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As a multidisciplinary field, financial engineering is becoming increasingly important in
today’s economic and financial world, especially in areas such as portfolio management,
asset valuation and prediction, fraud detection, and credit risk management. For example,
in a credit risk context, the recently approved Basel II guidelines advise financial institutions
to build comprehensible credit risk models in order to optimize their capital allocation policy.
Computational methods are being intensively studied and applied to improve the quality of
the financial decisions that need to be made. Until now, computational methods and models
are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment
is not ruled by mathematical distributions or statistical models. In such situations, some
attempts have also been made to develop financial engineering models using some emerging
intelligent computing approaches. For example, an artificial neural network (ANN) is a
nonparametric estimation technique which does not make any distributional assumptions
regarding the underlying asset. Instead, ANN approach develops a model using sets of
unknown parameters and lets the optimization routine seek the best fitting parameters to
obtain the desired results. That is, these emerging intelligent solutions can efficiently improve
the decisions for financial engineering problems. Having agreed on this basic fact, the guest
editors determined that the main purpose of this special issue is not to merely illustrate the
superior performance of a new intelligent computational method, but also to demonstrate
how it can be used effectively in a financial engineering environment to improve and facilitate
financial decision making.

For this purpose, this special issue presents some new progress in intelligent
computational methods for financial engineering. In particular, the special issue addresses
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how the emerging intelligent computational methods (e.g., ANN, support vector machines,
evolutionary algorithm, and fuzzy models, etc.) can be used to develop intelligent, easy-to-
use and/or comprehensible computational systems (e.g., decision support systems, agent-
based system, and web-based systems, etc.), which is expected to trigger some thoughts and
deepen further research.

In this special issue, 12 papers were selected from 26 submissions related to intelligent
computational methods for financial engineering from different countries and regions. The
authors of the selected papers are from USA, Canada, Australia, Japan, Finland, Tunisia, Sri
Lanka, Taiwan, South Africa, and China, respectively. In addition, all the selected papers went
through a standard peer review process of the journal and the authors of some papers made
necessary revision in terms of reviewing comments. The selected papers include “Optimal
Bespoke CDO Design via NSGA-II” by Diresh Jewan, Renkuan Guo, and Gareth Witten,
“Modified neural network algorithms for predicting trading signals of stock market indices”
by C. D. Tilakaratne, M. A. Mammadov, S. A. Morris, “Selecting the best forecasting implied
volatility model using genetic programming” by Wafa Abdelmalek, Sana Ben Hamida, Fathi
Abid, “Discrete analysis of portfolio selection with optimal stopping time” by Jianfeng Liang,
“A New decision-making method for stock portfolio selection based on computing with
linguistic assessment” by Chen Tung Chen, Wei Zhan Hung, “A fuzzy pay-off method for real
option valuation” by Mikael Collan, Robert Fuller, Jozsef Mezei, “Valuation for an American
continuous-installment put option on bond under vasicek interest rate model” by Guohe
Deng, Lihong Huang, “Callable Russian options and their optimal boundaries” by Atsuo
Suzuki, Katsushige Sawaki, “Valuation of game options in jump diffusion model and with
applications to convertible bonds” by Lei Wang and Zhiming Jin, “Fuzzy real options in
brownfield redevelopment evaluation” by Qian Wang, Keith W. Hipel, D. Marc Kilgour,
“Discriminant analysis of zero recovery for China’s NPL” by Yue Tang, Xiaoguang Yang,
Hao Chen, Bo Wang, Muzi Chen, Min Chen, and “Cumulative gains model quality metric”
by Thomas Brandenburger, Alfred Furth. The guest editors hope that the papers published in
this special issue would be of value to academic researchers and business practitioners and
would provide a clearer sense of direction for further research, as well as facilitating use of
existing methodologies in a more productive manner.

The guest editors would like to place on record their sincere thanks to Professor
Mahyar A. Amouzegar, the Editor-in-Chief of Journal of Applied Mathematics and Decision
Sciences, for this very special opportunity provided to us for contributing to this special issue.
The guest editors have to thank all the referees for their kind support and help, which has
guaranteed that this special issue is of high standard. Finally, the guest editors would like to
thank the authors of all the submissions to this special issue for their contribution. Without
the support of the authors and the referees, it would have been impossible to make this special
issue for our readers. It is hoped that readers can find some topics of interest and benefit to
them. The guest editors also hope that this special issue would inspire researchers in the fields
of intelligent financial engineering to explore more creative contributions in their research
fields.

Lean Yu
Shouyang Wang

K. K. Lai
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This research work investigates the theoretical foundations and computational aspects of
constructing optimal bespoke CDO structures. Due to the evolutionary nature of the CDO design
process, stochastic search methods that mimic the metaphor of natural biological evolution are
applied. For efficient searching the optimal solution, the nondominating sort genetic algorithm
(NSGA-II) is used, which places emphasis on moving towards the true Paretooptimal region. This
is an essential part of real-world credit structuring problems. The algorithm further demonstrates
attractive constraint handling features among others, which is suitable for successfully solving
the constrained portfolio optimisation problem. Numerical analysis is conducted on a bespoke
CDO collateral portfolio constructed from constituents of the iTraxx Europe IG S5 CDS index. For
comparative purposes, the default dependence structure is modelled via Gaussian and Clayton
copula assumptions. This research concludes that CDO tranche returns at all levels of risk under
the Clayton copula assumption performed better than the sub-optimal Gaussian assumption.
It is evident that our research has provided meaningful guidance to CDO traders, for seeking
significant improvement of returns over standardised CDOs tranches of similar rating.

Copyright q 2009 Diresh Jewan et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Bespoke CDOs provides tailored credit solutions to market participants. They provide both
long-term strategic and tactical investors with the ability to capitalise on views at the market,
sector and name levels. Investors can use these structures in various investment strategies to
target the risk/return profile or hedging needs. These strategies can vary from leverage and
correlation strategies to macro and relative value plays [1].

Understanding the risk/return trade-off dynamics underlying the bespoke CDO
collateral portfolios is crucial when maximising the utility provided by these instruments. The
single-tranche deal can be put together in a relatively short period of time. This is aided by
the development of numerous advance pricing, risk management and portfolio optimisation
techniques.
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The most crucial tasks in putting together the bespoke CDO is choosing the underlying
credits that will be included in the portfolio. Investors often express preferences on individual
names, and there is likely to be credit rating constraint and industry concentration limits
imposed by the investors and rating agencies [2].

Given these various investor defined requirements, the structurer is required to
optimise the portfolio to achieve the best possible tranche spreads for investors. This was
a complicated task, however, with the advent of faster computational pricing and portfolio
optimisation algorithms, aid structurers in presenting bespoke CDO which conform to the
investment parameters.

The proper implementation of the decision steps lies in the solution of the
multiobjective, multiconstrained optimisation problem, where investors can choose an
optimal structure that matches their risk/return profile. Optimal structures are defined by
portfolios that lie on the Pareto frontier on the CDO tranche yield/portfolio risk plane.

Davidson [2] provides an interesting analogy between CDO portfolio optimisation
processes and evolutionary cycles espoused by Charles Darwin. In the natural world, life
adapts to suit the particulars of its environment. To adapt to a specific environment, a simple
but extraordinarily powerful set of evolutionary techniques are employed—reproduction,
mutation and survival of the fittest. In this way, nature explores the full range of possible
structures to hone in on those that are most perfectly suited to the surrounding environment.

The creation of the CDO collateral portfolio can broadly be seen in similar ways.
Given a certain set of investor and/or market constraints, such as the number of underlying
credits, the notional for the credits, concentration limits and the weighted average rating
factor, credit structurers need to be able to construct a portfolio that is best suited to the
market environment. If the portfolio does not suit the conditions, it evolves so that only
those that are “fittest,” defined by having the best CDO tranche spread given the constraints,
will survive. Many of the same techniques used in the natural world can be applied to this
constrained portfolio optimisation problem. Evolutionary algorithms have received a lot of
attention regarding their potential for solving these types of problems. They possess several
characteristics that are desirable to solve real world optimisation problems up to a required
level of satisfaction.

Our previous research work focused on developing a methodology to optimise credit
portfolios. The Copula Marginal Expected Tail Loss (CMETL) model proposed by Jewan et al.
[3], is one that minimises credit portfolio ETL subject to a constraint of achieving expected
portfolio returns at least as large as an investor defined level, along with other typical
constraints on weights, where both quantities are evaluated in the CMETL framework. Jewan
et al. [3] have shown that ETL optimal portfolio techniques, combined with copula marginal
(factor copula) distribution modelling of the portfolio risk factors can lead to significant
improvements in risk-adjusted returns.

Our research work now investigates a new approach to asset allocation in credit
portfolios for the determination of optimal investments in bespoke CDO tranches. Due
to the complexity of the problem, advance algorithms are applied solve the constrained
multiobjective optimisation problem. The nondominating sort genetic algorithm (NSGA-II)
proposed by Deb et al. [4] is applied.

NSGA-II is a popular second generation multiobjective evolutionary algorithm. This
algorithm places emphasis on moving towards the true Pareto-optimal region, which is
essential in real world credit structuring problems. The main features of these algorithms
are the implementation of a fast nondominated sorting procedure and its ability to handle
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constraints without the use of penalty functions. The latter feature is essential for solving the
multiobjective CDO optimisation problem.

The study uses both Gaussian and Clayton copula models to investigate the effects of
different default dependence assumptions on the Pareto frontier. Various real world cases are
considered, these include the constrained long-only credits and concentrated credit cases.
Two objectives are used to define the CDO optimisation problem. The first is related to
the portfolio risk, which is measured by the Expected-tail-loss (ETL). ETL is a convex risk
measure and has attractive properties for asset allocation problems. The second objective
is the CDO tranche return. This objective requires a CDO valuation model. We apply an
extension of the Implied Factor model proposed by Rosen and Saunders [5]. The extension is
a result of the application of the Clayton copula assumption. Rosen and Saunders [5] restricts
their analysis to the Gaussian case, but use a multifactor framework.

The breakdown of the paper is as follows. The next section briefly discusses the
mechanics of bespoke CDOs. It outlines the three improtant decision making steps involved
in the structuring process. In section four, a robust and practical CDO valuation framework
based on the application of the single-factor copula models given in Section 3, is presented.
This is in conjunction with weighted Monte Carlo techniques used in options pricing.
The results of the study on the impact of the different copula assumption on the market
implied loss distribution is then presented. Finally the analysis on the implied credit tail
characteristics under the various copula assumptions is given. Section 5 defines convex credit
risk measures in a self contained manner. Sections 4 and 5 establish the theory behind the
objective functions used in the CDO optimisation model. In Section 6 the generic model
for multiobjective bespoke CDO optimisation is presented. The components of the NSGA-
II are discussed and the algorithm outlined. This then paves the way to perform a prototype
experiment on a bespoke CDO portfolio constructed from constituents of the iTraxx Europe
IG S5 index. The final section highlights the improtant research findings and discusses several
areas of future study.

2. Bespoke CDO Mechanics

A bespoke CDO is a popular second-generation credit product. This standalone single-
tranche transaction is referred to as a bespoke because it allows the investor to customise
the various deal characteristics such as the collateral composition, level of subordination,
tranche thickness, and credit rating. Other features, such as substitution rights, may also
play an improtant role [1]. In these transactions, only a specific protion of the credit risk is
transferred, unlike the entire capital structure as in the case of standardised synthetic CDOs.
Most of these transactions involve 100–200 liquid corporate CDS.

While the bespoke CDO provides great flexibility in the transaction parameters, it
is crucial that investors understand the mechanics of the deal. A key feature of these
transactions is the greater dialogue that exists between the parties during the structuring
process, avoiding the “moral hazard” problem that existed in earlier CDO deals [6].

In a typical bespoke CDO transaction, there are three main decision steps for potential
investors:

(1) Credit Selection for the Reference portfolio: The first step in structuring a bespoke
CDO is the selection of the credits for the collateral portfolio. Investors can choose
a portfolio of credits different from their current positions. They can also sell
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Figure 1: Placement of mezzanine tranche in a typical bespoke CDO transaction.

protection on the subset of names in their current portfolio in case they have
overweight views on particular credit and/or sectors.

(2) Defining the Subordination Level and Tranche Size: Once a credit portfolio has been
selected, investors must choose a subordination level and tranche size. These
variables determine the degree of leverage and the required protection premium.
Investors that are primarily concerned about the credit rating of the CDO tranche,
rated by major rating agencies such as Moody’s, S&P and Fitch, could choose the
tranche size and subordination level so as to maximise the premium for a selected
rating [1]. Usually investors choose a subordination level that will provide a total
spread equal to some desired return target. This “tranching” of credit portfolio risk
can provide any desired risk/return profile. By choosing the position of a tranche
on a capital structure, investors can decouple their views on default risk from their
views on market risk. (See Rajan et al. [1, page 203–220] for trading strategies
involving bespoke CDO transactions.)

(3) Substitution of Credits in the Reference portfolio: The third distinctive feature of
bespoke CDOs is the investors’ ability to dynamically manage their investment
profit and loss by substituting credits in the portfolio.

An optimal transaction would be based on a collateral portfolio that lies on the efficient
frontier on the tranche return/risk plan, solution of a multiobjective optimisation problem
that satisfies both trade and regulatory constraints.

A typical placement of a bespoke CDO is outlined in Figure 1.
In the above schematic, the investor goes long the credit risk in a mezzanine tranche.

The challenge of issuing bespoke CDOs is the ongoing need and expense of the risk
management of the tranche position. The common method of hedging these transactions is
to manage the risk like an options book. Greeks similar to those related to options can be
defined for CDO tranches. The distribution of risk in these transactions is not perfect, leaving
dealers exposed to various first and second order risks [7].
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3. Factor Copula Models for Default Dependence Modelling

Copula-based credit risk models were developed to extend the univariate credit-risk models
for the individual obligors to a multivariate setting which keeps all salient features of the
individual credit-risk models while incorporating a realistic dependency structure between
the obligor defaults.

Copulas were first introduced by Sklar [8], in the context of probabilistic metric
spaces, however their applications to finance have been very recent. The idea was first
invoked within finance by Embrechths et al. [9], in connection with the inadequacies of linear
correlation as a measure of dependence or association.

In credit portfolio modelling the copula approach and factor models have become an
industry-wide standard to describe the asset correlation structure. Construction of mutual
asset correlations between entities of the portfolio on common external factors represents a
very flexible and powerful modelling tool. This modelling approach can be understood as a
combination of the copula and firm-value approach. This factor approach is quite standard in
credit risk modelling [10–14]. These models have been widely applied to credit derivatives
modelling for essentially two reasons:

(i) factor models represent an intuitive framework and allow fast calculation of the
loss distribution function; and

(ii) the full correlation matrix, which represents a challenging issue in large credit
portfolios, need not be fully estimated.

Factor models can then be used to describe the dependency structure amongst credits using
a so called “credit-versus-common factors” analysis rather than a pairwise analysis.

Credit risk models can be divided into two mainstreams, structural models and
reduced form models. In the reduced-form methodology, the default event in these models
is treated exogenously. The central idea is to model the default counting process Nc. This
is a stochastic process which assumes only integer values. It literally counts default events,
with Nc(t) denoting the number of events that have occurred up to time t. In the case of the
mth-to-default, the default time is given by the following:

τm = min
{
t ∈ [0, T] |Nc(t) = m

}
. (3.1)

Using the standard settings for financial product pricing, we fix a complete probability space
(Ω,F,Q) where the model lives. Let Q denote the risk neutral probability measure. All
subsequently introduced filtrations are subsets of the filtration F and augmented by the zero-
sets of F [15].

We will consider a latent factor V such that conditionally on V , the default times are
independent. The factor approach makes it simple to deal with a large number of names and
leads to very tractable results. We will denote by p

i|V
t = Q(τ (i) ≤ t | Ĥtvσ(Vt)), the conditional

default probability of the name i, and by q
i|V
t = Q(τ (i) > t | Ĥtvσ(Vt)), the corresponding

conditional survival probability. Conditionally on V , the joint survival function is given by
the following:

Q
(
τ (1) ≥ t, τ (2) ≥ t, . . . , τ (m) ≥ t | Ĥtvσ

(
Vt

))
=

n∏

i=1

E
[
N

(i)
c (t) | Ĥtvσ

(
Vt

)]
(3.2)
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for m reference entities. The filtration,Ht represents all available information in the economy
at time t. The filtrationHi

t represents all available information restricted to obligor i and the
background process. These filtrations enable us to model the intensity of the default process
of an obligor independent of the information about the remaining obligors.

The next two subsections provide a description of the two copula models used in the
study. These two models will define the default dependence structure, which is used in a
Monte Carlo simulation, to derive the credit portfolio loss distribution. These distributions
are then used in pricing, portfolio and risk management.

3.1. Gaussian Copula

A convenient way to take into account the default dependence structure is through the
Gaussian copula model. This has become the market standard in pricing multiname credit
products. In the firm-value approach a company will default when its “default-like”
stochastic process, X, falls below a barrier. Define the stochastic process,

Xi = ρiV +
√

1 − ρ2
i εi, (3.3)

where V and εi are independent standard Gaussian variants, with Covar(εi, εj)/= 0 for
all i /= j. When ρ = 0, this corresponds to independent default times while ρ = 1 is
associated with the comonotonic case. Xi can be interpreted as the value of the assets of the
company, and V , the general state of the economy. The default dependences come from the
factor V . Unconditionally, the stochastic processes are correlated but conditionally they are
independent.

The default probability of an entity i denoted by Fi can be observed from market prices
of credit default swaps. Under the copula model, each Xi is mapped to τ (i) using a percentile-
to-percentile transformation. In a Gaussian copula model the point Xi = x is transformed into
τ (i) = t with τ (i) = F−1(Φ(x)). It follows from (3.3) that the conditional default probability is
given by:

Q
(
Xi ≤ x | V

)
= Φ

⎛

⎜
⎝

x − ρiV
√

1 − ρ2
i

⎞

⎟
⎠ , (3.4)

where x = Φ−1(Fi(t)), and Q(X ≤ x) = Q(τ ≤ t),

Q
(
τ (i) ≤ t | V

)
= Φ

⎛

⎜
⎝

Φ−1(Fi(t)) − ρiV )
√

1 − ρ2
i

⎞

⎟
⎠ . (3.5)

We also have that:

τ (i) = F−1
(
Φ
(
ρiV +

√
1 − ρ2

i εi
))

, (3.6)
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this is used when we want to simulate the default times. The Gaussian copula has no upper
or lower tail dependence. Embrechths et al. [9] proves this result.

3.2. Clayton Coupla

Most of the existing copula models involve using the Gaussian copula which has symmetric
upper and lower tails, without any tail dependence. This symmetry fails to capture the fact
that firm failures occur in cascade in difficult times but not in better times. That is, the
correlation between defaults increases in difficult times. The Clayton copula encapsulates
this idea.

This “class” of Archimedean copulas was first introduced by Clayton [16] from his
studies on the epidemiological chronic diseases. Clayton [16] only developed a general form
(without imposing any parametric constraints) while Oakes [17] refined the copula in term of
its parameterisation. Friend and Rogge [18], Laurent and Gregory [19], Schloegl and O’Kane
[20], Schönbucher and Schubert [15], and Schönbucher [21] have been considering this model
in a credit risk context, primarily due to the lower tail dependence which is ideal for credit
risk applications.

The asset value process in a single factor Clayton copula is given by the following:

Xi =
(

1 −
log(ε)
V

)−1/θC

, (3.7)

where V is the systematic risk factor, a positive random variable, following a standard
Gamma distribution with shape parameter 1/θC with θC > 0, and scale parameter equal
to unity.

Using the definition of default times and the Marshall and Olkin [22] sampling
algorithm, the conditional survival probability given by the following:

q
i|V
t = exp

(
V
(
1 − Fi(t)

−θC)). (3.8)

The default times are given by,

τ (i) = F−1

((
1 −

log(ε)
V

)−1/θC
)

. (3.9)

From expression (3.9), it is clear that the stochastic intensities are proprotional to V . Thus
the latent variable acts as a multiplicative effect on stochastic intensities. High levels of the
latent variable are associated with shorter survival default times. For this reason, V is called
a “frailty.”

When θC = 0, we obtain the product copula and this implies the default times are
independent. When θC → ∞, the Clayton copula turns out to be the upper Frëchet bound,
corresponding to the case where default times are comonotonic [19]. As the parameter θC
increases, the Clayton copula increases with respect to the supermodular order. This implies
an increasing dependence in default times, and hence has some direct consequences for the
pricing of CDO tranches as shown by Laurent and Gregory [19].
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4. Implied Factor Copula Models for CDO Valuation

The current market standard for pricing synthetic CDOs is the single-factor Gaussian copula
model introduced by Li [23]. Numerous research has shown that a single parameter model is
unable to match the price of all quoted standardised CDO tranches [24–32].

It is common practice to quote an implied “correlation skew”—a different correlation
which matches the price of each tranche. This assumption is analogous to the Black-Scholes
implied volatility in the options market. Implied tranche correlations not only suffer from
interpretation problems, but they might not be unique as in the case of mezzanine tranches,
and cannot be interpolated to price bespoke tranches [33].

We define bespoke tranches in the following cases:

(i) the underlying portfolio and maturity is the same as the reference portfolio, but the
tranche attachment and/or detachment points are different,

(ii) the underlying portfolio is the same as the reference portfolio but the maturities are
different, or

(iii) the underlying portfolio differs from the reference portfolio.

The following subsection presents a robust and practical CDO valuation framework based
on the application of the single-factor copula models presented in the previous section.
The method to recover the credit loss distributions from the factor copula structure is then
presented. The implied factor model is then derived. This development is in conjunction with
weighted Monte Carlo techniques used in options pricing. The Gaussian model presented
here is a special case of the multifactor Gaussian copula model proposed by Rosen and
Saunders [5]. The application of the Clayton copula model is an extension of Rosen and
Saunders [5] work.

The impact of the different copula assumptions on the loss distribution is also
investigated. The credit tail characteristics are analysed. This is imperative to ensure that the
copula model used has the ability to capture the default dependence between the underlying
credits, and not severely underestimate the potential for extreme losses. The loss analysis is
performed on a homogeneous portfolio consisting of 106 constituents of the iTraxx European
IG S5 CDS index.

4.1. Synthetic CDO Pricing

The key idea behind CDOs, is the tranching of the credit risk of the underlying portfolio.
A given tranche ntr is defined by its attachment and detachment points ulower

ntr
and u

upper
ntr

respectively. The tranche notional is given by: sntr = Nprot(u
upper
ntr −ulower

ntr
), where Nprot denotes

the total portfolio value.
Let Ltotal(t) be the percentage cumulative loss in the portfolio value at time t. The total

cumulative loss at time t is then Ltotal(t)Nprot. The loss suffered by the holders of tranche ntr

from origination to time t is a percentage Lntr(t) of the portfolio notional value Nprot:

Lntr(t) = min
{

max
{
Ltotal(t) − Lntr , 0

}
, u

upper
ntr − ulower

ntr

}
. (4.1)

We consider a transaction initiated at time 0, with maturity T . In a CDO contract, the tranche
investor adopts a position as a protection seller. Similar to the assumption under the CDS
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pricing, we assume that defaults occur at the midpoints between coupon payment dates. The
value of the protection leg is then given by the following:

E
[
PV(ntr)

prot
]
=

J∑

j=1

D

(
0,

tj − tj−1

2

)
(
E
[
Lntr

(
tj
)]
− E
[
Lntr

(
tj−1
)])

, (4.2)

where E[Lntr( · )] is the expectation with respect to the risk neutral measure Q and is
calculated by a simulation model. The tranche loss profiles under each scenario are calculated
and stored. The expectation is found by calculating the weighted average over all scenarios.
This only applies if a weighted Monte Carlo scheme is used.

The tranche investors need to be compensated for bearing the default risk in the
underlying credits. The holders of tranche n receive a periodic coupon payment. Let the
coupon payment dates be denoted as 0 = t0 ≤ t1 ≤ t2 · · · ≤ tJ = T . The predetermined
frequency of the coupon payment dates is usually on a quarterly basis. The spread paid for
protection on a given tranche does not vary during the life of the contract. and is usually
quoted in basis points per annum. However, the tranche notional decays through the life of
the contract. The outstanding tranche notional at time t is given by the following:

Nntr
out(t) =

(
u

upper
ntr − ulower

ntr
− E
[
Lntr(t)

])
Nprot. (4.3)

The expected outstanding tranche notional since the last coupon date must be considered
at the coupon payment dates. This amount between coupon payment dates tj and tj−1 is
simply the average of Nntr

out(tj) and Nntr
out(tj−1). We assume again that defaults can only occur

at the midpoint between arbitrary coupon dates. The expected outstanding tranche notional
is denoted by:

E
[
Nntr

out
(
tj , tj−1

)]
=

(

u
upper
ntr − ulower

ntr
− E
[
Lntr(tj)

]
+

E[Lntr(tj)] − E[Lntr(tj−1)]
2

)

. (4.4)

Using this equation we can compute the expected present value of the coupon payments:

E
[
PVntr

prem
]
=

J∑

j=1

sntr

(
tj − tj−1

)
D
(
0, tj
)
E
[
Nntr

out(tj , tj−1)
]
. (4.5)

This fair spread of a tranche can be computed by equating the expected present value of the
protection and premium legs. The market quotation for the equity tranche is to have a fixed
500 bps spread, and the protection buyer make an upfront payment of a fixed percentage of
the tranche notional. The protection seller receives the upfront fee expressed as a percentage
f of the tranche notional, so that equity investors purchase the note at a discount f(ueq)Nprot.
Only the premium leg is different for equity tranche investors. This is given by the following:

E
[
PV(eq)

prem
]
= f
(
ueq
)
Nprot +

J∑

j=1

seq
(
tj − tj−1

)
D
(
0, tj
)
E
[
N

(eq)
out
(
tj , tj−1

)]
. (4.6)
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4.2. Weighted Monte Carlo Techniques

Monte Carlo algorithms can be divided (somewhat arbitrarily) into two categories: uniformly
weighted and nonuniformly weighted algorithms. nonuniform weights are a mechanism
for improving simulation accuracy. Consider a set of M paths, generated by a simulation
procedure. A nonuniformly weighted simulation is one in which the probabilities are not
necessarily equal. Suppose that we assign, respectively, probabilities p1, p2, . . . , pM, to the
different paths. The value of the security according to the nonuniform weights is,

Ωh =
M∑

m=1

pmΛm, (4.7)

where Λ is the payoff function.
Two features of credit risk modelling which pose a particular challenge under

simulation based procedures, namely:

(1) it requires accurate estimation of low-probability events of large credit losses; and

(2) default dependence mechanisms described in the previous chapter do not
immediately lend themselves to rare-event simulation techniques used in other
settings.

It is for these reasons that we implement a weighted Monte Carlo simulation procedure to
put emphasis on determining directly the risk neutral probabilities of the future states of the
market, which will allow the accurate determination of the credit loss distribution. This is in
contrast to calibration of pricing models through traditional methods.

In what follows, we introduce the general modelling framework, present the algorithm
and discuss some technical implementation details. (We use a similar methodology to Rosen
and Saunders [5].) This generalised framework can be applied to credit risk models that have
a factor structure.

A weighted Monte Carlo method can be used to find an implied risk-neutral
distribution of the systematic factors, assuming the specification of a credit risk model with
a specified set of parameter values. According to Rosen and Saunders [5] the justification for
this approach follows working within a conditional independence framework, where obligor
defaults are independent, conditional on a given systematic risk factor.

The methodology to obtain the implied credit loss distribution is summarised by the
following steps.

(i) Latent factor scenarios. Define M scenarios on the systematic factor V .

(ii) Conditional portfolio loss distribution. Calculate the conditional portfolio loss profile
for scenario m.

(iii) Conditional tranche values: Infer the tranche loss distributions conditional on scenario
m.

(iv) Implied scenario probabilities (optimisation problem). Given a set of scenario probabili-
ties pm; tranche values are given as expectations over all scenarios of the conditional
values. We solve the resulting constrained inverse problem to find a set of implied
scenario probabilities pm.



Journal of Applied Mathematics and Decision Sciences 11

(v) Implied credit loss distribution-Calculate the aggregate credit loss at each time step
given the implied scenario probabilities.

The first three steps above have been discussed in detail in the previous sections of this
chapter. The focus now is placed on the optimisation problem for implying the scenario
probabilities.

4.2.1. Mathematical Formulation

Let h : RM → R ∪ {+∞} be a strictly convex function and let wi,M denote the weight of the
ith path of M paths. Now consider the optimisation problem:

min
w1,M,w2,M,...,wM,M

M∑

i=1

h
(
wi,M

)
subject to

1
M

M∑

i=1

wi,M = 1,

1
M

M∑

i=1

wi,MGi = cG,

(4.8)

for some fixed cG ∈ RN . The objective function is strictly convex and the constraints are
linear, so if a feasible solution exist, with a finite objective function value, then there is a
unique optimal solution w1,M,w2,M, . . . , wM,M. This optimum defines the weighted Monte
Carlo estimator,

Ψ̂LCV =
M∑

i=1

wi,MΨi. (4.9)

The weights derived from (4.8) can be made more explicit by introducing the Lagragian. The
strict convexity of the objective function is not a sufficient condition to guarantee a unique
solution.

The classical approach to solving constrained optimisation problems is the method of
Lagrange multipliers. This approach transforms the constrained optimisation problem into
an unconstrained one, thereby allowing the use of the unconstrained optimisation techniques.

4.2.2. Objective Functions

Taking the objective to be a symmetric separable convex function gives the optimal
probabilities p. This is an interpreted as the most uniform probabilities satisfying the
constraints, though different objective functions imply different measures of uniformity. A
common choice for the fitness measure is entropy. This is a particularity interesting and in
some respects a convenient objective. The principle of maximum entropy gives a method of
generating a probability distribution from a limited amount of information. It is a relatively
well used principle for the construction of probabilistic models.
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In this setting,

h =
M∑

w∗=1

pw∗ log pw∗ . (4.10)

This case is put forward in Avellaneda et al. [34], where a Bayesian interpretation
is given. The usual convention of 0 log 0 is followed. We now provide a problem specific
description of the optimisation problem using the principle of maximum entropy.

4.2.3. Constraint Description

For the bespoke CDO pricing problem, the implied scenario probabilities must satisfy the
following constraints:

(i) the sum of all scenario probabilities must equal to one;

(ii) the probabilities should be positive: pi ≥ 0 for all i ∈ {0, 1, . . . ,M}; and bounded
by 1;

(iii) we match the individual CDS spreads (i.e., marginal default probabilities for each
name)

M∑

w∗=1

pw∗p
t|Vw∗
z∗ = p

t|V
z∗ ∀z∗ ∈ {1, 2, . . . ,N}; (4.11)

(iv) the current market prices of standard CDO tranches are matched given by

M∑

w∗=1

pw∗PV(ntr)
prot =

M∑

w∗=1

pw∗PV(ntr)
prem ∀ntr ∈ {1, 2, . . .} (4.12)

tranches.

Because the number of controls in the problem is typically smaller than the number of
replications, these constraints do not determine the probabilities [35]. We choose a particular
set of probabilities by selecting the maximum entropy measure as the objective. The problem
specific optimisation problem is defined by,

max
p∈RM

M∑

w∗=1

pw∗ log pw∗ subject to

M∑

w∗=1

pw∗p
t|Vw∗
z∗ = p

t|V
z∗ ∀z∗ ∈ {1, 2, . . . ,N},

pw∗ ≥ 0 ∀w∗ ∈ {0, 1, . . . ,M},
M∑

w∗=1

pw∗ = 1.

(4.13)
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The CDO tranche prices constraint will only hold if the bespoke and index collateral
portfolios have the same underlying, while the constraint on default probabilities will always
hold.

4.2.4. Augmented Lagrangian Methods

The augmented Lagragian method seeks the solution by replacing the original constrained
problem with a sequence of unconstrained subproblems in which the objective function is
formed by the original objective of the constrained optimisation plus additional “penalty”
terms. These terms are made up of constraint functions multiplied by a positive coefficient.

For the problem at hand, the augmented Lagrangian function is given by,

L∗M
(
x; s;λM;μM

)
=

M∑

m=1

pm log pm + λ
(1)
M

(

1 −
M∑

i=1

pi,M

)

+ λ
(2)
M

N∑

k=1

(

p
t|V
k
−

M∑

i=1

pi,Mp
t|Vm

k

)

+
1

2μM

(

1 −
M∑

i=1

pi,M

)2

+
1

2μM
+

(
N∑

k=1

(

p
t|V
k −

M∑

i=1

pi,Mp
t|Vm

k

))2

.

(4.14)

4.2.5. Implementation Issues

In practice, a significant proprotion of computation time is not spent solving the optimisation
problem itself, but rather computing the coefficients in the linear constraints. The marginal
default probability constraints require the evaluation of the conditional default probability
given in the previous chapter for each name under each scenario.

One has the option to only match the cumulative implied default probability to the
end of the lifetime of the bespoke CDO or perhaps at selected times only. The advantage of
dropping constraints is twofold. Firstly it reduces the computational burden by reducing the
number of coefficients that need to be computed, thus leading to a faster pricing algorithm.
Secondly, it loosens the conditions required of the probabilities p, thus resulting in factor
implied distributions with superior “quality,” as given by higher values for the fitness
function [5]. Matlab is used for implementing the model.

4.3. Interpreting the Implied Distributions

The valuation of CDOs depends on the portfolio loss distribution. For the pricing of a CDO or
CDO2 it is sufficient to know the portfolio loss distributions over different time horizons. The
implied credit loss distributions should be considered relative to the prior models, before
deriving efficient frontiers for the bespoke portfolios. This is crucial as deviations from the
model will result in a sub-optimal asset allocation strategy.

Figure 2 shows the implied and model distribution of default losses for the benchmark
portfolio under the Gaussian copula assumption. Kernel smoothing was applied to the
density results. This approach is a nonparametric way of estimating the probability density
function of a random variable. This density estimation technique makes it possible to
extrapolate the data to the entire population.
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Figure 2: The comparison of the implied loss density under Gaussian copula assumption: (a) shows the
deviation of the model density from the implied density at the 5 year horizon, (b) displays the implied
credit loss density surface up to the 5 year horizon.

The first thing to note is the typical shape of credit loss distributions. Due to the
common dependence on the factor V , defaults are correlated. This association gives rise to
a portfolio credit loss density that is right-skewed and has a right-hand tail. The loss surface
as a whole is widening and flattening, with an increasing expected portfolio loss.

The Clayton copula model displays similar deviations. This is shown in Figure 3. The
Clayton assumption will still under-estimate small losses, but this effect is less pronounced
than the Gaussian case. The maximum portfolio loss obtained over a 5 year horizon is 53.7%
as compared to the 44.3% in the Gaussian case. The loss surface as a whole is widening
and flattening with an increasing expected portfolio loss. The maximum loss increases from
44.2% over a 6 month horizon to 53.7% over five years. The Clayton copula model still
does not perfectly capture the market dynamics, but is an improvement over the Gaussian
case.

Similar sentiments on the weakness of Gaussian copula are shared by Li and Liang
[36].

Figure 4 uses a logarithmic scale for the probabilities to show the tail effects more
clearly.

The probabilities decrease very quickly under the Gaussian and Clayton copula
assumptions. The effect of thicker tails under the Clayton copula can easily be seen to
dominate the Gaussian copula. In the pricing of the super senior tranche, the Clayton
model exhibits higher expected losses due to the excess mass concentrated in the tails of the
distribution, the tranche spread will be higher under this model than the Gaussian case. These
deviations in the implied distribution under different distributional assumptions will filter
through to the resulting efficient frontiers. Due to the higher tail probabilities the Clayton ETL
efficient frontiers will be significantly different from frontiers resulting from the Gaussian
assumption. This feature will be shown in the subsequent sections.

The results so far also have a practical edge for credit risk management. The likelihood
of extreme credit losses is increased under the Clayton copula assumption. This is due to the
lower tail dependency exhibited by this copula function.
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Figure 3: The comparison of the implied loss density under Clayton copula assumption: (a) shows the
deviation of the model density from the implied density at the 5 year horizon, (b) displays the implied
credit loss density surface up to the 5 year horizon.
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Figure 4: The comparison of implied tail probabilities under different copula assumptions.

5. Risk Characterisation of Credit portfolios

Comparison of uncertainty in outcomes is central to investor preferences. If the outcomes
have a probabilistic description, a wealth of concepts and techniques from probability theory
can be applied. The main objective in the following section is to present a review of the
fundamental work by Artzner et al. [37] and Föllmer and Schied [38] from an optimisation
point of view, since a credit risk measure will represent one of the objectives in the CDO
optimisation problem.
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Let R denote the set of random variables defined on the probability space (Ωp,Fp,Qp).
We define Ωp as a set of finitely many possible scenarios for the portfolio p. Financial risks are
represented by a convex cone M ⊆ (Ωp,Fp,Qp) of random variables. Any random variable
Lc in this set will be interpreted as a possible loss of some credit portfolio over a given time
horizon. The following provides a definition of a convex cone.

Definition 5.1 (convex cone). M is a convex cone if,

(1) L(1)
c ∈ M and L

(2)
c ∈ M implies that L(1)

c + L
(2)
c ∈ M; and

(2) λ∗Lc ∈ M for every λ∗ ≥ 0.

Definition 5.2 (measures of risk). Given some convex cone,M of random variables, a measure
of risk Θ with domainM is a mapping:

Θ :M −→ R. (5.1)

From an economic perspective, Θ(Lc), can be regarded as the capital buffer that should
be set aside for adverse market movements. In order to measure and control the associated
risk Artzner et al. [37] introduced an axiomatic framework of coherent risk measures which
were recently “generalised” by Föllmer and Schied [38] to convex risk measures.

Definition 5.3 (Convex risk measures). A mapping Θ :M → R is called a convex risk measure,
if and only if it is

(1) convex for every L
(1)
c and L

(2)
c ∈ M, one has Θ(ΛL

(1)
c + (1 −Λ)L(2)

c ) ≤ ΛΘ(L(1)
c ) + (1 −

Λ)Θ(L(2)
c ) for some Λ ∈ R;

(2) monotone for every L
(1)
c and L

(2)
c ∈ Mwith L

(1)
c ≤ L

(2)
c , one has Θ(L(1)

c ) ≤ Θ(L(2)
c ); and

(3) translation invariant if a∗ is a constant then Θ(Lc+a∗1) = −a∗+Θ(Lc), where 1 denotes
the unit vector.

By adding positive homogeneity to these properties, one obtains the following
definition.

Definition 5.4 (coherent risk measures). A convex risk measure Θ is called coherent, if in
addition it is,

Positively homogeneous if Λ ≥ 0 then Θ(ΛLc) = ΛΘ(Lc) holds.

Denote the credit loss distribution of Lc by FLc(lc) = Q(Lc ≤ lc). In the analysis we are
concerned solely with two risk measures which are based on the loss distribution FLc , namely
VaR and ETL. We now recall the definition of these risk measures.

Definition 5.5 (value-at-risk (VaR)). Given some confidence level β∗ ∈ (0, 1), the Value-at-Risk
(VaR) of the credit portfolio at the confidence level β∗ is given by the smallest number lc such
that the probability that the loss Lc exceeds lc is no larger than (1 − β∗). Formally,

VaR = inf
(
lc ∈ R : Q

(
Lc > l

)
≤ 1 − β∗

)
. (5.2)
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This definition of VaR coincides with the definition of an β∗-quantile of the distribution
of Lc in terms of a generalised inverse of the distribution function FLc . We observe this
coincidence by noting,

VaR = inf
(
lc ∈ R : 1 − FLc

(
lc
)
≤ 1 − β∗

)

= inf
(
lc ∈ R : FLc

(
lc
)
≥ β∗
)
.

(5.3)

For a random variable Y we will denote the β∗-quantile of the distribution by qβ∗(FY ), and
write VaRβ∗(Y ) when we wish to stress that the quantile should be interpreted as a VaR
number. A simple definition of ETL which suffices for continuous loss distributions is as
follows.

Definition 5.6 (expected-tail-loss (ETL)). Consider a loss L with continuous FLdf satisfying

∫

R

|l|dFLc

(
lc
)
<∞. (5.4)

Then the Expected-Tail-Loss at confidence level α ∈ (0, 1), is defined to be,

ETLβ∗ = E
[
Lc | Lc ≥ VaRβ∗

]
=

E[Lc;Lc ≥ VaRβ∗(Lc)]
Q[Lc ≥ VaRβ∗(Lc)]

. (5.5)

6. Optimal Bespoke CDO Design

Credit portfolio optimisation plays a critical role in determining bespoke CDO strategies
for investors. The most crucial tasks in putting together bespoke CDOs is choosing the
underlying credits that will be included in the portfolio. Usually investors often express
preferences on individual names to which they willing to have the exposure, while there are
likely to be credit rating constraints and industry/geographical concentration limits imposed
by rating agencies and/or investors.

Given these various requirements, it is up to the credit structurer to optimise the
portfolio and achieve the best possible tranche spreads for investors. In the following
analysis, we focus on the asset allocation rather than credit selection strategy, which remains
a primary modelling challenge for credit structurers.

Davidson [2] provides an interesting analogy between bespoke CDO optimisation and
Darwin’s evolutionary cycles. In the natural world, life adapts to suit the particulars of its
environment. The adaptation to a specific environment is possible due to the application
of powerful set evolutionary techniques—reproduction, mutation and survival of the fittest.
Nature then explores the full range of possible structures to hone in on those that are most
perfectly suited to the surroundings.

Creating a portfolio for a CDO can broadly be seen in similar ways. Given a certain set
of investor defined, constraintsstructurers need to be able to construct a credit portfolio that
is best suited to the market environment. Added to these constraints are market constraints
such as trade lot restrictions and liquidity and availability of underlying credits. If the
portfolio does not suit these conditions, it evolves so that only those with the best fit (highest
tranche spreads) will survive. Many of the same techniques used in the natural world can be
applied to this structuring process.
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Evolutionary computation methods are exploited to allow for a generalisation of the
underlying problem structure and to solve the resulting optimisation problems, numerically
in a systematic way. The next section will briefly discuss some of the basic concepts
of multiobjective optimisation and outline the NSGA-II algorithm used for solving the
challenging CDO optimisation problem. The CDO optimisation model is then outlined before
conducting a prototype experiment on the test portfolio constructed from the constituents of
the iTraxx Europe IG S5 index.

6.1. Multiobjective Optimisation

Many real-world problems involve simultaneous optimisation of several incommensurable
and often competing objectives. In single-objective optimisation the solution is usually clearly
defined, this does not hold for multiobjective optimisation problems. We define formally, the
multiobjective optimisation problem to define other improtant concepts used in this chapter.
All problems are assumed to be minimisation problems unless otherwise specified To avoid
inserting the same reference every few lines, note that the terms and definitions are taken
from Zitzler [39], and adapted to CDO optimisation problem.

Definition 6.1 (multiobjective optimisation problem). A general multiobjective optimisation
Problem (MOP) includes a set of n∗ parameters (decision variables), a set of k1 objective
functions, and a set of k2 constraints. Objective functions and constraints are functions of
the decision variables. The optimisation goal is to obtain,

min y = f(x) =
(
f1(x), f2(x), . . . , fk1(x)

)
subject to,

e(x) =
(
e1(x), e2(x), . . . , ek2(x)

)
≤ 0,

x =
(
x1, x2, ..., xn

)
∈ X,

y =
(
y1, y2, ..., yk1

)
∈ Y,

(6.1)

where x and y are the decision and objective vectors, respectively, whilst X and Y denote
the decision and objective spaces, respectively. The constraints e(x) ≤ 0 determine the set of
feasible solutions.

Without loss of generality, a minimisation problem is assumed here. For maximisation
or mixed maximisation/minimisation problems the definitions are similar.

Definition 6.2 (vector relationship). For any two vectors r and r∗

r = r∗ iff ri = r∗i ∀i ∈
{

1, 2, . . . , k1
}
,

r/≤ r∗ iff ri ≤ r∗i ∀i ∈
{

1, 2, . . . , k1
}
,

r < r∗ iff r ≤ r∗ ∧ r ≤ r∗.

(6.2)

The relations ≥ and > are similarly defined.

Although the concepts and terminology of Pareto optimality are frequently invoked,
most often they are erroneously used in literature. We now define this set of concepts to
ensure understanding and consistency.
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Definition 6.3 (Pareto dominance). For any two vectors r and r∗

r/≺ r∗ iff f(r) ≤ f
(
r∗
)

then r dominates r∗,

r� r∗ iff f(r) ≤ f
(
r∗
)

then r weakly dominates r∗,

r ∼ r∗ iff f(r)/≤ f
(
r∗
)
∧ f
(
r∗
)
/≤ f(r) then r is indifferent to r∗.

(6.3)

The definitions for a maximisation problems (�,�, ∼ ) are analogous.

Definition 6.4 (Pareto optimality). A decision vector x ∈ Xf is said to be nondominated
regarding a set K ⊂ Xf iff

�k ∈ K : k/≺K. (6.4)

If it is clear within the context which set K is meant, it is simply left out. Moreover, x is said
to be Pareto optimal iff x is nondominated regarding Xf .

The entirety of all Pareto-optimal solutions is termed the Pareto-optimal set; the
corresponding objective vectors form the Pareto-optimal frontier or surface.

Definition 6.5 (nondominated sets and frontiers). Let K ⊂ Xf . The functionNd(K) gives the
set of nondominated decision vectors in K:

Nd(K) = {k ∈ K | k is nondominating regarding K}. (6.5)

The set Nd(K) is the nondominated set regarding K, the corresponding set of objective
vectors f(Nd(K)) is the nondominated front regarding K. Furthermore, the set XNd =Nd(Xf)
is called the Pareto-optimal set and the set YNd = f(Xf), is denoted as the Pareto-optimal frontier.

6.2. Nondominating Sort Genetic Algorithm (NSGA-II)

The second generation NSGA-II is a fast and elitist multiobjective evolutionary algo-
rithm. The main features are (http://www.kxcad.net/ESTECO/modeFRONTIER320/html/
userman/ch07s01s10.html).

(i) Implementation of a fast nondominated sorting procedure: Sorting of the individuals of
a given population is according to the level of nondomination. Generally, nondom-
inated sorting algorithms are computationally expensive for large population sizes
however, the adopted solution performs a clever sorting strategy.

(ii) Implementation of elitism for multiobjective search: Using an elitism-preserving
approach introduces storing all nondominated solutions discovered so far,
beginning from the initial population. Elitism enhances the convergence properties
towards the true Pareto-optimal set.

(iii) Adopting a parameter-less diversity preservation mechanism: Diversity and spread
of solutions is guaranteed without use of sharing parameters, since NSGA-II
adopts a suitable parameter-less niching approach. This niche is accomplished by
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the crowding distance measure, which estimates the density of solutions in the
objective space, and the crowded comparison operator, which guides the selection
process towards a uniformly spread Pareto frontier.

(iv) Constraint handling method does not make use of penalty parameters: The algorithm
implements a modified definition of dominance in order to solve constrained
multiobjective problems efficiently.

(v) Real-coded and binary-coded design variables: A new feature is the application of the
genetic algorithms in the field of continuous variables.

6.2.1. Representation of Individuals

The first stage of building the EA is to link the “real world” to the “EA world.” This linking
involves setting up a bridge between the original problem context and the problem-solving
solving space, where evolution takes place. The objects forming possible solutions within
the original problem context are referred to as a phenotype, while their encoding are called
genotypes or more commonly chromosomes.

The mapping from phenotype space to the genotype space is termed encoding. The
inverse mapping is termed decoding.

Choosing an appropriate representation for the problem being solved is improtant in
the design of a successful EA. Often it comes down to good knowledge of the application
domain [40].

Many different encoding methods have been proposed and used in EA development.
Few frequently applied representations are: binary, integer and real valued representation.
Real-valued or Floating-point representation is often the most sensible way to represent a
candidate solution to of a problem. This approach is appropriate when the values that we
want to represent as genes, originate from a continuous distribution.

The solutions to the proposed CDO optimisation models are real-valued. This study
opted to use the real-valued encoding, for the sake of operational simplicity. The genes of
a chromosome are real numbers between 0 and 1, which represents the weights invested in
the different CDS contracts. However, the summation of these weights might not be 1 in the
initialisation stage or after genetic operations. To overcome this problem, the weights are
normalised as follows:

x′i =
xi

∑N
i=1xi

. (6.6)

6.2.2. Evaluation Function

The role of the evaluation function is to represent the requirements to which the population
should adapt. This role forms the basis of selection. Technically, the function assigns a quality
measure to the genotypes. Typically the function is composed from a quality measure in the
phenotype space and the inverse representation [40]. In the evolutionary context the function
is usually referred to as the fitness function.

In the bespoke CDO optimisation problem, we introduce two objective to the problem.
These objectives are namely the CDO tranche return, and the portfolio tail risk measured by
ETL. Various constraints are then introduced to study the dynamics of the Pareto frontier
under various conditions.
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6.2.3. Population Models and Diversity Preservation

Unlike operators, which operate on individuals, selection operators like parent and survivor
selection work at population level. In most EA applications, the population size is constant
and does not change during the evolutionary search. The diversity of the population is a
measure of the number of different solutions present.

In NSGA-I, the well-known sharing function approach was used, which was found to
maintain sustainable diversity in a population [4]. There are however two difficulties with
this sharing function. According to Deb et al. [4], the performance of the sharing function
method in maintaining a spread of solutions depends largely on the value of σs, and since
each solution must be compared with all other solutions in the population, the overall
complexity of the sharing function approach is O(N2

pop).
Deb et al. [4] replace the sharing function approach with a crowded-comparison

approach in NSGA-II. This eliminates both the above difficulties to some extent. This
approach does not require any user-defined parameter for maintaining diversity among
population members, and also has a better computational complexity.

To describe this approach, we first define a metric for density estimation and then
present the description of the crowded-comparison operator.

6.2.4. Crowded Comparison Operator

The density of solutions surrounding a particular solution in the population must firstly be
estimated by calculating the average distance of two points on either side of this point, along
each of the objectives.

Once the nondominated sort is complete, the crowding distance is assigned.
Individuals are selected based on rank and crowding distance. The crowding-distance
computation requires sorting the population according to each objective function value in
ascending order of magnitude. The boundary solutions (solutions with smallest and largest
function values) for each objective function are assigned an infinite distance value. All
other intermediate solutions are assigned a distance value equal to the absolute normalised
difference in the function values of two adjacent solutions. This calculation is continued
with other objective functions. The overall crowding-distance value is calculated as the sum
of individual distance values corresponding to each objective. Each objective function is
normalised before calculating the crowding distance. (See Deb et al. [4] for more details
regarding the algorithm.)

The complexity of this procedure is governed by the sorting algorithm and has
computational complexity of O(M∗Npop logNpop), where there are M∗ independent sorting
of at most Npop individuals, when all population members are in one front I.

After all population members in the set I are assigned a distance metric, we can
compare two solutions for their extent of proximity with other solutions. A solution with
a smaller value of this distance measure is, in some sense, more crowded by other solutions.

6.2.5. Nondomination Sorting Approach

In order to identify solutions in the NSGA of the first nondominated front, each solution
is compared with every other solution in the population to find if it is dominated (We
summarise the algorithm discussed in Deb et al. [4].). This procedure requires O(k1Npop)
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comparisons for each solution, where k1 is the number of objectives. This process is continued
to find all members of the first nondominated level in the population, the total complexity is
O(k1N

2
pop) computations. At this stage, all individuals in the first nondominated front are

found. In order to find the individuals in the next nondominated front, the solutions of the
first front are discounted temporarily and the above procedure is repeated. In the worst case,
the task of finding the second front also requires O(k1N

2
pop) computations, particularly when

number of solutions belong to the second and higher nondominated levels. This argument is
true for finding third and higher levels of nondomination.

The worst case is when there are Npop fronts and there exists only one solution in each
front. This requires an overall O(k1N

3
pop) computations. For each solution we calculate two

entities:

(1) the domination count nq, the number of solutions which dominate the solution; and

(2) the set of solutions Hq that the solution dominates. This requires O(k1N
2
pop)

comparisons.

Solutions in the first nondominated front will have their domination count as zero. For each
solution with nq = 0, each member q ∈ Hq is visited and reduce its domination count by
one. By doing so, these members belong to the second nondominated front. This process
continues until all fronts are identified. For each solution in the second or higher level of
nondomination, the domination count can be at most Npop − 1. Since there are at most
such Npop − 1 solutions, the total complexity of the procedure is O(N2

pop). Thus, the overall
complexity of the procedure is O(k1N

3
pop).

In NSGA-II the complexity reduction is due to the realisation that the body of the first
inner loop (for each p∗i ∈ Ji) is executed exactly Npop times as each individual can be the
member of at most one front and the second inner loop (for each q ∈ Hp) can be executed
at maximum Npop − 1 times for results in the overall computations. It is improtant to note
that although the time complexity has reduced to O(k1N

2
pop), the storage requirement has

increased to O(N2
pop).

6.2.6. Parent Selection Mechanism

The selection operator determines, which individuals are chosen for mating and how many
offspring each selected individual produces. Once the individuals are sorted based on
nondomination with crowding distance assigned, the selection is carried out using a crowded
comparison operator described above. The comparison is carried out as below based on

(1) nondomination rank p∗rank, that is, individuals in FRONTi will have their rank
p∗rank = i; and

(2) crowding distance FRONTi(dj).

The selection of individuals is through a binary tournament selection with the crowed-
comparison operator. In tournament selection the individuals are chosen randomly from the
population and the best individual from this group is selected as parent. This process is
repeated as often as individuals must be chosen. These selected parents produce uniform
at random offspring. The parameter for tournament selection is the tournament size. This
takes values ranging from 2 to the number of individuals in population [41].
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6.2.7. Mutation Operation

Mutation causes individuals to be randomly altered. These variations are mostly small.
They will be applied to the variables of the individuals with a low probability. Offspring
are mutated after being created by recombination. Mutation of real variables means, that
randomly created values are added to the variables with a low mutation probability. The
probability of mutating a variable is inversely proprotional to the number of variables
(dimensions). The more dimensions one individual has, the smaller is the mutation
probability. Different papers reproted results for the optimal mutation rate [41].

The mutation step size is usually difficult to choose. The optimal step-size depends on
the problem considered and may even vary during the optimisation process. Small mutation
steps are often successful, especially when the individual is already well adapted. However,
large mutation steps can produce good results with a faster convergence rate. According
Pohleim [41] good mutation operators should often produce small step-sizes with a high
probability and large step-sizes with a low probability.

In the NSGA-II a polynomial mutation operator is used. This operator is defined by
the following:

Ψoffspring
i = Ψparent

i +
(
Ψup

i + Ψlow
i

)
δi, (6.7)

where Ψoffspring
i is the child, and Ψparent

i is the parent, with Ψup
i and Ψlow

i being the upper and
lower bounds of the parent component. δi is a small variation which is calculated from a
polynomial distribution given below.

δi =

⎧
⎨

⎩

(
2ri
)1/(ηm+1) − 1 ri < 0.5

1 −
(
2
(
1 − ri

))1/(ηm+1) − 1 ri ≥ 0.5,
(6.8)

where ri ∼ U(0, 1) and ηm is mutation distribution index.

6.2.8. Recombination Operation

The recombination operator produces new individuals in combining the information
contained in two or more parents in the mating population. This mating is done by combining
the variable values of the parents. Depending on the representation of the variables different
methods must be used.

Using real-value representation, the Simulated Binary Crossover operator is used for
recombination and polynomial mutation is used for mutating the offspring population [42].

Simulated binary crossover simulates the binary crossover observed in nature and is
give by the following.

Ψoffspring
1,i =

1
2
((

1 − βk
)
ΨParent

1,k +
(
1 + βk

)
ΨParent

2,k

)
,

Ψoffspring
2,i =

1
2
((

1 + βk
)
ΨParent

1,k +
(
1 − βk

)
ΨParent

2,k

)
,

(6.9)
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Figure 5: An outline of the NSGA-II procedure.

where βk(≥ 0) is a sample from a random number generated having the density

fc(β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
(
ηc + 1

)
βηc 0 ≤ β ≤ 1,

1
2
(
ηc + 1

) 1
βηc+2

β ≥ 1.
(6.10)

This distribution can be obtained from a u ∼ U(0, 1) source. ηc is the distribution index for
the recombination operator.

6.2.9. Main Loop

First, a random parent population is created. The population is then sorted based on the
nondomination outlined above. Each individual is assigned a fitness value (or rank) equal
to its nondomination level, with 1 representing the best level. Binary tournament selection,
recombination, and mutation operators are then applied to create an offspring population of
size Npop.

Due to the introduction of elitism, the current population is compared to previously
found best nondominated solutions, the procedure is different after the initial generation.
Figure 5 outlines the tth generation of the NSGA-II procedure.

The first step is to combined parent population Q t with the offspring population R t.
The population is now of size 2Npop. The resulting population is then sorted according to
nondomination. Since all previous and current population members are included in N t =
Q t ∪ R t, elitism is ensured.

Solutions belonging to the best nondominated set FRONT(1), are of best solutions
in the combined population and must be emphasised more than any other solution in the
combined population. If FRONT(1) is smaller than Npop, then all individuals in this set are
chosen for the next generation, else a truncation operation will have to be applied. If the first
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case holds, then the remaining members of the next generation are chosen from subsequent
nondominated fronts in the order of their ranking.

In general, the count of solutions in all sets from FRONT(1) to FRONT(l) would be
larger than the population size. To choose exactly Npop population members, the solutions
of the last frontier are sorted and then the crowded-comparison operator is applied in
descending order. The best solutions are chosen to fill all population slots. This procedure
is valid for minimisation problems only.

The requisite diversity among nondominated solutions is introduced by using the
crowded comparison procedure, which is used in the tournament selection and during the
population truncation phases [4].

6.2.10. Initialisation and Termination Conditions

Initialisation is kept simple in most EA applications, the first population is seeded by
randomly generated individuals. In principle, problem-specific heuristics can be used in this
step, to create an initial population with higher fitness values [40].

We can distinguish two cases for an appropriate termination condition. If the problem
has a known optimum fitness level, then an acceptable error bound would be a suitable
condition. However, in many multiobjective problems optimum values are not known. In
this case one needs to extend this condition with one that certainly stops the algorithm. As
noted by Eiben and Smith [40], a common choice is to impose a limit on the total number of
fitness evaluations.

6.3. Optimisation Problem

The optimal bespoke structure can be derived by solving the following problem:

min
x∈[0,1]N

Θ(x),

max
x∈[0,1]N

sntr(x)

subject to
N∑

i=1

xi = 1,

(6.11)

where in the above problem, we minimise the portfolio ETL, and simultaneously maximise
the nth

tr tranche spread denoted by sntr subject to the portfolio weights summing up to unity.
This minimality may typically be the case if only long positions in the underlying credits are
allowed.

For practical purposes, it may be crucial to include other real-world constraints. Let G∗
denote the set of organisational, regulatory and physical constraints. The list of constraints,
which are commonly included into G∗ are summarised below.

(1) Upper and lower limits on issuer weights: especially due to regulatory issues, the
portfolio fractional amount invested into each asset may be limited, that is, there



26 Journal of Applied Mathematics and Decision Sciences

may be individual lower and upper bounds on the portfolio weights.

l
(i)
upper ≤ xi ≤ l

(i)
upper ∀i ∈ {1, 2, 3, . . . ,N}. (6.12)

When short selling is disallowed, it can be explicitly modelled by setting li = 0 in
this formulation.

(2) Regional/industry concentration constraints: due to rating agency and regulatory
restrictions, the portfolio may have industry and regional concentration limits, then

k∑

i=1

xi ≤ U(Iind,Igeo), where 0 ≤ U(Iind,Igeo) ≤ 1, (6.13)

where the coordinate (Iind, Igeo) refers to a particular industry Iind in region Igeo.

(3) Cardinality constraints: these constraints limit the number of assets in the portfolio.
They can either be strict

N
(
xi > 0

)
= K∗, 0 < K∗ ≤ a, K∗ ∈ N. (6.14)

or lower and upper bounds on the cardinality can be defined,

K∗l ≤ N
(
xi > 0

)
≤ K∗u, 0 < K∗l < K∗u ≤ a, K∗l , K

∗
u ∈ N. (6.15)

(4) Weighted average rating factor (WARF) constraints: due to regulatory or organisational
restrictions, the portfolio WARF must be above some minimum value,

Rprot ≥ Rtarget, (6.16)

where in the case of S and P ratings Rprot ∈ {AAA,AA+, AA,AA−, . . .}. (Due to
the nature of CDOs, ratings higher than the portfolio rating can be achieved. In this
case the constraint may be defined as Rnth tranche ≥ Rtarget.)

Rating agencies presuppose that there are two broad credit considerations that
determine the risk of a CDO portfolio: collateral diversity by industry and by
reference entity, and the credit quality of each asset in the portfolio. With respect
to the latter, rating agencies use the concept of the WARF. Each security in the CDO
portfolio has a rating (actual or implied) and each rating has a corresponding rating
factor. The lower a security’s rating, the higher its corresponding rating factor. In
order to calculate the weighted average debt rating for a pool of assets, take the
par amount of each performing asset and multiply it by its respective rating factor.
Then, sum the resulting amounts for all assets in the pool and divide this number
by the sum of the par values of the performing assets [1].

Krahnen and Wilde [43] show that the common presumption about macro factor tail
risk (extreme systematic risk) being largely held by senior tranches is false. While senior
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tranches are in fact primarily exposed to tail risk, the reverse is not true, as the share of tail
risk borne by senior tranches is quite limited. They conclude that tail risk in standard CDO
transactions is held by all tranches. This argument motivates the use of a tail-risk measure like
ETL in the tranche return-risk optimisation to derive optimal structures. The multiobjective
optimisation problem including the above constraints is now defined in detail.

min
x∈X

ETLβ∗

(
L
(
tj
))
,

max
x∈X

sn =

∑J
j=1D(0, (tj − tj−1)/2)(E[Lntr(tj)] − E[Lntr(tj−1)])
∑J

j=1(tj − tj−1)D(0, tj)E[N
(ntr)
out (tj , tj−1)]

subject to

l
(i)
upper ≤ xi ≤ l

(i)
upper ∀i ∈ {1, 2, 3, . . . ,N},

Rprot ≥ Rmin,

N(xi > 0) = 106.

(6.17)

We do not include the industry/region concentration constraints since the numerical analysis
is conducted on the benchmark portfolio consisting of 106 constituents of the iTraxx Europe
IG S5 index. The regional constraint will fall away, however, the industry constraint will still
hold. The study will analyse the industry distributions of the resulting collateral portfolio’s,
for optimal [6, 9]% mezzanine tranches that define the pareto frontier. This is an improtant
visualisation tool for bespoke CDO investors, which depicts the trade-off between tranche
return and risk, to allow for picking a structure given the respective risk preference. A flat
Libor curve of 4.6% is applied. The CDO structure is priced as at 18-April-2008.

The two cases investigated are as follows.

(1) First an examination of the pareto frontiers for bespoke CDO structures under both
Gaussian and Clayton copula assumptions is conducted. Long-only positions in the
underlying CDS are allowed. The upper trading limit in any particular reference
entity is set to 2.5% of the portfolio, whilst the lower limit is set to 0.5% to satisfy
the cardinality constraint of having 106 credits in the collateral portfolio.

(2) Then an investigation into the behaviour of the pareto frontiers under increasing
upper trading limit is conducted. This consequently allows an investigation of
concentration risk and its effects on the producing optimal CDO structures. The
upper trading limit is increased to 5% in this case.

Table 1 reprots the NSGA-II parameter setting used to solve the optimisation problem (6.17).
The parameters settings were found to be most appropriate after several runs of the

algorithm. The computational time played a crucial role in the assignment of parameter
values.

6.4. Prototype Experiment: Pareto Frontier Analysis

6.4.1. Optimal Structures with Long Only Credit portfolio

Bespoke CDOs are commonly preferred among investors because they can be used to execute
a variety of customised investment objectives and strategies. Flexibility in choosing the
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Table 1: NSGA-II parameter settings.

Evolutionary parameter Value
Population size 100
Number of generations 500
Crossover probability 90%
Distribution index for crossover 0.01
Distribution index for mutation 0.01
Pool size 50
Tour size 2
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Figure 6: The comparison of bespoke CDO pareto frontiers under different default dependence
assumptions.

reference portfolio allows investors to structure the portfolio investments such that it can
be properly matched with their investment portfolios, as a separate investment strategy or as
a hedging position. Most often investors choose credit portfolios such that diversification is
only as a result of buying protection on reference entities in the underlying portfolio.

We derive the pareto frontiers solving problem (6.17) under both the Gaussian and
Clayton copula assumptions when investors are restricted to the long-only condition.

Figure 6 displays the difference in pareto frontiers for the two default dependence
assumptions. The first observation is that the Gaussian allocation is sub-optimal. For all
levels of portfolio risk, measured by ETL, the Clayton allocation will result in higher [6, 9]%
tranche spreads. This deviation is an increasing function of portfolio tail risk and widens to a
maximum of 120 bps for an ETL of 30% of the portfolio losses.

The minimum tail risk portfolio can provide a [6, 9]% mezzanine tranche that pays
180 bps under the Clayton allocation, whilst the Gaussian allocation provides spread of
198 bps. However, there exist a 3.3% difference in ETL for these minimum risk portfolios.
A similar spread under the Clayton allocation can be achieved with a ETL of just 16.95%.

We concluded that the asset allocation strategies based on the Gaussian copula will
results in sub-optimal bespoke CDO structures.
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Figure 7: The portfolio notional distribution for the concentrated portfolio case, by issuer credit rating.

6.4.2. Issuer Concentrated Credit Structures

We now investigate the effects of issuer concentration on the pareto frontier. As we concluded
in the previous chapter, that investors demand a higher premium for taking on concentration
risk, combining this with the leverage effects of tranche technology, will result in higher
tranche spreads than the well diversified case. The resulting frontiers are shown in Figure 7
for the [6, 9]% mezzanine tranche.

Figure 7 compares the resulting pareto-frontiers for the well-diversified and issuer
concentrated cases. The CDO spread of the concentrated case over the well-diversified case
is an increasing function of portfolio risk. For a 29.64% level of risk, a spread of 92 bps over
the well-diversified case can be achieved.

7. Conclusions

The main objective of this research has been to develop and illustrate a methodology to
derive optimal bespoke CDO structures using the NSGA-II technology. Until recently, the
derivation of such structures was a near to an impossible task. However, with the advent of
advance pricing and optimisation techniques applied in this research, credit structurers can
use these tools to provide investors with optimal structures. Investors can use this type of
methodology to compare similar rated credit structures and make an informed investment
decision, especially under the current credit market conditions.

The most improtant finding is that the Gaussian copula allocation produces
suboptimal CDO tranche investments. Better tranche returns at all levels of risk are obtained
under the Clayton assumption. In the constrained long-only case, for all levels of portfolio
risk, measured by ETL, the Clayton allocation will result in higher [6, 9]% tranche spread.
This deviation was shown to be an increasing function of portfolio tail risk and widen to a
maximum of 120 bps for an ETL of 30%.
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It was also demonstrated that significant improvement of returns over standardised
CDOs tranches of similar rating can be achieved using the methodology presented in this
paper. The findings also concluded that the leverage effects should became more pronounced
for tranches lower down the capital structure. More concentrated bespoke CDO portfolios
result in higher tranche spreads. Investor demand higher premiums for taking on the
concentration risk. For a 29.64% level of portfolio tail risk, an excess return of 92 bps over
the well diversified case can be achieved.

Since the current analysis is restricted to single-factor copula models, one obvious
extension for future studies should be on the added benefits multifactor copula models
may provide in producing optimal CDO structures. On the use of evolutionary technology,
a future study should compare NSGA-II results to the rival, the second generation of
the strength pareto evolutionary algorithm (SPEA-2) proposed by the Zitzler et al. [44].
Stability of and convergence to the pareto frontier for optimal CDO structures should also
be investigated.
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1. Introduction

A number of previous studies have attempted to predict the price levels of stock market
indices [1–4]. However, in the last few decades, there have been a growing number of studies
attempting to predict the direction or the trend movements of financial market indices [5–11].
Some studies have suggested that trading strategies guided by forecasts on the direction of
price change may be more effective and may lead to higher profits [10]. Leung et al. [12] also
found that the classification models based on the direction of stock return outperform those
based on the level of stock return in terms of both predictability and profitability.

The most commonly used techniques to predict the trading signals of stock market
indices are feedforward neural networks (FNNs) [9, 11, 13], probabilistic neural networks
(PNNs) [7, 12], and support vector machines (SVMs) [5, 6]. FNN outputs the value of the
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stock market index (or a derivative), and subsequently this value is classified into classes (or
direction). Unlike FNN, PNN and SVM directly output the corresponding class.

Almost all of the above mentioned studies considered only two classes: the upward
and the downward trends of the stock market movement, which were considered as buy and
sell signals [5–7, 9, 11]. It was noticed that the time series data used for these studies are
approximately equally distributied among these two classes.

In practice, the traders do not participate in trading (either buy or sell shares) if there
is no substantial change in the price level. Instead of buying/selling, they will hold the
money/shares in hand. In such a case it is important to consider the additional class which
represents a hold signal. For instance, the following criterion can be applied to define three
trading signals, buy, hold, and sell.

Criterion A.

buy if Y (t + 1) ≥ lu,

hold if ll < Y (t + 1) < lu

sell if Y (t + 1) ≤ ll,

, (1.1)

where Y (t+1) is the relative return of the Close price of day (t+1) of the stock market index of interest,
while ll and lu are thresholds.

The values of ll and lu depend on the traders’ choice. There is no standard criterion
found in the literature how to decide the values of ll and lu , and these values may vary from
one stock index to another. A trader may decide the values for these thresholds according to
his/her knowledge and experience.

The proper selection of the values for ll and lu could be done by performing a
sensitivity analysis. The Australian All Ordinary Index (AORD) was selected as the target
stock market index for this study. We experimented different pairs of values for ll and lu
[14]. For different windows, different pairs gave better predictions. These values also varied
according to the prediction algorithm used. However, for the definition of trading signals,
these values needed to be fixed.

By examining the data distribution (during the study period, the minimum,
maximum, and average for the relative returns of the Close price of the AORD are −0.0687,
0.0573, and 0.0003, resp.), we chose lu = − ll = 0.005 for this study, assuming that 0.5%
increase (or decrease) in Close price of day t+1 compared to that of day t is reasonable enough
to consider the corresponding movement as a buy (or sell) signal. It is unlikely that a change
in the values of ll and lu would make a qualitative change in the prediction results obtained.

According to Criterion A with lu = − ll = 0.005, one cannot expect a balanced
distribution of data among the three classes (trading signals) because more data falls into
the hold class while less data falls into the other two classes.

Due to the imbalance of data, the most classification techniques such as SVM and PNN
produce less precise results [15–17]. FNN can be identified as a suitable alternative technique
for classification when the data to be studied has an imbalanced distribution. However, a
standard FNN itself shows some disadvantages: (a) use of local optimization methods which
do not guarantee a deep local optimal solution; (b) because of (a), FNN needs to be trained
many times with different initial weights and biases (multiple training results in more than
one solution and having many solutions for network parameters prevent getting a clear
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picture about the influence of input variables); (c) use of the ordinary least squares (OLS; see
(2.1)) as an error function to be minimised may not be suitable for classification problems.

To overcome the problem of being stuck in a local minimum, finding a global
solution to the error minimisation function is required. Several past studies attempted to
find global solutions for the parameters of the FNNs, by developing new algorithms (e.g.,
[18–21]). Minghu et al. [19] proposed a hybrid algorithm of global optimization of dynamic
learning rate for FNNs, and this algorithm shown to have global convergence for error
backpropagation multilayer FNNs (MLFNNs). The study done by Ye and Lin [21] presented
a new approach to supervised training of weights in MLFNNs. Their algorithm is based on a
“subenergy tunneling function” to reject searching in unpromising regions and a “ripple-
like” global search to avoid local minima. Jordanov [18] proposed an algorithm which
makes use of a stochastic optimization technique based on the so-called low-discrepancy
sequences to trained FNNs. Toh et al. [20] also proposed an iterative algorithm for global
FNN learning.

This study aims at modifying neural network algorithms to predict whether it is best
buy, hold, or sell the shares (trading signals) of a given stock market index. This trading
system is designed for short-term traders to trade under normal conditions. It assumes stock
market behaviour is normal and does not take unexceptional conditions such as bottlenecks
into consideration.

When modifying algorithms, two matters were taken into account: (1) using a
global optimization algorithm for network training and (2) modifying the ordinary least
squares error function. By using a global optimization algorithm for network training, this
study expected to find deep solutions to the error function. Also this study attempted
to modify the OLS error function in a way suitable for the classification problem of
interest.

Many previous studies [5–7, 9, 11] have used technical indicators of the local markets
or economical variables to predict the stock market time series. The other novel idea of this
study is the incorporation of the intermarket influence [22, 23] to predict the trading signals.

The organisation of the paper is as follows. Section 2 explains the modification
of neural network algorithms. Section 3 describes the network training, quantification of
intermarket influence, and the measures of evaluating the performance of the algorithms.
Section 4 presents the results obtained from the proposed algorithms together with their
interpretations. This section also compares the performance of the modified neural network
algorithms with that of the standard FNN algorithm. The last section is the conclusion of the
study.

2. Modified Neural Network Algorithms

In this paper, we used modified neural network algorithms for forecasting the trading signals
of stock market indices. We used the standard FNN algorithm as the basis of these modified
algorithms.

A standard FNN is a fully connected network with every node in the lower layer
linked to every node in the next higher layer. These linkages are attached with some weights,
w = (w1, . . . , wM), where M is the number of all possible linkages. Given weight, w, the
network produces an output for each input vector. The output corresponding to the ith input
vector will be denoted by oi ≡ oi(w).

FNNs adopt the backpropagation learning that finds optimal weights w by minimising
an error between the network outputs and given targets [24]. The most commonly used error
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function is the Ordinary Least Squares function (OLS):

EOLS =
1
N

N∑

i=1

(ai − oi)2, (2.1)

where N is the total number of observations in the training set, while ai and oi are the target
and the output corresponding to the ith observation in the training set.

2.1. Alternative Error Functions

As described in the Introduction (see Section 1), in financial applications, it is more important
to predict the direction of a time series rather than its value. Therefore, the minimisation of
the absolute errors between the target and the output may not produce the desired accuracy
of predictions [24, 25]. Having this idea in mind, some past studies aimed to modify the
error function associated with the FNNs (e.g., [24–27]). These studies incorporated factors
which represent the direction of the prediction (e.g., [24–26]) and the contribution from the
historical data that used as inputs (e.g., [24, 25, 27]).

The functions proposed in [24–26] penalised the incorrectly predicted directions more
heavily, than the correct predictions. In other words, higher penalty was applied if the
predicted value, oi, is negative when the target, ai, is positive or viceversa.

Caldwell [26] proposed the Weighted Directional Symmetry (WDS) function which is
given as follows:

fWDS(i) =
100
N

N∑

i=1

wds(i)|ai − oi|, (2.2)

where

wds(i) =

⎧
⎨

⎩
1.5 if (ai − ai−1)(oi − oi−1) ≤ 0,

0.5, otherwise,
(2.3)

and N is the total number of observations.
Yao and Tan [24, 25] argued that the weight associated with fWDS (i.e., wds(i)) should

be heavily adjusted if a wrong direction is predicted for a larger change, while it should be
slightly adjusted if a wrong direction is predicted for a smaller change and so on. Based on
this argument, they proposed the Directional Profit adjustment factor:

fDP(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c1 if (Δai ×Δoi) > 0 , Δai ≤ σ,

c2 if (Δai ×Δoi) > 0, Δai > σ,

c3 if (Δai ×Δoi) < 0, Δai ≤ σ,

c4 if (Δai ×Δoi) < 0, Δai > σ,

(2.4)
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where Δai = ai − ai−1, Δoi = oi − oi−1, and σ is the standard deviation of the training data
(including validation set). For the experiments authors used c1 = 0.5, c2 = 0.8, c3 = 1.2, and
c4 = 1.5 [24, 25]. By giving these weights, they tried to impose a higher penalty the predictions
whose direction is wrong and the magnitude of the error is lager, than the other predictions.

Based on this Directional Profit adjustment factor (2.4), Yao and Tan [24, 25] proposed
Directional Profit (DP) model [24, 25]:

EDP =
1
N

N∑

i=1

fDP(i)(ai − oi)2. (2.5)

Refenes et al. [27] proposed Discounted Least Squares (LDSs) function by taking the
contribution from the historical data into accounts as follows:

EDLS =
1
N

N∑

i=1

wb(i)(ai − oi)2, (2.6)

where wb(i) is an adjustment relating to the contribution of the ith observation and is
described by the following equation:

wb(i) =
1

1 + exp(b − 2bi/N)
. (2.7)

Discount rate b denotes the contribution from the historical data. Refenes et al. [27] suggested
b = 6.

Yao and Tan [24, 25] proposed another error function, Time Dependent directional
Profit (TDP) model, by incorporating the approach suggested by Refenes et al. [27] to their
Directional Profit Model (2.5):

ETDP =
1
N

N∑

i=1

fTDP(i)(ai − oi)2, (2.8)

where fTDP(i) = fDP(i)×wb(i). fDP(i) and wb(i) are described by (2.4) and (2.7), respectively.
Note. Refenes et al. [27] and Yao and Tan [24, 25] used 1/2N instead of 1/N in the

formulas given by (2.5), (2.6), and (2.8).

2.2. Modified Error Functions

We are interested in classifying trading signals into three classes: buy, hold, and sell. The hold
class includes both positive and negative values (see Criterion A in Section 1). Therefore, the
least squares functions, in which the cases with incorrectly predicted directions (positive or
negative) are penalised (e.g., the error functions given by (2.5) and (2.8)), will not give the
desired prediction accuracy. For example, suppose that ai = 0.0045 and oi = − 0.0049. In this
case the predicted signal is correct, according to Criterion A. However, the algorithms used in
[24, 25] try to minimise error function as Δai×Δoi < 0 (refer (2.8)). In fact such a minimisation
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is not necessary, as the predicted signal is correct. Therefore, instead of the weighing schemes
suggested by previous studies, we proposed a different scheme of weighing.

Unlike the weighing schemes suggested in [24, 25], which impose a higher penalty on
the predictions whose sign (i.e., negative or positive) is incorrect, this novel scheme is based
on the correctness of the classification of trading signals. If the predicted trading signal is
correct, we assign a very small (close to zero) weight and, otherwise, assign a weight equal
to 1. Therefore, the proposed weighing scheme is

wd(i) =

⎧
⎨

⎩
δ if the predicted trading signal is correct,

1, otherwise,
(2.9)

where δ is a very small value. The value of δ needs to be decided according to the distribution
of data.

2.2.1. Proposed Error Function 1

The weighing scheme, fDP(i), incorporated in the Directional Profit (DP) error function
(2.5) considers only two classes, upward and downward trends (direction) which are
corresponding to buy and sell signals. In order to deal with three classes, buy, hold, and
sell, we modified this error function by replacing fDP(i) with the new weighing scheme wd(i)
(see (2.9)). Hence, the new error function (ECC) is defined as

ECC =
1
N

N∑

i=1

wd(i)(ai − oi)2. (2.10)

When training backpropagation neural networks using (2.10) as the error minimisation
function, the error is forced to take a smaller value, if the predicted trading signal is correct.
On the other hand, the actual size of the error is considered in the cases of misclassifications.

2.2.2. Proposed Error Function 2

The contribution from the historical data also plays an important role in the prediction
accuracy of financial time series. Therefore, Yao and Tan [24, 25] went further by combining
DP error function (see (2.5)) with DLS error function (see (2.6)) and proposed Time
Dependent Directional Profit (TDP) error function (see (2.8)).

Following Yao and Tan [23, 24], this study also proposed a similar error function, ETCC,
by combining first new error function (ECC) described by (2.10) with the DLS error function
(EDLS). Hence the second proposed error function is

ETCC =
1
N

N∑

i=1

wb(i) ×wd(i)(ai − oi)2, (2.11)

where wb(i) and wd(i) are defined by (2.7) and (2.9), respectively.



Journal of Applied Mathematics and Decision Sciences 7

The difference between the TDP error function (see (2.8)) and this second new error
function (2.11) is that fDP(i) is replaced by wd(i) in order to deal with three classes: buy, hold,
and sell.

2.3. Modified Neural Network Algorithms

Modifications to neural network algorithms were done by (i) using the OLS error function
as well as the modified least squares error functions; (ii) employing a global optimization
algorithm to train the networks.

The importance of using global optimization algorithms for the FNN training was
discussed in Section 1. In this paper, we applied the global optimization algorithm, AGOP
(introduced in [28, 29]), for training the proposed network algorithms.

As the error function to be minimised, we considered EOLS (see (2.1)) and EDLS (see
(2.6)) together with the two modified error functions ECC (see (2.10)) and ETCC (see (2.11)).
Based on these four error functions, we proposed the following algorithms:

(i) NNOLS—neural network algorithm based on the Ordinary Least Squares error
function, EOLS (see (2.1));

(ii) NNDLS—neural network algorithm based on the Discounted Least Squares error
function, EDLS (see (2.6));

(iii) NNCC—neural network algorithm based on the newly proposed error function 1,
ECC (see (2.10));

(iv) NNTCC—neural network algorithm based on the newly proposed error function 2,
ETCC (see (2.11)).

The layers are connected in the same structure as the FNN (Section 2). A tan-sigmoid function
was used as the transfer function between the input layer and the hidden layer, while the
linear transformation function was employed between the hidden and the output layers.

Algorithm NNOLS differs from the standard FNN algorithm since it employs a new
global optimization algorithm for training. Similarly, NNDLS also differs from the respective
algorithm used in [24, 25] due to the same reason. In addition to the use of new training
algorithm, NNCC and NNTCC are based on two different modified error functions. The only
way to examine whether these new modified neural network algorithms perform better than
the existing ones (in the literature) is to conduct numerical experiments.

3. Network Training and Evaluation

The Australian All Ordinary Index (AORD) was selected as the stock market index whose
trading signals are to be predicted. The previous studies done by the authors [22] suggested
that the lagged Close prices of the US S\&P 500 Index (GSPC), the UK FTSE 100 Index (FTSE),
French CAC 40 Index (FCHI), and German DAX Index (GDAXI) as well as that of the AORD
itself showed an impact on the direction of the Close price of day t of the AORD. Also it was
found that only the Close prices at lag 1 of these markets influence the Close price of the
AORD [22, 23]. Therefore, this study considered the relative return of the Close prices at lag
1 of two combinations of stock market indices when forming input sets: (i) a combination
which includes the GSPC, FTSE, FCHI, and the GDAXI; (ii) a combination which includes
the AORD in addition to the markets included in (i).
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The input sets were formed with and without incorporating the quantified intermarket
influence [22, 23, 30] (see Section 3.1). By quantifying intermarket influence, this study tries
to identify the influential patterns between the potential influential markets and the AORD.
Training the network algorithms with preidentified patterns may enhance their learning.
Therefore, it can be expected that the using quantified intermarket influence for training
algorithms produces more accurate output.

The quantification of intermarket influence is described in Section 3.1, while
Section 3.2 presents the input sets used for network training.

Daily relative returns of the Close prices of the selected stock market indices from
2nd July 1997 to 30th December 2005 were used for this study. If no trading took place on a
particular day, the rate of change of price should be zero. Therefore, before calculating the
relative returns, the missing values of the Close price were replaced by the corresponding
Close price of the last trading day.

The minimum and the maximum values of the data (relative returns) used for
network training are −0.137 and 0.057, respectively. Therefore, we selected the value of δ
(see Section 2.2) as 0.01. If the trading signals are correctly predicted, 0.01 is small enough to
set the value of the proposed error functions (see (2.10) and (2.11)) to approximately zero.

Since, influential patterns between markets are likely to vary with time [30], the whole
study period was divided into a number of moving windows of a fixed length. Overlapping
windows of length three trading years were considered ( 1 trading year ≡ 256 trading days) .
A period of three trading years consists of enough data (768 daily relative returns) for neural
network experiments. Also the chance that outdated data (which is not relevant for studying
current behaviour of the market) being included in the training set is very low.

The most recent 10% of data (the last 76 trading days) in each window were accounted
for out of sample predictions, while the remaining 90% of data were allocated for network
training. We called the part of the window which allocated for training the training window.
Different number of neurons for the hidden layer was tested when training the networks with
each input set.

As described in Section 2.1, the error function, EDLS (see (2.6)), consists of a parameter
b (discount rate) which decides the contribution from the historical data of the observations
in the time series. Refenes et al. [27] fixed b = 6 for their experiments. However, the discount
rate may vary from one stock market index to another. Therefore, this study tested different
values for b when training network NNDLS. Observing the results, the best value for b was
selected, and this best value was used as b when training network NNTCC.

3.1. Quantification of Intermarket Influences

Past studies [31–33] confirmed that the most of the world’s major stock markets are
integrated. Hence, one integrated stock market can be considered as a part of a single global
system. The influence from one integrated stock market on a dependent market includes the
influence from one or more stock markets on the former.

If there is a set of influential markets to a given dependent market, it is not
straightforward to separate influence from individual influential markets. Instead of
measuring the individual influence from one influential market to a dependent market, the
relative strength of the influence from this influential market to the dependent market can be
measured compared to the influence from the other influential markets. This study used the
approach proposed in [22, 23] to quantify intermarket influences. This approach estimates



Journal of Applied Mathematics and Decision Sciences 9

the combined influence of a set of influential markets and also the contribution from each
influential market to the combined influence.

Quantification of intermarket influences on the AORD was carried out by finding the
coefficients, ξi, i = 1, 2, . . . (see Section 3.1.1), which maximise the median rank correlation
between the relative return of the Close of day (t + 1) of the AORD market and the sum
of ξi multiplied by the relative returns of the Close prices of day t of a combination of
influential markets over a number of small nonoverlapping windows of a fixed size. The
two combinations of markets, which are previously mentioned this section, were considered.
ξi measures the contribution from the ith influential market to the combined influence which
is estimated by the optimal correlation.

There is a possibility that the maximum value leads to a conclusion about a
relationship which does not exist in reality. In contrast, the median is more conservative in
this respect. Therefore, instead of selecting the maximum of the optimal rank correlation, the
median was considered.

Spearman’s rank correlation coefficient was used as the rank correlation measure. For
two variables X and Y , Spearman’s rank correlation coefficient, rs, can be defined as

rs =
n
(
n2 − 1

) − 6
∑
di

2 − (
Tx − Ty

)
/2

√
(n(n2 − 1) − Tx)(n(n2 − 1) − TY )

, (3.1)

where n is the total number of bivariate observations of x and y, di is the difference between
the rank of x and the rank of y in the ith observation, and Tx and Ty are the number of tied
observations of X and Y , respectively.

The same six training windows employed for the network training were considered for
the quantification of intermarket influence on the AORD. The correlation structure between
stock markets also changes with time [31]. Therefore, each moving window was further
divided into a number of small windows of length 22 days. 22 days of a stock market time
series represent a trading month. Spearman’s rank correlation coefficients (see (3.1)) were
calculated for these smaller windows within each moving window.

The absolute value of the correlation coefficient was considered when finding the
median optimal correlation. This is appropriate as the main concern is the strength rather
than the direction of the correlation (i.e., either positively or negatively correlated).

The objective function to be maximised (see Section 3.1.1 given below) is defined
by Spearman’s correlation coefficient, which uses ranks of data. Therefore, the objective
function is discontinuous. Solving such a global optimization problem is extremely difficult
because of the unavailability of gradients. We used the same global optimization algorithm,
AGOP, which was used for training the proposed algorithms (see Section 2.3) to solve this
optimization problem.

3.1.1. Optimization Problem

Let Y (t + 1) be the relative return of the Close price of a selected dependent market at time
t+ 1, and let Xj(t) be the relative return of the Close price of the jth influential market at time
t. Define Xξ(t) as

Xξ(t) =
∑

j

ξjXj(t), (3.2)
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where the coefficient ξj ≥ 0, j = 1, 2, . . . , m measures the strength of influence from each
influential market Xj , while m is the total number of influential markets.

The aim is to find the optimal values of the coefficients, ξ = (ξ1, . . . , ξm), which
maximise the rank correlation between Y (t + 1) and Xξ(t) for a given window.

The correlation can be calculated for a window of a given size. This window can be
defined as

T
(
t0, l

)
=
{
t0, t0 + 1, . . . , t0 + (l − 1)

}
, (3.3)

where t0 is the starting date of the window, and l is its size (in days). This study sets l = 22
days.

Spearman’s correlation (see (3.1)) between the variables Y (t + 1), Xξ(t), t ∈ T(t0, l),
defined on the window T(t0, l), will be denoted as

C(ξ) = Corr
(
Y (t + 1), Xξ(t)‖ T

(
t0, l

))
. (3.4)

To define optimal values of the coefficients for a long time period, the following method is
applied. Let [1, T] = {1, 2, . . . , T} be a given period (e.g., a large window). This period is
divided into n windows of size l (we assume that T = l × n, n > 1 is an integer) as follows:

T(tk, l), k = 1, 2, 3, . . . , n, (3.5)

so that,

T(tk, l) ∩ T(tk′ , l) = φ for ∀k /= k
′
,

n⋃

k=1

T(tk, l) = [1, T].
(3.6)

The correlation coefficient between Y (t + 1) and Xξ(t) defined on the window T(tk, l) is
denoted as

Ck(ξ) = Corr
(
Y (t + 1), Xξ(t)‖ T(tk, l)

)
, k = 1, . . . , n. (3.7)

To define an objective function over the period [1, T], the median of the vector,
(C1(ξ), . . . , Cn(ξ)), is used. Therefore, the optimization problem can be defined as

Maximise f(ξ) = Median(C1(ξ), . . . , Cn(ξ)),

s. t.
∑

j

ξj = 1, ξj ≥ 0, j = 1, 2, . . . , m.
(3.8)

The solution to (3.8) is a vector, ξ = (ξ1, . . . , ξm), where ξj , j = 1, 2, . . . , m denotes the strength
of the influence from the jth influential market.

In this paper, the quantity, ξjXj , is called the quantified relative return corresponding
to the jth influential market.
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3.2. Input Sets

The following six sets of inputs were used to train the modified network algorithms
introduced in Section 2.3.

(1) Four input features of the relative returns of the Close prices of day t of the
market combination (i) (i.e., GSPC(t), FTSE(t), FCHI(t), and GDAXI(t))—denoted
by GFFG.

(2) Four input features of the quantified relative returns of the Close prices of day
t of the market combination (i) (i.e., ξ1 GSPC(t), ξ2 FTSE(t), ξ3 FCHI(t), and ξ4

GDAXI(t))—denoted by GFFG-q.

(3) Single input feature consists of the sum of the quantified relative returns of
the Close prices of day t of the market combination (i) (i.e., ξ1 GSPC(t) + ξ2

FTSE(t) + ξ3 FCHI(t) + ξ4 GDAXI(t))—denoted by GFFG-sq.

(4) Five input features of the relative returns of the Close prices of day t of the market
combination (ii) (i.e., GSPC(t), FTSE(t), FCHI(t), GDAXI(t), and AORD(t))—
denoted by GFFGA.

(5) Five input features of the quantified relative returns of the Close prices of day t of
the market combination (ii) (i.e., ξA1 GSPC(t), ξA2 FTSE(t), ξA3 FCHI(t), ξA4 GDAXI(t),
and ξA5 AORD(t))—denoted by GFFGA-q.

(6) Single input feature consists of the sum of the quantified relative returns of the
Close prices of day t of the market combination (ii) (i.e., ξA1 GSPC(t) + ξA2 FTSE(t) +
ξA3 FCHI(t) + ξA4 GDAXI(t) + ξA5 AORD(t))—denoted by GFFGA-sq.

(ξ1, ξ2, ξ3, ξ4) and (ξA1 , ξA2 , ξA3 , ξA4 ) are solutions to (3.8) corresponding to the market
combinations (i) and (ii), previously mentioned in Section 3. These solutions relating to the
market combinations (i) and (ii) are shown in the Tables 1 and 2, respectively. We note that ξi
and ξAi , i = 1, 2, 3, 4 are not necessarily be equal.

3.3. Evaluation Measures

The networks proposed in Section 2.3 output the (t + 1)th day relative returns of the Close
price of the AORD. Subsequently, the output was classified into trading signals according to
Criterion A (see Section 1).

The performance of the networks was evaluated by the overall classification rate (rCA)
as well as by the overall misclassification rates (rE1 and rE2) which are defined as follows:

rCA =
N0

NT
× 100, (3.9)

where N0 and NT are the number of test cases with correct predictions and the total number
of cases in the test sample, respectively, as follows:

rE1 =
N1

NT
× 100,

rE2 =
N2

NT
× 100,

(3.10)
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Table 1: Optimal values of quantification coefficients (ξ) and the median optimal Spearman’s correlations
corresponding to market combination (i) for different training windows.

Training window no. Optimal values of ξ Optimal median Spearman’s correlation
GSPC FTSE FCHI GDAXI

1 0.57 0.30 0.11 0.02 0.5782∗

2 0.61 0.18 0.08 0.13 0.5478∗

3 0.77 0.09 0.13 0.01 0.5680∗

4 0.79 0.06 0.15 0.00 0.5790∗

5 0.56 0.17 0.03 0.24 0.5904∗

6 0.66 0.06 0.08 0.20 0.5359∗

∗ Significant at 5% level

Table 2: Optimal values of quantification coefficients (ξ) and the median optimal Spearman’s correlations
corresponding to market combination (ii) for different training windows.

Training window no. Optimal values of ξ Optimal median Spearman’s correlation
GSPC FTSE FCHI GDAXI AORD

1 0.56 0.29 0.10 0.03 0.02 0.5805∗

2 0.58 0.11 0.12 0.17 0.02 0.5500∗

3 0.74 0.00 0.17 0.02 0.07 0.5697∗

4 0.79 0.07 0.14 0.00 0.00 0.5799∗

5 0.56 0.17 0.04 0.23 0.00 0.5904∗

6 0.66 0.04 0.09 0.20 0.01 0.5368∗

∗ Significant at 5% level

where N1 is the number of test cases where a buy/sell signal is misclassified as a hold signals
or vice versa. N2 is the test cases where a sell signal is classified as a buy signal and vice versa.

From a trader’s point of view, the misclassification of a hold signal as a buy or sell
signal is a more serious mistake than misclassifying a buy signal or a sell signal as a hold
signal. The reason is in the former case a trader will loses the money by taking part in an
unwise investment while in the later case he/she only lose the opportunity of making a
profit, but no monetary loss. The most serious monetary loss occurs when a buy signal is
misclassified as a sell signal and viceversa. Because of the seriousness of the mistake, rE2

plays a more important role in performance evaluation than rE1.

4. Results Obtained from Network Training

As mentioned in Section 3, different values for the discount rate, b, were tested. b = 1, 2, . . . , 12
was considered when training NNDLS. The prediction results improved with the value of b
up to 5. For b > 5 the prediction results remained unchanged. Therefore, the value of b was
fixed at 5. As previously mentioned (see Section 3), b = 5 was used as the discount rate also
in NNTCC algorithm.

We trained the four neural network algorithms by varying the structure of the
network; that is by changing the number of hidden layers as well as the number of neurons
per hidden layer. The best four prediction results corresponding to the four networks were
obtained when the number of hidden layers equal to one is and, the number of neurons per
hidden layer is equal to two (results are shown in Tables 12, 13, 14, 15). Therefore, only the



Journal of Applied Mathematics and Decision Sciences 13

Table 3: Results obtained from training neural network, NNOLS. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1

GFFG 64.25 0.00 35.75
GFFGA 64.25 0.00 35.75
GFFG-q 64.69 0.00 35.31
GFFGA-q 64.04 0.00 35.96
GFFG-sq 63.82 0.00 36.18
GFFGA-sq 63.60 0.00 36.40

Table 4: Results obtained from training neural network, NNDLS. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1

GFFG 64.25 0.44 35.31
GFFGA 64.04 0.44 35.53
GFFG-q 64.47 0.22 35.31
GFFGA-q 64.25 0.22 35.53
GFFG-sq 63.82 0.00 36.18
GFFGA-sq 64.04 0.00 35.96

Table 5: Results obtained from training neural network, NNCC. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1

GFFG 65.35 0.00 34.65
GFFGA 64.04 0.22 35.75
GFFG-q 63.82 0.00 36.18
GFFGA-q 64.04 0.00 35.96
GFFG-sq 64.25 0.00 35.75
GFFGA-sq 63.82 0.00 36.18

Table 6: Results obtained from training neural network, NNTCC. The best prediction results are shown in
bold colour.

Input set Average rCA Average rE2 Average rE1

GFFG 66.67 0.44 32.89
GFFGA 64.91 0.22 34.87
GFFG-q 66.23 0.00 33.37
GFFGA-q 63.82 0.22 35.96
GFFG-sq 64.25 0.44 35.31
GFFGA-sq 64.69 0.22 35.09

results relevant to networks with two hidden neurons are presented in this section. Table 3 to
Table 6 present the results relating to neural networks, NNOLS, NNDLS, NNCC, and NNTCC,
respectively.

The best prediction results from NNOLS were obtained when the input set GFFG-q
(see Section 3.2) was used as the input features (see Table 3). This input set consists of four
inputs of the quantified relative returns of the Close price of day t of the GSPC and the three
European stock indices.
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Table 7: Results obtained from training standard FNN algorithms. The best prediction results are shown
in bold colour.

Input set Average rCA Average rE2 Average rE1

GFFG 62.06 0.22 37.72
GFFGA 62.06 0.22 37.72
GFFG-q 62.72 0.00 37.28
GFFGA-q 62.72 0.00 37.28
GFFG-sq 62.28 0.00 37.72
GFFGA-sq 62.50 0.00 37.50

Table 8: Average (over six windows) classification and misclassification rates of the best prediction results
corresponding to NNOLS (trained with input set GFFG-q; refer Table 3).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 23.46% (76.54%) (0.00%)
Hold (5.00%) 88.74% (6.27%)
Sell (0.00%) (79.79%) 20.21%

Table 9: Average (over six windows) classification and misclassification rates of the best prediction results
corresponding to NNDLS (trained with input set GFFGA-sq; refer Table 4).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 22.10% (77.90%) (0.00%)
Hold (4.97%) 89.20% (5.83%)
Sell (0.00%) (83.06%) 16.94%

NNDLS yielded nonzero values for the more serious classification error, rE2, when the
multiple inputs (either quantified or not) were used as the input features (see Table 4). The
best results were obtained when the networks were trained with the single input representing
the sum of the quantified relative returns of the Close prices of day t of the GSPC, the
European market indices, and the AORD (input set GFFGA-sq; see Section 3.2). When the
networks were trained with the single inputs (input sets GFFG-sq and GFFGA-sq; see
Section 3.2) the serious misclassifications were prevented.

The overall prediction results obtained from the NNOLS seem to be better than those
relating to NNDLS, (see Tables 3 and 4).

Compared to the predictions obtained from NNDLS, those relating to NNCC are better
(see Tables 4 and 5). In this case the best prediction results were obtained when the relative
returns of day t of the GSPC and the three European stock market indices (input set GFFG)
were used as the input features (see Table 5). The classification rate was increased by 1.02%
compared to that of the best prediction results produced by NNOLS (see Tables 3 and 5).

Table 6 shows that NNTCC also produced serious misclassifications. However,
these networks produced high overall classification accuracy and also prevented serious
misclassifications when the quantified relative returns of the Close prices of day t of the GSPC
and the European stock market indices (input set GFFG-q) were used as the input features.
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Table 10: Average (over six windows) classification and misclassification rates of the best prediction results
corresponding to NNCC (trained with input set GFFG; refer Table 5).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 23.94% (76.06%) (0.00%)
Hold (5.00%) 89.59% (6.66%)
Sell (0.00%) (77.71%) 22.29%

Table 11: Average (over six windows) classification and misclassification rates of the best prediction results
corresponding to NNTCC (trained with input set GFFG-q; refer Table 6).

Actual class
Average classification (misclassification) rates

Predicted class
Buy Hold Sell

Buy 27.00% (73.00%) (0.00%)
Hold (4.56%) 89.22% (6.22%)
Sell (0.00%) (75.49%) 24.51%

The accuracy was the best among all four types of neural network algorithms considered in
this study.

NNTCC provided 1.34% increase in the overall classification rate compared to NNCC.
When compared with the NNOLS, NNTCC showed a 2.37% increase in the overall classifica-
tion rate, and this can be considered as a good improvement in predicting trading signals.

4.1. Comparison of the Performance of Modified Algorithms with that of
the Standard FNN Algorithm

Table 7 presents the average (over six windows) classification rates, and misclassification
rates related to prediction results obtained by training the standard FNN algorithm which
consists of one hidden layer with two neurons. In order to compare the prediction results
with those of the modified neural network algorithms, the number of hidden layers was fixed
as one, while the number of hidden neurons were fixed as two. These FNNs was trained
for the same six windows (see Section 3) with the same six input sets (see Section 3.2). The
transfer functions employed are same as those of the modified neural network algorithms
(see Section 2.3).

When the overall classification and overall misclassification rates given in Table 7 are
compared with the respective rates (see Tables 3 to 6) corresponding to the modified neural
network algorithms, it is clear that the standard FNN algorithm shows poorer performance
than those of all four modified neural network algorithms. Therefore, it can be suggested that
all modified neural network algorithms perform better when predicting the trading signals
of the AORD.

4.2. Comparison of the Performance of the Modified Algorithms

The best predictions obtained by each algorithm were compared by using classification and
misclassification rates. The classification rate indicates the proportion of correctly classified
signals to a particular class out of the total number of actual signals in that class whereas,
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Table 12: Results obtained from training neural network, NNOLS with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE2

GFFG 1 64.25 0.00 35.75
2 64.25 0.00 35.75
3 64.25 0.00 35.75
4 64.25 0.22 35.53
5 64.25 0.00 35.75
6 64.25 0.00 35.75

GFFGA 1 64.25 0.00 35.75
2 64.25 0.00 35.75
3 64.04 0.00 35.96
4 64.25 0.00 35.75
5 64.25 0.00 35.75
6 64.25 0.00 35.75

GFFG-q 1 64.47 0.00 35.53
2 64.69 0.00 35.31
3 64.47 0.00 35.53
4 64.04 0.00 35.96
5 64.69 0.00 35.31
6 64.25 0.00 35.75

GFFGA-q 1 64.25 0.00 35.75
2 64.04 0.00 35.96
3 63.60 0.22 36.18
4 64.04 0.00 35.96
5 64.25 0.00 35.75
6 63.82 0.00 36.18

GFFG-sq 1 63.82 0.00 36.18
2 63.82 0.00 36.18
3 63.82 0.00 36.18
4 63.82 0.00 36.18
5 63.82 0.00 36.18
6 63.82 0.00 36.18

GFFGA-sq 1 63.60 0.00 36.40
2 63.60 0.00 36.40
3 63.60 0.00 36.40
4 63.60 0.00 36.40
5 63.60 0.00 36.40
6 63.60 0.00 36.40

the misclassification rate indicates the proportion of incorrectly classified signals from a
particular class to another class out of the total number of actual signals in the former class.

4.2.1. Prediction Accuracy

The average (over six windows) classification and misclassification rates related to the best
prediction results obtained from NNOLS, NNDLS, NNCC, and NNTCC are shown in Tables 8
to 11, respectively.
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Table 13: Results obtained from training neural network, NNDLS with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE1

GFFG 1 64.47 0.44 35.09
2 64.25 0.44 35.71
3 64.03 0.44 35.53
4 64.25 0.44 35.31
5 64.25 0.44 35.31
6 64.25 0.44 35.31

GFFGA 1 64.03 0.44 35.53
2 64.03 0.44 35.53
3 64.03 0.44 35.53
4 64.03 0.44 35.53
5 64.03 0.44 35.53
6 64.03 0.44 35.53

GFFG-q 1 64.47 0.22 35.31
2 64.47 0.22 35.31
3 64.69 0.22 35.09
4 64.47 0.22 35.31
5 64.25 0.22 35.53
6 64.47 0.22 35.31

GFFGA-q 1 64.69 0.22 35.09
2 64.25 0.22 35.53
3 63.82 0.22 35.96
4 64.25 0.44 35.31
5 64.47 0.44 35.09
6 64.25 0.22 35.53

GFFG-sq 1 63.82 0.00 36.18
2 63.82 0.00 36.18
3 63.82 0.00 36.18
4 63.82 0.00 36.18
5 63.82 0.00 36.18
6 63.82 0.00 36.18

GFFGA-sq 1 64.04 0.00 35.96
2 64.04 0.00 35.96
3 64.04 0.00 35.96
4 64.04 0.00 35.96
5 64.04 0.00 35.96
6 64.04 0.00 35.96

Among the best networks corresponding to the four algorithms considered, the best
network of the algorithm based on the proposed error function 2 (see (2.11)) showed the best
classification accuracies relating to buy and sell signals (27% and 25%, resp.; see Tables 8 to
11). Also this network classified more than 89% of the hold signals accurately and it is the
second best rate for the hold signal. The rate of misclassification from hold signals to buy is
the lowest when this network was used for prediction. The rate of misclassification from hold
class to sell class is also comparatively low (6.22%, which is the second lowest among the four
best predictions).
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Table 14: Results obtained from training neural network, NNCC with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE1

GFFG 1 62.72 0.66 36.62
2 65.35 0.00 34.65
3 63.60 0.00 36.40
4 63.38 0.22 36.40
5 64.25 0.00 35.75
6 64.69 0.00 35.31

GFFGA 1 64.04 0.00 35.96
2 64.03 0.22 35.75
3 63.16 0.00 36.84
4 64.04 0.00 35.96
5 64.03 0.44 35.53
6 64.04 0.00 35.96

GFFG-q 1 63.38 0.00 36.62
2 63.82 0.00 36.18
3 63.60 0.00 36.40
4 64.91 0.22 34.87
5 64.03 0.22 35.75
6 64.69 0.00 35.31

GFFGA-q 1 65.35 0.22 34.43
2 64.04 0.00 35.96
3 64.04 0.00 35.96
4 63.38 0.00 36.62
5 65.13 0.00 34.87
6 63.82 0.00 36.18

GFFG-sq 1 64.25 0.00 35.75
2 64.25 0.00 35.75
3 64.04 0.00 35.96
4 64.04 0.00 35.96
5 64.25 0.00 35.75
6 64.04 0.00 35.96

GFFGA-sq 1 63.82 0.00 36.18
2 63.82 0.00 36.18
3 63.82 0.00 36.18
4 63.82 0.00 36.18
5 63.82 0.00 36.18
6 63.82 0.00 36.18

The network corresponding to the algorithm based on the proposed error function
1 (see (2.10)) produced the second best prediction results. This network accounted for the
second best prediction accuracies relating to buy and sell signals while it produced the best
predictions relating to hold signals (Table 10).

4.3. Comparisons of Results with Other Similar Studies

Most of the studies [8, 9, 11, 13, 22], which used FNN algorithms for predictions, are aimed
at predicting the direction (up or down) of a stock market index. Only a few studies [14, 17],
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Table 15: Results obtained from training neural network, NNTCC with different number of hidden neurons.

Input set No. of hidden neurons Average rCA Average rE2 Average rE1

GFFG 1 65.57 0.44 33.99
2 66.67 0.44 32.89
3 64.47 0.44 35.09
4 65.57 0.22 34.21
5 65.13 0.22 34.65
6 64.91 0.22 34.87

GFFGA 1 64.69 0.22 35.09
2 64.91 0.22 34.87
3 65.13 0.00 34.87
4 65.13 0.22 34.35
5 64.13 0.22 34.65
6 65.57 0.22 34.21

GFFG-q 1 64.91 0.22 34.87
2 66.23 0.00 33.77
3 65.57 0.00 34.43
4 65.79 0.22 33.99
5 65.13 0.22 34.65
6 66.23 0.22 33.55

GFFGA-q 1 65.57 0.22 34.21
2 63.82 0.22 35.96
3 64.91 0.00 35.09
4 63.82 0.22 35.96
5 64.69 0.22 35.09
6 64.47 0.00 35.53

GFFG-sq 1 65.13 0.44 34.43
2 64.25 0.44 35.31
3 64.91 0.44 34.65
4 64.47 0.44 35.09
5 64.69 0.44 34.87
6 64.69 0.44 34.87

GFFGA-sq 1 64.69 0.22 35.09
2 64.69 0.22 35.09
3 64.69 0.22 35.09
4 64.91 0.22 34.87
5 64.91 0.22 34.87
6 64.69 0.22 35.09

which used the AORD as the target market index, predicted whether to buy, hold or sell
stocks. These studies employed the standard FNN algorithm (that is with OLS error function)
for prediction. However, the comparison of results obtained from this study with the above
mentioned two studies is impossible as they are not in the same form.

5. Conclusions

The results obtained from the experiments show that the modified neural network algorithms
introduced by this study perform better than the standard FNN algorithm in predicting the
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trading signals of the AORD. Furthermore, the neural network algorithms, based on the
modified OLS error functions introduced by this study (see (2.10) and (2.11)), produced
better predictions of trading signals of the AORD. Of these two algorithms, the one-based
on (2.11) showed the better performance. This algorithm produced the best predictions when
the network consisted of one hidden layer with two neurons. The quantified relative returns
of the Close prices of the GSPC and the three European stock market indices were used as
the input features. This network prevented serious misclassifications such as misclassification
of buy signals to sell signals and viceversa and also predicted trading signals with a higher
degree of accuracy.

Also it can be suggested that the quantified intermarket influence on the AORD can
be effectively used to predict its trading signals.

The algorithms proposed in this paper can also be used to predict whether it is best to
buy, hold, or sell shares of any company listed under a given sector of the Australian Stock
Exchange. For this case, the potential influential variables will be the share price indices of
the companies listed under the stock of interest.

Furthermore, the approach proposed by this study can be applied to predict trading
signals of any other global stock market index. Such a research direction would be very
interesting especially in a period of economic recession, as the stock indices of the world’s
major economies are strongly correlated during such periods.

Another useful research direction can be found in the area of marketing research. That
is the modification of the proposed prediction approach to predict whether market share of a
certain product goes up or not. In this case market shares of the competitive brands could be
considered as the influential variables.
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[2] R. Gençay and T. Stengos, “Moving average rules, volume and the predictability of security returns
with feedforward networks,” Journal of Forecasting, vol. 17, no. 5-6, pp. 401–414, 1998.

[3] M. Qi, “Nonlinear predictability of stock returns using financial and economic variables,” Journal of
Business & Economic Statistics, vol. 17, no. 4, pp. 419–429, 1999.

[4] M. Safer, “A comparison of two data mining techniques to predict abnormal stock market returns,”
Intelligent Data Analysis, vol. 7, no. 1, pp. 3–13, 2003.

[5] L. Cao and F. E. H. Tay, “Financial forecasting using support vector machines,” Neural Computing &
Applications, vol. 10, no. 2, pp. 184–192, 2001.

[6] W. Huang, Y. Nakamori, and S.-Y. Wang, “Forecasting stock market movement direction with support
vector machine,” Computers and Operations Research, vol. 32, no. 10, pp. 2513–2522, 2005.

[7] S. H. Kim and S. H. Chun, “Graded forecasting using an array of bipolar predictions: application of
probabilistic neural networks to a stock market index,” International Journal of Forecasting, vol. 14, no.
3, pp. 323–337, 1998.

[8] H. Pan, C. Tilakaratne, and J. Yearwood, “Predicting Australian stock market index using neural
networks exploiting dynamical swings and intermarket influences,” Journal of Research and Practice in
Information Technology, vol. 37, no. 1, pp. 43–54, 2005.

[9] M. Qi and G. S. Maddala, “Economic factors and the stock market: a new perspective,” Journal of
Forecasting, vol. 18, no. 3, pp. 151–166, 1999.

[10] Y. Wu and H. Zhang, “Forward premiums as unbiased predictors of future currency depreciation: a
non-parametric analysis,” Journal of International Money and Finance, vol. 16, no. 4, pp. 609–623, 1997.

[11] J. Yao, C. L. Tan, and H. L. Poh, “Neural networks for technical analysis: a study on KLCI,”
International Journal of Theoretical and Applied Finance, vol. 2, no. 2, pp. 221–241, 1999.



Journal of Applied Mathematics and Decision Sciences 21

[12] M. T. Leung, H. Daouk, and A.-S. Chen, “Forecasting stock indices: a comparison of classification and
level estimation models,” International Journal of Forecasting, vol. 16, no. 2, pp. 173–190, 2000.

[13] K. Kohara, Y. Fukuhara, and Y. Nakamura, “Selective presentation learning for neural network
forecasting of stock markets,” Neural Computing & Applications, vol. 4, no. 3, pp. 143–148, 1996.

[14] C. D. Tilakaratne, M. A. Mammadov, and S. A. Morris, “Effectiveness of using quantified intermarket
influence for predicting trading signals of stock markets,” in Proceedings of the 6th Australasian Data
Mining Conference (AusDM ’07), vol. 70 of Conferences in Research and Practice in Information Technology,
pp. 167–175, Gold Coast, Australia, December 2007.

[15] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector machines to imbalanced datasets,”
in Proceedings of the 15th European Conference onMachine Learning (ECML ’04), pp. 39–50, Springer, Pisa,
Italy, September 2004.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-
sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[17] C. D. Tilakaratne, S. A. Morris, M. A. Mammadov, and C. P. Hurst, “Predicting stock market index
trading signals using neural networks,” in Proceedings of the 14th Annual Global Finance Conference
(GFC ’07), pp. 171–179, Melbourne, Australia, September 2007.

[18] I. Jordanov, “Neural network training and stochastic global optimization,” in Proceedings of the 9th
International Conference on Neural Information Processing (ICONIP ’02), vol. 1, pp. 488–492, Singapore,
November 2002.

[19] J. Minghu, Z. Xiaoyan, Y. Baozong, et al., “A fast hybrid algorithm of global optimization for
feedforward neural networks,” in Proceedings of the 5th International Conference on Signal Processing
(WCCC-ICSP ’00), vol. 3, pp. 1609–1612, Beijing, China, August 2000.

[20] K. A. Toh, J. Lu, and W. Y. Yau, “Global feedforward neural network learning for classification and
regression,” in Proceedings of the 3rd International Workshop on EnergyMinimizationMethods in Computer
Vision and Pattern Recognition (EMMCVPR ’01), pp. 407–422, Shophia Antipolis, France, September
2001.

[21] H. Ye and Z. Lin, “Global optimization of neural network weights using subenergy tunneling
function and ripple search,” in Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS ’03), vol. 5, pp. 725–728, Bangkok, Thailand, May 2003.

[22] C. D. Tilakaratne, M. A. Mammadov, and C. P. Hurst, “Quantification of intermarket influence based
on the global optimization and its application for stock market prediction,” in Proceedings of the 1st
International Workshop on Integrating AI and Data Mining (AIDM ’06), pp. 42–49, Horbart, Australia,
December 2006.

[23] C. D. Tilakaratne, S. A. Morris, M. A. Mammadov, and C. P. Hurst, “Quantification of intermarket
influence on the Australian all ordinary index based on optimization techniques,” The ANZIAM
Journal, vol. 48, pp. C104–C118, 2007.

[24] J. Yao and C. L. Tan, “A study on training criteria for financial time series forecasting,” in Proceedings
of the International Conference on Neural Information Processing (ICONIP ’01), pp. 1–5, Shanghai, China,
November 2001.

[25] J. Yao and C. L. Tan, “Time dependent directional profit model for financial time series forecasting,”
in Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN ’00),
vol. 5, pp. 291–296, Como, Italy, July 2000.

[26] R. B. Caldwell, “Performances metrics for neural network-based trading system development,”
NeuroVe$t Journal, vol. 3, no. 2, pp. 22–26, 1995.

[27] A. N. Refenes, Y. Bentz, D. W. Bunn, A. N. Burgess, and A. D. Zapranis, “Financial time series
modelling with discounted least squares backpropagation,” Neurocomputing, vol. 14, no. 2, pp. 123–
138, 1997.

[28] M. A. Mammadov, “A new global optimization algorithm based on dynamical systems approach,” in
Proceedings of the 6th International Conference on Optimization: Techniques and Applications (ICOTA ’04),
A. Rubinov and M. Sniedovich, Eds., Ballarat, Australia, December 2004.

[29] M. Mammadov, A. Rubinov, and J. Yearwood, “Dynamical systems described by relational elasticities
with applications,” in Continuous Optimization: Current Trends and Applications, V. Jeyakumar and A.
Rubinov, Eds., vol. 99 of Applied Optimization, pp. 365–385, Springer, New York, NY, USA, 2005.

[30] C. D. Tilakaratne, “A study of intermarket influence on the Australian all ordinary index at different
time periods,” in Proceedings of the 2nd International Conference for the Australian Business and Behavioural
Sciences Association (ABBSA ’06), Adelaide, Australia, September 2006.



22 Journal of Applied Mathematics and Decision Sciences

[31] C. Wu and Y.-C. Su, “Dynamic relations among international stock markets,” International Review of
Economics & Finance, vol. 7, no. 1, pp. 63–84, 1998.

[32] J. Yang, M. M. Khan, and L. Pointer, “Increasing integration between the United States and other
international stock markets? A recursive cointegration analysis,” Emerging Markets Finance and Trade,
vol. 39, no. 6, pp. 39–53, 2003.

[33] M. Bhattacharyya and A. Banerjee, “Integration of global capital markets: an empirical exploration,”
International Journal of Theoretical and Applied Finance, vol. 7, no. 4, pp. 385–405, 2004.



Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences
Volume 2009, Article ID 179230, 19 pages
doi:10.1155/2009/179230

Research Article
Selecting the Best Forecasting-Implied Volatility
Model Using Genetic Programming

Wafa Abdelmalek,1 Sana Ben Hamida,2 and Fathi Abid1

1 RU: MODESFI, Faculty of Economics and Business, Road of the Airport Km 4, 3018 Sfax, Tunisia
2 Laboratory of Intelligent IT Engineering, Higher School of Technology and Computer Science,
2035 Charguia, Tunisia

Correspondence should be addressed to Wafa Abdelmalek, wafa.abdelmalek@fsegs.rnu.tn

Received 29 November 2008; Revised 15 April 2009; Accepted 10 June 2009

Recommended by Lean Yu

The volatility is a crucial variable in option pricing and hedging strategies. The aim of this paper is
to provide some initial evidence of the empirical relevance of genetic programming to volatility’s
forecasting. By using real data from S&P500 index options, the genetic programming’s ability
to forecast Black and Scholes-implied volatility is compared between time series samples and
moneyness-time to maturity classes. Total and out-of-sample mean squared errors are used as
forecasting’s performance measures. Comparisons reveal that the time series model seems to be
more accurate in forecasting-implied volatility than moneyness time to maturity models. Overall,
results are strongly encouraging and suggest that the genetic programming approach works well
in solving financial problems.

Copyright q 2009 Wafa Abdelmalek et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Although the Black-Scholes (BS) formula [1] is commonly used to price derivative securities,
it has some well-known deficiencies. When the BS formula is inverted to imply volatilities
from reported option prices, the volatility estimates exhibit a dependency on both strike
price and maturity, giving rise to what options professionals call “volatility smile” and
“volatility term structure.” In many markets, prior to the October 1987 stock market crash,
there appeared to be symmetry around the zero moneyness, where in-the-money (ITM) or
out-of-the-money (OTM) options have higher implied volatilities than at-the-money (ATM)
options. This dependency of implied volatility on the strike, for a given maturity, became
known as the smile effect, although the exact structure of volatility varied across markets
and even within a particular market from day to day. However, after the crash, the smile had
a changed shape in many markets, particularly for traded options on stock market indexes
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(such as S&P500 index options), where the symmetric smile pattern (U-shape) has changed
to more of a sneer. This is often referred to in the markets as the “volatility smirk,” where
call option-implied volatilities are observed to decrease monotonically with strike price.
This can arise when the market places a relatively greater probability on a downward price
movement than an upward movement, resulting in a negatively skewed implied terminal
asset distribution.

The idea of the volatility smile had its genesis in the early papers documenting the
systematic pricing biases of the BS option pricing model. Early tests by Black [2] found
that the BS model underprices OTM stock options and overprices ITM stock options. In
contrast to Black [2], Macbeth and Merville [3], studying call options, listed on the Chicago
Board Options Exchange (CBOE) from December 1975 to December 1976, found evidence
that the BS model underprices ITM options and overprices OTM options. Later, Rubinstein
[4], studying options price data for the thirty most actively traded option classes on the
CBOE between August 1976 and October 1978, found some confusing patterns. Rubinstein
[4] reported a systematic mispricing pattern similar to that reported by Macbeth and Merville
[3], where the BS model overprices OTM options and underprices ITM options, for a time
period between August 1976 and October 1977. However, for a time period between October
1977 and October 1978, Rubinstein [4] reported a systematic mispricing pattern similar to
that reported by Black [2], where the BS model underprices OTM options and overprices ITM
options. Clewlow and Xu [5], studying options on stock index futures listed on the Chicago
Mercantile Exchange (CME), found asymmetric patterns for the smile. Xu and Taylor [6],
studying currency options traded in Philadelphia between 1984 and 1992, found empirically
that the option bias was twice the size they were expecting, increasing its magnitude as
maturity approaches. Duque and Paxson [7] also found the smile effect for options traded
on the London International Financial Futures and Options Exchange (LIFFE) during March
1991, and conjectured that there is a possible empirical relation between time to maturity
and the U-shape format of the smile. Heynen [8] also found empirical evidence for the
exercise price bias when observing stock index options during 1989 on the European Option
Exchange (EOE). Gemmill [9] found the same bias for options on the FTSE100 during
5-year period, although the smile showed different patterns for different days extracted
from the sample. Dumas et al. [10] also found empirical smile patterns for options on the
S&P500 stock index, but its shape seemed to be asymmetric and changing along time to
maturity.

Volatility smiles are generally thought to result from the parsimonious assumptions
used to derive the BS model. In particular, the BS model assumes that security log prices
follow a constant variance diffusion process. The existence of systematic bias in the model
reflects a departure from the BS assumptions, with the result that the probability distribution
is not lognormal. Black [2] suggested that the nonstationary behavior of volatility would lead
the BS model to overprice or underprice options. Since then, a considerable body of research
has attempted to explain this bias. Some authors attributed the smile to transaction costs
[11]. Some other authors imputed the smile to the behavior of traders [12], others tried to
explain the smile by the introduction of conditional heteroskedasticity [13], stochastic interest
rate [14], jump processes [15], and stochastic volatility [16]. Literature is not unanimous in
finding causes for the smile effect and the models developed in order to cover this bias have
only partially solved the problem. Unfortunately, these increasingly complex models have
some caveats in common: they require strong assumptions, their parameters are difficult
to estimate, and they are particularly prone to in-sample overfitting. Furthermore, their
stochastic volatility process itself is unobservable and must be proxied for.
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In contrast to parametric forecasting models, nonparametric approach has the distinct
advantage of not relying on specific assumptions about the underlying asset price dynamics
and is therefore robust to specification errors that might affect adversely parametric models.
As mentioned in Ma et al. [17], traditional financial engineering methods based on parametric
models such as the GARCH model family seem to have difficulty to improve the accuracy
in volatility forecasting due to their rigid as well as linear structure. The complex and
nonlinear nature of processes means that more advanced techniques are often needed.
Genetic programming (GP) could effectively deal with nonlinearity and flexibility, which
opens up an alternative path besides other data-based approaches.

This paper intends to establish a systematic approach and a GP software tool for
analysts to improve the accuracy of the forecast. This volatility’s forecasting approach should
be free of strong assumptions and more flexible than parametric method. Reliable volatility
forecasts can greatly benefit professional option traders, market makers who need to price
derivatives, and all investors with risk management concerns. Implied volatilities, generated
from option markets, can be particularly useful in such contents as they are forward-
looking measures of the market’s expected volatility during the remaining life of an option.
We attempt then to forecast the implied volatility of BS by formulating a nonlinear and
nonparametric approach based on GP algorithm.

It is important to notice here that we do not claim to have found the perfect
implied volatility’s forecasting model. Ultimately, all implied volatility’s forecasting models,
no matter how complex, are misspecified and the search over the universe of volatility
forecasting should concentrate on finding the least misspecified model.

The remainder of the paper is divided into three sections. Section 2 describes the
design of the GP and the methodology applied in the current research. A brief introduction
to the GP is given in Section 2.1, while the data to conduct the analysis and the GP
implementation are described in Section 2.2. Section 3 reports the experimental results of
the GP search for volatility forecast. Selection of the best generated GP-implied volatility
forecasting models is presented in Section 3.1. Implied volatility patterns are described in
Section 3.2. Finally, conclusion and future directions of the research are provided in Section 4.

2. Research Design and Methodology

2.1. Overview of Genetic Programming

GP [18] is an evolutionary algorithm which extends the basic genetic algorithms [19] to
process nonlinear problem structure. This optimization technique is based on the principles
of natural evolution. The algorithm attempts to evolve solutions by using the principle of
survival and reproduction of the fittest and genetic operators analogous to those occurring in
biological species. In GP, solutions are represented as tree structures that can vary in size and
shape, rather than fixed length character strings as in genetic algorithms. This means that GP
can be used to perform optimization at a structural level. The advantage of the GP approach
is that it allows one to be agnostic about the general form of optimal forecasting model, and
to search efficiently in a nondifferentiable space of models. It also has the attractive feature
that one can build into the search procedure the relevant performance criterion directly in
the form of the measure of fitness. It differs from most other numerical search techniques
in that it simultaneously involves a parallel search involving many points in the search
space.
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Initialize population
while (termination condition not satisfied) do
begin

Evaluate the performance of each function according to the fitness criterion
Select the best functions in the population using the selection algorithm
Generate new individuals by crossover and mutation

endwhile
Report the best solution found
end

Algorithm 1: A flow chart summarizing the GP algorithm structure.

Given the advantages of GP, it has been widely used to solve complex high-
dimensional and nonconvex optimization problems (Kallel et al. [20]). In fact, the GP
has been successfully applied to forecasting financial time series, including stock prices
(Tsang et al. [21]), stock returns (Kaboudan [22]), and international currency exchange
rates (Kaboudan [23]). In particular, the GP has proved successful at forecasting time series
volatility in different markets. Zumbach et al. [24] and Neely and Weller [25] have applied GP
to forecast foreign exchange rate volatility. Neely and Weller [25] have tested the forecasting
performance of GP for USD-DEM and USD-YEN daily exchange rates against that of GARCH
(1, 1) model and a related RiskMetrics volatility forecast over different time horizons, using
various accuracy criteria. While the GP rules didn’t usually match the GARCH (1, 1) or
RiskMetrics models’ MSE or R2, its performance on those measures was generally close;
but the GP did consistently outperform the GARCH model on mean absolute error (MAE)
and model error bias at all horizons. Overall, on some dimensions, the GP has produced
significantly superior results. Using high-frequency foreign exchange USD-CHF and USD-
JPY time series, Zumbach et al. [24] have compared the GP forecasting accuracy to that of
historical volatilities, the GARCH (1, 1), FIGARCH, and HARCH models. According to the
root-mean-squared errors, the generated GP volatility models did consistently outperform
the benchmarks.

The GPs forecasting accuracy has been shown also in index market. Using historical
returns of Nikkei 225 and S&P500 indices, Chen and Yeh [26] have applied a recursive
genetic programming (RGP) approach to estimate volatility by simultaneously detecting and
adapting to structural changes. Results have shown that the RGP is a promising tool for the
study of structural changes. When RGP discovers structural changes, it will quickly suggest
a new class of models so that overestimation of volatility due to ignorance of structural
changes can be avoided. Applying a combination of theory and techniques such as wavelet
transform, time series data mining, Markov chain-based discrete stochastic optimization, and
evolutionary algorithms GA and GP, Ma et al. [27, 28] have proposed a systematic approach
to address specifically nonlinearity problems in the forecast of financial indices using intraday
data of S&P100 and S&P500 indices. As a result, accuracy of forecasting had reached an
average of over 75% surpassing other publicly available results on the forecast of any financial
index.

These encouraging findings suggest that a GP may be a powerful tool for forecasting
historical volatility based on previous returns. The present paper extends the studies
mentioned earlier by forecasting the implied volatility instead of historical volatility using
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GP. In fact, implied volatility has been found to be a more accurate and efficient forecast
of future volatility than historical volatility [29–32]. Furthermore, the implied volatility is
estimated from prices of index options in a wide range of strike prices, not just ATM strikes.

Our GP software is referred to as symbolic regression written in C++ language.
Symbolic regression was one of the earliest applications of GP (Koza [18]), and continues
to be widely studied (Cai et al. [33]; Gustafson et al. [34]). It is designed to perform genetic
regression which is a function that relates a set of inputs to an output. The set data on which
the program operates to determine the relationship between input parameters and output is
called training set. The set of data on which the resulting formula is tested is called test set.
The GP’s algorithm includes the following steps (Algorithm 1).

2.1.1. Terminal and Function Sets

Two of the most important aspects of the GP algorithm are the function and terminal sets
that building blocks use to construct expression trees which are solutions to the problem.
Together, they define the ingredients that are available to GP to create computer programs.

The terminal set corresponds to the inputs of the program. It is determined according
to the domain of problems and the inputs can be constants or variables. The function set
may contain standard arithmetic operations, standard programming operations, standard
mathematical functions, logical functions, or domain-specific functions. The function set
combined with the terminal set enables the algorithm to generate a tree-structured solution
to the problem, where nodes define function set and where leaf nodes define terminal set.

2.1.2. Initialization

GP starts by randomly creating an initial population of trees, which are generated by
randomly picking nodes from a given terminal set and function set. A restriction on the
maximum allowed depth is imposed to avoid that the generated trees to be too complex.

2.1.3. Fitness Evaluation

The evolutionary process is driven by a fitness function that evaluates the performance
of each individual (tree) in the population. This fitness function assigns numerical values
to each individual in the population. These values are then used to select individuals for
reproduction.

2.1.4. Selection

After the fitness of each individual in the population is measured, GP then probabilistically
selects the fitter individuals from the population to act as the parents of the next generation.
Selection determines which individuals of the population will have all or some of their
genetic material passed on the next generation. In general, parents displaying a higher level
of performance are more likely to be selected with the hope that they can produce better
offsprings with larger chance.
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2.1.5. Genetic Operators

Crossover and mutation are the two basic operators which are applied to the selected
individuals in order to generate the next population. The mutation operator affects random
changes in a tree by randomly altering certain nodes or subtrees, whereas the crossover
operator performs swaps of randomly subtrees between two selected parents. The parameter
choices for crossover and mutation are clearly critical in ensuring a successful GP application.
They impact on populational diversity and the ability of GP to escape from local optima [35].

After applying the genetic operators, the new individuals are evaluated through the
fitness function in order to replace those of the current population.

2.1.6. Termination Criterion

Once the new population has been created, the current population is replaced by the new
one, and the process of fitness evaluation, selection, and the application of genetic operators
are repeated until some termination criterion is satisfied. This may be the maximum number
of generations or convergence level of evolution generations.

2.2. Data and Implementation

Data used to perform our empirical analysis are daily prices of European S&P500 index calls
options, from the CBOE for the sample period January 02, 2003 to August 29, 2003. S&P500
index options are among the most actively traded financial derivatives in the world. The
minimum tick for series trading below 3 is 1/16 and for all other series 1/8. Strike price
intervals are 5 points, and 25 for far months. The expiration months are three near term
months followed by three additional months from the March quarterly cycle (March, June,
September, and December). Option prices are set to be the average of the bid and ask prices.
The risk-free interest rate is approximated by using 3-month US Treasury bill rates.

The beginning sample contains 42504 daily observations of call option prices and their
determinants. Four exclusion filters are applied, which yields a final sample of 6670 daily
observations and this is the starting point for our empirical analysis. First, as call options
with time to maturity less than 10 days may induce liquidity biases, they are excluded from
the sample. Second, call options with low quotes are eliminated to mitigate the impact of
price discreteness on option valuation. Third, deep-ITM and deep-OTM option prices are also
excluded due to the lack of trading volume. Finally, option prices not satisfying the arbitrage
restriction [14], C ≥ S −Ke−rτ , are not included.

The full sample is sorted by time series and moneyness-time to maturity. For time
series, data are divided into 10 successive samples each containing 667 daily observations. For
moneyness-time to maturity, data are divided into 9 classes, classes are, respectively, OTMST
(C1), OTMMT (C2), OTMLT (C3), ATMST (C4), ATMMT (C5), ATMLT (C6), ITMST (C7),
ITMMT (C8), and ITMLT (C9). According to moneyness criterion: a call option is said OTM if
S/K < 0.98; ATM if S/K ∈ [0.98, 1.03[; and ITM if S/K ≥ 1.03. According to time to maturity
criterion: A call option is short-term (ST) if τ < 60 days; medium term (MT) if τ ∈ [60, 180]
days; long-term (LT) if τ > 180 days.

The first preparatory step to run a GP is to specify the ingredients the evolutionary
process can use to construct potential solutions. The terminal and function sets are described
in Table 1.
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Table 1: Terminal set and function set.

Expression Definition
C/K Call price/Strike price
S/K Index price/Strike price
τ Time to maturity
+ Addition
− Subtraction
∗ Multiplication
% Protected division: x%y = 1 if y = 0; x%y = x%y otherwise
ln Protected natural log: ln(x) = ln(|x|)

Exp Exponential function: exp(x) = ex

Sqrt Protected square root:
√
x =

√
|x|

Ncdf Normal cumulative distribution function Φ

The search space for GP is the space of all possible parse trees that can be recursively
created from the sets of terminal and function. The terminal set includes the inputs variables,
notably, the call option price divided by strike price C/K, the index price divided by strike
price S/K and time to maturity τ . The function set includes unary and binary nodes. Unary
nodes consist of mathematical functions, notably, cosinus function (cos), sinus function (sin),
log function (ln), exponential function (exp), square root function (√ ), and the normal
cumulative distribution function (Φ). Binary nodes consist of the four basic mathematical
operators, notably, addition (+), subtraction (−), multiplication (×), and division (%). The
basic division operation is protected against division by zero and the log and square root
functions are protected against negative arguments. The basic measure of model accuracy
used is the mean squared error (MSE) between the target (yt) and forecasted (ŷt) output
volatility, computed as follows:

MSE =
1
N

N∑

t=1

(
yt − ŷt

)2, (2.1)

where yt is the implied volatility computed using the BS formula (C = SN(d1)−Ke−rτN(d2),
d1 = (ln(S/K) + (r + 0.5σ2)τ)/σ

√
τ , d2 = d1 − σ

√
τ .), ŷt is the generated GP volatility, and N

is the number of data sample.
The implementation of genetic programming involves different parameters that

determine its efficiency. A common approach in tuning a GP is to undertake a series of
trial and error experiments before making parameter choices for the final GP runs. A two-
step approach is used. First, the optimal set of genetic parameters is determined based on
time series data. By varying parameters for the genetic programs when training them on the
first sample data, their performance is tested on a test data set from a later date. Various
genetic programs are tested. Each program is run ten times with ten different random seeds.
The choice of the best genetic program is made according to the mean and median of mean
squared errors (MSEs) for training and testing sets. Second, the optimal set of parameters,
relative to the best genetic program selected in the first step, are used for training the genetic
program separately on each of the first 9 samples using ten different seeds and testing the
program’s performance only on the test data from the immediately following date. This limits
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Table 2: Summary of GP settings and parameters.

Method of generation: Ramped half and half
Population size: 100
Offspring size: 200
Generations number: 400
Maximum depth of new individual: 6
Maximum depth of the tree: 17
Selection algorithm: Tournament selection (4)
Crossover probability: 60%
Mutation probability: 40%
Branch mutation: 20%
Point Mutation: 10%
Expansion mutation: 10%
Replacement strategy: Comma replacement
Stopping criterion: Maximum number of generations

the effects of nonstationarities and avoid data snooping. The same genetic parameters and
random seeds used for time series data are applied to moneyness-time to maturity data in an
attempt to analyze the effect of data’ group on the GP performance; each moneyness-time to
maturity class is subdivided into training set and test set. Parameters used in this paper are
listed in Table 2.

An initial population of 100 individuals is randomly generated using random number
generator algorithm with random seeds. The generative method used for initialization is
the ramped half and half as detailed in Koza [18]. This method involves generating an
equal number of trees using a maximum initial depth that ranges from 2 to 6. For each
level of depth, 50% of the initial trees are generated via the full method and the other 50%
are generated via the grow method. A maximum size of tree measured by depth is 17.
This is a popular number used to limit the size of tree (Koza [18]). It is large enough to
accommodate complicated formulas and works in practice. Based on the fitness criterion,
the selection of the individuals for reproduction is done with the tournament selection
algorithm. A group of individuals is selected from the population with a uniform random
probability distribution. The fitness values of each member of this group are compared
and the actual best is selected. The size of the group is given by the tournament size
which is equal here to 4. The crossover operator is used to generate about 60% of the
individuals in the population, while the mutation operator is used to generate about
40% of the population. Different mutation operators are used. Point mutation operator
consists of replacing a single node in a tree with another randomly generated node of
the same arity. Branch mutation operator randomly selects an internal node in the tree,
and then it replaces the subtree rooted at that node with a new randomly generated
subtree. Expansion mutation operator randomly selects a terminal node in the tree, and
then replaces it with a new randomly-generated subtree. Branch mutation is applied with
a rate of 20%; point and expansion mutations are applied with a rate of 10% each. The
method of replacing parents for the next generation is comma replacement strategy, which
selects the best offspring to replace the parents. Of course, it assumes that offspring size
is higher than parents size. The stopping criterion is the maximum number of generations
400.
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Figure 1: Evolution of the squared errors for total sample of the best generated GP volatility models relative
to time series (a) and moneyness-time to maturity (b).
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Figure 2: Performance of the generated GP volatility models according to MSE total and out-of-sample for
the time series samples (a) and the moneyness-time to maturity classes (b) and (c).

3. Findings and Results Analysis

3.1. Selection of the Best Genetic Programming-Implied Volatility
Forecasting Models

Selection of the best generated GP volatility model, relative to each training set, for time series
and moneyness-time to maturity data, is made according to the training and test MSE. In
definitive, nine generated GP volatility models are selected for time series (M1S1· · ·M9S9)
and similarly nine generated GP volatility models are selected for moneyness-time to
maturity classification (M1C1· · ·M9C9). To assess the internal and external accuracy of these
generated GP volatility models, we use the MSE total computed for the enlarged sample and
the MSE out-of-sample computed for external samples to the training one, as performance’s
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measures. Figure 2 describes the evolution’s pattern of the squared errors for these volatility
models.

It appears throughout Figure 2 that for the enlarged sample, the nine generated GP
volatility models relative to each data group display different patterns of forecasting errors.
It is important to note that each model fits well to the data on which it is trained. Furthermore,
the performance of the models is not uniform. Total errors are higher for the moneyness-time
to maturity classes than for the time series samples. Time series models are adaptive not
only to training samples but also to the enlarged sample. In contrast, the moneyness-time to
maturity models are adaptive to training classes, but not all to the enlarged sample. The same
patterns of forecasting errors are found using out-of-sample errors as performance criterion.
Although we have used the same data, the same genetic parameters, and the same random
seeds, the GP has generated new models adaptive to the moneyness-time to maturity classes,
which are different from the time series models. This implies that the data group has an effect
on the GP results. In other words, the GP fits well to the data on which is trained.

Figure 3 shows that, for the time series samples, the generated GP volatility model
M4S4 has the smallest MSE in enlarged sample and out-of-sample. For the moneyness-time
to maturity classes, the generated GP volatility models M4C4 and M6C6 seem to be more
accurate in forecasting implied volatility than the other models. They present near MSE on
the enlarged sample and out-of-sample. It is interesting to notice that these models belong,
respectively, to ATMST and ATMLT classes. This can be explained by the fact that ATM
options are generally more actively traded than other options. Theoretically, Corrado and
Miller Jr. [36] have shown that implied volatility from ATM options is the most efficient
and also unbiased estimator of the exante underlying volatility when return volatility is
stochastic.

Based on the MSE total and the MSE out-of-sample as performance criteria, the
generated GP volatility models M4S4, M4C4, and M6C6 are selected.

Table 3 reports the best generated GP volatility models relative to time series samples
and moneyness-time to maturity classes and shows that the time series model M4S4 seems
to be more performing than moneyness-time to maturity models M4C4 and M6C6 for the
enlarged and out-of-sample samples. The decoding of these models yields the following
generated GP volatility forecasting formulas:

M4S4: σGP = exp
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⎛
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τ
) .

(3.1)

A detailed examination of the trees shows that the volatility generated by GP is
function of all the inputs used, namely, the call option price divided by strike price C/K, the
index price divided by strike price S/K and time to maturity τ . The four basic mathematical
operators (+,−, ∗, /), the square root function, and the log function appear in all genetic trees.
The normal cumulative distribution function is used only in trees relative to M4S4 and M6C6
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Table 3: Selection of the best generated GP volatility models relative to time series and moneyness-time to
maturity in terms of the MSE total and the MSE out-of-sample (The numbers in parentheses are standard
errors of the corresponding measures of the generated GP volatility models).

Models MSE total MSE out-of-sample
M4S4 0,001444 (0,002727) 0,001539 (0,002788)
M4C4 0,001710 (0,0046241) 0,001944 (0,005108)
M6C6 0,002357 (0,0040963) 0,002458 (0,00415354)

models. The exponential function, which represents the root node, and the cosinus function
appear only in the tree relative to M4S4. The sinus function is used only in the tree relative to
M6C6.

The implied volatility is defined as the standard deviation which equates the BS
model price to the observed market option price. Since there is no explicit formula available
to compute directly the implied volatility, the latter can be obtained by inverting the BS
model. On the contrary, the GP offers explicit formulas which can compute directly the
implied volatility expressed as a function of time to maturity, index, strike, and option prices.
Therefore, the generated GP volatilities take account of moneyness and time to maturity. This
contradicts the BS assumption of constant volatility. Furthermore, the comparison of the GP
forecasting models reveals that the volatility generated by the M6C6 model can be negative,
whereas this phenomenon did not exist in the M4S4 and M4C4 models since the implied
volatility is computed using the square root and the exponential functions as the root nodes.
It appears that even if the variables are nulls, the implied volatility of M4S4 model is always
different from zero. This means that a call option can never get a zero value.

3.2. Implied Volatility Patterns: Volatility’s Smile, Term Structure,
and Surface

Implied volatility patterns of the generated GP volatility models are compared across both
moneyness and maturity, as was done in Rubinstein [4]. The call option-implied volatilities
illustrated in Figure 4 conform to the general shape hypothesized by Dumas et al. [10] for
S&P500 options since the 1987 crash. ITM call options are generally trading at higher implied
volatilities than OTM call options. In other words, the implied volatility, at a fixed maturity,
is an increasing (decreasing) nonlinear function of moneyness (strike price). The volatility
smile is consistent with the market view that the market falls more quickly than it rises.
Options writers are concerned with the direction and nature of price movements. Call option
writers prefer prices that creep upward and gap downward, while put option writers like
the reverse. Option traders aware of a changing volatility may be able to take advantage
of the knowledge. For example, if there are indications that the skew may be flattening,
one strategy could involve selling at the higher volatility and reversing the position at the
lower volatility. Brown [37] has examined the implied volatility smile for call and put options
trading on the share price index (SPI) futures contract on the Sydney Futures Exchange (SFE),
and offered a possible explanation for its shape. Implied volatilities are viewed as prices
reflective of the willingness of market participants to take on and lay off the risks involved
in trading volatility, and other risks not priced by the model. Figure 4 shows that the M4S4
model’s implied volatility pattern smiles the least for short-term, medium-term, and long-
term options. However, the M4C4, M6C6, and BS models still exhibit a significant smile for all
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Figure 3: Volatility smile of the generated GP volatility models against BS model for short-term call options
(a), medium term call options (b) and long-term call options (c) at different dates.

maturities. The volatility smiles are the strongest for short-term options, indicating that short-
term options are the most severely mispriced by these models. The implied volatility models
yield, for each given maturity category, the same implied volatility values for some options.
For instance, for long-term options, the implied volatility curves of M4C4, M6C6, and BS
models intersect all at approximately the same level of moneyness. Options with moneyness
of 0.98 (ATM options) are priced at about the same volatility for long-term maturity.

Figure 5 shows that the smile effect is most clear for short-term options. For long-term
options, the smile effect is almost vanished. In fact, it is clear that the degree of curvature
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Figure 4: Implied volatility of the generated GP volatility and BS models against degree of moneyness for
different times to maturity at the date 27/01/2003.



14 Journal of Applied Mathematics and Decision Sciences

of M4S4, M4C4, M6C6, and BS models is most extreme when the options are closest to
expiration and becomes more linear with longer expirations. This effect was found in [38]
for DAX index options from January 1999 to February 2003. It corresponds to the empirical
fact that near the expiry, the smile effect becomes stronger. The fact that the implicit volatility
smile is more pronounced for short-term options contrary to long-term options is called the
vanishing smile. This effect is caused by the smaller time value of short-term options which
renders them more sensitive to forecasting errors. As opposed to longer term options which
are strongly affected by the value of volatility, short-term options are not much affected by
the value of volatility and their price cannot give much information on short-term volatility,
which therefore leads to a large uncertainty on short-term volatility. A further result is the
changing shape of the smile as the time to maturity increases, except the genetic model M4S4.
The smiles of the M4S4 model are the flattest for all maturities, whereas the smiles of the
M6C6 model are the steepest for all maturities. The implied volatilities of M4S4, M4C4, and
BS models are higher for short-term maturity than for long-term maturity. The M6C6 model
has an implied volatility that is higher for long-term maturity than for short-term maturity.

In contrast to the numerous studies relating models to volatility smiles, there has been
relatively little research reported that relates model choice to the term structure of volatility
(TSV). One reason for this is that the TSV is a far more complex phenomenon. While the
smile has the same general shape for all maturities, the TSV can vary widely with the specific
choice of strike price. Figure 6 illustrates the volatility term structure of the generated GP
volatility models against BS model for all moneyness categories. As Figure 6 shows, the
implied volatility of M4S4, M4C4, and BS models is a decreasing function of time to maturity
for all moneyness classes except the genetic model M6C6. Rubinstein [4] has shown that for
out-of-the money or deep out-of-the money call, the shorter the time to expiration, the higher
its implied volatility. The same conclusion was found for at the money call in the second
period from 24 October 1977 to 31 October 1978. For ATM call options, all the curves intersect
at the same time to maturity, and in particular the curves of M4C4 and BS are very close
together. The differences in ATM-implied volatilities across maturities can be attributed to
the variation of implied volatility over the full range of traded strikes.

The dynamic properties of implied volatility time series have been studied in many
markets by various authors. Most of these studies either focus on the term structure of
ATM-implied volatilities or study separately implied volatility smiles for different maturities
[39–46]. Other studies focus on the joint dynamics of all implied volatilities quoted on the
market, looking simultaneously at all available maturity and moneyness values [38, 47].
In order to investigate the generated GP volatility functions, a three-dimensional graph of
implied volatility against moneyness and maturity of the option, called the volatility surface,
is plotted in Figure 6. This volatility surface plays an important role in the pricing of options
in practice. The implied volatility surface gives a snapshot of market prices of vanilla options:
specifying the implied volatility surface is equivalent to specifying prices of all vanilla options
quoted on the strike price and expiration date at a given date. While the BS model predicts
a flat profile for the implied volatility surface, it is a well documented empirical fact that it
exhibits both a nonflat strike and term structure [8, 10, 39, 40, 48, 49].

It is, therefore, interesting to see if the genetic models reproduce realistic instantaneous
profiles for the surface. Figure 6 regroups all these candidate solutions on the same graph at
the same date. As seen in Figure 6, the best performing volatility functions obtained have
quite different surfaces. Volatility varies across the maturity and the moneyness. The implied
volatility surfaces appear to display some of the features reported by Derman and Kani [50],
and Corrado and Su [51], and there is some degree of negative skewness. Graphs in Figure 6
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Figure 5: Volatility term structure of the generated GP volatility models against BS model for OTM call
options (a), ATM call options (b), and ITM call options (c).

indicate that the volatility smiles are more asymmetric for the M4C4, M6C6, and BS than the
M4S4 model which produces quasi-symmetric smile such as stochastic volatility models, the
class of parametric models most commonly used to generate smile effects. Options are in fact
capturing skewness of expectations especially for the M4C4, M6C6, and BS models. For the
S&P500 index, negative skewness in the distribution appearing since the 1987 stock market
crash reflects either a higher probability attached to a future crash, or higher valuation of
returns in the event of a crash. In a stochastic volatility model, this skewness results from
a negative correlation between shocks to price and shocks to volatility, as discussed in Hull
and White [52] and Heston [16]. Jackwerth and Rubinstein [53] showed that this negative
skewness has been roughly constant in S&P500 options since about one year after 1987 crash.
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call options at 30/01/2003 (a), short-term ATM call options at 30/04/2003 (b), and short-term ITM call
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4. Conclusion

In this study, we have used GP to forecast implied volatility from the S&P500 index options.
Based on the MSE total and out-of-sample as performance criteria, the generated GP volatility
models M4S4, M4C4, and M6C6 can be considered to the best selected models. According
to total and out-of-sample forecasting errors, the time series model M4S4 seems to be more
accurate in forecasting-implied volatility than moneyness-time to maturity models M4C4 and
M6C6. In terms of volatility patterns, the M4S4 model smiles the least for all maturity options
and generates a quasiflat and symmetric implied volatility surface. Our results suggest some
interesting issues for further investigation. First, the GP can be used to forecast-implied
volatility of other models than BS model, notably stochastic volatility models and models
with jump. Second, this work can be reexamined using data from individual stock options,
American style index options, options on futures, currency, and commodity options. Third,
the performance of the generated GP volatility models can be measured in terms of hedging.
Finally, the GP can be extended to allow for dynamic selection techniques applied to the
enlarged sample. We believe these extensions are of interest for application and will be object
of our future works.
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1. Introduction

Portfolio theory deals with the question of how to find an optimal policy to invest among
various assets. The mean-variance analysis of Markowitz [1, 2] plays a key role in the
theory of portfolio selection, which quantifies the return and the risk in computable terms.
The mean-variance model is later extended to the multistage dynamic case. For this and
other expected utility-maximization models in dynamic portfolio selection, one is referred
to Dumas and Luciano [3], Elton and Gruber [4], Li and Ng [5], Merton [6], and Mossion [7].

An important assumption of the previous portfolio selection model is that the
investment horizon is definite. That means an investor knows with certainty the exit time
at the beginning of the investment. However, most of the investments in practice are carried
out without certain horizons. There are many factors, related to the market or not, which
can drive the investment stop. For example, sudden huge consumption, serious illness,
and retirement are market-unrelated reasons. Also, those market-related reasons may more
strongly affect the investment horizon. A natural example is that the investor may exit
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the market once his wealth reaches an investment target, which is closely related to the
market and also the investment policy itself. Because of the disparity between theory and
practice, it seems sympathetic to relax the restrictive assumption that the investment horizon
is preknown with certainty.

Research on this subject has been investigated in continuous setting. Yaari [8] first
deals with the problem of optimal consumption for an individual with uncertain date of
death, under a pure deterministic investment environment. In 2000, Karatzas and Wang [9]
address the optimal dynamic investment problem in a complete market with assumption
that the uncertain investment horizon is a stopping time of asset price filtration. Multiperiod
mean-variance portfolio optimization problem with uncertain exit time is studied by Guo and
Hu [10], where the uncertain exit time is market unrelated. A continuous time problem with
minimizing the expected time to beat a benchmark is addressed in Browne [11, 12], where the
exit time is a random variable related to the portfolio. Literatures of portfolio selection focus
on the case that the stopping time is market-state independent. While, the state-dependent
exogenous stopping time is considered by Blanchet-Scalliet et al. [13] in dynamic asset pricing
theory.

In this paper, we consider a portfolio selection problem with endogenous stopping
time in discrete framework, which has not been well discussed in literatures. Specially, we
assume that the investor exits the market once his wealth hits an investment target or he is
bankrupt. This assumption actually reflects most investors’ investment behavior in real life.
Our objective is to minimize the expected time that the investment target is obtained, at the
same time we guarantee that the probability of which bankruptcy happens is no larger than
a given threshold. The investment process is represented by a multistage scenarios tree, in
which the discrete stages and notes denote the decision time points and the market states,
respectively.

The rest part of the paper is organized as follows. In Section 2, we introduce
the statement of the problem, including notations and the general form of the problem.
Following, Section 3 is devoted to derive the deterministic formulation of the problem, in
which we define a list of integer variables to indicate different states during the investment
process. Finally, we make analysis of the model by using a numerical example in Section 4.

2. The Problem Statement

Consider the following investment problem. We distribute the investment budget among a
set of assets, and the portfolio can be adjusted at several discrete decision time points during
the investment process. At the beginning of the investment, we assign a target wealth and also
a bankruptcy threshold. Our objective is to obtain this target wealth and stop the investment
as soon as possible. At the same time, we also need to avoid that the bankruptcy occurs before
the target wealth obtained.

The problem is based on a finite multistage scenarios tree structure. Our portfolio
includes a set of m assets. The underlying dynamic scenarios tree is constructed as follows.
There are T stages denoted from time 0 to T . The portfolios can be constructed at the
beginning of each stage in the scenarios tree. We denote Nt to be the index set of the scenarios
at time t, and Snt as the nth scenario at time t, for n ∈Nt, t = 0, 1, . . . , T . For those data at this
scenario, the price vector of the risky assets is denoted by unt ∈ Rm, and the payoff vector of
the assets is denoted by vnt ∈ Rm. The decision variables at this scenario are the number of
shares of holdings of the assets xnt ∈ Rm. We denote the wealth at this scenario to be Wnt, and
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the initial wealth to be B. We denote a(n) and c(n) as the parent node and the children nodes
of node n, respectively. Moreover, let Sa(n),t−1 be the parent scenario of Snt, and Sc(n),t+1 be the
set of immediate children of Snt. The probability of scenario Snt happens is pnt.

We consider an objective related to the achievement of performance goal and
bankruptcy. The investment stops once the goal is reached or the bankruptcy occurs, the
related stopping time is denoted as tu and tl, respectively. Specifically, for given wealth levels
l and u, with l < B < u, we say that the performance goal u is reached if Wnt ≥ u, denoting
this time as tu, that is, tu = inf{t > 0;Wnt ≥ u}; that the bankruptcy occurs if Wnt < l, denoting
this time as tl, that is, tl = inf{t > 0;Wnt < l}. Our objective is to minimize the expected time
that the goal is reached, at the same time we guarantee the probability that the bankruptcy
happens before the goal is reached is no more than a given level, say q, 0 < q < 1. Thus, the
investment problem can be represented in the general form

min E
[
tu
]

s.t. P(W < l) ≤ q
budget constraints

t ∈ {0, 1, 2, . . . , T},

(M)

where the first constraint is a probability constraint of bankruptcy, in which W generally
represents the realized wealth by investment. Moreover, the budget constraints are the wealth
dynamics during the investment horizon. We will continue the discussion on the determistic
formulation of the model in Section 3.

3. The Problem Formulation

In this section, we will derive the deterministic formulation of the problem (M). Most efforts
are devoted to present the objective function and the probability constraint. Actually, we do
this by introducing a list of indicator variables. Before we start this work, let us first consider
the budget constraints first.

3.1. The Budget Constraints

Based on the previously given notations on the scenarios tree, we first have the allocation of
the initial investment wealth represented as B = u′0x0. At scenario Snt, n ∈ Nt, t = 0, 1, . . . , T,
the wealth Wnt should be the realized payoff during the previous period, that is,

Wnt = v′
ntxa(n),t−1. (3.1)

Also, for a self-financing process that we are considering here, the realized wealth will
be reinvested at this decision point, which means

Wnt = u′ntxnt. (3.2)
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Therefore, we conclude the budget constraints at scenario Snt, n ∈ Nt, t = 0, 1, . . . , T ,
by the set of equations as follows:

u′0x0 = B,

v′
ntxa(n),t−1 = u′ntxnt, n ∈Nt, t = 1, 2, . . . , T.

(3.3)

3.2. The Objective and the Probability Constraint

We come to the formulation of the objective function and the probability constraint. Let us
consider the investment process. There are basically three different outputs at a given scenario
Snt. The first one is that we succeed to obtain the target wealth and stop the investment on
this scenario, and this is really the objective. The second one is that we unfortunately fall into
bankruptcy on this scenario and have to exit the investment. In either case, we cannot restart
it again. In addition to the above two cases, the investment may be continued to next period.

Now, we define two 0-1 variables to describe the investment story. On scenario Snt, n ∈
Nt, t = 0, 1, . . . , T , first define εnt ∈ {0, 1} such that

εnt =

⎧
⎨

⎩

1, Wnt ≥ u, 1 ≤Wa(n),j < u, ∀j < t,
0, otherwise.

(3.4)

Parallel to εnt, we define ηnt ∈ {0, 1} such that

ηnt =

⎧
⎨

⎩

1, Wnt < l, l ≤Wa(n),j < u, ∀j < t,
0, otherwise.

(3.5)

Reading the definitions, εnt = 1 indicates the first case, where the investment reaches
the target and stops at scenario Snt, and ηnt = 1 represents the second case that bankruptcy
happens at scenario Snt. By using εnt and ηnt, we can write our objective as

E
[
tu
]
=

T∑

t=0

(

t ·
∑

n∈Nt

pntεnt

)

, (3.6)

and the deterministic form of the probability as

P(W < l) =
T∑

t=0

∑

n∈Nt

pntηnt ≤ q. (3.7)

We consider again the indicator variables εnt and ηnt. Their values on scenario Snt
actually depend on both the current state and also all of the ancestor states. Take εnt as an
example, εnt = 1 holds if and only if the following two conditions are both satisfied. One
is that the investment continues to the current scenario, and the other is that the payoff at
the current scenario is no less than the target wealth. If either of the above conditions is not
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achieved, we should get εnt = 0. Moreover, the case of ηnt is for the same logic but about the
bankruptcy part. Thus, we introduce another two sets of variables to track the current state
and the historical states separately.

For the current state, we define δnt, ξnt ∈ {0, 1} as follows:

δnt =

⎧
⎨

⎩

1, Wnt ≥ u,
0, Wnt < u,

ξnt =

⎧
⎨

⎩

1, Wnt < l,

0, Wnt ≥ l,

(3.8)

and for the ancestor states, we define φnt ∈ {0, 1} such that

φnt =

⎧
⎨

⎩

1, l ≤Wa(n),j < u, ∀j < t,
0, otherwise,

(3.9)

where φnt = 1 means that the investment has kept going on to the current scenario and φnt = 0
means that it has stopped on the parent scenario or other ancestor scenarios before.

Combine the above definitions and review εnt and ηnt, we realize the relations

εnt = δnt · φnt,
ηnt = ξnt · φnt.

(3.10)

If we replace these nonlinear constraints by a set of linear constraints, then the problem
can be hopefully formulated as a linear programming problem, which will benefit for the
further research on solution methods and applications. Since the indicator variables are all
defined as binary 0-1 variables, we derive the transformation

εnt = δnt · φnt ⇐⇒
⎧
⎨

⎩

δnt + φnt − εnt ≤ 1,

δnt + φnt − 2εnt ≥ 0.
(3.11)

It is direct to check that for given values of {δnt, φnt}, εnt must realize the same value
either by εnt = δnt · φnt or by the constraints

δnt + φnt − εnt ≤ 1,

δnt + φnt − 2εnt ≥ 0,
(3.12)

and similar case for ηnt,

ηnt = ξnt · φnt ⇐⇒
⎧
⎨

⎩

ξnt + φnt − ηnt ≤ 1,

ξnt + φnt − 2ηnt ≥ 0.
(3.13)
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Therefore, we now replace (3.10) by the following set of inequalities:

δnt + φnt − εnt ≤ 1,

δnt + φnt − 2εnt ≥ 0,

ξnt + φnt − ηnt ≤ 1,

ξnt + φnt − 2ηnt ≥ 0.

(3.14)

Up to now, we have almost derived out the formulation of the model based on a
series of indicator variables, including ε, η, δ, ξ, φ. The remaining task is to construct the
dynamics of φnt and also the constraints of δnt and ξnt, so that the definitions here can be
implemented in the model.

3.3. The Dynamics of Indicator Variables

Consider the constraints of δnt and ξnt first. Given a large enough number M1 > u and a small
enough number M2 < l, we have for δnt,

δnt =

⎧
⎨

⎩

1, Wnt ≥ u,
0, Wnt < u,

⇐⇒
⎧
⎨

⎩

Wnt −
(
M1 − u

) · δnt < u,
Wnt +

(
u −M2

) · (1 − δnt
) ≥ u

(3.15)

and for ξnt, we have

ξnt =

⎧
⎨

⎩

1, Wnt < l,

0, Wnt ≥ l,

⇐⇒
⎧
⎨

⎩

Wnt −
(
M1 − l

) · (1 − ξnt
)
< l,

Wnt +
(
l −M2

) · ξnt ≥ l.

(3.16)

We combine the constraints of δnt and ξnt as the constraint set

Wnt −
(
M1 − u

) · δnt < u,
Wnt +

(
u −M2

)(
1 − δnt

) ≥ u,
Wnt −

(
M1 − l

)(
1 − ξnt

)
< l,

Wnt +
(
l −M2

) · ξnt ≥ l.

(3.17)
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Next, let us focus on the dynamics of φnt. At the beginning point of the investment,
φ0 = 1 holds. During the investment process, we first write out the dynamics and then explain
the underlying reasons:

φ0 = 1,

φnt = φa(n),t−1 −
(
εa(n),t−1 + ηa(n),t−1

)
.

(3.18)

The dynamic equation holds for the following reasons.
First, suppose the investment has been continued to the scenario Sa(n),t−1 and does not

stop at that scenario, which means we already held φa(n),t−1 = 1, and εa(n),t−1 = ηa(n),t−1 = 0,
then, the investment must keep going on to the current scenario Snt. In this case, we should
have φnt = 1 base on the definition of φ. The recursive equation in (3.18) succeeds to realize
this case and gives φnt = 1 − 0 = 1.

Second, if the investment has stopped, either on the parent scenario Sa(n),t−1 or on any
of the ancestor scenarios before, we should hold φnt = 0. This case can also be realized by the
dynamic equation (3.18). In case that the investment stopped on the parent scenario Sa(n),t−1,
that is, φa(n),t−1 = 1, and either εa(n),t−1 = 1 or ηa(n),t−1 = 1, then (3.18) gives φnt = 0; in the other
case of stopping before the previous stage, we already had φa(n),t−1 = 0, also both εa(n),t−1 = 0
and ηa(n),t−1 = 0, the result of (3.18) is still φnt = 0.

3.4. The Deterministic Formulation

Now, we have derived all the constraints of the indicator variables by (3.3), (3.14), (3.17),
(3.18). Together with the objective function and the probability constraint represented by
(3.6) and (3.7), respectively, the problem (M) can be finally written as a mix integer linear
programming problem:

min
T∑

t=1

(

t ·
∑

n∈Nt

pntεnt

)

s.t.
T∑

t=1

∑

n∈Nt

pntηnt ≤ q

(3.3), (3.14), (3.17), (3.18)

εnt, ηnt, δnt, ξnt, φnt ∈ {0, 1},
n ∈Nt, t ∈ {1, 2, . . . , T}.

(P)

Next, we construct an example to analyze the model and illustrate the solving process.
The problem is input by an MATLAB program, and numerically solved by using Cplex
software.

4. An Example

The investment process is represented by a 3-stage triple tree, noted from time 1 to time 4, as
showed in Figure 1. The portfolio can be organized and reorganized at the beginning of each
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Figure 1: The scenario tree of example.

Table 1: The selected solutions of example.

Time 1 Time 2 Time 3 Time 4

Payoff target obtained

Scenario None None S1,3 S8,3 None

Solution
ε1,3 = 1 ε8,3 = 1
δ1,3 = 1 δ8,3 = 1
φ1,3 = 1 φ8,3 = 1

Bankruptcy happens

Scenario None None S4,3 S19,4 S27,4

Solution
η4,3 = 1 η19,4 = 1 η27,4 = 1
ξ4,3 = 1 ξ19,4 = 1 ξ27,4 = 1
φ4,3 = 1 φ19,4 = 1 φ27,4 = 1

stage. We simply consider a portfolio of two assets, and the prices on each decision point
are given. Also, the conditional probabilities of the three notes in any single-stage subtree
are P = {.3, .36, .34} in order. For other essential constants, we assume the initial budget
B = $100, the target payoff u = $104, and the bancruptcy banchmark l = $95. In addition, we
take M1 = 10 000 and M2 = −10 000 as those two large enough numbers for formulating the
problem. Finally, we assign the largest accetable bancruptcy probability to be q = 0.2.

Cplex takes 0.41 second to optimize the problem. Reading the solution file, we find that
there are chances to obtain the payoff target before the investment horizon, as clearly as in the
third stage on the scenarios of {S1,3, S8,3}, respectively. Accordingly, the bankruptcy possibly
happens on the third and the fourth stages, on the scenarios of {S4,3, S19,4, S27,4}, which
makes the total probability of bankruptcy is 0.178. Details of selected optimal solutions are
shown in Table 1. Other solutions are also carefully checked, it turns out that the construction
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of indicator variables does work. For example, on the children scenarios of the stopping
scenarios {S1,3, S8,3, S4,3}, the values of φ are all zero as the investment has been stopped
before.

For two-stage problem, there are well-known algorithms such as branch-and-bound,
Lagrangian relaxation, or cutting plane methods for solving it. When we extend it into the
multistage case, as we are doing now, the problem becomes much more complex. As the
size of the problem increases, the existing solution methods become less efficient. We will
further investigate on more applicable solution methodologies. In addition to the solution
methodology, another relevant research topic is to compare the investment policies under
different objectives and risk constraints.
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reproduction in any medium, provided the original work is properly cited.

1. Introduction

The purpose of stock portfolio selection is how to allocate the capital to a large number of
stocks in order to bring a most profitable return for investors [1]. For this point of view, stock
portfolio decision problem can be divided into two questions.

(1) Which stock do you choose?

(2) Which investment ratio do you allocate your capital to this stock?

There are some literatures to handle the stock portfolio decision problem. Markowitz
proposed the mean-variance method for the stock portfolio decision problem in 1952 [2].
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In his method, an expected return rate of a bond is treated as a random variable. Stochastic
programming is applied to solve the problem. The basic concept of his method can be
expressed as follows.

(1) When the risk of stock portfolio is constant, we should pursue to maximize the
return rate of stock portfolio.

(2) When the return rate of stock portfolio is constant, we should pursue to minimize
the risk of stock portfolio.

The capital asset pricing model (CAPM), Sharpe-Lintner model, Black model, and
two-factor model are derived from the mean-variance method [3, 4]. The capital asset pricing
model (CAPM) was developed in 1960s. The concept of the CAPM is that the excepted return
rate of the capital with risk is equal to the interest rate of the capital without risk and market
risk premium [4]. The methods and theory of the financial decision making can be found
in [5–7]. In 1980, Saaty proposed Analytic Hierarchy Process (AHP) to deal with the stock
portfolio decision problem by evaluating the performance of each company in different level
of criteria [8]. Edirisinghe and Zhang [9] selected the securities by using Data Envelopment
Analysis (DEA). Huang [1] defined a new definition of risk and use genetic algorithm to
cope with stock portfolio decision problem. Generally, in the portfolio selection problem
the decision maker considers simultaneously conflicting objectives such as rate of return,
liquidity, and risk. Multiobjective programming techniques such as goal programming (GP)
and compromise programming (CP) are used to choose the portfolio [10–12]. Considering
the uncertainty of investment environment, Tiryaki transferred experts’ linguistic value into
triangle fuzzy number and used a new fuzzy ranking and weighting algorithm to obtain
the investment ratio of each stock [4]. In fact, the stock portfolio decision problem can be
described as multiple criteria decision making (MCDM) problem.

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is
developed by Hwang and Yoon [13], which is one of the well-known MCDM methods. The
basic principle of the TOPSIS method is that the chosen alternative should have the shortest
distance from the positive ideal solution (PIS) and the farthest distance from the negative
ideal solution (NIS). It is an effective method to determine the total ranking order of decision
alternatives.

The Elimination et choice in Translating to Reality (ELECTRE) method is a highly
developed multicriteria analysis model which takes into account the uncertainty and
vagueness in the decision process [14]. It is based on the axiom of partial comparability and
it can simplify the evaluation procedure of alternative selection. The ELECTRE method can
easily compare the degree of difference among all of alternatives.

In MCDM method, experts can express their opinions by using crisp value, triangle
fuzzy numbers, trapezoidal fuzzy numbers, interval numbers, and linguistic variables. Due
to imprecise information and experts’ subjective opinion that often appear in stock portfolio
decision process, crisp values are inadequate for solving the problems. A more realistic
approach may be to use linguistic assessments instead of numerical values [15, 16]. The 2-
tuple linguistic representation model is based on the concept of symbolic translation [17, 18].
Experts can apply 2-tuple linguistic variables to express their opinions and obtain the final
evaluation result with appropriate linguistic variable. It is an effective method to reduce
the mistakes of information translation and avoid information loss through computing with
words [19]. In general, decision makers would use the different 2-tuple linguistic variables
based on their knowledge or experiences to express their opinions [20]. In this paper, we
use different type of 2-tuple linguistic variable to express experts’ opinions and combine
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Figure 1: Triangular fuzzy number T̃ .

linguistic ELECTRE method with TOPSIS method to obtain the final investment ratio which
is reasonable in real decision environment.

This paper is organized as follows. In Section 2, we present the context of fuzzy set
and the definition and operation of 2-tuple linguistic variable. In Section 3, we describe the
detail of the proposed method. In Section 4, an example is implemented to demonstrate the
procedure for the proposed method. Finally, the conclusion is discussed at the end of this
paper.

2. The 2-Tuple Linguistic Representation

2.1. Fuzzy Set and Triangular Fuzzy Number

Fuzzy set theory is first introduced by Zadeh in 1965 [21]. Fuzzy set theory is a very feasible
method to handle the imprecise and uncertain information in a real world [22]. Especially, it is
more suitable for subjective judgment and qualitative assessment in the evaluation processes
of decision making than other classical evaluation methods applying crisp values [23, 24].

A positive triangular fuzzy number (PTFN) T̃ can be defined as T̃ = (l,m, u), where
l ≤ m ≤ u and l > 0, shown in Figure 1. The membership function μT̃ (x) of positive triangular
fuzzy number (PTFN) T̃ is defined as [15]

μT̃ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x − l

m − l
, l < x < m,

u − x

u −m
, m < x < u,

0, otherwise.

(2.1)

A linguistic variable is a variable whose values are expressed in linguistic terms. In
other words, variable whose values are not numbers but words or sentences in a nature or
artificial language [25–27]. For example, “weight” is a linguistic variable whose values are
very low, low, medium, high, very high, and so forth. These linguistic values can also be
represented by fuzzy numbers. There are two advantages for using triangular fuzzy number
to express linguistic variable [28]. First, it is a rational and simple method to use triangular
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fuzzy number to express experts’ opinions. Second, it is easy to do fuzzy arithmetic when
using triangular fuzzy number to express the linguistic variable. It is suitable to represent the
degree of subjective judgment in qualitative aspect than crisp value.

2.2. The 2-Tuple Linguistic Variable

Let S = {s0, s1, s2, . . . , sg} be a finite and totally ordered linguistic term set. The number of
linguistic term is g +1 in set S. A 2-tuple linguistic variable can be expressed as (si, αi), where
si is the central value of ith linguistic term in S and αi is a numerical value representing
the difference between calculated linguistic term and the closest index label in the initial
linguistic term set. The symbolic translation function Δ is presented in [29] to translate crisp
value β into a 2-tuple linguistic variable. Then, the symbolic translation process is applied to
translate β (β ∈ [0, 1]) into a 2-tuple linguistic variable. The generalized translation function
can be represented as [30]:

Δ : [0, 1] −→ S ×
[
− 1

2g
,

1
2g

)
Δ
(
β
)
= (si, αi),

(2.2)

where i = round(β × g), αi = β(−i/g) and αi ∈ [−1/2g, 1/2g).
A reverse function Δ−1 is defined to return an equivalent numerical value β from

2-tuple linguistic information (si, αi). According to the symbolic translation, an equivalent
numerical value β is obtained as follow [30]

Δ−1(si, αi) =
i

g
+ αi = β. (2.3)

Let x = {(r1, α1), . . . , (rn, αn)} be a 2-tuple linguistic variable set. The arithmetic mean
X is computed as [31]

X = Δ

(
1
n

n∑
i=1

Δ−1(ri, αi)

)
= (sm, αm), (2.4)

where n is the amount of 2-tuple linguistic variable. The (sm, αm) is a 2-tuple linguistic
variable which is represented as the arithmetic mean.

In general, decision makers would use the different 2-tuple linguistic variables
based on their knowledge or experiences to express their opinions [20]. For example, the
different types of linguistic variables show as Table 1. Each 2-tuple linguistic variable can be
represented as a triangle fuzzy number. A transformation function is needed to transfer these
2-tuple linguistic variables from different linguistic sets to a standard linguistic set at unique
domain. In the method of Herrera and Martinez [29], the domain of the linguistic variables
will increase as the number of linguistic variable is increased. To overcome this drawback, a
new translation function is applied to transfer a crisp number or 2-tuple linguistic variable
to a standard linguistic term at the unique domain [30]. Suppose that the interval [0, 1] is
the unique domain. The linguistic variable sets with different semantics (or types) will be
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defined by partitioning the interval [0, 1]. Transforming a crisp number β (β ∈ [0, 1]) into ith
linguistic term (sn(t)i , α

n(t)
i ) of type t as

Δt

(
β
)
=
(
s
n(t)
i , α

n(t)
i

)
, (2.5)

where i = round(β × gt), α
n(t)
i = β(−i/gt), gt = n(t) − 1, and n(t) is the number of linguistic

variable of type t.
Transforming ith linguistic term of type t into a crisp number β (β ∈ [0, 1]) as

Δ−1
t

(
s
n(t)
i , α

n(t)
i

)
=

i

gt
+ α

n(t)
i = β, (2.6)

where gt = n(t) − 1 and α
n(t)
i ∈ [−1/2gt, 1/2gt).

Therefore, the transformation from ith linguistic term (sn(t)i , α
n(t)
i ) of type t to kth

linguistic term (sn(t+1)
k , α

n(t+1)
k ) of type t + 1 at interval [0, 1] can be expressed as

Δt+1

(
Δ−1

t

(
s
n(t)
i , α

n(t)
i

))
=
(
s
n(t+1)
k

, α
n(t+1)
k

)
, (2.7)

where gt+1 = n(t + 1) − 1 and α
n(t+1)
k

∈ [−1/2gt+1, 1/2gt+1).

3. Proposed Method

Because of the knowledge, experience and background of each expert is different and experts’
opinions are usually uncertain and imprecise, it is difficult to use crisp value to express
experts’ opinions in the process of evaluating the performance of stock. Instead of crisp
value, the 2-Tuple linguistic valuable which is an effective method to reduce the mistakes of
information translation and avoid information loss through computing with words to express
experts’ opinions [19]. In this paper, different types of 2-tuple linguistic variables are used to
express experts’ opinions.

The TOPSIS method is one of the well-known MCDM methods. It is an effective
method to determine the ranking order of decision alternatives. However, this method cannot
distinguish the difference degree between two decision alternatives easily. Based on the
axiom of partial comparability, the ELECTRE method can easily compare the degree of
difference among of all alternatives. This method always cannot provide the total ordering
of all decision alternatives. Therefore, the ELECTRE and TOPSIS methods are combined to
determine the final investment ratio.

In the proposed model, the subjective opinions of experts can be expressed by different
2-tuple linguistic variables in accordance with their habitual knowledge and experience.
After aggregating opinions of all experts, the linguistic TOPSIS and linguistic ELECTRE
methods are applied to obtain the investment portfolio sets Ωt and Ωe, respectively. The strict
stock portfolio set Ωip is determined by intersection Ωt with Ωe. In general, the risk preference
of investor can be divided into three types such as risk-averter, risk-neutral, and risk-loving.
Considering the risk preference of investor, we can calculate the investment ratio of each
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Experts choose different type of linguistic variables to express their opinions.
Transfer experts’ opinions to the same type of linguistic valuable.
Aggregate experts’ opinions.

Using linguistic TOPSIS to obtain
the investment portfolio set Ωt

Using linguistic ELECTRE to obtain
the investment portfolio set Ωe

The strict investment portfolio set Ωip is determined
in accordance with the intersection Ωt with Ωe .

The investment ratio of each stock in Ωip is calculated
based on risk preference of final decision-maker.

Preference

Risk-averter

Risk-neutral

Risk-loving

Figure 2: The decision-making process of the proposed method.

stock in strict stock portfolio set Ωip. The decision process of the proposed method is shown
as in Figure 2.

In general, a stock portfolio decision may be described by means of the following sets:

(i) a set of experts or decision-makers called E = {E1, E2, . . . , EK};

(ii) a set of stocks called S = {S1, S2, . . . , Sm};

(iii) a set of criteria C = {C1, C2, . . . , Cn} with which stock performances are measured;

(iv) a weight vector of each criterion W = (W1,W2, . . . ,Wn);

(v) a set of performance ratings of each stock with respect to each criterion called
S̃ij , i = 1, 2, . . . , m, j = 1, 2, . . . , n.

According to the aforementioned description, there are K experts, m stocks and n
criteria in the decision process of stock portfolio. Experts can express their opinions by
different 2-tuple linguistic variables. The kth expert’s opinion about the performance rating
of ith stock with respect to jth criterion can be represented as S̃k

ij = (Sk
ij , α

k
ij). The kth expert’s

opinion about the importance of jth criterion can be represented as W̃jk = (Sw
jk
, αw

jk
).

The aggregated linguistic rating S̃ij of each stock with respect to each criterion can be
calculated as

S̃ij = Δ

(
1
K

K∑
k=1

Δ−1
(
Sk
ij , α

k
ij

))
=
(
Sij , αij

)
. (3.1)
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The aggregated linguistic weight w̃j of each criterion can be calculated as

W̃j = Δ

(
1
K

K∑
k=1

Δ−1
(
Sw
jk, α

w
jk

))
=
(
Sw
j , α

w
j

)
. (3.2)

3.1. Linguistic TOPSIS Method

Considering the different importance of each criterion, the weighted linguistic decision
matrix is constructed as

Ṽ [ṽij]m×n, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (3.3)

where ṽij = x̃ij(·)w̃j = Δ(Δ−1(Sij , αij) ∗Δ−1(Sw
j , α

w
j )) = (Sv

ij , α
v
ij).

According to the weighted linguistic decision matrix, the linguistic positive-ideal
solution (LPIS,S∗) and linguistic negative-ideal solution (LNIS,S−) can be defined as

S∗ =
(
ṽ∗

1, ṽ
∗
2, . . . , ṽ

∗
n

)
,

S− =
(
ṽ−

1 , ṽ
−
2 , . . . , ṽ

−
n

)
,

(3.4)

where ṽ∗
j = maxi{(Sv

ij , α
v
ij)} and ṽ−

j = mini{(Sv
ij , α

v
ij)}, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

The distance of each stock Si (i = 1, 2, . . . , m) from S∗ and S−can be currently calculated
as

d∗
i = d(Si, S

∗) =

√√√√ n∑
j=1

d
(
ṽij , ṽj

)
=

√√√√ n∑
j=1

(
Δ−1
(

max
i

{(
Sv
ij , α

v
ij

)})
−Δ−1

(
Sv
ij , α

v
ij

))2

,

d−
i = d

(
Si, S

−) =
√√√√ n∑

j=1

d
(
ṽij , ṽj

)
=

√√√√ n∑
j=1

(
Δ−1
(
Sv
ij , α

v
ij

)
−Δ−1

(
min

i

{(
Sv
ij , α

v
ij

)}))2

.

(3.5)

A closeness coefficient is defined to determine the ranking order of all stocks once
d∗
i and d−

i of each stock Si (i = 1, 2, . . . , m) have been calculated. The closeness coefficient
represents the distances to the linguistic positive-ideal solution (S∗) and the linguistic
negative-ideal solution (S−) simultaneously by taking the relative closeness to the linguistic
positive-ideal solution. The closeness coefficient (CCi) of each stock is calculated as

CCi =
d−
i

d∗
i + d−

i

, i = 1, 2, . . . , m. (3.6)

The higher CCi means that stock Si relatively close to positive ideal solution, the stock
Si has more ability to compete with each others. If the closeness coefficient of stock Si is
greater than the predetermined threshold value βt, we consider stock Si is good enough to
choose in the investment portfolio set. According to closeness coefficient of each stock, the
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investment portfolio set Ωt can be determined based on investment threshold value βt as
Ωt = {Si | CCi ≥ βt}. Finally, the investment ratio of each stock in Ωt can be calculated as

Pt(Si) =

⎧⎪⎨⎪⎩
CC(Si)∑

Si∈Ωt
CC(Si)

, Si ∈ Ωt,

0, Si /∈Ωt,

(3.7)

where Pt(Si) is the investment ratio of each stock by linguistic TOPSIS method.

3.2. Linguistic ELECTRE Method

According to the ELECTRE method, the concordance index Cj(Si, Sl) is calculated for Si and
Sl (i /= l, i, l = 1, 2, . . . , m) with respect to each criterion as

Cj(Si, Sl) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, Δ−1(s̃ij) ≥ Δ−1(s̃lj) − qj ,

Δ−1(s̃ij) −Δ−1(s̃lj) + pj

pj − qj
, Δ−1(s̃lj) − qj ≥ Δ−1(s̃ij) ≥ Δ−1(s̃lj) − pj ,

0, Δ−1(s̃ij) ≤ Δ−1(s̃lj) − pj ,

(3.8)

where qj and pj are indifference and preference threshold values for criterion Cj, pj > qj .
The discordance index Dj(Si, Sl) is calculated for each pair of stocks with respect to

each criterion as

Dj(Si, Sl) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, Δ−1(s̃ij) ≤ Δ−1(s̃lj) − vj ,

Δ−1(s̃lj) − pj −Δ−1(s̃ij)
vj − pj

, Δ−1(s̃lj) − pj ≥ Δ−1(s̃ij) ≥ Δ−1(s̃lj) − vj ,

0, Δ−1(s̃ij) ≥ Δ−1(s̃lj) − pj ,

(3.9)

where vj is the veto threshold for criterion Cj, vj > pj .
Calculate the overall concordance index C(Si, Sl) as

C(Si, Sl) =
n∑
j=1

Δ−1(w̃j

) ∗ Cj(Si, Sl). (3.10)

The credibility matrix S(Si, Sl) of each pair of the stocks is calculated as

S(Si, Sl) =

⎧⎪⎪⎨⎪⎪⎩
C(Si, Sl), if Dj(Si, Sl) ≤ C(Si, Sl) ∀j,

C(Si, Sl)
∏

j∈J(Si,Sl)

1 −Dj(Si, Sl)
1 − C(Si, Sl)

, otherwise,
(3.11)

where J(Si, Sl) is the set of criteria for which Dj(Si, Sl) > C(Si, Sl), i /= l, i, l = 1, 2, . . . , m.
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The concordance credibility and discordance credibility degrees are defined as [32]

φ+(Si) =
∑
i /= l

S(Si, Sl),

φ−(Si) =
∑
i /= l

S(Sl, Si).
(3.12)

The concordance credibility degree represents that the degree of stock Si is at least as
good as all the other stocks. The discordance credibility degree represents that the degree of
all the other stocks is at least as good as stock Si.

Then, the net credibility degree is defined as φ(Si) = φ+(Si) − φ−(Si). If the net
credibility degree of stock Si is higher, then it represents a higher attractiveness of stock Si. In
order to determine the investment ratio, the outranking index of stock Si can be defined as

OTI(Si) =
φ(Si)/(m − 1) + 1

2
. (3.13)

Property 3.1. According to the definition of OTI(Si), we can find 0 ≤ OTI(Si) ≤ 1.

Proof. Because φ(Si) = φ+(Si) − φ−(Si) =
∑

i /= l S(Si, Sl) −
∑

i /= l(Sl · Si), i /= l, i, l = 1, 2, . . . , m.
If the stock Si is better than Sl with respect to each criterion, the best case is∑

i /= l

S(Si, Sl) −
∑
i /= l

(Sl, Si) = m − 1. (3.14)

If the stock Si is worse than Sl with respect to each criterion, the worst case is∑
i /= l

S(Si, Sl) −
∑
i /= l

(Sl, Si) = −(m − 1). (3.15)

Therefore, −(m − 1) ≤ φ(Si) ≤ m − 1.
Then, −1 ≤ φ(Si)/(m − 1) ≤ 1. Finally, we can prove 0 ≤ (φ(Si)/(m − 1) + 1)/2 =

OTI(Si) ≤ 1.
The OTI(Si) denotes the standardization result of the net credibility degree. According

to the definition, it is easy to understand and transform the net credibility degree into interval
[0, 1].

If the outranking index of stock Si is greater than the predetermined threshold value
βe, we consider stock Si is good enough to choose in the investment portfolio set. According
to the outranking index of each stock, the investment portfolio set Ωe can be determined
based on investment threshold value βe as Ωe = {Si | OTI(Si) ≥ βe}. Finally, the investment
ratio of each stock in Ωe can be calculated as

Pe(Si) =

⎧⎪⎨⎪⎩
OTI(Si)∑

Si∈Ωe
OTI(Si)

, Si ∈ Ωe,

0, Si /∈Ωe,

(3.16)

where Pe(Si) is the investment ratio of each stock by using linguistic ELECTRE method.
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3.3. Stock Portfolio Decision

We can consider Linguistic TOPSIS and Linguistic ELECTRE methods as two financial
experts to provide investment ratio of each stock, respectively. Smart investor will make
a stock portfolio decision by considering the suggestions of investment ratio of each stock
simultaneously. Therefore, the portfolio set Ωip is defined as strict stock portfolio set Ωip =
Ωt ∩Ωe.

According to the closeness coefficient, the investment ratio of each stock in strict stock
portfolio set Ωip can be calculated as

Pt ip(Si) =

⎧⎪⎨⎪⎩
CC(Si)∑

Si∈Ωip
CC(Si)

, Si ∈ Ωip,

0, Si /∈Ωip.

(3.17)

According to the outranking index, the investment ratio of each stock in strict stock portfolio
set Ωip can be calculated as

Pe ip(Si) =

⎧⎪⎨⎪⎩
OTI(Si)∑

Si∈Ωip
OTI(Si)

, Si ∈ Ωip,

0, Si /∈Ωip.

(3.18)

In general, the investment preference of investors can be divided into three types
such as risk-averter (RA), risk-neutral (RN), and risk-loving (RL). If a person is risk-averter,
he/she will consider the smaller investment rates between Pt ip(Si) and Pe ip(Si). Therefore,
the final ratio of each stock in strict portfolio set can be calculated as

PRA(Si) =
min
(
Pt ip(Si), Pe ip(Si)

)∑
Si∈Ωip

min
(
Pt ip(Si), Pe ip(Si)

) . (3.19)

If a person is risk-neutral, he/she will consider the average investment rates between
Pt ip(Si) and Pe ip(Si). Therefore, the final ratio of each stock in strict portfolio set can be
calculated as

PRN(Si) =

(
Pt ip(Si) + Pe ip(Si)

)
/2∑

Si∈Ωip

((
Pt ip(Si) + Pe ip(Si)

)
/2
) . (3.20)

If a person is risk-loving, he/she will consider the bigger investment rates between
Pt ip(Si) and Pe ip(Si). Therefore, the final ratio of each stock in portfolio set can be calculated
as

PRL(Si) =
max

(
Pt ip(Si), Pe ip(Si)

)∑
Si∈Ωip

max
(
Pt ip(Si), Pe ip(Si)

) . (3.21)
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Table 1: Ten stocks of semiconduct industry in Taiwan.

S1
Taiwan Semiconductor Manufacturing Co.
Ltd.

S2 United Microelectronics Corp.

S3 Advanced Semiconductor Engineering, Inc. S4 Via Technologies, Inc.

S5 MediaTek Inc. S6 King Yuan Electronics Co. Ltd.

S7 Taiwan Mask Corp. S8 Winbond Electronics Corp.

S9 SunPlus Technology Co. Ltd. S10 Nanya Technology Corporation

4. Numerical Example

An example with ten stocks of semiconduct industry in placecountry-region, Taiwan, will
be considered to determine the investment ratio of each stock in this paper. Ten stocks are
shown as Table 1. A committee of three financial experts E = {E1, E2, E3} has been formed
to evaluate the performance of each stock. They are famous professors of a department
of finance at well-known university in country-regionplace, Taiwan. Their knowledge and
experiences are enough to evaluate the stock performance of each company for this example.
In the process of criteria selection, they considered the quantitative and qualitative factors to
deal with the portfolio selection. After the serious discussion and selection by three financial
experts, six criteria are considered to determined the investment ratio of each stock such as
profitability (C1), asset utilization (C2), liquidity (C3), leverage (C4), valuation (C5), growth
(C6).

Profitability (C1)

The goal of enterprise is tomakeaprofit. There are some indexes to evaluate the profitability
of a company such as earnings per share (EPS), net profit margin, return on assets (ROA),
and return on equity (ROE). The profitability of a company will influence the performance of
each stock.

Asset Utilization (C2)

Asset utilization means the efficiency of using company’s resource in a period. A good
company will promote the resource using efficiency as more as possible. Experts evaluate
the asset utilization of the company based on receivables turnover, inventory turnover, and
asset turnover.

Liquidity (C3)

Liquidity will focus on cash flow generation and a company’s ability to meet its financial
obligations. When company’s transfer assets (1 and, factory buildings, equipment, patent,
goodwill) to currency in a short period, there will have some loss because the company’s
manager do not have enough time to find out the buyer who provide the highest price. An
appropriate liquidity ratio (debt to equity ratio, current ratio, quick ratio) will both prevent
liquidity risk and minimize the working capital.
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Figure 3: Membership functions of linguistic variables at type 1 (t = 1).

Table 2: Different types of linguistic variables.

Type Linguistic variable Figure

1 Performance Extremely Poor (s5
0), Poor (s5

1), Fair (s5
2), Good (s5

3), Extremely
Good (s5

4) Figure 3

Weight Extremely Low (s5
0), Low (s5

1), Fair (s5
2), High (s5

3), Extremely
High (s5

4)

2 Performance Extremely Poor (s7
0), Poor (s7

1), Medium Poor (s7
2), Fair (s7

3),
Medium Good (s7

4), Good (s7
5), Extremely Good (s7

6) Figure 4

Weight Extremely Low (s7
0), Low (s7

1), Medium Low (s7
2), Fair (s7

3),
Medium High (s7

4), High (s7
5), Extremely High (s7

6)

3 Performance
Extremely Poor (s9

0),Very Poor (s9
1), Poor (s9

2), Medium Poor
(s9

3), Fair (s9
4), Medium Good (s9

5), Good (s9
6), Very Good (s9

7),
Extremely Good (s9

8)
Figure 5

Weight
Extremely Low (s9

0),Very Low (s9
1), Low (s9

2), Medium Low (s9
3),

Fair (s9
4), Medium High (s9

5), High (s9
6), Very High (s9

7),
Extremely High (s9

8)

Leverage (C4)

When the return on assets is greater than lending rate, it is time for a company to lend money
to operate. But increasing the company’s debt will increase risk if the company does not earn
enough money to pay the debt in the future. A suitable leverage ratio is one of the criteria to
evaluate the performance of each stock.

Valuation (C5)

Book value means the currency which all of the company’s assets transfer to, stock value
means the price if you want to buy now, earnings before amortization, interest and taxes
ratio (EBAIT) means the company earns in this year, expert must consider the best time point
to buy the stock by Technical Analysis (TA) and Time Series Analysis (TSA). So, valuation is
also one of the criteria to evaluate the performance of each stock.

Growth (C6)

If the scale of a company was expanded year by year, EBAIT will increase which is like
“compound interest.” Because of economies of scale, the growth of the company will promote
asset utilization and then raise the EBAIT and EPS.

According to the proposed method, the computational procedures of the problem are
summarized as follows.
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Figure 4: Membership functions of linguistic variables at type 2 (t = 2).
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Figure 5: Membership functions of linguistic variables at type 3 (t = 3).

Table 3: Evaluation decisions (the ratings of the all stocks under all criteria) by three experts.

C1 C2 C3 C4 C5 C6

E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3

S1 F F G EG MG VG G MG VG P F EG F G VG P MG VG
S2 P F MG F MG G F F G EP F MG P MG VG P MG G
S3 F F G G F MG F MG G F F MG P MG G F MG MG
S4 F G MG G G G F MG MG F G G F MG MG P EG MG
S5 F MG EG G MG VG F G G G MG VG G MG VG P G G
S6 P F G G F VG F F VG P MG VG F F G F F G
S7 G F G P MG VG F F G F F VG P MG VG F MG VG
S8 EP MG G F F VG EP F VG EP MG EG EP MG VG P MG VG
S9 G MG VG F MG G F F VG F MG VG F MG VG F G G
S10 EP G G F G G F MG MG EP MG G EP F MG EP MG MG

Step 1. Each expert selects the suitable 2-tuple linguistic variables to express their opinions.
Expert 1 uses linguistic variables with 5 scale of linguistic term set to express his opinion,
expert 2 uses linguistic variables with 7 scale of linguistic term set and expert 3 uses linguistic
variables with 9 scale of linguistic term set, respectively (see Table 2).

Step 2. Each expert expresses his opinion about the performance of each stock with respect to
each criterion as shown in Table 3.

Step 3. Each expert expresses his opinion about the importance of each criterion as shown in
Table 4.

Step 4. Transform the linguistic ratings into the linguistic variables of type 2 and aggregate
the linguistic ratings of each stock with respect to criteria as Table 5.
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Table 4: Evaluation decisions (the weightings of all criteria) by three experts.

C1 C2 C3 C4 C5 C6

E1 EH H H H EH F
E2 EH H H MH H H
E3 EH EH VH EH VH H

Table 5: Transfer to the linguistic variable of type 2.

Stock Criterion E1 E1 E1 Average

C1

S1 S7
3, 0.0000 S7

3, 0.0000 S7
5, −0.0833 S7

4, −0.0833

S2 S7
2, −0.0833 S7

3, 0.0000 S7
4, −0.0417 S7

3, −0.0417

S3 S7
3, 0.0000 S7

3, 0.0000 S7
5, −0.0833 S7

4, −0.0833

S4 S7
3, 0.0000 S7

5, 0.0000 S7
4, −0.0417 S7

4, −0.0139

S5 S7
3, 0.0000 S7

4, 0.0000 S7
6, 0.0000 S7

4, 0.0556

S6 S7
2, −0.0833 S7

3, 0.0000 S7
5, −0.0833 S7

3, 0.0000

S7 S7
5, −0.0833 S7

3, 0.0000 S7
5, −0.0833 S7

4, 0.0000

S8 S7
0, 0.0000 S7

4, 0.0000 S7
5, −0.0833 S7

3, −0.0278

S9 S7
5, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

5, −0.0694

S10 S7
0, 0.0000 S7

5, 0.0000 S7
5, −0.0833 S7

3, 0.0278

C2

S1 S7
6, 0.0000 S7

4, 0.0000 S7
5, 0.0417 S7

5, 0.0139

S2 S7
3, 0.0000 S7

4, 0.0000 S7
5, −0.0833 S7

4, −0.0278

S3 S7
5, −0.0833 S7

3, 0.0000 S7
4, −0.0417 S7

4, −0.0417

S4 S7
5, −0.0833 S7

5, 0.0000 S7
5, −0.0833 S7

5, −0.0556

S5 S7
5, −0.0833 S4, 0.0000 S7

5, 0.0417 S7
5, −0.0694

S6 S7
5, −0.0833 S7

3, 0.0000 S7
5, 0.0417 S7

4, 0.0417

S7 S7
2, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

4, −0.0694

S8 S7
3, 0.0000 S7

3, 0.0000 S7
5, 0.0417 S7

4, −0.0417

S9 S7
3, 0.0000 S4, 0.0000 S7

5, −0.0833 S7
4, −0.0278

S10 S7
3, 0.0000 S7

5, 0.0000 S7
5, −0.0833 S7

4, 0.0278

C3

S1 S7
5, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

5, −0.0694

S2 S7
3, 0.0000 S7

3, 0.0000 S7
5, −0.0833 S7

4, −0.0833

S3 S7
3, 0.0000 S7

4, 0.0000 S7
5, −0.0833 S7

4, −0.0278

S4 S7
3, 0.0000 S7

4, 0.0000 S7
4, −0.0417 S7

4, −0.0694

S5 S7
3, 0.0000 S7

5, 0.0000 S7
5, −0.0833 S7

4, 0.0278

S6 S7
3, 0.0000 S7

3, 0.0000 S7
5, 0.0417 S7

4, −0.0417

S7 S7
3, 0.0000 S7

3, 0.0000 S7
5, −0.0833 S7

4, −0.0833

S8 S7
0, 0.0000 S7

3, 0.0000 S7
5, 0.0417 S7

3, −0.0417

S9 S7
3, 0.0000 S7

3, 0.0000 S7
5, 0.0417 S7

4, −0.0417

S10 S7
3, 0.0000 S7

4, 0.0000 S7
4, −0.0417 S7

4, −0.0694
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Table 5: Continued.

Stock Criterion E1 E1 E1 Average

C4

S1 S7
2, −0.0833 S7

3, 0.0000 S7
6, 0.0000 S7

4, −0.0833

S2 S7
0, 0.0000 S7

3, 0.0000 S7
4, −0.0417 S7

2, 0.0417

S3 S7
3, 0.0000 S7

3, 0.0000 S7
4, −0.0417 S7

3, 0.0417

S4 S7
3, 0.0000 S7

5, 0.0000 S7
5, −0.0833 S7

4, 0.0278

S5 S7
5, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

5, −0.0694

S6 S7
2, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

4, −0.0694

S7 S7
3, 0.0000 S7

3, 0.0000 S7
5, 0.0417 S7

4, −0.0417

S8 S7
0, 0.0000 S7

4, 0.0000 S7
6, 0.0000 S7

3, 0.0556

S9 S7
3, 0.0000 S7

4, 0.0000 S7
5, 0.0417 S7

4, 0.0139

S10 S7
0, 0.0000 S7

4, 0.0000 S7
5, −0.0833 S7

3, −0.0278

C5

S1 S7
3, 0.0000 S7

5, 0.0000 S7
5, 0.0417 S7

4, 0.0694

S2 S7
2, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

4, −0.0694

S3 S7
2, −0.0833 S7

4, 0.0000 S7
5, −0.0833 S7

3, 0.0556

S4 S7
3, 0.0000 S7

4, 0.0000 S7
4, −0.0417 S7

4, −0.0694

S5 S7
5, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

5, −0.0694

S6 S7
3, 0.0000 S7

3, 0.0000 S7
5, −0.0833 S7

4, −0.0833

S7 S7
2, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

4, −0.0694

S8 S7
0, 0.0000 S7

4, 0.0000 S7
5, 0.0417 S7

3, 0.0139

S9 S7
3, 0.0000 S7

4, 0.0000 S7
5, 0.0417 S7

4, 0.0139

S10 S7
0, 0.0000 S7

3, 0.0000 S7
4, −0.0417 S7

2, 0.0417

C6

S1 S7
2, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

4, −0.0694

S2 S7
2, −0.0833 S7

4, 0.0000 S7
5, −0.0833 S7

3, 0.0556

S3 S7
3, 0.0000 S7

4, 0.0000 S7
4, −0.0417 S7

4, −0.0694

S4 S7
2, −0.0833 S7

6, 0.0000 S7
4, −0.0417 S7

4, −0.0417

S5 S7
2, −0.0833 S7

5, 0.0000 S7
5, −0.0833 S7

4, −0.0556

S6 S7
3, 0.0000 S7

3, 0.0000 S7
5, −0.0833 S7

4, −0.0833

S7 S7
3, 0.0000 S7

4, 0.0000 S7
5, 0.0417 S7

4, 0.0139

S8 S7
2, −0.0833 S7

4, 0.0000 S7
5, 0.0417 S7

4, −0.0694

S9 S7
3, 0.0000 S7

5, 0.0000 S7
5, −0.0833 S7

4, 0.0278

S10 S7
0, 0.0000 S7

4, 0.0000 S7
4, −0.0417 S7

3, −0.0694

Table 6: Transfer to the linguistic variable of type 2.

Criterion E1 E2 E3 Average
C1 S7

6, 0.0000 S7
6, 0.0000 S7

6, 0.0000 S7
6, 0.0000

C2 S7
5, −0.0833 S7

5, 0.0000 S7
6, 0.0000 S7

5, 0.0278

C3 S7
5, −0.0833 S7

5, 0.0000 S7
5, 0.0417 S7

5, −0.0139

C4 S7
5, −0.0833 S7

4, 0.0000 S7
6, 0.0000 S7

5, −0.0278

C5 S7
6, 0.0000 S7

5, 0.0000 S7
5, 0.0417 S7

5, 0.0694

C6 S7
3, 0.0000 S7

5, 0.0000 S7
5, −0.0833 S7

4, 0.0278
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Table 7: The weighted linguistic decision matrix.

C1 C2 C3 C4 C5 C6

S1 0.1148 0.1435 0.1231 0.0924 0.1307 0.0816
S2 0.0902 0.1082 0.0940 0.0594 0.1061 0.0759
S3 0.1148 0.1059 0.1030 0.0858 0.0987 0.0816
S4 0.1284 0.1318 0.0963 0.1100 0.1061 0.0854
S5 0.1421 0.1294 0.1119 0.1211 0.1357 0.0835
S6 0.0984 0.1200 0.1008 0.0946 0.1036 0.0797
S7 0.1311 0.1012 0.0940 0.0990 0.1061 0.0930
S8 0.0929 0.1059 0.0739 0.0880 0.0913 0.0816
S9 0.1503 0.1082 0.1008 0.1078 0.1209 0.0949
S10 0.1038 0.1176 0.0963 0.0748 0.0666 0.0588

Table 8: Linguistic positive-ideal solution (LPIS, S∗) and linguistic negative-ideal solution (LNIS, S−).

C1 C2 C3 C4 C5 C6

S∗ 0.1503 0.1435 0.1231 0.1211 0.1357 0.0949
S− 0.0902 0.1012 0.0739 0.0594 0.0666 0.0588

Table 9: Calculate the distance from S∗ and the distance from S−, the closeness coefficient of each stock.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

d∗ 0.0478 0.1036 0.0766 0.0492 0.0228 0.0755 0.0661 0.1018 0.0463 0.1084
d− 0.1027 0.0480 0.0610 0.0879 0.1188 0.0647 0.0799 0.0444 0.1048 0.0346
CC 0.6826 0.3166 0.4432 0.6409 0.8388 0.4614 0.5471 0.3038 0.6937 0.2419

Table 10: The overall concordance matrix.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.0000 1.0000 1.0000 1.0000 0.9868 1.0000 1.0000 1.0000 0.9836 1.0000
S2 0.9046 1.0000 1.0000 0.8219 0.7268 0.9472 0.8716 0.9868 0.7040 1.0000
S3 0.9287 1.0000 1.0000 1.0000 0.9028 1.0000 1.0000 1.0000 0.9836 1.0000
S4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S6 1.0000 1.0000 1.0000 1.0000 0.9196 1.0000 1.0000 1.0000 0.8852 1.0000
S7 0.9019 1.0000 1.0000 0.9859 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S8 0.7500 1.0000 0.9866 0.9836 0.7061 1.0000 0.9672 1.0000 0.8525 1.0000
S9 0.9577 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S10 0.6257 0.7441 0.7885 0.6685 0.4954 0.7589 0.6758 0.8033 0.5360 0.8033

Step 5. Transform the linguistic evaluations of weight of each criterion into the linguistic
variables of type 2 and aggregate the linguistic weight of each criterion as Table 6.

Step 6. Calculate the weighted linguistic decision matrix V = [vij]m∗n as Table 7.

Step 7. Calculate the linguistic positive-ideal solution (LPIS, S∗) and linguistic negative-ideal
solution (LNIS, S−) as Table 8.
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Table 11: The credibility matrix.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.0000 1.0000 1.0000 1.0000 0.9868 1.0000 1.0000 1.0000 0.9836 1.0000
S2 0.9046 1.0000 1.0000 0.8219 0.4845 0.9472 0.8716 0.9868 0.7040 1.0000
S3 0.9287 1.0000 1.0000 1.0000 0.9028 1.0000 1.0000 1.0000 0.9836 1.0000
S4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S6 1.0000 1.0000 1.0000 1.0000 0.9196 1.0000 1.0000 1.0000 0.8852 1.0000
S7 0.9019 1.0000 1.0000 0.9859 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S8 0.7500 1.0000 0.9866 0.9836 0.7061 1.0000 0.9672 1.0000 0.8525 1.0000
S9 0.9577 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
S10 0.5213 0.7440 0.7884 0.6684 0.3302 0.7588 0.6757 0.8032 0.5359 0.8032

Table 12: The concordance credibility degree, the discordance credibility degree, the net credibility degree,
and the outranking index.

Stock φ+(Si) φ−(Si) φ(Si) OTI
S1 9.9704 8.9641 1.0063 0.5559
S2 8.7206 9.7440 −1.0234 0.4431
S3 9.8151 9.7750 0.0402 0.5022
S4 10.0000 9.4599 0.5401 0.5300
S5 10.0000 8.3300 1.6700 0.5928
S6 9.8049 9.7060 0.0989 0.5055
S7 9.8878 9.5145 0.3732 0.5207
S8 9.2459 9.7900 −0.5441 0.4698
S9 9.9577 8.9448 1.0128 0.5563
S10 6.6292 9.8032 −3.1740 0.3237

Table 13: Compute the ratio of investment in accordance with the risk preference.

Rank Pt(Si) Pe(Si) PRA(Si) PRN(Si) PRL(si)
1 S5, 0.2465 S5, 0.1575 S5, 0.2225 S5, 0.2308 S5, 0.2385
2 S9, 0.2038 S9, 0.1478 S9, 0.2088 S9, 0.2028 S9, 0.1973
3 S1, 0.2006 S1, 0.1477 S1, 0.2075 S1, 0.2012 S1, 0.1952
4 S4, 0.1883 S4, 0.1408 S4, 0.1948 S4, 0.1903 S4, 0.1861
5 S7, 0.1608 S7, 0.1384 S7, 0.1663 S7, 0.1749 S7, 0.1829
6 S6, 0.1343
7 S3, 0.1335

Step 8. Calculate the distance of each stock from S∗ and the distance from S−, and the
closeness coefficient of each stock as Table 9.

Step 9. Define investment threshold value as the average of the closeness coefficient βt =∑n
i=1 CC(Si)/n, so the investment portfolio set is Ωt = {S1, S4, S5, S7, S9} in accordance with

TOPSIS. The ratio of investment based on TOPSISmethod is shown as Table 13.
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Step 10. The indifference threshold, preference threshold, and veto threshold values of each
criterion can be determined in accordance with the linguistic variables of type 2 as

qj = Δ−1
(
S7

1

)
−Δ−1

(
S7

0

)
=

1
6
, pj = Δ−1

(
S7

2

)
−Δ−1

(
S7

0

)
=

2
6
,

vj = Δ−1
(
S7

3

)
−Δ−1

(
S7

0

)
=

3
6
, j = 1, . . . , 6.

(4.1)

Step 11. Calculate the concordance matrix and the discordance matrix of each pair stock with
respect to each criterion.Then, calculate the overall concordance matrix as Table 10 and the
credibility matrix as Table 11.

Step 12. Calculate the concordance credibility degree, the discordance credibility degree, the
net credibility degree, and the outranking index as Table 12.

Step 13. Define investment threshold value as the average of the outranking index βe =∑n
i=1 OTI(Si)/n, so the investment portfolio set is Ωe = {S1, S3, S4, S5, S6, S7, S9} in accordance

with ELECTRE method. The ratio of investment based on ELECTRE method is shown as
Table 13.

Step 14. Compute strict stock portfolio set as Ωip = Ωt ∩Ωe = {S1, S4, S5, S7, S9}.

Step 15. According to the investment preference of investor, the result of the ratio of invest-
ment based on combining linguistic ELECTRE with TOPSIS can be calculated as Table 13.

According to the result of numerical example, experts considered that the proposed
method is useful to help investor determine the stock portfolio.

5. Conclusion

In general, the stock portfolio decision problem adheres to uncertain and imprecise data,
and fuzzy set theory is adequate to deal with it. In this proposed model, different types of
2-tuple linguistic variables are applied to express the subjective judgment of each expert.
Expert can easily express his opinion by different types of 2-tuple linguistic variables. The
generalized translation method of different types of 2-tuple linguistic variables is applied
to aggregate the subjective judgment of each expert. It is a flexible way to aggregate the
opinions of all experts. Then, a new decision-making method has been presented in this
paper by combining the advantages of ELECTRE with TOPSIS methods. According to the
experts’ opinions, the linguistic ELECTRE method and linguistic TOPSIS method are used to
derive the closeness coefficient and the outranking index of each stock, respectively. Based
on the closeness coefficient, the outranking index, and selection threshold, we can easily
obtain three type of the investment ratio in accordance with different investment preference
of final decision-maker. It is a reasonable way in real decision environment. In other words,
the proposed method provides a flexible way to determine the stock portfolio under the
uncertain environment. In the future, the concept of combing different decision methods for
deciding stock portfolio will be applied to different fields such as R&D projects investment,
bonus distribution in a company. A decision support system will be developed based on the
proposed method for dealing with the stock selection problems in the future.
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investments, which has made real options a growing field of academic research and practical
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of fuzzy numbers with the method and an application of the new method in an industry setting.

Copyright q 2009 Mikael Collan et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Real option valuation is based on the observation that the possibilities financial options
give their holder resemble the possibilities to invest in real investments and possibilities
found within real investments, that is, managerial flexibility: “an irreversible investment
opportunity is much like a financial call option” [1]. In other words, real option valuation is
treating investment opportunities and the different types of managerial flexibility as options
and valuing them with option valuation models. Real options are useful both, as a mental
model for strategic and operational decision-making, and as a valuation and numerical
analysis tool. This paper concentrates on the use of real options in numerical analysis, and
particularly on the derivation of the real option value for a given investment opportunity, or
identified managerial flexibility.

Real options are commonly valued with the same methods that have been used to
value financial options, that is, with Black-Scholes option pricing formula [2], with the
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binomial option valuation method [3], with Monte-Carlo-based methods [4], and with a
number of later methods based on these. Most of the methods are complex and demand a
good understanding of the underlying mathematics, issues that make their use difficult in
practice. In addition these models are based on the assumption that they can quite accurately
mimic the underlying markets as a process, an assumption that may hold for some quite
efficiently traded financial securities, but may not hold for real investments that do not have
existing markets or have markets that can by no means be said to exhibit even weak market
efficiency.

Recently, a novel approach to real option valuation, called the Datar-Mathews method
(DMM) was presented in [5–7], where the real option value is calculated from a pay-off
distribution, derived from a probability distribution of the net present value (NPV) for a
project that is generated with a (Monte-Carlo) simulation. The authors show that the results
from the method converge to the results from the analytical Black-Scholes method. The
method presented greatly simplifies the calculation of the real option value, making it more
transparent and brings real option valuation as a method a big leap closer to practitioners.
The most positive issue in the DMM is that it does not suffer from the problems associated
with the assumptions connected to the market processes connected to the Black-Scholes and
the binomial option valuation methods. The DMM utilizes cash-flow scenarios as an input to
a Monte Carlo simulation to derive a distribution for the future investment outcomes. This
distribution is then used to create a pay-off distribution for the investment. The DMM is
highly compatible with the way cash-flow-based profitability analysis is commonly done in
companies, because it can use the same type of inputs as NPV analysis.

All of the afore-mentioned models and methods use probability theory in their
treatment of uncertainty, there are, however, other ways than probability to treat uncertainty,
or imprecision in future estimates, namely, fuzzy logic and fuzzy sets. In classical set theory
an element either (fully) belongs to a set or does not belong to a set at all. This type of bivalue,
or true/false, logic is commonly used in financial applications (and is a basic assumption of
probability theory). Bivalue logic, however, presents a problem, because financial decisions
are generally made under uncertainty. Uncertainty in the financial investment context means
that it is in practice impossible, exante to give absolutely correct precise estimates of, for
example, future cash-flows. There may be a number of reasons for this, see, for example, [8],
however, the bottom line is that our estimations about the future are imprecise.

Fuzzy sets are sets that allow (have) gradation of belonging, such as “a future
cash flow at year ten is about x euro”. This means that fuzzy sets can be used to
formalize inaccuracy that exists in human decision making and as a representation of vague,
uncertain, or imprecise knowledge, for example, future cash-flow estimation, which human
reasoning is especially adaptive to. “Fuzzy set-based methodologies blur the traditional
line between qualitative and quantitative analysis, since the modeling may reflect more the
type of information that is available rather than researchers’ preferences” [9], and indeed
in economics “the use of fuzzy subsets theory leads to results that could not be obtained
by classical methods” [10]. The origins of fuzzy sets date back to an article by Lotfi Zadeh
[11] where he developed an algebra for what he called fuzzy sets. This algebra was created to
handle imprecise elements in our decision-making processes, and is the formal body of theory
that allows the treatment of practically all decisions in an uncertain environment. “Informally,
a fuzzy set is a class of objects in which there is no sharp boundary between those objects that
belong to the class and those that do not” [12].

In the following subsection we will shortly present fuzzy sets and fuzzy numbers
and continue shortly on using fuzzy numbers in option valuation. We will then present a
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new method for valuation of real options from fuzzy numbers that is based on the previous
literature on real option valuation, especially the findings presented in [5] and on fuzzy real
option valuation methods, we continue by illustrating the use of the method with a selection
of different types of fuzzy numbers and with a case application of the new method in an
industry setting, and close with a discussion and conclusions.

1.1. Fuzzy Sets and Fuzzy Numbers

A fuzzy subset A of a nonempty X set can be defined as a set of ordered pairs, each with the
first element fromX, and the second element from the interval [0, 1], with exactly one-ordered
pair presents for each element of X. This defines a mapping,

μA : A → [0, 1], (1.1)

between elements of the set X and values in the interval [0, 1]. The value zero is
used to represent complete nonmembership, the value one is used to represent complete
membership, and values in between are used to represent intermediate degrees of
membership. The set X is referred to as the universe of discourse for the fuzzy subset A.
Frequently, the mapping μA is described as a function, the membership function of A. The
degree to which the statement x is in A is true is determined by finding the ordered
pair (x, μA(x)). The degree of truth of the statement is the second element of the ordered pair.
It is clear that A is completely determined by the set of tuples

A =
{(
x, μA(x)

)
| x ∈ X

}
. (1.2)

It should be noted that the terms membership function and fuzzy subset get used interchange-
ably and frequently we will write simply A(x) instead of μA(x). A γ-level set (or γ-cut) of a
fuzzy set A of X is a nonfuzzy set denoted by [A]γ and defined by

[A]γ =
{

t ∈ X | A(t) ≥ γ
}
, (1.3)

if γ > 0 and cl(supp A) if γ = 0, where cl(supp A) denotes the closure of the support of
A. A fuzzy set A of X is called convex if [A]γ is a convex subset of X for all γ ∈ [0, 1].
A fuzzy number A is a fuzzy set of the real line with a normal, (fuzzy) convex, and
continuous membership function of bounded support [13]. Fuzzy numbers can be considered
as possibility distributions.

Definition 1.1. Let A be a fuzzy number. Then [A]γ is a closed convex (compact) subset of R

for all γ ∈ [0, 1]. Let us introduce the notations

a1
(
γ
)
= min[A]γ , a2

(
γ
)
= max [A]γ (1.4)

In other words, a1(γ) denotes the left-hand side and a2(γ) denotes the right-hand side of the
γ-cut, γ ∈ [0, 1].
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Definition 1.2. A fuzzy set A is called triangular fuzzy number with peak (or center) a, left
width α > 0 and right width β > 0 if its membership function has the following form

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − a − t
α

if a − α ≤ t ≤ a,

1 − t − a
β

if a ≤ t ≤ a + β,

0 otherwise,

(1.5)

and we use the notation A = (a, α, β). It can easily be verified that

[A]γ =
[
a −
(
1 − γ

)
α, a +

(
1 − γ

)
β
]
, ∀γ ∈ [0, 1]. (1.6)

The support of A is (a − α, b + β). A triangular fuzzy number with center a may be seen as a
fuzzy quantity “x is approximately equal to a”.

Definition 1.3. The possibilistic (or fuzzy) mean value of fuzzy number A with [A]γ =
[a1(γ), a2(γ)] is defined in [13] by

E(A) =
∫1

0

a1
(
γ
)
+ a2
(
γ
)

2
2γ dγ

=
∫1

0

(
a1
(
γ
)
+ a2
(
γ
))
γ dγ.

(1.7)

Definition 1.4. A fuzzy set A is called trapezoidal fuzzy number with tolerance interval [a, b],
left width α, and right width β if its membership function has the following form:

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − a − t
α

if a − α ≤ t ≤ a,

1 if a ≤ t ≤ b,

1 − t − b
β

if a ≤ t ≤ b + β,

0 otherwise,

(1.8)

and we use the notation

A =
(
a, b, α, β

)
. (1.9)

It can easily be shown that [A]γ = [a − (1 − γ)α, b + (1 − γ)β] for all γ ∈ [0, 1]. The support of
A is (a − α, b + β).
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Figure 1: A triangular fuzzy number A, defined by three points {a, α, β} describing the NPV of a
prospective project; (percentages 20% and 80% are for illustration purposes only).

Fuzzy set theory uses fuzzy numbers to quantify subjective fuzzy observations or
estimates. Such subjective observations or estimates can be, for example, estimates of future
cash flows from an investment. To estimate future cash flows and discount rates “one usually
employs educated guesses, based on expected values or other statistical techniques” [14],
which is consistent with the use of fuzzy numbers. In practical applications the most used
fuzzy numbers are trapezoidal and triangular fuzzy numbers. They are used because they
make many operations possible and are intuitively understandable and interpretable.

When we replace nonfuzzy numbers (crisp, single) numbers that are commonly
used in financial models with fuzzy numbers, we can construct models that include the
inaccuracy of human perception, or ability to forecast, within the (fuzzy) numbers. This
makes these models more in line with reality, as they do not simplify uncertain distribution-
like observations to a single-point estimate that conveys the sensation of no-uncertainty.
Replacing nonfuzzy numbers with fuzzy numbers means that the models that are built must
also follow the rules of fuzzy arithmetic.

1.2. Fuzzy Numbers in Option Valuation

Fuzzy numbers (fuzzy logic) have been adopted to option valuation models in (binomial)
pricing an option with a fuzzy pay-off, for example, in [15], and in Black-Scholes valuation
of financial options in, for example, [16]. There are also some option valuation models that
present a combination of probability theory and fuzzy sets, for example, [17]. Fuzzy numbers
have also been applied to the valuation of real options in, for example, [18–20]. More recently
there are a number of papers that present the application of fuzzy real option models in the
industry setting, for example, [21, 22]. There are also specific fuzzy models for the analysis of
the value of optionality for very large industrial real investments, for example, [23].

2. New Fuzzy Pay-Off Method for Valuation of
Real Options from Fuzzy Numbers

Two recent papers [5, 6] present a practical probability theory-based Datar-Mathews method
for the calculation of real option value and show that the method and results from the method
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are mathematically equivalent to the Black-Sholes formula [2]. The method is based on
simulation-generated probability distributions for the NPV of future project outcomes. The
project outcome probability distributions are used to generate a pay-off distribution, where
the negative outcomes (subject to terminating the project) are truncated into one chunk that
will cause a zero pay-off, and where the probability-weighted average value of the resulting
pay-off distribution is the real option value. The DMM shows that the real-option value
can be understood as the probability-weighted average of the pay-off distribution. We use
fuzzy numbers in representing the expected future distribution of possible project costs and
revenues, and hence also the profitability (NPV) outcomes. The fuzzy NPV, a fuzzy number,
is the pay-off distribution from the project.

The method presented in [5] implies that the weighted average of the positive
outcomes of the pay-off distribution is the real option value; in the case with fuzzy numbers
the weighted average is the fuzzy mean value of the positive NPV outcomes. Derivation of
the fuzzy mean value is presented in [13]. This means that calculating the ROV from a fuzzy
NPV (distribution) is straightforward, it is the fuzzy mean of the possibility distribution with
values below zero counted as zero, that is, the area-weighted average of the fuzzy mean of
the positive values of the distribution and zero (for negative values)

Definition 2.1. We calculate the real option value from the fuzzy NPV as follows:

ROV =

∫∞
0 A(x)dx
∫∞
−∞A(x)dx

× E(A+), (2.1)

where A stands for the fuzzy NPV, E(A+) denotes the fuzzy mean value of the positive
side of the NPV, and

∫∞
−∞A(x)dx computes the area below the whole fuzzy number A while∫∞

0 A(x)dx computes the area below the positive part of A.

It is easy to see that when the whole fuzzy number is above zero, then ROV is the
fuzzy mean of the fuzzy number, and when the whole fuzzy number is below zero, the ROV
is zero.

The components of the new method are simply the observation that real option value
is the probability-weighted average of the positive values of a pay-off distribution of a project,
which is the fuzzy NPV of the project, and that for fuzzy numbers, the probability-weighted
average of the positive values of the pay-off distribution is the weighted fuzzy mean of the
positive values of the fuzzy NPV, when we use fuzzy numbers.

2.1. Calculating the ROV with the Fuzzy Pay-Off Method with a Selection of
Different Types of Fuzzy Numbers

As the form of a fuzzy number may vary, the most used forms are the triangular and
trapezoidal fuzzy numbers. These are very usable forms, as they are easy to understand and
can be simply defined by three (triangular) and four (trapezoidal) values.

We should calculate the positive area and the fuzzy mean of the positive area of a
triangular fuzzy pay-off A = (a, α, β) in the case of a − α < 0 < a. Variable z, where 0 ≤ z ≤ α,
represents the distance of a general cut point from a − α at which we separate the triangular
fuzzy number (distribution) into two parts—for our purposes the variable z gets the value
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α − a (we are interested in the positive part of A). Let us introduce the notation

(A | z)(t) =

⎧
⎨

⎩

0 if t ≤ a − α + z,

A(t) otherwise,
(2.2)

for the membership function of the right-hand side of a triangular fuzzy number truncated
at point a − α + z, where 0 ≤ z ≤ α.

Then we can compute the expected value of this truncated triangular fuzzy number:

E(A | z) = I1 + I2 =
∫z1

0
γ
(
a − α + z + a +

(
1 − γ

)
β
)
dγ +

∫1

z1

γ
(
a −
(
1 − γ

)
α + a +

(
1 − γ

)
β
)
dγ,

(2.3)

where

z1 = 1 − α − z
α

=
z

α
, (2.4)

and the integrals are computed by

I1 =
∫z1

0

[(
2a − α + z + β

)
γ − βγ2

]
dγ

=
(
2a − α + z + β

) z2

2α2
− β z3

3α3
,

I2 =
∫1

z1

[(
2a + β − α

)
γ − γ2(β − α

)]
dγ

=
(
2a + β − α

)
(

1
2
− z2

2α2

)

− g
(
β − α

)
(

1
3
− z3

3α3

)

,

(2.5)

that is,

I1 + I2 =
(
2a − α + z + β

)
× z2

2α2
− β × z3

3α3
+
(
2a + β − α

)
×
(

1
2
− z2

2α2

)

−
(
β − α

)
×
(

1
3
− z3

3α3

)

=
z3

2α2
+

2a − α + β
2

+
α − β

3
− α × z3

3α3
,

(2.6)

and we get,

E(A | z) = z3

6α2
+ a +

β − α
6

. (2.7)
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If z = α − a, then A | z becomes A+, the positive side of A, and therefore, we get

E(A+) =
(α − a)3

6α2
+ a +

β − α
6

. (2.8)

To compute the real option value with the afore-mentioned formulas we must calculate the
ratio between the positive area of the triangular fuzzy number and the total area of the same
number and multiply this by E(A+), the fuzzy mean value of the positive part of the fuzzy
number A, according to (2.1).

For computing the real option value from an NPV (pay-off) distribution of a
trapezoidal form we must consider a trapezoidal fuzzy pay-off distribution A defined by

A(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

α
− a1 − α

α
if a1 − α ≤ u ≤ a1,

1 if a1 ≤ u ≤ a2,

u

−β +
a2 + β
β

if a2 ≤ u ≤ a2 + β,

0 otherwise,

(2.9)

where the γ-level of A is defined by [A]γ = [γα + a1 − α,−γβ + a2 + β] and its expected value
is caculated by

E(A) =
a1 + a2

2
+
β − α

6
. (2.10)

Then we have the following five cases.

Case 1. z < a1 − α. In this case we have E(A | z) = E(A).

Case 2. a1 − α < z < a1. Then introducing the notation

γz =
z

α
− a1 − α

α
, (2.11)

we find

[A]γ =

⎧
⎨

⎩

(
z,−γβ + a2 + β

)
if γ ≤ γz,

(
γα + a1 − α,−γβ + a2 + β

)
if γz ≤ γ ≤ 1,

(2.12)

E(A | z) =
∫ γz

0
γ
(
z − γβ + a2 + β

)
dγ +

∫1

γz

γ
(
γα + a1 − α − γβ + a2 + β

)
dγ

=
a1 + a2

2
+
β − α

6
+ (z − a1 + α)

γ2
z

2
− α

γ3
z

3
.

(2.13)
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Figure 2: Calculation of the fuzzy mean for the positive part of a fuzzy pay-off distribution of the form of
special case.

Case 3. a1 < z < a2. In this case γz = 1 and

[A]γ =
[
z,−γβ + a2 + β

]
, (2.14)

and we get

E(A | z) =
∫1

0
γ
(
z − γβ + a2 + β

)
dγ

=
z + a2

2
+
β

6
.

(2.15)

Case 4. a2 < z < a2 + β. In this case we have

γz =
z

−β + c
a2 + β
β

, (2.16)

[A]γ =
[
z,−γβ + a2 + β

]
, (2.17)

if γ < γz and we find,

E(A | z) =
∫ γz

0
γ
(
z − γβ + a2 + β

)
dγ

=
(
z + a2 + β

)γ2
z

2
− β

γ3
z

3
.

(2.18)

Case 5. a2 + β < z. Then it is easy to see that E(A | z) = 0.

In the following special case, we expect that the managers will have already performed
the construction of three cash-flow scenarios and have assigned estimated probabilities to
each scenario (adding up to 100%). We want to use all this information and hence will assign
the estimated “probabilities” to the scenarios resulting in a fuzzy number that has a graphical
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presentation of the type presented in Figure 2 (not in scale):

A(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
γ3 − γ1

)u
α
−
(
γ3 − γ1

)a − α
α

+ γ1 if a − α ≤ u ≤ a,

γ3 if u = a,

(
γ2 − γ3

)u
β
−
(
γ2 − γ3

)a
β
+ γ3 if a ≤ u ≤ a + β,

0 otherwise,

E(A) =
∫1

0
γ
(
a1
(
γ
)
+ a2
(
γ
))
dγ

=
∫1

0
γa1
(
γ
)
dγ +

∫1

0
γa2
(
γ
)
dγ,

∫1

0
γa1
(
γ
)
dγ =

∫ γ1

0
γ(a − α)dγ +

∫ γ3

γ1

γ

(
γ − γ1

γ3 − γ1
α + a − α

)
dγ

= (a − α)
γ2

1

2
+
(
a − α −

αγ1

γ3 − γ1

)(
γ2

3

2
−
γ2

1

2

)

+
α

γ3 − γ1

(
γ3

3

3
−
γ3

1

3

)

,

∫1

0
γa2
(
γ
)
dγ =

∫ γ2

0
γ
(
a + β

)
dγ +

∫ γ3

γ2

γ

(
γ − γ3

γ2 − γ3
β + a

)
dγ

=
(
a + β

)γ2
2

2
+
(
a −

βγ3

γ2 − γ3

)(
γ2

3

2
−
γ2

2

2

)

+
β

γ2 − γ3

(
γ3

3

3
−
γ3

2

3

)

,

E(A) =
γ2

1

2
αγ1

γ3 − γ1
+
γ2

2

2

(
β +

βγ3

γ2 − γ3

)
+
γ2

3

2

(
2a − α −

αγ1

γ3 − γ1
−

βγ3

γ2 − γ3

)

−
γ3

1

3
α

γ3 − γ1
−
γ3

2

3
β

γ2 − γ3
+
γ3

3

3

(
α

γ3 − γ1
+

β

γ2 − γ3

)
;

(2.19)

(1) z < a − α : E(A | z) = E(A),

(2) a − α < z < a: γz = (γ3 − γ1)
z

α
− (γ3 − γ1)

a − α
α

+ γ1,

E(A | z) =
γ2
z

2

(
z − a + α +

αγ1

γ3 − γ1

)
+
γ2

2

2

(
β +

βγ3

γ2 − γ3

)

+
γ2

3

2

(
2a − α −

αγ1

γ3 − γ1
−

βγ3

γ2 − γ3

)
−
γ3
z

3
α

γ3 − γ1

−
γ3

2

3
β

γ2 − γ3
+
γ3

3

3

(
α

γ3 − γ1
+

β

γ2 − γ3

)
,

(2.20)
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(3) a < z < a + β : γz = (γ2 − γ3)
z

β
− (γ2 − γ3)

a

β
+ γ3,

E(A | z) =
γ2
z

2

(
z + a −

β

γ2 − γ3

)
+
γ2

2

2

(
β +

βγ3

γ2 − γ3

)
+
γ3
z

3
βγ3

γ2 − γ3
−
γ3

2

3
β

γ2 − γ3
, (2.21)

(4) a + β < z : E(A | z) = 0.

In the same way as was discussed earlier in connection to the triangular NPV, to
compute the real option value with the afore-mentioned formulas we must calculate the ratio
between the positive area of the fuzzy number (NPV) and the total area of the same number
according to the formula (2.1).

3. A Simple Case: Using the New Method in Analyzing a Business Case

The problem at hand is to evaluate the value of uncertain cash-flows from a business
case. The input information available is in the form of three future cash-flow scenarios,
good (optimistic), most likely, and bad (pessimistic). The same business case with the
same numbers has been earlier presented in [7] and is presented here to allow superficial
comparison with the Datar-Mathews method—we are using the same numbers with the
fuzzy pay-off method.

The scenario values are given by managers as nonfuzzy numbers, they can, in general,
have used any type of analysis tools, or models to reach these scenarios. For more accurate
information on the generation of the numbers in this case, see [7] for reference. From the
cost and benefit scenarios three scenarios for the NPV are combined (PV benefits - PV
investment costs), where the cost cash-flows (CF) are discounted at the risk-free rate and
the benefit CF discount rate is selected according to the risk (risk adjusted discount rate).
The NPV is calculated for each of the three scenarios separately, see Figures 3 and 4. The
resulting fuzzy NPV is the fuzzy pay-off distribution for the investment. To reach a similar
probability distribution [7] use Monte Carlo simulation. They point out that a triangular
distribution can also be used. The real option value for the investment can be calculated from
the resulting fuzzy NPV, which is the pay-off distribution for the project, according to the
formula presented in (2.1). We use the formula described in Section 2.1. to calculate the real
option value for this business case. We reach the value ROV= 13.56. The work in [7] shows
that the value with the same inputs is 8. The difference is caused by the difference in the
distributions generated from the inputs.

It is usual that managers are asked to give cash-flow information in the form of
scenarios (usually three) and they often have a preselected set of methods for building the
scenarios. Usually the scenarios are constructed by trusting past experience and based on
looking at, for example, the variables that most contribute to cash-flows and the future market
outlook; similar approaches are also reported in [7].

With the fuzzy pay-off method, the scenario approach can be fully omitted and the
future cash-flow forecasting can be done fully with fuzzy numbers. The end result will be a
fuzzy NPV that is the pay-off distribution for the project. This is the same result that we get
if we use scenarios, however, it does not require us to simplify the future to three alternative
scenarios.

The detailed calculation used in the case includes present value calculation for the
three scenarios of investment cost and revenue cash-flows and then integrates these to form
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Figure 3: Detailed calculations used in the case.

the fuzzy net present value (FNPV). The value of the R&D is directly included in the cost
cash-flow table and the resulting ROV is what the work in [7] calls total project value. This is
a minor issue, as the [7] project option value is the total project value + the R&D Cost.

4. Discussion and Conclusions

There is a reason to expect that the simplicity of the presented method is an advantage over
more complex methods. Using triangular and trapezoidal fuzzy numbers makes very easy
implementations possible with the most commonly used spreadsheet software; this opens
avenues for real option valuation to find its way to more practitioners. The method is flexible
as it can be used when the fuzzy NPV is generated from scenarios or as fuzzy numbers from
the beginning of the analysis. Fuzzy NPV is a distribution of the possible values that can take
place for NPV; this means that it is by definition perceived as impossible at the time of the
assessment that values outside of the number can happen. This is in line with the situation
that real option value is zero when all the values of the fuzzy NPV are lower than zero. If we
compare this to the presented case, we can see that in practice it is often that managers are
not interested to use the full distribution of possible outcomes, but rather want to limit their
assessment to the most possible alternatives (and leaving out the tails of the distribution).
We think that the tails should be included in the real option analysis, because even remote
possibilities should be taken into consideration.

The method brings forth an issue that has not gotten very much attention in academia,
the dynamic nature of the assessment of investment profitability, that is, the assessment
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Figure 4: Three NPV scenarios for the duration of the synergies that are used to generate (triangular) fuzzy
NPV.

changes when information changes. As cash flows taking place in the future come closer,
information changes, and uncertainty is reduced this should be reflected in the fuzzy NPV,
the more there is uncertainty the wider the distribution should be, and when uncertainty
is reduced, the width of the distribution should decrease. Only under full certainty should
the distribution be represented by a single number, as the method uses fuzzy NPV there is
a possibility to have the size of the distribution decrease with a lesser degree of uncertainty,
this is an advantage vis-à-vis probability-based methods.

The common decision rules for ROV analysis are applicable with the ROV derived
with the presented method. We suggest that the single number NPV needed for comparison
purposes is derived from the (same) fuzzy NPV by calculating the fuzzy mean value. This
means that in cases when all the values of the fuzzy NPV are greater than zero, the single
number NPV equals ROV, which indicates immediate investment.

We feel that the presented new method opens possibilities for making simpler generic
and modular real option valuation tools that will help construct real options analyses for
systems of real options that are present in many types of investments.
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1. Introduction

Although there has been a large literature dealing with numerical methods for American
options on stocks [1] and references cited therein, [2], there are not many papers for American
options on default-free bonds, see, for example, [3–7], and so on. Numerical methods such as
finite differences, binomial tree methods and Least-Square Monte Carlo simulations are still
widely used. However, these methods have several shortcomings including time consuming,
unbounded domain and discontinuous derivative with respect to the variate of payoff
function. The most recent papers, like [8–11] provide different types of methods.

In this paper we consider an alternative form of American option in which the buyer
pays a smaller up-front premium and then a constant stream of installments at a certain rate
per unit time. So the buyer can choose at any time to stop making installment payments by
either exercising the option or stopping the option contract. This option is called American
continuous-installment (CI) option. Installment options are a recent financial innovation that
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helps the buyer to reduce the cost of entering into a hedging strategy and the liquidity
risk. Nowadays, the installment options are the most actively traded warrant throughout the
financial world, such as the installment warrants on Australian stock and a 10-year warrant
with 9 annual payments offered by Deutsche bank, and so on. There is very little literature on
pricing the installment option, in particular, for pricing the American CI options. Ciurlia and
Roko [12], and Ben-Ameur et al. [13] provide numerical procedures for valuing American CI
options on stock under the geometric Brownian motion framework. However, in practice
the option on bond is more useful than option on stock, and pricing the former is more
complicated, because it is dependent on interest rates variable which is modelled by many
economical models.

The aim of this paper is to present an approximation method for pricing American
CI put option written on default-free, zero-coupon bond under Vasicek interest rate model.
This method is based on Kim integral equations using quadrature formula approximations,
such as the trapezoidal rule and the Simpson rule. The layout of this paper is as follows.
Section 2 introduces the model and provides some preliminary results. In Section 3 we
formulate the valuation problem for the American CI put option on bond describe as a free
boundary problem and describe the Kim integral equations. Numerical method and results
are presented in Section 4. Section 5 concludes.

2. The Model and Preliminary Results

In the one-factor Vasicek model [14], the short-term interest rate rt is modeled as a mean-
reverting Gaussian stochastic process on a probability space (Ω,F, P) equipped with a
filtration (Ft)t≥0. Under the the risk-neutral probability measure Q, it satisfies the linear
stochastic differential equation (SDE)

drt = κ(r∞ − rt)dt + σdWt, (2.1)

where (Wt)t≥0 is a standard Q-Brownian motion, κ > 0 is the speed of mean reversion, r∞ > 0
is the long-term value of interest rate, and σ is a constant volatility.

Consider a frictionless and no-arbitrage financial market which consists of a bank
account At with its price process given by dAt = rtAtdt and a T1-maturity default-free, zero-
coupon bond B(t, r, T1) = Bt with its no-arbitrage price at time t given by

B(t, r, T1) = EQ
{
e−

∫T1
t ruduFt

}
=̂EtQ

[
e−

∫T1
t rsds

]
, (2.2)

where EQ is the expectation under the risk-neutral probability measure Q. Vasicek [14]
provides the explicit form of the zero-bond as follows:

B(t, r, T1) = a(T1 − t)e−b(T1−t)rt (2.3)
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with

a(u) = exp

{
−
[
R∞u − R∞b(u) +

σ2

4κ
b2(u)

]}
,

b(u) =
1 − e−κu

κ
, R∞ = r∞ − σ2

2κ2
.

(2.4)

From (2.3), we are easy to obtain the following partial differential equation (P.D.E.):

∂Bt
∂t

+ κ(r∞ − r)∂Bt
∂r

+
1
2
σ2 ∂

2Bt
∂r2

− rBt = 0 (2.5)

with terminal condition B(T1, r, T1) = 1.
The payoff of a European-style put option without paying any dividends written on

the zero-coupon bond B(t, r, T1) with maturity T (T < T1), and strike price K is h(T, r) =
max{K − B(T, r, T1), 0}. The no-arbitrage price at time t (0 ≤ t ≤ T) of this option is denoted
by pe(t, r,K; T). Following Jamshidian [15], the price of this option can generally be expressed
as follows:

pe(t, r,K; T) = EtQ
[
e−

∫T
t rsdsh(T, r)

]
= KB(t, r, T)N(−d2) − B(t, r, T1)N(−d1), (2.6)

where N(·) is the 1-dimensional standard cumulative normal distribution, and

d1,2 =
1
σ0

ln
B(t, r, T1)
KB(t, r, T)

± 1
2
σ0,

σ0 = σb(T1 − T)
√

1 − e−2κ(T−t)

2κ
.

(2.7)

Now we consider a CI option written on the zero-coupon bond B(t, r, T1). Denote the
initial premium of this option to be Vt = V (t, r; q), which depends on the interest rate, time
t, and the continuous-installment rate q. Applying Ito’s Lemma to Vt, the dynamics for the
initial value of this option is obtained as follows:

dVt =

[
∂Vt
∂t

+
1
2
σ2 ∂

2Vt
∂r2

+ κ(r∞ − rt)∂Vt
∂r

− q
]
dt + σ

∂Vt
∂r

dWt. (2.8)

Theorem 2.1. In the Vasicek interest rates term structure model (2.1). The contingent claim V (t, r; q)
satisfies the inhomogeneous partial differential equation

∂Vt
∂t

+
1
2
σ2 ∂

2Vt
∂r2

+ κ(r∞ − rt)∂Vt
∂r

− rVt = q. (2.9)
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Proof. We now consider a self-financing trading strategy ψ = (ψ1, ψ2), where ψ1 and ψ2

represent positions in bank account and T1-maturity zero-coupon bonds, respectively. It is
apparent that the wealth process πt satisfies

πt = ψ1At + ψ2Bt = Vt, (2.10)

where the second equality is a consequence of the assumption that the trading strategy ψ
replicate the option. Furthermore, since ψ is self-financing, its wealth process πt also satisfies

dπt = ψ1dAt + ψ2dBt, (2.11)

so that

dπt = ψ1rt Atdt + ψ2

[
∂Bt
∂t

+ κ(r∞ − rt)∂Bt
∂r

+
1
2
σ2 ∂

2Bt
∂r2

]
dt + σψ2

∂Bt
∂r

dWt. (2.12)

From (2.8) and (2.10), we get

[
∂Vt
∂t

+
1
2
σ2 ∂

2Vt
∂r2

+ κ(r∞ − rt)∂Vt
∂r

− q − rVt
]
dt + σ

∂Vt
∂r

dWt

= ψ2

[
∂Bt
∂t

+ κ(r∞ − rt)∂Bt
∂r

+
1
2
σ2 ∂

2Bt
∂r2

− rBt
]
dt + ψ2σ

∂Bt
∂r

dWt.

(2.13)

Setting ψ2 = (∂Bt/∂r)/(∂Vt/∂r) the coefficient of dWt vanishes. It follows from (2.5) that, Vt
satisfies (2.9).

3. Kim Equations for the Price of American CI Put Option

Consider an American CI put option written on the zero-coupon bond Bt with the same
strike price K and maturity time T (T < T1). Although the underlying asset is the bond,
the independent variable is the interest rate. Similar to American continuous-installment
option on stock [12], there is an upper critical interest rate rut above which it is optimal
to stop the installment payments by exercising the option early, as well as a lower critical
interest rate rlt below which it is advantageous to terminate payments by stopping the option
contract. We may call rut to be exercising boundary and rlt to be stopping boundary. Denote
the initial premium of this put option at time t by P(t, r; q) = Pt, defined on the domain
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D = {(rt, t) ∈ [0,+∞) × [0, T]}. It is known that P(t, r; q), rut and rlt are the solution of the
following free boundary problem [4]:

∂Pt
∂t

+
1
2
σ2 ∂

2Pt
∂r2

+ κ(r∞ − rt)∂Pt
∂r

− rPt = q, ∀(r, t) ∈ C,

P
(
t, r; q

)
= 0, (r, t) ∈ S,

P
(
t, r; q

)
= K − B(t, r, T1), (r, t) ∈ E,

P
(
T, r; q

)
= h(T, r), r ≥ 0,

P
(
t, rut ; q

)
= K − B(t, rut , T1

)
,

P
(
t, rlt ; q

)
= 0, t ∈ [0, T],

(3.1)

where C = {(rt, t) ∈ (rlt , r
u
t ) × [0, T)} is a continuation region, S = {((rt, t) ∈ [0, rlt] × [0, T]} is a

stopping region, and E = {((rt, t) ∈ [rut ,+∞) × [0, T]} is a exercise region.

Remark 3.1. Due to the decreasing property of the price B(t, r, T1) on the state variable r, the
strike price K should be strictly less than B(T, 0, T1). Otherwise, exercise would never be
optimal.

It should be noted that although the value of the American CI put option has been
expressed through the use of PDEs and their boundary conditions, there is still no explicit
solution for the P.D.E. in (3.1). Numerical methods must be applied to value the price of
the American CI option on bond. In the following we will solve this problem (3.1) with
the integral equation method discussed in [8–12]. This method expresses the price of the
American option as the sum of the price of the corresponding European option and the early
exercise gains depending on the optimal exercise boundary. Jamshidian [3] uses this method
to value the American bond option in Vasicek model.

Theorem 3.2. Let the short interest rate rt satisfy model (2.1). Then the initial premium of the
American CI put option , P(t, r; q), can be written as

P
(
t, r; q

)
= pe(t, r,K; T) + q

∫T

t

B(t, r, s)N
(
e
(
r, rls

))
ds

+
∫T

t

B(t, r, s)

{
−qN(e(r, rus )) +K[rus − σ1e(r, rus )]N(−e(r, rus ))

+
Kσ1√

2π
exp

{
−e

2(r, rus )
2

}}
ds.

(3.2)
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Moreover, the optimal stopping and exercise boundaries, ru and rl, are solutions to the following
system of recursive integral equations:

K − B(t, ru, T1) = pe(t, ru,K; T) + q
∫T

t

B(t, ru, s)N
(
c
(
ru, rls

))
ds

+
∫T

t

B(t, ru, s)

{
−qN(e(ru, rus )) +K[rus − σ1e(ru, rus )]N(−e(ru, rus ))

+
Kσ1√

2π
exp

{
−e

2(ru, rus )
2

}}
ds,

0 = pe
(
t, rl, K; T

)
+ q

∫T

t

B
(
t, rl, s

)
N

(
c
(
rl, rls

))
ds

+
∫T

t

B
(
t, rl, s

){
−qN

(
e
(
rl, rus

))
+K

[
rus − σ1e

(
rl, rus

)]
N

(
−e

(
rl, rus

))

+
Kσ1√

2π
exp

{
−e

2(rl, rus
)

2

}}
ds,

(3.3)

subject to the boundary conditions

B(T, ru, T1) = K, B
(
T, rl, T1

)
= K, (3.4)

where e(r, r∗s) = ((r∗s−rt)−κ(rt−r∞)b(s−t)+(1/2)σ2b2(s−t))/σ1) and σ2
1 = (σ2/2κ)(1−e−2κ(s−t)).

Proof. Let Z(s, r) = e−
∫s

0ru duP(s, r; q) be the discounted initial premium function of the
American CI put option in the domain D. It is known that the function Z(s, r) ∈ C1,2(D).
We can apply Ito Lemma to Z(s, r) and write

Z(T, r) = Z(t, r) +
∫T

t

[
∂Z(s, r)
∂s

ds +
∂Z(s, r)
∂r

dr +
1
2
σ2 ∂

2Z(s, r)
∂r2

ds

]
. (3.5)

In terms of P(t, r; q) this means

e−
∫T
t rsdsP

(
T, r; q

)
= P

(
t, r; q

)
+
∫T

t

e−
∫s
t rudu

[
∂Ps
∂s

+
1
2
σ2 ∂

2Ps
∂r2

+ κ(r∞ − r)∂Ps
∂r

− rPs
]
ds

+
∫T

t

e−
∫s
t ruduσ

∂Ps
∂r

dWs.

(3.6)
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From (3.1) we know that P(T, r; q) = h(T, r) and P(s, r; q) = P(s, r; q)1(r,s)∈C+P(s, r; q)1(r,s)∈S+
P(s, r; q)·1(r,s)∈E = P(s, r; q)1(r,s)∈C+[K−B(s, r, T1)]1(r,s)∈E. Substituting and taking expectation
under Q on both sides of (3.6) give

pe(t, r,K; T) = EtQ
[
e−

∫T
t rsdsg(T, r)

]

= P
(
t, r; q

)
+
∫T

t

EtQ

{
e−

∫s
t rudu

[
∂Ps
∂s

+
1
2
σ2 ∂

2Ps
∂r2

+ κ(r∞ − r)∂Ps
∂r

− rPs
]}

ds

= P
(
t, r; q

)
+ q

∫T

t

EtQ

[
e−

∫s
t rudu1(rls<rs<rus )

]
ds −K

∫T

t

EtQ

{
e−

∫s
t rudurs1(rs≥rus )

}
ds.

(3.7)

From (2.1), it is easy to obtain that the state variable rs follows

rs = rte−κ(s−t) + r∞
(

1 − e−κ(s−t)
)
+ σ

∫s

t

e−κ(s−u)dWu (3.8)

for every s > t. Then the state variable rs follows the normal distribution. Furthermore,
using s-forward measures discussed in [16] and the normal distribution produces the
representation (3.2). The recursive equations (3.3) for the optimal stopping and exercise
boundaries are obtained by imposing the boundary conditions P(t, rut ; q) = K−B(t, rut , T1) and
P(t, rlt ; q) = 0. The boundary conditions (3.4) hold since the limitation for (3.3) as t ↑ T .

Remark 3.3. From (3.2), when rlt and rut are obtained by (3.3), the value of American CI put
option is also derived. However, (3.3) are Volterra integral equations and can be solved
numerically. Notice that the stopping and exercise boundary functions, rlt and rut , cannot be
proved to be monotone function of time t. So we use trapezoidal rule method to deal with
them.

4. Numerical Method and Results

In this section we provide our method for pricing American CI put option by solving the Kim
equations and present numerical results. This method consists of the following three steps.
The first is to approximate the quadrature representations in (3.3) by using the trapezoidal
rule. The second step is needed to find the numerical values of both the stopping and exercise
boundaries, rlt and rut from the equations approximated above with the Newton-Raphson
(NR) iteration approach. When the values of rlt and rut are obtained, the third step, numerical
integration of (3.2), yields the value of a given American CI put option. This method is widely
used to value American option by several authors, for example, [8, 11].

We now divide the time interval [0, T] into N subintervals: ti = iΔt, i =
0, 1, 2, . . . ,N, Δt = T/N. Denote rlti = rli and ruti = rui for i = 0, 1, 2, . . . ,N. Since TN = T ,
we get by (2.3) and(3.4)

rlN = ruN =
1

b(T1 − T) ln
a(T1 − T)

K
. (4.1)
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We define the integrand of (3.3) as the following functions:

f(t, r, s, r∗s) = B(t, r, s)
{
−qN(e(r, r∗s)) +K[r∗s − σ1e(r, r∗s)]N(−e(r, r∗s))

+
Kσ1√

2π
exp

{
−e

2(r, r∗s)
2

}}
,

g(t, r, s, r∗s) = qB(t, r, s)N(c(r, r∗s)).

(4.2)

We use the trapezoidal rule to represent the system of recursive integral equations (3.3) as
follows:

p
(
ti, r

u
i , K; T

)
+ Δt

⎡
⎣1

2
g
(
ti, r

u
i , ti, r

l
i

)
+

N−1∑
j=i+1

g
(
ti, r

u
i , tj , r

l
j

)
+

1
2
g
(
ti, r

u
i , tN, r

l
N

)
⎤
⎦

+ Δt

⎡
⎣1

2
f
(
ti, r

u
i , ti, r

u
i

)
+

N−1∑
j=i+1

f
(
ti, r

u
i , tj , r

u
j

)
+

1
2
f
(
ti, r

u
i , tN, r

u
N

)
⎤
⎦

+ B
(
ti, r

u
i , T1

) −K = 0,

p
(
ti, r

l
i , K; T

)
+ Δt

⎡
⎣1

2
g
(
ti, r

l
i , ti, r

l
i

)
+

N−1∑
j=i+1

g
(
ti, r

l
i , tj , r

l
j

)
+

1
2
g
(
ti, r

l
i , tN, r

l
N

)
⎤
⎦

+ Δt

⎡
⎣1

2
f
(
ti, r

l
i , ti, r

u
i

)
+

N−1∑
j=i+1

f
(
ti, r

l
i , tj , r

u
j

)
+

1
2
f
(
ti, r

l
i , tN, r

u
N

)
⎤
⎦

= 0, i = 0, . . . ,N − 1.
(4.3)

Since there are nonlinear system equations, one can solve it using the NR iteration. In a similar
way, numerical values of both rli and rui , i =N−1,N−2, . . . , 0 can be obtained recursively from
(4.3). We denote the representation of left side in (4.3) by F1(rli , r

u
i ) and F2(rli , r

u
i ), respectively.

Then, by the NR iteration the values (rli , r
u
i ) have approximations (rli(k), r

u
i (k)) of order k,

where k = 0, 1, 2, . . .

(
rli(k + 1)

rui (k + 1)

)
=

(
rli(k)

rui (k)

)
−

⎛
⎜⎜⎝

∂F1

∂x

∂F1

∂y
∂F2

∂x

∂F2

∂y

⎞
⎟⎟⎠

−1

·
(
F1

(
x, y

)

F2
(
x, y

)
)
|(x,y)=(rli (k),rui (k)), (4.4)

where ∂Fj/∂x and ∂Fj/∂y, j = 1, 2 are, respectively, partial derivatives of functions Fj(x, y)
with respect to x and y. When the values of all (rli , r

u
i ) for i = N, . . . , 0 are obtained, using
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Table 1: Value of parameters.

κ r∞ σ K T T1

0.05 0.083 0.015 0.95 1 5

Table 2: Initial premium of option on bond.

r0
European
put option

American CI put option
q = 1 q = 10 q = 30

0.04 0.0782 0.4409 0.3766 0.0893
0.10 0.2193 0.5928 0.4432 0.2296
0.15 0.3057 0.6556 0.4953 0.3258

Simpson’s rule for (3.2) we get the approximation, P̂0(r, q), of the value at time t = 0 for the
American CI put bond option in the following way: assuming N is an even number we have

P̂0
(
r, q

)
= p(0, r,K; T) +

Δt
3

[
g
(

0, r, 0, rl0
)
+ 4g

(
0, r, t1, rl1

)
+ 2g

(
0, r, t2, rl2

)

+ 4g
(

0, r, t3, rl3
)
+ · · · + 2g

(
0, r, tN−2, r

l
N−2

)

+4g
(

0, r, tN−1, r
l
N−1

)
+ g

(
0, r, T, rlT

)]

+
Δt
3

[
f
(
0, r, 0, ru0

)
+ 4f

(
0, r, t1, ru1

)
+ 2f

(
0, r, t2, ru2

)
+ 4f

(
0, r, t3, ru3

)
+ · · ·

+2f
(
0, r, tN−2, r

u
N−2

)
+ 4f

(
0, r, tN−1, r

u
N−1

)
+ f

(
0, r, T, ruT

)]
.

(4.5)

In Table 1, we describe the parameters in this section. In our example, we take N = 6.
Table 2 provides the initial premium of this put option on bond for different installment rate
q = 1, 10, and 30 with different initial interest rate r0 = 0.04, 0.10, and 0.15.

Table 2 shows that the larger the initial interest rate is, the higher the price of American
CI put option on bond is. However, the larger the installment rate is, the lower the price of
this option is.

Figure 1 displays the curves of both the optimal stopping and exercise boundaries
versus different installment rates q. We find out that the two boundaries decrease when
the installment rate is arising. That shows that the larger the installment rate is, the higher
probability the exercising of the option is.

5. Conclusions

A simple approximated method for pricing the American CI option written on the zero-bond
under Vasicek model is proposed. Numerical example is provided to analyze the effects of
the installment rate q on the price of this option and the optimal stopping and exercise
boundaries. However, the Vasicek model allows for negative values of interest rate. This
property is manifestly incompatible with reality. For this reason, work is ongoing to extend
them to other models.
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Figure 1: Optimal stopping and exercise boundaries for different installment rates.
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1. Introduction

For the last two decades there have been numerous papers (see [1]) on valuing American-
style options with finite lived maturity. The valuation of such American-style options may
often be able to be formulated as optimal stopping or free boundary problems which provide
us partial differential equations with specific conditions. One of the difficult problems with
pricing such options is finding a closed form solution of the option price. However, there
are shortcuts that make it easy to calculate the closed form solution to that option (see [2–
4]). Perpetuities can provide us such a shortcut because free boundaries of optimal exercise
policies no longer depend on the time.

In this paper, we consider the pricing of Russian options with call provision where the
issuer (seller) has the right to call back the option as well as the investor (buyer) has the right
to exercise it. The incorporation of call provision provides the issuer with option to retire
the obligation whenever the investor exercises his/her option. In their pioneering theoretical
studies on Russian options, Shepp and Shiryaev [5, 6] gave an analytical formula for pricing
the noncallable Russian option which is one of perpetual American lookback options. The
result of this paper is to provide the closed formed solution and optimal boundaries of
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the callable Russian option with continuous dividend, which is different from the pioneering
theoretical paper Kyprianou [2] in the sense that our model has dividend payment.

The paper is organized as follows. In Section 2, we introduce a pricing model of
callable Russian options by means of a coupled optimal stopping problem given by Kifer [7].
Section 3 represents the value function of callable Russian options with dividend. Section 4
presents numerical examples to verify analytical results. We end the paper with some
concluding remarks and future work.

2. Model

We consider the Black-Scholes economy consisting of two securities, that is, the riskless bond
and the stock. Let Bt be the bond price at time t which is given by

dBt = rBtdt, B0 > 0, r > 0, (2.1)

where r is the riskless interest rate. Let St be the stock price at time t which satisfies the
stochastic differential equation

dSt = (r − d)Stdt + κStd˜Wt, S0 = x, (2.2)

where d and κ > 0 are constants, d is dividend rate, and ˜Wt is a standard Brownian motion
on a probability space (Ω,F, ˜P). Solving (2.2) with the initial condition S0 = x gives

St = x exp
{(

r − d − 1
2
κ2
)

t + κ˜Wt

}

. (2.3)

Define another probability measure ̂P by

d ̂P

d ˜P
= exp

(

κ˜Wt −
1
2
κ2t

)

. (2.4)

Let

̂Wt = ˜Wt − κt, (2.5)

where ̂Wt is a standard Brownian motion with respect to ̂P . Substituting (2.5) into (2.2), we
get

dSt =
(

r − d + κ2)Stdt + κStd̂Wt. (2.6)

Solving the above equation, we obtain

St(x) = x exp
{(

r − d +
1
2
κ2
)

t + κ̂Wt

}

. (2.7)
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Russian option was introduced by Shepp and Shiryaev [5, 6] and is the contract that
only the buyer has the right to exercise it. On the other hand, a callable Russian option is the
contract that the seller and the buyer have both the rights to cancel and to exercise it at any
time, respectively. Let σ be a cancel time for the seller and τ be an exercise time for the buyer.
We set

Ψt(ψ) ≡
max

(

ψx, sup0≤u≤t Su
)

St
, ψ ≥ 1. (2.8)

When the buyer exercises the contract, the seller pay Ψτ(ψ) to the buyer. When the seller
cancels it, the buyer receives Ψσ(ψ) + δ. We assume that seller’s right precedes buyer’s one
when σ = τ . The payoff function of the callable Russian option is given by

R(σ, τ) =
(

Ψσ(ψ) + δ
)

1{σ<τ} + Ψτ(ψ)1{τ≤σ}, (2.9)

where δ is the penalty cost for the cancel and a positive constant.
Let T0,∞ be the set of stopping times with respect to filtration F defined on the

nonnegative interval. Letting α and ψ be some given parameters satisfying α > 0 and ψ ≥ 1,
the value function of the callable Russian option V (ψ) is defined by

V (ψ) = inf
σ∈T0,∞

sup
τ∈T0,∞

̂E
[

e−α(σ∧τ)R(σ, τ)
]

, α > 0. (2.10)

The infimum and supremum are taken over all stopping times σ and τ , respectively.
We define two sets A and B as

A =
{

ψ ∈ R+ | V (ψ) = ψ + δ
}

,

B =
{

ψ ∈ R+ | V (ψ) = ψ
}

.
(2.11)

A and B are called the seller’s cancel region and the buyer’s exercise region, respectively. Let
σ
ψ

A and τ
ψ

B be the first hitting times that the process Ψt(ψ) is in the region A and B, that is,

σ
ψ

A = inf
{

t > 0 | Ψt(ψ) ∈ A
}

,

τ
ψ

B = inf
{

t > 0 | Ψt(ψ) ∈ B
}

.
(2.12)

Lemma 2.1. Assume that d − (1/2)κ2 − 2r < 0. Then, one has

lim
t→∞

e−rtΨt(ψ) = 0. (2.13)

Proof. First, suppose that max(ψx, supSu) = ψx. Then, it holds

lim
t→∞

e−rtS−1
t = lim

t→∞
exp
{

− κ˜Wt +
(

d +
1
2
κ2 − 2r

)

t

}

= 0. (2.14)
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Next, suppose that max(ψx, supSu) = supSu. By the same argument as Karatzas and Shreve
[1, page 65], we obtain

lim
t→∞

supSu = x exp
{

κ · sup
0<u<∞

(

˜Wu +
r − d
κ
− 1

2
κ2
)}

= x exp
{

κW∗},

(2.15)

where W∗ is the standard Brownian motion which attains the supremum in (2.15). Therefore,
it follows that

lim
t→∞

e−rt
supSu
St

= 0. (2.16)

The proof is complete.

By this lemma, we may apply Proposition 3.3 in Kifer [7]. Therefore, we can see that
the stopping times σ̂ψ = σ

ψ

A and τ̂ψ = τ
ψ

B attain the infimum and the supremum in (2.10).
Then, we have

V (ψ) = ̂E
[

e−α(σ̂
ψ∧τ̂ψ)R

(

σ̂ψ , τ̂ψ
)]

. (2.17)

And V (ψ) satisfies the inequalities

ψ ≤ V (ψ) ≤ ψ + δ, (2.18)

which provides the lower and the upper bounds for the value function of the callable Russian
option. Let VR(ψ) be the value function of Russian option. And we know V (ψ) ≤ VR(ψ)
because the seller as a minimizer has the right to cancel the option. Moreover, it is clear that
V (ψ) is increasing in ψ and x.

Should the penalty cost δ be large enough, it is optimal for the seller not to cancel the
option. This raises a question how large such a penalty cost should be. The following lemma
is to answer the question.

Lemma 2.2. Set δ∗ = V (1)− 1. If δ ≥ δ∗, the seller never cancels. Therefore, callable Russian options
are reduced to Russian options.

Proof. We set h(ψ) = V (ψ)−ψ−δ. h′(ψ) = V ′(ψ)−1 < 0. Because we know h(1) = V (1)−1−δ =
δ∗ − δ < 0 by the condition δ ≥ δ∗, we have h(ψ) < 0, that is, V (ψ) < ψ + δ holds. By using
the relation V (ψ) ≤ VR(ψ), we obtain V (ψ) < ψ + δ, that is, it is optimal for the seller not to
cancel. Therefore, the seller never cancels the contract for δ ≥ δ∗.

Lemma 2.3. Suppose r > d. Then, the function V (ψ) is Lipschitz continuous in ψ. And it holds

0 ≤
dV (ψ)
dψ

≤ 1. (2.19)
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Proof. Set

Jψ
(

σ̂ψ , τ̂φ
)

= ̂E
[

e−α(σ̂
ψ∧τ̂ψ)R

(

σ̂ψ , τ̂ψ
)]

. (2.20)

Replacing the optimal stopping times σ̂φ and τ̂ψ from the nonoptimal stopping times σ̂ψ and
τ̂φ, we have

V (ψ) ≥ Jψ
(

σ̂ψ , τ̂φ
)

,

V (φ) ≤ Jφ
(

σ̂ψ , τ̂φ
)

,
(2.21)

respectively. Note that z+1 − z
+
2 ≤ (z1 − z2)

+. For any φ > ψ, we have

0 ≤ V (φ) − V (ψ)

≤ Jφ
(

σ̂ψ , τ̂φ
)

− Jψ
(

σ̂ψ , τ̂φ
)

= ̂E
[

e−α(σ̂
ψ∧τ̂φ)(Ψσ̂ψ∧τ̂φ(φ) −Ψσ̂ψ∧τ̂φ(ψ)

)]

= ̂E
[

e−α(σ̂
ψ∧τ̂φ)H−1

σ̂ψ∧τ̂φ

(

(

φ − supHu

)+ −
(

ψ − supHu

)+
)]

≤ (φ − ψ) ̂E
[

e−α(σ̂
ψ∧τ̂φ)H−1

σ̂ψ∧τ̂φ
]

,

(2.22)

where Ht = exp{(r −d + (1/2)κ2)t+κ̂Wt}. Since the above expectation is less than 1, we have

0 ≤ V (φ) − V (ψ) ≤ φ − ψ. (2.23)

This means that V is Lipschitz continuous in ψ, and (2.19) holds.

By regarding callable Russian options as a perpetual double barrier option, the optimal
stopping problem can be transformed into a constant boundary problem with lower and
upper boundaries. Let ˜B = {ψ ∈ R+ | VR(ψ) = ψ} be the exercise region of Russian option. By
the inequality V (ψ) ≤ VR(ψ), it holds B ⊃ ˜B /=∅. Consequently, we can see that the exercise
region B is the interval [l∗,∞). On the other hand, the seller minimizes R(σ, τ) and it holds
Ψt(ψ) ≥ Ψ0(ψ) = ψ ≥ 1. From this, it follows that the seller’s optimal boundary A is a point
{1}. The function V (ψ) is represented by

V (ψ) =

{

Vψ
(

l∗
)

, 1 ≤ ψ ≤ l∗,
ψ, ψ ≥ l∗,

(2.24)

where

Vψ
(

l∗
)

= (1 + δ) ̂E
[

e−ασ
ψ

1 1{σψ1 <τ
ψ

[l∗ ,∞)}

]

+ l ̂E
[

e−ατ
ψ

[l∗ ,∞)1{τψ[l∗ ,∞)≤σ
ψ

1 }

]

. (2.25)

In order to calculate (2.25), we prepare the following lemma.
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Lemma 2.4. Let σxa and τxb be the first hitting times of the process St(x) to the points {a} and {b}.
Set ν = (r − d)/κ − (1/2)κ, η1 = (1/κ)(

√
ν2 + 2α + ν), and η2 = (1/κ)(

√
ν2 + 2α − ν). Then for

a < x < b, one has

˜E
[

e−ασ
x
a 1{σxa<τxb }

]

=
(b/x)η1 − (x/b)η2

(b/a)η1 − (a/b)η2
, (2.26)

˜E
[

e−ατ
x
b 1{τx

b
<σxa }
]

=
(a/x)η1 − (x/a)η2

(a/b)η1 − (b/a)η2
. (2.27)

Proof. First, we prove (2.26). Define

Lt = exp
(

− 1
2
ν2t − ν˜Wt

)

. (2.28)

We define ̂P as d ̂P = LTd ˜P . By Girsanov’s theorem, ̂Wt ≡ ˜Wt + νt is a standard Brownian
motion under the probability measure ̂P . Let Tρ1 and Tρ2 be the first time that the process ̂Wt

hits ρ1 or ρ2, respectively, that is,

Tρ1 = inf
{

t > 0 | ̂Wt = ρ1
}

,

Tρ2 = inf
{

t > 0 | ̂Wt = ρ2
}

.
(2.29)

Since we obtain logSt(x) = logx + κ̂Wt from St(x) = x exp(κ̂Wt), we have

σxa = Tρ1 , a.s., ρ1 =
1
κ

log
a

x
,

τxb = Tρ2 , a.s., ρ2 =
1
κ

log
b

x
,

L−1
Tρ1

= exp
(

1
2
ν2Tρ1 + ν˜WTρ1

)

= exp
(

− 1
2
ν2Tρ1 + ν̂WTρ1

)

= exp
(

− 1
2
ν2Tρ1 + νρ1

)

.

(2.30)

Therefore, we have

˜E
[

e−ασ
x
a 1{σxa<τxb }

]

= ˜E
[

e−αTρ1 1{Tρ1<Tρ2}
]

= ̂E
[

exp
(

− 1
2
ν2Tρ1 + νρ1

)

e−αTρ1 1{Tρ1<Tρ2}

]

= eνρ1
̂E

[

exp
{

−
(

α +
1
2
ν2
)

Tρ1

}

1{Tρ1<Tρ2}

]

.

(2.31)
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From Karatzas and Shreve [8, Exercise 8.11, page 100], we can see that

̂E

[

exp
{

−
(

α +
1
2
ν2
)

Tρ1

}

1{Tρ1<Tρ2}

]

=
sinh ρ2

√
ν2 + 2α

sinh(ρ2 − ρ1)
√
ν2 + 2α

. (2.32)

Therefore, we obtain

˜E
[

e−ασ
x
a 1{σxa<τxb }

]

=
sinh ρ2

√
ν2 + 2α

sinh(ρ2 − ρ1)
√
ν2 + 2α

eνρ2

eν(ρ2−ρ1)
=

eκρ2γ1 − e−κρ2γ2

eκ(ρ2−ρ1)γ1 − e−κ(ρ2−ρ1)γ2
=

(b/x)γ1 − (x/b)γ2

(b/a)γ1 − (a/b)γ2
.

(2.33)

We omit the proof of (2.27) since it is similar to that of (2.26).

We study the boundary point l∗ of the exercise region for the buyer. For 1 < ψ < l <∞,
we consider the function V (ψ, l). It is represented by

V (ψ, l) =

⎧

⎨

⎩

Vψ(l), 1 ≤ ψ ≤ l,
ψ, ψ ≥ l.

(2.34)

The family of the functions {V (ψ, l), 1 < ψ < l} satisfies

V (ψ) = V
(

ψ, l∗
)

= sup
1<ψ<l

V (ψ, l). (2.35)

To get an optimal boundary point l∗, we compute the partial derivative of V (ψ, l) with respect
to l, which is given by the following lemma.

Lemma 2.5. For any 1 < ψ < l, one has

∂V

∂l
(ψ, l) =

ψη2 − ψ−η1

l(lη1 − l−η2)2
lη1 l−η2

{(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)}

. (2.36)

Proof. First, the derivative of the first term is

∂

∂l

(

(l/ψ)η1 − (ψ/l)η2

lη1 − l−η2

)

=
1

(lη1 − l−η2)2

{(

η1

(

l

ψ

)η1−1 1
ψ

+ η2

(

ψ

l

)η2 1
l

)

(

lη1 − l−η2
)

−
((

l

ψ

)η1

−
(

ψ

l

)η2
)

(

η1l
η1−1 + η2l

−η2−1)
}

=
1

l(lη1 − l−η2)2

(

η1 + η2
)

{

lη1

(

ψ

l

)η2

− l−η2

(

l

ψ

)η1
}

=
1

l(lη1 − l−η2)2

(

η1 + η2
)

lη1 l−η2
(

ψη2 − ψ−η1
)

.

(2.37)
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Next, the derivative of the second term is

∂

∂l

(

l

lη2 − l−η1

)

=
(1 − η2)lη2 − (1 + η1)l−η1

(lη2 − l−η1)2

=
(1 − η2)lη1 − (1 + η1)l−η2

(lη1 − l−η2)2
lη1−η2 ,

(2.38)

where the last equality follows from the relation

(

lη2 − l−η1
)

lη1−1l−η2+1 = lη1 − l−η2 . (2.39)

After multiplying (2.37) by (1 + δ) and (2.38) by ψη2 − ψ−η1 , we obtain (2.36).

We set

f(l) =
(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)

. (2.40)

Since f(1) = δ(η1 + η2) > 0 and f(∞) = −∞, the equation f(l) = 0 has at least one solution in
the interval (1,∞). We label all real solutions as 1 < ln < ln−1 < · · · < l1 <∞. Then, we have

∂V

∂l
(ψ, l)

∣

∣

l=li
= 0, i = 1, . . . , n ∀ψ. (2.41)

Then l∗ = l1 attains the supremum of V (ψ, l). In the following, we will show that the function
V (ψ) is convex and satisfies smooth-pasting condition.

Lemma 2.6. V (ψ) is a convex function in ψ.

Proof. From (2.50), V satisfies

1
2
κ2ψ2d

2V

dψ2
= −(r − d)ψdV

dψ
+ αV (ψ). (2.42)

If r ≤ d, we get d2V/dψ2 > 0. Next assume that r > d. We consider function ˜V (ψ) = V (−ψ)
for ψ < 0. Then,

1
2
κ2ψ2d

2
˜V

dψ2
− (r − d)ψd

˜V

dψ
− r ˜V =

1
2
κ2ψ2d

2V

dψ2
+ (r − d)ψdV

dψ
− rV = 0. (2.43)

Since we find that d2
˜V/dψ2 > 0 from the above equation, ˜V is a convex function. It follows

from this the fact that V is a convex function.
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Lemma 2.7. V (ψ) satisfies

dV

dψ

(

l−∗
)

=
dV

dψ

(

l+∗
)

= 1. (2.44)

Proof. Since V (ψ) = ψ for ψ > l∗, it holds (dV/dψ)(l+∗ ) = 1. For 1 ≤ ψ < l∗, we derivative (2.47):

dV

dψ
=

l

lη2 − l−η1

(

η2ψ
η2−1 + η1l

−η1−1) +
1 + δ

lη1 − l−η2

(

− η1

(

l

ψ

)η1 1
ψ
− η2

(

ψ

l

)η2 1
ψ

)

=
1

ψ(lη1 − l−η2)

{

lη1−η2+1(η2ψ
η2 + η1ψ

−η1
)

− (1 + δ)

(

η1

(

l

ψ

)η1

+ η2

(

ψ

l

)η2
)}

=
1

ψ(lη1 − l−η2)

{

η2

(

ψ

l

)η2

lη1+1 + η1

(

l

ψ

)η1

l−η2+1 − (1 + δ)

(

η1

(

l

ψ

)η1

+ η2

(

ψ

l

)η2
)}

.

(2.45)

Therefore, we get

dV

dψ

(

l∗
)

− 1 =
1

(

l
η1+1
∗ − l1−η2

∗
)

{

η2l
η1+1
∗ + η1l

−η2+1
∗ − (1 + δ)

(

η1 + η2
)

−
(

l
η1+1
∗ − l−η2+1

∗
)}

=
1

(

l
η1
∗ − l

−η2
∗
)

{(

η2 − 1
)

l
η1+1
∗ +

(

η1 + 1
)

l
−η2+1
∗ − (1 + δ)

(

η1 + η2
)}

=
1

(

l
η1
∗ − l

−η2
∗
)
f
(

l∗
)

= 0.

(2.46)

This completes the proof.

Therefore, we obtain the following theorem.

Theorem 2.8. The value function of callable Russian option V (ψ) is given by

V (ψ) =

⎧

⎪

⎨

⎪

⎩

(1 + δ)

(

l∗/ψ
)η1 −

(

ψ/l∗
)η2

l
η1
∗ − l

−η2
∗

+ l∗
ψη2 − ψ−η1

l
η2
∗ − l

−η1
∗

, 1 ≤ ψ ≤ l∗,

ψ, ψ ≥ l∗.
(2.47)

And the optimal stopping times are

σ̂ψ = inf
{

t > 0 | Ψt(ψ) = 1
}

,

τ̂ψ = inf
{

t > 0 | Ψt(ψ) ≥ l∗
}

.
(2.48)
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The optimal boundary for the buyer l∗ is the solution in (1,∞) to f(l) = 0, where

f(l) =
(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)

. (2.49)

We can get (2.47) by another method. For 1 < ψ < l, the function V (ψ) satisfies the
differential equation

1
2
κ2ψ2d

2V

dψ2
+ (r − d)ψdV

dψ
− αV (ψ) = 0. (2.50)

Also, we have the boundary conditions as follows:

V (1) = C1 + C2 = 1 + δ, (2.51)

V (l) = C1l
λ1 + C2l

λ2 = l, (2.52)

V ′(l) = C1λ1l
λ1−1 + C2λ2l

λ2−1 = 1. (2.53)

The general solution to (2.50) is represented by

V (ψ) = C1ψ
λ1 + C2ψ

λ2 , (2.54)

where C1 and C2 are constants. Here, λ1 and λ2 are the roots of

1
2
κ2λ2 +

(

r − d − 1
2
κ2
)

λ − α = 0. (2.55)

Therefore, λ1, λ2 are

λ1,2 =
±
√
ν2 + 2α − ν

κ
. (2.56)

From conditions (2.51) and (2.52), we get

C1 =
l − (δ + 1)lλ2

lλ1 − lλ2
, C2 =

(δ + 1)lλ1 − l
lλ1 − lλ2

. (2.57)

And from (2.57) and (2.53), we have

(

1 − η2
)

lη1+1 −
(

1 + η1
)

l−η2+1 + (1 + δ)
(

η1 + η2
)

= 0. (2.58)

Substituting (2.57) into (2.54), we can obtain (2.47).
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Figure 1: Optimal boundary for the buyer.
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Figure 2: The value functionV (ψ) (δ = 0.03).

3. Numerical Examples

In this section, we present some numerical examples which show that theoretical results are
varied and some effects of the parameters on the price of the callable Russian option. We use
the values of the parameters as follows: α = 0.5, r = 0.1, d = 0.09, κ = 0.3, δ = 0.03.

Figure 1 shows an optimal boundary for the buyer as a function of penalty costs δ,
which is increasing in δ. Figures 2 and 3 show that the price of the callable Russian option
has the low and upper bounds and is increasing and convex in ψ. Furthermore, we know that
V (ψ) is increasing in δ. Figure 4 demonstrates that the price of the callable Russian option
with dividend is equal to or less than the one without dividend. Table 1 presents the values
of the optimal boundaries for several combinations of the parameters.
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Figure 3: The value functionV (ψ) (δ = 0.01, 0.02, 0.03).
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Figure 4: Real line with dividend; dash line without dividend.

4. Concluding Remarks

In this paper, we considered the pricing model of callable Russian options, where the stock
pays continuously dividend. We derived the closed-form solution of such a Russian option as
well as the optimal boundaries for the seller and the buyer, respectively. It is of interest to note
that the price of the callable Russian option with dividend is not equal to the one as dividend
value d goes to zero. This implicitly insist that the price of the callable Russian option without
dividend is not merely the limit value of the one as if dividend vanishes as d goes to zero. We
leave the rigorous proof for this question to future research. Further research is left for future
work. For example, can the price of callable Russian options be decomposed into the sum of
the prices of the noncallable Russian option and the callable discount? If the callable Russian
option is finite lived, it is an interesting problem to evaluate the price of callable Russian
option as the difference between the existing price formula and the premium value of the call
provision.
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Table 1: Penalty δ, interest rate r, dividend rate d, volatility κ, discount factor α, and the optimal boundary
for the buyer l∗.

δ r d κ α l∗

0.01 0.1 0.09 0.3 0.5 1.04337
0.02 0.1 0.09 0.3 0.5 1.0616
0.03 0.1 0.09 0.3 0.5 1.07568
0.03 0.2 0.09 0.3 0.5 1.08246
0.03 0.3 0.09 0.3 0.5 1.09228
0.03 0.4 0.09 0.3 0.5 1.10842
0.03 0.5 0.09 0.3 0.5 1.14367
0.03 0.1 0.01 0.3 0.5 1.08092
0.03 0.1 0.05 0.3 0.5 1.07813
0.03 0.1 0.1 0.3 0.5 1.07511
0.03 0.1 0.3 0.3 0.5 1.06633
0.03 0.1 0.5 0.3 0.5 1.06061
0.03 0.1 0.09 0.1 0.5 1.02468
0.03 0.1 0.09 0.2 0.5 1.04997
0.03 0.1 0.09 0.4 0.5 1.1018
0.03 0.1 0.09 0.5 0.5 1.12833
0.03 0.1 0.09 0.3 0.1 1.18166
0.03 0.1 0.09 0.3 0.2 1.12312
0.03 0.1 0.09 0.3 0.3 1.09901
0.03 0.1 0.09 0.3 0.4 1.08505
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1. Introduction

Let (Ω,F,P) be a probability space hosting a Brownian motion W = {Wt : t ≥ 0} and an
independent Poisson process N = {Nt : t ≥ 0} with the constant arrival rate λ, both adapted
to some filtration F = {Ft}t≥0 satisfying usual conditions. Consider the Black-Scholes market.
That is, there is only one riskless bond B and a risky asset S. They satisfy, respectively,

dBt = rBtdt, t ≥ 0,

dSt = St−
[
μdt + σdWt − y0

(
dNt − λdt

)] (1.1)

for some constants μ ∈ R, r, σ > 0 and y0 ∈ (0, 1). Note that the absolute value of relative
jump sizes is equal to y0, and jumps are downwards. It can be comprehended as a downward
tendency of the risky asset price brought by bad news or default and so on. From Itô formula
we can obtain

St = S0 exp
{(

μ − 1
2
σ2 + λy0

)
t + σWt

}(
1 − y0

)Nt . (1.2)
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Suppose that X = {Xt : t ≤ T} and Y = {Yt : t ≤ T} be two continuous stochastic
processes defined on (Ω,F,F,P) such that for all 0 ≤ t ≤ T, Xt ≤ Yta.s.. The game option is
a contract between a holder and writer at time t = 0. It is a general American-type option
with the added property that the writer has the right to terminate the contract at any time
before expiry time T . If the holder exercises first, then he/she may obtain the value of X at
the exercise time and if the writer exercise first, then he/she is obliged to pay to the holder
the value of Y at the time of exercise. If neither has exercised at time T and T < ∞, then the
writer pays the holder the value XT . If both decide to claim at the same time then the lesser of
the two claims is paid. In short, if the holder will exercise with strategy τ and the writer with
strategy γ , we can conclude that at any moment during the life of the contract, the holder can
expect to receive Z(τ, γ) � Xτ1(τ≤γ) + Yγ1(γ<τ). For a detailed description and the valuation
of game options, we refer the reader to Kifer [1], Kyprianou [2], Ekström [3], Baurdoux and
Kyprianou [4], Kühn et al. [5], and so on.

It is well known that in the no-arbitrage pricing framework, the value of a contract
contingent on the asset S is the maximum of the expectation of the total discounted payoff
of the contract under some equivalent martingale measure. Since the market is incomplete,
there are more than one equivalent martingale measure. Following Dayanik and Egami [6],
let the restriction to Ft of every equivalent martingale measure Pα in a large class admit a
Radon-Nikodym derivative in the form of

dPα

dP

∣∣∣∣
Ft

� ηt,

dηt = ηt−
[
βdWt + (α − 1)

(
dNt − λdt

)]
, t ≥ 0, η0 = 1

(1.3)

for some constants β ∈ R and α > 0. The constants β and α are known as the market price
of the diffusion risk and the market price of the jump risk, respectively, and satisfy the drift
condition

μ − r + σβ − λy0(α − 1) = 0. (1.4)

Then the discounted value process {e−rtSt : t ≥ 0} is a (Pα,F)-martingale. By the Girsanov
theorem, the process {Wα

t � Wt − βt : t ≥ 0} is a Brownian motion under the measure Pα, and
{Nt : t ≥ 0} is a homogeneous Poisson process with the intensity λα � λα independent of the
Brownian motion Wα under the same measure. The infinitesimal generator of the process S
under the probability measure Pα is given by

Aαf(x) �
(
r + λαy0

)
x
∂f

∂x
+

1
2
σ2x2 ∂

2f

∂x2
+ λα

[
f
(
x
(
1 − y0

)) − f(x)
]
, (1.5)

on the collection of twice-continuously differentiable functions f(·). It is easily checked that
(Aα − r)f(x) = 0 admits two solutions f(x) = xk1 and f(x) = xk2 , where k1 < 0 < 1 = k2

satisfy

1
2
σ2k(k − 1) +

(
r + λαy0

)
k − (

r + λα
)
+ λα

(
1 − y0

)k = 0. (1.6)
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Suppose that Pα
x is the equivalent martingale measure for S under the assumption that S0 = x

for a specified market price α(·) of the jump risk, and denote Eα
x to be expectation under Pα

x.
The following theorem is the Kifer pricing result.

Theorem 1.1. Suppose that for all x > 0

Eα
x

(
sup
0≤t≤T

e−rtYt

)
< ∞ (1.7)

and if T = ∞ that Pα
x(limt↑∞e−rtYt = 0) = 1. Let St,T be the class of F-stopping times valued in [t, T],

and S ≡ S0,∞, then the price of the game option is given by

V (x) = inf
γ∈S0,T

sup
τ∈S0,T

Eα
x

(
e−r(τ∧γ)Zτ,γ

)
= sup

τ∈S0,T

inf
γ∈S0,T

Eα
x

(
e−r(τ∧γ)Zτ,γ

)
. (1.8)

Further the optimal stopping strategies for the holder and writer, respectively, are

τ∗ = inf
{
t ≥ 0 : V

(
St

)
= Xt

} ∧ T, γ∗ = inf
{
t ≥ 0 : V

(
St

)
= Yt

} ∧ T. (1.9)

2. A Game Version of the American Put Option
(Perpetual Israeli δ-Penalty Put Option)

In this case, continuous stochastic processes are, respectively, given by

Xt =
(
K − St

)+
, Yt =

(
K − St

)+ + δ, (2.1)

where K > 0 is the strike-price of the option, δ > 0 is a constant and can be considered
as penalty for terminating contract by the writer. For the computation of the following, let
us first consider the case of the perpetual American put option with the same parameter K.
From Jin [7] we know that the price of the option is

VA(x) = sup
τ∈S

Eα
x

(
e−rτ

(
K − Sτ

)+) (2.2)

with the superscript A representing American. Through martingale method we have the
following.

Theorem 2.1. The price of the perpetual American option is given by

VA(x) =

⎧
⎪⎨

⎪⎩

K − x x ∈ (
0, x∗],

(
K − x∗)

(
x

x∗

)k1

x ∈ (
x∗,∞)

,
(2.3)

where x∗ = k1K/(k1 − 1), the optimal stopping strategy is

τ∗ = inf
{
t ≥ 0 : St ≤ x∗}. (2.4)
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Proposition 2.2. VA(x) is decreasing and convex on (0,∞), and under equivalent martingale
measure Pα

x, one has that {e−rtV A(St) : t ≥ 0} and {e−r(t∧τx∗ )VA(St∧τx∗ ) : t ≥ 0} are supermartingale
and martingale, respectively.

Now, let us consider this game option. It is obvious that for the holder, in order to
obtain the most profit, he will exercise when S becomes as small as possible. Meanwhile, he
must not wait too long for this to happen, otherwise he will be punished by the exponential
discounting. Then the compromise is to stop when S is smaller than a given constant. While
for the writer, a reasonable strategy is to terminate the contract when the value of the asset S
equals to K. Then only the burden of a payment of the form δe−rτ is left. For this case, if the
initial value of the risky asset is below K then it would seem rational to terminate the contract
as soon as S hits K. On the other hand, if the initial value of the risky asset is above K, it is
not optimal to exercise at once although the burden of the payment at this time is only δ. A
rational strategy is to wait until the last moment that St ≥ K in order to prolong the payment.
However, it should be noted that the value of the δ must not be too large, otherwise it will be
never optimal for the writer to terminate the contract in advance.

Theorem 2.3. Let δ∗ � VA(K) = (K − x∗)(K/x∗)k1 , one has the following.
(1) If δ ≥ δ∗, then the price of this game option is equal to the price of the perpetual American

put option, that is, it is not optimal for the writer to terminate the contract in advance.
(2) If δ < δ∗, then the price of the game option is

V (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K − x x ∈ (
0, k∗

]
,

Ax + Bxk1 x ∈ (
k∗, K

)
,

δ

(
x

K

)k1

x ∈ [K,∞)

(2.5)

with

A =
δkk1∗ − (

K − k∗
)
Kk1

Kkk1∗ − k∗Kk1
, B =

K
(
K − k∗

) − δk∗

Kkk1∗ − k∗Kk1
, (2.6)

and the optimal stopping strategies for the holder and writer, respectively, are

τ∗ = inf
{
t ≥ 0 : St ≤ k∗

}
, γ∗ = inf

{
t ≥ 0 : St = K

}
, (2.7)

where k∗ is the (unique) solution in (0, K) to the equation

(δ +K)
(
1 − k1

)
xk1 +K2k1x

k1−1 −K1+k1 = 0. (2.8)

Before the proof, we will first give two propositions.

Proposition 2.4. Equation (2.8) has and only has one root in (0, K).
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Remark 2.5. If we denote the root of (2.8) in (0, K) by k∗, then from Proposition 2.4 we know
that K(K − k∗) − δk∗ > 0, thus B > 0.

Proposition 2.6. V (x) defined by the right-hand sides of (2.5) is convex and decreasing on (0,∞).

Proof. From the expression of V (x) and Remark 2.5 we know that V (x) is convex on (0, K)
and (K,∞). Thus, we only need to prove the convexity of V (x) at the point K, that is,
V ′(K+) ≥ V ′(K−). Through elementary calculations we obtain

V ′(K−) = 1

Kkk1∗ − k∗Kk1

[
δkk1∗ − (

K − k∗
)
Kk1 +

(
K(K − k∗

) − δk∗
)
k1K

k1−1],

V ′(K+) =
δk1

K
.

(2.9)

Then if we can prove that

δkk1∗ − (
K − k∗

)
Kk1 ≤ 0, (2.10)

V ′(K+) ≥ V ′(K−) will hold. From (2.8) we can easily find that when δ = δ∗, k∗ = x∗. Further,
as δ decreases the solution k∗ increases. Especially, when δ = 0, k∗ = K. So if 0 < δ < δ∗, we
have x∗ < k∗ < K.

Now let us verify the correctness of (2.10). If not, that is, δ > (K − k∗)(K/k∗)
k1 , then

from (2.8) we obtain

K1+k1 −K2k1k
k1−1
∗ −K

(
1 − k1

)
kk1∗ = δ

(
1 − k1

)
kk1∗ >

(
K − k∗

)(
1 − k1

)
Kk1 , (2.11)

rearranging it we have

(
k∗Kk1 −Kkk1∗

)(
1 − k1 +

k1K

k∗

)
> 0. (2.12)

Since k∗ > x∗, so 1−k1 +k1K/k∗ > 0, whereas k∗Kk1 −Kkk1∗ < 0, which contradicts with (2.12).
So the hypothesis is not true, that is, (2.10) holds, which also implies that A ≤ 0. So V (x) is
decreasing on (0,∞).

Proof of Theorem 2.3. (1) Suppose that δ ≥ δ∗. From the expression of VA(x) we can easily find
that

(K − x)+ ≤ VA(x) ≤ (K − x)+ + δ. (2.13)
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By means of Proposition 2.2 and the Doob Optional Stopping Theorem, we have

VA(x) = inf
γ∈S

Eα
x

[
e−r(τ∗∧γ)VA(Sτ∗∧γ

)]

≤ inf
γ∈S

Eα
x

{
e−rτ∗

(
K − Sτ∗

)+1(τ∗≤γ) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ∗)

}

≤ inf
γ∈S

sup
τ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)

}

= sup
τ∈S

inf
γ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)

}

≤ sup
τ∈S

Eα
x

[
e−rτ

(
K − Sτ

)+]

= VA(x).

(2.14)

That is, the price of the game option is equal to the price of the perpetual American put
option.

(2) If δ < δ∗, according to the foregoing discussion and Theorem 1.1, there exists a
number k such that the continuation region is

C =
{
x : g1(x) < V (x) < g2(x)

}
= {x : k < x < ∞, x /=K} (2.15)

with g1(x) = (K − x)+, g2(x) = (K − x)+ + δ, k ∈ (0, K) a constant to be confirmed, while the
stopping area is

D = D1 ∪D2, (2.16)

where D1 = {x : V (x) = g1(x)} = {x : x ≤ k} is the stopping area of the holder, D2 = {x :
V (x) = g2(x)} = {x : x = K} is the stopping area of the writer. For search of the optimal k∗ and
the value of V (x), we consider the following Stefan(free boundary) problem with unknown
number k and V = V (x):

V (x) = K − x, x ∈ (0, k],
(Aα − r

)
V (x) = 0, x ∈ (k,K) ∪ (K,∞),

(2.17)

and additional conditions on the boundary k and K are given by

lim
x↓k

V (x) = K − k, lim
x→K

V (x) = δ, lim
x↓k

∂V (x)
∂x

= −1, lim
x↑∞

V (x) = 0. (2.18)

By computing Stefan problem we can easily obtain the expression of V (x) (denote
it by Ṽ (x)) defined by the right-hand sides of (2.5), while from (2.18) we can obtain (2.8).
Proposition 2.4 implies that this equation has and only has one root in (0, K), denote it by k∗.
Accordingly, we can obtain the expression (2.6) of A and B and optimal stopping strategy
τ∗ for the holder. Now we must prove that the solution of the Stefan problem gives, in fact,
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the solution to the optimal stopping problem, that is, V (x) = Ṽ (x). For that it is sufficient to
prove that

(a) ∀τ ∈ S, Eα
xe

−r(τ∧γ∗)Zτ,γ∗ ≤ Ṽ (x);

(b) ∀γ ∈ S, Eα
xe

−r(τ∗∧γ)Zτ∗,γ ≥ Ṽ (x);

(c) Eα
xe

−r(τ∗∧γ∗)Zτ∗,γ∗ = Ṽ (x).

First, from Proposition 2.6 we know that Ṽ (x) is a convex function on (0,∞) such that

(K − x)+ ≤ Ṽ (x) ≤ (K − x)+ + δ. (2.19)

Since Ṽ (x) ∈ C1(0, K)∩C2(0, K)\{k∗}, for x ∈ (0, K), we can apply Itô formula to the process
{e−r(t∧γ∗)Ṽ (St∧γ∗) : t ≥ 0} and have

e−r(t∧γ
∗)Ṽ

(
St∧γ∗

)
= Ṽ (x) +

∫ t∧γ∗

0
e−ru

(Aα − r
)
Ṽ
(
Su

)
du +

∫ t∧γ∗

0
e−ruσSuṼ

′(Su

)
dWα

u

+
∫ t∧γ∗

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)
.

(2.20)

Note that in (0, K), AαṼ (x) − rṼ (x) ≤ 0, while the last two integrals of (2.20) are local
martingales, then by choosing localizing sequence and apply the Fatou lemma, we obtain

Eα
xe

−r(τ∧γ∗)Ṽ
(
Sτ∧γ∗

) ≤ Ṽ (x), (2.21)

whereas

Zτ,γ∗ =
(
K − Sτ

)+1τ≤γ∗ +
[(
K − Sγ∗

)+ + δ
]
1γ∗<τ

=
(
K − Sτ

)+1τ≤γ∗ + δ1γ∗<τ

≤ Ṽ
(
Sτ∧γ∗

)
.

(2.22)

For the inequality we have used (2.19), hence from (2.21) we have

Eα
xe

−r(τ∧γ∗)Zτ,γ∗ ≤ Ṽ (x). (2.23)

It is simple for the case that x ∈ (K,∞) and the method is the same as before. Thus, we obtain
(a).
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The proof of (b): apply Itô formula to the process {e−r(τ∗∧t)Ṽ (Sτ∗∧t) : t ≥ 0} and note
that Ṽ is only continuous at K, we have

e−r(τ
∗∧t)Ṽ

(
Sτ∗∧t

)
= Ṽ (x) +

∫ τ∗∧t

0
e−ru

(Aα − r
)
Ṽ
(
Su

)
du +

∫ τ∗∧t

0
e−ruσSuṼ

′(Su

)
dWα

u

+
∫ τ∗∧t

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)

+ e−r(τ
∗∧t)[Ṽ ′(K+) − Ṽ ′(K−)]LK

τ∗∧t,

(2.24)

where LK is the local time at K of S. Since Ṽ (x) is convex on (0,∞), hence Ṽ ′(K+)− Ṽ ′(K−) ≥
0. While in (k∗,∞) \ {K}, (Aα − r)Ṽ (x) = 0, then using the same method as before we have

Eα
xe

−r(τ∗∧γ)Ṽ
(
Sτ∗∧γ

) ≥ Ṽ (x). (2.25)

Moreover, since

Ṽ
(
Sτ∗∧γ

)
= Ṽ

(
Sτ∗

)
1(τ∗≤γ) + Ṽ

(
Sγ

)
1(γ<τ∗)

≤ (
K − Sτ∗

)+1(τ∗≤γ) +
[(
K − Sγ

)+ + δ
]
1(γ<τ∗)

= Zτ∗,γ ,

(2.26)

we can obtain

Eα
xe

−r(τ∗∧γ)Zτ∗,γ ≥ Ṽ (x), ∀γ ∈ M. (2.27)

The proof of (c): taking τ = τ∗, γ = γ∗, it is sufficient to note that in (k∗, K), we have
AαV (x) − rV (x) = 0 and

Ṽ
(
Sτ∗∧γ∗

)
= Ṽ

(
Sτ∗

)
1(τ∗≤γ∗) + Ṽ

(
Sγ∗

)
1(γ∗<τ∗)

=
(
K − Sτ∗

)+1(τ∗≤γ∗) + δ1(γ∗<τ∗)
= Zτ∗,γ∗ .

(2.28)

The same result is true for the case that x ∈ (K,∞).

3. Game Option with Barrier

Karatzas and Wang [8] obtain closed-form expressions for the prices and optimal hedging
strategies of American put options in the presence of an up-and-out barrier by reducing this
problem to a variational inequality. Now we will consider the game option connected with
this barrier option. Following Karatzas and Wang, the holder may exercise to take the claim
of this barrier option

Xt =
(
K − St

)+1(t<τh), 0 ≤ t < ∞. (3.1)
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Here h > 0 is the barrier, whereas

τh = inf
{
t ≥ 0 : St > h

}
(3.2)

is the time when the option becomes “knocked-out”. The writer is punished by an amount δ
for terminating the contract early

Yt =
[(
K − St

)+ + δ
]
1(t<τh). (3.3)

First, let us consider this type of barrier option. The price is given by

VB(x) = sup
τ∈S

Exe
−rτ(K − Sτ

)+1(τ<τh) (3.4)

with the superscript B representing barrier. Similarly to Karatzas and Wang we can obtain
the following.

Theorem 3.1. The price of American put-option in the presence of an up-and-out barrier is

VB(x) =

⎧
⎪⎪⎨

⎪⎪⎩

K − x x ∈ (
0, p∗

]
,

Ax + Bxk1 x ∈ (
p∗, h

)
,

0 x ∈ [h,∞),

(3.5)

where A = (p∗ − K)hk1/(hpk1∗ − p∗hk1), B = (K − p∗)h/(hp
k1∗ − p∗hk1), and the optimal stopping

strategy is

τ∗ = inf
{
t ≥ 0 : St ≤ p∗

}
, (3.6)

where p∗ is the (unique) solution in (0, K) to the equation

h
(
1 − k1

)
xk1 +Khk1x

k1−1 −Khk1 = 0. (3.7)

The proof of the theorem mainly depends on the following propositions and the
process will be omitted.

Proposition 3.2. The expression of VB(x) defined by (3.5) is convex and decreasing on (0,∞), and
under risk-neutral measure Pα

x, one has that {e−rtV B(St) : t ≥ 0} and {e−r(t∧τ∗)VB(St∧τ∗) : t ≥ 0} are
supermartingale and martingale, respectively.

Proposition 3.3. Equation (3.7) has and only has one root in (0, K).

Now let us consider the game option with barrier h. The price is given by

V (x) = sup
τ∈S

inf
γ∈S

Ex

(
e−rτ

(
K − Sτ

)+1(τ≤γ) · 1(τ<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ) · 1(γ<τh)

)
. (3.8)
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For this game option, the logic of its solution is similar to the former, and based on this
consideration, we have the following theorem.

Theorem 3.4. Let δ∗ � VB(K) = (K − p∗)(hKk1 −Khk1)/(hpk1∗ − p∗hk1), one has the following.
(1) If δ ≥ δ∗, then the price of this game option is equal to the price of American put options in

the presence of an up-and-out barrier, that is, it is not optimal for the writer to exercise early.
(2) If δ < δ∗, then the price of the game option is given by

V (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K − x x ∈ (
0, b∗

]
,

C1x + C2x
k1 x ∈ (

b∗, K
)
,

D1x +D2x
k1 x ∈ [K,h),

0 x ∈ [h,∞),

(3.9)

where

C1 =
δbk1∗ − (

K − b∗
)
Kk1

Kbk1∗ − b∗Kk1
, C2 =

K
(
K − b∗

) − δb∗

Kbk1∗ − b∗Kk1
,

D1 =
−δhk1

hKk1 −Khk1
, D2 =

δh

hKk1 −Khk1
,

(3.10)

and b∗ is the (unique) solution in (0, K) to the equation

(δ +K)
(
1 − k1

)
xk1 +K2k1x

k1−1 −K1+k1 = 0, (3.11)

and the optimal stopping strategies for the holder and writer, respectively, are

τ∗ = inf
{
t ≥ 0 : St ≤ b∗

}
, γ∗ = inf

{
t ≥ 0 : St = K

}
. (3.12)

Proposition 3.5. The function V (x) defined by (3.9) is convex and decreasing on (0,∞).

Proof. Similar to Proposition 2.6, we only need to prove the convexity of V (x) at the point K,
that is,

V ′(K+) − V ′(K−) = (
D2 − C2

)
k1K

k1−1 +
(
D1 − C1

) ≥ 0. (3.13)

Through lengthy calculations we know that it is sufficient to show that

δ
(
hbk1∗ − b∗hk1

) ≤ (
K − b∗

)(
hKk1 −Khk1

)
. (3.14)
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Suppose that (3.14) does not hold, that is, δ > (K−b∗)(hKk1 −Khk1)/(hbk1∗ −b∗hk1), then from
(3.11) we find that

K1+k1 −K2k1x
k1−1 −K

(
1 − k1

)
bk1∗ = δ

(
1 − k1

)
bk1∗

>
(
1 − k1

)
bk1∗

(
K − b∗

)(
hKk1 −Khk1

)

(
hbk1∗ − b∗hk1

) ,
(3.15)

rearranging it we have

h
(
1 − k1

)
bk1∗ +Khk1b

k1−1
∗ −Khk1 < 0. (3.16)

From (3.11), through complex verification we get that when δ = δ∗, b∗ = p∗. Furthermore, as
δ decreases the solution b∗ increases, especially when δ = 0, b∗ = K. So if 0 < δ < δ∗, we have
p∗ < b∗ < K. Thus from the property of (3.7) we know that h(1−k1)b

k1∗ +Khk1b
k1−1
∗ −Khk1 > 0,

which contradicts with (3.16). So the hypothesis is not true, that is, (3.14) holds. It is evident
that V (x) is decreasing.

Remark 3.6. It is obvious that (2.8) is the same as (3.11), however, their roots not always be
equal to each other. Because of these two cases, the scope of δ is different. Penalty with barrier
is usually smaller than the other, that is, VB(K) < VA(K).

Proof of Theorem 3.4. (1) Suppose that δ ≥ δ∗. From Proposition 3.2 we know that

(K − x)+ ≤ VB(x) ≤ (K − x)+ + δ. (3.17)

By means of the Doob optional stopping theorem and (3.17), we have

VB(x) = inf
γ∈S

Eα
x

[
e−r(τ

∗∧γ∧τh)VB(Sτ∗∧γ∧τh
)]

≤ inf
γ∈S

Eα
x

{
e−rτ

∗(
K − Sτ∗

)+1(τ∗≤γ)1(τ∗<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ∗)1(γ<τh)

}

≤ inf
γ∈S

sup
τ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ)1(τ<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)1(γ<τh)

}

= sup
τ∈S

inf
γ∈S

Eα
x

{
e−rτ

(
K − Sτ

)+1(τ≤γ)1(τ<τh) + e−rγ
[(
K − Sγ

)+ + δ
]
1(γ<τ)1(γ<τh)

}

≤ sup
τ∈S

Eα
x

[
e−rτ

(
K − Sτ

)+1(τ<τh)
]

= VB(x).

(3.18)

That is, the price of the game option is equal to the price of American put-options in the
presence of an up-and-out barrier.

(2) Suppose that δ < δ∗. Then we may conclude that the holder should search optimal
stopping strategy in the class of the stopping times of the form τb = inf{t ≥ 0 : St ≤ b} with
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b ∈ (0, K) to be confirmed. While the optimal stopping strategy for the writer is γ∗ = inf{t ≥
0 : St = K}. Considering the following Stefan problem:

V (x) = K − x, x ∈ (0, b], (3.19)

(A − r)V (x) = 0, x ∈ (b,K) ∪ (K,h), (3.20)

V (x) = 0, x ∈ [h,∞), (3.21)

lim
x↓b

V (x) = K − b, lim
x→K

V (x) = δ, lim
x↑h

V (x) = 0, lim
x↓b

∂V (x)
∂x

= −1. (3.22)

Through straightforward calculations we can obtain the expression of V (x) (denote it by
Ṽ (x)) defined by the right-hand sides of (3.9). From condition (3.22) we can obtain (3.11).
Proposition 2.4 implies that the root of this equation is unique in (0, K), denote it by b∗ and
consequently τb∗ by τ∗. Now we only need to prove that V (x) = Ṽ (x). For that it is sufficient
to prove that

(a) ∀τ ∈ S, Eα
xe

−r(τ∧γ∗)Zτ,γ∗1(τ∧γ∗<τh) ≤ Ṽ (x); (3.23)

(b) ∀γ ∈ S, Eα
xe

−r(τ∗∧γ)Zτ∗,γ1(τ∗∧γ<τh) ≥ Ṽ (x). (3.24)

(c) Taking stopping time τ = τ∗, γ = γ∗, we have

Eα
xe

−r(τ∗∧γ∗)Zτ∗,γ∗1(τ∗∧γ∗<τh) = Ṽ (x). (3.25)

First, from Proposition 3.5 we know that Ṽ (x) is convex in (0,∞) and further

(K − x)+ ≤ Ṽ (x) ≤ (K − x)+ + δ. (3.26)

Applying Itô formula to the process {e−r(t∧γ∗∧τh)Ṽ (St∧γ∗∧τh) : t ≥ 0}, we have

e−r(t∧γ
∗∧τh)Ṽ

(
St∧γ∗∧τh

)
= Ṽ (x) +

∫ t∧γ∗∧τh

0
e−ru

(Aα − r
)
Ṽ
(
Su

)
du +

∫ t∧γ∗∧τh

0
e−ruσSuṼ

′(Su

)
dWα

u

+
∫ t∧γ∗∧τh

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)
.

(3.27)

It is obvious that when x ∈ (0, K)∪ (K,h), we have (A− r)Ṽ (x) ≤ 0. Since the second and the
third integrals of the right-hand sides of (3.27) are local martingales, so

Eα
xe

−r(τ∧γ∗∧τh)Ṽ
(
Sτ∧γ∗∧τh

) ≤ Ṽ (x), (3.28)
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while

Eα
xe

−r(τ∧γ∗∧τh)Ṽ
(
Sτ∧γ∗∧τh

)
= Eα

xe
−r(τ∧γ∗)Ṽ

(
Sτ∧γ∗

)
1(τ∧γ∗<τh) ≥ Eα

xe
−r(τ∧γ∗)Zτ,γ∗1(τ∧γ∗<τh). (3.29)

The inequality is obtained from (3.26), and combining (3.28) we obtain (3.23), that is, (a)
holds.

Applying Itô formula to the process {e−r(τ∗∧t∧τh)Ṽ (Sτ∗∧t∧τh) : t ≥ 0}, we have

e−r(τ
∗∧t∧τh)Ṽ

(
Sτ∗∧t∧τh

)
= Ṽ (x) +

∫ τ∗∧t∧τh

0
e−ru(A − r)Ṽ

(
Su

)
du +

∫ τ∗∧t∧τh

0
e−ruσ

(
Su

)
Ṽ ′(Su

)
dWα

u

+ e−r(τ
∗∧t∧τh)[Ṽ ′(K+) − Ṽ ′(K−)]LK

τ∗∧t∧τh

+
∫ τ∗∧t∧τh

0
e−ru

[
Ṽ
(
Su−

(
1 − y0

)) − Ṽ
(
Su−

)](
dNu − λαdu

)
.

(3.30)

The definition of LK is the same as Theorem 2.3. From the convexity of Ṽ (x) we know that
Ṽ ′(K+) − Ṽ ′(K−) ≥ 0. Since when x ∈ (b∗, K) ∪ (K,h), (A − r)Ṽ (x) = 0, so from above
expression we have

Eα
xe

−r(τ∗∧γ∧τh)Ṽ
(
Sτ∗∧γ∧τh

) ≥ Ṽ (x). (3.31)

Similarly we have

Eα
xe

−r(τ∗∧γ∧τh)Ṽ
(
Sτ∗∧γ∧τh

)
= Eα

xe
−r(τ∗∧γ)Ṽ

(
Sτ∗∧γ

)
1(τ∗∧γ<τh) ≤ Eα

xe
−r(τ∗∧γ)Zτ∗,γ1(τ∗∧γ<τh). (3.32)

From (3.31) and (3.32) we know that (b) holds. Combining (a) and (b) we can easily obtain
(c).

4. A Simple Example: Application to Convertible Bonds

To raise capital on financial markets, companies may choose among three major asset classes:
equity, bonds, and hybrid instruments, such as convertible bonds. As hybrid instruments,
convertible bonds has been investigated rather extensively during the recent years. It entitles
its owner to receive coupons plus the return of the principle at maturity. However, the holder
can convert it into a preset number of shares of stock prior to maturity. Then the price of the
bond is dependent on the price of the firm stock. Finally, prior to maturity, the firm may call
the bond, forcing the bondholder to either surrender it to the firm for a previously agreed
price or else convert it for stock as above. Therefore, the pricing problem has also a game-
theoretic aspect. For more detailed information and research about convertible bonds, one is
referred to Gapeev and Kühn [9], Sı̂rbu et al. [10, 11], and so on.
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Now, we will give a simple example of pricing convertible bonds, as the application
of pricing game options. Consider the stock process which pays dividends at a certain fixed
rate d ∈ (0, r), that is,

dSt = St−
[
(μ − d)dt + σdWt − y0

(
dNt − λdt

)]
. (4.1)

Then the infinitesimal generator of S becomes

Aαf(x) �
(
r − d + λαy0

)
x
∂f

∂x
+

1
2
σ2x2 ∂

2f

∂x2
+ λα

[
f
(
x
(
1 − y0

)) − f(x)
]
, (4.2)

and (Aα − r)f(x) = 0 admits two solutions f(x) = xk1 and f(x) = xk2 with k1 < 0 < 1 < k2

satisfying

1
2
σ2k(k − 1) +

(
r − d + λαy0

)
k − (

r + λα
)
+ λα

(
1 − y0

)k = 0. (4.3)

At any time, the bondholder can convert it into a predetermined number η > 0 of
stocks, or continue to hold the bond and collecting coupons at the fixed rate c > 0. On the
other hand, at any time the firm can call the bond, which requires the bondholder to either
immediately surrender it for the fixed conversion price K > 0 or else immediately convert
it as described above. In short, the firm can terminate the contract by paying the amount
max{K, ηS} to the holder. Then, if the holder terminates the contract first by converting the
bond into η stocks, he/she can expect to (discounted) receive

Lt =
∫ t

0
c · e−rudu + e−rtηSt, (4.4)

while if the firm terminate the contract first, he/she will pay the holder

Ut =
∫ t

0
c · e−rudu + e−rt

(
K ∨ ηSt

)
. (4.5)

Then, according to Theorem 1.1, the price of the convertible bonds is given by

V CB(x) = inf
γ∈S

sup
τ∈S

Eα
x

(
Lτ1(τ≤γ) +Uγ1(γ<τ)

)
= sup

τ∈S
inf
γ∈S

Eα
x

(
Lτ1(τ≤γ) +Uγ1(γ<τ)

)
. (4.6)

Note that when c ≥ rK, the solution of (4.6) is trivial and the firm should call the bond
immediately. This implies that the bigger the coupon rate c, the more the payoff of the issuer,
then they will choose to terminate the contract immediately. So we will assume that c < rK
in the following.

Now, let us first consider the logic of solving this problem. It is obvious that ηx ≤
V CB(x) ≤ K ∨ ηx for all x > 0 (choose τ = 0 and γ = 0, resp.). Note when St ≥ K/η, Lt = Ut,
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then V CB(x) = ηx for all x ≥ K/η. Hence the issuer and the holder should search optimal
stopping in the class of stopping times of the form

γa = inf
{
t ≥ 0 : St ≥ a

}
, τb = inf

{
t ≥ 0 : St ≥ b

}
, (4.7)

respectively, with numbers 0 < a, b ≤ K/η to be determined. Note when the process S
fluctuates in the interval (0, K/η), it is not optimal to terminate the contract simultaneously
by both issuer and holder. For example, if the issuer chooses to terminate the contract at the
first time that S exceeds some point a ∈ (0, K/η), then ηa < K, and the holder will choose
the payoff of coupon rather than converting the bond into the stock, which is a contradiction.
Similarly, one can explain another case. Then only the following situation can occur: either
a < b = K/η, b < a = K/η, or b = a = K/η.

For search of the optimal a∗, b∗ and the value of V CB(x), we consider an auxiliary
Stefan problem with unknown numbers a, b, and V (x)

(Aα − r
)
V (x) = −c, 0 < x < a ∧ b,

ηx < V (x) < ηx ∨K, 0 < x < a ∧ b
(4.8)

with continuous fit boundary conditions

V (b−) = ηb, V (x) = ηx (4.9)

for all x > b, b ≤ a = K/η, and

V (a−) = K, V (x) = ηx ∨K (4.10)

for all x > a, a ≤ b = K/η, and smooth fit boundary conditions

V ′(b−) = η if b < a =
K

η
, V ′(a−) = 0 if a < b =

K

η
. (4.11)

By computing the Stefan problem we can obtain that if

K >
k2

k2 − 1
c

r
, (4.12)

then b∗ < a∗ = K/η, and the expression of V (x) is given by

V (x) =
ηb∗
k2

(
x

b∗

)k2

+
c

r
(4.13)
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for all 0 < x < b∗, with

b∗ =
k2

η
(
k2 − 1

)
c

r
, (4.14)

and if

c

r
< K ≤ k2

k2 − 1
c

r
, (4.15)

then a∗ = b∗ = K/η, and the value of V (x) is

V (x) =
(
K − c

r

)(
ηx

K

)k2

+
c

r
(4.16)

for all 0 < x < K/η.
From the result we can observe that there are only two regions for K, and the situation

a∗ < b∗ = K/η fails to hold. This implies that in this case, when S fluctuates in the interval
(0, K/η), the issuer will never recall the bond. Now, we only need to prove that V (x) =
V CB(x), and the stopping times γ∗ and τ∗ defined by (4.7) with boundaries a∗ and b∗ are
optimal.

Applying Itô formula to the process {e−rtV (St) : t ≥ 0}, we have

e−rtV
(
St

)
= V (x) +

∫ t

0
e−ru

(Aα − r
)
V
(
Su

)
1(Su /=a∗,Su /= b∗,Su /=K/η)du

+
∫ t

0
e−ruσSuV

′(Su

)
1(Su /=a∗,Su /= b∗,Su /=K/η)dW

α
u

+
∫ t

0
e−ru

[
V
(
Su−

(
1 − y0

)) − V
(
Su−

)](
dNu − λαdu

)

+ e−rt
[
V ′

(
K

η
+
)
− V ′

(
K

η
−
)]

L
K/η
t .

(4.17)

Let

Mt =
∫ t

0
e−ruσSuV

′(Su

)
1(Su /=a∗,Su /= b∗,Su /=K/η)dW

α
u

+
∫ t

0
e−ru

[
V
(
Su−

(
1 − y0

)) − V
(
Su−

)](
dNu − λαdu

)
.

(4.18)
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Note for all 0 < x < a∗, (A − r)V (x) ≤ −c, while for all 0 < x < b∗, (A − r)V (x) = −c. Since
ηx ≤ V (x) ≤ ηx ∨K, so for 0 < a∗ ≤ K/η, 0 < b∗ ≤ K/η, we have

Lτ∧γ∗ =
∫ τ∧γ∗

0
c · e−rudu + e−r(τ∧γ

∗)ηSτ∧γ∗

≤
∫ τ∧γ∗

0
c · e−rudu + e−r(τ∧γ

∗)V
(
Sτ∧γ∗

)

≤ V (x) +Mτ∧γ∗ ,

Uτ∗∧γ =
∫ τ∗∧γ

0
c · e−rudu + e−r(τ

∗∧γ)(ηSτ∗∧γ ∨K
)

≥
∫ τ∗∧γ

0
c · e−rudu + e−r(τ

∗∧γ)V
(
Sτ∗∧γ

)

= V (x) +Mτ∗∧γ .

(4.19)

Because V (Sγ∗) = K ∨ ηSγ∗ , V (Sτ∗) = ηSτ∗ , then by choosing localizing sequence and apply
the Fatou lemma, we obtain

Eα
x

[
Lτ1(τ≤γ∗) +Uγ∗1(γ∗<τ)

] ≤ V (x) ≤ Eα
x

[
Lτ∗1(τ∗≤γ) +Uγ1(γ<τ∗)

]
. (4.20)

Taking supremum and infimum for τ and γ of both sides, respectively, we can obtain the
result. While for (4.20), taking τ = τ∗, γ = γ∗, we have

V (x) = Eα
x

[
Lτ∗1(τ∗≤γ∗) +Uγ∗1(γ∗<τ∗)

]
. (4.21)
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1. Introduction

An option is the right, but not the obligation, to buy or sell a certain security at a specified
price at some time in the future [1]. The option pricing model developed by Black and Scholes
[2] and Merton [3] is widely used to price financial derivatives. Because option pricing
quantifies the values of uncertainties, this technique has migrated to broader usage, such
as strategy selection [1], risky project valuation [4, 5], and policy assessment [6]. The idea
of employing an option pricing model to value real assets or investments with uncertainties
is usually called the real options approach or real options modeling [1, 7]. In real options,
risky projects are modeled as a portfolio of options that can be valued using option pricing
equations [4].

As options become “real” rather than financial, the underlying uncertainties become
harder to deal with. Some risks associated with real options are not priced in the market,
violating a basic assumption of option pricing. Hence, volatilities in real options usually
cannot be accurately estimated.



2 Journal of Applied Mathematics and Decision Sciences

The methods proposed to overcome the problem of private risk include utility theory
[1, 7], the Integrated Value Process [4], Monte-Carlo simulation [8, 9], and unique and
private risks [10]. This paper uses fuzzy real options, developed by Carlsson and Fuller
[11], to represent private risk. Representing private risks by fuzzy variables leaves room for
information other than market prices, such as expert experience and subjective estimation,
to be taken into account. In addition, the model of Carlsson and Fuller can be generalized
to allow parameters other than present value and exercise price [11] to be fuzzy variables,
utilizing the transformation method of Hanss [12]. The added flexibility that allows the fuzzy
real options model to tackle private risks issue also makes it more suitable for risky project
evaluations.

We build a fuzzy real options model for brownfield evaluation by extending Lentz and
Tse’s [13], and develop a prototype decision support system for brownfield redevelopment
evaluation to demonstrate the effectiveness of the fuzzy real options approach.

In this paper, option pricing models are introduced first and then used to value
real assets as real options. The main issue of real options, private risks, will be addressed
systematically. After a summary and comparison of methods to evaluate private risks,
this research will focus on fuzzy real options. After a theoretical introduction, brownfield
redevelopment, a typical risky project, is discussed briefly. Then a DSS for brownfield
valuation based on fuzzy real options is designed and implemented as a prototype.

2. Fuzzy Real Options and Private Risks

2.1. Real Options

Black, Scholes, and Merton proposed their frameworks for pricing basic call and put options
[2, 3] in 1973, establishing the theoretical foundation for pricing all options. Because option
pricing models acknowledge the value of uncertainty explicitly, they came to be used to
evaluate uncertain real assets, called real options. For instance, the managerial flexibility to
terminate a project if it proves unprofitable was recognized as a kind of American put option,
with sunk cost as the exercise price. Hence, the value of this risky project would be the sum
of its initial cash flows and the value of its derivative American put option [8].

As suggested by the above example, the value of a risky project includes not only
its present value, but also the portfolio of options associated with it, reflecting the values
of uncertainties and associated managerial flexibilities. The following options may exist
in different kinds of projects and situations and can be evaluated using option formulas
developed for the financial market [1, 5, 7–9].

(i) The option to defer. The option of waiting for the best time to start a project can be
valued as an American call option or a Bermuda call option.

(ii) The option to expand. The option of expanding the scale of the project can be valued
as an American call option or a barrier option.

(iii) The option to contract. The option of shrinking the scale of the project can be valued
as an American put option.

(iv) The option to abandon. The ability to quit the project can be valued as an American
put option or a European put option.
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(v) The option of staging. The ability to divide projects into several serial stages, with the
option of abandoning the project at the end of each stage (“option on option”), can
be valued as a compound option, also called the learning option in some articles.

(vi) The option to switch. The flexibility to change the project to another use can be valued
as a switch option.

The output of option pricing models usually includes valuations, critical values, and
strategy spaces to help a DM to make decisions [1]. This information includes

(i) Valuations. The most important output, and the main reason for using a real options
model, is the value of the risky project.

(ii) Critical values. Threshold distinguishing the best strategy is usually defined in terms
of parameters. For example, some critical values determine whether it is optimal to
undertake the project. Critical values play a similar role to Net Present Value (NPV)
zero.

(iii) Strategy space. The critical values divide the multidimensional strategy space into
regions, corresponding to which option is best to implement. Often, this output is
optional.

2.2. Private Risks

Unlike the uncertainties reflected in stock or bond prices or exchange rates, market data
gives very little information about uncertainties in real options. Moreover, inappropriate
consideration of uncertainties may make the real options model invalid, an important issue
because of the basic assumptions of option pricing models [4, 14].

(i) Complete market. All risks can be hedged by a portfolio of options [15]. In other
words, all risks have been reflected in the market price and can be replicated as
options. In some literature, this is also called the Market Asset Disclaimer (MAD)
approach [5].

(ii) Arbitrage-free market. There is no profit opportunity unless a player in the market is
willing to take some risk [4]. In other words, there is no risk-free way of making
money.

(iii) Frictionless market. There are no barriers to trading, borrowing, or shorting contracts,
and no transaction costs for doing so. Furthermore, underlying assets are infinitely
divisible [14].

These assumptions are generally realistic in the financial market, but may not be the
case for real options, in part because of the many distinct sources of uncertainty. But more
importantly, many uncertainties cannot be matched by any basked of market good, violating
the complete market assumption [14]. In fact, it is unusual for project-specific uncertainties
to be replicated as a market portfolio. The options modeling process must be customized to
make the valuation framework flexible enough to fit real options.

In summary, private risk refers to risks that cannot be valued in the market [1], a
simple but difficult issue in applying any real options model. Private risk challenges the
complete market assumption, making the output values unreliable. Volatility (σ), which
reflects uncertainties, cannot be estimated objectively.
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2.3. Fuzzy Real Options

Projects usually have private risks, which usually cannot be estimated without expert
knowledge. Using soft-computing techniques, experts can use their experience to make
subjective predictions of private risk. These predictions can be improved using machine
learning algorithms. Accumulating additional cases adds to expert experience, so that
learning improves the accuracy of private risk estimation.

Among soft-computing techniques, fuzzy systems theory is especially suitable for
representation of expert knowledge. Here, fuzzy real options are intended to deal with
private risks that are hard to estimate objectively. The plan is to base fuzzy real options on
possibility theory [11, 16–18].

The fuzzy approach cannot only model preferences [17], but also take into account
subjective uncertainty [11]. In addition, it often requires less data, making it easier to use and
quicker to produce satisfactory outputs.

Carlsson and Fuller assume that the present value and exercise price in the option
formula are fuzzy variables with trapezoidal fuzzy membership functions. Because inputs
include fuzzy numbers, the value of a fuzzy real options is a fuzzy number as well. A final
crisp Real Option Value (ROV) can be calculated as the expected value of the fuzzy ROV
[11]. Using α-cuts (a(α) and b(α) denote, respectively, the minimum and maximum values at
the α-level of membership of a fuzzy variable), the possibilistic mean of the fuzzy variable
(denoted A) and the variance was calculated by [11] to be (2.1) and (2.2), respectively.

E(A) =
∫1

0
α
(
a(α) + b(α)

)
dα, (2.1)

σ2(A) =
1
2

∫1

0
α
(
b(α) − a(α)

)2
dα. (2.2)

The concise and effective fuzzy real options approach proposed by Carlsson and Fuller
is widely applicable; see [19–21]. But this specific model restrict fuzzy variables to the exercise
price and current cash flow. Here, that restriction is avoided by employing fuzzy arithmetic
and the transformation method, which is introduced in the following section.

2.4. Fuzzy Arithmetics and the Transformation Method

While fuzzy logics and inferencing systems are well-established, fuzzy arithmetic lags
behind. Fuzzy arithmetic is restricted to simple operators [22, 23]. In applications, fuzzy
arithmetic is usually limited to several predefined membership functions in MATLAB and
Mathematica. This is mainly because the final result may be different depending on the
procedure for implementing standard fuzzy arithmetic [12].

Hanss established the transformation method, thereby solving the multiple outputs
problem and making generalized fuzzy arithmetic possible [24]. In the transformation
method, a fuzzy function is defined as in Definition 2.1).

Definition 2.1. A fuzzy function with fuzzy output q̃, n fuzzy inputs p̃j , and k normal inputs
xk, can be expressed as

q̃ = F
(
x1, x2, . . . , xk; p̃1, p̃2, . . . , p̃n

)
. (2.3)
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The idea underlying the transformation method has three important points: decom-
pose fuzzy numbers into discrete form, use an α-cut for calculation purposes as a traditional
function, and search the coordinates of the points in the hypersurfaces of the cube. The
algorithm of the transformation method is given next [12]:

2.4.1. Decomposition of the Input Fuzzy Numbers

Similar to (2.1), dα is discretized into a large number of m intervals of length Δα = 1/m. Each
fuzzy input p̃i is decomposite into a series of crisp values at different α-cut levels μj , where
μj = (j/m) (j = 0, 1, . . . , m)

Pi =
{
X

(μ0)
i , X

(μ1)
i , . . . , X

(μj )
i , . . . , X

(μm)
i

}
, i = 1, 2, ..., n, (2.4)

where every element X(j)
i is define as

X
(μj )
i =

[
a
(μj )
i , b

(μj )
i

]
, (2.5)

where a
(μj )
i and b

(μj )
i denote the minimum and maximum values at the μj-level of a given

fuzzy variable, respectively, as previous.

2.4.2. Transformation of the Input Intervals

The intervals X
(j)
i , i = 1, 2, . . . , n of each level of membership μj , j = 0, 1, 2, . . . , m, are

transformed into arrays X̂j

i of the form with the number of 2i−1 pairs (α(j)i , β
(j)
i ),

X̂i
j
=
((
α
(j)
i , β

(j)
i

)
,
(
α
(j)
i , β

(j)
i

)
, . . . ,

(
α
(j)
i , β

(j)
i

))
(2.6)

with 2n−i elements in each set of

α
(j)
i =

(
a
(j)
i , . . . , a

(j)
i

)
, β

j

i =
(
b
j

i , . . . , b
j

i

)
. (2.7)

The above formula fits the case of the reduced transformation method when the fuzzy
function is monotonic or has only one fuzzy input. The general transformation method is
similar to these formulae [12]. The main difference is that more points are tested.

Denotion of α(j)i and β
(j)
i as pairs of α-cut values allows repetitive elements. The order

of the elements is critical. The ultimate goal is that the 2i−1 of the ith element forms endpoints
on the hypersurfaces. As illustrated in Figure 1, in the case of 3 fuzzy inputs shown as 3-
dimensional space, the above definition means everyX(j)

i has 2n−i∗2i−1 = 2n = 23 = 8 elements,
which are located on the endpoints of the cubicle.
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Figure 1: Fuzzy transformation diagram [12].

2.4.3. Evaluation of the Model

The function F is evaluated separately at each of the columns in the arrays using the classical
arithmetic for crisp numbers. In other words, if the output q̃ can be decomposed to the arrays
Ẑ(j) (j = 0, 1, 2, . . . , m) using the algorithms mentioned above, the kth element can be obtained
using the formula as

kẑ(j) = F
(
kx̂

(j)
1 , kx̂

(j)
2 , . . . , kx̂

(j)
n ;y1, y2, . . . , yl

)
, (2.8)

where kx̂
(j)
i is the kth element of the array X̂i

(j)
and yi (i = 1, 2, . . . , k) are the other crisp inputs

of the function.

2.4.4. Retransformation of the Output Array

Now the decomposition of the fuzzy output q̃ becomes the set Q = {Z(0), Z(1), Z(2), . . . , Z(m)}.
Each element of this set should be the α-cut value at each level just like (2.5). Each value is
obtained by retransforming the arrays Ẑ(j) in a recursive manner using the following formula:

a(j) = min
(
a(j+1), kẑ(j)

)
, j = 0, 1, . . . , m − 1,

b(j) = max
(
b(j+1), kẑ(j)

)
, j = 0, 1, . . . , m − 1,

a(m) = min
(
kẑ(m)

)
, b(m) = max

(
kẑ(m)

)
.

(2.9)
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2.4.5. Recomposition of the Output Intervals

Recompositing the inveralsZ(j), j = 0, 1, 2, . . . , m of the setQ based on their membership level
μj , we can get the final fuzzy output q̃.

The transformation method is an ideal solution for implementing generalized
arithmetic operations. Hence, it is employed in this paper to integrate the subjective
uncertainties into the real options model. This algorithm is one of the key components in
building the decision support system for the project evaluation of brownfield redevelopment
using the fuzzy real options.

3. Brownfield Redevelopment

3.1. Uncertainties in Brownfield Redevelopment

A brownfield is an abandoned or underutilized property that is contaminated, or suspected
to be contaminated, usually due to previous industrial usage [25]. Brownfields are common
in cities transitioning from an industrial to a service-oriented economy, or when industrial
enterprises have been relocated elsewhere or restructured themselves [26]. Brownfields are
associated with an unsustainable development pattern, as they often arise when greenfields
are developed while brownfields are abandoned.

Hence, brownfield redevelopment is helpful in enhancing regional sustainability. For
example, municipal governments in Canada and elsewhere are encouraging brownfield
redevelopment as part of a regional sustainable development plan. If brownfields were suc-
cessfully redeveloped, local economic transitions would be more fluid; current infrastructure
would be reused, and local public health would be more secure.

Brownfield redevelopment is a typical system-of-systems (SoSs) problem, as it
involves various systems with complex interactions as illustrated in Figure 2. Brownfield
redevelopment has the characteristics of an SoS; it possesses high uncertainty, nonlinear
interactions within and among systems and is interdisciplinary in nature [27]. Due to the
complex interactions of soil and groundwater systems with societal systems, as well as
uncertainties in redevelopment costs, knowledge and technologies, and potentially high
liabilities, brownfield redevelopment is difficult to initiate [28]. Uncertainties in brownfield
redevelopment can be classified into the following categories.

(i) Uncertainties due to limited knowledge of brownfields. Currently, knowledge and data
about brownfields are limited. Identifying appropriate models, characteristics, and
parameters can be costly and time-consuming.

(ii) Uncertainties originating from environmental systems. Environmental systems have
complex interactions in different systems, especially between groundwater and
soil. Complex site-specific characteristics hinder remediation and redevelopment
processes because they usually lead to highly uncertain remediation costs [29].

(iii) Uncertainties originating from societal systems. There are various kinds of stakeholders
in brownfield redevelopment participating in complex conflicts and interactions,
which create high levels of uncertainty in liabilities and cost sharing polices.

Because of the high uncertainties involved in brownfield redevelopment, traditional
valuation methods are inoperable. It is very difficult to identify an appropriate discount
rate for the Capital Asset Pricing Model (CAPM) [30]. Developers normally require high-
risk premiums to compensate for the high uncertainties in brownfield redevelopment
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Figure 2: Systems diagram of brownfield redevelopment.

projects. Using Net Present Values (NPVs), developers usually calculated negative values
for redevelopment projects and thus were reluctant to undertake them [31].

However, brownfield redevelopment can be profitable and even produces higher
investment returns in some cases [31–33]. One explanation of the gap between predicted
(conceptual) profit using NPV and the actual investment return is that the NPV method fails
to map the value of opportunities created under a high uncertainty environment into project
values.

These observations motivate the use of the real options model to evaluate redevelop-
ment projects; it may provide more accurate valuations in the presence of high uncertainties.
This research builds a prototype decision support system to implement a fuzzy real options
model. The effectivenss of the model is tested using hypothetical data derived from actual
brownfield redevelopment projects.

3.2. Fuzzy Real Options for Brownfield Redevelopment

Among a couple of available real options models for brownfield redevelopment, model
proposed by Lentz and Tse is chosen to be extended with fuzzy variables, which includes
an option to remove hazardous materials at the best time and an option to redevelop the
brownfield, converting this site into other more profitable usage, at the best opportunity
[13]. This model is more generic than others, such as Espinoza and Luccioni [32], in which
only one American option is considered and Erzi-Akcelik [33], in which just applied Dixit
and Pindyck’s model [7]. Hence, an option to defer and option to learn are involved in the
evaluation of contaminated properties.

The value of brownfield sites is regarded as two Wiener processes: the cash flow
generated from this site without contamination (denoted as x) and the redevelopment
cost for this site (denoted as R). To make private risks distinct from market ones, both of
them are treated as two partially hedged portfolios, cash flow portfolio (denoted as P) and
redevelopment cost (denoted as K), respectively.

In addition, four coefficient parameters with regard to x and R are involved. The
parameters ϕ1 and φ focus on cash flows. As cash flows from all states are being proportional
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to the clean one, the cash flow generated under contamination is ϕ1x; cash flow after removal
is regarded as resumed to the clean one with x; and cash flow after redevelopment is φx. The
coefficients α1 and α2 denote the removal and restoration costs as α1R and α2R, which are
assumed to be proportional to the total redevelopment cost R as well. Therefore, the cleanup
cost C equals (α1 + α2)R.

Overall, three critical values are involved in deciding three kinds of strategies, which
are denoted as Z∗, Y ∗, and W∗ in [13, Formula 14]: do nothing, remove pollutants and
redevelop sequentially, or remove and redevelop simultaneously. Values to be compared with
these critical values are, respectively, Z = x/R, the ratio of the clean cash flow (x) to the
redevelopment cost (R), Y = x/C, the ratio of the clean cash flow (x) to the cleanup cost (C),
and W = x/(1+α1)R, the ratio of the clean cash flow (x) to the combined cost of removal and
redevelopment as a joint action. In addition, all supplementary formulae are shown as [13,
Formula 12]:

σ2 = σ2
x + σ

2
R − 2σxR,

γ = ωk − μR,

δ = g −
(
μR − μK + r

)
,

g = μx −
(
μP − r

)
βx,

βx = ρxP
σx
σP
,

βR = ρRK
σR
σK

,

ωK = r +
(
μK − r

)
βR,

q = 0.5

⎛
⎝σ2 − 2δ

σ2
+

√(
2δ − σ2)2 + 8γσ2

σ4

⎞
⎠.

(3.1)

If the contaminated properties were to be cleaned and redeveloped sequentially, their
values can be expressed as [13, Formula 13], depending on the critical value of Y ∗ as [13,
Formula 14]. If Y > Y ∗, the removal action should be taken right now. Otherwise, the optimal
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executing time is in [13, Formula 16]. After the cleanup action, redevelopment is better to be
conducted when Z > Z∗ in (3.5):

V 1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ1x

r − g +

((
q − 1

)q−1

qq

)((
1 − ϕ1

r − g

)q( x
C

)q−1

+
(
φ − 1
r − g

)q(x
R

)q−1
)
x, if Y ≤ Y ∗;

x

r − g +

((
q − 1

)q−1

qq

)(
φ − 1
r − g

)q(x
R

)q−1
x − C, if Y > Y ∗;

(3.2)

Y ∗ =
r − g
1 − ϕ1

q

q − 1
,

W∗ =
r − g
φ − ϕ1

q

q − 1
,

Z∗ =
r − g
φ − 1

q

q − 1
.

(3.3)

If the brownfield sites were to be cleaned and redeveloped simultaneously, their values
can be expressed in [13, Formula 15], depending on the critical value of W∗ in (3.3). If W >
W∗, the removal action should be taken right now. Otherwise, the optimal executing time is
in (3.5):

V 2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1x

r − g +
(
φ − ϕ1

r − g

)q((q − 1
)q−1

qq

)
xq

(α1R + R)
, if W ≤W∗;

φx

r − g − (α1R + R), if W > W∗;
(3.4)

τY =
ln Y ∗ − ln Y

mx −mR
,

τW =
ln W∗ − ln W

mx −mR
,

τZ =
ln Z∗ − ln Z

mx −mR
,

(3.5)

for mx > mR, where mx = μx − 0.5σ2
x and mR = μR − 0.5σ2

R.
The final value of the brownfield site is the maximum of V 1 and V 2. An optimized

redevelopment strategy can also be formed based on where it locates in the decision region,
since all critical value can be converted into x/R.

4. Decision Support System Design and Case Study

4.1. System Architecture

The system architecture of the DSS is shown in Figure 3. Experts input parameters via the
layer of the Windows Presentation Foundation (WPF) are given in Figure 4. After that, an
event and process management module will control the work flow to convert all information
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Figure 4: GUI for input of the DSS.

using the format of MatLab and feed them into MatLab for actual computation using the
proposed fuzzy real options algorithm. Basically, fuzzy data are first converted (fuzzified
and defuzzifed) into the crisp value needed for the real options model. Then, output can
be obtained by calling the real options formula. Finally, the last output will be presented
graphically via WPF to users.

Although prototype developed in this paper is primitive, the system architecture is
quite generic and extendable. This DSS can be gradually expanded in scale and become more
complex with more functions. The developed prototype satisfies the goal of a feasibility study
on both the algorithm and technical approach in building this DSS.

4.2. An Illustrative Example

To demonstrate the fuzzy real options modeling, a brief example using hypothetical values
is presented to illustrate an application of the associated DSS. These data mainly come from
Lentz and Tse’s paper [13], so that the DSS can be tested by comparing with their result.
In addition, although inputs data are imaginary, they are modified according to real data
in some articles on brownfield redevelopment, such as [33, 34] and added with some fuzzy
parameters. The input data are shown in Table 1.

In addition to the data used in Table 1, all variables in this model are allowed to be
fuzzy ones, in order to incorporate expert knowledge into parameter estimation. Given that
the most difficult task in brownfield redevelopment is to estimate uncertainties regarding the
redevelopment cost, which belongs to the private risk, the volatility rate of the redevelopment
cost, σR, is deemed to be a fuzzy variable and studied intensively in this paper.

The volatility of the redevelopment cost is hard to estimate mainly because the
dissemination of pollutants underground is highly complex. Soils, rocks, and materials



12 Journal of Applied Mathematics and Decision Sciences

Table 1: Input data [13].

Variable name Value
Current net cash flow of the clean property (x) $300000
Current redevelopment vost (R) $5000000
Riskless interest rate (r) 5%
Instantaneous return rate of the cash flow (μx) 10%
Volatility rate of the cash flow (σx) 20%
Instantaneous return rate of the portfolio hedging the cash flow (μP ) 15%
Volatility rate of the portfolio hedging the cash flow (σP ) 20%
Instantaneous return rate of the redevelopment cost (μR) 7%
Volatility rate of the redevelopment cost (σR) 20%
Instantaneous return rate of the portfolio hedging the redevelopment cost (μK) 15%
Volatility rate of the portfolio hedging the redevelopment cost (σK) 16%
Ratio of the contaminated cash flow to the clean one (ϕ1) 0.4
Ratio of the restored cash flow to the clean one (ϕ2) 1
Ratio of the redeveloped cash flow to the clean one (φ) 2
Ratio of the clean-up cost to the redevelopment cost (α1) 0.3
Ratio of the restoration cost to the redevelopment cost (α2) 0.2
Correlation between the hedging portfolio and underlying cash flow (ρxP ) 1
Correlation between the hedging portfolio and underlying cash flow (ρRK) 1
Correlation between the cash flow and the redevelopment cost (ρxR) 0
Note: Parameters, ϕ1, ϕ2, φ, α1, α2, ρxP , ρRK, ρxR, are predefined in the DSS to simplify inputs. And since they are mainly
coefficient parameters, there is no need to change them frequently.

are distributed ununiformly. Their hydraulic conductivities vary greatly according to the
materials, elevation, and seasonal change. For instance, groundwater passes through peat
(or cinders) at the velocity of 177 cm/d, which is hundreds of times the speed in the silt till
(0.49 cm/d) at the site of the Ralgreen Community in Kitchener, ON, Canada [34]. Moreover,
redevelopment cost also depends on the residual rate of pollutants and excavation cost, which
are hard to estimate using market data neither.

To overcome this problem, the fuzzy redevelopment volatility is utilized as one with
a triangle membership distribution based on parameters of minimum value, maximum
value, and most likely value, because project managers and experts usually estimate
uncertain parameters using the three-point estimation method [35]. Based on the hydraulic
conductivity, volume of contaminated soil, and elevations, we found that the 20% volatility
rate, used in Tse and Lentz’s article [13], is roughly realistic. Nonetheless, since there are only
two wells drilled for sampling, a relatively large interval should be added. As the result, the
fuzzy redevelopment volatility is inputed as (0.15, 0.2, 0.25).

The main result from the DSS is shown in Figure 5, which includes the value of the
brownfield site, a suggestion for a redevelopment strategy, and associated critical values that
lead to this suggestion. In this case, the property value is a fuzzy variable with a mean
of around 6.3 million and variance of around 1.7 million. Obviously, the private risk of
redevelopment volatility has a great effect on the value of brownfield properties. And because
the output indicators (Y andW) are less than their corresponding critical values (Y∗ andW∗),
this site is not worth of redeveloping now. This result partially explains why developers are
reluctant to undertake this redevelopment task.
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Figure 5: Output for the illustrative example.
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Moreover, the critical values are fuzzy outputs as well. The fuzzy boundaries
differentiating optimal strategies are illustrated in Figure 6. Also, these critical values can be
converted into the ratio of x/R and shown in one figure as different decision regions in the
strategy space (Figure 7). Fuzzy areas are calculated based on their fuzzy means and standard
deviations. This DSS provides decision makers an intuitive decision suggestion with the aid
of the decision region chart.

Finally, the effect of subjective estimation on property value is studied by changing the
fuzzy intervals (minimum and maximum values of the fuzzy redevelopment volatility) while
holding the most likely value unchanged, also as a kind of sensitivity analysis. Based on the
illustrative example, we found that the value of the contaminated property increases as the
fuzzy interval enlarges, as shown in Figure 8. This result implies that the subjective estimation
of the private risk has an effect on the final evaluation result, although the change is not too
much. Furthermore, experts can take advantage of their knowledge to make a slightly higher
profit in the brownfield redevelopment projects than others. And the variation of the fuzzy
output increases gradually, suggesting that there is no abrupt change and associated critical
value in the fuzzy real options model.
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5. Conclusions and Future Work

This paper employs a fuzzy real options approach to deal with the private risk problem. With
help of the transformation method, any parameter in a real option model can be estimated
as a fuzzy variable. Based on the results from the illustrative example using the prototype
DSS, we found that this approach is effective in dealing with the private risk and generating
satisfactory evaluations and useful suggestions. Hence, based on our limited test, the DSS
based on the fuzzy real options is a useful tool in risky project evaluations. It potential for
application should be further studied.
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In addition, from the result of the illustrative example (Figure 8), we see that
possibilities as well as probabilities can affect evaluations of risky projects. For the case of
brownfield redevelopment, expertise can be utilized to make the contaminated property more
valuable. This effect needs to be further analyzed.

But it should be recognized that the fuzzy real options model in this paper has several
limitations, some of which may be removed in future work. Fuzzy arithmetic permits any
membership function to be utilized in real options. This flexibility builds a foundation for
future application of soft-computing techniques. For instance, the neural network could
provide a nonparametric adaptive mechanism for private risk estimation. The DSS will be
enhanced if it can be made to behave intelligently and adaptively.

A key feature of the fuzzy real options proposed here the mixture of fuzziness and
randomness describing hybrid markets and private risks. But one limitation of our approach
is that these two features are not well-integrated. Randomness is represented as a stochastic
process, while fuzziness is represented using only fuzzy arithmetic. Incorporating a fuzzy
process would clarify the structure, perhaps producing some important new insights.

A unifyied process including both fuzzy and stochastic features could strengthen the
idea of fuzzy real options and extend enormous flexibility to soft-computing techniques and
statistical models associated with these options. This goal may be achieved with the aid of
the chance theory proposed by Liu [36].

Finally, since the fuzzy real options approach helps to improve developers’ evaluation
on brownfields, game-theoretic approaches could later be employed for negotiation of
governmental assistance in the brownfield redevelopment to achieve optimal results.
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1. Introduction

Credit risk is the major risk commercial banks are faced with, hence, measurement and
management of credit risk is the core task of risk management. In China, commercial banks’
credit risk mainly features the accumulation of a large number of nonperforming loans
(NPLs), so it is critical to model various risk factors in NPLs in order to establish a sound
credit risk management system.

Loss given default (LGD) is an equivalent concept with recovery rate. LGD is a
critical parameter for measurement of credit risk, a basis for estimating expected loss (EL)
and unexpected loss (UL). Modeling the LGD of NPLs effectively is very important for the
management of NPLs and banking supervision.

The key issues of LGD (Schuermann [1]) are the following: definition and measure-
ment; key drivers, modeling, and estimation approaches. The following studies explored the
characteristics of Bond LGD.
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Altman and Kishore [2], for the first time, documented the severity of bond defaults
stratified by Standard Industrial Classification sector and by debt seniority. They found that
the highest average recoveries came from public utilities (70%) and chemical, petroleum, and
related products (63%). They concluded that the original rating of a bond issue as investment
grade or below investment grade had virtually no effect on recoveries once seniority was
accounted for. Neither the size of the issue nor the time to default from its original date of
issuance had any association with the recovery rate. Acharya et al. [3] found that recoveries
on individual bonds were affected not only by seniority and collateral but also by the
industry conditions at the time of default. Altman et al. [4] analyzed the impact of various
assumptions about the association between aggregate default probabilities and the loss given
default on bank loans and corporate bonds and sought to empirically explain this critical
relationship. They specified and empirically tested for a negative relationship between these
two key inputs to credit loss estimates and found that the result was indeed significantly
negative.

Currently, the bank loan LGD is not explored well by theoretical and empirical
literature. In many cases, the subject of many studies on LGD is bond rather than loan. Little
research has been done on the LGD of loans. There are almost no public loans’ LGD models.
Some of the most important research focusing on the bank loan markets is the following.

Carty and Lieberman [5] measured the recovery rate on a sample of 58 bank loans
for the period 1989–1996 and reported skewness toward the high end of price scale with the
average recovery of 71%. Gupton et al. [6] reported higher recovery rate of 70% for senior
secured loans than for unsecured loans (52%) based on 1989–2000 data sample consisting of
181 observations.

The above studies focused on the U.S market. Hurt and Felsovalyi [7] who analyzed
1149 bank loan losses in Latin America over 1970–1996 found the average recovery rate was
68%. None of the above studies provided the information on predicting bank loan LGD.

Moody has established special LGD prediction models, which are known as LossCalc
models. But most of the data sample used in the models is bond data; the sample includes
only a small portion of the loan data. More details about LossCalc can be found in Gupton [8].
However, the NPLs in China’s commercial banks have their own special characteristics. The
factors affecting NPL recovery are also not the same with abroad. Therefore, it is essential to
develop specific LGD models in accordance with the actual situation of China’s commercial
bank.

Now, domestic research on LGD is mainly concentrated in the qualitative discussion.
Chen [9] discussed the importance of LGD. Moreover, he introduced several international
modeling methods for LGD and discussed the major difficulty in modeling LGD in China.

Wu [10] analyzed the necessary conditions for banks to estimate LGD and explored
the methods to estimate LGD under the Internal Ratings Based (IRB) framework. Liu and
Yang [11] summarized and analyzed the international discussion about the performance of
LGD and factors impacting LGD. Moreover, he thought that data was the basis for modeling
LGD and suggested that in order to make up for deficiency in data, the central bank should
take the lead to establish the joint NPL database. Shen [12] compared many new methods of
modeling LGD, including the nonparametric and neural network models.

Studies mentioned above present valuable guidance for research on relevant domestic
issues. But these studies are limited to qualitative discussions, so they cannot provide
substantive deeper conclusions.

Ye and Liu [13] have carried out some empirical research with the relevant data from
banks. With the data on defaulted loans from a bank in Wenzhou, a city in Zhejiang Province,
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Ye and Liu [13] analyzed the LGD distribution characteristics of NPLs in terms of exposure
at default, maturity structure, mortgage manner, industry, and so forth.

Empirical studies mentioned above laid a good foundation for domestic research
on LGD, but they are limited by their very small data sample which does not reflect the
national situation. Moreover, the analysis tools in the above studies are just simple descriptive
statistics. It is hard to convince people from their results.

Data samples used in this paper come from the LossMetrics Database. LossMetrics is
a large-scale database concerning NPLs, established by Doho Data Consulting Corporation.
This database consists of rich and detailed information about NPLs coming from the four
major commercial banks in China, namely, Industrial and Commercial bank of China (ICBC),
China Construction Bank (CCB), Agricultural Bank of China (ABC), and Bank of China
(BOC). Nearly tens of thousands of obligors’ pieces of information are included in this
database and the amount of NPLs comes to 600 billion Renminbi(RMB). These NPLs cover
more than 20 industries and 10 provinces and can reflect the overall situation and distribution
characteristics of China’s NPLs.

Research both at home and abroad shows that the recovery rate appears as a bimodal
distribution. According to Gupton [8], the recovery rate has peaks in the vicinity of 20% and
80%, respectively. But with China’s data analysis, the peaks are located in the vicinity of 0 and
100%, respectively; the peak near zero is very high, while the peak near 100% is relatively low.
According to the results of statistical data, the mean of NPLs’ recovery rate in China’s AMC
is about 30%, which is much lower than the recovery rate in developed countries. More than
25% NPLs’ recovery rate is 0, and nearly 10% NPLs’ recovery rate is almost 100%. Figure 1
shows the distribution of recovery rate of NPLs in China.

Considering the bimodal features of recovery rate’s probability distribution, estimat-
ing recovery rate directly will lead to a big bias.

It is effective and necessary to model recovery rate in two steps. The first step
is to classify recovery into different categories: zero recovery and positive recovery. This
paper devotes to the classification. This classification is not only a part of estimating LGD,
more importantly if the recovery of an NPL can be determined to be zero or positive, the
information can help commercial banks and AMCs to manage and dispose NPLs as they
can allocate more resources to assets with positive recovery and avoid wasting money and
time on loans with zero recovery, which help reduce financial cost and improve management
efficiency.

In this paper, discriminant analysis method is used to classify recovery. Basic idea of
discriminant analysis can be illustrated as follows: assuming that the research subject can
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be classified into several categories, and there are observation data of given samples in each
category. Based on this assumption, we can establish discriminant functions according to
some criteria, and use the function to classify the samples with unknown category. There are
plenty of discriminant analysis methods, such as Distance, Fisher, Sequential, Bayesian, and
Stepwise discrimination. This paper applies Stepwise, Distance, and Bayesian discrimination
to classify the recovery of NPLs and compares the results between Distance discrimination
and Bayesian discrimination as well. More details about discriminant analysis can be found
in Bruch [14].

Rest of the paper is organized as follows. Section 2 describes the data used to
model and selects significant variables for classifying recovery by Stepwise discrimination.
Section 3 presents an in-depth analysis why the selected variables have a significant influence
on discrimination of zero recovery and positive recovery. Section 4 establishes several
discrimination models and utilizes these models to predict. Section 5 concludes and discusses
pros and cons of the current research and puts forward expectations and extensions for future
research.

2. Data and Variable Selection

2.1. Data Samples

Generally speaking, an obligor can borrow one or several loans. Banks or AMCs collect NPL
from obligors in a way they collect all the loans from an obligor as a whole. To give a clear
classification, we first sift the obligors with only one loan from the database and start our
analysis and modeling process with these obligors as samples; then we use the sample of
obligors with several loans to test if the models still apply.

From LossMetrics database, we obtain 625 obligors with only one loan, among which,
425 obligors have positive recovery while 200 other obligors have zero recovery. The number
of the obligors with several loans is 821, out of which, 592 have positive recovery, and 229 do
not have recovery. The total number of loans mounts to be 4061.

2.2. Variable Selection

The variables associated to NPL can be divided into, broadly, two categories: debt
information and obligor information.

Debt information refers to the five-category assets classification for bank loans,
collateral, NPLs’ transfer mechanism, and so forth. The five-category assets classification and
for bank loans is a standard established by China’s commercial banks, which can be referred
to assess the quality of loans. It includes five categories: normal, concerned, subordination,
doubt, and loss. Since all the loans studied are nonperforming loan, the samples don’t cover
the loans belonging to normal or concerned category. NPLs’ transfer mechanism refers the
ways to transfer NPLs from commercial banks to AMCs. One way is policy-off, that is, the
central government buys NPLs from the commercial banks and gives them free to AMCs,
and the other way is business acquisition, that is, AMCs buy NPLs directly from commercial
banks.

Obligor information refers to obligor’s business situation, the industry, and region
obligor being in. Business situation can be divided into seven categories: normal,
financial distress, ceasing-business, shutting-down, under-insolvency-process, bankruptcy,
and unknown.
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Table 1: The result of variable selection.

Significant variables Partial-r square
Loss-category loan 0.4882
Bankruptcy 0.1611
Shutting-down 0.1229
Ceasing-business 0.061
Collateral loan 0.0437
Under-insolvency-process 0.0406
Unknown 0.0241
Business acquisition 0.0142
Tianjin area 0.0148
Fujian area 0.0132
Real estate industry 0.0128
Hebei area 0.0079
Retail industry 0.0054

As there are very few data in the database containing financial indices of the obligors,
we can only use the indicator variables in the modeling process.

In order to avoid too many variables to interfere the effect of discrimination, we
employ stepwise discrimination method to select the significant variables.

The result of variable selection is displayed in Table 1.
As Table 1 shows, the larger the Partial-r square of a variable is, the more important

the variable is. In Table 1, the impact of five-category classification for loans, the business
situation of companies, region, and industry is significant. while business situation of
company and the quality of loans (five-category classification) play a leading role in
discrimination with a proportion up to 94%, in contrast, the factors such as industry and
region turn out to be less important.

3. Analysis of Selected Variables

In the above section, we use Stepwise discrimination to select some variables which
are significant for distinguishing zero recovery and positive recovery from the view of
discriminant function. In order to have a deeper understanding of these variables and hence
to be more confident in predicting models in next section, we direct a further probe in this
section to show that these variables have bigger impact on zero recovery of NPLs than other
unselected variables.

In the linear discriminant function developed by Distance method, the sign of the
coefficient of the variable indicates whether the variable acts positively or negatively;
however, Bayesian discrimination can compute the probability of the recovery of a loan being
zero or positive; therefore, it is more convenient and more accurate to use Bayesian method,
since the changes in variables can be connected with the probability. Here, we use Bayesian
method to establish linear discrimination function and see how these variables affect zero
recovery.

The basic idea of Bayesian discriminant is as follows. Let the Bayesian linear
discriminant function for positive recovery be f1 = a + a1x1 + a2x2 + · · · + anxn, and the
Bayesian linear discriminant function for zero recovery be f2 = b+ b1x1 + b2x2 + · · ·+ bnxn. For



6 Journal of Applied Mathematics and Decision Sciences

Table 2: Bayesian discriminant function.

Variables Coefficient 1 Coefficient 12 Difference
Intercept −2.389 −8.454 6.065
Loss-category loan 1.834 6.851 −5.018
Bankruptcy 1.656 10.521 −8.866
Shutting-down 1.785 7.706 −5.922
Ceasing-business 1.755 5.819 −4.064
Collateral loan 1.743 −0.110 1.853
Under-insolvency-process 0.196 8.673 −8.478
Unknown operation 2.700 5.593 −2.894
Policy-off 3.683 2.093 1.590
Tianjin area 3.339 0.633 2.706
Fujian area 1.694 −1.223 2.917
Real estate industry 1.966 −0.226 2.192
Hebei area 1.617 0.539 1.079
Retail industry 1.901 1.127 0.774

an NPL, the posterior probability of positive recovery will be p1 = (ef1/ef1 + ef2 as ef1), and
the posterior probability for zero recovery will be p2 = (ef1/ef1 + ef2 as ef2). When p1 > p2,
that is p1/p2 = ec+c1x1+c2x2+···+cnxn > 1, the NPL will be classified into the positive category, or
else zero category. Here, ck = ak − bk; if ck < 0, this variable will have a positive influence on
the NPL and is to be classified into positive category. That is, if this variable changes from 0
to 1 and the other variables keep constant, the probability for positive recovery will become
larger; if ck > 0, the probability will become smaller. Moreover, if a variable xk changes from
0 to 1, the change of the probability for positive recovery will be eci times of the probability
for zero recovery. Therefore Bayesian linear discriminant function can be used in analyzing
the classification efficiency of variables.

Using the data samples obtained from Section 2, we establish the Bayesian discrimi-
nant function as follows.

These variables can be classified into 6 classes: five-category classification, collateral
properties, transfer mechanism of NPLs, operation situation of the obligors, industry, and
region. Now, let us see how these variables affect the classification of NPLs.

3.1. Five-Category Loan Classification

The variable five-category classification plays a leading role in classification based on the
results of stepwise discrimination. Only “loss category loan” has entered into the model,
because the effects of “subcategory loan” and “doubt-category loan” for classification have
been mainly reflected by “loss-category loan”.

In the discriminant function, the difference of the coefficient of this variable equals
−5.018, which shows that when a nonperforming loan belongs to loss category, the probability
of its recovery being zero will be larger than the probability of being positive. Keep the other
variables constants; if a loan enter a loss category from other categories, the changes of the
probability for zero recovery are e5.018 times of the changes of the probability. Combined
with Figure 2 it will help understand why five-category classification has played such an
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important role. In Figure 2 , the blue point represents the ratio of the NPLs not having
recovery in each category.

In Figure 2 , the ratio of zero recovery has decreased along with the grade of loans.
The ratio for subcategory and doubt-category is very low, less than 10%, while the ratio for
loss-category loans is up to 80%. It shows that, first, whether a loan has recovery is mainly
determined by the quality of loan. The worse its quality is, the larger the probability of
zero recovery will be. Second, the standard of five-category classification built by China’s
commercial bank can differentiate the quality of loans effectively. So we should continue to
pay much attention to the change of the grade of loans and improve the ability to distinguish
the qualities of loans, which will help manage credit risk more effectively.

3.2. Business Situation of Obligors

The significant variables of this type are bankruptcy, under-insolvency-process, shutting-
down, and ceasing-business. The variables “normal” and “financial distress” do not enter
into the model due to multicollinearity between these variables. And obviously the ability to
repay in both cases will be much greater than the other cases.

The differences of the coefficients for these significant variables between the two
functions are negative, which means that the recovery rate of NPLs in these cases will be
inclined to be classified into zero. Let us see Figure 3.

In Figure 3, we can see that there are significant differences among the ratios of zero
recovery in different cases. When the obligors run well or in financial distress, the ratio of
their NPLs with positive recovery is very high. Especially when the obligors operate well,
the recovery rates of NPLs in this category are all positive.

When the business situation of an obligor is in a state of bankruptcy, under-insolvency-
process, shutting-down, or ceasing-business, the ratio of their NPLs with zero recovery is very
high; the highest is the obligors in the state of bankruptcy.

We can draw some conclusions from these results: the business situation of obligors
reflects their payment ability to a great extent. The worse the business situation is, the weaker
the payment ability will be, and vice versa. When obligors enter the states of bankruptcy,
shutting-down, or ceasing-business, they have no ability to repay their loans, which will
lead to high ratio of NPLs with zero recovery. While obligors run well or even if they are in
financial distress, the cash flow of business is still in existence, which makes the probability
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of recovery much larger. So when disposing NPLs, the business situation of enterprises
should be paid much attention to. If the business situation can change with time, the NPLs
of enterprises should have been disposed when the enterprises run relatively well as far as
possible, which has positive effect.

3.3. Collateral

Due to the quality of the data, we cannot get the collateral value; so only the state variable,
that is, “whether the loan has effective mortgage”, is contained in the model.

In the discriminant function, whether the loan has effective collateral is significant,
and the difference between the coefficients in two types of discriminant function is 1.961.
This shows that effective collateral has a positive effect in obtaining positive recovery. Keep
the other variables constant; when a loan changes from noncollateral to collateral, the change
in the probability of positive recovery is e1.961 times of the change in the probability of zero
recovery. Figure 4 has made this point more clearly in a straight way.

As Figure 4 shows, the ratio of collateral NPLs with zero recovery is 10%; this ratio
is approximate 44% for the NPLs without collateral. This result shows that with effective



Journal of Applied Mathematics and Decision Sciences 9

0
50

100
150
200
250
300
350
400
450

Business acquisition Policy-off
0

0.1

0.2

0.3

0.4

0.5

0.6

Quantity in each transfer mechanism
Percentage of zero recovery

Figure 5

collateral, the probability of positive recovery will increase greatly. This is because the
collateral can be used to negotiate with the obligor or sold straightly in the secondary
market. When purchasing, managing, and disposing NPLs, the collateral should be paid
much attention to, which might determine whether NPLs have recovery and how much could
be got from the obligors.

3.4. Transfer Mechanism of NPLs

The variable “policy-off” is significant in Stepwise discrimination. The difference of
coefficient between the two discriminant functions is 1.174, which implies that the probability
of positive recovery will be larger than that of zero recovery when NPLs are commercially
bought from banks. That is, the quality of NPLs by business acquisition may be better than
the quality of NPLs by policy-off. More details can be seen in Figure 5.

As is shown in Figure 5, the ratio of NPLs by business acquisition with positive
recovery is almost 100%, while the ratio is much lower for NPLs by policy-off. This implies
that the power of market promotes healthy development of NPLs’ management, disposal,
and recovery.

3.5. Region

Some of the provinces are engaged into in the model, such as Tianjin, Fujian, and Hebei.
Combined with the result of Stepwise discrimination, the factor of “province” has a relative
small effect in classification. Further, when using the other significant variables except
“province”, the result of the classification has little change. The results of classification are
well stated in the diagram below. In combination of Figure 6, we can do more in-depth
analysis.

Ignoring the provinces with very few samples (Beijing, Hainan and Guangdong) in
Figure 6 , the ratio of NPLs with zero recovery is relatively high, coming between 40% and
60%, provided that the obligors are located in Liaoning, Jiangxi, Shandong and Guangxi
province. These provinces, other than Shandong province, are less developed regions,
especially Jiangxi and Guangxi. The ratio of NPLs with zero recovery is relatively high in
Shandong province because economic development is unbalanced there. Further analysis
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finds that most of the NPLs with zero recovery are from less developed cities. This may lead
to the high ratio of NPLs with zero recovery.

The two highest ratios of NPLs with positive recovery are from Fujian and Tianjin.
In these two provinces, NPLs commonly have positive recovery because both Fujian and
Tianjin are developed regions in China. Less developed Henan province also has a relatively
low ratio of NPLs with zero recovery, though it has not been referred in the model. A further
analysis of the sample finds that most of the NPLs in Henan belong to subcategory and doubt-
category loans and are bought from commercial banks. This is why the ratio of NPLs in
Henan with positive recovery is high and variable, “Henan” is not significant in Stepwise
discrimination model. Compared with region factors, the quality of loans plays a major
role in determining whether they have recovery. To sum up, the economic conditions in the
region surely influence the recovery of NPLs. Generally speaking, the more developed their
economy is, the larger the probability of positive recovery is. Nevertheless, the factors about
loan quality, such as the five-category classification of loans and the business situation of
companies etc., play a more important role than region factor in determining whether loans
are with positive recovery.

3.6. Industry

The results of Stepwise discrimination show that variables of industry have a small effect
on the classification; only real estate industry and retail industry show a significant impact.
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Table 3: The prediction results of whole samples.

Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

Whole
sample

Positive
recovery

Bayesian
Discrimination 406 19 95.5%

Distance 395 30 92.9%
Zero
recovery

Bayesian 19 181 90.5%
Distance 14 186 93.0%

Total
accuracy

Bayesian 93.9%
Distance 93.0%

Figure 7 shows that the ratio of NPLs with zero recovery in real estate is approximate 13%,
which implies that most of NPLs in the real estate industry have positive recovery. This is in
line with the actual situation in real estate industry, which has been developing fast over the
past 10 years in China. The other industries of which the ratios are also low are not significant.
This is mainly because the effect of industry on classification has been categorized into the
business situation and five-category classification, as concluded by analyzing corresponding
samples in these industries.

4. Predicting Models and Accuracy of Prediction

Business situation, five-category classification, collateral state, province, and industry have
been proved to be important in determining whether recovery rate of NPLs is zero or
positive, according to discriminant function and data samples. In the sequel, we will use
these variables to establish some discrimination models and verify the predicting competence
of these models. Both Bayesian discrimination and Distance discrimination will be used to
build predicting models with the variables selected by the Stepwise discrimination.

The most commonlyused method of modeling is to build models with the whole
sample and then compare the difference between the predicted data and the actual amount;
however, the adaptability of model established in this way needs to be considered carefully.
The model based on the whole samples may be well adapted to the original samples but
may also act badly for new samples. This is the so-called “over-fitting” problem. In order
to solve this problem, the cross-validation method is employed. The whole sample is then
divided into five equally subsamples. Each subsample has 125 observations which consist of
85 observations with positive recovery and 40 with zero recovery. Four of the five subsamples
are adopted to fit a model each time, and the remained one would be used for prediction. The
mean accuracy of the five submodels would be considered as the standard to select the best
model. In this paper, the predicting efficiency is compared between Bayesian discrimination
and Distance discrimination. The reason for the sample to be divided in this way lies in
consideration of balance of sample size, computing complexity and the consistency of the
statistical properties.

The results of the prediction out of whole samples by Bayesian discrimination and
Distance discrimination are shown in Table 3 .

The prediction results using cross-validation in the two discriminating methods are
shown in the following tables.
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Table 4: The prediction results of the first model using cross-validation.

Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

The first
model

In-Sample

Positive
recovery

Bayesian 323 17 95.0%
Distance 319 21 93.8%

Zero
recovery

Bayesian 14 146 91.3%
Distance 7 153 95.6%

Total
accuracy

Bayesian 93.8%
Distance 94.4%
Positive
recovery
(predicted)

Zero
recovery
(predicted)

Out-of-
Sample

Positive
recovery

Bayesian 77 8 90.6%
Distance 72 13 84.7%

Zero
recovery

Bayesian 5 35 87.5%
Distance 5 35 87.5%

Total
accuracy

Bayesian 89.6%
Distance 85.6%

Table 5: The prediction results of the second model using cross-validation.

Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

The second
model

In Sample

Positive
recovery

Bayesian 323 17 95.0%
Distance 321 19 94.4%

Zero
recovery

Bayesian 9 151 94.4%
Distance 8 152 95.0%

Total
accuracy

Bayesian 94.8%
Distance 94.6%
Positive
recovery
(predicted)

Zero
recovery
(predicted)

Out-of-
Sample

Positive
recovery

Bayesian 75 10 88.2%
Distance 73 12 85.9%

Zero
recovery

Bayesian 1 39 97.5%
Distance 1 39 97.5%

Total
accuracy

Bayesian 91.2%
Distance 89.6%

Some further results can be calculated based on the results given in the above tables.
In Bayesian discrimination, the total mean in-sample accuracy of the five models is

94%, with 94.7% accuracy for positive recovery and 92.5% accuracy for zero recovery; the
mean total out-of-sample accuracy of the five models is 92.64% with 93.6% accuracy for
positive recovery and 90.5% accuracy for zero recovery. While in Distance discrimination,
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Table 6: The prediction results of the third model using cross-validation.

Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

TheThird
model

In-Sample

Positive
recovery

Bayesian 317 23 93.2%
Distance 316 24 92.9%

Zero
recovery

Bayesian 10 150 93.8%
Distance 9 151 94.4%

Total
Accuracy

Bayesian 93.4%
Distance 93.4%
Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

Out of
Sample

Positive
recovery

Bayesian 83 2 97.6%
Distance 81 4 95.3%

Zero
recovery

Bayesian 2 38 95.0%
Distance 2 38 95.0%

Total
Accuracy

Bayesian 96.8%
Distance 95.2%

Table 7: The prediction results of the fourth model using cross-validation.

Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

The fourth
Model

In-Sample

Positive
recovery

Bayesian 324 16 95.3%
Distance 314 26 92.4%

Zero
recovery

Bayesian 17 143 89.4%
Distance 10 150 93.8%

Total
accuracy

Bayesian 93.4%
Distance 92.8%
Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

Out-of-
Sample

Positive
recovery

Bayesian 82 3 96.5%
Distance 78 7 91.8%

Zero
recovery

Bayesian 2 38 95.0%
Distance 1 39 97.5%

Total
accuracy

Bayesian 96.0%
Distance 93.6%

the mean total in-sample accuracy of the five models is 93.88% with 93.59% accuracy
for positive recovery and 94.5% accuracy for zero recovery; the mean total out-of-sample
accuracy of the five models is 90.24% with 89.6% accuracy for positive recovery and 91.5%
accuracy for zero recovery.
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Table 8: The prediction results of the fifth model using cross-validation.

Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

The Fifth
model

In-Sample

Positive
recovery

Bayesian 323 17 95.0%
Distance 321 19 94.4%

Zero
recovery

Bayesian 10 150 93.8%
Distance 10 150 93.8%

Total
accuracy

Bayesian 94.6%
Distance 94.2%
Positive
recovery
(predicted)

Zero
recovery
(predicted)

Accuracy

Out-of-
Sample

Positive
recovery

Bayesian 81 4 95.3%
Distance 77 8 90.6%

Zero
recovery

Bayesian 9 31 77.5%
Distance 8 32 80.0%

Total
accuracy

Bayesian 89.6%
Distance 87.2%

Based on the prediction results, we can conclude the following.

(1) The in-sample accuracy and out-of-sample accuracy are both fairly high regardless
of the discrimination method employed.

(2) Bayesian discrimination has a higher total accuracy than Distance discrimination.
It is related to the sample structure and the characters of the two discriminations.
The accuracy of Bayesian discrimination is more likely to be affected by the prior
probability than the Distance discrimination. Provided we have chosen the right
prior probability, Bayesian method would have better accuracy.

5. Predicting Zero Recovery for Obligors with Several Loans

As mentioned in Section 2, obligors are divided into two types: obligors having one loan or
obligors with several loans. In this section, we extend the models in the above section to
classify the zero recovery and positive recovery for the obligors with several loans. The main
idea is described as follows.

First, assume that whether one loan is zero recovery or not is independent from other
loans of the obligor. To be specific, assuming one obligor has n loans: A1, A2, . . . , An, we can
determine whether the obligor’s recovery is zero or not by the information of this customer
and all his loans and by the linear discriminating function f1 and f2 we derive from the model.
Assuming that the recovery state of the ith loan is Ii, which is a discrete variable with value 1
if the loan is positive recovery and value 0 otherwise, then, the recovery state of the obligor’s
is I =

∑n
i=1Ii. If I > 0, then this obligor has positive recovery and zero otherwise.

Since the in-sample and out-of-sample prediction accuracy of Bayesian discrimination
is better, we select Bayesian method to predict the classification. The result is displayed in
Table 9 .
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Table 9: The prediction results of obligors having several loans.

Be judged to be Be judged to be Accuracy
positive recovery zero recovery

Positive recovery 533 59 90.1%
Zero recovery 18 211 92.0%
Total accuracy 90.6%

As is shown in Table 9 , the total accuracy is quite high. There is no big difference
for the accuracy of single loan case, which proves the efficiency of the single loan model.
Moreover, the result indicates that there exists significant difference in the obligor’s economic
condition and the quality of the loans between the obligors with positive recovery and those
with zero recovery, no matter the obligors borrow one loan or several loans. So, it is essential
for commercial banks and asset management companies to pay close attention to obligors
instead of loans when defaults happen.

6. Conclusion and Future Work

This paper uses Stepwise discrimination to select important factors which determine whether
an NPL has recovery or not. Combined with statistical analysis, we give an in-depth analysis
of the significant factors on the basis of discriminant function and then we employ Distance
discrimination and Bayesian discrimination to develop several models. We test the models’
forecasting efficiency, and the results show that these models can reach a high accuracy in
prediction.

We find that there are significant differences between the NPLs with recovery and the
NPLs without recovery, which are shown in business situation, five-category classifications
for loans, transfer mechanism of loan, collateral, industry, and region, respectively. The
business situation of obligors and the quality of loans play a major role in classification.

Since it is difficult to access to financial data, some important information such as value
of the collateral as well as company’s financial statement can not be included in our models.
This will no doubt affect the prediction accuracy of models. As the data in LossMetrics are
collected from AMCs, the financial data were intentionally deleted by the commercial banks
when they transferred NPLs to AMCs with abusing excuse of business secret. Hence it is
believed that the results are possible to be improved provided that the commercial banks’
data are used for modeling.

It should be pointed out that the structure and characteristics of NPLs will gradually
change along with the economic development and time. For example, the policy-off NPLs
occurred under a given history circumstance, might not take place again. Thus the changes
make the studies on NPLs’ recovery model an everlasting job.
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1. Introduction

In developing risk models, developers employ a number of graphical and numerical tools
to evaluate the quality of candidate models. These traditionally involve numerous measures
including the KS statistic or one of many Area Under the Curve (AUC) methodologies on
ROC and cumulative Gains charts. Typical employment of these methodologies involves one
of two scenarios. The first is as a tool to evaluate one or more models and ascertain the
effectiveness of that model. Second however is the inclusion of such a metric in the model
building process itself such as the way Ferri et al. [1] proposed to use Area Under the ROC
curve in the splitting criterion of a decision tree.

However, these methods fail to address situations involving competing models where
one model is not strictly above the other. Nor do they address differing values of end points
as the magnitudes of these typical measures may vary depending on target definition making
standardization difficult. Some of these problems are starting to be addressed. Marcade [2]
Chief Technology officer of the software vendor KXEN gives an overview of several metric
techniques and proposes a new solution to the problem in data mining techniques. Their
software uses two statistics called KI and KR. We will examine the shortfalls he addresses
more thoroughly and propose a new metric which can be used as an improvement to the
KI and KR statistics. Although useful in a machine learning sense of developing a model,
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these same issues and solutions apply to evaluating a single model’s performance as related
by Siddiqi [3, chapter 6] and Mays [4, section 2] with respect to risk scorecards. We will not
specifically give examples of each application of the new statistics but rather make the claim
that it is useful in most situations where an AUC or model separation statistic (such as KS) is
used.

2. Problems with Current Methods

2.1. Overview

As previously mentioned, the references indicate that there are many ways to assess the way
in which a model classifies the outcome. Mays [4, chapter 6] separates these into a few general
categories. We are concerned with two of these.

(i) Separation statistics. Within this specifically we are concerned with the KS statistic.
Its advantages include that it is fairly easy to understand. In the context in which we
use Kolmogorov-Smirnov (KS) statistic, it is defined as the maximum separation
(deviation) between the cumulative distributions of “goods” and ”bads” as both
Mays [4, chapter 6] and Siddiqi [3, page 123] outline it.

(ii) Ranking statistics. Siddiqi [3] outlines the C statistic or area under the ROC curve
along with the Lorenz Curve, Gini index, Lift Curve, and Gains Chart. These
definitions vary somewhat from source to source in industry literature. We will
concern ourselves with the AUC of a Cumulative Gains chart similar to that used
for the KI statistic by Marcade [2].

2.2. Details of the Cumulative Gains Chart

To illustrate some of the flaws of KS and AUC statistics, let us use two graphical examples.
The figures represent example models built from actual test data of a random mailing
of potential credit card recipients in the sub-prime credit market. The sample includes
approximately 1400 cardholders who responded to credit offers. Models were built using
logistic regression with several covariates. Figures 1 and 2 are charts from 2 candidate models.

The construction of the chart is as follows.

(1) Create a logistic model. It does not need to be a logistic model but the ability to
define a level of the dependent or target variable as a successful prediction is necessary. In the
case of risk the target is often a “bad” account since bad accounts have the greatest financial
cost. Whereas if you were doing a model for a response to a mailing marketing campaign, a
response would be “good” and that would be your target. To simplify for this example, the
value of the dependent variable = 1 in this risk model will constitute a “bad” account risk. A
value of the target dependent variable = 0 will be “good”.

(2) Score the data set on the model and rank them in order from highest to lowest
probability of being bad (target = 1).

(3) Go through the ranked data set (highest to lowest probability) in a loop counting
the cumulative number of actual points in the data set which were bad (value = 1) and good
(value = 0).
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KS = 0.3

Model 1: curve of cumulative good and bad with KS
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Figure 1: Model 1 Gains Chart

KS = 0.24

Model 2: curve of cumulative good and bad with KS

C
ho

se
n
(%

)

0

0.2

0.4

0.6

0.8

1

Population (%)

0 0.2 0.4 0.6 0.8 1

Figure 2: Model 2 Gains Chart

(4) Plot these 2 sets of values in 2 curves as a percentage of the proportion of the bad
and good populations, respectively. In our risk model example the percent of the population
in Model 1 which are “bad” is approximately 15 percent. In Model 2 the definition of the risk
target variable is different so even though it is the same data set the bad rate is approximately
50 percent for the entire sample. So if there are 1400 data points and the proportion of bad
in Model 1 is .15 then the data point on the graph corresponding to (.4,.63) would mean that
by successfully picking the riskiest accounts (calculated by the model) in decreasing order it
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would take 40 percent or the accounts (or 560) to find 63 percent of the bad accounts in the
sample (or approximately 132 out of the 210 bad accounts in the 1400 sample size).

(5) Plot a 45-degree line. The meaning of this line is often glossed over quickly in
literature and often misunderstood by analysts; however, it is very key to the development
of descriptive statistics for model quality so we will detail its meaning. This line represents if
you were truly random guessing. Imagine a bag full of some green balls and some red balls. A
random ball is successively picked at random out of the hat without replacement. Its value is
cataloged as red or green. If you pick zero balls out of the bag you would get zero red. Picking
all the balls out of the hat would result in having all the red balls accounted for. Picking half
of the balls out of the bag should on average net you half of the red balls which were in the
bag regardless of the proportion of red balls. Hence the vertical axis is “as a percentage of
the bad accounts”. Choosing randomly you should get on average half the bad accounts with
half the population chosen regardless of the proportion of bad accounts.

(6) Calculate KS by taking the maximum difference between these good and bad
curves.

2.3. Shortcomings

When observing the cumulative gains charts in Figures 1 and 2, it is intuitive that the greater
the separation between the good and bad curves, the better the model. If one model has
separation across the entire ranking greater than another model with the same definition of
the target variable, then as pointed out by Piatetsky-Shapiro and Steingold [5, section 1] for
any cost versus benefit matrix the dominate model wins. However in practical models you
may not get the case where one model is strictly dominating over the other. Consider Model
2. It is easy to imagine another model which has the same KS but the distribution of the curve
curve is such that the KS occurs significantly further to the left and the curves may cross.
In fact they may cross more than once. Piatetsky-Shapiro and Steingold [5, section 1], Mays
[4, page 110], Siddiqi [3, page123], and Marcade [2] all point out that practically speaking a
model has a functional decision cutoff, and the KS may fall outside the range of risk values
used to extend credit therefore making its usefulness suspected. Further they indicate that
the performance of the model in the intended range of use is highly important.

The reality of the intended practical use of the model cutoff is also important in the
calculation of any AUC type statistic. Notice that in Figure 1 not only is the KS greater but
it occurs further to the left. This creates a bulbous shape in the curve to the left side of the
graph. When comparing 2 models it is often more important what happens in the lower
deciles. For instance in a mailing campaign for marketing the decision may be to only mail
the 20 percent of the population which is most likely to respond. Consider 2 models which
happen to have the same KS and same AUC under the bad curve. The model which is ”shifted
left” with its KS occurring earlier and AUC weighted to the left will have superior financial
performance since it is identifying a greater percentage of the target variable with a lower
percentage of population. This concept is widely known and is easy to see visually, however
there is no good quantification of this. We propose that our model statistic will account for
this. A more difficult fact to comprehend from the graph is that of the proportion of bad in the
population and its effect on KS and AUC. Consider 2 modeling situations. The first is the one
presented here in the difference between Model 1 and Model 2. Model 1 has a much lower
proportion of bad in the population as compared to Model 2 (15 percent versus 50 percent)
even though the data set is the same. This is due to redefining what constitutes a bad account.
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Mays [4, page 122] mentions different bad definitions but does not address its effect on the
statistical metrics. The situation here is that the data is entirely the same for both models with
the exception of the definiton of bad. Depending on the goal of the model the definition of bad
may be different. For instance in a credit situation using the same data set one may predict
the probability of an account being “charged off” as bad debt within 3 years of extending
a credit offer. However for purposes of expediency (rather than waiting for 3 years for the
test data to mature in performance) a surrogate endpoint may be used. As an example an
endpoint of “60 days or more in arrears at 12 months” may be used instead. The two different
definitions of bad will not have the same “bad rate”. Nor will you be able to have the same
ability to predict the indended endpoint of bad debt at 3 years if using the earlier estimate of
risk. Inherently 2 models built on these 2 different endpoints would have different values of
KS. The second case is of different populations. In prime versus subprime you have entirely
different risk levels as a population. Mays [4, chapter 7] addresses an entire chapter on KS
indicating that the KS for subprime loans may be different than prime loans but misses the
opportunity to explain that much of the difference is arithmetic. The author asserts that KS
statistics for subprime loans will be lower because they have a much higher bad rate and
concludes that the reason for the lower KS is the inability of models to differentiate between
good and bad in higher risk credit markets. As we will demonstrate this is not necessarily the
case. The difference in KS between 2 models with largely different KS can be at least partially
explained by a rather obvious arithmetic property.

3. Improving KS and AUC

3.1. The Perfect Model

Noting that KS can be misleading Siddiqi [3, page 123] suggusts one way to view the
separation between goods and bads is to plot the separation over the whole range of the
model at specified increments. This technique gives a better view of the distribution of

Separation as can be seen in Figures 3 and 4.
Notice that just like the gains chart even though there are differences in magnitude

the general shape is to increase to a peak somewhere in the middle of the distribution then
decrease. Piatetsky-Shapiro and Steingold [5] begin the discussion of creating a statistic
which can be used to account for the irregularities we have already noted. They use the
concept of an ideal or optimal model to compare the given model through “lift quality”.
The commercial software KXEN uses this concept heavily in the development of the statistics
called KI and KR. We will concentrate on the explanation of KI as it is explained in their white
paper. Consider Figures 1 and 2 redrawn in Figures 5 and 6, this time including a diagonal
line with slope = 1/badrate.

As outlined in both Piatetsky-Shapiro and Steingold [5] and Marcade [2], the upper
line represents the ideal model or perfect. If you rank the data set from highest to lowest
probability of having target value = 1 then the best you could do is be right every time. In
the analogy of the bag of red and green balls this line would be equivalent to drawing a red
ball every time until the red balls were all gone. So in the case of Model 1, 15 percent of the
population is bad and perfect model performance would be to choose 100 percent of these
bad accounts in the first 15 percent of the population by picking them all correctly. It is by
drawing this line that you then see that the model KS is constrained by the proportion of bad
and good accounts in the data set. Again that proportion is determined by two things, the
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Graph of separation on gains chart
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Figure 3: Model 1 Separation

Graph of separation on gains chart
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Figure 4: Model 2 Separation

definition of bad and the general risk level of the population. It can be immediately seen that
the assertion by Mays [4] is attributing a lower KS to a higher rate of bad due to a model not
being which is not as good at rank ordering the bad accounts starts to fall apart. You can also
see why the plots of KS in Figures 3 and 4 must go up then come down in the fashion they do.
What is less obvious at first is that this also generally means that the KS for the model will be
to the right of the corner in the perfect graph. Note in both Model 1 and Model 2 this is true.
However, depending on the application, the model’s performance may be most crucial at the
extremes rather than at the middle due to financial performance considerations.
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Model 1: curve of cumulative good and bad with perfect KS
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Figure 5: Model 1 Gains with Perfect Line

KS = 0.24

Model 2: curve of cumulative good and bad perfect KS

C
ho

se
n
(%

)

0

0.2

0.4

0.6

0.8

1

Population (%)

0 0.2 0.4 0.6 0.8 1

Figure 6: Model 2 Gains with Perfect Line

3.2. KI and KR

KXEN’s KI statistic then uses the concept laid out by Piatetsky-Shapiro and Steingold [5] to
create two statistics. We have used KXEN’s analytics tool and find it to be an outstanding
piece of software with powerful results which are easy to interpret. The KI statistic falls
between 0 and 1, gives a value of 1 for a perfect model, and gives 0 for a completely random
model. This gives it an intuitive feel for a good model metric as Marcade [2] suggests it
should. KI is calculated as a “percent of perfect”. The target (in this case bad) curve is plotted.
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Let p(x) be a function describing the distance between the line of the perfect model and the
random diagonal line. Let a(x) be a function describing distance between the curve of the
model target and the random line

KI =

∫1
0a(x)dx
∫1

0p(x)dx
. (3.1)

KR not covered in the reference is a natural extention of KI. It is a measure used on validation
data to determine stability of the model. It is essentially the KI of the validation data divided
by KI of the model data. The closer this ratio is to 1, the more stable the model. KI is an
attempt to offer some measure of “percent of perfect” for the model gains versus a perfect
model. It however leaves out a few key ideas.

(i) There is no consideration of the shape of the curve for models whose separation
may be shifted left. A model which has a relatively larger separation earlier in the
ranking is favorable. KI has no way to reward this.

(ii) It does not incorporate the full consideration of separation between both curves
but rather considers only the target. This idea will be more fully explored in our
statistic.

(iii) It is only useful as a full model metric. It cannot be used at a cutoff decision point
to evaluate a model. That is, KI(x) is not defined.

3.3. Redefining KI

Looking at the definition of KI, 2 of the 3 listed drawbacks of the statistic could be mitigated
by a small but significant shift in definition. Let us redefine KI by

KI∗ =
∫1

0

a(x)
p(x)

dx. (3.2)

This change is small but crucial. It does 2 things. First it allows us to define a function which
is a point estimate of model quality. We will call it q(x). Second it allows us to create a metric
for a range of the model risk rather than just a point or the whole model. Remember that
KS was a point estimate, and AUC statistics are typically full model statistics. By taking the
integral over a region of the model that we are practically interested in we can achieve a
statistic which answers the need,

q(x) =
a(x)
p(x)

, (3.3)

KI∗ =
∫b

a

a(x)
p(x)

dx. (3.4)

By taking (a, b) to be (0,1) you obtain a statistic on the whole model. It becomes immediately
obvious that q(x) can be used as a point estimate of model separation where q is a ratio
between actual separation and perfect separation from random. This change by itself would
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KS = 0.3

Model 1: curve of cumulative good and bad with perfect KS
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Figure 7: Model 1 Gains with Good and Bad Perfect Lines

KS = 0.24

Model 2: curve of cumulative good and bad perfect KS
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Figure 8: Model 2 Gains with Good and Bad Perfect Lines

be sufficient to be a useful improvement to KI. However there is still one more item
not addressed by this metric. That is the idea of separation between goods and bads. To
understand the necessity of this portion of the problem, let us once again redraw our two
models . In Figures 7 and 8, we insert another diagonal line with slope = 1/(goodrate).

Immediately, another visual difference between the two models is explained. Notice
that in Model 1 the good curve follows closely under the diagonal line while in Model 2
there appears to be a large separation. Once the second diagonal line is drawn it becomes
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Graph of q(x)
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Figure 9: q(x) for Both Models

Model 1 versus model 2 MVQ(x)

Model 1

Model 2

M
V

Q

0.3

0.35

0.4

0.45

Population (%)

0 0.2 0.4 0.6 0.8 1

Figure 10: MVQ for Both Models

obvious that the good curve is being constrained by the lower diagonal in the same way
the bad curve is constrained by the upper diagonal. What is the meaning of this diagonal?
Consider the problem of the red and green balls in the bag in our analogy. The upper perfect
curve represents drawing all the red balls out of the bag without error. Once you have drawn
them all, the curve must stop at 1 and continue on horizontally as there are no more red balls.
Consider the curve of green balls in this circumstance. It would remain at zero until all the red
balls had been exhausted. At that point every subsequent ball drawn would be green until
you reached 100 percent of the green balls which would naturally be obtained only after the
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last ball was drawn. Thus the progression of the good curve for a perfect model would follow
the x axis until reaching x = bad rate then rising in a straight diagonal to the point (1, 1) at a
slope of 1/(1 − badrate) or 1/(goodrate).

3.4. Cumulative Gains Model Quality

As can be seen in Figures 7 and 8. KS = 1 for a perfect model is always obtained at x =
bad rate and everywhere else separation of good and bad must be less than this. Extending
the logic used for KI, it then becomes a natural extension to consider the area between the
perfect good and bad curves as being the ideal curve. Dividing the area between the actual
model good and bad curves by the area between the perfect good and bad curves would
seem to be a good extension of KI. However this leads to the same problems discussed
with KI. This was solved by altering KI in such a way to offer a function which described
a point estimate of the ratio between actual and perfect at any point. In order to do this you
simply need to divide the separation at that point which we will call ks(x) by the perfect
separation p(x). Intuitively q(x) becomes a normalized separation statistic always between 0
and 1:

q(x) =
ks(x)
p(x)

. (3.5)

In itself it becomes a good second look at separation to supplant KS. However since we
are also interested in the performance of the entire model or the performance of the model
over a specified range of risk, integrating this function over the whole range of the model
becomes a model statistic improvement over KI and integrating over a specific range of x
values becomes an improvement to KI∗. We therefore define Q to be

Q =
∫b

a

ks(x)
p(x)

dx =
∫b

a

q(x)dx, (3.6)

where (a, b) is a region of risk in which we are interested. If chosen to be (0,1), Q becomes a
statistic on the whole model.

There is one last thing to consider. One reason KXEN’s KI statistic is so successful is
that it is easy to interpret. It is always between 0 and 1. This makes it an excellent statistic
when interpreting results. As we have shown in this paper one of the primary problems with
KS is that it does not land within any consistent range of values. By not being a standardized
statistic, it loses ability to compare one model to another. We have specifically chosen two
models which have differing KS values due to different definitions of good and bad. We
could have just as easily chosen two models with different risk populations and the same
bad definition yielding different bad rates. In both cases the challenge is to strive for a statistic
which can compare the relative effectiveness of the models.

In this case we have achieved our goal. The distribution of q is analogous to a
normalized KS point estimate of model effectiveness, and if you choose (a, b) to be (0,1) on
the whole model you achieve a good metric on the whole model. Choosing (a, b) other than
(0,1) also allows us to compare two models easily. However what it loses is the guarantee
that Q will fall between 0 and 1 and thus loses some of what we were striving for. To fix this
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consider the Mean Value Theorem from elementary calculus. By applying this theorem to our
problem we can thus guarantee that all stated goals can be achieved by any segment of the
model. This statistic is given as

MVQ =
Q

b − a
. (3.7)

4. Discussion

As we have mentioned MVQ becomes a rather useful tool to assess the quality of a model.
We plot q in Figure 9, which again is the same as plotting the KS separation at each point but
dividing by the separation of a perfect model.

Notice how you can now get a feel for the separation with respect to what was
possible. It also levels the playing field in such a way as to indicate that maybe Model 2
actually outperforms Model 1 in certain regions of the model. Specifically in the lower deciles.
As already noted there are modeling situations when this performance becomes key. We
could then calculate MVQ for the entire model, which turns out to be MVQ1 = 0.46 and
MVQ2 = 0.40. For illustration to understand the performance of the model over regions
of the model, we plot MVQ(x) taken to be MVQ on interval (0, x), In Figure 10. Note
that this plot accentuates the performance advantage of Model 2 in the first half of the
population.

4.1. Model Stability Metric

The KXEN statistic KR is an extention of KI as already noted. By similar extension of MVQ
we can similarly create a model stability metric. When creating models it is common practice
to separate a data set into: data the model is built on, and data the model is validated on. One
of the easiest and most elegant ways to test for model stability and overfit is to compare the
lift statistics of the model build data versus the lift statistics of the validation data. In this case
we want to compare MVQ(build) versus MVQ(validation). The closer the ratio of these two
is to 1, the more stable the model. We define the Model Stability Metric (MSM) to be

MSM =
MVQ(validationdata)

MVQ(builddata)
. (4.1)

4.2. Applicability

We feel that this is a valuable new tool in model performance metrics. As Marcade [2] notes
this type of metric is not only useful as a visual or manual interpretation but can be used in
a number of different algorithmic ways in a similar fashion to entropy for machine learning.
As an example Ferri et al. [1] pointed out you could use area under the ROC curve to not
only assess the quality of a decision tree but in the creation of the splits during the algorithm.
By extension MVQ can be used in a similar fashion. MVQ and q offer several key features of
a model quality statistics including what follows.
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(i) q(x) can be used as a point estimate of separation of model curves which is superior
to KS in that it is normalized between 0 and 1. This gives it an inherent advantage
to understand model performance in that it is very intuitive. The normalization
between 0 and 1 also proves superior in different risk populations of financial
modeling where the underlying risk of the population may differ substantially,
we have demonstrated that KS would necessarily differ from among scenarios
whereas q(x) would be a pure “percent of perfect”. Results can more consistently
be interpretted.

(ii) MVQ can be used as a whole model lift statistic by choosing the interval (a, b)
to be (0,1). It can also be used to measure the useful range of the model where
financial decisions will take place on any interval (a, b) without loss of generality.
As an example a risk model may have pro forma financial criteria. The cut point
in the population where credit will be extended is based on this. We may only be
interested in comparing two models below this cut point. Above this performance
cut point the two models may actually cross in performance but that is of no concern
as we have predetermined that both scenarios are unprofitable above a certain risk.

(iii) MVQ and q both give weight to higher performance early in the population
selection ranking, whereas other measures such as KS have no ability to discern
a “percent of perfect” rating. This allows for greater weight on the left for
higher performing models. This is a very key achievement for practitioners of
risk management. In the case of 2 models with similar KS the model where the
separation is further to the left will inherently be given a higher value of q and
MVQ.

(iv) It is agnostic in its assumptions of the model. Credit risk management does not
use traditional measures of model goodness such as P -value. Instead various lift
metrics are often used. MVQ is free from any assumptions regarding the model
or population itself and is only concerned with how accurately we successfully
predicted the endpoint. In the case of a simple logistic regression, the choice of 0
and 1 and the predicted probability is obvious. Many other types of models easily
lend themselves to this kind of interpretation however. In a Markov model, often
used for risk management, one only has to determine which states of the Markov
model are a success and which are failure creating a 0 and 1 outcome. Similarly
financial models may have a continuous dependent variable such as profit. Decision
criteria of the business will yield a threshold of profit which is acceptable and
not acceptable. This leads to a 0 versus 1 endpoint. In practice these financial
decisions are regularly made and it is only up to the model to predict which side
of the threshold a particular credit account falls. It does not matter whether logistic
regression, multinomial regression, Markov models, clustering, neural nets, or trees
(all important models in risk management) are used. All may be condensed into
whether the predicted outcome meets financial criteria or not and will submit to
the 0 versus 1 test. So in fact this allows you to compare the use of say a neural net
on a data set versus a logistic model versus a regression tree and have a meaningful
way to compare the results.

The ability to better understand the implications of risk in the financial world is of utmost
importance. It is precisely the lack of this ability which has been implicated in the current
financial crisis. Practitioners are often left however with a confusing myriad of models which
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do not lend themselves to traditional measures of model quality taught in classic statistics
classes. Ultimately the goodness of a model can only be determined by the proportion of the
time it is correct in predicting the outcome. Current methods of doing this such as KS are not
complete or intuitive and do not have consistent normalized measure from model to model.
MVQ answers these issues. At a practical level, the authors feel that q and MVQ are especially
useful in interpreting results at the decision level of risk management where nonstatisticians
become intimately involved.
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