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Gene transcription is a random process in single cells manifested by the observed distribution of mRNA copy numbers in
homogeneous cell populations. A central question is to understand how mRNA distribution is modulated under environmental
changes. In this work, we initiate a theoretical study on mRNA distribution dynamics for the stochastic transcription model that
involves cross-talking signaling pathways to direct gene activation in response to external signals. We first express the distribution
in mathematical dynamical formulas under both moderate and high transcriptional upregulations. In each scenario, our further
numerical examples display an observed dynamical transition type among three distribution modes for stress genes in yeast. In
particular, the intermediate bimodal stage sustains within a certain length of early time and lasts much longer than that generated
by the single pathway. /is shows the general and robust bimodal transcription regulated by the cross-talk of signaling pathways.

1. Introduction

Recent single-cellmeasurements have generatedmassive data on
the histogram of mRNA copy numbers for the target gene in
homogeneous cell populations [1, 2]. /is provides a good
approximation for data fitting by the probability mass function
Pm(t), the probability that there are exactlym mRNAmolecules
of the gene of our concern at time t in one cell [3, 4]. /e
distribution profile of Pm(t) contains a panoramic information
for distinct cellular phenotypes [5, 6]. /e commonly observed
modes are the decaying distribution that Pm(t) decreases in m,
the unimodal distribution that Pm(t) peaks uniquely at some
m> 0, and the bimodal distribution thatPm(t) takes exactly two
peaks with the first one at m � 0 and the other one at some
m> 0. A decaying or unimodal distribution suggests a phe-
notypic homogeneity, while a bimodal distribution supports a
binary process that steers cells into subpopulations with distinct
cell identities [1, 7, 8].

It has been a central question to understand how varying
external signals influence the profile of Pm(t) for inducible
genes [1, 2]. As suggested by the prevailing two-state model

[1, 9], it may involve intrinsic mechanisms that regulate a
random switching between gene-off (inactive) and gene-on
(active) states [6, 10, 11]. As shown in the following equation:

gene off ⇄
λ

c
gene on⟶v

mRNA⟶δ ∅, (1)

the dwell times in the off and on states are independent and
exponentially distributed with the activation rate λ> 0 and
inactivation rate c> 0, respectively. In an active gene, RNA
polymerase can bind to the promoter and traverses the template
DNA strand to direct mRNA synthesis./e waiting time for the
birth of a new mRNAmolecule and its lifetime before death are
independent and exponentially distributed with the synthesis
rate v> 0 and degradation rate δ > 0, respectively.

/e two-state model (1) has emerged as a standard
framework for quantifying the deviation of the mRNA level
in individual cells from the mean, through calculating the
noise (variance over mean squared), fano factor (variance
over mean), and probability distribution Pm(t) of random
mRNA copy numbers [1, 2, 8]. /ese indexes have been
expressed as analytical formulas for the two-state model or
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its more elaborated extension regarding a larger degree of
biological realism such as chromatin remodeling, mRNA
maturation, and cell division [6, 12–14]. Together with
experimental data, those formulas can be reversed to the
variation of system parameters and, in turn, uncover a large
spectrum of regulation modes that cells utilize under dif-
ferent cellular environments [2, 4, 14–16].

On the contrary, the two-state model (1) implicitly assumes
that the gene activation from the off state to the on state is
directed by a single signaling pathway. Such assumptionmaynot
be justified for a large class of inducible genes which maintain a
low transcription level induced by the spontaneous basal
pathway under normal cellular growth conditions [17, 18], while
upregulating the transcription through specific signaling path-
ways in response to acute external changes [19, 20]. Also, the
activation of other genes that are involved in stem cell renewal,
development, and immunity is often mediated by two signal
transduction pathways [21–23]. In all these cases, the down-
stream specific transcription factors (TFs) in one pathway
compete with the other TFs in another pathway for binding at
their shared promoter sites to direct the formation of the in-
termediate complex [19, 24]. /erefore, the two competitive
cross-talking pathways could be generated to activate the target
gene.

By integrating competitive cross-talking pathways into
the gene activation process [24, 25], the two-state model (1)
can be generalized as the following equation:

γ

λ1

λ2
O1

O2
q1

q2

off mRNA.v

δ

on

ø

(2)

/e transcription of the gene can be either induced by
the first pathway, or alternatively, the second pathway. /e
sojourn times in the two pathways are independent and
exponentially distributed, with the induction strength λ1 > 0
for the first pathway and the strength λ2 > 0 for the other,
satisfying

0< λ1 ≤ λ2 <∞. (3)

We rename the gene-off state as O1 if it is transformed to
the gene-on state by the first pathway, and as O2 otherwise.
/en, the pathway selection probabilities, denoted by

q1 � Prob O � O1( 􏼁,

q2 � Prob O � O2( 􏼁,
(4)

satisfy

0< q1, q2 < 1,

q1 + q2 � 1.
(5)

Also, the gene inactivation from the on state to the off
state and the birth and the death of mRNA molecules are

separately controlled by the first-order kinetic rates c, v, and
δ, as modeled in the two-state model (1).

When t⟶∞, the exact form for the stationary mass
function limt⟶∞Pm(t) was stated in [25]. /e subsequent
numerical examples showed that cross-talking pathways
are more likely to generate bimodal distribution compared
to the single pathway with q1 � 1 or λ1 � λ2. /is naturally
gives rise to an interesting question of whether the cross-
talking regulation still maintains the robust bimodal
distribution as time develops. When time t is finite,
however, the analytical formulas of Pm(t) have remained
elusive due to its intrinsic complexity. Only a few papers
considered the case of a single pathway and expressed
Pm(t) or the corresponding generating function in the
form of integrals [12], infinite series [26, 27], and
hypergeometric functions [6, 28] under certain parameter
regions. We shall derive Pm(t) generated by cross-talking
pathways in simple mathematical formulas in Section 2,
and then discuss their dynamical profiles and implications
in Section 3. /e main conclusion and its discussion are
given in the last section.

2. Analytical Formulas for
Dynamical Distribution

In this section, we have endeavored to calculate Pm(t) by
solving the system of master equations. /e standard ap-
proach is to transform it into a system of first-order partial
differential equations through the method of generating
functions [6, 12]. /e analytical form of Pm(t) has been
found to be the solutions for several special types of third-
order ordinary differential equations. Solving their corre-
sponding initial value problems and then extracting Pm(t)

are in general formidable and pose a major obstacle in the
study.

We have successfully derived many exact forms of Pm(t)

within a large range of system parameters. In particular, our
first result assumes that the weaker signaling pathway is
more frequently selected. In this case, the upregulation of the
target gene may not be efficient due to the exposure of cells
to mild external signals or the intrinsic mechanism that
avoids overexuberant transcription of the target gene
[17, 20, 29].

Theorem 1. If c � 2δ, q1 > q2, and λ2 � λ1 + δ/(q1 − q2),
then the probability mass function Pm(t) in the cross-talking
pathway model can be expressed as

P0(t) � q1e
− λ1t

+ q2e
− λ2t

+
λ1λ2

λ2 − λ1
􏽚

t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑

· e
v e− δt − e− δs( )/δds +

q1λ1 + q2λ2
λ2 − λ1

· 􏽚
t

0
δ − λ1( 􏼁e

− λ1s
− δ − λ2( 􏼁e

− λ2s
􏽨 􏽩e

δ(s− t)
e

v e− δt − e− δs( )/δds,

(6)

and for m � 1, 2, . . .,
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Pm(t) �
vm q1λ1 + q2λ2( 􏼁

δmm! λ2 − λ1( 􏼁

λ1λ2
q1λ1 + q2λ2

􏽚
t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑􏼢

· e
− δs

− e
− δt

􏼐 􏼑
m

e
v e− δt − e− δs( )/δds

+ 􏽚
t

0
δ − λ1( 􏼁e

− λ1s
− δ − λ2( 􏼁e

− λ2s
􏽨 􏽩

· e
δ(s− t)

e
− δs

− e
− δt

􏼐 􏼑
m

e
v e− δt − e− δs( )/δds􏼣,

(7)

or alternatively, for m � 0, 1, . . .,

Pm(t) �
vm

δmm! λ2 − λ1( 􏼁
􏽚

t

0
q1λ1 + q2λ2( 􏼁 e

− λ1s
− e

− λ2s
􏼐 􏼑􏼔􏼢

· e
− δt

− λ2e0
− λ1+δ( )s

+ λ1e
− λ2+δ( )s

􏼕

× mδ + v e
− δt

− e
− δs

􏼐 􏼑􏽨 􏽩 e
− δs

− e
− δt

􏼐 􏼑
m− 1

× e
v e− δt − e− δs( )/δds􏼣 +

vm 1 − e− δt( 􏼁
m

δmm!ev 1− e− δt( )/δ
.

(8)

Proof. Let Pm,j(t), j � e, 1, 2, be the respective probabilities
of m mRNA molecules at time t that the gene is residing in
the on state and the off state with the jth pathway being
selected. /en, the total probability mass function is

Pm(t) � Pm,1(t) + Pm,2(t) + Pm,e(t). (9)

Following the standard procedure in the theory of
stochastic processes [13, 24], we find that the three partial
mass functions in the cross-talking pathway model satisfy
the following system of master equations:
Pm,1′ (t) � q1cPm,e(t) − mδ + λ1( 􏼁Pm,1(t) +(m + 1)δPm+1,1(t),

(10)

Pm,2′ (t) � q2cPm,e(t) − mδ + λ2( 􏼁Pm,2(t) +(m + 1)δPm+1,2(t),

(11)

Pm,e
′ (t) � λ1Pm,1(t) + λ2Pm,2(t) − (v + mδ + c)Pm,e(t)

+(m + 1)δPm+1,e(t) + vPm− 1,e(t),

(12)

where, by convention, we set P− 1,e(t) � 0. Without loss of
generality, we assume that the gene is inactive and the
number of transcripts is zero at t � 0 with the initial
conditions:

P0,1(0) � q1,

P0,2(0) � q2,

P0,e(0) � Pm,i(0) � 0, for i � 1, 2, e, m≥ 1.

(13)

Following the standard procedure [6, 12], we introduce
the probability generating functions

Vi(z, t) � 􏽘
∞

m�0
(z + 1)

m
Pm,i(t), i � 1, 2, e, (14)

to transform the initial value problem for the master
equations (10)–(12) into the problem for the system of first-
order partial differential equations:

zV1

zt
(z, t) � − λ1V1(z, t) + q1cVe(z, t) − δz

zV1

zz
(z, t),

(15)

zV2

zt
(z, t) � − λ2V2(z, t) + q2cVe(z, t) − δz

zV2

zz
(z, t),

(16)

zVe

zt
(z, t) � λ1V1(z, t) + λ2V2(z, t) − cVe(z, t)

+ vzVe(z, t) − δz
zVe

zz
(z, t),

(17)

V1(z, 0) � q1,

V2(z, 0) � q2,

Ve(z, 0) � 0.

(18)

If the initial value problem (15)–(18) can be solved
analytically, then we may obtain Pm(t) by adding the three
solutions together and then applying the conversion
formula:

Pm(t) �
1

m!

zzV(z, t)

zzm

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�− 1
, whereV(z, t) � V1(z, t) + V2(z, t) + Ve(z, t), m≥ 0. (19)

We continue from there and transform (15)–(17) into
ordinary differential equations through the method of
characteristics [12, 28, 30]. Let z0 be a parameter. Let

ui(t) � Vi z0e
δt

, t􏼐 􏼑, for i � 1, 2, e,

u(t) � u1(t) + u2(t) + ue(t),
(20)

be the restriction of V1, V2, Ve, and V on the characteristic
curve z � z0e

δt. /en,

u1′(t) � − λ1u1(t) + q1cue(t),

u2′(t) � − λ2u2(t) + q2cue(t),
(21)

ue
′(t) � λ1u1(t) + λ2u2(t) − cue(t) + vz0e

δt
ue(t), (22)
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u1(0) � q1,

u2(0) � q2,

ue(0) � 0.

(23)

By introducing nondimensionalized system parameters,

λ1 �
λ1
δ

,

λ2 �
λ2
δ

,

c �
c

δ
,

v �
v

δ
,

(24)

and from the further transformation,

wi(x) � ui(t), for i � 1, 2, e,

w(x) � u(t), wherex � vz0e
δt

,
(25)

we find ui
′(t) � δxwi

′(x), and transform (21)–(23) into

xw1′(x) � − λ1w1(x) + q1cwe(x),

xw2′(x) � − λ2w2(x) + q2cwe(x),
(26)

xwe
′ (x) � λ1w1(x) + λ2w2(x) − cwe(x) + xwe(x), (27)

w1 vz0( 􏼁 � q1,

w2 vz0( 􏼁 � q2,

we vz0( 􏼁 � 0.

(28)

It is interesting to note that equations (26) and (27) are
indeed identical with equations (17)–(19) in [25]. /erefore,
by introducing two real numbers α> β> 0 determined by
algebra equations [24],

α + β � λ1 + λ2 + c,

αβ � λ1λ2 + q1λ2c + q2λ1c,
(29)

the same calculation verifying (21) in [25] shows that w(x)

is the unique solution of the initial value problem:

L
λ1 ,λ2
α,β

(w) � 0,

w vz0( 􏼁 � 1,

w′ vz0( 􏼁 � 0,

w″ vz0( 􏼁 �
q1λ1 + q2λ2

vz0
,

(30)

for the linear operator L given by

L
a,b
c,d(f) � x

2
f
‴

(x) + x(1 − x + c + d)f″(x)

+(c d − x(a + b + 1))f′(x) − abf(x),
(31)

with real constants a, b, c, and d and a smooth function
f � f(x) of x.

To proceed, we define by

y(x) � x
2
w″(x) + x λ1 + λ2 + 1􏼐 􏼑w′(x) + λ1λ2w(x),

(32)

and utilize notations (24) and (29) and the assumption of
theorem to verify

β � λ1 + 1,

α � λ2 + 1.
(33)

We then reformulate Lλ1 ,λ2
α,β

(w) � 0 of (30) in the form

x
2
w‴(x) + x(1 + α + β)w″(x) + αβw′(x)􏽨 􏽩

� x
2
w″(x) + x λ1 + λ2 + 1􏼐 􏼑w′(x) + λ1λ2w(x)􏽨 􏽩.

(34)

/e substitution of (32) and (33) into the above equation
gives y′(x) � y(x), which readily converts (30) to the
simple problem:

y′(x) � y(x),

y vz0( 􏼁 � λ1λ2 + vz0 q1λ1 + q2λ2􏼐 􏼑.
(35)

/e unique solution of (35) is y � y(vz0)exp(x − vz0).
We replace its left side by (32) and the right side by the initial
condition in (35). /is gives an inhomogeneous equation:

x
2
w″(x) + x λ1 + λ2 + 1􏼐 􏼑w′(x) + λ1λ2w(x)

� λ1λ2 + vz0 q1λ1 + q2λ2􏼐 􏼑􏽨 􏽩e
x− vz0 ,

(36)

subject to the initial condition given in (30)

w vz0( 􏼁 � 1,

w′ vz0( 􏼁 � 0.
(37)

Taking into account that the homogeneous counterpart
of (36) is Euler’s equation which possesses two independent
solutions x− λ1 and x− λ2 , their linear combination, adding a
particular solution of (36), constitutes the general solution of
(36). Following the standard method of undetermined co-
efficients in the theory of ordinary differential equation [31],
we find that one particular solution takes the following form:

w(x) �
λ1λ2 + vz0 q1λ1 + q2λ2􏼐 􏼑

λ2 − λ1
􏽚

x

vz0

sλ1− 1

xλ1
−

sλ2− 1

xλ2
⎛⎝ ⎞⎠e

s− vz0ds.

(38)

By fixing the coefficients in the linear combination
through the initial condition (37), we obtain the unique
solution of (36) and (37) in the following form:

4 Complexity



w(x) � C1x
− λ1 + C2x

− λ2 + w(x),

C1 �
λ2 vz0( 􏼁

λ1

λ2 − λ1
,

C2 � −
λ1vz0)

λ2

λ2 − λ1
.

(39)

Now, the transformations u(t) � V(z0e
δt, t) defined in

(20) and u(t) � w(vz0e
δt) defined in (25) convert (39) back

to

V z0e
δt

, t􏼐 􏼑 �
λ2e− λ1t

λ2 − λ1
−
λ1e− λ2t

λ2 − λ1
+

λ1λ2
λ2 − λ1

􏽚
vz0eδt

vz0

sλ1− 1e− λ1t

vz0( 􏼁
λ1

−
sλ2− 1e− λ2t

vz0( 􏼁
λ2

⎛⎝ ⎞⎠e
s− vz0ds

+
vz0 q1λ1 + q2λ2􏼐 􏼑

λ2 − λ1
􏽚

vz0eδt

vz0

sλ1− 1e− λ1t

vz0( 􏼁
λ1

−
sλ2− 1e− λ2t

vz0( 􏼁
λ2

⎛⎝ ⎞⎠e
s− vz0ds.

(40)

By making the change of variable s � vz0 exp(δτ) in the
integral, we rewrite V as

V z0e
δt

, t􏼐 􏼑 �
λ2e− λ1t

λ2 − λ1
−
λ1e− λ2t

λ2 − λ1
+

λ1λ2
λ2 − λ1

􏽚
t

0
e
λ1(τ− t)

− e
λ2(τ− t)

􏼐 􏼑e
vz0 eδτ − 1( )dτ +

vz0 q1λ1 + q2λ2( 􏼁

λ2 − λ1
􏽚

t

0
e
λ1(τ− t)

− e
λ2(τ− t)

􏼐 􏼑e
vz0 eδτ − 1( )dτ. (41)

In turn, by using conversion z0 � ze− δt and then letting
s � t − τ in the integral, we obtain

V(z, t) �
λ2e− λ1t

λ2 − λ1
−
λ1e− λ2t

λ2 − λ1
+

λ1λ2
λ2 − λ1

􏽚
t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑e

vz e− δs − e− δt( )ds +
vze− δt q1λ1 + q2λ2( 􏼁

λ2 − λ1
􏽚

t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑e

vz e− δs − e− δt( )ds.

(42)

We divide the rest of the proof into two parts. We derive
(6) and (7) in the first part and (8) in the second part.

Derivation of (6) and (7): we first note that the second
integral in (42) can be expressed in an equivalent form
through integration by parts:

vze
− δt

􏽚
t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑e

vz e− δs − e− δt( )ds

� e
− δt

􏽚
t

0
e

δ− λ2( )s
− e

δ− λ1( )s
de

vz e− δs − e− δt( )􏼒 􏼓

� e
− λ2t

− e
− λ1t

− 􏽚
t

0
δ − λ2( 􏼁e

− λ2s
− δ − λ1( 􏼁e

− λ1s
􏽨 􏽩

· e
δ(s− t)

e
vz e− δs − e− δt( )ds,

(43)

which helps us rewrite the generating function V(z, t) as

V(z, t) � q1e
− λ1t

+ q2e
− λ2t

+
λ1λ2

λ2 − λ1
􏽚

t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑e

vz e− δs − e− δt( )ds +
q1λ1 + q2λ2
λ2 − λ1

􏽚
t

0
δ − λ1( 􏼁e

− λ1s
− δ − λ2( 􏼁e

− λ2s
􏽨 􏽩e

δ(s− t)
e

vz e− δs − e− δt( )ds.

(44)
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To finally verify (6) and (7), we extract the probability
mass function Pm(t) from (44) through the conversion
formula (19). Since the first two terms in (44) are eliminated

by differentiation with respect to z, P0(t) in (6) needs to be
derived from (44) directly as P0(t) � V(− 1, t). For m≥ 1,

zmV(z, t)

zzm
�

vm q1λ1 + q2λ2( 􏼁

λ2 − λ1

λ1λ2
q1λ1 + q2λ2

􏽚
t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑 e

− δs
− e

− δt
􏼐 􏼑

m
e

vz e− δs − e− δt( )ds􏼢

+ 􏽚
t

0
δ − λ1( 􏼁e

− λ1s
− δ − λ2( 􏼁e

− λ2s
􏽨 􏽩e

δ(s− t)
e

− δs
− e

− δt
􏼐 􏼑

m
e

vz e− δs − e− δt( )ds.

(45)

By substituting v � v/δ and z � − 1 into this expression
and dividing it by m!, we obtain (7).

Derivation of (8): by changing the first integral in (42) in
the form

λ1λ2 􏽚
t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑e

vz e− δs − e− δt( )ds � 􏽚
t

0
e

vz e− δs − e− δt( )d λ1e
− λ2s

− λ2e
− λ1s

􏼐 􏼑

� λ1e
− λ2t

− λ2e
− λ1t

+ λ2 − λ1( 􏼁e
vz 1− e− δt( ) − vz 􏽚

t

0
λ2e

− λ1+δ( )s
− λ1e

− λ2+δ( )s
􏼒 􏼓e

vz e− δs − e− δt( )ds,

(46)

we rewrite (42) as

V(z, t) � e
vz 1− e− δt( ) −

vz

λ2 − λ1
􏽚

t

0
λ2e

− λ1+δ( )s
− λ1e

− λ2+δ( )s
􏼒 􏼓e

vz e− δs − e− δt( )ds

+
vze− δt q1λ1 + q2λ2( 􏼁

λ2 − λ1
􏽚

t

0
e

− λ1s
− e

− λ2s
􏼐 􏼑e

vz e− δs − e− δt( )ds.

(47)

With the help of the elementary identity
zm zeaz( )

zzm
� (m + az)a

m− 1
e

az
, (48)

we find

zmV(z, t)

zzm
� v

m 1 − e
− δt

􏼐 􏼑
m

e
vz 1− e− δt( ) +

vm

λ2 − λ1
􏽚

t

0
q1λ1 + q2λ2( 􏼁 e

− λ1s
− e

− λ2s
􏼐 􏼑e

− δt
− λ2e

− λ1+δ( )s
+ λ1e

− λ2+δ( )s
􏼔 􏼕􏼢

× mδ + vz e
− δs

− e
− δt

􏼐 􏼑􏽨 􏽩 e
− δs

− e
− δt

􏼐 􏼑
m− 1

e
vz e− δs − e− δt( )ds􏼕.

(49)

/en, (8) follows from (19) immediately.
Next, we present a result for the case c � 0, for which

gene activation is irreversible [26]. It may give an

approximation to the case when the gene-on state is regu-
lated to be very stable (c≪ 1) under the highest induction
level [15, 16, 32]. □
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Theorem 2. If c � 0, then the probability mass function
Pm(t) takes the form

Pm(t) �

q1e
− λ1t + q2e

− λ2t + 􏽒
t

0
q1λ1eλ1(s− t) + q2λ2eλ2(s− t)􏽨 􏽩ev e− δs − 1( )ds, form � 0,

vm

m!
􏽚

t

0

q1λ1e
λ1(s− t)

+ q2λ2e
λ2(s− t)

􏽨 􏽩 1 − e
− δs

􏼐 􏼑
m

e
v e− δs − 1( )ds, form � 1, 2, . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

or alternatively, for m � 0, 1, . . .,

Pm(t) �
vm

m!
1 − e

− δt
􏼐 􏼑

m
e

v e− δt − 1( ) − e
− δt

􏽚
t

0
q1e

δ− λ1( )(t− s)
+ q2e

δ− λ2( )(t− s)
􏼔 􏼕 × mδ − v 1 − e

− δs
􏼐 􏼑􏽨 􏽩 1 − e

− δs
􏼐 􏼑

m− 1
e

v e− δs − 1( )ds􏼢 􏼣.

(51)

Proof. As in the proof of /eorem 1, our basic strategy is to
solve the initial value problem (30). If c � 0, then α � λ2 and
β � λ1 by definitions (24) and (29). Combining this with
(31), we see that Lλ1 ,λ2

α,β
(w) � 0 reduces to

x
2

w‴(x) − w″(x)􏼂 􏼃 + x λ1 + λ2 + 1􏼐 􏼑 w″(x) − w′(x)􏼂 􏼃

+ λ1λ2 w′(x) − w(x)􏼂 􏼃 � 0.

(52)

According to the initial conditions in (30), we denote by

y(x) � w′(x) − w(x), withy′ vz0􏼂 􏼃 � − 1,

y″ vz0( 􏼁 �
q1λ1 + q2λ2

vz0
.

(53)

/en, (52) is Euler’s equation of y(x) with two inde-
pendent solutions y1(x) � x− λ1 and y2(x) � x− λ2 . Hence,
y(x) can be expressed as a linear combination of y1(x) and
y2(x). By determining the coefficients through initial
conditions of y(x), it readily follows that

y(x) � − q1 vz0( 􏼁
λ1x

− λ1 − q2 vz0( 􏼁
λ2x

− λ2 . (54)

Together with (53), we find that w(x) can be obtained by
solving the simple problem:

w′(x) − w(x) � − q1 vz0( 􏼁
λ1x

− λ1 − q2 vz0( 􏼁
λ2x

− λ2 ,

w vz0( 􏼁 � 1.
(55)

By a routine calculation of the first-order linear ordinary
differential equation [31], we obtain

w(x) � e
x− vz0 − 􏽚

x

vz0

q1 vz0( 􏼁
λ1s

− λ1 + q2 vz0( 􏼁
λ2s

− λ2􏼔 􏼕e
x− sds.

(56)

By replacing x with vz and z0 with ze− δt, we convert
w(x) to the generating function V(z, t):

V(z, t) � e
vz0 eδt − 1( ) − 􏽚

vz0eδt

vz0

q1 vz0( 􏼁
λ1s

− λ1 + q2 vz0( 􏼁
λ2s

− λ2􏼔 􏼕e
vz0eδt − sds.

(57)

Substituting s � vz0 exp(δτ) in the integral simplifies the
expression to

V(z, t) � e
vz0 eδt − 1( ) − vz0 􏽚

t

0
q1e

− λ1τ + q2e
− λ2τ􏽨 􏽩e

δτ
e

vz0 eδt − eδτ( )dτ.

(58)

After substituting z0 � ze− δt and then s � t − τ, we fi-
nally obtain

V(z, t) � e
vz 1− e− δt( ) − vze

− δt
􏽚

t

0
q1e

δ− λ1( )(t− s)
+ q2e

δ− λ2( )(t− s)
􏼔 􏼕

· e
vz 1− e− δs( )ds.

(59)

Derivation of (50): through integration by parts, we
express the last integral of (59) in an equivalent form:

vze
− δt

􏽚
t

0
q1e

δ− λ1( )(t− s)
+ q2e

δ− λ2( )(t− s)
􏼔 􏼕e

vz 1− e− δs( )ds � e
− δt

􏽚
t

0
q1e

δ− λ1( )(t− s)
+ q2e

δ− λ2( )(t− s)
􏼔 􏼕e

δsde
vz 1− e− δs( )

� e
vz 1− e− δt( ) − q1e

− λ1t
− q2e

− λ2t
− 􏽚

t

0
q1λ1e

λ1(s− t)
+ q2λ2e

λ2(s− t)
􏽨 􏽩e

vz 1− e− δs( )ds.

(60)
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/e substitution of this into (59) helps us rewrite the
generating function V(z, t) as

V(z, t) � q1e
− λ1t

+ q2e
− λ2t

+ 􏽚
t

0
q1λ1e

λ1(s− t)
+ q2λ2e

λ2(s− t)
􏽨 􏽩e

vz 1− e− δs( )ds.

(61)

By the conversion formula (19), P0(t) in (50) is derived
from (61) directly as P0(t) � V(− 1, t). For m≥ 1,

zmV(z, t)

zzm
� v

m
􏽚

t

0
q1λ1e

λ1(s− t)
+ q2λ2e

λ2(s− t)
􏽨 􏽩 1 − e

− δs
􏼐 􏼑

m
e

vz 1− e− δs( )ds,

(62)

which leads to (50) by substituting v � v/δ and z � − 1 into
this expression and dividing it by m!.

Derivation of (51): with the help of (59) and the ele-
mentary identity (48), we find

zmV(z, t)

zzm
� v

m 1 − e
− δt

􏼐 􏼑
m

e
vz 1− e− δt( ) − v

m
e

− δt
􏽚

t

0
q1e

δ− λ1( )(t− s)
+ q2e

δ− λ2( )(t− s)
􏼔 􏼕 × mδ + vz 1 − e

− δs
􏼐 􏼑􏽨 􏽩 1 − e

− δs
􏼐 􏼑

m− 1
e

vz 1− e− δs( )ds.

(63)

/en, (51) follows from the conversion formula (19)
immediately. /e proof is completed. □

3. Dynamical Bimodal Distribution for
Inducible Genes

We elucidate the regulation of cross-talking pathways on
dynamical mRNA distribution for inducible genes under
acute stresses, which have to fulfill two requirements. First, a
default or spontaneous mechanism maintains transcription
at the basal level when cells are under normal cellular en-
vironments to avoid the overexuberant expression [17, 29].
Second, the exposure of cells to the extracellular stresses
results in the transient activation of dedicated intracellular
signaling pathways, which enables cells to adapt immediately
to the new environment for maximal cell survival [19, 20].
For instance, the osmotic shock induces the MAPK HOG
pathway in S. cerevisiae through the phosphorylation of
MAPK Hog1 that leads to the rapid translocation of Hog1
into the nucleus to launch a transcriptional program [19].
/erefore, the cross-talk between a weak basal pathway and
an inducible signaling pathway could be generated to initiate
the stress gene transcription.

We shall discuss the observed dynamical transition
among three distribution modes for the STL1 gene in S.
cerevisiae in response to acute osmotic stress [19]. Undermild
or high NaCl concentrations, no expression was detected in
most cells at the initial time referred to as the decaying
distribution and full expression was detected at a large time
scale referred to as the unimodal distribution. /e scenario
becomesmore fascinated within the intermediate time as both
nonexpressing and fully expressing cell subpopulations were
presented, characterized as the bimodal distribution. It is
believed that such bimodal transcription output is controlled
by both the retention time and concentration of Hog1 in the
nucleus and results in a larger phenotypic variability for cell
survival in harsh environments [19].

We demonstrate through numerical examples that cross-
talking pathways can generate dynamical bimodality of
osmoresponsive gene transcription under mild or high stress
level. Most mRNA half-lives in S. cerevisiae range around a
median of 11min [33], so we fix δ � ln(2)/11 ≈

0.063min− 1.We set the transcription rate as its upper bound
v/δm � 10 [34], and thus v � 0.63min− 1. Also, we set a
relative small strength rate λ1 � 0.1min− 1 for the basal
pathway and a relative large strength rate λ2 � 3min− 1 for
the signaling pathway. Such parameter set generates a
prolonged region of the gene-off time (denoted by Toff ):

Toff �
q1

λ1
+

q2

λ2
∈

1
λ2

,
1
λ1

􏼠 􏼡, (64)

that covers the lag time of 1 to 3 minutes for the activation of
most typical osmoresponsive genes, such as STL1, GRE2, or
GPD1 [20].

/e mild stress level results in a moderate increasing
nuclear accumulation of activated Hog1 [19]. /is leads to
the well-matched competition between two pathways with
their selected probabilities q1 ≈ q2. We set q1 � 0.51 and
q2 � 0.49 that generates transcriptional efficiency
1/Toff � 0.19min− 1. On the other hand, the high stress level
induces saturated nuclear Hog1 concentration [19] and thus
may direct gene activation more frequently through the
signaling pathway with q2 > q1. We then set q1 � 0.3 and
q2 � 0.7 that generates 1/Toff � 0.3min− 1. Also, it was re-
ported that the gene-on state could be significantly stabilized
in response to increasing stress level, and thus c≪ 1
[2, 15, 16, 32].

We next take advantage of exact forms (8) and (51) to
quantify dynamical mRNA distribution under mild and high
stress levels, respectively. In both scenarios, we observe
obvious transitions from the decaying distribution to uni-
modal distribution as time develops, going through a bi-
modal stage within a 30min length of early time (Figure 1).
To test to what extent the cross-talking pathways modulate
the bimodality, we reset q1 � 1 so that the gene is activated by
a single pathway with strength rate λ � λ1. In turn, we let λ be
equal to transcriptional efficiencies for both cases of mild and
high stress levels. Interestingly, it shows that the intermediate
bimodality becomes much more fragile that lasts less than
5min, see Figure 1 (inset). /is confirms that the cross-
talking regulation indeed prolongs duration of mRNA bi-
modal distribution, reinforcing the general feature of bi-
modal transcription for stress genes [19, 35].
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4. Conclusion and Discussion

Recent single-cell studies have generated massive data on the
distribution of mRNA copy numbers for many genes under
various experimental conditions [1–3]./e most commonly
observed modes for the distribution are the decaying dis-
tribution, unimodal distribution, and bimodal distribution.
It is reported that the bimodal distribution could help
differentiate an isogenic cell population into two dynami-
cally stable groups with distinct phenotypes. For instance,
the bimodal Nanog expression plays a key role in mediating
cell differentiation in embryonic stem cells [7]; the tran-
scriptional bimodality of Tat generates one HIV highly
expressed subpopulation and the other with HIV latency
[36]; the bimodal transcription pattern of stress genes in
yeast increases phenotypic variability in response to un-
predictable environmental changes [19]. In the classical
two-state model (1), the bimodal distribution has been
suggested to originate from the random switch between
gene-off and gene-on states as bimodality would disappear
when the gene is always active [7, 28].

One of our major concerns is how the gene activation
process modulates the bimodal distribution for inducible
genes in face of external cues. We introduce a cross-talking
pathway model (2) by integrating two competitive signaling
pathways into the two-state model [24, 25]. Comparing to
other statistical concepts such as the noise or fano factor that
can be computed relatively easily, exploring transparent

analytical formulas for mRNA distribution remains a
challenging task. For instance, a traditional approach for
calculating mRNA distribution is to express the corre-
sponding generating function in the form of hypergeometric
functions [6, 28]. However, this does not permit an easy
tractable way to further transform the generating function to
mRNA distribution when the time and system parameters
are finite. We endeavor to express time-dependent mRNA
distribution in simple mathematical formulas within a large
range of finite parameters for the cross-talking pathway
model. /e formulas are obtained by solving the initial value
problems of third-order ordinary differential equations,
which are derived from the master equations of the cross-
talking pathway model.

We consider stress-responsive genes under acute stresses
as the implement of dynamical analytical formulas for
mRNA distribution. /e stress gene can be activated either
by a weak spontaneous basal pathway with strength λ1 and
selection probability q2, or alternately by an inducible sig-
naling pathway with strength λ2 and selection probability
q2 � 1 − q1. /e probability q1 (or q2) may be governed by
the number and availability of activated transcription factors
(TFs) near the binding sites [19, 20] and thus is related with
the stress level; the inducible strength λ2 can be governed by
the binding strength between the TFs and the DNA sites
[11, 20], and thus may be tightly related with the type of
external signals. We suggest that the signaling pathway is
efficiently induced with
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Figure 1: Cross-talking pathways generate typical dynamical transitions from mRNA decaying distribution to unimodal distribution
undergoing the significant intermediate bimodal stage for stress genes in yeast with v � 0.63, δ � 0.063, λ1 � 0.1, and λ2 � 3 (min− 1). (a)
Dynamical distribution of the stress gene under mild stress level equipped with q1 � 0.51, q2 � 0.49, and c � 0.126min− 1. (b) Distribution
dynamics of the stress gene under high stress level with q1 � 0.3, q2 � 0.7, and c � 0min− 1. In (a) and (b), the solid circles in lines represent
analytical solution, whereas the hollow circles represent the numerical result obtained by Gillespie’s algorithm. /e embedded distribution
dynamics are generated by the single pathway in which durations of bimodal distribution are much shorter than that generated by cross-
talking pathways.
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λ1≪ λ2. (65)

On the assumption of /eorem 1, (65) leads to q1 ∼ q2,
which shows a mild stress level that may induce a similar
concentration of activated TFs in each pathway. /e as-
sumption of /eorem 2 presents an active system in which
the gene inactivation process is blocked. It suggests a very
high stress level that may induce a significant decrease of the
gene inactivation rate c [2, 16, 32]. For instance, compared
with normal cellular conditions, the inductions with the
highest strength lead to the decrease of c for over 106 folds
for the Lac promoter in E. coli [32] and possible 105 fold
change for the POL1 promoter in yeast [34].

Under both mild and high stress levels, we utilize the
parameter rates for stress genes in yeast to understand their
dynamical distributions. We reveal a typical dynamical
transition from the decaying distribution to unimodal dis-
tribution as time develops, going through an intermediate
bimodal stage with over 30 minutes long./is result strongly
suggests the general and robust bimodal transcription of
stress genes regulated by the cross-talking pathways in re-
sponse to acute stresses [19, 35]. First, noting that the system
takes about 120 minutes to reach the steady state, bimodal
distribution maybe clearly visible in the course of real-time
imaging due to its relatively large time window of 30
minutes. Second, under the same durations for the gene-off
and gene-on states, as well as the same mRNA synthesis and
degradation rates, the two-state model (a single pathway)
can only generate a much fragile intermediate bimodal stage
that lasts less than 5 minutes.

/e general intermediate bimodal stage is consistent
with recent observations that the cross-talking pathway
model (2) is more likely to generate high transcription noise
and bimodal distribution at the steady state compared with
the two-state model (1) [24, 25]. It suggests that natural
selection may favor two or more parallel signaling pathways
for gene activation to enhance expression variability which
may provide a clear benefit in the face of an environmental
stress [19, 37]. On the other hand, the cross-talking pathway
model (2) assumes the constant system rates and cannot take
into account some inducible genes and immune genes
regulated by the oscillating signal [38], temporal feedback
[39], or different cell cycle phases [14]. Interestingly, the
dynamical bimodality can be easily generated through the
other very different mechanisms such as the system involves
positive or negative genetic feedback loops [39]. /e ex-
tensions of our model that include those salient biological
features may require assuming time-varying parameters
with biological realism accordingly. Future work will focus
on how those extended models modulate the dynamical
bimodal or even multimodal transcription distributions.

Data Availability

/e data used to support findings of this study are included
within the article: (1) the degradation rate of the mRNA
molecule in S. cerevisiae equals ln(2)/11≈ 0.063 (1/min),
which is calculated through the 11min average half-life
obtained in reference [33]. (2)/emRNA synthesis rate in S.

cerevisiae equals 0.063∗10�0.63 (1/min), which is calculated
according to the mRNA degradation rate 0.063 (1/min)
estimated in (1) and the upper bound of its transcription rate
10 (per mRNA lifetime) given in reference [34]. (3) /e
1–3min gene-off duration for most typical osmoresponsive
genes in S. cerevisiae is reported in reference [20].
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I. Golding, “General properties of transcriptional time series
in Escherichia coli,” Nature Genetics, vol. 43, no. 6,
pp. 554–560, 2011.

[33] C. Miller, B. Schwalb, K. Maier et al., “Dynamic transcriptome
analysis measures rates of mRNA synthesis and decay in
yeast,” Molecular Systems Biology, vol. 7, no. 1, p. 458, 2011.

[34] L. B. Carey, D. V. Dijk, P. M. A. Sloot, J. A. Kaandorp, and
E. Segal, “Promoter sequence determines the relationship
between expression level and noise,” PLoS Biology, vol. 11,
no. 4, Article ID e1001528, 2013.

[35] S. Paliwal, P. A. Iglesias, K. Campbell, Z. Hilioti, A. Groisman,
and A. Levchenko, “MAPK-mediated bimodal gene expres-
sion and adaptive gradient sensing in yeast,” Nature, vol. 446,
no. 7131, pp. 46–51, 2007.

[36] B. S. Razooky, A. Pai, K. Aull, I. M. Rouzine, and
L. S. Weinberger, “A hardwired HIV latency program,” Cell,
vol. 160, no. 5, pp. 990–1001, 2015.

[37] J. Liu, H. Martin-Yken, F. Bigey, S. Dequin, J.-M. François,
and J.-P. Capp, “Natural yeast promoter variants reveal
epistasis in the generation of transcriptional-mediated noise
and its potential benefit in stressful conditions,” Genome
Biology and Evolution, vol. 7, no. 4, pp. 969–984, 2015.

[38] S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and
M. W. Covert, “Single-cell NF-κB dynamics reveal digital
activation and analogue information processing,” Nature,
vol. 466, no. 7303, pp. 267–271, 2010.

[39] J. Chen and R. Grima, “Dynamical phase diagram of an auto-
regulating gene in fast switching conditions,” @e Journal of
Chemical Physics, vol. 152, no. 17, Article ID 174110, 2020.

Complexity 11



Research Article
Optimal Design of Single-Cell Experiments within Temporally
Fluctuating Environments

Zachary R. Fox,1,2,3 Gregor Neuert,4,5,6 and Brian Munsky 3,7

1Inria Saclay Ile-de-France, Palaiseau 91120, France
2Institut Pasteur, USR 3756 IP CNRS, Paris 75015, France
3School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
4Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
5Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232, USA
6Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
7Department of Chemical and Biological Engineering, Colorado State University Fort Collins, CO 80523, USA

Correspondence should be addressed to Brian Munsky; munsky@colostate.edu

Received 20 October 2019; Accepted 12 February 2020; Published 13 June 2020

Guest Editor: George V. Popescu

Copyright © 2020 Zachary R. Fox et al.+is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modern biological experiments are becoming increasingly complex, and designing these experiments to yield the greatest possible
quantitative insight is an open challenge. Increasingly, computational models of complex stochastic biological systems are being
used to understand and predict biological behaviors or to infer biological parameters. Such quantitative analyses can also help to
improve experiment designs for particular goals, such as to learn more about specific model mechanisms or to reduce prediction
errors in certain situations. A classic approach to experiment design is to use the Fisher information matrix (FIM), which
quantifies the expected information a particular experiment will reveal about model parameters. +e finite state projection-based
FIM (FSP-FIM) was recently developed to compute the FIM for discrete stochastic gene regulatory systems, whose complex
response distributions do not satisfy standard assumptions of Gaussian variations. In this work, we develop the FSP-FIM analysis
for a stochastic model of stress response genes in S. cerevisiae under time-varying MAPK induction. We verify this FSP-FIM
analysis and use it to optimize the number of cells that should be quantified at particular times to learn as much as possible about
the model parameters. We then extend the FSP-FIM approach to explore how different measurement times or genetic mod-
ifications help to minimize uncertainty in the sensing of extracellular environments, and we experimentally validate the FSP-FIM
to rank single-cell experiments for their abilities to minimize estimation uncertainty of NaCl concentrations during yeast osmotic
shock. +is work demonstrates the potential of quantitative models to not only make sense of modern biological datasets but to
close the loop between quantitative modeling and experimental data collection.

1. Introduction

+e standard approach to design experiments has been to
rely entirely on expert knowledge and intuition. However, as
experimental investigations become more complex and seek
to examine systems with more subtle nonlinear interactions,
it becomes much harder to improve experimental designs
using intuition alone. +is issue has become especially
relevant in modern single-cell-single-molecule investiga-
tions of gene regulatory processes. Performing such pow-
erful, yet complicated, experiments involves the selection

from among a large number of possible experimental de-
signs, and it is often not clear which designs will provide the
most relevant information. A systematic approach to solve
this problem is model-driven experiment design, in which
one combines existing knowledge or experience to form an
assumed (and partially incorrect) mathematical model of the
system to estimate and optimize the value of potential ex-
perimental settings. In practice, such preliminary models
would be defined by existing data taken in simpler or more
general settings such as inexpensive bulk experiments or
would be estimated from literature values conducted on
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similar genes, pathways, or organisms. When parameter or
model structures are uncertain, these could be described
according to a prior distribution, and experiments would
need to be selected according to which performs best on
average across the many possible model/parameter
combinations.

In recent years, model-driven experiment design has
gained traction for biological models of gene expression,
whether in the Bayesian setting [1] or using Fisher infor-
mation for deterministic models [2], and even in the sto-
chastic, single-cell setting [3–7]. Despite the promise and
active development of model-driven experiment design
from the theoretical perspective, more general, yet biolog-
ically inspired, approaches are needed to make these
methods suitable for the experimental community at large.
In this work, we applymodel-driven experiment design to an
experimentally validated model of stochastic transcription
that is activated by time-varying high osmolarity glycerol
(HOG)mitogen-activated protein kinase (MAPK) induction
in yeast [8–10]. To demonstrate a concrete and practical
application of model-driven experiment design, we find the
optimal measurement schedule (i.e., when measurements
ought to be taken) and the appropriate number of individual
cells to be measured at each time point.

In our computational analyses, we consider the exper-
imental technique of single-molecule mRNA fluorescence in
situ hybridization (smFISH), where specific fluorescent ol-
igonucleotide probes are hybridized to mRNA of interest in
fixed cells [11, 12]. Cells are then imaged, and the mRNA
abundance in each cell is counted, either by hand or using
automated software such as [13]. Such counting can be a
cumbersome process, but little thought has been given
typically to how many cells should be measured and ana-
lyzed at each time. Furthermore, when a dynamic response is
under investigation, the specific times at which measure-
ments should be taken (i.e., the times after induction at
which cells should be fixed and analyzed) are also unclear. In
this work, we use the newly developed finite state projection-
based Fisher information matrix (FSP-FIM, [6]) to optimize
these experimental quantities for osmotic stress response
genes in yeast.

+e first part of our current study introduces a discrete
stochastic model to analyze time-varying MAPK-induced
gene expression response in yeast and then demonstrates the
use of FSP-based Fisher information to optimize experi-
ments to minimize the uncertainty in model parameters. In
the second part of this study, we expand upon this result to
find and experimentally verify the optimal smFISH mea-
surement times and cell numbers to minimize uncertainty
about unknown environmental inputs (e.g., salt concen-
trations) to which the cells are subjected. In this way, we are
presenting a new methodology by which one can optimally
examine behaviors of natural cells to obtain accurate esti-
mations of environmental changes.

2. Background

Gene regulation is the process by which small molecules,
chromatin regulators, and general and gene-specific

transcription factors interact to regulate the transcription of
DNA into RNA and the translation of mRNA into proteins.
Even within populations of genetically identical cells, these
single-molecule processes are stochastic and give rise to cell-
to-cell variability in gene expression levels. Adequate de-
scriptions of such variable responses can only be achieved
through the use of stochastic computational models [14–17].
In the following sections, we first introduce a nonequilib-
rium discrete stochastic model of HOG1-MAPK-induced
gene expression, and we then discuss how this model can be
analyzed and compared to data using finite state project
analyses. All analysis codes are available at https://github.
com/MunskyGroup/Fox_Complexity_2020.

2.1. Discrete Stochastic Model of HOG1-MAPK-Induced Gene
Expression. To motivate and demonstrate our new ap-
proach, we focus our examination on the dynamics of the
HOG1-MAPK pathway in yeast, which is a model system to
study osmotic stress driven dynamics of signal transduction
and gene regulation in single cells [18–23]. Discrete sto-
chastic models of HOG1-MAPK-activated transcription
have been used successfully to predict the variability in
adaptive transcription responses across yeast cell pop-
ulations [9, 10, 24]. In particular, the authors in [9] used
smFISH data to fit and cross validate a number of different
potential models with different numbers of gene states and
time-varying parameters. +ey found that dynamics of two
stress response genes, STL1 and CTT1, could each be de-
scribed accurately by the model depicted in Figure 1(a).

In brief, the model [9] consists of transitions between
four different gene states (S1, S2, S3, and S4).+e probability
of a transition from the ith to the jth gene state in the in-
finitesimal time dt is given by the propensity function, kijdt.
Most of the rates kij􏽮 􏽯 are constant in time, except for the
transition from S2 to S1, which is controlled by the time-
varying level of the HOG1-MAPK signal in the nucleus,
f(t). +e resulting time-varying rate k21 is defined using a
linear threshold function:

k21(t) � max[0, α − βf(t)], (1)

where α and β set the threshold for k21(t) activation/de-
activation. +e function f(t) was calibrated at several NaCl
concentrations by fitting the HOG1-MAPK nuclear lo-
calization signals as measured using a yellow fluorescence
protein reporter [10]. Figure 1(b) shows f(t) for osmotic
stress responses to 0.2M and 0.4M NaCl, and Figure 1(c)
shows the corresponding values of k21(t). In addition to the
state transition rates, each ith state also has a corresponding
mRNA transcription rate, kri. All mRNA molecules de-
grade with rate c, independent of gene state. Further de-
scriptions and validations of this model are given in
Supplementary Note 1 and in [9, 10, 24]. All experimentally
determined parameters for the STL1 and CTT1 tran-
scription regulation models are provided in Supplemental
Table S1, and experimentally determined parameters for
the HOG1-MAPK signal model are listed in Supplemental
Table S2 [10].

2 Complexity
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2.2. 9e Finite State Projection Analysis of Stochastic Gene
Expression. To analyze the model described above, we
apply the chemical master equation (CME) framework of
stochastic chemical kinetics [25]. Combining the time-
varying and constant state transition rates kij􏽮 􏽯, tran-
scription rates kri􏼈 􏼉, and degradation rate c from above, the
CME can be written in matrix form as a linear ordinary
differential equation, dp/dt � A(t)p, where the time-
varying matrix A(t) is known as the infinitesimal generator
(see Supplementary Note 1). +e CME has been the
workhorse of stochastic modeling of gene expression, and it
is usually analyzed using simulated sample paths of its
solution via the stochastic simulation algorithm [26] or
with moment approximations [8, 27]. Alternatively, the
CME can also be solved with guaranteed errors using the
FSP approach [28, 29], which reduces the full CME only to
describe the flow of probability among the most likely

observable states of the system. Details of the FSP approach
to solving chemical kinetic systems are provided in Sup-
plementary Note 1. Application of the FSP analysis to the
model (Figure 1(a)) with dynamic Hog1 (Figure 1(b))
modulates time-varying rates k21 (Figure 1(c)) and predicts
time-evolving probability distributions at 0.2 M and 0.4 M
NaCl, as shown in Figure 1(d) [10].

2.3. Likelihood of smFISH Data for FSP Models. Recently, it
has come to light that for some systems, it is critical to
consider the full distribution of biomolecules across cellular
populations when fitting CME models [6, 10]. To match
CME model solutions to single-cell smFISH data, one needs
to compute and maximize the likelihood of the data given
the CME model [9, 10, 24, 30]. Fortunately, the FSP ap-
proach allows for computation of the likelihood with
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Figure 1: Stochastic modeling of osmotic stress response genes in yeast. (a) Four-state model of gene expression, where each state
transcribes mRNA at a different transcription rate, but each mRNA degrades at a single rate c. (b) Time-varying MAPK nuclear localization
signal. (c) +e rate of switching from gene activation state S2 to S1 (right) under 0.2 M or 0.4 M NaCl osmotic stress. +e time at which k21
turns off is denoted with τ1 and is independent of the NaCl level.+e time at which k23 turns back on is given by τNaCl depending on the level
of NaCl. (d) Time evolution of the STL1 mRNA in response to the 0.2M and 0.4M NaCl stress. Model and parameters from [10] are
summarized in Supplementary Notes I and II and Supplementary Tables I and II.
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guaranteed accuracy bounds [28]. We assume that mea-
surements at each time point t ≡ [t1, t2, . . . , tNt

] are inde-
pendent, as justified by the fact that fixation of cells for
measurement precludes temporal cell-to-cell correlations.
Measurements of Nc cells can be concatenated into a matrix
Dt ≡ [d1,d2, . . . , dNc

]t of the observable mRNA species at
each measurement time t.

+e likelihood of making the independent observations
for all Nc measured cells is the product of the probabilities of
observing each cell’s measured state. For most gene ex-
pression models, however, states are only partially observ-
able, and we define the observed state xL

i as the
marginalization (or lumping) over all full states xj􏽮 􏽯

i
that are

indistinguishable from xi based on the observation. For
example, the model of STL1 transcription consists of four
gene states (S1–S4, shown in Figure 1(a)), which are un-
observed, and the measured number of mRNA, which is
observed. If we let index i denote the number of mRNA, then
the observed state xL

i would lump together the full states (S1,
i), (S2, i), (S3, i), and (S4, i). We next define yi as the number
of experimental cells that match xL

i at time t. Under these
definitions, the likelihood of the observed data (and its
logarithm) given the model can be written as

ℓ(D; θ) � M 􏽙

tNt

t�t1

􏽙
i∈JD

p xL
i ; t, θ􏼐 􏼑

yi
,

log ℓ(D; θ) � 􏽘

tNt

t�t1

􏽘
i∈JD

yilog p xL
i ; t, θ􏼐 􏼑􏼐 􏼑 + logM,

(2)

where JD is the set of states observed in the data, M is a
combinatorial prefactor (i.e., from a multinomial distribu-
tion) that comes from the arbitrary reordering of measured
data, and p(xL

i ; t, θ) is the marginalized probability mass of
the observable species:

p xL
i ; t, θ􏼐 􏼑 � 􏽘

xj∈xL
i

p xj; t, θ􏼐 􏼑.
(3)

+e vector of model parameters is denoted by
θ � [θ1, θ2, . . .]. Neglecting the term logM, which is inde-
pendent of the model, the summation in equation (2) can be
rewritten as a product y logpL, where y ≡ [y0, y1, . . .] is the
vector of the binned data and pL � [p(xL

0), p(xL
1), . . .]T is the

corresponding marginalized probability mass vector. One
may then maximize equation (2) with respect to θ to find the
maximum likelihood estimate (MLE) of the parameters, 􏽢θ,
which will vary depending on each new set of experimental
data. We next demonstrate how this likelihood function and
the FSP model of the HOG1-MAPK-induced gene expression
system can be used to design optimal smFISH experiments
using the FSP-based Fisher information matrix [6].

3. Results

3.1. 9e Finite State Projection-Based Fisher Information for
Models of Signal-Activated Stochastic Gene Expression.
+e Fisher information matrix (FIM) is a common tool in
engineering and statistics to estimate parameter

uncertainties prior to collecting data, which allows one to
find experimental settings that can make these uncertainties
as small as possible [3, 4, 31–34]. Recently, it has been
applied to biological systems to estimate kinetic rate pa-
rameters in stochastic gene expression systems [3–6, 35]. In
general, the FIM for a single measurement is defined as

I(θ) � E ∇θlog p(θ)( 􏼁
T ∇θlogp(θ)( 􏼁􏽮 􏽯, (4)

where the vector log p(θ) contains the log-probabilities of
each potential observation and the expectation is taken over
the probability distribution of states p(θ) assuming the
specific parameter set θ. As the number of measurements,
Nc, is increased such that maximum likelihood estimates
(MLE) of parameters are unbiased, the distribution of MLE
estimates is known to approach a multivariate Gaussian
distribution with a covariance given by the inverse of the
FIM, i.e.,

���
Nc

􏽰
􏽢θ − θ∗􏼐 􏼑⟶dist N 0,I θ∗( 􏼁

− 1
􏼐 􏼑. (5)

In [6], we developed the FSP-based Fisher information
matrix (FSP-FIM), which allows one to use the FSP solution
p(t), and its sensitivity sθj

≡ dp/dθj, to find the FIM for
stochastic gene expression systems. For a general FSPmodel,
the dynamics of the sensitivity to each jth kinetic parameter
dp/dθj can be calculated according to

d
dt

p

sθj

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

A(t) 0

Aθj
(t) A(t)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

p

sθj

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (6)

whereAθj
� zA/zθj. Solving equation (6) requires integrating

a coupled set of ODEs that is twice as large as the original FSP
system. +e FSP-FIM at a single time t is then given by

F(θ, t)j,k � 􏽘
i

1
p xi; t, θ( 􏼁

si
θj

(t)si
θk

(t), (7)

where the summation is taken over all states xi􏼈 􏼉 included in
the FSP analysis (or over all observed states xL

i􏼈 􏼉 in the case
of lumped observations). We note that the FSP computation
of the FIM should be computationally tractable for problems
for which the FSP solution itself is tractable. However, since
the size of the FSP sensitivity matrix (equation (6)) scales
exponentially with the number of species, practical appli-
cations of the presented formulation of the FSP-FIM are
currently restricted to models that have, or can be reduced to
have, three or fewer distinct chemical species.

+e FIM for a sequence of measurements taken inde-
pendently (e.g., for smFISH data) at times t � [t1, t2, . . . , tNt

]

can be calculated as the sum across the measurement times:

I(θ, t, c) � 􏽘

Nt

l�1
clF θ, t � tl( 􏼁, (8)

where c � [c1, c2, . . . , cNt
] is the number of cells measured at

each lth measurement time. For smFISH experiments, the
vector c plays an important role in the design of the study. By
optimizing over all vectors c that sum to Ntotal, one can find
how many cells should be measured at each time point and
which time points should be skipped entirely (i.e., cl � 0).
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In the next section, we verify the FSP-FIM for this
stochastic model with a time-varying parameter and later
find the optimal c for STL1 mRNA in yeast cells.

3.2. 9e FSP-FIM Can Quantify Experimental Information
for Stochastic Gene Expression under Time-Varying Inputs.
Our work in [6] was limited to models of stochastic gene
expression that had piecewise constant reaction rates. Here,
we extend this to time-varying reaction rates that affect the
promoter switching in the system and which lead to time-
varying A(t) in equation (6). For example, in the model
depicted in Figure 1(a), the temporal addition of osmotic
shock causes nuclear translocation of HOG1-MAPK,
according to the time-varying function in equation (1).

Model parameters simultaneously fit to experimentally
measured 0.2M and 0.4M STL1 mRNA were adopted from
[10] and used as a reference set of parameters (yellow dots in
Figure 2(a) and S1), which we define as θ∗. +ese reference
parameters were used to generate 50 unique and independent
simulated datasets, and each nth simulated dataset was fit to
find the parameter set, 􏽢θn, that maximizes the likelihood for
that simulated dataset. +is process was repeated for two
different experiment designs, including the original intuitive
design from [10] (results shown in Figure 2) and an optimized
design discussed below (results shown in Figure S1). To ease the
computational burden of this fitting, the four parameters with
the smallest sensitivities and largest uncertainties (i.e., those
parameters that had the least effect on the model predictions
and which were most difficult to identify) were fixed at their
baseline values. +e resulting MLE estimates for the remaining
five parameters were collected into a set of 􏽢θn􏽮 􏽯 and are shown
as yellow dots in Figures 2 and S1. Using the asymptotic
normality of the maximum likelihood estimator and its rela-
tionship to the FIM (equation (5)), we then compared the 95%
confidence intervals (CIs) of the inverse of the Fisher infor-
mation (i.e., the Cramér–Rao bound) to those of the MLE
estimates (compare the purple and orange ellipses in
Figures 2(a) and S1a).We also compared the eigenvalues of the
inverse of the Fisher information, vi􏼈 􏼉, to the correspondingly
ranked eigenvalues of the covariance matrix of MLE estimates,
ΣMLE, in Figures 2(b) and S1b. For further validation, we noted
that the principle directions of the ellipses in Figures 2(a) and
S1a also match for the FIM andMLE analyses, as quantified by
the angle between the paired FIM and ΣMLE eigenvectors
(Figures 2(b) and S1b). For comparison, the angles between
rank-matched eigenvectors of the FIM and ΣMLE were all less
than 12°, whereas non-rank-matched eigenvectors were all
greater than 79.9°. With the FSP-FIM verified for the HOG1-
MAPK-induced gene expression model, we next explore how
the FSP-FIM can be used to optimally allocate the number of
cells to measure at each time after osmotic shock.

3.3. Designing Optimal Measurements for the HOG1-MAPK
Pathway inS. cerevisiae. To explore the use of the FSP-FIM for
experiment design in a realistic context of MAPK-activated
gene expression, we again utilize simulated time-course
smFISH data for the osmotic stress response in yeast.

We start with a known set of underlying model parameters
that were taken from simultaneous fits to 0.2M and 0.4M data
in [10] (nonspatial model) to establish a baseline parameter set
that is experimentally realistic. +ese parameters are then used
to optimize the allocation of measurements at different time
points t � [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]

minutes after NaCl induction. Specifically, we ask what fraction
of the total number of cells should be measured at each time to
maximize the information about a specific subset of important
model parameters. We use a specific experiment design ob-
jective criteria referred to as Ds-optimality, which corresponds
to minimizing the expected volume of the parameter space
uncertainty for the specific parameters of interest [35] and
which is found bymaximizing the product of the eigenvalues of
the FIM for those same parameters.

Mathematically, our goal is to find the optimal cell
measurement allocation:

copt � argmax
c

|I(c; θ)|Ds
such that􏽘

Nt

l�1
cl � 1, (9)

where cl is the fraction of total measurements to be allocated
at t � tl, and the metric |I(c; θ)|Ds

refers to the product of
the eigenvalues for the total FIM (equation (8)). +e fraction
of cells to be measured at each time point, c, was optimized
using a greedy search, in which single-cell measurements
were chosen one at a time according to which time point
predicted the greatest improvement in the optimization
criteria (see Supplementary Note 3 for more information).

To illustrate our approach, we first allocated cell mea-
surements according to Ds-optimality as found through this
greedy search. Figure 3 shows the optimal fraction of cells to
be measured at each time following a 0.2M NaCl input and
compares these fractions to the experimentally measured
number of cells from [10]. While each available time point
was allocated a nonzero fraction of measurements, three
time points at t � [10, 15, 30] minutes were vastly more
informative than the other potential time points. To verify
this result, we simulated 50 datasets of 1,000 cells each and
found the MLE estimates for each subsampled dataset. We
compared the spread of these MLE estimates to the inverse
of the optimized FIM, shown in Figure S1.

Comparing Figure S1 with Figure 2 illustrates the extent by
which the design of optimal measurement times for a 0.2 M
NaCl experiment can increase information collection and
reduce parameter uncertainties compared to the intuitive
measurment design from [10]. In addition to providing much
higher Fisher information, the optimal experiment requires
measurement of only three time points compared to the 16
time points that were measured in the original experiment.
Furthermore, we note that the FIM prediction of the MLE
uncertainty is more accurate for the simpler optimal design,
which is likely related to our observation that MLE estimates
converge more easily for the optimized experiment design than
they do for the original intuitive design.

Figure 4 next compares the Ds-optimality criteria for the
optimal (solid horizontal lines) and intuitive ([10], dashed
horizontal lines) experiment designs to 1,000 randomly
designed experiments for the 0.2M (black) and 0.4M (gray)
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conditions. To generate these random experiment designs,
we selected a random subset of the measurement times and
allocated the total 1,000 cells among chosen time points

using a multinomial distribution with equal probability for
each time point. Figure 4(a) shows that the intuitive ex-
periment is more informative than most random
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Figure 2: Verification of the FSP-FIM for the time-varying HOG1-MAPKmodel. (a) Marginal parameter histograms (top panels) and joint scatter
plots (gray dots) for the MLE parameter estimates from 50 simulated datasets and for a subset of model parameters. All parameters are shown in
logarithmic scale. +e ellipses show the 95% CI for the inverse of the FIM (purple) and Gaussian approximation of MLE scatter plot (orange). +e
yellowdots indicate the “true” parameters atwhich the FIMand simulated datasetswere generated. (b) Rank-paired eigenvalues (vi) for the covariance
of MLE estimates (orange) and inverse of the FIM (blue). +e angles between corresponding rank-paired eigenvectors (ϕi) are shown in degrees.
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experiments but is still substantially less informative than the
optimal experiment.

In many practical applications, a scientist would be
unlikely to have precise a priori knowledge of model pa-
rameters prior to conducting experiments. Rather, they
would have some estimate of these parameters, such as
rough knowledge of appropriate time scales or existing data
from another type of experiment. Such estimates could come
from previous analyses of the system response to simpler
experimental conditions, for measurements taken on slightly
different cell lines or organisms, or considering results from
different genes in related regulatory pathways. To explore the
importance of knowing the exact process parameters or
input dynamics prior to designing the experiment, we asked
how well an experiment design optimized using parameters
from one gene at a given level osmotic shock (e.g., STL1 at
0.2M NaCl) would do to estimate parameters for another
gene in a different osmotic shock condition (e.g., CTT1 at

0.4M NaCl). Figure 4(b) demonstrates the impact of such
mismatched experiment designs, where each row corre-
sponds to a different intuitive or optimized experiment
design (i.e., a specific allocation of cells to be measured at
each time), and each column corresponds to a specific gene
and specific osmotic shock condition to which that design
could be applied. In all cases, the much simpler FIM-based
optimal experiment designs perform as well or better than
the more difficult intuitive designs, even when these FIM
designs were computed assuming different environmental
conditions and assuming genes whose parameters differ
considerably from one another (see Supplemental Tables 1
and 2 for parameter sets). In other words, these results
suggest that if one can compute a simple yet optimal ex-
periment design based on one well-analyzed gene in a
previously studied environmental condition, then that de-
sign may be equally effective when applied to new investi-
gations for related genes in similar biological contexts.
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Figure 3: Optimizing the allocation of cell measurements at different time points. (a) Diagonal entries of the Fisher information at different
measurement times. +e optimal measurement times t � [10, 15, 30] minutes are highlighted in orange. (b) Comparison of optimal
fractions of cells to measure (blue) at different time points determined by the FSP-FIM compared to experimentally measured numbers of
cells at 0.2M NaCl (purple) from our work in [10]. (c) Probability distributions of STL1 mRNA at several of measurement times. +e blue
boxes denote the time points of optimal measurements.
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3.4. Using the FSP-FIM to Design Optimal Biosensor
Measurements. +us far, and throughout our previous work
in [6], we have sought to find the optimal set of experiments
to reduce uncertainty in the estimates of model parameters.
In this section, we discuss how the FSP-FIM allows for the
optimization of experiment designs to address a more
general problem of inferring environmental variables from
cellular responses. Toward this end, we assume a known and
parametrized model (i.e., the model defined above, which
was identified previously in [10]), but which is now subject
to unknown environmental influences. We explore what
would be the optimal experimental measurements to take to
characterize these influences. Specifically, we ask how many
cells should be measured using smFISH, and at what times,
to determine the specific concentration of NaCl to which the
cells have been subjected—or, equivalently, we ask what
experiments would be best suited to measure the effective
stress induction level caused by addition of an unknown
solution to the cells.

Recall from above that in the HOG1-MAPK tran-
scription model, extracellular osmolarity ultimately affects
stress response gene transcription levels through the time-
varying parameter k21(t) (equation (1)) as illustrated in
Figure 1(c) for 0.2M and 0.4M salt concentrations. Higher
salt concentrations delay the time at which k21(t) returns to
its nonzero value. +e function in equation (1) can be
coarsely approximated by the sum of three Heaviside step
functions, u(t − τi) as

k21(t) � k
0
21 u(t) − u t − τ1( 􏼁 + u t − τ2( 􏼁( 􏼁, (10)

where τ1 is the fixed delay of the time it takes for nuclear
kinase levels to reach the k21 deactivation threshold (about 1
minute or less, [9, 10]) and τ2 is the variable time it takes for
the nuclear kinase to drop back below that threshold. In
practice, the threshold-crossing time, τ2, should be directly
related to the salt concentration experienced by the cell
under reasonable salinity levels.+is relationship is shown in
Figures 1(b), 1(c), and 5(b), where a 0.2M NaCl input ex-
hibits a shorter τ2 than does a 0.4M input. For our analyses,
we assume a prior uncertainty such that time τ2 can be any
value uniformly distributed between τmin

2 � 6 and τmax
2 � 31

minutes, and our goal is to find the experiment that best
reduces the posterior uncertainty in τ2 (and therefore could
provide an estimate for the concentration of NaCl).

To reformulate the FSP-FIM to estimate uncertainty in
τ2 given our model, the first step is to compute the sensitivity
of the distribution of mRNA abundance to changes in the
variable τ2 using equation (5), in which Aθj

(t) is replaced
with Aτ2(t) � zA/zτ2 as follows:

d
dt

p

sτ2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

A(t) 0

Aτ2(t) A(t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

p

sτ2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (11)

As k21(t) is the only parameter in A that depends ex-
plicitly on τ2, all entries of zA/zτ2 are zero except for those
which depend on k21(t), and
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Figure 4: Information gained by performing optimal experiments compared to actual experiments. (a) Ds-optimality for optimal design
using three time points compared to the intuitive experiment designs made using 16 time points is shown with horizontal lines (purple,
0.2M, and blue, 0.4M). Solid horizontal lines denote the optimal designs and dashed lines represent intuitive experiment designs. Randomly
designed experiments with 0.2M and 0.4MNaCl are shown in black and orange. For the random experiments, the time points were selected
by sampling them from the experimental measurement times, and then a random number of measurements were assigned to each selected
time point. +e inset shows the first 50 randomly designed experiments. (b)+e Ds-metric for different experiment designs (different rows)
when applied to different genes or different experimental levels of osmotic shock (different columns). Lighter shades (higher Ds-metrics)
indicate experimental designs that are more suitable to identify parameters.
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Aτ2(t) �
zA

zk21

zk21

zτ2
� Ak21

k
0
21δ τ2( 􏼁, (12)

and therefore Aτ2 � zA/zτ2 is nonzero only at t � τ2. Using
this fact, the equation for the sensitivity dynamics is
uncoupled from the FSP dynamics for t≠ τ2 and can be
written simply as

d
dt
sτ2 �

0 for t< τ2with s(0) � 0,

A(t)sτ2for t> τ2 with sτ2 τ2( 􏼁 � k0
21Ak21

p τ2( 􏼁.

⎧⎪⎨

⎪⎩

(13)

If the Fisher information at each measurement time is
written into a vector f � [f1, f2, . . . , fNt

] (noting that the
Fisher information at any time tl is the scalar quantity, fl)
and the number of measurements per time point is the
vector, c � [c1, c2, . . . , cNt

], then the total information for a
given value of τ2 can be computed as the dot product of these
two vectors:

I τ2( 􏼁 � 􏽘

Nt

l�1
clfl � cTf . (14)

Our goal is to find an experiment that is optimal to
determine the value of τ2, given an assumed prior that τ2 is
sampled from a uniform distribution between τmin

2 and τmax
2 .

To find the experiment copt that will reduce our posterior
uncertainty in τ2, we integrate the inverse of the FIM in
equation (14) over the prior uncertainty in τ2:

copt � argmin
c, 􏽐 cl � 1

􏽚
τmax
2

τmin
2

1
τmax
2 − τmin

2
I

− 1 c; τ2 � τ, θ( 􏼁dτ,

� argmin
c, 􏽐 cl � 1

􏽚
τmax
2

τmin
2

I
− 1 c; τ2 � τ, θ( 􏼁dτ.

(15)

For later convenience, we define the integral in equation
(15) (i.e., the objective function of the minimization) by the
symbol J, which corresponds to the expected uncertainty
about the value of τ2 for a given c.

Next, we apply the greedy search from above to solve the
minimization problem in equation (15) to find the experi-
ment design copt that minimizes the estimation error of τ2.
Figure 6 shows examples of seven different experiments to
accomplish this task, ranked according to the FSP-FIM value
J from most informative (top left) to least informative
(bottom left), but all using the same number of measured
cells. For each experiment, the FSP-FIMwas used to estimate
the posterior uncertainty (i.e., expected standard deviation)
in the estimation of τ2, which is shown by the orange bars in
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Figure 5: Overview of optimal design for biosensing experiments for the osmotic stress response in yeast. (a) Unknown salt concentrations
(purple dots) in the environment give rise to different reactivation times, τ2, which affect the gene expression in the model through the rate
k21. +ese different reactivation times cause downstream STL1 expression dynamics to behave differently as shown in (b). (c) Different
responses can be used to resolve experiments that reduce the uncertainty in τ2.
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Figure 6. To verify these estimates, we then chose 64 uni-
formly spaced values of τ2, which we denote as the set τtrue2􏼈 􏼉,
and for each τtrue2 , we simulated 50 random datasets of 1,000
cells distributed according to the specified experiment de-
signs. For each of the 64× 50 simulated datasets, we then
determined the value τMLE

2 between τmin
2 and τmax

2 that
maximized the likelihood of the simulated data according to
equation (2). +e root mean squared estimate (RMSE) error
over all random values of τtrue2 and estimates,��������������

〈(τMLE
2 − τtrue2 )2〉

􏽱

, was then computed for each of the six
different experiment designs. Figure 6 shows that the FIM-
based estimation of uncertainty and the actual MLE-based

uncertainty are in excellent agreement for all experiments
(compare purple and orange bars). Moreover, it is clear that
the optimal design selected by the FIM analysis performed
much better to estimate τ2 than did the uniform or random
experimental designs. A slightly simplified design, which
uses the same time points as the optimal, but with equal
numbers of measurements at each time, performed nearly as
well as the optimal design.

+e set of experiment designs shown in Figure 6 includes
the best design that only uses STL1 (second from top), the
best design that uses only CTT1 (fourth from top), and the
best design that uses some cells with CTT1 and some with
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STL1 (top design). To find the best experiment design for
measurement of two different genes, we assumed that at each
time, either STL1 mRNA or CTT1 mRNA (but not both)
could be measured, corresponding to using smFISH oli-
gonucleotides for either STL1 or CTT1. To determine which
gene should be measured at each time, we compute the
Fisher information for CTT1 and STL1 for every mea-
surement time and averaged this value over the range of τ2.
For each measurement time tl, the gene is selected that has
the higher average Fisher information for τ2. +e number of
cells per measurement time was then optimized as before,
except the choice to measure CTT1 or STL1 was based on
which mRNA had the larger Fisher information (equation
(14)) at that specific point in time. +e best STL1-only
experiment design was found to yield uncertainty of 10.5
seconds (standard deviation); the best CTT1-only experi-
ment was found to yield an uncertainty of 15.2 seconds and
the best mixed STL1/CTT1 experiment design was found to
yield an uncertainty of 10.4 seconds. In other words, for this
case, the STL1 gene was found to be much more informative
of the environmental condition than was CTT1, and the use
of both STL1 andCTT1 provides onlyminimal improvement
beyond the use of STL1 alone. We note that although
measurement times in the optimized experiment design
were restricted to a resolution of five minutes or more, the
value of τ2 could be estimated with an error of only 10
seconds, corresponding to a roughly 30-fold improvement
of temporal resolution beyond the allowable sampling rate.

3.5. Experimental Validation for FSP-FIM-Based Designs of
Biosensor Measurements. To experimentally validate our
FSP-FIM-based approach to design optimal measurement
times, we next examined experimental smFISH data taken
for the STL1 and CTT1 genes at different times following
yeast osmotic shock [10]. +ese data include a total of
535–4808 cells measured at each of 16 time points following
osmotic shocks of 0.2M or 0.4M NaCl. We asked how well
could we identify the concentration of the osmotic shock
from the experimental data using only 75 individual cells per
experiment. We again proposed the six different potential
experiments depicted in Figure 6, including the optimal
STL1 and CTT1 design, the optimal STL1 design, the sim-
plified STL1 design with 15 cells for each of the optimal five
time points, the optimal CTT1 design, the uniform STL1
design, and the random STL1 design. For each design, we
created 1,000 different experimental replica datasets, each
consisting of 100 cells randomly chosen from the original
data. For each replica dataset, we then used the CME model
(Supplementary Note 1) with a parametrized form of the
HOG1-MAPK nuclear localization signal (Supplementary
Note 2) to find the NaCl concentration that maximizes the
likelihood of the data given the model.

Figure 7 shows the resulting histograms for the estimated
NaCl concentrations for each of the six experiment designs,
when the cells were actually subjected to experimental os-
motic shocks of 0.2M NaCl (Figure 7(a)) or 0.4M NaCl
(Figure 7(c)). From Figures 7(a) and 7(c), it is clear that the
FSP analysis provides an accurate estimate for the level of the

osmotic shock input using a relatively small number of cells,
despite the fact that producing such estimates was not an
intended use of the model in its original formulation or
parameter inference [9, 10]. Figures 7(b) and 7(d) show the
uncertainty (standard deviation) in the experimental esti-
mate of NaCl concentration (light bars), when cells are
collected according to the six specific experiment designs,
and compare these results to the FSP-FIM uncertainty es-
timates (dark bars) using the simplified step input function
(equation (10)). With the exception of the suboptimal CTT1-
only design, the close matches between the relative trends of
the variance in experimental estimation of NaCl and the
variance predicted by the FSP-FIM analysis with the ap-
proximated step-function input give further experimental
validation that the FSP-FIM approach can be used to choose
more informative experiment designs, even in cases where
the FSP analyses use inexact assumptions for model kinetics.
+e single discrepancy in trends led us to more closely
examine the model and experimental data for CTT1 ex-
pression at the 35-minute time point that dominates the
CTT1-only design. By examining Supplemental Figure S7
from [10], we found that this specific combination of CTT1
at 35 minutes following 0.4M NaCl osmotic shock showed a
greater discrepancy between model and data than any of the
other 63 combinations of 16 times, two genes, and two
conditions, yet it is unclear if that difference was an artifact
of the experiment or an actual transient effect that only
affected that specific combination of gene, time, and envi-
ronmental condition.

4. Discussion

+e methods developed in this work present a principled,
model-driven approach to allocate how many snapshot
single-cell measurements should be taken at each time
during analysis of a time-varying stochastic gene regulation
system. We demonstrate and verify these theories on a well-
established model of osmotic stress response in yeast cells,
which is activated upon the nuclear localization of phos-
phorylated HOG1 [9, 10]. For this system, we showed how to
optimally allocate the number of cells measured at each time
so as to maximize the information about a subset of model
parameters. We found that the optimal experiment design to
estimate model parameters for the STL1 gene only required
three time points. Moreover, these three time points
(t � [10, 15, 30] minutes, highlighted by blue in Figure 3(b))
are at biologically meaningful time points. At t � 10 and 15
minutes, the system is increasing tomaximal expression, and
the probability to measure a cell with elevated mRNA
content is high, which helps reduce uncertainty about the
parameters in the model that control maximal expression.
Similarly, at the final experiment time of t � 30 minutes, the
system is starting to shut down gene expression, and
therefore this time is valuable to learn about the time scale of
deactivation in the system as well as the mRNA degradation
rate. +ese effects are clearly illustrated in Figure 3(a), which
shows that times t � 10 and t � 15 minutes provide the most
information about parameters k12, k23, and k43, whereas
measurements at t � 30 minutes provide the most
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information about c. Because c is the easiest parameter to
estimate (e.g., its information is greater), not as many cells
are needed at t � 30 minutes to constrain that parameter.
Similarly, because kr2 is the most difficult parameter to
estimate (e.g., it has the lowest information across all ex-
periments) and because t � 10 minutes is one of the few time
points to provide information about kr2, the optimal ex-
perimental design selects a large number of cells at the time
t � 10 minutes. +is analysis demonstrates that the optimal
experiment design can change depending upon which pa-
rameters are most important to determine (e.g., c or kr2 in

this case), a fact that we expect will be important to consider
in future experiment designs.

Because we constrained all potential experiment designs
to be within the subset of experiments performed in our
previous work [10], we are able to compare the information
of optimal experiment designs to intuitive designs that have
actually been performed. We found that while the intuitive
experiments were almost always better than could be ex-
pected by random chance, they still provided several orders
of magnitude lower Fisher information than would be
possible with optimal experiments (Figure 4(a)). Moreover,
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Figure 7: Experimental validation of FSP-FIM-based design for optimal biosensor measurements. (a) Distribution of FSP-based MLE
estimates for NaCl concentration using the six experimental designs from Figure 6. Each distribution comes from 1,000 replicas of 75 cells
per replica spread out over the possible 16 time points. Replica data were sampled randomly from published experimental data [10] that
contain two or three biological replicas and 535–4808 cells per time point. +e true experimentally applied level of osmotic shock was 0.2M
NaCl. (b) +e MLE estimation standard deviation for each experiment design applied to a dataset taken at 0.2M NaCl (blue). +ese
deviations are compared to FSP-FIM deviation predictions using a piecewise constant model for HOG1 nuclear localization (purple). (c, d)
Same as (a, b) but for a true NaCl concentration of 0.4M.
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in our analyses, we found that optimal designs could require
far fewer time points than those designed by intuition (e.g.,
only three time points were needed in Figure 3), and
therefore these designs can be much easier and less ex-
pensive to conduct. We also found that utility of optimal
experiment designs could be relatively insensitive to vari-
ation in the experimental conditions or the specific model
parameters used for the experiment design. For example, we
found that experiments optimized for one gene at one level
of osmotic shock were still at least as good—and in most
cases better—than intuitive designs, even when conducted
using different genes and at a different level of osmotic shock
(Figure 4(b)). In practice, this fact would allow for effective
experiment designs despite inaccurate prior assumptions.

In addition to suggesting optimal experiments to identify
model parameters, we showed that the FSP approach could
be used to infer parameters of fluctuating extracellular
environments from single-cell data and that the FSP-FIM
combined with an existing model could be used to design
optimal experiments to improve this inference (Figures 5
and 6). We experimentally verified this potential by ex-
amining many small sets of single-cell smFISH measure-
ments for different genes and different measurement times,
and we showed that an FSP-FIM analysis could correctly
rank which experiment designs would give the best estimates
of osmotic shock environmental conditions. Along a very
similar line of reasoning, one can also adapt the FSP-FIM
analysis to learn what biological design parameters would be
optimal to reduce uncertainty in the estimate of important
environmental variables. For example, Figure 8 shows the
expected uncertainty in τ2 as a function of the degradation
rate of the STL1 gene assuming that 50 cells could be
measured at each experimental measurement time
t � [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55] minutes
using the smFISH approach. We found that the best choice
for STL1 degradation rate to most accurately determine the
extracellular fluctuations would be 2.4 × 10− 3 mRNA/min,
which is about half of the experimentally determined value
of 5.3 × 10− 3 ± 5.9 × 10− 5 from [10].+is result is consistent
with our earlier finding that the faster degrading STL1
mRNA is a much better determinant of the HOG1 dynamics
than the slower-degrading CTT1 mRNA and suggests that
other less stable mRNA could be more effective still. We
expect that similar, future applications of the FSP-based
Fisher information will be valuable in other systems and
synthetic biology contexts where scientists seek to explore
how different cellular properties affect the transmission of
information between cells or from cells to human observers.
Indeed, similar ideas have been explored recently using
classical information theory in [36–39], and recent work in
[7, 40] has noted the close relationship between Fisher in-
formation and the channel capacity of biochemical signaling
networks.

We expect that computing optimal experiment designs
for time-varying stochastic gene expression will create op-
portunities that could extend well beyond the examples
presented in this work. Modern experimental systems are
making it much easier for scientists and engineers to pre-
cisely perturb cellular environments using chemical

induction [41–43] or optogenetic control [44–46]. Many
such experiments involve stochastic bursting behaviors at
the mRNA or protein level [8–10, 45], and precise optimal
experiment design will be crucial to understand the prop-
erties of stochastic variations in such systems. A related field
that is also likely to benefit from such approaches is bio-
molecular image processing and feedback control, for which
one may need to decide in real time which measurements to
make and in what conditions.
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After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical
solution of reaction-diffusion (RD) partial differential equations (PDEs). +e Crank–Nicolson (CN) method has been a common
second-order time-stepping procedure. However, the CNmethod may introduce spurious oscillations for nonsmooth data unless
the time step size is sufficiently small. +is article studies a nonoscillatory second-order time-stepping procedure for RD
equations, called a variable-θmethod, as a perturbation of the CN method. In each time level, the new method detects points of
potential oscillations to implicitly resolve the solution there. +e proposed time-stepping procedure is nonoscillatory and of a
second-order temporal accuracy. Various examples are given to show effectiveness of the method. +e article also performs a
sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is
much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an
improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions.

1. Introduction

As molecular imaging and single cell analysis is advancing
our understanding of spatial processes shaping the cellular
dynamics, new models of nonlinear dynamics are necessary.
Originating in study of organism development, spatial
pattern formation has received a large amount of research
over the past decade. Among the most studied, the reaction-
diffusion (RD) systems are generating patterns that have
been shown to represent well morphogenesis. A theory of
morphogenesis based on a RD model was initially proposed
by Turing [1]. Gierer and Meinhardt [2] were the first to
explore pattern formation in biological systems using the RD
equation. Subsequently, several equations of RD type have
been studied to understand patterning in developmental
biology. Some were derived from phenomenological models
(Gierer–Meinhardt) while other modeled simple reaction
schemes (Schnackenberg trimolecular autocatalytic

reactions model [3], Gray–Scott model [4], Brusselator
model [5], chlorite-iodide-malonic acid, CIMA model [6]).
Recent work on RD systems demonstrates that it can be used
to understand biological patterns formation [7], while [8]
and [9] reviewed RD systems can be used to investigate
spatial patterning in developmental systems.

+e RD model for biological pattern formation is
defined as follows [10]. LetΩ be a bounded domain inRd,
d � 1, 2, 3, Γ � zΩ denote the boundary of Ω, and J �

(0, T] for some T> 0:

zu

zt
− DΔu � f(u), Ω × J,

zu

z]
� 0, Γ × J,

u � u
0
, Ω × t � 0{ },

(1)
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where u � [u1, u2]
T, D � diag[D1, D2]

T is the diffusion
tensor, Δ denotes the Laplace operator, z/z] is the outward
normal derivative on the boundary Γ, and f(u) is the re-
action kinetics of the system given as

f(u) �
f1 u1, u2( 􏼁

f2 u1, u2( 􏼁
􏼢 􏼣. (2)

After Turing proposed a theory of morphogenesis in
chemical cells in 1952 [1], much attention has been devoted
to the numerical solution of RD problems of form (1); see
[11–14] and references therein. Most of the numerical
methods studied employed finite difference or finite element
approximations for the spatial discretization, while some
researchers use finite volume and collocationmethods. Once
the nonlinear reaction terms are treated (linearized or
extrapolated), the Crank–Nicolson (CN) method can be
applied as a second-order time-stepping procedure. Time-
stepping procedures are required at each time step to solve a
system of linear algebraic equations, which, although sparse,
is compute intensive for multidimensional problems. In
order to enhance efficiency of time-stepping procedures, one
can adopt the alternating direction implicit (ADI) method as
in [11–13, 15]. In particular, Fernandes et al. [12] introduce
an ADI extrapolated CN orthogonal spline collocation
method for RD problems.

ADI was invented as a perturbation of the CNmethod by
Douglas, Peaceman, and Rachford in 1955 [16–18] and has
been employed effectively for the calculation of numerical
solution of various time-dependent multidimensional
problems, either parabolic or hyperbolic [19, 20]. ADI re-
duces a multidimensional problem to multiple easy-to-solve
one-dimensional problems, for an extra cost of a splitting
error in O(Δt2), where Δt is the time step size. However, the
splitting error can bemuch larger than the sum of spatial and
temporal discretization errors, unless the time step size is
sufficiently small [21].

On the contrary, the CN method applied for nonsmooth
data may introduce spurious oscillations to the numerical
solution unless the time step size is sufficiently small to
satisfy the maximum principle 12, which has been recog-
nized in the original paper as well [22]. For this reason,
whenever a larger time step or a higher spatial resolution is
desirable/necessary, the (less accurate, first order) implicit
method which is immune to oscillations has been used at
least for several initial time steps with nonsmooth initial data
[23]. +e CN method and its perturbations (such as ADI)
must be applied with care when the solution involves fast
transitions or sharp edges; in particular, the time step size
should be set very small, e.g., Δt � O(Δx2), where Δx is the
spatial grid size. In order to overcome the oscillation
problem of the CN method applied for linear parabolic
problems of nonsmooth data, the authors recently suggested
a variable-θmethod in which the time-stepping parameter of
the conventional θ-method, θ ∈ [0, 1], was determined
based on local oscillatory characteristics of the solution and
the data [24].

In this article, we apply the variable-θ method for the
numerical solution of two-component nonlinear RD
equations, as given in (1). +e variable-θ method is a per-
turbation of the CN method which evolves the solution
implicitly at points where the solution shows a certain
portent of oscillations and maintains as a similar accuracy as
the CN method with smooth data. +e proposed method
would be an adequate choice of time-stepping procedure for
the numerical solution of RD partial differential equations
(PDEs) when a larger time step or a higher spatial mesh
resolution is desirable. We have performed a sensitivity
analysis for the numerical solution of biological pattern
forming models to the spatial and temporal grid sizes. It has
been observed from various examples that accuracy of the
numerical solution is much more sensitive to the spatial
mesh resolution than the temporal one. When the spatial
mesh resolution is set high for a higher accuracy, the method
allows to keep the temporal resolution moderate or low. +e
suggested variable-θ method can result in a smooth/stable
numerical solution by suppressing possible oscillations,
unlike the CN method.

+e article is organized as follows. Section 2 includes a
brief review on the CN method and its spurious oscillatory
behaviors, as preliminaries. In Section 3, a variable-θmethod
is presented for the numerical solution of two-component
nonlinear RD equations. We adopt the successive over-
relaxation (SOR) method to solve the resulting linear sys-
tems at each time level. Section 4 considers a heuristic
technique for the choice of the optimal relaxation parameter
for SOR. Section 5 gives numerical examples that show
effectiveness of the variable-θ method applied to RD
problems in 1D and 2D spaces. In Section 6, we summarize
our experiments and present conclusions.

2. Preliminaries

In this section, we present a brief review of time-stepping
procedures, for the numerical solution of linear parabolic
equations of the form

zu

zt
− Δu � f, Ω × J,

zu

z]
� 0, Γ × J,

u � u
0
, Ω × t � 0{ },

(3)

where D> 0 is a diffusion coefficient and f is a reaction/
source term. We also consider difficulties arising when
dealing with nonsmooth data (initial values, boundary
conditions, and/or the source term).

2.1. %e θ-Method: Difference Equation. Let Ω be a rectan-
gular domain in R2: Ω � (ax, bx) × (ay, by). By partitioning
Ω × J, we obtain the space-time grid points:
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xij, t
n

􏼐 􏼑 ≔ xi, yj, t
n

􏼐 􏼑, i � 0, 1, . . . , nx, j � 0, 1, . . . , ny, n � 0, 1, . . . , nt, (4)

where nx, ny, and nt are prescribed positive integers and

xi � ax + i · Δx,

yj � ay + j · Δy,

t
n

� n · Δt,

Δx �
bx − ax

nx

,

Δy �
by − ay

ny

,

t �
T

nt

.

(5)

Define the discrete domain, the set of the spatial grid
points, by

Ωd � xi, yj􏼐 􏼑 : 0≤ i≤ nx, 0≤ j≤ ny􏽮 􏽯, (6)

and denote the set of boundary grid points by Γd � Ωd ∩ Γ
and the set of interior grid points by Ω0d � Ωd\Γd.

Let gn
ij � g(xij, tn) for all functions g defined in (x, t).

+en, the second-order 5-point finite difference (FD) ap-
proximation A of − Δ at t � tn reads

Au
n
ij � A1u

n
ij + A2u

n
ij, A1u

n
ij ≔ − δxxu

n
ij, A2u

n
ij ≔ − δyyu

n
ij,

(7)

where the FD operators are defined as

δxxu
n
ij �

un
i− 1,j − 2un

ij + un
i+1,j

Δx2 ,

δyyu
n
ij �

un
i,j− 1 − 2un

ij + un
i,j+1

Δy2 .

(8)

For the temporal derivative zu/zt, a convenient FD
approximation can give

un+1
ij − un

ij

Δt
. (9)

Expressing the spatial derivative by a weighted average
θ ∈ [0, 1] of previous and current time values, we can for-
mulate the θ-method for (3) as

un+1
ij − un

ij

Δt
+ A θu

n+1
ij +(1 − θ)u

n
ij􏽨 􏽩 � f

n+θ
ij , (10)

where fn+θ
ij is either f(xij, tn+θ) or θfn+1

ij + (1 − θ)fn
ij. A

simple algebraic rearrangement of (10) in a vector form
becomes

(I + θΔtA)u
n+1

� [I − (1 − θ)ΔtA]u
n

+ Δtfn+θ
, (11)

where un � [un
ij]0≤i≤ nx, 0≤j≤ny

and fn+θ � [fn+θ
ij ]0≤i≤nx, 0≤j≤ny

,
considered as column vectors. Popular choices of θ ∈ [0, 1]

are 0, 1, and 1/2, which are, respectively, the explicit method
(the forward Euler method), the implicit method (the
backward Euler method), and the semi-implicit method (the
Crank–Nicolson method).

(i) Forward Euler method: when θ � 0, algorithm (11) is
stable when it satisfies

μx + μy ≤
1
2
,

μx �
Δt
Δx2,

μy �
Δt
Δy2.

(12)

Although the explicit method is efficient for each time
step, its stability condition in (12) enforces, choosing a small
time step size Δt; it may become less efficient compared with
other implicit methods. It is elementary in numerical
analysis that when θ ≥ 1/2, the θ-method (10) is uncondi-
tionally stable.

(ii) Crank–Nicolson method: when θ � 1/2, (11) can be
rewritten as

I +
Δt
2
A􏼒 􏼓u

n+1
� I −
Δt
2
A􏼒 􏼓u

n
+ Δtfn+1/2

. (13)

+e CN method has been the most popular time-step-
ping procedure for the numerical solution of parabolic
problems because it is stable and of second-order accuracy in
both spatial and temporal directions. However, the CN
method applied for nonsmooth data may introduce spurious
oscillations to the numerical solution unless the algorithm
parameters satisfy the maximum principle [22, 23]. As
analyzed by the authors [24], the undesired oscillations are
due to instability involved in the explicit half step of the CN
method, the first term in the right side of (13). +e variable
θ-method proposed in [24] suppresses spurious oscillations,
by evolving the solution implicitly (θij � 1) at points xij

where the solution shows a certain portent of oscillations or
reduced smoothness, and maintains as a similar accuracy as
the CN method with smooth data.

(iii) Backward Euler method: when θ � 1, algorithm (11)
reads

(I + ΔtA)u
n+1

� u
n

+ Δtfn+1
. (14)

Although the implicit method shows a first-order ac-
curacy in the temporal direction, it never introduces spu-
rious oscillations to its numerical solutions.

2.2. Numerical Oscillations of the CN Method. Although the
CN method is unconditionally stable and of second-order
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accuracy in both spatial and temporal directions, it may
introduce spurious oscillations into the numerical solution
for nonsmooth data. For simplicity, consider a homoge-
neous diffusion equation with discontinuous initial values
defined in the one-dimensional (1D) space:

zu

zt
− uxx � 0,

(x, t) ∈ (0, 1) ×[0, T],

u(0, t) � u(1, t) � 0, t ∈ [0, T],

u(x, 0) �

0 if 0<x<
1
4
,

1 if
1
4
≤x<

3
4
,

0 if
3
4
≤x< 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

of which the exact solution is given by

u(x, t) � 􏽘
∞

k�1

4
kπ

sin
kπ
2

􏼠 􏼡sin
kπ
4

􏼠 􏼡sin(kπx)e
− k2π2t

, (16)

for (x, t) ∈ (0, 1) × [0, T].
Figure 1 depicts the exact and numerical solutions

evolved by the CN and the variable-θ method [24], while
Figure 2 compares the numerical solutions at T � 1.0
obtained by the three numerical methods. +e numerical
solutions are obtained with Δt � 0.01 and Δx � Δy � 0.025.
As one can see, spurious oscillations occur along with the
step discontinuities in the numerical solution of the CN
method, as shown in Figure 1(b). On the contrary, as in
Figures 1(c) and 2, the variable-θ method results in an
accurate numerical solution without any oscillations. One
should notice from Figures 1(a) and 2 that the implicit
method is immune to spurious oscillations, but its error is
considerably large due to a first-order discretization error
in the temporal direction. Although the CNmethod reveals
spurious oscillations, it is quite accurate far from discon-
tinuities. +e variable-θ method results in numerical so-
lutions which are smooth as for the implicit method and
accurate as for the CN method associated with smooth
data.

+e variable-θ method is a hybrid time-stepping pro-
cedure that is based on the CN method (θ � 1/2) and al-
ternately using the implicit method (θ � 1) at points, where
the numerical solution shows a certain portent of oscillations
or reduced smoothness (the wobble set).

3. A Variable-θ Method for Two-Component
Nonlinear Problems

+is section introduces an effective time-stepping procedure
for the numerical solution of two-component RD problems
(1).

3.1. Linearization through Extrapolation. Once the spatial
derivatives are approximated by second-order finite differ-
ence schemes, as in Section 2.1, the semidiscrete problem for
(1) is formulated as

zu

zt
+ DAu � f(u), t ∈ (0, T],

u � u0, t � 0.

(17)

Let numerical solutions be obtained up to the nth time
level, n> 0. For the numerical solution in the (n + 1)th level,
we first extrapolate numerical solutions in the two previous
levels to approximate the solution at the midpoint tn+1/2:

􏽥u
n+1/2 ≔

3
2
u

n
−
1
2
u

n− 1
. (18)

See [12], for details of second-order extrapolation
schemes for n≥ 0. +en, the θ-method for the two-com-
ponent RD problem reads:

un+1
ij − un

ij

Δt
+ DA θu

n+1
ij +(I − θ)u

n
ij􏽨 􏽩 � f 􏽥u

n+1/2
􏼐 􏼑

ij
, (19)

where u � [u1, u2]
T, D � diag[D1, D2]

T, and
θ � diag[θ1, θ2]

T.
+e linearized problem (19) can be resolved by solving

for two separate components un+1 � [un+1
1 , un+1

2 ]T. Each
component in (19) can be formulated as follows:

un+1
ij − un

ij

Δt
+ DA θu

n+1
ij +(I − θ)u

n
ij􏽨 􏽩 � f

n+1/2
ij , (20)

where u, D, and θ denote, respectively, uk, Dk, and θk, for
k � 1 or 2, and fn+1/2 is a known source term.+e θ-method
(20) can be rewritten in a vector form as

(I + θΔt DA)u
n+1

� [I − (1 − θ)Δt DA]u
n

+ Δtfn+1/2
.

(21)

We present here the main steps of variable-θmethod for
a nonoscillatory solution of (20); a complete study of the
method for diffusion equation was published in [24].

3.2. %e Variable-θ Method. +e method begins with de-
fining the wobble set, the set of wobble points, as a collection
of the grid points where the solution has high fluctuations so
that the implicit method (θ � 1) should be applied for the
numerical solution not to develop oscillations.

One can easily verify that numerical oscillations of the
CN method occur when its explicit half step produces
spurious oscillations. Such nonphysical oscillations may
happen particularly when the time step size Δt is larger than
the stability limit of the explicit scheme.+us, the wobble set
may be formed to include points where the explicit half step
of the CN method introduces undesired local extrema. It
follows from (21) that the explicit half step of the CNmethod
(θ � 1/2) reads

u
n,∗ ≔ I −

Δt
2

DA􏼒 􏼓u
n
. (22)
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Let xij be an interior grid point and consider the four
partial directions (made with eight vicinal points of xij ):
four directions having 0°, 45°, 90°, and 135° from the
positive x-direction. When spurious oscillations are ob-
served in at least one direction, we select the point xij as a
wobble point.

Define an index function for local extrema (idxt) as

idxt(a, b, c) �

0, if min(a, c)< b<max(a, c),

1, if b � max(a, c),

− 1, if b � min(a, c),

2, if max(a, c)< b,

− 2, if b<min(a, c).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Let P, Q, and R be point indices and define

iswb(P, Q, R, n) �

1, if idxt un,∗
P , un,∗

Q , un,∗
R􏼐 􏼑≠ 0 and

idxt un,∗
P , un,∗

Q , un,∗
R􏼐 􏼑 + idxt un

P, un
Q, un

R􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 4,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

+en, the wobble set (for the computation of
un+1 � un+1

ij􏽮 􏽯) is defined as

W
n

� xij ∈ Ω
0
d ∣ iswb[(i − 1, j), (i, j), (i + 1, j), n] � 1􏽮

or iswb[(i − 1, j − 1), (i, j), (i + 1, j + 1), n] � 1

or iswb[(i, j − 1), (i, j), (i, j + 1), n] � 1

or iswb[(i + 1, j − 1), (i, j), (i − 1, j + 1), n] � 1}.

(25)

Remark 1. +e function iswb selects candidates for the
wobble set from local extrema satisfying
idxt(un,∗

P , un,∗
Q , un,∗

R )≠ 0; however, the condition

idxt u
n,∗
P , u

n,∗
Q , u

n,∗
R􏼐 􏼑 + idxt u

n
P, u

n
Q, u

n
R􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 4, (26)

excludes cases where a strict extremum in un becomes a strict
extremum in the same sense in un,∗. +us, the wobble set
(25) is the set of interior grid points xij where un,∗

ij becomes a
local extremum while un

ij is either a nonextreme or an ex-
treme in the opposite sense, for at least one of four partial
directions.

Having the wobble set, the parameter θ for the com-
putation of un+1 can be assigned pointwise:

θn+1
ij ≔ θ xij, t

n+1
􏼐 􏼑 �

1, if xij ∈Wn,

1/2, otherwise.
􏼨 (27)

+us, the variable-θmethod for (20) can be formulated as
un+1

ij − un
ij

Δt
+ DA θn+1

ij u
n+1
ij + 1 − θn+1

ij􏼐 􏼑u
n
ij􏽨 􏽩 � f

n+1/2
ij , (28)

or, in a vector form after grouping variables:

I + θn+1Δt DA􏼐 􏼑u
n+1

� I − 1 − θn+1
􏼐 􏼑Δt DA􏽨 􏽩u

n
+ Δtfn+1/2

.

(29)

+e variable-θ method is analyzed for its numerical
stability and accuracy and verified for various examples [24].
It results in nonoscillatory numerical solutions of which the
accuracy is almost second-order in time.

Remark 2. +e ADI procedure was also applied to (19) for
which the initial values show sharp transitions. It has been
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Figure 1: Propagation of the exact and numerical solutions for (15): (a) the exact solution and the numerical solution by (b) the CNmethod
and (c) the variable-θ method [24], for 0≤ t≤T � 1.0, when Δt � 0.01 and Δx � 0.025.
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Figure 2: +e numerical solutions of (15) at T � 1.0, compared
with the exact solution.
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observed that ADI may introduce undesirable/discontinu-
ous features to its solution unless the time step size is
sufficiently small, i.e., Δt � O(Δx2,Δy2). +e main problem
with ADI is that the diffusion becomes anisotropic, i.e., faster
in the coordinate directions. When ADI is applied to the
variable-θ formulation of (19), the anisotropic features are
reduced significantly. However, it requires to set Δt small
enough for a reliable numerical solution.

+e algebraic system in (29) will be solved by applying
the SOR method, with its initial value at the time level tn+1

being set as

u
n+1,0

� 2u
n

− u
n− 1

. (30)

In particular, SOR converges quite fast for an appro-
priate choice of the relaxation parameter ω.

In the following, we will consider how to tune the op-
timal relaxation parameter 􏽢ω for SOR.

4. The Optimal SOR Parameter 􏽢ω

In this section, we will try to find a relaxation parameter
which is heuristically optimal. Let us begin with the 2D
algebraic system of (21) with θ � 1/2:

Lu � r ∈ Rm×m
, (31)

where L � I + (Δt/2)DA, r � (I − (Δt/2)DA)u+ Δtfn+1/2,
and m> 0 is the dimension of the algebraic system. It is
known that the optimal relaxation parameter for the SOR
method can be determined as ([25], Section 4.3)

􏽢ω �
2

1 +

���������

1 − ρ TJ􏼐 􏼑
2

􏽱 , (32)

where ρ(TJ) is the spectral radius of the Jacobi iteration
matrix TJ.

For simplicity, assume that the problem is defined on the
unit square with a Dirichlet boundary condition. We further
assume that the domain is partitioned into N × N grids so
that h � Δx � Δy � 1/N. +en, the eigenvalues of the sec-
ond-order 5-point FD coefficient matrix A read ([25],
Section 6.5)

λk,ℓ(A) �
1
h2 4 − 2 cos

kπ
N

􏼠 􏼡 − 2 cos
ℓπ
N

􏼒 􏼓􏼢 􏼣,

1≤ k, ℓ ≤N − 1,

(33)

and therefore the eigenvalues of L can be formulated as

λk,ℓ(L) � 1 +
Δt
2

Dλk,ℓ(A) � 1 +
DΔ t

h2 2 − cos
kπ
N

􏼠 􏼡 − cos
ℓπ
N

􏼒 􏼓􏼢 􏼣,

(34)

for 1≤ k, ℓ ≤N − 1. Note that the diagonal element of L is

p ≔ 1 +
Δt
2

D
4
h2 � 1 + 2

DΔ t

h2 . (35)

So, the eigenvalues of the Jacobi iteration matrix TJ are
given as

λk,ℓ TJ􏼐 􏼑 �
p − λk,ℓ(L)

p
�

DΔ t

h2
[cos(kπ/N) + cos(ℓπ/N)]

1 + 2 DΔ t/h2( )( )
.

(36)

In order to find the maximum of |λk,ℓ(TJ)|, we first
obtain

maxk cos
kπ
N

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� cos

π
N

􏼒 􏼓 � 1 − c1h
2
, (37)

for some c1 > 0. Here, we have used h � 1/N and the ap-
proximation cos(x) ≈ 1 − x2/2. Now the spectral radius of
TJ reads

ρ TJ􏼐 􏼑 � maxk,ℓ λk,ℓ TJ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 1 − c1h
2

􏼐 􏼑 1 +
1
2

h2

DΔ t
􏼠 􏼡

− 1

.

(38)

Assuming that c1h
2 < h2/(2DΔ t)< 1, we finally obtain

ρ TJ􏼐 􏼑 � 1 − c2
h2

DΔ t
, (39)

for some c2 > 0.
It follows from (32) and (39) that the optimal SOR

parameter 􏽢ωΔt,h, corresponding to the spatial grid size h and
the time step size Δt, can be written as

􏽢ωΔt,h �
2

1 + c0(h/
����
DΔ t

√
)
, (40)

for some c0 > 0. +e constant c0 can be found experimentally
from a selected set of (Δt, h), as summarized in the following:

(a)Determine 􏽢ωΔt0 ,h0
for prescribed grid sizes Δt0, h0( 􏼁, heuristically.

(b)Solve (40) for c0:

c0 �

�����
DΔ t0

􏽰

h0

2
􏽢ωΔt0 ,h0

− 1􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

Once c0 is estimated as in (41), the parameter 􏽢ωΔt,h in
(40) is near-optimal for various choices of (Δt, h).

5. Numerical Experiments

In this section, we present numerical experiments which
show effectiveness of the variable-θ method. +e algorithms
are implemented in MATLAB and carried out on a desktop
computer of Intel Xeon CPU E5-1620 3.60GHz processor.

To solve the algebraic system at each time level, the SOR
method is employed with the near-optimal parameter 􏽢ω
calculated as in (40), with c0 being estimated with a small
grid problem. +e SOR iteration is stopped when the
maximum difference of consecutive iterates becomes smaller
than a tolerance ε � 10− 6:

u
n,k

− u
n,k− 1

�����

�����∞
< ε. (42)
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+e L∞-error E∞[tn], measured at t � tn, is defined as
follows:

E∞ t
n

􏼂 􏼃 ≔ u
n

− 􏽢u t
n

( 􏼁
����

����∞, (43)

where 􏽢u is the exact solution.

5.1. One-Component RD System. To investigate accuracy of
the variable-θ method, we consider the diffusion problem
(15) studied earlier in Section 2.2. For a comparison purpose,
we have implemented not only the θ-methods and the
variable-θ method but also the implicit predictor-corrector
(0, 2)-Padé (IPC-[0,2]) method [26] and Lawson and Morris
(LM) local extrapolation method [23].

Table 1 presents the L∞-error E∞[T] at T � 1.0 when the
five methods are applied for the numerical solution of (15),
with various Δt and Δx. As one can see from the table, the
CN method resolves its numerical solution poorly (due to
oscillations), except for the case the method satisfies the
maximum principle. On the contrary, the variable-θmethod
results in a second-order accuracy, with its errors being
smallest among all the methods for most cases. +e new
method is a hybrid time-stepping procedure which as-
sembles merits from the CN method (high-accuracy) and
the implicit method (smoothness).

Now, consider a nonlinear RD problem of the form
zu

zt
− uxx � u(1 − u),

(x, t) ∈ (0, 1) ×[0, T],

(44)

with the boundary and initial values, as given in (15).
Figure 3 presents the numerical solutions evolved by the

implicit method, the CNmethod, and the variable-θmethod,
when Δt � 0.01 and Δx � 0.025 (the mesh is the same as the
one selected in Figure 1). Similar to the linear problem in
Figure 1, spurious oscillations are introduced into the nu-
merical solution of the nonlinear problem by the CNmethod
only. It should be noticed that spurious oscillations of the
CN method are damped out much faster for the nonlinear
problem than the linear problem, which is due to the re-
action kinetic term f(u) � u(1 − u). For the nonlinear
problem, It seems that the oscillations at early time steps do
not affect the solution at later steps much. +is observation
explains a partial reason that the second-order CN method
has been popular for the numerical solution of PDEs in
mathematical biology. However, for other applications, such
spurious oscillations at early moments may alter the nu-
merical solution significantly so as for the CN method to be
unstable; see Figure 4 below. It is important to develop an
effective algorithm which can suppress spurious oscillations
for convenient choices of algorithm parameters; the vari-
able-θ method is effective and stable.

5.2. Two-ComponentNonlinearRDSystems. Two-component
RD systems enable to explain a much wider range of phe-
nomena than their one-component counterparts. Many
two-component models have been developed and numeri-
cally verified for dynamical patterning behaviors in biology
and chemistry. In this section, we consider two-component
models interested in the literature of biology and chemistry,
to verify effectiveness of the variable-θ method.

5.2.1. Gray–Scott Model in 1D. We apply the numerical
methods for the numerical solution of the Gray–Scott model
[4, 27] defined as (1) associated with the following reaction
kinetics:

f(u) � F 1 − u1( 􏼁 − u1u
2
2, u1u

2
2 − (F + k)u2􏽨 􏽩

T
, (45)

for any constants F and k. LetΩ � (0, 1). We assign two sets
of model constants and initial and boundary conditions as
follows [28]:

D � 10− 4
, 10− 6

􏽨 􏽩
T
, F � 0.035, k � 0.049, (46a)

u1(x, 0) � 1 −
1
2
sin100(πx), u2(x, 0) �

1
4
sin100(πx), x ∈ (0, 1),

(46b)

u1(0, t) � u1(1, t) � 1, u2(0, t) � u2(1, t) � 0, t ∈ [0, T],

(46c)

where (46b) is a mid-pulse initial condition, and

D � 10− 4
, 5 · 10− 5

􏽨 􏽩
T
, F � 0.025, k � 0.0544, (47a)

u1(x, 0) � 1 −
1
2
cos100

πx

2
􏼒 􏼓, u2(x, 0) �

1
4
cos100

πx

2
􏼒 􏼓,

x ∈ (0, 1),

(47b)

zu1

zx
(0, t) �

zu1

zx
(1, t) � 0,

zu2

zx
(0, t) �

zu2

zx
(1, t) � 0, t ∈ [0, T],

(47c)

where (47b) is a left-pulse initial condition.
In Figure 5, we present the propagation of the numerical

solution of u2 by the variable-θ method associated with
(46a)–(46c) at the grid sizes Δt � 0.01 and Δx � 0.004 over
0≤ t≤T � 2000.+e initial midpulse splits in early moments
to travel in both directions (self-replication of the pulse). As
each of the pulses travels, it becomes thicker (bigger) up to a
certain width and begins to replicate itself recursively.
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Figure 6 depicts the propagation of the numerical so-
lution of u2 by the variable-θ method associated with
(47a)–(47c) over 0≤ t≤T � 5000, at the same resolution, as
in Figure 5. One can clearly observe a traveling pulse which
begins from the left edge point and reflects whenever it hits
the boundary, due to the no-flux boundary condition (47c).

To investigate bifurcation in the RD system and our
method numerical accuracy, we present numerical solutions
of the wave-splitting problem (46a)–(46c) obtained with
various spatial and temporal grid sizes, as shown in Figure 7.
+e image Ikℓ represents the numerical solution obtained
with the mesh resolution (Δt,Δx) � (10− k, 0.01/2ℓ− 1). For
example, the image I23 is associated with themesh resolution
(Δt,Δx) � (1/100, 1/400). One can easily point out from the
images that the spatial resolution alters the numerical so-
lution dramatically even with halved spatial grid sizes
(compare the images horizontally), while the temporal
resolution affects little the numerical solution even with one-
order smaller temporal step sizes (compare them vertically).

+e main reason for such a sensitivity to the spatial reso-
lution is that the RDdoes not have asmuch time before growing
to reach the margins of the mesh in low spatial resolutions (of
large Δx’s). When this happens, the RD pattern typically de-
teriorates and it does not travel in an appropriate speed nor
reaches a condition to replicate itself on time, see ([29], Section
4.2) for similar observations. We summarize the experiments
with the Gray–Scott model in 1D as follows:

(i) Accuracy of the numerical solution is much more
sensitive to the spatial mesh resolution than the
temporal one.

(ii) +us, it is crucial to set a high spatial resolution
(small Δx’s) for a desirable accuracy.

(iii) As the spatial resolution becomes higher, the CN
method may more likely produce spurious oscil-
lations, while the variable-θmethod results in stable
solutions.

5.2.2. Gray–Scott Model in 2D. Note that the two-compo-
nent Gray–Scott model is formulated as in (1) with the
reaction kinetics f(u) given in (45). We choose problem
coefficients as follows [15]:

Ω � (− 1, 1) ×(− 1, 1),

D � [0.001, 0.001]
T
,

F � 1,

k � 0.

(48)

For the purpose of error analysis, we select a smooth
solution 􏽢u � [􏽢u1, 􏽢u2] defined as

􏽢u1(x, y, t) � cos(2t)cos(2πx)cos(πy),

􏽢u2(x, y, t) � cos(2t)cos(πx)cos(2πy),
(49)

and replace the reaction kinetics f(u) with f􏽢u(u):

f􏽢u(u) ≔ f(u) +
z􏽢u

zt
− DΔ􏽢u − f(􏽢u). (50)

+en, 􏽢u � [􏽢u1, 􏽢u2] in (49) would be the exact solution of
zu/zt − DΔu − f(u) � f􏽢u(u) with the initial condition
u0 � 􏽢u(x, y, 0).

Table 2 summarizes the L∞-error E∞[T] with T � 1.0
and the elapsed time (CPU) for the implicit, CN, variable-θ
methods for three different meshes refined by a factor of 2 in
both spatial and temporal directions withΔx � Δy. Since the
solution including the initial condition is smooth over the

Table 1: L∞-error E∞[T] for (15) at T � 1.0.

(Δt,Δx) Implicit CN IPC-[0, 2] LM Variable-θ
(0.1, 0.05) 9.0 · 10− 4 2.4 · 10− 1 6.0 · 10− 5 8.4 · 10− 5 8.4 · 10− 5

(0.01, 0.05) 2.8 · 10− 5 4.8 · 10− 7 1.6 · 10− 6 3.2 · 10− 6 8.5 · 10− 7

(0.1, 0.025) 8.9 · 10− 4 3.7 · 10− 1 5.9 · 10− 5 8.3 · 10− 5 5.1 · 10− 5

(0.01, 0.025) 2.7 · 10− 5 2.0 · 10− 4 9.1 · 10− 7 2.5 · 10− 6 1.5 · 10− 7

(0.1, 0.0125) 8.9 · 10− 4 4.3 · 10− 1 5.8 · 10− 5 8.3 · 10− 5 2.7 · 10− 4

(0.01, 0.0125) 2.7 · 10− 5 3.9 · 10− 2 7.5 · 10− 7 2.4 · 10− 6 1.2 · 10− 7

t
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Figure 3: Propagation of the numerical solutions for (44): (a) the implicit method, (b) the CN method, and (c) the variable-θ method, for
0≤ t≤T � 1.0, when Δt � 0.01 and Δx � 0.025.
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entire time interval [0, T � 1], the CNmethod introduces no
spurious oscillations into its numerical solution and proves a
second-order accuracy for the two-component Gray–Scott
model in the 2D space. One should notice that the variable-θ
has also proved its second-order accuracy, the same as the
CN method. On the contrary, the implicit method involves

considerable errors due to its first-order convergence in
temporal direction. Figure 8 shows the numerical solution
by the variable-θ method, and its error at T � 1.0 for the
Gray–Scott model, when Δt � 0.025 and Δx � Δy � 0.05.

For all the three methods, the algebraic system is solved
by the SOR method with its optimal relaxation parameter

t = 80 t = 220 t = 290 t = 340

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

(a)
t = 80 t = 220 t = 290 t = 340

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1
u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

(b)

y x

1

0.15

t = 80 t = 220 t = 290 t = 340

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

y x

1

0.15

0.1

u 1

0.05

0
1

–1 –1
0 0

(c)
t = 80 t = 220 t = 290 t = 340

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

(d)
t = 80 t = 220 t = 290 t = 340

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

(e)
t = 80 t = 220 t = 290 t = 340

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

y

x

1

1

–1 –1

0
0

(f )

Figure 4: Numerical solutions for u1 of the Gierer–Meinhardt model at the spatial resolution Δx � Δy � 1/32: (a) the variable-θ method
with Δt � 0.05, (b) the CN method with Δt � 0.05, and (c) the CN method with Δt � 0.005; (d–f) are the aerial views of (a–c), respectively.
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being calibrated from the lowest resolution,
(Δt,Δx � Δy) � (0.05, 0.1). +at is, the constant c0 in (41) is
evaluated using the experimentally optimal 􏽢ωΔt0 ,h0

with
(Δt0, h0) � (0.05, 0.1) and then (40) is utilized to estimate
􏽢ωΔt,h for other grid sizes (Δt, h � Δx � Δy). With the near-
optimal parameter and an effective initialization scheme in
(30), for both the CN and variable-θ methods, the SOR
method has converged in (59) iterations in average for
solving the two algebraic systems (for u1 and u2) in a time
level. SOR is comparable with ADI in efficiency when the
parameter is set optimal and the initialization is carried out
accurately; SOR has proven its efficiency for the numerical
solution of elliptic obstacle problems [30]. For the
Gray–Scott model in 2D, the variable-θ method becomes
about a third most expensive computationally than the CN
method, due to the wobble set processing.

5.2.3. Gierer–Meinhardt Model. +e Gierer–Meinhardt
model [2] is (1) defined in Ω � (− 1, 1) × (− 1, 1) ⊂ R2 with
the following reaction kinetics and parameters:

D � ε2,
κ
μ

􏼢 􏼣

T

,

f(u) �
u2
1

u2
− u1,

1
μ

u2
1
ε

− u2􏼠 􏼡􏼢 􏼣

T

,

(51)

for which various numerical methods have been developed
[12, 31, 32]. We cast the experiment employing coefficients
and the initial condition used in [32]:

+e initial values are depicted in Figure 9. In this section,
we restrict our attention to the dynamics of u1 of the model.

ε � 0.04, μ � 0.1, κ � 0.0128,

u1(x, y, 0) �
1
2

1 + 0.001 􏽘
20

k�1
cos

kπy

2
􏼠 􏼡⎡⎣ ⎤⎦sech2

������
x2 + y2

􏽰

2ε
􏼠 􏼡,

u2(x, y, 0) �
cosh 1 −

������
x2 + y2

􏽰
( 􏼁

3 cos h(1)
.

(52)
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Figure 5: Propagation of the numerical solution of u2 for the 1D Gray–Scott model by the variable-θ method: (a) the wave-splitting (self-
replication of the pulse) and (b) its aerial view over 0≤ t≤T � 2000, when Δt � 0.01 and Δx � 0.004.
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Figure 6: Propagation of the numerical solution of u2 for the 1D Gray–Scott model by the variable-θ method: (a) the pulse traveling and
reflecting and (b) its aerial view over 0≤ t≤T � 5000, when Δt � 0.01 and Δx � 0.004.
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In order to investigate effectiveness of the variable-θ
method and oscillatory behaviors of the CN method as well,
we have carried out numerical experiments for the Gier-
er–Meinhardt model with a relatively low spatial resolution.
Figure 4 presents numerical solutions at two different times
for u1 of the Gierer–Meinhardt model with the spatial
resolution Δx � Δy � 1/32. When the time step size is set
Δt � 0.05, the variable-θ method evolves the numerical
solution as shown in Figures 4(a) and 4(d), for which the
final steady-state pattern is the same as that in [32]. On the
contrary, with the same Δt � 0.05, the CN method has
produced a quite different pattern as in Figures 4(b) and 4(e),
due to the nonsmooth initial values (Figure 9). However, the
CN method can recover the correct steady-state pattern
when it runs with Δt � 0.005, as depicted in Figures 4(c) and

4(f ). For a similar accuracy, the variable-θ method (taking
170 s) is about 7 times more efficient than the CN method
(taking 1242 s).

We summarize our experiments with the Gray–Scott and
Gierer–Meinhardt models in 2D as follows:

(i) +e variable-θ method shows the same accuracy as
the CN method for problems of smooth data

(ii) For nonsmooth data, the variable-θ method evolves
a smooth solution for all choices of Δt, while the CN
method introduces spurious oscillations to alter the
solution unless the time step size is sufficiently small

(iii) When a large time step size is desirable, the sug-
gested method is a few times more efficient than the
CN method for a similar accuracy
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Figure 7: +e wave-splitting (self-replication of the pulse) by the variable-θ method over 0≤ t≤ 2000 with various (Δt,Δx). +e image Ikℓ
represents the numerical solution obtained with the mesh resolution (Δt,Δx) � (10− k, 0.01/2ℓ− 1). (a) (I11). (b) (I12). (c) (I13). (d) (I21). (e)
(I22). (f ) (I23). (g) (I31). (h) (I32). (i) (I33).
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Table 2: L∞-error E∞[T] and the elapsed time (CPU) for the numerical solution of the Gray–Scott model in the 2D space: T � 1.0.

ε � 10− 6 Implicit CN Variable-θ

(Δt,Δx � Δy)
E∞[T]

CPU
E∞[T]

CPU
E∞[T]

CPU
u1 u2 u1 u2 u1 u2

(0.05, 0.1) 4.3 · 10− 2 4.0 · 10− 2 0.036 s 9.6 · 10− 4 9.4 · 10− 4 0.047 s 9.6 · 10− 4 9.4 · 10− 4 0.062 s
(0.025, 0.05) 2.0 · 10− 2 1.7 · 10− 2 0.225 s 2.5 · 10− 4 2.3 · 10− 4 0.280 s 2.5 · 10− 4 2.3 · 10− 4 0.394 s
(0.0125, 0.025) 8.0 · 10− 3 8.0 · 10− 3 1.629 s 6.4 · 10− 5 5.5 · 10− 5 2.102 s 6.4 · 10− 5 5.5 · 10− 5 2.798 s
Conv. order 1.2 1.2 1.9 2.0 1.9 2.0
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Figure 8: +e numerical solution of the variable-θ method and its error at T � 1.0 for the Gray–Scott model, when Δt � 0.025 and
Δx � Δy � 0.05: (a) u1, (b) u2, (c) e1 � u1 − 􏽢u1, and (d) e2 � u2 − 􏽢u2.
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Figure 9:+e initial values in (52) for the Gierer–Meinhardt model with ϵ � 0.04 at the mesh resolution Δx � Δy � 1/32: (a) u1(x, y, 0) and
(b) u2(x, y, 0).
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Remark 3. Although the variable-θmethod can employ larger
time step sizes than the CN method to get stable numerical
solutions for problems of nonsmooth data, one may not set the

time step size too large, due to an accuracy issue rather than the
stability issue. Furthermore, for nonlinear problems, the overall
stability of the numerical algorithm can be determined by not
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Figure 10: Numerical solutions for u1 of the Gray–Scott model at T � 1.0 by the variable-θmethod varying Δx � Δy with fixed Δt � 0.25.
+e image Iℓ represents the numerical solution obtained with the mesh resolution (Δt,Δx � Δy) � (0.25, 0.02/2ℓ− 1) and Iℓ′ represents the
error of Iℓ. (a) (I1). (b) (I2). (c) (I3). (d)(I1′). (e)(I2′). (f )(I3′).
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Figure 11: Numerical solutions for u1 of the Gierer–Meinhardt model at T � 340 by the variable-θ method, varying Δx � Δy with fixed
Δt � 0.1. +e image Iℓ represents the numerical solution obtained with the mesh resolution (Δt,Δx � Δy) � (0.1, 0.02/2ℓ− 1) and Iℓ′
represents the aerial view of Iℓ. (a) (I1). (b) (I2). (c) (I3). (d)(I1′). (e)(I2′). (f )(I3′).

Complexity 13



only grid sizes but also numerical schemes including methods
of dealing with the nonlinear terms.

Figure 10 presents numerical solutions and their errors
of u1 for the Gray–Scott model (48)–(50) at T � 1.0 by the
variable-θ method, varying Δx � Δy with fixed Δt � 0.25.
Compared with Figure 8, the solutions show stability and a
good accuracy, although the time step size is as large as
Δt � 0.25. As shown in the bottom line in Figure 10, all three
spatially different cases show the same level of errors since
the entire errors are dominated by temporal direction errors.
We conclude from this example that grid sizes in both
temporal and spatial directions would not significantly affect
the stability of the proposed method when the initial con-
dition is smooth and the nonlinearity is not severe.

As an example of nonsmooth data and severe nonlin-
earity, we select the Gierer–Meinhardt model (51) and (52)
to simulate with large temporal step sizes.When Δt≥ 0.2, the
proposed algorithm introduced a rapid decay of solution
values independently of the spatial grid size, so that the
pattern is not formed appropriately. We believe that it is due
to the error incorporated with the reaction term (19) when
un+1/2 is approximated by the extrapolation scheme (18).
However, when Δt≤ 0.1, our method produces stable so-
lutions for all choices of spatial grid sizes. Figure 11 presents
numerical solutions of u1 for the Gierer–Meinhardt model at
T � 340 by the variable-θ method with fixed Δt � 0.1 and
various Δx � Δy. Note that for Gierer–Meinhardt model,
the pattern forming is slow down as the spatial grid size
becomes smaller, as shown in (I2) and (I3) of Figure 11; this
tendency has been observed for all other choices of Δt≤ 0.1.
+is is another example that accuracy of the numerical
solution is much more sensitive to the spatial mesh reso-
lution than the temporal one.

6. Conclusions

+e Crank–Nicolson (CN) method has been a popular sec-
ond-order time-stepping procedure for the numerical solu-
tion of systems of nonlinear RD equations. However, the CN
method may introduce spurious oscillations for nonsmooth
data unless the time step size is sufficiently small. We have
studied a nonoscillatory time-stepping procedure for RD
equations, called a variable-θ method, as a perturbation of the
CNmethod. In each time level, the newmethod detects points
of potential oscillations and resolves the solution applying the
implicit method locally at those points. +e proposed time-
stepping procedure has proven nonoscillatory and having a
second-order temporal accuracy, although the initial condi-
tions are nonsmooth. Various examples have been considered
to show effectiveness of the method. We also have performed
a sensitivity analysis for the numerical solution of biological
pattern forming models to conclude that the numerical so-
lution is much more sensitive to the spatial mesh resolution
than the temporal one.

Data Availability

+e experiment data and figures used to support the findings
of this study are included within the article, and the

MATLAB codes for the experiments are available from the
corresponding author upon request.

Conflicts of Interest

+e authors declare no conflicts of interest.

Acknowledgments

+is research was supported by NSF-MCB (1714157)
awarded to George V. Popescu.

References

[1] A. M. Turing, “+e chemical basis of morphogenesis,” Phil-
osophical Transactions of the Royal Society of London. Series B,
Biological Sciences, vol. 237, no. 641, pp. 37–72, 1952.

[2] A. Gierer and H. Meinhardt, “A theory of biological pattern
formation,” Kybernetik, vol. 12, no. 1, pp. 30–39, 1972.

[3] J. Schnakenberg, “Simple chemical reaction systems with limit
cycle behaviour,” Journal of %eoretical Biology, vol. 81, no. 3,
pp. 389–400, 1979.

[4] P. Gray and S. K. Scott, “Autocatalytic reactions in the iso-
thermal, continuous stirred tank reactor: isolas and other
forms of multistability,” Chemical Engineering Science, vol. 38,
no. 1, pp. 29–43, 1983.

[5] I. Prigogine and G. Nicolis, “Self-organisation in nonequi-
librium systems: towards a dynamics of complexity,” in Bi-
furcation Analysis, pp. 3–12, Springer, Berlin, Germany, 1985.

[6] I. Lengyel and I. R. Epstein, “Modeling of turing structures in
the chlorite–iodide–malonic acid–starch reaction system,”
Science, vol. 251, no. 4994, pp. 650–652, 1991.

[7] S. Kondo and T. Miura, “Reaction-diffusion model as a
framework for understanding biological pattern formation,”
Science, vol. 329, no. 5999, pp. 1616–1620, 2010.

[8] P. K. Maini and R. E. Baker, Developmental Biology: Math-
ematical Modelling of Development, Wiley, Hoboken, NJ,
USA, 2001.

[9] K. U. Torii, “Two-dimensional spatial patterning in devel-
opmental systems,” Trends in Cell Biology, vol. 22, no. 8,
pp. 438–446, 2012.

[10] E. Crampin and P. Maini, “Reaction-diffusion models for
biological pattern formation,” Methods and Applications of
Analysis, vol. 8, no. 3, pp. 415–428, 2001.

[11] C. Chiu and N. Walkington, “An ADI method for hysteretic
reaction-diffusion systems,” SIAM Journal on Numerical
Analysis, vol. 34, no. 3, pp. 1185–1206, 1997.

[12] R. I. Fernandes, B. Bialecki, and G. Fairweather, “An ADI
extrapolated Crank-Nicolson orthogonal spline collocation
method for nonlinear reaction-diffusion systems on evolving
domains,” Journal of Computational Physics, vol. 299,
pp. 561–580, 2015.

[13] I. Sgura, B. Bozzini, and D. Lacitignola, “Numerical ap-
proximation of Turing patterns in electrodeposition by ADI
methods,” Journal of Computational and Applied Mathe-
matics, vol. 236, no. 16, pp. 4132–4147, 2012.

[14] F. Shakeri and M. Dehghan, “+e finite volume spectral el-
ement method to solve Turing models in the biological pattern
formation,” Computers & Mathematics with Applications,
vol. 62, no. 12, pp. 4322–4336, 2011.

[15] R. I. Fernandes and G. Fairweather, “An ADI extrapolated
Crank-Nicolson orthogonal spline collocation method for
nonlinear reaction-diffusion systems,” Journal of Computa-
tional Physics, vol. 231, no. 19, pp. 6248–6267, 2012.

14 Complexity



[16] J. Douglas Jr., “On the numerical integration of z/2uzx2 +

z2u/zy2 � zu/zt by implicit methods,” Journal of the Society
for Industrial and Applied Mathematics, vol. 3, no. 1,
pp. 42–65, 1955.

[17] J. Douglas Jr. and D. W. Peaceman, “Numerical solution of
two-dimensional heat-flow problems,” AIChE Journal, vol. 1,
no. 4, pp. 505–512, 1955.

[18] D. W. Peaceman and H. H. Rachford Jr., “+e numerical
solution of parabolic and elliptic differential equations,”
Journal of the Society for Industrial and Applied Mathematics,
vol. 3, no. 1, pp. 28–41, 1955.

[19] J. Douglas Jr., S. Kim, and H. Lim, “An improved alternating-
direction method for a viscous wave equation,” Contemporary
Mathematics, vol. 329, pp. 99–104, 2003.

[20] H. Lim, S. Kim, and J. Douglas Jr., “Numerical methods for
viscous and nonviscous wave equations,” Applied Numerical
Mathematics, vol. 57, no. 2, pp. 194–212, 2007.

[21] J. Douglas Jr. and S. Kim, “Improved accuracy for locally one-
dimensional methods for parabolic equations,”Mathematical
Models and Methods in Applied Sciences, vol. 11, no. 9,
pp. 1563–1579, 2001.

[22] J. Crank and P. Nicolson, “A practical method for numerical
evaluation of solutions of partial differential equations of the
heat-conduction type,” in Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 43, pp. 50–67, Cam-
bridge University Press, Cambridge, UK, 1947.

[23] J. D. Lawson and J. L. Morris, “+e extrapolation of first order
methods for parabolic partial differential equations. I,” SIAM
Journal on Numerical Analysis, vol. 15, no. 6, pp. 1212–1224,
1978.

[24] P. Lee and S. Kim, “A variable-θ method for parabolic
problems of nonsmooth data,” Computers & Mathematics
with Applications, vol. 79, no. 4, pp. 962–981, 2020.

[25] R. Varga, Matrix Iterative Analysis, Springer, Berlin, Ger-
many, 2nd edition, 2000.

[26] A. Q. M. Khaliq, T. A. Biala, S. S. Alzahrani, and K. M. Furati,
“Linearly implicit predictor-corrector methods for space-
fractional reaction-diffusion equations with non-smooth
initial data,” Computers & Mathematics with Applications,
vol. 75, no. 8, pp. 2629–2657, 2018.

[27] P. Gray, “Autocatalytic reactions in the isothermal, contin-
uous stirred tank reactor: oscillations and instabilities in the
system a + 2b⟶ 3b; b⟶ c,” Chemical Engineering Science,
vol. 39, no. 6, pp. 1087–1097, 1984.

[28] P. A. Zegeling and H. Kok, “Adaptive moving mesh com-
putations for reaction–diffusion systems,” Journal of Com-
putational and Applied Mathematics, vol. 168, no. 1-2,
pp. 519–528, 2004.

[29] C. Gingras and P. G. Kry, “Procedural modelling with reaction
diffusion and growth of thin shells,” in Proceedings of the 45th
Graphics Interface Conference on Proceedings of Graphics
Interface 2019, Canadian Human-Computer Communica-
tions Society, New York, NY, USA, pp. 1–7, 2019.

[30] P. Lee, T. W. Kim, and S. Kim, “Accurate and efficient nu-
merical solutions for elliptic obstacle problems,” Journal of
Inequalities and Applications, vol. 34, no. 7, pp. 1–25, 2017.

[31] M. McCourt, N. Dovidio, and M. Gilbert, “Spectral methods
for resolving spike dynamics in the gierer-meinhardt model,”
Communications in Computational Physics, vol. 3, pp. 659–
678, 2008.

[32] Z. Qiao, “Numerical investigations of the dynamical behaviors
and instabilities for the gierer-meinhardt system,” Commu-
nications in Computational Physics, vol. 3, no. 2, pp. 406–426,
2008.

Complexity 15



Research Article
Mathematical Model Analysis and Simulation of Visceral
Leishmaniasis, Kashgar, Xinjiang, 2004–2016

Yateng Song,1 Tailei Zhang,2 Hui Li ,3 Kai Wang ,4 and Xiaobo Lu 5

1College of Public Health, Xinjiang Medical University, Urumqi 830011, China
2School of Science, Chang’an University, Xi’an 710064, China
3Central Laboratory, Xinjiang Medical University, Urumqi 830011, China
4College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China
5Department of Infectious Diseases, 0e First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China

Correspondence should be addressed to Kai Wang; wangkaimath@sina.com and Xiaobo Lu; xjykdluxiaobo@126.com

Received 12 September 2019; Revised 3 January 2020; Accepted 11 February 2020; Published 24 April 2020

Guest Editor: George V. Popescu

Copyright © 2020 Yateng Song et al. 2is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Visceral leishmaniasis (VL), known as kala-azar, is a serious parasitic disease. After malaria, VL is the second largest parasitic
killer. 2is paper focuses on the VL transmission around sandflies, dogs, and people. Kashgar is located on the southwestern edge
of Xinjiang, where kala-azar parasite infection occurs every year. According to the cases reported in the Kashgar Prefecture from
2004 to 2016, we proposed a dynamic model based on these three populations. 2e SEIR model was established for human
population, the SI model was established for sandfly population, and the SI model was established for dog population. We fitted
the model to cumulative cases from 2004 to 2016 for the epidemic in Kashgar and predicted that the cumulative incidence of kala-
azar in Kashgar would continue to increase, but its growth rate would gradually slow down, which means that the number of cases
would gradually decrease every year. We also estimated the basic reproduction number R0 = 1.76 (95% CI: 1.49–1.93). 2e
sensitivity analysis shows that the mutual infection between sandfly and dog contributes the most to the basic reproduction
number, while the transmission proportion of sandfly to the susceptible person and the mutual infection between sandfly and dog
contribute the most to the number of leishmaniasis human cases. 2erefore, according to the sensitivity analysis results, reducing
the contact between sandflies and dogs is an effective way to reduce kala-azar.

1. Introduction

Visceral leishmaniasis (VL) is also called kala-azar, which is
a chronic infectious disease caused by Leishmania infantum.
VL has ranked as the second largest parasitic killer after
malaria and draws worldwide attention because of its se-
verity; about 12 million people are affected by it around the
world [1]. 2e pathogen causing visceral leishmaniasis are L.
donovani, L. infantum, and L. chagasi.2e incubation period
for VL is generally 3 − 6 months, at least 10 days, while the
longest is 9 years [1]. Humans and dogs are the main in-
fection sources while sandflies are the main carriers.

2eWorld Health Organization (WHO) lists leishmaniasis
as the most easily neglected disease. It is reported that ap-
proximately 30% of new clinical cases and 58,000 deaths of
leishmaniasis occur worldwide each year [2]. According to the

characteristics of the source of infection, VL is mainly divided
into three types: human-borne, canine-borne, and wildlife-
borne in China [3]. In the early days of the People’s Republic of
China, human-borne kala-azar was the main disease in 16
provinces, such as Shandong and Henan. After prevention and
treatment, it was basically eliminated. In recent years, VL has
been prevalent in six provinces including Xinjiang, Inner
Mongolia, Gansu, Sichuan, Shaanxi, and Shanxi [3]. Among six
provinces, the typical VL in Xinjiang is wildlife-borne, and
some areas have human-borne VL, while canine-borne is the
main transmission way in Gansu.

Xinjiang is the largest provincial administrative region in
China and is also a high-risk area for VL, especially in the
Kashgar Prefecture in southern Xinjiang. 2e Kashgar Pre-
fecture is located in the southwestern margin of the Xinjiang
Uygur Autonomous Region. Due to its unique geographical
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environment, there are two types of visceral leishmaniasis,
human and desert [4]. Since the 1990s, the incidence of VL in
Kashgar has been increasing year by year. From 2005 to 2015,
Xinjiang’s VL has experienced significant fluctuation. In
2007–2012, the incidence of VL in Kashgar accounted formore
than 90% of the total population [5].

We utilized the data of human leishmaniasis cases from
2004 to 2016 reported by the Center for Disease Control and
Prevention in Xinjiang, and then we plot bar diagrams about
total, sex, and age which are presented in Figures 1(a)–1(c).
From Figure 1(a), we could find that the reported cases of VL
in Kashgar Prefecture of Xinjiang fluctuate considerably,
with outbreaks occurring in October and November of 2008,
2009, and 2015, respectively. From Figure 1(b), it shows that
there are more reported cases of VL inmales than in females.
Figure 1(c) shows that there are more reported cases of VL in
the younger age group.

In recent years, a lot of mathematical models have been
established around humans, dogs, and sandflies to under-
stand the transmission dynamics of VL (see for instance
[6–14]). For example, Muhammad and Ali [6] considered
the uniformmixing of the population, established the SEIHR
model for the population and the SEIR model for the dog,
which used sandfly as the medium, modeled and back-
warded the branching of zoonotic visceral leishmaniasis, and
calculated the basic reproduction number R0 for optimal
control. Elmojtaba et al. [7] developed amathematical model
to study the dynamics of visceral leishmaniasis in Sudan,
considering three different groups, analyzing the balance
point and its stability and providing a basis for controlling
and eliminating diseases. Zamir et al. [8] established SIR
mathematical models for humans, hosts, and media, using
the Routh–Hurwitz standard and next-generation methods
to obtain threshold conditions and give numerical simula-
tion results. 2ere are three main control strategies in the
controls of VL model: parameter control strategy, optimal
control strategy, and control strategy selection using sim-
ulation. However, the most generalized control strategy is
the parameter control strategy. When the parameters are
adjusted, people can apply it to a real-world control strategy,
and there is also a lot of research on optimal control strategy
and control strategy selection using simulation. Simulation
comparison is the most common method of VL mathematic
control modeling in simulation. It can compare the human
infected population with control and without control.
Meanwhile, it also proves the effectiveness of the combined
control strategies [9]. With reference to these established
mathematical models, we have established a mathematical
model based on logistic process.

2e purpose of this paper is to know the transmission
state about VL among humans, dogs, and sandflies in the
Kashgar Prefecture of Xinjiang. Firstly, we proposed a model
to simulate the cumulative data of the Kashgar Prefecture
and estimate the basic reproduction number and the dy-
namic behavior of the model. 2en, sensitivity analysis was
performed on the number of leishmaniasis human/dog/
sandfly cases and the basic reproduction number R0 based
on some key parameters. Finally, we explored some effective
strategies for the prevention and control of VL in Kashgar.

2e article is organized as follows. In Section 2, this
paper introduces themodel of VL and gives the expression of
the basic reproduction number and the parameter value.2e
dynamical behaviors of the model are analyzed to better
understand the transmission trends of the disease. Some
mathematical analyses are given in Section 3. 2e numerical
simulations, prediction of the epidemic trends for the next
decades, estimation of the basic reproduction number, and
sensitivity analysis of the basic reproduction number and the
number of infected humans/sandflies/dogs are presented in
Section 4. In Section 5, some brief summaries and discussion
are given.

2. Mathematical Model

In order to study the transmission of VL in Kashgar, we
developed a mathematical model based on humans, dogs,
and sandflies, where the human population is divided into
four groups: the susceptible, the exposed, the infected, and
the recovered denoted by Sh, Eh, Ih, and Rh, respectively.2e
dog population is divided into two groups: the susceptible
and the infected, denoted by Sr and Ir, respectively. We
divide the sandfly population into two subclasses: the sus-
ceptible and the infected, denoted by Sv and Iv, respectively.
And the total population for humans, dogs, and sandflies is
Nh � Sh + Eh + Ih + Rh; Nv � Sv + Iv; Nr � Sr + Ir. 2e
flowchart of VL transmission is illustrated in Figure 2.

2e transmission process of VL is described by the
following eight differential equations:

dSh

dt
� r1Sh 1 −

Sh + Eh + Ih + Rh

K1
􏼠 􏼡 − β1ShIv,

dEh

dt
� β1ShIv − μhEh − ωEh,

dIh

dt
� ωEh − μh + δ1( 􏼁Ih − cIh,

dRh

dt
� cIh − μhRh,

dSv

dt
� r2Sv 1 −

Sv + Iv

K2
􏼠 􏼡 − β2Ih + β3Ir( 􏼁Sv,

dIv

dt
� β2Ih + β3Ir( 􏼁Sv − μvIv,

dSr

dt
� r3Sr 1 −

Sr + Ir

K3
􏼠 􏼡 − β4IvSr,

dIr

dt
� β4IvSr − μr + δ2( 􏼁Ir.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

We assume that the susceptible individuals Sh and dogs
Sr are bitten by infected sandflies with β1 and β4 infection
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rates, respectively. And the transmission probability from
an infected dog or an infected individual to a susceptible
sandfly is β3 and β2, respectively. 1/ω and 1/c indicate the
latency and recovery rate of VL, respectively. 2e natural
mortality rates of humans, vectors, and reserves are μh, μv,
and μr, respectively. 2e death rate of humans and re-
serves caused by VL are δ1 and δ2, respectively. 2e
susceptible human population is governed by the logistic
growth with carrying capacity K1 as well as intrinsic
growth rate r1. In the absence of disease, the vector
population density grows according to a logistic curve

carrying capacity K2, with an intrinsic growth rate r2. In
the absence of disease, the dog population density grows
according to a logistic curve carrying capacity K3, with an
intrinsic growth rate r3.

3. Mathematical Analysis

3.1. Basic Reproduction Number. 2e basic reproduction
number R0 refers to the number of people infected by a
patient during the average period of illness when all people
are susceptible. R0 was calculated using the next-generation
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Figure 1: 2e data of human leishmaniasis cases from 2004 to 2016. (a) 2e reported data are described at different years. (b) 2e reported
data are described at different genders and (c) different ages from 2004 to 2016.
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matrix [15, 16]. 2e infected compartments are Eh, Ih, Iv,
and Ir, giving m � 4, so we have

F �

β1ShIv

0

β2Ih + β3Ir( 􏼁Sv

β4IvSr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

] �

μh + ω( 􏼁Eh

μh + δ1 + c( 􏼁Ih − ωEh

μrIr

μr + δ2( 􏼁Ir

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)

2en,

F �

0 0 β1K1 0

0 0 0 0

0 β2K2 0 β3K3

0 0 β4K3 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

μh + ω 0 0 0

−ω μh + δ1 + c 0 0

0 0 μv 0

0 0 0 μr + δ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

2us,

FV− 1
�

0 0
β1K1

μv

0

0 0 0 0

ωβ2K2

μh + ω( 􏼁 μh + δ1 + c( 􏼁

β2K2

μh + δ1 + c
0

β3K2

μr + δ2

0 0
β4K3

μv

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

2e reproduction number is given by R0 � ρ(FV− 1), and

R0 �

��������������������������������������������������������
K2 K3β3β4 μ2h + δ1μh + cμh + δ1ω + cω + μhω( 􏼁 + ωK1β1β2 δ2 + μr( 􏼁( 􏼁

μv δ2 + μr( 􏼁 μh + ω( 􏼁 δ1 + c + μh( 􏼁

􏽳

. (5)

S h
r1Sh (1 – Nh/K1)

r3Sr (1 – Nr/K3)

r2SV (1 – NV/K2)

Sh IhEh Rh

IV SV

Sr Ir

β1ShIV

β4SrIV

ω

δ1

δ2

μh

μr

μV

μh μh

γ

(β2Ih + β3Ir)SV

Figure 2: Flow diagram of the VL transmission model.
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R0 can be used as a basic indicator in the study of VL
propagation dynamics model. Usually, when R0 � 1, it can
be used as a threshold for the demise of the disease. When
R0 > 1, the disease will not die and eventually turn into
endemic disease; when R0 < 1, the disease will die out
naturally.

3.2. Dynamic Behaviors for the Model. 2e dynamical be-
havior of model (1) is analyzed to better understand the
transmission trends of the disease. We begin with ele-
mentary properties of solutions to the model (1). From
biological considerations, we study model (1) in the set

Γ � Sh, Eh, Ih, Rh, Sv, Iv, Sr, Ir( 􏼁 ∈ R8
+: 0< Sh ≤K1, 0< Sv ≤K2, 0< Sr ≤K3, Nh ≤

μh + r1( 􏼁
2
K1

4μhr1
, Nv ≤

μv + r2( 􏼁
2
K2

4μvr2
,􏼨

Nr ≤
μr + r3( 􏼁

2
K3

4μrr3
􏼩.

(6)

In fact, by using
dSh

dt
≤ r1Sh 1 −

Sh

K1
􏼠 􏼡,

dSv

dt
≤ r2Sv 1 −

Sv

K2
􏼠 􏼡,

dSr

dt
≤ r3Sr 1 −

Sr

K3
􏼠 􏼡,

(7)

we can deduce that Sh(t)≤K1, Sv(t)≤K2, and Sr(t)≤K3
whenever Sh(0)≤K1, Sv(0)≤K2, and Sr(0)≤K3. Adding
the first four equations of (1) yields

dNh

dt
� r1Sh 1 −

Nh

K1
􏼠 􏼡 − μhNh − δ1Ih + μhSh

≤ r1 + μh( 􏼁Sh −
r1S

2
h

K1
− μhNh

≤
r1 + μh( 􏼁

2
K1

4r1
− μhNh.

(8)

In view of system (8), it is easy to check that Nh
′(t)≤ 0

wherever Nh ≥ ((r1 + μh)2K1/4μhr1). 2e same conclusion
can be drawn for Nv and Nr. According to the above
analysis, Γ is a maximum positive invariant set of (1). 2ere
always exists a disease-free equilibrium P0 (K1, 0, 0, 0, K2, 0,
K3, 0). In the following, we will show the stability for the
disease-free equilibrium.

Theorem 1. 0e disease-free equilibrium P0 is locally as-
ymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. 2e Jacobian matrix of model (1) at P0 is given by

J P0( 􏼁 �

−r1 −r1 −r1 −r1 0 −β1K1 0 0

0 − μh + ω( 􏼁 0 0 0 β1K1 0 0

0 ω − μh + δ1 + c( 􏼁 0 0 0 0 0

0 0 c −μh 0 0 0 0

0 0 −β2K2 0 −r2 −r2 0 −β3K2

0 0 β2K2 0 0 −μv 0 β3K2

0 0 0 0 0 −β4K3 −r3 −r3

0 0 0 0 0 β4K3 0 − μr + δ2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

It is easy to see that there are four negative eigenvalues of
J(P0): −r1, −r2, −r3, −μh. 2e other eigenvalues are deter-
mined by the following fourth-order equation:

λ4 + a1λ
3

+ a2λ
2

+ a3λ + a4 � 0, (10)

where
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a1 � m1 + m2 + n + μv,

a2 � m1m2 + μvn − β3β4K2K3 + m1 + m2( 􏼁 μv + n( 􏼁,

a3 � m1m2 μv + n( 􏼁 + m1 + m2( 􏼁 μvn − β3β4K2K3( 􏼁

− ωβ1β2K1K2,

a4 � m1m2 μvn − β3β4K2K3( 􏼁 − nωβ1β2K1K2,

(11)

m1 � μh + ω,

m2 � μh + δ1 + c,

n � μr + δ2.
(12)

2e inequality R0 < 1 implies that

β3β4K2K3 < μvn,

ωβ1β2K1K2 <m1m2μv,

m1m2β3β4K2K3 + nωβ1β2K1K2 <m1m2μvn.

(13)

From (13), we have ai > 0 for i � 1, 2, 3, 4. On account of
the above inequalities, we have

a1a2 − a3 � m1 + m2 + n + μv( 􏼁 m1m2 + μvn − β3β4K2K3􏼂 􏼃+ m1 + m2( 􏼁 μv + n( 􏼁􏼃 − m1m2 μv + n( 􏼁 − m1 + m2( 􏼁 μvn − β3β4K2K3( 􏼁

+ ωβ1β2K1K2

� m1m2 m1 + m2( 􏼁 + μv + n( 􏼁 μvn − β3β4K2K3( 􏼁 + m1 + m2 + n + μv( 􏼁 m1 + m2( 􏼁 μv + n( 􏼁 + ωβ1β2K1K2 > 0.

(14)

Furthermore,

a3 a1a2 − a3( 􏼁 − a
2
1a4 � m1m2 μv + n( 􏼁 + m1 + m2( 􏼁 μvn − β3β4K2K3( 􏼁 − ωβ1β2K1K2􏼂 􏼃

m1m2 m1 + m2( 􏼁 + μv + n( 􏼁 μvn − β3β4K2K3( 􏼁 + m1 + m2 + n + μv( 􏼁 m1 + m2( 􏼁 μv + n( 􏼁 + ωβ1β2K1K2􏼂 􏼃

− m1m2 μvn − β3β4K2K3( 􏼁 m1 + m2 + n + μv( 􏼁
2

+ nωβ1β2K1K2 m1 + m2 + n + μv( 􏼁
2

> m1 + m2( 􏼁 μvn − β3β4K2K3( 􏼁 m1m2 m1 + m2( 􏼁 + m1 + m2 + n + μv( 􏼁 m1 + m2( 􏼁 μv + n( 􏼁 + ωβ1β2K1K2􏼂 􏼃

− m1m2 μvn − β3β4K2K3( 􏼁 m1 + m2 + n + μv( 􏼁
2

� m
2
1 + m

2
2􏼐 􏼑 μvn − β3β4K2K3( 􏼁 m1 + m2( 􏼁 μv + n( 􏼁 + m

2
1 + m

2
2 + m1m2􏼐 􏼑 μvn − β3β4K2K3( 􏼁 μv + n( 􏼁

2 > 0.

(15)

2erefore, each eigenvalue of equation (10) admits
negative real part. When R0 < 1, the disease-free equilibrium
P0 is locally asymptotically stable. When R0 > 1, we conclude
from a4 > 0 that equation (10) has at least one positive real
root; hence, the disease-free equilibrium P0 is unstable.

Theorem 2. As R0 < 1, the disease-free equilibrium is globally
asymptotically stable in Γ.

Proof. Let us consider the following Lyapunov function:

V(t) � ωnβ2K2Eh(t) + m1nβ2K2Ih(t) + m1m2nIv(t)

+ m1m2β3K2Ir(t),

(16)

where

m1 � μh + ω,

m2 � μh + δ1 + c,

n � μr + δ2.

(17)

2e derivative of V(t) along solutions of (1) is
_V(t) � ωnβ1β2K2ShIv − m1m2nβ2K2Ih + m1m2nSv β2Ih + β3Ir( 􏼁

− m1m2μvnIv + m1m2β3β4K2SrIv − m1m2nβ3K2Ir

≤ m1m2β3β4K2K3 + nωβ1β2K1K2 − m1m2μvn􏼂 􏼃Iv

� m1m2μvn R
2
0 − 1􏼐 􏼑Iv

≤ 0.

(18)

By LaSalle’s invariance principle, the omega limit set of
each solution starting from Γ lies in an invariant set con-
tained in
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Ω � Sh, Eh, Ih, Rh, Sv, Iv, Sr, Ir( 􏼁 ∈ Γ: Iv � 0􏼈 􏼉. (19)

It can be verified that the only invariant set contained in
Ω is the singleton P0􏼈 􏼉. 2en, the disease-free equilibrium P0
is globally asymptotically stable.2is completes the proof. In
the following, we will consider the dynamical behavior of
model (1) when R0 > 1.

Theorem 3. For any solution (Sh(t), Eh(t), Ih(t), Rh(t),

Sv(t), Iv(t), Sr(t), Ir(t)) of (1) with initial values Sh(0)> 0,
Eh(0)≥ 0, Ih(0)≥ 0, Rh(0)≥ 0, Sv(0)> 0, Iv(0)≥ 0, Sr(0)> 0,
Ir(0)≥ 0, and Ih(0) + Iv(0) + Ir(0)> 0, there exists ]> 0
such that

lim inf
t⟶∞

Ih(t)> ],

lim inf
t⟶∞

Iv(t)> ],

lim inf
t⟶∞

Ir(t)> ],

(20)

as R0 > 1.

Proof. Let

X � Sh, Eh, Ih, Rh, Sv, Iv, Sr, Ir( 􏼁 ∈ R8
+: Sh > 0, Sv > 0, Sr > 0􏽮 􏽯,

X0 � Sh, Eh, Ih, Rh, Sv, Iv, Sr, Ir( 􏼁 ∈ X: Ih + Iv + Ir > 0􏼈 􏼉,

zX0 � X\X0.

(21)

Next, we will show that system (1) is uniformly persistent
with respect to (X0, zX0). Obviously, X is positively in-
variant with respect to (1). Set a � max μh + δ1+􏼈

c, μv, μr + δ2}. 2e inequality (Ih(t) + Iv(t) + Ir(t))′ ≥
−a(Ih(t) + Iv(t) + Ir(t)) and Ih(0) + Iv(0) + Ir(0)> 0 im-
ply Ih(t) + Iv(t) + Ir(t)> 0 for all t≥ 0 as Ih(0)+

Iv(0) + Ir(0)> 0. 2erefore, X0 is also a positive invariant
set for system (1). Furthermore, by 2eorem 3, there exists a
compact set c in which all solutions of (1) initiated in X will
enter and remain forever after. 2e compactness condition
(C4.2) in 2ieme [17] is easily verified for this set c. Denote

Mz � Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0), Sr(0), Ir(0)( 􏼁: Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Iv(t), Sr(t), Ir(t)( 􏼁 ∈zX0, t≥ 0􏼈 􏼉.

(22)

We first claim that

Mz � Sh, 0, 0, Rh, Sv, 0, Sr, 0( 􏼁: Sh, Rh, Sv, Sr ≥ 0􏼈 􏼉. (23)

Suppose that (Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0),

Sr(0), Ir(0)) ∈Mz. It suffices to show Eh(t) � 0 for all t≥ 0.
If it is not true, then there exists t0 > 0 such that Eh(t0)> 0.
2en, Eh

′(t)≥ (μh + ω)Eh(g) implies Eh(t)> 0 for all t≥ t0.
From the third equation of (1), it may be concluded that

Ih(t) � e
− μh+δ1+c( ) t− t0( )Ih t0( 􏼁 + 􏽚

t

t0

e
− μh+δ1+c( )(t− θ)ωEh(θ)dθ

≥ 􏽚
t

t0

e
− μh+δ1+c( )(t− θ)ωEh(θ)dθ > 0,

(24)

for all t> t0. 2is is a contradiction with

Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0), Sr(0), Ir(0)( 􏼁 ∈Mz.

(25)

2us, (23) is valid.
Denote

Ω �∪ ω Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0), Sr(0), Ir(0)( 􏼁:􏼈

Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0), Sr(0), Ir(0)( 􏼁 ∈Mz􏼉,

(26)

where ω(Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0), Sr(0), Ir

(0)) is the omega limit set of the solution to (1) through
(Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0), Sr(0), Ir(0)).
Restricting (1) on Mz yields

dSh

dt
� r1Sh 1 −

Sh + Rh

K1
􏼠 􏼡,

dRh

dt
� −μhRh,

dSv

dt
� r2Sv 1 −

Sv

K2
􏼠 􏼡,

dSr

dt
� r3Sr 1 −

Sr

K3
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

A trivial verification shows that system (27) has a unique
equilibrium (K1, 0, K2, K3).2us, P0(K1, 0, 0, 0, K2, 0, K3, 0)

is the unique equilibrium of (1) in Mz. It is easily seen that
(K1, 0, K2, K3) is globally asymptotically stable. 2erefore,
we have Ω � P0􏼈 􏼉. And P0 is a covering of Ω, which is
isolated and is acyclic (since there exists no solution in Mz

which links P0 to itself ). Finally, the proof will be done if P0
is a weak repeller for X0, i.e.,

lim sup
t⟶∞

dist Ψ(t), P0( 􏼁> 0, (28)

where Ψ(t) � (Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Iv(t), Sr(t),

Ir(t)) is an arbitrary solution with initial value in X0. By
Leenheer and Smith (Proof of Lemma 3.5, [18]), we only
need to prove that Ws(P0)∩X0 � ϕ where Ws(P0) is the
stable manifold of E0. Suppose it is not true, then there exists
a solution (Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Iv(t), Sr(t),

Ir(t)) in X0, such that as t⟶∞,
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Sh(t)⟶ K1, Eh(t)⟶ 0, Ih(t)⟶ 0, Rh(t)⟶ 0,

Sv(t)⟶ K2, Iv(t)⟶ 0, Sr(t)⟶ K3, Ir(t)⟶ 0.

(29)

When R0 > 1,
ωβ2K2 μr + δ2( 􏼁β1K1 + β3K2 μh + ω( 􏼁 μh + δ1 + c( 􏼁β4K3

> μh + ω( 􏼁 μh + δ1 + c( 􏼁 μr + δ2( 􏼁μv.

(30)

On account of (30), we may choose ρ> 0, σ > 0, η> 0, and
ϵ> 0 such that

0, <ωβ2 K2 − ϵ( 􏼁 μr + δ2( 􏼁 − ρ≪ 1,

0, < β3 K2 − ϵ( 􏼁 μr + ω( 􏼁 μh + δ1 + c( 􏼁 − σ≪ 1,

0, < η − μh + ω( 􏼁 μh + δ1 + c( 􏼁 μr + δ2( 􏼁≪ 1.

⎧⎪⎪⎨

⎪⎪⎩

(31)

ρβ1 K1 − ϵ( 􏼁 + σβ4 K3 − ϵ( 􏼁 − ημv > 0. (32)

From (31), we see that ((μh + ω)/ω)ρ< (μh + ω)(μr + δ2)
β2(K2 − ϵ)< (β2(K2 − ϵ))/(μh + δ1 + c)η,
ηβ3(K2 − ϵ)> σ(μr + δ2). 2erefore, there exists ξ such that

μh + ω
ω

ρ< ξ <
β2 K2 − ϵ( 􏼁

μh + δ1 + c
η. (33)

For ϵ> 0, by (29), there exists T> 0 such that

K1 − ϵ< Sh(t)<K1 + ϵ,

K2 − ϵ< Sv(t)<K2 + ϵ,

K3 − ϵ< Sr(t)<K3 + ϵ,

(34)

for all t≥T. Let

L(t) � ρEh(t) + ξIh(t) + ηIv(t) + σIr(t). (35)

2e derivative of L along the solution (Sh(t), Eh(t),

Ih(t), Rh(t), Sv(t), Iv(t), Sr(t), Ir(t)) is given by

L′(t) � ξω − ρ μh + ω( 􏼁􏼂 􏼃Eh + ηβ2Sv − ξ μh + δ1 + c( 􏼁􏼂 􏼃Ih + ρβ1Sh + σβ4Sr − ημv􏼂 􏼃Iv + ηβ3Sv − σ μr + δ2( 􏼁􏼂 􏼃Ir

≥ ξω − ρ μh + ω( 􏼁􏼂 􏼃Eh + ηβ2 K2 − ϵ( 􏼁 − ξ μh + δ1 + c( 􏼁􏼂 􏼃Ih + ρβ1 K1 − ϵ( 􏼁 + σβ4 K3 − ϵ( 􏼁 − ημv􏼂 􏼃Iv

+ ηβ3 K2 − ϵ( 􏼁 − σ μr + δ2( 􏼁􏼂 􏼃Ir

≥ 9L(t),

(36)

for all t≥T, where

9 � min
ξω − ρ μh + ω( 􏼁

ρ
,
ηβ2 K2 − ϵ( 􏼁 − ξ μh + δ1 + c( 􏼁

ξ
,
ρβ1 K1 − ϵ( 􏼁 + σβ4 K3 − ϵ( 􏼁 − ημv

η
,
ηβ3 K2 − ϵ( 􏼁 − σ μr + δ2( 􏼁

σ
􏼨 􏼩> 0.

(37)

Hence, L(t)⟶∞ as t⟶∞, which contradicts to the
boundedness of L(t). 2is completes the proof.

Remark 1. 2eorems 1∼3 state that the basic reproduction
number R0 is a sharp threshold value for model (1). As
R0 < 1, the disease-free equilibrium P0 is globally stable, i.e.,
the disease will go to extinction. As R0 > 1, the disease is
uniformly persistent, i.e., the disease will become an en-
demic in the meaning of persistence.

4. Results

We applied model (1) to study the infection status of VL in
Kashgar, Xinjiang. Most of the parameters were obtained
from the literature, and some of them were assumed or
simulated to have more realistic results. 2ese parameter
values are listed in Table 1. 2e interpretation of the pa-
rameters values are as follows:

(1) According to the population statistics in Kashgar
Prefecture in Xinjiang Statistical Yearbook
2004–2016 [20], we have estimated the carrying
capacity of population K1 � 5000000.

(2) According to the terrain and climate factors of
Kashgar and the survival habits of the sandflies
[21–24], the carrying capacity of sandflies
K2 � 7000000 has been estimated in Kashgar. In
2015, the number of dogs in Kashgar Prefecture of
Xinjiang was close to 80,000 [25], so we have as-
sumed the carrying capacity of dogs in Xinjiang
K3 � 100000.

(3) 2e values of the parameter r1 are obtained by
numerical differentiation according to the pop-
ulation data in Kashgar, and the value of r2 is cal-
culated according to the life cycle of the sandflies (see
[19]); the value of r3 is assumed because there is no
the specific data about dog.
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We model cumulative cases as a Poisson-distributed
random variable because the Poisson distribution describes
the number of observed events in an interval of time. We
calibrate the model by sampling from the posterior distri-
bution of parameter vector θ | y � β1, β2, β3, β4􏼈 􏼉 | y, where
vector y is derived from (d/dt)Y(t) � ωEh and Y(t) denotes
the reported cumulative cases. We conduct sampling via
MCMC (Markov Chain Monte Carlo) using the Metropo-
lis–Hastings acceptance rule. 2e posterior density is

fΘ|y(θ | y) � 􏽙
T

L(Y(t) | θ)fΘ(θ). (38)

2e prior density fΘ(θ) is the joint probability of four
univariate priors. We consider that β1, β2, β3, and β4 are
distributed according to u(0, 1). 2e program was imple-
mented in R version 3.6.0. We sampled from 30,000 MCMC
iterations and discarded the first 10,000 samples as a burn-in
period. On the basis of these 20,000 samples, the point
estimates and 95% confidence intervals for the transmission
coefficients were calculated.2e results are shown in Table 2.

2e MCMC method was used to fit the cumulative
incidence data of VL in Kashgar from 2004 to 2016, and the
95% confidence interval of the fitted curve was obtained (see
Figure 3). It can be seen from the figure that the fitted values
of the model matches are in accordance with the accumu-
lated data values in the Kashgar Prefecture. Only some data
fluctuate, but in any case, the cumulative data of VL in
Kashgar are increasing year by year. 2is model is used to
predict the prevalence of VL in the Kashgar Prefecture over
the next decade (see Figure 4).

2e basic reproduction number R0 � 1.76(95% CI:
1.49–1.93). 2e result shows that R0 > 1; according to the
threshold theory, the disease will not disappear in the
Kashgar Prefecture in a short period of time, and an endemic
disease will be formed.

It is well known that the basic reproduction number R0 is
a very important parameter in the infectious disease model.
In our model, R0 is determined by the parameters of ω, δ1,
δ2, c, μh, μr, μv, β1, β2, β3, and β4.We use the Latin hypercube

Table 1: Parameter values (and their sources).

Parameters Value Interpretation∗ Source
r1 0.019 Intrinsic growth rate of human Calculated
r2 0.026 Intrinsic growth rate of vector [19]
r3 0.296 Intrinsic growth rate of reserve Assumption
K1 5000000 Human carrying capacity Assumption
K2 7000000 Vector carrying capacity Assumption
K3 100000 Reserve carrying capacity Assumption
β1 1.35e− 08 Transmission probability from an infected sandfly to a susceptible human Fitting
β2 3.565e− 17 Transmission probability from an infected human to a susceptible sand fly Fitting
β3 3.515e− 05 Transmission probability from an infected reserve to a susceptible sandfly Fitting
β4 1.23e− 05 Transmission probability from an infected sandfly to a susceptible reserve Fitting
μh 0.0125 Natural mortality rate of human [10]
μv 25.55 Natural mortality rate of vector [11]
μr 0.1 Natural mortality rate of reserve [12]
1/ω 0.33 Human incubation period [13]
δ1 4.015 VL-induced death rate of humans [8]
δ2 3.65 VL-induced death rate of reserve [13]
1/c 2.5 Recovery period of VL [14]

Table 2: Parameter values for point estimation and 95% interval
estimation.

Parameters Point estimation 95% confidence interval
β1 1.35e− 08 [1.06e− 08, 1.94e− 08]
β2 3.565e− 17 [2.87e− 19, 2.44e− 15]
β3 3.515e− 05 [2.067e− 05, 1.002e− 04]
β4 1.23e− 05 [3.18e− 06, 2.36e− 05]
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Figure 3: Cumulative incidence simulation of VL in Kashgar from
2004 to 2016.
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Figure 4: Prediction of cumulative incidence in 10 years from 2016
to 2026.
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sampling (LHS) and partial rank correlation coefficients
(PRCCs) to examine parameters which have a significant
influence on the transmission of VL [26]. Using model (1),
2000 and 3000 samples are randomly generated by assuming
a uniform distribution for each parameter based on values
from Table 1.

We select eleven parameters as input variables and
calculate the corresponding PRCC and p values for the
eleven parameters. Table 3 and Figure 5 show the exact
PRCC and p values of each input parameter and the effect on
the basic reproduction number R0, respectively. We assume
the significance level α � 0.05. 2e larger the absolute value
of PRCC, the stronger the correlation between the input
parameters and R0. It can be seen from Table 3 that only δ2,
μv, β3, and β4 have significant impact on R0. More con-
cretely, parameters δ2 and μv have negative impact on R0 and
parameters β3 and β4 have positive impact.

We perform sensitivity analysis of infected humans,
infected sandflies, and infected dogs through evaluating the
PRCCs with the parameters of interest of model (1) over
time by choosing a normal distribution with mean value and
standard deviation shown in Figure 6. In Figures 6(a)–6(c),
we plot the PRCCs over time with respect to the infected
humans, sandflies, and infected dogs, respectively.
Figure 6(a) indicates that there are three PRCC values that
are significantly different from zero. 2e first three pa-
rameters with most impact on the outcome (the number of
infected humans) are the sandfly-to-human transmission
(β1), transmission from an infected dog to a susceptible
sandfly (β3), and transmission from an infected sandfly to a
susceptible dog (β4). Figure 6(c) indicates that there are two
PRCC values that are significantly different from zero. 2e
first two parameters with most impact on the outcome (the
number of infected humans) are the transmission from an
infected dog to a susceptible sandfly (β3) and transmission
from an infected sandfly to a susceptible dog (β4). Figure 6(c)
indicates that there are two PRCC values that are signifi-
cantly different from zero. 2e first two parameters with
most impact on the outcome (the number of infected
humans) are the transmission from an infected sandfly to a
susceptible dog (β4) and transmission from an infected dog
to a susceptible sandfly (β3).

2rough sensitivity analysis, we demonstrate that the
infection rate from infected dogs to susceptible sandflies
β3 and infected sandflies to susceptible dogs β4 is the most
sensitive parameter of R0. And β1, β3, and β4 are the most
sensitive parameters for the number of leishmaniasis
human cases. 2erefore, it is necessary to change the
values of the parameters to observe their effects on the
number of leishmaniasis human cases and R0 (see Fig-
ure 7). From Figure 7(a), we observe that the number of
leishmaniasis human cases decrease with the decrease of
β1. We change the values of β3 and β4 to 4, 2, 1/2, and 1/4
times the original values. We observe the effects of dif-
ferent values on the number of leishmaniasis human cases,
and we find that the change of parameter β3, β4 can in-
fluence not only the number of leishmaniasis human
cases, but also the peak time. As Figures 7(b) and 7(c)
illustrate, when fixing other parameters at constant, the
number of leishmaniasis human cases fall with the de-
crease of β3 and β4, respectively. And the peak of outbreak
will be postponed.

Table 3: Partial rank correlation coefficients (PRCCs) for R0 on each input parameter variable.

Parameters Distribution
2000 samples 3000 samples

PRCC p value PRCC p value
ω N(3.03, 0.152) 9.295e− 04 0.504 4.379e− 04 0.499
δ1 N(4.015, 0.22) −1.995e− 04 0.493 −1.619e− 04 0.496
δ2 N(3.65, 0.22) −0.247 <0.001 −0.2474 <0.001
c N(0.4, 0.022) −1.281e− 03 0.493 3.011e− 04 0.502
μh N(0.0125, 0.00062) 8.376e− 04 0.511 −1.041e− 03 0.505
μr N(0.1, 0.0052) −6.862e− 03 0.481 −6.146e− 03 0.495
μv N(25.55, 3.282) −0.2327 <0.001 −0.2334 <0.001
β1 N (1.35e− 08, 1e− 08) 3.792e− 04 0.506 −5.341e− 05 0.502
β2 N (3.565e− 08, 2e− 172) −3.859e− 04 0.493 −3.456e− 04 0.509
β3 N (3.515e− 08, 1.5e− 052) 0.914 <0.001 0.914 <0.001
β4 N (1.23e− 08, 5e− 062) 0.906 <0.001 0.906 <0.001

n = 2000 n = 3000

ω δ1 δ2 γ μh μr μv β1 β2 β3 β4 ω δ1 δ2 γ μh μr μv β1 β2 β3 β4
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Figure 5: Partial rank correlation coefficient (PRCC) results for the
dependence of R0 on each parameter.
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Finally, in order to find better control strategies for VL
transmission, we focus on changing the values of the pa-
rameters β3 and β4 to confirm the influence on the basic
reproduction number R0 (see Figure 8).

It can be seen from the figure that the parameters β3
and β4 have a strong influence on R0, and the value of the

basic reproduction number R0 increased with the in-
creases of β3 and β4; when β3 is less than 6.854878e − 06 or
β4 is less than 2.39872e − 06, R0 < 1, and the disease can be
eliminated. 2is suggests that reducing the proportion
rate between sandflies and dogs can effectively control the
prevalence of VL.
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Figure 6: Sensitivity analysis: PRCC of the eleven parameters for (a) the number of infected humans, (b) the number of infected sandflies,
and (c) the number of infected dogs.
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Figure 8: 2e influence of parameters on R0 (red horizontal line is contour of R0 � 1). (a) Versus β3. (b) Versus β4.
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Figure 7: 2e influence of different values of parameters on the number of diseases of VL. (a) Versus β1. (b) Versus β3. (c) Versus β4.
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2rough the above sensitivity analysis results, we find
that the main cause of the outbreak of VL is the mutual
contact infection between dogs and sandflies. 2erefore, we
can get some effective strategies to reduce the prevalence of
VL: the effective way is to reduce the contact between dogs
and sandflies, and thus we can give the dog a collar with
impregnated insecticide, increase the control of dog and
reduce its active area, spray insecticides vigorously, etc.

5. Conclusion and Discussion

VL is a serious parasitic disease. It has been endangered for
several decades in Xinjiang and has become a major parasitic
disease affecting the local social and economic development.
Kashgar is a high-risk area for the occurrence of VL. In order
to reveal the spread of VL in Kashgar and predict the
prevalence of VL, this paper proposes a dynamic model of
VL propagation with logistic growth. 2e model describes
the transmission of VL among humans, dogs, and sandflies.

We use model (1) to fit the cumulative data of VL in
Kashgar. As it can be seen from the simulation results in
Figure 2, our model is consistent with the actual data of the
cumulative cases of VL in Kashgar. 2e results show that
there are certain reliability and rationality to study the
prevalence of VL in Kashgar using logistic growth of the VL
model. Using model (1), the basic reproduction number is
estimated to be 1.76 (95% CI: 1.49–1.93) in the Kashgar
Prefecture of Xinjiang. According to the threshold theory, it
shows that VL will not disappear in the Kashgar area in a
short time, and it may gradually become an endemic disease.
According to the predictions for the next decade (see Fig-
ure 4), the cumulative incidence of VL in Kashgar is growing
slowly, which means that the number of cases will gradually
decrease over the next decade.

By selecting the sensitivity analysis of the parameters of
interest for the basic reproduction number R0 and the
number of leishmaniasis human cases (see Figures 5 and 6),
we can find that the most important factors affecting the
basic reproduction number R0 are β3 and β4, indicating that
the infection between sandfly and dog has the greatest
impact on R0, and the most sensitive parameters affecting
the number of leishmaniasis human cases are β1, β3, and β4,
which explains that the infection among the infected person,
the dog, and the sandfly has the strongest impact on the
number of diseases of VL. From Figure 7, we find that
reducing the values of β1, β3, and β4 can effectively reduce
the value of the basic reproduction number R0 and the
number of leishmaniasis human cases.When the values of β3
and β4 drop to 6.854878e− 06 and 2.39872e− 06, respec-
tively, the value of the basic reproduction number R0 will
decrease to 1, and VL will not be epidemic but gradually
disappear in Kashgar. 2erefore, in order to control the
spread of the disease, effective strategies should be taken to
prevent and control leishmaniasis in Kashgar; we can de-
crease the incidence of leishmaniasis in humans by reducing
the contact between sandflies and dogs.Without considering
costs, we can vector controls (e.g., environmental clean-up
and insecticide sprayed around buildings) and dog controls
(e.g., insecticide releasing dog collars and dog vaccinations).

In order to reduce the bite of the sandflies, we can use
insecticidal bed nets. Meanwhile, we should conduct public
education on the dangers and prevention of leishmaniasis
for people. In short, the model we have established now can
reflect the dynamics of VL in Kashgar Prefecture.
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[14] A. D. P. Sevá, M. Martcheva, T. Necibe et al., “Efficacies of
prevention and control measures applied during an outbreak
in southwest Madrid, Spain,” PLoS One, vol. 12, no. 10, 2017.

[15] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the
definition and the computation of the basic reproduction ratio
R0, in models for infectious diseases in heterogeneous pop-
ulations,” Journal of Mathematical Biology, vol. 28, no. 4,
pp. 365–382, 1990.

[16] P. van den Driessche and J. Watmough, “Reproduction
numbers and sub-threshold endemic equilibria for com-
partmental models of disease transmission,” Mathematical
Biosciences, vol. 180, no. 1-2, pp. 29–48, 2002.

[17] H. R. 2ieme, “Persistence under relaxed point-dissipativity
(with application to an endemic model),” SIAM Journal on
Mathematical Analysis, vol. 24, no. 2, pp. 407–435, 1993.

[18] P. D. Leenheer and H. Smith, “Virus dynamics: a global
analysis,” SIAM Journal on Applied Mathematics, vol. 63,
no. 4, pp. 1313–1327, 2003.

[19] H. Y. Hu, “A simple method for solving the accurate value of
intra-phase growth rate in population,” Anhui Agricultural
Science Bulletin, vol. 16, no. 3, pp. 173-174, 2010.

[20] Statistics Bureau of Xinjiang Uygur Autonomous Region,
http://www.kashi.gov.cn/Category_1008/Index.aspx.

[21] G. Wang, J. Wang, J. S. Li et al., “Further study on the ecology
of sandfly in the Kashgar prefecture of Xinjiang,” Chinese
Journal of Disease Control and Prevention, vol. 7, no. 1,
pp. 72–76, 1992.

[22] L. Guan, J. J. Chai, and X. P. Zuo, “Advances in biology of
Xinjiang sandfly,” Chinese Journal of Disease Control and
Prevention, vol. 14, no. 4, pp. 87–91, 1999.

[23] Z. B. Zhou, D. G. Gu, L. R. Guan et al., “Changes in the
composition ratio of main species of Kashgar prefecture in
Xinjiang and its relationship with visceral leishmaniasis,”
International Journal of Medical Parasitic Diseases, vol. 42,
no. 2, 2015.

[24] A. A. Pereira Filho, M. da Conceição Abreu Bandeira,
R. S. Fonteles et al., “An ecological study of sand flies (diptera:
psychodidae) in the vicinity of Lençóis Maranhenses National
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-is paper puts forward a class of ratio-dependent Leslie predator-prey models. Firstly, a neutral delay predator-prey model with
ratio dependence and impulse control is established and the existence of positive periodic solutions is proved by the coincidence
degree theory. Secondly, a stochastic disturbance Leslie model of Smith growth is obtained when the interference of white noise is
taken into consideration and the impact of delay is ignored. Applying It􏽢o’s formula, we get the conditions of system persistence
and extinction. Finally we verify the correctness of theoretical analysis with numerical simulations.

1. Introduction

In the population dynamic systems, the relationship between
population growth rate and population density is complex
and diverse. -e Verhulst–Pearl logistic equation [1]

_x(t) � rx(t) 1 −
x(t)

K
􏼠 􏼡, (1)

is widely used to describe population growth for its concise
mathematical expression and clear biological meaning,
where x(t) denotes the population density at time t, r is the
intrinsic growth rate, and K is the environmental capacity.
However, in 1963, Smith [2] studied the population dy-
namics of Daphnia magna and found that the growth of
Daphnia magna population in the laboratory did not satisfy
the above growth model, and he proposed the following
growth equation:

_x(t) � rx(t) 1 −
x(t)

K
−

_x(t)

cK
􏼠 􏼡, (2)

which is usually called the Smith growth equation, where c is
a positive constant. -en, in 1991, Kuang [3] considered a

neutral predator-prey model with time delays and the Smith
growth as follows:

_x(t) � rx(t) 1 −
x(t − τ) + ρ _x(t − τ)

K
􏼠 􏼡 − y(t)p(x(t)),

_y(t) � y(t)(− α + βp(x(t − σ))),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where τ and σ are the recovery time delay of the prey
population and the digestion time delay of the predator
population, respectively, α is the death rate of the predator,
and β is the conversion factor of prey into the predator.
(ρ _x(t − τ)/K) is the neutral delay term. p(x) indicates the
functional response of predator y to prey x and depends
only on the density of the prey population. However, when
the predators have to search for food, there will be com-
petition among individual predators for limited prey. -e
amount of food the predator obtains depends not only on
the density of the prey population but also on the density of
the predator itself, which is influenced by the relative ratio of
the number of predators and prey populations, reflecting the
ratio-dependent characteristics. Leslie proposed the
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following Leslie model [4, 5] in studying the relationship
between the predator and prey:

_x(t) � x(t) r1 − a1x(t) − c1y(t)( 􏼁,

_y(t) � y(t) r2 − a2
y(t)

x(t)
􏼠 􏼡,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where x(t) andy(t) stand for prey and predator densities at
time t, respectively. r1 and r2 are the intrinsic growth rates of
the prey and predator, a1 denotes the density-dependent
coefficient of the prey, the parameter c1 is the capturing rate,
and a2 is the conversion factor of prey into predators.
Motivated by the works [3–5], we propose a ratio-dependent
neutral delay Leslie predator-prey model as follows:

_x(t) � rx(t) 1 −
x t − τ1( 􏼁

K
− ε _x t − τ1( 􏼁􏼠 􏼡 −

ex(t)y(t)

ny(t) + x(t)
,

_y(t) � ay(t) 1 − b
y t − τ2( 􏼁

x t − τ2( 􏼁
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where all of the parameters are positive and have the bio-
logical meanings listed in Table 1.

-e first equation of the system states that the growth
rate of prey depends not only on its own density but also on
the neutral term. If there is no predator, the prey population
will grow in Smith mode. -e Smith model mainly describes
the growth rates of the population under the condition of
limited food. -e relative growth rate of population size
( _x(t)/x(t)) at time t is proportional to the amount of food
left before the time τ1.-e food consumed by the population
is mainly used for two purposes: the food needed tomaintain
the organism’s own survival (x(t − τ1)/K) and the food
needed for population reproduction ε _x(t − τ1). -e de-
nominator of functional response function p � (ex/(ny +

x)) contains y, which reflects the interaction among indi-
viduals within the predator population.-e second equation
implies that the predator population grow in Leslie mode

and the environmental capacity is proportional to prey
population density.

Developing and utilizing biological populations in a
proper way is an important issue facing humanity, which can
make biological resources work for human beings and en-
sure the sustainability of ecosystems [6–12]. People’s har-
vesting behavior is often not continuous, which may be once
or several times at a certain time. For example, in fishery
production, fishermen harvest fishes in few months and in
agricultural production farmers spray pesticides at regular
intervals to harvest (kill) pests. -is harvesting method
makes the population quantity or density be changed
drastically in a short period of time, so it is more suitable to
describe with impulsive differential equations. In the past 20
years, impulsive differential equations have been widely used
in various biological models, for example, Zhao and Tang
[13], Liu et al. [14], Li et al. [15], and Zhang et al. [16]
introduced impulsive effects into the ordinary differential
equation model. Li and Meng [17] and Qi et al. [18]
established a class of impulsive stochastic differential
equation models based on ordinary differential equations.
Du and Feng [19] and Chen and Du [20] cooperated the
impulsive control to the neutral predator-prey model, by
using the coincidence degree theory, and they obtained the
conditions for the existence of periodic solution.-en, based
on [19, 20] and assuming that some parameters in system (5)
are changed periodically and the population is pulse con-
trolled, we will obtain the following neutral delay system
with pulse effects:

_x(t) � x(t) r(t) −
r(t)x t − τ1(t)( 􏼁

K(t)
− ρ(t) _x t − τ1(t)( 􏼁 −

e(t)y(t)

ny(t) + x(t)
􏼠 􏼡,

_y(t) � a(t)y(t) 1 − b(t)
y t − τ2(t)( 􏼁

x t − τ2(t)( 􏼁
􏼠 􏼡,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ tk, k � 1, 2, . . . ,

Δx tk( 􏼁 � − θ1kx tk( 􏼁,

Δy tk( 􏼁 � − θ2ky tk( 􏼁,

⎫⎪⎪⎬

⎪⎪⎭
t � tk, k � 1, 2, . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Table 1: Biological meanings of parameters for model (5).

Parameters Description
τ1, τ2 -e discrete delays
r, a -e intrinsic growth rates of prey and predator
K -e environmental capacity of the prey
ε -e neutral coefficient of the prey
e -e conversion rate
n -e capture saturation rate
b -e conversion factor of prey into predator
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with initial conditions

x(t) � p(t), p ∈ C
1
([− τ, 0], [0, +∞)), p(0)> 0,

y(t) � q(t), q ∈ C
1
([− τ, 0], [0, +∞)), q(0)> 0,

(7)

where Δx(tk) � x(t+
k ) − x(tk), Δy(tk) � y(t+

k ) − y(tk), tk is
the pulse harvesting time, and θik(i � 1, 2) is the pulse
harvesting ratio. -is implies that the harvest yield is in
proportion to the biomass at that time. r(t), K(t),

τ1(t), τ2(t), e(t), a(t), b(t), and ρ(t) are continuous non-
negative T-periodic functions. n is positive constant and
τ ≔ maxt∈[0,T] τ1(t), τ2(t)􏼈 􏼉.

On the contrary, biological populations multiply and
thrive in nature, which will inevitably be affected by various
environmental noise, so it is important to consider the ef-
fects of random disturbances on population dynamics

[21–29]. In [30], the asymptotic stability of a stochastic May
mutualism system was studied. In [31], Markov semigroup
was used to study a stochastic ecological model of plants
with infectious diseases. Authors in [32–34] focused on the
long-term dynamic behavior of ecosystems affected by en-
vironmental noise. In particular, conditions for the existence
of stationary distribution were obtained. Zhao et al. [35]
presented an algal population growth model, where the
authors not only gave the threshold conditions of perma-
nence and extinction but also discussed the influence of
environmental noise on the periodic blooms. Ignoring the
influence of time delays and considering the disturbance of
white noise, we construct the following stochastic Leslie
predator-prey model with Smith growth:

dx(t) �
rx(t)

1 + ρx(t)
1 −

x(t)

K
􏼠 􏼡 −

ex(t)y(t)

(ny(t) + x(t))(1 + ρx(t))
􏼢 􏼣dt + σ1x(t)dB1(t),

dy(t) � ay(t) 1 −
by(t)

x(t)
􏼠 􏼡􏼢 􏼣dt + σ2y(t)dB2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where B1(t) and B2(t) are independent standard Brownian
motions. σ21 and σ

2
2 denote the intensity of white noise.

r, K, ρ, n, a, b, e, σ1, and σ2 are all positive and the biological
significances are the same as that in model (5).

To study the existence of periodic solutions for ordinary
differential equations and delay differential equations,
Gaines and Mawhin’s continuation theorem based on co-
incidence degree theory [36] is an important tool. However,
it is seldom applied in the study of the existence of positive
periodic solutions of neutral delay system with pulse effects.
It is generally considered difficult to prove that the nonlinear
operator H is compact on set Ω and the solutions of the
equation have prior bound. In this work, by using analytical
methods such as the mean value theorem of integral and
inequality techniques, we obtain the sufficient conditions for
the existence of positive periodic solutions of system (6). In
addition, considering the influence of environmental

disturbance on the population, we include the white noise
into the Leslie predator-prey system, establish a new sto-
chastic Smith growth model (8), and discuss the conditions
for the persistence and extinction of the system.

2. Preliminaries

First, we convert the impulse system (6) into a nonimpulsive
form. In system (6), we assume that

[I1] 0< t1 < t2 < · · · < tk < · · · are fixed points and
limk⟶∞tk � +∞
[I2] θik􏼈 􏼉 are real sequences such that θik < 1 and
􏽑0<tk<t(1 − θik) (i � 1, 2) are T-periodic functions

Assuming [I1] and [I2], we convert system (6) to the
following system:

_D1(t) � D1(t) r(t) − A(t)D1 t − τ1(t)( 􏼁 − η(t) _D1 t − τ1(t)( 􏼁 −
E(t)D2(t)

N(t)D2(t) + θ1(t)D1(t)
􏼢 􏼣,

_D2(t) � D2(t) a(t) −
B(t)D2 t − τ2(t)( 􏼁(

θ2(t)D1 t − τ2(t)( 􏼁
􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

with initial conditions

D1(t) � p(t), p ∈ C
1
([− τ, 0], [0, +∞)), p(0)> 0,

D2(t) � q(t), q ∈ C
1
([− τ, 0], [0, +∞)), q(0)> 0,

(10)
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where

D1(t) � 􏽙
0<tk<t

1 − θ1k( 􏼁
− 1

x(t),

D2(t) � 􏽙
0<tk<t

1 − θ2k( 􏼁
− 1

y(t),

A(t) �
r(t)

K(t)
􏽙

0<tk<t− τ1(t)

1 − θ1k( 􏼁,

η(t) � ρ(t) 􏽙
0<tk<t− τ1(t)

1 − θ1k( 􏼁,

E(t) � e(t) 􏽙
0<tk<t

1 − θ2k( 􏼁,

N(t) � n 􏽙
0<tk<t

1 − θ2k( 􏼁,

θ1(t) � 􏽙
0<tk<t

1 − θ1k( 􏼁,

θ2(t) � 􏽙
0<tk<t− τ2(t)

1 − θ1k( 􏼁,

B(t) � a(t)b(t) 􏽙
0<tk<t− τ2(t)

1 − θ2k( 􏼁.

(11)

Lemma 1. Suppose that [I1] and [I2] hold, then

(1) If (D1(t), D2(t))T is a solution of (9), then (x(t),

y(t))T is a solution of (6)
(2) If (x(t), y(t))T is a solution of (6), then (D1(t),

D2(t))T is a solution of (9)

Proof. (1) Suppose (D1(t), D2(t))T is a solution of system
(9). Next, we prove that x(t) � 􏽑0<tk<t(1 − θ1k)D1(t),

y(t) � 􏽑0<tk<t(1 − θ2k)D2(t) is the solution of system (6).
When t≠ tk, we obtain

x′(t) − x(t) r(t) −
r(t)x t − τ1(t)( 􏼁

K(t)
− ρ(t)x′ t − τ1(t)( 􏼁 −

e(t)y(t)

ny(t) + x(t)
􏼠 􏼡

� 􏽙
0<tk< t

1 − θ1k( 􏼁D1′(t) − 􏽙
0<tk< t

1 − θ1k( 􏼁D1(t) r(t) −
r(t)􏽑0<tk< t− τ1(t) 1 − θ1k( 􏼁D1 t − τ1(t)( 􏼁

K(t)
􏼠

− ρ(t) 􏽙
0<tk< t− τ1(t)

1 − θ1k( 􏼁D1′ t − τ1(t)( 􏼁 −
e(t)􏽑0<tk< t 1 − θ2k( 􏼁D2(t)

n􏽑0<tk< t 1 − θ2k( 􏼁D2(t) + 􏽑0<tk< t 1 − θ1k( 􏼁D1(t)
⎞⎠

� 􏽙
0<tk< t

1 − θ1k( 􏼁 D1′(t) − D1(t) r(t) − A(t)D1(t − τ(t)) − η(t)D1′ t − τ1(t)( 􏼁 −
E(t)D2(t)

N(t)D2(t) + θ1(t)D1(t)
􏼠 􏼡􏼢 􏼣

� 0,

y′(t) − y(t) a(t) −
a(t)b(t)y t − τ2(t)( 􏼁

x t − τ2(t)( 􏼁
􏼠 􏼡 � 􏽙

0<tk< t

1 − θ2k( 􏼁 D2′(t) − D2(t) a(t) −
B(t)D2 t − τ2(t)( 􏼁

θ2(t)D1 t − τ2(t)( 􏼁
􏼠 􏼡􏼢 􏼣

� 0.

(12)

When t � tk, one has

x t
+
k( 􏼁 − x tk( 􏼁 � 􏽙

0<tj≤ tk

1 − θ1j􏼐 􏼑D1 tk( 􏼁 − 􏽙
0<tj < tk

1 − θ1j􏼐 􏼑D1 tk( 􏼁

� 􏽙
0<tj< tk

1 − θ1j􏼐 􏼑D1 tk( 􏼁 − θ1k( 􏼁

� − θ1kx tk( 􏼁,

y t
+
k( 􏼁 − y tk( 􏼁 � 􏽙

0<tj≤ tk

1 − θ2j􏼐 􏼑D2 tk( 􏼁

− 􏽙
0<tj< tk

1 − θ2j􏼐 􏼑D2 tk( 􏼁

� 􏽙
0<tj< tk

1 − θ2j􏼐 􏼑D2 tk( 􏼁 − θ2k( 􏼁

� − θ2ky tk( 􏼁.
(13)
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-erefore, (x(t), y(t))T is the solution of system (6).
(2) Similar to the proof of case (1), we could show that if

(x(t), y(t))T is a solution of (6), then (D1(t), D2(t))T is the
solution of system (9). -e proof of Lemma 1 is completed.

For convenience, throughout this paper we will use the
symbols:

v �
1
T

􏽚
T

0
v(t)dt,

􏽢v � min
t∈[0,T]

v(t),

v
⌢

� max
t∈[0,T]

v(t),

(14)

where v � v(t) is a periodic continuous function with period
T. □

3. Existence of Positive Periodic Solution of
System (6)

Before discussing the existence of periodic solution of system
(6), we introduce the coincidence degree theory firstly.

Let U and V be two Banach spaces, G: DomG ⊂ U⟶ V

is a linear mapping and H: U⟶ V is a continuous
mapping. If dim KerG � codim ImG< +∞ and ImG ⊂ V is
closed, then we call the operator G is a Fredholm operator
with index zero. If G is a Fredholm operator with index zero
and there exist continuous projections P: U⟶ U and
Q: V⟶ V such that ImP � KerG and ImG �

kerQ � Im(I − Q); then, G|DomG∩KerP: (I − P)U⟶ ImG

has an inverse function, and we set it as Kp. Assume that
Ω ⊂ U is any open set, if QH(Ω) is bounded and Kp(I −

Q)H: Ω⟶ U is relative compact, and then we say H is
G-compact on Ω.

Lemma 2 (see [36]). Let G:Dom G ⊂ U⟶ V be a Fred-
holm mapping with index zero and H is a G-compact on Ω.
Furthermore, assume that

(i) Gx≠ λHx, where λ ∈ (0, 1), x ∈zΩ ∩ DomG

(ii) QHx≠ 0, for each x ∈ zΩ ∩ kerG

(iii) deg JQH,Ω∩Ker G, 0{ }≠ 0, where J: ImQ⟶
Ker G is an isomorphism

<en, the operator equation Gx � Hx has at least one
solution in DomG∩Ω.

Lemma 3 (see [37]). If τ ∈ C1(R, R) with τ(t + T) ≡ τ(t)

and τ′(t)< 1 for t ∈ [0, T], then function β(t) � t − τ(t) has
a unique inverse β− 1(t) satisfying β− 1 ∈ C1(R, R) with
β− 1(s + T) ≡ β− 1(s) + T for s ∈ [0, T].

We are now in a position to state and prove our main
result.

Theorem 1. Assume that the following conditions hold:

[H1] τ1′(t)< 1, τ2′(t)< 1 for any t ∈ R

[H2] μ′(t)<A(t) for any t ∈ [0, T], where
μ(t) � (η(t)/(1 − τ1′(t)))

[H3] η
⌣

eW < 1, r>M, where W andM are defined in the
proof
[H4] <e algebraic equations

r − Ax −
1
T

􏽚
T

0

E(t)y

N(t)y + θ1(t)x
dt � 0,

a −
B

θ2
􏼠 􏼡

y

x
� 0,

(15)

have finite solutions. <en, system (6) has at least one T-
periodic solution.

In the following proof, we first transform (9) into
equivalent system. -en, we construct the mappings and
open set Ω on Banach space and prove that the mappings
satisfy Lemma 2 on Ω. -erefore, we obtain -eorem 1.

Proof
(1) Transform (9) into an equivalent system.

Let D1(t) � ew(t) andD2(t) � ev(t). -en, we can trans-
late system (9) into

w′(t) � r(t) − A(t)ew t− τ1(t)( ) − η(t)w′ t − τ1(t)( 􏼁ew t− τ1(t)( ) −
E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)
,

v′(t) � a(t) −
B(t)ev t− τ2(t)( )

θ2(t)ew t− τ2(t)( )
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

where all coefficient functions are defined in system (9). It is
easy to see that if system (16) has one T-periodic solution
(w∗(t), v∗(t))T, then (D∗1(t), D∗2(t))T � (exp w∗(t){ },

exp v∗(t){ })
T is a positive T-periodic solution of system (9).

So, system (6) has a T-periodic solution (x∗(t), y∗(t))T

� (􏽑0<tk < t(1 − θ1k)D∗1(t), 􏽑0<tk < t(1 − θ2k)D∗2(t))T. -ere-
fore, we just have to prove system (16)s has one T-periodic
solution.

(2) Construct Banach space and define mappings.
Take U � V � u(t) � (w(t), v(t))T ∈ C1(R, R2): u(t +􏽮

T) � u(t)} and denote |u|∞ � maxt∈[0,T](|w(t)| + |v(t)|),

‖u‖ � |u|∞ + |u′|∞. -en, U and V are both Banach spaces
with the norm ‖ · ‖ and | · |∞, respectively. Define operators
G, P, Q, and H in the following form, respectively,
G: U⟶ V, Gu(t) � (w′(t), v′(t))T; P(u) � u, for u ∈ U;
Q(u) � u, for u ∈ V; and
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Hu(t) �

r(t) − A(t)ew t− τ1(t)( ) − η(t)w′ t − τ1(t)( 􏼁ew t− τ1(t)( ) −
E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)

a(t) −
B(t)ev t− τ2(t)( )

θ2(t)ew t− τ2(t)( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

-en, KerG � R2, ImG � u ∈ V: 􏽒
T

0 u(t)dt � 0􏼚 􏼛 is
closed in V, dimKerG � codimImG. P and Q are continuous
projectors such that ImP �KerG, KerQ � ImG � Im(I − Q).
-erefore, the FredholmmappingG has a unique inverse.-e
generalized inverse(to G)Kp:ImG⟶ KerP∩DomG is
given by the following form:

Kp(u) � 􏽚
t

0
u(s)ds −

1
T

􏽚
T

0
􏽚

t

0
u(s)ds dt. (18)

-en, QH: U⟶ V and Kp(I − Q)H: U⟶ U read

QHu(t) �

1
T

􏽚
T

0
r(t) − A(t)e

w t− τ1(t)( ) − η(t)w′ t − τ1(t)( 􏼁e
w t− τ1(t)( ) −

E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)
􏼠 􏼡dt

1
T

􏽚
T

0
a(t) −

B(t)ev t− τ2(t)( )

θ2(t)ew t− τ2(t)( )
􏼠 􏼡dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Kp(I − Q)Hu(t) � A − B − C,

(19)

where

A �

􏽚
t

0
r(s) − A(s)e

w s− τ1(s)( ) − η(s)w′ s − τ1(s)( 􏼁e
ws− τ1(s)( ) −

E(s)ev(s)

N(s)ev(s) + θ1(t)ew(s)
􏼠 􏼡ds

􏽚
t

0
a(s) −

B(s)ev s− τ2(s)( )

θ2(t)ew s− τ2(s)( )
􏼠 􏼡ds

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B �

1
T

􏽚
T

0
􏽚

t

0
r(s) − A(s)e

w s− τ1(s)( ) − η(s)w s − τ1(s)( 􏼁e
w s− τ1(s)( ) −

E(s)ev(s)

N(s)ev(s) + θ1(t)ew(s)
􏼠 􏼡ds dt

1
T

􏽚
T

0
􏽚

t

0
a(s) −

B(s)ev s− τ2(s)( )

θ2(t)ew s− τ2(s)( )
􏼠 􏼡ds dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C �

t

T
−
1
2

􏼒 􏼓 􏽚
T

0
r(s) − A(s)e

w s− τ1(s)( ) − η(s)w′ s − τ1(s)( 􏼁e
w s− τ1(s)( ) −

E(s)ev(s)

N(s)ev(s) + θ1(t)ew(s)
􏼠 􏼡ds

t

T
−
1
2

􏼒 􏼓 􏽚
T

0
a(s) −

B(s)ev s− τ2(s)( )

θ2(t)ew s− τ2(s)( )
􏼠 􏼡ds

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

Distinctly, it is easy to know that QH and Kp(I − Q)H

are both continuous by the Lebesgue theorem. And by using
Arzela–Ascoli theorem, we know that Kp(I − Q)H(Ω) is

compact for any open bounded set Ω ⊂ U. Hence, H is
G-compact on Ω.

(3) Construct an open set Ω.
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For the sake of using Lemma 2, we need to look for an
appropriate open-bounded subset Ω ⊂ U. First, we prove that
the periodic solution of equation Gu � λHu is bounded.

Corresponding to the operator equation Gu � λHu for
λ ∈ (0, 1), we have

w′(t) � λ r(t) − A(t)ew t− τ1(t)( ) − η(t)w′ t − τ1(t)( 􏼁ew t− τ1(t)( ) −
E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)
􏼠 􏼡,

v′(t) � λ a(t) −
B(t)ev t− τ2(t)( )

θ2(t)ew t− τ2(t)( )
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Suppose that u � (w(t), v(t))T ∈ U is a solution of (21).
Now we prove that ‖u‖≤ S∗, S∗ is a constant. □

Step 1. Prove that |w(t)|≤ S1 and |w′(t)|≤ S2.
Integrating (21) over the interval [0, T], we obtain

rT � 􏽚
T

0
A(t)e

w t− τ1(t)( ) + η(t)w′ t − τ1(t)( 􏼁e
w t− τ1(t)( )􏼒

+
E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)
􏼡dt,

(22)

and

aT � 􏽚
T

0

B(t)ev t− τ2(t)( )

θ2(t)ew t− τ2(t)( )
􏼠 􏼡dt. (23)

In consideration of [H1] and [H2], we obtain

􏽚
T

0
η(t)w′ t − τ1(t)( 􏼁e

w t− τ1(t)( )dt � 􏽚
T

0

η(t)

1 − τ1′(t)
e

w t− τ1(t)( )􏼒 􏼓dt

� 􏽚
T

0

η(t)

1 − τ1′(t)
de

w t− τ1(t)( )

� − 􏽚
T

0
μ′(t)e

w t− τ1(t)( )dt,

(24)

which together with (22) gives

rT � 􏽚
T

0
(A(t) − μ′(t))e

w t− τ1(t)( ) +
E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)
􏼠 􏼡dt.

(25)

In view of Lemma 3 and [H1], we obtain

􏽚
T

0
A(t) − μ′(t)e

w t− τ1(t)( )dt

� 􏽚
T

0

A β− 1
1 (t)􏼐 􏼑 − μ′ β

− 1
1 (t)􏼐 􏼑􏼒 􏼓ew(t)

1 − τ1′ β
− 1
1 (t)􏼐 􏼑

dt,

(26)

where β1(t) � t − τ1(t). From (25), we obtain

rT � 􏽚
T

0

A β− 1
1 (t)􏼐 􏼑 − μ′ β

− 1
1 (t)􏼐 􏼑􏼒 􏼓ew(t)

1 − τ1′ β
− 1
1 (t)􏼐 􏼑

dt

+ 􏽚
T

0

E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)
dt,

(27)

which implies

rT≥ 􏽚
T

0

A β− 1
1 (t)􏼐 􏼑 − μ′ β

− 1
1 (t)􏼐 􏼑􏼒 􏼓ew(t)

1 − τ1′ β
− 1
1 (t)􏼐 􏼑

dt. (28)

-erefore,
1
T

􏽚
T

0
e

w(t)dt≤
r

􏽢R
, (29)

where R(t) � ((A(β− 1
1 (t)) − μ′(β

− 1
1 (t)))/(1 − τ1′(β

− 1
1 (t)))).

According to (25), we obtain

rT≤ 􏽚
T

0
A(t) − μ′(t)e

w t− τ1(t)( )dt + 􏽚
T

0

E(t)

N(t)
dt, (30)

together with [H3], which implies

1
T

􏽚
T

0
e

w(t)dt≥
r − M

�R
, (31)

where M(t) � (E(t)/N(t)).
According to (29) and (31), we can get that there exists

φ1 ∈ [0, T] such that

w φ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤max ln
r

􏽢R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, ln

r − M

�R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩 ≔ H1. (32)

By means of (25) and (29), we have

􏽚
T

0
(A(t) − μ′(t))e

w t− τ1(t)( ) + R(t)e
w(t)

􏼔 􏼕dt≤ 2rT. (33)

On the basis of the mean value theorem of integral
calculus, we know that there exists ξ ∈ [0, T], such that

(A(ξ) − μ′(ξ))e
w ξ− τ1(ξ)( ) + R(ξ)e

w(ξ) ≤ 2r. (34)

Since r> 0, we have
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w(ξ)≤ ln
2r

􏽢R
,

e
w ξ− τ1(ξ)( ) ≤

2r

􏽢U
,

(35)

where U � A(t) − μ′(t).
-rough the first equation of (21) and (25), we obtain

􏽚
T

0

d
dt

w(t) + λμ(t)e
w t− τ1(t)( )􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt

� λ􏽚
T

0
r(t) − A(t) − μ′(t)( 􏼁e

w t− τ1(t)( )
􏼌􏼌􏼌􏼌􏼌

−
E(t)ev(t)

N(t)ev(t) + θ1(t)ew(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt

≤ 2rT.

(36)

-erefore,

w(t) + λμ(t)e
w t− τ1(t)( ) ≤w(ξ) + λμ(ξ)e

w ξ− τ1(ξ)( )

+ 􏽚
T

0

d
dt

w(t) + λμ(t)e
w t− τ1(t)( )􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt

≤ ln
2r

􏽢R
+
2r�μ
􏽢U

+ 2rT ≔W.

(37)

So, we obtain

w(t)≤W. (38)

From (36), we know

􏽚
T

0
|w(t)|dt − 􏽚

T

0

d
dt

λμ(t)e
w t− τ1(t)( )

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt≤ 2rT. (39)

Consequently,

􏽚
T

0
w′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤ 2rT + 􏽚

T

0
μ′(t) + η(t)w′ t − τ1(t)( 􏼁( 􏼁e

w t− τ1((t)( )
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dt

≤ 2rT + �w′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌e
W

T + �ηe
W

􏽚
T

0
μ′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt.

(40)

-rough the transpose, we can obtain

􏽚
T

0
w′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤

2rT + �|μ′|e
WT

1 − �ηeW
≔ K. (41)

Together with (32), we obtain

|w(t)|≤ w φ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽚
T

0
w′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤H1 + K ≔ S1. (42)

-rough the first equation of (21) and (38), we obtain

w′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � λ r(t) − A(t)e
w t− τ1(t)( ) − η(t)w′(t)e

w t− τ1(t)( )􏼒

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
E(t)ev(t)

N(t)ev(t) + θ1ew(t)
􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(43)

so we obtain

max w′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤�r + �Ae
W

+ �ηe
W max w′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

�E

􏽢N
. (44)

Utilizing [H3], we have

w′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

1 − �ηeW
�r + �Ae

W
+

�E

􏽢N
􏼠 􏼡 ≔ S2. (45)

Step 2. Prove that |v(t)|≤ S3 and |v′(t)|≤ S4.
By means of (23) and (38), we obtain

aT � 􏽚
T

0

B(t)ev t− τ2(t)( )

θ2(t)ew t− τ2(t)( )
dt

≥
􏽢B

�θ2
􏽚

T

0

ev(t)

1 − τ2′ β
− 1
2 (t)􏼐 􏼑􏼐 􏼑ew(t)

dt≥
􏽢B

�θ2�σeW
􏽚

T

0
e

v(t)dt,

(46)

where β2(t) � t − τ2(t) and σ(t) � 1 − τ2′(β
− 1
2 (t)), which

implies that

1
T

􏽚
T

0
e

v(t)dt≤
a�θ2�σeW

􏽢B
. (47)

According to (23) and (42), we obtain

aT � 􏽚
T

0

B(t)ev t− τ2(t)( )

θ2ew t− τ2(t)( )
dt

≤
�B

􏽢θ2
􏽚

T

0

ev(t)

1 − τ2′ β
− 1
2 (t)􏼐 􏼑􏼐 􏼑ew(t)

dt

≤
�B

􏽢θ2􏽢σe− S1
􏽚

T

0
e

v(t)dt.

(48)

-us,

1
T

􏽚
T

0
e

v(t)dt≥
a􏽢θ2􏽢σe− S1

�B
. (49)

From (47) and (49), there exists φ2 ∈ [0, T] such that

v φ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤max ln
a�θ2�σeW

􏽢B

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, ln

a􏽢θ2􏽢σe− S1

�B

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩 ≔ H2. (50)

From (21) and (23), it is easy to see that

􏽚
T

0
v′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤ 2aT. (51)

-en,
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|v(t)|≤ v φ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽚
T

0
v′(t)dt≤H2 + 2aT ≔ S3. (52)

-rough the second equation of (21), (42), and (52), we
have

v′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � λ a(t) −
B(t)ev t− τ2(t)( )

θ2ew t− τ2(t)( )
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ �a +
�BeS3

􏽢θ2e− S1
≔ S4.

(53)

From (42), (45), (52), and (53), we obtain

‖u‖ � |u|∞ + u′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∞ ≤ S1 + S2 + S3 + S4 ≔ S
∗
. (54)

At this point, we have proved that the periodic solution
of equation Gu � λHu for λ ∈ (0, 1) is bounded.

In the following part, we will prove that the constant
solution of equation QHu � 0 is bounded. According to
condition [H4], the algebraic equation set

r − Ax −
1
T

􏽚
T

0

E(t)y

N(t)y + θ1(t)x
dt � 0,

a −
B

θ2
􏼠 􏼡

y

x
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(55)

has finite positive solutions (x∗i , y∗i )(i � 1, 2, . . . k).
-erefore, for u ∈KerG, the operator equation QHu � 0 has
finite positive solutions u∗i � (w∗i , v∗i )(i � 1, 2, . . . k). Sup-
pose that S0 � max1≤i≤k |w∗i | + |v∗i |􏼈 􏼉, then ‖u∗i ‖≤ S0(i �

1, 2, . . . k). -erefore, the solution of equation QHu � 0 for
u ∈KerG is bounded.

Let S � S∗ + S0, and takeΩ � u � (w, v)T: ‖u‖< S􏽮 􏽯. It is
easy to see that Ω verifies condition (i) in Lemma 2. When
u ∈ zΩ ∩KerG � zΩ ∩R2, u is a constant vector in R2 with
‖u‖ � S, we obtain

QHu(t) �

r − Ax −
1
T

􏽚
T

0

E(t)y

N(t)y + θ1(t)x
dt

a −
B

θ2
􏼠 􏼡

y

x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≠ 0.

(56)

-us, condition (ii) of Lemma 2 holds.
(4) Calculate the degree of coincidence.
For each u � (w, v)T ∈ ImQ, define isomorphism

J:ImQ⟶ kerG so that J(u) � u. By simply computing, we
get the following Jacobian matrix:

J(w, v) �

− Aew +
1
T

􏽚
T

0

θ1(t)E(t)ev+w

N(t)ev + θ1(t)ew( 􏼁
2 dt

1
T

􏽚
T

0

− E(t)θ1(t)ew+v

N(t)ev + θ1(t)ew( 􏼁
2 dt

B

θ2
􏼠 􏼡

ev

ew
−

B

θ2
􏼠 􏼡

ev

ew

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (57)

-en, we have

det J(w, v) � Ae
w

−
1
T

􏽚
T

0

θ1(t)E(t)ev+w

N(t)ev + θ1(t)ew( 􏼁
2 dt⎛⎝ ⎞⎠

B

θ2
􏼠 􏼡

ev

ew

+
B

θ2
􏼠 􏼡

ev

ew
·
1
T

􏽚
T

0

E(t)θ1(t)ew+v

N(t)ev + θ1(t)ew( 􏼁
2 dt

�
B

θ2
􏼠 􏼡Ae

v > 0, ∀(w, v) ∈ R
2
,

(58)

which implies

deg JQH,Ω∩KerG, 0{ } � 􏽘

w∗
i

,v∗
i( )∈QH− 1(0)

sgn det J, w
∗
i , v
∗
i( 􏼁> 0.

(59)

By now, we have verified that Ω satisfies all the re-
quirements in Lemma 2. -us, system (16) has at least one
T-periodic solution, which implies that system (6) has at

least one positive T-periodic solution. -is completes the
proof.

Remark 1. If the delay τ1(t) and τ2(t) both are positive
constants, that is to say, condition [H1] holds. At this time,
the delay has no effect on the existence of periodic solutions.

Remark 2. If the neutral coefficient ρ(t) � 0, that is,
η(t) � 0, at this time, condition [H2] holds. When
[H1], [H3], and [H4] hold, then the system has at least one
positive periodic solution.

Next, we will study the predator-prey model with ran-
dom disturbances.

4. Persistence in Mean and Extinction of
System (8)

In this section, we discuss the properties of stochastic system
(8) with Smith growth, the sufficient conditions for per-
sistence and extinction are obtained.
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Lemma 4 (see [38]). Let (x(t), y(t)) be a solution of system
(8) with initial value (x(0), y(0)), then limt⟶∞ (x(t)/t) �

0, limt⟶∞(y(t)/t) � 0, limt⟶∞(􏽒
t

0 x(s)dB1(s)/t) � 0,

limt⟶∞(􏽒
t

0 y(s)dB2(s)/t) � 0 a.s.

Theorem 2. Let (x(t), y(t)) be a solution of system (8) with
initial value (x(0), y(0)). If

(1) r − (σ21/2) − (e/n)> 0, a − (σ22/2)> 0, then system (8)
is persistent in mean

(2) r − (σ21/2)< 0, a − (σ22/2)< 0, then system (8) goes to
extinction almost surely

Proof
(1) From the first equation of system (8) and using It􏽢o’s
formula, we obtain

d(lnx + ρx) �
1
x

+ ρ􏼒 􏼓
rx

1 + ρx
1 −

x

K
􏼒 􏼓 −

exy

(ny + x)(1 + ρx)
􏼠 􏼡 −

σ21
2

􏼠 􏼡dt + σ1(1 + ρx)dB1(t)

� r 1 −
x

K
􏼒 􏼓 −

ey

ny + x
−
σ21
2

􏼠 􏼡dt + σ1(1 + ρx)dB1(t).

(60)

Integrating from 0 to t on both sides, we can obtain

lnx(t) + ρx(t) − lnx(0) − ρx(0) � r −
σ21
2

􏼠 􏼡t −
r

K
􏽚

t

0
x(s)ds

− 􏽚
t

0

ey(s)

ny(s) + x(s)
ds

+ 􏽚
t

0
σ1(1 + ρx(s))dB1(s).

(61)

-en,

lnx(t) � r −
σ21
2

􏼠 􏼡t − 􏽚
t

0

ey(s)

ny(s) + x(s)
ds −

r

K
􏽚

t

0
x(s)ds

− ρx(t) + lnx(0) + ρx(0) + M(t),

(62)

where M(t) � 􏽒
t

0 σ1(1 + ρx(s))dB1(s). Dividing t on both
sides, we have that

1
t
lnx(t)≥ r −

σ21
2

−
e

n
􏼠 􏼡 −

r

Kt
􏽚

t

0
x(s)ds

+
M(t)

t
−
ρx(t)

t
+
lnx(0)

t
+
ρx(0)

t
.

(63)

According to Lemma 4, we obtain

lim inf
t⟶∞

􏽒
t

0 x(t)dt

t
≥

r − σ21/2( 􏼁 − (e/n)( 􏼁K

r
> 0. (64)

From the second equation of system (8) and using It􏽢o’s
formula, we can obtain

d(lny) � a −
σ22
2

−
aby

x
􏼠 􏼡dt + σ2dB2(t). (65)

Integrating from 0 to t on both sides, we obtain

lny(t) − lny(0) � a −
σ22
2

􏼠 􏼡t − ab 􏽚
t

0

y(s)

x(s)
ds + 􏽚

t

0
σ2dB2(s).

(66)

-us,

ab 􏽚
t

0

y(s)

x(s)
ds � − lny(t) + lny(0) + a −

σ22
2

􏼠 􏼡t + 􏽚
t

0
σ2dB2(s).

(67)

-en, we can obtain

lim inf
t⟶∞

1
t

􏽚
t

0

y(s)

x(s)
ds≥

a − σ22/2( 􏼁

ab
> 0. (68)

Because x is persistent, liminf t⟶∞(1/t) 􏽒
t

0 y(s)ds> 0.
We complete the proof of (1).

(2) By (61) and (66), we can obtain

lnx(t) + ρx(t) − lnx(0) − ρx(0) � r −
σ21
2

􏼠 􏼡t −
r

K
􏽚

t

0
x(s)ds − 􏽚

t

0

ey(s)

ny(s) + x(s)
ds + 􏽚

t

0
σ1(1 + ρx(s))dB1(s)

≤ r −
σ21
2

􏼠 􏼡t + M(t),

lny(t) − lny(0) � a −
σ22
2

􏼠 􏼡t − ab 􏽚
t

0

y(s)

x(s)
ds + 􏽚

t

0
σ2dB2(s)

≤ a −
σ22
2

􏼠 􏼡t + 􏽚
t

0
σ2dB2(s).

(69)
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-erefore,

lim sup
t⟶∞

lnx(t)

t
≤ r −

σ21
2
< 0,

lim sup
t⟶∞

lny(t)

t
≤ a −

σ22
2
< 0.

(70)

So, system (8) goes to extinction almost surely.
-eorem 2 shows that if the intensity of environmental

noise is small, the prey and predator will survive for a long
time, and vice versa, and they will become extinct.-erefore,
environmental noise is not conducive to the survival of the
population. □

5. Conclusion and Numerical Simulation

-is paper mainly solves the following problems:

(1) For system (6) with neutral time delay and impulse
control, first we transform it into nonpulse equiv-
alent system by transformation: x(t) � 􏽑0<tk < t(1 −

θ1k)D1(t) andy(t) � 􏽑0<tk < t(1 − θ2k)D2(t). -en,
by using the coincidence degree theory, the sufficient
conditions [H1] − [H4] for the existence of periodic
solution of the system is obtained.

(2) For the stochastic perturbation system (8) with
Smith growth, the persistence and extinction of the
system are discussed.

In the following part, we introduce numerical simula-
tions to illustrate our main theoretical results. Firstly, we
verify the existence of positive periodic solution of the
neutral delay Leslie predator-prey model (16).

Example 1
(1) In system (16), we choose

r(t) � 4 + sin(10πt),

A(t) � 0.4 − cos(10πt),

E(t) � 0.2 − 0.5 cos(10πt),

a(t) � 3 + sin(10πt),

B(t) � 0.5 + cos(10πt),

η(t) � 0.1 + 0.01 sin(10πt),

N(t) � 4 + sin(10πt),

θ1(t) � 0.8 + sin(10πt),

θ2(t) � 0.5 + sin(10πt),

τ1(t) � 0.2 + 0.01 cos(10πt),

τ2(t) � 0.2 + 0.01 sin(10πt).

(71)

By simple calculation, we know that conditions [H1]

and [H2] hold, and �ηeW ≈ 0.0987< 1, r � 4>M ≈
0.175. Obviously [H3] holds. Moreover, the algebraic
equations in [H4] have only one positive solution,
which together with -eorem 1 yields that Example 1
has at least one periodic solution (see Figure 1).

(2) We choose τ1(t) � 0.3 and τ2(t) � 0.3 in system (16),
and other parameters are the same as those in Figure 1.
In this case, condition [H1] is true because τ1(t) and
τ2(t) are constants.-us, there is at least one periodic
solution as long as condition [H2 − H4] are true (see
Figure 2). -is shows that the existence of periodic
solutions is not affected by the constant delays.

(3) We choose η(t) � 0 in system (16), and other pa-
rameters are the same as those in Figure 1.

Because the neutral coefficient ρ(t) � 0, condition [H2]

must be true. -e system has at least one periodic solution as
long as other conditions are true. In this case, the prey
population grows in logistic mode, which indicates that
there is at least one periodic solution in general impulsive
system (see Figure 3).

Example 2. Nextwe conduct simulations about the persistence
and extinction of the stochastic Smith growth model (8).
Obviously, when r> (e/n + b), a + ((aρK/r) + 1)(r− (e/(n +

b)))> (be/(n + b)2), the deterministic model corresponding to
model (8) has a unique locally asymptotically stable positive
equilibrium P∗ � (x∗, y∗) � ((K/r)(r − (e/(n + b))), (K/
rb)(r − (e/(n + b)))). In system (8), we choose

r � 0.4,

a � 0.2,

e � 0.4,

n � 2,

ρ � 0.1,

b � 0.5,

K � 0.8.

(72)

(1) Let σ1 � 0.1, σ2 � 0.1, then we can know that r> (e/
(n + b)), a + ((aρK/r) + 1) (r − (e/(n + b)))> (be/
(n + b)2), r − (σ21 /2) − (e/n)> 0, a − (σ22/2)> 0. Both
stochastic system and deterministic system exist for a
long time.-us, conclusion (1) of-eorem 2 holds (see
Figure 4).

(2) Let σ1 � 0.9 and σ2 � 0.8. By simple calculation, we
can know that r> (e/(n + b)), a + ((aρK/r) +

1)(r − (e/(n + b)))> (be/(n + b)2), and then the
deterministic system is persistent. However,
r − (σ21/2)< 0, a − (σ22/2)< 0, and then the random
system is extinct. -us, conclusion (2) of -eorem 2
holds. -is shows that environmental noise is
harmful to the long-term survival of the population
(see Figure 5).
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Figure 1: Computer simulation of the paths w(t) and v(t) for system (16) with the initial value (w(0), v(0)) � (0.5, 0.5).
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Figure 2: Computer simulation of the paths w(t) and v(t) for system (16) with the initial value (w(0), v(0)) � (0.5, 0.5) and
τ1(t) � τ2(t) � 0.3
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Figure 3: Computer simulation of the paths w(t) and v(t) for system (16) with the initial value (w(0), v(0)) � (0.5, 0.5) and η(t) � 0.
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Nonlinear dynamic models are widely used for characterizing processes that govern complex biological pathway systems. Over the
past decade, validation and further development of these models became possible due to data collected via high-throughput
experiments using methods frommolecular biology. While these data are very beneficial, they are typically incomplete and noisy,
which renders the inference of parameter values for complex dynamic models challenging. Fortunately, many biological systems
have embedded linear mathematical features, which may be exploited, thereby improving fits and leading to better convergence of
optimization algorithms. In this paper, we explore options of inference for dynamic models using a novel method of separable
nonlinear least-squares optimization and compare its performance to the traditional nonlinear least-squares method. (e nu-
merical results from extensive simulations suggest that the proposed approach is at least as accurate as the traditional nonlinear
least-squares, but usually superior, while also enjoying a substantial reduction in computational time.

1. Introduction

Nonlinear dynamic models are widely used for character-
izing the processes that govern complex biological pathway
systems. Of particular interest in this context are so-called
canonical formats, which are very flexible in their possible
responses, yet involve a very restricted domain of functional
forms. Outside linear systems, the best-known canonical
formats are Lotka–Volterra (LV) models [1–4], which use
binomial terms, and power-law systems within the frame-
work of Biochemical Systems (eory (BST), which exclu-
sively use products of power functions. BST was originally
devised for the analysis of biochemical and gene regulatory
systems, but has subsequently foundmuch wider application
in various biomedical and other areas [5, 6]. Whereas it is
easy to set up an LV or BSTmodel for a complex biological
system in a symbolic format, the identification of optimal
parameter values continues to be a significant challenge. As a
consequence, estimating parameters of systems of ordinary
differential equations (ODEs) remains to be an active

research area that attracts contributions from a variety of
scientific fields (e.g., [7–12]. Indeed, numerous optimization
methods for ODE models have been proposed in recent
years, but none works exceptionally well throughout a wide
range of applications, with reasons spanning the entire
spectrum from intrinsic problems with biological data
(sparseness, uncertainties, noise, . . .) to technical and
computational issues (numerous local minima, unidentifi-
ability, sloppiness, . . .). Methods like slope-based estimation
(e.g., [13]) and dynamic flux estimation [14–16] alleviate
these problems but are not panacea.

Here, we revisit, and bring to fruition, early ideas [17] of
separating estimation tasks into linear and nonlinear aspects.
However, our main focus is not really a new estimation
method per se. Instead, we are interested in a more general
and higher-level point of view regarding parameter esti-
mation than that typically presented in technical articles.
Specifically, this article addresses parameter estimation for
dynamic models whose mathematical format contains linear
features that allow a natural separation of parameters and
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system states. A trivial example is a linear ODE where the
vector field x′(t) � θx(t) is linear in the parameter θ, with
x′(t) denoting the derivative of x(t) with respect to t. As a
more interesting example, the ODE vector field may be
partially linear in the parameters, as it is the case for so-called
S-system models in BST [5].

Example 1. An S-system [18] is defined as

xj
′(t) � αj􏽙

d

k�1
x

gjk

k (t) − βj􏽙

d

k�1
x

hjk

k (t), j � 1, . . . , d. (1)

Here αj, βj are non-negative rate constants, while gjk, hjk

are real-valued kinetic orders that reflect the strength and
directionality of the effect that a variable has on a given
influx or efflux. Informally, one can view this system as a
regression equation, where the “covariates” are the variables
xj(t) on the right-hand side, whereas the “response” vari-
ables are the derivatives xj

′(t) on the left-hand side. Note
that the vector field is linear in the rate constants αj, βj, but
nonlinear in the kinetic orders gjk, hjk.

Estimation methods that exploit separability of pa-
rameters and system states in dynamic models have a long
history; see [19] for a special case. However, a rigorous
statistical analysis of such a method has been achieved only
recently [20]. In a classical paper on the inference for dy-
namic models, Varah [17] mentioned in passing that “one
can use the idea of separability or variable projection (see
[21] or [22]), in which the linear parameters are implicitly
solved for, the resulting (fully) nonlinear least-squares
problem is solved for the nonlinear parameters, and then the
linear parameters are obtained using their representation in
terms of the nonlinear parameters. Since this reduces the size
of the nonlinear least-squares problem to be solved, it is
worthwhile.” Somewhat surprisingly, given that parameter
estimation for ODEs is commonly thought as a computa-
tional bottleneck in modeling dynamic processes, Varah’s
suggestion has not been widely followed in practice. In fact,
in the vast literature dedicated to parameter fitting tech-
niques for dynamic models, we are aware of only two rel-
evant references: using a direct integral approach, Dattner
et al. [23] applied a separable nonlinear least-squares
technique to the inference of parameters in a predator-prey
system acting in a heterogeneous environment, while Wu
et al. [24] used separability to estimate parameters of high-
dimensional linear ODE systems. Moreover, Varah’s idea of
exploiting separability for estimating ODE parameters has
been implemented only recently in a publicly available
software package [25]. Pertinent details of this software will
be discussed in a later section.

(e analysis in this paper is hoped to convince the reader
that Varah’s idea is indeed worth pursuing. To support this
claim, we explore and compare two general data fitting
approaches for dynamic models: the traditional nonlinear
least-squares method (NLS) and the proposed separable
nonlinear least-squares method (SLS). (rough extensive
Monte-Carlo simulations of representative complex models,
we identify and quantify significant statistical and compu-
tational gains obtained with this separation method. We will

ultimately come to the conclusion that model separability
can be very beneficial and that the SLS approach should be
considered for any complex dynamic system that possess
significant linear features.

(e paper is organized as follows. In Section 2, we
present details of the SLS methodology in the context of
dynamic models. Section 3 describes the simulation setup,
quantifies the statistical measures we use in order to com-
pare the performance of SLS and NLS, and presents nu-
merical results. In Section 4, we point out future research
directions, while conclusions are provided in Section 5.

2. Separable Nonlinear Least-Squares (SLS) and
Varah’s Idea

2.1. Generalities. Following Varah’s original idea within the
context of inference in dynamic models, the main advan-
tages of exploiting separability for parameter estimation are
the following [26]:

(i) Fewer initial guesses are required for optimization
(ii) (e optimization problem is better conditioned
(iii) Convergence is faster

(ese advantages have been convincingly demonstrated
in several publications. For example, see Mullen [27] for an
implementation and applications in physics and chemistry;
Chung & Nagy [28] for a high-dimensional case, where the
number of parameters is substantially larger than the
number of observations; Gan et al. [29] who compared the
performance of several algorithms for SLS problems; and
Erichson et al. [30] who studied sparse principal component
analysis via variable projection. Separable models are of
broad practical applicability, and as such form a subject of
active theoretical and applied research. For instance, when
analyzing the “reduced” nonlinear optimization problem of
a separable structure, simplified conditions are required for
establishing a variety of theoretical results concerning nu-
merical and statistical properties of the resulting estimators,
compared to the original NLS problem (e.g., [20, 31]).

In the following, we focus on complex dynamic models
that are formulated as systems of ordinary differential
equations (e.g., [32]). Specifically, consider a system of
equations given by

x′(t) � F(x(t); θ), t ∈ [0, T],

x(0) � ξ,

⎧⎨

⎩ (2)

where x(t) takes values in Rd, ξ ∈ Ξ ⊂ Rd, and θ ∈ Θ ⊂ Rp.
For our purposes, we explicitly separate linear components
from nonlinear ones in the function F by setting

F(x(t); θ) � g x(t); θNL( 􏼁θL, (3)

where θ � (θ⊤NL, θ⊤L )⊤, and the symbol ⊤ stands for the
matrix transpose (cf., [20]). Here θNL, a vector of size pNL,
stands for the “nonlinear” parameters that are not separable
from the state variables x, while θL, a vector of size pL,
contains the “linear” parameters; note that p � pL + pNL. As
the vector field in (3) is separable in the linear parameter
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vector θL, we refer to the corresponding ODE system as
linear in the parameter θL (cf. the case of a linear regression
model), although the solution to the system might be highly
nonlinear in θ, or even implicit.

Example 2. Let
θNL � (g11, . . . , g1d, . . . , gd1, . . . , gdd, h11, . . . ,

h1d, . . . , hd1, . . . , hdd)
⊤

,

θL � (α1, β1, . . . , αd, βd)⊤.

(en, one sees that equation (1) is a special case of
(2)–(3).

2.2. Solution Strategy. Let x(t; θ, ξ), t ∈ [0, T], be the solu-
tion of the initial value problem (2). We assume that noisy
measurements Yj(ti) on the system are collected at time
points ti ∈ [0, T]. A common statistical formulation of this
situation is

Yj ti( 􏼁 � xj ti; θ, ξ( 􏼁 + εij, i � 1, . . . , n, j � 1, . . . , d.

(4)

Here the random variables εij are unobservable, inde-
pendent measurement errors (not necessarily Gaussian)
with zero mean and finite variance.

Varah’s approach to parameter estimation in ODE
models works as follows. Let 􏽢x(t) stand for a smoother of the
data, obtained, e.g., using splines or local polynomials (see
e.g., [33, 34] and [35] for a treatment of various smoothing
methods and an extensive bibliography). (is smoother
approximates the solution x(t; θ, ξ) to the ODE (2). Varah
suggests to insert the smoother into equation (2), which will
now be satisfied only approximately, and to minimize the
resulting discrepancy over the parameters ξ and θ. A
minimizer (􏽢ξ, 􏽢θ) is then an estimator of (ξ, θ). (is idea was
put on a solid statistical foundation in Brunel [36] and
Gugushvili and Klaassen [37]. Varah’s original approach
requires the use of the derivative 􏽢x′(t) as an estimator of
x′(t), which is a disadvantage, as it is well known that es-
timating derivatives from noisy and sparse data may be
rather inaccurate; see e.g., Vilela et al. [38] and Chou and
Voit [7] or more generally Fan and Gijbels [33]. Recent
research [20, 23, 39–46] has shown that it is more fruitful to
transplant Varah’s idea to the solution level of equation (2).
To accomplish this shift, we define an integral criterion
function

􏽚
T

0
􏽢x(t) − ξ − 􏽚

t

0
F(􏽢x(s); θ)ds

�������

�������

2

dt, (5)

as it is typical in estimation approaches based on integrals
(see references above). Here, ||·|| is the Euclidean norm. A
minimizer of (5) over (ξ, θ) yields a parameter estimator that
typically has slightly different features than an estimator
based on the differential equations themselves. In practice,
the integral is discretized and replaced by a sum, so that
minimization can be performed using a typical nonlinear

least-squares method, such as fminsearch in Matlab. (e
discretized format is

􏽢ξNLS, 􏽢θNLS􏼐 􏼑 � argmin
ξ,θ

􏽚
T

o
􏽢x(t) − ξ − 􏽚

t

0
F(􏽢x(s); θ)ds

�������

�������

2

dt.

(6)

(e NLS solution does not take into account the specific
linear form of the ODEs in (3), but uses the general form in
(2).

It is at this stage that Varah suggested to utilize sepa-
rability, without actually investigating such an approach.
Here, we provide the necessary details (cf. [20]). Denote

􏽢G(t) ≔ 􏽢G(t; θNL) � 􏽚
t

0
g(􏽢x(s); θNL)ds, t ∈ [0, T],

􏽢A � 􏽚
T

0
􏽢G(t)dt,

􏽢B � 􏽚
T

0
􏽢G
⊤

(t)􏽢G(t)dt.

(en, with θNL kept fixed, a minimizer of (5) is given by

􏽢ξ(θNL) � (TId − 􏽢A􏽢B
− 1 􏽢A
⊤

)− 1

􏽚
T

0
(Id − 􏽢A􏽢B

− 1 􏽢G
⊤

(t))􏽢x(t)dt,

􏽢θL(θNL) � 􏽢B
− 1

􏽚
T

0
􏽢G
⊤

(t)(􏽢x(t) − 􏽢ξ)dt,

where Id denotes the d × d identity matrix. (e notation
􏽢ξ(θNL) and 􏽢θL(θNL) emphasizes the dependence of the so-
lution on the nonlinear parameters θNL. (is solution
(􏽢ξ(θNL), 􏽢θL(θNL)) is plugged back into (5), yielding the
reduced integral criterion function (cf. [23]):

M θNL( 􏼁 ≔ 􏽚
T

0
􏽢x(t) − 􏽢ξ θNL( 􏼁 − 􏽢G t; θNL( 􏼁􏽢θL θNL( 􏼁

�����

�����
2
dt.

(7)

Once M(θNL) is minimized over θNL and a solution

􏽢θNL � argmin
θNL

M(θNL),

is obtained, estimators for ξ and θ follow immediately
and are given (with mild abuse of the matrix transpose
notation) by

􏽢ξSLS � 􏽢ξ 􏽢θNL􏼐 􏼑,

􏽢θSLS � 􏽢θNL, 􏽢θL 􏽢θNL􏼐 􏼑􏼐 􏼑,
(8)

respectively. Equations (7) and (8) are driven by Varah’s [17]
suggestion discussed above. Indeed, note that the nonlinear
optimization is applied only for estimating the nonlinear
parameters θNL, which, in comparison to the NLS approach,
can substantially reduce the dimension of the nonlinear
optimization problem.

From the above derivation, it is clear that SLS problems
constitute a special class of NLS problems, with linear and
nonlinear objective functions for different sets of variables.
While the idea of using separability for improving parameter
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estimation was presented already in Lawton and Sylvestre
[47], it seems that much of the subsequent literature is based
on the variable projection method proposed by Golub and
Pereyra [21]. Golub and Pereyra [26] reviewed 30 years of
research into this problem.

3. Simulation Framework and Results

In order to investigate the relative performance of SLS and
NLS, we designed and performed a large Monte-Carlo
simulation, whose results are presented in this section.

All computations were carried out in R on an Amazon
EC2 m5a.4xlarge instance using the simode package of Yaari
and Dattner [25] (Separable Integral Matching for Ordinary
Differential Equations). (e statistical methodologies ap-
plied in the package use smoothing and minimization of an
integral-matching criterion function, taking advantage of
the mathematical structure of the differential equations like
separability of parameters from equations. Application of
smoothing and integral-based methods to parameter esti-
mation of ordinary differential equations was shown to yield
more accurate and stable results comparing to derivative
based ones [20]. Here, we used default smoothing and
optimization settings in simode, and in that respect, both SLS
and NLS received equal treatment. Specifically, simode uses
cross validation (see, e.g., [35]) to determine the optimal
amount of smoothing. A detailed guide for using the package
can be found in Yaari and Dattner [25]. (e code to re-
produce our numerical results can be accessed on GitHub
(see https://github.com/haroldship/complexity-2019-code/
tree/master/Final Code First Submission). For plotting, we
relied on the ggplot2 package in R, see Wickham [48].

3.1. Monte-Carlo Study Design. We chose several repre-
sentative and challenging ODEmodels arising in a variety of
scientific disciplines. (ose were

(i) An SIR model for simulating the spread of an in-
fectious disease

(ii) A Lotka–Volterra population model with sinusoidal
seasonal adjustment

(iii) A Generalised Mass Action (GMA) system within
BST, e.g., for metabolic pathway systems

(iv) A FitzHugh–Nagumo system of action potentials
along neuronal axons

Further mathematical details on these systems and the
specific experimental setups we used are given below.

In each case, we generated observations by numerically
integrating the system and then adding independent Gaussian
noise to the time courses, as in (4). We considered various
parameter setups, sample sizes, and noise levels, as specified
below. (e ODE parameters were estimated via both NLS and
SLS, as defined in equations (6) and (8), respectively.

As performance criteria, the time required to perform
optimization and the accuracy of the resulting parameter
estimates were used. While comparing computation times is
trivial, numerous options are available for comparing ac-
curacy. We focused on the main difference between the two

optimization schemes, namely the way they deal with the
estimation of linear parameters. SLS does not require initial
guesses for these parameters. By contrast, NLS does require a
good initial guess for each linear parameter; otherwise, it
might diverge or get stuck in a local minimum.(us, finding
“good” solutions to nonlinear optimization problems often
requires “good” initial guesses in the parameter space.
Clearly, some “prior information” regarding these param-
eters is of crucial importance for optimization purposes. (e
key insight is that this prior information is encapsulated in
the mathematical form of the ODEs themselves, such as (3).
Importantly, while NLS does not take into account the
special mathematical features of the ODEs and treats all the
parameters in a uniform manner, this is not the case for SLS.
(us, one might a priori expect SLS to be more efficient and
possibly more accurate than NLS, when prior information
regarding the linear parameters is of low quality. On the
other hand, when one has high-quality prior information
regarding the linear parameters, we expect that SLS and NLS
will perform similarly. One might note that the nonlinear
parameters in almost all GMA and S-systems are very tightly
bounded, usually between −1 and +2, and that their sign is
often known, whereas the linear parameters are unbounded
in GMA systems and nonnegative in S-systems, and nothing
is known about their magnitudes (see Chapter 5 of [18]).
(us, not needing prior information on the linear param-
eters in SLS can be a tremendous advantage.

For theMonte-Carlo study, we varied the prior information
by using high-, medium-, and low-quality initial guesses for the
parameter values. Here, higher quality means that the initial
guesses were closer to the truth. To be more specific, the initial
guesses for the linear parameters used by NLS were Gaussian
random variables centered on the true parameter values and
having standard deviations equal to the true parameter mul-
tiplied by a prior information value (in other words, the prior
information value can also be understood as the coefficient of
variation of the “prior distribution”).(e specific quantification
of “high,” “medium,” and “low” is admittedly somewhat sub-
jective and varies across the different ODE models, as specified
below. For the sake of better and faster convergence of the
optimization algorithms (especially NLS), the nonlinear pa-
rameters were constrained to a given range, and this range was
the same no matter how we varied the prior information on
linear parameters. Further, in each Monte-Carlo iteration, we
used exactly the same (pseudorandom) initial guess for non-
linear parameters for both NLS and SLS. (us, as far as the
information on nonlinear parameters is concerned, this was
kept invariant for each benchmark model, irrespective of the
prior on linear parameters. Consequently, both algorithms
received the same prior information regarding nonlinear pa-
rameters, and neither one was treated preferentially.

(e noise level (signal-to-noise ratio, SNR) we used is
defined as follows. For a given solution x(t) of an ODE
equation, we calculate the standard deviation
σx � std(x(t1), . . . , x(tn)). (en SNR of, say, 10% and 20%
is given by σ � σx/10, and σ � σx/5, respectively, where σ
is the standard deviation of a Gaussian measurement
error ϵ as defined in equation (4). We will refer to these
SNRs as “low noise” and “high noise,” respectively (cf.
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[49]; albeit in a different context). We then compared the
mean square errors (MSE) of the resulting parameter
estimates, which leads to a valid comparison in statis-
tically identifiable ODE models (see e.g., [20] for relevant
definitions and results). As another accuracy measure, we
used the criteria (5) and (7) evaluated at optimal pa-
rameter values. (e two criteria we propose, though
reasonable, are different. Hence, they are not expected to
be in agreement in every experimental setup. However,
the global conclusions reached with them in Section 5 are
coherent and favor SLS.

We now provide the mathematical details on the models
and the experimental setups.

3.1.1. Age-Group SIR. (e system of interest is an epidemi-
ological model of SIR-type (Susceptible—Infected—Recov-
ered) and includes age groups and seasonal components (e.g.,
[50]). (e infectious process in each age group 1≤ a≤M and
each season 1≤y≤ L is described using two equations for the
proportion of susceptible (S) and infected (I) individuals
within the population (the proportion of recovered individuals
is given by 1 − S − I):

Sa,y
′ (t) � −Sa,y(t)κy 􏽘

M

j�1
βa,jIj,y(t),

Ia,y
′ (t) � Sa,y(t)κy 􏽘

M

j�1
βa,jIj,y(t)􏼐 􏼑 − cIa,y(t).

(9)

(e parameters of the model are the M × M trans-
mission matrix β, the recovery rate c, and κ2,...,L, which
signify the relative infectivity of, e.g., influenza virus
strains circulating in seasons 2, . . . , L compared to season 1
(κ1 is used as a reference and fixed at 1). As shown in Yaari
et al. [46], taking into account separability characteristics
of this model is advantageous for data fitting purposes.
Specifically, (9) is nonlinear in the initial value S(0), which
are typically unknown and have to be estimated. For our
purposes, it suffices to consider a model with one age
group and one season. (e following parameter setup was
used: S(0) � 0.56, I(0) � 1e − 04, β � 6, c � 2.3. We con-
sidered two sample sizes, 18 and 36, and two noise levels,
10% and 20%. (e prior information used was
0.1, 0.2, 0.3{ }, corresponding to high, medium, and low
quality, respectively. (e size of the Monte-Carlo study
was 500 simulations.

3.1.2. Lotka–Volterra with Seasonal Forcing. As another
benchmark we considered an extension of a classical
predator-prey model, namely, a Lotka–Volterra model in-
cluding seasonal forcing of the predation rate, using two
additional parameters that control the amplitude (ε) and
phase (ω) of the forcing:

x1′(t) � αx1(t) − β(1 + ε sin(2π(t/T + ω)))x1(t)x2(t),

x2′(t) � δ(1 + ε sin(2π(t/T + ω)))x1(t)x2(t) − cx2(t).

(e nonlinear parameters are ϵ and ω. We considered
the dynamics within the time interval t ∈ [0, 25]. (e pa-
rameter setup is given by

θ � α, β, c, δ, ε,ω􏼈 􏼉

� 2/3, 4/3, 1.0, 1.0, 0.2, 0.5{ },

and initial values are x1(0), x2(0)􏼈 􏼉 � 0.9, 0.9{ }. Four ex-
perimental scenarios were studied, corresponding to sample
sizes of 100 and 200, and SNRs of 10% and 20%. (e prior
information values were 0.05, 0.1, 0.2{ }, corresponding to
high, medium, and low quality, respectively. (e size of the
Monte-Carlo study was 500 simulations.

3.1.3. GMA System. (e GMA system we analyzed consists
of three differential equations in three variables ([18]; pp.
84–85). (ey are

x1′(t) � c11x
f121
2 (t)x

f131
3 (t) − c12

x
f112
1 x

f122
2 − c13x

f113
1 x

f133
3 ,

x2′(t) � c12x
f112
1 x

f122
2 − c22x

f222
2 ,

x3′(t) � c13x
f113
1 x

f133
3 − c32x

f332
3 .

Here the linear parameters are the rate constants c, while
the nonlinear ones are the indexed kinetic orders f. Note that
the parameters f are allowed to become negative and their
sign might or might not be known. We considered the
dynamics of the system within the time interval [0, 4]. (e
parameter setup is the one presented in Voit [18]; namely,

θ � c11, f121, f131, c12, f112, f122, c13, f113,􏼈

f133, c22, f222, c32, f332}

� 0.4, −1.0, −1.0, 3.0, 0.5,{

−0.1, 2.0, 0.75, −0.2, 1.5, 0.5, 5.0, 0.5},

and initial values are x1(0), x2(0), x3(0)􏼈 􏼉 � 0.5, 0.5, 1.0{ }.
Four experimental scenarios were studied: sample sizes of 100
and 200, with SNRs of 10% and 20%. (e prior information
values were 0.1, 0.3, 0.5{ }, corresponding to high, medium,
and low quality, respectively. (e size of the Monte-Carlo
study was 500 simulations. Parameter estimation for GMA
systems is considered to be a challenging numerical task [18].

3.1.4. FitzHugh–Nagumo System. (e FitzHugh–Nagumo
(FHN) system [51–53] models spiked action potentials in
neuron transmission. It is given by

x1′(t) � c x1(t) −
x3
1(t)

3
+ x2(t)􏼠 􏼡,

x2′(t) � −
1
c

􏼒 􏼓 x1(t) − a + bx2(t)( 􏼁.

(10)

(is system with two state variables was proposed as a
simplification of a more complicated model presented in
Hodgkin and Huxley’s study [54] for studying and
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simulating nerve function in giant squid axons. (e FHN
model is used in neurophysiology as an approximation of the
observed action potential.

(e system (10) is linear in parameters a, and b, but
nonlinear in c. We considered two sample sizes, n � 20 and
n � 40, and two SNRs of 10% and 20%.(e parameters were
set to a, b, c{ } � 0.2, 0.2, 3{ }. (e initial values were
x1(0), x2(0)􏼈 􏼉 � −1.0, 1.0{ }. (e true solutions were ob-
tained over the time interval [0, 20]. (e prior information
used here was 0.5, 1.0, 3.0{ }, corresponding to high, medium,
and low quality, respectively (the initial guesses for pa-
rameters were assured to be positive). (e size of the Monte-
Carlo study was 500 simulations. Many researchers studied
the problem of parameter estimation for the FHN model. In
particular, Ramsay et al. [55], Campbell and Steele [56], and
Ramsay and Hooker [11] pointed out several difficulties in
estimating the parameters for this ODE system.

3.2. Results of the Monte-Carlo Analysis. Our findings are
presented through charts and tables. (e primary sum-
maries are Tables 1 and 2, where we report the ratios of the
mean square errors (square errors averaged over Monte-
Carlo simulations) for estimates of linear parameters (for
nonlinear parameters, see the discussion at the end of this
section). Several conclusions can be gleaned from the
tables.

(i) Given high-quality prior information, the accuracy
of NLS and SLS is comparable, and neither is su-
perior throughout the variety of experimental
setups (at least some of the differences that one sees
from the raw numbers in the tables are plausibly
attributable to the Monte-Carlo simulation error
and as such appear to be insignificant).

(ii) When the quality of prior information degrades to
medium or low, the performance of SLS becomes in
most cases significantly better than that of NLS
(with an extent depending on the specific experi-
mental setup).

(iii) For a fixed noise level, as the sample size increases,
the advantage of SLS becomes more pronounced.

(iv) For a fixed sample size, as the noise level increases,
the SLS is still better than NLS, but to a lesser extent.

(ese results can also be visualized through a combi-
nation of simple statistical charts. (us, Figure 1 displays the
line graphs that compare MSEs of the two methods under
several experimental setups. Whereas the numbers in Ta-
bles 1 and 2 are ratios of MSEs, the figures here present
absolute MSE values. From the graphs, an advantage of SLS
over NLS is apparent for less than ideal prior information.
Note that, in this specific setting, SLS performed worse than
NLS for high-quality prior information. A plausible expla-
nation may be the following: while, under our experimental
setup, the amount of information used by SLS via (3) is fixed
throughout simulations, NLS can in principle receive ar-
bitrarily precise initial guesses on linear parameters. One
may therefore envision a threshold, where using the latter

kind of information outweighs the benefits of using the
structural relationship (3). However, a precise quantification
of the phenomenon is hardly possible beyond an observation
that it appears to manifest itself in scenarios with excellent
knowledge on likely parameter values. In reality, such ideal
prior information is rare.

Panel (a) of Figure 1 further suggests that in the specific
scenarios we report, SLS improves when the noise level
decreases, which is different from NLS in the same figure.

Figure 2 is a scatterplot of NLS and SLS losses (5) and (7)
(on a log scale) evaluated at optimal parameter estimates.
(e figure highlights in yet another manner the importance
of prior information for NLS: it is evident that the perfor-
mance of the latter is strongly affected by the quality of initial
parameter guesses. Again, NLS and SLS perform similarly
when the prior information is of high quality. However,
when the quality of prior information is less than ideal, as it
is in most applications, NLS becomes substantially worse
than SLS.(e scatterplot also gives a quick impression of the
variability of estimation results.

(e conclusions that we drew from Figure 2 are con-
firmed by the panel (a) of Figure 3, which presents boxplots
of NLS and SLS losses (on a log scale) measured according to
criteria (5) and (7). (e pattern is clear: SLS performs better
than NLS, and the inferiority for NLS becomes more dra-
matic with degrading prior information.

Panel (b) of Figure 3 summarizes computation times.
SLS is in general much faster. (e execution time of NLS is
affected by the quality of prior information and,

Table 1: MSE ratios for linear parameters (small samples).

Prior
Low noise High noise

SIR LV GMA FHN SIR LV GMA FHN
Low 8.3 5.8 4.0 2.3 2.8 2.2 2.2 1.3
Medium 3.9 1.8 3.1 1.7 1.4 1.2 1.8 1.2
High 0.9 1.3 0.9 2.0 0.4 1.0 0.6 1.1
(e MSE ratios (computed by averaging square errors over Monte-Carlo
simulation runs) of NLS and SLS for estimating the linear parameters in
various benchmark models and under different experimental setups are
displayed (see Section 3.1 for detailed specifications). To identify model
names, self-explanatory abbreviations are used. (e values in the table are
rounded off to one significant digit. (e sample size is n � 100 for the GMA
and Lotka–Volterra models, n � 20 for the FitzHugh–Nagumo system, and
n � 18 for SIRmodel.(e noise levels are 10% and 20%. Values larger than 1
in the table correspond to the cases where SLS performs better than NLS.
Note the decreasing pattern in the columns, reflecting the effect of the
quality of prior information on the performance of NLS.

Table 2: MSE ratios for linear parameters (large samples).

Prior
Low noise High noise

SIR LV GMA FHN SIR LV GMA FHN
Low 12.0 9.6 3.9 3.9 3.8 3.2 2.2 2.2
Medium 4.1 4.3 2.8 1.9 1.6 1.6 1.6 1.3
High 1.0 2.2 0.7 2.3 0.7 1.2 0.5 1.5
(e sample size is n � 200 for the GMA and Lotka–Volterra models; n � 40
for the FitzHugh–Nagumo system; and n � 36 for the SIR model. (e noise
levels are 10% and 20%. For an interpretation of the results, see Table 1.
(ere is an increased advantage of SLS over NLS in comparison to Table 1.
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Figure 1: (e plot gives MSEs on a log scale (computed as averages over Monte-Carlo simulation runs) for linear parameters plotted
against the quality of prior information. In panel (a), the comparison is on the basis of the noise level. (e graph indicates that the
performance of NLS worsens with decreasing quality of prior information. On the other hand, the performance of SLS is not affected by
the quality of prior information, in agreement with the experimental design. Except for the rare case of high-quality prior information,
where NLS is better, SLS clearly outperforms NLS. In panel (b), the comparison is based on the sample size.(e overall pattern is similar
to that in panel (a).
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Figure 2: (e plot visualizes the performance (on a log scale) of NLS and SLS according to criteria (5) and (7), which are evaluated at the
optimal parameter estimates. Points in the scatterplot are colored according to the quality of prior information used to compute the NLS
estimates. (e 45° diagonal line passing through the origin has been added for reference and intuitive assessment. (e scatterplot is
supplemented with marginal density estimates using the same color coding. (e density estimates indicate that, as the quality of prior
information degrades, the quality of NLS results suffers, which manifests in longer right tails of the densities. By definition, performance of
SLS is not affected by the quality of prior information on linear parameters. For high-quality prior information, clustering of losses in the
scatterplot close to the reference line suggests that the overall performance of both NLS and SLS is comparable. As the quality of prior
information decreases, the point clouds spread to the right, indicating that SLS starts to perform noticeably better than NLS. Furthermore,
unlike Tables 1 and 2, the scatterplot and the range frame (see [57]; pp. 130–132) convey an impression of the variability in the estimation
results over multiple datasets: NLS is visually more variable than SLS.
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interestingly, increases with this quality. (e results for all
other models (and noise levels) were similar and are
therefore omitted.

Finally, Tables 3 and 4 provide information regarding the
nonlinear parameters. In the case of NLS, one can observe
how prior knowledge regarding linear parameters propa-
gates into the estimation accuracy for nonlinear parameters.
In particular, for less than ideal prior information on the
linear parameters, SLS holds a pronounced edge over NLS,
even in the case of nonlinear parameters.

4. Outlook

Data fitting in complex dynamical systems remains a
challenging problem that cannot be treated in a cavalier
fashion, even if one takes advantage of separability. For
instance, in order to uncover the patterns in Section 3 of this
work, we had to carefully design the experimental study,
because otherwise simulations might not have converged or
might have converged to poor solutions. (is was true for
both NLS and SLS, but whenever they were observed,
convergence issues were much more severe for NLS; they
were especially sensitive in the case of the Fitz-
Hugh–Nagumo system.(is result highlights the crucial role
of prior information regarding the parameters or, expressed
differently, the quality of the initial parameter guesses used
for the optimization. We focused here primarily on the

effects of the prior information regarding the linear pa-
rameters. However, it also became clear that prior infor-
mation on the nonlinear parameters has an equally crucial
role for optimization purposes, and this was true for both
NLS and SLS (data not shown).

As a result of our exploratory work, we envision the
following promising research directions for the future.

4.1. Numerical Implementation of SLS for Dynamic Systems.
All computations in our analysis were done in R using the
simode package of Yaari and Dattner [25]. However, the idea
of using separability properties of ODEs is independent of a
particular programming language and can be implemented
within other software packages quite as well. Indeed, much
work has been done in the context of the variable projection
method since it was first introduced by Golub and Pereyra
[21]. In the context of nonlinear regression, the variable
projection method of Golub and Pereyra [21] is imple-
mented in R in the nls command; see Venables and Ripley
[58] and pp. 218–220 for an example of its application. In
addition, we are aware of the TIMP package of Mullen and
van Stokkum [59]; which implements the variable projection
method. (us, a next step could be to combine the strengths
of different packages, e.g., simode and TIMP, in order to
develop advanced software for variable projection in the
context of dynamic systems.

4.2. Customized Algorithms for Specific Classes of Complex
Dynamical Systems. It is well known that the performance of
an optimization scheme depends crucially on the underlying
mathematical model used for description of the data.(us, it
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Figure 3: (e plot presents a comparison of NLS and SLS. In panel
(a) boxplots of the losses (5) and (7) (on a log scale) evaluated at the
optimal parameter estimates are displayed. For high-quality prior
information, the NLS and SLS loss distributions are close. As the
quality of prior information degrades, NLS losses start to assume
higher values compared to SLS, and their variability increases, as
evidenced by the elongation of boxplots. In panel (b) the com-
putation times are compared. (e NLS computation times tend to
be longer than those of SLS and increase as the quality of prior
information increases. In both panels, the performance of SLS does
not vary with the quality of prior information, in concordance with
the experimental design.

Table 3: MSE ratios for nonlinear parameters (small samples).

Prior
Low noise High noise

SIR LV GMA FHN SIR LV GMA FHN
Low 23.0 1.7 1.1 1.1 6.6 1.1 1.0 1.0
Medium 8.7 1.2 1.0 1.0 2.6 0.9 1.0 1.0
High 1.0 1.0 0.9 1.0 0.4 0.9 0.9 1.0
(e table displays the MSE ratios (computed through squared errors av-
eraged over Monte-Carlo simulations) of NLS and SLS for estimating the
nonlinear parameters. (e experimental setup is as in Table 1. Values larger
than 1 in the table correspond to the cases where SLS performs better than
NLS. Since the prior information regarding nonlinear parameters stays
invariant (see Section 3.1 for details), the table in particular shows the effects
that the quality of initial guesses for linear parameters has on the estimation
accuracy of NLS in the case of nonlinear ones. (e results suggest that, in
some settings, vague prior knowledge regarding linear parameters may have
an adversary effect on the accuracy of NLS with respect to the nonlinear
parameters.

Table 4: MSE ratios for nonlinear parameters (large samples).

Prior
Low noise High noise

SIR LV GMA FHN SIR LV GMA FHN
Low 29.0 4.1 1.1 1.6 6.5 1.3 1.0 1.3
Medium 8.2 2.1 0.9 1.0 2.2 1.1 0.9 1.0
High 0.9 1.2 0.8 1.0 0.7 0.9 0.8 1.0
(e setup is as in Table 2. For an interpretation of the results, see Table 3.
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appears that different classes of dynamic models require
specific algorithms tailored to their peculiarities. For in-
stance, parameter estimation for GMA systems has different
challenges than those encountered when working with SIR
(see Section 3). We expect that there is much to gain from
focusing future research on specific classes of models and
developing stable algorithms for their parameter estimation.

4.3. %eoretical Properties of SLS in the Context of Dynamic
Systems. Gugushvili and Klaassen [37] studied the sta-
tistical properties of NLS in the general context of
smoothing, while Dattner and Klaassen [20] specifically
addressed ODE systems that are linear in (functions of )
the parameters. One might expect that some assumptions
used in Gugushvili and Klaassen [37] can be relaxed when
the problem is closer to the one considered in Dattner and
Klaassen [20].

4.4. Extensions to Partially Observed, High-Dimensional, and
Misspecified Dynamic Systems. Recent work dealing with
inference in high-dimensional ODE models suggests that
exploiting linearity in parameters is crucial for developing a
successful estimation methodology (see e.g., [24, 39]). More
generally, it would be interesting to use the variable pro-
jection method to study cases of partially observed, high-
dimensional, and possibly misspecified dynamic systems.
(is work might additionally require the use of high-di-
mensional regularization techniques (e.g., [39]) for bal-
ancing data and model, and specifically take into account a
potential model misspecification (see [55]).

5. Conclusions

In this work, we designed an extensive simulation study to
explore the relative statistical and computational perfor-
mance of two optimization schemes for inference in dy-
namic systems: the typical nonlinear least-squares (NLS)
method and a novel, separable nonlinear least-squares
(SLS) approach. As benchmarks, we considered several
widely used ODE models arising in a variety of biological
fields. We measured statistical performance of the two
methods by the mean square error (MSE) of the estimates.
As another performance criterion, we employed the loss
function values at the optimal parameter estimates.
Computational performance of the methods was also
compared by the execution times required to complete each
optimization.

Our overall recommendation is the following: whenever
a complex dynamic system contains an appreciable number
of linear parameters, estimation of its parameters should be
addressed with the separable nonlinear least-squares
method, rather than the more commonly used, generic
nonlinear least-squares method. (e general pattern
emerging from our study is that SLS performs at least as well
as, and frequently better than, NLS, especially if the prior
information regarding the system is not ideal, which is
typically the case in practice. (is statement was found to be
uniformly true over all models tested.
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Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such
as gene regulatory networks. It has been observed that many published models of such networks are de�ned by regulatory rules
driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a randomBoolean
network with such properties using analytical methods and simulations. From our simulations, we observe that Boolean networks
with higher canalizing depth have generally fewer attractors, the attractors are smaller, and the basins are larger, with implications for
the stability and robustness of the models. �ese properties are relevant to many biological applications. Moreover, our results show
that, from the standpoint of the attractor structure, high canalizing depth, compared to relatively small positive canalizing depth, has
a very modest impact on dynamics. Motivated by these observations, we conduct mathematical study of the attractor structure of a
random Boolean network of canalizing depth one (i.e., the smallest positive depth). For every positive integer ℓ, we give an explicit
formula for the limit of the expected number of attractors of length ℓ in an n-state random Boolean network as n goes to in�nity.

1. Introduction

Dynamic mathematical models are a key enabling technology
in systems biology. Depending on the system to be modeled,
the data and information available for their construction, the
questions to be answered, and di�erent modeling frameworks
can be used. For kinetic models, systems of ordinary dif-
ferential equations have a long tradition. Generally, they will
have the very special structure of polynomial equations
representing Michaelis–Menten kinetics, even in the case of
systems, such as gene regulatory networks, that are not proper
biochemical reaction networks. It is this special structure
that gives models desirable properties and aids in model
analysis. Besides continuous models, a range of discrete
models are �nding increasingly frequent use, in particular
Boolean network models of a broad variety of biological
systems, from intracellular molecular networks to population-

level compartmental models (see e.g., [1–5]), going back to the
work of Kau�man in the 1960s [6–8]. While Boolean network
models, a collection of nodes, whose regulation by other nodes
is described via a logical rule built from Boolean operators, are
intuitive and mathematically simple to describe, their analysis
is severely limited by the lack ofmathematical tools. It generally
consists of simulation results. Any set function on binary
strings that takes on binary values can be represented as a
Boolean function, so that the class of general Boolean networks
is identical to the class of set functions on binary strings of a
given length, making any general analysis impossible. �e
search for special classes of Boolean functions that are broad
enough to cover all or most rules that occur in biology, but
special enough to allow formathematical approaches has a long
history.

It was again Kau�man who proposed a class of functions
[7] with properties inspired by the developmental biology
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concept of canalization, going back to Waddington in the
1940s [9]. 0ere is some evidence that canalizing Boolean
functions do indeed appear disproportionately in published
models and that the dynamics of Boolean network models
consisting of canalizing functions has special properties, in
particular a “small” number of attractors. 0is is important
since, in the case of intracellular molecular network models,
attractors correspond to the different phenotypes a cell is
capable of. Here, again, the majority of available results are
obtained by simulating large numbers of such networks. 0e
main question of this paper is as follows: What do the dy-
namics of a random canalizing Boolean network look like?
We approach this question using both computer simulations
and analytical methods, with themain result of the paper being
0eorem 2, which gives a provable formula for the number of
expected attractors of a general Boolean network with a
particular canalization property. In addition to providing
important information about canalizing Boolean network
models, this result can be viewed as a part of a growing body of
mathematical results characterizing this class of networks that
promises to be as rich as that for chemical reaction network
models based on ordinary differential equations.

2. Background

0e property of canalization for Boolean functions was
introduced by Kauffman in [7], inspired by the concept of
canalization from developmental biology [9]. A Boolean
function is canalizing if there is a variable and a value of the
variable such that if the variable takes the value, then the
value of the function does not depend on other variables. It
was shown that models defined by such functions often
exhibit less chaotic andmore stable behavior [10, 11]. Nested
canalizing functions, obtained by applying the concept of
canalization recursively, were introduced in [2]. 0ey form a
special subset of canalizing functions and have stable dy-
namics [11]. We note that there are other important
properties shared by Boolean networks arising in modeling
(for example, sparsity [7]). In this paper we focus only on
canalization and its impact on the dynamics, and one of the
natural future directions would be to consider several such
properties simultaneously.

To cover more models arising in applications, the
notion of nested canalizing function was relaxed by Layne
et al. [12] by assigning to every Boolean function its
canalizing depth. Noncanalizing functions have canalizing
depth zero, and nested canalizing functions have the
maximal possible canalizing depth equal to the number of
variables. Canalizing depth of a Boolean network is defined
as the minimum of the canalizing depths of the functions
defining the network. In [12], activities and sensitivities of
functions with different canalizing depths and stability and
criticality of Boolean networks composed from such
functions were investigated. It has been observed that
Boolean networks of higher canalizing depth tend to be
more stable and less sensitive. However, increasing the
canalizing depth to the maximum does not improve the
stability significantly compared to moderate positive
canalizing depth. 0ese observations give a strong

indication of the biological utility of canalizing function,
even with small canalizing depth.

Attractors in Boolean network models can be inter-
preted as distinct cell types [13, p. 202] and their lengths
can be viewed as the variety of different gene expression
patterns corresponding to the cell type. 0us, un-
derstanding the attractor structure of a random Boolean
network defined by functions of a fixed canalizing depth is
important for assessing biological relevance of such
models. Analytic study of the attractor structure of nested
canalizing Boolean networks has been carried out in [11].
For discussion about attractors of length one (i.e., steady
state), we refer to [14].

3. Our Results

0e main question of this paper is as follows: What do the
dynamics of a random canalizing Boolean network look like?
We approach this question using both computer simulations
and analytical methods.

In our computational experiments, we generate ap-
proximately 30 million random Boolean networks of all
possible canalizing depths with the number of variables
ranging from 4 to 20. For each of these networks, we
determine sizes of all the attractors and basins of at-
traction and analyze the obtained data. We discover the
following:

(1) For a fixed number of variables, the sample mean of
the number of attractors and average size of an
attractor decrease when the canalizing depth
increases

(2) 0e decrease of the average size of an attractor is
much greater than the decrease of the number of
attractors as the canalizing depth increases

(3) Both decreases from (8) are substantial when the
canalizing depth changes from zero to small cana-
lizing depths, but a further increase of the canalizing
depth does not lead to a significant decrease for
either the sample means or for the empirical
distributions

(4) 0e relative decrease of the sample mean of the
number of attractors and the average attractor size
when the canalizing depth changes from zero to one
becomes sharper when the number of variables
increases

Observations (8) and (A.4) are consistent with the results
obtained in [12] for sensitivity and stability. 0is provides
new evidence that Boolean networks of small positive
canalizing depth are almost as well-suited for modeling as
those with nested canalizing functions, from the point of
view of stability. Since there are many more canalizing
functions of small positive canalizing depth than nested
canalizing functions [15, Section 5], they provide a richer
modeling toolbox.

Motivated by observation (A.4), we conduct a mathe-
matical study of the attractor structure of a random Boolean
network of canalizing depth one (that is, the minimal
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positive depth). Our main theoretical result, 0eorem 2,
gives, for every positive integer ℓ, a formula for the limit of
the expected number of attractors of length ℓ in a random
Boolean network of depth one. 0e same formulas are valid
for a random Boolean network defined by canalizing
functions (see Remark 5). In particular, our formulas show
that a large random network of depth one, on average, has
more attractors of small sizes that an average Boolean
network (Remark 6).

Formulas similar to the ones in our proofs (e.g., in
Lemma A.4) have already appeared in the study of the
average number of attractors of a given length in sparse
Boolean networks, e.g., [16, equation (2)] and [17, equation
(6)]. 0e results of [16, 17] are based on describing the
asymptotic behavior of these formulas in terms of N, the
number of nodes in the network, and the asymptotics is of
the form O(Nα). In our case, the average number of
attractors of a given length simply approaches a constant as
N⟶∞ (that is, O(1)), but our methods allow us to find
the exact value of this constant.

0e source code we used for generating and analyzing
data is available at https://github.com/MathTauAthogen/
Canalizing-Depth-Dynamics. 0e raw data are available at
https://github.com/MathTauAthogen/Canalizing-Depth-
Dynamics/tree/master/data.

Structure of the Paper. 0e rest of the paper is organized
as follows. Section 4 contains necessary definitions about
canalizing functions and Boolean networks. Outlines of
the algorithms used in our computational experiments
are in Section 5. 0e main observations are summarized
in Section 6. Our main theoretical result about attractors
in a random Boolean network of canalizing depth
one (0eorem 2) is presented in Section 7. Section 8
contains conclusions. 0e proofs are located in the
Appendix.

4. Preliminaries

Definition 1. ABoolean network is a tuple f � (f1, f2, . . . , fn)

of Boolean functions in n variables. For a state
at � (at,1, at,2, . . . , at,n) ∈ 0, 1{ }n at time t, we define the state
at+1 ≔ f(at) � (at+1,1, . . . , at+1,n) ∈ 0, 1{ }n at time t + 1 by

at+1,1 � f1 at,1, . . . , at,n􏼐 􏼑,

⋮

at+1,n � fn at,1, . . . , at,n􏼐 􏼑.

(1)

Definition 2 (attractors and basins). Let f � (f1, . . . , fn) be
a Boolean network.

(i) A sequence a1, . . . , aℓ ∈ 0, 1{ }n of distinct states is
called an attractor of f if f(ai) � ai+1 for every
1≤ i< ℓ and f(aℓ) � a1.

(ii) An attractor a1, . . . , aℓ ∈ 0, 1{ }n is called a steady
state if ℓ � 1.

(iii) Let A � (a1, . . . , aℓ) ∈ ( 0, 1{ }n)ℓ be an attractor of f .
0e basin of A is the set

􏼈b ∈ 0, 1{ }
n

|∃N : f(f(. . . (fb) . . .))􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
N times

∈ A􏼉.
(2)

Definition 3. A nonconstant function f(x1, . . . , xn) is
canalizing with respect to a variable xi if there exists a
canalizing value a ∈ 0, 1{ } such that

f x1, . . . , xi− 1, a, xi+1, . . . , xn( 􏼁 ≡ const. (3)

Example 1. Consider f(x1, x2) � x1 · x2 (the product is
understood modulo 2, that is, logical AND). It is canalizing
with respect to x1 with canalizing value 0 because f(0, x2) �

0 regardless of the value of x2. Analogously, it is canalizing
with respect to x2 with canalizing value 0.

Consider g(x1, x2) � x1 + x2 (summation is understood
modulo 2, that is, logical XOR). It is not canalizing with
respect to x1 because

g 0, x2( 􏼁 � x2 ≠ const,

g 1, x2( 􏼁 � x2 ≠ const.
(4)

0e same argument works for x2 as well.

Definition 4. f(x1, . . . , xn) has canalizing depth [15, Defi-
nition 2.3] k if it can be expressed as

f �

b1, xi1
� a1,

b2, xi1
≠ a1, xi2

� a2,

⋮

bk, xi1
≠ a1, xi2

≠ a2, . . . , xik− 1
≠ ak− 1, xik

� ak,

g≢bk, xi1
≠ a1, . . . , xik

≠ ak,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where

(i) i1, . . . , ik are distinct integers from 1 to n
(ii) a1, . . . , ak, b1, . . . , bk ∈ 0, 1{ }

(iii) g is a noncanalizing function in the variables
x1, . . . , xn􏼈 􏼉/ xi1

, . . . , xik
􏽮 􏽯

Example 2. For example, if f(x1, x2, x3) � (x1 + x2)x3,

f x1, x2, x3( 􏼁 �
0, x3 � 0,

x1 + x2, x3 ≠ 0,
􏼨 (6)

and x1 + x2 is noncanalizing. 0erefore, f has canalizing
depth 1.

Remark 1. Since g in Definition 4 is noncanalizing, every
function has a single well-defined canalizing depth. In
particular, a function of depth two is not considered to have
depth one.
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Definition 5. We say that a canalizing Boolean function
f(x1, . . . , xn) is nested if f has canalizing depth n, that is,
g � 0 or g � 1 (see Definition 4). For example,
f(x1, x2, x3) � x1x2x3 is nested canalizing because

f �

0, x3 � 0,

0, x3 ≠ 0, x2 � 0,

0, x2, x3 ≠ 0, x1 � 0,

1, x1, x2, x3 ≠ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

so the canalizing depth of f is 3, which is equal to n � 3.

Definition 6. We say that a Boolean network f � (f1,

. . . , fn) has canalizing depth k if f1, . . . , fn are Boolean
functions of canalizing depth k.

5. Simulations: Outline of the Algorithms

In our computational experiment, we generated random
Boolean networks of various canalizing depths. For each
network, we store a list of pairs (ai, bi), where ai is the size
of the ith attractor of the network and bi is the size of its
basin. 0e generated data are available at https://github.
com/MathTauAthogen/Canalizing-Depth-Dynamics/tree/
master/data. To generate the data, we used two algorithms:
one for generating a random Boolean network of a given
canalizing depth and one for finding the sizes of attractors
and their basins (Algorithm 1).

5.1. Generating Random Boolean Functions of a Given Can-
alizing Depth. [12, Section 5] contains a sketch of an al-
gorithm for generating random Boolean functions that
have canalizing depth at least k for a given k. Here, we
generate functions of canalizing depth equal to k and take
a different approach than [12]. In order to ensure that the
probability distribution of possible outputs is uniform, we
use the following structure theorem due to He and
Macaulay [15].

Theorem 1 (see [15], 0eorem 4.5). Every Boolean function
f(x1, . . . , xn)≢ 0 can be uniquely written as
f x1, . . . , xn( 􏼁 � M1 M2 · · · Mr− 1 MrpC + 1( 􏼁 + 1( 􏼁 · · ·( 􏼁 + 1( 􏼁 + b,

(8)

where Mi � 􏽑
ki

j�1(xij
+ aij

) for every 1≤ i≤ r, pC ≢ 0 is a
noncanalizing function, and k � 􏽐

r
i�1ki is the canalizing

depth. Each xi appears in exactly one of M1, . . . , Mr, pC􏼈 􏼉,
and the only restrictions on equation (8) are the following
“exceptional cases”:

(E1) If pC ≡ 1 and r≠ 1, then kr ≥ 2
(E2) If pC ≡ 1 and r � 1 and k1 � 1, then b � 0

Example 3. Consider f(x1, x2, x3, x4) � x1(x2 + 1)(x3x4 +

x3 + x4) can be represented as

f � x1 + 0( 􏼁 x2 + 1( 􏼁( 􏼁 x3 + 1( 􏼁 x4 + 1( 􏼁( 􏼁(1) + 1( 􏼁 + 0,

(9)
so M1 � (x1 + 0)(x2 + 1), M2 � (x3 + 1)(x4 + 1), b � 0,
k � 4, and pC � 1. 0is can be verified by expanding the
brackets in the original and new representations of f.

Consider g(x1, x2, x3, x4, x5) � 1 + x5(x1 + x2)(x3 + 1)

x4. It can be represented as

g � x5 + 0( 􏼁 x3 + 1( 􏼁 x4 + 0( 􏼁( 􏼁 x1 + x2( 􏼁 + 1( 􏼁 + 1, (10)

so M1 � (x5 + 0), M2 � (x4 + 0)(x3 + 1), b � 1, k � 3, and
pC � x1 + x2.

Our algorithm is summarized in Algorithms 2 and 3
below. Correctness of Algorithm 2 follows from0eorem 1,
and correctness of Algorithm 3 can be proved directly by
induction on k.

Remark 2. 0e complexity of Algorithm 2 is O(n2n) (see
Proposition B.2). Given that the size of the output is O(2n),
and this is nearly optimal.

We measured the runtimes of our implementation of
Algorithm 2 on a laptop with a Core i5 processor (1.60GHz)
and 8Gb RAM. Generating a single function with 20 var-
iables (the largest number we used in our simulations) takes
4.9 − 5.5 seconds (faster for smaller canalizing depth). On a
laptop, our implementation can go up to 24 variables ( ∼2
minutes to generate a function), and then hits memory
limits. One can go further by using a lower level language
and more careful packing. However, already a Boolean
function in 40 variables would require at least 128Gb of
memory.

Remark 3. We generate a random noncanalizing function as
follows. We generate a random Boolean function and test for
canalization until we generate a noncanalizing one.0en, we
return it. Since canalizing functions are rare [15, Section 5],
this algorithm is fast enough for our purposes (see Lemma
B.1).

6. Simulations: Results

Notation 1. For a Boolean network f � (f1, . . . , fn), let
N(f) and S(f) denote the number of the attractors of f
and the sum of the sizes of the attractors of f , respectively.
We define the average size of an attractor as AS(f) ≔
S(f)/N(f).

6.1. Sample Means of N(f) and AS(f). For every
n � 4, . . . , 20 and every 0≤ k≤ n, we generate random
Boolean networks in n variables of canalizing depth k and
compute the mean of N(f) and AS(f). Figure 1 shows how
these means depend on k for n � 15 (based on 50,000
samples for each k).0e shape of the plots is similar for other
values of n we did computation for (that is, n � 4, . . . , 20).
Note that although both means are decreasing, the decrease
of the mean of AS(f) is more substantial.
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Figure 1: Dependencies of the sample means of N(f) and AS(f) on the canalizing depth. (a) 0e number of attractors N(f). (b) Average
size of an attractor AS(f).
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Figure 2: Empirical distributions of N(f) and AS(f) for n � 12 and k � 0, 1, 3, 12. (a) Distribution of the number of attractors N(f).
(b) Distribution of the average size of an attractor AS(f).

In: A Boolean network f � (f1, . . . , fn) in n variables
Out: A list of pairs (ai, bi), where ai is the size of the ith attractor of f and bi is the size of its basin

(1) (Network⟶ Graph) Build a directed graphGwith 2n vertices corresponding to possible states and a directed edge from a to f(a)

for every a ∈ 0, 1{ }n.
(2) (Attractors) Perform a depth-first search [18, § 22.3] traversal onG viewed as an undirected graph to detect the unique cycle in each

connected component, these cycles are the attractors.
(3) (Basins) For each cycle from Step 2, perform a depth-first search traversal on G with all the edges reversed.0e dfs trees will be the

basins.
(4) Return the sizes of the attractors and basins found on Steps 2 and 3.

ALGORITHM 1: Finding the sizes of the attractors and their basins.
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Figure 3: Dependence of the relative decreases of the sample means of N(f) and AS(f) on the number of variables n. (a) Relative decrease of
the number of attractors. (b) Relative decrease of the average size of an attractor.
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Figure 4: 0e average number of attractors of fixed length (blue plot) compared to the limiting value from 0eorem 2 (orange plot).
(a) Length 1. (b) Length 2. (c) Length 3. (d) Length 4.
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6.2. Distributions of N(f) and AS(f). Figure 2 shows the
empirical distributions of N(f) and AS(f) for n � 12 and
k � 0, 1, 3, 12 based on 300,000 samples for each k. From the
plot, we can make the following observations:

(i) 0e distributions becomemore concentrated and the
peak shifts towards zero when k increases

(ii) 0e distributions for nonzero canalizing depths
(especially for larger depths) are much closer to each

other that to the distribution for zero canalizing
depth. 0is agrees with the plots on Figure 1.

6.3. Relative Decreases. From Figure 1, we can observe that,
for both N(f) and AS(f), the sample mean decreases rapidly
for small canalizing depths. In order to understand how this
decrease behaves for large n, we introduce

Nk(n) ≔
the samplemean of N(f) for n variables and canalizing depth k

the sample mean of N(f) for n variables and canalizing depth 0
. (11)

ASk(n) is defined analogously. Figure 3 plots N1(n),
N2(n), N3(n), and Nn(n) and AS1(n), AS2(n), AS3(n), and
ASn(n) as functions of n. From the plots we see that

(i) 0e relative initial decrease from canalizing depth 0
to canalizing depth 1 becomes even more substantial
when n increases

(ii) 0e relative decrease from canalizing depth 0 to
canalizing depth 3 is already very close to the relative
decrease from depth zero to the maximal depth (i.e.,
nested canalizing functions)

7. Theory: The Main Result

We will introduce notation needed to state the main
theorem. Let us fix a positive integer ℓ. For a binary string
α ∈ S ≔ 0, 1{ }ℓ, we define

(i) |α| denotes the number of ones
(ii) α denotes component-wise negation
(iii) s(α) denotes a cyclic shift to the right

For binary strings α, β ∈ 0, 1{ }ℓ, we define

In: Nonnegative integers k and n with k≤ n

Out: A Boolean function f in n variables of canalizing depth k such that, for fixed k and n, all possible outputs have the same
probability

(1) In the notation of 0eorem 1, generate the following:
(a) random bits b, a1, . . . , an ∈ 0, 1{ };
(b) random subset X ⊂ x1, . . . , xn􏼈 􏼉 with |X| � k;
(c) random ordered partition X � X1 ⊔ · · · ⊔Xr of X (using Algorithm 2);
(d) random noncanalizing function pC ≢ 0 in variables x1, . . . , xn􏼈 􏼉/X (see Remark 3).
(2) Form a function f(x1, . . . , xn) using the data generated in Step 1 as in0eorem 1, where Mi involves exactly the variables from Xi

for every 1≤ i≤ r.
(3) If f does not satisfy any of the conditions (E1) or (E2), discard it and run the algorithm again. Otherwise, return f.

ALGORITHM 2: Generating a random Boolean function of a given canalizing depth.

In: A finite set X with |X| � k

Out: An ordered partition X � X1 ⊔ · · · ⊔Xr into nonempty subsets X1, . . . , Xr such that, for a fixed X, all possible outputs have
the same probability

(1) Compute p0, . . . , pk, where pi is the number of ordered partitions of a set of size i, using the recurrence pj � 􏽐
j− 1
i�0

j

i
􏼠 􏼡pj− i, p0 � 1

(see [19, equation (9)]).
(2) Generate an integer N uniformly at random from [1, pk].
(3) Find the minimum integer j between 1 and k such that 􏽐

j− 1
i�0

k

i
􏼠 􏼡pk− i ≥N.

(4) Randomly select a subset X1 ⊂ X of size j.
(5) Generate an ordered partition X2 ⊔ · · · ⊔Xr of X/X1 recursively.
(6) Return X1 ⊔ · · · ⊔Xr.

ALGORITHM 3: Generating a random ordered partition of a given finite set.
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f(α, β) ≔

1
2|β|

, if α∨ β � β,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

g(α, β) ≔
1
4

(f(α, β) + f(α, β) + f(α, β) + f(α, β)).

(12)

0en, we define a 2ℓ × 2ℓ matrix Gℓ by

Gℓ( 􏼁a,b � g(a, s(b)), (13)

where we interpret numbers 1≤ a and b≤ 2ℓ as binary se-
quences of length ℓ.

Theorem 2. Let Aℓ be the limit of the expected number of
attractors of length ℓ in a random Boolean network of can-
alizing depth one (see Definition 6) when the number of
variables n goes to infinity. Een,

Aℓ �
1

ℓPGℓ
′ (1)

, (14)

where PGℓ
is the characteristic polynomial of matrix Gℓ in-

troduced above. In particular, we have

A1 � 1,

A2 �
2
3

� 0.666 . . . ,

A3 �
64
189

� 0.3386 . . . ,

A4 � 0.2856 . . . ,

A5 � 0.2004 . . . ,

A6 � 0.1721 . . . .

(15)

Remark 4. 0eplots below show that the result of0eorem 2
agrees with our simulations (Figure 4).

Remark 5. As explained in Remark A.1, 0eorem 2 stills
holds if we replace a random Boolean network of canalizing
depth one with a random Boolean network defined by
canalizing functions.

Example 4. Let ℓ � 2. 0en, for example, we have f(0, 2) �

f(0, 1) � 1/2 and g(0, 1) � g(3, 1) � 1/4. In total, we have

G2 �

3/8 1/4 1/4 3/8

1/8 1/4 1/4 1/8

1/8 1/4 1/4 1/8

3/8 1/4 1/4 3/8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

PG2
(t) � t

4
−
5
4
t
3

+
1
2
t
2
.

(16)

Remark 6. 0eorem 2 and Corollary A.1 imply that Aℓ > 1/ℓ
for every ℓ > 1. On the other hand, a direct computation
shows that the expected number of attractors of length ℓ in a
random Boolean network (without any canalization re-
quirements) is 1/ℓ. 0is is consistent with our observations
from Section 6.1.

Remark 7. A sage script for computing numbers Aℓ is
available at https://github.com/MathTauAthogen/Canalizing-
Depth-Dynamics/blob/master/core/theory.sage.

8. Conclusions

We conducted computational experiments to investigate the
attractor structure of Boolean networks defined by functions
of varying canalizing depth. We observed that networks with
higher canalizing depth tend to have fewer attractors and the
sizes of the attractors decrease dramatically when the can-
alizing depth increases moderately. As a consequence, the
basins tend to grow when the canalizing depth increases.
0ese properties are desirable in many biological applica-
tions of Boolean networks, so our results give new in-
dications of the biological utility of Boolean networks
defined by functions of positive canalizing depth.

We proved a theoretical result, 0eorem 2, which
complements the above observation as follows. 0e theorem
implies that a large random Boolean network of canalizing
depth one has on average more attractors of small size than a
random Boolean network of the same size although it has
less attractors in total. 0is also provides an explanation to
the fact that the total size of attractors decreases faster than
the number of attractors as the canalizing depth grows.

Furthermore, we observed that all the statistics we
computed are almost the same in the case of the maximal
possible canalizing depth (so-called nested canalizing
Boolean networks) and in the case of moderate canalizing
depth. 0is agrees with the results of Layne et al. [12]. 0is
observation elucidates an interesting and powerful feature of
canalization: even a very moderate canalizing influence in a
Boolean network has a strong constraining influence on
network dynamics. It would be of interest to explore the
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prevalence of these features in published Boolean network
models.

Finally, we provided evidence that the observed phe-
nomena will occur for Boolean networks with larger
numbers of state variables.

Appendix

A. Proofs

Notation A.1. We fix a positive integer ℓ.

(i) For every 1≤ i< j≤ ℓ, we define a subset Si,j ⊂ S �

0, 1{ }ℓ by

Si,j ≔ α1, . . . , αℓ( 􏼁 ∈ S αi � αj

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (A.1)

(ii) For every 1≤ i< j≤ ℓ, let Gℓ;i,j be the submatrix of Gℓ
with rows and columns having indices from Si,j.

Lemma A.1. For every ℓ, we have

(1) GT
ℓ is stochastic (see [20, § 8.5]), and Gℓ has exactly one

eigenvalue being equal to 1.
(2) For every 1≤ i< j≤ ℓ, there exists a 2ℓ− 1 × 2ℓ− 1 matrix

Cℓ;i,j with nonnegative entries such that (2ℓ+2/2ℓ+2 −

1)(Gℓ;i,j + Cℓ;i,j)
T is stochastic and has exactly one of

the eigenvalues being equal to 1.

Proof. We will first show that GT
ℓ is stochastic and irre-

ducible (see [20, § 3.11]).
By definition, showing that GT

ℓ is stochastic is equivalent
to proving that, for every β ∈ S ≔ 0, 1{ }ℓ:

􏽘
α∈S

g(α, s(β)) � 1. (A.2)

Since shift just permutes binary strings, this sum is equal
to 􏽐β∈Sg(α, β). For a fixed ß and k≤ |β|, the number of α ∈ S

such α∨ β � β and |α| � k is equal to |β|

k
􏼠 􏼡. 0us,

􏽘
α∈S

h(α, β) � 􏽘

|β|

k�0

|β|

k

⎛⎝ ⎞⎠
1
2|β|

� 1⟹ 􏽘
β∈S

g(α, β) � 1. (A.3)

To prove irreducibility, we observe that, if 0 ∈ S denotes a
zero binary string, then g(α, 0)≠ 0 and g(0, α)≠ 0 for every
α ∈ S. 0en, [20, § 3.11, Exercise 12a] implies that GT

ℓ is
irreducible.

Since GT
ℓ is stochastic, its largest eigenvalue is equal to 1

[20, § 8.5, p.156]. Since GT
ℓ is irreducible, [20, 0eorem 8.2]

implies that 1 is a simple eigenvalue.
To prove the second part of the lemma, we fix

1≤ i< j≤ ℓ. We will show that for every β ∈ Si,j

􏽘
α∈Si,j

g(α, s(β))≤
2ℓ+2 − 1
2ℓ+2

. (A.4)

Indeed, let c be a binary string with all zeroes and one
at the ith position. 0en, since g(c, s(β))≥ (1/2|β|+2) ≥
(1/2ℓ+2), we have

􏽘
α∈Si,j

g(α, s(β))≤ 􏽘
α∈S

g(α, s(β))⎛⎝ ⎞⎠ − g(c, s(β))≤ 1 −
1

2ℓ+2
.

(A.5)

Inequality (A.4) implies that there exists a matrix Cℓ;i,j
with nonnegative entries such that (2ℓ+2/2ℓ+2 − 1)(Gℓ;i,j +

Cℓ;i,j)T is stochastic.
Since 0 ∈ Si,j, the same argument as in the proof of the

first part of the lemma shows that (2ℓ+2/2ℓ+2 − 1)(Gℓ;i,j +

Cℓ;i,j)T is stochastic and has exactly one of the eigenvalues
being equal to 1. □

Corollary A.1. Let Pℓ(t) be the charactersitic polynomial of
Gℓ. Een, for every ℓ > 1, |Pℓ′(1)|< 1.

Notation A.2. Fix a positive integer n. For vectors a � (a1,

. . . , an) ∈ Zn
≥0 and b � (b1, . . . , bn) ∈ Zn

≥0, we denote

a! ≔ a1! · . . . · an!,

ab ≔ a
b1
1 · . . . · a

bn

n ,

|a| ≔ a1 + · · · + an.

(A.6)

Lemma A.2. Let A be an s × s stochastic matrix with only
one of the eigenvalues being one. We set

C(A)n ≔ 􏽘

m∈Zs
≥0

|m|�n

(Am)m

nn
.

(A.7)

Let PA(t) be the characteristic polynomial of A. 0en,
limn⟶∞C(A)n � 1/PA

′ (1).

Proof. We recall that the Lambert W function [21] is the
principal branch of the inverse of xex. We will use the
notation y(z) � − W(− z) from [22] so that y(z) � zey(z).
Function y(z) has a singularity of the square-root type at
z � 1/e and has the following expansion around this point
(see [22, p. 107]):

y(z) � 1 − ε +
1
3
ε2 − · · · , where ε �

������
2 − 2ez

√
. (A.8)

From this, we obtain
1

y(z)
� 1 + ε +

2
3
ε2 − · · · , where ε �

������
2 − 2ez

√
. (A.9)

0e main result of [23] implies that, for every complex
s × s matrix A, we have

􏽘
m∈Zs
≥0

(Am)m

m!
x

|m| exp − x 􏽘
i,j

mjai,j
⎛⎝ ⎞⎠ �

1
det|E − xA|

.

(A.10)
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Since AT is stochastic, we have 􏽐
n
i�1ai,j � 1, so

􏽘
m∈Zs
≥0

(Am)m

m!
x

|m|
e

− x|m|
�

1
det|E − xA|

. (A.11)

If we perform a substitution x � y(z) and use the
definition of the Lambert W function, we obtain

􏽘
m∈Zs
≥0

(Am)m

m!
z

|m|
�

1
det|E − y(z)A|

. (A.12)

From this, we obtain

􏽘

∞

n�0

nnC(A)n

n!
z

n
� 􏽘

m∈Zs
≥0

(Am)m

m!
z

|m|
�

1
det|E − y(z)A|

≕F(z).

(A.13)

F(z) can be rewritten as

F(z) �
1

y(z)sPA(1/y(z))
. (A.14)

Finding the asymptotic behavior of the Taylor co-
efficients of F(z) would yield an asymptotic for C(A)n. We
will do this using singularity analysis [24, Chapter VI]
(similarly to [22, 0eorem 2]). Since |y(z)|< 1 for |z|< 1/e
(see [21, Figure 1]) and all roots of PA lie in the unit circle
due to the stochasticity of A, 1/e is the singularity of F(z)

with the smallest absolute value. Due to Lemma A.1,
PA(t) � (1 − t)QA(t), where QA(1)≠ 0. Using (A.8), we
obtain the following expansion of F(z) around 1/e:

F(z) �
1

(1 − ε + · · ·)s − ε − 2/3ε2 + · · ·( )QA(1 + ε + · · ·)

�
− 1

QA(1)

1
ε

+ · · ·􏼒 􏼓, where ε �
������
2 − 2ez

√
.

(A.15)

Singularity analysis [24, Corollary VI.1] implies that

nnC(A)n

n!
∼

− en

QA(1)
����
2πn

√ , as n⟶∞. (A.16)

Using Stirling’s formula, we get

C(A)n ∼
− n!en

nnQA(1)
����
2πn

√ ∼
− 1

QA(1)
, as n⟶∞. (A.17)

Using PA
′ � − QA

′ + (1 − t)Qℓ, we deduce
PA
′ (1) � − QA

′ (1), and this finishes the proof. □

Lemma A.3. On the set of all Boolean networks with n states
consider two probability distributions:

(A) All the networks with canalizing depth one have the
same probability, and all others have probability zero
(B) İe probability assigned to each network is pro-
portional to the product of the number of canalizing
variables of the functions defining this network

We fix a positive integer ℓ. By Aℓ,n and Bℓ,n we denote the
average number of attractors of length ℓ in a random Boolean

network with n states with respect to distributions (A) and (B),
respectively. Een,

lim
n⟶∞

Aℓ,n � lim
n⟶∞

Bℓ,n. (A.18)

Example A.1. We will illustrate the (B) distribution by an
example. Consider the following three networks with two
states:

f1 � x1x2 + 1, x1 + x2( 􏼁,

f2 � x1x2, x1( 􏼁,

f3 � x1x2 + 1, x1x2( 􏼁.

(A.19)

Since the canalizing depth of x1 + x2 is zero, PB(f1), the
probability of f1 with respect to B, is zero. Since the can-
alizing depths of x1x2 and x1 are 2 and 1, respectively, the
ratio PB(f2)/PB(f3) is equal to (2 · 1/2 · 2) � (1/2).

Proof. Let Fn and F∗n be the number of Boolean functions in
n variables with canalizing depth exactly one and more than
one, respectively. We will use the following bounds:

(1) F∗n ≤ n2 · 4 · 4 · 22n− 2 : we look term-by-term. 0ere are
at most n2 ways to choose first and second canalizing
variables. 0ere are at most 4 choices for the can-
alizing outputs and at most 4 choices for canalizing
values for these two variables. 0ere are at most 22n− 2

core functions, since that is all possible functions,
which may or may not be canalizing. Since re-
dundant arrangements of canalizing variables are not
accounted for, this must overcount.

(2) Fn ≥ 22
n− 1

− (n − 1) · 2 · 2 · 22n− 2 : this is a lower bound
for the number of noncanalizing core function in n −

1 variables because (n − 1) · 2 · 2 · 22n− 2 is an upper
bound on the number of canalizing functions in n −

1 variables (obtained in the same way as the bound
above).

We also introduce

Rn ≔
F∗n
Fn

≤
16n222n− 2

22n− 1
− 4(n − 1)22n− 2 �

n2

2 2n− 2( )− 4 − (1/4)(n − 1)
.

(A.20)

For X being (A) or (B) and positive integer n, let PX,n

denote the probability (it is always the same) of choosing a
network from distribution X with all functions being of
depth exactly one. Let P∗n be the maximal probability of
choosing a network from (B) with at least one function
being of depth more than one, respectively. By Sn and S∗n we
denote the total number of attractors of length ℓ in net-
works with all functions being of depth exactly one and
with at least one function being of depth more than one,
respectively.

0e statement of the lemma is equivalent to the state-
ment that

lim
n⟶∞

Aℓ,n − Bℓ,n􏼐 􏼑 � 0. (A.21)
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Using the notation introduced above, we can bound
Aℓ,n − Bℓ,n as

Pn,ASn − Pn,BSn − P
∗
n S
∗
n ≤ Aℓ,n − Bℓ,n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Pn,ASn + Pn,BSn.

(A.22)

We set Un ≔ Sn(Pn,A − Pn,B) and Vn ≔ P∗n S∗n . 0en,
(A.21) would follow from limn⟶∞Un � 0 and
limn⟶∞Vn � 0, so we will prove these two equalities.

Since any network has at most 2n attractors of length ℓ,
Sn ≤ 2nFn

n. Since the total sum of the products of canalizing
depths over all Boolean networks does not exceed
(Fn + nF∗n )n, we have Pn,B ≥ (1/(Fn + nF∗n )n). Since Pn,A �

1/Fn
n, we have

Un ≤ 2
n
F

n
n

1
Fn

n

−
1

Fn + nF∗n( 􏼁
n􏼠 􏼡 � 2n 1 −

1
1 + nRn( 􏼁

n􏼠 􏼡

� 2n

n

1
􏼠 􏼡nRn +

n

2
􏼠 􏼡 nRn( 􏼁

2
+ · · · + nRn( 􏼁

n

1 + nRn( 􏼁
n .

(A.23)

(A.20) implies that nRn < 1 for large enough n. Hence, for
large enough n, we have

Un ≤ 2
n
nRn

2n

1 + nRn( 􏼁
n ≤ 4

n
nRn ≤

4nn3

2 2n− 2( )− 4 − (1/4)(n − 1)
⟶ 0.

(A.24)

By similar arguments, P∗n ≤ nn/Fn
n and S∗n ≤ 2nn(Fn +

F∗n )n− 1F∗n , so

Vn ≤ 2
n
n

n+1
Fn + F

∗
n( 􏼁

n− 1
F
∗
n

1
Fn

n

≤ 2n
n

n+1 1 + Rn( 􏼁
n− 1

Rn.

(A.25)

Since Rn < 1 for large enough n, using (A.20), we have

Vn ≤ 2
2n− 1

n
n+1

Rn ≤
22n− 1nn+3

2 2n− 2( )− 4 − (1/4)(n − 1)
⟶ 0. (A.26)

□

Remark 8. 0e proof of Lemma A.3 will be valid if we
replace distribution (B) with any other distribution (C) such
that, for every Boolean network f � (f1, . . . , fn)

(i) If at least one of fi’s is noncanalizing, PC(f) � 0
(ii) 0ere exists a constant Pn,C such that, if the cana-

lizing depth of every fi is one, then PC(f) � Pn,C

(iii) We have (PC(f)/Pn,C)≤ (PB(f)/Pn,B) (using nota-
tion from the proof of Lemma A.3)
0e above properties hold, for example, for the
following distribution.
(C) All the networks defined by canalizing functions
have the same probability, and all others have
probability zero.

Using this distribution instead of (A), we see that
0eorem 2 holds also for a random Boolean network defined
by canalizing functions.

Lemma A.4. We will use Notation A.1 and notation from
Lemma A.2. Een, for every positive integers ℓ and n, we have

C Gℓ( 􏼁n − 􏽘
1≤i<j≤ℓ

C Gℓ;i,j􏼐 􏼑
n
≤ ℓBℓ,n ≤C Gℓ( 􏼁n. (A.27)

Proof. We fix n. Consider a tuple X � (X1, . . . , Xℓ) of ℓ
distinct elements of 0, 1{ }n. For 1≤ i≤ n, we denote
Xi ≔ (X1,i, . . . , Xn,i). For α ∈ S, let

nα ≔ i 1≤ i≤ n, Xi � α
􏼌􏼌􏼌􏼌􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (A.28)

0en, 􏽐α∈Snα � n. First, we will show that

P X1, . . . , Xℓ form an attractor in this order( 􏼁

� 􏽙
α∈S

􏽘
β∈S

g(α, s(β))
nβ

n
⎛⎝ ⎞⎠

nα

�
Gℓn( 􏼁

n

nn
,

(A.29)

where n � (n0, n1, . . . , n2ℓ − 1).
To prove (A.29), we will use that the functions fi(i �

1, . . . , n) in the network are chosen independently to de-
compose the left-hand side as

P X1, . . . , Xℓ form an attractor in this order( 􏼁

� 􏽙
n

i�1
P fi Xj􏼐 􏼑 � Xj+1,i for every 1≤ j≤ n􏼐 􏼑,

(A.30)

where we use notation Xn+1 � X1 and the probability of each
Boolean function to be chosen is assumed to be proportional
to the number of its canalizing variables. We show that, for
every 1≤ i≤ n,

P fi Xj􏼐 􏼑 � Xj+1,i for every 1≤ j≤ n􏼐 􏼑 � 􏽘
β∈S

g Xi, s(β)( 􏼁
nβ

n
.

(A.31)

0en, (A.29) would follow from multiplying (A.31) for
all i. To prove (A.31), without loss of generality, we consider
i � 1. Consider a set

Ω � (f, k) f : 0, 1{ }
n

􏼌􏼌􏼌􏼌 ⟶ 0, 1{ }, 1≤ k≤ n, xk is canalizing forf􏽮 􏽯,

(A.32)

with a uniform probability distribution PΩ. Observe that for
a function f with canalizing variables xk1

, . . ., xks
, we have

P(f) � PΩ f, k1( 􏼁( 􏼁 + · · · + PΩ f, ks( 􏼁( 􏼁. (A.33)

If we can show that, for every 1≤ k≤ n,

PΩ f Xj􏼐 􏼑 � Xj+1,1 for every 1≤ j≤ n |(f, k) ∈ Ω􏼐 􏼑

� g X1, s Xk( 􏼁( 􏼁,

(A.34)

then (A.31) would follow by summing up (A.34) over all k
and using the law of total probability.

We consider one of the canalizing variables of f, say, xk.
Let c be the canalizing value of xk1

, and let v be the value
taken by f when xk1

� c. 0en, (c, v) ∈ 0, 1{ }2, and all these
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four cases have the same probability due to the symmetry. As
g(α, s(β)) � (1/4)(h(α, β) + h(α, β) + h(α, β) + h(α, β)), it
is sufficient to show that

PΩ f Xj􏼐 􏼑 � Xj+1,1 for every 1≤ j≤ n |(f, k)􏼐

∈ Ω and c � v � 0) � h X1, s Xk( 􏼁( 􏼁,
(A.35)

and then sum for all (c, v) ∈ 0, 1{ }2.
To prove (A.35), consider any j, say j � 1. 0ere are then

4 cases for the values of X1,k and X2,1:

(1) X1,k � 1 and X2,1 is 0 or 1. With probability 1/2, we
have f(X1) � X2,1. 0is is true due to symmetry, as
for any f1 which takes on the value w at X1, we can
produce another function g that is equal to 0 ifX1,k �

0 and f1 if X1,k � 1. 0en, g(X1) � w.

(2) X1,k � 0 and X2,1 � 1. Since X1,k � c, the probability
of f(X1) � X2,1 ≠ v � 0 is zero.

(3) X1,k � X2,1 � 0. Since X1,k � c and X2,1 � v, the
canalization property implies that f(X1) � X2,1 with
probability one.

0e only case in which X1 ∨ s(Xk)≠ s(Xk) is where there
is at least one j such that case 2 is realized. In this case, the
probability in the left-hand side of (A.35) will be zero.
Otherwise, each occurrence of case 1 will multiply the total
probability by 1/2 and each occurrence of case 3 will multiply
the total probability by 1. 0us, we show that the left-hand
side of (A.35) is indeed equal to h(X1, s(Xk)). 0is finishes
the proof of (A.29).

To finish the proof of the lemma, we set

U ≔ n ∈ ZS
≥0 􏽘

α∈S
nα

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� n& the support of n does not belong to ⋃

1≤i<j≤ℓ
Si,j

⎧⎨

⎩

⎫⎬

⎭. (A.36)

Summing (A.29) over all ℓ-tuples (X1, . . . , Xℓ) of dis-
tinct elements of 0, 1{ }n, we obtain (see (A.7))

ℓBℓ,n � 􏽘
n∈U

Gℓn( 􏼁
n

nn
≤C Gℓ( 􏼁n. (A.37)

On the other hand, if n is supported on one some Si,j,
then Gℓn � Gℓ;i,jn|Si,j

, where n|Si,j
denotes the restriction of n

on the coordinates from Si,j. 0is implies that

C Gℓ( 􏼁n − ℓBℓ,n ≤ 􏽘
1≤i<j≤ℓ

C Gℓ;i,j􏼐 􏼑
n
. (A.38)

0is finishes the proof of the lemma. □

Proof ofEeorem 2. We fix positive integer ℓ. In the notation
of Lemma A.3, we have Aℓ � limn⟶∞Aℓ,n. Lemma A.3
implies that Aℓ � limn⟶∞Bℓ,n. We fix any 1≤ i< j≤ ℓ, and
let Cℓ;i,j be the matrix given by Lemma A.1. We set
M ≔ (2ℓ+2/2ℓ+2 − 1)(Gℓ;i,j + Cℓ;i,j). 0en,

0≤C Gℓ;i,j􏼐 􏼑
n
≤C Gℓ;i,j + Cℓ;i,j􏼐 􏼑

n
�

2ℓ+2 − 1
2ℓ+2

􏼠 􏼡

n

C(M)n.

(A.39)

Lemma A.2 implies that limn⟶∞C(M)n is finite, thus
we have that limn⟶∞C(Gℓ;i,j)n � 0. We finish the proof of
the theorem by considering the limit of (A.27) and applying
Lemma A.2 to Gℓ. □

B. Complexity analysis

Proposition B.1. Complexity of Algorithm 3 is O(k3).

Proof. First, we show the complexity of a single run the
algorithm, i.e., not taking into account the recursive call, is

O(k2). Since the first k rows of the Pascal’s triangle can be
precomputed in O(k2), the complexity of step 1 is also
O(k2). Similarly, the complexity of step 3 is O(k2). It re-
mains to observe that step 2 takes O(1) and step 4 takes
O(k2) (indeed, selecting a subset of size j amounts to
selecting and removing j indices). In total, we obtain O(k2).

0e depth of the recursion calls is at most k. Since the
complexity of each single call is O(k2), so the total com-
plexity is O(k3). □

Lemma B.1. Ee average complexity of the algorithm for
generating a function in n> 0 variables which is either 1 or
noncanalizing described in Remark 3 is O(n2n).

Proof. [25, p. 116] implies that the proportion of functions
which are canalizing in n variables is bounded from above by
4n/22n− 1 . Note that [25] considers constant functions cana-
lizing which we do not. 0us, the probability Pn of choosing
a function which is either 1 or noncanalizing is bounded
from above by

4n

22n− 1 −
1
22n �

4n − 1/22n− 1
􏼐 􏼑

22n− 1 . (B.1)

0is bound is less than 3/4 for all values of n except 1 and
2, but we can compute directly that P1 � 3/4 and P2 � 13/16.
0erefore, the number of times the generation of a function
needs to be repeated averages to 1/1 − Pn, which does not
exceed 4, so the average complexity of the whole procedure is
the same as of a single generation step.

0e complexity of a single step consists of generating a
random function (which is O(2n)) and checking whether it
is canalizing or not. We perform this check by running
linearly through the table for each variable, so the com-
plexity is O(n2n) time. 0us, the total complexity is indeed
O(n2n). □
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Lemma B.2. Eere is a constant c< 1 such that the proba-
bility that a function generated in steps 1 and 2 of Algorithm 2
does not satisfy one of the conditions (E1) or (E2) is bounded
by c for every n.

Proof. Notice that

P((E1) or (E2) is false) � P(r≠ 1)P((E1) is false | r≠ 1)

+ P(r � 1)P((E2) is false | r � 1).

(B.2)

We will show that there is a constant c< 1 such that
P((E1) is false | r≠ 1) and P(5.1 is false | r � 1) do not
exceed c.

(i) P((E1) is false | r≠ 1): the probability of having kr �

1 (the only possible kr < 2) is just the proportion of
ordered partitions with a single element at the end.
We can construct all of these by picking an element
and then picking a partition of the remaining ele-
ments, so this creates k · pk− 1 possibilities. 0us, the
probability of this occurring is kpk− 1/pk. [19,
equation (5)] implies that this approaches ln(2)< 1
as n goes to infinity. 0us, there exists such c.

(ii) P((E2) is false | r � 1): the probability of ever picking
b � 1 is just 1/2, so we can take c � 1/2. □

Proposition B.2. Complexity of Algorithm 2 is O(n2n).

Proof. Lemma B.2 implies that the average number of reruns
in step 3 is constant. 0us, the complexity of the algorithm is
the same as of a single run.

Proposition B.1 and Lemma B.1 imply that the com-
plexity of step 1 is O(k3 + (n − k)2n− k). Step 2 generates a
truth table for the function. 0ere are 2n input-output pairs,
and computing the function takes at most k steps, so this is
O(k2n). In step 3, the conditions (E1) or (E2) are verified in
O(2n) time.

Summing everything, we obtain O(k3 + (n − k)2n− k+

k2n) � O(n2n) □
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�is paper aims to study the asymptotic behavior of Lasota–Wazewska-type system with patch structure and multiple time-varying 
delays. Based on the �uctuation lemma and some di�erential inequality techniques, we prove that the positive equilibrium is a 
global attractor of the addressed system with small time delay. Finally, we provide an example to illustrate the feasibility of the 
theoretical results.  

1. Introduction

In 1988, in order to describe the survival of red blood cells in 
animals, Wazewska–Czyzewska and Lasota in [1] presented 
the following delayed di�erential equation model

where �(�) represents the number of red blood cells at time �, � denotes the death rate of red blood cells, �� and �� are related 
to the production of red blood cells per unit time, ��(�) repre-
sents the time required to produce a red blood cell. Since the 
model was proposed, there have been a large number of results 
about the dynamical behaviors for (1) and its modi�cations 
(see [2–7] and the references therein) due to their compre-
hensive practical application background.

As pointed out by Yao in [8], populations usually spread 
between di�erent patches for survival and development. 
Recently, many scholars have paid attention to the population 
models with patch structure and time delays (see [9–16]). As 
far as we know, fewer works have been done concerning with 
the e�ect of time delay on dynamical behaviors of Lasota–
Wazewska-type model with patch structure. �e purpose of 
the present paper is to establish some su�cient conditions to 

guarantee the global attractivity of the following Lasota–
Wazewska-type delay system with patch structure

where �� denotes the number of species in the patch �, gener-
ation delay function ��� : R→ (0, +∞) is bounded and con-
tinuous, ��� represents the dispersal coe�cient of the species 
from patch � to patch �, ��, ���, and ��� are all positive. In what 
follows, we always assume that

For convenience, let � = ∏��=1�([−��, 0],R) and �+ = ∏��=1�([−��, 0], [0, +∞)). If ��(�) is de�ned on [�0 − ��,�)
with �0, � ∈ R and � ∈ �, then we write �� ∈ � as �� = (�1� , �2� , . . . , ��� ) where ���(�) = ��(� + �) for all � ∈ [−��, 0]
and �0 ≤ � < � and � ∈ �. Denote ��(�0, �)(�(�; �0, �)) as an 

(1)��(�) = −��(�) + �∑
�=1
���−���(�−��(�)), (2)

��� (�) = −δ���(�) + �∑
�=1,� ̸=�
�����(�)

+ �∑
�=1
����−�����(�−���(�)), � ∈ � = {1, 2, . . . , �},

(3)

�� = max
1≤�≤�
��� > 0, �� = max

1≤�≤�
sup
�∈R
���(�) > 0, � = max

1≤�≤�
��,

0 < �� − �∑
�=1,� ̸=�
��� < �∑

�=1
��� for all � ∈ 
.
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admissible solution of (2) with the following admissible initial 
condition:

Also, let [�0, �(�)) be the maximal right-interval of existence 
of ��(�0, �).

In the following, we further assume that there exists at 
least one positive constant �∗ = (�∗1 , �∗2 , . . . , �∗�) such that �∗
is the positive equilibrium point of (2) satisfying

2. Global Attractivity of the Positive 
Equilibrium Point (�∗1 , �∗2 , . . . , �∗�)
First, we will discuss the properties of the solution �(�; �0, �)
of the system (2) with (4).

Lemma 1. �(�; �0, �) is positive and bounded on [�0, �(�)), 
and �(�) = +∞. Moreover, lim inf�→+∞��(�; �0, �) > 0, � ∈ �.
Proof. For simplicity, we denote �(�; �0, �) by �(�). We �rst 
prove that

Assume by contradiction that there exist �∗ ∈ [�0, �(�))
and � ∈ � such that

It follows from (2) that

�is contradction implies that (6) holds. Furthermore, de�ne

We claim that ��(�) is bounded on [�0, �(�)), � = 1, 2, . . . , �. 
Otherwise, we have �(�)→ �(�) as �→ �(�). Moreover, we 
can choose � ∈ � and {��}�≥1 with lim�→+∞�� = �(�) such that

and

According to the de�nition of �(��),

(4)��0 = �, � ∈ �+, ��(0) > 0, � ∈ �.

(5)−���∗� + �∑
�=1,� ̸=�
����∗� + �∑

�=1
����−����∗� = 0, for all � ∈ �.

(6)��(�) > 0 for all � ∈ [�0, �(�)), � = 1, 2, . . . , 
.

(7)
��(�∗) = 0, ��(�) > 0 for all � ∈ [�0, �∗), � = 1, 2, . . . , �.

(8)

0 ≥ �−��(�∗)
= −����(�∗) + �∑

�=1,� ̸=�
�����(�∗) + �∑

�=1
����−�����(�∗−���(�∗))

> 0.

(9)

�(�) = max{� : � ≤ �|there exists �0 ∈ � such that ��0(�)
= max
�0≤�≤�
��0(�) = max

�∈�
{max
�0≤�≤�
��(�)}}.

(10)��(�(��)) = max
�0≤�≤��
��(�) = max

�∈�
{max
�0≤�≤��
��(�)}

(11)lim
�→+∞
��(�(��)) = +∞.

(12)

0 ≤ �−��(�(��)) = −����(�(��)) + �∑
�=1,� ̸=�
�����(�(��))

+ �∑
�=1
����−�����(�(��)−���(�(��))).

Furthermore, we have

Letting �→ +∞ gives us that

which contradicts with the inequality in (3). �is shows that ��(�) is positive and bounded for all � ∈ [�0, �(�)), � ∈ �. From 
�eorem 2.3.1 in [17], we easily obtain �(�) = +∞.

Next we prove that any positive solution of (2) with (4) 
satis�es

Denote � = min �∈�lim inf�→+∞ ��(�). We claim that � > 0. 
Suppose on the contrary that � = 0. De�ne 

�en �(�)→ +∞ as �→ +∞. Moreover, for a sequence {��}�≥1 with lim�→+∞�� = +∞, we can choose �0 ∈ � and a sub-
sequence {���}�≥1 ⊆ {��}�≥1 such that

and

By virtue of the de�nition of �(���), we obtain that �−��0(�(���)) ≤ 0 or

Letting �→ +∞ leads to

�is is a contradiction, and the claim holds. �e proof of 
Lemma 1 is completed. ☐

Now, we show the global attractivity of (�∗1 , �∗2 , . . . , �∗�) by 
the following two propositions:

(13)

�� ≤ �∑
�=1,� ̸=�
��� ��(�(��))��(�(��)) +

�∑
�=1

���
��(�(��))�

−�����(�(��)−���(�(��))).

(14)�� ≤ �∑
�=1,� ̸=�
���,

(15)lim inf
�→+∞
��(�) > 0, � ∈ �.

(16)

�(�) = max{� : � ≤ �|there exists �0 ∈ � such that���(�)
= min
�0≤�≤�
��0(�) = min

�∈�
{min
�0≤�≤�
��(�)}}.

(17)��0(�(���)) = min
�0≤�≤���
��0(�) = min

�∈�
{ min
�0≤�≤���
��(�)}

(18)lim
�→+∞
��0(�(���)) = 0.

(19)

��0��0(�(���)) ≥
�∑
�=1,� ̸=�0
��0���(�(���))

+ �∑
�=1
��0�exp(−��0���0(�(���) − ��0�(�(���))))

≥ �∑
�=1
��0�exp(−��0� sup�≥�0−��0 ��0(�)), �(���) > �0 + �.

(20)0 ≥ �∑
�=1
��0�exp(−��0� sup�≥�0−��0 ��0(�)) > 0.
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Proposition 2. If  ��(�) = ��(�) − �∗�  is eventually nonoscillating 
about zero, then lim�→+∞ ��(�) = �∗� , ��� ��� � ∈ �.
Proof. We only give the proofs for the case that ��(�) = ��(�) − �∗�  is eventually nonnegative for all � ∈ �, since 
the eventually nonpositive case can be proved by a similar 
argument. In this case, we can choose � > �0 such that

Let �∗ ∈ � such that lim sup �→+∞��∗(�) = max�∈� lim sup �→+∞��(�). We claim that

Assume the contrary that lim sup �→+∞��∗(�) > 0. In view of 
the �uctuation lemma [18, Lemma A.1], there exists a sequence {��}�≥1 such that

It follows from (2) that

Without loss of generality, we can pick a subsequence of {��}
(not relabelled) such that lim�→+∞��(��), lim�→+∞��∗(��) and 
lim�→+∞��∗(�� − ��∗�(��)) exist for all � ∈ �, � ∈ � = {1, 2, . . . , �}. 
�en,

It follows from (24) that (taking limits)

which leads to a contradiction. Hence, lim sup�→+∞��∗(�) = 0.
�is completes the proof. ☐

Remark 3. It is worth noting that, from Proposition 2 the 
nonoscillating solutions of system (2) converge to the positive 
equilibrium point which does not depend on the delays.

Inspired by �eorem 4.1 in [19], we can obtain the follow-
ing more general conclusion.

(21)��(�) = ��(�) − �∗� ≥ 0 for all � ∈ �, � ≥ �.

(22)lim sup
�→+∞
��∗(�) = 0.

(23)

�� → +∞,��∗(��) → lim sup
�→+∞
��∗(�), ���∗(��) → 0 as �→ +∞.

(24)

���∗(��) = −��∗��∗(��) + �∑
�=1,� ̸=�∗
��∗���(��)

+ �∑
�=1
��∗��−��∗���∗(��−��∗�(��)), �� > � + 
.

(25)

�∗�∗ ≤ lim
�→+∞
��∗(�� − ��∗�(��))

≤ �∗�∗ + lim sup
�→+∞
��∗(�)

= lim
�→+∞
��∗(��), � ∈ �.

(26)

0 ≤ −��∗(lim sup
�→+∞
��∗(�) + �∗�∗) + �∑

�=1,� ̸=�∗
��∗�(lim sup

�→+∞
��∗(�) + �∗�)

+ �∑
�=1
��∗��−��∗��∗�∗ < (−��∗ + �∑

�=1,� ̸=�∗
��∗�) lim sup

�→+∞
��∗(�) < 0,

Lemma 4. Let v ≤ 0 ≤ � be such that � ≤ �−v − 1 and �v ≥ �−�� − 1 for some � ≥ 1. �en � = v = 0.
Proof. Since � ≤ �−v − 1 and �v ≥ �−�� − 1, we have

Let �(�) = �(1/�)−(1/�)�−�� − � − 1. �en,

and

Due to the fact that ��(0) = 0, it follows that

On the other hand, since �(0) = 0, we get �(�) < 0 for all � > 0. This implies that � = 0. According to �v ≥ �−�� − 1, 
we have v ≥ 0. As v ≤ 0, we must have v = 0. This finishes 
the proof. ☐

Next, we consider the attractivity of (2) on the premise 
that the conditions in Proposition 5 are not satis�ed.

Let

�en, from (2), we get

where �∗�� = ���(�∗� /�∗� ), �∗�� = ���(1/�∗� ). It is easy to see that 
the global attractivity of the equilibrium �∗ = (�∗1 , �∗2 , . . . , �∗�)
for (2) is equivalent to the global attractivity of the trivial solu-
tion for (35).

Set

By the �uctuation lemma [14, Lemma A.1], we can take 
�∗1 ∈ � and a strictly monotonically increasing sequence {�∗� }�≥1
such that

Furthermore, choose �1 ∈ � and a subsequence {�∗∗� }�≥1 ⊆ {�∗� }�≥1
satisfying

(27)1 + � ≤ �−v ≤ �(1/�)−(1/�)�−�� .

(28)��(�) = �(1/�)−��−(1/�)�−�� − 1

(29)
���(�) = �(1/�)−��−(1/�)�−��(−� + �−��) ≤ 0, for all � > 0.

(30)��(�) < 0, for all � > 0.

(31)��(�) = ��(�)�∗� − 1, � ∈ �.

(32)

��� (�) = −��(��(�) + 1) + �∑
�=1,� ̸=�
��� �
∗
��∗� (��(�) + 1)

+ �∑
�=1
��� 1�∗� �

−����∗� (��(�−���(�))+1)

= −��(��(�) + 1) + �∑
�=1,� ̸=�
�∗��(��(�) + 1)

+ �∑
�=1
�∗���−����∗� (��(�−���(�))+1),

(33)� = min
�∈�

lim inf
�→+∞
��(�), � = max

�∈�
lim sup
�→+∞
��(�).

(34)�∗� → +∞, ��∗1 (�∗� ) → �, as �→ +∞.
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Based on the above discussions, the following conclusion 
can be drawn.

Proposition 5. Suppose that the assumption mentioned in 
Proposition 2 does not hold, and

�en lim�→+∞��(�) = �∗� , � ∈ �.
Proof. Observe that, from �eorem 6, −1 < � ≤ 0 ≤ �.
Now, we show that � = � = 0. Otherwise, either � > 0 or � < 0 holds. We only consider the case that � > 0 holds (the 
situation is analogous for � < 0).

For any given � > 0 such that � − � > −1, by (33) there 
exists a positive integer �∗ > �2 + �∗0 such that

Furthermore, from the fact that

we have

that is,

(42)
��(����� − 1)∑��=1����−����∗�

�� + ((����� − 1)/�∗� )∑��=1����−����∗� ≤ 1, ��� ��� 
 ∈ �.

(43)��1�∗�1 = min
1≤�≤�
{���∗� }.

(44)
� − � < ��(�) < � + � for all � > min{��∗ , ��∗} − 2�, 
 ∈ �.

(45)

��� (�) = −��(��(�) + 1) + �∑
�=1,� ̸=�
�∗��(��(�) + 1)

+ �∑
�=1
�∗���−��1��∗� (��(�−���(�))+1), � ∈ [��, 
�],

(46)

��1(��)���1 ��
≤ −(���1 �� − ���1��) + �∑

�=1,� ̸=�1
�∗�1� ∫

��

��
(��(�) + 1)���1 ���

+ �∑
�=1
�∗�1� ∫

��

��
�−��1��∗� (��1(��−
�1�(��))+1)���1 ���

≤ [−��1 + (� + 
 + 1)(
�∑
�=1,� ̸=�1
�∗�1�) +

�∑
�=1
�∗�1��−��1��∗�1 �−����∗�1�(
−	)]

× ���1 �� − ���1����1
= [−��1 + (� + 
 + 1)(��1 −

�∑
�=1
�∗�1��−�∗�1) +

�∑
�=1
�∗�1��−��1��∗�1 �−��1��∗�1 (
−	)]

× ���1 �� − ���1����1
= [(� + 
)��1 +

�∑
�=1
�∗�1��−��1��∗�1 (�−��1��∗�1 (
−	) − 1) − (� + 
)

�∑
�=1
�∗�1��−��1��∗�1)]

× ���1 �� − ���1����1 , � > �∗,

By the boundedness of {���1(��)}, we pick a strictly monoton-

ically increasing sequence {��}�≥1 ⊆ {��}�≥1 such that 

lim�→+∞���1(��) exists. It follows from (35) that

Adopting the same procedure as in the proof of (12), there 
exist �2 ∈ � and a strictly monotonically increasing sequence {��}�≥1 such that

Subsequently, we prove that there is a positive integer �1
such that, for any � ≥ �1, there exists �� ∈ [�� − ��1 , ��) such 
that

In the contrary case, there exists a subsequence of {��} (for 
convenience, we still denote by {��}) such that

According to the de�nition of the ��, we conclude from (32) 
that

Assume that lim�→+∞��(��) exists for all � ∈ �\{�1}, from the 
fact that limsup �→+∞��(�) ≤ �(� ∈ �), (40) implies that

which is a contradiction and (38) is true.

(35)

�∗∗� > �0, ��1(��) = max
�∈[�∗∗� ,�∗∗�+1] ��1(�)

= max
�∈�
{ max
�∈[�∗∗� ,�∗∗�+1] ��(�)} > 0, �� ∈ [�∗∗� , �∗∗�+1].

(36)
��1(��) > 0, lim

�→+∞
�� = +∞, lim

�→+∞
��1(��) = �, lim

�→+∞
���1(��) ≥ 0.

(37)
��2(��) < 0, lim

�→+∞
�� = +∞, lim

�→+∞
��2(��) = �, lim

�→+∞
���2(��) ≤ 0.

(38)��1(��) = 0, ��1(�) > 0, for all � ∈ (��, ��).

(39)��1(�) > 0, for all � ∈ [�� − ��1 , ��), � = 1, 2, . . . .

(40)

���1(��) = −��1(��1(��) + 1) +
�∑
�=1,� ̸=�1
�∗�1�(��(��) + 1)

+ �∑
�=1
�∗�1��−����∗�1(��1(��−��1�(��))+1)

< −��1(��1(��) + 1) +
�∑
�=1,� ̸=�1
�∗�1�(��(��) + 1)

+ �∑
�=1
�∗�1��−����∗�1 , �� > 
∗0 + ��1 .

(41)

0 ≤ lim
�→+∞
���1(��)

≤ −��1( lim�→+∞��1(��) + 1)
+ �∑
�=1,� ̸=�
�∗�1�( lim�→+∞��(��) + 1) +

�∑
�=1
��1��−��1��∗�1

≤ −��1(� + 1) +
�∑
�=1,� ̸=�1
�∗�1�(� + 1) +

�∑
�=1
�∗�1��−����∗�1

< (� + 1)[−��1 +
�∑
�=1,� ̸=�1
�∗�1� +

�∑
�=1
�∗�1��−����∗�1] = 0,
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Letting �→ +∞ and �→ 0+, (37) and (52) give us that

which implies

�is, combined with (42) and (49) imply that

Denote

From (43), one can �nd that � ≥ 1. By virtue of (55) and (56), 
we have

According to Lemma 4, it is easy to see that �∗ = �∗ = 0. 
Furthermore, we get � = � = 0, which is a contradiction, and � > 0 is not true. �is completes the proof. ☐

Combining Propositions 2 and 5, we have the following 
delay-dependent criterion of global attraction.

Theorem 6. Assume that conditions (3), (42) and (43) are 
satis�ed. �en the positive equilibrium (�∗1 , �∗2 , . . . , �∗�) is a 
global attractor of (2).

Remark 7. Let us note that, from

one can �nd that condition (42) naturally holds under the 
su�ciently small delay, and the positive equilibrium point (�∗1 , �∗2 , . . . , �∗�) is a global attractor of (2) with small delays. 
Moreover,

implies that condition (42) is not satis�ed when the delays in 
(2) is su�ciently large and ���∗� > 1 for � ∈ �.

(53)

� ≥ �(1 − �−��2 ��2 )
+ [ �∑
�=1
�∗�2��−��2��∗�2 (�−��2�∗�2� − 1) − �

�∑
�=1
�∗�2��−��2��∗�2]

× 1 − �−��2 ��2��2 ,

(54)

� ≥ ∑��=1�∗�2��−��2��∗�2 (1−�−��2 ��2 )/(��2)
�−��2 ��2 + ∑��=1�∗�2��−��2��∗�2 (1−�−��2 ��2 )/(��2)

(�−��2�∗�2� − 1)

= (���2 ��2 − 1)∑��=1�∗�2��−��2��
∗�2

��2 + (���2 ��2 − 1)∑��=1�∗�2��−��2��∗�2 (�
−��2�

∗�2� − 1).

(55)��1�∗�1� ≤ �−��1�∗�1� − 1, ��2�∗�2� ≥ �−��2�∗�2� − 1.

(56)�∗ = ��1�∗�1�, �∗ = ��1�∗�1�, � = ��2�
∗
�2��1�∗�1 .

(57)�∗ ≤ �−�∗ − 1, ��∗ ≥ �−��∗ − 1.

(58)

lim
��→0+

��(����� − 1)∑��=1����−����∗�
�� + ((����� − 1)/�∗� ) �∑

�=1
����−����∗�

= 0 for all � ∈ �,

(59)

lim
��→+∞

��(����� − 1)∑��=1����−����∗�
�� + ((����� − 1)/�∗� )∑��=1����−����∗� = ���

∗
� for all � ∈ �,

Letting �→ +∞ and �→ 0+, (36) and (47) give us that

which implies

Let’s assume that � < 0 (if � = 0, from (49) and � ≥ 0 we 
have � = 0). Using the same arguments in the proof of (38), 
we can obtain that there is a positive integer �2 > �1 such that, 
for any � ≥ �2, there exists �� ∈ [�� − ��2 , ��) such that

Again from (32), we have

that is,

(47)

��1(��) ≤ [(� + �)��1 +
�∑
�=1
�∗�1��−��1��∗�1 (�−��1��∗�1 (�−�) − 1)

− (� + �) �∑
�=1
�∗�1��−��1��∗�1 ]1 − �

−��1 ��1

��1 , � > �
∗,

(48)

� ≤ �(1 − �−��1 ��1 )
+ [ �∑
�=1
�∗�1��−��1��∗�1 (�−��1��∗�1� − 1) − �

�∑
�=1
�∗�1��−��1��∗�1]1 − �

−��1 ��1

��1 ,

(49)

� ≤ ∑��=1�∗�1��−��1��∗�1 (1−�−��1 ��1 )/(��1)
�−��1 ��1 + ∑��=1�∗�1��−��1��∗�1 (1−�−��1 ��1 )/(��1)

(�−��1�∗�1� − 1)

= (���1 ��1 − 1)∑��=1�∗�1��−��1��
∗�1

��1 + (���1 ��1 − 1)∑��=1�∗�1��−��1��∗�1 (�
−��1�

∗�1� − 1).

(50)��2(��) = 0, and��2(�) < 0, for all � ∈ (��, ��).

(51)

��2(��)���2 ��
≥ −(���2 �� − ���2 ��) + �∑

�=1,� ̸=�2
�∗�2� ∫

��

��
(��(�) + 1)���2 ���

+ �∑
�=1
�∗�2� ∫

��

��
�−��2��∗�2(��(��−��2�(��))+1)���2 ���

≥ [−��2 + (� − 
 + 1)(
�∑
�=1,� ̸=�2
�∗�2�) +

�∑
�=1
�∗�2��−��2��∗�2 �−��2��∗�2(�+�)]

× ���2 �� − ���2 ����2
= [−��2 + (� − 
 + 1)(��2 −

�∑
�=1
�∗�2��−��2��∗�2) +

�∑
�=1
�∗�2��−��2��∗�2 �−��2��∗�2(�+�)]

× ���2 �� − ���2 ����2
≥ [(� − 
)��2 +

�∑
�=1
�∗�2��−��2��∗�2(�−��2�∗�2(�+�) − 1) − (� − 
)

�∑
�=1
�∗�2��−��2��∗�2)]

× ���2 �� − ���2 ����2 , � > �∗,

(52)

��2(��) ≥ [(� − �)��2 +
�∑
�=1
�∗�2��−��2��∗�2(�−��2�∗�2(�+�) − 1)

− (� − �) �∑
�=1
�∗�2��−��2��∗�2 ]1 − �

−��2 ��2

��2 , 
 > 

∗.



Complexity6

Conflicts of Interest

�e authors declare that they have no con�icts of interest.

Acknowledgments

�is work was jointly supported by the Natural Science 
Foundation of Hunan Province (2018JJ2194) and Scienti�c 
Research Fund of Hunan Provincial Education Department 
of China (18B456, 15C0719, 16C0036).

References

[1]  M. Wazewska-Czyzewska and A. Lasota, “Mathematical 
problems of the dynamics of red blood cells system,” Annals 
of the Polish Series I: Applied Mathematics, vol. 17, pp. 23–40, 
1988.

[2]  K. Gopalsamy and S. Tro�mchuk, “Almost periodic solutions 
of Lasota–Wazewska-type delay di�erential equation,” Journal 
of Mathematical Analysis and Applications, vol. 237, no. 1, pp. 
106–127, 1999.

[3]  Z. Huang, S. Gong, and L. Wang, “Positive almost periodic 
solution for a class of Lasota–Wazewska model with multiple 
time-varying delays,” Computers & Mathematics with 
Applications, vol. 61, no. 4, pp. 755–760, 2011.

[4]  J. Shao, “Pseudo almost periodic solutions for a Lasota–
Wazewska model with an oscillating death rate,” Applied 
Mathematics Letters, vol. 43, pp. 90–95, 2015.

[5]  L. Duan and C. Huang, “Existence and global attractivity of 
almost periodic solutions for a delayed di�erential neoclassical 
growth model,” Mathematical Methods in the Applied Sciences, 
vol. 40, no. 3, pp. 814–822, 2017.

 [6]  X. Wang and Z. Li, “�e existence, uniqueness and global 
attractively a positive almost periodic solution for a Lasota–
Wazewska model,” Journal of Biomathematics, vol. 23, pp. 
449–456, 2008.

 [7]  L. Duan, L. Huang, and Y. Chen, “Global exponential stability 
of periodic solutions to a delay Lasota–Wazewska model 
with discontinuous harvesting,” Proceedings of the American 
Mathematical Society, vol. 144, no. 2, pp. 561–573, 2016.

 [8]  L. Yao, “Global attractively of a delayed Nicholson-type system 
involving nonlinear density-dependent mortality terms,” 
Mathematical Methods in the Applied Sciences, vol. 41, no. 6, 
pp. 2379–2391, 2018.

 [9]  D. Caetano and T. Faria, “Stability and attractivity for Nicholson 
systems with time-dependent delays,” Electronic Journal of 
Qualitative �eory of Di�erential Equations, no. 63, pp. 1–19, 
2017.

[10]  Y. Takeuchi, W. Wang, and Y. Saito, “Global stability of 
population models with patch structure,” Nonlinear Analysis: 
Real World Applications, vol. 7, no. 2, pp. 235–247, 2006.

[11]  C. Huang, Z. Yang, T. Yi, and X. Zou, “On the basins of attraction 
for a class of delay di�erential equations with non-monotone 
bistable nonlinearities,” Journal of Di�erential Equations, vol. 
256, no. 7, pp. 2101–2114, 2014.

[12]  R. Jia, Z. Long, and M. Yang, “Delay-dependent criteria on the 
global attractivity of Nicholson s blow�ies model with patch 
structure,” Mathematical Methods in the Applied Sciences, vol. 
40, no. 11, pp. 4222–4232, 2017.

3. A Numerical Example

Example 1. Consider the following Lasota–Wazewska-type 
delay system with two groups and patch structures:

It is easy to check that

�erefore, (3) is true. Obviously, (�∗1 , �∗2 ) = (5, 10) is the pos-
itive equilibrium point of (60). In addition, �1�∗1 = �2�∗2 = 5
implies (43) holds. Now, we choose

such that (42) holds. By �eorem 6, we conclude that the pos-
itive equilibrium point (5, 10) is a global attractor of (60) with 
delays (62). �is implies that small delays are harmless on the 
asymptotic behavior of system (60). Numerical runs with 
Matlab illustrate convergence of positive solutions to (�∗1 , �∗2 )
(see Figure 1).

Remark 8. Observe that the methods used in [13, 14] are 
not suitable for (60) with (62) since the system (60) with 
time-varying delays (62) does not generate a semi�ow. In 
addition, it is also worth pointing out that the components 
of the positive equilibrium point in this paper are not 
required to be equal, which is also di�erent from the 
literature [12].

Data Availability

No data were used to support this study.

(60)
{��1(�) = −8�1(�) + 3�2(�) + 4�5�−�1(�−�11(�)) + 6��−(1/5)−�1(�−�12(�)),��2(�) = −5�2(�) + 4�1(�) + 10�5�−(1/2)�2(�−�21(�)) + 20�(5/2)�−(1/4)−�2(�−�22(�)).

(61)
�1 = 1, �2 = 12 , 0 < 8 − 3 < 4�5 + 6�, 0 < 5 − 4 < 10�5 + 20�5/2.

(62)���(�) = 0.05����sin(� + �)�����, �, � = 1, 2,

0 0.5 1 1.5 2 2.5
t

4

5

6

7

8

9

10

11

x i(
t),

 i =
 1,

 2

x1(t) x2(t)

Figure 1: Numerical solution (�1(�), �2(�)) of Eq. (60) with di�erent 
initial values (�1(�), �2(�)) ≡ (4, 9), (6, 10), (7, 11), � ∈ [−0.05, 0].



Complexity7

[13]  L. Duan, H. Wei, and L. Huang, “Finite-time synchronization 
of delayed fuzzy cellular neural networks with discontinuous 
activations,” Fuzzy Sets and Systems, vol. 361, pp. 56–70, 2019.

[14]  T. Faria, “Asymptotic behaviour for a class of delayed cooperative 
models with patch structure,” Discrete and Continuous 
Dynamical Systems – Series B, vol. 6, no. 6, pp. 1567–1579, 2013.

[15]  C. Huang, H. Zhang, and L. Huang, “Almost periodicity analysis 
for a delayed Nicholson’s blow�ies model with nonlinear 
density-dependent mortality term,” Communications on Pure 
& Applied Analysis, vol. 18, no. 6, pp. 3337–3349, 2019.

[16]  L. Duan, X. Fang, and C. Huang, “Global exponential 
convergence in a delayed almost periodic Nicholson’s blow�ies 
model with discontinuous harvesting,” Mathematical Methods 
in the Applied Sciences, vol. 41, no. 5, pp. 1954–1965, 2018.

[17]  J. Hale and S. Verduyn Lunel, “Introduction to functional 
di�erential equations,” Applied Mathematical Sciences, vol. 99, 
Springer-Verlag, New York, 1993.

[18]  H. L. Smith, An Introduction to Delay Di�erential Equations 
with Applications to the Life Sciences, Springer, New York, 2011.

[19]  J. W.-H. So and J. S. Yu, “Global attractivity and uniform 
persistence in Nicholson blow�ies,” Di�erential Equations 
Dynamics Systems, vol. 2, pp. 11–18, 1994.



Research Article
Modeling Periodic HFMD with the Effect of Vaccination in
Mainland China

Lei Shi ,1,2 Hongyong Zhao ,1 and Daiyong Wu1,3

1Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Department of Mathematics, Honghe University, Mengzi 661199, China
3Department of Mathematics, Anqing Normal University, Anqing 246133, China

Correspondence should be addressed to Hongyong Zhao; hyzho1967@126.com

Received 30 August 2019; Revised 8 November 2019; Accepted 14 December 2019; Published 9 January 2020

Guest Editor: George V. Popescu

Copyright © 2020 Lei Shi et al. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hand, foot, and mouth disease (HFMD), associated with more than 20 disease-causing enteroviruses, is one of the major
public health problems in mainland China, and the unique vaccine available is for enterovirus 71 (EV71). In this paper, we
propose a new epidemic model to investigate the e�ect of EV71 vaccination on the spread of HFMD with multiple
pathogenic viruses in mainland China. In addition, suitable periodic transmission functions are designed, with a two-year
period and taking into consideration the e�ects of opening and closing of schools. After de�ning the basic reproduction
number R0, we prove that the disease-free equilibrium is globally asymptotically stable if R0 < 1, and there exists at least one
positive periodic solution and the disease is uniformly persistent if R0 > 1. We use the model to simulate the HFMD reported
data in mainland China from January 2008 to June 2019.�e numerical experiments show that increasing the vaccinated rate
can e�ectively control the spread of HFMD in mainland China, yet the disease does not become extinct. Moreover, if we can
control the baseline contact rate of infectious individuals and the recovery rate of symptomatic infectious individuals under
certain conditions, which can be achieved by improving protective measures and medical conditions, then the disease will
be eliminated.

1. Introduction

Hand, foot, and mouth disease (HFMD) is a common in-
fectious disease among infants and children caused by in-
testinal viruses of the Picornaviridae family. �ere exist
many types of HFMD virus, such as coxsackievirus A5, A10,
A16, A19 types and EV71 type, and so on. Among these
viruses, the main viruses causing HFMD are coxsackievirus
A16 (CVA16) and enterovirus 71 (EV71) [1]. HFMD mostly
occurs in nursery schools or kindergartens, and its high
incidence seasons are summer and autumn [1]. �e usual
incubation period is 2 to 7 days, and the recovery period is 7
to 10 days [2]. Since HFMD was �rst reported in New
Zealand in 1957 [3], it has spread around the world, es-
pecially in Asia [4–7].

HFMD is a mild, self-limiting illness that primarily
a�ects infants and young children. In recent years, HFMD

is also a common illness in mainland China. Since 2008,
the government has classi�ed it as a class III infectious
disease in the National Stationary Noti�able Communi-
cable Diseases (NSNCD) [8], and the monthly cases have
been archived by the Chinese Center for Disease Control
and Prevention (CCDC) [9] (see Figure 1). �e main
viruses causing HFMD in mainland China are CVA16 and
EV71, and the proportions of HFMD cases caused by
CVA16 and EV71 are about 30% and 44%, respectively
[10–12]. EV71 vaccine, which e¤cacy against EV71-as-
sociated HFMD was 97.4%, has been developed and put
into use in mainland China beginning in 2016, so many
young children would be protected from EV71 infections
[13, 14]. As of May 2019, monovalent EV71 vaccines have
not yet been included in the routine paediatric vaccination
programme in China, which means that they are needed to
be paid out-of-pocket by parents [15–17]. Meanwhile,
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vaccine coverage of these monovalent EV71 vaccines
among children aged 6 months to 5 years ranges from
< 10% to 50% in different provinces in mainland China
[15–17].

Compartmental differential equation modeling is an
important tool for understanding infectious disease
spread and control. 0ere are two types of dynamic
models for HFMD. One is an autonomous ordinary dif-
ferential model where all the parameters such as trans-
mission rate, birth population, recovery rate, and so on of
whom are assumed as constants. For instance, Tiing and
Labadin [2] used a simple SIR model to predict the
number of the infected and the duration of an outbreak in
Sarawak Malaysia; Roy and Halder [18, 19] proposed a
deterministic susceptible-exposed-infectious-recovered
(SEIR) model and a susceptible-exposed-infectious-
quarantine-recovered (SEIQR) model of HFMD, and
Viriyapong and Wichaino [20] further analyzed dynamic
behaviors of SEIR; Yang et al. [21] and Li et al. [22]
researched the optimal control of SEIQR and its dynamic
behavior, respectively; Li et al. [23] further constructed a
two-stage-structured SEIQR model to fit the HFMD data
in mainland China from 2009 to 2014; Wang et al. [24]
further considered indirect transmission coming from the
contaminated environments to establish a SEIIeRWmodel
(Ie is the number of the asymptomatic infectious indi-
viduals), and Sharma and Samanta [25] considered the
combined effect of asymptomatic infectious individuals
and quarantine measures on the spread of HFMD. It
should be noted that the reported monthly cases of HFMD
from CCDC [9] exhibit the periodic pattern. From a
practical point of view, clarifying the mechanisms that
link seasonal environmental changes to disease dynamics
may aid in forecasting the long-term health risks, crucial
in developing an effective public health program and in
setting objectives, and utilizing limited resources more
effectively. For these reasons, the other approach is a

nonautonomous differential equation model, which
considers periodic transmission rates. Of these, Liu [26]
constructed a periodic SEIQR model to simulate the
dynamics of HFMD transmission and showed that
quarantine has a positive impact on controlling the spread
of HFMD; Zhu et al. [27] used the periodic SEIQR model
to investigate the spread of seasonal HFMD in Wenzhou
city, Zhejiang Province, China; Ma et al. [28], considering
asymptomatic infectious individuals (Ie), proposed a
periodic SEIIeQR model to analyse HFMD in Shandong
Province, China, which shows that asymptomatic infec-
tious subpopulation plays an important role in the spread
of HFMD. However, among the two types of dynamic
models, fewer studies considered the influence of EV71
vaccination on the spread of HFMD.

Recently, Samanta [29] and Wang et al. [30] considered
vaccination in modeling for HFMD. In these studies, the
vaccinated individuals were assumed to be immunized
against all HFMD-associated enteroviruses, in which a
vaccinated individual would be transferred from the sus-
ceptible compartment to the recovered compartment in
modeling (see system (1) in [29] or system (1) in [30]).
However, in mainland China, only EV71 vaccine existed,
and the vaccine only has well immunity for EV71, but not
for others [13, 14, 31, 32]. 0us, while there are multiple
HFMD-associated enteroviruses, only one vaccine for EV71
is available. A natural problem is how to build a suitable
model to reflect the influence of EV71 vaccination on the
spread of HFMD with multiple pathogenic viruses in
mainland China.

From the practical point of view, periodic transmission
functions are needed to consider in modeling. From
Figure 1, it should be noted that the monthly reported
cases of HFMD in mainland China from CCDC [9] exhibit
periodic patterns. 0e annual cycle patterns or seasonal
patterns may be attributed to these facts such as climatic,
geographical, and demographic information but not
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Figure 1: 0e confirmed monthly cumulative HFMD cases from the Chinese Center for Disease Control and Prevention (CCDC) from
January 2008 to June 2019.
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limited to them [28, 30, 33]. Although different seasonality
across the whole country, Xing et al.’s epidemiological
study of HFMD in China, 2008–2012 [33], implied that
geographical differences in seasonal patterns were weakly
associated with climate and demographic factors (variance
explained 8–23% and 3–19%, respectively). Our analysis of
previous studies for periodic HFMD models [4, 26, 28, 30]
finds that all the chosen periodic transmission functions
have a similar form, and its period is 1 year, which ef-
fectively can reflect the annual seasonal changes for
HFMD. However, annual cycle patterns aside, the epi-
demics of HFMD in mainland China have displayed the
following two phenomena: (1) the data from CCDC [8]
(see Figure 1) show that HFMD has a two-year epidemic
cycle because the epidemic period of partial HFMD-as-
sociated enteroviruses in some areas is two years [34, 35];
(2) Figure 1 shows that the number of cases suddenly rises
in September and October each year because of the
opening and closing of schools in mainland China [36].
0e previous models based on the disease’s transmission
functions [4, 26, 28, 30] cannot simulate the above two
phenomena. Hence, to better reveal the mechanism of the
epidemic, it is very important to find a more suitable
periodic transmission function for modeling.

Given the issues discussed above, we propose a new
mathematical model to investigate the effect of EV71
vaccination on the spread of HFMD in mainland China. To
analyze the effect of EV71 vaccination, we derive our
modeling ideas from the previous modeling for influenza
[37]. 0en, in modeling, we divide the total individuals into
two groups, the unvaccinated and the vaccinated. In ad-
dition, novel two-year periodic transmission functions,
with considering the effects of school opening and closing,
are also considered in our modeling. 0en, we evaluate the
basic reproduction number R0 to analyze the dynamical
behaviors of the model and use the proposed model to fit
the monthly reported data of HFMD in mainland China
from January 2008 to June 2019. Furthermore, through
sensitivity analysis of the basic reproduction number R0 in
terms of key parameters, we explore some effective pre-
vention and control measures for HFMD in mainland
China.

0e paper is organized as follows: in Section 2, we
introduce a new periodic epidemiological model of HFMD.
In Section 3, the dynamic behaviors of this model are
analyzed theoretically. In Section 4, simulations of the
model, sensitivity analysis of the basic reproduction
number, and some prevention and control measures are
performed. In Section 5, we discuss and summarize our
conclusions.

2. Model Formulation

Recently, Samanta [29], Wang et al. [30] considered the
effect of the vaccination in modeling for HFMD, in which it
assumed that vaccine can resist all the HFMD-associated
enteroviruses. However, there only exists EV71 vaccine to be
used in mainland China, and the vaccine only has well

immunity for EV71 but not for others [13, 14]. It notes that
the modeling techniques in [29, 30] cannot be used to really
reflect the spread of the disease with a single effective vaccine
and multiple viruses. In order to model the influence of
EV71 vaccination on the spread of HFMD with multiple
pathogenic viruses in mainland China, we divide the total
individuals into two different groups, the unvaccinated and
the vaccinated, in modeling. Next, based on the above an-
alyses, we denote the total number of unvaccinated and
vaccinated individuals by Ns(t) and Nv(t), respectively, and
classify each of them into four subclasses: susceptible, ex-
posed, infectious with symptoms (symptomatic infectious),
and infectious but not yet symptomatic (asymptomatic
infectious), with the number of unvaccinated individuals
denoted by S(t), Es(t), Is(t), Ie

s(t) and Rs(t) and the number
of vaccinated individuals denoted by V(t), Ev(t), Iv(t), Ie

v(t)

and Rv(t), respectively. Denote the total population size
N(t) � Ns(t) + Nv(t).

In addition, many epidemiological models for HFMD
([26–28, 30]), considering annual seasonal changes, were
simulated by using the sinusoidal function β1(t) � a0[1 +

a1 sin((π/6)t)] with one year period (take a month as
the unit time). As discussion in Section 1, seasonal changes
and school holidays will change the contact rate of chil-
dren, and the virus contagion changes periodically, some
of which are one year for a cycle and some of which are two
years for a cycle. 0us, taking a month as the unit time,
we define periodic transmission functions with the period
of 2 years as β1(t) � a0[1 + a1 sin((π/2)t) + a2 sin((π/6)t) +

a3 sin((π/12)t) + a4 sin(− 1 + (π/3)t)] and β2(t) � b0[1+

b1 sin(− 1+ (π/2) + (π/4)t) + b2 sin((π/6)t) + b3 sin((π/12)t )]

for symptomatic infectious individuals and asymptomatic
infectious individuals, respectively. 0e studies in [31]
showed that, in mainland China, the EV71 vaccine was
targeted at infants or children aged 6 to 71 months. 0ey
were also a high-risk group for HFMD [31, 32]. Next,
let Λ be the monthly number of children entering the age
of 6–71 months, and d be progression rate leaving
the children group aged 6–71 months. We also assume
that p is the vaccinated rate for infants or children aged
6–71 months. Moreover, the results in [15, 17] showed
that vaccine coverage of these monovalent EV71 vaccines
among children aged 6 months to 5 years ranges from
<10% to 50% in different provinces in mainland China
in recent years. 0is implies that the current vaccination
rate of the monovalent EV71 vaccine is very low in
mainland China. In the case of the low vaccine coverage,
we let ks be the proportion of HFMD cases in mainland
China, without vaccination, caused by HFMD-associated
enteroviruses except EV71. Furthermore, we assume
that a symptomatic or an asymptomatic infectious in-
dividual with vaccination has the same recovery rate as a
symptomatic or asymptomatic infectious individual
without vaccination. 0en, the transmission dynamics
associated with these subpopulations are shown in
Figure 2.

0e model is described by the following ordinary dif-
ferential equations:
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dS

dt
� (1 − p)Λ − β1(t)S Is + Iv( 􏼁 − β2(t)S I

e
s + I

e
v( 􏼁

− dS + ηsRs,

dEs

dt
� β1(t)S Is + Iv( 􏼁 + β2(t)S I

e
s + I

e
v( 􏼁 − (d + α)Es,

dIs

dt
� αρEs − d + μ + λ1( 􏼁Is,

dIe
s

dt
� α(1 − ρ)Es − d + λ2( 􏼁I

e
s,

dRs

dt
� λ1Is + λ2I

e
s − d + ηs( 􏼁Rs,

dV

dt
� pΛ − β1(t)V ksIs + Iv( 􏼁 − β2(t)V ksI

e
s + I

e
v( 􏼁

− dV + ηvRv,

dEv

dt
� β1(t)V ksIs + Iv( 􏼁 + β2(t)V ksI

e
s + I

e
v( 􏼁 − (d + α)Ev,

dIv

dt
� αρEv − d + μ + λ1( 􏼁Iv,

dIe
v

dt
� α(1 − ρ)Ev − d + λ2( 􏼁I

e
v,

dRv

dt
� λ1Iv + λ2I

e
v − d + ηv( 􏼁Rv,
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(1)

where p is nonnegative and other parameters are positive,
and its biological meanings are listed in Table 1.

3. Stability Analysis and Persistence

In this section, we will investigate the dynamic behaviors
of system (1). First, we introduce some notations which
will be used throughout this paper. Rn denotes the n-
dimensional Euclidean space, and Rn

+ ≜ (x1, x2, . . . , xn) ∈􏼈

Rn: xi ≥ 0, i � 1, . . . , n}. A � (aij)n×n denotes a n × n real
matrix. 0e superscript T denotes matrix or vector
transposition. Let

φ(0) � S(0), Es(0), Is(0), I
e
s(0), Rs(0), V(0), Ev(0),(

Iv(0), I
e
v(0), Rv(0))

T ∈ R10
+ ,

(2)

be the initial condition of system (1), and

φ(t) � S(t), Es(t), Is(t), I
e
s(t), Rs(t), V(t), Ev(t), Iv(t),(

I
e
v(t), Rv(t))

T ∈ R10
+ ,

(3)

be the solution of system (1) at time t for t≥ 0.
From the first equation of system (1), if S(t) � 0, then

(dS/dt)≥ 0. According to function continuity and mono-
tonicity, when S(0)≥ 0, we have S(t)≥ 0. Moreover, we
have similar results for other state variables of system (1).
0erefore, any solution of system (1) with nonnegative
initial conditions is nonnegative. Next, the following
lemma shows that the solutions are uniformly ultimately
bounded.

(1 – p)Λ

dS

β1(t)SIs + β2(t)SIs
e

β1(t)VIv + β2(t)VIv
e

β2(t)SIv
e

β1(t)SIv

ηsRs

ηvRv

dEs

dEv

αρEs

αρEv

μIs

μIv

Is

dIs

dIv

dIs
e

dIv
e

λ1Is

λ1Iv

λ2Iv
e

λ2Is
e

α(1 – ρ)Es

α(1 – ρ)Ev

dRsRs

Rv

ksβ1(t)VIs

ksβ2(t)VIs
e

pΛ
dV

Is
e

Iv

Iv
e

dRv
V Ev

S Es

Figure 2: Flow diagram representing transmission routes and other processes modeled by system (1).
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Lemma 1. 0e solutions of system (1) eventually enter

Γ �

S(t), Es(t), Is(t), Ie
s(t), Rs(t), V(t), Ev(t), Iv(t), Ie

v(t), Rv(t)( 􏼁
T ∈ R10

+ : 0≤ S(t) + Es(t)

+Is(t) + Ie
s(t) + Rs(t)≤

(1 − p)Λ
d

, 0≤V(t) + Ev(t) + Iv(t) + I
e
v(t) + Rv(t)≤

pΛ
d

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (4)

Moreover, Γ is a positively invariant set.

Proof. It is obvious that the unvaccinated population size
Ns(t) � S(t) + Es(t) + Is(t) + Ie

s(t) + Rs(t)≥ 0 and the
vaccinated population size Nv(t) � V(t) + Ev(t) + Iv(t) +

Ie
v(t) + Rv(t)≥ 0. From system (1), we have
dNs

dt
� (1 − p)Λ − dS − dEs − (d + μ)Is − dI

e
s − dRs

� (1 − p)Λ − dNs − μIs

≤ (1 − p)Λ − dNs,

(5)

dNv

dt
� pΛ − dV − dEv − (d + μ)Iv − dI

e
v − dRv

� pΛ − dNv − μIv

≤pΛ − dNv.

(6)

According to the comparison theorem, it follows from
(5) and (6) that

Ns(t)≤ Ns(0) −
(1 − p)Λ

d
􏼠 􏼡e

− dt
+
Λ
d

, (7)

Nv(t)≤ Nv(0) −
pΛ
d

􏼒 􏼓e
− dt

+
Λ
d

. (8)

Using (7) and (8), we obtain that
lim supt⟶∞Ns(t) � ((1 − p)Λ/d) and lim supt⟶∞Nv(t) �

pΛ/d. Hence, the solutions of system (1) are uniformly ulti-
mately bounded. Moreover, if the initial condition φ(0) ∈ Γ,
then the solution φ(t) ∈ Γ, i.e., Γ is a positively invariant set for
system (1). 0is completes the proof.

It is obvious that system (1) always has a disease-free
equilibrium:

E0 S
0
, E

0
s , I

0
s , I

e0
s , R

0
s , V

0
, E

0
v, I

0
v, I

e0
v , R

0
v􏼐 􏼑

�
(1 − p)Λ

d
, 0, 0, 0, 0,

pΛ
d

, 0, 0, 0, 0􏼠 􏼡

T

.

(9)

Next, we first introduce a very important threshold basic
reproduction number R0.0e basic reproduction number R0
is the number of secondary cases in which one case would
produce in a completely susceptible population [40]. We
calculate the basic reproduction number R0 for system (1) by
using the general calculation procedure given by Wang and
Zhao [41]. It is easy to verify that system (1) satisfies the
conditions (A1)–(A7) given in [41], and we have

F �

β1(t)S Is + Iv( 􏼁 + β2(t)S Ie
s + Ie

v( 􏼁

0
0

β1(t)V ksIs + Iv( 􏼁 + β2(t)V ksI
e
s + Ie

v( 􏼁

0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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,

Table 1: Descriptions and values of parameters in system (1).

Para. Value Interpretation (units) Source
Λ 1.41 × 106 0e monthly number of children entering the age of 6–71 months (/month) [38]
D 1.30 × 10− 2 Progression rate leaving the children group aged 6–71 months (/month) [38]

ks 0.56 Proportion of infectious individuals, without vaccination, caused by HFMD-associated
enteroviruses except EV71 (none) [39]

μ 3.4 × 10− 4 Disease-related death rate of HFMD (/month) [8, 9]
p 0.23 Vaccinated rate for children aged 6–71 months (/month) Fitting
η1 3.50 × 10− 2 Rate from Rs(t) to S(t) (/month) [24]
η2 3.50 × 10− 2 Rate from Rv(t) to V(t) (/month) Assumption
1/α 4/30 Average incubation period (/month) [2]
ρ 0.23 Proportion of symptomatic infectious individuals (none) Fitting
λ1 3.53 Recovery rate of symptomatic infectious individuals containing Is(t) and Iv(t) (/month) [2]
λ2 3.46 Recovery rate of asymptomatic infectious individuals containing Ie

s(t) and Ie
v(t) (/month) Fitting

a0 1.09 × 10− 7 0e baseline contact rate of symptomatic infectious individuals containing Is(t) and Iv(t) (none) Fitting
a1 0.12 0e magnitude of forcing of symptomatic infectious individuals containing Is(t) and Iv(t) (none) Fitting
a2 0.22 0e magnitude of forcing of symptomatic infectious individuals containing Is(t) and Iv(t) (none) Fitting
a3 0.03 0e magnitude of forcing of symptomatic infectious individuals containing Is(t) and Iv(t) (none) Fitting
a4 0.15 0e magnitude of forcing of symptomatic infectious individuals containing Is(t) and Iv(t) (none) Fitting
b0 2.01 × 10− 8 0e baseline contact rate of asymptomatic infectious individuals containing Ie

s(t) and Ie
v(t) (none) Fitting

b1 0.08 0emagnitude of forcing of asymptomatic infectious individuals containing Ie
s(t) and Ie

v(t) (none) Fitting
b2 0.19 0emagnitude of forcing of asymptomatic infectious individuals containing Ie

s(t) and Ie
v(t) (none) Fitting

b3 0.13 0emagnitude of forcing of asymptomatic infectious individuals containing Ie
s(t) and Ie

v(t) (none) Fitting
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V �

(d + α)Es

− αρEs + d + μ + λ1( 􏼁Is

− α(1 − ρ)Es + d + λ2( 􏼁Ie
s

(d + α)Ev

− αρEv + d + μ + λ1( 􏼁Iv

− α(1 − ρ)Ev + d + λ2( 􏼁Ie
v
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. (10)

0us, we obtain that

F �

0 β1(t)S0 β2(t)S0 0 β1(t)S0 β2(t)S0

0 0 0 0 0 0

0 0 0 0 0 0

0 β1(t)ksV
0 β2(t)ksV

0 0 β1(t)V0 β2(t)V0

0 0 0 0 0 0

0 0 0 0 0 0
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,

V �

d + α 0 0 0 0 0

− αρ d + μ + λ1 0 0 0 0

− α(1 − ρ) 0 d + λ2 0 0 0

0 0 0 d + α 0 0

0 0 0 − αρ d + μ + λ1 0

0 0 0 − α(1 − ρ) 0 d + λ2
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.

(11)

Let ΦV(t) be the monodromy matrix of the linear
ω-periodic system dz/dt � − V(t)z, and ρ(ΦV(ω)) be the
spectral radius of ΦV(ω), where ω is the period. Let Y(t, s)

be the 6 × 6 matrix solution of the following initial value
problem:

dY(t, s)

dt
� − VY(t, s), ∀t≥ s,

Y(s, s) � I,

⎧⎪⎪⎨

⎪⎪⎩
(12)

where I is the 6 × 6 identity matrix.
Suppose that ϕ(s) is the initial distribution of infectious

individuals, then F(s)ϕ(s) is the rate of new infections
produced by the infectious individuals introduced at time s,
and Y(t, s)F(s)ϕ(s) represents the distribution of those
infectious individuals who are newly infected at time s and
still remain in the infected compartment at time t for t≥ s.
0en, one has that

ψ(t) ≔ 􏽚
t

− ∞
Y(t, s)F(s)ϕ(s)ds

� 􏽚
∞

0
Y(t, t − a)F(t − a)ϕ(t − a)da,

(13)

is the distribution of accumulative new infections at
time t produced by all those infected individuals ϕ(s)

introduced at time previous to t. Let Cω be the ordered
Banach space of all ω periodic functions fromR6 toRwith
maximum norm ‖ · ‖ and positive cone C+

ω ≔
ϕ(t) ∈ Cω: ϕ(t)≥ 0,∀t ∈ R􏼈 􏼉. 0en, we can introduce a
linear operator L: Cω⟶ Cω by

(Lψ)(t) ≔ 􏽚
∞

0
Y(t, t − a)F(t − a)ϕ(t − a)da,

∀t ∈ R, ϕ ∈ Cω.

(14)

Following the results obtained in [41], the basic repro-
duction number R0 for model (1) is defined as the spectral
radius of operator L, i.e., R0 ≔ ρ(L).

In order to analyze the dynamic behaviors of system (1),
we have the following result.

Lemma 2 (Theorem 2.2 in [41]). 0e following statements
are valid:

(i) R0 � 1 if and only if ρ(ΦF− V(ω)) � 1
(ii) R0 > 1 if and only if ρ(ΦF− V(ω))> 1
(iii) R0 < 1 if and only if ρ(ΦF− V(ω))< 1

0erefore, the disease-free equilibrium E0 of system (1) is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
Next, we will analyze the global dynamics of the disease-free
equilibrium E0.

Theorem 1. If R0 < 1, then the disease-free equilibrium E0 of
system (1) is globally asymptotically stable.

Proof. According to Lemma 2, one has that R0 < 1 is
equivalent to ρ(ΦF− V(ω))< 1. Hence, we only need to prove
that when ρ(ΦF− V(ω))< 1, E0 is globally asymptotically
stable.

Choose ε> 0 small enough such that
ρ(ΦF− V+εM(ω)(ω))< 1, where

M(ω) �

0 β1(t) β2(t) 0 β1(t) β2(t)

0 0 0 0 0 0

0 0 0 0 0 0

0 β1(t)ks β2(t)ks 0 β1(t) β2(t)

0 0 0 0 0 0

0 0 0 0 0 0
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. (15)

From Lemma 1, for ∀ε> 0, there exists t1 > 0 such that for
t> t1, S(t)≤ ((1 − p)Λ/d) + ε and V(t)≤ (pΛ/d) + ε. 0us,
for t> t1, it follows from system (1) that
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dEs

dt
≤ β1(t)

(1 − p)Λ
d

+ ε􏼠 􏼡 Is + Iv( 􏼁

+ β2(t)
(1 − p)Λ

d
+ ε􏼠 􏼡 Ie

s + Ie
v( 􏼁 − (d + α)Es,

dIs

dt
� αρEs − d + μ + λ1( 􏼁Is,

dIe
s

dt
� α(1 − ρ)Es − d + λ2( 􏼁I

e
s,

dEv

dt
≤ β1(t)

pΛ
d

+ ε􏼒 􏼓 ksIs + Iv( 􏼁 + β2(t)
pΛ
d

+ ε􏼒 􏼓

· ksI
e
s + Ie

v( 􏼁 − (d + α)Ev,

dIv

dt
� αρEv − d + μ + λ1( 􏼁Iv,

dIe
v

dt
� α(1 − ρ)Ev − d + λ2( 􏼁I

e
v.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(16)

Consider the following auxiliary system:

du

dt
� A(ε)h, (17)

where h � (h1, . . . , h6)
T, A(ε) � F − V + εM(ω). Following

Lemma 2.1 in [42], there exists a positiveω-periodic function
􏽢h(t) � (􏽢h1, . . . , 􏽢h6)

T such that h(t) � eμt􏽢h(t) is a solution of
system (17), where μ � (1/ω)ln ρ(ΦF− V+εM(ω)(ω)). Due to
the continuity of functions and following Lemma 2, when
ε⟶ 0 and R0 < 1, then ρ(ΦF− V+εM(ω)(ω))< 1. Hence, we
have u(t)⟶ 0 as t⟶∞, which implies that the zero
solution of system (17) is globally asymptotically stable.
Based on the comparison principle, it follows from system
(17) that

lim
t⟶∞

Es(t), Is(t), I
e
s(t), Ev(t), Iv(t), I

e
v(t)( 􏼁

T
� 0. (18)

Using (18), it follows from the fifth and last equations in
system (1) that

lim
t⟶∞

Rs(t) � 0,

lim
t⟶∞

Rv(t) � 0.
(19)

Using (18) and (19), it follows from the first and sixth
equations in system (1) that

lim
t⟶∞

S(t) �
(1 − p)Λ

d
,

lim
t⟶∞

V(t) �
pΛ
d

.

(20)

0us, E0 is globally asymptotically stable when R0 < 1.
0is completes the proof.

Next, we will analyze the persistence of system (1).
Define

X0 � S, Es, Is, I
e
s , Rs, V, Ev, Iv, I

e
v, Rv( 􏼁

T ∈ Γ :􏽮

Es > 0, Is > 0, I
e
s > 0, Rs > 0, Ev > 0, Iv > 0, I

e
v > 0, Rv > 0􏼉,

zX0 � Γ\X0.

(21)

Assume that u(t,φ(0)) is the solution of system (1) with
the initial value φ(0). According to the fundamental exis-
tence-uniqueness theorem in [43], u(t, φ(0)) is unique.
Denote that P: Γ⟶ Γ is the Poincaré map with respect to
system (1), i.e.,

P(φ(0)) � u(ω,φ(0)), ∀φ(0) ∈ Γ, (22)

where ω is the period. It is obvious that

P
m

E0( 􏼁 � u mω, E0( 􏼁, ∀m≥ 0. (23)

It follows from Lemma 1 that Γ is positively invariant and
P is point dissipative for system (1). In order to analyze the
persistence for system (1), we give the following lemma.

Lemma 3. If R0 > 1 , then there exists δ > 0 such that for any
φ(0) ∈ X0 with ‖φ(0) − E0‖≤ δ, we have

lim sup
m⟶∞

D P
m

(φ(0)), E0( 􏼁≥ δ, (24)

where D is a distance function in X0.

Proof. According to Lemma 1, if R0 > 1, then
ρ(ΦF− V(ω))> 1. Choose ϵ> 0 small enough such that
ρ(ΦF− V− εM(ω)(ω))> 1. Now, we prove that

lim sup
m⟶∞

D P
m

(φ(0)), E0( 􏼁≥ δ. (25)

If it is false, then

lim sup
m⟶∞

D P
m

(φ(0)), E0( 􏼁< δ, (26)

for some φ(0) ∈ X0. Assume that there exists m> 0 such that
D(Pm(φ(0)), E0)< δ. According to the continuity of the
solutions associated with the initial conditions, when
‖φ(0) − E0‖≤ δ, it follows that

u t1, P
m

(φ(0))( 􏼁 − u t1, E0( 􏼁
����

����< ε, m≥ 0, t1 ∈ [0,ω].

(27)

For ∀t≥ 0, let t � mω + t1, where t1 ∈ [0,ω] and
m � [t/ω], which is the greatest integer less than or equal to
t/ω. 0en, for ∀t≥ 0, we have

u(t, φ(0)) − u t, E0( 􏼁
����

���� � u t1, P
m

(φ(0))( 􏼁 − u t1, E0( 􏼁
����

����< ϵ,

t1 ∈ [0,ω],

(28)

which implies that ((1 − p)Λ/d) − ϵ≤S(t)≤ ((1 − p)Λ/d)+

ϵ,(pΛ/d) − ϵ≤V(t)≤(pΛ/d)+ϵ,t≥0.0en, for ‖φ(0) − E0‖≤
δ, one has
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dEs

dt
≥ β1(t)

(1 − p)Λ
d

− ε􏼠 􏼡 Is + Iv( 􏼁

+ β2(t)
(1 − p)Λ

d
− ε􏼠 􏼡 Ie

s + Ie
v( 􏼁 − (d + α)Es,

dIs

dt
� αρEs − d + μ + λ1( 􏼁Is,

dIe
s

dt
� α(1 − ρ)Es − d + λ2( 􏼁I

e
s,

dEv

dt
≥ β1(t)

pΛ
d

− ε􏼒 􏼓 ksIs + Iv( 􏼁 + β2(t)
pΛ
d

− ε􏼒 􏼓

· ksI
e
s + Ie

v( 􏼁 − (d + α)Ev,

dIv

dt
� αρEv − d + μ + λ1( 􏼁Iv,

dIe
v

dt
� α(1 − ρ)Ev − d + λ2( 􏼁I

e
v.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Consider the following auxiliary linear system:
dg

dt
� A(ϵ)g. (30)

As the similar proof process in 0eorem 1, there exists a
positive ω-periodic function 􏽢g(t) � (􏽢g1, . . . , 􏽢g6)

T such that
g(t) � eμt􏽢g(t) is a solution of system (30), where μ� (1/ω)

lnρ(ΦF− V− εM(ω)(ω)). Since μ� (1/ω)lnρ(ΦF− V− εM(ω)(ω))>
1, it follows that if g(0)>0, then g(t)⟶∞ as t⟶∞.
From the comparison principle, we have

Es(t)⟶∞,

Is(t)⟶∞,

I
e
s(t)⟶∞,

Ev(t)⟶∞,

Iv(t)⟶∞,

I
e
v(t)⟶∞,

(31)

as
Es(0)> 0,

Is(0)> 0,

I
e
s(0)> 0,

Ev(0)> 0,

Iv(0)> 0,

I
e
v(0)> 0,

(32)

for t⟶∞, which is a contradiction with Lemma 1.
0erefore, lim supm⟶∞D(Pm(φ(0)), E0)≥ δ. 0is com-
pletes the proof.

Theorem 2. If R0 > 1, then system (1) is uniformly persistent
and has at least one positive periodic solution.

Proof. First, we prove that system (1) is uniformly persistent,
i.e., there exists δ > 0 such that any solution φ(t) of system
(1) with the initial value φ(0) ∈ X0 satisfies

lim inf
t⟶∞

Es(t), Is(t), I
e
s(t), Rs(t), Ev(t), Iv(t), I

e
v(t), Rv(t)( 􏼁

T

≥ (δ, δ, δ, δ, δ, δ, δ, δ)
T
.

(33)
For ∀φ(0) ∈ X0, solving system (1), we obtain that

S(t) � e
− 􏽒

t

0
d+β1(t) Is(u)+Iv(u)( )+β2(t) Ie

s(u)+Ie
v(u)( )[ ]du

S(0) + 􏽚
t

0
(1 − p)Λ + ηsRs( 􏼁e

􏽒
t

0
d+β1(t) Is(u)+Iv(u)( )+β2(t) Ie

s(u)+Ie
v(u)( )[ ]dudu􏼢 􏼣,

Es(t) � e− (α+d)t Es(0) + 􏽚
t

0
β1(t)S(u) Is(u) + Iv(u)( 􏼁 + β2(t)S(u) I

e
s(u) + I

e
v(u)( 􏼁􏼂 􏼃du􏼢 􏼣,

Is(t) � e− d+μ+λ1( )t Is(0) + 􏽚
t

0
αρEs(u)du􏼢 􏼣,

Ie
s(t) � e− d+λ2( )t Ie

s(0) + 􏽚
t

0
α(1 − ρ)Es(u)du􏼢 􏼣,

Rs(t) � e− d+ηs( )t Rs(0) + 􏽚
t

0
λ1Is(u) + λ2I

e
s(u)( 􏼁du􏼢 􏼣,

V(t) � e
− 􏽒

t

0
d+β1(t) ksIs(u)+Iv(u)( )+β2(t) ksI

e
s(u)+Ie

v(u)( )[ ]du
V(0) + 􏽚

t

0
pΛ + ηsRs( 􏼁e

􏽒
t

0
d+β1(t) ksIs(u)+Iv(u)( )+β2(t) ksI

e
s(u)+Ie

v(u)( )[ ]dudu􏼢 􏼣,

Ev(t) � e− (α+d)t Ev(0) + 􏽚
t

0
β1(t)V(u) ksIs(u) + Iv(u)( 􏼁 + β2(t)V(u) ksI

e
s(u) + I

e
v(u)( 􏼁􏼂 􏼃du􏼢 􏼣,

Iv(t) � e− d+μ+λ1( )t Iv(0) + 􏽚
t

0
αρEv(u)du􏼢 􏼣,

Ie
v(t) � e− d+λ2( )t Ie

v(0) + 􏽚
t

0
α(1 − ρ)Ev(u)du􏼢 􏼣,

Rv(t) � e− d+ηs( )t Rv(0) + 􏽚
t

0
λ1Iv(u) + λ2I

e
v(u)( 􏼁du􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)
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From (34), it is obvious that for t≥ 0, the solution
φ(t) ∈ X0 for system (1) as the initial value φ(0) ∈ X0. 0is
means that X0 is positively invariant. In addition, zX0 is
relatively closed in Γ, and following Lemma 1, the discrete-
time system Pm{ }m≥0 admits a global attractor in Γ. 0en, we
set

Mz ≔ φ(0) ∈ zX0: P
m

(φ(0)) ∈ zX0,∀m≥ 0􏼈 􏼉. (35)

Now, we prove that

Mz � (S, 0, 0, 0, 0, V, 0, 0, 0, 0)
T ∈ zX : S≥ 0, V≥ 0􏽮 􏽯≜Mz

′ .

(36)

It is easy to know that Mz
′ ⊆Mz, then we only need to

prove Mz ⊆Mz
′ . 0at is, for any

φ(0) � S(0), Es(0), Is(0), I
e
s(0), Rs(0), V(0), Ev(0),(

Iv(0), I
e
v(0), Rv(0))

T ∈ zX0,

(37)

we have

Is(mω) � I
e
s(mω) � Rs(mω) � Ev(mω) � Iv(mω)

� I
e
v(mω) � Rv(mω) � 0.

(38)

If not, then there exists m1 ≥ 0 such that

Is m1ω( 􏼁, I
e
s m1ω( 􏼁, Rs m1ω( 􏼁, Ev m1ω( 􏼁, Iv m1ω( 􏼁,(

I
e
v m1ω( 􏼁, Rv m1ω( 􏼁􏼁

T ≥ 0.
(39)

If we replace the initial time t � 0 with t � m1ω, then it
follows from (34) that

Es(t)> 0,

Is(t)> 0,

I
e
s(t)> 0,

Rs(t)> 0,

Ev(t)> 0,

Iv(t)> 0,

I
e
v(t)> 0,

Rv(t)> 0,

(40)

for ∀t>m1ω.0is means that Pm(φ(0)) ∉ zX0, for ∀m>m1,
which contradicts the definition of Mz. 0erefore, it follows
that Mz ⊆Mz

′ . Moreover, there only exists one fixed point E0
of P in Mz.

According to Lemma 3, E0 is an isolated invariant set in
Γ. From the acyclicity theorem on uniform persistence for
maps (0eorem 1.3.1 in [44]), it follows that P is uniformly
persistent with respect to (X0, zX0). Moreover, according to
0eorem 1.3.1 in [44], the solutions of system (1) are uni-
formly persistent with respect to (X0, zX0), i.e., there exists
δ > 0 such that any solution φ(t) of system (1) with the initial
value φ(0) ∈ X0 satisfies

lim inf
t⟶∞

Es(t), Is(t), I
e
s(t), Rs(t), Ev(t), Iv(t), I

e
v(t), Rv(t)( 􏼁

T

≥ (δ, δ, δ, δ, δ, δ, δ, δ)
T
.

(41)

Next, we prove that system (1) has a positive periodic
solution. 0eorem 1.3.6 in [44] implies that P has a fixed
point

S
∗
(0), E

∗
s (0), I

∗
s (0), I

e∗
s (0), R

∗
s (0), V

∗
(0), E

∗
v (0), I

∗
v (0), I

e∗
v (0), R

∗
v (0)( 􏼁

T ∈ X0. (42)

Moreover, we can also obtain that S∗(0)> 0 for system
(1). Suppose not, assume S∗(0) � 0. By the periodicity of P,

we have S∗(0) � S∗(nω), n � 1, 2, 3, . . .. From the first
equation of (34), one has

S
∗
(nω) � e

− 􏽒
nω

0
d+β1(t) Is(u)+Iv(u)( )+β2(t) Ie

s(u)+Ie
v(u)( )[ ]du

· S
∗
(0) + 􏽚

​ t

0
(1 − p)Λ + ηsRs( 􏼁e

􏽒
nω

0
d+β1(t) Is(u)+Iv(u)( )+β2(t) Ie

s(u)+Ie
v(u)( )[ ]dudu􏼢 􏼣> 0,

(43)

which contradicts with S∗(0) � S∗(nω) � 0. 0us, it follows
that S∗(0)> 0. 0en, from (34), it is easy to obtain that
S∗(t)> 0, E∗s (t)> 0, I∗s (t)> 0, Ie∗

s (t)> 0, R∗s (t)> 0, V∗(t)>
0, E∗v (t)> 0, I∗v (t)> 0, Ie∗

v (t)> 0, R∗v (t)> 0, for t≥ 0. Due to
the definition of semiflow P, we obtain that

S
∗
(t), E
∗
s (t), I

∗
s (t), I

e∗
s (t), R

∗
s (t), V

∗
(t), E
∗
v (t), I

∗
v (t),(

I
e∗
v (t), R

∗
v (t))

T
,

(44)

is a positiveω-periodic solution of system (1).0is completes
the proof.

4. Simulations and Sensitivity Analysis

In this section, by using system (1), we simulate the reported
data of HFMD inmainland China from January 2008 to June
2019, predict the trend of the disease, and seek for some
prevention and control strategies. We obtain the monthly
number of newly reported HFMD cases in mainland China
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from the website of the Chinese Center for Disease Control
and Prevention (CCDC) [9] and the National Health and
Family Planning Commission of the People’s Republic of
China (NHFPC) [8]. We only consider the population of
young children aged 6–71months, who are a high-risk group
for HFMD [31, 32] and get demographic information from
the National Bureau of Statistics of China (NBSC) [38].
FromNBSC [38], we obtain the monthly number of children
entering the age of 6–71 months Λ � 1.41 × 106 and the
average monthly rate of leaving the children group aged
6–71 months d � 1.30 × 10− 2. From CCDC [9] and NHFPC
[8], we get the disease-related death rate μ � 3.40 × 10− 4.0e
proportion of infectious individuals without vaccination
caused by HFMD viruses except EV71 is ks � 0.56 [39].
Other parameters can be obtained from the literature or
assumed on the basis of common sense (see Table 1). Un-
fortunately, there is no public data on the vaccinated rate p
and the proportion of symptomatic infectious individuals ρ.
0erefore, we estimate the values of unknown parameters
containing p, ρ and β1, β2. By using the BP neural network
algorithm [45] (see Appendix), we estimate parameters of
system (1) by calculating the following error function:

ER �
1
n

􏽘

n

i�1
Ii − 􏽢Ii􏼐 􏼑

2
, (45)

where 􏽢Ii is the reported data of HFMD at time t. Ii is the
numerically computed solution of I(t) of system (1) at time
t. n is the total number of sample points collected at all times.

Next, we set the initial conditions for system (1). We take
January 2008 as the initial time. It notes that the EV71
vaccine has been vaccinated in mainland China starting in
2016, then vaccinated rate p of system (1) is zero before 2016
[13, 14]. Hence, since the total number of vaccinated in-
dividuals Nv(t) � 0 before January 2016, then it follows that
V(0) � 0, Ev(0) � 0, Iv(0) � 0, Ie

v(0) � 0, Rv(0) � 0. 0e
initial number of the susceptible human population aged
6–71 months of 2008 is calculated as S(0) � 9.23 × 107 from
NBSC [8], and the number of the initial unvaccinated
symptomatic infectious humans Is(0) � 2.10 × 104 is from
CCDC [9]. However, the initial number of the unvaccinated
exposed humans Ev(0), the unvaccinated asymptomatic
infectious humans Ie

s(0), and the unvaccinated recovered
humans Rs(0) cannot be obtained. We derive Ev(0) re-
versely by the parameter αρ; get Ie

s(0) by using the pro-
portion parameter ρ to compare with Is(0), and Rs(0) is
estimated roughly. 0e numerical simulation of the model
on the number of HFMD cases in mainland China from
January 2008 to June 2019 is shown in Figure 3, and its fitting
error ER (45) is calculated as 6.71 × 10− 4. In addition, in
order to test how well system (1) actually reflects the data, by
using the method in [22, 46], we consider the following
hypotheses.

Null hypothesis, H0: the estimated parameters of system
(1) are equal to actual values.

Alternative hypothesis, H1: the estimated parameters of
system (1) are not equal to actual values.

Since the EV71 vaccine was only started in 2016, we
consider hypothesis test for the two time periods from

January 2008 to December 2015 and January 2016 to June
2019, and the chi-square values and degrees of freedom are
shown in Table 2. 0en, from Table 2, we obtain that it
cannot reject the null hypothesis at the 5% significant level
by Pearson’s criterion of chi-square test [47]. 0erefore, it
indicates that, with these parameter values, there is a good fit
between the simulation of model (1) and the HFMD cases in
mainland China. Furthermore, based on our parameters
listed in Table 1, we calculate the basic reproduction number
as R0 � ΦF− V(24) � 1.09 after 2015, for this case where the
vaccination is considered, which means that system (1)
admits at least a positive periodic solution (see 0eorem 2).

It notes the initial conditions except Is(0) adopted in
model fitting are mostly assumed and back-extrapolated by
parameters. 0us, it is necessary to analyze the influence of
the initial values S(0), Es(0), Is(0), Ie

s(0), Rs(0) on the
number of infected cases Is(t) + Iv(t), which is illustrated in
Figure 4. Figure 4 shows that the initial value S(0) has a
greater impact on Is(t) + Iv(t) while other initial values have
little or no impact on Is(t) + Iv(t). 0is implies that the
selection of the initial values S(0) is very important for our
simulation. According to [6, 7, 10, 11, 32], due to most of the
infected individuals of HFMD are 6–71 months old, then we
carefully select that the susceptible individuals are 6–71
months old.

In order to investigate the effect of the EV71 vaccination
strategy on HFMD in mainland China, we compare the
trends of HFMD between with vaccination and without
vaccination by simulating model (1), which is presented in
Figure 5. In Figure 5, the solution curve without considering
vaccination is on top of the one with considering vaccination
after 2015, whichmeans that the EV71 vaccination strategy is
effective in reducing the spread of HFMD inmainland China
in the last two years. In addition, we calculate the basic
reproduction number R0 of system (1) without considering
vaccination (p � 0) as 1.24 and with considering vaccination
(p � 0.23) as 1.09, so system (1) in each case admits a
positive periodic solution according to 0eorem 2 (see the
solution curves from 2030 to 2035 in Figure 5). In addition,
Figure 6 shows that under the current vaccination measures,
the total number of patients in 2016, 2017, and 2018 has
reduced about 4.62 × 105, 5.16 × 105, and 7.39 × 105,
respectively.

To compare the performance of the periodic transmis-
sion functions in this paper with some previous research
studies, by using system (1), we consider the following two
cases:

Periodic functions (I): choose the transmission functions
in this paper such as β1(t) � a0[1 + a1 sin((π/2)t) +

a2 sin((π/6)t) + a3 sin((π/12)t) + a4 sin(− 1 + (π/3)t)] and
β2(t) � b0[1 + b1 sin(− 1+ (π/2) + (π/4)t) + b2 sin((π/6)t) +

b3 sin((π/12)t)], where the values of ai, bi, i � 1, . . . , 3 are
given in Table 1.

Periodic functions (II): choose the transmission func-
tions in the previous research studies [26–28, 30] such as
β1(t) � a0[1 + a1 sin((π/6)t)] and β2(t) � b0[1 + b1 sin
((π/6)t)]. Based on our parameter values in Table 1, we
estimate that the optimal values of a0, a1, b0, b1 are
1.19 × 10− 7, 0.23, 0.21, 2.03 × 10− 8, respectively.
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0e studies in [48] showed that the trend of monthly new
cases of infectious diseases is usually closely related to the
transmission functions. It notes that the periods of β1(t) and
β2(t) are 12 months, and these functions have only one peak
in each year. Meanwhile, the periods of β1(t) and β2(t) are
24 months, and these functions have two peaks in each year.
As explained in Introduction, the transmission functions
β1(t), β2(t) are closer to the trend of actual data change in
mainland China than β1(t), β2(t). Moreover, in Figure 7, the
simulation of Is(t) + Iv(t) of system (1) is based on the
periodic functions (I) (i.e., β1(t), β2(t)) but the periodic
functions (II) (i.e., β1(t), β2(t)) can well fit the two phe-
nomena, where HFMD has a two-year epidemic cycle and
the number of the cases per year has a slight upward trend in
September and October in mainland China (see the reasons
in Introduction).

Moreover, the period of the solution for system (1) with
periodic functions (II) is 12 months, which fails to reflect the
24 months periodic variation of the disease, while these
biological phenomena are well presented by the solution for
system (1) with periodic functions (I). Furthermore, we
calculate the fitting error ER for system (1) with periodic
functions (I) and with periodic functions (II) which is 4 ×

10− 3 and 1.20 × 10− 2, respectively. On the whole, our model,
especially based on our selection of the transmission rate
functions, can well reveal the objective laws of the spread of
HFMD in mainland China.

According to0eorems 1 and 2, we have known that the
basic reproduction number R0, which determines the

outbreak of the disease or extinction, is an important
quantity in characterizing the spread of disease.0erefore, to
find some effective prevention and control measures for
HFMD in mainland China, we perform sensitivity analysis
to determine the influence of some parameters on R0. Due to
some parameters of system (1) for HFMD are difficult or not
to control such as Λ, d, α, ρ and so on, biologically, then we
only consider the influence of the parameters p, β1, β1, λ1 on
R0, which are depicted in Figure 8, and its related prevention
and control measures are shown in Figure 9. Under the
assumption of low vaccine coverage, choosing p≤ 0.3,
Figure 8(a) shows that R0 decreases with the increase of p.
0is implies that the larger vaccinated rate p (p≤ 0.3) is, the
less number of symptomatic infectious individuals Is + Iv is
(see Figure 9(a)). Moreover, Figure 8(a) also shows that R0 is
always larger than 1 as p≤ 0.3, which means that without
other prevention and control, the disease is not extinct.
Figures 8(b) and 8(c) show that the less the baseline contact
rate of β1 or β2 is, the less R0 is. Moreover, when the baseline
contact rate a0 < 9 × 10− 8 or b0 < 1.45 × 10− 8, R0 can be less
than 1, which means that the disease is extinct. However,
based on our estimating parameter values, a0 or b0 is far
greater than 9 × 10− 8 or 1.45 × 10− 8, which means that
HFMD becomes an endemic disease in mainland China. If
the relevant departments can effectively control the contact
rate between the healthy children and the infectious children
and improve hygienic precautions and environmental
cleaning, such as washing hands before meals and after using
the toilet, andmaking air fresh indoors and so on, the disease
can be effectively control or extinct (see Figures 9(b) and
9(c)). Figure 8(d) shows that R0 decreases with the in-
creasing of the recovery rate of symptomatic infectious
individuals λ1, i.e., if average recovery period 1/λ1 of
symptomatic infectious individuals is less, then R0 is less,
and the disease is extinct if λ1 > 4.28. Figure 9(d) shows that
the number of symptomatic infectious cases decreases as the
recovery rate λ1 increases, especially the disease is extinct
when λ1 � 4.73. 0erefore, we suggest that the patients
should seek medical advice in time to achieve diagnosis and
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Figure 3: 0e comparison between the reported HFMD cases in mainland China and the simulation of Is(t) + Iv(t) of system (1) from
January 2008 to June 2019. 0e values of parameters are given in Table 1. 0e initial conditions are S(0) � 9.23 × 107, Es(0) � 8 × 104,
Is(0) � 2 × 104, Ie

s(0) � 6 × 104, Rs � 1 × 105, V(0) � 0, Ev(0) � 0, Iv(0) � 0, Ie
v(0) � 0, Rv(0) � 0. It should be noted that we take k � 0

before 2016.

Table 2: Chi-square values and degrees of freedom from January
2008 to December 2015 and January 2016 to June 2019.

Year Jan. 2008–Dec. 2015 Jan. 2016–June 2019
Chi-square value 68.07 33.19
DF 82 28
AV 104.14 41.34
Note: AV denotes the accepting value is at 5% significant level with degrees
of freedom DF.
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treatment early. At the same time, because the disease does
not have targeted drugs, some targeted drugs need to be
developed actively. Finally, in order to further discuss the
credibility of our results, we will evaluate and discuss the
consistency of the scope of R0 with other studies in China.
Although the ideas of dynamicmodeling for different studies
based on the HFMD cases in China are not the same, the
range of R0 of models may have similar characteristics. For

instance, the study in [30], which assumed that the vaccine
was against all HFMD-associated enteroviruses and ana-
lyzed the HFMD cases in mainland China from 2010 to 2014,
showed that as the vaccination rate, the baseline contact rate
of symptomatic infectious individuals and the baseline
contact rate of asymptomatic infectious individuals change,
the ranges of R0 are (1.15, 1.58), (1.37, 1.58), and
(0.48, 1.58), respectively. 0e study in [28], based on the
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Figure 4:0e influence of initial conditions of humans on the number of HFMD cases Is(t) + Iv(t): (a) different values of S(0); (b) different
values of Es(0); (c) different values of Is(0); (d) different values of Ie

s(0); (e) different values of Rs(0).

12 Complexity



HFMD cases in Shandong Province, China, which mainly
discussed the impacts of quarantine measures and the
fraction of asymptomatic infectious individuals on the
spread of HFMD, indicated that, as the quarantine rate and
the fraction of asymptomatic infectious individuals change,
the ranges of R0 are (1.04, 1.14) and (1.02, 1.05). In a word,
most studies for HFMD in China (see paper [27, 28, 30, 49])
showed that the range of R0 is around 1 and not far away
from 1, which is similar to the change of R0 shown in
Figure 8. 0erefore, these discussions can also indirectly
improve the credibility of our results.

5. Discussion

In this paper, we have proposed and analyzed a HFMD
model with periodic transmission rates to take into account
seasonal outbreak of HFMD infection and to consider EV71

vaccination. 0e studies in [29, 30] have assumed that the
vaccine is effective against all enteroviruses, which may not be
in line with the current situation of HFMD transmission in
mainland China. In fact, one vaccine is available in mainland
China and it works only for EV71 but not for others. To
investigate the effects of EV71 vaccination on HFMD in the
presence of multiple pathogenic viruses, our proposed model
divided the total individuals into the unvaccinated and the
vaccinated, which were described in different compartments
(see Section 2). Moreover, we have chosen novel periodic
transmission functions, unlike the previous studies in
[4, 26, 28, 30], to reflect the two-year periodic nature and the
infections’ change with the opening and closing of schools in
mainland China (see Sections 1 and 2).

We have analyzed the global dynamics of system (1) by
evaluating the basic reproduction number R0 ≔ ρ(L): if
R0 < 1, then the disease-free equilibrium of system (1) is
globally asymptotically stable (see 0eorem 1), which means
that the disease is extinct; if R0 > 1, then system (1) uniformly
persists and has at least one positive periodic solution (see
0eorem 2), which means that the disease persists or has not
been eliminated.

By fitting our model to the reported data on symp-
tomatic cases of HFMD inmainland China, we estimated the
basic reproduction number R0 � 1.24 from 2008 to 2015 and
R0 � 1.09 from 2016 to June 2019. 0e major factors for this
difference are that EV71 vaccination has been used since
2016, the reason of which can also be seen in the analyses for
the influence of the vaccinated rate p on R0 in Figure 8(a).
Moreover, the periodic transmission functions chosen in our
paper perform efficiently for system (1) to fit the reported
data in mainland China, given the analyzes of Figure 7.
Furthermore, to find effective prevention and control
measures for HFMD in mainland China, we did sensitivity
analysis to determine the influence of some artificial control
parameters on R0. It showed that under the assumption of
low vaccine coverage, increasing the vaccinated rate with
respect to EV71 vaccination can reduce the number of
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Figure 5:0e tendency of HFMD from system (1) with vaccination (p � 0 before 2016 and p � 0.23 in others) and without vaccination in a
long time (p � 0 in all times). 0e values of other parameters and the initial conditions are the same as in Figure 3.
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infections, but the disease does not go extinct. If we can
effectively control the contact rate between the healthy
children and the infectious children (see the analyses of
Figures 8(b) and 8(c) and Figures 9(b) and 9(c)) and improve
the medical conditions (see the analyses of Figures 8(d) and
9(d)), the disease may be eliminated. In a word, the proposed
prevention and control measures may be useful for public
health governance.

It notes that the observed aggregated monthly HFMD
cases in Figure 1 are a mixture of different seasonality in
mainland China. Also, Xing et al.’s study of HFMD in
mainland China from 2008 to 2012 [33] showed that sea-
sonal diversities (although this was not the only factor) made
the spread of HFMD present different characteristics in
different regions, such as the annual amplitude of HFMD
epidemics increased with increasing latitude and semiannual
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periodicity was the strongest in the south, and so on. It is
difficult for us to use the data in Figure 1 to discuss the
differences in the spread of HFMD in different regions of the
country. 0us, we used the national average transmission
rate functions β1(t), β2(t) in our modeling, where
β1(t), β2(t) are periodic functions. In future studies, in order
to avoid the influence of seasonal differences in different
regions on the research results, we will consider a specific
region such as a province in China.

Appendix

The BP Neural Network Algorithm for
Estimating Parameters

Based on the BP neural network, we design an algorithm to
estimate unknown parameters of system (1). Denote the
unknown parameter vector θ � (p, ρ, λ2, a0, a1, a2, a3,

a4, b0, b1, b2, b3)
T for system (1) (see Table 1). Let

I � (I1, I2, . . . , I138)
T and 􏽢I � (􏽢I1,

􏽢I2, . . . , 􏽢I138)
T (the num-

ber 138 is the total months from January 2008 to June 2019).
0en, the estimation algorithm is described as follows (the
detailed process of the BP neural network can be seen in [45],
and the topology of the BP neural network is shown in
Figure 10):

Step 1: generate sample data: generate n group sample
data θi � (pi, ρi, λi

2, ai
0, ai

1, ai
2, ai

3, ai
4, bi

0, bi
1, bi

2, bi
3)

T,
i � 1, 2, . . . , n by Latin hypercube sampling. 0en,
taking θi into system (1), we obtain n group numerically
computed data Ii � (Ii

1, Ii
2, . . . , Ii

138)
T, i � 1, 2, . . . , n

(see Figure 11).
Step 2: use the BP neural network to train data: set P �

(I1, I2, . . . , In) and T � (θ1, θ2, . . . , θn), and each
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Figure 9: 0e influence of parameters on symptomatic infectious individuals Is + Iv (a) versus p; (b) versus a0, being the baseline contact
rate of β1; (c) versus b0, being the baseline contact rate of β2; (d) versus λ1. Other parameter values are given in Table 1, and the initial
conditions are the same as in Figure 3.
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Figure 10: Structure chart of the BP neural network.0e BP neural
network consists of three layers: input layer, hidden layer, and
output layer. 0e number of nodes in the input layer, the hidden
layer, and the output layer is 120, 100, and 12, respectively.
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element of P and T is normalized into interval [− 1, 1].
0en, taking P as the input vector and T as the output
vector, the BP neural network is used to train dataset,
and let Net be the training completed network, which
the training error is less than the setting value (see
Figure 12).
Step 3: estimate parameters: first, taking reported data
􏽢I � (􏽢I1,

􏽢I2, . . . , 􏽢I138)
T of HFMD as the input vector into

the training completed network Net, we gain an output
forecast vector θ∗ � (p∗, ρ∗, λ∗2 , a∗0 , a∗1 , a∗2 , a∗3 , a∗4 , b∗0 , b∗1 ,

b∗2 , b∗3 )T. 0en, taking θ∗ into system (1), it gets the
simulation of Ii. Finally, we set a small positive content
ε � 0.01 to estimate the error function ER (45). If
ER < ε, the estimated parameter vector θ∗ is reasonable;
otherwise, it goes to step 1 and reset the settings of the
BP neural network.
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Human gait phase recognition is a signi�cant technology for rehabilitation training robot, human disease diagnosis, arti�cial
prosthesis, and so on. �e e�cient design of the recognition method for gait information is the key issue in the current gait phase
division and eigenvalues extraction research. In this paper, a novel voting-weighted integrated neural network (VWI-DNN) is
proposed to detect di�erent gait phases from multidimensional acceleration signals. More speci�cally, it �rst employs a gait
information acquisition system to collect di�erent IMU sensors data �xed on the human lower limb. �en, with dimensionality
reduction and four-phase division preprocessing, key features are selected and merged as uni�ed vectors to learn common and
domain knowledge in time domain. Next, multiple re�ned DNNs are transferred to design a multistream integrated neural
network, which utilizes the mixture-granularity information to exploit high-dimensional feature representative. Finally, a voting-
weighted function is developed to fuse di�erent submodels as a uni�ed representation for distinguishing small discrepancy among
di�erent gait phases. �e end-to-end implementation of the VWI-DNN model is �ne-tuned by the loss optimization of gradient
back-propagation. Experimental results demonstrate the outperforming performance of the proposed method with higher
classi�cation accuracy compared with the other methods, of which classi�cation accuracy and macro-F1 is up to 99.5%. More
discussions are provided to indicate the potential applications in combination with other works.

1. Introduction

As the most common form of human behavior, walking style
is related to health status and individual di�erences, which
can be shown by the di�erences of the gait phase [1].
Detecting results of the gait phase can provide references for
disease diagnosis and rehabilitation [2, 3], which is of great
signi�cance to the patients’ clinical rehabilitation. For ex-
ample, an estimated gait disorder of 1.1 million children may
have originated from di�erent somatosensory disease in the
United States [3]. In addition, researchers have managed to
program humanoid robots to use human-based gait tra-
jectories generated via gait classi�cation [4], as well as
consistently control wearable assistive devices such as ro-
botic prostheses [5] and orthoses [6] for the recovery of
lower-limb mobility. For instance, Yan et al. [4] proposed
that gait phase detection can also be used to facilitate the
development human auxiliary equipment, such as the

medical ankle joint (AF), hip joint (HK), and knee ankle
joint (KAF) orthopedic devices, as well as exoskeletons and
other equipment. Similarly, gait phase detection plays an
important role in sports medicine [7] and rehabilitation
medicine [8].

Computational methods for gait phase recognition fall
into two main categories. �e �rst category is comprised of
algorithms, which divide the gait phases based on the
threshold selection of either raw or processed data [9].
Secondly, some deep-learning approaches have emerged in
recent years to substitute the aforementioned techniques
that rely on traditional classi�cation algorithms. Some have
applied deep-learning algorithms to di�erent types of sen-
sors to detect gait phases. For instance, Mukherjee et al. [10]
present a fully automated frontal (i.e., employing front and
back views only) gait phase recognition approach using the
depth information captured by multiple Kinect RGB-D
cameras. However, the captured image information is easily

Hindawi
Complexity
Volume 2020, Article ID 4760297, 14 pages
https://doi.org/10.1155/2020/4760297

mailto:mark_yanlei@bjfu.edu.cn
mailto:kongjianlei@btbu.edu.cn
https://orcid.org/0000-0002-8467-8331
https://orcid.org/0000-0002-0074-3467
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4760297


disturbed by the external environment. Rosati et al. [11]
proposed a method of hierarchical clustering to achieve
recognition of the human gait phase by processing elec-
tromyography (EMG) data collected during gait, which has
improved the abovementioned problems that are susceptible
to environmental interference. However, muscle electrical
signals are susceptible to factors such as sweat when col-
lecting EMG data. Ding et al. [12] further improved the
problems of the above EMG method and proposed a pro-
portional fuzzy algorithm to achieve smooth recognition of
the gait phase for foot pressure information processing, but
the foot pressure will be affected by the wearer’s weight, load,
and other factors [13], and the pressure sensor also has a
high failure rate. In recent years, researchers have started to
study gait phase recognition methods based on inertial
sensors (IMU). 0is is mainly due to the fact that more
information can be obtained by adopting a small number of
inertial sensor modules and most of the inertial sensor
modules are installed on the legs and feet, so as to avoid
damage or discomfort to the wearer [14]. At the same time,
the information of IMU is basically unaffected by human
body weight, belongings, clothing, sweat, and other factors,
which is a prominent advantage compared to the method of
plantar pressure or muscle electrical signal detection. In
addition, inertial sensors are extremely cost effective [15]
and acceleration signals acquired by inertial sensors exhibit
typical waveform characteristics during the gait cycle.
Previous studies have positioned inertial sensors on the
instep, thigh, and calf [16–18]. 0is paper considers the
position of the instep, lower leg, and thigh because the
classifier has better classification performance at the lower
extremity position [19].

For the recognition system, this paper designs an ef-
fective and adaptable gait detection method. Some research
studies [13] indicate that a large amount of information can
be obtained by using a small number of acceleration sensors
that are located on the legs and feet to minimize sensor
damage and discomfort to the person wearing the sensor. In
this paper, we describe a system that uses three inertial
sensor modules to obtain the acceleration information of the
lower limbs of the human body. 0e collected acceleration
data was reduced by the Principal Component Analysis
(PCA) algorithm, which focuses on extracting the feature
information of the original data and searches for a set of
orthogonal low-wiki functions to represent a set of high-
dimensional data, improving the recognition rate and rec-
ognition speed [20, 21]. 0en, the paper divides the human
gait into three phases and proposes a method of dividing the
three gait phases. Finally, this paper proposes a VWF-DNN
algorithm for detecting the gait phase, which is inspired by
integrated learning. 0e core idea of the VWF-DNN algo-
rithm is to use the three subneural networks with distinct
differences to output the final classification result through
the voting algorithm designed in this paper. 0e designed
VWF-DNN with higher accuracy will be further evaluated
with learned and unlearned data to test its suitability with
acceleration classification.

0is paper proposes an algorithmic model for detecting
the gait phase, which uses the acceleration data from the

instep, calf, and thigh to accurately detect two gait phase
events. Finally, the effectiveness of the proposed VWI-DNN
algorithm in gait phase detection is verified by the final
recognition results.

2. Materials and Methods

2.1.DataCollection. Twenty volunteers with weight range in
46 kg to 88 kg and height range in 155 cm to 190 cm were
recruited for the experimental data collection. 0e details of
personal information are shown in Figure 1. 0e subjects
have no physical or nerve injury to their legs or feet, which
may affect walking gait phase detection.

With the improvement of the sensor manufacturing
process, this study selected three IMU modules as portable
devices for obtaining acceleration information. 0e inertial
sensor modules were placed on the foot dorsum, the outer
side of the lower leg, and the outer side of the thigh. 0e
arrangement of the acceleration sensor on the instep, calf,
and thigh monitoring the lower limb movement is shown
in Figure 2. 0e acceleration resolution of the three-axis
inertial sensor module used in the experiment is 6.1e − 5 g,
the stability of attitude measurement is 0.01°, and the
transmission baud rate in the experiment was set to
115200 bps.

In this experiment, all participants were asked to walk for
at least 120 s on the configured treadmill with speeds at
0.78m/s, 1.0m/s, and 1.25m/s, respectively. Participants
walked normally three times on a treadmill at each speed,
with all settings being the same in each state. In order to
prevent the participants from affecting the gait due to fa-
tigue, the experiment requires the participants to rest for 2
minutes for each walking test. In addition, data is only saved
until the treadmill’s running speed reaching the set speed.
When the experiment was stopped and the treadmill began
to slow down, we stopped collecting data. Moreover, each
participant was asked to perform the same experiment under
the same conditions to ensure the reliability and validity of
the collecting process.

2.2. Data Preprocessing. Since each data sample contains
multiple features from different sensors and each data in the
same IMU module includes three acceleration data in X, Y,
and Z directions, abundant data with different dimensions
will lead to excessive complexity and easy overfitting of the
detection model. In order to reduce the dimension of data
set, the PCA method was adopted to synthesize the three-
directional acceleration information ax, ay, and az of every
IMU sensors into a new dimension variable Comp. PCA [22]
is a general tool for dimensionality reduction and data
analysis, and its essence is to project the data samples in the
high-dimensional space into the low-dimensional space
through linear transformation, while preserving the original
data features as much as possible [23]. With the dimension
reduction process, the compressed Comp can avoid the
excessive information lose and adjust input dimension be-
fore passing acceleration data into the subsequent classifier.
0e Comp is calculated as follows:
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Comp � z 1∗ ax + z 2∗ ay + z 3∗ az, (1)

where ax, ay, and az represent the acceleration in the X-, Y-,
and Z-directions, respectively. Comp is a one-dimensional
data by combining three-directions movement, which can
improve the response performance of the algorithm and
avoid overfitting during late training. 0e combined ac-
celeration “Comp” of the instep, calf, and thigh together
constitutes the input vector of the model, where z_1, z_2,
and z_3 represent the coefficients of the acceleration in three
directions. 0e distribution of z_1, z_2, and z_3 corre-
sponding to different body parts at asynchronous speed is
shown in Table 1.

Based on the above experiment, we can get the curve of
the acceleration in the X, Y, and Z directions and the
combined acceleration as shown in Figure 3.

0e human walking process is a rhythmic movement,
and a complete gait cycle definition is from the unilateral
heel to the ipsilateral heel again [21]. A two-phase model
has proven to be sufficient to control the knee module of an
active orthosis [9]. Nonetheless, the most widespread

approach relies on a four-phase model [24], which are
independently written as (1) Heel Strike (HS), (2) the
loading response phase or Flat Foot (FF), (3) the heel
lifting or Heel-Off (HO) and (4) the initial Swing Phase
(SW). 0is four-phase model of gait granularity has been
used for the actuation of multiple robotic ankle-foot or-
thoses [25, 26].
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Figure 2: Human gait information acquisition system.

Table 1: Acceleration data for different parts at different speeds
using PCA synthesized parameter table.

Pace Collection location z_1 z_2 z_3

0.78m/s
Calf 0.632 0.671 0.421
0igh − 0.652 0.569 0.355
Foot 0.636 0.524 0.582

1.0m/s
Calf 0.613 0.637 0.423
0igh − 0.479 0.601 0.673
Foot 0.667 0.625 0.533

1.25m/s
Calf 0.629 0.638 0.427
0igh − 0.565 0.623 0.641
Foot 0.753 0.568 0.531
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softmax(q)i �
eqi
′

􏽐
n
i�1e

qi
′. (2)

To ensuring the scientificity of gait classification, the
walking cycle in this paper was also divided into HS, FF, HO,
and SW. During normal walking, the acceleration signals in
the three directions of the foot, thigh, and calf exhibit pe-
riodicity. 0e sway phase accounts for approximately 40% of
the total gait phase, and the stance phase accounts for ap-
proximately 60% of the total gait phase [27]. We can ap-
proximate that the stance phase is the biggest phase in the
walking cycle. According to the division of gait phase, the
phase division in this paper is shown in Figure 4.

Except for the gait phase division, feature selection is also
used to extract meaningful information or noise from ac-
celeration signals. After this processing, the key features
effectively representing different gait phases are obtained
from time domain for the subsequent recognition model. In
this paper, the standard deviation (SD), mean absolute value
(Mav), maximum value (Max), minimum value (Min), and
median (Med) are selected to handle with acceleration
signals as feature vectors. Since the vectors composed of
single and multiple feature sets will produce different ac-
curacy rates, we merged SD, Max, Min, Med, and Mav

feature vectors to form the input feature vector in order to
improve the recognition accuracy.

2.3. Voting-Weighted Integrated Neural Network. 0e next
step is to design an algorithm to recognize the timings
vectors related to the acceleration signal. As the commonly
classifier with excellent performance [28], the DNN is a
feedforward artificial neural network consisting of an input
layer, an output layer, and at least two hidden layers [29].
Although the DNN is a strong classifier, sometimes the
subneural network still misjudges certain situations, leading
to the misclassification of results [30]. 0us, the voting
fusion of the neural network is proposed to solve the in-
stability of the subneural network, which may be insensitive
to the data of some input layers due to a single network
structure [31], and results in errors in the output layer. 0e
output of the integrated neural network is determined by the
output of each integrated neural network under the sample
[32], which can improve the classification performance and
generalization performance of the classifier to some extent
[33, 34]. 0erefore, inspired by the AdaBoosting algorithm
[35] and Bagging [36] algorithm in current integrated
learning, this paper further proposes a novel VWI-DNN
algorithm (the entire structure is shown in Figure 5) by
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modifying the traditional DNN network. Our work aims to
construct a general neural network structure allowing for
different voting decisions at each submodel and demonstrate
its use as a practical way to massively increase model
capacity.

Firstly, we chose three advanced deep neural networks
instead of the perceptual layer network as the classifiers and

named them SNN_1, SNN_2, SNN_3, so as to improve the
classification performance of the network. 0e research
mainly focuses on the design of three subneural networks
and the optimization of network parameters, as well as the
fusion method of the output results of these three subneural
networks. SNN_1, SNN_2, and SNN_3 have one common
input layer and two hidden layers, so that they can have a

Heel foot Midstance Teo off Midswing Heel strike

HS FF HO HS

8% 40% 60% 100%(0%)
Heel off

3

2

1

0a 
(g

)

–1

–2

0.0 0.2 0.4 0.6 0.8

a_x
a_y
a_z

1.0
Time (s)

Figure 4: Phase division diagram of gait. Green curve represents the acquired foot acceleration data, brown curve represents the acquired
calf acceleration data, and blue curve represents the collected thigh acceleration data.

...

.........

...
...

...
...

...

...
...

...
...

Out 2

Out 1

Out 3

Input layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 4 Hidden

layer 5
Output

layer

Hidden
layer 3

So
ftm

ax

y_outIn
pu

t

Σ γ (k)

ω1

ω2

ω3

Figure 5: Structure diagram of integrated neural network algorithm based on vote weighting.

Complexity 5



common network structure. In addition, three independent
and different networks are set up in the third hidden layer.
0is design can simplify the network and share the weight
information. 0e latter network structure maintains their
independence, the number of neurons, and activation
functions, and the number of hidden layers exist certain
differences.0e neural network has associated nonlinearities
and are trained using greedy hierarchical supervision, and
the final learning rate was manually specified and set to 0.05.
Finally, the three subneural networks output their respective
classification results through the Softmax regression layer.
Some parameters of the structure of the entire network are
shown in Table 2, where HL_x represents the xth hidden
layer and the “Dropout column” represents the sparse rate
that needs to be set.

0e goal of the WWI-DNN algorithm is to identify the
three gait phases of the human body, which solves the
multiclassification task. However, the output of the neural
network does not necessarily represent a probability dis-
tribution, so the output of the neural network must be
transformed into a probability distribution through the
Softmax regression layer, whose expression is shown in the
following equation:

0en, the focus of the VWI-DNN algorithm is to es-
tablish a voting fusion mechanism. In the process of output
fusion, the establishment of fusion algorithm is the core
content of information fusion [37, 38].0e concept of voting
fusion was therefore proposed to obtain more accurate
results from multiple unreliable data. After years of devel-
opment, there have been numerous voting algorithms, such
as majority voting fusion, logical voting fusion, median
voting fusion, and weighted average voting fusion. 0e
voting weight of an excellent voting fusion algorithm should
not be artificially set. It is more reasonable that its voting
weight should be larger when a subneural network performs
well and vice versa. In the AdaBoosting algorithm theory, the
weight information is updated with the classification error
rate, but the weight update is problematic when the error
rate is higher than 50%. In order to avoid this problem,
considering that good performance classifiers should be
rewarded and poor performance classifiers should be
punished, this paper proposes a weighted sum voting al-
gorithm.0e algorithm of weighted summation is to add the
weights of the three networks to output the same result,
respectively, and regard the sum of the weights as the fusion
result. 0is is also a simple and effective information fusion
algorithm.

In order to solve the multiple classifier weight problem,
this paper introduces the weighting function. 0is paper
used the classification accuracy to determine the weight
coefficient of each classifier. Equation (3) shows how to solve
the accuracy of each classifier, and we need to set the
corresponding weighting function to determine the weight
coefficient of the classification. 0e image of the weighting
function is given in Figure 6, and its expression is as shown
in equation (5), wherein the expression of the reward
function is indicated in equation (4). It can be seen that the
derivative value of the reward function (Deriv_reward) has a
negative correlation with the value of the abscissa, which is

why this paper chooses it as a reward function. Such a
function can make the model with good performance get
larger reward. When the accuracy εt is less than 40%, the
weight should be reduced, so the weight coefficient is taken
as ωi · exp(εi − 1); similarly, when the accuracy εt is more
than 40%, the classification performance of the weak clas-
sifier can be considered great, and its weight should be
increased, so the weight should be taken reward(εt).
Meanwhile, in order to make the new weight available in
[0,1], this paper normalizes c by using equation (6). In
addition, given that one classifier cannot be made large on its
own, this paper sets a minimum threshold of 0.26 for each
classifier’s weight. 0e classification weight of each classifier
is obtained according to equation (7). 0e given ω initial
value ω0 is 33.33% and the initial value c0 of c is 1.0.

εi �
ncorrect

Ntotal
, i � 1, 2, 3, (3)

reward εi( 􏼁 � 0.5 +
1

1 + exp − 5∗ εi( 􏼁
, (4)

ci � reward εi( 􏼁 · I εi > 0.4( 􏼁

+ exp εi − 1( 􏼁 · I εi < 0.4( 􏼁,
(5)

ci �
ci

􏽐
3
i�1 ci( 􏼁

, (6)

ωi �

ωi− 1 · ci

􏽐
3
i�1 ωi− 1 · ci( 􏼁

, ωi > 0.26,

0.26, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(7)

0e next step is to confirm the weight of the classifier.
0e classification result of each classifier is calculated by
using equation (8). When the classification results are the
same, the weights of these classifiers should be added and
obtained the weight corresponding to each gait phase. 0is
process can be expressed by equation (9), where ck indicates
the probability output corresponding to the human gait
phase k. 0e final classification result should be determined
by the maximum weight value corresponding to each gait
phase, thereby obtaining the final integrated output q, whose
expression is as shown in equation (10), where ncorrect de-
notes the number of samples correctly classified, Ntotal
denotes the total number of samples, qi

′ denotes the value
output by the ith subneural network through the output
layer, and ωi denotes the weight of the ith neural network
corresponding to the gait phase k, and when k� 1, it rep-
resents the starting phase; when k� 2, it indicates the swing
phase; when k� 3, it indicates the foot phase.

Finally, the task of the VWI-DNN algorithm is to solve the
problem of internal parameter update and optimization of
each subneural network. 0e neural network generally up-
dates the internal parameters of the network architecture by
optimizing the loss function value. When using neural net-
works for classification, the usual function is the cross-en-
tropy loss function [39] which characterizes the distance

6 Complexity



between two probability parts so that the cross-entropy loss
function can be used to calculate the distance between the
predicted probability distribution and the probability distri-
bution of the real answer. According to the cross-entropy loss
function equation (11), we can obtain the loss function
equations (12)–(14) of the three subneural networks. When
we train this network, we hope that the parameters of the first
subneural network would not be changed when we train the
other two neural networks. But the reality is that when you
train any of the three subneural networks, the parameters of
the shared layer will change. 0erefore, if the optimizer
optimizes the three loss functions separately, the shared layer
parameters will be changed reciprocally and the ideal result
will not be achieved. In order to improve this situation, this
paper proposes amethod to optimize the global loss by using a
classifier. 0e optimizer no longer optimizes the three cross-
entropy loss functions separately but only optimizes the sum
of the three loss functions (loss_sum), which can ensure that
the shared layer parameters can achieve a better result and the
training speed can be improved. 0e loss_sum expression is
shown in equation (15).

cf i � argmax qi( 􏼁, i � 1, 2, 3, (8)

ck � 􏽘
N

i�1
ωi · I cf i � k( 􏼁, k � 1, 2, 3, (9)

q ck( 􏼁 � argmax ck( 􏼁, k � 1, 2, 3, (10)

loss � − 􏽘 p(x)log q(x), (11)

loss 1 � − 􏽘 p1(x)log q1(x), (12)

loss 2 � − 􏽘 p2(x)log q2(x), (13)

loss 3 � − 􏽘 p3(x)log q3(x), (14)

loss sum � loss 1 + loss 2 + loss 3, (15)

where qi(x) denotes the probability distribution of the three
subneural networks predicting the phase of the three types of
gaits after passing through the Softmax layer and pi(x)

denotes the distribution of the real samples.
To avoid overfitting, 70% of the sample set was selected

for training and 30% for testing. After training the three
learning models 10,000 times with the same training set, the
same test set was used to test the trained models, and the
classification accuracy, macro-F value, and area ender curve
(AUC) after the test were recorded.0e entire process of this
study is shown in Figure 7.

3. Results and Discussion

3.1. Evaluation Methods. Comparing the classification
performance of different classifiers cannot determine the
effectiveness of the algorithm by a single metric and there
are many other methods commonly used to obtain a full
census. 0e evaluation metrics including Precision, Recall,
Accuracy, and F1-score are used to compare different
methods. Precision and Recall are widely used in the fields
of information retrieval and statistical classification to
evaluate the quality of results, where the higher the Pre-
cision and Recall value, the better the method performs. F1
combines the results of P and R, and when F1 is high, it
indicates that Precision and Recall are both high, and this
evaluation index is relatively effective. However, the
classifier of this paper performs multiclassification task.
We hope to comprehensively investigate the Precision and
Recall on several binary confusion matrices, and the most
direct way is to calculate macro-F1 [40]. While, Accuracy
reflects the ratio of the samples correctly classified by the
classifier to the total samples for a given test data set.
According to equations (16)–(21), we can calculate these
evaluation factors, where TP, TN, FP, and FN, respectively,

Table 2: Parameter setting of VWI-DNN structure.

Layer
Number of neurons Activation function Dropout

SNN_1 SNN_2 SNN_3 SNN_1 SNN_2 SNN_3 SNN_1 SNN_2 SNN_3
HL_1 540 540 540 leaky_relu leaky_relu leaky_relu 1.0 1.0 1.0
HL_2 200 200 200 leaky_relu leaky_relu leaky_relu 1.0 1.0 1.0
HL_3 260 200 140 leaky_relu relu tanh 0.6 0.8 1.0
HL_4 120 90 60 leaky_relu relu tanh 1.0 1.0 1.0
HL_5 60 90 — leaky_relu relu — 1.0 1.0 —
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Figure 6: Weighting function diagram.
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represent true positive, true negative, false positive, and
false negative.

In order to better analyze the performance of the clas-
sifier, this paper introduces the AUC under receiver oper-
ating characteristic (ROC) as the evaluation index of the
algorithm. Spackman was the first to adopt ROC diagram for
machine learning, and he proved the value of the ROC curve
in evaluation [41]. In recent years, it has been applied more
and more in machine learning and data mining research,
partly because people realized that simple classification
accuracy is usually not a good indicator to measure per-
formance [42].0e AUC of each algorithm can be calculated
to compare, and the algorithm that has the largest AUC will
have the best diagnostic value:

Accuracy �
TP + TN

TP + FP + TN + FN
, (16)

Pi �
TP

TP + FP
, (17)

Ri �
TP

TP + FN
, (18)

macro − P �
1
n

􏽘

n

i�1
Pi, (19)

macro − R �
1
n

􏽘

n

i�1
Ri, (20)

macro − F1 �
2 × macro − P × macro − R

macro − P + macro − R
. (21)

3.2. Results. 0e joint confusion matrix of three gait phase
recognition results at different synchronization speeds are,
respectively, shown in Figures 8–10. According to
Figures 8–10, we can easily get Tables 3–5 which, respec-
tively, classifies the performance for each training function
in terms of HS, FF, HO, and SW phase under three kinds of
sync speed. According to Tables 3–5, it can be observed that
all of Bagging, Boosting, and VWI-DNN have macro-F1 of
HS and SW phase recognition nearly up to 100%. While
from the results obtained by F1, Bagging, and AdaBoosting
have poor recognition effects on FF and HO phases. In
particular, Bagging has a case where macro-F1 of the FF and
HO phases is 0. It can also be clearly seen from the ob-
servation of Figure 8 that the Bagging algorithm can easily
recognize the FF phase as the HO phase and the HO phase as
the FF phase. 0e Bagging algorithm is extremely poor in
HO phase and FF phase recognition. It can be seen from
Table 5 that although Bagging and AdaBoosting have poor
recognition of FF phase and HO phase, VWI-DNN algo-
rithm proposed in this paper still has more than 98%macro-
F1 value for the FF and HO phase. 0e three training
functions have higher accuracy for SW and HS phases
recognition at three paces, generally reaching more than
98%. As aforementioned, macro-F1 can comprehensively

Acceleration sensor

Acceleration data

Pretreat

Pretreat Pretreat Pretreat

Test set

Model

Weight fusion

Classification

Classification

PCA data preprocessing

Training set

Algorithm model

Figure 7: System block diagram.
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measure the two indicators of Precision and Recall. It was
observed that macro-F1 value of VWI-DNN is more than
98% for any phase at any pace.

In order to comprehensively measure macro-F1 in four
gait phases, macro-F1 was introduced in this paper.
According to equations (16)–(20), the correspondingmacro-

F1 can be calculated, and the corresponding Table 6 was
obtained. According to Table 5, the recognition accuracy of
the VWI-DNN algorithm is as high as 98% or more, while
the other two training functions have lower accuracy. Es-
pecially, the Bagging algorithm has a phase recognition
accuracy of less than 77% at three paces. It can be clearly seen
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Figure 8: Confusion matrix of three gait patterns derived from bagging classification under three pace settings: 0.78m/s (a), 1.0m/s (b), and
1.25m/s (c) classes.
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Figure 9: Confusion matrix of three gait patterns derived from AdaBoosting classification under three pace settings: 0.78m/s (a), 1.0m/s
(b), and 1.25m/s (c) classes.
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Figure 10: Confusion matrix of three gait patterns derived from VWI-DNN Classification under three pace settings: 0.78m/s (a), 1.0m/s
(b), and 1.25m/s (c) classes.
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from Figures 11 and 12 that the VWI-DNN algorithm is
higher in accuracy and macro-F1 than the other two al-
gorithms at any of the paces. By observing the AUC, we can
also see that the VWI-DNN algorithm can reach 1.0, which
is high. Figure 13 also illustrates the relationship between the
three algorithms corresponding to the AUC at the unsyn-
chronized paces. From Figure 14, it can be found that the
Accuracy, macro-F1, and AUC of the VWI-DNN algorithm
do not change much with the increase of the pace, which is
relatively stable.

3.3. Discussion. 0is study demonstrated the capability of
the proposed system to detect gait phases based on accel-
eration signals. To support this hypothesis, this paper
proposes to use the voting-weighted integrated neural
network to identify the gait phase and compares it with other
integrated learning algorithms to verify the effectiveness of
the algorithm.

3.3.1. Acceleration Signals Analysis. Walking activity ema-
nated from the human body is important, and this infor-
mation can be extracted through the use of acceleration
signals. Although the VWF-DNN algorithm has shown
certain validity in the classification of acceleration signals for
gait event detection, it still needs to be further optimized in
the future. In this study, the inertial sensormodule needed to
be placed at a designated location on the instep, lower leg,
and thigh of each subject. However, due to the height,
weight, gender, etc. of each subject, the sensors cannot be
accurately placed in the specified position and can only be
installed at an approximate designated position, which needs
further investigation [43].

To characterize acceleration signals, there are three main
cascaded modules which are data processing, feature ex-
traction, and classification methods. It should be noted that
the classification accuracy depends greatly on the features
extracted. Moreover, four combined features is better than a
single or two features for upper limb movement. 0is shows

Table 3: Summary of classification performance of bagging at unsynchronized speed.

Pace 0.78m/s 1.0m/s 1.25m/s
Phase HS FF HO SW HS FF HO SW HS FF HO SW
Precision (%) 100.0 51.6 100.0 100.0 100.0 0 47.4 100.0 100.0 48.2 0 100.0
Recall (%) 98.9 100.0 8.2 100.0 100.0 0 100.0 100.0 100.0 100.0 0 100.0
F1 (%) 99.4 68.1 15.1 100.0 100.0 0 64.3 100.0 100.0 65.1 0 100.0

Table 4: Summary of classification performance of AdaBoosting at unsynchronized speed.

Pace 0.78m/s 1.0m/s 1.25m/s
Phase HS FF HO SW HS FF HO SW HS FF HO SW
Precision (%) 99.7 99.4 99.20 100.0 100.0 78.2 94.8 100.0 100.0 78.3 99.7 100.0
Recall (%) 99.5 99.4 99.40 100.0 99.7 96.9 71.4 99.5 88.0 99.7 86.9 100.0
F1 (%) 99.6 99.4 99.30 100.0 99.9 86.5 81.5 99.7 93.6 87.7 92.9 100.0

Table 5: Summary of classification performance of VWI-DNN at unsynchronized speed.

Pace 0.78m/s 1.0m/s 1.25m/s
Phase HS FF HO SW HS FF HO SW HS FF HO SW
Precision (%) 100.0 99.4 98.8 100.0 100.0 99.4 99.5 100.0 99.7 99.7 100.0 100.0
Recall (%) 99.5 99.1 99.7 100.0 100.0 99.4 99.5 100.0 100.0 99.7 99.7 100.0
F1 (%) 99.7 99.3 99.3 100.0 100.0 99.4 99.5 100.0 99.9 99.7 99.8 100.0

Table 6: Summary of classification performance for different training functions.

Pace Training function
Classification rate

Accuracy (%) Macro-F1 (%) AUC

0.78m/s
Bagging 76.9 70.7 0.98

AdaBoosting 95.7 95.7 1.0
VWI-DNN 99.6 99.5 1.0

1.0m/s
Bagging 74.4 66.1 0.95

AdaBoosting 92.4 91.9 1.0
VWI-DNN 98.9 99.7 1.0

1.25m/s
Bagging 74.4 66.3 0.98

AdaBoosting 93.5 93.6 1.0
VWI-DNN 99.1 99.7 1.0
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the network responses of five TD features. By observing
Figures 8–10, it can be seen that all the training functions
have clearly classified the HS and SW phases and there is
very low classification error between the two. Interestingly,
we can see through the confusion matrix that the Bagging
and AdaBoosting misinterpreted the FF phase and HO
phase, which results in a low-recognition precision for the
FF and HO phases. Also, by analyzing the results of
Tables 3–5, it can be shown that the model has a poor
recognition effect on the FF and HO phases.0is may be due
to the fact that the two adjacent phase features are too
similar. In addition, Figures 8–10 also illustrate that the

phase difference between the FF and HO phase character-
istics are not obvious, but the proposed VWI-DNN algo-
rithm in this paper can significantly improve this situation.

Regarding the effective classification of acceleration
signals, the five TD features provide better classification of
gait events and the average accuracy of the VWF-DNN
algorithm for HS, FF, HO, and SW phases is 99.2%. 0is
study was then compared to some of the previous research
studies. With regard to the gait event, different walking
conditions by IMU located on foot show 82.2% accuracy
using the ANN [39]. Similar result is achieved when five gait
phases were classified using IMUs 82% accuracy [40]. In
addition, this is important for the development of assistive
devices for the lower leg, as they have strong relationships
with the gait event [41]. To propose a system that may be
applied to any individual, the generalization of trained
VWF-DNN algorithm was tested on unlearned data of
acceleration signals. 0is study found that the proposed
system could predict the gait event successfully for the
unlearned data. In general, the detection of HS, FF, HO, and
SW phases based on acceleration signals seemed reliable.

In reviewing the literature, the reliability of IMUs was
questioned. It is interesting to note that the percentage of
stance and swing phases of footswitch data was in line with
the theory of the gait cycle as 60% of the complete cycle was
the stance phase while the remaining percent was swing
phase 40% [42]. According to Observation Tables 3 and 4, it
can be found that the recognition of FF and HO phases by
Bagging and AdaBoosting is generally low, while other two
phases is very high. In addition, according to observations of
Figures 8–10, we can also see that Bagging and AdaBoosting
divided FF phase into HO phase and also divide HO phases
into FF phases. 0ese results indicate that the features we
extracted may require further discussion.

3.3.2. Gait Phase Detection. 0e purpose of this study was
to apply a machine learning to predict HS, FF, HO, and
SW from acceleration signals. In support of the hypothesis
aforementioned, this study proposes the VWI-DNN al-
gorithm and uses it to successfully predict HS, FF, HO,
and SW phases. 0e results of learned data indicated that
the acceleration signals had low variability and stability
during walking on the ground. Compared with the re-
search carried out by Nazmi et al. [1], this study can obtain
higher recognition accuracy, but the neural network
model used in this study was too complicated, which may
lead to longer training time. Some portable gait event
detection applications require functional electronic sim-
ulators, dynamic gait monitoring, and gait biofeedback
[44], but currently no wearable sensors meet these
requirements.

0e VWI-DNN algorithm used a voting mechanism to
fuse results and used three subneural networks to vote.
Whether the three subneural networks are set up properly
needs further exploration.0e selection of the bonus penalty
function takes the derivative changes and actual effects into
account, but it still avoids the occasional occurrence of
improper rewards and punishments, resulting in the final
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classification results are not ideal. Nevertheless, the model
used in this paper can still achieve the recognition accuracy
and the macro-F1 value, which were higher than 98%. And
as can be seen from Figure 13, the AUC value of VWI-DNN
algorithm reaches the maximum value of 1. It can be seen
from the performance of each classifier in the AUC that the
classification result obtained by the VWI-DNN algorithm is
more reliable.

In terms of the generalization of the proposed system,
this study revealed the VWI-DNN algorithm achieved
better performance in gait phase recognition. 0e VWI-
DNN algorithm based on the voting weighting mechanism
detects HS, FF, HO, and SW phases with higher recognition
accuracy, macro-F1, and AUC than existing Bagging and
AdaBoosting. However, the macro-F1 of the FF and HO
phases obtained by Bagging and AdaBoosting are very low.
According to Figures 8–10, these results indicate that the

HS and SW phase was reasonably accurate and FF and HO
phases should yield more warnings. Even so, using the
VWI-DNN algorithm proposed in this paper still obtains a
good recognition effect on the FF and HO phases, and in
some sense compensates for the defects of dividing the two
phases. 0e study also shows that the proposed use of
vector difference to distinguish between ST and IL phases
does have a certain effect. In addition, it is possible to
explain that the VWI-DNN algorithm proposed in this
paper has strong performance in the field of gait phase
division.

3.3.3. Limitations. 0ere are some limitations to this study.
Even though VWI-DNN has shown its usefulness in clas-
sifying acceleration signals for gait event detection, a further
evaluation is needed using other machine learning
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approaches. Future works should improve the classification
accuracy by improving the method of extracting features,
gait phase recognition algorithm, etc. In this study, the
wearing three inertial sensor modules were assumed to be an
acceptable wearable sensor compared to other wearable
sensors. However, the wearing of the sensor in practice may
have a potential impact on the gait of the person who has not
yet been investigated.

0e detection of gait phase in this study relied on data
collected by IMUs. Although acceleration sensors have
low cost and fast dynamic response, the accuracy might
be affected by the circuit design and placement of sensors.
Different walking styles could lead to erroneous place-
ment of IMUs. However, as the sensor processing ad-
vances and algorithm innovations, these errors are
further reduced. 0erefore, IMU can possibly be applied
in large scale in the direction of gait detection in the near
future.

4. Conclusion

In order to recognize the walking gait phase accurately,
this work proposed a VWI-DNN model to analyze
multidimensional acceleration signals and detect different
gait events including HS, FF, HO, and SW. It consists of
three main parts, data preprocessing, multistream inte-
grated neural network, and voting-weighted function,
where data preprocessing employs PCA dimensionality
reduction, four-phase division, and key feature selection
in time domain. In addition, multiple refined DNNs are
applied to design a multistream integrated neural net-
work, which utilizes the mixture-granularity information
to form a high-dimensional feature. Finally, a voting-
weighted function is developed to fuse dissimilar sub-
models as a unified representation for distinguishing
small discrepancy among different gait phases. It con-
structs a general neural network allowing for fusing
different voting decisions at each submodel and dem-
onstrates its use as a practical way to massively increase
model capacity. Experiments and discussion demonstrate
the effectiveness of the VWI-DNN with higher accuracy
and macro-F1 up to 99.5%, which outperform other
voting methods.

0e network generates large number of parameters,
which increases the time for model classification. 0erefore,
the model can only be trained on the GPU and the IMU data
cannot be classified online on a convenient mobile device.
Our future work is to try a lightweight network to compress
the model parameters and speed. And we will attempt to
combine our method with the newly updated work for other
gait phase detection applications, such as rehabilitation
training robot and medical Internet of 0ings.
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�is paper is concerned with a stochastic three-species food web model with omnivory which is de�ned as feeding on more than
one trophic level. �e model involves a prey, an intermediate predator, and an omnivorous top predator. First, by the stochastic
comparison theorem, we show that there is a unique global positive solution to the model. Next, we investigate the asymptotic
pathwise behavior of the model. �en, we conclude that the model is persistent in mean and extinct and discuss the stochastic
persistence of themodel. Further, by constructing a suitable Lyapunov function, we establish su�cient conditions for the existence
of an ergodic stationary distribution to the model. �en, we present the application of the main results in some special models.
Finally, we introduce some numerical simulations to support the main results obtained. �e results in this paper generalize and
improve the previous related results.

1. Introduction

�e dynamic relationship between predators and their
preys has long been and will continue to be one of the
dominant themes in both ecology and mathematical
ecology due to its universal existence and importance [1].
During the past one hundred years, there have been many
investigations on predator-prey models. To the best of our
knowledge, in the predator-prey interaction, the functional
response plays an important role in the population dy-
namics, and most of the predator-prey models with the
functional responses only depend on the prey. However,
laboratory experiments show that the ratio-dependent
response function is more reasonable in characterizing the
relationship between predators and their preys [2]. Arditi
and Ginzburg [3] �rst proposed a ratio-dependent func-
tional response of form (αx)/ (x + βy). Kuang and Beretta
[4] investigated the following ratio-dependent type pred-
ator-prey model:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) + β12x2(t)
[ ]dt,

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) + β12x2(t)
[ ]dt,




(1)

where x1(t) and x2(t) represent population sizes of prey and
predator at time t, respectively. r, a1, and d2 stand for the
prey intrinsic growth rate, the intraspeci�c competition rate
of the prey, and the predator death rate, respectively; α12, β12,
and e12 represent the encounter rate, half capturing satu-
ration constant, and conversion rate, respectively, that
predator x2 preys on prey x1.

Long-term ecological research studies show that three-
species predator-prey models are fundamental building
blocks of large scale ecosystems. However, it was only in the
1970s that some scholars began to study the dynamics of
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three-species predator-prey systems [5]. In particular, Hsu
et al. [6] have classified all three-species predator-prey
models into five types: two predators competing for one
prey, one predator acting on two preys, food chain, food
chain with omnivory, and food chain with cycle. Food chain
architecture and strengths of species interactions are im-
portant determinants of trophic dynamics (see [7]). It is well
known that tritrophic food chain model consists of one prey,
one intermediate predator, and one top predator. Note that
omnivory is a widespread mechanism in interacting pop-
ulations. In [6], the authors investigated the following three-
species predator-prey food chain model with an omnivory
top predator:

dx1(t) � x1(t) r − a11x1(t) − a12x2(t) − a13x3(t)􏼂 􏼃dt,

dx2(t) � x2(t) − d2 + a21x1(t) − a23x3(t)􏼂 􏼃dt,

dx3(t) � x3(t) − d3 + a31x1(t) + a32x2(t)􏼂 􏼃dt,

⎧⎪⎪⎨

⎪⎪⎩

(2)

where x1, x2, and x3 denote the number of prey, in-
termediate predator, and omnivorous top predator, re-
spectively, r1 is the growth rate of prey, ri is the death rate of
species xi (i � 2, 3), a11 is the intraspecific competition rate
of prey, a12, a13, and a23 are the capture rates, and a21, a31,
and a32 denote the efficiency of food conversion. Model (2)
describes that the intermediate predator preys on only the
prey and the omnivorous top predator preys on both the
prey and the intermediate predator. *is is a general part of
marine or terrestrial food web ecological systems. Based on
model (2), Namba et al. [8] considered the intraspecific
competition of the intermediate predator and the in-
traspecific competition of the top predator. Moreover, the
authors demonstrated the stabilizing role of intraspecific

competition among intermediate and top predators when
the growth rate of prey species is adequate to support both
the predator species. Furthermore, Sen et al. [9] investigated
the following three-species Lotka–Volterra model with
intraguild predation and mixed functional responses:

dx1(t) � x1(t) r − a11x1(t) − a12x2(t) − a13x3(t)􏼂 􏼃dt,

dx2(t) � x2(t) − d2 + a21x1(t) − a22x2(t) −
a23x3(t)

1 + βx2(t)
􏼢 􏼣dt,

dx3(t) � x3(t) − d3 + a31x1(t) +
a32x2(t)

1 + βx2(t)
− a33x3(t)􏼢 􏼣dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where x1, x2, and x3 denote the number of prey, in-
termediate predator, and omnivorous top predator, re-
spectively. Obviously, in [9], the authors considered Holling
type-II functional response between the intermediate
predator and top predator and other functional responses
were assumed to be linear. All meanings of the parameters
are exact to or similar as those for (2) except the following.
Here, aii is the intraspecific competition rate of species xi

(i � 2, 3) and β is the reciprocal of the half-saturation
constant.

Note that the three-species food web models (2) and (3)
with the functional responses only depend on prey density.
However, in fact, the predator has to search and compete for
food and the ratio-dependent function of the prey and the
predator is more suitable to substitute for the model with
complicated interaction between the prey and predator.
*en, the ratio-dependent type three-species food web
model with omnivory is expressed in the form:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) + β12x2(t)
−

α13x3(t)

x1(t) + β13x3(t)
􏼢 􏼣dt,

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
􏼢 􏼣dt,

dx3(t) � x3(t) − d3 − a3x3(t) +
e13α13x1(t)

x1(t) + β13x3(t)
+

e23α23x2(t)

x2(t) + β23x3(t)
􏼢 􏼣dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where x1(t) stands for the total number of prey at time t,
while x2(t) and x3(t) represent the total number of in-
termediate predators and omnivorous top predators at time
t, respectively. Here, r is the intrinsic growth rate of prey; di

represents the mortality rate of predator xi (i � 2, 3); ai

stands for the intraspecific competition rate of species xi

(i � 1, 2, 3); α12, β12, and e12 are the encounter rate, half-
saturation constant, and conversion rate, respectively, that
x2 preys on x1; α13, β13 and e13 stand for the same corre-
sponding denotations that x3 preys on x1; and α23, β23, and

e23 represent the same corresponding denotations that x3
preys on x2.

As mentioned above, we notice that population models
(1)–(4) are described by the deterministic model. *is is valid
only at the macroscopic scale, that is, the stochastic effects can
be neglected or averaged out, in view of the law of large
numbers. However, in the real world, populations are actually
subject to the environmental fluctuations. Generally speaking,
such fluctuations could be modeled by a colored noise. It has
been noted that if the colored noise is not strongly correlated,
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then we can approximate the colored noise by a white noise
_w(t), and the approximation works quite well (see [10]). It
turns out that the white noise _w(t) is formally regarded as the
derivative of a Brownian motion w(t), i.e., _w(t) � dw(t)/dt

(see [11]). As a result, the study of stochastic ecological dy-
namics model has already become one of the important
subjects in biological mathematics.

After taking the effect of randomly fluctuating envi-
ronment into account, many researchers introduced sto-
chastic environmental variation described by the Brownian
motion into parameters in the deterministic model to es-
tablish the stochastic population model (see [12–15]). Liu
and Bai [12] considered the optimal harvesting problem of a
stochastic logistic model with time delay. In [13–15], the
authors investigated the dynamics of stochastic predator-
prey models. Ji et al. [13] discussed a stochastic predator-
prey model with modified Leslie–Gowerand Holling-type II
schemes. Jovanović and Krstić [14] investigated the ex-
tinction of a stochastic predator-prey model with the Allee
effect on the prey. Liu and Jiang [15] considered the periodic
solution and stationary distribution of stochastic predator-
prey models with higher-order perturbation. In [16], con-
sidering that fluctuations in the environment would man-
ifest themselves mainly as fluctuations in the intrinsic
growth rate of the prey population and in the death rate of
the predator population (see [17]), Ji et al. supposed pa-
rameters r and d2 in model (1) were perturbed with

r⟶ r + σ1 _w1(t),

− d2⟶ − d2 + σ2 _w2(t),
(5)

where w1(t) and w2(t) are mutually independent Brownian
motions and σ2i represents the intensity of white noise _wi(t)

(i � 1, 2). Moreover, they investigated the long time be-
havior of the following stochastic ratio-dependent prey-
predator model:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) +β12x2(t)
􏼢 􏼣dt +σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) +β12x2(t)
􏼢 􏼣dt +σ2x2(t)dw2(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

Based on (6), Wu et al. [18] considered the corresponding
nonautonomous stochastic ratio-dependent model. Lv et al.
[19] introduced the intraspecific competition of the predator

population, denoted by a2, into model (6). Nguyen and Ta
[20] considered a corresponding nonautonomous stochastic
ratio-dependent prey-predator model, in which the white
noise makes the effect on both the growth rates of species and
the intraspecific competition coefficient of the species.

For the study of stochastic three-species models, consult
[21–26] and the references therein. Geng et al. [21] in-
vestigated the stability of a stochastic one-predator-two-prey
population model with time delay, while Liu et al. [22]
studied the stability of a stochastic two-predator one-prey
population model with time delay. In [23, 24], the authors
discussed the dynamical behaviors of stochastic tri-trophic
food-chain models. Li et al. [23] investigated the persistence
and nonpersistence of a stochastic food-chain model, while
Liu and Bai [24] considered the optimal harvesting problem
of a stochastic three species food-chain model. Furthermore,
in [25, 26], the stochastic three-species food-chain models
with omnivory are discussed. Qiu and Deng [25] in-
vestigated the stationary distribution and global asymptotic
stability of a stochastic food-web model with omnivory and
linear functional response, while R. Liu and G. Liu [26]
discussed the persistence in mean and extinction of a sto-
chastic food-web model with intraguild predation and
mixed functional responses. In [26], the authors considered
Holling type-II functional response between the in-
termediate predator and the top predator and other func-
tional responses were assumed to be linear.

To the best of our knowledge, so far there is no in-
vestigation on the dynamics of the stochastic three-species
food web model with omnivory and ratio-dependent
functional response. *e purpose of this paper is to make
some contribution in this direction. Recall that parameters r,
d2, and d3 in model (4) represent the intrinsic growth rate of
the prey population, the death rate of the intermediate
predator, and the death rate of the omnivorous top predator,
respectively. As done in [16], in this paper, we may replace r,
d2, and d3 in model (4), respectively, by

r⟶ r + σ1 _w1(t),

− d2⟶ − d2 + σ2 _w2(t),

− d3⟶ − d3 + σ3 _w3(t),

(7)

where _wi(t) is the white noise and σ2i is the intensity of white
noise _wi(t) (i � 1, 2, 3). *en, the stochastic three-species
food web model with omnivory and ratio-dependent
functional response took the following form:

dx1(t) � x1(t) r − a1x1(t) +
α12x2(t)

x1(t) + β12x2(t)
−

α13x3(t)

x1(t) + β13x3(t)
􏼢 􏼣dt + σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
􏼢 􏼣dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 − a3x3(t) +
e13α13x1(t)

x1(t) + β13x3(t)
+

e23α23x2(t)

x2(t) + β23x3(t)
􏼢 􏼣dt + σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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with (x1(0), x2(0), x3(0)) � (x10, x20, x30) ∈ R3
+ � (x1, x2,􏼈

x3) ∈ R3 : xi > 0 i � 1, 2, 3}. All meanings of the parameters
are exact to or similar as those for (4) except the following.
Here, w � w1(t), w2(t), w3(t) : t≥ 0􏼈 􏼉 represents the three-
dimensional standard Brownian motion defined on a
complete filtered probability space (Ω,F, Ft􏼈 􏼉t≥ 0,P) sat-
isfying the usual conditions. σ2i represents the intensity of
noise wi(t) (i � 1, 2, 3). *roughout this paper, unless
otherwise specified, we would rather assume that a1 > 0,
a2 ≥ 0, a3 ≥ 0, α13 ≥ 0, α23 ≥ 0, β13 > 0, β23 > 0, e13 > 0, and
e23 > 0.

2. Existence and Uniqueness of
Positive Solution

In this section, we consider the existence of the positive
solution for all times. Typically, conditions assuring the
nonexplosion of the solution involve local Lipschitz conti-
nuity and a linear growth condition. In our case, we miss this
last condition, so it is necessary to prove that the solution

does not explode at a finite time. To prove the solution is
positive and does not explode at a finite time, we use the
stochastic comparison theorem. For simplicity, we introduce
the following notations:

κ1 � r −
α12
β12

−
α13
β13

;

κ2 � e12α12 − d2 −
α23
β23

;

κ3 � e13α13 + e23α23 − d3.

(9)

Theorem 1. For any given initial value (x10, x20, x30) ∈ R3
+,

model (8) has unique global positive solution (x1(t),

x2(t), x3(t)) for t≥ 0, that is, (x1(t), x2(t), x3(t)) ∈ R3
+ with

probability one for t ∈ [0,∞).

Proof. Consider the following system:

dX1(t) � r − a1e
X1(t) +

α12eX2(t)

eX1(t) + β12eX2(t)
+

α13eX3(t)

eX1(t) + β13eX3(t)
−
σ21
2

􏼢 􏼣dt + σ1dw1(t),

dX2(t) � − d2 − a2e
X2(t) +

e12α12eX1(t)

eX1(t) + β12eX2(t)
−

α23eX3(t)

eX2(t) + β23eX3(t)
−
σ22
2

􏼢 􏼣dt + σ2dw2(t),

dX3(t) � − d3 − a3e
X3(t) +

e13α13eX1(t)

eX1(t) + β13eX3(t)
+

e23α23eX2(t)

eX2(t) + β23eX3(t)
−
σ23
2

􏼢 􏼣dt + σ3dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

with initial value (X1(0), X2(0), X3(0)) � (lnx10, lnx20,

lnx30). Obviously, the coefficients of (10) are locally Lip-
schitz continuous. *us, there is a unique maximal local
solution (X1(t), X2(t), X3(t)) of (10) for t ∈ [0, τe), where
τe denotes the explosion time. Let xi(t) � eXi(t) (i � 1, 2, 3).
Using Itô formula, it follows that (x1(t), x2(t), x3(t)) �

(eX1(t), eX2(t), eX3(t)) is the unique positive local solution of
(8) with initial value (x10, x20, x30) for t ∈ [0, τe).

Next, we show that (X1(t), X2(t), X3(t)) is a global
solution of (10), that is, τe �∞. Consider the following two

stochastic differential systems:
dΦ1(t) � Φ1(t) r − a1Φ1(t)􏼂 􏼃dt + σ1Φ1(t)dw1(t),

dΦ2(t) � Φ2(t) e12α12 − a2Φ2(t)􏼂 􏼃dt + σ2Φ2(t)dw2(t),

dΦ3(t) � Φ3(t) e13α13 + e23α23 − a3Φ3(t)􏼂 􏼃dt + σ3Φ3(t)dw3(t),

⎧⎪⎪⎨

⎪⎪⎩

(11)

with initial value (Φ1(0),Φ2(0),Φ3(0)) � (x10, x20, x30) and

dϕ1(t) � ϕ1(t) κ1 − a1ϕ1(t)􏼂 􏼃dt + σ1ϕ1(t)dw1(t),

dϕ2(t) � ϕ2(t) κ2 − a2 +
e12α12β12
ϕ1(t)

􏼠 􏼡ϕ2(t)􏼢 􏼣dt + σ2ϕ23(t)dw2(t),

dϕ3(t) � ϕ3(t) κ3 − a3 +
e13α13β13
ϕ1(t)

+
e23α23β23
ϕ2(t)

􏼠 􏼡ϕ3(t)􏼢 􏼣dt + σ3ϕ3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

with initial value (ϕ1(0), ϕ2(0), ϕ3(0)) � (x10, x20, x30).
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*anks to Lemma 4.2 in [27], systems (11) and (12) can
be explicitly solved as follows:

Φ1(t) �
exp r − σ21/2( 􏼁( 􏼁t + σ1w1(t)􏼈 􏼉

1/x10( 􏼁 + a1 􏽒
t

0 exp r − σ21/2( 􏼁( 􏼁s + σ1w1(s)􏼈 􏼉ds
,

Φ2(t) �
exp e12α12 − σ22/2( 􏼁( 􏼁t + σ2w2(t)􏼈 􏼉

1/x20( 􏼁 + a2 􏽒
t

0 exp e12α12 − σ22/2( 􏼁( 􏼁s + σ2w2(s)􏼈 􏼉ds
,

Φ3(t) �
exp e13α13 + e23α23 − σ23/2( 􏼁( 􏼁t + σ3w3(t)􏼈 􏼉

1/x30( 􏼁 + a3 􏽒
t

0 exp e13α13 + e23α23 − σ23/2( 􏼁( 􏼁s + σ3w3(s)􏼈 􏼉ds
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(t) �
exp κ1 − σ21/2( 􏼁( 􏼁t + σ1w1(t)􏼈 􏼉

1/x10( 􏼁 + a1 􏽒
t

0 exp κ1 − σ21/2( 􏼁( 􏼁s + σ1w1(s)􏼈 􏼉ds
,

ϕ2(t) �
exp κ2 − σ22/2( 􏼁( 􏼁t + σ2w2(t)􏼈 􏼉

1/x20( 􏼁 + 􏽒
t

0 a2 + e12α12β12( 􏼁/ ϕ1(s)( 􏼁( 􏼁( 􏼁exp κ2 − σ22/2( 􏼁( 􏼁s + σ2w2(s)􏼈 􏼉ds
,

ϕ3(t) �
exp κ3 − σ23/2( 􏼁( 􏼁t + σ3w3(t)􏼈 􏼉

1/x30( 􏼁 + 􏽒
t

0 a3 + e13α13β13( 􏼁/ ϕ1(s)( 􏼁( 􏼁 + e23α23β23( 􏼁/ ϕ2(s)( 􏼁( 􏼁( 􏼁exp κ3 − σ23/2( 􏼁( 􏼁s + σ3w3(s)􏼈 􏼉ds
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Note that the local solution (x1(t), x2(t), x3(t)) is
positive on [0, τe). *en, from the comparison theorem of
stochastic differential equations (see *eorem 3.1 in [28]), it
follows that for t ∈ [0, τe)

0<ϕi(t)≤xi(t)≤Φi(t), a.s., i � 1, 2, 3. (14)

*us, for t ∈ [0, τe)

lnϕi(t)≤ lnxi(t)≤ lnΦi(t), a.s., i � 1, 2, 3. (15)

Since lnϕi(t) and lnΦi(t) (i � 1, 2, 3) exist for every
t≥ 0, it follows that τe �∞. *us, for any initial value
(X1(0), X2(0), X3(0)) � (lnx10, lnx20, lnx30) ∈ R3, and
(10) has a unique global solution (X1(t), X2(t), X3(t)) on
[0,∞) a.s. Note that the coefficients of (8) are local Lipschitz
continuous. *erefore, for any initial value (x10, x20,

x30) ∈ R3
+, model (8) has a unique global positive solution

(x1(t), x2(t), x3(t)) � (eX1(t), eX2(t), eX3(t)) on [0,∞) a.s.
*e proof is therefore complete. □

3. Asymptotic Behaviors

Lemma 1 (see [13]). Consider one-dimensional stochastic
differential equation:

dx(t) � x(t)[a − bx(t)]dt + σx(t)dw(t), (16)

where a, b, and σ are positive constants and w(t) is standard
Brownian motion. For any x0 > 0, let x(t) be the solution of
equation (16) with initial value x0. If a> (σ2/2), then

lim
t⟶∞

lnx(t)

t
� 0,

lim
t⟶∞

1
t

􏽚
t

0
x(s)ds �

a − σ2/2( 􏼁

b
, a.s.

(17)

Theorem 2. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (8) with initial value
(x10, x20, x30). If a2 > 0, a3 > 0, and κi − (σ2i /2)> 0 (i �

1, 2, 3), then

lim
t⟶∞

lnxi(t)

t
� 0, a.s., i � 1, 2, 3. (18)

Proof. From *eorem 1, it follows that

ϕi(t)≤xi(t)≤Φi(t), a.s., i � 1, 2, 3. (19)

Note that ϕ1(t) and Φ1(t) are the solutions of the fol-
lowing stochastic equations, respectively,

dϕ1(t) � ϕ1(t) κ1 − a1ϕ1(t)􏼂 􏼃dt + σ1ϕ1(t)dw1(t),

dΦ1(t) � Φ1(t) r − a1Φ1(t)􏼂 􏼃dt + σ1Φ1(t)dw1(t).
(20)

with initial value x10 > 0. Obviously, from Lemma 1, it
follows that if κ1 − (σ21/2)> 0:

lim
t⟶∞

lnϕ1(t)

t
� 0,

lim
t⟶∞

lnΦ1(t)

t
� 0 a.s.

(21)
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*is, together with (19), yields

lim
t⟶∞

lnx1(t)

t
� 0 a.s. (22)

Now, we show limt⟶∞((lnx2(t))/t) � 0 a.s. Note that,
x2(t)≤Φ2(t) a.s. and Φ2(t) is the solution of equation

dΦ2(t) � Φ2(t) e12α12 − a2Φ2(t)􏼂 􏼃dt + σ2Φ2(t)dw2(t),

(23)

with initial x20 > 0. *us, from Lemma 1 and κ2 − (σ22/2)> 0,
it follows that

lim
t⟶∞

lnΦ2(t)

t
� 0 a.s. (24)

Note that limt⟶∞((ln ϕ1(t))/t) � 0, a.s. *us, for any
ε> 0, there exists T1 > 0 such that

e
− εt ≤ϕ1(t)≤ e

εt
, for t≥T1. (25)

By the strong law of large numbers of local martingales
(see *eorem 1.3.4 in [11]), it follows that
limt⟶∞((σ2w2(t))/t) � 0 a.s. *us, for any ε> 0, there
exists T2 > 0 such that

− εt≤ σ2w2(t)≤ εt, for t≥T2. (26)

From the expression of ϕ2(t) that for any t≥T � T1 ∨T2,
we have

1
ϕ2(t)

�
1

x2(T)
e

− κ2− σ22/2( )( )(t− T)− σ2 w2(t)− w2(T)( )[ ] + a2 􏽚
t

T
e

− κ2− σ22/2( )( )(t− s)− σ2 w2(t)− w2(s)( )[ ]ds

+ 􏽚
t

T

e12α12β12
ϕ1(s)

e
− κ2− σ22/2( )( )(t− s)− σ2 w2(t)− w2(s)( )[ ]ds

≤
1

x2(T)
e

− κ2− σ22/2( )( )(t− T)+ε(t+T)[ ] + a2 􏽚
t

T
e

− κ2− σ22/2( )( )(t− s)+ε(t+s)[ ]ds

+ e12α12β12 􏽚
t

T
e
εs

e
− κ2− σ22/2( )( )(t− s)+ε(t+s)[ ]ds.

(27)

Hence, from κ2 − (σ22/2)> 0, ε> 0 and t≥T, it follows
that

e− 3ε(t+T)

ϕ2(t)
≤

1
x2(T)

e
− κ2− σ22/2( )( )(t− T)− 2ε(t+T)[ ] + a2 􏽚

t

T
e

− ε(t− s)
e

− εt
e

− 3εT
e

− κ2− σ22/2( )( )(t− s)ds

+ e12α12β12e
− 3εT

􏽚
t

T
e

− κ2− σ22/2( )( )(t− s)− 2ε(t− s)[ ]ds

�
1

x2(T)
e

− κ2− σ22/2( )( )(t− T)− 2ε(t+T)[ ] +
a2

κ2 + ε − σ22/2( 􏼁
e

− εt
e

− 3εT
e

− κ2+ε− σ22/2( )( )T

+
e12α12β12

κ2 + 2ε − σ22/2( 􏼁
e

− 3εT
e

− κ2+2ε− σ22/2( )( )T ≤
1

x2(T)
+

a2

κ2 − σ22/2( 􏼁
+

e12α12β12
κ2 − σ22/2( 􏼁

_� K1.

(28)

*at is (1/(ϕ2(t)))≤K1e
3ε(t+T) a.s., for t≥T. *en,

− lnϕ2(t)≤ lnK1 + 3ε(t + T). *us, for any ε> 0,

lim inf
t⟶∞

lnϕ2(t)

t
≥ 0 a.s. (29)

Consequently,

0≤ lim inf
t⟶∞

lnϕ2(t)

t
≤ lim inf

t⟶∞

lnx2(t)

t
≤ lim sup

t⟶∞

lnx2(t)

t

≤ lim
t⟶∞

lnΦ2(t)

t
� 0 a.s.

(30)

In addition,
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lim sup
t⟶∞

lnϕ2(t)

t
≤ lim sup

t⟶∞

lnx2(t)

t
≤ 0 a.s. (31)

*us,

lim
t⟶∞

lnϕ2(t)

t
� 0,

lim
t⟶∞

lnx2(t)

t
� 0, a.s.

(32)

Similarly, if κ1 − (σ21/2)> 0, κ2 − (σ22/2)> 0, and
κ3 − (σ23/2)> 0, then

lim
t⟶∞

lnx3(t)

t
� 0 a.s. (33)

*e proof is therefore complete. □

4. Persistence in Mean and Extinction

In this section, we show that under some conditions, model
(8) is persistent in mean and extinct.

Theorem 3. Suppose that a2 > 0, a3 > 0, and κi − (σ2i /2)> 0
(i � 1, 2, 3). 9en, for any (x10, x20, x30) ∈ R3

+, the solution
(x1(t), x2(t), x3(t)) of model (8) with initial value
(x10, x20, x30) obeys

lim inf
t⟶∞

1
t

􏽚
t

0
x1(s)ds≥

κ1 − σ21/2( 􏼁

a1
a.s.,

lim inf
t⟶∞

1
t

􏽚
t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
􏼢 􏼣ds≥ κ2 −

σ22
2

a.s.,

lim inf
t⟶∞

1
t

􏽚
t

0
a3x3(s) +

e13α13β13x3(s)

x1(s)
+

e23α23β23x3(s)

x2(s)
􏼢 􏼣ds

≥ κ3 −
σ23
2

a.s.

(34)

Proof. For prey x1, from *eorem 1, it follows that

ϕ1(t)≤x1(t) a.s., (35)

and ϕ1(t) is the solution of the following stochastic equation:

dϕ1(t) � ϕ1(t) κ1 − a1ϕ1(t)􏼂 􏼃dt + σ1ϕ1(t)dw1(t), (36)

with initial value x10 > 0. Obviously, from Lemma 1, it
follows that if κ1 − (σ21/2)> 0,

lim
t⟶∞

1
t

􏽚
t

0
ϕ1(s)ds �

κ1 − σ21/2( 􏼁

a1
a.s. (37)

*is, together with (35), yields

lim inf
t⟶∞

1
t

􏽚
t

0
x1(s)ds≥ lim

t⟶∞

1
t

􏽚
t

0
ϕ1(s)ds

�
κ1 − σ21/2( 􏼁

a1
> 0 a.s.

(38)

For intermediate predator x2, using Itô formula, it
follows that

lnx2(t) � 􏽚
t

0
− d2 − a2x2(s) +

e12α12x1(s)

x1(s) + β12x2(s)
􏼢

−
α23x3(s)

x2(s) + β23x3(s)
−
σ22
2

􏼣ds + σ2w2(t) + lnx20

≥ κ2 −
σ22
2

􏼢 􏼣t − a2 􏽚
t

0
x2(s)ds

− 􏽚
t

0

e12α12β12x2(s)

x1(s) + β12x2(s)
ds + σ2w2(t) + lnx20.

(39)

Hence,
1
t

􏽚
t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
􏼢 􏼣ds≥ κ2 −

σ22
2

􏼢 􏼣

+
σ2w2(t)

t
+
lnx20

t
−
lnx2(t)

t
.

(40)

By the strong law of numbers of local martingales and
*eorem 2, we get

lim inf
t⟶∞

1
t

􏽚
t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
􏼢 􏼣ds≥ κ2 −

σ22
2

a.s.

(41)

For the omnivorous top predator x3, it follows from Itô
formula that

lnx3(t) � 􏽚
t

0
− d3 − a3x3(s) +

e13α13x1(s)

x1(s) + β13x3(s)
􏼢

+
e23α23x2(s)

x2(s) + β23x3(s)
−
σ23
2

􏼣ds + σ3w3(t) + lnx30

≥ κ3 −
σ23
2

􏼢 􏼣t − 􏽚
t

0
a3x3(s) +

e13α13β13x3(s)

x1(s) + β13x3(s)
􏼢

+
e23α23β23x3(s)

x2(s) + β23x3(s)
􏼣ds + σ3w3(t) + lnx30.

(42)

Hence,
1
t

􏽚
t

0
a3x3(s) +

e13α13β13x3(s)

x1(s)
+

e23α23β23x3(s)

x2(s)
􏼢 􏼣ds

≥ κ3 −
σ23
2

􏼢 􏼣 +
σ3w3(t)

t
+
lnx30

t
−
lnx3(t)

t
.

(43)

Complexity 7



By the strong law of numbers of local martingales and
*eorem 2, we get

lim inf
t⟶∞

1
t

􏽚
t

0
a3x3(s) +

e13α13β13x3(s)

x1(s)
+

e23α23β23x3(s)

x2(s)
􏼢 􏼣ds

≥ κ3 −
σ23
2

a.s.

(44)

*e proof is therefore complete. □

Theorem 4. Suppose that r − (σ21/2)< 0, e12α12 − d2−

(σ22/2)< 0 and e13α13 + e23α23 − d3 − (σ23/2)< 0. 9en, for
any initial value (x10, x20, x30) ∈ R3

+, model (8) is extinct
exponentially with probability one.

Proof. From Itô formula, it follows that

lnx1(t)≤ r −
σ21
2

􏼢 􏼣t + σ1w1(t) + lnx10,

lnx2(t)≤ e12α12 − d2 −
σ22
2

􏼢 􏼣t + σ2w2(t) + lnx20,

lnx3(t)≤ e13α13 + e23α23 − d3 −
σ23
2

􏼢 􏼣t + σ3w3(t) + lnx30.

(45)

Note that limt⟶∞[((σiwi(t))/t) + ((lnxi0)/t)] � 0 (i �

1, 2, 3) and r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e13α13 + e23α23 − d3 − (σ23/2)< 0. *en,

lim sup
t⟶∞

lnx1(t)

t
≤ r −

σ21
2
< 0 a.s.,

lim sup
t⟶∞

lnx2(t)

t
≤ e12α12 − d2 −

σ22
2
< 0 a.s.,

lim sup
t⟶∞

lnx3(t)

t
≤ e13α13 + e23α23 − d3 −

σ23
2
< 0 a.s.

(46)

*erefore, model (8) is extinct exponentially. *e proof
is complete. □

5. Stochastic Permanence

In this section, we discuss the stochastic permanence of
model (8). *e definition of stochastic permanence and
stochastically ultimately boundness of model (8) were in-
troduced in the literature [29, 30] as follows.

Definition 1 (see [29, 30]). Model (8) is called stochastically
ultimate bounded, if for any ε ∈ (0, 1), there exist three
positive constants H1 � H1(ε), H2 � H2(ε), and
H3 � H3(ε) such that the solution (x1(t), x2(t), x3(t)) of
model (8) with any initial value (x10, x20, x30) ∈ R3

+ has the
property that

lim sup
t⟶∞

P xi(t)>Hi􏼈 􏼉< ε, i � 1, 2, 3. (47)

Definition 2 (see [29, 30]). Model (8) is said to be sto-
chastically permanent, if for any ε ∈ (0, 1), there exist
positive constants δi � δi(ε), Hi � Hi(ε), and δi <Hi

(i � 1, 2, 3), such that the solution (x1(t), x2(t), x3(t)) of
model (8) with any initial value (x10, x20, x30) ∈ R3

+ has the
property that

lim inf
t⟶∞

P xi(t)≤Hi􏼈 􏼉≥ 1 − ε,

lim inf
t⟶∞

P xi(t)≥ δi􏼈 􏼉

≥ 1 − ε, i � 1, 2, 3.

(48)

It is obvious that if stochastic model (8) is stochastically
permanent, its solutions must be stochastically ultimately
bounded.

5.1. Boundness. In this subsection, we investigate the sto-
chastically ultimate boundness of model (8) in two different
ways.

Lemma 2 (see [31]). For any positive constants p, m, and n,
the Bernoulli equation

dx(t)

dt
� pmx(t) − pnx

1+(1/p)
(t), (49)

with the initial value x(0) � x0 > 0, has the solution

x(t) �
m

n 1 − e− mt +(m/n)x
− (1/p)
0 e− mt􏼐 􏼑

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

p

. (50)

Theorem 5. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (8) with initial value
(x10, x20, x30). If a2 > 0 and a3 > 0, then for any p≥ 0,

lim sup
t⟶∞

E x
p
1(t)􏽨 􏽩≤

r +(p/2)σ21
a1

􏼢 􏼣

p

,

lim sup
t⟶∞

E x
p
2(t)􏽨 􏽩≤

e12α12 +(p/2)σ22
a2

􏼢 􏼣

p

,

lim sup
t⟶∞

E x
p
3(t)􏽨 􏽩≤

e13α13 + e23α23 +(p/2)σ23
a3

􏼢 􏼣

p

.

(51)

*at is, the solution of model (8) is uniformly bounded
in the pth moment.

Proof. For Φ1 in system (11), applying Itô formula to Φp
1

leads to

Φp
1(t) � x

p
10 + 􏽚

t

0
pΦp

1(s) r +
p − 1
2

σ21 − a1Φ1(s)􏼔 􏼕ds

+ 􏽚
t

0
pσ1Φ

p
1(s)dw1(s).

(52)
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Taking the expectation on both sides of the above
equation, we have

E Φp
1(t)􏽨 􏽩 � x

p
10 + E􏽚

t

0
pΦp

1(s) r +
p − 1
2

σ21 − a1Φ1(s)􏼔 􏼕ds.

(53)

*en, using the Höder inequality, it follows that

dE Φp
1(t)􏽨 􏽩

dt
� p r +

p − 1
2

σ21􏼒 􏼓E Φp
1(t)􏽨 􏽩 − pa1E Φ

p+1
1 (t)􏽨 􏽩

≤p r +
p

2
σ21􏼒 􏼓E Φp

1(t)􏽨 􏽩 − pa1 E Φp
1(t)􏽨 􏽩􏼐 􏼑

1+(1/p)

_� pb1E Φ
p
1(t)􏽨 􏽩 − pa1 E Φp

1(t)􏽨 􏽩􏼐 􏼑
1+(1/p)

.

(54)
From Lemma 2 and the comparison theorem, it follows

that

E Φp
1(t)􏽨 􏽩≤

b1

a1 1 − e− b1t + b1/a1( 􏼁x− 1
10e− b1t( 􏼁

􏼢 􏼣

p

. (55)

Note that b1 � r + (p/2)σ21 > 0. *us,

lim sup
t⟶∞

E Φp
1(t)􏽨 􏽩≤

r +(p/2)σ21
a1

􏼢 􏼣

p

. (56)

By a similar the discussion as inΦ1(t), we also know that

lim sup
t⟶∞

E Φp
2(t)􏽨 􏽩≤

e12α12 +((p − 1)/2)σ22
a2

􏼢 􏼣

p

,

lim sup
t⟶∞

E Φp
3(t)􏽨 􏽩≤

e13α13 + e23α23 +((p − 1)/2)σ23
a3

􏼢 􏼣

p

.

(57)

From *eorem 1, it follows that 0< xi(t)≤Φi(t) a.s.
i � 1, 2, 3. *en, for any p≥ 0, we have

0<E x
p
i (t)􏽨 􏽩≤E Φp

i (t)􏽨 􏽩, i � 1, 2, 3. (58)

Now *eorem 5 follows immediately from the above
analysis. *e proof is complete. □

Theorem 6. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (8) with initial value
(x10, x20, x30). 9en,

lim sup
t⟶∞

E x1(t)􏼂 􏼃≤
K2

dL e12e23 + e13( 􏼁
,

lim sup
t⟶∞

E x2(t)􏼂 􏼃≤
K2

dLe23
,

lim sup
t⟶∞

E x3(t)􏼂 􏼃≤
K2

dL
,

(59)

where dL � d2 ∧ d3 andK2 � ((e12e23 + e13)(r + dL)2)/(4a1).

Proof. Define H(t) � (e12e23 + e13)x1(t) + e23x2(t) + x3(t).
By Itô formula, we have

dH(t) � e12e23 + e13( 􏼁 rx1 − a1x
2
1 −

α12x1x2

x1 + β12x2
−

α13x1x3

x1 + β13x3
􏼠 􏼡dt􏼢

+ σ1x1dw1(t)􏼣 + e23 − d2x2 − a2x
2
2 +

e12α12x1x2

x1 + β12x2
􏼠􏼢

−
α23x2x3

x2 + β23x3
􏼡dt + σ2x2dw2(t)􏼣 + 􏼢􏼠 − d3x3 − a3x

2
3

+
e13α13x1x3

x1 + β13x3
+

e23α23x2x3

x2 + β23x3
􏼡dt + σ3x3dw3(t)􏼣

� 􏼢 − e23d2x2 − d3x3 + e12e23 + e13( 􏼁rx1

− e12e23 + e13( 􏼁a1x
2
1 − e23a2x

2
2 − a3x

2
3􏼑

−
e12e23α13x1x3

x1 + β13x3
−

e13α12x1x2

x1 + β12x2
􏼣dt

+ e12e23 + e13( 􏼁σ1x1dw1(t) + e23σ2x2dw2(t)

+ σ3x3dw3(t).

(60)

Integrating it from 0 to t and taking expectation yields

E[H(t)] � H(0) + E􏽚
t

0
􏼔 − e23d2x2 − d3x3 + e12e23 + e13( 􏼁rx1

− e12e23 + e13( 􏼁a1x
2
1 − e23a2x

2
2 − a3x

2
3

−
e12e23α13x1x3

x1 + β13x3
−

e13α12x1x2

x1 + β12x2
􏼣ds.

(61)

*us, using the Hölder inequality yields
dE[H(t)]

dt
� − e23d2E x2(t)􏼂 􏼃 − d3E x3(t)􏼂 􏼃

+ e12e23 + e13( 􏼁rE x1(t)􏼂 􏼃

− e12e23 + e13( 􏼁a1E x
2
1(t)􏽨 􏽩 − e23a2E x

2
2(t)􏽨 􏽩

− a3E x
2
3(t)􏽨 􏽩

− e12e23α13E
x1(t)x3(t)

x1(t) + β13x3(t)
􏼢 􏼣

− e13α12E
x1(t)x2(t)

x1(t) + β12x2(t)
􏼢 􏼣

≤ − d
L

e12e23 + e13( 􏼁E x1(t)􏼂 􏼃 − d
L
e23E x2(t)􏼂 􏼃

− d
L
E x3(t)􏼂 􏼃

+ e12e23 + e13( 􏼁 r + d
L

􏼐 􏼑E x1(t)􏼂 􏼃

− e12e23 + e13( 􏼁a1 E x1(t)􏼂 􏼃( 􏼁
2

� e12e23 + e13( 􏼁 r + d
L

􏼐 􏼑E x1(t)􏼂 􏼃 − a1 E x1(t)􏼂 􏼃( 􏼁
2

􏽨 􏽩

− d
L
E[H(t)].

(62)
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It is clear that quadratic function
g(x) � (e12e23 + e13)[(r + dL)x − a1x

2] reaches its maxi-
mum value at x � ((r + dL)/(2a1))> 0. *us,
gmax � (((e12e23 + e13)(r + dL)2)/(4a1)) _� K2.*erefore, we
have

dE[H(t)]

dt
≤K2 − d

L
E[H(t)]. (63)

*en, by the comparison theorem, we have

0≤ lim sup
t⟶∞

E[H(t)] ≤
K2

dL
. (64)

Note that the solution of model (8) is positive. *us,

lim sup
t⟶∞

E x1(t)􏼂 􏼃≤
K2

dL e12e23 + e13( 􏼁
,

lim sup
t⟶∞

E x2(t)􏼂 􏼃≤
K2

dLe23
,

lim sup
t⟶∞

E x3(t)􏼂 􏼃≤
K2

dL
.

(65)

*e proof is therefore complete. □

Theorem 7. Model (8) is stochastically ultimate bounded.

Proof. Let (x1(t), x2(t), x3(t)) be solution of (8) with any
initial value (x10, x20, x30) ∈ R3

+. For any ε ∈ (0, 1), let
H1 � (K2/(dL(e12e23 + e13)ε)) + 1, H2 � (K2/dLe23ε) + 1,
and H3 � (K2/dLε) + 1. *en, by Chebyshev’s inequality

P xi(t)>Hi􏼈 􏼉≤
E xi(t)􏼂 􏼃

Hi

, i � 1, 2, 3. (66)

Hence, from *eorem 6

lim sup
t⟶∞

P xi(t)>Hi􏼈 􏼉≤ lim sup
t⟶∞

E xi(t)􏼂 􏼃

Hi

< ε, i � 1, 2, 3.

(67)

*e proof is therefore complete. □

5.2. Stochastic Permanence. In this section, we give some
sufficient conditions to guarantee that model (8) is sto-
chastically permanent. Denote ci _� κi − σ2i (i � 1, 2, 3).
Define

u1(t) �
1

ϕ1(t)
,

u2(t) �
1

ϕ2(t)
,

u3(t) �
1

ϕ3(t)
.

(68)

By the Itô formula, we have

du1(t) � a1 − c1u1(t)􏼂 􏼃dt − σ1u1(t)dw1(t),

du2(t) � a2 − c2u2(t) + e12α12β12u1(t)􏼂 􏼃dt

− σ2u2(t)dw2(t),

du3(t) � a3 − c3u3(t) + e13α13β13u1(t)􏼂

+ e23α23β23u2(t)􏼃dt − σ3u3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

with initial value (u1(0), u2(0), u3(0)) � (1/x10,

1/x20, 1/x30) ∈ R3
+.

Lemma 3. Let (x1(t), x2(t), x3(t)) be the solution of model
(8) with any initial value (x10, x20, x30) ∈ R3

+. If ci > 0
(i � 1, 2, 3), then

lim sup
t⟶∞

E
1

xi(t)
􏼢 􏼣≤Mi, i � 1, 2, 3, (70)

where M1 � (a1/c1), M2 � (a2/c2) + ((a1e12α12β12)/
(c1c2)), and M3 � (a3/c3) + ((a1e13α13β13)/c1c3) +

+((e23α23β23)/c3)[(a2/c2) + ((a1e12α12β12)/c1c2)].

Proof. First, integrating both sides of the first equation of
(69) from 0 to t yields

u1(t) �
1

x10
+ 􏽚

t

0
a1 − c1u1(s)􏼂 􏼃ds − 􏽚

t

0
σ1u1(s)dw1(s).

(71)

Taking the expectation on both sides of the above
equation, we have

E u1(t)􏼂 􏼃 �
1

x10
+ E􏽚

t

0
a1 − c1u1(s)􏼂 􏼃ds. (72)

*us,
dE u1(t)􏼂 􏼃

dt
� a1 − c1E u1(t)􏼂 􏼃, (73)

with initial value E[u1(0)] � 1/x10. By a simple computa-
tion, we can get

E u1(t)􏼂 􏼃 �
1

x10
e

− c1t
+

a1

c1
1 − e

− κ1t
􏽨 􏽩. (74)

*is, together with c1 > 0, yields

lim
t⟶∞

E u1(t)􏼂 􏼃 �
a1

c1
� M1. (75)

Next, integrating both sides of the second equation of
system (69) from 0 to t yields

u2(t) �
1

x20
+ 􏽚

t

0
a2 − c2u2(s) + e12α12β12u1(s)􏼂 􏼃ds

− 􏽚
t

0
σ2u2(s)dw2(s).

(76)

Taking the expectation on both sides of the above
equation, we have

10 Complexity



E u2(t)􏼂 􏼃 �
1

x20
+ E􏽚

t

0
a2 − c2u2(s) + e12α12β12u1(s)􏼂 􏼃ds.

(77)

*us,

dE u2(t)􏼂 􏼃

dt
� a2 − c2E u2(t)􏼂 􏼃 + e12α12β12E u1(t)􏼂 􏼃, (78)

with initial value E[u2(0)] � (1/x20). By a simple compu-
tation, we can get

E u2(t)􏼂 􏼃 �
1

x20
e

− c2t
+

a2

c2
1 − e

− c2t
􏽨 􏽩

+ e12α12β12 􏽚
t

0
e

− c2(t− s)
E u1(s)􏼂 􏼃ds.

(79)

From (75), it follows that

lim
t⟶∞

􏽚
t

0
e

− c2(t− s)
E u1(s)􏼂 􏼃ds � lim

t⟶∞

􏽒
t

0 ec2sE u1(s)􏼂 􏼃ds

ec2t

� lim
t⟶∞

E u1(t)􏼂 􏼃

c2
�

a1

c1c2
.

(80)

*is, together with (79) yields

lim
t⟶∞

E u2(t)􏼂 􏼃≤
a2

c2
+

a1e12α12β12
c1c2

. (81)

At last, integrating both sides of the third equation of
system (69) from 0 to t and taking the expectation, we have

E u3(t)􏼂 􏼃 �
1

x30
+ E􏽚

t

0
a3 − c3u3(s) + e13α13β13u1(s)􏼂

+ e23α23β23u2(s)􏼃ds.

(82)

*us,

dE u3(t)􏼂 􏼃

dt
� a3 − c3E u3(t)􏼂 􏼃 + e13α13β13E u1(t)􏼂 􏼃

+ e23α23β23E u2(t)􏼂 􏼃,

(83)

with initial value E[u3(0)] � (1/x30). By a simple compu-
tation, we can get

E u3(t)􏼂 􏼃 �
1

x30
e

− c3t
+

a3

c3
1 − e

− c3t
􏽨 􏽩

+ e13α13β13 􏽚
t

0
e

− c3(t− s)
E u1(s)􏼂 􏼃ds + e23α23β23

· 􏽚
t

0
e

− c3(t− s)
E u2(t)􏼂 􏼃ds.

(84)

It follows from (75), (81), and (84) that

lim
t⟶∞

E u3(t)􏼂 􏼃 �
a3

c3
+ e13α13β13 lim

t⟶∞
􏽚

t

0
e

− c3(t− s)
E u1(s)􏼂 􏼃ds

+ e23α23β23 lim
t⟶∞

􏽚
t

0
e

− c3(t− s)
E u2(t)􏼂 􏼃ds

�
a3

c3
+

a1e13α13β13
c1c3

+
e23α23β23

c3

·
a2

c2
+

a1e12α12β12
c1c2

􏼢 􏼣.

(85)

From the comparison theorem of stochastic differential
equations, it follows that

1
xi(t)
≤

1
ϕi(t)

� ui(t), i � 1, 2, 3. (86)

Now, Lemma 3 follows immediately from the above
analysis. *e proof is complete. □

Theorem 8. If ci > 0 (i � 1, 2, 3), then model (8) is sto-
chastically permanent.

Proof. Let (x1(t), x2(t), x3(t)) be solution of (8) with initial
value (x10, x20, x30) ∈ R3

+. For any ε ∈ (0, 1), let δi � (ε/Mi)

(i � 1, 2, 3), then

P xi(t)< δi􏼈 􏼉 � P
1

xi(t)
>
1
δi

􏼨 􏼩≤
E 1/xi(t)􏼂 􏼃

1/δi

� δiE
1

xi(t)
􏼢 􏼣, i � 1, 2, 3.

(87)

*us, from Lemma 3, it follows that

lim sup
t⟶∞

P xi(t)< δi􏼈 􏼉≤ lim sup
t⟶∞

δiE
1

xi(t)
􏼢 􏼣≤ ε, i � 1, 2, 3.

(88)

*is implies

lim inf
t⟶∞

P xi(t)≥ δi􏼈 􏼉≥ 1 − ε, i � 1, 2, 3. (89)

Let ε ∈ (0, 1) be sufficiently small such that δi <Hi. From
(67) and Definition 2, model (8) is stochastically permanent.
*e proof is therefore complete. □

6. Stationary Distribution and Ergodicity

In this section, we will show that there is an ergodic sta-
tionary distribution for the solution of (8). For the com-
pleteness of the paper, in this section, we list some theories
about stationary distribution (see [32]). Let X(t) be a ho-
mogeneous Markov process in Ed (denotes d-dimensional
Euclidean space), described by the following stochastic
differential equation:

dX(t) � b(X(t))dt + g(X(t))dW(t), X(0) � X0. (90)
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*e diffusion matrix of the process X(t) is defined as
J(X) � g(X)gT(X) � (aij(X)).

Definition 3 (see [32]). Let P(t, X, ·) be the probability
measure induced by X(t) with initial value X(0) � X0. *at
is, P(t, X0, A) � P(X(t) ∈ A ∣ X(0) � X0), for any Borel set
A ∈B(Rd

+). If there exists a probability measure μ(·) such
that limt⟶∞P(t, X0, A) � μ(A) for all X0 ∈ Rd

+ and
A ∈B(Rd

+), then we say that stochastic differential equation
(90) has a stationary distribution μ(·).

Lemma 4 (see [33, 34]). Assume that there exists a bounded
domain D ⊂ Ed with regular boundary Γ and

(i) (A1) *ere is a positive number M such that
􏽐

d
i,j�1aij(X)ξiξj ≥M|ξ|2, X ∈ D, and ξ ∈ Rd;

(ii) (A2) *ere exists a nonnegative C2-function V such
that there exists a positive constant C, such that

LV≤ − C for anyX ∈
Ed

D
. (91)

*en, the Markov process X(t) has a unique ergodic
stationary distribution μ(·). Moreover, if f(·) is a function
integrable with respect to the measure μ, then

P lim
T⟶∞

1
T

􏽚
T

0
f(X(t))dt � 􏽚

Ed

f(x)μ(dx)􏼨 􏼩 � 1. (92)

Let X(t) � (x1(t), x2(t), x3(t))T , g(X) � diag(σ1x1,

σ2x2, σ3x3), W(t) � (w1(t), w2(t), w3(t))T , and

b(X) �

x1 r − a1x1 −
α12x2

x1 + β12x2
−

α13x3

x1 + β13x3
􏼠 􏼡

x2 − d2 − a2x2 +
e12α12x1

x1 + β12x2
−

α23x3

x2 + β23x3
􏼠 􏼡

x3 − d3 − a3x3 +
e13α13x1

x1 + β13x3
+

e23α23x2

x2 + β23x3
􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(93)

*en, system (90) reduces to model (8) with diffusion
matrix J(X) � diag(σ21x

2
1, σ

2
2x

2
2, σ

2
3x

2
3).

Theorem 9. If a2 > 0, a3 > 0, κ1 − e12α12β12 − e13α13β13−
σ21 > 0, κ2 − e23α23β23 − σ22 > 0, and κ3 − σ23 > 0, then for any
(x10, x20, x30) ∈ R3

+, model (8) has a stationary distribution
and the solutions have ergodic property.

Proof. Define C2-function V1: R3
+⟶ R+ by

V1(X) � x1 + x2 + x3, (94)

for X � (x1, x2, x3) ∈ R3
+. By Itô formula, we have

LV1(X) � x1 r − a1x1 −
α12x2

x1 + β12x2
−

α13x3

x1 + β13x3
􏼠 􏼡

+ x2 − d2 − a2x2 +
e12α12x1

x1 + β12x2
−

α23x3

x2 + β23x3
􏼠 􏼡

+ x3 − d3 − a3x3 +
e13α13x1

x1 + β13x3
+

e23α23x2

x2 + β23x3
􏼠 􏼡

≤ − a1x
2
1 + rx1 − a2x

2
2 + e12α12 − d2( 􏼁x2 − a3x

2
3

+ e13α13 + e23α23 − d3( 􏼁x3.

(95)

Define C2-function V2: R3
+⟶ R+ by

V2(X) � x
− 1
1 + x

− 1
2 + x

− 1
3 , (96)

for X � (x1, x2, x3) ∈ R3
+. By Itô formula, we have

LV2(X) � − x
− 1
1 r − a1x1 −

α12x2

x1 + β12x2
−

α13x3

x1 + β13x3
􏼠 􏼡 + σ21x

− 1
1

− x
− 1
2 − d2 − a2x2 +

e12α12x1

x1 + β12x2
−

α23x3

x2 + β23x3
􏼠 􏼡

+ σ22x
− 1
2

− x
− 1
3 − d3 − a3x3 +

e13α13x1

x1 + β13x3
+

e23α23x2

x2 + β23x3
􏼠 􏼡

+ σ23x
− 1
3

≤ − x
− 1
1 κ1 − a1x1( 􏼁 + σ21x

− 1
1

− x
− 1
2 κ2 − a2x2 −

e12α12β12x2

x1 + β12x2
􏼠 􏼡 + σ22x

− 1
2

− x
− 1
3 κ3 − a3x3 −

e13α13β13x3

x1 + β13x3
−

e23α23β23x3

x2 + β23x3
􏼠 􏼡

+ σ23x
− 1
3

≤ − x
− 1
1 κ1 − a1x1( 􏼁 + σ21x

− 1
1

− x
− 1
2 κ2 − a2x2 −

e12α12β12x2

x1
􏼠 􏼡 + σ22x

− 1
2

− x
− 1
3 κ3 − a3x3 −

e13α13β13x3

x1
−

e23α23β23x3

x2
􏼠 􏼡 + σ23x

− 1
3

� − κ1 − e12α12β12 − e13α13β13 − σ21􏼐 􏼑x
− 1
1 + a1

− κ2 − e23α23β23 − σ22􏼐 􏼑x
− 1
2 + a2 − κ3 − σ23􏼐 􏼑x

− 1
3 + a3.

(97)

Let V(X) � V1(X) + V2(X). *en,
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LV(X)≤ − a1x
2
1 + rx1 − κ1 − e12α12β12 − e13α13β13 − σ21􏼐 􏼑x

− 1
1

+ a1 − a2x
2
2 + e12α12 − d2( 􏼁x2

− κ2 − e23α23β23 − σ22􏼐 􏼑x
− 1
2 + a2 − a3x

2
3

+ e13α13 + e23α23 − d3( 􏼁x3 − κ3 − σ23􏼐 􏼑x
− 1
3 + a3

� f x1( 􏼁 + g x2( 􏼁 + h x3( 􏼁,

(98)

where

f x1( 􏼁 � − a1x
2
1 + rx1 − κ1 − e12α12β12 − e13α13β13 − σ21􏼐 􏼑x

− 1
1

+ a1,

g x2( 􏼁 � − a2x
2
2 + e12α12 − d2( 􏼁x2 − κ2 − e23α23β23 − σ22􏼐 􏼑x

− 1
2

+ a2,

h x3( 􏼁 � − a3x
2
3 + e13α13 + e23α23 − d3( 􏼁x3 − κ3 − σ23􏼐 􏼑x

− 1
3

+ a3.

(99)

Clearly, f(x1), g(x2), and h(x3) have upper bound on
R+. Denote

f
u

� sup
x1∈R+

f x1( 􏼁􏼈 􏼉,

g
u

� sup
x2∈R+

g x2( 􏼁􏼈 􏼉,

h
u

� sup
x3∈R+

h x3( 􏼁􏼈 􏼉.

(100)

From κ1 − e12α12β12 − e13α13β13 − σ21 > 0, it follows that
LV(X)≤f x1( 􏼁 + g x2( 􏼁 + h x3( 􏼁≤f x1( 􏼁 + g

u

+ h
u⟶ − ∞, a.s. x1⟶ 0+ or x1⟶ +∞.

(101)

Similarly, from κ2 − e23α23β23 − σ22 > 0 and κ3 − σ23 > 0,
we have

LV(X)≤f x1( 􏼁 + g x2( 􏼁 + h x3( 􏼁≤f
u

+ g x2( 􏼁

+ h
u⟶ − ∞, a.s. x2⟶ 0+ or x2⟶ +∞,

LV(X)≤f x1( 􏼁 + g x2( 􏼁 + h x3( 􏼁≤f
u

+ g
u

+ h x3( 􏼁⟶ − ∞, a.s. x3⟶ 0+ orx3⟶ +∞.

(102)

Consequently, there exists ρ> 0 (sufficiently small) such
that

LV(X)≤ − 1, for all x1, x2, x3( 􏼁 ∈
R3

+

D
, (103)

where

D � x1, x2, x3( 􏼁 ∈ R3
+ ∣ ρ<x1 <

1
ρ
, ρ<x2 <

1
ρ
, ρ<x3 <

1
ρ

􏼨 􏼩 ⊂ R3
+.

(104)

Hence, (A2) in Lemma 4 is satisfied.

Denote σ2 � σ21 ∧ σ22 ∧ σ23. *en, for any X � (x1, x2,

x3) ∈ D and ξ � (ξ1, ξ2, ξ2) ∈ R3, we have

􏽘

3

i,j�1
aij(X)ξiξj � σ21x

2
1ξ

2
1 + σ22x

2
2ξ

2
2 + σ23x

2
3ξ

2
3 ≥M|ξ|

2
,

(105)

where M � ρ2σ2. *us, condition (A1) of Lemma 4 holds.
According to Lemma 4, model (8) is ergodic and admits a
unique stationary distribution. *e proof is therefore
complete. □

7. Application of Main Results

In this section, we present the application of the main results
in some special models.

7.1. Two Species Predator-Prey Model. Let α13 � α23 � 0.
*en, the first two equations of (8) form the following closed
two-population system:

dx1(t) � x1(t) r − a1x1(t) +
α12x2(t)

x1(t) + β12x1(t)
􏼢 􏼣dt

+ σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)
􏼢 􏼣dt

+ σ2x2(t)dw2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(106)

with initial value (x10, x20) ∈ R2
+. *is is also the stochastic

predator-prey model discussed in [19]. From *eorems 3
and 4, we have the following result.

Corollary 1. Let (x1(t), x2(t)) be solution of model (106)
with initial value (x10, x20) ∈ R2

+.

(i) If a2 > 0, r − (α12/β12) − (σ21/2)> 0, and e12α12 −

d2 − (σ22/2)> 0, then

lim inf
t⟶∞

1
t

􏽚
t

0
x1(s)ds≥

r − α12/β12( 􏼁 − σ21/2( 􏼁

a1
> 0 a.s.,

lim inf
t⟶∞

1
t

􏽚
t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
􏼢 􏼣ds

≥ e12α12 − d2 −
σ22
2
> 0 a.s.

(107)

(ii) If r − (σ21/2)< 0 and e12α12 − d2 − (σ22/2)< 0, then
(106) is extinct exponentially with probability one.
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Remark 1. It is clear that Corollary 1 is consistent with
*eorems 7 and 8 in [19]. Moreover, from*eorems 3 and 4,
the persistence in mean and extinction conditions of the
three-species model (8) are more complicated. *us, our
work can be seen as the extension of [19].

For model (106), similar to the proof of *eorem 6
(denote H � e12x1 + x2), we have

lim sup
t⟶∞

E x1(t)􏼂 􏼃≤
K2′

e12d2
,

lim sup
t⟶∞

E x2(t)􏼂 􏼃≤
K2′

d2
,

(108)

where K2′ � e12(r + d2)
2/4a1. Furthermore, from *eorems

7–9, for model (106), we have the following result.

Corollary 2

(i) Model (106) is stochastically ultimate bounded
(ii) If r − (α12/β12) − σ21 > 0 and e12α12 − d2 − σ22 > 0,

then model (106) is stochastically permanent
(iii) If a2 > 0, r − (α12/β12) − e12α12β12 − σ21 > 0, and

e12α12 − d2 − σ22 > 0, then for any (x10, x20) ∈ R2
+,

model (106) has a stationary distribution and the
solutions have ergodic property

If we do not consider the intraspecific competition of the
predator, i.e., a2 � 0 in model (106), then model (6) is
available. From*eorems 4, 7, and 8, for model (6), we have
the following result.

Corollary 3

(i) If r − (σ21/2)< 0 and e12α12 − d2 − (σ22/2)< 0, then
model (6) is extinct exponentially with probability
one

(ii) Model (6) is stochastically ultimate bounded
(iii) If r − (α12/β12) − σ21 > 0 and e12α12 − d2 − σ22 > 0,

then model (6) is stochastically permanent

Remark 2. From *eorem 4.11 in [18], it follows that if r −

(α12/β12) − (3/2)σ21 > 0 and e12α12 − d2 − (3/2)σ23 > 0, then
model (6) is stochastically permanent. Obviously, if con-
ditions of *eorem 4.11 in [18] hold, then conditions in
Corollary 3 hold. On the contrary, it is not set up.
*erefore, Corollary 3 generalizes and improves *eorem
4.11 in [18].

Remark 3. If r − (α12/β12) − σ21 > 0 and e12α12 − d2 − σ23 > 0,
then by *eorem 3.3 in [16], model (6) is persistent in
mean, but by Corollary 3, model (6) is stochastically
permanent.

7.2. 9ree-Species Food-Chain Model. Let α13 � 0. *en, we
can get the following stochastic three-species food chain
model:

dx1(t) � x1(t) r − a1x1(t) +
α12x2(t)

x1(t) + β12x2(t)
􏼢 􏼣dt

+ σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)
􏼢

−
α23x3(t)

x2(t) + β23x3(t)
􏼣dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 − a3x3(t) +
e23α23x2(t)

x2(t) + β23x3(t)
􏼢 􏼣dt

+ σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(109)

with initial value (x1(0), x2(0), x3(0)) � (x10, x20, x30) ∈
R3

+. Denote

κ1′ � r −
α12
β12

;

κ2′ � e12α12 − d2 −
α23
β23

;

κ3′ � e23α23 − d3;

ci
′ � κi
′ − σ2i ,

i � 1, 2, 3.

(110)

For model (109), we have the following results.

Corollary 4. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (109) with initial value
(x10, x20, x30).

(i) If a2 > 0, a3 > 0, and κI
′ − (σ2i /2)> 0 (i � 1, 2, 3), then

lim
t⟶∞

lnx1(t)

t
� 0,

lim
t⟶∞

lnx2(t)

t
� 0,

lim
t⟶∞

lnx3(t)

t
� 0 a.s.

(111)

(ii) If a2 > 0, a3 > 0, and κi
′ − (σ2i /2)> 0 (i � 1, 2, 3), then
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lim inf
t⟶∞

1
t

􏽚
t

0
x1(s)ds≥

κ1′ − σ21/2( 􏼁

a1
a.s.,

lim inf
t⟶∞

1
t

􏽚
t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
􏼢 􏼣ds≥ κ2′ −

σ22
2

a.s.,

lim inf
t⟶∞

1
t

􏽚
t

0
a3x3(s) +

e23α23β23x3(s)

x2(s)
􏼢 􏼣ds≥ κ3′ −

σ23
2

a.s.

(112)

(iii) If r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e23α23 − d3 − (σ23/2)< 0, then model (109) is extinct
exponentially with probability one.

Corollary 5. Model (109) is stochastically ultimate bounded.
Furthermore, if ci

′ > 0 (i � 1, 2, 3), then model (109) is sto-
chastically permanent.

Corollary 6. If a2 > 0, a3 > 0, κ1′ − e12α12β12 − σ21 > 0,
κ2′ − e23α23β23 − σ22 > 0, and κ3′ − σ23 > 0, then for any
(x10, x20, x30) ∈ R3

+, model (109) has a stationary distribution
and the solutions have ergodic property.

If we do not consider the intraspecific competition of the
predator, i.e., a2 � a3 � 0 in model (109), then we obtain the
following stochastic three-species food chain model:

dx1(t) � x1(t) r − a2x1(t) −
α12x2(t)

x1(t) + β12x2(t)
􏼢 􏼣dt + σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
􏼢 􏼣dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 +
e23α23x2(t)

x2(t) + β23x3(t)
􏼢 􏼣dt + σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(113)

with initial value (x1(0), x2(0), x3(0)) � (x10, x20,

x30) ∈ R3
+. From *eorems 4, 7, and 8, for model (113), we

have the following result.

Corollary 7

(i) If r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e23α23 − d3 − (σ23/2)< 0, then model (113) is extinct
exponentially with probability one

(ii) Model (113) is stochastically ultimate bounded

(iii) If ci
′ > 0 (i � 1, 2, 3), then model (113) is stochasti-

cally permanent

7.3. Food-Web Model without Intraspecific Competition of
Predators. If we do not consider the intraspecific compe-
tition of the predator, i.e., a2 � a3 � 0 in model (8), then we
obtain the following stochastic three-species model:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) + β12x2(t)
−

α13x3(t)

x1(t) + β13x3(t)
􏼢 􏼣dt + σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
􏼢 􏼣dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 +
e13α13x1(t)

x1(t) + β13x3(t)
−

e23α23x2(t)

x2(t) + β23x3(t)
􏼢 􏼣dt + σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(114)
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with initial value (x10, x20, x30) ∈ R3
+. For model (114), we

have the following result.

Corollary 8

(i) If r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e13α13 + e23α23 − d3 − (σ23/2)< 0, then model (114) is
extinct exponentially with probability one

(ii) Model (114) is stochastically ultimate bounded
(iii) If ci > 0 (i � 1, 2, 3), then model (114) is stochasti-

cally permanent

8. Numerical Simulations

In this section, we use the Milstein method (see [35]) to
substantiate our main results. *e numerical simulations of
population dynamics are carried out for the academic tests
with the arbitrary values of the vital rates and other pa-
rameters which do not correspond to some specific bi-
ological populations and exhibit only the theoretical
properties of numerical solutions of the considered model.
To illustrate the theoretical results, we take the parameter
values as following with different noise intensities:

r � 0.62,

d2 � 0.0005,

d3 � 0.0006,

a1 � 0.0005,

a2 � 0.0002,

a3 � 0.0003,

α12 � 0.2,

α13 � 0.15,

α23 � 0.08,

e12 � 0.8,

e13 � 0.5,

e23 � 0.6,

β12 � β13 � β23 � 1,

x10 � 800,

x20 � 300,

x30 � 200.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(115)

In Figure 1, we choose σi � 0 (i � 1, 2, 3) and get the
solutions of the corresponding deterministic model.

(i) Assume that σ21 � 1.4, σ22 � 0.4, and σ23 � 0.3. By a
simple computation, r − (σ21/2) � − 0.08< 0, e12α12 −

d2 − (σ22/2) � − 0.0405< 0, and e13α13 + e23α23 −

d3 − (σ23/2) � − 0.0276< 0. *us, the condition of
*eorem 4 holds. From *eorem 4, model (8) will
become extinct with probability one. As can be seen
from Figure 2, all the population becomes extinct.

(ii) Assume that σ21 � 0.44, σ22 � 0.08, and σ23 � 0.08.
*en, κ1 � r − (α12/β12) − (α13/β13) � 0.27, κ2 � e12
α12 − d2 − (α23/β23) � 0.0795, and κ3 � e13α13 + e23
α23 − d3 � 0.1224. *us, κ1 − (σ21/2) � 0.05> 0, κ2 −

(σ22/2) � 0.0395> 0, and κ3 − (σ23/2) � 0.0824> 0.
*at is, the conditions of *eorem 3 hold. In view of
*eorem 3, model (8) is persistent in mean. As can be
seen from Figure 3, all the populations are permanent
in mean. *is is consistent to *eorem 3.

(iii) Assume that σ21 � 0.02, σ22 � 0.01, σ23 � 0.01. From
(ii), it follows that κ1 � 0.27, κ2 � 0.0795 and κ3 �

0.1224.*us, κ1 − σ21 � 0.25> 0, κ2 − σ22 � 0.0695> 0
and κ3 − σ23 � 0.1124> 0. Hence, the conditions of
*eorem 8 hold. In view of *eorem 8, model (8) is
stochastically permanent. From Figure 4 that all the
populations are stochastically permanent. *is is
consistent to *eorem 8.

(iv) Assume that σ21 � 0.02, σ22 � 0.01, and σ23 � 0.01.
From (ii), it follows that κ1 � 0.27, κ2 � 0.0795, and
κ3 � 0.1224. Furthermore, κ1 − e12α12β12− e13α13β13
− σ21 � 0.015> 0, κ2 − e23α23β23 − σ22 � 0.0215> 0,
and κ3 − σ23 � 0.1244> 0. *us, the conditions of
*eorem 9 hold. *erefore, model (8) has a sta-
tionary distribution according to *eorem 9 (see
Figures 5 and 6).

9. Conclusions and Discussions

*is paper is concerned with a stochastic three-species
predator-prey food web model with omnivory and ratio-
dependent functional response. First, by the comparison
theorem of stochastic differential equations, we prove the
existence and uniqueness of global positive solution of the
model. Next, we investigate an important asymptotic
property of the solution, which is crucial to the study of the
dynamic behavior of the model. *en, under some condi-
tions, we conclude that the model is persistent in mean and
extinct. Moreover, we discuss the stochastic persistence of
the model. Furthermore, by constructing a suitable Lya-
punov function, we establish sufficient conditions for the
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Figure 1: *e trajectories of model (8) with σ1 � σ2 � σ3 � 0.
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existence of an ergodic stationary distribution to the model.
*en, we present the application of the main results in some
special models. Finally, some numerical simulations are
introduced to support the main results.

In Section 4, we prove that there are two typical
phenomena arising in accordance with the relative values
of the parameters of the model. In *eorem 3, we give the
conditions on the parameters that informally can be
stated by saying that the noise intensities σ2i (i � 1, 2, 3) are
small compared to the other parameters, such that the

species in model (8) are persistent in mean. From *e-
orem 4, it follows that in the case that the noise intensities
σ2i (i � 1, 2, 3) are large with respect to the other pa-
rameters, then the solution of model (8) tends to ex-
tinction almost surely.

Later, in Section 5, we discuss on the stochastic per-
manence of the solution. *is concept, which can be
paraphrased by saying that the species in model (8) will
survive forever, is one of the most important and interesting
topics in the analysis of the model. From *eorem 8, if the

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Time t

Po
pu

la
tio

n

Prey x1(t)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

Time t

Po
pu

la
tio

n

Intermediate predator x2(t)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

Time t

Po
pu

la
tio

n

IG predator x3(t)

Figure 2: *e trajectories of stochastic model (8) with σ21 � 1.4, σ22 � 0.4, and σ23 � 0.3.
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Figure 3: *e trajectories of stochastic model (8) with σ1 � 0.44, σ2 � 0.08, and σ3 � 0.08.
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Figure 4: *e trajectories of stochastic model (8) with σ1 � 0.02, σ2 � 0.01, and σ3 � 0.01.
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noise intensities σ2i (i� 1, 2, 3) are small compared to the
other parameters, such that κi − σ2i > 0 (i � 1, 2, 3), then
model (8) is stochastically permanent.

Moreover, in Section 6, by constructing a suitable
Lyapunov function, we show that there is an ergodic sta-
tionary distribution for the solution of model (8). In *e-
orem 9, we give the conditions on the parameters that can be
stated by saying that the intensity σ2i of white noise _wi(t) is
sufficiently small, such that the solution model (8) has an
ergodic stationary distribution.

*e results in this paper generalize and improve the
previous related results. From Remark 1, we know that our
work can be seen as the extension of [19]. From Remark 2,
we know that *eorem 8 generalizes and improves *eorem
4.11 in [18].
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Evolutionary game dynamics is an important research, which is widely used in many �elds such as social networks, biological
systems, and cooperative behaviors.  is paper focuses on the Hopf bifurcation in imitative dynamics of three strategies (Rock-
Paper-Scissors) with mutations. First, we verify that there is a Hopf bifurcation in the imitative dynamics with no mutation. en,
we �nd that there is a critical value of mutation such that the system tends to an unstable limit cycle created in a subcritical Hopf
bifurcation. Moreover, the Hopf bifurcation exists for other kinds of the considered mutation patterns. Finally, the theoretical
results are veri�ed by numerical simulations through Rock-Paper-Scissors game.

1. Introduction

Evolutionary game dynamics combines game theory and
nonlinear dynamics to describe the evolution of the fre-
quencies of strategies in one or more large population [1, 2].
It has edged into many �elds such as networks population
[3–6], economics [7, 8], biology [9, 10], management
[11, 12], and cooperative behaviors [13–16].  ere are many
important evolutionary game dynamics such as replicator
dynamics, imitative dynamics [17], best-response dynamics
[18], and so on [19].  e Rock-Paper-Scissors (RPS) [20, 21]
is a famous three-strategy game, which describes in-
teractions among three competing species in ecology, so-
ciological systems [22], and theoretical biology [23, 24].
Replicator dynamics is the best-known evolutionary dy-
namics, which was �rstly de�ned by Taylor and Jonker [25],
and has been researched in various �elds [26, 27]. In
practice, imitative dynamics is a generalized replicator dy-
namics, which investigates the spreading of strategies in the
context of imitation instead of inheritance.

 ere are some research studies about the imitative dy-
namics [28–30]. Cheung [28] studied the imitative dynamics
for games with continuous strategy space and obtained global

convergence and local stability results for imitative dynamics.
Wang et al. [29] investigated the imitation dynamics with
delay, and they discussed the two-phenotype and three-
phenotype model and obtained some relevant results for
stability. Hu et al. [30] researched the imitative dynamics with
discrete delay, and they discovered that the stability would be
changed in the discrete delay dynamics and obtained some
su¢cient conditions.  e emphasis of the literatures is the
e£ect of delay in the imitative dynamics. However, the
mutation is also a noticeable factor on the study of the stability
of the evolutionary dynamics in reality.

Until now, many researchers have studied the e£ect of
mutations in the replicator dynamics [31–34]. Mobilia [31]
investigated the oscillatory dynamics in generic RPS games
with mutations and found out the existence of the hetero-
clinic cycles in the RPS model. Nagatani et al. [32] studied a
metapopulation model for RPS game with mutation, and
they found that the mutation would lead to the phase
transitions among three strategies. Toupo et al. [33, 34]
researched the e£ect of mutations in the repeated prisoner’s
dilemma game and RPS game, and they found that the
mutations would result in the Hopf bifurcation in the
replicator dynamics.  eir research studies illustrate that
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mutation could change the stability of the dynamics, es-
pecially lead to bifurcation.

*e bifurcation is an important behavior in dynamical
systems [35], which has been researched by many scholars
[36–39]. Wesson et al. [36, 37] investigated the Hopf bi-
furcation in two-strategy and three-strategy delayed replicator
dynamics, and they demonstrated the existence of Hopf bi-
furcation and presented an analysis of the limit cycles through
Lindstedt’s method. Nesrine et al. [38] researched the Hopf
bifurcation in RPS game with distributed delays. Umezuki
[39] studied the bifurcation of RPS game with discrete-time
logit dynamics and showed that some bifurcations would
destroy the coexistence of the attractors in the RPS game.

According to the previous literatures, there are few research
studies about the bifurcation in imitative dynamics. In this
paper, we aim to discuss the Hopf bifurcation in imitative
dynamics withmutation. Our research will illustrate that (i) the
imitative dynamics appears to be a Hopf bifurcation at the
parameter c in the RPS game; (ii) the stability would be
changed in the mutative imitation dynamics; and (iii) a sub-
critical Hopf bifurcation would be exhibited in this dynamics.

*e rest of this paper is organized as follows. Section 2
sets the imitation dynamics model without mutation and
analyses the stability and bifurcation. Section 3 researches
the Hopf bifurcations with mutations in the imitative dy-
namics. Section 4 gives numerical simulations of the equi-
librium and an unstable periodic solution. Section 5 offers
concluding remarks.

2. RPS Model without Mutation

2.1. Derivation. We consider a symmetric three-phenotype
model with pure strategies Rock (R), Scissors (S), and Paper
(P) and with payoff matrix:

R
S
P

R S P
1 1 + γ 0
0 1 1 + γ

1 + γ 0 1
, γ > 0. (1)

*e payoff matrix means that each strategy gets a payoff
1 when playing against itself, and the loser gets a payoff 0
while the winner gets 1 + c. Let (x1, x2, x3) denote the
frequency of (R, S,P) and (f1, f2, f3) the expected payoff of
(R, S,P) with fi(x) � 􏽐

3
j�1xjaij, where x � (x1, x2, x3) with

􏽐
3
i�1xi � 1 and aij denotes the payoff of Si-individual plays

against a Sj individual in which i, j � 1, 2, 3.
*e classic imitation dynamics tacitly supposes that an

individual is randomly selected from the population and
awarded the same opportunity to change the strategy. *at
is, when an individual using Si plays against an individual
using Sj, the imitation rate that the Sj strategist switches to Si

is denoted by Fij for i, j � 1, 2, 3. In the previous literature, it
is assumed that the imitation rate Fij depends on the ex-
pected payoffs fi(x) and fj(x):

Fij(x) � F fi(x), fj(x)􏼐 􏼑, (i, j � 1, 2, 3), (2)

where the function F(u, v) defines the imitation rule. Here,
we take F(u, v) � u/(u + v), i.e.,

Fij(x(t)) �
fi(x(t))

fi(x(t)) + fj(x(t))
, (i, j � 1, 2, 3). (3)

For ease of notation, write (x1, x2, x3) � (x, y, z). Under
this condition, the imitation dynamics equations can be
written as follows:

_x � x
f1 − f2

f1 + f2
y +

f1 − f3

f1 + f3
z􏼠 􏼡,

_y � y
f2 − f1

f2 + f1
x +

f2 − f3

f2 + f3
z􏼠 􏼡,

_z � z
f3 − f1

f3 + f1
x +

f3 − f2

f3 + f2
y􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Since x, y, and z are the frequencies of the three strat-
egies, the region of interest is the three-dimensional simplex
in R3:

􏽘

​
≡ (x, y, z) ∈ R

3
: x + y + z � 1, (x, y, z≥ 0)􏽮 􏽯. (5)

So, we can eliminate z using z � 1 − x − y and the
projection of 􏽐

​ into the x − y plane: S ≡ (x, y) ∈ R2 :􏼈

(x, y, 1 − x − y) ∈􏽐}. In this case, equation (4) can be
written as

_x � x y
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)
􏼢

+(1 − x − y)
(1 − c)x +(2 + c)y − 1

(1 + c)x + cy + 1
􏼣,

_y � y − x
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)
􏼢

+(1 − x − y)
− x − (1 + c)y + 2 + c

− (1 + c)x − cy + c
􏼣.

(6)

2.2. Stability of Equilibria. System (6) has four equilibria:

e1 � (0, 0),

e2 � (0, 1),

e3 � (1, 0),

x
∗

�
1
3
,
1
3

􏼒 􏼓.

(7)

In order to discuss the stability of these equilibria, we
linearize equation (6). As a result, we can analyze the stability
of each point through the eigenvalues of the Jacobian. *e
eigenvalues of the three corner equilibria can be calculated as
shown in Table 1.

From above analysis, in the nonmutation RPS equation,
each corner of S is a saddle point.
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Next, we consider an important equilibrium x∗; first, we
discuss the stability in the nonmutation system. Since there
are two imaginary eigenvalues at this equilibrium point, we
think there might be a Hopf bifurcation at x∗.

2.3. Hopf Bifurcation. First, we introduce a lemma about
Hopf bifurcation in the vector field.

Lemma 1 (see [40]). Suppose that system
_x � fμ(x), x ∈ Rn

, μ ∈ R, (8)

has an equilibrium (x0, μ0) at which the following properties
are satisfied:

(H1) Dxfμ0(x0) has a simple pair of pure imaginary
eigenvalues and no other eigenvalues with zero real
parts

(H2) d � d/dμ(Reλ(μ))|μ�μ0 ≠ 0
(H3) a � a(μ0)≠ 0, where a(μ0) is the first Lyapunov

coefficient

6en, the system undergoes a Hopf bifurcation at μ � μ0.
The coefficient a(μ) can be calculated as follows. On the

center manifold, fμ(x) has the following form near the
origin:

_x

_y
􏼠 􏼡 �

Reλ(μ) − Imλ(μ)

Imλ(μ) Reλ(μ)
􏼠 􏼡

x

y
􏼠 􏼡 +

f1(x, y, μ)

f2(x, y, μ)
􏼠 􏼡,

(9)

where f1 andf2 are nonlinear functions in x and y and
λ(μ) and λ(μ) are the eigenvalues of the linearized system
around the equilibrium at the origin. Especially, at the bi-
furcation point (i.e., μ � 0, λ1,2 � ± iω), the coefficient is
given by

a(μ) �
f1

xxx + f1
xyy + f2

xxy + f2
yyy

16

+
f1

xy f1
xx + f1

yy􏼐 􏼑 − f2
xy f2

xx + f2
yy􏼐 􏼑

16ω

+
f1

yyf2
yy − f1

xxf2
xx

16ω
.

(10)

Lemma 2 (see [41]). Consider the system form (8); for
sufficiently small μ, the following four cases hold:

(i) d> 0, a> 0: unstable equilibrium for μ> 0 and as-
ymptotically stable equilibrium for μ< 0, with un-
stable periodic orbit (i.e., subcritical) for μ< 0

(ii) d> 0, a< 0: unstable equilibrium for μ> 0 and as-
ymptotically stable equilibrium for μ< 0, with as-
ymptotically stable periodic orbit (i.e., supercritical)
for μ> 0

(iii) d< 0, a> 0: unstable equilibrium for μ< 0 and as-
ymptotically stable equilibrium for μ> 0, with un-
stable periodic orbit (i.e., subcritical) for μ> 0

(iv) d< 0, a< 0: unstable equilibrium for μ> 0 and as-
ymptotically stable equilibrium for μ< 0, with as-
ymptotically stable periodic orbit (i.e., supercritical)
for μ< 0

Next, we give a theorem to illustrate the bifurcation in
dynamics (6).

Theorem 1. 6e imitation dynamics (6) exhibits a subcritical
Hopf bifurcation at c � 1. Moreover, when c> 1, the interior
equilibrium is locally stable, and it is unstable when c< 1.

Proof. (i) When c≠ 1, the sign of the real part of eigenvalues
can be determined through Table 1. *at is,

c> 1, Re(λ) �
1 − c

4(c + 2)
< 0, (stability),

c< 1, Re(λ) �
1 − c

4(c + 2)
> 0, (instability).

(11)

(ii) When c � 1, as the formula in Lemma 1, we obtain
the nonlinear function form,

f
1
(x, y) � x (1 − x − y)

3y − 1
2x + y + 1

+ y
3x + 3y − 2
− x + 2y + 2

􏼢 􏼣

+

�
3

√

6
y,

f
2
(x, y) � y (1 − x − y)

− x − 2y + 3
− 2x − y + 1

− x
3x + 3y − 2
− x + 2y + 2

􏼢 􏼣

−

�
3

√

6
x.

(12)

We can obtain the Lyapunov coefficient through Matlab
as follows:

a(c) �
27 c3 + 4c2 + 2c − 3( 􏼁

16(c + 2)3
|c�1 �

1
4
> 0.

d(c) �
d

d(c)
(Reλ(c)) � −

3
4(c + 2)2

|c�1 < 0.

(13)

Table 1: *e eigenvalues of equilibria.

Points Eigenvalues
(1, 0) λ1 � − 1, λ2 � c/c + 2
(0, 1) λ2 � c/c + 2, λ1 � − 1
(0, 0) λ1 � − 1, λ2 � c/c + 2
(1/3, 1/3) λ1,2 � 1 − c/4(c + 2) ± (

�
3

√
(1 + c)/4(c + 2))i
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According to Lemma 2, the Hopf bifurcation is sub-
critical at c � 1. □

3. RPS Model with Mutations

In this section, we examine the imitative dynamics with all
kinds of mutations, including global mutations, single
mutation, double mutations, and so on.

3.1. Global Mutations in RPS Model. First, we discuss the
global mutations in imitative dynamics. *e relationship of
mutations is shown in Figure 1.

In this case, the dynamics becomes the following form
with mutant coefficient μ(μ≥ 0):

_x � x􏼢(1 − x − y)
(1 − c)x +(2 + c)y − 1

(1 + c)x + cy + 1

+y
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)
􏼣 + μ(1 − 3x),

_y � y􏼢(1 − x − y)
− x − (1 + c)y + 2 + c

− (1 + c)x − cy + c

− x
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)
􏼣 + μ(1 − 3y).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

We give a theorem to illustrate the bifurcation in dy-
namics (14) as follows.

Theorem 2. 6e following two conclusions are established for
imitative dynamics (14):

(i) 6ere exists a subcritical Hopf bifurcation at μ � 1 −

c/12(c + 2) when c< 1. Moreover, for
μ> 1 − c/12(c + 2), the interior equilibrium is locally
stable, and for μ< 1 − c/12(c + 2), it is unstable

(ii) 6e interior equilibrium is locally stable when c≥ 1

Proof. *e Jacobian matrix of dynamics (14) at (1/3, 1/3) is

J
1
3
,
1
3

􏼒 􏼓 �

1 − c

6(c + 2)
− 3μ

2c + 1
6(c + 2)

−
1
6

1 − c

6(c + 2)
− 3μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

and the conjugate complex eigenvalues are

λ1,2(μ) �
1 − c

4(c + 2)
− 3μ ±

�
3

√
(c + 1)

4(c + 2)
i. (16)

Let Re(λ1,2) � 0, then μ � 1 − c/12(c + 2). One can
obtain the following:

(i) c< 1: if μ � 1 − c/12(c + 2), then the Jacobian ma-
trix has a pair of pure complex eigenvalues

(ii) c≥ 1: Re(λ)< 0 is always correct, i.e., the interior
equilibrium is locally stable

Similar to the proof in *eorem 1, the nonlinear
functions can be obtained as follows:

f1(x, y) � x􏼢y
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)

+(1 − x − y)
(1 − c)x +(2 + c)y − 1

(1 + c)x + cy + 1
􏼣

+
1 − c

12(c + 2)
(1 − 3x) +

�
3

√
(c + 1)

4(c + 2)
y,

f2(x, y) � y􏼢x
(1 + c) − (2 + c)x +(1 + 2c)y

− cx +(1 + c)y +(1 + c)

+(1 − x − y)
− x − (1 + c)y + 2 + c

− (1 + c)x − cy + c
􏼣

+
1 − c

12(c + 2)
(1 − 3y) −

�
3

√
(c + 1)

4(c + 2)
x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

*e Lyapunov coefficient can be calculated as follows:

a(c) �
27 c3 + 4c2 + 2c − 3( 􏼁

16(c + 2)3
> 0, (for 0< c< 1),

d �
d

d(μ)
(Reλ(μ)) �

d

d(μ)

1 − c

4(c + 2)
− 3μ􏼠 􏼡 � − 3< 0.

(18)

According to Lemma 2, the Hopf bifurcation is sub-
critical at μ � 1 − c/12(c + 2).

*e results in *eorem 1 and *eorem 2 show that the
situation in dynamics (8) is different from dynamics (14).
While the interior equilibrium is always unstable when c< 1
in the former, the interior equilibrium is locally stable for
μ> 1 − c/12(c + 2) when c< 1 in the latter. □

3.2. Other Mutations in RPS Model. In this section, we
discuss the other mutations in imitative dynamics; the sit-
uation becomes complex as one adds more mutant path-
ways. For the ease of research, let us restrict attention to
mutant forms that ensure (x, y) � (1/3, 1/3) as the inner
equilibrium for all values of c and μ.

y
µµ

x
µ

z

Figure 1: *e global mutation in RPS.
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Here, we discuss the following three kinds of mutations
in RPS imitative dynamics (see Figure 2): (i) single mutation
between two strategies; (ii) single-cycle mutations among
three strategies; and (iii) double mutations between two
strategies. *ese mutant forms are shown in Table 2. As the
cycle symmetry of the RPS game, it suffices to consider one
of the three possible single mutation and double mutations.
In this case, we just consider the following representative
mutations.

For the imitative dynamics with these three kinds of
mutations, similar subcritical Hopf bifurcation at μ � μc

would be present. *is is different from the stability in
nonmutation imitative dynamics, which is always unstable
when c< 1.

4. Numerical Simulations

In this section, we propose to compare the properties of the
bifurcating periodic solution. Here, we report two simula-
tion results for imitative dynamics with nonmutation and
mutation, respectively.

Example 1. In the imitative dynamics (6), we take

c � 1.5,

c � 1,

c � 0.8,

(19)

into the equation. *rough the Matlab software, one can
obtain the following results (see Figure 3).

In Figure 3, the numerical simulation shows that the
interior equilibrium x∗ is asymptotically stable when c> 1
(i.e., c � 1.5). However, when c � 1, the system state tends to
a unstable periodic solution, and when c< 1 (i.e., c � 0.8),
the interior equilibrium x∗ is unstable.

Example 2. In the imitative dynamics (14), let

c � 1.5,

μ � 0.02,

μ � 0.002,

c � 0.8,

μ � 0.02,

μ � 0.002,

μ � 0.00595.

(20)

*rough the Matlab software, one can obtain the fol-
lowing results (see Figures 4 and 5).

In Figure 4, the numerical simulation shows that the
interior equilibrium x∗ is asymptotically stable when c � 1.5
(i.e., c> 1) for any value of μ, such as μ � 0.02 and μ � 0.002.

In Figure 5, the numerical simulation shows the fol-
lowing: (i) the Hopf curve in dynamics (14), i.e., the
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Figure 3: *e interior equilibrium’s changing situation with different c. (a) When c � 1, the limit cycle occurs around the interior
equilibrium. (b) When c � 1.5, the interior equilibrium is stable. (c) When c � 0.8, the interior equilibrium is unstable.
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Figure 2: *ree representative mutations in RPS.

Table 2: Hopf curve of different mutant forms.

Forms Numbers Hopf curve
y⇄ z 2 μc � 1 − c/4(c + 2)

x⟶ y⟶ z⟶ x 3 μc � 1 − c/6(c + 2)

x⇆ z, z⇄y 4 μc � 1 − c/8(c + 2)
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criticality of μ, changes with c; (ii) the interior equilibrium
x∗ would be stable when c � 0.8 (i.e., c< 1); and (iii) when
μ � 0.00595, the system state tends to a unstable periodic
solution, and when μ> 0.00595, the interior equilibrium x∗

is stable and is unstable when μ< 0.00595. *e marks in
Figures 4 and 5 are same as the description in Figure 3.

5. Conclusion

In this paper, the stability of the interior equilibrium has
been mainly investigated for imitative dynamics with mu-
tations. Different from the result in replicator dynamics
[31, 34], the stability of the interior equilibrium has been
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Figure 5: (a) *e stability and limit cycle with different c and μ (Hopf curve). (b) When c � 0.8 and μ � 0.00595, the limit cycle occurs
around x∗. (c) When c � 0.8 and μ � 0.002, the interior equilibrium is unstable. (d) When c � 0.8 and μ � 0.02, the interior equilibrium is
stable.
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Figure 4: *e interior equilibrium’s changing situation with the same c and different μ. (a) c � 1.5 and μ � 0.02. (b) c � 1.5 and μ � 0.002.
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changed with the mutations, and a subcritical Hopf bi-
furcation appears.

For the imitative dynamics in the RPS game, the stability
is changed at the parameter c in the payoff matrix with no
mutation, and the mutation μ in global mutation. In the
dynamics with no mutation, the interior equilibrium is
locally stable when c> 1 and is unstable when c< 1, and a
subcritical Hopf bifurcation appears at c � 1 in given payoff
matrix. In the imitative dynamics with global mutation, the
interior equilibrium is stable when c≥ 1, and it is different
from the case when c< 1. *ere is a subcritical Hopf bi-
furcation at μ � 1 − c/12(c + 2), and the interior equilib-
rium is locally stable when μ> 1 − c/12(c + 2) and is
unstable when μ< 1 − c/12(c + 2).

If we change the number of parameters (i.e., from one to
two), the stability and bifurcation would becomemuchmore
complicated. Furthermore, some numerical examples have
been given to illustrate the effectiveness of our results. As an
extension to this work, we plan to discuss the imitation
dynamics with delays and mutations.
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Due to the different roles that nontoxic phytoplankton and toxin-producing phytoplankton play in the whole aquatic system, a
delayed reaction-diffusion planktonic model under homogeneous Neumann boundary condition is investigated theoretically and
numerically. This model describes the interactions between the zooplankton and two kinds of phytoplanktons. The long-time
behavior of the model and existence of positive constant equilibrium solution are first discussed. Then, the stability of constant
equilibrium solution and occurrence of Hopf bifurcation are detailed and analyzed by using the bifurcation theory. Moreover,
the formulas for determining the bifurcation direction and stability of spatially bifurcating solutions are derived. Finally, some
numerical simulations are performed to verify the appearance of the spatially homogeneous and nonhomogeneous periodic
solutions.

1. Introduction

Oceans have a major role in the global carbon cycling and
so directly impact the pace and extent of climate change [1].
Marine organism can bring great economic and social values.
It has the irreplaceable function in the global food processing,
tourism, nutrient cycling, gas regulation, and so on. As the
basis of the marine food chain system, plankton can supply
food and oxygen to a myriad of marine life and can also
absorb about half of the climate-warming carbon dioxide [2].
Besides, unlike fish or some intertidal creatures, plankton
has rarely been commercially exploited. Moreover, this free-
floating plankton can respond quickly to the temperature and
change of oceanic system. As a consequence, mathematical
modeling is a valuable tool for research fields of the marine
ecology.

In general, plankton can be broadly divided into auto-
trophic phytoplankton and herbivorous zooplankton. The
interactive process between phytoplankton and zooplankton
is very complicated. It depends not only on the foraging
style and feeding behavior, but also on other processes in
the system. To describe the interactive relationship between

phytoplankton and zooplankton, the following general model
can be utilized:

d𝑃
d𝑡 = 𝐺 (𝑃) − 𝐹 (𝑃, 𝑍) − 𝑀(𝑃) ,
d𝑍
d𝑡 = 𝐹 (𝑃, 𝑍) − 𝑀(𝑍) . (1)

Here, 𝑃(𝑡) and 𝑍(𝑡) denote the concentration of phytoplank-
ton and zooplankton respectively, 𝐺(𝑃) and𝑀(𝑃) represent
the growth rate and death rate of phytoplankton, respectively,𝑀(𝑍) is the death rate of zooplankton, and 𝐹(𝑃, 𝑍) is the
predation rate of zooplankton on phytoplankton. Recently,
various particular cases of model (1) have been well studied
[3–5]. Some interesting results about the stability and Hopf
bifurcation type periodic oscillations have been obtained.

It should be noted that some phytoplankton can release
toxic substances which will result in poisoning in both fish
and shellfish. By accumulating in marine food webs, the
toxins may have hazards on animal and human health. On
the other hand, due to the rapid growth of plankton, harmful
algal bloom may cause massive death of marine animals.
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However, most previous studies did not directly consider
the toxin-producing phytoplankton population and the role
of toxic phytoplankton can not be ignored. While in the
establishment of planktonic mathematical models, it is neces-
sary to include the nontoxic phytoplankton, toxin-producing
phytoplankton, and zooplankton. In 2004, Chattopadhyay
et al. [6] proposed the following kinetic model which has
three interacting components and is with an additional factor
that the release of toxic substance reduces the growth of
zooplankton:

d𝑃1
d𝑡 = 𝑟𝑃1 (1 − 𝑃1𝐾) − 𝛼𝑃1𝑍,
d𝑃2
d𝑡 = 𝑠𝑃2 (1 − 𝑃2𝐾) − 𝜃𝑃2𝑍𝛾 + 𝑃2 ,
d𝑍
d𝑡 = 𝛽𝑃1𝑍 − 𝜇𝑍 − 𝜃1𝑃1𝑍𝛾 + 𝑃2 ,

(2)

where 𝑃1(𝑡) denotes the concentration of the nontoxic phyto-
plankton at time 𝑡 and 𝑃2(𝑡) and 𝑍(𝑡) denote the concentra-
tion of toxic phytoplankton population and zooplankton at
time 𝑡, respectively. It is assumed that the two phytoplankton
populations share the same resource. In model (2), all the
coefficients are positive constants, 𝑟 and 𝑠 are the growth
rates of two phytoplankton populations, respectively, 𝐾 is the
carrying capacity, 𝛼 and 𝛽 are the maximum zooplankton
ingestion rate and maximum zooplankton conversion rate,
respectively, 𝜇 is the death rate of zooplankton, 𝜃 is the rate of
toxin liberation by toxic phytoplankton, and 𝜃1 is the specific
predation rate of zooplankton population on toxic phyto-
plankton. This model shows that toxic substances released by
phytoplankton have negative effects on the grazing pressure
of zooplankton. It is finally concluded that toxin-producing
phytoplankton may be used as a biocontrol agent for the
harmful algal bloom problems. It is also mentioned that
the role of time delay and environmental fluctuation in the
planktonic dynamics may arouse some interesting results and
needs further investigations.

Motivated by (2), some modified models have been
proposed recently. For instance, Sarkar et al. [7] established a
new model made of two harmful phytoplankton populations
and one zooplankton population. Roy et al. [8] investigated
themodelwhere the twophytoplanktonpopulations compete
with each other. Pal et al. [9] further considered the three-
component model with both nonlinear predation func-
tions by zooplankton. Further, the study was also extended
from the perspectives of stochastic dynamics and plankton-
nutrient interactions, respectively [10, 11].

In view of the ocean current and monsoon, the plank-
ton can freely drift and this spatial dispersal is subject to
Fickian diffusion. So the effect of spatial diffusion has been
investigated by many authors [12–17]. The results indicate
that spatial diffusion has a vital role in the spatiotemporal
dynamics of the planktonic model and spatial pattern may
occur. Besides, the impact of time delay can not be ignored
because it usually causes periodic oscillations, even chaotic
behaviors, and time delay is ubiquitous in the real ecosystem
[18–20].

According to the above factors, we consider the following
three-component planktonic model with spatial diffusion
and time delay:𝜕𝑃𝜕𝑡 = 𝑑1Δ𝑃 + 𝑟1𝑃(1 − 𝑃𝐾) − 𝛼𝑃𝑍,(𝑥, 𝑡) ∈ (0, 𝐿) × (0, +∞) ,𝜕𝑇𝜕𝑡 = 𝑑2Δ𝑇 + 𝑟2𝑇(1 − 𝑇𝐾) − 𝑎𝑇𝑍𝛾 + 𝑇,(𝑥, 𝑡) ∈ (0, 𝐿) × (0, +∞) ,𝜕𝑍𝜕𝑡 = 𝑑3Δ𝑍 + 𝛽𝑃𝑍 − 𝑑𝑍2 − 𝑏𝑇 (𝑥, 𝑡 − 𝜏) 𝑍𝛾 + 𝑇 (𝑥, 𝑡 − 𝜏) ,(𝑥, 𝑡) ∈ (0, 𝐿) × (0, +∞) ,𝜕𝑃𝜕𝑥 = 𝜕𝑇𝜕𝑥 = 𝜕𝑍𝜕𝑥 = 0, 𝑡 ≥ 0, 𝑥 = 0, 𝐿,𝑃 (𝑥, 𝑡) = 𝑃0 (𝑥, 𝑡) ≥ 0,𝑇 (𝑥, 𝑡) = 𝑇0 (𝑥, 𝑡) ≥ 0,𝑍 (𝑥, 𝑡) = 𝑍0 (𝑥, 𝑡) ≥ 0, (𝑥, 𝑡) ∈ (0, 𝐿) × [−𝜏, 0] ,

(3)

where 𝑃(𝑥, 𝑡), 𝑇(𝑥, 𝑡), and 𝑍(𝑥, 𝑡) denote the densities of
nontoxic phytoplankton, toxin-producing phytoplankton,
and zooplankton at location 𝑥 and time 𝑡, respectively, Δ
is the usual Laplace operator, 𝐿 denotes the depth of the
water column, and the homogeneous Neumann boundary
condition means that no plankton species is entering or
leaving the column at the top or the bottom.

All the parameters are positive constants,𝑑𝑖 , 𝑖 = 1, 2, 3, are
the three species’ diffusion rates, respectively, 𝑑 is the higher
mortality of zooplankton, and 𝜏 is the time needed for zoo-
plankton from ingesting toxic phytoplankton to dying. The
other coefficients have the same meanings as in model (2).
Note that the zooplankton may get eaten by higher predators,
whose population is not being explicitly modelled [21–23].
So, we adopt the quadratic closure term 𝑑𝑍2 to describe the
higher mortality of zooplankton.

In this paper, we mainly investigate the spatiotemporal
dynamics of delayed and diffusive system (3). The rest of the
paper is organized as follows. In Section 2, the permanence
and nonpersistence of system (3) are derived. In Section 3, the
sufficient conditions for existence of positive constant equi-
librium solution are obtained. In Section 4, the stability of
equilibrium solution and delay-induced Hopf bifurcation are
explored. In Section 5, the detailed formulae for determining
the bifurcation properties are given by calculating the normal
form on the center manifold. In Section 6, some numerical
simulations are conducted to illustrate the theoretical results.
Finally, some conclusions are given in Section 7.

2. Long-Time Behavior

In this section, we shall show that any nonnegative solution(𝑃(𝑥, 𝑡), 𝑇(𝑥, 𝑡), 𝑍(𝑥, 𝑡)) of system (3) lies in a bounded region
as 𝑡 󳨀→ ∞, for all 𝑥 ∈ Ω.
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Theorem 1. If 𝑑𝑟1 > 𝛼𝛽𝐾 and 𝑑𝑟1𝛽𝛾 − 𝛼𝛽2𝛾𝐾 − 𝑏𝑑𝑟1 > 0
hold, then system (3) is permanent; that is, there exist positive
constants 𝑚 and𝑀 independent of solution such that𝑚 ≤ lim inf

𝑡󳨀→+∞
𝑃 (𝑥, 𝑡) ≤ lim sup

𝑡󳨀→+∞
𝑃 (𝑥, 𝑡) ≤ 𝑀,𝑚 ≤ lim inf

𝑡󳨀→+∞
𝑇 (𝑥, 𝑡) ≤ lim sup

𝑡󳨀→+∞
𝑇 (𝑥, 𝑡) ≤ 𝑀,𝑚 ≤ lim inf

𝑡󳨀→+∞
𝑍 (𝑥, 𝑡) ≤ lim sup

𝑡󳨀→+∞
𝑍 (𝑥, 𝑡) ≤ 𝑀 (4)

for any nonnegative solution.

Proof. From the first equation of system (3), we have𝜕𝑃𝜕𝑡 − 𝑑1Δ𝑃 ≤ 𝑟1𝑃(1 − 𝑃𝐾) . (5)

The standard comparison principle implies

lim sup
𝑡󳨀→+∞

𝑃 (𝑥, 𝑡) ≤ 𝐾, (6)

and thus for every real number 𝜀1 > 0, there exists a 𝑇1 > 0
such that 𝑃(𝑥, 𝑡) ≤ 𝐾 + 𝜀1, for all 𝑡 > 𝑇1.

Similarly, from the second equation of (3), we have

lim sup
𝑡󳨀→+∞

𝑇 (𝑥, 𝑡) ≤ 𝐾, (7)

And thus for every real number 𝜀2 > 0, there exists a 𝑇2 > 0
such that 𝑇(𝑥, 𝑡) ≤ 𝐾 + 𝜀2, for all 𝑡 > 𝑇2.

The third equation of (3) can be reduced to𝜕𝑍𝜕𝑡 − 𝑑3Δ𝑍 ≤ 𝛽 (𝐾 + 𝜀1) 𝑍 − 𝑑𝑍2= 𝑍 [𝛽 (𝐾 + 𝜀1) − 𝑑𝑍] , (8)

for all 𝑡 > 𝑇1. Then, we have 𝑍(𝑥, 𝑡) ≤ 𝛽(𝐾 + 𝜀1)/𝑑, which
indicates

lim sup
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡) ≤ 𝛽𝐾𝑑 (9)

as 𝜀1 󳨀→ 0. Therefore, for every real number 𝜀3 > 0, there
exists a 𝑇3 > 0 such that 𝑍(𝑥, 𝑡) ≤ 𝛽𝐾/𝑑 + 𝜀3, for all 𝑡 > 𝑇3.

Again from the first equation of (3), we have𝜕𝑃𝜕𝑡 − 𝑑1Δ𝑃 ≥ 𝑟1𝑃 [1 − 𝛼𝑟1 (𝛽𝐾𝑑 + 𝜀3) − 𝑃𝐾] , (10)

for all 𝑡 > 𝑇3. This implies𝑃 (𝑥, 𝑡) ≥ 1 − (𝛼/𝑟1) (𝛽𝐾/𝑑 + 𝜀3)1/𝐾 ; (11)

thus,

lim inf
𝑡󳨀→+∞

𝑃 (𝑥, 𝑡) ≥ 𝐾 (𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 > 0. (12)

Then, for every real number 𝜀4 > 0, there exists a 𝑇4 > 0 such
that 𝑃(𝑥, 𝑡) ≥ 𝐾(𝑑𝑟1 − 𝛼𝛽𝐾)/𝑑𝑟1 − 𝜀4, for all 𝑡 > 𝑇4.

From the second equation of (3), we have𝑃 (𝑥, 𝑡) ≥ 𝐾 (𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 − 𝜀4= 𝑟2𝑇[1 − ( 1𝐾 + 𝑎𝑟2𝛾 (𝛽𝐾𝑑 + 𝜀3))𝑇] , (13)

which implies

lim inf
𝑡󳨀→+∞

𝑇 (𝑥, 𝑡) ≥ 𝑑𝑟2𝛾𝐾𝑑𝑟2𝛾 + 𝑎𝛽𝐾2 > 0. (14)

From the third equation of (3), we also have𝜕𝑍𝜕𝑡 − 𝑑3Δ𝑍 ≥ 𝑍[𝛽(𝐾(𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 − 𝜀4) − 𝑑𝑍
− 𝑏 (𝐾 + 𝜀2)𝛾 ] , (15)

for all 𝑡 > max{𝑇2 + 𝜏, 𝑇4}. Thus,

lim inf
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡) ≥ 𝑑𝑟1𝛽𝛾𝐾 − 𝛼𝛽2𝛾𝐾2 − 𝑏𝑑𝑟1𝐾𝑑2𝑟1𝛾 > 0. (16)

Finally, if we set𝑚 = min{𝐾(𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 , 𝑑𝑟2𝛾𝐾𝑑𝑟2𝛾 + 𝑎𝛽𝐾2 ,𝑑𝑟1𝛽𝛾𝐾 − 𝛼𝛽2𝛾𝐾2 − 𝑏𝑑𝑟1𝐾𝑑2𝑟1𝛾 } , (17)

and 𝑀 = max{𝐾, 𝛽𝐾𝑑 } , (18)

then the proof is complete.

Definition 2. System (3) is said to be not persistent if

min{lim inf
𝑡󳨀→+∞

𝑃 (𝑥, 𝑡) , lim inf
𝑡󳨀→+∞

𝑇 (𝑥, 𝑡) , lim inf
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡)}= 0 (19)

for some of its nonnegative solutions.

Next, we discuss the nonpersistence of system (3).

Theorem 3. If 𝑏𝑑𝑟2𝛾 ≥ 𝛽(𝛾 + 𝐾)(𝑑𝑟2𝛾 + 𝑎𝛽𝐾2) holds, then
system (3) is not persistent.

Proof. According to the process ofTheorem 1, for an arbitrary
positive constant 𝜀5, there exists a 𝑇5 > 0 such that𝑇 (𝑥, 𝑡) ≥ 𝑑𝑟2𝛾𝐾𝑑𝑟2𝛾 + 𝑎𝛽𝐾2 − 𝜀5, (20)
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for all 𝑡 > 𝑇5. Further, we have𝜕𝑍𝜕𝑡 − 𝑑3Δ𝑍 ≤ 𝑍[𝛽 (𝐾 + 𝜀1)
− 𝑏𝑑𝑟2𝛾𝐾 − 𝑏𝜀5 (𝑑𝑟2𝛾 + 𝑎𝛽𝐾2)(𝛾 + 𝐾 + 𝜀2) (𝑑𝑟2𝛾 + 𝑎𝛽𝐾2) − 𝑑𝑍] , (21)

for all 𝑡 > max{𝑇1, 𝑇2 + 𝜏, 𝑇5 + 𝜏}. Then, by the arbitrariness
of 𝜀1, 𝜀2, and 𝜀5, we have

lim inf
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡) ≤ lim sup
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡)
≤ 𝛽𝐾𝑑 − 𝑏𝑟2𝛾𝐾(𝛾 + 𝐾) (𝑑𝑟2𝛾 + 𝑎𝛽𝐾2) ≤ 0 (22)

as 𝑡 󳨀→ +∞. The proof is complete.

3. Steady State

In consideration of the biological significance of (3), we focus
on the positive constant equilibrium solution. To determine
the equilibrium solution of (3), we only need to solve the
following algebraic equations:𝑟1𝑃(1 − 𝑃𝐾) − 𝛼𝑃𝑍 = 0,𝑟2𝑇(1 − 𝑇𝐾) − 𝑎𝑇𝑍𝛾 + 𝑇 = 0,𝛽𝑃𝑍 − 𝑑𝑍2 − 𝑏𝑇𝑍𝛾 + 𝑇 = 0.

(23)

Simplifying the first equation of (23) and substituting it into
the third equation, we have𝑍 = 𝑟1 (𝐾 − 𝑃)𝛼𝐾 , (24)

and (𝛽 + 𝑑𝑟1𝛼𝐾)𝑃 − 𝑑𝑟1𝛼 − 𝑏𝑇𝛾 + 𝑇 = 0. (25)

From (24) and the second equation of (23), we have𝑎𝑍𝛾 + 𝑇 = 𝑎𝑟1𝛼 (𝛾 + 𝑇) − 𝑎𝑟1𝑃𝛼𝐾 (𝛾 + 𝑇) = 𝑟2 − 𝑟2𝐾𝑇, (26)

and 𝑎𝑟1𝑃𝛼𝐾 (𝛾 + 𝑇) = 𝑎𝑟1𝛼 (𝛾 + 𝑇) − 𝑟2 + 𝑟2𝐾𝑇; (27)

thus, 𝑃 = 𝐾 − 𝛼𝑟2𝐾 (𝑇 + 𝛾)𝑎𝑟1 + 𝛼𝑟2𝑇 (𝑇 + 𝛾)𝑎𝑟1 , (28)

which is equivalent to𝑃= 𝛼𝑟2𝑎𝑟1 [(𝑇 − 𝐾 − 𝛾2 )2 + 𝑎𝑟1𝐾𝛼𝑟2 − 𝛾𝐾 − (𝐾 − 𝛾)24 ] . (29)

From (25) and (28), we have

(𝛽 + 𝑑𝑟1𝛼𝐾)[𝐾 − 𝛼𝑟2𝐾 (𝑇 + 𝛾)𝑎𝑟1 + 𝛼𝑟2𝑇 (𝑇 + 𝛾)𝑎𝑟1 ]
− 𝑑𝑟1𝛼 − 𝑏𝑇𝛾 + 𝑇 = 0, (30)

and 𝑎3𝑇3 + 𝑎2𝑇2 + 𝑎1𝑇 + 𝑎0 = 0, (31)

where𝑎3 = 𝛼𝑟2𝑎𝑟1 (𝛽 + 𝑑𝑟1𝛼𝐾) > 0,𝑎2 = 𝛼𝑟2𝑎𝑟1 (2𝛾 − 𝐾)(𝛽 + 𝑑𝑟1𝛼𝐾) ,𝑎1 = (𝛽 + 𝑑𝑟1𝛼𝐾)[𝐾 + 𝛼𝛾𝑟2𝑎𝑟1 (𝛾 − 2𝐾)] − 𝑏 − 𝑑𝑟1𝛼 ,𝑎0 = 𝛾𝐾(𝛽 + 𝑑𝑟1𝛼𝐾)(1 − 𝛼𝛾𝑟2𝑎𝑟1 ) − 𝑑𝑟1𝛾𝛼 .
(32)

According to Descartes’ rule of signs, cubic equation (31) has
at least one positive real root when 𝑎0 < 0, that is,𝐾(𝛽 + 𝑑𝑟1𝛼𝐾)(1 − 𝛼𝛾𝑟2𝑎𝑟1 ) < 𝑑𝑟1𝛼 . (33)

For convenience, we denote any positive root of (31) by𝑇∗. Combining (24) and (29), we can obtain the positive
solution of (23) under the conditions 4𝑎𝑟1𝐾/𝛼𝑟2 > (𝐾 + 𝛾)2
and 𝐾 > 𝑃∗.

From above analyses, we can establish the existence of
positive constant equilibrium solution of (3).

Theorem 4. If the following assumption

(H1) 𝐾(𝛽 + 𝑑𝑟1/𝛼𝐾)(1 − 𝛼𝛾𝑟2/𝑎𝑟1) < 𝑑𝑟1/𝛼, 4𝑎𝑟1𝐾/𝛼𝑟2 >(𝐾 + 𝛾)2 and 𝐾 > 𝑃∗
holds, then system (3) has positive constant equilibrium solu-
tion 𝐸∗ = (𝑃∗, 𝑇∗, 𝑍∗).

Based on the aim of this study, we always assume that
condition (H1) is satisfied in the following sections.

4. Hopf Bifurcation Induced by Time Delay

Here, we will regard time delay 𝜏 as the bifurcation param-
eter to investigate its effect on the stability of coexistence
equilibrium solution 𝐸∗ = (𝑃∗, 𝑇∗, 𝑍∗).

Linearizing system (3) at 𝐸∗ leads to the corresponding
characteristic equation:
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆 + 𝑑1 (𝑘𝜋𝐿 ) + 𝑟1𝐾𝑃∗ 0 𝛼𝑃∗0 𝜆 + 𝑑2 (𝑘𝜋𝐿 ) + 𝑟2𝑇∗𝐾 − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 𝑎𝑇∗𝛾 + 𝑇∗−𝛽𝑍∗ 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 𝑒−𝜆𝜏 𝜆 + 𝑑3 (𝑘𝜋𝐿 ) + 𝑑𝑍∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0, (34)

which can be simplified as the following transcendental
equation:𝜆3 + 𝐴𝑘𝜆2 + 𝐵𝑘𝜆 + 𝐶𝑘 + (𝐷𝑘𝜆 + 𝐹𝑘) 𝑒−𝜆𝜏 = 0, (35)

where𝐴𝑘 = (𝑑1 + 𝑑2 + 𝑑3) (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗ + 𝑟2𝐾𝑇∗ + 𝑑𝑍∗− 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 ,𝐵𝑘 = 𝛼𝛽𝑃∗𝑍∗ + [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗][𝑑2 (𝑘𝜋𝐿 )2
+ 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2] + [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗]⋅ [𝑑3 (𝑘𝜋𝐿 )2 + 𝑑𝑍∗] + [𝑑2 (𝑘𝜋𝐿 )2 + 𝑟2𝐾𝑇∗
− 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2][𝑑3 (𝑘𝜋𝐿 )2 + 𝑑𝑍∗] ,𝐶𝑘 = [𝑑2 (𝑘𝜋𝐿 )2 + 𝑑3 (𝑘𝜋𝐿 )2 + 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2+ 𝑑𝑍∗] ⋅ [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗]
+ 𝛼𝛽𝑃∗𝑍∗ [𝑑2 (𝑘𝜋𝐿 )2 + 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2] ,𝐷𝑘 = −𝑎𝑏𝛾𝑇∗𝑍∗(𝛾 + 𝑇∗)3 < 0,𝐹𝑘 = −𝑎𝑏𝛾𝑇∗𝑍∗(𝛾 + 𝑇∗)3 [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗] < 0.

(36)

The special case of (35) with 𝜏 = 0 is𝜆3 + 𝐴𝑘𝜆2 + (𝐵𝑘 + 𝐷𝑘) 𝜆 + (𝐶𝑘 + 𝐹𝑘) = 0. (37)

If all the roots of (37) have negative real parts for every
nonnegative integer 𝑘, then the positive equilibrium solution

𝐸∗ without time delay is asymptotically stable. With the help
of Routh-Hurwitz criterion, 𝐸∗ is stable if and only if𝐴𝑘 > 0,𝐵𝑘 + 𝐷𝑘 > 0, 𝐶𝑘 + 𝐹𝑘 > 0, and 𝐴𝑘(𝐵𝑘 + 𝐷𝑘) − (𝐶𝑘 + 𝐹𝑘) > 0.

Assume that

(H2) 𝑟2/𝐾 > 𝑎𝑍∗/(𝛾 + 𝑃∗2 )2, and 𝑎𝑏𝛾𝑇∗/(𝛾 + 𝑇∗)3 <
min{𝑑, 𝛼𝛽𝑃∗};

then, we have the following stability conclusion.

Theorem 5. If assumption (H2) is satisfied, then the equilib-
rium solution 𝐸∗ of (3) is asymptotically stable for 𝜏 = 0.

Next, we shall discuss the distribution of characteristic
roots when 𝜏 > 0. Suppose 𝑖𝜔 (𝜔 > 0) is a root of (35). Then,
for any nonnegative integer 𝑘, we have− 𝑖𝜔3 − 𝐴𝑘𝜔2 + 𝑖𝐵𝑘𝜔 + 𝐶𝑘+ (𝑖𝐷𝑘𝜔 + 𝐹𝑘) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0, (38)

and − 𝑖𝜔3 − 𝐴𝑘𝜔2 + 𝑖𝐵𝑘𝜔 + 𝐶𝑘 + 𝑖𝐷𝑘𝜔 cos𝜔𝜏+ 𝐷𝑘𝜔 sin𝜔𝜏 + 𝐹𝑘 cos𝜔𝜏 − 𝑖𝐹𝑘 sin𝜔𝜏 = 0. (39)

Separating the real and imaginary parts results in𝜔3 − 𝐵𝑘𝜔 = 𝐷𝑘𝜔 cos𝜔𝜏 − 𝐹𝑘 sin𝜔𝜏,𝐴𝑘𝜔2 − 𝐶𝑘 = 𝐹𝑘 cos𝜔𝜏 + 𝐷𝑘𝜔 sin𝜔𝜏; (40)

thus,𝜔6 + (𝐴2𝑘 − 2𝐵𝑘)𝜔4 + (𝐵2𝑘 − 2𝐴𝑘𝐶𝑘 − 𝐷2𝑘) 𝜔2 + 𝐶2𝑘− 𝐹2𝑘 = 0. (41)

For simplicity, we set 𝜎 = 𝜔2; then, (41) can be rewritten in
the form of 𝑅 (𝜎) = 𝜎3 +𝑀𝑘𝜎2 + 𝑁𝑘𝜎 + 𝑃𝑘 = 0, (42)

where 𝑀𝑘 = 𝐴2𝑘 − 2𝐵𝑘,𝑁𝑘 = 𝐵2𝑘 − 2𝐴𝑘𝐶𝑘 − 𝐷2𝑘,𝑃𝑘 = 𝐶2𝑘 − 𝐹2𝑘 . (43)

If the assumption
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(H3)𝑀𝑘 > 0 and𝑀𝑘 > 0 for any 𝑘 > 0
holds, then we have 𝑃𝑘 > 0 by combining with (H2).
And the cubic equation (42) of 𝜎 has no positive root,
so (35) has no purely imaginary root. It can be concluded
that the equilibrium solution 𝐸∗ is always asymptotically
stable for any 𝜏 > 0 and that system (3) has no spatially
nonhomogeneous periodic solution.

On the other hand, when 𝑘 = 0, based on Lemma 2.2 in
[24], the following condition is needed to ensure the existence
of positive root of (42):

(H4) 𝜎1 > 0 and 𝑅(𝜎1)|𝑘=0 ≤ 0, where 𝜎1 = (−𝑀0 +√𝑀20 − 3𝑁0)/3.
Denote any positive root of (42) by𝜎∗; then, ±𝑖𝜔∗ is a pair

of purely imaginary roots of (35), where 𝜔∗ = √𝜎∗.
When 𝑘 = 0, rewrite (35) as
𝜆3 + 𝐴0𝜆2 + 𝐵0𝜆 + 𝐶0 + (𝐷0𝜆 + 𝐹0) 𝑒−𝜆𝜏 = 0, (44)

and we have

sin𝜔∗𝜏 = (𝐴0𝐷0 − 𝐹0) 𝜔∗3 + (𝐵0𝐹0 − 𝐶0𝐷0) 𝜔∗𝐷20𝜔∗2 + 𝐹20≜ 𝐹𝑠, (45)

cos𝜔∗𝜏 = 𝐷0𝜔∗4 + (𝐴0𝐹0 − 𝐵0𝐷0) 𝜔∗2 − 𝐶0𝐹0𝐷20𝜔∗2 + 𝐹20≜ 𝐹𝑐. (46)

Define

𝜏𝑗0 = {{{{{{{
1𝜔∗ {2𝜋 − arccos𝐹𝑐 + 2𝑗𝜋} , 𝐹𝑠 ≥ 0,1𝜔∗ {arccos 𝐹𝑐 + 2𝑗𝜋} , 𝐹𝑐 < 0, (47)

where 𝑗 = 0, 1, 2, . . . and 𝜏0 = 𝜏00 = min𝑗=0,1,2,...{𝜏𝑗0}. Then,
(44) has a pair of purely imaginary roots ±𝑖𝜔∗ when 𝜏 = 𝜏𝑗0 .

We claim that if

(H5) 𝑅󸀠(𝜎∗) ̸= 0,
then

d Re𝜆 (𝜏)
d𝜏 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏𝑗0 ,𝜔=𝜔∗ ̸= 0. (48)

In fact, differentiating both sides of (35) with respect to 𝜏,
it follows that(d𝜆

d𝜏)−1 = (3𝜆2 + 2𝐴0𝜆 + 𝐵0) 𝑒𝜆𝜏 + 𝐷0𝜆 (𝐷0𝜆 + 𝐹0) − 𝜏𝜆 . (49)

Thus, we have

Re(d𝜆
d𝜏)−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏𝑗0 ,𝜔=𝜔∗ = 𝜔∗2𝑅󸀠 (𝜎∗)(𝐷0𝜔∗2)2 + (𝐹0𝜔∗)2 ̸= 0. (50)

From what has been discussed above and the Hopf
bifurcation Theorem by Hassard et al. [25], we can draw the
conclusion on the existence of spatially homogeneous Hopf
bifurcation.

Theorem 6. Suppose that conditions (H1)-(H5) are satisfied.
(i) 	e equilibrium solution 𝐸∗ is locally asymptotically

stable for 𝜏 ∈ [0, 𝜏0).
(ii) 	e equilibrium solution 𝐸∗ is unstable for 𝜏 > 𝜏0 and𝜏0 is the Hopf bifurcation value.
(ii) System (3) undergoes spatially homogeneous periodic

solutions at 𝐸∗ when 𝜏 = 𝜏0.
5. Stability and Direction of the Bifurcation

In this section, we investigate the properties of spa-
tially homogeneous periodic solutions, including bifurcation
direction, stability of periodic solutions, monotonicity of
periodic solutions. Here, we mainly apply the normal form
theory and center manifold theorem for partial functional
differential equations [25, 26].

For fixed 𝑗 = 0, 1, 2, . . ., denote bifurcation value 𝜏𝑗0 by 𝜏∗
and introduce the new parameter 𝜇 = 𝜏 − 𝜏∗; then, 𝜇 = 0 is
the new Hopf bifurcation value. Let 𝜗 = 𝑡/𝜏 and rewrite 𝜗 as𝑡; system (3) can be transformed into

d𝑈 (𝑡)
d𝑡 = 𝜏∗𝐷Δ𝑈 (𝑡) + 𝐿 (𝜏∗) (𝑈𝑡) + 𝐹 (𝑈𝑡, 𝜇) , (51)

where 𝐿(𝜇)(𝜑) : 𝐶 󳨀→ 𝑋 and 𝐹(⋅, 𝜇) : 𝐶 󳨀→ 𝑋 are given by𝜑 = (𝜑1, 𝜑2, 𝜑3)𝑇 ∈ 𝐶,𝐷 = diag {𝑑1, 𝑑2, 𝑑3} ,Δ = diag{ 𝜕2𝜕𝑥2 , 𝜕2𝜕𝑥2 , 𝜕2𝜕𝑥2} ,𝑈𝑡 (𝜃) = 𝑈 (𝑡 + 𝜃) , − 𝜏 ≤ 𝜃 ≤ 0,𝐿 (𝜇) (𝜑)
= 𝜇((
(

−𝑟1𝐾𝑃∗𝜑1 (0) − 𝛼𝑃∗𝜑3 (0)( 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 − 𝑟2𝐾𝑇∗)𝜑2 (0) − 𝑎𝑇∗𝛾 + 𝑇∗𝜑3 (0)𝛽𝑍∗𝜑1 (0) − 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 𝜑2 (−1) − 𝑑𝑍∗𝜑3 (0)
))
)
,

𝐹 (𝜑, 𝜇) = 𝜇𝐷Δ𝜑 (0) + 𝐿 (𝜇) (𝜑) + 𝑓 (𝜑, 𝜇) ,

(52)

and
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𝑓 (𝜑, 𝜇) = (𝜏∗ + 𝜇)((
(

−2𝑟1𝐾 𝜑21 (0) − 𝛼𝜑1 (0) 𝜑3 (0)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜑22 (0) − 2𝑟2𝐾 𝜑22 (0) − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜑2 (0) 𝜑3 (0)𝛽𝜑1 (0) 𝜑3 (0) − 2𝑑𝜑23 (0) − 𝑏𝛾𝜑2 (−1) 𝜑3 (0)(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3𝜑22 (−1)
))
)
+ h.o.t. (53)

Then, the linearized system of (51) at origin is

d𝑈 (𝑡)
d𝑡 = 𝜏∗𝐷Δ𝑈 (𝑡) + 𝐿 (𝜏∗) (𝑈𝑡) . (54)

From the discussion in Section 4, we can find that charac-
teristic equation (35) has a pair of purely imaginary rootsΛ 0 = {𝑖𝜔∗𝜏∗, −𝑖𝜔∗𝜏∗} when 𝜏 = 𝜏∗.

LetC := 𝐶([−1, 0],R3). Then, we consider the functional
differential equation onC:𝑧̇ = 𝐿 (𝜏∗) (𝑧𝑡) . (55)

It is obvious that 𝐿(𝜏∗) is a continuous linear function
mapping 𝐶([−1, 0],R3) into R3. By the Riesz representation
theorem, there exists a 3 × 3 matrix function 𝜂(𝜃, 𝜏) (−1 ≤𝜃 ≤ 0) such that

𝐿 (𝜏∗) (𝜑) = ∫0
−1
[d𝜂 (𝜃, 𝜏∗)] 𝜑 (𝜃) , for 𝜑 ∈ C; (56)

here we choose𝜂 (𝜃, 𝜏∗)
= 𝜏∗(−𝑟1𝐾𝑃∗ 0 −𝛼𝑃∗0 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 − 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝛾 + 𝑇∗𝛽𝑍∗ 0 −𝑑𝑍∗ )𝛿(𝜃)

− 𝜏∗(0 0 00 0 00 − 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 0)𝛿 (𝜃 + 1) .
(57)

Let𝐴(𝜏∗) be the infinitesimal generator of the semigroup
induced by the solutions of (55) and 𝐴∗ be the adjoint matrix
of 𝐴(𝜏∗) under the bilinear pairing:(𝜓, 𝜙) = (𝜓 (0) , 𝜙 (0))− ∫0

−1
∫𝜃
𝜉=0
𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉 = (𝜓 (0) , 𝜙 (0))

+ 𝜏∗ ∫0
−1
𝜓 (𝜃 + 1)

⋅(0 0 00 0 00 − 𝑏𝛾𝑍∗(𝛾 + 𝑃∗2 )2 0)𝜙 (𝜃) d𝜃,
(58)

where 𝜑 ∈ 𝐶, 𝜓 ∈ 𝐶∗ = 𝐶([0, 1],R3).Then,𝐴(𝜏∗) and𝐴∗ are
a pair of adjoint operators and they both have characteristic
roots ±𝑖𝜔∗𝜏∗. Let 𝑃 and 𝑃∗ be the generalized eigenspaces of𝐴(𝜏∗) and 𝐴∗, respectively; then, 𝑃∗ is the adjoint space of 𝑃
and dim𝑃 = dim𝑃∗ = 2.

By direct calculation, we have the following lemma.

Lemma 7. Let

𝜉 = 𝑎𝑇∗𝜁 (𝛾 + 𝑇∗)𝑎𝐾𝑇∗𝑍∗ − 𝑟2𝑇∗ (𝛾 + 𝑇∗)2 − 𝑖𝜔∗𝐾 (𝛾 + 𝑇∗)2 ,𝜁 = − 𝑖𝜔∗𝐾 + 𝑟1𝑃∗𝛼𝐾𝑃∗ ,
𝜉∗ = −𝑎𝐾𝑇∗𝑍∗ + 𝑏𝐾𝛾𝜁∗𝑍∗𝑒−𝑖𝜔∗𝜏∗𝑟2𝑇∗ (𝛾 + 𝑇∗)2 ,

𝜁∗ = 𝑖𝜔∗𝐾 + 𝑟1𝑃∗𝛽𝐾𝑍∗ ;
(59)

then a basis of 𝑃 with Λ 0 is𝑝1 (𝜃) = 𝑒𝑖𝜔∗𝜏∗𝜃 (1, 𝜉, 𝜁)𝑇 ,𝑝2 (𝜃) = 𝑝1 (𝜃), − 1 ≤ 𝜃 ≤ 0, (60)

and a basis a of 𝑃∗ with Λ 0 is𝑞1 (𝑠) = 𝑒−𝑖𝜔∗𝜏∗𝑠 (1, 𝜉∗, 𝜁∗)𝑇 ,𝑞2 (𝑠) = 𝑞1 (𝑠), 0 ≤ 𝑠 ≤ 1. (61)
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LetΦ = (Φ1, Φ2), Ψ∗ = (Ψ∗1 , Ψ∗2 )𝑇, whereΦ1 (𝜃) = 𝑝1 (𝜃) + 𝑝2 (𝜃)2 ,Φ2 (𝜃) = 𝑝1 (𝜃) − 𝑝2 (𝜃)2𝑖 ,𝜃 ∈ [−1, 0] , (62)

and Ψ∗1 (𝑠) = 𝑞1 (𝑠) + 𝑞2 (𝑠)2 ,Ψ∗2 (𝑠) = 𝑞1 (𝑠) − 𝑞2 (𝑠)2𝑖 ,𝑠 ∈ [0, 1] . (63)

From (58), we can obtain (Ψ∗1 , Φ2), (Ψ∗1 , Φ1), and further(𝑞1, 𝑝1) = (Ψ∗1 , Φ1) − (Ψ∗2 , Φ2)+ 𝑖 [(Ψ∗1 , Φ2) − (Ψ∗2 , Φ1)] ; (64)

that is,(𝑞1, 𝑝1) = 1 + 𝜉𝜉∗ + 𝜁𝜁∗ − 𝜏∗ 𝑏𝑍∗𝛾 + 𝑃∗2 𝜉∗𝑒−𝑖𝜔∗𝜏∗ ≜ 𝐷∗. (65)

Therefore, we have(Ψ∗1 , Φ1) − (Ψ∗2 , Φ2) = Re {𝐷∗} ,(Ψ∗1 , Φ2) − (Ψ∗2 , Φ1) = Im {𝐷∗} . (66)

Now, we define (Ψ∗, Φ) = (Ψ∗𝑙 , Φ𝑚) (𝑙, 𝑚 = 1, 2) and
construct a newbasis for𝑃∗ byΨ = (Ψ1, Ψ2)𝑇 = (Ψ∗, Φ)−1Ψ∗.
Moreover, we define 𝑓0 = (𝜉10, 𝜉20 , 𝜉30), where

𝜉10 = (100) ,
𝜉20 = (010) ,
𝜉30 = (001) .

(67)

Let 𝑐 ⋅ 𝑓0 be defined by𝑐 ⋅ 𝑓0 = 𝑐1𝜉10 + 𝑐2𝜉20 + 𝑐3𝜉30 (68)

for 𝑐 = (𝑐1, 𝑐2, 𝑐3)𝑇, 𝑐𝑗 ∈ R(𝑗 = 1, 2, 3). Then, the center space
of linear equation (54) is given by 𝑃𝐶𝑁C, where𝑃𝐶𝑁𝜑 = Φ (Ψ, ⟨𝜑, 𝑓0⟩) ⋅ 𝑓0, 𝜑 ∈ C, (69)

and 𝐶 = 𝑃𝐶𝑁C ⊕ 𝑃𝑆C, 𝑃𝑆C denotes the complementary
subspace of 𝑃𝐶𝑁C.

If𝐴𝜏∗𝜑 (𝜃)= 𝜑̇ (𝜃)+ 𝑋0 (𝜃) [𝜏∗𝐷Δ𝜑 (0) + 𝐿 (𝜏∗) (𝜑 (𝜃) − 𝜑̇ (0))] ,𝜑 ∈ 𝐵C, (70)

where𝑋0 : [−1, 0] 󳨀→ 𝐵(𝑋,𝑋) and 𝑋0(𝜃) = { 0, −1≤𝜃≤0,𝐼, 𝜃=0. then𝐴𝜏∗ is the infinitesimal generator induced by the solutions of
(51) and (54), which can be written as the following operator
differential equation:𝑈̇𝑡 = 𝐴𝜏∗𝑈𝑡 + 𝑋0𝐹 (𝑈𝑡, 𝜇) , (71)

Therefore, the solution of (51) can be written in the form of𝑈𝑡 = Φ(𝑥1 (𝑡)𝑥2 (𝑡)) ⋅ 𝑓0 + ℎ (𝑥1, 𝑥2, 𝜇) ,(𝑥1 (𝑡)𝑥2 (𝑡)) = (Ψ, ⟨𝑈𝑡, 𝑓0⟩) , (72)

where ℎ(𝑥1, 𝑥2, 𝜇) ∈ 𝑃𝑆C, ℎ(0, 0, 0) = 𝐷ℎ(0, 0, 0) = 0.
Specifically, the solution of (51) on the center manifold is𝑈∗𝑡 = Φ(𝑥1 (𝑡)𝑥2 (𝑡)) ⋅ 𝑓0 + ℎ (𝑥1, 𝑥2, 0) . (73)

Let 𝑧 = 𝑥1 − 𝑖𝑥2, and notice that 𝑝1 = Φ1 + 𝑖Φ2; then, we can
rewrite (73) as𝑈∗𝑡 = 12Φ( 𝑧 + 𝑧𝑖 (𝑧 − 𝑧)) ⋅ 𝑓0 +𝑊 (𝑧, 𝑧)= 12 (𝑝1𝑧 + 𝑝1𝑧) ⋅ 𝑓0 +𝑊 (𝑧, 𝑧) , (74)

where 𝑊(𝑧, 𝑧) = ℎ((𝑧 + 𝑧)/2, −(𝑧 − 𝑧)/2𝑖, 0). Furthermore,
from [26], 𝑧 also satisfies𝑧̇ = 𝑖𝜔∗𝜏∗𝑧 + 𝑔 (𝑧, 𝑧) , (75)

where 𝑔 (𝑧, 𝑧) = (Ψ1 (0) − 𝑖Ψ2 (0)) ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ . (76)

Let 𝑊(𝑧, 𝑧) = 𝑊20 𝑧22 +𝑊11𝑧𝑧 +𝑊02 𝑧22 + ⋅ ⋅ ⋅ (77)

and 𝑔 (𝑧, 𝑧) = 𝑔20 𝑧22 + 𝑔11𝑧𝑧 + 𝑔02 𝑧22 + ⋅ ⋅ ⋅ . (78)

By (74), it is not difficult to compute that
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⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ = 𝜏∗𝑧24 ((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁2𝑒−2𝑖𝜔∗𝜏∗
))
)

+ 𝜏∗𝑧𝑧4 (((
(

−2𝑟1𝐾 − 𝛼 (𝜁 + 𝜁)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉 − 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁)𝛽 (𝜁 + 𝜁) − 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗) + 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁
)))
)

+ 𝜏∗𝑧24 ((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝑒𝑖𝜔∗𝜏∗ + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁2
))
)

+ 𝜏∗𝑧2𝑧4
(((((((((((((((((((((
(

⟨−𝑟1𝐾 (4𝑊(1)11 (0) + 2𝑊(1)20 (0))−𝛼 (𝑊(3)20 (0) + 2𝑊(1)11 (0) + 2𝜁𝑊(1)11 (0) + 𝜁𝑊(1)20 (0)) , 1⟩⟨( 𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 − 𝑟2𝐾)(2𝜉𝑊(2)20 (0) + 4𝜉𝑊(2)11 (0))− 𝑎𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑊(3)11 (0) + 𝜉𝑊(3)20 (0) + 2𝜁𝑊(2)11 (0) + 𝜁𝑊(2)20 (0)) , 1⟩⟨ −𝑏𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(3)11 (0) + 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(3)20 (0) + 2𝜁𝑊(2)11 (−1) + 𝜁𝑊(2)20 (−1))−2𝑑 (2𝜁𝑊(3)20 (0) +4𝜁𝑊(3)11 (0)) + 𝛽 (𝑊(3)20 (0) + 2𝑊(1)11 (0) + 2𝜁𝑊(1)11 (0)+𝜁𝑊(1)20 (0)) + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(2)11 (−1) + 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(2)20 (−1)) , 1⟩

)))))))))))))))))))))
)+ ⋅ ⋅ ⋅ ,

(79)

where ⟨𝑊(𝑛)𝑖𝑗 (𝜃), 1⟩ = (1/𝜋) ∫𝜋0 𝑊(𝑛)𝑖𝑗 (𝜃)(𝑥)𝑑𝑥, 𝑖 + 𝑗 = 2,𝑛 = 1, 2, 3. Let (𝜓1, 𝜓2, 𝜓3) = Ψ1(0) − 𝑖Ψ2(0). We can get the
following expressions:𝑔20 = 𝜏∗2 [−(𝑟1𝐾 − 𝛼𝜁)𝜓1 + ( 𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2− 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁)𝜓2 + (𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾(𝛾 + 𝑇∗)2⋅ 𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁2𝑒−2𝑖𝜔∗𝜏∗)𝜓3] ,

𝑔11 = 𝜏∗4 [− (2𝑟1𝐾 + 𝛼 (𝜁 + 𝜁))𝜓1 + ( 2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉
− 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁))𝜓2 + (𝛽 (𝜁 + 𝜁)− 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗)
+ 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁)𝜓3] ,



10 Complexity𝑔02 = 𝑔20,𝑔21 = 𝜏∗2 [⟨−𝑟1𝐾 (4𝑊(1)11 (0) + 2𝑊(1)20 (0))− 𝛼 (𝑊(3)20 (0) + 2 (1 + 𝜁)𝑊(1)11 (0) + 𝜁𝑊(1)20 (0)) , 1⟩⋅ 𝜓1 +⟨( 𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 − 𝑟2𝐾)(2𝜉𝑊(2)20 (0)+ 4𝜉𝑊(2)11 (0)) − 𝑎𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑊(3)11 (0)+ 𝜉𝑊(3)20 (0) + 2𝜁𝑊(2)11 (0) + 𝜁𝑊(2)20 (0) , 1)⟩𝜓2
+⟨ −𝑏𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(3)11 (0)+ 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(3)20 (0) + 2𝜁𝑊(2)11 (−1) + 𝜁𝑊(2)20 (−1))− 2𝑑 (2𝜁𝑊(3)20 (0) +4𝜁𝑊(3)11 (0)) + 𝛽 (𝑊(3)20 (0)+ 2𝑊(1)11 (0) + 2𝜁𝑊(1)11 (0) + 𝜁𝑊(1)20 (0))+ 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(2)11 (−1)+ 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(2)20 (−1)) , 1⟩𝜓3] .

(80)

Since 𝑊20(𝜃) and 𝑊11(𝜃) appear in 𝑔21, we should also
establish them. According to (77), we have𝑊̇ (𝑧, 𝑧) = 𝑊20𝑧𝑧̇ + 𝑊11 (𝑧̇𝑧 + 𝑧𝑧̇) +𝑊02𝑧𝑧̇ + ⋅ ⋅ ⋅ , (81)

and𝐴𝜏∗𝑊 = 𝐴𝜏∗𝑊20 𝑧22 + 𝐴𝜏∗𝑊11𝑧𝑧 + 𝐴𝜏∗𝑊02 𝑧22 + ⋅ ⋅ ⋅ . (82)

In addition, by [26],𝑊(𝑧(𝑡), 𝑧(𝑡)) also satisfies𝑊̇ = 𝐴𝜏∗𝑊+𝐻(𝑧, 𝑧) , (83)

where𝐻(𝑧, 𝑧) = 𝐻20 𝑧22 + 𝐻11𝑧𝑧 + 𝐻02 𝑧22 + ⋅ ⋅ ⋅= 𝑋0𝐹 (𝑈∗𝑡 , 0) − Φ (Ψ, ⟨𝑋0𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩)⋅ 𝑓0 (84)

with𝐻𝑖𝑗 ∈ 𝑃𝑆C and 𝑖 + 𝑗 = 2.

Consequently, (74) and (81)-(83) lead to(2𝑖𝜔∗𝜏∗ − 𝐴𝜏∗)𝑊20 = 𝐻20,−𝐴𝜏∗𝑊11 = 𝐻11. (85)

Since 𝐴𝜏∗ has a pair of purely imaginary characteristic roots,
(83) has the unique solution such that

𝑊20 = (2𝑖𝜔∗𝜏∗ − 𝐴𝜏∗)−1𝐻20,𝑊11 = −𝐴−1𝜏∗𝐻11. (86)

For 𝜃 ∈ [−1, 0], it follows from (84) that𝐻(𝑧, 𝑧) = −Φ (𝜃) Ψ (𝜃) ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ ⋅ 𝑓0= −(𝑝1 (𝜃) + 𝑝2 (𝜃)2 , 𝑝1 (𝜃) − 𝑝2 (𝜃)2𝑖 )
⋅ (Ψ1 (0) , Ψ2 (0))𝑇 × ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ ⋅ 𝑓0= −12 [𝑝1 (𝜃) (Ψ1 (0) − 𝑖Ψ2 (0))+ 𝑝2 (𝜃) (Ψ1 (0) + 𝑖Ψ2 (0))] × ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ ⋅ 𝑓0= −14 [𝑔20𝑝1 (𝜃) + 𝑔02𝑝2 (𝜃)] 𝑧2 ⋅ 𝑓0 − 12 [𝑔11𝑝1 (𝜃)+ 𝑔11𝑝2 (𝜃)] 𝑧𝑧 ⋅ 𝑓0 + ⋅ ⋅ ⋅ .

(87)

Thus, for 𝜃 ∈ [−1, 0], we have
𝐻20 (𝜃) = −12 [𝑔20𝑝1 (𝜃) + 𝑔02𝑝2 (𝜃)] ⋅ 𝑓0,𝐻11 (𝜃) = −12 [𝑔11𝑝1 (𝜃) + 𝑔11𝑝2 (𝜃)] ⋅ 𝑓0,𝐻 (𝑧, 𝑧) (0) = 𝐹 (𝑈∗𝑡 , 0) − Φ (Ψ, ⟨𝐹 (𝑈∗𝑡 , 0)⟩ , 𝑓0) ⋅ 𝑓0,𝐻20 (0) = 𝜏∗2
⋅((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
))
)− 𝑔20𝑝1 (0) + 𝑔02𝑝2 (0)2 ⋅ 𝑓0,

(88)

and
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𝐻11 (0) = 𝜏∗4 (((
(

−2𝑟1𝐾 − 𝛼 (𝜁 + 𝜁)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉 − 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁)𝛽 (𝜁 + 𝜁) − 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗) + 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁
)))
)
− 𝑔11𝑝1 (0) + 𝑔11𝑝2 (0)2 ⋅ 𝑓0. (89)

Combining with the definition of 𝐴𝜏∗ and (86), we have

𝑊̇20 (𝜃) = 2𝑖𝜔∗𝜏∗𝑊20 (𝜃) + 𝑔20𝑝1 (0) + 𝑔02𝑝2 (0)2⋅ 𝑓0, − 1 ≤ 𝜃 ≤ 0. (90)

Since 𝑝1(𝜃) = 𝑝1(0)𝑒𝑖𝜔∗𝜏∗ , we have
𝑊20 (𝜃) = 𝑖2 [ 𝑔20𝜔∗𝜏∗𝑝1 (𝜃) + 𝑔023𝜔∗𝜏∗𝑝2 (𝜃)] ⋅ 𝑓0+ 𝐸𝑒2𝑖𝜔∗𝜏∗𝜃, (91)

where

𝐸 = 𝑊20 (0) − 𝑖2 [ 𝑔20𝜔∗𝜏∗𝑝1 (0) + 𝑔023𝜔∗𝜏∗𝑝2 (0)] ⋅ 𝑓0. (92)

From the definition of 𝐴𝜏∗ and (86) and (92), we have

2𝑖𝜔∗𝜏∗ [ 𝑖𝑔202𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0 + 𝑖𝑔206𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0 + 𝐸]− 𝜏∗𝐷Δ[ 𝑖𝑔202𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0 + 𝑖𝑔206𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0 + 𝐸]− 𝐿 (𝜏∗)⋅ [ 𝑖𝑔202𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0 + 𝑖𝑔206𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0 + 𝐸𝑒2𝑖𝜔∗𝜏∗𝜃]

= 𝜏∗2
⋅((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
))
)− 𝑔20𝑝1 (0) + 𝑔02𝑝2 (0)2 ⋅ 𝑓0.

(93)

Noticing that𝜏∗𝐷Δ[𝑝1 (0) ⋅ 𝑓0] + 𝐿 (𝜏∗) [𝑝1 (𝜃) ⋅ 𝑓0]= 𝑖𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0,𝜏∗𝐷Δ[𝑝2 (0) ⋅ 𝑓0] + 𝐿 (𝜏∗) [𝑝2 (𝜃) ⋅ 𝑓0]= −𝑖𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0,
(94)

we have2𝑖𝜔∗𝜏∗𝐸 − 𝜏∗𝐷Δ𝐸 − 𝐿 (𝜏∗) (𝐸𝑒2𝑖𝜔∗𝜏∗𝜃) = 𝜏∗2
⋅((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
))
)
. (95)

From previous formulas, we can obtain

𝐸 = 12(((
2𝑖𝜔∗𝜏∗ + 𝑟1𝐾𝑃∗ 0 𝛼𝑃∗0 2𝑖𝜔∗𝜏∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 + 𝑟2𝐾𝑃∗2 𝑎𝑇∗𝛾 + 𝑇∗−𝛽𝑍∗ 𝑏𝑍∗𝛾 + 𝑇∗ 𝑒−2𝑖𝜔∗𝜏∗ − 𝑏𝑇∗𝑍∗(𝛾 + 𝑇∗)2 2𝑖𝜔∗𝜏∗ + 𝑑𝑍∗

))
)
−1
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×(((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
)))
)
. (96)

With the same method, we also have

𝑊̇11 (𝜃) = 𝑔11𝑝1 (0) + 𝑔11𝑝2 (0)2 ⋅ 𝑓0, − 1 ≤ 𝜃 ≤ 0, (97)

and𝑊11 (𝜃) = 𝑖2𝜔∗𝜏∗ [−𝑔11𝑝1 (𝜃) + 𝑔11𝑝2 (𝜃)] ⋅ 𝑓0 + 𝐹, (98)

where

𝐹 = 14(((
(

𝑟1𝐾𝑃∗ 0 𝛼𝑃∗0 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 𝑎𝑇∗𝛾 + 𝑇∗−𝛽𝑍∗ 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 𝑑𝑍∗
)))
)

−1

×((((
(

−2𝑟1𝐾 − 𝛼 (𝜁 + 𝜁)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉 − 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁)𝛽 (𝜁 + 𝜁) − 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗) + 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁
))))
)
.

(99)

At this point, we are able to completely establish the value
of 𝑔21 and thereby can determine the properties of Hopf
bifurcation.

System (3) has the following Poincaré normal form:𝜛̇ = 𝑖𝜔∗𝜏∗𝜛 + 𝐶1 (0) 𝜛 |𝜛|2 + 𝑜 (|𝜛|5) , (100)

where

𝐶1 (0) = 𝑖2𝜔∗𝜏∗ (𝑔20𝑔11 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔213 . (101)

Hence,

𝜎2 = − Re (𝐶1 (0))Re (𝜆󸀠 (𝜏∗)) ,𝛽2 = 2Re (𝐶1 (0)) ,𝑇2 = − Im (𝐶1 (0)) + 𝜎2Im (𝜆󸀠 (𝜏∗))𝜔∗𝜏∗ .
(102)

By the Hopf bifurcation theory [25], we know that 𝜎2
determines the bifurcation direction: if 𝜎2 > 0 (𝜎2 < 0),
then the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solutions exist for 𝜏 > 𝜏0 (𝜏 < 𝜏0);𝛽2 determines the stability of bifurcating periodic solutions:
if 𝛽2 > 0 (𝛽2 < 0), then the periodic solutions are stable
(unstable); 𝑇2 determines the monotonicity of the period of
periodic solutions: if 𝑇2 > 0 (𝑇2 < 0), then the period
increases (decreases).

6. Numerical Simulation

In this section, we conduct the numerical simulations with
the help ofMATLAB.Wefirst choose the following parameter
value: 𝑑1 = 𝑑2 = 0.5,𝑑3 = 2,Ω = (0, 𝜋) ,𝑟1 = 5,
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Figure 1: The equilibrium solution 𝐸∗ of (3) is asymptotically stable when 𝜏 = 0.
𝑟2 = 0.2,𝐾 = 10,𝛼 = 0.068,𝛽 = 0.08,𝑎 = 0.02,𝑏 = 0.005,𝛾 = 0.5,𝑑 = 0.7.

(103)

By direct calculation, we have that system (3) has the
unique positive equilibrium solution 𝐸∗ = (9.84786,9.78241, 1.11867) and the corresponding Hopf bifurcation
value is 𝜏0 ≈ 22.3146.

Figures 1–3 show that the constant equilibrium solution
of (3) is asymptotically stable when the time delay is zero or
appropriately small. On the other hand, once the time delay

is larger than the critical value 𝜏0, the equilibrium solution
would no longer be stable and spatially homogeneous peri-
odic solution will bifurcate at the equilibrium solution (see
Figure 4).

We reselect 𝑑1 = 𝑑2 = 0.0005, 𝑑3 = 0.005, 𝑑 = 0.1,
and keep other coefficients the same. From Figures 5-6, it
is shown that the equilibrium solution 𝐸∗ is asymptotically
stable when 𝜏 = 2.5 and spatially inhomogeneous periodic
solution exists when 𝜏 = 5.42. It confirms that both spatial
diffusion and toxin delay have significant effects on the
spatiotemporal dynamics of system (3). Besides, if we setΩ =(0, 2𝜋), then the spatially inhomogeneous periodic solution
vanishes and the equilibrium solution becomes asymptoti-
cally stable (see Figure 7). It can be concluded that spatially
inhomogeneous pattern is more prone to occurring in small
space.

7. Conclusions

In this paper, we have proposed a delayed reaction-diffusion
model incorporating three plankton populations. Mathemat-
ical analysis indicates that the three populations can coexist
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Figure 2:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 0.65 < 𝜏0.
when the natural growth rate of nontoxic phytoplankton is
large and the death rate of zooplankton by toxin is small.
In this case, the balance is finally achieved by interdepen-
dence and mutual restraint. Otherwise, the zooplankton
will become extinct if the natural growth rate of nontoxic
phytoplankton is small and the death rate of zooplankton by

9
4

9.2

9.4

3 60

9.6

9.8

402

10

10.2

201 0
0 −20

Distance x Time t

N
on

-to
xi

c p
hy

to
pl

an
kt

on
P 1

(x
,t

)

402 201 0
ance me t

(a)

9
4

9.2

9.4

3 60

9.6

9.8

402
201 00 −20

Distance x Time t

To
xi

n-
pr

od
uc

in
g 

ph
yt

op
la

nk
to

n
P 2

(x
,t

)

402
201 0

ance e t

(b)

1.105

1.11

1.115

1.12

1.125

1.13

3
4

Distance x

2
60

Time t
40

1 20

−200
0

H
er

bi
vo

ro
us

 zo
op

la
nk

to
n

Z
(x

,t
)

2 40

(c)

Figure 3:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 15 < 𝜏0.
toxin is large. In the latter case, the biomasses of nontoxic
phytoplankton and toxin-producing phytoplankton reach
saturation and algae bloom occurs.

Andwhen considering the toxin delay, the spatiotemporal
dynamics of system is almost unaffected when the time
delay is sufficiently small. However, when the time delay
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Figure 4:The spatially homogeneous periodic solution exists when𝜏 = 25 > 𝜏0.
passes through some critical value, spatially homogeneous
or inhomogeneous periodic solution may arise. This means
that algal bloom erupts periodically under certain conditions.
Therefore, some measures can be adopted to control or
defer the occurrence of Hopf bifurcation, such as reduc-
ing the toxin delay or adding feedback control. Numerical
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Figure 5:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 2.5 with new coefficient values.

simulations complementally illustrate that when there is no
or only tiny time delay, the population distribution pattern is
eventually spatially homogeneous even if the initial distribu-
tion is inhomogeneous. When the time delay is sufficiently
large, the distribution pattern is time periodic. Moreover,
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Figure 6: The spatially inhomogeneous periodic solution exists
when 𝜏 = 5.42 with new coefficient values.

nontoxic phytoplankton has the largest oscillation amplitude,
toxin-producing phytoplankton has the smallest oscillation
amplitude, and the zooplankton hasmodest amplitude.These
phenomena show that toxin delay has the greatest effects on
nontoxic phytoplankton.
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Figure 7:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 5.42 andΩ = (0, 2𝜋).
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