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This special issue focuses on distributed control and esti-
mation of networked agent systems. It is well known that,
nowadays, most of the real-world large-scale systems can
be modeled as networked agent systems, where examples
include biological systems, multivehicle systems, and dis-
tributed sensor systems. Within this context, centralized
control laws or estimation algorithms may be no longer valid
since the size of such a networked agent system can be huge.
Furthermore, each individual agent in such a networked
systemmay have limited computational and sensing abilities;
thus, distributed control and estimation design become
necessary but challenging. Recently, distributed control and
estimation of networked agent systems have been widely
applied in various domains including distributed computing,
formation control, spacecraft control, distributed sensor net-
works, and smart grids.

This special issue contains twenty-seven papers, most
of which are related to distributed control and estima-
tion of networked agent systems. In particular, six papers
discuss coordination control for networked agent systems
with communication constrains and higher-order dynam-
ics. There are seven papers investigating synchronization
in complex networks. In addition, modeling, identification,
and optimization of networked agent systems are studied
in another set of three papers. Furthermore, dynamics and
control of networked systems are discussed in five papers.
To apply dynamics and control of networked systems into
some practical problems, six papers studied some potential
applications in social network, water quality, UAVs, and so
on.

It should be noted that the selected topics and published
papers in this special issue are not a comprehensive study
in distributed control and estimation of networked agent
systems. However, they do provide some recent advances
covering many topics in this field, which could benefit the
current research to some extent.

Wenwu Yu
Ming Cao

Guanrong Chen
Guanghui Wen

Xinghuo Yu
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This paper investigates the synchronizability of small-world networks generated from a two-dimensional Kleinberg model, which
ismore general thanNW small-world network.The three parameters of the Kleinbergmodel, namely, the distance of neighbors, the
number of edge-adding, and the edge-adding probability, are analyzed for their impacts on its synchronizability and average path
length. It can be deduced that the synchronizability becomes stronger as the edge-adding probability increases, and the increasing
edge-adding probability could make the average path length of the Kleinberg small-world network go smaller. Moreover, larger
distance among neighbors andmore edges to be added could play positive roles in enhancing the synchronizability of the Kleinberg
model. The lorentz oscillators are employed to verify the conclusions numerically.

1. Introduction

A complex network is a large set of nodes (or vertices) con-
nected by a set of links (or edges) such as coupled biological
and chemical system, neural networks, social interacting
species, the Internet, and the World Wide Web. Recently,
increasing interest has been devoted to the study of collective
behaviors in complex networks for its widely applications in
real world. Among the studies on the complex network, syn-
chronization phenomena attract the interests of most sci-
entists and engineers. Loosely speaking, synchronization is
the process in which two (or more) dynamical systems seek
to adjust a certain prescribed property of their motion to
a common behavior in the limit as time tends to infinity
either by virtue of coupling or by forcing. Synchronization of
complex networks is an important mathematical problem in
both the physical and biological sciences since it has potential
applications to diverse fields such as communications secu-
rity, seismology, and parallel image processing [1–6].

Complex networks could be classified as many types.
Among them, synchronization on small-world networks has
attracted considerable attention since the pioneering work of
Stanley Milgram in the 1960s [7]. A small-world network can

be generated by either random edge-rewiring, which gives
WS small-world network [8], or random edge-adding, which
yields theNWsmall-world network [9].TheKleinberg small-
world network, in which the edge-adding probabilities are
proportional to the length of the edge to be added, could be
seen as a more general NW small-world network.

Various literatures have already been devoted to the
studies on synchronizability of small-world networks. In the
research articles [10–13], the synchronizability of a small-
world network generated by randomly adding a fraction of
long-range shortcuts to a ring network is investigated. It can
be deduced from the theoretical analysis and numerical sim-
ulation that the synchronizability of the small-world network
becomes stronger as the edge-adding probability 𝑝 grows
larger. In [14], Tang et al. found that the synchronizability
of the network as a function of the distance is fluctuant
and there exist some distances that have almost no impact
on the synchronizability when they investigated the impact
of edge-adding number and edge-adding distance on both
synchronizability and average path length ofNWsmall-world
networks generated from ring networks via random edge-
adding. Moreover, the relationship between the synchroniz-
ability and the average path length of a small-world network
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is studied in [15–18]. The analysis and numerical simulations
show that the synchronizability of the small-world network
grows as 𝑝 increases and the average path length becomes
smaller as 𝑝 goes larger. Therefore, it can be deduced that
the decreasing in the average path length may result in the
increasing synchronizability. These phenomena are interest-
ing, and a natural question is that whether other small-world
networks have similar properties, which motivates us to take
a two-dimensional Kleinberg small-world network [19] as an
example and investigate the impact factors of such network.
It should be mentioned that the synchronizability of an undi-
rected Kleinberg small-world network was investigated in
[20]. However, the Kleinberg model is built as a directed
network in [19]. Thus, the directions of the edge-adding in
building the Kleinberg model are considered in this paper.
Moreover, [20] only discussed the relationship between the
edge-adding probability and the synchronizability of the
small-world network,while in this paper the three parameters
of the Kleinberg model, namely, the distance of neighbours,
the number of edge-adding, and the edge-adding probability,
would be analyzed for their impacts on its synchronizability
and average path length. Actually, this paper improves the
results in [20].

In this paper, we investigate the impacts of the distance of
neighbors, the number of edge-adding and the edge-adding
probability on the synchronizability of the Kleinberg small-
world network.The Kleinberg small-world network is an𝑁×

𝑁 two-dimensional one. We add 𝑞 edges on the nodes with
certain probability Π. Then, we could get some conclusions
about impact factor on the synchronizability and the average
path length of the Kleinberg small-world network, which are
complementary to the studies on the synchronizability of the
small-world networks.

2. Preliminaries

First of all, we build a Kleinberg small-world network in the
way introduced in [19]. Figure 1 also comes from [19], and we
redraw it in our case to be studied. A Kleinberg small-world
network is composed of the set of lattice points in an 𝑁 × 𝑁

square, which are denoted as {(𝑖, 𝑗) : 𝑖 ∈ {1, 2, . . . , 𝑁}, 𝑗 ∈

{1, 2, . . . , 𝑁}}. The lattice distance between two nodes (𝑖, 𝑗)

and (𝑘, 𝑙) is defined to be the number of “lattice steps,” which
could be written as 𝑑((𝑖, 𝑗), (𝑘, 𝑙)) = |𝑘 − 𝑖| + |𝑙 − 𝑗|. Let 𝑝

and 𝑞 be positive integers. The node 𝑢 is connected with
every other node within lattice distance 𝑝, and we name it
local contact. We also construct edges from 𝑢 to 𝑞 other
nodes using independent random trials, which are called
the long-range contacts. The probability of edge connected
between 𝑢 and V is proportional to [𝑑(𝑢, V)]−𝛼, where 𝛼 is
a given constant. Precisely speaking, this probability of the
connections between 𝑢 and V is denoted as Π

𝑢V, and

Π
𝑢V =

[𝑑 (𝑢, V)]−𝛼

∑V [𝑑 (𝑢, V)]−𝛼
. (1)

Figure 1 shows basic structures of a 10 × 10 Kleinberg
small-world network. In Figure 1(b), there are two long-rang
contacts from a node “𝑎” to a node “𝑏” and a node “𝑐”.

Actually, two long-range contacts are added to every node in
this network if 𝑞 = 2.

Actually, this model could be interpreted in the point of
“geography” in [19]. Individuals live on a grid and know their
neighbors for some number of steps in all directions; they
also have some number of acquaintances distributed more
broadly across the grid. If we fixed 𝑝 and 𝑞 and let the value of
the exponent𝛼 vary,wewould have a one-parameter family of
network models. When 𝛼 = 0, the uniform distribution over
long-range contacts could be obtained, which means long-
range contacts are chosen independently of their position on
the grid. In this sense, the Kleinberg small-world network
could be seen as a kind of NW small-world network. As 𝛼

increases, the long-range contacts of a node becomemore and
more clustered in their vicinity on the grid. Thus, 𝛼 could be
seen as a basic structural parameter measuring how widely
“networked” the underlying society of nodes is. Considering
that 𝛼 could reveal some basic properties of the Kleinberg
network, in this paper, we investigate the effect of adding-
edges probabilities, namely, the effect of the parameter 𝛼 on
the synchronizability of the Kleinberg small-world network.
Moreover, two other parameters of theKleinberg small-world
network, namely, the distance of neighbors and the number
of edge-adding, are also considered for their influences of
synchronizability.

Next, the synchronizability analysis of the complex
dynamical system follows [21]. The complex dynamical sys-
tem considered in this paper consists of coupled continuous-
time nonlinear oscillators. Since chaotic behaviors are com-
mon since the intrinsic nonlinearity exists in each individual
oscillator, chaotic synchronization is addressed by choosing
the parameters of each oscillator such that it exhibits a chaotic
attractor in order to be general. Then, the network of 𝑁 × 𝑁

identical dynamics nodes considered in this paper can be
written as

𝑥
𝑖

= 𝐹 (𝑥
𝑖

) + 𝑐

𝑁×𝑁

∑

𝑗=1

𝑎
𝑖𝑗

𝐻(𝑥
𝑗

) . (2)

Here, if the node is located at (𝑘, 𝑙) in the network, we denote
the index 𝑖 = 𝑁(𝑘 − 1) + 𝑙, and thus, 𝑖 ∈ {1, 2, 3, . . . , 𝑁

2

}.
𝑥
𝑖

∈ 𝑅
𝑛 is the state vector of the 𝑖th node in all 𝑁 × 𝑁 nodes.

𝑐 is a positive constant coupling strength. 𝐹(⋅) : 𝑅
𝑛

→ 𝑅
𝑛

is a well-defined nonlinear function and 𝐻(⋅) : 𝑅
𝑛

→ 𝑅
𝑛

is a coupling function. 𝐴 = (𝑎
𝑖𝑗

)
𝑁

2
×𝑁

2 is a coupling matrix
determined by the connection topology. That is, 𝑎

𝑖𝑗

= 1 if
the node 𝑖 and 𝑗 have connections, and 𝑎

𝑖𝑗

= 0 otherwise.
Moreover, it is required that 𝑎

𝑖𝑖

= −∑
𝑁

2

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗

for any 𝑖 ∈

1, 2, . . . , 𝑁
2. Note that 𝐴 is not necessarily symmetric since

our considered network is directed. Moreover, there is only
one zero eigenvalue of the matrix𝐴 such that the eigenvalues
can be sorted as

0 = 𝜆
1

> Re 𝜆
2

≥ Re 𝜆
3

≥ ⋅ ⋅ ⋅ ≥ Re 𝜆
𝑁

2 . (3)

Let 𝑑𝑠/𝑑𝑡 = 𝐹(𝑠), and 𝑠(𝑡) is automatically a solution of (2).
Then, the synchronous state is defined as 𝑥

1

= 𝑥
2

= ⋅ ⋅ ⋅ =

𝑥
𝑁

2 = 𝑠. Let 𝜉
𝑖

= 𝑥
𝑖

(𝑡)−𝑠. For the system described by (2), the
variational equations governing the time evolution of the set
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(a) (b)

Figure 1: (a) A two-dimensional Kleinberg network with 10×10 nodes, the distance of local contacts 𝑝 = 1, and it has no long-range contacts
thus 𝑞 = 0. (b) The contacts of a node “𝑎” with the distance of local contacts 𝑝 = 1 and the number of long-range contacts 𝑞 = 2. “𝑎𝑏” and
“𝑎𝑐” are the two long-range contacts.

of infinitesimal vectors about the synchronous solution 𝜉
𝑖

(𝑡)

are

𝜉
𝑖

= 𝐷𝐹 (𝑠) 𝜉
𝑖

+ 𝑐

𝑁

2

∑

𝑗=1

𝑎
𝑖𝑗

𝐷𝐻(𝑠) 𝜉
𝑗

, 𝑖 = 1, 2, . . . , 𝑁
2

, (4)

where 𝐷𝐹(𝑠) and 𝐷𝐻(𝑠) are the 𝑛 × 𝑛 Jacobian matrices of the
corresponding vector functions evaluated at 𝑠(𝑡), respectively.
Let 𝜉 = {𝜉

1

, 𝜉
2

, . . . , 𝜉
𝑁

2}. Then, (4) can be rewritten as

̇𝜉 = 𝐷𝐹 (𝑠) 𝜉 + 𝑐𝐷𝐻 (𝑠) 𝜉𝐴. (5)

By using Jordan transformation with respect to the coupling
matrix 𝐴, we have

Λ = 𝑃
−1

𝐴𝑃 = (

0

𝐵
1

d
𝐵
𝑙

), (6)

where 𝑃 is composed of the eigenvectors of 𝐴. And 𝐵
𝑖

in (6)
are blocks of the form

𝐵
𝑖

= (

𝜆

1 𝜆

d d
1 𝜆

) , (7)

where 𝜆 is one of the eigenvalues of 𝐴.
Letting 𝜂 = {𝜂

1

, 𝜂
2

, . . . , 𝜂
𝑁

2} = 𝜉(𝑃
−1

)
𝑇 and employing

(6), (5) could also be written as

̇𝜂 = 𝐷𝐹 (𝑠) 𝜂 + 𝑐𝐷𝐻 (𝑠) 𝜂Λ
𝑇

. (8)

Then, each block of the Jordan canonical form corresponds
to a subject of these columns in 𝜂, which obeys a subset of

equations in (8). For instance, if block𝐵
𝑖

is𝑚×𝑚, and suppose
the corresponding columns of 𝜂 are denoted by 𝜂

1

, 𝜂
2

, . . . , 𝜂
𝑚

,
which could be seen as the modes of perturbations in the
generalized eigenspace associated with eigenvalue 𝜆

𝑖

, then
the equations have the following form

̇𝜂
1

= [𝐷𝐹 (𝑠) + 𝑘
𝑖

𝐷𝐻(𝑠)] 𝜂
1

,

̇𝜂
2

= [𝐷𝐹 (𝑠) + 𝑘
𝑖

𝐷𝐻(𝑠)] 𝜂
2

+ 𝑐𝐷𝐻 (𝑠) 𝜂
1

,

...

̇𝜂
𝑚

= [𝐷𝐹 (𝑠) + 𝑘
𝑖

𝐷𝐻(𝑠)] 𝜂
𝑚

+ 𝑐𝐷𝐻 (𝑠) 𝜂
𝑚−1

,

(9)

where 𝑘
𝑖

= 𝑐𝜆
𝑖

. Each block of the previous decoupled equa-
tion (9) is structurally the samewith only the factor of 𝑘

𝑖

being
different [21].

Define 𝑘 as a normalized coupling parameter that takes
values in the set {𝑘 = 𝑐𝜆

𝑖

: 𝑖 = 1, 2, . . . , 𝑁
2

}. Denote
𝐿(𝑘) as the largest Lyapunov exponent, which is determined
from (9). In order to achieve the synchronization of the
network, 𝐿(𝑘) is required to be negative. It can be explained
that a small disturbance from the synchronization state will
diminish exponentially so that the synchronous solution is
stable. On the contrary, the synchronous solution is unstable
and cannot be realized physically if 𝐿(𝑘) is positive because
small perturbations from the synchronous state will lead
to trajectories that diverge from the state. For the reasons
mentioned above, in order to achieve the synchronization of
the coupled oscillator network (2), all normalized coupling
parameters 𝑘 = 𝑐𝜆

𝑖

for 𝑖 = 2, . . . , 𝑁
2 should fall in a region

in which 𝐿(𝑘) should be negative. This region is called the
synchronized region. In case that the synchronized region is
bounded, namely, �̃� < −Re 𝑘 < �̂�, then from (3), we have

�̃� < −𝑐Re 𝜆
2

≤ −𝑐Re 𝜆
3

≤ ⋅ ⋅ ⋅ ≤ −𝑐Re 𝜆
𝑁

2 < �̂�. (10)
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When the spread in the eigenvalue Re 𝜆
𝑖

goes smaller, it
becomes easier that all the numbers −𝑐Re 𝜆

3

fall into the
bounded region �̃� < 𝑘 < �̂�, which means that the synchro-
nizability of the network is better. Thus, we need the ratio of
eigenvalue satisfying

𝑅 =
Re 𝜆
𝑁

2

Re 𝜆
2

<
�̂�

�̃�
(11)

to be smaller. In case that the synchronized region is un-
bounded, then �̃� < −𝑐Re 𝜆

𝑖

< ∞ for 𝑖 = 1, 2, . . . , 𝑁
2. Thus,

the synchronizability of the network is better if the eigenvalue
Re 𝜆
2

is smaller.Thus, Re 𝜆
2

andRe 𝜆
𝑁

2/Re 𝜆
2

are used as the
measure to evaluate the synchronizability of the network.

3. Influencing Factors the
Synchronizability of a Network

An extensive numerical analysis is employed to investigate
the influences of the distance of neighbors, the number of
edge-adding, and the edge-adding probability on the network
synchronizability. The Kleinberg small-world networks we
considered have 10 × 10 nodes and 15 × 15 nodes, respec-
tively. Identical dynamics are assumed for all the nodes in the
Kleinberg small-world network.

Let𝑝 = 1, 2, whichmeans that each node in the Kleinberg
small-world network is connected with its nearest neighbors
in distance 1 or in distance 2. They form the local contacts.
Then, 𝑞 long-range contacts are added with the probability
Π defined in (1). Thus, different 𝑞 and 𝛼 would result in
different corresponding Laplacian matrix. The eigenvalues of
such Laplacian matrix could be calculated. Since the nodes
with long-range contacts added are chosen randomly, the
Laplacianmatrix would be different on each trial.Thus, in the
simulation, 100 and 225 different realizationswere performed
and the results were averaged.

Let 𝑞 = 1, 2, respectively, for the network with 10 × 10

nodes and 15 × 15 nodes. The parameter 𝛼 in (1) on the
probability of adding the long-range contacts is chosen from
0.1 to 10 with step size 0.1. Their corresponding Laplacian
eigenvalues Re 𝜆

2

and Re 𝜆
𝑁

2/Re 𝜆
2

as a function of 𝛼 are
found, which was shown in Figures 2 and 3, respectively.

Figures 2 and 3 reveal that the values of Re 𝜆
2

andRe 𝜆
𝑁

2/

Re 𝜆
2

are continuously and monotonically increasing as 𝛼

increases. Itmeans that the synchronizability of the Kleinberg
small-world network becomes stronger as the edge-adding
probability increases. Note that when 𝛼 = 0, Kleinberg small-
world network could be seen as theNWsmall-world network.
This result corresponds with the observations in references
[10–13]. Also, we can see from Figures 2 and 3 that the
synchronizability is enhanced as the number of long-range
contacts 𝑞 and the distance of neighbours 𝑝 increase. It could
be explained that the average path length is reduced as more
long-range contacts are built and more short-range contacts
are constructed. We illustrate this relationship in Figure 4.

It is well known that as the distance of the edges added
increases, the synchronizability of the network becomes
stronger since the average path length is shortened. The
probability of edge-adding between 𝑢 and V is proportional

0 2 4 6 8 10
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Figure 2: The relationship between Re 𝜆
2

and 𝛼 for the Kleinberg
small-world network with (a) 10 × 10 nodes and (b) 15 × 15 nodes.

to [𝑑(𝑢, V)]−𝛼, which is to say that the shorter distance of the
edge-adding has larger probabilities than the longer distance
of edge-adding for any given 𝛼. Then, it can be concluded
that if 𝛼 is fixed, the synchronizability of the Kleinberg small-
world network would be better though the probability of
edge adding will become smaller. Figures 2, 3, and 4 show
that if 𝑞 is fixed, in other words, 𝑞 edges would be added
into the network, the synchronizability becomes weaker as
we take a larger value of 𝛼. Then, it means that if distance
of the edge-adding and the number of edges are fixed, the
synchronizability is enhanced as the probability of the edge-
adding increases. Meanwhile, in the Kleinberg small-world
network, the probabilities of the long-range contacts decrease
as the distance between two nodes increases, especially for
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Figure 3: The relationship between Re𝜆
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2/Re 𝜆
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and 𝛼 for the
Kleinberg small-world network with (a) 10×10 nodes and (b) 15×15

nodes.

large 𝛼. As 𝛼 increases, the long-range contacts of a node
becomemore andmore clustered in their vicinity on the grid.

4. Numerical Simulation for
Lorentz Oscillators

The linearly coupled Kleinberg small-world network con-
taining identical Lorentz oscillators is used for numerical
simulations. Such oscillators can be written as

𝐹 (𝑥
𝑖

) =

{{

{{

{

𝛼
𝑠

(𝑥
𝑖2

− 𝑥
𝑖1

) ,

𝛾
𝑠

𝑥
𝑖1

− 𝑥
𝑖1

𝑥
𝑖3

− 𝑥
𝑖2

,

𝑥
𝑖1

𝑥
𝑖2

− 𝛽
𝑠

𝑥
𝑖3

,

(12)
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Figure 4: The average path length as a function of 𝛼 with different
values of 𝑝 and 𝑞 for the Kleinberg small-world network with (a)
10 × 10 nodes and (b) 15 × 15 nodes.

for 𝑖 = 1, 2, . . . , 𝑁
2. Here, 𝛼

𝑠

= 10, 𝛽
𝑠

= 8/3, and 𝛾
𝑠

= 28. Let

𝐻 = [

[

1 0 0

1 0 0

0 0 0

]

]

. (13)

In the simulation, we consider a network with 𝑁 = 10 (100
nodes). Define the error term as

𝐸 (𝑡) = √
2

𝑁2 (𝑁2 − 1)
∑

𝑗>𝑖


𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)


2

. (14)
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Figure 5: The errors of synchronization among 10 × 10 different
Lorentz dynamics oscillators over time for 𝑝 = 1, 𝑞 = 0, 1, 2, and
𝛼 = 0.1, 5, respectively.The inset is an amplified figure on some time
interval.

If lim
𝑡→∞

𝐸(𝑡) = 0, the complex network achieves synchro-
nization. We consider that the synchronizability would be
better if 𝐸(𝑡) goes to zero faster.

For the network (2), let the coupling strength 𝑐 = 70, the
distance of local contacts 𝑝 = 1, the number of long-range
contacts 𝑞 = 0, 1, 2, and the parameter 𝛼 = 0.1, 5 in the
probability of edge-adding (1), respectively. Figure 5 shows
how 𝐸(𝑡) evolved in network with the same initial values
chosen randomly in the interval [−10, 10]. It can be seen
from Figure 5 that the synchronizability of the network is
enhanced as the number of long-range contacts increases,
and the synchronizability of the network becomes better as
𝛼 goes smaller, which means that longer distance of the edge-
adding could still enhance the synchronizability though the
probabilities of longer distance of the edge-adding are small
compared with the probabilities of shorter distance of edge-
adding. Moreover, it can be seen that the synchronizability
goes better as the number of edges added becomes larger.

5. Conclusion

The impact factors of synchronizability of two-dimensional
Kleinberg small-world network are investigated in this paper.
Through mathematical analysis and numerical simulations,
we show that the Kleinberg small-world network shares sim-
ilar properties as NW small-world networks but Klein-
berg small-world network is more general. Namely, we see
that synchronizability of two-dimensional Kleinberg small-
world network is enhanced as the edge-adding probability

increases, and the average path length of the Kleinberg small-
world network decreases with the increasing edge-adding
probability. Moreover, larger distance among neighbors and
more edges to be added could play positive roles in enhancing
the synchronizability of the Kleinberg model. A network of
Lorentz oscillators is taken to make numerical simulations in
order to verify the observed phenomena.
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The synchronization problem of stochastic complex networks withMarkovian switching and time-varying delays is investigated by
using impulsive pinning control scheme. The complex network possesses noise perturbations, Markovian switching, and internal
and outer time-varying delays. Sufficient conditions for synchronization are obtained by employing the Lyapunov-Krasovskii
functional method, Itö’s formula, and the linear matrix inequality (LMI). Numerical examples are also given to demonstrate the
validity of the theoretical results.

1. Introduction and Model Description

Collective behaviors in complex networks and systems have
attracted increasing attention in recent years due to their wide
applications in physics, mathematics, engineering, biology,
and so forth (see [1, 2] and references therein).While complex
networks are ubiquitously found in nature and in themodern
world, such as neural networks, socially interacting animal
species, power networks, wireless sensor networks, Internet,
and the World Wide Web.

In the past few decades, the synchronization problems
in complex networks have attracted increasing attention.
Many synchronization patterns have been studied, including
complete synchronization [3], cluster synchronization [4–6],
phase synchronization [7], and partial synchronization [8].
There are several control methods to guide the dynamics
of a complex network to a desired state, such as adaptive
control [9], feedback control [10], intermittent control [11],
fuzzy control [12], impulsive control [13, 14], and pinning
control [5, 6, 15, 16]. Synchronization of complex networks
holds particular promise for applications to many fields [17–
21].

Synchronization in complex dynamical networks is real-
ized via information exchanges among the interconnect
nodes [22]. The signal traveling along real physical system is

usually perturbed randomly by the environmental elements,
such as noises, the structures of the interconnections, time
delays, and the positions of nodes [9]. One popular model is
the Markovian switching model driven by continuous-time
Markov chains in the sciences and industries (see [23–26] and
references therein). In [23, 24], Mao et al. studied stability
and controllability of stochastic differential delay equations
with Markovian switching, while [25, 26] discussed the
exponential stability of stochastic delayed neural networks.
Liu et al. [26], on the other hand, investigated the syn-
chronization of discrete-time stochastic complex networks
with Markovian jumping and mode-dependent mixed time
delays. In [16], Wang et al. investigated the mean-square
exponential synchronization of stochastic complex networks
with Markovian switching and time-varying delays by using
the pinning control method, which is described as

𝑑𝑥
𝑖

(𝑡)

=
{

{

{

𝑓 (𝑡, 𝑥
𝑖

(𝑡) , 𝑥
𝑖

(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑎
𝑖𝑗

(𝑟 (𝑡)) Σ (𝑥
𝑗

(𝑡) − 𝑥
𝑖

(𝑡))
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+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑏
𝑖𝑗

(𝑟 (𝑡)) Σ (𝑥
𝑗

(𝑡 − 𝜏
𝑐

(𝑡)) − 𝑥
𝑖

(𝑡 − 𝜏
𝑐

(𝑡)))

+ 𝑢
𝑖

(𝑡)
}

}

}

𝑑𝑡

+ 𝜎
𝑖

(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏
𝑐

(𝑡)) , 𝑟 (𝑡)) 𝑑𝑤
𝑖

(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑢
𝑖

(𝑡) (𝑖 = 1, 2, . . . , 𝑁) are the linear state feedback
controllers that are defined by

𝑢
𝑖

(𝑡) = {
−𝜀
𝑖

(𝑥
𝑖

(𝑡) − 𝑠 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑙,

0, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,
(2)

and 𝜀
𝑖

> 0 (𝑖 = 1, 2, . . . , 𝑙) are the control gains.
Pinning control has been proved to be effective for

the synchronization of complex dynamical networks with
continuous state coupling [15, 16, 27]. In many systems,
the impulsive effect is a common phenomenon due to
instantaneous perturbations at certain moments [27, 28].
Impulsive control strategies have beenwidely used to stabilize
and synchronize coupled complex dynamical systems, such
as signal processing system, computer networks, automatic
control systems, and telecommunications [13]. In [27], pin-
ning impulsive strategy is proposed for the synchronization
of stochastic dynamical networks with nonlinear coupling.
Zhou et al. studied synchronization in complex delayed
dynamical networks with impulsive effects in [28]. And Zhu
et al., in [29], investigated the exponential stability of a class
of stochastic neural networks with both Markovian jump
parameters and mixed fixed time delays. Can the stochastic
dynamical network with Markovian switching and time-
varying delays be synchronized by impulsive pinning control?
This paper is devoted to solving this problem.

In this paper, we study the synchronization of stochastic
complex networks with Markovian switching by using the
impulse control method. We consider a kind of stochas-
tic complex networks with internal time-varying delayed
couplings, Markovian switching, and Wiener processes. By
applying the Lyapunov-Krasovskii functional method, Itö’s
formula and the linear matrix inequality (LMI), some suf-
ficient conditions for synchronization of these networks are
derived. Numerical examples are finally given to demonstrate
the effectiveness of the proposed impulsive pinning strategy.

Notations. Throughout this paper, R𝑛 will denote the 𝑛-
dimensional Euclidean space and R𝑛×𝑛 the set of all 𝑛 × 𝑛
real matrices. The superscript 𝑇 will denote the transpose of
a matrix or a vector. And Tr(⋅) stands for the trace of the
corresponding matrix. 1

𝑛

= (1, 1, . . . , 1)
𝑇

∈ R𝑛, and 𝐼
𝑛

is
the 𝑛-dimensional identity matrix. For square matrices 𝑀,
the notation 𝑀 > 0 (<0) will mean that 𝑀 is a positive-
definite (negative-definite) matrix. 𝜆max(𝐴) and 𝜆min(𝐴) will
denote the greatest and least eigenvalues of a symmetric
matrix, respectively. ̌𝑝 = max{𝑝

1

, 𝑝
2

, . . . , 𝑝
𝑛

}, and 𝑝 =

min{𝑝
1

, 𝑝
2

, . . . , 𝑝
𝑛

}.

2. Preliminaries

Let (Ω,F, {F
𝑡

}
𝑡≥0

,P) be a complete probability space with a
filtration {F

𝑡

}
𝑡≥0

that is right continuous withF
0

containing
all the P-null sets. 𝐶([−𝜏, 0];R𝑛) will denote the family of
continuous functions 𝜙 from [−𝜏, 0] to R𝑛 with the uniform
norm ‖𝜙‖

2

= sup
−𝜏≤𝑠≤0

𝜙(𝑠)
𝑇

𝜙(𝑠). And 𝐶
2

F
0

([−𝜏, 0];R𝑛)

denotes the family of all F
0

measurable, 𝐶([−𝜏, 0];R𝑛)-
valued stochastic variables 𝜉 = {𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} such that
∫
0

−𝜏

E‖𝜉(𝑠)‖
2

𝑑𝑠 ≤ ∞, where E stands for the correspondent
expectation operator with respect to the given probability
measureP.

Consider a complex network consisting of 𝑁 identical
nodes with Markovian switching

𝑑𝑥
𝑖

(𝑡) =
{

{

{

𝑓 (𝑥
𝑖

(𝑡) , 𝑥
𝑖

(𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑎
[𝑟(𝑡)]

𝑖𝑗

Σ𝑥
𝑗

(𝑡)

+

𝑁

∑

𝑗=1

𝑏
[𝑟(𝑡)]

𝑖𝑗

Σ𝑥
𝑗

(𝑡 − 𝜏
𝑐

(𝑡))
}

}

}

𝑑𝑡

+ 𝜎
[𝑟(𝑡)]

𝑖

(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏
𝑐

(𝑡))) 𝑑𝑤 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(3)

where 𝑥
𝑖

(𝑡) = (𝑥
𝑖1

(𝑡), 𝑥
𝑖2

(𝑡), . . . , 𝑥
𝑖𝑛

(𝑡))
𝑇

∈ R𝑛 is the state
vector of the 𝑖th node of the network, 𝑓(𝑥

𝑖

(𝑡), 𝑥
𝑖

(𝑡 − 𝜏(𝑡))) =

[𝑓
1

(𝑥
𝑖

(𝑡), 𝑥
𝑖

(𝑡−𝜏(𝑡))), 𝑓
2

(𝑥
𝑖

(𝑡), 𝑥
𝑖

(𝑡−𝜏(𝑡))), . . . , 𝑓
𝑛

(𝑥
𝑖

(𝑡), 𝑥
𝑖

(𝑡−

𝜏(𝑡)))]
𝑇 is a continuous vector-valued function, Σ = diag{

1

,

2

, . . . , 
𝑛

} is an inner coupling matrix of the networks that
satisfies 

𝑗

> 0, 𝑗 = 1, 2, . . . , 𝑛, and 𝑟(𝑡) are the continuous-
time Markov processes that describe the evolution of the
nodes at time 𝑡. Here, 𝐴[𝑟(𝑡)] = [𝑎

[𝑟(𝑡)]

𝑖𝑗

] ∈ R𝑛×𝑛 and 𝐵[𝑟(𝑡)] =
[𝑏
[𝑟(𝑡)]

𝑖𝑗

] ∈ R𝑛×𝑛 are the outer couplingmatrices of the network
at time 𝑡 at nodes 𝑟(𝑡), 𝑡 − 𝜏

𝑐

(𝑡), respectively, such that
𝑎
[𝑟(𝑡)]

𝑖𝑗

≥ 0 for 𝑖 ̸= 𝑗, 𝑎[𝑟(𝑡)]
𝑖𝑖

= −∑
𝑁

𝑗=𝑖,𝑗 ̸= 𝑖

𝑎
[𝑟(𝑡)]

𝑖𝑗

, 𝑏[𝑟(𝑡)]
𝑖𝑗

≥ 0 for
𝑖 ̸= 𝑗 and 𝑏[𝑟(𝑡)]

𝑖𝑖

= −∑
𝑁

𝑗=𝑖,𝑗 ̸= 𝑖

𝑏
[𝑟(𝑡)]

𝑖𝑗

. Figure 1 shows the topology
structures of the switching networks for 5 nodes. 𝜏(𝑡) is the
inner time-varying delay satisfying 𝜏 ≥ 𝜏(𝑡) ≥ 0 and
𝜏
𝑐

(𝑡) is the coupling time-varying delay satisfying 𝜏
𝑐

≥

𝜏
𝑐

(𝑡) ≥ 0. Finally, 𝜎[𝑟(𝑡)]
𝑖

(𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)), 𝑥(𝑡 − 𝜏
𝑐

(𝑡))) =
𝜎
[𝑟(𝑡)]

𝑖

(𝑥
1

(𝑡), . . . , 𝑥
𝑛

(𝑡), 𝑥
1

(𝑡 − 𝜏(𝑡)), . . . , 𝑥
𝑛

(𝑡 − 𝜏(𝑡)), 𝑥
1

(𝑡 −

𝜏
𝑐

(𝑡)), . . . , 𝑥
𝑛

(𝑡 − 𝜏
𝑐

(𝑡))) ∈ R𝑛×𝑛 and 𝑤(𝑡) = (𝑤
1

(𝑡),
𝑤
2

(𝑡), . . . , 𝑤
𝑛

(𝑡))
𝑇

∈ R𝑛 is a bounded vector-form Weiner
process, satisfying

E𝑤
𝑗

(𝑡) = 0, E𝑤
2

𝑗

(𝑡) = 1,

E𝑤
𝑗

(𝑡) 𝑤
𝑗

(𝑠) = 0 (𝑠 ̸= 𝑡) .

(4)
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(A2)

123

4 5

123

4 5

(a)

(B1)
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123

4 5

123
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Figure 1:The topology structures of the switching networks for 5 nodes; (A1) and (A2) the topology structures of the coupling matrix𝐴1 and
𝐴
2, respectively; (B1) and (B2) the topology structures of the coupling matrix 𝐵1 and 𝐵2, respectively.

Let 𝑟(𝑡), 𝑡 > 0 be a right-continuous Markov chain on a
probability space that takes values in a finite state space 𝑆 =
1, 2, . . . ,𝑀 with a generator Γ = [𝛾

𝑖𝑗

] ∈ R𝑀×𝑀 given by

𝑃 {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗

Δ + 𝑜 (Δ) if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖

Δ + 𝑜 (Δ) if 𝑖 = 𝑗,
(5)

for some Δ > 0. Here 𝛾
𝑖𝑗

≥ 0 is the transition rate from 𝑖 to 𝑗
if 𝑖 ̸= 𝑗 and 𝛾

𝑖𝑖

= −∑
𝑖 ̸= 𝑗

𝛾
𝑖𝑗

, In this paper,𝐴[𝑟] is assumed to be
symmetric and irreducible, and 𝐵[𝑟] is assumed to be sym-
metric, for 𝑟 = 1, 2, . . . ,𝑀.

The initial conditions associated with (3) are

𝑥
𝑖

(𝑠) = 𝜉
𝑖

(𝑠) , − ̌𝜏 ≤ 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁, (6)

where ̌𝜏 = max{𝜏(𝑡), 𝜏
𝑐

(𝑡)}, 𝜉
𝑖

∈ 𝐶
𝑏

F
0

([− ̌𝜏, 0],R𝑛) with the
norm ‖𝜉

𝑖

‖
2

= sup
− ̌𝜏≤𝑠≤0

𝜉
𝑖

(𝑠)
𝑇

𝜉
𝑖

(𝑠).
The impulse controllers are defined by

Δ𝑥
𝑖

(𝑡
𝑘

) = 𝑥
𝑖

(𝑡
+

𝑘

) − 𝑥
𝑖

(𝑡
−

𝑘

) = 𝜖
𝑖𝑘

𝑥
𝑖

(𝑡
−

𝑘

) ,

𝑡 = 𝑡
𝑘

, 𝑘 ∈ 𝑍
+

, 𝑖 = 1, 2, . . . , 𝑁,

(7)

where 𝜖i𝑘 are constants, and {𝑡
1

, 𝑡
2

, 𝑡
3

, . . .} is the impulsive
sequence of strictly increasing impulsive instants satisfying
lim

𝑘→∞

𝑡
𝑘

= +∞, and 𝑡
𝑘

− 𝑡
𝑘−1

= 𝑇 for 𝑘 > 1.
In the case that system (3) reaches synchronization, that

is, 𝑥
1

(𝑡) = 𝑥
2

(𝑡) = ⋅ ⋅ ⋅ = 𝑥
𝑁

(𝑡) = 𝑠(𝑡), we have the following
synchronized state equation:

𝑑𝑠 (𝑡) = 𝑓 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) 𝑑𝑡

+ 𝜎 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) .
(8)

In the paper, we would control the system (3) to the
desired trajectory 𝑠(𝑡). Define 𝑒

𝑖

(𝑡) = 𝑥
𝑖

(𝑡) − 𝑠(𝑡) (𝑖 = 1,
2, . . . , 𝑁) as the synchronization error.Then, according to the
controller (7), the error system is

𝑑𝑒
𝑖

(𝑡) =
{

{

{

𝑓 (𝑥
𝑖

(𝑡) , 𝑥
𝑖

(𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑎
[𝑟(𝑡)]

𝑖𝑗

Σ𝑒
𝑗

(𝑡) +

𝑁

∑

𝑗=1

𝑏
[𝑟(𝑡)]

𝑖𝑗

Σ𝑒
𝑗

(𝑡 − 𝜏
𝑐

(𝑡))
}

}

}

𝑑𝑡

+ 𝜎
[𝑟(𝑡)]

𝑖

(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏
𝑐

(𝑡))) 𝑑𝑤 (𝑡) ,

𝑡 ̸= 𝑡
𝑘

, 𝑘 ∈ 𝑍
+

, 𝑖 = 1, 2, . . . , 𝑁,

Δ𝑒
𝑖

(𝑡
𝑘

) = 𝜖
𝑖𝑘

𝑒
𝑖

(𝑡
−

𝑘

) , 𝑡 = 𝑡
𝑘

, 𝑘 ∈ 𝑍
+

, 𝑖 = 1, 2, . . . , 𝑁,

(9)

where 𝜎[𝑟(𝑡)]
𝑖

(𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏
𝑐

(𝑡))) = 𝜎
[𝑟(𝑡)]

𝑖

(𝑥(𝑡), 𝑥(𝑡 −

𝜏(𝑡)), 𝑥(𝑡 − 𝜏
𝑐

(𝑡))) − 𝜎(𝑠(𝑡), 𝑠(𝑡 − 𝜏(𝑡))).

Definition 1 (see [16, 27]). The complex network (3) is said to
be exponentially synchronized in mean square if the trivial
solution of system (9) is such that

𝑁

∑

𝑖=1

E
𝑒𝑖(𝑡, 𝑡0, 𝜉𝑖)


2

≤ 𝐾𝑒
−𝜅𝑡

, (10)

for some 𝐾 > 0 and 𝜅 > 0 under any initial data 𝜉
𝑖

∈

C𝑏

F
0

([− ̌𝜏, 0];R𝑛).

Definition 2 (see [9, 11, 16]). A continuous function 𝑓(𝑥, 𝑦) :
R𝑛 ×R𝑛 → R𝑛 is said to belong to the function class QUAD,
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denoted by 𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃) for some given matrix
Σ = diag{

1

, 
2

, . . . , 
𝑛

} if there exists a positive definite
diagonal matrix 𝑃 = diag{𝑝

1

, 𝑝
2

, . . . , 𝑝
𝑛

}, a diagonal matrix
Δ = diag{𝛿

1

, 𝛿
2

, . . . , 𝛿
𝑛

} and constants 𝜂 > 0, 𝜃 > 0 such that
𝑓(⋅) satisfies the condition

(𝑥 − 𝑦)
𝑇

𝑃 ((𝑓 (𝑥, 𝑧) − 𝑓 (𝑦, 𝑤)) − ΔΣ (𝑥 − 𝑦))

≤ −𝜂(𝑥 − 𝑦)
𝑇

(𝑥 − 𝑦) + 𝜃(𝑧 − 𝑤)
𝑇

(𝑧 − 𝑤)

(11)

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ R𝑛.

The following assumptions are usual and will be used
throughout this paper for establishing the synchronization
conditions [9, 11, 16].

(H1) 𝜏(𝑡) and 𝜏
𝑐

(𝑡) are bounded and continuously differen-
tiable functions such that 0 < 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) < 𝜏 < 1,
0 < 𝜏

𝑐

(𝑡) ≤ 𝜏
𝑐

and ̇𝜏
𝑐

(𝑡) < 𝜏
𝑐

< 1. Let ̌𝜏 = max{𝜏, 𝜏
𝑐

}.

(H2) There exist positive definite constant matrices Υ[𝑟]
𝑖1

,
Υ
[𝑟]

𝑖2

and Υ[𝑟]
𝑖3

for 𝑖 = 1, 2, . . . , 𝑁 and 𝑟 = 1, 2, . . . ,𝑀

such that

Tr [𝜎[𝑟]
𝑖

(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏
𝑐

(𝑡)))
𝑇

×𝜎
[𝑟]

𝑖

(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏
𝑐

(𝑡)))]

≤

𝑁

∑

𝑗=1

𝑒
𝑗

(𝑡)
𝑇

Υ
[𝑟]

𝑖1

𝑒
𝑗

(𝑡)

+

𝑁

∑

𝑗=1

𝑒
𝑗

(𝑡 − 𝜏(𝑡))
𝑇

Υ
[𝑟]

𝑖2

𝑒
𝑗

(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑒
𝑗

(𝑡 − 𝜏
𝑐

(𝑡))
𝑇

Υ
[𝑟]

𝑖3

𝑒
𝑗

(𝑡 − 𝜏
𝑐

(𝑡)) .

(12)

Remark 3. Considering Definition 2 and assumption (H2),
there exists a unique solution of (9) under the initial data
𝜉
𝑖

∈ C𝑏

F
0

([−𝜏, 0];R𝑛) (see [23, 24]).

Lemma 4 (see [23, 24]). Consider a stochastic delayed differ-
ential equation with Markovian switching of the form

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡)
(13)

on 𝑡 ≥ 0 with initial value 𝑥
0

= 𝜉 ∈ 𝐶
𝑏

𝐹

0

([−𝜏, 0];R𝑛), where

𝑓 : R
𝑛

×R
𝑛

× 𝑆 → R
𝑛

, 𝜎 : R
𝑛

×R
𝑛

× 𝑆 → R
𝑛×𝑚

.

(14)

Let 𝐶2,1(R
+

× R𝑛;R
+

) be the family of all the nonnegative
functions𝑉(𝑡, 𝑥, 𝑟) onR

+

×R𝑛 × 𝑆 that are twice continuously
differentiable in 𝑥 and once differentiable in 𝑡. Let 𝑉 ∈

𝐶
2,1

(R
+

×R𝑛×𝑆;R
+

). Define an operatorL𝑉 fromR𝑛×R
+

× 𝑆

to R𝑛 by

L𝑉 (𝑡, 𝑥, 𝑟) = 𝑉
𝑡

(𝑡, 𝑥, 𝑟) + 𝑉
𝑥

(𝑡, 𝑥, 𝑟) 𝑓 (𝑥, 𝑟)

+
1

2
Tr [𝜎(𝑥, 𝑟)𝑇𝑉

𝑥𝑥

𝜎 (𝑥, 𝑟)]

+

𝑀

∑

𝑗=1

𝛾
𝑖𝑗

𝑉 (𝑡, 𝑥, 𝑗) ,

(15)

where 𝑉
𝑡

(𝑡, 𝑥, 𝑟) = 𝜕𝑉(𝑡, 𝑥, 𝑟)/𝜕𝑡, 𝑉
𝑥

(𝑡, 𝑥, 𝑟) = (𝜕𝑉(𝑡, 𝑥,
𝑟)/𝜕𝑥

1

, . . . , 𝜕𝑉(𝑡, 𝑥, 𝑟)/𝜕𝑥
𝑛

), and 𝑉
𝑥𝑥

(𝑡, 𝑥, 𝑟) = (𝜕
2

𝑉(𝑡, 𝑥,
𝑟)/𝜕𝑥

𝑖

𝑥
𝑗

)
𝑛×𝑛

. If 𝑉 ∈ 𝐶
2,1

(R
+

×R𝑛 × 𝑆;R
+

), and then

E𝑉 (𝑡, 𝑥 (𝑡) , 𝑟) = E𝑉 (𝑡
0

, 𝑥 (𝑡
0

) , 𝑟) + E∫
𝑡

𝑡

0

L𝑉 (𝑠, 𝑥 (𝑠) , 𝑟) 𝑑𝑠

(16)

for all ∞ > 𝑡 > 𝑡
0

≥ 0, as long as the expectations of the
integrals exist.

3. Main Result

In this section, we will deduce our main results.

Theorem 5. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼

𝑟

and
𝛽
𝑟

such that

[
[
[

[

𝐴
[𝑟]

+ ̌𝛿𝐼
𝑁

− 𝛼
𝑟

𝐼
𝑁

𝐵
[𝑟]

2
𝐵
[𝑟]

2
−𝛽

𝑟

𝐼
𝑁

]
]
]

]

≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

̌𝜏 ≤ 𝜃𝑇, ̌𝜏 ≤ (1 − 𝜃) 𝑇, 0 ≤ ̌𝜏 ≤ 1 −
̌𝑞 ( ̌𝑏 + ̌𝑐)

1 + 𝜃
,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞

1 + 𝜖V
 − 𝛾𝑇 < 0,

(
1

𝑏
1

+ 𝑐
1

,
1

𝑏
2

+ 𝑐
2

, . . . ,
1

𝑏
𝑀

+ 𝑐
𝑀

)

𝑇

> Γ̃
−11

𝑀

,

(17)

where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞 +
̌𝑏 ̌𝑞

1 − 𝜏
𝑒
𝛾𝜏

+
̌𝑐 ̌𝑞

1 − 𝜏
𝑐

𝑒
𝛾𝜏

𝑐 ,

Γ̃ = diag {𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑀

} + Γ,

̌𝑎 = max
𝑟∈𝑆

𝑎
𝑟

, 𝑎
𝑟

=
𝜆max (−2𝜂𝐼𝑛 + ̌𝑝∑

𝑁

𝑖=1

Υ
[𝑟]

𝑖1

+ 2𝛼
𝑟

𝑃Σ)

̌𝑝
,

̌𝑏 = max
𝑟∈𝑆

𝑏
𝑟

, 𝑏
𝑟

=
𝜆max (∑

𝑁

𝑖=1

𝑃Υ
[𝑟]

𝑖2

+ 2𝜃𝐼
𝑁

)

𝑝
,

̌𝑐 = max
𝑟∈𝑆

𝑐
𝑟

, 𝑐
𝑟

=
𝜆max (∑

𝑁

𝑖=1

𝑃Υ
[𝑟]

𝑖3

+ 2𝛽
𝑟

𝑃Σ)

𝑝
, (18)
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then the solutions 𝑒
1

(𝑡), 𝑒
2

(𝑡), . . ., and 𝑒
𝑁

(𝑡) of system (9) are
exponentially stable in mean square. It means that the complex
dynamical network (3) can be exponentially controlled to the
objective trajectory 𝑠(𝑡) under the controllers (7).

Proof. By (44), there exists a sufficiently small constant 𝜃 > 0
such that

(
1

𝑏
1

+ 𝑐
1

,
1

𝑏
2

+ 𝑐
2

, . . . ,
1

𝑏
𝑀

+ 𝑐
𝑀

)

𝑇

≥ (1 + 𝜃) Γ̃
−11. (19)

Set (1 + 𝜃)Γ̃−11 = 𝑞 = (𝑞
1

, 𝑞
2

, . . . , 𝑞
𝑀

)
𝑇. Then Γ̃𝑞 = (1 + 𝜃)1

𝑀

,
that is,

(𝑏
𝑟

+ 𝑐
𝑟

) 𝑞
𝑟

≤ 1, 𝑎
𝑟

𝑞
𝑟

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠

𝑞
𝑠

= 1 + 𝜃. (20)

For 1 ≤ 𝑟 ≤ 𝑀, define the Lyapunov-Krasovskii function

𝑉 (𝑒 (𝑡) , 𝑟) = 𝑞
𝑟

1

2

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑃𝑒
𝑖

(𝑡) , (21)

and let 𝑒𝑘(𝑡) = (𝑒
1𝑘

(𝑡), 𝑒
2𝑘

(𝑡), . . . , 𝑒
𝑁𝑘

(𝑡))
𝑇, 𝑘 = 1, 2, . . . , 𝑛. For

any 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘

], 𝑘 = 1, 2, . . ., by Lemma 4, we have
L𝑉 (𝑒 (𝑡) , 𝑟)

= 𝑞
𝑟

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑃{𝑓 (𝑥
𝑖

(𝑡) , 𝑥
𝑖

(𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) +

𝑁

∑

𝑗=1

𝑎
[𝑟]

𝑖𝑗

Σ𝑒
𝑗

(𝑡)

+

𝑁

∑

𝑗=1

𝑏
[𝑟]

𝑖𝑗

Σ𝑒
𝑗

(𝑡 − 𝜏
𝑐

(𝑡))}

+
1

2
𝑞
𝑟

𝑁

∑

𝑖=1

Tr {𝜎
𝑖

(𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)), 𝑥(𝑡 − 𝜏
𝑐

(𝑡)), 𝑟)
𝑇

×𝑃𝜎
𝑖

(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏
𝑐

(𝑡)) , 𝑟) }

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠

𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑃𝑒
𝑖

(𝑡)

≤ 𝑞
𝑟

{−𝜂

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑒
𝑖

(𝑡) + 𝜃

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡 − 𝜏(𝑡))
𝑇

𝑒
𝑖

(𝑡 − 𝜏 (𝑡))

+

𝑛

∑

𝑘=1

𝑝
𝑘


𝑘

𝛿
𝑘

𝑒
𝑘

(𝑡)
𝑇

𝑒
𝑘

(𝑡) +

𝑛

∑

𝑘=1

𝑝
𝑘


𝑘

𝑒
𝑘

(𝑡)
𝑇

𝐴
[𝑟]

𝑒
𝑘

(𝑡)

+

𝑛

∑

𝑘=1

𝑝
𝑘


𝑘

𝑒
𝑘

(𝑡)
𝑇

𝐵
[𝑟]

𝑒
𝑘

(𝑡 − 𝜏
𝑐

(𝑡))

+
1

2
̌𝑝

𝑁

∑

𝑗=1

[

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

Υ
[𝑟]

𝑗1

𝑒
𝑖

(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡 − 𝜏(𝑡))
𝑇

Υ
[𝑟]

𝑗2

𝑒
𝑖

(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡 − 𝜏
𝑐

(𝑡))
𝑇

Υ
[𝑟]

𝑗3

𝑒
𝑖

(𝑡 − 𝜏
𝑐

(𝑡))]}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠

𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑃𝑒
𝑖

(𝑡)

= 𝑞
𝑟

{

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

(−𝜂𝐼
𝑁

+
1

2
̌𝑝

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗1

+ 𝛼
𝑟

𝑃Σ) 𝑒
𝑖

(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡 − 𝜏 (𝑡))
𝑇

(𝜃 +
1

2
̌𝑝

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗2

)𝑒
𝑖

(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡 − 𝜏
𝑐

(𝑡))
𝑇

(
1

2
̌𝑝

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗3

+ 𝛽
𝑟

𝑃Σ) 𝑒
𝑖

(𝑡 − 𝜏
𝑐

(𝑡))}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠

𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑃𝑒
𝑖

(𝑡)

+ 𝑞
𝑟

{

𝑛

∑

𝑘=1

𝑝
𝑘


𝑘

𝑒
𝑘

(𝑡)
𝑇

[𝐴
[𝑟]

+ ( ̌𝛿 − 𝛼
𝑟

) 𝐼
𝑁

] 𝑒
𝑘

(𝑡)

+

𝑛

∑

𝑘=1

𝑝
𝑘


𝑘

𝑒
𝑘

(𝑡)
𝑇

𝐵
[𝑟]

𝑒
𝑘

(𝑡 − 𝜏
𝑐

(𝑡))

−

𝑛

∑

𝑘=1

𝑝
𝑘


𝑘

𝑒
𝑘

(𝑡 − 𝜏
𝑐

(𝑡))
𝑇

𝛽
𝑟

𝑒
𝑘

(𝑡 − 𝜏
𝑐

(𝑡))}

≤ 𝑞
𝑟

{

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

(−𝜂𝐼
𝑁

+
1

2
̌𝑝

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗1

+ 𝛼
𝑟

𝑃Σ) 𝑒
𝑖

(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡 − 𝜏 (𝑡))
𝑇

(𝜃𝐼
𝑁

+
1

2
̌𝑝

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗2

)𝑒
𝑖

(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡 − 𝜏
𝑐

(𝑡))
𝑇

(
1

2
̌𝑝

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗3

+ 𝛽
𝑟

𝑃Σ) 𝑒
𝑖

(𝑡 − 𝜏
𝑐

(𝑡))}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠

𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑃𝑒
𝑖

(𝑡) .

(22)

Let

𝐸 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑖

(𝑡)
𝑇

𝑃𝑒
𝑖

(𝑡) ; (23)

then we have

L𝑉 (𝑡) ≤ 𝑎
𝑟

𝑞
𝑟

𝐸 (𝑡) + 𝑏
𝑟

𝑞
𝑟

𝐸 (𝑡 − 𝜏 (𝑡))

+ 𝑐
𝑟

𝑞
𝑟

𝐸 (𝑡 − 𝜏
𝑐

(𝑡)) +

𝑀

∑

𝑠=1

𝛾
𝑟𝑠

𝑞
𝑠

𝐸 (𝑡) ,

(24)

and by (20), we have

L𝑉 (𝑡) ≤ (1 + 𝜃) 𝐸 (𝑡) + ̌𝑏 ̌𝑞𝐸 (𝑡 − 𝜏 (𝑡)) + ̌𝑐 ̌𝑞𝐸 (𝑡 − 𝜏
𝑐

(𝑡)) .

(25)

Define

𝑊(𝑡) = 𝑒
𝛾𝑡

𝑉 (𝑡) . (26)
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Use (25) to compute the operator

L𝑊(𝑡) = 𝑒
𝛾𝑡

[𝛾𝑉 (𝑡) +L𝑉 (𝑡)]

≤ 𝑒
𝛾𝑡

[𝛾 ̌𝑞𝐸 (𝑡) + (1 + 𝜃) 𝐸 (𝑡)

+ ̌𝑏 ̌𝑞𝐸 (𝑡 − 𝜏 (𝑡)) + ̌𝑐 ̌𝑞𝐸 (𝑡 − 𝜏
𝑐

(𝑡))] .

(27)

The generalized Itô’s formula gives

𝑒
𝛾𝑡

E𝑉 (𝑡) = 𝑒
𝛾𝑡

0E𝑉 (𝑡
0

) + E∫
𝑡

𝑡

0

L𝑊(𝑠) 𝑑𝑠, (28)

for any 𝑡
𝑘

> 𝑡 > 𝑡
0

> 𝑡
𝑘−1

≥ 0. Hence we have

𝑒
𝛾𝑡

E𝑉 (𝑡) ≤ 𝑒
𝛾𝑡

0E𝑉 (𝑡
0

)

+ E∫
𝑡

𝑡

0

𝑒
𝛾𝑠

[𝛾 ̌𝑞𝐸 (𝑠) + (1 + 𝜃) 𝐸 (𝑠)

+ ̌𝑏 ̌𝑞𝐸 (𝑠 − 𝜏 (𝑠))

+ ̌𝑐 ̌𝑞𝐸 (𝑠 − 𝜏
𝑐

(𝑠))] 𝑑𝑠

≤ ̌𝑞𝑒
𝛾𝑡

0E𝐸 (𝑡
0

) + (𝛾 ̌𝑞 + 1 + 𝜃)

× ∫

𝑡

𝑡

0

𝑒
𝛾𝑠

E𝐸 (𝑠) 𝑑𝑠

+ ̌𝑏 ̌𝑞𝑒
𝛾𝜏

∫

𝑡

𝑡

0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

+ ̌𝑐 ̌𝑞𝑒
𝛾𝜏

𝑐 ∫

𝑡

𝑡

0

𝑒
𝛾(𝑠−𝜏

𝑐
(𝑠))

E𝐸 (𝑠 − 𝜏
𝑐

(𝑠)) 𝑑𝑠.

(29)

By changing variable 𝑠 − 𝜏(𝑠) = 𝑢, we have

∫

𝑡

𝑡

0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

= ∫

𝑡−𝜏(𝑡)

𝑡

0
−𝜏(𝑡0)

𝑒
𝛾𝑢

E𝐸 (𝑢)
𝑑𝑢

1 − ̇𝜏(𝑡)

≤
1

1 − 𝜏
∫

𝑡

𝑡

0
−𝜏

𝑒
𝛾𝑢

E𝐸 (𝑢) 𝑑𝑢.

(30)

Similarly, we have

∫

𝑡

𝑡

0

𝑒
𝛾(𝑠−𝜏

𝑐
(𝑠))

E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠 ≤
1

1 − 𝜏
𝑐

∫

𝑡

𝑡

0
−𝜏

𝑐

𝑒
𝛾𝑢

E𝐸 (𝑢) 𝑑𝑢.

(31)

Substituting (30) and (31) into (29), we get

𝑒
𝛾𝑡

E𝑉 (𝑡) ≤ 𝑞
𝑟

𝑒
𝛾𝑡

0E𝑉 (𝑡
0

) + 𝜑∫

𝑡

𝑡

0
− ̌𝜏

𝑒
𝛾𝑢

E𝐸 (𝑢) 𝑑𝑢. (32)

By using Gronwall inequality, we have

E𝐸 (𝑡) ≤
̌𝑞

𝑞
E𝐸 (𝑡

0

) 𝑒
𝜑(𝑡−𝑡

0
+ ̌𝜏)+𝛾(𝑡

0
−𝑡)

. (33)

On the other hand, from the construction of 𝐸(𝑡), we have

𝐸 (𝑡
𝑘

) ≤ (1 + 𝜖
𝑘

)
2

𝐸 (𝑡
−

𝑘

) , (34)

where |1 + 𝜖
𝑘

| = max
𝑖=1,2,...,𝑁

|1 + 𝜖
𝑖𝑘

|.
According to (33)-(34), let 𝑘 = ⌊(𝑡 − 𝑡

0

)/𝑇⌋, for any 𝑡 ∈
[𝑡
𝑘−1

, 𝑡
𝑘

), and we get

E𝑉 (𝑡) ≤
̌𝑞

𝑞
E𝐸 (𝑡

𝑘

) 𝑒
𝜑(𝑡−𝑡

𝑘
+ ̌𝜏)+𝛾(𝑡

𝑘
−𝑡)

≤
̌𝑞

𝑞
E𝑉 (𝑡

−

𝑘−1

) 𝑒
𝜑(𝑡−𝑡

𝑘−1
+ ̌𝜏)+𝛾(𝑡

𝑘
−𝑡)+2 ln |1+𝜖

𝑘−1
|

≤ ⋅ ⋅ ⋅ ≤ (
̌𝑞

𝑞
)

𝑘−1

E𝐸 (0) 𝑒
𝜑(𝑡+𝑘 ̌𝜏)−𝛾𝑡+∑

𝑘−1

V=1 2 ln |1+𝜖V|.

(35)

Let |1 + 𝜖| = maxV∈𝑍+ |1 + 𝜖V|, and we have

E𝐸 (𝑡) ≤ E𝐸 (0) 𝑒
𝜑(𝑡+𝑘 ̌𝜏)−𝛾𝑡+2(𝑘−1) ln( ̌𝑞/𝑞)|1+𝜖|

. (36)

Using condition (43) of Theorem 5, there exist a number
𝜂 such that E𝐸(𝑡) ≤ E𝐸(𝑡

0

)𝑒
−𝜂𝑡. Hence, E‖𝑒

𝑖

(𝑡)‖ ≤ (𝐸(𝑡
0

)/
̌𝑝)
1/2

𝑒
−(𝜂/2)(𝑡−𝑡

0
). The proof of Theorem 5 is completed.

Remark 6. The stochastic networks studied before are with-
out topological switch, and the time delays are always
assumed to be fixed. However, for the sake of applications
in the real work, these two points above should be taken
into consideration. Of course, it will enhance the difficulties
of the investigations on this network. For example, if the
network has Markovian switching topology, the structure of
the network is fast varying and the Lyapunov function is
hard to be determined. By using the Lyapunov-Krasovskii
functional, Itö’s formula, and LMI, the exponential stability
criterion of the pinning impulsive controlled Markovian
switching stochastic dynamical network with time-varying
delays was obtained. This also showed that the impulsive
pinning control is a kind of cheap control strategy for guiding
complex dynamical networks to the objective trajectory.

To makeTheorem 5 more applicative, we give the follow-
ing corollaries.

When complex dynamic networks (3) are considered
without coupled delay time (𝐵[𝑟(𝑡)] = 𝐵), we can get the fol-
lowing corollary.

Corollary 7. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼

𝑟

and
𝛽
𝑟

such that

𝐴
[𝑟]

+ ̌𝛿𝐼
𝑁

− 𝛼
𝑟

𝐼
𝑁

≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

𝜏 ≤ 𝜃𝑇, 𝜏 ≤ (1 − 𝜃) 𝑇, 0 ≤ 𝜏 ≤ 1 −
̌𝑞 ̌𝑏

1 + 𝜃
,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞
|1 + 𝜖| − 𝛾𝑇 < 0,

(
1

𝑏
1

,
1

𝑏
2

, . . . ,
1

𝑏
𝑀

)

𝑇

> Γ̃
−11

𝑀

,

(37)
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where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞 +
̌𝑏 ̌𝑞

1 − 𝜏
𝑒
𝛾𝜏

,

Γ̃ = diag {𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑀

} + Γ,

̌𝑎 = max
𝑟∈𝑆

𝑎
𝑟

, 𝑎
𝑟

=
𝜆max (−2𝜂𝐼𝑛 + ̌𝑝∑

𝑁

𝑖=1

Υ
[𝑟]

𝑖1

+ 2𝛼
𝑟

𝑃Σ)

̌𝑝
,

̌𝑏 = max
𝑟∈𝑆

𝑏
𝑟

, 𝑏
𝑟

=
𝜆max (∑

𝑁

𝑖=1

𝑃Υ
[𝑟]

𝑖2

+ 2𝜃𝐼
𝑁

)

𝑝
,

(38)

then the solutions 𝑒
1

(𝑡), 𝑒
2

(𝑡), . . . , and 𝑒
𝑁

(𝑡) of system (9) are
exponentially stable in mean square.

In another case, when we consider the system (3) without
Markov switching, that is, 𝐴[𝑟(𝑡)] = 𝐴, 𝐵[𝑟(𝑡)] = 𝐵, and 𝜎[𝑟(𝑡)]

𝑖

(𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏
𝑐

(𝑡))) = 𝜎
𝑖

(𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏
𝑐

(𝑡))),
we can get another corollary.

Corollary 8. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD((𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼 and
𝛽 such that

[
[

[

𝐴 + ̌𝛿𝐼
𝑁

− 𝛼𝐼
𝑁

𝐵

2
𝐵

2
−𝛽𝐼

𝑁

]
]

]

≤ 0,

̌𝜏 ≤ 𝜃𝑇, ̌𝜏 ≤ (1 − 𝜃) 𝑇, 0 ≤ ̌𝜏 ≤ 1 −
𝑏 + 𝑐

𝑎
,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln 1 + 𝜖V
 − 𝛾𝑇 < 0,

𝑏 + 𝑐 < 𝑎,

(39)

where

𝜑 = 𝑎 + 𝛾 +
𝑏

1 − 𝜏
𝑒
𝛾𝜏

+
𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏

𝑐 ,

𝑎 =
𝜆max (−2𝜂𝐼𝑛 + ̌𝑝∑

𝑁

𝑖=1

Υ
𝑖1

+ 2𝛼𝑃Σ)

̌𝑝
,

𝑏 =
𝜆max (∑

𝑁

𝑖=1

𝑃Υ
𝑖2

+ 2𝜃𝐼
𝑁

)

𝑝
,

𝑐 =
𝜆max (∑

𝑁

𝑖=1

𝑃Υ
𝑖3

+ 2𝛽
𝑟

𝑃Σ)

𝑝
,

(40)

then the solutions 𝑒
1

(𝑡), 𝑒
2

(𝑡), . . . , and 𝑒
𝑁

(𝑡) of system (9) are
exponentially stable in mean square.

Furthermore, when we address the system (3) with fixed
time delays, that is, 𝜏(𝑡) = 𝜏, 𝜏

𝑐

(𝑡) = 𝜏
𝑐

, the following corollary
also can be obtained.

Corollary 9. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼

𝑟

and
𝛽
𝑟

such that

[
[
[

[

𝐴
[𝑟]

+ ̌𝛿𝐼
𝑁

− 𝛼
𝑟

𝐼
𝑁

𝐵
[𝑟]

2
𝐵
[𝑟]

2
−𝛽

𝑟

𝐼
𝑁

]
]
]

]

≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

(41)

̌𝜏 ≤ 𝜃𝑇, ̌𝜏 ≤ (1 − 𝜃) 𝑇, (42)

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞

1 + 𝜖V
 − 𝛾𝑇 < 0, (43)

(
1

𝑏
1

+ 𝑐
1

,
1

𝑏
2

+ 𝑐
2

, . . . ,
1

𝑏
𝑀

+ 𝑐
𝑀

)

𝑇

> Γ̃
−11

𝑀

, (44)

where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞 + ̌𝑏 ̌𝑞𝑒
𝛾𝜏

+ ̌𝑐 ̌𝑞𝑒
𝛾𝜏

𝑐 ,

Γ̃ = diag {𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑀

} + Γ,

̌𝑎 = max
𝑟∈𝑆

𝑎
𝑟

, 𝑎
𝑟

=
𝜆max (−2𝜂𝐼𝑛 + ̌𝑝∑

𝑁

𝑖=1

Υ
[𝑟]

𝑖1

+ 2𝛼
𝑟

𝑃Σ)

̌𝑝
,

̌𝑏 = max
𝑟∈𝑆

𝑏
𝑟

, 𝑏
𝑟

=
𝜆max (∑

𝑁

𝑖=1

𝑃Υ
[𝑟]

𝑖2

+ 2𝜃𝐼
𝑁

)

𝑝
,

̌𝑐 = max
𝑟∈𝑆

𝑐
𝑟

, 𝑐
𝑟

=
𝜆max (∑

𝑁

𝑖=1

𝑃Υ
[𝑟]

𝑖3

+ 2𝛽
𝑟

𝑃Σ)

𝑝
,

(45)

then the solutions 𝑒
1

(𝑡), 𝑒
2

(𝑡), . . . , and 𝑒
𝑁

(𝑡) of system (9) are
exponentially stable in mean square.

Remark 10. In [29], the exponential stability of a class of
stochastic neural networks with both Markovian jump
parameters and mixed fixed time delays were investigated.
Therefore, we could see our results as a further research about
the stochastic dynamic network of [29].

4. Numerical Simulation

In this section, we present some numerical simulation results
that validate the theorem in the previous section.

Consider the chaotic delayed neural network

𝑑𝑠 (𝑡) = {−𝐶𝑠 (𝑡) + 𝐴𝑓 (𝑠 (𝑡)) + 𝐵𝑔 (𝑠 (𝑡 − 𝜏 (𝑡)))} 𝑑𝑡

+ 𝜎 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,
(46)

where 𝑓(𝑠) = 𝑔(𝑠) = tanh(𝑠), 𝜏(𝑡) = 1, 𝜎(𝑠(𝑡), 𝑠(𝑡 − 𝜏(𝑡))) =
diag{𝑠

1

(𝑡), 𝑠
2

(𝑡)},

𝐶 = [
1 0

0 1
] , 𝐴 = [

2 −0.1

−5 4.5
] ,

𝐵 = [
−1.5 −0.1

−0.2 −4
] .

(47)
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Figure 2: The trajectories of the state variables of 𝑥
𝑖1

and 𝑥
𝑖2

(𝑖 = 1, 2, . . . , 5) in system (48) by impulse control.

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

−2

e i
1
(t
)

t

(a)

1 2 3 4 5 6 7 8 9 10

0

0

2

4

6

8

10

12

14

−2

e i
2
(t
)

t

(b)

Figure 3: The time evolution of 𝑒
𝑖1

and 𝑒
𝑖2

(𝑖 = 1, 2, . . . , 5) in system (48) by impulse control.

Taking𝑃 = diag{1, 2} andΔ = diag{5, 11, 5}, we have 𝜂 = 0.15
and 𝜃 = 3.25 so that condition (11) is satisfied. Thus

𝑑𝑥
𝑖

(𝑡) =
{

{

{

𝑓 (𝑥
𝑖

(𝑡) , 𝑥
𝑖

(𝑡 − 𝜏 (𝑡))) +

5

∑

𝑗=1

𝑎
[𝑟]

𝑖𝑗

Σ𝑥
𝑗

(𝑡)

+

5

∑

𝑗=1

𝑏
[𝑟]

𝑖𝑗

Σ𝑥
𝑗

(𝑡 − 𝜏
𝑐

(𝑡))
}

}

}

𝑑𝑡

+ 𝜎
[𝑟]

𝑖

(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏
𝑐

(𝑡))) 𝑑𝑤
𝑖

(𝑡) ,

𝑖 = 1, 2, . . . , 5, 𝑟 = 1, 2,

(48)

and Γ = [ −3 3

2 −2

], 𝜏
𝑐

(𝑡) = 0.1(𝑒
𝑡

/(1 + 𝑒
𝑡

)),

𝜎
[1]

𝑖

(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏
𝑐

(𝑡)))

= 0.1 diag {𝑥
𝑖1

(𝑡) , 𝑥
𝑖2

(𝑡)} ,

𝜎
[2]

𝑖

(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏
𝑐

(𝑡)))

= 0.1 diag {𝑥
𝑖1

(𝑡 − 𝜏 (𝑡)) , 𝑥
𝑖2

(𝑡 − 𝜏 (𝑡))} .

(49)

Computations then yield 𝜏 = 1, 𝜏 = 0, 𝜏
𝑐

= 0.1, 𝜏
𝑐

= 0.1

and Υ
𝑖𝑗

= 0.1𝐼
2

for 𝑖 = 1, 2, . . . , 𝑁. Then the solutions of

inequalities (41)–(44) are (by using the Matlab LMI toolbox)
𝛼
1

= 2.500, 𝛽
1

= 0.001, 𝑎
1

= 4.305, 𝑏
1

= 5.055, 𝑐
1

= 0.109;
𝛼
2

= 4.006,𝛽
2

= 0.009, 𝑎
2

= 5.105, 𝑏
2

= 5.030, and 𝑐
2

= 0.065.
The initial conditions for this simulation are 𝑥

𝑖𝑗

(𝑡
0

)which
are constants, for 𝑖 = 1, 2, . . . , 5, 𝑗 = 1, 2 and the trajectories
of the impulse control gains are shown in Figure 2. Figure 3
shows the time evolution of the synchronization errors with
impulse control.

5. Conclusion

In this paper, we investigated the synchronization problem
for stochastic complex networks with Markovian switching
and nondelayed and time-varying delayed hybrid couplings.
We achieved synchronization by applying an impulse control
scheme to a small fraction of the nodes and derived sufficient
conditions for stability of synchronization. Finally, we consid-
ered some numerical examples that illustrate the theoretical
analysis.
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Distributed mutual exclusion is a fundamental problem which arises in various systems such as grid computing, mobile ad hoc
networks (MANETs), and distributed databases. Reducing key metrics like message count per any critical section (CS) and delay
between two CS entrances, which is known as synchronization delay, is a great challenge for this problem. Various algorithms use
either permission-based or token-based protocols. Token-based algorithms offer better communication costs and synchronization
delay. Raymond’s and Suzuki-Kasami’s algorithms are well-known token-based ones. Raymond’s algorithm needs only O(log

2

(𝑁))
messages per CS and Suzuki-Kasami’s algorithm needs just one message delivery time between two CS entrances. Nevertheless,
both algorithms are weak in the other metric, synchronization delay and message complexity correspondingly. In this work, a new
hybrid algorithm is proposed which gains from powerful aspects of both algorithms. Raysuz’s algorithm (the proposed algorithm)
uses a clustered graph and executes Suzuki-Kasami’s algorithm intraclusters and Raymond’s algorithm interclusters. This leads to
have better message complexity than that of pure Suzuki-Kasami’s algorithm and better synchronization delay than that of pure
Raymond’s algorithm, resulting in an overall efficient DMX algorithm pure algorithm.

1. Introduction
Using shared resources among different processes is a pri-
mary need in distributed systems. For this reason, distributed
mutual exclusion (DMX) has drawn great attention over the
years and a good number of algorithms have been proposed
in this area. These algorithms are used in distributed systems
such as mobile ad hoc networks (MANETs), sensor networks
[1, 2], grids, and distributed databases. Messages sent for
acquiring and releasing CS are an important measure for
DMX algorithms and have a great effect on system’s overall
performance. Safety, liveness, and fairness are the main
requirements for any mutual exclusion algorithm. Lamport’s
algorithm [3] and Ricart-Agrawala’s (RA) [4] algorithm are
considered as two of the most important fair distributed
mutual exclusion algorithms in the literature. Generally,

DMX algorithms can be classified into two major groups,
token-based algorithms and permission-based ones. In the
first case, a node enters a CS after receiving permission from
all of the nodes in its set for the critical section. For token-
based algorithms, however, processes are on a logical ring
and possession of a system-wide unique token provides the
right to enter a critical section. Suzuki-Kasami’s algorithm [5]
and Raymond’s tree-based algorithm [6] aremilestone token-
based algorithms.

Suzuki-Kasami’s algorithm has a low synchronization
delay of one message between each two consecutive CS
entrances, meanwhile its message communication number
per any CS is𝑁 and that is fairly high for vast distributed sys-
tems which can restrict system scalability. On the other hand,
Raymond’s algorithm requires low message communication



2 Mathematical Problems in Engineering

for each CS entrance, but its delay is order of O(log
2

(𝑁))
messages between two consecutive CS entrances.

In this study, a new hybrid DMX algorithm is proposed
that is called Raysuz. Raysuz’s algorithm uses a clustered
graph infrastructure. Suzuki-Kasami’s algorithm is run inside
the clusters and Raymond’s algorithm is run among cluster
leaders. Therefore it has better synchronization delay than
pure Raymond’s algorithm and better message complexity
than pure Suzuki-Kasami’s algorithm.

In addition, cluster leaders collect internal CS requests
and serve them once they receive token from other clusters.
This prevents ping-pong style communication of tokenwhich
is the matter of issue in Raymond’s algorithm. Also using
shortest paths inside clusters, Raysuz’s algorithm gains even
better performance than Suzuki-Kasami’s algorithm too.

In rest of the paper, we have presented related work in
Section 2. In Section 3, the new hybrid algorithm is described
both formally and informally. The description of the algo-
rithm is supported by the sample scenario in this section.
Then in Section 4, the proposed algorithm is evaluated.
Finally, in Section 5, we discuss the proposed algorithm and
conclude the paper.

2. The Literature Study

In this section the related studies are elaborated and some
performance metrics are discussed which are used in com-
parison of related algorithms.

2.1. Related Work. DMX algorithms can be classified as
permission-based and token-based. In the permission based
approaches, if a node needs to enter the CS, it should take
permission from all other nodes. There are many algorithms
which use this approach, for example, the studies of Singhal
[7], Maekawa [8], Agrawal and El Abbadi [9], and Lodha
and Kshemkalyani [10]. In the Lamport’s algorithm, a node
which needs to enter CS should broadcast its CS request, wait
for acknowledge from all nodes, and finally enter the CS.
After exiting CS, the node should broadcast a releasemessage
indicating I have exited the CS. This algorithm sends 3(𝑁−1)
messages for each CS [3].

In order to reduce message complexity, Ricart Agrawala
has made improvements to Lamport’s algorithm which sends
only 2(𝑁 − 1) messages per each CS [4]. Ricart Agrawala
achieved this by removing release message step of Lamport’s
algorithm. Instead, the node exiting the CS only sends release
message to the nodes which have sent request messages and
wait for permission. A queue for holding requests that come
from other nodes is also added to the algorithm.

Agrawal and El Abbadi [9] and Maekawa [8] have pro-
posed quorrum-based algorithms which dramatically reduce
the message complexity and belong to permission-based
approach [8, 9]. Agrawal and El Abbadi use tree-structured
quorums which require permission from only O(log

2

(𝑁))
nodes in best case, and O(𝑁) in the worst case. Maekawa
proposed a new DMX algorithm which only uses 𝑐 2√𝑁mes-
sages to create amutual exclusion in a computer network.The
network consists of number of subsets whose intersection set

is not empty. DMX algorithms in [11–15] are also permission-
based algorithms.

Additionally, there are also a number of algorithmswhich
use token-based DMX approach [5, 6, 16–21]. Main idea of
token-based algorithms is that the node having the token
will have opportunity to enter CS. One of the most popular
approaches is Suzuki-Kasami’s algorithm [5] which uses 𝑁
messages per each CS. Another one is Raymond’s tree based
algorithm [6] which reduces the message complexity using
its dynamic tree structure. Raymond’s and Suzuki-Kasami’s
algorithms are basis for our new approach which is described
in Sections 2.2 and 2.3. In [22], a new DMX algorithm which
is based on path reversal is proposed.

Although many DMX algorithms exist, the state-of-the-
art technologies still require adapted DMX algorithms for
their circumstances. For example, Edmondson et al. [23]
propose a QoS-enabled DMX algorithm for public clouds
[24].

2.2. Performance Metrics. Performance bounds of DMX
algorithms can vary due to the network load. When a few
number of nodes want to enter a CS, the network is assumed
as lightly loaded; otherwise it can be called highly loaded.
There exist somemetrics for evaluating performance and effi-
ciency of DMX algorithms. “number of messages per request”
is one of them which denotes the total number of messages
used for entering CS. It is a critical metric for determining
limits of required network bandwidth. Another key metric
is “response time” which implies the time interval between
one node’s requesting of a CS permission and entering the
CS. The last metric is “synchronization delay.” It denotes the
latency between one node exiting and the next permitted
node entering the CS.

2.3. Suzuki-Kasami’s and Raymond’s Algorithms. One of the
most important token-based DMX algorithms is Suzuki-
Kasami’s algorithm [5]. It works on fully connected network
and its main idea is to reduce the synchronization delay. The
algorithm has three data structures. The first one is 𝑁-sized
array named request which is used for holding requests of all
nodes in the network.The number of requests which is made
by some node 𝑖 is stored in 𝑖th place of request array. When a
new request comes from node j, 𝑗th element of the request
array is incremented by one. The other two structures are
stored only in token. One of them is an𝑁-sized array named
last which holds the number of CS entrances for each node.
SuzQ is a queue for holding node identities that are waiting
for the token.

When node 𝑖 wants to enter the CS, it increments its
request number on the request array and broadcasts it. Upon
receiving request from node i, any node 𝑗 ̸= 𝑖 updates its 𝑖th
element of request array with new value of variable in arriving
message. After exiting the CS, a node compares the last and
request arrays and enqueues node V if Vth element of request
array is onemore than the Vth element of last array and V does
not already exist in queue.

Suzuki-Kasami’s synchronization delay is lower than
Raymond’s algorithm (0 or 𝑇) but its “number of messages
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per request” is higher than many of the other token-based
algorithms (𝑁).

Considering message complexity, Raymond’s algorithm
is one of the most powerful algorithms amongst token-
based solutions for DMX [6]. The algorithm is based on
unrooted minimum spanning tree.The tree can be physically
or logically built. Each node does not need to know about
all the network topology; they only have to know about their
neighbors.

Entering a CS for a node requires having the PRIVILEGE.
Every node in the tree has a variable named HOLDER
indicating the direction to its neighbor which is on the
shortest path to the node that has the PRIVILEGE. If the
node owns the PRIVILEGE, its HOLDER variable shows
itself. If a nonprivileged node wants to enter the CS, it sends
REQUESTmessage toHOLDER.When a nonprivileged node
receives the REQUEST message from its neighbor, it sends
the REQUEST message to its HOLDER node. This process
continues until the REQUESTmessage reaches the privileged
node.When the privileged node receives requestmessage and
finishes executing its CS, it becomes a nonprivileged node
and sendsPRIVILEGEmessage to the sender. If the privileged
node receives a REQUEST message while executing its CS, it
sends PRIVILEGEmessage to the sender after it finishes CS.

As can be inferred from the description of the algorithm,
the “number of messages per request” is decreased dramati-
cally in comparison with the other DMX algoritms. However,
this improvement comes with a trade-off. While achieving a
reasonable decrease on the “number of messages per request,”
“synchronization delay” increases. In Table 1, performance
metrics of Raymond’s tree-based algorithm are shown as well
as information for some other algorithms.

2.4. Comparison. In this section, some of the DMX algo-
rithms are evaluatedwith respect to performancemetrics and
their results, as shown in Table 1. In centralized algorithm,
three messages are sent per any CS both in high and low
network loads [16]. Its synchronization delay is measured as
2𝑇. Its primary drawback is known as single point of failure.
However, Lamport’s algorithm requires 3(𝑁 − 1) messages
per CS, and its synchronization delay is only 𝑇 [3]. Ricart
and Agrawala (RA) have made an improvement and their
algorithm uses only 2(𝑁 − 1) messages per CS both in high
and low network loads. Also, it has synchronization delay of
only 𝑇 [4].

Maekawa’s algorithm is quorum based and sends 3 2√𝑁
messages and 5 2√𝑁 messages per any CS for low load and
high loads, respectively [8]. Its synchronization delay is
evaluated as 2𝑇. Another quorum-based algorithm, Agrawal
and El Abbadi’s algorithm, uses O(log

2

(𝑁)) messages per
CS in low load and (𝑁/2) messages per CS in high load
[9]. Suzuki-Kasami’s algorithm, which is one of the token-
based algorithms, uses 𝑁 messages per CS in low load, and
its synchronization delay is to be measured as 𝑇 [5]. While
Suzuki-Kasami’s algorithm uses 𝑁 messages per CS, Ray-
mond’s tree-based algorithm uses only O(log

2

(𝑁)) messages
per CS. Although synchronization delay of Suzuki-Kasami’s

Table 1: Comparing different DMX algorithms.

Algorithm

Criteria
Number of
messages per
CS (low load)

Number of
messages per
CS (high load)

Synch
(CS)
delay

Permission based
Centralized 3 3 2𝑇

Message passing
Lamport 3(𝑁 − 1) 3(𝑁 − 1) 𝑇

Ricart-Agrawala 2(𝑁 − 1) 2(𝑁 − 1) 𝑇

Singhal 𝑁 − 1 3/2(𝑁 − 1) 𝑇

Lodha 𝑁 − 1 2(𝑁 − 1) 𝑇

Quorum based
Maekawa 3√𝑁 5√𝑁 2𝑇

Agrawal-El Abbadi log
2

(𝑁) 𝑁/2 —
Token passing

Token ring 𝑁/2 — 𝑁/2

Suzuki-Kasami 𝑁 𝑁 𝑇

Raymond log
2

(𝑁) log
2

(𝑁) 4𝑇

algorithm is only 𝑇, Raymond’s algorithm spends 4𝑇 as
synchronization delay [6].

As a result, Suzuki-Kasami’s algorithm and Raymond’s
algorithm have less synchronization delay and less message
count per CS, respectively. Their message count per CS and
synchronization delay is not efficient correspondingly and we
have dealt with these weaknesses.

3. Raysuz Algorithm

Suzuki-Kasami’s algorithm is known to have lower synchro-
nization delay than Raymond’s with the expense of higher
message complexity. Raymond’s algorithm has much less
message complexity, but synchronization delay is higher
because of using only the edges of the minimum spanning
tree (MST).

In this section, we propose an algorithm which combines
the better sides of these algorithms. Initially, the nodes are
grouped in clusters and each cluster has a leader node.
Suzuki-Kasami’s algorithm is used inside clusters and Ray-
mond’s algorithm is used to pass token among the cluster
leaders. Among the leaders, token can travel only on the
edges belonging to theMST paths, but inside clusters shortest
paths can be used. The high message traffic of broadcasting
CS requests of Suzuki-Kasami’s algorithm is decreased by
limiting broadcast only inside the clusters. Each cluster leader
will be responsible for requesting token from outer clusters
and dealing with their requests.

3.1. SystemModel and Data Structures. Before explaining the
algorithm, we describe the system model. Each node has a
unique ID and it can only communicate with its neighbors
via edges.We also assume that communication channels have
FIFO structure. Asynchronous communicationmodel is used
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Figure 1: An example network clustered with DSTA.

in this algorithm. It is supposed that the communication
channel and nodes are failure free and there are no malicious
nodes. We suppose that all of the edges in the network
have the same weight. However, other assumptions will not
violate our results. Interested readers for weighted graphs
and analysis of clustering complex networks with distributed
preference mechanism can refer to [25].

Distributed spanning tree-based clustering algorithm
(DSTA) [26] can be implemented to cluster the network.
DSTA constructs clusters with controllable diameter and the
spanning tree of cluster heads (leaders) directing to the root
(sink) node as the backbone. The depth parameter of the
DSTA is used to adjust the diameter of the clusters. The
root node sends PARENT(nhops) message to its immediate
neighbors to start the execution of the DSTA algorithm.
When a node first receives PARENT(nhops) message, it sends
PARENT(nhops + 1 mod depth) message to its neighbors.
The recipients of the message with nhops = 0 are the CLUS-
TERHEADS, and those with nhops ≤ depth are theMEMBER
nodes. Figure 1 shows an example network clustered with
DSTA, where depth = 2.The borders of the clusters are circled
and the communication edges are shown with lines.

Inside clusters, Suzuki-Kasami’s algorithm is used to pass
the token. Broadcasting requests for token in this algorithm
will be achieved by unicasting them on the shortest paths for
each node in the cluster. The leader only spectate the internal
token passing operations. Token passing between clusters is
made by cluster leaders using Raymond’s algorithm. When
internal requests take place, the leader node in the cluster will
be responsible for requesting and taking token from other
cluster leaders. When the token is in the cluster and other
clusters need it, the leader of the cluster steals token from its
cluster and sends it to the leader of related cluster.

The ordinary and leader nodes must hold some variables
in order to run the algorithm.These variables are as follows.

(i) Dir: each node holds the direction which shows the
leader of the cluster having the token. This variable

helps cluster leaders requests to reach the cluster
which has the token.

(ii) TokInside: this variable is held by the leader nodes. It
states whether the token is inside the cluster or not.

(iii) Asked: this variable states whether a Raymond’s algo-
rithm token request has been made or not. Using
this variable prevents sending token requests for each
incoming request. It is used by cluster leaders and
other nodes who are making token transfer on the
transfer path.

(iv) RequestArray: it is an array which is used in the
sameway as Suzuki-Kasami’s algorithm. Related array
element is incremented for each internal Suzuki-
Kasami’s algorithm request.

(v) LastArray: this array is used in the same way as
last array in Suzuki-Kasami’s algorithm. It holds the
number of times each node in cluster has entered
the CS. Nodes increment their array element after
finishing critical section. There is only one LastArray
for each cluster and it travels with internal tokens.

(vi) SuzQ: it is the queue which is used by nodes that
are waiting to enter CS in the same cluster, the
same as Suzuki-Kasami’s algorithm. It also travels
with internal token, which is always sent to head of
this queue. New requests from the same cluster are
detected by comparing request and last arrays and
there requester nodes are added to this queue by
nodes exiting CS.

(vii) RaymQ: this queue is the same as Raymond’s algo-
rithm. During the token travel among the cluster
leaders, the nodes in the path use this queue. Cluster
leaders forward their token to the head of this queue
after their clusters have finished their jobs. Ordinary
nodes in the path also help the transfer of token by
using this queue.

There are also severalmessage types, used in the proposed
algorithm, which are listed below.

(i) InTok: a token message which lives in the clusters.
(ii) ExTok: a token message which travels between cluster

leaders.
(iii) InReq: it denotes internal Suzuki-Kasami’s algorithm

requests made within the clusters.
(iv) ExReq: it denotes external token requests (handled

using Raymond’s algorithm) which are sent by the
cluster leaders.

(v) Pulse: this input denotes the need of enteringCS.Only
ordinary nodes can have pulse and enter CS.

3.2. Informal Description of Raysuz’s Algorithm. In Raysuz’s
algorithm, we have two types of nodes, namely, ordinary and
leader. Ordinary nodes only have information about their
own neighbors and use Suzuki-Kasami’s algorithm to enter
the CS. These nodes broadcast a CS request to their cluster



Mathematical Problems in Engineering 5

using the shortest path routing with all possible edges. When
the nodes acquire the InTok, these nodes will do the same
procedure as that of Suzuki-Kasami’s algorithm. The only
difference between ordinary nodes in pure Suzuki-Kasami’s
algorithm and Raysuz’s algorithm is that the ordinary nodes
in the proposed algorithm use Raymond’s algorithm proce-
dures to transfer external CS requests and external token
between cluster leaders. When an external CS request comes
to a node, this node adds the requester to its RaymQ and
if another external CS request has not been sent earlier, it
sends an external CS request towards the direction in Dir.
Whenever an external token arrives at the node, it sends this
token to the head of RaymQ, probably itself.

Leader nodes are dedicated to request token from other
clusters. The leader nodes can process two threads in order
to act as leader and ordinary nodes simultaneously. Their
job is to send external token requests when their cluster
needs token and give the token back when other clusters
need it. They send external requests and external token
according to Raymond’s algorithm routines. When there is
an internal Suzuki-Kasami’s algorithm request, InReq, inside
the cluster, the cluster leader sends an external request to
direction, Dir, if the token is not in the cluster. Each node
in the path will forward the message up to the leader of
the cluster having the token. When the leader of the token
owner cluster receives the external request, ExReq, it sends
an ordinary Suzuki-Kasami’s request to its cluster, takes the
token in its turn, and sends it to the requester. Cluster
leaders add a level of indirection and obtain the illusion
that there are only cluster leaders which are implementing
Raymond’s algorithm. They also hide the outer system from
their cluster nodes. When the token is outside the cluster, the
ordinary nodes will believe that the token is in their cluster
leader.

As mentioned above, this clustered algorithm combines
the low synchronization delay feature of Suzuki-Kasami’s
algorithm and low message complexity feature of Raymond’s
algorithms. When an external requests arrives, the cluster
leader does not grab and does not send the token immedi-
ately. Instead, it makes a Suzuki-Kasami’s algorithm request
to take and send the token. This behaviour ensures that
significant amount of internal CS demands which have
arrived before external requests are fulfilled. This prevents
token to travel along the graph for each request like in a ping-
pong style communication, thus reducing token travelling
distance for each request and reducing synchronization delay
in comparison with pure Raymond’s algorithm. Moreover,
using the shortest paths for Suzuki-Kasami’s operations
fastens the token travelling inside the cluster, therefore
reduces the synchronization delay and number of messages per
request.

3.3. Formal Description of Raysuz’s Algorithm. In this section,
Raysuz’s algorithm is illustrated formally as two finite state
machines (FSM) for both leader and ordinary nodes. The
related FSMs for leader and ordinary nodes can be seen in
Figures 2 and 3, respectively. The pseudocode of these algo-

rithms and used legends are provided in Table 3, Algorithm 1,
and Algorithm 2.

3.3.1. The Leader Node. As it can be seen in the FSM of
Figure 2, the leader node has three states, IDLE,WAITEXTO-
KEN, and INTOKENSTEAL.

IDLE. The leader nodes are in IDLE state when the token
is in the cluster and there are no external requests, or the
token is outside and there are no internal nodes which
need to enter CS currently. When the token is inside and
external request arrives, leader nodemakes a Suzuki-Kasami’s
algorithm request, adds the requester’s ID to RaymQ, and
passes to INTOKENSTEAL state. If the token is not inside
the cluster and an internal Suzuki-Kasami’s algorithm request
arrives, the leader adds itself to RaymQ and sends an external
request to the direction of Dir (if not previously sent) and
transits toWAITEXTOKEN state.

INTOKENSTEAL. The leader nodes are in INTOKENSTEAL
state when they are waiting for the internal token to send
to external requester. When the internal token arrives, the
leader looks at its RaymQ and SuzQ sizes. If their sizes both
are one (which is the same the leader itself), it means that
there is no more external or internal requester waiting for
the token. Therefore, it sends the token to the requester and
updates the direction to it and finally goes to IDLE state. If
one of the queues is greater than one, it means that the token
is needed back, either for internal CS demands or external
requests. In this case, the leader puts itself into itsRaymQ and
sends external request just after sending the token and finally
it transits toWAITEXTOKEN state.

WAITEXTOKEN. The leader nodes are in this state when
they are waiting for the external token either for internal CS
demands or external requests. When the external token for
another cluster arrives to the leader, it just forwards the token
to head of RaymQ, changes direction, and transits its state to
IDLE. If the external token arrives to the leader, it looks at
the size of its RaymQ. In case the size of its RaymQ is one,
this means there are no other external requests waiting, so it
creates and sends the internal token to its cluster and goes to
IDLE state. If it is greater than one, this means that there are
other clusters waiting for the token, thus it makes a Suzuki-
Kasami’s algorithm request just after sending the token into
its cluster and goes to INTOKENSTEAL state.

The routine which takes place in a leader of any cluster is
clearly defined in the Algorithm 1. This algorithm consists of
six steps. Step one is triggered when the cluster has no token
inside and the leader receives a request, either from outside
or inside cluster. In both cases, it transits toWAITEXTOKEN
state but in earlier case the leader puts external request in
the RaymQ while in latter case it puts its own request in this
queue.

Step two describes the state which occurs when the token
owner cluster’s leader receives a token request. The actions to
take place are determined with regard to whether the request
comes from intracluster or not. The former one forces leader
to operate ordinary Suzuki-Kasami’s algorithm’s related part.
In the other case, the leader makes Suzuki-Kasami’s request
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Figure 2: Leader nodes’ finite state machine.

on behalf of the original requester to steal the token from
its own cluster to send it outside of the cluster (to the origin
of the request). At this point, the leader’s state is changed to
INTOKENSTEAL state.

In step three the leader which is in token steal state
receives it and sends the token to the requester’s cluster. Until
receiving the token, this leader reacts with a new request from
other clusters, if any, in step four. Step five deals with the
leaders that are waiting for the external token and receive a
request from other clusters. Nevertheless, the actions listed
in step six will be taken if this leader gets the token for its
cluster.

3.3.2. The Ordinary Node. The ordinary node has also three
states, IDLE, HAVEREQUEST, and HAVETOKEN.

IDLE.This state means that the ordinary node does not have
a CS demand. It follows Raymond’s algorithm routine when
external requests or the external token arrives. When a pulse

indicating CS demand arrives, it makes Suzuki-Kasami’s
algorithm request and goes to HAVEREQUEST state.
HAVEREQUEST. The node waits for the token in this state.
When internal token arrives, it enters the CS. Upon exiting
the CS, it checks the SuzQ. If it is empty, this means there
are no token waiting nodes in the cluster. Thus, it goes to
HAVETOKEN state. If SuzQ is not empty, it sends the token
to the head of SuzQ and goes to IDLE state.

HAVETOKEN. This state means that there are no more token
waiting nodes in the cluster and the token remains at the node
after the CS; then it can freely enter the CS whenever it needs.
When an internal request arrives, it sends the token to the
requester and transits to IDLE state.

The routine which takes place in an ordinary node is
defined in the algorithm of Algorithm 2. This algorithm
contains seven steps. The first step deals with any idle or
token requested ordinary node which receives a request from
any other node. In second step, the actions required upon
receiving an external token for idle nodes or nodes which
have just requested a token are listed. The event of receiving
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Figure 3: Ordinary Nodes’ Finite State Machine.

a pulse enforces the idle node to have a request in the third
step.

The fourth and fifth steps demonstrate the original related
part of Suzuki-Kasami’s algorithm in which any requested
node receives the token. Finally, the sixth and seventh
steps handle receiving request and pulse, respectively, for an
ordinary node which is in the HAVETOKEN state.

3.4. A Sample Scenario Using Raysuz’s Algorithm. For clarity
of Raysuz’s algorithm, we present a sample scenario for
the algorithm execution. According to the algorithm, the
network is clustered by an algorithm such as [26, 27]. In this
scenario, initially, the token belongs to a node 𝑇, in cluster
𝐶
0

.There are some requests fromother nodes in this scenario:
firstly,𝑁

0

in𝐶
0

requests the token.Then the other node,𝑁
1

in
𝐶
1

, asks for the token shortly after 𝑁
0

’s request. Meanwhile,
𝑁
2

in 𝐶
2

also wants to grab the token. This scenario shows
how the algorithm deals with these requests.

The first event of the scenario can be seen in Figure 4(a).
Firstly, node 𝑁

0

, which needs the token, makes a Suzuki-
Kasami request and broadcasts it to its cluster. Since it is
the first node which has requested the token, it receives the
token immediately as shown in event 1 in Figure 4(b). After
that, node 𝑁

1

in cluster 𝐶
1

requests the token from its own
cluster with broadcasting a Suzuki-Kasami’s request as shown
in event 2 in Figure 4(b). Due to lack of the tokens in this
cluster 𝐶

1

’s leader 𝐿
1

sends the request to the leader of the

cluster which is the owner of the token, 𝐿
0

, as in Figure 5(a).
After 𝐿

0

receives the token request, it makes a Suzuki-Kasami
request as it does for itself, as shown in event 1 in Figure 5(b).
Shortly after that, node 𝑁

2

from another cluster, 𝐶
2

, wants
the token and makes a request to its own cluster as shown in
event 2 in Figure 5(b). Since the token is not in 𝐶

2

, its leader,
𝐿
2

, sends the request to𝑁
0

’s cluster leader as shown in event
1 in Figure 5(c).

At this point,𝑁
0

has the token and𝑁
1

and𝑁
2

are waiting
for it. When𝑁

0

quits the critical section, it sends the token to
the leader of its cluster as shown with event 2 in Figure 5(c)
and the leader forwards it to the leader of 𝐶

1

accompanied
with a request (for request of 𝑁

2

) as shown in event 1 in
Figure 5(d). Upon receiving the token by 𝐿

1

, it delivers the
token to 𝑁

1

, which has asked for it, and then 𝐿
1

broadcasts
an internal request in its cluster to steal the token and send it
back to 𝐿

0

as shown in event 2 in Figure 5(d).
As soon as 𝑁

1

exits the critical section, due to prior
internal request, it sends the token to 𝐿

1

as shown in event
1 in Figure 5(e). Afterwards, the leader returns the token to
𝐿
0

as shown in event 2 in Figure 5(e). Then, 𝐿
0

, according to
the requests saved in its queue, sends the token to 𝐿

2

, which
delivers it to 𝑁

2

as shown in events 3 and 4, respectively, in
Figure 5(e).

Now, we examine this scenario deeply according to
algorithm’s detail to understand what is going on in this
algorithm.When node𝑁

0

makes a Suzuki-Kasami request as
is shown in Figure 4(a), 𝐿

0

only increases the request array in
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T
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Figure 4: Scenario for Suzuki-Kasami’s part of the Raysuz algorithm.

the same way as an ordinary node does in the same cluster. So
far everything is straightforward. Then node𝑁

1

in 𝐶
1

makes
a request in its cluster to enter the CS; see Figure 4(b). Before
𝑁
1

requests for the token, 𝑁
0

receives the token from the
token holder node, as shown in Figure 4(b).

At this time, in 𝐶
1

, 𝐿
1

which is aware of the token
absence prepares a request to get token and sends it to node
whose identity is the same as the 𝐷𝑖𝑟’s content, as shown in
Figure 5(a). Upon receiving the external request from𝑁

1

, 𝐿
0

adds𝑁
1

’s request to its RaymQ and prepares a request to get
the token from its own cluster. This is achieved by making
a Suzuki-Kasami request as shown in event 1 of Figure 5(b),
as if 𝐿

0

wants the token for itself to give it to 𝑁
1

. While 𝐿
0

is dealing with acquiring the token, another node, 𝑁
2

in 𝐶
2

,
needs to enter the CS, so it makes a Suzuki-Kasami request
as shown with event 2 in Figure 5(b). After some while, 𝐿

2

sends an external request to 𝐿
0

to get the token as shown in
event 1 in Figure 5(c). Then 𝐿

0

adds this node (𝐿
2

) to its own
RaymQ. In this way, 𝐿

0

knows that there is another node,𝑁
2

,
which wants to grab the token after 𝑁

1

. Later on, 𝑁
0

sends
back the token to 𝐿

0

as shown in event 2 in Figure 5(c).
Now, 𝐿

0

has the token and dequeues RaymQ and setsDir
variable with dequeued node. Afterwards, it sends the token
to dequeued node which is the first external node which
wants token from 𝐿

0

. Since the RaymQ is not empty, 𝐿
0

also
sends an external request along with the token as shown in
event 1 in Figure 5(d).

As 𝐿
1

receives the request and the token, it queues the
external request to the RaymQ and forwards the token to the
𝑁
1

using SuzQ. Taking the request into consideration, 𝐿
1

also
broadcasts a Suzuki-Kasami request in the cluster, as can be
seen in event 2 of Figure 5(d). Since there is no other internal
request in 𝐶

1

, after exiting the CS, 𝑁
1

forwards the token to
the 𝐿
1

as shown in event 1 of Figure 5(e).
At this point, 𝐿

1

’s RaymQ is not empty, so it sends the
token to the RaymQ’s head (in this case 𝐿

0

with dequeuing it

as shown in event 2 of Figure 5(e)). Analogous to the previous
event, 𝐿

0

sends the token to 𝐿
2

using its RaymQ as shown in
event 3 of Figure 5(e).

Finally, 𝐿
2

, receiving an external token, sends the token
to the head of SuzQ which is 𝑁

2

as shown in event 4 in
Figure 5(e). In this way, three nodes received the token in
order and the scenario is accomplished.

4. Analysis of the Proposed Algorithm

In this section, we present the theoretical analysis of Ray-
suz’s algorithm along with relevant proofs. This theoretical
analysis contains correctness, message complexity, energy
consumption, synchronization delay, and response time for
the proposed algorithm.

4.1. Correctness of Raysuz’s Algorithm. The correctness of
Raysuz’s algorithm is examined according to safety and
liveness attributes of the algorithm.

4.1.1. Safety. Safety of Raysuz’s algorithm is analyzed from the
single token existence and mutual exclusion points of view,
which will be discussed inTheorem 3.

Lemma 1. In Raysuz’s algorithm atmost one token exists in the
network concurrently.

Proof. Assume the contrary. In this case, there exists more
than one token in the network concurrently. Therefore,
according to finite-state machine given in Figure 3, more
than one ordinary node should be in HAVETOKEN state.
Assume that these nodes are in the same cluster. Suzuki-
Kasami’s algorithm is used in intracluster communication;
thus multiple token existence is impossible [5].

On the other hand, assume that more than one node
belonging to different clusters is in the CS at the same time.
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Figure 5: Scenario for Raymond’s part of the Raysuz algorithm.



10 Mathematical Problems in Engineering

In this case, according to pseudocode of leader node in
Algorithm 1, multiple leaders should be in INTOKENSTEAL
state. Since Raymond’s algorithm is used for intracluster
communications, this is also not possible [6].

There is no other possibility; therefore we contradict our
assumption.

Lemma 2. At most one node can be in the CS at any time,
ensuring mutual exclusion.

Proof. Assume the contrary, that more than one node can
execute CS at any time concurrently. In Raysuz’s algorithm,
when a node receives token, it enters CS. If there is more
than one token in the network, then more than one node can
executeCS at the same time.However, it is proven in Lemma 1
that this case is not possible. Therefore, we contradict our
assumption.

Theorem 3. There always exists exactly one token in Raysuz
algorithm, which also provides at most one node entering CS at
any time, thus satisfying Safety attribute.

Proof. The theoremholds since Lemmas 1 and 2 are true.

4.1.2. Liveness

Theorem 4. Raysuz’s algorithm is deadlock- and starvation-
free.

Proof. We use Suzuki-Kasami’s algorithm for intracluster
communication and Raymond’s algorithm for intercluster,
communication. Both algorithms are deadlock- and starva-
tion free which is proven in [5, 6]. Thus, Raysuz’s algorithm
is deadlock- and starvation-free.

4.2. Message Complexity. The message complexities of Ray-
suz’s, Raymond’s and Suzuki-Kasami’s algorithms are com-
paratively explained in this section. We assume the topology
of the network as multihop cluster tree, where there are 𝐶
clusters and𝑁 nodes.

In the graph consisting of 𝑁 nodes, the mean dis-
tance between any two nodes (also mean unicast distance
between two nodes), 𝐸(𝐿

𝑢

), is almost surely of order
O(log

2

(𝑁)/log
2

(𝑑)), where 𝑑 is the weighted average of the
sum of squares of the expected degrees [28].

We consider the power law graphs with lots of nodes, so
𝑑 is a very small value in comparison with 𝑁. Thus we use
the complexity O(log

2

(𝑁)) instead of O(log
2

(𝑁)/log
2

(𝑑) as a
mean distance between two arbitrary nodes.

4.2.1. The Worst Case. In Raymond’s algorithm, token
requester and token holder nodes will be on the farthest
sides in the worst situation. In this case, request message will
travel up to the root and down to the token holder. Similarly,
token holder will send token back in the same path.Thus, the
message complexity for a request is𝑁−1+𝑁−1 = 2𝑁−2 =
𝑂(𝑁).

In Suzuki-Kasami’s algorithm on a tree, the requester
will broadcast request on tree, which uses a total of 𝑁 − 1

messages. Then the token holder node will receive request
and send token to requester using the shortest path routing
information in messages. Therefore, the total message count
for a request is: 𝑁 − 1 + 𝑁 − 1 = 2𝑁 − 2 = 𝑂(𝑁).
Raysuz’s algorithm has six phases for requesting and entering
CS. The phases and number of messages sent in each phase
are described as follows.

(i) Requester node sends request to its leader: intra
cluster requests are broadcasted along the tree, and
one message will be sent for each node in cluster
except the requester.This requires𝑁/𝐶−1 = 𝑂(𝑁/𝐶)
messages.

(ii) Leader forwards the request to the token holder node’s
cluster: in this phase, the two token leaders will
communicate. In the worst situation, these leaders
will be in the farthest sides of the tree. Then, the
distance between them will be𝑁 − 1 = 𝑂(𝑁), which
is also the number of messages needed in this phase.

(iii) Token holder leader makes Suzuki-Kasami’s request:
the leader of the token holding cluster will broadcast
request to its cluster to take the token. This broadcast
needs𝑁/𝐶 − 1 = 𝑂(𝑁/𝐶)messages.

(iv) Token holder node sends token to its leader: the token
holder node will send token to leader at the cluster
root using O(𝑁/𝐶) messages.

(v) Token holder cluster’s leader sends token to reques-
ter’s leader: similar to phase 2, the two token leaders
will communicate. Thus, the number of messages
needed is𝑁 − 1 = 𝑂(𝑁).

(vi) Token requester node’s leader sends token to the
requester node using O(𝑁/𝐶) messages.

The total of these phases yields O(𝑁).

4.2.2. The Best Case. The best case situation occurs when
only the token holder node wants to enter CS. In this case,
no message transmission is needed. Therefore, the number
of messages needed for Raymond’s, Suzuki-Kasami’s and
Raysuz’s algorithm is 0 in the best case.

4.2.3. The General Case. The general case for message com-
plexity is elaborated in this section. The required notation is
shown in Table 2. We assume that underlying topology is a
balanced tree with height O(log

2

(𝑁)).
𝐿𝐻𝐿 denotes the level of the token holder leader in the

tree. 𝐿𝐻𝑁 denotes the level of token holder node. 𝐿𝑅𝑁 is
level of requesting node and 𝐿𝑅𝐿 is the level of requesting
leader.

In Raymond’s algorithm, request message will travel
𝐿𝑅𝑁+𝐿𝐻𝑁 hops. Similarly, the tokenwill travel back 𝐿𝐻𝑁+
𝐿𝑅𝑁 hops, resulting in a total of 2(𝐿𝑅𝑁 + 𝐿𝐻𝑁) messages
travelling through the path. This yields O(log

2

(𝑁)) message
complexity for Raymond’s algorithm. According to Suzuki-
Kasami’s algorithm,𝑁 − 1messages are needed to broadcast
the request. The token will be sent to requester in 𝐿𝐻𝑁
number of messages, resulting in𝑁−1+𝑂(log

2

(𝑁)) = 𝑂(𝑁)

messages.
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Table 2: Legends of the analysis.

Legend Description
LHL Level of the token holder leader
LRL Level of requesting leader
LHN Level of the token holder node
LRN Level of requesting node

Table 3: Legends of the algorithms.

Legend Description
𝐿
𝑗

Any leader 𝑗
𝐿
ℎ𝑜𝑙𝑑

Leader’s cluster holding token
𝐿
𝑤𝑎𝑖𝑡𝐸𝑥𝑇𝑜𝑘𝑒𝑛

Leader who sent request

𝐿
𝑡𝑜𝑘𝑒𝑛𝑆𝑡𝑒𝑎𝑙

Leader who sends Suzuki-Kasami’s request
to inner cluster

𝐶
𝑗

Cluster 𝑗
𝑃
𝑗

Process 𝑗
𝑂
𝑗

Any node
𝑂
𝑖𝑑𝑙𝑒

The node which is not interested in token
𝑂
ℎ𝑎V𝑒𝑇𝑜𝑘𝑒𝑛 The node which has the token
𝑂
ℎ𝑎V𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 The node which has requested the token

In Raysuz’s algorithm, we have the same 6 phases as in
Section 4.2.1.

(i) The requester node sends request to its leader (using
Suzuki-Kasami’s algorithm) with𝑁/𝐶 − 1messages.

(ii) The leader forwards the request to token holder
cluster’s leader in 𝐿𝑅𝐿 + 𝐿𝐻𝐿 number of messages.

(iii) Token holder leader broadcasts Suzuki-Kasami’s algo-
rithm request to take the token. The number of
messages needed is𝑁/𝐶 − 1.

(iv) Token holder node sends token to its cluster leader
using 𝐿𝐻𝑁 − 𝐿𝐻𝐿messages.

(v) Token holder cluster leader sends token to leader
of token requester node in 𝐿𝑅𝐿 + 𝐿𝐻𝐿 number of
messages.

(vi) Leader of token requesting node sends message to
requesting node in 𝐿𝑅𝑁 − 𝐿𝑅𝐿 number of messages.

The total of these phases results is𝑁/𝐶−1+𝐿𝑅𝐿+𝐿𝐻𝐿+
𝑁/𝐶−1+𝐿𝐻𝑁−𝐿𝐻𝐿+𝐿𝑅𝐿+𝐿𝐻𝐿+𝐿𝑅𝑁−𝐿𝑅𝐿 = 2𝑁/𝐶−

2 + 𝐿𝑅𝐿 + 𝐿𝐻𝐿 + 𝐿𝐻𝑁 + 𝐿𝑅𝑁 = 𝑂(𝑁/𝐶 + log
2

(𝑁)).
For example, if the number of clusters, 𝐶, is big enough,

then the average message complexity becomesΩ(log
2

(𝑁)).

4.3. Energy Consumption. Energy consumption is important
for wireless systems and especially for MANETs where nodes
are battery-powered. Generally transceiver is the dominant
energy consumer, so that transmitted byte counts should be
minimized to maximize the network lifetime. With regard to
this, our energy consumption analysis depends on message
size and message complexity. We first analyze message size of
Raysuz’s algorithm and then we analyze the worst case, the
best case, and the general case for the transmitted bit count.

The complexities of size ofExTok, InReq,ExReq, andPulse
messages are O(log

2

(𝑁)) bits since these messages include
constant number of fields (such as source, destination, and
requestor) and each of these fields can be represented with
numbers in [0,𝑁]. On the other hand, the InTok message’s
size is O(𝑁/𝐶 log

2

(𝑁)) bits since Suzuki-Kasami token
should include information about all nodes in the cluster.

4.3.1. The Worst Case. In Raymond’s algorithm, O(𝑁) mes-
sages are sent at the worst case. Since the message size in
Raymond’s algorithm is O(log

2

(𝑁)) bits, the transmitted bit
count of Raymond’s algorithm is O(𝑁log

2

(𝑁)) bits.
At the worst case, the message complexity of Suzuki-

Kasami’s algorithm is O(𝑁). Token includes information of
all nodes, so that the size of the token isO(𝑁log

2

(𝑁)) bits. In
this case, O(𝑁2log

2

(𝑁)) bits are transmitted in total.
Raysuz’s algorithm has six phases in the worst case

as given in Section 4.2.1. The transmitted bit count of
each phase is added to find the total value as follows:
O(𝑁/𝐶) O(𝑁/𝐶log

2

(𝑁)) + O(𝑁) O(log
2

(𝑁)) + O(𝑁/𝐶)
O(𝑁/𝐶log

2

(𝑁)) + O(𝑁/𝐶) O(𝑁/𝐶log
2

(𝑁)) + O(𝑁)
O(log

2

(𝑁)) +O(𝑁/𝐶)O(𝑁/𝐶log
2

(𝑁)) =O((𝑁/𝐶)2log
2

(𝑁)).
At the worst case for 𝐶 = 1, the complexity of transmitted bit
count is O(𝑁2log

2

(𝑁)) bits.

4.3.2. The Best Case. At the best case, token holder wants to
enter CS. No transmissions are needed; thus, the transmitted
bit counts of Raymond’s, Suzuki-Kasami’s and Raysuz’s algo-
rithm are 0 bits.

4.3.3. The General Case. In the general case, Suzuki-Kasami’s
and Raymond’s transmitted byte counts are O(𝑁2log

2

(𝑁))
bits and O(log

2

(𝑁)
2) bits, respectively. The general case of

Raysuz’s algorithm can be found by adding the complex-
ities of intracluster and intercluster operations as follows:
O(𝑁/𝐶) O(𝑁/𝐶log

2

(𝑁)) + O(𝑁/𝐶+log
2

(𝑁)) O(log
2

(𝑁)) =
O((𝑁/𝐶)2log

2

(𝑁) +(𝑁/𝐶+log
2

(𝑁))log
2

(𝑁)). For 𝐶 = 1, the
worst case equals O(𝑁2log

2

(𝑁)) bits, the same as the value
given in Section 4.3.1. For 𝐶 = 𝑁, Ω(log

2

(𝑁)
2) bits are the

lower bound of the general case.

4.4. Synchronization Delay. In synchronization delay formu-
lations, we have used notation 𝑇 to indicate the unit time for
sending a message.

4.4.1. The Worst Case. The worst case synchronization delay
of Suzuki-Kasami’s algorithm is𝑁𝑇 for a network consisting
of 𝑁 nodes, since distance of any two nodes is at most 𝑁.
Thus synchronization delay of Suzuki-Kasami’s algorithm is
O(𝑁) at the worst case. The worst synchronization delay
of Raymond’s algorithm is 𝑁𝑇, resulting in O(𝑁) time
complexity which is equal to diameter of the tree at the worst
case.

The worst case of Raysuz’s algorithm has 3 phases. In
the first phase token holder finishes executing CS and sends
token to its leader. This phase requires O(𝑁/𝐶) time. In the
second phase, the token holding leader sends token to leader
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Step 1. Upon a leader 𝐿
𝑗

̸= 𝐿
ℎ𝑜𝑙𝑑

receives request from process 𝑃
𝑖

and 𝐿
𝑗

= 𝐿
𝑖𝑑𝑙𝑒

1.1 if 𝑃
𝑖

∩ 𝐶
𝑗

= Ø
1.1.1 add 𝑃

𝑖

to RaymQ
1.1.2 send 𝐿

𝑗

’s request to Dir (as an external request)
1.2 else

1.2.1 increase corresponding request array element by 1
1.2.2 enqueue RaymQ with 𝐿

𝑗

1.2.3 send ExReq to Dir
1.3 end if
1.4 𝐿
𝑗

= 𝐿
𝑤𝑎𝑖𝑡𝐸𝑥𝑇𝑜𝑘𝑒𝑛

Step 2. Upon a 𝐿
𝑗

= 𝐿
ℎ𝑜𝑙𝑑

receive request from process 𝑃
𝑖

2.1 if 𝑃
𝑖

∩ 𝐶
𝑗

= Ø then
2.1.1 increase 𝑗th element of request array and broadcast request
2.1.2 enqueue 𝑃

𝑖

to RaymQ
2.1.3 𝐿

𝑗

= 𝐿
𝑖𝑛𝑇𝑜𝑘𝑒𝑛𝑆𝑡𝑒𝑎𝑙

2.2 else
2.2.1 increase 𝑖th element of request array by 1

2.3 end if
Step 3. Upon a 𝐿

𝑗

= 𝐿
𝑖𝑛𝑇𝑜𝑘𝑒𝑛𝑆𝑡𝑒𝑎𝑙

receive InToken for 𝐿
𝑗

3.1 if RaymQ.length > 1 or SuzQ.length > 1 then
3.1.1 update SuzQ
3.1.2 dequeue RaymQ and set Dir with dequeued node
3.1.3 send ExToken and ExReq to Dir
3.1.4 enqueue RaymQ with 𝐿

𝑗

3.1.5 𝐿
𝑗

= 𝐿
𝑤𝑎𝑖𝑡𝐸𝑥𝑇𝑜𝑘𝑒𝑛

3.2 else
3.2.1 update SuzQ
3.2.2 dequeue RaymQ and set Dir with dequeued node
3.2.3 send ExToken to Dir
3.2.4 𝐿

𝑗

= 𝐿
𝑖𝑑𝑙𝑒

3.3 end if
Step 4. Upon a 𝐿

𝑗

= 𝐿
𝑖𝑛𝑇𝑜𝑘𝑒𝑛𝑆𝑡𝑒𝑎𝑙

receive request from 𝑃
𝑗

4.1 if 𝑃
𝑖

∩ 𝐶
𝑗

= Ø then
4.1.1 add 𝑃

𝑗

to RaymQ
4.2 else

4.2.1 increase jth element of request array
4.3 end if

Step 5. Upon a 𝐿
𝑗

= 𝐿
𝑤𝑎𝑖𝑡𝐸𝑥𝑇𝑜𝑘𝑒𝑛

and receives request from 𝑃
𝑖

5.1 if 𝑃
𝑖

∩ 𝐶
𝑗

= Ø
5.1.1 enqueue 𝑃

𝑖

to RaymQ
5.2 else

5.2.1 increase corresponding request array element by 1
5.2.2 Update SuzQ

5.3 end if
Step 6. Upon a 𝐿

𝑗

= 𝐿
𝑤𝑎𝑖𝑡𝐸𝑥𝑇𝑜𝑘𝑒𝑛

and receives ExToken for 𝐿
𝑗

6.1 update SuzQ and last and add them in InToken

Algorithm 1: Raysuz’s algorithm for leader node.

of the requester. This phase needs O(𝑁) time. In the last
phase, token requester’s leader sends token to the requester.
This requiresO(𝑁/𝐶) time. Consequently, the total messages
needed in these three phases are O(𝑁) time which is needed
at the worst case.

4.4.2. The Best Case. The best case situation occurs when
requester node is the token holder node. In this case, Ray-
mond’s, Suzuki-Kasami’s, and Raysuz’s algorithm will have 0
synchronization delay.

4.4.3. General Case. In Suzuki-Kasami’s algorithm, the best
case and general case have the same delay. The synchro-
nization delay of Suzuki-Kasami’s algorithm is log

2

(𝑁)𝑇 in
general case for power law graphs. In Raymond’s algorithm,
synchronization delay is (𝐿𝐻𝑁 + 𝐿𝑅𝑁)𝑇= 2log

2

(𝑁)𝑇 in
general case.

InRaysuz’s algorithm, the first phase takes (𝐿𝐻𝑁−𝐿𝐻𝐿)𝑇
time.The second and the third phases require (𝐿𝑅𝐿+𝐿𝐻𝐿)𝑇
and (𝐿𝑅𝑁 − 𝐿𝑅𝐿)𝑇, respectively. The total time is: (𝐿𝐻𝑁 +
𝐿𝑅𝐿 + 𝐿𝑅𝑁)𝑇=2log

2

(𝑁)𝑇.
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Step 1. Upon 𝑂
𝑗

= 𝑂
𝑖𝑑𝑙𝑒

or 𝑂
𝑗

= 𝑂
ℎ𝑎V𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 and receives request from 𝑃

𝑖

1.1 if 𝑃
𝑖

∩ 𝐶
𝑗

= Ø then
1.1.1 enqueue 𝑃

𝑖

to RaymQ
1.1.2 if !Asked

1.1.2.1 send own request to Dir
1.1.2.2 set Asked True

1.1.3 end if
1.2 else

1.2.1 increase corresponding request array element by 1
1.3 end if

Step 2. Upon 𝑂
𝑗

= 𝑂
𝑖𝑑𝑙𝑒

or 𝑂
𝑗

= 𝑂
ℎ𝑎V𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 and receives ExToken

2.1 set Asked False
2.2 dequeue RaymQ and set Dir with dequeued node
2.3 send ExToken to Dir
2.4 if RaymQ.length ≥ 1 then

2.4.1 send ExReq to Dir
2.4.2 set Asked True

2.5 end if
Step 3. Upon 𝑂

𝑗

= 𝑂
𝑖𝑑𝑙𝑒

and receives Pulse
3.1 increase corresponding request array element by 1 and broadcast request
3.2 𝑂

𝑗

= 𝑂
ℎ𝑎V𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡

Step 4. Upon 𝑂
𝑗

= 𝑂
ℎ𝑎V𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 receives InToken for 𝑂

𝑗

and SuzQ.length = 0
4.1 enter CS
4.2 update SuzQ
4.3 send InToken to head of SuzQ
4.4 set Dir as head

Step 5. Upon 𝑂
𝑗

= 𝑂
ℎ𝑎V𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 receives InToken for 𝑂

𝑗

and SuzQ.length > 0
5.1 enter CS
5.2 update SuzQ
5.3 𝑂

𝑗

= 𝑂
ℎ𝑎V𝑒𝑇𝑜𝑘𝑒𝑛

Step 6. Upon 𝑂
𝑗

= 𝑂
ℎ𝑎V𝑒𝑇𝑜𝑘𝑒𝑛 receives request from 𝑃𝑖

6.1 if 𝑃
𝑖

∩ 𝐶
𝑗

= Ø then
6.1.1 enqueue 𝑃

𝑖

to RaymQ
6.1.2 if !Asked

6.1.2.1 send own request to Dir
6.1.2.2 set Asked True

6.1.3 end if
6.2 else

6.2.1 increase corresponding request array element by 1
6.2.2 update SuzQ
6.2.3 send InToken to 𝑃

𝑖

6.2.4 𝑂
𝑗

= 𝑂
𝑖𝑑𝑙𝑒

6.3 end if
Step 7. Upon 𝑂

𝑗

= 𝑂
ℎ𝑎V𝑒𝑇𝑜𝑘𝑒𝑛 and receives Pulse

7.1 enter CS

Algorithm 2: Raysuz’s algorithm for ordinary node.

This case is for intercluster token transmission between
two leaf clusters. The fact is that the token transmissions are
not always from end to end nodes. So, the synchronization
delay is less thanO(log

2

(𝑁)). Furthermore, due to the locality
of reference, in high load critical section request, a good
number of requests will arise in the clusters, there exist 𝐶
clusters in the system each having𝑁/𝐶 nodes. In these cases,
the synchronization delay is as much as the best case which is
much less than O(log

2

(𝑁)).

4.4.4. Clustering Effect on Raysuz’s Algorithm. Raysuz’s algo-
rithm takes the advantage of using clusters and applying
Suzuki-Kasami’s algorithm inside the clusters. In some cases,
nodes that are close to the token owner node aremore likely to
makeCS request than further nodes.This locality of reference
property leads to have lower synchronization delay using
Suzuki-Kasami’s algorithm inside clusters.

Assume that the requester and the token holder node
are in the same cluster. Then, in the worst case, the token
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requester will wait for the next node of its cluster to enter CS.
This takes log

2

(𝑁/𝐶)𝑇 time.
However, in Raymond’s algorithm, the worst case time is

log
2

(𝑁)𝑇. It can be seen that Raysuz’s algorithm has lower
synchronization delay when requester is in the same cluster.

4.5. Response Time. At the worst case, the response of time of
Raysuz’s algorithm is 2log

2

(𝑁/𝐶)𝑇 for intracluster commu-
nications and O(log

2

(𝑁)𝑇) for intercluster communications.
The response times of Raymond’s and Suzuki’s algorithms are
2log
2

(𝑁)𝑇 at the worst case. As explained in previous section,
Raysuz is favorable when requests are mostly made by nodes
that are in the same cluster as the token requestor.

4.6. Fairness. A distributed mutex algorithm can be stated
as fair if CS requests are always satisfied in the increasing
order of their request timestamps. Raymond’s algorithm [6]
is known to be not fair in certain situations. One of these
situations can be stated as follows.

Assume that nodes 𝑎 and 𝑏 are in the same cluster and
node 𝑎 is the token holder and cluster leader of node 𝑏.
Also, nodes 𝑐 and 𝑑 are in the same cluster and the leader
of these nodes is denoted as node 𝑒. This topology can be
seen in Figure 6. Considering this topology, suppose that the
CS requests are made in 𝑑, 𝑏, and 𝑐 chronological order. The
leaders of the requesters hear the requests and send requests
to the token holding cluster, node 𝑎. Node 𝑎 sends the token
to the direction of 𝑑 and immediately sends a request to grab
and send token to node 𝑏. Node 𝑒 which is the leader of
node 𝑑 receives the token and forwards it to 𝑑. After node
𝑑 exits the CS, it immediately sends the token to node 𝑐,
since they are in the same cluster and Suzuki-Kasami’s part
of Raysuz is processed. Meanwhile, node 𝑒 makes Suzuki-
Kasami’s request, since it has received a request from node 𝑎
(which belongs to node 𝑏). After 𝑐 exits CS, 𝑒 takes the token
back and sends to 𝑎, which will finally send token to 𝑏. In this
scenario, 𝑐 enters CS before 𝑏 while 𝑏 has sent request earlier.

Our proposed algorithm uses Raymond’s algorithm for
intercluster communications; therefore, intercluster opera-
tions are unfair as in Raymond’s algorithm. Intracluster
requests are satisfied fairly as in Suzuki-Kasami’s algorithm.
On the whole, unfairness of Raysuz’s algorithm is generally
lower than, and in the worst cases the same as the unfairness
of Raymond’s algorithm.

Kanrar and Chaki [29] had solved the unfairness issue
by adding extensions to original Raymond’s algorithm. The
same approach can be applied to Raysuz’s algorithm easily;
therefore, the unfairness issue can be solved.

5. Discussion and Conclusion

In this work, we have proposed a new token-based hybrid
DMX algorithm. The algorithm works on a clustered graph
and executes Suzuki-Kasami’s algorithm in the clusters,
meanwhile running Raymond’s algorithm between cluster’s
leaders. It stores the CS requests in clusters and serves them
whenever token arrives into the cluster.

a

b

c

d

e T

Other clusters

Figure 6: The topology of the scenario.

In general, Raysuz’s algorithm has a stronger fairness
property than Raymond’s algorithm. In the worst case
scenario, the algorithm is as fair as Raymond’s algorithm.
However, there are algorithms to make Raymond’s algorithm
fair which can also be added into Raysuz’s algorithm [29].
Instead, Raysuz algorithm gives better message complexity
than pure Suzuki-Kasami’s algorithm and better CS delay
than pure Raymond’s algorithm. In addition, storing CS
request and serving them as soon as external token arrives
leads to preventing ping-pong style token communication
in intraclusters which can be matter of issue in Raymond’s
algorithm.

Using positive points of both Raymond’s and Suzuki-
Kasami’s algorithms makes it possible to balance the amount
of message communication (increasing with bigger clusters)
and the synchronization delay (increasing with smaller clus-
ters). Therefore, having a parameter like cluster size as a
tuning variable can make desired balance between CS delay
and communication messages. Thus, the algorithm will be
useful for both interactive systems with multiusers, in which
traffic reduction is important, and real-time systems, inwhich
lower CS delay is critical. In the real distributed systems,
usually networks are not fully connected. The proposed
algorithm uses Suzuki-Kasami’s algorithm and customizes it
by finding anMST in the clusters and using the shortest paths
in them.

The reduction of message count used in the communi-
cation leads to have lower energy consumption. This is an
important issue for wireless systems in general and makes
our algorithm more suitable to be used in MANETs. Also,
using clusters and executing CS in the clusters can lead to
have less energy consumptions. Group mutual exclusion [30]
is another field that can be adapted to proposed algorithm
[3, 31]. In any cluster, CS executions can be considered as
groups of nodes which tend to enter a CS.
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The design and optimization problems of the nonfragile guaranteed cost control are investigated for a class of interconnected
systems of neutral type. A novel scheme, viewing the interconnections with time-varying delays as effective information but not
disturbances, is developed to decrease the conservatism.Many techniques on decomposing andmagnifying thematrices are utilized
to obtain the guaranteed cost of the considered system. Also, an algorithm is proposed to solve the nonlinear problem of the
interconnected matrices. Based on this algorithm, the minimization of the guaranteed cost of the considered system is obtained by
optimization. Further, the state feedback control is extended to the case in which the underlying system is dependent on uncertain
parameters. Finally, two numerical examples are given to illustrate the proposed method, and some comparisons are made to show
the advantages of the schemes of dealing with the interconnections.

1. Introduction

Timedelays often arise in the processing state, input or related
variables of dynamic systems. Particularly, when the state
derivative also contains time delay, the considered systems
are called neutral systems [1]. The outstanding characteristic
of neutral systems is the fact that such systems contain the
samehighest order derivatives for the state vector𝑥(𝑡), at both
time 𝑡 and past time(s) 𝑡

𝑠

≤ 𝑡. Many engineering systems
can be represented as neutral equation [2–10], such as heat
exchangers, robots in contact with rigid environments [11],
distributed networks containing lossless transmission lines
[12], and population ecology [13]. Therefore, great interest
has been devoted to analysis and synthesis of a class of
neutral delay systems. The delay-dependent stability criteria
for stochastic systems of neutral type are studied in [3,
6]. The difference between them is that the exponential
stability problem is investigated in the former, and the robust
stochastic stability, stabilization, and 𝐻

∞

control problems
are considered in the other. Furthermore, the improved
stability criteria for neutral systems are established by the
method of a memory state feedback control [2] and by the

method of a robust 𝐻
∞

reduced order filter in [4]. In the
context of infinite-dimensional linear systems modeled by
neutral functional differential equations, a periodic output
feedback is studied in [14] and the stabilization of neutral
systems with delayed control is the main work. As the further
results, in [15–17], the stability and𝐻

∞

performance analysis,
the finite-time 𝐻

∞

control, and the reliable stabilization for
uncertain switched systems of neutral type are investigated,
respectively.

On the other hand, interconnected systems appear in
a variety of engineering applications including power sys-
tems, large structures and manufacturing systems, and their
applications, such as [18–21]. In [18], Mukaidani investigates
the stability of a class of nonlinear large-scale systems and
proposes a suboptimal guaranteed cost control instead of
solving the nonconvex optimization problem. But the time
delays are invariant and not involved in the interconnections.
Furthermore, the scheme of counteracting the interconnec-
tions to simplify the problem may add conservatism in some
cases. In [19], Mahmoud and Xia propose a generalized
approach to stabilization of systems which are composed of
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linear time delay subsystems coupled by linear time-varying
interconnections. The decentralized structure of dissipative
state-feedback controllers is designed to render the closed-
loop interconnected system delay-dependent asymptotically
stable with strict dissipativity. However, the optimization
problem for the dissipativity 𝛽

𝑗

is not taken into account.
In [20], a decentralized control scheme for a class of lin-
ear large-scale interconnected systems with norm-bounded
time-varying parameter uncertainties is designed under a
class of control failures. It is worth noting that the considered
systems do not include any time delay, and the optimization
problem for the guaranteed cost 𝐽(𝑥, 𝑢) is not investigated.

To the best of the authors’ knowledge, the nonfragile
guaranteed cost control and optimization for neutral inter-
connected systems have not yet been investigated, which
motivates the present study. One contribution of this paper
is that a novel scheme, viewing the interconnections with
time-varying delays as effective information but not distur-
bances, is developed to decrease the conservatism. The other
contribution lies in the fact that an algorithm is proposed
to solve the nonlinear constraint problem caused by the
interconnected matrices. In this paper, the designed control
is the state feedback control with gain perturbations. Also,
the guaranteed cost of the considered system can be obtained
by solving the corresponding matrix inequality. Based on the
proposed algorithm, the minimization of the guaranteed cost
of the considered system can be obtained by optimization.
particuraly, thematrix𝐸1/2

𝑖

is introduced to denote the square
root matrix of symmetric positive semidefinite matrix 𝐸

𝑖

≥ 0,
that is, 𝐸1/2

𝑖

= 𝑉
𝑖

𝐻
1/2

𝑖

𝑉
𝑇

𝑖

with 𝑉
𝑖

the eigenvector matrix of 𝐸
𝑖

satisfying 𝑉
𝑖

𝑉
𝑇

𝑖

= 𝐼 and 𝐻
𝑖

the diagonal eigenvalues matrix
of 𝐸
𝑖

.
The remainder of the paper is organized as follows.

The nonfragile control problem formulation is described
in Section 2. In Section 3, the guaranteed cost control with
gain perturbations and optimization are investigated for
unperturbed and uncertain neutral interconnected systems.
The numerical examples, the simulation results, and some
comparisons are presented in Section 4. The conclusion is
provided in Section 5.

2. Problem Formulation

Consider the following uncertain neutral interconnected
systems composed of𝑁 subsystems:

̇𝑥
𝑖

(𝑡) −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))

= [𝐴
𝑖

+ Δ𝐴
𝑖

(𝑡)] 𝑥
𝑖

(𝑡)

+ [𝐴
𝑖𝜎

𝑖

+ Δ𝐴
𝑖𝜎

𝑖
(𝑡)] 𝑥
𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

+ [𝐴
𝑖𝜂

𝑖

+ Δ𝐴
𝑖𝜂

𝑖
(𝑡)] ̇𝑥
𝑖

(𝑡 − 𝜂
𝑖

(𝑡))

+ [𝐵
𝑖

+ Δ𝐵
𝑖

(𝑡)] 𝑢
𝑖

(𝑡)

+ [𝐵
𝑖𝛿

𝑖

+ Δ𝐵
𝑖𝛿

𝑖
(𝑡)] 𝑢
𝑖

(𝑡 − 𝛿
𝑖

(𝑡)) ,

𝑥
𝑖

(𝑡) = 𝜙
𝑖

(𝑡) , 𝑡 ∈ [−𝑙, 0] , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖

(𝑡) ∈ R𝑛𝑖 and 𝑢
𝑖

(𝑡) ∈ R𝑚𝑖 are the state vector
and the input vector of the 𝑖th subsystem, respectively.
∑
𝑁

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) is the interconnections between the
𝑖th subsystem and the other𝑁−1 subsystems, in which𝐴

𝑖𝑗

is
known interconnected matrices of appropriate dimensions,
and 𝑥

𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) implies the interconnections between the
𝑖th subsystem and the other𝑁 − 1 subsystems have different
time-varying delays 𝜏

𝑖𝑗

(𝑡), 𝑗 = 1, 2, . . . , 𝑁, 𝑗 ̸= 𝑖. 𝐴
𝑖

, 𝐴
𝑖𝜎

𝑖

,
𝐴
𝑖𝜂

𝑖

, 𝐵
𝑖

, and 𝐵
𝑖𝛿

𝑖

are known constant matrices of appropriate
dimensions. 𝜙

𝑖

(𝑡) is the initial condition. Assume that there
exist constants 𝑓

𝑖0

, 𝑔
𝑖0

, ℎ
𝑖0

, 𝑙
𝑖0

, 𝑓
𝑖

, 𝑔
𝑖

, ℎ
𝑖

, 𝑙
𝑖

, and 𝑙 satisfying

0 ≤ 𝜎
𝑖

(𝑡) ≤ 𝑓
𝑖0

, 0 ≤ 𝜂
𝑖

(𝑡) ≤ 𝑔
𝑖0

,

0 ≤ 𝛿
𝑖

(𝑡) ≤ ℎ
𝑖0

, 0 ≤ 𝜏
𝑖𝑗

(𝑡) ≤ 𝑙
𝑖0

,

̇𝜎
𝑖

(𝑡) ≤ 𝑓
𝑖

< 1, ̇𝜂
𝑖

(𝑡) ≤ 𝑔
𝑖

< 1,

̇𝛿
𝑖

(𝑡) ≤ ℎ
𝑖

< 1, ̇𝜏
𝑖𝑗

(𝑡) ≤ 𝑙
𝑖

< 1,

𝑙 = max {𝑓
𝑖0

, 𝑔
𝑖0

, ℎ
𝑖0

, 𝑙
𝑖0

} , 𝑖, 𝑗 = 1, 2 . . . , 𝑁, 𝑗 ̸= 𝑖.

(2)

Time-varying parametric uncertainties Δ𝐴
𝑖

(𝑡), Δ𝐴
𝑖𝜎

𝑖

(𝑡),
Δ𝐴
𝑖𝜂

𝑖

(𝑡), Δ𝐵
𝑖

(𝑡), and Δ𝐵
𝑖𝛿

𝑖

(𝑡) are assumed to be of the
following form:

[Δ𝐴
𝑖

(𝑡) Δ𝐴
𝑖𝜎

𝑖
(𝑡) Δ𝐴

𝑖𝜂

𝑖
(𝑡) Δ𝐵

𝑖

(𝑡) Δ𝐵
𝑖𝛿

𝑖
(𝑡)]

= 𝐶
𝑖

𝐹
𝑖

(𝑡) [𝐷
𝑖1

𝐷
𝑖𝜎

𝑖

𝐷
𝑖𝜂

𝑖

𝐷
𝑖2

𝐷
𝑖𝛿

𝑖
] ,

(3)

where 𝐶
𝑖

, 𝐷
𝑖1

, 𝐷
𝑖𝜎

𝑖

, 𝐷
𝑖𝜂

𝑖

, 𝐷
𝑖2

, and 𝐷
𝑖𝛿

𝑖

are constant matrices
of appropriate dimensions, and 𝐹

𝑖

(𝑡) is the unknown matrix
function satisfying 𝐹𝑇

𝑖

(𝑡)𝐹
𝑖

(𝑡) ≤ 𝐼
𝑛

𝑖

, for all 𝑡 ≥ 0.
Construct the following state feedback control with gain

perturbations:

𝑢
𝑖

(𝑡) = − (𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑥
𝑖

(𝑡) , (4)

where𝐾
𝑖

∈ R𝑚𝑖×𝑛𝑖 is the control gain to be designed, andΔ𝐾
𝑖

is a perturbed matrix satisfying Δ𝐾
𝑖

= 𝑀
𝑖

𝐹
𝑖

(𝑡)𝑁
𝑖

, where𝑀
𝑖

and 𝑁
𝑖

are known matrices of appropriate dimensions, and
𝐹
𝑖

(𝑡) satisfies 𝐹𝑇
𝑖

(𝑡)𝐹
𝑖

(𝑡) ≤ 𝐼
𝑚

𝑖

, for all 𝑡 ≥ 0; the resulting
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closed-loop uncertain neutral interconnected systems are
obtained:

̇𝑥
𝑖

(𝑡) −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))

= [𝐴
𝑖

− 𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) + Δ𝐴
𝑖

(𝑡)

−Δ𝐵
𝑖

(𝑡) (𝐾
𝑖

+ Δ𝐾
𝑖

)] 𝑥
𝑖

(𝑡)

+ [𝐴
𝑖𝜎

𝑖

+ Δ𝐴
𝑖𝜎

𝑖
(𝑡)] 𝑥
𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

+ [𝐴
𝑖𝜂

𝑖

+ Δ𝐴
𝑖𝜂

𝑖
(𝑡)] ̇𝑥
𝑖

(𝑡 − 𝜂
𝑖

(𝑡))

+ [−𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) − Δ𝐵
𝑖𝛿

𝑖
(𝑡) (𝐾

𝑖

+ Δ𝐾
𝑖

)]

× 𝑥
𝑖

(𝑡 − 𝛿
𝑖

(𝑡)) .

(5)

Define the following quadratic cost function:

𝐽 =

𝑁

∑

𝑖=1

∫

∞

0

[𝑥
𝑇

𝑖

(𝑡) 𝑆
𝑖1

𝑥
𝑖

(𝑡) + 𝑢
𝑇

𝑖

(𝑡) 𝑆
𝑖2

𝑢
𝑖

(𝑡)] 𝑑𝑡, (6)

where 𝑆
𝑖1

∈ R𝑛𝑖×𝑛𝑖 and 𝑆
𝑖2

∈ R𝑚𝑖×𝑚𝑖 are two given symmetric
positive definite matrices.

One objective of this paper is to design a control (4) and
determine a scalar 𝐽

𝑢

satisfying the following two conditions:

(a) the closed-loop system (5) is asymptotically stable,
(b) 𝐽 ≤ 𝐽

𝑢

.

If the aforementioned control gain 𝐾
𝑖

and constant 𝐽
𝑢

exist, control (4) is the decentralized nonfragile guaranteed
cost control and 𝐽

𝑢

is the guaranteed cost for the considered
system.

The other is to find out 𝐽∗, the minimization of the guar-
anteed cost 𝐽

𝑢

.

Lemma 1 (see [8]). Let 𝑍, 𝑋, 𝑆, and 𝑌 be matrices of
appropriate dimensions. Assuming that 𝑍 is symmetric and
𝑆
𝑇

𝑆 ≤ 𝐼, then 𝑍 + 𝑋𝑆𝑌 + 𝑌
𝑇

𝑆
𝑇

𝑋
𝑇

< 0 if and only if there
exists a scalar 𝜀 > 0 satisfying

𝑍 + 𝜀𝑋𝑋
𝑇

+ 𝜀
−1

𝑌
𝑇

𝑌 = 𝑍 + 𝜀
−1

(𝜀𝑋) (𝜀𝑋)
𝑇

+ 𝜀
−1

𝑌
𝑇

𝑌 < 0.

(7)

Lemma 2 (see [8]). For any constant matrix 𝑃 > 0 and differ-
entiable vector function 𝑥

𝑖

(𝑡)with appropriate dimensions, one
has

[∫

𝑡

𝑡−𝜎

𝑖(
𝑡)

̇𝑥
𝑖

(𝑠) 𝑑𝑠]

𝑇

𝑃[∫

𝑡

𝑡−𝜎

𝑖(
𝑡)

̇𝑥
𝑖

(𝑠) 𝑑𝑠]

≤ 𝑓
𝑖0

∫

𝑡

𝑡−𝜎

𝑖
(𝑡)

̇𝑥
𝑇

𝑖

(𝑠) 𝑃 ̇𝑥
𝑖

(𝑠) 𝑑𝑠

≤ 𝑓
𝑖0

∫

𝑡

𝑡−𝑓

𝑖0

̇𝑥
𝑇

𝑖

(𝑠) 𝑃 ̇𝑥
𝑖

(𝑠) 𝑑𝑠.

(8)

3. Main Result

3.1. Nonfragile Guaranteed Cost Control and Optimization
for Unperturbed Neutral Interconnected Systems. For conve-
nience, firstly consider the following unperturbed neutral
interconnected systems with time-varying delays:

̇𝑥
𝑖

(𝑡) −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))

= 𝐴
𝑖

𝑥
𝑖

(𝑡) + 𝐴
𝑖𝜎

𝑖

𝑥
𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

+ 𝐴
𝑖𝜂

𝑖

̇𝑥
𝑖

(𝑡 − 𝜂
𝑖

(𝑡))

+ 𝐵
𝑖

𝑢
𝑖

(𝑡) + 𝐵
𝑖𝛿

𝑖

𝑢
𝑖

(𝑡 − 𝛿
𝑖

(𝑡)) ,

𝑥
𝑖

(𝑡) = 𝜙
𝑖

(𝑡) , 𝑡 ∈ [−𝑙, 0] , 𝑖 = 1, 2, . . . , 𝑁.

(9)

Now a sufficient condition for existence of the decentral-
ized nonfragile guaranteed cost control (4) for unperturbed
neutral interconnected systems (9) with cost function (6) is
presented in the following results.

Theorem 3. Assume ‖𝐴
𝑖𝜂

𝑖

‖ < 1. If there exist a positive
number 𝜀

𝑖1

, some symmetric positive definite matrices𝑄
𝑖𝑘

(𝑘 =

0, 1, 2), 𝑊
𝑗𝑖

, 𝑊
𝑖𝑗

, and matrix 𝑋
𝑖

such that the following
inequality holds:

Γ
𝑖

=

[
[
[
[
[
[
[
[

[

Γ
𝑖

11

Γ
𝑖

12

0 Γ
𝑖

14

Γ
𝑖

15

Γ
𝑖

16

∗ Γ
𝑖

22

0 Γ
𝑖

24

0 Γ
𝑖

26

∗ ∗ Γ
𝑖

33

0 0 0

∗ ∗ ∗ Γ
𝑖

44

0 Γ
𝑖

46

∗ ∗ ∗ ∗ Γ
𝑖

55

0

∗ ∗ ∗ ∗ ∗ Γ
𝑖

66

]
]
]
]
]
]
]
]

]

< 0; (10)

then control (4) with 𝐾
𝑖

= 𝑋
𝑖

𝑄
−1

𝑖0

is the decentralized
nonfragile guaranteed cost control of unperturbed neutral
interconnected systems (9) with the following guaranteed cost:

𝐽
𝑢

=

𝑁

∑

𝑖=1

[

[

𝜙
𝑇

𝑖

(0) 𝑄
−1

𝑖0

𝜙
𝑖

(0)

+ ∫

0

−𝜎

𝑖(
0)

𝜙
𝑇

𝑖

(𝑠) 𝑄
−1

𝑖0

𝑄
𝑖1

𝑄
−1

𝑖0

𝜙
𝑖

(𝑠) 𝑑𝑠

+
1

1 − 𝑔
𝑖

∫

0

−𝜂

𝑖
(0)

̇𝜙
𝑇

𝑖

(𝑠) ̇𝜙
𝑖

(𝑠) 𝑑𝑠

+ 𝑓
𝑖0

∫

0

−𝑓

𝑖0

(𝑠 + 𝑓
𝑖0

) ̇𝜙
𝑇

𝑖

(𝑠) ̇𝜙
𝑖

(𝑠) 𝑑𝑠

+ ∫

0

−𝛿

𝑖
(0)

𝜙
𝑇

𝑖

(𝑠) 𝑄
−1

𝑖0

𝑄
𝑖2

𝑄
−1

𝑖0

𝜙
𝑖

(𝑠) 𝑑𝑠

+
1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∫

0

−𝜏

𝑖𝑗(
0)

𝜙
𝑇

𝑗

(𝑠)𝑊
𝑖𝑗

𝜙
𝑗

(𝑠) 𝑑𝑠]

]

,

(11)

where
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Γ
𝑖

11

= 𝐴
𝑖

𝑄
𝑖0

+ 𝑄
𝑖0

𝐴
𝑇

𝑖

− 𝐵
𝑖

𝑋
𝑖

− 𝑋
𝑇

𝑖

𝐵
𝑇

𝑖

+ 𝑄
𝑖1

+ 𝑄
𝑖2

+ 𝐸
𝑖

,

Γ
𝑖

12

= [𝐴
𝑖𝜎

𝑖

𝑄
𝑖0

𝐴
𝑖𝜂

𝑖

0 −𝐵
𝑖𝛿

𝑖

𝑋
𝑖

] , Γ
𝑖

16

= [𝜀
𝑖1

𝐵
𝑖

𝑀
𝑖

𝜀
𝑖1

𝐵
𝑖𝛿

𝑖

𝑀
𝑖

−𝑄
𝑖0

𝑁
𝑇

𝑖

0] ,

Γ
𝑖

14

= [𝑄
𝑖0

𝐴
𝑇

𝑖

− 𝑋
𝑇

𝑖

𝐵
𝑇

𝑖

𝑄
𝑖0

−𝑋
𝑇

𝑖

𝑄
𝑖0

𝐴
𝑇

𝑖

𝐸
1/2

𝑖

−𝑋
𝑇

𝑖

𝐵
𝑇

𝑖

𝐸
1/2

𝑖

0 0 0] ,

Γ
𝑖

22

= diag {− (1 − 𝑓
𝑖

) 𝑄
𝑖1

, −𝐼
𝑛

𝑖

, −𝐼
𝑛

𝑖

, − (1 − ℎ
𝑖

) 𝑄
𝑖2

} ,

Γ
𝑖

24

=

[
[
[
[

[

𝑄
𝑖0

𝐴
𝑇

𝑖𝜎

𝑖

0 0 0 0 𝑄
𝑖0

𝐴
𝑇

𝑖𝜎

𝑖

𝐸
1/2

𝑖

0 0

𝐴
𝑇

𝑖𝜂

𝑖

0 0 0 0 0 𝐴
𝑇

𝑖𝜂

𝑖

𝐸
1/2

𝑖

0

0 0 0 0 0 0 0 0

−𝑋
𝑇

𝑖

𝐵
𝑇

𝑖𝛿

𝑖

0 0 0 0 0 0 −𝑋
𝑇

𝑖

𝐵
𝑇

𝑖𝛿

𝑖

𝐸
1/2

𝑖

]
]
]
]

]

,

Γ
𝑖

15

= [

[

𝑄
𝑖0

⋅ ⋅ ⋅ 𝑄
𝑖0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−1

]

]

, Γ
𝑖

26

=
[
[
[

[

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −𝑄
𝑖0

𝑁
𝑇

𝑖

]
]
]

]

,

𝐸
𝑖

=

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝐴
𝑇

𝑖𝑗

, Γ
𝑖

33

=

[
[
[
[
[
[
[
[
[
[

[

Ψ
𝑖

11

⋅ ⋅ ⋅ Ψ
𝑖

1 𝑖−1

Ψ
𝑖

1 𝑖+1

⋅ ⋅ ⋅ Ψ
𝑖

1𝑁

... d
...

...
...

...
∗ ∗ Ψ

𝑖

𝑖−1 𝑖−1

Ψ
𝑖

𝑖−1 𝑖+1

⋅ ⋅ ⋅ Ψ
𝑖

𝑖−1𝑁

∗ ∗ ∗ Ψ
𝑖

𝑖+1 𝑖+1

⋅ ⋅ ⋅ Ψ
𝑖

𝑖+1𝑁

...
...

...
... d

...
∗ ∗ ∗ ∗ ∗ Ψ

𝑖

𝑁𝑁

]
]
]
]
]
]
]
]
]
]

]

,

Γ
𝑖

44

= diag {−𝑒−1
𝑖1

𝐼
𝑛

𝑖

, −𝑆
−1

𝑖1

, −𝑆
−1

𝑖2

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

} ,

Γ
𝑖

46

=

[
[
[
[
[
[
[
[
[
[
[

[

𝜀
𝑖1

𝐵
𝑖

𝑀
𝑖

𝜀
𝑖1

𝐵
𝑖𝛿

𝑖

𝑀
𝑖

0 0

0 0 0 0

𝜀
𝑖1

𝑀
𝑖

0 0 0

0 0 0 0

𝜀
𝑖1

𝐸
1/2

𝑖

𝐵
𝑖

𝑀
𝑖

0 0 0

0 0 0 0

0 0 0 0

0 𝜀
𝑖1

𝐸
1/2

𝑖

𝐵
𝑖𝛿

𝑖

𝑀
𝑖

0 0

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑒
𝑖1

=
1

1 − 𝑔
𝑖

+ 𝑓
2

𝑖0

, 𝑒
𝑖2

= 1 +
5

1 − 𝑔
𝑖

+ 5𝑓
2

𝑖0

,

Γ
𝑖

55

= diag {− (1 − 𝑙
1

)𝑊
1 𝑖

, . . . , − (1 − 𝑙
𝑖−1

)𝑊
𝑖−1 𝑖

, − (1 − 𝑙
𝑖+1

)𝑊
𝑖+1 𝑖

, . . . , − (1 − 𝑙
𝑁

)𝑊
𝑁𝑖

} ,

Γ
𝑖

66

= diag {−𝜀
𝑖1

𝐼
𝑛

𝑖

, −𝜀
𝑖1

𝐼
𝑛

𝑖

, −𝜀
𝑖1

𝐼
𝑛

𝑖

, −𝜀
𝑖1

𝐼
𝑛

𝑖

} ,

Ψ
𝑖

11

= 𝑒
𝑖2

𝐼
𝑛

1

−𝑊
𝑖1

+ 𝑒
𝑖1

𝐴
𝑇

𝑖1

𝐴
𝑖1

,

Ψ
𝑖

1 𝑖−1

= 𝑒
𝑖1

𝐴
𝑇

𝑖1

𝐴
𝑖 𝑖−1

, Ψ
𝑖

1 𝑖+1

= 𝑒
𝑖1

𝐴
𝑇

𝑖1

𝐴
𝑖 𝑖+1

,

Ψ
𝑖

1𝑁

= 𝑒
𝑖1

𝐴
𝑇

𝑖1

𝐴
𝑖𝑁

, Ψ
𝑖

𝑖−1 𝑖−1

= 𝑒
𝑖2

𝐼
𝑛

𝑖−1

−𝑊
𝑖 𝑖−1

+ 𝑒
𝑖1

𝐴
𝑇

𝑖 𝑖−1

𝐴
𝑖 𝑖−1

,

Ψ
𝑖

𝑖−1 𝑖+1

= 𝑒
𝑖1

𝐴
𝑇

𝑖 𝑖−1

𝐴
𝑖 𝑖+1

, Ψ
𝑖

𝑖−1𝑁

= 𝑒
𝑖1

𝐴
𝑇

𝑖 𝑖−1

𝐴
𝑖𝑁

,

Ψ
𝑖

𝑖+1 𝑖+1

= 𝑒
𝑖2

𝐼
𝑛

𝑖+1

−𝑊
𝑖 𝑖+1

+ 𝑒
𝑖1

𝐴
𝑇

𝑖 𝑖+1

𝐴
𝑖 𝑖+1

,
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Ψ
𝑖

𝑖+1𝑁

= 𝑒
𝑖1

𝐴
𝑇

𝑖 𝑖+1

𝐴
𝑖𝑁

, Ψ
𝑖

𝑁𝑁

= 𝑒
𝑖2

𝐼
𝑛

𝑁

−𝑊
𝑖𝑁

+ 𝑒
𝑖1

𝐴
𝑇

𝑖𝑁

𝐴
𝑖𝑁

,

𝑊
𝑗𝑖

= 𝑊
−1

𝑗𝑖

, 𝑖, 𝑗 = 1, 2 . . . , 𝑁, 𝑗 ̸= 𝑖.

(12)

Proof. Choose 𝑃
𝑖0

= 𝑄
−1

𝑖0

, 𝑃
𝑖1

= 𝑄
−1

𝑖0

𝑄
𝑖1

𝑄
−1

𝑖0

, and 𝑃
𝑖2

=

𝑄
−1

𝑖0

𝑄
𝑖2

𝑄
−1

𝑖0

, and construct the following Lyapunov functional:

𝑉 (𝑥 (𝑡) , 𝑡)

=

𝑁

∑

𝑖=1

[

[

𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖0

𝑥
𝑖

(𝑡)

+ ∫

𝑡

𝑡−𝜎

𝑖(
𝑡)

𝑥
𝑇

𝑖

(𝑠) 𝑃
𝑖1

𝑥
𝑖

(𝑠) 𝑑𝑠

+
1

1 − 𝑔
𝑖

∫

𝑡

𝑡−𝜂

𝑖(
𝑡)

̇𝑥
𝑇

𝑖

(𝑠) ̇𝑥
𝑖

(𝑠) 𝑑𝑠

+ 𝑓
𝑖0

∫

𝑡

𝑡−𝑓

𝑖0

(𝑠 − (𝑡 − 𝑓
𝑖0

)) ̇𝑥
𝑇

𝑖

(𝑠) ̇𝑥
𝑖

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝛿

𝑖(
𝑡)

𝑥
𝑇

𝑖

(𝑠) 𝑃
𝑖2

𝑥
𝑖

(𝑠) 𝑑𝑠

+
1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∫

𝑡

𝑡−𝜏

𝑖𝑗(
𝑡)

𝑥
𝑇

𝑗

(𝑠)𝑊
𝑖𝑗

𝑥
𝑗

(𝑠) 𝑑𝑠]

]

.

(13)

Obviously, 𝑉(𝑥(𝑡), 𝑡) > 0 for all 𝑥
𝑖

(𝑡) ̸= 0. Differentiating
𝑉(𝑥(𝑡), 𝑡) along the trajectories of the unperturbed neutral
interconnected systems (9) with control (4) and applying (2)
and Lemma 2 yield

𝑉 (𝑥 (𝑡) , 𝑡)

≤

𝑁

∑

𝑖=1

{

{

{

𝑥
𝑇

𝑖

(𝑡) (𝑃
𝑖0

𝐴
𝑖

+ 𝐴
𝑇

𝑖

𝑃
𝑖0

) 𝑥
𝑖

(𝑡)

+ 2𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖0

𝐴
𝑖𝜎

𝑖

𝑥
𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

+ 2𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖0

𝐴
𝑖𝜂

𝑖

̇𝑥
𝑖

(𝑡 − 𝜂
𝑖

(𝑡))

− 2𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖0

𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑥
𝑖

(𝑡)

− 2𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖0

𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

)

× 𝑥
𝑖

(𝑡 − 𝛿
𝑖

(𝑡)) + 2𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖0

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))

+ 𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖1

𝑥
𝑖

(𝑡) − (1 − 𝑓
𝑖

) 𝑥
𝑇

𝑖

× (𝑡 − 𝜎
𝑖

(𝑡)) 𝑃
𝑖1

𝑥
𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

+ (
1

1 − 𝑔
𝑖

+ 𝑓
2

𝑖0

)

× [

[

𝑥
𝑇

𝑖

(𝑡) 𝐴
𝑇

𝑖

+ 𝑥
𝑇

𝑖

(𝑡 − 𝜎
𝑖

(𝑡)) 𝐴
𝑇

𝑖𝜎

𝑖

+ ̇𝑥
𝑇

𝑖

(𝑡 − 𝜂
𝑖

(𝑡)) 𝐴
𝑇

𝑖𝜂

𝑖

− 𝑥
𝑇

𝑖

(𝑡) (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

− 𝑥
𝑇

𝑖

× (𝑡 − 𝛿
𝑖

(𝑡)) (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖𝛿

𝑖

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) 𝐴
𝑇

𝑖𝑗

]

]

× [

[

𝐴
𝑖

𝑥
𝑖

(𝑡) + 𝐴
𝑖𝜎

𝑖

𝑥
𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

+ 𝐴
𝑖𝜂

𝑖

̇𝑥
𝑖

(𝑡 − 𝜂
𝑖

(𝑡))

− 𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑥
𝑖

(𝑡)

− 𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑥
𝑖

(𝑡 − 𝛿
𝑖

(𝑡))

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))]

]

− ̇𝑥
𝑇

𝑖

(𝑡 − 𝜂
𝑖

(𝑡)) ̇𝑥
𝑖

(𝑡 − 𝜂
𝑖

(𝑡))

− [∫

𝑡

𝑡−𝜎

𝑖
(𝑡)

̇𝑥
𝑖

(𝑠)𝑑𝑠]

𝑇

[∫

𝑡

𝑡−𝜎

𝑖
(𝑡)

̇𝑥
𝑖

(𝑠) 𝑑𝑠]

+ 𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖2

𝑥
𝑖

(𝑡) − (1 − ℎ
𝑖

) 𝑥
𝑇

𝑖

× (𝑡 − 𝛿
𝑖

(𝑡)) 𝑃
𝑖2

𝑥
𝑖

(𝑡 − 𝛿
𝑖

(𝑡))

+
1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡)𝑊
𝑖𝑗

𝑥
𝑗

(𝑡)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))𝑊
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))
}

}

}

.

(14)
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According to Lemma 1 and the following the fact:

𝑁

∑

𝑖=1

1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡)𝑊
𝑖𝑗

𝑥
𝑗

(𝑡)

=

𝑁

∑

𝑖=1

𝑥
𝑇

𝑖

(𝑡)

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

1

1 − 𝑙
𝑗

𝑊
𝑗𝑖

𝑥
𝑖

(𝑡) ,

(15)

one can obtain

𝑁

∑

𝑖=1

{

{

{

2𝑥
𝑇

𝑖

(𝑡) 𝑃
𝑖0

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) + 2𝑒
𝑖1

× [𝑥
𝑇

𝑖

(𝑡) 𝐴
𝑇

𝑖

+ 𝑥
𝑇

𝑖

(𝑡 − 𝜎
𝑖

(𝑡)) 𝐴
𝑇

𝑖𝜎

𝑖

+ ̇𝑥
𝑇

𝑖

(𝑡 − 𝜂
𝑖

(𝑡)) 𝐴
𝑇

𝑖𝜂

𝑖

− 𝑥
𝑇

𝑖

(𝑡)

× (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

− 𝑥
𝑇

𝑖

(𝑡 − 𝛿
𝑖

(𝑡))

× (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖𝛿

𝑖

]

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) + 𝑒
𝑖1

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) 𝐴
𝑇

𝑖𝑗

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))

+
1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡)𝑊
𝑖𝑗

𝑥
𝑗

(𝑡)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))

×𝑊
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))
}

}

}

≤

𝑁

∑

𝑖=1

{

{

{

𝑥
𝑇

𝑖

(𝑡) [

[

𝑃
𝑖0

𝐸
𝑖

𝑃
𝑖0

+ 𝑒
𝑖1

𝐴
𝑇

𝑖

𝐸
𝑖

𝐴
𝑖

+ 𝑒
𝑖1

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

× 𝐵
𝑇

𝑖

𝐸
𝑖

𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

)

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

1

1 − 𝑙
𝑗

𝑊
𝑗𝑖

]

]

× 𝑥
𝑖

(𝑡) + 𝑒
𝑖1

𝑥
𝑇

𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

× 𝐴
𝑇

𝑖𝜎

𝑖

𝐸
𝑖

𝐴
𝑖𝜎

𝑖

𝑥
𝑖

(𝑡 − 𝜎
𝑖

(𝑡))

+ 𝑒
𝑖1

𝑥
𝑇

𝑖

(𝑡 − 𝛿
𝑖

(𝑡)) (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

× 𝐵
𝑇

𝑖𝛿

𝑖

𝐸
𝑖

𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑥
𝑖

(𝑡 − 𝛿
𝑖

(𝑡))

+ 𝑒
𝑖1

̇𝑥
𝑇

𝑖

(𝑡 − 𝜂
𝑖

(𝑡)) 𝐴
𝑇

𝑖𝜂

𝑖

𝐸
𝑖

𝐴
𝑖𝜂

𝑖

̇𝑥
𝑖

(𝑡 − 𝜂
𝑖

(𝑡))

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))

× (𝑒
𝑖2

𝐼 − 𝑊
𝑖𝑗

) 𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) + 𝑒
𝑖1

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡)) 𝐴
𝑇

𝑖𝑗

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐴
𝑖𝑗

𝑥
𝑗

(𝑡 − 𝜏
𝑖𝑗

(𝑡))
}

}

}

.

(16)

Therefore, it follows from (14) and (16) that

𝑉 (𝑥 (𝑡) , 𝑡) +

𝑁

∑

𝑖=1

[𝑥
𝑇

𝑖

(𝑡) 𝑆
𝑖1

𝑥
𝑖

(𝑡) + 𝑥
𝑇

𝑖

(𝑡) (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

× 𝑆
𝑖2

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑥
𝑖

(𝑡) ]

≤

𝑁

∑

𝑖=1

𝜉
𝑇

𝑖

Υ
𝑖

𝜉
𝑖

,

(17)

where

𝜉
𝑇

𝑖

= [ 𝑥
𝑇

𝑖

(𝑡) 𝑥
𝑇

𝑖

(𝑡 − 𝜎
𝑖

(𝑡)) ̇𝑥
𝑇

𝑖

(𝑡 − 𝜂
𝑖

(𝑡)) ∫
𝑡

𝑡−𝜎

𝑖(
𝑡)

̇𝑥
𝑇

𝑖

(𝑠) 𝑑𝑠 𝑥
𝑇

𝑖

(𝑡 − 𝛿
𝑖

(𝑡)) 𝑥
𝑇

1

(𝑡 − 𝜏
𝑖1

(𝑡))

⋅ ⋅ ⋅ 𝑥
𝑇

𝑖−1

(𝑡 − 𝜏
𝑖 𝑖−1

(𝑡)) 𝑥
𝑇

𝑖+1

(𝑡 − 𝜏
𝑖 𝑖+1

(𝑡)) ⋅ ⋅ ⋅ 𝑥
𝑇

𝑁

(𝑡 − 𝜏
𝑖𝑁

(𝑡)) ] ,

Υ
𝑖

= [
Ω
𝑖

0

∗ Γ
𝑖

33

] + [
𝐺
𝑖1

0
] (𝑒
𝑖1

𝐼
𝑛

𝑖

) [𝐺
𝑇

𝑖1

0] + [
𝐺
𝑖2

0
] 𝑆
𝑖1

[𝐺
𝑇

𝑖2

0] + [
𝐺
𝑖3

0
] 𝑆
𝑖2

[𝐺
𝑇

𝑖3

0] ,
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Ω
𝑖

=

[
[
[
[
[

[

Ω
𝑖

11

Ω
𝑖

12

Ω
𝑖

13

0 Ω
𝑖

15

∗ Ω
𝑖

22

0 0 0

∗ ∗ Ω
𝑖

33

0 0

∗ ∗ ∗ Ω
𝑖

44

0

∗ ∗ ∗ ∗ Ω
𝑖

55

]
]
]
]
]

]

,

Ω
𝑖

12

= 𝑃
𝑖0

𝐴
𝑖𝜎

𝑖

, Ω
𝑖

13

= 𝑃
𝑖0

𝐴
𝑖𝜂

𝑖

, Ω
𝑖

44

= −𝐼
𝑛

𝑖

,

Ω
𝑖

11

= 𝑃
𝑖0

𝐴
𝑖

+ 𝐴
𝑇

𝑖

𝑃
𝑖0

− 𝑃
𝑖0

𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) − (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

𝑃
𝑖0

+ 𝑃
𝑖1

+ 𝑃
𝑖2

+ 𝑃
𝑖0

𝐸
𝑖

𝑃
𝑖0

+ 𝑒
𝑖1

𝐴
𝑇

𝑖

𝐸
𝑖

𝐴
𝑖

+ 𝑒
𝑖1

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

𝐸
𝑖

𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

)

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

1

1 − 𝑙
𝑗

𝑊
𝑗𝑖

,

Ω
𝑖

15

= −𝑃
𝑖0

𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) , Ω
𝑖

22

= − (1 − 𝑓
𝑖

) 𝑃
𝑖1

+ 𝑒
𝑖1

𝐴
𝑇

𝑖𝜎

𝑖

𝐸
𝑖

𝐴
𝑖𝜎

𝑖

,

Ω
𝑖

33

= −𝐼
𝑛

𝑖

+ 𝑒
𝑖1

𝐴
𝑇

𝑖𝜂

𝑖

𝐸
𝑖

𝐴
𝑖𝜂

𝑖

,

Ω
𝑖

55

= − (1 − ℎ
𝑖

) 𝑃
𝑖2

+ 𝑒
𝑖1

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖𝛿

𝑖

𝐸
𝑖

𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) ,

𝐺
𝑖1

= [𝐴
𝑖

− 𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝐴
𝑖𝜎

𝑖

𝐴
𝑖𝜂

𝑖

0 −𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

)]
𝑇

,

𝐺
𝑖2

= [𝐼
𝑛

𝑖

0 0 0 0]
𝑇

,

𝐺
𝑖3

= [−(𝐾
𝑖

+ Δ𝐾
𝑖

) 0 0 0 0]
𝑇

.

(18)

Define

Υ
𝑖

=
[
[

[

Ω
𝑖

0 Υ
𝑖

13

∗ Γ
𝑖

33

0

∗ ∗ Υ
𝑖

33

]
]

]

, (19)

where Υ𝑖
13

= [𝐺
𝑖1

𝐺
𝑖2

𝐺
𝑖3

], Υ𝑖
33

= diag{−𝑒−1
𝑖1

𝐼
𝑛

𝑖

, −𝑆
−1

𝑖1

, −𝑆
−1

𝑖2

}.
Pre- and postmultiplying the matrix Υ

𝑖

in (19) by
𝑈
𝑇

𝑖

and 𝑈
𝑖

, where 𝑈
𝑖

= diag{𝑄
𝑖0

, 𝑄
𝑖0

, 𝐼
𝑛

𝑖

, 𝐼
𝑛

𝑖

, 𝑄
𝑖0

, 𝐼
𝑛

1

, . . . ,

𝐼
𝑛

𝑖−1

, 𝐼
𝑛

𝑖+1

,. . . , 𝐼
𝑛

𝑁

, 𝐼
𝑛

𝑖

, 𝐼
𝑛

𝑖

, 𝐼
𝑚

𝑖

}, the followingmatrix is obtained:

Υ
𝑖

=
[
[

[

Ω
𝑖

0 Υ
𝑖

13

∗ Γ
𝑖

33

0

∗ ∗ Υ
𝑖

33

]
]

]

, (20)

where

Ω
𝑖

=

[
[
[
[
[
[
[

[

Ω
𝑖

11

Ω
𝑖

12

Ω
𝑖

13

0 Ω
𝑖

15

∗ Ω
𝑖

22

0 0 0

∗ ∗ Ω
𝑖

33

0 0

∗ ∗ ∗ Ω
𝑖

44

0

∗ ∗ ∗ ∗ Ω
𝑖

55

]
]
]
]
]
]
]

]

,

Ω
𝑖

12

= 𝐴
𝑖𝜎

𝑖

𝑄
𝑖0

, Ω
𝑖

13

= 𝐴
𝑖𝜂

𝑖

,

Ω
𝑖

11

= 𝐴
𝑖

𝑄
𝑖0

+ 𝑄
𝑖0

𝐴
𝑇

𝑖

− 𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑄
𝑖0

− 𝑄
𝑖0

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

+ 𝑄
𝑖1

+ 𝑄
𝑖2

+ 𝐸
𝑖

+ 𝑒
𝑖1

𝑄
𝑖0

𝐴
𝑇

𝑖

𝐸
𝑖

𝐴
𝑖

𝑄
𝑖0

+ 𝑒
𝑖1

𝑄
𝑖0

× (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

𝐸
𝑖

𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑄
𝑖0

+ 𝑄
𝑖0

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

1

1 − 𝑙
𝑗

𝑊
𝑗𝑖

𝑄
𝑖0

,

Ω
𝑖

15

= −𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑄
𝑖0

,

Ω
𝑖

22

= − (1 − 𝑓
𝑖

) 𝑄
𝑖1

+ 𝑒
𝑖1

𝑄
𝑖0

𝐴
𝑇

𝑖𝜎

𝑖

𝐸
𝑖

𝐴
𝑖𝜎

𝑖

𝑄
𝑖0

,
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Ω
𝑖

55

= − (1 − ℎ
𝑖

) 𝑄
𝑖2

+ 𝑒
𝑖1

𝑄
𝑖0

× (𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖𝛿

𝑖

𝐸
𝑖

𝐵
𝑖𝛿

𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑄
𝑖0

,

Υ
𝑖

13

=

[
[
[
[
[
[

[

𝑄
𝑖0

𝐴
𝑇

𝑖

−𝑄
𝑖0

(𝐾
𝑖

+Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

𝑄
𝑖0

−𝑄
𝑖0

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝑄
𝑖0

𝐴
𝑇

𝑖𝜎

𝑖

0 0

𝐴
𝑇

𝑖𝜂

𝑖

0 0

0 0 0

−𝑄
𝑖0

(𝐾
𝑖

+Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖𝛿

𝑖

0 0

]
]
]
]
]
]

]

.

(21)

Define

Θ
𝑖

=

[
[
[
[
[
[
[

[

Ω
𝑖

0 Υ
𝑖

13

Ξ
𝑖

Θ
𝑖

15

∗ Γ
𝑖

33

0 0 0

∗ ∗ Υ
𝑖

33

0 0

∗ ∗ ∗ Θ
𝑖

44

0

∗ ∗ ∗ ∗ Θ
𝑖

55

]
]
]
]
]
]
]

]

, (22)

where

Ω
𝑖

=

[
[
[
[
[
[
[
[
[

[

Ω
𝑖

11

Ω
𝑖

12

Ω
𝑖

13

0 Ω
𝑖

15

∗ Ω
𝑖

22

0 0 0

∗ ∗ Ω
𝑖

33

0 0

∗ ∗ ∗ Ω
𝑖

44

0

∗ ∗ ∗ ∗ Ω
𝑖

55

]
]
]
]
]
]
]
]
]

]

,

Ξ
𝑖

=

[
[
[
[
[

[

Ξ
𝑖

11

Ξ
𝑖

12

0 0 0

0 0 Ξ
𝑖

23

0 0

0 0 0 Ξ
𝑖

34

0

0 0 0 0 0

0 0 0 0 Ξ
𝑖

55

]
]
]
]
]

]

,

Θ
𝑖

15

=

[
[
[
[
[

[

Γ
𝑖

15

0

0

0

0

]
]
]
]
]

]

,

Θ
𝑖

44

= diag {−𝑒−1
𝑖1

𝐼
𝑛

𝑖

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

,

−𝑒
−1

𝑖1

𝐼
𝑛

𝑖

, −𝑒
−1

𝑖1

𝐼
𝑛

𝑖

} ,

Θ
𝑖

55

= Γ
𝑖

55

,

Ω
𝑖

11

= 𝐴
𝑖

𝑄
𝑖0

+ 𝑄
𝑖0

𝐴
𝑇

𝑖

− 𝐵
𝑖

(𝐾
𝑖

+ Δ𝐾
𝑖

) 𝑄
𝑖0

− 𝑄
𝑖0

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

+ 𝑄
𝑖1

+ 𝑄
𝑖2

+ 𝐸
𝑖

,

Ω
𝑖

22

= − (1 − 𝑓
𝑖

) 𝑄
𝑖1

, Ω
𝑖

33

= −𝐼
𝑛

𝑖

,

Ω
𝑖

55

= − (1 − ℎ
𝑖

) 𝑄
𝑖2

, Ξ
𝑖

11

= 𝑄
𝑖0

𝐴
𝑇

𝑖

𝐸
1/2

𝑖

,

Ξ
𝑖

12

= −𝑄
𝑖0

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖

𝐸
1/2

𝑖

,

Ξ
𝑖

23

= 𝑄
𝑖0

𝐴
𝑇

𝑖𝜎

𝑖

𝐸
1/2

𝑖

, Ξ
𝑖

34

= 𝐴
𝑇

𝑖𝜂

𝑖

𝐸
1/2

𝑖

,

Ξ
𝑖

55

= −𝑄
𝑖0

(𝐾
𝑖

+ Δ𝐾
𝑖

)
𝑇

𝐵
𝑇

𝑖𝛿

𝑖

𝐸
1/2

𝑖

.

(23)

The following equality is obvious:

Θ
𝑖

=

[
[
[
[
[

[

Γ
𝑖

11

Γ
𝑖

12

0 Γ
𝑖

14

Γ
𝑖

15

∗ Γ
𝑖

22

0 Γ
𝑖

24

0

∗ ∗ Γ
𝑖

33

0 0

∗ ∗ ∗ Γ
𝑖

44

0

∗ ∗ ∗ ∗ Γ
𝑖

55

]
]
]
]
]

]

+ Λ
𝑇

𝑖

𝑅
𝑖1

$
𝑖

+ $𝑇
𝑖

𝑅
𝑇

𝑖1

Λ
𝑖

,

(24)

where

Λ
𝑖

= [
𝑀
𝑇

𝑖

𝐵
𝑇

𝑖

0 0 Λ
𝑖

14

0

𝑀
𝑇

𝑖

𝐵
𝑇

𝑖𝛿

𝑖

0 0 Λ
𝑖

24

0
] ,

$
𝑖

= [
−𝑁
𝑖

𝑄
𝑖0

0 0 0 0

0 $𝑖
22

0 0 0
] ,

𝑅
𝑖1

= diag {𝐹
𝑖

(𝑡) , 𝐹
𝑖

(𝑡)} ,

Λ
𝑖

14

= [𝑀
𝑇

𝑖

𝐵
𝑇

𝑖

0 𝑀
𝑇

𝑖

0 𝑀
𝑇

𝑖

𝐵
𝑇

𝑖

𝐸
1/2

𝑖

0 0 0] ,

Λ
𝑖

24

= [𝑀
𝑇

𝑖

𝐵
𝑇

𝑖𝛿

𝑖

0 0 0 0 0 0 𝑀
𝑇

𝑖

𝐵
𝑇

𝑖𝛿

𝑖

𝐸
1/2

𝑖

] ,

$𝑖
22

= [0 0 0 − 𝑁
𝑖

𝑄
𝑖0

] .

(25)

By Lemma 1 and Schur complement formula, the condi-
tion Γ

𝑖

< 0 in (10) is equivalent to Θ
𝑖

< 0 in (24). By Schur
complement formula with Θ

𝑖

< 0, one can obtain Υ
𝑖

< 0 in
(20). The condition Υ

𝑖
𝑖

< 0 is equivalent to Υ
𝑖

< 0. Again,
by Schur complement formula with Υ

𝑖

< 0, one can obtain
Υ
𝑖

< 0. From the condition Υ
𝑖

< 0 in (17), there exists a
constant 𝜌

𝑖

> 0, such that

𝑉 (𝑥 (𝑡) , 𝑡) ≤

𝑁

∑

𝑖=1

− 𝜌
𝑖

𝑥𝑖 (𝑡)

2

. (26)
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By conditions (13) and (26) and ‖𝐴
𝑖𝜂

𝑖

‖ < 1, one can
conclude that system (9) with (2) and (4) is asymptotically
stable. From (17) with Υ

𝑖

< 0, one can obtain

∫

∞

0

𝑉 (𝑥 (𝑡) , 𝑡) 𝑑𝑡

= lim
𝑡→∞

𝑉 (𝑥 (𝑡) , 𝑡) − 𝑉 (𝑥 (0) , 0)

≤ −

𝑁

∑

𝑖=1

∫

∞

0

[𝑥
𝑇

𝑖

(𝑡) 𝑆
𝑖1

𝑥
𝑖

(𝑡) + 𝑢
𝑇

𝑖

(𝑡) 𝑆
𝑖2

𝑢
𝑖

(𝑡)] 𝑑𝑡.

(27)

Therefore, the following equalities hold:

lim
𝑡→∞

𝑉 (𝑥 (𝑡) , 𝑡) = 0,

𝑁

∑

𝑖=1

∫

∞

0

[𝑥
𝑇

𝑖

(𝑡) 𝑆
𝑖1

𝑥
𝑖

(𝑡) + 𝑢
𝑇

𝑖

(𝑡) 𝑆
𝑖2

𝑢
𝑖

(𝑡)] 𝑑𝑡

≤ 𝑉 (𝑥 (0) , 0) = 𝐽
𝑢

.

(28)

This completes the proof.

Remark 4. It is obvious that for every subsystem, the cor-
responding Γ

𝑖

in (10) is an LMI with obtained matrices
𝑊
𝑗𝑖

(𝑊
𝑗𝑖

= 𝑊
−1

𝑗𝑖

) and 𝑊
𝑖𝑗

in the last inequality (i.e., the
inequality Γ

𝑖−1

< 0). Hence, the decentralized nonfragile
control (4) and the guaranteed cost 𝐽

𝑢

in (11) can be obtained
by finding feasible set to Γ

𝑖

< 0with 𝑓𝑒𝑎𝑠𝑝 in [22] one by one.

Remark 5. Obviously, the guaranteed cost 𝐽
𝑢

in (11) cannot
be directly optimized by using the toolbox of 𝑚𝑖𝑛𝑐𝑥 in [22].
One reason is that inequalities (10) with variable matrices
𝑊
𝑖𝑗

and 𝑊
𝑗𝑖

(𝑊
𝑗𝑖

= 𝑊
−1

𝑗𝑖

) are not a group of LMIs but
𝑁 coupled nonlinear inequalities. Another reason is that 𝐽

𝑢

is a nonconvex function with respect to the optimization
variables.

The following algorithm is given to solve the nonlinear
problem of inequalities (10).

Algorithm 6. Choose constant matrices 𝑊
𝑖𝑗

> 0 and 𝑊
𝑗𝑖

>

0 satisfying Ψ
𝑖

𝑗𝑗

< 0 in Γ
𝑖

, where 𝑊
𝑗𝑖

= 𝑊
−1

𝑗𝑖

, 𝑖, 𝑗 =

1, 2 . . . , 𝑁, 𝑗 ̸= 𝑖.
It is needed to simultaneously select𝑁×(𝑁−1) constant

matrices𝑊
𝑖𝑗

> 0 and𝑊
𝑗𝑖

> 0 (𝑊
𝑗𝑖

= 𝑊
−1

𝑗𝑖

) satisfying Ψ𝑖
𝑗𝑗

<

0. For simplicity, one can choose 𝑊
𝑖𝑗

and 𝑊
𝑗𝑖

to be positive
definite diagonal matrices according to the eigenvalues of
𝑒
𝑖2

𝐼
𝑛

𝑗

+ 𝑒
𝑖1

𝐴
𝑇

𝑖𝑗

𝐴
𝑖𝑗

due to Ψ
𝑖

𝑗𝑗

= 𝑒
𝑖2

𝐼
𝑛

𝑗

− 𝑊
𝑖𝑗

+ 𝑒
𝑖1

𝐴
𝑇

𝑖𝑗

𝐴
𝑖𝑗

. The
chosen entries need to be as small as possible, because

1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∫

0

−𝜏

𝑖𝑗
(0)

𝑥
𝑇

𝑗

(𝑠)𝑊
𝑖𝑗

𝑥
𝑗

(𝑠) 𝑑𝑠 (29)

is involved in 𝐽
𝑢

. However, if there is no solution to inequali-
ties (10), the large scalars can be considered.

In the sequel, instead of solving the nonconvex opti-
mization problem, a suboptimal method of minimizing the
guaranteed cost 𝐽

𝑢

, based on Algorithm 6, is presented.

Theorem 7. Consider unperturbed system (9) with cost func-
tion (6), and assume ‖𝐴

𝑖𝜂

𝑖

‖ < 1. If the following optimization
problem:

min
𝑁

∑

𝑖=1

[𝛼
𝑖

+ Tr (𝑈𝑇
𝑖1

Φ
𝑖1

𝑈
𝑖1

+ 𝑈
𝑇

𝑖2

Φ
𝑖2

𝑈
𝑖2

)] (30)

subject to LMI (10) with Algorithm 6, and

[
−𝛼
𝑖

𝜙
𝑇

𝑖

(0)

∗ −𝑄
𝑖0

] < 0,

[
−2𝑄
𝑖0

+ 𝑄
𝑖1

𝐼
𝑛

𝑖

∗ −Φ
𝑖1

] < 0,

[
−2𝑄
𝑖0

+ 𝑄
𝑖2

𝐼
𝑛

𝑖

∗ −Φ
𝑖2

] < 0

(31)

has a solution set (𝛼
𝑖

> 0, 𝜀
𝑖1

> 0, 𝑄
𝑖𝑘

> 0 (𝑘 = 0, 1, 2), Φ
𝑖1

>

0,Φ
𝑖2

> 0,𝑋
𝑖

), where ∫0
−𝜎

𝑖
(0)

𝜙
𝑖

(𝑠)𝜙
𝑇

𝑖

(𝑠)𝑑𝑠 = 𝑈
𝑖1

𝑈
𝑇

𝑖1

, ∫0
−𝛿

𝑖
(0)

𝜙
𝑖

(𝑠)𝜙
𝑇

𝑖

(𝑠)𝑑𝑠 = 𝑈
𝑖2

𝑈
𝑇

𝑖2

, (1/(1 − 𝑔
𝑖

)) ∫
0

−𝜂

𝑖
(0)

̇𝜙
𝑇

𝑖

(𝑠) ̇𝜙
𝑖

(𝑠)𝑑𝑠 =

𝐿
𝑖1

, 𝑓
𝑖0

∫
0

−𝑓

𝑖0

(𝑠 + 𝑓
𝑖0

) ̇𝜙
𝑇

𝑖

(𝑠) ̇𝜙
𝑖

(𝑠)𝑑𝑠 = 𝐿
𝑖2

, (1/(1 − 𝑙
𝑖

))

∑
𝑁

𝑗=1,𝑗 ̸= 𝑖

∫
0

−𝜏

𝑖𝑗
(0)

𝜙
𝑇

𝑗

(𝑠)𝑊
𝑖𝑗

𝜙
𝑗

(𝑠)𝑑𝑠 = 𝐿
𝑖3

, then control (4) with
𝐾
𝑖

= 𝑋
𝑖

𝑄
−1

𝑖0

is the decentralized nonfragile guaranteed cost
control of unperturbed system (9) with the minimization of the
guaranteed cost 𝐽

𝑢

as follows:

𝐽
∗

= min(
𝑁

∑

𝑖=1

[𝛼
𝑖

+ Tr (𝑈𝑇
𝑖1

Φ
𝑖1

𝑈
𝑖1

+ 𝑈
𝑇

𝑖2

Φ
𝑖2

𝑈
𝑖2

)])

+

𝑁

∑

𝑖=1

(𝐿
𝑖1

+ 𝐿
𝑖2

+ 𝐿
𝑖3

) .

(32)

Proof. Applying the Schur complement formula to LMIs (31)
leads to 𝜙𝑇

𝑖

(0)𝑄
−1

𝑖0

𝜙
𝑖

(0) < 𝛼
𝑖

, −2𝑄
𝑖0

+𝑄
𝑖1

+Φ
−1

𝑖1

< 0, −2𝑄
𝑖0

+

𝑄
𝑖2

+ Φ
−1

𝑖2

< 0, respectively.
Noting that [8]

[𝑄
𝑖0

− Φ
−1

𝑖1

]Φ
𝑖1

[𝑄
𝑖0

− Φ
−1

𝑖1

] = 𝑄
𝑖0

Φ
𝑖1

𝑄
𝑖0

− 2𝑄
𝑖0

+ Φ
−1

𝑖1

≥ 0,

[𝑄
𝑖0

− Φ
−1

𝑖2

]Φ
𝑖2

[𝑄
𝑖0

− Φ
−1

𝑖2

] = 𝑄
𝑖0

Φ
𝑖2

𝑄
𝑖0

− 2𝑄
𝑖0

+ Φ
−1

𝑖2

≥ 0,

(33)

the following inequalities are obtained

𝑃
𝑖1

= 𝑄
−1

𝑖0

𝑄
𝑖1

𝑄
−1

𝑖0

< Φ
𝑖1

,

𝑃
𝑖2

= 𝑄
−1

𝑖0

𝑄
𝑖2

𝑄
−1

𝑖0

< Φ
𝑖2

.

(34)
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Further, one can obtain

∫

0

−𝜎

𝑖(
0)

𝜙
𝑇

𝑖

(𝑠) 𝑃
𝑖1

𝜙
𝑖

(𝑠) 𝑑𝑠

= Tr(∫
0

−𝜎

𝑖(
0)

𝜙
𝑖

(𝑠) 𝜙
𝑇

𝑖

(𝑠) 𝑃
𝑖1

)𝑑𝑠

= Tr (𝑈𝑇
𝑖1

𝑃
𝑖1

𝑈
𝑖1

) ≤ Tr (𝑈𝑇
𝑖1

Φ
𝑖1

𝑈
𝑖1

) ,

∫

0

−𝛿

𝑖(
0)

𝜙
𝑇

𝑖

(𝑠) 𝑃
𝑖2

𝜙
𝑖

(𝑠) 𝑑𝑠

= Tr(∫
0

−𝛿

𝑖(
0)

𝜙
𝑖

(𝑠) 𝜙
𝑇

𝑖

(𝑠) 𝑃
𝑖2

)𝑑𝑠

= Tr (𝑈𝑇
𝑖2

𝑃
𝑖2

𝑈
𝑖2

) ≤ Tr (𝑈𝑇
𝑖2

Φ
𝑖2

𝑈
𝑖2

) ,

1

1 − 𝑔
𝑖

∫

0

−𝜂

𝑖
(0)

̇𝜙
𝑇

𝑖

(𝑠) ̇𝜙
𝑖

(𝑠) 𝑑𝑠 = 𝐿
𝑖1

,

𝑓
𝑖0

∫

0

−𝑓

𝑖0

(𝑠 + 𝑓
𝑖0

) ̇𝜙
𝑇

𝑖

(𝑠) ̇𝜙
𝑖

(𝑠) 𝑑𝑠 = 𝐿
𝑖2

,

1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∫

0

−𝜏

𝑖𝑗
(0)

𝜙
𝑇

𝑗

(𝑠)𝑊
𝑖𝑗

𝜙
𝑗

(𝑠) 𝑑𝑠 = 𝐿
𝑖3

.

(35)

Therefore, it follows from (11) that

𝐽
𝑢

≤

𝑁

∑

𝑖=1

[𝛼
𝑖

+ Tr (𝑈𝑇
𝑖1

Φ
𝑖1

𝑈
𝑖1

+ 𝑈
𝑇

𝑖2

Φ
𝑖2

𝑈
𝑖2

)]

+

𝑁

∑

𝑖=1

(𝐿
𝑖1

+ 𝐿
𝑖2

+ 𝐿
𝑖3

) .

(36)

The minimization of the right hand of inequality (36)
implies the minimization of the guaranteed cost 𝐽

𝑢

for
unperturbed system (9). This completes the proof.

3.2. Nonfragile Guaranteed Cost Control for Uncertain Neutral
Interconnected Systems

Theorem 8. Consider uncertain neutral interconnected sys-
tems (1) with (2), (3), and (4). If there exist positive numbers
𝜀
𝑖1

> 0, 𝜀
𝑖2

> 0, and 𝜀
𝑖3

> 0, some symmetric positive definite
matrices 𝑄

𝑖𝑘

(𝑘 = 0, 1, 2), 𝑊
𝑗𝑖

, 𝑊
𝑖𝑗

, and matrix 𝑋
𝑖

such that
the following inequalities hold:

Γ
𝑖

= [
Γ
𝑖

Γ
𝑖

∗ Γ̃
𝑖

] < 0, (37)

[

[

−𝐼
𝑛

𝑖

+ 𝜀
𝑖3

𝐷
𝑇

𝑖𝜂

𝑖

𝐷
𝑖𝜂

𝑖

𝐴
𝑇

𝑖𝜂

𝑖

0

∗ −𝐼
𝑛

𝑖

𝐶
𝑖

∗ ∗ −𝜀
𝑖3

𝐼
𝑛

𝑖

]

]

< 0, (38)

then control (4) with𝐾
𝑖

= 𝑋
𝑖

𝑄
−1

𝑖0

is the decentralized nonfrag-
ile guaranteed cost control of uncertain neutral interconnected

systems (1) with the guaranteed cost in (11), where Γ
𝑖

=

[𝜀
𝑖2

Π
𝑖1

Π
𝑖2

],

Π
𝑖1

=

[
[
[
[
[
[
[
[

[

Γ
𝑖

11

0

0

Γ
𝑖

41

0

0

]
]
]
]
]
]
]
]

]

, Π
𝑖2

=

[
[
[
[
[
[
[
[

[

Γ
𝑖

12

Γ
𝑖

22

0

0

0

Γ
𝑖

62

]
]
]
]
]
]
]
]

]

,

Γ
𝑖

22

=

[
[
[
[

[

0 0 𝑄
𝑖0

𝐷
𝑇

𝑖𝜎

𝑖

0 0 0

0 0 0 𝐷
𝑇

𝑖𝜂

𝑖

0 0

0 0 0 0 0 0

0 0 0 0 −𝑋
𝑇

𝑖

𝐷
𝑇

𝑖𝛿

𝑖

0

]
]
]
]

]

,

Γ
𝑖

11

= [𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

] ,

Γ
𝑖

12

= [𝑄
𝑖0

𝐷
𝑇

𝑖1

−𝑋
𝑇

𝑖

𝐷
𝑇

𝑖2

0 0 0 0] ,

Γ
𝑖

41

=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

𝐶
𝑖

0 0 0 0 0 0

0 0 0 0 0 0

𝐸
1/2

𝑖

𝐶
𝑖

0 0 0 0 0

0 𝐸
1/2

𝑖

𝐶
𝑖

0 0 0 𝐸
1/2

𝑖

𝐶
𝑖

0 0 𝐸
1/2

𝑖

𝐶
𝑖

0 0 0

0 0 0 𝐸
1/2

𝑖

𝐶
𝑖

0 0

0 0 0 0 𝐸
1/2

𝑖

𝐶
𝑖

0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Γ
𝑖

62

=
[
[
[

[

0 0 0 0 0 𝜀
𝑖1

𝑀
𝑇

𝑖

𝐷
𝑇

𝑖2

0 0 0 0 𝜀
𝑖1

𝑀
𝑇

𝑖

𝐷
𝑇

𝑖𝛿

𝑖

0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]

]

,

Γ̃
𝑖

= diag
{

{

{

−𝜀
𝑖2

𝐼
𝑛

𝑖

, . . . , −𝜀
𝑖2

𝐼
𝑛

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

12

}

}

}

.

(39)

Proof. From condition (10) with unperturbed neutral inter-
connected systems (9), one can obtain the corresponding
condition to stabilize uncertain neutral interconnected sys-
tems (1) as follows:

Σ
𝑖

= Γ
𝑖

+ Π
𝑖1

𝑅
𝑖2

Π
𝑇

𝑖2

+ Π
𝑖2

𝑅
𝑇

𝑖2

Π
𝑇

𝑖1

< 0, (40)

where 𝑅
𝑖2

= diag{𝐹
𝑖

(𝑡), 𝐹
𝑖

(𝑡), 𝐹
𝑖

(𝑡), 𝐹
𝑖

(𝑡), 𝐹
𝑖

(𝑡), 𝐹
𝑖

(𝑡)}.
By Lemma 1 and Schur complement formula, the condi-

tion Γ
𝑖

< 0 in (37) is equivalent to Σ
𝑖

< 0 in (40). For the same
reason, (38) is equivalent to

[𝐴
𝑖𝜂

𝑖

+ Δ𝐴
𝑖𝜂

𝑖

(𝑡)]
𝑇

[𝐴
𝑖𝜂

𝑖

+ Δ𝐴
𝑖𝜂

𝑖
(𝑡)] < 𝐼

𝑛

𝑖

. (41)

This implies that uncertain neutral interconnected sys-
tems (1) are Lipschitz in the term ̇𝑥

𝑖

(𝑡 − 𝜂
𝑖

(𝑡)) with Lipschitz
constant less than 1 [8]. By the same derivation ofTheorem 3,
one can complete this proof.

The decentralized nonfragile guaranteed cost control (4)
and the minimization of the guaranteed cost 𝐽

𝑢

for uncertain
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neutral interconnected systems (1) are determined by the
following theorem.

Theorem 9. Consider uncertain neutral interconnected sys-
tems (1)with (2), (3), (4), and cost function (6). If the following
optimization problem:

min
𝑁

∑

𝑖=1

[𝛼
𝑖

+ Tr (𝑈𝑇
𝑖1

Φ
𝑖1

𝑈
𝑖1

+ 𝑈
𝑇

𝑖2

Φ
𝑖2

𝑈
𝑖2

)] (42)

is subject to LMI (37) with Algorithm 6, (38), and (31) has
a solution set (𝛼

𝑖

> 0, 𝜀
𝑖1

> 0, 𝜀
𝑖2

> 0, 𝜀
𝑖3

> 0, 𝑄
𝑖𝑘

>

0 (𝑘 = 0, 1, 2), Φ
𝑖1

> 0, Φ
𝑖2

> 0, 𝑋
𝑖

), then control (4) with
𝐾
𝑖

= 𝑋
𝑖

𝑄
−1

𝑖0

is the decentralized nonfragile guaranteed cost
control for uncertain neutral interconnected systems (1) with
the minimization 𝐽∗ of the guaranteed cost 𝐽

𝑢

in (32).

Remark 10. Reference [18] develops a scheme of counter-
acting the interconnections to simplify the problem, which
may add conservatism in some cases. Compared with the
approach of treating the interconnections in [18], we utilize
an approach of magnifying the terms associated interconnec-
tions; for details, one can see the derivation of inequality (16).
To some extent, it may reduce the conservatism of the results
derived in the paper.

4. Illustrative Examples

In this section, some examples are presented to show the
validity of the control approach and the advantages of the
schemes of dealing with the interconnections.

Example 1. To illustrate the design method of the decentral-
ized nonfragile guaranteed cost control and the optimization
approach of the guaranteed cost for uncertain neutral inter-
connected system, consider uncertain neutral interconnected
systems (1) composed of two third-order subsystems:

𝐴
1

= [

[

1.1221 70.1414 −5.1247

4.1437 −1.1203 3.1243

2.4589 −0.5671 −2.2548

]

]

,

𝐴
1𝜎

1

= [

[

−0.0321 0.0012 −0.0123

0.1325 −0.0321 −0.0246

0.0348 0.0023 0.0236

]

]

,

𝐴
1𝜂

1

= [

[

0.2236 −0.2011 −0.0321

0.2134 0.0271 −0.1282

0.0123 0.5621 −0.0124

]

]

,

𝐵
1

= [

[

−2.1231 −4.0126

−1.1245 3.4725

0.1243 −9.3417

]

]

,

𝐵
1𝛿

1

= [

[

0.1012 −0.0219

0.1427 −0.0537

−0.0531 0.05324

]

]

,

𝐴
12

= [

[

−0.0898 0.0161 −0.0682

−0.0359 0.0205 −0.0542

−0.0205 0.0176 0.0814

]

]

,

𝐶
1

= [

[

0.0680 −0.0655 0.0283

−0.0086 −0.0381 0.0889

0.0422 0.0088 0.0366

]

]

,

𝐷
11

= [

[

−0.0051 0.0429 0.0464

0.0792 −0.0749 −0.0321

−0.0579 0.0900 0.0946

]

]

,

𝐷
1𝜎

1

= [

[

−0.0212 0.0481 −0.0933

−0.0991 0.0896 0.0941

−0.0347 −0.0204 −0.0837

]

]

,

𝐷
12

= [

[

0.0928 −0.0609

−0.0390 0.0897

−0.0874 −0.0064

]

]

,

𝐷
1𝜂

1

= [

[

−0.0501 0.0860 −0.0565

−0.0311 −0.0913 0.0185

0.0068 0.0621 −0.0214

]

]

,

𝑀
1

= [
0.01 0.01 0.01

0.01 0.01 0.01
] ,

𝐷
1𝛿

1

= [

[

−0.0175 0.0086

0.0172 0.0621

0.0142 −0.0739

]

]

,

𝑁
1

= diag {1, 1, 1} ,

𝜎
1

(𝑡) = 0.1 ∗ (2 + sin (𝑡)) ,

𝜂
1

(𝑡) = 0.2 ∗ (1 + cos (𝑡)) ,

𝛿
1

(𝑡) = 0.3 ∗ (1 + sin (𝑡)) ,

𝜏
12

(𝑡) = 0.1 ∗ (1 + cos (𝑡)) ,

𝐴
2

= [

[

8.1906 0.4571 2.5678

−0.4724 −4.4540 1.4527

0.4561 −2.4561 −5.9568

]

]

,

𝐴
2𝜎

2

= [

[

0.0614 0.0973 −0.0627

−0.0819 −0.0535 −0.0848

−0.0844 −0.0895 0.0602

]

]

,

𝐴
2𝜂

2

= [

[

0.1147 −0.0218 0.0157

−0.1254 0.0282 −0.0515

0.0919 −0.0763 −0.2169

]

]

,

𝐵
2

= [

[

9.7954 −1.3341

−7.5894 −1.0482

−0.0893 −0.3494

]

]

,
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𝐵
2𝛿

2

= [

[

−0.0349 −0.0189

−0.0854 −0.0231

0.0312 0.0993

]

]

,

𝐴
21

= [

[

−0.2898 0.3161 −0.0682

−0.0359 0.0205 −0.0542

−0.0205 0.3176 0.3814

]

]

,

𝐶
2

= [

[

0.0387 0.0738 0.0668

−0.0441 0.0863 −0.0823

−0.0909 0.0750 0.0727

]

]

,

𝐷
21

= [

[

0.0417 0.0333 0.0483

0.0805 −0.0888 0.0914

0.0205 −0.0677 0.0988

]

]

,

𝐷
2𝜎

2

= [

[

−0.0149 −0.0275 −0.0303

−0.0488 0.0497 −0.0892

−0.0614 0.0711 −0.0632

]

]

,

𝐷
22

= [

[

−0.0860 −0.0073

0.0380 0.0673

0.0462 0.0578

]

]

,

𝐷
2𝜂

2

= [

[

−0.0103 −0.0529 −0.0389

0.0136 0.0132 −0.0028

0.0579 −0.0099 −0.0987

]

]

,

𝐷
2𝛿

2

= [

[

0.0566 0.0541

−0.0304 −0.0335

0.0894 0.0378

]

]

,

𝑀
2

= 𝑀
1

, 𝑁
2

= 𝑁
1

,

𝜎
2

(𝑡) = 0.12 ∗ (1 + cos (𝑡)) ,

𝜂
2

(𝑡) = 0.1 ∗ (2 + sin (𝑡)) ,

𝛿
2

(𝑡) = 0.2 ∗ (1 + cos (𝑡)) ,

𝜏
21

(𝑡) = 0.2 ∗ (2 + sin (𝑡)) .
(43)

Let
𝑆
11

= diag {0.3, 0.3, 0.3} ,

𝑆
12

= diag {0.5, 0.5} ,

𝑆
21

= diag {0.1, 0.1, 0.1} ,

𝑆
22

= diag {1, 1} ,

(44)

and give the following initial condition:

𝜙
1

(𝑡) = [−0.1𝑒
2𝑡

0.15 0.2𝑡 + 0.05]
𝑇

,

𝜙
2

(𝑡) = [0.2𝑒
𝑡

−0.06 + 0.2𝑡 0.06]
𝑇

.

(45)

According to Algorithm 6, 𝑊
12

and 𝑊
21

are chosen as
follows:

𝑊
12

= diag {7.7378, 7.7123, 7.7253} ,

𝑊
21

= diag {6.9514, 9.0184, 7.2122} .
(46)
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Figure 1: State response of the first open-loop subsystem.

Solving the optimization problem (42) subject to condi-
tion LMI (37) withAlgorithm 6, (38), and (31), one can obtain

𝐾
1

= [
−3.9594 −1.2404 −1.2278

−0.6353 −0.0710 −0.6896
] ,

𝐾
2

= [
1.0313 0.0551 0.1222

−4.5397 0.3862 −1.8594
] ,

𝐽
∗

= 1.3053.

(47)

The simulation results are shown in Figures 1–6 based on
the above parameters. From Figures 1 and 2, one can see
that the uncertain neutral systems (1) without controller
are divergent. From Figures 3 and 4, one can see that the
nonlinear neutral systems (1) with control law (4) are indeed
well stabilized. The control signals 𝑢

1

(𝑡) and 𝑢
2

(𝑡) are rather
smooth in Figures 5 and 6.

Example 2. To the best of the authors’ knowledge, the non-
fragile control and optimization for neutral interconnected
systems have not been studied. But in order to show the
advantages of the schemes of dealing with the interconnec-
tions, the authors have to simplify the model of neutral
interconnected systems (1) to compare with the existing
results.

In contrast to the model of system (13a) in [18], let

𝐴
1𝜂

1

= 0, 𝐷
1𝜂

1

= 0,

𝑀
1

= 0, 𝑁
1

= 0,

𝜎
1

(𝑡) = 0.3, 𝜂
1

(𝑡) = 0,
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Figure 2: State response of the second open-loop subsystem.
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Figure 3: State response of the first closed-loop subsystem.

𝛿
1

(𝑡) = 0.6, 𝜏
12

(𝑡) = 0,

𝐴
2𝜂

2

= 0, 𝐷
2𝜂

2

= 0,

𝑀
2

= 0, 𝑁
2

= 0, 𝜎
2

(𝑡) = 0.24,

𝜂
2

(𝑡) = 0, 𝛿
2

(𝑡) = 0.3, 𝜏
21

(𝑡) = 0,

(48)

and other parameters be the same as Example 1.
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Figure 4: State response of the second closed-loop subsystem.
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Figure 5: Control signal of the first subsystem.

Solving the optimization problem (42) subject to condi-
tion LMI (37) with Algorithm 6 and (31), the minimization of
the guaranteed cost 𝐽

𝑢

is given by

𝐽
∗

= 0.9429. (49)

Since system (13a) in [18] is a nonlinear large-scale system,
the authors choose the nonlinear vector function 𝑔

𝑖𝑗

= 𝑊
𝑖𝑗

𝑥
𝑗

satisfying the assumptions in [18] and 𝐺
𝑖𝑗

= diag{1, 1, 1},
𝐷
𝑖𝑗

= 𝐸
𝑖𝑗

= 0. By Theorem 4.2 in [18], one can obtain the
minimization 𝐽∗ as follows:

𝐽
∗

= 2.2627. (50)
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Figure 6: Control signal of the second subsystem.

Remark 11. It is clear from Example 2 that the minimization
of the guaranteed cost provided by Theorem 9 in this paper
is less than that of [18]. Viewing from this point, the results
derived in this paper have the less conservatism.

5. Conclusion

The nonfragile guaranteed cost control and optimization
are complex and challenging for uncertain interconnected
systems of neutral type. In this paper, the sufficient conditions
for the existence of the decentralized nonfragile guaranteed
cost control for unperturbed and uncertain neutral intercon-
nected systems are derived, which are presented in terms
of coupled nonlinear inequalities. A novel algorithm is pro-
posed to solve the nonlinear problems of coupled inequalities
(10). Also, a good optimization scheme is introduced to solve
the nonconvex problem of the guaranteed cost. Two numeri-
cal examples with the corresponding simulation results and
the comparison results have elucidated the validity of the
present control approach and the advantages of the schemes
of dealing with the interconnections over the existing results
in the literature.

Acknowledgments

This research is supported by Natural Science Foundation of
China (no. 61104106), Science Foundation of Department of
Education of Liaoning Province (no. L2012422), and Start-up
Fund for Doctors of Shenyang University (no. 1120212340).

References

[1] V. Kolmanovskii and A. Myshkis, Introduction to the Theory
and Applications of Functional Differential Equations, Kluwer
Academic, Dordrecht, The Netherlands, 1999.

[2] S. Zhou and L. Zhou, “Improved exponential stability criteria
and stabilisation of T-S model-based neutral systems,” IET
Control Theory & Applications, vol. 4, no. 12, pp. 2993–3002,
2010.

[3] L. Huang and X. Mao, “Delay-dependent exponential stability
of neutral stochastic delay systems,” IEEE Transactions on
Automatic Control, vol. 54, no. 1, pp. 147–152, 2009.

[4] A. Alif, M. Darouach, and M. Boutayeb, “Design of robust𝐻
∞

reduced-order unknown-input filter for a class of uncertain lin-
ear neutral systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 6–19, 2010.

[5] H. R. Karimi, “Robust delay-dependent 𝐻
∞

control of uncer-
tain time-delay systems with mixed neutral, discrete, and
distributed time-delays and Markovian switching parameters,”
IEEE Transactions on Circuits and Systems I, vol. 58, no. 8, pp.
1910–1923, 2011.

[6] W. H. Chen, W. X. Zheng, and Y. Shen, “Delay-dependent
stochastic stability and 𝐻

∞

-control of uncertain neutral
stochastic systems with time delay,” IEEE Transactions on
Automatic Control, vol. 54, no. 7, pp. 1660–1667, 2009.

[7] J. Yang, W. Luo, G. Li, and S. Zhong, “Reliable guaranteed cost
control for uncertain fuzzy neutral systems,”Nonlinear Analysis:
Hybrid Systems, vol. 4, no. 4, pp. 644–658, 2010.

[8] C. H. Lien, “Non-fragile guaranteed cost control for uncertain
neutral dynamic systems with time-varying delays in state and
control input,” Chaos, Solitons and Fractals, vol. 31, no. 4, pp.
889–899, 2007.

[9] C. H. Lien and K.W. Yu, “Non-fragile𝐻
∞

control for uncertain
neutral systems with time-varying delays via the LMI optimiza-
tion approach,” IEEE Transactions on Systems, Man, Cybernetics
B, vol. 37, no. 2, pp. 493–499, 2007.

[10] S. Y. Xu, J. Lam, J. L.Wang, andG.H.Yang, “Non-fragile positive
real control for uncertain linear neutral delay systems,” Systems
& Control Letters, vol. 52, no. 1, pp. 59–74, 2004.

[11] S. I. Niculescu, Delay Effects on Stability: A Robust Control
Approach, vol. 269 of Lecture Notes in Control and Information
Sciences, Springer, Berlin, Germany, 2001.

[12] R. K. Brayton, “Bifurcation of periodic solutions in a nonlinear
difference-differential equations of neutral type,” Quarterly of
Applied Mathematics, vol. 24, pp. 215–224, 1966.

[13] Y. Kuang, Delay Differential Equations with Applications in
Population Dynamics, vol. 191 of Mathematics in Science and
Engineering, Academic Press, Boston, Mass, USA, 1993.

[14] T.-J. Tarn, T. Yang, X. Zeng, and C. Guo, “Periodic output
feedback stabilization of neutral systems,” IEEE Transactions on
Automatic Control, vol. 41, no. 4, pp. 511–521, 1996.

[15] G. Chen, Z. Xiang, and M. S. Mahmoud, “Stability and 𝐻
∞

performance analysis of switched stochastic neutral systems,”
Circuits, Systems, and Signal Processing, vol. 32, no. 1, pp. 387–
400, 2013.

[16] Z. Xiang, Y. N. Sun, and M. S. Mahmoud, “Robust finite-
time 𝐻

∞

control for a class of uncertain switched neutral
systems,” Communications in Nonlinear Science and Numerical
Simulation, vol. 17, no. 4, pp. 1766–1778, 2012.

[17] Z. Xiang, Y. N. Sun, and Q. Chen, “Robust reliable stabilization
of uncertain switched neutral systems with delayed switching,”
Applied Mathematics and Computation, vol. 217, no. 23, pp.
9835–9844, 2011.

[18] H. Mukaidani, “An LMI approach to decentralized guaranteed
cost control for a class of uncertain nonlinear large-scale delay
systems,” Journal ofMathematical Analysis andApplications, vol.
300, no. 1, pp. 17–29, 2004.



Mathematical Problems in Engineering 15

[19] M. S. Mahmoud and Y. Xia, “A generalized approach to
stabilization of linear interconnected time-delay systems,”Asian
Journal of Control, vol. 14, no. 6, pp. 1539–1552, 2012.

[20] G. Pujol, J. Rodellar, J. Rossell, and F. Pozo, “Decentralised
reliable guaranteed cost control of uncertain systems: an LMI
design,” IET Control Theory and Applications, vol. 1, no. 3, pp.
779–785, 2007.

[21] D. Zhao, Q. L. Zhang, H. L. Hu, and C. Y. Zhao, “Non-
fragile guaranteed cost control for uncertain neutral large-scale
interconnected systems,” Journal of Systems Engineering and
Electronics, vol. 21, no. 4, pp. 635–642, 2010.

[22] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI
Control Toolbox User’s Guide, The Math Works, Natick, Mass,
USA, 1995.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 192351, 13 pages
http://dx.doi.org/10.1155/2013/192351

Research Article
State Consensus Analysis and Design for High-Order
Discrete-Time Linear Multiagent Systems

Yanrong Ge,1,2 Yangzhou Chen,1 Yaxiao Zhang,1 and Zhonghe He1

1 College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
2 College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024, China

Correspondence should be addressed to Yangzhou Chen; yzchen@bjut.edu.cn

Received 17 April 2013; Accepted 17 June 2013

Academic Editor: Guanghui Wen

Copyright © 2013 Yanrong Ge et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper deals with the state consensus problem of high-order discrete-time linear multiagent systems (DLMASs) with fixed
information topologies. We consider three aspects of the consensus analysis and design problem: (1) the convergence criteria of
global state consensus, (2) the calculation of the state consensus function, and (3) the determination of the weighted matrix and the
feedback gain matrix in the consensus protocol. We solve the consensus problem by proposing a linear transformation to translate
it into a partial stability problem. Based on the approach, we obtain necessary and sufficient criteria in terms of Schur stability of
matrices and present an analytical expression of the state consensus function. We also propose a design process to determine the
feedback gain matrix in the consensus protocol. Finally, we extend the state consensus to the formation control. The results are
explained by several numerical examples.

1. Introduction

In recent years, the consensus problem of multiagent systems
(MASs) has been becoming a significant research topic
because of its broad practical applications, including thework
load balance in a network of parallel computers [1], the clock
synchronization [2], distributed decision [3], consensus fil-
tering and estimation in sensor networks [4–6], rendezvous,
and the formation of various moving objects [7–11] such as
underwater vehicles, aircrafts, satellites, mobile robots, and
intelligent vehicles in automated highway systems, to name
only a few. Hence, its study has captured attention of the
researchers from different disciplines.

MASs are comprised of locally interacting agents
equipped with dedicated sensing, computing, and communi-
cation devices.The consensus problem ofMASs is to design a
distributed control law for each agent, using only information
from itself and its neighbors, such that all agents achieve
an agreement on some quantities of interest. To design and
analyse this class of systems, one needs to consider three
essential elements: (1) a dynamic model describing the states
of the agents, which can be either continuous time or discrete
time, linear or nonlinear, homogeneous or heterogeneous,

time varying or time invariant, low order or high order;
(2) an information topology describing communication
network between the agents, which can be either undirected
or directed, fixed or switched; (3) a protocol (control input)
for each of the agents describing how the agents interact
on each other according to the given information topology,
which can be synchronous or asynchronous, with or without
time delay.

Up to now, numerous researches have been done for
continuous-time MASs in different settings from the above
cases [10, 12–18]. This paper focuses on the study of high-
order discrete-time linear multiagent systems (DLMASs)
by proposing a linear transformation to translate the con-
sensus problem into a partial stability problem. Although
this approach can be extended to any setting from the
above cases, we pay our attention only to the case of fixed
information topology and in the absence of time delay for
giving prominence to the trait of the approach. Here we give
an overview mainly to the DLMASs.

Reference [19] first proposed an interestingmodel for self-
propelled particle systems, where all agents move in a plane
with the same speed but different headings, and showed that
in the model all agents might eventually move in the same
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direction despite the absence of centralized coordination.
Reference [20] further gave a mathematically rigorous quali-
tative analysis. Then, a theoretical explanation was given for
the consensus behavior of Vicsek model on the basis of graph
theory in [21, 22]. A necessary and sufficient condition was
given for the average consensus criterion in [23]. Reference
[24] further considered the case of switching network topolo-
gies for the average consensus. The average consensus was
investigated for the systems with uncertain communication
environments and time-varying topologies in [25] and with
communication constraints in [26]. Reference [27] presented
convergence results for the time-varying protocol in the
absence or presence of communication delays. Reference
[28] proposed an asynchronous time-varying consensus pro-
tocol. Reference [29] further discussed nonlinear systems
with time-dependent communication links. References [30,
31] addressed the case with both time-varying delays and
switching information topologies and provided a class of
effective consensus protocols by repeatedly using the same
state information at two time steps.

The researches mentioned above were limited to first-
order systems. The extension to second-order systems was
done for the systems with time-varying delays and time-
varying interaction topology in [32], and for the systems
with nonuniform time-delays and dynamically changing
topologies in [33].

Recent researches were turned to the high-order
DLMASs in [34–39]. Reference [34] studied a class of
dynamic average consensus algorithms that allow a group of
agents to track the average of their reference inputs. Reference
[35] proposed an observer-type protocol based on the relative
outputs of neighboring agents. Reference [36] studied the
convergence speed for the high-order systems with random
networks and arbitrary weights. Reference [37] addressed the
high-order systems with or without delays. These researches
were focused on the consensus convergence criteria for the
proposed protocols. Another significant topic is the design
of the gain matrices of the protocols in [38, 39].

This paper deals with both analysis and design problems
of the state consensus for general high-order DLMASs.
Compared with the existing works, the contributions of the
paper are summarized as follows. Firstly, motivated by [12],
we improve the protocol by adding a self-feedback of the
agent to achieve the expected consensus dynamics, whereas
[13] introduced the internal model to change the given
dynamic to achieve the expected consensus dynamics and
[14, 15] introduced the virtual leader to guide the multiagent
systems to achieve the expected consensus dynamics. Sec-
ondly, we propose a state linear transformation to translate
the consensus problem into a partial stability problem. The
approach is motivated by the error variable method or the
state space decomposition method in [12, 16]. However, our
improvement can more spontaneously and conveniently deal
with various settings of the consensus problems. Based on the
partial stability theory, we educe new necessary and sufficient
consensus convergence criteria in terms of stability of matri-
ces and moreover give an explicit analytical expression of the
state consensus function based on the different contributions
of the initial states of the agents and the protocols. Thirdly,

based on stability theorem, we give a design procedure to
determine the gain matrices in the protocol on the basis of
algebraic Riccati inequality similarly to [38, 39]. Fourthly, we
extend the state consensus results to the formation control
problem.

The remainder of the paper is organized as follows.
Section 2 introduces some basic concepts and notations,
and formulates the problem under investigation. Section 3
firstly introduces a linear transformation which translates the
consensus problem of the multiagent systems into a partial
stability problem of the corresponding transformed system,
and then educes a new necessary and sufficient condition
for the multiagent system to achieve global state consensus
and presents an analytical expression of the state consensus
function. Section 4 shows a design procedure to determine
the gain matrices in the state consensus protocol. Section 5
extends the approach for the analysis and design of the
state consensus to the formation control problem. Section 6
gives numerical examples to explain the theoretical results.
Section 7 concludes the paper. All the proofs of the results
are deposited in the appendix for the sake of reading.

2. Problem Description

Before stating the consensus problem, we give some basic
concepts and notations. Let R𝑛×𝑛 and C𝑛×𝑛 be the sets of
𝑛 × 𝑛 real matrices and complex matrices, respectively.
Matrices, if not explicitly stated, have appropriate dimensions
in all settings. The superscript “𝑇” means transpose for real
matrices, and the superscript “𝐻” means conjugate transpose
for complex matrices. 𝐼

𝑛

presents the identity matrix of
dimension 𝑛, and sometimes 𝐼 is used for simplicity. 1

𝑁

denotes the vector of dimension 𝑁 with all entries equal to
one. 0 is applied to denote zero matrices/vectors of any size,
with zero components. A matrix 𝐴 ∈ C𝑛×𝑛 is said to be
Schur stable if all of its eigenvalues have magnitude less
than 1. The Kronecker product is denoted by ⊗ and the
Hadamard product by ∘ in [40]. The following properties of
theKronecker productwill be used: (1) (𝐴⊗𝐵)(𝐶⊗𝐷) = 𝐴𝐶⊗

𝐵𝐷; (2) (𝐴+𝐵)⊗𝐶 = 𝐴⊗𝐶+𝐵⊗𝐶; (3) (𝐴⊗𝐵)
−1

= 𝐴
−1

⊗𝐵
−1.

We consider DLMASs with 𝑁 homogeneous agents and
assume they are described by

𝑥
+

𝑖

= 𝐴𝑥
𝑖

+ 𝐵𝑢
𝑖

, 𝑖 = 1, . . . , 𝑁, (1)

where 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, (𝐴, 𝐵) is assumed to be
stabilizable, 𝑥

𝑖

= 𝑥
𝑖

(𝑘) ∈ R𝑛 is the state of the current time 𝑘,
𝑥
+

𝑖

= 𝑥
𝑖

(𝑘 + 1) denotes the state at the next time 𝑘 + 1, and
𝑢
𝑖

= 𝑢
𝑖

(𝑘) ∈ R𝑚 is the control input of the current time 𝑘.
The control input 𝑢

𝑖

will be constructed based on the
available information of the agent 𝑖. LetN

𝑖

denote the index
set of the agents which can send their state information to
the agent 𝑖. We call the set N = {N

𝑖

: 𝑖 = 1, . . . , 𝑁} the
information topology of theDLMASs (1). It is well known that
one can use a digraph 𝐺 = (𝑉, 𝐸) to express the information
topology N, where 𝑉 = {1, . . . , 𝑁} is the index set of 𝑁
agents, 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges to describe
the information interaction between agents; that is, (𝑗, 𝑖) ∈

𝐸 ⇔ 𝑗 ∈ N
𝑖

. Based on the directed edges, one can construct
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an adjacency matrix 𝐴 = [𝑎
𝑖𝑗

]
𝑁×𝑁

, whose entries are defined
as 𝑎
𝑖𝑗

= 0 for 𝑗 = 𝑖, 𝑎
𝑖𝑗

= 1 for 𝑗 ∈ N
𝑖

, and 𝑎
𝑖𝑗

= 0 for 𝑗 ∉

N
𝑖

.The corresponding in-degreematrix and graph Laplacian
are defined as 𝐷 = diag{deg

1

, . . . , deg
𝑁

} and 𝐿 = 𝐷 − 𝐴,
respectively, where deg

𝑖

= ∑
𝑁

𝑗=1

𝑎
𝑖𝑗

is the in-degree of the
vertex 𝑖. A directed spanning tree of the digraph 𝐺 is a tree
covering all the vertices of the digraph. The following results
are well known.

Lemma 1 (see [22]). The Laplacian matrix 𝐿 ∈ R𝑁×𝑁 has the
following properties: (1) all of the eigenvalues of 𝐿 are either in
the open right half complex plan or equal to 0; (2) 0 is a simple
eigenvalue of 𝐿 if and only if the digraph 𝐺 contains a directed
spanning tree.

Given the information topology N, we construct the
following linear consensus protocol:

𝑢
𝑖

= 𝐾
1

𝑥
𝑖

+ 𝐾
2

∑

𝑗∈N
𝑖

𝑤
𝑖𝑗

(𝑥
𝑗

− 𝑥
𝑖

) , 𝑖 = 1, . . . , 𝑁, (2)

where 𝐾
1

, 𝐾
2

∈ R𝑚×𝑛 are feedback gain matrices to be
determined, which are relative to the consensus state and the
convergence rate, respectively. 𝑊 =: [𝑤

𝑖𝑗

]
𝑁×𝑁

is a weighted
matrix associated with the information topology N. For the
sake of expression, we also define the weighted adjacency
matrix 𝐴

𝑤

= 𝐴 ∘ 𝑊 by using Hadamard product of matrices
and the weighted Laplacian 𝐿

𝑤

= 𝐷
𝑤

− 𝐴
𝑤

with weights
𝑤
𝑖𝑗

, where 𝐷
𝑤

= diag{deg
1

, . . . , deg
𝑁

} is the corresponding
weighted in-degree matrix with weighted in-degrees deg

𝑖

=

∑
𝑗∈N
𝑖

𝑤
𝑖𝑗

.

Definition 2. For the given information topology N, the
DLMASs (1) are said to achieve global state consensus via the
protocol (2) if for any given initial state 𝑥

𝑖

(0), 𝑖 = 1, . . . , 𝑁,
there exists an 𝑛-dimensional vector function 𝜉(𝑘) depending
on the initial states such that lim

𝑘→∞

‖𝑥
𝑖

(𝑘) − 𝜉(𝑘)‖ = 0. The
function 𝜉(𝑘) is called a state consensus function.

In this paper, we will address the following three aspects
of the state consensus problem: (i) to give criteria of global
state consensus, that is, for any given information topology
N, weighted matrix 𝑊 and feedback gain matrices 𝐾

1

and
𝐾
2

to find the conditions of the DLMASs (1) achieving global
state consensus via the protocol (2); (ii) to calculate the state
consensus function 𝜉(𝑘) if the DLMASs (1) achieve global
state consensus via the protocol (2); (iii) to determine the
matrices𝐾

1

and𝐾
2

such that the DLMASs (1) achieve global
state consensus via the protocol (2).

First of all, we transform the state consensus problem
to the partial stability problem. Then, based on the partial
stability theorem framework, we educe new necessary and
sufficient consensus convergence criteria and state a proce-
dure to determine the gain matrices in the protocol on the
basis of algebraic Riccati inequality. We also give an explicit
analytical expression of the state consensus function based
on the respective contributions of the initial states and the
protocols. Finally, we extend the results to formation control.

3. State Consensus Analysis

In this section, we first introduce a linear transformation
which translates the consensus problem of the multiagent
systems into a partial stability problem of the corresponding
transformed system. Then, we educe a necessary and suffi-
cient condition for the DLMASs (1) to achieve global state
consensus via the protocol (2), and present an analysis
expression of the state consensus function. Finally, we discuss
some interesting remarks and corollaries based on the result.

Let 𝑥 = [𝑥
𝑇

1

, . . . , 𝑥
𝑇

𝑁

]
𝑇. The dynamics of the DLMASs (1)

with the protocol (2) is described by

𝑥
+

= Ψ𝑥, (3)

where

Ψ = 𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

. (4)

We propose a state linear transformation for the linear
system (3) as follows:

𝑥 = 𝑇𝑥, (5)

where the block matrix 𝑇 ∈ R𝑛𝑁×𝑛𝑁 is defined as

𝑇 =: [
�̃�

1𝑇
𝑁

⊗ 𝐼
𝑛

] , �̃� =
[
[
[

[

𝑇
1

...
𝑇
𝑁−1

]
]
]

]

. (6)

And the matrix 𝑇
𝑖

= [𝑇
𝑖1

, . . . , 𝑇
𝑖𝑁

], 𝑖 = 1, . . . , 𝑁−1, is chosen
such that the following two conditions are satisfied:

(1) the row vectors in each of the matrices 𝑇
𝑖

are linearly
independent, respectively;

(2) the identities 𝑇
𝑖

(1
𝑁

⊗ 𝐼
𝑛

) = 0, 𝑖 = 1, . . . , 𝑁 − 1, are
held.

Lemma 3. The inverse 𝑇
−1 of the matrix 𝑇 admits the

following form:

𝑇
−1

=

[
[
[
[
[
[

[

𝑇
11

⋅ ⋅ ⋅ 𝑇
1,𝑁−1

𝑁
−1

𝐼
𝑛

... d
...

...
𝑇
𝑁−1,1

⋅ ⋅ ⋅ 𝑇
𝑁−1,𝑁−1

𝑁
−1

𝐼
𝑛

𝑇
𝑁,1

⋅ ⋅ ⋅ 𝑇
𝑁,𝑁−1

𝑁
−1

𝐼
𝑛

]
]
]
]
]
]

]

=: [𝑇
1

⋅ ⋅ ⋅ 𝑇
𝑁−1

𝑁
−11
𝑁

⊗ 𝐼
𝑛

]

=: [�̂� 𝑁
−11
𝑁

⊗ 𝐼
𝑛

] ,

(7)

where 𝑇
𝑖𝑗

, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁 − 1, are the 𝑛 × 𝑛 blocks
indefinitely described.

Using the linear transformation (5), we transform the
linear system (3) into the following system:

𝑥
+

= 𝑇Ψ𝑇
−1

𝑥, (8)
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or the form of two equations

𝑦
+

= �̃�Ψ�̂�𝑦 + 𝑁
−1

�̃�Ψ (1
𝑁

⊗ 𝐼
𝑛

) 𝑧,

𝑧
+

= (1𝑇
𝑁

⊗ 𝐼
𝑛

)Ψ�̂�𝑦 + 𝑁
−1

(1𝑇
𝑁

⊗ 𝐼
𝑛

)Ψ (1
𝑁

⊗ 𝐼
𝑛

) 𝑧,

(9)

where 𝑥 = [𝑦
𝑇

, 𝑧
𝑇

]
𝑇, 𝑦 = [𝑥

𝑇

1

, . . . , 𝑥
𝑇

𝑁−1

]
𝑇, and 𝑧 = 𝑥

𝑁

.
We show that the state consensus problemof theDLMASs

(1) with the protocol (2) can be transformed into a partial
stability problem.

Definition 4 (see [41]). The linear system (8) is said to be
asymptotically stable with respect to 𝑦 (or asymptotically 𝑦-
stable in short) if lim

𝑘→∞

𝑦(𝑘) = 0 for any bounded initial
state 𝑥(0) of the system (8).

Lemma 5. Under the given information topology N, the
DLMASs (1) achieve global state consensus via the protocol (2)
if and only if the equilibrium point 𝑥 = 0 of the linear system
(8) is asymptotically 𝑦-stable. Moreover, the state consensus
function of the agents is 𝜉(𝑘) = 𝑁

−1

∑
𝑁

𝑖=1

𝑥
𝑖

(𝑘) = 𝑁
−1

𝑥
𝑁

(𝑘).

Lemma 5 builds a bridge between the consensus problem
and the partial stability problem. Now we focus on the
asymptotical𝑦-stability of the linear system (8).We can verify
the following lemma.

Lemma 6. The system (9) is of the following form:

𝑦
+

= 𝐴𝑦, 𝑦 ∈ R
𝑛(𝑁−1)

,

𝑧
+

= 𝐶𝑦 + 𝐷𝑧, 𝑧 ∈ R
𝑛

,

(10)

where 𝐴 = �̃�(𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

)�̂�, 𝐶 = −(1T
𝑁

𝐿
𝑤

⊗

𝐵𝐾
2

)�̂�, and𝐷 = 𝐴 + 𝐵𝐾
1

.

Combining Lemma 5 with Lemma 6, we directly get the
following theorem.

Theorem 7. Under the given information topology N, the
DLMASs (1) achieve global state consensus via the protocol (2)
if and only if matrix 𝐴 in (10) is Schur stable. Moreover, the
state consensus function is

𝜉 (𝑘) = 𝑁
−1

((

𝑘−1

∑

𝑗=0

(𝐴 + 𝐵𝐾
1

)
𝑗

𝐶𝐴
𝑘−1−𝑗

) �̃�

+1𝑇
𝑁

⊗ (𝐴 + 𝐵𝐾
1

)
𝑘

)𝑥 (0) .

(11)

Subsequently, we give some interesting remarks and cor-
ollaries based on the result.

Remark 8. Since �̂��̃� = (𝐼
𝑁

− 𝑁
−11
𝑁

1𝑇
𝑁

) ⊗ 𝐼
𝑛

, the result of
Theorem 7 is in fact independent of the choice of thematrix𝑇

although both𝐴 and formula (11) inTheorem 7 contain �̃� and
�̂�. Hence, for simplicity, we take it in the following form:

𝑇 =

[
[
[
[
[
[
[

[

1 −1 0 ⋅ ⋅ ⋅ 0

0 1 −1 ⋅ ⋅ ⋅ 0

...
... d

...
...

0 ⋅ ⋅ ⋅ 0 1 −1

1 1 1 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]
]

]

⊗ 𝐼
𝑛

:= [
�̃�
0

1𝑇
𝑁

] ⊗ 𝐼
𝑛

.

(12)

The corresponding inverse matrix is

𝑇
−1

=
1

𝑁

[
[
[
[
[
[
[

[

𝑁 − 1 𝑁 − 2 ⋅ ⋅ ⋅ 1 1

−1 𝑁 − 2 ⋅ ⋅ ⋅ 1 1

...
... d

...
...

−1 −2 ⋅ ⋅ ⋅ 1 1

−1 −2 ⋅ ⋅ ⋅ − (𝑁 − 1) 1

]
]
]
]
]
]
]

]

⊗ 𝐼
𝑛

:= [�̂�
0

𝑁
−11
𝑁

] ⊗ 𝐼
𝑛

.

(13)

Thus, we can write 𝐴 and 𝐶 into

𝐴 = 𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1

) − �̃�
0

𝐿
𝑤

�̂�
0

⊗ 𝐵𝐾
2

,

𝐶 = −1T
𝑁

𝐿
𝑤

�̂�
0

⊗ 𝐵𝐾
2

.

(14)

Corollary 9. Under the given information topology N, the
DLMASs (1) achieve global consensus via the protocol (2) if and
only if all the matrices𝐴+𝐵𝐾

1

−𝜆
𝑖

𝐵𝐾
2

are Schur stable, where
𝜆
𝑖

, 𝑖 = 1, . . . , 𝑁 − 1, are the eigenvalues of the matrix �̃�
0

𝐿
𝑤

�̂�
0

.
Moreover, the state consensus function is expressed by

𝜉 (𝑘) = (𝜂
𝑇

⊗ (𝐴 + 𝐵𝐾
1

)
𝑘

) 𝑥 (0) , 𝑖 = 1, . . . , 𝑁, (15)

where 𝜂 satisfies 𝜂𝑇𝐿
𝑤

= 0 and 𝜂
𝑇1
𝑁

= 1.

One can verify that as 𝑘 → ∞ the state consensus
functions in formulas (11) and (15) are the same.

Remark 10. From Schur stability of 𝐴 in the formula (14),
we can conclude that if 𝐴 + 𝐵𝐾

1

is not Schur stable, it
is a necessary condition of the consensus that the digraph
𝐺 expressing the information topology N has a directed
spanning tree. In fact, since the condition of directed span-
ning tree is equivalent to Hurwitz stability of −�̃�

0

𝐿
𝑤

�̂�
0

, a
lack of directed spanning tree means that −�̃�

0

𝐿
𝑤

�̂�
0

has a
zero eigenvalue. In this case, we transform 𝐴 into its Jordan
form via the matrix 𝑈 ⊗ 𝐼

𝑛

, where 𝑈 is the matrix such that
𝑈
−1

�̃�
0

𝐿
𝑤

�̂�
0

𝑈 = 𝐽 is the Jordan form, and thus we have

(𝑈
−1

⊗ 𝐼
𝑛

)𝐴 (𝑈 ⊗ 𝐼
𝑛

) = 𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐽 ⊗ 𝐵𝐾
2

. (16)

One can verify that the eigenvalues of 𝐴 + 𝐵𝐾
1

are the
members of the eigenvalues of 𝐴, and thus 𝐴 is not Schur
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stable if 𝐴 + 𝐵𝐾
1

is not Schur stable. On the other hand, if
𝐴 + 𝐵𝐾

1

is Schur stable, one can take 𝐾
2

= 0 to make the
DLMASs (1) achieve global consensus, which implies that
for any initial states all the agents always converge to the
equilibrium point 0.

Hence, from the formula (16) we can educe another global
consensus criterion.

Corollary 11. If 𝐴 + 𝐵𝐾
1

is not Schur stable, then under the
given information topologyN, the DLMASs (1) achieve global
state consensus via the protocol (2) if and only if �̃�

0

𝐿
𝑤

�̂�
0

has
𝑁 − 1 eigenvalues with positive real part 𝜆

𝑖

, 𝑖 = 1, . . . , 𝑁 − 1,
and the matrices 𝐴+𝐵𝐾

1

− 𝜆
𝑖

𝐵𝐾
2

, 𝑖 = 1, . . . , 𝑁 − 1, are Schur
stable.

Remark 12. If the state consensus function in (11) is a constant
vector equal to the average of the initial states of all the
agents, the consensus is called the average consensus. From
the formula (11) we educe the following result on the average
consensus.

Corollary 13. TheDLMASs (1) achieve global average consen-
sus via the protocol (2) if and only the matrix 𝐴 is Schur stable
and (∑

𝑘−1

𝑗=0

(𝐴+𝐵𝐾
1

)
𝑗

𝐶𝐴
𝑘−1−𝑗

)�̃� +1𝑇
𝑁

⊗ (𝐴+𝐵𝐾
1

)
𝑘

= 1𝑇
𝑁

⊗𝐼
𝑛

.

If 𝐴 + 𝐵𝐾
1

= 𝐼
𝑛

, then the last condition in Corollary 13
becomes 1𝑇

𝑁

𝐿
𝑤

= 0, or equivalently, the digraph 𝐺 is
either undirected connected or directed strong connected
and balanced. More specially, if 𝐿

𝑤

is a symmetric matrix
(equivalently, the digraph𝐺 becomes undirected connected),
the condition 1𝑇

𝑁

𝐿
𝑤

= 0 is satisfied and thus the average
consensus is achieved.

Remark 14. When 𝐴 = 𝐼
𝑛

, 𝐾
1

= 0, and 𝐵 = 𝐼
𝑛

, the DLMASs
(1) are called a single-integrator one. In this case,𝐴 = 𝐼

(𝑁−1)𝑛

−

�̃�
0

𝐿
𝑤

�̂�
0

⊗𝐾
2

and𝐶 = −1𝑇
𝑁

𝐿
𝑤

�̂�
0

⊗𝐾
2

. We educe the following
result.

Corollary 15. Under the given information topology N, the
single-integratorDLMASs (1) achieve global state consensus via
the protocol (2) if and only if the following two conditions are
held simultaneously: (1) the matrix −�̃�

0

𝐿
𝑤

�̂�
0

is Hurwitz stable;
that is, the digraph 𝐺 admits a directed spanning tree; (2) the
products 𝜆

𝑖

𝜇
𝑗

, 𝑖 = 1, . . . , 𝑁 − 1, 𝑗 = 1, . . . , 𝑛, are in the open
unit circle of the complex plane with the centre at (1, 0), where
𝜆
𝑖

, 𝑖 = 1, . . . , 𝑁 − 1, are the eigenvalues of the matrix �̃�
0

𝐿
𝑤

�̂�
0

and 𝜇
𝑗

, 𝑗 = 1, . . . , 𝑛, are the eigenvalues of the matrix 𝐾
2

.
The corresponding consensus function (11) becomes a constant
vector

𝜉 = 𝑁
−1

(1𝑇
𝑁

⊗ 𝐼
𝑛

− 1𝑇
𝑁

𝐿
𝑤

�̂�
0

(�̃�
0

𝐿
𝑤

�̂�
0

)
−1

�̃�
0

⊗ 𝐼
𝑛

) 𝑥 (0) .

(17)

Moreover, the single-integrator DLMASs (1) achieve global
average consensus via the protocol (2) if and only both of the
above conditions are satisfied and in addition 1𝑇

𝑁

𝐿
𝑤

= 0.

Remark 16. When𝐴 = [ 1 1
0 1

]⊗𝐼
𝑛

,𝐵 = [ 0
1

]⊗𝐼
𝑛

, and𝐾
1

= 0, the
DLMASs (1) are called a double-integrator one, whose state
vector can be seen as consisting of the position and velocity
in the 𝑛 dimensional space R𝑛.

Corollary 17. Under the given information topology N, the
double-integrator DLMASs (1) achieve global state consensus
via the protocol (2) if and only if 𝐴 is Schur stable. Moreover,
the consensus function is

𝜉 (𝑘)

= 𝑁
−1

{(𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+[
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

−[
0 𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) �̃�

+1𝑇
𝑁

⊗ [
𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

]}𝑥 (0) .

(18)

The consensus function above can be decomposed into
the position consensus function

𝜉
1

(𝑘) = 𝑁
−1

{([𝐼
𝑛

0] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+ [0 𝑘𝐼
𝑛

] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

− [0 𝐼
𝑛

] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) �̃�

+1𝑇
𝑁

⊗ [𝐼
𝑛

𝑘𝐼
𝑛

] } 𝑥 (0) ,

(19)

which is a linear function of discrete time 𝑘, and the constant
velocity consensus function is as follows:

𝜉
2

(𝑘) = 𝑁
−1

{([0 𝐼
𝑛

] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

) �̃�

+1𝑇
𝑁

⊗ [0 𝐼
𝑛

] } 𝑥 (0) .

(20)

Similarly, we can define the velocity average consensus,
that is, if the DLMASs (1) achieve global consensus via the
protocol (2), and the velocity consensus function is a constant
vector equal to the average of the initial velocities of all the
agents.

Corollary 18. Under the given information topology N, the
double-integrator DLMASs (1) achieve global velocity average
consensus via the protocol (2) if and only the matrix𝐴 is Schur
stable and [0 𝐼

𝑛

] 𝐶 = 0.

It is obvious that if 1𝑇
𝑁

𝐿
𝑤

= 0, then 𝐶 = 0; that is, the
last condition in Corollary 18 is satisfied, and thus, the state
consensus function becomes

𝜉 (𝑘) = 𝑁
−11𝑇
𝑁

⊗ [
𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

] 𝑥 (0) . (21)
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4. Design of Gain Matrices

In this section, we discuss the third problem, that is, how to
determine the weighted matrix 𝑊 and the gain matrices
𝐾
1

and 𝐾
2

, such that the DLMASs (1) achieve global state
consensus via the protocol (2).

Theorem 7 shows that the matrices 𝑊, 𝐾
1

, and 𝐾
2

should be taken to ensure that the matrix 𝐴 is Schur stable.
Furthermore, from Corollary 11 we see that if the matrix
𝑊 with respect to the information topology N has been
given, we need only to design the gain matrices 𝐾

1

and 𝐾
2

to ensure that the matrices𝐴+𝐵𝐾
1

−𝜆
𝑖

𝐵𝐾
2

are Schur stable,
where 𝜆

𝑖

, 𝑖 = 1, . . . , 𝑁 − 1, are the eigenvalues of the matrix
�̃�
0

𝐿
𝑤

�̂�
0

. The matrix 𝐾
1

is often taken to obtain an expected
consensus dynamics. The matrix 𝐾

2

is designed to achieve
state consensus and expected convergence rate. Its design
needs the following lemma.

Lemma 19 (see [38]). Supposing that the matrix𝐴 = 𝐴+𝐵𝐾
1

is not Schur stable but (𝐴, 𝐵) is stabilizable, then there is a
critical value 𝛿

𝑐

∈ (0, 1], such that for any number 𝛿 with
0 < 𝛿 < 𝛿

𝑐

the modified Riccati inequality

𝐴
𝑇

𝑃𝐴 − 𝑃 − (1 − 𝛿
2

)𝐴
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃𝐴 < 0 (22)

admits a positive definite matrix solution 𝑃, where 𝛿
𝑐

depends
on the unstable eigenvalues of the matrix 𝐴.

We define functions 𝛿
𝑖

(𝜔) = 1 − 𝜔𝜆
𝑖

and 𝛿(𝜔) =

max
𝑖∈{1,...,𝑁−1}

|𝛿
𝑖

(𝜔)|. Motivated by [38], we get the following
theorem.

Theorem 20. Supposing that the matrix (𝐴, 𝐵) is stabilizable,
the gain matrix 𝐾

1

has been taken such that the expected
consensus dynamic matrix𝐴+𝐵𝐾

1

is not Schur stable, and the
weighted matrix 𝑊 with respect to the information topology
N is given such that −�̃�

0

𝐿
𝑤

�̂�
0

is Hurwitz stable with 𝑁 − 1

eigenvalues −𝜆
𝑖

, 𝑖 = 1, . . . , 𝑁 − 1; then, for the DLMASs (1) to
achieve state consensus via the protocol (2), the matrix 𝐾

2

can
be designed as 𝐾

2

= 𝜔(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 + 𝐵𝐾
1

), where 𝜔 is an
arbitrary constant satisfying 𝛿 = 𝛿(𝜔) < 𝛿

𝑐

, 𝛿
𝑐

∈ (0, 1] is a
critical value which depends on the unstable eigenvalues of the
matrix 𝐴 + 𝐵𝐾

1

, and 𝑃
𝑇

= 𝑃 > 0 is a solution of the algebraic
Riccati inequality (22).

Based on Theorem 20, we give the following algorithm
of determining the feedback gain matrices 𝐾

1

and 𝐾
2

in the
protocol (2).

Algorithm 21. Design procedure of the gain matrices 𝐾
1

and
𝐾
2

.

Step 1. Verify the stabilizability condition of (𝐴, 𝐵) and the
spanning tree condition of the information topology N. If
neither of them is satisfied, then stop. Otherwise, design the
weighted Laplacian 𝐿

𝑤

such that −�̃�
0

𝐿
𝑤

�̂�
0

is Hurwitz stable
with𝑁 − 1 eigenvalues −𝜆

𝑖

, 𝑖 = 1, . . . , 𝑁 − 1.

Step 2. Design𝐾
1

such that 𝐴 = 𝐴 + 𝐵𝐾
1

is the matrix of the
expected consensus dynamics of the DLMASs (1) and is not
Schur stable.

Step 3. Calculate all the eigenvalues of 𝐴, which are com-
posed of the stable eigenvalues 𝜆

𝑠

𝑖

(𝐴), 𝑖 = 1, . . . , 𝑛
𝑠

and
unstable ones 𝜆𝑢

𝑖

(𝐴), 𝑖 = 1, . . . , 𝑛
𝑢

, 𝑛
𝑠

+ 𝑛
𝑢

= 𝑛.

Step 4. Calculate the critical value 𝛿
𝑐

∈ (0, 1]. If 𝐵 is invert-
ible, then 𝛿

𝑐

= (max
𝑖={1,...,𝑛

𝑢
}

|𝜆
𝑢

𝑖

(𝐴)|)
−1. If 𝐵 is of rank one,

then 𝛿
𝑐

= (∏
𝑖={1,...,𝑛

𝑢
}

|𝜆
𝑢

𝑖

(𝐴)|)
−1. Otherwise, apply Wonham

decomposition to the unstable part (𝐴
𝑢

, 𝐵
𝑢

) of (𝐴, 𝐵) to
convert the multiple input system to 𝑚 single input subsys-
tems, where 𝑚 is the number of the Jordan blocks of matrix
𝐴
𝑢

. Specifically, there is a nonsingular real matrix 𝑄 with
a compatible dimension such that 𝐴 = 𝑄

−1

𝐴
𝑢

𝑄 and 𝐵 =

𝑄
−1

𝐵
𝑢

take the form

𝐴 =

[
[
[
[

[

𝐴
1

∗ ∗ ∗

0 𝐴
2

⋅ ⋅ ⋅ ∗

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝐴

𝑚

]
]
]
]

]

, 𝐵 =

[
[
[
[

[

𝑏
1

∗ ∗ ∗

0 𝑏
2

⋅ ⋅ ⋅ ∗

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑏

𝑚

]
]
]
]

]

, (23)

where the symbol ∗ denotes possibly nonzero parts and
(𝐴
𝑗

, 𝑏
𝑗

) with 𝐴
𝑗

∈ R𝑛𝑗×𝑛𝑗 and 𝑏
𝑗

∈ R𝑛𝑗 for all 𝑗 ∈ {1, . . . , 𝑚}

is controllable and ∑
𝑚

𝑗=1

𝑛
𝑗

= 𝑛
𝑢

. In this case, 𝛿
𝑐

is lower
bounded by 𝛿

𝑐

≥ (∏
𝑖

|𝜆
𝑢

𝑖

(𝐴
𝑚

∗)|)
−1

) = 𝛿


𝑐

, where the index
𝑚
∗ is defined by 𝑚

∗

= argmax
𝑗={1,...,𝑚}

(∏
𝑖

|𝜆
𝑢

𝑖

(𝐴
𝑗

)|) and 𝐴
𝑗

is the Jordan block of the unstable part of matrix 𝐴.

Step 5. Calculate the value 𝜔 such that 𝛿(𝜔) = max
𝑖∈{1,...,𝑁−1}

|𝛿
𝑖

(𝜔)|.

Step 6. Solve (22) with 𝛿 = 𝛿(𝜔) for a positive definite
matrix 𝑃.

Step 7. Calculate the matrix𝐾
2

= 𝜔(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 + 𝐵𝐾
1

).

5. Application to Formation Control

In this section, the consensus approach is modified to solve
the formation control problem of the DLMASs (1). Let ℎ =

[ℎ
𝑇

1

ℎ
𝑇

2

⋅ ⋅ ⋅ ℎ
𝑇

𝑁

]
𝑇

∈ R𝑛𝑁 describe a constant formation of
the agent network in a reference coordinate frame, where
ℎ
𝑖

∈ R𝑛 is the formation variable corresponding to the agent 𝑖.
The variable ℎ

𝑖

− ℎ
𝑗

denotes the relative formation vector
between the agents 𝑖 and 𝑗, which is assumed to be indepen-
dent of the reference coordinate.

We modify the consensus protocol (2) and propose a
distributed formation protocol as follows:

𝑢
𝑖

= 𝐾
1

𝑥
𝑖

+ 𝐾
2

∑

𝑗∈N
𝑖

𝑤
𝑖𝑗

(𝑥
𝑗

− 𝑥
𝑖

− (ℎ
𝑗

− ℎ
𝑖

)) , 𝑖 = 1, . . . , 𝑁.

(24)

Definition 22. Under the given information topologyN, the
DLMASs (1) achieve the given formation ℎ via the protocol
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(24) if ‖(𝑥
𝑖

(𝑘) − 𝑥
𝑗

(𝑘)) − (ℎ
𝑖

− ℎ
𝑗

)‖ → 0 as 𝑘 → ∞, for
all 𝑖, 𝑗 = 1, . . . , 𝑁, that is, if there is a function 𝜉(𝑘) such that
‖𝑥
𝑖

(𝑘)−ℎ
𝑖

−𝜉(𝑘)‖ → 0 as 𝑘 → ∞, for all 𝑖 = 1, . . . , 𝑁, where
𝜉(𝑘) is called reference state consensus function.

Theorem 23. Under the given information topology N, the
DLMASs (1) achieve the formation ℎ via the protocol (24) if
and only if the matrix 𝐼

𝑁−1

⊗ (𝐴 + 𝐵𝐾
1

) − �̃�
0

𝐿
𝑤

�̂�
0

⊗ 𝐵𝐾
2

is
Schur stable and (�̃�

0

⊗ (𝐴 + 𝐵𝐾
1

− 𝐼
𝑛

))ℎ = 0. Moreover, the
reference state consensus function is

𝜉 (𝑘) = 𝑁
−1

((

𝑘−1

∑

𝑗=0

(𝐴 + 𝐵𝐾
1

)
𝑗

𝐶𝐴
𝑘−1−𝑗

) �̃�

+1𝑇
𝑁

⊗ (𝐴 + 𝐵𝐾
1

)
𝑘

)𝑥 (0) .

(25)

Similarly to Corollary 11, we get the following corollary
for the formation control.

Corollary 24. Under the given information topology N, the
DLMASs (1) achieve the formation ℎ via the protocol (24) if
and only if all the matrices 𝐴 + 𝐵𝐾

1

− 𝜆
𝑖

𝐵𝐾
2

are Schur stable
and (�̃�

0

⊗ (𝐴+𝐵𝐾
1

− 𝐼
𝑛

))ℎ = 0, where 𝜆
𝑖

, 𝑖 = 1, . . . , 𝑁− 1, are
the eigenvalues of the matrix �̃�

0

𝐿
𝑤

�̂�
0

.

Remark 25. Note that not all kinds of formation structure
can be achieved for the DLMASs (1) by using the protocol
(24). The achievable formation structures have to satisfy the
constraints (�̃�

0

⊗(𝐴+𝐵𝐾
1

−𝐼
𝑛

))ℎ = 0.The formation protocol
(24) for a given achievable formation ℎ can be constructed
analogously by using the Algorithm 21 in Section 4.

6. Numerical Examples

In this section, we give some illustrative examples.

Example 26 (state consensus analysis). We consider the
DLMASs (1) consisting of four agents described by the fol-
lowing matrices:

𝐴 =

[
[
[
[
[
[
[

[

2
√2

2

−√2

2

−1

2

√2

4

3√2

4

1 0 0

]
]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[

[

1

−1

2

1

]
]
]
]
]

]

. (26)

Supposed that we are given the information topology N =

{{4}, {1}, {2}, {3}}, the weights𝑤
𝑖𝑗

= 0.5, and the gain matrices
𝐾
1

= [−1, −√2/2, √2/2] and 𝐾
2

= [0.4444, −0.4714, 0.1571],
we are required to verify the consensus convergence.

The matrix 𝐴 is Schur stable since its eigenvalues are
0.3482±0.7182𝑖, 0.8746±0.2786𝑖, 0.7885±0.4643𝑖, 0.7728±
0.5782𝑖, and 0.0001. Therefore, according to Theorem 7, the
DLMASs (1) with the matrices in (26) achieve global consen-
sus via the protocol (2) under the given information topology
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Figure 1: State trajectories of DLMASs.

N and the gain matrix 𝐾
1

, 𝐾
2

. For the initial states 𝑥
1

(0) =

[0, 0.6, 0.6]
𝑇, 𝑥
2

(0) = [1.2, 1.5, 1.8]
𝑇, 𝑥
3

(0) = [1.8, 2.4, 2.1]
𝑇,

and 𝑥
4

(0) = [3.0, 2.7, 3.6]
𝑇, the corresponding state con-

sensus function in (11) is 𝜉(𝑘) = [1.5, 2.7094 cos(0.7854𝑘 −

1.6296), 2.7094 cos(0.7854𝑘 − 0.0588)]
𝑇. Figure 1 shows the

state trajectories of the agents and the trajectory of the state
consensus function marked by circles.

Example 27 (gain matrices design for a formation control).
The consensus problemofmultiagent systems hasmany prac-
tical applications, such as formation control of mobile robots
and cooperative control of unmanned airborne vehicles. In
this example, we consider that DLMASs consisting of four
mobile robots are described as

𝑥
+

𝑖

= 𝑥
𝑖

+ V
𝑖

,

V+
𝑖

= V
𝑖

+ 𝑢
𝑖

, 𝑖 = 1, . . . , 4,

(27)

where 𝑥
𝑖

∈ R2, V
𝑖

∈ R2, and 𝑢
𝑖

∈ R2 are the position, the
velocity, and the acceleration input of the robot 𝑖, respectively.
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Figure 2: Position and velocity trajectories of mobile robots.

The information topology and the weights are the same as
in Example 26. The eigenvalues of the matrix �̃�

0

𝐿
𝑤

�̂�
0

are
𝜆
1

= 0.5 + 0.5𝑖, 𝜆
2

= 0.5 − 0.5𝑖, and 𝜆
3

= 1. We choose ℎ
1

=

[6, 6, 0, 0]
𝑇, ℎ
2

= [−6, 6, 0, 0]
𝑇, ℎ
3

= [−6, −6, 0, 0]
𝑇, and ℎ

4

=

[6, −6, 0, 0]
𝑇 for the formation ℎ of the mobile robots. Note

that (𝐴, 𝐵) in (27) is stabilizable. The eigenvalues of matrix 𝐴

are 1 (4 multiples). We assume that the expected consensus
dynamics of the agents is not changed, and thus, we have
𝐾
1

= 0. It is easy to verify that the formation ℎ satisfies the
constraints (�̃�

0

⊗ (𝐴 + 𝐵𝐾
1

− 𝐼
𝑛

))ℎ = 0. One can get 𝛿
𝑐

= 1

through Step 4 of the Algorithm 21. By Step 5, one can obtain

𝜔 = 1.0, and the corresponding 𝛿(𝜔) = √2/2 < 𝛿
𝑐

. The
modified Riccati inequality (22) admits a solution

𝑃 =
[
[
[

[

88 17 0 0

17 248 0 0

0 0 88 17

0 0 17 248

]
]
]

]

× 10
−4

. (28)

The corresponding control gain is calculated as follows:

𝐾
2

= [
0 0 0.0686 1.0686

0.0686 1.0686 0 0
] . (29)
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Figure 3: Formation of four mobile robots.

The eigenvalues of matrix 𝐴 are 0.5336 ± 0.5392𝑖 (2 mul-
tiples), 0.9321 ± 0.0049𝑖 (2 multiples), 0.9314 (2 multiples),
and 0 (2 multiples), that is, the matrix 𝐴 is Schur stable. By
Theorem 23, the system (27) via the protocol (24) achieves
the formation ℎ.

For the initial states 𝑥
1

(0) = [−9, 0.6, −18, 1.8]
𝑇, 𝑥
2

(0) =

[12, 1.5, 27, 0.9]
𝑇, 𝑥
3

(0) = [−21, 1.8, 24, 2.4]
𝑇, and 𝑥

4

(0) =

[21, 3, 27, 3.6]
𝑇, we get the reference state consensus function

𝜉(𝑘) = [0.75 + 1.725𝑘, 1.725, 15 + 2.175𝑘, 2.175]
𝑇 according

to (25). Figure 2 shows the position and velocity trajectories
of the mobile robots and the trajectory of the reference state
consensus function marked by dots, and Figure 3 shows the
formation evolution trajectories. From Figure 3 it is clear to
see that the mobile robots achieve the expected formation,
where the symbol diamond denotes the initial position, and
the symbol circle denotes the position at the moment 𝑘 = 80

of the mobile robots, respectively.

7. Conclusions

We considered the state consensus problem of high-order
discrete-time linear multiagent systems with fixed directed
information topology. A linear transformation approach was
proposed to translate the consensus problem of multiagent
systems into a partial stability problem of the corresponding
transformed systems. We have shown that the approach is
powerful in dealing with the three aspects of the consensus
problem: (1) the criteria of global state consensus, (2) the cal-
culation of the state consensus function, and (3) the deter-
mination the weighted matrix and the feedback gain matrix.
Precisely, we have educed new necessary and sufficient con-
sensus criteria in terms of Schur stability of a matrix related
to the weighted Laplacian matrix and presented an analytical
expression of the state consensus function. In addition,

we have stated a design process of determining the feedback
gain matrix under the condition of each agent being stabi-
lizable. The consensus algorithm has been further applied to
solve the formation control problem of multiagent systems.

Though the work in this paper focuses on the high-
order discrete-time linear multiagent systems with fixed
information topology and without time delay, it is undoubted
that the approach can be easily extended to more complex
cases, which will be dealt with in the future works.

Appendix

Proof of Lemma 3. Assuming the inverse to be 𝑇
−1

=

[𝑇
1

⋅ ⋅ ⋅ 𝑇
𝑁−1

𝑇
𝑁

]
𝑇

with columns 𝑇
𝑖

, 𝑖 = 1, . . . , 𝑁, we
prove that the equality 𝑇

𝑁

= 𝑁
−11
𝑁

⊗ 𝐼
𝑛

is correct. Since the
matrix 𝑇

𝑇 is invertible and thus each column of 𝑇
𝑁

can be
linearly represented by the columns of the matrix 𝑇

𝑇, so the
matrix 𝑇

𝑁

can be represented by 𝑞
1

+ 𝑞
2

, where each column
of the matrix 𝑞

1

can be linearly represented by matrices 𝑇𝑇
𝑖

,
𝑖 = 1, . . . , 𝑁 − 1, and 𝑞

2

by those of the matrix 1
𝑁

⊗ 𝐼
𝑛

. Left
multiplying 𝑇

𝑁

= 𝑞
1

+ 𝑞
2

by 𝑞
𝑇

1

gets 𝑞𝑇
1

𝑇
𝑁

= 𝑞
𝑇

1

𝑞
1

+ 𝑞
𝑇

1

𝑞
2

.
Because of 𝑇𝑇−1 = 𝐼

𝑁𝑛

, one has 𝑇
𝑖

𝑇
𝑁

= 0, 𝑖 = 1, . . . , 𝑁 − 1,
which implies 𝑞

𝑇

1

𝑇
𝑁

= 0. On the other hand, from the
equalities 𝑇

𝑖

(1
𝑁

⊗ 𝐼
𝑛

) = 0, 𝑖 = 1, . . . , 𝑁 − 1, one gets 𝑇
𝑖

𝑞
2

= 0,
𝑖 = 1, . . . , 𝑁 − 1, which means 𝑞𝑇

1

𝑞
2

= 0. Hence, from the
equality 𝑞

𝑇

1

𝑇
𝑁

= 𝑞
𝑇

1

𝑞
1

+ 𝑞
𝑇

1

𝑞
2

, one deduces 𝑞𝑇
1

𝑞
1

= 0, that is,
𝑞
1

= 0 and thus 𝑇
𝑁

= 𝑞
2

. In other words, one can write 𝑇
𝑁

into 𝑇
𝑁

= (1
𝑁

⊗ 𝐼
𝑛

)𝛼, where 𝛼 is a matrix of the order 𝑛 × 𝑛.
From the identity𝑇𝑇 = 𝐼

𝑁𝑛

, one has (1
𝑁

⊗𝐼
𝑛

)
𝑇

= 𝐼
𝑛

, and thus,
from𝑇

𝑁

= (1
𝑁

⊗𝐼
𝑛

)𝛼 one can get 𝐼
𝑛

= 𝑁𝛼, that is, 𝛼 = 𝑁
−1

𝐼
𝑛

.
Finally, one has the expression 𝑇

𝑁

= 𝑁
−11
𝑁

⊗ 𝐼
𝑛

.

Proof of Lemma 5. In fact, if there is 𝜉(𝑘; 𝑥(0)) such that
lim
𝑘→∞

‖𝑥
𝑖

(𝑘; 𝑥
𝑖

(0)) − 𝜉(𝑘; 𝑥(0))‖ = 0, 𝑖 = 1, . . . , 𝑁, it follows
that lim

𝑘→∞

‖𝑥
𝑖

(𝑘)‖ = 0, 𝑖 = 1, . . . , 𝑁 − 1, in virtue of
𝑥
𝑖

= 𝑇
𝑖

(𝑥 − 1
𝑁

⊗ 𝜉), 𝑖 = 1, . . . , 𝑁, and therefore the necessary
has been proved. Conversely, by virtue of Lemma 3, one can
verify 𝑥

𝑖

= ∑
𝑁−1

𝑗=1

𝑇
𝑖𝑗

𝑥
𝑗

+ 𝑁
−1

𝑥
𝑁

, 𝑖 = 1, . . . , 𝑁 − 1. So from
lim
𝑘→∞

‖𝑥
𝑖

(𝑘)‖ = 0, 𝑖 = 1, . . . , 𝑁 − 1, it follows that
lim
𝑘→∞

‖𝑥
𝑖

(𝑘) − 𝜉(𝑘)‖ = 0, 𝑖 = 1, . . . , 𝑁, where 𝜉(𝑘) =

𝑁
−1

∑
𝑁

𝑖=1

𝑥
𝑖

(𝑘) = 𝑁
−1

𝑥
𝑁

(𝑘), and thus, the sufficiency has
been verified.

Proof of Lemma 6. By observation, we only need to show that
�̃�Ψ(1
𝑁

⊗ 𝐼
𝑛

) = 0, (1𝑇
𝑁

⊗ 𝐼
𝑛

)Ψ�̂� = −(1𝑇
𝑁

𝐿
𝑤

⊗ 𝐵𝐾
2

)�̂�, and
(1𝑇
𝑁

⊗ 𝐼
𝑛

)Ψ(1
𝑁

⊗ 𝐼
𝑛

) = 𝑁(𝐴 + 𝐵𝐾
1

). In fact, since 𝐿
𝑤

1
𝑁

= 0,
(1𝑇
𝑁

⊗ 𝐼
𝑛

)�̂� = 0, and �̃�(1
𝑁

⊗ 𝐼
𝑛

) = 0, we have that

�̃�Ψ (1
𝑁

⊗ 𝐼
𝑛

)

= �̃� (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

) (1
𝑁

⊗ 𝐼
𝑛

)

= �̃� (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

)) (1
𝑁

⊗ 𝐼
𝑛

)

= �̃� (1
𝑁

⊗ (𝐴 + 𝐵𝐾
1

)) = 0,
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(1𝑇
𝑁

⊗ 𝐼
𝑛

)Ψ�̂�

= (1𝑇
𝑁

⊗ 𝐼
𝑛

) (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

) �̂�

= (1𝑇
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 1𝑇
𝑁

𝐿
𝑤

⊗ 𝐵𝐾
2

) �̂�

= − (1𝑇
𝑁

𝐿
𝑤

⊗ 𝐵𝐾
2

) �̂�,

(1𝑇
𝑁

⊗ 𝐼
𝑛

)Ψ (1
𝑁

⊗ 𝐼
𝑛

)

= (1𝑇
𝑁

⊗ 𝐼
𝑛

) (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

) (1
𝑁

⊗ 𝐼
𝑛

)

= (1𝑇
𝑁

⊗ 𝐼
𝑛

) (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

)) (1
𝑁

⊗ 𝐼
𝑛

)

= (1𝑇
𝑁

1
𝑁

) ⊗ (𝐴 + 𝐵𝐾
1

) = 𝑁 (𝐴 + 𝐵𝐾
1

) .

(A.1)

Thus, system (9) becomes

𝑦
+

= �̃�Ψ�̂�𝑦,

𝑧
+

= − (1𝑇
𝑁

𝐿
𝑤

⊗ 𝐵𝐾
2

) �̂�𝑦 + (𝐴 + 𝐵𝐾
1

) 𝑧.

(A.2)

Denoting𝐴 = �̃�Ψ�̂�,𝐶 = −(1𝑇
𝑁

𝐿
𝑤

⊗𝐵𝐾
2

)�̂�, and𝐷 = 𝐴+𝐵𝐾
1

,
where Ψ = 𝐼

𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

, we get (10).

Proof of Theorem 7. The necessary and sufficient condition
is verified directly by using the Lemmas 5 and 6. Now we
focus on the calculation of the state consensus function. The
first equation in (10) gives 𝑦(𝑘) = 𝐴

𝑘

𝑦(0). From the second
equation in (10) we have

𝑧 (𝑘) = 𝐶𝑦 (𝑘 − 1) + 𝐷𝑧 (𝑘 − 1)

= 𝐶𝑦 (𝑘 − 1) + 𝐷𝐶𝑦 (𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝐷
𝑘−1

𝐶𝑦 (0) + 𝐷
𝑘

𝑧 (0) .

(A.3)

Substituting 𝑦(𝑘) = 𝐴
𝑘

𝑦(0), 𝑦(0) = �̃�𝑥(0), 𝐷 = 𝐴 + 𝐵𝐾
1

and 𝑧(0) = (1𝑇
𝑁

⊗ 𝐼
𝑛

)𝑥(0) into the above formula, one gets
𝑧(𝑘) = ((∑

𝑘−1

𝑗=0

(𝐴 + 𝐵𝐾
1

)
𝑗

𝐶𝐴
𝑘−1−𝑗

)�̃� + 1𝑇
𝑁

⊗ (𝐴 + 𝐵𝐾
1

)
𝑘

)𝑥(0).
Thus, by Lemma 5 one has the state consensus function in
(11).

Proof of Corollary 9. First of all, one easily verifies that the
Schur stability of 𝐴 is equivalent to Schur stability of all the
matrices 𝐴 + 𝐵𝐾

1

− 𝜆
𝑖

𝐵𝐾
2

by transforming 𝐴 into its Jordan
form. We focus on the calculation of the state consensus
function. Rewrite the system (3) as𝑥+ = (𝐼

𝑁

⊗(𝐴+𝐵𝐾
1

)−𝐿
𝑤

⊗

𝐵𝐾
2

)𝑥. So for the left eigenvector 𝜂with the property 𝜂𝑇1
𝑁

=

1 of the Laplacian 𝐿
𝑤

with respect to the zero eigenvalue, we
obtain (𝜂

𝑇

⊗𝐼
𝑛

)𝑥
+

= (𝐴+𝐵𝐾
1

)(𝜂
𝑇

⊗𝐼
𝑛

)𝑥.When the consensus
is achieved, we have that 𝜉(𝑘) = (𝜂

𝑇

⊗ 𝐼
𝑛

)𝑥(𝑘) and thus the
state consensus function is 𝜉(𝑘) = (𝐴 + 𝐵𝐾

1

)
𝑘

(𝜂
𝑇

⊗ 𝐼
𝑛

)𝑥(0),
which can be written into the form (15).

Proof of Corollary 15. In this case, the two conditions in
Corollary 11 become: (1) the matrix −�̃�

0

𝐿
𝑤

�̂�
0

is Hurwitz

stable, that is, the digraph 𝐺 admits a directed spanning tree;
(2) for all the eigenvalues 𝜆

𝑖

, 𝑖 = 1, . . . , 𝑁 − 1, of the matrix
�̃�
0

𝐿
𝑤

�̂�
0

, all the matrix 𝐼
𝑛

− 𝜆
𝑖

𝐾
2

are Schur stable. Let 𝜇
𝑗

, 𝑗 =

1, . . . , 𝑛, be the eigenvalues of thematrix𝐾
2

. Hence, the Schur
stability of the matrix 𝐼

𝑛

− 𝜆
𝑖

𝐾
2

is equivalent to that the
products 𝜆

𝑖

𝜇
𝑗

, 𝑖 = 1, . . . , 𝑁 − 1, 𝑗 = 1, . . . , 𝑛, are in the open
unit circle of the complex plane with the centre at (1, 0).

Now we calculate the state consensus function. In
this case, the state consensus function becomes 𝜉(𝑘) =

𝑁
−1

{𝐶(𝐼
(𝑁−1)𝑛

− 𝐴
𝑘

)(𝐼
(𝑁−1)𝑛

− 𝐴)
−1

�̃� + 1𝑇
𝑁

⊗ 𝐼
𝑛

}𝑥(0). Since
𝐴 is Schur stable, instead of the previous state consensus
function 𝜉(𝑘), we take the following state consensus value 𝜉 =

𝑁
−1

{𝐶(𝐼
(𝑁−1)𝑛

−𝐴)
−1

�̃� + 1𝑇
𝑁

⊗ 𝐼
𝑛

}𝑥(0). Since �̃� = �̃�
0

⊗ 𝐼
𝑛

,𝐴 =

𝐼
(𝑁−1)𝑛

− �̃�
0

𝐿
𝑤

�̂�
0

⊗𝐾
2

, and 𝐶 = −1𝑇
𝑁

𝐿
𝑤

�̂�
0

⊗𝐾
2

, and noticing
that (�̃�

0

𝐿
𝑤

�̂�
0

⊗ 𝐾
2

)
−1

= (�̃�
0

𝐿
𝑤

�̂�
0

)
−1

⊗ 𝐾
−1

2

, the previous
state consensus value can be written into (17).

Proof of Corollary 17. Since

𝐴
𝑗

= [
1 𝑗

0 1
] ⊗ 𝐼
𝑛

, (A.4)

Equation (11) becomes

𝜉 (𝑘)

= 𝑁
−1

((

𝑘−1

∑

𝑗=0

[
𝐼
𝑛

𝑗𝐼
𝑛

0 𝐼
𝑛

]𝐶𝐴
𝑘−1−𝑗

) �̃�

+1𝑇
𝑁

⊗ [
𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

])𝑥 (0)

= 𝑁
−1

((𝐶

𝑘−1

∑

𝑗=0

𝐴
𝑘−1−𝑗

+

𝑘−1

∑

𝑗=0

[
0 𝑗𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗

) �̃�

+1𝑇
𝑁

⊗ [
𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

])𝑥 (0) .

(A.5)

Letting

𝑋 =

𝑘−1

∑

𝑗=0

[
0 𝑗𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗

(A.6)

and 𝑗


= 𝑗 + 1, we get

𝑋 =

𝑘

∑

𝑗


=1

[
0 (𝑗


− 1) 𝐼
𝑛

0 0
]𝐶𝐴

𝑘−1−𝑗


+1

=

𝑘

∑

𝑗


=1

[
0 𝑗


𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗


+1

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛

− 𝐴
𝑘

)

=

𝑘−1

∑

𝑗


=0

[
0 𝑗


𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗


+1

+ [
0 𝑘𝐼
𝑛

0 0
]𝐶

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛

− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−1
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= 𝑋𝐴 + [
0 𝑘𝐼
𝑛

0 0
]𝐶 − [

0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛

− 𝐴
𝑘

)

× (𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

.
(A.7)

Thus, we have the following:

𝑋 = [
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛

− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

.

(A.8)

Substituting it into (A.5), we get

𝜉 (𝑘)

= 𝑁
−1

{ (𝐶 (𝐼
2(𝑁−1)𝑛

− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+ [
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛

− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) �̃�

+1𝑇
𝑁

⊗ [
𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

]}𝑥 (0) .

(A.9)

If 𝐴 is Schur stable, the consensus function above can be
replaced by

𝜉 (𝑘)

= 𝑁
−1

{(𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+ [
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

−[
0 𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) �̃�

+1𝑇
𝑁

⊗ [
𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

]}𝑥 (0) .

(A.10)

Proof of Theorem 20. Supposed that the matrices 𝐿
𝑤

and 𝐾
1

have been given, by Corollary 11, we need only to verify that
the matrix 𝐾

2

ensures that all the matrices 𝐴 + 𝐵𝐾
1

− 𝜆
𝑖

𝐵𝐾
2

are Schur stable, where 𝜆
𝑖

, 𝑖 = 1, . . . , 𝑁−1, are the eigenvalues
of the matrix �̃�

0

𝐿
𝑤

�̂�
0

.
It is clear that there exists𝜔 > 0 such that |𝛿

𝑖

(𝜔)| ≤ 𝛿(𝜔) <

𝛿
𝑐

, 𝑖 = 1, . . . , 𝑁 − 1. We can verify that the following sys-
tems 𝜉

𝑖

(𝑘 + 1) = (𝐴 + 𝐵𝐾
1

− 𝜆
𝑖

𝐵𝐾
2

)𝜉
𝑖

(𝑘), 𝑖 = 1, . . . , 𝑁 − 1,
admit a common Lyapunov function 𝑉(𝜉

𝑖

) = 𝜉
𝐻

𝑖

𝑃𝜉
𝑖

. In fact,
let 𝐾
2

= 𝜔(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 + 𝐵𝐾
1

), then we have that

Δ𝑉 (𝜉
𝑖

)

= 𝑉 (𝜉
𝑖

(𝑘 + 1)) − 𝑉 (𝜉
𝑖

(𝑘))

= 𝜉
𝐻

𝑖

(𝑘)(((𝐴 + 𝐵𝐾
1

)− 𝜆
𝑖

𝜔𝐵 (𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 + 𝐵𝐾
1

))
𝐻

× 𝑃 ( (𝐴 + 𝐵𝐾
1

) − 𝜆
𝑖

𝜔𝐵(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃

× (𝐴 + 𝐵𝐾
1

)) − 𝑃) 𝜉
𝑖

(𝑘)

= 𝜉
𝐻

𝑖

(𝑘) ((𝐴 + 𝐵𝐾
1

)
𝑇

𝑃 (𝐴 + 𝐵𝐾
1

) − 𝑃

− ((𝜆
𝐻

𝑖

+ 𝜆
𝑖

) 𝜔 + 𝜆
𝐻

𝑖

𝜆
𝑖

𝜔
2

)

×(𝐴 +𝐵𝐾
1

)
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 +𝐵𝐾
1

) ) 𝜉
𝑖

(𝑘)

= 𝜉
𝐻

𝑖

(𝑘) ((𝐴 + 𝐵𝐾
1

)
𝑇

𝑃 (𝐴 + 𝐵𝐾
1

) − 𝑃

− (1 −
𝛿𝑖 (𝜔)


2

) (𝐴 + 𝐵𝐾
1

)
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

× 𝐵
𝑇

𝑃 (𝐴 + 𝐵𝐾
1

)) 𝜉
𝑖

(𝑘)

≤ 𝜉
𝐻

𝑖

(𝑘) ((𝐴 + 𝐵𝐾
1

)
𝑇

𝑃 (𝐴 + 𝐵𝐾
1

) − 𝑃

− (1 − 𝛿
𝑖

(𝜔)) (𝐴 + 𝐵𝐾
1

)
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

× 𝐵
𝑇

𝑃 (𝐴 + 𝐵𝐾
1

)) 𝜉
𝑖

(𝑘)

< 0.
(A.11)

That is, all the matrices𝐴+𝐵𝐾
1

−𝜆
𝑖

𝐵𝐾
2

, 𝑖 = 1, . . . , 𝑁−1, are
Schur stable.

Proof of Theorem 23. Let 𝑥
𝑖

= 𝑥
𝑖

− ℎ
𝑖

, 𝑖 = 1, . . . , 𝑁. Then the
DLMASs (1) reach the formation ℎ if and only if ‖(𝑥

𝑖

(𝑘) −

𝑥
𝑗

(𝑘)‖ → ∞ as 𝑘 → ∞, for all 𝑖, 𝑗 = 1, . . . , 𝑁. So the
formation problem on the variables 𝑥

𝑖

is transformed to the
consensus problem on the variables 𝑥

𝑖

.
From (1), one gets 𝑥+

𝑖

= 𝑥
+

𝑖

− ℎ
𝑖

= 𝐴(𝑥
𝑖

+ ℎ
𝑖

) + 𝐵𝑢
𝑖

− ℎ
𝑖

,
𝑖 = 1, . . . , 𝑁. Substituting the protocol (24) and writing it into
the vector form, we have that

𝑥
+

= (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

) 𝑥

+ (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

− 𝐼
𝑛

)) ℎ.

(A.12)

Introducing the state linear transformation 𝑥 = 𝑇𝑥 for the
linear system (A.12), one obtains

𝑥
+

= 𝑇 (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

) − 𝐿
𝑤

⊗ 𝐵𝐾
2

) 𝑇
−1

𝑥

+ 𝑇 (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

− 𝐼
𝑛

)) ℎ.

(A.13)

Let 𝑦 = [𝑥
𝑇

1

, . . . , 𝑥
𝑇

𝑁−1

]
𝑇, then

𝑦
+

= (𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1

) − �̃�
0

𝐿
𝑤

�̂�
0

⊗ 𝐵𝐾
2

) 𝑦

+ (�̃�
0

⊗ 𝐼
𝑁

) (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1

− 𝐼
𝑛

)) ℎ

(A.14)

is held. Since 𝑦 = 0 must be the equilibrium point if the
DLMASs (1) reach the formation ℎ, one has (�̃�

0

⊗ (𝐴 +

𝐵𝐾
1

− 𝐼
𝑛

))ℎ = 0. The residuary proof is similar to that of
Theorem 7.
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A development procedure for a low-cost attitude and heading reference system (AHRS) based on the distributed filter has been
proposed.The AHRS consists of three single-axis accelerometers, three single-axis gyroscopes, and one 3-axis digital compass.The
initial attitude estimation is readily accomplished by using the complementary filtering. The attitude estimation for UAV flying
in the real time is realized by using the three low orders EKF. The validation results show that the estimated orientations of the
developed AHRS are within the acceptable region, and AHRS can give a stabilized attitude and heading information for a long
time.

1. Introduction

Recent advances in autonomous vehicle technologies have
made unmanned aerial vehicles (UAV) to become an attrac-
tive solution for themodernmilitary and civilian applications
such as aerial surveying, pipeline and power line inspection,
post-disaster assessment, remote sensing, and cruise missiles
[1, 2]. A 2011 report by the Teal Group, who is specialized in
aerospace market analysis, forecasts that UAV expenditures
worldwide will double within the next ten years to reach $11.3
billion dollars annually in 2020 [3]. By 2018, analysts expect
that over 15,000UAVs could be operating within United
States Airspace [4]. Commonly, it needs to know the UAV’s
orientation, velocity, and position to be operated, whether
manually or with computer assistance. When cost or weight
is an issue, inertial navigation using very accurate inertial
sensors has been excluded. Instead, low-cost systems using
inertial sensors based on microelectromechanical systems
(MEMS) have been widely used. To ensure safe and reliable
flight of UAV, an accurate attitude and heading reference
system (AHRS) is a key component and can give information
about the UAV’s orientation in three-dimensional spaces.
MEMS-based AHRS are of low cost, light weight, and
consume little power.However, the advantages of inexpensive

MEMS sensors are coupled with the drawback of having
greater potential error in reported roll, pitch, and yaw due to
increased sensor noise and drift. Most of the previous works
at fusing are based on inertial sensors with GPS for attitude
determination [5, 6]. However, GPS signals are susceptible
to interference and deception. GPS is unreliable in hostile
jammed environments or caused by shadowing effects since
the possibility of the outage of GPS. More importantly, the
transmitters cannot afford long-term, stable, and reliable
positioning information because of the risk of destruction.
Recently, many AHRS based on low-cost MEMS gyroscopes,
accelerometers, and magnetometers have been developed
[7–10]. A number of estimation filters have been proposed
since 1970s. The basic idea is to blend several different mea-
surements to obtain the best approximation of the signals.
Although many filtering techniques have been proposed and
studied to design observers for attitude determination [11–
15], the Extended Kalman Filter (EKF) is still one of the
most well-known and widely adopted filtering algorithms to
design such estimators [16, 17]. The Kalman filter provides
the best estimates based on the system dynamics and a priori
knowledge of the noise characteristics of the signals. How-
ever, EKF divergence due to the linearization of the system
and large-state initialization error is a frequent stumbling
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Figure 1: 𝑏 frame, 𝑛 frame, and Euler angles.

block to the implementation of the filter. Major difficulties
when implementing a centralized Kalman filter (CKF) on a
microcontroller arise from the complexity caused by the need
for inverting certainmatrices.This problem is exacerbated by
the need to implement an EKF in case the system is nonlinear
and with a large number of states. In contrast to the CKF, the
distributed filter is simple, easy to implement, and it has been
successfully used for decades on a low-performance micro-
controller [18].

The attitude and heading estimation filter proposed in
this work is based on the distributed filtering theory, initial
attitude estimation is based on the complementary filtering
theory, and the real-time attitude estimationwill use the three
low orders EKF for UAV flying.

The paper is organized as follows. The design of attitude
estimation filter is presented in Section 2. Section 3 focuses
on the implementation of the attitude estimation filter. Exper-
imental results obtained during UAV flying are presented
in Section 4 to illustrate the performance of the proposed
AHRS. Concluding remarks and future work are pointed out
in Section 5.

2. Problem Statement and System Design

The Euler angles describe the body-axis orientation of UAV
body coordinate frame (𝑏 frame) in North, East, and Up
navigation coordinates frame (𝑛 frame). Here, 𝜓 is the yaw
angle, 𝜗 is the pitch angle, and 𝛾 is the roll angle, as
illustrated in Figure 1. The initial attitude and heading of
the UAV are needed to initialize the AHRS. When UAV is
stationary, Initial attitude and heading of UAV are computed
by accelerators and digital compass.The calculation formulas
are described as follows:

𝛾 = tan−1 (
𝑓
𝑏

𝑥

(−𝑓𝑏
𝑧

)
) ,

𝜃 = tan−1(
𝑓
𝑏

𝑦

(√𝑓𝑏
𝑥

2

+ 𝑓𝑏
𝑧

2

)

) ,

�̂�
𝑚

= tan−1(
𝑚
𝑏

𝑥

cos 𝛾 + 𝑚𝑏
𝑧

sin 𝛾
𝑚𝑏
𝑥

sin 𝛾 sin 𝜗 + 𝑚𝑏
𝑦

cos 𝜗 − 𝑚𝑏
𝑧

cos 𝛾 sin 𝜗
) ,

(1)

where, 𝑓𝑏
𝑥

, 𝑓𝑏
𝑦

, and 𝑓𝑏
𝑧

are the specific force of the accelerom-
eters in body coordinate frame (𝑏 frame). 𝑚𝑏

𝑥

, 𝑚𝑏
𝑦

, and 𝑚
𝑏

𝑧

are the components of the magnetic field strength in body
coordinate frame.

However, stationary UAV is difficult owing to wind and
engine vibration in actual test, the initial attitude and heading
are seriously influenced by high-frequency noise when the
initial attitude and heading are computed by using (1). When
the condition of UAV is stationary or low dynamic, the
attitude and heading of UAV are accurate and have good low-
pass property. However, the error of attitude and heading
computed from the gyroscopes output is large since it is easily
influenced by drift of the gyroscope.There is complementary
property between the attitude derived from the gyroscope
outputs and the attitude derived from the accelerometer out-
puts. The complementary filters theory provides an estimate
of the true signal by employing two complementary high-
pass and low-pass filters, and an unknown signal can be
estimated using corrupted measurements from one or more
sensors whose information naturally stands in distinct and
complementary frequency bands [19–21]. The initial attitude
estimation filter based on complementary filter is to pass the
attitude derived from the gyroscope through a high-pass filter
and the attitude derived from the accelerometer through a
low-pass filter and then to fuse those signals to obtain the
estimated attitude; thus, compensating for the drift on the
gyroscope and for the slow dynamics of the accelerometer,
the block is shown in Figure 2.

The real attitude and heading are processed on an embed-
ded processor in actual flying test, major difficulties when
implementing a centralized extended Kalman filter (CEKF)
on a embedded processor arise from the complexity caused
by the need of the Jacobian matrix computing and the system
equation linearizing, and this problem is exacerbated by the
need to implement an EKF with a large number of states. To
solve this problem, the attitude and heading estimation filter
based on the distributed filtering is designed and completed,
three low-order parallel EFK are implemented on the ARM
9 embedded processor. The block diagram of the orientation
estimating filter based on the distributed filtering is shown in
Figure 3.

3. Attitude and Heading Estimation Filter

3.1. Initial Alignment Filter. Complementary filters have been
widely used to combine two independent noisy measure-
ments of the same signal, where each measurement is cor-
rupted by different types of spectral noise [19]. The com-
plementary filters have first-order filter and second-order
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filter; the second-order complementary filter consists of a
second-order high-pass filter and a second-order low-pass
filter. The second-order complementary filter of the attitude
is described as follows [22]:

𝛾 =
𝜔
2

0

(2𝜍/𝜔
0

)𝐷

𝐷2 + 2𝜍𝜔
0

𝐷 + 𝜔2
0

𝛾
𝑎

+
𝐷
2

𝐷2 + 2𝜍𝜔
0

𝐷 + 𝜔2
0

𝛾,

𝜗 =
𝜔
2

0

(2𝜍/𝜔
0

)𝐷

𝐷2 + 2𝜍𝜔
0

𝐷 + 𝜔2
0

𝜗
𝑎

+
𝐷
2

𝐷2 + 2𝜍𝜔
0

𝐷 + 𝜔2
0

𝜗,

(2)

where 𝐷 is the differential operator, 𝜔
0

is the natural fre-
quency, and 𝜍 is the damping ratio.

With the estimated roll and pitch, the yaw can be derived
from the measured strength of the magnetic field in body
coordinate frame by the digital compass:
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(3)

where 𝑚𝑛
𝑥

, 𝑚𝑛
𝑦

, and 𝑚𝑛
𝑧

are the components of the magnetic
field strength in navigation coordinate frame (𝑛 frame). The
relationship between real heading 𝜓

𝑚

and �̂�
𝑚

is described as
follows [23]:
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3.2. Attitude and Heading Estimation Filter. According to the
initial attitude and heading, the initial strapdown attitude
matrix is computed as follow [23]:
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Table 1: The error between AHRS outputs and the reference values for the dynamic test on the ground.

Pitch angle error (∘) Roll angle error (∘) Yaw angle error (∘)
Mean Variance Mean Variance Mean Variance

Dynamic test −0.017 0.069 −0.056 0.089 −0.013 0.150

Attitude and heading estimation depend on the updated
quaternion; the system state equation selected the system
state𝑋 = [𝑞
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3

]
𝑇 is built as follows:
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is the ideal value,
real output value, and drift of gyroscopes in body coordinate
frame (𝑏 frame), respectively. 𝐹(𝑡) is the state transition
matrix; 𝐺(𝑡) is the covariance matrix of noise.

According to (1) and (5), the measurement equation is
built by the attitude derived from the gyroscope output and
the attitude derived from the accelerometers output. The
measurement equation is described as follows:

𝑍 (𝑡) =
[
[
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]

= 𝐻(𝑡, 𝑞) + 𝑉 (𝑡) ,

(7)

where 𝑍(𝑡) = [𝛿𝜓 𝛿𝜗 𝛿𝜆]
𝑇 is the error of the attitude and

heading. 𝜓
𝑚

is the yaw derived from the digital compass. 𝜗
𝑎

and 𝛾
𝑎

is respectively the pitch, and roll derived from the
accelerators; the computing equations are described in (1)
𝜓
𝑞

, 𝜗
𝑞

, and 𝛾
𝑞

is respectively the yaw, pitch, and roll derived

Figure 4: Self-developed autopilot from DNC.

from the quaternion, the computing equation is described as
follows [23]:
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(8)

The measurement matrix (See Appendix) is obtained by
linearizing (6) and (7):
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(9)

The quaternion is updated by (6) and (7), the principal
value of pitch, roll and yaw are derived from the updated 𝑇𝑛

𝑏

[23], for example,
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= sin−1 (𝑇
32

) ,
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= tan−1 (
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31

𝑇
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) ,

𝜓
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= tan−1 (−𝑇12
𝑇
22

) .

(10)
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Table 2: The attitude error between AHRS outputs and MIMU/GPS integrated system outputs for flight test.

Pitch angle error (∘) Roll angle error (∘) Yaw angle error (∘)
Mean Variance Mean Variance Mean Variance

Flighting test 1.84 3.73 −1.12 4.43 — —
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Figure 5: AHRS outputs and the reference values for the dynamic test on the ground, (a) pitch, (b) roll, and (c) yaw.

The domain of yaw, pitch, and roll is [0
∘

360
∘

],
[−90
∘

90
∘

] and [−180∘ 180∘], respectively. The domain and
range of pitch are the same; the real value of pitch is the
principal value, for example, 𝜗 = 𝜗

𝑝

. The real value of yaw
and roll is computed as follows, respectively [23],
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(11)

4. Experimental Test and Results Analysis

Experiments are conducted using an autopilot self-developed
fromDigital NavigationCenter (DNC), BUAA (see Figure 4).
This system is composed of three single-axis accelerometers,
three single-axis gyroscopes, one 3-axis digital compass, one
barometer, one airspeed meter, and one Global Positioning
System (GPS) receiver. In order to test the proposed atti-
tude and heading calculation method based on distributed
filtering, the dynamic test on the ground and flying test
are implemented by using the autopilot from DNC. In the
process of dynamic testing, the autopilot is put on the ground,
the pitch and roll of UAV do not change, the autopilot is
turned around the 𝑧 axis from the initial yaw to 360∘, the
yaw is turned to make a quarter turn, and the autopilot is



6 Mathematical Problems in Engineering

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Pi
tc

h 
an

gl
e e

rr
or

 (s
)

(a)

0 50 100 150 200 250 300 350 400 450 500
−0.3

−0.2

−0.1
0

0.1

0.2

0.3

0.4

0.5

Time (s)

Ro
ll 

an
gl

e e
rr

or
 (d

eg
)

(b)

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

Ya
w

 er
ro

r (
de

g)

(c)

Figure 6: The error between AHRS outputs and the reference values for the dynamic test on the ground, (a) pitch error, (b) roll error, and
(c) yaw error.

stationary for a period of time. The outputs of the AHRS and
the reference values for the dynamic test on the ground is
represented in Figure 5. The error between of AHRS outputs
and the reference values are represented in Figure 6 and
Table 1.

Seen from Figures 5 and 6, and Table 1 the attitude cal-
culated output from the AHRS system this paper proposed
is stable and can track the reference value. The pitch, roll,
and yaw have big fluctuation because when the yaw is turned
manually, the MIMU cannot maintain horizontality, and the
precision of pitch, roll, and yaw is 0.069∘, 0.089∘, and 0.15∘,
respectively.

In order to further test the AHRS system this article pro-
posed, the flight test is carried out using a fixed-wing UAV.
After the plane takes off through manual manipulation, the
condition is changed to automated driving condition dur-
ing aircruise phases and the acceleration, gyroscope, and
magnetic compass data are stored in an SD card. The test
verification is based on the actual data and the results are
shown in Figure 7 and Table 2.

Seen from Figure 7 and Table 2, the attitude calculated
output from the AHRS system this paper proposed is also
stable under the dynamic condition through actual flight test.
The attitude error betweenAHRS outputs and reference value
is small and the precisions of pitch and roll are 3.73∘ and

4.43∘, respectively. So, AHRS can give a stabilized attitude and
heading information in long time.

5. Conclusions

In this paper, based on the distributed filter, the low-cost
attitude and heading reference system has been developed.
The dynamic test on the ground and actual flight test are
implemented, and the test results show that the presented
AHRS based on the distributed filter can give the stabilized
attitude and heading information for a long time and can
implement the automatic flight control of UAV.

Appendix

The attitude and heading based on quaternion were updated
as follows:
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Figure 7: Results of AHRS for fixed-wing UAV flight test, (a) pitch, (b) roll, and (c) attitude error.
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Parallel runway is the mainstream structure of China hub airport, runway is often the bottleneck of an airport, and the evaluation
of its capacity is of great importance to airport management. This study outlines a model, multiagent architecture, implementation
approach, and software prototype of a simulation system for evaluating runway capacity. Agent Unified Modeling Language
(AUML) is applied to illustrate the inbound and departing procedure of planes and design the agent-based model. The model
is evaluated experimentally, and the quality is studied in comparison with models, created by SIMMOD and Arena. The results
seem to be highly efficient, so the method can be applied to parallel runway capacity evaluation and the model propose favorable
flexibility and extensibility.

1. Introduction

Airports play a key role in the commercial aviation system by
allowing airlines and their customers to converge. However,
since the early 1970s, the peaking of traffic at airports has
been a problem of increasing concern to airport operators
around the world. This challenge is most pronounced in
the runways, where multiple traffic flows converge within a
confined region.A failure tomanage these runways effectively
can start a causal chain wherein an accumulating bottleneck
effect leads to fighting delays, unused runway capacity,
and increased controller workload which, in turn, leads to
increased financial and environmental costs.

An airport’s capacity may be broadly defined as its ability
to handle a given volume. While a runway system capacity
is defined as the hourly rate of aircraft operations which
may be reasonably expected to be accommodated by a single
or a combination of runways under given local conditions
[1]. Congestion occurs when demand approaches or exceeds
capacity. Nonintersecting runways, whose extended centre
lines have an angle of convergence/divergence of 15 degrees

or less, are called near parallel runways. The use of parallel
runways to increase aerodrome capacity is a common concept
at busy aerodromes.

Results in this study are mainly focused on parallel run-
ways, conducted using an agent-based simulation software
called AnyLogic. Given its capabilities for modeling at a very
high level of detail and closely representing reality in terms of
applicable separation standards and air traffic management
procedures. Agent based model is created to simulate pro-
posed alternative. Using the methodology proposed here, the
baseline and the different alternatives were evaluated in terms
of design functionality and overall utilization of potential
capacity.

2. Literature Review

2.1. Capacity Estimation Models. The primary analytical
models used to estimate runway capacity include the LMI
runway capacity model and the FAA airfield capacity model
[2]. The LMI capacity model is an analytical model for
computing the capacity of a runway system. Its fundamental
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building block is a model that computes the capacity of a
single runway. The FAA airfield capacity model is an analytic
model which calculates the capacity of a runway system, but it
assumes that all random variables in the model are normally
distributed and a 5% probability of violation of separation
requirements is used in determining spacing of runway
operations, using these normal distributions. A hybrid of
these two models, with the logic of the LMI model and the
extension to multiple runways featured in the FAA model,
is expected to be very useful in providing quick estimates of
runway system capacity [3].

A distinction between analytical and simulation models
is made based on the methodology used to compute capacity,
delay, or other such metrics. Analytical models are primarily
sought to provide estimates of capacity by manipulation of
the representation formulated. These models tend to have a
low level of detail [4].

Simulation of the airport environment is increasingly
applied to obtain more realistic estimates of capacity by
randomizing the various input parameters.Many commercial
simulation tools for air traffic are available, for example,
SIMMOD and TAAM.These tools dedicated to airport types
of simulation seek to generate traffic flows through the
airports, which are modeled and configured to represent
actual constraints and uncertainties. Observations from these
flows allow appropriate measures of capacity and/or delay to
be computed. Simulations tend to have amuch higher level of
detail including conflict resolution, airport taxiway, and gate
selection, to deal with more tactical issues.

In many applications these commercial simulation tools
will satisfy the simulation objectives, but when microsimula-
tion becomes an issue to consider, very fewmodels analyze air
traffic metrics in combination with capacity and safety. With
regard to microsimulation, we are concerned with events
such as wake-vortex separation violations, simultaneous
runway occupancies (SRO’s), and collisions on a runway.
Furthermore, the aviation system is a complicated stochastic
system.

2.2. Agent-Based Systems for Air-Traffic Control and Man-
agement. Agent-based computing is one of the powerful
technologies for the development of distributed complex
systems [5, 6]. Many researchers believe that agents represent
the most important new paradigm for software development
since object-oriented design [7], and the concept of intelligent
agents has already found a diverse range of applications in
transportation systems.

The geographical and functional distribution and the
highly dynamic nature of air traffic control (ATC) make it an
ideal candidate with many potential applications that can be
modeled with MAS [8], such as air traffic flow management
[9].The optimal aircraft sequencing using intelligent schedul-
ing (OASIS) presented in [10] is a real-time agent-oriented
system developed to support air traffic management. OASIS
distributes air traffic control (ATC) tasks into two classes
of autonomous and cooperating agents: aircraft agents and
global agents. Each aircraft agent associates with an arriving
aircraft and performs computation or reasoning relevant to

the aircraft. The system helps alleviate air traffic congestion
bymaximizing runway utilization through arranging landing
aircrafts into an optimal order andmonitoring the progress of
each individual aircraft in real time.

An agent-basedmodel enablesmodeling of every individ-
ual throughout the complete simulation lifecycle in complex
scenarios, so, to follow these domestic properties, an agent-
based simulation is created to provide the necessary informa-
tion for parallel runways.

3. Operational Conceptions and
Considerations

The impetus for considering operations on parallel or near-
parallel instrument runways is provided by the need to
increase capacity at busy aerodromes. The procedures for
airports with multiple parallel runways are similar, with
added safeguards to ensure that an aircraft is safely separated
from those approaching the adjacent parallel runway. The
relation among many parallel runways can be turned to the
relation between two parallel runways. So we only focus our
research on two parallel runways.

In order to enable evaluation of capacity of parallel
runway, it is necessary to model the details of how arriving
aircraft is guided through the final stage, including their
behavior and interactions.Modeling of the agentswas accom-
plished by comparison with a set of baseline operational data
and consultation with subject matter experts.

3.1. Modes of Operation

3.1.1. Simultaneous Parallel Approaches. Independent parallel
approaches: simultaneous approaches to parallel or near-
parallel instrument runways where radar separation minima
between aircraft on adjacent extended runway centre lines are
not prescribed. Dependent parallel approaches: simultaneous
approaches to parallel or near-parallel instrument runways
where radar separation minima between aircraft on adjacent
extended runway centre lines are prescribed.

3.1.2. Simultaneous Parallel Departures/Departures. Indepen-
dent parallel departures: simultaneous departures from par-
allel or near-parallel instrument runways. Segregated parallel
departures: simultaneous operations on parallel or near-
parallel instrument runways. Under this mode, one runway
is used exclusively for approaches and the other runway
is used exclusively for departures. There may be semim-
ixed operations; that is, one runway is used exclusively for
departures, while the other runway is used for a mixture of
approaches and departures; or, one runway is used exclusively
for approaches while the other is used for a mixture of
approaches and departures.

3.2. Safeguards for Parallel Runway. In order to obtain reliable
and valid model to evaluate the capacity, it was necessary
to collect these regulations in a systematic and controlled
manner. Therefore, various aircraft controls are described in
this section.
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3.2.1. Separation Control. The separations imposed between
aircraft by terminal controllers can be characterized by the
interarrival separation distribution of aircraft as they fly along
the final approach course.This distribution is a goodmeasure
of the applied separations since it is sensitive not only to
the average separations applied, but also to the variability of
the applied separations around the average. The variability
of aircraft separations can have many sources, including the
different required minimums between different aircraft types
and the deviation of aircraft from their assigned routes and
speeds. All of these sources are captured by the interarrival
separation distribution along the final approach. The final
approach is particularly important because it is where aircraft
are moving most slowly, are most closely spaced, and have
their routes most constrained.

To avoid the situation where a faster aircraft catches up
with a slower aircraft, an extraseparation is required for the
following faster aircraft at the beginning of its final approach.
FAA has an official separation requirement for each aircraft
mix, and the separations are chosen to avoid a wake vortex
encounter. The target separation at the threshold is drawn
from a Gaussian distribution ∼N(𝜇, 𝜎2), where the mean 𝜇 is
given in Tables 1 and 2 based on the leader and trailer aircraft
types, and the standard deviation 𝜎 is assumed to be 0.39 nm.
The actual separation at the threshold depends on several
factors including aircraft speed and time of arrival at the final
approach fix.

3.2.2. Runway Entrance Control. The minimal time between
an aircraft that wants to takeoff (takeoff lasts about 30
seconds) and an aircraft that wants to land is about 3minutes.
If the time difference is smaller, aircraft at the ground have to
hold until the runway is vacated.

3.2.3. Runway Balance Control. The model flow manager
chooses a landing runway for each inbound aircraft based
on the need to balance throughput on the available runways.
Balancing the throughput on all the runways of an airport is
important because overwhelming one runway while another
remains underutilized will lower the overall throughput of
the airport. In order to choose which runway would be best,
based on balancing considerations, the model flow manager
first calculates an estimated demandon each runway and then
decides whether reassigning the aircraft to other than the
nearest runway would be desirable. The estimated demand is
calculated as a weighted moving average constructed so that
nearer flights contribute more to the estimated demand than
distant flights.

Once estimated demands have been calculated for each
available runway, the flowmanagerwill reassign the incoming
flight to the runway with the lowest estimated demand if the
demand estimate on that runway is lower than the demand
estimate on the nearest runway by at least a specified amount
called the demand barrier. The demand barrier used in the
simulations is 2 flights per hour. The purpose of the demand
barrier is to ensure that flights are not reassigned to other than
their closest runway unless there is a clear advantage in doing
so.

Table 1: Separation standard matrix (nautical mile).

Leader Trailer
Heavy Large Small

Heavy 4 5 6
Large 2.5 2.5 4
Small 2.5 2.5 2.5

Table 2: Hypothetical reduced separation (nautical mile).

Leader Trailer
Heavy Large Small

Heavy 3.3 3.3 3.3
Large 2.5 2.5 4
Small 2.5 2.5 2.5

4. Architecture of MAS

4.1. Agent-Oriented Parallel Runway Architecture. Agent-
based modeling develops computational representation of
a complex system by modeling each of the components or
subsystems as agents and it models the rules for possible
actions and interaction between these agents.

To formulate the evaluation model, we created the fol-
lowing pseudoagent. The developed model considers each
subsystem as an independent type of agent that acts based on
its local knowledge and its interaction with other agents.

(1) Runway agent is applied to simulate the runway and
it was afforded statistical methods to recorder the
utilization rate of the runway.

(2) Runway entrance agent is applied to simulate the
entrance of the runway and it was embedded in the
runway agent.

(3) Departure agent is applied to simulate the departure
aircraft. Different aircraft types are modeled through
database of aircraft performance parameters.

(4) Departure environment agent is applied to simulate
the surrounding condition of the departure aircraft.
The departure aircraft can learn the surrounding
information from this agent, and it is embedded in
the departure agent.

(5) Arrival agent is applied to simulate the departure
aircraft.

(6) Arrival environment agent is applied to simulate the
surrounding condition of the arrival aircraft.

(7) Departure track agent is applied to simulate the
approach line of aircraft, it can record the quantity of
arrival aircraft at any time.

(8) Arrival track agent is applied to simulate the approach
line of aircraft.

(9) Rule agent receives and converts the regulation data,
for example, the miss distance between aircraft.

(10) Control agent balances the arrival and departure
aircraft.
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Considering that UML is a language widely accepted,
we will design the architecture of the agent-oriented par-
allel runway system at this part by AUML. The AUML is
extended fromUMLwith agent-relatedmodeling techniques,
to enhance the modeling capabilities of UML [11]. Figure 1
shows the group membership hierarchy on which the design
of the runway system is based. To describe the simulation
model in more detail, some entities are further decom-
posed to virtual agents. For example, the arrival aircraft is
decomposed to arrival agent and the corresponding arrival
environment agent; in this way the model can be applied
to more complicated condition without much change, as is
shown in Figure 2.The main features of the important agents
presented in this architecture are specified in the following
sections.

4.2. Agent Description

4.2.1. Arrival Agent. An agent will be created for each arrival
aircraft. Therefore, in response to the arrival of an aircraft
(arrival agent creation event) the system will create a new
arrival agent instance for this aircraft. Each arrival agent
faces a safe problem. In this problem, a strict set of rules
must be followed, and arrival agent may get a copy of
the rules from rule agent through communication and can
get the position and characteristics information of nearby-
arrival agents through its arrival environment agent. Also,
the agent has to coordinate with the other service agents
in order to resolve any conflicts. This arrival agent must
have the following information: the ID of assigned runway
to the aircraft, the aircraft characteristics, the operation time
assigned to the different operations (approach/landing).

4.2.2. Runway Agent. Each aircraft will be assigned to a
specific runway. Each one of the runway is controlled by
a runway agent. To do this, the agent will have to manage
the runway assigned and the corresponding runway entrance
agents, informing the control agent and the corresponding
aircraft agent when necessary.

When an arrival agent approaches to the target runway,
it will have to communicate with runway agent to check the
state of the runway. If the runway is not locked by departure
agent and no aircraft will take the runway upon its arrival to
the runway, the aircraft will continue its approach processes;
otherwise’ it will have to hover at its current position.

4.2.3. Control Agent. The main goal of this agent is to
determine the appropriate allocation for the arrival/departure
aircrafts to specific time and runway. While an arrival agent
is created, it has to wait in the approach queue for the
instruction of the control agent before it moves to the target
runway, so do departure aircraft.

The control agent will try to obtain the most appropriate
scheduling to balance the arrival and departure stream. At
this point, the agent will search the information of aircrafts
at approach/departure queues. The agent will have to know
the following information in order to perform its task: the

length of the approach/departure queues and the cumula-
tive waiting time and max waiting time of aircrafts of the
approach/departure queues.

4.3. Agent Communication. One of the most important tasks
is the coordination and the negotiation between the agents.
Each one is in charge of one independent part of the system.
The message interchange between agents forming the system
is not based on the most popular foundation for intelligent
physical agents specifications (FIPA-ACL). Instead, we apply
the regular interobject communication facilities of the sim-
ulation environment for agents: calling methods, sending
messages via ports, linking continuously changing variables,
and so forth.

The interaction between agents, while arrival aircraft
approaches to the runway, is shown in Figure 3.

While arrival aircraft is created, it gets target runway
and obstacle aircraft information from control agent. The
aircraft registers its information to the arrival track agent and
approaches to the runway, as soon as it gets permission from
the control agent. During the approach process, the aircraft
checks whether the distance to obstacle aircraft satisfies the
safety rules. If the distance is too short, the aircraft will
hold on current position, until it is safe for it to move
forward again. Upon the final approach stage, the aircraft
communicates with the runway agent and departure aircrafts
tomake sure that the runway will be available when it reaches
the runway, and no departure aircraft has locked the runway.

5. Developing Models in AnyLogic

5.1. Simulation Control and Data Collection. The simula-
tion approach used in this paper is based on the software
tool AnyLogic. AnyLogic is a programming and simulation
environment based on Java that is matching with unified
modeling language (UML) inherently and the model based
on AnyLogic possesses the open architecture as [12] char-
acterizes. AnyLogic focuses on agent-based approach and
business simulation and allows the user to combine different
techniques and approaches.

The example problem is considered in this case study to
conduct simulation although the model being developed is
independent of the problem structure. The example is drawn
partially with minor modifications from Bei Jing airport
runway structure, the structure information of the parallel
runway is stored in the database, and the distance between
runways can be manually changed during simulation. Fig-
ure 4 shows the parallel runway structure.

Validation of the computer simulation is a critical step
since the reliability of predictions derived from it depends
on the fidelity of the simulation to actual operations. It is a
good idea to compare the simulation results of themodel with
real airport operation data, but the data is hard to collect.
So, we verify the multiagent model through comparison
with SIMMOD model and Arena model. The screenshot
for multiagent-based parallel runway simulation model is
presented in Figure 5. Several versions of themodel have been
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simulated allowing a comparison of runway capacity under
different operation modes.

The experimenter’s display is essentially an electronic
map of an area. All aircraft are shown as symbols at their
proper locations. In a separate window on the screen, a
variety of information about the subject aircraft is displayed.
This information is received from the model and is shown
as a reference for the experimenter. Information about
pseudoaircraft can be displayed, including the waypoints the
pseudoaircraft is flying through.

5.2. Numerical Experiments. Small aircrafts are seldom used
in recent years at Chinese aviationmarket, so we suppose that
only large and heavy aircraft were available at the simulation
experiments. Someof the important parameters of the aircraft
are displayed at Tables 3 and 4.

Being one of the oldest and most commonly used air
traffic simulation modeling tools, SIMMOD outputs were
used as the baseline for expected results. The average delay

Table 3: Scenario data.

Aircraft types
Medium Heavy

Arrival velocity km/h 314 334
Take-off velocity km/h 309 315
Mixindex% 63.4 36.6

of aircrafts is used to measure the quality of a scenario after
execution and to compare with other scenarios.

One of the main benefits of a simulation model is the
wealth of information derived from each simulation run.
Each scenario is repeated for 20 times, and the averaged
simulation results are then presented to illustrate the use of
the model developed.

5.3. Results and Analysis. In the case of independent arrival,
the distance between parallel runways is over 1035m, and the
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Figure 5: Screenshot of the model.

initial arrival rate is 10 aircrafts per hour.Then the arrival rate
will gradually rise to an unrealistically high level. As expected,
the level resulted in all flights being delay.The resulting delay
distribution is depicted in Figure 6.

As can be seen form Figure 6, the results of the models
are quite similar when the density of arrival aircraft is
small. While the arrival rate turns to unsustainable heavy,
the distinction turns to be clear. This fact ensures that a
simulation validated against airport arrival operations will
have been stress tested in high-density traffic situations. The

Table 4: Taxiway choice parameters.

First
runway

Ratio of medium aircraft that taxi
to A1, B1, and C1 0.4, 0.3, 0.3

Ratio of medium aircraft that taxi
to A1, B1, and C1 0.2, 0.3, 0.5

Second
runway

Ratio of heavy aircraft that taxi to
A1, B1, and C1 0.3, 0.4, 0.3

Ratio of heavy aircraft that taxi to
A1, B1, and C1 0.2, 0.2, 0.6

results of multiagent model are in accordance with those of
SIMMOD, but the results of the Arena and SIMMOD are
significantly different.

Suppose that the tolerable level of average delay is 4
minutes, and the corresponding capacity is regarded as
runway practical capacity. Figure 7 shows the simulation
results of dependant approach scenarios.

Clearly there are differences between the results of Arena
and SIMMOD models for this scenario, and, by inspection
of the confidence intervals, it is clear that the results of agent
and SIMMOD are similar.Themost important reason for the
difference lies in the technique used to implement origin-
destination routing and separation control. While agent-
based model uses a monitoring technology, checking the dis-
tance between nearby aircraft at any time. Arena uses a trigger
technology, checking the distance at particular moment or
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particular position. Consequently, Arena required each inter-
section to have hard-coded turning movement percentages.
The reason for not implementing routing and separation
mechanism in Arena to match that in Agent model is the
complexity of the cooperative logic and component in a
microscopic level system. From this, it is very difficult to
determine specific vehicle turning directions at each inter-
section, which results in shorter separation for aircrafts. Due
to the nature of the routing technique utilized in Arena,
there was no way to assign specific destinations for aircrafts
each origin. Because of this, there was no guarantee that
destination volumes in Arena would match those established
separation rules.

The purpose of introducing agents into parallel runway
simulation is to increase the flexibility and the ability of
the system to deal with uncertainty in a dynamic environ-
ment. Through the above comparison, we can see that the
multiagent model consists of multiple functional stationary
agents that are intelligent and cooperative. Interoperability is
critically needed in making decisions based on information
across systems, organizational and jurisdictional boundaries,
or application scenarios in which the integration of multiple
agent systems is needed.

6. Conclusions

This research applied agent-based modeling approach to
the simulation of parallel runway system. The simulation
model that seeks aircrafts and runway interactions using
individual agents that attempt to fulfill a specific objective
is developed. The coordination between agents is achieved
through protocols. The hierarchical architecture makes it
possible to examine and understand how approach mode
and architecture decisions might affect the parallel runway
capacity. Regarding the proposed model, the movement of
aircrafts at taxiway should be also included at the multiagent
model in future research.
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The approximate analytical solutions of differential equations with fractional time derivative are obtained with the help of a
general framework of the reduced differential transform method (RDTM) and the homotopy perturbation method (HPM).
RDTM technique does not require any discretization, linearization, or small perturbations and therefore it reduces significantly
the numerical computation. Comparing the methodology (RDTM) with some known technique (HPM) shows that the present
approach is effective and powerful. The numerical calculations are carried out when the initial conditions in the form of periodic
functions and the results are depicted through graphs.The two different cases have studied and proved that themethod is extremely
effective due to its simplistic approach and performance.

1. Introduction

Various fields of science and engineering deal with dynamical
systems (see [1, 2]), some of which can be described by
fractional-order equations (see [3–5] and the references
therein).The last two decades have witnessed a great progress
in fractional calculus and fractional-order dynamical sys-
tems. It has been found that fractional calculus is a math-
ematical tool that works adequately for anomalous social
and physical systems with nonlocal, frequency- and history-
dependent properties, and for intermediate states such as
soft materials, which are neither idea solid nor idea fluid
(see [3, 4, 6]). Differential equations with fractional-order
derivatives/integrals are called fractional differential equa-
tions, and they have found many successful applications
in viscoelasticity, heat conduction, electromagnetic wave,
diffusion wave, control theory, and so on (see [7–9] and the
references therein).

Bistable systems play an important role in the study of
spatial patterns. A typical example, which appears in popu-
lation dynamics, leads to

𝜕𝑢

𝜕𝑡
=
𝜕
2

𝑢

𝜕𝑥2
+ 𝑢 − 𝑢

3

, (1)

referred to as the classical Fisher-Kolmogorov (FK) equation.
In investigating such spatial patterns, a key role is played by
a model equation, which is simpler than the full equation
describing the process. Recently, interest has turned to
higher-order model equations involving bistable dynamics,
such as the extended Fisher-Kolmogorov (EFK) equation

𝜕𝑢

𝜕𝑡
= −𝛾

𝜕
4

𝑢

𝜕𝑥4
+
𝜕
2

𝑢

𝜕𝑥2
+ 𝑢 − 𝑢

3

, 𝛾 > 0, (2)

proposed by Coullet et al. [10] in 1987 as well as by Dee and
Van Saarloos [11] in 1988. The EFK equation has appeared in
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studies of phase transitions, for instance, near a Lifshitz point
(cf. Zimmerman [12]). Another well-known equation of this
type is the Swift-Hohenberg equation

𝜕𝑢

𝜕𝑡
= 𝛼𝑢 − (1 +

𝜕
2

𝜕𝑥2
)

2

𝑢 − 𝑢
3

, 𝛼 > 0, (3)

proposed in 1977.
Whereas the EFK equation and the SH equation involve

fourth-order spatial derivatives, certain phase-field models
lead to even-higher-order spatial gradients. The following
equation

𝜕𝑢

𝜕𝑡
=
𝜕
6

𝑢

𝜕𝑥6
+ 𝐴

𝜕
4

𝑢

𝜕𝑥4
+ 𝐵

𝜕
2

𝑢

𝜕𝑥2
+ 𝑢 − 𝑢

3

, (4)

studied by Gardner and Jones [13] and Caginalp and Fife [14],
in which𝐴 and 𝐵 are constants. In this paper, we consider the
initial value problem (IVP) of perturbed diffusion equation
with fractional time derivative

𝐷
𝛼

𝑡

𝑢 =
𝜕
6

𝑢

𝜕𝑥6
+ 𝐴

𝜕
4

𝑢

𝜕𝑥4
+ 𝐵

𝜕
2

𝑢

𝜕𝑥2
+ 𝑢 − 𝑢

2

,

𝑢 (𝑥, 0) = 𝜑 (𝑥) ,

(5)

where the fractional derivative in (5) is in the sense of Caputo
and 0 ≤ 𝛼 < 1.

Historically, comparatively little was known about the
extraordinary range of behavior presented by the solutions
of nonlinear partial differential equations. Except for a few
special cases, it is impossible to find a closed form solution
for a fractional differential equation. Effective methods for
solving such equations are needed. So approximate and
numerical techniques must be used.

The homotopy perturbation method (HPM) is relatively
new approach to provide an analytical approximation to
linear or nonlinear problem.This method was first presented
by He [15, 16] and applied to various nonlinear problems [17,
18].The basic difference of thismethod from the other pertur-
bation techniques is that it does not require small parameters
in the equation, which overcomes the limitations of the tra-
ditional perturbation techniques. Recently, the application of
this method is extended for fractional differential equations
[5, 19–21]. Zhou [22] was the first one to use differential
transform method (DTM) in engineering applications. He
employed DTM in solution of initial boundary value prob-
lems in electric circuit analysis. This method constructs an
analytical solution in the form of a polynomial. It is different
from the traditional high order Taylor series method, which
requires symbolic computation of necessary derivatives of
the data functions. The differential transform is an iterative
procedure for obtaining analytical differential equations.The
concept of DTMhas broadened to problems involving partial
differential equations and systems of differential equations
[23, 24]. Some researchers have lately applied DTM for anal-
ysis of uniform and non-uniform beams [25–27]. Recently,
the application of reduced differential transform method
is successfully extended to obtain analytical approximate

solutions to linear and nonlinear ordinary differential equa-
tions of fractional order [28–30].

In this paper, we try to find an approximate analytical
solution of (5) for fractional time derivatives with the help of
powerful analytical method. We use the reduced differential
transform method (RDTM) and homotopy perturbation
method (HPM) to obtain the solutions and compare them
with each other. We know that the HPM method is based
on the use of homotopy parameter for classification of most
favorable values of parameters in between [0, 1]. While,
RDTM technique does not require any parameter, discretiza-
tion, linearization, or small perturbations and therefore it
reduces significantly the numerical computation. For the
standard cases, comparing the methodology with some
known techniques shows that the present approach is effec-
tive and powerful.

2. Preliminaries

There are several approaches to define the fractional calcu-
lus, for example, Riemann-Liouville, Gruunwald-Letnikow,
Caputo, and Generalized Functions approach. For the read-
ers’ convenience, definitions of fractional integral/derivative
and some preliminary results are given in this section.

Definition 1 (see [6]). The fractional integral of order 𝛼 ≥ 0
of a function 𝑢(𝑥, 𝑡) is given by

𝐼
𝛼

𝑢 (𝑥, 𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑥, 𝑠) 𝑑𝑠, (6)

provided that the right side is point-wise defined on (0, +∞),
where Γ(⋅) is the well-known gamma function.

Definition 2 (see [6]). The Caputo derivative of order 𝑠 > 0 of
a continuous function 𝑢(𝑥, 𝑡) is defined to be

𝐶

𝐷
𝑠

𝑡

𝑢 (𝑥, 𝑡) =
1

Γ (𝑛 − 𝑠)
∫

𝑡

0

𝑢
(𝑛)

(𝑥, 𝜏)

(𝑡 − 𝜏)
𝑠−𝑛+1

𝑑𝜏, (7)

where 𝑛 = [𝑠] + 1, provided that the right side is point-wise
defined on (0, +∞).

Definition 3 (see [6]). The Riemann-Liouville derivative of
order 𝑠 > 0 of a continuous function 𝑢(𝑥, 𝑡) is defined to be

𝑅𝐿

𝐷
𝑠

𝑡

𝑢 (𝑥, 𝑡) =
1

Γ (𝑛 − 𝑠)

𝑑
𝑛

𝑑𝑡𝑛
[∫

𝑡

0

𝑢 (𝑥, 𝜏)

(𝑡 − 𝜏)
𝑠−𝑛+1

𝑑𝜏] , (8)

where 𝑛 = [𝑠] + 1, provided that the right side is point-wise
defined on (0, +∞).

Riemann-Liouville fractional derivative is mostly used
by mathematicians but this approach is not suitable for real
world physical problems since it requires the definition of
fractional order initial conditions, which have no physically
meaningful explanation yet. Caputo introduced an alterna-
tive definition, which has the advantage of defining integer
order initial conditions for fractional order differential equa-
tions. We have chosen the Caputo fractional derivative
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because it allows traditional initial and boundary conditions
to be included in the formulation of the problem. And some
other properties of fractional derivative can be found in [4, 6].

The relation between the Riemann-Liouville operator and
Caputo operator is given by

𝐶

𝐷
𝑠

𝑡

𝑢 (𝑥, 𝑡) =
𝑅𝐿

𝐷
𝑠

𝑡

[𝑢 (𝑥, 𝑡) −

𝑛−1

∑

𝑖=1

𝑢
(𝑖)

(𝑥, 0)
𝑡
𝑖

𝑖!
] . (9)

By using (9), from (8), we obtain fractional derivative in the
Caputo sense as follows:

𝐶

𝐷
𝑠

𝑡

𝑢 (𝑥, 𝑡) =
1

Γ (𝑛 − 𝑠)

𝑑
𝑛

𝑑𝑡𝑛

× [∫

𝑡

0

𝜔 (𝑥, 𝜏) − ∑
𝑛−1

𝑖=1

𝑢
(𝑖)

(𝑥, 0) (𝜏
𝑖

/𝑖!)

(𝑡 − 𝜏)
𝑠−𝑛+1

𝑑𝜏] .

(10)

Let us expand the analytical and continuous function
𝑢(𝑥, 𝑡) in terms of a fractional power series as follows:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝑈
𝑘

(𝑥) 𝑡
𝑘/𝛼

, (11)

where 𝛼 is the order of fraction and 𝑈
𝑘

(𝑥) is the fractional
differential transform of 𝑢(𝑥, 𝑡).

Since the initial conditions are implemented to the integer
order derivatives, the transformations of the initial conditions
are defined as follows:

𝑈
𝑘

(𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

if (𝑘
𝛼
) ∈ 𝑍

+

,
1

(𝑘/𝛼)!

×[
𝑑
𝑘/𝛼

𝑑𝑡𝑘/𝛼
𝑢 (𝑥, 𝑡)]

𝑡=0

for 𝑘 = 0, 1, 2, . . . , (𝛼𝑠 − 1)

if (𝑘
𝛼
) ∈ 𝑅 \ 𝑍

+

, 0.

(12)

The following theorems that can be deduced from (7) and
(8) are given below.

Theorem 4. If𝑤(𝑥, 𝑡) = 𝑥𝑚𝑡𝑛𝑢(𝑥, 𝑡), then𝑊
𝐾

(𝑥) = 𝑥
𝑚

𝑈
𝑘−𝑛

(𝑥).

Theorem 5. If 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)V(𝑥, 𝑡), then

𝑊
𝐾

(𝑥) =

𝑘

∑

𝑟=0

𝑈
𝑟

(𝑥)𝑉
𝑘−𝑟

(𝑥) =

𝑘

∑

𝑟=0

𝑈
𝑘−𝑟

(𝑥) 𝑉
𝑟

(𝑥) . (13)

Theorem 6. If 𝑤(𝑥, 𝑡) = (𝜕
𝑚

/𝜕𝑥
𝑚

)𝑢(𝑥, 𝑡), then 𝑊
𝐾

(𝑥) =

(𝜕
𝑚

/𝜕𝑥
𝑚

)𝑈
𝑘

(𝑥).

Theorem7. If𝑤(𝑥, 𝑡) = (𝜕𝛽/𝜕𝑡𝛽)𝑢(𝑥, 𝑡), then𝑊
𝐾

(𝑥) = (Γ(𝛽+

1 + 𝑘/𝛼)/Γ(1 + 𝑘/𝛼))𝑈
𝑘+𝛼𝛽

(𝑥).

3. Solution of the Problem by
the RDTM and HPM

To illustrate the basic ideas of HPM [15], we consider the
following general nonlinear differential equation:

𝐴 (𝑦) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω, (14)

with boundary conditions

𝐵(𝑦,
𝜕𝑦

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (15)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytic function, and Γ is the
boundary of the domainΩ.

The operator 𝐴 can be generally divided into two parts 𝐿
and𝑁, where 𝐿 is linear, while𝑁 is nonlinear. Therefore (14)
can be written as follows:

𝐿 (𝑦) + 𝑁 (𝑦) − 𝑓 (𝑟) = 0. (16)

We construct a homotopy of (14) 𝑦(𝑟, 𝑝) : Ω × [0, 1] → R
which satisfies

𝐻(𝑦, 𝑝) = (1 − 𝑝) [𝐿 (𝑦) − 𝐿 (𝑦
0

)] + 𝑝 [𝐴 (𝑦) − 𝑓 (𝑟)] = 0,

𝑝 ∈ [0, 1] , 𝑟 ∈ Ω,

(17)

which is equivalent to

𝐻(𝑦, 𝑝) = 𝐿 (𝑦) − 𝐿 (𝑦
0

) + 𝑝𝐿 (𝑦
0

) + 𝑝 [𝑁 (𝑦) − 𝑓 (𝑟)] = 0,

(18)

where 𝑝 ∈ [0, 1] is an embedding parameter, and 𝑦
0

is
an initial guess approximation of (14) which satisfies the
boundary conditions. It follows from (17) and (18) that

𝐻(𝑦, 0) = 𝐿 (𝑦) − 𝐿 (𝑦
0

) = 0,

𝐻 (𝑦, 1) = 𝐴 (𝑦) − 𝑓 (𝑟) = 0.

(19)

Thus, the changing process of 𝑝 from 0 to 1 is just that
of 𝑦(𝑟, 𝑝) from 𝑦

0

(𝑟) to 𝑦(𝑟). In topology this is called
deformation and 𝐿(𝑦) − 𝐿(𝑦

0

) and 𝐴(𝑦) − 𝑓(𝑟) are called
homotopic. Here the embedding parameter is introduced
much more naturally, unaffected by artificial factors; further
it can be considered as a small parameter for 0 ≤ 𝑝 ≤ 1. So
it is very natural to assume that the solution of (18) and (19)
can be expressed as

𝑦 (𝑡) = 𝑦
0

(𝑡) + 𝑝𝑦
1

(𝑡) + 𝑝
2

𝑦
2

(𝑡) + ⋅ ⋅ ⋅ . (20)

The approximate solutions of the original equations can be
obtained by setting 𝑝 = 1; that is,

𝑦 (𝑡) = lim
𝑝→1

∞

∑

𝑛=0

𝑝
𝑛

𝑦
𝑛

(𝑡) = 𝑦
0

(𝑡) + 𝑦
1

(𝑡) + 𝑦
2

(𝑡) + ⋅ ⋅ ⋅ . (21)

The convergence of series (21) has been proved by He in his
paper [15].
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Because of the knowledge of various perturbation meth-
ods that low-order approximate solution leads to high accu-
racy, there requires no infinite series. Then after a series of
recurrent calculation by using Mathematica software, we will
get approximate solutions of fractional model (5).

According toHPM,we construct the following homotopy
of (5)

𝐷
𝛼

𝑡

𝑢 = 𝑝[
𝜕
6

𝑢

𝜕𝑥6
+ 𝐴

𝜕
4

𝑢

𝜕𝑥4
+ 𝐵

𝜕
2

𝑢

𝜕𝑥2
+ 𝑢 − 𝑢

2

] , (22)

where the homotopy parameter 𝑝 is considered to be small,
0 ≤ 𝑝 ≤ 1.

Assuming the solution of (22) has the form

𝑢 (𝑥, 𝑡) = 𝑢
0

+ 𝑝𝑢
1

+ 𝑝
2

𝑢
2

+ 𝑝
3

𝑢
3

+ ⋅ ⋅ ⋅ , (23)

when 𝑝 → 1, (23) becomes the approximate solution of
(5). Substituting (23) into (22) and equating the terms with
identical powers of 𝑝, we obtain the following set of linear
differential equations:

𝑝
0

: 𝐷
𝛼

𝑡

𝑢
0

= 0,

𝑝
1

: 𝐷
𝛼

𝑡

𝑢
1

= 𝐷
𝑥𝑥𝑥𝑥𝑥𝑥

𝑢
0

+ 𝐴𝐷
𝑥𝑥𝑥𝑥

𝑢
0

+ 𝐵𝐷
𝑥𝑥

𝑢
0

+ 𝑢
0

− 𝑢
2

0

,

𝑝
2

: 𝐷
𝛼

𝑡

𝑢
2

= 𝐷
𝑥𝑥𝑥𝑥𝑥𝑥

𝑢
1

+ 𝐴𝐷
𝑥𝑥𝑥𝑥

𝑢
1

+ 𝐵𝐷
𝑥𝑥

𝑢
1

+ 𝑢
1

− 2𝑢
0

𝑢
1

,

(24)

and so on. The method is based on applying the operators
𝐼
𝛼

𝑡

(the inverse operators of the Caputo derivative 𝐷𝛼
𝑡

) on
both sides of the above linear differential equations. Using
this selection we obtain the successive approximations and
the solution may be obtained.

Finally, we approximate the analytical solutions of 𝑢(𝑥, 𝑡)
by the truncated series

𝑢 (𝑥, 𝑡) = lim
𝑁→∞

𝑁−1

∑

𝑛=0

𝑢
𝑛

(𝑥, 𝑡) . (25)

For the illustration of the methodology of the reduced
differential transform method, we write (5) in the standard
operator form

𝐿 (𝑢 (𝑥, 𝑡)) − 𝑅 (𝑢 (𝑥, 𝑡)) + 𝑁 (𝑢 (𝑥, 𝑡)) = 0, (26)

with initial condition

𝑢 (𝑥, 0) = 𝜑 (𝑥) , (27)

where 𝐿(𝑢(𝑥, 𝑡)) = (𝜕
𝛼

/𝜕𝑡
𝛼

)𝑢(𝑥, 𝑡) is the fractional time
derivative operator and 𝑅(𝑢(𝑥, 𝑡)) = 𝜕6𝑢/𝜕𝑥6 +𝐴(𝜕4𝑢/𝜕𝑥4) +
𝐵(𝜕
2

𝑢/𝜕𝑥
2

) + 𝑢 is linear operator and 𝑁(𝑢(𝑥, 𝑡)) = 𝑢
2 is

nonlinear operator.
According to the RDTM and Theorems 6 and 7, we can

construct the following iteration formula for (26):

Γ (𝛼 + 1 + 𝑘/𝑞)

Γ (1 + 𝑘/𝑞)
𝑈
𝑘+𝛼𝑞

(𝑥) = 𝑅 (𝑈
𝑘

(𝑥)) − 𝑁 (𝑈
𝑘

(𝑥)) . (28)

For the convenience of readers, we can give the first few
nonlinear term are

𝑁(𝑈
0

(𝑥)) = 𝑈
2

0

(𝑥) ,

𝑁 (𝑈
1

(𝑥)) = 2𝑈
0

(𝑥)𝑈
1

(𝑥) ,

𝑁 (𝑈
2

(𝑥)) = 2𝑈
0

(𝑥)𝑈
2

(𝑥) + 𝑈
2

1

(𝑥) .

(29)

From initial condition, we write

𝑈
0

(𝑥) = 𝜑 (𝑥) . (30)

Substituting (30) into (28) and by a straight forward iterative
calculations, we get the following 𝑈

𝑘

(𝑥) values:

𝑈
0

(𝑥, 𝑡) = 𝜑 (𝑥) ,

𝑈
1

(𝑥, 𝑡) = [𝜑
(6)

(𝑥) + 𝐴𝜑
(4)

(𝑥) + 𝐵𝜑
(2)

(𝑥)

+ 𝜑 (𝑥) − (𝜑 (𝑥))
2

] ×
𝑡
𝛼

Γ (𝛼 + 1)
,

(31)

and so on.Then the inverse transformation of the set of values
{𝑈
𝑘

(𝑥)}
𝑛

𝑘=0

gives approximation solution as

�̃�
𝑛

(𝑥, 𝑡) =

𝑛

∑

𝑘=0

𝑈
𝑘

(𝑥) 𝑡
𝑘

, (32)

where 𝑛 is order of approximation solution.
Therefore, the exact solution of problem is given by

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

�̃�
𝑛

(𝑥, 𝑡) . (33)

4. Numerical Results and Discussion

Here, we take three different values of 𝜑(𝑥) and comparing
the results of RDTM and HPM in the form of three- and two
dimensional figures for each case, we would see that RDTM
andHPM solutions are in excellent agreement. In this section
we assume that 𝐴 = 𝐵 = 1.

Case Study 1. 𝜑(𝑥) = 4 sech(𝜇𝑥). See Figures 1 and 2.

Case Study 2. 𝜑(𝑥) = 𝜋 + 𝜇 cos(𝛽𝑥). See Figures 3 and 4.

5. Conclusions

In this paper, RDTM and HPM are successfully applied
to find the solution of the fractional differential equation
and standard motion with different initial conditions. Unlike
the traditional methods, the solutions here are given in
series 9 form. The approximate solution to the equation
was computed without any need for special transformations,
linearization, or discretization. In addition, we compare
these two methods and show that the results of the RDTM
method are in excellent agreement with results of the HPM
method and the obtained numerical solutions are shown
graphically. We use the mathematical simulation to calculate
the functions obtained from the RDTM and HPM. It was
shown that RDTM and HPMmethods are powerful tools for
solving analytically of nonlinear equations.
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This paper investigates the synchronization phenomenon of an intermittently coupled dynamical network in which the coupling
among nodes can occur only at discrete instants and the coupling configuration of the network is time varying. A model of
intermittently coupled dynamical network consisting of identical nodes is introduced. Based on the stability theory for impulsive
differential equations, some synchronization criteria for intermittently coupled dynamical networks are derived. The network
synchronizability is shown to be related to the second largest and the smallest eigenvalues of the coupling matrix, the coupling
strength, and the impulsive intervals. Using the chaotic Chua system and Lorenz system as nodes of a dynamical network for
simulation, respectively, the theoretical results are verified and illustrated.

1. Introduction

A complex dynamical network is a large set of interconnected
nodes, in which each node is typically a nonlinear dynamical
system.Many real systems in nature and engineering, such as
physical, biological, technological, and social systems, can be
described by variousmodels of complex dynamical networks.
Complex dynamical networks, therefore, have become a
significant research topic for studying nonlinear dynamics in
various fields of sciences and humanities today [1–7].

One of the most remarkable phenomena in complex
dynamical networks is the synchronization of dynamical
nodes, which has been extensively investigated in recent years
[8–32]. Wang and Chen [8, 9] presented a unified dynamical
networkmodel and investigated its synchronization in small-
world and scale-free networks. Belykh et al. [11, 12] proposed
an effective method for determining the global stability
of synchronization in dynamical networks with different
topologies, which combines the Lyapunov function approach
with graph-theoretic reasoning. Restrepo et al. [19] studied
the emergence of coherence in large-scale complex networks
of interacting heterogeneous dynamical systems and showed
that the largest eigenvalue of the network adjacency matrix
plays a key role in determining the transition to coherence.

Zhou et al. [20–22] derived some synchronization criteria
for general complex delayed dynamical networks. Recently,
synchronization of complex dynamical networks with impul-
sive control has been extensively studied [23–32]. For exam-
ple, Guan et al. [23, 24] proposed a hybrid impulsive and
switching control strategy and investigated the stabilization
of complex networks. Liu et al. [25] proposed an impulsive
synchronization scheme for an uncertain dynamical network.
Zhang et al. [26] designed an effective impulsive controller to
achieve impulsive synchronization for a complex dynamical
network with unknown coupling. Lu et al. [27] investi-
gated the problem of globally exponential synchronization
of impulsive dynamical network, with a unified impulsive
synchronization criterion derived by proposing a concept
of average impulsive interval. Tang et al. [29] investigated
the pinning synchronization problem of stochastic impulsive
networks. Zhou et al. [30] proposed an impulsive control
approach for analyzing pinning stability in a complex delayed
dynamical network comprised of linearly coupled dynamical
systems with coupling delays. Han et al. [31] and Sun et al.
[32] derived some distributed impulsive control schemes for
various impulsively coupled complex dynamical systemswith
or without delays.
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However, the aforementioned work and most other
existing research focus on the networks whose couplings
are invariable or continuously varying in time. In the real
world, there aremany networks in which the coupling among
nodes is intermittent. For example, in neural networks,
the connections among neurons are usually cut-off type or
extremely faint. There are prominent impulsive interactions
among neurons when they are stimulated by certain signals,
and the interactions are not identical due to the differences
of stimulating signals. This type of networks is referred to
as intermittently coupled dynamical networks. Note that the
structure of such networks is time varying, and the interac-
tions among nodes can only take place when some conditions
are satisfiedwhich are usually described by a group of discrete
time sequences. To the best of our knowledge, there are few
theoretical results about intermittently coupled dynamical
networks in the current literature.

In this paper, an intermittently coupled dynamical net-
work consisting of identical nodes is investigated. In the
network, the coupling amongnodes can only occur at discrete
instants, and the coupling configuration of the network is
varying at different instants. Based on the stability theory
for impulsive differential equations, some synchronization
criteria are obtained, showing that the synchronizability
of the intermittently coupled dynamical network is related
to the second largest and the smallest eigenvalues of the
coupling matrix, the coupling strength, and the impulsive
intervals. It turns out that the analytical results about the
second largest and the smallest eigenvalues of the coupling
matrix are consistentwith other known results about complex
dynamical networks [8, 9, 19].

The rest of the paper is organized as follows. In Section 2,
an intermittently coupled dynamical network model is intro-
duced, and some necessary definitions and preliminary lem-
mas are presented. The main results of the paper are given
in Section 3, where some synchronization criteria for the
network model are derived. In Section 4, using the chaotic
Chua system and Lorenz system as nodes of a dynamical
network, respectively, numerical simulations are performed
to illustrate and verify the theoretical results. Finally, conclu-
sions are drawn in Section 5.

2. Model Description and Preliminaries

Consider an intermittently coupled dynamical network con-
sisting of 𝑁 identical nodes, with each node being an n-
dimension dynamical system, described by

̇𝑥
𝑖

(𝑡) = 𝑓 (𝑥
𝑖

(𝑡)) +

∞

∑

𝑘=1

𝑈
𝑖

(𝑡; 𝑥
1

, . . . , 𝑥
𝑁

) 𝛿 (𝑡 − 𝑡
𝑘

) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖

= (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑛

)
𝑇

∈ 𝑅
𝑛 is the state vector

of node 𝑖, 𝑓 : 𝑅
𝑛

→ 𝑅
𝑛 is continuously differentiable,

𝑈
𝑖

(𝑡; 𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑁

) : 𝑅 × 𝑅
𝑛𝑁

→ 𝑅
𝑛 are coupling functions,
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𝑘

}
∞

𝑘=1

satisfies 0 < 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< 𝑡
𝑘+1
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𝑘→∞

𝑡
𝑘

= ∞, and 𝛿(⋅) is a Dirac delta function
defined by

𝛿 (𝑡 − 𝑡
𝑘

) = {
∞, 𝑡 = 𝑡

𝑘

,

0, 𝑡 ̸= 𝑡
𝑘

,
(2)

satisfying the identities ∫+∞
−∞

𝛿(𝑡)𝑑𝑡 = 1 and ∫+∞
−∞

𝑔(𝑡)𝛿(𝑡 −

𝑡
0

)𝑑𝑡 = 𝑔(𝑡
0

) for any continuous function 𝑔(𝑡). Suppose that
the function 𝑓 satisfies the following condition.

(A1) There exists a positive scalar 𝐿 such that, for any
𝑥, 𝑦 ∈ 𝑅

𝑛,

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 . (3)

In this paper, we consider the dynamical network with time-
varying diffusive coupling at discrete instants. Let

𝑈
𝑖
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𝑘
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)] ,

(4)

where constant 𝑐 > 0 is the coupling strength, 𝐴(𝑡
𝑘

) =

(𝑎
𝑖𝑗

(𝑡
𝑘

)) ∈ 𝑅
𝑁×𝑁 is the outer-coupling matrix which rep-

resents the coupling configuration of network (1) at instant
𝑡
𝑘

, and 𝑎
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(𝑡
𝑘

) is defined as follows: if there is a connection
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) = 0 (𝑖 ̸= 𝑗); the diagonal elements
are defined by
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1

, 𝛾
2

, . . . , 𝛾
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} ∈ 𝑅
𝑛×𝑛 is the inner-linking

matrix. Let Γ = diag{1, 1, . . . , 1}. Thus, (4) becomes

𝑈
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Assume that network (1) is connected at instants 𝑡
1

, 𝑡
2

, . . ., in
the sense that there is no isolated cluster; that is, 𝐴(𝑡

𝑘

) is an
irreducible matrix.

Lemma 1 (see [14]). Suppose that the outer-coupling matrix
𝐴 = (𝑎

𝑖𝑗

) ∈ 𝑅
𝑁×𝑁 satisfies the above-mentioned conditions.

Then,

(i) 0 is an eigenvalue of matrix 𝐴 of multiplicity 1, associ-
ated with eigenvector (1/√𝑁, 1/√𝑁, . . . , 1/√𝑁)𝑇;

(ii) all the other eigenvalues of 𝐴 are real-valued and are
strictly negative.

Lemma 1 implies that the outer-coupling matrix 𝐴(𝑡
𝑘

) of
network (1) at instant 𝑡

𝑘

has a 0 eigenvalue of multiplicity 1,
with 𝜆

𝑁

(𝑡
𝑘

) ≤ ⋅ ⋅ ⋅ ≤ 𝜆
2

(𝑡
𝑘

) < 𝜆
1

(𝑡
𝑘

) = 0.
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Remark 2. According to matrix theory, there exists an
orthogonal matrix 𝐵(𝑡

𝑘

) such that 𝐴(𝑡
𝑘

) = 𝐵
𝑇

(𝑡
𝑘

)Λ(𝑡
𝑘
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) = diag{𝜆
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(𝑡
𝑘

), . . . , 𝜆
𝑁

(𝑡
𝑘

)}. It is easy to see that
the first column of 𝐵𝑇(𝑡

𝑘

) can be chosen as the eigenvector
(1/√𝑁, 1/√𝑁, . . . , 1/√𝑁)

𝑇 corresponding to the zero eigen-
value of 𝐴(𝑡

𝑘

).
Next, network (1) is rewritten as the following impulsive

differential equations:
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Definition 3. The synchronization manifold is presented as
S = {(𝑥𝑇
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Definition 4. The coupled system (6) is said to achieve
synchronization if, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑁, lim

𝑡→∞

||𝑥
𝑖

(𝑡) −

𝑥
𝑗

(𝑡)|| = 0.
From Definitions 3 and 4, it can be easily seen that the

intermittently coupled system (7) achieves synchronization if
and only if the synchronization manifold S for the coupled
system (7) is globally asymptotically stable.

3. Synchronization of the Intermittently
Coupled Network

Let 𝑥(𝑡) = (1/𝑁)∑𝑁
𝑗=1

𝑥
𝑗

(𝑡) and 𝑋(𝑡) = [𝑥𝑇(𝑡), . . . , 𝑥𝑇(𝑡)]𝑇 ∈
S, which can be regarded as a projection of 𝑋(𝑡) =

[𝑥
𝑇

1

(𝑡), . . . , 𝑥
𝑇

𝑁

(𝑡)]
𝑇 on the synchronization manifold. The

dynamical equation of 𝑥(𝑡) can be written as

̇𝑥 (𝑡) =
1

𝑁

𝑁

∑

𝑖=1

̇𝑥
𝑖

(𝑡) =
1

𝑁

𝑁

∑

𝑖=1

𝑓 (𝑥
𝑖

(𝑡)) , 𝑡 ̸= 𝑡
𝑘

. (8)

On the other hand,

𝑥 (𝑡
+

𝑘

) =
1

𝑁

𝑁

∑

𝑖=1

𝑥
𝑖

(𝑡
+

𝑘

)

=
1

𝑁

𝑁

∑

𝑖=1

[

[

𝑥
𝑖

(𝑡
𝑘

) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

(𝑡
𝑘

) 𝑥
𝑗

(𝑡
𝑘

)]

]

=
1

𝑁

𝑁

∑

𝑖=1

𝑥
𝑖

(𝑡
𝑘

) +
𝑐

𝑁

𝑁

∑

𝑗=1

[

𝑁

∑

𝑖=1

𝑎
𝑖𝑗

(𝑡
𝑘

)] 𝑥
𝑗

(𝑡
𝑘

)

= 𝑥 (𝑡
𝑘

) , 𝑘 = 1, 2, . . . .

(9)

Define the synchronization error of node 𝑖 as 𝑒
𝑖

(𝑡) = 𝑥
𝑖

(𝑡) −

𝑥(𝑡), 𝑖 = 1, 2, . . . , 𝑁. Obviously, ∑𝑁
𝑖=1

𝑒
𝑖

(𝑡) = 0.

For 𝑡 ̸= 𝑡
𝑘

, 𝑘 = 1, 2, . . ., one has

̇𝑒
𝑖

(𝑡) = 𝑓 (𝑥
𝑖

(𝑡)) −
1

𝑁

𝑁

∑

𝑗=1

𝑓 (𝑥
𝑖

(𝑡))

= 𝑓 (𝑥
𝑖

(𝑡)) − 𝑓 (𝑥 (𝑡)) +
1

𝑁

𝑁

∑

𝑗=1

[𝑓 (𝑥 (𝑡)) − 𝑓 (𝑥
𝑗

(𝑡))]

= 𝑓 (𝑒
𝑖

(𝑡)) −
1

𝑁

𝑁

∑

𝑗=1

𝑓 (𝑒
𝑗

(𝑡)) ,

(10)

where 𝑓(𝑒
𝑖

(𝑡)) = 𝑓(𝑥(𝑡) + 𝑒
𝑖

(𝑡)) − 𝑓(𝑥(𝑡)).
According to assumption (A1), it can be easily shown that


𝑓 (𝑒
𝑖

(𝑡))

≤ 𝐿

𝑒𝑖 (𝑡)
 , 𝑖 = 1, 2, . . . , 𝑁. (11)

For 𝑡 = 𝑡
𝑘

, 𝑘 = 1, 2, . . ., one has

𝑒
𝑖

(𝑡
+

𝑘

) = 𝑥
𝑖

(𝑡
+

𝑘

) − 𝑥 (𝑡
+

𝑘

)

= 𝑥
𝑖

(𝑡
𝑘

) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

(𝑡
𝑘

) 𝑥
𝑗

(𝑡
𝑘

) − 𝑥 (𝑡
𝑘

)

= 𝑒
𝑖

(𝑡
𝑘

) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

(𝑡
𝑘

) 𝑒
𝑗

(𝑡
𝑘

) .

(12)

Therefore, the error dynamical system can be described as

̇𝑒
𝑖

(𝑡) = 𝑓 (𝑒
𝑖

(𝑡)) −
1

𝑁

𝑁

∑

𝑗=1

𝑓 (𝑒
𝑗

(𝑡)) , 𝑡 ̸= 𝑡
𝑘

,

𝑒
𝑖

(𝑡
+

𝑘

) = 𝑒
𝑖

(𝑡
𝑘

) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

(𝑡
𝑘

) 𝑒
𝑗

(𝑡
𝑘

) , 𝑘 = 1, 2, . . . ,

(13)

where 𝑖 = 1, 2, . . . , 𝑁.
Let 𝑒(𝑡) = [𝑒𝑇

1

(𝑡), . . . , 𝑒
𝑇

𝑁

(𝑡)]
𝑇

∈ 𝑅
𝑛𝑁. It is easily seen that

the stability of the synchronization manifold is equivalent to
𝑒(𝑡) → 0 as 𝑡 → ∞. In the following, we directly investigate
the dynamical behaviors of the error dynamical system (13).

Theorem 5. Let 𝑃 ∈ 𝑅𝑛×𝑛 be a symmetric and positive definite
matrix, with 𝜆max(𝑃) and 𝜆min(𝑃) being the largest and the
smallest eigenvalues, respectively. Suppose that there exists a
constant 𝜉 > 1 and, for all 𝑘 = 1, 2, . . .,

𝜆min (𝑃) exp
−2𝐿
√
(𝜆max(𝑃)/𝜆min(𝑃))(𝑡𝑘+1−𝑡𝑘)

𝜆max (𝑃) 𝜆 (𝑡𝑘)
≥ 𝜉 > 1, (14)

where 𝜆(𝑡
𝑘

) = max{(1 + 𝑐𝜆
𝑖

(𝑡
𝑘

))
2

| 𝑖 = 2,𝑁}, 𝜆
2

(𝑡
𝑘

) and
𝜆
𝑁

(𝑡
𝑘

) are the second largest and the smallest eigenvalues of
matrix𝐴(𝑡

𝑘

), respectively, and the constant 𝑐 > 0 is the coupling
strength. Then, the trivial solution of the error dynamical
system (21) is asymptotically stable, implying that network (1)
achieves synchronization.
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Proof. Construct a Lyapunov function as

𝑉 (𝑡, 𝑒) = 𝑒
𝑇

(𝑡) (𝐼
𝑁

⊗ 𝑃) 𝑒 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖

(𝑡) 𝑃𝑒
𝑖

(𝑡) , (15)

where ⊗ denotes the Kronecker product operator.
For 𝑡 ̸= 𝑡

𝑘

, taking Dini’s derivative along the trajectories of
(13) gives

𝐷
+

𝑉 (𝑡, 𝑒) =

𝑁

∑

𝑖=1

2𝑒
𝑇

𝑖

(𝑡) 𝑃 ̇𝑒
𝑖

(𝑡)

=

𝑁

∑

𝑖=1

2𝑒
𝑇

𝑖

(𝑡) 𝑃[

[

𝑓 (𝑒
𝑖

(𝑡)) −
1

𝑁

𝑁

∑

𝑗=1

𝑓 (𝑒
𝑗

(𝑡))]

]

=

𝑁

∑

𝑖=1

2𝑒
𝑇

𝑖

(𝑡) 𝑃𝑓 (𝑒
𝑖

(𝑡))

≤

𝑁

∑

𝑖=1

1

𝐿
√𝜆min (𝑃) 𝜆max (𝑃)𝑓

𝑇

(𝑒
𝑖

(𝑡)) 𝑓 (𝑒
𝑖

(𝑡))

+
𝐿

√𝜆min (𝑃) 𝜆max (𝑃)
𝑒
𝑇

𝑖

(𝑡) 𝑃
𝑇

𝑃𝑒
𝑖

(𝑡)

≤

𝑁

∑

𝑖=1

𝐿√𝜆min (𝑃) 𝜆max (𝑃)
𝑒
𝑇

𝑖

(𝑡) 𝑃𝑒
𝑖

(𝑡)

𝜆min (𝑃)

+ 𝐿√
𝜆max (𝑃)

𝜆min (𝑃)
𝑒
𝑇

𝑖

(𝑡) 𝑃𝑒
𝑖

(𝑡)

= 2𝐿√
𝜆max (𝑃)

𝜆min (𝑃)
𝑉 (𝑡, 𝑒) .

(16)

For 𝑡 = 𝑡
𝑘

, one has

𝑒 (𝑡
+

𝑘

) = (𝑒
𝑇

1

(𝑡
+

𝑘

) , 𝑒
𝑇

2

(𝑡
+

𝑘

) , . . . , 𝑒
𝑇

𝑁

(𝑡
+

𝑘

))
𝑇

= 𝑒 (𝑡
𝑘

) + 𝑐𝐴
𝑇

(𝑡
𝑘

) ⊗ 𝐼
𝑛

𝑒 (𝑡
𝑘

)

= [𝐼
𝑁

⊗ 𝐼
𝑛

+ 𝑐𝐴
𝑇

(𝑡
𝑘

) ⊗ 𝐼
𝑛

] 𝑒 (𝑡
𝑘

) .

(17)

Therefore,

𝑉 (𝑡
+

𝑘

, 𝑒) = 𝑒
𝑇

(𝑡
+

𝑘

) (𝐼
𝑁

⊗ 𝑃) 𝑒 (𝑡
+

𝑘

)

= 𝑒
𝑇

(𝑡
𝑘

) [(𝐼
𝑁

+ 𝑐𝐴 (𝑡
𝑘

)) ⊗ 𝐼
𝑛

]
𝑇

(𝐼
𝑁

⊗ 𝑃)

× [(𝐼
𝑁

+ 𝑐𝐴 (𝑡
𝑘

)) ⊗ 𝐼
𝑛

] 𝑒 (𝑡
𝑘

)

≤ 𝜆max (𝑃) 𝑒
𝑇

(𝑡
𝑘

) [(𝐼
𝑁

+ 𝑐𝐴 (𝑡
𝑘

)) ⊗ 𝐼
𝑛

]
𝑇

× [(𝐼
𝑁

+ 𝑐𝐴 (𝑡
𝑘

)) ⊗ 𝐼
𝑛

] 𝑒 (𝑡
𝑘

)

= 𝜆max (𝑃) 𝑒
𝑇

(𝑡
𝑘

) [(𝐼
𝑁

+ 𝑐𝐴 (𝑡
𝑘

))
2

⊗ 𝐼
𝑛

] 𝑒 (𝑡
𝑘

) .

(18)

Based on the property of the matrix 𝐴(𝑡
𝑘

) mentioned in
Remark 2, there exits an orthogonal matrix 𝐵(𝑡

𝑘

) such that
𝐴(𝑡
𝑘

) = 𝐵
𝑇

(𝑡
𝑘

)Λ(𝑡
𝑘

)𝐵(𝑡
𝑘

), where

Λ (𝑡
𝑘

) = diag {𝜆
1

(𝑡
𝑘

) , . . . , 𝜆
𝑁

(𝑡
𝑘

)} (19)

and the first column of 𝐵𝑇(𝑡
𝑘

) is the eigenvector (1/√𝑁,
. . . , 1/√𝑁)

𝑇 corresponding to the zero eigenvalue of 𝐴(𝑡
𝑘

).
Let 𝜂(𝑡

𝑘

) = (𝜂
𝑇

1

(𝑡
𝑘

), . . . , 𝜂
𝑇

𝑁

(𝑡
𝑘

))
𝑇

= (𝐵(𝑡
𝑘

) ⊗ 𝐼
𝑛

)𝑒(𝑡
𝑘

). Then,

𝜂
1

(𝑡
𝑘

) =
1

√𝑁

𝑁

∑

𝑗=1

𝑒
𝑗

(𝑡
𝑘

) = 0. (20)

Therefore,

𝜂 (𝑡
𝑘

) = (0, 𝜂𝑇
2

(𝑡
𝑘

) , . . . , 𝜂
𝑇

𝑁

(𝑡
𝑘

))
𝑇

. (21)

Let 𝜆(𝑡
𝑘

) = max{(1 + 𝑐𝜆
𝑖

(𝑡
𝑘

))
2

| 𝑖 = 2,𝑁}, where 𝜆
2

(𝑡
𝑘

) and
𝜆
𝑁

(𝑡
𝑘

) are the second largest and the smallest eigenvalues of
matrix 𝐴(𝑡

𝑘

), respectively. It follows from (18) and (21) that

𝑉 (𝑡
+

𝑘

, 𝑒) ≤ 𝜆max (𝑃) 𝑒
𝑇

(𝑡
𝑘

)

× [(𝐵
𝑇

(𝑡
𝑘

) (𝐼
𝑁

+ 𝑐Λ (𝑡
𝑘

))
2

𝐵 (𝑡
𝑘

)) ⊗ 𝐼
𝑛

] 𝑒 (𝑡
𝑘

)

= 𝜆max (𝑃) 𝜂
𝑇

(𝑡
𝑘

) ((𝐼
𝑁

+ 𝑐Λ (𝑡
𝑘

))
2

⊗ 𝐼
𝑛

) 𝜂 (𝑡
𝑘

)

= 𝜆max (𝑃)
𝑁

∑

𝑖=1

𝜂
𝑇

𝑖

(𝑡
𝑘

) (1 + 𝑐𝜆
𝑖

(𝑡
𝑘

))
2

𝜂
𝑖

(𝑡
𝑘

)

≤ 𝜆max (𝑃) 𝜆 (𝑡𝑘)
𝑁

∑

𝑖=1

𝜂
𝑇

𝑖

(𝑡
𝑘

) 𝜂
𝑖

(𝑡
𝑘

)

= 𝜆max (𝑃) 𝜆 (𝑡𝑘) 𝑒
𝑇

(𝑡
𝑘

) (𝐵
𝑇

(𝑡
𝑘

) ⊗ 𝐼
𝑛

)

× (𝐵 (𝑡
𝑘

) ⊗ 𝐼
𝑛

) 𝑒 (𝑡
𝑘

)

≤
𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘

) 𝑒
𝑇

(𝑡
𝑘

) (𝐼
𝑁

⊗ 𝑃) 𝑒 (𝑡
𝑘

)

=
𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘

) 𝑉 (𝑡
𝑘

, 𝑒) .

(22)

Let 𝑆
𝜌

= {𝑥 ∈ 𝑅
𝑛

: ||𝑥|| < 𝜌}. Since ||𝑒(𝑡+
𝑘

)|| = ||[(𝐼
𝑁

+𝑐𝐴(𝑡
𝑘

))⊗

𝐼
𝑛

]𝑒(𝑡
𝑘

)|| ≤ ||(𝐼
𝑁

+ 𝑐𝐴(𝑡
𝑘

)) ⊗ 𝐼
𝑛

||||𝑒(𝑡
𝑘

)|| and ||(𝐼
𝑁

+ 𝑐𝐴(𝑡
𝑘

)) ⊗

𝐼
𝑛

|| < ∞, there exists a 𝜌
0

> 0 such that 𝑒(𝑡
𝑘

) ∈ 𝑆
𝜌

0

implies
𝑒(𝑡
+

𝑘

) ∈ 𝑆
𝜌

for all 𝑘.
Since 𝑃 is a symmetric and positive definite matrix, one

has

𝜆min (𝑃)
𝑛

∑

𝑖=1

𝑒
𝑇

𝑖

(𝑡) 𝑒
𝑖

(𝑡) ≤ 𝑉 (𝑡, 𝑒) ≤ 𝜆max (𝑃)
𝑛

∑

𝑖=1

𝑒
𝑇

𝑖

(𝑡) 𝑒
𝑖

(𝑡) .

(23)

Thus, by the well-known comparison Theorem [33], the
asymptotic stability of the trivial solution of the impulsive
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dynamical system (13) follows from the comparison system
below:

̇𝜔 (𝑡) = 2𝐿√
𝜆max (𝑃)

𝜆min (𝑃)
𝜔 (𝑡) , 𝑡 ̸= 𝑡

𝑘

,

𝜔 (𝑡
+

𝑘

) =
𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘

) 𝜔 (𝑡
𝑘

) , 𝑡 = 𝑡
𝑘

, 𝑘 = 1, 2, . . . ,

𝜔 (𝑡
+

0

) = 𝜔
0

.

(24)

Therefore, by the stability criterion for impulsive differential
equations [34], there exists a constant 𝜉 > 1 such that

ln
𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘

) 𝜉 + 2𝐿√
𝜆max (𝑃)

𝜆min (𝑃)
(𝑡
𝑘+1

− 𝑡
𝑘

) ≤ 0, (25)

namely,

𝜆min (𝑃) exp
−2𝐿
√
(𝜆max(𝑃)/𝜆min(𝑃))(𝑡𝑘+1−𝑡𝑘)

𝜆max (𝑃) 𝜆 (𝑡𝑘)
≥ 𝜉 > 1. (26)

Hence, the trivial solution of error dynamical system (13)
is asymptotically stable, implying that network (1) achieves
synchronization.

Remark 6. For a dynamical network consisting of 𝑁 nodes,
the number of possible couplingmatrices which represent the
coupling configurations of the network is finite. Therefore,
one may define

𝜆
max

= max
𝑘=1,2,...

𝜆
2

(𝑡
𝑘

) , 𝜆
min

= min
𝑘=1,2,...

𝜆
𝑁

(𝑡
𝑘

) , (27)

and 𝜆 = max{(1 + 𝑐𝜆max
)
2

, (1 + 𝑐𝜆
min
)
2

}. It is obvious that
𝜆(𝑡
𝑘

) ≤ 𝜆 for all 𝑘 = 1, 2, . . ..

Remark 7. The synchronizability of network (1) is determined
by the second largest eigenvalue𝜆

2

(𝑡
𝑘

) and the smallest eigen-
value 𝜆

𝑁

(𝑡
𝑘

) of the coupling matrix, the coupling strength 𝑐,
and impulsive intervals 𝜎

𝑘

= 𝑡
𝑘+1

− 𝑡
𝑘

, 𝑘 = 1, 2, . . ..

4. Numerical Simulations

In this section, two illustrative examples about the chaotic
Chua system and Lorenz system, respectively, are given to
demonstrate the theoretical results obtained above. Without
loss of generality, let the impulses be equidistant and sepa-
rated by a constant interval 𝜎 > 0.

Example 1. The chaotic Chua system is used as nodes of a
dynamical network, which is described by

(

̇𝑥

̇𝑦

̇𝑧

) = (

𝛼 [𝑦 − 𝑥 − 𝜑 (𝑥)]

𝑥 − 𝑦 + 𝑧

−𝛽𝑦

) , (28)

where 𝛼, 𝛽 are two parameters and 𝜑(𝑥) = 𝑏𝑥 + 0.5(𝑎 −

𝑏)(|𝑥+1|− |𝑥−1|) represents a piecewise-linear diode, where
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Figure 1:𝑁 = 100, 𝜎 = 0.01, and 𝑐 = 0.01.

𝑎 < 𝑏 < 0 are two constants. It is well known that Chua
system is chaotic when 𝛼 = 9.22, 𝛽 = 15.99, 𝑎 = −1.25, and
𝑏 = −0.76.

The intermittently coupled dynamical network is
described by

̇𝑥
𝑖

(𝑡) = 𝑓 (𝑥
𝑖

(𝑡)) , 𝑡 ̸= 𝑡
𝑘

,

Δ𝑥
𝑖

(𝑡
𝑘

) = 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

(𝑡
𝑘

) 𝑥
𝑗

(𝑡
𝑘

) , 𝑡 = 𝑡
𝑘

, 𝑘 = 1, 2, . . . ,
(29)

where

𝑓 (𝑥
𝑖

(𝑡)) = (

𝛼 [𝑥
𝑖2

− 𝑥
𝑖1

− 𝜑 (𝑥
𝑖1

)]

𝑥
𝑖1

− 𝑥
𝑖2

+ 𝑥
𝑖3

−𝛽𝑥
𝑖2

) . (30)

The outer-coupling matrix 𝐴(𝑡
𝑘

) = (𝑎
𝑖𝑗

(𝑡
𝑘

)) ∈ 𝑅
𝑁×𝑁 repre-

sents the coupling configuration of the dynamical network at
instant 𝑡

𝑘

and is defined as follows.
When 𝑘 is odd, the dynamical network has nearest-

neighbor coupling, so

𝐴 (𝑡
𝑘

) = 𝐴
1

= (

−2 1 0 ⋅ ⋅ ⋅ 0 1

1 −2 1 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 1 −2

) . (31)

When 𝑘 is even, the dynamical network has star coupling,
so

𝐴 (𝑡
𝑘

) = 𝐴
2

= (

−𝑁 + 1 1 1 ⋅ ⋅ ⋅ 1 1

1 −1 0 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 0 −1

) . (32)
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Figure 2:𝑁 = 100, 𝜎 = 0.05, and 𝑐 = 0.01.
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Figure 3:𝑁 = 100, 𝜎 = 0.05, and 𝑐 = 0.05.

In the simulation, we choose 𝑁 = 100. The initial values of
these systems are chosen randomly from interval [−20, 20].
For a small impulsive interval 𝜎 > 0, the synchronization
of network (29) can be achieved by choosing an appropriate
coupling strength 𝑐. The numerical simulation results are
shown in Figures 1–5, where 𝑒

𝑖𝑗

= ∑
𝑁

𝑖=2

|𝑥
𝑖𝑗

−𝑥
1𝑗

|/(𝑁−1), 𝑗 =

1, 2, 3.
In Figure 1, 𝜎 = 0.01 and 𝑐 = 0.01. One can see that

the state errors between node 1 and node 𝑖, 𝑖 = 2, 3, . . . , 100,
tend to zero asymptotically as time evolves, implying that
network (29) achieves synchronization. When 𝜎 = 0.05 and
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Figure 4:𝑁 = 100, 𝜎 = 0.05, and 𝑐 = 0.06.
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Figure 5:𝑁 = 100, 𝜎 = 0.01, and 𝑐 = 0.06.

𝑐 = 0.01, network (29) cannot achieve synchronization, as
shown in Figure 2. Figure 3 shows that network (29) achieves
synchronization with 𝜎 = 0.05 and 𝑐 = 0.05. Figure 4 shows
that network (29) cannot achieve synchronization where 𝜎 =
0.05 and 𝑐 = 0.06. Figure 5 shows that network (29) achieves
synchronization with 𝜎 = 0.01 and 𝑐 = 0.06.
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Figure 6:𝑁 = 200, 𝜎 = 0.1, and 𝑐 = 0.01.
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Figure 7:𝑁 = 200, 𝜎 = 0.1, and 𝑐 = 0.015.

Example 2. The chaotic Lorenz system is used as nodes of a
dynamical network, which is described by

(

̇𝑥

̇𝑦

̇𝑧

) = (

𝑎 (𝑦 − 𝑥)

𝑐𝑥 − 𝑥𝑧 − 𝑦

𝑥𝑦 − 𝑏𝑧

) , (33)

with a chaotic attractor when 𝑎 = 10, 𝑏 = 8/3, and 𝑐 = 28.

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×103

×103

×103

e i
2

e i
3

e i
1

0

5

10

0

5

10

t (10−3)

t (10−3)

t (10−3)

Figure 8:𝑁 = 50, 𝜎 = 0.1, and 𝑐 = 0.015.
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Figure 9:𝑁 = 50, 𝜎 = 0.1, and 𝑐 = 0.055.

The intermittently coupled dynamical network is de-
scribed by

̇𝑥
𝑖

(𝑡) = 𝑓 (𝑥
𝑖

(𝑡)) , 𝑡 ̸= 𝑡
𝑘

, 𝑘 = 1, 2, . . . ,

Δ𝑥
𝑖

(𝑡
𝑘

) = 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

(𝑡
𝑘

) 𝑥
𝑗

(𝑡
𝑘

) , 𝑡 = 𝑡
𝑘

,
(34)
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Figure 10:𝑁 = 50, 𝜎 = 0.1, and 𝑐 = 0.048.

where

𝑓 (𝑥
𝑖

(𝑡)) = (

𝑎 (𝑥
𝑖2

− 𝑥
𝑖1

)

𝑐𝑥
𝑖1

− 𝑥
𝑖1

𝑥
𝑖3

− 𝑥
𝑖2

𝑥
𝑖1

𝑥
𝑖2

− 𝑏𝑥
𝑖3

) . (35)

Let 𝑙 ≡ 𝑘 mod 3. The outer-coupling matrix 𝐴(𝑡
𝑘

) =

(𝑎
𝑖𝑗

(𝑡
𝑘

)) ∈ 𝑅
𝑁×𝑁 is defined as follows.

When 𝑙 = 1, the dynamical network has global coupling,
and its outer-coupling matrix is

𝐴 (𝑡
𝑘

) = 𝐴
𝑔𝑐

= (

−𝑁 + 1 1 1 ⋅ ⋅ ⋅ 1

1 −𝑁 + 1 1 ⋅ ⋅ ⋅ 1...
...

...
...

...
1 1 1 ⋅ ⋅ ⋅ −𝑁 + 1

) .

(36)

When 𝑙 = 2, the dynamical network has nearest-neighbor
coupling, with

𝐴 (𝑡
𝑘

) = 𝐴
1

= (

−2 1 0 ⋅ ⋅ ⋅ 0 1

1 −2 1 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 1 −2

) . (37)

When 𝑙 = 0, the dynamical network has star coupling,
with

𝐴 (𝑡
𝑘

) = 𝐴
2

= (

−𝑁 + 1 1 1 ⋅ ⋅ ⋅ 1 1

1 −1 0 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 0 −1

) . (38)

In the simulation, we choose 𝜎 = 0.1. The initial
values of these systems are chosen randomly from interval
[−20, 20]. The numerical simulation results indicate that the

synchronizability of network (34) is related to the coupling
strength 𝑐 and the number of nodes 𝑁, as shown in Figures
6–10, where 𝑒

𝑖𝑗

= ∑
𝑁

𝑖=2

|𝑥
𝑖𝑗

− 𝑥
1𝑗

|/(𝑁 − 1), 𝑗 = 1, 2, 3. For the
coupling matrices of this network (34), the spectral width of
eigenvalues will be broadened with increasing 𝑁. Therefore,
the synchronizability of the network will be weakened if the
node number increases sharply.

In Figure 6, 𝑁 = 200 and 𝑐 = 0.01. One can see that
the state errors tend to zero asymptotically as time evolves,
implying that network (34) achieves synchronization. When
𝑁 = 200 and 𝑐 = 0.015, network (34) cannot achieve
synchronization, as illustrated in Figure 7. When 𝑁 = 50

and 𝑐 = 0.015, network (34) achieves synchronization,
as shown in Figure 8. When 𝑁 = 50 and 𝑐 = 0.055,
network (34) cannot achieve synchronization, as shown in
Figure 9. Figure 10 demonstrates that network (34) achieves
synchronization when𝑁 = 50 and 𝑐 = 0.048.

5. Conclusions

This paper investigates the synchronization phenomenon of
an intermittently coupled dynamical network, in which the
coupling among nodes can occur only at discrete instants
and the coupling configuration of the network is varying
at different instants. For such an intermittently coupled
dynamical network consisting of identical nodes, based on
the stability theory for impulsive differential equations, some
synchronization conditions are derived. It is shown that the
synchronizability of the network is related to the second
largest eigenvalue and the smallest eigenvalue of the coupling
matrix, the coupling strength, and the impulsive intervals. It
is worth noting that the analytical results about the second
largest and the smallest eigenvalues of the couplingmatrix are
consistent with most existing criteria for complex dynamical
networks. Finally, by employing the chaotic Chua system and
Lorenz system as nodes of a dynamical network, respectively,
numerical simulations are carried out to illustrate and verify
the theoretical results.
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This paper proposes a new second-order discrete-time multiagent model and addresses the controllability of second-order
multiagent system with multiple leaders and general dynamics. The leaders play an important role in governing the other member
agents to achieve any desired configuration. Some sufficient and necessary conditions are given for the controllability of the second-
order multiagent system. Moreover, the speed controllability of the second-order multiagent system with general dynamics is
discussed. Particularly, it is shown that the controllability of the whole system relies on the number of leaders and the connectivity
between the leaders and the members. Numerical examples illustrate the theoretical results.

1. Introduction

Controllability is one of the fundamental issues for coordi-
nated control of multiagent systems which is partly due to
the wide applications in communication and computation, as
well as cooperative control [1–19].

So far, the issue of controllability shows new features
and difficulties, and is still lacking in studies. In [4], the
issue of controllability was firstly investigated by the nearest
neighbor rules. Tanner had obtained necessary and sufficient
conditions of the controllability for first-order multiagent
dynamic systems regarding an agent as a leader or the
external input. In [5, 7], the controllability for multiagent
systems was investigated by the graph theoretic charac-
terization. Moreover, Ji et al. [17] analyzed the multiagent
controllability using tree topology. Jafari et al. [18] studied
the structural controllability of multiagent systems. In [9, 15,

16], the authors discussed the controllability of discrete-time
multiagent systems with a single leader or multiple leaders
on fixed networks and switching networks, respectively, and
obtained the necessary or sufficient controllable conditions
for multiagent systems. References [10, 14] studied the con-
trollability of continuous-timemultiagent systems with time-
delay and switching topology, respectively.

However, most of the recent research work focuses on the
controllability of single integrator or first-order multiagent
dynamic systems, such as [4–19]. But the controllability
of double integrator or second-order multiagent dynamic
systems was seldom studied. Motivated by the works above,
in this paper, we focus on discussing the controllability of
second-order discrete-time multiagent systems with general
dynamic topology. Some sufficient and necessary conditions
for controllability are presented. The main contributions
of our paper lie in the following. (1) A novel model of
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discrete-time multiagent system is a second-order. (2) The
influence of leaders on the followers is investigated. (3) The
controllability of such second-order discrete-time system
with multiple leaders and general dynamics is considered,
which cannot be found in the recent literatures. (4) The
controllability and the speed controllability of the second-
order multiagent system are discussed, respectively. (5) A
sufficient and necessary condition for controllability of the
second-order system is presented.

This paper is organized as follows. In Section 2,we present
some concepts in graph theory. Section 3 gives the model
to be studied. In Section 4, main results are presented. In
Section 5, numerical examples and simulations are provided
to illustrate the theoretical results. A conclusion is made in
Section 6.

2. Preliminaries

In this section, some basic definitions and concepts in graph
theory [20] are first introduced.

Let G = (V,E, 𝐴) be an undirected graph of order 𝑛
with the set of nodesV = {1, 2, 3, . . . , 𝑛} and the set of edges
E ⊆ V × V. An edge of G is denoted by (𝑖, 𝑗), which is
an unordered pair of distinct nodes of V. If 𝑖, 𝑗 ∈ V, and
(𝑖, 𝑗) ∈ E, then we say that 𝑗 is a neighbor of 𝑖 or 𝑖 and 𝑗

are adjacent. The neighborhood set of node 𝑖 is denoted by
N
𝑖

= {𝑗 ∈ V : (𝑖, 𝑗) ∈ E}. 𝐴 = [𝑎
𝑖𝑗

] ∈ R𝑛×𝑛, where
𝑎
𝑖𝑗

> 0 ⇔ (𝑗, 𝑖) ∈ E, and 𝑎
𝑖𝑗

is called the coupling weight
of edge (𝑖, 𝑗).

Any undirected graph can be represented by its adjacency
matrix 𝐴, which is a symmetric matrix. A diagonal matrix
𝐷 = diag{𝑑

1

, 𝑑
2

, . . . , 𝑑
𝑛

} ∈ 𝑅
𝑛×𝑛 is a degree matrix of G with

its diagonal elements 𝑑
𝑖

= ∑
𝑗∈N
𝑖

𝑎
𝑖𝑗

, 𝑖 = 1, 2, . . . , 𝑛.
Then, the Laplacian of the graph G (or matrix 𝐴) is de-

fined as

𝐿 = 𝐷 − 𝐴 ∈ 𝑅
𝑛×𝑛

. (1)

3. Model

Consider a second-order multiagent system with 𝑁 + 𝑛
𝑙

agents, labeled the first𝑁 agents from 1 to𝑁 as followers and
the remainder 𝑛

𝑙

agents from𝑁 + 1 to𝑁 + 𝑛
𝑙

as leaders, and
each agent moves according to the following dynamics:

𝑥
𝑖

(𝑘 + 1) = 𝑥
𝑖

(𝑘) + V
𝑖

(𝑘) ,

V
𝑖

(𝑘 + 1) = V
𝑖

(𝑘) + 𝑢
𝑖

(𝑘) ,
(2)

with

𝑢
𝑖

(𝑘) = − ∑

𝑖∈N
𝑖𝑗

𝑎
𝑖𝑗

(V
𝑖

(𝑘) − V
𝑗

(𝑘))

− ∑

𝑝∈N
𝑖𝑝

𝛾
𝑖𝑝

𝑏
𝑖𝑝

(V
𝑖

(𝑘) − V
𝑝

(𝑘)) , 𝑘 ∈ 𝐽
𝑘

,
(3)

where 𝑥
𝑖

∈ R𝑚 is the state of agent 𝑖 (𝑖 ∈ 𝑁 ≜ {𝑁+ 1, . . . , 𝑁+

𝑛
𝑙

}) and 𝑥
𝑝

∈ R𝑚 is the state of agent 𝑝 (𝑝 ∈ 𝑁 + 𝑛
𝑙

−

𝑁, 𝑁 + 𝑛
𝑙

≜ {1, 2, . . . , 𝑁}). N
𝑖

presents the neighbor set of

agent 𝑖.N
𝑖

𝑗

⋃N
𝑖

𝑝

= N
𝑖

, andN
𝑖

𝑗

⋂N
𝑖

𝑝

= 0. 𝐽
𝑘

is a discrete-
time index set. The coupling matrix 𝐴 = [𝑎

𝑖𝑗

] ∈ R𝑁×𝑁 with
𝑎
𝑖𝑗

≥ 0 and 𝑎
𝑖𝑖

= 0 represents the coupling strength among the
followers, and 𝐵 = [𝑏

𝑖𝑝

] ∈ R𝑁×𝑛𝑙 with 𝑏
𝑖𝑝

> 0 represents the
coupling strength from the leaders to the followers. 𝛾

𝑖𝑝

= 1

if there is information from leader 𝑝 to follower 𝑖; otherwise
𝛾
𝑖𝑝

= 0.
Throughout this paper, it is assumed that the leader can

influence the member followers but cannot be influenced by
its neighbors.

Suppose 𝑧 = (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑁

, V
1

, V
2

, . . . , 𝑥
𝑁

)
𝑇 and 𝑦 =

(𝑥
𝑁+1

, 𝑥
𝑁+2

, . . . , 𝑥
𝑁+𝑛

𝑙

, V
𝑁+1

, V
𝑁+2

, . . . , V
𝑁+𝑛

𝑙

)
𝑇 be the state

vector of all the followers and all the leaders, respectively.
Then, (2) can be rewritten as

𝑧 (𝑘 + 1) = 𝐺𝑧 (𝑘) + 𝐻𝑦 (𝑘) , 𝑘 ∈ 𝐽
𝑘

, (4)

where

𝐺 = (
𝐼 𝐼

0 𝐹
) , 𝐻 = (

0 0

0 𝑃
) , (5)

𝐹 = 𝐼 − 𝐿 − 𝑅, 𝐼 is the𝑁 ×𝑁 identity matrix,

𝑅 = diag{∑
𝑝

𝛾
1𝑝

𝑏
1𝑝

,∑
𝑝

𝛾
2𝑝

𝑏
2𝑝

, . . . ,∑
𝑝

𝛾
𝑁𝑝

𝑏
𝑁𝑝

} ∈ R
𝑁×𝑁

,

𝑃=

[
[
[
[
[
[
[

[

𝛾
1(𝑁+1)

𝑏
1(𝑁+1)

𝛾
1(𝑁+2)

𝑏
1(𝑁+2)

. . . 𝛾
1(𝑁+𝑛

𝑙
)

𝑏
1(𝑁+𝑛

𝑙
)

𝛾
2(𝑁+1)

𝑏
2(𝑁+1)

𝛾
2(𝑁+2)

𝑏
2(𝑁+2)

. . . 𝛾
2(𝑁+𝑛

𝑙
)

𝑏
2(𝑁+𝑛

𝑙
)

...
... d

...
𝛾
𝑁(𝑁+1)

𝑏
𝑁(𝑁+1)

𝛾
𝑁(𝑁+2)

𝑏
𝑁(𝑁+2)

. . . 𝛾
𝑁(𝑁+𝑛

𝑙
)

𝑏
𝑁(𝑁+𝑛

𝑙
)

]
]
]
]
]
]
]

]

.

(6)

For simplicity, we denote (6) as

𝑃 = [𝑝
𝑁+1

, 𝑝
𝑁+2

, . . . , 𝑝
𝑁+𝑛

𝑙

] ∈ R
𝑁×𝑛

𝑙 , (7)

where

𝑝
𝑝

= (𝛾
1𝑝

𝑏
1𝑝

, 𝛾
2𝑝

𝑏
2𝑝

, . . . , 𝛾
𝑁𝑝

𝑏
𝑁𝑝

)
𝑇

∈ R
𝑁×1

,

𝑞 ∈ 𝑁 + 𝑛
𝑙

− 𝑁,

(8)

and the matrix 𝐿 = [𝑙
𝑖𝑗

] with

𝑙
𝑖𝑗

=

{{{{

{{{{

{

−𝑎
𝑖𝑗

, 𝑖 ̸= 𝑗 and 𝑗 ∈ N
𝑖

𝑗

∑

𝑗∈N
𝑖𝑗

𝑎
𝑖𝑗

, 𝑖 = 𝑗

0, otherwise.

(9)

It can be easily seen that the matrix 𝐿 satisfies the
following:

(i) the off-diagonal elements are all negative or zero;
(ii) the row sums are equal to the column sums with the

value of zero.
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4. Main Results

In the following, we first give the definition of controllability
in second-order discrete-time system and the classical crite-
rion of controllability.

Definition 1. A nonzero state 𝑧
0

of system (4) is controllable
at the initial time ℎ ∈ 𝐽

𝑘

if there exists a finite time 𝑙 ∈ 𝐽
𝑘

, 𝑙 > ℎ

and a control input 𝑦(𝑘), such that 𝑧(ℎ) = 𝑧
0

and 𝑧(𝑙) = 0. If
any nonzero state 𝑧

0

of system (4) is controllable, then system
(4) is said to be controllable. If 𝑥(ℎ) = 𝑥

0

and 𝑥(𝑙) = 0, then
system (4) is position controllable, and if V(ℎ) = V

0

and V(𝑙) =
0, then system (4) is speed controllable.

Definition 2 (controllability matrix). The controllability ma-
trix of system (4) is given by

𝑄 = [𝐻 𝐺𝐻 𝐺
2

𝐻 ⋅ ⋅ ⋅ 𝐺
2𝑁−1

𝐻] , (10)

where matrix 𝑄 ∈ R2𝑁×𝑁𝑛𝑙 .

Lemma3 (Rank test for controllability). System (4) is control-
lable if Rank (𝑄) = 2𝑁.

Lemma 4 (PBH rank test for discrete-time systems). System
(4) is controllable if (4) satisfies one of the following conditions:

(i) rank(𝑠𝐼 − 𝐺,𝐻) = 2𝑁, for all 𝑠 ∈ C;
(ii) rank(𝜆

𝑖

𝐼 − 𝐺,𝐻) = 2𝑁, where 𝜆
𝑖

, for all 𝑖 = 1, 2, . . . ,

2𝑁, is the eigenvalue of matrix 𝐺.

In general, for second-order multiagent systems, the con-
trollable matrix is too hard to calculate.Therefore, we can use
the PBH rank rest to justify the controllability of such system.
In the following, we will give a more simple and convenient
theorem using the PBH rank rest.

Theorem 5. System (4) is controllable if Rank (𝑃) = 𝑚.

Proof. By Lemma 4, system (4) is controllability if rank(𝜆
𝑖

𝐼−

𝐺,𝐻) = 2𝑁, where 𝜆
𝑖

, for all 𝑖 = 1, 2, . . . , 2𝑁, is the eigen-
value of matrix 𝐺. Then, it is obvious to see that

rank (𝜆
𝑖

I − 𝐺 𝐻) = rank(𝜆𝑖𝐼 − 𝐼 −𝐼 0

0 𝜆
𝑖

𝐼 − 𝐹 𝑃
) = 2𝑁,

(11)

if Rank(𝑃) = 𝑚.

Remark 6. From Theorem 5, we can find that the second-
order multiagent system (4) is controllable if 𝑛

𝑙

≥ 𝑁 (𝑛
𝑙

is the
number of leaders and𝑁 the number of followers); otherwise,
the system is always uncontrollable.

Remark 7. Notice that the direct consequence of Theorem 5
is that the controllability of the network (4) of a group of
agents relies only on the connectivity between the leaders and
members, regardless of the connectivity of the members in
the network.

Corollary 8. If Rank (𝑃) = 𝑁, system (4) is speed control-
lable.

1 2 3

4 5 6 7

Figure 1: The network topology 1.

0 2 4 6

0

5

10

x

y

Figure 2: A straight line configuration with speed.

Under the symmetry condition of the adjacent matrix 𝐴,
we can have the following result.

Theorem 9. System (4) is speed controllable if and only if the
following conditions hold.

(i) The eigenvalues of 𝐹 are all distinct.

(ii) All the eigenvectors of 𝐹 are not orthogonal to at least
one column in 𝑃 simultaneously.

The proof of Lemma 3 is similar to that of [15, Theorem
1], here omitted.

Remark 10. From Corollary 8 andTheorem 9, it can be easily
seen that even though system (4) is speed controllable, system
(4) cannot be completely controllable.

5. Numerical Examples and Simulations

This section presents some numerical examples and simula-
tions to illustrate the theoretical results.

Example 1. Consider a seven-agent network with agents 4–7
as the leaders, where the topology of the network is described
by Figure 1. From Figure 1, we can see that the number of the
leaders is more than that of the followers. For simplicity, let
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Figure 3: Second-order controllability.

𝑎
𝑖𝑗

= 𝑏
𝑖𝑝

= 1 for 𝑖, 𝑗 = 1, 2, 3 and 𝑝 = 4, 5, 6, 7. According to
Figure 1, the second-ordermultiagent system (4) is defined by

𝐺 =

[
[
[
[
[
[
[

[

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 −2 1 0

0 0 0 1 −3 1

0 0 0 0 1 −2

]
]
]
]
]
]
]

]

, 𝐻 =

[
[
[
[
[
[
[

[

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

]
]
]
]
]
]
]

]

, (12)

with

𝐿 = [

[

1 −1 0

−1 2 −1

0 −1 1

]

]

, 𝑅 = [

[

2 0 0

0 2 0

0 0 2

]

]

,

𝑃 = [

[

1 1 0 0

0 1 1 0

0 0 1 1

]

]

.

(13)

By computing, Rank(𝑃) = 3 and Rank(𝑄) =

Rank [𝐻 𝐺𝐻 𝐺
2

𝐻 ⋅ ⋅ ⋅ 𝐺
2𝑁−1

𝐻] = 6, then system (4) is
indeed controllable.

Figures 2 and 3 show the simulation results of formation
control of the second-order network.The follower agents (the
black star dots) move from a random initial configuration to
desired ones: aligning in a straight line (the black circles) with
controllable speed as shown in Figures 2 and 3, respectively.

Example 2. A five-agent network with agents 4 and 5 as the
leaders and with fixed topology described by the graph in

21 3

54

Figure 4: The network topology 2.

Figure 4. From Figure 4, we can see that the number of the
leaders is less than that of the followers.

From Figure 1, the second-order multiagent system (4) is
given by

𝐺 =

[
[
[
[
[
[
[

[

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 −1 1 0

0 0 0 1 −3 1

0 0 0 0 1 −1

]
]
]
]
]
]
]

]

, 𝐻 =

[
[
[
[
[
[
[

[

0 0

0 0

0 0

1 0

1 1

0 1

]
]
]
]
]
]
]

]

, (14)

with

𝐿 = [

[

1 −1 0

−1 2 −1

0 −1 1

]

]

, 𝑅 = [

[

1 0 0

0 2 0

0 0 1

]

]

, 𝑃 = [

[

1 0

1 1

0 1

]

]

.

(15)
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Figure 5: Speed controllability.

Using Matlab calculation, the eigenvalues of 𝐹 are

eig (𝐹) = {−3.7321, −1, −0.2679} ,

𝑈
𝑇

= [

[

−0.3251 0.8881 −0.3251

−0.7071 −0.0000 0.7071

0.6280 0.4597 0.6280

]

]

,

𝑈
𝑇

𝑃 = [

[

0.5630 0.5630

−0.7071 0.7071

1.0877 1.0877

]

]

.

(16)

It is obvious that the eigenvalues of 𝐹 are all different, and
the elements of 𝑈𝑇𝑃 are all nonzero. Therefore, system (4) is
speed controllable. However, Rank(𝑃) = 2 and Rank(𝑄) =

Rank [𝐻 𝐺𝐻 𝐺
2

𝐻 ⋅ ⋅ ⋅ 𝐺
2𝑁−1

𝐻] = 5, then system (4) is
uncontrollable.

Figure 5 shows the simulation results of the second-
order network. It is easily seen that the speeds of the
system are controllable, but the positions of the system are
uncontrollable. Therefore, the whole second-order system is
uncontrollable.

6. Conclusion

This paper has studied the controllability of discrete-time
second-order multiagent systems with multiple leaders and
general dynamic topology. By applying the PBH rank test
technique, some effective sufficient and necessary conditions
for the controllability of the multiagent discrete-time systems
are obtained. The results in this paper show that the con-
trollability of discrete-time second-order multiagent systems
can only depend on the information from the leaders to the

followers, regardless of the connectivity of the members in
the network. These studies are helpful in understanding the
dynamics of interconnected systems. However, for discrete-
time second-order multiagent systems, as in cases often
encountered in practice, it is usually difficult to deal with the
controllability problemdue to complexity of the topology and
lack of theoretical tools. Our main result shows an advantage
of the second-order topology scheme. We anticipate that
our solutions to the above-described problems will offer a
theoretical basis and valuable ideas for future applications
of networked multiagent systems in the field of coordination
control, including formation control and tracking problems.

Acknowledgments

This work was supported by National Natural Science Foun-
dation (61170113, 61203150, 61104141, 60774089, 10972003,
61174116), Science and Technology Development Plan Project
of Beijing Education Commission (no. KM201310009011), the
Funding Project for Academic Human Resources Develop-
ment in Institutions of Higher Learning Under the Juris-
diction of Beijing Municipality (PHR201108055), the Pro-
gram for New Century Excellent Talents in University from
Chinese Ministry of Education under Grant NCET-12-0215,
the National High Technology Research and Development
Program of China 863 (no. 2012AA112401), and the Research
Fund for the Doctoral Program of Higher Education (RFDP)
under Grant no. 20100142120023. This work was also sup-
ported by the Foundation Grant of Guangxi Key Laboratory
of Automobile Components and Vehicle Technology (13-A-
03-01) and the Opening Project of Guangxi Key Labora-
tory of Automobile Components and Vehicle Technology
(2012KFZD03).



6 Mathematical Problems in Engineering

References

[1] W. Ren and R. W. Beard, “Consensus seeking in multiagent
systems under dynamically changing interaction topologies,”
Institute of Electrical and Electronics Engineers, vol. 50, no. 5, pp.
655–661, 2005.

[2] H. Su, X. Wang, and Z. Lin, “Flocking of multi-agents with a
virtual leader,” Institute of Electrical and Electronics Engineers,
vol. 54, no. 2, pp. 293–307, 2009.

[3] H. Su, G. Chen, X. Wang, and Z. Lin, “Adaptive second-
order consensus of networked mobile agents with nonlinear
dynamics,” Automatica, vol. 47, no. 2, pp. 368–375, 2011.

[4] H. G. Tanner, “On the controllability of nearest neighbor inter-
connections,” in Proceedings of the 43rd IEEE Conference on
Decision and Control (CDC ’04), pp. 2467–2472, December
2004.

[5] M. Ji and M. Egerstedt, “A graph theoretic characterization of
controllability for multi-agent systems,” IEEE Transactions on
Robotics, vol. 23, no. 4, pp. 693–703, 2007.

[6] B. Liu, G. Xie, T. Chu, and L. Wang, “Controllability of inter-
connected systems via switching networks with a leader,” in
Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, vol. 5, pp. 3912–3916, October 2006.

[7] Z. Ji, H. Lin, and T. H. Lee, “A graph theory based char-
acterization of controllability for multi-agent systems with
fixed topology,” in Proceedings of the 47th IEEE Conference
on Decision and Control (CDC ’08), pp. 5262–5267, Cancun,
Mexico, December 2008.

[8] M. Zamani andH. Lin, “Structural controllability ofmulti-agent
systems,” in Proceedings of the American Control Conference
(ACC ’09), pp. 5743–5748, St. Louis, Mo, USA, June 2009.

[9] B. Liu, T. Chu, L.Wang, and G. Xie, “Controllability of a leader-
follower dynamic network with switching topology,” Institute of
Electrical and Electronics Engineers, vol. 53, no. 4, pp. 1009–1013,
2008.

[10] Z. Ji, Z. Wang, H. Lin, and Z. Wang, “Controllability of multi-
agent systems with time-delay in state and switching topology,”
International Journal of Control, vol. 83, no. 2, pp. 371–386, 2010.

[11] R. Lozano, M. W. Spong, J. A. Guerrero, and N. Chopra,
“Controllability and observability of leader-based multi-agent
systems,” in Proceedings of the 47th IEEE Conference on Decision
andControl (CDC ’08), pp. 3713–3718, Cancun,Mexico,Decem-
ber 2008.

[12] L. Wang, F. Jiang, G. Xie, and Z. Ji, “Controllability of multi-
agent systems based on agreement protocols,” Science in China
F, vol. 52, no. 11, pp. 2074–2088, 2009.

[13] F. Jiang, L. Wang, G. Xie, Z. Ji, and Y. Jia, “On the controllability
of multiple dynamic agents with fixed topology,” in Proceedings
of the American Control Conference (ACC ’09), pp. 5665–5670,
St. Louis, Mo, USA, June 2009.

[14] B. Liu, T. Chu, L. Wang, Z. Zuo, G. Chen, and H. Su, “Con-
trollability of switching networks of multi-agent systems,” Inter-
national Journal of Robust and Nonlinear Control, vol. 22, no. 6,
pp. 630–644, 2012.

[15] B. Liu, N. Hu, J. Zhang, and H. Su, “Controllability of discrete-
time multi-agent systems with multiple leaders on fixed net-
works,”Communications inTheoretical Physics, vol. 58, pp. 856–
862, 2012.

[16] B. Liu,W.Hu, and Z. Jie, “Controllability of discrete-timemulti-
agent systems with leaders via switching topology,” Applied
Mechanics and Materials, vol. 128-129, pp. 92–95, 2012.

[17] Z. Ji, H. Lin, T. H. Lee, and Q. Ling, “Multi-agent controllability
with tree topology,” in Proceedings of the American Control
Conference (ACC ’10), pp. 850–855, Baltimore, Md, USA, July
2010.

[18] S. Jafari, A. Ajorlou, A. G. Aghdam, and S. Tafazoli, “On
the structural controllability of multi-agent systems subject to
failure: a graph-theoretic approach,” in Proceedings of the 49th
IEEE Conference on Decision and Control (CDC ’10), pp. 4565–
4570, Atlanta, Ga, USA, December 2010.

[19] Y. Liu, J. Slotine, and A. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.

[20] C. Godsil and G. Royle, Algebraic Graph Theory, vol. 207,
Springer, New York, NY, USA, 2001.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 235316, 10 pages
http://dx.doi.org/10.1155/2013/235316

Research Article
Improved Power Flow Algorithm for VSC-HVDC System
Based on High-Order Newton-Type Method

Yanfang Wei,1 Qiang He,2 Yonghui Sun,3 Yanzhou Sun,1 and Cong Ji4

1 School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
2 Economics and Business College, Qingdao Technological University, Qingdao 266520, China
3 College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China
4 Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China

Correspondence should be addressed to Yanfang Wei; weiyanfang@hpu.edu.cn

Received 4 April 2013; Accepted 12 May 2013

Academic Editor: Guanghui Wen

Copyright © 2013 Yanfang Wei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Voltage source converter (VSC) based high-voltage direct-current (HVDC) system is a new transmission technique, which has
the most promising applications in the fields of power systems and power electronics. Considering the importance of power
flow analysis of the VSC-HVDC system for its utilization and exploitation, the improved power flow algorithms for VSC-HVDC
system based on third-order and sixth-order Newton-typemethod are presented.The steady powermodel of VSC-HVDC system is
introduced firstly. Then the derivation solving formats of multivariable matrix for third-order and sixth-order Newton-type power
flow method of VSC-HVDC system are given. The formats have the feature of third-order and sixth-order convergence based on
Newton method. Further, based on the automatic differentiation technology and third-order Newton method, a new improved
algorithm is given, which will help in improving the program development, computation efficiency, maintainability, and flexibility
of the power flow. Simulations of AC/DC power systems in two-terminal, multi-terminal, and multi-infeed DC with VSC-HVDC
are carried out for the modified IEEE bus systems, which show the effectiveness and practicality of the presented algorithms for
VSC-HVDC system.

1. Introduction

Voltage source converter (VSC) based high-voltage direct-
current (HVDC) is a new technology of HVDC transmission
system. Based on pulse width modulation and VSC, the
VSC-HVDC system has many merits and attracted wide
publicity worldwide [1–3]. Since the first pilot project appli-
cation in 1997, the VSC-HVDC system is widely applied in
interconnected power system, the connection of distributed
generation to power grid, the supply of electric power to
islands or offshore drilling platform, the distribution of power
to urban power network, and so forth.

The main advantages of VSC-HVDC system are as fol-
lows: no synchronization problem of AC system, the feature
of supplying power to passive network, the simultaneous and
independent control for active power and reactive power, the
easy achievement of inversion for power flow, the more flexi-
ble control modes, the suitable application formulti-terminal

andmulti-infeed system, and so on. In the near future, a series
of newVSC-HVDC transmission systemwill be built and put
into operation worldwide [1, 4]. As a fundamental analytical
method for operation and analyzing of power system, the
reliable power flow calculation algorithm is an indispensable
tool forAC/DC interconnected power systems [5–10]. A great
deal of research has been conducted in this field. Now there
are two criticalmethods for the power flowanalysis ofAC/DC
systems, the unified iteration technique and the alternative
iteration technique [10–14]. The former has the precision of
quadratic convergence and has the better convergence for a
variety of controlmodes ofHVDC system. But the realization
of the control modes switching for HVDC system is difficult.
The latter has the trait of easy programming, especially for the
varying process of HVDC control modes. But the alternative
iteration technique is sensitive to the operation ways and
control modes of the HVDC system and is inclined to the
convergence problem.
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The Newton method is a fundamental and important
technology to solve the power flow of power system [6–
9, 15–17]. In [6], a Newton-Raphson power flow algorithm
is proposed for the VSC-HVDC system. In [7], the steady
power flow of VSC-HVDC is presented based on Newton
method and alternative iteration technique. In [8], an optimal
power flow (OPF) model suitable for VSC-HVDC system
is presented based on Newton-Raphson algorithm. In [9],
based on Newton method, a new model that considers the
operational constraints associated with the MVA ratings of
the converters for OPF analysis of VSC-HVDC system is
introduced. In these papers, the modeling approach based
on Newton algorithm only has the first-order or quadratic
convergence, and the convergence precision needs to be
further improved.

In recent years, the solution of nonlinear equation has
made great progress, especially themodifiedNewtonmethod
with high-order convergence performance [18–23]. In [23],
the power flow algorithm with cubic convergence is analyzed
for power system.Despite the fact that a greatmany improved
algorithms for power flow analysis of AC/DC interconnected
networks with VSC-HVDC have been presented in many
aspects, few papers use the Newton method of high-order
convergence to analyze the power flow of VSC-HVDC
system. Moreover, with the VSC-HVDC adding to AC/DC
system, the kind and number of the system variables are mul-
tiplied, causing the modeling of AC/DC system to become
more complex. And with the increase of DC line of VSC-
HVDC, the dimension and scale of Jacobian matrix and
equations of AC/DC system are increased obviously, causing
the efficiency of hand codes to decrease. The automatic
differentiation (AD) technology overcomes the shortcomings
of hand codes. Compared with other differential methods,
such as numerical differentiation and symbolic differentia-
tion methods, the AD has the advantages of no truncation
error, the exact solution of Jacobian matrix, the less work
of hand codes, and so on [24–26]. Motivated by the above
discussions, we will investigate the problem of power flow
for AC/DC systems with VSC-HVDC. Novel third-order and
sixth-order convergence of power flow technique based on
Newton method will be derived, and the AD technology will
be introduced in this paper based on third-order Newton
method to raise the efficiency of programming. The effec-
tiveness of the presented arithmetics for VSC-HVDC system
is also discussed. These results and observations will help
promote the practical applications of high-order Newton-
type method in AC/DC systems with VSC-HVDC.

The remaining of this paper is arranged as follows. In
Section 2, a mathematical model for the VSC-HVDC system
is presented, in which all the AC system equations, the VSC
equations, and the control modes of VSC are analyzed basing
on steady model. In Section 3, the power flow and converter
equations of VSC-HVDC, the mathematical description of
Newton method, third-order and sixth-order convergence of
Newton-type methods, and the improved third-order New-
tonmethod based on automatic differentiation are presented.
In Section 4, the methods are applied to the modified IEEE
bus test systems with VSC-HVDC. This paper ends with a
conclusion finally.

Ii
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Udi
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2Cdi
Xfi
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system
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Idi

Usi∠𝜃i Uci∠𝜃ci

Figure 1: Schematic diagram of steady state physical model for
multi-terminal VSC-HVDC.

2. Mathematical Steady Model of
VSC-HVDC System

2.1. Per-Unit Value System of VSC-HVDC. For the simulation
and calculation of AC/DC hybrid power systems, the unified
per-unit value system should be adopted both for AC system
and DC system. In this paper the per-unit value system is
introduced as follows [7]:

𝑃dB = 𝑆B,

𝑈dB = 𝑈B,

𝐼dB = √3𝐼B,

𝑅dB = 𝑍B,

(1)

where 𝑆B, 𝑃dB are the reference power of AC system and DC
system, respectively. 𝑈B, 𝐼B, and 𝑍B are the reference voltage,
reference current, and reference impedance of AC side of the
converter, respectively. 𝑈dB, 𝐼dB, and 𝑅dB are the reference
voltage, reference current, and reference impedance of DC
side of the converter, respectively.

2.2. Mathematical Steady Model of VSC-HVDC System. The
VSC-HVDC system consists of at least two VSC stations,
one operating as a rectifier station and the other as an
inverter station. The VSC stations can be connected as two-
terminal, multi-terminal, or multi-infeed DC system with
VSC-HVDC, depending on the various different applications
fields [1–3]. The steady state physical model for a multi-
terminal DC system with VSC-HVDC is shown schemati-
cally in Figure 1. The steady models of VSC-HVDC are given
in the per-unit system (p.u.) as follows:

I
𝑖

=
Us𝑖 − Uc𝑖
𝑅
𝑖

+ 𝑗𝑋
𝑙𝑖

, (2)

𝑆s𝑖 = 𝑃s𝑖 + 𝑗𝑄s𝑖 = Us𝑖I
∗

𝑖

, (3)

𝑃s𝑖 = −
𝑌𝑖

 𝑈s𝑖𝑈c𝑖 cos (𝛿𝑖 + 𝛼
𝑖

) +
𝑌𝑖

 𝑈
2

s𝑖 cos𝛼𝑖, (4)
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𝑄s𝑖 = −
𝑌𝑖

 𝑈s𝑖𝑈c𝑖 sin (𝛿
𝑖

+ 𝛼
𝑖

) +
𝑌𝑖

 𝑈
2

s𝑖 sin𝛼
𝑖

+
𝑈
2

s𝑖
𝑋f𝑖

, (5)

𝑃c𝑖 =
𝑌𝑖

 𝑈s𝑖𝑈c𝑖 cos (𝛿𝑖 − 𝛼
𝑖

) −
𝑌𝑖

 𝑈
2

c𝑖 cos𝛼𝑖, (6)

𝑄c𝑖 = −
𝑌𝑖

 𝑈s𝑖𝑈c𝑖 sin (𝛿
𝑖

− 𝛼
𝑖

) −
𝑌𝑖

 𝑈
2

c𝑖 sin𝛼
𝑖

, (7)

𝑃d𝑖 = 𝑈d𝑖𝐼d𝑖 =
𝑌𝑖

 𝑈s𝑖𝑈c𝑖 cos (𝛿𝑖 − 𝛼
𝑖

) −
𝑌𝑖

 𝑈
2

c𝑖 cos𝛼𝑖, (8)

𝑈c𝑖 =
√6𝑀
𝑖

𝑈d𝑖
4

. (9)

The variables in the equations of (2)–(9) are referenced to the
literature [14].

2.3. Steady-State Control Modes of VSC-HVDC. Owning to
having full controllable power electronic switch semiconduc-
tors such as insulated gate bipolar transistor and gate turn-off
thyristor, VSC-HVDC has the ability to independent control
active and reactive power at its terminal. So for each VSC, a
couple of regular used control goals can be set [27].

(1) AC active power control: determines the active power
exchanged with the AC system.

(2) DC voltage control: is used to keep the DC voltage
control constant.

(3) AC reactive power control: determines the reactive
power exchanged with the AC system.

(4) AC voltage control: instead of controlling reactive
power, AC voltage can be directly controlled, deter-
mining the voltage of the system bus.

The general used control means of VSC include the
following four categories:

A constant DC voltage control, constant AC reactive
power control;
B constant DC voltage control, constant AC voltage
control;
C constant AC active power control, constant AC
reactive power control;
D constant AC active power control, constant AC
voltage control.

3. The Improved Power Flow Algorithms of
AC/DC Systems with VSC-HVDC Based on
High-Order Newton-Type Method

3.1. Steady Mathematical Model of Power Flow Calculation
of VSC-HVDC System. For the AC/DC systems with VSC-
HVDC, the power flow equations are given as follows [14].

Pure AC bus equation

Δ𝑃a𝑖 = 𝑃a𝑖 − 𝑈a𝑖∑
𝑗∈𝑖

𝑈
𝑗

(𝐺
𝑖𝑗

cos 𝜃
𝑖𝑗

+ 𝐵
𝑖𝑗

sin 𝜃
𝑖𝑗

) ,

Δ𝑄a𝑖 = 𝑄a𝑖 − 𝑈a𝑖∑
𝑗∈𝑖

𝑈
𝑗

(𝐺
𝑖𝑗

sin 𝜃
𝑖𝑗

− 𝐵
𝑖𝑗

cos 𝜃
𝑖𝑗

) .

(10)

DC bus equation

Δ𝑃t𝑖 = 𝑃t𝑖 − 𝑈t𝑖∑
𝑗∈𝑖

𝑈
𝑗

(𝐺
𝑖𝑗

cos 𝜃
𝑖𝑗

+ 𝐵
𝑖𝑗

sin 𝜃
𝑖𝑗

) ,

Δ𝑄t𝑖 = 𝑄t𝑖 − 𝑈t𝑖∑
𝑗∈𝑖

𝑈
𝑗

(𝐺
𝑖𝑗

sin 𝜃
𝑖𝑗

− 𝐵
𝑖𝑗

cos 𝜃
𝑖𝑗

) .

(11)

VSC converter equation

Δ𝑑
𝑘1

= 𝑃t𝑘 +
√6

4
𝑀
𝑘

𝑈t𝑘𝑈d𝑘 |𝑌| cos (𝛿𝑘 + 𝛼
𝑘

)

− 𝑈
2

t𝑘 |𝑌| cos𝛼𝑘,

Δ𝑑
𝑘2

= 𝑄t𝑘 +
√6

4
𝑀
𝑘

𝑈t𝑘𝑈d𝑘 |𝑌| sin (𝛿
𝑘

+ 𝛼
𝑘

)

− 𝑈
2

t𝑘 |𝑌| sin𝛼
𝑘

−
𝑈
2

t𝑘
𝑋f𝑘

,

Δ𝑑
𝑘3

= 𝑈t𝑘𝐼d𝑘 −
√6

4
𝑀
𝑘

𝑈t𝑘𝑈d𝑘 |𝑌| cos (𝛿𝑘 − 𝛼
𝑘

)

+
3

8
(𝑀
𝑘

𝑈d𝑘)
2

|𝑌| cos𝛼
𝑘

,

Id = GdUd.

(12)

DC network equation

Δ𝑑
𝑘4

= ±𝐼d𝑘 −

𝑛AC

∑

𝑠=1

𝑔d𝑘𝑠𝑈d𝑠 = 0. (13)

The variables in the equations of (10)–(13) are referenced to
the literature [14].

3.2. The Mathematical Description of Newton Method. The
mathematical description of multivariable iterative form for
Newton method is given by

Δ𝑥
(𝑘)

= − [𝐹


(𝑥
(𝑘)

)
−1

] 𝐹


(𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ Δ𝑥
(𝑘)

.

(14)

The formula (14) has the second-order convergence [23, 28].
The equivalence form of linear equation solution for (14)

is given by

[𝐹


(𝑥
(𝑘)

)] Δ𝑥
(𝑘)

= −𝐹


(𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ Δ𝑥
(𝑘)

,

(15)

where 𝐹


(𝑥
(𝑘)

) is the matrix variable of first-order partial
derivative of 𝐹(𝑥) and 𝑘 is the number of iterations.

3.3. The Newton-Type Method of Third-Order Convergence
(Algorithm 1). The single variable iterative algorithm format
based on modified Newton-type method is given by

𝑥
𝑘+1

= 𝑥
𝑘

−
𝑓 (𝑥
𝑘

+ 𝑓 (𝑥
𝑘

) /𝑓


(𝑥
𝑘

)) − 𝑓 (𝑥
𝑘

)

𝑓 (𝑥
𝑘

)
. (16)
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The iterative format of (16) has the trait of third-order
convergence [29].

The multivariable matrix equivalent form of (16) is given
by

𝐹


(𝑥
(𝑘)

) Δ𝑥
(𝑘)

= −𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

− Δ𝑥
(𝑘)

,

𝐹


(𝑥
(𝑘)

) Δ𝑥
(𝑘)

= −𝐹


(𝑥
(𝑘+1)

) + 𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ Δ𝑥
(𝑘)

.

(17)

The gotten Jacobian matrix and its triangular factoriza-
tion are being utilized fully in the algorithm iterative process
of (17).

3.4. The Newton-Type Method of Third-Order Convergence
(Algorithm 2). Another single variable iterative algorithm
format with third-order convergence based on Newton-type
method is given by:

𝑥
𝑘+1

= 𝑥
𝑘

− 0.5𝑓 (𝑥
𝑘

)

× [
1

𝑓 (𝑥
𝑘

− 𝑓 (𝑥
𝑘

) /𝑓 (𝑥
𝑘

))
+

1

𝑓 (𝑥
𝑘

)
] .

(18)

The iterative format of (18) has the trait of third-order
convergence [30].

The multivariable matrix equivalent form of (18) is given
by:

𝐹


(𝑥
(𝑘)

) Δ𝑥
(𝑘)

= −𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ Δ𝑥
(𝑘)

,

𝐹


(𝑥
(𝑘+1)

) Δ𝑥
(𝑘)

= −𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ 0.5 (Δ𝑥
(𝑘)

+ Δ𝑥
(𝑘)

) .

(19)

3.5. The Newton-Type Method of Sixth-Order Convergence.
For the above presented Algorithm 1 and Algorithm 2, the
two iterative formats have the advantages for fast convergence
speed of Newtonmethod and less computations of simplified
Newton method. The application of Algorithm 1 and Algo-
rithm 2 is a two-step process.

Step 1. The prediction based on the Newton method [23]

Δ𝑥
(𝑘)

= −[𝐹


(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ Δ𝑥
(𝑘)

.

(20)

Step 2. The correction for the obtained predicted value of
𝑥
(𝑘+1)

Δ𝑥
(𝑘)

= −[𝐹


(𝑥
(𝑘)

)]
−1

[𝐹 (𝑥
(𝑘)

) + 𝐹 (𝑥
(𝑘+1)

)] ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ Δ𝑥
(𝑘)

.

(21)

The simplified realization of the iterative procedure for
(20) and (21) is given by

𝑦
𝑘

= 𝑥
𝑘

−
𝑓 (𝑥
𝑘

)

𝑓 (𝑥
𝑘

)
,

𝑧
𝑘

= 𝑥
𝑘

−
2𝑓 (𝑥
𝑘

)

𝑓 (𝑥
𝑘

) + 𝑓 (𝑦
𝑘

)
,

(22)

where 𝑧
𝑘

is the iterative result of 𝑥
𝑘+1

at the 𝑘 iterative cycle.
An effective implement of the iterative process of (22) is

given by [31]

𝑥
𝑘+1

= 𝑧
𝑘

−
𝑓 (𝑧
𝑘

)

𝑓 (𝑧
𝑘

)
. (23)

The approximate value of 𝑓(𝑥) at 𝑧
𝑘

is given by

𝑓


(𝑧
𝑘

) ≈
𝑓


(𝑥
𝑘

) (3𝑓


(𝑦
𝑘

) − 𝑓


(𝑥
𝑘

))

𝑓 (𝑥
𝑘

) + 𝑓 (𝑦
𝑘

)
. (24)

The (16) or (18), (23), and (24) comprise the new sixth-
order convergence method [31]:

𝑦
𝑘

= 𝑥
𝑘

−
𝑓 (𝑥
𝑘

)

𝑓 (𝑥
𝑘

)
,

𝑧
𝑘

= 𝑥
𝑘

−
2𝑓 (𝑥
𝑘

)

𝑓 (𝑥
𝑘

) + 𝑓 (𝑦
𝑘

)
,

𝑥
𝑘+1

= 𝑧
𝑘

−
𝑓 (𝑧
𝑘

)

𝑓 (𝑥
𝑘

)

𝑓


(𝑥
𝑘

) + 𝑓


(𝑦
𝑘

)

3𝑓 (𝑦
𝑘

) − 𝑓 (𝑥
𝑘

)
.

(25)

3.6. The Automatic Differentiation Algorithm Based on Third-
Order Newton-TypeMethod. TheAD technique could always
be decomposed to complex computations of basic func-
tions and basic mathematical operations, such as the four
arithmetic operations of add, subtract, multiply, and divide,
the basic functions of trigonometric function, exponential
function, and logarithmic function. Here an instance is given
to illustrate the application of AD.The function expression of
a certain model is given by

𝑓 (𝑥) = sin𝑥
1

+ 𝑒
𝑥

1
𝑥

2 . (26)

The independent variables and intermediate variables
of (26) are given in Table 1. For the use of independent
variables and intermediate variables, the function of (26) is
decomposed to a series of basic functions. If the value of
independent variables is given, the exact value of 𝑦 is gotten
by top-down solution order in Table 1. Given the value of ̇𝑥

1

and ̇𝑥
2

, the differentiation of (26) can be obtained mechan-
ically through the chain rule of differentiation calculation.
At present, there are two main modes for the application of
AD, the forward mode and the backward mode, as shown in
Table 2. And in Table 2, 𝑥

𝑖,𝑗

= 𝜕𝑥
𝑖

/𝜕𝑥
𝑗

, 𝑝
𝑖

= 𝜕𝑦/𝜕𝑥
𝑖

.
Now there are two kinds of implementation method

for AD, the source code transform method and operator
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Table 1: Independent variables and intermediate variables of (26).

Independent variables Intermediate variables
𝑥
1

𝑥
3

= sin𝑥
1

𝑥
2

𝑥
4

= 𝑥
1

𝑥
2

𝑥
5

= 𝑒
𝑥4

𝑥
6

= 𝑥
3

+ 𝑥
5

𝑦 = 𝑥
6

Table 2: Forward and backward mode.

Forward mode Backward mode
̇𝑥
3

= con (𝑥
1

) ⋅ ̇𝑥
1

𝑝
1

= 𝑝
1

+ 𝑥
3,1

𝑝
3

̇𝑥
4

= ̇𝑥
1

𝑥
2

+ 𝑥
1

̇𝑥
2

𝑝
1

= 𝑝
1

+ 𝑥
4,1

𝑝
4

, 𝑝
2

= 𝑝
2

+ 𝑥
4,2

𝑝
4

̇𝑥
5

= 𝑥
5

̇𝑥
4

𝑝
4

= 𝑝
4

+ 𝑥
5,4
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overloading method. The typical representative softwares for
the former is ADIFOR and ADIC. The typical representative
software for the latter is ADOL-C and ADC. The method of
ADOL-C realizes the differentiation of C++ program auto-
matically by using operator overloading and can calculate
any order derivative by forward and backward mode. In this
paper, the ADOL-C method is used to realize the differential
operation [32].

The steps of the improved AD algorithm based on third-
order Newton method are listed below.

Step 1. Read network parameter, including bus num-
ber, active and reactive power of load, compensate
capacitance, branch number of line, resistor and
reactance in series, and ratio and impedance of
transformer.
Step 2 (initialization). Form the admittance matrix of
the DC and AC systems.
Step 3. Distribute space for AD and state active vari-
ables, including independent variables and dependent
variables.
Step 4. Transmit the value of system variable to active
variable.
Step 5. Form the expression of dependent variable by
using independent variable.
Step 6. Judge the maximum of imbalance equation
whether to meet the error precision or not. If yes, exit
the loop. If not, the loop goes on.
Step 7. Call the function of Jacobian and Hessian of
AD.
Step 8. Solve the equation of (17) or (19).

Return to Step 3.

4. Case Studies

In this part, in order to validate the correctness and suitability
of the proposed algorithms, three sections are presented.
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Figure 2: The modified IEEE-30 bus AC/DC system with VSC-
HVDC.

(1) For the modified high-order Newton methods, the
modified IEEE 30-bus system with two-terminal and
multi-infeed VSC-HVDC is analyzed in detail firstly.

(2) Then the simulation results of performance compar-
isons for the improved high-order Newton methods
are presented among the modified IEEE 5-bus, IEEE
9-bus, IEEE 14-bus, IEEE 57-bus, and IEEE 118- bus
text systems.

(3) At last, the AD based on third-order Newton method
is evaluated for themodified IEEE 30-bus systemwith
two-terminal of VSC-HVDC.

4.1. The Modified IEEE 30-Bus System with Two-Terminal and
Multi-Infeed VSC-HVDC. The proposed method has been
applied to the modified IEEE 30-bus system [33]. The wiring
diagram is shown in Figure 2. In this section, two cases
are considered and compared. In Figure 2, the dotted lines
represent the possible positions of VSC stations, and the
specific positions are located as follows.

(1) In the system with two-terminal VSC-HVDC, the
VSC1 and VSC2 are connected to AC line of bus 29
and bus 30, respectively.

(2) In the systemwith two-infeedVSC-HVDC, theVSC1,
VSC2, VSC3, and VSC4 are connected to AC line of
bus 12, bus 14, bus 29, and bus 30, respectively.
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Table 3: Results of the power flow calculation of AC system.

Control mode Method
Bus Number

1 2 3 4
𝑉 𝜃 𝑉 𝜃 𝑉 𝜃 𝑉 𝜃

A +C

Newton 1.0600 0 1.0450 −5.5025 1.0333 −8.1365 1.0271 −9.8132

Algorithm 1 1.0600 0 1.0450 −5.5025 1.0333 −8.1365 1.0271 −9.8132

Algorithm 2 1.0600 0 1.0450 −5.5025 1.0333 −8.1365 1.0271 −9.8132

Sixth-order Newton 1.0600 0 1.0450 −5.5025 1.0333 −8.1365 1.0271 −9.8132

A +D

Newton 1.0600 0 1.0450 −5.5012 1.0340 −8.1415 1.0279 −9.8187

Algorithm 1 1.0600 0 1.0450 −5.5012 1.0340 −8.1415 1.0279 −9.8187

Algorithm 2 1.0600 0 1.0450 −5.5012 1.0340 −8.1415 1.0279 −9.8187

Sixth-order Newton 1.0600 0 1.0450 −5.5012 1.0340 −8.1415 1.0279 −9.8187

B +C

Newton 1.0600 0 1.0450 −5.5013 1.0341 −8.1434 1.0281 −9.8208

Algorithm 1 1.0600 0 1.0450 −5.5013 1.0341 −8.1434 1.0281 −9.8208

Algorithm 2 1.0600 0 1.0450 −5.5013 1.0341 −8.1434 1.0281 −9.8208

Sixth-order Newton 1.0600 0 1.0450 −5.5013 1.0341 −8.1434 1.0281 −9.8208

B +D

Newton 1.0600 0 1.0450 −5.4996 1.0344 −8.1435 1.0284 −9.8208

Algorithm 1 1.0600 0 1.0450 −5.4996 1.0344 −8.1435 1.0284 −9.8208

Algorithm 2 1.0600 0 1.0450 −5.4996 1.0344 −8.1435 1.0284 −9.8208

Sixth-order Newton 1.0600 0 1.0450 −5.4996 1.0344 −8.1435 1.0284 −9.8208

Table 4: Results of the power flow calculation of DC system.

DC variable Converter number Control mode
A +C A +D B +C B +D

𝑈
𝑑

Newton VSC1 2.0000 2.0000 2.0000 2.0000

VSC2 1.9994 1.9994 1.9994 1.9994

Algorithm 1 VSC1 2.0000 2.0000 2.0000 2.0000

VSC2 1.9994 1.9994 1.9994 1.9994

Algorithm 2 VSC1 2.0000 2.0000 2.0000 2.0000

VSC2 1.9994 1.9994 1.9994 1.9994

Sixth-order Newton VSC1 2.0000 2.0000 2.0000 2.0000

VSC2 1.9994 1.9994 1.9994 1.9994

𝛿

Newton VSC1 0.3556 0.3402 0.3381 0.3322

VSC2 −0.3701 −0.2960 −0.3495 −0.3047

Algorithm 1 VSC1 0.0062 0.0059 0.0059 0.0058

VSC2 −0.0065 −0.0052 −0.0061 −0.0053

Algorithm 2 VSC1 0.0062 0.0059 0.0059 0.0058

VSC2 −0.0065 −0.0052 −0.0061 −0.0053

Sixth-order Newton VSC1 0.0062 0.0059 0.0059 0.0058

VSC2 −0.0065 −0.0052 −0.0061 −0.0053

𝑀

Newton VSC1 0.7663 0.7838 0.8282 0.8257

VSC2 0.7574 0.8188 0.7794 0.8161

Algorithm 1 VSC1 0.7663 0.7838 0.8282 0.8257

VSC2 0.7574 0.8188 0.7794 0.8161

Algorithm 2 VSC1 0.7663 0.7838 0.8282 0.8257

VSC2 0.7574 0.8188 0.7794 0.8161

Sixth-order Newton VSC1 0.7663 0.7838 0.8282 0.8257

VSC2 0.7574 0.8188 0.7794 0.8161
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Table 5: Comparisons of iteration times and computing time.

Control mode Iteration times Computing time (ms)
Newton Algorithm 1 Algorithm 2 Sixth-order Newton Newton Algorithm 1 Algorithm 2 Sixth-order Newton

A +C 4 3 3 2 8.6885 8.8367 0.1040 12.6763
A +D 4 3 3 2 9.8464 5.6506 0.1023 9.5408
B +C 4 3 3 1.5∗ 9.3356 5.6121 0.1045 8.4520
B +D 4 3 3 1.5∗ 9.4767 5.6403 0.0990 8.2271

Table 6: Comparison of iteration times and computing time.

Control mode Iteration times Computing time (ms)

VSC1 + VSC2 VSC3 + VSC4 Newton Algorithm 1 Algorithm 2 Sixth-order
Newton Newton Algorithm 1 Algorithm 2 Sixth-order

Newton
A +C A +C 4 3 3 1.5 10.0649 8.6786 0.1186 0.4648

A +C A +D 4 3 3 1.5 9.4347 6.8694 0.1110 0.4870

A +C B +C 4 3 3 1.5 9.4438 6.0041 0.1086 0.4399

A +C B +D 4 3 3 1.5 9.8407 6.7326 0.1136 0.4384

A +D A +D 4 3 3 1.5 9.4073 6.3733 0.1164 0.4885

A +D B +C 4 3 3 1.5 10.1531 5.9505 0.1113 0.4499

A +D B +D 4 3 3 1.5 5.8884 6.0551 0.1121 0.4273

B +C B +C 4 3 3 1.5 9.7429 5.8435 0.1330 0.4283

B +C B +D 4 3 3 1.5 9.8400 6.1026 0.1216 0.3860

B +D B +D 4 3 3 1.5 9.7773 6.2020 0.1168 0.4181

4.1.1. The Modified IEEE 30-Bus System with Two-Terminal
VSC-HVDC. The results of the power flow calculation of the
AC system and DC system under different control modes for
Newton, third-order and sixth-order Newton methods are
shown in Tables 3 and 4. In Table 3, the simulation results of
bus number of 1, 2, 3, and 4 are presented only, and the other
buses of the modified IEEE 30-bus system are not included
for the sake of brevity. There are two methods of third-order
Newton in Tables 3 and 4, Algorithm 1, and Algorithm 2.
In Table 3, the “Newton” method is the algorithm in the
references of [5–10], the unit of 𝑉 is p.u., and the unit of 𝜃
is ∘.

It can be seen from Table 3 the voltage amplitudes of bus
1 and bus 2 are all the same for the proposed four methods.
This is due to the node type of bus 1 and bus 2 for the IEEE
30-bus system. Bus 1 is the equilibrium node. And Bus 2 is the
PV node. So in the iterative process of the proposed different
methods, if the generators of bus 1 and bus 2 have not reached
the limit of reactive power, the voltage amplitudes of bus 1 and
bus 2 remain the same.

In Table 4, the DC variables of Ud are the same for
different control modes and Newton methods; the reason
is that for the general used four control modes of VSC, all
the mode combinations of A + C, A + D, B + C, and
B +D contain the constant DC voltage control category. As
a result, in the operation process of VSC-HVDC system, the
DC voltage of VSC remains constant.

Both in Tables 3 and 4, for the proposed algorithms of
Newton, Algorithm 1, Algorithm 2, and sixth-order Newton
method, the results of the power flow calculation for the four
different control modes remain the same fundamentally. And

the operational parameters of DC system are all in the normal
range. The simulation results also illustrate the flexible appli-
cation of the third-order and sixth-orderNewtonmethods for
the AC/DC system with VSC-HVDC.

The comparisons of iteration times and computing time
for the four proposed Newton methods are shown in Table 5.
In Table 5, the ∗ indicates that the criterion for convergence
is met only at the front half iteration procedure. As seen in
Table 5, for the modified IEEE 30-bus text system with two-
terminalVSC-HVDC, the iteration times of sixth-orderNew-
ton method are evidently less than other Newton methods.
And the CPU computing time of the third-order Newton of
Algorithm 2 is smaller than other Newton methods under
four different control modes. The reason is that for the
modified IEEE 30-bus text system, the computation task of
Jacobian matrix formation and triangular factorization for
high-order Newton method is less than Newton method.

4.1.2. The Modified IEEE 30-Bus System with Multi-Infeed
VSC-HVDC. For the flexible control performance and par-
ticular technical advantages, the VSC-HVDC is suitable for
application in multi-infeed system [5, 34]. In this section,
the comparison of iteration times and computing time under
different control modes for improved Newton methods is
shown in Table 6 for the modified IEEE 30-bus system with
two-infeed VSC-HVDC. For two-infeed VSC-HVDC, the
combinations ways of VSC have ten different types, as shown
in Table 6.

It can be seen from Table 6, both for the iteration times
and the computing time, the high-order Newton-type of
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Table 7: The topology and parameter settings for different IEEE text systems.

Topology Two-terminal Two-infeed Three-terminal
Modified
test system IEEE-5 IEEE-9 IEEE-14 IEEE-57 IEEE-118 IEEE-14 IEEE-14 IEEE-57

Bus number VSC1 VSC2 VSC1 VSC2 VSC1 VSC2 VSC1 VSC2 VSC1 VSC2 VSC1 VSC2 VSC3 VSC4 VSC1 VSC2 VSC3 VSC1 VSC2 VSC3
4 5 8 9 13 14 56 57 75 118 12 14 29 30 12 13 14 55 56 41

Table 8: Performance comparison for different text systems.

Topology Modified test system Iteration times Computing time (ms)
Newton Algorithm 1 Sixth-order Newton Newton Algorithm 1 Sixth-order Newton

Two-terminal IEEE-5 5 4 1.5 4.8287 4.4651 5.3692
Two-terminal IEEE-9 4 3 1.5 3.1646 2.2094 2.7866
Two-terminal IEEE-14 4 3 1.5 4.1375 2.6509 4.1890
Two-infeed IEEE-14 4 3 1.5 4.3529 3.1544 3.9907
Three-terminal IEEE-14 4 3 1.5 4.3546 2.9592 4.1260
Two-terminal IEEE-57 4 4 2 22.0698 14.2854 23.6236
Three-terminal IEEE-57 4 4 2 28.9858 24.7143 29.0658
Two-terminal IEEE-118 4 3 1.5 120.8938 70.8048 115.1420

Table 9: Results of the power flow calculation of DC system.

DC variable Converter
number

Control modes
ofA +C

𝑈
𝑑

Algorithm 1 + AD VSC1 2.0000

VSC2 1.9994

Algorithm 2 + AD VSC1 2.0000

VSC2 1.9994

𝛿

Algorithm 1 + AD VSC1 0.0062

VSC2 −0.0064

Algorithm 2 + AD VSC1 0.0062

VSC2 −0.0064

𝑀

Algorithm 1 + AD VSC1 0.7677

VSC2 0.7589

Algorithm 2 + AD VSC1 0.7677

VSC2 0.7589

third-order and sixth-order Newton methods is less than the
Newton method. And the advantage of computing time for
Algorithm2 is obvious. Table 6 also shows the proposed high-
order methods suitable for the AC/DC systems with multi-
infeed VSC-HVDC.

4.2. The Simulations of Modified IEEE 5-, 9-, 14-, 57-, and
118-Bus Systems. The modified IEEE 5-, 9-, 14-, 57-, and 118-
bus systems are analyzed in this section [33]. The topology
and parameter settings for those different IEEE text systems
are shown in Table 7. The simulation results of performance
comparisons for those IEEE text systems among improved
Newtonmethods are shown in Table 8.The system topologies
of two-terminal, two-infeed, and three-terminal are analyzed
in this section.

It can be seen in Table 8, as the size and scale of the IEEE
text systems grow, the iteration times keep mostly unchange-
able for the third-order Newton and sixth-order Newton
methods. And the computing time of the third-order or
sixth-order Newton method is less than the Newton method.
The validity and usability of the proposed improved Newton
method suitable for VSC-HVDC system are certified.

4.3. The Simulation Results of AD Based on Third-Order
Newton Method. In this part, the simulation results for
AD algorithm based on Algorithm 1 and Algorithm 2 of
third-order Newton method are presented. The IEEE-30 bus
text system with two-terminal VSC-HVDC is employed to
demonstrate the validity of the proposed AD algorithm. The
results of the power flow calculation of DC system of control
mode A + C are shown in Table 9. The comparison of
iteration times and computing time for the proposed AD
algorithm is shown in Table 10.

From the results of Tables 9 and 10, the following can be
seen.

(1) Compared with the results of Algorithm 1 and Algo-
rithm 2 of third-order Newton method, as shown
in Table 4, the improved AD algorithm satisfies the
operation requirements of VSC parameter.

(2) Compared with the results of Table 5, for the iteration
times and computing time, the improved AD algo-
rithm has certain advantages.

(3) The result shows that AD technology is suitable
for use in the third-order Newton method of VSC-
HVDC system.And the application ofAD technology
reduces the work of hand code greatly. The efficiency
of code programming is improved.



Mathematical Problems in Engineering 9

Table 10: Comparison of iteration times and computing time

Control mode Iteration times Computing time (ms)
% VSC1 + VSC2 Algorithm 1 + AD Algorithm 2 + AD Algorithm 1 + AD Algorithm 2 + AD
A +C 2 2 0.15 0.31
A +D 2 2 0.31 0.31
B +C 2 2 0.31 0.32
B +D 2 2 0.31 0.32

5. Conclusions

In this paper, based on the steady mathematical model of
VSC-HVDC, the modified third-order Newton and sixth-
order Newton methods have been presented to calculate the
power flow of AC/DC systems with VSC-HVDC. The mul-
tivariate iteration matrix forms of the presented algorithms
suitable for VSC-HVDC system are given. The proposed
high-order Newton method has the third-order and sixth-
order convergence, without solving the Hessian matrix. The
task of the calculation is greatly reduced, and the efficiency
is improved. Based on the third-order Newton method,
the automatic differentiation technology is used to increase
the efficiency of hand code. Some numerical examples on
the modified IEEE bus systems with two-terminal, multi-
terminal, and multi-infeed VSC-HVDC have demonstrated
the computational performance of the power flow algorithms
with incorporation of VSC-HVDC models.
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Compensation scheme-based 𝐻
∞

control is investigated for networked control systems with packet disordering and packet loss.
Since the existence of packet disordering and packet loss inevitably degrades the control performance of networked control systems,
it is worth studying a control scheme to compensate for them, such that the control performance can be improved. Thus, a
compensation control strategy is first proposed following this direction. Next, a mathematical model of networked control systems
withMarkovian property is constructed due to the signals executed by the plant subject toMarkovian chain. Based on it, a sufficient
condition for stochastic stability of networked control systems with uncertain parameters as well as compensation strategy is
presented, and an adaptive controller is designed based on linear matrix inequality (LMI) technique. Finally, a numerical example
and simulations are given to illustrate the effectiveness of the proposed method.

1. Introduction

Networked control systems (NCSs), in which nodes com-
municate over communication networks, have attracted lots
of researchers’ attention [1–4]. Since networks-based control
gives rise to many advantages including low cost, easy
maintenance, and flexible system structure, the successful
application ofNCSs can be found in awide range of areas such
as industrial automation, intelligent transportation system,
and smart grid. However, packet disordering and packet
dropout inevitably exist in the transmission of signals. They
are recognized to be two main causes for performance
deterioration or even instability of NCSs, hence, considerable
research has been done (see, e.g. [5–21] and the references
therein).

So far, the majority of NCSs research has focused on
controller design to provide sufficient stability conditions for
NCSs with packet loss. A lot of effort has also been taken for
modeling NCSs in presence of packet losses as asynchronous
dynamic systems or Markovian jumping systems [5, 6]. With

further study on packet loss, some effective compensation
strategies for packet loss that occurred during communica-
tion are proposed to improve control performance of NCSs.
Predictive control is a typical method with wich the control
prediction generator provides a set of future control predic-
tions to enable the closed-loop system to achieve the desired
control performance leading to removing the effects of data
dropout [7–11]. Another typical compensation methodology
for packet loss is observer-based state estimation [12]. In addi-
tion, [13] proposed a packet dropout-based compensation
scheme, namely, the latest control signal is used for compen-
sation if the ideal control input ismissing.However, note that,
in all of the aforementioned literature, packet disordering is
not considered, but packet disordering and packet loss coexist
in packets delivered network communication.

Packet disordering means that a packet sent earlier may
arrive at the destination node later or vice versa. Packet
disordering of NCSs has drawn an increasing attention [10,
14–21]. In [14], packets that arrived late at control nodes
were discarded, and stability and 𝐻

∞

compensation control
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were investigated. However, the packet disordering is not
described clearly. In [15, 16], the sampling instants of received
signals were compared to describe packet disordering, and
stability analysis and synthesis were studied. Some literature
using the similar method can be found in the existing
reported results (e.g., [17]). Recently, [10, 18] proposed an
active compensation for packet disordering; that is, the latest
control actions applied to the plant are available by comparing
the time stamps of packets. The so called compensation
method has been also presented in [19–21], where the latest
signals are executed by the plant by defining an operator
constructing a mapping between the newest signals and
packet displacement values. However, note that a situation
where no new control actions arrive at the actuatormay occur
due to packet disordering and packet loss during a sampling
interval. In this case, it is critical how to control the plant.
To the best of the authors’ knowledge, this problem has been
not fully investigated to date, which motivates this work for
proposing a new compensation scheme.

The specific problem addressed in this paper is the
compensation control when the newest signal is not available
for NCSs due to the packet disordering and packet loss. The
highlighted method is that control inputs are determined
by defining some operators associated with packet displace-
ments; that is, the latest control input is chosen when no new
signals arrive at the actuator during the sampling interval
((𝑘 − 1)𝑇, 𝑘𝑇]; otherwise, the newest signal controls the
plant. After that, a Markovian jumping model of NCSs is put
forward. Stability analysis and the controller synthesis are
thoroughly investigated and the adaptive controller design
is obtained in terms of linear matrix inequalities (LMI). A
numerical example is provided to demonstrate the effective-
ness of the proposed approach.

The rest of the paper is organized as follows. Section 2
is concerned with problem statement. In this section, a
compensation control scheme is proposed, and a model
of networked control systems is constructed. Section 3
investigates the stability and 𝐻

∞

control for NCSs with
packet disordering and packet losses.The results of numerical
simulation are presented in Section 4. Conclusions are stated
in Section 5.

Notation. 𝑅𝑛 denotes the 𝑛 dimensional Euclidean space. P >
0means that matrix P is real symmetric and positive definite,
and I is the identity matrix of appropriate dimensions. The
subscript “T” denotes the matrix transpose. In symmetric
block matrices, we use “∗” to represent a term that is induced
by symmetry, and diag(⋅ ⋅ ⋅ ) stands for a block-diagonal
matrix. ‖x‖ stands for the standard 𝑙

2

norm of vector x; that
is, ‖x‖ = (xTx)1/2.

2. Problem Statement

The following system is considered:

x
𝑘+1

= Ax
𝑘

+ Bu
𝑘

+D
1

w
𝑘

z
𝑘

= Cx
𝑘

+D
2

w
𝑘

,

(1)

where x
𝑘

= x(𝑘𝑇) ∈ R𝑛, u
𝑘

= u(𝑘𝑇) ∈ R𝑀, and z
𝑘

=

z(𝑘𝑇) ∈ R𝑃 are the state vector, control input vector,
and controlled output vector, respectively. 𝑇 is the sampling
period. A = A + ΔA, B = B + ΔB, (ΔA ΔB) =

DF(𝑘)(E
1

E
2

), A,B,C,D,D
1

,D
2

,E
1

, and E
2

are some con-
stant matrices of appropriate dimensions, and F𝑇(𝑘)F(𝑘) ≤
I. w
𝑘

= w(𝑘𝑇) ∈ 𝜄
2

[0,∞] denotes the exogenous disturbance
signal.

The state feedback controller can be expressed as

u
𝑘

= Kx
𝑘

, (2)

where K is some constant matrix of appropriate dimensions.
Here, we assume that sensor and actuator are time-driven

synchronously, the period is identical and equal to 𝑇, and
the controller is event-driven. Since the states of systems
and control signals are transmitted over the communica-
tion networks with limited bandwidth, the packet disor-
dering and intermittent packet dropouts are inevitable in
the communication channels. To describe the phenomenon
of packet disordering and design compensation scheme,
we define the displacement values of packets and some
operators determining the control actions. The details are as
follows.

Without loss of generalization, we consider a sequence
of packets x

𝑘−ℎ

, x
𝑘−ℎ+1

, . . . , x
𝑘

transmitted over the network
from the sensor, where ℎ is a given integer. The max-
imum delay bound is an alternative solution to ℎ. For
x
𝑘−ℎ

, x
𝑘−ℎ+1

, . . . , x
𝑘

, it is well known that the corresponding
expected arrival sequence numbers are 1, 2, . . . , ℎ + 1. Then,
the expected arrival sequence number of packet x

𝑘−𝑖

is ℎ +
1 − 𝑖 (𝑖 = 0, 1, . . . , ℎ) is easily obtained. A receive index
𝑙 (𝑙 = 1, 2, . . . , ℎ + 1) is assigned to each nonduplicate packet
as it arrives at the point of measurement, which we refer to as
the destination (actuator) since the control is event-driven. To
describe the newest signal executed by the plant, we assume
that packets which have not appeared or lost during the
sampling interval ((𝑘 − 1)𝑇, 𝑘𝑇] arrive at the actuator in
order after the 𝑘𝑇 time instant, and their receive index values
are 1 more than the real values. Moreover, if the sampled
packets behind 𝑝 (𝑝 is some positive integer) lost packets
arrive at the plant before the 𝑘𝑇 time instant (including 𝑘𝑇
time instant), their receive index values are 𝑝 more than the
real values. 𝑅

𝑘

(𝑖) and 𝑑
𝑘

(ℎ + 1 − 𝑖) denote the receive index
anddisplacement value of packet x

𝑘−𝑖

, respectively. For packet
x
𝑘−𝑖

arriving at the actuator before the 𝑘𝑇 instant (including
𝑘𝑇 instant), if 𝑑

𝑘

(ℎ + 1 − 𝑖) ̸= 0, then a “disordering event” has
occurred in communication. Packet x

𝑘−𝑖

is late if𝑑
𝑘

(ℎ+1−𝑖) >

0, early if 𝑑
𝑘

(ℎ + 1 − 𝑖) < 0, and in order if 𝑑
𝑘

(ℎ + 1 − 𝑖) = 0

(see [19–21]). To guarantee the newest signals being executed
by the plant, the packets that arrive at the actuator late are
discarded. Define the following operators:

𝛿 (𝑑
𝑘

(ℎ + 1 − 𝑖)) = {
1 𝑑
𝑘

(ℎ + 1 − 𝑖) ≤ 0

0 𝑑
𝑘

(ℎ + 1 − 𝑖) > 0,
(3)

𝜃
𝑘

(𝑖) =

𝑖−1

∏

𝑗=0

(1 − 𝛿 (𝑑
𝑘

(ℎ + 1 − 𝑗))) 𝛿 (𝑑
𝑘

(ℎ + 1 − 𝑖)) , (4)
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Table 1: An example in Figure 1.

𝑥
𝑘−2

𝑥
𝑘−1

𝑥
𝑘

Exception values 1 2 3
Receive index 2 3 4
Displacement values 1 1 1

Parameters

𝜃
𝑘

(−1) = 1

𝜃
𝑘

(0) = 0

𝜃
𝑘

(1) = 0

𝜃
𝑘

(2) = 0

where ∏−1
𝑗=0

(1 − 𝛿(𝑑
𝑘

(ℎ + 1 − 𝑗))) = 1 (𝑖 = 0, 1, . . . , ℎ).
The function of 𝜃

𝑘

(𝑖) (𝑖 = 0, 1, . . . , ℎ) is to guarantee
that the newest signal is executed if it has arrived at the
actuator during the interval ((𝑘 − 1)𝑇, 𝑘𝑇]. Moreover, note
that it may happen not to receive new signal due to late
coming packet or packet loss; thus we design the following
controller:

u
𝑘

=

ℎ

∑

𝑖=0

𝜃
𝑘

(𝑖)Kx
𝑘−𝑖

+ 𝜃
𝑘

(−1) u
𝑘−1

, (5)

where

𝜃
𝑘

(−1) =

{{

{{

{

1 𝑑
𝑘

(ℎ + 1 − 𝑖) > 0,

∀𝑖 (𝑖 = 0, 1, . . . , ℎ)

0 otherwise.
(6)

Remark 1. As a matter of fact, the operators 𝜃
𝑘

(𝑖) (𝑖 =

−1, 0, . . . , ℎ) are defined for the purpose of selecting control
input. Note that 𝜃

𝑘

(𝑖) = 1 or 0, and ∑ℎ
𝑖=−1

𝜃
𝑘

(𝑖) = 1. 𝜃
𝑘

(𝑖) =

1 or 𝜃
𝑘

(𝑖) = 0 (𝑖 = 0, 1, . . . , ℎ), which is determined in
terms of the displacement values of packets. More detailed
explanations can be found in the examples in Figures 1 and
2, Tables 1 and 2. Since we choose event-triggered controller,
once x

𝑘−𝑖

arrives at the controller, control actionKx
𝑘−𝑖

is sent
to the actuator. When the displacement values of all packets
𝑑
𝑘

(ℎ + 1 − 𝑖) > 0 (𝑖 = 0, 1, . . . , ℎ); that is, there are no
new signals arriving the actuator during sampling interval
((𝑘 − 1)𝑇, 𝑘𝑇], 𝜃

𝑘

(−1) is set to be 1 by (6) and other 𝜃
𝑘

(𝑖) =

0 (𝑖 = 0, 1, . . . , ℎ) hold due to (4), which indicates the control
input u

𝑘−1

to act on the plant (see Figure 1 and Table 1).
Otherwise, 𝜃

𝑘

(−1) = 0 and there exists one 𝜃
𝑘

(𝑖) = 1 (𝑖 =

0, 1, . . . , ℎ). In this context, the newest control signal Kx
𝑘−𝑖

is
regarded as the control action u

𝑘

. It is worth pointing out that
the packet disordering, random time-varying transmission
delay, and packet loss are taken into account in the suggested
compensation control scheme (5), simultaneously. From this
point of view, it is readily seen that the proposed control
scheme (5) is quite general.

For further understanding compensation control scheme
(5), we study two examples shown in Figures 1 and 2
which illustrate the arriving timing of signals transmitted.
Expected arrival sequence numbers, assigned receive index
values, and displacement values for a sequence transmitted,

Table 2: An example in Figure 2.

𝑥
𝑘−1

𝑥
𝑘−1

𝑥
𝑘

Exception values 1 2 3
Receive index 1 3 4
Displacement values 0 1 1

Parameters

𝜃
𝑘

(−1) = 0

𝜃
𝑘

(0) = 0

𝜃
𝑘

(1) = 0

𝜃
𝑘

(2) = 1

Sensor

Actuator

kT

xk−2 xk−1 xk

(k + 1)T

Figure 1: Timing diagram of signals transmitting in the example
with packet disordering.

corresponding to Figures 1 and 2, are given in Tables 1 and 2,
respectively. In the two examples, we choose ℎ = 2, which
means that a group of 3 packets is used as the studying
object. From Table 1, we find that, packets x

𝑘−2

, x
𝑘−1

and
x
𝑘

are displaced by one unit from their positions, then all
of displacement values are equal to 1. In this context, the
actuator does not receive new signal during the sampling
interval ((𝑘 − 1)𝑇, 𝑘𝑇], which can be seen in Figure 1. By (3),
(4), and (6), we obtain 𝜃

𝑘

(−1) = 1 and 𝜃
𝑘

(0) = 𝜃
𝑘

(1) =

𝜃
𝑘

(2) = 0. And by (5), the control input u
𝑘−1

acts on
the plant, which is entirely consistent with the proposed
compensation control scheme that the latest control action
is utilized to control the plant when no new signal is available
during the sampling interval ((𝑘 − 1)𝑇, 𝑘𝑇]. In Figure 2,
note that packet x

𝑘−1

has lost. Similarly, by calculating, we
obtain 𝜃

𝑘

(2) = 1 and 𝜃
𝑘

(0) = 𝜃
𝑘

(1) = 𝜃
𝑘

(−1) = 0. Then,
Kx
𝑘−2

is used as the newest control input by virtue of (5).
Obviously, this result accords with the actual situation shown
in Figure 2.

Remark 2. Similar to [13], we execute the compensation
control scheme. However, there are two distinct differences
from [13]. The first one is that the stability analysis and
compensation strategy are investigated in the presence of
both packet loss and packet disordering simultaneously. In
this sense, the theory method presented in this paper extends
the results presented in [13], since packet disordering is
not taken into account in [13]. The second difference is
that an operator deciding how to choose control actions is
clearly defined based on the displacement values of packets,
while [13] control strategy is proposed in terms of delay
information.

Remark 3. Compared with the existing studies on NCSs
with packet disordering [10, 14–21], a key difference is
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Sensor

Actuator

kT

xk−2 xk−1 xk

(k + 1)T

Figure 2: Timing diagram of signals transmitting in the example
with packet loss.

that a compensation control scheme is proposed when no
new signal arrives at the actuator.

The closed-loop system can be obtained by substituting
(5) into (1):

x
𝑘+1

= A𝑥
𝑘

+ B(
ℎ

∑

𝑖=0

𝜃
𝑘

(𝑖)K𝑥
𝑘−𝑖

+ 𝜃
𝑘

(−1) u
𝑘−1

)

+D
1

w
𝑘

z
𝑘

= Cx
𝑘

+D
2

w
𝑘

.

(7)

Letting 𝜉T
𝑘

= [xT
𝑘

xT
𝑘−1

⋅ ⋅ ⋅ xT
𝑘−ℎ

] and 𝜂T
𝑘

= [𝜉
T
𝑘

uT
𝑘−1

], (7) is
expressed as

𝜉
𝑘+1

= A
11,𝑘

𝜉
𝑘

+ A
12,𝑘

u
𝑘−1

+ D̃
1

w
𝑘

u
𝑘

= A
21,𝑘

𝜉
𝑘

+ 𝜃
𝑘

(−1) u
𝑘−1

,

(8)

where

A
11,𝑘

=

[
[
[
[
[
[
[

[

A +M
0

M
1

⋅ ⋅ ⋅ M
ℎ−1

M
ℎ

I 0 ⋅ ⋅ ⋅ 0 0
...

... d
...

...
0 0 ⋅ ⋅ ⋅ I 0

]
]
]
]
]
]
]

]

,

A
12,𝑘

=

[
[
[
[
[
[
[

[

B𝜃
𝑘

(−1)

0
...
0

]
]
]
]
]
]
]

]

, D̃
1

=

[
[
[
[
[
[

[

D
1

0
...
0

]
]
]
]
]
]

]

,

A
21,𝑘

= [𝜃
𝑘

(0)K 𝜃
𝑘

(1)K ⋅ ⋅ ⋅ 𝜃
𝑘

(ℎ)K] ,

M
𝑖

= B𝑖
𝑘

(𝑖)K (𝑖 = 0, 1, . . . , ℎ) .

(9)

Further, we have

𝜂
𝑘+1

= A
𝑘

𝜂
𝑘

+D
1

w
𝑘

z
𝑘

= Ĉ𝜂
𝑘

+D
2

w
𝑘

,

(10)

where

A
𝑘

= [
Γ R

Λ (𝜃
𝑘

(0) , . . . , 𝜃
𝑘

(ℎ))K 𝜃
𝑘

(−1) I] ,

R = D̂F (𝑘)E
2

𝜃
𝑘

(−1) + B̂𝜃
𝑘

(−1) ,

Γ = Â + B̂Λ (𝜃
𝑘

(0) , . . . , 𝜃
𝑘

(ℎ))K

+ D̂F (𝑘) (Ê
1

+ E
2

Λ (𝜃
𝑘

(0) , . . . , 𝜃
𝑘

(ℎ))K) ,

Λ (𝜃
𝑘

(0) , . . . , 𝜃
𝑘

(ℎ)) = [𝜃
𝑘

(0) I ⋅ ⋅ ⋅ 𝜃
𝑘

(ℎ) I] ,

K = diag{K,K, . . . ,K⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(ℎ+1)

} , Ĉ = [C 0 ⋅ ⋅ ⋅ 0] ,

Â =
[
[
[
[

[

A 0 ⋅ ⋅ ⋅ 0 0
I 0 ⋅ ⋅ ⋅ 0 0
...

... d
...

...
0 0 ⋅ ⋅ ⋅ I 0

]
]
]
]

]

, B̂ =
[
[
[
[

[

B
0
...
0

]
]
]
]

]

,

Ê
1

= [E 0 ⋅ ⋅ ⋅ 0] ,

D̂ =
[
[
[
[

[

D
0
...
0

]
]
]
]

]

, D
1

= [
D̃
1

0 ] .

(11)

It is well known that the newest signals executed by
plant may be subject to some probability distribution [6];
here we will assume that the newest signals transmitted over
communication network are subject to Markovian chain.
Define d

𝑘

= [𝜃
𝑘

(−1), 𝜃
𝑘

(0), . . . , 𝜃
𝑘

(ℎ)]
T; since 𝜃

𝑘

(𝑖) = 1 or
0 (𝑖 = −1, 0, . . . , ℎ) and ∑ℎ

𝑖=−1

𝜃
𝑘

(𝑖) = 1, then, there are ℎ + 2
possible values for d

𝑘

, obviously. Similar to our prior effort
[21], for ease of notation, we define a vector-valued function
𝑓 : d
𝑘

→ 𝜎(𝑘) to map the vector d
𝑘

into a scalar number
𝜎(𝑘) ∈ I = {1, 2, . . . , 𝑟}, where 𝑟 = ℎ+2. 𝜎(𝑘) = 𝑖 also denotes
the No. 𝑖 (𝑖 ∈ I) subsystem of NCS (10). Moreover, transition
probability associated with the newest signals executed is
defined as 𝜋

𝑖𝑗

= Prob(𝜎(𝑘 + 1) = 𝑗 | 𝜎(𝑘) = 𝑖), where
𝜎(𝑘) = 𝑖 denotes d

𝑘

= [0, . . . , 1, . . . , 0]
T, namely, 𝜃

𝑘

(𝑖 − 2) = 1.
Obviously, ∑

𝑗∈I 𝜋𝑖𝑗 = 1. Thus, (10) is a Markovian jumping
system.

Remark 4. In this paper, the stability analysis and 𝐻
∞

con-
troller design are investigated on the premise that transition
probability matrix is fully known. Actually, the analysis
and control methods for NCSs with uncertain transition
probabilities have been developed, and we can refer to [22,
23].

3. Stability Analysis and𝐻
∞

Controller Design

In this section, we will present a sufficient condition for
𝐻
∞

control and the design of the controller gains K
𝑖

(𝑖 =

1, 2, . . . , 𝑟) adapting to No. 𝑖 switched subsystem.
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Lemma 5 (see [24]). For any matrices W, M, N, F(𝑘) with
FT(𝑘)F(𝑘) < I, and any scalar 𝜀 > 0, the following inequality
holds:

W +MF (𝑘)N + NTFT (𝑘)MT

≤W + 𝜀MMT
+ 𝜀
−1NTN.

(12)

Theorem6. For given scalars ℎ and 𝛾 > 0, matricesK
𝑖

, if there
exist matrices P

𝑖

> 0, Q
𝑖

> 0 (𝑖 ∈ I), such that

[
Υ
1

Υ
2

∗ Υ
3

] < 0, (13)

then the closed-loop system (10) is stochastic stable with
an 𝐻
∞

norm bound 𝛾, where Υ
1

= ∑
𝑗∈I 𝜋𝑖𝑗A

T
𝑘

W
𝑗

A
𝑘

+

𝛾
−1ĈTĈ − W

𝑖

,Υ
2

= ∑
𝑗∈I 𝜋𝑖𝑗A

T
𝑘

W
𝑗

D
1

+ 𝛾
−1ĈTD

2

, Υ
3

=

∑
𝑗∈I 𝜋𝑖𝑗D

T
1

W
𝑗

D
1

+ 𝛾
−1DT
2

D
2

− 𝛾I.

Proof. Without loss of generalization, we set 𝜎(𝑘) to be 𝑖.
Choosing a Lyapunov-Krasovskii functional candidate which
is given by

𝑉
𝑘

= 𝜂
T
𝑘

W
𝑖

𝜂
𝑘

, (14)

where

W
𝑖

= [
P
𝑖

0
0 Q
𝑖

] , (15)

we can obtain

𝐸𝑉
𝑘+1

− 𝑉
𝑘

= ∑

𝑗∈I

𝜋
𝑖𝑗

(A
𝑘

𝜂
𝑘

+D
1

w
𝑘

)
T
W
𝑗

× (A
𝑘

𝜂
𝑘

+D
1

w
𝑘

) − 𝜂
T
𝑘

W
𝑖

𝜂
𝑘

.

(16)

Let e
𝑘

= [𝜂
T
𝑘

wT
𝑘

]
T
; we can obtain𝐸𝑉

𝑘+1

−𝑉
𝑘

= eT
𝑘

Θ
𝑖

e
𝑘

, where

Θ
𝑖

=

[
[
[
[

[

−W
𝑖

+ ∑

𝑗∈I

𝜋
𝑖𝑗

AT
𝑘

W
𝑗

A
𝑘

∑

𝑗∈I

𝜋
𝑖𝑗

AT
𝑘

W
𝑗

D
1

∗ ∑

𝑗∈I

𝜋
𝑖𝑗

DT
1

W
𝑗

D
1

]
]
]
]

]

. (17)

And

𝛾
−1zT
𝑘

z
𝑘

− 𝛾wT
𝑘

w
𝑘

+ 𝐸𝑉
𝑘+1

− 𝑉
𝑘

= 𝜂
T
𝑘

(Θ
𝑖

+ Λ) 𝜂
𝑘

, (18)

where

Λ = [
𝛾
−1ĈTĈ 𝛾

−1ĈTD
2

∗ 𝛾
−1DT
2

D
2

− 𝛾I] . (19)

If (13) is satisfied, we have (Θ
𝑖

+Λ) < 0. Further, we can obtain

𝛾
−1zT
𝑘

y
𝑘

− 𝛾wT
𝑘

w
𝑘

+ 𝐸𝑉
𝑘+1

− 𝑉
𝑘

< 0. (20)

Then, 𝛾−1zT
𝑘

y
𝑘

− 𝛾wT
𝑘

w
𝑘

< −(𝐸𝑉
𝑘+1

− 𝑉
𝑘

). Summing up both
sides of the above inequality from 𝑘 = 0 to 𝑘 = 𝑛, using

the zero initial condition, we have ∑
𝑛

𝑘=0

‖z
𝑘

‖
2

<

𝛾
2

∑
𝑛

𝑘=0

‖w
𝑘

‖
2

− 𝛾𝐸𝑉
𝑛+1

for all 𝑛. Letting 𝑛 → ∞, we
have

z𝑘

2

2

< 𝛾
2
w𝑘

2

2

. (21)

If w
𝑘

≡ 0 and (13) holds, it is clear that Γ
𝑖

= −W
𝑖

+

∑
𝑗∈I 𝜋𝑖𝑗A

T
𝑘

W
𝑗

A
𝑘

< 0 can be implied by (13), then

𝐸𝑉
𝑘+1

− 𝑉
𝑘

≤ −𝛽xT
𝑘

x
𝑘

, (22)

where 𝛽 = min{𝜆min(−Γ𝑖), 𝑖 ∈ I}. Summing up both sides of
the above inequality from 𝑘 = 0 to 𝑘 = ℎ and Letting ℎ → ∞,
we can see that for any ℎ > 1

lim
ℎ→∞

𝐸𝑉 (ℎ + 1) − 𝑉 (𝜑
0

, 𝑠
0

)

≤ −𝛽 lim
ℎ→∞

ℎ

∑

𝑘=0

𝐸 (xT
𝑘

x
𝑘

)

(23)

or

lim
ℎ→∞

ℎ

∑

𝑘=0

𝐸 (xT
𝑘

x
𝑘

) ≤ lim
ℎ→∞

1

𝛽
𝑉 (𝜑
0

, 𝑠
0

) < ∞, (24)

where 𝜑
0

and 𝑠
0

are the initial condition of the system. The
stochastic stability is obtained.This completes the proof.

For the purpose of controller design, we give Theorem 7.

Theorem 7. For a given scalar ℎ
1

, if there exist matrices X
𝑖

>

0, Y
𝑖

, and F
𝑖

(𝑖 ∈ I), such that

[
[
[
[
[

[

−S
𝑖

0 Ξ
𝑖1

S
𝑖

Ĉ𝑇 Ĥ𝑇
𝑖

∗ −𝛾I Ξ
𝑖2

D𝑇
2

0
∗ ∗ Ξ

𝑖3

0 0
∗ ∗ ∗ −𝛾I 0
∗ ∗ ∗ ∗ −𝜀I

]
]
]
]
]

]

< 0, (25)

then K
𝑖

(K
𝑖

= F
𝑖

X−1
𝑖

,K
𝑖

= diag(K
𝑖

,K
𝑖

, . . . ,K
𝑖

)) are adaptive
controller gains with an𝐻

∞

norm bound 𝛾, where

Ξ
𝑖1

= [𝜌
𝑖1

N𝑇
𝑖

𝜌
𝑖2

N𝑇
𝑖

⋅ ⋅ ⋅ 𝜌
𝑖𝑟

N𝑇
𝑖

] ,

Ξ
𝑖2

= [𝜌
𝑖1

D𝑇
1

𝜌
𝑖2

D𝑇
1

⋅ ⋅ ⋅ 𝜌
𝑖𝑟

D𝑇
1

] ,

Ψ
𝑖

=

[
[
[
[

[

Ψ
𝑖,11

Ψ
𝑖,12

⋅ ⋅ ⋅ Ψ
𝑖,1𝑟

∗ Ψ
𝑖,22

⋅ ⋅ ⋅ Ψ
𝑖,2𝑟

∗ ∗ d
...

∗ ∗ ∗ Ψ
𝑖,𝑟𝑟

]
]
]
]

]

,

Ξ
𝑖3

= diag (−S
1

, −S
2

, . . . , −S
𝑟

) + Ψ
𝑖

,

𝜌
𝑖𝑗

= √𝜋
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑟) ,

N
𝑖

= [
Â
𝑘

X
𝑖

+ B̂Λ
𝑖

F
𝑖

B̂𝜃
𝑘

(−1)Y
𝑖

Λ
𝑖

F
𝑖

𝜃
𝑘

(−1)Y
𝑖

] ,

Ĥ
𝑖

= [Ê
1

X
𝑖

+ E
2

Λ
𝑖

F
𝑖

E
2

𝜃
𝑘

(−1)Y
𝑖

] ,

Ψ
𝑖,𝑙𝑗

= 𝜌
𝑖𝑙

∗ 𝜌
𝑖𝑗

𝜀D̃D̃𝑇 (𝑙, 𝑗 = 1, 2, . . . , 𝑟) .

(26)
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Figure 3: Transmission delay (a) and displacement values (b).

Proof. By Schur complement and Lemma 5, (13) is equivalent
to

[
[
[
[
[

[

−W
𝑖

0 Λ
𝑖1

ĈT HT
𝑖

∗ −𝛾I Ξ
𝑖2

DT
2

0
∗ ∗ Λ

𝑖3

0 0
∗ ∗ ∗ −𝛾I 0
∗ ∗ ∗ ∗ −𝜀I

]
]
]
]
]

]

< 0, (27)

where
Λ
𝑖1

= [𝜌
𝑖1

ÂT
𝑘

𝜌
𝑖2

ÂT
𝑘

⋅ ⋅ ⋅ 𝜌
𝑖𝑟

ÂT
𝑘

] ,

Λ
𝑖3

= diag (−W
1

, −W
2

, . . . , −W
𝑟

) + Ψ
𝑖

,

H
𝑖

= [Ê
1

+ E
2

Λ
𝑖

K
𝑖

E
2

𝜃
𝑘

(−1)] .

(28)

Pre- and postmultiplying both sides of (27) with
diag(W−1

𝑖

, I, . . . , I⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟+3

) and its transpose, letting X
𝑖

= P−1
𝑖

, Y
𝑖

=

Q−1
𝑖

, S
𝑖

=W−1
𝑖

, K
𝑖

X
𝑖

= F
𝑖

(𝑖 = 1, 2, . . . 𝑟), (25) can be derived.
Theorem 7 is completed.

4. Numerical Examples

In this section, we verify the effectiveness of the control
strategy proposed for NCSs with packet disordering and
packet loss. First, we show the control results for NCSs with
packet disordering and packet loss under two cases. One
is in the absence of structural uncertainty, and the other is
with uncertain structure. One can clearly see that the method
proposed has good robustness. Second, comparative studies
are performed to demonstrate clearly the advantages enjoyed
by the suggested compensation scheme described in this
paper.

Example 1. Consider the following unstable system:

x
𝑘+1

= ([
0.0885 −0.0659

−0.1538 0.2977
] + ΔA) x

𝑘

+ ([
0.5234

−0.0990
] + ΔB)u

𝑘

+ [
1.2544

0.5317
]w
𝑘

z
𝑘+1

= [0.0690 −0.3554] x
𝑘

+ 0.3304w
𝑘

,

(29)

where

D=[0.3885
0.3112

] , E
1

= [0.3237 −0.2128]

E
2

= 0.5243.

(30)

The transmission delays and displacement values of pack-
ets delivered over network are shown in Figure 3. It
should be explained that delay determines the arrival
orders of packets, based on which displacement values of
packets are calculated. Clearly, the bound of transmission
delay ℎ = 2 under assuming sampling period 0.15𝑠. Based on
the displacement values of packets, thus the jumping process
taking values in a finite set I = {1, 2, 3, 4}, standing for
I = {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}, governs the
switching among the different system modes, then 𝑟 = 4.
[1, 0, 0, 0] → 1 means no new signal arrives at the actuator,
𝑢(𝑘 − 1) acts on the plant; [0, 1, 0, 0] → 2means the newest
signalK

2

x
𝑘

transmitted over network is executed by the plant
at 𝑘𝑇 time instant, the rest may be deduced by analogy;
[0, 0, 0, 1] → 4 means the newest signal K

4

x
𝑘−2

transmitted
over network is executed by the plant at 𝑘𝑇 time instant.
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Figure 4: Markovian process of NCS with packet disordering and
dropouts competition.

Thus, the newest signals executed by the plant are subject
to Markovian process, whose switched states are shown in
Figure 4 and transition probability matrix is given as follows:

[
[
[

[

0.2000 0.5000 0 0.3000

0 0.2941 0.7059 0

0 0.4167 0 0.5833

0.2500 0.2813 0 0.4688

]
]
]

]

. (31)

4.1. Verification of Compensation Scheme. First, we consider
the systems without structural uncertainty in NCS. ByTheo-
rem 7, we obtain the following adaptive controller gains

K
2

= [−0.3271 0.5110]

K
3

= 1.0𝑒 − 03 ∗ [0.1137 −0.1898]

K
4

= 1.0𝑒 − 03 ∗ [−0.0474 0.1103] .

(32)

Second, if the uncertainty exists in the NCSs, by Theorem 7,
we also obtain the corresponding adaptive controller gains

K
2

= [−0.3903 0.5512]

K
3

= [−0.2038 0.3679]

K
4

= [−0.2869 0.3902] .

(33)

We choose the uncertain parameter 𝐹(𝑘) = sin(𝑘). At
the initial state value x

0

= [−1 − 3]
T, the states and

output response of the NCS, without uncertainty and with
uncertainty under the network environment in the presence
of packet disordering and packet loss competition, are shown
in Figures 5 and 6, respectively. Compared with the result
given in Figure 5, the NCS with uncertainty can be also
stabilized quickly using the competition controller designed
in this paper though there exist packet disordering and packet
dropout in communication network. This makes it clear that
the proposed control scheme has a good robustness.
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Figure 5: State and output response of the system.
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Figure 6: State and output response of the system.

4.2. Control Performance Comparison. It should be pointed
out that the discrete-time system in this example can be
inverted into a continuous-time system in [14, 20] if sampling
period 𝑇 = 0.1𝑠 is given. If w

𝑘

̸= 0, the 𝐻
∞

norm bounds
and corresponding controller gains are shown in Table 3 (“—”
denotes that the conditions are infeasible). Obviously, a more
optimal𝐻

∞

norm bound is obtained in this paper than those
in [14, 20] since the competition scheme is performed when
no signal is available by the plant due to packet disordering
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Table 3: Comparison of convergence time.

𝐻
∞

norm bound Controller gain
[14] — —

[20] 1.5 K = 1.0 ∗ 10−7

[0.1278 −0.0714]

This paper 0.6977
K
2

= [−0.4867 0.7869]

K
3

= [0 0]

K
4

= [0 0]
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Figure 7: Curves of state and output response of the system subject
to exogenous disturbance.

and packet loss. At the initial state value x
0

= [−1 −3]
T, the

disturbance input w(𝑡) is as follows:

w (𝑡) = {sin (𝑡) 5𝑠 ≤ 𝑡 < 20𝑠

0 otherwise,
(34)

the state and output response of the NCS in the presence of
packet disordering and packet loss are shown in Figure 7.

5. Conclusions

In this paper, we are concernedwith𝐻
∞

control ofNCSswith
compensation scheme. The aim of devised control scheme is
that the effect of packet disordering and packet loss on control
performance is eliminated. The main idea is that we first
describe the packet disordering and give the compensation
scheme when there are no new signals executed by the plant
during the sampling interval ((𝑘 − 1)𝑇, 𝑘𝑇]. Second, a model
of NCSs with Markovian jumping property is presented.
Furthermore, the stochastic stability and controller design are
discussed. Finally, a numerical example and simulations are
given to illustrate the advantages and the effectiveness of the
developed theory.
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This paper studies the consensus problem of multiple agents with general linear continuous-time dynamics. It is assumed that the
information transmission among agents is intermittent; namely, each agent can only obtain the information of other agents at some
discrete times, where the discrete time intervals may not be equal. Some sufficient conditions for consensus in the cases of state
feedback and static output feedback are established, and it is shown that if the controller gain and the upper bound of discrete
time intervals satisfy certain linear matrix inequality, then consensus can be reached. Simulations are performed to validate the
theoretical results.

1. Introduction

Consensus is one of the fundamental issues in the study
of distributed control of multiagent systems, and it has
wide applications in formation control of multiple robots,
communication among sensor networks, cooperative control
of unmanned aerial vehicles, and so forth. Much research
work on consensus has been emerged, and most of the
existing work focuses on the consensus problems of multiple
agents with special dynamics, such as first-order dynamics
(or single integrator) [1–10], second-order dynamics (or
double integrators) [11–19], and high-order dynamics [20, 21].
Consensus problems of second-order continuous-time mul-
tiagent systems are studied in [12–14], where the information
transmission among agents is intermittent. In [15–17], only
the partial state of second-order agent can be measured, and
thus, some static or dynamic output feedback controllers are
designed. In [20–22], consensus is studied for high-order and
nonlinear multiagent systems, respectively.

In recent years, the consensus of multiple agents with
general linear dynamics has been paid more and more
attention, such as [23–28], and the analysis of such multi-
agent systems is more challenging than the case of special

dynamics. In [24], consensus is considered in the case of
static output feedback, and it is proved that the consensus is
equivalent to the Hurwitz stable or Schur stable of a constant
matrix, which is determined by the topology and the system
dynamics. By studying the stability of the constant matrix, it
is shown that consensus can be reached for continuous-time
multiagent systems if and only if the system is stabilizable and
detectable and the topology has a spanning tree under some
rank constraints, and a necessary condition is also provided
for consensus of discrete-time multiagent systems. In [25],
consensus of continuous-time and discrete-time multiagent
systems under a dynamic output feedback controller, which
is actually a state estimator, is investigated, respectively. By
applying the result in [29], some sufficient and necessary
conditions are presented in [25]. In [26], the joint effect
of network topology, agent dynamics, and communication
data rate on consensus of discrete-time multiagent systems is
analyzed, and it is shown that under perfect state feedback,
consensus is reached if and only if the dynamics of each
agent is stabilizable and the unstable eigenvalues of each
agent satisfy some constraints. In [27], the 𝐻

∞

consensus
problem of continuous-time multiagent systems is studied
under dynamic output feedback by applying the robust
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control theory and linear matrix inequality technique. In
[28], consensus of discrete-time multiagent systems under
a dynamic output feedback controller, which is actually an
observer-type controller, is discussed, and the discrete-time
consensus region is analyzed for neurally stable agents and
unstable agents, respectively.

It should be mentioned that [23–25, 27] all study the
consensus of continuous-time multiagent systems, and the
information transmission among agents is continuous. How-
ever, due to the limitation of bandwidth, the cost of com-
munication, the technique constraints, and so forth, it is
possible to transmit information in the intermittent man-
ner. In addition, sampled-data control has many favorable
properties, such as flexibility, robustness, and low cost see
[30] for further details. Hence, it is also necessary to study
the consensus of general continuous-timemultiagent systems
with intermittent information transmission. To the authors’
best knowledge, there is little research work reported on this
problem. Based on the previous consideration, we analyze
the consensus of continuous-time multiagent systems with
general dynamics, where each agent can only obtain the
information of other agents at discrete times. Moreover, the
discrete time intervals may not be equal, which often occurs
in the event-driven systems or networked control systems
[31]. The sufficient condition for consensus and the method
to design controller gain are presented.

This paper is organized as follows. In Section 2,we present
some concepts in graph theory and formulate the model to
be studied. In Section 3, main results are stated. In Section 4,
simulations are provided to illustrate the effectiveness of the
theoretical results. Conclusion remarks aremade in Section 5.

Notations. Let 𝐼 or 𝐼
𝑛

∈ R𝑛×𝑛 be an identity matrix, and
1
𝑛

= [1, . . . , 1]
𝑇

∈ R𝑛; for symmetric matrices 𝐴 and 𝐵,
𝐴 < 𝐵 (resp., 𝐴 ≤ 𝐵) means that 𝐴 − 𝐵 is a negative definite
(resp., negative semidefinite)matrix;⊗denotes theKronecker
product operator, and 𝐶 ⊗ 𝐷 = [𝑐

𝑖𝑗

𝐷], where 𝐶 = [𝑐
𝑖𝑗

] and
𝐷 = [𝑑

𝑖𝑗

] are two matrices.

2. Preliminaries

2.1. Graph Theory. Some basic definitions in graph theory
[32] are first introduced.

A directed graph G consists of a vertex set V(G) and
an edge set E(G), where V(G) = {V

1

, . . . , V
𝑛

} and E(G) ⊂

{(V
𝑗

, V
𝑖

) : V
𝑗

, V
𝑖

∈ V(G)}. For edge (V
𝑗

, V
𝑖

), V
𝑗

is called the
parent vertex of V

𝑖

and V
𝑖

is called the child vertex of V
𝑗

. The
set of neighbors of vertex V

𝑖

is defined by 𝑁(G, V
𝑖

) = {V
𝑗

:

(V
𝑗

, V
𝑖

) ∈ E(G) and 𝑗 ̸= 𝑖}, and the associated index set is
denoted by 𝑁(G, 𝑖) = {𝑗 : V

𝑗

∈ 𝑁(G, V
𝑖

)}. A (directed) path
from V

𝑖

1

to V
𝑖

𝑘

is a sequence, V
𝑖

1

, . . . , V
𝑖

𝑘

, of distinct vertices
such that (V

𝑖

𝑗

, V
𝑖

𝑗+1

) ∈ E(G), 𝑗 = 1, . . . , 𝑘−1. A directed graph
G is strongly connected if there is a path from every vertex to
every other vertex. A directed tree is a directed graph, where
every vertex except one special vertex has exactly one parent
vertex, and the special vertex, called root vertex, has no parent
vertices and can be connected to any other vertices via paths.
A subgraph G

𝑠

of G is a graph such that V(G
𝑠

) ⊂ V(G)

and E(G
𝑠

) ⊂ E(G). G
𝑠

is said to be a spanning subgraph if
V(G
𝑠

) = V(G). For any V
𝑖

, V
𝑗

∈ V(G
𝑠

), if (V
𝑖

, V
𝑗

) ∈ E(G
𝑠

) ⇔

(V
𝑖

, V
𝑗

) ∈ E(G), then G
𝑠

is said to be an induced subgraph of
G andG

𝑠

is also said to be induced byV(G
𝑠

). A spanning tree
of G is a directed tree which is a spanning subgraph of G. G
is said to have a spanning tree if some edges form a spanning
tree ofG.

A matrix is called nonnegative if each of its elements is
nonnegative. A weighted directed graph G(𝐹) is a directed
graph G plus a nonnegative matrix 𝐹 = [𝑓

𝑖𝑗

] ∈ R𝑛×𝑛, where
𝑓
𝑖𝑗

> 0 ⇔ (V
𝑗

, V
𝑖

) ∈ E(G), and 𝑓
𝑖𝑗

is called the weight of
edge (V

𝑗

, V
𝑖

). The Laplacian matrix 𝐿 = [𝑙
𝑖𝑗

] ∈ R𝑛×𝑛 ofG(𝑓) is
defined as

𝑙
𝑖𝑗

=

{{{{

{{{{

{

−𝑓
𝑖𝑗

, 𝑖 ̸= 𝑗,

𝑛

∑

𝑠=1,𝑠 ̸= 𝑖

𝑓
𝑖𝑠

, 𝑖 = 𝑗.

(1)

The Laplacian matrix of G(𝐹) has the following proper-
ties.

Lemma 1 (see [2]).

(i) Zero is an eigenvalue of 𝐿, and 1
𝑛

is the associated right
eigenvector.

(ii) Zero is an algebraically simple eigenvalue of 𝐿, and all
the other eigenvalues are with positive real parts if and
only if G(𝐹) has a spanning tree.

2.2. Model. Consider a group of agents with the following
general continuous-time dynamics:

̇𝑥
𝑖

(𝑡) = 𝐴𝑥
𝑖

(𝑡) + 𝐵𝑢
𝑖

(𝑡) ,

𝑦
𝑖

(𝑡) = 𝐶𝑥
𝑖

(𝑡) , 𝑖 = 1, 2, . . . , 𝑛,
(2)

where 𝑥
𝑖

∈ R𝑚, 𝑢
𝑖

∈ R𝑝 and 𝑦
𝑖

∈ R𝑞, are the state, control
input, and output of agent 𝑖, respectively, and 𝐴, 𝐵, 𝐶 are
constant matrices.

Given 𝑢
𝑖

, 𝑖 = 1, . . . , 𝑛, we say that 𝑢
𝑖

or multiagent
system (2) solves a consensus problem asymptotically if
lim
𝑡→∞

(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) = 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, for any initial
states.

In this paper, we consider the case of intermittent infor-
mation transmission; namely, each agent can only obtain the
information of its neighbors at some discrete times 𝑡

0

, 𝑡
1

, . . .,
where 0 ≤ 𝑡

0

< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ . Let 𝑇
𝑘

= 𝑡
𝑘+1

− 𝑡
𝑘

, and assume
that 𝑇

𝑘

≤ 𝑑, 𝑘 = 0, 1, . . .; namely, all discrete time intervals
have a common upper bound. Note that all 𝑇

𝑘

may not be
equal.

In the case that the (relative) state of each agent can be
measured directly, we consider the following control input:

𝑢
𝑖

(𝑡) = 𝐾 ∑

𝑗∈𝑁(G,𝑖)

𝑎
𝑖𝑗

(𝑥
𝑗

(𝑡
𝑘

) − 𝑥
𝑖

(𝑡
𝑘

)) ,

𝑡 ∈ [ 𝑡
𝑘

, 𝑡
𝑘+1

) , 𝑖 = 1, 2, . . . , 𝑛,

(3)

where𝐾 is the controller gain to be designed.
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In some times, the state of each agent cannot bemeasured
directly, and thus, we also consider the following static output
feedback controller:

𝑢
𝑖

(𝑡) = 𝐾 ∑

𝑗∈𝑁(G,𝑖)

𝑎
𝑖𝑗

(𝑦
𝑗

(𝑡
𝑘

) − 𝑦
𝑖

(𝑡
𝑘

)) ,

𝑡 ∈ [𝑡
𝑘

, 𝑡
𝑘+1

) , 𝑖 = 1, 2, . . . , 𝑛.

(4)

Remark 2. Obviously, if 𝐴 is Hurwitz stable, then consensus
can be reached for 𝐾 = 0. Hence, we assume that 𝐴 is not
Hurwitz stable in this paper.

3. Main Results

In this section, we will present a sufficient condition for
consensus under controllers (3) and (4), respectively, and the
methods to design controller gains are also provided.

Let 𝑋(𝑡) = (𝑥
𝑇

1

(𝑡), 𝑥
𝑇

2

(𝑡), . . . , 𝑥
𝑇

𝑛

(𝑡))
𝑇, then multiagent

system (2) under controller (3) can be written as

𝑋(𝑡) = (𝐼
𝑛

⊗ 𝐴)𝑋 (𝑡) − (𝐿 ⊗ (𝐵𝐾))𝑋 (𝑡
𝑘

) ,

𝑡 ∈ [ 𝑡
𝑘

, 𝑡
𝑘+1

) , 𝑘 = 0, 1, . . . .

(5)

By Lemma 1, there exists an invertible matrix 𝑈, the first
column of which is 1

𝑛

, such that

𝑈
−1

𝐿𝑈 = (
0 𝛼

0 𝐻
) , (6)

where𝐻 ∈ R(𝑛−1)×(𝑛−1). Let 𝛿(𝑡) = (𝑈
−1

⊗ 𝐼
𝑚

)𝑋(𝑡); then

̇𝛿
1

(𝑡) = 𝐴𝛿
1

(𝑡) − (𝛼 ⊗ (𝐵𝐾)) 𝛿 (𝑡
𝑘

) , (7)

̇
�̃� (𝑡) = (𝐼

𝑛−1

⊗ 𝐴) 𝛿 (𝑡) − (𝐻 ⊗ (𝐵𝐾)) 𝛿 (𝑡
𝑘

) , (8)

where 𝛿(𝑡) = (𝛿
1

(𝑡)
𝑇

, 𝛿(𝑡)
𝑇

)
𝑇, 𝛿
1

(𝑡) ∈ R𝑚.
By the previous state transformation, it is easy to obtain

the following lemma.

Lemma 3. Controller (3) solves a consensus problem asymp-
totically if and only if system (8) is asymptotically stable.

Proof. Sufficiency. Let 𝑈 = [1
𝑛

, 𝑈
1

], where 𝑈
1

∈ R𝑛×(𝑛−1).
By 𝑋(𝑡) = (𝑈 ⊗ 𝐼

𝑚

)𝛿(𝑡), we have 𝑋(𝑡) = 1
𝑛

⊗ 𝛿
1

(𝑡) +

(𝑈
1

⊗ 𝐼
𝑚

)𝛿(𝑡). Clearly, if system (8) is asymptotically stable,
namely, lim

𝑡→∞

𝛿(𝑡) = 0, then lim
𝑡→∞

(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) = 0,
𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Necessity. Let 𝑈−1 = (𝑢
2

, 𝑈
𝑇

2

)
𝑇, where 𝑈

2

∈ R(𝑛−1)×𝑛. From
𝑈
−1

𝑈 = 𝐼
𝑛

, we have 𝑢𝑇
2

1
𝑛

= 1, 𝑈
2

1
𝑛

= 0. Since consensus

is reached, there exists 𝜙(𝑡) ∈ R𝑚 such that lim
𝑡→∞

(𝑥
𝑖

(𝑡) −

𝜙(𝑡)) = 0, 𝑖 = 1, 2, . . . , 𝑛. By 𝛿(𝑡) = (𝑈
−1

⊗ 𝐼
𝑚

)𝑋(𝑡),

𝛿 (𝑡) − (𝑈
−1

⊗ 𝐼
𝑚

) (1
𝑛

⊗ 𝜙 (𝑡))

= (𝑈
−1

⊗ 𝐼
𝑚

) (𝑋 (𝑡) − 1
𝑛

⊗ 𝜙 (𝑡))

⇒ 𝛿 (𝑡) − (
𝑢
𝑇

2

1
𝑛

𝑈
2

1
𝑛

) ⊗ 𝜙 (𝑡)

= (𝑈
−1

⊗ 𝐼
𝑚

) (𝑋 (𝑡) − 1
𝑛

⊗ 𝜙 (𝑡))

⇒ 𝛿 (𝑡) − (
1

0
) ⊗ 𝜙 (𝑡)

= (𝑈
−1

⊗ 𝐼
𝑚

) (𝑋 (𝑡) − 1
𝑛

⊗ 𝜙 (𝑡))

⇒ (
𝛿
1

(𝑡) − 𝜙 (𝑡)

𝛿 (𝑡)
)

= (𝑈
−1

⊗ 𝐼
𝑚

) (𝑋 (𝑡) − 1
𝑛

⊗ 𝜙 (𝑡))

⇒ lim
𝑡→∞

(
𝛿
1

(𝑡) − 𝜙 (𝑡)

𝛿 (𝑡)
)

= (
𝑢
𝑇

2

⊗ 𝐼
𝑚

𝑈
2

⊗ 𝐼
𝑚

) lim
𝑡→∞

(𝑋 (𝑡) − 1
𝑛

⊗ 𝜙 (𝑡)) .

(9)

By lim
𝑡→∞

(𝑋(𝑡) − 1
𝑛

⊗ 𝜙(𝑡)) = 0, it is easy to obtain
lim
𝑡→∞

𝛿(𝑡) = 0, which means that system (8) is asymptoti-
cally stable.

By Lemma 3, we will analyze the stability of system (8) by
applying the input delay approach [33], which is an effective
method to deal with the stability of continuous-time systems
with intermittent input.

Let 𝜏(𝑡) = 𝑡 − 𝑡
𝑘

, and let 𝑡 ∈ [𝑡
𝑘

, 𝑡
𝑘+1

); then 𝑡
𝑘

= 𝑡 − 𝜏(𝑡),
and system (8) can be rewritten as

̇
�̃� (𝑡) = (𝐼

𝑛−1

⊗ 𝐴) 𝛿 (𝑡) − (𝐻 ⊗ (𝐵𝐾)) 𝛿 (𝑡 − 𝜏 (𝑡))

= (𝐼
𝑛−1

⊗ 𝐴 − 𝐻 ⊗ (𝐵𝐾)) 𝛿 (𝑡)

+ (𝐻 ⊗ (𝐵𝐾)) (𝛿 (𝑡) − 𝛿 (𝑡 − 𝜏 (𝑡)))

= 𝐴𝛿 (𝑡) + (𝐻 ⊗ (𝐵𝐾)) 𝜉 (𝑡) ,

(10)

where 𝐴 = 𝐼
𝑛−1

⊗ 𝐴 − 𝐻 ⊗ (𝐵𝐾), 𝜉(𝑡) = 𝛿(𝑡) − 𝛿(𝑡 − 𝜏(𝑡)).
By 𝑇
𝑘

≤ 𝑑, we have 0 ≤ 𝜏(𝑡) ≤ 𝑑, 𝑘 = 0, 1, . . .. Obviously,
the stability of system (8) is equivalent to that of system
(10). By analyzing the stability of system (10), we obtain the
following main result.

Theorem 4. Assume that (𝐴, 𝐵) is stabilizable and the topol-
ogy graph has a spanning tree. Controller (3) solves a consensus
problem asymptotically if there exist positive definite matrices
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𝑃, 𝑅 such that 𝐾 and 𝑑 satisfy the following linear matrix
inequality:

(

𝑃𝐴 + 𝐴
𝑇

𝑃 𝑃 (𝐻 ⊗ (𝐵𝐾)) 𝐴
𝑇

𝑅

∗ −
1

𝑑
𝑅 (𝐻 ⊗ (𝐵𝐾))

𝑇

𝑅

∗ ∗ −
1

𝑑
𝑅

) . (11)

Proof. Consider the following Lyapunov-Krasovskii func-
tional for system (10):

𝑉 (𝑡) = 𝛿
𝑇

(𝑡) 𝑃𝛿 (𝑡) + ∫

𝑡

𝑡−𝑑

(𝑠 − 𝑡 + 𝑑)
̇
�̃�
𝑇

(𝑠) 𝑅
̇
�̃� (𝑠) 𝑑𝑠,

(12)

where 𝑃 > 0, 𝑅 > 0, and then

𝑉 (𝑡) = 2𝛿
𝑇

(𝑡) 𝑃
̇
�̃� (𝑡)

+ (−∫

𝑡

𝑡−𝑑

̇
�̃�
𝑇

(𝑠) 𝑅
̇
�̃� (𝑠) 𝑑𝑠 + 𝑑

̇
�̃�
𝑇

(𝑡) 𝑅
̇
�̃� (𝑡)) .

(13)

By Lemma 4 in [34],

∫

𝑡

𝑡−𝑑

̇
�̃�
𝑇

(𝑠) 𝑅
̇
�̃� (𝑠) 𝑑𝑠

≥
1

𝑑
(𝛿 (𝑡) − 𝛿 (𝑡 − 𝜏 (𝑡)))

𝑇

𝑅 (𝛿 (𝑡) − 𝛿 (𝑡 − 𝜏 (𝑡))) ,

(14)

and thus,

𝑉 (𝑡) ≤ 2𝛿
𝑇

(𝑡) 𝑃
̇
�̃� (𝑡)

−
1

𝑑
(𝛿 (𝑡) − 𝛿 (𝑡 − 𝜏 (𝑡)))

𝑇

𝑅 (𝛿 (𝑡) − 𝛿 (𝑡 − 𝜏 (𝑡)))

+ 𝑑
̇
�̃�
𝑇

(𝑡) 𝑅
̇
�̃� (𝑡)

= (𝛿
𝑇

(𝑡) , 𝜉
𝑇

(𝑡))𝑄(𝛿
𝑇

(𝑡) , 𝜉
𝑇

(𝑡))
𝑇

,

(15)

where

𝑄 = (

𝑃𝐴 + 𝐴
𝑇

𝑃 𝑃 (𝐻 ⊗ (𝐵𝐾))

∗ −
1

𝑑
𝑅

)

+ 𝑑(
𝐴
𝑇

(𝐻 ⊗ (𝐵𝐾))
𝑇

)𝑅 (𝐴 𝐻 ⊗ (𝐵𝐾)) .

(16)

By Schur complement, 𝑄 < 0 if and only if (11) is satisfied.
Hence, 𝑉(𝑡) < 0; namely, system (10) is asymptotically stable.
By Lemma 3, consensus is reached.

Remark 5. By [24], if (𝐴, 𝐵) is stabilizable and the topology
graph has a spanning tree, then there exists 𝐾 such that 𝐴 is
Hurwitz stable; namely, there exists 𝑃 > 0 such that 𝑃𝐴 +

𝐴
𝑇

𝑃 < 0. Obviously, if 𝑑 > 0 is small enough, then (11) must
be satisfied. Hence, by (11), we can find𝐾 and 𝑑which ensure
consensus.

1 2

34

Figure 1: Topology.
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Figure 2: State trajectories 𝑥
11

, 𝑥
21

, 𝑥
31

, 𝑥
41

during time interval
[0, 3].

Theorem 4 shows that if (𝐴, 𝐵) is stabilizable and the
topology graph has a spanning tree, then there exists con-
troller gain𝐾 and discrete times 𝑡

0

, 𝑡
1

, . . ., where 𝑡
𝑘+1

−𝑡
𝑘

≤ 𝑑,
𝑘 = 0, 1, . . ., such that consensus is reached. Moreover,𝐾 and
𝑑 can be obtained by (11), which can be solved easily by the
feasp solver in Matlab LMI Toolbox.

Similar to the analysis in the case of state feedback, the
consensus under controller (4) is equivalent to the asymptotic
stability of the following system:

̇
�̂� (𝑡) = 𝐴 𝛿 (𝑡) + (𝐻 ⊗ (𝐵𝐾𝐶)) 𝜁 (𝑡) , (17)

where𝐴 = 𝐼
𝑛−1

⊗𝐴−𝐻⊗ (𝐵𝐾𝐶), 𝜁(𝑡) = 𝛿(𝑡) − 𝛿(𝑡 − 𝜏(𝑡)). By
analyzing the stability of system (17), we obtain the following
result.

Theorem 6. Assume that (𝐴, 𝐵, 𝐶) is stabilizable and
detectable and the topology graph has a spanning tree.
Controller (4) solves a consensus problem asymptotically if
there exist positive definite matrices 𝑃, 𝑅 such that 𝐾 and 𝑑

satisfy the following LMI:

(

𝑃𝐴 + 𝐴
𝑇

𝑃 𝑃 (𝐻 ⊗ (𝐵𝐾𝐶)) 𝐴
𝑇

𝑅

∗ −
1

𝑑
𝑅 (𝐻 ⊗ (𝐵𝐾𝐶))

𝑇

𝑅

∗ ∗ −
1

𝑑
𝑅

) . (18)
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during time interval
[0, 3].
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Figure 4: State trajectories 𝑥
13

, 𝑥
23

, 𝑥
33

, 𝑥
43

during time interval
[0, 3].

Remark 7. Although only the synchronous case is considered,
the method in our paper can be applied to study the
asynchronous case; namely, the discrete times of each agent
are independent of the others.

4. Simulations

Consider the system of four agents, where the topology
among four agents is shown in Figure 1.The dynamics of each
agent are

̇𝑥
𝑖

= 𝐴𝑥
𝑖

+ 𝐵𝑢
𝑖

, 𝑖 = 1, 2, 3, 4, (19)

where 𝑥
𝑖

= (𝑥
𝑖1

, 𝑥
𝑖2

, 𝑥
𝑖3

)
𝑇, and

𝐴 = (

1 0 2

2 1 1

1 0 −2

) , 𝐵 = (

1

2

1

) . (20)

Since rank(𝐵, 𝐴𝐵, 𝐴2𝐵) = 3, (𝐴, 𝐵) is stabilizable. It is easy
to verify that 𝐴 is Hurwitz stable for 𝐾 = (−4, 5, 2). By using
the feasp solver inMatlab LMI Toolbox, (11) is feasible for 𝑑 =

0.0625 and it is infeasible for𝑑 = 0.0626, whichmeans that for
𝐾 = (−4, 5, 2), the maximum 𝑑 satisfying (11) is 𝑑 = 0.0625.
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Figure 5: State trajectories 𝑥
11

, 𝑥
21

, 𝑥
31

, 𝑥
41

during time interval
[7.5, 9.5].
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Figure 6: State trajectories 𝑥
12

, 𝑥
22

, 𝑥
32

, 𝑥
42

during time interval
[7.5, 9.5].

ByTheorem 4, for𝐾 = (−4, 5, 2), consensus can be reached if
the maximum discrete time interval is not larger than 0.0625.

Without loss of generality, the discrete time intervals are
chosen from (0, 0, 0625] randomly.Then the state strategies of
four agents during time interval [0, 3] are shown in Figures 2,
3, and 4, and the state strategies of four agents during time
interval [7.5, 9.5] are shown in Figures 5, 6, and 7, which
validate our theoretical results.

5. Conclusion

This paper has studied the consensus problem of continuous-
time multiagent systems with general linear dynamics and
nonuniform sampling. By applying a state transformation
and the input-delay approach, the consensus under consider-
ation is equivalent to the asymptotic stability of a continuous-
time systemwith time-varying delay. By analyzing the asymp-
totic stability of the continuous-time system, it is shown
that there exist a controller gain and discrete times such
that consensus can be reached. Furthermore, the controller
gain and the upper bound of discrete time intervals can
be obtained easily by solving a linear matrix inequality.
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Figure 7: State trajectories 𝑥
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, 𝑥
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during time interval
[7.5, 9.5].

Simulations have been provided to illustrate the effectiveness
of the theoretical results.
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This paper addresses the optimal bandwidth scheduling problem for a double-layer networked learning control system (NLCS). To
deal with this issue, auction mechanism is employed, and a dynamic bandwidth scheduling methodology is proposed to allocate
the bandwidth for each subsystem. A noncooperative game fairness model is formulated, and the utility function of subsystems is
designed. Under this framework, estimation of distribution algorithm (EDA) is used to obtain Nash equilibrium for NLCS. Finally,
simulation and experimental results are given to demonstrate the effectiveness of the proposed approach.

1. Introduction

Networked control systems (NCSs) are the multiple feedback
control loops closed via a serial communication channel.
Compared with the traditional point-to-point control sys-
tem, the advantages of NCSs are sharing of information
resources, powerful system diagnosis, distributed remote
control, modular design, configuration flexibility, and low
cost [1–4]. As a result, NCSs have been widely used in
national defense, aircraft, industrial automation, intelligent
transportation, process control, and financial management
[5]. And some useful results were reported on network
protocol [6], network-induced delay [7–9], packet dropout
[10–12], NCS structure [13], security [14, 15], scheduling [16–
19], and network constraints [20].

It is notable that most of the aforementioned researches
are focused on single-layer network structure; few results
have been reported on NCSs with double-layer structure.
As pointed out by [21, 22], a networked learning control
system (NLCS) with double-layer structure can obtain better
control performance and stronger robustness. Nonetheless,
in real-time NLCS with limited network resources, random
network-induced delay may have a significant impact on
the performance and stability of the system [23]. The band-
width availability is the major concern in many networking

problems. A good schedule gives an appropriate resource
allocation to network nodes and reduces packet collision.The
performance of network applications is directly affected by
the amount of available bandwidth and the sampling rate
[24].Therefore, the quality of service (QoS) and the quality of
control (QoC) depend not only on the control algorithm and
the system structure but also on the allocating and scheduling
of the network resources. A more optimal allocation of the
network bandwidth is the key to improve QoS and QoC.
Due to the above discussion, bandwidth scheduling and
optimizing is studied, based on the structure of the NLCS,
in this paper.

We know that if each node is allowed to occupy net-
work resource as much as possible according to its own
requirements, the overall system performance will be very
poor [25]. The limitations of the network resources cause
the competition among many network nodes.These network
nodes will maximize their own network utility, which forms
a noncooperation game among them [26]. To meet the
demands of individual and entirety in the NLCS, a network
bandwidth scheduling strategy based on a noncooperation
game model and auction mechanism is introduced. The
auctionmechanismwill be used at the high-layer level in cen-
tralized control method, and the control system performance
will be estimated by the cumulative amount of the output
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errors of the closed control loops. Considering the difficulty
of the precise calculation, EDA is applied to obtain an optimal
solution.

The remainder of this paper is organized as follows:
Section 2 describes NLCS and scheduling optimization
schemes. Section 3 explains the auction-based methodology
of bandwidth allocation and presents a fair noncooperative
game model for scheduling in NLCS. Section 4 shows how
to use the EDA-based optimization algorithm to find the
equilibrium point of the game model. Simulation and exper-
imental results are provided in Section 4. Finally, Section 5
concludes the results of this study.

Notation. Throughout this paper, R𝑛 denotes the 𝑛-dimen-
sional Euclidean space. The superscript “𝑇” denotes matrix
transposition. And the notation Z+ stands for the set of
nonnegative integers.

2. Problem Formulation

2.1. System Structure. A typical double-layer NLCS structure
is shown in Figure 1 [21, 22]. Suppose that the number of
closed-loop subsystems in the lower layer communication
network (LLN) is 𝑀 and there are two data transfer nodes
(the sensor node and the controller node) in every closed-
loop subsystem, the number of the total data transfer points
will be 𝑁 = 2𝑀. In this figure, C𝑖, A𝑖, and S𝑖 represent 𝑖th
controller, actuator, and sensor, respectively. The actuator is
event driven, and the controller and sensor are time driven.
The sampling period is longer than the polling period of the
system.The data (sampling data, node identities, and others)
are packed by sensors and sent to the controller. Then, such
data will be used to calculate the control commands in the
controller, which will be packed and sent to the actuator, then
the actuator will update the control algorithm based on the
new control commands. At the same time, the upper layer
communication network (ULN) collects data of the control
performance of the subsystems from the LLN controllers
through shared network (LAN, WAN, or Internet) and then
optimizes the sampling period and control parameters based
on a self-adaptive and scheduling algorithm.

The timing diagram of bandwidth allocation is illus-
trated in Figure 2. The controllers report their bandwidth
requirements to the learning and scheduling center through
the ULN during 𝑇

𝑃

(the polling period). Then the center
collects information and allocates bandwidths during𝑇

𝐴

(the
allocation period). According to the given bandwidth and
the scheduling algorithm, all control loops send data during
𝑇
𝑇

(the transmission period). After 𝑇
𝑂

(the total operating
period), a new period begins.

2.2. The Controlled Plants. The dynamics of the remote
controlled plant is given by the following linear model:

x (𝑘 + 1) = Fx (𝑘) + Gu (𝑘) , (1)

where 𝑘 ∈ Z+; x(𝑘) ∈ R𝑛 is the plant state; u(𝑘) ∈ R𝑚 is the
control input; F and G are known matrices with appropriate
dimensions. Suppose that the full state variables are available

Controller

Sensor

Complex plant

Actuator

Lower layer network

Control loop i

Control
loop 1

Control

Upper layer network

Learning and
scheduling center

(Ci)

(Si) (Ai)

loop M· · · · · ·

Figure 1: The structure of double-layer NLCS.
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Figure 2: Timing diagram of bandwidth allocation.

in the networked subsystem.The sensor is time driven, that is,
at time instant 𝑘ℎ, it sends the most recent motor state and its
timestamp to the controller via the network. Note that (1) can
be considered as discretized from a continuous-time system
given by

̇x
𝑝

(𝑡) = Ax
𝑝

(𝑡) + Bu (𝑡) , (2)

with the sampling period ℎ and

F = 𝑒
Aℎ
, G = ∫

ℎ

0

𝑒
A𝜏
𝑑𝜏B. (3)



Mathematical Problems in Engineering 3

The electromechanical dynamics of the networked dc-
motor subsystem used in this paper can be described as

̇𝑖
𝑎

= −
𝑅

𝐿
𝑖
𝑎

−
𝐾
𝑏

𝐿
𝜔 +

1

𝐿
𝑢,

̇𝜔 =
𝐾
𝑡

𝐽
𝑖
𝑎

−
𝐵

𝐽
𝜔,

(4)

where 𝑖
𝑎

is the armature winding current; 𝜔 is the rotor
angular speed; 𝑢 is the armature winding input voltage;
𝑅 is the armature winding resistance; 𝐿 is the armature
winding inductance; 𝐾

𝑏

is the back-electromotive-force-
(EMF-) constant; 𝐾

𝑡

is the torque constant; 𝐵 is the system
damping coefficient; 𝐽 is the system moment of inertia. The
parameters of the dc-motor subsystem are listed in Table 1.

By letting𝑥
𝑝

≜ [𝑖
𝑎

, 𝜔]
𝑇 and the rotor angular speed𝑦 = 𝜔,

the dc-motor subsystem as Loop 1 can be expressed by

̇𝑥
𝑝

(𝑡) = [
−1579.9 −4.1

430.3 −0.1
] 𝑥
𝑝

(𝑡) + [
318.473

0
] 𝑢 (𝑡) , (5)

𝑦 (𝑡) = [0 1] 𝑥
𝑝

(𝑡) . (6)

2.3. NLCS Performance Analysis. The performance of the
NLCS can be demonstrated jointly by the subsystems, and
the performance of the subsystem can be described by a
function, such as the integral absolute error (IAE) [27]. The
system error will be greater if some control loop is disturbed,
indicating that the sampling frequency should be raised to a
degree that enables the system to return to the equilibrium
point rapidly. If the error is smaller, no higher sampling
frequency is needed. Figure 3 shows the cumulative error of
a rotor speed for a broad range of sampling rates from ℎ =

0.05 ⋅ ⋅ ⋅ 0.5 s. Integral absolute error = ∫
𝑡

𝑒

0

| ̇𝜃(𝑡)|𝑑𝑡, where 𝑡
𝑒

is the evaluation time interval. As it can be seen in Figure 3,
the relation between control performance and a range of
allowed periods can be approximated by a linear relationship
[28] as (7). Consider the following

𝑒
𝑖

(𝑡
𝑖

) = 𝛼
𝑖

+ 𝛽
𝑖

𝑡
𝑖

, (7)

where 𝛼
𝑖

and 𝛽
𝑖

are specific for each control loop and can be
determined prior to system run time. Due to the calculation
of the gradient in solving optimization problems, 𝛼

𝑖

could be
ignored.

For each control loop, the relation between sampling
period 𝑡

𝑖

and allocation bandwidth 𝑥
𝑖

is given by [29]

𝑡
𝑖

=
𝑐
𝑖

𝑥
𝑖

, (8)

where 𝑐
𝑖

is the control time of the control loop (which may
contain data exchange from sensor to controller and from
controller to actuator, as well as the time spent to execute the
controller); hypothetically 𝑐

𝑖

is within a sampling period.
On one hand, the QoC of each subsystem should be

improved, on the other hand, the demands of network
bandwidth of each subsystem should be reduced to provide
more resources for extra subsystems. Due to the bandwidth
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Table 1: The parameters of the dc-motor subsystem.

𝑅 Motor winding resistance 4.961Ω

𝐿 Motor winding inductance 3.14 × 10
−3H

𝐾
𝑏

Back-EMF constant 1.276 × 10
−2 Vs/rad

𝐾
𝑡

Electric torque constant 7.105 × 10
−2 N⋅m/A

𝐽 Motor moment of inertia 1.6511 × 10
−4 kg⋅m2

𝐵 Damping coefficient 23.64 × 𝑒
−6N⋅m⋅sec/rad

limitations, a multiobjective optimization problem can be
expressed as follows

OP : min 𝛿J1 + (1 − 𝛿) J2

s.t.
𝑀

∑

𝑖=1

𝑥
𝑖

≤ 1 − 𝛾,

𝑥
min
𝑖

≤ 𝑥
𝑖

≤ 𝑥
max
𝑖

,

(9)

where J1 = ∑
𝑀

𝑖=1

(𝛼
𝑖

+ 𝛽
𝑖

𝑡
𝑖

) = ∑
𝑀

𝑖=1

(𝛼
𝑖

+ 𝛽
𝑖

𝑐
𝑖

/𝑥
𝑖

), J2 = ∑
𝑀

𝑖=1

𝑥
𝑖

,
0 < 𝛿 < 1. To deal with the accidental overload and avoid
the sudden deterioration of the system performance, the scale
factor 𝛾 is introduced to retain part of the bandwidth. 𝑥min

𝑖

and 𝑥
max
𝑖

can be calculated based on the resource constraints
of the control loop and the maximum allowable delay bound
(MADB) [30].

3. Main Results

The game model based on auction mechanism is discussed
in this section. Auction theory is first proposed by Vickrey in
1961, which mainly includes four basic types: English auction
(ascending-bid auction), Dutch Auction (descending-bid
auction), and first price auction and second price auction
(Vickrey auction).Thehighest offerwill win the bid nomatter
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what type of auction is used, and the optimum outcome is
that the price exactly equals what the second highest bidder
can afford.

Remark 1. It is worth noting that the first two kinds of auction
mechanism are bidding open, and the others are sealed. In
sealed auction, each bidder submits his price without any
information of others, then the auctioneer announces the
winner who offers the highest bid. Both of them are suitable
for bandwidth allocation in NLCS. The only difference
between first and second price auction is the actual price that
the winner paid. For second price auction, the winner just
needs to pay the second highest bid of others instead of his
own. For ease of operation, first price auction is applied in
this paper.

The closed-loop control subsystem is modeled as a player.
Every player is not explicitly aware of the existence of other
players and their status. Each player puts forward its own
bandwidth strategy denoted as 𝑥

𝑖

. Obviously, the band-
width consumption of each player will affect the bandwidth
allocation of other players, but it is impossible to improve
the working performance by only increasing the bandwidth
requirement. So, a noncooperative game is formed among
the closed-loop control subsystems in NLCS. In the game,
ULN plays the roll of auctioneer, and every player will pay the
bandwidth based on their own bidding strategy and the final
bandwidth they have got. The bidding and auction process is
shown as follow.

Step 1. Every player has the same amount of money 𝑔 before
every round of bidding begins.

Step 2. Every player submits the price 𝑦
𝑖

(𝑦
𝑖

∈ [0, 𝑔]) based
on their own bandwidth requirement.

Step 3. ULN will run the bandwidth allocation programs
based on the bidding prices and allocate the bandwidth
resources to each player.

Step 4. Every player will pay for the bandwidth they have got.

The price of bandwidth 𝑥
𝑖

defined as 𝑦
𝑖

which player 𝑖
needs to pay can be calculated from

𝑦
𝑖

= 𝜆𝑥
𝑖

, (10)

where 𝜆 is the price of unity bandwidth.The revenue function
of every player can be described as follow:

𝑆
𝑖

(𝑥
𝑖

) = {
𝑈
𝑖

(𝑥
𝑖

) − 𝑦
𝑖

, if𝑦
𝑖

> 0,

𝑈
𝑖

(0) , if𝑦
𝑖

= 0.
(11)

Further, the revenue function based on auction theory
and IAE evaluation method is shown as (12):

𝑆
𝑖

(𝑥
𝑖

) = ln(1 + 1

𝑒
𝑖

) − 𝑦
𝑖

= ln(1 + 1

𝛽
𝑖

𝑡
𝑖

) − 𝜆𝑥
𝑖

= ln(1 +
𝑥
𝑖

𝛽
𝑖

𝑐
𝑖

) − 𝜆𝑥
𝑖

.

(12)

Obviously, the revenue of the player is determined by the
received QoC and the payment under certain QoS. Every
player will make the bidding strategy based on their own
revenue and will not increase the price aimlessly. If a player
overly spends its money for a much larger bandwidth than its
actual need, it will only get a low payoff due to the reduced
network utility.Themoney each player has to pay is based on
the bandwidth they have got, whichmay not match the initial
offer.

Every player in LLN wants to maximize their revenue
under the framework of NLCS. ULN will make a network
resources allocation strategy which makes it impossible to
get more bandwidth resources through changing the offer.
Generally speaking, the network utility of a single node
depends on the scheduling strategy of others. If there is no
node chooses other scheduling strategies when the schedul-
ing strategies of other nodes that are decided, this equilibrium
will not be broken in the network. This equilibrium is called
Nash equilibrium (NE) [31]. Thus, the allocation problem of
the network resources can be transformed into the solution
of the Nash equilibrium with a noncooperation game model.

To address the modelling problem, we introduce the
following definitions to prove the existence and uniqueness
of Nash equilibrium in NLCS.

Definition 2. A noncooperative networked learning control
game (NNLCG) with 𝑀 players participated in, 𝑁𝐺 =

(Γ, {𝑋
𝑖

}, {𝑆
𝑖

(⋅)}), where Γ = {1, 2, . . . ,𝑀} is the index set of
players, {𝑋

𝑖

} is a strategy profile, and {𝑆
𝑖

(⋅)} is the revenue
function set of players. If 𝑥∗

𝑖

is the best strategy of player
𝑖 when other players choose strategies 𝑥∗

−𝑖

= (𝑥
∗

1

, . . . , 𝑥
∗

𝑖−1

,

𝑥
∗

𝑖+1

, . . . , 𝑥
∗

𝑀

) which is shown in (13), 𝑥∗ = (𝑥
∗

1

, . . . , 𝑥
∗

𝑖

, . . . ,

𝑥
∗

𝑀

) will be a Nash equilibrium. One has the following:

𝑆
𝑖

(𝑥
∗

𝑖

, 𝑥
∗

− 𝑖

) ≥ 𝑆
𝑖

(𝑥
𝑖

, 𝑥
∗

− 𝑖

) , ∀𝑥
𝑖

∈ 𝑋
𝑖

, 𝑖 ∈ Γ. (13)

Definition 3. The function 𝑆
𝑖

(⋅) : 𝑋
𝑖

→ R1
+

defined on the
convex set𝑋

𝑖

is quasi concave in 𝑥
𝑖

if and only if

𝑆
𝑖

(𝜉𝑥
𝑖

+ (1 − 𝜉) 𝑥


𝑖

, 𝑥
−𝑖

) ≥ min (𝑆
𝑖

(𝑥
𝑖

, 𝑥
−𝑖

) , 𝑆
𝑖

(𝑥


𝑖

, 𝑥
−𝑖

))

(14)

for all 𝑥
𝑖

, 𝑥


𝑖

∈ 𝑋
𝑖

and 𝜉 ∈ [0, 1].

Theorem 4. A Nash equilibrium exists in game 𝑁𝐺 = (ℵ,

{𝑃
𝑗

}, {𝑢
𝑗

(⋅)}) if for all 𝑗 ∈ ℵ:

(1) 𝑃
𝑗

is a nonempty, convex, and compact subset of some
Euclidean spaceR𝑁.

(2) 𝑢
𝑗

(𝑝) is continuous in 𝑝 and quasi concave in 𝑝
𝑗

.

Proof. Theorem 4 can be obtained using the classical Kaku-
tani fixed-point theorem and in some sense generalizesNash’s
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setting on the strategy space of the players. For the proof of
this theorem, please refer to [32].

Theorem 5. A Nash equilibrium exists in the NNLCG,𝑁𝐺 =

(Γ, {𝑋
𝑖

}, {𝑆
𝑖

(⋅)}).

Proof. By Theorem 4, we know that there exists a Nash
equilibrium in NNLCG when the conditions in Theorem 4
are satisfied. Each player in NNLCG has a strategy space
[𝑥

min
𝑖

, 𝑥
max
𝑖

], 𝑥min
𝑖

> 0, and 𝑥
min
𝑖

≤ 𝑥
max
𝑖

. Thus, the first
condition is satisfied. It remains to prove that the revenue
function 𝑆

𝑖

(𝑥) is quasi concave in 𝑥
𝑖

for all 𝑖 in NNCG.
The first-order differential of the revenue function 𝑆

𝑖

(⋅) is

𝜕𝑆
𝑖

(𝑥
𝑖

)

𝜕𝑥
𝑖

=
1

𝛽
𝑖

𝑐
𝑖

+ 𝑥
𝑖

− 𝜆. (15)

The second-order differential of the revenue function 𝑆
𝑖

(⋅)

is

𝜕𝑆
2

𝑖

(𝑥
𝑖

)

𝜕𝑥2
𝑖

= −
1

(𝛽
𝑖

𝑐
𝑖

+ 𝑥
𝑖

)
2

< 0. (16)

Known from the above equations, the revenue function
is continuous and differentiable in 𝑥 and concave in 𝑥

𝑖

. A
concave function 𝑆

𝑖

(𝑥) is quasi concave too. This completes
the proof of the theorem.

Theorem 6. The NNLCG has a unique equilibrium.

Proof. Theproof of the unique equilibrium can be carried out
by following similar lines as in the proof ofTheorem 2 in [33]
and is thus omitted here to avoid unnecessary repetition.

Up to now, the problem of network resources allocation
under a general framework of double-layer NLCS has be
changed into the problem of Nash-equilibrium-point solving
in the noncooperation game model. It is hard to solve the
Nash equilibrium point by the traditional numerical method.
So, estimation of distribution algorithm (EDA) is introduced
in this paper to find the Nash equilibrium point. The EDA
algorithm used in this paper is described as follows.
Rule 1. Initialization: generate gain candidates meeting the
ratio of bandwidth (RoB) randomly to form an initial pop-
ulation.
Rule 2. Repeat the following steps until the termination cri-
terion is met.

(a) Selection: select the best gain candidates from the
parent generation.

(b) Updating: update using the selected promising gain
candidates.

(c) Sampling: generate gain candidates meeting RoB
based on the updated; copy the best gain candidate
in the current population to the next population.

For more details about EDA, please refer to [34, 35], and
the reference therein.

4. Experiments and Result Analysis

In this section, an illustrative example is presented to show
the effectiveness of the proposed method. To this end, let

Table 2: Parameters of the rest two subsystems.

Parameter A Parameter B

Loop 2 [
0 1

1 −217.4
] [

0

1669.5
]

Loop 3 [
−579.9 −4.1

30.3 −0.01
] [

18.4713

0
]

Table 3: Simulation results of comparison test.

EBA ABA
IAE RoB IAE RoB

Loop 1 0.8199 0.30 0.9090 0.22

Loop 2 1.4720 0.30 1.2629 0.37

Loop 3 1.2310 0.30 1.1375 0.31

Total 3.5229 0.90 3.3094 0.90

Table 4: Statistics of the 30 simulation results.

EBA ABA
Mean value 1.9048 2.3154

Standard deviation 0.0603 0.0696

us consider a double-layer NLCS as shown in Figure 1. The
considered NLCS has three different networked dc-motor
subsystems, where one takes the form (5) and the models
of the rest two subsystems are listed in Table 2. Apparently,
𝛾 = 0.1, 𝑇

𝑂

= 0.5 s, 𝑇
𝐿

= 0.005 s, 𝑇
𝑃

= 0.03 s, and the rest of
𝑇
𝑂

is 𝑇
𝑇

. The allocation period 𝑇
𝐴

is very short compared to
𝑇
𝐿

so that 𝑇
𝐴

can be assumed to be zero.
The auction-based bandwidth allocation (ABA) has an

initial population of 100 solutions and ten generations.When
the overall fitness value is stabilized, the Nash equilibrium
point is reached. The bandwidth vector allocated by the
ULN in this case is 𝑥

∗

= [0.22 0.37 0.31]
𝑇. To illustrate

the improving level of QoC and the bandwidth occupied,
we compare ABA with equal bandwidth allocation (EBA),
which is a simple static bandwidth allocation method. And
the ratio of bandwidth given to player 𝑖 can be quickly
computed by 𝑥

𝑖

= (1 − 𝛾)/𝑀. The IAE and the RoB of
two different strategies are given in Table 3. Accordingly, the
step responses of three networked dc-motor subsystems with
given corresponding RoB are shown in Figure 4.

As shown in Table 3 and Figure 4, the control perfor-
mance of networked subsystem degrades when network
conditions becomeworse (given less RoB).This phenomenon
is reasonable, since each dc-motor subsystem performance
worsens with longer time delays and more packet losses. It
is notable that some loop has higher value of IAE in ABA
than EBA; the ABA still gives the better overall performance
according to the simulation results. So this equal bandwidth
allocation method may be ineffective, since some loops may
not receive enough bandwidth according to their demands,
while others may receive unnecessary bandwidth compared
to them.

Figure 5 shows the box-and-whisker diagram of system
revenue over 30 paired simulation. And the statistics of
the 30 simulation results are listed in Table 4. The same
network condition is used in the simulation of networked
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system using the ABA and the EBA. Note that the 30 paired
runs used 30 different network conditions and they were
generated randomly under the given network constraints.
Obviously, the overall payoff of ABA is higher than EBA.
Based on themean value of systempayoffusingABAandEBA
(denoted as 𝐽ABA and 𝐽EBA, resp.), as listed in Table 4, we can
further conclude that, comparing with EBA on the average,
ABA method increases the system payoff by 21.56% [(𝐽ABA −

𝐽EBA)100%/𝐽EBA].
Motivated by the results, we found that auction-based

bandwidth allocation that optimizes resource scheduling
strategy can effectively meet the desired objectives in the
resource-constrained NLCS.

5. Conclusion

This paper presents a noncooperation game model based
on Nash theory and auction mechanism for bandwidth
allocation in NLCS with limited resources. And the esti-
mation of distribution algorithm is introduced to solve the
problem effectively. The proposed method forces all players
sharing the same network to have allocated bandwidths at
Nash equilibrium point. Network resources are allocated in
the optimum way to reduce delays and packet losses, and
the overall performance of systems with communication
constraints is significantly improved. The simulation and
experiment results indicate the effectiveness and availability
of the proposed approach.
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This paper studies robust consensus problem for multiagent systems modeled by an identical linear time-invariant system under
a fixed communication topology. Communication errors in the transferred data are considered, and only the relative output
information between each agent and its neighbors is available. A distributed dynamic output feedback protocol is proposed, and
sufficient conditions for reaching consensus with a prescribed 𝐻

∞

performance are presented. Numerical examples are given to
illustrate the theoretical results.

1. Introduction

Consensus problem ofmultiagent systems has been a popular
subject in system and control theory due to its widespread
applications such as satellite formation flying, cooperative
unmanned air vehicles, and mobile robots [1–3].The study of
consensus problem focuses on designing a distributed proto-
col using information which can only be obtained and shared
locally to ensure that the resulting closed-loop system has the
desired characteristics. A number of solutions that are based
on relative states between each agent and its neighbors to the
consensus problem have been proposed up to now.The theo-
retical framework of solving consensus for multiagent system
was suggested by [4], providing the convergence analysis of a
consensus protocol for a network of single integrators with
directed fixed/switching topologies. Later, under different
cases of communication topologies such as fixed, switching,
and with communication delays, many different types of
protocols have been proposed for different types of agent
dynamics to reach global asymptotical consensus [2, 3, 5–16].

Recently, solving consensus problem for the multiagent
systems by using output information has attracted particular
attention due to its theoretical significance and wide applica-
tions. Reference [17] constructed a dynamic output feedback

protocol based on a observer for the synchronization of a
network of identical linear state space models under a pos-
sibly time-varying and directed interconnection, where each
agent needs to obtain all the observer’s state information of its
neighbors. Based on the low gain approach, [18] proposed a
consensus protocol which only used the relative outputs for𝑁
identical linear dynamics with fixed directed communication
topologies. Consensus problemwithL

2

external disturbance
under switching undirected communication topologies was
studied by [19], where a dynamic output feedback protocol
was proposed for subjecting the external disturbances. Ref-
erence [20] studied the output consensus problem for a class
of heterogeneous uncertain linear SISO multiagent systems,
where each agent’s output information and the relative
outputs with its neighbors were used to design the control-
ler. Reference [21] designed robust static output feedback con-
trollers to achieve consensus for undirected networks of het-
erogeneous agents modeled as nonlinear systems of relative
degree two.

It can be seen that there is a common assumption in the
literatures mentioned above that each agent can receive accu-
rate measurements of relative states or outputs between its
neighbors and itself all the time. However, in some practical
situations, agents cannot perfectly sense their neighbors due

http://dx.doi.org/10.1155/2013/979087
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to the existence of sensor failures or some other communica-
tion constraints. In view of this, we consider the consensus
problems for the multiagent systems with communication
errors. It is required to point out that the measurement for
communication errors we considered is limited to some
errors in the transferred data not including loss of communi-
cation. The robustness analysis of first-/second-order leader-
follower consensus with communication errors is studied by
[22, 23]. Some robustness issues for systems with external
disturbances or model uncertainties are investigated by some
other researchers [19, 24–28], which are different from the
robust consensus problem stated in this paper.

Motivated by the above-mentioned works, we study the
consensus problem for linear multiagent systems to attenuate
the communication errors by using dynamic output feedback
controller. The agent dynamics considered here are general
stabilizable and detectable linear systems, and a dynamic
consensus protocol is proposed which uses only the relative
output information between each agent and its neighbors.
The main contributions of this paper can be summarized as
two aspects. Firstly, in order to describe the effects of com-
munication errors on consensus, a concept called consensus
with 𝐻

∞

performance is introduced which can character-
ize the effects of communication errors on the difference
between the state of each agent and the average of states of all
agents. The problem of consensus with 𝐻

∞

performance is
transmitted into an𝐻

∞

control problem of another reduced-
order system. It is shown that consensus with 𝐻

∞

perfor-
mance can be achieved if there exists a common dynamic
output feedback controller which can be realized by solving
𝐻
∞

problem for𝑁−1 linear dynamic systems simultaneously,
where𝑁 is the number of agents. Secondly, in terms of the𝑁−
1 linear systems, a sufficient condition based on linear matrix
inequalities for the existence of the controller is provided,
and the approach to construct the corresponding controller
is given.

The rest of this paper is organized as follows. Section 2
introduces basic notations and reviews some useful results
on graph theory and robust𝐻

∞

control theory. Section 3 for-
mulates the problem and conditions for reaching consensus
with 𝐻

∞

performances that are derived. The existence for a
dynamic output feedback protocol and amethod to construct
such controller are proposed in Section 4. Numerical simula-
tions are provided in Section 5. Section 6 concludes the paper.

Notations. LetR𝑛×𝑛 and C𝑛×𝑛 be the set of 𝑛 × 𝑛 real matrices
and 𝑛 × 𝑛 complex matrices, respectively. Matrices, if not
explicitly stated, are assumed to have compatible dimensions.
𝐼
𝑛

and 0
𝑛×𝑚

are the 𝑛 × 𝑛 identity matrix and the 𝑛 × 𝑚 zero
matrix, respectively. For a matrix 𝐴, ‖𝐴‖

2

is the induced 2-
norm of the vector norm, and ‖𝐴‖

2



= 𝜎(𝐴). The notation
𝜎(𝐴) is the maximal singular value of matrix 𝐴. Notations
𝐴
𝑇, 𝐴−1, and 𝐴∗ represent the transpose, the inverse, and

the complex conjugate transpose of matrix 𝐴, respectively.
Let Im(𝐴) and ker(𝐴) be the image space and kernel of
𝐴. 𝐴 < 0 (𝐴 > 0) means that the matrix 𝐴 is negative
(positive) definite. Span{V

1

, V
2

, . . . V
𝑚

} is a subspace of R𝑛
spanned by {V

1

, V
2

, . . . V
𝑚

}, where V
𝑖

∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑚.

Thenotation⊗ represents theKronecker product. For a vector
𝑥 ∈ C𝑛, |𝑥|



= √𝑥∗𝑥 is the Euclidean norm. 1
𝑁

denotes
the 𝑁 × 1 column vector whose elements are all ones. The
space of piecewise continuous functions inR𝑚 that are square
integrable over [0, +∞) is denoted by L𝑚

2

[0,∞), for any
V(𝑡) ∈ L𝑚

2

[0,∞), and its normalized energy is defined by

‖V(𝑡)‖L
2

= (∫
∞

0

|V(𝑡)|2𝑑𝑡)
1/2

. Let [ 𝐴 𝐵

𝐶 𝐷
] be a state space

realization of 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷.

2. Preliminaries

2.1. Graph Theory. Directed graphs are used to model
the information interaction among agents. Let G

𝑁

=

(V
𝑁

,E
𝑁

,A
𝑁

) be a directed weighted graph, where V
𝑁

=

{1, 2, . . . , 𝑁} is the node set, E
𝑁

⊆ V
𝑁

× V
𝑁

is the edge
set, and A

𝑁

∈ R𝑁×𝑁 is a weighted adjacency matrix with
nonnegative elements 𝑎

𝑖𝑗

. An edge of G
𝑁

is denoted by (𝑖, 𝑗)
which means that agent 𝑗 can directly get information from
agent 𝑖. (𝑗, 𝑖) ∈ E

𝑁

if and only if 𝑎
𝑖𝑗

> 0, otherwise 𝑎
𝑖𝑗

=

0. If (𝑖, 𝑗) ∈ E
𝑁

⇔ (𝑗, 𝑖) ∈ E
𝑁

, then G
𝑁

is said to be
an undirected graph. In this paper, we assume that there are
no self-cycles in G

𝑁

; that is, 𝑎
𝑖𝑖

= 0, 𝑖 = 1, 2, . . . , 𝑁. The
in-degree and out-degree of the 𝑖th agent are, respectively,
defined as 𝑑in(𝑖) = ∑

𝑁

𝑗=1

𝑎
𝑖𝑗

and 𝑑out(𝑖) = ∑
𝑁

𝑗=1

𝑎
𝑗𝑖

. Let 𝑑max =

max
𝑖

{𝑑in(𝑖)}. Correspondingly, the Laplacian matrix of graph
G
𝑁

is denoted by 𝐿
𝑁

= Δ
𝑁

−A
𝑁

∈ R𝑁×𝑁, whereΔ
𝑁

= [Δ
𝑖𝑗

]

is a diagonal matrix with Δ
𝑖𝑖

= 𝑑in(𝑖).
A sequence (𝑖

1

, 𝑖
2

), (𝑖
2

, 𝑖
3

), . . . , (𝑖
𝑘−1

, 𝑖
𝑘

) of edges is called a
directed path from node 𝑖

1

to node 𝑖
𝑘

.G
𝑁

is called a strongly
connected digraph if for any 𝑖, 𝑗 ∈V

𝑁

, there is a directed path
from 𝑖 to 𝑗. G

𝑁

has a directed spanning tree if there exists a
node 𝑟 ∈V

𝑁

(a root) such that all other nodes can be linked
to 𝑟 via a directed path. A directed graph is called balanced if
∑
𝑗 ̸=𝑖

𝑎
𝑖𝑗

= ∑
𝑖 ̸=𝑗

𝑎
𝑗𝑖

for all 𝑖 ∈V.
Below are well-known results for the Laplacian matrix.

Lemma 1 (see [3]). The Laplacian matrix 𝐿
𝑁

of a directed
graph has at least one zero eigenvalue with an associated eigen-
vector 1

𝑁

.

Lemma 2 (see [3]). The Laplacian matrix 𝐿
𝑁

of a directed
graph has a simple zero eigenvalue with an associated eigen-
vector 1

𝑁

, and all of the other eigenvalues have positive real
parts if and only if the directed graph has a directed spanning
tree.

Lemma 3 (see [24]). Let 𝐿
𝑁

be the Laplacian matrix of a
directed graphG

𝑁

, then there exists an orthogonal matrix𝑈 =

[1
𝑁

/√𝑁 𝑈] ∈ R𝑁×𝑁 such that

𝑈
𝑇

𝐿
𝑁

𝑈 =
[
[

[

0
1𝑇
𝑁

√𝑁
𝐿𝑈

0 𝑈
𝑇

𝐿𝑈

]
]

]

. (1)

Furthermore, ifG is a balanced graph, then

𝑈
𝑇

𝐿
𝑁

𝑈 = [
0 0

0 𝑈
𝑇

𝐿
𝑁

𝑈
] . (2)
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2.2. Robust𝐻
∞

Control Theory. Consider that the 𝑛th-order
linear time-invariant (LTI) system is described as follows:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
1

𝜔 (𝑡) + 𝐵
2

𝑢 (𝑡) ,

𝑧 (𝑡) = 𝐶
1

𝑥 (𝑡) + 𝐷
11

𝜔 (𝑡) + 𝐷
12

𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
2

𝑥 (𝑡) + 𝐷
21

𝜔 (𝑡) + 𝐷
22

𝑢 (𝑡) ,

(3)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝜔(𝑡) ∈ L
𝑞

2

[0,∞) is the external
disturbance, 𝑢(𝑡) ∈ R𝑚 is the control input, 𝑧(𝑡) ∈ R𝑝 is the
regulated output, 𝑦(𝑡) ∈ R𝑙 is themeasured output, and𝐴, 𝐵

𝑖

,
𝐶
𝑖

, and 𝐷
𝑖𝑗

, for 𝑖, 𝑗 = 1, 2, are known real constant matrices
of appropriate dimensions. Without loss of generality, we
assume that 𝐷

22

= 0, (𝐴, 𝐵
2

) is stabilizable and (𝐶
2

, 𝐴) is
detectable.

The 𝑛
𝑐

th-order dynamic output feedback (DOF) con-
troller is described as follows:

̇𝑥
𝑐

(𝑡) = 𝐴
𝑘

𝑥
𝑐

(𝑡) + 𝐵
𝑘

𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝑘

𝑥
𝑐

(𝑡) + 𝐷
𝑘

𝑦 (𝑡) ,
(4)

where 𝑥
𝑐

(𝑡) ∈ R𝑛𝑐 is the controller state and 𝐴
𝑘

, 𝐵
𝑘

, 𝐶
𝑘

, and
𝐷
𝑘

are constant matrices with appropriate dimensions.

Let 𝑆
𝑝𝑐

(𝑠) = [
𝐴
𝑐

𝐵
𝑐

𝐶
𝑐

𝐷
𝑐

] be the transfer function from

𝜔(𝑡) to 𝑧(𝑡) of the closed-loop system obtained from (3) and
(4), where

𝐴
𝑐

= 𝐴
0

+ 𝐵𝐾𝐶, 𝐵
𝑐

= 𝐵
0

+ 𝐵𝐾𝐷
21

,

𝐶
𝑐

= 𝐶
0

+ 𝐷
12

𝐾𝐶, 𝐷
𝑐

= 𝐷
11

+ 𝐷
12

𝐾𝐷
21

,

𝐴
0

= [
𝐴 0

0 0
] , 𝐵

0

= [
𝐵
1

0
] , 𝐶

0

= [𝐶
1

0] ,

𝐵 = [
0 𝐵
2

𝐼 0
] , 𝐶 = [

0 𝐼

𝐶
2

0
] , 𝐷

12

= [0 𝐷
12

] ,

𝐷
21

= [
0

𝐷
21

] , 𝐾 = [
𝐴
𝑘

𝐵
𝑘

𝐶
𝑘

𝐷
𝑘

] .

(5)

The𝐻
∞

problem for the given LTI system (3) is to find aDOF
controller (4) such that the closed-loop system is internally
stable and ‖𝑆

𝑝𝑐

(𝑠)‖
∞

< 𝛾 for some constant 𝛾 > 0.
To facilitate the consensus protocol design and stability

analysis, several results of the 𝐻
∞

problem are recalled as
follows.

Lemma 4 (see [29]). Given 𝛾 > 0, there exists a DOF con-
troller (4) which can solve the𝐻

∞

problem for the LTI system
(3) if and only if there exist symmetric matrices 𝑋 > 0 and
𝑌 > 0 such that

(a) [𝑁𝑋 0

0 𝐼
]

∗

[
[

[

𝑋𝐴 + 𝐴
∗

𝑋 𝑋𝐵
1

𝐶
∗

1

𝐵
∗

1

𝑋 −𝛾𝐼 𝐷
∗

11

𝐶
1

𝐷
11

−𝛾𝐼

]
]

]

[
𝑁
𝑋

0

0 𝐼
] < 0,

(b) [𝑁𝑌 0

0 𝐼
]

∗

[
[

[

𝑌𝐴
∗

+ 𝐴𝑌 𝑌𝐶
∗

1

𝐵
1

𝐶
1

𝑌 −𝛾𝐼 𝐷
11

𝐵
∗

1

𝐷
∗

11

−𝛾𝐼

]
]

]

[
𝑁
𝑌

0

0 𝐼
] < 0,

(c) [𝑋 𝐼

𝐼 𝑌
] ≥ 0,

(6)

where𝑁
𝑋

and𝑁
𝑌

are full-rank matrices whose images satisfy

Im (𝑁
𝑋

) = ker ([𝐶
2

𝐷
21

]) ,

Im (𝑁
𝑌

) = ker ([𝐵∗
2

𝐷
∗

12

]) .

(7)

As the results shown by [29], the DOF controller (4) solv-
ing the𝐻

∞

problem for the LTI system (3) can be constructed
as follows.

(i) Find𝑋 > 0 and 𝑌 > 0 which satisfy Lemma 4.

(ii) Let 𝑋
𝑐

= [
𝑋 𝑋

2

𝑋

∗

2
𝐼

], where 𝑋
2

∈ R𝑛×𝑛𝑐 satisfying 𝑋 −

𝑌
−1

= 𝑋
2

𝑋
∗

2

.
(iii) Solve the the following inequality:

𝐻
𝑋

𝑐

+ 𝑄
∗

𝐾
∗

𝑃
𝑋

𝑐

+ 𝑃
∗

𝑋

𝑐

𝐾𝑄 < 0. (8)

For a feasible solution𝐾, where

𝑃
𝑋

𝑐

= [𝐵
∗

𝑋
𝑐

0 𝐷
∗

12

] , 𝑄 = [𝐶 𝐷
21

0] ,

𝐻
𝑋

𝑐

=
[
[

[

𝑋
𝑐

𝐴
0

+ 𝐴
∗

0

𝑋
𝑐

𝑋
𝑐

𝐵
0

𝐶
∗

0

𝐵
∗

0

𝑋
𝑐

−𝛾
0

𝐼 𝐷
∗

11

𝐶
0

𝐷
11

−𝛾
0

𝐼

]
]

]

,

(9)

and 𝐴
0

, 𝐵
0

, 𝐶
0

, 𝐵, 𝐶, 𝐷
12

, 𝐷
21

are defined by (5).
The solution𝐾 provides the state space realization for
a feasible controller (4) which can solve𝐻

∞

problem
for system (3).

Lemma 5 (see [30]). Let 𝛾 > 0, 𝐺(𝑠) = [
𝐴 𝐵

𝐶 𝐷
] with 𝐴 is

Hurwitz stable, and

𝐻 ≜ [
𝐴 + 𝐵𝑅

−1

𝐷
∗

𝐶 𝐵𝑅
−1

𝐵
∗

−𝐶
∗

(𝐼 + 𝐷𝑅
−1

𝐷
∗

) 𝐶 −(𝐴 + 𝐵𝑅
−1

𝐷
∗

𝐶
∗

)
∗] ,

(10)

where 𝑅 = 𝛾
2

𝐼 − 𝐷
∗

𝐷. Then, the following conditions are
equivalent:

(1) ‖𝐺(𝑠)‖
∞

< 𝛾,
(2) 𝜎(𝐷) < 𝛾 and𝐻 have no eigenvalues on the imaginary

axis,
(3) there exists a matrix 𝑋 = 𝑋

∗

> 0 such that

[
[

[

𝑋𝐴 + 𝐴
∗

𝑋 𝑋𝐵 𝐶
∗

𝐵
∗

𝑋 −𝛾𝐼 𝐷
∗

𝐶 𝐷 −𝛾𝐼

]
]

]

< 0. (11)
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3. 𝐻
∞

Consensus Problem

Consider amultiagent system consisting of𝑁 identical agents
with linear dynamics described by

̇𝑥
𝑖

(𝑡) = 𝐴𝑥
𝑖

(𝑡) + 𝐵𝑢
𝑖

(𝑡)

𝑦
𝑖

(𝑡) = 𝐶𝑥
𝑖

(𝑡)
𝑖 = 1, . . . , 𝑁, (12)

where 𝑥
𝑖

(𝑡) ∈ R𝑛 is the state, 𝑢
𝑖

(𝑡) ∈ R𝑚 is the control input,
𝑦
𝑖

(𝑡) ∈ R𝑝 is the measured output, and 𝐴, 𝐵, and 𝐶 are
constant matrices with compatible dimensions. It is assumed
that (𝐴, 𝐵) is stabilizable and (𝐶, 𝐴) is detectable, and without
loss of generality, 𝐵 is of full column rank. We say that
the control input 𝑢

𝑖

(𝑡) solves the consensus problem for the
multiagent system (12) if the states of the agents satisfy

lim
𝑡→+∞

[𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)] = 0, ∀𝑖, 𝑗 ∈V
𝑁

(13)

for any initial states.
Assume that the communication topology among the

𝑁 agents is represented by a fixed directed graph G
𝑁

=

(V
𝑁

,E
𝑁

,A
𝑁

). Based on the relative output information
between the agents, the following dynamic output feedback
(DOF) control protocol is used by [18]:

̇V
𝑖

(𝑡) = 𝐴
𝑘

V
𝑖

(𝑡) + 𝐵
𝑘

𝑁

∑
𝑗=0

𝑎
𝑖𝑗

[𝑦
𝑗

(𝑡) − 𝑦
𝑖

(𝑡)]

𝑢
𝑖

(𝑡) = 𝐶
𝑘

V
𝑖

(𝑡) + 𝐷
𝑘

𝑁

∑
𝑗=0

𝑎
𝑖𝑗

[𝑦
𝑗

(𝑡) − 𝑦
𝑖

(𝑡)]

𝑖 = 1, . . . , 𝑁,

(14)

where V
𝑖

(𝑡) ∈ R𝑛𝑐 , 𝑛
𝑐

is a preassigned dimension of the
coordinating law, and 𝑎

𝑖𝑗

is the element of the corresponding
adjacency matrixA

𝑁

. The system matrix

𝐾 = [
𝐴
𝑘

𝐵
𝑘

𝐶
𝑘

𝐷
𝑘

] (15)

of the DOF control protocol (14) need to be designed to
make themultiagent system (12) achieve consensus. A general
method for constructing the system matrix 𝐾 was presented
by [18].

However, if there exist communication errors between
the 𝑖th agent and the 𝑗th agent, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, then the
performance of consensus will be affect by these errors, as
illustrated by the example given below.

Example 6. We consider double-integrator systems given by

̈𝜉
𝑖

(𝑡) = 𝑢
𝑖

(𝑡) ,

𝑦
𝑖

(𝑡) = 𝜉
𝑖

(𝑡) ,
𝑖 = 1, 2, . . . , 𝑁, (16)

where 𝜉
𝑖

(𝑡), 𝑦
𝑖

(𝑡) ∈ R. Let ̇𝜉
𝑖

(𝑡) = 𝜁
𝑖

(𝑡). Then, the above
system can be rewritten as the form of (12) with

𝑥
𝑖

(𝑡) = [
𝜉
𝑖

(𝑡)

𝜁
𝑖

(𝑡)
] , 𝐴 = [

0 1

0 0
] , 𝐵 = [

0

1
] ,

𝐶 = [1 0] .

(17)

1
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Figure 1: Communication topology.

The weighted communication topology with 6 agents is
shown in Figure 1. Using the results presented in [18], the
DOF control protocol (14) can be constructed with

𝐴
𝑘

= [
−10 −1

−50.1039 −0.485
] , 𝐵

𝑘

= [
10

50
] ,

𝐶
𝑘

= [0.1039 0.485] , 𝐷
𝑘

= 0.

(18)

It is known that the consensus is asymptotically achieved
when there are no communication errors with the designed
protocol (see Figure 2(a)). However, communication errors
are inevitable. Assume that a 1% error appears in all of
the communication channels. Simulation results show that,
under the same protocol, the system diverges in the sense that
the position state of each agent is far away from the position
state of leader (node 1) as can be seen in Figure 2(b).

Example 6 implies that, under the influence of commu-
nication errors, consensus cannot be achieved for each agent
with the given control protocol. This provides motivation to
design an appropriate DOF control protocol to attenuate the
effects of communication errors on the consensus perfor-
mance. In this paper, we assume that there exist communi-
cation errors in the transferred data; that is, the DOF control
protocol takes the following form:

̇V
𝑖

(𝑡) = 𝐴
𝑘

V
𝑖

(𝑡) + 𝐵
𝑘

𝑁

∑

𝑗 = 0

𝑎
𝑖𝑗

[𝑦
𝑗

(𝑡) − 𝑦
𝑖

(𝑡) + 𝜔
𝑖𝑗

(𝑡)] ,

𝑢
𝑖

(𝑡) = 𝐶
𝑘

V
𝑖

(𝑡) + 𝐷
𝑘

𝑁

∑

𝑗 = 0

𝑎
𝑖𝑗

[𝑦
𝑗

(𝑡) − 𝑦
𝑖

(𝑡) + 𝜔
𝑖𝑗

(𝑡)]

𝑖 = 1, . . . , 𝑁,

(19)
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Figure 2: The disagreement states between 𝑥
𝑖

and 𝑥
1

without/with communication errors, 𝑖 = 2, 3, . . . , 6.

where 𝜔
𝑖𝑗

∈ L
𝑝

2

[0, +∞) represents the communication error
when the 𝑖th agent gets information from the 𝑗th agent. For
convenience, denote

x (𝑡) = [x𝑇
1

(𝑡) , . . . , x𝑇
𝑁

(𝑡)]
𝑇

∈ R
𝑁(𝑛+𝑛

𝑐
)

,

x
𝑖

(𝑡) = [𝑥
𝑇

𝑖

(𝑡) , V𝑇
𝑖

(𝑡)]
𝑇

∈ R
𝑛+𝑛

𝑐 , 𝑖 = 1, 2, . . . , 𝑁,

y (𝑡) = [𝑦𝑇
1

(𝑡) , 𝑦
𝑇

2

(𝑡) , . . . , 𝑦
𝑇

𝑁

(𝑡)]
𝑇

∈ R
𝑁𝑝

,

d (𝑡) = [d𝑇
1

(𝑡) , d𝑇
2

(𝑡) , . . . , d𝑇
𝑁

(𝑡)]
𝑇

∈ R
𝑁(𝑁−1)𝑝

,

d
𝑖

(𝑡) = [𝜔
𝑇

𝑖1

(𝑡) , . . . , 𝜔
𝑇

𝑖(𝑖−1)

(𝑡) , 𝜔
𝑇

𝑖(𝑖+1)

(𝑡) , . . . , 𝜔
𝑇

𝑖𝑁

]
𝑇

(𝑡)

∈ R
(𝑁−1)𝑝

, 𝑖 = 1, 2, . . . , 𝑁.

(20)

Then, the overall dynamics result in the system (12) with the
DOF control protocol (19) can be written as

̇x (𝑡) = (𝐼
𝑁

⊗ 𝐴 − 𝐿
𝑁

⊗ 𝐵𝐶) x (𝑡) + (𝐷
𝑁

⊗ 𝐵) d (𝑡) , (21)

where

𝐴 = [
𝐴 𝐵𝐶

𝑘

0 𝐴
𝑘

] , 𝐵 = [
𝐵𝐷
𝑘

𝐵
𝑘

] , 𝐶 = [𝐶 0] ,

𝐷
𝑁

=

[
[
[
[
[

[

𝛿
1

0
1×𝑁−1

⋅ ⋅ ⋅ 0
1×𝑁−1

0
1×𝑁−1

𝛿
2

⋅ ⋅ ⋅ 0
1×𝑁−1

...
... d

...
0
1×𝑁−1

0
1×𝑁−1

⋅ ⋅ ⋅ 𝛿
𝑁

]
]
]
]
]

]

∈ R
𝑁×𝑁(𝑁−1)

,

𝛿
𝑖

= [𝑙
𝑖1

⋅ ⋅ ⋅ 𝑙
𝑖(𝑖−1)

𝑙
𝑖(𝑖+1)

⋅ ⋅ ⋅ 𝑙
𝑖𝑁

] , 𝑖 = 1, . . . , 𝑁,

(22)

and 𝑙
𝑖𝑗

is the element of the Laplacian matrix 𝐿
𝑁

.
In order to characterize the effects of the communication

errors on consensus performance, we need to define a
controlled output for the multiagent system (12) as follows.

Assume that the fixed directed communication graphG
𝑁

has a spanning tree, and according to Lemma 2, the Laplacian
matrix 𝐿

𝑁

of graphG
𝑁

has a simple zero, and all of the other
eigenvalues are in the right half-plane. Let 𝑒

1

= (1/√𝑁)1
𝑁

.
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By Lemma 3, there exists an orthogonal matrix [𝑒
1

𝑈] ∈

R𝑁×𝑁 such that

[
𝑒
𝑇

1

𝑈
𝑇

]𝐿
𝑁

[𝑒
1

𝑈] = [
0 𝑒
𝑇

1

𝐿
𝑁

𝑈

0 𝐿
𝑁

] , (23)

where 𝐿
𝑁

= 𝑈
𝑇

𝐿
𝑁

𝑈. It is obvious that the eigenvalues of 𝐿
𝑁

are equal to the nonzero eigenvalues of 𝐿
𝑁

, whichmeans that
all of the eigenvalues of 𝐿

𝑁

are in the right half-plane. Here,
the matrix 𝑈 satisfies 𝑈𝑇1

𝑁

= 0, 𝑈
𝑇

𝑈 = 𝐼
𝑁−1

, and 𝑈𝑈𝑇 =
𝐼
𝑁

− (1/𝑁)1
𝑁

1𝑇
𝑁

according to [𝑒
1

𝑈] being an orthogonal
matrix.

Let 𝐶
0

= [𝐼
𝑛

0]. Define an output vector z(𝑡) as

z (𝑡) = (𝑈𝑇 ⊗ 𝐶
0

) x (𝑡) = (𝑈𝑇 ⊗ 𝐼
𝑛

) 𝑥 (𝑡) , (24)

where z(𝑡) = [z𝑇
1

(𝑡), . . . , z𝑇
𝑁−1

(𝑡)]
𝑇

∈ R(𝑁−1)𝑛, z
𝑖

(𝑡) ∈ R𝑛, and
𝑥(𝑡) = [𝑥

𝑇

1

(𝑡), 𝑥
𝑇

2

(𝑡), . . . , 𝑥
𝑇

𝑁

(𝑡)]
𝑇. Then,

|z (𝑡)|2 = (𝑈
𝑇

⊗ 𝐶
0

) x (𝑡)
2

=
𝑥 (𝑡) − 1

𝑁

⊗ 𝑥
0

(𝑡)

2

, (25)

where 𝑥
0

(𝑡) = (1/𝑁)∑
𝑁

𝑖=1

𝑥
𝑖

(𝑡), which means that z(𝑡) can
measure the difference between the state of each agent and
the average state of all agents.

Let x̂(𝑡) = (𝑈
𝑇

⊗ 𝐼
𝑛+𝑛

𝑐

)x(𝑡). Using the DOF control pro-
tocol (19), the system dynamics with the output z(𝑡) can be
represented as

̇x̂ (𝑡) = 𝐴x̂ (𝑡) + 𝐵d (𝑡) ,

z (𝑡) = 𝐶x̂ (𝑡) ,
(26)

where 𝐴 = 𝐼
𝑁−1

⊗ 𝐴 − 𝐿
𝑁

⊗ 𝐵𝐶, 𝐵 = 𝑈
𝑇

𝐷
𝑁

⊗ 𝐵, and 𝐶 =

𝐼
𝑁−1

⊗ 𝐶
0

.
From the fact that the null-space of matrix 𝑈𝑇 ⊗ 𝐼

𝑛

is
Span {1

𝑁

⊗ 𝐼
𝑛

}, we know that

lim
𝑡→+∞

z (𝑡) = lim
𝑡→+∞

(𝑈
𝑇

⊗ 𝐼
𝑛

) 𝑥 (𝑡) = 0 (27)

if and only if there exist 𝑥
0

(𝑡) ∈ R𝑛 such that lim
𝑡→+∞

𝑥
𝑖

(𝑡) =

𝑥
0

(𝑡), which implies that consensus of the multiagent system
(12) can be achieved asymptotically. However, it is obvious
that z(𝑡) cannot approach zero as 𝑡 tending to infinity due to
the existence of communication error d(𝑡), which indicates
that consensus cannot be achieved for the system (12) with
the DOF control protocol (19). Inspired by the analysis above,
it is reasonable to evaluate the effects of communication
error on consensus of the system (12) with the DOF control
protocol (19) by using the effects of communication error d(𝑡)
on the output z(𝑡) of system (26). Notice that the latter can
be quantitatively measured by the 𝐻

∞

norm of the transfer
function matrix 𝐺

𝑑𝑧

(𝑠) from d(𝑡) to z(𝑡), which is defined
by ‖𝐺

𝑑𝑧

(𝑠)‖
∞

= sup
𝜔∈R{‖𝐺𝑑𝑧(𝑗𝜔)‖

2

} = sup
𝜔∈R{𝜎(𝐺𝑑𝑧(𝑗𝜔))},

that results in the following definition.

Definition 7. Given a scalar 𝛾 > 0. The system (12) with the
DOF control protocol (19) is called to achieve consensus with
𝐻
∞

performance if the following conditions hold.

(1) It can reach consensus when d(𝑡) = 0;

(2) ‖𝐺
𝑑𝑧

(𝑠)‖
∞

< 𝛾, where 𝐺
𝑑𝑧

(𝑠) is the transfer function
matrix of system (26) from d(𝑡) to z(𝑡) and the output
z(𝑡) is defined by (24).

A sufficient condition is given in the following theorem to
ensure that the multiagent system (12) with the DOF control
protocol (19) can achieve consensus with𝐻

∞

performance.

Theorem 8. Given a scalar 𝛾 > 0. Assume that the fixed
communication topology G

𝑁

has a spanning tree. The system
(12)with the DOF control protocol (19) achieves consensus with
𝐻
∞

performance if there exists amatrix𝑋
𝑐

= 𝑋
∗

𝑐

> 0 such that

[
[
[

[

𝑋
𝑐

(𝐴 − 𝜆
𝑖

𝐵𝐶) + (𝐴 − 𝜆
𝑖

𝐵𝐶)
∗

𝑋
𝑐

𝑋
𝑐

𝐵 𝐶
∗

0

𝐵
∗

𝑋
𝑐

−𝛾
0

𝐼 0

𝐶
0

0 −𝛾
0

𝐼

]
]
]

]

< 0,

(28)

where 𝛾
0

= 𝑑
−1

max𝛾 and𝜆𝑖 is the nonzero eigenvalue of Laplacian
matrix 𝐿

𝑁

, 𝑖 = 2, 3, . . . , 𝑁.

Proof. It is known that the system (12) with the DOF control
protocol (19) achieves consensuswith𝐻

∞

performance if and
only if 𝐴 is Hurwitz and

𝐺𝑑𝑧 (𝑠)
∞ =


𝐶(𝑠𝐼 − 𝐴)

−1

𝐵
∞

< 𝛾, (29)

where 𝐴, 𝐵, and 𝐶 are defined by (26).
According to Lemma 5 and (28), we have 𝐴 − 𝜆

𝑖

𝐵𝐶 is
Hurwitz stable, and

𝐻
𝑖

≜ [
𝐴 − 𝜆

𝑖

𝐵𝐶 𝛾
−2

0

𝐵𝐵
∗

−𝐶
∗

0

𝐶
0

−(𝐴 − 𝜆
𝑖

𝐵𝐶)
∗

] (30)

has no eigenvalues on the imaginary axis; that is, for any 𝜔 ∈
R,

(𝑗𝜔𝐼 − (𝐴 − 𝜆
𝑖

𝐵𝐶)) 𝜂
1

− (𝛾
−2

0

𝐵𝐵
∗

) 𝜂
2

= 0,

𝐶
∗

0

𝐶
0

𝜂
1

+ (𝑗𝜔𝐼 + (𝐴 − 𝜆
𝑖

𝐵𝐶)
∗

) 𝜂
2

= 0,

(31)

if and only if 𝜂
1

= 0 and 𝜂
2

= 0, where 𝜂
1

, 𝜂
2

∈ C𝑛+𝑛𝑐 .
For matrix 𝐿

𝑁

, there are two unitary matrices 𝑉
1

and 𝑉
2

such that

𝑉
∗

1

𝐿
𝑁

𝑉
1

= 𝑇 = [𝑡
𝑖𝑗

] ∈ R
(𝑁−1)×(𝑁−1)

,

𝑉
∗

2

𝐿
∗

𝑁

𝑉
2

= 𝑆 = [𝑠
𝑖𝑗

] ∈ R
(𝑁−1)×(𝑁−1)

,

(32)
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where𝑇 and 𝑆 are upper triangular, with diagonal entries 𝑡
𝑖𝑖

=

𝜆
𝑖+1

and 𝑠
𝑖𝑖

= 𝜆
∗

𝑖+1

, respectively, 𝑖 = 1, 2, . . . , 𝑁 − 1. Now,
suppose that 𝑗𝜔

0

is an eigenvalue of

𝐻 ≜ [

[

𝐼
𝑁−1

⊗ 𝐴 − 𝑇 ⊗ 𝐵𝐶 𝛾
−2

0

𝐼
𝑁−1

⊗ 𝐵𝐵
∗

−𝐼
𝑁−1

⊗ 𝐶
∗

0

𝐶
0

−(𝐼
𝑁−1

⊗ 𝐴 − 𝑆
∗

⊗ 𝐵𝐶)
∗

]

]

.

(33)

Then, there exists a vector 𝜂 = [𝜂
𝑇

1,1

, 𝜂
𝑇

1,2

, . . . , 𝜂
𝑇

1,(𝑁−1)

, 𝜂
𝑇

2,1

,

𝜂
𝑇

2,2

, . . . , 𝜂
𝑇

2,(𝑁−1)

]
𝑇

̸=0, where 𝜂
𝑘,𝑙

∈ C𝑛+𝑛𝑐 , 𝑘 = 1, 2, 𝑙 = 1,

2, . . . , 𝑁 − 1, such that

(𝑗𝜔
0

𝐼 − (𝐴 − 𝜆
𝑖+1

𝐵𝐶)) 𝜂
1,𝑖

+

𝑁−1

∑

𝑗 = 𝑖+1

𝑡
𝑖𝑗

𝐵𝐶𝜂
1,𝑗

− (𝛾
−2

0

𝐵𝐵
∗

) 𝜂
2,𝑖

= 0,

𝐶
∗

0

𝐶
0

𝜂
1,𝑖

+ (𝑗𝜔
0

𝐼 + (𝐴 − 𝜆
𝑖+1

𝐵𝐶)
∗

) 𝜂
2,𝑖

−

𝑁−1

∑

𝑗 = 𝑖+1

𝑠
𝑖𝑗

(𝐵𝐶)
∗

𝜂
2,𝑗

= 0,

(34)

where 𝑖 = 1, 2, . . . , 𝑁−1. When 𝑖 = 𝑁−1, from (31), it is easy
to get that 𝜂

1,𝑁−1

= 𝜂
2,𝑁−1

= 0. Then, when 𝑖 = 𝑁 − 2, (34)
can be rewritten as

(𝑗𝜔
0

𝐼 − (𝐴 − 𝜆
𝑁−1

𝐵𝐶)) 𝜂
1,𝑁−2

− (𝛾
−2

0

𝐵𝐵
∗

) 𝜂
2,𝑁−2

= 0,

𝐶
∗

0

𝐶
0

𝜂
1,𝑁−2

+ (𝑗𝜔
0

𝐼 + (𝐴 − 𝜆
𝑁−1

𝐵𝐶)
∗

) 𝜂
2,𝑁−2

= 0,

(35)

which implies that 𝜂
1,𝑁−2

= 𝜂
2,𝑁−2

= 0. Similarly, it can be
known that 𝜂

1,𝑖

= 𝜂
2,𝑖

= 0 for all 𝑖 = 1, 2, . . . , 𝑁 − 1. This
contradicts our assumption, and hence matrix 𝐻 has no
eigenvalues on the imaginary axis.

Notice that

�̃� ≜ [

[

𝐼
𝑁−1

⊗ 𝐴 − 𝐿
𝑁

⊗ 𝐵𝐶 𝛾
−2

0

𝑉
1

𝑉
∗

2

⊗ 𝐵𝐵
∗

−𝑉
2

𝑉
∗

1

⊗ 𝐶
∗

0

𝐶
0

−(𝐼
𝑁−1

⊗ 𝐴 − 𝐿
𝑁

⊗ 𝐵𝐶)
∗

]

]

= [
𝑉
1

⊗ 𝐼
𝑛+𝑛

𝑐

0

0 𝑉
2

⊗ 𝐼
𝑛+𝑛

𝑐

]𝐻[
𝑉
∗

1

⊗ 𝐼
𝑛+𝑛

𝑐

0

0 𝑉
∗

2

⊗ 𝐼
𝑛+𝑛

𝑐

] ,

(36)

which means that matrix �̃� has no pure imaginary eigenval-
ues. Moreover, matrices 𝐴 − 𝜆

𝑖

𝐵𝐶 are Hurwitz stable, 𝑖 =
2, 3, . . . , 𝑁, which implies thatmatrix𝐴 = 𝐼

𝑁−1

⊗𝐴−𝐿
𝑁

⊗𝐵𝐶

is Hurwitz stable. Noting that𝑉
1

and𝑉
2

are unitary matrices,
then theremust exist twomatrices𝑌

1

and𝑌
2

such that𝑌
1

𝑌
∗

1

=

𝑉
1

𝑉
∗

2

, 𝑌
∗

2

𝑌
2

= 𝑉
2

𝑉
∗

1

, and ‖𝑌
1

‖
2

= ‖𝑌
2

‖
2

= 1.Thus, according
to Lemma 5, it can be obtained that

(𝑌
2

⊗ 𝐶
0

) (𝑠𝐼 − (𝐼
𝑁−1

⊗ 𝐴 − 𝐿
𝑁

⊗ 𝐵𝐶))
−1

(𝑌
1

⊗ 𝐵)
∞

=

𝐶(𝑠𝐼 − 𝐴)

−1

(𝐼
𝑁−1

⊗ 𝐵)
∞

< 𝛾
0

.

(37)

In addition, it is easy to know that


𝑈
𝑇

𝐷
𝑁

2
≤
𝐷𝑁

2 = max
𝑖

{√𝛿
𝑖

𝛿𝑇
𝑖

} ≤ 𝑑max. (38)

Then, we have

𝐺𝑑𝑧 (𝑠)
∞ =


𝐶(𝑠𝐼 − 𝐴)

−1

𝐵
∞

< 𝑑max

𝐶(𝑠𝐼 − 𝐴)

−1

(𝐼
𝑁−1

⊗ 𝐵)
∞

< 𝛾.

(39)

This completes the proof.

Remark 9. If there are no communication errors, that is,
d(𝑡) = 0, then from Theorem 8, it is only required that
𝐴 − 𝜆

𝑖

𝐵𝐶 is Hurwitz for all nonzero eigenvalues 𝜆
𝑖

of the
Laplacian matrix 𝐿

𝑁

. In this case, consensus can be achieved
asymptotically for the multiagent system (12) with the DOF
control protocol (19), which is the result shown by [18].

Remark 10. In fact, from Lemma 5, there exists 𝑋
𝑐

> 0 such
that the inequality (28) holds, 𝑖 = 2, 3, . . . , 𝑁, if and only if
there exists a common 𝑛

𝑐

th-order DOF controller

K (𝑠) = [
𝐴
𝑘

𝐵
𝑘

𝐶
𝑘

𝐷
𝑘

] (40)

solving𝐻
∞

problemwith performance 𝛾
0

for𝑁−1 𝑛th-order
LTI systems

Σ
𝑖

(𝑠) = [

[

𝐴 0 𝐵

𝐼
𝑛

0 0

−𝜆
𝑖

𝐶 𝐷
21

0

]

]

, (41)

where 𝐴, 𝐵, and 𝐶 are the state space matrices for system
(12), 𝐷

21

= 𝐼
𝑝

, and 𝜆
𝑖

is the nonzero eigenvalue of Laplacian
matrix 𝐿

𝑁

, 𝑖 = 2, 3, . . . , 𝑁.

4. Dynamic Output Feedback Design for
𝐻
∞

Consensus

In this section, we determine the systemmatrix𝐾 of the DOF
control protocol (19) for themultiagent system (12) to achieve
consensus with𝐻

∞

performance. According to Remark 10, it
is required to design a common DOF controller (40) to solve
𝐻
∞

problem for𝑁− 1 LTI systems. Notice that the common
DOF controller is difficult to obtain; thus, we firstly consider
the𝐻

∞

problem for the systems Σ
𝑖

(𝑠), 𝑖 = 2, 3, . . . , 𝑁.
Let𝑁
𝑋

and𝑁
𝑌

be full-rankmatrices whose images satisfy

Im (𝑁
𝑋

) = ker ([𝐶 𝐼
𝑝

]) , Im (𝑁
𝑌

) = ker ([𝐵∗ 0]) .
(42)
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Denote 𝑁
𝑋

= [𝑁
∗

𝑐

𝑁
∗

𝐼

]
∗, where 𝑁

𝑐

and 𝑁
𝐼

have 𝑛 and 𝑝
rows, respectively.

Lemma 11. If there exist matrices 𝑋 = 𝑋
∗

> 0 and 𝑌 = 𝑌∗ >
0 such that

(i) [𝑁𝑐 0
0 𝐼

]

∗

[
𝑋𝐴 + 𝐴

∗

𝑋 𝐼
𝑛

𝐼
𝑛

−𝛾
0

𝐼
] [

𝑁
𝑐

0

0 𝐼
]

− [
𝛾
𝑚

𝑁
∗

𝐼

𝑁
𝐼

0

0 0
] < 0,

(43)

(ii) 𝑁∗
𝑌

[
𝑌𝐴
∗

+ 𝐴𝑌 𝑌

𝑌 −𝛾
0

𝐼
]𝑁
𝑌

< 0, (44)

(iii) [𝑋 𝐼

𝐼 𝑌
] ≥ 0, (45)

where 𝛾
𝑚

= 𝛾
0

{min
𝑖

|𝜆
𝑖

|
2

}, then there exists a DOF controller

K
𝑖

(𝑠) = [
𝐴
𝑖

𝑘

𝐵
𝑖

𝑘

𝐶
𝑖

𝑘

𝐷
𝑖

𝑘

] which can solve the 𝐻
∞

problem with a

given performance 𝛾
0

> 0 for the LTI systemΣ
𝑖

(𝑠) given by (41),
𝑖 = 2, 3, . . . , 𝑁.

Proof. According to Lemma 4, we have that there exists a
DOF controller K

𝑖

(𝑠) to solve the 𝐻
∞

problem for the LTI
system Σ

𝑖

(𝑠) with a given index 𝛾
0

> 0 if and only if there
exist matrices𝑋

𝑖

= 𝑋
∗

𝑖

> 0 and 𝑌 = 𝑌∗ > 0 such that

(a) [
𝑁
𝑖

𝑋

0

0 𝐼
]

∗

[
[

[

𝑋
𝑖

𝐴 + 𝐴
∗

𝑋
𝑖

0 𝐼
𝑛

0 −𝛾
0

𝐼 0

𝐼
𝑛

0 −𝛾
0

𝐼

]
]

]

[
𝑁
𝑖

𝑋

0

0 𝐼
] < 0,

(b) [
𝑁
𝑌

0

0 𝐼
]

∗

[
[

[

𝑌𝐴
∗

+ 𝐴𝑌 𝑌 0

𝑌 −𝛾
0

𝐼 0

0 0 −𝛾
0

𝐼

]
]

]

[
𝑁
𝑌

0

0 𝐼
] < 0,

(c) [
𝑋
𝑖

𝐼

𝐼 𝑌
] ≥ 0,

(46)

where𝑁𝑖
𝑋

spans the kernel of [−𝜆
𝑖

𝐶 𝐼
𝑝

]. Notice the following
facts:

[−𝜆
𝑖

𝐶 𝐼
𝑝

] [
𝑁
𝑐

−𝜆
𝑖

𝑁
𝐼

] = −𝜆
𝑖

(𝐶𝑁
𝑐

+ 𝐼
𝑝

𝑁
𝐼

) = 0, (47)

and, for all nonzero 𝜆
𝑖

,

rank [
𝑁
𝑐

−𝜆
𝑖

𝑁
𝐼

] = rank [
𝑁
𝑐

𝑁
𝐼

] . (48)

Thus, we can choose 𝑁𝑖
𝑋

= [
𝑁

𝑐

−𝜆

𝑖
𝑁

𝐼

]. Let 𝑋
𝑖

= 𝑋 for all 𝑖 =
2, 3, . . . , 𝑁. Then, it is easy to obtain that

[
𝑁
𝑖

𝑋

0

0 𝐼
]

∗

[
[

[

𝑋
𝑖

𝐴 + 𝐴
∗

𝑋
𝑖

0 𝐼
𝑛

0 −𝛾
0

𝐼 0

𝐼
𝑛

0 −𝛾
0

𝐼

]
]

]

[
𝑁
𝑖

𝑋

0

0 𝐼
]

= [
𝑁
𝑐

0

0 𝐼
]

∗

[
𝑋𝐴 + 𝐴

∗

𝑋 𝐼
𝑛

𝐼
𝑛

−𝛾
0

𝐼
] [

𝑁
𝑐

0

0 𝐼
]

− [
𝛾
0

𝜆𝑖

2

𝑁
∗

𝐼

𝑁
𝐼

0

0 0
]

≤ [
𝑁
𝑐

0

0 𝐼
]

∗

[
𝑋𝐴 + 𝐴

∗

𝑋 𝐼
𝑛

𝐼
𝑛

−𝛾
0

𝐼
] [

𝑁
𝑐

0

0 𝐼
]

− [
𝛾
𝑚

𝑁
∗

𝐼

𝑁
𝐼

0

0 0
] < 0

(49)

and (b), (c) naturally hold from (44), (45), respectively. This
completes the proof.

Remark 12. Lemma 11 gives a sufficient condition for the
existence of the controller K

𝑖

(𝑠) which can solve the 𝐻
∞

problem for the system Σ
𝑖

(𝑠), 𝑖 = 2, 3, . . . , 𝑁. As the results
stated in Section 2.2, if there exist𝑋 = 𝑋

∗

> 0 and 𝑌 = 𝑌∗ >
0 satisfying Lemma 11, then the DOF controllerK

𝑖

(𝑠) can be
obtained by solving the following inequality:

𝐻
𝑋

𝑐

+ 𝑄(𝜆
𝑖

)
∗

𝐾
∗

𝑖

𝑃
𝑋

𝑐

+ 𝑃
∗

𝑋

𝑐

𝐾
𝑖

𝑄 (𝜆
𝑖

) < 0, (50)

for𝐾
𝑖

, 𝑖 = 2, 3, . . . , 𝑁, where

𝐻
𝑋

𝑐

=
[
[

[

𝑋
𝑐

𝐴
0

+ 𝐴
∗

0

𝑋
𝑐

0 𝐶
∗

0

0 −𝛾
0

𝐼 0

𝐶
0

0 −𝛾
0

𝐼

]
]

]

,

𝑃
𝑋

𝑐

= [𝐵
∗

𝑋
𝑐

0 0] , 𝑄 (𝜆
𝑖

) = [𝐶 (𝜆
𝑖

) 𝐷 0] ,

(51)

𝐴
0

= [
𝐴 0

0 0
] , 𝐶

0

= [𝐼 0] , 𝐵 = [
0 𝐵

𝐼 0
] ,

𝐶 (𝜆
𝑖

) = [
0 𝐼

−𝜆
𝑖

𝐶 0
] , 𝐷 = [

0

𝐼
] ,

(52)

𝐾
𝑖

= [
𝐴
𝑖

𝑘

𝐵
𝑖

𝑘

𝐶
𝑖

𝑘

𝐷
𝑖

𝑘

] , 𝑋
𝑐

= [
𝑋 𝑋

2

𝑋
∗

2

𝐼
] ,

𝑋
2

𝑋
∗

2

= 𝑋 − 𝑌
−1

.

(53)

Obviously, if there exists a common 𝐾 that makes the
inequality (50) hold for all 𝑖 = 2, 3, . . . , 𝑁, then there exists
a common 𝑛

𝑐

th-order DOF controllerK(𝑠) which can solve
the𝐻
∞

problem for the LTI systems Σ
𝑖

, 𝑖 = 2, 3, . . . , 𝑁. Thus,
we have the following result.

Theorem 13. Given a scalar 𝛾 > 0, and let 𝛾
0

= 𝑑
−1

max𝛾. Assume
that the fixed communication topologyG

𝑁

has a spanning tree.
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Then, there exists aDOF control protocol (19) for the system (12)
achieving consensus with𝐻

∞

performance if

(i) there exist matrices 𝑋 > 0 and 𝑌 > 0 satisfying (43),
(44), and (45),

(ii) there exists a matrix 𝐾 satisfying the following LMIs:

𝐻
𝑋

𝑐

+ 𝑄(𝜆
𝑖

)
∗

𝐾
∗

𝑃
𝑋

𝑐

+ 𝑃
∗

𝑋

𝑐

𝐾𝑄(𝜆
𝑖

) < 0, (54)

for all nonzero eigenvalues 𝜆
𝑖

of Laplacian matrix 𝐿
𝑁

,
where𝐻

𝑋

𝑐

, 𝑃
𝑋

𝑐

, and 𝑄(𝜆
𝑖

) are given in (51) and 𝑋
𝑐

is
defined by (53).

Proof. From the analysis above, the conditions (i) and (ii)
hold which implies that there exist matrices 𝐾 and 𝑋

𝑐

> 0

such that (28) holds due to the fact that (54) is exactly (28).
The proof is completed by usingTheorem 8 directly.

Remark 14. If we want controllers of order 𝑛
𝑐

less than 𝑛, it is
only required to add the additional constraint

rank [𝑋 𝐼

𝐼 𝑌
] ≤ 𝑛 + 𝑛

𝑐

, (55)

to (i) of Theorem 13, which can be obtained by using Corol-
lary 7.8 given by [29] andTheorem 13 directly.

Remark 15. Theorem 13 gives the sufficient conditions under
which there exists a DOF control protocol such that the
multiagent system (12) achieve consensus with a given 𝐻

∞

performance. When the conditions are satisfied, the proce-
dure to construct the DOF control protocol is presented as
follows.

Sept 1: Solve LMIs (43), (44), and (45) for getting a
solution:𝑋 > 0 and 𝑌 > 0.
Step 2: Construct𝑋

𝑐

> 0 as (53).
Step 3: Solve the 𝑁 − 1 LMIs (54) for a common
feasible solution𝐾.

Remark 16. Assume that there is no communication error in
the system. As shown in Remark 9, in this case, the given
problem is to design a stabilizing controllerK(𝑠) defined by
(40) for the LTI systems (41) with 𝐷

21

= 0. Using Theorem
5.8 given by [29] and the fact that the kernels of 𝜆

𝑖

𝐶 and𝐶 are
exactly equal for all nonzero 𝜆

𝑖

, reproducing the steps of the
proof of Theorem 13, we have the following results. Assume
that the fixed communication topology G

𝑁

has a spanning
tree, then there exists a DOF control protocol (14) with order
𝑛
𝑐

for the system (12) achieving consensus if

(1) there exist matrices𝑋 = 𝑋
∗

> 0 and𝑌 = 𝑌∗ > 0 such
that

𝑁
∗

𝑋

(𝐴
∗

𝑋 + 𝑋𝐴)𝑁
𝑋

< 0, 𝑁
∗

𝑌

(𝐴𝑌 + 𝑌𝐴
∗

)𝑁
𝑌

< 0,

[
𝑋 𝐼

𝐼 𝑌
] ≥ 0, rank [𝑋 𝐼

𝐼 𝑌
] ≤ 𝑛 + 𝑛

𝑐

,

(56)

where𝑁
𝑋

and𝑁
𝑌

span the kernels of 𝐶 and 𝐵∗, res-
pectively,

(2) there exists a matrix𝐾 satisfying the following LMIs:

𝐴
∗

0

𝑃 + 𝑃𝐴
0

+ 𝐶(𝜆
𝑖

)
∗

𝐾
∗

𝐵
∗

𝑃 + 𝑃𝐵𝐾𝐶 (𝜆
𝑖

) < 0, (57)

for all nonzero eigenvalues 𝜆
𝑖

of Laplacianmatrix 𝐿
𝑁

,
where

𝑃 = [
𝑋 𝑋

2

𝑋
∗

2

𝐼
] (58)

and𝑋
2

satisfies𝑋
2

𝑋
∗

2

= 𝑋−𝑌
−1 and𝐴

0

,𝐵, and𝐶(𝜆
𝑖

)

are given in (51).
Moreover, using the method similar to that stated in
Remark 15, we can construct the DOF controller for the
multiagent system (12) reaching consensus.

Notice that condition (ii) in Theorem 13 implies that we
need to solve 𝑁 − 1 LMIs after constructing 𝑋

𝑐

, which
increase the difficulty of the numerical calculation if the size
of the multiagent system 𝑁 is large. We give the following
conditions, which can reduce the computational complexity
for getting the DOF control protocol by solving four LMIs.

Denote that 𝛼
𝑖

and 𝛽
𝑖

are the real part and imaginary
part of 𝜆

𝑖

, respectively, where 𝜆
𝑖

is the nonzero eigenvalue of
Laplacianmatrix𝐿

𝑁

, 𝑖 = 2, 3, . . . , 𝑁. Let𝛼
0

= min
𝑖

{𝛼
𝑖

}, 𝛼
0

=

max
𝑖

{𝛼
𝑖

}, 𝛽
0

= min
𝑖

{𝛽
𝑖

}, and 𝛽
0

= max
𝑖

{𝛽
𝑖

} = −𝛽
0

.

Theorem 17. Given a scalar 𝛾 > 0, and let 𝛾
0

= 𝑑
−1

max𝛾. Assume
that the fixed communication topologyG

𝑁

has a spanning tree.
Then, there exists aDOF control protocol (19) for the system (12)
achieving consensus with𝐻

∞

performance if
(i) there exist matrices 𝑋 > 0 and 𝑌 > 0 satisfying (43),

(44), and (45);
(ii) there exists a matrix 𝐾 such that
𝐻
𝑋

𝑐

+ 𝑄(𝛼
𝑘

+ 𝑗𝛽
𝑘

)
∗

𝐾
∗

𝑃
𝑋

𝑐

+ 𝑃
∗

𝑋

𝑐

𝐾𝑄(𝛼
𝑘

+ 𝑗𝛽
𝑘

) < 0 (59)

for (𝛼
𝑘

, 𝛽
𝑘

) ∈ {(𝛼
0

, 𝛽
0

), (𝛼
0

, 𝛽
0

), (𝛼
0

, 𝛽
0

), (𝛼
0

, 𝛽
0

)},
where𝐻

𝑋

𝑐

, 𝑃
𝑋

𝑐

, and 𝑄(𝛼
𝑘

+ 𝑗𝛽
𝑘

) are given in (51) and
𝑋
𝑐

is defined by (53).

Proof. To complete the proof, we only need to show that
if LMI (59) holds for (𝛼

𝑘

, 𝛽
𝑘

) ∈ {(𝛼
0

, 𝛽
0

), (𝛼
0

, 𝛽
0

), (𝛼
0

, 𝛽
0

),

(𝛼
0

, 𝛽
0

)}, then LMI (54) holds for all nonzero eigenvalues
𝜆
𝑖

= 𝛼
𝑖

+ 𝑗𝛽
𝑖

of Laplacian matrix 𝐿
𝑁

, 𝑖 = 2, 3, . . . , 𝑁.
Notice that

𝐻
𝑋

𝑐

+ 𝑄(𝛼
𝑖

+ 𝑗𝛽
𝑖

)
∗

𝐾
∗

𝑃
𝑋

𝑐

+ 𝑃
∗

𝑋

𝑐

𝐾𝑄(𝛼
𝑖

+ 𝑗𝛽
𝑖

)

= [
𝑋
𝑐
(𝐴 − (𝛼

𝑖
+ 𝑗𝛽
𝑖
) 𝐵𝐶) + (𝐴 − (𝛼

𝑖
+ 𝑗𝛽
𝑖
) 𝐵𝐶)

∗

𝑋
𝑐
𝑋
𝑐
𝐵 𝐶

∗

0

𝐵
∗

𝑋
𝑐

−𝛾
0
𝐼 0

𝐶
0

0 −𝛾
0
𝐼

]

< 0

(60)
which, in virtue of the Schur Complement Lemma, is equiv-
alent to

𝑋
𝑐

(𝐴 − (𝛼
𝑖

+ 𝑗𝛽
𝑖

) 𝐵𝐶) + (𝐴 − (𝛼
𝑖

+ 𝑗𝛽
𝑖

) 𝐵𝐶)
∗

𝑋
𝑐

+ 𝛾
−1

0

(𝑋
𝑐

𝐵𝐵
∗

𝑋
𝑐

+ 𝐶
∗

0

𝐶
0

) < 0,

(61)



10 Mathematical Problems in Engineering

0 10 20 30 40 50 60 70 80

0
5

10
15
20

Time

−5

𝜉 i
−
𝜉 1

(a) Position states of the 6 agents

0 10 20 30 40 50 60 70 80

0
5

10
15

Time

−10

−5

𝜁 i
−
𝜁 1

(b) Velocity states of the 6 agents

Figure 3: The disagreement states between 𝑥
𝑖

and 𝑥
1

without communication error d(𝑡), 𝑖 = 2, 3, . . . , 6.
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Figure 4: The state trajectories of the multiagent system with communication error d(𝑡).

where 𝐴, 𝐵, and 𝐶 are defined by (22). For convenience, we
denote

H (𝛼
𝑖

, 𝛽
𝑖

) = 𝑋
𝑐

(𝐴 − (𝛼
𝑖

+ 𝑗𝛽
𝑖

) 𝐵𝐶)

+ (𝐴 − (𝛼
𝑖

+ 𝑗𝛽
𝑖

) 𝐵𝐶)
∗

𝑋
𝑐

+ 𝛾
−1

0

(𝑋
𝑐

𝐵𝐵
∗

𝑋
𝑐

+ 𝐶
0

𝐶
∗

0

)

= 𝐻
0

+ 𝛼
𝑖

𝐻
1

+ 𝑗𝛽
𝑖

𝐻
2

,

(62)

where 𝐻
0

= 𝑋
𝑐

𝐴 + 𝐴
∗

𝑋
𝑐

+ 𝛾
−1

0

𝑋
𝑐

𝐵𝐵
∗

𝑋
𝑐

+ 𝛾
−1

0

𝐶
0

𝐶
∗

0

, 𝐻
1

=

−𝑋
𝑐

𝐵𝐶 − 𝐶
∗

𝐵
∗

𝑋
𝑐

, and𝐻
2

= −𝑋
𝑐

𝐵𝐶 + 𝐶
∗

𝐵
∗

𝑋
𝑐

.
In fact, theremust exist 𝑠 ∈ [0, 1], 𝑟 ∈ [0, 1] such that𝛼

𝑖

=

𝑠𝛼
0

+ (1 − 𝑠)𝛼
0

, 𝛽
𝑖

= 𝑟𝛽
0

+ (1 − 𝑟)𝛽
0

. When 𝑟 ≥ 𝑠,

H (𝛼
𝑖

, 𝛽
𝑖

) = 𝐻
0

+ [𝑠𝛼
0

+ (1 − 𝑠) 𝛼
0

]𝐻
1

+ 𝑗 [𝑟𝛽
0

+ (1 − 𝑟) 𝛽
0

]𝐻
2

= 𝑠H (𝛼
0

, 𝛽
0

) + (𝑟 − 𝑠)H (𝛼
0

, 𝛽
0

)

+ (1 − 𝑟)H (𝛼
0

, 𝛽
0

) < 0.

(63)

Similarly, when 𝑠 ≥ 𝑟, we have

H (𝛼
𝑖

, 𝛽
𝑖

) = 𝑟H (𝛼
0

, 𝛽
0

) + (𝑠 − 𝑟)H (𝛼
0

, 𝛽
0

)

+ (1 − 𝑠)H (𝛼
0

, 𝛽
0

) < 0.

(64)

This completes the proof.

5. Numerical Example

An example is shown to verify the results obtained in the
above section. The agent dynamics and the communication

topology are given in Example 6, and the 𝐻
∞

performance
index is chosen as 𝛾 = 10. According to the results presented
in Section 4, we have

𝑋 = [
1.8218 −1.2978

−1.2978 3.6435
] , 𝑌 = [

1.2145 −0.9109

−0.9109 3.6435
] ,

𝑋
𝑐

=
[
[
[

[

1.8218 −1.2978 −0.8688 0.2312

−1.2978 3.6435 1.8148 0.1107

−0.8688 1.8148 1.0000 0

0.2312 0.1107 0 1.0000

]
]
]

]

.

(65)

Then, by solving the LMIs (54), we can get a feasible controller
(40) with

𝐴
𝑘

= [
−7.0377 −5.6811

−0.6005 −5.2415
] , 𝐵

𝑘

= [
−9.5464

−0.5110
] ,

𝐶
𝑘

= [3.4520 2.9461] , 𝐷
𝑘

= 4.9523,

(66)

and the 𝐻
∞

norm of system (26) is ‖𝐺
𝑑𝑧

(𝑠)‖
∞

= 3.0707.
With the designed DOF control protocol, the disagreement
states between 𝑥

𝑖

and 𝑥
1

without communication error d(𝑡)
are shown in Figure 3, 𝑖 = 2, 3, . . . , 6, which implies that the
consensus can be reachedwhend(𝑡) = 0.The communication
error d(𝑡) ∈L

2

[0,∞) is supposed to be

d (𝑡) = {𝜃 sin (𝑡) , 𝑡 ∈ [0, 40] ,

0, 𝑡 > 40,
(67)

where 𝜃 = [1.11 0.58 1.48 1.59 2.12 2.53 0.42 1.31 4.0

0.14]
𝑇. Under zero initial condition, the state trajectories of

the six agents are depicted in Figure 4, and the corresponding
energy trajectories of d(𝑡) and z(𝑡) are given in Figure 5.
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Figure 5: Energy trajectories of the controlled output z(𝑡) and the
communication error d(𝑡).

It is noted obviously that ‖z(𝑡)‖L
2

≤ ‖d(𝑡)‖L
2

. Thus, the mul-
tiagent system with the given DOF controller can achieve the
consensus with the given 𝐻

∞

performance, which validates
the effectiveness of the proposed protocol and demonstrates
the correctness of the obtained theoretical results.

6. Conclusions

This paper is devoted to the consensus problem for multia-
gent systems molded by linear time-invariant systems under
fixed directed communication topologies and subject to com-
munication errors in the transferred data. A dynamic output
feedback control algorithm is proposed. The theoretical
analysis shows that if there exists a common dynamic output
feedback controller which can solve 𝐻

∞

problem for 𝑁 − 1

linear time-invariant systems of order 𝑛, then the consensus
with a desired𝐻

∞

level can be reached. By using𝐻
∞

theory,
a sufficient condition in terms of linear matrix inequalities
is given to ensure the existence for such a controller. A pro-
cedure for the controller design is presented.
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With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of
life.The social network of both fixed andmobile users can be seen as networked agent system.At present, kinds of devices and access
network technology are widely used. Different users in this networked agent system may need different coding rates multimedia
data due to their heterogeneous demand.This paper proposes a distributed flow rate control algorithm to optimizemultimedia data
transmission of the networked agent systemwith the coexisting various coding rates. In this proposed algorithm, transmission path
and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and
controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow
rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload
bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed
algorithmand compares the system that adopts the proposed algorithmwith the existing systembased on the simulation experiment
andmathematical analysis.The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth
utilization of user nodes and lower upload bandwidth consumption of source node.

1. Introduction

The considerable development of communication technolo-
gies has provided conditions for the application and popular-
ization of mobile devices. In recent years, with diversification
of access network, especially with the popularity of access
technologies such as Wireless Local Area Network (WIFI)
and the third generation mobile communication (3G), the
scale of the mobile Internet rapidly expands [1, 2]. Compared
with traditional terminal of PC-based user (fixed user),
kinds of mobile devices such as smart phones, personal as-
sistants, and tablet PCs begin to increasingly enter the
Internet. At present,mobile users (as well as fixed users)more
often use their terminals as enhanced application support
platform to join some electronic social network, for example,
content distribution tools, peer-to-peer multimedia players,

Twitter clients, or web browsers [3]. These distributed and
self-organizing networks can be seen as networked agent
systems [4–8]. We are interested in the optimization of
multimedia data transmission and bandwidth utilization in
this kind of system [9–13].

Traditional multimedia data transmission or streaming
system does not consider user access network morphology
or the differences of terminal device but often simply ignores
the existence of the user diversification and only provides
multimedia data with a single coding rate data for users;
in order to overcome this weakness, the current solution is
to divide the system into multiple independent subsystems,
with each subsystem covering part of the users and providing
differentiated coding rate data for each part of the users. For
example, the Cbox network television system [14] of CCTV
provides two types of signals—SD and HD. The coding rate
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of SD is 380 kbps, which is major for mobile users. And
the coding rate of HD is 500 kbps, which is major for fixed
users. Users can choose to watch based on access network
morphologies or terminal conditions. From a technical point
of view, the advantage of current solution is that the system
provides different coding rate multimedia data for different
users tomeet individual needs of the user terminal and access
network. However, because various subsystems are indepen-
dent of each other in the design, the upload bandwidth
among subsystem users cannot be shared, particularly that
the upload, storage, and computing resources of user nodes
with high performance and high bandwidth cannot be used
by the system effectively.

This paper presents a distributed flow rate control algo-
rithm for the mentioned networked agent system with coex-
isting multiple coding rates. On the one hand, it can provide
distributed differentiated coding rate multimedia data to
meet the different user needs. On the other hand, it can
share and effectively use the user nodes upload bandwidth
resources to reduce the upload bandwidth consumption of
source node. The proposed algorithm can be part of agent-
based framework and software infrastructure that improves
themultimedia data transmission performance of the system.

In multimedia data transmission or streaming system
studies, it is usually assumed that the download speed when
user nodes acquire data from the system is not smaller
than some rate (minimum flow rate), which means that
the normal reception and play of multimedia data can be
achieved [15–28]. The so-called flow rate control algorithm
is a data transfer algorithm to satisfy the minimum flow
rate of each user node [15]. Taking the application layer
multicast form streaming system as the background, this
paper presents a flow rate control algorithm of calculating
minimum consumption of source node upload bandwidth
required to support a certain flow rate. This paper presents
the relationship among the tree depth, source node upload
bandwidth consumption, and user nodes flow rate under this
algorithm; [16] proposed a flow rate control algorithm of the
streaming system to maximize the receiver flow rate under
the conditions of a given source node upload bandwidth.
It also analyzes the mathematical relationship between the
source node upload bandwidth consumption and flow rate of
a typical peer-to-peer streaming system; [19] taking the mul-
timedia data transmission under the edge nodes constraints
as the background, this paper analyzes the relationship
between source node upload bandwidth consumption and
user nodes flow rate in the model. In [20], it discusses the
minimum source node upload bandwidth consumption and
the maximum flow rate of user nodes of a given flow rate
provided by streaming media system in the background of
various random graph models and different connectivity
constraints; [21] addresses the issue of rate allocation of
multiple simultaneous multimedia data transmission sharing
heterogeneous access networks; [22, 23] studies multimedia
data transmission based onmultichannel collaboration strat-
egy and uses it as the background to study the corresponding
flow rate control algorithm, and investigates the relationship
between the source node upload bandwidth consumption

and maximum user node flow rate under such systems and
algorithms. In [24, 25], it compares several popular designs
in the background of multichannel collaboration streaming
media system and analyzes theminimum source node upload
bandwidth consumption realized by each flow rate control
algorithm and the performance differences and relationship
of each system under the same conditions; [26] proposed
a layer-based rate control algorithm for transporting multi-
media data over multiple wireless links with heterogeneous
reliability; [27] proposed an algorithm of joint path selection
and source rate allocation to optimize the media quality
on multipath networks streaming; [28] proposes a flow rate
control algorithm with the background of multimedia data
transmission based on network coding strategy and discusses
the quantitative relationship between the system source node
upload bandwidth consumption and user nodes flow rate
under the proposed algorithm.

The difference between the proposed flow rate control
algorithm in this paper and the previous studies lies in
that previous algorithms treat the different coding rate data
and the users as multiple independent subsystems, which
can only provide multimedia data and flow rate support for
one user needs in one subsystem; however, the proposed
algorithm in this paper makes the different coding rate
data and user nodes networked and makes use of the fixed
nodes to provide coding rate conversion services for the
mobile nodes and properly arranges the data transfer process
before and after the coding rate conversion to realize the
system to provide distributed differentiated coding rate data
and desired flow rate for the needs of different users. The
proposed algorithm in this paper moremeets themultimedia
data transmission in networked agent system with multiple
coding rates. For example, there is a user class existing in
the system to watch the program with PC (demanding for
multimedia datawith higher coding rate and largerminimum
flow rate) and other two groups of users with different
types of mobile phone models (demand for multimedia data
with lower coding rate and smaller minimum flow rate).
The current design establishes three independent subsystems
for the three types of users to provide data and flow rate
support, which cannot share the upload bandwidth among
different users. However, the algorithm presented in this
paper puts the three in the same networked system and
throughPCusers provides coding rate conversion services for
mobile users and appropriately arranges path and bandwidth
for distributed multimedia data transmission, so that it
can provide the corresponding data and flow rate support
for the three types of users, and the efficient multimedia
data transmission can be achieved. This paper conducts
mathematical modeling and simulation for the proposed
algorithm and demonstrates that, compared with the current
design, the proposed algorithm has higher upload bandwidth
utilization and lower source node upload bandwidth con-
sumption.

The following part of this paper is organized as follows.
Section 2 describes the background system of proposed
algorithm; in Section 3, the system model is established, and
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the algorithm is proposed; the performance comparison is
given in Section 4; the final part is about the summary.

2. Systematic Overview

As shown in Figure 1(a), in the system that adopts the
application of the proposed algorithm, the user nodes are
divided into two major categories—fixed nodes and mobile
nodes (mobile nodes can be divided into many subclasses).
Fixed nodes mainly refer to the PC accessed to the Internet
via a wired connection. Fixed nodes can be seen to possess
larger upload bandwidth and higher computing power, with
a larger viewing screen, more comprehensive multimedia
player software, and large terminal with higher demand
for multimedia quality. Fixed nodes in the system can be
used as transcoding user nodes (i.e., it can convert the
received multimedia data to a lower coding rate) [29–35].
In contrast, the mobile nodes mainly refer to wireless access
equipment represented by mobile phone, Personal Digital
Assistant (PDA), tablet PC, and other terminals. The mobile
nodes are seen to relatively lack computing power with
only limited access bandwidth and are weaker terminals in
the performance and demand such as screen size, quality,
and color depth. In system, mobile nodes are regarded as
nontranscoding user nodes.

Intuitively, the mobile nodes lack conditions and are not
necessary to receive multimedia data of the same coding
rate of the fixed nodes. This on the one hand increases the
bandwidth consumption and on the other hand causes the
difficulties for the mobile nodes to receive and play. The
current designs integrate fixed nodes and various mobile
nodes into a lot of independent subsystems and, respectively,
provide them with multimedia data of different coding rates.
Different from this, the system that adopts the proposed
algorithm in this paper integrates terminal with different
demands for coding rate data into the same transmission
network. The system uses computing resources and upload
bandwidth of the fixed nodes to provide coding rate data
that can be used by mobile nodes to receive and display. In
Figure 1(a), the thicker line and the thinner line, respectively,
signify that the different coding rate data demanded by fixed
users and each subclass mobile users are simultaneously
supported in the system; Figure 1(b) illustrates the coding
rate conversion and multimedia sharing process: first, the
source node provides a higher coding rate multimedia data
for fixed nodes (thicker arrow in the figure). Then, the
acquired data are shared among fixed nodes, and the data
reception is completed. Second, the rest fixed nodes of the
upload bandwidth convert the coding rate of the acquired
data to the desired coding rate data of each subclass of mobile
nodes and send it to the mobile nodes (thinner arrows in
the figure). Meanwhile, if the upload bandwidth of fixed
nodes is inadequate, the mobile nodes can also acquire the
required data from the source node. Finally, the same subclass
mobile nodes share the acquired data among each other and
complete the data reception. The question is how to control
and obtain proper receiving flow rate of different user nodes
with distributed supply of upload bandwidth.

Source node

Fixed nodes

Mobile nodes

(a) Different coding rate data can be supported in the system

Source node Fixed nodes

Mobile nodes

S

(b) Coding rate conversion and sharing process of multimedia data

Figure 1: Systematic structure and data transmission.

3. Mathematical Modeling and
Algorithm Design

3.1. Initial Settings. Make some initial settings before model-
ing.

Firstly, each coding rate data corresponds to a minimum
flow rate, and the sum of the user node reception rate
of receiving a certain coding rate data is not less than
the corresponding minimum flow rate, namely, it can play
normally [15–28].

Secondly, discretionary communication is available
among the nodes, and the upload bandwidth is the only
restriction for data transmission [15–17, 28]. As mentioned
previously, the proposed algorithm uses the computational
capabilities of fixed nodes to provide coding rate conversion
services for the mobile nodes. The algorithm improves the
upload bandwidth utilization at the cost of the procedures
and complexity of coding rate conversion. This paper only
discusses the issue of data transmission, which does not
limit specific multimedia codec algorithm or involves the
discussion of the multimedia codec algorithm itself. It
assumes that relative to the upload bandwidth, the coding
rate conversion of data in the fixed nodes does not constitute
the system bottleneck.

Thirdly, the coding rate conversion services can only
come from the transcoding nodes (source node and fixed
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Table 1: Mathematical symbols used in modeling and algorithm.

Symbols Explanation
𝑠 Source node.
𝑝
𝑓

𝑖

The 𝑖th fixed nodes.
𝑝
𝑚

𝑖

The 𝑖th mobile nodes.
P
𝑓

The set of fixed nodes.
P
𝑚

The set of mobile nodes.
𝑛
𝑓

Number of fixed nodes.
𝑛
𝑚

Number of fixed nodes.
𝑟
𝑓

Minimum flow rate of fixed node.
𝑟
𝑚

Minimum flow rate of mobile node.
𝑢
𝑓

𝑖

Upload bandwidth of the 𝑖th fixed node.
𝑢
𝑚

𝑖

Upload bandwidth of the 𝑖th mobile node.
𝑢
𝑓

Average upload bandwidth of fixed nodes.
𝑢
𝑚

Average upload bandwidth of mobile nodes.
u (⋅) Function of upload bandwidth.
𝑢
𝑠

Design size of source node upload bandwidth.

𝑢
𝑓

𝑖

Remaining upload bandwidth of 𝑝𝑓
𝑖

after meeting
the flow rate needs of P

𝑓

.

𝑢


𝑠

Remaining upload bandwidth of 𝑠 after meeting
the flow rate needs of P

𝑓

.

𝑢


all
All the remaining upload bandwidth of the system
after meeting the flow rate needs of P

𝑓

.
𝑠
𝑓

𝑜𝑖

Multimedia data flow rate size that 𝑠 sends to 𝑝𝑓
𝑖

.

𝑠
𝑚

𝑜𝑖

Multimedia data flow rate size that 𝑠 transcodes
for 𝑝𝑚
𝑖

and sends to 𝑝𝑚
𝑖

.

𝑠
𝑡

𝑘𝑖

Multimedia data flow rate size that 𝑝𝑓
𝑘

transcodes
for 𝑝𝑚
𝑖

and sends to 𝑝𝑚
𝑖

.
tr𝑓
𝑖

Total flow rate of multimedia data 𝑝𝑓
𝑖

received.
tr𝑚
𝑖

Total flow rate of multimedia data 𝑝𝑚
𝑖

received.

nodes). Nontranscoding nodes can upload existing data but
cannot convert the coding rate. Specifically, the sources of
fixed nodes data may have two: the source node and other
fixed nodes; the sources of mobile nodes datamay have three:
the source node, the fixed nodes, and other mobile nodes in
the same subclass.

3.2. Mathematical Symbols. Themain mathematical symbols
used in modeling and algorithm are arranged into Table 1,
and the symbols in the table will be further illustrated in
subsequent reference.

3.3. Analysis and Modeling. This section will first analyze the
flow rate control with only one mobile node subclass in the
system. The complete flow rate algorithm can meet the case
of multiplemobile nodes subclasses simply based onmultiple
cycles.

Set 𝑛
𝑓

as the number of the fixed nodes and 𝑛
𝑚

as the
number of the mobile nodes (assuming that there is only
one subclass). 𝑝𝑓

𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

) denotes the 𝑖th fixed nodes,
𝑝
𝑚

𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

) the 𝑖th mobile nodes, 𝑠 the source node,

P
𝑓

the collection of fixed nodes, and P
𝑚

the collection of the
mobile nodes; thereby,

P
𝑓

= {𝑝
𝑓

𝑖

} , (𝑖 = 1, . . . , 𝑛
𝑓

) ,

P
𝑚

= {𝑝
𝑚

𝑖

} , (𝑖 = 1, . . . , 𝑛
𝑚

) .

(1)

𝑟
𝑓

denotes the minimum flow rate that supports the
normal play ofmultimedia data at the fixed nodes. 𝑟

𝑚

denotes
the minimum flow rate that supports the normal play of
multimedia data at the mobile nodes. 𝑢𝑓

𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

)

denotes the upload bandwidth of the 𝑖th fixed node. 𝑢𝑚
𝑖

(𝑖 =

1, . . . , 𝑛
𝑚

) denotes the upload bandwidth of the 𝑖th mobile
node. 𝑢

𝑠

means the size of upload bandwidth on the source
node which makes all nodes play normally.

We first take P
𝑓

into consideration.
As for P

𝑓

, the source of the multimedia data is 𝑠; thereby,

𝑢
𝑠

≥ 𝑟
𝑓

. (2)

Additionally, as for P
𝑓

, the flow rate sum cannot be
greater than the sum of all the upload bandwidth. For any
node in P

𝑓

and other nodes with 𝑠 as its multimedia data
sources of 𝑠 or other nodes in P

𝑓

,

𝑢
𝑠

+∑

P
𝑓

𝑢
𝑓

𝑖

≥ 𝑛
𝑓

𝑟
𝑓

. (3)

Function u(⋅) denotes the result of upload bandwidth, for
example, u(P

𝑓

) = ∑P
𝑓

𝑢
𝑓

𝑖

= ∑
𝑛

𝑓

𝑖=1

𝑢
𝑓

𝑖

and 𝑢
𝑓

denote the
average upload bandwidth of all the fixed nodes, 𝑢

𝑚

denotes
the average upload bandwidth of all the mobile nodes

𝑢
𝑓

=
u (P
𝑓

)

𝑛
𝑓

=
∑
𝑛

𝑓

𝑖=1

𝑢
𝑓

𝑖

𝑛
𝑓

,

𝑢
𝑚

=
u (P
𝑚

)

𝑛
𝑚

=
∑
𝑛

𝑚

𝑖=1

𝑢
𝑚

𝑖

𝑛
𝑚

.

(4)

(3) is rewritten as

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

) ≥ 0. (5)

Then we consider P
𝑚

.
For P

𝑚

, the multimedia data can be derived from 𝑠 or
the coding rate conversion of the data worked out by P

𝑓

. The
flow rate requirements should be first met if one succeeds in
transcoding and uploading the P

𝑓

. So the upload bandwidth
got by the P

𝑚

from P
𝑓

is the remaining part after satisfying
its own needs of P

𝑓

; namely, the most upload bandwidth P
𝑓

can provide for P
𝑚

is 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

), and

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

) ≥ 𝑟
𝑚

. (6)

In addition, from the perspective of the entire system, the
total uploads bandwidth must be greater than or equal to the
total flow rate; thereby,

𝑢
𝑠

+∑

P
𝑓

𝑢
𝑓

𝑖

+∑

P
𝑚

𝑢
𝑚

𝑖

≥ 𝑛
𝑓

𝑟
𝑓

+ 𝑛
𝑚

𝑟
𝑚

. (7)
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Namely,

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

) + 𝑛
𝑚

(𝑢
𝑚

− 𝑟
𝑚

) ≥ 0. (8)

Equations (2), (5), (6), and (8) are organized as

𝑢
𝑠

≥ 𝑟
𝑓

,

𝑢
𝑠

≥ 𝑟
𝑚

+ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) ,

𝑢
𝑠

≥ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) + 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

) .

(9)

Set

MAX = max (𝑟
𝑓

, 𝑟
𝑚

+ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) ,

𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) + 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

)) .

(10)

Thereby,

𝑢
𝑠

≥ MAX. (11)

Equations (10) and (11) show the consumption limit of
upload bandwidth on the source node, when the system can
support allmobile andfixednodes to playback normally.Now
we see whether we can design a flow rate control algorithm to
approach as close as possible or even achieve this lower limit.

Set

𝑢
𝑠

= MAX. (12)

𝑠
𝑓

𝑜𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

) denotes the flow rate of the multimedia
data from the source node to 𝑝𝑓

𝑖

. 𝑠𝑚
𝑜𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

) denotes
the flow rate of the multimedia data from the source node to
𝑝
𝑚

𝑖

. 𝑠𝑡
𝑘𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

) denotes the flow rate of themultimedia
data transcoded and transmitted by 𝑝𝑓

𝑘

for 𝑝𝑚
𝑖

. tr𝑓
𝑖

(𝑖 =

1, . . . , 𝑛
𝑓

) denotes the total flow rate of the multimedia data
received by 𝑝𝑓

𝑖

. tr𝑚
𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

) denotes the total flow rate
of the multimedia data received by 𝑝𝑚

𝑖

.
First we consider P

𝑓

.
When 𝑟

𝑓

≥ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

), namely, 𝑟
𝑓

≤ 𝑛
𝑓

𝑢
𝑓

/(𝑛
𝑓

− 1), 𝑠
transmits the multimedia data for 𝑝𝑓

𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

), and the
flow rate is arranged as

𝑠
𝑓

𝑜𝑖

=
𝑢
𝑓

𝑖

𝑟
𝑓

u (P
𝑓

)
=
𝑢
𝑓

𝑖

𝑟
𝑓

𝑛
𝑓

𝑢
𝑓

. (13)

Notice that according to (12), ∑P
𝑓

𝑠
𝑓

𝑜𝑖

= 𝑟
𝑓

≤ 𝑢
𝑠

, so 𝑠 can
achieve the transmitting with enough upload bandwidth, as

(𝑛
𝑓

− 1) 𝑠
𝑓

𝑜𝑖

=
(𝑛
𝑓

− 1) 𝑢
𝑓

𝑖

𝑛
𝑓

𝑢
𝑓

⋅ 𝑟
𝑓

≤
(𝑛
𝑓

− 1) 𝑢
𝑓

𝑖

𝑛
𝑓

𝑢
𝑓

⋅
𝑛
𝑓

𝑢
𝑓

(𝑛
𝑓

− 1)
= 𝑢
𝑓

𝑖

.

(14)

𝑝
𝑓

𝑖

has enough upload bandwidth which can transmit the
data in 𝑠𝑓

𝑜𝑖

to other fixed nodes with the same flow rate;
thereby 𝑝𝑓

𝑖

gets the total flow rate

tr𝑓
𝑖

= 𝑠
𝑓

𝑜𝑖

+

𝑗 ̸= 𝑖

∑

P
𝑓

𝑠
𝑓

𝑜𝑗

= 𝑟
𝑓

. (15)

Thereby,𝑝𝑓
𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

)will get enough flow rate to ensure
the normal play of the media.

When 𝑟
𝑓

< 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

), 𝑠 transmits the multimedia data
twice for 𝑝𝑓

𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

). And the flow rate arrangement
of the first time (denoted by 𝑠𝑓1

𝑜𝑖

) is

𝑠
𝑓1

𝑜𝑖

=
𝑢
𝑓

𝑖

𝑛
𝑓

− 1
. (16)

The second time is (denoted by 𝑠𝑓2
𝑜𝑖

)

𝑠
𝑓2

𝑜𝑖

= 𝑟
𝑓

−
u (P
𝑓

)

𝑛
𝑓

− 1
= 𝑟
𝑓

−
𝑛
𝑓

𝑢
𝑓

𝑛
𝑓

− 1
. (17)

According to (12), ∑P
𝑓

𝑠
𝑓1

𝑜𝑖

+ ∑P
𝑓

𝑠
𝑓2

𝑜𝑖

= 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) ≤ 𝑢
𝑠

;
thereby, 𝑠 has the enough upload bandwidth to achieve the
previous transmitting. As

(𝑛
𝑓

− 1) 𝑠
𝑓1

𝑜𝑖

= (𝑛
𝑓

− 1) ⋅
𝑢
𝑓

𝑖

𝑛
𝑓

− 1
= 𝑢
𝑓

𝑖

. (18)

𝑝
𝑓

𝑖

has enough upload bandwidth which can transmit the
data in 𝑠𝑓1

𝑜𝑖

to other fixed nodes with the same flow rate. Then
the total flow rate of 𝑝𝑓

𝑖

is

tr𝑓
𝑖

= 𝑠
𝑓1

𝑜𝑖

+ 𝑠
𝑓2

𝑜𝑖

+

𝑗 ̸= 𝑖

∑

P
𝑓

𝑠
𝑓1

𝑜𝑗

= 𝑟
𝑓

. (19)

Thereby,𝑝𝑓
𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

)will get enough flow rate to ensure
the normal play of the media.

In conclusion, through the flow rate arrangement in the
transmitting of the multimedia data, whether it is 𝑟

𝑓

≥

𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) or 𝑟
𝑓

< 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

), all fixed nodes will play
normally.

Then consider P
𝑚

.
𝑢


𝑠

denotes the remaining upload bandwidth of 𝑠. 𝑢𝑓
𝑖

denotes the remaining upload bandwidth of 𝑝𝑓
𝑖

. 𝑢all denotes
the remaining upload bandwidth of the system. Thereby,

𝑢


all = 𝑢


𝑠

+∑

P
𝑓

𝑢
𝑓

𝑖

= 𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

) . (20)

Considering (12),

𝑢


all ≥ 𝑟𝑚. (21)
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When 𝑟
𝑚

≥ 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

), namely, 𝑟
𝑚

≤ 𝑛
𝑚

𝑢
𝑚

/(𝑛
𝑚

− 1), 𝑠
transmits the multimedia data for 𝑝𝑚

𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

), and the
flow rate arrangement is

𝑠
𝑚

𝑜𝑖

=
𝑢
𝑚

𝑖

u (P
𝑚

)
⋅
𝑢


𝑠

𝑢all
⋅ 𝑟
𝑚

=
𝑢
𝑚

𝑖

𝑛
𝑚

𝑢
𝑚

⋅
𝑢


𝑠

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)
⋅ 𝑟
𝑚

.

(22)

𝑝
𝑓

𝑘

(𝑘 = 1, . . . , 𝑛
𝑓

) transcodes and transmits the multimedia
data for 𝑝𝑚

𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

), and the flow rate is arranged as

𝑠
𝑡

𝑘𝑖

=
𝑢
𝑚

𝑖

u (P
𝑚

)
⋅
𝑢
𝑓

𝑘

𝑢all
⋅ 𝑟
𝑚

=
𝑢
𝑚

𝑖

𝑛
𝑚

𝑢
𝑚

⋅
𝑢
𝑓

𝑘

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)
⋅ 𝑟
𝑚

.

(23)

Notice that as ∑P
𝑚

𝑠
𝑚

𝑜𝑖

= 𝑢


𝑠

⋅ 𝑟
𝑚

/𝑢


all , according to (21),
we can get ∑P

𝑚

𝑠
𝑚

𝑜𝑖

≤ 𝑢


𝑠

, so 𝑠 has enough upload bandwidth
to achieve the previous transmitting. And as ∑P

𝑚

𝑠
𝑡

𝑘𝑖

= 𝑢
𝑓

𝑘

⋅

𝑟
𝑚

/𝑢


all , according to (21), we can get∑P
𝑚

𝑠
𝑡

𝑘𝑖

≤ 𝑢
𝑓

𝑘

, so𝑝𝑓
𝑘

(𝑘 =

1, . . . , 𝑛
𝑓

) has enough upload bandwidth to achieve the
previous transmitting. Now the flow rate attained by 𝑝𝑚

𝑖

(𝑖 =

1, . . . , 𝑛
𝑚

) is

𝑠
𝑚

𝑜𝑖

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡

𝑘𝑖

=
𝑢
𝑚

𝑖

𝑟
𝑚

u (P
𝑚

)
=
𝑢
𝑚

𝑖

𝑟
𝑚

𝑛
𝑚

𝑢
𝑚

. (24)

As

(𝑛
𝑚

− 1) ⋅ (𝑠
𝑚

𝑜𝑖

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡

𝑘𝑖

) =
(𝑛
𝑚

− 1) 𝑢
𝑚

𝑖

𝑛
𝑚

𝑢
𝑚

⋅ 𝑟
𝑚

≤
(𝑛
𝑚

− 1) 𝑢
𝑚

𝑖

𝑛
𝑚

𝑢
𝑚

⋅
𝑛
𝑚

𝑢
𝑚

𝑛
𝑚

− 1
= 𝑢
𝑚

𝑖

.

(25)

So 𝑝𝑚
𝑖

has enough upload bandwidth which can transmit the
data in 𝑠𝑚

𝑜𝑖

+ ∑
𝑛

𝑓

𝑘=1

𝑠
𝑡

𝑘𝑖

to other fixed nodes with the same flow
rate. Then the total flow rate of 𝑝𝑚

𝑖

is

tr𝑚
𝑖

= 𝑠
𝑚

𝑜𝑖

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡

𝑘𝑖

+

𝑗 ̸= 𝑖

∑

P
𝑚

(𝑠
𝑚

𝑜𝑗

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡

𝑘𝑗

) = 𝑟
𝑚

. (26)

And 𝑝𝑚
𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

) will get enough flow rate to ensure
the normal play of the media.

When 𝑟
𝑚

< 𝑛
𝑚

(𝑟
𝑚

−𝑢
𝑚

), 𝑠 transmits the multimedia data
for 𝑝𝑚
𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

). And the flow rate arrangement of the
first time (𝑠𝑚1

𝑜𝑖

) is

𝑠
𝑚1

𝑜𝑖

=
𝑢
𝑚

𝑖

𝑛
𝑚

− 1
⋅
𝑢


𝑠

𝑢all
=
𝑢
𝑚

𝑖

𝑛
𝑚

− 1
⋅

𝑢


𝑠

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)
. (27)

And the second time (𝑠𝑚2
𝑜𝑖

) is

𝑠
𝑚2

𝑜𝑖

= (𝑟
𝑚

−
u (P
𝑚

)

𝑛
𝑚

− 1
)(
𝑢


𝑠

𝑢all
)

= (𝑟
𝑚

−
𝑛
𝑚

𝑢
𝑚

𝑛
𝑚

− 1
)(

𝑢


𝑠

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)
) .

(28)

𝑝
𝑓

𝑘

(𝑘 = 1, . . . , 𝑛
𝑓

) transcodes and transmits multimedia data
for 𝑝𝑚
𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

), and the flow rate arrangement of the
first time (𝑠𝑡1

𝑘𝑖

) is

𝑠
𝑡1

𝑘𝑖

=
𝑢
𝑚

𝑖

𝑛
𝑚

− 1
⋅
𝑢
𝑓

𝑘

𝑢all
=
𝑢
𝑚

𝑖

𝑛
𝑚

− 1
⋅

𝑢
𝑓

𝑘

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)
. (29)

And the second time (𝑠𝑡2
𝑘𝑖

) is

𝑠
𝑡2

𝑘𝑖

= (𝑟
𝑚

−
u (P
𝑚

)

𝑛
𝑚

− 1
)(
𝑢
𝑓

𝑘

𝑢all
)

= (𝑟
𝑚

−
𝑛
𝑚

𝑢
𝑚

𝑛
𝑚

− 1
)(

𝑢
𝑓

𝑘

𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)
) .

(30)

Notice that as ∑P
𝑚

𝑠
𝑚1

𝑜𝑖

+ ∑P
𝑚

𝑠
𝑚2

𝑜𝑖

= 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

)/(𝑢
𝑠

+

𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)) ⋅ 𝑢


𝑠

, according to (12), we can get ∑P
𝑚

𝑠
𝑚1

𝑜𝑖

+

∑P
𝑚

𝑠
𝑚2

𝑜𝑖

≤ 𝑢


𝑠

, so 𝑠 has enough upload bandwidth to achieve
the previous transmitting, and as∑P

𝑚

𝑠
𝑡1

𝑘𝑖

+∑P
𝑚

𝑠
𝑡2

𝑘𝑖

= 𝑛
𝑚

(𝑟
𝑚

−

𝑢
𝑚

)/(𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

)) ⋅ 𝑢
𝑓

𝑘

, according to (12), we can get
∑P
𝑚

𝑠
𝑡1

𝑘𝑖

+∑P
𝑚

𝑠
𝑡2

𝑘𝑖

≤ 𝑢
𝑓

𝑘

,𝑝𝑓
𝑘

(𝑘 = 1, . . . , 𝑛
𝑓

) has enough upload
bandwidth to achieve the previous transmitting.

Moreover, as

(𝑛
𝑚

− 1) ⋅ (𝑠
𝑚1

𝑜𝑖

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡1

𝑘𝑗

) = (𝑛
𝑚

− 1) ⋅
𝑢
𝑚

𝑖

𝑛
𝑚

− 1
= 𝑢
𝑚

𝑖

.

(31)

𝑝
𝑚

𝑖

has enough upload bandwidth which can transmit the
data in 𝑠𝑚1

𝑜𝑖

+∑
𝑛

𝑓

𝑘=1

𝑠
𝑡1

𝑘𝑗

to other fixed nodes with the same flow
rate. Then the total flow rate of 𝑝𝑚

𝑖

is

tr𝑚
𝑖

= 𝑠
𝑚1

𝑜𝑖

+ 𝑠
𝑚2

𝑜𝑖

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡1

𝑘𝑖

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡2

𝑘𝑖

+

𝑗 ̸= 𝑖

∑

P
𝑚

(𝑠
𝑚1

𝑜𝑗

+

𝑛

𝑓

∑

𝑘=1

𝑠
𝑡1

𝑘𝑗

) = 𝑟
𝑚

.

(32)

Therefore, 𝑝𝑚
𝑖

(𝑖 = 1, . . . , 𝑛
𝑚

) will get enough flow rate to
ensure the normal play of the media.

In conclusion, through the flow rate arrangement,
whether it is 𝑟

𝑚

≥ 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

) or 𝑟
𝑚

< 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

), all
mobile nodes will play normally.

Finally, according to the previous design, when 𝑢
𝑠

=

MAX, the system can make all mobile and fixed nodes get
the required coding rate of data and the flow rate.
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3.4. Flow Rate Control. The previous analysis has attained a
flow rate control algorithm for onemobile node subclass, and
for multiple subclasses we should only do it for several cycles.
Assume that the number of the fixed node is 𝑛

𝑓

, and there are
𝑙 mobile node subclasses. The number of the node is 𝑛

𝑖

(𝑖 =

1, . . . , 𝑙), and 𝑝𝑓
𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

) denotes the 𝑖th fixed node.
𝑝
𝑚

𝑖𝑗

(𝑖 = 1, . . . , 𝑙; 𝑗 = 1, . . . , 𝑛
𝑖

) denotes the 𝑗th mobile node of
the 𝑖th subclass, and 𝑠 denotes the source node. 𝑟

𝑓

denotes
the minimum flow rate which makes the multimedia data
required by the fixed node normally broadcast. 𝑟

𝑖

(𝑖 = 1, . . . , 𝑙)

denotes the minimum flow rate which makes the multimedia
data required by the 𝑖th subclass node normally broadcast.
𝑢
𝑓

𝑖

(𝑖 = 1, . . . , 𝑛
𝑓

) denotes the upload bandwidth of the 𝑖th
fixed node. 𝑢𝑚

𝑖𝑗

(𝑖 = 1, . . . , 𝑙; 𝑗 = 1, . . . , 𝑛
𝑖

) denotes the upload
bandwidth of the 𝑖th subclass node. 𝑢

𝑠

denotes the size of
the upload bandwidth of the source node. 𝑢

𝑓

denotes the
average upload bandwidth of all the fixed nodes. And tr𝑓

𝑖

(𝑖 =

1, . . . , 𝑛
𝑓

) denotes the total flow rate of𝑝𝑓
𝑖

when it receives the
multimedia data. tr𝑚

𝑖𝑗

(𝑖 = 1, . . . , 𝑙; 𝑗 = 1, . . . , 𝑛
𝑖

) denotes the
total flow rate of 𝑝𝑚

𝑖𝑗

when it receives the multimedia data.
According to flow rate arrangement attained by the previous
analysis, as for the condition withmultiple mobile subclasses,
we can get that

𝑢
𝑠

= max(𝑟
𝑓

, 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) +

𝑙

∑

𝑖=1

max (𝑟
𝑖

, 𝑛
𝑖

(𝑟
𝑖

− 𝑢
𝑖

))) .

(33)

𝑓(𝑥 → 𝑦) = 𝑧 denotes that the node 𝑥 transmits the
required multimedia data to the node 𝑦 with the flow rate
of 𝑧. 𝑓

𝑡

(𝑥 → 𝑦) = 𝑧 denotes that the node 𝑥 provides 𝑦
with coding rate conversionwith the flow rate of 𝑧 to transmit
required multimedia data. The complete flow rate control
algorithm is listed below.

The Flow Rate Control of Multimedia Data for Fixed Nodes
(1) attain the systematic information including 𝑢

𝑠

, 𝑛
𝑓

, 𝑢
𝑓

,
𝑟
𝑓

, 𝑛
𝑖

(𝑖 = 1, . . . , 𝑙), 𝑢
𝑖

(𝑖 = 1, . . . , 𝑙), 𝑟
𝑖

(𝑖 = 1, . . . , 𝑙);
(2) if (𝑛

𝑓

− 1)𝑟
𝑓

/𝑛
𝑓

− 𝑢
𝑓

> 0, go to (6);
(3) make 𝑢

𝑠

= 𝑟
𝑓

, and transmit the following data;

(a) 𝑓(𝑠 → 𝑝𝑓
𝑖

) = 𝑢
𝑓

𝑖

𝑟
𝑓

/𝑛
𝑓

𝑢
𝑓

, (𝑖 = 1, . . . , 𝑛
𝑓

);
(b) 𝑓(𝑝𝑓

𝑗

→ 𝑝
𝑓

𝑖

) = 𝑢
𝑓

𝑗

𝑟
𝑓

/𝑛
𝑓

𝑢
𝑓

, (𝑗 = 1, . . . , 𝑛
𝑓

; 𝑖 =

1, . . . , 𝑛
𝑓

; 𝑗 ̸= 𝑖);

(4) then the total flow rate of the required multimedia
data for 𝑝𝑓

𝑖

is tr𝑓
𝑖

= 𝑟
𝑓

, (𝑖 = 1, . . . , 𝑛
𝑓

);
(5) go to (9);
(6) make 𝑢

𝑠

= 𝑟
𝑖

+ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

), transmit the following
data:

(a) 𝑓(𝑠 → 𝑝𝑓
𝑖

) = 𝑢
𝑓

/(𝑛
𝑓

− 1), (𝑖 = 1, . . . , 𝑛
𝑓

);
(b) 𝑓(𝑝𝑓

𝑗

→ 𝑝
𝑓

𝑖

) = 𝑢
𝑓

/(𝑛
𝑓

− 1), (𝑗 = 1, . . . , 𝑛
𝑓

; 𝑖 =

1, . . . , 𝑛
𝑓

; 𝑗 ̸= 𝑖);
(c) 𝑓(𝑠 → 𝑝𝑓

𝑖

) = 𝑟
𝑓

−𝑛
𝑓

𝑢
𝑓

/(𝑛
𝑓

−1), (𝑖 = 1, . . . , 𝑛
𝑓

);

(7) then the total flow rate of the required multimedia
data for 𝑝𝑓

𝑖

is tr𝑓
𝑖

= 𝑟
𝑓

, (𝑖 = 1, . . . , 𝑛
𝑓

);
(8) go to (9).

The Flow Rate Control of Multimedia Data for Mobile Nodes:

(9) make 𝑖 = 1;
(10) if 𝑖 > 𝑙, go to (18);
(11) if (𝑛

𝑖

− 1)𝑟
𝑖

/𝑛
𝑖

− 𝑢
𝑖

> 0, go to (15);
(12) the node with upload bandwidth above 0 initiates the

following coding rate conversion and data transfer:

(a) 𝑓
𝑡

(𝑠 → 𝑝
𝑚

𝑖𝑗

) = 𝑢
𝑚

𝑖𝑗

/𝑛
𝑖

𝑢
𝑖

⋅𝑢


𝑠

/(𝑢
𝑠

+𝑛
𝑓

(𝑢
𝑓

−𝑟
𝑓

)) ⋅ 𝑟
𝑖

,
(𝑗 = 1, . . . , 𝑛

𝑖

);
(b) 𝑓
𝑡

(𝑝
𝑓

𝑘

→ 𝑝
𝑚

𝑖𝑗

) = 𝑢
𝑚

𝑖𝑗

/𝑛
𝑖

𝑢
𝑖

⋅𝑢
𝑓

𝑘

/(𝑢
𝑠

+𝑛
𝑓

(𝑢
𝑓

−𝑟
𝑓

))⋅

𝑟
𝑖

, (𝑘 = 1, . . . , 𝑛
𝑓

; 𝑗 = 1, . . . , 𝑛
𝑖

);
(c) 𝑓(𝑝𝑚

𝑖𝑘

→ 𝑝
𝑚

𝑖𝑗

) = 𝑢
𝑚

𝑖𝑗

𝑟
𝑖

/𝑛
𝑖

𝑢
𝑖

, (𝑘 = 1, . . . , 𝑛
𝑖

; 𝑗 =

1, . . . , 𝑛
𝑖

; 𝑘 ̸= 𝑗);

(13) then the total flow rate of the required multimedia
data for 𝑝𝑚

𝑖𝑗

is tr𝑚
𝑖𝑗

= 𝑟
𝑖

, (𝑗 = 1, . . . , 𝑛
𝑖

);
(14) 𝑖 = 𝑖 + 1 go to (10);
(15) make 𝑢

𝑠

= 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) + 𝑛
𝑖

(𝑟
𝑖

− 𝑢
𝑖

), the node
with upload bandwidth above 0 initiates the following
coding rate conversion and data transfer:

(a) 𝑓
𝑡

(𝑠 → 𝑝
𝑚

𝑖𝑗

) = 𝑢
𝑚

𝑖𝑗

/(𝑛
𝑖

−1)⋅𝑢


𝑠

/(𝑢
𝑠

+𝑛
𝑓

(𝑢
𝑓

−𝑟
𝑓

)),
(𝑗 = 1, . . . , 𝑛

𝑖

);
(b) 𝑓
𝑡

(𝑝
𝑓

𝑘

→ 𝑝
𝑚

𝑖𝑗

) = 𝑢
𝑚

𝑖𝑗

/(𝑛
𝑖

− 1) ⋅ 𝑢
𝑓

𝑘

/(𝑢
𝑠

+ 𝑛
𝑓

(𝑢
𝑓

−

𝑟
𝑓

)), (𝑘 = 1, . . . , 𝑛
𝑓

; 𝑗 = 1, . . . , 𝑛
𝑖

);
(c) 𝑓(𝑝𝑚

𝑖𝑘

→ 𝑝
𝑚

𝑖𝑗

) = 𝑢
𝑚

𝑖𝑗

/(𝑛
𝑖

− 1), (𝑘 = 1, . . . , 𝑛
𝑖

; 𝑗 =

1, . . . , 𝑛
𝑖

; 𝑘 ̸= 𝑗);
(d) 𝑓
𝑡

(𝑠 → 𝑝
𝑚

𝑖𝑗

) = (𝑟
𝑖

−𝑛
𝑖

𝑢
𝑖

/(𝑛
𝑖

−1))(𝑢


𝑠

/(𝑢
𝑠

+𝑛
𝑓

(𝑢
𝑓

−

𝑟
𝑓

))), (𝑗 = 1, . . . , 𝑛
𝑖

);

(e) 𝑓
𝑡

(𝑝
𝑓

𝑘

→ 𝑝
𝑚

𝑖𝑗

) = (𝑟
𝑖

− 𝑛
𝑖

𝑢
𝑖

/(𝑛
𝑖

− 1))(𝑢
𝑓

𝑘

/(𝑢
𝑠

+

𝑛
𝑓

(𝑢
𝑓

− 𝑟
𝑓

))), (𝑘 = 1, . . . , 𝑛
𝑓

; 𝑗 = 1, . . . , 𝑛
𝑖

);

(16) then the total flow rate of the required multimedia
data for 𝑝𝑚

𝑖𝑗

is tr𝑚
𝑖𝑗

= 𝑟
𝑖

, (𝑗 = 1, . . . , 𝑛
𝑖

);
(17) go to (10);
(18) end.

3.5. Algorithm Instance. In the following, the algorithm will
be demonstrated by an example. As shown in Figure 2(a), the
system has two fixed nodes A and B, as well as two mobile
nodes C and D. Wherein the multimedia data displayed by
A and B requires a support of 800 kbps flow rate. And the
multimedia data displayed by C and D requires a support of
600 kbps flow rate. The upload bandwidth of A is 1200 kbps;
the upload bandwidth of B is 800Kbps; the upload bandwidth
of C is 200Kbps; and the upload bandwidth of D is 100 kbps.
According to (12) the upload bandwidth of 𝑠 is set to
800 kbps. In Figure 2(b), the upload bandwidth and flow rate
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A

B

S

C

D

UB: 1200 kbps
FR: 800 kbps

UB: 800 kbps
FR: 800 kbps

UB: 200 kbps
FR: 600kbps

UB: 100 kbps
FR: 600kbpsUB: 800 kbps

(a) Initial conditions

A

B

C

D

S
320kbps

320kbps

480kbps

480kbps
200 kbps

100 kbps

(120 + 180) kbps

(60 + 180) kbps

(80 + 120) kbps

(40 + 120) kbps

(b) Flow rate control

Figure 2: Algorithm instance.

requirements of each node are marked with UB and FR,
respectively.

As shown in Figure 2(b), according to the flow rate
control of the multimedia data required by fixed nodes in the
algorithm, it provides flow rate for A and B. In the figure,
the thick arrows mark the transmission path of multimedia
data required by A and B, and the numbers mark the upload
bandwidth. Then according to the flow rate control of the
multimedia data required by mobile nodes in the algorithm,
it provides the coding rate conversion and the flow rate for C
and D. In the figure, the thin arrows mark the transmission
path of multimedia data required by C and D, and the
numbers mark the upload bandwidth (the plus sign between
the numbers denotes twice transmission according to the
algorithm). Finally, the entire system meets user needs for
coding data and flow rate of all nodes by the distributed
multimedia data transmission and flow rate control, which
achieves the purpose of design.

4. Performance Comparison

As has been mentioned previously, current designs treat
the fixed nodes and mobile nodes subclasses as multiple
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Figure 3: Comparison of 𝑢A
𝑠

and 𝑢B
𝑠

in the scenario of mobile node
increase.

independent subsystems and, respectively, provides different
coding rate of data and the corresponding flow rate control.
Such systematic and typical flow rate control algorithm is
proposed and analyzed in [15, 16].This section first compares
the upload bandwidth consumptions between the proposed
algorithm of this paper and the algorithm of the references
based on the simulation experiment and then further demon-
strates the experimental results based on the mathematical
analysis.

4.1. Simulation Experiment. Simulation platform generates
the analog network environment with the commonly used
Georgia Tech’s TopologyGenerator [36, 37] in themultimedia
data transmission and streaming system experiment. And on
this basis, it achieves applying the system to simulate with the
proposed algorithm in this paper and the references. For the
convenience of description, in the following paragraphs, the
system that adopts the algorithm of the references is referred
to as system A, and the system that adopts the algorithm
proposed in this paper is referred to as system B. 𝑢A

𝑠

denotes
the upload bandwidth consumption on the source node of
system A. 𝑢B

𝑠

denotes the upload bandwidth consumption on
the source node of system B.

Wemake two experiments to compare the performance of
𝑢
A
𝑠

and 𝑢B
𝑠

. First, assume that there are 20 fixed nodes and 20
mobile nodes in the system. The minimum flow rate of fixed
node sets 500 kbps, and the minimum flow rate of mobile
node sets 200 kbps. The upload bandwidth of fixed node sets
1000 kbps, and the upload bandwidth of mobile node sets
100 kbps. We increase the number of mobile nodes gradually
and measure 𝑢A

𝑠

and 𝑢B
𝑠

in the same conditions. The results
can be seen in Figure 3: the curve of 𝑢B

𝑠

is below the curve of
𝑢
A
𝑠

(from 20 to 190 mobile nodes), which means that system
B achieves lower upload bandwidth consumption of source
node.

To be more fair, the random parameters are taken as
the initial condition in the second experiment (the range
is shown in Table 2), and it generates 500 sets of random
initial conditions. In the same initial conditions, it tests
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Figure 4: Upload bandwidth consumption difference of the source
node in random setting.

Table 2: Range of randomly set initial conditions.

Min Max
Average upload bandwidth (kbps) 20 1000
Minimum flow rate (kbps) 100 1500
Amount of the mobile node subclasses 2 10
Amount of mobile nodes in one subclass 5 100

the difference of source node upload bandwidth consumption
between system A and B, namely,𝐷 = 𝑢A

𝑠

− 𝑢
B
𝑠

.
The experimental results can be seen in Figure 4: in the

random test, 𝐷 value ranges from about 100 kbps to about
10Mbps; that is, the upload bandwidth consumption of the
source node in system B is less than that in system A. As 𝑢A

𝑠

and 𝑢B
𝑠

are measured under the same conditions, it shows
that the user nodes (especially the fixed nodes) in system
B utilize upload bandwidth more fully than the system A,
which alleviates the upload bandwidth consumption of the
source node in system B. In fact, the result of this test is
not accidental. In the following, it will demonstrate that the
upload bandwidth consumption of the source node in system
B is lower with mathematical analysis.

4.2. Mathematical Analysis. Assume that in the system there
is only one mobile node subclass. Current design (system A)
is divided into two separate subsystems, which, respectively,
provide flow rates support for the fixed nodes and mobile
nodes. The upload bandwidth consumption of the two sub-
systems is 𝑢A

𝑠𝑓

and 𝑢A
𝑠𝑚

, according to [15, 16],

𝑢
A
𝑠𝑓

= max (𝑟
𝑓

, 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

)) ,

𝑢
A
𝑠𝑚

= max (𝑟
𝑚

, 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

)) .

(34)

As the various subsystems of the current design are indepen-
dent of each other, thereby

𝑢
A
𝑠

= 𝑢
A
𝑠𝑓

+ 𝑢
A
𝑠𝑚

. (35)

Equation (35) represents the upload bandwidth con-
sumption of the source node with a given flow rate design.
And combined with (33), it can quantitatively analyze upload
bandwidth difference of the source node between system A
and B in the same requirements and conditions. However,
just by (35), it is not easy to see real relationship of the
upload bandwidth consumption of the source node in the two
systems.

Note that, according to (34),

𝑢
A
𝑠𝑓

≥ 𝑟
𝑓

,

𝑢
A
𝑠𝑓

≥ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) ,

𝑢
A
𝑠𝑚

≥ 𝑟
𝑚

,

𝑢
A
𝑠𝑚

≥ 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

) ,

(36)

𝑢
A
𝑠

= 𝑢
A
𝑠𝑓

+ 𝑢
A
𝑠𝑚

≥ 𝑟
𝑓

,

𝑢
A
𝑠

= 𝑢
A
𝑠𝑓

+ 𝑢
A
𝑠𝑚

≥ 𝑟
𝑚

+ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) ,

𝑢
A
𝑠

= 𝑢
A
𝑠𝑓

+ 𝑢
A
𝑠𝑚

≥ 𝑛
𝑓

(𝑟
𝑓

− 𝑢
𝑓

) + 𝑛
𝑚

(𝑟
𝑚

− 𝑢
𝑚

) .

(37)

Comparing (37) with (9) and (10), it can be seen that

𝑢
A
𝑠

≥ MAX. (38)

The above has argued that with the proposed algorithm
in this paper, system B can make all nodes play normally in
the condition of 𝑢B

𝑠

= MAX, so it is always true that 𝑢B
𝑠

≤

𝑢
A
𝑠

. For the multiple mobile node subclasses, the algorithm
should be used for multiple cycles, and it is also true that
𝑢
B
𝑠

≤ 𝑢
A
𝑠

. As the upload bandwidth consumptions of the
source node in system A and B are measured under the same
initial conditions, 𝑢B

𝑠

is lower, which shows that system B
makes better use of upload bandwidth of user nodes.

5. Conclusion

In this paper, a distributed flow rate control algorithm for
the optimization of multimedia data transmission in the
networked agent system with multiple coding rates was put
forward. The proposed algorithm makes the different coding
rate data and user nodes networked to improve the upload
bandwidth utilization of user nodes. It achieves personalized
coding rate data transmission and the corresponding flow
rate control for different user nodes. The paper uses the
mathematical modeling to analyze the upload bandwidth
consumption of the source node in the system that adopts
the proposed algorithm. And it is compared with the current
design. The paper demonstrates that the proposed algorithm
makes the system achieves higher upload bandwidth utiliza-
tion of user nodes and lower upload bandwidth consumption
of source node comparedwith the current design through the
simulation experiment and the mathematical analysis.
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This paper is concerned with the problems of absolute stability and master-slave synchronization of systems with state-dependent
nonlinearities. The Kalman-Yakubovich-Popov (KYP) lemma and the Schur complement formula are applied to get novel and less
conservative stability conditions. A numerical example is presented to illustrate the efficiency of the stability criteria. Furthermore,
a synchronization criterion is developed based on the proposed stability results.

1. Introduction and Preliminaries

This paper considers the problems of absolute stability and
master-slave synchronization of dynamical systems described
by the following differential equation:

̇𝑥
𝑖

=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝑓
𝑗

(𝑥
𝑗

) , 𝑓
𝑗

(0) = 0, 𝑗 = 1, . . . , 𝑛, (1)

where 𝑥 = (𝑥
1

, . . . , 𝑥
𝑛

)
𝑇

∈ R𝑛 is the system state vector and
𝑓
𝑖

: R → R, 𝑖 = 1, . . . , 𝑛, are time-invariant state-dependent
nonlinearities with sector restrictions such as the following:

𝛾
𝑖

𝜏
2

≤ 𝑓
𝑖

(𝜏) 𝜏 ≤ 𝛿
𝑖

𝜏
2

, 𝑖 = 1, . . . , 𝑛. (2)

For convenience, system (1) will often be written by using the
following compact notation:

̇𝑥 = 𝐴𝑓 (𝑥) , 𝑓 (0) = 0, (3)

where 𝐴 := (𝑎
𝑖𝑗

) and 𝑓(𝑥) := (𝑓
1

, . . . , 𝑓
𝑛

)
𝑇. And the sector

conditions (2) will be denoted as follows:

F (Γ, Δ) , (4)

where Γ := diag(𝛾
1

, . . . , 𝛾
𝑛

) and Δ := diag(𝛿
1

, . . . , 𝛿
𝑛

).

The problems of stability and synchronization of systems
of form (3) play an important role in nonlinear systems
theory. It has been found that system (3) has connections
with problems in system theory and computation in fields
as diverse as Hopfield neural networks [1], Lotka-Voltera
ecosystems [2], and systems with saturation nonlinearities
[3], among others. A rather recent contribution to the stability
analysis of system (3) is [4].

As illustrated in [4], some well-known stability results,
such as diagonal stability and passivity-based methods (the
circle and the Popov criteria), can be used as stability criteria
for system (3) with some particular sector conditions. How-
ever, while bringing simplicity, these stability criteriamay also
introduce conservativeness to the problem. By using a Lur’e
function as a Lyapunov function candidate, [4] introduced a
new absolute stability test for system (3) which was proved
to be much less conservative than both diagonal stability and
passivity-basedmethods. For the sake of convenience, we put
this stability test in Lemma 1.

On the other hand, the problems of absolute stability and
synchronization of Lur’e systemshave beenwidely studied [5–
15]. Thanks to the results of [9], we found that the stability
criteria proposed in [4] can be further improved by relaxing
the restriction of positiveness onmatrix𝑃 in Lemma 1, which,
as illustrated by a numerical example, can further reduce the
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conservativeness of the stability test of [4]. Last but not least,
a new synchronization criterion for systems of form (3) is
developed based on the proposed stability results.

The Kalman-Yakubovic-Popov (KYP) lemma will be
used in this paper to establish the equivalence relationship
between the frequency-domain conditions and time-domain
inequalities. The Schur complement formula will also be
applied in the process of proof. They are both presented in
lemmas below for the convenience of reading.

Lemma 1 (Theorem 2 of [4]). The zero solution of system (3) is
globally asymptotically stable (GAS) for all 𝑓 ∈ F(Γ, Δ), if there
exist diagonal and positive-definite matrices 𝑃 and 𝑄, and a
symmetric matrix𝑊 > −𝑃Γ such that the following LMI

[
[

[

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑄 𝐴
𝑇

𝑊+
1

2
(Γ + Δ)Q

𝑊𝐴 +
1

2
𝑄 (Γ + Δ) −ΓΔ𝑄

]
]

]

< 0 (5)

is feasible, where Γ := diag(𝛾
1

, . . . , 𝛾
𝑛

) and Δ := diag(𝛿
1

, . . . ,

𝛿
𝑛

).

Lemma 2 (KYP lemma, Rantzer [16]). Given 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈
R𝑛×𝑚, Π = Π

𝑇

∈ R(𝑛+𝑚)×(𝑛+𝑚), with det(𝑗𝜔𝐼 − 𝐴) ̸= 0 for all
𝜔 ∈ R, the following statements are equivalent.

(i) [ (𝑗𝜔𝐼−𝐴)−1𝐵
𝐼

]
∗

Π[ (𝑗𝜔𝐼−𝐴)
−1
𝐵

𝐼

] < 0 for all 𝜔 ∈ R.

(ii) There exists a matrix 𝑃 = 𝑃𝑇 ∈ R𝑛×𝑛 such that

[
𝐴
𝑇

𝑃 + 𝑃𝐴
𝑇

𝑃𝐵

𝐵
𝑇

𝑃 0
] + Π < 0. (6)

Lemma 3 (Schur complement, Boyd et al. [17]). The LMI

[
𝑆
11

𝑆
12

𝑆
𝑇

12

−𝑆
22

] < 0 (7)

with 𝑆
11

= 𝑆
𝑇

11

and 𝑆
22

= 𝑆
𝑇

22

is equivalent to one of the follow-
ing statements:

(i) 𝑆
22

> 0 and 𝑆
11

+ 𝑆
12

𝑆
−1

22

𝑆
𝑇

12

< 0;
(ii) 𝑆
11

< 0 and 𝑆
22

+ 𝑆
𝑇

12

𝑆
−1

11

𝑆
12

> 0.

2. Absolute Stability Criteria

To analyze the absolute stability of system (3), a Lur’e function

𝑉 (𝑥) = 𝑥
𝑇

𝑊𝑥 + 2

𝑛

∑

𝑖=1

𝑝
𝑖

∫

𝑥

𝑖

0

𝑓
𝑖

(𝜏) 𝑑𝜏, (8)

where 𝑃 = diag(𝑝
1

, . . . , 𝑝
𝑛

) > 0 and𝑊 > −𝑃Γ, was taken in
[4] as a Lyapunov function candidate. The stability condition
of Lemma 1 was then deduced by the analysis of the time
derivative of (8) incorporating the 𝑆-procedure (see [4] for
details).

Note that the diagonal matrix 𝑃 in Lemma 1 is allowed to
be only positive, so as to ensure the nonnegativeness of the
Lyapunov function (6) in [4]. The main goal of this section
is to prove that the restriction of positiveness on matrix 𝑃 is
unnecessary by finally showing that the Lur’e function𝑉(𝑥) in
(8) can still be taken as a Lyapunov candidate when some or
even all entries 𝑝

𝑖

are nonpositive.Wewill start with a revised
time-domain criterion for the absolute stability of system (3).

Theorem 4. The zero solution of the nonlinear system (3) is
GAS for all 𝑓 ∈ F(Γ, Δ), if 𝐴Γ is stable and there exist diagonal
matrices 𝑃 and 𝑄 with 𝑄 > 0 and a symmetric matrix𝑊 such
that the LMI (5) is feasible.

Before proving this theorem, some needed results and
some discussions on the frequency-domain interpretation to
LMI (5) are first introduced.

Proposition 5. Under the condition of inequality (5), the
following two statements are equivalent:

(i) 𝐴Γ is stable;

(ii) 𝑊+ 𝑃Γ > 0.

Proof. Define

Φ =
[
[

[

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑄 𝐴
𝑇

𝑊+
1

2
(Γ + Δ)𝑄

𝑊𝐴 +
1

2
𝑄 (Γ + Δ) −ΓΔ𝑄

]
]

]

. (9)

Then the congruence transformation ofΦ by the nonsingular
matrix

𝑇
1

= [
Γ 𝐼

𝐼 0
] (10)

provides an equivalent inequality to (5)

𝑇
1

Φ𝑇
𝑇

1

=
[
[

[

Γ𝐴
𝑇

𝑌
1

+ 𝑌
1

𝐴Γ 𝑌
1

𝐴 + Γ𝐴
𝑇

𝑃 −
1

2
(Γ − Δ)𝑄

𝐴
𝑇

𝑌
1

+ 𝑃𝐴Γ −
1

2
𝑄 (Γ − Δ) 𝐴

𝑇

𝑃 + 𝑃𝐴 − 𝑄

]
]

]

< 0, (11)

where 𝑌
1

= 𝑊 + 𝑃Γ. By the Schur complement (Lemma 3), (11) implies the following:
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Γ𝐴
𝑇

(𝑊 + 𝑃Γ) + (𝑊 + 𝑃Γ)𝐴Γ < 0. (12)

This inequality directly leads to the result of the proposition.

Remark 6. Proposition 5 shows that the conditions of
Theorem 4 guaranteeing the GAS of system (3) are consistent
with Lemma 1, except for the restriction of positiveness on
matrix 𝑃.

The next theorem reveals a frequency domain interpreta-
tion to the LMI (5).

Theorem 7. Suppose that 𝐴Γ is stable. Then, there exist
diagonal matrices𝑃 and𝑄with𝑄 > 0 and a symmetric matrix
𝑊 such that the LMI (5) is feasible if, and only if,

Re {(Δ − Γ)𝑄𝐾
Γ

(𝑗𝜔) + 2𝑗𝜔𝑃𝐾
Γ

(𝑗𝜔) − 𝑄} < 0, ∀𝜔 ∈ R,

(13)

where𝐾
Γ

(𝑠) = (𝑠𝐼 − 𝐴Γ)
−1

𝐴.

Proof. Let

Π =
[
[

[

0 Γ𝐴
𝑇

𝑃 −
1

2
(Γ − Δ)𝑄

𝑃𝐴Γ −
1

2
𝑄 (Γ − Δ) 𝐴

𝑇

𝑃 + 𝑃𝐴 − 𝑄

]
]

]

. (14)

Then, inequality (11), which is equivalent to the LMI (5) as
proved in Proposition 5, can be rewritten as follows:

Π + [
Γ𝐴
𝑇

𝑌
1

+ 𝑌
1

𝐴Γ 𝑌
1

𝐴

𝐴
𝑇

𝑌
1

0
] < 0. (15)

From the KYP lemma (Lemma 2), (15) holds if, and only if,

[
(𝑗𝜔𝐼 − 𝐴Γ)

−1

𝐴

𝐼
]

∗

Π[
(𝑗𝜔𝐼 − 𝐴Γ)

−1

𝐴

𝐼
] < 0, ∀𝜔 ∈ R,

(16)

which is equivalent to inequality (13) through direct calcula-
tion.

Furthermore, noticing that

𝑠𝑃𝐾
Γ

(𝑠) = 𝑠𝑃(𝑠𝐼 − 𝐴Γ)
−1

𝐴

= 𝑃(𝐼 − 𝑠
−1

𝐴Γ)
−1

𝐴

= 𝑃𝐴(𝐼 − 𝑠
−1

Γ𝐴)
−1

= 𝑃𝐴 [𝐼 + 𝑠
−1

Γ(𝐼 − 𝑠
−1

𝐴Γ)
−1

𝐴]

= 𝑃𝐴 [𝐼 + Γ(𝑠𝐼 − 𝐴Γ)
−1

𝐴] ,

(17)

inequality (13) is equivalent to Re{𝑀(𝑗𝜔)} > 0, for all 𝜔 ∈

R, where

𝑀(𝑠) = [
1

2
𝑄 (Γ − Δ) − 𝑃𝐴Γ] (𝑠𝐼 − 𝐴Γ)

−1

𝐴 + (
1

2
𝑄 − 𝑃𝐴) .

(18)

Remark 8. With the stability of 𝐴Γ, the frequency-domain
inequality (FDI) (13) is equivalent to that the transfer function
𝑀(𝑠) as given in (18) is strictly positive real (SPR), which is
consistent with the frequency-domain criterion of [4], except
for the restriction of positiveness on matrix 𝑃.

Proposition 9. Suppose that 𝐴Γ is stable, then Theorem 4 (or
equivalently Theorem 7) ensures that 𝐴(Γ + Δ̃) is stable for any
0 ≤ Δ̃ ≤ Δ − Γ.

Proof. Suppose to the contrary that there exists a Δ̃, 0 ≤ Δ̃ ≤
Δ − Γ, such that 𝐴(Γ + Δ̃) is not stable. Then, there exists
a real number 𝛼, 0 ≤ 𝛼 ≤ 1, such that 𝐴(Γ + 𝛼Δ̃) has at
least an eigenvalue on the imaginary axis, which we denote
by 𝑗𝜔
0

, 𝜔
0

∈ R. Then

det (𝑗𝜔
0

𝐼 − 𝐴Γ − 𝛼𝐴Δ̃) = 0. (19)

Since𝐴Γ is stable, det(𝑗𝜔
0

𝐼−𝐴Γ) ̸= 0. It follows from (19) that

det (𝐼 − 𝛼(𝑗𝜔
0

𝐼 − 𝐴Γ)
−1

𝐴Δ̃) = 0; (20)

that is,

det (𝐼 − 𝛼𝐾
Γ

(𝑗𝜔
0

) Δ̃) = 0. (21)

So there exists a vector 𝜂 ∈ C𝑛, 𝜂 ̸= 0, such that

𝜂
∗

(𝐼 − 𝛼Δ̃𝐾
∗

Γ

(𝑗𝜔
0

)) = 0. (22)

Thus 𝜂∗Δ̃ ̸= 0, and

𝜂
∗

= 𝛼𝜂
∗

Δ̃𝐾
∗

Γ

(𝑗𝜔
0

) ,

𝜂 = 𝛼𝐾
Γ

(𝑗𝜔
0

) Δ̃𝜂.

(23)

Equality (23) and the conditions 0 ≤ Δ̃ ≤ Δ−Γ and 0 < 𝛼 ≤ 1
indicate the following:

𝜂
∗

Δ̃ [−2𝑄 + (Δ − Γ)𝑄𝐾
Γ

(𝑗𝜔
0

) + 𝐾
∗

Γ

(𝑗𝜔
0

) 𝑄 (Δ − Γ)] Δ̃𝜂

= 𝜂
∗

[−2Δ̃𝑄Δ̃ +
2

𝛼
(Δ − Γ)𝑄Δ̃] 𝜂

≥ 0.

(24)

On the other hand, it follows from the FDI (13) that

𝜂
∗

Δ̃ [−𝑄 + (Δ − Γ)𝑄𝐾
Γ

(𝑗𝜔
0

) + 2𝑗𝜔
0

𝑃𝐾
Γ

(𝑗𝜔
0

)

−𝑄 + 𝐾
∗

Γ

(𝑗𝜔
0

) 𝑄 (Δ − Γ) − 2𝑗𝜔
0

𝐾
∗

Γ

(𝑗𝜔
0

) 𝑃] Δ̃𝜂 < 0.

(25)

From (23),

𝜂
∗

Δ̃2𝑗𝜔
0

𝑃𝐾
Γ

(𝑗𝜔
0

) Δ̃𝜂 =
2

𝛼
𝑗𝜔
0

𝜂
∗

Δ̃𝑃𝜂,

𝜂
∗

Δ̃2𝑗𝜔
0

𝐾
∗

Γ

(𝑗𝜔
0

) 𝑃Δ̃𝜂 =
2

𝛼
𝑗𝜔
0

𝜂
∗

𝑃Δ̃𝜂,

(26)
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and since Δ̃𝑃 = 𝑃Δ̃, (25) indicates that

𝜂
∗

Δ̃ [−2𝑄+(Δ − Γ)𝑄𝐾
Γ

(𝑗𝜔
0

)+𝐾
∗

Γ

(𝑗𝜔
0

) 𝑄 (Δ−Γ)] Δ̃𝜂<0.

(27)

It contradicts to (24). The proof is completed.

Now, we are ready to proveTheorem 4.

Proof of Theorem 4. Take for Lyapunov function candidate

𝑉 (𝑥) = 𝑥
𝑇

𝑊𝑥 + 2

𝑛

∑

𝑖=1

𝑝
𝑖

∫

𝑥

𝑖

0

𝑓
𝑖

(𝜏) 𝑑𝜏, (28)

where𝑊 is a symmetric matrix and 𝑝
𝑖

, 𝑖 = 1, . . . , 𝑛, need not
to be positive.

The time derivative of 𝑉(𝑥) along any trajectory of system
(3) is given by the following:

𝑉 (𝑥) = 2𝑓(𝑥)
𝑇

𝐴
𝑇

𝑊𝑥 + 𝑓(𝑥)
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑓 (𝑥) , (29)

where𝑃 = diag(𝑝
1

, . . . , 𝑝
𝑛

). For all𝑥
𝑖

̸= 0, the sector condition
(2) can be expressed as follows:

𝑠
𝑖

(𝑥
𝑖

) := (𝑓
𝑖

(𝑥
𝑖

) − 𝛾
𝑖

𝑥
𝑖

) (𝑓
𝑖

(𝑥
𝑖

) − 𝛿
𝑖

𝑥
𝑖

) ≤ 0,

∀𝑥
𝑖

̸= 0, 𝑖 = 1, . . . , 𝑛.
(30)

Let 𝑄 = diag(𝑞
1

, . . . , 𝑞
𝑛

), where 𝑞
𝑖

> 0, 𝑖 = 1, . . . , 𝑛; then

𝑛

∑

𝑖=1

𝑞
𝑖

𝑠
𝑖

(𝑥
𝑖

) = 𝑓(𝑥)
𝑇

𝑄𝑓 (𝑥) − 𝑓(𝑥)
𝑇

(Γ + Δ)𝑄𝑥 + 𝑥
𝑇

ΓΔ𝑄𝑥

≤ 0, ∀ (𝑥, 𝑓 (𝑥)) ̸= 0.

(31)

Thus, if it is possible to show that

𝑉 (𝑥) <

𝑛

∑

𝑖=1

𝑞
𝑖

𝑠
𝑖

(𝑥
𝑖

) , ∀ (𝑥, 𝑓 (𝑥)) ̸= 0, (32)

it follows that 𝑉(𝑥) < 0, for all 𝑥 ̸= 0. Inequality (32) can be
written as follows:

(
𝑓 (𝑥)

𝑥
)

𝑇

[
[

[

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑄 𝐴
𝑇

𝑊+
1

2
(Γ + Δ)𝑄

𝑊𝐴 +
1

2
𝑄 (Γ + Δ) −ΓΔ𝑄

]
]

]

× (
𝑓 (𝑥)

𝑥
) < 0, ∀ (

𝑓 (𝑥)

𝑥
) ̸= 0,

(33)

which is equivalent to the existence of a feasible solution to
the LMI (5).

Then (5) guarantees the negative definiteness of 𝑉(𝑥).
In fact, (5) also guarantees that the Lyapunov candidate

𝑉(𝑥) defined in (28) is positive definite, even without the
requirement of 𝑃 > 0. Rewrite 𝑉(𝑥) in (28) as follows:

𝑉 (𝑥) = 𝑥
𝑇

𝑊𝑥 + 2

𝑛

∑

𝑖=1

𝑝
𝑖

∫

𝑥

𝑖

0

𝑓
𝑖

(𝜏) 𝑑𝜏

= 𝑥
𝑇

𝑊𝑥 + 2

𝑛

∑

𝑖=1

𝑝
𝑖

∫

𝑥

𝑖

0

(𝛾
𝑖

𝜏 + 𝑓
𝑖

(𝜏) − 𝛾
𝑖

𝜏) 𝑑𝜏

= 𝑥
𝑇

(𝑊 + 𝑃Γ) 𝑥 + 2

𝑛

∑

𝑖=1

𝑝
𝑖

∫

𝑥

𝑖

0

(𝑓
𝑖

(𝜏) − 𝛾
𝑖

𝜏) 𝑑𝜏.

(34)

By Proposition 5, 𝑊 + 𝑃Γ > 0. And ∫𝑥𝑖
0

(𝑓
𝑖

(𝜏) − 𝛾
𝑖

𝜏)𝑑𝜏 ≥ 0

because of the sector condition (2). So,𝑉(𝑥) > 0, for all 𝑥 ̸= 0,
holds if 𝑝

𝑖

≥ 0, 𝑖 = 1, . . . , 𝑛. In the case that there exists 𝑝
𝑖

<

0, we suppose that 𝑝
𝑖

< 0, 𝑖 = 1, . . . , 𝑘, and 𝑝
𝑖

≥ 0, 𝑖 = 𝑘 +

1, . . . , 𝑛, without loss of generality.Then, we get the following
inequality:

𝑉 (𝑥)

≥ 𝑥
𝑇

(𝑊 + 𝑃Γ) 𝑥 + 2

𝑘

∑

𝑖=1

𝑝
𝑖

∫

𝑥

𝑖

0

(𝛿
𝑖

𝜏 − 𝛾
𝑖

𝜏) 𝑑𝜏

+ 2

𝑛

∑

𝑖=𝑘+1

𝑝
𝑖

∫

𝑥

𝑖

0

(𝑓
𝑖

(𝜏) − 𝛾
𝑖

𝜏) 𝑑𝜏

= 𝑥
𝑇

(𝑊 + 𝑃Γ + 𝑃
𝑘

(Δ
𝑘

− Γ
𝑘

)) 𝑥

+ 2

𝑛

∑

𝑖=𝑘+1

𝑝
𝑖

∫

𝑥

𝑖

0

(𝑓
𝑖

(𝜏) − 𝛾
𝑖

𝜏) 𝑑𝜏,

(35)

where 𝑃
𝑘

= diag(𝑝
1

, . . . , 𝑝
𝑘

, 0, . . . , 0), Δ
𝑘

= diag(𝛿
1

, . . . , 𝛿
𝑘

,

0, . . . , 0), and Γ
𝑘

= diag(𝛾
1

, . . . , 𝛾
𝑘

, 0, . . . , 0). The congruence
transformation ofΦ in (9) defined by the nonsingular matrix

𝑇
2

= [
Γ + (Δ

𝑘

− Γ
𝑘

) 𝐼

𝐼 0
] (36)

provides an equivalent inequality to the LMI (5):

Ψ = 𝑇
2

Φ𝑇
𝑇

2

= [
𝐴
𝑇

𝑌
2

+ 𝑌
2

𝐴 Ψ
12

Ψ
𝑇

12

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑄
] < 0, (37)

where 𝐴 = 𝐴[Γ + (Δ
𝑘

− Γ
𝑘

)], 𝑌
2

= 𝑊 + 𝑃Γ + 𝑃
𝑘

(Δ
𝑘

− Γ
𝑘

),
and Ψ

12

= 𝑌
2

𝐴 + 𝐴
𝑇

𝑃 + (1/2)(Δ − Γ)𝑄 − (Δ
𝑘

− Γ
𝑘

)𝑄. From
Proposition 9, 𝐴 is stable; then it follows from (37) that

𝑌
2

= 𝑊 + 𝑃Γ + 𝑃
𝑘

(Δ
𝑘

− Γ
𝑘

) > 0. (38)

Thus, by (35), 𝑉(𝑥) > 0, for all 𝑥 ̸= 0. By the canonical Lya-
punov theory, system (3) is absolutely stable. Now, we com-
plete the proof of Theorem 4.

Analogous to the proof of Theorem 4 while considering
the stability of 𝐴Δ instead of 𝐴Γ, the following corollary can
be deduced.
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Figure 1: The state of system (39) with 𝐴 = [ 10 −8
15 −3

] and 𝛿 = 139.99.

Table 1: The matrix 𝐴 and the maximum allowed 𝛿max.

𝐴 [ 2 −3
1 −1

] [ 5 −4
5 −3

] [ 10 −8
15 −3

]

𝛿max from [4] 86.85 71.65 93.33
𝛿max fromTheorem 4 99.99 79.99 139.99

Corollary 10. The zero solution of the nonlinear system (3) is
GAS for all 𝑓 ∈ F(Γ, Δ), if 𝐴Δ is stable (or equivalently,𝑊 +

𝑃Δ > 0) and there exist diagonal matrices 𝑃 and𝑄 with𝑄 > 0

and a symmetric matrix𝑊 such that the LMI (5) is feasible.

In the following, a numerical example is presented to
illustrate the effectiveness of the proposed stability criteria.

Example 11. Consider the following system:

̇𝑥 (𝑡) = 𝐴𝑓 (𝑥 (𝑡)) , 𝑓 (0) = 0, (39)

where

𝑥 (𝑡) = [
𝑥
1

(𝑡)

𝑥
2

(𝑡)
] , 𝑓 (𝑥 (𝑡)) = [

𝑓
1

(𝑥
1

(𝑡))

𝑓
2

(𝑥
2

(𝑡))
] , (40)

and 𝐴 is given in Table 1. The nonlinear function 𝑓 is
supposed to belong to the sector [Γ, Δ], where

Γ = [
−200 0

0 −200
] , Δ = Γ + [

𝛿 0

0 𝛿
] . (41)

The purpose is to find a maximum upper bound 𝛿max
such that system (39) is absolute stable for all 𝛿 < 𝛿max.
Using Theorem 2 in [4] and Theorem 4 in this paper, the
corresponding𝛿max for system (39)with different𝐴 is listed in

Table 1, from which it is shown that Theorem 4 in this paper
is less conservative thanTheorem 2 in [4].

Take

𝑓
𝑖

(𝑥
𝑖

(𝑡)) = 𝐺
𝑏𝑖

𝑥
𝑖

(𝑡)

+
1

2
(𝐺
𝑎𝑖

− 𝐺
𝑏𝑖

) (
𝑥𝑖 (𝑡) + 1

 −
𝑥𝑖 (𝑡) − 1

) ,

𝑖 = 1, 2,

(42)
where 𝐺

𝑎1

= −200, 𝐺
𝑏1

= −60.01, 𝐺
𝑎2

= −200, and 𝐺
𝑏2

=

−60.01.Then, the nonlinearity𝑓 belongs to the sector [Γ, Δ],
where

Γ = [
−200 0

0 −200
] , Δ = [

−60.01 0

0 −60.01
] ; (43)

that is, 𝛿 = 139.99 in (41). The states of system (39) with
𝐴 = [ 10 −8

15 −3

] and 𝑓 as given in (42) are presented in Figure 1,
from which it is observed that the origin of the system is
asymptotically stable.

3. Master-Slave Synchronization

The absolute stability criteria proposed in the last section can
be applied to the master-slave synchronization of coupled
systems of form (3). Using two identical systems in a master-
slave synchronization scheme with linear full static state
feedback, one has the following:

(𝑀) ̇𝑥 (𝑡) = 𝐴𝑓 (𝑥 (𝑡)) ,

(𝑆) ̇𝑧 (𝑡) = 𝐴𝑓 (𝑧 (𝑡)) + 𝐾 (𝑥 (𝑡) − 𝑧 (𝑡)) ,
(44)

with master𝑀, slave 𝑆, and feedback matrix 𝐾 ∈ 𝑅
𝑛×𝑛. The

aim of synchronization is then to obtain ‖𝑥(𝑡) − 𝑧(𝑡)‖ → 0

for time 𝑡 → ∞. Defining the error signal 𝑒 = 𝑥 − 𝑧, one
obtains the following error system:

̇𝑒 (𝑡) = 𝐴 (𝜂 (𝑒 (𝑡))) − 𝐾 (𝑒 (𝑡)) , (45)

where 𝜂(𝑒(𝑡)) := 𝑓(𝑧(𝑡) + 𝑒(𝑡)) − 𝑓(𝑧(𝑡)). Assume a sector
condition (Γ, Δ) on 𝜂(⋅), with Γ = diag(𝛾

1

, . . . , 𝛾
𝑛

) and Δ =

diag(𝛿
1

, . . . , 𝛿
𝑛

), which gives the following inequalities for 𝜂:

𝛾
𝑖

𝜏
2

≤ 𝜂
𝑖

(𝜏) 𝜏 ≤ 𝛿
𝑖

𝜏
2

, 𝑖 = 1, . . . , 𝑛. (46)

Following a similar approach to the stability analysis, a
synchronization criterion for the systems in (44) is obtained.

Theorem 12. The zero solution of the error system (45) is
GAS, which implies that system (44) synchronizes, if there exist
diagonal matrices𝑃 and𝑄with𝑄 > 0, a symmetric matrix𝑊,
and a feedback matrix 𝐾 such that 𝐴Γ − 𝐾 is stable, and

Φ =
[
[

[

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑄 𝐴
𝑇

𝑊+
1

2
(Γ + Δ)𝑄 − 𝑃𝐾

𝑊𝐴 +
1

2
𝑄 (Γ + Δ) − 𝐾

𝑇

𝑃 − (𝑊𝐾 + 𝐾
𝑇

𝑊) − ΓΔ𝑄

]
]

]

< 0. (47)
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Proof. This theorem can be completed by the method anal-
ogous to that employed in the last section, so its proof is
omitted here.

Remark 13. For a given feedback matrix 𝐾, condition (47) is
a linear matrix inequality problem (LMI) in 𝑃,𝑄, and𝑊.The
overall design problem can be formulated as the optimization
problem [18]:

min
𝐾,𝑃,𝑄,𝑊

𝜆max [Φ] , (48)

where𝜆max[⋅] denotes themaximal eigenvalue of a symmetric
matrix. Comparing with the synchronization criteria given
in the literature [10–15], Theorem 12 is less conservative by
relaxing the restriction of positiveness on matrix 𝑃.

4. Conclusion

In this paper, the absolute stability criteria for systems
with state-dependent sector nonlinearities provided in [4]
are further studied. By relaxing some restrictions, revised
stability criteria are proposed, which further reduce the
conservativeness of the stability conditions as shown in a
numerical example. In addition, the feasibility of the derived
LMIs actually implies some FDI conditions bearing the
same forms as those in the circle criterion and the Popov
criterion. Finally, based on the proposed stability results,
a synchronization criterion is developed in a master-slave
synchronization scheme.
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[13] M. E. Yalçin, J. A. K. Suykens, and J. Vandewalle, “Master-slave
synchronization of Lur’e systems with time-delay,” International
Journal of Bifurcation and Chaos, vol. 11, no. 6, pp. 1707–1722,
2001.

[14] X. Liao and G. Chen, “Chaos synchronization of general Lur’e
systems via time-delay feedback control,” International Journal
of Bifurcation and Chaos, vol. 13, no. 1, pp. 207–213, 2003.

[15] J. Cao, H. X. Li, and D. W. C. Ho, “Synchronization criteria of
Lur’e systems with time-delay feedback control,”Chaos, Solitons
and Fractals, vol. 23, no. 4, pp. 1285–1298, 2005.

[16] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma,” Sys-
tems and Control Letters, vol. 28, no. 1, pp. 7–10, 1996.

[17] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, Society for
Industrial and Applied Mathematics, Philadelphia, Pa, USA,
1994.

[18] R. Fletcher, Practical Methods of Optimization, John Wiley &
Sons, Chichester, UK, 1987.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 898375, 11 pages
http://dx.doi.org/10.1155/2013/898375

Research Article
Cooperative Control for Uncertain Multiagent Systems via
Distributed Output Regulation

Lu Yu and Jinzhi Wang

State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering,
College of Engineering, Peking University, Beijing 100871, China

Correspondence should be addressed to Jinzhi Wang; jinzhiw@pku.edu.cn

Received 17 April 2013; Accepted 29 April 2013

Academic Editor: Guanghui Wen

Copyright © 2013 L. Yu and J. Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The distributed robust output regulation problem for multiagent systems is considered. For heterogeneous uncertain linear systems
and a linear exosystem, the controlling aim is to stabilize the closed-loop system and meanwhile let the regulated outputs converge
to the origin asymptotically, by the help of local interaction. The communication topology considered is directed acyclic graphs,
which means directed graphs without loops. With distributed dynamic state feedback controller and output feedback controller,
respectively, the solvability of the problem and the algorithm of controller design are both investigated. The solvability conditions
are given in terms of linear matrix inequalities (LMIs). It is shown that, for polytopic uncertainties, the distributed controllers
constructed by solving LMIs can satisfy the requirements of output regulation property.

1. Introduction

Recently, there are amounts of researches on cooperative
control for multiagent systems (MASs) because of broad app-
lications. An MAS is a practical model to describe dynamic
agents which can exchange information by communication,
such as unmanned air vehicles and sensor networks. Accord-
ing to different control objectives, problems of consensus,
tracking, formation, flocking and the rest have been widely
studied.

Among those cooperative control problems, the consen-
sus problem and the tracking problem share some common
characteristics. The consensus problem requires the MAS to
reach an agreement by protocols based on local information.
In [1, 2], the consensus problem is primarily studied, and the
basic problem framework is formed. The consensus problem
has been investigated for different kinds of agents, such as
first-order integrators in [3], second-order integrators in [4,
5], linear systems in [6–8], and nonlinear systems in [9–12].
Recently, the output consensus problem for heterogeneous
systems also attracted researchers. The dynamics and even
dimensions of the agents are possibly different, so it is
desirable to focus on the synchronization of outputs. In
[13], the consensus of a class of second-order integrators

with unknown nonlinear dynamics is considered. As for
high-order systems, the frequency domain approach is used
to discuss the consensus of heterogenous linear systems in
[14, 15]. Uncertain minimum-phase linear MASs are studied
in [16], by a low-gain approach. In [7], general uncertain
linear MASs are considered, and a sufficient and necessary
condition for the solvability of the output consensus problem
is proposed. It is admirable that Wieland et al. introduce an
important concept of internal model to cooperative control,
which is also fundamental in output regulation theory.

For the leader-follower consensus problem, also called
consensus tracking problem, it involves one or multiple
leaders and several followers. A leader is usually the target to
be tracked, or the agent that directly receives the information
of the target. Distributed controllers are designed to help all
the agents to track one or multiple leaders by cooperation.
The tracking problem for MASs has been studied in a lot of
papers, such as [17–22]. Note that for heterogenousMASs, the
outputs of all the agents are required to be synchronized in
the issue of both consensus problem and tracking problem.
To consider the two kinds of problems under a unified
framework is one of the motivations to introduce distributed
output regulation (DOR) problem.
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According to [23], output regulation problem involves an
exosystem and a regulated output defined by a combination
of the measurement output and the output of the exosystem.
Controllers are designed to stabilize the closed-loop system
andmodulate the regulated outputs to the origin. So, it has an
attracting performance on solving a tracking problem in the
presence of disturbances.The classic output regulation theory
cannot directly be applied toMASs nevertheless. Actually the
controllers obtained are probably not in a distributed form.
So, a framework of DOR for MASs is introduced in [24–
26]. What is mainly different from the classic theory is that
the controllers have to be distributed, and only local infor-
mation is available. In [24], homogenous linear MASs and a
directed topology are considered, and dynamic state/output
feedback controllers are designed. In [25], heterogenous
MASs are challenged, and effective controllers are obtained
under the directed acyclic topology. Different from the two
works above, the limits on topology are dispelled in [26] by
reconstructing the form of controllers. The communication
of relative states of controllers replaces the communication
of relative outputs.

This paper is basically motivated by [25]. In [25], the
distributed controllers are robust to uncertain dynamics
with sufficiently small uncertainties. However, more analyses
based on information of the uncertainties are not involved
in [25]. What we focus on in our paper is that how to
design robust controllers if the uncertainty is structured. We
suppose that the uncertainties are in a polytopic form. For the
distributed robust output regulation problem, we give suffi-
cient conditions of the solvability in terms of linear matrix
inequalities (LMIs) and present an approach of controllers
design.

An outline of this paper is as follows. In Section 2,
some preliminaries and the problem statement are given.
In Section 3, for distributed output regulation problem with
polytopic uncertainties, the sufficient conditions of solvability
and algorithms of both state and output feedback controllers
design are proposed. In Section 4, a practical example is taken
to show the control effect of our approach, which is compared
with that of the algorithm given in [25]. In Section 5, a
conclusion is given.

The following notations will be used throughout this
paper. R is the set of real numbers. 𝐼

𝑛

is the 𝑛-dimensional
identity matrix. 0

𝑚×𝑛

is the zero matrix with 𝑚 rows and 𝑛
columns, and 0 is the zero matrix with appropriate dimen-
sions. For a symmetricmatrix𝑀 ∈ R𝑛×𝑛,𝑀 > 0whichmeans
that 𝑀 is positive definite. 𝑀𝑇 is the transposition of the
matrix𝑀. diag block (𝑀

1

, . . . ,𝑀
𝑝

) means a block diagonal
matrix with𝑀

1

, . . . ,𝑀
𝑝

as the diagonal entries.⊗ denotes the
Kronecker product.

2. Problem Statement

Let us begin with notations in graph theory [27]. A graph is
denoted by G = (V,E), where V = {V

1

, V
2

, . . . , V
𝑁

} is the
set of 𝑁 nodes and E ⊆ V ×V is the set of edges. An edge
from node V

𝑗

to node V
𝑖

is denoted by (𝑖, 𝑗) ∈ E. A subset of
E{(𝑖

1

, 𝑖
2

), (𝑖
2

, 𝑖
3

), . . . , (𝑖
𝑘

, 𝑖
𝑘+1

)} is called a path from V
𝑖

𝑘+1

to V
𝑖

1

.
If 𝑖

1

= 𝑖
𝑘+1

, the path is called a loop.𝑁
𝑖

denotes the neighbor

set {𝑗 : (𝑖, 𝑗) ∈ E, 1 ≤ 𝑗 ≤ 𝑁}, whose cardinality is |𝑁
𝑖

|. A
constant matrix 𝐴

𝑑

= [𝑎
𝑖𝑗

] ∈ R𝑁×𝑁 is called the adjacency
matrix of graph G if 𝑎

𝑖𝑗

= 1/|𝑁
𝑖

| when (𝑖, 𝑗) ∈ E and 𝑎
𝑖𝑗

= 0

when (𝑖, 𝑗) ∉ E. And a constant matrix 𝐿 = [𝑙
𝑖𝑗

] = 𝐼
𝑁

− 𝐴
𝑑

∈

R𝑁×𝑁 is called the Laplacian matrix of graph G. A graph is
called an undirected graph if for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑎

𝑖𝑗

= 𝑎
𝑗𝑖

. Or
else, it is called a directed graph. If a directed graph does not
contain a loop, it is called a directed acyclic graph.

Consider an exosystem with 𝜔 ∈ R𝑞 as the state, whose
dynamics can be described as follows:

̇𝜔 (𝑡) = 𝑆𝜔 (𝑡) , (1)

where 𝑆 ∈ R𝑞×𝑞 is a constant matrix, satisfying the following
assumption as that in [23, 25].

Assumption 1. 𝑆 has no eigenvalues with negative real parts.

AMAS consists of𝑁 nonidentical dynamic agents which
can exchange information among neighborhood. For 𝑖 =
1, . . . , 𝑁, the 𝑖th agent can be expressed by

̇𝑥
𝑖

(𝑡) = 𝐴
𝑖

𝑥
𝑖

(𝑡) + 𝐵
𝑖

𝑢
𝑖

(𝑡) + 𝐸
𝑖

𝜔 (𝑡) ,

𝑦
𝑖

(𝑡) = 𝐶
𝑖

𝑥
𝑖

(𝑡) ,

𝑒
𝑖

(𝑡) = 𝐶
𝑖

𝑥
𝑖

(𝑡) + 𝐹𝜔 (𝑡) ,

(2)

where 𝑥
𝑖

∈ R𝑝

𝑖 , 𝑢
𝑖

∈ R𝑚

𝑖 , 𝑦
𝑖

∈ R𝑛, and 𝑒
𝑖

∈ R𝑛 are,
respectively, the state, the control input, the measurement
output, and the regulated output of the 𝑖th agent. 𝐹 ∈ R𝑛×𝑞

is a certain constant matrix, while those matrices 𝐴
𝑖

∈

R𝑝

𝑖
×𝑝

𝑖 , 𝐵
𝑖

∈ R𝑝

𝑖
×𝑚

𝑖 , and 𝐶
𝑖

∈ R𝑛×𝑝

𝑖 are uncertain matrices
represented as

𝐴
𝑖

=

𝑔

𝑖

∑

𝑘=1

𝜆
𝑘𝑖

𝐴
𝑘𝑖

,

𝐵
𝑖

=

𝑔

𝑖

∑

𝑘=1

𝜆
𝑘𝑖

𝐵
𝑘𝑖

,

𝐶
𝑖

=

𝑔

𝑖

∑

𝑘=1

𝜆
𝑘𝑖

𝐶
𝑘𝑖

,

(3)

where𝐴
𝑘𝑖

, 𝐵
𝑘𝑖

, and 𝐶
𝑘𝑖

are known constantmatrices, and𝜆
𝑘𝑖

are nonnegative constants satisfying that ∑𝑔𝑖
𝑘=1

𝜆
𝑘𝑖

= 1, for
𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝑔

𝑖

. 𝐸
𝑖

∈ R𝑝

𝑖
×𝑞 is an arbitrary constant

matrix.
The controlling aim is to stabilize the closed-loop system

and also to regulate 𝑒
1

, . . . , 𝑒
𝑁

to the origin. For 𝑖 = 1, . . . , 𝑁,
if 𝑒

𝑖

is available to the 𝑖th agent, the output regulation of the
𝑖th agent is simple to be achieved by classic output regulation
theory. However, only some of the agents can get information
of their own regulated outputs, which are called leader nodes.
The set of their serial numbers is denoted by L, while
other agents utilize the relative output among neighbors to
accomplish the output regulation property. To ensure that
all the agents can receive the information of the exosystem
by local interaction, the communication graph of the MAS
satisfies the following assumption.
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Assumption 2. Graph G is a directed acyclic graph. And for
each nonleader node V

𝑖

, there exists a leader node V
𝑗

such that
a path from node V

𝑗

to node V
𝑖

exists.

In this note, two kinds of distributed dynamic feedback
controllers are considered.

(I) Distributed dynamic state feedback controller:

̇𝑧
𝑖

(𝑡) = 𝐺
1

𝑧
𝑖

(𝑡) + 𝐺
2

𝑒
𝑖𝜔

(𝑡) ,

𝑢
𝑖

(𝑡) = 𝐾
1𝑖

𝑥
𝑖

(𝑡) + 𝐾
2𝑖

𝑧
𝑖

(𝑡) ,

𝑧
𝑖

(𝑡) ∈ R
𝑐

, 𝑞 ≤ 𝑐, 𝑖 = 1, . . . , 𝑁,

(4)

where

𝑒
𝑖𝜔

(𝑡) =

{{

{{

{

𝑒
𝑖

(𝑡) 𝑖 ∈L
1
𝑁𝑖



∑

𝑗∈𝑁

𝑖

(𝑦
𝑖

(𝑡) − 𝑦
𝑗

(𝑡)) 𝑖 ∉L. (5)

𝐾
1𝑖

, 𝐾
2𝑖

, 𝐺
1

, and 𝐺
2

are designed matrices with
appropriate dimensions.

(II) Distributed dynamic output feedback controller:

̇𝑧
𝑖

(𝑡) = 𝐺
1𝑖

𝑧
𝑖

(𝑡) + 𝐺
2𝑖

𝑒
𝑖𝜔

(𝑡) ,

𝑢
𝑖

(𝑡) = 𝐾
𝑖

𝑧
𝑖

(𝑡) ,

𝑧
𝑖

(𝑡) ∈ R
𝑐+𝑝

𝑖 , 𝑞 ≤ 𝑐, 𝑖 = 1, . . . , 𝑁.

(6)

𝐾
𝑖

, 𝐺
1𝑖

, and 𝐺
2𝑖

are designed matrices with appropri-
ate dimensions.

The variables 𝑒
𝑖𝜔

(𝑡) in distributed feedback control laws
(4) and (6) are measurable relative outputs. For 𝑖 ∈ L, 𝑒

𝑖𝜔

(𝑡)

is the regulated output 𝑒
𝑖

(𝑡). For 𝑖 ∉L, 𝑒
𝑖𝜔

(𝑡) is the average of
relative output errors between 𝑖th agent and its neighbors.

In the sequel, we rewrite the closed-loop system into
a composite form. Let 1

𝑁

be a column vector with all the
elements as 1. 𝐿

𝑖

and 𝑙
𝑖

, respectively, denote the 𝑖th row of
𝐿 and 𝐿1

𝑁

. For 𝑖 ∈ L, 𝑙
𝑖

= 1, while for 𝑖 ∉ L, 𝑙
𝑖

= 0. Let
𝜒 = (𝑥

𝑇

1

, 𝑧
𝑇

1

, . . . , 𝑥
𝑇

𝑁

, 𝑧
𝑇

𝑁

)
𝑇

, 𝑒 = (𝑒
𝑇

1

, . . . , 𝑒
𝑇

𝑁

)
𝑇,

A
1

= diag block (A
11

, . . . ,A
1𝑁

) ,

A
2

= diag block (A
21

, . . . ,A
2𝑁

) ,

C
1

= diag block ((𝐶
1

0
𝑛×𝑐

) , . . . , (𝐶
𝑁

0
𝑛×𝑐

)) ,

C
2

= diag block ((𝐶
1

0
𝑛×(𝑐+𝑝

1
)

) , . . . , (𝐶
𝑁

0
𝑛×(𝑐+𝑝

𝑁
)

)) ,

G
1

= (

𝐿
1

⊗ 𝐺


21

...
𝐿
𝑁

⊗ 𝐺


2𝑁

), G
2

= (

𝐿
1

⊗ 𝐺


21

...
𝐿
𝑁

⊗ 𝐺


2𝑁

),

E
1

=(

𝐸
1

𝑙
1

𝐺
2

𝐹

...
𝐸
𝑁

𝑙
𝑁

𝐺
2

𝐹

), E
2

=(

(

𝐸
1

𝑙
1

𝐺
21

𝐹

...
𝐸
𝑁

𝑙
𝑁

𝐺
2𝑁

𝐹

)

)

,

(7)

whereA
1𝑖

= (
𝐴

𝑖
+𝐵

𝑖
𝐾

1𝑖
𝐵

𝑖
𝐾

2𝑖

0 𝐺

1

), A
2𝑖

= (
𝐴

𝑖
𝐵

𝑖
𝐾

𝑖

0 𝐺

1𝑖

), 𝐺
2𝑖

= (
0

𝑛×𝑝𝑖

𝐺

2

),

and 𝐺
2𝑖

= (
0

𝑛×𝑝𝑖

𝐺

2𝑖

), for 𝑖 = 1, . . . , 𝑁. Then, the closed-loop
system (1), (2) with controllers (4) or (6) can be rewritten as

̇𝜔 (𝑡) = 𝑆𝜔 (𝑡) ,

̇𝜒 (𝑡) = 𝐴
𝑐

𝜒 (𝑡) + 𝐵
𝑐

𝜔 (𝑡) ,

𝑒 (𝑡) = 𝐶
𝑐

𝜒 (𝑡) + 𝐹
𝑐

𝜔 (𝑡) .

(8)

With the controller (4),
𝐴
𝑐

= A
1

+G
1

C
1

, 𝐵
𝑐

= E
1

,

𝐶
𝑐

= C
1

, 𝐹
𝑐

= 1
𝑁

⊗ 𝐹,
(9)

while with the controller (6),
𝐴
𝑐

= A
2

+G
2

C
2

, 𝐵
𝑐

= E
2

,

𝐶
𝑐

= C
2

, 𝐹
𝑐

= 1
𝑁

⊗ 𝐹.
(10)

As a result, the distributed output regulation problem studied
in this paper is given as follows.

Problem 3. Distributed output regulation problem: design
controllers in the form of (4) or (6) such that the closed-loop
system (8) has the following properties.

(i) It is exponentially stable at the origin with 𝜔 = 0.
(ii) For all initial values 𝜒(0) and 𝜔(0), lim

𝑡→∞

𝑒(𝑡) = 0.

3. Main Results

In this section, we give two theorems about the solvability of
Problem 3 and the approach of controller design. First of all,
we introduce the concept of quadratic stability and related
lemmas, which will be used later.

Definition 4 (Amato [28]). Consider a parametric uncertain
linear system given by

̇𝑥 (𝑡) = 𝐴 (𝑝
0

) 𝑥 (𝑡) , 𝑡 ∈ [0, +∞) , (11)

where 𝑥(𝑡) ∈ R𝑛

0 , 𝑝
0

∈ 𝐻 ⊂ R𝑚

0 is the vector of uncertain
parameters, where 𝐻 is a hyperbox, and 𝐴(⋅) is continuous.
This system is said to be quadratically stable (QS) in𝐻 if and
only if there exists a symmetric positive definite matrix 𝑃 ∈
R𝑛

0
×𝑛

0 such that for all 𝑝
0

∈ 𝐻, 𝐴𝑇(𝑝
0

)𝑃 + 𝑃𝐴(𝑝
0

) < 0.

Lemma 5 (Amato [28]). Assume that the system (11) is QS.
Then, for any function 𝑝

0

(⋅) that is piecewise continuous on
R+ and valued on 𝑊, the linear time-varying system ̇𝑥(𝑡) =

𝐴(𝑝
0

(𝑡))𝑥(𝑡) is exponentially stable.

Lemma 6 (Amato [28]). Assume that the uncertain system is
in a polytopic form; that is,

̇𝑥 (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , 𝐴 (𝑡) ∈ conv {𝐴
1

, 𝐴
2

, . . . , 𝐴
𝑔

} , (12)

where 𝐴
1

, . . . , 𝐴
𝑔

∈ R𝑛

0
×𝑛

0 and conv{⋅} represents the convex
hull of the following matrices. It is QS if and only if there
exists a positive definite symmetric matrix 𝑃 such that for 𝑘 =
1, . . . , 𝑔, 𝐴𝑇

𝑘

𝑃 + 𝑃𝐴
𝑘

< 0.
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Second, we need to recall the concept of internal model
and its property.

Definition 7 (Huang [23]). Given any square matrix 𝑆, a pair
of matrices (G

1

,G
2

) is said to incorporate a 𝑝-copy internal
model of the matrix 𝑆 if the pair satisfies that

G
1

= 𝑇(
𝑆
1

𝑆
2

0 𝐺
1

)𝑇
−1

, G
2

= 𝑇(
𝑆
3

𝐺
2

) , (13)

where 𝑆
1

, 𝑆
2

, and 𝑆
3

are arbitrary constant matrices of
appropriate dimensions,𝑇 is any nonsingularmatrix with the
same dimension asG

1

, and 𝐺
1

, 𝐺
2

are described as follows:

𝐺
1

= block diag (𝛽
1

, . . . , 𝛽
𝑝

) ,

𝐺
2

= block diag (𝜎
1

, . . . , 𝜎
𝑝

) ,

(14)

where for 𝑗 = 1, . . . , 𝑝, 𝛽
𝑗

is a constant square matrix of
dimension 𝑑

𝑗

for some integer 𝑑
𝑗

and 𝜎
𝑗

is a constant column
vector of dimension 𝑑

𝑗

such that

(i) 𝛽
𝑖

and 𝜎
𝑖

are controllable,
(ii) theminimal polynomial of 𝑆 divides the characteristic

polynomial of 𝛽
𝑖

.

Lemma 8 (Huang [23]). Under Assumption 1, assume that
(G

1

,G
2

) incorporates a 𝑝-copy internal model of 𝑆. Let

[
𝐴 𝐵

G
2

𝐶 G
1

] (15)

be exponentially stable, where 𝐴, 𝐵, and 𝐶 are any matrices
with appropriate dimensions. Then, for any matrices 𝐸 and 𝐹
of appropriate dimensions, the following matrix equations

𝑋𝑆 = 𝐴𝑋 + 𝐵𝑍 + 𝐸,

𝑍𝑆 = G
1

𝑍 +G
2

(𝐶𝑋 + 𝐹)

(16)

have a unique solution𝑋 and𝑍.Moreover,𝑋 satisfies𝐶𝑋+𝐹 =
0.

Based on these preparations, theorems on solvability of
Problem 3 with state/output feedback controllers are given as
follows.

Theorem 9. Suppose that Assumptions 1 and 2 hold and the
pair (𝐺

1

, 𝐺
2

) is a 𝑝-copy internal model of the exosystem (1).
For 𝑖 = 1, . . . , 𝑁, if there exist amatrix𝑌

𝑖

and a positive definite
matrix �̃�

𝑖

satisfying that

𝐴
𝑘𝑖

�̃�
𝑖

+ �̃�
𝑖

𝐴
𝑇

𝑘𝑖

+ 𝐵
𝑘𝑖

𝑌
𝑖

+ 𝑌
𝑇

𝑖

𝐵
𝑇

𝑘𝑖

< 0, 𝑘 = 1, . . . , 𝑔
𝑖

, (17)

where

𝐴
𝑘𝑖

= (
𝐴
𝑘𝑖

0

𝐺
2

𝐶
𝑘𝑖

𝐺
1

) , 𝐵
𝑘𝑖

= (
𝐵
𝑘𝑖

0
) , (18)

Then, Problem 3 is solvable by a dynamic state feedback con-
troller (4), where (𝐾

1𝑖

, 𝐾
2𝑖

) = 𝐾
𝑖

= 𝑌
𝑖

�̃�
−1

𝑖

.

Proof. Let 𝛾
𝑖

(𝑡) = (𝑥
𝑇

𝑖

, 𝑧
𝑇

𝑖

)
𝑇. Then, the subsystems of (8) with

controller (4) can be written as follows: for 𝑖 ∈L,

̇𝛾
𝑖

(𝑡) = (
𝐴
𝑖

+ 𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝐺
2

𝐶
𝑖

𝐺
1

)𝛾
𝑖

(𝑡) + (
𝐸
𝑖

𝐺
2

𝐹
)𝑤 (𝑡) , (19)

and for 𝑖 ∉L,

̇𝛾
𝑖

(𝑡) = (
𝐴
𝑖

+ 𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝐺
2

𝐶
𝑖

𝐺
1

)𝛾
𝑖

(𝑡) + (
𝐸
𝑖

0
)𝑤 (𝑡)

+
1
𝑁𝑖



∑

𝑗∈𝑁

𝑖

(
0 0

−𝐺
2

𝐶
𝑗

0
) 𝛾

𝑗

(𝑡) .

(20)

According to [29], by relabeling the nodes, a directed acyclic
graph could be put into an ordered form. That is to say, for
all edges (𝑖, 𝑗) ∈ E, 𝑖 > 𝑗 holds. Notice that matrix 𝐴

𝑐

is consequently a block lower triangular matrix and system
(8) with 𝑤 = 0 is asymptotically stable if and only if all the
subsystems below are asymptotically stable

̇𝛾
𝑖

(𝑡) = (
𝐴
𝑖

+ 𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝐺
2

𝐶
𝑖

𝐺
1

)𝛾
𝑖

(𝑡)

=

𝑔

𝑖

∑

𝑘=1

𝜆
𝑘𝑖

(
𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
1𝑖

𝐵
𝑘𝑖

𝐾
2𝑖

𝐺
2

𝐶
𝑘𝑖

𝐺
1

)𝛾
𝑖

(𝑡)

=

𝑔

𝑖

∑

𝑘=1

𝜆
𝑘𝑖

(𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
𝑖

) 𝛾
𝑖

(𝑡) .

(21)

Consider LMI (17). When it holds for a symmetric positive
definite matrix �̃�

𝑖

and a matrix 𝑌
𝑖

, let 𝑃
𝑖

= �̃�
−1

𝑖

, and let 𝐾
𝑖

=

𝑌
𝑖

𝑃
𝑖

. Pre- and postmultiplied by 𝑃
𝑖

, (17) is equivalent to the
following inequality:

(𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
𝑖

)
𝑇

𝑃
𝑖

+ 𝑃
𝑖

(𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
𝑖

) < 0. (22)

According to Lemma 6, when it holds, the subsystems (21)
are all QS. And according to Lemma 5, for any polytopic
uncertainties, the subsystems are exponentially stable. The
system (8) with 𝑤 = 0 is consequently exponentially stable.
The condition (i) of Problem 3 has been satisfied. In the
following, the error 𝑒(𝑡) is proved to converge to zero.

Since the matrix ( 𝐴𝑖+𝐵𝑖𝐾1𝑖 𝐵𝑖𝐾2𝑖
𝐺

2
𝐶

𝑖
𝐺

1

) is Hurwitz, according to
Lemma 8, for any 𝐸

𝑖

and 𝐹
𝑖

, the following matrix equations

𝑋
𝑖

𝑆 = (𝐴
𝑖

+ 𝐵
𝑖

𝐾
1𝑖

)𝑋
𝑖

+ 𝐵
𝑖

𝐾
2𝑖

𝑍
𝑖

+ 𝐸
𝑖

,

𝑍
𝑖

𝑆 = 𝐺
1

𝑍
𝑖

+ 𝐺
2

(𝐶
𝑖

𝑋
𝑖

+ 𝐹
𝑖

)

(23)

have a unique solution 𝑋
𝑖

and 𝑍
𝑖

, and at the same time,
𝐶
𝑖

𝑋
𝑖

+ 𝐹
𝑖

= 0. For 𝑖 ∈ L, 𝐹
𝑖

= 𝐹, otherwise, 𝐹
𝑖

=

(−1/|𝑁
𝑖

|) ∑
𝑗∈𝑁

𝑖

𝐶
𝑗

𝑋
𝑗

. Therefore, the𝑁 coupled matrix equa-
tions have a unique solution (𝑋

1

, 𝑍
1

, . . . , 𝑋
𝑁

, 𝑍
𝑁

).
The proof will be given by induction. As mentioned

earlier, each agent can only receive information from the
agents with smaller labels, after appropriately relabeling the
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directed acyclic graph.That is to say, for 𝑖 = 1, 2, . . . , 𝑁,𝐹
𝑖

= 𝐹

or𝐹
𝑖

= (−1/|𝑁
𝑖

|) ∑
𝑖−1

𝑗=1,𝑗∈𝑁

𝑖

𝐶
𝑗

𝑋
𝑗

. For 𝑖 = 1, the first agent does
not communicate with any other agents but the exosystem,
so 𝐹

1

= 𝐹. And we can obtain a unique pair of (𝑋
1

, 𝑍
1

)

that satisfies (23) and 𝐶
1

𝑋
1

+ 𝐹
1

= 0. For 𝑖 = 2, if it is a
leader, then 𝐹

2

= 𝐹; or else, it can only communicate with
the first agent, which means that 𝐹

2

= −𝐶
1

𝑋
1

. In both cases
𝐹
2

is a certain and known matrix, so there exists a unique
solution (𝑋

2

, 𝑍
2

) of (23) and 𝐶
2

𝑋
2

+ 𝐹
2

= 0. Suppose that
for 𝑖 = 1, 2, . . . , 𝑚, the solution (𝑋

𝑖

, 𝑍
𝑖

) has already been
obtained. And then for 𝑖 = 𝑚 + 1, either 𝐹

𝑖

= 𝐹 or 𝐹
𝑖

=

(−1/|𝑁
𝑖

|) ∑
𝑖−1

𝑗=1,𝑗∈𝑁

𝑖

𝐶
𝑗

𝑋
𝑗

is a certain and known matrix. So,
the unique solution (𝑋

𝑚+1

, 𝑍
𝑚+1

) also exists. By induction,
we can obtain the unique solution (𝑋

1

, 𝑍
1

, . . . , 𝑋
𝑁

, 𝑍
𝑁

), and
at the same time, 𝐶

1

𝑋
1

+ 𝐹
1

= ⋅ ⋅ ⋅ = 𝐶
𝑁

𝑋
𝑁

+ 𝐹
𝑁

= 0.
Take notations Γ

𝑖

= (
𝑋

𝑖

𝑍

𝑖

) and 𝛾
𝑖

= 𝛾
𝑖

− Γ
𝑖

𝜔, and substitute
(23) into (19) and (20). It is obtained that

̇�̃�
𝑖

(𝑡) = ̇𝛾
𝑖

(𝑡) − Γ
𝑖

𝑆𝜔 (𝑡)

= (
𝐴
𝑖

+ 𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝐺
2

𝐶
𝑖

𝐺
1

)𝛾
𝑖

(𝑡) , 𝑖 ∈L,

̇�̃�
𝑖

(𝑡) = ̇𝛾
𝑖

(𝑡) − Γ
𝑖

𝑆𝜔 (𝑡)

= (
𝐴
𝑖

+ 𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝐺
2

𝐶
𝑖

𝐺
1

)𝛾
𝑖

(𝑡)

−
1
𝑁𝑖



∑

𝑗∈𝑁

𝑖

(
0 0

𝐺
2

𝐶
𝑗

0
) 𝛾

𝑗

(𝑡) , 𝑖 ∉L.

(24)

By the first part of the proof, the system above is exponentially
stable; that is,

lim
𝑡→∞

𝛾
𝑖

(𝑡) = 0, 𝑖 = 1, . . . , 𝑁. (25)

Since

𝑒
𝑖𝑤

(𝑡) = 𝐶
𝑖

𝑥
𝑖

(𝑡) + 𝐹𝜔 (𝑡)

= (𝐶
𝑖

0) 𝛾
𝑖

(𝑡) + (𝐶
𝑖

𝑋
𝑖

+ 𝐹)𝜔 (𝑡) , 𝑖 ∈L,

𝑒
𝑖𝜔

(𝑡) = 𝐶
𝑖

𝑥
𝑖

(𝑡) −
1
𝑁𝑖



∑

𝑗∈𝑁

𝑖

𝐶
𝑗

𝑥
𝑗

(𝑡)

= (𝐶
𝑖

0) 𝛾
𝑖

(𝑡) −
1
𝑁𝑖



∑

𝑗∈𝑁

𝑖

(𝐶
𝑗

0) 𝛾
𝑗

(𝑡)

+ (𝐶
𝑖

𝑋
𝑖

+ 𝐹
𝑖

) 𝜔 (𝑡) , 𝑖 ∉L,

(26)

it is obvious that

lim
𝑡→∞

𝑒
𝑖𝜔

(𝑡) = 0, 𝑖 = 1, . . . , 𝑁. (27)

Under Assumption 2, the statement (27) is equivalent to
lim

𝑡→∞

𝑒(𝑡) = 0. This completes the proof.

Remark 10. When there is no uncertainty in the system (2),
𝐴
𝑖

= 𝐴
1𝑖

, 𝐵
𝑖

= 𝐵
1𝑖

, and 𝐶
𝑖

= 𝐶
1𝑖

, 𝑖 = 1, . . . , 𝑁. Then,

the conclusion of Theorem 9 still holds if the solvability of
LMI (17) is replaced by the statement that the pair (𝐴

1𝑖

, 𝐵
1𝑖

)

is stabilizable. In fact, according to [23], from the two
statements,

(i) the pair (𝐴
1𝑖

, 𝐵
1𝑖

) is stabilizable,
(ii) Assumption 1 holds, and the pair (𝐺

1

, 𝐺
2

) is an inter-
nal model of 𝑆; it is followed that the pair

((
𝐴
1𝑖

0

𝐺
2

𝐶
1𝑖

𝐺
1

) , (
𝐵
1𝑖

0
)) (28)

is stabilizable. It is equivalent to LMI (17) that holds with 𝑔
𝑖

=

1, 𝑖 = 1, . . . , 𝑁. Specially, if for 𝑖 = 1, . . . , 𝑁, 𝐴
1𝑖

= 𝐴, 𝐵
2𝑖

= 𝐵,
and 𝐶

1𝑖

= 𝐶, 𝑔
𝑖

= 1, then in Theorem 9, the solvability of
LMI (17) can be replaced by the statement that the pair (𝐴, 𝐵)
is stabilizable.

Theorem 11. Suppose that Assumptions 1 and 2 hold and the
pair (𝐺

1

, 𝐺
2

) is an internal model of the exosystem (1) if the
following conditions are satisfied:

(i) For 𝑖 = 1, . . . , 𝑁, there exist a matrix 𝑌
𝑖

and a
symmetric positive definite matrix �̃�

𝑖

satisfying LMI
(17),

(ii) For 𝑖 = 1, . . . , 𝑁, and the matrices𝑌
𝑖

, �̃�
𝑖

obtained in (i),
let 𝑃

𝑖

= �̃�
−1

𝑖

, and let 𝐾
𝑖

= (𝐾
1𝑖

, 𝐾
2𝑖

) = 𝑌
𝑖

𝑃
𝑖

, and there
exist matrices𝑀

1𝑖

,𝑀
2𝑖

,𝑀
3𝑖

and a symmetric positive
definite matrix 𝑄

𝑖

satisfying the following LMI:

(
Π
11,𝑘𝑖

Π
12,𝑘𝑖

Π
𝑇

12,𝑘𝑖

Π
22,𝑘𝑖

) < 0, (29)

where

Π
11,𝑘𝑖

= 𝑃
𝑖

𝐴
𝑘𝑖

+ 𝐴
𝑇

𝑘𝑖

𝑃
𝑖

+ 𝐵
𝑘𝑖

𝐾
𝑖

𝑃
𝑖

+ 𝑃
𝑖

𝐾
𝑇

𝑖

𝐵
𝑇

𝑘𝑖

,

Π
12,𝑘𝑖

= 𝑃
𝑖

(
𝐵
𝑘𝑖

𝐾
1𝑖

0
)

+ (
−𝐴

𝑇

𝑘𝑖

𝑄
𝑖

− 𝐾
𝑇

1𝑖

𝐵
𝑘𝑖

𝑄
𝑖

+𝑀
𝑇

1𝑖

+ 𝐶
𝑇

𝑘𝑖

𝑀
𝑇

3𝑖

−𝐾
𝑇

2𝑖

𝐵
𝑇

𝑘𝑖

𝑄
𝑖

+𝑀
𝑇

2𝑖

) ,

Π
22,𝑘𝑖

= −𝑄
𝑖

𝐵
𝑘𝑖

𝐾
1𝑖

− 𝐾
𝑇

1𝑖

𝐵
𝑇

𝑘𝑖

𝑄
𝑖

+𝑀
1𝑖

+𝑀
𝑇

1𝑖

,

𝑘 = 1, . . . , 𝑔
𝑖

.

(30)

Then, Problem 3 is solvable by a dynamic output feedback
controller (6) with

𝐺
1𝑖

= (
𝑇
1𝑖

𝑇
2𝑖

0 𝐺
1

) , 𝐺
2𝑖

= (
𝑇
3𝑖

𝐺
2

) , (31)

where 𝑇
1𝑖

= 𝑄
−1

𝑖

𝑀
1𝑖

, 𝑇
2𝑖

= 𝑄
−1

𝑖

𝑀
2𝑖

, and 𝑇
3𝑖

= 𝑄
−1

𝑖

𝑀
3𝑖

.

Proof. For 𝑖 = 1, . . . , 𝑁, the subsystems of (8) with (6) and
(31) can be written in such a form: for 𝑖 ∈L,

̇𝛾
𝑖

(𝑡) = (

𝐴
𝑖

𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝑇
3𝑖

𝐶
𝑖

𝑇
1𝑖

𝑇
2𝑖

𝐺
2

𝐶
𝑖

0 𝐺
1

)𝛾
𝑖

(𝑡) + (

𝐸
𝑖

𝑇
3𝑖

𝐹

𝐺
2

𝐹

)𝑤 (𝑡) ,

(32)
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and for 𝑖 ∉L,

̇𝛾
𝑖

(𝑡) = (

𝐴
𝑖

𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝑇
3𝑖

𝐶
𝑖

𝑇
1𝑖

𝑇
2𝑖

𝐺
2

𝐶
𝑖

0 𝐺
1

)𝛾
𝑖

(𝑡) + (

𝐸
𝑖

0

0

)𝑤 (𝑡)

−
1
𝑁𝑖



∑

𝑗∈𝑁

𝑖

(

0 0 0

𝑇
3𝑖

𝐶
𝑗

0 0

𝐺
2

𝐶
𝑗

0 0

)𝛾
𝑗

(𝑡) .

(33)

Similar to the proof of the previous theorem, the stability
of the system (8) with 𝜔 = 0 is dependent on the following
subsystems:

̇𝛾
𝑖

(𝑡) = (

𝐴
𝑖

𝐵
𝑖

𝐾
1𝑖

𝐵
𝑖

𝐾
2𝑖

𝑇
3𝑖

𝐶
𝑖

𝑇
1𝑖

𝑇
2𝑖

𝐺
2

𝐶
𝑖

0 𝐺
1

)𝛾
𝑖

(𝑡)

=

𝑔

𝑖

∑

𝑘=1

𝜆
𝑘𝑖

(

𝐴
𝑘𝑖

𝐵
𝑘𝑖

𝐾
1𝑖

𝐵
𝑘𝑖

𝐾
2𝑖

𝑇
3𝑖

𝐶
𝑘𝑖

𝑇
1𝑖

𝑇
2𝑖

𝐺
2

𝐶
𝑘𝑖

0 𝐺
1

)𝛾
𝑖

(𝑡) .

(34)

Let

𝜉
𝑖

(𝑡) = (

𝐼
𝑝

𝑖

0 0

0 0 𝐼
𝑐

−𝐼
𝑝

𝑖

𝐼
𝑝

𝑖

0

)𝛾
𝑖

(𝑡) . (35)

Then, the subsystem (34) is similar to the following system:

̇𝜉
𝑖

(𝑡) =

𝑔

𝑖

∑

𝑘=1

𝜆
𝑘𝑖

(

𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
1𝑖

𝐵
𝑘𝑖

𝐾
2𝑖

𝐵
𝑘𝑖

𝐾
1𝑖

𝐺
2

𝐶
𝑘𝑖

𝐺
1

0

𝑈
𝑘𝑖

𝑉
𝑘𝑖

𝑊
𝑘𝑖

)𝜉
𝑖

(𝑡) , (36)

where

𝑈
𝑘𝑖

= 𝑇
1𝑖

+ 𝑇
3𝑖

𝐶
𝑘𝑖

− 𝐴
𝑘𝑖

− 𝐵
𝑘𝑖

𝐾
1𝑖

,

𝑉
𝑘𝑖

= 𝑇
2𝑖

− 𝐵
𝑘𝑖

𝐾
2𝑖

, 𝑊
𝑘𝑖

= 𝑇
1𝑖

− 𝐵
𝑘𝑖

𝐾
1𝑖

.
(37)

According to Lemma 6, the system (36) is QS if there exists a
symmetric positive definite matrix 𝑅

𝑖

> 0 such that

(

𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
1𝑖

𝐵
𝑘𝑖

𝐾
2𝑖

𝐵
𝑘𝑖

𝐾
1𝑖

𝐺
2

𝐶
𝑘𝑖

𝐺
1

0

𝑈
𝑘𝑖

𝑉
𝑘𝑖

𝑊
𝑘𝑖

)

𝑇

𝑅
𝑖

+ 𝑅
𝑖

(

𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
1𝑖

𝐵
𝑘𝑖

𝐾
2𝑖

𝐵
𝑘𝑖

𝐾
1𝑖

𝐺
2

𝐶
𝑘𝑖

𝐺
1

0

𝑈
𝑘𝑖

𝑉
𝑘𝑖

𝑊
𝑘𝑖

) < 0.

(38)

Suppose that 𝑅
𝑖

is a block diagonal matrix, which means that
𝑅
𝑖

= (
𝑃

𝑖
0

0 𝑄

𝑖

), 𝑃
𝑖

∈ R(𝑝

𝑖
+𝑐)×(𝑝

𝑖
+𝑐), and 𝑄

𝑖

∈ R𝑝

𝑖
×𝑝

𝑖 . Then, the
inequality above can be rewritten as

(
Π
11,𝑘𝑖

Π
12,𝑘𝑖

Π
𝑇

12,𝑘𝑖

Π
22,𝑘𝑖

) < 0, (39)

where

Π
11,𝑘𝑖

= (𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
𝑖

)
𝑇

𝑃
𝑖

+ 𝑃
𝑖

(𝐴
𝑘𝑖

+ 𝐵
𝑘𝑖

𝐾
𝑖

) ,

Π
12,𝑘𝑖

= 𝑃
𝑖

(
𝐵
𝑘𝑖

𝐾
1𝑖

0
) + (

𝑈
𝑇

𝑘𝑖

𝑉
𝑇

𝑘𝑖

)𝑄
𝑖

,

Π
22,𝑘𝑖

= 𝑊
𝑇

𝑘𝑖

𝑄
𝑖

+ 𝑄
𝑖

𝑊
𝑘𝑖

.

(40)

Notice that Π
11,𝑘𝑖

< 0 is just the inequality (22), which is
equivalent to LMI (17). When Π

11,𝑘𝑖

< 0 holds, the matrices
�̃�
𝑖

, 𝑌
𝑖

, 𝑃
𝑖

= �̃�
−1

𝑖

, 𝐾
𝑖

= (𝐾
1𝑖

, 𝐾
2𝑖

) = 𝑌
𝑖

�̃�
𝑖

have already been
obtained. Let𝑄

𝑖

𝑇
1𝑖

= 𝑀
1𝑖

,𝑄
𝑖

𝑇
2𝑖

= 𝑀
2𝑖

, and𝑄
𝑖

𝑇
3𝑖

= 𝑀
3𝑖

. We
turn the inequality (39) into LMI (29). This implies that the
system (8) with 𝜔 = 0 is asymptotically stable.

The rest part of the proof is similar to that in Theorem 9.
Recalling that ( 𝐴

𝑖
𝐵

𝑖
𝐾

𝑖

𝐺

2𝑖
𝐶

𝑖
𝐺

1𝑖

) is Hurwitz and (𝐺
1𝑖

, 𝐺
2𝑖

) incorpo-
rates a 𝑝-copy internal model of 𝑆, we can obtain that for any
matrices 𝐸

𝑖

and 𝐹
𝑖

, the following matrix equations

𝑋
𝑖

𝑆 = 𝐴
𝑖

𝑋
𝑖

+ 𝐵
𝑖

𝐾
𝑖

𝑍
𝑖

+ 𝐸
𝑖

,

𝑍
𝑖

𝑆 = 𝐺
1𝑖

𝑍
𝑖

+ 𝐺
2𝑖

(𝐶
𝑖

𝑋
𝑖

+ 𝐹
𝑖

)

(41)

have a unique solution𝑋
𝑖

and𝑍
𝑖

. Andmeanwhile,𝐶
𝑖

𝑋
𝑖

+𝐹
𝑖

=

0. For 𝑖 ∈L, 𝐹
𝑖

= 𝐹, otherwise 𝐹
𝑖

= (−1/|𝑁
𝑖

|) ∑
𝑗∈𝑁

𝑖

𝐶
𝑗

𝑋
𝑗

.

Take notations Γ
𝑖

= (
𝑋

𝑖

𝑍

𝑖

) and 𝛾
𝑖

(𝑡) = 𝛾
𝑖

(𝑡) − Γ
𝑖

𝜔(𝑡).
By calculation, it can be verified that lim

𝑡→∞

𝛾
𝑖

(𝑡) = 0.
Consequently, lim

𝑡→∞

𝑒
𝑖𝜔

(𝑡) = 0.WhenAssumption 2 holds,
the above statement is equivalent to lim

𝑡→∞

𝑒(𝑡) = 0. This
completes the proof.

Remark 12. Consider the robust tracking problem for het-
erogenousMAS in the presence of disturbances. Suppose that
an active leader is described as

̇𝑥
𝑘

(𝑡) = 𝐴
𝑘

𝑥
𝑘

(𝑡) , 𝑦
𝑘

(𝑡) = 𝐶
𝑘

𝑥
𝑘

(𝑡) , (42)

and there is an environmental disturbance 𝑑(𝑡) satisfying

̇𝑑 (𝑡) = 𝐴
𝑑

𝑑 (𝑡) . (43)

The model of the MAS can be given in

̇𝑥
𝑖

(𝑡) = 𝐴
𝑖

𝑥
𝑖

(𝑡) + 𝐵
𝑖

𝑢
𝑖

(𝑡) + 𝐸
𝑑𝑖

𝑑 (𝑡) ,

𝑦
𝑖

(𝑡) = 𝐶
𝑖

𝑥
𝑖

(𝑡) ,

𝑖 = 1, . . . , 𝑁,

(44)

where 𝐴
𝑖

, 𝐵
𝑖

, 𝐶
𝑖

, and 𝐸
𝑑

𝑖 are uncertain matrices with poly-
topic uncertainties.The control target is to design distributed
controllers such that the outputs of followers track the output
of the leader. That is to say, for 𝑖 = 1, . . . , 𝑁, 𝑒

𝑖

(𝑡) = 𝑦
𝑖

(𝑡) −

𝑦
𝑘

(𝑡) converges to zero. This problem is just Problem 3 with
𝜔 = (𝑥

𝑇

𝑘

, 𝑑
𝑇

)
𝑇, 𝑆 = diag block (𝐴

𝑘

, 𝐴
𝑑

), 𝐸 = (0 𝐸
𝑑𝑖

), and
𝐹 = (−𝐶

𝑘

0). The robust tracking problem for the systems
(44), therefore, can be studied under the framework of DOR
problem. It can be solved by designing the controller (4) or
(6) if the conditions inTheorems 9 or 11 are satisfied.
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Remark 13. By Theorems 9 and 11, the sufficient condition
of the solvability for Problem 3 depends on the dynamics
of each agent. For a heterogenous MAS, 𝑁 LMIs have to be
solved to obtain appropriate distributed controllers, which
limits scalability. When the agents share some common
characteristics, such as nominal parts, the complexity of
LMIs will decrease. Specially, if agents are identical in the
sense of common nominal parts and common bounds of
the uncertainties, the solution to one LMI will construct the
required control law.

4. A Numerical Example

In this section, a numerical example of a heterogenous MAS
consisting seven agents is given to show the control effect
of controllers obtained by Theorems 9 and 11. A comparison
is also given between our controllers and that of [25]. In
the example, suppose that there is a constant environmental
noise and the reference signal (the output of the tracking
target) is a sinusoidal signal. Let 𝜔 = (𝜔

1

, 𝜔
2

, 𝜔
3

)
𝑇, where

𝜔
1

, 𝜔
2

serve as the reference signals and 𝜔
3

as the exogenous
disturbance. Obviously, the differential equations about them
are ̈𝜔

1

(𝑡) = −𝜔
1

(𝑡), ̈𝜔
2

(𝑡) = −𝜔
2

(𝑡), and ̈𝜔
3

(𝑡) = 0. Therefore,
the exosystem can be described by (1) with

𝑆 = (

0 1 0

−1 0 0

0 0 0

) . (45)

According to [23], we can immediately obtain a 1-copy
internal model as follows:

𝐺
1

= (

0 1 0

0 0 1

0 −1 0

) , 𝐺
2

= (

0

0

1

) . (46)

In the example, three kinds of linear agentswith 2, 3, and 4
orders are considered. 2 or 3 basementmatrices are randomly
valued for each kind. We present the detailed description of
basement matrices in the appendix.

And as for 𝐸
1

, . . . , 𝐸
7

, their first two columns are zeros,
noticing that only𝜔

3

refers to the disturbance, while the other
elements are valued randomly. Finally, the regulated output,
regarded as the tracking error between 𝑦

𝑖

(𝑡) and the sine
reference signal 𝜔

1

(𝑡), is defined as 𝑒
𝑖

(𝑡) = 𝑦
𝑖

(𝑡) − 𝜔
1

(𝑡) =

𝐶
𝑖

𝑥
𝑖

(𝑡) + 𝐹𝜔(𝑡), so, value 𝐹 = (−1 0 0).
The communication network is described by the

directed acyclic graph shown in Figure 1, which satisfies
Assumption 2. According to Theorem 11, by solving three
kinds of LMIs as (17), we get control gains 𝐾

1

= 𝐾
2

=

(−6.3230, 28.5507, 2.6636, 0.9019, 6.8977), 𝐾
3

= 𝐾
4

=

𝐾
5

= (0.9071, −9.9908, 10.4217, −1.2503, 0.9513, −3.1324),
𝐾
6

= 𝐾
7

= (226.6539, 117.7418, −20.0749, −91.1218, 4.6064,
−2.6648, 11.6774). If the states of each agent are measurable,
then a candidate distributed controller can be chosen as (4)
with the coefficients 𝐾

1

, . . . , 𝐾
7

. Or else, one more group of
LMIs (29) need to be solved to construct the output feedback
controllers. In this situation, we obtain 𝑇

1𝑖

, 𝑇
2𝑖

and 𝑇
3𝑖

for
𝑖 = 1, . . . , 7, which are also listed in the appendix due to

1

2 3 4

5 6 7

Reference
signal

Figure 1: Information flow among exosystem and agents.

space limitation. And then the distributed dynamic output
feedback controllers are given as (6). For simplicity, we
denote this control law as controller 𝐶

𝑎

.
On the other hand, we translate the polytopic uncertainty

into an equivalent form that consists of a nominal part and
an uncertain part. In this case, the nominal part 𝐴

1

, . . . , 𝐴
7

,
𝐵
1

, . . . , 𝐵
7

, and 𝐶
1

, . . . , 𝐶
7

can be valued as the average of the
basement matrices. Then, by the algorithm in [25], for 𝑖 =
1, . . . , 7, the candidate control law can be chosen as (6) with

𝐺
1𝑖

= (
𝐴
𝑖

+ 𝐵
𝑖

𝐾
1𝑖

+ 𝐿
𝑖

𝐶
𝑖

𝐵
𝑖

𝐾
2𝑖

0 𝐺
1

) ,

𝐺
2𝑖

= (
−𝐿

𝑖

𝐺
2

) , 𝐽
𝑖

= 𝑄
−1

𝑖

𝑍
𝑖

,

(47)

where 𝐾
1

= 𝐾
2

= (−10, 0, 2, 1, −1), 𝐿
1

= 𝐿
2

= (9.5, 10)
𝑇,

𝐾
3

= 𝐾
4

= 𝐾
5

= (−9, −2, −4, 3, 2, 4), 𝐿
3

= 𝐿
4

= 𝐿
5

=

(30, −70, 28)
𝑇, 𝐾

6

= 𝐾
7

= (10, 10, −2, 5, 1, 2, −2)
𝑇, 𝐿

5

= 𝐿
6

=

𝐿
7

= (−69, −41, −10, −10)
𝑇. For simplicity, this control law

obtained by [25] is denoted by controller 𝐶
𝑏

.
Note that both controllers 𝐶

𝑎

and 𝐶
𝑏

are robust con-
trollers against themodel uncertainty. To compare the effects,
two cases of uncertainties are considered in the example. For
one case, the model uncertainties denoted by Δ

1

are rather
close to the “nominal part” set earlier. For 𝑖 = 1, . . . , 7,
𝑘 = 1, . . . , 𝑔

𝑖

, the values of 𝜆
𝑘𝑖

are randomly chosen around
1/𝑔

𝑖

, whose values are shown in the appendix. For another
case, the model uncertainties denoted by Δ

2

are valued
freelywith reasonable coefficients, which are relatively farther
from the “nominal part.” With the same initial values, the
numerical results of the regulated output for each agent are
demonstrated in Figure 2 and Figure 3. Our controller 𝐶

𝑎

is effective in the presence of either Δ
1

or Δ
2

. However, as
for Controller 𝐶

𝑏

, when the uncertainty is relatively small,
it can help to achieve the output regulation property. While
in the case of Δ

2

, the regulated errors diverge rapidly as
shown in Figure 3(b). As a consequence of the above, for
Problem 3 with polytopic uncertainties, Theorems 9 and
11 help construct distributed dynamic state/output feedback
controllers of stronger robustness, at the price of increasing
the calculation complexity.

5. Conclusions

In this paper, we consider the distributed robust output
regulation problem for MASs under the topology of directed
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Figure 2: Regulated output of the MAS with the controller 𝐶
𝑎
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Figure 3: Regulated output of the MAS with the controller 𝐶
𝑏

.

acyclic graphs. As an extension of the existing results, we
focus on a special class of parametric uncertainty. Assume
that the dynamics of heterogeneous agents are in a poly-
topic form, and we study the solvability of the problem
and the design of distributed controllers. Both dynamic
state feedback controller and dynamic output feedback con-
troller are under consideration. At last, a practical example
is presented to validate our results. By local interaction,
a team of heterogenous agents is required to achieve a
common output, which is generated by an exosystem. The
controller generated by our theorem can realize the property
of output regulation and the performance of tracking the
reference signal and rejecting the disturbances as a special
case.

Appendix

Here are some detailed descriptions of the example in
Section 4. Agents V

1

and V
2

are systems with 2 orders. And
there are three basement matrices for an uncertain system,
which means 𝑔

1

= 𝑔
2

= 3

𝐴
11

= 𝐴
12

= (
−4.8512 −8.9578

−8.7108 7.4003
) ,

𝐴
21

= 𝐴
22

= (
−4.5841 −7.5263

−9.3135 7.0596
) ,

𝐴
31

= 𝐴
32

= (
−5.7140 −8.2750

−9.1175 7.0544
) ,
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𝐵
11

= 𝐵
12

= (
1.6684

−0.0861
) ,

𝐵
21

= 𝐵
22

= (
1.9897

−0.7854
) , 𝐵

31

= 𝐵
32

= (
1.8509

−0.2403
) ,

𝐶
11

= 𝐶
12

= (1.0614 0.8390) ,

𝐶
21

= 𝐶
22

= (1.0102 0.9982) ,

𝐶
31

= 𝐶
32

= (0.9283 0.7936) .

(A.1)

Agents V
3

, V
4

, and V
5

are systemswith 3 orders. And𝑔
3

= 𝑔
4

=

𝑔
5

= 2

𝐴
13

= 𝐴
14

= 𝐴
15

= (

2.5419 −1.2319 4.7038

1.9598 −1.9843 −4.6719

−2.6654 −2.4159 −4.6598

) ,

𝐴
23

= 𝐴
24

= 𝐴
25

= (

1.1025 −2.1701 3.6488

0.0927 −0.1010 −2.6299

−3.4064 −3.1707 −3.2973

) ,

𝐵
13

= 𝐵
14

= 𝐵
15

= (

3.2738

2.3681

−0.0088

) ,

𝐵
23

= 𝐵
24

= 𝐵
25

= (

4.3570

1.9363

−0.0489

) ,

(A.2)

𝐶
13

= 𝐶
14

= 𝐶
15

= (−2.9090 − 1.6423 − 0.6208) ,

(A.3)

𝐶
23

= 𝐶
24

= 𝐶
25

= (−3.5357 − 1.0246 − 2.3913) .

(A.4)

Agents V
6

and V
7

are systems with 4 orders. And 𝑔
6

= 𝑔
7

= 3

𝐴
16

= 𝐴
17

= (

7.3858 7.0606 −1.9638 −6.3218

1.5941 2.4411 −8.4807 −5.2009

0.9972 −2.9810 −5.2017 −1.6547

−7.1009 0.2650 −7.5336 −9.0069

) ,

𝐴
26

= 𝐴
27

= (

5.7750 7.7097 −3.0848 −4.7077

−0.1851 0.8409 −8.0396 −3.7288

1.0337 −2.4579 −4.1684 −3.4229

−7.0579 1.8202 −7.1493 −10.8314

) ,

𝐴
36

= 𝐴
37

= (

7.6867 8.3454 −1.3674 −6.1338

−0.1668 0.5027 −7.5538 −6.0157

−0.0637 −4.8089 −4.6107 −0.6759

−7.6883 −1.0590 −7.7299 −10.2511

) ,

𝐵
16

= 𝐵
17

= (

0.0681

0.0862

2.5410

2.3587

) ,

𝐵
26

= 𝐵
27

= (

−0.2206

0.3290

1.9179

2.2930

) ,

𝐵
36

= 𝐵
37

= (

−0.2305

0.9642

3.2929

2.4590

) ,

𝐶
16

= 𝐶
17

= (1.4942 − 2.5319 − 1.0521 1.0049) ,

𝐶
26

= 𝐶
27

= (0.9337 − 1.6942 − 1.9109 0.4535) ,

𝐶
36

= 𝐶
37

= (1.4678 − 2.6602 − 1.1586 0.6176) .

(A.5)

Next, these are the matrices obtained according to the solu-
tion of LMIs (29)

𝑇
11

= 𝑇
12

= (
37.5608 109.7053

−118.3196 −149.5498
) ,

𝑇
21

= 𝑇
22

= (
4.8984 1.6586 12.6849

−1.7007 −0.5759 −4.4042
) ,

𝑇
31

= 𝑇
32

= (
−43.5409 −74.3826

91.9349 157.0558
) ,

𝑇
13

= 𝑇
14

= 𝑇
15

= (

−6.8197 −42.1931 33.9132

9.9034 −14.7875 19.6377

−2.6741 −1.6089 −3.5333

) ,

𝑇
23

= 𝑇
24

= 𝑇
25

= (

−4.2895 3.2637 −10.7466

−2.3038 1.7529 −5.7718

0.1139 −0.0867 0.2854

) ,

𝑇
33

= 𝑇
34

= 𝑇
35

= (

11.1566 5.9291 5.2847

−7.3616 −3.9123 −3.4871

−0.3312 −0.1760 −0.1569

) ,

𝑇
16

= 𝑇
17

= (

−167.8742 206.0977 254.4031 −44.6630

15.0769 147.1908 106.7331 −62.5135

462.5231 174.7488 −97.4980 −165.1735

532.2860 236.1899 −93.3484 −210.2411

) ,

𝑇
26

= 𝑇
27

= (

−1.0162 0.5879 −2.5760

1.5155 −0.8767 3.8419

8.8346 −5.1108 22.3961

10.5625 −6.1104 26.7763

) ,

𝑇
36

= 𝑇
37

= (

123.6493 −224.3619 −253.0593 60.0567

59.3071 −107.6129 −121.3773 28.8056

−26.7899 48.6103 54.8279 −13.0119

−19.6265 35.6123 40.1673 −9.5326

) .

(A.6)
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The coefficients in case of the uncertainty Δ
1

are as follows:

𝜆
11

= 0.33, 𝜆
21

= 0.33, 𝜆
31

= 0.34,

𝜆
12

= 0.4, 𝜆
22

= 0.3, 𝜆
32

= 0.3,

𝜆
13

= 0.6, 𝜆
23

= 0.4,

𝜆
14

= 0.45, 𝜆
24

= 0.55,

𝜆
15

= 0.33, 𝜆
25

= 0.37, 𝜆
35

= 0.4,

𝜆
16

= 0.35, 𝜆
26

= 0.36, 𝜆
36

= 0.39,

𝜆
17

= 0.41, 𝜆
27

= 0.3, 𝜆
37

= 0.39.

(A.7)

The coefficients in case of the uncertainty Δ
2

are as follows:

𝜆
11

= 0.1, 𝜆
21

= 0.2, 𝜆
31

= 0.7,

𝜆
12

= 0.5, 𝜆
22

= 0, 𝜆
32

= 0.5,

𝜆
13

= 0, 𝜆
23

= 1,

𝜆
14

= 0.81, 𝜆
24

= 0.19,

𝜆
15

= 0.3, 𝜆
25

= 0.5, 𝜆
35

= 0.2,

𝜆
16

= 0.02, 𝜆
26

= 0.13, 𝜆
36

= 0.85,

𝜆
17

= 0.3, 𝜆
27

= 0.1, 𝜆
37

= 0.6.

(A.8)
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A detailed analysis on theHopf bifurcation of a delayedHopfield neural network is given.Moreover, a new hybrid control strategy is
proposed, in which time-delayed state feedback and parameter perturbation are used to control the Hopf bifurcation of the model.
Numerical simulation results confirm that the new hybrid controller using time delay is efficient in controlling Hopf bifurcation.

1. Introduction

It is well known that neural networks are complex and large-
scale nonlinear dynamical system. In the last decade, the
dynamical characteristics (including stable, unstable, oscil-
latory, and chaotic behavior) of Hopfield neural networks
(HNNs) with time delays have become a subject of intense
research activities. Many stability criteria are obtained. We
refer the reader to [1–8] and the references cited therein.
However, the periodic nature of neural impulses is of funda-
mental significance in the control of regular dynamical func-
tions such as breathing and heart beating. Neural networks
involving persistent oscillations such as limit cycle may be
applied to pattern recognition and associative memory. In
differential equations with delays, periodic oscillatory behav-
ior can arise through the Hopf bifurcation. Therefore, it is
also very significant to study the class of problem. Olien and
Bélair [9] investigated the bifurcation of the following HNNs
system:
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in which 𝜏
1

= 𝜏
2

= 𝜏
3

= 𝜏, 𝑎
𝑖

= 1 and 𝑓
𝑖

(0) = 0, 𝑖 = 1, 2, and
Huang et al. [10] study further the bifurcation and periodic
nature of system (1) with 2𝜏

1

= 𝜏
2

+ 𝜏
3

, 𝑎
𝑖

= 1 and 𝑓
𝑖

(0) = 0,
𝑖 = 1, 2. Moreover, many authors also consider discrete form
of system (1); we can see [11–13].

In recent years, bifurcation control has attracted many
researchers from various disciplines. The aim of bifurcation
control is to design a controller to modify the bifurcation
properties of a given nonlinear system, thereby to achieve
some desirable dynamical behaviors. After the pioneering
work initiated by Ott et al. [14], there have been many ideas
and methods of bifurcation control [15–20]. However, from
the control theory point of view, we may classify the current
methods into two main categories: the first one is feedback
control where state feedback is applied to control bifurcation
or chaos, and the other is nonfeedback methods. Recently,
Luo et al. [21] proposed a new control strategy for period-
doubling bifurcations in a discrete nonlinear dynamical
system. Moreover, Liu and Chung [22] investigated the same
control strategy in a continuous dynamical system without
time delays. Now, we extend this strategy to deal with bifurca-
tion control in HNNs system (1).

In the paper, we will propose a new hybrid control stra-
tegy in which the parameter perturbation and time-delayed
state feedback are combined and used to control Hopf bifur-
cation in system (1). Simulation results demonstrate the cor-
rectness of our theoretical analysis. The comparison shows
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that the control strategy is effective as it meets the purpose
of retarding the occurrence of bifurcation.

2. Stability and Hopf Bifurcation of
System (1) without Control

In this section, we will consider system (1) with 2𝜏
1

= 𝜏
2

+

𝜏
3

≜ 2𝜏 and 𝑓
𝑖

(0) = 0, 𝑖 = 1, 2. It is obviously that (0, 0) is an
equilibrium point of system (1).
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= 𝑏. Consider the
linearized system of system (1) at (0, 0)
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The characteristic equation of the linearized system (2) is
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(3)

which determines the local stability of the equilibrium solu-
tion. Thus, we will find some conditions which ensure that
all roots of (3) have negative real parts. To facilitate the cal-
culation in this paper, we rewrite the characteristic equation
(3) as follows:
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). Obviously, (4)
is a quadratic polynomial in the variable (𝜆 + 𝑏)𝑒

𝜆𝜏 and has
roots given by

(𝜆 + 𝑏) 𝑒
𝜆𝜏

= 𝑇 ± √𝑇2 − 𝐷. (5)

In the following, we distinguish two cases to discuss (5).

2.1. As 𝑇2 ≥ 𝐷. In this part, we state a result due to [23] as
a lemma to analyze (5), which is, for the convenience of the
reader, stated as follows.

Lemma 1. For the transcendental equation
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where 𝜎
𝑖

≥ 0 (𝑖 = 1, . . . , 𝑚) and 𝑝
(𝑖)

𝑗

(𝑖 = 1, . . . , 𝑚; 𝑗 =

1, . . . , 𝑛) are constants. As (𝜎
1

, . . . , 𝜎
𝑚

) varies, the sum of the
orders of the zeros of (6) in the open right half-plane can change
only if a zero appears on or crosses the imaginary axis.

For convenience, we make the following assumptions:

(H1) 𝑏 > 𝑇 ± √𝑇2 − 𝐷.
(H2) 𝑏2 > (𝑇 ± √𝑇2 − 𝐷)

2.
(H3) (𝑇 + √𝑇2 − 𝐷)

2

< 𝑏
2

< (𝑇 − √𝑇2 − 𝐷)
2.

(H4) 𝑏2 < (𝑇 ± √𝑇2 − 𝐷)
2.

Lemma 2. If (H1) and (H2) hold, then all roots of (3) have
negative real parts for every 𝜏 ∈ [0, +∞).

Proof. For (3), when 𝜏 = 0, its roots can be expressed as
𝜆
1,2

= −𝑏 + 𝑇 ±√𝑇2 − 𝐷. Clearly, all roots of (3) are negative
if (H1) holds. We want to determine if the real part of some
root increases to reach zero and eventually becomes positive
as 𝜏 ̸= 0. We can see that 𝜆 is a root of (3) if and only if 𝜆 is a
root of (5).

We write 𝜆 = 𝜌 + 𝑖𝜔 for a root of the characteristic equa-
tions (5), separate the real and imaginary parts of the ensu-
ing equations (5), and obtain

𝑒
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[(𝜌 + 𝑏) cos (𝜔𝜏) − 𝜔 sin (𝜔𝜏)] = 𝑇 ± √𝑇2 − 𝐷,

𝑒
𝜌𝜏

[(𝜌 + 𝑏) sin (𝜔𝜏) + 𝜔 cos (𝜔𝜏)] = 0.

(7)

A change in the stability of the stationary solution can only
occur when 𝜌 = 0, that is,

𝑏 cos (𝜔𝜏) − 𝜔 sin (𝜔𝜏) = 𝑇 ± √𝑇2 − 𝐷,
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By (8), we have
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By (9), if (H2) holds, we know that (5) has no purely imag-
inary roots, and then applying Lemma 1 one obtains that all
roots of (3) have negative real parts.This completes the proof
of lemma.

Lemma 3. For (5), one obtains the following results.

(1) If (H1) and (H3) hold, then (5) have a pair of purely
imaginary roots ±𝑖𝜔

−

at 𝜏 = 𝜏
−,𝑗

.
(2) If (H1) and (H4) hold, then (5) have a pair of purely
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,
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Here one denotes ±𝜔
0

especially as a pair of purely
imaginary roots of (5) at 𝜏 = 𝜏

0

. To see if 𝜏
−,0

and 𝜏
0

are
bifurcation values, one needs to verify if the transversality
conditions hold. In fact, one has the following.
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Lemma 4. The following transversality conditions:
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Proof. By (5), we have
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We complete the proof of Lemma 4.

From Lemmas 2–4, we can obtain the following theorem
about the distribution of the characteristic roots of (3).

Theorem 5. Let 𝜏
−,0

, 𝜏
0

be defined by (11).

(i) If (H1) and (H2) hold, then all roots of (3) have negative
real parts for all 𝜏 ≥ 0.

(ii) If (H1) and (H3)((H4)) hold, then when 𝜏 < 𝜏
−,0

(𝜏 <

𝜏
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), all roots of (3) have negative real parts, when 𝜏 =
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), (3) has a pair of purely imaginary roots
±𝑖𝜔
−
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), and when 𝜏 > 𝜏
−,0

(𝜏 > 𝜏
0

), (3) has at
least one root with positive real part.

By using Theorem 5, the stability and bifurcation of
system (1) can be summarized as the following theorem.

Theorem 6. For system (1), let (H1) hold and let 𝜏
−,0

, 𝜏
0

be
defined by (11).

(i) If (H2) holds, then the equilibrium point (0, 0) is
asymptotically stable for discrete delays 𝜏 ≥ 0.

(ii) If (H3)((H4)) holds, there is a critical value 𝜏 =
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), then the equilibrium point (0, 0) is asymptotically
stable; if 𝜏 > 𝜏
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), then (0, 0) is unstable; Hopf
bifurcation occurs when 𝜏 = 𝜏
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2.2. As 𝑇
2

<𝐷. For convenience, we have the following
assumptions:
(H5) 𝑏 > 𝑇.
(H6) 𝑏2 > 𝐷.
(H7) 𝑏2 < 𝐷.
Similar to the deduction of Lemma 2, we have the follow-

ing result.

Lemma 7. If (H5) and (H6) hold, then all roots of (3) have
negative real parts for every 𝜏 ∈ [0, +∞).

Proof. For (3), when 𝜏 = 0, its roots can be expressed as
𝜆
1,2

= −𝑏+𝑇±√𝑇2 − 𝐷. Clearly, all roots of (3) have negative
real parts if (H5) holds. We want to determine if the real part
of some root increases to reach zero and eventually becomes
positive as 𝜏 ̸= 0. We can see that 𝜆 is a root of (3) if and only
if 𝜆 is a root of (5).

We write 𝜆 = 𝜌 + 𝑖𝜔 for a root of the characteristic
equation (3), separate the real and imaginary parts of the
ensuing equations (5), and obtain

𝑒
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A change in the stability of the equilibrium point can only
occur when 𝜌 = 0, that is,

𝑏 cos (𝜔𝜏) − 𝜔 sin (𝜔𝜏) = 𝑇,

𝑏 sin (𝜔𝜏) + 𝜔 cos (𝜔𝜏) = ±√𝐷 − 𝑇2.

(18)

Hence, we have
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By (19), if (H6) holds, we know that (5) has no purely imag-
inary roots, and then applying Lemma 1 one obtains that all
roots of (3) have negative real parts.This completes the proof
of lemma.

Lemma 8. For (3), one obtains the following results.
If (H5) and (H7) hold, then (3) have a pair of purely imag-

inary roots ±𝑖𝜔 at 𝜏 = 𝜏
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According to Lemma 4, one knows that 𝜏
0

is bifurcation
values.
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From Lemmas 1 and 2, one can obtain the following
theorem about the distribution of the characteristic roots of
(3).

Theorem 9. Let 𝜏
0

be defined by (21).
(i) If (H5) and (H6) hold, then all roots of (3) have

negative real parts for all 𝜏 ≥ 0.
(ii) If (H5) and (H7) hold, then when 𝜏 < 𝜏

0

, all roots of
(3) have negative real parts, when 𝜏 = 𝜏

0

, (3) has a pair
of purely imaginary roots ±𝑖𝜔, and when 𝜏 > 𝜏

0

, (3)
has at least one root with positive real part.

By using Theorem 9, the stability and bifurcation of
system (1) can be summarized as the following theorem.

Theorem 10. For system (1), let (H5) hold and let 𝜏
0

be defined
by the following: (21).

(i) If (H6) holds, then the equilibrium point (0, 0) is
asymptotically stable for discrete delays 𝜏 ≥ 0.

(ii) If (H7) holds, there is a critical value 𝜏 = 𝜏
0

of the
discrete delay so that if 𝜏 < 𝜏

0

, then the equilibrium
point (0, 0) is asymptotically stable; if 𝜏 > 𝜏

0

, then (0, 0)
is unstable; Hopf bifurcation occurs when 𝜏 = 𝜏

0

.

3. Stability Analysis and Bifurcation with
Hybrid Control

In this section, wewill consider system (1) with hybrid control
described by the following differential equation:

̇𝑥
1

= 𝛼 (−𝑎
1

𝑥
1

(𝑡) + 𝑏
11

𝑓
1

(𝑥
1

(𝑡 − 𝜏
1

)) + 𝑏
12

𝑓
2

(𝑥
2

(𝑡 − 𝜏
2

)))

+ 𝛽𝑥
1

(𝑡 − 𝜏
1

) ,

̇𝑥
2

= 𝛼 (−𝑎
2

𝑥
2

(𝑡) + 𝑏
21

𝑓
1

(𝑥
1

(𝑡 − 𝜏
3

)) + 𝑏
22

𝑓
2

(𝑥
2

(𝑡 − 𝜏
1

)))

+ 𝛽𝑥
2

(𝑡 − 𝜏
1

) ,

(22)

where 𝛼 > 0 and 𝛽 ∈ 𝑅. Obviously, (0, 0) is also an equi-
librium point of system (22).

Linearizing the system (22) at the equilibriumpoint (0, 0),
we obtain

̇𝑥
1

= −𝛼𝑏𝑥
1

(𝑡) + (𝑐
11

𝛼 + 𝛽) 𝑥
1

(𝑡 − 𝜏
1

) + 𝑐
12

𝛼𝑥
2

(𝑡 − 𝜏
2

) ,

̇𝑥
2

= −𝛼𝑏𝑥
2

(𝑡) + 𝑐
21

𝛼𝑥
1

(𝑡 − 𝜏
3

) + (𝑐
22

𝛼 + 𝛽) 𝑥
2

(𝑡 − 𝜏
1

) .

(23)

Then the characteristic equation for the linearized system
around (0, 0)𝑇 is given by

(𝜆 + 𝛼𝑏)
2

𝑒
2𝜆𝜏

− (𝛼 (𝑐
11

+ 𝑐
22

) + 2𝛽) (𝜆 + 𝛼𝑏) 𝑒
𝜆𝜏

+ ((𝛼𝑐
11

+ 𝛽) (𝛼𝑐
22

+ 𝛽) − 𝛼
2

𝑐
12

𝑐
21

) = 0,

(24)

which is a quadratic polynomial in the variable (𝜆 + 𝛼𝑏)𝑒
𝜆𝜏

and has roots given by

(𝜆 + 𝛼𝑏) 𝑒
𝜆𝜏

= 𝑇


± √(𝑇)
2

− 𝐷, (25)

where

𝐷


= 𝛼
2

𝐷 + 2𝛼𝛽𝑇 + 𝛽
2

, 𝑇


= 𝛼𝑇 + 𝛽. (26)

By (26), we know that (𝑇)2 − 𝐷


= 𝛼
2

(𝑇
2

− 𝐷), and thus,
(𝑇


)
2

≥ 𝐷


((𝑇


)
2

< 𝐷


) holds if and only if 𝑇2 ≥ 𝐷 (𝑇
2

< 𝐷)

holds.
In the following, we also distinguish two cases to discuss

(25).

3.1. As 𝑇2 ≥ 𝐷. Corresponding to Part I of Section 2, we
make the following assumptions for convenience:

(H1) 𝑏 > 𝑇 ± √𝑇2 − 𝐷 + (𝛽/𝛼).
(H2) 𝑏2 > (𝑇 ± √𝑇2 − 𝐷 + (𝛽/𝛼))

2.
(H3) (𝑇+√𝑇2 − 𝐷+(𝛽/𝛼))

2

< 𝑏
2

< (𝑇−√𝑇2 − 𝐷+(𝛽/𝛼))
2.

(H4) 𝑏2 < (𝑇 ± √𝑇2 − 𝐷 + (𝛽/𝛼))
2.

Denote

(𝜔


±

)
2

= (𝑇


± √(𝑇)
2

− 𝐷)

2

− 𝛼
2

𝑏
2

, (27)

𝜏


±,𝑗

=
1

𝜔
±

arctan(−𝛼𝑏
𝜔
±

) +
𝑗𝜋

𝜔
±

, 𝑗 = 0, 1, . . . ,

𝜏


0

= min {𝜏
+,0

, 𝜏


−,0

} .

(28)

Similarly, we can obtain the following theorem.

Theorem 11. For system (22), let (𝐻1)
 hold and let 𝜏

±,0

, 𝜏
0

be
defined by (28).

(i) If (𝐻2)
 holds, then the equilibrium point (0, 0) is

asymptotically stable for discrete delays 𝜏 ≥ 0.
(ii) If (𝐻3)



((𝐻4)


) holds, there is a critical value 𝜏 =

𝜏


−,0

(𝜏 = 𝜏


0

) of the discrete delay so that if 𝜏 < 𝜏


−,0

(𝜏 <

𝜏


0

), then the equilibrium point (0, 0) is asymptotically
stable; if 𝜏 > 𝜏



−,0

(𝜏 > 𝜏


0

), then (0, 0) is unstable; Hopf
bifurcation occurs when 𝜏 = 𝜏



−,0

(𝜏 = 𝜏


0

).

3.2. As 𝑇2<𝐷. Similar to deduction of Section 2.2, we have
the following assumptions:

(H5) 𝑏 > 𝑇 + (𝛽/𝛼),
(H6) 𝑏2 > 𝐷 + (2𝛽/𝛼)𝑇 + (𝛽/𝛼)

2,
(H7) 𝑏2 < 𝐷 + (2𝛽/𝛼)𝑇 + (𝛽/𝛼)

2.
In this part, we denote

(𝜔


)
2

= 𝐷


− 𝛼
2

𝑏
2

, (29)

𝜏


±,𝑗

=
1

𝜔
arccos(

𝛼𝑏𝑇


± 𝜔
√𝐷 − (𝑇)

2

𝛼2𝑏2 + (𝜔)
2

)

+
2𝑗𝜋

𝜔
, 𝑗 = 0, 1, ⋅ ⋅ ⋅ ; 𝜏



0

= min {𝜏
+,𝑗

, 𝜏


−,𝑗

} .

(30)

Hence, we can obtain the following theorem.
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Theorem 12. For system (22), let (𝐻5)
 hold and let 𝜏

0

be
defined by (30).

(i) If (𝐻6)
 holds, then the equilibrium point (0, 0) is

asymptotically stable for discrete delays 𝜏 ≥ 0.
(ii) If (𝐻7)

 holds, there is a critical value 𝜏 = 𝜏


0

of the
discrete delay so that if 𝜏 < 𝜏



0

then the equilibrium
point (0, 0) is asymptotically stable; If 𝜏 > 𝜏



0

, then (0, 0)
is unstable; Hopf bifurcation occurs when 𝜏 = 𝜏



0

.

Remark 13. When 𝛼 = 1 − 𝛾 and 𝛽 = 𝛾 in the system (22),
then we obtain the same hybrid control with [22]; however, a
control model based on delayed feedback is proposed in this
paper; it is well know that control theory should contain delay
since any control action takes effect only after a certain delay.
Hence, our hybrid control is more helpful than [22].

Remark 14. When 𝛼 = 1 in the system (23), then we obtain a
control model only based on delayed feedback in this paper,
it is clear that our hybrid control is more general than control
strategy proposed by [17].

Remark 15. In [10], authors investigated the Hopf bifurcation
of following HNNs with 𝛼 = 1 and 𝛽 = 0:

̇𝑥
1

= 𝛼 (−𝑥
1

(𝑡) − (√2 − 1)𝑓
1

(𝑥
1

(𝑡 − 𝜏
1

))

+ 𝑏
12

𝑓
2

(𝑥
2

(𝑡 − 𝜏
2

)) ) + 𝛽𝑥
1

(𝑡 − 𝜏
1

) ,

̇𝑥
2

= 𝛼 ( − 𝑥
2

(𝑡) + 𝑏
21

𝑓
1

(𝑥
1

(𝑡 − 𝜏
3

))

− (√2 − 1)𝑓
2

(𝑥
2

(𝑡 − 𝜏
1

))) + 𝛽𝑥
2

(𝑡 − 𝜏
1

) ,

(31)

By choosing 𝜏
1

= 3𝜋/4, 𝜏
2

= 𝜋/8, 𝜏
3

= 11𝜋/8, the authors
obtained that Hopf bifurcation occurs when 𝑏

12

𝑏
21

= 1.
However, if choosing the parameters 𝛼 = 0.8 and 𝛽 = 0, by
the hybrid control strategy of this paper, the Hopf bifurcation
in [10] will be eliminated. We can see Figures 1 and 2.

Remark 16. It is known to all that neural networks are a
special case of complex networks. Thus, it is interesting and
important to further study how to expand the application
of theoretical results in [24–27] and any other complex net-
works.

4. Examples

In this section, we give two examples to illustrate our results.

Example 1. Consider the followingHNNs systemwith hybrid
control:

̇𝑥
1

= 𝛼 (−𝑎
1

𝑥
1

(𝑡) + 𝑏
11

𝑓
1

(𝑥
1

(𝑡 − 𝜏
1

)) + 𝑏
12

𝑓
2

(𝑥
2

(𝑡 − 𝜏
2

)))

+ 𝛽𝑥
1

(𝑡 − 𝜏
1

) ,

̇𝑥
2

= 𝛼 (−𝑎
2

𝑥
2

(𝑡) + 𝑏
21

𝑓
1

(𝑥
1

(𝑡 − 𝜏
3

)) + 𝑏
22

𝑓
2

(𝑥
2

(𝑡 − 𝜏
1

)))

+ 𝛽𝑥
2

(𝑡 − 𝜏
1

) ,

(32)
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Figure 1: The trajectory of 𝑥
1

(𝑡) versus time in the system (31) with
𝜏 = 3𝜋/4.
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Figure 2: The trajectory of 𝑥
2

(𝑡) versus time in the system (31) with
𝜏 = 3𝜋/4.

where 𝜏
1

= 𝜏
2

= 𝜏
3

= 𝜏, 𝑎
𝑖

= 0.5, 𝑏
𝑖𝑗

= −0.3, and 𝑓
𝑖

(𝑥) =

tanh(𝑥), 𝑖, 𝑗 = 1, 2. It is obvious that (0, 0) is an equilibrium
point of system (32). Choosing 𝛼 = 1, 𝛽 = 0, by calculation,
the periodic oscillatory behavior can arise through the Hopf
bifurcation as 𝜏

0

= 7.7063; we can see Figures 3 and 5
(𝜏 = 7.7063, 𝜏 = 17.7063). However, when 𝛼/5 < 2𝛽 < 𝛼,
with complicated calculation, (H2) holds; by Theorem 11(i),
the equilibrium point (0, 0) is asymptotically stable for any
discrete delays 𝜏 ≥ 𝜏

0

. For the convenience of numerical
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Figure 3:The trajectory of 𝑥
1

(𝑡) and 𝑥
2

(𝑡) versus time in the system
(32) without control (𝜏 = 7.7063).
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Figure 4:The trajectory of 𝑥
1

(𝑡) and 𝑥
2

(𝑡) versus time in the system
(32) with control (𝜏 = 7.7063).
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Figure 5:The trajectory of 𝑥
1

(𝑡) and 𝑥
2

(𝑡) versus time in the system
(32) without control (𝜏 > 7.7063).
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Figure 6:The trajectory of 𝑥
1

(𝑡) and 𝑥
2

(𝑡) versus time in the system
(32) with control (𝜏 > 7.7063).
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Figure 7:The trajectory of 𝑥
1

(𝑡) and 𝑥
2

(𝑡) versus time in the system
(33) without control (𝜏 = 1.2092).
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Figure 8:The trajectory of 𝑥
1

(𝑡) and 𝑥
2

(𝑡) versus time in the system
(33) with control (𝜏 = 1.2092).

simulation, here we choose 𝛼 = 0.75, 𝛽 = 0.25, and 𝜏 =

17.7063 as an example. it can be seen in Figure 4 (𝜏 = 7.7063).
Fix all coefficients of system (32) and let 𝜏 vary, and the
waveforms 𝑥

1

(𝑡), 𝑥
2

(𝑡) without and with control are shown,
respectively. Obviously, we obtain that the Hopf bifurcation
in (32) without hybrid control could be eliminated by hybrid
control; we can see Figure 6 (𝜏 = 17.7063 > 𝜏

0

).

Example 2. Consider the followingHNNs systemwith hybrid
control:

̇𝑥
1

= 𝛼 (−𝑎
1

𝑥
1

(𝑡) + 𝑏
11

𝑓
1

(𝑥
1

(𝑡 − 𝜏
1

)) + 𝑏
12

𝑓
2

(𝑥
2

(𝑡 − 𝜏
2

)))

+ 𝛽𝑥
1

(𝑡 − 𝜏
1

) ,

̇𝑥
2

= 𝛼 (−𝑎
2

𝑥
2

(𝑡) + 𝑏
21

𝑓
1

(𝑥
1

(𝑡 − 𝜏
3

)) + 𝑏
22

𝑓
2

(𝑥
2

(𝑡 − 𝜏
1

)))

+ 𝛽𝑥
2

(𝑡 − 𝜏
1

) ,

(33)

where 𝜏
1

= 𝜏
2

= 𝜏
3

= 𝜏, 𝑎
𝑖

= 1, 𝑏
𝑖𝑗

= −1, and 𝑓
𝑖

(𝑥) = tanh(𝑥),
𝑖, 𝑗 = 1, 2. It is obvious that (0, 0) is an equilibrium point of
system (33). Choosing 𝛼 = 1, 𝛽 = 0, by calculation, we know
𝜏
0

= 1.2092. However, when −𝛼 < 𝛽 < 𝛼, a family of periodic
solutions bifurcates from (0, 0) at 𝜏

0

(see Figure 7). Choosing
𝛼 = 0.75 and 𝛽 = 0.25, with complicated calculation,
we know 𝜏



0

= 2.2143 (see Figure 8). Fix all coefficients of
system (33) and let 𝜏 = 𝜏

0

; the waveforms 𝑥
1

(𝑡), 𝑥
2

(𝑡)without
and with control are shown, respectively. However, the Hopf
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Figure 9:The trajectory of 𝑥
1

(𝑡) and 𝑥
2

(𝑡) versus time in the system
(33) with control (𝜏 = 2.2143).

bifurcation in (33) could be delayed by hybrid control which
could be seen by Figure 9.

5. Conclusions

In this paper, the bifurcation and the bifurcation control
problems have further been investigated for a HNNs model
with delays. For the model, hybrid control strategy in which
the parameter perturbation and time-delayed state feedback
are combined and used to control various bifurcations in a
continuous nonlinear dynamical system. It should be pointed
out that, although Liu also have dealt with hybrid control,
the time delayed feedback control used in our paper is
more helpful than the controller in [22]. On the other hand,
using parameter perturbation in this paper, our control stra-
tegy is more general than the other feedback control. Numer-
ical simulations are given to justify the validity of hybrid
controller in bifurcation control.
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The concept of controllability from control theory is applied to weighted and directed networks with heterogenous linear or
linearized node dynamics subject to exogenous inputs, where the nodes are grouped into leaders and followers. Under this
framework, the controllability of the controlled network can be decomposed into two independent problems: the controllability
of the isolated leader subsystem and the controllability of the extended follower subsystem. Some necessary and/or sufficient
conditions for the controllability of the leader-follower network are derived based onmatrix theory and graph theory. In particular,
it is shown that a single-leader network is controllable if it is a directed path or cycle, but it is uncontrollable for a complete digraph or
a star digraph in general. Furthermore, some approaches to improving the controllability of a heterogenous network are presented.
Some simulation examples are given for illustration and verification.

1. Introduction

Recent technological advances have stimulated broad inter-
ests in the notion of network controllability [1–12], which cap-
tures the ability to control aggregated dynamics of a net-
worked system and guide it to a desired state by using lim-
ited external inputs [13, 14]. Inmost real dynamical networks,
the nodes might have different dynamics. For example, the
generators of a power network have different physical para-
meters and are certainly different from motors, which
together form a heterogenous network with nonidentical
node dynamics. Therefore, it is of both theoretical and prac-
tical importance to study the controllability of networked
systems with nonidentical node dynamics, which can help
develop a better understanding of the interplay between the
complexity of the overall network topology and the collective
dynamics of a networked system.

The controllability problem for a leader-follower multia-
gent systemwas proposed by Tanner [1], who formulated it as
the classical controllability of a single-input linear system and
then derived a necessary and sufficient algebraic condition

in terms of the eigenvalues and eigenvectors of a submatrix
of the graph’s Laplacian matrix. Ji et al. [2] then gave a suf-
ficient condition for multileader controllability based on the
algebraic characteristics of a submatrix of the incidence
matrix. Subsequently, Rahmani andMesbahi [3, 4] discussed
an intricate relationship between controllability and graph
symmetry with respect to the leader and gave a sufficient
condition for uncontrollability. Later, Ji et al. studied the con-
trollability in the multileader setting via equitable partitions
[5, 6]. It is worth noting that, in the above works [1–6], the
interconnection graph is assumed to be connected. Ji et al.
[7] introduced the concept of leader-follower connectedness
and investigated the controllability of a multileader system
that may not be connected. The work in [8] focused on the
controllability of discrete-time single-leader switching net-
works, which was further extended to continuous-time
single-leader switching networks [9]. Additionally, some suf-
ficient algebraic conditions were derived for a multileader
system with time delays in the states, where both single and
double integrator dynamics were considered [10]. Moreover,
Lou andHong [11] employed a new equitable partition, that is,
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weight-balanced partition, to classify interconnection graphs.
Zhang et al. [12] established a bound on the controllable
subspace for a given multiagent system using an almost
equitable partition.

On the other hand, Liu et al. [15] developed some ana-
lytical tools to study the structural controllability of large-
scale weighted and directed networks and solved the min-
imum input problem based on Lin’s structural controlla-
bility theorem [16]. Wang et al. [17] further proposed a
general approach to optimizing the structural controllability
of a complex network by judiciously perturbing the net-
work structure. Cowan et al. [18] pointed out that the main
results in [15] hinge on a critical modeling assumption: the
results (implicitly) require that the “default” structures of the
dynamical systems at the nodes of the network have infinite
time constants, which do not reflect the dynamics of real
physical and biological systems. It is important to emphasize
that the controllability addressed in the present paper is
fundamentally different from the “structural controllability’’
[15–18] and “pinning controllability” [19]. In fact, structural
controllability is a weaker notion than the classical control-
lability, whereas pinning controllability discussed in [19] is
essentially “synchronizability”.

To summarize, the previous works [1–15, 17, 20], except
for [18], did not consider the situation where the nodes have
internal dynamics. However, many real networks including
social networks, power grids, foodwebs, regulatory networks,
and neuronal networks manifest intrinsic dynamics at each
living node. Additionally, all the works in [1–12, 15, 17, 18]
assumed that the dimension of the state of each node is one.
Although Cai and Zhong [20] studied the controllability of
a swarm system with higher-dimensional agent dynamics,
they did not consider the nodal intrinsic dynamics.The intro-
duction of higher-dimensional heterogenous node dynamics
makes the controllability of the entire system more com-
plicated since, apart from the complexity of the network
structure, the complexity of the dynamics of the nodes has
to be considered simultaneously.

The contributions of this paper are as follows. The classic
concept of controllability from control theory is extended to
weighted and directed complex networks with nonidentical
node dynamics in a systematic way. The leader-follower
structure is introduced to characterize a network where a few
nodes take a leader’s role and are subject to external signals
while the remaining nodes simply follow the leaders. Neces-
sary and/or sufficient conditions on node dynamics and net-
work topology for controllability are given in either algebraic
or graph-theoretic forms. Furthermore, some approaches to
improving the controllability are presented.

2. Notation and Preliminaries

2.1. Notation. Throughout the paper, R(C) denotes the set
of real (complex) numbers and R𝑚(C𝑚) the space of real
(complex)𝑚-vectors. The 𝑛 × 𝑛 unit (zero) matrix is denoted
by 𝐼
𝑛

(0
𝑛

). 1
𝑛

denotes the 𝑛-dimensional column vector of
ones and 0

𝑛

the column vector of zeroes. The subscript 𝑛
might be omitted if it is clear from the context.𝐴𝑇(𝑎𝑇) stands

for the transpose (conjugate transpose) of matrix 𝐴 ∈ R𝑛×𝑛

(vector 𝑎 ∈ C). diag{𝑎
1

, . . . , 𝑎
𝑛

} denotes the 𝑛 × 𝑛 diagonal
matrix with its diagonal elements being 𝑎

1

, . . . , 𝑎
𝑛

. Re(⋅) is the
real part of a complex number and Im(⋅) the imaginary part.
⊗ denotes the Kronecker product.

Lemma 1 (see [21]). For real matrices 𝐴, 𝐵, 𝐶, and 𝐷 with
compatible dimensions, one has the following.

(i) (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶.
(ii) (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷).
(iii) (𝐴 ⊗ 𝐵)

𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇.

(iv) Let 𝐴 be an 𝑚 × 𝑚 matrix with left eigenvectors
𝛼
1

, . . . , 𝛼
𝑚

corresponding to its eigenvalues 𝜆
1

, . . . , 𝜆
𝑚

,
and 𝐵 an 𝑛 × 𝑛matrix with left eigenvectors 𝛽

1

, . . . , 𝛽
𝑛

corresponding to its eigenvalues 𝜇
1

, . . . , 𝜇
𝑛

. Then, 𝛼
𝑖

⊗

𝛽
𝑗

are left eigenvectors of 𝐴 ⊗ 𝐵 corresponding to its
eigenvalues 𝜆

𝑖

𝜇
𝑗

(𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛).

2.2. Graphs and Their Algebraic Representations. A weighted
digraph (or a weighted directed graph) [22] G = (V,E,W)

consists of a node set V = {1, . . . , 𝑛}, an edge set E ⊂ V×

V, and a weight set W. An edge, denoted by (𝑖, 𝑗), is an
ordered pair of distinct nodes of V. (𝑖, 𝑗) ∈ E means that
there is a direct edge from node 𝑖 to node 𝑗. In this paper,
simple weighted digraphs are considered. That is, self-loops
and multiple edges are precluded.

A sequence of edges, (V
𝑗

, V
𝑗+1

), 𝑗 = 1, . . . , 𝑘 − 1, is called
a directed path and is denoted by P = V

1

→ ⋅ ⋅ ⋅ → V
𝑘

,
where all the nodes V

1

, . . . , V
𝑘

are distinct. Node V
1

is called
the beginning node and V

𝑘

the end node of the path. In this
case, node V

𝑘

is said to be reachable from node V
1

. A directed
cycle is a closed directed path of the formP

𝑐

= V
1

→ ⋅ ⋅ ⋅ →

V
𝑘

→ V
1

, where the beginning node and end node are the
same.

If V ⊂ V and E ⊂ E, then G = (V,E) is called a
subgraph of G = (V,E), written as G ⊂ G. In addition, if
G contains all the edges (𝑖, 𝑗) ∈ E with 𝑖, 𝑗 ∈ V, then G is
called an induced subgraph of G. Graphs G

1

= (V
1

,E
1

) and
G
2

= (V
2

,E
2

) are said to be disjoint ifV
1

⋂V
2

= 0.
The adjacency matrix of a weighted directed graph G,

A(G) ∈ R𝑛×𝑛 is defined by [23]

[A (G)]
𝑖𝑗

=
{

{

{

𝜔
𝑖𝑗

, (𝑗, 𝑖) ∈ E,

0, otherwise,
(1)

where 𝜔
𝑖𝑗

> 0 is the weight of edge (𝑗, 𝑖).

Remark 2. An unweighted digraph (or digraph) is a weighted
digraph with 𝜔

𝑖𝑗

= 1 for 𝑖, 𝑗 = 1, . . . , 𝑛.

The graph Laplacian is defined by

[L (G)]
𝑖𝑗

=

{{

{{

{

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜔
𝑖𝑗

, 𝑖 = 𝑗,

−𝜔
𝑖𝑗

, 𝑖 ̸= 𝑗.

(2)

The sum of all entries in any row ofL(G) is zero.
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3. Problem Description

Consider a weighted and directed networked system con-
sisting of 𝑛 nodes with linear or linearized nonidentical
dynamics, described by

̇𝑥
𝑖

(𝑡) = 𝑐
𝑖

Γ𝑥
𝑖

(𝑡) +

𝑛

∑

𝑗=1

L
𝑖𝑗

Γ (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) + 𝛿
𝑖

𝐵𝑢
𝑖

(𝑡) ,

𝑖 = 1, . . . , 𝑛,

(3)

where 𝑥
𝑖

∈ R𝑚 is the state vector of the 𝑖th node, 𝑢
𝑖

∈

R𝑝 the control input of node 𝑖, and 𝐵 ∈ R𝑚×𝑝 the control
input matrix. One has 𝛿

𝑖

= 1 if node 𝑖 is subject to an
exogenous control signal and 𝛿

𝑖

= 0 otherwise. Here, 𝑐
𝑖

Γ𝑥
𝑖

(𝑐
𝑖

∈ R and 𝑐
𝑖

̸= 0) describes the intrinsic dynamics of node 𝑖,
Γ = (𝛾

𝑖𝑗

) ∈ R𝑚×𝑚 is a constant matrix indicating the inner-
coupling between different components, and the Laplacian
matrixL = (L

𝑖𝑗

) ∈ R𝑛×𝑛 denotes the outer-coupling among
the nodes, which contains all the weights of the network.

Remark 3. Network model (3) describes a generic networked
system. Several models considered previously can be seen as
special cases of (3). For example, in [1–7, 11, 12, 15, 17], 𝑐

𝑖

= 0,
𝑚 = 1, and Γ = 𝐵 = 1, in [18], 𝑚 = 1 and Γ = 𝐵 = 1, and in
[20], 𝑐

𝑖

= 0.

The nodes in the network can be divided into two dif-
ferent groups: leaders and followers, where external control
inputs are injected only at the leaders. Denote the set of
controlled nodes as the leader set, V

𝑙

, and the remaining
nodes as the follower set,V

𝑓

. Herein, the subscripts 𝑙 and 𝑓

denote the leaders and followers, respectively. It follows that
V
𝑙

⋃V
𝑓

= V and V
𝑙

⋂V
𝑓

= 0. Define the follower graph
G
𝑓

to be the subgraph induced by V
𝑓

and the leader graph
G
𝑙

the subgraph induced by V
𝑙

. Obviously, G
𝑙

and G
𝑓

are
disjoint.

Without loss of generality, one can reorganize the indices
of the nodes in such a way that the first 𝑞 (1 ≤ 𝑞 < 𝑛) nodes
are chosen to be controlled. That is, one can label the leaders
from 1 to 𝑞 and the followers from 𝑞 + 1 to 𝑛. The associated
Laplacian matrixL is thereby partitioned as

L = [
𝐿
𝑙

𝐿
𝑙𝑓

𝐿
𝑓𝑙

𝐿
𝑓

] , (4)

where 𝐿
𝑙

and 𝐿
𝑓

are 𝑞×𝑞 and (𝑛−𝑞)×(𝑛−𝑞)matrices, respec-
tively. However, they generally no longer have the Laplacian
matrix properties. Moreover, 𝐿

𝑓𝑙

denotes the information
flow from the leaders to the followers and 𝐿

𝑙𝑓

the flow from
the followers to the leaders.

Defining 𝑋(𝑡) = [𝑥
𝑇

1

(𝑡), . . . , 𝑥
𝑇

𝑛

(𝑡)]
𝑇

∈ R𝑚𝑛 and 𝑈(𝑡) =

[𝑢
𝑇

1

(𝑡), . . . , 𝑢
𝑇

𝑞

(𝑡), 0𝑇, . . . , 0𝑇]𝑇 ∈ R𝑝𝑛, system (3) can be
rewritten in a matrix form as

𝑋 (𝑡) = [(C −L) ⊗ Γ]𝑋 (𝑡) + (Δ ⊗ 𝐵)𝑈 (𝑡) , (5)

whereC = diag{𝑐
1

, . . . , 𝑐
𝑛

} and Δ = diag{
𝑞

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑞

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0}.

Some definitions and lemmas are introduced below.

Definition 4. The system (5) is said to be controllable if, for
any initial state 𝑋(0) and target state 𝑋(𝑇) in the state space,
there exists an input signal 𝑈(𝑡) such that the driven system
can be steered from𝑋(0) to𝑋(𝑇) in finite time.

The classical controllability theorem [24] asserts the
equivalence of the following statements.

Lemma 5. Given system ̇𝑥(𝑡) = 𝐴
0

𝑥(𝑡) + 𝐵
0

𝑢(𝑡), where 𝑥 ∈

R𝑁, 𝑢 ∈ R𝑃, and 𝐴
0

and 𝐵
0

are matrices with appropriate
dimensions, the following statements are equivalent.

(i) The system is completely controllable.
(ii) The controllability matrix

Q = [𝐵
0

𝐴
0

𝐵
0

⋅ ⋅ ⋅ 𝐴
𝑁−1

0

𝐵
0

] (6)

is of full row rank.
(iii) The relationship ]𝑇𝐴

0

= 𝜆]𝑇 implies ]𝑇𝐵
0

̸= 0𝑇, where
] is the nonzero left eigenvector of 𝐴

0

corresponding to
the eigenvalue 𝜆.

Conditions (ii) and (iii) in Lemma 5 are referred to as
the controllability rank criterion and PBH eigenvector test,
respectively.

4. Controllability Analysis

In this section, the controllability of system (5) is analyzed in
detail. Before proceeding, some definitions are given.

Definition 6. A graph G with the Laplacian matrixL is said
to be a controllable graph if and only if [𝐿

𝑓

𝐿
𝑓𝑙

] is a control-
lable matrix pair.

Definition 7. Define the extended graph G as the graph with
the extended Laplacian matrix

L = L −C = [
𝐿
𝑙

−C
𝑙

𝐿
𝑙𝑓

𝐿
𝑓𝑙

𝐿
𝑓

−C
𝑓

] , (7)

where C
𝑙

= diag{𝑐
1

, . . . , 𝑐
𝑞

} and C
𝑓

= diag{𝑐
𝑞+1

, . . . , 𝑐
𝑛

}.
Moreover,

𝐿
𝑓

−C
𝑓

= 𝑀L𝑀
𝑇

, 𝐿
𝑓𝑙

= 𝑀L𝑁, (8)

where𝑀 = [0
(𝑛−𝑞)×𝑞

𝐼
𝑛−𝑞

] and𝑁 = [𝐼
𝑞

0
𝑞×(𝑛−𝑞)

]
𝑇.

A sufficient and necessary condition for the controllabil-
ity of system (5) is now established.

Theorem 8. The system (5) is controllable if and only if the
following two conditions are satisfied simultaneously:

(i) [Γ 𝐵] is a controllable matrix pair;
(ii) there exists no left eigenvector of L with the first 𝑞

entries being all zeroes.
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Proof. It follows from Lemma 5(iii) that the system (5) is
uncontrollable if and only if there exists a nonzero left
eigenvector ] ∈ C𝑚𝑛 of (C−L) ⊗ Γ such that ]𝑇(Δ⊗𝐵) = 0𝑇.
According to Lemma 1, there exist two nonzero vectors ]

1

∈

C𝑛 and ]
2

∈ C𝑚, which are left eigenvectors ofC −L and Γ,
respectively, such that ] = ]

1

⊗ ]
2

and (]𝑇
1

⊗ ]𝑇
2

)(Δ ⊗ 𝐵) = 0𝑇.
Furthermore, one has

(]𝑇
1

Δ) ⊗ (]𝑇
2

𝐵) = 0𝑇. (9)

It follows that (9) is true if and only if either

(i) ]𝑇
1

Δ = 0𝑇, that is, there exists a left eigenvector of L
with the first 𝑞 elements being all zeroes, or

(ii) ]𝑇
2

𝐵 = 0𝑇, that is, [Γ 𝐵] is an uncontrollable matrix
pair.

The proof is thus completed.

Remark 9. By Theorem 8, the controllability of system (5) is
decoupled into two independent problems: one is to analyze
the controllability of the isolated leader subsystem ̇𝑥 = Γ𝑥 +

𝐵𝑢, which depends only on the intrinsic dynamics of the
isolated node, and the other is to identify whether there exists
a left eigenvector ofLwith the first 𝑞 entries being all zeroes,
which is determined byG.

4.1. Controllability of the Isolated Leader Subsystem. Consider
the system

̇𝑥 = Γ𝑥 + 𝐵𝑢, (10)

where Γ ∈ R𝑚×𝑚 and 𝐵 ∈ R𝑚×𝑝 are defined in (3).
In general, the controllability of system (10) can be

derived by using the classic controllability rank criterion or
PBH eigenvector test. In this subsection, two special cases of
Γ are further discussed below, since it characterizes the inner-
coupling among different components.

First, consider the fully diagonal inner-coupling Γ = 𝐼
𝑚

.

Theorem 10. The system (10) is controllable if and only if𝑚 ≤

𝑝 and rank(𝐵) = 𝑚.

Proof. Since Γ = 𝐼
𝑚

, the controllability matrix of the pair
[Γ 𝐵] is

Q = [𝐵 Γ𝐵 ⋅ ⋅ ⋅ Γ
𝑚−1

𝐵 ] = [𝐵 𝐵 ⋅ ⋅ ⋅ 𝐵 ] . (11)

According to the second statement of Lemma 5, [Γ 𝐵] is
controllable if and only if𝑚 ≤ 𝑝 and rank(𝐵) = 𝑚. The proof
is thus completed.

Remark 11. FromTheorem 10, all the leaders’ states should be
controlled in order to render the system controllable.

Secondly, assume Γ is symmetric and the sumof all entries
in each row of Γ is zero.

Theorem 12. The system (10) is uncontrollable if 1𝑇
𝑚

𝐵 = 0𝑇.

Proof. Since Γ is symmetric, for each eigenvalue, its left and
right eigenvectors are the same. Additionally, the sum of all
elements in any row of Γ is zero. Therefore, 0 is an eigenvalue
of Γ associated with eigenvector 1

𝑚

= [1, . . . , 1]
𝑇. It follows

from PBH eigenvector test that if 1𝑇
𝑚

𝐵 = 0𝑇, then [Γ 𝐵] is
uncontrollable. The proof is thus completed.

4.2. Controllability of the Extended Graph. It follows from
Theorem 8 that if condition (i) of Theorem 8 is already
satisfied, then the controllability of system (5) is reduced to
the controllability of the extended graphG.

Consider the system

̇𝑥 = (C −L) 𝑥, (12)

or equivalently,

[
̇𝑥
𝑙

̇𝑥
𝑓

] = [
C
𝑙

− 𝐿
𝑙

−𝐿
𝑙𝑓

−𝐿
𝑓𝑙

C
𝑓

− 𝐿
𝑓

] [
𝑥
𝑙

𝑥
𝑓

] , (13)

where 𝑥
𝑙

= [𝑥
𝑇

1

, . . . , 𝑥
𝑇

𝑞

]
𝑇 denotes the states of the leaders and

𝑥
𝑓

= [𝑥
𝑇

𝑞+1

, . . . , 𝑥
𝑇

𝑛

]
𝑇 those of the followers.

From (13), the dynamics of the 𝑛 − 𝑞 followers can be
rewritten as

̇𝑥
𝑓

= (C
𝑓

− 𝐿
𝑓

) 𝑥
𝑓

− 𝐿
𝑓𝑙

𝑥
𝑙

. (14)

Remark 13. By Definitions 6 and 7, that G is controllable
is equivalent to that the system (14) is controllable through
𝑥
𝑙

. Therefore, the controllability of G is reduced to the
problemwhether the leaders can drive the followers from any
configuration to any other configuration in finite time. This
question will be answered next. It should be emphasized that
parameter 𝑐

𝑖

of node 𝑖 makes the controllability of G more
challenging than the question based on the original graphG.

4.2.1. Algebraic Criteria. In this section, the controllability of
G is discussed.

Theorem 14. G is controllable if and only if there exists no left
eigenvector ofL with the first 𝑞 entries being all zeroes.

Proof. This theorem reveals that G is uncontrollable if and
only if there exists a left eigenvector of L with the first 𝑞
entries being all zeroes.

Necessity. Let ] ∈ C𝑛 be a left eigenvector ofL corresponding
to the eigenvalue 𝜆 ∈ C with the first 𝑞 elements being zeros.
From (7) and (8), one has 𝐿

𝑓

− C
𝑓

= 𝑀L𝑀
𝑇 and 𝐿

𝑓𝑙

=

𝑀L𝑁, where 𝑀 = [0
(𝑛−𝑞)×𝑞

𝐼
𝑛−𝑞

] and 𝑁
𝑇

= [𝐼
𝑞

0
𝑞×(𝑛−𝑞)

].
Since𝑀𝑇𝑀 = diag{0

𝑞

, 𝐼
𝑛−𝑞

}, it follows that𝑀𝑇𝑀] = ]. From
]𝑇L = 𝜆]𝑇, one has (𝑀])𝑇(𝐿

𝑓

− C
𝑓

) = ]𝑇𝑀𝑇(𝑀L𝑀
𝑇

) =

𝜆(𝑀])𝑇 and (𝑀])𝑇𝐿
𝑓𝑙

= (𝑀])𝑇𝑀L𝑁 = 0𝑇. Let ] = 𝑀].
Then, ]𝑇(𝐿

𝑓

−C
𝑓

) = 𝜆]𝑇 and ]𝑇𝐿
𝑓𝑙

= 0𝑇. According to (iii)
of Lemma 5,G is uncontrollable.
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Sufficiency. Assume that G is not controllable. By the PBH
eigenvector criterion, G is uncontrollable if there exist a
nonzero eigenvector ] ∈ C𝑛−𝑞 and a corresponding eigen-
value 𝜆 ∈ C such that ]𝑇(𝐿

𝑓

− C
𝑓

) = 𝜆]𝑇 and ]𝑇𝐿
𝑓𝑙

= 0𝑇.
Construct a new vector

] = [
0
]
] . (15)

Then, one has

]𝑇L = [0𝑇 ]𝑇] [
𝐿
𝑙

−C
𝑙

𝐿
𝑙𝑓

𝐿
𝑓𝑙

𝐿
𝑓

−C
𝑓

]

= []𝑇𝐿
𝑓𝑙

]𝑇 (𝐿
𝑓

−C
𝑓

)]

= [0𝑇 𝜆]𝑇]

= 𝜆]𝑇.

(16)

This implies that ] is a left eigenvector of L with the first 𝑞
elements being zeros. The proof is thus completed.

Theorem 15. The system (14) is controllable if 𝐿
𝑓

−C
𝑓

andL
have no common eigenvalues.

Proof. It suffices to prove that if the system is uncontrollable
then there exists at least one common eigenvalue between
𝐿
𝑓

−C
𝑓

andL.
Assume that the system (14) is not controllable. From (iii)

of Lemma 5, there exists a vector ] ∈ C𝑛−𝑞 such that ]𝑇(𝐿
𝑓

−

C
𝑓

) = 𝜆]𝑇 for some 𝜆 ∈ C, with ]𝑇𝐿
𝑓𝑙

= 0𝑇. Moreover,

[0𝑇 ]𝑇] [
𝐿
𝑙

−C
𝑙

𝐿
𝑙𝑓

𝐿
𝑓𝑙

𝐿
𝑓

−C
𝑓

] = []𝑇𝐿
𝑓𝑙

]𝑇 (𝐿
𝑓

−C
𝑓

)]

= 𝜆 [0𝑇 ]𝑇] ,

(17)

which implies that 𝜆 is also an eigenvalue of L with
eigenvector [0𝑇 ]𝑇]𝑇. The proof is thus completed.

Note thatTheorem 15 is only a sufficient condition.There-
fore, the systemmight be controllable even if 𝐿

𝑓

−C
𝑓

andL
have common eigenvalues, which is different from the results
for undirected graphs [5, 6]. This can be verified by a special
case that there is no edge from the followers to the leaders.
The following result is given for further explanation.

Theorem16. If there is no edge from the followers to the leaders
in the system (14), then 𝐿

𝑓

− C
𝑓

and L have common eigen-
values.

Proof. In this case,L can be rewritten as

L = [
𝐿
𝑙

−C
𝑙

0
𝑞×(𝑛−𝑞)

𝐿
𝑓𝑙

𝐿
𝑓

−C
𝑓

] . (18)

1

2 3

Figure 1: A digraph with 𝑐
2

̸= 𝑐
3

.

Since 𝐿
𝑓

− C
𝑓

is a principal diagonal submatrix of L, it
can be described by 𝑀

𝑇

(𝐿
𝑓

− C
𝑓

) = L𝑀
𝑇, where 𝑀 =

[0
(𝑛−𝑞)×𝑞

𝐼
𝑛−𝑞

] is an (𝑛 − 𝑞) × 𝑛 matrix. Let ] be the right
eigenvector of 𝐿

𝑓

− C
𝑓

corresponding to 𝜆. Then, one has
L(𝑀

𝑇]) = (L𝑀
𝑇

)] = 𝑀
𝑇

(𝐿
𝑓

−C
𝑓

)] = 𝑀
𝑇

(𝜆]) = 𝜆(𝑀
𝑇]).

That is, 𝑀𝑇] is the right eigenvector of L corresponding to
the common eigenvalue 𝜆. The proof is thus completed.

4.2.2. Example 1. As shown in Figure 1, node 1 is selected to
be the leader and 𝑐

2

̸= 𝑐
3

. It can be verified thatL and 𝐿
𝑓

−C
𝑓

have two common eigenvalues 1 − 𝑐
2

and 1 − 𝑐
3

, and the rank
of the controllability matrix [𝐿

𝑓𝑙

(𝐿
𝑓

− C
𝑓

)𝐿
𝑓𝑙

] is 2. By (ii)
of Lemma 5, the graph is still controllable, although L and
𝐿
𝑓

−C
𝑓

have common eigenvalues.
Now, consider the special case with 𝑐

1

= 𝑐
2

= ⋅ ⋅ ⋅ = 𝑐
𝑛

= 𝑐.

Corollary 17. A directed path is controllable if the beginning
node is selected to be the only leader.

Proof. The extended Laplacian matrix of a directed path
(Figure 2(a)) is given by

L =

[
[
[
[
[
[

[

−𝑐 0 0 ⋅ ⋅ ⋅ 0

−1 1 − 𝑐 0 ⋅ ⋅ ⋅ 0

0 −1 1 − 𝑐 ⋅ ⋅ ⋅ 0

...
... d d

...
0 0 ⋅ ⋅ ⋅ −1 1 − 𝑐

]
]
]
]
]
]

]

. (19)

By direct calculation, the eigenvalues of L are −𝑐 and 1 − 𝑐

with the left eigenvectors [1, 0, . . . , 0]𝑇 and [1, −1, 0, . . . , 0]𝑇,
respectively. It follows from Theorem 14 that the graph is
controllable.

Corollary 18. A directed cycle with a single leader is control-
lable.

Proof. For a directed cycle (Figure 2(b)), the extended Lapla-
cian matrix is given by

L =

[
[
[
[
[
[

[

1 − 𝑐 0 0 ⋅ ⋅ ⋅ −1

−1 1 − 𝑐 0 ⋅ ⋅ ⋅ 0

0 −1 1 − 𝑐 ⋅ ⋅ ⋅ 0

...
... d d

...
0 0 ⋅ ⋅ ⋅ −1 1 − 𝑐

]
]
]
]
]
]

]

. (20)

The real and imaginary parts of the eigenvalues 𝜆 satisfy the
elliptic relationship [Re(𝜆) + 𝑐− 1]2 + [Im(𝜆)]

2

= 1. However,
all the eigenvalues of 𝐿

𝑓

−C
𝑓

are equal to 1−𝑐.Thus, it follows
fromTheorem 15 that the graph is controllable.
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1 2 3 4 𝑛

(a) A directed path

1 2 3

45𝑛

(b) A directed cycle

Figure 2: Illustration of network topologies.

1 2

34

(a) 𝑐
2

= 𝑐

4

3 1

24

5

(b) 𝑐
4

= 𝑐

5

Figure 3: The digraphs that are leader symmetric: (a) with respect to node {1}, (b) with respect to nodes {1, 2}.

4.2.3. GraphTheoretical Criteria.So far, some sufficient and/or
necessary conditions for network controllability have been
derived. However, these conditions are basically algebraic,
which remains elusive on the exact graphical interpretation.
In fact, the study of the graph associated with a controlled
system is equivalent to the study of the underlying algebraic
system, which motivates us to study the controllability from
a graph-theoretic perspective. It turns out that the graph-
theoretic conditions are indeed more intuitive and easier to
evaluate.

First, some definitions are introduced.

Definition 19. A permutation matrix 𝑃 ∈ R𝑛×𝑛 is a 0-1 matrix
with a single nonzero element in each row and column.

Definition 20. The system (14) is leader symmetric with
respect to the leaders if there exists a nonidentity permutation
matrix 𝑃 such that

𝑃 (𝐿
𝑓

−C
𝑓

) = (𝐿
𝑓

−C
𝑓

) 𝑃, 𝑃𝐿
𝑓𝑙

= 𝐿
𝑓𝑙

. (21)

Remark 21. Definition 20 is an extension of Definition 5.7 in
[6]. The main differences are twofold.

(i) Definition 5.7 in [6] is applicable only to single-
leader systems and unweighted graphs, whereas
Definition 20 works also for multiple-leader systems
and weighted digraphs.

(ii) Because of the nonidentical node dynamics,C
𝑓

must
satisfy certain conditions in addition to that the
original graph is leader symmetric.

Some examples are given here for illustration.

1

32 4

Figure 4:Thedigraph that is leader asymmetricwith respect to node
{1}: 𝑐
2

= 𝑐
3

̸= 𝑐
4

.

Example 22. Figure 3(a) shows a directed leader-follower
network with V

𝑙

= {1} and V
𝑓

= {2, 3, 4}. It can be verified
that

L =
[
[
[

[

−𝑐
1

0 0 0

−1 1 − 𝑐
2

0 0

0 −1 2 − 𝑐
3

−1

−1 0 0 1 − 𝑐
4

]
]
]

]

, (22)

with

𝐿
𝑓

−C
𝑓

= [

[

1 − 𝑐
2

0 0

−1 2 − 𝑐
3

−1

0 0 1 − 𝑐
4

]

]

, 𝐿
𝑓𝑙

= [

[

−1

0

−1

]

]

.

(23)

Assuming 𝑐
2

= 𝑐
4

, one can find a nonidentity permutation
matrix

𝑃 = [

[

0 0 1

0 1 0

1 0 0

]

]

, (24)

satisfying (21). As a result, it is leader symmetric with respect
to {1}. Likewise, the digraph of Figure 3(b) is leader symmet-
ric about {1, 2}.
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1

2

3

𝑛

(a) A complete digraph

1

2
3

4

5
6

7

𝑛

...

(b) A star digraph

Figure 5: Illustration of network topologies.

Theorem 23. The system (14) is uncontrollable if it is leader
symmetric.

Proof. If system (14) is leader symmetric, then there exists a
nonidentity permutation matrix 𝑃 such that 𝑃(𝐿

𝑓

− C
𝑓

) =

(𝐿
𝑓

−C
𝑓

)𝑃. Let 𝜆 and ] be the corresponding eigenvalue and
left eigenvector of 𝐿

𝑓

− C
𝑓

, respectively, satisfying ]𝑇(𝐿
𝑓

−

C
𝑓

) = 𝜆]𝑇. As a result, ]𝑇(𝐿
𝑓

− C
𝑓

)𝑃 = 𝜆]𝑇𝑃 = 𝜆(𝑃
𝑇])𝑇.

Using (21), (𝑃𝑇])𝑇(𝐿
𝑓

−C
𝑓

) = ]𝑇𝑃(𝐿
𝑓

−C
𝑓

) = ]𝑇(𝐿
𝑓

−C
𝑓

)

𝑃 = 𝜆(𝑃
𝑇])𝑇. This implies that 𝑃𝑇] is also a left eigenvector

of 𝐿
𝑓

−C
𝑓

corresponding to the eigenvalue 𝜆. Furthermore,
one has ]−𝑃𝑇] is also a left eigenvector of 𝐿

𝑓

−C
𝑓

. By (21), it
follows that (]−𝑃𝑇])𝑇𝐿

𝑓𝑙

= ]𝑇𝐿
𝑓𝑙

−]𝑇𝑃𝐿
𝑓𝑙

= ]𝑇𝐿
𝑓𝑙

−]𝑇𝐿
𝑓𝑙

=

0𝑇. This suggests that the eigenvector ] − 𝑃
𝑇] of 𝐿

𝑓

− C
𝑓

is
orthogonal to 𝐿

𝑓𝑙

, which does not satisfy the controllability
condition in (iii) of Lemma 5. Therefore, the system (14) is
uncontrollable. The proof is completed.

Remark 24. Theorem 23 provides a graph-theoretic result for
the uncontrollability of system (14). Note that leader sym-
metry is only a sufficient condition rather than a necessary
one. For example, the graph shown in Figure 4 is asymmetric
about the leader {1}, but it is uncontrollable.

Consider the case of 𝑐
1

= 𝑐
2

= ⋅ ⋅ ⋅ = 𝑐
𝑛

= 𝑐. Some
corollaries can be easily derived fromTheorem 23.

Corollary 25.A complete digraphwith a single leader is uncon-
trollable.

Proof. It is well known that each node in a complete
digraph (Figure 5(a)) has an in-degree (or out-degree) 𝑛 − 1.
Corollary 25 is a direct consequence of Theorem 23 because
of its leader symmetry.

Corollary 26. A star digraph is uncontrollable with respect to
the center node.

Proof. A star digraph is symmetric about the center node
(Figure 5(b)). If one chooses the center node as the leader, the
graph is leader symmetric. It thus follows that a star digraph
with the center node being the leader is uncontrollable.

1 2

34

1.5

1.2

1

1
1

Figure 6: Illustration of a network topology.

5. Controllability Improvement of
Heterogenous Networked Systems

There exists a fundamental and yet challenging problem in
the study of the controllability of complex networks: how to
improve the controllability of an uncontrollable networked
system? In this section, some approaches to improving the
controllability are suggested.

5.1. Increasing the Number of Leaders. It can be verified that
leader reachable is a necessary condition for being control-
lable. That is, the graph is uncontrollable if there exist fol-
lowers who are isolated or have no incoming edge from any
leader or other follower.Therefore, the isolated nodes and the
nodeswithout incoming edge should be first selected to be the
leaders. As shown in Figure 3(a), node 1 has no incoming edge
from other nodes and is thus chosen to be a leader. It follows
that the graph is leader symmetric about the leader node 1
and is, therefore, uncontrollable when 𝑐

2

= 𝑐
4

. However, if
node 2 or node 4 is also selected to be a leader, the leader
symmetry property does not hold anymore. It follows from
(ii) of Lemma 5 that the system becomes controllable. This
example shows that increasing the number of leaders may
improve the controllability.

5.2. Changing the Nodal Parameters. Nodal intrinsic dynam-
ics is considered for the system (5). It follows that parameter
𝑐
𝑖

of node 𝑖 is an important quantity determining the control-
lability of the networked system. For example, in Figure 3(b),
if 𝑐
4

̸= 𝑐
5

, then the leader symmetry property is not satisfied. It
follows from (ii) of Lemma 5 that the system is controllable,
which implies that changing the nodal intrinsic parameters
may improve the controllability.



8 Mathematical Problems in Engineering

4

2

0

−2

−4

−6

−8

−10

−12

−14

0 5 10 15 20 25 30 35 40

𝑡(𝑠)

𝑥

11

𝑥

21

𝑥

31

𝑥

41

𝑥

𝑖
1

,𝑖
=
1

,..
.
,4

(a) 𝑥(0) = [−4 − 3 1 3]𝑇

0 5 10 15 20 25 30 35 40

𝑡(𝑠)

500

400

300

200

100

0

−100

𝑥

12

𝑥

22

𝑥

32

𝑥

42

𝑥

𝑖
2

,𝑖
=
1

,..
.
,4

(b) 𝑥(0) = [1 3.5 2 − 4]𝑇

Figure 7: The evolution of node states without control.

5.3. Changing the Edge Weights. Note that the edge weights
in the system (5) can be different, indicating that one can
change the weights to possibly improve the controllability
of the system. For instance, in Figure 3(b), by assigning
different weights of the edges (2, 4) and (2, 5), the leader
symmetry property is also violated so that the digraph
becomes controllable.

5.4. Example 2. To verify the theoretical results, consider a
directed and weighted network with four different nodes, as
shown in Figure 6. Let𝑚 = 𝑝 = 2, Γ = 𝐼

2

, and 𝐵 = diag{1, 2}.
The local dynamics of the nodes are given by

̇𝑥
1

= 1.5𝑥
1

, ̇𝑥
2

= −10𝑥
2

, ̇𝑥
3

= 𝑥
3

, ̇𝑥
4

= −2𝑥
4

.

(25)

Node 1 is selected to be a leader, so one has

L =
[
[
[

[

2 0 −1 −1

−1.5 1.5 0 0

0 −1.2 1.2 0

0 0 −1 1

]
]
]

]

, 𝐿
𝑓

= [

[

1.5 0 0

−1.2 1.2 0

0 −1 1

]

]

.

(26)

It follows from Theorem 10 that [Γ 𝐵] is controllable. Fur-
thermore, one can calculate the eigenvalues of 𝐿

𝑓

− C
𝑓

and L, obtaining {0.2, 3, 11.5} and {−0.1263, 0.8709, 2.9681,

11.4872}, respectively. By Theorem 15, the extended digraph
is controllable.

The evolution of the states of the network without control
input is depicted in Figures 7(a) and 7(b).The whole network
is unstable. Design the control law 𝑢

1

= −10𝑥
1

. Then, as
shown in Figures 8(a) and 8(b), all the nodes are controlled
to zeroes.

6. Conclusions

In this paper, the controllability of a weighted and directed
network with nonidentical node dynamics has been inves-
tigated, where the network has a leader-follower structure.
The controllability of the controlled network is converted
to two subproblems. The first subproblem is to analyze the
controllability of the isolated leader subsystem. The second
subproblem is to examine the controllability of the extended
follower subgraph. A set of conditions for assessing network
controllability and identifying nodes playing a key role
in network controllability have been established based on
matrix theory. Additionally, by using graph theory, several
controllability properties have been translated into graph
conditions, which are generally more intuitive and informa-
tive, therefore, easier to use for applications.

It is found that the controllability of a controlled network
with heterogeneous node dynamics is determined by both the
node local dynamics and the graph topology including the
number of leaders, the location of leaders, and the connection
pattern among followers. This result is constructive since it
allows for selecting leaders to render the system controllable.
Under this framework, the notion of controllability of com-
plex networks with various essentially different structures
has been generalized. It has been shown that a single-leader
network is controllable if it is a directed path or cycle,
otherwise uncontrollable if it is a complete digraph or a star
digraph. It has also been shown that the controllability of the
system can be improved by increasing the number of leaders,
changing the nodal local parameters, or assigning different
weights to the edges.

The main difference between our work and the previous
works lies in the introduction of different kinetic constants for
the uncoupled nodes.The results obtained here aremerely the
first step in the study on controllability of complex networks
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Figure 8: The evolution of node states under control.

with heterogenous node dynamics. Future research along the
same line might include the cases of noise, uncertainties,
and time-varying topology. In addition, the dual property
of the observability of complex networks is worthy of future
investigation. The concept of “structural observability” [25]
may help build up a general framework for future research
on this topic.
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Uncertainty measure is an important implement for characterizing the degree of uncertainty. It has been extensively applied in
pattern recognition and data clustering. Because of instability of traditional uncertainty measures, mean-variance measure (MVM)
is utilized to perform feature selection, which could depress disturbances and noises effectively.Thereby, a novel evaluation function
based on MVM is designed. The forward greedy search algorithm (FGSA) with the proposed evaluation function is exploited to
perform feature selection. Experiment analysis shows the validity and effectiveness of MVM.

1. Introduction

Rough sets, originated by Pawlak [1] in 1980s, is a powerful
mathematical tool to deal with inexact, uncertain, and vague
knowledge in information systems. It has been drawing
extensive attention in theory and applications in artificial
intelligence, pattern recognition, data mining, intelligence
information processing, decision support, image processing,
feature selection, neural computing, conflict analysis, and
knowledge discovery [2–10].

Uncertaintymeasure is an important implement for char-
acterizing the degree of uncertainty in rough set theory. It
has been extensively applied in pattern recognition and data
clustering. However, this paper reveals the issue that classical
uncertainty measures are sensitive to disturbances or noises.
Therefore, a novel uncertaintymeasure, calledmean-variance
measure (MVM), was proposed to characterize the degree of
uncertainty of rough sets in paper [11]. Since it takes fully
information in the boundary region into account, MVM is
more robust and effective than classical uncertaintymeasures
in depressing disturbances and noises.

As an important application of rough sets in artifi-
cial intelligence and machine learning, feature selection or
attribute reduction in information systems has been drawing

wide attention. due to the fact that excessive features or
attributes usually confuse learning algorithms, cause signif-
icant slowdowns in learning processes, and increase risks of
learned classifiers to over-fit the training data [4, 12].

Unfortunately, it has been proved that finding all reducts
or finding an optimal reduct (a reduct with the least num-
ber of attributes) is an NP-complete problem [13]. Many
researchers devote themselves to finding an efficient reduct
by optimization techniques. The forward greedy search
algorithm (FGSA), also called hill-climbing algorithm or
greedy algorithm, is such an optimal technique for finding
one reduct quickly and has been extensively investigated
[14–16]. A key ingredient of FGSA lies in establishing an
evaluation function to examine importance of each feature or
attribute in databases.The evaluation function induced by the
classical uncertainty measure, that is, the Pawlak’s roughness
or dependency, has been successfully applied in rough sets
based feature selection [17, 18]. Along with the development
of rough sets, attribute reduction has been studied extensively
in the past decade, such as fuzzy rough sets based attribute
reduction [19–23], neighborhood rough sets based attribute
reduction [24], cross-entropy based attribute reduction [25],
tolerance rough sets based attribute reduction [26], cost based
attribute reduction [27, 28], and dynamic attribute reduction
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[29, 30], and extended rough set based attribute reduction
[31], cover rough sets based attribute reduction [14, 32], cov-
ering generalized rough sets based attribute reduction [33],
variable precision rough sets based attribute reduction [34].
Nevertheless, the classical uncertainty measure is not robust
and maybe fluctuates largely only with minor disturbances.
Even a little change in information systems may produce an
unpredictable fluctuation of this uncertainty measure.

The mean value and variance in probability theory, able
to be used to analyze preciously data, have been widely
discussed in portfolio optimization and portfolio selection
[35–38]. They are considered as an arbitrator which is used
to determine whether a group of data is robust and stable.
For example, two shooters obtain the same score (mean
value). If one has to be chosen to take part in a tournament,
which one should be chosen reasonably? Apparently, the
one with a less variance score would like to be chosen.
In this paper, the notions of mean value and variance are
introduced into information systems as an arbitrator to
evaluate the uncertainty degree.Anovel uncertaintymeasure,
called mean-variance measure (MVM), is proposed. MVM
firstly calculates the mean of every object, and then all
objects’ variances are taken into account. The effect caused
by disturbances of data in decision systems on MVM will
decrease, since a tiny alteration of values will not result in a
large change of variance.

Based on the new notion ofMVM, an evaluation function
called D-MVM in decision systems is further designed.
The designed evaluation function takes full information in
positive region and boundary region into account.

This paper is organized as follows. Some elementary
concepts on rough sets and MVM are reviewed in Section 2.
Section 3 investigates the issue on feature selection in deci-
sion systems by MVM. Experimental results and analysis are
given in Section 4, and Section 5 concludes this paper.

2. Preliminaries

2.1. Rough Sets. This section briefly outlines some basic
notions on rough sets.

Definition 1. An information system is a pair 𝑆 = (𝑈,AT)
satisfying

(1) 𝑈 is a nonempty finite set of objects;

(2) AT is a nonempty finite set of attributes;

(3) for every 𝑎 ∈ AT, there is a mapping 𝑎 : 𝑈 → 𝑉
𝑎

,
where 𝑉

𝑎

is the set of values.

Definition 2. Given an information system 𝑆 = (𝑈,AT) and
𝑃 ⊆ AT, an indiscernibility relation on 𝑈 is defined by

𝑅
𝑃

= {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | 𝑎 (𝑥) = 𝑎 (𝑦) , ∀𝑎 ∈ 𝑃} . (1)

Obviously, 𝑅
𝑃

is an equivalent relation induced by the
attribute set 𝑃. [𝑥]

𝑅

𝑃

= {𝑦 ∈ 𝑈 | (𝑥, 𝑦) ∈ 𝑅
𝑃

} is referred

to as the equivalence class of 𝑥with respect to 𝑅
𝑃

. A partition
of𝑈 induced by the equivalent relation 𝑅

𝑃

can be denoted by

𝑈

𝑅
𝑃

= {𝑃
1

, 𝑃
2

, . . . , 𝑃
𝑛

} , (2)

where 𝑃
𝑖

is some equivalence class of 𝑅
𝑃

in 𝑈, 𝑖 = 1, 2, . . . , 𝑛.
𝑈/𝑅
𝑃

and [𝑥]
𝑅

𝑃

are, respectively, denoted by 𝑈/𝑃 and [𝑥]
𝑃

,
for short, when no ambiguity arises in this paper.

Definition 3. Given an information system 𝑆 = (𝑈,AT),
𝑃 ⊆ AT, and 𝑋 ⊆ 𝑈, the lower approximation and the
upper approximation of𝑋 with respect to 𝑃 are defined, res-
pectively, by

𝑃 (𝑋) = ⋃{𝑃
𝑖

∈
𝑈

𝑃
| 𝑃
𝑖

⊆ 𝑋} ,

𝑃 (𝑋) = ⋃{𝑃
𝑖

∈
𝑈

𝑃
| 𝑃
𝑖

∩ 𝑋 ̸= 0} .

(3)

Definition 4. Given an information system 𝑆 = (𝑈,AT), a
partial ordering relation ⪯ in the family {𝑈/𝐵 | 𝐵 ⊆ AT} is
defined as

𝑈

𝑃
⪯

𝑈

𝑄
, (4)

if and only if for any 𝑃
𝑖

∈ 𝑈/𝑃, there exists a 𝑄
𝑗

∈ 𝑈/𝑄

such that 𝑃
𝑖

⊆ 𝑄
𝑗

, where 𝑈/𝑃 = {𝑃
1

, 𝑃
2

, . . . , 𝑃
𝑛

} and 𝑈/𝑄 =

{𝑄
1

, 𝑄
2

, . . . , 𝑄
𝑚

} are partitions induced by 𝑃,𝑄 ⊆ 𝐴,
respectively.

𝑄 is said to be coarser than 𝑃, or 𝑃 is finer than 𝑄,
if 𝑈/𝑃 ⪯ 𝑈/𝑄. 𝑃 is said to be strictly finer than 𝑄, denoted
by 𝑈/𝑃 ≺ 𝑈/𝑄, if 𝑈/𝑃 ⪯ 𝑈/𝑄 but 𝑈/𝑃 ̸=𝑈/𝑄.

Proposition 5. Given an information system 𝑆 = (𝑈,AT),
𝑃,𝑄 ⊆ AT, and if 𝑃 ⊆ 𝑄, then 𝑈/𝑄 ⪯ 𝑈/𝑃.

From Proposition 5, the more attributes an information
system contains, the finer the corresponding partition is.
Therefore, 𝑈/AT is the finest one among partitions induced
by all subsets of AT.

The classical uncertainty measure is defined as follows.

Definition 6. Given an information system 𝑆 = (𝑈,AT) or an
incomplete information system 𝐼𝑆 = (𝑈,AT), 𝑃 ⊆ AT, and
𝑋 ⊆ 𝑈, the roughness of𝑋 is defined as

𝜌
𝑃

(𝑋) = 1 −

𝑃 (𝑋)



𝑃 (𝑋)



. (5)

The quantity 𝜌
𝑃

(𝑋) characterizes the uncertainty degree
of 𝑋 with respect to 𝑃. When 𝜌

𝑃

(𝑋) = 0, 𝑋 is said to be
definable; otherwise, it is said to be rough.

WhenAT is divided into two nonempty sets𝐶 and𝐷 such
that𝐶∩𝐷 = 0, then 𝑆 = (𝑈,AT), denoted by 𝑆 = (𝑈, 𝐶∪𝐷), is
called a decision system, 𝐶 is called the conditional attribute
set, and𝐷 is called the decision attribute set.
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Figure 1:𝑋, 𝐴(𝑋), and 𝐴
𝑅

(𝑋).

Definition 7. Given a decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷), the
dependency degree of𝐷 on 𝐶 is defined by

𝛾 (𝐶,𝐷) =

POS𝐶 (𝐷)


|𝑈|
, (6)

where POS
𝐶

(𝐷) = ∪
𝑋∈𝑈/𝐷

𝐶(𝑋) is the positive region of 𝐷
with respect to 𝐶 and | ∗ | denotes the cardinality of ∗.

Definition 8. Given a decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and
𝐵 ⊆ 𝐶, 𝐵 is independent if

𝛾 (𝐵 − 𝑎,𝐷) < 𝛾 (𝐵,𝐷) , ∀𝑎 ∈ 𝐵. (7)

Attribute reduction in decision systems is defined as
follows.

Definition 9. Given a decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and
𝐵 ⊆ 𝐶, 𝐵 is called a reduct if

(1) 𝛾(𝐵,𝐷) = 𝛾(𝐶,𝐷),

(2) 𝛾(𝐵 − {𝑎}, 𝐷) < 𝛾(𝐵,𝐷) for any 𝑎 ∈ 𝐵.

2.2. A Novel Uncertainty Measure of Rough Sets. Given an
information system 𝑆 = (𝑈,AT) and𝑋 ⊆ 𝑈, the characteristic
function of𝑋 on 𝑈 can be denoted by

𝐴 (𝑥) = {
1, if 𝑥 ∈ 𝑋,

0, if 𝑥 ∉ 𝑋,
(8)

where 𝑥 ∈ 𝑈.
Let 𝐴(𝑋) = {𝐴(𝑥)/𝑥 | 𝑥 ∈ 𝑈}, then 𝐴(𝑋) can be con-

sidered as a special fuzzy set derived from𝑋 on 𝑈.
In rough set theory, objects in the same equivalent class

cannot be distinguished for each other, since they have
the same characteristic. However, in the boundary region
of a rough set, objects in the same class have different
characteristics. In this case, their mean value of objects in a
class is generally used to characterize each object.

Definition 10. Given an information system 𝑆 = (𝑈,AT),𝑋 ⊆

𝑈, 𝑃 ⊆ AT, and 𝑥 ∈ 𝑈, the mean value of 𝑥 in 𝑋, denoted by
𝐴
𝑃

(𝑥), is defined by

𝐴
𝑃

(𝑥) =

[𝑥]𝑃 ∩ 𝑋


[𝑥]𝑃


. (9)

We denote {𝐴
𝑅

(𝑥)/𝑥 |𝑥 ∈ 𝑈} by 𝐴
𝑃

(𝑋). It is evident that
𝐴
𝑃

(𝑋) is a fuzzy set on 𝑈. As an example, given 𝑈 = {𝑥
1

, 𝑥
2

,

. . . , 𝑥
36

},𝑈/𝑃 = {{𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

}, {𝑥
5

, 𝑥
6

, 𝑥
7

, 𝑥
8

}, . . . , {𝑥
33

, 𝑥
34

,

𝑥
35

, 𝑥
36

}}, and 𝑋 = {𝑢
8

, . . . , 𝑥
11

, 𝑢
14

, . . . , 𝑥
17

, 𝑢
20

, . . . , 𝑥
24

, 𝑢
26

,

. . . , 𝑥
29

}, seen in Figure 1(a), then 𝐴(𝑥) and 𝐴
𝑃

(𝑥) are
calculated by (8) and (9), respectively, as shown in Figures
1(b) and 1(c).

As mentioned above, when an object 𝑥 is not in 𝑋, its
mean value is non-zero if and only if its equivalent class has
non-empty intersectionwith𝑋; when𝑥 is in𝑋, itsmean value
is 1 if and only if its its equivalent class is contained in𝑋. From
Definition 10, it is easy to verify that the mean value 𝐴

𝑃

(𝑥) is
an inclusion degree𝐷(𝑋/[𝑥]

𝑃

) of [𝑥]
𝑃

being included in𝑋.

Proposition 11. Given an information system S = (𝑈,AT),
𝑋 ⊆ 𝑈, 𝑃 ⊆ AT, and 𝑥 ∈ 𝑈, the following conclusions hold:

(1) if 𝑥 ∈ 𝑃(𝑋), then 𝐴
𝑃

(𝑥) = 1;

(2) if 𝑥 ∉ 𝑃(𝑋), then 𝐴
𝑃

(𝑥) = 0;

(3) if 𝑥 ∈ 𝑃(𝑋) − 𝑃(𝑋), then 0 < 𝐴
𝑃

(𝑥) < 1.

Note that 𝐴
𝑃

(𝑥) = 𝐴(𝑥) when 𝑥 is in the positive region
and the negative region. It is obvious that 𝐴

𝑃

(𝑥) ̸=𝐴(𝑥) only
when 𝑥 is in the boundary region.

Definition 12. Given an information system 𝑆 = (𝑈,AT),
𝑃 ⊆ AT, and𝑋 ⊆ 𝑈, the mean-variance uncertainty measure
(MVM) of 𝑋 with respective to 𝑃, denoted by 𝜎

𝑃

(𝑋), is
defined as

𝜎
𝑃

(𝑋) = √
∑
𝑥∈𝑈

(𝐴 (𝑥) − 𝐴
𝑃

(𝑥))
2

|𝑈|
. (10)
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Figure 2: Comparison of convergence among three methods.

It is clear that

𝜎
𝑃

(𝑋) = √
∑
𝑥∈𝑋

(1 − 𝐴
𝑃

(𝑥))
2

+ ∑
𝑥∈𝑈−𝑋

(𝐴
𝑃

(𝑥))
2

|𝑈|
.

(11)

Assume 𝜎
𝑃

(𝑋) = 0 when 𝑋 = 0 or 𝑃 = 0. From
Definition 12 one can see that only objects in the boundary
region of 𝑋 contribute to the value of 𝜎

𝑃

(𝑋). In this sense,
𝜎
𝑃

(𝑋) takes fully information in the boundary region into
account. Therefore, it is a proper measure to evaluate the
uncertainty of𝑋.

Definition 13. Given an information system 𝑆 = (𝑈,AT),
𝑃,𝑄 ⊆ AT, and𝑋,𝑌 ⊆ 𝑈,

(1) 𝑋 is said to be 𝜎-definable if 𝜎
𝑃

(𝑋) = 0;

(2) 𝑋 is said to be 𝜎-rough if 𝜎
𝑃

(𝑋) ̸= 0;

(3) 𝑋 is said to be coarser with respect to 𝑃 than 𝑌 with
respect to 𝑄 if 𝜎

𝑃

(𝑋) < 𝜎
𝑄

(𝑌), in which case, 𝑌 is
called finer with respect to𝑄 than𝑋with respect to𝑃.

Next, we investigate properties of 𝜎
𝑃

(𝑋) and show its
efficiencies in evaluating uncertainty of a set in information
systems.
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Proposition 14. Given an information system 𝑆 = (𝑈,AT),
𝑃 ⊆ AT, and𝑋 ⊆ 𝑈, the following conclusions hold:

(1) 𝜎
𝑃

(𝑋) = 0 ⇔ 𝜌
𝑃

(𝑋) = 0;
(2) if 𝑈/𝑃 = 𝜔, then 𝜎

𝑃

(𝑋) = 0, where 𝜔 = {{𝑥} | 𝑥 ∈ 𝑈}

is the finest partition of 𝑈;

(3) if 𝑈/𝑃 = 𝛿, then 𝜎
𝑃

(𝑋) = √|𝑋|/|𝑈| − (|𝑋|/|𝑈|)
2,

where 𝛿 = {𝑈} is the coarsest partition of 𝑈.

3. Feature Selection in Decision Systems

In this section, the proposed uncertainty measure is further
investigated to perform feature selection in decision systems.

Definition 15. Given a decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and
𝐵 ⊆ 𝐶, MVM of the decision attribute set 𝐷 with respect
to the conditional attribute subset 𝐵, called D-MVM, or an
evaluation function, is defined by

𝜎 (𝐵,𝐷) =
1

𝑁
(𝜎
𝐵

(𝐷
1

) + 𝜎
𝐵

(𝐷
2

) + ⋅ ⋅ ⋅ + 𝜎
𝐵

(𝐷
𝑁

)) , (12)

where 𝑁 is the number of the decision classes induced
by the decision attribute set 𝐷, 𝜎

𝐵

(𝐷
𝑖

), 𝑖 = 1, 2, . . . , 𝑁,
reflect the uncertainty measure of each decision class, and
𝜎(𝐵,𝐷) describes the integrated uncertainty degree of blocks
𝐷
1

, 𝐷
2

, . . . , 𝐷
𝑁

.

In the following, some properties of 𝜎(𝐵,𝐷) are studied.

Proposition 16. Given a decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and
𝐵 ⊆ 𝐶, the following conclusions hold:

(1) 𝜎(𝐵,𝐷) = 0 ⇔ 𝜌(𝐵,𝐷) = 0;
(2) if 𝑈/𝐵 = 𝜔, then 𝜎(𝐵,𝐷) = 0;
(3) if 𝑈/𝐵 = 𝛿, then 𝜎(𝐵,𝐷) = (1/

𝑁)∑
𝑁

𝑖=1

√|𝐷
𝑖

|/|𝑈| − (|𝐷
𝑖

|/|𝑈|)
2.

Proof. The proof is analogous to that of ([11], property 2.14).

Definition 17. Given a decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and
𝐵 ⊆ 𝐶, 𝐵 is independent if

𝜎 (𝐵,𝐷) < 𝜎 (𝐵 − 𝑎,𝐷) , ∀𝑎 ∈ 𝐵. (13)

By D-MVM, a relative reduct can be defined as follows.

Definition 18. Given a decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and
𝐵 ⊆ 𝐶, 𝐵 is a relative reduct of 𝐶 with respective to 𝐷 if and
only if

(1) 𝜎(𝐵,𝐷) = 𝜎(𝐶,𝐷),
(2) 𝜎(𝐵,𝐷) < 𝜎(𝐵 − 𝑎,𝐷) for any 𝑎 ∈ 𝐵.

A relative reduct is a minimal subset which has the same
discriminating power as the raw decision systems.

Table 1: Data sets.

Data sets Abbreviation Samples Features Class
1 Lymphography Lymph 148 19 4

2 Mushroom Mush 8124 23 2

3 Soybean Soybean 683 36 19

4 Zoo Zoo 101 17 7

Definition 19 (significance based on D-MVM). Given a de-
cision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷), 𝐵 ⊆ 𝐶, and a feature 𝑎 ∈ 𝐶 − 𝐵,
the significance of 𝑎 is defined as

Sig
𝜎

(𝑎, 𝐵,𝐷) = 𝜎 (𝐵 ∪ 𝑎,𝐷) − 𝜎 (𝐵,𝐷) . (14)

Notice that if 𝐵 is an empty set, 𝜎(𝐵,𝐷) = 0,
and Sig

𝜎

(𝑎, 𝐵,𝐷) is a nonnegative real number; otherwise,
Sig
𝜎

(𝑎, 𝐵, 𝐷) ≤ 0.
With the proposed evaluation function, a forward greedy

search algorithm for feature selection can be designed as
follows.

In the first iteration, we start with an empty set specified
with 𝜎(𝐵,𝐷) = 0. The quantity Sig

𝜎

(𝑎, 𝐵,𝐷) is negative in
every iteration except the first one. The rest features in each
iteration are all evaluated, and the one with the minimal
significance will be chosen.The algorithm does not stop until
adding any of the rest features to selected feature set will not
bring a change larger than threshold 𝜀 in Algorithm 1, where
𝜀 controls the precision of the algorithm.

There is no doubt that FGSA-MVM is for the sake of
searching a subset of conditional attributes with minimal
positive real D-MVM. We obverse step 7 of FGSA-MVM. In
the first iteration, we choose theminimal significance because
Sig
𝜎

(𝑎, 0, 𝐷) is a positive number. In the rest iterations, we
also select the minimal significance with the biggest step
length since Sig

𝜎

(𝑎, 𝐵, 𝐷) is nonpositive for any 𝐵 ̸= 0.

4. Experiments and Analysis

In order to test the validity of the proposedmethod for feature
selection, comparative experiments have been implemented
in efficiency and convergence of proposed algorithmwith two
of the most important methods, feature selection based on
dependence [39] and mutual information [40].

As shown in Table 1, four standard data sets, cited from
the machine learning data repository, University of Califor-
nia, Irvine, CA, USA [41], are employed in our experiments.

CART and RBF-support vector machine (SVM) learning
algorithms are introduced to test the classification perfor-
mances of feature selection for raw sets and for selected fea-
ture sets. As a widely used technique to evaluate classification
performances in machine learning, 10-fold cross-validation
[42] is carried out in our experiments by dividing the samples
into 10 subsets. Nine of them are used as training set, and the
rest one is used as the test set. After 10 rounds, the average
value and variation are computed as the final classification
performance.

Classification performances are evaluated by CART in
Table 2 and by RBF-SVM in Table 3. “Hold” marks the
highest classification performances among these obtained
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Forward Greedy Search Algorithm of Feature Selection based on
Mean-Variable in Decision Systems (FGSA-MVM):
Input: (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓), 𝜀
Output: 𝑟𝑒𝑑
(1) 0 → 𝑟𝑒𝑑

(2) while 𝐶 − 𝑟𝑒𝑑 ̸= 0

(3) for each 𝑎
𝑖

∈ 𝐶 − 𝑟𝑒𝑑

(4) compute Sig
𝜎

(𝑎
𝑖

, 𝐵,𝐷) = 𝜎(𝐵 ∪ 𝑎
𝑖

, 𝐷) − 𝜎(𝐵,𝐷)
(5) end for
(6) select the attribute 𝑎

𝑘

such that
(7) Sig

𝜎

(𝑎
𝑘

, 𝑟𝑒𝑑,𝐷) = min
𝑖

Sig
𝜎

(𝑎
𝑖

, 𝑟𝑒𝑑,𝐷)
(8) if Sig𝜎 (𝑎𝑘, 𝑟𝑒𝑑, 𝐷)

 < 𝜀

(9) 𝑟𝑒𝑑 ∪ 𝑎
𝑘

→ 𝑟𝑒𝑑

(10) else
(11) break
(12) end if
(13) end while
(14) return 𝑟𝑒𝑑

Algorithm 1

Table 2: Comparison of classification performance of reducts based on different uncertainty measures with CART.

Data sets Raw data Dependency MI MVM
Lymph 0.6994 ± 0.2195 0.6825 ± 0.1822 0.6825 ± 0.1822 0.6825 ± 0.1822
Mush 0.9637 ± 0.0990 0.9637 ± 0.0990 0.9685 ± 0.0996 0.9685 ± 0.0996
Soybean 0.9174 ± 0.0507 0.8485 ± 0.0700 0.8780 ± 0.0629 0.9192 ± 0.0490
Zoo 0.9065 ± 0.0913 0.8329 ± 0.0676 0.9276 ± 0.0987 0.9276 ± 0.0987
Aver. 0.8567 0.8439 0.8672 0.8676

Table 3: Comparison of classification performance of reducts based on different uncertainty measures with SVM.

Data sets Raw data Dependency MI MVM
Lymph 0.5623 ± 0.0583 0.8448 ± 0.0940 0.8448 ± 0.0940 0.8448 ± 0.0940
Mush 0.9587 ± 0.0984 0.9587 ± 0.0984 0.9587 ± 0.0984 0.9587 ± 0.0984
Soybean 0.5445 ± 0.0649 0.6041 ± 0.0723 0.6239 ± 0.0683 0.6566 ± 0.0817
Zoo 0.8615 ± 0.0901 0.9239 ± 0.0924 0.9239 ± 0.0924 0.9239 ± 0.0924
Aver. 0.7181 0.8435 0.8523 0.8549

by the methods based on three uncertainty measures. The
number of selected features with the highest classification
performance by the new measure is larger than that by
dependency and by MI. It is 12, 4, and 12, respectively,
via CART algorithm, whereas it is 14, 8, and 11 via SVM
algorithm.

From the experiments one can see that the proposed
measure outperforms not only in the smallest average num-
ber of selected features in reducts but also in the highest
classification performance in feature selection.

In the remainder of this section, we pay attention to
the convergence of the proposed method. Figure 2 shows
the fluctuations of evaluation functions with respect to the
number of selected features. The significance of selected
features is calculated based on dependency, on MI, and on

MVM, respectively. The four data sets are used to show the
convergence of different techniques. The selected orders of
the four data sets based on different evaluation functions
are shown in Table 4, in which the sequences of selected
features are different, even the number of selected features
in the optimal reducts may be the same. As a whole, sig-
nificance degrees based on dependency and MI increase,
while significance based on MVM decreases. With MVM, all
four evaluation functions decrease fast at the beginning of
the selection process. The evaluation function of credit data
slowly decreases, and this result constitutes a different pattern
of behavior compared with the three other data sets. Feature
selection algorithms may stop very early if we specify a
threshold to stop the search in this case.The convergence and
good classification performances are observed in the results.
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Table 4: Comparison of selected features by different uncertainty measures.

Data sets Dependency Mutual information MVM
Lymph 18 2 13 14 15 16 13 18 14 2 15 16 13 18 14 2 15 16
Mush 5 20 8 12 3 5 20 22 21 5 20 22 21
Soybean 18 26 11 12 35 29 22 1 29 15 22 1 18 3 7 6 28 26 22 15 1 18 3 7

3 6 7 10 4 5 9 16 10 4 9 16 5 10 6 14 4
Zoo 4 13 12 6 8 13 4 6 8 3 13 4 6 8 3

5. Conclusion

This contribution studied feature selection based on MVM
in decision information systems, which is one of the most
important applications of rough set theory. A novel approach
to feature selection was proposed by introducing an eval-
uation function based on MVM. Theoretical analysis and
experimental results concluded that the performances of
proposed method are outperformed by dependency and by
MI not only in the number of selected features but also in the
classification precision.
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The problem of synchronization of 𝑁 different chaotic systems is investigated. By using the direct design control method, the
synchronization controler is designed to transform the error system into a nonlinear systemwith a special antisymmetric structure.
The sufficient stability conditions are presented for such systems, and the complete synchronization of chaotic systems is realized.
Finally, the corresponding numerical simulations demonstrate the effectiveness of the proposed schemes.

1. Introduction

Since Pecora and Carroll have synchronizes two identical
chaotic systems with different initial conditions [1], chaotic
synchronization has been intensively and extensively inves-
tigated due to its potential applications in many fields [2–
4]. And most of research efforts have been done about some
synchronization phenomena, such as phase synchronization
[5], antisynchronization [6], and projective synchronization
[7]. Many techniques have been developed to realize chaos
synchronization which includes sliding mode control [8],
direct design control method [9], and backstepping method
[10]. However, most of researches mentioned above mainly
concentrated on synchronizing two identical or different
chaotic systems.

In fact,more andmore applications of chaos synchroniza-
tion in secure communication make it muchmore important
to synchronize multiple chaotic systems. It can satisfy the
synchronization of multiple chaotic communication systems
with a lower cost, and it can make it possible to realize
multiparty communications simultaneously. Therefore, the
synchronization of multiple chaotic systems has become
a hot topic. It is more essential and useful in real-life
applications. For example, Yu and Zhang studied the global
synchronization of three coupled chaotic systems with ring
connection in [11]. The adaptive coupled synchronization
among multi-Lorenz systems family is investigated in [12].

The synchronization of 𝑁 different coupled chaotic systems
with ring and chain connection was proposed in [13].
The synchronization of N-coupled fractional-order chaotic
systems with ring connection was investigated using the
stability criteria of fractional-order system in [14]. Zhang
studied the synchronization of multi-chaotic systems based
on the impulsive control theory in [15]. Grassi researched
the propagation of projective synchronization in a series
connection of 𝑁 chaotic discrete-time drive systems and
𝑁 response systems in [16]. Yang and Zhang studied the
synchronization of three identical systems and its application
for secure communication with noise perturbation in [17].

However, the realization of synchronization of 𝑁 iden-
tical or nonidentical chaotic systems is much more difficult,
so it is necessary to find an easy method to realize such
synchronization of multiple chaotic systems. Motivated by
the above discussions, in this paper, we consider the problem
of synchronization of 𝑁 different chaotic systems. With
the active control method, the synchronization controller is
designed to transform the error system into a nonlinear sys-
tem with the special antisymmetric structure. The complete
synchronization of multiple chaotic systems is realized.

This paper is organized as follows. In Section 2, the syn-
chronization of 𝑁 different chaotic systems is theoretically
analyzed. A stability theorem for𝑁 different chaotic systems
with a special antisymmetric structure is given. In Section 3,
the proposed synchronization schemes with the direct design
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control method are applied to three different chaotic systems,
that is, New system, Lorenz system and Rössler system.
The simulations demonstrate the effectiveness of proposed
schemes. And finally some concluding remarks are given in
Section 4.

2. Synchronization of𝑁 Different Chaotic
Systems and Controllers Design

Consider the following chaotic systems:
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1

, 𝐴
2

, . . . , 𝐴
𝑁

are constant matrices. For 𝑖, 𝑗 =
1, . . . , 𝑁, and 𝑖 ̸= 𝑗, if

𝐴
𝑖

̸=𝐴
𝑗

, 𝑔
𝑖

(⋅) ̸= 𝑔
𝑗

(⋅) , (2)

then the systems (1) are the different chaotic systems.
We consider 𝑁 different chaotic systems. The drive

systems and the controled response systems are described as
follows:

̇𝑥
1

= 𝐴
1

𝑥
1

+ 𝑔
1

(𝑥
1

) ,

̇𝑥
2

= 𝐴
2

𝑥
2

+ 𝑔
2

(𝑥
2

) + 𝑢 (𝑥
1

, 𝑥
2

) ,

...

̇𝑥
𝑁

= 𝐴
𝑁

𝑥
𝑁

+ 𝑔
𝑛

(𝑥
𝑁

) + 𝑢 (𝑥
1

, 𝑥
𝑁

) .

(3)

Let us define the errors systems between response systems
and drive systems as ̇𝑒

𝑖

= ̇𝑥
𝑖

− ̇𝑥
1

, (𝑖 = 2, . . . , 𝑁), then the
dynamics of the synchronization errors can be expressed as

̇𝑒 =
[
[
[

[

̇𝑒
2

̇𝑒
3

...
̇𝑒
𝑁

]
]
]

]

=

[
[
[
[

[

𝐴
2

𝑒
2

+ (𝐴
2

− 𝐴
1

) 𝑥
1

+ 𝑔
2

(𝑥
2

) − 𝑔
1

(𝑥
1

) + 𝑢 (𝑥
2

, 𝑥
1

)

𝐴
3

𝑒
3

+ (𝐴
3

− 𝐴
1

) 𝑥
1

+ 𝑔
3

(𝑥
3

) − 𝑔
1

(𝑥
1

) + 𝑢 (𝑥
3

, 𝑥
1

)

...
𝐴
𝑁

𝑒
𝑁

+ (𝐴
𝑁

− 𝐴
1

) 𝑥
1

+ 𝑔
𝑁

(𝑥
𝑁

) − 𝑔
1

(𝑥
1

) + 𝑢 (𝑥
𝑁

, 𝑥
1

)

]
]
]
]

]

.

(4)

Our purpose is to design the appropriate controllers
𝑢(𝑥
𝑖

, 𝑥
1

) for the response systems such that the error systems
(4) are asymptotically stable, which implies that the complete
synchronization of𝑁 different chaotic systems (3) is realized;
that is,

lim
𝑡→∞

𝑒𝑖
 = lim
𝑡→∞

𝑥𝑖 − 𝑥1
 = 0. (5)

Here, the direct design control method is used to achieve
the objective. In accordance to the active control design
strategy, we choose the control input 𝑢(𝑥

𝑖

, 𝑥
1

) to eliminate all
known items that cannot be shown in the form of the error
system 𝑒

𝑖

. The controller can be given by

𝑢 (𝑥
𝑖

, 𝑥
1

) = 𝑢
𝑖

− (𝐴
𝑖

− 𝐴
1

) 𝑥
1

− 𝑔
𝑖

(𝑥
𝑖

) + 𝑔
1

(𝑥
1

) ,

𝑖 = 2, . . . , 𝑁.
(6)

The error systems (4) can be rewritten as

̇𝑒 =

[
[
[
[

[

̇𝑒
2

̇𝑒
3

...
̇𝑒
𝑁

]
]
]
]

]

=

[
[
[
[

[

𝐴
2

0 ⋅ ⋅ ⋅ 0

0 𝐴
3

⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐴
𝑁

]
]
]
]

]

[
[
[
[

[

𝑒
2

𝑒
3

...
𝑒
𝑁

]
]
]
]

]

+

[
[
[
[

[

𝑢
2

𝑢
3

...
𝑢
𝑁

]
]
]
]

]

. (7)

Defining 𝑢
𝑖

= 𝑝
𝑖

𝑒
𝑖

, we can get the error systems (8) as follows:

̇𝑒 =

[
[
[
[

[

̇𝑒
2

̇𝑒
3

...
̇𝑒
𝑁

]
]
]
]

]

=

[
[
[
[

[

𝐴
2

+ 𝑝
2

0 ⋅ ⋅ ⋅ 0

0 𝐴
3

+ 𝑝
3

⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐴
𝑁

+ 𝑝
𝑁

]
]
]
]

]

[
[
[
[

[

𝑒
2

𝑒
3

...
𝑒
𝑁

]
]
]
]

]

.

(8)

There are many possible choices for 𝑝
𝑖

, as long as it assures
that the error dynamic system (8) is asymptotically stable at
the origin.Without loss of generality, let us define𝑝

𝑖

as a state-
dependent coefficient matrix, then the error systems (8) can
be rewritten as

̇𝑒 =

[
[
[
[

[

𝐵
2

(𝑒
2

) 0 ⋅ ⋅ ⋅ 0

0 𝐵
3

(𝑒
3

) ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐵
𝑁

(𝑒
𝑁

)

]
]
]
]

]

[
[
[
[

[

𝑒
2

𝑒
3

...
𝑒
𝑁

]
]
]
]

]

. (9)

The sufficient stability conditions of the systems (9) will be
given by transforming it into a stable system with a special
antisymmetric structure. The main result is described as
follows.

Theorem 1. Consider the systems (9)with the state-dependent
coefficient matrices 𝐵

𝑖

(𝑒
𝑖

) = 𝐵
𝑖1

(𝑒
𝑖

)+𝐵
𝑖2

. If the matrices 𝐵
𝑖1

(𝑒
𝑖

)

and 𝐵
𝑖2

satisfy the assumptions that

𝐵
𝑇

𝑖1

(𝑒
𝑖

) = −𝐵
𝑖1

(𝑒
𝑖

) , (𝑖 = 2, . . . , 𝑁) ,

𝐵
𝑖2

= diag (𝑏
𝑖1

, . . . , 𝑏
𝑖𝑛

) , 𝑏
𝑖𝑗

< 0, (𝑗 = 1, . . . , 𝑛) ,

(10)

and the invariant set of the system (9) only includes the origin,
then the system (9) is asymptotically stable.

Proof. Choose Lyapunov function as follows:

𝑉 =
1

2
𝑒
𝑇

𝑒. (11)

Then
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𝑉 =
1

2
( ̇𝑒
𝑇

𝑒 + 𝑒
𝑇

̇𝑒)

=
1

2
𝑒
𝑇

(

[
[
[
[

[

𝐵
2

(𝑒
2

) 0 ⋅ ⋅ ⋅ 0

0 𝐵
3

(𝑒
3

) ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐵
𝑁

(𝑒
𝑁

)

]
]
]
]

]

𝑇

+

[
[
[
[

[

𝐵
2

(𝑒
2

) 0 ⋅ ⋅ ⋅ 0

0 𝐵
3

(𝑒
3

) ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐵
𝑁

(𝑒
𝑁

)

]
]
]
]

]

)𝑒

=
1

2
𝑒
𝑇

(

[
[
[
[

[

𝐵
21

(𝑒
2

) + 𝐵
22

(𝑒
2

) 0 ⋅ ⋅ ⋅ 0

0 𝐵
31

(𝑒
3

) + 𝐵
32

(𝑒
3

) ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐵
𝑁1

(𝑒
𝑁

) + 𝐵
𝑁2

(𝑒
𝑁

)

]
]
]
]

]

𝑇

+

[
[
[
[

[

𝐵
21

(𝑒
2

) + 𝐵
22

(𝑒
2

) 0 ⋅ ⋅ ⋅ 0

0 𝐵
31

(𝑒
3

) + 𝐵
32

(𝑒
3

) ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐵
𝑁1

(𝑒
𝑁

) + 𝐵
𝑁2

(𝑒
𝑁

)

]
]
]
]

]

)𝑒,

(12)

where 𝐵𝑇
𝑖1

(𝑒
𝑖

) = −𝐵
𝑖1

(𝑒
𝑖

), (𝑖 = 2, . . . , 𝑁), and 𝐵𝑇
𝑖2

(𝑒
𝑖

) = 𝐵
𝑖2

(𝑒
𝑖

).
So we get that

𝑉 = 𝑒
𝑇

[
[
[
[

[

𝐵
22

(𝑒
2

) 0 ⋅ ⋅ ⋅ 0

0 𝐵
32

(𝑒
3

) ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐵
𝑁2

(𝑒
𝑁

)

]
]
]
]

]

𝑒, (13)

where, for 𝑗 = 1, . . . , 𝑛 and 𝑏
𝑖𝑗

< 0, 𝐵
𝑖2

= diag(𝑏
𝑖1

, . . . , 𝑏
𝑖𝑛

) is
negative definite.Therefore,𝑉 is negative definite. According
to Lyapunov asymptotical stability theory, the complete syn-
chronization of the different chaotic systems is achieved.

Remark 2. The system (9) is transformed into the system
̇𝑒
𝑖

= 𝐵
𝑖

(𝑒
𝑖

)𝑒
𝑖

under the control law 𝑢(𝑥
𝑖

, 𝑥
1

), where 𝐵
𝑖

(𝑒
𝑖

)

possesses the antisymmetric structure; then the error system
(4) is asymptotically stable at the origin according to the
Theorem 1.

Remark 3. The antisymmetric structures in Theorem 1 are
the generalization of the tridiagonal structures. The error
system constructed with the antisymmetric structure is more
convenient than the one with tridiagonal structure, if the
original system has some zero elements at the tridiagonal
position and nonzero elements at other positions.

The selecting of the coefficient matrices with antisym-
metric structure is an important and difficult technique,
which relates to the coefficient matrices and the states of the
original system. In the following section, we will demonstrate
the proposed approaches for the special structure with an
example.

3. Applications of Synchronization
Control Schemes

In this section, we employ a simulation example to illustrate
the effectiveness of the proposed schemes. The synchroniza-
tion is simulated for three different chaotic systems. We
choose New system as drive system, and we consider Lorenz
system and Rössler system as the response systems. They are
described as follows:

̇𝑥
11

= 5𝑥
11

− 𝑥
12

𝑥
13

,

̇𝑥
12

= −10𝑥
12

+ 𝑥
11

𝑥
13

,

̇𝑥
13

= −3.8𝑥
13

+
1

3
𝑥
11

𝑥
12

,

(14)

̇𝑥
21

= −10𝑥
21

+ 10𝑥
22

+ 𝑢
21

,

̇𝑥
22

= 28𝑥
21

− 𝑥
22

− 𝑥
21

𝑥
23

+ 𝑢
22

,

̇𝑥
23

= −
8

3
𝑥
23

+ 𝑥
21

𝑥
22

+ 𝑢
23

,

(15)

̇𝑥
31

= −𝑥
32

− 𝑥
33

+ 𝑢
31

,

̇𝑥
32

= 𝑥
31

+ 0.2𝑥
32

+ 𝑢
32

,

̇𝑥
33

= −5.7𝑥
33

+ 0.2 + 𝑥
31

𝑥
33

+ 𝑢
33

,

(16)

where

𝐴
1

= [

[

5 0 0

0 −10 0

0 0 −3.8

]

]

, 𝐴
2

=
[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]

]

,
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𝐴
3

= [

[

0 −1 −1

1 0.2 0

0 0 −5.7

]

]

, 𝑔
1

(𝑥
1

) =
[
[

[

−𝑥
12

𝑥
13

𝑥
11

𝑥
13

1

3
𝑥
11

𝑥
12

]
]

]

,

𝑔
2

(𝑥
2

) = [

[

0

−𝑥
21

𝑥
23

𝑥
21

𝑥
22

]

]

, 𝑔
3

(𝑥
3

) = [

[

0

0

0.2 + 𝑥
31

𝑥
33

]

]

.

(17)

Let the synchronization error state be ̇𝑒
𝑖

= ̇𝑥
𝑖

− ̇𝑥
1

, (𝑖 =
2, 3), then the error dynamical states can be written as

̇𝑒
21

= −10𝑒
21

+ 10𝑒
22

+ 𝑢
21

+ 𝑥
12

𝑥
13

− 15𝑥
11

+ 10𝑥
12

,

̇𝑒
22

= 28𝑒
21

− 𝑒
22

+ 𝑢
22

− 𝑥
21

𝑥
23

− 𝑥
11

𝑥
13

+ 28𝑥
11

+ 9𝑥
12

,

̇𝑒
23

= −
8

3
𝑒
23

+ 𝑢
23

+ 𝑥
21

𝑥
22

−
1

3
𝑥
11

𝑥
12

+ (3.8 −
8

3
) 𝑥
13

,

(18)

̇𝑒
31

= −𝑒
32

− 𝑒
33

+ 𝑢
31

+ 𝑥
12

𝑥
13

− 5𝑥
11

− 𝑥
12

− 𝑥
13

,

̇𝑒
32

= 𝑒
31

+ 0.2𝑒
32

+ 𝑢
32

+ 𝑥
11

+ 10.2𝑥
12

− 𝑥
11

𝑥
13

,

̇𝑒
33

= −5.7𝑒
33

+ 𝑢
33

− 1.9𝑥
13

+ 0.2 + 𝑥
31

𝑥
33

−
1

3
𝑥
11

𝑥
12

.

(19)

Then the controllers are designed as follows,

𝑢 (𝑥
2

, 𝑥
1

) = [

[

𝑢
21

𝑢
22

𝑢
23

]

]

= 𝑝
1

[

[

𝑒
21

𝑒
22

𝑒
23

]

]

−
[
[

[

15 −10 0

28 9 0

0 0 (3.8 −
8

3
)

]
]

]

[

[

𝑥
11

𝑥
12

𝑥
13

]

]

− 𝑔
2

(𝑥
2

) + 𝑔
1

(𝑥
1

) ,

𝑢 (𝑥
3

, 𝑥
1

) = [

[

𝑢
31

𝑢
32

𝑢
33

]

]

= 𝑝
2

[

[

𝑒
31

𝑒
32

𝑒
33

]

]

− [

[

−5 −1 −1

1 10.2 0

0 0 −1.9

]

]

[

[

𝑥
11

𝑥
12

𝑥
13

]

]

− 𝑔
3

(𝑥
3

) + 𝑔
1

(𝑥
1

) ,

(20)

where

𝑝
1

= [

[

0 0 −𝑥
12

−18 0 − (𝑥
11

+ 𝑒
21

)

𝑥
12

(𝑥
11

+ 𝑒
21

) 0

]

]

,

𝑝
2

= [

[

−1 0 0

0 −1.2 − (𝑥
11

+ 𝑒
31

)

1 (𝑥
11

+ 𝑒
31

) 0

]

]

.

(21)

Then the error systems (18) can be rewritten as

̇𝑒 = [
̇𝑒
2

̇𝑒
3

] = [ ̇𝑒
21

̇𝑒
22

̇𝑒
23

̇𝑒
31

̇𝑒
32

̇𝑒
33

]
𝑇

=

[
[
[
[
[
[
[
[
[
[
[

[

−10 −10 −𝑥
12

0 0 0

10 −1 − (𝑥
11

+ 𝑒
21

) 0 0 0

𝑥
12

(𝑥
11

+ 𝑒
21

) −
8

3
0 0 0

0 0 0 −1 −1 −1

0 0 0 1 −1 − (𝑥
11

+ 𝑒
31

)

0 0 0 1 (𝑥
11

+ 𝑒
31

) −5.7

]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑒
21

𝑒
22

𝑒
23

𝑒
31

𝑒
32

𝑒
33

]
]
]
]
]
]
]

]

.

(22)

Let us define 𝐵
2

(𝑒
2

) and 𝐵
3

(𝑒
3

) as follows:

𝐵
21

(𝑒
2

) = [

[

0 −10 −𝑥
12

10 0 − (𝑥
11

+ 𝑒
21

)

𝑥
12

(𝑥
11

+ 𝑒
21

) 0

]

]

+
[
[

[

−10 0 0

0 −1 0

0 0 −
8

3

]
]

]

,

𝐵
3

(𝑒
3

) = [

[

0 −1 −1

1 0 − (𝑥
11

+ 𝑒
31

)

1 (𝑥
11

+ 𝑒
31

) 0

]

]

+ [

[

−1 0 0

0 −1 0

0 0 −5.7

]

]

.

(23)

Then we declare that the error systems (18) and (19) are
asymptotically stable at the origin under the controllers (20)



Mathematical Problems in Engineering 5

0 1 2 3 4 5 6 7 8

0

5

𝑒

2
1

,𝑒
2
2

,𝑒
2
3

𝑒

21

𝑒

22

𝑒

23

−20

−15

−10

−5

Time (s)

Figure 1: Dynamics of the variables 𝑒
21

, 𝑒
22

, and 𝑒
23

of the error
system (18) with time 𝑡.
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Figure 2: Dynamics of the variables 𝑒
31

, 𝑒
32

, and 𝑒
33

of the error
system (19) with time 𝑡.

according to Theorem 1. Then the synchronization between
the response systems and the drive system is realized.

The fourth-order Runge-Kutta integration method is
used to numerical simulation with time step size 0.001s. Let
the initial conditions of the drive system and the response
systems be (𝑥

11

(0), 𝑥
12

(0), 𝑥
13

(0))
𝑇

= (11, 15, 26)
𝑇, (𝑥
21

(0),

𝑥
22

(0), 𝑥
23

(0))
𝑇

= (1, 6, 8)
𝑇, and (𝑥

31

(0), 𝑥
32

(0), 𝑥
33

(0))
𝑇

=

(4.8, 0.8, 0.2)
𝑇, respectively. Then the initial values of the

error states are (𝑒
21

(0), 𝑥
22

(0), 𝑥
23

(0))
𝑇

= (−10, −9, −18)
𝑇

and (𝑒
31

(0), 𝑥
32

(0), 𝑥
33

(0))
𝑇

= (−6.2, −14.2, −25.8)
𝑇. The

state trajectories of the error systems are shown in Figures
1, 2, and 3, and the state trajectories of 3 different chaotic
systems are shown in Figures 4, 5, and 6. We can make out
that, from Figures 1–6, the state trajectories asymptotically
converge to zero near 2.5 s, 4.5 s, and 5 s under the controllers,
and the state vectors of the different chaotic systems achieve
the complete synchronization. The numerical simulations
demonstrate that the proposed design method is feasible
and effective to realize the complete synchronization of 𝑁
different chaotic systems which satisfy Theorem 1.
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4. Conclusions

In this paper, the synchronization problem of 𝑁 different
chaotic systems is investigated. The direct design method is
adopted to realize the complete synchronization of 𝑁 dif-
ferent chaotic systems according to the proposed theorems.
And then the stability theorems about the error systems with
the special antisymmetric structure are presented. Numerical
simulations of the synchronization about the different chaotic
systems, respectively, illustrate the validity of the proposed
schemes. How to realize other types of synchronization of
N-coupled chaotic systems is our further work. Inspired by
the studies [18–20], how to extend the current results to
chaotic systems with discontinuous functions is also our
future research directions.
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The researchs on the structure and formation mechanism of social networks lead to several models with differences in the
attachment patterns of new links (edges). In fact, the driving factor behind the addition of new links is just as important as the
attachment patterns, while very little attention has been devoted so far to this exploration. We present an agent-based model
which could successfully reproduce large-scale social networks. We find that the structure of social networks is a consequence of
continuous individuals’ decision-making processes based on self-evaluations and the turnover of the population. The individuals’
self-evaluation processes are key motivating factors for the addition of new links, while the attachment patterns and the turnover
of the population should be responsible for the topology of social networks.The resulting networks of our model display dynamics
between order and randomness, which is greatly consistent with current observations and research achievements of social networks.
We also find that some plausible properties of empirical data are actually artifacts due to the boundedness of sampling. Our research
has revealed the driving factors behind the evolution of social networks as well as the underlying evolving patterns. These findings
will lead to a better understanding of social structures.

1. Introduction

Complex networks have gained increasing enthusiasm in
various fields ranging from natural science to social science
in the last few years. The achievements of data acquisition
make it possible to calibrate some hypotheses once supposed
to be reasonable in people’s mind, one of which is networks of
complex topology described with the random graph theory
of Erdös-Rényi (ER) [1], whose degree obeys a Gaussian
distribution. Barabási and Albert (BA) have developed a
growing networkmodel to interpret the emergence of scaling
in networks, known as BAmodel [2], which leads to a degree
distribution 𝑃(𝑘) ∼ 𝑘−3. However, it is obviously inappropri-
ate for applying itmechanically to social networks for two rea-
sons: first, the population is relatively constant, which does
not conform with the hypothesis of unceasing increasing of
nodes; second, individuals could not be present in all the
lifetime of social networks, instead, the living individuals will
die after a few years’ survival.

Researchers had realized these problems not long after
BA model was proposed [3–7]. Furthermore, the analysis of
empirical data [8, 9] shows that some social networks exhibit

single-scale properties for the degree distribution rather than
power law regime. So González et al. [5] and Singer et al.
[7] introduce constraints named “aging effect” to limit the
addition of new links and the results indicate that these new
observations are well fitted. However, there are still some
problems with these models: (i) the empirical networks used
in thesemodels come froman in-school questionnaire among
junior high school students from the USA (for acquaintance
network, it comes from a questionnaire among 43 Utah
Mormons), so are these social networks from specific groups
universal and representative? Furthermore, could thesemod-
els be used to explain the formation of large-scale social
networks? (ii) Constraints introduced by these researches
are more passive responses to the dilemma of continuous
addition of new links, which could not lead to a deep under-
standing of the driving factors behind the addition of new
links. We have developed a new agent-based model for large-
scale friendship networks, which successfully reproduces
acceptable properties of social networks such as small-world
phenomenon and community structures [10, 11].We also find
that the resulting degree distribution of social networks dis-
plays obvious scale-free regime, indicating that the observed
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Figure 1: The model framework. At each time step 𝑡, every individual 𝑖 will evaluate his satisfaction based on current friend circles. Here, we
simply generate a random number 𝑑 ranging from 0 to 1. If 𝑑 > 𝑈(𝑘), individual 𝑖 is not satisfied with current situation, and so he chooses a
new friend 𝑗 from those used to be strangers (the red individual) and adds 𝑗 into his friends list. Meanwhile, 𝑗 also adds 𝑖 into his friends list.
After all the individuals complete the decision-making processes independently, the network updates with 𝑛 = 𝑁 ∗ 𝜐 aged individuals along
with their links removed from the network and the same number of newborns with no initial links added into the network. Then time step 𝑡
increases by 1.

single-scale properties of empirical networks are artifacts
resulting from the boundedness of sampling. These findings
give a clear answer to the questions above and confirm the
drawbacks in the previous models.

2. Materials and Methods

There are two key features of real social networks neglected
by foregoing researches: (i) the continuous turnover of the
population—in real worlds, the aged die at a certain ratewhile
new individuals are born at an appropriate rate resulting
in an almost unchanged number of individuals present at
the networks over time; (ii) on-going individuals’ decision-
making processes—the living individuals carry out social
activities based on their current neighbors in the network
including families, schoolmates, colleagues, and sometimes

strangers and in the case of dissatisfactionwith current circles
of friends, they will try to build new relationships with
some strangers. These ingredients are incorporated into our
model framework. We also introduce an index named social
activeness index, which is a comprehensive measurement
about individual’s activeness in social networks, denoted by
𝜆. An active individual will be likely to make more friends.
Integrated with the definition of natural attributes, we finally
get an agent-base model in which individuals are character-
ized by a set of natural and social attributes, including identity
number, age, residence, and social activeness index, along
with behavioral rules.

At the beginning of themodeling, there are𝑁 individuals
(agents) with no initial connections, who are randomly
placed into an area of 𝑥 ∗ 𝑦 grids. This is close to the reality
that the city is usually composed of a number of communities
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Figure 2: The resulting networks at 𝑡 = 2000 for𝑁 = 100000, 𝜐 = 0.0005, 𝛼 = 0.2, 𝛽 = 4, 𝛾 = 4, and 𝑝 = 0.0001 within an area of 10 ∗ 10
grids. (a) The distribution functions of connectivity: for red and green squares, 𝜌(𝜆) is of truncated normal distribution Gauss (𝜇, 𝜎2); for
blue squares, 𝜌(𝜆) is of uniform distribution Uniform (0, 1).The red, green, and blue lines have respectively slopes 4.02, 2.75, and 2.38. (b)The
robustness of obtained networks: for red and green curves, 𝜌(𝜆) is of truncated normal distribution Gauss (𝜇, 𝜎2). The red curve has 𝜁 = 0.82
while the green one has 𝜁 = 0.76; for blue curve, 𝜌(𝜆) is of uniform distribution Uniform (0, 1) and 𝜁 = 0.74; purple curve for ER, 𝜁 = 0.92,
and black curve for BA, 𝜁 = 0.16.

and different individuals share the same community. For
simplicity, we assume that the identity number of individuals
increases from 0, so an elder individual will get a smaller
identity number. Each individual’s age is an integer selected
randomly from 1 to max age (max age = 1/𝜐, where 𝜐 is the
death rate of the population). Social activeness index (𝜆) is an
important parameter indicating individual’s social activeness,
which is assigned a value ranging from0 to 1 generated from a
specific distribution 𝜌(𝜆)when an individual is born. Figure 1
illustrates our model framework. At each time step, every
individual will evaluate the situation of his social contacts
based on the current number of neighbors in the network
(degree). Here, we introduce the utility function [12] which
is widely used to quantify consumer’s total satisfaction from
consuming a good or service in economics because of the
observed striking similarities among many collective human
activities [13–17]. We employ an exponential utility function
𝑈(𝑘) = 1 − 𝑒

−𝜆𝑘, where 𝑘 is individual’s degree and 𝜆 is the
social activeness index. So𝑈(𝑘) decreases with the decreasing
of 𝜆, that is, the individual would be more dissatisfied with
the current situation and more likely to make a new contact.
Under the circumstance of dissatisfaction, individual 𝑖 will
make a new friend with 𝑗 based on three criteria: age
difference (𝑎

𝑖𝑗

), grid distance (𝑑
𝑖𝑗

), and the number of shared
friends (𝑚

𝑖𝑗

). These criteria have been observed in many
social networks and employed by some foregoing studies
[3, 5, 11, 18], while never integrated into a single model. So
the probability 𝑖making a new contact with 𝑗 is given by

∏

𝑖𝑗

=
𝑅
𝑖𝑗

∑
𝑙 ̸= 𝑖

𝑅
𝑖𝑙

, (1)
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=
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𝑘
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𝛼
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𝑖𝑗
+𝛾𝑑

𝑖𝑗
)

𝑘
𝑖

̸= 0,
(2)

where 𝑘
𝑖

is the degree of 𝑖, 𝛼, 𝛽, 𝛾 are scale factors, and 𝑝 ≪ 1.
Obviously, the effects of age difference and grid distance on
social networks increase with the increasing of 𝛼 and 𝛽, while
𝛾 does the opposite to 𝑚

𝑖𝑗

/𝑘
𝑖

. After every individual makes
his decision independently, the network updates. We assume
that the friendship is reciprocal, when 𝑖 adds 𝑗 into his friends
list and so does 𝑗. Then a small number (𝑛) of individuals are
removed from the network along with the links with them
and the same amount of individuals with no initial links is
added, respectively, corresponding to individual’s death and
birth in real world. The number is determined by the death
rate 𝜐 with 𝑛 = 𝑁 ∗ 𝜐 (noticing that we assume that the pop-
ulation is relatively constant, so 𝜐 is also the birth rate).

3. Results and Discussion

In Figure 2(a), we show the degree distributions of truncated
normal distribution 𝜌(𝜆) with different 𝜇 and 𝜎 (the uniform
distribution could be regarded as a limit form of truncated
normal distribution with a large 𝜎). Note that 𝜆 is the
individual’s social activeness index, so a normal distribution
implies thatmost of individuals have similar social activeness,
while only few of them are very active or inactive. With the
increasing of 𝜎, 𝜆 will be much more diverse. Our modeling
suggests that the heavy tail will be more straightforward with
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Figure 3: The sensitivity analysis. (a) 𝜌(𝜆) = Gauss (0.5, 0.402) with different 𝛼. The black solid line has slope 2.69. (b) 𝜌(𝜆) = Gauss (0.5,
0.402) with different 𝛽. The black solid line has slope 2.72. (c) 𝜌(𝜆) = Gauss (0.5, 0.402) with different 𝛾. The black solid line has slope 2.71.
(d) 𝜌(𝜆) = Gauss (0.5, 0.202). The black solid line has slope 4.01.

a decreasing of the scaling exponent. When coming to the
uniform distribution, the scaling exponent is approximately
equal to 2.38. Sensitivity analyses of𝑁, 𝛼, 𝛽, and 𝛾 show that
they do not significantly change the scaling exponent (see
Figure 3).

When exploring various complex networks, we have a gut
feeling that social networks are of strong robustness. It is eas-
ily accountable—individuals’ death should not greatly shatter
social networks, although they are hubs (people with a lot of
links). So we compare the output of our model to some other
networks, for example, random network from ER theory and
scale-free network from BA model. As Figure 2(b) shows,
the obtained network’s robustness is between BA and ER. If
we regard the BA network as a well-ordered network and

correspondingly the ER network as a random network, the
obtained networks will be between order and randomness,
just as Watts [18] described. In order to make the contrast of
different networks more clearly, we define a shatter index 𝜁 as

𝜁 =
1

𝑁

𝑁

∑

𝑅=1

𝑀

(𝑁 − 𝑅)
, (3)

where 𝑅 denotes the number of nodes removed, and 𝑀 is
the nodes’ number of the maximal connected subnetwork
in the remained network after 𝑅 nodes have been removed.
Noticing that 𝜁 = 1 for a full connected network, the
geometricmeaning of 𝜁 is actually the area enclosed by curves
in Figure 2(b) and the coordinate axes.
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Figure 4: The grid distance and age difference between connected nodes at 𝑡 = 2000 for𝑁 = 20000, 𝜐 = 0.0005, and 𝑝 = 0.0001 and 𝜌(𝜆) is
of truncated normal distribution with 𝜇 = 0.5, 𝜎 = 0.20 within an area of 10 ∗ 10 grids. In (a), (b), and (c), the color denotes the proportion
of node pairs with grid distance (𝑥, 𝑦) in total nodes pairs. All of them use 𝛼 = 0.2 and 𝛽 = 4, while 𝛾 = 0 for (a), 10 for (b), and 20 for (c).
(d) The age difference between connected node pairs uses 𝛼 = 0.2, 𝛾 = 4, and different 𝛽 (see the legend 𝛼-𝛽-𝛾). The horizontal axis denotes
age difference, while the vertical axis denotes the proportion of node pairs with age difference 𝑎

𝑖𝑗
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We also check the grid distance and age difference
between friends in the networks. As Figures 4(a), 4(b), and
4(c) show, the regional structure will be more conspicuous
with the increasing of 𝛾. Figure 4(d) gives the analysis result
of age difference between node pairs in obtained networks
with different 𝛽. A significant positive correlation between
the age effect and 𝛽 emerges from the comparison of different
curves.

The shortage of empirical large-scale social networks
makes a straightforward verification of the obtained networks
from comparison impossible. However, researches in related
areas have provided some strong circumstantial evidences. In

the past few years, the tight correlation between the spread-
ing of infectious diseases and social networks has aroused
widespread concerns. Eubank et al. [19] proposed a large-
scale simulation framework based on realistic urban social
networks. Though edges in their networks are defined as
contacts between individuals, they also give a lot of valu-
able information about friendship networks because of the
interplay between contact network and friendship network.
Namely, close friends tend to make more contacts, while
frequent contacts will lead to an intimate relationship. Their
studies show that real networks are strongly connected
small-world graphs with a well-defined scale for the degree
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Figure 5: The in-school friendship networks at 𝑡 = 2000 using 𝑁 = 20000, 𝜐 = 0.0005, 𝑝 = 0.0001, 𝜇 = 0.5, 𝜎 = 0.20, 𝛼 = 0.8, 𝛽 = 16,
and 𝛾 = 2 within an area of 10 ∗ 10 grids. The results have been averaged over 20 realizations. (a) The degree distribution of obtained full
social networks. The dashed line has slope 4.02. (b) The degree distribution of sampled in-school friendship network. (c) A snapshot of the
in-school friendship networks visualized with the Gephi software.

distribution and could not be shattered by removing a small
number of high-degree vertices, which coincides with the
obtained network of our model.

Next, we will show by sampling individuals from the
obtained social networks and reconstructing their intercon-
nections that ourmodel successfully reproduces the observed
single-scale properties in the in-school friendship networks.
Owing to the obvious age effect in in-school friendship
networks, we employ a large 𝛽, indicating that when indi-
vidual makes a new friend, there is an obvious tendency to

individuals from the same generation. After evolution over
few time steps, we pick up a group of individuals of similar
age as well as their interconnections. In this way, we get a
subnetwork corresponding to in-school friendship network,
as shown in Figure 5(c). It is visually apparent that the
obtained in-school friendship network is composed of a
number of different size communities. Figure 5(b) shows the
connectivity distribution of in-school friendship network, a
striking similarity between with them and the observations
[5, 7, 20] could easily be detected; however, the degree
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distribution of the full social network exhibits a visible
heavy tail property (Figure 5(a)), indicating that the observed
single-scale properties in empirical in-school friendship and
acquaintance networks are more artifacts than universal
phenomena, leading to an inability of foregoing models to
describe social systems.

4. Conclusions

In this study, we have uncovered the structure and formation
of social networks by capturing some important features of
real world.This has significant potential in interpreting lots of
social phenomena related to human activities. Further study
will focus on the effects of social networks on individual’s
migration, which may help understand heterogeneity of
human geographical distribution.
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[1] P. Erdös and A. Rényi, On the Evolution of Random Graphs,
Akad. Kiadó, 1960.
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This paper investigates the antiwindup (AW) control problem for plants with input saturation.TheAWcompensator is not activated
as soon as input saturation occurs as usual. A delayed decoupling structure is first proposed. Then, appropriate linear matrix
inequalities (LMIs) are developed to determine a plant-order AW compensator. Effectiveness of the presented AW technique is
illustrated by a fighter aircraft model.

1. Introduction

Input saturation is one of the most frequently encountered
nonlinearities in control design for linear plants. Most
controllers are designed assuming that the inputs have
no limits. If input saturation appears, output performance
often deteriorates. Slight performance degradation could be
large overshoot or sluggish response. Severe performance
deterioration could be persistent oscillation, sometimes even
instability.

Multiagent control has become a hot topic of academic
research in recent years. This is because it can be used in
various fields, such as physics, biology, industry, and military
applications.The twomain applications ofmultiagent control
in industry and military are the multirobot cooperative
control and the multivehicle flight control, respectively.
Although these two applications have been intensively stud-
ied, however, few results consider the case when actuators
are limited [1]. The well-known AW control is one of the
most successful methodologies applied in practice to deal
with plants with input saturation. As summed in [2, 3], the
essential idea of AW control is adding control modification
to a nominal linear controller. The nominal linear controller
is first synthesized for the plant ignoring saturation, and
then an AW compensator is designed to improve output
performance when saturation occurs. Sufficient conditions
to design a static AW compensator were provided in [4] in

terms of LMIs. Necessary and sufficient conditions for the
existence of a plant-order AW compensator were given in
[5]. A novel, less conservative sector condition was presented
in [6], and a static AW compensator for both stable and
unstable plants was obtained therein. A switching AWdesign
using multiple Lyapunov functions was proposed in [7]. In
[4, 5], attention was focused onminimizing the influence of a
generic disturbance signal 𝑤 in the output. In [6, 7], concern
was onmaximization of the region of attraction. Innovatively
in [8], Weston and Postlethwaite proposed a structure, which
established a specific formulation of the error between the
plant outputs with and without input saturation.Then, in [9],
two different AW compensators were designed to make the
error as small as possible based on the structure.

Usually, the AW compensator was activated as soon as
input saturation occurs. However, a static AW compensator
designed in [10] was not activated immediately but belatedly.
It was found in [10] that delayed activation of AW compen-
sator can lead to a better performance compared with the
immediate one. In order to improve AWcontrol performance
and derive a simpler LMI condition for the AW compensator
construction, motivated by the structure proposed in [8],
a modified delayed decoupling structure is developed in
this paper. Then, sufficient conditions in terms of LMIs are
obtained to minimize the error between the plant outputs
with and without input saturation.
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Figure 1: General structure of AW control.

The remainder of this paper is organized as follows. In
Section 2, the structure, which has a decoupling feature,
is introduced. Main results of this paper are presented in
Section 3. A new modified delayed AW decoupling structure
is first proposed. And the AW compensator is constructed
for single-input plants by making a set of LMIs feasible. It is
also extended to multi-input plants. A fighter craft model is
used to illustrate the proposed AW technique. Conclusions
are given in Section 4.

2. A Decoupling Structure

A general AW control structure is shown in Figure 1, where
𝐺(𝑠) is the plant, 𝐾(𝑠) is the nominal linear controller, sat(⋅)
is the input saturation function, and block AWC is the AW
compensator. 𝐺(𝑠) is a stable linear plant subject to input
saturation as

𝐺 (𝑠) ∼ {
̇𝑥
𝑝

= 𝐴
𝑝

𝑥
𝑝

+ 𝐵
𝑝

sat (𝑢) ,
𝑦 = 𝐶

𝑝

𝑥
𝑝

+ 𝐷
𝑝

sat (𝑢) , (1)

where (𝐴
𝑝

, 𝐵
𝑝

) is stabilizable, 𝑥
𝑝

∈ R𝑛, 𝑦 ∈ R𝑞, 𝑢 ∈ R𝑝,
and sat(𝑢) is the saturated input.The saturation function sat(⋅)
satisfies sat(𝑢) = [sat(𝑢

1

), sat(𝑢
2

), . . . , sat(𝑢
𝑝

)]
𝑇, sat(𝑢

𝑖

) =

sign(𝑢
𝑖

)min(|𝑢
𝑖

|, 𝑢
𝑖

). 𝑢
𝑖

is the amplitude limit, 𝑢
𝑖

> 0, 𝑖 =

1, 2, . . . , 𝑝. The state-space descriptions of 𝐾(𝑠) and AW
compensator are, respectively

𝐾 (𝑠) ∼ {
̇𝑥
𝑐

= 𝐴
𝑐

𝑥
𝑐

+ 𝐵
𝑐

𝑒,

𝑢 = 𝐶
𝑐

𝑥
𝑐

+ 𝐷
𝑐

𝑒,

AWC ∼ {
̇𝑥aw = 𝐴aw𝑥aw + 𝐵aw�̃�,

𝜂 = (𝜂
𝑇

1

, 𝜂
𝑇

2

)
𝑇

= 𝐶aw𝑥aw + 𝐷aw�̃�,

(2)

where �̃� := 𝑢 − sat(𝑢) is the error between the unsaturated
input and saturated input, 𝑒 := 𝑟 − 𝑦 is the tracking error,
and 𝑟 is the reference to be tracked. The AW compensator is
activated only when input saturation occurs. As mentioned
earlier, the essential idea of AW control is adding control
modification to 𝐾(𝑠). The state and output equations of 𝐾(𝑠)
are modified by the AWC’s output 𝜂 = (𝜂𝑇

1

, 𝜂
𝑇

2

)
𝑇 as

̇𝑥
𝑐

= 𝐴
𝑐

𝑥
𝑐

+ 𝐵
𝑐

𝑒 + 𝜂
1

,

𝑢 = 𝐶
𝑐

𝑥
𝑐

+ 𝐷
𝑐

𝑒 + 𝜂
2

.
(3)

An appealing AW structure, which is a special case of the
general structure, proposed by Weston and Postlethwaite in
[8], is shown in Figure 2(a), where the design of AW compen-
sator turns into the conditioning of a transfer function𝑀(𝑠).
With all signals labeled the same, the structure in Figure 2(a)

can be equivalently redrawn as in Figure 2(b). Note that in
Figure 2(b), a dead-zone function 𝑑𝑧(⋅) is introduced, which
maps the unsaturated input 𝑢 to the input error �̃�; that is,
𝑑𝑧(𝑢) = �̃�. If 𝑢 ∈ U, whereU ∈ R𝑝 is a compact set defined
asU = [−𝑢

1

, 𝑢
1

] × [−𝑢
2

, 𝑢
2

] × ⋅ ⋅ ⋅ × [−𝑢
𝑝

, 𝑢
𝑝

], then 𝑑𝑧(𝑢) = 0.
What is fascinating about the structure in Figure 2(b) is that it
can be seen as two decoupled subsystems: the nominal linear
closed-loop system (NLCS) and the nonlinear path. If NLCS
and the nonlinear path are stable, respectively, the stability of
the overall system in Figure 2(b) follows. The NLCS is stable,
as it is guaranteed by 𝐾(𝑠). The NLCS’s output 𝑦lin is what
one tries to recover when input saturation occurs. Thus, the
AW compensator should be designed to ensure stability of
the nonlinear path, further on, if possible, to make the output
difference 𝑦

𝑑

= 𝑦lin − 𝑦 as small as possible.
One selection for𝑀(𝑠) in Figure 2(a) is a right coprime

factor of 𝐺(𝑠); that is, 𝐺(𝑠) = 𝑁(𝑠)𝑀
−1

(𝑠). The state space
descriptions of𝑀(𝑠) and𝑁(𝑠) can be chosen as

(
𝑀(𝑠)

𝑁 (𝑠)
) ∼

𝐴
𝑝

+ 𝐵
𝑝

𝐹 𝐵
𝑝

𝐹 𝐼

𝐶
𝑝

+ 𝐷
𝑝

𝐹 𝐷
𝑝

. (4)

The conditioning with 𝑀(𝑠) turns into the design of matrix
𝐹. 𝐺(𝑠)𝑀(𝑠) = 𝑁(𝑠), and the state space description of AW
compensator is

̇𝑥aw = (𝐴𝑝 + 𝐵𝑝𝐹) 𝑥aw + 𝐵𝑝�̃�,

𝑢
𝑑

= 𝐹𝑥aw,

𝑦
𝑑

= (𝐶
𝑝

+ 𝐷
𝑝

𝐹) 𝑥aw + 𝐷𝑝�̃�.

(5)

Remark 1. Note that all the initial states and the control inputs
of𝑀(𝑠) and𝑁(𝑠) are equal. Therefore the states of𝑀(𝑠) and
𝑁(𝑠) are identical. Under this circumstance, although 𝑀(𝑠)

and 𝑁(𝑠) are different transfer functions, they can still share
the same state 𝑥aw.

Define the distance between a vector 𝑥 and a compact
set S as dist(𝑥, S) := inf

𝑦∈S‖𝑥 − 𝑦‖. Then, the objective of
this paper, which is based on the decoupling AW structure
proposed in [8], is to solve the AW control problem defined
as follows.

Definition 2 (see [9]). The AW compensator (5) is said to
solve the AW control problem for plant (1) if the closed-
loop system in Figure 2(a) is well posed and the following
conditions hold.

(1) If dist(𝑢lin,U) = 0 for all 𝑡 ≥ 0, then 𝑦
𝑑

= 0 for
all 𝑡 ≥ 0 (assuming zero initial condition for AW
compensator).

(2) If dist(𝑢lin,U)∈L
2

, then 𝑦
𝑑

∈L
2

.

The AW compensator (5) is said to solve the strong AW
control problem if in addition, the following condition is
satisfied.

(3) The operator 𝜏 : 𝑢lin → 𝑦
𝑑

is well defined and the
L
2

gain from 𝑢lin to 𝑦𝑑 is less than 𝛾; namely, ‖𝑦
𝑑

‖
2

<

𝛾‖𝑢lin‖
2

.
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Figure 2: A decoupling structure.

Remark 3. Note that condition 3 in Definition 2 implies
condition 2. In this paper, only the strong AW control
problem is considered.

3. Main Results

Immediate AW compensation may increase safety of the
overall system, being away from instability, for example, but
the performance may be no better than leaving the controller
uncompensated during some moderate input saturation, as
the numerical example demonstrated in [10]. If the nominal
controller is robust, the system still demonstrates good
performance during this modest saturation stage. Thus, the
delayed activation of AW compensation is considered.

3.1. Delayed Decoupling AW Structure. To realize certain
delay in activating the AW compensator, an artificial satu-
ration function is added after the controller, and thus the
structure in Figure 2(a) becomes as in Figure 3.This structure
has two saturation nonlinearities, and thus it is not equivalent
to the decoupling structure in Figure 2(b). In order to sustain
a decoupling feature, Figure 3 needs to be modified. A new
decoupling structure with delayed saturation is therefore
presented in Figure 4(a). Note that a time-varying gain
𝐺
𝑑

= diag[𝑔
1

(𝑡), 𝑔
2

(𝑡), . . . , 𝑔
𝑝

(𝑡)] is introduced in Figure 4(a),
where 𝑔

𝑖

(𝑡) is defined as

𝑔
𝑖

(𝑡) =

{{{{{

{{{{{

{

1,
𝑢𝑖
 ≤ 𝑢𝑖,

sgn (𝑢
𝑖

) 𝑢
𝑖

𝑢
𝑖

, 𝑢
𝑖

<
𝑢𝑖
 <

𝑢
𝑖

𝑔
𝑑

,

𝑔
𝑑

,
𝑢𝑖
 ≥

𝑢
𝑖

𝑔
𝑑

.

(6)

Here 𝑔
𝑑

is the delayed saturation index, 0 < 𝑔
𝑑

< 1. The
AW compensator is activated when the input magnitude is
higher than the delayed saturation level 𝑢

𝑖

/𝑔
𝑑

, rather than 𝑢
𝑖

.
Now treat 𝐺(𝑠) := 𝐺(𝑠)𝐺

𝑑

as a new plant, which is linear
parameter-varying (LPV). The time varying matrix gain 𝐺

𝑑

is continuous in the known bounds, 𝐺
𝑑

∈ [𝑔
𝑑

, 1]. Since the
expressions for 𝑢, 𝑦, �̃� are the same in Figures 4(a) and 4(b),
the two figures are mathematically equivalent if the following
equation holds:

𝐺𝑢lin = �̂��̃� + 𝐺 (𝑢lin − �̂��̃�) . (7)

Taking the same steps as in [11], where the decoupling AW
structure is extended to LPV system, the equivalence between
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Figure 3: Conditioning with𝑀(𝑠) (delayed).

Figures 4(a) and 4(b) follows. Note that in the nonlinear
path,𝐺(𝑠) replaces the original𝐺(𝑠).Therefore, the state space
description of the AW compensator becomes

̇𝑥aw = (𝐴𝑝 + 𝐵𝑝𝐺𝑑𝐹) 𝑥aw + 𝐵𝑝𝐺𝑑�̃�,

𝑢
𝑑

= 𝐹𝑥aw,

𝑦
𝑑

= (𝐶
𝑝

+ 𝐷
𝑝

𝐺
𝑑

𝐹) 𝑥aw + 𝐷𝑝𝐺𝑑�̃�.

(8)

3.2. Delayed AW Synthesis Using LMI. In order to analyze
the behavior of the new system, for intuitiveness, single-input
(𝑝 = 1) plants are considered first. And one has the following
theorem.

Theorem 4. For a single-input saturated plant, the strong
AW control problem in Definition 2 is solved if there exist
a symmetric positive definite matrix 𝑄 ∈ R𝑛×𝑛, a diagonal
positive definite matrix 𝑆 ∈ R1 × 1, a matrix 𝑅 ∈ R1×𝑛, and
a positive real scalar 𝛾 such that

(

𝐴
𝑝

𝑄 + 𝑄𝐴
𝑇

𝑝

+ 𝐵
𝑝

𝐺
𝑑

𝑅 + 𝑅
𝑇

𝐺
𝑑

𝐵
𝑇

𝑝

∗ ∗

0 −𝛾𝐼 ∗

𝐶
𝑝

𝑄 + 𝐷
𝑝

𝐺
𝑑

𝑅 0 −𝛾𝐼

) < 0 (9)

for 𝐺
𝑑

= 1 and

(

𝐴
𝑝
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𝑇

𝑝
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𝑝

𝐺
𝑑

𝑅 + 𝑅
𝑇

𝐺
𝑑

𝐵
𝑇

𝑝

∗ ∗ ∗

0 −𝛾𝐼 ∗ ∗

𝐶
𝑝

𝑄 + 𝐷
𝑝

𝐺
𝑑

𝑅 0 −𝛾𝐼 ∗

𝑆𝐺
𝑑

𝐵
𝑇

𝑝

− 𝑅 𝐼 (𝐷
𝑝

𝐺
𝑑

𝑆)
𝑇

−2𝑆

) < 0

(10)
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Figure 4: The delayed decoupling structure.

for 𝐺
𝑑

= 𝑔
𝑑

. Furthermore, the designing matrix 𝐹 for AW
compensator (8) to guarantee L

2

performance requirement
‖𝑦
𝑑

‖
2

< 𝛾‖𝑢lin‖
2

is given by 𝐹 = 𝑅𝑄−1.

Proof. The operation of the saturated plant with delayed
activation of AW compensator can be separated into two
stages.

Stage 1 (|𝑢| ≤ 𝑢/𝑔
𝑑

).The input is below the artificial saturation
level. The input to AW compensator is zero, namely, �̃� = 0,
and 𝐺

𝑑

∈ [𝑔
𝑑

, 1]. Then, following the standard approach, if
inequality

𝑉 + 𝛾
−1

𝑦
𝑇

𝑑

𝑦
𝑑

− 𝛾𝑢
𝑇

lin𝑢lin < 0 (11)

holds, it gives ‖𝑦
𝑑

‖
2

< 𝛾‖𝑢lin‖
2

, and the strong AW control
problem is solved. Choose the Lyapunov function in (11) as
𝑉 = 𝑥

𝑇

aw𝑃𝑥aw where 𝑃 = 𝑃
𝑇

> 0, and substitute (8) into
inequality (11); one has

[(𝐴
𝑝

+ 𝐵
𝑝

𝐺
𝑑

𝐹) 𝑥aw]
𝑇

𝑃𝑥aw + 𝑥
𝑇

aw𝑃 [(𝐴𝑝 + 𝐵𝑝𝐺𝑑𝐹) 𝑥aw]

+ 𝛾
−1

[(𝐶
𝑝

+ 𝐷
𝑝

𝐺
𝑑

𝐹) 𝑥aw]
𝑇

[(𝐶
𝑝

+ 𝐷
𝑝

𝐺
𝑑

𝐹) 𝑥aw]

− 𝛾𝑢
𝑇

lin𝑢lin < 0.

(12)

Then, by Schur complement and congruency transformation,
inequality (12) becomes LMI (9) in Theorem 4 with 𝑄 =

𝑃
−1

, 𝑅 = 𝐹𝑄; thus, 𝐹 = 𝑅𝑄
−1. Because 𝐺

𝑑

∈ [𝑔
𝑑

, 1] at
Stage 1, it suffices to check LMI (9) for 𝐺

𝑑

at the vertices,
namely for 𝐺

𝑑

= 𝑔
𝑑

and 𝐺
𝑑

= 1. The stability of the
nonlinear path is thus ensured. Note that during this stage,
the “nominal” closed-loop system is linear time-varying as
shown in Figure 4(b). Leaving the nominal controller 𝐾(𝑠)
undisturbed when |𝑢| ∈ (𝑢, 𝑢/𝑔

𝑑

], the stability of new NCLS
is preserved by the robustness of controller𝐾(𝑠).With the two
subsystems being stable, the stability of the overall closed-
loop system at Stage 1 follows.

Stage 2 (|𝑢| > 𝑢/𝑔
𝑑

). During this stage, the controller’s output
exceeds the delayed saturation level 𝑢/𝑔

𝑑

. As a result, �̃� is
nonzero, the AW compensator is activated, and𝐺

𝑑

= 𝑔
𝑑

. Due
to �̃�𝑇𝑢 ≥ �̃�𝑇�̃�, the sector condition 2�̃�𝑇𝑊(𝑢 − �̃�) ≥ 0 always

holds, where𝑊 is a diagonal positive definite matrix.Then, a
sufficient condition for inequality (11) is

𝑉 + 𝛾
−1

𝑦
𝑇

𝑑

𝑦
𝑑

− 𝛾𝑢
𝑇

lin𝑢lin + 2�̃�
𝑇

𝑊(𝑢 − �̃�) < 0. (13)

Then, following the similar steps as [9], if inequality (13)
holds, the strongAWcontrol problem is solved. Substitute (8)
into inequality (13); one has

[(𝐴
𝑝

+ 𝐵
𝑝

𝐺
𝑑

𝐹) 𝑥aw + 𝐵𝑝𝐺𝑑�̃�]
𝑇

𝑃𝑥aw

+ 𝑥
𝑇

aw𝑃 [(𝐴𝑝 + 𝐵𝑝𝐺𝑑𝐹) 𝑥aw + 𝐵𝑝𝐺𝑑�̃�]

+ 𝛾
−1

[(𝐶
𝑝

+ 𝐷
𝑝

𝐺
𝑑

𝐹) 𝑥aw + 𝐷𝑝𝐺𝑑�̃�]
𝑇

× [(𝐶
𝑝

+ 𝐷
𝑝

𝐺
𝑑

𝐹) 𝑥aw + 𝐷𝑝𝐺𝑑�̃�]

− 𝛾𝑢
𝑇

lin𝑢lin + 2�̃�
𝑇

𝑊(𝑢lin − 𝐹𝑥aw − �̃�) < 0.

(14)

Inequality (14) can be rewritten as

(𝑥
𝑇

aw �̃�
𝑇

𝑢
𝑇

lin) [𝑋 − 𝑌
𝑇

(−𝛾)
−1

𝑌](

𝑥aw

�̃�

𝑢lin

) < 0, (15)

where

𝑋 =(

(𝐴
𝑝

+ 𝐵
𝑝

𝐺
𝑑

𝐹)
𝑇

𝑃 + 𝑃 (𝐴
𝑝

+ 𝐵
𝑝

𝐺
𝑑

𝐹) ∗ ∗

𝐵
𝑇

𝑝

𝐺
𝑑

𝑃 −𝑊𝐹 −2𝑊 ∗

0 𝑊 −𝛾𝐼

),

𝑌 = (𝐶
𝑝

+ 𝐷
𝑝

𝐺
𝑑

𝐹 𝐷
𝑝

𝐺
𝑑

0) .

(16)

According to the standard Schur complement and exerting
congruency transformation, one has LMI (10) with 𝑄 =

𝑃
−1

, 𝑆 = 𝑊
−1

, 𝑅 = 𝐹𝑄; thus, 𝐹 = 𝑅𝑄
−1. Similar to Stage

1, with the two subsystems being stable, the stability of the
overall closed-loop system at Stage 2 follows.

Note that LMI (10) for 𝐺
𝑑

= 𝑔
𝑑

implies that LMI (9) for
𝐺
𝑑

= 𝑔
𝑑

, thus only 𝐺
𝑑

= 1 is checked for LMI (9) in the
theorem. And this completes the proof.

The section of the delayed saturation index 𝑔
𝑑

can be
determined by an iterative algorithm, starting at an initial
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value and stopping at a pointwhen theL
2

gain 𝛾 is optimized.
By applying the AW compensator designed usingTheorem 4,
the nominal linear performance is recovered as much as
possible. The static and dynamic AW compensators designed
in [10, 12] used the states𝑥 = (𝑥𝑇

𝑝

, 𝑥
𝑇

𝑐

)
𝑇 and𝑥 = (𝑥𝑇

𝑝

, 𝑥
𝑇

𝑐

, 𝑥
𝑇

aw)
𝑇

respectively, in the Lyapunov function for LMI derivation. In
this paper, only 𝑥aw is used, and thus the LMIs to be solved
here are much simpler than the resulting LMIs in [10, 12].

For a multi-input plant, 𝐺
𝑑

is no longer a scalar, but a
𝑝 × 𝑝 diagonal matrix. Because each diagonal element of 𝐺

𝑑

varies between 𝑔
𝑑

and 1, thus 𝐺
𝑑

can be expressed as a linear
combination of the vertices as follows:

𝐺
𝑑

=

2

𝑝

∑

𝑗=1

𝛼
𝑗

𝐺
𝑗

𝑑

,

2

𝑝

∑

𝑗=1

𝛼
𝑗

= 1,

𝛼
𝑗

∈ [0, 1] , 𝐺
𝑗

𝑑

∈ G, 𝑗 = 1, 2, . . . , 2
𝑝

,

(17)

where G = {diag[𝑔
1

, 𝑔
2

, . . . , 𝑔
𝑝

] : 𝑔
𝑖

= 𝑔
𝑑

or 1, 𝑖 =

1, 2, . . . , 𝑝}. Let 𝐺1
𝑑

= diag[1, 1, . . . , 1]; similarly, one has the
following theorem.

Theorem 5. For a multi-input saturated plant, the strong
AW control problem in Definition 2 is solved if there exist
a symmetric positive definite matrix 𝑄 ∈ R𝑛×𝑛, a diagonal
positive definite matrix 𝑆 ∈ R𝑝×𝑝, a matrix 𝑅 ∈ R𝑝×𝑛, and
a positive real scalar 𝛾 such that LMI (9) holds for 𝐺

𝑑

= 𝐺
1

𝑑

and

(

𝐴
𝑝

𝑄 + 𝑄𝐴
𝑇

𝑝

+ 𝐵
𝑝

𝐺
𝑗

𝑑

𝑅 + 𝑅
𝑇

𝐺
𝑗

𝑑

𝐵
𝑇

𝑝

∗ ∗ ∗

0 −𝛾𝐼 ∗ ∗

𝐶
𝑝

𝑄 + 𝐷
𝑝

𝐺
𝑗

𝑑

𝑅 0 −𝛾𝐼 ∗

𝑆𝐺
𝑗

𝑑

𝐵
𝑇

𝑝

− 𝑅 𝐼 (𝐷
𝑝

𝐺
𝑗

𝑑

𝑆)
𝑇

−2𝑆

) < 0

(18)

for all 𝑗 = 2, 3, . . . , 2
𝑝. Furthermore, the designing matrix

𝐹 for AW compensator (8) to guarantee L
2

performance
requirement ‖𝑦

𝑑

‖
2

< 𝛾‖𝑢lin‖
2

is given by 𝐹 = 𝑅𝑄−1.

Proof. The proof follows the same steps as Theorem 4, and
thus it is omitted here.

3.3. Application Example. Consider a linearized fighter air-
craft model (matrices 𝐴

𝑝

, 𝐵
𝑝

, and 𝐶
𝑝

can be found from
equations (A.2)–(A.4) in Yee et al. [13]). The aircraft has six
states (𝑢, V, 𝑤, 𝑝, 𝑞, 𝑟). The first three states are airspeed in the
𝑋-, 𝑌-, and 𝑍-axes of the body frame, respectively. The last
three states are roll, pitch, and yaw rates about 𝑋-, 𝑌-, and
𝑍-axes. The outputs ( ̇𝜇𝛼𝛽) are, respectively, stability-axis roll
rate, angle-of-attack, and sideslip angle. The inputs (𝛿

ℎ

, 𝛿
𝑎

,
𝛿
𝑟

) are elevator, aileron, and rudder deflection angles, with
control surface constraints −25∘ ≤ 𝛿

ℎ

≤ 25
∘

, −20
∘

≤ 𝛿
𝑎

≤

20
∘, and−30∘ ≤ 𝛿

𝑟

≤ 30
∘.The reference to be tracked is shown

in Figure 5.
Without consideration of input saturation, the aircraft

demonstrates precise and fast tracking response, as shown in
Figure 6(a), using a continuous-time robust H

∞

controller
designed in [13] (matrices 𝐴

𝑐

, 𝐵
𝑐

, 𝐶
𝑐

, and 𝐷
𝑐

are obtained
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Figure 5: Reference.

by using the robust control toolbox). But the control inputs
𝛿
𝑎

and 𝛿
𝑟

actually exceed their amplitude limits as Figure 6(b)
displays. Imposing amplitude limits at the aircraft’s inputs
in the simulation, the tracking performance deteriorates,
as shown in Figure 7(a). Thus, AW compensation should
be considered. Using Theorem 5 and taking the delayed
saturation index 𝑔

𝑑

= 0.65, the designing matrix is

𝐹 = (

−1.6399 0.0327 0.6927 −0.2444 241 3.8841

0.0219 −0.2281 0.0013 45.841 0.0003 38.787

0.0155 −0.2099 0.0010 −10.303 0.1976 174.09
),

(19)

and the obtained optimal L
2

gain is 𝛾 = 5.7294. The
corresponding tracking performance is shown in Figure 8(a).
The AW compensator designed in [14] which is based on
immediate activation is further presented here for compar-
ison. Solving LMI (13) in [14], the designing matrix is

𝐹 = (

−731.13 16.222 425.51 −106.50 98175 1634.7

31.960 −329.78 2.4337 54547 −76.769 59246

11.554 −123.60 1.0543 −5903.4 79.153 10750
),

(20)

and the optimal L
2

gain is 𝛾 = 5.7298. The corresponding
tracking performance is shown in Figure 7(b). Ourmethod is
also compared with the delayed AW compensator proposed
in [10]. Using the method of [10], the tracking performance is
shown in Figure 8(b).

Comparing the tracking performance in Figure 8(a) with
the uncompensated one as in Figure 7(a), fluctuation in
𝜇 channel decreases significantly in Figure 8(a). The AW
compensator plays its role. From Figures 8(a) and 7(b) which
are based on the immediate AW compensation, the output
dynamic property in Figure 8(a) is preferable. This is because
modest saturation can be seen as a small amount of plant
uncertainty, and since the nominal controller is robust, the
system still demonstrates good performance during this
modest saturation stage. Immediate AW compensation may
destroy this equilibrium. From Figures 8(a) and 8(b) with the
static delayed AW compensator, the output performance in
Figure 8(a) is no worse. This is because the AW compensator
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Figure 6: Linear tracking response with pulse reference in 𝛽 (no saturation).

Time (s)

(d
eg

)

0 5 10 15 20 25 30

𝜇

𝛼

𝛽

40
30
20
10

0
−10

−20

−30

−40

(a) Without AW compensator

Time (s)

(d
eg

)
15

10

5

0

−5

−10

−15

0 5 10 15 20 25 30

𝜇

𝛼

𝛽

(b) With AW compensator

Figure 7: Saturated tracking response with pulse reference in 𝛽 (with saturation).
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Figure 8: Saturated tracking response with delayed AW compensator.
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is a plant-order dynamic one, while the delayed AW compen-
sator proposed in [10] is static.

4. Conclusion

In this paper, the AW control problem based on the decou-
pling structure proposed by Weston and Postlewaite is
investigated. Based on the decoupling AW structure, matrix
𝐹 is to be designed to determine 𝑀(𝑠), which is a right
coprime factor of the plant 𝐺(𝑠). Motivated by the novel idea
of delaying the activation of the AW compensator, a new
decoupling structure with delayed activation of AW compen-
sator is developed. A time-varying gain𝐺

𝑑

is introduced, and
𝐺(𝑠) = 𝐺(𝑠)𝐺

𝑑

is treated as a new quasi-LPV plant to deal
with the delayed AW control problem. For both single-input
andmulti-input plants, a set of small scale LMIs are derived to
calculate the designing matrix 𝐹 for AW compensator. Only
simple LMIs are needed to be solved, while the LMIs in [14]
to be solved are large.Most of all, the AW technique proposed
here has a better performance applied in the application
example than in [14] and has noworse performance than [10].
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We propose and investigate a new general model of fuzzy complex network systems described by Takagi-Sugeno (T-S) fuzzy model
with time-varying delays. Hybrid synchronization problem is discussed for this general T-S fuzzy complex dynamical network
with nondelayed and delayed coupling between nodes. Utilizing Lyapunov-Krasovskii functional method, synchronization stability
criteria for the networks are established in terms of linear matrix inequalities (LMIs).These criteria reveal the relationship between
coupling matrices with time-varying delays and synchronization stability of the dynamical network. Numerical simulation is
provided to illustrate the effectiveness and advantage of derived theoretical results.

1. Introduction

In recent years, complex dynamical networked agent systems
have attracted a great deal of attention in various engineering
fields from physics to biology, chemistry, and computer
science [1–3]. The reason can be attributed to their flexibility
and generality for representing virtually any natural andman-
made systems. Such systems in the real world usually consist
of a large number of highly interconnected dynamical units.
Transportation networks, coupled biological and chemical
engineering systems, neural networks in human brains, and
the Internet are only a few of such examples [4].

Synchronization is one of the most significant and
interesting collective behaviors in complex networked agent
systems due to its potential applications in many fields
including secure communization, parallel image processing,
and information science [5–7]. On the other hand, time
delays occur commonly in complex networks because of
the finite speed of signal transmission over the links [8].
Since the time delay often causes undesirable performance
and instability of the network, various approaches to syn-
chronization analysis for complex dynamical networks with
time delay have been investigated in the literature [9–12].
Therefore, synchronization criteria of complex networks with
delays have become a topic of practical importance. The

stability criteria for time delay systems include two categories:
delay-dependent ones and delay-independent ones. Since
delay-dependent stability criteria include the information
on the size of delay, delay-dependent stability criteria are
generally less conservative than delay-independent ones [10].
Moreover, many real-world networks are not static but more
likely to be time-varying evolving, particularly in biological
and physical networks. Commonly, time-varying delays are
general form of time delays. There are a few research works
[13–15] considering the time-varying coupling for complex
agent systems of dynamical networks.

Furthermore, the uncertainty or vagueness is unavoidable
in real modeling problems of agent systems. Fuzzy theory as
an efficient tool in approximating a complex nonlinear system
is a feasible method to take vagueness into consideration
[16].There are some researchworks investigating the problem
of delay-dependent robust controllers and filtering design
for a class of uncertain state-delayed Takagi-Sugeno (T-S)
fuzzy systems [17–20]. Recently, the problems of stability
analysis, approximation, and stabilization for Takagi-Sugeno
fuzzy systems with time-varying state delay are investigated
[21–24]. So, fuzzy complex networks have advantages over
pure complex networks since they incorporate the capability
of fuzzy reasoning in handling uncertain information. In
this regard, the fuzzy models to describe complex dynamical
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networks which are subjected to nonlinearity and have time-
varying delays are introduced. The synchronization problem
for T-S fuzzy stochastic discrete-time complex networks
with mixed time-varying delays is discussed in a recent
work [25]. By employing the information of probability
distribution of time delays, the original system is transformed
into a T-S fuzzy model with stochastic parameter [26, 27].
But how to solve the synchronization problem for general
fuzzy complex networks still remains largely unsolved and
challenging. To the best of our knowledge, time-varying
delay [28, 29] synchronization analysis of general fuzzy
complex dynamical networks has not been reported in the
literature.

Besides, it is noticed that most of the studies on synchro-
nization of dynamical networks have been performed under
some implicit assumptions that there exists the information
communication of nodes via the edges only at time 𝑡 or
at time 𝑡 𝜏 [30]. However, in many circumstances, this
simplification does not match satisfactorily the peculiarities
of real networks; there exists the information communication
of nodes not only at time 𝑡 but also at time 𝑡 𝜏. More
recently, coexistence of the hybrid synchronization in chaotic
systems was investigated intensively [31]. However, our gen-
eralized dynamical network model has different coupling
strengths for different connections. So it is complex and
extended comparing with the simplified network model
in [32]. So our conclusion is more compact and more
meaningful for the generalized network models. To the
best of our knowledge, there are very few studies on the
hybrid synchronization of general coupled complex dynam-
ical networks with nondelayed and delayed coupling in the
literature.

Motivated by the previous discussions, in this paper,
we attempt to introduce some more general time-varying
dynamical network models based on the T-S fuzzy model
and investigate the synchronization properties of this model.
Based on the Lyapunov-Krasovskii functional method, we
use a linearized method to solve the problem of synchroniza-
tion for fuzzy complex networks with time-varying coupling
delay and derive hybrid synchronization conditions for delay-
dependent stabilities in terms of LMIs, the time-varying
network model. A numerical example is given to demon-
strate the effectiveness and the advantage of the proposed
method.

The rest of this paper is organized as follows. In Section 2,
we present some preliminaries for proving the proof and
the fuzzy time-varying coupled dynamical network model.
Hybrid synchronization criterions are derived in Section 3.
In Section 4, we provide a numerical simulation to verify
the correctness and effectiveness of the derived results.
Conclusions are presented in Section 5.

2. Problem Formulation

Consider the following model of general continuous-time
complex networks with time-varying coupling delays which
can be represented by a T-S fuzzy model.

Rule 𝑙: If 𝜃
1

(𝑡) is 𝐹
𝑙1

, 𝜃
2

(𝑡) is 𝐹
𝑙2

,. . ., 𝜃
𝑔

(𝑡) is 𝐹l𝑔, then

̇𝑥
𝑖

(𝑡) = 𝑓 (𝑥
𝑖

(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ
𝑙

𝑥
𝑗

(𝑡)

+ 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ̃
𝑙

𝑥
𝑗

(𝑡 − 𝜏 (𝑡)) ,

𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑁,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝐹
𝑙𝑗

(𝑙 = 1, . . . , 𝑟; 𝑗 = 1, . . . , 𝑔) are the fuzzy sets;
𝑟 is the number of rules and 𝜃

𝑗

(𝑗 = 1, . . . , 𝑔) are the
premise variables; 𝑁 is the number of agent nodes, where
each agent node is an 𝑛-dimensional dynamical system with
node dynamics ̇𝑥 = 𝑓(𝑥, 𝑡); 𝑥

𝑖

= (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑛

)
𝑇

∈

𝑅
𝑛 are the state variables of node 𝑖; 𝑓 : 𝑅

𝑛

→ 𝑅
𝑛 is

continuously differentiable; Γ
𝑙

and Γ̃
𝑙

are the constant inner-
coupling matrices of the nodes; the constant 𝜀 > 0 is the
coupling strength; 𝐶 = (𝑐

𝑖𝑗

)
𝑁×𝑁

and 𝐶 = (𝑐
𝑖𝑗

)
𝑁×𝑁

are
the outer-coupling matrices of the network, in which 𝑐

𝑖𝑗

is
defined, as follows: if there is a connection between node 𝑖
and node 𝑗 (𝑗 ̸= 𝑖), then 𝑐

𝑖𝑗

= 𝑐
𝑗𝑖

= 1; otherwise, 𝑐
𝑖𝑗

= 𝑐
𝑗𝑖

= 0,
𝑐
𝑖𝑗

is similar defined and the diagonal elements of matrices 𝐶
and 𝐶 are defined by

𝑐
𝑖𝑗

= −

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑐
𝑖𝑗

= −

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑐
𝑗𝑖

,

𝑐
𝑖𝑗

= −

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑐
𝑖𝑗

= −

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑐
𝑗𝑖

, 𝑖 = 1, . . . , 𝑁.

(2)

Suppose that C and 𝐶 are irreducible matrices. Time-varying
delay 𝜏(𝑡) satisfies

0 ≤ 𝜏 (𝑡) ≤ ℎ, ̇𝜏 (𝑡) ≤ 𝛾, (3)

in which ℎ and 𝛾 are constants. The initial function 𝜙(𝑡) is a
continuous and differentiable vector-valued function.

By using the standard fuzzy inference method, the T-S
fuzzy network (1) can be expressed by the following model:

̇𝑥
𝑖

(𝑡) =

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [

[

𝑓 (𝑥
𝑖

(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ
𝑙

𝑥
𝑗

(𝑡)

+𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ̃
𝑙

𝑥
𝑗

(𝑡 − 𝜏 (𝑡))]

]

,

(4)

where 𝜃(𝑡) = [𝜃
1

(𝑡), 𝜃
2

(𝑡), . . . , 𝜃
𝑔

(𝑡)], and 𝜇
𝑙

(𝜃(𝑡)) = 𝜔
𝑙

(𝜃(𝑡))/

∑
𝑟

𝑙=1

𝜔
𝑙

(𝜃(𝑡)), in which 𝐹
𝑙𝑗

(𝜃
𝑗

(𝑡)) is the grade of membership
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of 𝜃
𝑗

(𝑡) in 𝐹
𝑙𝑗

. It is obvious that the fuzzy weighting functions
𝜇
𝑙

(𝜃(𝑡)) satisfy

𝜇
𝑙

(𝜃 (𝑡)) ≥ 0,

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) = 1. (5)

In the following, some elementary situations are introduced,
which play an important role in proving the main result.

Definition 1. The dynamical networked agent system (1) is
said to achieve asymptotic synchronization if

𝑥
1

(𝑡) = 𝑥
2

(𝑡) = ⋅ ⋅ ⋅ = 𝑥
𝑁

(𝑡) = 𝑠 (𝑡) , 𝑡 → ∞, (6)

where 𝑠(𝑡) is a solution of an isolate node, satisfying ̇𝑠(𝑡) =

𝑓(𝑠(𝑡)).

Lemma 2 (see [7]). If 𝐶 = (𝑐
𝑖𝑗

)
𝑁×𝑁

satisfies the aforemen-
tioned defined conditions, then there exists a unitary matrix,
𝜙 = (𝜙

1

, . . . , 𝜙
𝑁

), such that 𝐶𝑇𝜙
𝑘

= 𝜆
𝑘

𝜙
𝑘

, 𝑘 = 1, 2, . . . , 𝑁,
where 𝜆

𝑘

, 𝑘 = 1, 2, . . . , 𝑁, are the eigenvalues of matrix C.

Lemma 3 (see [12]). Let 𝑋 and 𝑌 be arbitrary n-dimensional
real vectors, and let 𝐾 be an n × n positive definite matrix.
𝑃 ∈ 𝑅

𝑛×𝑛 is an arbitrary realmatrix.Then, the followingmatrix
inequality holds:

2𝑋
𝑇

𝑃𝑌 ≤ 𝑋
𝑇

𝑃𝐾
−1

𝑃
𝑇

𝑋 + 𝑌
𝑇

𝐾𝑌. (7)

The aim of this paper is to investigate synchronization
problem of the fuzzy complex dynamical network with time-
varying delay (4).

3. Main Results

In this section, we focus on investigating the hybrid synchro-
nization problem of fuzzy complex dynamical networks with
nondelayed and delayed coupling. Before deriving our main
results, the following lemma will be utilized.

Lemma 4. Consider the T-S fuzzy dynamical network (4). Let
0 = 𝜆

1

> 𝜆
2

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑁

and 0 = �̃�
1

> �̃�
2

≥ ⋅ ⋅ ⋅ ≥ �̃�
𝑁

,
respectively, be the eigenvalues of outer coupling matrix C and
𝐶. If the following 𝑁 − 1 time-varying delayed differential
equations are asymptotically stable about their zero solution:

̇𝑤
𝑘

(𝑡) =

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [ (𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

) 𝑤
𝑘

(𝑡)

+𝜀�̃�
𝑘

Γ̃
𝑙

𝑤
𝑘

(𝑡 − 𝜏 (𝑡))] ,

𝑘 = 2, 3, . . . , 𝑁,

(8)

where 𝐽(𝑡) is the Jacobin of 𝑓(𝑥(𝑡)) at 𝑠(𝑡), then synchronized
states in fuzzy complex networks (1) are asymptotically stable.

Proof. For the synchronized states of complex networks (4),
we have

𝑥
𝑖

(𝑡) = 𝑠 (𝑡) + 𝑒
𝑖

(𝑡) , 𝑖 = 1, 2, . . . , 𝑁. (9)

Substituting (9) into (4), we obtain

̇𝑒
𝑖

(𝑡) =

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [

[

𝑓 (𝑠 (𝑡) + 𝑒
𝑖

(𝑡)) − 𝑓 (𝑠 (𝑡))

+ 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ
𝑙

𝑒
𝑗

(𝑡)

+𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ̃
𝑙

𝑒
𝑗

(𝑡 − 𝜏 (𝑡))]

]

.

(10)

Considering that 𝑓(𝑠(𝑡)) is continuous differentiable, it is
easy to know that the origin of the complex networks (8) is
an asymptotically stable equilibrium point for the following
linear time delay systems:

̇𝑒
𝑖

(𝑡) =

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [

[

𝐽 (𝑡) 𝑒
𝑖

(𝑡) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ
𝑙

𝑒
𝑗

(𝑡)

+𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ̃
𝑙

𝑒
𝑗

(𝑡 − 𝜏 (𝑡))]

]

=

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡))

× [𝐽 (𝑡) 𝑒
𝑖

(𝑡)+𝜀Γ
𝑙

(𝑒
1

(𝑡) , . . . , 𝑒
𝑁

(𝑡) (𝑐
𝑖1

, . . . , 𝑐
𝑖𝑁

)
𝑇

+ 𝜀Γ̃
𝑙

[𝑒
1

(𝑡 − 𝜏 (𝑡)) , . . . , 𝑒
𝑁

(𝑡 − 𝜏 (𝑡) ]

× (𝑐
𝑖1

, . . . , 𝑐
𝑖𝑁

)
𝑇

] .

(11)

Let 𝑒(𝑡) = (𝑒
1

(𝑡), . . . , 𝑒
𝑁

(𝑡)) ∈ 𝑅
𝑁×𝑁; we can obtain

̇𝑒
𝑖

(𝑡)

=

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [𝐽 (𝑡) 𝑒
𝑖

(𝑡) + 𝜀Γ
𝑙

𝑒 (𝑡) 𝐶
𝑇

+ 𝜀Γ̃
𝑙

𝑒 (𝑡 − 𝜏 (𝑡)) 𝐶
𝑇

] .

(12)

According to Lemma 2, there exist nonsingular matrices,
Φ
1

= (𝜙
11

, . . . , 𝜙
1𝑁

), Φ
2

= (𝜙
21

, . . . , 𝜙
2𝑁

), such that 𝐶𝑇Φ
1

=

Φ
1

Λ
1

and 𝐶𝑇Φ
2

= Φ
2

Λ
2

, with Λ
1

= diag(𝜆
1

, . . . , 𝜆
𝑁

), Λ
2

=

diag(�̃�
1

, . . . , �̃�
𝑁

). Using the nonsingular transform 𝑒(𝑡)Φ =

𝑤(𝑡), 𝑒(𝑡 − 𝜏)Φ = 𝑤(𝑡 − 𝜏), then we obtain

̇𝑤
𝑘

(𝑡) =

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [ (𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

) 𝑤
𝑘

(𝑡)

+𝜀�̃�
𝑘

Γ̃
𝑙

𝑤
𝑘

(𝑡 − 𝜏 (𝑡))] ,

𝑘 = 1, . . . , 𝑁.

(13)

Note that 𝜆
1

= 0, �̃�
1

= 0 correspond to the synchroniza-
tion of the network states (4), where the state 𝑠(𝑡) is an orbital
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stable solution of the isolate node as assumed before in (4). If
the following 𝑁 − 1 pieces of 𝑛-dimensional linear multiple
time delay differential equations

̇𝑤
𝑘

(𝑡) =

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [ (𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

) 𝑤
𝑘

(𝑡)

+𝜀�̃�
𝑘

Γ̃
𝑙

𝑤
𝑘

(𝑡 − 𝜏 (𝑡))] ,

𝑘 = 1, . . . , 𝑁

(14)

are asymptotically stable, then 𝑒(𝑡) will tend to the origin
asymptotically, which implies that synchronized states of
complex networks (8) are asymptotically stable.

The proof is thus completed.

Remark 5. We use Lemma 4 to linearize the complicated
system to deal with the complex networks by using fuzzy
theory. It is an available way to investigate the interconnected
dynamical agents of complex networks. Then some new
subsystems can be obtained, which are easy to be analyzed.

Now, the main result is stated in the following theorem.

Theorem 6. If there exist positive definite symmetric matrices
𝑃
𝑘

= 𝑃
𝑇

𝑘

> 0, 𝑄
𝑘

= 𝑄
𝑇

𝑘

> 0, 𝑅
𝑘

= 𝑅
𝑇

𝑘

> 0, and 𝑍
𝑘

= 𝑍
𝑇

𝑘

> 0,
such that the following LMI holds for all 𝑙 = 1, 2, . . . , 𝑟:

[
[
[
[
[

[

Θ
𝑘

ℎΩ
1𝑘

ℎΩ
2𝑘

ℎΩ
3𝑘

ℎΠ
𝑇

𝑘

𝑍
𝑘

∗ −ℎ𝑍
𝑘

0 0 0

∗ ∗ −ℎ𝑍
𝑘

0 0

∗ ∗ ∗ −ℎ𝑍
𝑘

0

∗ ∗ ∗ ∗ −ℎ𝑍
𝑘

]
]
]
]
]

]

< 0, (15)

where

Ω
1𝑘

=
[
[
[

[

𝑁
1

1𝑘

𝑁
2

1𝑘

𝑁
2

1𝑘

]
]
]

]

, Ω
2𝑘

=
[
[
[

[

𝑁
1

2𝑘

𝑁
2

2𝑘

𝑁
2

2𝑘

]
]
]

]

, Ω
3𝑘

=
[
[
[

[

𝑁
1

3𝑘

𝑁
2

3𝑘

𝑁
2

3𝑘

]
]
]

]

,

for 𝑘 = 2, 3, . . . , 𝑁,

Θ
𝑘

= Θ
𝑘1

+ Θ
𝑘2

+ Θ
𝑇

𝑘2

,

Θ
𝑘1

=[

[

𝑃
𝑘

(𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

) + (𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

)
𝑇

𝑃
𝑘

𝜀�̃�
𝑘

Γ̃
𝑙

𝑃
𝑘

0

∗ − (1 − 𝛾) 0

∗ ∗ −𝑅
𝑘

]

]

,

Θ
𝑘2

= [Ω
𝑘1

+ Ω
𝑘3

−Ω
𝑘1

+ Ω
𝑘2

−Ω
𝑘2

− Ω
𝑘3

] ,

Π
𝑘

= [𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

𝜀�̃�
𝑘

Γ̃
𝑙

0] ,

(16)

where ∗ denotes the symmetric terms in a symmetric matrix,
then the asymptotic synchronization of complex network sys-
tem (8) can be achieved.

Proof. Construct a Lyapunov-Krasovskii function as

𝑉
𝑘

(𝑡) = 𝑤
𝑇

𝑘

(𝑡) 𝑃
𝑘

𝑤
𝑘

(𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑤
𝑇

𝑘

(𝑠) 𝑄
𝑘

𝑤
𝑘

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

𝑤
𝑇

𝑘

(𝑠) 𝑅
𝑘

𝑤
𝑘

(𝑠) 𝑑𝑠

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

̇𝑤
𝑘

(𝑠) 𝑑𝑠 𝑑𝜃.

(17)

According to Lemma 4, calculating the time derivative of
𝑉
𝑘

(𝑡) along the trajectories of complex networks (8), we
obtain

𝑉
𝑘

(𝑡) = 2𝑤
𝑇

𝑘

(𝑡) 𝑃
𝑘

̇𝑤
𝑘

(𝑡) + 𝑤
𝑇

𝑘

(𝑡) 𝑄
𝑘

𝑤
𝑘

(𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑤
𝑇

𝑘

(𝑡 − 𝜏 (𝑡)) 𝑄
𝑘

𝑤
𝑘

(𝑡 − 𝜏 (𝑡))

+ 𝑤
𝑇

𝑘

(𝑡) 𝑅
𝑘

𝑤
𝑘

(𝑡) − 𝑤
𝑇

𝑘

(𝑡 − ℎ) 𝑅
𝑘

̇𝑤
𝑘

(𝑡 − ℎ)

+ ℎ ̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

̇𝑤
𝑘

(𝑠) − ∫

𝑡

𝑡−ℎ

̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

̇𝑤
𝑘

(𝑠)

≤ 2𝑤
𝑇

𝑘

(𝑡) 𝑃
𝑘

̇𝑤
𝑘

(𝑡) + 𝑤
𝑇

𝑘

(𝑡) 𝑄
𝑘

𝑤
𝑘

(𝑡)

− (1 − 𝛾)𝑤
𝑇

𝑘

(𝑡 − 𝜏 (𝑡)) 𝑄
𝑘

𝑤
𝑘

(𝑡 − 𝜏 (𝑡))

+ 𝑤
𝑇

𝑘

(𝑡) 𝑅
𝑘

𝑤
𝑘

(𝑡) − 𝑤
𝑇

𝑘

(𝑡 − ℎ) 𝑅
𝑘

̇𝑤
𝑘

(𝑡 − ℎ)

+ ℎ ̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

̇𝑤
𝑘

(𝑠) − ∫

𝑡

𝑡−ℎ

̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

̇𝑤
𝑘

(𝑠) .

(18)

Based on the Newton-Leibniz formula, the following
equations can be obtained for arbitrary matrices Ξ

𝑘

with
appropriate dimensions:

2𝜉
𝑇

𝑘

(𝑡) Ξ
𝑘

[𝑤
𝑘

(𝑡) − 𝑤
𝑘

(𝑡 − 𝜏) − ∫

𝑡

𝑡−𝜏

̇𝑤
𝑘

(𝑠) 𝑑𝑠] = 0, (19)

where 𝜍𝑇
𝑘

(𝑡) = (𝑤
𝑇

𝑘

(𝑡), 𝑤
𝑇

𝑘

(𝑡 − 𝜏)) and Ξ
𝑇

𝑘

= (𝑋
𝑇

1

, 𝑋
𝑇

2

).
Therefore, using Lemma 3, we have

𝑉
𝑘

(𝑡) = 2𝑤
𝑇

𝑘

(𝑡) 𝑃
𝑘

̇𝑤
𝑘

(𝑡) + 𝑤
𝑇

𝑘

(𝑡) (𝑄
𝑘

+ 𝑅
𝑘

) 𝑤
𝑘

(𝑡)

− (1 − 𝛾)𝑤
𝑇

𝑘

(𝑡 − 𝜏 (𝑡)) 𝑄
𝑘

𝑤
𝑘

(𝑡 − 𝜏 (𝑡))

− 𝑤
𝑇

𝑘

(𝑡 − ℎ) 𝑅
𝑘

̇𝑤
𝑘

(𝑡 − ℎ) + ℎ ̇𝑤
𝑇

𝑘

(𝑡) 𝑍
𝑘1

̇𝑤
𝑘

(𝑡)

− ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘1

(𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘1

̇𝑤
𝑘

(𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘1

̇𝑤
𝑘

(𝑠) 𝑑𝑠

+ 2Δ
𝑇

𝑘

(𝑡) Ω
1𝑘

[𝑤
𝑘

(𝑡) − 𝑤
𝑘

(𝑡 − 𝜏 (𝑡))

−∫

𝑡

𝑡−𝜏(𝑡)

̇𝑤
𝑇

𝑘

(𝑠) 𝑑𝑠]
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+ 2Δ
𝑇

𝑘

(𝑡) Ω
2𝑘

[𝑤
𝑘

(𝑡 − 𝜏 (𝑡)) − 𝑤
𝑘

(𝑡 − ℎ)

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

̇𝑤
𝑇

𝑘

(𝑠) 𝑑𝑠]

+ 2Δ
𝑇

𝑘

(𝑡) Ω
3𝑘

[𝑤
𝑘

(𝑡) − 𝑤
𝑘

(𝑡 − ℎ)

−∫

𝑡

𝑡−ℎ

̇𝑤
𝑇

𝑘

(𝑠) 𝑑𝑠]

<

𝑟

∑

𝑖=1

𝜇
𝑙

(𝜃 (𝑡)) {Φ
𝑇

𝑘

(𝑡) [Θ
𝑘

+ ℎΓ̃
𝑇

𝑘

𝑍
𝑘

Γ̃
𝑘

+ ℎΩ
1𝑘

𝑍
−1

𝑘

Ω
𝑇

1𝑘

+ ℎΩ
2𝑘

𝑍
−1

𝑘

Ω
𝑇

2𝑘

+ℎΩ
3𝑘

𝑍
−1

𝑘

Ω
𝑇

3𝑘

]Φ
𝑘

(𝑡)

− ∫

𝑡

𝑡−𝜏(𝑡)

[Φ
𝑇

𝑘

(𝑡) Ω
1𝑘

+ ̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

] 𝑍
−1

𝑘

× [Ω
𝑇

1𝑘

Φ
𝑘

(𝑡) + 𝑍
𝑘

̇𝑤
𝑘

(𝑠)] 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

[Φ
𝑇

𝑘

(𝑡) Ω
2𝑘

+ ̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

] 𝑍
−1

𝑘

× [Ω
𝑇

2𝑘

Φ
𝑘

(𝑡) + 𝑍
𝑘

̇𝑤
𝑘

(𝑠)] 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

[Φ
𝑇

𝑘

(𝑡) Ω
3𝑘

+ ̇𝑤
𝑇

𝑘

(𝑠) 𝑍
𝑘

] 𝑍
−1

𝑘

× [Ω
𝑇

3𝑘

Φ
𝑘

(𝑡) + 𝑍
𝑘

̇𝑤
𝑘

(𝑠)] 𝑑𝑠} ,

(20)

where Δ𝑇
𝑘

(𝑡) = [𝑤
𝑇

𝑘

(𝑡), 𝑤
𝑇

𝑘

(𝑡 −𝜏), 𝑤
𝑇

𝑘

(𝑡 −ℎ)]
𝑇. Because the last

three terms are all less than zero, if

Θ
𝑘

+ ℎΓ̃
𝑇

𝑘

𝑍
𝑘

Γ̃
𝑘

+ ℎΩ
1𝑘

𝑍
−1

𝑘

Ω
𝑇

1𝑘

+ ℎΩ
2𝑘

𝑍
−1

𝑘

Ω
𝑇

2𝑘

+ ℎΩ
3𝑘

𝑍
−1

𝑘

Ω
𝑇

3𝑘

< 0,

(21)

then 𝑉
𝑘

(𝑡) < −𝜅‖𝑤(𝑡)‖
2 for sufficiently small 𝜅 > 0. It is

easy to see that system (8) is globally synchronized. By Schur
complements, we know that the function (21) is equivalent to
the function (15).

The proof is thus completed.

Remark 7. For the delay-dependent synchronization prob-
lems of complex networks, the Lyapunov-Krasovskii condi-
tion has been attracted owing to the structural advantage.
The key point is the introduction of the integral inequality
technique, a fundamental trick to derive delay-dependent
stability criteria containing the size or the bounds of delays
and their derivatives. However, almost results in this field
have employed partial information on the relationship among
delay-related terms. Being differently from the common
construction, we use not only the time-varying-delayed
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Figure 1: Synchronization error 𝑒
𝑖1

for the coupling delayed net-
works with ℎ = 𝛾 = 0.5.

0 1 2 3

3

4 5 6
−1.5

−1

−0.5

0
0.5

1
1.5

2.5
2

Time

Er
ro

r𝑒
𝑖
2

Figure 2: Synchronization error 𝑒
𝑖1

for the coupling delayed net-
works with ℎ = 𝛾 = 0.5.

state but also the delay-upper-bounded state to exploit
all possible information when constructing the Lyapunov-
Krasovskii functional. Our approach in Theorem 6 reduces
the conservatism of the existing methods to a certain extent.

The aforementioned results can be extended to the case of
bound constant time delay. If the time-varying delay 𝜏(𝑡) is a
constant time delay in system (1), then fuzzy system (4) can
be expressed in the following model:

̇𝑥
𝑖

(𝑡) =

𝑟

∑

𝑙=1

𝜇
𝑙

(𝜃 (𝑡)) [

[

𝑓 (𝑥
𝑖

(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ
𝑙

𝑥
𝑗

(𝑡)

+𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗

Γ̃
𝑙

𝑥
𝑗

(𝑡 − 𝜏)]

]

.

(22)

We obtain the following corollary.

Corollary 8. If there exist positive definite symmetric matrices
𝑃
𝑘

, 𝑄
𝑘

, and 𝑅
𝑘

(2 ≤ 𝑘 ≤ 𝑁) and two arbitrary matrices 𝑁
1

,
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Table 1: Upper bounds of ℎ for different 𝜀 and 𝛾.

Coupling strength 𝜀 0.3 0.4 0.5 0.6
𝛾 = 0 1.832 1.136 0.813 0.637
𝛾 = 0.2 1.461 1.053 0.716 0.562
𝛾 = 0.5 1.263 0.851 0.641 0.514
𝛾 = 0.9 0.953 0.710 0.560 0.473

Er
ro

r𝑒
𝑖
3
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Figure 3: Synchronization error 𝑒
𝑖3

for the coupling delayed net-
works with ℎ = 𝛾 = 0.5.

𝑁
2

with appropriate dimensions, such that the following LMIs
hold for all 𝑙 = 1, 2, . . . , 𝑟:

Ω
𝑘

=
[
[
[

[

Θ �̃�
𝑘

𝜀𝑃
𝑘

Γ̃
𝑙

− 𝑁
1

+ 𝑁
𝑇

2

𝜏𝐽
𝑇

(𝑡) 𝑅
𝑘

𝜏𝑁
1

∗ −𝑄
𝑘

− 𝑁
2

− 𝑁
𝑇

2

𝜏𝑐�̃�
𝑘

Γ̃
𝑇

𝑙

𝑅
𝑘

𝜏𝑁
2

∗ ∗ −𝜏𝑅
𝑘

0

∗ ∗ ∗ −𝜏𝑅
𝑘

]
]
]

]

< 0,

(23)

where

Θ = 𝑃
𝑘

(𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

) + (𝐽 (𝑡) + 𝜀𝜆
𝑘

Γ
𝑙

)
𝑇

𝑃
𝑘

+ 𝑄
𝑘

+ 𝑁
𝑇

1

+ 𝑁
1

,

(24)

then the asymptotic synchronization of system (22) in
Definition 1 can be achieved.

Proof. Select a Lyapunov-Krasovskii function as

𝑉
𝑘

(𝑡) = 𝑤
𝑇

𝑘

(𝑡) 𝑃
𝑘

𝑤
𝑘

(𝑡) + ∫

𝑡

𝑡−𝜏

𝑤
𝑇

𝑘

(𝑠) 𝑄
𝑘

𝑤
𝑘

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃

̇𝑤
𝑇

𝑘

(𝑠) 𝑅
𝑘

̇𝑤
𝑘

(𝑠) 𝑑𝑠 𝑑𝜃.

(25)

The rest of the proof is similar to that of Theorem 6; thus one
can easily obtain the result. Thus it is omitted here. The proof
is completed.

Remark 9. Corollary 8 presents new hybrid synchronization
conditions for fuzzy complex networks with constant delays.

We consider the delay which involve general form of delays.
Based on Lyapunov-Krasovskii function method, stability
criteria are obtained in the form of LMIs which can be easily
solved. And the results are usually less conservative than
delay-independent ones especially when the size of the time
delay is small.

4. Numerical Example

To illustrate the previous results we obtain, we consider the
following complex dynamical networks with time-varying
delays consisting of three nodes:

[

[

̇𝑥
1

(𝑡)

̇𝑥
2

(𝑡)

̇𝑥
3

(𝑡)

]

]

= [

[

−𝑥
1

−2𝑥
2

−3𝑥
3

]

]

(26)

which is asymptotically stable at 𝑠(𝑡) = 0, with Jacobin given
by 𝐽 = diag{−1, −2, −3}. Assume that inner-couplingmatrices
are Γ = Γ̃ = diag{1, 1, 1}, and the coupling configuration
matrices are

𝐶 = 𝐶 = [

[

−1 0.5 0.5

0.5 −1 0.5

0.5 0.5 −1

]

]

,

𝜇
1

(𝜃 (𝑡)) = sin2 (𝑥
1

(𝑡)) ,

𝜇
2

(𝜃 (𝑡)) = cos2 (𝑥
1

(𝑡)) .

(27)

The eigenvalues of 𝐶 and 𝐶 are 𝜆(𝐶) = �̃�(𝐶) = {0, −1.5,

−1.5}.
Using MATLAB LMI toolbox, the upper bounds on the

time delay for different values of the coupling strength 𝜀 can
be obtained fromTheorem 6. A detailed comparison is given
in Table 1, where the achieved upper bounds of time delay
in the previous system are listed for their respective lower
bounds.

Assume that the coupling strength is 𝜀 = 0.4; it is found
that the maximum delay bound is ℎ = 0.73 in [27], for which
the synchronized states of the network are asymptotically
stable. By Theorem 6 in this paper, however, it is found that
the maximum delay bound for the synchronized states to be
asymptotically stable is ℎ = 0.851. It can be seen that the
method proposed in this paper is better.

For example, when the delay is 𝛾 = 0.5, by employing the
LMI Toolbox in Matlab, we simulate system (26) for given
chosen initial parameter 𝜀 = 0.3. We define the errors of
synchronization as follows:

𝑒
𝑖𝑗

(𝑡) ≜ 𝑥
𝑖𝑗

(𝑡) − 𝑥
(𝑖+1)𝑗

(𝑡) , 𝑖 = 1, 2, 𝑗 = 1, 2, 3. (28)
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For random initial conditions, Figures 1, 2, and 3 show the
synchronization errors between the states of node 𝑖 and node
𝑖 + 1 with ℎ = 0.5. We find that the synchronization errors
converge to zero under the previous conditions.

5. Conclusions

In this paper, we have proposed a class of general complex
dynamical network models based on T-S fuzzy theory and
investigated hybrid synchronization of the proposed complex
dynamical networks. Time-varying delays in network cou-
plings of dynamical nodes have been considered. New delay-
dependent synchronization criteria in terms of LMIs have
been derived based on an appropriate Lyapunov functional.
Synchronization criteria are obtained in this paper which
can be applicable to networks with different topologies and
different sizes. Numerical simulation is also provided to
illustrate the usefulness and advantage of the synchronization
criteria.
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[7] J. Lü, X. Yu, and G. Chen, “Chaos synchronization of general
complex dynamical networks,” Physica A, vol. 334, no. 1-2, pp.
281–302, 2004.

[8] W. Lu and T. Chen, “Synchronization analysis of linearly
coupled networks of discrete time systems,” Physica D, vol. 198,
no. 1-2, pp. 148–168, 2004.

[9] C. Li and G. Chen, “Synchronization in general complex
dynamical networks with coupling delays,” Physica A, vol. 343,
no. 1–4, pp. 263–278, 2004.

[10] Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for
discrete-time stochastic complex networks with randomly
occurred nonlinearities and mixed time delays,” IEEE Transac-
tions on Neural Networks, vol. 21, no. 1, pp. 11–25, 2010.

[11] J. Cao, Z. Wang, and Y. Sun, “Synchronization in an array
of linearly stochastically coupled networks with time delays,”
Physica A, vol. 385, no. 2, pp. 718–728, 2007.

[12] D. Xu and Z. Su, “Synchronization criterions and pinning
control of general complex networks with time delay,” Applied
Mathematics and Computation, vol. 215, no. 4, pp. 1593–1608,
2009.
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The dynamic water quality assessment is a challenging and critical issue in water resource management systems. To deal with this
complex problem, a dynamic water assessment model based on multiagent technology is proposed, and an improved Q-learning
algorithm is used in this paper. In the proposed Q-learning algorithm, a fuzzy membership function and a punishment mechanism
are introduced to improve the learning speed of Q-learning algorithm.The dynamic water quality assessment for different regions
and the prewarning of water pollution are achieved by using an interaction factor in the proposed approach.The proposed approach
can deal with various situations, such as static and dynamic water quality assessment.The experimental results show that the water
quality assessment based on the proposed approach is more accurate and efficient than the general methods.

1. Introduction

The assessment of water quality plays an essential role
whether in engineering applications or in scientific research.
However, due to the frequent occurrence of abrupt water
pollution accident [1, 2], the general static assessment of water
quality cannotmeet the actual requirements anymore. So, it is
very important to assess the water quality of different regions
accurately and dynamically, which is a hot field in water
environment management system. The dynamic assessment
of water quality can give out alarm timely before the pollutant
reaches to some sensitive water regions. It is very helpful
for these regions to make preparations and control water
pollution effectively.

Various methods have been proposed to deal with the
problem of water quality evaluation [3–5].Themainmethods
of the static water quality assessment include the compre-
hensive index method [6], fuzzy comprehensive evaluation
method [7], BP neural network [8], and comprehensive
water quality identification index method [9]. Although
these methods have their own advantages, there are some
shortcomings of these methods. For example, the calculation

of the comprehensive index assessment method is complex.
The accuracy of the fuzzy comprehensive evaluation method
is lower, which cannot give out the assessment for water in
worse than Grade V level.The calculationmodel based on BP
neural network is very complex, and the choice of training
samples for BP neural network is difficult. The general
comprehensive water quality identification index method
cannot make specific analysis according to the characteristics
of different water bodies because various indicators are
considered to have the same effects in the water quality
assessment.

The static evaluationmethods can just assesswater quality
after the occurrence of water pollution. To solve this problem,
more and more research has been focused on dynamic water
quality assessment methods. For example, Yun et al. [10]
evaluated the changes in river water quality during a period
of time by using the probability transitionmatrix. Su et al. [11]
studied the spatiotemporal patterns and source apportion-
ment of pollution in Qiantang River (China) using neural-
basedmodeling andmultivariate statistical techniques.There
is much research on dynamic water quality assessment
methods, but few considered the problem of quick perception
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for the abrupt water pollution. The methods to determine
water quality of other regions according to the water quality
change of a region in the same basin are few.

To control water pollution and improve water environ-
ment quality effectively, the trend of water pollution should
be predicted accurately when water pollution accident occurs
[12, 13]. Because it is a problemof complex system, the general
method cannot deal with it efficiently. Recently, more and
more focus has been put on the agent-based method, which
is not only a feasible solution but also an efficient one [14, 15].
For example, Wen et al. [16] studied the problem of con-
sensus in directed networks of multiple agents with intrinsic
nonlinear dynamics and sampled-data information. Leon [17]
proposed an interaction protocol for a task allocation system,
which can reveal the emergent behaviors in social networks
of adaptive agents. In the multiagent system, agent is defined
as an entity, which has the capabilities of environment
perception, problem solving, and communication with the
outside world. Based on these features, the agent can be
used to solve the complex problems in practice by sharing
knowledge with each other [18]. To solve the problem of
dynamic water quality assessment, a multiagent model of
water environment is set up [19, 20], where different regions
in the water environment are abstracted as various agents. An
improved Q-learning algorithm is proposed to deal with the
cooperation of multiagents and carry out the task of dynamic
water quality assessment.

The paper is organized as follows. In Section 2, the
dynamic assessment model for water quality based on
multiagent technology is introduced. Section 3 presents the
proposed Q-learning algorithm for water quality assessment.
Some experiments are conducted, and the results are dis-
cussed in Section 4. At last, the conclusions are given in
Section 5.

2. The Multiagent Dynamic Assessment Model
for Water Quality

In this paper, the dynamic assessment for water quality is
studied. The dynamic water quality assessment has attracted
much attention due to its complexity and significance. There
are two main problems that need to be solved in the task
of dynamic water quality assessment. The first one is how
to assess the water quality of different regions efficiently,
when the indicators of water quality in all these regions are
obtained. The other one is how to assess the water quality of
other regions, when the indicators ofwater quality in only one
region are obtained.

To achieve the task of dynamic water quality assessment,
an assessment model for water quality based on multiagent
technology is proposed in this paper, where the water
environment is divided into different regional agents based
on the requirement of administration. By the information
exchange among these regional agents, the task of dynamic
water quality assessment can be accomplished efficiently. In
each agent, there is a water quality assessment model, which
is defined as follows in this study:

𝑃 = 𝜔
1

𝑃
1

+ 𝜔
2

𝑃
2

+ ⋅ ⋅ ⋅ + 𝜔
𝑛

𝑃
𝑛

, (1)

where 𝑃 is the level of water quality, 𝑃
1

, 𝑃
2

, . . . , 𝑃
𝑛

are various
indicators used to assess the water quality and 𝜔

1

, 𝜔
2

, . . . , 𝜔
𝑛

are the weights for these indicators.
To assess water quality, more accurately, the water quality

level 𝑃 is defined as the following form:

𝑃 = 𝑋
1

⋅ 𝑋
2

, (2)

where 𝑋
1

∈ {1, 2, . . . , 6} is the water quality level, which
is determined by the Chinese national standard for water
quality (see the Environmental Quality Standards for Surface
Water in China (GB3838-2002)), 𝑋

2

is the relative position
of the water quality level between two adjacent water quality
grades, and the symbol {⋅} is a separating character, which
has the same function as plus. For example, when the water
quality level 𝑃 = 2.5, the mean is that the grade of this water
quality is Grade II by the national standard, and the relative
grade of the water quality is 0.5; namely, the water quality is at
a relatively intermediate location betweenGrade II andGrade
III. When the value of𝑋

1

is 6, the water quality is worse than
Grade V. To reduce the computation complexity, the value
of 𝑋
2

is designed as a discrete value in this paper, namely,
𝑋
2

∈ {0.0, 0.1, . . . , 0.9}.
In the water quality assessment model above, the weight

for the 𝑖th indicator needs to be optimized based on the
dynamic change of water environment. In this study, a
Q-learning-based algorithm is proposed to deal with this
problem, which will be introduced in detail at Section 3.

3. The Proposed Multiagent
Q-Learning Algorithm

In the assessment model, the weights of various indicators
need to be obtained. In general water quality assessment
methods, these weights are always set by the experience.
Recently, some artificial intelligent methods are introduced
to optimize these weights, such as genetic algorithms and
neural networks. However, those approaches cannot realize
the information transmission and exchange among different
regions. So, the weights obtained by those approaches are
intrinsically static. To deal with this problem, the multiagent-
based technology is introduced into the water quality assess-
ment, and an improved Q-learning algorithm is proposed
to realize the cooperation of multiagents. In general multi-
agent reinforcement learning, the Markov decision process
is extended to realize the exchange learning for multiagent
systems. In most of algorithms of multiagent reinforcement
learning, it is required that each agent should know what
action will be taken by other agents before it takes action.
Thus, with the increase of the number of agents or the actions
of each agent, it will cause that the state space of agent grows
exponentially [21]. To solve these problems introduced above,
an improved multiagent Q-learning algorithm is proposed in
this study.

The Q-learning algorithm is a kind of reinforcement
learning method by the trial-and-error method. Compared
with other machine learning methods, the Q-learning algo-
rithm can initiatively find which action will produce the
greatest reward, instead of being told which action should
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be done [22–24]. To improve the learning efficiency of the
Q-learning algorithm, the number of action-state pairs and
the searching in the action-state pairs should be reduced.
In a multiagent system, an agent needs to keep track of its
environment as well as other agents, so the convergency and
learning speed are the problems that need to be solved at
first in the multiagent Q-learning algorithm [25, 26]. Some
improvements have been done on the multiagent Q-learning
to deal with the convergence problem [27, 28]. However,
there are still some problems of those approaches in the
literatures such thatmost of those approaches do not consider
the interactions among the agents. In this study, a fuzzy
membership function with distinguish weight [29] is used
to reduce the size of the action-state set. And a punishment
mechanism [30] is used in the proposed algorithm to reduce
the searching frequency. The proposed algorithm has some
better performances than the general Q-learning algorithm
such as the high learning speed and good convergence rate.
Furthermore, an interactive factor is introduced into the
proposed Q-learning algorithm, to realize the information
transmission and the interaction among the agents in the
system. The flow chart of the proposed Q-learning is shown
in Figure 1. The proposed approach is presented in detail as
follows.

3.1.The State Reduction Based on FuzzyMembership Function.
In the state preprocessingmodule of the proposedQ-learning
algorithm, a fuzzy membership function with distinguish
weight is used to reduce the size of sate-action sets by
removing the superfluous or unrelated information from the
system.Themembership function is defined as follows in this
paper:

𝑦 =
{

{

{

0, 𝑥 ≤ 𝑥
𝑏

or 𝑥 ≥ 𝑥
𝑏+1

,
𝑥
𝑏+1

− 𝑥

𝑥
𝑏+1

− 𝑥
𝑏

, 𝑥
𝑏

< 𝑥 < 𝑥
𝑏+1

,
(3)

where 𝑥 is the original state (namely, the evaluation indicator
for water quality in this study), 𝑦 is the distinguish weight
value of the indicatorwithin itsmembership domain (namely,
the parameter 𝑋

2

in (2)), 𝑥
𝑏

is the demarcation point of a
grade, and 𝑥

𝑏+1

is the demarcation point of the next grade.
When the grade of 𝑥

𝑏

is 𝑔 (namely, the parameter 𝑋
1

in (2)),
themembership value of the evaluation indicator is V = 𝑔+𝑦.
Because the size of the distinguish weight value𝑦 is 10 and the
number of the grade 𝑔 is 6 in this paper, the total number of
states is 𝑧 = 10 ∗ 6 = 60. By this way, the state space can be
reduced obviously.

3.2.The Information Transmission Based on Interaction Factor.
To transfer the information among these agents in the system,
a concept of the interaction factor (denoted by 𝜎) is proposed
in this paper, which can transfer the information of the key
state to other agents for water quality assessment. In practice,
the value of the interaction factor 𝜎 should be learnt by
experience. In this paper, it is calculated by

𝜎 = exp (−𝐾𝑑) , (4)

State preprocessingInteraction factor State reduction

Action execution

Reward Punishment

Water environment

𝑄-value update

Figure 1: Flowchart of the proposed Q-learning algorithm for mul-
tiagent system.

where 𝑑 is the distance between two agents, which can be an
abstract concept or an actual physical distance and 𝐾 is the
attenuation coefficient, which can be calculated by the least
square method:

Min
𝐾

𝐹 = √∑(𝑠
𝑐

− 𝑠
𝑟

)
2

, (5)

where 𝑠
𝑐

is the value of next state obtained by the proposed
algorithm at the given 𝐾. Moreover 𝑠

𝑟

is the actual value of
the next state. The value of 𝐾 obtained is the attenuation
coefficient, when the function 𝐹 arrives to the minimum
value. Based on (4) and (5), the time when the water quality
grade of one region will be reached to the highest value
(namely, the water quality will be worst) can be obtained.
Then, we can make some preparations to prevent the water
pollution for some sensitive areas.

3.3. The Action Execution Module. In the action execution
module, the regional agents select their actions by the soft-
max strategy [31], which is defined as

𝑃 (𝑎 | 𝑠, 𝑄) =
𝑒
𝑄(𝑠,𝑎)/𝜏

∑
𝑎


∈𝐴

𝑒𝑄(𝑠,𝑎

)/𝜏

, (6)

where 𝑎 is the action of agents, which is to increase or
decrease the weights of indicators in this study, 𝜏 is the
simulated annealing temperature parameter, which is used to
control the searching rate, and𝑄(𝑠, 𝑎) is the𝑄-value function
for the action-state pair. To reduce the searching times in
the action-state set and accelerate the learning rate of the
proposed algorithm, a punishment mechanism is introduced
into the proposed algorithm. Then, the 𝑄-value function
𝑄(𝑠, 𝑎) is separated into a punishment 𝑄-value and a reward
𝑄-value function, respectively. The update algorithm of the
punishment 𝑄-value is

𝑄
𝑐

(𝑠
𝑡

, 𝑎
𝑡

) = (1 − 𝛼)𝑄
𝑐

(𝑠
𝑡

, 𝑎
𝑡

) + 𝛼 [𝑐 + 𝛾𝑄
𝑐max (𝑠𝑡+1, 𝑏)] .

(7)
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And the update algorithm for the cumulative reward𝑄-value
is:

𝑄
𝑟

(𝑠
𝑡

, 𝑎
𝑡

) = (1 − 𝛼)𝑄
𝑟

(𝑠
𝑡

, 𝑎
𝑡

) + 𝛼 [𝑟 + 𝛾𝑄
𝑟max (𝑠𝑡+1, 𝑏)] ,

(8)

where 𝛼 ∈ (0, 1) is learning rate, 𝛾 ∈ (0, 1) is discount factor,
and 𝑟 and 𝑐 are the reward value and the punishment value,
respectively.

3.4. The Work Flow of the Proposed Approach. The work
flow of the proposed approach for dynamic water quality
assessment is summarized as follows.

(1) The initial state sets should be obtained from the
water quality monitoring system, which is denoted
as 𝑆
1

= {𝑆
11

, 𝑆
12

, . . . , 𝑆
1𝑛

}, where 𝑆
1𝑖

is the actual
concentration value of the 𝑖th indicator.The action set
of agent is 𝐴 = {𝜔

𝑖

+ 1, 𝜔
𝑖

− 1}, where 𝜔
𝑖

is the weight
of the 𝑖th indicator.

(2) Initialize the value of𝑄
𝑐

and𝑄
𝑟

to 0, select a key state
from the state sets, and initialize the interaction factor
𝜎 for this state to 0.

(3) Reduce the initial sate sets by (3), and a new state
set can be obtained, which is denoted as 𝑆

2

=

{𝑆
21

, 𝑆
22

, . . . , 𝑆
2𝑛

}, where 𝑆
2𝑖

is the concentration value
of the 𝑖th indicator after being processed.

(4) Each agent calculates the real-time state 𝑃key for the
key state, based on the state sets after being processed.
To easily compute and without losing generality, the
state 𝑃key is calculated by 𝑃key = 𝑆

2key +𝜎, where 𝑆2key
is the key state after being processed. The interaction
factor 𝜎 can be obtained by (4) and (5).

(5) Each agent selects the optimal action under current
state 𝑠 according to (6) and gets the next state 𝑠



after executing the action 𝑎. Then, a reward 𝑟 and
punishment 𝑐 can be obtained from the environment
feedback.

(6) Calculate the cumulative punishment value𝑄
𝑐

by (7).
If 𝑄
𝑐

≥ 𝜃, then select a new action from the action
sets (where 𝜃 is the upper limit for the punishment
value and 𝜃 = 50 in this paper). If 𝑄

𝑐

< 𝜃, then
set 𝑄
𝑟

(𝑠
𝑡+1

, 𝑏)max = max∑
𝑏∈𝐴

𝑄
𝑟

(𝑠
𝑡+1

, 𝑏). By (8), the
value of 𝑄

𝑟

can be obtained.
(7) Repeat steps (5) and (6) to find out the weights of each

group indicators, and calculate the average value of
the weight for each indicator. Then, the water quality
can be assessed by (1).

4. Experimental Studies

In order to test the performance of the proposed approach,
some experiments are conducted. In these experiments, a
water area of a lake is studied, which has six different regions
(see Figure 2). The task of these experiments is to assess the
water quality of the six regions.The pollution sources include
the industrial pollution source, the agricultural pollution

Regional agent 2

Regional agent 1

Regional agent 3

Regional agent 5

Regional agent 4

Water basin studied

Regional agent 6

Figure 2: The schematic drawing of the water area studied.

source, and the domestic pollution source. According to
the characteristics of the water area, it is assumed that the
main pollution indicators are Permanganate Index (CODMn),
Total Nitrogen (TN), and Total Phosphorus (TP); namely,
the initial state set is 𝑆

1

= {𝑆
1𝐶

, 𝑆
1𝑁

, 𝑆
1𝑃

}. Then, the reduced
state sets can be obtained based on the membership function
(3); that is, 𝑆

2

= {𝑆
2𝐶

, 𝑆
2𝑁

, 𝑆
2𝑃

}. The assessment model for
water quality is 𝑃 = 𝜔

1

𝑃
𝐶

+ 𝜔
2

𝑃
𝑁

+ 𝜔
3

𝑃
𝑃

. In this paper, two
experimentswere conducted, where the interaction factor𝜎 is
set as 𝜎 = 0 and 𝜎 ̸= 0 to test the performance of the proposed
approach in the static and dynamic assessment, respectively.

4.1. Static Water Quality Assessment (𝜎= 0). In this experi-
ment, the interaction factor 𝜎 is set as 0, which means that
there is no information transmission among these regional
agents in the water area. Each regional agent assesses its
own water quality based on the monitoring data of various
indicators.The training data set for the Q-learning algorithm
is shown in Table 1, which is used to learn the weights 𝜔

1

, 𝜔
2

,
and 𝜔

3

for CODMn, TN, and TP, respectively.
The training data of 𝑆

1𝐶

, 𝑆
1𝑁

, and 𝑆
1𝑃

in Table 1 are
collected from the monitoring points for each regional agent.
The value of the 𝑆

2𝐶

, 𝑆
2𝑁

, and 𝑆
2𝑃

is the corresponding
value of the three indicators reduced by the membership
function. 𝑃 is the water quality assessed by water quality
experts. From these training data, the optimal weights for
the three indicators can be obtained, which are 𝜔

1

= 0.5,
𝜔
2

= 0.3, and 𝜔
3

= 0.2. Based on these optimal weights
above, the water quality of different regional agents can be
assessed. To show the advantages of the proposed Q-learning
approach (QL), it is compared with the approach based on
the fuzzy comprehensive evaluation method (FC) and the
comprehensive identification index evaluation method (CI).
The test data and the water quality assessment results are
shown in Table 2, where the test date are the indicator data
collected in each monitoring point.

The results in Table 2 show that the assessment results of
the water quality are almost the same by the three methods
(see the water quality of the regional agent 1, agent 2, agent
3, and agent 4). The water quality assessment result for the
regional agent 5 shows that the water quality assessment by
the proposedmethod ismore accurate than themethod based
on the fuzzy comprehensive evaluation method (FC). The
proposed approach can not only give out the water quality
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Table 1: The training data set for the Q-learning algorithm.

𝑆
1𝐶

𝑆
1𝑁

𝑆
1𝑃

𝑃
𝐶

= 𝑆
2𝐶

𝑃
𝑁

= 𝑆
2𝑁

𝑃
𝑃

= 𝑆
2𝑃

𝑃

1.2 0.1 0.01 1.4 1.5 1.5 1.5
2.4 0.4 0.08 2.4 2.7 2.5 2.5
4.6 0.6 0.12 3.6 3.4 3.4 3.6
6.8 1.3 0.23 4.4 4.8 4.6 4.5
10.5 1.6 0.34 5.2 5.4 5.8 5.4
16.9 2.8 0.68 6.3 6.8 6.6 6.4

Table 2: The test data and results of water quality assessment.

Regional agent CODMn TN TP The assessment results
(mg/L) (mg/L) (mg/L) QL FC CI

Agent 1 2.605 0.356 0.056 2.5 II 2.4
Agent 2 2.597 0.481 0.123 2.6 II 2.8
Agent 3 2.536 0.224 0.124 2.6 II 2.5
Agent 4 6.625 1.434 0.321 4.4 IV 4.7
Agent 5 17.603 2.741 0.646 6.5 V 6.5
Agent 6 10.618 1.914 0.788 5.4 V 6.0

grade but also evaluate the pollution degree of the water in
this grade. In addition, the proposed approach can assess
the water quality which is worse than Grade V (see the
assessment results for agent 5 in Table 2). The assessment
results for agent 6 show that the assessment based on the
comprehensivewater quality identification indexmethodwill
become incorrect, when some indicators exceed the range in
the national standard. Because the weight of each indicator is
considered in the assessment model, the results based on the
proposed approach are more accurate.

The results of this experiment show that the proposed
Q-learning approach can assess the water quality accurately
and can deal with some abnormal conditions such that some
indicators become abnormal. Furthermore, the proposed
approach can assess the water quality of worse Grade V.

4.2. Dynamic Water Quality Assessment (𝜎 ̸= 0). To test the
performance of the proposed approach in the dynamic water
quality assessment task, this experiment is conducted. In
this experiment, an abrupt water pollution occurs in the
regional agent 1, which is an industrial pollution, and the
main contamination in the waste water is CODMn. So, the
interaction factor 𝜎 is used to transfer the concentration
information of CODMn among these regional agents. In the
dynamic water quality assessment model, 𝑃

𝐶

= 𝑆
2𝐶

+ 𝜎,
𝑃
𝑁

= 𝑆
2𝑁

, and 𝑃
𝑃

= 𝑆
2𝑃

, respectively.
In order to have an easy analysis, the assumptions in this

experiment are as follows. (1) The value of 𝜎 is only related
to the physical distance among the regional agents. (2) The
change step of𝐾 in (4) is assumed as 0.1. (3)Thewater speed
is set as 0.02 km/h and assumed as fixed. (4)Thewater quality
of each regional agent is known before the occurrence of the
abrupt water pollution accident, which is set as the same data
in the first experiment (see the water quality assessed by the
proposed approach in Table 2).

Table 3: The actual monitoring concentration of CODMn for each
agent.

Regional agent The distance 𝑑 The actual concentration
To agent 1 (km) of CODMn (mg/L)

Agent 1 0 6.00
Agent 2 2 3.08
Agent 3 4 1.84
Agent 4 6 0.48
Agent 5 5 1.10
Agent 6 3 2.33

In this experiment, the actual concentration of CODMn
in the six regional agents before this abrupt water pollution
accident and the physical distance between other agents to
agent 1 are listed in Table 3. The value of 𝐾 can be calculated
by (5) based on the information of Table 3, where 𝐾 is 0.4.
With this 𝐾 and 𝑑, the interaction factor 𝜎 of each agent
can be obtained by (4). After the water pollution accident
occurs, the concentration of CODMn in the regional agent
1 increases by 1.8mg/L. Based on the proposed approach,
the change of the CODMn concentration in other regional
agents and the time when the CODMn concentration reaches
to the highest value are shown in Figure 3. The results of the
dynamic water quality assessment for each regional agent are
shown in Figure 4.

The results in Figure 4 show that the water quality
becomes worse too, when the concentration of CODMn in
the regional agent 1 increased.This experimental results show
that the proposed approach can give out the water quality
assessment for different regions in the same water area, when
there is just some information about the concentration of
indicator in one region. Furthermore, the proposed approach
can calculate the timewhen the concentration of the indicator
will reach to the highest value. This performance is very
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Figure 3: Changes of water quality and the diffusion time of pollu-
tant in each agent.
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Figure 4: The dynamic assessment results of water quality for dif-
ferent agents.

important for the sensitive regions to prepare for the water
pollution control.

5. Conclusions

Thedynamicwater quality assessment for awholewater basin
has been investigated. A water assessment model based on
multiagent technology is set up, and an improved multiagent
Q-learning algorithm is proposed. The proposed approach
can deal with various situations. It can deal with the water
quality assessment at the static situations, and the assessment
results aremore accurately than the generalmethods. In addi-
tion, it can deal with the dynamic water quality assessment,
which is very important for the water pollution prewarning
and control. The feasibility and efficiency of the proposed
approach have been discussed and illustrated through exper-
imental studies.The results show that the proposed approach
can assess the water quality efficiently, without any complex
mathematicalmodel nor any prior knowledge about thewater
environment. The proposed approach is applicable to other
real-time cooperative tasks of multiagent systems, such as the
fire disaster response for wide tracts of forest.
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This paper focuses on theoretical analysis of second-order consensus in multiagent system. As an extension of the general linear
protocol, a nonlinear protocol is designed for multiagent system with undirected communication topology.The nonlinear protocol
is also applied to achieve reference velocity consensus. Through choosing the appropriate Lyapunov functions and using LaSalle’s
invariance principle, some consensus conditions are derived. Simulation examples are provided to demonstrate the effectiveness of
the proposed results.

1. Introduction

Recently, consensus problems have been investigated exten-
sively in the content of distributed coordinated control of
dynamic agents, partly owning to the potential broad appli-
cation in various areas. A basic and fundamental question in
consensus is how to design the effective protocols (or algo-
rithms) such that each agent can achieve a common target.
Most of the consensus literatures mainly considered general
linear protocols formultiagent systems. However, the relation
between agents is usually not linear. In some situations, the
states of multiagent systems cannot be observed directly, and
some nonlinear functions about the states can be observed.
Therefore, it is necessary to design nonlinear protocols for
multiagent systems.

Nonlinear functions are always used to describe the
coupling relations of nodes in complex networks [1–6].
On the other hand, some scholars have paid attentions to
nonlinear protocols for multiagent systems recently. Bauso
et al. [7] designed the distributed nonlinear protocols and
proposed a game theoretical approach to solve consensus
problems. Xiao et al. [8] presented a new nonlinear protocol
for state consensus of multiagent system which provides
faster convergence rate than the typical linear protocol [9].
Liu et al. [10] discussed the consensus problem under two

nonlinear protocols with directed topology. Hui and Haddad
[11] developed a thermodynamic framework for address-
ing consensus for nonlinear multiagent dynamical systems.
Shang [12] proposed some sufficient criteria guaranteeing
multiagent systems to reach a consensus in finite time under
nonlinear protocols. Li and Guan [13] investigated nonlinear
consensus protocols for dynamic directed networks of multi-
agent systems based on the central manifold reduction tech-
nique. Shi and Hong [14] considered a group of continuous-
time agents with nonlinear agent dynamics and concluded
that the agents can flock to a convex target set. Sepulchre [15]
introduced consensus problemswhose underlying state space
is not a linear space but a nonlinear space. Yu et al. [16] studied
the consensus problem for cooperative agents with nonlinear
dynamics in a directed network. Zhou andWang [17] derived
some sufficient conditions for (global/exponential) semista-
bility for general discrete-time nonlinear protocols.

However, it is worthwhile to note that the above-
mentioned nonlinear protocols [7–13, 17] are all proposed
for the first-order multiagent systems. As we all know, first-
order consensus problems are mainly relative to commu-
nication topologies, but, for second-order consensus, both
the interaction graph and the coupling strength affect the
convergence result.Therefore, the consensus of second-order
multiagent systems is more challenging and interesting and
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attracts researchers’ broad attention. For example, Yu et
al. [18] considered a second-order consensus problem for
multiagent systems with nonlinear dynamics. Furthermore,
Song et al. [19] studied the second-order leader-following
consensus problemof nonlinearmultiagent systems. Ren [20]
proposed and analyzed a consensus algorithm for double-
integrator dynamics with a bounded control input under an
undirected interaction graph. Though [20] extended some
existing results in consensus algorithms to account for actua-
tor saturation, saturation function which is assumed to be the
hyperbolic tangent function is concrete and simple. So far as
we know, there is no result about designing some nonlinear
protocols for second-order multiagent systems. For this
purpose, this paper mainly designs a nonlinear protocol for
second-order dynamics with an undirected communication
topology as an extension of the linear protocol. Then, the
consensus protocol for second-order multiagent system with
a group reference velocity available to each individuality is
proposed.

The rest of this paper is organized as follows. Section 2
provides some preliminary graph theory, the proposed non-
linear protocol, and two useful lemmas. In Section 3, consen-
sus problem and reference velocity consensus of a second-
order multiagent system with an undirected communication
topology are analyzed, respectively. Some numerical exam-
ples are given to show the effectiveness and advantage of
the theoretical results in Section 4. Finally, a conclusion is
provided in Section 5.

2. Notation and Preliminaries

2.1. Graph Theory. In this paper, the communication topol-
ogy among 𝑛 multiagents is assumed to be an undirected
graph G = (V,E,A), where V = {V

1

, . . . , V
𝑛

} is the set
of nodes, E ⊆ V × V is the set of edges, and A =

[𝑎
𝑖𝑗

] ∈ R𝑛×𝑛 represents the weighted adjacency matrix with
nonnegative adjacency elements 𝑎

𝑖𝑗

. The node or multiagent
indexes belong to a finite index set I = {1, 2, . . . , 𝑛}. An
edge 𝑒

𝑖𝑗

= (V
𝑖

, V
𝑗

) ∈ E in weighted undirected graph G
denotes that node 𝑗 can receive information from 𝑖 each
other. The adjacency elements associated with the edges of
an undirected graph are positive 𝑎

𝑖𝑗

> 0 if 𝑒
𝑖𝑗

∈ E, 𝑎
𝑖𝑗

= 0

otherwise, and have the property that 𝑎
𝑖𝑗

= 𝑎
𝑗𝑖

, for all 𝑖 ̸= 𝑗,
since 𝑒

𝑖𝑗

implies 𝑒
𝑗𝑖

. A path on G from node 𝑖
1

to 𝑖
𝑙

is a
sequence of undirected edges in the form of (𝑖

𝑘

, 𝑖
𝑘+1

), 𝑘 =

1, . . . , 𝑙 − 1. An undirected graph is called connected if there
exists a path from any node 𝑖 to any other node 𝑗.

2.2. Nonlinear Protocols for Second-Order Dynamics. Con-
sider a second-order multiagent system with the following
dynamics:

̇𝑥
𝑖

(𝑡) = V
𝑖

(𝑡) ,

̇V
𝑖

(𝑡) = 𝑢
𝑖

(𝑡) ,
𝑖 ∈ I, (1)

where 𝑥
𝑖

(𝑡) ∈ R is the position state, V
𝑖

(𝑡) ∈ R is the
velocity state, and 𝑢

𝑖

(𝑡) ∈ R is the control input (or protocol).
Given the dynamical system (1), it is said that protocol 𝑢

𝑖

(𝑡)

asymptotically solves the consensus problem, if the states of
agents satisfy

lim
𝑡→+∞


𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)


= 0, lim
𝑡→+∞


V
𝑖

(𝑡) − V
𝑗

(𝑡)

= 0, ∀𝑖 ̸= 𝑗,

(2)

for any 𝑥
𝑖

(0) and V
𝑖

(0).
The linear protocol [21, 22] is proposed as follows:

𝑢
𝑖

(𝑡) = −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

[𝛼 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) + 𝛽 (V
𝑖

(𝑡) − V
𝑗

(𝑡))] , (3)

where 𝑎
𝑖𝑗

is the (𝑖, 𝑗) entry of the weighted adjacency matrix
A ∈ R𝑛×𝑛, and parameters 𝛼, 𝛽 are the coupling strengths.

It is clear that protocol (3) is based on a linear function
of difference between each agent and other ones. Linear
protocol (3) is simple and easy to use. However, sometimes
in order to improve convergence rate or model a bounded
control input, the linear protocol is often needed to be
extended. Furthermore, in some cases, the state feedback
𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)may be unobservable; instead, we can observe a
nonlinear function 𝜙(𝑥

𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) of 𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡). Naturally,
a nonlinear protocol for second-order system (1) is designed
as follows:

𝑢
𝑖

(𝑡) = −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

+𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡))) ,

(4)

where 𝑎
𝑖𝑗

is the (𝑖, 𝑗) entry of the weighted adjacency matrix
A and 𝜙(⋅) and 𝜓(⋅) are two continuous functions.

In order to ensure existence, uniqueness of solution, and
the operative property of nonlinear functions 𝜙(⋅) and 𝜓(⋅),
the following sets are defined.

Definition 1. Define two function sets Φ = {𝜙(𝑥) | 𝜙(𝑥) is an
odd function, 𝜙(𝑥)𝑥 > 0, 𝜙(𝑥) = 0 if and only if 𝑥 = 0}, and
Ψ = {𝜓(𝑥) | 𝜓(𝑥) is a continuous function and increasing
about 𝑥, 𝜓(𝑥) = 𝜓(𝑦) if and only if 𝑥 = 𝑦}.

At the end of this section, two useful lemmas about 𝜙(⋅)
and 𝜓(⋅) are introduced.

Lemma 2. Letting a = [𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛

]
T

∈ R𝑛, b =

[𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑛

]
T
∈ R𝑛, and 𝐶 = [𝑐

𝑖𝑗

] ∈ R𝑛×𝑛, if matrix 𝐶
is symmetrical, that is, 𝑐

𝑖𝑗

= 𝑐
𝑗𝑖

, and odd function 𝜙(𝑥) ∈ Φ,
then it is derived that

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

(𝑎
𝑖

− 𝑎
𝑗

) 𝜙 (𝑏
𝑖

− 𝑏
𝑗

)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑎
𝑖

𝜙 (𝑏
𝑖

− 𝑏
𝑗

) .

(5)
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Proof. Consider that

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

(𝑎
𝑖

− 𝑎
𝑗

) 𝜙 (𝑏
𝑖

− 𝑏
𝑗

)

=
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑎
𝑖

𝜙 (𝑏
𝑖

− 𝑏
𝑗

)

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑎
𝑗

𝜙 (𝑏
𝑖

− 𝑏
𝑗

)

=
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑎
𝑖

𝜙 (𝑏
𝑖

− 𝑏
𝑗

)

+
1

2

𝑛

∑

𝑗=1

𝑛

∑

𝑖=1

𝑐
𝑗𝑖

𝑎
𝑗

𝜙 (𝑏
𝑗

− 𝑏
𝑖

)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑎
𝑖

𝜙 (𝑏
𝑖

− 𝑏
𝑗

) ,

(6)

where the facts that 𝑐
𝑖𝑗

= 𝑐
𝑗𝑖

and 𝜙(⋅) is an odd function that is,
𝜙(𝑏
𝑗

− 𝑏
𝑖

) = −𝜙(𝑏
𝑖

− 𝑏
𝑗

), are used to obtain the equalities.

Using the same proof and the fact that 𝜓(𝑏
𝑗

) − 𝜓(𝑏
𝑖

) =

−(𝜓(𝑏
𝑖

) − 𝜓(𝑏
𝑗

)), the following lemma is obvious.

Lemma 3. Letting a = [𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛

]
T

∈ R𝑛, b =

[𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑛

]
T
∈ R𝑛, and 𝐶 = [𝑐

𝑖𝑗

] ∈ R𝑛×𝑛, if matrix 𝐶
is symmetrical, function 𝜓(𝑥) ∈ Ψ, then it follows that

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

(𝑎
𝑖

− 𝑎
𝑗

) (𝜓 (𝑏
𝑖

) − 𝜓 (𝑏
𝑗

))

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

𝑎
𝑖

(𝜓 (𝑏
𝑖

) − 𝜓 (𝑏
𝑗

)) .

(7)

3. Consensus Analysis

In this section, the consensus and reference velocity consen-
sus of second-order multiagent system (1) with the designed
nonlinear protocol will be analyzed.

3.1. Consensus with Nonlinear Protocol. Second-order multi-
agent system (1) with protocol (4) is written as

̇𝑥
𝑖

(𝑡) = V
𝑖

(𝑡) ,

̇V
𝑖

(𝑡) = −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

[𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

+ (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡)))] .

(8)

Theorem4. For nonlinear protocol (4), suppose that functions
𝜙(⋅) ∈ Φ and 𝜓(⋅) ∈ Ψ. If information topology graph G is
undirected and connected, then it is held that 𝑥

𝑖

(𝑡) → 𝑥
𝑗

(𝑡),
V
𝑖

(𝑡) → V
𝑗

(𝑡), as 𝑡 → ∞; that is to say, multiagent system (8)
achieves consensus asymptotically.

Proof. Choose the following Lyapunov function:

𝑉 (𝑡) =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

∫

𝑥

𝑖
(𝑡)−𝑥

𝑗
(𝑡)

0

𝜙 (𝑠) 𝑑𝑠 +
1

2

𝑛

∑

𝑖=1

V2
𝑖

(𝑡) . (9)

The time derivative of the Lyapunov function (9) along any
trajectory of (8) is

𝑉 (𝑡)

=
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(V
𝑖

(𝑡) − V
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

V
𝑖

(𝑡)(

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

[𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

+ (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡)))])

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

V
𝑖

(𝑡) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

V
𝑖

(𝑡) [𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

+ (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡)))]

= −
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(V
𝑖

(𝑡) − V
𝑗

(𝑡)) (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡))) ,

(10)

where the second equality and the last equality are
derived from Lemmas 2 and 3, respectively. Since
(V
𝑖

(𝑡) − V
𝑗

(𝑡))(𝜓(V
𝑖

(𝑡)) − 𝜓(V
𝑗

(𝑡))) ≥ 0 and the information
topology graphG is connected, it is derived that

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(V
𝑖

(𝑡) − V
𝑗

(𝑡)) (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡))) ≤ 0;

(11)

that is to say, 𝑉(𝑡) ≤ 0. Letting 𝑉(𝑡) ≡ 0, it is easily seen
that V

𝑖

(𝑡) ≡ V
𝑗

(𝑡) and ̇V
𝑖

(𝑡) ≡ ̇V
𝑗

(𝑡). Therefore, it follows
that ̇V(𝑡) ∈ Span(1 × 𝜍), where 𝜍 is a constant and V(𝑡) =

[V
1

(𝑡) V
2

(𝑡) ⋅ ⋅ ⋅ V
𝑛

(𝑡)]
T. Furthermore, from V

𝑖

(𝑡) ≡ V
𝑗

(𝑡), it
is obtained that

̇V
𝑖

(𝑡) ≡ −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))) , (12)

(1 × 𝜍)T ̇V
𝑖

(𝑡) ≡ −𝜍

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))) . (13)

Since information topology graph is undirected, that is, 𝑎
𝑖𝑗

=

𝑎
𝑗𝑖

, and 𝜙(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) = −𝜙(𝑥
𝑗

(𝑡) − 𝑥
𝑖

(𝑡)), it is held that
𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0, (14)
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which implies that (1 × 𝜍)
T
̇V(𝑡) ≡ 0. Thus, it means that

̇V(𝑡) is orthogonal to 1 × 𝜍. From the above discussion, it
is concluded that ̇V(𝑡) ≡ 0 which in turn implies that
−∑
𝑛

𝑗=1

𝑎
𝑖𝑗

𝜙(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0 from (12). Furthermore, it is
obtained that −∑𝑛

𝑖=1

𝑥
𝑖

(𝑡) ∑
𝑛

𝑗=1

𝑎
𝑖𝑗

𝜙(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0 which
implies that

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0, (15)

from Lemma 2. For 𝜙(𝑥)𝑥 > 0 and information topology
graph is connected, from (15), it is derived that

𝑎
𝑖𝑗

(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0, ∀𝑖 ̸= 𝑗. (16)

As a result, it follows that𝑥
𝑖

(𝑡) ≡ 𝑥
𝑗

(𝑡), for all 𝑖 ̸= 𝑗. By LaSalle’s
invariance principle, it is concluded that 𝑥

𝑖

(𝑡) → 𝑥
𝑗

(𝑡),
V
𝑖

(𝑡) → V
𝑗

(𝑡), for all 𝑖 ̸= 𝑗, as t → ∞.The proof is ended.

When nonlinear protocol (4) is simplified as follows:

𝑢
𝑖

(𝑡) = −𝜓 (V
𝑖

(𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) , (17)

and the Lyapunov function (9) is chosen, the following
conclusion is easily obtained.

Corollary 5. If the information topology graphG is undirected
and connected, nonlinear functions 𝜙(⋅) ∈ Φ and 𝜓 ∈ Ψ,
then the multiagent system (1) with protocol (17) can achieve
consensus, namely, 𝑥

𝑖

(𝑡) → 𝑥
𝑗

(𝑡), V
𝑖

(𝑡) → V
𝑗

(𝑡) → 0,
asymptotically as 𝑡 → ∞.

In practice, since the position of each agent is easily
measured relatively, nonlinear function𝜙(𝑥) in protocol (4) can
be assumed to be 𝜙(𝑥) = 𝑥. Therefore, letting 𝜙(𝑥

𝑖

(𝑡)−𝑥
𝑗

(𝑡)) =

𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡), protocol (4) is reduced to

𝑢
𝑖

(𝑡) = −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡) + 𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡))) .

(18)

Applying protocol (18) to system (1), the following corollary is
derived fromTheorem 4 directly.

Corollary 6. For nonlinear protocol (18), suppose the function
𝜓(⋅) ∈ Ψ. If the information topology graphG is undirected and
connected, multiagent system (1) with protocol (18) achieves
consensus asymptotically, namely, 𝑥

𝑖

(𝑡) → 𝑥
𝑗

(𝑡), V
𝑖

(𝑡) →

V
𝑗

(𝑡), as 𝑡 → ∞.

Remark 7. The second-order multiagent system with lin-
ear protocol can be written as compact matrix form, and
the consensus conditions can be derived by analysing the
eigenvalues of the compact matrix [22]. When the second-
order multiagent system achieves consensus, the positions
and velocities will, respectively, converge to a constant value
which is relative to the initial position and velocity and the
left eigenvector of the Laplacian matrix (see [21, 22]).

However, the nonlinear protocol is different from the
linear protocol. The second-order multiagent system with
nonlinear protocol cannot be written as a compact matrix
form. So, the proof of consensus is different from the method
used in the linear protocol and is more difficult. When
the consensus of the second-order multiagent system with
nonlinear protocol is reached, the value which the positions
and velocities converge to cannot be decided. The value is
relative to the nonlinear function, the communication graph,
and the initial position and velocity.

3.2. Consensus with Group Reference Velocity. In practice,
given a reference velocity V∗(𝑡), the positions and velocities
of the agents in multiagent system (1) are often required to
achieve consensus and converge to V∗(𝑡); that is, 𝑥

𝑖

(𝑡) →

𝑥
𝑗

(𝑡), V
𝑖

(𝑡) → V
𝑗

(𝑡) → V∗(𝑡), for all 𝑖 ̸= 𝑗. Hence,
the following nonlinear protocol is designed with a group
reference velocity V∗(𝑡) as

𝑢
𝑖

(𝑡) = ̇V∗ (𝑡) − (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V∗ (𝑡)))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

+𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡))) .

(19)

Given a group reference velocity V∗(𝑡), second-order
multiagent system (1) with protocol (19) is expressed as

̇𝑥
𝑖

(𝑡) = V
𝑖

(𝑡) ,

̇V
𝑖

(𝑡) = ̇V∗ (𝑡) − (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V∗ (𝑡)))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

− (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡)))) .

(20)

Theorem 8. For nonlinear protocol (19), consider functions
𝜙(⋅) ∈ Φ and 𝜓(⋅) ∈ Ψ. When information topology graph G
is undirected and connected, multiagent system (20) achieves
consensus; that is, 𝑥

𝑖

(𝑡) → 𝑥
𝑗

(𝑡), V
𝑖

(𝑡) → V
𝑗

(𝑡) → V∗(𝑡), as
𝑡 → ∞.

Proof. Letting Ṽ
𝑖

(𝑡) = V
𝑖

(𝑡) − V∗(𝑡), 𝑥
𝑖

(𝑡) = 𝑥
𝑖

(𝑡) − ∫
𝑡

0

V∗(𝑠)𝑑𝑠,
system (20) is rewritten as

̇�̃�
𝑖

(𝑡) = Ṽ
𝑖

(𝑡) ,

̇Ṽ
𝑖

(𝑡) = − (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V∗ (𝑡)))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

− (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡)))) .

(21)

Choose the following Lyapunov function:

𝑉 (𝑡) =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

∫

𝑥

𝑖
(𝑡)−𝑥

𝑗
(𝑡)

0

𝜙 (𝑠) 𝑑𝑠 +
1

2

𝑛

∑

𝑖=1

Ṽ2
𝑖

(𝑡) . (22)
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Taking the derivative of the Lyapunov function (22) with
respect to 𝑡 along the trajectory of (21) yields

𝑉 (𝑡)

=
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(Ṽ
𝑖

(𝑡) − Ṽ
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

Ṽ
𝑖

(𝑡)( (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V∗ (𝑡)))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

+ (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡)))) .

(23)

From Lemma 2, it is obtained that

𝑉 (𝑡) =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(Ṽ
𝑖

(𝑡) − Ṽ
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(Ṽ
𝑖

(𝑡) − Ṽ
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡))

−

𝑛

∑

𝑖=1

Ṽ
𝑖

(𝑡) (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V∗ (𝑡)))

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(Ṽ
𝑖

(𝑡) − Ṽ
𝑗

(𝑡))

× (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡)))

= −

𝑛

∑

𝑖=1

(V
𝑖

(𝑡) − V∗ (𝑡)) (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V∗ (𝑡)))

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(V
𝑖

(𝑡) − V
𝑗

(𝑡))

× (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡))) .

(24)

Since function 𝜓(⋅) ∈ Ψ and the information topology graph
G is undirected and connected, there exist the following facts
that

−

𝑛

∑

𝑖=1

(V
𝑖

(𝑡) − V∗ (𝑡)) (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V∗ (𝑡))) ≤ 0,

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(V
𝑖

(𝑡) − V
𝑗

(𝑡)) (𝜓 (V
𝑖

(𝑡)) − 𝜓 (V
𝑗

(𝑡))) ≤ 0.

(25)

1 2 3

4 5 6

Figure 1: Communication topology graph.

Combing (25), it follows that 𝑉(𝑡) ≤ 0. When 𝑉(𝑡) ≡ 0, it is
clear that V

𝑖

(𝑡) ≡ V
𝑗

(𝑡), V
𝑖

(𝑡) ≡ V∗(𝑡). Then, it is derived that

−

𝑛

∑

𝑗=1

𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0, (26)

−

𝑛

∑

𝑖=1

𝑥
𝑖

(t)
𝑛

∑

𝑗=1

𝑎
𝑖𝑗

𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0. (27)

Note that (27) implies that

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0, (28)

from Lemma 2. Due to the connected information graph G,
it is derived from (28) that

(𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) 𝜙 (𝑥
𝑖

(𝑡) − 𝑥
𝑗

(𝑡)) ≡ 0. (29)

As a result, it is concluded that 𝑥
𝑖

(𝑡) ≡ 𝑥
𝑗

(𝑡) which is
equivalent to 𝑥

𝑖

(𝑡) ≡ 𝑥
𝑗

(𝑡). Making use of LaSalle’s invariance
principle, it is concluded that 𝑥

𝑖

(𝑡) → 𝑥
𝑗

(𝑡), V
𝑖

(𝑡) →

V
𝑗

(𝑡) → V∗(𝑡), as 𝑡 → ∞. The proof is completed.

4. Numerical Examples

In this section, a number of simulations are given to illustrate
the effectiveness of the results proposed in the paper.

Example 9. Consider the communication topology graph G
as described in Figure 1. Graph G has eight nodes, and the
edges denote the information interchange between agents.
For simplicity, it is assumed that graphG has 0-1 weights. To
simulate numerical examples, choose

𝜙 (𝑥) =

{{{{

{{{{

{

𝑥
2 if 𝑥 > 1,
√𝑥 if 0 < 𝑥 ≤ 1,
−√−𝑥 if − 1 < 𝑥 ≤ 0,

−𝑥
2 if 𝑥 ≤ −1,

(30)

and 𝜓(𝑥) = 𝑥
3 in the nonlinear protocol (4), and it is clear

that 𝜙 ∈ Φ and 𝜓 ∈ Ψ. Therefore, the nonlinear protocol (4)
can be achieved asymptotically formultiagent system (1) from
Theorem 4. Figure 2 shows that the velocity and position
trajectories of second-order multiagent system (8) converge
to consensus, respectively. In addition, Figure 3 describes that
both the velocity and position trajectories of second-order
multiagent system (1) with protocol (18) achieve consensus.
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Figure 2: State trajectories of multiagent system (8).
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Figure 3: State trajectories of multiagent system (1) with protocol
(18).

Choose a reference velocity V∗(𝑡) = sin(3 ∗ 𝑡) + cos(𝑡),
and using protocol (19), multiagent system (1) can achieve
consensus asymptotically. Figure 4 describes the trajectories
of velocity and position ofmultiagent system (1)with protocol
(19), respectively. It is seen that the trajectories of velocity
follow the reference velocity V∗(𝑡) successfully.

5. Conclusions

This paper provided consensus analysis for the second-order
multiagent system with nonlinear protocol. As an extension
of linear protocols, a nonlinear protocol was designed to
achieve consensus. In addition, the protocol was also used
to achieve reference velocity consensus for second-order
multiagent system. The analysis mainly relied on some tools
from algebraic graph and control theory. Through using the
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Figure 4: State trajectories of multiagent system (20).

Lyapunov theory and LaSalle’s invariance principle, sufficient
conditions for consensus are derived. Simulation examples
show that when the nonlinear function satisfies the assump-
tion, the second-order multiagent can achieve consensus and
reference velocity consensus.
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