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Coupled network systems (CNSs) consist of many small,
inexpensive agents, in which each agent is capable of collect-
ing signals, processing information, and communicatingwith
neighboring agents. Due to their wide applications in many
fields including mobile sensor networks and Unmanned
Aerial Vehicles, CNSs have attracted many researchers from
different areas of sciences and technologies, ranging from
mathematics and physics to computer science. Node collab-
oration is the key for the success of CNSs due to the fact that
each node itself is limited by communication range, power,
and processing ability. In the process of the nodes’ signal
exchanging, an interesting aspect of the dynamics in CNSs is
that certain types of globally collective behavior emerge from
local interactions among the nodes. Such behavior arises
ubiquitously in biological systems, ecosystems, and physical
systems.

This special issue focuses on the dynamics of coupled net-
work systems with their collective behavior and engineering
applications, and it aims to bring together the most recent
developments and knowledge in some related fields. Potential
topics include, but are not limited to, (a) synchronization of
complex dynamical networks, (b) consensus of multiagent
systems, (c) stochastic resonance and some other collective
behaviors, (d) network analysis and control, (e) social net-
work analysis, and (f) network applications in different areas.

The response to this special issue on Coupled Network
Systems and Their Collective Behavior was beyond our
expectation. We received 38 papers in this research fields.
All manuscripts submitted to this special issue went through
a rigorous peer-refereeing process. Based on the reviewers’

reports, twenty-four original research articles are finally
accepted. The contents embrace the synchronization of com-
plex networks under different constraints, Gossip consensus
algorithm, Cucker-Smale flocking analysis, dynamic average
consensus, and application of ranking algorithms on crime
busting model.

It is certainly impossible to provide in this short editorial a
more comprehensive description for all articles in this special
issue. However, the guest editors sincerely hope that our
efforts by compiling these articles can enrich our readers and
inspire researchers with regard to the seemingly common but
actually important issue of coupled network systems.
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Neuronal activity in the human brain occurs in a complex physiologic environment, and noise from all aspects in this physiologic
environment affects all aspects of nervous-system function. An essential issue of neural information processing is whether the
environmental noise in a neural system can be estimated and quantified in a proper way. In this paper, we calculated the neural
energy to estimate the range of critical values of thermal noise intensity that markedly affect themembrane potential and the energy
waveform, in order to define such a noisy environment which neuronal activity relies on.

1. Introduction

Thermal noise in neural system is critically vital for infor-
mation processing, because it has a great influence on a
variety of aspects of the central nervous system [1–6]. How
to evaluate the intensity of such noise has long been a focus
for scientists attempting to understand network behaviors
and perception [7–11]. So far, estimations of thermal noise
intensity in neurons or neural networks in published papers
with regard to neural models are generally subjective, lacking
a definite basis that is applicable to the range of thermal noise
intensity in real systems. Sometimes, authors define thermal
noise themselves in order to obtain an ideal result; however,
scientific definition of thermal noise and its intensity range
is extremely difficult [12–18]. From the viewpoint of quan-
tification, there have been a lot of studies on information
coding and the dynamic behaviors of networks in a noisy
environment, but these studies have not attempted to answer
one of the most basic questions—what principles should
be used to choose the thermal noise values in models?
Theoretically speaking, there will be deviations between
the calculated results and experimental data, and a further
discussion on the effectiveness of calculated results is also
needed. Taking into account all the considerations above
and based on the literature [19–21], in this paper, a range of
values of the different membrane potential under the thermal

noise condition studied by using the energymethod and their
corresponding energy waveforms.

We wanted to estimate the range of critical values of
noise intensity that is capable of markedly changing the
energy waveform. The principal idea of our research was
inspired by the fact that since it is impossible to measure
the thermal noise intensity at a neuronal level which is
great enough to affect neuronal activity in an experiment,
and hence, according to the rule of the only corresponding
relationship between the membrane potential and its energy
function, the range of thermal noise intensity obtained by
our neuronal energy function can be estimated to be what
it should be in a real neural system. Any kind of membrane
potential can be obtained by adjusting the noise intensity, but
there is no intrinsic relationship between such a membrane
potential and the real neuronal energy. Therefore, we studied
the membrane potential starting from the point of view
of neuronal energy and observing the type of order of
magnitude in noise intensity that can greatly affect the energy
function of the membrane potential. As a result, we obtained
a range of thermal noise intensity that neurons might have in
an actual thermal noisy environment.

It follows that a further discussion of thermal noise
intensity range is possible for levels of networks. This part
of the research is not only significant for the application of
thermal noise intensity when modeling a neuron, but is also
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able to provide an adequate scientific basis for estimating the
range of thermal noise intensity in networks and helping to
establish neural network models.

Finally, it should be emphasized that we did not consider
signal to noise ratio (SNR) that is beyond the scope of this
paper.

2. Methods

Compared with the traditional simple single neuronalmodel,
a voltage source, a current source, and an inductor are
innovatively proposed in the biophysical model presented
in this paper, which is shown in Figure 1. The difference in
concentration between inner and external ions of neurons
creates the electric voltage source that drives the ions. The
current source is created by, on one hand, the chemical
gradient of ions and, on the other hand, the stimuli from
neighboring neurons. Moreover, in the ion channels, the flow
of charged particles, such as sodium ions, potassium ions,
and calcium ions, forms a loop current which is equivalent
to an inductor 𝐿

𝑚
, producing self-induction. 𝐶

𝑚
is used

to denote the membrane capacitance. 𝐼
𝑚
denotes the total

electrical current formed by the inputs of all the neighboring
neurons to theMth neuron.𝑈 denotes the voltage source. 𝑟

𝑚

and 𝑟
0𝑚

denote the resistance of the current source 𝐼
𝑚
and

voltage source𝑈, respectively, showing the wastage produced
by the actual sources. Due to the actions of the electric voltage
source and the electric current source at different points in the
neuron, the membrane resistance is divided into three parts
𝑟
1𝑚
, 𝑟
2𝑚
, and 𝑟

3𝑚
.

As indicated in Figure 1, the power 𝑃
𝑚
of theMth neuron

produced by the voltage source𝑈
𝑚
and the current source 𝐼

𝑚

is obtained using the formula

𝑃
𝑚
= 𝑈
𝑚
𝐼
0𝑚

+ 𝑈
𝑖𝑚
𝐼
𝑚
, (1)

where

𝑈
𝑚
= 𝑟
0𝑚
𝐼
0𝑚

+ 𝑟
1𝑚
𝐼
1𝑚

+ 𝐿
𝑚

̇𝐼
1𝑚
,

𝐼
0𝑚

= 𝐼
1𝑚

− 𝐼
𝑚
+
𝑈
𝑖𝑚

𝑟
𝑚

+ 𝐶
𝑚

̇𝐼
1𝑚
,

𝑈
𝑖𝑚
= 𝐶
𝑚
𝑟
3𝑚
𝑈
0𝑚

+ 𝑈
0𝑚
,

(2)

𝐿
𝑚

̇𝐼
1𝑚

+ 𝑟
1𝑚
𝐼
𝑚
= 𝐾
1𝑚
𝑈
0𝑚

+ 𝐾
2𝑚
𝑈
0𝑚

− 𝑟
2𝑚
𝐼
𝑚
. (3)

The current source is calculated from the formula

𝐼
𝑚
= 𝑖
1𝑚

+

𝑛

∑

𝑗=1

[𝑖
0𝑚

(𝑗 − 1) sin𝜔
𝑚
(𝑗 − 1) (𝑡

𝑗
− 𝑡
𝑗−1

)]

+ 𝑖
0𝑚

(𝑛) sin𝜔
𝑚
(𝑛) (𝑡 − 𝑡

𝑛
)

𝑡
𝑛
< 𝑡 < 𝑡

𝑛+1
, 𝑛 = 1, 2, . . . , 𝑡

0
= 0,

(4)

where 𝑖
1𝑚

is the current used tomaintain resting potential, 𝑖
0𝑚

denotes the electric current being produced after the single
neuron receives stimuli from all other neighboring neurons

+
+−

−

i = 1

i = 2

i = N

Im

r2mr1m r3mr0m

I2m
I1m

U

U0m
Cm

Lm

· · ·

rm Uim

I0m

Figure 1: Physical model of theMth neuron with coupling to other
neurons.

connected at the subthreshold level, and 𝜔
𝑚

denotes the
spiking frequency of the action potential, where

𝐾
1𝑚

= 𝐶
𝑚
(𝑟
2𝑚

+ 𝑟
3𝑚

+
𝑟
2𝑚
𝑟
3𝑚

𝑟
𝑚

) , 𝐾
2𝑚

= 1 +
𝑟
2𝑚

𝑟
𝑚

.

(5)

The solution of (3) is as follows:

𝐼
1𝑚

= 𝑒
−𝑎𝑡

(𝐾 +
1

𝐿
𝑚

(𝐾
1𝑚
𝑈
0𝑚
𝑒
𝑎𝑡

+ (𝐾
2𝑚

− 𝑎𝐾
1𝑚
)

×∫

𝑡

𝑡0

𝑈
0𝑚
𝑒
𝑎𝑡

𝑑𝑡 − 𝑟
2𝑚

∫

𝑡

𝑡0

𝐼
𝑚
𝑒
𝑎𝑡

𝑑𝑡)) ,

(6)

where

𝑎 =
𝑟
1𝑚

𝐿
𝑚

, 𝐾 = 𝐼
1𝑚

(𝑡
0
) −

𝑟
𝑚
+ 𝑟
2𝑚

𝑟
𝑚
𝑟
1𝑚

𝑈
0𝑚

(𝑡
0
) . (7)

When (6) satisfies the following conditions:

𝐾
2𝑚

− 𝑎𝐾
1𝑚

= 0,

𝐿
𝑚
=
𝐾
1𝑚

𝐾
2𝑚

𝑟
1𝑚

= 𝐶
𝑚
𝑟
1𝑚

(𝑟
3𝑚

+
𝑟
𝑚
𝑟
2𝑚

𝑟
𝑚
+ 𝑟
2𝑚

) ,

(8)

we can obtain the following equation:

𝐼
1𝑚

= 𝑒
−𝑎𝑡

(𝐾 +
𝑟
𝑚
𝑟
2𝑚

𝑟
𝑚
+ 𝑟
2𝑚

𝑈
0𝑚
𝑒
𝑎𝑡

−
𝑟
2𝑚

𝐿
𝑚

∫

𝑡

𝑡0

𝐼
𝑚
𝑒
𝑎𝑡

𝑑𝑡) . (9)

Inserting (9) and (2) into (1), the power of consumption
𝑃
𝑚
ofmth neuron is obtained in the following:

𝑃
𝑚
= 𝑑
1𝑚
𝑈
2

0𝑚
+ 𝑑
2𝑚
𝑈
0𝑚

+ 𝑑
3𝑚
𝑈
0𝑚
𝑈
0𝑚

+ 𝑑
4𝑚
𝑈
2

0𝑚
+ 𝑑
5𝑚
𝑈
0𝑚

+ 𝑑
6𝑚
,

(10)

where 𝑑
1𝑚
, 𝑑
2𝑚
, 𝑑
3𝑚
, 𝑑
4𝑚
, 𝑑
5𝑚
, and 𝑑

6𝑚
can be obtained from

[20, 21].
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Figure 4: IPSP and its corresponding energy function. 𝑟
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According to the above equations, we can obtain the
solution of the action potential 𝑈

𝑜𝑚
:

𝑈
0𝑚

= −
𝑔
1

𝜆2
𝑚

−
𝑔
2
𝑒
−𝑎(𝑡−𝑡𝑛)

𝜆2
𝑚
− 𝑎2

−
1

𝜆2
𝑚
+ 𝜔2
𝑚

× (𝑔
3
sin (𝜔

𝑚
(𝑛) (𝑡 − 𝑡

𝑛
))

+ 𝑔
4
cos (𝜔

𝑚
(𝑛) (𝑡 − 𝑡

𝑛
))

× (𝑈
0𝑚

(𝑡
𝑛
) +

𝑔
1

𝜆2
𝑚

+
𝑔
2

𝜆2
𝑚
− 𝑎2

+
𝑔
4

𝜆2
𝑚
+ 𝜔2
𝑚
(𝑛)

)) 𝑒
−𝜆𝑚(𝑡−𝑡𝑛).

(11)

To clarify our point of view, we present in a straightfor-
ward manner the action potential and its neuronal energy
function represented by the corresponding power obtained
by our proposed method, as shown in Figure 2.

As indicated in Figure 2, the peak voltage of the action
potential is around 25mV and the peak power of the
energy function is around 12 nW. The energy waveforms of
an excitatory postsynaptic potential (EPSP) and inhibitory
postsynaptic potential (IPSP) are shown in Figures 3 and 4,
respectively.

In the cerebral cortex, the excitatory neurons comprise
85%of the neurons, and the remaining neurons are inhibitory
[22]. At the subthreshold state, the sum of the power of the
EPSP and IPSP of a single neuron is negative (PP = 0.0367
+ (−0.0532) = −0.0165 nW). From the overall observation,
the total consumed energy is positive (PP = 0.0367 × 85%
−0.0532 × 15% = 0.0232 nW). As seen from the results, the
neural system consumes the energy supplied fromblood flow,
even if the neurons act at a subthreshold state; also as seen
from the calculated results, neurons consumemore energy at
suprathreshold activities than at subthreshold activities. It is
reported that a massive number of neurons in subthreshold
activities consume only 20% of the total energy, whereas
a small amount of neurons consume more than 80% due
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Figure 7: The action potential and its corresponding energy function. 𝑟
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to action potential firing [22]. Our results conform to this
conclusion.

A single neuron acts under the condition of a neural
network. In other words, the interaction among the neu-
rons makes their functional effectiveness emerge. It is in
this sense that neuronal activity is performing the process
of metabolism in the thermal noisy physiologic environ-
ment. To obtain the size of thermal noise intensity of
the neuronal activity in the actual environment and to
further obtain the noise circumstance under the condition
of networks in the brain, we need to first understand the
neuronal membrane potential and its corresponding energy
function under the condition of no noise interference [19].
Only by obtaining the neuronal energy under an ideal
condition can the physiologic influence of thermal noise
on the membrane potential and its neuronal energy be
better understood. Once that is obtained, it is possible to
comprehend the noisy environment in a neural system and
evaluate the behaviors of the network in such an environ-
ment.

3. Results

3.1. The Suprathreshold Membrane Potential and Its Neuronal
Energy. Because the signal intensities of AP, EPSP, and IPSP
are 7.07 × 10−5 𝜇A, 7.155 × 10−6 𝜇A, and 7 × 10−7 𝜇A, so if we
superpose thermal noise on the current 𝑖

0𝑚
, when the thermal

noise intensity 𝑄 is more than 10
−4

𝜇A, the influence of
thermal noise onmembrane potential and its energy function
is far greater than that of the current 𝑖

0𝑚
, and when the

thermal noise intensity𝑄 is less than 10−7 𝜇A, the influence of
thermal noise onmembrane potential and its energy function
is far weaker than that of 𝑖

0𝑚
. Therefore, the values of thermal

noise intensity should be set as 10−4 𝜇A, 10−5 𝜇A, 10−6 𝜇A,
and 10−7 𝜇A, respectively.

After adding thermal noise, the current takes the form

𝐼
𝑚
= 𝑖
1𝑚

+

𝑛

∑

𝑗=1

[(𝑖
0𝑚

(𝑗 − 1) + 𝑄) sin𝜔
𝑚
(𝑗 − 1) (𝑡

𝑗
− 𝑡
𝑗−1

)]

+ [𝑖
0𝑚

(𝑛) + 𝑄] sin𝜔
𝑚
(𝑛) (𝑡 − 𝑡

𝑛
) ,

(12)
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Figure 9: The action potential and its energy function. 𝑟
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Figure 10: The action potential and its corresponding function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
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= 1000Ω, 𝑟
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where 𝑄 denotes the synaptic noise as Gaussian white noise
with the unit 𝜇A.

The action potential together with its corresponding
power plotted by the energy function calculated under the
condition of different noise intensity is shown as follows.

In all of Figures 5, 6, 7, 8, 9, and 10, the dotted line
represents the case of no noise and the solid line represents
the case of noise.

When the noise intensity 𝑄 reaches 10−4 𝜇A, the peak of
the neuronal membrane potential is around 140mV and far
higher than 25mV of the situation without noise, while the
peak of the energy function is around 40 nW and far higher
than the original 12 nW. Additionally, on the horizontal
axis, between 2.5ms and 3ms, the amplitude of the energy
waveform is much larger than the one in the situation
without noise.Therefore, it fundamentally changes the action
potential and its corresponding energy function under the
ideal conditions when 𝑄 reaches 10−4 𝜇A.

When the noise intensity𝑄 reaches 10−5 𝜇A, the influence
of noise on the action potential deceases, but it is still
significant. Here, the membrane potential is around 40mV,

whereas the peak of the energy function is around 15 nW. As
can be seen, such noise intensity still has a great influence
on the membrane potential and its corresponding energy
waveform.

When the noise intensity 𝑄 reaches 10−6 𝜇A, there is
hardly any influence on the action potential and its energy
function. It is in such a noisy environment that the peaks of
the membrane potential and energy waveform are exactly the
samewith those under the ideal conditionswhere the peaks of
action potential and the energy function are 25mVand 12 nW,
respectively. In the presence of noise, the waveforms of the
membrane potential and the energy function are nearly the
same as without noise.

To summarize, we cannot estimate an accurate value of
noise intensity for both the suprathresholdmembrane poten-
tial and the corresponding neuronal energy. In estimating the
range of the critical values of noise intensity, we found that
when the noise intensity 𝑄 reaches about 6 × 10

−6

𝜇A (error
± 0.5 × 10

−6

𝜇A), the noise has great influence on the action
potential and its corresponding energy function.
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Figure 12: The EPSP and the corresponding energy function. 𝑟
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Figure 13: The EPSP and the corresponding energy function. 𝑟
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Figure 14: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
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As shown in Figures 8–10, when the noise intensity 𝑄 is
6×10
−6

𝜇A, the fluctuation of themembrane potential and the
energy function turns out to be very large. The peak of the
action potential fluctuates between 10mV and 40mV, while
that of the energy function fluctuates from 10 nW to 15 nW.
Such noise intensity has great influence on the membrane
potential and the energy function, and as a result, the critical
value of the noise intensity 𝑄 can be assessed at 6 × 10

−6

𝜇A
(error ± 0.5 × 10

−6

𝜇A).

3.2. Subthreshold Membrane Potential and Its Neuronal
Energy. According to the calculated results of Wang et al.
[21], we obtained the EPSP and the corresponding energy
waveform as well as the IPSP and the corresponding energy
waveform by adding noise (Figures 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, and 25).

When the level of noise intensity𝑄 reached 1×10−4 𝜇A, it
had a great effect on the EPSP and the corresponding energy
waveform.Without the effect of noise, we found that the EPSP
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Figure 15: The EPSP and the corresponding energy function. 𝑟
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Figure 16: The EPSP and the corresponding energy function. 𝑟
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Figure 17: The EPSP and the corresponding energy function. 𝑟
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Figure 18: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
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curve increased first and then decreases with a maximum of
−68mV and a minimum of −70mV. The energy function fell
first and then rose towards stability, fluctuating in the range
of −0.1 to 0.1 nW. After adding noise, we found that the EPSP
curve fell first and then rose towards a minimum of −95mV,
while the energy function increased first and then decreased
towards stability, fluctuating in the range of −10 to −80 nW.

When the level of noise intensity 𝑄 reached 1 × 10−5 𝜇A,
it also had a great effect on the EPSP and the corresponding
energywaveform.Under an ideal conditionwithout noise, we
know that the maximum of the EPSP is about −68mV and
the peak of the energy function is about 0.1 nW. After adding
noise, the peak of the EPSPhardly changed, but the oscillatory
curve changed sharply in the period from 2.5ms to 3ms.
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Figure 19:The IPSP and the corresponding energy function. 𝑟
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Figure 20: The IPSP and the corresponding energy function. 𝑟
0𝑚
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Figure 21:The IPSP and the corresponding energy function. 𝑟
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Figure 22: The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
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= 1000Ω, 𝑟
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The oscillatory amplitude of the energy function with noise
was more intense than that without noise, varying between
1.5ms and 2.5ms.

When the noise intensity 𝑄 reached 1 × 10
−6

𝜇A, it
had little effect on the EPSP and the corresponding energy
waveform.This figure showing the EPSP and energy function
with noise is almost the same with one without noise. We
could not estimate the range of the noise intensity, which

affects the EPSP’s corresponding energy function according
to the results shown in Figures 11–13. As a solution, we
addressed the problem by adjusting the coefficient of the
noise level.

When the level of noise intensity 𝑄 reached 2 × 10−6 𝜇A,
it did not have an obvious effect on the EPSP and the
corresponding energy waveform.This figure shows the EPSP
and energy function with noise is almost the same as one
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Figure 23: The IPSP and the corresponding energy function. 𝑟
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= 0.0001Ω, 𝑟
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Figure 24: The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
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without noise. But the energy function with noise is slightly
different from that without noise ranging between 1.5ms and
2.5ms.

When the noise intensity 𝑄 reached 3 × 10
−6

𝜇A, it had
a great effect on the EPSP and the corresponding energy
waveform. Taking the noise into account, we found that the
EPSP fluctuated in a small interval from −67mV to −69mV,
while in the period from 1.5ms to 2.5ms, the energy function
with noise had greater fluctuations than that without noise.

When the level of noise 𝑄 reached 1 × 10
−7

𝜇A, it had
a little effect on the EPSP and the corresponding energy
waveform. The figures of the EPSP and energy function with
noise are almost the same as those without noise.

In summary, when the noise intensity 𝑄 was about 3 ×
10
−6

𝜇A (error ± 0.5 × 10
−6

𝜇A), the noise begins to have a
significant influence on EPSP and its corresponding energy
waveform. As a result, the critical value of the noise was
assessed at 3 × 10−6 𝜇A (error ± 0.5 × 10

−6

𝜇A).
When the noise intensity 𝑄 reached 1 × 10

−4

𝜇A, it had
a great effect on the IPSP and the corresponding energy
waveform.Without the effect of noise, we found that the IPSP
curve fell first and then rose and the energy function curve
was almost in the stable state of −0.04 nW. However, after
adding noise, we found that the IPSP curve rose first and then
fell, while most of the energy function curve was above 0 and
there were huge fluctuations of the energy function between
1.5ms and 2.5ms.

When the noise intensity 𝑄 reached 1 × 10
−5

𝜇A, it had
a critical effect on the IPSP and the corresponding energy
waveform. Without the effect of noise, we observed that the
IPSP curve fell initially and then rose and the energy function
curve was almost in a stable state of −0.04 nW. However, after

adding noise, the IPSP curve rose first and then fell and there
were huge fluctuations of the energy function between 2.5ms
and 3ms.

When the noise intensity𝑄 reached 1 × 10
−6

𝜇A, it had
a relatively great effect on the IPSP and the corresponding
energy waveform.Without the effect of noise, the IPSP curve
fell initially and then rose, while the energy function curve
was almost in a stable state of −0.04 nW. After adding noise,
the IPSP curve rose first and then fell and therewere also huge
fluctuations of the energy function from 2.5ms to 3ms.

When the noise intensity𝑄 reached 1 × 10
−7

𝜇A, it had
a little effect on the IPSP and the corresponding energy
waveform. The figures of the IPSP and energy function with
noise are almost the same as those without noise.

We still could not estimate the range of the noise that
affects the energy function of the IPSP according to the results
shown in Figures 19–22. So as a solution, we addressed it by
adjusting the coefficient of the level of noise intensity.

When the noise intensity𝑄 reached 2 × 10
−7

𝜇A, it had
a little effect on the IPSP and the corresponding energy
waveform. The figures of the IPSP and energy function with
noise are almost the same as those without noise.

When the level of noise intensity𝑄 reached 3 × 10
−7

𝜇A,
it had a little effect on the IPSP and the corresponding energy
waveform. The figures of the IPSP and energy function with
noise are almost the same as those without noise.

When the level of noise intensity𝑄 reached about 4 ×

10
−7

𝜇A (error ± 0.5 × 10
−7

𝜇A), the noise began to sig-
nificantly influence the IPSP and its corresponding energy
waveform.Without the effect of noise, the IPSP curve initially
fell and then rose; however, with the effect of noise, the IPSP
curve did not monotonically decrease in the time interval
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Figure 25: The IPSP and the corresponding energy function. 𝑟
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from 0ms to 1.5ms, while the energy function began to
appear to fluctuate within the interval from 2.5ms to 3ms.

In summary, when the level of noise intensity 𝑄 reached
about 4 × 10−7 𝜇A (error ± 0.5 × 10

−7

𝜇A), the noise began to
have significant influence on the IPSP and its corresponding
energy waveform. As a consequence, its critical value was
assessed at 4 × 10−7𝜇A (error ± 0.5 × 10

−7

𝜇A).

4. Discussion

In this study, we obtained the action potential, EPSP, IPSP,
and their corresponding energy waveforms with thermal
noise added to the current. By changing the thermal noise
intensity, we found the estimated range of the critical value
of thermal noise that can significantly influence the neuronal
membrane potential and the corresponding energy wave-
form. When the thermal noise intensity𝑄 reached about 6 ×
10
−6

𝜇A (error ± 0.5 × 10
−6

𝜇A), it had a great influence on
the action potential and its corresponding energy waveform.
When the thermal noise intensity𝑄 reached about 3×10−6 𝜇𝐴
(error ± 0.5 × 10

−6

𝜇A), it had a great influence on the
EPSP and its corresponding energy waveform. When the
thermal noise intensity𝑄 reached about 4 × 10

−7

𝜇A (error
± 0.5 × 10

−7

𝜇A), it had a great influence on the IPSP and its
corresponding energy waveform. Based on these results, we
conclude that noise has less effect on the action potential and
its energy waveform than on the EPSP, IPSP, and their energy
waveforms, and the thermal noise has less effect on the EPSP
and its energy waveform than the IPSP and its waveform. By
numerical calculation, we have also obtained the estimated
range of the critical value of the noise that has a great effect
on the action potential, EPSP, IPSP, and their corresponding
energy waveforms. As a result, when we again establish a
neural dynamic model in the future, such an estimation of
noise intensity will enable us to avoid being subjective in
considering the influence of noise on neural firing, so that
the calculated results and experimental data will be more
consistent. Therefore, the estimation of the thermal noise
intensity provides a scientific basis for research on neural
information coding in a noisy environment.

The physical model which we used in this paper was
proposed by Wang et al. [20, 21] from the viewpoint of
energy. Compared with other models, the biggest advantage
of this model is that it simplifies the calculation of activity
of neuronal firing. Due to the energy coding model’s ability

to describe mechanisms of brain information processing in
biophysical terms, this idea and method can be applied to
future research of information encoding in neural ensembles
as well as cognitive functioning.
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Let 𝐺 be a simple graph with 𝑛 vertices and let 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
be the eigenvalues of its adjacency matrix; the Estrada index 𝐸𝐸(𝐺)

of the graph 𝐺 is defined as the sum of the terms 𝑒𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑛. The 𝑛-dimensional folded hypercube networks 𝐹𝑄
𝑛
are an

important and attractive variant of the 𝑛-dimensional hypercube networks 𝑄
𝑛
, which are obtained from 𝑄

𝑛
by adding an edge

between any pair of vertices complementary edges. In this paper, we establish the explicit formulae for calculating the Estrada
index of the folded hypercubes networks 𝐹𝑄

𝑛
by deducing the characteristic polynomial of the adjacency matrix in spectral graph

theory. Moreover, some lower and upper bounds for the Estrada index of the folded hypercubes networks 𝐹𝑄
𝑛
are proposed.

1. Introduction

Complex networks have become an important area of
multidisciplinary research involving mathematics, physics,
social sciences, biology, and other theoretical and applied
sciences. It is well known that interconnection networks play
an important role in parallel communication systems. An
interconnection network is usually modelled by a connected
graph 𝐺 = (𝑉, 𝐸), where 𝑉 denotes the set of processors and
𝐸 denotes the set of communication links between processors
in networks. Let𝐺 be a graphwith vertices labelled 1, 2, . . . , 𝑛.
The adjacency matrix 𝐴(𝐺) of 𝐺 is an 𝑛 × 𝑛 matrix with the
(𝑖, 𝑗)-entry equal to 1 if vertices 𝑖 and 𝑗 are adjacent and 0
otherwise.The spectrum of𝐺 is the spectrum of its adjacency
matrix and consists of the numbers 𝜆

1
≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥

𝜆
𝑛
. In this work we are concerned with finite undirected

connected simple graphs (networks). For the underlying
graph theoretical definitions and notations we follow [1].

The energy of the graph 𝐺 [2] is defined as

𝐸 (𝐺) =

𝑛

∑

𝑖=1

𝜆𝑖
 . (1)

Another graph-spectrum-based invariant, recently put
forward by Ernesto Estrada, is defined as

𝐸𝐸 = 𝐸𝐸 (𝐺) =

𝑛

∑

𝑖=1

𝑒
𝜆𝑖 . (2)

This graph invariant appeared for the first time in the year
2000, in a paper by Estrada [3], dealing with the folding of
protein molecules. Estrada and Rodŕıguez-Velázquez showed
that 𝐸𝐸 provides a measure of the centrality of complex
(communication, social, metabolic, etc.) networks [4, 5].

Denote by 𝑀
𝑘
= 𝑀
𝑘
(𝐺) = ∑

𝑛

𝑖=1
(𝜆
𝑖
)
𝑘 the 𝑘th spectral

moment of the graph 𝐺. From the Taylor expansion of 𝑒𝑥,
we have the following important relation between the Estrada
index and the spectral moments of 𝐺:

𝐸𝐸 (𝐺) =

∞

∑

𝑘=0

𝑀
𝑘
(𝐺)

𝑘!
. (3)

At this point one should recall [4] that𝑀
𝑘
(𝐺) is equal to

the number of self-returning walks of length 𝑘 of the graph
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𝐺. The first few spectral moments of an (𝑛,𝑚)-graph with 𝑚
edges and 𝑡 triangles satisfy the following relations [4]:

𝑀
0
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
0

= 𝑛; 𝑀
1
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
1

= 0;

𝑀
2
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

= 2𝑚; 𝑀
3
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
3

= 6𝑡.

(4)

For 1 ≤ 𝑖 ≤ 𝑛, let𝑑
𝑖
be the degree of vertex V

𝑖
in𝐺.The first

Zagreb index [6] of the graph𝐺 is defined as𝑍𝑔(𝐺) = ∑
𝑛

𝑖=1
𝑑
2

𝑖
:

𝑀
4
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
4

= 2𝑍𝑔 (𝐺) − 2𝑚 + 8𝑞;

𝑀
5
=

𝑛

∑

𝑖=1

(𝜆
𝑖
)
5

= 30𝑡 + 10𝑝 + 10𝑟,

(5)

where 𝑝 and 𝑞 are the numbers of pentagons and quadrangles
in𝐺, and 𝑟 is the number of subgraphs consisting of a triangle
with a pendent vertex attached [7].

The hypercubes 𝑄
𝑛
is one of the most popular and

efficient interconnection networks due to its many excellent
performances for some practical applications. There is a
large amount of literature on the properties of hypercubes
networks [8–11]. As an important variant of 𝑄

𝑛
, the folded

hypercubes networks 𝐹𝑄
𝑛
, proposed by Amawy and Latifi

[8], are the graphs obtained from 𝑄
𝑛
by adding an edge

between any pair of vertices complementary addresses. The
folded hypercubes 𝐹𝑄

𝑛
obtained considerable attention due

to its perfect properties, such as symmetry, regular structure,
strong connectivity, small diameter, and many of its proper-
ties which have been explored [12–19].

The remainder of the present paper is organized as
follows. In Section 2, we present some basic notations and
some preliminaries in our discussion.The proofs of our main
results are in Section 3 and some conclusions are given in
Section 4, respectively.

2. Notations and Some Preliminaries

In this section, we introduce some basic properties which will
be used in the proofs of our main results.

Let 𝑃
𝐹𝑄𝑛

(𝑥) be the characteristic polynomial of the adja-
cency matrix of the folded hypercube 𝐹𝑄

𝑛
; the following

results were shown in [12].

Lemma 1 (see [12]). The characteristic polynomial of the
adjacency matrix of the 𝐹𝑄

𝑛
(𝑛 ≥ 3) is

𝑃 (𝐹𝑄
𝑛
; 𝜆) = [𝜆 − (𝑛 − 7)] [𝜆 − (𝑛 − 3)]

3

𝑃 (𝐹𝑄
𝑛−1

; 𝜆 − 1)

×

𝑛−2

∏

𝑖=2

𝑃 (𝐹𝑄
𝑛−𝑖
; 𝜆 − (𝑖 − 4)) .

(6)

Lemma 2 (see [12]). For 𝐹𝑄
𝑛
with 𝑛 ≥ 3, the spectrum of

adjacency matrix is as follows:
(1) If 𝑛 ≡ 0 (mod 2),

𝑆𝑝𝑒𝑐 (𝐹𝑄
𝑛
) = (

−𝑛 + 1 −𝑛 + 5 −𝑛 + 9 ⋅ ⋅ ⋅ 𝑛 − 7 𝑛 − 3 𝑛 + 1

𝐶
0

𝑛
+ 𝐶
1

𝑛
𝐶
2

𝑛
+ 𝐶
3

𝑛
𝐶
4

𝑛
+ 𝐶
5

𝑛
⋅ ⋅ ⋅ 𝐶

𝑛−4

𝑛
+ 𝐶
𝑛−3

𝑛
𝐶
𝑛−2

𝑛
+ 𝐶
𝑛−1

𝑛
𝐶
𝑛

𝑛

) , (7)

(2) if 𝑛 ≡ 1 (mod 2),

𝑆𝑝𝑒𝑐 (𝐹𝑄
𝑛
) = (

−𝑛 − 1 −𝑛 + 3 −𝑛 + 7 ⋅ ⋅ ⋅ 𝑛 − 7 𝑛 − 3 𝑛 + 1

𝐶
0

𝑛
𝐶
1

𝑛
+ 𝐶
2

𝑛
𝐶
3

𝑛
+ 𝐶
4

𝑛
⋅ ⋅ ⋅ 𝐶

𝑛−4

𝑛
+ 𝐶
𝑛−3

𝑛
𝐶
𝑛−2

𝑛
+ 𝐶
𝑛−1

𝑛
𝐶
𝑛

𝑛

) , (8)

where 𝐶𝑖
𝑛
are the binomial coefficients and the elements in

the first and second rows are the eigenvalues of the adjacency
matrix of 𝐹𝑄

𝑛
and the corresponding multiplicities, respec-

tively.

Lemma 3 (see [20]). The eigenvalues of a bipartite graph
satisfy the pairing property: 𝜆

𝑛−𝑖+1
= 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Therefore, if the graph 𝐺 is bipartite and if 𝜂
0
is nullity (the

multiplicity of its eigenvalue zero), then

𝐸𝐸 (𝐺) = 𝜂
0
+ 2∑

+

cosh (𝑖) , (9)

where cosh stands for the hyperbolic cosine cosh(𝑥) =

(𝑒
𝑥

+ 𝑒
−𝑥

)/2, whereas ∑
+
denotes summation over all positive

eigenvalues of the corresponding graph.

Lemma 4 (see [21]). Let𝐺 be a graph with𝑚 edges. For 𝑘 ≥ 4,
𝑀
𝑘+2

≥ 𝑀
𝑘
, (10)

with equality for all even 𝑘 ≥ 4 if and only if 𝐺 consists of 𝑚
copies of𝐾

2
and possibly isolated vertices and with equality for

all odd 𝑘 ≥ 5 if and only if 𝐺 is a bipartite graph.

The following lemma is an immediate result of the
previous lemma.
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Lemma 5 (see [22]). Let 𝐺 be an (𝑛,𝑚) graph with 𝑚 edges.
For 𝑘 ≥ 4,

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘+2

≥ 4

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘

, (11)

with equality for all even 𝑘 ≥ 4 if and only if 𝐺 consists of 𝑚
copies of𝐾

2
and possibly isolated vertices and with equality for

all odd 𝑘 ≥ 5 if and only if 𝐺 is a bipartite graph.

Lemma 6 (see [23]). Let 𝐺 be a regular graph of degree 𝑟 ̸= 0

and of order 𝑛. Then its Estrada index is bounded by

𝑒
𝑟

+ (𝑛 − 1) 𝑒
−𝑟/(𝑛−1)

≤ 𝐸𝐸 (𝐺) < 𝑛 − 2 + 𝑒
𝑟

+ 𝑒
√𝑟(𝑛−𝑟)−1

.

(12)

Equality holds if and only if 𝜆
2
= 𝜆
3
= ⋅ ⋅ ⋅ = 𝜆

𝑛
= −𝑟/(𝑛 − 1).

Lemma 7 (see [23]). The Estrada index 𝐸𝐸(𝐺) and the graph
energy 𝐸(𝐺) satisfy the following inequality:

1

2
𝐸 (𝐺) (𝑒 − 1) + 𝑛 − 𝑛

+
≤ 𝐸𝐸 (𝐺) ≤ 𝑛 − 1 + 𝑒

𝐸(𝐺)/2

, (13)

and equalities on both sides hold if and only if 𝐸(𝐺) = 0.

3. Main Results

3.1.The Estrada Index of FoldedHypercubes Networks𝐹𝑄
𝑛
. In

this section, we present some explicit formulae for calculating
the Estrada index of 𝐹𝑄

𝑛
. For convenience, we assume that

𝐶
𝑖

𝑛
= 0 if 𝑖 < 0 or 𝑖 > 𝑛.

Theorem 8. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 3, then

(1) 𝐸𝐸(𝐹𝑄
𝑛
) = ∑

𝑛/2

𝑖=0
(𝐶
2𝑖

𝑛
+ 𝐶
2𝑖+1

𝑛
)𝑒
4𝑖−𝑛+1, 𝑖 = 0, 1, . . . , 𝑛/2,

if 𝑛 ≡ 0 (mod 2);

(2) 𝐸𝐸(𝐹𝑄
𝑛
) = ∑
𝑛/2

𝑖=0
(𝐶
2𝑖−1

𝑛
+ 𝐶
2𝑖

𝑛
)𝑒
4𝑖−𝑛−1, 𝑖 = 0, 1, . . . , (𝑛 +

1)/2, if 𝑛 ≡ 1 (mod 2),

where the 4𝑖 − 𝑛 + 1 and 4𝑖 − 𝑛 − 1 (𝑖 = 0, 1, . . . , 𝑛/2 or (𝑛 +
1)/2) are the eigenvalues of the adjacent matrix of 𝐹𝑄

𝑛
and 𝐶𝑖

𝑛

denotes the binomial coefficients.

Proof. By Lemma 1, the characteristic polynomial of the ad-
jacent matrix of 𝐹𝑄

𝑛
is

𝑃 (𝐹𝑄
𝑛
; 𝜆) = [𝜆 − (𝑛 − 7)] [𝜆 − (𝑛 − 3)]

3

𝑃 (𝐹𝑄
𝑛−1

; 𝜆 − 1)

×

𝑛−2

∏

𝑖=2

𝑃 (𝐹𝑄
𝑛−𝑖
; 𝜆 − (𝑖 − 4)) .

(14)

Through calculating eigenvalues of characteristic polyno-
mial and its multiplicities, we obtained that

(1) if 𝑛 ≡ 0 (mod 2), 𝐹𝑄
𝑛
have 𝑛/2 + 1 different eigen-

values 4𝑖 − 𝑛 + 1, with the multiplicities 𝐶2𝑖
𝑛
+ 𝐶
2𝑖+1

𝑛
,

where 𝑖 = 0, 1, . . . , 𝑛/2;

(2) if 𝑛 ≡ 1 (mod 2), 𝐹𝑄
𝑛
have (𝑛 + 1)/2 different

eigenvalues 4𝑖 − 𝑛 − 1, with the multiplicities 𝐶2𝑖−1
𝑛

+

𝐶
2𝑖

𝑛
, where 𝑖 = 0, 1, . . . , (𝑛 + 1)/2.

Combining with the definition of the Estrada index, we
derived the result of Theorem 8.

3.2. Some Bounds for the Estrada Index of Folded Hypercubes
Networks 𝐹𝑄

𝑛
. It is well known that 𝐹𝑄

𝑛
have 2𝑛 vertices.

Let 𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
≥ 𝜆
𝑛+1

≥ ⋅ ⋅ ⋅ ≥ 𝜆
2
𝑛 be the

eigenvalues of 𝐹𝑄
𝑛
with nonincreasing order. In order to

obtain the bounds for the Estrada index of 𝐹𝑄
𝑛
, we prove

some results by utilizing the arithmetic and geometric mean
inequality; in our proof, some techniques in [22] are referred
to.

Theorem 9. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

√4𝑛+(𝑛 + 1) 2
𝑛+1+8𝑡+[cosh (2)−3]𝑀

4
+[cosh (2)− 10

3
]𝑀
5

< 𝐸𝐸 (𝐹𝑄
𝑛
) ,

(15)

where 𝑀
4
= 2𝑍𝑔(𝐺) − 2𝑚 + 8𝑞, 𝑀

5
= 30𝑡 + 10𝑝 + 10𝑟, 𝑝

and 𝑞 are the numbers of pentagons and quadrangles in 𝐹𝑄
𝑛
,

and 𝑟 is the number of subgraphs consisting of a triangle with
a pendent vertex attached.

Proof. In order to obtain the lower bounds for the Estrada
index, consider that

𝐸𝐸
2

(𝐹𝑄
𝑛
) =

2
𝑛

∑

𝑖=1

𝑒
2𝜆𝑖 + 2∑

𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗 . (16)

Noting that 𝑀
0
= 2
𝑛, 𝑀
1
= 0, 𝑀

2
= (𝑛 + 1)2

𝑛−1, and
𝑀
3
= 6𝑡, we obtain

2
𝑛

∑

𝑖=1

𝑒
2𝜆𝑖 =

2
𝑛

∑

𝑖=1

∑

𝑘≥0

(2𝜆
𝑖
)
𝑘

𝑘!

= 2
𝑛

+ (𝑛 + 1) 2
𝑛+1

+ 8𝑡 +

2
𝑛

∑

𝑖=1

∑

𝑘≥4

(2𝜆
𝑖
)
𝑘

𝑘!

= 2
𝑛

+ (𝑛 + 1) 2
𝑛+1

+ 8𝑡 + ∑

𝑘≥2

1

(2𝑘)!

2
𝑛

∑

𝑖=1

(2𝜆
𝑖
)
2𝑘

+ ∑

𝑘≥2

1

(2𝑘 + 1)!

2
𝑛

∑

𝑖=1

(2𝜆
𝑖
)
2𝑘+1

.

(17)

By Lemma 5,

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘+2

≥ 4

𝑛

∑

𝑖=1

(2𝜆
𝑖
)
𝑘

, (18)
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we can get that

2
𝑛

∑

𝑖=1

𝑒
2𝜆𝑖 ≥ 2

𝑛

+ (𝑛 + 1) 2
𝑛+1

+ 8𝑡

+ ∑

𝑘≥2

1

(2𝑘)!

2
𝑛

∑

𝑖=1

2
2𝑘−4

(2𝜆
𝑖
)
4

+ ∑

𝑘≥2

1

(2𝑘 + 1)!

2
𝑛

∑

𝑖=1

2
2𝑘−4

(2𝜆
𝑖
)
5

= 2
𝑛

+ (𝑛 + 1) 2
𝑛+1

+ 8𝑡 + [cosh (2) − 3]𝑀
4

+ [cosh (2) − 10

3
]𝑀
5
,

(19)

where𝑀
4
= 2𝑍𝑔(𝐺)− 2𝑚+8𝑞, 𝑀

5
= 30𝑡 + 10𝑝+10𝑟, 𝑝 and

𝑞 are the numbers of pentagons and quadrangles in 𝐹𝑄
𝑛
, and

𝑟 is the number of subgraphs consisting of a triangle with a
pendent vertex attached.

As for the terms 2∑
𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗 , by the arithmetic and

geometric mean inequality and the fact that𝑀
1
= 0,

2∑

𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗 ≥ 2

𝑛

(2
𝑛

− 1)(∏

𝑖<𝑗

𝑒
𝜆𝑖𝑒
𝜆𝑗)

2/2
𝑛
(2
𝑛
−1)

= 2
𝑛

(2
𝑛

− 1)[

[

(∏

𝑖=1

𝑒
𝜆𝑖)

2
𝑛
−1

]

]

2/2
𝑛
(2
𝑛
−1)

= 2
𝑛

(2
𝑛

− 1) (𝑒
𝑀1)
2/2
𝑛

= 2
𝑛

(2
𝑛

− 1) ,

(20)

where the equality holds if and only if 𝜆
1
= ⋅ ⋅ ⋅ = 𝜆

2
𝑛 .

Combining with equalities (19) and (20),

√4𝑛+(𝑛 + 1) 2
𝑛+1+8𝑡+[cosh (2)−3]𝑀

4
+[cosh (2)− 10

3
]𝑀
5

≤ 𝐸𝐸 (𝐹𝑄
𝑛
) ,

(21)

where𝑀
4
= 2𝑍𝑔(𝐺)− 2𝑚+8𝑞, 𝑀

5
= 30𝑡 + 10𝑝+10𝑟, 𝑝 and

𝑞 are the numbers of pentagons and quadrangles in 𝐹𝑄
𝑛
, and

𝑟 is the number of subgraphs consisting of a triangle with a
pendent vertex attached.

Notice that the equality of (21) holds if and only if the
equalities of (19) and (20) hold; that is, the equality holds if
and only if 𝜆

1
= ⋅ ⋅ ⋅ = 𝜆

2
𝑛 , which is impossible for any 𝐹𝑄

𝑛

with 𝑛 ≥ 2. Therefore, this implies the results of Theorem 9.

We now consider the upper bound for the Estrada index
of 𝐹𝑄

𝑛
as follows.

Theorem 10. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

𝐸𝐸 (𝐹𝑄
𝑛
) < 2
𝑛

− 1 + 𝑒
√(𝑛+1)2

𝑛

. (22)

Proof. According to the definition of Estrada index we get

𝐸𝐸 (𝐹𝑄
𝑛
) = 2
𝑛

+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

𝜆
𝑘

𝑖

𝑘!
≤ 2
𝑛

+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

𝜆𝑖


𝑘

𝑘!

= 2
𝑛

+ ∑

𝑘≥1

1

𝑘!

2
𝑛

∑

𝑖=1

[(𝜆
𝑖
)
2

]
𝑘/2

.

(23)

Notice the inequality

2
𝑛

∑

𝑖=1

[(𝜆
𝑖
)
2

]
𝑘/2

≤ [

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

; (24)

substituting inequality (24) into (23) we obtain that

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛

+ ∑

𝑘≥1

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

= 2
𝑛

− 1 + ∑

𝑘≥0

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

.

(25)

Since the equality holds in 𝐹𝑄
𝑛
,

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

= (𝑛 + 1) 2
𝑛

. (26)

Hence,

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛

− 1 + ∑

𝑘≥0

1

𝑘!
[(𝑛 + 1) 2

𝑛

]
𝑘/2

= 2
𝑛

− 1 + ∑

𝑘≥0

√(𝑛 + 1)2𝑛
𝑘

𝑘!

= 2
𝑛

− 1 + 𝑒
√(𝑛+1)2

𝑛

.

(27)

It is evident that equality of (25) will be attained if and
only if the graph 𝐹𝑄

𝑛
has no nonzero eigenvalues, which, in

turn, happens only in the case of the edgeless graph 𝐾
𝑛
; it is

impossible for any 𝐹𝑄
𝑛
with 𝑛 ≥ 2 that directly leads to the

inequality in (27).
Hence, we can obtain the upper bound for the Estrada

index of 𝐹𝑄
𝑛
:

𝐸𝐸 (𝐹𝑄
𝑛
) < 2
𝑛

− 1 + 𝑒
√(𝑛+1)2

𝑛

. (28)

The proof of Theorem 10 is completed.

Remark 11. In [23], it was proved that

𝑒
𝑟

+ (𝑛 − 1) 𝑒
−𝑟/(𝑛−1)

≤ 𝐸𝐸 (𝐺) < 𝑛 − 2 + 𝑒
𝑟

+ 𝑒
√𝑟(𝑛−𝑟)−1

,

(29)

with equality, holds if and only if 𝜆
2
= 𝜆
3
= ⋅ ⋅ ⋅ = 𝜆

𝑛
=

−𝑟/(𝑛 − 1).
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Notice that the spectral radius of 𝐹𝑄
𝑛
is 𝜆
1
= 𝑛 + 1 and

𝑟 = 𝑛 +1; applying Lemma6, we also give the lower and upper
bounds connecting𝐸𝐸(𝐹𝑄

𝑛
) and its spectral radius by simple

computations, where the equality is impossible for any 𝐹𝑄
𝑛
;

hence

𝑒
𝑛+1

+ (2
𝑛

− 1) 𝑒
(−𝑛−1)/(2

𝑛
−1)

< 𝐸𝐸 (𝐹𝑄
𝑛
) < 2
𝑛

− 2 + 𝑒
𝑛+1

+ 𝑒
√(𝑛+1)[2

𝑛
−(𝑛+1)]−1

.

(30)

3.3. Some Properties on Estrada Index Involving Energy of
𝐹𝑄
𝑛
. In this section, we investigate the relations between the

Estrada index and the energy of 𝐹𝑄
𝑛
. We firstly prove the

lower bounds involving energy for the Estrada index of 𝐹𝑄
𝑛
;

inTheorem 12 proof, some techniques in [23] are referred to.

Theorem 12. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

1

2
(𝑒 − 1) 𝐸 (𝐹𝑄

𝑛
) + (2

𝑛

− 𝑛
𝑖
) < 𝐸𝐸 (𝐹𝑄

𝑛
) . (31)

Proof. Assume that 𝑛
𝑖
denote the number of positive eigen-

values; we begin with the definition of Estrada index
𝐸𝐸(𝐹𝑄

𝑛
):

𝐸𝐸 (𝐹𝑄
𝑛
) =

2
𝑛

∑

𝑖=1

𝑒
𝜆

𝑖
= ∑

𝜆𝑖≤0

𝑒
𝜆

𝑖
+ ∑

𝜆𝑖>0

𝑒
𝜆

𝑖
. (32)

Since 𝑒𝑥 ≥ 1 + 𝑥, with equality, holds if and only if 𝑥 = 0, we
have

∑

𝜆𝑖≤0

𝑒
𝜆

𝑖
≥ ∑

𝜆𝑖≤0

(1 + 𝜆
𝑖
) = (2

𝑛

− 𝑛
𝑖
) + (𝜆

𝑛𝑖+1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛
) .

(33)

The other underlying inequality is 𝑒𝑥 ≥ 𝑒𝑥 and equality
holds if and only if 𝑥 = 1; we get

∑

𝜆𝑖>0

𝑒
𝜆

𝑖
≥ ∑

𝜆𝑖>0

𝑒𝜆
𝑖
= 𝑒 (𝜆

1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
) . (34)

Substituting the inequalities (33) and (34) into (32),

𝐸𝐸 (𝐹𝑄
𝑛
) ≥ (2

𝑛

− 𝑛
𝑖
) + (𝜆

𝑛𝑖+1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛
)

+ 𝑒 (𝜆
1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
)

= (2
𝑛

− 𝑛
𝑖
) + (𝜆

1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
+ 𝜆
𝑛𝑖+1

+ ⋅ ⋅ ⋅ + 𝜆
𝑛
)

+ (𝑒 − 1) (𝜆
1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
)

= (2
𝑛

− 𝑛
𝑖
) + (𝑒 − 1) (𝜆

1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
) .

(35)

Note that

𝜆
1
+ 𝜆
2
⋅ ⋅ ⋅ + 𝜆

𝑛𝑖
=
1

2
𝐸 (𝐹𝑄

𝑛
) . (36)

From the above inequalities (35) and (36), we arrive at

1

2
(𝑒 − 1) 𝐸 (𝐹𝑄

𝑛
) + (2

𝑛

− 𝑛
𝑖
) ≤ 𝐸𝐸 (𝐹𝑄

𝑛
) , (37)

with equality if and only if 𝐹𝑄
𝑛
is an empty graph with 2

𝑛

vertices, which is impossible.
Hence,

1

2
(𝑒 − 1) 𝐸 (𝐹𝑄

𝑛
) + (2

𝑛

− 𝑛
𝑖
) < 𝐸𝐸 (𝐹𝑄

𝑛
) , (38)

as desired.

We now derive the upper bounds involving energy for the
Estrada index of 𝐹𝑄

𝑛
.

Theorem 13. For any 𝐹𝑄
𝑛
with 𝑛 ≥ 2, one has

𝐸𝐸 (𝐹𝑄
𝑛
) < 𝐸 (𝐹𝑄

𝑛
) + 2
𝑛

− 1 − √(𝑛 + 1) 2
𝑛 + 𝑒
√(𝑛+1)2

𝑛

.

(39)

Proof. We consider that

𝐸𝐸 (𝐹𝑄
𝑛
) =

𝑛

∑

𝑖=1

𝑒
𝜆

𝑖
= 2
𝑛

+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

𝜆
𝑘

𝑖

𝑘!

≤ 2
𝑛

+

2
𝑛

∑

𝑖=1

∑

𝑘≥1

𝜆𝑖


𝑘

𝑘!
.

(40)

Taking into account the definition of graph energy equa-
tion (1), we obtain

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛

+ 𝐸 (𝐹𝑄
𝑛
) +

2
𝑛

∑

𝑖=1

∑

𝑘≥2

𝜆𝑖


𝑘

𝑘!

= 2
𝑛

+ 𝐸 (𝐹𝑄
𝑛
) + ∑

𝑘≥2

1

𝑘!

2
𝑛

∑

𝑖=1

[(𝜆
𝑖
)
2

]
𝑘/2

.

(41)

In light of the inequality (24) holds for integer 𝑘 ≥ 2, we
obtain that

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛

+ 𝐸 (𝐹𝑄
𝑛
) + ∑

𝑘≥2

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

= 2
𝑛

+ 𝐸 (𝐹𝑄
𝑛
) − 1 − √(𝑛 + 1) 2

𝑛

+ ∑

𝑘≥0

1

𝑘!
[

2
𝑛

∑

𝑖=1

(𝜆
𝑖
)
2

]

𝑘/2

.

(42)

Substituting (26) into (42), we get

𝐸𝐸 (𝐹𝑄
𝑛
) ≤ 2
𝑛

+ 𝐸 (𝐹𝑄
𝑛
) − 1 − √(𝑛 + 1) 2

𝑛

+ ∑

𝑘≥0

1

𝑘!
[(𝑛 + 1) 2

𝑛

]
𝑘/2

= 2
𝑛

+ 𝐸 (𝐹𝑄
𝑛
) − 1 − √(𝑛 + 1) 2

𝑛 + 𝑒
√(𝑛+1)2

𝑛

,

(43)

with equality if and only if 𝐹𝑄
𝑛
is an empty graph with 2

𝑛

vertices, which is impossible.
From the above argument, we get the result ofTheorem 13.
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4. Conclusions

The main purpose of this paper is to investigate the Estrada
index of 𝐹𝑄

𝑛
with 𝑛 ≥ 2; we established the explicit formulae

for calculating the Estrada index of 𝐹𝑄
𝑛
by deducing the

characteristic polynomial of the adjacency matrix in spectral
graph theory.

Moreover, some lower and upper bounds for Estrada
index of 𝐹𝑄

𝑛
were proposed by utilizing the arithmetic and

geometric mean inequality. The lower and upper bounds for
the Estrada index involving energy of𝐹𝑄

𝑛
were also obtained.
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This paper addresses the problem of robust𝐻
∞
control design via the proportional-spatial derivative (P-sD) control approach for

a class of nonlinear distributed parameter systems modeled by semilinear parabolic partial differential equations (PDEs). By using
the Lyapunov directmethod and the technique of integration by parts, a simple linearmatrix inequality (LMI) based designmethod
of the robust𝐻

∞
P-sD controller is developed such that the closed-loop PDE system is exponentially stable with a given decay rate

and a prescribed 𝐻
∞

performance of disturbance attenuation. Moreover, a suboptimal 𝐻
∞

controller is proposed to minimize
the attenuation level for a given decay rate. The proposed method is successfully employed to address the control problem of the
FitzHugh-Nagumo (FHN) equation, and the achieved simulation results show its effectiveness.

1. Introduction

A significant research area that has received a lot of attention
over the past few decades is the control design for distributed
parameter systems (DPSs) modeled by parabolic partial
differential equations (PDEs). These DPSs can be applied to
describemany industrial processes, such as thermal diffusion
processes, fluid, andheat exchangers [1–4].Thekey character-
istic of DPSs is space distribution, which causes their outputs,
inputs, process states, and parameters to be spatially varying.
On the other hand, external disturbances and nonlinear
phenomena appear in most real systems. In this situation, the
study of robust 𝐻

∞
control design for nonlinear parabolic

PDE systems is of theoretical and practical importance.
Significant research results have been reported in the

past few decades for DPSs [1–3, 5–18]. The most interesting
results within these research activities are those developed
on the basis of PDE model [9–18]. For example, Krstic
and Smyshlyaev have developed nonadaptive and adaptive
kernel-based backstepping methods for linear boundary

control PDE systems [9–11]. Fridman and Orlov [12] have
presented exponential stabilization with 𝐻

∞
performance

in terms of linear matrix inequalities (LMIs) for uncertain
semilinear parabolic and hyperbolic systems via a robust
collocated static output feedback boundary controller. These
results [9–12] are only applicable for boundary control
PDE systems. Motivated by significant recent advances in
actuation and sensing technology, particularly the advances
of microelectromechanical systems, it is possible to man-
ufacture large arrays of microsensors and actuators with
integrated control circuitry (for control applications of such
devices, see [13] and the references therein). Hence, the
problems on distributed control theory and design for PDE
systems have received a great deal of attention [1–3, 14–
18]. For example, Orlov et al. have developed state feedback
tracking control design [3] for an uncertain heat diffusion
process and exponential stabilization [14] for an uncertain
wave equation via distributed dynamic input extension.
Wang, Wu, and Li have established sufficient conditions
of distributed exponential stabilization via simple fuzzy

Hindawi Publishing Corporation
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proportional state feedback controllers for first-order hyper-
bolic PDE systems [15–17] and via a fuzzy proportional-
spatial derivative (P-sD) for semi-linear parabolic PDE sys-
tem [18]. Wu, Wang, and Li [19] have proposed a Lyapunov-
based distributed𝐻

∞
fuzzy controller design with constraint

for semi-linear first-order hyperbolic PDE systems. Notice
that the results reported in [15–19] are presented in terms of
spatial differential linearmatrix inequalities (SDLMIs), which
can be only approximately solved on the basis of standard
finite differencemethod and the existing convex optimization
techniques [20, 21]. Despite these efforts, to the best of the
authors’ knowledge, there are still few results on the robust
𝐻
∞
control design via the original PDEmodel of semi-linear

parabolic PDE systems with external disturbances, which
motivates this study.

In this study, we will deal with the problem of robust
𝐻
∞

control design for a class of semi-linear parabolic
PDE systems with external disturbances via P-sD control
approach. Based on the Lyapunov direct method and inte-
gration by parts, a sufficient condition for the exponential
stabilization with a given decay rate and a prescribed 𝐻

∞

performance of disturbance attenuation is presented in terms
of standard LMIs. Moreover, a suboptimal 𝐻

∞
controller

is proposed to minimize the attenuation level for a given
decay rate. Finally, the simulation study on the robust 𝐻

∞

control of a semi-linear parabolic PDE system represented by
FitzHugh-Nagumo (FHN) equation is provided to show the
effectiveness of the proposed method.

The remainder of this paper is organized as follows.
The problem formulation and preliminaries are given in
Section 2. The robust 𝐻

∞
P-sD control design is provided

in Section 3. Section 4 presents an example to illustrate the
effectiveness of the proposedmethod. Finally, Section 5 offers
some conclusions.

Notations. The notations used throughout the paper are
given as follows. R, R𝑛, and R𝑚×𝑛 denote the set of all
real numbers, 𝑛-dimensional Euclidean space, and the set
of all real 𝑚 × 𝑛 matrices, respectively. Identity matrix, of
appropriate dimension, will be denoted by I. For a symmetric
matrix M, M > (≥, <, ≤) 0 means that it is positive definite
(semipositive definite, negative definite, and seminegative
definite, resp.).H𝑛 ≜ L

2
([𝑙
1
, 𝑙
2
];R𝑛) is a Hilbert space of 𝑛-

dimensional square integrable vector functions 𝜗(𝑥, 𝑡) ∈ R𝑛,
𝑥 ∈ [𝑙
1
, 𝑙
2
] ⊂ R, ∀𝑡 ≥ 0 with the inner product and norm:

⟨𝜗
1
(⋅, 𝑡) , 𝜗

2
(⋅, 𝑡)⟩ = ∫

𝑙2

𝑙1

𝜗
𝑇

1
(𝑥, 𝑡) 𝜗

2
(𝑥, 𝑡) 𝑑𝑥,

𝜗1 (⋅, 𝑡)
2
= ⟨𝜗
1
(⋅, 𝑡) , 𝜗

1
(⋅, 𝑡)⟩
1/2

,

(1)

where 𝜗
1
(⋅, 𝑡) ∈ H𝑛 and 𝜗

2
(⋅, 𝑡) ∈ H𝑛. The superscript “𝑇” is

used for the transpose of a vector or a matrix.The symbol “∗”
is used as an ellipsis in matrix expressions that are induced by
symmetry; for example,

[
S + [M + N + ∗] X

∗ Y] ≜ [
S + [M + N +M𝑇 + N𝑇] X

X𝑇 Y
] .

(2)

2. Preliminaries and Problem Formulation

Consider the following nonlinear DPSs modeled by semi-
linear parabolic PDEs:

y
𝑡
(𝑥, 𝑡) = Θ

1
y
𝑥𝑥
(𝑥, 𝑡) +Θ

2
y
𝑥
(𝑥, 𝑡) + Ay (𝑥, 𝑡)

+ f (y (𝑥, 𝑡) , 𝑥, 𝑡) + G
𝑢
u (𝑥, 𝑡) + G

𝑤
w (𝑥, 𝑡) ,

(3)

z (𝑥, 𝑡) = Cy (𝑥, 𝑡) +Du (𝑥, 𝑡) (4)
subject to the homogeneous Neumann boundary conditions:

y
𝑥
(𝑥, 𝑡)

𝑥=𝑙1
= y
𝑥
(𝑥, 𝑡)

𝑥=𝑙2
= 0 (5)

and the initial condition:
y (𝑥, 0) = y

0
(𝑥) , (6)

where y(𝑥, 𝑡) ≜ [𝑦
1
(𝑥, 𝑡) ⋅ ⋅ ⋅ 𝑦

𝑛
(𝑥, 𝑡)] ∈ R𝑛 is the

state, the subscripts 𝑥 and 𝑡 stand for the partial derivatives
with respect to 𝑥, 𝑡, respectively, 𝑥 ∈ [𝑙

1
, 𝑙
2
] ⊂ R and

𝑡 ∈ [0,∞) denote the position and time, respectively, and
u(𝑥, 𝑡) ≜ [𝑢

1
(𝑥, 𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑥, 𝑡)] ∈ R𝑚 is the control input.

z(𝑥, 𝑡) ∈ R𝑞 is the controlled output. w(𝑥, 𝑡) ∈ R𝑝 is
the exogenous disturbance satisfying ∫∞

0

‖w(⋅, 𝑡)‖2
2
𝑑𝑡 < ∞.

f(y(𝑥, 𝑡), 𝑥, 𝑡) ∈ R𝑛 is the nonlinear part in the system,
which is a locally Lipschitz continuous function on y(𝑥, 𝑡) and
satisfies f(0, 𝑥, 𝑡) = 0 for all 𝑥 ∈ [𝑙

1
, 𝑙
2
] and 𝑡 ≥ 0. Θ

1
, Θ
2
, A,

G
𝑢
, G
𝑤
, C, and D are real-known matrices with appropriate

dimensions.
This study considers the following P-sD state feedback

controller:
u (𝑥, 𝑡) = K

1
y (𝑥, 𝑡) + K

2
y
𝑥
(𝑥, 𝑡) , (7)

whereK
1
∈ R𝑚×𝑛 andK

2
∈ R𝑚×𝑛 are control gainmatrices to

be determined. The controller structure is shown in Figure 1,
in which the notation “𝜕/𝜕𝑥” means a first-order spatial
differentiator.

Remark 1. It must be stressed that the implementation of
the controller (7) requires distributed sensing and actuation.
Although this is normally recognized as a critical draw-
back, with recent advances in technological developments
of microelectromechanical systems, it becomes feasible to
manufacture large arrays of microsensors and actuators
with integrated control circuitry, which can be used for
the implementation of distributed feedback control loops
in some practical applications (see [13] and the references
therein). The signal y

𝑥
(𝑥, 𝑡) can be obtained using the finite

differencemethod. In addition, it has been pointed out in [18]
that the controller (7) can provide more convenient spatial
performance.

Substituting (7) into (3) and (4) leads to the following
PDE:
y
𝑡
(𝑥, 𝑡) = Θ

1
y
𝑥𝑥
(𝑥, 𝑡) + [Θ

2
+ G
𝑢
K
2
] y
𝑥
(𝑥, 𝑡) + A

𝑐
y (𝑥, 𝑡)

+ f (y (𝑥, 𝑡) , 𝑥, 𝑡) + G
𝑤
w (𝑥, 𝑡) ,

z (𝑥, 𝑡) = C
𝑐
y (𝑥, 𝑡) +DK

2
y
𝑥
(𝑥, 𝑡) ,

(8)
where A

𝑐
≜ A + G

𝑢
K
1
and C

𝑐
≜ C +DK

1
.
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Feedback 
controller (7)

Process

Off-line controller design 

, t)
, t)

𝜕/𝜕x

u x(
y x(

Figure 1: The structure of distributed P-sD state-feedback con-
troller.

In order to attenuate the effect of w(𝑥, 𝑡), robust 𝐻
∞

control will be employed in this paper to deal with the dis-
turbance attenuation problem. Let us consider the following
𝐻
∞

control performance for the closed-loop PDE system of
the form (5), (6), and (8):

∫

∞

0

‖z (⋅, 𝑡)‖2
2
𝑑𝑡 ≤ ⟨y

0
(⋅) ,Py

0
(⋅)⟩ + 𝛾

2

∫

∞

0

‖w (⋅, 𝑡)‖
2

2
𝑑𝑡, (9)

where P > 0 is a real 𝑛 × 𝑛 matrix and 𝛾 > 0 is a prescribed
level of disturbance attenuation. In general, it is desirable to
make the attenuation level as small as possible to achieve the
optimal disturbance attenuation performance.

For simplicity, when u(𝑥, 𝑡) ≡ 0, the PDE system (3)–
(6) is referred to as an unforced PDE system, while when
w(𝑥, 𝑡) ≡ 0, it is referred to as a disturbance-free PDE system.
We introduce the following definitions.

Definition 2. Given a constant 𝜌 > 0, the unforced
disturbance-free PDE systemof (5), (6), and (8) (i.e.,u(𝑥, 𝑡) ≡
0 and w(𝑥, 𝑡) ≡ 0) is said to be exponentially stable with a
given decay rate 𝜌, if there exists a constant 𝜎 > 0 such that
the following inequality holds:

y (⋅, 𝑡)


2

2
≤ 𝜎 exp (−2𝜌𝑡) y0 (⋅)



2

2
, ∀𝑡 ≥ 0. (10)

Definition 3. Given constants 𝜌 > 0 and 𝛾 > 0, the unforced
PDE system of (5), (6), and (8) is said to be exponentially
stable with a given decay rate 𝜌 and 𝛾-disturbance attenuation
if the response z(𝑥, 𝑡) satisfies (9) and the disturbance-free
system is exponentially stable with a given decay rate 𝜌.

Therefore, the objective of this study is to find a robust
P-sD controller of the form (7) such that the resulting closed-
loop system is exponentially stable and the𝐻

∞
performance

is ensured for a prescribed disturbance attenuation level 𝛾 >
0. To do this, the following assumption and lemma are useful
for the development of the main results.

Assumption 4. There exists a scalar 𝜒 > 0 such that the
following inequality holds for any y(𝑥, 𝑡) ∈ Ω:

∫

𝑙2

𝑙1

f𝑇 (y (𝑥, 𝑡) , 𝑥, 𝑡) f (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

≤ 𝜒∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡) y (𝑥, 𝑡) 𝑑𝑥,
(11)

where Ω ≜ {y(𝑥, 𝑡) | 𝜎
1
(𝑥) ≤ y(𝑥, 𝑡) ≤ 𝜎

2
(𝑥), 𝑥 ∈ [𝑙

1
, 𝑙
2
], 𝑡 ≥

0}.

Lemma 5. For any two square integrable vector functions
a(𝑥) ∈ R𝑛, b(𝑥) ∈ R𝑛, 𝑥 ∈ [𝑙

1
, 𝑙
2
], the following inequality

holds for any positive scalar 𝛼 ∈ R, 𝑥 ∈ [𝑙
1
, 𝑙
2
]:

2 ⟨a, b⟩ ≤ ⟨a, 𝛼a⟩ + ⟨b, 𝛼−1b⟩ . (12)

Proof. It is easily verified that [𝛼a(𝑥)−b(𝑥)]𝑇[𝛼a(𝑥)−b(𝑥)] ≥
0 holds for any 𝑥 ∈ [𝑙

1
, 𝑙
2
] and any positive scalar 𝛼.

Therefore,

0 ≤ [𝛼a (𝑥) − b (𝑥)]𝑇 [𝛼a (𝑥) − b (𝑥)]

= 𝛼
2a𝑇 (𝑥) a (𝑥) − 2𝛼a𝑇 (𝑥) b (𝑥) + b𝑇 (𝑥) b (𝑥) ,

(13)

which implies

2aT (𝑥) b (𝑥) ≤ 𝛼a𝑇 (𝑥) a (𝑥)

+ 𝛼
−1b𝑇 (𝑥) b (𝑥) , 𝑥 ∈ [𝑙

1
, 𝑙
2
] .

(14)

Integrating both sides of (14) from 𝑙
1
to 𝑙
2
, we can obtain

that

2∫

𝑙2

𝑙1

a𝑇 (𝑥) b (𝑥) 𝑑𝑥 ≤ ∫

𝑙2

𝑙1

𝛼a𝑇 (𝑥) a (𝑥) 𝑑𝑥

+ ∫

𝑙2

𝑙1

𝛼
−1b𝑇 (𝑥) b (𝑥) 𝑑𝑥,

(15)

which implies that the inequality (12) holds. The proof is
complete.

3. Robust 𝐻
∞

P-sD Control Design

The aim of this section is to develop a robust 𝐻
∞

P-sD state
feedback controller to not only exponentially stabilize the
semi-linear PDE system (3)–(6) but also achieve the 𝐻

∞

performance with a prescribed disturbance attenuation level
𝛾 > 0.

Consider the following Lyapunov functional for the
system (5), (6), and (8):

𝑉 (𝑡) = ∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)Py (𝑥, 𝑡) 𝑑𝑥, (16)
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where P > 0 is a real 𝑛 × 𝑛 gain matrix to be determined. The
time derivative of 𝑉(𝑡) along the solution of the system (5),
(6), and (8) is given by

𝑉 (𝑡) = 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)Py
𝑡
(𝑥, 𝑡) 𝑑𝑥

= 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)PΘ
1
y
𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)P [Θ
2
+ G
𝑢
K
2
] y
𝑥
(𝑥, 𝑡) 𝑑𝑥

+ ∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡) [PA
𝑐
+ ∗] y (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)Pf (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)PG
𝑤
w (𝑥, 𝑡) 𝑑𝑥.

(17)

Integrating by parts and taking into account (5) yield

∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)PΘ
1
y
𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

= y𝑇 (𝑥, 𝑡)PΘ
1
y
𝑥
(𝑥, 𝑡)



𝑥=𝑙2

𝑥=𝑙1

− ∫

𝑙2

𝑙1

y𝑇
𝑥
(𝑥, 𝑡)PΘ

1
y
𝑥
(𝑥, 𝑡) 𝑑𝑥

= −∫

𝑙2

𝑙1

y𝑇
𝑥
(𝑥, 𝑡)PΘ

1
y
𝑥
(𝑥, 𝑡) 𝑑𝑥.

(18)

Applying Assumption 4, for any scalar 𝛼 > 0,

2∫

𝑧2

𝑧1

y𝑇 (𝑥, 𝑡)Pf (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

≤ 𝛼∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)PPy (𝑥, 𝑡) 𝑑𝑥

+ 𝛼
−1

∫

𝑙2

𝑙1

f𝑇 (y (𝑥, 𝑡) , 𝑥, 𝑡) f (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

≤ 𝛼∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)PPy (𝑥, 𝑡) 𝑑𝑥

+ 𝛼
−1

𝜒∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡) y (𝑥, 𝑡) 𝑑𝑥

= ∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡) [𝛼PP + 𝛼−1𝜒I] y (𝑥, 𝑡) 𝑑𝑥.

(19)

Substitution of (18) and (19) into (17) implies

𝑉 (𝑡) + 2𝜌𝑉 (𝑡)

≤ ∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡) [[PA
𝑐
+ ∗] + 𝛼PP + 𝛼−1𝜒I + 2𝜌P] y (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)P [Θ
2
+ G
𝑢
K
2
] y
𝑥
(𝑥, 𝑡) 𝑑𝑥

− ∫

𝑙2

𝑙1

y𝑇
𝑥
(𝑥, 𝑡) [PΘ

1
+ ∗] y

𝑥
(𝑥, 𝑡) 𝑑𝑥

≤ ∫

𝑙2

𝑙1

ỹ𝑇 (𝑥, 𝑡) Ψỹ (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)PG
𝑤
w (𝑥, 𝑡) 𝑑𝑥,

(20)

where ỹ(𝑥, 𝑡) ≜ [y𝑇(𝑥, 𝑡) y𝑇
𝑥
(𝑥, 𝑡)]

𝑇 and

Ψ ≜ [

[

[PA
𝑐
+ ∗] + 𝛼PP + 𝛼−1𝜒I + 2𝜌P P [Θ

2
+ G
𝑢
K
2
]

∗ − [PΘ
1
+ ∗]

]

]

.

(21)

Combining (4) and (20) gives

𝑉 (𝑡) + 2𝜌𝑉 (𝑡) + ‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2

≤ ∫

𝑙2

𝑙1

ỹ𝑇 (𝑥, 𝑡) [Ψ + [C
𝑐
DK
2
]
𝑇

[C
𝑐
DK
2
]] ỹ (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙2

𝑙1

y𝑇 (𝑥, 𝑡)PG
𝑤
w (𝑥, 𝑡) 𝑑𝑥

− 𝛾
2

∫

𝑙2

𝑙1

w𝑇 (𝑥, 𝑡)w (𝑥, 𝑡) 𝑑𝑥

= ∫

𝑙2

𝑙1

ŷ𝑇 (𝑥, 𝑡) Ψ̂ŷ (𝑥, 𝑡) 𝑑𝑥,

(22)

where ŷ(𝑥, 𝑡) ≜ [ỹ𝑇(𝑥, 𝑡) w𝑇(𝑥, 𝑡)]𝑇 and

Ψ̂

≜

[
[
[
[
[
[

[

[PA
𝑐
+ ∗] + 𝛼PP + 𝛼−1𝜒I + 2𝜌P P [Θ

2
+ G
𝑢
K
2
]

PG
𝑤

∗ − [PΘ
1
+ ∗] 0

∗ ∗ −𝛾
2I

]
]
]
]
]
]

]

+

[
[
[

[

C𝑇
𝑐

K𝑇
2
D𝑇
0

]
]
]

]

[

[

C𝑇
𝑐

K𝑇
2
D𝑇
0

]

]

𝑇

.

(23)

From the above analysis, we have the following theorem.
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Theorem6. Consider the semi-linear PDE system (3)–(6)with
the P-sD controller (7). For some given scalar 𝜌 > 0 and 𝛾 > 0,
the closed-loop PDE system is exponentially stable with a decay
rate 𝜌 and the 𝛾-disturbance attenuation, if there exist a 𝑛 × 𝑛
matrixQ > 0,𝑚×𝑛matricesZ

𝑖
, 𝑖 ∈ {1, 2}, and a positive scalar

𝛼 satisfying the following LMI:

Ξ ≜

[
[
[
[
[

[

Ξ
11
Θ
2
Q + G

𝑢
Z
2

G
𝑤

Q C̃𝑇
∗ − [Θ

1
Q + ∗] 0 0 Z𝑇

2
D𝑇

∗ ∗ −𝛾
2I 0 0

∗ ∗ ∗ −𝛼𝜒
−1I 0

∗ ∗ ∗ ∗ −I

]
]
]
]
]

]

< 0, (24)

where Ξ
11
≜ [AQ+G

𝑢
Z
1
+∗]+2𝜌Q+𝛼I and C̃ ≜ CQ+DZ

1
.

In this case, the gain matrices K
𝑖
, 𝑖 ∈ {1, 2} can be constructed

as

K
𝑖
= Z
𝑖
Q−1, 𝑖 ∈ {1, 2} . (25)

Proof. Set

Q = P−1 > 0, Z
𝑖
= K
𝑖
Q, 𝑖 ∈ {1, 2} . (26)

By pre- and post-multiplying the matrix Ψ̂ by the matrix
diag{Q,Q, I}, respectively, we get

Ξ ≜

[
[
[
[

[

Ξ
11
+ 𝛼
−1

𝜒QQ Θ
2
Q + G

𝑢
Z
2

G
𝑤

∗ − [Θ
1
Q + ∗] 0

∗ ∗ −𝛾
2I

]
]
]
]

]

+ [

[

C̃𝑇
Z𝑇
2
D𝑇
0

]

]

[

[

C̃𝑇
Z𝑇
2
D𝑇
0

]

]

𝑇

.

(27)

Using the Schur complement two times, LMI (24) is equiva-
lent to the inequalityΞ < 0. Since diag{Q,Q, I} > 0 andΞ < 0,
we can get the inequality Ψ̂ < 0.

From the inequality Ψ̂ < 0 and (22), we can drive

𝑉 (𝑡) + 2𝜌𝑉 (𝑡) + ‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
≤ 0. (28)

Since 𝜌𝑉(𝑡) ≥ 0, we can obtain from (28) that

𝑉 (𝑡) + ‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
≤ 0. (29)

Integrating (29) from 𝑡 = 0 to 𝑡 = ∞ yields

∫

∞

0

𝑉 (𝑡) 𝑑𝑡 + ∫

∞

0

(‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
) 𝑑𝑡 ≤ 0, (30)

which implies

𝑉 (∞) − 𝑉 (0) + ∫

∞

0

(‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
) 𝑑𝑡 ≤ 0. (31)

Since 𝑉(∞) ≥ 0, we obtain (9) from (31).
Next, we will show the exponential stability with a given

decay rate 𝜌 of the disturbance-free system of (5), (6), and (8).
When w(𝑥, 𝑡) = 0, inequality (20) can be rewritten as

𝑉 (𝑡) + 2𝜌𝑉 (𝑡) ≤ ∫

𝑙2

𝑙1

ỹ𝑇 (𝑥, 𝑡) Ψỹ (𝑥, 𝑡) 𝑑𝑥. (32)

We can easily deriveΨ < 0 from Ψ̂ < 0. Hence, the inequality
(32) can be further written as

𝑉 (𝑡) + 2𝜌𝑉 (𝑡) ≤ 0. (33)

Integration of (33) from 0 to 𝑡 yields

𝑉 (𝑡) ≤ 𝑉 (0) exp (−2𝜌𝑡) . (34)

Since P > 0, it is easily observed that 𝑉(𝑡) given by (16)
satisfies the following inequality:

𝑝
𝑚

y (⋅, 𝑡)


2

2
≤ 𝑉 (𝑡) ≤ 𝑝

𝑀

y (⋅, 𝑡)


2

2
, (35)

where 𝑝
𝑚

≜ 𝜆min(P) and 𝑝
𝑀

≜ 𝜆max(P) are two positive
scalars. Inequalities (34) and (35) imply

y (⋅, 𝑡)


2

2
≤ 𝑝
−1

𝑚
𝑝
𝑀

y (⋅, 0)


2

2
exp (−2𝜌𝑡) . (36)

Thus, fromDefinition 2 and (36), the disturbance-free system
of (5), (6), and (8) is exponentially stable with a given decay
rate 𝜌. FromDefinition 3, the closed-loop system (5), (6), and
(8) is exponentially stable with a given decay rate 𝜌 and 𝛾-
disturbance attenuation. Moreover, from (26), we have (25).
The proof is complete.

FromTheorem 6, since the controller (7) has been shown
to be an effective control which can attenuate the effect of
uncertain external disturbances, it is appealing to eliminate
the influence brought by external disturbances as possible,
that is, making the attenuation level as small as possible. To
achieve this goal, for a given decay rate 𝜌, setting 𝜗 = 𝛾

2, we
consider the following minimization optimization problem:

min
{𝜗,Q>0,Z1 ,Z2,𝛼>0}

𝜗 (37)

subject to the following LMI

[
[
[
[
[

[

Ξ
11
Θ
2
Q + G

𝑢
Z
2

G
𝑤

Q C̃𝑇
∗ − [Θ

1
Q + ∗] 0 0 Z𝑇

2
D𝑇

∗ ∗ −𝜗I 0 0

∗ ∗ ∗ −𝛼𝜒
−1I 0

∗ ∗ ∗ ∗ −I

]
]
]
]
]

]

< 0. (38)

Remark 7. Notice that the control design proposed in this
paper is different from the results reported in [18, 19]. The
result in [18] only considers simple exponential stabilization
for a class of semi-linear parabolic PDE systems. The main
difference between the result in this study and [19] is that
the system under consideration in the latter one is a class
of semi-linear first-order hyperbolic PDE systems, whereas
the system addressed in this study is a class of semi-linear
parabolic PDE systems. On the other hand, different from
the SDLMI-based control designs in [18, 19], the main result
of this study is presented in terms of standard LMI, which
can be directly verified via the existing convex optimization
techniques [20, 21].
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4. Simulation Study on the FHN Equation

To illustrate the effectiveness of the proposed methods, the
control problem of the FHN equation is considered, which is
a wavy behaviormodel extensively applied to excitable media
in biology [22] and chemistry [23].The FHN equation has the
following closed-form description:

𝑦
1,𝑡
(𝑥, 𝑡) = 𝑦

1,𝑥𝑥
(𝑥, 𝑡) − 0.5𝑦

1,𝑥
(𝑥, 𝑡) + 𝑦

1
(𝑥, 𝑡)

− 0.9𝑦
2
(𝑥, 𝑡) − 0.1𝑦

3

1
(𝑥, 𝑡)

+ 𝑢 (𝑥, 𝑡) + 0.5𝑤 (𝑥, 𝑡) ,

𝑦
2,𝑡
(𝑥, 𝑡) = 4𝑦

2,𝑥𝑥
(𝑥, 𝑡) − 0.5𝑦

2,𝑥
(𝑥, 𝑡) + 0.2𝑦

1
(𝑥, 𝑡)

− 𝑦
2
(𝑥, 𝑡) + 0.2𝑤 (𝑥, 𝑡)

(39)

subject to the boundary conditions

𝑦
1,𝑥
(𝑥, 𝑡)

𝑥=0
= 𝑦
1,𝑥
(𝑥, 𝑡)

𝑥=𝐿
= 0,

𝑦
2,𝑥
(𝑥, 𝑡)

𝑥=0
= 𝑦
2,𝑥
(𝑥, 𝑡)

𝑥=𝐿
= 0

(40)

and the initial conditions

𝑦
1
(𝑥, 0) = 𝑦

1,0
(𝑥) , 𝑦

2
(𝑥, 0) = 𝑦

2,0
(𝑥) , (41)

where 𝑦
1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡) are the state variables and 𝑢(𝑥, 𝑡)

is the manipulated input. 𝑡, 𝑥, and 𝐿 denote the independent
time, space variables, and the length of the spatial domain,
respectively. 𝑦

1,0
(𝑥) and 𝑦

2,0
(𝑥) are the initial conditions.

To more intuitively illustrate the effectiveness of the
proposed design method, for the above values, we first verify
through simulation that the operating steady states 𝑦

1
(𝑥, 𝑡) =

0 and 𝑦
2
(𝑥, 𝑡) = 0 of the system (39)–(41) are unstable ones.

The initial conditions in (41) are assumed to be 𝑦
1,0
(𝑥) =

0.6 cos(𝜋𝑥/𝐿) and 𝑦
2,0
(𝑥) = 0.1. The length of spatial domain

is set to be 20; that is, 𝐿 = 20. The disturbance input is chosen
as 𝑤(𝑥, 𝑡) = cos(𝑥) exp(−0.5𝑡). Figure 2 shows the open-loop
profiles of the evolution of 𝑦

1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡) starting from

the initial conditions. It is easily observed from Figure 2 that
the equilibria 𝑦

1
(𝑥, 𝑡) = 0 and 𝑦

2
(𝑥, 𝑡) = 0 of the system (39)–

(41) are unstable ones and −1 ≤ 𝑦
𝑖
(𝑥, 𝑡) ≤ 1, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0,

𝑖 ∈ {1, 2}.
Equations (39) can be rewritten as the form of PDE (3)

with the following parameters:

Θ
1
= [

1 0

0 4
] , Θ

2
= [

−0.1 0

0 −0.1
] , A = [

1 5

0.2 −1
] ,

Gu = [
1

0
] , Gw = [

0.5

0.2
] ,

f (y (𝑥, 𝑡) , 𝑥, 𝑡) = [−0.3𝑦3
1
(𝑥, 𝑡) 0]

𝑇

,

(42)

where y(𝑥, 𝑡) ≜ [𝑦
1
(𝑥, 𝑡) 𝑦

2
(𝑥, 𝑡)]

𝑇 and𝑦3
1
(𝑥, 𝑡) is a nonlinear

term. The controlled output z(𝑥, 𝑡) is chosen as z(𝑥, 𝑡) =

𝑦
1
(𝑥, 𝑡). Hence, the parameter matrices in (4) are chosen as

C = [1 0] andD = 0.
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Figure 2: Open-loop profiles of evolution of 𝑦
1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡).

From Figure 2, we can easily observe that −1 ≤ 𝑦
𝑖
(𝑥, 𝑡) ≤

1, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0, 𝑖 ∈ {1, 2}. Let Ω ≜ {y(𝑥, 𝑡) | −1.0 ≤

𝑦
𝑖
(𝑥, 𝑡) ≤ 1.0, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0, 𝑖 ∈ {1, 2}}. The parameter 𝜒

satisfying Assumption 4 is chosen as

𝜒 ≜ max
y(𝑥,𝑡)

{

{

{

2

∑

𝑖=1

2

∑

𝑗=1

𝜕𝑓
𝑖
(y (𝑥, 𝑡))

𝜕𝑦
𝑗
(𝑥, 𝑡)

}

}

}

= 0.09max
y(𝑥,𝑡)

{9𝑦
4

1
(𝑥, 𝑡)} = 0.81.

(43)

We first show the effectiveness of the proposed design
method. Set 𝜌 = 0.04. Solving the optimization problem (37),
we can get the optimized level of attenuation 𝛾 as 𝛾∗ = √𝜗 =

4.3435 × 10
−5. Setting 𝛾 = 0.8 and solving LMI (24), the

control gain matrices in (7) can be derived as follows:

K
1
= [−5.2143 −5.2365]

𝑇

,

K
2
= [0.0999 −0.0002]

𝑇

.

(44)

Applying the P-sD controller (7) with the control gain matri-
ces given in (44) to the semi-linear PDE system (39)–(41),
the closed-loop profiles of evolution of 𝑦

1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡)

are shown in Figure 3, which implies that the proposed P-
sD controller (7) with the control gain matrices given in (44)
can stabilize the semi-linear PDE system (39)–(41).Moreover,
profile of evolution of u(𝑥, 𝑡) is shown in Figure 4.

Define the function 𝜂(𝑡) as

𝜂 (𝑡) ≜ ∫

𝑡

0

‖z (⋅, 𝜏)‖2
2
𝑑𝜏 − ⟨y

0
(⋅) ,Py

0
(⋅)⟩

− 0.64∫

𝑡

0

‖w (⋅, 𝜏)‖
2

2
𝑑𝜏.

(45)

Figure 5 shows the value of 𝜂(𝑡). From this figure, we can see
that 𝜂(𝑡) < 0 for all time 𝑡 ≥ 0, which implies that the 𝐻

∞

control performance in (9) is ensured.
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Figure 3: Closed-loop profiles of evolution of 𝑦
1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡).
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Figure 4: Profile of evolution of 𝑢(𝑥, 𝑡).

5. Conclusions

In this paper, we have addressed the problem of robust 𝐻
∞

P-sD state-feedback controller design for a class of semi-
linear parabolic PDE systems with external disturbances.
Based on the Lyapunov technique, the robust𝐻

∞
P-sD state-

feedback controller design is formulated as a standard LMI
optimization problem. The proposed controller can not only
exponentially stabilize the semi-linear PDE system but also
satisfy the 𝐻

∞
performance in (9). The influence caused

by external disturbances is eliminated as possible by the
minimization optimization problem. Finally, the developed
design method is successfully applied to the control of the
FHN equation, and the achieved simulation results illustrate
its effectiveness. Compared to one node in the paper, it is
interesting to study the collective control in a coupled net-
work with multiple nodes described by nonlinear parabolic
PDEs in the future work.

0 5 10 15 20
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t
)

Figure 5: Trajectory of 𝜂(𝑡).
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This paper focuses on the neurodynamical research of a small neural network that consists of 25 neurons. We study the periodic
spontaneous activity and transitions between up and down states without synaptic input. The results demonstrate that these
transitions are bidirectional or unidirectional with the parameters changing, which not only reveals the function of the cortex,
but also cohere with the experiment results.

1. Introduction

Different patterns of brain activity can give rise to different
behavioral states of the animals. Neural electrophysiology
experiments show that during slow-wave sleep in the primary
visual cortex of anesthetized animals [1–3] and during quiet
wakefulness in the somatosensory cortex of unanesthetized
animals [4, 5], the membrane potentials make spontaneous
transitions between two different levels called up and down
states [6]. Transitions between up and down states can also
be evoked by sensory stimulation [1, 4, 7–11]. An interesting
result of these transitions is that sensory-evoked activity
patterns are similar to those produced spontaneously. A hall-
mark of this subthreshold activity is a bimodal distribution of
the membrane potential [12]. However, why these transitions
occur or whether this spontaneous activity engages in brain
functions or not remains unclear. In fact, we know little about
expressions of neuron membrane potentials and interactions
between neural networks, especially the relationship between
neural codingmodes and cognitive behaviors. So our purpose
is to try to understand the inner connection between the up
and down transitions of a single neuron and that of neural
network.

Recent findings show that activation of a single cortical
neuron can significantly modulate sensory and motor out-
puts [13, 14]. Furthermore, repetitive high frequency burst
spiking of a single rat cortical neuron could trigger a switch

between the cortical states resembling slow-wave and rapid-
eye-movement sleep [15]. This is reflected in the switching
of membrane potential of the stimulated neuron from high
frequency and low amplitude oscillations to low frequency
and high amplitude ones or vice versa. At the same time,
cortical local field potential (LFP) changes over time. Here
we use local field potential (LFP) to describe the state
of the whole cortex [16–19]. Therefore, the up and down
states of single neuron reflect distinct global cortical states,
which resemble slow-wave and rapid-eye-movement sleep,
respectively [20–22]. All of these results point to the power
of single cortical neurons in modulating the behavior state
of animals [15]. Here, one single neuron affects the whole
network status by impacting other coupling neurons.

We have started our research on a single neuron, studied
the electrophysiological phenomenon of status transitions,
and obtained the bistability and spontaneity that is similar
to experiment observation. In addition, we found that these
up and down transitions show unidirectional or bidirectional
changing with different parameters. Bistability means that
the neuron stays in one state before stimulation and turn to
another state after stimulation. These two states are called up
state and down state, respectively. That is to say, the neuron
can switch between up and down states. And directivity refers
to the fact that it is not arbitrary to switch from one state
to another. In some cases, transition can only occur from up
state to down state, while it occurs fromdown state to up state
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in other cases. Spontaneity, the periodic spontaneous activity
of neural membrane potential, is the most significant feature
of the transition.

This paper tries to further explore neural dynamic mech-
anism of up and down transitions in a neural network
based on the above results. This work will lay a foundation
for studying the relationship between neural coding and
cognitive behavior. We focus on the dynamic process of the
average membrane potential of a small neural network that
consists of 25 neurons and switches between up and down
states. Andwe observe the difference and distinguish between
transitions in network and one single neuron by numerical
simulation and theoretical analysis. Then we try to know
what happened to the appearance of behavior states and the
inducement of brain cognition. What we want to highlight is
that how great the effect of the emerged relationship between
behavior states and cognition and the ratio of activated
neurons on up and down transitions is.This is also the subject
for our further study.

2. Network Model

There are different kinds of complicated connection between
neurons. According to the topology, some scholars proposed
chain link, ring link, grid link, and so forth [23]. How-
ever, the internal connections between neurons are much
more complicated than those above connections. This paper
constructs a dynamical network model that consists of 25
neurons based on previous study [24]. In this network, any
one neuron connects to any other neurons in the network.
That means every two neurons in the network are coupled
with the connection strength asymmetrically and obeying
standard uniform distribution [25].

The coupling strength between neurons can be expressed
with matrix variable, denoted by 𝐺. Then we have

𝐺 =

[
[
[
[
[
[

[

𝑔
1,1

𝑔
1,2

. . . 𝑔
1,𝑛

𝑔
2,1

d 𝑔
2,𝑛

... d
...

𝑔
𝑛,1

𝑔
𝑛,2

. . . 𝑔
𝑛,𝑛

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

0 𝑔
1,2

. . . 𝑔
1,𝑛

𝑔
2,1

0 ⋅ ⋅ ⋅ 𝑔
2,𝑛

...
... d

...
𝑔
𝑛,1

𝑔
𝑛,2

. . . 0

]
]
]
]
]
]

]

, (1)

where 𝑔
𝑖,𝑗
represents the coupling strength form neuron 𝑖 to

neuron 𝑗. Absolutely, neurons do not couple with themselves,
so these coupling strength denoted by 𝑔

𝑖,𝑗
equals to zero.

To illustrate the state changing of the whole network, we
use the changing of average membrane potential to describe
the changing of local field potential (LFP), which means
that we average membrane potentials of every neuron in the
network to express LFP.

The dynamic model of one neuron in the neural network
is based on H-H equations and is described by (2) to (8).This
dynamic model consists of three ionic currents and synaptic
currents which come from surrounding neurons. The ionic
currents contain an instantaneous, inward current (sodium
current), a slow h-like current [26, 27], and an outward
current (a potassium current and a leak current). Two types of
persistent inward, persistent sodium, and persistent calcium
have been characterized in Purkinje cells [28, 29]. Somatic

Purkinje cell bistability has been associated with persistent
sodiumwhereas dendritic bistability has been shown to result
from persistent calcium conductance. Here we use persistent
sodium in our model for simplicity but it is likely that it is the
combination of these two currents that enables the bistability
[30].

On the basis of previous research, we propose the fol-
lowing neural network model to study the characteristics,
bistability, directivity, and spontaneity, of the up and down
transitions that have been observed in electrophysiology
experiments.Thus, we clarify the neural dynamicmechanism
of the up and down transitions in neural network.The current
equation for the model is

𝐶
𝑑𝑉
𝑖

𝑑𝑡
= − (𝐼

𝑖

Na + 𝐼
𝑖

ℎ
+ 𝐼
𝑖

𝐾
+ 𝐼
𝑖

𝑙
+ 𝐼
𝑖

syn) . (2)

Here, the ionic currents are as follows:

𝐼
𝑖

Na = 𝑔Na𝑚∞ (𝑉𝑖 − 𝑉Na) , (3)

𝐼
𝑖

ℎ
= 𝑔
ℎ
ℎ
𝑖
(𝑉
𝑖
− 𝑉
ℎ
) , (4)

𝐼
𝑖

𝐾
= 𝑔
𝐾
𝑏
𝑖
(𝑉
𝑖
− 𝑉
𝐾
) , (5)

𝐼
𝑖

𝑙
= 𝑔
𝑙
(𝑉
𝑖
− 𝑉
𝑙
) , (6)

where

𝑚
∞
= (1 + 𝑒

−(𝑉𝑖−𝑇𝑚)/𝜎𝑚)
−1

. (7)

The synaptic current is

𝐼
𝑖

syn = ∑
𝑗 ̸= 𝑖

𝑔
𝑗𝑖
(𝑉
𝑖
− 𝑉
𝑗
) . (8)

The synaptic current of the 𝑖th neuron is a sum of effects
from all the other neurons in the network, so this kind of
current plays a key role in coupling every two neurons in the
whole network. The changing activity of one neuron affects
the whole network states changing through this way.

There are two dynamic variables: membrane potential 𝑉
𝑖

and the inactivation termof the h-current ℎ
𝑖
, whenwe discuss

the bistability and directivity. But when studying the spon-
taneity, we need another variable called the inactivation term
of potassium current 𝑏

𝑖
. The dynamics of the inactivation

terms of h-current and potassium current are

𝑑ℎ
𝑖

𝑑𝑡
=
ℎ
∞
− ℎ
𝑖

𝜏
ℎ

,

𝑑𝑏
𝑖

𝑑𝑡
=
𝑏
∞
− 𝑏
𝑖

𝜏
𝑏

,

(9)
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where

ℎ
∞
= (1 + 𝑒

(𝑉𝑖−𝑇ℎ)/𝜎ℎ)
−1

,

𝜏
ℎ
=

1

𝛼 + 𝛽
,

𝛼 =
𝑎
𝛼
⋅ 𝑉
𝑖
+ 𝑏
𝛼

1 − 𝑒((𝑉𝑖+𝑏𝛼)/𝑎𝛼)/𝑘𝛼
,

𝛽 =

𝑎
𝛽
⋅ 𝑉
𝑖
+ 𝑏
𝛽

1 − 𝑒
((𝑉𝑖+𝑏𝛽)/𝑎𝛽)/𝑘𝛽

,

𝑏
∞
= (1 + 𝑒

−(𝑉𝑖−𝑇𝑏)/𝜎𝑏)
−1

,

𝜏
𝑏
= 𝜏
0

𝑏
⋅ sec(ℎ

𝑖

𝑉
𝑖
− 𝑇
𝑏

4 ⋅ 𝜎
𝑏

) .

(10)

In these equations, 𝑉
𝑖
represents membrane potential of

the 𝑖th neuron, while 𝐼𝑖
ℎ
, 𝐼
𝑖

𝐾
, 𝐼
𝑖

𝑙
replace a sodium current,

a slow h-like current, and a potassium current and a leak
current of the 𝑖th neuron, respectively. Similarly, 𝑔Na, 𝑔ℎ,
𝑔
𝐾
, 𝑔
𝑙
, respectively, represent the sodium conductance, the

slow h-like conductance, the potassium conductance, and the
leak conductance, and 𝑉Na, 𝑉ℎ, 𝑉𝐾, 𝑉𝑙 are the corresponding
reversal potentials. The inactivation term of the sodium
current, the h-like current, and the potassium current are
described by 𝑚

∞
, ℎ
∞
, 𝑏
∞
, and dynamic variables ℎ

𝑖
, 𝑏
𝑖
, with

the synaptic time constant 𝜏
ℎ
, 𝜏
𝑏
. And 𝑇

𝑚
, 𝜎
𝑚
, 𝑇
ℎ
, 𝜎
ℎ
, 𝑇
𝑏
, 𝜎
𝑏
,

𝜏
0

𝑏
, 𝑎
𝛼
, 𝑏
𝛼
,𝑘
𝛼
, 𝑎
𝛽
,𝑏
𝛽
, 𝑘
𝛽
are constants.

3. Results

3.1. Bistability. When we studied the single neuron model,
we found that transitions between up and down states can
be induced by two different kinds of stimulus. One is to
add brief outward current pulses; another is to improve the
sodium conductance to a certain value instantaneously. Now,
we research the neural network in the same way to try to find
out that there exist the similar phenomenon or not which
agrees with electrophysiology experiment results.

In the period of 10 seconds, we add a pulse current which
lasts 0.1 second every two seconds, with the current intensity
7.2𝜇A/cm2.The results are shown in Figure 1.We find that the
average membrane potential switches between the up state
(about −45mV) and the down state (about −65mV).

In the period of 10 seconds, we add the stimulation
that lasts 4ms every one or two seconds, leading to the
intensity of sodium conductance changing from0.06mS/cm2
to 1.2mS/cm2 instantaneously. The results are shown in
Figure 2. We find that the average membrane potential
switches between the up state (about −45mV) and the down
state (about −65mV) when adding the same stimulation.
And these transitions are a little bit complex: the membrane
potential rises up to 0mV instantaneously but then drops
quickly.

So from the above two results, we find that this dynamic
model can describe the bistability of up and down transitions
of neural membrane potential in the neural network. That
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Figure 1: Add brief outward current pulses (lasts 0.1 s, every 2 s,
7.2 𝜇A/cm2).
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Figure 2: Increase the sodium conductance instantaneously
(0.06mS/cm2 to 1.2mS/cm2).

means there are two stable states for neural network, with
other states unstable. The network can stay in one of these
two stable states without any input. When the neuron in the
network is stimulated, which destroys its original stability, it
can switch its state from one to another to adjust itself to
a new balance. These two states are called the up state and
the down state, respectively. That is to say, the up and down
transitions can be modulated by external stimulations. The
ionicmovement between inside and outside of themembrane
may be the mechanism of the transitions. When sodium
conductance increases to a certain level, it causes slight
depolarization, activating the sodium channel with sodium
move into cells, which increases the range of the polarization.
In return, the larger the range of depolarization occurs, the
more the sodium channels are activated and the more the
sodium moves into cells. When it arrives to the peak of
membrane potential, the sodium channel is inactivated and
the h-like channel is activated, which leads to repolarization
of the membrane potential. When the membrane potential
reduces to about −45mV, h-like channel is inactivated. At this
point, a new balance between the outflow of potassium and
the inflow of sodium begins. Namely, membrane potential
stays in a stable state. According to the different extent of the



4 Abstract and Applied Analysis

0 2000 4000 6000 8000 10000

t (ms)

Average membrane potential
V

(m
V

)

40

20

0

−20

−40

−60

−80

(a)

V (mV)

0.6

0.4

0.2

0

−100 −80 −60 −40 −20 0 20 40

h

V-h

(b)

Figure 3: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 1.2mS/cm2.
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Figure 4: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.09mS/cm2 and 𝑔Na = 1.2mS/cm2.

h-like channel inhibition, themembrane potential stays in the
up state (about −45mV) or the down state (about −65mV).

3.2. Directivity. In the model of a single neuron, directivity
of the transition is modulated by potassium conductance.We
found that when 𝑔

𝑘
= 0.1mS/cm2, membrane potential can

transit both from the down state to the up state and from
the up state to the down state, when 𝑔

𝑘
= 0.09mS/cm2,

membrane potential can only transit from the down state
to the up state, and when 𝑔

𝑘
= 0.105mS/cm2, membrane

potential can only transit from the up state to the down state.
In the model of neural network of this paper, we also do

research on the directivity. And we find that the changing
of sodium conductance can modulate the directivity of the
transitions as well as potassium conductance. Figures 3–
7 describe different transition modes adjusted by different
values of potassium conductance and sodium conductance.
The tops of Figures 3–7 are average membrane potential 𝑉
of the neural network, namely, up and down transitions,
while the bottoms are phase plane for the mean of two kinds
of dynamic variables ℎ and 𝑉 in the model, denoted by
𝑉mean, ℎmean. 𝑉mean is average membrane potential of all the
neurons in the network. ℎmean is average inactivation rate of
all the h-like channel in the network.The red solid line shows

all the points that ℎ = 0, the blue dot line shows all the
points that 𝑉 = 0, and the intersection of these two lines
is stable point of the system. In other words, the two points
are stable states of the network, and other points in the plane
are unstable. That means, the system will stay in any one of
the two stable points after a long run. The green solid line in
the figure presents the transit process from one stable point
to another.

Figure 3 shows that when 𝑔
𝑘
= 0.1mS/cm2, membrane

potential can transit from the down state to the up state
by adding a stimulation that increase sodium conductance
to 𝑔Na = 1.2mS/cm2 instantaneously. With the same
stimulation, it also can transit from the up state to the down
state. So the transitions are bidirectional on condition that
𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 1.2mS/cm2. The h-V phase

plane further shows that the system transmits between the
two stable states.

We can observe the changing of up and down transitions
of the whole network by making some changes on the
potassium conductance while keeping sodium conductance
unchanged; namely, 𝑔Na = 1.2mS/cm2.The results are shown
in Figures 4-5.

Figure 4 represents that when 𝑔
𝑘
= 0.09mS/cm2, the

average membrane potential can transit from the down state
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Figure 5: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.105mS/cm2 and 𝑔Na = 1.2mS/cm2.
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Figure 6: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 0.8mS/cm2.

to the up state by adding a stimulation that increase sodium
conductance instantaneously. But with the same stimulation,
the average membrane potential always stays in the up state
without any change. In other words, the transitions that are
unidirectional vary from the down state to the up state in
the circumstances that 𝑔

𝑘
= 0.09mS/cm2. The h-V phase

plane also shows that the system can only vary from the lower
membrane potential stable point to higher one and thenmove
around the higher one periodically.

Figure 5 reveals that when 𝑔
𝑘

= 0.105mS/cm2, the
average membrane potential can transit from the up state
to the down state by adding a stimulation that increase
sodium conductance instantaneously. However, with the
same stimulation, the average membrane potential always
stays in the down state without any change. In other words,
the transitions that are unidirectional vary from the up
state to the down state under the circumstances that 𝑔

𝑘
=

0.105mS/cm2. The h-V phase plane also presents that the
system can only vary from the higher membrane potential
stable point to lower one and then move around the lower
one periodically.

Accordingly, we can also observe the changing of up
and down transitions of the whole network by making some
changes on the sodiumconductancewhile keeping potassium

conductance unchanged; namely, 𝑔
𝑘
= 0.1mS/cm2. The

results are shown in Figures 6-7.
Figure 6 presents that when 𝑔Na = 0.8mS/cm2, the

average membrane potential can transit from the down state
to the up state by adding a stimulation that increase sodium
conductance instantaneously. But with the same stimulation,
the average membrane potential always stays in the up state
without any change. In other words, the transitions that are
unidirectional vary from the down state to the up state in
the circumstances that 𝑔Na = 0.8mS/cm2. The h-V phase
plane also shows that the system can only vary from the lower
membrane potential stable point to higher one and thenmove
around the higher one periodically.

Figure 7 reveals that when 𝑔Na = 2mS/cm2, the average
membrane potential can transit from the up state to the down
state by adding a stimulation that increase sodium conduc-
tance instantaneously. However, with the same stimulation,
the average membrane potential always stays in the down
state without any change. In other words, the transitions that
are unidirectional vary from the up state to the down state
under the circumstances that 𝑔Na = 2mS/cm2.The h-V phase
plane also presents that the system can only vary from the
highermembrane potential stable point to lower one and then
move around the lower one periodically.
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Figure 7: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 2mS/cm2.
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Figure 8: The average membrane potential of spontaneous transitions and its distribution.

The above results reveal that this dynamic model can well
describe the bidirectional or unidirectional characteristic of
up and down transitions of neural network when stimulated
by certain stimulus. These results accord with the results of
a single neuron model. Transitions in the network can be
bidirection from the up state to the down one and vice versa.
And also may be single direction from the up state to the
down one, or only from down state to the up one according
to the different level of conductance.

3.3. Spontaneity. In the discussion of bistability and direction
of the model of a single neuron, we should introduce the
input of synapse to generate the up and down transitions.
Is a neuron still able to up and down transit, if there is no
input of synapse? Virtually, in vivo or in vitro experiments
of animals show that the potential of neural membrane can
transit between up state and down state spontaneously and
periodically. By increasing the variable of the inactivation of
a potassium conductance rate in the original model, we can
obtain the result that is identical to the experimental result.

In this paper, we introduce the dynamic variable b, the
inactivation rate of potassium conductance of each neuron,
to study the spontaneous transitions of neural networks.

The calculated results shown in Figure 8, are case with-
out external stimuli showing that the average membrane
potential transit spontaneously and periodically, while the
distribution graph illustrates the distribution of the average
membrane potential, a two-peak distribution, indicating the
two stable state of up and down transitions of membrane
potential.

By adding the interval of 1 or 2 seconds and lasting
time of 4ms stimuli on this spontaneous network model,
the intensity of sodium conductance increases rapidly from
0.06mS/cm2 to 1.2mS/cm2; the computed results are shown
in Figures 9–11.

The tops of Figures 9(a) and 10(a) show the changes
of membrane potentials after adding stimuli, respectively,
and the bottoms show the corresponding distributions of
membrane potentials.

The simulating results of each neuron stimulated in the
network are shown in Figure 9. Compared with the case
without stimuli, after adding stimuli, the spontaneous tran-
sition of the whole network stops. Because of the disruption
brought by the outer stimuli, the neurons, which should
have been able to transit or transfer to another stable state
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Figure 9: Adding stimuli on each neuron of the spontaneous model to rapidly increase the sodium conductance.
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Figure 10: Adding stimuli on some neurons of the spontaneous model to rapidly increase the sodium conductance.

or to the original stable state of itself. However, for the
whole network, the instant time for transition is different
for each neuron, so the ability of network transition is not
well obtained just by averaging the membrane potential.
As a result, all the transitions we could see are caused by
external stimuli, on the contrary, not all the stimuli can
generate transition. For instance, the stimulus at 8 s fails
to generate the state transition, which indicates that these
transitions have something to do with the state of neural
network. The network in a down state is more susceptible to
external stimuli and transits, while in the up state it is not
susceptible to external stimuli, since the network has a strong
self-stability.

The simulating results of some neurons stimulated in the
network are shown in Figure 10. Comparedwith the results in
Figure 9, this network maintains its spontaneous transition
ability; that is to say, it transits at the moment without any
stimulus. On the other hand, the input of synapse is also
able to let the state of the network transit and each stimulus
leads to a state transition. Because there is coupling among
the neurons, when a neuron is stimulated, such stimulus is
certainly transmitted to everywhere else in the network by
coupling, so as to change the state of the whole network.

To observe this transmission, Figure 11 shows the mem-
brane potential of a neuron that is directly and indirectly
stimulated, respectively. The results of the their potential
are similar, since when a neuron is directly stimulated, its
membrane potential changes correspondingly, and according
to (8), this change transmits to others without delay. This is
one of the aspects for our further improvement in the future.

The obtained results illustrate that this dynamical model
dose can depict the phenomenon of the spontaneous and
periodical transitions. By adjusting the number of the stimu-
lated neurons, the situation of transition of a network differs.
When every neuron is stimulated, the spontaneous transition
of a network disappears, and the external stimuli play an
important role on transitions. When a stimulus is added
to a single neuron, besides the spontaneous transitions, the
network is also able to respond to the external stimuli and
transit. Such transmission between the coupling neurons is
very fast and has no delay.

4. Conclusion

This paper constructs a dynamical network model that
consists of 25 neurons which can show the up and down
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Figure 11: Membrane potential of a neuron is stimulated directly or indirectly, respectively.

transitions, describing three characteristics, bistability, direc-
tivity, and spontaneity, of up and down transitions. The main
conclusions are as follows.

(1) This dynamic model can describe the bistalility of up
and down transitions of the neural network modu-
lated by external stimulations and sodium conduc-
tance.

(2) The dynamic model can describe the bidirectional or
unidirectional characteristic of up and down transi-
tions of the neural network controlled by potassium
conductance and potassium conductance.

(3) The dynamic model can describe periodic sponta-
neous transitions between the up and down states in
absence of input and transitions will become complex
when adding synaptic input.

The above conclusions are similar to the results of up and
down transitions of a single neuron, since the characteristic
of a single neuron’s bursting dominates the real activities
of the neural networks and the dynamic of a single neuron
represents the behavior of the whole networks. In this paper,
the study of up and down transitions is proposed as a prepa-
ration for the further scope of large-scale neural population
and up and down transitions of network behaviors, so as
to understand the effect of a single neuron’s transitions on
network behaviors under the condition of coupling of neural
population as a sort of foundation of the research of the
dynamical mechanism of neural spikes between a single
neuron and the networks behaviors.
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This paper is concerned with the study of entrained collective rhythms of multicellular systems by using partial impulsive control
strategy. The objective is to design an impulsive controller based on only those partially available cell states, so that the entrained
collective rhythms are guaranteed for the multicellular systems with cell-to-cell communication mechanism. By using the newly
developed impulsive integrodifferential inequality, the sufficient conditions are derived to achieve the entrained collective rhythms
of multicellular systems. A synthetic multicellular system with simulation results is finally given to illustrate the usefulness of the
developed results.

1. Introduction

Complex physiological rhythms are ubiquitous in living
organisms, which are central to life, such as our daily cycle of
waking and sleeping and the beating of our hearts. Collective
rhythms are normally generated by thousands of divers clock
cells which manage to function in a coherent oscillatory
state [1, 2]. In fields ranging from circadian biology to
endocrinology, however, it remains an exciting challenge to
understand how collective rhythms emerge in multicellular
structures [3–7].

Elucidating the collective dynamics of multicellular sys-
tems not only is essential for the understanding of the
rhythmic phenomena of living organisms at both molecular
and cellular levels but also has many potential applications in
bioengineering areas. For example, in cancer chemotherapy,
treatments could be based on the circadian rhythm of cell
division [8]. Over the past decade or so, many researchers
have paid a great deal of attention to study the collective
dynamics of multicellular systems. For instance, in [9–12],
the authors considered stability of genetic networks and
neural networks. In [3], the authors pointed out that intercell

signaling mechanism does lead to synchronous behavior
across a population of cells. In [13], after making real-time
analysis of the gene expression, the authors showed the
synchronized rhythms of clock gene transcription across
hundreds of neurons within themammalian suprachiasmatic
nucleus (SCN) in organotypic slice culture. In addition, based
on the Lyapunov stability theory, the collective rhythms of
multicellular systems were further studied in [14]. For the
other relevant results, please see [15–17].

Although there are significant advances on elucidating
the collective behaviors of biological organisms in recent
years, the essential mechanisms from which the collective
rhythms arise remain to be fully understood. It is well known
that coupling among cells is not sufficient to achieve collective
rhythms. In fact, the collective rhythms of multicellular
systems are far away from being well understood and warrant
further and insightful study.

On the other hand, experimental results have already
shown that external stimuli play an important role in achiev-
ing the collective rhythms. In [18], physiological rhythms
were induced by regular or periodic inputs occurring in
the context of medical devices. In [19], an external voltage
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was applied to enhance the synchronization of electronic
synthetic genetic networks. In [20], it was shown that a
specific collective behavior could be realized by chang-
ing the frequency and amplitude of the periodic stimuli.
Another well-known example is that organisms usually dis-
play a circadian rhythm, where the key processes show a 24-
hour periodicity entrained to the light-dark cycle [21]. In [22],
the authors studied the rhythmic process of the circadian
oscillators under the effect of the daily light-dark cycle.
Furthermore, from the view of impulsive control systems,
collective behaviors of coupled systems were investigated and
some interesting results have been obtained in [23–27], and,
for the other relevant results, please refer to [28–32] and the
references therein.

However, in the above-mentioned results, one basic
assumption is that the external stimuli are applied to all the
cells in the community, that is very expensive or unrealistic
in practice. Actually, in many practical medical cases, only
partial specific cells could be detected and utilized. In these
situations, the external stimuli are applied to only those
cells in the community. To the best of our knowledge,
there are few results in the open literature on the entrained
collective rhythms of multicellular systems by applying
impulsive control based on the partially available cell
states.

This paper is to study the entrained collective rhythms
of multicellular systems with only partially available cell
states. By using the newly developed impulsive integrod-
ifferential inequality, a new criterion is derived to ensure
the entrained collective rhythms of multicellular systems.
It is shown that when the spontaneous synchrony cannot
be achieved, an appropriate periodic stimulus could achieve
a collective rhythm even only with partially available cell
states. It is noted that the proposed partial impulsive control
method can be also easily extended to study other complex
systems.

The rest of the paper is organized as follows. Section 2
formulates the problem of the entrained collective rhythms
and provides some useful lemmas. Section 3 presents the
main results for entrained collective rhythms of multicellular
systems. A synthetic multicellular system will be employed
to illustrate the effectiveness of the developed results in
Section 4, which is followed by conclusions in Section 5.

2. Model Description and
Problem Formulation

To make it easy for the readers, let us start from a single cell
model of the form

̇𝑥 (𝑡) = −𝐴𝑥 (𝑡) + 𝑓 (𝑥 (𝑡)) , (1)

where 𝑥(𝑡) ∈ R𝑛+ represents the concentrations of proteins,
RNAs, and other chemical complexes, 𝐴 is the positive
diagonal matrix denoting the degradation and dilution rate,
and𝑓(𝑥(𝑡)) is the complex regulatory function, which usually
is of the Michaelis-Menten or Hill form.

Remark 1. It is known that many biological models can be
represented by (1), such as the Goodwin model [33] and
the toggle switch [34]. Furthermore, the regulatory function
𝑓(𝑥) in model (1) is usually monotonically increasing or
decreasing.

Without loss of generality, the regulatory function is
always assumed to satisfy the following assumption.

Assumption 2. The regulatory function 𝑓(𝑥) in (1) satisfies

(𝑓
𝑖
(𝑎) − 𝑓

𝑖
(𝑏)) [𝑓

𝑖
(𝑎) − 𝑓

𝑖
(𝑏) − 𝑙

𝑖
(𝑎 − 𝑏)] ≤ 0, (2)

for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 𝑏, and 𝑙
𝑖
> 0.

Consider multicellular systems with cell-to-cell commu-
nication mechanism described as follows:

̇𝑥
𝑖
(𝑡) = − 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡) , 𝑖 = 1, . . . , 𝑁,

(3)

where 𝑥
𝑖
(𝑡) ∈ R𝑛+ is the state of the 𝑖th cell, denoting

the concentrations of chemical complexes in this cell, and
𝑁 is the total cell number of the entire community. The
third term in model (3) describes the capability of cells to
communicate with each other in order to coordinate the
behavior of the entire community. 𝐺 = (𝐺

𝑖𝑗
)
𝑁×𝑁

is the
coupling structure matrix that represents the communica-
tions between different cells, and Γ is the inner coupling
structure that represents the connections of different chem-
ical complexes in one cell. 𝐺 satisfies the diffusive coupling
condition

𝐺
𝑖𝑗
≥ 0, for 𝑖 ̸= 𝑗,

𝐺
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁.

(4)

It can be noted that such coupling is biologically plausible
in many biological systems, such as the quorum sensing
mechanism in bacteria [2, 35].

Suppose only 𝑙 cell states in the community are measur-
able for the multicellular systems (3). Consider the following
linear impulsive controller based on those 𝑙 measurable cell
states:

𝑢
𝑖
=

∞

∑

𝑘=1

𝐸
𝑖𝑘
(𝑥
𝑖
− 𝑥) 𝛿 (𝑡 − 𝑡

𝑘
) , 𝑖 = 1, 2, . . . , 𝑙, 𝑘 ∈ N, (5)

where 𝑥 is the state of the isolated cell described in (1), 𝑙 is the
number of the measurable cell states, 𝐸

𝑖𝑘
is the gain matrix,

and 𝛿(𝑡 − 𝑡
𝑘
) is the Dirac impulse function with discontinuity

points 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→∞
𝑡
𝑘
= ∞.
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Then the impulsive-controlled multicellular systems with
partial states can be described by the following impulsive
differential equation:

̇𝑥
𝑖
(𝑡) = −𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝐸
𝑖𝑘
(𝑥
𝑖
− 𝑥) ,

𝑘 = 1, 2, . . . , 𝑡 = 𝑡
𝑘
,

𝑖 = 1, . . . , 𝑙,

̇𝑥
𝑖
(𝑡) = − 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡) , 𝑖 = 𝑙 + 1, . . . , 𝑁.

(6)

Defining 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥(𝑡), one can obtain the following

error system:

̇𝑒
𝑖
(𝑡) = −𝐴𝑒

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑒
𝑗
(𝑡) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

𝑒
𝑖
(𝑡
+

𝑘
) = (𝐼 + 𝐸

𝑖𝑘
) 𝑒
𝑖
(𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

𝑡 = 𝑡
𝑘
, 𝑖 = 1, . . . , 𝑙,

̇𝑒
𝑖
(𝑡) = − 𝐴𝑒

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑒
𝑗
(𝑡) , 𝑖 = 𝑙 + 1, . . . , 𝑁.

(7)

Then the problem of entrained collective rhythms is to
design the partial impulsive controller (5) such that the stabil-
ity of the error system (7) is guaranteed. Before presenting the
main results, some useful lemmas are introduced in advance.

Lemma 3 (see [36]). If 𝑃 ∈ R𝑛×𝑛 is a positive definite matrix
and 𝑄 ∈ R𝑛×𝑛 is a symmetric matrix, then

𝜆min (𝑃
−1

𝑄)𝑥
T
𝑃𝑥 ≤ 𝑥

T
𝑄𝑥

≤ 𝜆max (𝑃
−1

𝑄)𝑥
T
𝑃𝑥, ∀𝑥 ∈ R𝑛,

(8)

where 𝜆min(⋅) and 𝜆max(⋅) are the minimum and maximum
eigenvalues of the matrix, respectively.

Lemma 4. For positive scalars 𝛿 > 0, 𝜇 > 0, and 𝜌 >

0, if 𝑢(𝑡) satisfies

̇𝑢 (𝑡) ≤ ℎ (𝑡, 𝑢 (𝑡)) + 𝛿∫

𝑡

0

𝑒
−𝜌(𝑡−𝑠)

𝑢 (𝑠) 𝑑𝑠, 𝑡 ̸= 𝑡
𝑘
,

𝑢 (𝑡
+

𝑘
) ≤ 𝜇𝑢 (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑢 (0) ≤ 𝑢
0
,

(9)

where ℎ(𝑡, 𝑢(𝑡)) is a continuous function, then one has 𝑢(𝑡) ≤
𝑢
𝜖
(𝑡), 𝑡 ≥ 0 for 𝜖 ≥ 0, where𝑢

𝜖
(𝑡) is the solution to the following

impulsive integrodifferential equation:

̇𝑢
𝜖
(𝑡) = ℎ (𝑡, 𝑢

𝜖
(𝑡)) + 𝛿∫

𝑡

0

𝑒
−𝜌(𝑡−𝑠)

𝑢
𝜖
(𝑠) 𝑑𝑠 + 𝜖, 𝑡 ̸= 𝑡

𝑘
,

𝑢
𝜖
(𝑡
+

𝑘
) = 𝜇𝑢

𝜖
(𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑢
𝜖
(0) = 𝑢

0
.

(10)

Proof. Firstly, we prove

𝑢 (𝑡) ≤ 𝑢
𝜖
(𝑡) , 𝑡 ∈ (0, 𝑡

1
] . (11)

If argument (11) is not right, then there exists �̃� ∈ (0, 𝑡
1
) such

that

𝑢 (�̃�) > 𝑢
𝜖
(�̃�) . (12)

Considering the continuity of 𝑢(𝑡), 𝑢
𝜖
(𝑡) on (0, 𝑡

1
], theremust

exist 𝑡∗ ∈ (0, �̃�) such that

𝑢 (𝑡
∗

) = 𝑢
𝜖
(𝑡
∗

) , ̇𝑢 (𝑡
∗

) ≥ ̇𝑢
𝜖
(𝑡
∗

) ,

𝑢 (𝑡) ≤ 𝑢
𝜖
(𝑡) , ∀𝑡 ≤ 𝑡

∗

;

(13)

then it yields

̇𝑢 (𝑡
∗

) ≤ ℎ (𝑡
∗

, 𝑢 (𝑡
∗

)) + 𝛿∫

𝑡
∗

0

𝑒
−𝜌(𝑡
∗
−𝑠)

𝑢 (𝑠) 𝑑𝑠

< ℎ (𝑡
∗

, 𝑢
𝜖
(𝑡
∗

)) + 𝛿∫

𝑡
∗

0

𝑒
−𝜌(𝑡
∗
−𝑠)

𝑢
𝜖
(𝑠) 𝑑𝑠 + 𝜖

= ̇𝑢
𝜖
(𝑡
∗

) ,

(14)

which contradicts the condition ̇𝑢(𝑡
∗

) ≥ ̇𝑢
𝜖
(𝑡
∗

), so (11) holds.
Suppose 𝑢(𝑡) ≤ 𝑢

𝜖
(𝑡), for all 𝑡 ∈ (0, 𝑡

𝑘
]; then by 𝑢(𝑡+

𝑘
) =

𝜇𝑢(𝑡
𝑘
) ≤ 𝜇𝑢

𝜖
(𝑡
𝑘
) = 𝑢

𝜖
(𝑡
+

𝑘
), similarly, one has 𝑢(𝑡) ≤ 𝑢

𝜖
(𝑡),

for all 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1
]. By using the mathematical induction

method, one can conclude 𝑢(𝑡) ≤ 𝑢
𝜖
(𝑡), for all 𝑡 ∈ (0, 𝑡

𝑘
] for

any positive integer 𝑘. The proof is thus complete.

Lemma 5 (Grownwall-Bellman Inequality [37]). Let 𝛼(𝑡)
be a real value continuous function and 𝛽(𝑡) a nonnegative
continuous function on [𝑎, 𝑏]. If a continuous function 𝑢(𝑡) has
the property that

𝑢 (𝑡) ≤ 𝛼 (𝑡) + ∫

𝑡

𝑎

𝛽 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏, (15)

then on [𝑎, 𝑏] one has

𝑢 (𝑡) ≤ 𝛼 (𝑡) + ∫

𝑡

𝑎

𝛼 (𝑠) 𝛽 (𝑠) exp(∫
𝑡

𝑠

𝛽 (𝑟) 𝑑𝑟) 𝑑𝑠. (16)

Definition 6. The multicellular system (6) is said to achieve
collective rhythms with the designed partial impulsive con-
troller, if there exist scalars 𝜌 > 0 and𝑀 > 0 such that

lim
𝑡→∞

‖𝑋(𝑡)‖
2

≤ 𝑀𝑒
−𝜌𝑡

‖𝑋(0)‖
2

, (17)
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where 𝑋(𝑡) = [𝑥T
1
− 𝑥

T
, . . . , 𝑥

T
𝑁
− 𝑥

T
]
T and 𝑋(0) is the initial

condition.

3. Main Results

In this section, by using the proposed impulsive integrod-
ifferential inequality, a sufficient condition guaranteeing the
entrained collective rhythms of multicellular systems is
derived.

Theorem7. For a given scalar 𝜇 ∈ (0, 1), if there exist matrices
𝑃
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙, 𝑄

𝑖
> 0, 𝑖 = 𝑙 + 1, . . . , 𝑁, scalars 𝜆

𝑖
> 0,

𝜇
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙, 𝜂

𝑖
> 0, 𝑖 = 𝑙 + 1, . . . , 𝑁, and positive

scalars 𝜖
1
, 𝜖
2
, 𝛿
1
, and 𝛿

2
such that

(−𝐴
T
𝑃
𝑖
− 𝑃
𝑖
𝐴) + 𝜆max (𝑃𝑖)(𝜖1𝐼 + 𝜖

−1

1
𝐿
T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1


𝐺
𝑖𝑗


)

+ 𝑐𝛿
−1

1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


Γ
T
Γ ≤ 𝜆

𝑖
𝑃
𝑖
,

(18)

(𝐼 + 𝐸
𝑖𝑘
)
T
𝑃
𝑖
(𝐼 + 𝐸

𝑖𝑘
) ≤ 𝜇
𝑖
𝑃
𝑖
, (19)

for 𝑖 = 1, . . . , 𝑙, and

(−𝐴
T
𝑄
𝑖
− 𝑄
𝑖
𝐴) + 𝜆max (𝑄𝑖)(𝜖2𝐼 + 𝜖

−1

2
𝐿
T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1


𝐺
𝑖𝑗


)

+ 𝑐𝛿
−1

2

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)

𝐺
𝑗𝑖


Γ
T
Γ ≤ −𝜂

𝑖
𝑄
𝑖
,

(20)

for 𝑖 = 𝑙 + 1, . . . , 𝑁, and, for any impulsive time sequence {𝑡
𝑘
}

satisfying

𝛿 := sup
𝑘

{𝑡
𝑘+1

− 𝑡
𝑘
} <

ln (1/𝜇)
𝜂 + 𝜆 + (𝛽𝛾) / (𝜂𝜇)

, (21)

for 𝑘 = 0, 1, 2, . . ., where 𝜇 = max(𝜇
𝑖
), 𝜆 = max(𝜆

𝑖
), 𝑖 =

1, . . . , 𝑙, and 𝜂 = min(𝜂
𝑖
), 𝑖 = 𝑙 + 1, . . . , 𝑁, then the entrained

collective rhythms of multicellular systems (6) are achieved.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) , (22)

where

𝑉
1
(𝑡) :=

𝑙

∑

𝑖=1

𝑒
T
𝑖
(𝑡) 𝑃
𝑖
𝑒
𝑖
(𝑡) ,

𝑉
2
(𝑡) :=

𝑁

∑

𝑖=𝑙+1

𝑒
T
𝑖
(𝑡) 𝑄
𝑖
𝑒
𝑖
(𝑡) ,

(23)

where 𝑃
𝑖
, 𝑖 = 1, 2, . . . , 𝑙 and 𝑄

𝑖
, 𝑖 = 𝑙 + 1, . . . , 𝑁 are positive

definite matrices to be determined.
For any 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
], 𝑘 ∈ N, taking the Dini derivative

along the trajectories of (7), we have

𝐷
+

𝑉
1
(𝑡) =

𝑙

∑

𝑖=1

( ̇𝑒
T
𝑖
(𝑡) 𝑃
𝑖
𝑒
𝑖
(𝑡) + 𝑒

T
𝑖
(𝑡) 𝑃
𝑖
̇𝑒
𝑖
(𝑡))

=

𝑙

∑

𝑖=1

(𝑒
T
𝑖
(𝑡) (−𝐴

T
𝑃
𝑖
− 𝑃
𝑖
𝐴) 𝑒
𝑖
(𝑡)

+ 2𝑒
T
𝑖
(𝑡) 𝑃
𝑖
(𝑓 (𝑥
𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡)))

+ 2𝑐

𝑁

∑

𝑗=1

𝑒
T
𝑖
(𝑡) 𝑃
𝑖
𝐺
𝑖𝑗
Γ𝑒
𝑗
(𝑡)) .

(24)

It follows from Assumption 2 that

2𝑒
T
𝑖
(𝑡) 𝑃
𝑖
(𝑓 (𝑥
𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡)))

≤ 𝜆max (𝑃𝑖) (𝜖1𝑒
T
𝑖
(𝑡) 𝑒
𝑖
(𝑡) + 𝜖

−1

1
𝑒
T
𝑖
(𝑡) 𝐿

T
𝐿𝑒
𝑖
(𝑡)) ,

2𝑐

𝑁

∑

𝑗=1

𝑒
T
𝑖
(𝑡) 𝑃
𝑖
𝐺
𝑖𝑗
Γ𝑒
𝑗
(𝑡)

≤ 𝑐𝜆max (𝑃𝑖)
𝑁

∑

𝑗=1


𝐺
𝑖𝑗



× (𝛿
1
𝑒
T
𝑖
(𝑡) 𝑒
𝑖
(𝑡) + 𝛿

−1

1
𝑒
T
𝑗
(𝑡) Γ

T
Γ𝑒
𝑗
(𝑡)) ,

(25)

where 𝜖
1
> 0, 𝛿

1
> 0 and 𝐿 = diag(𝑙

1
, . . . , 𝑙
𝑛
). One also has

𝑐𝛿
−1

1

𝑙

∑

𝑖=1

𝑁

∑

𝑗=1

𝜆max (𝑃𝑖)

𝐺
𝑖𝑗


𝑒
T
𝑗
(𝑡) Γ

T
Γ𝑒
𝑗
(𝑡)

= 𝑐𝛿
−1

1

𝑁

∑

𝑖=1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡)

= 𝑐𝛿
−1

1

𝑙

∑

𝑖=1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡)

+ 𝑐𝛿
−1

1

𝑁

∑

𝑖=𝑙+1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡) .

(26)
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Substituting (25)–(26) into (24) yields

𝐷
+

𝑉
1
(𝑡) ≤

𝑙

∑

𝑖=1

(𝑒
T
𝑖
(𝑡) (−𝐴

T
𝑃
𝑖
− 𝑃
𝑖
𝐴) 𝑒
𝑖
(𝑡) + 𝜆max (𝑃𝑖) 𝑒

T
𝑖
(𝑡)

× (𝜖
1
𝐼 + 𝜖
−1

1
𝐿
T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1


𝐺
𝑖𝑗


) 𝑒
𝑖
(𝑡)

+𝑐𝛿
−1

1

𝑙

∑

𝑖=1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡))

+ 𝑐𝛿
−1

1

𝑁

∑

𝑖=𝑙+1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡)

=

𝑙

∑

𝑖=1

𝑒
T
𝑖
(𝑡)( (−𝐴

T
𝑃
𝑖
− 𝑃
𝑖
𝐴) + 𝜆max (𝑃𝑖)

× (𝜖
1
𝐼 + 𝜖
−1

1
𝐿
T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1


𝐺
𝑖𝑗


)

+𝑐𝛿
−1

1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


Γ
T
Γ) 𝑒
𝑖
(𝑡)

+ 𝑐𝛿
−1

1

𝑁

∑

𝑖=𝑙+1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡) .

(27)

Define 𝛽
𝑖
= 𝑐𝛿
−1

1
∑
𝑙

𝑗=1
𝜆max(𝑃𝑗)|𝐺𝑗𝑖|. Then it follows from

condition (18) and Lemma 3 that

𝐷
+

𝑉
1
(𝑡) ≤

𝑙

∑

𝑖=1

𝑒
T
𝑖
(𝑡) 𝜆
𝑖
𝑃
𝑖
𝑒
𝑖
(𝑡) +

𝑁

∑

𝑖=𝑙+1

𝛽
𝑖
𝑒
T
𝑖
(𝑡) 𝑒
𝑖
(𝑡)

≤ 𝜆𝑉
1
(𝑡) + 𝛽𝑉

2
(𝑡) ,

(28)

where 𝜆 = max(𝜆
𝑖
) and 𝛽 = max(𝛽

𝑖
𝜆max(𝑄

−1

𝑖
)).

Furthermore, for any 𝑡 ≥ 0, one can also get

𝐷
+

𝑉
2
(𝑡) =

𝑁

∑

𝑖=𝑙+1

( ̇𝑒
T
𝑖
(𝑡) 𝑄
𝑖
𝑒
𝑖
(𝑡) + 𝑒

T
𝑖
(𝑡) 𝑄
𝑖
̇𝑒
𝑖
(𝑡))

=

𝑁

∑

𝑖=𝑙+1

(𝑒
T
𝑖
(𝑡) (−𝐴

T
𝑄
𝑖
− 𝑄
𝑖
𝐴) 𝑒
𝑖
(𝑡)

+ 2𝑒
T
𝑖
(𝑡) 𝑄
𝑖
(𝑓 (𝑥
𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡)))

+2𝑐

𝑁

∑

𝑗=1

𝑒
T
𝑖
(𝑡) 𝑄
𝑖
𝐺
𝑖𝑗
Γ𝑒
𝑗
(𝑡))

≤

𝑁

∑

𝑖=𝑙+1

(𝑒
T
𝑖
(𝑡) (−𝐴

T
𝑄
𝑖
− 𝑄
𝑖
𝐴) 𝑒
𝑖
(𝑡)

+ 𝜆max (𝑄𝑖) 𝑒
T
𝑖
(𝑡)

× (𝜖
2
𝐼 + 𝜖
−1

2
𝐿
T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1


𝐺
𝑖𝑗


) 𝑒
𝑖
(𝑡)

+𝑐𝛿
−1

2

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡))

+ 𝑐𝛿
−1

2

𝑙

∑

𝑖=1

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡)

=

𝑁

∑

𝑖=𝑙+1

𝑒
T
𝑖
(𝑡)

× ( (−𝐴
T
𝑄
𝑖
− 𝑄
𝑖
𝐴) + 𝜆max (𝑄𝑖)

× (𝜖
2
𝐼 + 𝜖
−1

2
𝐿
T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1


𝐺
𝑖𝑗


)

+𝑐𝛿
−1

2

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)

𝐺
𝑗𝑖


Γ
T
Γ) 𝑒
𝑖
(𝑡)

+ 𝑐𝛿
−1

2

𝑙

∑

𝑖=1

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)

𝐺
𝑗𝑖


𝑒
T
𝑖
(𝑡) Γ

T
Γ𝑒
𝑖
(𝑡) ,

(29)

where 𝜖
2
> 0, 𝛿

2
> 0.

Defining 𝛾
𝑖
= 𝑐𝛿
−1

2
∑
𝑁

𝑗=𝑙+1
𝜆max(𝑄𝑗)|𝐺𝑗𝑖|, it follows from

(20) and (29) that

𝐷
+

𝑉
2
(𝑡) ≤ −

𝑁

∑

𝑖=𝑙+1

𝜂
𝑖
𝑒
T
𝑖
(𝑡) 𝑄
𝑖
𝑒
𝑖
(𝑡)

+

𝑙

∑

𝑖=1

𝛾
𝑖
𝑒
T
𝑖
(𝑡) 𝑒
𝑖
(𝑡)

≤ − 𝜂𝑉
2
(𝑡) + 𝛾𝑉

1
(𝑡) ,

(30)

where 𝜂 = min(𝜂
𝑖
) and 𝛾 = max(𝛾

𝑖
𝜆max(𝑃

−1

𝑖
)), which implies

𝑉
2
(𝑡) ≤ 𝑒

−𝜂𝑡

𝑉
2
(0) + 𝛾∫

𝑡

0

𝑒
−𝜂(𝑡−𝛼)

𝑉
1
(𝛼) 𝑑𝛼. (31)

Then substituting (31) into (28) yields

𝐷
+

𝑉
1
(𝑡) ≤ 𝜆𝑉

1
(𝑡) + 𝛽𝑒

−𝜂𝑡

𝑉
2
(0)

+ 𝛽𝛾∫

𝑡

0

𝑒
−𝜂(𝑡−𝛼)

𝑉
1
(𝛼) 𝑑𝛼, 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
] .

(32)
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On the other hand, when 𝑡 = 𝑡+
𝑘
, it follows from (19) that

𝑉
1
(𝑡
+

𝑘
) =

𝑙

∑

𝑖=1

𝑒
T
𝑖
(𝑡
𝑘
) (𝐼 + 𝐸

𝑖𝑘
)
T
𝑃
𝑖
(𝐼 + 𝐸

𝑖𝑘
) 𝑒
𝑖
(𝑡
𝑘
)

≤

𝑙

∑

𝑖=1

𝑒
T
𝑖
(𝑡
𝑘
) 𝜇
𝑖
𝑃
𝑖
𝑒
𝑖
(𝑡
𝑘
)

≤ 𝜇𝑉
1
(𝑡
𝑘
) ,

(33)

where 𝜇 = max(𝜇
𝑖
), 𝑖 = 1, . . . , 𝑙.

For any scalar 𝜖 > 0, define the following impulsive
integrodifferential equation:

𝑉
𝜖
(𝑡) = 𝜆𝑉

𝜖
(𝑡) + 𝛽𝑒

−𝜂𝑡

𝑉
2
(0)

+ 𝛽𝛾∫

𝑡

0

𝑒
−𝜂(𝑡−𝛼)

𝑉
𝜖
(𝛼) 𝑑𝛼

+ 𝜖, 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑉
𝜖
(𝑡
+

𝑘
) = 𝜇𝑉

𝜖
(𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑉
𝜖
(0) = 𝑉

1
(0) .

(34)

It then follows from Lemma 4 that 𝑉
1
(𝑡) ≤ 𝑉

𝜖
(𝑡), for all 𝑡 ∈

(0, 𝑡
𝑘
].
The solution to (34) can be expressed as follows:

𝑉
𝜖
(𝑡) = 𝑊 (𝑡, 0) 𝑉

𝜖
(0) + ∫

𝑡

0

𝑊(𝑡, 𝑠)

× {𝜖 + 𝛽𝑒
−𝜂𝑠

𝑉
2
(0)

+𝛽𝛾∫

𝑠

0

𝑒
−𝜂(𝑠−𝛼)

𝑉
𝜖
(𝛼) 𝑑𝛼}𝑑𝑠,

(35)

where 𝑊(𝑡, 𝑠) (𝑡, 𝑠 ≥ 0) is the Cauchy matrix of the linear
impulsive system

̇𝑢 (𝑡) = 𝜆𝑢 (𝑡) , 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] ,

𝑢 (𝑡
+

𝑘
) = 𝜇𝑢 (𝑡

𝑘
) , 𝑘 = 1, 2, . . . , 𝑡 = 𝑡

𝑘
.

(36)

Furthermore, noting that𝜇 < 1 and 𝑡
𝑘+1
−𝑡
𝑘
≤ 𝛿, it follows

from condition (21) that𝑊(𝑡, 𝑠) could be estimated as

𝑊(𝑡, 𝑠) = 𝑒
𝜆(𝑡−𝑠)

∏

𝑠<𝑡𝑘≤𝑡

𝜇 ≤ 𝑒
𝜆(𝑡−𝑠)

𝜇
((𝑡−𝑠)/𝛿)−1

=
1

𝜇
𝑒
−((1/𝛿) ln(1/𝜇)−𝜆)(𝑡−𝑠)

.

(37)

Defining �̂� = (1/𝛿) ln(1/𝜇) − 𝜆, one has

𝑉
𝜖
(𝑡) ≤

1

𝜇
𝑒
−
̂
𝜆𝑡

𝑉
𝜖
(0)

+
1

𝜇
∫

𝑡

0

𝑒
−
̂
𝜆(𝑡−𝑠)

(𝜖 + 𝛽𝑒
−𝜂𝑠

𝑉
2
(0)) 𝑑𝑠

+
𝛽𝛾

𝜇
∫

𝑡

0

𝑒
−
̂
𝜆(𝑡−𝑠)

∫

𝑠

0

𝑒
−𝜂(𝑠−𝛼)

𝑉
𝜖
(𝛼) 𝑑𝛼 𝑑𝑠

=
1

𝜇
𝑒
−
̂
𝜆𝑡

𝑉
𝜖
(0) +

𝜖

𝜇�̂�

(1 − 𝑒
−
̂
𝜆𝑡

)

+
𝛽𝑉
2
(0)

𝜇 (�̂� − 𝜂)

(𝑒
−𝜂𝑡

− 𝑒
−
̂
𝜆𝑡

)

+
𝛽𝛾

𝜇
∫

𝑡

0

∫

𝑡

𝛼

𝑒
−
̂
𝜆(𝑡−𝑠)

𝑒
−𝜂(𝑠−𝛼)

𝑉
𝜖
(𝛼) 𝑑𝑠 𝑑𝛼

=
1

𝜇
𝑒
−
̂
𝜆𝑡

𝑉
𝜖
(0) +

𝜖

𝜇�̂�

(1 − 𝑒
−
̂
𝜆𝑡

)

+
𝛽𝑉
2
(0)

𝜇 (�̂� − 𝜂)

(𝑒
−𝜂𝑡

− 𝑒
−
̂
𝜆𝑡

) +
𝛽𝛾

𝜇 (�̂� − 𝜂)

× ∫

𝑡

0

(𝑒
−𝜂(𝑡−𝛼)

− 𝑒
−
̂
𝜆(𝑡−𝛼)

)𝑉
𝜖
(𝛼) 𝑑𝛼.

(38)

Noting from condition (21) that �̂� > 𝜂, then one gets

𝑉
𝜖
(𝑡) ≤

1

𝜇
𝑒
−
̂
𝜆𝑡

𝑉
𝜖
(0) +

𝜖

𝜇�̂�

+
𝛽𝑉
2
(0)

𝜇 (�̂� − 𝜂)

𝑒
−𝜂𝑡

+
𝛽𝛾

𝜇 (�̂� − 𝜂)

∫

𝑡

0

𝑒
−𝜂(𝑡−𝛼)

𝑉
𝜖
(𝛼) 𝑑𝛼.

(39)

Defining 𝑢(𝑡) = 𝑒
𝜂𝑡

𝑉
𝜖
(𝑡), 𝛼(𝑡) = (𝑉

𝜖
(0)/𝜇) + (𝛽𝑉

2
(0)/𝜇(�̂� −

𝜂)) + (𝜖/𝜇�̂�)𝑒
𝜂𝑡, and 𝛽(𝑡) = (𝛽𝛾/𝜇(�̂� − 𝜂)) = 𝜌, one obtains

𝑢 (𝑡) ≤ 𝛼 (𝑡) + ∫

𝑡

0

𝛽 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (40)

Then by using Lemma 5, it is easy to get

𝑢 (𝑡) ≤ (
𝑉
𝜖
(0)

𝜇
+

𝛽𝑉
2
(0)

𝜇 (�̂� − 𝜂)

) 𝑒
𝜌𝑡

+
𝜖𝜂

𝜇�̂� (𝜂 − 𝜌)

𝑒
𝜂𝑡

, 𝑡 ≥ 0,

(41)

which implies

𝑉
𝜖
(𝑡) ≤ (

𝑉
𝜖
(0)

𝜇
+

𝛽𝑉
2
(0)

𝜇 (�̂� − 𝜂)

) 𝑒
−(𝜂−𝜌)𝑡

+
𝜖𝜂

𝜇�̂� (𝜂 − 𝜌)

,

𝑡 ≥ 0.

(42)

Let 𝜖 → 0
+, one can get

𝑉
1
(𝑡) ≤ 𝑒

−(𝜂−𝜌)𝑡

(
𝑉
1
(0)

𝜇
+

𝛽𝑉
2
(0)

𝜇 (�̂� − 𝜂)

) . (43)
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Then it follows from (31) that

𝑉
2
(𝑡) ≤ 𝑒

−𝜂𝑡

𝑉
2
(0) + 𝑒

−(𝜂−𝜌)𝑡

(
𝑉
1
(0)

𝜇
+

𝛽𝑉
2
(0)

𝜇 (�̂� − 𝜂)

)
𝛾

𝜌
. (44)

Furthermore, it follows from condition (21) that 𝜂 > 𝜌.
Therefore together with (43) and (44), one can conclude that
condition (17) is satisfied; that is, the entrained collective
rhythms of multicellular systems (6) are achieved. The proof
is thus completed.

Remark 8. The obtained result not only provides a new
prospective to understand the interactions between the
external stimuli and intrinsic physiological rhythms but also
is potentially useful for the development of some medical
devices. The result presented here is more effective in com-
parison with those in [38–41], where it is assumed that all the
states are available for feedback purpose.

As a special case, if the positive matrices 𝑃
𝑖
and 𝑄

𝑖
in the

Lyapunov function (22) are chosen as the identity matrix, the
following simplified result could be readily obtained.

Corollary 9. For a given scalar 𝜇 ∈ (0, 1), if there exist scalars
𝜆
𝑖
> 0, 𝜇

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙, 𝜂

𝑖
> 0, 𝑖 = 𝑙 + 1, . . . , 𝑁, and

positive scalars 𝜖
1
, 𝜖
2
, 𝛿
1
, and 𝛿

2
such that

−𝐴
T
− 𝐴 + 𝜖

1
𝐼 + 𝜖
−1

1
𝐿
T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1


𝐺
𝑖𝑗



+ 𝑐𝛿
−1

1

𝑙

∑

𝑗=1


𝐺
𝑗𝑖


Γ
T
Γ ≤ 𝜆

𝑖
,

(𝐼 + 𝐸
𝑖𝑘
)
𝑇

(𝐼 + 𝐸
𝑖𝑘
) ≤ 𝜇
𝑖
,

(45)

for 𝑖 = 1, . . . , 𝑙 and

−𝐴
T
− 𝐴 + 𝜖

2
𝐼 + 𝜖
−1

2
𝐿
T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1


𝐺
𝑖𝑗



+ 𝑐𝛿
−1

2

𝑁

∑

𝑗=𝑙+1


𝐺
𝑗𝑖


Γ
T
Γ ≤ −𝜂

𝑖
,

(46)

for 𝑖 = 𝑙 + 1, . . . , 𝑁, and, for any impulsive time sequence {𝑡
𝑘
}

satisfying

𝛿 := sup
𝑘

{𝑡
𝑘+1

− 𝑡
𝑘
} <

ln (1/𝜇)
𝜂 + 𝜆 + (𝛽𝛾) / (𝜂𝜇)

, (47)

for 𝑘 = 0, 1, 2, . . ., where 𝜇 = max(𝜇
𝑖
), 𝜆 = max(𝜆

𝑖
), 𝑖 =

1, . . . , 𝑙, and 𝜂 = min(𝜂
𝑖
), 𝑖 = 𝑙 + 1, . . . , 𝑁, then the entrained

collective rhythms of multicellular systems (6) are achieved.

4. Numerical Example

In this section, a synthetic multicellular system composed
of 𝑁 Goodwin oscillators [33] is employed to illustrate the
effectiveness of the proposed control strategy.

DNA mRNA (m) Enzyme (e)

Product (p)
Repression

Substrate

Figure 1: Regulatory scheme of the Goodwin oscillator.

4.1. Goodwin Oscillators. TheGoodwin oscillator is a genetic
network with negative feedback formed in a cyclic way [33],
where metabolites repress the enzymes which are essential
for their own synthesis by inhibiting the transcription of
the molecule DNA to messenger RNA (mRNA) (see [42]
for more details). The regulatory scheme of the Goodwin
oscillator can be shown in Figure 1.

Amodifiedmodel reflecting the above regulation process
is given by

𝑑𝑚

𝑑𝑡
=

𝑢

𝑘
1
+ 𝑝𝛼

− 𝑎𝑚,

𝑑𝑒

𝑑𝑡
= V𝑚 − 𝑏𝑒,

𝑑𝑝

𝑑𝑡
= 𝑤𝑒 −

𝑐𝑝

𝑘
2
+ 𝑝

,

(48)

where 𝑚, 𝑒, and 𝑝 are the concentrations of mRNA, the
enzyme, and the product of the reaction of the enzyme and
a substrate, respectively. 𝑎, 𝑏, and 𝑐 are the degradation rates
of each component, respectively. 𝑢, V, and 𝑤 denote the rates
of transcription, translation, and catalysis, respectively. 𝑘

1

and 𝑘
2
are two positive constants. 𝛼 is the Hill coefficient

denoting the cooperativity of the end product repression. It
should be pointed out that model (46) is slightly different
from the model in [33]. By changing the linear degradation
formof the product toMichaelis-Menten form, the limit cycle
oscillations can occur for a lower value of the Hill coefficient
𝛼 (see [42] for details).

The parameters are chosen as 𝑎 = 𝑏 = 𝑐 = V = 𝑤 = 0.1,
𝑢 = 1, and 𝑘

1
= 𝑘
2
= 0.1, and the Hill coefficient 𝛼 is taken

as 𝛼 = 4. Given 4 random initial conditions, the simulation
results are recorded in Figures 2 and 3. Figure 2 shows the
time response of every products, and Figure 3 shows the limit
cycle of the oscillators in phase space.

4.2. Multicellular System Model. Without loss of generality,
we perform the simulation study on the scale-free network
structure, which is assumed to obey the scale-free distribu-
tion of the Barabási-Albert (BA) model [43]. The parameters
are given as𝑚

0
= 𝑚 = 5 and𝑁 = 60. Figure 4 is the generated

BA network graph.
The inner couplingmatrix Γ is given by Γ = diag(1, 1.2, 1),

and the regulation function in Michaelis-Menten form sat-
isfies condition (2). Assume that only the first 20 nodes are
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Figure 2: Time response of four oscillators.

6

5

4

3

2

1

0

x1

x2

x
3

3

2

1

0 0
1

2

3

4
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Figure 4: BA scale-free network graph.
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in BA network.

able to accept the external inputs. The parameters are chosen
as 𝑐 = 4, 𝜖

1
= 0.03, and 𝜖

2
= 0.01. The impulse magnitude

is given as 𝐸
𝑖𝑘
= −1.8, and impulse interval is chosen as

𝛿 = 0.4. It follows from Corollary 9 that the entrained
collective behaviors can be achieved. Figures 5, 6, and 7 show
the rhythmic errors of the multicellular systems.

It is noted that since only 20 measurable cells in the
network are subject to the external stimuli, the approaches in
[38–41], which need the information of all the states, cannot
be applied in this case.

5. Conclusion

In this paper, the entrained collective rhythmsofmulticellular
systems have been investigated. It is shown that the entrained
collective behavior can be achieved via impulsive control even
when only partial states of multicellular systems are available.
With the help of the newly developed impulsive integrod-
ifferential inequality, the sufficient conditions are derived
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to ensure the entrained collective rhythms of multicellular
systems. A synthetic multicellular system is finally used to
illustrate the effectiveness of the developed impulsive control
strategy.
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Small-world networks are ubiquitous in real-life systems, such as the World Wide Web, communication networks, and electric
power grids, and most of them are stochastic. In this paper, we present a model that generates a small-world network in a simple
deterministicway and analyze the relevant topological properties of themodel, such as the degree distribution, clustering coefficient,
and diameter.Meanwhile, according to the special structure of themodel, we derive analytically the exact numbers of spanning trees
in the planar networks. The results show that the model has a discrete exponential degree distribution, high clustering coefficient,
short diameter, and high entropy.

1. Introduction

Over the past decade, a lot of authors in different scientific
communities have made a concerted effort toward unveiling
and understanding the generic properties of complex net-
worked systems in nature and society [1–5]. One of the most
important things is the networkmodeling. Its importance lies
in the fact that it cannot only capture correctly the processes
that assembled the networks that we see today, but also help
to know how various microscopic processes influence the
network topology [6]. At present, many papers related to
complex network models are stochastic [7–9]. But the ran-
domness, while in line with the major features of real-life
networks, makes it harder to gain a visual understanding of
how networks are shaped and how do different nodes relate
to each other [10]. Therefore, it would be not only of major
theoretical interest but also of great practical significance to
construct models that lead to small-world networks in deter-
ministic fashions.

The first successful attempt to generate networks with
high clustering coefficients and small average path length
(APL) is the model introduced by Watts and Strogatz (WS

model) [11]. This pioneering work of Watts and Strogatz
started an avalanche of research on the properties of small-
world networks and the Watts-Strogatz (WS) model [12]. A
much-studied variant of the WS model was proposed by
Newman andWatts [13, 14]. In 1999, Kasturirangan proposed
an alternative model to WS small-world network [15]. Actu-
ally, small-world networks are characterized by three main
properties. First, their APL does not increase linearly with
the system size, but grows logarithmically with the number of
nodes or slower. Second, average node degree of the network
is small. Third, the network has a strong average clustering
[11] compared to an Erdös-Rényi (ER) random network [16,
17] of equal size and average node degree.

In this paper, we propose a generation algorithm of a
deterministic planar network model. And we analyze its top-
ological properties; the results show that our model has a
discrete exponential degree distribution, high clustering, and
small diameter, which appears small-world effect. In addition,
it is known to us that the number of spanning trees is an
important quantity characterizing the reliability of a network.
Generally, the number of spanning trees in a network can
be obtained by directly calculating a related determinant
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corresponding to the network. However, for a large network,
evaluating the relevant determinant is intractable [18].There-
fore, we propose a generic linear algorithm to count the num-
ber of spanning trees of the general planar networks. Using
the algorithm, we derive analytically the exact numbers of
spanning trees in the planar networks. Based on the number
of spanning trees, we determine the entropy of its spanning
trees.

2. Network Construction

The studied network is constructed in an iterative way. We
denote the network after 𝑡 steps by𝑀(𝑡). Then, the network
at step 𝑡 is built as follows. For 𝑡 = 1,𝑀(1) is a complete graph
with 4 nodes. For 𝑡 ≥ 2,𝑀(𝑡) is obtained from𝑀(𝑡 − 1) by
replacing each existing iterative edge in𝑀(𝑡 − 1) with𝑀(1).
The process is repeated till the desired graph order is reached;
see Figure 1.

Now, we compute the order and size of𝑀(𝑡). Let 𝐿V(𝑡),
𝐿
𝑒
(𝑡), and 𝐿

𝑖
(𝑡) denote, respectively, the set of vertices, edges,

and iterative edges introduced at step 𝑡, while 𝑉(𝑡) and 𝐸(𝑡)
are the set of vertices and edges of the graph 𝑀(𝑡). Notice
that, at each iteration, an iterative edge is replaced by two
new iterative edges and three noniterative edges. Therefore,
|𝐿
𝑖
(𝑡)| = 2|𝐿

𝑖
(𝑡 − 1)|, and |𝐿

𝑖
(𝑡)| = 3 ⋅ 2

𝑡−1

(𝑡 ≥ 1). As each
iterative edge introduces at the next iteration two new vertices
and five new edges, we have |𝐿V(𝑡)| = 2|𝐿 𝑖(𝑡−1)| = 3⋅2

𝑡−1

(𝑡 ≥

2) and |𝐿
𝑒
(𝑡)| = 5|𝐿

𝑖
(𝑡 − 1)| = 15 ⋅ 2

𝑡−2

(𝑡 ≥ 2). As 𝐿
𝑖
(1) = 3,

|𝐿V(𝑡)| = 4 and |𝐿𝑒(𝑡)| = 6. Thus,

|𝑉 (𝑡)| =

𝑛

∑

𝑖=0

𝐿V (𝑡)
 = 3 ⋅ 2

𝑡

− 2 (𝑡 ≥ 1) (1)

|𝐸 (𝑡)| =

𝑛

∑

𝑖=0

𝐿𝑒 (𝑡)
 = 15 ⋅ 2

𝑡−1

− 9 (𝑡 ≥ 1) . (2)

The average degree is then

⟨𝑘⟩ =
2 |𝐸 (𝑡)|

|𝑉 (𝑡)|
=
15 ⋅ 2
𝑡−1

− 9

3 ⋅ 2𝑡−1 − 1
. (3)

Obviously, for large 𝑡, it is approximately equal to 5.

3. Relevant Characteristics of the
Deterministic Small-World Network

In the following, we concentrate on the degree distribution,
clustering coefficient, and diameter.

3.1. Degree Distribution. The degree is the simplest and the
most intensively studied characteristic of an individual node.
The degree of a node 𝑖 is the number of edges in the whole
network connected to 𝑖. The degree distribution 𝑃(𝑘) is
defined as the probability that a randomly selected node has
exactly 𝑘 edges.

Let 𝑘
𝑖
(𝑡) be the degree of node 𝑖 at step 𝑡. All nodes can

be divided into two categories. (i) Interior nodes; for those
nodes that only connect to noniterative edges, their degree

t = 1 t = 2 t = 3

Figure 1: (Color online) construction of the deterministic planar
network𝑀(𝑡), showing three steps of the iterative progress.The solid
links are iterated links; the dashed links are noniterated links.

is always equal to 3. (ii) Noninterior nodes; one can see that
at any iteration, a iterative edge is replaced by two new iter-
ative edges and three new noniterative edges, so the degree
of noninterior nodes is added 4 at each iteration. Thus, the
degree 𝑘

𝑖
(𝑡) of a node 𝑖 satisfies the relation 𝑘

𝑖
(𝑡+1) = 𝑘

𝑖
(𝑡)+4.

Then, 𝑘
𝑖
(𝑡) = 4𝑡 − 1. And we have

𝑘
𝑖
(𝑡) = {

3, if the node 𝑖 is interior node,
4𝑡 − 1 if the node 𝑖 is noninterior node.

(4)

Let 𝑡
𝑖
be the step at which a node 𝑖 is created, then 𝑘

𝑖
(𝑡
𝑖
) = 3,

and hence, for noninterior nodes, we have

𝑘
𝑖
(𝑡) = 3 + 4 (𝑡 − 𝑡

𝑖
) . (5)

Therefore, the degree spectrum of the present network is a
series of discrete values: at step 𝑡, the number of nodes of
degree 𝑘 = 3, 7, 11, . . . , 4𝑡 − 9, 4𝑡 − 5, 4𝑡 − 1, equals 9 ⋅ 2𝑡−2 −
2, |𝐿(𝑡 − 2)|, |𝐿(𝑡 − 3)|, . . . , |𝐿(2)|, |𝐿(1)|, |𝐿(1)|, respectively.
Other values of degree are absent in the spectrum. Due to
the discreteness of this degree spectrum, it is convenient to
obtain its cumulative degree distribution [18]; that is,

𝑃cum (𝑘) =
∞

∑

𝑘

=𝑘

𝑃 (𝑘


) . (6)

Using (5), we have 𝑃cum(𝑘) = ∑
∞

𝑘

=𝑘
𝑃(𝑘


) = 𝑃(𝑡


≤ 𝜏 = (3 +

4𝑡 − 𝑘)/4). Hence,

𝑃cum (𝑘) =
𝜏

∑

𝑡

=0


𝑛 (𝑡


)


|𝑉 (𝑡)|
=
3 ⋅ 2
(3/4)+𝑡−(𝑘/4)

3 ⋅ 2𝑡 − 2
. (7)

Obviously, when the size of the network is large, the degree
distribution𝑃cum(𝑘) = 2

(3/4)−(𝑘/4) is an exponential of a power
of degree 𝑘.

3.2. Clustering Coefficient. Clustering coefficient is another
significant property of a network, which provides a measure
of the local structure within the network. The most imme-
diate measure of clustering is the clustering coefficient 𝐶

𝑖

for every node 𝑖. By definition, clustering coefficient 𝐶
𝑖
of

a node 𝑖 is the ratio of the total number 𝐸
𝑖
of edges that

actually exist between all 𝑘
𝑖
its nearest neighbors and the

number 𝑘
𝑖
(𝑘
𝑖
− 1)/2 of all possible edges between them; that

is, 𝐶
𝑖
= 2𝐸
𝑖
/[𝑘
𝑖
(𝑘
𝑖
− 1)]. The clustering coefficient 𝐶

𝑡
of the
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Figure 2: (Color online) the network𝑀(𝑡). The solid links are iterated links, the dashed links are noniterated links.

whole network is the average of all individual 𝐶
𝑖
s. For this

network, we can obtain the exact expression of the clustering
coefficient 𝐶

𝑡
. By construction, for any given node 𝑢 having

a degree 𝑘, there are 𝐸
𝑢
= 3 ⋅ (𝑘 − 1)/2 links that actually

exist among the neighbor nodes. So, one can see that there is
a one-to-one corresponding relation between the coefficient
𝐶(𝑘) of the node and its degree 𝑘:𝐶(𝑘) = 3/𝑘.This expression
indicates that the local clustering scales as 𝐶(𝑘) ∼ 𝑘−1.

Clearly, the number of nodes of degree 𝑘 = 3, 7, 11, . . . ,
4𝑡 − 9, 4𝑡 − 5, 4𝑡 − 1, equals 9 ⋅ 2𝑡−2 − 2, |𝐿(𝑡 − 2)|, |𝐿(𝑡 −
3)|, . . . , |𝐿(2)|, |𝐿(1)|, |𝐿(1)|, respectively. The clustering coef-
ficient 𝐶

𝑡
is given by the following:

𝐶
𝑡
=

9 ⋅ 2
𝑡−2

− 2+9 ⋅ ∑
𝑡−1

𝑖=2
((2
𝑡−1−𝑖

/ (4𝑖 − 1)) + (9/ (4𝑡 − 1)))

3 ⋅ 2𝑡 − 2
.

(8)

For infinite 𝑡, 𝐶
𝑡
approaches to a constant value of 0.8309, so

the clustering is high.

3.3. Diameter. Besides degree distribution and clustering
coefficient, average path length (APL) is another important
parameter to characterize a network. APL is defined as the
average number of edges along the shortest paths for all
possible pairs of network nodes. People have found the small-
world phenomenon in most real-life networks that behave
with a short APL. For most network models, it is hard to
obtain the analytic solution of APL. To demonstrate the short
distance between any pair of nodes, we can adopt another
parameter that is defined as the maximal communication
delay in the network. If a network has a small diameter,
then this network is undoubtedly with a short APL [19]. For
the network proposed, we denote the diameter at iteration
𝑡 as 𝐷(𝑡). According to Figure 1, we can clearly know that
𝐷(1) = 1 and 𝐷(2) = 2. At each iteration, one can see that
the diameter always lies between a pair of newly created
nodes at this iteration because at each iterative edge we paste
a complete graph 𝑀(1), so the diameter for the network
proposed has the following simple formula,𝐷(𝑡) = 𝑡.

Notice that the logarithm value of total number of nodes
|𝑉(𝑡)| is approximately equal to 𝑡 ln 2 for large 𝑡. Thus, the
diameter grows logarithmically with the number of nodes
and the average path length increases more slowly than
ln |𝑉(𝑡)|.

Based on the above discussions, our model is a determin-
istic small-world network because it is a sparse one with high
clustering and short diameter, which satisfies the necessary
property for small-world network.

4. Spanning Trees in the Network

In this section, we investigate the number of spanning trees
in this network. Our aim is to derive the exact formula for the
number of spanning trees and determine its entropy.

Let 𝑀(𝑡) be a planar graph generated by 𝑡 steps. Since
𝑀(𝑡) is symmetry, suppose that the edges V

1
V
2
, V
1
V
3
, and V

2
V
3

are weighted by (𝑥
𝑡−1
, 𝑦
𝑡−1
), where 𝑥

𝑡−1
denote the number of

spanning trees of the subgraph𝐹
1
and𝑦
𝑡−1

denote the number
of spanning forests of the subgraph 𝐹

1
with two components

such V
1
and V

2
belong to distinct components. Let 𝑁ST(𝑡)

be the number of spanning trees of 𝑀(𝑡). Figure 3 gives all
spanning trees of𝑀(1) and Figure 4 gives all spanning forests
with two components. Then, by Figure 2, we have

𝑁ST (𝑡) = 9𝑥
2

𝑡−1
𝑦
𝑡−1
+ 6𝑥
𝑡−1
𝑦
2

𝑡−1
+ 𝑦
3

𝑡−1
. (9)

According to Figures 2, 3, and 4, we obtain the recursion
relations between 𝑥

𝑡−1
and 𝑥

𝑡−2
as follows:

𝑥
𝑡−1
= 3𝑥
2

𝑡−2
+ 3𝑦
2

𝑡−2
+ 10𝑥

𝑡−2
𝑦
𝑡−2
,

𝑦
𝑡−1
= 2𝑦
2

𝑡−2
+ 6𝑥
𝑡−2
𝑦
𝑡−2
.

(10)

Let 𝑎
𝑡−1
= 𝑥
𝑡−1
/𝑦
𝑡−1

, by (10) it follows that

𝑎
𝑡−1
=
3 ⋅ 2
𝑡−1

− 2

2𝑡−1
, (11)

with the initial condition 𝑎
0
= 1. So, we get

𝑦
𝑡
=

𝑡−2

∏

𝑖=0

(20 −
3

2𝑖−2
)

2
𝑡−𝑖−2

. (12)
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Figure 3: The number of spanning trees of𝑀(1) is 16. The solid link indicates that one node is connected to another node; the dashed link
indicates that one node is not connected to another node.
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Figure 4: The number of spanning forests with two components of𝑀(1) is 8. The solid link indicates that one node is connected to another
node; the dashed link indicates that one node is not connected to another node.

By (9),

𝑁ST (𝑡) = 9𝑥
2

𝑡−1
𝑦
𝑡−1
+ 6𝑥
𝑡−1
𝑦
2

𝑡−1
+ 𝑦
3

𝑡−1
. (13)

Substituting (11) and (12) with (13), we have

𝑁ST (𝑡) = (10 −
3

2𝑡−2
)

2 𝑡−2

∏

𝑖=0

(20 −
3

2𝑖−2
)

3⋅2
𝑡−𝑖−2

. (14)

From (14), together with (1), we determine the entropy of
the number of spanning trees—an important quantity char-
acterizing network structure—for𝑀(𝑡) as the limiting value
[20, 21]:

𝐸ST (𝑡) = lim
|𝑉𝑡|→∞

ln𝑁ST (𝑡)
𝑉𝑡


≈ 1.2109. (15)

The obtained entropy of spanning trees in 𝑀(𝑡) can be
compared to those found in other networks. In the pseudo-
fractal fractal web [22], the entropy is 0.8959, a value less than
1, for the square lattice [23] and the two-dimensional Sier-
pinski gasket [24], their entropy of spanning trees is 1.16624
and 1.0486, respectively, and for the fractal scale-free lattice
[25], the entropy is 1.0397. And all of them have the same
average degree of 4.While in Apollonian network [26] having
the average degree of 6, the entropy is 1.3540, the entropy of
our model with average degree of 5 is between them.

5. Conclusion

In conclusion, we have investigated a simple model, which is
constructed in a deterministic way. Then, we have presented

an exhaustive analysis of many properties of the considered
model and obtained the analytic solutions for most of the
topological features, including degree distributions, cluster-
ing coefficient, and diameter. Finally, according to the special
structure, we give a general algorithm to count the number
of spanning trees of this model. Using the algorithm, we
obtained entropies of spanning trees.
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[17] P. Erdös and A. R. Rényi, “On the evolution of random graphs,”
Publication of the Mathematical Institute of the Hungarian
Academy of Sciences, vol. 5, pp. 17–61, 1960.

[18] Y. Z. Xiao and H. X. Zhao, “New method for counting the
numberof spanning trees in a two-tree network,” Physica A, vol.
392, pp. 4576–4583, 2013.

[19] Z.-M. Lu and S.-Z. Guo, “A small-world network derived from
the deterministic uniform recursive tree,”PhysicaA, vol. 391, no.
1-2, pp. 87–92, 2012.

[20] R. Burton and R. Pemantle, “Local characteristics, entropy-
and limit theorems for spanning trees and domino tilingsvia
transfer-impedances,”Annals of Probability, vol. 21, p. 1329, 1993.

[21] R. Lyons, “Asymptotic enumeration of spanning trees,” Combi-
natorics Probability and Computing, vol. 14, no. 4, pp. 491–522,
2005.

[22] Z. Z. Zhang, H. X. Liu, B. Wu, and S. G. Zhou, “Enumeration of
spanning trees in a pseudofractal scale-free web,” Europhysics
Letters, vol. 90, no. 6, Article ID 680029, 2010.

[23] F. Y. Wu, “Number of spanning trees on a lattice,” Journal of
Physics A, vol. 10, no. 6, article 4, pp. L113–L115, 1977.

[24] S.-C. Chang, L.-C. Chen, and W.-S. Yang, “Spanning trees on
the Sierpinski gasket,” Journal of Statistical Physics, vol. 126, no.
3, pp. 649–667, 2007.

[25] Z. Zhang, H. Liu, B.Wu, and T. Zou, “Spanning trees in a fractal
scale-free lattice,” Physical Review E, vol. 83, no. 1, Article ID
016116, 2011.

[26] Y. Lin, B.Wu, Z. Zhang, andG. Chen, “Counting spanning trees
in self-similar networks by evaluating determinants,” Journal of
Mathematical Physics, vol. 52, no. 11, Article ID 113303, 2011.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 521812, 5 pages
http://dx.doi.org/10.1155/2013/521812

Research Article
Scaling-Base Drive Function Projective Synchronization between
Different Fractional-Order Chaotic Systems

Ping Zhou1,2 and Kun Huang1,2

1 Center of SystemTheory and Its Applications, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China

2 Key Laboratory of Industrial Internet of Things & Networked Control, Ministry of Education,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Correspondence should be addressed to Ping Zhou; zhouping@cqupt.edu.cn

Received 14 September 2013; Accepted 11 November 2013

Academic Editor: Jianquan Lu

Copyright © 2013 P. Zhou and K. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A new function projective synchronization scheme between different fractional-order chaotic systems, called scaling-base drive
function projective synchronization (SBDFPS), is discussed. In this SBDFPS scheme, one fractional-order chaotic system is chosen
as scaling drive system, one fractional-order chaotic system is chosen as base drive systems, and another fractional-order chaotic
system is chosen as response system. The SBDFPS technique scheme is based on the stability theory of nonlinear fractional-
order systems, and the synchronization technique is theoretically rigorous. Numerical experiments are presented and show the
effectiveness of the SBDFPS scheme.

1. Introduction

In the past twenty years, many synchronization schemes
for chaotic systems have been presented [1–9]. However,
the function projective synchronization (FPS) scheme for
chaotic systems is extensively considered due to its potential
applications in secure communication. Because the drive
and response systems could be synchronized with a scaling
function matrix in FPS, the unpredictability of the scaling
function matrix in FPS scheme can enhance the security in
secure communication. In FPS, only two chaotic systems (one
drive system and one response system) are considered, and
the function matrix comes from one drive system.Therefore,
more than one drive system (two or three drive systems or
four drive systems, etc.) and one response system in FPS, and
the scaling function matrix coming frommultidrive systems,
are general case.Moreover,multidrive systems in FPS scheme
can additionally enhance the security of communication; this
is due to the fact that the transmitted signals can be split into
several parts, and each part can be loaded in different drive
systems, or the transmitted signals can be divided time into

different intervals, and the signals in different intervals can be
loaded in different drive systems [8].

Motivated by the previous part, we demonstrated a new
function projective synchronization scheme between differ-
ent fractional-order chaotic systems in this paper, which is
called scaling-base drive function projective synchronization
(briefly denoted by SBDFPS). In SBDFPS scheme, there are
two drive systems, which are called the scaling drive system
and the base drive system, respectively.The proposed SBDFPS
technique is based on the stability theory of nonlinear
fractional-order systems and is theoretically rigorous. The
SBDFPS between two-driver chaotic systems (fractional-
order Lorenz chaotic system as scaling drive system and
fractional-order Lu chaotic system as base drive system) and
one response chaotic system (fractional-order Chen chaotic
system) is achieved. Numerical experiments show the effec-
tiveness of the SBDFPS scheme.

This paper is organized as follows. In Section 2, the
SBDFPS scheme between different fractional-order chaotic
systems is demonstrated. In Section 3, some examples are
considered and show the effectiveness of the SBDFPS scheme.
Finally, the conclusion ends the paper in Section 4.
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2. The Scaling-Base Drive Function Projective
Synchronization (SBDFPS) between
Different Fractional-Order Chaotic Systems

The Caputo definition of the fractional derivative is used,
which is

𝐷
𝑞

𝑓 (𝑡) =
1

Γ (𝑚 − 𝑞)
∫

𝑡

0

𝑓
(𝑚)

(𝜏)

(𝑡 − 𝜏)
𝑞+1−𝑚

𝑑𝜏,

𝑚 − 1 < 𝑞 < 𝑚,

(1)

where 𝐷𝑞 is called the Caputo operator, 𝑚 is the first integer
which is not less than 𝑞, and 𝑓(𝑚)(𝑡) is the𝑚-order derivative
for 𝑓(𝑡); that is, 𝑓(𝑚)(𝑡) = 𝑑𝑚𝑓(𝑡)/𝑑𝑡𝑚.

Now, the SBDFPS scheme between different fractional-
order chaotic systems will be established. Consider the
fractional-order scaling drive chaotic system and base drive
chaotic system and one response chaotic system described by
systems (2), (3), and (4), respectively as follows:

𝐷
𝑞𝑑1𝑥
1
= 𝑓
𝑑1
(𝑥
1
) , (2)

𝐷
𝑞𝑑2𝑥
2
= 𝑓
𝑑2
(𝑥
2
) , (3)

𝐷
𝑞𝑟𝑦 = 𝑓

𝑟
(𝑦) +𝑀(𝑥

1
, 𝑥
2
, 𝑦) , (4)

where 0 < 𝑞
𝑑𝑖
< 1 (𝑖 = 1, 2) and 0<𝑞

𝑟
<1 are fractional-order.

𝑥
1
= (𝑥
11
, 𝑥
12
, . . . , 𝑥

1𝑛
)
𝑇, 𝑥
2
= (𝑥
21
, 𝑥
22
, . . . , 𝑥

2𝑛
)
𝑇, and 𝑦 =

(𝑦
1
, 𝑦
2
, . . . 𝑦
𝑛
)
𝑇 are state vectors of fractional-order chaotic

systems (2)–(4). 𝑓
𝑑𝑖
(𝑖 = 1, 2) : 𝑅

𝑛

→ 𝑅
𝑛 and 𝑓

𝑟
: 𝑅
𝑛

→ 𝑅
𝑛

are differential nonlinear functions.𝑀(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝑅

𝑛×1 is a
vector controller and will be designed.

Definition 1. Give the scaling drive system (2), the base drive
systems (3), and the response system (4). It is said to scaling-
base drive function projective synchronization (SBDFPS) if
there exist real nonzero constant matrix 𝐶

𝑖
∈ 𝑅
𝑛×𝑛

(𝑖 = 1, 2)

and nonzero scaling function matrix 𝑆
𝑖
(𝑥
𝑖
) ∈ 𝑅
𝑛×𝑛

(𝑖 = 1, 2)

such that
lim
𝑡→+∞

‖𝑒‖ = lim
𝑡→+∞

[𝐶1𝑆1 (𝑥1) + 𝐶2𝑆2 (𝑥2)] 𝑥1 − 𝑦
 = 0,

(5)

where ‖ ⋅ ‖ represents the Euclidean norm.

Remark 2. If 𝐶
1
̸= 0, 𝐶
2
= 0, then the SBDFPS scheme will be

turned into FPS. If𝐶
𝑖
= 0 (𝑖 = 1, 2), then the SBDFPS scheme

will be turned into a chaos control problem.

Remark 3. System (2) and systems (3) in SBDFPS scheme
may be integer order systems. So, the SBDFPS between
integer order chaotic system and fractional-order can be
achieved.

Let the SBDFPS error between the scaling drive system
(2), base drive systems (3), and response system (4) be defined
as

𝑒 = 𝑦 − [𝐶
1
𝑆
1
(𝑥
1
) + 𝐶
2
𝑆
2
(𝑥
2
)] 𝑥
1
, (6)

where 𝑒 = (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)
𝑇.

Now, choose vector controller𝑀(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝑅

𝑛×1 as

𝑀(𝑥
1
, 𝑥
2
, 𝑦)

= 𝐷
𝑞𝑟 {[𝐶

1
𝑆
1
(𝑥
1
) + 𝐶
2
𝑆
2
(𝑥
2
)] 𝑥
1
}

− 𝑓
𝑟
{[𝐶
1
𝑆
1
(𝑥
1
) + 𝐶
2
𝑆
2
(𝑥
2
)] 𝑥
1
} + 𝑀

1
(𝑥
1
, 𝑥
2
, 𝑦) 𝑒,

(7)

where feedback controller 𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝑅

𝑛×𝑛 will be de-
signed later.

By (6) and (7), system (4) can be changed as follows:

𝐷
𝑞𝑟𝑒

= 𝑓
𝑟
(𝑦) − 𝑓

𝑟
{[𝐶
1
𝑆
1
(𝑥
1
)+𝐶
2
𝑆
2
(𝑥
2
)] 𝑥
1
}+𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) 𝑒.

(8)
In this paper, we assume that

𝑓
𝑟
(𝑦) − 𝑓

𝑟
{[𝐶
1
𝑆
1
(𝑥
1
) + 𝐶
2
𝑆
2
(𝑥
2
)] 𝑥
1
} = 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦) 𝑒,

(9)

where 𝑀
2
(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝑅

𝑛×𝑛. In fact, many fractional-order
chaotic (hyperchaotic) systems satisfy this assumption.

By (9), system (8) can be rewritten as
𝐷
𝑞𝑟𝑒 = [𝑀

1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦)] 𝑒. (10)

By (10), the SBDFPS between the scaling drive system (2),
base drive systems (3), and response system (4) is turned into
the following problem: select suitable 𝑀

1
(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝑅

𝑛×𝑛

such that the system (10) asymptotically converges to zero.

Theorem 4. Select suitable matrix𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) ∈ 𝑅

𝑛×𝑛 such
that𝑀

1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦) satisfy the following condi-

tions:
(1)𝑀
𝑖𝑗
= −𝑀

𝑗𝑖
(𝑖 ̸= 𝑗)

(2)𝑀
𝑖𝑖
≤ 0 (all𝑀

𝑖𝑖
are not equal to zero),

where𝑀
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . 𝑛, ∀𝑀

𝑖𝑗
∈ 𝑅) are the entries of𝑀

1
(𝑥
1
,

𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦). Then the SBDFPS between the scaling

drive system (2), base drive systems (3), and response system
(4) can be reached.

Proof. Let 𝜆 be one of the eigenvalues of matrix 𝑀
1
(𝑥
1
,

𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦) and 𝜌 the corresponding nonzero

eigenvector. So, we have
[𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦)] 𝜌 = 𝜆𝜌. (11)

By (11), taking conjugate transpose on both sides of (11),
one can obtain

{[𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦)] 𝜌}

T
= 𝜆𝜌

H
, (12)

whereH denotes conjugate transpose.
Now, (12) multiplied right by 𝜌 plus (11) multiplied left by

𝜌
H. Thus

𝜌
H
{ [𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦)]

+[𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦)]

H
} 𝜌

= 𝜌
H
𝜌 (𝜆 + 𝜆) .

(13)
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Thus

𝜆 + 𝜆 = 𝜌
H
{ [𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦)]

+[𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦)]

H
}

𝜌

𝜌H𝜌
.

(14)

Using𝑀
𝑖𝑗
= −𝑀

𝑗𝑖
(𝑖 ̸= 𝑗, ∀𝑏

𝑖𝑗
∈ 𝑅), so

𝜆 + 𝜆 = 𝜌
H
(

2𝑀
11

0 ⋅ ⋅ ⋅ 0

0 2𝑀
22

⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

0 0 0 2𝑀
𝑛𝑛

)
𝜌

𝜌H𝜌
. (15)

Because𝑀
𝑖𝑖
≤ 0 (all𝑀

𝑖𝑖
are not equal to zero), we have

𝜆 + 𝜆 ≤ 0. (16)

That is,

arg 𝜆 [𝑀1 (𝑥1, 𝑥2, 𝑦) + 𝑀2 (𝑥1, 𝑥2, 𝑦)]
 ≥ 0.5𝜋. (17)

Therefore,

arg 𝜆 [𝑀1 (𝑥1, 𝑥2, 𝑦) + 𝑀2 (𝑥1, 𝑥2, 𝑦)]
 ≥ 𝑞𝑟

𝜋

2
. (18)

According to the stability theorem for nonlinear frac-
tional-order systems [9–11], (18) indicates that the equilib-
rium point 𝑒 = (0, 0, . . . , 0)𝑇 in system (10) is asymp-totically
stable; that is,

lim
𝑡→+∞

‖𝑒‖ = lim
𝑡→+∞

[𝐶1𝑆1 (𝑥1) + 𝐶2𝑆2 (𝑥2)] 𝑥1 − 𝑦
 = 0.

(19)

Equation (19) demonstrates that the SBDFPS between the
scaling drive system (2), base drive systems (3), and response
system (4) can be received. The proof is completed.

3. Illustrative Examples

To illustrate the effectiveness of the proposed synchronization
scheme, some examples are given and the numerical simula-
tions are yielded.

First, the improved version ofAdams-Bashforth-Moulton
numerical algorithm [12] for fractional-order nonlinear sys-
tems is introduced. Now, consider the nonlinear fractional-
order system

𝑑
𝑞1𝑧
1

𝑑𝑡𝑞1
= ℎ
1
(𝑧
1
, 𝑧
2
) ,

𝑑
𝑞2𝑧
2

𝑑𝑡𝑞2
= ℎ
2
(𝑧
1
, 𝑧
2
) ,

(20)

with initial condition (𝑧
1
(0), 𝑧
2
(0)). Let 𝜏 = 𝑇/𝑁 and 𝑡

𝑛
= 𝑛𝜏

(𝑛 = 0, 1, 2 . . . , 𝑁). Then, nonlinear fractional-order system
(20) is discretized as follows:

𝑧
1
(𝑛 + 1)

= 𝑧
1
(0) +

𝜏
𝑞1

Γ (𝑞
1
+ 2)

× [

[

ℎ
1
(𝑧
𝑝

1
(𝑛 + 1) , 𝑧

𝑝

2
(𝑛 + 1))

+

𝑛

∑

𝑗=0

𝛼
1,𝑗,𝑛+1

ℎ
1
(𝑧
1
(𝑗) , 𝑧
2
(𝑗))]

]

,

𝑧
2
(𝑛 + 1)

= 𝑧
2
(0) +

𝜏
𝑞2

Γ (𝑞
2
+ 2)

× [

[

ℎ
2
(𝑧
𝑝

1
(𝑛 + 1) , 𝑧

𝑝

2
(𝑛 + 1))

+

𝑛

∑

𝑗=0

𝛼
2,𝑗,𝑛+1

ℎ
2
(𝑧
1
(𝑗) , 𝑧
2
(𝑗))]

]

,

(21)

where

𝑧
𝑝

1
(𝑛 + 1) = 𝑧

1
(0) +

1

Γ (𝑞
1
)

𝑛

∑

𝑗=0

𝛽
1,𝑗,𝑛+1

ℎ
1
(𝑧
1
(𝑗) , 𝑧
2
(𝑗)) ,

𝑧
𝑝

2
(𝑛 + 1) = 𝑧

2
(0) +

1

Γ (𝑞
2
)

𝑛

∑

𝑗=0

𝛽
2,𝑗,𝑛+1

ℎ
2
(𝑧
1
(𝑗) , 𝑧
2
(𝑗)) ,

𝛼
𝑖,𝑗,𝑛+1

=

{{{{

{{{{

{

𝑛
𝑞𝑖+1 − (𝑛 − 𝑞

𝑖
) (𝑛 + 1)

𝑞𝑖 , 𝑗 = 0

(𝑛−𝑗+2)
𝑞𝑖+1

+(𝑛−𝑗)
𝑞𝑖+1

−2(𝑛−𝑗+1)
𝑞𝑖+1

, 1≤𝑗≤𝑛

1, 𝑗 = 𝑛 + 1,

(𝑖 = 1, 2) ,

(22)

𝛽
𝑖,𝑗,𝑛+1

=
𝜏
𝑞𝑖

𝑞
𝑖

[(𝑛 − 𝑗 + 1)
𝑞𝑖
− (𝑛 − 𝑗)

𝑞𝑖
] ,

0 ≤ 𝑗 ≤ 𝑛 (𝑖 = 1, 2) .

(23)

The error of this approximation is

𝑧𝑖 (𝑡𝑛) − 𝑧𝑖 (𝑛)
 = 𝑜 (𝜏

𝑝𝑖) , 𝑝
𝑖
= min (2, 1 + 𝑞

𝑖
)

(𝑖 = 1, 2) .

(24)
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Figure 1: Chaotic attractors of fractional-order Lorenz system (25)
for 𝑞
𝑑1
= 0.994.
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Figure 2: Chaotic attractors of fractional-order Lu system (26) for
𝑞
𝑑2
= 0.95.

The fractional-order Lorenz chaotic system [7] is depicted as

𝐷
𝑞𝑑1𝑥
11
= 10 (𝑥

12
− 𝑥
11
) ,

𝐷
𝑞𝑑1𝑥
12
= 28𝑥

11
− 𝑥
12
− 𝑥
11
𝑥
13
,

𝐷
𝑞𝑑1𝑥
13
= 𝑥
11
𝑥
12
−
8𝑥
13

3
.

(25)

The fractional-order Lorenz system (25) exhibits chaotic
behavior for fractional-order 𝑞 ≥ 0.993. The chaotic attractor
for 𝑞
𝑑1
= 0.994 is shown in Figure 1.

The fractional-order Lu chaotic system [13] is described
as

𝐷
𝑞𝑑2𝑥
21
= 36 (𝑥

22
− 𝑥
21
) ,

𝐷
𝑞𝑑2𝑥
22
= 20𝑥

22
− 𝑥
21
𝑥
23
,

𝐷
𝑞𝑑2𝑥
23
= 𝑥
21
𝑥
22
− 3𝑥
23
.

(26)

Its chaotic attractor for 𝑞
𝑑2
= 0.95 is illustrated in Figure 2.

The fractional-order Chen chaotic system [7] is

𝐷
𝑞𝑟𝑦
1
= 35 (𝑦

2
− 𝑦
1
) ,

𝐷
𝑞𝑟𝑦
2
= −7𝑦

1
+ 28𝑦

2
− 𝑦
1
𝑦
3
,

𝐷
𝑞𝑟𝑦
3
= 𝑦
1
𝑦
2
− 3𝑦
3
.

(27)

The fractional-order Chen system (27) exhibits chaotic
behavior for fractional-order 𝑞

𝑟
≥ 0.83. The chaotic attractor

of fractional-order Chen system (27) for 𝑞
𝑟
= 0.85 is dis-

played in Figure 3.
Now, the fractional-order Lorenz chaotic system (25) is

selected as the scaling drive system, the fractional-order Lu
chaotic system (26) is selected as the base drive system, and
the fractional-order Chen chaotic system (27) is selected as

−40
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0

0 0

40

20

50

20

y
3

y
2

y1

Figure 3: Chaotic attractors of fractional-order Chen system (27)
for 𝑞
𝑟
= 0.85.

response system. Our goal is to realize the SBDFPS between
the scaling drive system (25), the base drive system (26), and
response system (27).

According to the results in Section 2, we derive that

𝑀
2
(𝑥
1
, 𝑥
2
, 𝑦) = (

−35 35 0

−7 − 𝑦
3
28 −𝛽

𝑦
2

𝛽 −3

) , (28)

where 𝛽 = 𝑥
11
[∑
2

𝑖=1
𝐶
𝑖
𝑆
𝑖
(𝑥
𝑖
)]
11

+ 𝑥
12
[∑
2

𝑖=1
𝐶
𝑖
𝑆
𝑖
(𝑥
𝑖
)]
12

+

𝑥
13
[∑
2

𝑖=1
𝐶
𝑖
𝑆
𝑖
(𝑥
𝑖
)]
13
, [∑2
𝑖=1

𝐶
𝑖
𝑆
𝑖
(𝑥
𝑖
)]
1𝑗
(𝑗 = 1, 2) are the ele-

ments of matrix [∑2
𝑖=1

𝐶
𝑖
𝑆
𝑖
(𝑥
𝑖
)]. 𝐶
𝑖
∈ 𝑅
3×3

(𝑖 = 1, 2) are real
nonzero constant matrix.

Now, we select matrix𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) as follows:

𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) = (

0 −28 + 𝑦
3
−𝑦
2

0 −30 0

0 0 0

) . (29)

Then,

𝑀
1
(𝑥
1
, 𝑥
2
, 𝑦) + 𝑀

2
(𝑥
1
, 𝑥
2
, 𝑦) = (

−35 7 + 𝑦
3
−𝑦
2

−7 − 𝑦
3

−2 −𝛽

𝑦
2

𝛽 −3

) .

(30)

According toTheorem 4, we can obtain the following:

arg 𝜆 [𝑀1 (𝑥1, 𝑥2, 𝑦) + 𝑀2 (𝑥1, 𝑥2, 𝑦)]
 ≥ 𝑞𝑟

𝜋

2
. (31)

This result means that

lim
𝑡→+∞

‖𝑒‖ = lim
𝑡→+∞

[𝐶1𝑆1 (𝑥1) + 𝐶2𝑆2 (𝑥2)] 𝑥1 − 𝑦
 = 0.

(32)

Equation (32) implies that the SBDFPS between the scal-
ing drive system (25), base drive systems (26), and response
system (27) can be received.

For example, let

𝐶
𝑖
= diag (1, 1, 1) (𝑖 = 1, 2) ,

𝑆
1
(𝑥
1
) = diag [35 (𝑥

12
− 𝑥
11
) , −7𝑥

11
− 𝑥
11
𝑥
13
, 𝑥
11
𝑥
12
] ,

𝑆
2
(𝑥
2
) = diag [10 (𝑥

22
− 𝑥
21
) , −𝑥
22
− 𝑥
21
𝑥
23
, 𝑥
21
𝑥
22
− 𝑥
23
] .

(33)
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Figure 4:The SBDFPS errors between the scaling drive system (25),
base drive systems (26), and response system (27).

The initial conditions are (𝑥
11
, 𝑥
12
, 𝑥
13
) = (2, 2, 2), (𝑥

21
,

𝑥
22
, 𝑥
23
) = (1, 1, 1), and (𝑦

1
, 𝑦
2
, 𝑦
3
) = (5, −24, 8), respectively.

The numerical experiments are illustrated in Figure 4.

4. Conclusions

In this paper, the scaling-base drive function projective
synchronization (SBDFPS) is presented.The SBDFPS scheme
is different from the FPS scheme because the scaling function
matrix comes from more than one chaotic system (the
scaling drive system and the base drive system).The SBDFPS
between the fractional-order Lorenz chaotic system (scaling
drive system), the fractional-order Lu chaotic system (base
drive system), and the fractional-order Chen chaotic system
(response system) is taken for example. Numerical experi-
ments show the effectiveness of the SBDFPS scheme.
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We study opinion dynamics in social networks and present a new strategy to control the invasive opinion. A developed continuous-
opinion evolution model is proposed to describe the mechanism of making decision in closed community. Two basic strategies of
evolution are determined, and some basic features of our new model are analyzed. We study the different invasive strategies. It is
shown via using Monte Carlo simulations that our new model shows different invulnerability with traditional model. Node degree
and cohesion in invasive small-world community plays less significant role when the evolution of opinion is continuous rather
than dichotomous. Using simulation, we find one kind of Influential Nodes that can affect the outcome dramatically, while these
Influential Nodes are sensitive to their node degree and the evolution weight. Thus, we develop invasive control strategy based on
these features.

1. Introduction

There is long history in social science to learn social
phenomenon such as opinion cluster and invasion. Some
simple mathematic models are helpful tools to simulate such
phenomenon. Recently the mathematic models learning the
invasion and spread of new opinion have received a lot of
attention [1–3]. At present, the spread rumors in real world
become easier and can make huge influence on our daily life
[4, 5]. Thus, the study of the dynamics of different opinions
and rumors has gradually become one of the most popular
fields in the study of complex networks [6, 7].

Some other questions come out with gradually deepening
the study of rumors spread. It is known that some rumors
and ideas seem harmless at first while they can do great
harm to the health of the network if they are not controlled.
To deal with such problem, many researches developed
lots of strategies [8–12]. Community structure appears to
be essential for the evolution of invasive opinion [13, 14].
Some researches focus on a few nodes which have large
connective like Targeted immunization [11]. Furthermore,

some researches also use real world data and cases to develop
and evaluate their control strategy [15–17].

In order to understand the role of the Influential Node
and the different strategies of opinion evolutions in the
opinions dynamics, for simplicity, a continuous-opinion
model is proposed in this paper, including two strategies of
opinion evolution. It does not aim at an exact description
of reality. However, it focuses on discovering some essential
and fundamental features of an otherwise very complex and
multiple phenomena by doing some crude approximations.
Therefore, we useMonte Carlomethod to simulate the reality
and determine the sensitivity of the model and our new
strategy in the different situation.

In this paper, to understand the difference between
traditional dichotomousmodel and our new continuesmodel
and the mechanism of the Influential Node in the opinions
dynamics, we focus on the following four questions. First
of all, how can the different evolution strategies affect the
dynamic of the model? Are there any transition points
where the model is very sensitive? The answer can help us
better understanding the dynamic of this continues-opinion
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evolution model.Then we would like to know how the size of
the invasive community and its node degree can contribute
to the outcome of the model when the proportion of the
strategies is fixed. Some feature of network in former study
[18] may not be suitable for continues model. It is also known
that the community structure can affect the evolution. So
could the community structure affect the evolution of the
network? If so, is the effect the same as that in the traditional
dichotomous model? Last, in order to know the role it plays
in the evolution, it is critical to know how Influential Node
can contribute to the evolution of the network and are such
nodes sensitive to some factors such as node degree. If we
have better understanding of this kind of nodes, we could
develop new strategy to control the spread of invasive rumor.

In the first part, we investigate the outcome of the model
with different proportion of the opinion evolution strategy.
The first strategy of evolution is the change of the topology
structure of the network, and the second strategy is the
intersecting opinion of the different points in the network.
Thedifferent proportion of two basic strategies will lead to the
different outcome of the dynamic model. If the model only
uses the first way, the opinion of every node will not change,
while the topology structure of the networkwill change all the
time. Hence, the entire networkwill evolute into several small
communities, and there should be no intersects between two
different networks in certain time. When the model only
uses the second way, the opinion of different nodes will
change while the topology structure will remain the same. In
this situation, the model will develop into single connected
network where the structure remains the same.We define the
term “consensus”: if the value of every node in the network
converge to a certan interval, it means this model makes
“consensus”. Using Monte Carlo method, we simulate the
situation for different length of time.We count the probability
of consensus for every 1% change of the proportion of the two
strategies.

In the second part, we focus on some other questions. At
first, we assign the same value of opinion to all the nodes in
the network. Then we develop two major kinds of invasion
for the contrary opinion.The first way is invasion with small-
world community. Some former studies show that the size of
community and the node degree are twomajor factors for the
outcome. Therefore, we simulate the outcome with different
size of invasive small-world and its node degree. We define
Influential Node in opinion invasion. This kind of nodes has
more node degree and better stability. Then we study the
different factors which can affect the power of Influential
Node and develop new control strategy to impede the spread
of invasive opinion.

2. Model Description

2.1. Symbol Description of Network. We develop our contin-
ues-opinion model based on our former discrete multiopin-
ion model [19].

2.2. Two Strategies of the Evolution. For the first strategy, the
opinion of every node will not change, while the topology
structure of the network will change every step. Hence, if

Table 1: Symbols table.

Symbol Description
𝑁 The number of nodes in the entire network
𝑛 The number of Influential Nodes
𝑀 The proportion of the invasive nodes
𝑀𝑁 The number of invasive nodes

𝐾
The average number of edges for every node (average
node degree)

𝑚
The average number of extra edges for the Influential
Nodes

𝑘
The average number of extra edges for the nodes in the
invasive community

𝑃 The proportion of the first way of process
𝑡 Time (or the number of the steps)
𝑇 The length of experiment
𝑤 The evolution weight

𝑑
𝑖𝑗
(𝑡)

If nodes 𝑖 and 𝑗 connect at time 𝑡 𝑑
𝑖𝑗
(𝑡) = 1. Otherwise

𝑑
𝑖𝑗
(𝑡) = 0

𝜎
𝑖
(𝑡) The opinion value of node 𝑖 at time 𝑡

the node 𝑖 connects with the node 𝑗 and their opinions
are different, the node 𝑖 will remove the edge to the 𝑗 and
randomly choose. And the node 𝑖 will then find a note which
has the same opinion to develop a new edge.

For the second strategy, the opinions are intersected with
the different connected nodes in the network. In some former
work, the network is dichotomous. Therefore, the process of
this strategy can be expressed as a differential equation as
follows (see Table 1 for the description of the symbols):

𝜎
𝑖
(𝑡 + 1) = sign[

[

𝑁

∑

𝑗=1

𝑑
𝑖𝑗
𝜎
𝑖
(𝑡) 𝜉
𝑖𝑗
(𝑡) + ℎ

𝑖
(𝑡)]

]

. (1)

However, in real world, new kind of invasive opinion may
intersect with traditional opinion and therefore develop
new kind of opinion. For example, some people would
have neutralized opinion when facing two extreme opinions.
Therefore, we propose our continues-opinion model as fol-
lows:

𝜎
𝑖
(𝑡 + 1) = (1 − 𝑤)[

[

𝑁

∑

𝑗=1

𝑑
𝑖𝑗
𝜎
𝑗
(𝑡)]

]

+ 𝑤 [𝜎
𝑖
(𝑡)] . (2)

It reflects the fact that for every node, its own opinion and the
opinion of its connected nodes can contribute to its opinion
in the future. The difference is that, in this paper, extreme
opinions can be neutralized and develop to new opinion.

3. The Sensitivity of the Model to the
Proportion of Two Strategies

In order to determine how the proportion of two strategies
can affect the evolution, we stimulate by using Monte Carlo
method.
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Figure 1: The 𝑦-axis represents the number of win in 100 experi-
ments. The 𝑥-axis represents the proportion of two strategies.

First of all, we define “consensus” that if at the end of
experiment, every in the network converges to an interval
and the range of this interval is less than 0.2. We consider the
situation that 𝑁 = 1000 and the initial value of every node
is obeying uniform distribution on [−1, 1]. We simulated the
probability of consensus with different proportion of two
strategies.

Figure 1 shows that, compared with traditional model,
nodes in continues-model aremore likely tomake consensus.
We can see that the probability for consensus is high when
the proportion of first strategy is little. The probability for
consensus decreased sharply by the increase of the proportion
after 𝑃 > 0.8. Hence, in conclusion, we determine that the
phase transition point is around 0.85 when 𝑇 = 50 and will
increase a little with the increase of 𝑇.

4. Evolution under Small-World
Invasive Strategy

Some researches study some features of small-world commu-
nity. Connection of the community can make the node in it
prefer grouping together and therefore make critical impact
on opinion evolution in the entire network [18].

First, we construct a scale-free network and the value of
every node is 1. Then the invasive nodes become −1. In order
to define the outcome of the invasion, we define the term
“strong win” if all values of the nodes in the network converge
to [−1, −0.75] and “weak win” if all the values of the nodes are
smaller than 0.

We consider the situation that 𝑁 = 1000 and𝑀 = 0.4,
0.42, and 0.45. Then we randomly add some extra nodes into
invasive community. Therefore, we can have a small-world
invasive community.

Figure 2 shows the probability of weak win for different
node degree in invasive community. When 𝑀 = 0.45 in

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

M = 0.4

M = 0.42

M = 0.45

Figure 2: The 𝑦-axis represents the number of weak win in 100
experiments. The 𝑥-axis represents 𝑘.

new model, if invasive community wants to have “weak
win,” it should have greater average node degree compared
with traditional model. Although node degree still can help
minority succeed, the effect is much smaller.

Remark 1. In continues-opinion evolution model, small-
world communities are less likely to success.They needmuch
dense of connection tomaintain their impact on the network.
Moreover, size of community plays more significant role in
evolution. In other word, the communities with large size are
more likely to success.

5. Evolution under Influential Node
Invasive Strategy

It is known that in the real network, some celebrities can
make far more impact to the opinion evolution compared
with normal people. Therefore, we present a kind of node
to simulate such people. This kind of node has two main
characteristics.

(1) They have much more node degrees compared with
other nodes.

(2) They are less likely to change their own opinion value
compared with ordinary nodes.

In order to have better understanding of this kind of
nodes, we investigate three factors of such nodes:

(1) quantity: 𝑛
(2) Their influence (their node degree):𝑚
(3) how can they be influenced by other nodes: 𝑤.

Therefore, we simulate with different parameters to find
out how these three factors can affect the success rate for the
invasive community.
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Figure 3: The 𝑦-axis represents the number of strong win in 100
experiments. The 𝑥-axis represents 𝑛, when 𝑚 = 50.

5.1.The Effect of theNumber of Influential Nodes. Weconsider
the situation that 𝑁 = 1000, 𝑤 = 1, 𝑚 = 50, and𝑀 = 0.1,
0.2, and 0.5.Thenwe randomly choose𝑁𝑀 nodes in invasive
nodes and 𝑛 invasive nodes as Influential Nodes. We do 100
experiments at different 𝑛 and find the probability for invasive
community to win.

Figure 3 shows the probability for invasive community
to win with different number of Influential Nodes. It shows
that the outcome is sensitive to the number of Influential
Nodes. When𝑀 = 0.1, 𝑛 < 10, there seems to be no chance
for invasive community to win. However, the probability
increases abruptly around 𝑛 = 12. The community with
smaller sizemay needmore Influential Nodes to keep success.
Hence, near the transition point, controlling the number of
the Influential Nodes is an economic and efficient way to
control the invasive opinion.

Remark 2. The spread power of invasive opinion is sensitive
to the number of Influential Nodes. To control the spread of
invasive opinion, controlling the number of Influential Nodes
is an economic and efficient strategy when 𝑛 is not large.

5.2. The Effect of the Degree of Influential Nodes. We consider
the situation that 𝑁 = 1000, 𝑤 = 1, 𝑛 = 10, and 𝑀 =
0.3, 0.4, and 0.5. Then we randomly choose 𝑁𝑀 nodes in
invasive nodes and 𝑛 invasive nodes as Influential Nodes. We
do 100 experiments with different node degree and find the
probability for invasive community to win.

Figure 4 shows the probability for invasive community to
winwith different node degree. It is known that the celebrities
with more influence and more followers can better influence
the opinion evolution. In our model, we define the influence
as node degree. In this simulation we find that the model is
also sensitive to the node degree of Influential Nodes. With
low degree, invasive community still has very small chance to
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Figure 4: The 𝑦-axis represents the number of strong win in 100
experiments. The 𝑥-axis represents𝑚, when 𝑛 = 10.

win. However, with the increase of degree, Influential Nodes
can play much greater impact on evolution.

Remark 3. The spread power of invasive opinion is sensitive
to the degree of Influential Nodes. To control the spread of
invasive opinion, controlling the degree of Influential Nodes
is an economic and efficient strategy when 𝑛 cannot be
controlled.

5.3. The Effect of the Evolution Weight of Influential Nodes. In
real world social network, evolution weight for every single
point can be considered as the influence of this individual.
The nodes with great weight can make more impact on the
opinion evolution.

We consider the situation that 𝑁 = 1000, 𝑤 = 1, 𝑛 =
15, and𝑀 = 0.45. Then we randomly choose 𝑁𝑀 nodes in
invasive nodes and 𝑛 invasive nodes as Influential Nodes. We
do 100 experiments with different evolution weight 𝑤.

In our pretreatment, we find that if 𝑤 < 1, the nodes
in entire network would never converge to the interval
[−1, −0.75]. Therefore, we try to use Convergence Interval
Midpoint to evaluate the impact of Influential Nodes on the
evolution.

Figure 5 shows the Convergence Interval Midpoint for
every experiment. It shows that with the decrease of 𝑤, the
Convergence Interval Midpoint approaches to 0 abruptly.
Though it still can make negative influence on the entire
network, the loss would be reduced a lot. Even a little
reduction of𝑤 can contribute a lot to control the harm of the
invasion.

Remark 4. The opinion evolution is sensitive to the evolution
weight of Influential Nodes. Although reducing 𝑤 cannot
control the spread of invasive opinion, it can reduce the
negative impact on the entire network. Therefore it can help
the entire network recover much easier.
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6. Conclusions

In conclusion, we have investigated a developed continues-
opinion evolution model. Two basic strategies of evolution
are determined, and some basic features of our newmodel are
analyzed.Thenwe analyze Influential Node and its impact on
entire network. Different invasive opinion control strategies
are also considered. By analyzing the phase transition point,
we find that our new model is more likely to make consensus
comparedwith the discrete traditionalmodel. Ourmodel can
better characterize the process of the opinion neutralization.
In continues model, invasive small-world community is
less likely to achieve success. In other words, community
size is much more significant in this new model. Further
analysis shows that one kind of nodes can play critical role
in invasion. With a little proportion of Influential Nodes,
invasive community can achieve success even if the size is
small. Hence we investigate three factors which may affect
the outcome: quantity, node degree, and evolution weight. It
has been observed that Influential Nodes are sensitive to their
population and node degree. Though the evolution weight
cannot contribute to controlling the spread of invasion, it can
reduce the negative impact of invasion.Therefore, controlling
these three parameters of InfluentialNodes can be an effective
method to impede the invasion and reduce the potential loss.
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Bacterial quorum sensing (QS) is an important process of cell communication andmore andmore attention is paid to it. Moreover,
the noises are ubiquitous in nature and often play positive role. In this paper, we investigate how the noise enhances the QS though
the stochastic resonance (SR) and explain the mechanism of SR in this quorum sensing network. In addition, we also discuss the
interaction between the small RNA and the other genes in this network and discover the biological importance.

1. Introduction

In each cell, the survival of bacteria depends mainly on the
regulatory networks involved in quorum sensing, which is
a mechanism of cell communication that enable bacteria to
track population density by secreting and detecting extracel-
lular signaling molecules called autoinducers (AIs) [1, 2]. QS
can regulate the concentration of AIs and alter the expression
of genes to transmit information and carry out task. Recently,
the experiments [3, 4] show that the small RNAs play an
important role inQS network of the bacteriumVibrio harveyi
and indicate that there is a feedback loop between small RNAs
and QS master regulatory protein.

In order to investigate qualitatively the QS, we hope
to model the network by the use of mathematical tool.
Shen [5] constructs a mathematical model according to
Michaelis-Menten kinetics and mass action law and shows
the oscillatory dynamics of theQSnetwork regulated by small
RNA and obtains some theoretical results. As we know, there
are noises when the genes interact in cell, and the movement
of genes abides by Gaussian distribution. In this paper, we
will investigate how the noise enhances the QS though the
stochastic resonance (SR) and explain the mechanism of SR
in this quorum sensing network. Stochastic resonance is said
to be observed when increases in levels of unpredictable
fluctuations take place. for example, random noises cause an

increase in the metric of the quality of signal transmission or
detection performance rather than a decrease.

Hobert [6, 7] discussed common principles and concep-
tual differences between transcription factor and microRNA
regarding how these factors control gene expression. Shimoni
et al. [8], showed quantitatively that regulation by sRNA
is advantageous when fast responses to external signals are
needed, which is consistent with experimental data about its
involvement in stress responses.

Moreover, the studies show that noises often play the
constructive role, enhancing the response of a nonlinear
system and emerging the type of stochastic resonance (SR).
SR can be realized in a wide variety of systems, including
monostable systems [9], excitable systems [10], and bistable-
well systems [11, 12]. The effect of SR has equally been
examined in physical systems [13, 14] and chemical systems
[15, 16], as well as biological systems [17, 18]. These SR
phenomena are typically driven by periodic forces or noise
signals. Especially, Hou and Xin [19] found that noises
can induce circadian oscillations, when the corresponding
deterministic system does not oscillate; that is, stochastic
resonance occurs when circadian oscillation undergoes to
maximum at a certain noise level. However, it is worth noting
that noises can enhance the performance of oscillation when
the corresponding deterministic system does oscillate, which
suggests that stochastic resonance will occur for a particular
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Figure 1: Schematic diagram showing the gene regulation mediated by sRNA with a negative feedback loop. (a) Original model; (b) abstract
model.

noise intensity. Here, we also consider the QS network driven
by noises.

The rest of the paper is organized as follows. In Section 2,
we give the model description. In Section 3, we describe the
method of how to investigate the noises on this network. In
Section 4, we give some results and discuss the dynamics and
the mechanism of SR on QS network.

2. Model Description

Bacteria quorum sensing regulated by small RNA in Vibrio
harveyi was descripted by Miller an Bassler [1], Waters and
Bassler [2]; they descripted the network as in Figure 1.

For the quorum sensing network in Vibrio harveyi, the
phosphorylation of regulator protein LuxO can be controlled
by the interaction between AIs and sensors. At negligible
concentrations of AIs, that is, at low cell density (LCD), these
sensors act as kinases that transfer phosphate through LuxU
to LuxO [3, 4]. LuxO-P activates the expression of genes
encoding small RNAs which in turn posttranscriptionally
repress the QS master regulatory protein LuxR. At the high
cell density (HCD), AIs accumulate and bind to their cognate
sensors and the sensors act as phosphatases, reversing the
phosphate flow through theQS circuit.This results in dephos-
phorylation and inactivation of LuxO, so that the expres-
sion of genes encoding the small RNAs is terminated. To
understand the dynamics of this network, Shen [5] abstracted
Figure 1(b) from Figure 1(a) and investigated the dynamics
of the quorum sensing network regulated by Small RNAs

for some fixed parameters and found that Hopf bifurcation
occurred in this system when control parameter undergo a
critical value 𝜏

0
. However, we know that signal recognized

by living organisms is often noisy, and it is not typically
ignored. To further characterize the dynamics of quorum
sensing network, it is essential to consider the effect of noise
on Quorum Sensing network [5]. When noise is taken into
account, we can describe the dynamics of the model using
stochastic differential equations as follows:

𝑑 [LuxM]
𝑑𝑡

= 𝑎
1
− 𝑘
1
[LuxM] ,

𝑑 [AI]
𝑑𝑡

= 𝑘
1
[LuxM] − 𝑑

1
[AI] ,

𝑑 [LuxUp]

𝑑𝑡

= 𝑘
4
[𝑆
𝑘
] (U
0
− [LuxUp]) − 𝑘5 [𝑆𝑝] [LuxUp]

− 𝑑
3
[LuxUp] ,

𝑑 [sRNA]
𝑑𝑡

=

1 + 𝑘
7
[protein]𝑚 (𝑡 − 𝜏

1
) + 𝛿
1
[LuxOp]

1 + [protein]𝑚 (𝑡 − 𝜏
1
) + 𝛿
2
[LuxOp]

− 𝑟 [sRNA] [mRNA] − 𝑑
4
[sRNA] + 𝐷𝜉 (𝑡) ,
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𝑑 [mRNA]
𝑑𝑡

=
𝑘
8

1 + [protein]𝑚 (𝑡 − 𝜏
1
)

− 𝑟 [sRNA] [mRNA] − 𝑑
5
[mRNA] ,

𝑑 [protein]
𝑑𝑡

= 𝑘
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[protein] ,

𝑑 [Lux]
𝑑𝑡

=
𝑘
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1
)
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− 𝑑
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(1)

where

[O
0
] = [LuxO] + [LuxOp] [LuxOp]

=

[LuxOp]O1
𝑘 [U
0
] + (1 − 𝑘) [LuxOp]

,

𝑆
0
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𝑘
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0
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, 𝑘
0
= (

𝑘
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𝑘
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𝑘
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𝑘
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)

1/𝑛

.

(2)

In the above equations, [LuxM], [AI], [LuxU], [sRNA],
[mRNA], [protein], and [Lux] represent the concentrations
of LuxM, AI, LuxUp, sRNA, mRNA, protein, and Lux,
respectively. 𝑆

𝑘
represents sensor corresponding to the kinase

state and 𝑆
𝑝
represents the sensor corresponding to the

phosphatase state. LuxO is a kind of regulator protein. LuxO
represents phosphorylated LuxOp. 𝑘1 ∼ 𝑘6 represent the reac-
tion rate and the 𝑘

−1
∼ 𝑘
−3
, 𝑘
−5
∼ 𝑘
−6

represent the dissocia-
tion constant. 𝑘

7
∼ 𝑘
10
and 𝛿
1
∼ 𝛿
2
are the basal rate of tran-

scription in the absence of transcription. 𝑑
1
∼ 𝑑
7
represent

the degradation rate. 𝑟 is a rate for small RNA base pairs with
the target mRNA. 𝑚 and 𝑛 are Hill coefficients. 𝜏

1
and 𝜏
2
are

the time delays. The noise 𝜉(𝑡) is assumed as Gaussian noise
with zero mean and delta-correlated: ⟨𝜉(𝑡)𝜉(𝑡)⟩ = 𝛿(𝑡 − 𝑡



);
⟨⋅⟩ denote an ensemble average and𝐷 is noise intensity.

3. Methods

Quorum sensingmakes the concentration of protein circulate
from HCD to LCD and transmits the information. In real
world, the noises are ubiquitous and play an important role;
they can increase the periodical oscillation from HCD to
LCD and emerge the phenomena of stochastic resonance.
As we all know, the measures characterizing SR are present
widely in nonlinear system, including amplification factor,
signal-to-noise ratio, the degrees of coherence and of order.

For example, Fauve and Heslot used SNR (signal-to-noise
ratio) as a measure for characterizing SR phenomenon in
the Schmitt trigger system [20] subjected to a weak periodic
signal. Jung and Hänggi described SR phenomenon using
the measure of spectral power amplification (SPA) in the
standard double-well system [11] subjected to periodic forces
and noise signal. Although these measures showed some
differences in definition, they measure have a common
feature which undergo to the maximum for a certain optimal
noise intensity.Herewe adopt SNRas amethod for describing
SR phenomenon in the context of aQuorumSensing network
with time delay regulated by small RNAs, where SNR [21] is
defined as the ratio between the peak of the power spectrum
of a signal and the width of frequency corresponding to
height ℎ

1
= 𝑒
−1/2

∗ peak. The formula of SNR is as follows:

SNR =
𝐻 ∗ 𝜔

𝑝

Δ𝜔
, (3)

where𝐻 is the maximum of the power spectrum of a signal,
𝜔
𝑝
is the internal signal frequency, and Δ𝜔 is the width

of frequency corresponding to height ℎ
1

= 𝑒
−1/2

∗ 𝐻.
Additionally, the spectral estimate [22] at a given frequency
for a single discrete signal series 𝑥

𝑡
is

𝐶
𝑥𝑥
(𝑓) = 2Δ{𝑐

𝑥𝑥
(0) + 2

𝐿−1

∑

𝑘=1

𝑐
𝑥𝑥
(𝑘) 𝑤 (𝑘) cos (2𝜋𝑓𝑘Δ)} .

(4)

In the above equation, 𝑐
𝑥𝑥
(𝑘) is the autocovariance function

evaluated at the lag 𝑘, Δ is the distance between adjacent time
series values, 𝐿 is the length of signal series, and 𝑓 is the
frequency. The 𝑤(𝑘) is the window function; here, we adopt
Welch window [23] as window function. The autoamplitude
spectral estimate (power spectrum) is defined as 𝑃(𝑓) =

|𝐶
𝑥𝑥
(𝑓)|
2. In the following, we will make use of the above

method to discuss the QS network.

4. Results and Discussion

In the previous work, we know that there are periodical oscil-
lationswhen control parameter 𝜏(𝜏

1
+𝜏
2
) is larger than critical

value. Now, we mainly focus on the effect of noise when
𝜏 is larger than threshold value; that is, the corresponding
deterministic system is oscillatory. In order to investigate
the effect of noise, firstly, we integrate the corresponding
deterministic system and stochastic differential system (1) for
control parameter 𝜏 = 10.5 which is on the right of critical
value. Figure 2 shows the tendency for time history diagram
of small RNA concentration when 𝐷 = 0. These oscillations
of small RNA caused by different noise levels are presented in
Figure 3. Here, the parameter values that remain unchanged
during simulation are as follows: 𝑎

1
= 1, 𝑠

0
= 2, 𝑢

0
= 2,

𝑘 = 0.8, 𝑚 = 2, 𝑛 = 2, 𝑂
0
= 2, 𝑟 = 1, 𝑘

0
= 0.8, 𝑘

1
= 0.2,

𝑘
4
= 0.3, 𝑘

5
= 0.3, 𝑘

6
= 1, 𝑘

7
= 0.5, 𝑘

8
= 2, 𝑘

9
= 1, 𝑘

10
= 1,

𝑑
1
= 0.5, 𝑑

2
= 0.6, 𝑑

3
= 0.5, 𝑑

4
= 0.3, 𝑑

5
= 0.2, 𝑑

6
= 0.1,

𝑎
1
= 1, 𝑑

7
= 0.8, 𝛿

1
= 1, 𝛿

2
= 1.1, 𝜏

1
= 3.5, and 𝜏

2
= 7.

Comparing Figures 2 and 3, we clearly see that the
periodical oscillation of small RNA is not explicitly improved
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Figure 2: Time history diagram of small RNA concentration when
𝐷 = 0.
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Figure 3: The dynamics of system (1) for different noise intensities:
From bottom to top,𝐷 = 0.8,𝐷 = 0.05, and𝐷 = 0.01.

when small noise intensity is added in the system (1), while
the periodic oscillation of small RNA is almost completely
disturbed by strong noise amplitude; that is, the strong noise-
induced oscillations appear to be rather irregular. However,
we surprisingly find that the periodical oscillation of small
RNA is largely improved at a particular noise intensity.
Meanwhile, we can also illustrate the above results in terms
of power spectrum.

We know that the frequency of period oscillation is
about 0.029 as shown in Figure 2. The corresponding power
spectrum performs an obvious peak in the foundational
frequency, which can be seen in Figure 4. Additionally, the
power spectrum diagrams of small RNA that caused different
noise amplitudes are depicted in Figure 5. It is easy to find
that the peak values at the internal signal frequency (0.029)
for both the small and large noise amplitudes are smaller
than of the corresponding deterministic system. However,
the peak value in the second diagram in Figure 5 is larger
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Figure 4: The power spectrum of small RNA presented in Figure 2.
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Figure 5: The power spectrum of small RNA presented in Figure 3.

than that in the second diagram in Figure 4, showing that
the oscillation amplitude of small RNA is improved to a
large extent, which suggests that explicit internal stochastic
resonance occurs at a certain optimal noise intensity. This
means that the amplitude of these peaks will increase up
to a certain critical noise level when the noise intensity is
increased. After this point, information on the output signal
will degrade, so the performance of quorum sensing on
the network will be increased at the optimized noise and
will be propitious to communicate between intracelluar and
extracelluar.

Finally, to qualitatively characterize stochastic resonance,
here, we use SNR defined in Section 3 to illustrate this
phenomenon. The SNR versus noise intensity is presented
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in Figure 6. It is clear to show that the rapid rise of SNR
to a peak with varying noise amplitude, which implies that
explicit internal stochastic resonance appears at the peak
value. This means that the performance of such sustained
oscillation undergoes the maximum with the increment of
internal noise and reaches the optimal condition at the
maximum of peak. Previous studies on biological networks
often view noise as a nuisance, so the regulatory mechanisms
need to show robustness or resistance to random noise. In
our work, we show that noise can play constructive roles via
SR. It was well known that many biological systems can take
advantage of the benefits of noise for nonlinear transmission
and amplification of feeble information and increase the
information communication via quorum sensing in Vibrio
Harveyi.

5. Conclusions

In this work, we only focus on the dynamics of small RNAand
study the influence of noises on a Quorum Sensing network
regulated by small RNAs in Vibrio Harveyi. We demonstrate
that noise can enhance the performance of oscillation when
the corresponding deterministic system stays in the oscil-
latory region; that is, explicit internal stochastic resonance
appears at an optimal noise intensity. Such phenomenon
implies that explicit internal stochastic resonance might be
widely appeared in biological regulatory networks and can
speed up the information between intracellular and extra-
cellular in the quorum sensing network and also improve
the performance of small RNAs which regulate the quorum
sensing network.
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This paper investigates the synchronization problem for neural networks with leakage delay and both discrete and distributed
time-varying delays under sampled-data control. By employing the Lyapunov functional method and using the matrix inequality
techniques, a delay-dependent LMIs criterion is given to ensure that the master systems and the slave systems are synchronous. An
example with simulations is given to show the effectiveness of the proposed criterion.

1. Introduction

Since the pioneering works of Pecora and Carroll [1], the
synchronization of chaotic systems has received consider-
able attention due to its potential applications in biology,
chemistry, secret communication, cryptography, nonlinear
oscillation synchronization, and some other nonlinear fields
[2]. It has been shown that the neural networks can exhibit
chaotic behavior [3]. Therefore, it has a wider significance to
study the problem on the synchronization of chaotic neural
networks.

In the past decades, some works dealing with the syn-
chronization of neural networks have also appeared; for
example, see [4–22] and references therein. In [4], authors
discussed the synchronization and computation in a chaotic
neural network. In [7], the local synchronization and global
exponential stability for an array of linearly coupled identical
connected neural networks with delays were investigated
without assuming that the coupling matrix is symmetric
or irreducible; the linear matrix inequality approach was
used to judge synchronization with global convergence prop-
erty. In [8], authors presented an adaptive synchronization
scheme between two different kinds of delayed chaotic neural
networks with partly unknown parameters. An adaptive
controller was designed to guarantee the global asymptotic

synchronization of state trajectories for two different chaotic
neural networks with time delay. In [9], the concept of
𝜇-synchronization was introduced; some sufficient condi-
tions were derived for the global 𝜇-synchronization for
the linearly coupled neural networks with delayed cou-
plings, where the intrinsic systems are recurrently connected
neural networks with unbounded time-varying delays, and
the couplings include instant couplings and unbounded
delayed couplings. In [10], authors proposed a general array
model of coupled delayed neural networks with hybrid
coupling, which is composed of constant coupling, discrete-
delay coupling, and distributed-delay coupling. Based on
the Lyapunov functional method and Kronecker product
properties, several sufficient conditions were established to
ensure global exponential synchronization based on the
design of the coupling matrices, the inner linking matrices,
and/or some free matrices representing the relationships
between the system matrices. The conditions are expressed
within the framework of linear matrix inequalities, which
can be easily computed by the interior-point method. In
addition, a typical chaotic cellular neural network was used
as the node in the array to illustrate the effectiveness and
advantages of the theoretical results. In [11], the globally
robust synchronization problemwas investigated for an array
of coupled neural networks with uncertain parameters and
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time delays. Both the cases of linear coupling and nonlinear
coupling were simultaneously taken into account. Several
criteria for checking the robust exponential synchronization
were given for the considered coupled neural networks. In
[12], authors presented a new linear matrix inequality-based
approach to an 𝐻

∞ output feedback control problem of
master-slave synchronization of artificial neural networks
with uncertain time delay. In [13], the problem of feed-
back controller design to achieve synchronization for neural
network of neutral type with stochastic perturbation was
considered. Based on Lyapunovmethod and LMI framework,
a criterion for master-slave synchronization was obtained.
In [16], authors investigated the globally exponential syn-
chronization for linearly coupled neural networks with time-
varying delay and impulsive disturbances. Since the impulsive
effects discussed were regarded as disturbances, the impulses
should not happen too frequently. The concept of average
impulsive interval was used to formalize this phenomenon.
By referring to an impulsive delay differential inequality,
a criterion for the globally exponential synchronization of
linearly coupled neural networkswith impulsive disturbances
was given. In [18], the projective synchronization between
two continuous-time delayed neural systems with time-
varying delay was investigated. A sufficient condition for
synchronization of the coupled systemswithmodulated delay
was presented analytically with the help of the Krasovskii-
Lyapunov approach. In [19], the problem of guaranteed cost
control for exponential synchronization of cellular neural
networks with interval nondifferentiable and distributed
time-varying delays via hybrid feedback control was consid-
ered. Several delay-dependent sufficient conditions for the
exponential synchronization were obtained. In [20], authors
studied the synchronization in an array of coupled neural
networks with Markovian jumping and random coupling
strength. By designing a novel Lyapunov function and using
inequality techniques and the properties of random vari-
ables, several delay-dependent synchronization criteria were
derived for the coupled networks of continuous-time version.
Discrete-time analogues of the continuous-time networks
were also formulated and studied. In [21], authors considered
adaptive synchronization of chaotic Cohen-Grossberg neural
networks with mixed time delays. In [22], 𝑝th moment
exponential synchronization for stochastic delayed Cohen-
Grossberg neural networks with Markovian switching was
investigated.

On the other hand, with the development of networked
control systems, sampled-data control in the presence of
a constant input delay has been an important research
area in recent years, because networked control systems are
usually modeled as sampled-data systems under variable
sampling with an additional network-induced delay [23].
There are some results dealing with the synchronization
problem using sampled-data control; for example, see [23–
38] and references therein. In [23], a new approach, the
input delay approach, has been proposed that can deal well
with the sampled-data control problems. The main idea of
this approach is to convert the considered sampling period
into a time-varying but bounded delay and then accomplish
the sampled-data control or state estimation tasks by using

the existing theory of time-delayed systems. In [24], the
synchronization of chaotic system using a sampled-data
fuzzy controller was studied. In [25–27], the synchronization
for chaotic Lur’e systems using sampled-data control was
investigated; several criteria were given to ensure that the
master systems synchronize with the slave systems by using
Lyapunov-Krasovskii functional and LMI approach. In [28–
35], authors discussed the synchronization of chaotic system
and complex networks by using sampled-data control. In
[36–38], the synchronization of neural networks with time-
varying delays was considered; by using sampled-data control
method, several criteria for checking the synchronization
were obtained. To the best of the authors knowledge, there
is no results on the problem of the synchronization for neural
networkswith leakage delay and both discrete and distributed
time-varying delays [38].Therefore, there is a need to further
extend the synchronization results reported in [38].

Motivated by the previous discussions, the objective of
this paper is to study the synchronization for neural networks
with leakage delay and both discrete and distributed time-
varying delays by using sampled-data control approach. The
obtained sufficient conditions do not require the differentia-
bility of time-varying delays and are expressed in terms of
linear matrix inequalities, which can be checked numerically
using the effective LMI toolbox in MATLAB. An example is
given to show the effectiveness and less conservatism of the
proposed criterion.

Notations. The notations are quite standard. Throughout this
paper, R𝑛 and R𝑛×𝑚 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑛×𝑚 realmatrices. ‖⋅‖ refers
to the Euclidean vector norm. 𝐴𝑇 represents the transpose of
matrix 𝐴 and the asterisk “∗” in a matrix is used to represent
the term which is induced by symmetry. 𝐼 is the identity
matrix with compatible dimension. 𝑋 > 𝑌 means that 𝑋

and 𝑌 are symmetric matrices and that 𝑋 − 𝑌 is positive
definite. Matrices, if not explicitly specified, are assumed to
have compatible dimensions.

2. Model Description and Preliminaries

Consider the following neural networks with leakage delay
and mixed time-varying delays:

̇𝑥 (𝑡) = −𝐷𝑥 (𝑡 − 𝛿) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽 (𝑡) ,

(1)

for 𝑡 ≥ 0, where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈

R𝑛 is the state vector of the network at time 𝑡, 𝑛 cor-
responds to the number of neurons, 𝐷 ∈ R𝑛×𝑛 is a
positive diagonal matrix, 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑛, and
𝐶 ∈ R𝑛×𝑛 are the connection weight matrix, the discretely
delayed connection weight matrix, and the distributively
delayed connection weight matrix, respectively, 𝑓(𝑥(𝑡)) =

(𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇

∈ R𝑛 denotes the neu-
ron activation at time 𝑡, 𝐽(𝑡) = (𝐽

1
(𝑡), 𝐽
2
(𝑡), . . . , 𝐽

𝑛
(𝑡))
𝑇

∈ R𝑛

is an external input vector, and 𝛿, 𝜏(𝑡), and 𝜎(𝑡) denote the
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leakage delay, discrete time-varying delay and the distributed
time-varying delay, respectively.

In this paper, system (1) is regarded as the master system
and a slave system for (1) can be described by the following
equation:

̇𝑦 (𝑡) = −𝐷𝑦 (𝑡 − 𝛿) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑦 (𝑠)) 𝑑𝑠 + 𝑢 (𝑡) + 𝐽 (𝑡) ,

(2)

where 𝑢(𝑡) ∈ R𝑛 is the appropriate control input that will be
designed in order to obtain a certain control objective.

Throughout this paper, we make the following assump-
tions.

(H1) For any 𝑗 ∈ {1, 2, . . . , 𝑛}, there exist constants 𝐹
−

𝑗
and

𝐹
+

𝑗
such that

𝐹
−

𝑗
≤

𝑓
𝑗
(𝛼
1
) − 𝑓
𝑗
(𝛼
2
)

𝛼
1
− 𝛼
2

≤ 𝐹
+

𝑗
, (3)

for all 𝛼
1

̸=𝛼
2
.

(H2) The leakage delay 𝛿, the discrete time-varying delays
𝜏(𝑡), and the distributed time-varying delay 𝜎(𝑡)

satisfy the following conditions:

0 ≤ 𝛿, 0 ≤ 𝜏 (𝑡) ≤ 𝜏, 0 ≤ 𝜎 (𝑡) ≤ 𝜎, (4)

where 𝛿, 𝜏, and 𝜎 are constants.

By defining the error signal as 𝑒(𝑡) = 𝑦(𝑡) −𝑥(𝑡), the error
system for (1) and (2) can be represented as follows:

̇𝑒 (𝑡) = −𝐷𝑒 (𝑡 − 𝛿) + 𝐴𝑔 (𝑒 (𝑡)) + 𝐵𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠 + 𝑢 (𝑡) ,

(5)

where 𝑔(𝑒(𝑡)) = 𝑓(𝑦(𝑡)) − 𝑓(𝑥(𝑡)).
In many real-world applications, it is difficult to guar-

antee that the state variables transmitted to controllers are
continuous. In addition, in order to make full use of modern
computer technique, the sampled-data feedback control is
applied to synchronize delayed neural networks [36]. In this
paper, the following sampled-data controller is adopted [38]:

𝑢 (𝑡) = 𝐾𝑒 (𝑡
𝑘
) , 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
, (6)

where 𝐾 is sampled-data feedback controller gain matrix to
be determined, 𝑡

𝑘
denotes the sampling instant and satisfies

0 = 𝑡
0

< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ , lim
𝑘→+∞

𝑡
𝑘

=

+∞. Moreover, the sampling period under consideration is
assumed to be bounded by a known constant ℎ; that is,

𝑡
𝑘+1

− 𝑡
𝑘
≤ ℎ, (7)

for any integer 𝑘 ≥ 0, where ℎ is a positive scalar and
represents the largest sampling interval.

Substituting control law (6) into the error system (5)
yields

̇𝑒 (𝑡) = −𝐷𝑒 (𝑡 − 𝛿) + 𝐴𝑔 (𝑒 (𝑡)) + 𝐵𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡
𝑘
) .

(8)

Clearly, it is difficult to analyze the synchronization of
neural networks based on error system (8) because of the
discrete term 𝑒(𝑡

𝑘
). Therefore, the input delay approach [23]

is applied; that is, a sawtooth function is defined as follows:

𝛾 (𝑡) = 𝑡 − 𝑡
𝑘
, 𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
. (9)

It can be found from (7) and (9) that 0 ≤ 𝛾(𝑡) < ℎ and ̇𝛾(𝑡) = 1

for 𝑡 ̸= 𝑡
𝑘
.

By substituting (9) into (8), we get that

̇𝑒 (𝑡) = −𝐷𝑒 (𝑡 − 𝛿) + 𝐴𝑔 (𝑒 (𝑡)) + 𝐵𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡 − 𝛾 (𝑡)) .

(10)

The main purpose of this paper is to design controller
with the form (6) to ensure that master system (1) synchro-
nizes with slave system (2). In other words, we are interested
in finding a feedback gain matrix 𝐾 such that error system
(10) is stable.

To prove our result, the following lemmas that can be
found in [39] are necessary.

Lemma 1 (see [39]). For any constant matrix 𝑊 ∈ R𝑚×𝑚,
𝑊 > 0, scalar 0 < ℎ(𝑡) < ℎ, and vector function𝜔(⋅) : [0, ℎ] →

R𝑚 such that the integrations concerned are well defined; then

(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑊(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

≤ ℎ (𝑡) ∫

ℎ(𝑡)

0

𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠.

(11)

Lemma 2 (see [39]). Given constant matrices 𝑃, 𝑄, and 𝑅,
where 𝑃

𝑇

= 𝑃, 𝑄𝑇 = 𝑄, then

[
𝑃 𝑅

𝑅
𝑇

−𝑄
] < 0 (12)

is equivalent to the following conditions:

𝑄 > 0, 𝑃 + 𝑅𝑄
−1

𝑅
𝑇

< 0. (13)

3. Main Results

Theorem 3. Suppose that (H1) and (H2) hold. If there
exist seven symmetric positive definite matrices 𝑃

𝑖
(𝑖 =

1, 2, 3, 4, 5, 6, 7), four positive diagonal matrices 𝑊
1
, 𝑊
2
, 𝑅
1
,

and 𝑅
2
, and nine matrices 𝑋

11
, 𝑋
12
, 𝑋
22
, 𝑄
1
, 𝑄
2
, 𝑄
3
, 𝑄
4
, 𝑄
5
,

and 𝑍 such that the following LMIs hold:

𝑋 = [
𝑋
11

𝑋
12

∗ 𝑋
22

] > 0, (14)

Ω = [
Ω
1

Ω
2

∗ Ω
3

] < 0, (15)
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where

Ω
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11

Ω
12

Ω
13

𝑋
22

𝑄
3

0 Ω
17

0 Ω
19

𝑄
1
𝐵 𝑄
1
𝐶

∗ Ω
22

−𝑄
1
𝐷 𝑋

12
0 0 𝑍 0 Ω

29
𝑄
1
𝐵 𝑄
1
𝐶

∗ ∗ −𝑃
1

−𝑋
12

0 0 0 0 0 0 0

∗ ∗ ∗ −𝑃
2

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ Ω
55

𝑄
2

0 0 0 𝐹
4
𝑅
2

0

∗ ∗ ∗ ∗ ∗ −𝑃
3

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω
77

𝑄
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
5

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
99

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
7

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ω
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
3

𝑄
5

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 𝑄
2

0

0 0 0 0

0 0 0 𝑄
4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, Ω
3
=

[
[
[
[
[
[
[
[
[

[

−
1

𝜏
𝑃
4

0 0 0

0 −
1

ℎ
𝑃
6

0 0

0 0 −
1

𝜏
𝑃
4

0

0 0 0 −
1

ℎ
𝑃
6

]
]
]
]
]
]
]
]
]

]

,

(16)

inwhichΩ
11

= 𝑋
12
+𝑋
𝑇

12
+𝑃
1
+𝛿
2

𝑃
2
+𝑃
3
+𝑃
5
−𝑄
3
−𝑄
𝑇

3
−𝑄
5
−𝑄
𝑇

5
−

𝐹
3
𝑅
1
,Ω
12

= 𝑋
11
−𝐹
1
𝑊
1
+𝐹
2
𝑊
2
−𝑄
1
,Ω
13

= −𝑋
12
−𝑄
1
𝐷,Ω
17

=

𝑍+𝑄
5
,Ω
19

= 𝑄
1
𝐴+𝐹
4
𝑅
1
,Ω
22

= 𝜏𝑃
4
+ℎ𝑃
6
−𝑄
1
−𝑄
𝑇

1
,Ω
29

=

𝑊
1
−𝑊
2
+𝑄
1
𝐴,Ω
55

= −𝑄
2
−𝑄
𝑇

2
−𝐹
3
𝑅
2
,Ω
77

= −𝑄
4
−𝑄
𝑇

4
, and

Ω
99

= 𝜎
2

𝑃
7
− 𝑅
1
, then master system (1) and slave system (2)

are synchronous. Moreover, the desired controller gain matrix
𝐾 in (6) can be given by

𝐾 = 𝑄
−1

1
𝑍. (17)

Proof. From assumption (H1), we know that

∫

𝑒𝑖(𝑡)

0

(𝑔
𝑖
(𝑠) − 𝐹

−

𝑖
𝑠) 𝑑𝑠 ≥ 0,

∫

𝑒𝑖(𝑡)

0

(𝐹
+

𝑖
𝑠 − 𝑔
𝑖
(𝑠)) 𝑑𝑠 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(18)

Let𝑊
1
= diag(𝑤

11
, 𝑤
12
, . . . , 𝑤

1𝑛
) and𝑊

2
= diag(𝑤

21
, 𝑤
22
, . . . ,

𝑤
2𝑛
), and consider the following Lyapunov-Krasovskii func-

tional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) + 𝑉

6
(𝑡) ,

(19)

where

𝑉
1
(𝑡) = [

[

𝑒(𝑡)

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

]

]

𝑇

[
𝑋
11

𝑋
12

∗ 𝑋
22

][

[

𝑒 (𝑡)

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

]

]

,

𝑉
2
(𝑡) = 2

𝑛

∑

𝑖=1

𝑤
1𝑖
∫

𝑒𝑖(𝑡)

0

(𝑔
𝑖
(𝑠) − 𝐹

−

𝑖
𝑠) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑤
2𝑖
∫

𝑒𝑖(𝑡)

0

(𝐹
+

𝑖
𝑠 − 𝑔
𝑖
(𝑠)) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠) 𝑃
1
𝑒 (𝑠) 𝑑𝑠

+ 𝛿∫

0

−𝛿

∫

𝑡

𝑡+𝜉

𝑒
𝑇

(𝑠) 𝑃
2
𝑒 (𝑠) 𝑑𝑠𝑑𝜉,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏

𝑒
𝑇

(𝑠) 𝑃
3
𝑒 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜉

̇𝑒
𝑇

(𝑠) 𝑃
4

̇𝑒 (𝑠) 𝑑𝑠𝑑𝜉,

𝑉
5
(𝑡) = ∫

𝑡

𝑡−ℎ

𝑒
𝑇

(𝑠) 𝑃
5
𝑒 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜉

̇𝑒
𝑇

(𝑠) 𝑃
6

̇𝑒 (𝑠) 𝑑𝑠𝑑𝜉,

𝑉
6
(𝑡) = 𝜎∫

0

−𝜎

∫

𝑡

𝑡+𝜉

𝑔
𝑇

(𝑒 (𝑠)) 𝑃
7
𝑔 (𝑒 (𝑠)) 𝑑𝑠𝑑𝜉.

(20)
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Calculating the time derivative of 𝑉
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4, 5, 6), we

obtain

𝑉
1
(𝑡) = 2[

𝑒 (𝑡)

∫
𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠
] [

𝑋
11

𝑋
12

∗ 𝑋
22

] [
̇𝑒 (𝑡)

𝑒 (𝑡) − 𝑒 (𝑡 − 𝛿)
]

𝑇

= 𝑒
𝑇

(𝑡) (𝑋
12

+ 𝑋
𝑇

12
) 𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑋
11

̇𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑋
12
𝑒 (𝑡 − 𝛿) + 2𝑒

𝑇

(𝑡) 𝑋
22

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2 ̇𝑒
𝑇

(𝑡) 𝑋
12

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

− 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠,

(21)

𝑉
2
(𝑡) = 2 ̇𝑒

𝑇

(𝑡)𝑊
1
(𝑔 (𝑒 (𝑡)) − 𝐹

1
𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡)𝑊
2
(𝐹
2
𝑒 (𝑡) − 𝑔 (𝑒 (𝑡)))

= 2𝑒
𝑇

(𝑡) (−𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
) ̇𝑒 (𝑡)

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
− 𝑊
2
) 𝑔 (𝑒 (𝑡)) ,

(22)

𝑉
3
(𝑡) = 𝑒

𝑇

(𝑡) (𝑃
1
+ 𝛿
2

𝑃
2
) 𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿)

− 𝛿∫

𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠) 𝑃
2
𝑒 (𝑠) 𝑑𝑠

≤ 𝑒
𝑇

(𝑡) (𝑃
1
+ 𝛿
2

𝑃
2
) 𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿)

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠) ,

(23)

𝑉
4
(𝑡) = 𝑒

𝑇

(𝑡) 𝑃
3
𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏)

+ 𝜏 ̇𝑒
𝑇

(𝑡) 𝑃
4

̇𝑒 (𝑡) − ∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4

̇𝑒 (𝑠) 𝑑𝑠,

(24)

𝑉
5
(𝑡) = 𝑒

𝑇

(𝑡) 𝑃
5
𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − ℎ) 𝑃
5
𝑒 (𝑡 − ℎ)

+ ℎ ̇𝑒
𝑇

(𝑡) 𝑃
6

̇𝑒 (𝑡) − ∫

𝑡

𝑡−ℎ

̇𝑒
𝑇

(𝑠) 𝑃
6

̇𝑒 (𝑠) 𝑑𝑠.

(25)

𝑉
6
(𝑡) = 𝜎

2

𝑔
𝑇

(𝑒 (𝑡)) 𝑃
7
𝑔 (𝑒 (𝑡))

− 𝜎∫

𝑡

𝑡−𝜎

𝑔
𝑇

(𝑒 (𝑠)) 𝑃
7
𝑔 (𝑒 (𝑠)) 𝑑𝑠

≤ 𝜎
2

𝑔
𝑇

(𝑒 (𝑡)) 𝑃
7
𝑔 (𝑒 (𝑡))

− 𝜎 (𝑡) ∫

𝑡

𝑡−𝜎(𝑡)

𝑔
𝑇

(𝑒 (𝑠)) 𝑃
7
𝑔 (𝑒 (𝑠)) 𝑑𝑠

≤ 𝜎
2

𝑔
𝑇

(𝑒 (𝑡)) 𝑃
7
𝑔 (𝑒 (𝑡))

− (∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠)

𝑇

𝑃
7
(∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠) .

(26)

In deriving inequalities (23) and (26), we have made use of
Lemma 1. It follows from inequalities (21)–(26) that

𝑉 (𝑡) ≤ 𝑒
𝑇

(𝑡) (𝑋
12

+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
+ 𝑃
5
) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) (𝑋
11

− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
) ̇𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑋
12
𝑒 (𝑡 − 𝛿) + 2𝑒

𝑇

(𝑡) 𝑋
22

× ∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠 + ̇𝑒
𝑇

(𝑡) (𝜏𝑃
4
+ ℎ𝑃
6
) ̇𝑒 (𝑡) + 2 ̇𝑒

𝑇

(𝑡)

× 𝑋
12

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠 + 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
− 𝑊
2
) 𝑔 (𝑒 (𝑡))

− 𝑒
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿) − 2𝑒

𝑇

(𝑡 − 𝛿)𝑋
22

× ∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠 − 𝑒
𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏)

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

− 𝑒
𝑇

(𝑡 − ℎ) 𝑃
5
𝑒 (𝑡 − ℎ)

− ∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4

̇𝑒 (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−ℎ

̇𝑒
𝑇

(𝑠) 𝑃
6

̇𝑒 (𝑠) 𝑑𝑠

+ 𝜎
2

𝑔
𝑇

(𝑒 (𝑡)) 𝑃
7
𝑔 (𝑒 (𝑡))

− (∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠)

𝑇

𝑃
7
(∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠) .

(27)

From model (10), we have

0 = 2 (𝑒
𝑇

(𝑡) + ̇𝑒
𝑇

(𝑡)) 𝑄
1

× [ − ̇𝑒 (𝑡) − 𝐷𝑒 (𝑡 − 𝛿) + 𝐴𝑔 (𝑒 (𝑡)) + 𝐵𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡 − 𝛾 (𝑡))] .

(28)

FromNewton-Leibniz formulation and assumption (H2), we
have

0 = −2𝑒
𝑇

(𝑡 − 𝜏 (𝑡))

× 𝑄
2
(𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − 𝜏) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏) + 𝜏𝑒

𝑇

(𝑡 − 𝜏 (𝑡))

× 𝑄
2
𝑃
−1

4
𝑄
𝑇

2
𝑒 (𝑡 − 𝜏 (𝑡)) + ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4

̇𝑒 (𝑠) 𝑑𝑠,
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0 = −2𝑒
𝑇

(𝑡) 𝑄
3
(𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡) 𝑄
3
𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑄
3
𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝜏𝑒
𝑇

(𝑡) 𝑄
3
𝑃
−1

4
𝑄
𝑇

3
𝑒 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑒
𝑇

(𝑠) 𝑃
4

̇𝑒 (𝑠) 𝑑𝑠,

0 = −2𝑒
𝑇

(𝑡 − 𝛾 (𝑡))

× 𝑄
4
(𝑒 (𝑡 − 𝛾 (𝑡)) − 𝑒 (𝑡 − ℎ) − ∫

𝑡−𝛾(𝑡)

𝑡−ℎ

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡 − 𝛾 (𝑡)) 𝑄
4
𝑒 (𝑡 − 𝛾 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝛾 (𝑡)) 𝑄
2
𝑒 (𝑡 − ℎ)

+ ℎ𝑒
𝑇

(𝑡 − 𝛾 (𝑡)) 𝑄
4
𝑃
−1

6
𝑄
𝑇

4
𝑒 (𝑡 − 𝛾 (𝑡))

+ ∫

𝑡−𝛾(𝑡)

𝑡−ℎ

̇𝑒
𝑇

(𝑠) 𝑃
6

̇𝑒 (𝑠) 𝑑𝑠,

0 = −2𝑒
𝑇

(𝑡) 𝑄
5
(𝑒 (𝑡) − 𝑒 (𝑡 − 𝛾 (𝑡)) − ∫

𝑡

𝑡−𝛾(𝑡)

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡) 𝑄
5
𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑄
5
𝑒 (𝑡 − 𝛾 (𝑡))

+ ℎ𝑒
𝑇

(𝑡) 𝑄
5
𝑃
−1

6
𝑄
𝑇

5
𝑒 (𝑡) + ∫

𝑡

𝑡−𝛾(𝑡)

̇𝑒
𝑇

(𝑠) 𝑃
6

̇𝑒 (𝑠) 𝑑𝑠.

(29)

In addition, for positive diagonal matrices 𝑅
1
> 0 and 𝑅

2
> 0,

we can get from assumption (H1) that [40]

[
𝑒 (𝑡)

𝑔 (𝑒 (𝑡))
]

𝑇

[
𝐹
3
𝑅
1

−𝐹
4
𝑅
1

−𝐹
4
𝑅
1

𝑅
1

] [
𝑒 (𝑡)

𝑔 (𝑒 (𝑡))
] ≤ 0, (30)

[
𝑒 (𝑡 − 𝜏 (𝑡))

𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))
]

𝑇

[
𝐹
3
𝑅
2

−𝐹
4
𝑅
2

−𝐹
4
𝑅
2

𝑅
2

]

× [
𝑒 (𝑡 − 𝜏 (𝑡))

𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))
] ≤ 0.

(31)

It follows from (27)–(31) that

𝑉 (𝑡) ≤ 𝑒
𝑇

(𝑡) (2𝑋
12

+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
+ 𝑃
5

− 2𝑄
3
+ 𝜏𝑄
3
𝑃
−1

4
𝑄
𝑇

3
− 2𝑄
5

+ ℎ𝑄
5
𝑃
−1

6
𝑄
𝑇

5
− 𝐹
3
𝑅
1
) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) (𝑋
11

− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
− 𝑄
1
) ̇𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) (𝑋
12

+ 𝑄
1
𝐷) 𝑒 (𝑡 − 𝛿)

+ 2𝑒
𝑇

(𝑡) 𝑋
22

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠 + 2𝑒
𝑇

(𝑡) 𝑄
3
𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡) (𝑄
1
𝐾 + 𝑄

5
) 𝑒 (𝑡 − 𝛾 (𝑡))

+ 2𝑒
𝑇

(𝑡) (𝑄
1
𝐴 + 𝐹

4
𝑅
1
) 𝑔 (𝑒 (𝑡))

+ 2𝑒
𝑇

(𝑡) 𝑄
1
𝐵𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 2𝑒
𝑇

(𝑡) 𝑄
1
𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠

+ ̇𝑒
𝑇

(𝑡) (𝜏𝑃
4
+ ℎ𝑃
6
− 2𝑄
1
) ̇𝑒 (𝑡)

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐷𝑒 (𝑡 − 𝛿) + 2 ̇𝑒

𝑇

(𝑡) 𝑋
12

× ∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠 + 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐾𝑒 (𝑡 − 𝛾 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
− 𝑊
2
+ 𝑄
1
𝐴) 𝑔 (𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐵𝑔 (𝑒 (𝑡 − 𝜏 (𝑡))) + 2 ̇𝑒

𝑇

(𝑡) 𝑄
1
𝐶

× ∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠 − 𝑒
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿)

− 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠 − (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

× 𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠) + 𝑒
𝑇

(𝑡 − 𝜏 (𝑡))

× (−2𝑄
2
+ 𝜏𝑄
2
𝑃
−1

4
𝑄
𝑇

2
− 𝐹
3
𝑅
2
) 𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏) + 2𝑒

𝑇

(𝑡 − 𝜏 (𝑡))

× 𝐹
4
𝑅
2
𝑔 (𝑒 (𝑡 − 𝜏 (𝑡))) − 𝑒

𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏)

+ 𝑒
𝑇

(𝑡 − 𝛾 (𝑡)) (−2𝑄
4
+ ℎ𝑄
4
𝑃
−1

6
𝑄
𝑇

4
) 𝑒 (𝑡 − 𝛾 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝛾 (𝑡)) 𝑄
2
𝑒 (𝑡 − ℎ) − 𝑒

𝑇

(𝑡 − ℎ) 𝑃
5
𝑒 (𝑡 − ℎ)

+ 𝑔
𝑇

(𝑒 (𝑡)) (𝜎
2

𝑃
7
− 𝑅
1
) 𝑔 (𝑒 (𝑡))

− 𝑔
𝑇

(𝑒 (𝑡 − 𝜏 (𝑡))) 𝑅
2
𝑔 (𝑒 (𝑡 − 𝜏 (𝑡)))

− (∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠)

𝑇

𝑃
7
(∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑒 (𝑠)) 𝑑𝑠)

= 𝜉
𝑇

(𝑡) Π𝜉 (𝑡) ,

(32)

where 𝜉(𝑡) = (𝑒
𝑇

(𝑡), ̇𝑒
𝑇

(𝑡), 𝑒
𝑇

(𝑡 − 𝛿), ∫
𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠)𝑑𝑠, 𝑒
𝑇

(𝑡 −

𝜏(𝑡)), 𝑒
𝑇

(𝑡 − 𝜏), 𝑒
𝑇

(𝑡 − 𝛾(𝑡)), 𝑒
𝑇

(𝑡 − ℎ), 𝑔
𝑇

(𝑒(𝑡)), 𝑔
𝑇

(𝑒(𝑡 −

𝜏(𝑡))), ∫
𝑡

𝑡−𝜎(𝑡)

𝑔
𝑇

(𝑒(𝑠))𝑑𝑠)
𝑇 and
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Π =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11

Ω
12

Ω
13

𝑋
22

𝑄
3

0 Ω
17

0 Ω
19

𝑄
1
𝐵 𝑄
1
𝐶

∗ Ω
22

−𝑄
1
𝐷 𝑋

12
0 0 𝑄

1
𝐾 0 Ω

29
𝑄
1
𝐵 𝑄
1
𝐶

∗ ∗ −𝑃
1

−𝑋
12

0 0 0 0 0 0 0

∗ ∗ ∗ −𝑃
2

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ Π
55

𝑄
2

0 0 0 𝐹
4
𝑅
2

0

∗ ∗ ∗ ∗ ∗ −𝑃
3

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π
77

𝑄
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
5

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
99

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
7

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (33)

with Π
11

= 𝑋
12

+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
+ 𝑃
5
− 𝑄
3
− 𝑄
𝑇

3
+

𝜏𝑄
3
𝑃
−1

4
𝑄
𝑇

3
−𝑄
5
−𝑄
𝑇

5
+ℎ𝑄
5
𝑃
−1

6
𝑄
𝑇

5
−𝐹
3
𝑅
1
,Π
55

= −𝑄
2
−𝑄
𝑇

2
+

𝜏𝑄
2
𝑃
−1

4
𝑄
𝑇

2
− 𝐹
3
𝑅
2
, Π
77

= −𝑄
4
− 𝑄
𝑇

4
+ ℎ𝑄
4
𝑃
−1

6
𝑄
𝑇

4
.

By using Lemma 2 and noting 𝐾 = 𝑄
−1

1
𝑍, it is easy to

verify the equivalence of Π < 0 and Ω < 0. Thus, one can
derive from (15) and (32) that

𝑉 (𝑡) ≤ 0, (34)

which implies that error-state system (10) is global and
asymptotically stable; that is, master system (1) and slave
system (2) are synchronous. The proof is completed.

4. Numerical Example

To verify the effectiveness of the theoretical result of this
paper, consider the following example.

Example 1. Consider master system (1) and slave system (2)
with the following parameters:

𝐷 = (
1 0

0 1
) , 𝐴 = (

1.8 0.1

−4.3 2.9
) ,

𝐵 = (
−1.6 −0.1

−0.2 −2.7
) , 𝐶 = (

−0.3 0.1

0.1 −0.2
) ,

𝑓
1
(𝛼) = 𝑓

2
(𝛼) = tanh (𝛼) , 𝐽

1
(𝑡) = 𝐽

2
(𝑡) = 0,

𝛿 = 0.3, 𝜏 (𝑡) = 0.5 |sin 𝑡| , 𝜎 (𝑡) = 0.2 |cos (2𝑡)| .
(35)

The chaotic behaviors of master system (1) and slave
system (2) with 𝑢(𝑡) = 0 are given in Figure 1 and
Figure 2, respectively, with the initial states chosen as 𝑥(𝑠) =

(−0.1, 0.1)
𝑇, 𝑦(𝑠) = (−0.5 sin(23𝑡), −0.6 cos(5𝑡))𝑇, and 𝑠 ∈

[−0.5, 0].
It can be verified that assumptions (H1) and (H2) are

satisfied, and 𝐹
1

= 0, 𝐹
2

= 𝐼, 𝐹
3

= 0, 𝐹
4

= diag{0.5, 0.5},
𝜏 = 0.5, and 𝜎 = 0.2.

Further, the sampling period is taken as ℎ = 0.7; by using
the MATLAB LMI Control Toolbox, a solution to the LMIs
in (14)-(15) is found as follows:

𝑃
1
= 10
−8

[
0.5575 −0.0458

−0.0458 0.0813
] ,

𝑃
2
= 10
−7

[
0.1589 −0.0521

−0.0521 0.1440
] ,

𝑃
3
= 10
−8

[
0.7818 −0.0275

−0.0275 0.0804
] ,

𝑃
4
= 10
−9

[
0.5382 −0.0061

−0.0061 0.0069
] ,

𝑃
5
= 10
−8

[
0.1046 −0.0257

−0.0257 0.0731
] ,

𝑃
6
= 10
−8

[
0.2393 −0.0215

−0.0215 0.0690
] ,

𝑃
7
= 10
−7

[
0.3430 −0.0452

−0.0452 0.3334
] ,

𝑄
1
= 10
−9

[
0.3710 −0.0167

−0.0064 0.0142
] ,

𝑄
2
= 10
−9

[
0.9695 −0.0121

−0.0121 0.0465
] ,

𝑄
3
= 10
−8

[
0.1136 −0.0020

−0.0013 0.0066
] ,

𝑄
4
= 10
−7

[
0.4169 −0.0372

−0.0403 0.1167
] ,

𝑄
5
= 10
−7

[
0.2032 −0.0197

−0.0199 0.0622
] ,

𝑍 = 10
−9

[
−0.3765 0.0456

0.0973 −0.1631
] ,

𝑊
1
= 10
−10

[
0.3365 0

0 0.3390
] ,
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1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

−0.1 −0.05 0 0.05 0.1
x1

x
2

Figure 1: The chaotic behavior of master system (1).

1.5

1

0.5

0

−0.5

−1

−1.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

y
2

y1

Figure 2: The chaotic behavior of slave system (2) with 𝑢(𝑡) = 0.

𝑊
2
= 10
−9

[
0.7363 0

0 0.0811
] ,

𝑅
1
= 10
−8

[
0.6542 0

0 0.4249
] ,

𝑅
2
= 10
−8

[
0.2055 0

0 0.0173
] ,

𝑋
11

= 10
−10

[
0.9837 −0.2378

−0.2378 0.5765
] ,

𝑋
12

= 10
−9

[
−0.0813 0.0340

0.0424 −0.1056
] ,

𝑋
22

= 10
−8

[
0.2687 −0.0933

−0.0933 0.2625
] .

(36)

0 2 4 6 8 10 12 14 16 18 20

1.5

1

0.5

0

−0.5

−1

t

e1

e
1

e1

(a)

0 2 4 6 8 10 12 14 16 18 20

7

6

5

4

3

2

1

0

−1

−2

e
2

e2

t

(b)

Figure 3: State trajectory of 𝑒
1
(𝑡) and 𝑒

2
(𝑡) of error system (8).

Subsequently, we can obtain from 𝐾 = 𝑄
−1

1
𝑍 that

𝐾 = [
−0.7228 −0.3994

6.5033 −11.6367
] . (37)

According to Theorem 3, master system (1) and slave sys-
tem (2) are synchronous under sampled-data controller (6).
Figure 3 depicts the synchronization errors of state variables
between master system (1) and slave system (2). The numer-
ical simulations clearly verify the effectiveness of the devel-
oped sampled-data control approach in the synchronization
of two chaotic neural networks with discrete and distributed
time-varying delays as well as leakage delay.

5. Conclusions

In this paper, we have dealt with the synchronization prob-
lems for chaotic neural networks with leakage delay and both
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discrete and distributed time-varying delays. Based on the
sampled-data control techniques, Lyapunov stability theory,
and the matrix inequality techniques, a delay-dependent
criterion sufficient condition has beendeveloped to guarantee
synchronization of the considered coupled neural networks.
An example has been provided to demonstrate the effective-
ness of the proposed criterion since the feasible solutions to
the given LMIs criterion in this paper have been found.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the editor and the anony-
mous reviewers for their valuable suggestions and comments
which have led to a much improved paper. This work
was supported by the National Natural Science Foundation
of China under Grants 61273021, 60974132, 11172247, and
51208538 and in part by the Natural Science Foundation
Project of CQ cstc2013jjB40008.

References

[1] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[2] Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for
discrete-time stochastic complex networks with randomly
occurred nonlinearities and mixed time delays,” IEEE Transac-
tions on Neural Networks, vol. 21, no. 1, pp. 11–25, 2010.

[3] F. Zou and J. A. Nossek, “A chaotic attractor with cellular neural
networks,” IEEE Transactions on Circuits and Systems I, vol. 38,
no. 7, pp. 811–812, 1991.

[4] D. Hansel and H. Sompolinsky, “Synchronization and compu-
tation in a chaotic neural network,” Physical Review Letters, vol.
68, no. 5, pp. 718–721, 1992.

[5] T. B. Luzyanina, “Synchronization in an oscillator neural net-
work model with time-delayed coupling,”Network, vol. 6, no. 1,
pp. 43–59, 1995.

[6] J. Karbowski and N. Kopell, “Multispikes and synchronization
in a large neural network with temporal delays,”Neural Compu-
tation, vol. 12, no. 7, pp. 1573–1606, 2000.

[7] W. Lu and T. Chen, “Synchronization of coupled connected
neural networks with delays,” IEEE Transactions on Circuits and
Systems I, vol. 51, no. 12, pp. 2491–2503, 2004.

[8] H. Zhang, Y. Xie, Z. Wang, and C. Zheng, “Adaptive synchro-
nization between two different chaotic neural networks with
time delay,” IEEE Transactions on Neural Networks, vol. 18, no.
6, pp. 1841–1845, 2007.

[9] T. Chen, W. Wu, and W. Zhou, “Global 𝜇-synchronization of
linearly coupled unbounded time-varying delayed neural net-
workswith unbounded delayed coupling,” IEEETransactions on
Neural Networks, vol. 19, no. 10, pp. 1809–1816, 2008.

[10] J. Cao, G. Chen, and P. Li, “Global synchronization in an
array of delayed neural networks with hybrid coupling,” IEEE
Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 2,
pp. 488–498, 2008.

[11] J. Liang, Z.Wang, and P. Li, “Robust synchronisation of delayed
neural networks with both linear and non-linear couplings,”
International Journal of Systems Science, vol. 40, no. 9, pp. 973–
984, 2009.

[12] F. O. Souza and R. M. Palhares, “Synchronisation of chaotic
delayed artificial neural networks: an 𝐻

∞
control approach,”

International Journal of Systems Science, vol. 40, no. 9, pp. 937–
944, 2009.

[13] J. H. Park andO.M.Kwon, “Synchronization of neural networks
of neutral type with stochastic perturbation,” Modern Physics
Letters B, vol. 23, no. 14, pp. 1743–1751, 2009.

[14] H. R. Karimi and H. Gao, “New delay-dependent exponential
𝐻
∞
synchronization for uncertain neural networks with mixed

time delays,” IEEE Transactions on Systems, Man, and Cybernet-
ics B, vol. 40, no. 1, pp. 173–185, 2010.

[15] H.Wang and Q. Song, “Synchronization for an array of coupled
stochastic discrete-time neural networks with mixed delays,”
Neurocomputing, vol. 74, no. 10, pp. 1572–1584, 2011.

[16] J. Lu, D. W. C. Ho, J. Cao, and J. Kurths, “Exponential synchro-
nization of linearly coupled neural networks with impulsive
disturbances,” IEEE Transactions on Neural Networks, vol. 22,
no. 2, pp. 329–335, 2011.

[17] P. Balasubramaniam and V. Vembarasan, “Synchronization of
recurrent neural networks with mixed time-delays via output
coupling with delayed feedback,” Nonlinear Dynamics, vol. 70,
no. 1, pp. 677–691, 2012.

[18] D. Ghosh and S. Banerjee, “Projective synchronization of time-
varying delayed neural network with adaptive scaling factors,”
Chaos, Solitons & Fractals, vol. 53, pp. 1–9, 2013.

[19] T. Botmart and W. Weera, “Guaranteed cost control for expo-
nential synchronization of cellular neural networks with mixed
time-varying delays via hybrid feedback control,” Abstract and
Applied Analysis, vol. 2013, Article ID 175796, 12 pages, 2013.

[20] X. Yang, J. Cao, and J. Lu, “Synchronization of randomly
coupled neural networks with Markovian jumping and time-
delay,” IEEE Transactions on Circuits and Systems I, vol. 60, no.
2, pp. 363–376, 2013.

[21] Q. Zhu and J. Cao, “Adaptive synchronization of chaotic Cohen-
Crossberg neural networks with mixed time delays,” Nonlinear
Dynamics, vol. 61, no. 3, pp. 517–534, 2010.

[22] Q. Zhu and J. Cao, “𝑝th moment exponential synchronization
for stochastic delayed Cohen-Grossberg neural networks with
Markovian switching,” Nonlinear Dynamics, vol. 67, no. 1, pp.
829–845, 2012.

[23] E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-
data stabilization of linear systems: an input delay approach,”
Automatica, vol. 40, no. 8, pp. 1441–1446, 2004.

[24] H. K. Lam and L. D. Seneviratne, “Chaotic synchronization
using sampled-data fuzzy controller based on fuzzy-model-
based approach,” IEEE Transactions on Circuits and Systems I,
vol. 55, no. 3, pp. 883–892, 2008.

[25] J.-G. Lu and D. J. Hill, “Global asymptotical synchronization
of chaotic Lur’e systems using sampled data: a linear matrix
inequality approach,” IEEE Transactions on Circuits and Systems
II, vol. 55, no. 6, pp. 586–590, 2008.

[26] C.-K. Zhang, Y. He, andM.Wu, “Improved global asymptotical
synchronization of chaotic lur’e systems with sampled-data
control,” IEEE Transactions on Circuits and Systems II, vol. 56,
no. 4, pp. 320–324, 2009.

[27] W. Chen, Z. Wang, and X. Lu, “On sampled-data control for
master-slave synchronization of chaotic Lur’e systems,” IEEE



10 Abstract and Applied Analysis

Transactions on Circuits and Systems II, vol. 59, no. 8, pp. 515–
519, 2012.

[28] N. Li, Y. Zhang, J. Hu, and Z. Nie, “Synchronization for general
complex dynamical networks with sampled-data,” Neurocom-
puting, vol. 74, no. 5, pp. 805–811, 2011.

[29] T. H. Lee, J. H. Park, O. M. Kwon, and S. M. Lee, “Synchroniza-
tion of chaos systems via sampled-data control,” Transactions
of the Korean Institute of Electrical Engineers, vol. 61, no. 4, pp.
617–621, 2012.

[30] B. Shen, Z. Wang, and X. Liu, “Sampled-data synchronization
control of dynamical networks with stochastic sampling,” Insti-
tute of Electrical and Electronics Engineers, vol. 57, no. 10, pp.
2644–2650, 2012.

[31] T. H. Lee, Z.-G. Wu, and J. H. Park, “Synchronization of
a complex dynamical network with coupling time-varying
delays via sampled-data control,” Applied Mathematics and
Computation, vol. 219, no. 3, pp. 1354–1366, 2012.

[32] S. J. S. Theesar, S. Banerjee, and P. Balasubramaniam, “Syn-
chronization of chaotic systems under sampled-data control,”
Nonlinear Dynamics, vol. 70, no. 3, pp. 1977–1987, 2012.

[33] Z.-G. Wu, J. H. Park, H. Su, B. Song, and J. Chu, “Expo-
nential synchronization for complex dynamical networks with
sampled-data,” Journal of the Franklin Institute, vol. 349, no. 9,
pp. 2735–2749, 2012.

[34] H. Zhang and J. Zhou, “Synchronization of sampled-data cou-
pled harmonic oscillators with control inputs missing,” Systems
& Control Letters, vol. 61, no. 12, pp. 1277–1285, 2012.

[35] Z. Wu, P. Shi, H. Su, and J. Chu, “Sampled-data exponential
synchronization of complex dynamical networks with time-
varying coupling delay,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 8, pp. 1177–1187, 2013.

[36] C.-K. Zhang, Y. He, and M. Wu, “Exponential synchroniza-
tion of neural networks with time-varying mixed delays and
sampled-data,” Neurocomputing, vol. 74, no. 1–3, pp. 265–273,
2010.

[37] Z.-G. Wu, J. H. Park, H. Su, and J. Chu, “Discontinuous
Lyapunov functional approach to synchronization of time-delay
neural networks using sampled-data,”Nonlinear Dynamics, vol.
69, no. 4, pp. 2021–2030, 2012.

[38] Q. Gan and Y. Liang, “Synchronization of chaotic neural
networks with time delay in the leakage term and parametric
uncertainties based on sampled-data control,” Journal of the
Franklin Institute, vol. 349, no. 6, pp. 1955–1971, 2012.

[39] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay
Systems, Birkhauser, Boston, Mass, USA, 2003.

[40] Y. Liu, Z. Wang, and X. Liu, “Global exponential stability
of generalized recurrent neural networks with discrete and
distributed delays,” Neural Networks, vol. 19, no. 5, pp. 667–675,
2006.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 167198, 6 pages
http://dx.doi.org/10.1155/2013/167198

Research Article
Synchronization between Two Discrete-Time
Networks with Mutual Couplings

Meng Xiao, Weigang Sun, and Fangyue Chen

Institute of Applied Mathematics and Engineering Computations, Hangzhou Dianzi University, Hangzhou 310018, China

Correspondence should be addressed to Weigang Sun; wgsun@hdu.edu.cn

Received 22 September 2013; Accepted 4 November 2013

Academic Editor: Jianquan Lu

Copyright © 2013 Meng Xiao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate synchronization between two discrete-time networks with mutual couplings, including inner synchronization
inside each network and outer synchronization between two networks. We then obtain a synchronized criterion for the inner
synchronization inside each network by themethod of linearmatrix inequality and derive a relationship between the inner and outer
synchronization. Finally, we show numerical examples to verify our theoretical analysis and discuss the effect of coupling strengths,
node dynamics, and topological structures on the inner and outer synchronization. Compared to the inner synchronization inside
each network, the outer synchronization between two networks is difficult to achieve.

1. Introduction

Network synchronization, as a collective behavior existing
inside a network, has been widely studied since the birth of
small-world and scale-free networks [1–3]. The main focus
is to investigate the interplay between the complexity in the
overall topology and the local dynamics of the coupled nodes
[4–6]. The topological structures may be globally connected,
random, small-world, and scale-free.There aremany applica-
tions using the synchronization of networks [7], for instance,
secure communication and multirobot coordination control.
Apart from the complete synchronization appearing inside a
network, there are some other types of synchronization, such
as phase synchronization, generalized synchronization, lag
synchronization, and cluster synchronization [8–12].

Generally, we refer to synchronization happening
between two networks as outer synchronization [13], which is
distinguished from inner synchronization inside a network.
Compared to the inner synchronization, outer synchro-
nization of two networks is more complex, which involves
more system parameters. In 2007, Li et al. first proposed the
concept of outer synchronization and applied the open-plus-
closed-loop method to realize the outer synchronization
between two networks with identical topologies [13]. Shortly
later, using the adaptive control method, Tang et al. achieved

the outer synchronization between two networks with
different topological structures [14]. In [15], Wu et al. studied
the generalized outer synchronization between two networks
with different dimensions of node dynamics. In addition,
there are many works on the outer synchronization, that
is, introducing the noise, time delay, fractional order node
dynamics, and unknown parameters [16–21].

In the above-mentioned works on the outer synchro-
nization, the researchers usually applied the control methods
to realize the outer synchronization and did not study
the inner synchronization inside a network. In reality, the
mutual coupling forms between two networks are colorful;
for instance, Wu et al. investigated the outer synchronization
between two networks with two active forms nonlinear
signals and reciprocity [22]; however, these two coupling
forms do not make the outer synchronization happen. In
addition, the inner synchronization inside each network
was not considered. In [23], Sorrentino and Ott provided a
method to study the inner synchronization of two groups.The
problem of collective behaviors inside a network and between
two networks is of broad interest. For example, in subway
systems, when the trains reach the platform, the outer and
inner doors simultaneously open or close, showing that both
inner and outer synchronization happen [24]. It is also found
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that present studies on the synchronization between two
networks with various couplings aremuch less, then studying
the effect of various couplings on the synchronization is
interesting and meaningful.

Inspired by the above discussions, we study synchroniza-
tion between two discrete-time networks with mutual cou-
plings, including inner synchronization inside each network
and outer synchronization between them. By the Lyapunov
stability theory and linear matrix inequality, we obtain a
synchronous theorem on the inner synchronization inside
each network and a relationship between the inner and outer
synchronization. Numerical simulations show that the inner
synchronization is easier to achieve than the outer synchro-
nization. In addition, given themutual couplingmatrices and
appropriate node dynamics, we can adjust coupling strengths
to realize the inner and outer synchronization simultane-
ously. In Section 2, network models and synchronization
analysis are presented, and numerical examples are shown
in Section 3. Finally, the discussions are included in the last
section.

2. Model Presentation and
Synchronization Analysis

In this paper, we investigate the synchronization between
two discrete-time networks with mutual couplings. The
dynamical equations are described as follows:

𝑥
𝑖
(𝑡 + 1) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑚

𝑥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑦
𝑗
(𝑡) − 𝑥

𝑗
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

𝑦
𝑖
(𝑡 + 1) = 𝑔 (𝑦

𝑖
(𝑡)) + 𝑚

𝑦

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where the node dynamical equations are 𝑥
𝑖
(𝑡 + 1) = 𝑓(𝑥

𝑖
(𝑡))

and 𝑦
𝑖
(𝑡 + 1) = 𝑔(𝑦

𝑖
(𝑡)), 𝑖 = 1, . . . , 𝑁. 𝑓(⋅) : 𝑅

𝑛

→ 𝑅
𝑛 and

𝑔(⋅) : 𝑅
𝑛

→ 𝑅
𝑛 are continuously differential functions. 𝑥

𝑖
(𝑦
𝑖
)

is an 𝑛-dimensional state vector.𝑁 is the number of network
nodes. 𝑚

𝑥
and 𝑚

𝑦
are the coupling strengths. 𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

and 𝐵 = (𝑏
𝑖𝑗
)
𝑁×𝑁

represent the mutual coupling matrices
between these two networks, whose entries 𝑎

𝑖𝑗
denote the

intensity from 𝑖 in network𝑋 to 𝑗 in network 𝑌; analogously,
the entries of 𝐵 are the same defined as 𝐴.

Let us now consider the possibility whether the indi-
vidual networks achieve inner synchronization; that is,
lim
𝑡→+∞

‖𝑥
𝑖
(𝑡) − 𝑥

𝑠
(𝑡)‖ = 0 and lim

𝑡→+∞
‖𝑦
𝑖
(𝑡) − 𝑦

𝑠
(𝑡)‖ =

0, 𝑖 = 1 . . . , 𝑁, where ‖ ⋅ ‖ denotes the Euclidean norm of a
vector. If there exist such synchronous states, satisfying

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
= 𝛾
𝑥
, ∀𝑖 ∈ 𝑋,

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
= 𝛾
𝑦
, ∀𝑖 ∈ 𝑌,

(2)

without loss of generality, we set 𝛾
𝑥
= 𝛾
𝑦
= 1.

Thus the synchronized state equations are

𝑥
𝑠
(𝑡 + 1) = 𝑓 (𝑥

𝑠
(𝑡)) + 𝑚

𝑥
(𝑦
𝑠
(𝑡) − 𝑥

𝑠
(𝑡)) ,

𝑦
𝑠
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𝑠
(𝑡)) + 𝑚

𝑦
(𝑥
𝑠
(𝑡) − 𝑦

𝑠
(𝑡)) .

(3)

Linearizing the synchronous states around 𝑥
𝑠
and 𝑦

𝑠
, we

obtain

𝛿𝑥
𝑖
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(4)

where 𝛿𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑠
(𝑡), 𝛿𝑦
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𝑠
(𝑡),𝐷𝑓(𝑥

𝑠
(𝑡)),

and 𝐷𝑔(𝑦
𝑠
(𝑡)) are the Jacobians of 𝑓(𝑥(𝑡)), 𝑔(𝑦(𝑡)) at 𝑥

𝑠

and 𝑦
𝑠
, respectively. Assume 𝐴 = 𝐵 and let 𝛿𝑥(𝑡) =

∈ 𝑅
𝑛×𝑁 and 𝛿𝑦(𝑡) = [𝛿𝑦

1
(𝑡), . . . , 𝛿𝑦

𝑁
(𝑡)] ∈ 𝑅

𝑛×𝑁. Then (4)
is rewritten as

𝛿𝑥 (𝑡 + 1) = 𝐷𝑓 (𝑥
𝑠
(𝑡)) 𝛿𝑥 (𝑡) + 𝑚
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,
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(5)

Further, let 𝛿(𝑡) = [
𝛿𝑥(𝑡)

𝛿𝑦(𝑡)
] ∈ 𝑅
2𝑛×𝑁; then (5) reads

𝛿 (𝑡 + 1) = D𝛿 (𝑡) +W𝛿 (𝑡) 𝐴
𝑇

, (6)

whereD = [
𝐷𝑓(𝑥𝑠(𝑡)) 0

0 𝐷𝑔(𝑦𝑠(𝑡))
] andW = [

−𝑚𝑥𝐼𝑛 𝑚𝑥𝐼𝑛

𝑚𝑦𝐼𝑛 −𝑚𝑦𝐼𝑛
], where

𝐼
𝑛
is an identity matrix of size 𝑛 and𝐴

𝑇 denotes the transpose
of 𝐴. Generally, the coupling matrix can be decomposed into
𝐴
𝑇

= Φ𝐽Φ
−1, where 𝐽 is the Jordan canonical form with

complex eigenvalues𝜆 ∈ 𝐶 andΦ contains the corresponding
eigenvectors 𝜙. Denote 𝜂(𝑡) = 𝛿(𝑡)Φ; we obtain

𝜂 (𝑡 + 1) = D𝜂 (𝑡) +W𝜂 (𝑡) 𝐽, (7)

where 𝐽 is a block diagonal matrix; that is,
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d
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𝑘
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𝑘
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]

. (9)
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Let 𝜂(𝑡) = [𝜂
1
(𝑡), 𝜂
2
(𝑡), . . . , 𝜂

ℎ
(𝑡)] and 𝜂
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where 𝑘 = 1, 2, . . . , ℎ.
Firstly, we study the system of (10). Let 𝜂
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Construct the Lyapunov function as

𝑉 (𝑡) = 𝜇
𝑇

𝑘,1
(𝑡) 𝜇
𝑘,1

(𝑡) + ]𝑇
𝑘,1

(𝑡) ]
𝑘,1

(𝑡) . (13)

Then,
Δ𝑉 (𝑡) = 𝑉 (𝑡 + 1) − 𝑉 (𝑡)

= 𝜇
𝑇

𝑘,1
(𝑡 + 1) 𝜇

𝑘,1
(𝑡 + 1) + ]𝑇

𝑘,1
(𝑡 + 1) ]

𝑘,1
(𝑡 + 1)

− 𝜇
𝑇

𝑘,1
(𝑡) 𝜇
𝑘,1

(𝑡) − ]𝑇
𝑘,1

(𝑡) ]
𝑘,1

(𝑡)

= [
𝜇
𝑘,1

(𝑡)

]
𝑘,1

(𝑡)
]

𝑇

𝑀
𝑘
[
𝜇
𝑘,1

(𝑡)

]
𝑘,1

(𝑡)
] ,

(14)

where𝑀
𝑘
= 𝑃
𝑇

𝑘
𝑃
𝑘
−diag{𝐼

2𝑛
, 𝐼
2𝑛
}with𝑃

𝑘
= [

D+𝛼𝑘W −𝛽𝑘W

𝛽𝑘W D+𝛼𝑘W ] ,

𝑘 = 1, 2, . . . , ℎ. If 𝑀
𝑘

< 0, 𝑘 = 1, 2, . . . , ℎ, that is, these
matrices are negative definite, then the zero solution of (10)
is asymptotically stable.

Secondly, we study the stability of (11). Let 𝜂
𝑘,𝑝+1

(𝑡) =

𝜇
𝑘,𝑝+1

(𝑡) + 𝑗]
𝑘,𝑝+1

(𝑡); then

𝜇
𝑘,𝑝+1

(𝑡 + 1) = (D + 𝛼
𝑘
W) 𝜇
𝑘,𝑝+1

(𝑡)

− 𝛽
𝑘
W]
𝑘,𝑝+1

(𝑡) +W𝜇
𝑘,𝑝

(𝑡) ,

1 ≤ 𝑝 ≤ 𝑁
𝑘
− 1,

]
𝑘,𝑝+1

(𝑡 + 1) = (D + 𝛼
𝑘
W) ]
𝑘,𝑝+1

(𝑡)

+ 𝛽
𝑘
W𝜇
𝑘,𝑝+1

(𝑡) +W]
𝑘,𝑝

(𝑡) ,

1 ≤ 𝑝 ≤ 𝑁
𝑘
− 1.

(15)

Choose the Lyapunov function as

𝑉 (𝑡) = 𝜇
𝑇

𝑘,𝑝+1
(𝑡) 𝜇
𝑘,𝑝+1

(𝑡) + ]𝑇
𝑘,𝑝+1

(𝑡) ]
𝑘,𝑝+1

(𝑡) . (16)

Then we obtain
Δ𝑉 (𝑡) = 𝑉 (𝑡 + 1) − 𝑉 (𝑡)

=

[
[
[

[

𝑢
𝑘,𝑝

(𝑡)

V
𝑘,𝑝

(𝑡)

𝑢
𝑘,𝑝+1

(𝑡)

V
𝑘,𝑝+1

(𝑡)

]
]
]

]

𝑇

𝐿
𝑘

[
[
[

[

𝑢
𝑘,𝑝

(𝑡)

V
𝑘,𝑝

(𝑡)

𝑢
𝑘,𝑝+1

(𝑡)

V
𝑘,𝑝+1

(𝑡)

]
]
]

]

,

(17)
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Figure 1: The panels exhibit 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 with

regard to 𝑚
𝑥
for 𝑁 = 10 and 𝑚

𝑦
= 0.2. The bottom one shows that

the inner synchronization inside network𝑋 is easily achieved.When
𝑚
𝑥

≥ 0.5, the inner and outer synchronization simultaneously
appear.

where 𝐿
𝑘
= 𝑄
𝑇

𝑘
𝑄
𝑘
− diag{0, 0,W𝑇W + 𝐼

2𝑛
,W𝑇W + 𝐼

2𝑛
} with

𝑄
𝑘
=

[
[
[

[

0 0 W 0

0 0 0 W
W 0 D + 𝛼

𝑘
W −𝛽

𝑘
W

0 W 𝛽
𝑘
W D + 𝛼

𝑘
W

]
]
]

]

. (18)

If 𝐿
𝑘

< 0, 𝑘 = 1, 2, . . . , ℎ, then the zero solution of
(11) is asymptotically stable. Hence we obtain a synchronized
theorem for networks (1).

Theorem 1. Consider network systems (1). Assume the mutual
coupling matrices 𝐴 = 𝐵. Let 𝜆

𝑘
= 𝛼
𝑘

+ 𝑗𝛽
𝑘
be the

eigenvalues of 𝐴, where 𝛼
𝑘
, 𝛽
𝑘
∈ 𝑅. If these matrices 𝑀

𝑘
, 𝐿
𝑘
<

0, 𝑘 = 1, 2, . . . , ℎ, then the networks (1) will achieve inner
synchronization inside each network.

Remark 2. Note that Theorem 1 only gives a feasibility of the
inner synchronization inside each network. When the inner
synchronization inside networks 𝑋 and 𝑌 happens, and the
synchronized states ‖𝑥

𝑠
(𝑡)−𝑦

𝑠
(𝑡)‖ → 0 for a large time, then

the outer synchronization between networks𝑋 and 𝑌 will be
achieved.

3. Numerical Examples

In this section, we will give some examples to illustrate
our theoretical results obtained in the previous section. We
mainly investigate the effect of coupling strengths, node
dynamics, and mutual coupling forms on the inner and outer
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Figure 2: The plots show 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 on 𝑚

𝑦
for

𝑁 = 10 and 𝑚
𝑥

= 0.3. When 𝑚
𝑦

≥ 0.35, the inner and outer
synchronization simultaneously happen.
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Figure 3: The curves of 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 concerning 𝑎

1

with 𝑏
1

= 0.2, 𝑎
2
= 0.5, and 𝑏

2
= 0.3 and 𝑁 = 10,𝑚

𝑥
= 0.2, and

𝑚
𝑦
= 0.3.

synchronization.We consider the following coupled discrete-
time networks, which are in the form of (1):

𝑥
𝑖1
(𝑡 + 1) = 1 + 𝑥

𝑖2
(𝑡) − 𝑎

1
𝑥
𝑖1
(𝑡)
2

+ 𝑚
𝑥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑦
𝑗1

(𝑡) − 𝑥
𝑗1

(𝑡)) ,
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Figure 4: The trajectories of 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 regarding

𝑏
2
with 𝑎

1
= 0.3, 𝑏

1
= 0.2, and 𝑎

2
= 0.5 and 𝑁 = 10,𝑚

𝑥
= 0.2, and

𝑚
𝑦
= 0.3.

𝑥
𝑖2
(𝑡 + 1) = 𝑏

1
𝑥
𝑖1
(𝑡)

+ 𝑚
𝑥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑦
𝑗2

(𝑡) − 𝑥
𝑗2

(𝑡)) , 𝑖 = 1, 2, . . . , 𝑁,

𝑦
𝑖1
(𝑡 + 1) = 1 + 𝑦

𝑖2
(𝑡) − 𝑎

2
𝑦
𝑖1
(𝑡)
2

+ 𝑚
𝑦

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑥
𝑗1

(𝑡) − 𝑦
𝑗1

(𝑡)) ,

𝑦
𝑖2
(𝑡 + 1) = 𝑏

2
𝑦
𝑖1
(𝑡) + 𝑚

𝑦

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑥
𝑗2

(𝑡) − 𝑦
𝑗2

(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁, (19)

where the node equations in (19) are bothHenönmaps, which
have colorful dynamical properties, for instance, 𝑎

1
= 0.5

and 𝑏
1

= 0.3; it has a periodic solution. Since the sum of
each row of mutual matrices is one, for simplicity, we take
𝑎
𝑖𝑗

= 𝑏
𝑖𝑗

= 1/𝑁 for 𝑖, 𝑗 = 1, . . . , 𝑁. To measure the extent
to which inner synchronization is achieved, we introduce
two quantities, 𝐸

𝑥
= ‖𝑥

𝑖
(𝑡) − 𝑥

𝑠
(𝑡)‖ and 𝐸

𝑦
= ‖𝑦

𝑖
(𝑡) −

𝑦
𝑠
(𝑡)‖, 𝑖 = 1, . . . , 𝑁. In addition, we denote another quantity

𝐸outer = ‖𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)‖ for 𝑖 = 1, . . . , 𝑁 to demonstrate

whether outer synchronization happens. Given the values of
𝑎
1

= 0.3, 𝑏
1

= 0.2, 𝑎
2

= 0.5, and 𝑏
2

= 0.3, we first study
the effect of coupling strengths 𝑚

𝑥
and 𝑚

𝑦
on the inner

and outer synchronization. Figure 1 shows that the outer
synchronization does not happenwhen the coupling strength
is 𝑚
𝑥
< 0.5, while the inner synchronization inside network

𝑋 always appears. In the same way, considering the effect of
coupling strength𝑚

𝑦
, the details are shown in Figure 2.



Abstract and Applied Analysis 5

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

5

3.5

4.5

4

Ex

Ey

Eouter

E
x

,E
y

,E
ou

te
r

N

Figure 5: The plots show 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 on 𝑁 with

𝑎
1
= 0.3, 𝑏

1
= 0.2, 𝑎

2
= 0.5, and 𝑏

2
= 0.3 and 𝑚

𝑥
= 0.2 and 𝑚

𝑦
= 0.3.

The topologies are 𝑎
𝑖𝑗

= 𝑏
𝑖𝑗

= 1/𝑁, 𝑖, 𝑗 = 1, . . . , 𝑁. Obviously the
inner synchronization inside network 𝑌 and outer synchronization
do not happen for the network size 𝑁 < 40 except some values of
𝑁.

Next, we discuss the effect of node dynamics on the inner
and outer synchronization and take 𝑏

1
= 0.2, 𝑎

2
= 0.5,

and 𝑏
2

= 0.3 and 𝑁 = 10, 𝑚
𝑥

= 0.2, and 𝑚
𝑦

= 0.3.
We then investigate the effect of parameter 𝑎

1
on the inner

and outer synchronization. Similarly, given 𝑎
1

= 0.3, 𝑏
1

=

0.2, and 𝑎
2

= 0.5 and 𝑁 = 10, 𝑚
𝑥

= 0.2, and 𝑚
𝑦

=

0.3, we study the influence of 𝑏
2
. The numerical simulations

are summarized in Figures 3 and 4, showing that the inner
synchronization inside network 𝑋 always happens, while
the inner synchronization inside network 𝑌 and the outer
synchronization only appear for some values of 𝑎

1
or 𝑏
2
.

Finally, we discuss the effect of network size 𝑁 on the
inner and outer synchronization with 𝑎

𝑖𝑗
= 𝑏
𝑖𝑗

= 1/𝑁, 𝑖, 𝑗 =

1, . . . , 𝑁. Taking the values of 𝑎
1

= 0.3, 𝑏
1

= 0.2, 𝑎
2

= 0.5,
and 𝑏

2
= 0.3 and 𝑚

𝑥
= 0.2 and 𝑚

𝑦
= 0.3, we plot the

curves of 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer in Figure 5. In the following,

we change the topological structures of mutual coupling
matrices and choose𝐴 = 𝐵 as a randommatrix; the numerics
are shown in Figure 6. It is found that the globally connected
and random topological structures have similar effect on the
inner and outer synchronization. It is noted that the inner
synchronization inside network𝑋 always happens. Apossible
reason is the effect of node dynamics. Furthermore, when the
Henön map behaves chaotically, no synchronization appears.

4. Conclusions

The current study investigated the synchronization between
two discrete-time networks with mutual couplings and
mainly studied inner synchronization inside each network
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Figure 6: The curves of 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 regarding 𝑁

with 𝑎
1
= 0.3, 𝑏

1
= 0.2, 𝑎

2
= 0.5, and 𝑏

2
= 0.3 and 𝑚

𝑥
= 0.2, and

𝑚
𝑦

= 0.3. The coupling matrix 𝐴(𝐵) is a random matrix satisfying
the sum of each row being one.

and outer synchronization between them. We then obtained
a synchronous theorem on the inner synchronization inside
each network in terms of linear matrix inequality, for the lack
of a criterion on the outer synchronization. When the inner
synchronization is achieved inside each network and the
synchronized states 𝑥

𝑠
and 𝑦

𝑠
are same for a large time, then

the outer synchronization will happen. From the numerical
simulations, we see that the inner and outer synchronization
simultaneously happenwhenwe adjust the values of coupling
strengths and parameters in the node dynamics. The globally
connected and random topologies have similar effect on
the inner and outer synchronization. In addition, outer
synchronization is more difficult to achieve than the inner
synchronization, meaning that the outer synchronization
needs a strong coupling form. Because of the diversity of
coupling forms between two networks, deriving the criteria
on the inner and outer synchronization simultaneously is a
technical challenge, which would be discussed in the future.
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The problem of projective lag synchronization of coupled neural networks with time delay is investigated. Bymeans of the Lyapunov
stability theory, an intermittent controller is designed for achieving projective lag synchronization between two delayed neural
networks systems. Numerical simulations on coupled Lu neural systems illustrate the effectiveness of the results.

1. Introduction

In the past few years, synchronization of neural networks
has been extensively investigated due to their successful
application in many areas, such as communication, mod-
eling brain activity, signal processing, and combinatorial
optimization. There are several different synchronization
schemes including complete, lag, projective, generalized,
phase, and anticipated synchronization [1–9]. In projective
synchronization, the master-slave systems can be synchro-
nized up to a scaling factor. Due to the potential applications
in secure communication, projective synchronization has
attracted increasing attention [10–13]. In [10], the authors
study the projective synchronization for different chaotic
delayed neural networks via sliding mode control approach.
Function projective synchronization of two-cell Quantum-
CNN chaotic oscillators using adaptive method is investi-
gated in [11]. It is worth noting that the propagation delay
may exist in remote communication systems. However, to the
best of the authors’ knowledge, few results (if any) for the
projective lag synchronization of neural networks with time
delay have been reported in the literature.

In this paper, we will deal with the analysis issue for
projective lag synchronization of neural networks with time

delay by intermittent control approach. Recently, we have
employed this method to stabilize and synchronize chaotic
systems [14–16]. In this paper, by using Lyapunov stability
theory and intermittent control technique, the intermittent
controllers and corresponding parameter update rules are
designed to obtain projective lag synchronization of neural
networks. The rest of the paper is organized as follows.
In Section 2, we formulate the problem of projective lag
synchronization of coupled neural networks. In Section 3,
a general scheme for the projective lag synchronization is
presented. Numerical simulations are given in Section 4.
Finally, conclusions are given in Section 5.

2. Problem Formulation and Preliminaries

In this paper, we consider the chaotic cellular neural networks
described by

̇𝑥
𝑖
(𝑡) = − 𝑐

𝑖
𝑥 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑖
(𝑥 (𝑡)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑖
(𝑥 (𝑡 − 𝜏)) ,

𝑖 = 1, 2, 3, . . . , 𝑛; 𝑡 > 0,

𝑥 (𝑡) = 𝜑 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(1)
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or, in a compact form,

̇𝑥 (𝑡) = 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏)) , 𝑡 > 0,

𝑥 (𝑡) = 𝜑 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,
(2)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)] ∈ 𝑅

𝑛 denotes the state
vector,𝐶,𝐴, and𝐵 ∈ 𝑅𝑚×𝑚 are constantmatrices, 𝜏 is the time
delay, and𝑓, 𝑔 : 𝑅𝑚 → 𝑅

𝑚 are nonlinear functions satisfying
the Lipschitz condition, namely; there exist positive constants
𝐿
𝑓
, 𝐿
𝑔
such that, for all 𝑥, 𝑦 ∈ 𝑅𝑛,

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝐿𝑓

𝑥 − 𝑦
 ,

𝑔 (𝛼) − 𝑔 (𝛽)
 ≤ 𝐿𝑔

𝛼 − 𝛽
 .

(3)

Consider the corresponding slave system given in the
following form:

̇𝑦 (𝑡) = 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝑢 (𝑡) ,

𝑡 > 0,

𝑦 (𝑡) = 𝜓 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(4)

where 𝑦(𝑡) ∈ 𝑅𝑛 denotes the state vector, 𝐶, 𝐴, and 𝐵 ∈
𝑅
𝑛×𝑛 are constant matrices, and 𝑢(𝑡) denotes the intermittent

feedback control defined as follows:

𝑢 (𝑡) = {
𝐻 (𝑡) + 𝐾 (𝑡) , 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

𝐻 (𝑡) , 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇,
(5)

where 𝑘 denotes the control strength, 0 < 𝜎 < 1 denotes the
switching rate, 𝑇 denotes the control period, and 𝐻(𝑡) and
𝐾(𝑡) are the active control functions.

Let 𝜃 be the transmittal delay. Defining the projective lag
synchronization error between systems (2) and (4) as 𝑒(𝑡) =
𝑦(𝑡) −𝛼𝑥(𝑡 − 𝜃), where 𝛼 denotes projective scaling factor, we
have the following error dynamical system:

̇𝑒 (𝑡) = ̇𝑦 (𝑡) − 𝛼 ̇𝑥 (𝑡 − 𝜃)

= 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝑢 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+ 𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃))) .

(6)

Under the control of the form (5), the system (6) can be
rewritten as

̇𝑒 (𝑡) = 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝐻 (𝑡) + 𝐾 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃))) ,

𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

̇𝑒 (𝑡) = 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝐻 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃))) ,

𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇.

(7)

Definition 1. The master system (2) and the slave system (4)
are said to be projective lag synchronization if there exist

a compact set 𝛼, 𝜎 and delay time 𝜃 such that, for any initial
values 𝜑(𝑡

0
), 𝜓(𝑡
0
) ∈ Ω, 𝑡

0
∈ [−𝜏, 0], the error system is

exponentially stable; that is,

lim
𝑡→∞

‖𝑒 (𝑡)‖ = lim
𝑡→∞

𝑦 (𝑡) − 𝛼𝑥 (𝑡 − 𝜃)
 ≤ ‖𝑒 (0)‖ 𝑒

−𝜎𝑡

,

∀𝑡 ≥ 0.

(8)

3. Main Results

This section addresses the projective lag synchronization
problem of coupled neural networks.

Theorem 2. Suppose that there exist constants 𝛼, the coupling
strength 𝑘, time delay 𝜃, and the functions𝐻(𝑡),𝐾(𝑡) such that

(i) 𝐶 + 𝐶𝑇 − 2𝑘𝐼 + 𝑔
1
𝐼 ≤ 0;

(ii) 𝐶 + 𝐶𝑇 − 𝑔
2
𝐼 ≤ 0;

(iii) 𝐻(𝑡) = −𝐴𝑓(𝑦(𝑡)) − 𝐵𝑔(𝑦(𝑡 − 𝜏)) + 𝛼𝐴𝑓(𝑥(𝑡 − 𝜃)) +
𝛼𝐵𝑔(𝑥(𝑡 − 𝜏 − 𝜃));

(iv) 𝐾(𝑡) = −𝑘(𝑦(𝑡) − 𝛼𝑥(𝑡 − 𝜃));
(v) 𝑔
1
𝜎 − (1 − 𝜎)𝑔

2
> 0.

Then, the projective lag synchronization error system (7) is
globally exponentially stable, that is; the projective lag synchro-
nization between themaster system (2) and the slave system (4)
under intermittent control (5) is achieved.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) = 𝑒(𝑡)
𝑇

𝑒 (𝑡) . (9)

When 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇+𝜎𝑇, the derivative of (9) with respect
to time 𝑡 along the trajectories of the first subsystem of the
system (7) is calculated and estimated as follows:

𝑉 (𝑡) = 2𝑒(𝑡)
𝑇

̇𝑒 (𝑡)

= 2𝑒(𝑡)
𝑇

[𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏))

+ 𝐻 (𝑡) + 𝐾 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃) + 𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃)))]

= 𝑒(𝑡)
𝑇

[𝐶 + 𝐶
𝑇

− 2𝑘𝐼 + 𝑔
1
𝐼] 𝑒 (𝑡) − 𝑔

1
𝑒(𝑡)
𝑇

𝑒 (𝑡)

≤ −𝑔
1
𝑒(𝑡)
𝑇

𝑒 (𝑡) .

(10)

Similarly, when 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇, one obtains

𝑉 (𝑡) = 2𝑒(𝑡)
𝑇

̇𝑒 (𝑡) = 2𝑒(𝑡)
𝑇

× [𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏)) + 𝐻 (𝑡)

− 𝛼 (𝐶𝑥 (𝑡 − 𝜃)+𝐴𝑓 (𝑥 (𝑡 − 𝜃))+𝐵𝑔 (𝑥 (𝑡 − 𝜏 − 𝜃)))]

= 𝑒(𝑡)
𝑇

[𝐶 + 𝐶
𝑇

− 𝑔
2
𝐼] 𝑒 (𝑡) + 𝑔

2
𝑒(𝑡)
𝑇

𝑒 (𝑡)

≤ 𝑔
2
𝑒(𝑡)
𝑇

𝑒 (𝑡) .

(11)
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Therefore,

𝑉 (𝑡) ≤ −𝑔
1
𝑉 (𝑡) , 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

𝑉 (𝑡) ≤ 𝑔
2
𝑉 (𝑡) , 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇.

(12)

Then, one observes that

𝑉 (𝑡) ≤ ‖𝑉 (𝑛𝑇)‖ exp (−𝑔
1
(𝑡 − 𝑛𝑇)) ,

𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

𝑉 (𝑡) ≤ ‖𝑉 (𝑛𝑇 + 𝜎𝑇)‖ exp (𝑔
2
(𝑡 − 𝑛𝑇 − 𝜎𝑇)) ,

𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1) 𝑇.

(13)

By (12) and (13), we can obtain the following.
(1) For 0 ≤ 𝑡 < 𝜎𝑇,

𝑉 (𝑡) ≤
𝑉 (𝑡0)

 exp (−𝑔1𝑡) ,

𝑉 (𝜎𝑇) ≤
𝑉 (𝑡0)

 exp (−𝑔1𝜎𝑇) .
(14)

(2) For 𝜎𝑇 ≤ 𝑡 < 𝑇,

𝑉 (𝑡) ≤ (‖𝑉 (𝜎𝑇)‖) exp (𝑔
2
(𝑡 − 𝜎𝑇))

≤ (
𝑉 (𝑡0)

) exp (−𝑔1𝜎𝑇 + 𝑔2 (𝑡 − 𝜎𝑇)) ,

𝑉 (𝑇) ≤ (
𝑉 (𝑡0)

) exp (−𝑔1𝜎𝑇 + 𝑔2 (𝑇 − 𝜎𝑇)) .

(15)

(3) For 𝑇 ≤ 𝑡 < 𝑇 + 𝜎𝑇,

𝑉 (𝑡) ≤ (‖𝑉 (𝑇)‖) exp (−𝑔
1
(𝑡 − 𝑇))

≤ (
𝑉 (𝑡0)

) exp (−𝑔1𝜎𝑇 + 𝑔2 (𝑇 − 𝜎𝑇) − 𝑔1 (𝑡 − 𝑇)) ,
𝑉 (𝑇 + 𝜎𝑇)

≤ (
𝑉 (𝑡0)

)

× exp (−𝑔
1
𝜎𝑇 + 𝑔

2
(𝑇 − 𝜎𝑇) − 𝑔

1
(𝑇 + 𝜎𝑇 − 𝑇))

≤ (
𝑉 (𝑡0)

) exp (−2𝑔1𝜎𝑇 + 𝑔2 (𝑇 − 𝜎𝑇)) .
(16)

(4) For 𝑇 + 𝜎𝑇 ≤ 𝑡 < 2𝑇,

𝑉 (𝑡) ≤ (
𝑉 (𝑡0)

)

× exp (−2𝑔
1
𝜎𝑇 + 𝑔

2
(𝑇 − 𝜎𝑇) + 𝑔

2
(𝑡 − 𝑇 − 𝜎𝑇)) ,

𝑉 (2𝑇) ≤ (
𝑉 (𝑡0)

) exp (−2𝑔1𝜎𝑇 + 2𝑔2 (𝑇 − 𝜎𝑇)) .
(17)

By induction, we have the following.
(5) For 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

𝑉 (𝑡) ≤ (‖𝑉 (𝑛𝑇)‖) exp (−𝑔
1
(𝑡 − 𝑛𝑇))

≤ (
𝑉 (𝑡0)

) exp (−𝑔1 (𝑡 − 𝑛𝑇))

× exp (−𝑛𝑔
1
𝜎𝑇 + 𝑛𝑔

2
(𝑇 − 𝜎𝑇))

≤ (
𝑉 (𝑡0)

) exp (−𝑛𝑔1𝜎𝑇 + 𝑛𝑔2 (𝑇 − 𝜎𝑇)) .

(18)

Note that (𝑡 − 𝜎𝑇)/𝑇 ≤ 𝑛 < 𝑡/𝑇; in this case, we can obtain

𝑉 (𝑡) ≤ (
𝑉 (𝑡0)

)

× exp(−
(𝑔
1
𝜎𝑇 − 𝑔

2
(𝑇 − 𝜎𝑇)) (𝑡 − 𝜎𝑇)

𝑇
)

≤ (
𝑉 (𝑡0)

) exp (− (𝑔1𝜎 − 𝑔2 (1 − 𝜎)) (𝑡 − 𝜎𝑇)) .

(19)

(6) For 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇

𝑉 (𝑡) ≤ (‖𝑉 (𝑛𝑇 + 𝜎𝑇)‖) exp (−𝑔
2
(𝑡 − 𝑛𝑇 − 𝜎𝑇))

≤ (
𝑉 (𝑡0)

) exp (−𝑔2 (𝑡 − 𝑛𝑇 − 𝜎𝑇))

× exp (− (𝑛 + 1) 𝑔
1
𝜎𝑇 + 𝑔

2
(𝑛 + 1) (𝑇 − 𝜎𝑇))

≤ (
𝑉 (𝑡0)

)

× exp (− (𝑛 + 1) 𝑔
1
𝜎𝑇 + 𝑔

2
(𝑛 + 1) (𝑇 − 𝜎𝑇)) .

(20)

Note that 𝑡/𝑇 ≤ 𝑛 + 1 < (𝑡 + 𝑇 − 𝜎𝑇)/𝑇; in this case, we can
obtain

𝑉 (𝑡) ≤ (
𝑉 (𝑡0)

)

× exp (− (𝑛 + 1) 𝑔
1
𝜎𝑇 + 𝑔

2
(𝑛 + 1) (𝑇 − 𝜎𝑇))

≤ (
𝑉 (𝑡0)

) exp (− (𝑔1𝜎 − 𝑔2 (1 − 𝜎)) (𝑡 − 𝜎𝑇)) .

(21)

Therefore, for any 𝑡 ≥ 0,

‖𝑒 (𝑡)‖
2

= 𝑉 (𝑡)

≤ (
𝑉 (𝑡0)

) exp (− (𝑔1𝜎 − 𝑔2 (1 − 𝜎)) (𝑡 − 𝜎𝑇)) .
(22)

This implies that the projective lag synchronization error
system (7) is globally exponentially stable, and the following
estimate holds:

‖𝑒 (𝑡)‖ ≤ (√
𝑉 (𝑡0)

) exp(−
(𝑔
1
𝜎 − 𝑔
2
(1 − 𝜎)) (𝑡 − 𝜎𝑇)

2
) .

(23)

This implies that the projective lag synchronization
between the master system (2) and slave system (4) is
achieved.

Let 𝑔
1

∗

= −𝜆max(𝐶 + 𝐶
𝑇

) + 2𝑘 and 𝑔
2

∗

= 𝜆max(𝐶 + 𝐶
𝑇

),
where 𝑔

1

∗

≥ 𝑔
1
, 𝑔
2

∗

≤ 𝑔
2
. If we replace the first condition

in Theorem 2 with 𝑔
1

∗, 𝑔
2

∗, then Theorem 2 also can hold.
In addition, one can obtain the following corollary from
Theorem 2.

Corollary 3. Suppose that there exist positive scalars 𝑘 and 𝜎
satisfying 0 < 𝜎 < 1 such that

𝑔
1

∗

𝜎 − (1 − 𝜎) 𝑔
2

∗

> 0, (24)

where 𝑔
1

∗

= −𝜆max(𝐶 + 𝐶
𝑇

) + 2𝑘 and 𝑔
2

∗

= 𝜆max(𝐶 + 𝐶
𝑇

).
Then, the system (7) is exponentially stable, and the projective
lag synchronization between themaster system (2) and the slave
system (4) under intermittent control (5) is achieved.

Remark 4. If 𝛼 = 1, it is clear that the lag synchronization
between the system (2) and system (4) will occur.

Remark 5. It is clear that when the time delay vanishes, that
is, 𝜃 = 0, we have 𝑒(𝑡) = 𝑦(𝑡) − 𝛼𝑥(𝑡), which implies that
the projective synchronization between master system (2)
without delay and system (4) without delay will occur.
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Remark 6. From Corollary 3, one observes that the control
strength 𝑘 can be estimated as follows:

𝑘 > 𝑘
∗

=

𝜆max (𝐶 + 𝐶
𝑇

)

2𝜎
> 0. (25)

Note that𝐶 are determined only by the system itself, and𝜎
is control parameter.Then,we can estimate the feasible region
𝐷 of control parameters (𝑘, 𝜎) as follows:

𝐷 = {(𝑘, 𝜎) | 𝑘 > 𝑘
∗

=

𝜆max (𝐶 + 𝐶
𝑇

)

2𝜎
> 0, 0 < 𝜎 < 1} .

(26)

4. Numerical Example

In this section, Lu neural oscillator [17] is presented as
an example to verify the effectiveness of Theorem 2. The
programs DDE23 in MATLAB are used to solve numerically
the delay differential equations.

Example 1. Consider the Lu neural oscillator [17]

̇𝑥 (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 1)) , (27)

where

𝐶 = (
1 0

0 1
) , 𝐴 = (

3.0 5.0

0.1 2.0
) , 𝐵 = (

−2.5 0.2

0.1 −1.5
) ,

(28)

and 𝑓(𝑥(𝑡)) = 𝑔(𝑥(𝑡)) = tanh(𝑥(𝑡)).
This model was investigated by Lu in [17] where it was

shown to be chaotic, as shown in Figure 1.The corresponding
slave system is given by

̇𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 1)) + 𝑢 (𝑡) . (29)

From Theorem 2, the controller can be obtained as
follows:

𝑢 (𝑡) =

{{{{{{{

{{{{{{{

{

−𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1)) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) − 𝑘 (𝑦 (𝑡) − 𝛼𝑥 (𝑡 − 𝜃)) ,

𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇,

−𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1)) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) ,

𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇.

(30)

So, when 𝑛𝑇 ≤ 𝑡 < 𝑛𝑇 + 𝜎𝑇, we have

𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 1))

− 𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1))

+ 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) − 𝑘𝑒 (𝑡)

= −𝐶𝑦 (𝑡) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃))

+ 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) − 𝑘𝑒 (𝑡) .

(31)
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Figure 1: The chaotic attractor of the Lu oscillator described by (7)
with initial value 𝑥

1
(𝜃) = 0.2, 𝑥

2
(𝜃) = −0.5, for 𝜃 ∈ [−1, 0].

When 𝑛𝑇 + 𝜎𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇, we have

𝑦 (𝑡) = − 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 1))

− 𝐴𝑓 (𝑦 (𝑡)) − 𝐵𝑔 (𝑦 (𝑡 − 1))

+ 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃))

= − 𝐶𝑦 (𝑡) + 𝛼𝐴𝑓 (𝑥 (𝑡 − 𝜃)) + 𝛼𝐵𝑔 (𝑥 (𝑡 − 1 − 𝜃)) .

(32)

Noting that 𝜆max(𝐶 + 𝐶
𝑇

) = 2, the feasible region of
control parameters (𝑘, 𝜎) is 𝐷 = {(𝑘, 𝜎) | 𝑘 < 𝑘∗ = −1/𝜎, 0 <
𝜎 < 1}, as shown in Figure 2. For numerical simulation, we
select 𝛼 = 2, 𝜃 = 0.01, 𝜎 = 0.1, and 𝑘 = 10 and plot the
normof projective lag synchronization errors curve, as shown
in Figure 3. As the time 𝑡 goes to infinity, the projective lag
synchronization error system is stable. Hence, the projective
lag synchronization between system (27) and system (29) is
achieved.

5. Conclusions

This paper addressed projective lag synchronization of cou-
pled neural networks with time delay. Based on Lyapunov
stability theory and adaptive control techniques, several
criteria for projective lag synchronization of identical neural
networks with time delay have been established. With the
proposed method, the simulations of projective lag between
coupled Lu systems have showed the effectiveness of theoret-
ical result.
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Combined heat and power dynamic economic emission dispatch (CHPDEED) problem is a complicated nonlinear constrained
multiobjective optimization problem with nonconvex characteristics. CHPDEED determines the optimal heat and power schedule
of committed generating units by minimizing both fuel cost and emission simultaneously under ramp rate constraints and other
constraints. This paper proposes hybrid differential evolution (DE) and sequential quadratic programming (SQP) to solve the
CHPDEED problem with nonsmooth and nonconvex cost function due to valve point effects. DE is used as a global optimizer,
and SQP is used as a fine tuning to determine the optimal solution at the final. The proposed hybrid DE-SQP method has been
tested and compared to demonstrate its effectiveness.

1. Introduction

Recently, combined heat and power (CHP) units, known
as cogeneration or distributed generation, have played an
increasingly important role in the utility industry. CHP
units can provide not only electrical power but also heat
to the customers. While the efficiency of the normal power
generation is between 50% and 60%, the power and heat
cogeneration increases the efficiency to around 90% [1].
Besides thier high efficiency, CHP units reduce the emission
of gaseous pollutants (SO

2
, NO
𝑥
, CO, and) by about 13–18%

[2].
In order to utilize the integrated CHP system more CO

2

economically, combined heat and power economic dispatch
(CHPED) problem is applied. The objective of the CHPED
problem is to determine both power generation and heat
production from units by minimizing the fuel cost such that
both heat and power demands are met, while the combined
heat and power units are operated in a bounded heat versus
power plane. For most CHP units the heat production
capacities depend on the power generation. This mutual
dependency of the CHP units introduces a complication to

the problem [3]. In addition, considering valve point effects
in the CHPED problem makes the problem nonsmooth with
multiple local optimal point which makes finding the global
optimal challenging.

In the literature, several optimization techniques have
been used to solve the CHPED problem with complex objec-
tive functions or constraints such as Lagrangian relaxation
(LR) [4, 5], semidefinite programming (SDP) [6], augmented
Lagrange combined with Hopfield neural network [7], har-
mony search (HS) algorithm [1, 8], genetic algorithm (GA)
[9], ant colony search algorithm (ACSA) [10], mesh adaptive
direct search (MADS) algorithm [11], self adaptive real-coded
genetic algorithm (SARGA) [3], particle swarm optimization
(PSO) [2, 12], artificial immune system (AIS) [13], bee colony
optimization (BCO) [14], differential evolution [15], and
evolutionary programming (EP) [16]. In [2, 13–15], the valve
point effects and the transmission line losses are incorporated
into the CHPED problem.

In the CHPED formulation the ramp rate limits of the
units are neglected. Plant operators, to avoid life-shortening
of the turbines and boilers, try to keep thermal stress
on the equipments within the safe limits. This mechanical
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constraint is usually transformed into a limit on the rate of
change of the electrical output of generators. Such ramp rate
constraints link the generator operation in two consecutive
time intervals. Combined heat and power dynamic economic
dispatch (CHPDED) problem is an extension of CHPED
problem where the ramp rate constraint is considered. The
primary objective of the CHPDED problem is to determine
the heat and power schedule of the committed units so as
to meet the predicted heat and electricity load demands
over a time horizon at minimum operating cost under ramp
rate constraints and other constraints [17]. Since the ramp
rate constraints couple the time intervals, the CHPDED
problem is a difficult optimization problem. If the ramp rate
constraints are not included in the optimization problem, the
CHPDED problem is reduced to a set of uncoupled CHPED
problems that can easily be solved. In the literature an
overwhelming number of reported works deal with CHPED
problem; however, the CHPDED problem has only been
considered in [17].

The traditional dynamic economic dispatch (DED) prob-
lem which considers only thermal units that provide only
electric power has been studied by several authors (see the
review paper [18]). The emission has been taken into the
traditional (DED) formulation in three main approaches.
The first approach is to minimize the fuel cost and treat the
emission as a constraint with a permissible limit (see, e.g.,
[19–21]). This formulation, however, has a severe difficulty
in getting the trade-off relations between cost and emission
[22]. The second approach handles both fuel cost and emis-
sion simultaneously as competing objectives [23–25]. The
third approach treats the emission as another objective in
addition to fuel cost objective. However, the multiobjective
optimization problem is converted to a single-objective
optimization problem by linear combination of both objec-
tives [19, 26–30]. In the second and third approaches, the
dynamic dispatch problem is referred to as dynamic eco-
nomic emission dispatch (DEED) which is a multiobjective
optimization problem, which minimizes both fuel cost and
emission simultaneously under ramp rate constraint and
other constraints [19, 24]. In this paper, we incoroporate the
CHP units into the DEED problem. Combined heat and
power dynamic economic emission dispatch (CHPDEED) is
formulated with the objective to determine the unit power
and heat production so that the system’s production cost
and emission are simultaneouslyminimized, while the power
and heat demands and other constraints are met [17]. The
emission has been taken into consideration in the CHPED
and CHPDED in [17, 31], respectively. In [17], both fuel
cost and emission are simultaneously handled as competing
objectives and the multiobjective problem is solved using
an enhanced firefly algorithm (FA). In the present paper,
the multiobjective optimization problem is converted into
a single-objective optimization using the weighting method.
This approach yields meaningful result to the decision maker
when solved many times for different values of the weighting
factor. In [17], the simulation results for test systemare shown,
but the data of the heat demand is not explicitly tabulated;
instead it is expressed graphically (see Figure 12 in [17]).
In this case a comparison of our proposed method and FA

cannot be performed. In our paper, all the data and the
solutions of the test system are available for comparison.

Differential evolution algorithm (DE), which was pro-
posed by Storn and Price [32] is a population based stochastic
parallel search technique. DE uses a rather greedy and less
stochastic approach to problem solving compared to other
evolutionary algorithms. DE has the ability to handle opti-
mization problems with nonsmooth/nonconvex objective
functions [32]. Moreover, it has a simple structure and a good
convergence property, and it requires a few robust control
parameters [32]. DE has been applied to the CHPED and
CHPDED problems with non-smooth and non-convex cost
functions in [15, 33], respectively.

The DE shares many similarities with evolutionary com-
putation techniques such as genetic algorithms (GA) tech-
niques.The system is initialized with a population of random
solutions and searches for optima by updating generations.
DE has evolution operators such as crossover and muta-
tion. Although DE seem to be good methods to solve the
CHPDEED problem with non-smooth and non-convex cost
functions, solutions obtained are just near global optimum
with long computation time. Therefore, hybrid methods
such as DE-SQP can be effective in solving the CHPDEED
problems with valve point effects.

The main contributions of the paper are as follows.
(1) A multi-objective optimization problem is formulated
using CHPDEED approach. The multi-objective optimiza-
tion problem is converted into a single-objective optimization
using the weighting method. (2) Hybrid DE-SQP method is
proposed and validated for solving the CHPDEED problem
with nonsmooth and nonconvex objective function. DE is
used as a base level search for global exploration and SQP is
used as a local search to fine-tune the solution obtained from
DE. (3) The effectiveness of the proposed method is shown
for test systems.

2. Problem Formulation

In this sectionwe formulate theCHPDEEDproblem.The sys-
tem under consideration has three types of generating units,
conventional thermal units (TU), CHP units, and heat-only
units (H). The power is generated by conventional thermal
units andCHPunits, while the heat is generated byCHPunits
and heat-only units.The objective of the CHPDEED problem
is to simultaneously minimize the system’s production cost
and emission so as to meet the predicted heat and power
load demands over a time horizon under ramp rate and
other constraints. The following objectives and constraints
are taken into account in the formulation of the CHPDEED
problem.

2.1. Objective Functions. In this section, we introduce the cost
and emission functions of three types of generating units,
conventional thermal units which produce power only, CHP
units which produce both heat and power, and heat-only
units which produce heat only.
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2.1.1. Conventional Thermal Units

Cost. The cost function curve of a conventional thermal unit
can be approximated by a quadratic function [35]. Power
plants commonly have multiple valves which are used to
control the power output of the unit. When steam admission
valves in conventional thermal units are first open, a sudden
increase in losses is registered which results in ripples in
the cost function [18, 36]. This phenomenon is called as
valve-point effects.The generator with valve-point effects has
very different input-output curve comparedwith smooth cost
function. Taking the valve-point effects into consideration,
the fuel cost is expressed as the sum of a quadratic and
sinusoidal functions [17, 24, 25, 37]. Therefore, the fuel cost
function of the conventional thermal units is given by

𝐶
TU
𝑖
(𝑃

TU
𝑖,𝑡
) = 𝑎
𝑖
+ 𝑏
𝑖
𝑃
TU
𝑖,𝑡
+ 𝑐
𝑖
(𝑃

TU
𝑖,𝑡
)
2

+

𝑒
𝑖
sin (𝑓

𝑖
(𝑃

TU
𝑖,min − 𝑃

TU
𝑖,𝑡
))

,

(1)

where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are positive constants, 𝑒

𝑖
and 𝑓

𝑖
are the

coefficients of conventional thermal unit 𝑖 reflecting valve-
point effects, 𝑃TU

𝑖,𝑡
is the power generation of conventional

thermal unit 𝑖 during the 𝑡th time interval [𝑡 − 1, 𝑡), 𝑃TU
𝑖,min

is the minimum capacity of conventional thermal unit 𝑖, and
𝐶
TU
𝑖
(𝑃

TU
𝑖,𝑡
) is the fuel cost of conventional thermal unit 𝑖 to

produce 𝑃TU
𝑖,𝑡

.

Emission.The amount of emission of gaseous pollutants from
conventional thermal units can be expressed as a combination
of quadratic function and exponential function of the unit’s
active power output [21]. The emission function is given by

𝐸
TU
𝑖
(𝑃

TU
𝑖,𝑡
) = 𝛼
𝑖
+ 𝛽
𝑖
𝑃
TU
𝑖,𝑡
+ 𝛾
𝑖
(𝑃

TU
𝑖,𝑡
)
2

+ 𝜂
𝑖
exp (𝛿

𝑖
𝑃
TU
𝑖,𝑡
) , (2)

where 𝐸TU
𝑖
(𝑃

TU
𝑖,𝑡
) is the amount of emission from unit 𝑖 from

producing power 𝑃TU
𝑖,𝑡

. Constants 𝛼
𝑖
, 𝛽
𝑖
, 𝛾
𝑖
, 𝜂
𝑖
, and 𝛿

𝑖
are the

coefficients of the 𝑖th unit emission characteristics [24].

2.1.2. CHP Units

Cost. A CHP unit has a convex cost function in both power
and heat.The form of the fuel cost function of CHP units can
be given by [6, 17] the following:

𝐶
CHP
𝑗
(𝑃

CHP
𝑗,𝑡
, 𝐻

CHP
𝑗,𝑡
) = 𝑎
𝑗
+ 𝑏
𝑗
𝑃
CHP
𝑗,𝑡

+ 𝑐
𝑗
(𝑃

CHP
𝑗,𝑡
)
2

+ 𝑑
𝑗
𝐻

CHP
𝑗,𝑡

+ 𝑒
𝑗
(𝐻

CHP
𝑗,𝑡
)
2

+ 𝑓
𝑗
𝑃
CHP
𝑗,𝑡
𝐻

CHP
𝑗,𝑡
,

(3)

where 𝐶CHP
𝑗
(𝑃

CHP
𝑗,𝑡
, 𝐻

CHP
𝑗,𝑡
) is the generation fuel cost of CHP

unit 𝑖 to produce power 𝑃CHP
𝑗,𝑡

and heat 𝐻CHP
𝑗,𝑡

. Constants
𝑎
𝑗
, 𝑏
𝑗
, 𝑐
𝑗
, 𝑑
𝑗
, 𝑒
𝑗
, and 𝑓

𝑗
are the fuel cost coefficients of CHP

unit 𝑗.

Emission.The emission of gaseous pollutants fromCHP units
is proportional to their active power output [17, 31]:

𝐸
CHP
𝑗
(𝑃

CHP
𝑗,𝑡
) = (𝛼

𝑗
+ 𝛽
𝑗
) 𝑃

CHP
𝑗,𝑡
, (4)

where 𝛼
𝑗
and 𝛽

𝑗
are the emission coefficients of CHP unit 𝑗.

2.1.3. Heat-Only Units

Cost. The cost function of heat-only units can take the
following form [6, 17]:

𝐶
𝐻

𝑘
(𝐻
𝐻

𝑘,𝑡
) = 𝑎
𝑘
+ �̃�
𝑘
𝐻
𝐻

𝑘,𝑡
+ 𝑐
𝑘
(𝐻
𝐻

𝑘,𝑡
)
2

, (5)

where 𝑎
𝑘
, �̃�
𝑘
, and 𝑐

𝑘
are the fuel cost coefficients of heat-only

unit 𝑘 and they are constants.

Emission.The emission of gaseous pollutants fromCHP units
is proportional to their heat output [17, 31]:

𝐸
𝐻

𝑘
(𝐻
𝐻

𝑡
) = (�̃�

𝑘
+ 𝛽
𝑘
)𝐻
𝐻

𝑘,𝑡
, (6)

where �̃�
𝑘
and 𝛽

𝑘
are the emission coefficients of heat-only

unit 𝑘.
Let𝑁 be the number of dispatch intervals and𝑁

𝑝
+𝑁
𝑐
+

𝑁
ℎ
the number of committed units, where𝑁

𝑝
is the number

of conventional thermal units,𝑁
𝑐
is the number of the CHP

units, and 𝑁
ℎ
is the number of the heat-only units. Then

the total fuel cost and amount of emission over the dispatch
period [0,𝑁] are given, respectively, by

𝐶 (PH) =
𝑁

∑

𝑡=1

(

𝑁𝑝

∑
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𝐶
TU
𝑖
(𝑃
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𝑖,𝑡
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𝑁𝑐
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𝐶
CHP
𝑗
(𝑃

CHP
𝑗,𝑡
, 𝐻

CHP
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+

𝑁ℎ
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𝐶
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𝑘
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𝑁

∑
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(
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𝐸
TU
𝑖
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𝑖,𝑡
) +
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𝐸
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𝐸
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𝐻
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(7)

where PH = (PH
1
,PH2, . . . ,PH𝑡, . . . ,PH𝑁)

, PH
𝑡
= (PTU
𝑡
,

PCHP
𝑡
,HCHP
𝑡
,H𝐻
𝑡
)
, PTU
𝑡

= (𝑃
TU
1,𝑡
, 𝑃

TU
2,𝑡
, . . . , 𝑃

TU
𝑁𝑝,𝑡
)
, PCHP
𝑡

=
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CHP
1,𝑡
, 𝑃

CHP
2,𝑡
, . . . , 𝑃

CHP
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)
, HCHP
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= (𝐻
CHP
1,𝑡
, 𝐻
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2,𝑡
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CHP
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,

andH𝐻
𝑡
= (𝐻
𝐻

1,𝑡
, 𝐻
𝐻

2,𝑡
, . . . , 𝐻

𝐻

𝑁ℎ ,𝑡
)
.

2.2. Constraints. There are three kinds of constraints con-
sidered in the CHPDEED problem, that is, the equilibrium
constraints of power and heat production, the capacity limits
of each unit, and the ramp rate limits.

(i) Power Production and Demand Balance
𝑁𝑝

∑

𝑖=1

𝑃
TU
𝑖,𝑡

+

𝑁𝑐

∑

𝑗=1

𝑃
CHP
𝑗,𝑡

= 𝑃
𝐷,𝑡
+ Loss

𝑡
, 𝑡 = 1, . . . , 𝑁, (8)
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Table 1: Hourly generation (MW) schedule obtained from DED using DE-SQP for 10-unit system.

H 𝑃
TU
1

𝑃
TU
2

𝑃
TU
3

𝑃
TU
4

𝑃
TU
5

𝑃
TU
6

𝑃
TU
7

𝑃
TU
8

𝑃
TU
9

𝑃
TU
10

Loss
1 150.0000 135.0000 73.0000 70.3333 222.9974 155.1682 99.2918 120.0000 20.0000 10.0000 19.7912

2 150.0000 135.0000 101.9485 120.3333 222.6154 123.7029 129.2918 90.0000 48.7980 10.7150 22.4058

3 150.0000 135.0000 181.9485 170.3333 174.2621 130.9190 129.6896 120.0000 53.5785 40.7150 28.4468

4 150.0000 135.0000 183.1516 218.2899 223.5485 160.0000 129.3947 120.0000 80.0000 42.0564 35.4415

5 150.0000 135.0000 258.8414 249.7412 224.0147 160.0000 128.5373 120.0000 80.0000 13.2136 39.3484

6 150.0000 135.0000 315.1962 299.7412 243.0000 160.0000 129.8624 120.0000 80.0000 43.2136 48.0136

7 150.0000 176.9470 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 52.9470

8 178.2448 228.3049 340.0000 300.0000 243.0000 160.0000 129.9436 120.0000 80.0000 54.9118 58.4054

9 258.2448 308.3049 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5500

10 289.0490 384.5331 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 79.5821

11 368.7363 397.1230 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 87.8595

12 374.8564 439.5807 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 92.4378

13 342.1737 386.2429 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 84.4166

14 262.1737 306.2429 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 53.1527 70.5693

15 182.1737 226.2429 340.0000 299.9639 243.0000 160.0000 130.0000 120.0000 80.0000 53.0342 58.4148

16 150.0000 146.2429 294.7660 249.9639 223.6700 160.0000 129.6353 120.0000 80.0000 43.3613 43.6398

17 150.0000 135.0000 258.1720 249.5279 223.9121 160.0000 128.8682 120.0000 80.0000 13.8650 39.3459

18 150.0000 151.6366 298.4749 299.5279 243.0000 160.0000 129.7933 120.0000 80.0000 43.6183 48.0511

19 227.2425 231.6366 299.3393 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 43.5728 58.7914

20 307.2425 311.6366 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 74.8793

21 265.4293 301.1183 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5476

22 185.4293 221.1183 263.3759 250.0000 225.8767 160.0000 129.8685 120.0000 80.0000 41.1109 48.7801

23 150.0000 141.1183 183.3759 200.0000 223.4887 155.9437 128.7427 120.0000 50.0000 11.1109 31.7806

24 150.0000 135.0000 173.1056 180.5739 173.7249 118.1382 128.6826 120.0000 20.0000 10.0000 25.2260

Table 2: Comparison results of 10-thermal-unit system (cost ×106 $) for the DED problem.

Method EP [34] PSO [34] AIS [34] NSGA-II [24] IBFA [30] DE-SQP
cost ($) 2.5854 2.5722 2.5197 2.5168 2.4817 2.4659

Table 3: Data of the CHP units and heat-only unit system.

CHP units 𝑎
𝑗

𝑏
𝑗

𝑐
𝑗

𝑑
𝑗

𝑒
𝑗

𝑓
𝑗

𝛼
𝑗

𝛽
𝑗

DRCHP
𝑗

= URCHP
𝑗

𝑗 = 1 2650 14.5 0.0345 4.2 0.030 0.031 0.00015 0.0015 70

𝑗 = 2 1250 36 0.0435 0.6 0.027 0.011 0.00015 0.0015 50

Heat-only units 𝐻
𝐻

𝑘,max 𝐻
𝐻

𝑘,min 𝑎
𝑘

�̃�
𝑘

𝑐
𝑘

�̃�
𝑗

𝛽
𝑗

𝑘 = 1 2695.2 0 950 2.0109 0.038 0.0008 0.0010

where 𝑃
𝐷,𝑡

and Loss
𝑡
are the system power demand and

transmission line losses at time 𝑡 (i.e., the 𝑡th time interval),
respectively. The B-coefficient method is one of the most
commonly used by power utility industry to calculate the net-
work losses. In this method the network losses are expressed
as a quadratic function of the unit’s power outputs that can be
approximated in the following:

Loss
𝑡
=

𝑁𝑝+𝑁𝑐

∑

𝑖=1

𝑁𝑝+𝑁𝑐

∑

𝑗=1

PL
𝑖,𝑡
𝐵
𝑖𝑗
PL
𝑗,𝑡
, 𝑡 = 1, . . . , 𝑁, (9)

where

PL
𝑖,𝑡
=

{

{

{

𝑃
TU
𝑖,𝑡
, 𝑖 = 1, . . . , 𝑁

𝑝
,

𝑃
CHP
𝑖−𝑁𝑝 ,𝑡

, 𝑖 = 𝑁
𝑝
+ 1, . . . , 𝑁

𝑝
+ 𝑁
𝑐
,

(10)

and 𝐵
𝑖𝑗
is the 𝑖𝑗th element of the loss coefficient squarematrix

of size𝑁
𝑝
+ 𝑁
𝑐
.

(ii) Heat Production and Demand Balance

𝑁𝑐

∑

𝑗=1

𝐻
CHP
𝑗,𝑡

+

𝑁ℎ

∑

𝑘=1

𝐻
𝐻

𝑘,𝑡
= 𝐻
𝐷,𝑡
, 𝑡 = 1, . . . , 𝑁, (11)

where𝐻
𝐷,𝑡

is the system heat demand at time 𝑡.

(iii) Capacity Limits of Conventional Thermal Units

𝑃
TU
𝑖,min ≤ 𝑃

TU
𝑖,𝑡
≤ 𝑃

TU
𝑖,max, 𝑖 = 1, . . . , 𝑁

𝑝
, 𝑡 = 1, . . . , 𝑁, (12)
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Table 4: Heat load demand of the three-unit system for 24 hours.

Time (h) Demand (MWth)
1 390

2 400

3 410

4 420

5 440

6 450

7 450

8 455

9 460

10 460

11 470

12 480

13 470

14 460

15 450

16 450

17 420

18 435

19 445

20 450

21 445

22 435

23 400

24 400

where 𝑃TU
𝑖,min and 𝑃TU

𝑖,max are the minimum and maximum
power capacity of conventional thermal unit 𝑖, respectively.

(iv) Capacity Limits of CHP Units

𝑃
CHP
𝑗,min (𝐻

CHP
𝑗,𝑡
) ≤ 𝑃

CHP
𝑗,𝑡

≤ 𝑃
CHP
𝑗,max (𝐻

CHP
𝑗,𝑡
) ,

𝑗 = 1, . . . , 𝑁
𝑐
, 𝑡 = 1, . . . , 𝑁,

𝐻
CHP
𝑗,min (𝑃

CHP
𝑗,𝑡
) ≤ 𝐻

CHP
𝑗,𝑡

≤ 𝐻
CHP
𝑗,max (𝑃

CHP
𝑗,𝑡
) ,

𝑗 = 1, . . . , 𝑁
𝑐
, 𝑡 = 1, . . . , 𝑁,

(13)

where 𝑃CHP
𝑗,min(𝐻

CHP
𝑗,𝑡
) and 𝑃CHP

𝑖,max(𝐻
CHP
𝑗,𝑡
) are the minimum and

maximum power limit of CHP unit 𝑗, respectively, and they
are functions of generated heat (𝐻CHP

𝑗,𝑡
). 𝐻CHP
𝑗,min(𝑃

CHP
𝑗,𝑡
) and

𝐻
CHP
𝑗,max(𝑃

CHP
𝑗,𝑡
) are the heat generation limits of CHP unit 𝑗

which are functions of generated power (𝑃CHP
𝑗,𝑡
).

(v) Capacity Limits of Heat-Only Units

𝐻
𝐻

𝑘,min ≤ 𝐻
𝐻

𝑘,𝑡
≤ 𝐻
𝐻

𝑘,max, 𝑘 = 1, . . . , 𝑁
ℎ
, 𝑡 = 1, . . . , 𝑁, (14)

where 𝐻𝐻
𝑘,min and 𝐻𝐻

𝑘,max are the minimum and maximum
heat capacity of heat-only unit 𝑘, respectively.

(vi) Upper/Down Ramp Rate Limits of Conventional Thermal
Units

− 𝐷𝑅
TU
𝑖
≤ 𝑃

TU
𝑖,𝑡+1

− 𝑃
TU
𝑖,𝑡
≤ 𝑈𝑅

TU
𝑖
,

𝑖 = 1, . . . , 𝑁
𝑝
, 𝑡 = 1, . . . , 𝑁 − 1,

(15)

where 𝑈𝑅TU
𝑖

and 𝐷𝑅TU
𝑖

are the maximum ramp up/down
rates for conventional thermal unit 𝑖 [18].

(vii) Upper/Down Ramp Rate Limits of CHP Units

− 𝐷𝑅
CHP
𝑗

≤ 𝑃
CHP
𝑗,𝑡+1

− 𝑃
CHP
𝑗,𝑡

≤ 𝑈𝑅
CHP
𝑗
,

𝑗 = 1, . . . , 𝑁
𝑐
, 𝑡 = 1, . . . , 𝑁 − 1,

(16)

where 𝑈𝑅CHP
𝑗

and 𝐷𝑅CHP
𝑗

are the maximum ramp up/down
rates for CHP unit 𝑗 [17].

2.3. The Optimization Problem. Aggregating the objectives
and constraints, the CHPDEED problem can be mathemat-
ically formulated as a nonlinear constrained multi-objective
optimization problem which can be converted into a single-
objective optimization using the weighting method as

min
PH

𝐹 (PH) = 𝑤𝐶 (PH) + (1 − 𝑤) 𝐸 (PH) ,

subject to constraints (8) – (16) ,
(17)

where 𝑤 ∈ [0, 1] is a weighting factor. It will be noted
that, when 𝑤 = 1, problem (17) determines the optimal
amount of the generated heat and power by minimizing the
fuel cost regardless of emission and the problem will be
referred to as combined heat and power dynamic economic
dispatch (CHPDED) problem. If 𝑤 = 0, then problem (17)
determines the optimal amount of the generated power by
minimizing the emission regardless of cost and the problem
will be referred to as combined heat and power pure dynamic
emission dispatch (CHPPDED).

3. Differential Evolution Method

DE is a simple yet powerful heuristicmethod for solving non-
linear, nonconvex, and nonsmooth optimization problems.
DE algorithm is a population based algorithm using three
operators; mutation, crossover, and selection to evolve from
randomly generated initial population to final individual
solution [32]. In the initialization a population of NP target
vectors (parents) 𝑋

𝑖
= {𝑥
1𝑖
, 𝑥
2𝑖
, . . . , 𝑥

𝐷𝑖
}, 𝑖 = 1, 2, . . . ,NP,

is randomly generated within user-defined bounds, where
𝐷 is the dimension of the optimization problem. Let 𝑋𝐺

𝑖
=

{𝑥
𝐺

1𝑖
, 𝑥
𝐺

2𝑖
, . . . , 𝑥

𝐺

𝐷𝑖
} be the individual 𝑖 at the current generation

𝐺. Amutant vector𝑉𝐺+1
𝑖

= (V𝐺+1
1𝑖
, V𝐺+1
2𝑖
, . . . , V𝐺+1

𝐷𝑖
) is generated

according to

𝑉
𝐺+1

𝑖
= 𝑋
𝐺

𝑟1

+F × (𝑋
𝐺

𝑟2

− 𝑋
𝐺

𝑟3

) ,

𝑟
1
̸= 𝑟
2
̸= 𝑟
3
̸= 𝑖, 𝑖 = 1, 2, . . . ,NP,

(18)
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Table 5: Hourly heat and power schedule obtained from CHPDED.

H 𝑃
TU
1

𝑃
TU
2

𝑃
TU
3

𝑃
TU
4

𝑃
TU
5

𝑃
TU
6

𝑃
TU
7

𝑃
TU
8

𝑃
CHP
1

𝑃
CHP
2

Loss 𝐻
CHP
1

𝐻
CHP
2

𝐻
H
1

1 150.0000 135.0000 74.5372 72.0784 124.5129 124.4302 20.0000 10.0000 236.8041 110.1974 21.5630 57.3450 135.5994 197.0556

2 150.0000 135.0000 98.1135 122.0784 122.2113 101.6179 48.2025 10.0000 236.8011 110.1974 24.2248 57.3614 135.5994 207.0392

3 150.0000 135.0000 178.1135 172.0784 120.7640 98.7468 78.2025 10.0000 235.3275 110.1974 30.4319 65.6496 135.5994 208.7509

4 150.0000 135.0000 188.0106 218.5077 160.0000 126.3142 80.0000 40.0000 235.2182 110.1974 37.2496 66.2643 135.5994 218.1363

5 150.0000 135.0000 268.0106 244.7145 128.0292 129.9179 80.0000 42.2707 233.2313 110.1974 41.3736 77.4390 135.5994 226.9616

6 150.0000 135.0000 334.4706 294.7145 160.0000 130.0000 80.0000 48.0931 235.6609 110.1974 50.1383 63.7746 135.5994 250.6260

7 150.0000 199.1593 340.0000 300.0000 160.0000 130.0000 80.0000 49.7990 238.0991 110.1974 55.2549 50.0614 135.5994 264.3392

8 189.7336 229.5497 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 242.2569 110.1974 60.7377 26.6766 135.5994 292.7240

9 265.3596 309.5497 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 73.1068 0.0 135.5994 324.4006

10 303.6024 378.5162 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 246.9410 110.1974 82.2580 0.3317 135.5994 324.0689

11 368.8317 405.6648 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 90.6945 0.0 135.5994 334.4006

12 367.7179 455.4472 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 95.3624 0.0 135.5994 344.4006

13 352.0071 385.0034 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 87.2079 0.0 135.5994 334.4006

14 272.0071 305.0034 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 244.9090 110.1974 73.1169 11.7604 135.5994 312.6402

15 193.6233 225.0034 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 242.9121 110.1974 60.7362 22.9917 135.5994 291.4089

16 150.0000 145.0034 296.8330 250.8703 160.0000 129.9573 80.0000 43.4626 233.2660 110.1974 45.5900 77.2439 135.5994 237.1567

17 150.0000 135.0000 260.0109 250.0000 160.0000 100.0000 80.0000 40.9143 235.3888 110.1974 41.5121 65.3046 135.5994 219.0959

18 150.0000 151.0646 319.4485 300.0000 160.0000 130.0000 80.0000 40.0577 237.4722 110.1974 50.2419 53.5869 135.5994 245.8137

19 229.4141 231.0646 313.3779 300.0000 160.0000 130.0000 80.0000 46.0360 237.0065 110.1974 61.0988 56.2062 135.5994 253.1943

20 309.4141 311.0646 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 116.9757 77.4552 0.0 90.7694 359.2306

21 272.4577 300.8037 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 111.8344 73.0959 0.0 124.7723 320.2277

22 192.4577 220.8037 260.6669 250.0000 160.0000 124.1397 80.0000 45.9763 234.6724 110.1974 50.9154 69.3338 135.5994 230.0668

23 150.0000 140.8037 180.6669 200.0000 127.6584 130.0000 50.0000 40.0000 236.4213 110.1974 33.7482 59.4980 135.5994 204.9026

24 150.0000 135.0000 100.6669 177.0362 123.2649 128.6636 42.3316 10.0000 234.6572 109.5624 27.1834 69.4196 135.0513 195.5291

Cost ($) = 2.5257 × 106. Emission (lb) = 2.8287 × 105. Total loss (MW) = 1.3443 × 103.

Table 6: Hourly heat and power schedule obtained from CHPDEED (𝑤 = 0.5).

t 𝑃
TU
1

𝑃
TU
2

𝑃
TU
3

𝑃
TU
4

𝑃
TU
5

𝑃
TU
6

𝑃
TU
7

𝑃
TU
8

𝑃
CHP
1

𝑃
CHP
2

Loss 𝐻
CHP
1

𝐻
CHP
2

𝐻
𝐻

1

1 150.0000 135.0000 77.5875 65.0188 122.5177 129.0996 20.0000 10.0000 238.1722 110.1974 21.5935 49.6499 135.5994 204.7506

2 150.0000 135.0000 73.0000 115.0188 123.4971 126.6027 50.0000 13.3209 237.5744 110.1974 24.2115 53.0122 135.5994 211.3884

3 150.0000 135.0000 135.6390 143.2389 123.5028 130.0000 80.0000 43.3209 237.2689 110.1974 30.1680 54.7308 135.5994 219.6698

4 150.0000 135.0000 197.2495 193.2389 160.0000 130.0000 80.0000 46.3828 241.1942 110.1974 37.2630 32.6533 135.5994 251.7473

5 150.0000 135.0000 227.7945 243.2389 160.0000 130.0000 80.0000 46.9362 238.0276 110.1974 41.1946 50.4634 135.5994 253.9371

6 150.0000 148.0006 307.4622 293.2389 160.0000 130.0000 80.0000 55.0000 244.2131 110.1974 50.1122 15.6745 135.5994 298.7261

7 153.7715 216.0682 309.3974 300.0000 160.0000 130.0000 80.0000 55.0000 242.8740 110.1974 55.3090 23.2061 135.5994 291.1945

8 204.6091 224.9723 327.2185 300.0000 160.0000 130.0000 80.0000 55.0000 244.8130 110.1974 60.8102 12.3003 135.5994 307.1003

9 269.9376 304.9723 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 73.1072 0.0 135.5994 324.4006

10 302.8816 379.1708 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.2066 82.2590 0.0 135.5384 324.4616

11 374.8455 398.1777 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 111.6628 90.6861 0.0 125.9076 344.0924

12 396.3649 416.9874 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 119.8750 95.2273 0.0 71.5941 408.4059

13 353.1036 382.7187 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 111.3732 87.1956 0.0 127.8228 342.1772

14 273.1036 302.7187 339.8378 300.0000 160.0000 130.0000 80.0000 55.0000 246.2562 110.1974 73.1138 4.1831 135.5994 320.2175

15 213.0095 222.7187 321.3321 300.0000 160.0000 130.0000 80.0000 55.0000 244.5974 110.1974 60.8552 13.5127 135.5994 300.8879

16 150.0000 142.7187 291.8181 250.0000 160.0000 130.0000 80.0000 46.1485 238.7061 110.1974 45.5889 46.6476 135.5994 267.7530

17 150.0000 135.0000 228.5656 240.9760 160.0000 130.0000 80.0000 45.7659 240.7225 110.1974 41.2275 35.3065 135.5994 249.0941

18 150.0000 207.5152 294.3486 250.0000 160.0000 130.0000 80.0000 55.0000 241.3976 110.1974 50.4588 31.5093 135.5994 267.8913

19 227.0251 235.5649 297.1019 300.0000 160.0000 130.0000 80.0000 55.0000 242.1587 110.1974 61.0481 27.2289 135.5994 282.1716

20 307.0251 315.5649 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 114.8749 77.4649 0.00 104.6636 345.3364

21 270.9950 301.2766 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 112.8155 73.0871 0.00 118.2834 326.7166

22 190.9950 221.2766 260.0000 250.0000 157.3134 126.2505 80.0000 43.7439 239.1773 110.1974 50.9541 43.9973 135.5994 255.4033

23 150.0000 141.2766 180.0000 200.0000 154.2635 126.4607 51.1156 13.7439 238.8386 110.1974 33.8966 45.9019 135.5994 218.4987

24 150.0000 135.0000 100.0000 150.0000 118.3525 129.7054 78.8178 10.0000 235.4040 103.7586 27.0385 65.2191 130.0411 204.7398

Cost ($) = 2.5295 × 106. Emission (lb) = 2.7209 × 105. Total loss (MW) = 1.3439 × 103.
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Table 7: Hourly heat and power schedule obtained from CHPPDED.

H 𝑃
TU
1

𝑃
TU
2

𝑃
TU
3

𝑃
TU
4

𝑃
TU
5

𝑃
TU
6

𝑃
TU
7

𝑃
TU
8

𝑃
CHP
1

𝑃
CHP
2

Loss 𝐻
CHP
1

𝐻
CHP
2

𝐻
𝐻

1

1 150.0000 135.0000 73.0000 60.0000 84.3406 63.6438 64.0384 55 247 125.8 21.8228 0.0 31.4722 358.5278

2 150.0000 135.0000 75.2831 75.5559 107.4058 83.4606 80.0000 55 247 125.8 24.5054 0.0 32.4074 367.5926

3 150.0000 146.7217 108.1787 108.2058 154.2362 113.4606 80.0000 55 247 125.8 30.6030 0.0 18.2661 391.7339

4 187.3290 187.7229 135.7677 135.7127 160.0000 130.0000 80.0000 55 247 125.8 38.3323 0.0 32.4074 387.5926

5 209.9448 210.5929 152.0706 152.2866 160.0000 130.0000 80.0000 55 247 125.8 42.6949 0.0 32.4074 407.5926

6 252.6588 252.9491 188.3610 188.4287 160.0000 130.0000 80.0000 55 247 125.8 52.1977 0.0 25.5244 424.4756

7 272.2261 272.7171 208.2382 208.3486 160.0000 130.0000 80.0000 55 247 125.8 57.3300 0.0 26.7637 423.2363

8 290.5854 291.0583 229.5277 229.7367 160.0000 130.0000 80.0000 55 247 125.8 62.7082 0.0 32.4074 422.5926

9 323.8400 324.1415 276.1324 276.3023 160.0000 130.0000 80.0000 55 247 125.8 74.2162 0.0 25.5487 434.4513

10 346.7105 346.8973 313.1106 300.0000 160.0000 130.0000 80.0000 55 247 125.8 82.5184 0.0 32.4074 427.5926

11 379.2210 379.5185 340.0000 300.0000 160.0000 130.0000 80.0000 55 247 125.8 90.5395 0.0 29.4012 440.5988

12 403.5504 403.8291 340.0000 300.0000 160.0000 130.0000 80.0000 55 247 125.8 95.1796 0.0 31.9845 448.0155

13 361.7512 362.0812 337.4700 300.0000 160.0000 130.0000 80.0000 55 247 125.8 87.1023 0.0 32.0189 437.9811

14 323.7805 324.1252 276.7607 275.7492 160.0000 130.0000 80.0000 55 247 125.8 74.2157 0.0 25.5863 434.4137

15 291.7264 292.3796 231.0966 225.7492 160.0000 130.0000 80.0000 55 247 125.8 62.7519 0.0 31.8710 418.1290

16 229.7976 230.1379 167.7688 175.7492 160.0000 130.0000 80.0000 55 247 125.8 47.2535 0.0 31.3306 418.6694

17 210.0699 210.4074 152.1822 152.2351 160.0000 130.0000 80.0000 55 247 125.8 42.6946 0.0 32.3578 387.6422

18 252.7542 253.2318 188.2091 188.2081 160.0000 130.0000 80.0000 55 247 125.8 52.2031 0.0 29.7791 405.2209

19 288.2429 288.7410 226.6332 237.2113 160.0000 130.0000 80.0000 55 247 125.8 62.6285 0.0 27.4724 417.5276

20 335.1319 335.4397 294.6392 287.2113 160.0000 130.0000 80.0000 55 247 125.8 78.2222 0.0 31.3390 418.6610

21 332.6192 333.0535 282.3523 252.7233 160.0000 130.0000 80.0000 55 247 125.8 74.5483 0.0 32.3100 412.6900

22 252.6192 253.0535 202.3523 202.7233 149.4115 112.3565 80.0000 55 247 125.8 52.3163 0.0 27.3503 407.6497

23 172.6192 173.0535 122.3523 152.7233 135.8629 102.0552 80.0000 55 247 125.8 34.4664 0.0 25.1547 374.8453

24 150.0000 135.0000 90.3380 102.7233 128.7354 96.7805 80.0000 55 247 125.8 27.3771 0..0 31.5331 368.4669

Cost ($) = 2.6945 × 106. Emission (lb) = 2.4195 × 105. Total loss (MW) = 1.3684 × 103.

with randomly chosen integer indexes 𝑟
1
, 𝑟
2
, 𝑟
3
∈ {1, 2,

. . . ,NP}. HereF is the mutation factor.
According to the target vector 𝑋𝐺

𝑖
and the mutant

vector 𝑉𝐺+1
𝑖

, a new trial vector (offspring) 𝑈𝐺+1
𝑖

= {𝑢
𝐺+1

1𝑖
,

𝑢
𝐺+1

2𝑖
, . . . , 𝑢

𝐺+1

𝐷𝑖
} is created with

𝑢
𝐺+1

𝑗𝑖
=

{

{

{

V𝐺+1
𝑗𝑖
, if (rand (𝑗) ≤ CR) or 𝑗 = 𝑟𝑛𝑏 (𝑖) ,

𝑥
𝐺

𝑗𝑖
, otherwise,

(19)

where 𝑗 = 1, 2, . . . , 𝐷, 𝑖 = 1, 2, . . . ,NP and rand(𝑗) is the 𝑗th
evaluation of a uniform randomnumber between [0, 1]. CR ∈
[0, 1] is the crossover constant which has to be determined by
the user. 𝑟𝑛𝑏(𝑖) is a randomly chosen index from 1, 2, . . . , 𝐷
which ensures that 𝑈𝐺+1

𝑖
gets at least one parameter from

𝑉
𝐺+1

𝑖
[32].

The selection process determines which of the vectors
will be chosen for the next generation by implementing
one-to-one competition between the offsprings and their
corresponding parents. If 𝑓 denotes the function to be
minimized, then

𝑋
𝐺+1

𝑖
= {
𝑈
𝐺+1

𝑖
if 𝑓 (𝑈𝐺+1

𝑖
) ≤ 𝑓 (𝑋

𝐺

𝑖
) ,

𝑋
𝐺

𝑖
otherwise,

(20)

where 𝑖 = 1, 2, . . . ,NP.Thevalue of𝑓 of each trial vector𝑈𝐺+1
𝑖

is comparedwith that of its parent target vector𝑋𝐺
𝑖
.The above

iteration process of reproduction and selection will continue
until a user-specified stopping criteria is met.

In this paper, we define the evaluation function for
evaluating the fitness of each individual in the population in
DE algorithm as follows:

𝑓 = 𝐹 + 𝜆
1

𝑁

∑

𝑡=1

(

𝑁𝑝

∑

𝑖=1

𝑃
TU
𝑖,𝑡
+

𝑁𝑐

∑

𝑗=1

𝑃
CHP
𝑗,𝑡

− (𝑃
𝐷,𝑡
+ Loss

𝑡
))

2

+ 𝜆
2

𝑁

∑

𝑡=1

(

𝑁𝑐

∑

𝑗=1

𝐻
CHP
𝑗,𝑡

+

𝑁ℎ

∑

𝑘=1

𝐻
𝐻

𝑘,𝑡
− 𝐻
𝐷,𝑡
)

2

,

(21)

where 𝜆
1
and 𝜆

2
are penalty values. Then the objective is to

find𝑓min, theminimumevaluation value of all the individuals
in all iterations. The penalty term reflects the violation of the
equality constraints. Once the minimum of 𝑓 is reached, the
equality constraints are satisfied.

4. Sequential Quadratic Programming Method

SQP method can be considered as one of the best nonlinear
programming methods for constrained optimization prob-
lems [38]. It outperforms every other nonlinear program-
mingmethod in terms of efficiency, accuracy, and percentage
of successful solutions over a large number of test prob-
lems. The method closely resembles Newton’s method for
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Figure 1: Heat-power feasible operating region for CHP unit 1.
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constrained optimization, just as is done for unconstrained
optimization. At each iteration, an approximation is made
of the Hessian of the Lagrangian function using Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton updating
method. The result of the approximation is then used to
generate a quadratic programming (QP) subproblem whose
solution is used to form a search direction for a line search
procedure. Since the objective function of the CHPDEED
problem is non-convex and non-smooth, SQP ensures a local
minimum for an initial solution. In this paper, DE is used as a
global search and finally the best solution obtained from DE
is given as initial condition for SQP method as a local search
to fine-tune the solution. SQP simulations can be computed
by the fmincon code of theMATLABOptimization Toolbox.

5. Simulation Results

In this section we present two examples. The first example
shows the efficiency of the proposed DE-SQPmethod for the
DED problem. In the second example, the hybrid DE-SQP

method is applied to the CHPDEED problem. In DE-SQP
method, the control parameters are chosen as NP = 80,F =

0.423 and CR = 0.885. The maximum number of iterations
are selected as 20, 000. The results represent the average of 30
runs of the proposed method. All computations are carried
out by MATLAB program.

Example 1. This example consists of ten conventional thermal
units to investigate the effectiveness of the proposed DE-
SQP technique in solving the DED problem with valve point
effects and transmission line losses. The technical data of the
units as well as the demand for the 10-unit system are taken
from [24]. The best solution of the DED problem is given
in Table 1. Comparison between our proposed method (DE-
SQP) and othermethods is given inTable 2. It is observed that
the proposed method reduces the total generation cost better
than the other methods reported in the literature.

Example 2. This example is 11-unit system (eight conven-
tional thermal units, two CHP units, and one heat-only unit)
for solving the CHPDED, CHPDEED, and CHPPDED prob-
lems using DE-SQP method. We shall solve the CHPDEED
problem when 𝑤 = 0.5, in addition to the CHPDED and
CHPPDED problems which correspond to 𝑤 = 1 and 𝑤 = 0,
respectively.The technical data of conventional thermal units,
the matrix 𝐵, and the demand are taken from the 10-unit
system presented in [24]. The 5th and 8th conventional units
in [24] were replaced by two CHP units. The technical data
of the two CHP units and the heat-only unit are taken from
[17] and are given in Table 3. The heat demand for 24 hours
is given in Table 4. The feasible operating regions of the two
CHP units are given in Figures 1 and 2 (see [4, 14]).

The best solutions of the CHPDED, CHPDEED, and
CHPPDED problems for DE-SQP algorithm are given in
Tables 5, 6, and 7, respectively. The best cost, the amount of
emission, and the transmission line losses are also given in
Tables 5–7. It is seen that the cost is 2.5257 × 106 $ under
CHPDED, but it increases to 2.6945×106 $ underCHPPDED.
The emission obtained from CHPDED is 2.8287 × 105 lb, but
it decreases to 2.4195 × 105 lb under CHPPDED. Under the
CHPDEED problem, the cost is 2.5295 × 106 $ which is more
than 2.5257×106 $ and less than 2.6945×106 $.Moreover, the
emission is 2.7209 × 105 lb which is less than 2.8287 × 105 lb
and more than 2.4195 × 105 lb.

6. Conclusion

This paper presents a hybrid method combining differential
evolution (DE) and sequential quadratic programming (SQP)
for solving dynamic dispatch (CHPDED, CHPDEED, and
CHPPDED) problems with valve-point effects including
generator ramp rate limits. In this paper, DE is first applied
to find the best solution. This best solution is given to SQP
as an initial condition that fine tunes the optimal solution at
the final. The feasibility and efficiency of the DE-SQP were
illustrated by conducting case studies with system consisting
of eight conventional thermal units, two CHP units, and one
heat-only unit.
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Synchronization of complex networks has been extensively studied in many fields, where intensive efforts have been devoted to the
understanding of itsmechanisms. As for discriminating network synchronizability byMaster Stability Functionmethod, a dilemma
usually encountered is that we have no prior knowledge of the network type that the synchronous region belongs to. In this paper,
we investigate a sufficient condition for a general complex dynamical network in the absence of control. A main result is that, when
the coupling strength is sufficiently strong, the dynamical network achieves synchronization provided that the symmetric part of
the inner-coupling matrix is positive definite. According to our results, synchronous region of the network with positive definite
inner-coupling matrix belongs to the unbounded one, and then the eigenvalue of the outer-coupling matrix nearest 0 can be used
for judging synchronizability. Even though we cannot gain the necessary and sufficient conditions for synchronizing a network so
far, our results constitute a first step toward a better understanding of network synchronization.

1. Introduction

Complex dynamical networks have received increasing atten-
tion from different fields in the past two decades. So far, the
dynamics of complex networks has been extensively inve-
stigated, in which synchronization is a typical topic which has
attracted lots of concern [1–17].

As an interesting phenomenon that enables coherent
behavior in networks as a result of coupling, synchronization
and the discussion upon its sufficient or necessary condition
are fundamental and valuable. Pecora and his colleagues used
the so-called Master Stability Function (MSF) approach to
determine the synchronous region in coupled systems [18,
19], in which the negativeness of Lyapunov Exponent for
master stability equation ensures synchronization. Combin-
ing MSF approach with Gershörin disk theory, Chen et al.
imposed constraints on the coupling strengths to guarantee
stability of the synchronous states in coupled dynamical
network [20]. These methods, however, obtain just necessary
conditions for synchronization due to the fact that Lyapunov
Exponent is employed to judge the stability of system.

Zhou et al. and Li and Chen investigated synchroniza-
tion in general dynamical networks by integrating network

models and an adaptive technique and proved that strong
enough couplings will synchronize an array of identical cells
[11, 12]. To overcome the difficulties caused by too many
controllers in large scale complex networks, pinning mech-
anism is further applied to analyze network synchronization
criteria in the works by Zhou et al. and Chen et al. [13,
14]. Research studies on network synchronizationmentioned
above focused on sufficient conditions, but all of them are
gained by introducing controllers.

For general complex dynamical networks in the absence
of control, we investigate their sufficient conditions for achi-
eving network synchronization in the current work. Using
Lyapunov direct method [21, 22] and matrix theory [23–
27], a criterion for synchronization in generally coupled
identical systems is proposed. We conclude that network
synchronization will be reached when the coupling strength
is larger than a threshold, given that the symmetric part of
the inner-couplingmatrix is positive definite. It is analytically
derived in our paper that a network belongs to Type I with
respect to synchronized region [28], provided with a positive
definite inner-coupling matrix.

For discriminating network synchronizability, it is well
known that a dilemma is usually encountered in the process
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of applyingMSFmethod.That is, we have no prior knowledge
of the network type that the synchronous region belongs
to. Stemmed from our results, the eigenvalue of the outer-
coupling matrix nearest 0 can be used for judging synchro-
nizability of a dynamical networkwith positive definite inner-
coupling matrix. Even though we cannot gain the necessary
and sufficient conditions for synchronizing a network so far,
our results constitute a first step toward a better understand-
ing of network synchronization.

The rest of the paper is organized as follows. In Section 2,
a general complex dynamical network model and some
mathematical preliminaries are introduced. A sufficient con-
dition for achieving synchronization in the network and
detailed discussion are presented in Section 3. Section 4 gives
some numerical simulations to show the effectiveness of the
proposed synchronization criterion and further illustrates
the relationship between synchronous region and our main
results. Conclusions are finally drawn in Section 5.

2. Preliminaries

To begin with, we introduce a complex network model des-
cribing the dynamical evolution of node states, which is
formulated as

̇x
𝑖
(𝑡) = f (x

𝑖
(𝑡)) + 𝑐 ∑

𝑗 ∈ N𝑖

𝑎
𝑖𝑗
Hx
𝑗
(𝑡) , (1)

where 1 ≤ 𝑖 ≤ 𝑁, N
𝑖
represents the neighborhood of-

the 𝑖th node, the state vector of the 𝑖th node x
𝑖
(𝑡) = (𝑥
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𝑖2
(𝑡), . . . , 𝑥
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∈ R𝑛 is a continuous function, f : R𝑛 →

R𝑛 is a smooth nonlinear vector function, individual node
dynamics is ̇x(𝑡) = f(x(𝑡)), and H ∈ R𝑛 × 𝑛 is the inner-
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matrix A = (𝑎
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𝑁
(𝑡
0
))
⊤. Assume that

f : Ω → R𝑛 is continuously differentiable, where Ω ⊆ R𝑛. If
there is a nonempty subset 𝐸 ⊆ Ω, with x

𝑖
(𝑡
0
) ∈ 𝐸 (1 ≤ 𝑖 ≤

𝑁), such that x
𝑖
(X
0
; 𝑡) ∈ Ω for all 𝑡 ≥ 𝑡

0
, 1 ≤ 𝑖 ≤ 𝑁 and that

lim
𝑡→∞


x
𝑖
(X
0
; 𝑡) − x

𝑗
(X
0
; 𝑡)

= 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑁) , (2)

where ‖ ⋅ ‖ denotes any norm of a vector or a matrix,
then the complex dynamical network (1) is said to achieve
synchronization.

To develop the main results, a useful hypothesis on the
inner-coupling matrixH is introduced.

Assumption 2. Suppose that 𝜇
𝑖
> 0 (1 ≤ 𝑖 ≤ 𝑛), with

𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
being eigenvalues of the symmetric part of the

inner-coupling matrixH𝑠 ≜ (H +H⊤)/2.
It suggests that H𝑠 should be a positive definite matrix.

This is common for the inner-coupling matrix H to satisfy

𝜇
𝑖
> 0 (1 ≤ 𝑖 ≤ 𝑛); for instance, the symmetric part H𝑠 is

strictly diagonally dominant.
Since A and H𝑠 are symmetric, there exist orthogonal

matrices P ∈ R𝑁×𝑁 andQ ∈ R𝑛×𝑛, such that

P−1AP = diag {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
} ≜ Λ,

Q−1H𝑠Q = diag {𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
} ≜ Λ,

(3)

where 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
are real numbers and the denotation

diag{∗, ∗∗, . . . , ∗ ∗ ∗} represents a diagonal matrix whose
elements are ∗, ∗∗, . . . , ∗ ∗ ∗.

Let 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
)
⊤ be the left eigenvector of

the coupling configuration matrix A corresponding to the
eigenvalue 𝜆

1
= 0, in which ∑𝑁

𝑗=1
𝜉
𝑗
= 1. It is obvious that

𝜉
⊤A = 0.Then introducing a weightedmean state of all nodes

x (𝑡) =
𝑁

∑

𝑗=1

𝜉
𝑗
x
𝑗
(𝑡) , (4)

one has the following Lemma.

Lemma 3. For any initial state X
0
of model (1), network

synchronization lim
𝑡→∞

‖x
𝑖
(𝑡) − x

𝑗
(𝑡)‖ = 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑁)

is equivalent to lim
𝑡→∞

‖x
𝑖
(𝑡) − x(𝑡)‖ = 0 (1 ≤ 𝑖 ≤ 𝑁).

Proof. On one hand, provided with lim
𝑡→∞

‖x
𝑖
(𝑡) − x

𝑗
(𝑡)‖ =

0 (1 ≤ 𝑖, 𝑗 ≤ 𝑁), one obtains

0 ≤
x𝑖 (𝑡) − x (𝑡)

=



x
𝑖
(𝑡) −

𝑁

∑

𝑗=1

𝜉
𝑗
x
𝑗
(𝑡)



=



𝑁

∑

𝑗=1

𝜉
𝑗
x
𝑖
(𝑡) −

𝑁

∑

𝑗=1

𝜉
𝑗
x
𝑗
(𝑡)



=



𝑁

∑

𝑗=1

𝜉
𝑗
(x
𝑖
(𝑡) − x

𝑗
(𝑡))



≤

𝑁

∑

𝑗=1


𝜉
𝑗




x
𝑖
(𝑡) − x

𝑗
(𝑡)

.

(5)

Thus lim
𝑡→∞

‖x
𝑖
(𝑡) − x

𝑗
(𝑡)‖ = 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑁) results in

lim
𝑡→∞

‖x
𝑖
(𝑡) − x(𝑡)‖ = 0 (1 ≤ 𝑖 ≤ 𝑁).

On the other hand, if lim
𝑡→∞

‖x
𝑖
(𝑡) − x(𝑡)‖ = 0 (1 ≤ 𝑖 ≤

𝑁), one has lim
𝑡→∞

max
1 ≤ 𝑖 ≤ 𝑁

‖x
𝑖
(𝑡) − x(𝑡)‖ = 0 (1 ≤ 𝑖 ≤

𝑁). Owing to the fact that

0 ≤

x
𝑖
(𝑡) − x

𝑗
(𝑡)


=

x
𝑖
(𝑡) − x (𝑡) + x (𝑡) − x

𝑗
(𝑡)


≤
x𝑖 (𝑡) − x (𝑡) +


x (𝑡) − x

𝑗
(𝑡)


≤ 2 max
1 ≤ 𝑖 ≤ 𝑁

x𝑖 (𝑡) − x (𝑡) ,

(6)

one gets lim
𝑡→∞

‖x
𝑖
(𝑡) − x

𝑗
(𝑡)‖ = 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑁).
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Remark 4. Lemma 3 has proved that lim
𝑡→∞

‖x
𝑖
(𝑡) − x(𝑡)‖ =

0 (1 ≤ 𝑖 ≤ 𝑁) is a sufficient and necessary condition for
network synchronization. In other words, the dynamics of all
nodes in the complex network (1) would approach x(𝑡) when
network synchronization is reached.

Recently, it has been mathematically proved that x(𝑡) is
a solution of single node dynamical system in the sense of
positive limit set [29]

̇x (𝑡) = f (x (𝑡)) . (7)

Namely, the synchronous state can be an equilibrium point,
a periodic orbit, an aperiodic orbit, or even a chaotic orbit in
the phase space.

Define the state error vectors as x̃
𝑖
(𝑡) = x

𝑖
(𝑡) − x(𝑡) (1 ≤

𝑖 ≤ 𝑁) for all nodes in the network.
Then the error system is given by

̇x̃
𝑖
= f (x

𝑖
) − f (x) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Hx̃
𝑗
, (8)

according to systems (1) and (4), where 1 ≤ 𝑖 ≤ 𝑁.
Denote X̃ = (x̃⊤

1
, x̃⊤
2
, . . . , x̃⊤

𝑁
)
⊤, X = (x⊤

1
, x⊤
2
, . . . , x⊤

𝑁
)
⊤,

F(X) = (f(x
1
)
⊤

, f(x
2
)
⊤

, . . . , f(x
𝑁
)
⊤

)
⊤, and F(X) = (f(x)⊤,

f(x)⊤, . . . , f(x)⊤)⊤. Then one has

̇̃X = F (X) − F (X) + 𝑐 (A ⊗H) X̃, (9)

where ⊗ represents the direct product of matrices.

3. Main Results

In this section, a sufficient condition for reaching synchro-
nization in a general complex dynamical network (1) is pre-
sented based on Lyapunov direct method and some related
matrix theory. Further discussion of the synchronization
criterion in detail is also included.

Linearizing the state equation (1) at trajectory x(𝑡), one
obtains the variational equation as follows:

̇̃X = (I
𝑁
⊗Df (x) + 𝑐A ⊗H) X̃, (10)

where Df(x) is the Jacobian matrix of f(x) evaluated at
trajectory x(𝑡). Letting 𝜂 = (P ⊗ I

𝑛
)
−1 X̃, one has

̇𝜂 = (P ⊗ I
𝑛
)
−1

(I
𝑁
⊗DF (x) + 𝑐A ⊗H) (P ⊗ I

𝑛
) 𝜂

= (I
𝑁
⊗DF (x) + 𝑐 (P−1AP) ⊗H) 𝜂

= (I
𝑁
⊗DF (x) + 𝑐Λ ⊗H) 𝜂.

(11)

Denote 𝜂 as the form 𝜂 = (𝜂
⊤

1
, 𝜂
⊤

2
, . . . , 𝜂

⊤

𝑁
)
⊤, where 𝜂

𝑖
=

(𝜂
𝑖1
, 𝜂
𝑖2
, . . . , 𝜂

𝑖𝑛
)
⊤

∈ R𝑛. Equation (11) can be rewritten as
follows:

̇𝜂
𝑖
= (DF (x) + 𝑐𝜆

𝑖
H) 𝜂
𝑖
, (12)

where 1 ≤ 𝑖 ≤ 𝑁.

For 𝜆
1
=0 (𝑖 = 1), one gets the variational equation for the

synchronization manifold. Thus one has succeeded in sep-
arating 𝑖 = 1 from the transverse directions 𝑖 = 2, 3, . . . , 𝑁. All
the 𝑖 = 2, 3, . . . , 𝑁 correspond to the transverse eigenvectors.
Therefore, the synchronous solution of dynamical network (1)
is asymptotically stable if the following system is stable:

̇𝜂
𝑖
= (DF (x) + 𝑐𝜆

𝑖
H) 𝜂
𝑖
, (13)

where 2 ≤ 𝑖 ≤ 𝑁.
To deduce the sufficient condition for stability of system

(13), the following assumption is one of the basic prerequi-
sites.

Assumption 5. Suppose that there exists a positive constant
L > 0 satisfying ‖Df(⋅)‖ ≤ L.

This hypothesis is achievable for a large class of systems
depicted by ̇x(𝑡) = f(x(𝑡)), including linear systems, piecewise
linear systems, and numerous chaotic systems (e.g., Chua’s
circuit [30], Lorenz family [31–33], etc.).

Theorem 6. Suppose that Assumptions 2 and 5 hold. The syn-
chronous solution of network (1) is asymptotically stable pro-
vided that 𝑐 is larger than 𝑐

0
, where 𝑐

0
= − L/𝜆

2
min
1≤𝑘≤𝑛

{𝜇
𝑘
}.

Proof. According to Lemma 3 and the previous discussion,
asymptotical stability of synchronous solution X of network
model (1) can be analyzed by investigating the stability of
system (13). Consider a positive semidefinite function as

𝑉 =

𝑁

∑

𝑖=2

1

2
𝜂
⊤

𝑖
𝜂
𝑖

(14)

and regard𝑉 as a Lyapunov candidate.Then the derivation of
𝑉 along the trajectories of (13) is

𝑉 =

𝑁

∑

𝑖=2

1

2
( ̇𝜂
⊤

𝑖
𝜂
𝑖
+ 𝜂
⊤

𝑖
̇𝜂
𝑖
)

=

𝑁

∑

𝑖=2

𝜂
⊤

𝑖
̇𝜂
𝑖

=

𝑁

∑

𝑖=2

𝜂
⊤

𝑖
(DF (x) + 𝑐𝜆

𝑖
H) 𝜂
𝑖

=

𝑁

∑

𝑖=2

( 𝜂
⊤

𝑖
DF (x) 𝜂

𝑖
+ 𝑐𝜆
𝑖
𝜂
⊤

𝑖
H𝑠𝜂
𝑖
) .

(15)

Introducing the denotation 𝜁
𝑖
≜ Q−1𝜂

𝑖
(2 ≤ 𝑖 ≤ 𝑁), one has

𝜂
⊤

𝑖
𝜂
𝑖
= 𝜁
⊤

𝑖
𝜁
𝑖
and 𝜂⊤

𝑖
H𝑠𝜂
𝑖
= 𝜁
⊤

𝑖
Q⊤H𝑠Q𝜁

𝑖
= 𝜁
⊤

𝑖
Λ𝜁
𝑖
; thus one

obtains

𝑉 =

𝑁

∑

𝑖=2

(𝜂
⊤

𝑖
DF (x) 𝜂

𝑖
+ 𝑐𝜆
𝑖
𝜁
⊤

𝑖
Λ𝜁
𝑖
)

≤

𝑁

∑

𝑖=2

(L𝜂
⊤

𝑖
𝜂
𝑖
+ 𝑐𝜆
𝑖
min
1 ≤ 𝑘 ≤ 𝑛

{𝜇
𝑘
} 𝜁
⊤

𝑖
𝜁
𝑖
)
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Figure 1: Synchronization errors ‖x̃

𝑖
‖
2
(1 ≤ 𝑖 ≤ 50) for globally coupled network (GCN) with 𝑐 = 1, H = I (a); ‖x̃

𝑖
‖
2
(1 ≤ 𝑖 ≤ 50) for star

network (SN) with 𝑐 = 50,H = I (b); ‖x̃
𝑖
‖
2
(1 ≤ 𝑖 ≤ 50) for loop network (LN) with 𝑐 = 3040,H = I (c).

=

𝑁

∑

𝑖=2

(L + 𝑐𝜆
𝑖
min
1 ≤ 𝑘 ≤ 𝑛

{𝜇
𝑘
}) 𝜁
⊤

𝑖
𝜁
𝑖

≤ (L + 𝑐𝜆
2

min
1 ≤ 𝑘 ≤ 𝑛

{𝜇
𝑘
})

𝑁

∑

𝑖=2

𝜁
⊤

𝑖
𝜁
𝑖
.

(16)

In view of 𝜆
𝑖
< 0 (2 ≤ 𝑖 ≤ 𝑁) and 𝜇

𝑘
> 0 (1 ≤ 𝑘 ≤ 𝑛), the

derivation of the Lyapunov candidate𝑉would be nonpositive
given 𝑐 > −L/𝜆

2
min
1≤𝑘≤𝑛

{𝜇
𝑘
}. The largest invariant set of

{𝑉 = 0} is Ξ = {𝜁
𝑖
= 0, 2 ≤ 𝑖 ≤ 𝑁}. According to LaSalle’s

invariance principle [21], all the trajectories of system (13) will
converge to Ξ asymptotically for any initial values. In this set,
it is plain to see that 𝜂

𝑖
= 0 for 2 ≤ 𝑖 ≤ 𝑁. That means system

(13) is stable, and accordingly the synchronous solution X of
dynamical network (1) is asymptotically stable.

From Theorem 6, we conclude that whether can syn-
chronization of a general complex dynamical network (1) be
achieved depends on the relationship between the coupl-
ing strength 𝑐 and the constant 𝑐

0
. The term 𝑐

0
= −L/𝜆

2

min
1≤𝑘≤𝑛

{𝜇
𝑘
} is associated with individual node dynamics

(L), inner coupling (min
1≤𝑘≤𝑛

{𝜇
𝑘
}), and topology structure

(𝜆
2
) of the whole network.

Remark 7. The smaller the 𝑐
0
is, the larger the coupling stre-

ngth 𝑐 which leads to network synchronization is. In detail,
smallerL of single node dynamics or larger min

1≤𝑘≤𝑛
{𝜇
𝑘
} of

inner-coupling matrix brings about better synchronizability
for particular network topology.

Remark 8. It is worth noticing that although the previous
result assumes that 𝑐 > 𝑐

0
= −L/𝜆

2
min
1≤𝑘≤𝑛

{𝜇
𝑘
}, the thre-

shold of 𝑐 may be much smaller than 𝑐
0
in reality. In other

words, the synchronization criterion for dynamical network
(1) is just a sufficient condition.

Remark 9. Theorem 6 reveals that for any topology struc-
ture, synchronization of network (1) can be achieved when
the coupling strength 𝑐 is strong enough, provided that
Assumptions 2 and 5 hold. Further, it is seen that the
synchronous region of dynamical network (1) belongs to
Type I from the angle of Master Stability Function method
[28] (see Section 4). Accordingly, the eigenvalue 𝜆

2
of the
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Figure 2: Synchronization errors ‖x̃

𝑖
‖
2
(1 ≤ 𝑖 ≤ 50) for globally coupled network (GCN) with 𝑐 = 0.1, H = I (a); ‖x̃

𝑖
‖
2
(1 ≤ 𝑖 ≤ 50) for star

network (SN) with 𝑐 = 5,H = I (b); ‖x̃
𝑖
‖
2
(1 ≤ 𝑖 ≤ 50) for loop network (LN) with 𝑐 = 310,H = I (c).

outer-coupling matrix nearest 0 can be used for judging
synchronizability of networks.

Remark 10. Although our analysis is founded on a basic
hypothesis that the complex network is bidirectionally cou-
pled (the outer-couplingmatrixA is symmetric), similar con-
clusions can be drawn for the case in which this hypothesis is
relaxed to unidirectional network.

4. Numerical Simulations
To verify the effectiveness of our main results, we choose
the node dynamics as Lorenz system and the inner-coupling
matrix as I in model (1), where I represents identity matrix.
Topology structures selected in the network are globally cou-
pled network (GCN), star network (SN), and loop network
(LN). Then the outer-coupling matrices are AGCN, ASN, and
ALN, respectively, where

AGCN =(

−49 1 1 ⋅ ⋅ ⋅ 1

1 −49 1 ⋅ ⋅ ⋅ 1

1 1 −49 ⋅ ⋅ ⋅ 1

⋅ ⋅ ⋅

1 1 1 ⋅ ⋅ ⋅ −49

) ,

ASN =(

−49 1 1 ⋅ ⋅ ⋅ 1

1 −1 0 ⋅ ⋅ ⋅ 0

1 0 −1 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅

1 0 0 ⋅ ⋅ ⋅ −1

) ,

ALN =(

−2 1 0 ⋅ ⋅ ⋅ 0 1

1 −2 1 ⋅ ⋅ ⋅ 0 0

0 1 −2 ⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅

1 0 0 ⋅ ⋅ ⋅ 1 −2

).

(17)

Lorenz system is a typical benchmark chaotic system,
which is a simplified mathematical model first developed
by Lorenz in 1963 to describe atmospheric convection. The
model is a systemof three ordinary differential equations now
known as the Lorenz equations [31]:

̇x = (
−𝑎 𝑎 0

𝑐 −1 0

0 0 −𝑏

)(

𝑥
1

𝑥
2

𝑥
3

) + (

0

−𝑥
1
𝑥
3

𝑥
1
𝑥
2

) , (18)

which is chaotic when 𝑎 = 10, 𝑏 = 8/3, and 𝑐 = 28.
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Figure 3: 𝑋 label: 𝜎 = −𝑐𝜆, 𝑌 label: Lyapunov Exponent of network (13), single node dynamics: Lorenz system, inner-coupling matrix: H
1

(a);H
2
(b);H

3
(c). The cross point 𝜎∗

0
represents the lower bound of synchronous region in each subgraph.

It is easy to get that L of Lorenz system is 48 and
min
1≤𝑘≤𝑛

{𝜇
𝑘
} of the inner-coupling matrix I is 1. For dynam-

ical network (1) coupled with 50 nodes, a direct result is
𝜆
2
(GCN) = −50, 𝜆

2
(SN) = −1,

𝜆
2
(LN) = −0.0158.

(19)

Accordingly, because of 𝑐
0
= −L/𝜆

2
min
1≤𝑘≤𝑛

{𝜇
𝑘
}, one has

𝑐
0
(GCN) = 0.96, 𝑐

0
(SN) = 48, 𝑐

0
(LN) = 3038.

(20)

Then selecting 𝑐(GCN) = 1 > 𝑐
0
(GCN), 𝑐(SN) = 50 >

𝑐
0
(SN), and 𝑐(LN) = 3040 > 𝑐

0
(LN), we have the following

error figure to picture the synchronization errors ‖x̃
𝑖
‖
2
(1 ≤

𝑖 ≤ 50) in dynamical network (1), in which topology struc-
tures are chosen as GCN, SN, and LN. See Figure 1.

From Figure 1, three networks have all reached synchro-
nization in the condition of 𝑐 > 𝑐

0
, which are consistent with

Theorem 6.
According to Remark 8, the condition 𝑐 > 𝑐

0
for network

synchronization is just sufficient. To illustrate, let 𝑐 be about
10% of the original coupling strength; say, 𝑐(GCN) = 0.1,

𝑐(SN) = 5, and 𝑐(LN) = 310. It is seen from Figure 2 that
synchronization of three networks is achieved as well even if
the synchronization criterion 𝑐 > 𝑐

0
is not guaranteed.

Theorem 6 reveals that if Assumptions 2 and 5 hold,
synchronization of network (1) can be achieved provided that
𝑐 is sufficiently large. In the case of network synchronization,
the real number 𝜎 = −𝑐 𝜆 falls into the synchronous region
[28], where 𝜆 is any eigenvalue of the outer-coupling matrix
A except 𝜆

1
= 0. Furthermore, in view ofTheorem 6, the syn-

chronous region of the network is unbounded, which belongs
toType I. If the network belongs to one of the other three types
of synchronous region, the coupling strength 𝑐which leads to
synchronization may be upper bounded or even nonexistent.
To clarify the unboundedness of synchronous region for the
qualified network, three inner-coupling matrices which sat-
isfy Assumption 2 are employed. We choose Lorenz systems
as the nodes in dynamical network (1) and coupled them
through H

1
, H
2
, and H

3
. Let H

1
= I, H

2
= (
2 1 0

1 1 0

0 0 1

),

and H
3
= (
5 0 0

1 1 1

0 1 8

). It is easy to verify that the symmetric
part of the inner-couplingmatricesH𝑠

1
,H𝑠
2
, andH𝑠

3
is positive

definite. Figure 3 shows the relationship between Lyapunov
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Exponents (LEs) of system (13) and 𝜎 = −𝑐𝜆. During the
growth of 𝜎, LE of system (13) becomes negative when 𝜎

crosses a threshold 𝜎∗
0
, and accordingly system (13) is stable.

In other words, if synchronization of network (1) is reached,
the coupling strength 𝑐 should be larger than a threshold
𝑐
∗

0
= 𝜎
∗

0
/−𝜆
2
. Predictably, 𝑐∗

0
is much weaker than 𝑐

0
got

fromTheorem 6. Given coupling configuration structure of a
dynamical network, the eigenvalues 𝜆

𝑖
(1 ≤ 𝑖 ≤ 𝑁) would be

certain, and thus network (1) synchronization would ensure
𝑐 > 𝑐

∗

0
= 𝜎
∗

0
/−𝜆
2
. This is in agreement with Remark 9. On

the one hand, the exact threshold of coupling strength 𝑐
th
0

for network synchronization is smaller than 𝑐
0
according to

Theorem 6. On the other hand, 𝑐th
0

that is larger than 𝑐∗
0
lies

in the fact that 𝑐 < 𝑐
∗

0
leads to asynchronization. Although

we cannot gain the exact value of 𝑐th
0

so far, our results pave
the way for exploring in depth the necessary and sufficient
conditions of network synchronization.

5. Conclusions

In conclusion, we have developed a sufficient condition for
a general complex dynamical network in the absence of
control. We have concluded that if the coupling strength 𝑐 is
larger than 𝑐

0
= −L/𝜆

2
min
1≤𝑘≤𝑛

{𝜇
𝑘
}, synchronization will

be reached in the network, where the symmetric part of the
inner-coupling matrix H𝑠 is positive definite. In the sense of
Master Stability Functionmethod, we have further illustrated
that positive eigenvalues of H𝑠 lead to Type I network with
which synchronous region is unbounded. The findings show
that the eigenvalue 𝜆

2
of the outer-coupling matrix nearest

0 can be used for exploring synchronizability of a dynamical
network with positive definite inner-coupling matrix.
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The state estimation problem is investigated for neural networks with leakage delay and time-varying delay as well as for general
activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing matrix inequality techniques, a
delay-dependent linear matrix inequalities (LMIs) condition is developed to estimate the neuron state with some observed output
measurements such that the error-state system is globally asymptotically stable. An example is given to show the effectiveness of
the proposed criterion.

1. Introduction

In the past few years, neural networks have been extensively
studied and successfully applied inmany areas such as combi-
natorial optimization, signal processing, associative memory,
affine invariantmatching, and pattern recognition [1]. In such
applications, the stability analysis is a necessary step for the
practical design of neural networks [2]. In hardware imple-
mentation, time delays occur due to finite switching speed
of the amplifiers and communication time. The existence of
timedelaymay lead to some complex dynamic behaviors such
as oscillation, divergence, chaos, instability, or other poor
performance of the neural networks [3]. Therefore, the issue
of stability analysis of neural networkswith timedelay attracts
many researchers, and a number of remarkable results have
been built up in the open literature; for example, see [2–5] and
references therein.

When a neural network is designed to handle complex
nonlinear problems, a great number of neurons with tremen-
dous connections are often required. In such relatively large-
scale neural networks, it may be very difficult and expensive
(or even impossible) to obtain the complete information of
the neuron states. On the other hand, inmany practical appli-
cations, one needs to know the neuron states and then use
them to achieve certain objectives. For instance, a recurrent

neural network was presented in [6] to model an unknown
nonlinear system, and the neuron states were utilized to
implement a control law. Therefore, it is of great importance
to study the state estimation problem of neural networks.

Recently, some results related to the state estimation prob-
lem for neural networks have been reported; for example, see
[7–38] and references therein. In [7], authors initially studied
the state estimation problem of delayed neural networks,
where a delay-independent condition was obtained in terms
of a linear matrix inequality (LMI). In [8], authors proposed
a free-weighting matrix approach to discuss the state estima-
tion problem for neural networks with time-varying delay.
By using the Newton-Leibniz formula, some slack variables
were introduced to derive a less conservative condition. In
[11], attention was focused on the design of a state estimator
to estimate the neuron states by using the delay-fractioning
technique to reduce the possible conservatism. The authors
in [13] first investigated the robust state estimator problem
of delayed neural networks with parameter uncertainties.
Delay-dependent conditions were presented to guarantee the
global asymptotical stability of the error system. In [16], a fur-
ther result on design problem of state estimator for a class of
neural networks of neutral type was presented. A delay-
dependent LMI criterion for existence of the estimator was
derived. In [20], the state estimation problem for discrete
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neural networks with partially unknown transition probabil-
ities and time-varying delays was discussed. By utilizing a
novel Lyapunov functional integrating both lower and upper
time-delay bounds and some new techniques, some delay-
range-dependent sufficient conditions under which the esti-
mation error dynamics were stochastically stable are estab-
lished. In [22], authors investigated the state estimation prob-
lem for neural networks with discrete time-varying delay and
distributed time-varying delay; a delay-interval-dependent
condition is developed to estimate the neuron state with some
observed output measurements such that the error-state sys-
tem was globally asymptotically stable. In [25], leakage delay
in the leakage term was used to destabilize the neuron states.
By constructing the Lyapunov-Krasovskii functional which
contains a triple-integral term, an improved delay-dependent
stability criterion was derived in terms of LMIs. In [27], the
state estimation problem for a class of discrete-time stochastic
neural networks with random delays was considered. By
employing a Lyapunov-Krasovskii functional, sufficient delay
distribution- dependent conditions were established in terms
of LMIs that guarantee the existence of the state estimator.
In [33], authors discussed the state estimation problem for
Takagi-Sugeno (T-S) fuzzy Hopfield neural networks via
strict output passivation of the error system. In [36–38],
authors investigated the distributed state estimation problem
for sensor networks and presented several new sufficient con-
ditions to guarantee the convergence of the estimation error
systems. To the best of the author’s knowledge, there are no
results on the problem of state estimation for neural networks
with leakage delay and time-varying delays. As pointed out in
[39], neural networks with leakage delay are a class of impor-
tant neural networks; time delay in the leakage term also
has great impact on the dynamics of neural networks since
time delay in the stabilizing negative feedback term has a
tendency to destabilize a system. Therefore, it is necessary to
investigate the state estimation problem for neural networks
with leakage delay [25].

Motivated by the previous discussions, the objective of
this paper is to study the state estimation for neural networks
with leakage delay and time-varying delays by employing new
Lyapunov-Krasovskii functionals and using matrix inequal-
ity techniques. The obtained sufficient condition does not
require the differentiability of time-varying delays and is
expressed in terms of linear matrix inequalities, which can
be checked numerically using the effective LMI toolbox in
Matlab. An example is given to show the effectiveness of the
proposed criterion.

Notations.The notations are quite standard. Throughout this
paper, R𝑛 and R𝑛×𝑚 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑛 ×𝑚 realmatrices. ‖⋅‖ refers
to the Euclidean vector norm. 𝐴𝑇 represents the transpose of
matrix𝐴, and the asterisk “∗” in a matrix is used to represent
the term which is induced by symmetry. 𝐼 is the identity
matrix with compatible dimension.𝑋 > 𝑌means that𝑋 and
𝑌 are symmetric matrices and that 𝑋 − 𝑌 is positive definite.
Matrices, if not explicitly specified, are assumed to have
compatible dimensions.

2. Model Description and Preliminaries

Consider the following neural networks with leakage delay
and time-varying delays:

̇𝑥 (𝑡) = −𝐶𝑥 (𝑡 − 𝛿) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐽 (𝑡)

(1)

for 𝑡 ≥ 0, where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ R𝑛 is the
state vector of the network at time 𝑡, and 𝑛 corresponds to the
number of neurons; 𝐶 ∈ R𝑛×𝑛 is a positive diagonal matrix,
and𝐴 ∈ R𝑛×𝑛 and𝐵 ∈ R𝑛×𝑛 are the connection weightmatrix
and the delayed connection weight matrix, respectively;
𝑓(𝑥(𝑡)) = (𝑓

1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇

∈ R𝑛 denotes
the neuron activation at time 𝑡; 𝐽(𝑡) ∈ R𝑛 is an external input
vector; 𝛿 and 𝜏(𝑡) denote the leakage delay and time-varying
delay, respectively.

Throughout this paper, we make the following assump-
tions.

(H1) (see [40]) For any 𝑗 ∈ {1, 2, . . . , 𝑛} there exist
constants 𝐹−

𝑗
and 𝐹+

𝑗
such that

𝐹
−

𝑗
≤

𝑓
𝑗
(𝛼
1
) − 𝑓
𝑗
(𝛼
2
)

𝛼
1
− 𝛼
2

≤ 𝐹
+

𝑗
(2)

for all 𝛼
1
̸= 𝛼
2
.

(H2) (see [25]) The leakage delay 𝛿 and time-varying
delays 𝜏(𝑡) satisfy the following conditions:

0 ≤ 𝛿, 0 ≤ 𝜏 (𝑡) ≤ 𝜏, (3)

where 𝛿 and 𝜏 are constants.
As is well known, information about the neuron states is

often incomplete from the network measurements (outputs)
in applications, and the network measurements are subject
to nonlinear disturbances. Similar to [7], we assume that the
network measurements satisfy

𝑦 (𝑡) = 𝐷𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡)) , (4)

where𝑦(𝑡) ∈ R𝑚 is themeasurement output, and𝐷 ∈ R𝑚×𝑛 is
a known constantmatrix with appropriate dimension. 𝑔 : R×
R𝑛 → R𝑚 is the neuron-dependent nonlinear disturbances
on the network outputs and satisfies the following condition.

(H3) (see [22]) For any 𝑗 ∈ {1, 2, . . . , 𝑚} there exist con-
stants 𝐺−

𝑗
and 𝐺+

𝑗
such that

𝐺
−

𝑗
≤

𝑔
𝑗
(𝑡, 𝛼
1
(𝑡)) − 𝑔

𝑗
(𝑡, 𝛼
2
(𝑡))

𝛼
1
(𝑡) − 𝛼

2
(𝑡)

≤ 𝐺
+

𝑗
(5)

for 𝑡 ≥ 0 and all 𝛼
1
(𝑡) ̸= 𝛼

2
(𝑡).

Remark 1. As pointed out in [40], the constants 𝐹−
𝑗
and 𝐹+

𝑗

in assumption (H1) of this paper are allowed to be positive,
negative, or zero. Hence, assumption (H1), first proposed by
Liu et al. in [40], is weaker than the Lipschitz condition.
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For the delay neural networks (1), we construct the full-
order state estimation as follows:

̇𝑢 (𝑡) = − 𝐶𝑢 (𝑡 − 𝛿) + 𝐴𝑓 (𝑢 (𝑡))

+ 𝐵𝑓 (𝑢 (𝑡 − 𝜏 (𝑡))) + 𝐽 (𝑡) + 𝐾 (𝑦 (𝑡) − V (𝑡))
(6)

V (𝑡) = 𝐷𝑢 (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡)) , (7)

where 𝑢(𝑡) ∈ R𝑛 is an estimation of the state 𝑥(𝑡) of (1), and
𝐾 ∈ R𝑛×𝑚, to be determined, is a gain matrix of the state
estimator.

Let the error state be 𝑒(𝑡) = 𝑥(𝑡)−𝑢(𝑡) then it follows from
(1), (4), (6), and (7) that

̇𝑒 (𝑡) = − 𝐾𝐷𝑒 (𝑡) − 𝐶𝑒 (𝑡 − 𝛿) + 𝐴ℎ (𝑒 (𝑡))

+ 𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡))) − 𝐾𝑟 (𝑡, 𝑒 (𝑡)) ,

(8)

where ℎ(𝑒(𝑡)) = 𝑓(𝑥(𝑡)) − 𝑓(𝑢(𝑡)), 𝑟(𝑡, 𝑒(𝑡)) = 𝑔(𝑡, 𝑥(𝑡)) −
𝑔(𝑡, 𝑢(𝑡)).

The problem to be addressed in this study is to find
out the gain matrix 𝐾 such that the system (8) is globally
asymptotically stable.

To prove our results, the following lemmas that can be
found in [22] are necessary.

Lemma 2 (see [22]). For any constant matrix 𝑊 ∈ R𝑚×𝑚,
𝑊 > 0, scalar 0 < ℎ(𝑡) < ℎ, and vector function𝜔(⋅) : [0, ℎ] →
R𝑚 such that the integrations concerned are well defined, then

(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑊(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

≤ ℎ (𝑡) ∫

ℎ(𝑡)

0

𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠.

(9)

Lemma 3 (see [22]). Given constant matrices 𝑃, 𝑄, and 𝑅,
where 𝑃𝑇 = 𝑃, 𝑄𝑇 = 𝑄, then

[
𝑃 𝑅

𝑅
𝑇

−𝑄
] < 0 (10)

is equivalent to the following conditions:

𝑄 > 0, 𝑃 + 𝑅𝑄
−1

𝑅
𝑇

< 0. (11)

3. Main Results

For presentation convenience, in the following, we denote

𝐹
1
= diag (𝐹−

1
, 𝐹
−

2
, . . . , 𝐹

−

𝑛
) ,

𝐹
2
= diag (𝐹+

1
, 𝐹
+

2
, . . . , 𝐹

+

𝑛
) ,

𝐹
3
= diag (𝐹−

1
𝐹
+

1
, 𝐹
−

2
𝐹
+

2
, . . . , 𝐹

−

𝑛
𝐹
+

𝑛
) ,

𝐹
4
= diag(

𝐹
−

1
+ 𝐹
+

1

2
,
𝐹
−

2
+ 𝐹
+

2

2
, . . . ,

𝐹
−

𝑛
+ 𝐹
+

𝑛

2
) ,

𝐺
1
= diag (𝐺−

1
𝐺
+

1
, 𝐺
−

2
𝐺
+

2
, . . . , 𝐺

−

𝑛
𝐺
+

𝑛
) ,

𝐺
2
= diag(

𝐺
−

1
+ 𝐺
+

1

2
,
𝐺
−

2
+ 𝐺
+

2

2
, . . . ,

𝐺
−

𝑛
+ 𝐺
+

𝑛

2
) .

(12)

Theorem 4. Assume that the assumptions (H1)–(H3) hold. If
there exist four symmetric positive definite matrices 𝑃

𝑖
(𝑖 =

1, 2, 3, 4), five positive diagonal matrices𝑊
1
,𝑊
2
, 𝑅
1
, 𝑅
2
, and

𝑅
3
, and seven matrices𝑄

1
,𝑄
2
,𝑄
3
,𝑋
11
,𝑋
12
,𝑋
22
, and 𝑍, such

that the following LMIs hold:

𝑋 = [
𝑋
11
𝑋
12

∗ 𝑋
22

] > 0, (13)

Ω =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
11
Ω
12
𝑄
3
0 Ω

15
𝑋
22
Ω
17
𝑄
1
𝐵 Ω
19

𝑄
3

0

∗ Ω
22
0 0 −𝑄

1
𝐶 𝑋

12
Ω
27
𝑄
1
𝐵 −𝑍 0 0

∗ ∗ Ω
33
𝑄
2

0 0 𝐹
4
𝑅
2
0 0 0 𝑄

2

∗ ∗ ∗ −𝑃
3

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝑃
1
−𝑋
22

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
2

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
1
0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −
1

𝜏
𝑃
4
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −
1

𝜏
𝑃
4

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (14)

where Ω
11
= 𝑋
12
+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
− 𝑍𝐷 − 𝐷

𝑇

𝑍
𝑇

−

𝑄
3
− 𝑄
𝑇

3
− 𝐹
3
𝑅
1
− 𝐺
1
𝑅
3
, = 𝑋
11
− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
− 𝑄
1
−𝐷
𝑇

𝑍
𝑇,

Ω
15
= −𝑋

12
− 𝑄
1
𝐶, Ω
17
= 𝑄
1
𝐴 + 𝐹

4
𝑅
1
, Ω
19
= −𝑍 + 𝐺

2
𝑅
3
,

Ω
22
= −𝑄
1
−𝑄
𝑇

1
+𝜏𝑃
4
,Ω
27
= 𝑊
1
−𝑊
2
+𝑄
1
𝐴,Ω
33
= −𝑄
2
−𝑄
𝑇

2
−
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𝐹
3
𝑅
2
, then error-state system (8) of the delayed neural network

described by (1) and (6) is globally asymptotically stable, and
the estimator gain matrix 𝐾 can be designed as 𝐾 = 𝑄−1

1
𝑍.

Proof. From assumption (H1), we know that

∫

𝑒𝑖(𝑡)

0

(ℎ
𝑖
(𝑠) − 𝐹

−

𝑖
𝑠) 𝑑𝑠 ≥ 0, (15)

∫

𝑒𝑖(𝑡)

0

(𝐹
+

𝑖
𝑠 − ℎ
𝑖
(𝑠)) 𝑑𝑠 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (16)

Let 𝑊
1
= diag(𝑤

11
, 𝑤
12
, . . . , 𝑤

1𝑛
), 𝑊
2
= diag(𝑤

21
, 𝑤
22
,

. . . , 𝑤
2𝑛
), and consider the following Lyapunov-Krasovskii

functional as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (17)

where

𝑉
1
(𝑡) = [

[

𝑒(𝑡)

∫

𝑡

𝑡−𝛿

𝑒(𝑠)𝑑𝑠

]

]

𝑇

[
𝑋
11
𝑋
12

∗ 𝑋
22

][

[

𝑒 (𝑡)

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

]

]

,

𝑉
2
(𝑡) = 2

𝑛

∑

𝑖=1

𝑤
1𝑖
∫

𝑒𝑖(𝑡)

0

(ℎ
𝑖
(𝑠) − 𝐹

−

𝑖
𝑠) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑤
2𝑖
∫

𝑒𝑖(𝑡)

0

(𝐹
+

𝑖
𝑠 − ℎ
𝑖
(𝑠)) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠) 𝑃
1
𝑒 (𝑠) 𝑑𝑠 + 𝛿∫

0

−𝛿

∫

𝑡

𝑡+𝜉

𝑒
𝑇

(𝑠) 𝑃
2
𝑒 (𝑠) 𝑑𝑠 𝑑𝜉,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏

𝑒
𝑇

(𝑠) 𝑃
3
𝑒 (𝑠) 𝑑𝑠 + ∫

0

−𝜏

∫

𝑡

𝑡+𝜉

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜉.

(18)

Calculating the time derivative of 𝑉
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4), we

obtain

𝑉
1
(𝑡) = 2[

[

𝑒(𝑡)

∫

𝑡

𝑡−𝛿

𝑒(𝑠)𝑑𝑠

]

]

𝑇

[
𝑋
11
𝑋
12

∗ 𝑋
22

] [
̇𝑒 (𝑡)

𝑒 (𝑡) − 𝑒 (𝑡 − 𝛿)
]

= 𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑋
𝑇

12
) 𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑋
11
̇𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑋
12
𝑒 (𝑡 − 𝛿) + 2𝑒

𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2 ̇𝑒
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

− 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠,

(19)

𝑉
2
(𝑡) = 2 ̇𝑒

𝑇

(𝑡)𝑊
1
(ℎ (𝑒 (𝑡)) − 𝐹

1
𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡)𝑊
2
(𝐹
2
𝑒 (𝑡) − ℎ (𝑒 (𝑡)))

= 2𝑒
𝑇

(𝑡) (−𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
) ̇𝑒 (𝑡)

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
−𝑊
2
) ℎ (𝑒 (𝑡)) ,

(20)

𝑉
3
(𝑡) = 𝑒

𝑇

(𝑡) (𝑃
1
+ 𝛿
2

𝑃
2
) 𝑒 (𝑡)

− 𝑒
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿) − 𝛿∫

𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠) 𝑃
2
𝑒 (𝑠) 𝑑𝑠

≤ 𝑒
𝑇

(𝑡) (𝑃
1
+ 𝛿
2

𝑃
2
) 𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿)

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠) ,

(21)

𝑉
4
(𝑡) = 𝑒

𝑇

(𝑡) 𝑃
3
𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏)

+ 𝜏 ̇𝑒
𝑇

(𝑡) 𝑃
4
̇𝑒 (𝑡) − ∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠.

(22)

In deriving inequality (21), we havemade use of Lemma 2.
It follows from inequalities (19)–(22) that

𝑉 (𝑡) ≤ 𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) (𝑋
11
− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
) ̇𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑋
12
𝑒 (𝑡 − 𝛿)

+ 2𝑒
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 𝜏 ̇𝑒
𝑇

(𝑡) 𝑃
4
̇𝑒 (𝑡) + 2 ̇𝑒

𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
−𝑊
2
) ℎ (𝑒 (𝑡))

− 𝑒
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿)

− 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

− 𝑒
𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏)

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

− ∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠.

(23)
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From model (8), we have

0 = 2 (𝑒
𝑇

(𝑡) + ̇𝑒
𝑇

(𝑡))𝑄
1

× [ − ̇𝑒 (𝑡) − 𝐾𝐷𝑒 (𝑡) − 𝐶𝑒 (𝑡 − 𝛿) + 𝐴ℎ (𝑒 (𝑡))

+𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡))) − 𝐾𝑟 (𝑡, 𝑒 (𝑡))]

= −𝑒
𝑇

(𝑡) (𝑄
1
𝐾𝐷 + 𝐷

𝑇

𝐾
𝑇

𝑄
𝑇

1
) 𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑄
1
̇𝑒 (𝑡) − 2𝑒

𝑇

(𝑡) 𝑄
1
𝐶𝑒 (𝑡 − 𝛿)

+ 2𝑒
𝑇

(𝑡) 𝑄
1
𝐴ℎ (𝑒 (𝑡)) + 2𝑒

𝑇

(𝑡) 𝑄
1
𝐵ℎ

× (𝑒 (𝑡 − 𝜏 (𝑡))) − 2𝑒
𝑇

(𝑡) 𝑄
1
𝐾𝑟 (𝑡, 𝑒 (𝑡))

− ̇𝑒
𝑇

(𝑡) (𝑄
1
+ 𝑄
𝑇

1
) ̇𝑒 (𝑡) − 2𝑒

𝑇

(𝑡) 𝐷
𝑇

𝐾
𝑇

𝑄
𝑇

1
̇𝑒 (𝑡)

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐶𝑒 (𝑡 − 𝛿) + 2 ̇𝑒

𝑇

(𝑡) 𝑄
1
𝐴ℎ (𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐾𝑟(𝑡, 𝑒 (𝑡) .

(24)

By Newton-Leibniz formulation and assumption (H2),
we have

0 = −2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2

× (𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − 𝜏) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏)

+ 𝜏𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑃
−1

4
𝑄
𝑇

2
𝑒 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠,

0 = −2𝑒
𝑇

(𝑡) 𝑄
3

× (𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡) 𝑄
3
𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑄
3
𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝜏𝑒
𝑇

(𝑡) 𝑄
3
𝑃
−1

4
𝑄
𝑇

3
𝑒 (𝑡)

+ ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠.

(25)

In addition, for positive diagonal matrices 𝑅
𝑖
> 0 (𝑖 =

1, 2, 3), we can get from assumption (H1) and assumption
(H3) that [15]

[
𝑒 (𝑡)

ℎ (𝑒 (𝑡))
]

𝑇

[
𝐹
3
𝑅
1
−𝐹
4
𝑅
1

−𝐹
4
𝑅
1
𝑅
1

] [
𝑒 (𝑡)

ℎ (𝑒 (𝑡))
] ≤ 0,

[
𝑒 (𝑡 − 𝜏 (𝑡))

ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))
]

𝑇

[
𝐹
3
𝑅
2
−𝐹
4
𝑅
2

−𝐹
4
𝑅
2
𝑅
2

]

× [
𝑒 (𝑡 − 𝜏 (𝑡))

ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))
] ≤ 0,

[
𝑒 (𝑡)

𝑟 (𝑡, 𝑒 (𝑡))
]

𝑇

[
𝐺
1
𝑅
3
−𝐺
2
𝑅
3

−𝐺
2
𝑅
3
𝑅
3

] [
𝑒 (𝑡)

𝑟 (𝑡, 𝑒 (𝑡))
] ≤ 0.

(26)

It follows from (23)–(26) that

𝑉 (𝑡) ≤ 𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3

− 𝑄
1
𝐾𝐷 − 𝐷

𝑇

𝐾
𝑇

𝑄
𝑇

1
− 𝑄
3
− 𝑄
𝑇

3

+𝜏𝑄
3
𝑃
−1

4
𝑄
𝑇

3
− 𝐹
3
𝑅
1
− 𝐺
1
𝑅
3
) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) (𝑋
11
− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2

−𝑄
1
− 𝐷
𝑇

𝐾
𝑇

𝑄
𝑇

1
) ̇𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑄
3
𝑒 (𝑡 − 𝜏 (𝑡))

− 2𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑄
1
𝐶) 𝑒 (𝑡 − 𝛿)

+ 2𝑒
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2𝑒
𝑇

(𝑡) (𝑄
1
𝐴 + 𝐹

4
𝑅
1
) ℎ (𝑒 (𝑡))

+ 2𝑒
𝑇

(𝑡) 𝑄
1
𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 2𝑒
𝑇

(𝑡) (−𝑄
1
𝐾 + 𝐺

2
𝑅
3
) 𝑟 (𝑡, 𝑒 (𝑡))

+ ̇𝑒
𝑇

(𝑡) (−𝑄
1
− 𝑄
𝑇

1
+ 𝜏𝑃
4
) ̇𝑒 (𝑡)

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐶𝑒 (𝑡 − 𝛿)

+ 2 ̇𝑒
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
−𝑊
2
+ 𝑄
1
𝐴) ℎ (𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐾𝑟(𝑡, 𝑒 (𝑡) + 𝑒𝑇 (𝑡 − 𝜏 (𝑡))

× (−𝑄
2
− 𝑄
𝑇

2
+ 𝜏𝑄
2
𝑃
−1

4
𝑄
𝑇

2

−𝐹
3
𝑅
2
) 𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏)

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐹
4
𝑅
2
ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))
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− 𝑒
𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏) − 𝑒

𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒

× (𝑡 − 𝛿) − 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

− ℎ
𝑇

(𝑒 (𝑡)) 𝑅
1
ℎ (𝑒 (𝑡))

− ℎ
𝑇

(𝑒 (𝑡 − 𝜏 (𝑡))) 𝑅
2
ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

− 𝑟
𝑇

(𝑡, 𝑒 (𝑡)) 𝑅
3
𝑟 (𝑡, 𝑒 (𝑡)) = 𝜉

𝑇

(𝑡) Π𝜉 (𝑡) ,

(27)

where 𝜉(𝑡) = (𝑒𝑇(𝑡), ̇𝑒𝑇(𝑡), 𝑒𝑇(𝑡 − 𝜏(𝑡)), 𝑒𝑇(𝑡 − 𝜏), 𝑒𝑇(𝑡 − 𝛿),
∫
𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠)𝑑𝑠, ℎ𝑇(𝑒(𝑡)), ℎ𝑇(𝑒(𝑡 − 𝜏(𝑡))), 𝑟𝑇(𝑡, 𝑒(𝑡)))𝑇,

Π =

[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11
Π
12
𝑄
3
0 −𝑋

12
− 𝑄
1
𝐶 𝑋

22
𝑄
1
𝐴 + 𝐹

4
𝑅
1
𝑄
1
𝐵 −𝑄

1
𝐾 + 𝐺

2
𝑅
3

∗ Π
22
0 0 −𝑄

1
𝐶 𝑋

12
𝑊
1
−𝑊
2
+ 𝑄
1
𝐴 𝑄
1
𝐵 −𝑄

1
𝐾

∗ ∗ Π
33
𝑄
2

0 0 𝐹
4
𝑅
2

0 0

∗ ∗ ∗ −𝑃
3

0 0 0 0 0

∗ ∗ ∗ ∗ −𝑃
1

−𝑋
22

0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3

]
]
]
]
]
]
]
]
]
]
]
]

]

(28)

withΠ
11
= 𝑋
12
+𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
−𝑄
1
𝐾𝐷−𝐷

𝑇

𝐾
𝑇

𝑄
𝑇

1
−

𝑄
3
− 𝑄
𝑇

3
+ 𝜏𝑄
3
𝑃
−1

4
𝑄
𝑇

3
− 𝐹
3
𝑅
1
− 𝐺
1
𝑅
3
, Π
12
= 𝑋
11
− 𝐹
1
𝑊
1
+

𝐹
2
𝑊
2
− 𝑄
1
− 𝐷
𝑇

𝐾
𝑇

𝑄
𝑇

1
, Π
22
= −𝑄
1
− 𝑄
𝑇

1
+ 𝜏𝑃
4
, Π
33
= −𝑄
2
−

𝑄
𝑇

2
+ 𝜏𝑄
2
𝑃
−1

4
𝑄
𝑇

2
− 𝐹
3
𝑅
2
.

By using Lemma 3, and noting 𝐾 = 𝑄−1
1
𝑍, it is easy to

verify the equivalence of Π < 0 and Ω < 0. Thus, one can
derive from (14) and (27) that

𝑉 (𝑡) ≤ 0, (29)

which implies that the error-state system (8) of the delayed
neural networks described by (1) and (6) is globally asymp-
totically stable. The proof is completed.

4. Numerical Example

To verify the effectiveness of the theoretical result of this
paper, consider the following example.

Example 1. Consider a two-neuron neural network (1), where

𝐶 = [
1.3 0

0 0.9
] , 𝐴 = [

0.5 −0.2

0.7 0.5
] ,

𝐵 = [
0.6 −0.1

−1.2 −0.8
] , 𝐽 (𝑡) = [

1.6 cos (21𝑡)
−1.3 sin (1.1𝑡)] ,

𝑓
1
(𝑥) = 𝑓

2
(𝑥) = tanh (𝑥) ,

𝛿 = 0.1, 𝜏 (𝑡) = 0.27 |sin (7𝑡)| .

(30)

Figure 1 shows that the considered neural network has
a chaotic attractor, where the initial condition is 𝑥

1
(𝑡) =

0.5 cos(0.5𝑡), 𝑥
2
(𝑡) = −0.2 sin (18𝑡), and 𝑡 ∈ [−0.27, 0].

It can be verified that assumptions (H1) and (H2) are
satisfied, and 𝐹

1
= 0, 𝐹

2
= 𝐼, 𝐹

3
= 0, 𝐹

4
= diag{0.5, 0.5},

𝜏 = 0.27.

Choose network measurement (4), where

𝐷 = [
0.7 −0.2

0.1 0.5
] ,

𝑔 (𝑡, 𝑥 (𝑡)) = 0.1 cos𝑥 (𝑡) + 0.3.
(31)

It is obvious that assumption (H3) is satisfied with 𝐺
1
=

−0.01𝐼 and 𝐺
2
= 0. By the Matlab LMI Control Toolbox, we

find a solution to the LMIs in (13) and (14) as follows:

𝑃
1
= [
0.5042 0.0068

0.0068 0.1895
] , 𝑃

2
= [
2.7464 0.0896

0.0896 2.0468
] ,

𝑃
3
= [
0.3288 −0.0027

−0.0027 0.1564
] , 𝑃

4
= [
0.1907 0.0138

0.0138 0.1027
] ,

𝑊
1
= [
0.1184 0

0 0.0779
] , 𝑊

2
= [
0.2313 0

0 0.1183
] ,

𝑅
1
= [
0.9466 0

0 0.4360
] , 𝑅

2
= [
0.4704 0

0 0.2050
] ,

𝑅
3
= [
2.9274 0

0 3.4376
] , 𝑄

1
= [
0.2168 0.0134

0.0144 0.0812
] ,

𝑄
2
= [
0.2025 0.0032

0.0032 0.1054
] , 𝑄

3
= [
−0.0134 0.0159

−0.0162 0.0155
] ,

𝑋
11
= [
0.4753 0.0123

0.0123 0.1554
] , 𝑋

12
= [
−0.5667 −0.0378

−0.0362 −0.2141
] ,

𝑋
22
= [
0.8376 0.0508

0.0508 0.4503
] , 𝑍 = [

0.5858 0.1452

−0.0249 0.4239
] .

(32)

Subsequently, we can obtain from𝐾 = 𝑄−1
1
𝑍 that

𝐾 = [
2.7511 0.3508

−0.7949 5.1560
] . (33)
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Figure 1: Phase trajectory of model (1).
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Figure 2: The responses of the true state 𝑥
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(𝑡) (solid line) and its

estimation 𝑢
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(𝑡) (dash line).

Therefore, we know from Theorem 4 that error-state
system (8) of the delayed neural network described by (1) and
(6) is globally asymptotically stable.The simulation results are
shown in Figures 2 and 3,which demonstrate the effectiveness
of the developed approach for the design of the state estimator
for neural networks with leakage delay and time-varying
delay.

5. Conclusions

In this paper, the state estimation problem has been inves-
tigated for neural networks with leakage delay and time-
varying delay as well as general activation functions. By
employing Lyapunov functional method and the matrix
inequality techniques, a delay-dependent LMIs condition has
been established to estimate the neuron state with some
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Figure 3: The responses of the true state 𝑥
2
(𝑡) (solid line) and its

estimation 𝑢
2
(𝑡) (dash line).

observed output measurements such that the error-state
system is globally asymptotically stable. An example has been
provided to show the effectiveness of the proposed criterion.
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The passivity and passification for Takagi-Sugeno (T-S) fuzzy systems with leakage delay and both discrete and distributed time-
varying delays are investigated. By employing the Lyapunov functional method and using the matrix inequality techniques, several
delay-dependent criteria to ensure the passivity and passification of the considered T-S fuzzy systems are established in terms
of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. The obtained results
generalize some previous results. Two examples are given to show the effectiveness of the proposed criteria.

1. Introduction

TheTakagi-Sugeno (T-S) fuzzy system, initially proposed and
studied by Takagi and Sugeno [1], has attracted increasing
interest due to the fact that it provides a general framework
to represent a nonlinear plant by using a set of local linear
models which are smoothly connected through nonlinear
fuzzy membership functions [2]. In practice, time delays
often occur in many dynamic systems such as chemical
processes, metallurgical processes, biological systems, and
neural networks [3]. The existence of time delays is usually a
source of instability and poor performance [4].Therefore, the
study of stability with consideration of time delays becomes
extremely important [5]. Recently, the stability and stabiliza-
tion of T-S fuzzy systems with delays have been extensively
studied; for example, see [3–13] and references therein.

On the other hand, the passivity theory is another
effective tool to the stability analysis of the system [14]. The
main idea of passivity theory is that the passive properties
of the system can keep the system internal stability [15]. For
these reasons, the passivity and passification problems have
been an active area of research recently. The passification
problem, which is also called the passive control problem,
is formulated as the problem of finding a suitable controller

such that the resulting closed-loop system is passive. Recently,
some authors have studied the passivity of some systems
and obtained sufficient conditions for checking the passivity
of the systems that include linear systems with delays [14–
16], delayed neural networks [17, 18], networked control
systems [19], nonlinear discrete-time systems with direct
input-output link [20], and T-S fuzzy systems [21–25]. In [21],
the stability of fuzzy control loops is proven with the unique
condition that the controlled plant can be made passive by
zero shifting. For linear time-invariant plants, this approach
leads to frequency response conditions similar to the previous
results in the literature, but which are more general and can
include robust stability considerations. In [23], the passivity
and feedback passification of T-S fuzzy systems with time
delays are considered. Both delay-independent and delay-
dependent results are presented, and the theoretical results
are given in terms of LMIs. In [24], discrete-time T-S fuzzy
systems with delays were considered, and several sufficient
conditions for checking passivity and passification were
obtained. In [25], the contiguous-time T-S fuzzy systemswith
time-varying delays were investigated, and several criteria to
ensure the passivity and feedback passification were given.
In [22], the passivity and feedback passification of T-S fuzzy
systems with both discrete and distributed time-varying
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delays were investigated without assuming the differentia-
bility of the time-varying delays. By employing appropriate
Lyapunov-Krasovskii functionals, several delay-dependent
criteria for the passivity of the considered T-S fuzzy systems
were established in terms of LMIs.

Recently, Gopalsamy initially investigated the bidirec-
tional associative memory (BAM) neural networks with con-
stant delays in the leakage terms and derived several sufficient
conditions for the existence of a unique equilibrium as well as
its asymptotic and exponential stability [26]. Inspired by this
work, authors considered the T-S fuzzy systems with constant
leakage delay and investigated their stability problem [7]. As
pointed out in [7], T-S fuzzy systems with leakage delay are a
class of important T-S fuzzy systems: time delay in the leakage
term also has great impact on the dynamics of T-S fuzzy
systems since time delay in the stabilizing negative feedback
term has a tendency to destabilize a system. To the best of
the authors knowledge, there is no results on the problem of
passivity for T-S fuzzy systems with leakage delay. Therefore,
there is a need to further extend the passivity results reported
in [22].

Motivated by the above discussions, the objective of this
paper is to study the passivity and feedback passification of T-
S fuzzy systems with leakage delay and mixed time-varying
delays by employing new Lyapunov-Krasovskii functionals
and using matrix inequality techniques. The obtained suffi-
cient conditions do not require the differentiability of time-
varying delays and are expressed in terms of linear matrix
inequalities, which can be checked numerically using the
effective LMI toolbox inMATLAB.Two examples are given to
show the effectiveness and less conservatism of the proposed
criteria.

Notations.The notations are quite standard. Throughout this
paper, R𝑛 and R𝑛×𝑚 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑛×𝑚 realmatrices. ‖⋅‖ refers
to the Euclidean vector norm. 𝐴𝑇 represents the transpose of
matrix𝐴, and the asterisk “∗” in a matrix is used to represent
the term which is induced by symmetry. 𝐼 is the identity
matrix with compatible dimension. 𝑋 > 𝑌 means that 𝑋
and 𝑌 are symmetric matrices and that 𝑋 − 𝑌 is positive
definite. Matrices, if not explicitly specified, are assumed to
have compatible dimensions.

2. Model Description and Preliminaries

Consider a continuous time T-S fuzzy system with dis-
crete and distributed time-varying delays as well as leakage
delay, and the 𝑖th rule of the model is of the following
form.

Plant Rule 𝑖. If 𝑧
1
(𝑡) is𝑀

𝑖1
and. . .and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝
, then

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡 − 𝛿) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐻
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡) ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] ,

(1)

where 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑟, and 𝑟 is the number of If-
then rules; 𝑧

1
(𝑡), 𝑧

2
(𝑡), . . . , 𝑧

𝑝
(𝑡) are the premise variables;

each 𝑀
𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑝) is a fuzzy set; 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡),

. . . , 𝑥
𝑛
(𝑡))

𝑇

∈ R𝑛 is the state vector of the system at time 𝑡;
𝑤(𝑡) = (𝑤

1
(𝑡), 𝑤

2
(𝑡), . . . , 𝑤

𝑞
(𝑡))

𝑇

∈ R𝑞 is the square inte-
grable exogenous input; 𝑦(𝑡) = (𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑞
(𝑡))

𝑇

∈ R𝑞

is the output vector of the system; 𝛿, 𝜏(𝑡), and 𝑑(𝑡) denote
the leakage delay, the discrete time-varying delay, and the
distributed time-varying delay, respectively, and satisfy 0 ≤

𝜏(𝑡) ≤ 𝜏, 0 ≤ 𝑑(𝑡) ≤ 𝑑, where 𝜏 and 𝑑 are constants; 𝜙(𝑠)
is bounded and continuously differentiable on [−𝜌, 0], where
𝜌 = max{𝛿, 𝜏, 𝑑}; 𝐴

𝑖
, 𝐵

𝑖
, 𝑊

𝑖
, 𝑈

𝑖
, 𝐶

𝑖
, 𝐷

𝑖
, 𝐻

𝑖
, and 𝑉

𝑖
are some

given constant matrices with appropriate dimensions.
Let 𝜇

𝑖
(𝑡) be the normalized membership function of the

inferred fuzzy set 𝛾
𝑖
(𝑡); that is,

𝜇
𝑖
(𝑡) =

𝛾
𝑖
(𝑡)

∑
𝑟

𝑖=1
𝛾
𝑖
(𝑡)

, (2)

where 𝛾
𝑖
(𝑡) = ∏

𝑝

𝑗=1
𝑀
𝑖𝑗
(𝑧
𝑗
(𝑡)) with𝑀

𝑖𝑗
(𝑧
𝑗
(𝑡)) being the grade

of membership function of 𝑧
𝑗
(𝑡) in𝑀

𝑖𝑗
(𝑡). It is assumed that

𝛾
𝑖
(𝑡) ≥ 0 (𝑖 = 1, 2, . . . , 𝑟) and ∑

𝑟

𝑖=1
𝛾
𝑖
(𝑡) > 0 for all 𝑡. Thus,

𝜇
𝑖
(𝑡) ≥ 0 and∑𝑟

𝑖=1
𝜇
𝑖
(𝑡) = 1 for all 𝑡. And the T-S fuzzy model

(1) can be defuzzied as

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [𝐴

𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡)] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [𝐶

𝑖
𝑥 (𝑡 − 𝛿) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝐻
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡)] ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] .

(3)

In the literature, there are different definitions of passivity.
In this paper, we adopt the following widely accepted defini-
tion of passivity, which can been found in [22].

Definition 1. System (1) is called passive if there exists a scalar
𝛾 > 0 such that

2∫

𝑡𝑝

0

𝑦
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠 ≥ −𝛾∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠 (4)

for all 𝑡
𝑝
≥ 0 and for the solution of (1) with 𝜙(⋅) ≡ 0.
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To prove our results, the following lemma that can be
found in [27] is necessary.

Lemma 2 (see [27]). For any constant matrix 𝑊 ∈ R𝑚×𝑚,
𝑊 > 0, scalar 0 < ℎ(𝑡) < ℎ, vector function 𝜔(⋅) : [0, ℎ] →

R𝑚 such that the integrations concerned are well defined; then,

(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑊(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

≤ ℎ (𝑡) ∫

ℎ(𝑡)

0

𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠.

(5)

3. Main Results

Theorem 3. Model (1) is passive in the sense of Definition 1
if there exist a scalar 𝛾 > 0, three symmetric positive definite
matrices 𝑃

1
, 𝑃
2
, and 𝑃

3
, and eleven matrices 𝑄

1
, 𝑄

2
, 𝑋

11
, 𝑋

12
,

𝑋
22
, 𝑌

𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3, 𝑖 ≤ 𝑗) such that the following LMIs hold

for 𝑖 = 1, 2, . . . , 𝑟:

𝑋 = [
𝑋
11

𝑋
12

∗ 𝑋
22

] > 0, (6)

𝑌 = [

[

𝑌
11

𝑌
12

𝑌
13

∗ 𝑌
22

𝑌
23

∗ ∗ 𝑌
33

]

]

> 0, (7)

Π
𝑖
=

[
[
[
[
[
[
[

[

Π
11

𝑋
11
− 𝑄
1
−𝑋
12
+ 𝑄
1
𝐴
𝑖
Π
14,𝑖

𝑋
22

𝑄
1
𝑊
𝑖
𝑄
1
𝑈
𝑖

∗ Π
22

𝑄
2
𝐴
𝑖

𝑄
2
𝐵
𝑖
𝑋
12

𝑄
2
𝑊
𝑖
𝑄
1
𝑈
𝑖

∗ ∗ −𝑃
1

0 −𝑋
22

0 −𝐶
𝑇

𝑖

∗ ∗ ∗ Π
44

0 0 −𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝑃
2

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
3

−𝐻
𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Π
77,𝑖

]
]
]
]
]
]
]

]

<0,

(8)

whereΠ
11
= 𝑃

1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+𝑋

12
+𝑋

𝑇

12
+ 𝜏𝑌

11
+ 𝑌

13
+ 𝑌

𝑇

13
,

Π
14,𝑖

= 𝜏𝑌
12

− 𝑌
13

+ 𝑌
𝑇

23
+ 𝑄

1
𝐵
𝑖
, Π

22
= 𝜏𝑌

33
− 𝑄

2
− 𝑄

𝑇

2
,

Π
44
= 𝜏𝑌

22
− 𝑌

23
− 𝑌

𝑇

23
, and Π

77,𝑖
= −𝑉

𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Proof. From condition (7), we know that 𝑌
33

> 0. Consider
the following Lyapunov-Krasovskii functional as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (9)

where

𝑉
1
(𝑡) = ∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠) 𝑃
1
𝑥 (𝑠) 𝑑𝑠 + 𝛿∫

0

−𝛿

∫

𝑡

𝑡+𝜉

𝑥
𝑇

(𝑠) 𝑃
2
𝑥 (𝑠) 𝑑𝑠 𝑑𝜉

+ 𝑑∫

0

−𝑑

∫

𝑡

𝑡+𝜉

𝑥
𝑇

(𝑠) 𝑃
3
𝑥 (𝑠) 𝑑𝑠 𝑑𝜉,

𝑉
2
(𝑡) = [

[

𝑥(𝑡)

∫

𝑡

𝑡−𝛿

𝑥(𝑠)𝑑𝑠

]

]

𝑇

[
𝑋
11

𝑋
12

∗ 𝑋
22

][

[

𝑥 (𝑡)

∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

]

]

,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜏

∫

𝑡

𝜉

̇𝑥
𝑇

(𝑠) 𝑌
33

̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜉,

𝑉
4
(𝑡) = ∫

𝑡

0

∫

𝜉

𝜉−𝜏(𝜉)

𝑢
𝑇

(𝜉, 𝑠) 𝑌𝑢 (𝜉, 𝑠) 𝑑𝑠 𝑑𝜉,

(10)

and 𝑢(𝜉, 𝑠) = (𝑥
𝑇

(𝜉), 𝑥
𝑇

(𝜉 − 𝜏(𝜉)), ̇𝑥
𝑇

(𝑠))
𝑇.

Calculating the time derivative of 𝑉(𝑡) and using Lemma
2, we obtain that

𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 𝛿∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠) 𝑃
2
𝑥 (𝑠) 𝑑𝑠 − 𝑑∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑃
3
𝑥 (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠) ,

𝑉
2
(𝑡) = 2[

[

𝑥(𝑡)

∫

𝑡

𝑡−𝛿

𝑥(𝑠)𝑑𝑠

]

]

𝑇

[
𝑋
11

𝑋
12

∗ 𝑋
22

] [
̇𝑥 (𝑡)

𝑥 (𝑡) − 𝑥 (𝑡 − 𝛿)
]

= 𝑥
𝑇

(𝑡) (𝑋
12
+ 𝑋

𝑇

12
) 𝑥 (𝑡) + 2𝑥

𝑇

(𝑡) 𝑋
11

̇𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡) 𝑋
12
𝑥 (𝑡 − 𝛿) + 2𝑥

𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2 ̇𝑥
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = 𝜏 ̇𝑥

𝑇

(𝑡) 𝑌
33

̇𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏

̇𝑥
𝑇

(𝑠) 𝑌
33

̇𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

(𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , ̇𝑥
𝑇

(𝑠)) 𝑌

× (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , ̇𝑥
𝑇

(𝑠))
𝑇

𝑑𝑠

= 𝜏 (𝑡) [
𝑥 (𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))
]

𝑇

[
𝑌
11

𝑌
12

𝑌
𝑇

12
𝑌
22

] [
𝑥 (𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))
]

+ 2𝑥
𝑇

(𝑡) 𝑌
13
𝑥 (𝑡) − 2𝑥

𝑇

(𝑡) 𝑌
13
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑌
23
𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑌
23
𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑥
𝑇

(𝑠) 𝑌
33

̇𝑥 (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) (𝜏𝑌
11
+ 𝑌

13
+ 𝑌

𝑇

13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))
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+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏

̇𝑥
𝑇

(𝑠) 𝑌
33

̇𝑥 (𝑠) 𝑑𝑠.

(11)

It follows from (11) that

𝑉 (𝑡) ≤ 𝑥
𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+ 𝑋

12
+ 𝑋

𝑇

12

+𝜏𝑌
11
+ 𝑌

13
+ 𝑌

𝑇

13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑋
11

̇𝑥 (𝑡) − 2𝑥
𝑇

(𝑡) 𝑋
12
𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠 + 𝜏 ̇𝑥
𝑇

(𝑡) 𝑌
33

̇𝑥 (𝑡)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠) .

(12)

From the first equation of (3), we have

0 = 2 (𝑥
𝑇

(𝑡) 𝑄
1
+ ̇𝑥

𝑇

(𝑡) 𝑄
2
)

×

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [ − ̇𝑥 (𝑡) + 𝐴

𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡)]

=

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) ( − 2𝑥

𝑇

(𝑡) 𝑄
1
̇𝑥 (𝑡) + 2𝑥

𝑇

(𝑡) 𝑄
1
𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑈
𝑖
𝑤 (𝑡)

− 2 ̇𝑥
𝑇

(𝑡) 𝑄
2
̇𝑥 (𝑡) + 2 ̇𝑥

𝑇

(𝑡) 𝑄
2
𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑄
2
𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2 ̇𝑥
𝑇

(𝑡) 𝑄
2
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+2 ̇𝑥
𝑇

(𝑡) 𝑄
2
𝑈
𝑖
𝑤 (𝑡) ) .

(13)

It follows from (12) and (13) that

𝑉 (𝑡) − 2𝑤
𝑇

(𝑡) 𝑦 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [𝑥

𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+ 𝑋

12

+𝑋
𝑇

12
+ 𝜏𝑌

11
+ 𝑌

13
+ 𝑌

𝑇

13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝑋
11
− 𝑄

1
) ̇𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (−𝑋
12
+ 𝑄

1
𝐴
𝑖
) 𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
+ 𝑄

1
𝐵
𝑖
)

× 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑈
𝑖
𝑤 (𝑡)

+ ̇𝑥
𝑇

(𝑡) (𝜏𝑌
33
− 𝑄

2
− 𝑄

𝑇

2
) ̇𝑥 (𝑡)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑄
2
𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑄
2
𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2 ̇𝑥
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2 ̇𝑥
𝑇

(𝑡) 𝑄
2
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2 ̇𝑥
𝑇

(𝑡) 𝑄
2
𝑈
𝑖
𝑤 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− 2𝑥
𝑇

(𝑡 − 𝛿) 𝐶
𝑇

𝑖
𝑤 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
)

× 𝑥 (𝑡 − 𝜏 (𝑡)) − 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐷
𝑇

𝑖
𝑤 (𝑡)
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− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

− 2(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐻
𝑇

𝑖
𝑤 (𝑡)

+𝑤
𝑇

(𝑡) (−𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼)𝑤 (𝑡) ]

=

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) 𝑧

𝑇

(𝑡) Π
𝑖
𝑧 (𝑡) ,

(14)

where 𝑧(𝑡) = (𝑥
𝑇

(𝑡), ̇𝑥
𝑇

(𝑡), 𝑥
𝑇

(𝑡−𝛿), 𝑥
𝑇

(𝑡−𝜏(𝑡)), ∫
𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠)𝑑𝑠,

∫
𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠)𝑑𝑠, 𝑤
𝑇

(𝑡))
𝑇.Thus, one canderive from (8) and (14)

that

𝑉 (𝑡) − 2𝑤
𝑇

(𝑡) 𝑦 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡) ≤ 0. (15)

By integrating (15) with respect to 𝑡 from 0 to 𝑡
𝑝
, we obtain

2∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠 ≥ 𝑉 (𝑥 (𝑡
𝑝
))

− 𝑉 (𝑥 (0)) − 𝛾∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠.

(16)

From the definition of 𝑉(𝑥(𝑡)), we have 𝑉(𝑥(𝑡
𝑝
) ≥ 0 and

𝑉(𝑥(0) = 0 when 𝜙(⋅) ≡ 0. Thus,

2∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠 ≥ −𝛾∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠 (17)

holds for all 𝑡
𝑝
≥ 0. The proof is completed.

Next, we consider the passification problem; that is, a state
feedback controller is to be designed to make the closed-loop
fuzzy system passive. Extending on system (1), we consider
the following T-S fuzzy system with control input.

Plant Rule 𝑖. If 𝑧
1
(𝑡) is𝑀

𝑖1
and . . . and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝
, then

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡) + 𝑅

𝑖
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡 − 𝛿) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐻
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡) ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] ,

(18)

where 𝑢(𝑡) ∈ 𝑅
𝑙 is the control input, 𝑅

𝑖
is a constant matrix

with appropriate dimension.

Controller Rule 𝑖. If 𝑧
1
(𝑡) is𝑀

𝑖1
and . . . and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝
, then

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟. (19)

And the overall state feedback controller is presented by

𝑢 (𝑡) =

𝑟

∑

𝑗=1

𝜇
𝑗
(𝑡) 𝐾

𝑗
𝑥 (𝑡) , (20)

where 𝜇
𝑗
(𝑡) is defined as before.The closed-loop fuzzy system

can be represented as

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× [𝑅
𝑖
𝐾
𝑗
𝑥 (𝑡) + 𝐴

𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑊
𝑖
∫

𝑡

𝑡−𝜎(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡)] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡)

× [𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝐻
𝑖
∫

𝑡

𝑡−𝜎(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡)] ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] .

(21)

The following theorem establishes the main result of the
state feedback passification.

Theorem 4. The closed-loop fuzzy system (21) is passive in the
sense of Definition 1 if there exist a scalar 𝛾 > 0, four symmetric
positive definite matrices 𝐸

1
, 𝐸

2
, 𝐸

3
, and 𝑆, and matrices 𝐹

11
,

𝐹
12
, 𝐹
22
, 𝐺

𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3, 𝑖 ≤ 𝑗), and 𝑍

𝑗
(𝑗 = 1, 2, . . . , 𝑟) such

that the following LMIs hold for 𝑖, 𝑗 = 1, 2, . . . , 𝑟:

𝑋 = [
𝑋
11

𝑋
12

∗ 𝑋
22

] > 0, (22)

𝑌 = [

[

𝑌
11

𝑌
12

𝑌
13

∗ 𝑌
22

𝑌
23

∗ ∗ 𝑌
33

]

]

> 0, (23)

Ω
𝑖𝑗
=

[
[
[
[
[
[
[

[

Ω
11,𝑖𝑗

Ω
12,𝑖𝑗

−𝐹
12
+ 𝐴

𝑖
𝑆 Ω

14,𝑖
𝐹
22

𝑊
𝑖
𝑆 𝑈

𝑖

∗ Ω
22

𝐴
𝑖
𝑆 𝐵

𝑖
𝑆 𝐹

12
𝑊
𝑖
𝑆 𝑈

𝑖

∗ ∗ −𝐸
1

0 −𝐹
22

0 −𝑆𝐶
𝑇

𝑖

∗ ∗ ∗ Ω
44

0 0 −𝑆𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝐸
2

0 0

∗ ∗ ∗ ∗ ∗ −𝐸
3
−𝑆𝐻

𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Ω
77,𝑖

]
]
]
]
]
]
]

]

< 0,

(24)

where Ω
11,𝑖𝑗

= 𝐸
1
+ 𝛿

2

𝐸
2
+ 𝑑

2

𝐸
3
+ 𝐹

12
+ 𝐹

𝑇

12
+ 𝜏𝐺

11
+ 𝐺

13
+

𝐺
𝑇

13
+ 𝑅

𝑖
𝑍
𝑗
+ 𝑍

𝑇

𝑗
𝑅
𝑇

𝑖
, Ω

12,𝑖𝑗
= 𝐹

11
− 𝑆 + 𝑍

𝑇

𝑗
𝑅
𝑇

𝑖
, Ω

14,𝑖
= 𝜏𝐺

12
−

𝐺
13
+ 𝐺

𝑇

23
+ 𝐵

𝑖
𝑆, Ω

22
= 𝜏𝐺

33
− 2𝑆, Ω

44
= 𝜏𝐺

22
− 𝐺

23
− 𝐺

𝑇

23
,

and Ω
77,𝑖

= −𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Moreover, the state feedback gains can be constructed as

𝐾
𝑗
= 𝑍

𝑗
𝑆
−1

, 𝑗 = 1, 2, . . . , 𝑟. (25)
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Proof. Structure Lyapunov-Krasovskii functional (9), where
𝑃
1
= 𝑆

−1

𝐸
1
𝑆
−1,𝑃

2
= 𝑆

−1

𝐸
2
𝑆
−1,𝑃

3
= 𝑆

−1

𝐸
3
𝑆
−1,𝑋

𝑖𝑗
= 𝑆

−1

𝐹
𝑖𝑗
𝑆
−1

(𝑖 = 1, 2, 𝑖 ≤ 𝑗), and 𝑌
𝑖𝑗
= 𝑆

−1

𝐺
𝑖𝑗
𝑆
−1 (𝑖 = 1, 2, 3, 𝑖 ≤ 𝑗).

From the first equation of (21), we have

0 = 2 (𝑥
𝑇

(𝑡) + ̇𝑥
𝑇

(𝑡)) 𝑆
−1

×

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× [ − ̇𝑥 (𝑡) + 𝑅
𝑖
𝐾
𝑗
𝑥 (𝑡) + 𝐴

𝑖
𝑥 (𝑡 − 𝛿)

+ 𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑊

𝑖
∫

𝑡

𝑡−𝜎(𝑡)

𝑥 (𝑠) 𝑑𝑠 +𝑈
𝑖
𝑤 (𝑡) ]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× (2𝑥
𝑇

(𝑡) 𝑆
−1

𝑅
𝑖
𝐾
𝑗
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) (−2𝑆
−1

+ 2𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1

) ̇𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡) − 2 ̇𝑥

𝑇

(𝑡) 𝑆
−1

̇𝑥 (𝑡)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡) ) .

(26)

It follows from (12) and (26) that

𝑉 (𝑡) − 2𝑤
𝑇

(𝑡) 𝑦 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× [𝑥
𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+ 𝑋

12
+ 𝑋

𝑇

12

+ 𝜏𝑌
11
+ 𝑌

13
+ 𝑌

𝑇

13
+ 𝑆

−1

𝑅
𝑖
𝐾
𝑗

+𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1

) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝑋
11
− 𝑆

−1

+ 𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1

) ̇𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (−𝑋
12
+ 𝑆

−1

𝐴
𝑖
) 𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
+ 𝑆

−1

𝐵
𝑖
)

× 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡)

+ ̇𝑥
𝑇

(𝑡) (𝜏𝑌
33
− 2𝑆

−1

) ̇𝑥 (𝑡)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2 ̇𝑥
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2 ̇𝑥
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− 2𝑥
𝑇

(𝑡 − 𝛿) 𝐶
𝑇

𝑖
𝑤 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
)

× 𝑥 (𝑡 − 𝜏 (𝑡))

− 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐷
𝑇

𝑖
𝑤 (𝑡)

− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

− 2(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐻
𝑇

𝑖
𝑤 (𝑡)

+𝑤
𝑇

(𝑡) (−𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼)𝑤 (𝑡) ]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡) 𝑧

𝑇

(𝑡) Ξ
𝑖𝑗
𝑧 (𝑡) ,

(27)
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where 𝑧(𝑡) = (𝑥
𝑇

(𝑡), ̇𝑥
𝑇

(𝑡), 𝑥
𝑇

(𝑡−𝛿), 𝑥
𝑇

(𝑡−𝜏(𝑡)), ∫
𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠)𝑑𝑠,

∫
𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠)𝑑𝑠, 𝑤
𝑇

(𝑡))
𝑇, and

Ξ𝑖𝑗 =

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ11,𝑖𝑗 Ξ12,𝑖𝑗 −𝑆
−1
𝐹12𝑆
−1
+ 𝑆
−1
𝐴𝑖 Ξ14,𝑖 𝑆

−1
𝐹22𝑆
−1

𝑆
−1
𝑊𝑖 𝑆

−1
𝑈𝑖

∗ Ξ22 𝑆
−1
𝐴𝑖 𝑆

−1
𝐵𝑖 𝑆

−1
𝐹12𝑆
−1

𝑆
−1
𝑊𝑖 𝑆

−1
𝑈𝑖

∗ ∗ −𝑆
−1
𝐸1𝑆
−1

0 −𝑆
−1
𝐹22𝑆
−1

0 −𝐶
𝑇

𝑖

∗ ∗ ∗ Ξ44 0 0 −𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝑆
−1
𝐸2𝑆
−1

0 0

∗ ∗ ∗ ∗ ∗ −𝑆
−1
𝐸3𝑆
−1

−𝐻
𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Ξ77,𝑖

]
]
]
]
]
]
]
]
]
]
]
]

]

(28)

with Ξ
11,𝑖𝑗

= 𝑆
−1

(𝐸
1
+ 𝛿

2

𝐸
2
+ 𝑑

2

𝐸
3
+ 𝐹

12
+ 𝐹

𝑇

12
+ 𝜏𝐺

11
+

𝐺
13

+ 𝐺
𝑇

13
)𝑆
−1

+ 𝑆
−1

𝑅
𝑖
𝐾
𝑗
+ 𝐾

𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1, Ξ

12,𝑖𝑗
= 𝑆

−1

𝐹
11
𝑆
−1

−

𝑆
−1

+ 𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1, Ξ

14,𝑖
= 𝑆

−1

(𝜏𝐺
12

− 𝐺
13

+ 𝐺
𝑇

23
+ 𝐵

𝑖
𝑆)𝑆

−1,
Ξ
22

= 𝜏𝑆
−1

𝐺
33
𝑆
−1

− 2𝑆
−1, Ξ

44
= 𝑆

−1

(𝜏𝐺
22
− 𝐺

23
− 𝐺

𝑇

23
)𝑆
−1,

Ξ
77,𝑖

= −𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Pre- and postmultiply Ξ
𝑖𝑗
by matrix diag(𝑆, 𝑆, 𝑆, 𝑆, 𝑆, 𝑆, 𝐼),

we get that

Π
𝑖𝑗
=

[
[
[
[
[
[
[
[

[

Π
11,𝑖𝑗

Π
12,𝑖𝑗

−𝐹
12
+ 𝐴

𝑖
𝑆 Π

14,𝑖
𝐹
22

𝑊
𝑖
𝑆 𝑈

𝑖

∗ Π
22

𝐴
𝑖
𝑆 𝐵

𝑖
𝑆 𝐹

12
𝑊
𝑖
𝑆 𝑈

𝑖

∗ ∗ −𝐸
1

0 −𝐹
22

0 −𝑆𝐶
𝑇

𝑖

∗ ∗ ∗ Π
44

0 0 −𝑆𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝐸
2

0 0

∗ ∗ ∗ ∗ ∗ −𝐸
3
−𝑆𝐻

𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Π
77,𝑖

]
]
]
]
]
]
]
]

]

(29)

with Π
11,𝑖𝑗

= 𝐸
1
+ 𝛿

2

𝐸
2
+ 𝑑

2

𝐸
3
+ 𝐹

12
+ 𝐹

𝑇

12
+ 𝜏𝐺

11
+ 𝐺

13
+

𝐺
𝑇

13
+ 𝑅

𝑖
𝐾
𝑗
𝑆 + 𝑆𝐾

𝑇

𝑗
𝑅
𝑇

𝑖
, Π

12,𝑖𝑗
= 𝐹

11
− 𝑆 + 𝑆𝐾

𝑇

𝑗
𝑅
𝑇

𝑖
, Π

14,𝑖
=

𝜏𝐺
12
−𝐺

13
+𝐺

𝑇

23
+𝐵

𝑖
𝑆,Π

22
= 𝜏𝐺

33
−2𝑆,Π

44
= 𝜏𝐺

22
−𝐺

23
−𝐺

𝑇

23
,

and Π
77,𝑖

= −𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Obviously, Ξ
𝑖𝑗
< 0 andΠ

𝑖𝑗
< 0 are equivalent. And we get

from condition (25) that Π
𝑖𝑗
= Ω

𝑖𝑗
.

It follows from condition (24) and inequality (27) that

𝑉 (𝑡) − 2𝑦
𝑇

(𝑥 (𝑡)) 𝑤 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡) ≤ 0, (30)

which means

2∫

𝑡𝑝

0

𝑦
𝑇

(𝑥 (𝑠)) 𝑢 (𝑠) 𝑑𝑠 ≥ −𝛾∫

𝑡𝑝

0

𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠. (31)

From Definition 1, we know that the stochastic T-S fuzzy
system (1) is passive in the sense of expectation. The proof
is completed.

4. Numerical Examples

To verify the effectiveness of the theoretical results of this
paper, consider the following two examples.

Example 1. Consider a T-S fuzzy system (1) with 𝑟 = 2, where
𝛿 = 0.2, 𝜏(𝑡) = 0.5| cos 𝑡|, and 𝑑(𝑡) = 0.1| cos(2𝑡)|,

𝐴
1
= [

0.8 −0.2

0 0.6
] , 𝐵

1
= [

0.2 −0.9

−0.1 0.2
] ,

𝑊
1
= [

−1.6 0.4

1.2 0.3
] , 𝑈

1
= [

0.1 −0.2

0.1 −0.1
] ,

𝐶
1
= [

0.2 0

0.1 0.1
] , 𝐷

1
= [

0 −0.1

0.2 0.1
] ,

𝐻
1
= [

0.2 −0.1

−0.2 −0.1
] , 𝑉

1
= [

0.1 0.2

0 −0.1
] ,

𝐴
2
= [

−0.7 −0.6

1.1 −0.1
] , 𝐵

2
= [

−0.1 −0.4

−0.3 −0.2
] ,

𝑊
2
= [

0.2 0.9

−0.1 0.4
] , 𝑈

2
= [

−0.6 −0.2

0.5 0
] ,

𝐶
2
= [

0.1 0.5

0.2 −0.4
] , 𝐷

2
= [

0.6 −0.1

−0.2 0.1
] ,

𝐻
2
= [

−0.1 0.3

−0.7 −0.6
] , 𝑉

2
= [

−0.1 −0.2

0.8 −0.3
] .

(32)

It can be verified that 𝜏 = 0.5, 𝑑 = 0.1. By using the
MATLAB LMI Control Toolbox, a solution to the LMIs in
(6)–(8) is found as follows:

𝑃
1
= 10

−9

[
0.1318 0.0174

0.0174 0.1795
] ,

𝑃
2
= 10

−8

[
0.1126 −0.0105

−0.0105 0.1813
] ,

𝑃
3
= 10

−8

[
0.3237 −0.0297

−0.0297 0.4519
] ,

𝑄
1
= 10

−10

[
0.0548 0.0458

0.7636 0.5797
] ,

𝑄
2
= 10

−9

[
0.1094 0.0750

0.0967 0.1859
] ,

𝑋
11
= 10

−10

[
0.3230 0.3149

0.3149 0.6926
] ,

𝑋
12
= 10

−9

[
−0.0972 0.0056

−0.0134 −0.1477
] ,

𝑋
22
= 10

−9

[
0.1644 −0.0150

−0.0150 0.2929
] ,

𝑌
11
= 10

−8

[
0.1105 0.0483

0.0483 0.1743
] ,

𝑌
12
= 10

−8

[
−0.1175 −0.0473

−0.0510 −0.1812
] ,

𝑌
13
= 10

−9

[
−0.4500 −0.1940

−0.1940 −0.6933
] ,
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𝑌
22
= 10

−8

[
0.1157 0.0497

0.0497 0.1815
] ,

𝑌
23
= 10

−9

[
0.4500 0.1940

0.1940 0.6933
] ,

𝑌
33
= 10

−9

[
0.1618 0.0970

0.0970 0.2835
] ,

𝛾 = 6.9261 × 10
9

.

(33)

According to Theorem 3, the considered model (1) is passive
in the sense of Definition 1.

Example 2. We use the data of Example 1 in addition to

𝑅
1
= [

0.3 0.1

0.7 −0.2
] , 𝑅

2
= [

−0.3 0.1

−0.4 −0.1
] . (34)

By using the MATLAB LMI Control Toolbox, a solution
to the LMIs in (22)–(24) is found as follows:

𝐸
1
= [

176.3972 −120.7648

−120.7648 318.6006
] ,

𝐸
2
= [

330.6365 13.3938

13.3938 485.5898
] ,

𝐸
3
= [

534.8304 −124.7740

−124.7740 945.8976
] ,

𝑆 = [
49.8112 1.0593

1.0593 115.3239
] ,

𝐹
11
= [

236.7653 −230.2321

−230.2321 436.0261
] ,

𝐹
12
= [

−44.4016 −52.5502

−14.9764 −39.8274
] ,

𝐹
22
= [

54.2464 7.9191

7.9191 96.0467
] ,

𝐺
11
= [

226.1583 −23.8308

−23.8308 253.3605
] ,

𝐺
12
= [

−92.2107 −144.1195

−27.1469 −174.7165
] ,

𝐺
13
= [

−46.2910 −140.9230

−15.2074 −83.4028
] ,

𝐺
22
= [

115.7710 −1.7962

−1.7962 362.7980
] ,

𝐺
23
= [

52.3927 −9.2251

5.1656 258.7547
] ,

𝐺
33
= [

29.6087 5.0408

5.0408 240.9688
] ,

𝑍
1
= 10

3

[
−0.1547 0.1479

−2.0308 2.9733
] ,

𝑍
2
= 10

3

[
−0.1547 0.1479

−2.0308 2.9733
] ,

𝛾 = 405.7666.

(35)

Subsequently, we can obtain from (25) that

𝐾
1
= [

−3.1335 1.3116

−41.3262 26.1620
] ,

𝐾
2
= [

−3.1335 1.3116

−41.3262 26.1620
] .

(36)

Thus, a fuzzy controller (20) with feedback gains 𝐾
1
and 𝐾

2

can be constructed to make the closed-loop T-S fuzzy system
(21) passive.

5. Conclusions

In this paper, the passivity and passification for T-S fuzzy
systems with both discrete and distributed time-varying
delays have been investigated without assuming the differen-
tiability of the time-varying delays. By utilizing the Lyapunov
functional method and the matrix inequality techniques,
several delay-dependent criteria to ensure the passivity of the
considered T-S fuzzy systems have been established in terms
of linearmatrix inequalities (LMIs) that can be easily checked
by using the standard numerical software. Two examples
have been provided to demonstrate the effectiveness of the
proposed criteria since the feasible solutions to the given
LMIs criteria in this paper have been found.
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A novel approach is brought forward for synchronization of a clustered network in this paper, the objective of which is twofold.The
first one is to study cluster synchronization by analyzing the inner coupling matrices of the individual clusters instead of the one of
the whole network. The other is to show that full synchronization can be ensured by several types of cluster synchronization, the
partitions of which are connected together. Compared with the classical method for full synchronization, our approach reduces the
network size to the cluster size and additionally obtains the thresholds for different types of cluster synchronization. As a numerical
example, cluster and full synchronization in a special clustered network are investigated through our approach. It turns out that we
obtain the same threshold for full synchronization as the one obtained by the classical method. Numerical simulations confirm the
validity of our approach.

1. Introduction

Collective behavior of complex networks has become a focal
subject due to the important and extensive applications in
various fields of science and technology. Full and cluster
synchronization are two types of typical and fundamental
collective behavior. The former means that all oscillators in
a network acquire identical behavior, while the latter means
that the coupled oscillators split into subgroups called clus-
ters, and all the oscillators in the same cluster behave in the
same fashion. Research on cluster and full synchronization
has attracted increasing attention in the past decades.

Several effective methods have been applied to study
full synchronization, which is also called complete synchro-
nization. Pecora and Carroll proposed the famous master
stability function method to study the local stability of the
synchronous state [1], while Lyapunov function method was
employed to study the global stability of the synchronous
state [2–4]. With the help of the two classical methods
mentioned above, a great deal of research has been carried
out in recent years. By imposing constraints on the coupling

strength, local stability of the synchronous states in arbitrarily
coupled systems was ensured based onGershörin disk theory
[5]. By analyzing the characters of the network topology,
connection graph stability method was put forward [2] and
applied to study synchronization in a network with time-
dependent on-off coupling, which is also called blinking
model [3]. By decomposing the space into a direct sum
of the synchronization manifold and the transverse space,
criteria were obtained for both local and global stability of
the synchronous state [4].

Cluster structures can be found to exist widely in real-
world networks such as circles of friends or colleagues in
social networks [6], compartments in food webs [7], groups
of web pages sharing identical topics in the WorldWideWeb
[8], and functional modules such as proteins having the same
function in biological networks [9]. In those clustered net-
works, cluster synchronization usually occurs firstly before
full synchronization occurs. Therefore, research on cluster
and full synchronization in clustered networks has very
obvious practical significance. Synchronization in a clustered
network composed of two BA scale-free subnetworks has
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been studied in [10]. Control schemes were proposed for syn-
chronization between two clusters, which is also called outer
synchronization [11]. With the help of the method in [4],
a criterion for cluster synchronization was obtained in [12].
Based on the criterion, cluster synchronization bifurcations
are analyzed in a globally coupled network with a parameter
[13].

However, to the best of our knowledge, most of the
previous research on cluster and full synchronization focused
on the topology of the whole network, which may be
very complex. In this paper, the complexity of a clustered
network is simplified by partitioning the whole network into
clusters under a certain hypothesis. It is proved that cluster
synchronization can be ensured by suitable inner couplings of
the clusters, and sufficient conditions, which are independent
of the outer couplings between different clusters, are obtained
theoretically. Based on this result, a novel method for full
synchronization is derived. If there exist two or several
partitions connected together along some arrangement of
all the oscillators, which imply that the intersection of the
cluster synchronization manifolds corresponding to those
partitions is equal to the full synchronization manifold,
then full synchronization occurs if cluster synchronization
corresponding to every partition is ensured. The method
declares that both cluster and full synchronization can be
studied by the inner topologies of the individual clusters.
Obviously, the network size reduction provides convenience
for the studies on synchronization in clustered networks with
great mounts of oscillators.

The rest of the paper is organized as follows. Section 2
is devoted to introducing some concerned concepts such as
partitions and cluster synchronization manifolds. Sufficient
conditions independent of the outer couplings between
different clusters are obtained for cluster synchronization in
Section 3. The tedious proof of this result is carried out in
the Appendix. The concept of partitions connected together
along some arrangement is proposed and employed to study
full synchronization in Section 4. In order to confirm the
validity of the theoretical results, numerical experiments are
carried out in Section 5.The final section is devoted to a brief
discussion of the obtained results.

2. Preliminaries

Consider a network composed of𝑚 oscillators

̇𝑥
𝑖
= 𝑓 (𝑥

𝑖
, 𝑡) + 𝜀

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 1, . . . , 𝑚, (1)

where 𝑥
𝑖
= (𝑥

1

𝑖
, . . . , 𝑥

𝑛

𝑖
)
⊤ is the state variable of the 𝑖th

oscillator, 𝑡 ∈ [0, +∞) is a continuous time, 𝑓 : 𝑅
𝑛

×

[0, +∞) → 𝑅
𝑛 is a continuous map, 𝜀 ≥ 0 is the coupling

strength, Γ = diag(𝛾
1
, . . . , 𝛾

𝑛
) is a nonnegative matrix, 𝐴 =

(𝑎
𝑖𝑗
)
𝑚×𝑚

is the coupling matrix with 𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
≥ 0 for 𝑖 ̸= 𝑗, and

∑
𝑚

𝑗=1
𝑎
𝑖𝑗
= 𝑠 for 𝑖 = 1, . . . , 𝑚.

Suppose that the index set {1, . . . , 𝑚} of the 𝑚 oscillators
is divided into 𝑑 nonempty subsets called clusters. Let 𝑃 =

{𝑃
1
, . . . , 𝑃

𝑑
} be its partition; that is, 𝑃

𝑖
∩ 𝑃
𝑗
= 𝜙 for 𝑖 ̸= 𝑗

and ⋃
𝑑

𝑖=1
𝑃
𝑖
= {1, . . . , 𝑚}. The following denotations are

introduced for every 𝑙 = 1, . . . , 𝑑.

(𝐷
1
) Denote the cardinal number of cluster 𝑃

𝑙
by 𝑝
𝑙
, and

denote the subscript of the cluster containing 𝑖 by �̂�;
that is, �̂� = 𝑙 if 𝑖 ∈ 𝑃

𝑙
.

(𝐷
2
) Suppose that all oscillators in the cluster 𝑃

𝑙
are

arranged adjacently; that is, 𝑃
𝑙
= {𝜎
𝑙−1

+ 1, . . . , 𝜎
𝑙
},

where 𝜎
0
= 0, 𝜎

𝑙
= 𝑝
1
+ ⋅ ⋅ ⋅ + 𝑝

𝑙
.

(𝐷
3
) Suppose that 𝑝

𝑙
≥ 2 for 1 ≤ 𝑙 ≤ 𝑑 and 𝑝

𝑙
= 1 for

𝑑 < 𝑙 ≤ 𝑑. It can be seen that for any 𝑑 < 𝑙 ≤ 𝑑,
synchronization of the oscillators corresponding to
cluster 𝑃

𝑙
always occurs for any 𝜀 ≥ 0 since 𝑃

𝑙
contains

only one oscillator.

We will discuss sufficient conditions for the 𝑝
𝑙
oscillators

corresponding to 𝑃
𝑙
to synchronize with each other, 𝑙 =

1, . . . , 𝑑. Before that, the following sets should be introduced
for every 𝑙 = 1, . . . , 𝑑.

(𝑀
1
) The synchronization submanifold of the cluster 𝑃

𝑙
is

as follows:

M (𝑃
𝑙
) = {(𝑥

⊤

𝜎𝑙−1+1
, . . . , 𝑥

⊤

𝜎𝑙

)
⊤

∈ 𝑅
𝑝𝑙𝑛 | 𝑥

𝜎𝑙−1+1
= ⋅ ⋅ ⋅ = 𝑥

𝜎𝑙
} .

(2)

(𝑀
2
) The cluster synchronization manifold of the partition
𝑃 is as follows:

M (𝑃) = M (𝑃
1
) ×M (𝑃

2
) × ⋅ ⋅ ⋅ ×M (𝑃

𝑑
) ⊂ 𝑅
𝑚𝑛

. (3)

(𝑀
3
) The transverse subspace forM(𝑃

𝑙
) is as follows:

L (𝑃
𝑙
) = {(𝑥

⊤

𝜎𝑙−1+1
, . . . , 𝑥

⊤

𝜎𝑙

)
⊤

∈ 𝑅
𝑝𝑙𝑛 |

𝑝𝑙

∑

𝑖=1

𝑥
𝜎𝑙−1+𝑖

= 0} . (4)

(𝑀
4
) The transverse space forM(𝑃) is as follows:

L (𝑃) = L (𝑃
1
) × L (𝑃

2
) × ⋅ ⋅ ⋅ × L (𝑃

𝑑
) ⊂ 𝑅
𝑚𝑛

. (5)

In case 𝑑 = 1, the synchronization manifold M(𝑃) is
called a full synchronization manifold. For simplicity, we
denote the full synchronization manifold by M and the
corresponding transverse space by L.

Definitions of cluster and full synchronization in the
network (1) are listed as follows.

(𝑆
1
) The cluster synchronization manifoldM(𝑃) is said to
be globally attractive for the network (1), or cluster
synchronization of the partition 𝑃 occurs, if, for any
initial condition (𝑥⊤

1
(0), . . . , 𝑥

⊤

𝑚
(0))
⊤,

lim
𝑡→+∞

1

𝑚

𝑑

∑

𝑙=1

∑

𝑖∈𝑃𝑙


𝑥
𝑖
− 𝑥
𝜎𝑙−1+1


= 0, (6)

where ‖ ⋅ ‖ denotes 2-norm of vectors.
(𝑆
2
) In case of 𝑑 = 1, the full synchronization manifoldM

is said to be globally attractive for the network (1); that
is, full synchronization occurs.
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3. Result on Cluster Synchronization

Before the results on cluster synchronization are carried out,
two common hypotheses in previous related research should
be introduced.

At first, a synchronizationmanifold is always supposed to
be an invariant manifold in order to discuss its attractiveness.
The following lemma gives a sufficient and necessary condi-
tion for a cluster synchronizationmanifold being an invariant
manifold.

Lemma 1 (see [12]). Partition the couplingmatrix𝐴 according
to partition 𝑃 as follows:

𝐴 =

[
[
[

[

𝐴
11

𝐴
12

⋅ ⋅ ⋅ 𝐴
1𝑑

𝐴
21

𝐴
22

⋅ ⋅ ⋅ 𝐴
2𝑑

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐴
𝑑1

𝐴
𝑑2

⋅ ⋅ ⋅ 𝐴
𝑑𝑑

]
]
]

]

, (7)

where 𝐴
𝑙𝑘

∈ 𝑅
𝑝𝑙×𝑝𝑘 ; the synchronization manifold M(𝑃) is

an invariant manifold of the network (1), if and only if every
submatrix 𝐴

𝑙𝑘
has equal-row-sum 𝑠

𝑙𝑘
, 𝑙, 𝑘 = 1, . . . , 𝑑.

According to Lemma 1, we carry out the first hypothesis
(𝐻
1
).
(𝐻
1
) Every submatrix 𝐴

𝑙𝑘
∈ 𝑅
𝑝𝑙×𝑝𝑘 in the partitioned

matrix (7) has equal-row-sum 𝑠
𝑙𝑘
; that is, for every 𝑖 ∈ 𝑃

𝑙
,

there holds ∑
𝑗∈𝑃𝑘

𝑎
𝑖𝑗

= 𝑠
𝑙𝑘
, 𝑙, 𝑘 = 1, . . . , 𝑑. In addition,

suppose that all the principal submatrices 𝐴
𝑙𝑙
, 𝑙 = 1, . . . , 𝑑,

are irreducible.
In order to study the inner couplings of the cluster 𝑃

𝑙
, we

put forward the following matrix:

𝐴 (𝑃
𝑙
) = 𝐴

𝑙𝑙
+

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝑠
𝑙𝑘
𝐼
𝑝𝑙
, (8)

where 𝐼
𝑝𝑙
∈ 𝑅
𝑝𝑙×𝑝𝑙 is an identity matrix. Then the elements of

𝐴(𝑃
𝑙
) satisfy that ∑

𝑗∈𝑃𝑙

𝑎
𝑖𝑗
= 𝑠 for 𝑖 ∈ 𝑃

𝑙
, and

𝑎
𝑖𝑗
=

{{

{{

{

𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗,

𝑎
𝑖𝑗
+

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝑠
𝑙𝑘
, 𝑖 = 𝑗,

(9)

where 𝑖, 𝑗 ∈ 𝑃
𝑙
, 𝑙 = 1, . . . , 𝑑. We will study the dependence of

cluster synchronization on the matrices 𝐴(𝑃
𝑙
), 𝑙 = 1, . . . , 𝑑.

Noticing the importance of the matrix 𝐴(𝑃
𝑙
), we call it a

principal quasi-submatrix of the cluster 𝑃
𝑙
since 𝐴

𝑙𝑙
is a

principal submatrix, 𝑙 = 1, . . . , 𝑑.
The second crucial hypothesis is the individual oscillator

dynamics satisfying QUAD(Δ, 𝑄, 𝑅𝑛) condition as follows
[12].

(𝐻
2
)There exists a positive-definite diagonal matrix 𝑄 =

diag(𝑞
1
, . . . , 𝑞

𝑛
), with a diagonal matrix Δ =

diag(𝛿
1
, . . . , 𝛿

𝑛
) satisfying 𝛿

𝑗
≤ 0 for 𝑗 ∈ {𝑗 : 𝛾

𝑗
= 0}

and a constant 𝜖 > 0, such that

(𝑢 − V)⊤𝑄 {[𝑓 (𝑢, 𝑡) − 𝑓 (V, 𝑡)] − Δ (𝑢 − V)}

≤ −𝜖(𝑢 − V)⊤ (𝑢 − V)
(10)

holds for any 𝑢, V ∈ 𝑅𝑛 and all 𝑡 ≥ 0.
Hypothesis (𝐻

2
) means that the following two coupled

oscillators:

̇𝑥
1
= 𝑓 (𝑥

1
, 𝑡) +

Δ (𝑥
2
− 𝑥
1
)

2
,

̇𝑥
2
= 𝑓 (𝑥

2
, 𝑡) +

Δ (𝑥
1
− 𝑥
2
)

2

(11)

can synchronize when the coupling Δ/2 is made sufficiently
large.Many chaotic oscillators have been proved to satisfy the
hypothesis, such asChua circuits [14], standardHopfield neu-
ral networks [4], and 𝑥-coupled [15, 16] or 𝑦-coupled Lorenz
systems [17] in an absorbing domainB. However,many other
systems are not the case such as a lattice of 𝑥-coupled Rössler
systems, in which the stability of synchronization regime is
lost with the increasing of coupling [18].

Now, the preliminaries above, together with Lyapunov
function method, bring us to the following theorem.

Theorem 2. Suppose that hypotheses (𝐻
1
) and (𝐻

2
) hold and

that

𝜀𝜆
2
(𝑃
𝑙
) 𝛾
𝑗
+ 𝛿
𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛, (12)

where 𝜆
2
(𝑃
𝑙
) is the second-largest eigenvalue of 𝐴(𝑃

𝑙
), 𝑙 =

1, . . . , 𝑑, and the synchronization manifold M(𝑃) is globally
attractive for the network (1).

For a rigorous proof of Theorem 2, the reader is referred
to the Appendix.

As a special case, if all the row sums of 𝐴 are equal to
zero, then 𝐴(𝑃

𝑙
) also has zero row sums, and 𝜆

2
(𝑃
𝑙
) < 0,

𝑙 = 1, . . . , 𝑑. Therefore, condition (12) is equivalent to

𝜀 ≥

max
𝑗∈{𝑗:𝛾𝑗>0}

{0, 𝛿
𝑗
/𝛾
𝑗
}

min
1≤𝑙≤𝑑

𝜆2 (𝑃𝑙)


. (13)

4. Result on Full Synchronization

Suppose that there are a set of partitions 𝑃(𝑘, ⋅) =

{𝑃(𝑘, 1), . . . , 𝑃(𝑘, 𝑑
𝑘
)}, 𝑘 = 1, . . . , 𝑐, satisfying hypothesis

(𝐻
1
).The following definition is put forward for the first time

to study full synchronization.

Definition 3. Rearrange the numbers 1 ⋅ ⋅ ⋅ 𝑚 as 𝑖
1
⋅ ⋅ ⋅ 𝑖
𝑚
. A set

of partitions 𝑃(𝑘), 𝑘 = 1, . . . , 𝑐, are connected together along
the arrangement 𝑖

1
⋅ ⋅ ⋅ 𝑖
𝑚
, if, for every 𝑖

𝑗
, 𝑗 = 1, . . . , 𝑚−1, there

exists a subset 𝑃(𝑘
𝑗
, 𝑙
𝑗
) such that {𝑖

𝑗
, 𝑖
𝑗+1
} ⊆ 𝑃(𝑘

𝑗
, 𝑙
𝑗
).

For example, the set {1, 2, 3, 4} has two partitions as
follows:

𝑃 (1) = {1, 2; 3, 4} , 𝑃 (2) = {1, 3; 2, 4} . (14)
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Since

{1, 2} ⊆ 𝑃 (1, 1) , {2, 4} ⊆ 𝑃 (2, 2) , {4, 3} ⊆ 𝑃 (1, 2) ,

(15)

𝑃(1) and 𝑃(2) form a set of partitions connected together
along the arrangement 1243.

From the definition above, we obtain the following
lemma.

Lemma 4. A set of partitions 𝑃(𝑘), 𝑘 = 1, . . . , 𝑐, are connected
together along some arrangement 𝑖

1
⋅ ⋅ ⋅ 𝑖
𝑚
, if and only if the

cluster synchronization manifolds of those partitions satisfy
that

𝑐

⋂

𝑘=1

M (𝑃 (𝑘)) = M. (16)

The proof of Lemma 4 is straightforward and will not be
given here.

Now, we are in a position to carry out the following
theorem on full synchronization of the network (1).

Theorem 5. There are a set of partitions 𝑃(𝑘), 𝑘 = 1, . . . , 𝑐,
connected together along some arrangement 𝑖

1
⋅ ⋅ ⋅ 𝑖
𝑚

and
satisfying hypothesis (𝐻

1
). Then under hypothesis (𝐻

2
), the

full synchronization manifold M is globally attractive for the
network (1) if

𝜀𝛾
𝑗
𝜆
2
(𝑃 (𝑘, 𝑙)) + 𝛿

𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛, (17)

where 𝜆
2
(𝑃(𝑘, 𝑙)) is the second-largest eigenvalue of𝐴(𝑃(𝑘, 𝑙)),

𝑘 = 1, . . . , 𝑐, 𝑙 = 1, . . . , 𝑑
𝑘
.

The proof of Theorem 5 can be completed by combining
Theorem 2 and Lemma 4, and so it is omitted here.

As a special case, if all the row-sums of𝐴 are equal to zero,
condition (17) is equivalent to

𝜀 ≥

max
𝑗∈{𝑗:𝛾𝑗>0}

{0, 𝛿
𝑗
/𝛾
𝑗
}

min
1≤𝑘≤𝑐,1≤𝑙≤𝑑𝑘

𝜆2 (𝑃 (𝑘, 𝑙))


. (18)

5. Numerical Examples

Consider the system (1) composed of𝑚 neural networks

̇𝑥
𝑖
= −𝐷𝑥

𝑖
+ 𝑇𝑔 (𝑥

𝑖
) + 𝜀

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 1, . . . , 𝑚, (19)

where 𝑥
𝑖
∈ 𝑅
3

, 𝐷 = Γ = 𝐼
3
, 𝑔(𝑥
𝑖
) = (𝑔(𝑥

1

𝑖
), 𝑔(𝑥
2

𝑖
), 𝑔(𝑥
3

𝑖
))
⊤,

𝑔(𝑠) = (|𝑠 + 1| − |𝑠 − 1|)/2, and

𝑇 = (

1.25 −3.2 −3.2

−3.2 1.1 −4.4

−3.2 4.4 1.0

) . (20)

With the help of matlab LMI Control Toolbox, hypothesis
(𝐻
2
) can be satisfied by taking 𝑄 = 𝐼

3
and Δ = 𝛿𝐼

3
, where

𝛿 = 5.5685 [4].

4

2 2 3

3

6

3

5

21 1

1

𝜃

𝜃𝜃

Figure 1: Topology structure corresponding to the coupling matrix
(21). The coupling weights of the edges are the values lying on them.

Define the coupling matrix 𝐴 = (𝑎
𝑖𝑗
)
6×6

as follows:

𝐴 = (
𝐴
1
𝜃𝐼
3

𝜃𝐼
3
𝐴
1

) ,

𝐴
1
= (

−3 − 𝜃 1 2

1 −4 − 𝜃 3

2 3 −5 − 𝜃

) .

(21)

The topology structure corresponding to the matrix (21)
is shown in Figure 1. It is easy to show that the following
partitions satisfy (𝐻

1
):

𝑃 (1) = {1, 2, 3; 4, 5, 6} , 𝑃 (2) = {1, 4; 2, 5; 3, 6} , (22)

the principal quasi-submatrices of which are

𝐴 (𝑃 (1, 𝑙
1
)) = 𝐴

1

𝜃=0
, 𝑙
1
= 1, 2,

𝐴 (𝑃 (2, 𝑙
2
)) = (

−𝜃 𝜃

𝜃 −𝜃
) , 𝑙

2
= 1, 2, 3,

(23)

respectively. Further calculations give rise to the eigenvalues
sets of the principal quasi-submatrices mentioned above as
follows:

𝜎 (𝐴 (𝑃 (1, 𝑙
1
))) = {0, −6 ± √3} , 𝑙

1
= 1, 2,

𝜎 (𝐴 (𝑃 (2, 𝑙
2
))) = {0, −2𝜃} , 𝑙

2
= 1, 2, 3.

(24)

Obviously, partitions 𝑃(1) and 𝑃(2) are connected
together along the arrangement 123654. According to The-
orems 2 and 5, one concludes the following.

(1) If 𝜀 ≥ 𝛿/(6 −√3), cluster synchronization of partition
𝑃(1) occurs.

(2) If 𝜀 ≥ 𝛿/(2𝜃), cluster synchronization of partition
𝑃(2) occurs.

(3) If 𝜀 ≥ max{𝛿/(6 − √3), 𝛿/(2𝜃)}, full synchronization
occurs.

These results can be seen more clearly in Figure 2, the
red solid lines in which are threshold lines of 𝜀 − 𝜃 for full
synchronization.

In order to be compared with the previous classical
results on full (complete) synchronization, the second-largest
eigenvalue of𝐴 should be obtained, and the threshold for full
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Figure 2: Thresholds for the attractiveness of the synchronization
manifoldsM(𝑃(1)),M(𝑃(2)), andM.

synchronization should be 𝜀 ≥ 𝛿/|𝜆
2
(𝐴)| [1, 4]. In fact, the

eigenvalues set of 𝐴 is

𝜎 (𝐴) = {0, −2𝜃, −6 ± √3, −6 ± √3 − 2𝜃} . (25)

Therefore, 𝜆
2
(𝐴) = max{−6 + √3, −2𝜃}. Obviously, there is a

good agreement between our result and the previous classical
results.

Define the following cluster errors:

𝑒
1
(𝑡
0
) =

1

6

3

∑

𝑖=1

𝑥𝑖 (𝑡0) − 𝑥1 (𝑡0)
 +

1

6

6

∑

𝑖=4

𝑥𝑖 (𝑡0) − 𝑥4 (𝑡0)
 ,

𝑒
2
(𝑡
0
) =

1

6

3

∑

𝑖=1

𝑥𝑖+3 (𝑡0) − 𝑥𝑖 (𝑡0)
 ,

𝑒 (𝑡
0
) =

1

6

6

∑

𝑖=1

𝑥𝑖 (𝑡0) − 𝑥1 (𝑡0)
 ,

(26)

where 𝑡
0
= 100. Take 𝜃 = 0.1 and let 𝜀 increase from 0 to 1 step

by step. Figure 3(a) shows that the cluster error 𝑒
1
(𝑡
0
) reaches

zero firstly, while 𝑒
2
(𝑡
0
) and 𝑒(𝑡

0
) reach zero at the same value

of 𝜀. While fixing 𝜃 at 3, Figure 3(b) shows that 𝑒
2
(𝑡
0
) reaches

zero firstly, while 𝑒
1
(𝑡
0
) and 𝑒(𝑡

0
) reach zero at the same value

of 𝜀.
In fact, these results can be forecasted in Figure 2. If the

parameter 𝜃 is fixed in (0, 1.5] and if 𝜀 increases gradually,
synchronization of the partition 𝑃(1) will firstly occur, and
then synchronization of 𝑃(2) and full synchronization occur
at the same value of 𝜀 sinceM(𝑃(1))⋂M(𝑃(2)) = M. There-
fore, the effectiveness of the theoretical results is confirmed.

6. Conclusions

This paper has investigated cluster and full synchronization
in a clustered network. In order to study cluster synchroniza-
tion, we propose the concept of principal quasi-submatrices

corresponding to the individual clusters, which represent the
inner couplings of the individual clusters.Theoretically, suffi-
cient conditions independent of the outer couplings between
different clusters are obtained for cluster synchronization. In
order to study full synchronization, we propose the concept
of partitions connected together along some arrangement.
If all types of cluster synchronization of those partitions
are ensured, it is proved that full synchronization occurs.
The results are more advantageous than the classical results.
Firstly, it allows us to divide a network composed of great
amounts of oscillators into some smaller subnetworks. The
network size reduction provides convenience to reduce the
great amounts of calculations. Secondly, our approach can
be applied to study cluster synchronization corresponding to
any possible partitions. In summary, this paper has proposed
a novel, convenient, and double purpose approach for both
cluster and full synchronization in clustered networks.

Appendix

Denoting 𝜄
𝑝𝑙

= (1, . . . , 1)
⊤

∈ 𝑅
𝑝𝑙 , we define the following

cluster errors for 𝑙 = 1, . . . , 𝑑:

(𝐸
1
) 𝑥
𝑙
= (1/𝑝

𝑙
) ∑
𝑖∈𝑃𝑙

𝑥
𝑖
, 𝛿𝑥
𝑖
= 𝑥
𝑖
− 𝑥
�̂�
, 𝑖 = 1, . . . , 𝑚;

(𝐸
2
) 𝑋
𝑙
= (𝑥
⊤

𝜎𝑙−1+1
, . . . , 𝑥

⊤

𝜎𝑙

)
⊤,𝑋
𝑙
= 𝜄
𝑝𝑙
⊗ 𝑥
𝑙
, 𝛿𝑋
𝑙
= 𝑋
𝑙
− 𝑋
𝑙
;

(𝐸
3
) 𝑥 = (𝑥

⊤

1
, . . . , 𝑥

⊤

𝑚
)
⊤, 𝑥 = (𝑥

⊤

1̂
, . . . , 𝑥

⊤

�̂�
)
⊤, 𝛿𝑥 =

(𝛿𝑥
⊤

1
, . . . , 𝛿𝑥

⊤

𝑚
)
⊤.

Proof. Denote 𝐹(𝑋
𝑙
, 𝑡) = (𝑓(𝑥

𝜎𝑙−1+1
, 𝑡)
⊤

, . . . , 𝑓(𝑥
𝜎𝑙
, 𝑡)
⊤

)
⊤ and

rewrite the network (1) as follows:

𝑑𝑋
𝑙

𝑑𝑡
= 𝐹 (𝑋

𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘
. (A.1)

Therefore,

𝑑𝛿𝑋
𝑙

𝑑𝑡
=

𝑑 (𝑋
𝑙
− 𝑋
𝑙
)

𝑑𝑡
=
𝑑𝑋
𝑙

𝑑𝑡
− 𝜄
𝑝𝑙
⊗ (

1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡
)

= 𝐹 (𝑋
𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘
− 𝜄
𝑝𝑙
⊗ (

1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡
)

= 𝐹 (𝑋
𝑙
, 𝑡) − 𝐹 (𝑋

𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ) 𝛿𝑋

𝑘
+ J
𝑙
,

(A.2)

where

J
𝑙
= 𝐹 (𝑋

𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘
− 𝜄
𝑝𝑙
⊗ (

1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡
) .

(A.3)
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Figure 3: Dependence of the cluster errors 𝑒
1
(𝑡
0
), 𝑒
2
(𝑡
0
), and 𝑒(𝑡

0
) on the coupling strength 𝜀 for the network (19) with the coupling matrix

(21).

Noticing that 𝐹(𝑋
𝑙
, 𝑡) = 𝜄

𝑝𝑙
⊗ 𝑓(𝑥

𝑙
, 𝑡) and

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘

=

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ) (𝜄

𝑝𝑘
⊗ 𝑥
𝑘
) =

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
𝜄
𝑝𝑘
) ⊗ (Γ𝑥

𝑘
)

=

𝑑

∑

𝑘=1

𝑠
𝑙𝑘
𝜄
𝑝𝑙
⊗ (Γ𝑥

𝑘
) = 𝜄
𝑝𝑙
⊗ (

𝑑

∑

𝑘=1

𝑠
𝑙𝑘
Γ𝑥
𝑘
) ,

(A.4)

we have

J
𝑙
= 𝜄
𝑝𝑙
⊗ (𝑓 (𝑥

𝑙
, 𝑡) +

𝑑

∑

𝑘=1

𝑠
𝑙𝑘
Γ𝑥
𝑘
−
1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡
) . (A.5)

Let J
𝑙
= 𝜄
𝑝𝑙
⊗ 𝐽
𝑙
; it can be seen that 𝐽

𝑙
is independent of 𝑖 ∈ 𝑃

𝑙
.

In order to utilize the QUAD(Δ, 𝑄, 𝑅𝑛) condition, a
Lyapunov function is defined as follows,

𝑉 (𝛿𝑥) =
1

2

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄) 𝛿𝑋

𝑙
. (A.6)

The derivative of 𝑉 with respect to time 𝑡 is as follows:

𝑑𝑉 (𝛿𝑥)

𝑑𝑡
=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)

𝑑𝛿𝑋
𝑙

𝑑𝑡

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)

× (𝐹 (𝑋
𝑙
, 𝑡)−𝐹 (𝑋

𝑙
, 𝑡)+𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗Γ) 𝛿𝑋

𝑘
+J
𝑙
) .

(A.7)

Noticing that ∑
𝑖∈𝑃𝑙

𝛿𝑥
𝑖
= 0, we have

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)J

𝑙

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄) (𝜄

𝑝𝑙
⊗ 𝐽
𝑙
)

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝜄
𝑝𝑙
⊗ 𝑄𝐽
𝑙
)

=

𝑑

∑

𝑙=1

∑

𝑖∈𝑃𝑙

𝛿𝑥
⊤

𝑖
𝑄𝐽
𝑙
=

𝑑

∑

𝑙=1

(∑

𝑖∈𝑃𝑙

𝛿𝑥
⊤

𝑖
)𝑄𝐽
𝑙
= 0.

(A.8)

which together with hypothesis (𝐻
2
) leads to

𝑑𝑉 (𝛿𝑥)

𝑑𝑡
=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)

× ( [𝐹 (𝑋
𝑙
, 𝑡) − 𝐹 (𝑋

𝑙
, 𝑡)

− (𝐼
𝑝𝑙
⊗ Δ) (𝑋

𝑙
− 𝑋
𝑙
)]

+ [ (𝐼
𝑝𝑙
⊗ Δ) (𝑋

𝑙
− 𝑋
𝑙
)

+ 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ) 𝛿𝑋

𝑘
])
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≤ − 𝜖

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
𝛿𝑋
𝑙
+

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙

× [(𝐼
𝑝𝑙
⊗ 𝑄Δ) 𝛿𝑋

𝑙
+ 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
]

≤ − 2𝜖
𝑉 (𝛿𝑥 (𝑡))

max
1≤𝑖≤𝑛

𝑞
𝑖

+ S.

(A.9)

Noticing the equality (8), that is, 𝐴
𝑙𝑙
= 𝐴
𝑙
− ∑
𝑑

𝑘=1,𝑘 ̸= 𝑙
𝑠
𝑙𝑘
𝐼
𝑝𝑙
,

where 𝐴
𝑙
= 𝐴(𝑃

𝑙
), we have

S =

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
((𝐼
𝑝𝑙
⊗ 𝑄Δ) 𝛿𝑋

𝑙
+ 𝜀 (𝐴

𝑙𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙

+ 𝜀

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
)

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
[𝐼
𝑝𝑙
⊗ 𝑄Δ + 𝜀𝐴

𝑙
⊗ 𝑄Γ] 𝛿𝑋

𝑙

+ 𝜀

𝑑

∑

𝑙=1

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

= S
1
+ S
2
.

(A.10)

The proof will be completed by showing that S
1
≤ 0 and S

2
≤

0 as follows.
As we know, the symmetric matrix 𝐴

𝑙
has the

famous decomposition 𝐴
𝑙

= 𝑈
𝑙
Λ
𝑙
𝑈
⊤

𝑙
, where Λ

𝑙
=

diag{𝜆
1
(𝑃
𝑙
), . . . , 𝜆

𝑝𝑙
(𝑃
𝑙
)} satisfying 𝑠 = 𝜆

1
(𝑃
𝑙
) > 𝜆

2
(𝑃
𝑙
) ≥

⋅ ⋅ ⋅ ≥ 𝜆
𝑝𝑙
(𝑃
𝑙
), and 𝑈

𝑙
∈ 𝑅
𝑝𝑙×𝑝𝑙 is a unitary matrix; that is,

𝑈
𝑙
𝑈
⊤

𝑙
= 𝐼
𝑝𝑙
. The 𝑖th column of 𝑈

𝑙
is the eigenvector of 𝐴

𝑙

corresponding to the eigenvalue 𝜆
𝑖
(𝑃
𝑙
), 𝑖 = 1, . . . , 𝑝

𝑙
. By the

substitutions of variables 𝛿𝑋
𝑙
= (𝑈
𝑙
⊗ 𝐼
𝑛
)𝜉
𝑙
, 𝑙 = 1, . . . , 𝑑, we

have

S
1
=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
(𝑈
𝑙
⊗ 𝐼
𝑛
)
⊤

× [𝐼
𝑝𝑙
⊗ (𝑄Δ) + 𝜀𝐴

𝑙
⊗ (𝑄Γ)] (𝑈

𝑙
⊗ 𝐼
𝑛
) 𝜉
𝑙

=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
[𝐼
𝑝𝑙
⊗ (𝑄Δ) + 𝜀 (𝑈

⊤

𝑙
𝐴
𝑙
𝑈
𝑙
) ⊗ (𝑄Γ)] 𝜉

𝑙

=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
[𝐼
𝑝𝑙
⊗ (𝑄Δ) + 𝜀Λ

𝑙
⊗ (𝑄Γ)] 𝜉

𝑙
.

(A.11)

Noticing that the matrices 𝑄, Δ, Λ
𝑙
, and Γ are all diagonal

matrices, we obtain

S
1
=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
diag(𝜆

11
, . . . , 𝜆

1𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, . . . , 𝜆
𝑝𝑙1
, . . . , 𝜆

𝑝𝑙𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)𝜉
𝑙
,

(A.12)

where 𝜆
𝑖𝑗
= 𝑞
𝑗
(𝜀𝜆
𝑖
(𝑃
𝑙
)𝛾
𝑗
+ 𝛿
𝑗
), 𝑖 = 1, . . . 𝑝

𝑙
, 𝑗 = 1, . . . , 𝑛.

It is well known that the first column of 𝑈
𝑙
is 𝜄
𝑝𝑙
; then one

can conclude from the inverse substitutions of variables 𝜉
𝑙
=

(𝑈
⊤

𝑙
⊗𝐼
𝑛
)𝛿𝑋
𝑙
that 𝜉𝑗
𝑙
= ∑
𝑖∈𝑃𝑙

𝛿𝑥
𝑗

𝑖
= 0, 𝑗 = 1, . . . , 𝑛, 𝑙 = 1, . . . , 𝑑.

Therefore, condition (12) is sufficient for S
1
≤ 0.

Finally, some techniques in [2, page 164] are employed to
show that S

2
≤ 0 as follows:

S
2
= 𝜀

𝑑

∑

𝑙=1

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

= 𝜀 [

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

+

𝑑−1

∑

𝑘=1

𝑑

∑

𝑙=𝑘+1

]

× 𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

+ 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

𝛿𝑋
⊤

𝑘
[(𝐴
𝑘𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
− 𝑠
𝑘𝑙
(𝐼
𝑝𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
]

= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

(𝛿𝑋
⊤

𝑙

[

[

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

(𝑎
𝑖𝑗
𝐸
𝑝𝑙×𝑝𝑘

𝑖𝑗
⊗ 𝑄Γ) 𝛿𝑋

𝑘

−𝑠
𝑙𝑘
(∑

𝑖∈𝑃𝑙

𝐸
𝑝𝑙×𝑝𝑙

𝑖𝑖
⊗ 𝑄Γ)𝛿𝑋

𝑙

]

]

+ 𝛿𝑋
⊤

𝑘

[

[

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

(𝑎
𝑗𝑖
𝐸
𝑝𝑘×𝑝𝑙

𝑗𝑖
⊗ 𝑄Γ) 𝛿𝑋

𝑙

−𝑠
𝑘𝑙
(∑

𝑗∈𝑃𝑘

𝐸
𝑝𝑘×𝑝𝑘

𝑗𝑗
⊗ 𝑄Γ)𝛿𝑋

𝑘

]

]

) ,

(A.13)

where 𝐸𝑝𝑙×𝑝𝑘
𝑖𝑗

= 𝑒
𝑝𝑙

𝑖
⊗ 𝑒
𝑝𝑘⊤

𝑗
and 𝑒𝑝
𝑖
∈ 𝑅
𝑝 is the 𝑖th column of 𝐼

𝑝
.

Substituting 𝑠
𝑙𝑘
and 𝑠
𝑘𝑙
by (9), we have

S
2
= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑋
⊤

𝑙
[(𝐸
𝑝𝑙×𝑝𝑘

𝑖𝑗
⊗ 𝑄Γ) 𝛿𝑋

𝑘

− (𝐸
𝑝𝑙×𝑝𝑙

𝑖𝑖
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

+ 𝛿𝑋
⊤

𝑘
[(𝐸
𝑝𝑘×𝑝𝑙

𝑗𝑖
⊗ 𝑄Γ) 𝛿𝑋

𝑙

− (𝐸
𝑝𝑘×𝑝𝑘

𝑗𝑗
⊗ 𝑄Γ) 𝛿𝑋

𝑘
])
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= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑋
⊤

𝑙
[𝑒
𝑝𝑙

𝑖
⊗ 𝑄Γ (𝛿𝑥

𝑗
− 𝛿𝑥
𝑖
)]

+𝛿𝑋
⊤

𝑘
[𝑒
𝑝𝑘

𝑗
⊗ 𝑄Γ (𝛿𝑥

𝑖
− 𝛿𝑥
𝑗
)])

= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑥
⊤

𝑖
𝑄Γ (𝛿𝑥

𝑗
− 𝛿𝑥
𝑖
)

+𝛿𝑥
⊤

𝑗
𝑄Γ (𝛿𝑥

𝑖
− 𝛿𝑥
𝑗
))

= − 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑥
𝑗
− 𝛿𝑥
𝑖
)
⊤

𝑄Γ (𝛿𝑥
𝑗
− 𝛿𝑥
𝑖
) ≤ 0.

(A.14)

The proof is completed.
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This paper considers the complete synchronization problem for 𝑁 coupled chaotic systems with ring connections. First, we use
a direct design method to design a synchronization controller. It transforms the error system into a stable system with special
antisymmetric structure. And then, we get some simple stability criteria of achieving the complete synchronization. These criteria
are not only easily verified but also improve and generalize previous known results. Finally, numerical examples are provided to
demonstrate the effectiveness of the theoretical analysis.

1. Introduction

Since the pioneering work of Pecora and Carroll [1], chaotic
synchronization has been intensively investigated due to its
potential applications in many fields [2–4]. Several types of
synchronization phenomena have been reported, such as
complete synchronization [5], phase synchronization [6],
antisynchronization [7], projective synchronization [8, 9],
and generalized synchronization [10]. To solve the problem of
chaotic synchronization, many approaches have been devel-
oped. That includes a sliding mode control method [11], an
impulsive controlmethod [11], an adaptive controlmethod [7,
12], a pinning control method [13], and a sampled-data con-
trol method [14]. However, these control algorithms are just
suitable to synchronize two identical or nonidentical chaotic
systems.

Nowadays, the synchronization of multiple chaotic sys-
tems has attracted increasing attention. It has been widely
used in secure communication area in order to reduce the
synchronizing cost of multiple chaotic communication and
make simultaneous multiparty communications possible.
Therefore, the synchronization in multiple chaotic systems
has more advantages and deserves to be deeply investigated
comparing with the conventional chaotic synchronization.

Several types of synchronization in an array of chaotic sys-
tems have been investigated in the past few years, for example,
the global synchronization in [15, 16], and the adaptive cou-
pled synchronization in [17], the projective synchronization
in [18]. In [19–21], the synchronization of 𝑁 chaotic systems
of with ring and chain connection was investigated. In addi-
tion, Yang and Zhang [22] studied the synchronization of an
array of identical chaotic systems and discussed its applica-
tion for secure communication with noise perturbation.

However, it is notable that the realization of synchroniza-
tion of𝑁 coupled chaotic systems is much more difficult. So,
it is necessary to find an easy method that realizes the syn-
chronization of suchmultiple chaotic systems. Cai et al. [7, 8]
investigated the generalized projective synchronization of
two different chaotic systems based on a special antisymmet-
ric structure. We studied the problem of synchronization of
𝑁 different chaotic systems by using a special antisymmetric
structure [21]. Inspired by the above discussions, we further
discuss the synchronization of 𝑁 coupled chaotic systems in
this paper. First, a synchronization controller that is designed
by using a direct design method transforms the error system
into a stable system with special antisymmetric structure.
And then, we derive some sufficient conditions in order to
guarantee the asymptotical stabilization of the error system
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at the origin. It means that the synchronization of𝑁 coupled
chaotic systems is realized.

The paper is organized as follows. In Section 2, the
synchronization of𝑁 coupled chaotic systems with ring con-
nection is theoretically analyzed. A stability theorem for such
systems with special antisymmetric structure is given. In Sec-
tion 3, the synchronization control schemes are applied to
three identical and non-identical coupled chaotic systems.
Simulation results demonstrate the effectiveness of proposed
schemes. And finally some concluding remarks are given in
Section 4.

2. Synchronization of 𝑁 Chaotic Systems
and Controllers Design

Consider 𝑁 coupled chaotic systems with ring connections
described by

̇𝑥
1
= 𝐴
1
𝑥
1
+ 𝑔
1
(𝑥
1
) + 𝐷
1
(𝑥
𝑁
− 𝑥
1
) ,

̇𝑥
2
= 𝐴
2
𝑥
2
+ 𝑔
2
(𝑥
2
) + 𝐷
2
(𝑥
1
− 𝑥
2
) ,

...
̇𝑥
𝑁

= 𝐴
𝑁
𝑥
𝑁
+ 𝑔
𝑛
(𝑥
𝑁
) + 𝐷
𝑁
(𝑥
𝑁−1

− 𝑥
𝑁
) ,

(1)

where 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
are the state vectors of the chaotic sys-

tems; 𝑔
𝑖
(𝑥
𝑖
) (𝑖 = 1, . . . , 𝑁) is the continuous nonlinear func-

tion; 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑁
are constant matrices; 𝐷

𝑖
= diag(𝑑

1𝑗
,

. . . , 𝑑
𝑁𝑗
) and 𝑑

𝑖𝑗
≥ 0 are the diagonal matrices which repre-

sent the coupled parameters. If

𝐴
𝑖

̸=𝐴
𝑗
, 𝑖 = 1, . . . 𝑁, 𝑗 = 1, . . . 𝑁, 𝑖 ̸= 𝑗,

𝑔
𝑖
(⋅) ̸= 𝑔

𝑗
(⋅) , 𝑖 = 1, . . . 𝑁, 𝑗 = 1, . . . 𝑁, 𝑖 ̸= 𝑗,

(2)

then the system (1) is an array of non-identical chaotic sys-
tems.

Now the above simple coupling form is applied to inves-
tigate the synchronization of𝑁 chaotic systems. The systems
are

̇𝑥
1
= 𝐴
1
𝑥
1
+ 𝑔
1
(𝑥
1
) + 𝐷
1
(𝑥
𝑁
− 𝑥
1
) ,

̇𝑥
2
= 𝐴
2
𝑥
2
+ 𝑔
2
(𝑥
2
) + 𝐷
2
(𝑥
1
− 𝑥
2
) + 𝑢
1
,

...
̇𝑥
𝑁

= 𝐴
𝑁
𝑥
𝑁
+ 𝑔
𝑛
(𝑥
𝑁
) + 𝐷
𝑁
(𝑥
𝑁−1

− 𝑥
𝑁
) + 𝑢
𝑁−1

.

(3)

Let the state error be 𝑒
𝑖−1

= 𝑥
𝑖
− 𝑥
𝑖−1

, (𝑖 = 2, . . . , 𝑁). It is
not difficult to obtain the following dynamical error system:

̇𝑒 =

[
[
[
[
[

[

𝐴
2
− 𝐷
1
− 𝐷
2
−𝐷
1
−𝐷
1
⋅ ⋅ ⋅ −𝐷

1

𝐷
2

𝐴
3
− 𝐷
3
0 ⋅ ⋅ ⋅ 0

0 𝐷
3
𝐴
4
− 𝐷
4
⋅ ⋅ ⋅ 0

...
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ 𝐴

𝑁
− 𝐷
𝑁

]
]
]
]
]

]

[
[
[

[

𝑒
1

𝑒
2

𝑒
3

...
𝑒
𝑁−1

]
]
]

]

+

[
[
[

[

(𝐴
2
− 𝐴
1
) 𝑥
1
+ 𝑔
2
(𝑥
2
) − 𝑔
1
(𝑥
1
) + 𝑢
1

(𝐴
3
− 𝐴
2
) 𝑥
2
+ 𝑔
3
(𝑥
3
) − 𝑔
2
(𝑥
2
) + 𝑢
2
− 𝑢
1

...
(𝐴
𝑁
− 𝐴
𝑁−1
) 𝑥
𝑁−1
+ 𝑔
𝑁
(𝑥
𝑁
) − 𝑔
𝑁−1
(𝑥
𝑁−1
) + 𝑢
𝑁−1
− 𝑢
𝑁−2

]
]
]

]

.

(4)

Our purpose is to design the controllers 𝑢
𝑖
(𝑖 = 1, . . . , 𝑁−

1) such that the error system (4) is asymptotically stable at the
origin. That is,

lim
𝑡→∞

𝑒𝑖−1
 = lim
𝑡→∞

𝑥𝑖 − 𝑥
𝑖−1

 = 0. (5)

This implies that the synchronization of chaotic systems (3)
is realized.

Here a direct design control method [7, 8, 21] is used to
achieve the objective. This method presents an easy proce-
dure of selecting proper controllers in chaos synchronization.
So we adopt this method to transform the error system into
a stable system with a special antisymmetric structure. The
main results are given below.

First, we choose the control input 𝑢
𝑖
to eliminate all

known items that cannot be shown in the form of the error
system 𝑒

𝑖
. The controllers are given by

𝑢
1
= V
1
− (𝐴
2
− 𝐴
1
) 𝑥
1
− 𝑔
2
(𝑥
2
) + 𝑔
1
(𝑥
1
) ,

𝑢
2
= V
2
− (𝐴
3
− 𝐴
2
) 𝑥
2
− 𝑔
3
(𝑥
3
) + 𝑔
2
(𝑥
2
) + 𝑢
1
,

...

𝑢
𝑁−1

= V
𝑁−1

− (𝐴
𝑁
− 𝐴
𝑁−1

) 𝑥
𝑁−1

− 𝑔
𝑁
(𝑥
𝑁
) + 𝑔
𝑁−1

(𝑥
𝑁−1

) + 𝑢
𝑁−2

,

(6)

where [V
1
V
2

⋅ ⋅ ⋅ V
𝑁−1

]
𝑇

= 𝐻[𝑒
1

𝑒
2

⋅ ⋅ ⋅ 𝑒
𝑁−1

]
𝑇 and 𝐻 is a

coefficient matrix. So, the error systems (4) are rewritten by
̇𝑒 = 𝐿 (𝑒) 𝑒, (7)

where

𝐿 (𝑒) =

[
[
[
[
[
[
[
[

[

𝐴
2
− 𝐷
1
− 𝐷
2
−𝐷
1
−𝐷
1
⋅ ⋅ ⋅ −𝐷

1

𝐷
2

𝐴
3
− 𝐷
3
0 ⋅ ⋅ ⋅ 0

0 𝐷
3
𝐴
4
− 𝐷
4
⋅ ⋅ ⋅ 0

...
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ 𝐴

𝑁
− 𝐷
𝑁

]
]
]
]
]
]
]
]

]

+𝐻.

(8)

Theorem 1. Consider the systems (7) with the state dependent
coefficient 𝐿(𝑒) = 𝐿

1
(𝑒) + 𝐿

2
. If 𝐿

1
(𝑒) and 𝐿

2
satisfy the

following assumptions:

𝐿
𝑇

1
(𝑒) = −𝐿

1
(𝑒) ,

𝐿
2
= diag (𝑙

1
, . . . , 𝑙
𝑛
) , 𝑙
𝑖
< 0, (𝑖 = 1, . . . , 𝑛) ,

(9)

then the system (7) is asymptotically stable, which means that
the complete synchronization of 𝑁 coupled chaotic systems (3)
are achieved.

Proof. Choose a Lyapunov function to be

𝑉 =
1

2
𝑒
𝑇

𝑒. (10)

The derivative of 𝑉 is

𝑉 =
1

2
( ̇𝑒
𝑇

𝑒 + 𝑒
𝑇

̇𝑒) =
1

2
𝑒
𝑇

(𝐿(𝑒)
𝑇

+ 𝐿 (𝑒)) 𝑒. (11)
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Since 𝐿(𝑒) = 𝐿
1
(𝑒) + 𝐿

2
, 𝐿𝑇
1
(𝑒) = −𝐿

1
(𝑒) and 𝐿

2
=

diag(𝑙
1
, . . . , 𝑙
𝑛
), 𝑙
𝑖
< 0, (𝑖 = 1, . . . , 𝑛), it is easy to get

𝑉 = 𝑒
𝑇

𝐿
2
𝑒 < 0. (12)

From Lyapunov stability theory, we know that the equi-
librium 𝑒 = 0 of the system (7) is global asymptotically stable.
Then the complete synchronization of 𝑁 chaotic systems (3)
is achieved.

Remark 2. The error dynamic system (4) is transformed into
the systems ̇𝑒 = 𝐿(𝑒)𝑒 under the control law 𝑢

𝑖
, where 𝐿(𝑒)

possesses the antisymmetric structure. Theorem 1 ensures
that the error system (4) is asymptotically stable at the origin.

Remark 3. There are many possible choices for𝐻 as long as it
guarantees the error dynamic system (7) to be asymptotically
stable at the origin. Without loss of generality, we define𝐻 to
be a state dependent coefficient matrix. As a result, the suffi-
cient stability conditions of the systems (7) are given by trans-
forming it into a stable system with a special antisymmetric
structure.

Remark 4. Theantisymmetric structures inTheorem 1 are the
generalization of the tridiagonal structures. The error system
constructed with the antisymmetric structure is more con-
venient than the onewith tridiagonal structurewhen the orig-
inal systemhas some zero elements at the tridiagonal position
and nonzero elements at other positions.

Since the antisymmetric structure is related to the coeffi-
cient matrices and the states of the original system, the select-
ing of the coefficient matrices with antisymmetric structure
is an important and difficult task. In the next section, we will
demonstrate the proposed approaches for the special struc-
ture through numerical examples.

3. Applications of Synchronization
Control Schemes

In this section, we use two simulation examples to illustrate
the effectiveness of the proposed schemes. The synchroniza-
tion is simulated for the non-identical and identical chaotic
systems, respectively.

Case 1. When the drive system and response systems are
identical chaotic systems, the drive system and response sys-
tems are all the Lorenz chaotic system. They are described as
follows:

̇𝑥
11

= − 10𝑥
11

+ 10𝑥
12

+ 𝑑
11

(𝑥
31

− 𝑥
11
) ,

̇𝑥
12

= 28𝑥
11

− 𝑥
12

− 𝑥
11
𝑥
13

+ 𝑑
12

(𝑥
32

− 𝑥
12
) ,

̇𝑥
13

= −
8

3
𝑥
13

+ 𝑥
11
𝑥
12

+ 𝑑
13

(𝑥
33

− 𝑥
13
) ,

̇𝑥
21

= − 10𝑥
21

+ 10𝑥
22

+ 𝑑
21

(𝑥
11

− 𝑥
21
) + 𝑢
11
,

̇𝑥
22

= 28𝑥
21

− 𝑥
22

− 𝑥
21
𝑥
23

+ 𝑑
22

(𝑥
12

− 𝑥
22
) + 𝑢
12
,

̇𝑥
23

= −
8

3
𝑥
23

+ 𝑥
21
𝑥
22

+ 𝑑
23

(𝑥
13

− 𝑥
23
) + 𝑢
13
,

̇𝑥
31

= − 10𝑥
31

+ 10𝑥
32

+ 𝑑
31

(𝑥
21

− 𝑥
31
) + 𝑢
21
,

̇𝑥
32

= 28𝑥
31

− 𝑥
32

− 𝑥
31
𝑥
33

+ 𝑑
32

(𝑥
22

− 𝑥
32
) + 𝑢
22
,

̇𝑥
33

= −
8

3
𝑥
33

+ 𝑥
31
𝑥
32

+ 𝑑
33

(𝑥
23

− 𝑥
33
) + 𝑢
23
,

(13)

where

𝐴
1
= 𝐴
2
= 𝐴
3
= 𝐴 =

[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]

]

,

𝑔
1
(𝑥
1
) = [

[

0

−𝑥
11
𝑥
13

𝑥
11
𝑥
12

]

]

, 𝑔
2
(𝑥
2
) = [

[

0

−𝑥
21
𝑥
23

𝑥
21
𝑥
22

]

]

,

𝑔
3
(𝑥
3
) = [

[

0

−𝑥
31
𝑥
33

𝑥
31
𝑥
32

]

]

,

(14)

and 𝐷
1
= diag(𝑑

11
, 𝑑
12
, 𝑑
13
), 𝐷
2
= diag(𝑑

21
, 𝑑
22
, 𝑑
23
), 𝐷
3
=

diag(𝑑
31
, 𝑑
32
, 𝑑
33
) are the coupled matrices, and 𝑢

1
= [𝑢
11
,

𝑢
12
, 𝑢
13
]
𝑇 and 𝑢

2
= [𝑢
21
, 𝑢
22
, 𝑢
23
]
𝑇 are the control inputs.

Let the synchronization error state be ̇𝑒
𝑖−1

= ̇𝑥
𝑖
− ̇𝑥
𝑖−1

,
(𝑖 = 2, 3). The error dynamical equations are

̇𝑒 = [
Γ
1

Γ
2

Γ
3

Γ
4

] 𝑒 +

[
[
[
[
[
[
[

[

𝑢
11

−𝑥
21
𝑥
23

+ 𝑥
11
𝑥
13

+ 𝑢
12

𝑥
21
𝑥
22

− 𝑥
11
𝑥
12

+ 𝑢
13

𝑢
21

− 𝑢
11

−𝑥
31
𝑥
33

+ 𝑥
21
𝑥
23

+ 𝑢
22

− 𝑢
12

𝑥
31
𝑥
32

− 𝑥
21
𝑥
22

+ 𝑢
23

− 𝑢
13

]
]
]
]
]
]
]

]

,

(15)

where

Γ
1
=

[
[

[

−10 − 𝑑
11

− 𝑑
21

10 0

28 −1 − 𝑑
12

− 𝑑
22

0

0 0 −
8

3
− 𝑑
13

− 𝑑
23

]
]

]

,

Γ
2
= [

[

−𝑑
11

0 0

0 −𝑑
12

0

0 0 −𝑑
13

]

]

, Γ
3
= [

[

𝑑
21

0 0

0 𝑑
22

0

0 0 𝑑
23

]

]

,

Γ
4
=

[
[

[

−10 − 𝑑
31

10 0

28 −1 − 𝑑
32

0

0 0 −
8

3
− 𝑑
33

]
]

]

.

(16)

We design the controllers 𝑢
1
and 𝑢

2
to be

𝑢
1
= V
1
− 𝑔
2
(𝑥
2
) + 𝑔
1
(𝑥
1
) ,

𝑢
2
= V
2
+ V
1
− 𝑔
3
(𝑥
3
) + 𝑔
1
(𝑥
1
) ,

(17)
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where

V
1
= [

[

0 0 0 0 0 0

−38 0 0 0 0 0

0 0 0 0 0 0

]

]

𝑒,

V
2
= [

[

𝑑
11

− 𝑑
21

0 0 0 0 0

38 𝑑
12

− 𝑑
22

0 −38 0 0

0 0 𝑑
13

− 𝑑
23

0 0 0

]

]

𝑒.

(18)

The error systems (15) become

̇𝑒 = [
Γ
∗

1
Γ
∗

2

Γ
∗

3
Γ
∗

4

] 𝑒, (19)

where

Γ
∗

1
=

[
[

[

−10 − 𝑑
11

− 𝑑
21

10 0

−10 −1 − 𝑑
12

− 𝑑
22

0

0 0 −
8

3
− 𝑑
13

− 𝑑
23

]
]

]

,

Γ
∗

2
= [

[

−𝑑
11

0 0

0 −𝑑
12

0

0 0 −𝑑
13

]

]

, Γ
∗

3
= [

[

𝑑
11

0 0

0 𝑑
12

0

0 0 𝑑
13

]

]

,

Γ
∗

4
=

[
[

[

−10 − 𝑑
31

10 0

−10 −1 − 𝑑
32

0

0 0 −
8

3
− 𝑑
33

]
]

]

.

(20)

If the conditions

− 10 − 𝑑
11

− 𝑑
21

< 0, −1 − 𝑑
12

− 𝑑
22

< 0,

−
8

3
− 𝑑
13

− 𝑑
23

< 0, −10 − 𝑑
31

< 0,

− 1 − 𝑑
32

< 0, −
8

3
− 𝑑
33

< 0

(21)

are satisfied, thenTheorem 1 tells us that the error systems (19)
are asymptotically stable at the origin under the controllers 𝑢

1

and 𝑢
2
. It means that the synchronization of (13) is realized.

Fourth order Runge-Kutta integration method is used to
numerical simulation with time step size 0.001. Let the initial
conditions of the drive system and the response systems be
(𝑥
11
(0), 𝑥
12
(0), 𝑥
13
(0)) = (4, 5, −3), (𝑥

21
(0), 𝑥

22
(0), 𝑥
23
(0)) =

(5, 2, −5), and (𝑥
31
(0), 𝑥
32
(0), 𝑥
33
(0)) = (11, 15, 10). respec-

tively. And we choose that 𝑑
12

= 𝑑
22

= 𝑑
32

= 𝑑
13

= 𝑑
23

=

𝑑
33

= 0 and 𝑑
11

= 𝑑
21

= 𝑑
31

= 1. The state trajectories of the
error systems and chaotic systems are shown in Figures 1, 2,
3, and 4, respectively. It is easy to see that the state variables
and the error variables all tend towards to less than 2 s under
the controllers. Simulation results demonstrate that the con-
vergence rates aremuch faster than the earlier research results
proposed in the literature [19, 21]; then the effectiveness of the
synchronization control schemes is confirmed.

Case 2. When the drive system and response systems are
non-identical chaotic systems, the Chen system, Lü system,
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Figure 1: Dynamics of the variables 𝑒
11
, 𝑒
12
, 𝑒
13
, 𝑒
21
, and 𝑒

22
and 𝑒

23

of the error systems 𝑒
1
and 𝑒

2
with time 𝑡.
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Figure 2: The state trajectories 𝑥
11
, 𝑥
21
, and 𝑥

31
of the Lorenz

systems with time 𝑡.

and Lorenz system are considered as drive system and
response systems, respectively. They are described as follows:

̇𝑥
11

= − 35𝑥
11

+ 35𝑥
12

+ 𝑑
11

(𝑥
31

− 𝑥
11
) ,

̇𝑥
12

= − 7𝑥
11

+ 28𝑥
12

− 𝑥
11
𝑥
13

+ 𝑑
12

(𝑥
32

− 𝑥
12
) ,

̇𝑥
13

= − 3𝑥
13

+ 𝑥
11
𝑥
12

+ 𝑑
13

(𝑥
33

− 𝑥
13
) ,

̇𝑥
21

= − 36𝑥
21

+ 36𝑥
22

+ 𝑑
21

(𝑥
11

− 𝑥
21
) + 𝑢
11
,

̇𝑥
22

= 20𝑥
22

− 𝑥
21
𝑥
23

+ 𝑑
22

(𝑥
12

− 𝑥
22
) + 𝑢
12
,

̇𝑥
23

= − 3𝑥
23

+ 𝑥
21
𝑥
22

+ 𝑑
23

(𝑥
13

− 𝑥
23
) + 𝑢
13
,

̇𝑥
31

= − 10𝑥
31

+ 10𝑥
32

+ 𝑑
31

(𝑥
21

− 𝑥
31
) + 𝑢
21
,

̇𝑥
32

= 28𝑥
31

− 𝑥
32

− 𝑥
31
𝑥
33

+ 𝑑
32

(𝑥
22

− 𝑥
32
) + 𝑢
22
,

̇𝑥
33

= −
8

3
𝑥
33

+ 𝑥
31
𝑥
32

+ 𝑑
33

(𝑥
23

− 𝑥
33
) + 𝑢
23
,

(22)
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Figure 3: The state trajectories 𝑥
12
, 𝑥
22
, and 𝑥

32
of the Lorenz sys-

tems with time 𝑡.
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Figure 4: The state trajectories 𝑥
13
, 𝑥
23
, and 𝑥

33
of the Lorenz sys-

tems with time 𝑡.

where

𝐴
1
= [

[

−35 35 0

−7 28 0

0 0 −3

]

]

, 𝐴
2
= [

[

−36 36 0

0 20 0

0 0 −3

]

]

,

𝐴
3
=
[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]

]

,

𝑔
1
(𝑥
1
) = [

[

0

−𝑥
11
𝑥
13

𝑥
11
𝑥
12

]

]

, 𝑔
2
(𝑥
2
) = [

[

0

−𝑥
21
𝑥
23

𝑥
21
𝑥
22

]

]

,

𝑔
3
(𝑥
3
) = [

[

0

−𝑥
31
𝑥
33

𝑥
31
𝑥
32

]

]

,

(23)

and 𝐷
1

= diag(𝑑
11
, 𝑑
12
, 𝑑
13
), 𝐷
2

= diag(𝑑
21
, 𝑑
22
, 𝑑
23
), and

𝐷
3
= diag(𝑑

31
, 𝑑
32
, 𝑑
33
) are the coupled matrices, and 𝑢

1
=

[𝑢
11
, 𝑢
12
, 𝑢
13
]
𝑇 and 𝑢

2
= [𝑢

21
, 𝑢
22
, 𝑢
23
]
𝑇 are the control

inputs.

Let the synchronization error state be ̇𝑒
𝑖−1

= ̇𝑥
𝑖
− ̇𝑥
𝑖−1

,
(𝑖 = 2, 3). The error dynamical equations are

̇𝑒 = [
Δ
1

Δ
2

Δ
3

Δ
4

] 𝑒

+

[
[
[
[
[
[
[
[

[

−𝑥
11

− 𝑥
12

+ 𝑢
11

7𝑥
11

− 8𝑥
12

− 𝑥
21
𝑥
23

+ 𝑥
11
𝑥
13

+ 𝑢
12

𝑥
21
𝑥
22

− 𝑥
11
𝑥
12

+ 𝑢
13

26𝑥
21

+ 26𝑥
22

+ 𝑢
21

− 𝑢
11

28𝑥
21

− 21𝑥
22

− 𝑥
31
𝑥
33

+ 𝑥
21
𝑥
23

+ 𝑢
22

− 𝑢
12

1

3
𝑥
23

+ 𝑥
31
𝑥
32

− 𝑥
21
𝑥
22

+ 𝑢
23

− 𝑢
13

]
]
]
]
]
]
]
]

]

,

(24)

where

Δ
1
= [

[

−36 − 𝑑
11

− 𝑑
21

36 0

0 20 − 𝑑
12

− 𝑑
22

0

0 0 −3 − 𝑑
13

− 𝑑
23

]

]

,

Δ
2
= [

[

−𝑑
11

0 0

0 −𝑑
12

0

0 0 −𝑑
13

]

]

, Δ
3
= [

[

𝑑
21

0 0

0 𝑑
22

0

0 0 𝑑
23

]

]

,

Δ
4
=

[
[

[

−10 − 𝑑
31

10 0

28 −1 − 𝑑
32

0

0 0 −
8

3
− 𝑑
33

]
]

]

.

(25)

The controllers 𝑢
1
and 𝑢

2
are designed as

𝑢
1
= V
1
− (𝐴
2
− 𝐴
1
) 𝑥
1
− 𝑔
2
(𝑥
2
) + 𝑔
1
(𝑥
1
) ,

𝑢
2
= V
2
+ V
1
− (𝐴
3
− 𝐴
1
) 𝑥
1
− 𝑔
3
(𝑥
3
) + 𝑔
1
(𝑥
1
) ,

(26)

where

V
1
= [

[

0 0 0 0 0 0

−36 0 0 0 0 0

0 0 0 0 0 0

]

]

𝑒,

V
2
= [

[

𝑑
11

− 𝑑
21

0 0 0 0 0

36 𝑑
12

− 𝑑
22

0 −38 0 0

0 0 𝑑
13

− 𝑑
23

0 0 0

]

]

𝑒.

(27)

The error systems (24) become

̇𝑒 = [

Δ
∗

1
Δ
∗

2

Δ
∗

3
Δ
∗

4

] 𝑒, (28)

where

Δ
∗

1
= [

[

−36 − 𝑑
11

− 𝑑
21

36 0

−36 20 − 𝑑
12

− 𝑑
22

0

0 0 −3 − 𝑑
13

− 𝑑
23

]

]

,

Δ
∗

2
= [

[

−𝑑
11

0 0

0 −𝑑
12

0

0 0 −𝑑
13

]

]

, Δ
∗

3
= [

[

𝑑
11

0 0

0 𝑑
12

0

0 0 𝑑
13

]

]

,

Δ
∗

4
=

[
[

[

−10 − 𝑑
31

10 0

−10 −1 − 𝑑
32

0

0 0 −
8

3
− 𝑑
33

]
]

]

.

(29)
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Figure 5: Dynamics of the variables 𝑒
11
, 𝑒
12
, and 𝑒

13
of the error sys-

tem 𝑒
1
with time 𝑡.
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Figure 6: The state trajectories 𝑥
11
, 𝑥
21
, and 𝑥

31
of the chaotic sys-

tems with time 𝑡.

FromTheorem 1, we know that the conditions

− 36 − 𝑑
11

− 𝑑
21

< 0, 20 − 𝑑
12

− 𝑑
22

< 0,

− 3 − 𝑑
13

− 𝑑
23

< 0, −10 − 𝑑
31

< 0,

− 1 − 𝑑
32

< 0, −
8

3
− 𝑑
33

< 0

(30)

ensure that the error systems (28) are asymptotically stable at
the origin under the controllers 𝑢

1
and 𝑢
2
.Thus, the synchro-

nization between the response systems and the drive systems
is realized.

Similar to Case 1, let the initial conditions of the drive sys-
tem and the response systems be (𝑥

11
(0), 𝑥
12
(0), 𝑥
13
(0)) =

(10, 20, 30), (𝑥
21
(0), 𝑥
22
(0), 𝑥
23
(0)) = (−5.8, 8, 10), and

(𝑥
31
(0), 𝑥
32
(0), 𝑥
33
(0)) = (11, 15, 26), respectively. And we

choose that 𝑑
11

= 𝑑
21

= 𝑑
13

= 𝑑
23

= 𝑑
31

= 𝑑
33

= 0,
𝑑
12

= 10, 𝑑
22

= 11, and 𝑑
32

= 1. The state trajectories of
the error systems and chaotic systems are shown in Figures
5, 6, 7, and 8, respectively. It is easy to see that the state
variables and the error variables all tend towards to less than
1.5 s under the controllers. Simulation results demonstrate
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Figure 7: The state trajectories 𝑥
12
, 𝑥
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, and 𝑥

32
of the chaotic sys-

tems with time 𝑡.
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Figure 8: The state trajectories 𝑥
13
, 𝑥
23
, and 𝑥

33
of the chaotic sys-

tems with time 𝑡.

that the convergence rates are much faster than the earlier
research results proposed in the literature [19, 21]; then
the effectiveness of the synchronization control schemes is
confirmed.

4. Conclusions

This paper concerns the synchronization of 𝑁 coupled cha-
otic systems with ring connection. A direct design control
method is firstly used to design the controllers. The synchro-
nization of𝑁 coupled chaotic systems is realized by coupling
the state variables.This technology will undoubtedly improve
performance of secret signaling and possess better applica-
tion value in practice. Furthermore, our presented strategy
can ensure strict synchronization between𝑁 coupled chaotic
systems. This will lead to a rapid development in multilateral
communications.
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We provide a new gossip algorithm to investigate the problem of opinion consensus with the time-varying influence factors and
weakly connected graph among multiple agents. What is more, we discuss not only the effect of the time-varying factors and the
randomized topological structure but also the spread of misinformation and communication constrains described by probabilistic
quantized communication in the social network. Under the underlying weakly connected graph, we first denote that all opinion
states converge to a stochastic consensus almost surely; that is, our algorithm indeed achieves the consensus with probability one.
Furthermore, our results show that themean of all the opinion states converges to the average of the initial states when time-varying
influence factors satisfy some conditions. Finally, we give a result about the square mean error between the dynamic opinion states
and the benchmark without quantized communication.

1. Introduction

Individuals form beliefs on various economic, political, and
social state based on information they receive from others,
including friends, neighbors, and coworkers as well as local
leaders and news sources. The society may face the tradeoff
whether this process of information aggregation will lead to
the formation of more accurate beliefs or to certain bias,
which is led by the limit of communication and the change of
mutual influence. Gossips, rumors, and other misinforma-
tion are an important form of social communications, and
their spreading plays a significant role in human affairs. The
spread of them can shape the public opinion in a country,
greatly impact financial markets, and cause panic in a soci-
ety during wars and epidemics outbreaks. The information
content of rumors can range from simple gossip to advanced
propaganda and marketing material. In practice, social

groups are often swayed by misleading ads, media out-
lets, and political leaders, so they may hold on to incorrect
and inaccurate beliefs. A central question we are interested
in is to study the conditions under which exchange of infor-
mation will lead to aggregation of dispersed information. We
also pay attention to the gap between this consensus and the
true value of the underlying state in society.

Social networks constitute a new method of studying
social mechanism that has grown tremendously over the last
decade. Decentralized is the inevitable trend of the develop-
ment of network technology. In addition, the unprecedented
number of interacting agents, the time-varying topology of
agent interactions, and the unreliability of agents are key
challenges for the analysis and design of this mechanism.
Gossip algorithms, as an asynchronous time algorithm, have
the special feature that each agent exchanges information and
decisions with at most one neighboring agent in each time
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slot. So, gossip algorithms have been proven to be an effi-
cacious approach to achieve fault-tolerant information dis-
semination. Furthermore, these algorithms can be applied in
such a decentralized, large scale, and dynamically distributed
network very well. In social networks, gossip algorithms to
solve consensus problems have attracted a lot of interest.
Based on probabilistic quantized communication, whether a
group of agents has to agree under the weakly connected
graph and time-varying influence factors in the communi-
cation process, starting from different initial estimates is the
problem we need to study in this paper.

Consensus problems have been discussed through the
great number of different opinion formation models by a lot
of people. To relax the requirement of the global clock
synchronization, Boyd et al. [1] proposed a compelling gossip
algorithms, which provides an asynchronous approach to
treat average consensus and describe the randomized node
interaction. Based on social network, Acemoglu et al. in [2]
provided a gossip model to investigate the tension between
information aggregation and the spread of misinformation,
which individuals meet pairwise and exchange information,
which is modeled as both individuals adopting the average of
their beliefs. In [3], Shi and Johansson considered and solved
a randomized optimal consensus problem formultiagent sys-
tems with stochastically time-varying topology.

Since communication constraints play a major role in
consensus and related problems, Carli et al. in [4] considered
the average consensus problem based on a deterministic or
a randomized quantizer and studied the convergence based
on pairwise gossip communications and updates. Yuan et al.
[5] dealt with a more general probabilistic quantization case
which is that the mixing parameter ranges from 0 to 1. In [6],
Ceragioli and his collaborators considered continuous-time
average consensus dynamics in which the agent’s states are
communicated through uniform quantizers. Recently, Wang
et al. in [7] studied the problem of broadcast gossip aver-
age consensus with quantization constraints in the wireless
sensor network. With the similar problem, Cai and Ishii [8]
proposed the directed graphs with the least restrictive con-
nectivity requirements.

We can know that the consensus problems in gossip algo-
rithms [1–3] were important for large-scale information dis-
semination on the Internet, in the sensor network, and in
peer-to-peer file sharing applications. Considering commu-
nication constraints and the spread of misinformation, more
scholars [4–8] studied a class of gossip algorithms based on
quantized communication, at the same time, they paid more
attention to the time-invariant influence factors. According
to the character of social network, we will not only consider
communication constraints on strongly connected graph but
also study with the broader topology and time-varying
influence factors.

Our work has been influenced by reading the papers [8]
which one based on strongly connected graph and [5] which
also has the quantized communication. Compared to the for-
mer paper, our contribution is under the weaker assumption
about the underlying topology, and thus broader discussion
of opinion evolution will be given. Compared to the latter
paper, we allow the information exchange between agents

with time-varying influence factors, rather than the constant
factors which one more precise and realistic in social net-
work.

In this paper, we provide a new gossip consensus algo-
rithm based on weakly connected graph to describe the ran-
domized agent interactions and contain probabilistic quan-
tized communication with time-varying influence factors.
The paper is organized as follows: Section 2 introduces some
descriptions of algorithm environment and our assumption,
and gives a detailed description of the proposed algorithm.
Section 3 provides the results that our algorithm indeed
converges to a consensus almost surely, which is that all agents
have the same opinion states, and this consensus value is
a random variable. We also give a characterization of the
expected value of this consensus with the influence factors
satisfying some conditions. We also provide a result char-
acterizing the convergence performance of the square mean
error between the dynamic opinion and the average initial
states. Section 4 gives some lemmas and the detailed proofs
of the above results. We conclude the paper in Section 5.

2. Algorithm Description and Assumptions

In the following, we describe briefly the distributed average
consensus problem along with the proposed consensus algo-
rithm.

2.1. Description of the Environment. We consider a set 𝑉 =

{1, 2, . . . , 𝑁} of agents interacting and denote 𝜁 = (𝑉, 𝐸) as
a directed and randomized graph, which we refer to as the
social network. So, (𝑖, 𝑗) ∈ 𝐸 and (𝑗, 𝑖) ∈ 𝐸 are different. Each
vertex of the graph is referred to as an agent, and each agent
𝑖 begins with an initial belief 𝑥

𝑖
(𝑡) which evolves in discrete

time 𝑡 and represents its belief or opinion for every 𝑖 ∈ 𝑉.The
belief can be active when 𝑥

𝑖
> 0; otherwise, it can be negative

and misleading when 𝑥
𝑖
< 0. Opinion belief represents the

value of information. We devote (1/𝑁)∑
𝑁

𝑖=1
𝑥
𝑖
(0) as the true

value of the underlying aggregation statewhich represents the
average of the dispersed initial states.

We use an asynchronous time algorithm introduced in
[4] to describe interactions between agents. Particularly, we
recognize that the information exchange results frombilateral
communication under the circumstance of gossip, rumors,
and misinformation. Moreover, each individual meets the
other in her social neighborhoods according to a prespecified
stochastic process and considers this stochastic process is
representing an underlying social network such as friend-
ships and information network. So, we assume that each agent
communicates with the other agent at instances defined by a
rate-one Poisson process independent of other agents.

In this algorithm, without loss of generality, at most, one
node ismeeting another at a given time [1]. Agent interactions
are characterized by an 𝑛 × 𝑛 matrix 𝐴 = [𝑎

𝑖𝑗
] where 𝑎

𝑖𝑗
≥ 0,

and we can associate a unique diagraph 𝜁
𝐴

= (𝑉, 𝐸
𝐴
) with 𝐴

such that (𝑖, 𝑗) ∈ 𝐸
𝐴
if and only if 𝑎

𝑖𝑗
> 0. We call 𝜁

𝐴
= (𝑉, 𝐸

𝐴
)

the induced graph 𝐴. We discretize time and suppose at time
𝑘 ≥ 0, agent 𝑖 is chosen with probability 1/𝑁. In this case,
agent 𝑖 will meet agent 𝑗 ∈ 𝑉 with probability 𝑎

𝑖𝑗
. Following

a meeting between 𝑖 and 𝑗, there is a potential exchange
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of information. Throughout, we assume that all events that
happen in a meeting are independent of any other event that
happened in the past. According to the above description, we
can get the following definition.

Definition 1 (selection probabilities). Independent of time
and agent state, at time 𝑘 ≥ 0,

(i) an agent 𝑖 ∈ 𝑉 is selected with probability 1/𝑁,
(ii) for all 𝑖, the probabilities 𝑎

𝑖𝑖
= 0,

(iii) agent 𝑖 picks the edge (𝑖, 𝑗) with probability 𝑎
𝑖𝑗
, where

𝑎
𝑖𝑗
≥ 0 for all 𝑖, 𝑗, ∑𝑁

𝑗=1
𝑎
𝑖𝑗
= 1.

From (iii), this implied that 𝐴 is a row stochastic matrix.
In the social network, we want to reflect communication

constraints by means of probabilistic quantization Φ(⋅). For
example, there exist the fact that words can’t express meaning
and everyone has different understanding so as to update par-
tial information. In addition, people can understand them-
selves with the vague or fuzzy recognition sometimes. So we
can use probabilistic quantization to show the actual opinion
belief.

The probabilistic quantization has been introduced in [9].
The probabilistic quantization Φ : 𝑅 → 𝑅 is defined as fol-
lows: suppose that𝑥 ∈ 𝑅 is bounded to a finite interval [−𝐼, 𝐼],
and the interval is equally divided into𝑀−1 subintervals with
quantization points defined by the set 𝜃 = {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑀
},

where 𝜃
1
= −𝐼, 𝜃

𝑀
= 𝐼. Denote the interval as Δ = 𝜃

𝑖+1
− 𝜃
𝑖
,

for 𝑖 ∈ {1, 2, . . . ,𝑀 − 1}. Then, for 𝑥 ∈ [𝜃
𝑖
, 𝜃
𝑖+1

), Φ(𝑥) is a
random variable defined by

Φ (𝑥) =

{{{{

{{{{

{

𝜃
𝑖
, with probability

(𝜃
𝑖+1

− 𝑥)

Δ

𝜃
𝑖+1

, with probability
(𝑥 − 𝜃

𝑖
)

Δ
.

(1)

The following lemma gives two important properties of
the probabilistic quantization.

Lemma 2 (see [10]). For every 𝑥 ∈ [𝜃
𝑖
, 𝜃
𝑖+1

),

𝐸 [Φ (𝑥)] = 𝑥, 𝐸 [(𝑥 − Φ (𝑥))
2

] ≤
Δ
2

4
. (2)

Note that Φ(𝑥) is unbiased uniform quantization; that is, the
quantized data Φ(𝑥) is an unbiased representation of 𝑥.

2.2. Assumption. We consider a social network with the finite
set 𝑉 = {1, . . . , 𝑁} (𝑁 ≥ 3) of agents interacting. Each
agent 𝑖 ∈ 𝑉 starts with an initial belief which we denote by
𝑥
𝑖
(0) ∈ [−𝐼, 𝐼]. Moreover, the underlying graph indicates

potential interactions between agents.

Assumption 3 (connectivity see [11]). The underlying graph
𝜁
𝐴
is weakly connected.
Note that the graph 𝜁

𝐴
is the random graph. Here, we

require that 𝜁
𝐴
keep the character of the weak connectivity.

Remark 4. Here, we can have a weaker assumption and a
more extensive network. In the standing assumption of [8],

the matrix 𝐴 is supposed to have its largest eigenvalue equal
to 1 and all other 𝑁 − 1 eigenvalues strictly less than 1 in
magnitude. This condition is equivalent with the underlying
graph that is quasi-strongly connected. In order to guarantee
convergence for the gossip algorithm discussed below, the
assumption cannot be further weakened based on the fol-
lowing argument. If the weaker hold, they will be divide into
two isolated groups at least in the network. As a result, agents
in each group can only communicate with the others in the
same group. So, the convergence for the whole network is
impossible. If there is no-communication groups in fact, we
also can apply our algorithm to each group. Moreover, most
subsets of society are connected bymeans of several links, and
the same seems to be true for indirect link via the Internet [2].
Therefore, Assumption 3 is a weaker assumption and weakly
connected and random topology of social network reflects a
wider social scope and relationship.

2.3. Description of the Consensus Algorithm. In society, we
can usually listen to advice from other people, receive the
influence of others, and eventually form their own views. Due
to the change in the relationship over time and the limit in the
communication, we will construct our average gossip algo-
rithm based on quantized communication and time-varying
impact factors. The gossip algorithms, as the name suggests,
are built upon a gossip or rumor style unreliable, asyn-
chronous information exchange protocol. At the same time,
we use the symmetric gossip algorithm which is based on
mutual trust between information exchangers. Let 𝑥(𝑡)

denote the vector of all individual opinion value at the end
of time instant 𝑡. Then, agent 𝑖 and 𝑗 can be connected with
probability𝐴

⟨𝑖,𝑗⟩
= (1/𝑁)(𝑎

𝑖𝑗
+ 𝑎
𝑗𝑖
), and based bounded con-

fidence and bilateral communication, the states of agent 𝑖 and
𝑗 evolve as follows:

𝑥
𝑖
(𝑡 + 1) = (1 − 𝑆 (𝑡)) 𝑥

𝑖
(𝑡) + 𝑆 (𝑡) 𝑥

𝑗
(𝑡) ,

𝑥
𝑗
(𝑡 + 1) = 𝑆 (𝑡) 𝑥

𝑗
(𝑡) + (1 − 𝑆 (𝑡)) 𝑥

𝑖
(𝑡) ,

𝑥
𝑘
(𝑡 + 1) = 𝑥

𝑘
(𝑡) for 𝑘 ̸= 𝑖, 𝑗,

(3)

where 𝑥(𝑡) = Φ(𝑥(𝑡)) = [Φ
1
(𝑥(𝑡)), Φ

2
(𝑥(𝑡)), . . . , Φ

𝑁
(𝑥(𝑡))]

and 𝑆(𝑡) ∈ (0, 1) is called the influence factor. The time-
varying influence factor shows the size of the influence of
each other, and each agent 𝑖 ∈ 𝑉 starts with an initial belief
𝑥
𝑖
(0) ∈ 𝑅 and it is bounded to a finite interval [−𝐼, 𝐼]. The

agents’ beliefs evolve according to the following stochastic
update process. Furthermore, for the quantized version, the
opinion states evolvement can be compactly written accord-
ing to the following equation:

𝑥 (𝑡 + 1) = 𝐴 (𝑡) 𝑥 (𝑡) , (4)

where the random matrix 𝐴(𝑡) satisfies

Prob (𝐴 (𝑡) = 𝐼 − 𝑆 (𝑡) (𝑒
𝑖
− 𝑒
𝑗
) (𝑒
𝑖
− 𝑒
𝑗
)
𝑇

) = 𝐴
⟨𝑖,𝑗⟩

, (5)

and we define 𝐴𝑖𝑗(𝑡) = 𝐼 − 𝑆(𝑡)(𝑒
𝑖
− 𝑒
𝑗
)(𝑒
𝑖
− 𝑒
𝑗
)
𝑇, where 𝑒

𝑖
, 𝑖 =

1, . . . , 𝑁 denotes the column vector in 𝑅
𝑁 having all entries

equal to 0 except at a 1 in the 𝑖th position.
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In the social network, we consider that probabilistic
quantization Φ(⋅) reflects communication constraints. For
example, there exist the fact that words can not expressmean-
ing and everyone has different understanding so as to update
partial information. In addition, people can understand
themselveswith the vague or fuzzy recognition in some times.
But as time goes on and the increase of the number of the
communication and information can get accurate expression
with using 𝐸[Φ(𝑥)] = 𝑥. Furthermore, we are concerned that
if each individual holds one opinion at the initial time, then
can the dispersed group converge to a consensus? And if they
can, what conditionsmust be needed? According to the above
algorithm, we will talk about these problems as follows.

First, we know the convergence to a consensusmeans that
a final unanimous consensus will be reached in someway. But
what does the word “consensus” mean? From the view of the
opinion algorithm, it means that an opinion vector in which
all elements are the same. In other words, all individuals have
the same opinion, whichmeans a unanimous one.While final
compromise means a compromise is reached for 𝑡 → ∞.

Then, in order to be convenient, we will follow the
assumptions as above and give the results about the consen-
sus.

3. Main Results

In this section, we provide ourmain convergence result based
on the above algorithm. Particularly, we denote that despite
the presence of quantized communication, with potentially
very different initial opinions, the group will converge to a
consensus almost surely, which all agents have the same opin-
ion states.This consensus value is a random variable. We also
provide the characterization of the expected value of this con-
sensus under some conditions. In addition, we give a result
about the square mean error between the dynamic opinion
and the average initial states.

Here, we give a convergence theorem based on the topol-
ogy of the underlying social network.

Theorem 5. A global gossip consensus achieves the probabilis-
tic consensus; that is,

Pr { lim
𝑡→∞

𝑥 (𝑡) = 𝑐1̃} = 1, (6)

where 1̃ ∈ 𝑅
𝑁 denotes the vector with all its entries equal to 1

and the random variable 𝑐 ∈ 𝑅 satisfies

𝐸 [𝑐] =
1

𝑁
1̃𝑥 (0) , (7)

when 𝑆(𝑡) satisfies ∑∞
𝑡=0

𝑆(𝑡) = ∞.

Remark 6. This result implies that the society will reach a
dynamic consensus almost surely despite the presence of the
quantized communication and the effect of influence factor
under a weaker assumption that the underlying graph is
weakly connected. Based on the network and the pattern of
communication, all agents endowed with the different initial
opinion will form the common opinion with probability 1,

and the expected value of the common opinion will tend
to be the true value of the underlying aggregation opinion
when 𝑆(𝑡) satisfies some conditions. We also will discover
that the above second conclusion still shows that even 𝑆(𝑡) is
constant satisfying 0 to 1. In addition, either 𝑆(𝑡 + 1) > 𝑆(𝑡) or
𝑆(𝑡+1) < 𝑆(𝑡) for all 𝑡; that is, 𝑆(𝑡) ismonotone, the conclusion
is achieved only if∑∞

𝑡=0
𝑆(𝑡) = ∞. Finally, inmathematics, the

condition of divergent sequence is easier satisfied than that of
convergent sequence. So, our condition can be satisfied in a
rather wide range.

The following proposition provides the expectation of
the error between the opinion states and the static average
consensus.

Theorem 7. The evolution of the square mean error from con-
sensus of the algorithm satisfies

𝐸(

𝑥 (𝑡) − 𝑥 ave (𝑡) 1̃



2

) ≤ (1 −
2

𝑁
𝑆
∗

𝜆
∗

2
)

𝑡

𝑥 (0) − 𝑥 ave 1̃



2

+
Δ
2

𝑁(𝑁 − 4𝑆
∗

− 1)

4𝑆∗𝜆
∗

2

,

(8)

where 𝑆∗ = inf
𝑖∈𝑁

{𝑆(𝑖)(1 − 𝑆(𝑡))}, 𝜆∗
2
= 𝜆
∗

2
(𝐷 − (𝐴

𝑇

+ 𝐴)) for
the given 𝑁, Δ.

Remark 8. We try to study the character of its square mean
convergence and find that it does not meet this convergence.
But from the above proposition, we can see the square mean
error has an upper bound and estimate the convergence speed
of the upper bound.The limit of the bound is (Δ2𝑁(𝑁−4𝑆

∗

−

1))/4𝑆
∗

𝜆
∗

2
which depends on the quantized revolution, the

second smallest eigenvalue of Laplacian matrix and the time-
varying factors when 𝑆

∗

̸=0.

4. Lemmas and Proofs

4.1. Average Matrix Properties

Lemma 9. Define the expected value of 𝐴(𝑡) as

𝐴 = 𝐸 [𝐴 (𝑡)] =
1

𝑁
∑

𝑖,𝑗

𝑎
𝑖𝑗
𝐴
𝑖𝑗

, 𝐴 = 𝐸 [𝐴(𝑡)
𝑇

𝐴 (𝑡)] ,

(9)

then

𝐴 = 𝐼 −
𝑆 (𝑡)

𝑁
[𝐷 − (𝐴 + 𝐴

𝑇

)] ,

𝐴 = 𝐼 −
2𝑆 (𝑡) (1 − 𝑆 (𝑡))

𝑁
[𝐷 − (𝐴 + 𝐴

𝑇

)] ,

(10)

where𝐷 = diag([𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑁
]) is the diagonal matrix with

entries satisfying

𝐷
𝑖
= (∑

𝑗 ̸= 𝑖

(𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
)) , (11)
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and for all 𝑆(𝑡) ∈ (0, 1), 𝐴, and 𝐴, respectively satisfies

𝐴1̃ = 1̃, 1̃
𝑇

𝐴 = 1̃
𝑇

,

𝐴1̃ = 1̃, 1̃
𝑇

𝐴 = 1̃
𝑇

, 𝜌 (𝐴) = 1,

(12)

where 1̃ ∈ 𝑅
𝑁 denotes the vector with all its entries equal to 1.

Proof. From the fact that 𝐴 = 𝐸[𝐴(𝑡)] = (1/𝑁)∑
𝑖,𝑗

𝑎
𝑖𝑗
𝐴
𝑖𝑗, we

can deduce that

𝐴
𝑖𝑖

= 1 −

𝑆 (𝑡) [∑
𝑗 ̸= 𝑖

𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
]

𝑁
, 𝐴

𝑖𝑗
=

𝑆 (𝑡) (𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
)

𝑁
,

(13)

then we can substitute these into the matrix 𝐴, in the similar
way, we can get 𝐴.

It is easy to see that the matrix 𝐴 is the symmetric matrix
and the sum of the row in 𝐴 is 1. So, we have

𝐴1̃ = 1̃, 1̃
𝑇

𝐴 = 1̃
𝑇

. (14)

From the above equation, 𝐴 have the same character. So
1̃ is the eigenvector of the eigenvalue 1. Using the Gersgorin
disc theorem [12], we have

0 ≤ 𝜆 (𝐷 − (𝐴
𝑇

+ 𝐴)) ≤ 2𝑁, (15)

where 𝜆(⋅) denotes the eigenvalue of a symmetric matrix.
Therefore,

0 ≤ 2𝑆 (𝑡) (1 − 𝑆 (𝑡)) 𝜆 (𝐷 − (𝐴
𝑇

+ 𝐴)) ≤ 4𝑆 (𝑡)

× (1 − 𝑆 (𝑡)) ≤ 4(
𝑆 (𝑡) + 1 − 𝑆 (𝑡)

2
)

2

= 1.

(16)

Then, the spectrum of 𝐴 is 1.

Lemma 10 (see [13]). Define {𝑇
𝑘
} is a sequence of real numbers

with 𝑇
𝑘
∈ [0, 1) for all 𝑘 ∈ [0, +∞), then

∞

∑

𝑘=0

𝑇
𝑘
= ∞ iff

∞

∏

k=0
(1 − Tk) = 0. (17)

4.2. The Proof of Theorem 5. Proof of Theorem 5: in the first
part, we will prove the character of convergence. with loss of
probability, we consider the integer quantization in the range
[1, 𝑚]. Define a discrete Markov chain 𝑀 with initial state
𝑥(0), and the transition matrix is defined by the combination
of the quantized gossip consensus algorithm 𝑥(𝑡 + 1) =

𝐴(𝑡)𝑥(𝑡) and the probabilistic quantization operator Φ(⋅).
Define 𝑥ave(𝑡) = (1/𝑁)1̃

𝑇

𝑥(𝑡) and 𝑥ave = (1/𝑁)1̃
𝑇

𝑥(0),
when 𝑡 > 0. Note that the gossip consensus algorithm satisfies


𝑥 (𝑡 + 1) − 𝑥ave (𝑡 + 1) 1̃


≤


𝑥 (𝑡) − 𝑥ave (𝑡) 1̃


, (18)

the equality holds when the two agents chosen at time instant
𝑡 have the same quantized state value.Thus, there is a nonzero

probability that the strict inequality holds when the consen-
sus is not achieved. Moreover, using the fact that 𝑐𝐴(𝑡)1̃ = 𝑐1̃,
we can derive

𝑥 (𝑡 + 1) = Φ [𝐴 (𝑡) 𝑥 (𝑡)] = Φ [𝑥 (𝑡)] = 𝑥 (𝑡) , (19)

when 𝑥(𝑡) = 𝑐1̃. Then, following a similar line as in the proof
ofTheorem 1 in [13], we can prove that there exists a sequence
of transitions with nonzero probability whose application
yields absorption; that is, the probabilistic consensus is
achieved.

In the second part, we will consider the character of mean
about the state value.

We can use the Lebesgue dominated convergence theo-
rem [14] to give

𝐸 (𝑐1̃) = 𝐸 [ lim
𝑡→∞

𝑥 (𝑡)] = lim
𝑡→∞

𝐸 [𝑥 (𝑡)] . (20)

Then, we can derive the expression of lim
𝑡→∞

𝐸[𝑥(𝑡)] and
use the above equality to get the desired result. Now, define
the quantization error as

𝑢 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) . (21)

We can get

𝑥 (𝑡 + 1) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐴 (𝑡) 𝑢 (𝑡) . (22)

Noting the property of the probabilistic quantization; that
is,𝐸[𝑢(𝑡)] = 0 and the fact that𝐴(𝑡) and 𝑢(𝑡) are independent,
so we can see that

𝐸 [𝑥 (𝑡 + 1)] = 𝐸 [𝐴 (𝑡)] 𝐸 [𝑥 (𝑡)] + 𝐸 [𝐴 (𝑡)] 𝐸 [𝑢 (𝑡)]

= 𝐴𝐸 [𝑥 (𝑡)] .
(23)

Therefore,

𝐸 [𝑥 (𝑡 + 1)] − 𝑥ave1̃



2

= {𝐴𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}
𝑇

{𝐴𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}

= {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}
𝑇

(𝐴
𝑇

𝐴) {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}

= {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}
𝑇

[𝐼 −
𝑆 (𝑡)

𝑁
(𝐷 − (𝐴

𝑇

+ 𝐴))]

2

× {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃} .

(24)

Define 𝑦(𝑡) = 𝐸[𝑥(𝑡)] − 𝑥ave1̃, we can see 𝑦(0) ⊥ 1̃, fur-
thermore, on the basis of Lemma 9, we can see 𝑦(𝑡) ⊥ 1̃,

𝜌(𝐴) = 1, and every possible sample of𝐴 is doubly stochastic,
each sample of 𝐴𝑇𝐴 is also doubly stochastic. This implied
that 1̃ is the eigenvector corresponding to eigenvalue 1 of
𝐴
𝑇

𝐴. Thus, we can conclude from the above equation that


𝐸 [𝑥 (𝑡 + 1)] − 𝑥ave1̃



2

≤ 𝜆
2
(𝐴
𝑇

𝐴)

𝐸 [𝑥 (𝑡)] − 𝑥ave1̃



2

,

(25)

where 𝜆
2
(𝑊) for a stochastic matrix 𝑊 denotes the largest

eigenvalue in magnitude excluding the eigenvalue at one.
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Therefore,

𝑦 (𝑡 + 1)


2

≤ [1 −
𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇

+ 𝐴))]

2

𝑦 (𝑡)


2

.

(26)

Note that𝐷−(𝐴
𝑇

+𝐴) is actually the (weighted) Laplacian
of the graph 𝜁

𝐴+𝐴
𝑇 . With Assumption 3, apparently 𝐴 + 𝐴

𝑇

is symmetric, and thus 𝜁
𝐴+𝐴
𝑇 one connected graphs [15], we

have the multiple of 𝜆∗
1
is one and 𝜆

∗

2
> 0, where 𝜆∗

𝑘
is the 𝑘th

smallest eigenvalue of𝐷−(𝐴
𝑇

+𝐴). On the other hand, since
𝐴 is a stochastic matrix, it is straightforward to see that

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖

< 𝑛 (27)

for all 𝑖 = 1, 2, . . . , 𝑁. According to Gersgorin’s circle theo-
rem, every eigenvalue of𝐷 − (𝐴

𝑇

+ 𝐴) is 𝜆∗ ∈ [0, 2𝑁].
Then, we assume 𝜆

∗

2
[𝐷 − (𝐴

𝑇

+ 𝐴)] > 𝑁, for the trace of
𝐷 − (𝐴

𝑇

+ 𝐴) is 2𝑁; then

𝑁

∑

𝑘=2

𝜆
∗

2
[𝐷 − (𝐴

𝑇

+ 𝐴)] > 𝑁 × (𝑁 − 1) (28)

since𝑁 ≥ 3, ∑𝑁
𝑘=2

𝜆
∗

2
[𝐷 − (𝐴

𝑇

+ 𝐴)] > Tr[𝐷 − (𝐴
𝑇

+ 𝐴)].
It is impossible. So,

𝜆
∗

2
[𝐷 − (𝐴

𝑇

+ 𝐴)] ≤ 𝑁. (29)

Now we conclude that for all 𝑡,

[1 −
𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇

+ 𝐴))]

2

≤ 1 −
𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇

+ 𝐴)) < 1.

(30)

Then,

𝑦 (𝑡 + 1)


2

≤

∞

∏

𝑡=0

[1 −
𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇

+ 𝐴))]
𝑦 (0)



2

.

(31)

Therefore, based on Lemma 10, we have

lim
𝑡→∞

𝑦 (𝑡)
 = 0. (32)

So, we can get 𝐸[𝑐] = (1/𝑁)1̃𝑥(0) when 𝑆(𝑡) satisfies
∑
∞

𝑡=0
𝑆(𝑡) = ∞.
The proof is finished.

4.3. The Proof of Theorem 7. Proof of Theorem 7: defining

𝑧 (𝑡 + 1) = 𝑥 (𝑡 + 1) − 𝑥ave (𝑡 + 1) 1̃ = (𝐼 − 𝐽) 𝑥 (𝑡 + 1) , (33)

where 𝐽 = (1/𝑁)1̃1̃
𝑇; then, we can get

𝑧 (𝑡 + 1) = (𝐼 − 𝐽) 𝑥 (𝑡) = 𝐴 (𝑡) 𝑧 (𝑡) + (𝐼 − 𝐽)𝐴 (𝑡) 𝑢 (𝑡) .

(34)

So,

𝐸 [‖𝑧 (𝑡 + 1)‖
2

| 𝑧 (𝑡)]

= 𝑧(𝑡)
𝑇

𝐸 [𝐴(𝑡)
𝑇

𝐴 (𝑡)] 𝑧 (𝑡)

+ 𝐸 [𝑧(𝑡)
𝑇

𝐴(𝑡)
𝑇

(𝐼 − 𝐽) 𝐴 (𝑡) 𝐴 (𝑡) 𝑢 (𝑡)]

+ 𝐸 [𝑢(𝑡)
𝑇

𝐴(𝑡)
𝑇

(𝐼 − 𝐽) 𝐴 (𝑡) 𝐴 (𝑡) 𝑧 (𝑡)]

+ 𝐸 [𝑢(𝑡)
𝑇

𝐴(𝑡)
𝑇

(𝐼 − 𝐽) 𝐴 (𝑡) 𝐴 (𝑡) 𝑧 (𝑡)]

+ 𝐸 [𝑢(𝑡)
𝑇

𝐴(𝑡)
𝑇

(𝐼 − 𝐽)
2

𝐴 (𝑡) 𝐴 (𝑡) 𝑢 (𝑡)] .

(35)

Using the Proposition 3.4 in [4], it is easy to see that both
the second and the third term of the right hand side of the
above equation are zero. Thus, we can derive

𝐸 [‖𝑧 (𝑡 + 1)‖
2

| 𝑧 (𝑡)]

= 𝑧(𝑡)
𝑇

𝐸 [𝐴(𝑡)
𝑇

𝐴 (𝑡)] 𝑧 (𝑡)

+ 𝐸 [𝑢(𝑡)
𝑇

(𝐴(𝑡)
𝑇

𝐴 (𝑡) − 𝐽) 𝑢 (𝑡)]

= 𝑧(𝑡)
𝑇

𝐸 [𝐴(𝑡)
𝑇

𝐴 (𝑡)] 𝑧 (𝑡) +

𝑁

∑

𝑖=1

𝐴
𝑖𝑖
𝐸 [𝑢
2

𝑖
(𝑡)]

≤ 𝜆
2
(𝐴) ‖𝑧 (𝑡)‖

2

+
Δ
2

4
trace (𝐴)

= 𝜆
2
(𝐴) ‖𝑧 (𝑡)‖

2

+
Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1]

= 𝜆
2
(𝐴) ‖𝑧 (𝑡)‖

2

+
Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1]

= 𝜆
2
[𝐼 −

2𝑆 (𝑡) (1 − 𝑆 (𝑡))

𝑁

× (𝐷 − (𝐴
𝑇

+ 𝐴)) ] ‖𝑧 (𝑡)‖
2

+
Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1] ,

(36)

where 𝐴 = 𝐸[𝐴(𝑡)
𝑇

𝐴(𝑡) − 𝐽].
The second equality follows from the fact that

𝐸[𝑢
𝑖
(𝑡)𝑢
𝑗
(𝑡)] = 0 for 𝑖 ̸= 𝑗, and the inquiry follows from

𝐸[𝑢
𝑖
(𝑡)
2

] ≤ Δ
2

/4. Furthermore, the last equality is obtained
by using

trace (𝐴) = trace (𝐴 − 𝐽) = 𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1. (37)

Then, repeatedly conditioning and using the iteration
obtained above, we obtain, define 𝜆∗

2
= 𝜆
∗

2
(𝐷−(𝐴

𝑇

+𝐴)) < 𝑁

𝐸 [‖𝑧 (𝑡 + 1)‖
2

] ≤

𝑡

∏

𝑖=𝑘0

(1 −
2𝑆 (𝑖) (1 − 𝑆 (𝑖))

𝑁
𝜆
∗

2
)
𝑧 (𝑘
0
)


2

+
Δ
2

4

[

[

𝑡−1

∑

𝑖=𝑘0

(𝑁 − 4𝑆 (𝑖) (1 − 𝑆 (𝑖)) − 1)]

]
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×

𝑡

∏

𝑗=𝑖+1

(1 −
4𝑆 (𝑗) (1 − 𝑆 (𝑗))

𝑁
𝜆
∗

2
)

+
Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1] ,

(38)

when 𝑡 ≥ 1, 𝑘
0
≤ 𝑡 − 1, 𝑘

0
∈ 𝑁
+ where

𝐸 [‖𝑧 (1)‖
2

] ≤ (1 −
2𝑆 (0) (1 − 𝑆 (0))

𝑁
𝜆
∗

2
) ‖𝑧 (0)‖

2

+
Δ
2

4
[𝑁 − 4𝑆 (0) (1 − 𝑆 (0)) − 1] ,

(39)

when 𝑡 = 0.
Define 𝑆

∗

= inf
𝑖∈𝑁

{𝑆(𝑖)(1 − 𝑆(𝑖))}.
Because of 𝑆

𝑖
∈ (0, 1), 𝑆∗ ∈ [0, 1); then

𝐸 (‖𝑧 (𝑡 + 1)‖
2

) ≤ [1 −
2

𝑁
𝑆
∗

𝜆
∗

2
(𝐷 − (𝐴

𝑇

+ 𝐴))] ‖𝑧 (0)‖
2

+
Δ
2

4
(𝑁 − 4𝑆

∗

− 1)

×

𝑡

∑

𝑖=0

[1 −
𝑆
∗

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇

+ 𝐴))]

≤ (1 −
2

𝑁
𝑆
∗

𝜆
∗

2
)

𝑡

‖𝑧 (0)‖
2

+
Δ
2

4
(𝑁 − 4𝑆

∗

− 1)

𝑡

∑

𝑖=0

(1 −
𝑆
∗

𝑁
𝜆
∗

2
)

𝑠

.

(40)

By Lemma 9, we can deduce that

𝐸 (‖𝑧 (𝑡 + 1)‖
2

) ≤ (1 −
2

𝑁
𝑆
∗

𝜆
∗

2
)

𝑡

‖𝑧 (0)‖
2

+
Δ
2

𝑁(𝑁 − 4𝑆
∗

− 1)

4𝑆∗𝜆
∗

2

.

(41)

This completes the proof.

5. Conclusions

In this paper, we have considered the consensus problem of
gossip algorithmbased on time-varying influence andweakly
connected graph in the social network. Based on the gossip
algorithm, we also pay attention to studying the effect of the
probabilistic quantized communication.

We show that the groupwill achieve the probabilistic con-
sensus value which is a random variable despite the presence
of quantized communication, with potentially very different
initial opinions. And we present the condition on the time-
varying influence factors that guarantee the mean of consen-
sus equals to the average initial states.We also provide a result
about the square mean error which has an upper bound and
the convergence speed of the upper bound can be estimated.

The limit of the bound is dependent on the quantized revolu-
tion, the second smallest eigenvalue of Laplacian matrix, and
the time-varying factors.

And some other interesting problems we will be con-
cerned with in further research, such as the existence of
agents who have different prejudices and whether the con-
sensus can be reached with partial trust.
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This paper proposes two Cucker-Smale-type flocking models by introducing both cohesive and repulsive forces to second-order
multiagent systems. Under some mild conditions on the initial state of the flocking system, it is shown that the velocity consensus
of the agents can be reached independent of the parameter which describes the decay of communication rates. In particular, the
collision between any two agents can always be avoided by designing an appropriate bounded repulsive function based on the initial
energy of the flock. Numerical examples are given to demonstrate the effectiveness of the theoretical analysis.

1. Introduction

Over the past fewdecades, the flocking problemofmultiagent
systems has attracted increasing attention due to its wide
applications in many fields such as unmanned air vehicles,
mobile robots, and sensor networks. To simulate the collec-
tive behaviors of birds and fish, Reynolds [1] proposed three
well-known flocking rules for multiagent systems, that is,
center cohesion, collision avoidance, and velocity consensus.
In [2], Vicsek et al. introduced a simple discrete time flocking
model to study the emergence of autonomous agents moving
in the plane with the same speed but with different headings.
By using nonnegative matrix and algebraic graph theories,
Jadbabaie et al. [3] provided the theoretical analysis for
Vicsek’s flocking model. Olfati-Saber [4] presented a system-
atic framework to design distributed flocking algorithms for
multiagent systems. Tanner et al. [5] investigated the flocking
behaviors of multiagent systems with fixed and switching
network topologies. In [6], both theoretical and experimental
results were given for a flock ofmobile robots. In [7–10], some
strategies were developed to ensure the connectivity of the
time-varying communication topology.

In 2007, Cucker and Smale [11] proposed a flockingmodel
to investigate the emergence behavior in multiagent systems.
For a network of𝑁 autonomous agents, the continuous-time
version of the Cucker-Smale flocking model is described as
follows [11]:

̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁,

̇V
𝑖
(𝑡) =

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V

𝑗
− V
𝑖
) ,

(1)

where 𝑥
𝑖
(𝑡) and V

𝑖
(𝑡) ∈ R𝑛 are the position and velocity

states of the 𝑖th agent, respectively, 𝑎
𝑖𝑗
(𝑥) is called the

communication rate defined as

𝑎
𝑖𝑗
(𝑥) =

𝐻

(1 +

𝑥
𝑖
− 𝑥
𝑗



2

)

𝛽

, 𝑖 ̸= 𝑗,

𝑎
𝑖𝑖
(𝑥) = 0,

(2)

in which 𝛽 ≥ 0 determines the decay of 𝑎
𝑖𝑗
(𝑥), 𝐻 > 0, and

𝑥 = (𝑥
𝑇

1
, . . . , 𝑥

𝑇

𝑁
)
𝑇.
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In [11], Cucker and Smale studied the flocking behavior
of model (1) and showed that the flock converges to a
common velocity unconditionally when 𝛽 < 1/2, while the
stability of the flock depends on the initial positions and
velocities when 𝛽 ≥ 1/2. The Cucker-Smale flocking model
(1) has attracted much attention in recent years. Shen [12]
investigated the flocking behavior of an extended Cucker-
Smale model with hierarchical leadership. Ha and Liu [13]
provided a simple proof for the Cucker-Smale model (1) and
derived some conditions for reaching exponential flocking.
Ha et al. [14] presented a Cucker-Smale-type model with
nonlinear velocity couplings. Park et al. [15] proposed an
augmented Cucker-Smale model by introducing interagent
bonding forces. Perea et al. [16] successfully applied Cucker-
Smale model (1) to the real-flight formation control in the
Darwin space mission.

According to the flocking rules of Reynolds, one knows
that the collision avoidance is not considered in the original
Cucker-Smale model (1) and its variations [12–16]. To fix this
drawback, Cucker and Dong [17] developed the following
extended Cucker-Smale-type model with repelling forces:

̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁,

̇V
𝑖
(𝑡) =

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V

𝑗
− V
𝑖
)

+ (
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑖>𝑗


V
𝑖
− V
𝑗



2

)

1/2

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑓(

𝑥
𝑖
− 𝑥
𝑗



2

) (𝑥
𝑖
− 𝑥
𝑗
) ,

(3)

where the differentiable function 𝑓 : (𝑑
0
,∞) → (0,∞)

satisfies ∫
𝑑0+1

𝑑0

𝑓(𝑟)𝑑𝑟 = ∞ and ∫
∞

𝑑0+1

𝑓(𝑟)𝑑𝑟 < ∞ to ensure
the collision avoidance among the agents, in which 𝑑

0
> 0

is a specified distance. Assuming that the initial positions of
model (3) satisfy ‖𝑥

𝑖
(0) − 𝑥

𝑗
(0)‖ > 𝑑

0
for all 𝑖 ̸= 𝑗, Cucker and

Dong [17] showed that the flock asymptotically converges to
a common velocity and the distance between any two agents
is greater than 𝑑

0
when 𝛽 ≤ 1/2, while the convergence of

the flock relies on the initial positions and velocities of the
agents when 𝛽 > 1/2. Note that when ‖𝑥

𝑖
− 𝑥
𝑗
‖ → 𝑑

+

0
,

one has 𝑓(‖𝑥
𝑖
− 𝑥
𝑗
‖
2

) → ∞, which means that the repulsive
force in model (3) is unbounded. However, in many practical
cases, the actuator of an agent can only handle finite forces
or torques due to its saturation. Therefore, it is imperative to
design some bounded repulsive functions for Cucker-Smale-
type flocking models.

Motivated by the above discussions, we propose two
improved Cucker-Smale-type flocking models in this paper.
The main contribution of this paper is three-fold. First,
inspired by the flocking model developed by Park et al.
[15] and the aggregation techniques proposed by Gazi and
Passino [18, 19], this paper presents two control strategies
for the Cucker-Smale model (1) to ensure the cohesiveness
of the flocking system. Second, to overcome the actuator

saturation of multiagent systems, this paper designs a class
of bounded repulsive functions for Cucker-Smale model (1)
such that the collision-free motion of the flock can always be
guaranteed.Third, it is shown that the velocity convergence of
two proposed flocking models in this paper can be achieved
independent of the parameter 𝛽, which describes the decay of
communication rate 𝑎

𝑖𝑗
(𝑥). Due to these distinguishing fea-

tures, the proposed flockingmodels in this paper significantly
improve some previous work related to Cucker-Smale-type
flocking.

The remainder of this paper is organized as follows.
Section 2 formulates the asymptotical flocking problem and
defines bounded repulsive functions. Section 3 proposes two
improved Cucker-Smale models and investigates their flock-
ing behaviors. Numerical examples are given in Section 4
to verify the theoretical analysis. Finally, some concluding
remarks and future trends are stated in Section 5.
Notations. The standard notations are used throughout the
paper. The superscript “T” represents the transpose of a
vector or a matrix. R denotes the set of real numbers. For
𝑥 ∈ R𝑛, let ‖𝑥‖ be its Euclidean norm and let min

𝑖
{𝑥
𝑖
} be

its minimal element, and let ⟨⋅, ⋅⟩ denote the inner product.
Let 0
𝑛
= (0, . . . , 0)

𝑇

∈ R𝑛 be a vector with all zero entries.The
symbol “∇” is the gradient operator.

2. Preliminaries

This section formulates the flocking problem of second-order
multiagent systems, and defines a class of bounded repulsive
functions to avoid interagent collisions.

2.1. Problem Formulation. Consider a second-order multia-
gent system consisting of𝑁 agents described by

̇𝑥
𝑖
(𝑡) = V

𝑖
, 𝑖 = 1, . . . , 𝑁,

̇V
𝑖
(𝑡) = 𝑢

𝑖
,

(4)

where𝑥
𝑖
(𝑡) and V

𝑖
(𝑡) ∈ R𝑛 are the position and velocity states

of the 𝑖th agent, respectively, and 𝑢
𝑖
∈ R𝑛 is the control input

for the 𝑖th agent.

Definition 1. According to the flocking rules proposed by
Reynolds [1], multiagent system (4) is said to achieve asymp-
totical flocking if its solution satisfies the following conditions
for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ̸= 𝑗, and 𝑡 ≥ 0:

(i) flock cohesion: sup
0≤𝑡<∞

‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ < ∞;

(ii) collision avoidance: ‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ > 0;

(iii) velocity consensus: lim
𝑡→∞

‖V
𝑖
(𝑡) − V

𝑗
(𝑡)‖ = 0.

Remark 2. The first condition of the asymptotical flocking in
Definition 1 indicates that each agent should stay close to the
nearby flockmates to ensure the cohesiveness of the flock.

Remark 3. The collision in a multiagent system means that
there exist at least two agents occupying the same space
[4, 5, 7–9]. To ensure the collision-free motion of the flock,
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the minimal interagent distance in multiagent system (4)
should be always greater than zero.

2.2. Bounded Repulsive Functions. To avoid collisions in a
multiagent system, one can design some artificial potential
functions to create interagent repulsive forces [4–8, 17–19].
Up to date, most researchers utilize the negative gradients
of unbounded potential functions to avoid collisions among
agents [5, 7, 8, 17–19]. However, in many practical situations,
the control input of a multiagent system should be bounded
because no actuator could provide an infinite control force.
In this paper, we will show that interagent collisions can be
avoided by designing some appropriate bounded repulsive
functions. Below we define a class of bounded repulsive
functions.

Definition 4. For multiagent system (4), assume that the
initial positions of the agents satisfy ‖𝑥

𝑖
(0) − 𝑥

𝑗
(0)‖ > 0

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ̸= 𝑗. Let Ψ : (0,∞) → (0,∞) be
a differentiable, nonnegative, and decreasing function with
respective to the distance ‖𝑥

𝑖
− 𝑥
𝑗
‖ between agents 𝑖 and 𝑗,

such that

(i) ∇
𝑥𝑖
Ψ(‖𝑥
𝑖
−𝑥
𝑗
‖) = −𝑔

𝑟
(‖𝑥
𝑖
−𝑥
𝑗
‖)(𝑥
𝑖
−𝑥
𝑗
). When ‖𝑥

𝑖
−

𝑥
𝑗
‖ → 0

+, 𝑔
𝑟
(‖𝑥
𝑖
− 𝑥
𝑗
‖) = 𝑃; otherwise, 𝑔

𝑟
(‖𝑥
𝑖
−

𝑥
𝑗
‖) < 𝑃,

(ii) lim
‖𝑥𝑖−𝑥𝑗‖→0

+Ψ(‖𝑥
𝑖
− 𝑥
𝑗
‖) = 𝑄,

where 𝑃,𝑄 > 0, and 𝑔
𝑟
(‖𝑥
𝑖
− 𝑥
𝑗
‖) > 0 is a smooth and

decreasing function in (0,∞). If 𝑃 < ∞ and 𝑄 < ∞, the
potential function Ψ is called a bounded repulsive function.

Remark 5. If lim
‖𝑥𝑖−𝑥𝑗‖→0

+Ψ(‖𝑥
𝑖
−𝑥
𝑗
‖) = ∞, that is,𝑄 = ∞,

the repulsive function Ψ is unbounded.

Remark 6. A possible bounded repulsive function to satisfy
Definition 4 can be chosen as follows:

Ψ(

𝑥
𝑖
− 𝑥
𝑗


) = 𝑄 exp (−𝜇


𝑥
𝑖
− 𝑥
𝑗



2

) for 
𝑥
𝑖
− 𝑥
𝑗


> 0,

(5)

where 0 < 𝑄 < ∞ and 𝜇 > 0.

Remark 7. Considering the symmetry of the potential func-
tionΨ in Definition 4, that is,Ψ(‖𝑥

𝑖
−𝑥
𝑗
‖) = Ψ(‖𝑥

𝑗
−𝑥
𝑖
‖), we

have [5]

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


) = −∇

𝑥𝑗
Ψ(


𝑥
𝑖
− 𝑥
𝑗


) ,

𝑑

𝑑𝑡

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

1

2
Ψ (


𝑥
𝑖
− 𝑥
𝑗


)

=

𝑁

∑

𝑖=1

V𝑇
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


) .

(6)

3. Main Results

This section proposes two improved Cucker-Smale flocking
models and investigates their flocking behaviors. In particu-
lar, some conditions are derived to ensure the collision-free
motion of the flock.

3.1. Cucker-Smale Flocking with Bonding and Repulsive Forces.
Recently, Park et al. [15] proposed an extended Cucker-Smale
model as follows:

̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁,

̇V
𝑖
(𝑡) =

𝜆

𝑁

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜓 (𝑟
𝑖𝑗
) (V
𝑗
− V
𝑖
)

+
𝜎

𝑁

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐾
1

2𝑟
2

𝑖𝑗

× ⟨V
𝑖
− V
𝑗
, 𝑥
𝑖
− 𝑥
𝑗
⟩ (𝑥
𝑗
− 𝑥
𝑖
)

+
𝜎

𝑁

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐾
2

2𝑟
𝑖𝑗

(𝑟
𝑖𝑗
− 2𝑅) (𝑥

𝑗
− 𝑥
𝑖
) ,

(7)

where 𝜆, 𝜎, 𝐾
1
, 𝐾
2
, and 𝑅 are positive parameters, 𝑟

𝑖𝑗
= ‖𝑥
𝑖
−

𝑥
𝑗
‖, and the function 𝜓(⋅) is nonnegative.
In [15], it was shown that model (7) can exhibit cohe-

sive flocking due to the bonding forces among the agents.
However, the collision avoidance in model (7) was not
addressed and thus should be resolved by adopting some new
techniques. To improve model (7), we consider the following
extended Cucker-Smale model with bonding and repulsive
forces:

̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁,

̇V
𝑖
(𝑡) =

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V

𝑗
− V
𝑖
)

+ 𝑘
𝑎

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑟
𝑖𝑗
− 𝜂

𝑟
𝑖𝑗

(𝑥
𝑗
− 𝑥
𝑖
)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


) ,

(8)

where 𝑘
𝑎

> 0, 𝜂 > 0, 𝑟
𝑖𝑗

= ‖𝑥
𝑖
− 𝑥
𝑗
‖, and Ψ(‖𝑥

𝑖
− 𝑥
𝑗
‖) is a

bounded repulsive function described in Definition 4.

Remark 8. We will show that the terms 𝑘
𝑎
∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
((𝑟
𝑖𝑗

−

𝜂)/𝑟
𝑖𝑗
)(𝑥
𝑗
− 𝑥
𝑖
) and −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
∇
𝑥𝑖
Ψ(‖𝑥
𝑖
− 𝑥
𝑗
‖) in multiagent

system (8) can yield bounded interagent bonding and repul-
sive forces, respectively.

The following result is very useful to derive the main
results of this paper.
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Lemma 9 (see [17]). For 𝑧
𝑖

∈ R, 𝑖 = 1, . . . , 𝑁, let 𝑧 =

∑
𝑁

𝑖=1
𝑧
𝑖
/𝑁 and �̂�

𝑖
= 𝑧
𝑖
− 𝑧. One has ∑

𝑁−1

𝑖=1
∑
𝑁

𝑗>𝑖
‖�̂�
𝑗
− �̂�
𝑖
‖
2

=

𝑁∑
𝑁

𝑖=1
‖�̂�
𝑖
‖
2.

Let 𝑥
𝑐
and V

𝑐
be the position and velocity of the mass

center of system (8), respectively as follows:

𝑥
𝑐
=

∑
𝑁

𝑖=1
𝑥
𝑖

𝑁
, V

𝑐
=

∑
𝑁

𝑖=1
V
𝑖

𝑁
. (9)

In view of 𝑎
𝑖𝑗
(𝑥) = 𝑎

𝑗𝑖
(𝑥), 𝑟
𝑖𝑗
= 𝑟
𝑗𝑖
, and Remark 7, we can

obtain ̇V
𝑐
(𝑡) = 0. It follows that the velocity of the centroid of

multiagent system (8) is a constant; that is, V
𝑐
(𝑡) = V

𝑐
(0) for all

𝑡 ≥ 0. Let 𝑥
𝑖
= 𝑥
𝑖
− 𝑥
𝑐
and V̂
𝑖
= V
𝑖
− V
𝑐
. It is obvious to see that

∑
𝑁

𝑖=1
𝑥
𝑖
= 0 and∑

𝑁

𝑖=1
V̂
𝑖
= 0. Also, we have𝑥

𝑖
− 𝑥
𝑗
= 𝑥
𝑖
− 𝑥
𝑗
and

V̂
𝑖
−V̂
𝑗
= V
𝑖
−V
𝑗
.Then, it follows thatΨ(‖𝑥

𝑖
−𝑥
𝑗
‖) = Ψ(‖𝑥

𝑖
−𝑥
𝑗
‖)

and ∇
𝑥𝑖
Ψ(‖𝑥
𝑖
− 𝑥
𝑗
‖) = ∇

𝑥𝑖
Ψ(‖𝑥
𝑖
− 𝑥
𝑗
‖). Moreover, we have

𝑟
𝑖𝑗
= ‖𝑥
𝑖
− 𝑥
𝑗
‖, whose time derivative is

̇𝑟
𝑖𝑗
(𝑡) =

(V̂
𝑖
− V̂
𝑗
)
𝑇

(𝑥
𝑖
− 𝑥
𝑗
)

𝑟
𝑖𝑗

. (10)

Considering ̇𝑥
𝑐
= V
𝑐
and ̇V

𝑐
= 0, from (8) we have the

following error system:

̇�̂�
𝑖
(𝑡) = V̂

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁,

̇V̂
𝑖
(𝑡) =

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V̂

𝑗
− V̂
𝑖
)

+ 𝑘
𝑎

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑟
𝑖𝑗
− 𝜂

𝑟
𝑖𝑗

(𝑥
𝑗
− 𝑥
𝑖
)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


) ,

(11)

where 𝑎
𝑖𝑗
(𝑥) = 𝑎

𝑖𝑗
(𝑥) and 𝑥 = (𝑥

𝑇

1
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇.

To investigate the flocking behavior of multiagent system
(8), we define the following energy function:

𝑊(𝑡) =
1

2

𝑁

∑

𝑖=1

V̂𝑇
𝑖
V̂
𝑖
+

𝑘
𝑎

4

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑟
𝑖𝑗
− 𝜂)
2

+
1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

Ψ(

𝑥
𝑖
− 𝑥
𝑗


) .

(12)

Theorem 10. For a flock of 𝑁 agents with dynamics (8),
assume that the initial energy defined by (12) is finite, the
initial positions satisfy ‖𝑥

𝑖
(0) − 𝑥

𝑗
(0)‖ > 0 for all 𝑖 ̸= 𝑗, and

the repulsive function Ψ is chosen to be bounded according to
Definition 4.Then, multiagent system (8) exhibits asymptotical
flocking with the common velocity V

𝑐
(0); that is, the velocity of

the mass center, and the collision between any two agents can
always be avoided if the repulsive function Ψ satisfies 𝑊(0) <

Ψ(0).

Proof. Considering (10) and Remark 7, we compute the time
derivative of 𝑊(𝑡) in (12) along the trajectory of (11) as
follows:

𝑊(𝑡) =

𝑁

∑

𝑖=1

V̂𝑇
𝑖

[

[

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V̂

𝑗
− V̂
𝑖
)

+ 𝑘
𝑎

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑟
𝑖𝑗
− 𝜂

𝑟
𝑖𝑗

(𝑥
𝑗
− 𝑥
𝑖
)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


)]

]

+
𝑘
𝑎

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑟
𝑖𝑗
− 𝜂

𝑟
𝑖𝑗

(V̂
𝑖
− V̂
𝑗
)
𝑇

(𝑥
𝑖
− 𝑥
𝑗
)

+

𝑁

∑

𝑖=1

V̂𝑇
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


)

=

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

[𝑎
𝑖𝑗
(𝑥) V̂𝑇
𝑖
(V̂
𝑗
− V̂
𝑖
)

+𝑎
𝑗𝑖
(𝑥) V̂𝑇
𝑗
(V̂
𝑖
− V̂
𝑗
)]

+ 𝑘
𝑎

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

[

𝑟
𝑖𝑗
− 𝜂

𝑟
𝑖𝑗

V̂𝑇
𝑖
(𝑥
𝑗
− 𝑥
𝑖
)

+

𝑟
𝑗𝑖
− 𝜂

𝑟
𝑗𝑖

V̂𝑇
𝑗
(𝑥
𝑖
− 𝑥
𝑗
)]

+
𝑘
𝑎

2

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

[

𝑟
𝑖𝑗
− 𝜂

𝑟
𝑖𝑗

(V̂
𝑖
− V̂
𝑗
)
𝑇

(𝑥
𝑖
− 𝑥
𝑗
)

+

𝑟
𝑗𝑖
− 𝜂

𝑟
𝑗𝑖

(V̂
𝑗
− V̂
𝑖
)
𝑇

(𝑥
𝑗
− 𝑥
𝑖
)]

= −

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

𝑎
𝑖𝑗
(𝑥) (V̂

𝑗
− V̂
𝑖
)
𝑇

(V̂
𝑗
− V̂
𝑖
)

≤ −min
𝑗>𝑖

𝑎
𝑖𝑗
(𝑥)

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

(V̂
𝑗
− V̂
𝑖
)
𝑇

(V̂
𝑗
− V̂
𝑖
)

= −𝑁min
𝑗>𝑖

𝑎
𝑖𝑗
(𝑥)

𝑁

∑

𝑖=1

V̂𝑖


2

≤ 0,

(13)

where we use 𝑎
𝑖𝑗
(𝑥) = 𝑎

𝑗𝑖
(𝑥) and 𝑟

𝑖𝑗
= 𝑟
𝑗𝑖
, and the fact that

∑
𝑁−1

𝑖=1
∑
𝑁

𝑗>𝑖
‖V̂
𝑗
− V̂
𝑖
‖
2

= 𝑁∑
𝑁

𝑖=1
‖V̂
𝑖
‖
2 (see Lemma 9) to obtain

the third and the last equalities, respectively.
By (13), we have 𝑊(𝑡) ≤ 0, which means that 𝑊(𝑡) ≤

𝑊(0) < ∞ holds for all 𝑡 ≥ 0. Then, it follows from (12) that

𝑘
𝑎

4

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑟
𝑖𝑗
− 𝜂)
2

≤ 𝑊(0) . (14)
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Since 𝑟
𝑖𝑗
= 𝑟
𝑗𝑖
, from (14) we obtain |𝑟

𝑖𝑗
−𝜂| ≤ √2𝑊(0)/𝑘

𝑎
,

which means that


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


≤ 𝜂 + √

2𝑊(0)

𝑘
𝑎

< ∞, 𝑖 ̸= 𝑗, 𝑡 ≥ 0. (15)

Hence, the cohesion condition of Definition 1 is satisfied.
By (2) and (15), we have 𝑎

𝑖𝑗
(𝑥) > 0 for all 𝑖 ̸= 𝑗. In view of

(13), we have 𝑊(𝑡) ≡ 0 if and only if V̂
𝑖
(𝑡) = 0

𝑛
, 𝑖 = 1, . . . , 𝑁.

Let V̂(𝑡) = (V̂𝑇
1
(𝑡), . . . , V̂𝑇

𝑁
(𝑡))
𝑇. Thus, the set M = {V̂(𝑡) |

V̂(𝑡) = 0
𝑁𝑛

} is the largest invariant set contained in the set
D = {V̂(𝑡) | 𝑊(𝑡) ≡ 0} for error system (11). According to
LaSalle’s invariance principle [20], starting from any initial
condition, every solution of system (11) approaches M as
𝑡 → ∞, that is, V̂

𝑖
(𝑡) → 0

𝑛
, 𝑖 = 1, . . . , 𝑁. So, the flock with

dynamics (8) converges to a common velocity V
𝑐
(0), that is,

the velocity of the mass center.
Now we show that the collision between any two agents

in multiagent system (8) can always be avoided if 𝑊(0) <

Ψ(0) is satisfied. Suppose that agents 𝑖 and 𝑗 collides at some
time instant 𝑡

1
> 0. Then, we obtain Ψ(‖𝑥

𝑖
(𝑡
1
) − 𝑥
𝑗
(𝑡
1
)‖) =

Ψ(‖𝑥
𝑖
(𝑡
1
) − 𝑥
𝑗
(𝑡
1
)‖) = Ψ(0). From (12), we have 𝑊(𝑡

1
) ≥

Ψ(0). Considering the assumption of Ψ(0) > 𝑊(0), we have
𝑊(𝑡
1
) > 𝑊(0). However, 𝑊(𝑡

1
) ≤ 𝑊(0) always holds since

𝑊(𝑡) ≤ 0. Hence, a contradiction occurs. Then, the distance
between any two agents in multiagent system (8) should
always be greater than zero, which ensures the collision-free
motion of the flocking model (8).

Now, all three conditions of asymptotical flocking in
Definition 1 hold. This completes the proof.

Remark 11. From Theorem 10, we know that the velocity
convergence of flocking model (8) is independent of the
parameter 𝛽, which improves the original Cucker-Smale
model and its existing variations.

Remark 12. The flocking model (8) theoretically ensures that
any two agents will never collide during the time evolution
of the system thus improving the augmented Cucker-Smale
model (7).

Remark 13. From the proof of Theorem 10, we have
|𝑟
𝑖𝑗

− 𝜂| ≤ √2𝑊(0)/𝑘
𝑎
. Then, it follows that the term

𝑘
𝑎
∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
((𝑟
𝑖𝑗

− 𝜂)/𝑟
𝑖𝑗
)(𝑥
𝑗
− 𝑥
𝑖
)√2𝑊(0)/𝑘

𝑎
in multiagent

system (8) yields bounded bonding forces among
agents satisfying ‖𝑘

𝑎
∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
((𝑟
𝑖𝑗

− 𝜂)/𝑟
𝑖𝑗
)(𝑥
𝑗

− 𝑥
𝑖
)‖ ≤

(𝑁 − 1)√2𝑘
𝑎
𝑊(0). If the repulsive function Ψ is bounded,

the repulsive force in (8) is also bounded satisfying
‖∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
∇
𝑥𝑖
Ψ(‖𝑥
𝑖
− 𝑥
𝑗
‖)‖ ≤ (𝑁 − 1)max

𝑖 ̸= 𝑗
𝑔
𝑟
(‖𝑥
𝑖
−

𝑥
𝑗
‖)sup
𝑖 ̸= 𝑗

‖𝑥
𝑖
− 𝑥
𝑗
‖ ≤ (𝑁 − 1)𝑃(𝜂 + √2𝑊(0)/𝑘

𝑎
) by

Definition 4 and (15).

Remark 14. From Theorem 10, we know that the bounded
repulsive function Ψ for the flocking model (8) can be
designed based on Definition 4 and the initial energy of the
flock.

3.2. Cucker-Smale Flocking with Attractive and Repulsive
Forces. For a network of agents, Gazi and Passino [18]
proposed the following swarming model:

̇𝑥
𝑖
(𝑡) = − 𝑎

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑥
𝑖
− 𝑥
𝑗
)

+ 𝑏

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑥
𝑖
− 𝑥
𝑗
) exp(−


𝑥
𝑖
− 𝑥
𝑗



2

𝑐
) ,

(16)

where 𝑎, 𝑏 and 𝑐 are positive parameters, the first and the
second terms in the right-hand side describe the attraction
and repulsion among the agents, respectively. Motivated by
the aggregation technique in the swarming model (16), we
introduce both attractive and repulsive forces to the original
Cucker-Smale model (1) as follows:

̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁,

̇V
𝑖
(𝑡) =

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V

𝑗
− V
𝑖
)

+
𝑘
𝑎

𝑁

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑥
𝑗
− 𝑥
𝑖
)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


) ,

(17)

where 𝑘
𝑎

> 0, and Ψ(‖𝑥
𝑖
− 𝑥
𝑗
‖) is a bounded repulsive

function described in Definition 4.

Remark 15. Later, we will show that the terms (𝑘
𝑎
/𝑁)

∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
(𝑥
𝑗
−𝑥
𝑖
) and−∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
∇
𝑥𝑖
Ψ(‖𝑥
𝑖
−𝑥
𝑗
‖) in (17) can yield

bounded attractive and repulsive forces among the agents,
respectively.

Let 𝑥
𝑐
and V
𝑐
be the position and the velocity of the mass

center of multiagent system (17), respectively. It is easy to
verify ̇V

𝑐
= 0, which means that the velocity of the centroid

is constant. Let 𝑥
𝑖
= 𝑥
𝑖
− 𝑥
𝑐
and let V̂

𝑖
= V
𝑖
− V
𝑐
. Note that

∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
(𝑥
𝑗
− 𝑥
𝑖
) = 𝑁(𝑥

𝑐
− 𝑥
𝑖
) = −𝑁𝑥

𝑖
. From (17), we obtain

the following error system:

̇�̂�
𝑖
(𝑡) = V̂

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁,

̇V̂
𝑖
(𝑡) =

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V̂

𝑗
− V̂
𝑖
) − 𝑘
𝑎
𝑥
𝑖

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


) .

(18)



6 Abstract and Applied Analysis

Construct the following energy function to study the
flocking behavior of multiagent system (17):

𝑊(𝑡) =
1

2

𝑁

∑

𝑖=1

V̂𝑇
𝑖
V̂
𝑖
+

𝑘
𝑎

2

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖
𝑥
𝑖

+
1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

Ψ(

𝑥
𝑖
− 𝑥
𝑗


) .

(19)

Theorem 16. For flocking system (17), assume that the initial
energy defined by (19) is finite, the initial positions satisfy
‖𝑥
𝑖
(0) − 𝑥

𝑗
(0)‖ > 0 for all 𝑖 ̸= 𝑗, and the repulsive function

Ψ is designed to be bounded based on Definition 4. Then, the
flocking system (17) reaches velocity consensus on the common
value V

𝑐
(0), and the collision-free motion of the flock can be

ensured if 𝑊(0) < Ψ(0) holds.

Proof. The proof can be carried out following the similar
procedure for the proof of Theorem 10. The time derivative
of𝑊(𝑡) in (19) along the trajectory of (18) yields

𝑊(𝑡) =

𝑁

∑

𝑖=1

V̂𝑇
𝑖

[

[

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑥) (V̂

𝑗
− V̂
𝑖
)

− 𝑘
𝑎
𝑥
𝑖
−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


)]

]

+ 𝑘
𝑎

𝑁

∑

𝑖=1

V̂𝑇
𝑖
𝑥
𝑖
+

𝑁

∑

𝑖=1

V̂𝑇
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∇
𝑥𝑖
Ψ(


𝑥
𝑖
− 𝑥
𝑗


)

=

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

[𝑎
𝑖𝑗
(𝑥) V̂𝑇
𝑖
(V̂
𝑗
− V̂
𝑖
)

+𝑎
𝑗𝑖
(𝑥) V̂𝑇
𝑗
(V̂
𝑖
− V̂
𝑗
)]

= −

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

𝑎
𝑖𝑗
(𝑥) (V̂

𝑗
− V̂
𝑖
)
𝑇

(V̂
𝑗
− V̂
𝑖
)

≤ −min
𝑗>𝑖

𝑎
𝑖𝑗
(𝑥)

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

(V̂
𝑗
− V̂
𝑖
)
𝑇

(V̂
𝑗
− V̂
𝑖
)

= −𝑁min
𝑗>𝑖

𝑎
𝑖𝑗
(𝑥)

𝑁

∑

𝑖=1

V̂𝑖


2

.

(20)

By (20), we have 𝑊(𝑡) ≤ 0. Thus, 𝑊(𝑡) ≤ 𝑊(0) < ∞ for
all 𝑡 ≥ 0. From (19), we obtain

𝑘
𝑎

2

𝑁

∑

𝑖=1

𝑥
𝑖
(𝑡)
𝑇

𝑥
𝑖
(𝑡) ≤ 𝑊 (0) . (21)

Then, it follows that ‖𝑥
𝑖
‖ = ‖𝑥

𝑖
− 𝑥
𝑐
‖ ≤ √2𝑊(0)/𝑘

𝑎
, 𝑖 =

1, . . . , 𝑁, which indicates that the term (𝑘
𝑎
/𝑁)∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
(𝑥
𝑗
−

𝑥
𝑖
) = −𝑘

𝑎
𝑥
𝑖
in (17) creates attractive forces among agents

such that the positions of all agents remain bounded in a ball

centered at𝑥
𝑐
with radius𝑅 = √2𝑊(0)/𝑘

𝑎
.Then, the distance

between any two agents satisfies


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


≤ 2𝑅 < ∞, 𝑖 ̸= 𝑗, 𝑡 ≥ 0. (22)

Since ‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ ≤ 2𝑅 < ∞, we have 𝑎

𝑖𝑗
(𝑥) > 0 for

all 𝑖 ̸= 𝑗 by (2). Then, in view of (20), we have𝑊(𝑡) ≡ 0 if and
only if V̂

𝑖
(𝑡) = 0

𝑛
, 𝑖 = 1, . . . , 𝑁. Following the similar lines

in the proof of Theorem 10, we can show that the velocities
of all agents in system (17) converge to the common velocity
V
𝑐
(0), and the distance between any two agents is always

greater than zero if the bounded repulsive functionΨ satisfies
𝑊(0) < Ψ(0).

Remark 17. From the proof of Theorem 16, we have
‖𝑥
𝑖
‖ ≤ √2𝑊(0)/𝑘

𝑎
. Then, it follows that the term

(𝑘
𝑎
/𝑁)∑

𝑁

𝑗=1,𝑖 ̸= 𝑗
(𝑥
𝑗
− 𝑥
𝑖
) = −𝑘

𝑎
𝑥
𝑖
in (17) yields a bounded

attractive force, that is, 𝑘
𝑎
‖𝑥
𝑖
‖ ≤ √2𝑘

𝑎
𝑊(0). If the repulsive

function Ψ is bounded, the repulsive force in (17) is
also bounded satisfying ‖∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
∇
𝑥𝑖
Ψ(‖𝑥
𝑖
− 𝑥
𝑗
‖)‖ ≤ (𝑁 −

1)max
𝑖 ̸= 𝑗

𝑔
𝑟
(‖𝑥
𝑖
−𝑥
𝑗
‖)sup
𝑖 ̸= 𝑗

‖𝑥
𝑖
−𝑥
𝑗
‖ ≤ 2(𝑁−1)𝑃√2𝑊(0)/𝑘

𝑎

by Definition 4 and (22).

4. Numerical Results

This section provides two simulation examples to verify our
theoretical results. The bounded repulsive function (5), that
is, Ψ(‖𝑥

𝑖
− 𝑥
𝑗
‖) = 𝑄 exp(−𝜇 ‖𝑥

𝑖
− 𝑥
𝑗
‖
2

) for ‖𝑥
𝑖
− 𝑥
𝑗
‖ >

0, is adopted to avoid interagent collisions. Define 𝑑(𝑡) =

min
𝑖 ̸= 𝑗

‖𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ to measure the proximity of the agents

[17].

Example 18. Consider flocking model (8) with ten two-
dimensional agents. Initially, the minimum distance between
any two agents is 1.6584. The system parameters are chosen
to be 𝐻 = 1, 𝛽 = 0.5, 𝑘

𝑎
= 0.01, and 𝜂 = 1.5. The

parameters of the repulsive function are taken as𝑄 = 140 and
𝜇 = 3. After some simple calculation using (12), we obtain
𝑊(0) = 131.5835 which is the initial energy of the flock.
Considering 𝑊(0) < Ψ(0) = 𝑄 = 140, we know that the
condition on the bounded repulsive function inTheorem 10 is
satisfied. FromFigure 1(a), we can see that the flock converges
to a common velocity. The cohesiveness among agents is
clearly shown in Figure 1(b), in which the symbols “+” and
“o” denote the starting and ending points of the trajectory of
an agent, respectively. In particular, from Figure 1(c), we note
that collision avoidance in the flock is ensured because the
minimal interagent distance is always greater than zero.

Example 19. Consider a multiagent system composed of ten
two-dimensional agents described by dynamics (17) with
𝐻 = 1, 𝛽 = 0.95, and 𝑘

𝑎
= 0.01. The initial positions

of the agents satisfy min
𝑖 ̸= 𝑗

‖𝑥
𝑖
(0) − 𝑥

𝑗
(0)‖ = 2.4876. The

parameters of the repulsive function are given by 𝑄 = 40

and 𝜇 = 1.8. By (19), the initial energy of the flock is
determined to be 𝑊(0) = 34.0842. Hence, the condition
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Figure 1: Flocking behavior of multiagent system (8) with ten two-dimensional agents.

for the bounded repulsive function in Theorem 16 holds in
view of 𝑊(0) < Ψ(0) = 𝑄 = 40. Figure 2(a) shows that
the flock achieves velocity consensus. The cohesive behavior
of the flock is demonstrated by Figure 2(b). Figure 2(c)
indicates that the interagent distance is always greater than
zero which guarantees the collision-freemotion of the agents.

5. Conclusions and Future Work

In this paper, we have proposed two Cucker-Smale-type
flocking models with both cohesive and repulsive forces to
improve the original Cucker-Smale model and its existing
variations. It is shown that the velocity convergence of the
flocking system is independent of the parameter 𝛽 describing
the decay of communication rates. We have also proved that
the collision-free motion of the multiagent system can always
be guaranteed by choosing an appropriate bounded repulsive
function according to the initial energy of the flock. Up to

date, the Cucker-Smale-type flocking models assume that
each agent has the same sensing radius, which implies that
the network topology is undirected. However, the sensing
radii of the agents in a multiagent system may be different in
many practical cases. In our future work, we will consider the
Cucker-Smale flocking problem for multiagent systems with
directed topologies.
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This paper is concernedwith the consensus problem of general linear discrete-timemultiagent systems (MASs) with randompacket
dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being
a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout
phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem.
Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs
to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square
consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness
of the theoretical results is demonstrated through an illustrative example.

1. Introduction

Multiagent systems (MASs) are kinds of networked systems
in which each agent updates its states based on the informa-
tion exchanges over communication networks. Due to their
broad applications in many areas such as sensor networks
[1], distributed computation [2], swarms and flocks [3], and
formation control [4], the consensus problem of MASs has
attracted increasing attention in recent years, and consider-
able interesting results have been obtained on this problem.

At the beginning, the consensus problem is investigated
mainly for first-order and second-order MASs. Olfati-Saber
andMurray [5] studied the consensus problem for a network
of first-order integrators under various topology conditions,
including directed or undirected, fixed or switching, andwith
or without communication time-delays; Hatano andMesbahi
[6] studied the asymptotic agreement of first-order contin-
uous MASs over random information network based on
stochastic stability analysis; Zhang and Tian [7] investigated
the MASs consisting of discrete-time second-order agents

under stochastic switching topology and proved that MASs
can achieve mean-square consensus if and only if the union
graphs in the topology set are connected. Sun et al. [8] inves-
tigated the finite-time consensus for first- and second-order
leader-following Multiagent systems. In [9], Lin et al. further
studied the consensus problems of a class of high-order
Multiagent systems with dynamically changing topologies
and time-delays and proved that the communication time-
delays do not affect the stability of the Multiagent sys-
tems.

Recently, some researches on MASs with general linear
dynamics have been conducted. Li et al. [10] proved that
MASs with a communication topology having a spanning
tree can reach consensus under an observe-type protocol
if and only if each agent is stabilizable and detectable. Xu
et al. [11] investigated the information structure for the
consensusability of MASs under both fixed and switching
topologies with dynamic output feedback control. In [12], Xu
et al. further studied the leader-following consensus problem
of discrete-time Multiagent systems with switching and
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undirected topology by applying two kinds of distributed
observer-based consensus protocols to each agent. Su and
Huang [13] proved that if the system matrix is marginally
stable and the dynamic graph is jointly connected, both the
leaderless and the leader-following consensus problems for
linear discrete-time Multiagent systems under switching
network topology can be solved.

Note that most of the existing results on the consensus
problem of MASs are derived from the assumption that the
network communication environment is perfect. However,
communication constraints which may deteriorate the per-
formance of MASs are inevitable in practice. There are num-
erous studies focusing on the consensus problem for MASs
with either communication time delay or presence of per-
turbation or both of them, such as [14–18], but as one
of the main reasons for performance deterioration, packet
dropout, which takes place frequently during the information
exchange between agents, is not fully investigated. Therefore,
it is of great significance to study the effect of packet dropout
in MASs. Ren and Beard [19] studied the consensus problem
for first-order continuous-time agents communicating via
unreliable network through dynamically changing interac-
tion topology method and proved that asymptotic consensus
can be achieved if the union of the directed graph had a span-
ning tree frequently enough. Sun et al. [20] investigated the
convergence and convergence speed for the second-order and
the high-order discrete-time Multiagent systems with rand-
om networks and arbitrary weights. Zhang and Tian [21]
investigated the mean-square consensus problem for contin-
uous time second-order MASs disturbed by noise, variable
delays, and occasional packet dropout and discussed the nec-
essary and sufficient condition for mean-square robust con-
sensusability. And in [22], Zhang and Tian further studied
the consensus seeking problem for linear MASs, where each
agent communicates via a weighted random lossy network
and derived the maximum allowable loss probability.

Motivated by the above analysis, this paper is concerned
with consensus problem of general linear discrete-timeMASs
with random packet dropout that happens during the infor-
mation exchange between agents, which, to the best of our
knowledge, has not been fully investigated until now. The
contribution of this paper lies in the following: first, a dis-
tributed consensus protocol with weighted graph is proposed
to address the packet dropout phenomenon; second, through
introducing a new disagreement vector, the dynamic average
consensus problem is studied based on the established new
framework; third, the necessary and sufficient condition for
MASs to reach mean-square consensus is derived in terms
of stability of an array of low-dimensional matrices, which is
easier to be used in reality; moreover, mean-square consen-
susable conditionswith regard to network topology and agent
dynamic structure are also provided.

The rest of this paper is organized as follows. In Section
2, modeling construction of Multiagent systems with packet
dropout is proposed, and someuseful lemmas are introduced.
In Section 3, a new framework is derived to address the con-
sensus problem of MASs. The consensusable conditions with
regard to network topology and agent dynamic structure are
presented in Section 4. In Section 5, an illustrative example

is provided to demonstrate the effectiveness of our results.
Concluding remarks are drawn in Section 6.

Notation. R𝑛 and R𝑚×𝑛 denote the 𝑛-dimensional Euclidean
space and the set of 𝑚 × 𝑛 real matrix, respectively, and 𝐼

𝑁

represents an𝑁-dimensional identitymatrix. diag{⋅} refers to
a diagonal matrix, or a block diagonal matrix. For matrices𝐴
and𝐵,𝐴 > 𝐵 implies that𝐴 and𝐵 are symmetricmatrices and
that𝐴−𝐵 is positive definite.The superscript 𝑇 and −1mean
transpose and inverse of a real matrix separately, and symbol
∗ in a symmetric matrix implies a block that can be induced
by symmetry. 𝜆min(⋅), 𝜆max(⋅) and 𝜌(⋅), denote, respectively,
the smallest eigenvalue, the largest eigenvalue and the spec-
tral radius of amatrix. Prob{⋅} stands for the occurrence prob-
ability of a stochastic event and Prob{⋅ | ⋅} the conditional
probability.𝐸(⋅) is themathematical expectation operator. ‖⋅‖
and ‖ ⋅ ‖

1
stand the 2-norm and 1-norm respectively.

2. Problem Formulation and Preliminaries

Consider a system of 𝑁 agents with identical general linear
dynamics. The dynamic equation of agent 𝑖 is described by

𝑥
𝑖
(𝑘 + 1) = 𝐴𝑥

𝑖
(𝑘) + 𝐵𝑢

𝑖
(𝑘) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑥
𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
]
𝑇

∈ 𝑅
𝑛 is the state variable, 𝑢

𝑖
∈

R𝑚 is the control input, and 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are
known constant matrices.

Suppose that there is a predesigned undirected fixed
topology 𝐺 which guarantees the effective communication
between distinct nodes. This assumption is quite reasonable,
since it is impossible to reach consensus under an uncon-
nected topology. Denote 𝑁

𝑖
as the neighbor set of the node

𝑖 and 𝐴
𝐺
= [𝑎
𝑖𝑗
] ∈ 𝑅
𝑁×𝑁 as the weighted adjacency matrix of

undirected graph 𝐺 with 𝑎
𝑖𝑖
= 0, and for any 𝑖 belongs to set

𝑁
𝑖
, 𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
> 0, otherwise, 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
= 0.

Under ideal communication environment, the commonly
used linear distributed consensus protocol in MASs is as
follows:

𝑢
𝑖
(𝑘) = 𝐾 ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) , 𝑖 = 1, 2, . . . , 𝑁, (2)

where𝐾 ∈ R𝑚×𝑛 is the gain matrix.
As mentioned in Section 1, packet dropout is inevitable

in practical environment. In this paper, Bernoulli distributed
white sequence {𝜃

𝑖𝑗
(𝑘)} is introduced to model the unrelia-

bility of the link between agent 𝑖 and agent 𝑗. At any given
time instant 𝑘, for any 𝑗 ∈ 𝑁

𝑖
, 𝜃
𝑖𝑗
(𝑘) takes value in the set

{0, 1}. Suppose that for any 𝑖, 𝑗 ∈ {1, . . . , 𝑁}, 𝜃
𝑖𝑗
(𝑘) is mutually

independent; that is, the packet dropout probability between
each pair of agents is independent. When the packet is
transmitted successfully between agent 𝑖 and agent 𝑗, 𝜃

𝑖𝑗
(𝑘) =

1; when packet dropout takes place between agent 𝑖 and agent
𝑗, 𝜃
𝑖𝑗
(𝑘) = 0, which can be described as

𝜃
𝑖𝑗
(𝑘) = {

0, with probability 𝑝
𝑖𝑗
,

1, with probability 1 − 𝑝
𝑖𝑗
,

(3)
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where 𝑝
𝑖𝑗
is the occurrence probability of packet dropout

between 𝑖 and 𝑗, and for any 𝑗 ∉ 𝑁
𝑖
, 𝜃
𝑖𝑗
(𝑘) ≡ 0, 𝑝

𝑖𝑗
≡ 1.

Besides, due to the occurrence of packet dropout, the
topology of MAS (1) is no longer fixed. Denote |𝑁

𝑖
| as the

number of agents in set 𝑁
𝑖
, 𝑆 as the total number of the

possible topologies. It is easy to see that 𝑆 = 2
∑
𝑁

𝑖=1
|𝑁𝑖|/2;

then the topology of the MAS is changing among the set
{𝐺
1
, . . . , 𝐺

𝑆
}. Suppose that at certain time instant 𝑘, 𝜃

𝑖𝑗
(𝑘) =

𝜃
𝑚

𝑖𝑗
and the network topology is 𝐺

𝑚
, then the occurrence

probability of graph 𝐺
𝑚
,𝑚 = 1, . . . , 𝑆, is

𝜋
𝑚
= ∏

𝑖=1, 𝑖<𝑗

(𝜃
𝑚

𝑖𝑗
(1 − 𝑝

𝑖𝑗
) + (1 − 𝜃

𝑚

𝑖𝑗
) 𝑝
𝑖𝑗
) . (4)

Based upon the above analysis, the following distributed
consensus protocol is employed in this paper:

𝑢
𝑖
(𝑘) = 𝐾 ∑

𝑗∈𝑁𝑖

𝜃
𝑖𝑗
(𝑘) 𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) , 𝑖 = 1, . . . , 𝑁,

(5)

where𝐾 is the state feedback gain matrix to be designed.
Substituting (5) into (1), the dynamic equation of agent 𝑖

can be rewritten as

𝑥
𝑖
(𝑘 + 1) = 𝐴𝑥

𝑖
(𝑘) + 𝐵𝐾 ∑

𝑗∈𝑁𝑖

𝜃
𝑖𝑗
(𝑘) 𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) .

(6)

Then, the states of MAS (1) evolve according to the following
linear system:

𝑥 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐿

𝜎(𝑘)
⊗ (𝐵𝐾)) 𝑥 (𝑘) , (7)

where 𝑥 = [𝑥
𝑇

1
, . . . , 𝑥

𝑇

𝑁
]
𝑇, 𝜎(⋅) : 𝑍

+

→ {1, 2, . . . , 𝑆} is a
stochastic process driven by an i.i.d. process and𝐿

𝜎(𝑘)
∈ {𝐿
𝑚
},

where 𝐿
𝑚
= [𝑙
𝑚

𝑖𝑗
]
𝑁×𝑁

, 𝑚 = 1, . . . , 𝑆, is the Laplacian matrix
associated with 𝐺

𝑚
, with

𝑙
𝑚

𝑖𝑗
=

{{{

{{{

{

𝑁

∑

𝑗=1

𝜃
𝑚

𝑖𝑗
𝑎
𝑖𝑗
, 𝑖 = 𝑗,

−𝜃
𝑚

𝑖𝑗
𝑎
𝑖𝑗,

𝑖 ̸=𝑗.

(8)

Obviously, the Laplacian matrix 𝐿
𝑚
is a symmetric matrix

with zero row sum that is, ∀𝑖 ̸=𝑗, 𝑙
𝑖𝑗
= 𝑙
𝑗𝑖
, and ∑𝑁

𝑗=1
𝑙
𝑚

𝑖𝑗
= 0.

Before presenting ourmain results, the concepts ofmean-
square stability and mean-square consensus are introduced
first, and along with them are some useful lemmas which play
significant roles in the derivation of our results.

Definition 1 (see [23]). A closed-loop system is said to be
mean-square stable, if for any 𝜀 > 0, there exists 𝛿(𝜀) > 0 such
that for any 𝑘 > 0, 𝐸(‖𝑥(𝑘)‖2) < 𝜀 holds when 𝐸(‖𝑥(0)‖2) <
𝛿(𝜀). In addition, if lim

𝑘→∞
𝐸(‖𝑥(𝑘)‖

2

) = 0 for any initial
condition, then the closed-loop system is said to be globally
mean-square asymptotically stable.

Definition 2. Multiagent system (1) with protocol (5) is said
to reach consensus in mean-square sense, if for any initial

distribution and initial states, lim
𝑘→∞

𝐸(‖𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)‖
2

) =

0 holds for all 𝑖, 𝑗 ∈ {1, . . . , 𝑁}. Furthermore, if there exists a
proper state feedback gain matrix𝐾 such that the Multiagent
system can achieve mean-square consensus, then we say that
system (1) is mean-square consensusable under protocol (5).

Lemma 3 (see [21]). For any vector 𝑧(𝑘) ∈ R𝑛, denote 𝑧(𝑘) :=
𝐸(𝑧(𝑘) ⊗ 𝑧(𝑘)), then there is

𝐸 (‖𝑧 (𝑘)‖
2

) ≤ ‖𝑧 (𝑘)‖
1
≤ 𝑛𝐸 (‖𝑧 (𝑘)‖

2

) . (9)

Lemma 4 (see [6]). For an undirected graph with 𝑛 vertices,
the Laplacian is a positive-semidefinite symmetric matrix, and
the spectrum of a graph Laplacian is on the form

0 = 𝜆
1
(𝐿) ≤ 𝜆

2
(𝐿) ≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛−1
(𝐿) ≤ 𝜆

𝑛
(𝐿) , (10)

with 𝜆
2
(𝐿) > 0 if and only if the graph that corresponds to 𝐿 is

connected.

Lemma 5. ∑𝑆
𝑚=1

𝜋
𝑚
𝐿
𝑚
has only one zero eigenvalue, if and

only if the union graph of the topology set {𝐺
1
, . . . , 𝐺

𝑆
} is con-

nected.

Proof. Since∑𝑆
𝑚=1

𝜋
𝑚
𝐿
𝑚
can be treated as a Laplacian matrix

of a graph which has the same edges with the union graph of
the topology set {𝐺

1
, . . . , 𝐺

𝑆
}, then together with Lemma 4, it

can be obtained that Lemma 5 holds.

Lemma 6 (see [24]). For any𝐴 ∈ R𝑛×𝑛, there exist orthogonal
matrix 𝑈 and an upper triangular matrix 𝑉, such that

𝑈
𝑇

𝐴𝑈 = 𝑉 =

[
[
[
[

[

𝜇
1
V
12

⋅ ⋅ ⋅ V
1𝑛

𝜇
2
⋅ ⋅ ⋅ V
2𝑛

d
...
𝜇
𝑛

]
]
]
]

]

, (11)

where 𝜇
𝑖
, 𝑖 = 1, . . . , 𝑛, are the eigenvalues of matrix 𝐴.

3. Necessary and Sufficient Conditions for
Mean-Square Consensus

Introduce the following variable:

𝛿
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) −

1

𝑁

𝑁

∑

𝑗=1

𝑥
𝑗
(𝑘) . (12)

Rewrite (12) in a compact form, which is

𝛿 (𝑘) = (𝐶 ⊗ 𝐼
𝑛
) 𝑥 (𝑘) , (13)

where𝐶 = 𝐼
𝑁
− (1/𝑁) ⃗1 ⃗1

𝑇 and 𝛿 = [𝛿𝑇
1
, . . . , 𝛿

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛 is the

so-called disagreement vector.
It is easy to verify that 𝛿 evolves according to the following

disagreement dynamics:

𝛿 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐿

𝜎(𝑘)
⊗ (𝐵𝐾)) 𝛿 (𝑘) , (14)

where 𝛿(𝑘) is defined in (7).
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Since 𝐸(‖𝛿(𝑘)‖2) = 𝐸(𝑥
𝑇

(𝑘)(𝑄 ⊗ 𝐼
𝑛
)𝑥(𝑘)), where 𝑄 =

𝐶
𝑇

𝐶 = 𝐼
𝑁
− (1/𝑁) ⃗1 ⃗1

𝑇, it is easy to verify that

𝐸 (‖𝛿(𝑘)‖
2

) =
1

2𝑁
∑

𝑖 ̸= 𝑗

𝐸(

𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)



2

) . (15)

Equation (15) implies that the mean-square consensus
problem can be solved if and only if lim

𝑘→∞
𝐸(‖𝛿(𝑘)‖

2

) = 0.
From Definitions 1 and 2, it is easy to see that the consensus
problem of MAS (1) is converted to the mean square stability
analysis of system (14).

Remark 7. If the system matrix 𝐴 is Schur stable, which
means all eigenvalues of 𝐴 are located in the unit cir-
cle, MAS (1) would definitely reach consensus without the
design of consensus protocol, since under this condition,
for any 𝑖 ∈ {1, . . . , 𝑁}, 𝑥

𝑖
will converge to zero, and

lim
𝑘→∞

𝐸(‖𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)‖
2

) = 0 holds for sure. In view of
this, we assume that not all eigenvalues of 𝐴 are located in
the unit circle.

Theorem8. For any initial distribution and initial states,Mul-
tiagent system (1) with the Bernoulli packet dropout between
agents can achieve mean-square consensus under protocol (1),
if and only if

𝜌 (𝐴 − �̂�
𝑖
𝐵𝐾) < 1, (16)

where �̂�
𝑖
, 𝑖 = 2, . . . , 𝑁, are the eigenvalues of matrix

∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚
except one zero eigenvalue.

Proof. Since for each 𝜎(𝑘) = 𝑚, 𝑚 = 1, . . . , 𝑆, 𝐿
𝜎(𝑘)

is a
symmetric matrix with zero row sum, and 𝑤

𝑇

= (1/𝑁) ⃗1
𝑇

and ⃗1 are, respectively, the left and right eigenvectors of
𝐿
𝜎(𝑘)

associated with zero eigenvalue, we can construct an
invertible matrix 𝑇 = [ ⃗1 𝑇

1
] with 𝑇−1 = [𝑤 𝑇

2

𝑇

]
𝑇

, such
that

𝑇
−1

𝐿
𝜎(𝑘)

𝑇 = 𝐿
𝜎(𝑘)

= [
0 0

0 �̃�
𝜎(𝑘)

] , (17)

where 𝑇 ∈ R𝑁×𝑁, 𝑇
1
∈ R𝑁×(𝑁−1), 𝑇

2
∈ R(𝑁−1)×𝑁, and

�̃�
𝜎(𝑘)

= 𝑇
2
𝐿
𝜎(𝑘)

𝑇
1
∈ 𝑅
(𝑁−1)×(𝑁−1).

Introduce the following variable: 𝜑(𝑘) = (𝑇
−1

⊗ 𝐼
𝑛
)𝛿(𝑘),

where 𝜑 = [𝜑
𝑇

1
, . . . , 𝜑

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛; then (14) can be denoted in

terms of 𝜑 as

𝜑 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐿

𝜎(𝑘)
⊗ (𝐵𝐾)) 𝜑 (𝑘) . (18)

Note that 𝜑
1
= (𝑤
𝑇

⊗ 𝐼
𝑛
)𝛿 ≡ 0, which implies that state

𝜑
1
is always stable; thus, divide 𝜑(𝑘) into two parts; that is,

𝜑(𝑘) = [𝜑
𝑇

1
(𝑘), 𝜑
𝑇

(𝑘)]
𝑇, with 𝜑 = [𝜑

𝑇

2
, . . . , 𝜑

𝑇

𝑁
]
𝑇, it can be

derived from (17) and (18) that

𝜑 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝜑 (𝑘) , (19)

where 𝐴
𝜎(𝑘)

= 𝐼
𝑁−1

⊗ 𝐴 − �̃�
𝜎(𝑘)

⊗ (𝐵𝐾).

Similar to [21], let 𝜉(𝑘) = 𝐸(𝜑(𝑘)⊗𝜑(𝑘)); then 𝜉(𝑘) evolves
according to

𝜉 (𝑘 + 1) =

𝑆

∑

𝑚=1

𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
) 𝜉 (𝑘) . (20)

From Lemma 3, system (14) is mean-square stable if and
only if system (20) is stable. Then, from the discrete-time
system stability theory, it can be concluded that the necessary
and sufficient condition for mean-square stability of (14) is
𝜌(∑
𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
)) < 1.

Denote𝐴
𝑚
= Φ−Ψ

𝑚
𝐾withΦ = 𝐼

𝑁−1
⊗𝐴,Ψ

𝑚
= �̃�
𝑚
⊗𝐵,

𝐾 = 𝐼
𝑁−1

⊗ 𝐾, and 𝐾 = 𝜀𝐾
; then there is ∑𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗

𝐴
𝑚
) = Φ⊗Φ−𝜀(∑

𝑆

𝑚=1
𝜋
𝑚
Φ⊗(Ψ

𝑚
𝐾


)+∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


)⊗Φ)

+ 𝜀
2

∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


) ⊗ (Ψ
𝑚
𝐾


). The above equation can
be treated as a perturbation of Φ ⊗ Φ by two terms
depending on 𝜀. For small enough 𝜀, the above formula is
equal to ∑

𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
) = Φ ⊗ Φ − 𝜀(∑

𝑆

𝑚=1
𝜋
𝑚
Φ ⊗

(Ψ
𝑚
𝐾


) +∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


) ⊗Φ). Meanwhile, (∑𝑆
𝑚=1

𝜋
𝑚
𝐴
𝑚
) ⊗

(∑
𝑆

𝑚=1
𝜋
𝑚
𝐴
𝑚
) = Φ ⊗ Φ − 𝜀(∑

𝑆

𝑚=1
𝜋
𝑚
Φ ⊗ (Ψ

𝑚
𝐾


) +

∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


) ⊗ Φ) + 𝜀
2

∑
𝑆

𝑚=1
(𝜋
𝑚
Ψ
𝑚
𝐾


) ⊗ (𝜋
𝑚
Ψ
𝑚
𝐾


).
Likewise, by applying perturbation argument, for a small
enough 𝜀, 𝜌(∑𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
)) < 1 is equivalent to

𝜌((

𝑆

∑

𝑚=1

𝜋
𝑚
𝐴
𝑚
) ⊗ (

𝑆

∑

𝑚=1

𝜋
𝑚
𝐴
𝑚
)) < 1. (21)

Next, it will be proved that (21) holds if and only if (16)
is satisfied.

It can be seen from (18) that ∑𝑆
𝑚=1

𝜋
𝑚
�̃�
𝑚
has the same

eigenvalue with ∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚

and ∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚

except one
zero eigenvalue. Besides, based on Lemma 6, there exists an
orthogonal matrix 𝑈 ∈ 𝑅

(𝑁−1)×(𝑁−1) such that

𝑈
𝑇

(

𝑆

∑

𝑚=1

𝜋
𝑚
�̃�
𝑚
)𝑈 =

[
[
[
[
[

[

�̂�
2
∗ ⋅ ⋅ ⋅ ∗

�̂�
3
⋅ ⋅ ⋅ ∗

...
�̂�
𝑁

]
]
]
]
]

]

, (22)

where �̂�
𝑖
, 𝑖 = 2, . . . , 𝑁, are the eigenvalues of matrix

∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚
except one zero eigenvalue. It is easy to verify

that∑𝑆
𝑚=1

𝜋
𝑚
𝐴
𝑚
= 𝐼
𝑁−1

⊗𝐴−∑
𝑆

𝑚=1
𝜋
𝑚
�̃�
𝑚
⊗(𝐵𝐾) is similar to

[
[
[
[
[

[

𝐴 − �̂�
2
𝐵𝐾 ∗ ⋅ ⋅ ⋅ ∗

𝐴 − �̂�
3
𝐵𝐾 ⋅ ⋅ ⋅ ∗

d
...

𝐴 − �̂�
𝑁
𝐵𝐾

]
]
]
]
]

]

. (23)

Based on the matrix theory, matrix ∑
𝑆

𝑚=1
𝜋
𝑚
𝐴
𝑚

has the same eigenvalue with matrix (23), obviously
𝜌(∑
𝑆

𝑚=1
𝜋
𝑚
𝐴
𝑚
) < 1, if and only if (16) is satisfied. Then,

together with the properties of the Kronecker product, it is
safe to say that (21) holds if and only if (16) is satisfied, which
completes the proof.
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Remark 9. The contribution ofTheorem 8 lies in the fact that
it converts the consensus problem of MAS (1) into a set of
matrices with the same dimensions as a single agent, which
reduces the computational complexity greatly. Besides, while
in most of the existing results each agent is guaranteed to
achieve consensuswith agent 1, see [7, 11, 21] for example, or to
achieve average consensus, see [5], for example, in this paper a
new disagreement vector is introduced to solve the consensus
problem so that each agent will reach consensus on the aver-
age states of all agents, that is, dynamic average consensus.

4. Consensusability Analysis

Theorem 8 presents the numerical solution to consensus
problem, which also implies the design method of consensus
protocol. However, in practice, we are equally interested in
that under what conditions MAS (1) has the ability to reach
consensus and inequality (16) has a solution at the same time,
that is, what are the consensusable conditions? In this section,
we focus on addressing this problem.

Theorem 10. Multiagent system (1) with the Bernoulli packet
dropout between agents can achieve mean-square consensus
under protocol (5), if and only if the union graph of the topology
set {𝐺

1
, . . . , 𝐺

𝑆
} is connected, and (𝐴, 𝐵) is stabilizable.

Proof. Necessity: define 𝐸(𝐿
𝜎(𝑘)

) = ∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚

as the
expected Laplacianmatrix and its corresponding graph as the
expected graph. Since 𝐸(𝐿

𝜎(𝑘)
) is a symmetric matrix, there

exists an invertible matrix �̂� = [ ⃗1 𝐹] with �̂�−1 = [𝑤 𝐸
𝑇

]
𝑇

,
such that

�̂�
−1

𝐸 (𝐿
𝜎(𝑘)

) �̂� = Λ = [
0 0

0 Δ̂
] , (24)

where �̂� ∈ R𝑁×𝑁, 𝐹 ∈ R𝑁×(𝑁−1), 𝐸 ∈ R(𝑁−1)×𝑁, 𝑤𝑇,
which is defined in (18), is also the left eigenvalue of 𝐸(𝐿

𝜎(𝑘)
)

associated with zero eigenvalue, and Δ̂ ∈ 𝑅
(𝑁−1)×(𝑁−1) is

a diagonal matrix with its diagonal elements being �̂�
𝑖
, 𝑖 =

2, . . . , 𝑁.
Denote 𝜙(𝑘) = 𝐸(𝛿(𝑘)); then 𝜙(𝑘) evolves according to

𝜙 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐸 (𝐿

𝜎(𝑘)
) ⊗ (𝐵𝐾)) 𝜙 (𝑘) , (25)

where 𝜙 = [𝜙𝑇
1
, . . . , 𝜙

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛.

Similar to the proof inTheorem 8, introduce the following
variable transformation: 𝜁(𝑘) = (�̃�

−1

⊗ 𝐼
𝑛
)𝜙(𝑘); then the

dynamic equation of 𝜁(𝑘) can be written as

𝜁 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − Λ ⊗ (𝐵𝐾)) 𝜁 (𝑘) , (26)

where 𝜁 = [𝜁𝑇
1
, . . . , 𝜁

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛.

Notice that 𝜁
1
(𝑘) = (𝑤

𝑇

⊗ 𝐼
𝑁
)𝐸(𝛿(𝑘)) ≡ 0, divide

𝜁(𝑘) = (𝑤
𝑇

⊗ 𝐼
𝑁
)𝐸(𝛿(𝑘)) ≡ 0 into two parts, that is, 𝜁(𝑘) =

[𝜁
𝑇

1
(𝑘), 𝜁
𝑇

(𝑘)]
𝑇, from (19) and (21), it can be derived that

𝜁 (𝑘 + 1) =

[
[
[
[
[

[

𝐴 − �̂�
2
𝐵𝐾 0 ⋅ ⋅ ⋅ 0

𝐴 − �̂�
3
𝐵𝐾 ⋅ ⋅ ⋅ 0

d
...

𝐴 − �̂�
𝑁
𝐵𝐾

]
]
]
]
]

]

𝜁 (𝑘) .

(27)

If the union graph of the topology set {𝐺
1
, . . . , 𝐺

𝑆
} is not

connected, the expected graph is definitely not connected.
It can be obtained from Lemma 3 that 0 = �̂�

2
≤ �̂�
3
≤

⋅ ⋅ ⋅ ≤ �̂�
𝑁
. Due to the fact that not all eigenvalues of 𝐴 are

located in the unit circle, there exists an initial state such that
lim
𝑘→∞

𝜁(𝑘) ̸=0 and lim
𝑘→∞

𝐸(𝛿(𝑘)) ̸=0 thus; system (14) is
not mean-square stable since 𝐸(‖𝛿(𝑘)‖2) ≥ ‖𝐸(𝛿(𝑘))‖

2, and
consequently, Multiagent system (1) cannot achieve mean-
square consensus.

Besides, if (𝐴, 𝐵) is unstabilizable, it is impossible to
guarantee that 𝜌(𝐴 − �̂�

𝑖
𝐵𝐾) < 1, 𝑖 = 2, . . . , 𝑁, even if the

topology condition is satisfied, and system (27) is still not
guaranteed to be stable.

Sufficiency: It can be derived from Lemma 5 that when
the union of the graphs in the topology set is connected,
all eigenvalues of ∑𝑆

𝑚=1
𝜋
𝑚
�̃�
𝑚
are positive; that is, �̂�

𝑖
> 0,

𝑖 = 2, . . . , 𝑁.Therefore, when the union graph of the topology
set {𝐺

1
, . . . , 𝐺

𝑆
} is connected and (𝐴, 𝐵) is stablizable, there

exists a proper gain matrix 𝐾 such that 𝜌(𝐴 − �̂�
𝑖
𝐵𝐾) < 1,

𝑖 = 2, . . . , 𝑁. The proof is completed.

Remark 11. In [21], for two-order continuous-time MASs
with 𝐴 = [

0 1

0 0
], 𝐵 = [

0

1
], which implies that (𝐴, 𝐵) is

stablizable, Zhang and Tian prove that the MAS can reach
mean-square consensus if and only if the union graph is
connected, while in this paper, it is verified theoretically
that the stabilizability of (𝐴, 𝐵) is essential for achieving
consensus.

5. Numerical Simulation

Consider anMAS consisted of four agents, with its prior fixed
weighted communication topology being 𝑁

1
= {2}, 𝑁

2
=

{1, 3}, 𝑁
3
= {2, 4}, 𝑁

4
= {3}, 𝑎

12
= 2, 𝑎

23
= 2, 𝑎

34
= 3;

then there are eight graphs in the topology set {𝐺
1
, . . . , 𝐺

8
}.

Assume that the packet dropout probability between each
pair of agents is 0.1.

Each agent is described by a three-order difference
equation, with

𝐴 = [

[

0.6 0 0.2

0.3 0.3 0.4

0 0 1.2

]

]

, 𝐵 = [

[

0

0

1

]

]

. (28)

Obviously, each agent is unstable since the eigenval-
ues of 𝐴 are 0.6, 0.3, and 1.2, and (𝐴, 𝐵) is stabliz-
able. By applying Theorem 8, it can be obtained that
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Figure 1:The disagreement values between agents under consensus
protocol (5).

𝐾 = [0.1111 − 0.0000 0.1944], such that 𝜌(𝐴 − �̂�
𝑖
𝐵𝐾) =

0.8910 < 1. Suppose the initial conditions are 𝑥
10

=

[2 3 2]
𝑇, 𝑥
20
= [2 1 −1]

𝑇, 𝑥
30
= [1 −2 −3]

𝑇, and 𝑥
40
=

[−1 2 −2]
𝑇; the simulation results are shown in Figure 1.

6. Conclusion

We have studied the consensus problem of general lin-
ear discrete-time Multiagent systems (MASs) with random
packet dropout that happens during information exchange
between agents. The packet dropout phenomenon is charac-
terized as being a Bernoulli random process. A distributed
consensus protocol with weighted graph is proposed to
address the packet dropout phenomenon. By constructing
a new disagreement vector, a new framework is established
to solve the consensus problem. Then, through introducing
a common linear transformation for the switching system,
together with the control theory, the perturbation argument,
and the matrix theory, the necessary and sufficient condition
for MASs to reach mean-square consensus is derived in
terms of stability of an array of low-dimensional matri-
ces. Moreover, mean-square consensusable conditions with
regard to network topology and agent dynamic structure are
also provided.

It is worth pointing out that this paper is only a first step;
the consensus problem of linear discrete time MASs, which
may be affected by many other factors including time-delay,
and noise, is not fully investigated, and this is of our research
interest in the future.
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Many facts indicate that the impulsive control method is a finer method, which is simple, efficient, and low in cost, for achieving
consensus. In this paper, based on graph theory, Lyapunov stability theory, and matrix theory, a novel impulsive control protocol
is given to realize the consensus of the multiagent network. Numerical simulations are performed to verify the theoretical results.

1. Introduction

In the past few years, consensus of multiagent networks
has been intensively studied in many fields, such as biolog-
ical, social, mathematical, and physical sciences ones [1–5].
Generally speaking, consensus refers to designing a system
algorithm or protocol such that all agents asymptotically
reach an agreement on their states. In particular, leader-
following consensus means that there exists a virtual leader
which specifies an objective for all agents to follow. Recently,
some first-order and second-order leader-following consen-
sus problems were discussed by lots of researchers [6–10],
and then some novel system algorithms were given via some
different control methods, such as pinning control, delay
coupling control, adaptive control, and impulsive control
[9–14]. In addition, Qin et al. considered consensus in the
second-order multiagent system with communication delay
in [15, 16]. Particularly, some multiagent networks cannot be
controlled continuously. At this time, the impulsive control
becomes a more desirable alternative. The impulsive control
is low in cost and then has been widely applied inmany fields,
such as information science, system control, life science,
communication security, and space techniques [17–19]. In
the above senses, the impulsive control is very effective for
achieving consensus of a multiagent network.

In some real networks, the connections between part
nodes are sometimes a failure, and then the network topology

may dynamically change over time. Therefore, it is indis-
pensable to consider the case that the network topology is
switching. As much as we know, most of the relevant studies
focus on second-order consensus for multiagent networks
[11, 12]. When the agent states are influenced by speeds,
positions, and accelerations, it is necessary and significative to
research the third-order consensus problem of a multiagent
network with switching topology. At present, just few works
considered the third-order consensus problem. In [20], adap-
tive third-order leader-following consensus of a nonlinear
multiagent network with perturbations was addressed, with-
out using the impulsive control method. In [11], impulsive
consensus problem of second-order multiagent network with
switching topologies was investigated, without considering
its own dynamics. In this paper, we consider the third-
order consensus problem in a multiagent network with the
aforementioned four characters, that is, leader-following,
own dynamics, switching topology, and impulsive control. By
using the graph theory, Lyapunov stability theory, andmatrix
theory, some sufficient conditions are obtained to realize the
third-order leader-following consensus.

The rest of this paper is designed as follows. Some
necessary preliminaries are stated in Section 2.The consensus
of a multiagent network is discussed in Section 3. Numer-
ical examples are given to verify the theoretical results in
Section 4. Finally, in Section 5, conclusions are presented.
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2. Preliminaries

2.1. Multiagent Network. Information exchange among
agents can be modeled by an interaction graph. Let 𝐺 =

{𝑉, 𝐸, 𝐴} be a weighted diagraph with a node set 𝑉 =

{1, . . . , 𝑁}, an edge set 𝐸 ⊆ 𝑉 × 𝑉, and a weight adjacency
matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

. A directed edge denoted by (𝑖, 𝑗)
means that 𝑗 has access to node 𝑖; that is, node 𝑗 can
receive information from node 𝑖. The elements of matrix 𝐴
are defined such that 𝑎

𝑖𝑗
> 0 for (𝑗, 𝑖) ∈ 𝐸, while 𝑎

𝑖𝑗
= 0

for (𝑗, 𝑖) ∉ 𝐸. Let 𝑎
𝑖𝑖
= 0 for 𝑖 ∈ 𝑉. The set ℵ

𝑖
=

{𝑗 ∈ 𝑉 | (𝑗, 𝑖) ∈ 𝐸} is used as the neighbor set of node 𝑖. When
the communication topology is switching, the neighbor set
is time-varying, and then ℵ

𝑖
(𝑡) = {𝑗 ∈ 𝑉 : 𝑎

𝑖𝑗
(𝑡) > 0}. Let

𝑎
𝑖𝑗
(𝑡) = {

1, 𝑗 ∈ ℵ
𝑖
(𝑡) ,

0, otherwise.
(1)

The out-degree of node 𝑖 is defined by deg(𝑖) = ∑
𝑁

𝑗=1
𝑎
𝑖𝑗
=

∑
𝑗∈ℵ𝑖

𝑎
𝑖𝑗
= 𝑑
𝑖
. If the degree matrix of digraph 𝐺 is 𝐷 =

diag(𝑑
1
, . . . , 𝑑

𝑁
), then the Laplacian matrix of digraph 𝐺 is

𝐿 = 𝐷 − 𝐴.
A directed path from node 𝑖 to node 𝑗 in the directed

graph 𝐺 is a sequence of edges (𝑖, 𝑗
1
), (𝑗
1
, 𝑗
2
), . . . , (𝑗

𝑙
, 𝑗) with

distinct nodes 𝑗
𝑘
, 𝑘 = 1, . . . , 𝑙. A digraph 𝐺 has a directed

spanning tree if there exists at least one node called root
which has a directed path to all the other nodes.

For a leader-follower multiagent network, suppose that
the leader (labeled by 0) is denoted by node 0, and the
followers are denoted by the nodes 1, 2, . . . , 𝑁. The graph 𝐺
is consisting of the leader and the followers with commu-
nication topology. The connection weight between the 𝑖th
follower and the leader is represented by 𝑏

𝑖
, 𝑖 ∈ 𝑉. If the 𝑖th

follower is connected to the leader, then 𝑏
𝑖
> 0; otherwise,

𝑏
𝑖
= 0. Let 𝐵 = diag{𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑁
}.

Following, we address the multiagent network with
switching topology. The set Ω = {𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑚
} is used as a

set of the graphs with all possible topology, which includes
all possible graphs (involving 𝑁 agents and a leader). We
define a switching signal 𝜏 : [0, +∞) → P = {1, 2, . . . , 𝑚},
which determines the topology structure that corresponds to
the network. When the topology is switching, the Laplacian
matrix 𝐿 and the matrix 𝐵 are also switching, which are
denoted by 𝐿

𝜏(𝑡)
and 𝐵

𝜏(𝑡)
.

The following assumptions are needed to derive our main
results.

Assumption 1 (see [21]). Assume that there exists a constant
𝛾 > 0, such that the vector-valued function 𝑓 satisfies the
condition

(𝑢 − 𝑤)
𝑇

(𝑓 (𝑡, 𝑥, V, 𝑢) − 𝑓 (𝑡, 𝑦, 𝑧, 𝑤))

≤ 𝛾 ((𝑥 − 𝑦)
𝑇

(𝑥 − 𝑦) + (V − 𝑧)𝑇 (V − 𝑧)

+(𝑢 − 𝑤)
𝑇

(𝑢 − 𝑤) )

(2)

for any 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑅𝑛.

2.2. Impulsive Control System. Impulsive control systems can
be classified into three types based on the characteristics of
plants and control laws [22].

A type-I impulsive control system [22] is given by

𝑋 = F (𝑡, 𝑋) , 𝑡 ̸=𝜏
𝑘
(𝑋) ,

Δ𝑋 = U (𝑘, 𝑌) , 𝑡 = 𝜏
𝑘
(𝑋) ,

𝑌 = G (𝑡, 𝑋) ,

(3)

where 𝑋 and 𝑌 are the state variable and the output,
respectively.U(𝑘, 𝑌) is the impulsive control law. In this kind
of system, the control input is implemented by the “sudden
jumps” of some state variables.

Definition 2 (see [22]). For 𝑡 ̸=𝜏
𝑘
(𝑋), we define the time

derivative of the function 𝑉(𝑡, 𝑋) with respect to system (3)
as

𝑉 (𝑡, 𝑋) ≜
𝜕𝑉 (𝑡, 𝑋)

𝜕𝑡
+
𝜕𝑉 (𝑡, 𝑋)

𝜕𝑋
F (𝑡, 𝑋) . (4)

Type-II and type-III impulsive control systems and more
theoretical results are present in [22].

In this paper, a type-I impulsive control system is consid-
ered.

3. Main Results

Consider that a nonlinear multiagent network consists of 𝑁
agents with third-order dynamics:

̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡) , ̇V

𝑖
(𝑡) = 𝑢

𝑖
(𝑡) ,

̇𝑢
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , V
𝑖
(𝑡) , 𝑢
𝑖
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

(5)

where 𝑥
𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑇

𝑖𝑛
) ∈ 𝑅

𝑛, V
𝑖
= (V
𝑖1
, . . . , V

𝑖𝑛
)
𝑇

∈ 𝑅
𝑛,

and 𝑢
𝑖
= (𝑢
𝑖1
, . . . , 𝑢

𝑖𝑛
)
𝑇

∈ 𝑅
𝑛 are the position, velocity, and

acceleration states of the 𝑖th agent, respectively, and 𝑓 =

(𝑓
1
, . . . , 𝑓

𝑛
)
𝑇

∈ 𝑅
𝑛 is a nonlinear vector-valued continuous

function used to describe the self-dynamics of the 𝑖th agent.
The virtual leader of the multiagent network (5) is an

isolated agent described by

̇𝑥
0
(𝑡) = V

0
(𝑡) , ̇V

0
(𝑡) = 𝑢

0
(𝑡) ,

̇𝑢
0
(𝑡) = 𝑓 (𝑡, 𝑥

0
(𝑡) , V
0
(𝑡) , 𝑢
0
(𝑡)) ,

(6)

where 𝑥
0
∈ 𝑅
𝑛, V
0
∈ 𝑅
𝑛, and 𝑢

0
∈ 𝑅
𝑛 are the position, velocity,

and acceleration of the virtual leader, respectively.
For 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
), the state variables 𝑥

𝑖
(𝑡), V
𝑖
(𝑡), 𝑢(𝑡) of the

system (5) do dynamically change with ordinary differential
equations. And at the moment 𝑡

𝑘
, if the 𝑥

𝑖
(𝑡), V
𝑖
(𝑡), 𝑢(𝑡)

supervise the impulsive control, then it can result in the jump.
Based on the above senses and the impulsive controller of [11]
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and applying impulsive control to (5), we have the following
consensus scheme for the multiagent system:

̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡) , (𝑡 ̸=𝑡

𝑘
) ,

̇V
𝑖
(𝑡) = 𝑢

𝑖
(𝑡) , (𝑡 ̸=𝑡

𝑘
) ,

̇𝑢
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , V
𝑖
(𝑡) , 𝑢
𝑖
(𝑡)) , (𝑡 ̸=𝑡

𝑘
) ,

Δ𝑥
𝑖
(𝑡
𝑘
) ≜ 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)

= 𝐶
𝑘
( ∑

𝑗∈ℵ𝑖(𝑡𝑘)

𝑎
𝑖𝑗
(𝑡
𝑘
) (𝑥
𝑖
(𝑡
𝑘
) − 𝑥
𝑗
(𝑡
𝑘
))

+𝑏
𝑖
(𝑡
𝑘
) (𝑥
𝑖
(𝑡
𝑘
) − 𝑥
0
(𝑡
𝑘
))) ,

ΔV
𝑖
(𝑡
𝑘
) ≜ V
𝑖
(𝑡
+

𝑘
) − V
𝑖
(𝑡
−

𝑘
)

= 𝐶
𝑘
( ∑

𝑗∈ℵ𝑖(𝑡𝑘)

𝑎
𝑖𝑗
(𝑡
𝑘
) (V
𝑖
(𝑡
𝑘
) − V
𝑗
(𝑡
𝑘
))

+𝑏
𝑖
(𝑡
𝑘
) (V
𝑖
(𝑡
𝑘
) − V
0
(𝑡
𝑘
))) ,

Δ𝑢
𝑖
(𝑡
𝑘
) ≜ 𝑢
𝑖
(𝑡
+

𝑘
) − 𝑢
𝑖
(𝑡
−

𝑘
)

= 𝐶
𝑘
( ∑

𝑗∈ℵ𝑖(𝑡𝑘)

𝑎
𝑖𝑗
(𝑡
𝑘
) (𝑢
𝑖
(𝑡
𝑘
) − 𝑢
𝑗
(𝑡
𝑘
))

+𝑏
𝑖
(𝑡
𝑘
) (𝑢
𝑖
(𝑡
𝑘
) − 𝑢
0
(𝑡
𝑘
))) ,

𝑥
𝑖
(𝑡
+

0
) = 𝑥
𝑖
(𝑡
0
) , (𝑡

0
≥ 0) , 𝑥

𝑖
(𝑡
−

𝑘
) = 𝑥
𝑖
(𝑡
𝑘
) ,

V
𝑖
(𝑡
+

0
) = V
𝑖
(𝑡
0
) , (𝑡

0
≥ 0) , V

𝑖
(𝑡
−

𝑘
) = V

𝑖
(𝑡
𝑘
) ,

𝑢
𝑖
(𝑡
+

0
) = 𝑢
𝑖
(𝑡
0
) , (𝑡

0
≥ 0) , 𝑢

𝑖
(𝑡
−

𝑘
) = 𝑢
𝑖
(𝑡
𝑘
) ,

(7)

where Δ𝑥
𝑖
(𝑡
𝑘
), ΔV
𝑖
(𝑡
𝑘
), Δ𝑢
𝑖
(𝑡
𝑘
) are the jump of the position,

velocity, and acceleration of the 𝑖th follower agent at the
moment 𝑡

𝑘
, respectively, 𝑥

𝑖
(𝑡
+

𝑘
) = lim

ℎ→0
+𝑥
𝑖
(𝑡
𝑘
+ ℎ), 𝑥

𝑖
(𝑡
−

𝑘
) =

lim
ℎ→0

−𝑥
𝑖
(𝑡
𝑘
+ ℎ), V

𝑖
(𝑡
+

𝑘
) = lim

ℎ→0
+V
𝑖
(𝑡
𝑘
+ ℎ), V

𝑖
(𝑡
−

𝑘
) =

lim
ℎ→0

−V
𝑖
(𝑡
𝑘
+ ℎ), 𝑢

𝑖
(𝑡
+

𝑘
) = lim

ℎ→0
+𝑢
𝑖
(𝑡
𝑘
+ ℎ), 𝑢

𝑖
(𝑡
−

𝑘
) =

lim
ℎ→0

−𝑢
𝑖
(𝑡
𝑘
+ ℎ), 𝐶

𝑘
∈ 𝑅
𝑛×𝑛 is the impulsive controller gain

at the moment 𝑡
𝑘
, the moments of impulsive satisfy 0 ≤ 𝑡

0
<

𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< 𝑡
𝑘+1

< ⋅ ⋅ ⋅ , and lim
𝑘→+∞

𝑡
𝑘
= +∞,

Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝜌 < +∞ is the impulsive interval, where
𝑘 = 1, 2, . . ..

Let 𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡) = 𝑥

𝑖
(𝑡), V
𝑖
(𝑡) − 𝑥

0
(𝑡) = V̂

𝑖
(𝑡), 𝑢
𝑖
(𝑡) −

𝑢
0
(𝑡) = �̂�

𝑖
(𝑡), 𝑥(𝑡) = (𝑥

𝑇

1
(𝑡), 𝑥
𝑇

2
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇, V̂(𝑡) =

(V̂𝑇
1
(𝑡), V̂𝑇
2
(𝑡), . . . , V̂𝑇

𝑁
(𝑡))
𝑇, �̂�(𝑡) = (�̂�

𝑇

1
(𝑡), �̂�
𝑇

2
(𝑡), . . . , �̂�

𝑇

𝑁
(𝑡))
𝑇,

𝑒(𝑡) = (𝑥
𝑇

(𝑡), V̂𝑇(𝑡), �̂�𝑇(𝑡))𝑇; then the error system with (6)
and (7) can be written as

̇𝑒(𝑡) = 𝐻𝑒 (𝑡) + 𝑊, (𝑡 ̸=𝑡
𝑘
) ,

Δ𝑒 (𝑡
𝑘
) = 𝐶
𝑘
𝑒 (𝑡
𝑘
) ,

𝑒 (𝑡
+

0
) = 𝑒 (𝑡

0
) ,

(8)

where

𝐻 = (

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

) ,

𝑊 = (

𝑂
𝑛𝑁×1

𝑂
𝑛𝑁×1

𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡) , 𝑢 (𝑡)) − 1
𝑁

⊗𝑓 (𝑡, 𝑥
0
(𝑡) , V
0
(𝑡) , 𝑢
0
(𝑡))

) ,

𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡) , 𝑢 (𝑡))

= (𝑓
𝑇

(𝑡, 𝑥
1
(𝑡) , V
1
(𝑡) , 𝑢
1
(𝑡)) , . . . ,

𝑓
𝑇

(𝑡, 𝑥
𝑁
(𝑡) , V
𝑁
(𝑡) , 𝑢
𝑁
(𝑡)))
𝑇

,

1
𝑁
= (1, . . . , 1)

𝑇

∈ 𝑅
𝑁

,

𝐶
𝑘
= diag ((𝐿

𝜏(𝑘)
+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶
𝑘
, (𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶
𝑘
,

(𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶
𝑘
) ,

(9)

𝐿
𝜏(𝑘)

and 𝐵
𝜏(𝑘)

are associated with the switching interconnec-
tion graph at time 𝑡

𝑘
, 𝜏(𝑘) ∈ P.

Definition 3. Denote 𝑒
𝑥𝑖
(𝑡) = ‖𝑥

𝑖
(𝑡) − 𝑥

0
(𝑡)‖, 𝑒V𝑖(𝑡) = ‖V𝑖(𝑡) −

V
0
(𝑡)‖ and 𝑒

𝑢𝑖
(𝑡) = ‖𝑢

𝑖
(𝑡) − 𝑢

0
(𝑡)‖. The multiagent network

(7) with the virtual leader (6) is said to achieve third-order
leader-following consensus if the solution of (8) satisfies
lim
𝑡→+∞

𝑒
𝑥𝑖
(𝑡) = 0, lim

𝑡→+∞
𝑒V𝑖(𝑡) = 0, and lim

𝑡→+∞
𝑒
𝑢𝑖
(𝑡) =

0, 𝑖 = 1, 2, . . . , 𝑁 for any initial condition.
Basing on graph theory, Lyapunov function method,

matrix theory, and the proof of Theorem 1 in [11], we have
the following theorem.

Theorem 4. Under Assumption 1, if there exists 0 < 𝜑 < 1

such that

𝛿
𝑘
𝑒
𝜇(Δ𝑡𝑘) < 𝜑, (10)

where 𝛿
𝑘
and 𝜇 are the maximum eigenvalues of matrices

(𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
)
𝑇

(𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
) , (11)

(

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

) , (12)

respectively, then the third-order leader-following consensus in
the multiagent network (7) is achieved.
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Proof. Consider the following Lyapunov function:

𝑉 (𝑒 (𝑡)) = 𝑒
𝑇

(𝑡) 𝑒 (𝑡) . (13)

For any 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], the time derivative of 𝑉(𝑒(𝑡)) along the

trajectory of (8) is

D𝑉 (𝑒 (𝑡)) = ( ̇𝑒 (𝑡))𝑇𝑒 (𝑡) + 𝑒𝑇 (𝑡) ̇𝑒 (𝑡)

= 𝑒
𝑇

(𝑡) (𝐻 + 𝐻
𝑇

) 𝑒 (𝑡) + 2𝑊
𝑇

𝑒 (𝑡)

= 𝑒
𝑇

(𝑡) (𝐻 + 𝐻
𝑇

) 𝑒 (𝑡)

+ 2�̂�
𝑇

(𝑡) (𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡) , 𝑢 (𝑡)) − 1
𝑁

⊗𝑓 (𝑡, 𝑥
0
(𝑡) , V
0
(𝑡) , 𝑢
0
(𝑡)))

= 𝑒
𝑇

(𝑡) (𝐻 + 𝐻
𝑇

) 𝑒 (𝑡)

+ 2

𝑁

∑

𝑖=1

�̂�
𝑇

𝑖
(𝑡) (𝑓 (𝑡, 𝑥

𝑖
(𝑡) , V
𝑖
(𝑡) , 𝑢
𝑖
(𝑡))

−𝑓 (𝑡, 𝑥
0
(𝑡) , V
0
(𝑡) , 𝑢
0
(𝑡)))

≤ 𝑒
𝑇

(𝑡) (𝐻 + 𝐻
𝑇

) 𝑒 (𝑡)

+ 2𝛾

𝑁

∑

𝑖=1

(𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+V̂𝑇
𝑖
(𝑡) V̂
𝑖
(𝑡) + �̂�

𝑇

𝑖
(𝑡) �̂�
𝑖
(𝑡))

= 𝑒
𝑇

(𝑡) (𝐻 + 𝐻
𝑇

) 𝑒 (𝑡)

+ 𝑒
𝑇

(𝑡)(

2𝛾𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

)𝑒 (𝑡)

= 𝑒
𝑇

(𝑡)(

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

)𝑒 (𝑡)

≤ 𝜇𝑉 (𝑒 (𝑡)) .

(14)

Moreover, for any 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
],

0 ≤ 𝑉 (𝑒 (𝑡)) ≤ 𝑉 (𝑡
+

𝑘−1
) 𝑒
𝜇(𝑡−𝑡𝑘−1). (15)

For 𝑡 = 𝑡+
𝑘
, similar to the proof of Theorem 1 in [11], we

have

𝑉 (𝑒 (𝑡
+

𝑘
)) = 𝑒

𝑇

(𝑡
+

𝑘
) 𝑒 (𝑡
+

𝑘
)

= (𝑒 (𝑡
𝑘
) + Δ𝑒 (𝑡

𝑘
))
𝑇

(𝑒 (𝑡
𝑘
) + Δ𝑒 (𝑡

𝑘
))

= 𝑒
𝑇

(𝑡
𝑘
) (𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
)
𝑇

(𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
) 𝑒 (𝑡
𝑘
) ;

(16)

that is,

𝑉 (𝑒 (𝑡
+

𝑘
)) ≤ 𝛿

𝑘
𝑉 (𝑒 (𝑡

𝑘
)) . (17)

Consequently, according to (10) and (15), we obtain

𝑉 (𝑒 (𝑡
+

𝑘
)) ≤ 𝛿

𝑘
𝑉 (𝑡
+

𝑘−1
) 𝑒
𝜇(𝑡𝑘−𝑡𝑘−1) ≤ 𝜑𝑉 (𝑡

+

𝑘−1
) . (18)

By recurrence, we have

𝑉 (𝑒 (𝑡
+

𝑘
)) ≤ 𝜑

𝑘

𝑉 (𝑡
0
) . (19)

Then,

lim
𝑘→+∞

𝑉 (𝑒 (𝑡
+

𝑘
)) = 0. (20)

Using Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝜌 < +∞ and (15),

lim
𝑡→+∞

𝑉 (𝑒 (𝑡)) = 0; (21)

that is,

lim
𝑡→+∞

𝑒 (𝑡) = 0. (22)

Therefore, third-order leader-following consensus in the
multiagent network (5) is achieved under the impulsive
controllers (7).

Remark 5. According to the proof of Theorem 4, it is not
necessary that all the graphs 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑚
have directed

spanning tree.

On the basis of Gersgorin disk theorem [23], we get 𝜇 ≤
2(𝛾+1). For (𝐼

3𝑛𝑁×3𝑛𝑁
+𝐶
𝑘
)
𝑇

(𝐼
3𝑛𝑁×3𝑛𝑁

+𝐶
𝑘
) = 𝐼
3×3
⊗[(𝐼
𝑛𝑁×𝑛𝑁

+

(𝐿
𝜏(𝑘)
+𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
)
𝑇

(𝐼
𝑛𝑁×𝑛𝑁

+(𝐿
𝜏(𝑘)
+𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
)], accordingly,

𝛿
𝑘
is equal to the maximum eigenvalue of (𝐼

𝑛𝑁×𝑛𝑁
+ (𝐿
𝜏(𝑘)

+

𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
)
𝑇

(𝐼
𝑛𝑁×𝑛𝑁

+(𝐿
𝜏(𝑘)
+𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
).Therefore, we have

the following Corollary 6 (recalling Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝜌 and
P = {1, 2, . . . , 𝑚}).

Corollary 6. Under Assumption 1, if there exists 0 < 𝜑 < 1
such that

𝛿𝑒
2(𝛾+1)𝜌

< 𝜑, (23)

where𝛿 = sup{𝛿
𝑘
}, 𝛿
𝑘
is themaximumeigenvalue of thematrix

(𝐼
𝑛𝑁×𝑛𝑁

+ (𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶

𝑘
)
𝑇

(𝐼
𝑛𝑁×𝑛𝑁

+ (𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗

𝐶
𝑘
); then, the third-order leader-following consensus in the

multiagent network (7) is achieved.

4. Numerical Simulations

In this section, we give some numerical examples to verify the
theory results given in the previous section.

Consider the following nonlinear function 𝑓 for multia-
gent network:

𝑓 (𝑥
𝑖
(𝑡) , V
𝑖
(𝑡) , 𝑎
𝑖
(𝑡)) = (

2𝑎
𝑖2
+ (
𝑎𝑖1 + 1

 −
𝑎𝑖1 − 1

)

𝑎
𝑖1
− 𝑎
𝑖2
+ 𝑎
𝑖3

−2 cos𝑥
𝑖1
+ 2 cos V

𝑖1
− 𝑎
𝑖2
− 𝑎
𝑖3

) .

(24)

It is easy to verify that the nonlinear function 𝑓 in (24)
satisfies Assumption 1. (Let 𝛾 = 5).

Following, we consider that the topology of the multia-
gent network is switching (P = {1, 2}).
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1 2 3 6

5 4

Figure 1: Spanning tree of graph 𝐺
1
.

1 3 5 2

4 6

Figure 2: Spanning tree of graph 𝐺
2
.

Example 7. Assume that the graphs 𝐺
1
, 𝐺
2
have directed

spanning trees. The directed spanning trees of 𝐺
1
, 𝐺
2
are

described in Figures 1 and 2. The corresponding matrices of
the graphs 𝐺

1
, 𝐺
1
, 𝐺
2
, 𝐺
2
are 𝐴

1
, 𝐵
1
, 𝐴
2
, 𝐵
2
, respectively,

where

𝐴
1
=(

(

0 0 1 1 0 0

1 0 1 0 0 0

0 1 0 0 0 1

1 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 1 0

)

)

,

𝐴
2
=(

(

0 0 0 1 0 1

1 0 0 0 1 0

1 1 0 0 0 0

1 0 0 0 1 0

0 1 1 0 0 0

1 0 1 0 0 0

)

)

,

𝐵
1
= diag (0, 1, 0, 1, 0, 0) , 𝐵

2
= diag (1, 0, 0, 0, 1, 0) .

(25)

In time intervals [𝑡
4𝑘−1

, 𝑡
4𝑘
), the corresponding matrices are

𝐴
2
, 𝐵
2
, 𝑘 = 1, 2, . . .. In other time intervals, the corresponding

matrices are 𝐴
1
, 𝐵
1
. We choose the impulsive gains 𝐶

𝑘1
, 𝐶
𝑘2

with topology 𝐺
1
and 𝐺

2
, respectively, as follows:

𝐶
𝑘1
= (

−0.04 0 0

0 −0.04 0

0 0 −0.04

) ,

𝐶
𝑘2
= (

−0.05 0 0

0 −0.05 0

0 0 −0.05

) .

(26)

0.02 0.025 0.03 0.035 0.04
0

0.5

1

1.5

2

2.5

3

0.023 0.0232 0.0234

3.5

4

4.5

5

5.5

t

t

×10
−4

×10
−3

ex1(t)

ex2(t)

ex3(t)

ex4(t)

ex5(t)

ex6(t)

Figure 3: Position errors 𝑒
𝑥𝑖
(𝑡) of system (7) with a directed

spanning tree.

Let the equidistant impulsive interval Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

=

0.00005. Then, 𝜌 = 0.00005. There exists 𝜑 = 0.9995, which
satisfies the inequality (23) of Corollary 6. From Figures 3, 4,
and 5, we can see that the position errors 𝑒

𝑥𝑖
(𝑡), the velocity

errors 𝑒V𝑖(𝑡), and the acceleration errors 𝑒
𝑎𝑖
(𝑡) converge to

zero quickly.

Example 8. Assume that the graphs 𝐺
1
, 𝐺
2
do not contain

directed spanning trees. Let the corresponding matrices of
the graphs 𝐺

3
, 𝐺
3
, 𝐺
4
, 𝐺
4
be 𝐴
3
, 𝐵
3
, 𝐴
4
, 𝐵
4
, respectively,

where

𝐴
3
=(

(

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

)

)

,

𝐴
4
=(

(

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

)

)

,

𝐵
3
= diag (0, 1, 1, 0, 0, 0) , 𝐵

4
= diag (0, 0, 0, 1, 1, 0) .

(27)

Similar to Example 7, in time intervals [𝑡
4𝑘−1

, 𝑡
4𝑘
), the

corresponding matrices are 𝐴
4
, 𝐵
4
, 𝑘 = 1, 2, . . ., while in

other time intervals, the corresponding matrices are 𝐴
3
, 𝐵
3
.
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Figure 4: Velocity errors 𝑒V𝑖(𝑡) of system (7) with a directed
spanning tree.
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Figure 5: Acceleration errors 𝑒
𝑎𝑖
(𝑡) of system (7) with a directed

spanning tree.

We choose the impulsive gain 𝐶
𝑘3
, 𝐶
𝑘4
with topology 𝐺

3
and

𝐺
4
, respectively, as follows:

𝐶
𝑘3
= (

−0.07 0 0

0 −0.07 0

0 0 −0.07

) ,

𝐶
𝑘4
= (

−0.08 0 0

0 −0.08 0

0 0 −0.08

) .

(28)
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Figure 6: Position errors 𝑒
𝑥𝑖
(𝑡) of system (7) without a directed

spanning tree.
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Figure 7: Velocity errors 𝑒V𝑖(𝑡) of system (7) without a directed
spanning tree.

Let the equidistant impulsive interval Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

=

0.00005. Then, 𝜌 = 0.00005. By some calculations, we can
know that there exists 𝜑 = 0.9995, which satisfies the
inequality (23) of Corollary 6. From Figures 6, 7, and 8, we
can see that the position errors 𝑒

𝑥𝑖
(𝑡), the velocity errors

𝑒V𝑖(𝑡), and the acceleration errors 𝑒
𝑎𝑖
(𝑡) converge to zero

quickly. It shows that the condition on a directed spanning
tree is not necessary to realize consensus of the multiagent
network (7) under the impulsive control. In addition, the
researchers considered the second-order multiagent system
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Figure 8: Acceleration errors 𝑒
𝑎𝑖
(𝑡) of system (7) without a directed

spanning tree.

with communication delay in [21, 22]. In our future work,
we will study the third-order consensus problem for the
multiagent systems with communication delay.

5. Conclusion

By using graph theory, Lyapunov stability theory, and matrix
theory, third-order leader-following consensus problem of
a nonlinear multiagent network is studied in this paper. By
designing proper impulsive controllers, a new criterion on
realizing consensus in themultiagent network with switching
topology is achieved. Finally, numerical simulations are
provided to illustrate the theoretical results. In our future
work, we will study the third-order consensus problem for
the multiagent systems with communication delay.
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A criterion for the uniform asymptotic stability of the equilibrium point of impulsive delayedHopfield neural networks is presented
by using Lyapunov functions and linear matrix inequality approach. The criterion is a less restrictive version of a recent result. By
means of constructing the extended impulsive Halanay inequality, we also analyze the exponential stability of impulsive delayed
Hopfield neural networks. Some new sufficient conditions ensuring exponential stability of the equilibrium point of impulsive
delayed Hopfield neural networks are obtained. An example showing the effectiveness of the present criterion is given.

1. Introduction

In the last several years, Hopfield neural networks (HNN)
have received especially considerable attention due to their
extensive applications in solving optimization problem, trav-
eling salesman problem, and many other subjects in recent
years [1–9]. In hardware implementation of neural networks,
time delays are inevitably present due to the finite switching
speeds of the amplifiers. Hence, it is vital to investigate the
stability of delayedHNN. Recently, various results for the sta-
bility of delayed HNN are obtained via different approaches.
In [3], Rakkiyappan and Balasubramaniam studied the expo-
nential stability for fuzzy impulsive neural networks by
utilizing the Lyapunov-Krasovskii functional and the linear
matrix inequality approach. In [8], Li studied the global
robust stability for stochastic interval neural networks with
continuously distributed delays of neutral type based on the
similarmethods. In [9], Xia et al. derived some sufficient con-
ditions for the synchronization problem of coupled identical
Yang-Yang type fuzzy cellular neural networks with time-
varying delays based on using the invariance principle of
functional differential equations.

On the other hand, impulsive differential equations have
attracted a great deal of attention due to its potential appli-
cations in biological systems, chemical reactions, and various
results are obtained; for instance, see [10–14]. Impulses can
make unstable systems stable, and stable systems can become
unstable after impulse effects. Hence, the stability proper-
ties of impulsive HNN with time delays have become an
important topic of theoretical studies and have been inves-
tigated by many researchers; see [5, 6, 15–22]. In [5], Zhang
and Sun obtained a result for the uniform stability of the
equilibrium point of the impulsive HNN systems with time
delays by using Lyapunov functions and analysis technique.
In [6], global exponential stability of impulsive delay HNN
is investigated by applying the piecewise continuous vector
Lyapunov function.

The purpose of this paper is to present some sufficient
conditions for uniform asymptotic stability and global expo-
nential stability of impulsive HNNwith time delays bymeans
of constructing the extended impulsive Halanay inequal-
ity which is different from that given in [23], Lyapunov
functional methods, and linear matrix inequality approach.
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The results here are also discussed from the point of view of
thier comparison with the earlier results. Our results improve
and generalize the earlier results. At last, we discuss an
example to illustrate the advantage of the results we obtained.

2. Systems Description and Preliminaries

Let R denote the set of real numbers, let R
+
denote the

set of nonnegative real numbers, and let R𝑛 denote the 𝑛-
dimensional real space equippedwith the Euclideannorm ‖⋅‖.

Consider the following impulsive and delayed HNN
model:

𝑥


𝑖
(𝑡) = −𝑐

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑗
(𝑡))) + 𝐼

𝑖
, 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑥
𝑖
|
𝑡=𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) , 𝑖 ∈ Λ, 𝑘 = 1, 2, . . . ,

(1)

where Λ = {1, 2, . . . , 𝑛}. 𝑛 ≥ 2 corresponds to the number
of units in a neural network; the impulse times 𝑡

𝑘
satisfy

0 ≤ 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ , lim
𝑘→+∞

𝑡
𝑘

= +∞; 𝑥
𝑖

corresponds to the membrane potential of the unit 𝑖 at time 𝑡;
𝑐
𝑖
is positive constant;𝑓

𝑗
,𝑔

𝑗
denote, respectively, themeasures

of response or activation to its incoming potentials of the unit
𝑗 at time 𝑡 and 𝑡 − 𝜏

𝑗
(𝑡); constant 𝑎

𝑖𝑗
denotes the synaptic

connectionweight of the unit 𝑗on the unit 𝑖 at time 𝑡; constant
𝑏
𝑖𝑗
denotes the synaptic connection weight of the unit 𝑗 on the

unit 𝑖 at time 𝑡 − 𝜏
𝑗
(𝑡); 𝐼

𝑖
is the input of the unit 𝑖; 𝜏

𝑗
(𝑡) is the

transmission delay of the 𝑗th neuron such that 0 < 𝜏
𝑗
(𝑡) ≤

𝜏, 𝑡 ≥ 𝑡
0
, and 𝑗 ∈ Λ.

Assume that system (1) is supplemented with initial
conditions of the form

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [𝑡
0
− 𝜏, 𝑡

0
] , (2)

where 𝑥(𝑠) = (𝑥
1
(𝑠), 𝑥

2
(𝑠), . . . , 𝑥

𝑛
(𝑠))

𝑇

, 𝜙(𝑠) = (𝜙
1
(𝑠), 𝜙

2
(𝑠),

. . . , 𝜙
𝑛
(𝑠))

𝑇

∈ 𝑃𝐶([𝑡
0
− 𝜏, 𝑡

0
],R𝑛

), and 𝑃𝐶(𝐼,R𝑛

) = {𝜓 : 𝐼 →

R𝑛, which is continuous everywhere except at finite number
of points 𝑡

𝑘
, at which𝜓(𝑡

+

𝑘
) and𝜓(𝑡

−

𝑘
) exist and𝜓(𝑡

+

𝑘
) = 𝜓(𝑡

𝑘
)}.

For any given 𝑡 ≥ 𝑡
0
, 𝜓 ∈ 𝑃𝐶([𝑡 − 𝜏, 𝑡],R𝑛

), the norm of
𝜓 is defined by ‖𝜓‖

𝜏
= sup

𝑡−𝜏≤𝜃≤𝑡
|𝜓(𝜃)|. For any 𝜎 ≥ 0,

let 𝑃𝐶
𝛿
(𝜎) = {𝜓 ∈ 𝑃𝐶([𝜎 − 𝜏, 𝜎],R𝑛

) : ‖𝜓‖ < 𝛿}.
In this paper, we assume that some conditions are satis-

fied, so that the equilibrium point of (1) without impulse does
exist denoted by 𝑥

∗

= (𝑥
∗

1
, 𝑥

∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇; see [2, 5]. Impulsive

operator is viewed as perturbation of the equilibrium point
of system (1) without impulsive effects. We assume that
Δ𝑥

𝑖
|
𝑡=𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) = 𝑑

(𝑖)

𝑘
(𝑥
𝑖
(𝑡
−

𝑘
) − 𝑥

∗

), 𝑑(𝑖)
𝑘

∈ R, and
𝑖 ∈ Λ, 𝑘 = 1, 2, . . ..

Since 𝑥
∗ is an equilibrium point of (1), one can derive

from (1) that the transformation 𝑦
𝑖

= 𝑥
𝑖
− 𝑥

∗

𝑖
, 𝑖 ∈ Λ,

transforms system (1) into the following system:

𝑦


𝑖
(𝑡) = −𝑐

𝑖
𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
Ω
𝑗
(𝑦

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
Γ
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑗
(𝑡))) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

𝑦
𝑖
(𝑡
𝑘
) = (1 + 𝑑

(𝑖)

𝑘
) 𝑦

𝑖
(𝑡
−

𝑘
) , 𝑖 ∈ Λ, 𝑘 = 1, 2, . . . ,

(3)

whereΩ
𝑗
(𝑦
𝑗
(𝑡)) = 𝑓

𝑗
(𝑥
∗

𝑗
+𝑦

𝑗
(𝑡))−𝑓

𝑗
(𝑥
∗

𝑗
), Γ

𝑗
(𝑦
𝑗
(𝑡)) = 𝑔

𝑗
(𝑥
∗

𝑗
+

𝑦
𝑗
(𝑡 − 𝜏

𝑗
(𝑡))) − 𝑔

𝑗
(𝑥
∗

𝑗
).

Clearly, 𝑥∗ is uniformly asymptotically stable for system
(1) if and only if the trivial solution of system (3) is uniformly
asymptotically stable. Hence, we only need to prove the
stability of the trivial solution of system (3).

Remark 1. If 𝑥
𝑖
(𝑡
𝑘
) = 𝑑

(𝑖)

𝑘
𝑥
𝑖
(𝑡
−

𝑘
), then we cannot get 𝑦

𝑖
(𝑡
𝑘
) =

𝑑
(𝑖)

𝑘
𝑦
𝑖
(𝑡
−

𝑘
) through the transformation 𝑦

𝑖
= 𝑥

𝑖
− 𝑥

∗

𝑖
. So some

of the results [5] are incorrect.

The following notations will be used throughout the
paper. The notation 𝐴

𝑇 and 𝐴
−1 means the transpose of and

the inverse of a square matrix 𝐴. Let 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . ,

𝑦
𝑛
(𝑡))

𝑇,𝑦
𝜏
= (𝑦

1
(𝑡−𝜏

1
(𝑡)),𝑦

2
(𝑡−𝜏

2
(𝑡)), . . . , 𝑦

𝑛
(𝑡−𝜏

𝑛
(𝑡)))

𝑇;𝐶 =

diag[−𝑐
1
, −𝑐

2
, . . . , −𝑐

𝑛
]
𝑇, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐷
𝑘

=

diag[1 + 𝑑
(1)

𝑘
, 1 + 𝑑

(2)

𝑘
, . . . , 1 + 𝑑

(𝑛)

𝑘
]
𝑇; Ω(𝑦) = [Ω

1
(𝑦
1
),

Ω
2
(𝑦
2
), . . . , Ω

𝑛
(𝑦
𝑛
)]
𝑇, Γ(𝑦

𝜏
) = [Γ

1
(𝑦
1
(𝑡 − 𝜏

1
(𝑡))), Γ

2
(𝑦
2
(𝑡 −

𝜏
2
(𝑡))), . . . , Γ

𝑛
(𝑦
𝑛
(𝑡 − 𝜏

𝑛
(𝑡)))]

𝑇. Then system (3) with initial
condition becomes

𝑦


(𝑡) = 𝐶𝑦 (𝑡) + 𝐴Ω (𝑦 (𝑡)) + 𝐵Γ (𝑦
𝜏
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

𝑦 (𝑡
𝑘
) = 𝐷

𝑘
𝑦 (𝑡

−

𝑘
) , 𝑘 = 1, 2, . . . ,

𝑦 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(4)

where 𝜑(𝜃) = 𝑥(𝑡
0
+ 𝜃) − 𝑥

∗.
We introduce some definitions as follows.

Definition 2 (see [10]). The function 𝑉(𝑡, 𝑠) : [0,∞) × R𝑛

→

R
+
belongs to class V

0
if

(𝐴
1
) 𝑉 is continuous on each of the sets [𝑡

𝑘−1
, 𝑡
𝑘
) ×R𝑛 and

lim
(𝑡,𝑧)→ (𝑡

−

𝑘
,𝑠)
𝑉(𝑡, 𝑧) = 𝑉(𝑡

−

𝑘
, 𝑠) exists;

(𝐴
2
) 𝑉(𝑡, 𝑠) is locally Lipschitzian in 𝑠 and 𝑉(𝑡, 0) ≡ 0.

Definition 3 (see [10]). Let 𝑉 ∈ V
0
, for any (𝑡, 𝑠) ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) ×

R𝑛; the upper right-hand Dini derivative of 𝑉(𝑡, 𝑠) along the
solution of (4) is defined by

𝐷
+

𝑉 (𝑡, 𝜓 (0))

=
lim sup

ℎ→0
+ {𝑉 (𝑡 + ℎ, 𝑦 (𝑡, 𝜓) (𝑡 + ℎ)) − 𝑉 (𝑡, 𝜓 (0))}

ℎ
.

(5)
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Definition 4 (see [11]). Assume that 𝑦(𝑡) = 𝑦(𝜎, 𝜑)(𝑡) is the
solution of (4) through (𝜎, 𝜑). Then the zero solution of (4)
is said to be

(1) uniformly stable, if for any 𝜎 ≥ 𝑡
0
and 𝜀 > 0, there

exists a 𝛿 = 𝛿(𝜀) > 0 such that 𝜑 ∈ 𝑃𝐶
𝛿
(𝜎) implies

that ‖𝑦(𝜎, 𝜑)(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎;
(2) uniformly asymptotically stable, if it is uniformly

stable, and there exists a 𝛿 > 0 such that for any 𝜀 > 0,
𝜎 ≥ 𝑡

0
, there is a 𝑇 = 𝑇(𝜀) > 0 such that 𝜑 ∈ 𝑃𝐶

𝛿
(𝜎)

implies that ‖𝑦(𝜎, 𝜑)(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎 + 𝑇;
(3) globally exponentially stable, if for any 𝜑 ∈ 𝑃𝐶([−𝜏,

0],R𝑛

), there exist constants 𝑀,𝜇 > 0 such that

𝑦 (𝑡)
 < 𝑀

𝜑
𝜏

𝑒
−𝜇(𝑡−𝜎)

, 𝑡 ≥ 𝜎. (6)

In this paper, we always assume that the following assu-
mption holds:

(𝐻
0
) there exist constants 𝑀,𝑁 > 0 such that

Ω
𝑇

(𝑦)Ω (𝑦) ≤ 𝑀𝑦
𝑇

𝑦, Γ
𝑇

(𝑦
𝜏
) Γ (𝑦

𝜏
) ≤ 𝑁𝑦

𝑇

𝜏
𝑦
𝜏
. (7)

In addition, we have the following basic lemmas.

Lemma 5 (see [24]). For any vectors 𝑎, 𝑏 ∈ R𝑛, the inequality

±2𝑎
𝑇

𝑏 ≤ 𝑎
𝑇

𝑋𝑎 + 𝑏
𝑇

𝑋
−1

𝑏 (8)

holds, in which 𝑋 is any 𝑛 × 𝑛 matrix with 𝑋 > 0.

Lemma 6 (see [25]). Assume that there exist constants 𝑃,𝑄 >

0 and 𝑚(𝑡) ∈ 𝑃𝐶([𝑡
0
− 𝜏,∞),R

+
) such that

(i) for 𝑡 = 𝑡
𝑘
, 𝑚(𝑡

𝑘
) ≤ 𝛾

𝑘
𝑚(𝑡

−

𝑘
), 𝛾

𝑘
> 0 are constants and

satisfymax
𝑘∈Z+

{1/𝛾
𝑘
, 1} < 𝑃/𝑄;

(ii) for 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝐷
+

𝑚(𝑡) ≤ −𝑃𝑚 (𝑡) + 𝑄�̃� (𝑡) , (9)

where �̃�(𝑡) = sup
𝑡−𝜏≤𝑠≤𝑡

𝑚(𝑠).

Then for 𝑡 ≥ 𝑡
0
,

𝑚(𝑡) ≤ �̃� (𝑡
0
)( ∏

𝑡0<𝑡𝑘≤𝑡

𝛾
𝑘
)𝑒

−𝜆(𝑡−𝑡0), (10)

where 𝜆 satisfies the following inequality:

0 < 𝜆 ≤ 𝑃 − 𝑄max
𝑘∈Z+

{
1

𝛾
𝑘

, 1} ⋅ 𝑒
𝜆𝜏

. (11)

3. Main Results

In this section, we will establish some theorems which pro-
vide sufficient conditions for uniformly asymptotically stable
and global exponential stability of system (1).

Theorem 7. The equilibrium point the system (1) is uniformly
asymptotically stable, if there exists 𝑛 × 𝑛 symmetric, and posi-
tive definite matrix 𝑃 satisfies the following conditions:

(𝐻
1
) 𝜂 ≐ ∏

∞

𝑘=1
max{𝜂

𝑘
, 1} < ∞, where 𝜂

𝑘
is the largest eig-

envalue of 𝑃−1𝐷
𝑘
𝑃𝐷

𝑘
;

(𝐻
2
) 𝜆

3
< (−𝑀−𝑁)/𝜆

1
, where 𝜆

1
is the smallest eigenvalue

of 𝑃 and 𝜆
3
is the largest eigenvalue of 𝑃−1(𝐶𝑃 + 𝑃𝐶 +

𝑃𝐴𝐴
𝑇

𝑃 + 𝑃𝐵𝐵
𝑇

𝑃).

Proof. First, we will prove that the zero solution of system (4)
is uniformly stable. For any 𝜀 > 0, we may choose a 𝛿 > 0

such that 𝛿 ≤ √(𝜆
1
/𝜂𝜆

2
)𝜀, where 𝜆

2
is the largest eigenvalue

of 𝑃. For any 𝜎 ≥ 𝑡
0
, 𝜑 ∈ 𝑃𝐶

𝛿
(𝜎), let 𝑦(𝑡) = 𝑦(𝜎, 𝜑)(𝑡) be a

solution of (4) through (𝜎, 𝜑), 𝜎 ≥ 𝑡
0
(for convenience, that

we assume 𝜎 = 𝑡
0
); then we can prove that ‖𝑦(𝑡)‖ < 𝜀, 𝑡 ≥ 𝑡

0
.

Consider the following Lyapunov function: 𝑉(𝑡, 𝑦(𝑡)) =

𝑦
𝑇

(𝑡)𝑃𝑦(𝑡); then we have

𝜆
1

𝑦 (𝑡)


2

≤ 𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜆
2

𝑦 (𝑡)


2

. (12)

By virtue of Lemma 5, we obtain for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 1, 2, . . .,

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
(4)

= (𝑦
𝑇

(𝑡))


𝑃𝑦 (𝑡) + 𝑦
𝑇

(𝑡) 𝑃𝑦


(𝑡)

= (𝐶𝑦 (𝑡) + 𝐴Ω (𝑦 (𝑡)) + 𝐵Γ (𝑦
𝜏
))
𝑇

𝑃𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) 𝑃 (𝐶𝑦 (𝑡) + 𝐴Ω (𝑦 (𝑡)) + 𝐵Γ (𝑦
𝜏
))

= 𝑦
𝑇

(𝑡) 𝐶𝑃𝑦 (𝑡) + Ω
𝑇

(𝑦 (𝑡)) 𝐴
𝑇

𝑃𝑦 (𝑡)

+ Γ
𝑇

(𝑦
𝜏
) 𝐵

𝑇

𝑃𝑦 (𝑡) + 𝑦
𝑇

(𝑡) 𝑃𝐶𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) 𝑃𝐴Ω (𝑦 (𝑡)) + 𝑦
𝑇

(𝑡) 𝑃𝐵Γ (𝑦
𝜏
)

= 𝑦
𝑇

(𝑡) (𝐶𝑃 + 𝑃𝐶) 𝑦 (𝑡)

+ 2Ω
𝑇

(𝑦 (𝑡)) 𝐴
𝑇

𝑃𝑦 (𝑡) + 2Γ
𝑇

(𝑦
𝜏
) 𝐵

𝑇

𝑃𝑦 (𝑡)

≤ 𝑦
𝑇

(𝑡) (𝐶𝑃 + 𝑃𝐶) 𝑦 (𝑡)

+ Ω
𝑇

(𝑦 (𝑡))Ω (𝑦 (𝑡)) + 𝑦
𝑇

(𝑡) 𝑃𝐴𝐴
𝑇

𝑃𝑦 (𝑡)

+ Γ
𝑇

(𝑦
𝜏
) Γ (𝑦

𝜏
) + 𝑦

𝑇

(𝑡) 𝑃𝐵𝐵
𝑇

𝑃𝑦 (𝑡)

≤ 𝑦
𝑇

(𝑡) (𝐶𝑃 + 𝑃𝐶 + 𝑃𝐴𝐴
𝑇

𝑃 + 𝑃𝐵𝐵
𝑇

𝑃) 𝑦 (𝑡)

+ Ω
𝑇

(𝑦 (𝑡))Ω (𝑦 (𝑡)) + Γ
𝑇

(𝑦
𝜏
) Γ (𝑦

𝜏
)

≤ 𝜆
3
𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡) + 𝑀𝑦
𝑇

(𝑡) 𝑦 (𝑡) + 𝑁𝑦
𝑇

𝜏
𝑦
𝜏

≤ 𝜆
3
𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡) + 𝑀𝜆
−1

1
𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡) + 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏
.

(13)

First, it is obvious that for 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
,

𝜆
1

𝑦(𝑡)


2

≤ 𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜆
2
𝛿
2

≤ 𝜂
−1

𝜆
1
𝜀
2

. (14)

Then we can prove that for 𝑡 ∈ [𝑡
0
, 𝑡
1
),

𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜂
−1

𝜆
1
𝜀
2

. (15)
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Suppose that this is not true; then there exists �̂� ∈ [𝑡
0
, 𝑡
1
) such

that 𝑉( �̂�, 𝑦( �̂� ) ) > 𝜂
−1

𝜆
1
𝜀
2.

Set

̌𝑡 = sup {𝑡 | 𝑠 ∈ [𝑡
0
, 𝑡) , 𝑉 (𝑠, 𝑦 (𝑠)) ≤ 𝜂

−1

𝜆
1
𝜀
2

} . (16)

It is obvious that ̌𝑡 < �̂�. Then it follows that

(𝐼
𝑎
) 𝑉(𝑡, 𝑦(𝑡)) ≤ 𝜂

−1

𝜆
1
𝜀
2

, 𝑡 ∈ [𝑡
0
, ̌𝑡);

(𝐼𝐼
𝑎
) 𝑉( ̌𝑡, 𝑦( ̌𝑡)) = 𝜂

−1

𝜆
1
𝜀
2;

(𝐼𝐼𝐼
𝑎
) for any 𝛿 > 0, there exists 𝑡

𝛿
∈ ( ̌𝑡, ̌𝑡 + 𝛿) such that

𝑉(𝑡
𝛿
, 𝑦(𝑡

𝛿
)) > 𝜂

−1

𝜆
1
𝜀
2.

So

𝑉( ̌𝑡, 𝑦 ( ̌𝑡)) = 𝜂
−1

𝜆
1
𝜀
2

≥ 𝑉 (𝑡, 𝑦
𝜏
) , ̌𝑡 − 𝜏 ≤ 𝑡 ≤ ̌𝑡. (17)

In view of condition (𝐻
2
), from (13), we obtain

𝐷
+

𝑉( ̌𝑡, 𝑦 ( ̌𝑡)) ≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

( ̌𝑡)𝑃𝑦 ( ̌𝑡) + 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]𝑉 ( ̌𝑡, 𝑦 ( ̌𝑡))

< 0,

(18)

which is a contradiction with (𝐼𝐼𝐼
𝑎
). Hence, (15) holds.

Considering

𝑉 (𝑡
1
, 𝑦 (𝑡

1
)) = 𝑦

𝑇

(𝑡
1
) 𝑃𝑦 (𝑡

1
)

= 𝑦
𝑇

(𝑡
−

1
)𝐷

1
𝑃𝐷

1
𝑦 (𝑡

−

1
)

≤ 𝜂
1
𝑦
𝑇

(𝑡
−

1
) 𝑃𝑦 (𝑡

−

1
)

= 𝜂
1
𝑉 (𝑡

−

1
, 𝑦 (𝑡

−

1
))

≤ 𝜂
1
𝜂
−1

𝜆
1
𝜀
2

≤ max {𝜂
1
, 1} 𝜂

−1

𝜆
1
𝜀
2

,

(19)

we will prove that for 𝑡 ∈ [𝑡
1
, 𝑡
2
),

𝑉 (𝑡, 𝑦 (𝑡)) ≤ max {𝜂
1
, 1} 𝜂

−1

𝜆
1
𝜀
2

. (20)

Suppose that this is false; then we can define

⃗𝑡 = sup {𝑡 | 𝑠 ∈ [𝑡
1
, 𝑡) , 𝑉 (𝑠, 𝑦 (𝑠)) ≤ max {𝜂

1
, 1} 𝜂

−1

𝜆
1
𝜀
2

} .

(21)

Similarly, we can obtain

(𝐼
𝑏
) 𝑉(𝑡, 𝑦(𝑡)) ≤ max{𝜂

1
, 1}𝜂

−1

𝜆
1
𝜀
2

, 𝑡 ∈ [𝑡
1
, ⃗𝑡);

(𝐼𝐼
𝑏
) 𝑉( ⃗𝑡, 𝑦( ⃗𝑡)) = max{𝜂

1
, 1}𝜂

−1

𝜆
1
𝜀
2;

(𝐼𝐼𝐼
𝑏
) for any 𝛿 > 0, there exists 𝑡

𝛿
∈ ( ⃗𝑡, ⃗𝑡 + 𝛿) such that

𝑉(𝑡
𝛿
, 𝑦(𝑡

𝛿
)) > max{𝜂

1
, 1}𝜂

−1

𝜆
1
𝜀
2.

So

𝑉( ⃗𝑡, 𝑦 ( ⃗𝑡)) = max {𝜂
1
, 1} 𝜂

−1

𝜆
1
𝜀
2

≥ 𝑉 (𝑡, 𝑦
𝜏
) ,

⃗𝑡 − 𝜏 ≤ 𝑡 ≤ ⃗𝑡.

(22)

In fact, if ⃗𝑡−𝜏 ≥ 𝑡
1
, then it is obvious that inequality (22) holds.

If ⃗𝑡 − 𝜏 < 𝑡
1
, then 𝑉(𝑡, 𝑦

𝜏
) ≤ 𝜂

−1

𝜆
1
𝜀
2

≤ max{𝜂
1
, 1}𝜂

−1

𝜆
1
𝜀
2

=

𝑉( ⃗𝑡, 𝑦( ⃗𝑡)). So, inequality (22) still holds.
Considering condition (𝐻

2
), from (13), we obtain

𝐷
+

𝑉( ⃗𝑡, 𝑦 ( ⃗𝑡)) ≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

( ⃗𝑡)𝑃𝑦 ( ⃗𝑡) + 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]𝑉 ( ⃗𝑡, 𝑦 ( ⃗𝑡))

< 0,

(23)

which contradicts (𝐼𝐼𝐼
𝑏
). Hence, (20) holds.

By induction hypothesis, we may prove, in general, that
for 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

),

𝑉 (𝑡, 𝑦 (𝑡)) ≤

𝑚

∏

𝑘=1

max {𝜂
𝑘
, 1} 𝜂

−1

𝜆
1
𝜀
2

; (24)

that is,

𝑉 (𝑡, 𝑦 (𝑡)) ≤ ∏

𝑡0<𝑡𝑘≤𝑡

max {𝜂
𝑘
, 1} 𝜂

−1

𝜆
1
𝜀
2

. (25)

Finally, we arrive at

𝜆
1

𝑦(𝑡)


2

≤ 𝑉 (𝑡, 𝑦 (𝑡)) ≤ 𝜆
1
𝜀
2

, 𝑡 ≥ 𝑡
0
. (26)

Therefore, we obtain ‖𝑦(𝑡)‖ < 𝜀, 𝑡 ≥ 𝑡
0
. In view of the choice

of 𝛿, the zero solution of (4) is uniformly stable; that is, the
equilibrium point of (1) is uniformly stable.

Next we show the uniformly asymptotical stability. For
any given 𝐺 > 0, we find a corresponding 𝛿 > 0 such that
for any 𝜑 ∈ 𝑃𝐶

𝛿
(𝜎) implies that ‖𝑦(𝑡)‖ = ‖𝑦(𝑡

0
, 𝜑)(𝑡)‖ ≤ 𝐺,

𝑡 ≥ 𝜎 = 𝑡
0
; that is, 𝑉(𝑡, 𝑦(𝑡)) ≤ 𝜆

2
𝐺
2.

For any small 𝜀 ∈ (0, 𝐺), we choose 𝑁 = 𝑁(𝜀) ∈ Z
+
such

that

√
𝑁𝜆

1

2𝜆
2

𝜀 < 𝐺 ≤ √
(𝑁 + 1) 𝜆

1

2𝜆
2

𝜀, (27)

𝑁 >
−𝑁

𝜆
3
𝜆
1
+ 𝑀 + 𝑁

. (28)

In fact, it is feasible to choose small enough 𝜀 ∈ (0, 𝐺) such
that 𝑁 in (27) is large enough to satisfy (28).

Since 𝜂 ≐ ∏
∞

𝑘=1
max{𝜂

𝑘
, 1} < ∞ implies that

∑
∞

𝑘=1
(max{𝜂

𝑘
, 1} − 1) < ∞, there exists sufficient large 𝑁

⋆

∈

Z
+
such that

∞

∑

𝑖=𝑁
⋆

(max {𝜂
𝑖
, 1} − 1) ≤

𝜆
1
𝜀
2

6𝜆
2
𝐺2

,

max {𝜂
𝑘
, 1} <

1

6𝑁

+ 1, 𝑘 ≥ 𝑁
⋆

.

(29)

Let

𝑤
1
=

[1 + ∑
∞

𝑘=1
(max {𝜂

𝑘
, 1} − 1)] 𝜆

2
𝐺
2


[𝜆

1
𝜆
3
+ 𝑀 + 𝑁]𝑁 + 𝑁



⋅
2

𝜀2
+ 1. (30)
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Next we show that there exists 𝑇
1
∈ [𝑁

⋆

, 𝑁
⋆

+ 𝑤
1
] such that

𝑉 (𝑇
1
, 𝑦 (𝑇

1
)) <

𝜆
1
𝜀
2

2
𝑁. (31)

Or else, for all 𝑡 ∈ [𝑁
⋆

, 𝑁
⋆

+ 𝑤
1
],

𝑉 (𝑡, 𝑦 (𝑡)) ≥
𝜆
1
𝜀
2

2
𝑁. (32)

Thus, we get

𝑉 (𝑡, 𝑦 (𝑡)) +
𝜆
1
𝜀
2

2
≥

𝜆
1
𝜀
2

2
(𝑁 + 1) ≥ 𝜆

2
𝐺
2

> 𝑉 (𝜉, 𝑦
𝜏
) ,

𝑡 − 𝜏 ≤ 𝜉 ≤ 𝑡.

(33)

From (13), we have

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
(4)

≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏

≤ [𝜆
3
+ 𝑀𝜆

−1

1
]𝑉 (𝑡, 𝑦 (𝑡))

+ 𝑁𝜆
−1

1
(𝑉 (𝑡, 𝑦 (𝑡)) +

𝜆
1
𝜀
2

2
)

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]𝑉 (𝑡, 𝑦 (𝑡)) +

𝜀
2

2
𝑁

≤ [𝜆
3
+ 𝑀𝜆

−1

1
+ 𝑁𝜆

−1

1
]
𝜆
1
𝜀
2

2
𝑁 +

𝜀
2

2
𝑁

≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁]𝑁 + 𝑁}

𝜀
2

2
.

(34)

Integrating the above inequality from𝑁
⋆ to𝑁

⋆

+𝑤
1
, we have

𝑉 (𝑁
⋆

+ 𝑤
1
, 𝑦 (𝑁

⋆

+ 𝑤
1
))

≤ 𝑉 (𝑁
⋆

, 𝑦 (𝑁
⋆

)) + {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁]𝑁 + 𝑁}

𝜀
2

2
𝑤
1

+ ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[𝑉 (𝑡
𝑘
) − 𝑉 (𝑡

−

𝑘
)]

≤ 𝑉 (𝑁
⋆

, 𝑦 (𝑁
⋆

)) + {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁]𝑁 + 𝑁}

𝜀
2

2
𝑤
1

+ ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[max {𝜂
𝑘
, 1} − 1]𝑉 (𝑡

−

𝑘
)

≤ 𝜆
2
𝐺
2

+ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁]𝑁 + 𝑁}

𝜀
2

2
𝑤
1

+ ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[max {𝜂
𝑘
, 1} − 1] 𝜆

2
𝐺
2

≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁]𝑁 + 𝑁}

𝜀
2

2
𝑤
1

+

{

{

{

1 + ∑

𝑁
⋆
<𝑡𝑘<𝑁

⋆
+𝑤1

[max {𝜂
𝑘
, 1} − 1]

}

}

}

𝜆
2
𝐺
2

< 0,

(35)

which is a contradiction. So (31) holds. We may choose 𝑇
1
=

𝑁
⋆

+ 𝑤
1
.

We next claim that for all 𝑡 > 𝑇
1
,

𝑉 (𝑡, 𝑦 (𝑡)) < (
𝑁

2
+

1

4
)𝜆

1
𝜀
2

. (36)

Suppose that this is not true; then there exists a 𝜏
2
> 𝑇

1
such

that

𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) ≥ (

𝑁

2
+

1

4
)𝜆

1
𝜀
2

, (37)

and for 𝑇
1
< 𝑡 < 𝜏

2
,

𝑉 (𝑡, 𝑦 (𝑡)) < (
𝑁

2
+

1

4
)𝜆

1
𝜀
2

. (38)

Suppose that 𝑇
1

∈ [𝑡
𝑚
, 𝑡
𝑚+1

), 𝑚 ∈ Z
+
. We claim that 𝜏

2
≥

𝑡
𝑚+1

. Otherwise, 𝜏
2

∈ [𝑇
1
, 𝑡
𝑚+1

). Since (31) holds, it is clear
that there exists a 𝜏

1
∈ [𝑇

1
, 𝜏
2
) such that

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) =

𝑁

2
𝜆
1
𝜀
2

,

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) ≤ 𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑉 (𝜏

2
, 𝑥 (𝜏

2
)) ,

𝜏
1
≤ 𝑡 ≤ 𝜏

2
.

(39)

Furthermore, we note that

𝑉 (𝑡, 𝑦 (𝑡)) +
𝜆
1
𝜀
2

2
≥

𝜆
1
𝜀
2

2
(𝑁 + 1) ≥ 𝜆

2
𝐺
2

> 𝑉 (𝜉, 𝑦
𝜏
) ,

𝑡 − 𝜏 ≤ 𝜉 ≤ 𝑡.

(40)

From (13), we have

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡)) ≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁]𝑁 + 𝑁}

𝜀
2

2
< 0,

𝜏
1
≤ 𝑡 ≤ 𝜏

2
,

(41)

which implies that

𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) ≤ 𝑉 (𝜏

1
, 𝑦 (𝜏

1
)) . (42)

This is a contradiction.
Hence, we obtain 𝜏

2
≥ 𝑡

𝑚+1
; without loss of generality, we

may suppose that 𝜏
2

∈ [𝑡
𝑚+𝑞

, 𝑡
𝑚+𝑞+1

), 𝑞 ≥ 1. Next we first
claim that there exists 𝜏

1
> 0 satisfying 𝜏

2
> 𝜏

1
> 𝑇

1
such that

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) ≥

𝑁

2
𝜆
1
𝜀
2

. (43)
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Suppose that this is false; then for all 𝑡 ∈ (𝑇
1
, 𝜏
2
),

𝑉 (𝑡, 𝑦 (𝑡)) <
𝑁

2
𝜆
1
𝜀
2

, (44)

which implies that 𝜏
2

= 𝑡
𝑚+𝑞

in view of (37). Consequently,
we have

𝑉(𝑡
𝑚+𝑞

, 𝑦 (𝑡
𝑚+𝑞

)) ≥ (
𝑁

2
+

1

4
)𝜆

1
𝜀
2

,

𝑉 (𝑡
−

𝑚+𝑞
, 𝑦 (𝑡

−

𝑚+𝑞
)) <

𝑁

2
𝜆
1
𝜀
2

,

(45)

which implies that

(max {𝜂
𝑚+𝑞

, 1} − 1) 𝜆
2
𝐺
2

≥ (max {𝜂
𝑚+𝑞

, 1} − 1)𝑉 (𝑡
−

𝑚+𝑞
, 𝑦 (𝑡

−

𝑚+𝑞
)) >

1

4
𝜆
1
𝜀
2

.

(46)

Hence, we get max{𝜂
𝑚+𝑞

, 1} > 1 + (𝜆
1
𝜀
2

/4𝜆
2
𝐺
2

), which
contradicts (29). So (43) holds.

Therefore, there are two situations 𝜏
2

> 𝑡
𝑚+𝑞

and 𝜏
2

=

𝑡
𝑚+𝑞

. Next we discuss them, respectively.

(𝑏
1
) If 𝜏

2
> 𝑡

𝑚+𝑞
, let

𝜏
1
= inf
𝜏1≤𝑡<𝜏2

{𝑡 | 𝑠 ∈ [𝑡, 𝜏
2
] ,

𝑁

2
𝜆
1
𝜀
2

≤ 𝑉 (𝑠, 𝑦 (𝑠))

< 𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) } .

(47)

We first show that 𝜏
1

< 𝑡
𝑚+𝑞

. Suppose on the contrary that
𝜏
1
∈ [𝑡

𝑚+𝑞
, 𝜏
2
); then

𝑉 (𝑡, 𝑦 (𝑡)) +
𝜆
1
𝜀
2

2
≥

𝜆
1
𝜀
2

2
(𝑁 + 1)

≥ 𝜆
2
𝐺
2

> 𝑉 (𝜉, 𝑦
𝜏
) ,

𝑡 − 𝜏 ≤ 𝜉 ≤ 𝑡, 𝑡 ∈ [𝜏
1
, 𝜏
2
] .

(48)

From (13), we have

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡)) ≤ {[𝜆
3
𝜆
1
+ 𝑀 + 𝑁]𝑁 + 𝑁}

𝜀
2

2
< 0,

𝜏
1
≤ 𝑡 ≤ 𝜏

2
,

(49)

which implies that

𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) ≤ 𝑉 (𝜏

1
, 𝑦 (𝜏

1
)) ; (50)

which is a contradiction with the definition of 𝜏
1
. Thus we

obtain that 𝜏
1

< 𝑡
𝑚+𝑞

. Suppose that 𝜏
1

∈ [𝑡
𝑚+𝑘

, 𝑡
𝑚+𝑘+1

), 1 ≤

𝑘 < 𝑞.
We also have two cases.

(𝑏
1𝑎
) If 𝜏

1
is not impulsive point, that is to say 𝜏

1
> 𝑡

𝑚+𝑘
,

then considering the definition of 𝜏
1
, we have

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) =

𝑁

2
𝜆
1
𝜀
2

. (51)

By the same argument as the abovementioned, we obtain that
(48) still holds.

Hence, from (13), we get

(
𝑁

2
+

1

4
)𝜆

1
𝜀
2

≤ 𝑉 (𝜏
2
, 𝑦 (𝜏

2
))

≤ 𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) +

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

[𝑉 (𝑡
𝑖
) − 𝑉 (𝑡

−

𝑖
)]

≤
𝑁

2
𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1)𝑉 (𝑡

−

𝑖
)

≤
𝑁

2
𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

,

(52)

which implies that

1

4
𝜆
1
𝜀
2

≤

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

, (53)

which is a contradiction with (29). So 𝜏
1
is some impulsive

point.

(𝑏
1𝑏
) If 𝜏

1
is some impulsive point, that is to see 𝜏

1
= 𝑡

𝑚+𝑘
,

then from the definition of 𝜏
1
, it is clear that

𝑉 (𝜏
1

−

, 𝑦 (𝜏
1

−

)) = 𝑉 (𝑡
−

𝑚+𝑘
, 𝑦 (𝑡

−

𝑚+𝑘
)) <

𝑁

2
𝜆
1
𝜀
2

, (54)

which implies that

𝑉 (𝜏
1
, 𝑦 (𝜏

1
)) = 𝑉 (𝑡

𝑚+𝑘
, 𝑦 (𝑡

𝑚+𝑘
))

≤ 𝜂
𝑚+𝑘

𝑉 (𝑡
−

𝑚+𝑘
, 𝑦 (𝑡

−

𝑚+𝑘
))

< 𝜂
𝑚+𝑘

𝑁

2
𝜆
1
𝜀
2

≤ max {𝜂
𝑚+𝑘

, 1}
𝑁

2
𝜆
1
𝜀
2

.

(55)
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On the other hand, note that inequality (48) still holds; from
(13) and (29), we have

(
𝑁

2
+

1

4
)𝜆

1
𝜀
2

≤ 𝑉 (𝜏
2
, 𝑦 (𝜏

2
))

≤ 𝑉 (𝜏
1
, 𝑦 (𝜏

1
))

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

[𝑉 (𝑡
𝑖
) − 𝑉 (𝑡

−

𝑖
)]

< max {𝜂
𝑚+𝑘

, 1}
𝑁

2
𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1)𝑉 (𝑡

−

𝑖
) ,

(56)

which implies that

1

4
𝜆
1
𝜀
2

≤ (max {𝜂
𝑚+𝑘

, 1} − 1)
𝑁

2
𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

≤
1

6𝑁

𝑁

2
𝜆
1
𝜀
2

+

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

.

(57)

That means

1

6
𝜆
1
𝜀
2

<

𝑚+𝑞

∑

𝑖=𝑚+𝑘+1

(max {𝜂
𝑖
, 1} − 1) 𝜆

2
𝐺
2

, (58)

which contradicts (29).
Hence, the first situation 𝜏

2
> 𝑡

𝑚+𝑞
is impossible.

(𝑏
2
) If 𝜏

2
= 𝑡

𝑚+𝑞
, then by the same arguments as in the

proof in (𝑏
1
) and (43), we have

𝑉 (𝜏
−

2
, 𝑦 (𝜏

−

2
)) >

𝑁

2
𝜆
1
𝜀
2

. (59)

Then let

𝜏
1
= inf
𝜏1≤𝑡<𝜏2

{𝑡 | 𝑠 ∈ [𝑡, 𝜏
2
] ,

𝑁

2
𝜆
1
𝜀
2

≤ 𝑉 (𝑠, 𝑦 (𝑠)) < 𝑉 (𝜏
2
, 𝑦 (𝜏

2
)) } .

(60)

The rest of the arguments are omitted. Finally we can find our
desirable contradiction. Hence, (36) holds.

With above mentioned, the same arguments as before, if
we replace 𝑇

1
with 𝑁

⋆, then there exists a 𝑇
2

= 𝑇
1
+ 𝑤

1
=

𝑁
⋆

+ 2𝑤
1
such that for 𝑡 > 𝑇

2
,

𝑉 (𝑡, 𝑦 (𝑡)) <
𝑁

2
𝜆
1
𝜀
2

. (61)

Let 𝑇
2
replace 𝑇

1
; then there exists a 𝑇

3
= 𝑁

⋆

+ 3𝑤
1
such that

for 𝑡 > 𝑇
3
,

𝑉 (𝑡, 𝑦 (𝑡)) < (
𝑁

2
−

1

4
)𝜆

1
𝜀
2

. (62)

By induction hypothesis, we may prove, in general, that there
exists a 𝑇

2𝑁
= 𝑁

⋆

+ 2𝑁𝑤
1
such that 𝑡 > 𝑇

2

←

𝑁

,

𝑉 (𝑡, 𝑦 (𝑡)) < (
𝑁

2
−

𝑁 − 2

2
)𝜆

1
𝜀
2

= 𝜆
1
𝜀
2

. (63)

Therefore, we obtain that ‖𝑦(𝑡)‖ < 𝜀, 𝑡 > 𝑁
⋆

+ 2𝑁𝑤
1
. In

view of the choice of 𝑁⋆

, 𝑁, and 𝑤
1
, the zero solution of (4)

is uniformly asymptotically stable; that is, the equilibrium
point of (1) is uniformly asymptotically stable. The proof of
Theorem 7 is therefore complete.

Let |1 + 𝑑
(𝑖)

𝑘
| ̸= |1 + 𝑑

(𝑗)

𝑘
|, 𝑐

𝑖
̸= 𝑐
𝑗
, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ Λ, 𝑘 = 1, 2, . . . ,

in Theorem 7; then we can have the following result.

Corollary 8. The equilibrium point of system (1) is uniformly
asymptotically stable, if there exists 𝑛×𝑛 symmetric and positive
definite matrix 𝑃 satisfying

(𝐼
1
) 𝜂 ≐ ∏

∞

𝑘=1
max{max

𝑖∈Λ
(1 + 𝑑

(𝑖)

𝑘
)
2

, 1} < ∞;
(𝐼
2
) 𝜆

3
< (−𝑀−𝑁)/𝜆

1
, where 𝜆

1
is the smallest eigenvalue

of 𝑃 and 𝜆
3
is the largest eigenvalue of 2𝐶 + 𝐴𝐴

𝑇

𝑃 +

𝐵𝐵
𝑇

𝑃.

Remark 9. For using the less conservative conditions in
Theorem 7, our results obviously improve some results estab-
lished in the earlier references. In [5], condition 𝑦(𝑡

𝑘
) =

𝐷𝑦(𝑡
−

𝑘
) holds for all 𝑘 ∈ Z

+
; here note in our Theorem 7

that we only require that the solutions satisfy the hypothesis
(𝐻

1
) at impulsive points. In addition, our conditions are

without requirement of the range of the largest eigenvalues
of 𝑃−1𝐷𝑇

𝑃𝐷 on (0, 1), which are milder than the restrictions
in [5].

By utilizing Lemma 6, we will give some sufficient con-
ditions for globally exponential stability of the equilibrium
point of system (1).

Theorem 10. Assume that there exists 𝑛 × 𝑛 symmetric and
positive definite matrix𝑃 such that 𝜆

1
> 0 is the smallest eigen-

value of 𝑃, 𝜆
3
is the largest eigenvalue of 𝑃

−1

(𝐶𝑃 + 𝑃𝐶 +

𝑃𝐴𝐴
𝑇

𝑃 + 𝑃𝐵𝐵
𝑇

𝑃), 𝜂
𝑘
is the largest eigenvalue of 𝑃−1𝐷

𝑘
𝑃𝐷

𝑘
,

and 𝜆
1
, 𝜆

3
and 𝜂

𝑘
satisfy the following conditions:

(𝐻
3
) one has

𝜆
3
+

𝑀

𝜆
1

+
𝑁

𝜆
1

⋅ max
𝑘∈Z+

{
1

𝜂
𝑘

, 1} < 0, (64)

(𝐻
4
) there exist constants U(> 0), 𝛿(≥ 0) such that 𝛿 < 𝜇

and the following inequality
𝑚

∑

𝑘=1

ln 𝜂
𝑘
− 𝛿 (𝑡

𝑚
− 𝑡

0
) < U ∀𝑚 ∈ Z

+
ℎ𝑜𝑙𝑑𝑠, (65)
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where 𝜇 satisfies the following inequality:

0 < 𝜇 ≤ −𝜆
3
−

𝑀

𝜆
1

−
𝑁

𝜆
1

max
𝑘∈Z+

{
1

𝜂
𝑘

, 1} ⋅ 𝑒
𝜇𝜏

. (66)

Then the equilibrium point of the system (1) is globally expo-
nentially stable, and the exponential convergence rate is equal
to (𝜇 − 𝛿)/2.

Proof. Let 𝑦(𝑡) = 𝑦(𝜎, 𝜑)(𝑡) be a solution of (4) through
(𝜎, 𝜑), 𝜎 ≥ 𝑡

0
(for convenience, we assume that 𝜎 = 𝑡

0
). We

next will prove that the zero solution of (4) is globally
exponentially stable. Construct the Lyapunov functional as
inTheorem 7; that is,𝑉(𝑡, 𝑦(𝑡)) = 𝑦

𝑇

(𝑡)𝑃𝑦(𝑡); then we obtain
the following:

(1) 𝜆
1
‖𝑦(𝑡)‖

2

≤ 𝑉(𝑡, 𝑦(𝑡)) ≤ 𝜆
2
‖𝑦(𝑡)‖

2, where 𝜆
2
is the

largest eigenvalue of 𝑃;
(2) for 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

), 𝑘 = 1, 2, . . .,

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
(4)

≤ [𝜆
3
+ 𝑀𝜆

−1

1
] 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ 𝑁𝜆
−1

1
𝑦
𝑇

𝜏
𝑃𝑦

𝜏
;

(67)

(3) 𝑉(𝑡
𝑘
, 𝑦(𝑡

𝑘
)) ≤ 𝜂

𝑘
𝑉(𝑡

−

𝑘
, 𝑦(𝑡

−

𝑘
)).

From (2), we have for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 1, 2, . . .,

𝐷
+

𝑉 (𝑡, 𝑦 (𝑡))
(4)

≤ −𝑃𝑉 (𝑡, 𝑦 (𝑡)) + 𝑄�̃� (𝑡, 𝑦 (𝑡)) , (68)

where �̃�(𝑡) = sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑠), 𝑃 = −𝜆
3
− 𝑀𝜆

−1

1
, and 𝑄 =

𝑁𝜆
−1

1
.

For any 𝑡 ≥ 𝑡
0
, suppose that 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

), 𝑚 ≥ 0. By
Lemma 6 and condition (𝐻

4
), we obtain

𝑉 (𝑡) ≤ �̃� (𝑡
0
)(

𝑚

∏

𝑘=1

𝜂
𝑘
)𝑒

−𝜇(𝑡−𝑡0)

≤ �̃� (𝑡
0
) 𝑒

U
⋅ 𝑒
𝛿(𝑡𝑚−𝑡0) ⋅ 𝑒

−𝜇(𝑡−𝑡0)

≤ �̃� (𝑡
0
) 𝑒

U
⋅ 𝑒
𝛿(𝑡−𝑡0) ⋅ 𝑒

−𝜇(𝑡−𝑡0)

≤ 𝜆
2
𝑒
U𝜑



2

𝜏
𝑒
−(𝜇−𝛿)(𝑡−𝑡0),

(69)

where 𝜇 satisfies inequality (66).
Hence, we obtain for any 𝑡 ≥ 𝑡

0
,

𝑦 (𝑡)
 ≤ 𝑒

(1/2)U
√

𝜆
2

𝜆
1

𝜑
𝜏

𝑒
−((𝜇−𝛿)/2)(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (70)

where 𝜇 satisfies inequality (66).
Therefore, the zero solution of system (4) is globally

exponentially stable; that is, the equilibrium point of system
(1) is globally exponentially stable. The proof of Theorem 10
is complete.

Remark 11. InTheorem 10, if sup
𝑛∈Z+

(∏
𝑛

𝑘=1
𝜂
𝑘
) < ∞, then we

can choose 𝛿 = 0 in condition (𝐻
3
).

Let 𝜂
𝑘

∈ (0, 1], 𝑘 = 1, 2, . . . in Theorem 7; then we can
have the following result.

Corollary 12. Assume that there exists 𝑛 × 𝑛 symmetric and
positive definitematrix𝑃 such that 𝜆

1
is the smallest eigenvalue

of 𝑃, 𝜆
3
is the largest eigenvalue of 𝑃−1(𝐶𝑃 + 𝑃𝐶 + 𝑃𝐴𝐴

𝑇

𝑃 +

𝑃𝐵𝐵
𝑇

𝑃), 𝜂
𝑘
is the largest eigenvalue of 𝑃−1𝐷

𝑘
𝑃𝐷

𝑘
, and condi-

tion

𝜆
1
𝜆
3
+ 𝑀 + 𝑁 < 0 ℎ𝑜𝑙𝑑𝑠. (71)

Then the equilibrium point of the system (1) is globally expo-
nentially stable, and the exponential convergence rate is equal
to 𝜇/2, where 𝜇 satisfies the following inequality:

0 < 𝜇 ≤ −𝜆
3
−

𝑀

𝜆
1

−
𝑁

𝜆
1

max
𝑘∈Z+

𝜂
𝑘
⋅ 𝑒
𝜇𝜏

. (72)

4. Example

In this section, we present a numerical example to illustrate
our results.

Example 1. We consider Example 1 in [2] as follows:

𝑢


1
(𝑡) = −2.5𝑢

1
(𝑡) − 0.5𝑓 (𝑢

1
(𝑡))

+ 0.1𝑓 (𝑢
2
(𝑡)) − 0.1𝑓 (𝑢

1
(𝑡 − 𝜏))

+ 0.2𝑓 (𝑢
2
(𝑡 − 𝜏)) − 1,

𝑢


2
(𝑡) = −2𝑢

1
(𝑡) + 0.2𝑓 (𝑢

1
(𝑡))

− 0.1𝑓 (𝑢
2
(𝑡)) + 0.2𝑓 (𝑢

1
(𝑡 − 𝜏))

+ 0.1𝑓 (𝑢
2
(𝑡 − 𝜏)) + 4,

(73)

with impulses

𝑑
(1)

𝑘
= √1 +

1

2𝑘2
− 1,

𝑑
(2)

𝑘
= √1 +

1

𝑘2
− 1, 𝑡

𝑘
= 𝑘, 𝑘 ∈ Z

+
.

(74)

The delayed feedback matrixes 𝐴, 𝐵, and 𝐶 are

𝐶 = (
−2.5 0

0 −2
) , 𝐴 = (

−0.5 0.1

0.2 −0.1
) ,

𝐵 = (
−0.1 0.2

0.2 0.1
) .

(75)

Since the activation function in [2] is described by 𝑓 = 𝑓
𝑖
=

0.5(|𝑥 + 1| − |𝑥 − 1|), 𝑖 = 1, 2, then we have 𝑀 = 𝑁 = 1. We
may choose 𝑃 = 𝐸 (unit matrix); then 𝜆

1
= 𝜆

2
= 1. Note that

𝑃
−1

𝐷
𝑘
𝑃𝐷

𝑘
= 𝐷

2

𝑘
= (

1 +
1

2𝑘2
0

0 1 +
1

𝑘2

),

𝑃
−1

(𝐶𝑃 + 𝑃𝐶 + 𝑃𝐴𝐴
𝑇

𝑃 + 𝑃𝐵𝐵
𝑇

𝑃)

= 2𝐶 + 𝐴𝐴
𝑇

+ 𝐵𝐵
𝑇

= (
−4.69 −0.11

−0.11 −3.9
) = Δ.

(76)
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Figure 1: (a) State trajectories of system (73) with impulses (74) and 𝜏 = 3. (b) State trajectories of system (73) with impulses (79) and 𝜏 = 0.17.

then we get 𝜂
𝑘
= 1 + 1/𝑘

2

, 𝜂 = ∏
∞

𝑘=1
(1 + 1/𝑘

2

) < ∞. Matrix
Δ
,s characteristic equation is

𝜆
2

+ 8.59𝜆 + 18.2789 = 0. (77)

By a straightforward calculation, we obtain that the largest
characteristic root 𝜆

3
≈ −3.885 < −2. By Theorem 7, the

equilibrium point of system (73) is uniformly asymptotically
stable with impulses (74) for any 𝜏 > 0, which is shown in
Figure 1(a).

However, the criteria in [5] are invalid here. In fact,
condition 𝑦(𝑡

𝑘
) = 𝐷𝑦(𝑡

−

𝑘
) is not satisfied here. Moreover,

because of the impulsive effect, the criteria in [2] are also
invalid here. Therefore, our results are less conservative than
those given result in [2, 5].

Furthermore, let 𝜏 = 0.17. Note that ∏
∞

𝑘=1
(1 + 1/𝑘

2

) <

∞, 𝜆
3

= −3.885 < −2; then one can choose 𝛿 = 0 in
Theorem 10. So all conditions of Theorem 10 are satisfied.
Therefore, the equilibrium point of system (73) is globally
exponentially stable, and the exponential convergence rate is
equal to 𝜇, where 𝜇 > 0 satisfies

𝜇 + 𝑒
0.17𝜇

− 2.885 < 0. (78)

If 𝑑(1)
𝑘

, 𝑑
(2)

𝑘
in above example are given as follows:

𝑑
(1)

𝑘
= {

√2.2 − 1, 𝑘 = 2𝑛 − 1,

√0.23 − 1, 𝑘 = 2𝑛, 𝑛 ∈ Z
+
,

𝑑
(2)

𝑘
{
√1.7 − 1, 𝑘 = 2𝑛 − 1,

√0.4 − 1, 𝑘 = 2𝑛, 𝑛 ∈ Z
+
,

(79)

then we finally get 𝜆
3

= −3.885 < −3.500, 𝛿 = 0. So
all conditions of Theorem 10 are still satisfied. Therefore, the
equilibrium point of system (73) is globally exponentially
stable with impulses (79), and the exponential convergence
rate is equal to 𝜇, where 𝜇 > 0 satisfies

𝜇 + 2.5𝑒
0.17𝜇

− 2.885 < 0. (80)

The simulation is shown in Figure 1(b). However, it is easy to
check that the impulsive delayed Halanay inequality in [23,
26] is not feasible here. Thus our results can be applied to the
case not covered in [23, 26].

5. Conclusion

The uniform asymptotic stability and global exponential
stability of impulsive HNN with time delays are considered
in this paper. Some new stability conditions are obtained
by means of constructing the extended impulsive Halanay
inequality, Lyapunov functional methods, and linear matrix
inequality approach. Moreover, our results can be applied to
the case not covered in some other existing criteria. Hence,
the results extend and improve the earlier publications. An
example is given to illustrate the feasibility of the results and
the effects of impulses.
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This paper proposed a crime busting model with two dynamic ranking algorithms to detect the likelihood of a suspect and the
possibility of a leader in a complex social network. Signally, in order to obtain the priority list of suspects, an advanced network
mining approach with a dynamic cumulative nominating algorithm is adopted to rapidly reduce computational expensiveness than
most other topology-based approaches. Our method can also greatly increase the accuracy of solution with the enhancement of
semantic learning filtering at the same time. Moreover, another dynamic algorithm of node contraction is also presented to help
identify the leader among conspirators. Test results are given to verify the theoretical results, which show the great performance for
either small or large datasets.

1. Introduction

Nowadays, many crimes are committed by collaboration of
conspirators.Therefore, with the interconnections of conspir-
ators, a complicated conspirator network can be spawned.
However, many conspirators still sustain their social ties with
the outside, and thus conspirator network often hides in a
greater social network.

To identify the hidden conspirators’ network from a com-
plex social network, it calls for us to discover the hidden con-
spirators’ network and analyze its unique features to detect
the leader. Those features of networks can be captured from
various information, such as topological properties of the
network, semantic network analysis of their messages inter-
actions, and other prior knowledge, which contains known
conspirators, known nonconspirators, and background of the
entire social network.

To study this network, manual approach is themost com-
prehensive method. However, it would become extremely
ineffective and inefficient with large database. From many
pervious work [1–4], to deal with the problem of large
database, people have used the graphic-based centrality mea-
sures of network to study the characteristics of conspirators.

Criminals with high betweenness centrality are usually bro-
kers, while those with high degree centrality appreciate better
profit by running higher risks [1]. Morselli also proposed that
leaders of a criminal organization tend to balance profit and
risk by making a careful trade-off between out-degree and
betweenness centrality [2].

However, those static centrality approaches, which only
utilize graphical properties, tend to overlook many other
imperative analytical information such as the network topol-
ogy, the sematic meaning of people’s interactions. Therefore,
the idea of complex network analysis, including subnetwork
detection and block-modeling, has been introduced to detect
the inner patterns of interactions between social actors [3].
Despite they shed light on the internal structures of networks,
these approaches are still burdened with intimidating com-
plexity with large databases.

Inspired by the discussions above, the suspicious rank-
ing system must be modified carefully to combine these
pieces of information with network topology and centrality.
Meanwhile, topics with higher frequency and more contacts
to known conspirators may increase the crime probability.
To provide a better solution to this problem, an advanced
dynamic network mining approach with semantic network
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analysis will be introduced in this paper. Notably, based on
modifying the definition of centrality, dynamic cumulative
nominating algorithm to measure each people’s suspicion
will be adopted to serve our model better, which will reduce
computational expensiveness than most other topology-
based approaches. In the meantime, with the enhancement
of semantic learning, the accuracy of solution will be also
increased. Furthermore, with deeper analysis of the struc-
ture of the possible conspirator network, node contraction
algorithm will be presented to help identify the leader
among conspirators. As a final point, the traditional centrality
approach is also performed to verify the inner agreement and
connection with our approach. Through that way, a priority
list based on the possibility of the suspect and suspect’s leader
rank will be dynamically adjusted with new clues added.
Eventually, the model will be promoted into a more common
place which can be applied in other networks.

The algorithmswill be testedwith the data from ICM2012
problem [5] which shows the great performance for either
small or large datasets.

2. Overall Assumptions and Preliminaries

2.1. Overall Assumptions

(i) A conspirator knows all other members in the con-
spiracy.

(ii) A nonconspirator does not know who conspirators
are andhence treats conspirators andnonconspirators
equally.

(iii) A conspirator is reluctant to mention to an outsider
topics related to crime.

(iv) Conspirators tend not to talk frequently with each
other about irrelevant topics.

(v) The leader of the conspiracy is the most inseparable
of the whole conspirators’ network.

(vi) The information of known conspirators and noncon-
spirators is valid.

(vii) The information offered in materials is complete and
reliable. All the messages and the topics represent
their thoughts, ignoring that someone lies during the
eavesdropping.

2.2. Models Preliminaries

2.2.1. Degree. Degree is defined as the number of edges linked
to a node in graph. It can be written as deg(V). In directed
graph, the number of incident edges is input degree degin(V).
The number of emergent edges is output degree degout(V).

2.2.2. Centrality. Centrality of nodes indicates the relative
importance of nodes within a graph. It can be utilized to
determine the center of the suspicious network. Here are
three popular types of centrality.

(i) Degree Centrality. Degree centrality refers to the centrality
of a node with respect to other adjacent nodes. In suspicious

Table 1: Symbol.

Symbols Meaning
deg(V) Degree of a node
𝐶
𝐷
(𝑖) Degree centrality

𝐶
𝐵
(𝑖) Betweenness centrality

𝜔
𝑗,𝑘 The shortest path between two nodes passing node 𝑖
𝑙 Number of topics in one conversation
𝐾(𝑒
𝑖𝑗
) The number of conversations with same person

̃
𝑞
𝑛+1

𝑖

The nomination score of the node V
𝑖
after (𝑛 + 1)

iteration

𝑞
𝑛

𝑖

The normalized nomination score of the node V
𝑖
after 𝑛

iteration
𝑎
𝑖𝑗 The element in the adjacent matrix of the effect network
𝑤
𝑡 Empirical weight of topic’s effect, in our case 𝑤

𝑡
= 15

𝑇(Vij) Unified topic’s suspicion degree, from V
𝑗
to V
𝑖

network, it reflects activeness of a member. More links to a
member means more possible the member be the leader. For
a given graph 𝐺 := (𝑉, 𝐸) with 𝑉 set of nodes and 𝐸 set of
edges, the normalized degree centrality of node 𝑖 is

𝐶
𝐷
(𝑖) =

∑
𝑁

𝑗=1
𝐾(𝑒
𝑖𝑗
)

𝑁 − 1
, 𝑖 ̸= 𝑗, (1)

where 𝐾(𝑒
𝑖𝑗
) = the number of conversations between V

𝑖
and

V
𝑗
. 𝑒
𝑖𝑗
= binary variable represents whether there is a link

between two nodes. If there is one ormore conversation from
V
𝑖
to V
𝑗
, 𝑒
𝑖𝑗
= 1, otherwise the value is 0;𝑁 = count(V

𝑗
).

(ii) Betweenness Centrality. Betweenness centrality measures
how much a node acts as a medium along the shortest path
between two other nodes. It helps analyzing who has bigger
possibility to be an intermediary to exchange information
between two othermembers.Memberwith high betweenness
centrality also plays an important role in suspicious networks.
The normalized betweenness centrality is

𝐶
𝐵
(𝑖) =

∑
𝑁

𝑗=1
∑
𝑁

𝑘<𝑗
𝜔
𝑗,𝑘
(𝑖)

𝑁 − 1
, 𝑖 ̸= 𝑗, (2)

where 𝜔
𝑗,𝑘

shows whether the shortest path between two
nodes passing node 𝑖.

2.2.3. Symbol Chart. For some symbol and theirmeaning, see
Table 1.

3. Analysis of Suspicious Topics

3.1. Statistical Analysis. Topics among known conspirators
are important information which can be utilized to analyse
conspirator’s characteristics on choosing topics. According
to the statistical characteristics, some unknown conspirators
can be unearthed and some people’s suspicion can be elimi-
nated.
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Table 2: Topics among known conspirators.

Jean Alex Elsie Paul Ulf Yao Harvey
Jean 11∗ 8 14
Alex 1 13∗ 11∗ 3, 7∗

Elsie 11∗ 13∗

Paul 11∗ 7∗ 7∗ 4
Ulf 7∗, 11∗, 13∗ 13∗

Yao 13∗ 7∗, 11∗, 13∗ 7∗, 9 13∗ 2, 7∗

Harvey 13∗

Suspicious topics are in bold with ∗.

Text data

Extract Network Analysis

Result

TopicMessage
People

Message

Crime theme
Key theme

Figure 1: Semantic network analysis procedure.

After analyzing the test data from ICM 2012, Table 2
displays the topics relation matrix among known conspir-
ators, and then Table 3 illustrates the comparison of suspi-
cious topic among different kinds of groups. As we know,
conspirators usually talk about known suspicious topics
(topics 7, 11, 13) and rarely mention irrelevant topics to other
conspirators.Therefore, a suspect person ismore likely to be a
conspirator if conspirators often talk about suspicious topics
with him. Conversely, a person who often receives irrelevant
information is probably innocent.

To sum up, the conclusion is as follows.

(i) Topic 13 has more conspiracy possibility than topics
11, 7.

(ii) Topic 11 has more suspects involved. It is an active
topic among the suspects and conspirators.

(iii) Topic 7 has larger frequency among suspects.

3.2. Semantic Network Analysis

3.2.1. Background. Semantic network is a network which
represents semantic relations between concepts. This is often
used as a form of knowledge representation. It is a directed
or undirected graph consisting of vertices, which represents
concepts and edges. Semantic network analysis, a machine
learning technique to analyse large amount of messages in

the foundation of semantic network, is commonly used in
search engines. It can predict user’s identity and inclination
according to the frequently used searching words of the user.
So, semantic analysis can be used to separate given topics into
more detailed parts [6].

The term text analysis describes a set of linguistic,
statistical, and machine learning techniques that model and
structure the information content of textual sources for
business intelligence, exploratory data analysis, research, or
investigation. It attaches importance only to the text itself [7,
8]. Semantic network analysis represents human’s knowledge
and text analysis puts an emphasis on textual data processing.
The procedure of semantic network analysis is demonstrated
in Figure 1.

3.2.2. Basic Assumptions

(i) The meaning of a word could be represented by the
set of its verbal associations [9].

(ii) Social network analysis is based on an assumption
of the importance of relationships among interacting
units [10].

3.2.3. Step Procedures and Results

Step 1. Series of suspicious words and themes related to crime
will be extracted from the known suspicious messages in
Topic.xls.

After machine learning of topic semantic diffusion [11],
four suspicious factors are chosen by the system as follows:

(1) Economic information
(2) Spanish words
(3) Codes
(4) Known conspirators’ names.

Step 2. It is easy for us to analyze the connection between
the original topics and suspicious topics. Then we sort out
topics that are related to these pieces of criminal information
exacted. So, more topics are related to crime. We called the
topics that were not suspicious topics and did not contain the
key theme or word as normal topic.

Step 3. Since the number of conspiratorial topics has
increased, in order to distinguish the degree of suspicion, we
assign different topics to different weights again, depending
on how much they are related to crime. In the process
of calculating the topic weight, 4 variables 𝑖

1
, 𝑖
2
, 𝑖
3
, 𝑖
4
are

promoted to represent these 4 factors. The value of the four
variables is either 1 or 0. Then, the suspicion degree of topics
based on four factors can be presented as

deg
𝑠
= 𝑘
1
𝑖
1
+ 𝑘
2
𝑖
2
+ 𝑘
3
𝑖
3
+ 𝑘
4
𝑖
4
, (3)

where 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
are coefficients of each factor and 𝑘

1
+𝑘
2
+

𝑘
3
+ 𝑘
4
= 1.

In order to simplify analysis, we assign same importance
to the four factors, which means 𝑘

1
= 𝑘
2
= 𝑘
3
= 𝑘
4
= 0.25.
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Table 3: Suspicious topics frequency comparison.

Innocent-innocent Innocent-conspirators Innocent-suspect Suspect-conspirators Conspirators-conspirators
Topic 7∗ 0% 0% 8.03% 12.28% 25%
Topic 11∗ 0% 0% 4.16% 8.77% 21.43%
Topic 13∗ 0% 9.09% 0% 5.26% 28.57%
Sum 0% 9.09% 12.5% 26.3% 75%

Table 4: The suspicion degree of topics.

Topic Suspicious keywords deg
𝑠

1 Stock price (1) 0.25
2 Spanish (2) 0.25
3 0
4 Paige (4) 0.25
5 Security (3), Chris (4) 0.5
6 Paige (4) 0.25
7∗ Spanish (2), codes (3), (4) 0.75
8 0
9 Jean (4) 0.25
10 0
11∗ Accounting (1), flaws (3), (4) 0.75
12 Spanish (2) 0.25
13∗ Key in the conspiracy plan 1
14 High price (1) 0.25
15 Computer security (3), Paige (4) 0.5

Table 5: 5 types of topics.

Type 1 Type 2 Type 3 Type 4 Type 5
Topics 13∗ 7∗, 11∗ 5, 15 1, 2, 4, 6, 9, 12, 14 3, 8, 10
deg
𝑠

1 0.75 0.5 0.25 0

According to former equation, the suspicion degrees of all
15 topics are shown in Table 4.

Based on the suspicion degree of each topic, 15 topics can
be divided into 5 types as shown in Table 5.

Similar to pervious statistical analysis, Tables 4 and 5
suggest that suspicious topics 7, 11, 13 are highly relevant to
crime for their bigger weight. Topics 5, 15 show some clues
about crime and other topics indicate little connections with
crime.

Step 4. In order to simplify the situation of multitopic and
multiconversation with the same person, a unified topic
suspicion degree of topic is defined in terms of each topic’s
suspicion degree. For conversation with multitopics, the
suspicion degree of each topic is sum up to as the numerator
of the unified topic suspicion degree. For the situation of
multiconversation with same person for more than one time,
an average value will be calculated. Therefore, the unified
topic suspicion degree can be represented as

𝑇 (V
𝑖𝑗
) =

∑
𝐾(V𝑖𝑗)
𝑘=1

∑
𝑙
deg
𝑠

𝐾(𝑒
𝑖𝑗
)

; V
𝑖𝑗
̸= 0 or 𝐾(V

𝑖𝑗
) ≥ 1, (4)

where 𝑙 = number of topics in one conversation and 𝐾(𝑒
𝑖𝑗
) =

the number of conversations between V
𝑖
and V
𝑗
.

This suspicion degree is a significant indicator to deter-
mine a person’s identity.

4. Cumulative Nominating Algorithm

4.1. Algorithm Descriptions. The likelihood of conspirators’
nodes in the social network can be regarded as the reputation
in the small network of conspirators.Thus, the priority list can
be obtained from the algorithm of cumulative nominating.
Thenomination scores indicate the importance of a particular
node in the small network of conspirator, which reflect
the suspicious degree of a suspect. This algorithm can be
specifically described as 4 simple principles [12].

(1) The new nomination of a node not only includes
its pervious nomination scores but also contains the
effect of the pervious nomination scores of nodes
which it is connected to. To sum up, the nomination
score includes 2 parts: pervious scores and effect of
others [13, 14].

(2) The effect of others includes other’s scores, topic, and
the manage identity.

(3) The initial nomination scores are the conditions of the
problem, which is conspirators = 1, suspect = 0.5, and
innocent people = 0. Normalization is done after each
term of nomination in order to adapt to different size
networks.

(4) After enough time of nomination cycle, when the
nomination scores of suspect are enough for discrim-
ination but not higher than the score of known con-
spirator, we believe that the irritation can be stopped
and the higher cumulative nomination scores, the
higher suspicious degree.

The entire cumulative process can be express as

̃
𝑞
𝑛+1

𝑖
= 𝑞
𝑛

𝑖
+∑

𝑗

𝑎
𝑖𝑗
𝑞
𝑛

𝑗
, (5)

wherẽ𝑞𝑛+1
𝑖

= the nomination score of the node V
𝑖
after (𝑛+1)

iteration, 𝑞𝑛
𝑖
= the normalized nomination score of the node

V
𝑖
after 𝑛 iteration, and 𝑎

𝑖𝑗
= the element in the adjacentmatrix

of the effect network.
Considering the effect of topic and the manage identity,

𝑎
𝑖𝑗
can be defined as

𝑎
𝑖𝑗
=

𝑤
𝑡
⋅ 𝑇 (𝑒
𝑗𝑖
) − 𝑤
𝑚
⋅ 𝑒
𝑗𝑖
⋅ 𝑀 (V

𝑖
)

degout (V𝑗) + 1
, (6)
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Anne

Bob

Carol

Dave

Ellen

Fred

George

Harry

Inez

Jaye

Figure 2: Topological clustering results of EZ case.

where 𝑤
𝑡
= empirical weight of topic’s effect, in our case

𝑤
𝑡
= 15, 𝑇(𝑒

𝑗𝑖
) = unified topic’s suspicion degree, from V

𝑗

to V
𝑖
, and 𝑤

𝑚
= empirical weight of manage identity’s effect,

in our case 𝑤
𝑚
= 1;𝑀(V

𝑗
) = binary keying variable, if V

𝑗
is a

senior manager, 𝑀(V
𝑗
) = 1, otherwise the value is 0. (The

senior manager is able to talk more sensitive topics, while
others who talk those topics seem suspicious.)

In order to adapt the model to network with different
size, normalization is required to be done after each term
of iteration. Because of this, the normalized nomination
function can be expressed as

𝑞
𝑛+1

𝑖
=

{{{

{{{

{

1
̃
𝑞
𝑛+1

𝑖
≥ 1

𝑁 ⋅
̃
𝑞
𝑛+1

𝑖
0 <

̃
𝑞
𝑛+1

𝑖
< 1

0
̃
𝑞
𝑛+1

𝑖
≤ 0

(7)

whereby ∑
𝑖
𝑞
𝑛

𝑖
= ∑
𝑖
𝑞
0

𝑖
, 𝑞𝑛
𝑖
∈ [0, 1];

Normalization parameter 𝑁 =
∑
𝑖
𝑞
0

𝑖
− count (𝑞𝑛+1

𝑖
= 1)

∑
𝑞
𝑛+1

𝑖
̸= 1

̃
𝑞
𝑛+1

𝑖

.

(8)

Known conspirators 𝑞0
𝑖
= 1, suspect 𝑞0

𝑖
= 0.5, and known

innocent people 𝑞0
𝑖
= 0.

During the iteration, if count(𝑞𝑛+1
𝑖
= 1) > count(𝑞0

𝑖
= 1),

the iteration can stop and the final priority list is obtained
based on the nomination score 𝑞𝑛

𝑖
.

4.2. Case Validation. Here, we use two given cases from ICM
2012 to verify our algorithm.

4.2.1. EZ Case. EZ case can be utilized to verify our model
because of its similar suspicious network, small data quantity,
and known result. Given data of EZ case will be substituted
into the cumulative nominating algorithm in our model. The
supervisor has offered some information:

(1) Dave, George are known conspirators and Anne, Jaye
are known nonconspirators;

(2) 28 messages with 5 topics among 10 people;

(3) Ellen, Carol were found based on supervisor’s analy-
sis, but Carol was misjudged;

(4) Bob admitted his involvement in conspiracy;

(5) supervisor was pretty sure that Inez was involved.

After degree clustering, the topological results of EZ case
are shown in Figure 2. In addition, based on semantic
analysis, topics 1, 3, 5 are considered as suspicious topics and,
respectively, weighted as 1, 1, and 1. Other topics are weighted
as 0.

Test result is shown in Figure 3.
The test result shows that Dave, George, Inez, Jaye, and

Ellen are the top five of all 10 people.This result is partly same
to supervisor’s result.

Moreover, Inez is identified by our model and Carol is
also misjudged. The test result also corresponds with known
result.

Bob shows low possibility in our result because he
has few conversations with other people especially known
conspirators and he often talks about nonsuspicious topics.

Therefore, our analysis model displays higher accuracy
than supervisor’s model.
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Figure 3: Priority list of EZ case.

4.2.2. Complex Case. The following are information that ICM
2012 has previously provided to us [5]:

(i) all 83 office workers’ names;
(ii) 15 short descriptions of the topics;
(iii) 364 links of the nodes that transmit messages and the

topic code numbers;
(iv) 7 known conspirators: Jean, Alex, Elsie, Paul, Ulf, Yao,

and Harvey;
(v) 8 known nonconspirators: Darlene, Tran, Jia, Ellin,

Gard, Chris, Paige, and Este;
(vi) senior managers of the company: Jerome, Delores,

and Gretchen.

Two new clues are added as follows:

(i) topic 1 is also connected to the conspiracy;
(ii) Chris is one of the conspirators.

(1) Without New Clues. For complex case, ICM has offered us
some information as shown below:

(i) 364 links of the nodes that transmit messages and the
topic code numbers;

(ii) 7 known conspirators: Jean, Alex, Elsie, Paul, Ulf, Yao,
and Harvey;

(iii) 8 known nonconspirators: Darlene, Tran, Jia, Ellin,
Gard, Chris, Paige, and Este;

(iv) senior managers of the company: Jerome, Delores,
and Gretchen.

After degree clustering, the topological results of complex
case are shown in Figure 4. According to the given data
in “Messages.xls”, “Names.xls”, and Topics.xls, a priority list
based on cumulative nominating algorithm that shows the
likelihood of one’s being conspirator is obtained in Figure 5.

(2) With New Clues. New clues: topic 1 is also connected to
the conspiracy and Chris is one of the conspirators.

After changing Chris’s 𝑞0 = 1, and changing Topic 1’s
deg
𝑠
= 1, the result is obtained as Figure 6.

Even though the new clues cannot coincide with the orig-
inal one, the former actually fluctuates slightly surrounding
the latter. That is to say, they are quite similar to some extent.
As to the big difference of the last node (Chris), it is a result
when Chris becomes a known conspirator. Therefore, the
model still works well and the list remains stable even if some
conditions have changed.

After the iterative computation, the known conspirators’
scores remain equal to one, while some known innocent
persons’ scores change rapidly, which is reasonable because
in later clues some known innocent persons may also change
into the conspirators, like Chris.

However, this algorithm cannot distinguish the possible
leader from the known conspirators and high suspicious sus-
pects because the nomination scores of known conspirators
are all the same equal to one.

5. Node Contraction Algorithm

5.1. Algorithm Description. The model based on cumulative
nomination algorithm cannot clearly differentiate nodes with
high score. Hence, a new analyzing method should be
introduced to compare the difference among nodes within
conspiracy. The leader can be finally identified by this
method.

Node contraction method [15–17] combines the node to
be measured with its adjacent nodes into a new node and
compares the importance of each contracted node based on
its network agglomeration degree. This method suggests that
the most important node is the one whose contraction leads
to the largest increase of the networks agglomeration. Both
degree and position are considered in node contraction.

Assume V
𝑖
is a node within graph𝐺 = (𝑉, 𝐸), the adjacent

nodes of V
𝑖
with total number of 𝑘

𝑖
will combine with V

𝑖
, and

then a new node V
𝑖
substitutes the original 𝑘

𝑖
+ 1 nodes.

As shown in Figure 7, if a node’s agglomeration degree
is Φ(𝐺), the contracted agglomeration degree can be repre-
sented as Φ(𝐺 ∗ V

𝑖
). If V
𝑖
is really important, the contracted

network can be well agglomerated [18, 19].
The agglomeration degree of network depends on two

factors, the connection ability among each node and the
amount of nodes within the network 𝑁. The connection
ability can be measured by an average distance 𝐿which refers
to the mathematical average of distance between two nodes
(node pair). The agglomeration degree of network is defined
as

Φ (𝐺) =
1

𝑁 × 𝐿
=
𝑁 − 1

∑
𝑖 ̸=𝑗
𝑑
𝑖𝑗

, (9)

where𝑁 ≥ 2, 𝑑
𝑖𝑗
= distance between V

𝑖
and V
𝑗
, 0 < Φ ≤ 1.

Then, the importance of node V
𝑖
is expressed as

IMC (V
𝑖
) = [1 −

Φ (𝐺)

Φ (𝐺 ⋅ V
𝑖
)
] ⋅ 𝑞
𝑖
, (10)

where 𝐺 ⋅ V
𝑖
= graph after contraction of V

𝑖
.
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Figure 4: Topological clustering results of complex case.
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Figure 5: Suspect nomination priority list without new clues.

The node V
𝑖
plays more important role if it has more links

𝑘
𝑖
, becausemore other node pairs’ shortest paths pass through

it and the average distance after contraction will be highly
reduced. In a conspiracy, the leader often connects with
more people than other conspirators and messages between
two subordinates often pass through the leader. This two
properties can indicate a person’s importance.

Basic steps of node contraction are shown below.

Step 1. Calculate the distance between a node pair (V
𝑖
, V
𝑗
),

which is 𝑑
𝑖𝑗
.

Step 2. Calculate the initial agglomeration degreeΦ(𝐺) of the
network.
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Figure 6: Suspect nomination priority list with new clues.
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Figure 7: Illustration of node contraction.
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Step 3. Calculate the importance of V
𝑖
.

(a) Calculate 𝑑
𝑙𝑗
of all node pairs (V

𝑙
, V
𝑗
) after contraction.

(b) CalculateΦ(𝐺 ∗ V
𝑖
).

(c) Calculate ICM(V
𝑖
).

5.2. Leader Rank Result. Suspicion score 𝑞
𝑖
of each node

can be obtained from results of former model. Nodes with
suspicion score bigger than 70% can be taken into node
contraction method. Because the final purpose is identifying
the leader, we only consider people with high suspicion score
and compare the importance of these people.The personwith
biggest importance value is judged as leader of the conspiracy.
The result is shown in Figure 8.

From Figure 8, Jean ranks first among all 13 people. So,
Jean can be considered to be the leader of the conspiracy
network.

5.3. Centrality Theory Support. Centrality-based analysis of
criminal networks finds that a leader of a criminal organiza-
tion tends to carefully balance out-degree and betweenness-
centrality. It has been proposed that the leader usually
maintains a high betweenness centrality but a relatively low
out-degree, for enhancing efficiencywhile ensuring safety [2].

In Figure 9, Jean has high relatively betweenness central-
ity with relatively low out-degree, which is in accord with
his identity of a leader. Thus, our conclusion that Jean is the
leader is thus empirically supported by centrality theory.

6. Model Promotion

Networks have a typical pattern that they all consist of nodes
and links. Inmost cases, nodes and links containmany related
information. So, such kind of network can be analyzed by
mathematical method. For our model takes full account of
interactions among nodes and weights of different related
information, it can also be utilized in other similar cases, such
as: social network and biological network.

A common approach of network analysis is presented
below.

(1) Observe the characteristics of the network and trans-
form the complex relations among each individual
into an abstract mathematical network with each
individual as nodes and relations as links or edges.

(2) If detailed information of the network is unknown,
figure out the basic parameters of each node within
the network, degree and centrality. These parameters
can roughly reflect the importance of each person.

(3) For some certain cases, semantic network analysis
should be applied to weigh the suspicion degree
to increase accuracy. What is more, the effect of
interconnection among individuals should be consid-
ered. Combining suspicion degree with interaction, a
cumulative score of each node can be calculated. After
iteration, one can identify, prioritize, and categorize
similar nodes in a network database.

(4) Use node contraction method to measure the impor-
tance of each individual within a small ensemble.
The core of the network is the one with biggest
importance.

In a contagion network, the source of disease can be found.
Infected individuals and uninfected ones can be segregated
by making use of our model. This model is beneficial for
the institution of disease control and prevention to prevent
contagion spreading.

7. Conclusions and Further Discussion

In this paper, we have proposed a crime busting model with
two dynamic ranking algorithms—cumulative nominating
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algorithm and node contraction algorithm in order to detect
the likelihood of a suspect and their leader in a complex
social network. The contributions and further discussion of
our results are list as follows.

7.1. Contributions

(i) Comprehensive: we take both the message and node
position into consideration for identifying, prior-
itizing, and categorizing. So, the solution of our
model pursues high credibility, while reducing the
misjudgment rate.

(ii) Reasonable: the result of our model matches perfectly
with the experience, which proves the rationality and
correctness of our model.

(iii) Extendable: the result of simulation shows that our
model can be applied in other fields, not just crime
busting.

(iv) Flexible: we cannot judge a person to be conspiratorial
or innocent only based on the message traffic. Since
everythingmay be an accident, ourmodel has its false
positive rate which allows the unexpected things to
happen.

7.2. Further Discussion. In fact, our research on crime net-
work is just remaining in the beginning, and many problems
are waiting to be done. First, the criminal psychology is
not taken into consideration while some simple examples
show that some people may lie during the taping. Second,
since there is no clear criteria for the classification, those
conspirators who are slightly behind may be changed while
the conspirators ranking in the front remain unchanged.

In near future, many areas should be studied further, for
instance, how to apply semantic network analysis more effi-
ciently to discover the potential linkage between themessages
and scientifically classify them into different groups, how to
dynamically and automatically select reasonable criteria for
the classification, and so forth.

Appendix

Data Declarations for ICM 2012 Problem

(i) “Elsie” is given as one of the known conspirators. It is
an important data in this problem. However, there are
two “Elsie” with node number “7” and “37”. According
to some statistics about the message with suspicious
topics, it suggests that Elsie with number 7 is more
likely to be the known conspirator than the other
Elsie. Therefore, we consider Elsie with node number
7 as known conspirator.

(ii) There are two “Gretchen” with node number “4” and
“32.” After analyzing some basic statistics, “Gretchen
32” is found to have more message exchanges than
“Gretchen 4.” For common sense, managers have
more communication than others. So, Gretchen with
node number 32 should be regarded as one of the
senior managers in this problem.

(iii) “Topic 18” appears in line 215 of “Messages.xls,” but
“Topic.xls” only contains 15 topics. So, we ignore this
data to correct the error.

(iv) “Dolores” is misspelled as “Delores” in “name.xls.”
This small error should be fixed.
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