts, and B. W. Connors, “Sensory
experience modifies the short-term dynamics of neocortical
synapses,” Nature, vol. 400, no. 6742, pp. 367-371, 1999.

[25] A. E. Takesian, V. C. Kotak, and D. H. Sanes, “Presynaptic
GABAB receptors regulate experience-dependent develop-
ment of inhibitory short-term plasticity,” Journal of Neuro-
science, vol. 30, no. 7, pp- 2716-2727, 2010.

[26] T. Abrahamsson, C. Y. C. Chou, S. Y. Li et al., “Differential
regulation of evoked and spontaneous release by presynaptic
NMDA receptors,” Neuron, vol. 96, no. 4, pp. 839.e5-855.¢5,
2017.

[27] R. S. Larsen and P. J. Sjostrom, “Synapse-type-specific plas-
ticity in local circuits,” Current Opinion in Neurobiology,
vol. 35, pp. 127-135, 2015.

[28] A.Banerjee, R. S. Larsen, B. D. Philpot, and O. Paulsen, “Roles

of presynaptic NMDA receptors in neurotransmission and

plasticity,” Trends in Neurosciences, vol. 39, no. 1, pp. 26-39,

2016.

P. Paoletti, C. Bellone, and Q. Zhou, “NMDA receptor subunit

diversity: impact on receptor properties, synaptic plasticity

and disease,” Nature Reviews Neuroscience, vol. 14, no. 6,

pp. 383-400, 2013.

[30] S. Carver, E. Roth, N. J. Cowan, and E. S. Fortune, “Synaptic
plasticity can produce and enhance direction selectivity,”
PLoS Computational Biology, vol. 4, no. 2, article e32, 2008.

[31] F. S. Chance, S. B. Nelson, and L. F. Abbott, “Synaptic de-
pression and the temporal response characteristics of V1 cells,”
Journal of Neuroscience, vol. 18, no. 12, pp. 4785-4799, 1998.

[32] D. Hansel and G. Mato, “Short-term plasticity explains ir-
regular persistent activity in working memory tasks,” Journal
of Neuroscience, vol. 33, no. 1, pp. 133-149, 2013.

[33] N.J. Buchs and W. Senn, “Spike-based synaptic plasticity and
the emergence of diretion selective simple cells: simulation
results,” Journal of Computational Neuroscience, vol. 13, no. 3,
pp. 167-186, 2002.

[34] N. Berberian, M. Ross, S. Chartier, and J.-P. Thivierge,
“Synergy between short-term and long-term plasticity ex-
plains direction-selectivity in visual cortex,” in Proceedings of
the IEEE Symposium Series on Computational Intelligence,
pp- 1-8, Honolulu, HI, USA, November-December 2017.

[35] H. Ko, L. Cossell, C. Baragli et al, “The emergence of
functional microcircuits in visual cortex,” Nature, vol. 496,
no. 7443, pp. 96-100, 2013.

[36] E. Vasilaki and M. Giugliano, “Emergence of connectivity
motifs in networks of model neurons with short- and long-
term plastic synapses,” PLoS One, vol. 9, no. 1, Article ID
€84626, 2014.

[37] L. Cossell, M. F. Iacaruso, D. R. Muir et al., “Functional
organization of excitatory synaptic strength in primary visual
cortex,” Nature, vol. 518, no. 7539, pp. 399-403, 2015.

[38] M. A. Smith and A. Kohn, “Spatial and temporal scales of
neuronal correlation in primary visual cortex,” Journal of
Neuroscience, vol. 28, no. 48, pp. 12591-12603, 2008.

[39] R.C. Kelly, M. A. Smith, R. E. Kass, and T. S. Lee, “Local field
potentials indicate network state and account for neuronal
response variability,” Journal of Computational Neuroscience,
vol. 29, no. 3, pp. 567-579, 2010.

[40] J. R. Cavanaugh, “Nature and interaction of signals from the
receptive field center and surround in macaque V1 neurons,”
Journal of Neurophysiology, vol. 88, no. 5, pp. 2530-2546,
2002.

(29



14

[41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

(54]

(55]

(56]

(57]

G. Mongillo, O. Barak, and M. Tsodyks, “Synaptic theory of
working memory,” Science, vol. 319, no. 5869, pp. 1543-1546,
2008.

A. Kohn and M. A. Smith, “Utah array extracellular re-
cordings of spontaneous and visually evoked activity from
anesthetized Macaque primary visual cortex (V1),” in Pro-
ceedings of the Collaborative Research in Computational
Neuroscience (CRCNS 2016), Albert Einstein College of
Medicine, New York, NY, USA, 2016.

A. A. Faisal, L. P. J. Selen, and D. M. Wolpert, “Noise in the
nervous system,” Nature Reviews Neuroscience, vol. 9, no. 4,
pp. 292-303, 2008.

M. M. Churchland, B. M. Yu, J. P. Cunningham et al.,
“Stimulus onset quenches neural variability: a widespread
cortical phenomenon,” Nature Neuroscience, vol. 13,
pp. 369-378, 2010.

J. A. Varela, K. Sen, J. Gibson, J. Fost, L. F. Abbott, and
S. B. Nelson, “A quantitative description of short-term
plasticity at excitatory synapses in layer 2/3 of rat primary
visual cortex,” Journal of Neuroscience, vol. 17, no. 20,
pp. 7926-7940, 1997.

T. A. Engel, N. A. Steinmetz, M. A. Gieselmann, A. Thiele,
T. Moore, and K. Boahen, “Selective modulation of cortical
state during spatial attention,” Science, vol. 352, no. 6316,
pp. 1140-1144, 2016.

G. Vingci, V. Ventura, M. A. Smith, and R. E. Kass, “Separating
spike count correlation from firing rate correlation,” Neural
Computation, vol. 28, no. 5, pp. 849-881, 2016.

A. Roy, I. K. Christie, G. M. Escobar et al., “Does experience
provide a permissive or instructive influence on the devel-
opment of direction selectivity in visual cortex?,” Neural
Development, vol. 13, no. 1, pp. 1-11, 2018.

S. D. Van Hooser, Y. Li, M. Christensson, G. B. Smith,
L. E. White, and D. Fitzpatrick, “Initial neighborhood biases
and the quality of motion stimulation jointly influence the
rapid emergence of direction preference in visual cortex,”
Journal of Neuroscience, vol. 32, no. 21, pp. 7258-7266, 2012.
A. S. Ecker, P. Berens, A. S. Tolias, and M. Bethge, “The effect
of noise correlations in populations of diversely tuned neu-
rons,” Journal of Neuroscience, vol. 31, no. 40, pp. 14272-
14283, 2011.

Y. Li, S. D. Van Hooser, M. Mazurek, L. E. White, and
D. Fitzpatrick, “Experience with moving visual stimuli drives
the early development of cortical direction selectivity,” Na-
ture, vol. 456, no. 7224, pp- 952-956, 2008.

A. Cyr, F. Thériault, M. Ross, N. Berberian, and S. Chartier,
“Spiking neurons integrating visual stimuli orientation and
direction selectivity in a robotic context,” Frontiers in Neu-
rorobotics, vol. 12, pp. 1-10, 2018.

J. M. Clemens, N. J. Ritter, A. Roy, J. M. Miller, and
S. D. Van Hooser, “The laminar development of direction
selectivity in ferret visual cortex,” Journal of Neuroscience,
vol. 32, no. 50, pp. 18177-18185, 2012.

H. Markram, W. Gerstner, and P. J. Sjostrom, “A history of
spike-timing-dependent plasticity,” Frontiers in Synaptic
Neuroscience, vol. 3, pp. 1-24, 2011.

H. Markram, J. Liitbke, M. Frotscher, and B. Sakmann, “Reg-
ulation of synaptic efficacy by coincidence of postsynaptic APs
and EPSPs,” Science, vol. 275, no. 5297, pp. 213-215, 1997.
H. R. Monday and P. E. Castillo, “Closing the gap: long-term
presynaptic plasticity in brain function and disease,” Current
Opinion in Neurobiology, vol. 45, pp. 106-112, 2017.

A. Loebel, J.-V. Le Be, M. J. E. Richardson, H. Markram, and
A. V. M. Herz, “Matched pre- and post-synaptic changes

(58]

(59]

[60]

(61]

(62]

(63]

[64]

[65]

Computational Intelligence and Neuroscience

underlie synaptic plasticity over long time scales,” Journal of
Neuroscience, vol. 33, no. 15, pp. 6257-6266, 2013.

H. R. Monday, T. J. Younts, and P. E. Castillo, “Long-term
plasticity of neurotransmitter release: emerging mechanisms
and contributions to brain function and disease,” Annual
Review of Neuroscience, vol. 41, no. 1, pp. 299-322, 2018.

P. J. Sjostrom, G. G. Turrigiano, and S. B. Nelson, “Multiple
forms of long-term plasticity at unitary neocortical layer 5
synapses,” Neuropharmacology, vol. 52, no. 1, pp. 176-184,
2007.

V. Bolshakov and S. Siegelbaum, “Regulation of hippocampal
transmitter release during development and long-term po-
tentiation,” Science, vol. 269, no. 5231, pp. 1730-1734, 1995.
P.]J. Sjostrom, G. G. Turrigiano, and S. B. Nelson, “Neocortical
LTD via coincident activation of presynaptic NMDA and
cannabinoid receptors,” Neuron, vol. 39, no. 4, pp. 641-654,
2003.

H. Tokuoka and Y. Goda, “Activity-dependent coordination
of presynaptic release probability and postsynaptic GluR2
abundance at single synapses,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 105,
no. 38, pp. 14656-14661, 2008.

1. Jin, S. Puthanveettil, H. Udo, K. Karl, E. R. Kandel, and
R. D. Hawkins, “Spontaneous transmitter release is critical for
the induction of long-term and intermediate-term facilitation
in Aplysia,” Proceedings of the National Academy of Sciences,
vol. 109, no. 23, pp. 9131-9136, 2012.

M. Kintscher, C. Wozny, F. W. Johenning, D. Schmitz, and
J. Breustedt, “Role of RIM1a in short-and long-term synaptic
plasticity at cerebellar parallel fibres,” Nature Communica-
tions, vol. 4, no. 1, article 2392, 2013.

N. Kriegeskorte and P. K. Douglas, “Cognitive computational
neuroscience,” Nature Neuroscience, vol. 21, pp. 1148-1160,
2018.



Hindawi

Computational Intelligence and Neuroscience
Volume 2019, Article ID 8361369, 8 pages
https://doi.org/10.1155/2019/8361369

Research Article

Spatial Concept Learning: A Spiking Neural Network
Implementation in Virtual and Physical Robots

André Cyr®" and Frédéric Thériault

!School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
’Department of Computer Science, Cégep du Vieux Montréal, Montréal, Quebec, Canada

Correspondence should be addressed to André Cyr; andre.cyrl@videotron.ca

Received 21 September 2018; Accepted 11 March 2019; Published 1 April 2019

Academic Editor: Reinoud Maex

Copyright © 2019 André Cyr and Frédéric Thériault. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

This paper proposes an artificial spiking neural network (SNN) sustaining the cognitive abstract process of spatial concept
learning, embedded in virtual and real robots. Based on an operant conditioning procedure, the robots learn the relationship of
horizontal/vertical and left/right visual stimuli, regardless of their specific pattern composition or their location on the images.
Tests with novel patterns and locations were successfully completed after the acquisition learning phase. Results show that the
SNN can adapt its behavior in real time when the rewarding rule changes.

1. Introduction

Mastering abstract concepts seems like a key to reach a
higher level of cognition, allowing animals to gather more
complex knowledge [1]. Concepts save time by avoiding
learning every stimuli, regrouping them in general categories
to deal with new situations. According to Zentall et al. [2],
three main hierarchical types of abstract concepts are de-
fined. Perceptual or natural abstract concepts consist in
finding physical similarities between different objects or
stimuli and are a first type of categorization. A second type,
relational concepts, concerns the general rule or abstract
relationship between stimuli that is not directly related to
their specific physical attributes. In that sense, it is a second-
order process [3, 4]. For example, sizes (such as small and
large) are abstract categories that are determined by com-
paring the sizes of the presented objects. Thus, the di-
mensional relationship is not tied to the exact physical size of
the objects but compared and developed from experience.
Finally, associative or functional concepts imply that one
stimulus or characteristic is interchangeable with another
one (i.e., Dogs-Barking). This paper focuses on spatial ab-
stract concepts as a prior step toward achieving a relational
above/below neural circuit.

There is an abundant collection of empirical data on
relational concepts, as well as in the literature. Animal
models and methodologies are also numerous with many
levels of comparison [5-9]. Recently, this higher cognitive
process was explored with invertebrates. Astonishingly, it
was shown that bees could learn several different types of
relational concepts, despite having a small brain that consists
of less than one million neurons [10-15]. Even if some
progress is made to relate the learning process and the neural
substrates [16], no precise neural circuit is currently known
to explain concept learning from a complete sensory to
motor architecture, be it natural or artificial. Also, the re-
lationship between perceptual and relational concept levels
remains mostly unexplored from a computational neuro-
robotic perspective.

Neural modeling is one computational tool that that
maybe helpful for approaching this problem, more pre-
cisely by elaborating a precise artificial neural circuit that
correlates the behavioral observations. Few articles have
explored the abstract concept learning process phenome-
non from this angle. Therefore, this article seeks to further
study the topic under a spiking neural network (SNN)
paradigm. Moreover, this research also goes a step beyond
an SNN by implementing the whole cognitive process in a
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complete virtual and physical neurorobotic model [17].
This allows validation of the proposed computational
model in a brain-body-environment or embodied cognitive
context [18].

SNNs are bioinspired neural models that have em-
phasis on single spike events and their temporal-
coincidental relations [19, 20]. Generally, the learning
rule used from these neural models is based on synaptic
changes from a spike-timing dependent plasticity (STDP)
process [21-23]. As such, this paper uses a specific SNN
model to sustain the representation of a spatial concept
learning process.

In this study, a spatial visual task with different images
composed of horizontal/vertical and left/right patterns are
shown in front of a static robot. From an operant condi-
tioning procedure, the robot has to decide which side to
choose (left or right). Hence, from reinforcements, it learns
to associate different spatial relations, independently of
specific stimulus patterns shown and their locations. This
visual learning scenario is partially inspired from the one
made with bees [11, 24], which fully succeeded in learning
two relational abstract concepts (above/below, left/right, and
same/different) with generalization transfer tests. This paper
is in the continuity of our previous work, which was to build
an SNN that sustains the identity concept learning process in
the neurorobotic domain [25].

The next section describes the methodology and the
details on the learning protocol. It is followed by results,
highlighting the spatial concept learning process from the
synaptic to the behavioral changes. The last section contains
a discussion on the current model’s limitations and the
future perspectives of this learning model.

2. Methodology

2.1. Protocol. The visual task consists in learning horizontal/
vertical and left/right spatial concepts. Images are projected
in front of a robot. Each of them has two sides (left and
right): one side contains two black/white motifs aligned
vertically and the other side contains two motifs aligned
horizontally (Figure 1). The first experiment consists of
grouping patterns (horizontal or vertical), which are per-
muted on three possible positions on each side. Thus, all
images are first randomized for the side of the horizontal and
vertical patterns, second for the position, and third for the
individual stimulus patterns composing them (Figure 2).
Images cover the whole field of view of the robot’s camera.
The second experiment tests stimuli on novel locations, once
the learning phase is completed. Finally, a third experiment
allows to validate the SNN under less precise conditions, by
using a real robot.

Following an image capture, the robot takes a di-
chotomous left or right decision according to a chosen
stimulus, randomly selected prior to learning. This action is
manifested by directly rotating its motor towards it. From a
conditioning procedure, a reward is consistently applied on
the vertical or the horizontal motif, depending on the
desired learning rule. Along with the task and with few
positive reinforcers, the robot learns the horizontal/vertical
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or left/right relation, ignoring the exact individual pattern
features as well as its location on its side. To validate the
robustness of the SNN, the experiment ends with the
presentation of novel patterns at new locations.

2.2. Architecture. The neural circuit is organized into four
basic layers: a sensory input layer, an integrative layer, a
decision layer, and a motor output layer (Figure 3). The
sensory visual neurons are linked to a camera that captures
images of 4:3 ratio. These neurons are arranged in a 3 x15
array, with each of them overlapping a different spatial
section, hence completely covering the visual field. In this
experiment, sensory neurons only integrate black intensity
with numerical values. These are averaged and normalized in
a percentage scale. Therefore, the spiking activities of sensory
visual neurons reflect the stimulus patterns shown in front of
the robot. Once an image of the robot’s view is captured, a
cooldown prevents the camera from triggering before an
action is made. Otherwise, constant stimulus inputs from
this layer would prevent the SNN from integrating and
acting on a single image.

The sensory input layer forwards signals to integrative
neurons. These are topographically organized in a neigh-
borhood configuration, separated in left/right and upper/
mid/lower logical sections. In the current model, the first
level of integration is composed of 12 neurons (six for
vertical and six for horizontal detection). This allows the
SNN to react to local stimuli. More precisely, each in-
tegrative element can respond to any vertical or horizontally
displayed black stimulus. A second integrative level regroups
all horizontal and vertical neurons for each side (View-
VerticalLeft, ViewVerticalRight, ViewHorizontalLeft, and
ViewHorizontalRight).

From the integrative neurons, signals are propagated to
the decision layer, more precisely to the Predictor neurons.
Those Predictor neurons are linked to their associated
Choose neuron (ChooseLeft, ChooseRight, ChooseVert, and
ChooseHor) with a weak excitatory synapse and a synaptic
learning rule (STDP) and are also connected to the action
layer. Prior to learning, Predictor neurons cannot trigger
Choose neurons alone. As rewards are given, the STDP rule
strengthens those specific synapses. This eventually allows
the correct Predictor to trigger its associated Choose neuron.
Rewards are simulated by moving a block in front of an
infrared sensor located at the back of the robot. In this study,
the learning rule from STDP needs a third factor (the re-
ward) to be activated [26, 27]. When no reward is given, it
implies that the robot took a wrong decision and the synapse
strongly weakens.

The decision layer also contains Go neurons (GoV-
ertLeft, GoVertRight, GoHorLeft, GoHorRight). For ex-
ample, when the horizontal Choose neuron spikes, the Go
horizontal neuron allows the proper action (turn left/right)
to be done, depending on where the horizontal stimulus is
located.

The action layer consists of two motor neurons (Action-
TurnLeft, Action-TurnRight), orienting the robot towards
the chosen side. Prior to learning, when a pattern is detected
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F1GURE 1: Similar virtual and physical environments, showing the robots and their view. On the left side, the virtual environment displays
the robot’s view on the bottom left part. In this case, it consists of a left vertical and a right horizontal image, composed of two different

patterns (O and X).
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FiGure 2: All patterns used in this study. The top six patterns are
shown in the first part of the experiment. The three lower patterns
represent the novel patterns used at the end of the simulation.

in the sensory visual layer, a randomized action is triggered
by sending a delayed signal to motor neurons. This action
could eventually be bypassed from the Predictor neurons in
the decision neural, after learning.

2.3. Neural Dynamic. The spiking neural model used in this
paper and the neural architecture were achieved with the
SIMCOG software [28]. The neural dynamic is based on
standard properties, which are membrane potential varia-
tion (equations (1), (3), and (4)), nonlinear integration of
excitatory/inhibitory inputs (equation (2)), threshold for
spike events, absolute refractory period, and an after spike
hyperpolarization state. Since the neural circuit is well de-
fined, the tuning of the starting synaptic weights was
manually adjusted prior to launching the final experiment
(supplementary materials for starting synaptic weight values
at http://aifuture.com/res/2018-spatial). The learning rule
used in the proposed model integrates a STDP function
(equation (5)) only available for synapses in the decision
layer.
Leaky integrator neural dynamic:

Vi (k) = f(vm (k=1) + Y v,), (1)

where v, (k) = membrane potential at cycle k, v; = synaptic
input as calculated in equation (2), and f=membrane
potential curve as calculated in equation (3).

General function describing the postsynaptic potential
curve:

ae ', if t <t Max,
v;(t) = (2)

0, if t > t Max,

where a =maximum amplitude (set from 2 to 20), 7=tau
(set to 7), t = time since spike (cycle), and t Max = maximum
duration of a PSP (set from 1 to 10 cycles).
Membrane potential function:
g(Vm»0),  if v, <v,, Rest,

v, Rest, elseif v, = v, Rest,

V) = (3)
ALY g(vmr 1),  elseif v, <v,, Threshold,

100, else,
where v, Rest=membrane potential rest value (set as 43)

and v, Threshold = threshold value (set as 65).
Membrane potential output:

(v d) { min (each vinvec wherev>v,)), ifd=0,

Voo d) =

g max (eachvinvecwherev<v, ), ifd=1,
(4)

where vec = [4, 11, 18, 23, 28, 32, 36, 42, 43, 44, 45, 47, 50, 53,
58, 65, 100], ascending phase to reach threshold=
exp (0.8 + 0.3 = t) + 40 for each f from 0 to 8, ascending phase
from post action potential to rest = log 10(0.9 + 0.2 * t) * 100
for each t from 1 to 7, and action potential = 100.

General STDP function.

Aw=a*bse™ (tpost_tpre)/c) %)

where Aw = synaptic weight change, a = multiplicator factor
(set to 1.0), b=1 when t,,>t,., —1 when f,, <t
¢ =time-constant (set to 100/3), STDP coeflicients for Aw:
duration of the synaptic change = 1000 cycles, max. synaptic
change in one paired spike = 25%, and max. global synaptic

change = 100%.
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FIGURE 3: Full view of the SNN architecture, composed of the robot and four different functional neural layers.

2.4. Physical Environment. After tuning the SNN parameters
and evaluating them in a virtual world, it was embedded in a
physical environment using a Raspberry Pi 3 mounted with a
160 x 120 resolution camera and two servomotors (for pan/
tilt camera rotation). The objective of this simulation was to
verify the SNN’s capability to learn with less precise variables
(i.e., timing of events, camera detection, etc.). To embed the
SNN in the Raspberry Pi robot, it only required a single
modification. Since the robot does not contain infrared
sensors, the reward was instead given by displaying a red
sheet of paper in front of it. Hence, an additional reward
visual neuron was linked to the camera, in order to perceive
the red color.

3. Results

Figure 4 represents the neural behavior dynamic of the main
elements achieving the spatial concept learning task. For
each trial, the sensory neural layer (3 x 15 array of neurons)
captures the image with one horizontal pattern on one side

and one vertical pattern on the other side. These are
composed of two different black and white motifs (3 x4
pixels). Three examples of the robot’s view are shown at the
top of the figure. The sensory layer forwards the signal to the
integrative layer resulting in associated spike events of the
four main neurons (graphics A to D). From these, a single
Choose neuron from the decision neural layer (graphics E to
H) emits an action potential.

In the first experiment, the desired output was set on the
vertical stimulus. Then the rewarding rule was modified, as
of cycle 2000, to give a reward when choosing the horizontal
pattern. One can see that the SNN fully adapted its behavior
even when changing the rewarding rules online. The reverse
situation (learning horizontal stimulus before the vertical
one) was also tested with no effect on the learning procedure
(not shown). Since the image sequence is randomized, in-
cluding both the patterns and the horizontal or vertical sides,
several trials were done. In all cases, the SNN succeeded in
learning, adapting its behavior according to the desired
output.
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Dynamical neural events of a spatial concept learning task: pattern novelty test
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FIGURE 4: Dynamical neural representations of the virtual simulation, showing the SNN’s behavioral adaptation according to given rewards.
Graphics A-K represent neural spike events and L-O consist of synaptic STDP coefficients. The final test includes novel patterns composing the
stimulus. In the top row of the figure, only few images from the whole set are shown for clarity, the arrow indicating the perceived stimulus.

At the beginning of the simulation, the synaptic links
between the Predictor neurons and the Choose neurons are
weak. Thus, the choice of action is random. During the
experiment, a positive reinforcement (Graphic I) is applied
when the SNN succeeds in choosing the correct action
(Graphics J and K). This learning process is shown in
graphics L to O with an increase in the synaptic weights from
several rewards. The learning step factor was designed to
reach the threshold point after three correct associations, but
it could have been done differently for smooth learning or
even to trigger a learnt response after a single correct trial.
When the SNN constantly predicted the correct action, a last
test was done with novel patterns (see example at cycle 4100).

In the second experiment, most images were displaying
verticals on the left side, up until cycle 2200 (Figure 5). This

allowed the SNN to learn between two choices: left and
vertical. To prevent the robot from only learning the left
side rule (from the ChooseLeft neuron), few horizontal-
left/horizontal-right images were shown (for example, see
at cycle 250). After cycle 2200, vertical patterns were
shown on the right, verifying that the SNN could still use
the learnt vertical rule even though it was on a novel
location.

The real experimentation, using the Raspberry Pi, gave
similar results, though it was necessary to run the experi-
ment a few times before succeeding. The main difficulty
here was with respect to the timing and manual image
adjustments in front of the camera; otherwise, it was not
capturing images correctly in the sensory input layer. Also,
since no infrared sensors were available on the real robot, the
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Dynamical neural events of a spatial concept learning task: location novelty test
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rewards. Graphics A-K represent neural spike events and L-O consist of synaptic STDP coefficients. The final test includes a novel location of
the stimulus. In the top row of the figure, only few images from the whole set are shown for clarity, the arrow indicating the perceived stimulus.

rewards were instead given by showing red colored papers in
front of it, which were perceived by its camera. This added
some artifacts during the simulation. Video and simulation
results are available as supplementary materials: http://
aifuture.com/res/2018-spatial.

4. Discussion

Abstract concept learning is thought to be a higher cognitive
process and a key feature of intelligent natural species. The
recent literature in neuroscience suggests that that even
invertebrates with small brains could reach this level of

complexity. This attractive fact stimulates the emulation of
the cognitive phenomenon with a bioinspired artificial
spiking neurons approach embedded in a neurorobotic
model. One working hypothesis of this paradigm relies on a
level of computational general intelligence level, based on
functional cognitive processes that are related for specific
physical body structures and environments. However, the
simulation of a cognitive process from a precise artificial
neural circuit and a given robot implementation does not
intend to reflect a natural one, but only reproduce the
function and the behavior with artificial substrates,
grounded in a real-world context.
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This project intends to be a prior step to reach the re-
lational concept level, from designing a specific SNN as-
sociated to the spatial abstract concepts of horizontal/
vertical and left/right. Beyond the main objective of simu-
lating this learning process through a neurorobotic model,
the present experimentation also serves as a prototype model
to further study the development of a general neural design,
which could sustain the three different types of concept
learning, as well as several forms of concept inside each
category.

In its current form, the SNN model is limited by its small
visual scale (retina) and a single color perception (black).
The SNN design is also restricted to detect perfect horizontal
or vertical stimuli. Hence, it would be unable to perform
when seeing an angled stimulus in front of it, which is
another possible test for the generalization property. In the
same perspective, scaling up or down stimuli was not
possible in this experiment, again from the limitative ca-
pability of the retina. However, these issues could be cor-
rected in future works. Furthermore, a higher discrimination
would be a desirable feature to include in the present SNN
model, since it is needed in the above/below and same/
different relational concepts, as well as its full validation
from transfer tests. However, we believe that the core neural
layers of this architecture would remain and could be used in
more related complex studies.

Does the relational concept learning process emerge
from experiences and synaptic modifications of an existing
neural circuit, or does it need the addition of new neurons as
in the developmental neural phases? Is the relational concept
structured in a bottom-up neural hierarchy? Does the first-
order perceptual level of categorization sustain the second-
order relational abstract concept? As a start toward an-
swering those questions from a neurorobotic model per-
spective, the proposed SNN allows learning two spatial
concepts from a specific set of neurons and synapses. At first,
the learning rule was unknown for the robot, but as rewards
were given, the SNN adapted its behavior from supervised
reinforcements in an operant conditioning procedure. Also,
the SNN exhibited a behavioral plasticity when changing the
rewarding rule online.

In the present experiments, it is not necessary to dis-
criminate stimulus patterns, for example, to differentiate the
black square stimulus and the X shape stimulus. This lower
level of perception was not required to achieve the spatial
learning task for left/right and horizontal/vertical patterns.
However, it certainly represents a critical step to reach the
relational abstract learning level. For example, in the above/
below scenario, determining the constant visual spatial
referent while the location of the other visual pattern varies
requires a perceptual discrimination and a functional action
of comparison. This is a future work for our team to integrate
the present model and build an SNN that links this spatial
concept level to a second-order relational concept.

Another objective of this paper is to provide comparative
experimental data between different computational robotic
models, as well as developing benchmarks for testing in-
cremental complexity scenarios in the field of abstract
concept learning.

5. Conclusion

This paper shows that the proposed SNN, controlling virtual
and physical robots, succeeded to learn the spatial concept of
horizontal/vertical and left/right visual patterns from a
conditioning procedure and synaptic modifications. This
experiment intends to be a first step study to reach the
second-order relational concepts as in the above/below case.
We believe that this bioinspired approach may open new
perspectives to reach higher artificial cognition in the
neurorobotic domain.

Data Availability

The complete access to all parameters and result data used to
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A bioinspired adaptive model, developed by means of a spiking neural network made of thousands of artificial neurons, has been
leveraged to control a humanoid NAO robot in real time. The learning properties of the system have been challenged in a classic
cerebellum-driven paradigm, a perturbed upper limb reaching protocol. The neurophysiological principles used to develop the
model succeeded in driving an adaptive motor control protocol with baseline, acquisition, and extinction phases. The spiking
neural network model showed learning behaviours similar to the ones experimentally measured with human subjects in the same
task in the acquisition phase, while resorted to other strategies in the extinction phase. The model processed in real-time external
inputs, encoded as spikes, and the generated spiking activity of its output neurons was decoded, in order to provide the proper
correction on the motor actuators. Three bidirectional long-term plasticity rules have been embedded for different connections
and with different time scales. The plasticities shaped the firing activity of the output layer neurons of the network. In the
perturbed upper limb reaching protocol, the neurorobot successfully learned how to compensate for the external perturbation
generating an appropriate correction. Therefore, the spiking cerebellar model was able to reproduce in the robotic platform how

biological systems deal with external sources of error, in both ideal and real (noisy) environments.

1. Introduction

This work belongs to neurorobotics, a discipline that has the
objective to replicate typical animal behaviours in robotic
platforms. Its aim is to develop systems that, through specific
algorithms and computational models inspired by biology
and physiology, are capable of mimicking the sensory and
motor control mechanisms of animals and humans. This
ambitious objective is pursued in order to develop a better
understanding of the biological mechanisms that rule our
behaviours. The obtained technology and systems will also
provide valuable feed-back and feed-forward control
functions that could introduce sensory-motor coordination
in robots. In this work, we focused on a bioinspired cere-
bellar simulator integrated into the controller of a humanoid

robot. We tested its learning properties in the typical sen-
sorimotor task of perturbed upper limb reaching [1].
Motor control is one of the main tasks of the central
nervous system (CNS), and many hypotheses on its oper-
ating principles and mechanisms have been proposed.
Considering the intimate relation between the motor control
system and the sensory system in the motor execution, it is
possible to refer to their combined behaviour as a senso-
rimotor loop. This loop combines both feed-forward and
feed-back strategies where the sensory and cognitive pro-
cesses are the inputs that generate the next motor output.
Computationally, the CNS is represented by the system that
processes the inputs and generates the outputs. The inputs
consist of all the sensory information from external and
proprioceptive receptors as well as the cognitive internal
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signals. The output is the motor command directed to the
muscles which will produce an effect on the environment.
The sensorimotor loop comprehends many different sub-
structures and, among the others, the cerebellum. It has a
major role in the fine motor control and in the learning of
motor tasks and association patterns. The cerebellum pro-
cesses the data from many sensory channels (i.e., vestibular
and proprioceptive) and combines them with the previous
motor commands to produce the updated motor commands
for the next execution. The cerebellum is also supposed to be
involved in a large amount of cognitive learning processes
[2]. The paradigms assessed in literature, stressing the
cerebellar role, are the eye blinking classical conditioning for
the associative tasks [3], the vestibule-ocular reflex (VOR)
[4], and the perturbed upper limb reaching for the motor
control [5].

More than half of all the brain neurons are located in the
cerebellum, which accounts for just the 10% of the brain
mass. The cerebellar cells are thus densely packed in the grey
matter of the highly convoluted cerebellar cortex and in the
four deep cerebellar nuclei, on both brain hemispheres. The
cerebellar cortex is composed of three layers, which include
at least five types of cells. The cerebellar structure and its
functional behaviours have been deeply analysed. During
this extensive study, many cerebellar computational models
have been proposed and developed [6-9]. Among these, the
phenomenological models obtained from computational
motor control studies are the best candidates to solve the
sensorimotor integration issue, since they use an abstract
tunction-based approach. This kind of models is capable to
deal with motor planning, internal models, state estimation,
motor learning, and modularity [10]. A realistic approach
based on neurobiology requires the use of interconnected
adaptive spiking neural networks (SNN). These networks
have the potential to reproduce good adaptive control
systems for robots, considering how biological organisms
perform excellent control using ensembles of interconnected
neurons [11].

In previous works, we have tested a range of simplified,
but realistic, cerebellar models into sensorimotor tasks
[12-14]. The objective of this work was to implement a
computational model in a robotic platform in order to
validate its functionality and behaviour in real-time control
problems. In particular, a robot controller has been in-
tegrated with the cerebellar-inspired network, which pro-
vides the system with the capability of motor learning. The
component of the motor control system can be represented
by their phenomenological models, such as the feed-back
and feed-forward mechanisms of the internal models. The
first is based on the ongoing error coming from the sensor
updates, while the latter is based on the direct motor
commands. To allow such integration between the robotic
platform controller and the bioinspired spiking network, we
needed to introduce the right interfaces within the modules.
Three interfaces have been introduced; two that encode the
desired inputs trajectories and the errors obtained into a
spiking activity, and the other one that decodes the fre-
quency of the output neurons into an angular value that can
be then applied by the robot controller. The spiking neural
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network has been simulated by the EDLUT platform, a SNN
simulator which allows a real-time execution. By means of
look-up tables, EDLUT bypasses the need to solve the dif-
ferential equations governing the state of every network unit,
thus reducing the computational load.

2. Materials and Methods

First, we defined a suitable version of the perturbed upper
limb reaching protocol. This paradigm is used to enhance the
cerebellar effect in the sensorimotor loop. The objective is to
have the subject, the robot in this case, to follow a particular
trajectory, At a certain point, an unexpected external force is
applied which will then produce a perturbation in the
performed trajectory. The same perturbation is then applied
in a sequence of trials, so that the subject learns to predict the
perturbation and thus to limit the error (acquisition phase).
After that, the perturbation is suddenly removed, the subject
generates an error in the opposite direction, which is can-
celed out in the following trials (extinction phase).

The network was tuned using a robot simulator to
perform a physiological behaviour; therefore, we set the
starting weight values between the different kinds of cells to
provide activity frequencies matching the ones present in the
literature. Then, we performed a brute force exploration to
find the best combination of the model plasticity parameters.

Once the network was optimized, we proceeded to test
its capability of generalization with other trajectories, dif-
ferent than the one used to train the network. To further
investigate the network behaviour, we evaluated its per-
formances with the real robot using the parameters derived
from the tuning with the simulator. We evaluated how the
different plasticities and the gain tuning affected the per-
formances on a noisy environment and also how the net-
work in the real robot can deal with the different
perturbations (i.e., different trajectories).

A final test was performed using a network ten times
larger, with the same trajectory and parameters, to verify
how a more detailed SNN could alter the performances for
the proposed motor task.

Summarizing, we have focused this work on three main
objectives: (i) the optimization of the upper limb reaching
protocol, adapting it to the NAO robot to simultaneously
control 3 degrees of freedom (DoFs); (ii) the parameter
tuning of the SNN, to replicate the physiological behaviour
of its constituent neurons and of the resulting robot be-
haviour; and (iii) the exploitation of the optimized network
on different trajectories (transfer learning).

2.1. Simulated and Real Robots. NAO 1is an integrated,
programmable, medium-sized humanoid robot developed
by Aldebaran Robotics. NAO (version V3.3) is a 58 cm, 5kg
robot, communicating with remote computers via an I[EEE
802.11 g wireless or a wired Ethernet link. The NAO has 21
DoFs and features a variety of sensors. Since we were in-
terested in arm movements, we controlled three joints of the
robot left shoulder and elbow (Figure 1(c)): shoulder pitch
(Joint 1), elbow yaw (Joint 2), and elbow roll (Joint 3).
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FIGURE 1: Trajectories and experimental protocol. (a) Planar representation (Y-Z axis, in the robot reference frame) of the ideal (blue) and
perturbed (yellow) Cartesian trajectories. The corresponding trajectories in the joint space are depicted in panel (b). (c) The controlled joints
of the robot correspond to three rotations: shoulder elevation (Joint 1), humeral rotation (Joint 2), and elbow flex extension (Joint 3). (d) The
experimental protocol consists of 5 baseline trials, 20 trials of acquisition, where a load is applied to the robot arm, and 5 trials of extinction,

where the additional load is removed.

To interface the robot with the neural network, able to
run in real time with a frequency of 1 kHz, a stable frequency
update was a strict requirement. For this reason, the robot
was commanded by means of the device communication
manager (DCM). The DCM is the software module that is in
charge of the communication with all electronic devices in
the robot (boards, sensors, actuators, etc.). It is the link
between high-level functions and low-level controllers. The
DCM has a separate real-time thread that runs every 10 ms,
thus guaranteeing a stable refresh rate of 100 Hz.

NAO robot cannot be controlled directly in torque/
current to the motors, but only in position. This forbids
to physically perturb the arm reaching motion task with an
external force. In case of a lower force, the robot arm would
just reach the desired angle, while in case of a higher force
the motor would stall without moving at all. For this reason,
two different trajectories were used: one ideal trajectory used
as the desired path and another perturbed trajectory, to be
corrected by the network using the angular errors of the
joints as learning signals.

Since the network optimization process will need hun-
dreds of tests, we used a robot simulator called Webots. This
simulator allows launching a simulated NAO moving in a
virtual world, offering a safe place to test behaviours before
deploying them on a real robot. Considering the level of

control offered by the DCM and the unpredictable behav-
iour of the SNN, especially in tuning phase, a simulator was
ideal to test how the motor commands would be affected and
to prevent dangerous commands to be sent to the real robot.
While being a very accurate simulator for the NAO, as with
any other simulator, some nonidealities are not considered
(e.g., nonlinear friction, sensor errors, and motor
overheating).

2.2. Cerebellar Model. In this work, a cerebellar-inspired
SNN, based on previous versions presented and tested in
[12, 13], was used to prove its adaptation capabilities in a
complex motor task. The cerebellar neural network used has
the following architecture (Figure 2(a)), built taking in-
spiration from physiological studies of the cerebellum, in a
tight collaboration with neuroscientists. The SNN was
composed of 6480 Leaky Integrate and Fire neurons repli-
cating the cerebellar microcircuit: 300 mossy fibers (MFs),
the first input of the cerebellar network, organized in 6
groups of 50 cells each: 3 groups, one for each controlled
joints, encoding information on the desired positions and 3
groups encoding information on the desired velocities; 6000
granular cells (GrCs), generating a sparse representation of
the state input; 72 inferior olive neurons (IOs), the second
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FIGURE 2: Cerebellar SNN and coding/decoding strategies. (a) The computational model applied for creating the cerebellar SNN
embedded into the controller of NAO robot. Each block represents a neural population, with the relative inputs and outputs. The
excitatory, inhibitory, and teaching connections are depicted. The shaded areas represent the three plasticity sites: magenta the PF-PC
synapses, blue the ME-DCN synapses, and green the PC-DCN synapses, adapted from [15]. (b) Coding (for MFs and IOs) and
decoding (for DCNs) strategies implemented to integrate the analog robotic world with the spiking activity of the SNN. The 3 joint
angles and angular velocities are fed as input to the MFs by means of an RBF approach, overlapped to a random activity. Each joint
error is transformed into IO spikes by means of Poisson generators, which produce spikes with a probability that is proportional to the
error magnitude. Each IO generates a spike pattern that is therefore independent of their history and of the other IOs. The DCN spikes
are transformed into an angular correction sent to the robot joints by means of an instantaneous firing rate computation, subsequently

averaged with a mobile-window filter.

cerebellar input, with their respective climbing fibers (CFs);
IOs are divided into 6 groups of 12 cells each, 3 groups, one
for each joint, encoding the positive errors and other 3
groups encoding the negative ones; 72 Purkinje cells (PCs),
the integrators of the sparse state-information coming from
the GrCs through the parallel fibers (PFs) with the error-
information coming from the IOs through the CFs; 36 deep
cerebellar nuclei neurons (DCNs), which are the only output
of the cerebellar microcomplex, thus producing the cere-
bellar output variable, divided in 6 groups, two for each joint,
where one group controls the compensation of positive
errors (i.e., agonist muscles) and the other compensates for
negative errors (i.e., antagonist muscles).

Three interfaces (Figure 2(b)) were implemented to
transform analog signals into spiking activity to be fed to the
network (input) and vice versa (output).

The first interface computes the input current for MFs
with a radial basis function (RBF) method. This current I (¢)
is used to increment the membrane potential V,, (t) of the
MEF. RBF centers are distributed equally along the sensory
dimensions, with their widths tuned to ensure a small
overlap in the response of consecutive MF. One-dimensional
values are converted into multidimensional current vectors,
one for each RBF. Every MF has its own receptive field to

encode the analog information, normalized between -1
(minimum value) and 1 (maximum value).

The second interface converts joint errors into IO
spikes. These neurons have a low firing rate (less than
10Hz) that could prevent the representation of high-
frequency error signal related to the task being learned.
This issue can be fixed exploiting the irregular firing of the
IO by statistically sampling the entire error signal over
multiple trials. It has been observed that the temporal
distribution of the spikes of 10s shares similar charac-
teristics as the Poisson model. IOs fire randomly in be-
having animals at rest and during the ocular following
response and arm-motion tasks in monkeys. This sto-
chastic characteristic firing enhanced the input-output
mutual information despite the ultralow firing rates of
CFs [16]. The firing rate is reproduced with a Poisson
model of spike generation and, at every time step, 10
spikes are randomly generated with a probability that is
proportional to the error magnitude. This approach has
been employed to generate independent spike patterns on
multiple IO neurons. For each IO, the firing probability is
therefore independent of the previous spiking activity and
from the activity of the other IOs [17, 18]. Substantial
evidence supports a role for CFs in error signalling and
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motor learning, and the proportionality between the error
signal and the spiking activity of CFs has been verified
[19, 20].

The third interface decodes DCN spike patterns into
analog angular values. First, the instantaneous firing rate of
every DCN is calculated, and then positive and negative
DCN firing rates are averaged with a mobile time window of
200 samples (i.e., 200 ms). The cerebellar output is obtained
by calculating the net difference between the two averaged
mean DCN firing rates (positive and negative) [12].

Thanks to these interfaces, the SNN could be integrated
into the robotic platform controller, with the function of a
feed-forward predictive controller.

The SNN neurons are connected in three possible ways:

(i) Excitatory connections: synapses in which an action
potential in a presynaptic neuron increases the
probability of an action potential occurring in a
postsynaptic cell. There are excitatory connections
between MFs and GrCs, between MFs and DCNs,
and between GrCs and PCs.

(ii) Inhibitory connections: synapses in which the im-
pulse in a presynaptic cell results in a reduced
likelihood for a postsynaptic cell to produce an
action potential. There are inhibitory connections
between PCs and DCNGs.

(iii) Teaching connections: connections that encode
teaching spike trains (related to the error) for the
supervised learning in plasticity sites of the
cerebellum.

According to neurobiological studies, three plasticity
sites have been identified in the human cerebellum: at the
level of PF-PC excitatory connections; at the level of MF-
DCN excitatory connections; and at the level of PC-DCN
inhibitory connections [21-24].

The SNN model was equipped with three plasticity sites,
at cortical (PF-PC) and nuclear (MF-DCN and PC-DCN)
levels. The synaptic connections in each site followed three
different learning rules, which strengthen or weaken these
connections by long-term modifications: long-term poten-
tiation (LTP) and long-term depression (LTD). LTP and
LTD mechanisms were modeled as modifications on the
synaptic conductances as described in detail in [13, 15]. In
general, the three mechanisms were based on different kinds
of Spike-Timing-Dependent Plasticity (STDP), but each one
was tailored to the specific experimentally measured
mechanism. The first plasticity (PF-PC) modulates the ac-
tivity of PCs, increasing or decreasing the synaptic strength
of the connections under the supervision of the IO activity.
The second plasticity (MF-DCN) is also a supervised
learning rule; in this case, the PC activity is the modulator
signal that influences the synaptic weights. The third plas-
ticity (PC-DCN) is an unsupervised standard STDP, where
the weight modifications are driven uniquely by the timing
of the presynaptic (PC) and postsynaptic (DCN) neurons.

For the initialization of the network synaptic weights,
we referred to physiology values. MF activity has been set to
a frequency comprised around 50Hz, by adjusting the

background random activity and the overlap and bell width
of the RBFs. MF-GrC weights have been set to achieve a GrC
frequency of 3-6 Hz and the GrC-PC weights to produce a
PC frequency around 40-60 Hz. MF-DCN weights were set
in order to have a DCN frequency around 25 Hz in absence
of PC inhibition (PC-DCN weight =0). The last step con-
sisted in adjusting PC-DCN weights, nullifying the DCN
activity in presence of a stable PC activity around 45 Hz.

To perform the simulations in real time, we leveraged the
EDLUT simulator [25], an open source simulator of SNN
that provided a reduction of the computational loads,
speeding up the network simulation by means of look-up
tables. In fact, with a standard simulator (e.g., NEURON
[26], NEST [27, 28], or Brian [29]), the program has to solve
one or more differential equations for each neuron and
cannot guarantee the real-time performances that are re-
quired in interfacing a real robotic platform.

2.3. Experimental Protocol. We challenged the SNN in a 3D
motion adaptation protocol, similar to adaptation protocols
based on force-fields performed on human subjects [30-32].
The ideal trajectory that the robot wants to perform is a
planar circle of 0.1 m radius, executed in the Y-Z plane and
with center Y = 0.1 m and Z = 0.1 m (Figure 1(a), blue line).
When an unexpected load is virtually added to the robot
hand, the trajectory deviates from the desired one, being
deformed toward the ground (Figure 1(a), yellow line). As a
result, the three controlled joint angles deviated from the
ideal paths (Figure 1(b)), thus generating positive and
negative errors for each DoF.

The experimental protocol consisted in 30 trials divided
into three phases (Figure 1(d)): the first one was the baseline
phase, in which the command for the robot was the ideal
trajectory and lasted for 5 trials. The second phase was the
acquisition phase that lasted for 20 trials and in which the
input for the robot was the perturbed trajectory. The last one
was an extinction phase of 5 trials, in which the input was
again the ideal trajectory. In order to mimic the adaptation
capabilities of the cerebellum, the goal of the SNN was to
minimize the joint errors, thus reducing the subsequent
Cartesian errors in the 3D space.

2.4. Parameter Tuning. As mentioned above, there are three
different plasticity sites that can modify the behaviour of the
SNN, each one is characterized by two learning parameters:
LTP and LTD. In order to assess the best values for these six
parameters, a brute force exploration has been performed.
The first plasticity (cortical plasticity, PF-PC) is the main
cause of the learning effect, as it regulates the activity of the
PC which depresses the DCN output. The other two plas-
ticities (nuclear plasticities, ME-DCN, and PC-DCN) have a
secondary effect, affecting the error reduction performance
on a longer time scale and with a lower magnitude. The
parameter tuning tests have been performed with Webot
simulator, to prevent damages and avoid unpredictable
movements of the robot arm due to unexpected behaviour of
the network.



To evaluate the network performance, we calculated a
global cost function, which we wanted to minimize. The cost
function is the sum of two quality metrics. Both metrics take
into account the root mean square error (RMSE) of all the
three joints. For each trial, RMSE for every joint was
computed over the 5000 ms of trial time, and then the three
RMSEs were averaged. The average RMSE for the it" trial is
computed as

RMSE;;, (1) + RMSE);,p (1) + RMSE; ;5 (7)
3 .

RMSE 5, (i) =
(1)

The first quality metric computed a weighted average of
RMSE,,, in the acquisition and extinction phases. While it is
normal to have higher errors in the first acquisition trials, a
good cerebellar controller should gradually correct the
ongoing joint errors. This metric rewards SNN showing a
good correction in the late stages of the acquisition and also
low extinction errors:

Y %RMSE,, (i) - weight (i)

RMSEWeighted = 25 (2)
where
i-4 . C
——, if 6<i<25 (acquisition phase),
weight (i) =
4, if i > 25 (extinction phase).
(3)

The second quality metric measures the stability of the
correction, computing the standard deviation (SD) of the
trials 21-25 (i.e., the last 5 trials of acquisition). High values
of LTP and LTD parameters could lead to fast changes in the
RMSE in the acquisition phase, but also to its instability. This
leads to a high standard deviation of the RMSE, especially in
the last five trials, where the minimum error should have
been reached already:

; [ )
21'2:521 (RMSEAVg ks RMSEA"g) (4)
: .

STD:\/

Finally, a global cost function, whose minimum should
identify the most performing model in the explored area, is
calculated normalizing RMSEyyighieq and STD over their
maximum and minimum values, thus obtaining values
between [0-1], and then summing them to obtain a global
cost value in the range [0-2].

For the first plasticity, we evaluated an 11 x 11 matrix,
with LTP1 values ranging from 0 to 0.01 with steps of 0.001
and LTD1 values ranging from 0 to 0.05 with steps of 0.005.
The exploration was performed iteratively, choosing an LTP
value and pairing it with all the LTD values and then re-
peating the process for all the other LTP values. For each
LTP and LTD combination, a complete simulation of the
protocol was performed, and the final global cost value was
computed. After the first exploration, a second one has been
performed in the area of the global minimum of the cost
function, with finer steps, testing other 10 x 10 values. The
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best LTP-LTD configuration has then been chosen for the
tuning of the other nuclear plasticities.

For the nuclear plasticities, the LTP1 and LTD1 resulting
from the previous exploration have been kept fixed, and the
exploration has been performed on LTP and LTD param-
eters (i.e., LTP2, LTD2, LTP3, and LTD3). The evaluation
was similar to the first plasticity, with the exception of the
parameter ranges. LTP and LTD ranged from 107'° to 107!
with a x10 steps. As before, a second exploration in the best
area identified was performed. The second search covered a
10x10 parameter area centered on the best parameter
identified in the first exploration, testing half of the below and
above values (i.e., [0.5 0.6 0.7 0.8 0.9 1 2 3 4 5] x 10/,
where j is the best generation exponential).

Once the plasticities values have been set, another pa-
rameter to consider is the gain needed to convert the analog
output of the network in an angular value (in radians). Since
each joint has different ranges and different errors ampli-
tude, a proper gain for each joint has to be used. To find the
optimal gain values, a brute force exploration has been
performed with a gross exploration (i.e., testing gain values
ranging from 0.005 to 0.05 with steps of 0.005) and a
subsequent finer exploration (i.e., testing 10 gain values
centered on the best result of the gross exploration, with
steps of 0.001). The gain factor is particularly relevant due to
the normalization of the angular values and the error that is
given as input to the network. As the network manages
values comprised between 0 and 1 for all joints, its output
does not consider the differences in the actual angular errors.
Therefore, a joint with small angular error will require a
lower gain, while more perturbed joints will require a greater
gain.

2.5. Transfer Learning. Having identified the set of the
network parameters (i.e, LTP1-3, LTD1-3, and
gain 1 —3) which produced the best performances, we have
verified if (i) the SNN was able to compensate for an external
perturbation a 3D movement performed by a physical NAO
robot and if (ii) the SNN was able to compensate different
perturbations on both simulated and physical robotic
platform.

Therefore, we executed 10 tests with both Webot sim-
ulator and NAO robot, in order to verify the robustness of
our controller in a noisy system performing the same
protocol used for the SNN optimization.

To verify the transfer learning capabilities of the cere-
bellar model, we have executed 10 tests with both Webot
simulator and NAO robot in variations of the protocol, with
3 other couples of ideal and perturbed trajectories: two
deformations of the ideal circle trajectory (an oval and a
squared deformation) and with ideal and deformed
oo-shaped trajectories.

2.6. Network Enhancement. One of the limits of the network
used is the low number of output cells which limits the
resolution of the correction, leading to jerky angular tra-
jectories. Therefore, we tested an expanded version of the
SNN, to observe how the network size can change the overall
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performances of the cerebellar-inspired controller. Each
neural population was increased ten-fold, maintaining the
same connectivity rules explained above. All parameters
have been kept the same as the ones used with the normal-
sized network, and the gain has been reduced by ten, in order
to match the increased number of output cells. A side effect
of the increased size of the network is the loss of the real-time
property due to a larger number of spikes to be processed.
Therefore, the larger network was tested for a single test
instead of the usual 10 tests. Also in this case, we tested also
the three additional trajectories to verify the generalizability
of the learning properties of the SNN.

3. Results and Discussion

3.1. Parameter Tuning. After every plasticity gross explo-
ration, the parameter space area resulting in the best per-
formance, according to the developed cost function, was
turther explored. The RMSE over all trials was computed for
10 tests, using the parameters found during the optimiza-
tion, in order to verify the behaviour of the SNN over the
different phases.

In Figure 3(a), it is possible to see the effect of LTP1 and
LTD1 on the quality of the correction: there are three main
areas that is possible to identify. The first one is the lower-left
corner, where LTD is too low and LTP is consistently higher
(blue cross). Since the LTD is the major player in the at-
tenuation of PC activity and the consequent increase of DCN
activity, the network does not perform well in the acquisition
phase (i.e., there is no learning) while it performs well in the
extinction phase as there is no overcompensation when the
additional load is removed (Figure 3(c), blue line). The
second area is the middle right corner, where LTD is higher
than LTP (green cross). Here the activity of the DCN reaches
high levels, and since the correction is strong, this is the
worst area for the extinction phase. Note that also in ac-
quisition, this area is not useful, as a too fast and aggressive
correction leads to instability in the final trial of this phase
(Figure 3(c), green line). Finally, there is the area around the
principal diagonal, where we can find lower values of the cost
function. The top central area containing the global mini-
mum (red square) is the area chosen for the finer exploration
(Figure 3(b)).

The finer exploration produced more uniform results,
but it was still possible to exclude the lower area with too
high values of LTD, where the correction was insufficient
and unstable. The global minimum of this exploration
corresponded to the parameters LTP1 =0.0006 and
LTD1 =0.015. As already proved in previous works
[21-23, 33], the cortical LTD has greater values with respect
to the LTD. This combination of parameters was tested ten
times to assess the reproducibility of the results
(Figure 3(d)), and it was then used during the tuning of the
nuclear plasticities.

The results obtained after the second plasticity (MF-
DCN) gross exploration are shown in Figure 4(a)). It
is evident that the highest errors are present in the bot-
tom right area, where the high LTP produce an

overcompensation effect. Note that, for this plasticity, LTP2
is the main responsible for the increased activity of the DCN
while LTD2 concurs to their attenuation. In the right area,
too high LTD2 leads to the absence of DCN activity and
therefore of the correction. In the left area, the LTD2 allows
an activity from the DCN, and thus the better results. We
investigated the top left area, containing the global mini-
mum. The finer exploration (Figure 4(b)) was almost uni-
form; therefore, we identified the minimum global cost
function for the combination of parameters LTP2 = 10~°
and LTD2 =2 - 107!% As in other protocols Medina et al.
[34]; Antonietti et al. [13]; Mauk and Ruiz [35]; and Medina
and Mauk [36], the MF-DCN plasticity parameters have
significantly lower values than the cortical plasticity, thus
confirming the hypothesis that the effect of nuclear plas-
ticities becomes meaningful on longer time scales.

The third plasticity (PC-DCN) gross exploration pro-
duced almost uniform results, if compared to the other two
plasticities (Figure 4(c)). In the right area, the LTD is too
high, and therefore, the PCs could not selectively inhibit the
corresponding DCN. Even if more combination of LTP3 and
LTD3 gave low cost function values, without defining a
specific area, the parameter space near the global minimum
was explored in the finer search. The finer exploration
(Figure 4(c)) revealed homogeneous performances without
particular spots of interest. The global minimum of this
exploration corresponded to the parameters LTP3 = 1072
and LTD3 = 1077.

3.2. Simulated and Real Robot Performances. Having opti-
mized the three learning rules, 10 tests were performed with
only the cortical plasticity and with all the plasticities ac-
tivated (Figure 5(a)). It becomes clear that the performance
improvements given by the addition of the nuclear plas-
ticities were negligible. As already mentioned, the main
effect of nuclear plasticities could be seen on a longer time
scale. It has been demonstrated [13] that the benefits of the
nuclear plasticities can be verified in long paradigms, after
more than 100 trials, possibly when more repeated sessions
of acquisition and extinction are repeated. In addition, the
possible improvements provided by the nuclear plasticities
could be hidden by the nonnegligible variability between the
10 performed tests.

Once the three plasticities have been optimized, we
proceeded with the tuning of the three joint gains. In the
previous cases, all the joints used the same gain value of
0.012, theoretically derived from the foreseen maximum
joint errors. The first rough exploration confirmed values
near the ones already used. The results of the finer ex-
ploration identified the optimal gains as follows:
Gain 1 = 0.005, Gain 1 = 0.013, and Gain 1 = 0.012. Since
we have optimized the network plasticities with a fixed
gain of 0.012, it is reasonable that the obtained gains are
not very different from the original one.

Testing the SNN with optimized gains (Figure 5(b)), we
obtained a generally lower error and a more stable trend in
the acquisition phase, where the appropriate gain makes the
intervention of the network more adequate in compensating
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FiGure 3: Cortical plasticity optimization. (a) Cost function resulting from the gross exploration of LTP1 and LTD1 parameters.
Darkest values represent low values of the cost function, therefore the best combinations of the two plasticity parameters. The
parameter space further explored in the finer search (b) is identified by the red square. Blue and green crosses identify two examples
parameters giving bad performances (c). (b) Cost function resulting from the finer exploration of LTP1 and LTD1 parameters. The
red square identifies the global minimum, therefore the chosen combination of LTP1 and LTDI. (c) Three examples of RMSE
performance across the 30 trials of the protocol. The red line represents a good performance, with a reduction of the RMSE during
the acquisition phase and a good extinction in the last 5 trials. The blue line represents the combination of LTP1 = 0.0 and
LTD1 = 0.0; therefore, no correction happened in the acquisition phase, leading to a high cost function value. The green line
represents a combination of too high LTP1 and LTD1, leading to an unstable and ineffective correction along the trials. (d) Mean and
SD of the RMSE in 10 tests performed with the Webot simulator with the best combination of LTP1 and LTD1 identified in the finer

exploration.

the error, thus reducing the overcorrection effects leading to
instability.

Having assessed the performance of the SNN in an al-
most ideal environment (the Webot simulator), we pro-
ceeded to test the model performance in the real world with
NAO robot. The ten tests performed with NAO robot
(Figure 5(b)) showed a proper correction in the acquisition
phase, the after-effect at the beginning of the extinction
phase, and a good extinction in the last trials. As expected,
the Webot simulator performed slightly better than NAO
robot, with smaller variance. However, the performance
obtained with the NAO robot was still similar, with a good
error reduction and similar physiological behaviour. Given
the higher variability with the NAO robot, it would be even
more difficult to notice differences between the perfor-
mances of a SNN equipped with the cortical plasticity or
with multiple plasticities.

3.3. Transfer Learning Performances. We wanted to test the
transfer learning capabilities of the proposed SNN con-
troller; we thus challenged the optimized SNN with three
different ideal and perturbed trajectories (Figures 6(a), 6(d),
and 6(g)). For each trajectory, we have adapted the gain
values proportionally to the maximum error of every joint.
Then, we tested the different shapes in Webot simulator
(Figures 6(b), 6(e), and 6(h)) and in the NAO robot
(Figures 6(c), 6(f), and 6(i)).

In the Webot simulator tests, comparing the error trends
over time with the one obtained using the original trajectory,
it is possible to notice a slightly higher variability exhibited
by the oval trajectory, while the infinite and square trajec-
tories performances were similar to the one obtained with
the original perturbation. However, in all the cases, the
overall performances were similar to the one achieved with
the training trajectory.
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FIGURE 4: Nuclear plasticities optimization. (a, b) Cost functions resulting from the gross and finer explorations of LTP2 and LTD2
parameters. Darkest values represent low values of the cost function, therefore the best combinations of the two plasticity parameters. The
parameter space further explored in the finer search (b) is identified by the red square (a). (c, d) As (a, b), but for the gross and finer

exploration of LTP3 and LTD3.

In the NAO robot tests, differently from what was ob-
tained with the Webot simulator, the worst performance was
obtained with the infinite trajectory. This result is justified
being the infinite trajectory, the one with the lower angular
errors, with values more affected by the overall noise.
Therefore, the SNN was less efficient and could not perform
as well as in the other trajectories.

3.4. Network Enhancement. One of the limits of the SNN
used so far is the low number of output cells (DCN) which
limits the resolution of the correction. As a result, the
cerebellar correction on the joint angular values was jerky.
To compensate for this effect, we tested a larger version (ten
times larger) of the same network. All parameters have been
kept the same as the ones used with the normal-sized
network, and the gain has been reduced by a factor ten to
match the increased number of output cells. A side effect of
the increased size of the network is the loss of the real-time
property, due to a larger number of spikes to be processed.
Therefore the larger network was tested with both Webot
simulator (Figure 7(a)) and NAO robot (Figure 7(a)) for a

single test, instead of the usual 10 tests. The main im-
provements with respect to the normal-sized network were
the initial error in the baseline phase, which remains around
zero, and the lower and more stable RMSE in the acquisition
phase. The other difference is in the extinction phase where
the higher correction produces a higher overcompensation
effect, and it requires more time to return to the initial state
with respect to the normal-sized network.

The transfer learning capabilities were maintained in the
larger SNN, also in these cases with smoother and more stable
corrections of the joint errors in all the three additional
trajectories. It is possible to notice that the enhancement of
the SNN, augmenting the resolution of the network, made it
slower in the adaptation processes. However, the parameter
tuning carried out using the original SNN could be reused in
the larger SNN, without having to rerun the optimization
process (which would be unfeasible, given the extended
computational loads of the larger SNN).

3.5. Neural Behaviour. We have also evaluated the network
activity. The spikes generated by all the cells have been
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Figure 5: RMSE in different testing conditions. (a) Mean and SD of the RMSE computed for 10 tests with only the cortical plasticity
optimized (in red) and after the optimization of the cortical and nuclear plasticities (in magenta). (b) Mean and SD of the RMSE computed
for 10 tests after the optimization of the cortical and nuclear plasticities (in magenta) and after the optimization of the gain (in black). (c)
Mean and SD of the RMSE computed for 10 tests after the optimization of the gain with Webot simulator (in black) and with NAO robot (in

orange).

recorded during the testing phases and they could be ana-
lysed to verify how the errors affected the activity of the
neuronal populations over the trials. The MFs kept an almost
constant frequency over all the trials, with values comprised
between 44 and 47 Hz. The GrCs were also almost constant
with a frequency between 6 and 7 Hz; given the high number
of these cells, their monitoring was quite challenging, and
therefore their spike data were not collected in all the tests.
PCs, IO, and DCN are the cells that explain the behaviour of
the network, and from their variation in frequency, we can
evaluate the physiological similarity of our system with a real
biological one.

For every test, we recorded the ideal and real joint values,
together with the actual Cartesian trajectory performed by
the robot hand. Here, we report the network activity and the

relative Cartesian and angular trajectories for the circle
trajectory perturbed by an additional load application at the
robot hand using the NAO robot and the enhanced SNN.
Analyzing the salient trials of the protocol (see also the video
provided as Supplementary Materials (available here)), it is
possible to notice how the network activity shapes the robot
behaviour and vice versa.

In the first trial of the baseline phase (Figure 8(a)), the
robot is performing a correct trajectory, therefore 10 activity
is low, and the PCs are firing without restrictions. As a result,
the output from the DCN is almost null.

In the first trial of the acquisition phase (Figure 8(b)), the
robot hand is deviated by the additional load attached. The
increased joint errors trigger the IO activity which rises
consistently, although the IO population has a generally low
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FIGURE 6: Transfer learning performances. (a, d, g) Ideal (blue) and perturbed (yellow) Cartesian trajectories in three cases: square, oval, and
infinite, respectively. (b, e, h) Mean and SD of the RMSE computed for 10 tests with Webot simulator for the respective trajectories. (c, f, i)
Mean and SD of the RMSE computed for 10 tests with NAO robot for the respective trajectories.

frequency (<10Hz). However, PC activity is still high,
inhibiting the DCN. In the course of the trials the consistent
activity of the IO reduces the PC’s activity, reaching a point
in which the DCN is free to fire as in the last trial of the
acquisition (Figure 8(c)) where the PCs are selectively silent
and the control signal generated by the DCN rises to
compensate for the errors. From the Cartesian trajectories,
the effect of the compensation in both the higher and the
lower-left parts of the circumference is visible.

In the first trial of the extinction phase (Figure 8(d)), the
additional load is removed, but the SNN network is still
compensating for the error learned. This behaviour, gen-
erating errors in the opposite direction with respect to the

acquisition phase errors, is proper of the cerebellar ad-
aptation and it is called after-effect. In the last trial of the
extinction phase (Figure 8(e)), we can observe that the
after-effect has been canceled, and the performed trajectory
is nearer to the desired one. However, observing the neural
activity, it is possible to notice a nonphysiological be-
haviour. Normally, one would expect the change in sign
from the IO to trigger the LTP effect on the PC thus
inhibiting again the DCN cells. Here, however, there is a
further inhibition of the PCs, this time of the opposite sign,
which triggers the response of the DCNs of opposite sign,
which were not firing until the beginning of the extinction
phase. As a result, the absence of correction is caused by the
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FiGure 7: RMSE with the enhanced SNN. (a) Mean and SD of the RMSE computed for 10 tests with Webot simulator with the standard
network (in black) and a single test with the enhanced tenfold SNN (in grey). (b) Mean and SD of the RMSE computed for 10 tests with NAO
robot with the standard network (in orange) and a single test with the enhanced tenfold SNN (in light orange). (c) Mean and SD of the RMSE
computed for three single tests performed with Webot simulator and with the three additional trajectories: square (light grey), oval (grey),

and infinite (black).

cancellation of two opposite effects instead of a return to
the initial DCN silence.

This unexpected result is probably due to the brevity of
the protocol (only 20 acquisition trials) and to the cost
function used for the parameter tuning, which rewarded
higher values of LTD1 with respect to LTP1 for the cortical
plasticity. This is visible from the steep slope of the RMSE
in the first acquisition trials (Figure 3(c)). The low LTP1
values are not enough to restore the initial state of the
network with only 5 trials for the extinction phase, and
therefore the optimization process rewarded a configu-
ration where LTD1 compensated for the error in opposite
sign with the activity of the DCN of opposite sign (an-
tagonist activity) instead of decreasing the current (ago-
nist) DCN activity. This effect led to the nullification of the

agonist and antagonist neuron activity, with a net output
near zero (i.e., near the desired network output during the
extinction phase). This result suggests that even with an
imbalance in the cortical LTP/LTD ratio, a system can be
still able to learn and extinguish a motor adaptation. This
hypothesis should be tested by ad hoc experiments where
cortical LTP mechanisms have to be blocked or impaired
(similar to what was done with mutant mice by Schone-
wille et al. [37]).

4. Conclusions

In this work, we aimed at the integration of a bioinspired
SNN in a NAO robot controller. In particular, the cere-
bellum has been chosen as the neural structure to emulate
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for its critical role in motor learning task. The integration of
a cerebellar structure in a robot could help in developing
new paradigms and ways to perform robotic control in
different motor tasks.

Our work was based on previous ones; here, we introduced
a larger version of the network, able to control simultaneously
three DoFs instead of a single one. This allowed the robot to be
tested in a more complex task, using the SNN in an adaptation
of the upper limb perturbed reaching protocol, usually used to
test the cerebellar learning properties.

We obtained positive results, and the SNN performed well
when tested with different trajectories, showing the cerebellar
property of transfer learning (i.e., generalizability). The
possibility to adapt to different motor task is a fundamental
property for the aim of bioinspired robot controllers which
will have to deal with different kinds of motor tasks.

One of the main limitations of our network was the low
resolution in the output control signal. Tests carried out with
a larger network (ten-fold). With this network, the larger
number of DCN could produce a smoother output and deal
better with small errors.

Further investigation on this network can be performed
with the other typical cerebellar paradigms. As in [12], this
SNN maintains a general purpose for other cerebellar related
tasks. Therefore it would be possible to adapt both the
network and the robot to Pavlovian conditioning or
vestibulo-ocular reflex protocols.

The increase in the number of controlled joints as well as
the good performances obtained with our test, suggests that
a larger network would be ideal to tackle this kind of motor
tasks. This is especially true if the SNN has to control a real
system, in a world rich of unpredictable errors that lowered
network performances. The real-time simulation of such
large-scale SNN, to develop a real bioinspired controller for a
physical robot, could be obtained uniquely by means of
highly parallel computing (e.g., GPU) or neuromorphic
hardware. This could help in the developing of better
strategies of robot control, capable of motor learning and
event correlation that would meet practical use in many
fields, from the industry to artificial intelligence applications.

Data Availability

The data generated by the optimization process and by
simulations done with the Webot simulator and with the
NAO robot have been deposited in the Harvard Dataverse
repository. In addition, MATLAB scripts which reproduce
all the figures presented in this work are provided (DOI:
https://doi.org/10.7910/DVN/HEPECM).
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Decision and control of SCARA robot in HGA (head gimbal assembly) inspection line is a very challenge issue in hard disk drive
(HDD) manufacturing. The HGA circuit called slider FOS is a part of HDD which is used for reading and writing data inside the
disk with a very small dimension, i.e., 45 x 64 ym. Accuracy plays an important role in this inspection, and classification of defects
is very crucial to assign the action of the SCARA robot. The robot can move the inspected parts into the corresponding boxes,
which are divided into 5 groups and those are “Good,” “Bridging,” “Missing,” “Burn,” and “No connection.” A general image
processing technique, blob analysis, in conjunction with neurofuzzy c-means (NFC) clustering with branch and bound (BNB)
technique to find the best structure in all possible candidates was proposed to increase the performance of the entire robotics
system. The results from two clustering techniques which are K-means, Kohonen network, and neurofuzzy c-means were in-
vestigated to show the effectiveness of the proposed algorithm. Training results from the 30x microscope inspection with 300
samples show that the best accuracy for clustering is 99.67% achieved from the NFC clustering with the following features: area,
moment of inertia, and perimeter, and the testing results show 92.21% accuracy for the conventional Kohonen network. The
results exhibit the improvement on the clustering when the neural network was applied. This application is one of the progresses in
neurorobotics in industrial applications. This system has been implemented successfully in the HDD production line at Seagate

» «

Technology (Thailand) Co. Ltd.

1. Introduction

Robotics and Al especially in neurorobotics play an im-
portant role in a number of manufacturing processes be-
cause of their fast processing time, good accuracy,
intelligence, and high repeatability. In contrary, in the case of
manual operation, users must have enough knowledge and
experience for working with the processes. The manual
operation typically results in inconsistency and cannot
control the variations in accuracy and repeatability. Cur-
rently, HDD manufacturing processes are under develop-
ment to be fully autonomous process by the implementation
of Artificial Intelligence (AI) into the automation machine to
replace the manual process from human. One of the most
difficult processes is the visual inspection that has long been

performed by experienced operators. The inspection re-
quires many techniques since the human can naturally deal
with the complex problem better than the machine. In
addition, the decision of inspection based on the apparent
image is still a challenging issue for the intelligent machine.
To enhance the performance and accuracy of this process, Al
techniques such as neural network, fuzzy system, and un-
supervised learning are attempted to apply to the
manufacturing, particularly in the visual inspection and
control of robotics process. In this study, the HGA circuit
inspection which is composed of visual inspection, SCARA
robot, and classified boxes is developed. This process starts
from the load-in of the incoming part, then the assembly
process, and outgoing inspection using robot control. Before
the development, the outgoing inspection inspects the FOS
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using the 30x microscope via the human eyes and then
manually controls the robot to move the part into the
corresponding box. This research aims to develop a neuro-
fuzzy-based decision technique for this system to auto-
matically control the SCARA robot for the HGA circuit
inspection. Vision Pro program, which is a popular tool in
image processing, is adopted as the platform of image
processing in this study.

As stated in [1], blob detection is a simple but robust
technique which was applied in many research studies such
as field-programmable gate array with blob, fingertip blob
recognition, and optimization [2, 3]. In our work, the simple
blob is utilized as the tool for seeking the image features to
apply in the next processes of classification and robot
control. In general, the unsupervised learning on clustering
techniques was widely adopted in many applications, and
these were, for example, K-means clustering, K-means
combined with PSO for document clustering [4], K-means
and fuzzy c-means for document clustering [5], K-means
applied on image clustering on the graphics processing unit
(GPU) platform in [6]. As seen in [6], the developed plat-
form could improve the processing time to be faster than the
ordinary techniques. In [7], K-means clustering was applied
to the map reduction framework, which is a huge data
management to find the best value in the application. In [8],
weighted least-squares model-based (WLSMB) with
K-means was applied to enhance the ability of classification.
Kohonen, which is one of the clustering techniques, has been
proved in the application for the 3-dimensional data; in
addition, the new model with iteration process could further
help to improve the result [9]. The Kohonen map approach
has been tested in [10] to solve the estimation problem, and
the results showed a better performance than the basic belief
assignment. One of the most popular clustering techniques
is the fuzzy c-means. In terms of data envelopment analysis
(DEA), the Kohonen neural network has been applied in
[11]. In [12], fuzzy double c-means performed clustering
well with different datasets on the data clustering and image
segmentation. In medical area, the fuzzy c-means was ap-
plied for the magnetic resonance brain imaging [13], and
experimental results exhibited the improved performance.
In [14], the neurofuzzy c-means clustering algorithm
showed the better robustness system on the experiment
based on the synthetic datasets with suitable iteration. In the
problem of software quality [15], the neurofuzzy c-means
was applied to the fault prediction problem. Unsupervised
and supervised data were tested on the training process in
the model. Probability of detection is the key parameter for
performance checking. However, the multiple clustering for
new feature finding is required for future work. In terms of
technology, the driver vigilance predictions on smartwatch-
based driver or smart mobile device using neurofuzzy
c-means were tested [16]. This research combined the
measurement data from the sensor and clustering data for
prediction. Neurofuzzy c-means clustering [17], which ap-
plies the Euclidean distance to the clustering technique, was
utilized in many applications such as brain tumor in MRI
images [18], remote sensing images [19], data clustering with
image segmentation [20], and processing time improvement
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without performance effect [21]. In [22], branch and bound
(BNB) was used for cyclic scheduling of timed Petri nets
(TPN) based on the manufacturing systems. The speed of
solving the block relocation problem [23] was improved by
using the branch and bound algorithm. The concept is to
minimize the number of necessary relocations; however, it
still requires the future work to support the relaxed con-
straint. Also, BNB was applied in the model selection [24],
the hand-eye calibration [25], the nonlinear integer pro-
gramming with large-scale problem [26], the multiuser in
wireless systems [27], and the maximum of weighted sum-
rate for interfering links set [28]. All of the aforementioned
techniques and applications were successful in the previous
scopes. In this paper, a new improved classification tech-
nique for HGA circuit inspection using NFC and branch and
bound technique are proposed to enhance the accuracy of
inspection and increase the production rate. When the
classification or groups of inspecting object has been de-
cided, the action to move the SCARA robot will be the next
process to transfer the object to the corresponding box.

2. Head Gimbal Assembly

Read and write processes of HDD are occurred from
magnetic field changing on the disc. Inside the HDD, it may
contain several discs which have a rotational speed during
7,200-15,000 rpm. The summary of the HDD manufacturing
process flow is shown in Figure 1. As seen in this figure, the
processes of the 30x microscope and slider placing on
suspension are the main processes in HDD manufacturing.
In addition, HGA is a part of HDD, which holds an electrical
circuit inside the slider. Reader, writer, heater, temperature-
activated circuits (TA), and microactuator are connected by
the electrical circuits. Testing, sorting, and assembly process
are the next steps to assemble the HGA stacks.

3. Image Processing and Feature Selection

In the automatic visual inspection system, there are two
general sections needed to be considered and those are
hardware selection and developing software for image
processing techniques. In this study, a well design of image
processing hardware has been considered and expected to
provide good results for imaging. The field of view is
a criterion to choose a camera, depending on the size of the
slider and the depth of field (DOF) required. DOF is the
minimum and maximum of the distance between the camera
lens and the object that can yield clear image. Magnification
is calculated by the ratio of camera working area and field of
view as follows:

w

m= camera.
Wrov W

Based on the careful consideration in selecting the
hardware devices, camera, lens, and lighting were selected to
achieve enough resolution, high sensitivity, and high con-
trast ratio with the robustness against the environment
change. XC-56 with VGA-class resolution (647 x 493) is
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Ficure 1: HDD manufacturing process flow.

a monochrome camera module in this research. It was
mounted with a lens with C-mounting.

In this process, the threshold value was applied to the
image transformation from grayscale image to binary image,
and the value was specified based on considering the his-
togram at the preprocessing. As seen in Figure 2, the
threshold value, 148.05, on the histogram can separate the
group of pixel clearly to maximize the contrast of the
captured image. The general image processing technique,
i.e,, noise elimination, “closing,” was also applied to the
image preprocessing.

The feature extraction techniques were applied to find
the candidate features on images. In this work, angle, area,
inertia, center of mass, acircularity, perimeter, and elon-
gation were determined. Examples of image feature calcu-
lation are shown in Equations (2) and (3), and these are area
and acircularity, respectively:

N
A= Z XiYi> (2)
i=1
p2
- (3)
4mA

To find the best features to be used in the clustering
technique, the popular technique, “Branch and Bound
(BNB)” was applied. The BNB process starts from the ob-
jective function, branches the big problem, and divides it
into small group problems. Then, the process analyzes the

bound of problem and removes some results, which cannot
provide the best results evaluated from the objective func-
tion. The process is repeated until finding the best solution.

4. Clustering and the Proposed Technique

Classification is the method to classify data into particular
groups by the model construction. All data are separated
into 2 sets: training set and validation set. The training set is
used for constructing the clustering structure and param-
eters, while the validation set is used for verifying the
performance of the model. There are a number of techniques
applied to clustering such as Euclidean distance. In this
research, the performance of the proposed technique neuro-
fuzzy c-means was investigated in comparison with those
from the K-means and Kohonen clustering techniques. The
following section describes the brief concept of each clus-
tering technique applied in this research work.

4.1. K-Means Clustering. The K-means clustering technique
defines the K value to represent the group member of the
cluster, and the centroid value on each cluster is set for initial
value. A point that shows the minimum summation distance
between members and the centroid will be set as the center of
that group. The process will be repeated and calculated to
perform the new centroid on each cluster until the centroid
value is not changed (convergence). Figure 3 shows the steps
of the K-means clustering technique.

The Euclidean distance as shown in (4) is used to cal-
culate the K values and the centroid cluster as shown in (5):

Min|D(c;, x;) =

Gi=q] i (5)

where § is the total data point, ¢; is the centroid cluster, and
x; is the data point.

4.2. Kohonen Clustering. The Kohonen clustering starts by
assigning the weight randomly and defines the learning rate
and the dataset. The minimum distance is the winning node,
and then, a new weight will represent each cluster. The new
weight is calculated using the following equation:

WijNEw = Wij,CURRENT T ’7(xm' —w; j,CURRENT)> (6)

where w;; ygw is the new weight matrix, w;; curgent is the
current weight matrix, x,; is the »™ data, and # is the
learning rate. The updating calculation is repeated until the
convergence condition is met. The steps of Kohonen
mentioned above are shown in Figure 4.

4.3. Neurofuzzy c-Means Clustering. The neurofuzzy
c-means clustering starts with an initial value and updates
this value until achieving the stopping condition. The
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objective function in (7) is used for finding the optimal
distance value (smallest value):

N C 5
Jrcm = Zzu:;l"xi_cj" » (7)

i=1 j=1

where u;; is the membership function, N is the number of
data, c; is the centroid of the clustering, and x; is the ith data.
The membership function can be calculated from the fol-
lowing equation:

u.. = !
i Zi‘("x" - cj“/Hxi —c

Clustering centers are given by the normalized and
defuzzification technique (8):

N . m
A VA
c. = 21—1 ij 1. (9)

)(2/(m—1))' (8)

The steps of the neurofuzzy c-means clustering are
shown in Figure 5. As seen in this figure, the objective
function has been minimized to achieve the optimal values
of the clustering center.

5. System Preparation and
Experimental Results

The lighting installation system is applied to illuminate the
slider circuit and make the best contrast image of the HGA
circuit, as shown in Figure 6. The selected type of lighting
technique is the diffusion illumination.

The element on the HGA circuit was made from Au
(gold). Since the slider is considered as the curve surface with
medium reflection, the diffusion lighting technique was
applied on this experiment with the ring light (LED) that is
suitable because of its long lifetime, flexible application, and
high brightness. Lens and camera selection were done by
considering the field of view and depth of field. The HGA
circuit area is 45 x 64 ym (280 x 210), and the depth of field is
80 um. The selected camera is XC-56, having the total pixel
as 659 x 464. Thus, the magnification of the lens can be
calculated using (1) as

659 x 464
m=——=
280 x 210

The lens Infinitube FM-75 PL-18 Series with working
distance 15 mm was selected. The 5 groups of HGA circuit
classification are “good,” “bridging,” “missing,” “burn,” and
“no connection” as shown in Figure 7.

Cognex Vision Pro Version 7.2 was applied as the image
processing tool, and the master image from the Seagate
Company is used for training the neurofuzzy c-means for
reference searching (Figure 8).

After the above process, the blob tool is used to separate
the region of interest (ROI) and the background with the
threshold value. As shown in Figure 2, 40% of the pixels are
on the left-hand side, and 60% are on the right-hand side,
which can effectively be separated by the threshold value. By

5.20. (10)

Define the number of k cluster, weighted
index, and iterative standard

|
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l
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|

Use Equation (7) to calculate the
objective function

Objective function is less
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change the relative value
with the previous
function?
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FIGURE 5: Neurofuzzy c-means clustering.

Light

FIGURE 6: Visual inspection system on HGA circuit.

using this relative threshold value, the vision process ro-
bustness is gained when the lighting changes.

After preprocessing and blob exporting, 8 image feature
variables, which are area, moment of inertia, perimeter,
acircularity, center of mass X, center of mass Y, elongation,
and angle, were exported. Figure 9 shows preprocessing to
define the ROI and using blob to find the interesting
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FIGURE 9: Image on blob processing.

teatures. The objective function in the proposed technique to
be utilized in BNB is shown in the following equation:

L . count of correct class index
objective function = %100,
total data
(11)

Objective function is defined as the percentage of the
accuracy when comparing with the results by human eyes

Missing Burn
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No connection

classification using the 30x microscope. The event that
obtains the best value (highest objective function value) is
the best classification structure for this application. Three
clustering techniques were applied to the system which are
used to calculate the accuracy sets to find the best classifi-
cation technique and best features. Through the BNB
technique with the 3 classification techniques, 8 image
features, 5 classification groups, and 300 samples, the op-
timal centroid values for 5 predefined classification groups
were evaluated. The results show the best accuracy of
99.667% by the neurofuzzy c-means clustering. Figure 10
and Table 1 illustrate the details of the results.

Table 1 shows the top 10 of best accuracy and their
details.

The best accuracy can be achieved by the NFC technique,
and the 3 image feature variables are area, moment of inertia,
and perimeter. Clearly, the design using the neurofuzzy
c-means achieves the best performance and can be adop-
ted to command the SCARA robot to classify the quality of
the product after slider attachment process.

As shown in Figure 11(a), the red circle is the group of
“Good,” the blue circle is “Bridging,” the pink circle is
“Missing,” the dark blue circle is “Burn,” and the black circle
is “No connection.” Figure 11(b) shows the centroid of each
group, and Table 2 shows the optimal centroid of each group.

In the validation process, the selected variables, which
are area, moment of inertia, and perimeter, with NFC
clustering were adopted. 300 new samples were tested on this
validation process, and 3 visual inspection machines, ma-
chine no. 17, no. 23, and no. 101, were used to perform the
test to ensure the performance on different machines using
the same technique. 100 samples per each machine were
tested, and it was found that the accuracy achieved on
machine no. 17, 23, and 101 were 100%, 99.21%, and 99.12%,
respectively. Clearly, the above results show the accuracy
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FIGUure 10: Top 10 of best accuracy value chart.
TaBLE 1: Top 10 of best accuracy and details.
Order Axis Clustering Best variable
1 (61st) 3 NFC Area, moment of inertia, perimeter
2 (60th) 3 K-means Area, moment of inertia, acircularity
3 (517th) 3 NFC Area, moment of inertia ,perimeter
4 (575th) 3 NFC Area, center of mass X, perimeter
5 (529th) 2 NFC Area, acircularity
6 (568th) 3 NEC Area, moment of inertia, center of mass X
7 (204th) 5 K-means Area, momeljnt of 1pert1a, c.enter of mass Y,
acircularity, perimeter
8 (317th) 3 Kohonen Area, moment of inertia, elongation
9 (321st) 3 Kohonen Area, center of mass X, elongation
10 (327th) 3 Kohonen Area, perimeter, elongation
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F1GURE 11: Clustering results of best accuracy (61st): (a) clustering groups and data and (b) centroid of each clustering group.

more than 99% (achieved the Seagate’s criteria) for the 3
vision systems, and the technique can be implemented in the
actual production line. The example of image construction
and real implementation in production line, clustering by
NEC, is shown in Figure 12. Also, the SCARA robot in the
machine which is used to transfer the slider based on the
evaluation results of the NFC is shown in Figure 12(b).

6. Conclusion

As shown in the experiment results, the excellent perfor-
mance with 99.67% accuracy can be achieved from the
neurofuzzy c-means clustering with three best features of
area, moment of inertia, and perimeter in the training
process. The accuracy was investigated by comparing with
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TaBLE 2: Centroid values of 5 groups from the best clustering results (61st clustering structure).
Group Area (pixel®) Moment of inertia (pixel?/10°) Perimeter (pixel)
Good 556.7256 200.5483 108.4784
Bridging 708.2615 211.1732 131.5751
Missing 198.7688 11.3017 57.9568
Burn 60.4703 1.8718 36.1733
No connection 474.0023 178.3713 115.4271
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FIGURE 12: (a) Image processing and CSV file exporting and (b) cleanroom type SCARA robot used in the slider movement machine.

the results from the 30x microscope inspection using human
operations. In the validation process, the accuracy of more
than 99% with the 3 different vision systems can be achieved.
This confirms that the proposed method can be applied to
the inspection of the Head Gimbal Assembly circuit clas-
sification. In addition, the command to move the slider
works well with the SCARA robot to move the HGA stack to
the classified boxes correctly.

Data Availability

The images from the SCARA robot in this article were
analyzed in the proposed algorithm which is shown in
numerical data as double type. All numerical data are the
output from the vision algorithm and tested in the clustering
algorithm in the MATLAB program. This research used the
image from the SCARA robot for analysis which is included
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in the article and as supplied by Seagate Technology
(Thailand) Co., Ltd. and so cannot be made freely available.
Request for access to these data should be made to Veerasak
Phana-ngam via mail (veerasak.phana-ngam@seagate.com).
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This study proposes a multilayer hybrid deep-learning system (MHS) to automatically sort waste disposed of by individuals in the
urban public area. This system deploys a high-resolution camera to capture waste image and sensors to detect other useful feature
information. The MHS uses a CNN-based algorithm to extract image features and a multilayer perceptrons (MLP) method to
consolidate image features and other feature information to classify wastes as recyclable or the others. The MHS is trained and
validated against the manually labelled items, achieving overall classification accuracy higher than 90% under two different testing
scenarios, which significantly outperforms a reference CNN-based method relying on image-only inputs.

1. Introduction

Globally, the annual solid waste is expected to reach 2.2
billion tonnes by 2025, which would cost $375.5 billion in
waste management [1]. Improper waste management will
have enormous adverse impacts on the economy, the public
health, and the environment [1]. Municipal solid waste
(MSW) recycling has been recognized as the second “most
environmentally sound” strategy for dealing with urban
waste by the Environmental Protection Agency (EPA) [2].
Effective waste recycling is both economic and environ-
mentally beneficial. It can help in recovering raw resource,
preserving energy, mitigating greenhouse gaseous emission,
water pollution, reducing new landfills, etc [1, 3-5].

In developing country, MSW recycling relies on
household separation via scavengers and collectors who
trade the recyclables for profits [6-8]. In developed coun-
tries, communities are more involved in recycling program
[9]. Several techniques, such as mechanical sorting and
chemical sorting, are available in developed countries for

automatic waste sorting [10]. However, there is huge po-
tential to improve waste recycling even in the developed
country. The municipal recycling rates of the USA and
European Union are around 34% and 50%, respectively,
which are significantly lower than the target recycling rate of
75% [5, 11].

The key obstacles to waste recycling include the fol-
lowing: (1) government plan and budget: insufficient gov-
ernment regulation and budget for MSW management; (2)
household education: households are unaware of the im-
portance of self-waste recycling; (3) technology: lack of
effective recycling technology; and (4) management expense:
the high cost of manual waste classification [1, 8, 9].

The recent progress in deep learning has contributed to
unprecedented improvements in computer vision. Con-
volutional neural network (CNN) is one of the most rec-
ognized deep-learning algorithms for its wide application in
image classification, segmentation, and detection [12-15].
Therefore in this literature, CNN is proposed to perform
waste classification.
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Awe et al. [16] propose an experimental project using
a Faster R-CNN model to classify waste into three cate-
gories: paper, recycling, and landfill. This method achieves
a mean average precision of 68%. Thung and Yang [17]
deployed support vector machine (SVM) and a convolu-
tional neural network (CNN) to classify waste into six
categories. It achieves an accuracy rate of 63% for SVM and
23% for CNN. Rad et al. [18] developed a GoogLeNet-based
vision application to localize and classify urban wastes. The
study claims to have an accuracy rate ranging from 63% to
77% for different waste types. Donovan [19] proposed to
use Google’s TensorFlow and camera capturing to auto-
matically sort waste objects as compost and recyclable.
However, as a conceptual project, there is no experimental
result so far. Mittal et al. [20] designed a project to detect
whether an image contains garbage or not. This project
employs the pretrain AlexNet model and achieves a mean
accuracy of 87.69%. However, this project aims at seg-
menting garbage in an image without providing functions
of waste classification.

As reviewed, the automatic classification methodologies
available in the literature solely deploy image-based CNN
and result in limited accuracy. In this work, we propose
a multilayer hybrid method (MHS) to perform waste clas-
sification in public areas. Waste images associated with other
numerical information measured by sensors are fed into the
system. The system can automatically sort the waste item as
recyclable or the others. The proposed MHS achieves a mean
accuracy higher than 90%, which significantly outperforms
reference image-based method.

The specific contributions of the paper are:

(i) Firstly, this study achieves an excellent accuracy that
is useful for in-field applications: the experimental
results indicate that MHS achieves an overall ac-
curacy higher than 90%, which outperforms all
reference waste classification methods in the
literature.

(ii) Secondly, this study proposes an innovative archi-
tecture to simulate the sensory and intellectual
process of human inspections. While most of current
waste classification methods take images as the sole
input, the proposed method makes use of an AlexNet
CNN to act as “human eyes” to visualize and extract
key image features from its last dense layer. The
system also utilizes sensors to act as “ears” and
“nose” to detect other numerical feature in-
formation, which are barely discussed in the liter-
atures. Ultimately, multilayer perceptrons (MLP) act
as a response center (the “human brain”) to classify
the waste object by consolidating information col-
lected from diverse channels.

The paper is organized as follows: Section 2 introduces
the inspected waste items, hardware, and data; Section 3
presents the proposed methods, including CNN, MLP, the
multilayer hybrid system, and evaluation metrics; Section 4
presents the results and corresponding discussions; and
conclusion are given in Section 5.
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2. Hardware and Data

This study focuses on wastes found in urban public areas,
including parks, street cleaning, landscaping, and other
recreational areas. These wastes are mostly disposed of by
individual visitors, pedestrians, commuters, and occasion-
ally from commercial events. Unlike industry or household
waste, the majority of municipal solid wastes are separated
singular items e.g., a singular bottle or a singular lunch box
[1].

This study analyzes a total of 50 different waste items
that are commonly found in the investigated area [1].
Among which, 40 are recyclable and 10 are the others.
The recyclable wastes are grouped into 4 main categories:
paper, plastic, metal, and glass; the “others” class consists of
fruit/vegetable/plant, kitchen waste, and others (Table 1).
Each group is made up of representative items: the paper
group, for instance, consists of books, magazines, cups,
boxes, etc. Table 2 presents the detailed information of waste
items’ quantity, corresponded group, and class.

2.1. Hardware. The proposed system consists of a high-
resolution camera (model 0V9712), a bridge sensor
(model HX711AD), and an inductor (model TL-W3MB1
PNP) (Table 3). The system hardware is selected based on
availability, low-cost, effectiveness, and easy installation.

The camera captures images of study objects, and the
images will be transferred to a PC end via USB 2.0. The
bridge sensor is used to measure the weight of study object,
and the inductor can detect whether the waste is made from
metal or not. To our knowledge, few studies employ sensing
systems for waste classification in the literature of MSW,
such as applications of medical waste and wastewater
sorting using weight, density, and texture detection [3].
Therefore, we propose to deploy the bridge sensor and
inductor to facilitate classification of solid waste, partic-
ularly for MSW waste. Digital information measured by
sensors are received and processed via an Arduino board
first. The Arduino board serves as a microcontroller, which
can read the outputs from the sensors, convert them into
proper numerical form, and then transfer information to
the PC end.

In the experiment, the investigated waste items are
placed in an enclosed box with a dark grey background.
The camera is placed at the upper front-right of the ex-
periment box to maximize the marginal angle of view.
Waste objects are rotated for the camera to capture views
from different angles, so to simulate a three-dimension
effect. The bridge sensor and the inductor are placed di-
rectly under the study object to measure their corre-
sponding feature information.

2.2. Data. A total of 100 RGB images are captured for each
investigated item, and 5000 (50 x 100) images in total are
collected in JPG format. Each waste image is grouped with
its counterpart numerical feature information as a data
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TaBLE 1: Representative waste images.

o

Fruit/vegetable/plant

Plastic

Others

instance, which is then manually labelled as either recyclable
or not for training/testing purpose.

To enhance image features and to remove unwanted
noise, images captured by the camera are preprocessed
under the Keras framework: http://keras.io/. The original
images (e.g., Figure 1) are 640 x 480 pixels in resolution
while the processed images are 240 x 240. During training, 9
augmented images (Table 4), including image rotation,
height/width shifting, size rescaling, zooming etc., are
generated for each data instance to enhance the universality
of the training model [21].

The training model has been tested twice to validate the
system performance. Firstly, each waste item is placed into
the system with predefined position and each item is tested
for 3 times. A total of 150 (50 x 3) test set are generated for
the first test. Secondly, each item is placed randomly in the

system for 3 times and another set of 150 data is generated.
In sum, 300 test data are created, and the system classifies
each of them as recyclable or the others.

3. Method

A multilayer hybrid method (MHS), which consists of
several subsystems, is proposed to perform waste classifi-
cations. The core of this system includes a convolutional
neural network (CNN) and multilayer perceptrons (MLP).
Evaluation metrics to access system performance are also
discussed in this section.

3.1. CNN. Convolutional neural networks (CNN) are widely
applied in analyzing visual image [12-15]. Generally, CNN
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TaBLE 2: Waste item.

Class Group Item Quantity

Books 5
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General bottles
Shampoo bottles
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Cans
Key
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Beer cap
Glass Bottle
Sum 4 12
Apple
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Cabbage
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Lunch box
Others Trash bag
Bowl

Sum 3 10
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takes images containing investigated items as inputs and
classify images into different categories.

CNN is unique in its 3D volumes of a neuron: width,
height, and depth. The CNN consists of a series of con-
volutional layers, polling layers, fully connected layers, and
normalization layers [12-15]. The neurons in the convolu-
tional layer will only connect to a small region of the pre-
vious layer. In fully connected layers, the activation neurons
of the layer are fully connected to all activation neurons in
the previous layer. The fully connected function can be
expressed as the following forward and backward propa-
gation rules in mathematical form:

X/t = Y wilxy,
Joi i
i

gk = ZW]L‘,;-lg?H’ (1)

where X} and gF represent the activation and the gradient of
neurons i at layer L and Wf,“ is the weight connecting
neurons i at layer L to neurons j at layer L + 1.

The capability of CNN can be controlled by varying
dimensional parameters and local architecture structure
[12]. In recent years, different CNN architecture variations
emerge [12, 15]. In considering the computational cost and
in-field application limitations, AlexNet [12] is employed in
this work.

3.2. AlexNet. AlexNet [12] came to the spot in the 2012
ImageNet Challenge (ILSVRC) by significantly reducing the
image classification top-5 error from 26% to 15.3%. It is well-
recognized for its highly capable architecture.
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AlexNet contains 8 learning layers: the first five con-
volutional followed by three fully connected layers. The
output of the last layer is fed into the 1000-way softmax which
can create 1000 class labels. The kernels of the second, fourth,
and fifth layers are connected to those kernels in previous
layers sharing the same GPU. Kernels in the third layer,
however, are fully connected to the kernels in the second
layer. Response-normalization layer is associated with the first
and second layers. Max-pooling layers are placed after both
response-normalization layers and the fifth layer. The ReLu
nonlinearity is associated with each learning layer. The
neurons in the fully connected layers are connected to all
neurons in the previous layer, with 4096 neurons each [12].

In this work, the network is constructed with following
details:

(i) Layer 0: input image of size 240 x 240

(ii) Layer 1: convolution with 96 filters, size 11 x 11,
stride 4

(iii) Layer 2: max-pooling with a size 3 x 3 filter, stride 2

(iv) Layer 3: convolution with 256 filters, size 5 X 5,
stride 1

(v) Layer 4: max-pooling with a size 3 x 3 filter, stride 2

(vi) Layer 5: convolution with 384 filters, size 3 x 3,
stride 1

(vii) Layer 6: convolution with 384 filters, size 3 x 3,
stride 1

(viii) Layer 7: convolution with 256 filters, size 3 x 3,
stride 1

(ix) Layer 8: max-pooling with a size 3 x 3 filter, stride 2
(x) Layer 9: fully connected with 512 neurons
(xi) Layer 10: fully connected with 512 neurons

(xii) Layer 11: fully connected with 22 neurons

The number of the neurons in the last layers is set to 22 to
equalize the number of waste categories discussed in Section
2. An additional Layer 12, which contains 1 neuron with
sigmoid activation function (recyclable as 1 and others as 0),
is used during training. This layer is then removed when
integrated into the multilayer hybrid system that ingests the
22 outputs from Layer 11 as image features. To do so, the
CNN reduces the high dimension image to low-dimensional
representation with robust features only. Also, it reserves the
information of important identity features which may be
wrapped by final classification [22]. This application is ex-
tensively adopted in human face verification problem and
face recognition as a binary classification problem.

3.3. MLP. Multilayer perceptrons (MLP), one of the most
established deep-learning structures for nonlinear classifi-
cation and regression, are frequently used for modeling and
forecasting [23-26].

Neurons, which are placed in layers, are the basic
processing elements of MLP. The layers between the first
layer (inputs) and the last layer (outputs) are called hidden
layers. The MLP employed in this work has 1 hidden layer
with 10 neurons as suggested in [25] that this network is able
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TaBLE 3: Experiment sensors.

Bridge sensor

Inductor

Figure 1: Example of the original image.

to fit any continuous function. Neurons on each layer sum
the weighted inputs, add a bias to the sum, and then apply an
activation function to process the sum and compute the
outputs. The signal processing of neurons can be mathe-
matically expressed as

Y= J(%(WUXJ» +/3ij)>’ )

j=1

where Y; is the output of the i neuron on current layer,
w;; and f;; are the weight and bias of the j™ input on the i
neuron, M is the number of inputs, X ; is j™ output from the
previous layer, and f is the activation function, which is
a sigmoid function in this work.

fy)= !

1+e

(3)

3.4. Multilayer Hybrid System. The multilayer hybrid system
(MHS) developed in this work simulates human sensory and
intelligence process system. This MHS is a combination of
several interdependent subsystems, including: (1) image
system (2) sensor system and (3) the central back-end
classification system.

Figure 2 illustrates the multilayer hybrid system with
three interacting subsystems and their associated compo-
nents. The arrows indicate the processing flow and in-
teraction of subsystems.

When a waste item is received into the hybrid system, the
camera and sensors are activated to observe the item. The
imaging system consists of a camera to capture an image,
which is analyzed by the CNN. The sensor system, simul-
taneously, functions to obtain numerical information from
the objects. The ultimate results (binary output) are obtained
using MLP system, whose inputs are the 22 outputs from the
CNN and the numerical information from sensors. In this
respect, MLP system can be trained independently from
CNN model, and the weight and bias parameters of CNN
model can be kept unaffected. On the other hand, as the
outputs of CNN are the inputs for MLP, these two models
actually function simultaneously to generate the binary
classification results.

3.5. Evaluation Metrics. Each classification prediction by the
proposed system is compared to the manually classified
label, which is set as the “truth”. The confusion matrix shown
in Table 5 quantifies the hits and misses of the automatic
classification system. A CNN-only model with exactly the
same structure discussed above is trained and evaluated as
a reference model.

The system performance is evaluated with accuracy,
precision, and recall. The accuracy of classification is defined
as the percentage of images that are correctly classified:

(TP +TN)
(TP + TN + FP + FN)

accuracy = x 100%. (4)

Precision, therefore, represents the correctness of classi-
fication prediction systems.

Precision = % 100%. (5)

TP
(TP + FP)

Recall represents the effectiveness of classification pre-
diction systems.

TP

Recall = m

x 100%. (6)

Incorporating precision and recall can reduce the bias
forecasting caused by the unbalanced dataset: the minority
class is harder to learn and the model tends to over forecast
the majority class with highly skew data [26].
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TaBLE 4: Example of images generated by the augmentation algorithm.
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FIGURE 2: Multilayer hybrid system (MHS).

4. Result and Discussion

The MHS model, which is trained using 5000 data instances,
is evaluated under two different scenarios: the item is placed
with fixed and random orientations. The model perfor-
mances are compared with a CNN model that takes the
images as the only input. The classification results from each
model are presented in Table 6.

TaBLE 5: Confusion matrix of automatic waste classification for
each category.

Automatic Manual classification
classification Recyclable Others
Recyclable True positive (TP) False positive (FP)
Others False negative (FN) True negative (TN)

The evaluation results presented in Table 6 indicate that
MHS significantly outperforms CNN-only model in terms of
all three matrices (accuracy, precision, and recall), partic-
ularly for the “others” category.

MHS achieves accuracy rates above 90% for both the first
and second tests, which are 10% higher than the CNN-only
model (Table 6). The MHS model also achieves higher
precision rate of 98.5%, 97.1% to 88.6%, 85.9%, respectively,
indicating MHS model’s effectiveness in predicting re-
cyclable items. In addition, the MHS model shows great
performance in recall (99% and 92%, respectively, for the
first and second tests), showing that MHS is highly sensitive
in identifying dedicated recyclable waste items.

The following tables display three sets of representative
items returning from testing results. Table 7 represents items
that are correctly classified by both MHS and CNN; Table 8
represents items that are correctly classified by the MHS but
incorrectly classified by the CNN. Table 9 consists of items
with low classification accuracy in both models.
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TaBLE 6: Confusion matrices for different classification models.
. . MHS model CNN model

Evaluation metrics 4 d

1% test 209 test 1% test 209 test
Accuracy (%) 98.2 91.6 87.7 80.0
Precision (%) 98.5 97.1 88.6 85.9
Recall (%) 99.3 92.3 96.8 89.2

TABLE 7: Representative waste items that are correctly classified by both MHS and CNN.

MHS CNN

It can be noticed that both MHS and CNN perform
well when investigated items have strong image features
(Table 7). However, CNN performs poorly when waste
items lack distinctive image features, especially for “other”
waste.

For instance, the images of beer cap and the transparent
box (Table 8) are weak to be distinguished from the ex-
periment background. It is difficult for the CNN to extract
their imagery features in training, thus fail in testing. The
cabbage item is irregular in appearance showing different
figures for different orientations of placement. The CNN
model itself is not sufficient enough to construct the feature
patterns for accurate classification. The egg’s figure, on the
other hand, is too simple to transfer sufficient information
for training model resulting in a limited performance.

CNN relies on image information only, and if the study
items are weak in imagery features, its classification per-
formance will be adversely affected. MHS can address the
problem by integrating both image and other feature in-
formation. In situations where the image information is
insufficient, MHS is able to take advantages of other useful
feature to make the most appropriate classification decision.
Nevertheless, for items whose image features and other

numerical features are weak, their MHS classification error
may increase. For instance, the MHS accuracy rate of the cup
is about 60% (Table 9). After inspecting each individual
misclassification case, we found that the major reason to
cause these errors is that these objects have cylinder shapes,
which are usually misclassified as bottles that are recyclable.

5. Conclusion

An automatic classification system based on multilayer hybrid
deep learning (MHS) is proposed to classify disposal of waste in
the urban public area. The system simulates human sensory
and intelligence process system by deploying a high-resolution
camera together with multiple functional sensors. The multi-
layer hybrid method consists of three interdependent sub-
systems, including an image processing system, a numerical
sensor system, and a multilayer perceptrons (MLP) system. The
image processing system deploys AlexNet CNN to extract
waste imagery information as inputs for the MLP. The sensor
system aims at measuring other waste features as numerical
input for MLP. The MHS is used to automatically classify the
waste item as either recyclable or the others by consolidating
information from both image and sensory channels.
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TaBLE 8: Representative waste item that are correctly classified by the MHS but incorrectly classified by the CNN.
MHS CNN
4 X
TABLE 9: Representative waste item with low accuracy in MHS and CNN.
MHS CNN
X X

A total of 50 waste items are used to evaluate the
performance of MHS, which is also compared with a CNN-
only model that only takes images as input. The result
indicates that the MHS achieves a significantly higher
classification performance: the overall performance accu-
racies are 98.2% and 91.6%, (the accuracy of the reference
model is 87.7% and 80.0%) under two different testing
scenarios.

This study demonstrates the potential of the proposed
MHS in improving waste classification’s efficiency and
effectiveness. In considering the continually increased
volume of waste globally and the urgent requirements for
environmentally friendly waste processing, the proposed
MHS is both economically and environmentally beneficial.
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