
Complexity

Advances in Complex Systems and
Their Applications to Cybersecurity

Lead Guest Editor: Fernando Sánchez Lasheras
Guest Editors: Danilo Comminiello and Alicja Krzemień

Advances in Complex Systems and
Their Applications to Cybersecurity

Complexity

Advances in Complex Systems and
Their Applications to Cybersecurity

Lead Guest Editor: Fernando Sánchez Lasheras
Guest Editors: Danilo Comminiello and Alicja Krzemień

Copyright © 2019 Hindawi. All rights reserved.

This is a special issue published in “Complexity.” All articles are open access articles distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Editorial Board

José A. Acosta, Spain
Carlos F. Aguilar-Ibáñez, Mexico
Mojtaba Ahmadieh Khanesar, UK
Tarek Ahmed-Ali, France
Alex Alexandridis, Greece
Basil M. Al-Hadithi, Spain
Juan A. Almendral, Spain
Diego R. Amancio, Brazil
David Arroyo, Spain
Mohamed Boutayeb, France
Átila Bueno, Brazil
Arturo Buscarino, Italy
Guido Caldarelli, Italy
Eric Campos-Canton, Mexico
Mohammed Chadli, France
Émile J. L. Chappin, Netherlands
Diyi Chen, China
Yu-Wang Chen, UK
Giulio Cimini, Italy
Danilo Comminiello, Italy
Sara Dadras, USA
Sergey Dashkovskiy, Germany
Manlio De Domenico, Italy
Pietro De Lellis, Italy
Albert Diaz-Guilera, Spain
Thach Ngoc Dinh, France
Jordi Duch, Spain
Marcio Eisencraft, Brazil
Joshua Epstein, USA
Mondher Farza, France
Thierry Floquet, France
Mattia Frasca, Italy
José Manuel Galán, Spain
Lucia Valentina Gambuzza, Italy
Bernhard C. Geiger, Austria
Carlos Gershenson, Mexico

Peter Giesl, UK
Sergio Gómez, Spain
Lingzhong Guo, UK
Xianggui Guo, China
Sigurdur F. Hafstein, Iceland
Chittaranjan Hens, India
Giacomo Innocenti, Italy
Sarangapani Jagannathan, USA
Mahdi Jalili, Australia
Jeffrey H. Johnson, UK
M. Hassan Khooban, Denmark
Abbas Khosravi, Australia
Toshikazu Kuniya, Japan
Vincent Labatut, France
Lucas Lacasa, UK
Guang Li, UK
Qingdu Li, China
Chongyang Liu, China
Xiaoping Liu, Canada
Xinzhi Liu, Canada
Rosa M. Lopez Gutierrez, Mexico
Vittorio Loreto, Italy
Noureddine Manamanni, France
Didier Maquin, France
Eulalia Martínez, Spain
Marcelo Messias, Brazil
Ana Meštrović, Croatia
Ludovico Minati, Japan
Ch. P. Monterola, Philippines
Marcin Mrugalski, Poland
Roberto Natella, Italy
Sing Kiong Nguang, New Zealand
Nam-Phong Nguyen, USA
B. M. Ombuki-Berman, Canada
Irene Otero-Muras, Spain
Yongping Pan, Singapore

Daniela Paolotti, Italy
Cornelio Posadas-Castillo, Mexico
Mahardhika Pratama, Singapore
Luis M. Rocha, USA
Miguel Romance, Spain
Avimanyu Sahoo, USA
Matilde Santos, Spain
Josep Sardanyés Cayuela, Spain
Ramaswamy Savitha, Singapore
Hiroki Sayama, USA
Michele Scarpiniti, Italy
Enzo Pasquale Scilingo, Italy
Dan Selişteanu, Romania
Dehua Shen, China
Dimitrios Stamovlasis, Greece
Samuel Stanton, USA
Roberto Tonelli, Italy
Shahadat Uddin, Australia
Gaetano Valenza, Italy
Alejandro F. Villaverde, Spain
Dimitri Volchenkov, USA
Christos Volos, Greece
Qingling Wang, China
Wenqin Wang, China
Zidong Wang, UK
Yan-Ling Wei, Singapore
Honglei Xu, Australia
Yong Xu, China
Xinggang Yan, UK
Baris Yuce, UK
Massimiliano Zanin, Spain
Hassan Zargarzadeh, USA
Rongqing Zhang, USA
Xianming Zhang, Australia
Xiaopeng Zhao, USA
Quanmin Zhu, UK

Contents

Advances in Complex Systems andTheir Applications to Cybersecurity
Fernando Sánchez Lasheras , Danilo Comminiello , and Alicja Krzemień
Editorial (2 pages), Article ID 3261453, Volume 2019 (2019)

Delving into Android Malware Families with a Novel Neural Projection Method
Rafael Vega Vega , Héctor Quintián, Carlos Cambra , Nuño Basurto , Álvaro Herrero ,
and José Luis Calvo-Rolle
Research Article (10 pages), Article ID 6101697, Volume 2019 (2019)

Multiclass Classification Procedure for Detecting Attacks on MQTT-IoT Protocol
Hector Alaiz-Moreton , Jose Aveleira-Mata , Jorge Ondicol-Garcia, Angel Luis Muñoz-Castañeda,
Isaías García, and Carmen Benavides
Research Article (11 pages), Article ID 6516253, Volume 2019 (2019)

Detection of Jihadism in Social Networks Using Big Data Techniques Supported by Graphs and Fuzzy
Clustering
Cristina Sánchez-Rebollo, Cristina Puente , Rafael Palacios , Claudia Piriz, Juan P. Fuentes,
and Javier Jarauta
Research Article (13 pages), Article ID 1238780, Volume 2019 (2019)

Effect of the Sampling of a Dataset in the HyperparameterOptimization Phase over the Efficiency of a
Machine Learning Algorithm
Noemí DeCastro-García , Ángel Luis Muñoz Castañeda, David Escudero García, and Miguel V. Carriegos
Research Article (16 pages), Article ID 6278908, Volume 2019 (2019)

Practical Employment of Granular Computing to Complex Application Layer Cyberattack Detection
Rafa� Kozik , Marek Pawlicki , Micha� Choraś, and Witold Pedrycz
Research Article (9 pages), Article ID 5826737, Volume 2019 (2019)

http://orcid.org/0000-0002-7052-2811
http://orcid.org/0000-0003-4067-4504
http://orcid.org/0000-0002-1186-5152
http://orcid.org/0000-0001-5567-9194
http://orcid.org/0000-0001-7289-4689
http://orcid.org/0000-0002-2444-5384
http://orcid.org/0000-0002-2333-8405
http://orcid.org/0000-0001-6572-1261
http://orcid.org/0000-0001-5439-0997
http://orcid.org/0000-0002-6882-8678
http://orcid.org/0000-0002-8963-5074
http://orcid.org/0000-0002-5610-0153
http://orcid.org/0000-0001-7122-3306
http://orcid.org/0000-0001-5881-6406

Editorial
Advances in Complex Systems and Their
Applications to Cybersecurity

Fernando Sánchez Lasheras ,1 Danilo Comminiello ,2 and Alicja KrzemieN3

1Mathematics Department, University of Oviedo, c/Federico Garćıa Lorca 18, 33007 Oviedo, Spain
2Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome,
Via Eudossiana 18, 00184 Rome, Italy
3Department of Risk Assessment and Industrial Safety, Central Mining Institute, Plac Gwarków 1, 40166 Katowice, Poland

Correspondence should be addressed to Fernando Sánchez Lasheras; sanchezfernando@uniovi.es

Received 25 February 2019; Accepted 25 February 2019; Published 4 June 2019

Copyright © 2019 Fernando Sánchez Lasheras et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Cybersecurity is one of the fastest growing and largest
technology sectors and is increasingly being recognized as
one of the major issues in many industries, so companies are
increasing their security budgets in order to guarantee the
security of their processes. Successful menaces to the security
of information systems could lead to safety, environmental,
production, and quality problems.

One of the most harmful issues of attacks and intrusions
is the ever-changing nature of attack technologies and strate-
gies, which increases the difficulty of protecting computer
systems. As a result, advanced systems are required to deal
with the ever-increasing complexity of attacks in order to
protect systems and information.

This special issue received several contributions, 5 of
which have been accepted for publication.

In the article “Effect of the Sampling of a Dataset in the
Hyperparameter Optimization Phase over the Efficiency of a
Machine Learning Algorithm” by N. DeCastro-Garćıa et al.,
the authors investigate on the use of different partitions of a
dataset in the hyperparameter optimization phase over the
efficiency of a machine learning algorithm. Nonparametric
inference has been used to measure the rate of different
behaviors of the accuracy. A level of gain is assigned to
each partition allowing authors to study patterns and allocate
whose samples are more profitable. The statistical analyses
were carried out over five cybersecurity datasets.

In the article “Detection of Jihadism in Social Networks
Using Big Data Techniques Supported by Graphs and Fuzzy

Clustering” by C. Sánchez-Rebollo et al., the authors per-
formed an analysis of Twitter messages to detect the leaders
orchestrating terrorist networks and their followers. A big
data architecture is proposed to analyze messages in real time
in order to classify users according to different parameters
like level of activity, the ability to influence other users, and
the contents of their messages. Graphs have been used to
analyze how the messages propagate through the network
and fuzzy clustering techniques were used to classify users
in profiles. The Algorithms test was performed with the help
of public database from Kaggle and other Twitter extraction
techniques.

In the article “Delving into Android Malware Families
with a Novel Neural Projection Method” by R. V. Vega
et al., the authors proposed the application of unsuper-
vised and supervised machine-learning techniques to char-
acterize Android malware families. More precisely, a novel
unsupervised neural-projection method for dimensionality-
reduction, namely, Beta Hebbian Learning (BHL), was
applied to visually analyze such malware. Additionally, well-
known supervised Decision Trees (DTs) are also applied to
improve characterization of such. The proposed techniques
are validated when facing real-life Android malware data by
means of the well-known and publicly-available Malgenome
dataset.

In the article “Multiclass Classification Procedure for
Detecting Attacks onMQTT-IoT Protocol” byH. A.Moretón
et al., the authors proposed the creation of classification

Hindawi
Complexity
Volume 2019, Article ID 3261453, 2 pages
https://doi.org/10.1155/2019/3261453

http://orcid.org/0000-0002-7052-2811
http://orcid.org/0000-0003-4067-4504
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3261453

2 Complexity

models that can feed an Intrusion Detection System using
a dataset containing frames under attacks of an Internet of
Things (IoT) system that uses theMQTT protocol. Two kinds
of methods are applied: ensemble methods and recurrent
networks, achieving very satisfactory results.

Finally, in the article “Practical Employment of Granu-
lar Computing to Complex Application Layer Cyberattack
Detection” by R. Kozik et al., the authors propose a novel
approach to the detection of cyberattacks taking inventory
of the practical application of information granules. Also, the
feasibility of utilizingGranular Computing (GC) as a solution
to the most current challenges in cybersecurity is researched.
Promising results have been shown on a benchmark dataset.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

The editorial team would like to express appreciation to all
authors for their valuable contributions and to all reviewers
for their valuable comments. In addition, the editors would
like to thank the Complexity Journal’s Editorial Board for
their valuable help and support regarding this special issue.

Fernando Sánchez Lasheras
Danilo Comminiello

Alicja Krzemień

Research Article
Delving into Android Malware Families with a Novel
Neural Projection Method

Rafael Vega Vega ,1 Héctor Quintián,1 Carlos Cambra ,2 Nuño Basurto ,2

Álvaro Herrero ,2 and José Luis Calvo-Rolle 1,3

1University of A Coruña, Departamento de Ingenieŕıa Industrial, Avda. 19 de febrero s/n, 15495, Ferrol, A Coruña, Spain
2Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Ingenieŕıa Civil, Escuela Politécnica Superior,
Universidad de Burgos, Av. Cantabria s/n, 09006, Burgos, Spain
3Research Institute of Applied Sciences in Cybersecurity (RIASC), Spain

Correspondence should be addressed to Rafael Vega Vega; rafael.alejandro.vega.vega@udc.es

Received 5 December 2018; Accepted 23 January 2019; Published 2 June 2019

Guest Editor: Alicja Krzemień

Copyright © 2019 RafaelVegaVega et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Present research proposes the application of unsupervised and supervised machine-learning techniques to characterize Android
malware families. More precisely, a novel unsupervised neural-projection method for dimensionality-reduction, namely, Beta
Hebbian Learning (BHL), is applied to visually analyze such malware. Additionally, well-known supervised Decision Trees (DTs)
are also applied for the first time in order to improve characterization of such families and compare the original features that are
identified as the most important ones.The proposed techniques are validated when facing real-life Androidmalware data bymeans
of the well-known and publicly available Malgenome dataset. Obtained results support the proposed approach, confirming the
validity of BHL and DTs to gain deep knowledge on Android malware.

1. Introduction and Previous Work

Undoubtedly, smartphones are one of the emerging tech-
nologies that have revolutionized the use of computing
systems. From the very beginning (late 1990s), more and
more smartphones are sold every year and it is expected
that the number of smartphone users passes the 2.7 billion
mark by 2019 [1]. Although there is a variety of operating
systems for such devices, Google’s Android is themost widely
used one [1] and, consequently, the number of Android users
has permanently increased. Concurrently, the number of
Android apps strongly increased in the last years but it started
to decline from 3.6 million in March, 2017 (highest value), to
2.6 million in September, 2018 [2].

From the security standpoint, one of the main problems
of smartphone apps is malware that is included in software in
general and in these apps in particular. Furthermore, “users of
mobile devices are increasingly subject to malicious activity
pushing malware apps” [3]. It is true that some effort has
been devoted by Google to remove and prevent malicious

apps from Google Play Market, but malware is still there [3].
Moreover, malware Android apps are increasing; in the third
trimester of 2018 there has been an increase of 1.7 million
detections [4].

As it can be seen, privacy and security of smartphones still
are open challenges [5] and many researchers are working
on this topic. To better fight against malware and be able
to develop an effective solution, understanding it and its
nature is required [6]. In keeping with this idea, present
paper proposes getting deeper knowledge about Android
malware for its better detection. More precisely, both super-
vised (Decision Trees) and unsupervised (Neural Projection
Method)machine-learning techniques are applied to increase
our knowledge about the main families of Android malware.
In order to validate the proposed techniques, they are applied
to the well-known Malgenome dataset [7] that is open and
real-life.

This pioneering work on collecting Android malware
found some interesting statistics [6]motivating further analy-
sis of malware: 36.7% of the collected apps leverage root-level

Hindawi
Complexity
Volume 2019, Article ID 6101697, 10 pages
https://doi.org/10.1155/2019/6101697

http://orcid.org/0000-0002-1186-5152
http://orcid.org/0000-0001-5567-9194
http://orcid.org/0000-0001-7289-4689
http://orcid.org/0000-0002-2444-5384
http://orcid.org/0000-0002-2333-8405
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6101697

2 Complexity

exploits to fully compromise the security of the smartphone
and more than 90% of the apps tried to turn the smartphone
into a botnet controlled through network or short messages.

To improve present knowledge of Android malware
families, a novel neural-projection technique from the family
of Exploratory Projection Pursuit (EPP) techniques, named
Beta Hebbian Learning (BHL) [8], is applied. Obtained
results are then compared to those from several different
Decision Trees (DTs) [9] when trying to predict the malware
family from apps features.

Each app (data sample) that was collected for the
Malgenome dataset is defined as a set of certain features
using a binary representation. Apps were grouped according
to the family they belong to, and features were recalculated
for the whole family, taking into account which features were
present in the given apps. The generated high-dimensional
space is then analysed by means of BHL in order to reveal
the inner structure of the dataset. Obtained projections are
consequently scrutinized to get further knowledge about
the app features that define the organization of the data in
different groups and subgroups. For comparison purposes,
DTs have been additionally generated on the same features
set, in order to know the features that better discriminate
between the different malware families.

A variety of problems have been addressed by artificial
neural networks in recent decades [10–14]. More precisely,
neural projection models have been previously applied to a
wide variety of security datasets, including network traffic
[15, 16], SQL code [17, 18], and HTTP traffic [19]. Similarly,
from a more general perspective, different machine learning
solutions have been proposed to differentiate between legiti-
mate and malicious apps [20–22].

Visualization techniques have been previously applied
to this problem of analyzing malware [23–29]. However,
few dimensionality-reduction techniques have been applied
to Android apps in order to detect malware; Pythagoras
tree fractal visualization is proposed in [25], being all apps
scattered, as leaves in the tree. Graphs for deciding about
malicious apps by depicting lists of malicious methods,
needless permissions, and malicious strings were proposed
in [26]. Biclustering on permission information was used to
generate visualization in [27], while behavior-related dendro-
grams are generated out of malware traces in [28]. In the
later, different pieces of information are analysed, including
nodes related to the package name of the application, the
Android components that has called the API call, and the
names of functions and methods invoked by the application.
Differentiating from previous work, in present paper, a novel
neural projection technique is applied for the first time to the
characterization of Androidmalware [8, 24, 30]. Apps are not
analysed one by one, but family-level is considered instead.
Additionally, DTs are applied for the first time in order to
improve characterization of such families.

The rest of this paper is organized as follows; initially BHL
and DTs are presented and the analyzed dataset is described
in the following section. Then, the proposed experiments
are introduced and the obtained results are analyzed in
Section 3. Finally, conclusions and future work are presented
in Section 4 of the paper.

2. Materials and Methods

In present research, the EPP BHL algorithm [8] has been
applied to a dataset of malware families with the aim of
identifying the internal structure of such dataset and finding
families of malware with similar characteristics.The obtained
results have been compared with a well-known prediction
algorithm (DT) [9] to validate the BHL results regarding
the most relevant features to briefly characterize Malware
families.

2.1. Beta Hebbian Learning. The Beta Hebbian Learning
technique (BHL) [8] is an unsupervised neural network from
the family of EPP that employs the Beta distribution to update
its learning rule and fit the Probability Density Function
(PDF) of the residual with the distribution of a given dataset.

Thus, if the PDF of the residuals is known, the optimal
cost function can be determined. By using𝐵(𝛼, 𝛽) parameters
of the Beta distribution, the residual (e) can be drawnwith the
following PDF:

𝑝 (𝑒) = 𝑒𝛼−1 (1 − 𝑒)𝛽−1 = (𝑥 − 𝑊𝑦)𝛼−1 (1 − 𝑥 + 𝑊𝑦)𝛽−1 (1)

where 𝛼 and 𝛽 are used to adjust the shape of the PDF of
the Beta distribution, 𝑥 is the input of the network, 𝑒 is the
residual, 𝑊 is the weight matrix, and 𝑦 is the output of the
network.

Then, by using the following, gradient descent is per-
formed to maximize the likelihood of the weights:

𝜕𝑝𝜕𝑊 = (𝑒𝛼−2𝑗 (1 − 𝑒𝑗)𝛽−2 (− (𝛼 − 1) (1 − 𝑒𝑗) + 𝑒𝑗 (𝛽 − 1)))
= (𝑒𝛼−2𝑗 (1 − 𝑒𝑗)𝛽−2 (1 − 𝛼 + 𝑒𝑗 (𝛼 + 𝛽 − 2)))

(2)

In the case of BHL, the learning rule allows for fitting the
PDF of the residual, by maximizing the likelihood of such
residual with the current distribution.

Therefore, the neural architecture for BHL is defined as
follows:

𝐹𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 : 𝑦𝑖 = 𝑁∑
𝑗=1

𝑊𝑖𝑗𝑥𝑗, ∀𝑖 (3)

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 : 𝑒𝑗 = 𝑥𝑗 − 𝑀∑
𝑖=1

𝑊𝑖𝑗𝑦𝑖 (4)

𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑢𝑝𝑑𝑎𝑡𝑒 : Δ𝑊𝑖𝑗
= 𝜂 (𝑒𝛼−2𝑗 (1 − 𝑒𝑗)𝛽−2 (1 − 𝛼 + 𝑒𝑗 (𝛼 + 𝛽 − 2))) 𝑦𝑖 (5)

2.2. Decision Trees. Decision Trees (DTs) [9] are machine-
learning algorithms widely used for prediction that have
proved their benefits in several real applications. They can be
categorized as supervised nonparametric inductive learning
techniques. They are based on the construction of diagrams
from a dataset, in a similar way to prediction systems based

Complexity 3

Root node

Decision node

Decision node
Leaf node

Leaf node

Branches Branches

BranchesBranches

Leaf node

BranchesBranches

Leaf node

Figure 1: Structure of decision trees.

on rules, which serve to represent and categorize a series of
conditions that occur repeatedly for the solution of a problem.

The main objective of a classification DT is to divide
a dataset into groups of samples as similar as possible in
relation to one of the features. They are made of three main
elements: root node (contains all samples of the dataset),
decision nodes (represent a decision or rule), and leaf nodes
(final label). A dataset is then classified based on subdivisions
of the DT nodes to reach one of the final (leaf) nodes whose
label corresponds to a class (Figure 1).

Several algorithms have been proposed so far to build
DTs and their efficiency has been proved. The most notable
ones [31] are ID3 (Iterative Dichotomiser 3), C4.5 (successor
of ID3), CART (Classification and Regression Tree), CHAID
(CHi-squared Automatic Interaction Detector), MARS, and
Conditional Inference Trees. Among all of them, CART has
been selected in present work due to two main reasons: the
binary nature of the dataset and the main objective of the
study (to identify the most relevant features of the dataset)
[31].

2.2.1. CART. TheClassification and Regression Tree (CART)
[9] is a binary tree, so each decision node has two binary
branches determined by a splinting function obtained by
processing variance function. In order to build the tree, this
CART algorithm takes 4 main steps [9]:

(1) Build the decision tree splitting nodes according to a
given function.

(2) Finish tree construction once the learning fits the stop
criteria.

(3) Pruning the tree to avoid overfitting.

(4) Select the best tree after pruning process.

Originally, the splitting function used by CART is the
Gini Index

𝐺𝑖𝑛𝑖 (𝑆) = 1 − 𝑛∑
𝑖=1

𝑝2𝑖 (6)

where 𝑆 is the dataset, 𝑛 is the number of classes in the
dataset, and p is the probability of different classes.Therefore,
a Gini index of 0 means a 100% accuracy in predicting the
class.

For comparison purposes, two other splitting functions
have been applied in present paper: Deviance (7) and Twoing
(8)

𝐷𝑒V𝑖𝑎𝑛𝑐𝑒 (𝑆) = − 𝑛∑
𝑖=1

𝑝𝑖 log2 𝑝𝑖 (7)

Twoing is a splitting function different from Gini and
Deviance. Being 𝐿 𝑖 and 𝑅𝑖 there is fraction of members
of class 𝑖 in the left and right child nodes after a split,
respectively. 𝑃𝐿 and 𝑃𝑅 are the fractions of observations that
split to the left and right, respectively.Therefore, the function
to be maximized is the one in

𝑃𝐿𝑃𝑅(𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝐿 𝑖 − 𝑅𝑖󵄨󵄨󵄨󵄨)
2

(8)

On the other hand, in standard CART algorithm, the
split feature that is selected for a decision node is the one
that maximizes the split-criterion gain. Once again, for a
more comprehensive comparison, two other criteria have
been applied for selecting split features: curvature [32] and
interaction [33]. These criteria can be defined as follows:

(i) Curvature: it is based on the null hypothesis of unas-
sociated two features. With these criteria, the best
split predictor feature is the one that minimizes the

4 Complexity

significant p-values of curvature tests between each
feature and the response variable. Such a selection is
robust to the number of levels in individual features.

(ii) Interaction: it is based on the null hypothesis of
no interaction between the label and the predictor
features. Therefore, for deep decision trees, standard
CART tends to miss important interactions between
pairs of features when there are also many other less
important features. By means of this criterion, the
detection of such important interactions is improved.

2.3. Malgenome Dataset. The dataset used in this research
has been obtained from the Android Malware Genome
Project [7], which consists on 1260 Androidmalware samples
grouped in a total of 49 malware families. It was collected
from August 2010 to October 2011 and still is a standard
benchmark dataset for Android Malware.

This dataset contains malware apps installed in user
phones and based on 3 main attack strategies: repackaging,
update attack, and drive-by download. Samples of this dataset
were manually classified based on different aspects such
as installation and activation mechanisms and malicious
payloads nature. Collected malware was split in families that
were obtained “by carefully examining the related security
announcements, threat reports, and blog contents from
existing mobile antivirus companies and active researchers
as exhaustively as possible and diligently requesting malware
samples from them or actively crawling from existing official
and alternative Android Markets” [6].

The different families present in the dataset are
ADRD, AnserverBot, Asroot, BaseBridge, BeanBot,
BgServ, CoinPirate, Crusewin, DogWars, DroidCoupon,
DroidDeluxe, DroidDream, DroidDreamLight,
DroidKungFu1, DroidKungFu2, DroidKungFu3,
DroidKungFu4, DroidKungFuSapp, DoidKungFuUpdate,
Endofday, FakeNetflix, FakePlayer, GamblerSMS,
Geinimi, GGTracker, GingerMaster, GoldDream, Gone60,
GPSSMSSpy, HippoSMS, Jifake, jSMSHider, Kmin, Lovetrap,
NickyBot, Nickyspy, Pjapps, Plankton, RogueLemon,
RogueSPPush, SMSReplicator, SndApps, Spitmo, TapSnake,
Walkinwat, YZHC, zHash, Zitmo, and Zsone.

Therefore, the final dataset is made of a total of 49
samples, one for each family of malware, defined by a total of
26 binary features divided in 6 categories (Table 1). A detailed
description of each feature can be found in the original paper
[6], and some previous work where this dataset is used can be
found in [34–36].

3. Experiments and Results

This section presents the experiments performed and the
results obtained in the validation process of the proposed
solution.

Both BHL (Section 2.1) and DT (Section 2.2) algorithms
have been applied to the previously described dataset (Sec-
tion 2.3), in order to identify the features that define the
internal structure of the data and that support the grouping
of the different families of malware attacks. In the conducted

−1 −0.5 0 0.5 1 1.5

BHL

−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 2: BHL: Projection of malware families.

experiments, firstly BHL is applied to identify groups of
malware families with similar behaviour. This is done by
visually inspecting the obtained BHL projections, and the
most relevant features are consequently identified. Then, the
dataset is analyzed by means of DTs to determine the level of
importance of each feature, considering as the most relevant
features those that are used in the decision nodes at lowest
depth.

In Figure 2 it is shown the best projection obtained by
BHL using the following parameter values: 𝛼 = 3, 𝛽 = 4,𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1000, and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 0.05. These
parameter values were chosen in an experimental process
of trial and error. As parameter tuning is a task that is
very dependent on the dataset to be used, several initial
experiments were conducted with a range of combinations of
these parameter values.

Based on such projection, samples are grouped in 2
main clusters: G1 and G2 (Figure 3). Additionally, several
subgroups (at a 3 level depth, i.e., G1 󳨀→ G1A 󳨀→ G1A.1,
G1A.2, G1A.3, and G1A.4) can be defined in these main
groups.

Figure 4 presents the split of family groups in a schema
that shows the results of thoroughly analyzing the allocation
of families in groups. The most relevant features that have
been identified, varying from one cluster to another, can be
seen. As an example, data are split in G1 and G2 based on the
features “Repackaging” and “Standalone.” The complete lists
of families assigned to each one of the groups are presented
in Figures 5 and 6. Malware families are allocated in the same
group as they are associated to similar characteristics and
behaviour, and therefore there could be similar ways to deal
with them.

Based on the analysis of BHL results, the most relevant
features, in decreasing order of importance, are “Repackag-
ing” and “Standalone,” “Boot” and “Activation: SMS,” and
“Financial Charges: SMS.”

BHL clearly outperforms other algorithms used in pre-
vious works [24, 29], providing a clearer visualization

Complexity 5

Table 1: Features in the Malgenome Dataset.

Category 1: Installation 1.Repackaging, 2.Update, 3.Drive-by download, 4.Standalone
Category 2: Activation 5.Boot, 6.SMS, 7.Net, 8.Call, 9.USB, 10.PKG, 11.Batt, 12.SYS, 13.Main
Category 3: Privilege escalation 14.exploid, 15.RATC/zimperlich, 16.ginger break, 17.asroot, 18.encrypted
Category 4: Remote control 19.NET, 20.SMS
Category 5: Financial charges 21.phone call, 22.SMS, 23.block SMS
Category 6: Personal information stealing 24.SMS, 25.phone number, 26.user account

Table 2: Summary table of DT results: minimum depth of decision nodes for each one of the original features.

Deviance Gini Twoing

ID Feature Standard Curvature Interaction
curvature Standard Curvature Interaction

curvature Standard Curvature Interaction
curvature Average

1 Repackaging 1 2 4 1 2 6 1 2 4 2.56
5 BOOT 2 3 3 4 3 2 2 3 3 2.78
18 Encrypted 4 2 4 4 2 3.20
9 USB 6 3 5 3 4 6 3 4.29

3 Drive-by
Download 5 5 4 2 5 6 5 5 4 4.56

24 SMS 4 3 5 10 3 6 3 3 5 4.67
26 User Account 6 1 8 3 1 8 6 1 8 4.67
2 Update 5 7 4 2 6 3 5 7 4 4.78
19 NET 6 2 8 9 2 3 4 2 8 4.89
6 SMS 3 6 5 8 7 3 3 6 4 5.00
10 PKG 6 5 4 5 4 6 5 5.00
22 SMS 3 6 4 10 6 4 3 6 4 5.11
4 Standalone 5 10 3 3 9 3 5 10 3 5.67
8 CALL 4 7 4 8 4 7 5.67
11 BATT 4 9 5 4 5 4 9 5.71
16 Ginger Break 6 6.00
15 RATC/Zimperlich 6 8 1 9 9 8 7 8 1 6.33
7 NET 5 8 6 10 9 2 5 8 6 6.56
14 Exploid 5 8 6 9 6 6 5 8 6 6.56
17 Asroot 7 4 7 11 4 9 8 4 7 6.78
23 Block SMS 3 8 5 9 9 9 4 8 6 6.78
25 Phone Number 2 11 2 12 12 11 2 11 2 7.22
12 SYS 5 10 6 10 11 7 5 10 6 7.78
21 Phone Call 4 9 12 13 7 4 9 5 7.88
13 MAIN 6 11 7 10 12 1 6 11 7 7.89
20 SMS 10 8 9.00

of the internal structure of the dataset. Groups obtained
by BHL are more compact and well defined than the
groups generated by other EPP techniques in the previous
work.

In addition to the BHL experiments, experiments with
DTs were additionally conducted in order to compare and
validate the obtained results. As it has been previously
mentioned, 3 different splitting functions have been applied
in present paper: Gini, Deviance, and Twoing. In addition, 3
different criteria for selecting split features have been applied:
Standard, Curvature, and Interaction.

As an example, one of the obtained DTs is shown in
Figure 7. This is the tree generated from the Malgenome
dataset when applying the standard CART split criteria and
theDeviance function. It has been selected as it is the onewith
lowest depth. In the leaf nodes, labels refer to family numbers
(alphabetically ordered as presented in Section 2.3).

To show the most interesting results from the different
alternatives to build DT, information has been summarized
in Table 2. For each combination of splitting function and
selecting criteria, the minimum depth of decision nodes
linked to each one of the original features is shown. That is,

6 Complexity

−1 −0.5 0 0.5 1 1.5

BHL

−2.5

−2

−1.5

−1

−0.5

0

0.5

G1

G2

G1a G1b

G1a.1

G1a.2

G1a.3

G1a.4

G1b.1

G1b.2

G1b.3

G1b.4

G2a G2b

G2a.1

G2a.2

G2a.3

G2a.4

G2b.1

G2b.2

G2b.3

Figure 3: BHL: Labelling of clusters.

G1

G2

G1A

G1A.1 & G1A.2

G1A.3 & G1A.4

G1B

G1B.1 & G1B.2

G1B.3 & G1B.4

G2B

G2B.1

G2B.2 & G2B.3

G2A.1, G2A.2 & G2A.3

G2A

G2A.4

G1B.1

G1B.2

G2A.1

G2A.2 & G2A.3

Re
pa

ck
ag

in
g=

0
St

an
da

lo
ne

=1

Repackaging=1

Standalone=0

BOOT=1

BOOT=0

Financial Charges:SMS=0

Activation: SMS=0

Financial Charges:SMS=1
Activation: SMS=1

Financial Charges:SMS=1
Activation: SMS=1

Financial Charges:SMS=1
Activation: SMS=1

Financial Charges:SMS=1
Activation: SMS=1

Activation: SMS =0
Financial Charges:SMS=0

Financial Charges:SMS=1

Financial Charges:SMS=0

Activation: SMS=0

Activation: SMS =0
Financial Charges:SMS=0

Financial Charges:SMS=1

BOOT=1

BOOT=0

Figure 4: Schematic clustering and relevant features from BHL projection.

when the same feature appears in more than one node, the
minimum depth of all these nodes is the one selected for the
given feature. In the case a certain feature was not included in
the DT, there is no value.

In this table it can be seen that results (slightly or
significantly) vary when comparing the obtained results (by
different splitting function and selecting criteria) for a certain
feature. As general conclusions cannot be derived and to sum

up all figures, the average depth value is calculated for each
feature, that is, further analyzed.

When analyzing Figure 4 and Table 2, it can be seen
that results from BHL and DT are coherent. In the case of
BHL, it can be seen that Repackaging is identified as the
most discriminative feature, because the two main groups
in the dataset (G1 and G2) take complementary values for
such feature. Coherently, Repackaging is the feature with the

Complexity 7

G1

Gone60
DroidDeluxe
FakeNetflix
Asroot
Plankton
zHash
SndApps
TapSnake
GamblerSMS
Zitmo
Walkinwat
FakePlayer
GPSSMSSpy
SMSReplicator
RogueSPPush
RogueLemon
Spitmo
GGTracker
Lovetrap
Nickyspy
NickyBot
GoldDream
Kmin
YZHC
Crusewin

G1A

Gone60
DroidDeluxe
FakeNetflix
Asroot
Plankton
Zitmo
Walkinwat
FakePlayer
GPSSMSSpy
SMSReplicator
RogueSPPush
RogueLemon
Spitmo

G1B

zHash
SndApps
TapSnake
GamblerSMS
GGTracker
Lovetrap
Nickyspy
NickyBot
GoldDream
Kmin
YZHC
Crusewin

G1A.1

Gone60
DroidDeluxe
FakeNetflix
Asroot
Plankton

G1A.2

Zitmo
Walkinwat
FakePlayer

G1A.3

GPSSMSSpy
SMSReplicator

G1A.4

RogueLemon
Spitmo
RogueSPPush

G1B.1 & G1B.2

zHash
SndApps
TapSnake
GamblerSMS
Nickyspy

G1B.2

zHash
SndApps
TapSnake
GamblerSMS

G1B.3

NickyBot
GoldDream
Kmin
YZHC

G1B.4

GGTracker
Lovetrap
Crusewin

BOOT=0

BOOT=1

G1B.2

Nickyspy

Financial Charges:SMS=0

Financial Charges:SMS=0

Activation: SMS=0

Activation: SMS=0

Financial Charges:SMS=1

Activation: SMS=1

Financial Charges:SMS=1

Financial Charges:SMS=1

Activation: SMS=1

Figure 5: Families allocation in Group 1 and relevant features identified in BHL projection.

G2

DoidKungFuUpdate
DroidDream
DogWars
Jifake
DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4
DroidKungFuSapp
DroidDreamLight
DroidCoupon
GingerMaster
ADRD
jSMSHider
Zsone
BeanBot
AnserverBot
Endofday
BaseBridge
CoinPirate

BgServ
Pjapps

G2A

DoidKungFuUpdate
DroidDream
DogWars
Jifake
jSMSHider
Zsone
BeanBot

G2B

DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4
DroidKungFuSapp
DroidDreamLight
DroidCoupon
GingerMaster
ADRD
AnserverBot
Endofday
BaseBridge
CoinPirate
Geinimi
BgServ
Pjapps
HippoSMS

G2A.1, G2A.2 & G2A.3

DoidKungFuUpdate
DroidDream
DogWars
Jifake
jSMSHider

G2A.4

Zsone
BeanBot

G2B.1

DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4
DroidKungFuSapp
DroidDreamLight
DroidCoupon
GingerMaster
ADRD

G2B.2

AnserverBot
Endofday

G2B.3

BaseBridge
CoinPirate
Geinimi
BgServ
Pjapps
HippoSMS

BO
OT

=0

BOOT=1

G2A.1

DoidKungFuUpdate
DroidDream

G2A.2 & G2A.3

DogWars
Jifake
jSMSHider

Financial Charges:SMS=1

Financial Charges:SMS=0

Activation: SMS=0

Financial Charges:SMS=1

Activation: SMS=1

Financial Charges:SMS=1

Activation: SMS=1

Financial Charges:SMS=0

Activation: SMS=0

Geinimi

HippoSMS

Figure 6: Families allocation in Group 2 and relevant features identified in BHL projection.

8 Complexity

Figure 7: DT obtained with standard CART split criteria and Deviance function.

lowest mean depth, being included in all the generated trees.
Furthermore, it was selected for the root node of 3DTs.When
analyzing subgroups in BHL projection (Figure 3), it can be
seen that BOOT is the feature that drive the split in 1st-level
subgroups (subgroups G1A and G1B in the case of group
G1, and subgroups G2A and G2B in the case of group G2).
In keeping with this idea, according to DTs results, Boot is
the second feature with the lowest mean depth. For the next
level of importance, the BHL projection identifies Financial
Charges SMS and Activation SMS as the features that best
explain the split in different subgroups. The two of them are

also selected by DTs as ranked in the first half of features with
a lowestmean depth, although some other features take lower
values.

Additionally, from the DTs results (Table 2), Privilege
escalation-Ginger Break and Remote control-SMS can be
identified as the least relevant features. The former was not
included in 7 (out of 9) DTs while the latter was not included
in 6. Furthermore, Remote control-SMS is the feature with
a highest value of the average depth, taking a value of
9. It means that these features are almost useless when
characterizing malware families.

Complexity 9

Results from present paper are consistent with those
obtained in previous work [30] when applying Feature
Selection (FS) to the same dataset. Installation-Repackaging,
Activation-SMS, Activation-Boot, Remote Control-NET, and
Financial Charges-SMS were identified as the 5 most rel-
evant features in order to characterize malware families,
according to a given method of filter-based FS: Minimum-
Redundancy Maximum Relevance. This method is intended
at obtaining the maximum relevance to the output while
keeping redundancy of selected features to lowest levels.
Complementarily, two evolutionary approaches to FS (GA-
ICC-W and GA-I-W) identified Installation-Repackaging,
Installation-Standalone, Activation-SMS, Remote Control-
NET, and Financial Charges-SMS as the 5most relevant ones.
These methods perform the selection of features according
to the Information Correlation Coefficient and the Mutual
Information, respectively.

4. Conclusions and Future Work

In this paper, some machine learning techniques have been
applied to Android malware data in order to analyse the
features of such apps and subsequently identify the ones that
better define the organization ofmalware families. As a result,
detection and categorization of malware could be improved
and spedup at the same time. Furthermore, by knowing about
these features, malware apps could be identifiedmore quickly
and precisely and then removed from the official Android
market.

From the obtained results some conclusions can be
derived; first of all, the proposed machine-learning tech-
niques probed to successfully address the given challenge.
BHL has outperformed previous neural projection tech-
niques that have been applied to the same data in clearly
revealing the structure of the Malgenome dataset. Addition-
ally, features identified as the most important ones by such
EPP technique are also highlighted by DTs as being relevant
to better differentiate between malware families.

Obtained results are consistent with those obtained by
FS and hence validate present proposal. Future work will
focus on the development of a Hybrid Intelligent System
to integrate results from the previously validated machine-
learning techniques. In addition, it will be applied to up-to-
datemalware datasets in order to check its performancewhen
facing 0-day malware.

Data Availability

Dataset used in this research is available in [7]: Bibliog-
raphy: 7. (2010) Malgenome Project [Online], available at
http://www.malgenomeproject.org.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is partially supported by Instituto Nacional de
Ciberseguridad (INCIBE) and developed by Research Insti-
tute of Applied Sciences in Cybersecurity (RIASC).

References

[1] Gartner, Global smartphone sales to end users from 1st
quarter 2009, 2018 https://www.statista.com/statistics/266219/
global-smartphone-sales-since-1st-quarter-2009-by-operating-
system/.

[2] AppBrain, Android and google play statistics, https://www
.appbrain.com/stats/stats-index.

[3] SOPHOSLABS, “Ltd., s., sophoslabs 2019 threat report,” Tech.
Rep., 2019.

[4] M. Labs, “Cybercrime tactics and techniques : Q3 2018,” Tech.
Rep., 2018.

[5] S. Arshad, M. A. Shah, A. Khan, andM. Ahmed, “Android mal-
ware detection & protection: A survey,” International Journal of
Advanced Computer Science and Applications, vol. 7, no. 2, 2016.

[6] Y. Zhou and X. Jiang, “Dissecting android malware: char-
acterization and evolution,” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pp. 95–109, San Francisco,
Calif, USA, May 2012.

[7] Y. Zhou, Malgenome project. 2010 http://www.malgenome-
project.org.

[8] H. Quint́ıan and E. Corchado, “Beta hebbian learning as a
new method for exploratory projection pursuit,” International
Journal of Neural Systems, vol. 27, no. 6, Article ID 1750024, 2017.

[9] L. Breiman, Classification and regression trees, Routledge, Lon-
don, UK, 2017.

[10] P. J. Garćıa Nieto, J. Mart́ınez Torres, F. J. De Cos Juez, and
F. Sánchez Lasheras, “Using multivariate adaptive regression
splines and multilayer perceptron networks to evaluate paper
manufactured using Eucalyptus globulus,”AppliedMathematics
and Computation, vol. 219, no. 2, pp. 755–763, 2012.

[11] M. Paliwal and U. A. Kumar, “Neural networks and statistical
techniques: a review of applications,” Expert Systems with
Applications, vol. 36, no. 1, pp. 2–17, 2009.

[12] R. F. Garcia, J. L. C. Rolle, M. R. Gomez, and A. D. Catoira,
“Expert condition monitoring on hydrostatic self-levitating
bearings,” Expert Systems with Applications, vol. 40, no. 8, pp.
2975–2984, 2013.

[13] C. C. Turrado,M.D. C.M. López, F. S. Lasheras, B. A. R. Gómez,
J. L. C. Rollé, and F. J. D. C. Juez, “Missing data imputation
of solar radiation data under different atmospheric conditions,”
Sensors, vol. 14, no. 11, pp. 20382–20399, 2014.

[14] J. L. Calvo Rolle, I. Machón González, and H. López Garćıa,
“Neuro-robust controller for non-linear systems,”Dyna, vol. 86,
no. 3, pp. 308–317, 2011.

[15] Á. Herrero, E. Corchado, M. A. Pellicer, and A. Abraham,
“Hybrid multi agent-neural network intrusion detection with
mobile visualization,” in Innovations in Hybrid Intelligent Sys-
tems, pp. 320–328, 2008.

[16] R. Sánchez, Á. Herrero, and E. Corchado, “Visualization and
clustering for SNMP intrusion detection,” Cybernetics and
Systems, vol. 44, no. 6-7, pp. 505–532, 2013.

[17] C. Pinzón, Á. Herrero, J. F. De Paz, E. Corchado, and J. Bajo,
“CBRid4SQL: A CBR intrusion detector for SQL injection

https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.appbrain.com/stats/stats-index
https://www.appbrain.com/stats/stats-index
http://www.malgenomeproject.org
http://www.malgenomeproject.org

10 Complexity

attacks,” in Proceedings of the 5th International Conference on
Hybrid Artificial Intelligence Systems HAIS 2010 - Part II, vol.
6077 of Lecture Notes in Computer Science, pp. 510–519, Springer
Berlin Heidelberg, 2010.

[18] C. Pinzón, J. F. De Paz, J. Bajo, Á. Herrero, and E. Corchado,
“AIIDA-SQL: An adaptive intelligent intrusion detector agent
for detecting SQL injection attacks,” in Proceedings of the 2010
10th International Conference on Hybrid Intelligent Systems, HIS
2010, pp. 73–78, USA, August 2010.

[19] D. Atienza, Á. Herrero, and E. Corchado, “Neural Analysis of
HTTP Traffic for Web Attack Detection,” in Proceedings of the
8th International Conference on Computational Intelligence in
Security for Information SystemsCISIS 2015, vol. 369 ofAdvances
in Intelligent Systems and Computing, pp. 201–212, Springer
International Publishing, 2015.

[20] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discrimi-
native model for android malware detection with decompiled
source code,” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 4, pp. 400–412, 2015.

[21] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L.
Cheng, “DroidDet: effective and robust detection of android
malware using static analysis along with rotation forest model,”
Neurocomputing, vol. 272, pp. 638–646, 2018.

[22] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani,
“Evaluation of machine learning classifiers for mobile malware
detection,” Soft Computing, vol. 20, no. 1, pp. 343–357, 2016.

[23] M. Wagner, F. Fischer, R. Luh et al., “A Survey of Visualization
Systems forMalware Analysis,” in Proceedings of the Eurograph-
ics Conference on Visualization (EuroVis) - STARs, 2015.

[24] A. González, Á. Herrero, and E. Corchado, “Neural visual-
ization of android malware families,” in International Joint
Conference SOCO’16-CISIS’16-ICEUTE’16, vol. 527 of Advances
in Intelligent Systems and Computing, pp. 574–583, Springer
International Publishing, Cham, 2017.

[25] A. Paturi, M. Cherukuri, J. Donahue, and S. Mukkamala,
“Mobile malware visual analytics and similarities of Attack
Toolkits (Malware gene analysis),” in Proceedings of the 2013
International Conference on Collaboration Technologies and
Systems, CTS 2013, pp. 149–154, USA, May 2013.

[26] W. Park, K. Lee, K. Cho, and W. Ryu, “Analyzing and detecting
method of Android malware via disassembling and visual-
ization,” in Proceedings of the 2014 International Conference
on Information and Communication Technology Convergence
(ICTC), pp. 817-818, Busan, South Korea, October 2014.

[27] V. Moonsamy, J. Rong, and S. Liu, “Mining permission patterns
for contrasting clean and malicious android applications,”
Future Generation Computer Systems, vol. 36, pp. 122–132, 2014.

[28] O. Somarriba, U. Zurutuza, R. Uribeetxeberria, L. Delosières,
and S. Nadjm-Tehrani, “Detection and visualization of android
malware behavior,” Journal of Electrical and Computer Engineer-
ing, vol. 2016, Article ID 8034967, p. 17, 2016.

[29] R. Vega Vega, H. Quintián, J. L. Calvo-Rolle, Á. Herrero, and
E. Corchado, “Gaining deep knowledge of Android malware
families through dimensionality reduction techniques,” Logic
Journal of the IGPL, 2018.

[30] J. Sedano, S. González, C. Chira, Á. Herrero, E. Corchado, and
J. R. Villar, “Key features for the characterization of Android
malware families,” Logic Journal of the IGPL, vol. 25, no. 1, pp.
54–66, 2017.

[31] S. Singh and P. Gupta, “Comparative study id3, cart and c4.
5 decision tree algorithm: a survey,” International Journal of

Advanced Information Science and Technology, vol. 27, no. 7, pp.
97–103, 2014.

[32] W.-Y. Loh and Y.-S. Shih, “Split selectionmethods for classifica-
tion trees,” Statistica Sinica, vol. 7, no. 4, pp. 815–840, 1997.

[33] W.-Y. Loh, “Regression trees with unbiased variable selection
and interaction detection,” Statistica Sinica, vol. 12, no. 2, pp.
361–386, 2002.

[34] L. Li, A. Bartel, T. F. Bissyande et al., “IccTA: Detecting Inter-
Component Privacy Leaks in Android Apps,” in Proceedings
of the 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE), vol. 1, pp. 280–291, Florence, Italy,
May 2015.

[35] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K.
Rieck, “Drebin: effective and explainable detection of android
malware in your pocket,” in Proceedings of the 2014 Network and
Distributed System Security (NDSS) Symposium, vol. 14, pp. 23–
26, 2014.

[36] G. Suarez-Tangil, S. K. Dash,M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro, “Droidsieve: Fast and accurate classification
of obfuscated android malware,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and
Privacy (CODASPY), pp. 309–320, Scottsdale, Arizona, USA,
2017.

Research Article
Multiclass Classification Procedure for Detecting Attacks on
MQTT-IoT Protocol

Hector Alaiz-Moreton ,1 Jose Aveleira-Mata ,2 Jorge Ondicol-Garcia,2

Angel Luis Muñoz-Castañeda,2 Isa-as Garc-a,1 and Carmen Benavides1

1Escuela de Ingenieŕıas, Universidad de León, 24071 León, Spain
2Research Institute of Applied Sciences in Cybersecurity (RIASC) MIC, Universidad de León, 24071 León, Spain

Correspondence should be addressed to Hector Alaiz-Moreton; hector.moreton@unileon.es

Received 27 November 2018; Accepted 10 February 2019; Published 7 April 2019

Guest Editor: Alicja Krzemień

Copyright © 2019 Hector Alaiz-Moreton et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The large number of sensors and actuators that make up the Internet of Things obliges these systems to use diverse technologies
and protocols. This means that IoT networks are more heterogeneous than traditional networks. This gives rise to new challenges
in cybersecurity to protect these systems and devices which are characterized by being connected continuously to the Internet.
Intrusion detection systems (IDS) are used to protect IoT systems from the various anomalies and attacks at the network
level. Intrusion Detection Systems (IDS) can be improved through machine learning techniques. Our work focuses on creating
classification models that can feed an IDS using a dataset containing frames under attacks of an IoT system that uses the MQTT
protocol. We have addressed two types of method for classifying the attacks, ensemble methods and deep learning models, more
specifically recurrent networks with very satisfactory results.

1. Introduction

The “Internet of Things” (IoT) describes many different
systems and devices that are constantly connected to Internet,
giving information from their sensors or interacting with
their actuators. By 2020 it is estimated that there will be
4.5 billion IoTs joining the Internet [1]. These devices have
special features, such as a low computing capacity and
the use specific lighter protocols. This makes IoT devices
more efficient, smaller, and less energy consuming; however
these low settings reduce their encryption capacity. These
heterogeneous systems and networks offer new challenges
in cybersecurity, such as new vulnerabilities and anomalies
[2, 3]. One of the most important attacks in recent years, the
Mirai botnet, exploited these vulnerabilities by carrying out
distributed denial of service attacks infecting IoT devices and
attacking with as many as 400,000 simultaneously connected
devices [4].

One way of improving network security is the use of
Intrusion Detection Systems (IDS). IDS are one of the most
productive techniques for detecting attacks within a network.

This tool can detect network intrusions and network misuses
by matching patterns of known attacks against ongoing net-
work activity [5]. With this purpose, our focus is to develop
an IDS with machine learning models for the IoT. IDS
use two different detection methods: signature-based detec-
tion and anomaly-based detection. Signature-based detection
methods are effective in detecting well-known attacks by
inspecting network traffic for specific patterns. Anomaly-
based detection systems identify attacks by monitoring the
behaviour of the entire system, objects, or traffic and com-
paring them with a predefined normal status [6].

Machine learning techniques are used to improve detec-
tion methods, by creating new rules automatically for
signature-based IDS or adapting the detection patterns of
anomaly-based IDS. These anomaly-based IDS have had
good results in qualifying frames that may be under attack
[7], and they are effective even in detecting zero-day attacks
[8].

To build a machine learning classifier it is necessary to
use a dataset. Within the network intrusion detection there
are some well-known datasets that are used to feed IDS

Hindawi
Complexity
Volume 2019, Article ID 6516253, 11 pages
https://doi.org/10.1155/2019/6516253

http://orcid.org/0000-0001-6572-1261
http://orcid.org/0000-0001-5439-0997
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6516253

2 Complexity

with machine learning techniques [9]. As there are no public
datasets based onnetwork traffic using IoTprotocols, we have
used a dataset that has been created in our previous research
(the dataset is available in https://joseaveleira.es/dataset. ©�
reg#LE-229-18). The main focus of this paper is on the
three differentmachine learning techniques that classify three
different attacks and normal frames at the same time using
our IoT environment dataset.

2. Related Work

There are several approaches for the detection of anomalies
in traditional networks using machine learning. The most
widely used datasets are the KDD99 [10] and NSL-KDD
Dataset [11] (an improved version of KDD’99).These datasets
contain traffic captured on the TCP protocol and collect
different types of attacks. Based on these datasets, some
models have been developed for anomaly detection using a
SupportVectorMachine andRandomForest [12, 13]. Another
technique used on this dataset is K-Centroid clustering,
whose objective is to improve the performance of other
models [14]. There are also ways of upgrading these datasets,
such as balancing classes to increase the models’ prediction
accuracy, which improves their performance [15].

Other detection techniques with good results are the use
of Fuzziness based semisupervised learning getting an accu-
racy of 84 [16] and also obtaining good results analyzing the
network traffic using sequential extreme learning machine
with accuracies around 95 [17]. These good results indicate
that machine learning is a good approach to improve the
detection of intrusions in the network layer.

The machine learning methods are based on deep learn-
ing [18]. There are many approaches for solving anomaly
detection using deep learning. One proposed way is to use
the Deep Belief Network (DBN) as a feature selector on the
KDDdataset, combined with a SVM that classifies the attacks
[19, 20]. Another proposed method is to use deep learning
models as feature selectors using the Fisher Score, a classical
statistic method, combined with an autoencoder to reduce
the dimensions of the data and extract the highest-valued
features [21]. Deep learning models are used as classifiers too.
Understanding that the temporary data sequence of network
attacks is important, the Long Short Term Memory (LSTM)
network, a variant of recurrent networks, has been used to
classify the KDD’s attacks [22].

As regards the IoT IDS, there is an approach that uses
fog computing combined withmobile edge computing. Using
this combination, a numerical simulation is made for the
NSL-KDD dataset, where it has been demonstrated that
this type of IDS has a good performance both in accuracy
and time dependence [23]. Using this dataset, there is also
an IDS based on rules which rules are modified using
machine learning KNN and SVM techniques [24]. Because
the research into IDS schemes for IoT is still incipient, the
proposed solutions do not cover a wide range of attacks or
IoT technologies [25].

There are other more recent datasets such as the AWID
[26] which collects TCP frames of data from a WLAN net-
work over which several attacks were made on 802.11 security

mechanism through which a study on Wi-Fi intrusions was
made using a neural network classifier [27]; another current
dataset is the CICIDS2017 [28] used to validate the detection
algorithms on which training has been carried out with
recurrent neural networks [29].

This research is based on a dataset specialized in a
protocol implemented in IoT environments to detect specific
vulnerabilities. It is specialized in an IoT protocol where
does not exist dissection of traffic ready to use with research
purposes.

3. Methods and Materials

This section describes the methods, from a theoretical point
of view as well as the materials used for implementing the
experiments.

3.1. MQTT Dataset. In order to classify anomalies in an
IoT environment, we built a dataset using MQTT, which is
a publish-subscribe-based messaging protocol. It is a light
protocol widely used in IoT [30].

The MQTT’s architecture follows a star topology, with a
central node that functions as a server or broker. The broker
is in charge of managing the network and transmitting. The
communication is based on topics created by the client that
publishes the message and the nodes that wish to receive it
must subscribe to it. The communication can be one to one,
or one to many.

This dataset has been obtained in a test environment with
several sensors, actuators, and a server. This server hosts
the management application, also working as the broker that
manages the messages of the MQTT protocol. The scheme of
the environment is detailed in the Figure 1.

We carried out several attacks against theMQTTprotocol
in the test environment. We captured these attacks at the
network level along with all generated traffic. The attacks
carried out were as follows:

(i) DoS: denial of service is one of the most common
attacks on the Internet [31]. In the case of the MQTT
protocol, the broker is attacked by saturating it with
a large number of messages per second and new
connections. Using the MQTT-malaria program [32],
this program is used for testing the scalability and
load testing utilities for MQTT environments.

(ii) Man in the middle (MitM) consists of intercepting
the messages between two communication points in
an attempt to modify the content; in this case it is
done between a sensor and the broker by modifying
the sensor data. To carry out the attack we used the
distribution Kali Linux and the tool Ettercap.

(iii) Intrusion: taking into account the characteristics of
the MQTT protocol, this attack consists of using
the well-known port (1883) for this protocol and a
command that uses the special character “#” can be
used by an external attacker for knowing the active
topics available for being subscripted. To find out
which topics a client outside the system [33].

Complexity 3

4.000
HC-SR04

Ec
ho

G
nd

Tr
ig

Vc
c

T R

FL
A

SH
RS

T
NodeMCU V1.0

blog.squix.ch

VinGNDRSTEN3V3GNDCLKSD0CMDSD1SD2SD3RSVRSVA0

D0 D1 D2 D3 D4 3V3 GND D5 D6 D7 D8 RX TX GND 3V3

VinGNDRSTEN3V3GNDCLKSD0CMDSD1SD2SD3RSVRSVA0

FL
A

SH
RS

T

NodeMCU V1.0

blog.squix.ch

Distance sensor

Relay actuator

Web client 2 Web client 1

Publish/subscribe MQTT

Publish/subscribe MQTT

MQTT-Broker

Opwenwrt router

LAN

WLAN

MQTT-Malaria
DoS attack

D0 D1 D2 D3 D4 3V3 GND D5 D6 D7 D8 RX TX GND 3V3

Figure 1: Test environment schema.

The relevant fields and the protocol are selected after cap-
turing the network traffic in the system. All communication
frames are tagged to show whether one of them is under
attack or is normal. There are three CSV files generated, one
for each attack, all of them being part of the dataset used.
Selecting features and labeling the frames indicating whether
or not they are under attack enable supervised learning
techniques to be used on this dataset.

The features of the data set are as follows:

(i) DoS.csv that contains the capture of 94.625 frames
and of which 45.513 are under attack traffic and 49.112
are normal traffic.

(ii) MitM.csv that contains 110668 frames with 3855
under man in the middle attack and 106.813 normal
traffic frames.

(iii) Intrusion.csv with 80,893 total frames with 1898
under attack and 78,995 normal traffic frames.

3.2. Classification Methods. We have chosen XGBoost be-
cause other research delivered good results like [34–36]. We
have also chosen recurrent networks for our experiments

because of the importance of time in network attacks [22], as
frames are produced sequentially, and the sequence and time
between frames provide relevant information for detecting
an attack. We shall go into our classification models in more
detail in the following sections.

3.2.1. XGBoost (Gradient Boosting). Gradient boosting sys-
tems build additive models in a forward way through steps,
allowing the optimization of arbitrary differentiable loss
functions. In each forward step, regression trees are fitted
onto the negative gradient of the binomial or multinomial
loss function [37]. XGBoost stands for Extreme Gradient
Boosting [38]. It is a scalable machine learning system for tree
boostingwhich optimizesmany systems and algorithms, such
as a tree learning algorithm that handles sparse data, handling
instance weights in approximate tree learning or exploiting
out-of-core computation. For the implementation of this
method, we are using the XGBoost library for Python [39].

3.2.2. Recurrent Neural Networks. Recurrent neural net-
works are a variant of neural networks designed for highly
sequenced problems. RNN contain cycles that feed the

4 Complexity

network activation from a previous time step as inputs into
the network, influencing predictions at the current time step.
The addition of cycles gives the RNNa new dimension, where
instead of mapping only inputs to outputs, the network will
learn a mapping function for the inputs to an output over
time. One of the main disadvantages of this kind of network
is the training problems, such as a vanishing gradient and
exploding gradients [40]. These problems can be addressed
through variations in the neurons, such as GRU or LSTM
cells.

LSTM Recurrent Network. LSTM networks have a unique
formulation that allows them to prevent the problems of
scaling and training of the vanilla RNN, avoiding the back
propagation error that either blows up or decays expo-
nentially. An LSTM layer consists of a set of recurrently
connected blocks, known as memory blocks that are the
computational units of the LSTM network [41]. These cells
are made up of weights and gates. Each memory block
contains one or more recurrently connected memory cells
and three multiplicative units: input, output, and forget gates.
The gates allow the information flows to interact with the
cells. The forget gate and the input gate update the internal
state, while the output gate is the final limiter of the cells’
output. These gates and the consistent data flow called CEC,
or constant error carrousel, keep each cell stable [42]. For
the implementation of this network, we are using the Keras
framework for Python with the Tensorflow backend, using
GPU processing and an improved-performance version that
uses Cudnn (CudnnLSTM) [43].

GRU Recurrent Network. Just like LSTM networks, GRU
networks have a structure and formulation that improve the
vanilla RNN. GRU was first proposed in Cho et al. [44]
as an alternative to the LSTM to capture dependencies of
different time scales adaptively. The only difference between
these networks is the procedure for updating the CEC. It
is similar to the LSTM but with one difference, the GRU
units have no mechanism for controlling the exposure to
which this data flow is submitted [45]. This lack of control
mechanisms makes the GRU units faster than the LSTM and
more adaptable to the changes in the time flow [46]. For
the implementation of this network, we are using the Keras
framework for Python with the Tensorflow backend, using
GPU processing and an improved-performance version that
uses Cudnn (CudnnGRU) [43].

3.3. OptimizationMethods. SGDmethods are iterative meth-
ods used for optimizing an objective function. Adam is based
on adaptive estimates of lower-order moments. This method
is simple to implement and computationally efficient and has
few memory requirements. It does not change as a result of
the diagonal rescaling of the gradients and works well for
problems that are large in data and/or parameters. Adam is
also appropriate for changing objectives and problems with
very noisy and/or sparse gradients. The hyperparameters of
this method are easy and intuitive to understand and usually
require little tuning [47]. Based on Adam we have Nadam,
which is an Adam version applying Nesterov momentum

[48]. We have tested RMSprop, Adam, and Nadam, all of
which are stochastic gradient descent methods, but we got
our best results using Nadam to optimize our loss. Nadam
brings more speed in learning in eachminibatch step. Nadam
gave us better results because we have a complex net and
fewer epochs. We needed a faster loss function optimizer to
learn more in fewer epochs, without fearing a fast Decay into
overfitting.

3.4. Batch Normalization. This method works by making
normalization a part of the model architecture and carrying
out a normalization step for each training minibatch. It
addresses the problem of the internal covariate shift, brought
about by the values of the input layers’ changing during
training. This problem requires low learning rates and a
careful parameter initialization and makes it harder to train
models with saturating nonlinearities. Batch Normalization
allows us to use higher learning rates and pay less attention
to initialization. It can also act as a regularizer, in some cases
eliminating the need for other regularization techniques [49].

3.5. Evaluation Metrics. Metrics evaluate the performance
of a machine learning model. Every metric measures the
efficiency in a different way, so we use several metrics for our
models in order to obtain a more accurate view.

3.5.1. Multiclass Logarithmic Loss and Categorical Cross
Entropy. The logarithmic loss metric measures the perfor-
mance of a classification model in which the prediction input
is a probability value of between 0 and 1. Its formula is as
follows:

− (𝑦 ∗ log (𝑦𝑝𝑟𝑒𝑑) + (1 − 𝑦) ∗ log (1 − 𝑦𝑝𝑟𝑒𝑑)) (1)

where 𝑦 𝜖 [0, 1] is the known label and 𝑦𝑝𝑟𝑒𝑑 𝜖 [0, 1] is
the prediction of the model. Logarithmic loss and cross
entropy in machine learning when calculating error rates of
between 0 and 1 lead to the same thing. The cross-entropy
formula is as follows:

𝐻 (𝑝, 𝑞) = −∑
𝑥

(𝑝 (𝑥) ∗ log (𝑞 (𝑥))) (2)

If 𝑝 𝜖 [𝑦, 1 − 𝑦] and 𝑞 𝜖 [𝑦𝑝𝑟𝑒𝑑, 1 − 𝑦𝑝𝑟𝑒𝑑],

− (𝑦 ∗ log (𝑦𝑝𝑟𝑒𝑑) + (1 − 𝑦) ∗ log (1 − 𝑦𝑝𝑟𝑒𝑑)) (3)

The same formula is applied in both situations. We can
extend the logarithmic loss to multiclass problems, given the
true labels of a set of samples encoded as a 1-of-K binary
indicator matrix 𝑌, where 𝑦𝑖,𝑘 = 1 if sample 𝑖 has label 𝑘 taken
from a set of 𝐾 labels. Let 𝑌𝑝𝑟𝑒𝑑 be a matrix of probability
estimates, with 𝑦𝑝𝑟𝑒𝑑𝑖,𝑘 = 𝑃𝑟(𝑡𝑖,𝑘 = 1):

𝐿 𝑙𝑜𝑔 (𝑌, 𝑌𝑝𝑟𝑒𝑑) = − 1
𝑁

𝑁−1

∑
𝑖=0

𝐾−1

∑
𝑘=0

𝑦𝑖,𝑘 ∗ log (𝑦𝑝𝑟𝑒𝑑𝑖,𝑘) (4)

Complexity 5

3.5.2. Multiclass Classification Error Rate. The multiclass
error rate is the percentage of misclassifications made by the
model:

𝑝𝑤𝑟𝑜𝑛𝑔
𝑃

(5)

3.5.3. F-Beta Score. The F-beta score is the weighted har-
monic average of precision and recall, obtaining its best value
at 1 and its worst value at 0. The 𝛽 parameter determines the
weight of precision in the combined score. 𝛽 < 1 lends more
weight to precision, while 𝛽 > 1 favors recall.

𝐹𝛽 = (1 + 𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙 (6)

3.5.4. Categorical Accuracy. The calculation of the average
accuracy rate across all predictions made for a multiclass
problem is made using the following formula:

1
𝑁

𝑁−1

∑
𝑖=0

𝐸𝑞𝑢𝑎𝑙𝑠 (argmax (𝑦) , argmax (𝑝)) (7)

3.6. Dropout. Dropout is used to prevent overfitting. It works
by randomly dropping units and their connections from the
neural network during training. This prevents network units
from adapting too much to a problem [50].

4. Experiments

Our experiments are based on three datasets, one for each
attack. Before joining them, we balanced each one of them
to reduce the huge differences between all of the classes.
We balance the classes of each dataset using the resample
method provided by Scikit-learn [51]. Once all of the datasets
were balanced, we put them together to build a multiclass
dataset. With the complete dataset ready, we chose the most
representative features using a Feature Importance (FIM)
report system. Our FIM algorithm is a hybrid method based
on the mutual information function and it is composed
by two routines; one corresponding to a filter process
(based on the minimum-redundancy-maximum-relevance)
and another corresponding to a wrapper process, where we
used several models like SVM, Decision Trees, or Random
Forests. This method confronts each feature of the dataset
against the target feature. Choosing the highest values gives us
themost important features for each set of data. After that, we
confront each of the variables chosen in pairs between them
and then we delete the highest-valued features to decrease
redundancy. We also have to prepare our custom metric F-
beta score. Taking into account the F-beta formula presented
on the paper, we select beta = 1 to increase the value of
the recall variable. The recall is the amount of data well
classified in both parts, referring to the amount of present
false positives and negatives. The classifications problems,
in networks specifically, have many problems with false
positives and negatives, so giving more value to the metric
can make it more sensitive to these failures and could give us

...
le Msg = LabelEncoder()
dataset combined[’mqtt.msg’] = le Msg.fit transform
(dataset combined[’mqtt.msg’].astype(str))
...

Box 1

input timesteps = 3
features = 11
X train = scaler.fit transform(X train)
X test = scaler.fit transform(X test)
#Three timesteps plus the actual one
X train = X train.reshape
(X train.shape[0], input timesteps+1, features)
X test = X test.reshape
(X test.shape[0], input timesteps+1, features)

Box 2

amore accurate vision. Immediately after that, we prepare the
categorical values in order to make it possible to train both
recurrent neural networks Box 1.

Finally, we set four timesteps for both recurrent LSTM
and GRU networks, transforming the inputs into tensors
made up of samples, timesteps, and features Box 2.

A hyperparameter search on recurrent networks is com-
putationally expensive, so we have chosen their hyperparam-
eters depending on logs of training, increasing the width
and length of the network or increasing the periods if it is
underfitted or by applying a batch normalization, dropout or
reducing the length, width, or epochs to reduce overfitting.
Now, we will describe our three different classification meth-
ods in greater detail.

4.1. XGBoost. Wedefine theXGBoostmodel for our problem,
highlighting the four types that we wish to classify and
specifying both the tree method and the booster. We use a
version of the tree method called the XGBoost fast-histogram
algorithm. This method is much faster and uses considerably
less memory than other methods [52], but it needs a specific
version of CUDA to work.We also highlighted the evaluation
metrics thatwewanted to use (multiclass logarithmic loss and
multiclass classification error rate), the number of threads
and the number of estimators in the model. We have applied
a grid search with a threefold cross validation to take the best
parameters of the model.These are the parameters we wish to
tune in Box 3.

This grid search gives us a set of parameters that perform
best on the problem in Box 4.

4.2. Recurrent LSTM. For our LSTM network, we first
compile some of the parameters of the net, setting the
loss, the optimizer, and the metrics. Our loss is a variant

6 Complexity

Table 1: Results of evaluation metrics for XGBoost.

Model M. logarithmic loss M. classification error rate
XGBoost-Train 0.075348 0.024753
XGBoost-Test 0.079451 0.025651

param = [’max-depth’: [1, 5, 10, 20, 25],
’learning-rate’: [0.4, 0.6, 0.8],
’min-child-weight’: [1, 5, 10],
’gamma’: [0.5, 1, 1.5, 2, 5],
’sub-sample’: [0.6, 0.8, 1.0],
’col-sample-by-tree’: [0.6, 0.8, 1.0]]

Box 3

’learning-rate’: 0.4,
’gamma’: 0.5,
’min-child-weight’: 10,
’col-sample-by-tree’: 1.0,
’max-depth’: 5,
’sub-sample’: 0.8

Box 4

model.compile(loss=’categorical crossentropy’,
optimizer=’Nadam’,
metrics=[metrics.categorical accuracy, fbeta])

Box 5

history = model.fit(X train, y train, batch size=128,
validation split=0.1, epochs=15,
verbose=2, callbacks=[tb LOG])

Box 6

of cross entropy for multiclassification called categorical
cross entropy. We are using the unmodified version of the
Nadam optimizer. We tested Adam, RMSprop, and Nadam,
establishing that Nadam is more efficient than Adam and
RMSprop for our model. We set the metrics categorical
accuracy and f-score to measure the model’s accuracy and
reliability, setting 𝛽 parameter for Fbeta-score metric at 2 in
Box 5.

We fit the model with our data, using a batch size of 128
and 15 epochs. We use a 10% validation split to validate the
results of the training in Box 6.

We use an Encoder-Decoder approach for our LSTM
network. We also use a CUDA version of the LSTM cell from

the Keras library [43]. In order to avoid overfitting, we used
dropout, setting its value between 0.3 and 0.4 depending on
the size of the previous layers, and batch normalization to
control exploding gradients and speed up the training process
in Box 7.

4.3. Recurrent GRU. For our GRU network, we compile the
parameters of the net, setting the loss, the optimizer, and
the metrics. We have set some of the GRU net parameters
similar to our LSTM net. Our loss is a variant of cross entropy
formulticlassification called categorical cross entropy.We are
using the unmodified version of the Nadam optimizer. As we
did on LSTM, we tested both Adam and Nadam, finding that
Nadam is more efficient than Adam for our model. We set
the categorical accuracy and f-score of the metrics tomeasure
the model’s accuracy and reliability, setting 𝛽 parameter for
F-beta-score metric at 2 in Box 8.

We fit the model with our data, using a batch size of 256
and 17 epochs. We use a 10% validation split to validate the
results of the training in Box 9.

We use a linear structure approach for our GRU network.
We also used a CUDA version of GRU cell from the Keras
library [43]. In order to avoid overfitting, we used dropout,
setting its value between 0.2 and 0.3 depending on the size
of the previous layers, and batch normalization to control
exploding gradients and speed up the training process.
Because of the GRU cell design, it needs more time to learn
than LSTM, although it is faster.This also affects dealing with
the overfitting, needing fewer dropout values for the GRUnet
in Box 10.

5. Results and Discussion

Once we had the results of the search for the XGBoost, we
trained themodel and tested it on our data, with the following
results as detailed in Figure 2 and Table 1.

Our LSTM and GRU networks gave us the following
results for training and validation (Figures 3, 4, 5, 6 and
Table 2).

In our previous work, the ensemble methods gave us bet-
ter accuracies than the linear methods on the three datasets
separately; i.e., for DoS, the best accuracy achieved was
0.99377 using a random forest model and Boosting Gradient
achieved 0.99373, while SVM achieved 0.99023, taking into
account the best twomodels and theworst.Thedifferencewas
smaller for DoS, but on intrusion and MitM the difference
between these two types of method was higher. Specifically,
on intrusion Random Forest and Boosting Gradient they got
0.95294 and 0.95385, respectively, while SVMgot 0.93031.The
results were similar for intrusion. In our experiments on this
paper, XGBoost achieved the highest accuracy. This result
confirms that ensemble methods achieve higher accuracies

Complexity 7

...
model.add(CuDNNLSTM(128, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(CuDNNLSTM(128, return sequences=True))
model.add(BatchNormalization())
model.add(CuDNNLSTM(256, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(CuDNNLSTM(256, return sequences=True))
model.add(BatchNormalization())
...

Box 7

Table 2: Results of evaluation metrics for LSTM and GRU.

Model Categorical Cross
Entropy

Categorical
Accuracy F-beta Score

LSTM-Train 0.2093 0.9276 0.9148
GRU-Train 0.1334 0.9554618 0.952418
LSTM-Validation 0.1821 0.9337 0.9328
GRU-Validation 0.1280 0.960836 0.95777

model.compile(loss=’categorical crossentropy’,
optimizer=’Nadam’,
metrics=[metrics.categorical accuracy, fbeta])

Box 8

history = model.fit(X train, y train, batch size=256,
validation split=0.1, epochs=18,
verbose=2, callbacks=[tb LOG])

Box 9

and less loss than other linearmodels or neural networks such
as SVM, GRU, and LSTM for problems involving attacks on
IoT networks.

Multiclass classification problems tend to be more com-
plex than binary problems, making getting better results
harder for these problems. We had similar results in both
experiments on ensemble models when classifying, where we
maintain the highest metrics and results. Focusing on our
GRU and LSTM models, we had better results overall using
deep learning than using linear models, but we had worse
results than ensembles. LSTMgotworse result than the SVM’s
DoS model and slightly better results than the SVM model
for intrusion andMitM.GRUperformed better, gettingworse
results than the SVM’sDoS, but better than SVM for intrusion
and MitM.

Even though we dealt with imbalance, there are still
huge differences between classes. This may have affected the
accuracy in some of our models negatively, specifically the
GRU and LSTM.We have been able tomaintain a good result
by taking the sequencing of the problem into account.

6. Conclusion

IoT systems have been growing in recent years and are
expected to increase considerably. The special features of
these devices make the network technologies more heteroge-
neous than traditional networks, presenting new challenges
to cybersecurity. Taking into account the fact that IDS are
an important security barrier that can detect intrusions and
security risks in the network quickly, we propose models
for the detection of attacks in IoT environments that can
provide an IDS oriented for IoT. We use specific datasets
with particular attacks for these systems, specifically for
the MQTT protocol. In this case, machine learning tech-
niques can be used to classify the frames that an IDS can
assign as attack or normal. We chose the LSTM, GRU, and
XGBoost models for our classification problem. We selected
these recurrent models because of the importance of time
and sequencing in network attacks. We picked XGBoost
because the structure of the problem benefits the hierarchical
ensemble method’s performance, enabling them to achieve
the highest accuracies. All these three classification methods
are very efficient, with GPU implementations. Ensemble
methods obtained the highest results, and deep learning
models achieved better results in general than linear models,
but not as good as ensemble methods. These models can
be used for future work in which an IDS is fed with a
model.This IDS will be implemented in a standard computer

8 Complexity

...
model.add(CuDNNGRU(128, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(CuDNNGRU(256, return sequences=True))
model.add(BatchNormalization())
model.add(CuDNNGRU(256, return sequences=True))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(CuDNNGRU(256, return sequences=True))
model.add(BatchNormalization())
...

Box 10

0 200 400 600 800 1000
Epochs Epochs

Lo
ss

Lo
ss

0 200 400 600 800 1000

Figure 2: Training and testing graphics for XGBoost.

Categorical Accuracy Graph

F-
sc

or
e

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0 2 4 6 8 10 12 14

Categorical Accuracy Graph

Ca
te

go
ric

al
 A

cc
ur

ac
y

Categorical Accuracy Train
Cattegorical Accuracy Validation

0.86

0.88

0.90

0.92

F-score Train
F-score Validation

Epochs Epochs
0 2 4 6 8 10 12 14

Figure 3: F-beta score and categorical accuracy LSTM.

Complexity 9

Train_loss

Lo
ss

0.20

0.25

0.30

0.35

0.40

0 2 4 6 8 10 12 14

Train Loss
Validation Loss

Epochs

Figure 4: Categorical cross-entropy LSTM.

Categorical Accuracy Graph
Ca

te
go

ric
al

 A
cc

ur
ac

y

Categorical Accuracy Train
Categorical Accuracy Validation

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Train_f-score

F-
sc

or
e

F-Score Train
F-Score Validation

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
EpochsEpochs

Figure 5: F-beta score and categorical accuracy GRU.

Train_loss

Lo
ss

0.1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.2

0.3

0.4

0.5

Epochs

Train Loss
Validation Loss

Figure 6: Categorical cross-entropy GRU.

10 Complexity

similar to the one use for the creation of machine and deep
learning models. Thus, the Python model will be deployed in
a standard unit with a Port Mirroring from the router.

Data Availability

The dataset used to support the findings of this study is
available in https://joseaveleira.es/dataset. ©� reg#LE-229-18.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is partially supported by (i) Instituto Nacional de
Ciberseguridad (INCIBE) and developed Research Institute
of Applied Sciences in Cybersecurity (RIASC); (ii) Junta de
Castilla y León, Consejeŕıa de Educación, Project LE078G18.
UXXI2018/000149. U-220.

References

[1] J. Green, “The Internet of Things Reference Model,” Internet of
Things World Forum, pp. 1–12, 2014.

[2] M. A. Razzaq, S. H. Gill, M. A. Qureshi, and S. Ullah, “Security
Issues in the Internet ofThings (IoT): A Comprehensive Study,”
International Journal of Advanced Computer Science and Appli-
cations, vol. 8, no. 6, p. 383, 2017.

[3] C. Ordóñez Galán, F. Sánchez Lasheras, F. J. de Cos Juez, and A.
Bernardo Sánchez, “Missing data imputation of questionnaires
by means of genetic algorithms with different fitness functions,”
Journal of Computational and Applied Mathematics, vol. 311, pp.
704–717, 2017.

[4] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in
the IoT: mirai and other botnets,” IEEE Computer Society, vol.
50, no. 7, pp. 80–84, 2017.

[5] N.Ben-Asher andC.Gonzalez, “Effects of cyber security knowl-
edge on attack detection,” in Computers in Human Behavior 48,
, 5161. doi:10.1016/j.chb..01.039, URL http, //dx.doi.org/10.1016/
j.chb.2015.01.039, 2015, http://dx.doi.org/10.1016/j.chb.2015.01
.039.

[6] K. Prabha and S. Sudha, “A Survey on IPS Methods and
Techniques,” in Proceedings of the International Journal of
Computer Science Issues 13 (2, vol. 13, pp. 38–43, 2016, http://ijcsi
.org/contents.php.

[7] T. Hamed, J. B. Ernst, and S. C. Kremer, “A Survey and
Taxonomy of Classifiers of Intrusion Detection Systems,” in
Proceedings of the URL, vol. 39, p. 21, Cham, 2018.

[8] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, andW. Lee, “McPAD:
a multiple classifier system for accurate payload-based anomaly
detection,”Computer Networks, vol. 53, no. 6, pp. 864–881, 2009.

[9] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Towards
generating real-life datasets for network intrusion detection,”
International Journal of Network Security, vol. 17, no. 6, pp. 683–
701, 2015.

[10] S. J. Stolfo, KDD cup, URL http, //kdd.ics.uci.edu/, 1999,
http://kdd.ics.uci.edu/.

[11] M. Tavallaee, E. Bagheri,W. Lu, andA. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Proceedings of the 2nd

IEEE Symposium on Computational Intelligence for Security and
Defence Applications, pp. 1–6, IEEE, July 2009.

[12] M. Hasan, M. Nasser, B. Pal, and S. Ahmad, “Support Vector
Machine and Random Forest Modeling for Intrusion Detection
System (IDS),” Journal of Intelligent Learning Systems andAppli-
cations, Article ID 9601233, pp. 45–52, 2014, http://file.scirp.org/
Html/5-9601233 42869.htm.

[13] P. G. Nieto, J. A. Fernández, F. S. Lasheras, F. de Cos, and
C. D. Juez, “A new improved study of cyanotoxins presence
from experimental cyanobacteria concentrations in the trasona
reservoir (northern spain) using the mars technique,” Science of
the total environment, vol. 430, pp. 88–92, 2012.

[14] B. Chakrabarty, O. Chanda, and M. Saiful, “Anomaly based
intrusion detection system using genetic algorithm and K-
centroid clustering,” International Journal of Computer Applica-
tions, vol. 163, no. 11, pp. 13–17, 2017.

[15] J.-h. Seo and Y.-h. Kim, Machine-Learning Approach to Opti-
mize SMOTE Ratio in Class Imbalance Dataset for Intrusion
Detection, 2018.

[16] R. A. R. Ashfaq, X. Z. Wang, J. Z. Huang, H. Abbas, and Y.
L. He, “Fuzziness based semi-supervised learning approach for
intrusion detection system,” Information Sciences, vol. 378, pp.
484–497, 2017.

[17] R. Singh, H. Kumar, and R. K. Singla, “An intrusion detection
system using network traffic profiling and online sequential
extreme learning machine,” Expert Systems with Applications,
vol. 42, no. 22, pp. 8609–8624, 2015.

[18] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim,
“A survey of deep learning-based network anomaly detection,”
Cluster Computing.

[19] Y. Li, R. Ma, and R. Jiao, “A Hybrid Malicious Code Detection
Method based on Deep Learning,” International Journal of
Security and Its Applications, vol. 9, no. 5, pp. 205–216, 2015.

[20] P. Garcı́a Nieto, J. Mart́ınez Torres, F. de Cos Juez, and
F. Sánchez Lasheras, “Using multivariate adaptive regression
splines and multilayer perceptron networks to evaluate paper
manufactured using Eucalyptus globulus,”AppliedMathematics
and Computation, vol. 219, no. 2, pp. 755–763, 2012.

[21] X. Tao, D. Kong, Y. Wei, and Y. Wang, “A Big Network
Traffic Data Fusion Approach Based on Fisher and Deep Auto-
Encoder,” Information, vol. 7, no. 2, p. 20, 2016.

[22] J. Kim, H. L. T. Thu, and H. Kim, “Long Short Term Memory
Recurrent Neural Network Classifier for Intrusion Detection,”
in Proceedings of the International Conference on Platform
Technology and Service (PlatCon, 2016), pp. 1–5, 2016, http://
ieeexplore.ieee.org/document/7456805/.

[23] Xingshuo An, Xianwei Zhou, Xing Lü, Fuhong Lin, and Lei
Yang, “Sample Selected Extreme Learning Machine Based
Intrusion Detection in Fog Computing and MEC,” Wireless
Communications and Mobile Computing, vol. 2018, Article ID
7472095, 10 pages, 2018.

[24] F. Lu and L. Wang, “Intrusion Detection System Based on
Integration of Neural Network for Wireless Sensor Network,”
Journal of Software Engineering, vol. 8, no. 4, pp. 225–238, 2014.

[25] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de
Alvarenga, “A survey of intrusion detection in Internet of
Things,” Journal of Network and Computer Applications, vol. 84,
pp. 25–37, 2017.

[26] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, “Intru-
sion Detection in 802.11 Networks: Empirical Evaluation of
Threats and a Public Dataset,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 184–208, 2016.

https://joseaveleira.es/dataset
http://dx.doi.org/10.1016/j.chb.2015.01.039
http://dx.doi.org/10.1016/j.chb.2015.01.039
http://ijcsi.org/contents.php
http://ijcsi.org/contents.php
http://kdd.ics.uci.edu/
http://file.scirp.org/Html/5-9601233_42869.htm
http://file.scirp.org/Html/5-9601233_42869.htm
http://ieeexplore.ieee.org/document/7456805/
http://ieeexplore.ieee.org/document/7456805/

Complexity 11

[27] M. E. Aminanto,H. C. Tanuwidjaja, P. D. Yoo, andK. Kim, “Wi-
Fi intrusion detection using weighted-feature selection for neu-
ral networks classifier,” in Proceedings of the 2017 International
Workshop on Big Data and Information Security (IWBIS), pp.
99–104, Jakarta, September 2017.

[28] ids-2017@www.unb.ca, https://www.unb.ca/cic/datasets/ids-
2017.html, 2017.

[29] Z.-Q. Qin, X.-K. Ma, and Y.-J. Wang, “Attentional Payload
Anomaly Detector for Web Applications,” in Proceedings of the
Neural Information Processing, L. Cheng, A. C. S. Leung, and S.
Ozawa, Eds., Springer, pp. 588–599, Cham, Switzerland, 2018.

[30] P. Sethi and S. R. Sarangi, Internet of Things: Architectures,
Protocols, and Applications, 2017.

[31] T. Halabi and M. Bellaiche, “How to evaluate the defense
against dos and ddos attacks in cloud computing: a survey
and taxonomy,” International Journal of Computer Science and
Information Security (IJCSIS), vol. 14, no. 12, pp. 1–10, 2016.

[32] K. Palsson, mqtt-malaria@github.com (2018).
https://github.com/remakeelectric/mqtt-malaria.

[33] S. Andy, B. Rahardjo, and B. Hanindhito, “Attack Scenarios and
Security Analysis of MQTT Communication Protocol in IoT
System,” in Proceedings of the 4th International Conference on
Electrical Engineering, Computer Science and Informatics, EECSI
2017, pp. 19–21, IEEE, Yogyakarta, Indonesia, 2017.

[34] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G.
Giacinto, “Novel feature extraction, selection and fusion for
effective malware family classification,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and
Privacy, CODASPY ’16, pp. 183–194, ACM, New York, NY, USA,
2016, http://doi.acm.org/10.1145/2857705.2857713.

[35] D. Barradas, N. Santos, and L. Rodrigues, “Effective detec-
tion of multimedia protocol tunneling using machine learn-
ing,” in Proceedings of the 27th USENIX Security Symposium
(USENIX Security 18), pp. 169–185, USENIX Association, Bal-
timore, MD, USA, 2018, https://www.usenix.org/conference/
usenixsecurity18/presentation/barradas.

[36] Y. Meidan, M. Bohadana, A. Shabtai et al., “Profiliot: A
machine learning approach for iot device identification based
on network traffic analysis,” in Symposium on Applied Comput-
ing, SAC ’17, pp. 506–509, ACM, New York, NY, USA, 2017,
http://doi.acm.org/10.1145/3019612.doi:10.1145/3019612.

[37] J. H. Friedman, “Greedy function approximation: a gradient
boosting machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–
1232, 2001.

[38] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
2016, pp. 785–794, 2016, https://arxiv.org/abs/1603.02754.

[39] XGBoost library, https://xgboost.readthedocs.io/en/latest/tuto-
rials/index.html.

[40] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training Recurrent Neural Networks,” https://arxiv.org/abs/
1211.5063, 2012.

[41] T.U.Munich, “Framewise PhonemeClassificationwith Bidirec-
tional LSTM and Other Neural Network Architectures,”Neural
Networks, vol. 18, no. 5, Article ID 7647316, pp. 602–610, 2004.

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[43] F. Chollet et al., “Keras: The Python Deep Learning library,”
https://keras.io.

[44] K. Cho, B. vanMerrienboer, C. Gulcehre et al., “Learning Phrase
Representations using RNN Encoder-Decoder for Statistical
Machine Translation,” https://arxiv.org/abs/1406.1078, 2014.

[45] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling,” https://arxiv.org/abs/1412.3555, p. 1–9, 2014.

[46] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio,
“On the Properties of Neural Machine Translation: Encoder–
Decoder Approaches,” https://arxiv.org/abs/1409.1259, 2014.

[47] D. P. Kingma and J. Ba, Adam: A Method for Stochastic
Optimization, https://arxiv.org/abs/1412.6980v8, p. 1-5, 2015.

[48] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep
neural networks for LVCSR using rectified linear units and
dropout,” in Proceedings of the 38th IEEE International Confer-
ence onAcoustics, Speech, and Signal Processing (ICASSP ’13), pp.
8609–8613, May 2013.

[49] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,
http://arxiv.org/abs/1502.03167.

[50] A. Agarwal, S. Negahban, and M. J. Wainwright, “Noisy matrix
decomposition via convex relaxation: Optimal rates in high
dimensions,”TheAnnals of Statistics, vol. 40, no. 2, pp. 1171–1197,
2012.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research (JMLR), vol. 12, pp. 2825–2830, 2011.

[52] R. Mitchell and E. Frank, “Accelerating the XGBoost algorithm
using GPU computing,” PeerJ Computer Science, vol. 3, 2017,
https://peerj.com/articles/cs-127.

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://github.com/remakeelectric/mqtt-malaria
http://doi.acm.org/10.1145/2857705.2857713
https://www.usenix.org/conference/usenixsecurity18/presentation/barradas
https://www.usenix.org/conference/usenixsecurity18/presentation/barradas
http://doi.acm.org/10.1145/3019612.doi:10.1145/3019612
https://arxiv.org/abs/1603.02754
https://xgboost.readthedocs.io/en/latest/tutorials/index.html
https://xgboost.readthedocs.io/en/latest/tutorials/index.html
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1211.5063
https://keras.io
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1502.03167
https://peerj.com/articles/cs-127

Research Article
Detection of Jihadism in Social Networks Using Big Data
Techniques Supported by Graphs and Fuzzy Clustering

Cristina Sánchez-Rebollo,1 Cristina Puente ,1 Rafael Palacios ,1 Claudia Piriz,2

Juan P. Fuentes,2 and Javier Jarauta2

1Universidad Pontificia Comillas, 28015 Madrid, Spain
2Grupo SIA, Alcorcón, 28922 Madrid, Spain

Correspondence should be addressed to Cristina Puente; cristina.puente@comillas.edu

Received 7 December 2018; Accepted 11 February 2019; Published 10 March 2019

Guest Editor: Alicja Krzemień

Copyright © 2019 Cristina Sánchez-Rebollo et al.This is an open access article distributed under theCreativeCommonsAttribution
License,whichpermits unrestricteduse, distribution, and reproduction in anymedium, provided the original work is properly cited.

Social networks are being used by terrorist organizations to distribute messages with the intention of influencing people and
recruiting new members. The research presented in this paper focuses on the analysis of Twitter messages to detect the leaders
orchestrating terrorist networks and their followers. A big data architecture is proposed to analyze messages in real time in order
to classify users according to different parameters like level of activity, the ability to influence other users, and the contents of
their messages. Graphs have been used to analyze how the messages propagate through the network, and this involves a study
of the followers based on retweets and general impact on other users. Then, fuzzy clustering techniques were used to classify
users in profiles, with the advantage over other classifications techniques of providing a probability for each profile instead of a
binary categorization. Algorithms were tested using public database from Kaggle and other Twitter extraction techniques. The
resulting profiles detected automatically by the system were manually analyzed, and the parameters that describe each profile
correspond to the type of information that any expertmay expect. Future applications are not limited to detecting terrorist activism.
Human resources departments can apply the power of profile identification to automatically classify candidates, security teams can
detect undesirable clients in the financial or insurance sectors, and immigration officers can extract additional insights with these
techniques.

1. Introduction

Social networks are playing a very important role in the way
people think. When accurately targeted, repeated messages
can reinforce political ideas or even flip the way of thinking
of the most indecisive. In this regard, Jihadism has been
identified as one of the movements that relies the most on
social networks to spread propaganda and try to influence the
public opinion. TheMadrid bombings of 2004 [1] are used as
a case study, where they analyze grassroot jihadist networks
and how terrorist organizations use collective action from
local level to cause enormous impact.

Social networks are also used by terrorist organizations
as a tool for recruiting new members. Sentiment analysis to
detect radicalization has been applied to social networks in
the past as an evolution of previous analysis that were tradi-
tionally focused on websites and forums [2]. The problem of

nodes that play an important role as influencers or that spread
propaganda and theway inwhich it is propagated is a growing
area of research [3–5].

A very challenging part of the analysis presented in this
paper is how to measure the impact of each user in the
network, as it depends on the volume of tweets (activity)
combined with the number of followers but is also amplified
by the number of retweets. For this purpose, a deep analysis
is carried out using graphs. General theory of networks and
graphs, in particular, have been used for social network
analysis (SNA) as one of the most relevant tools [6].

Labelling users as influencers, followers, or neutrals is
also very difficult and false positives or false negatives of a
standard classifier may yield dramatic consequences. Missing
data can be corrected by applying genetic algorithms able
to predict the absent text, as in the case of missing answers
in questionnaires [7]. However, in the current research the

Hindawi
Complexity
Volume 2019, Article ID 1238780, 13 pages
https://doi.org/10.1155/2019/1238780

http://orcid.org/0000-0002-6882-8678
http://orcid.org/0000-0002-8963-5074
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1238780

2 Complexity

Figure 1: Stages of the procedure to select hidden Twitter profiles.

problem is more related to ambiguity as a result of unreliable
data or contradictory terms in the messages. In this case
advanced text mining or natural language processing tech-
niques would be appropriate [8–10]. Nevertheless, due to the
fact that the messages to be analyzed are mostly translations
from Arabic language and dialects to English, it was decided
not to put a big amount of effort into natural language,
because of the risk of ending up modeling the translation
process more than the original meaning of the messages.

For the purpose of assigning profiles to the users, the
proposed methodology utilizes fuzzy clustering techniques
that provide probability of classification for each possible
profile. Fuzzy clustering has been successfully applied in
semisupervised environments [11], in combination with the
classic k-means clustering method [12], and more specifically
to detect malicious components [13]. In this paper the fuzzy
clustering method takes as an input the results obtained from
the graph analysis, along with some characteristics directly
extracted from the social network.

2. Description of the Methodology:
Architecture Based on Graphs and
Fuzzy Clustering

2.1. Big Data Architecture. Abig data architecture is proposed
with the goal of monitoring Twitter in real time being
able to predict threats either by detecting changes in the
profiles, or by detecting changes in the level of activity. The
system can retrain itself to update profiles and classifications
patterns, while maintaining its detection capabilities. A big
data approach is very suitable for this kind of real-time
analysis, especially on social networks such as Twitter in
which messages are generated continuously and the system
must collect, analyze, and archive-or-discard them [14, 15].

The proposed implementation was simulated using Kag-
gle’s databases plus Twitter extraction API for demonstration

purposes and to refine the algorithms based on graphs and
fuzzy clustering (as shown on Figure 1).

2.2. FuzzyArchitecture to Isolate Suspicious Profiles. Using the
previous works as inspiration and [13], we have designed a
system capable of locating those profiles hidden at first sight
but prone to modify their behaviour based on the influence
received. In order to do so, we have considered a set of tweets
as the source of information to measure the impact of an
influence user in others.

Our process has followed five steps. First, the information
was acquired using Kaggle’s database and Twitter user’s
accounts by extracting their tweets. Then, that information
was filtered to select the most and the less active users
(understanding active users as those that both generated
information or actively retweeted information from others).
Next, we established those parameters with the potential to
differentiate users, like sentiment analysis of the messages,
users followed, and some others. Next the network graph
was created, using the relationships among users to apply
centrality measures in order to obtain new parameters that
will serve as additional inputs to the fuzzy clustering process.
Finally, the system will show those hidden users with an
undefined profile, susceptible to be traced in the future.
Figure 1 represents the interaction of these five stages.

2.3. Tweet Extraction Techniques. We have used several
sources of information to get as many profiles as possible to
perform the study. As primary source, we have used Twitter
and Kaggle and, as secondary sources, several forums with
terrorist ideologies and the official website of ISIS, known as
WafaMedia Foundation, as seen in Figure 2. Primary sources
were to collect the base information to be studied, to define
the profile of the users actively spreading terrorist content
while secondary sources were used to get familiar with the
vocabulary used by these users in social propaganda. Many

Complexity 3

Forums, Wafa Media Foundation

API
Streaming

Primary
Sources

Secundary
Sources

Figure 2: Tweet extraction sources.

keywords were obtained in this analysis to perform Twitter
searches in a second step.

To download tweets from users speaking of terrorism (in
favour and against), a connection betweenAPIRest of Twitter
and API Streaming was established. API Rest was used to
check if the users whose information is being extracted had
active accounts. API Streaming was used to download new
users in real time and so expand the knowledge base about
terrorists or potential targets. Although previous studies on
network evolution show that social networks properties tend
to reach an equilibrium [16], studies focused directly on
terrorism are able to detect new trends and platform changes
[17].

This way, we have expanded the suspicious profiles
that we had from the initial databases “Isis fanboy” and
“About isis” (Kaggle), with profiles that follow and spread
the information and users included in these databases. The
probability of obtaining users and repeated content is very
high, as many times downloads belonged to followers of
the downloaded users retweeting the same content (friends
of friends sharing the same news, opinions and so). This
was understood a clue to consider that we were searching
information in the right direction.

This set of data was already registered and classified by
the level of risk and continued downloading information
associated, indicating the existence of active accounts, which
allowed us to continue researching about it.

The extraction and analysis were focused on a social
circle, in which we defined as “popular users” those with
highest number of followers + publications + impact, serving
as basis to categorize others that we already had. For this
purpose, we retrieved several fields as

(i) Location is one attribute that we retrieved but have
not been used, as we have not considered it as relevant
information. In Twitter, as in many other social
networks, location can be removed, or even faked.

(ii) Tweet ID is the identification of a user on Twitter,
though in this analysis we have not taken it into
account as we have the username of the profile.

(iii) Time: date and time of the tweet. We used it to
measure the periods of higher activity in an interval
of five months. Once those maximums were located,
we contrasted the dates to check if those days had any
correlation with some political, social, or economic
ISIS event.

With this information, we built the database shown in
Figure 3.

2.4. Information Preprocessing. With the previous fields, we
have discarded the fields name (many times is fake) and loca-
tion (many times undetermined), using the rest to generate
new knowledge. In particular the following variables were
introduced:

(i) Frequency: using the field date, to calculate the
interval within the user sends a tweet.

(ii) Sentiment: analysis of the sentiment of tweets of
each user to polarize them in positives and negatives.
For this analysis the Python library nltk and Vader
Lexicon were used, specialized in natural language
processing.

(iii) Extraction fromeach tweet thementioned or retweet-
ed users, by using regular expressions and Python.

From this new dataset, a new filter was applied in order to
locate those active users generating tweets and named or
retweeted by other users (most impact users). From this set
of users, the set of connections by means of a graph was
computed.

2.5. Graphing the Network. We have created several graphs
based on different metrics that would lead to different
interpretations. The objective was to analyze and visualize
social relationships among users and communities.

Once the graph was created, as the one displayed in
Figure 4, we have applied indicators of centrality to identify
the most important vertices based on several criterions, to
detect as well as the most influential users those who receive

4 Complexity

ISIS_fanboy - Kaggle

Name User Description Followers Publications Date Location Tweets

About_ISIS – Kaggle

Name User Description Followers Publications Date Location Tweets

API Rest
Check if users are still active

API Streaming

Identification of suspicious profiles

Download new profiles with the new
patters through Kaggle and Twitter

accounts.

Tweets.csv

Figure 3: Tweet extraction procedure.

1.0

0.5

0.0

−0.5

−1.0

1.00.50.0−0.5−1.0

Figure 4: Graph indicating the interaction of users in Twitter related to the topic Jihadism.

Complexity 5

information to broadcast it, or those who are following many
influential users. To do so, we have weighted every link based
on the number of retweets or mentions to a user (inside of
the message @user, @user2. . .and so). We have not taken into
account the sentiment of the message nor the frequency of
shipment; these parameters will be used later in the fuzzy
clustering procedure.

Most influential nodes are important in graph analysis,
but many times in social communities those users are
detected and located. Other criteria can be more important
like nodes likely to be the most direct route between two
influencer’s nodes, or key nodes to reach the rest of nodes.
That is why we have used centrality measures, to get different
properties of a network and its behaviour.Themore a node is
centred, the more important it is. In particular, we have used
two geometric measures, one being path based and the other
one being a spectral measure to evaluate the influence and
connections of a node within its community.

(i) Degree Centrality Measure is defined as 𝐶 𝑑𝑒𝑔(𝑉) =𝑑𝑒𝑔(𝑉)/|𝑁| − 1.
This geometric measure is used to find users very
connected, those with the highest number of links
with other nodes on the net. It takes into account
the weighting on edges. We are not focusing on this
type of users, as usually this measure could serve as
a measure of popularity among nodes, though it is
important to evaluate their relationship with the rest
of nodes.

(ii) Closeness is defined as 𝐶(𝑥) = (|𝑁| − 1)/∑𝑦 𝑑(𝑦, 𝑥)
This geometric measure represents the importance
of each node according to how close is to the rest
of nodes. Nodes with a high value tend to be very
well connected to the most relevant nodes on their
network and are perfect to broadcast information.
They do not have to be very influential but are very
active followerswhobroadcast information on the net
and are very close to the most influential nodes.

(iii) Betweenness centrality is a path based measure de-
fined as

𝑔 (V) = ∑
𝑠 ̸=V ̸=𝑡

𝜎𝑠𝑡 (V)𝜎𝑠𝑡 (1)

where 𝜎𝑠𝑡 is the total number of shortest paths from
node 𝑠 to node 𝑡.
𝜎𝑠𝑡(V) is the number of those paths that pass through
V.
It indicates the nodes included in the shortest path
between most of the nodes. For this work, this was
a very interesting measure because it could highlight
those nodes that serve as bridge for influential nodes.
In this case, these nodes might not have many
followers but can connect many relevant nodes.

(iv) The last measure to be applied is the eigenvector,
which takes into account the number of links of a
given user, as the number of links of its connections,

and so could be considered as a hierarchical measure
that computes not only your connections but the
connections of whom you follow. Its value for node
V is given by the V𝑡ℎ element of the eigenvector related
to the first eigenvalue of the adjacency matrix of the
graph [18],

As seen in Figure 5, the results obtained applying eigenvector
and betweenness are quite similar in distribution. In this case
measures that are not correlated are used as input for the fuzzy
cluster to avoid redundant information and overtraining the
cluster giving more relevance to some variables than others.
We have chosen eigenvector as input for the clustering part
as we are dealing with a structured problem, where there are
people that train other users to broadcast information and so
in a hierarchical model. The measure that better reflects this
way of behavior is the eigenvector.

2.6. Fuzzy Clustering. Soft Computing techniques have been
used in many different fields to deal with imprecision and
uncertainty [19, 20].

In our problem, segmentation techniques are unsuper-
vised methods used to classify information in groups created
from similarities among individuals. The potential of the
segmentation algorithms to show underlying structures in
data can be applied in different fields such as classification,
image processing, pattern recognition, modeling, and identi-
fication.

Segmentation techniques can be applied to quantitative
or qualitative data. In this paper only quantitative ones will
be used, to build the data matrix, which will have records
as columns and measured variables as rows. By segmenting
this data, the users are grouped in base to their similitude,
understood from a mathematical point of view and defined
as the “distance” among data or according to some proto-
types of the group. This group depends, therefore, on the
individuals being grouped together and on the definition of
distance.

Within these segmentations we found two approaches:

(i) Hard Clustering: Objects belong to just one segmen-
tation. Different groupings are excluding.

(ii) Fuzzy Clustering: This grouping technique applying
fuzzy logic [21] allows different objects to belong to
different segments simultaneously, but with different
membership degree [22]. Inmany cases, this segmen-
tation is more logical than the previous. In our case, a
user can be interested in terrorism, though it has not
been catalogued as dangerous, but with an elevated
belonging degree in this group.

Therefore, fuzzy segmentation or fuzzy clustering is applied
in this work, taking into account the nature of our problem
with an objective function to obtain the optimal number
of partitions. This optimization will lead to applying some
nonlinear optimization algorithms to find a local mini-
mum.

6 Complexity

0.5000000000000001

0.4

0.30000000000000004

0.20000000000000004

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0

do
se

dose

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.5

0.4

0.3

0.2

0.1

0.0

ei
ge

n

eigen

0
.0

0
.2

0
.4

0
.0

0
.2

0
.4

0
.0

0
.2

0
.4

degree

de
gr

ee

be
tw

ee
n

between

0
.0
0

0
.0
5

0
.1
0

0
.1
5

Figure 5: Distribution of users according to the proposed metrics.

2.6.1. Fuzzy Clustering. Groupments in this algorithm satisfy
the following conditions:

𝜇𝑖𝑗𝜖 [0, 1] , 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑁
𝑐∑
𝑖=1

𝜇𝑖𝑗 = 1, 1 ≤ 𝑗 ≤ 𝑁

0 < 𝑁∑
𝑗=1

𝜇𝑖𝑗 < 𝑁, 1 ≤ 𝑖 ≤ 𝑐
(2)

where 𝑐 is the number of groups and 𝑁 is the number of
records.

Fuzzy space for our data is the set defined by

𝐹𝑐 = {𝑈 ∈ R
𝑐𝑥𝑁 | 𝜇𝑖𝑗 ∈ [0, 1] , ∀𝑖, 𝑘; 𝑐∑

𝑖=1

𝜇𝑖𝑗 = 1, ∀𝑘; 0

< 𝑐∑
𝑖=1

𝜇𝑖𝑗 < 𝑁, ∀𝑖}
(3)

2.6.2. Fuzzy Clustering c-Means. This algorithm is based on
the optimization of Fuzzy partitions [23, 24].

𝐽 (𝑍, 𝑈,𝑉) = 𝑐∑
𝑖=1

𝑁∑
𝑗=1

(𝜇𝑖𝑗)𝑚 󵄩󵄩󵄩󵄩󵄩𝑧𝑗 − V𝑖
󵄩󵄩󵄩󵄩󵄩2𝐴 (4)

Complexity 7

where 𝑈 is the membership matrix [𝜇𝑖𝑗] ∈ 𝐹𝑐 of our data
and 𝑉 = [V1, V2, . . . , V𝑐] are the vectors characterizing the
centers of these groupings for which wewant tominimize our
functional.

The standard 𝐴 between our centers and the data is given
according to the following:

𝐷2𝑖𝑗𝐴 = 󵄩󵄩󵄩󵄩󵄩𝑧𝑗 − V𝑖
󵄩󵄩󵄩󵄩󵄩2𝐴 = (𝑧𝑗 − V𝑖)𝑇𝐴(𝑧𝑗 − V𝑖) (5)

The parameter 𝑚 ∈ [1,∞) determines the fuzziness of the
segments. The value of the cost function 𝐽(𝑍, 𝑈,𝑉) can be
interpreted as a measure of the deviation between points V𝑖
and centers 𝑧𝑗.

The minimization of this functional leads to a nonlineal
optimization problem that can be solved through different
methods as genetic algorithms or iterative minimization.
However, the most popular for this application in particular
is the iterative method of Picard.

The restriction of membership values 𝜇𝑖𝑗 is imposed by
Lagrange multipliers.

𝐽 (𝑍, 𝑈,𝑉) = 𝑐∑
𝑖=1

𝑁∑
𝑗=1

(𝜇𝑖𝑗)𝑚 󵄩󵄩󵄩󵄩󵄩𝑧𝑗 − V𝑖
󵄩󵄩󵄩󵄩󵄩2𝐴

+ 𝑁∑
𝑗=1

𝜆𝑗 𝑐∑
𝑖=1

(𝜇𝑖𝑗 − 1)
(6)

We can demonstrate that to minimize the functional it is
necessary that

𝜇𝑖𝑗 = 1
∑𝑐𝑘=1 (𝐷𝑖𝑗𝐴/𝐷𝑘𝑗𝐴)2/(𝑚−1)

, 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑁

V𝑖 = ∑𝑁𝑗=1 (𝜇𝑖𝑗)𝑚 𝑧𝑗
∑𝑁𝑗=1 (𝜇𝑖𝑗)𝑚 , 1 ≤ 𝑖 ≤ 𝑐

(7)

Therefore, the parameters to be determined in the algorithm
are as follows:

(i) Number of clusters: this parameter is the most impor-
tant and the one with greatest impact in the segmen-
tation. If the number of groups to be divided our
data is known, this parameter would be determined.
We will determine the number of clusters though
the fuzzy partition coefficient (FPC). This validation
measure indicates how well our data are explained by
this grouping; that is, the membership to each one of
the segments of our data is, in general, strong and not
fuzzy.

(ii) Fuzziness parameter: parameter𝑚 affects significantly
fuzziness in the segmentation. As it approaches 1,
grouping ceases being fuzzy to be hard, and if it tends
to ∞ it will be completely fuzzy. We have chosen the
value (𝑚 = 2), as being the most used in bibliography.

(iii) Termination criterion: as it is an iterative algorithm,
it is necessary to establish a termination criterion to
stop iterations. In our case, we have set 1000 iteration
or reach an error lower than 0.005.

(iv) Distance matrix: the calculation of distance implies
establishing the scalar product matrix. The natural
election is the identity matrix (𝐴 = 𝐼) but a
distance matrix that is very extended is the inverse
of the covariance matrix of the data, leading to the
Mahalanobis standard.

𝐴 = 𝑅−1,
𝑅 = 1𝑁

𝑁∑
𝑖=1

(𝑧𝑖 − 𝑧) (𝑧𝑖 − 𝑧)𝑇 (8)

The norm used influences the segmentation criterion chang-
ing the measure of dissimilarity. The Euclidean norm leads
to hyperspherical groupings in the coordinate axes, while
Mahalanobis leads to hyperelipsoidal groupings in the axes
given by covariances between variables.

In addition to these parameters, in bibliography we can
find several modifications of the algorithm:

(i) Modifications that use an adaptive distance measure,
as the algorithm of Gustafson-Kessel [25] and the
fuzzy maximum likelihood estimation [26].

(ii) Algorithms relaxing the condition on the probability
of belonging to each segment (∑𝑐𝑖=1 𝜇𝑖𝑗 = 1, 1 ≤ 𝑗 ≤𝑁) indicating a level between each one of the groups.

In this work, we have checked the Euclidean norm, Maha-
lanobis, and Gustafson-Kessel.

The Gustafson-Kessel algorithm expanded the adaptive
distance to detect different groupings with different geomet-
rical forms. Each segment has its own distance given by

𝐷2𝑖𝑗𝐴𝑖 = (𝑧𝑗 − V𝑖)𝑇𝐴 𝑖 (𝑧𝑗 − V𝑖) (9)

The matrices 𝐴 𝑖 become variables that are optimized within
the functional 𝐽 so each group will have the distance that
minimize its value. The only restriction imposed is that
the determinant has to be positive, (|𝐴 𝑖| = 𝜌𝑖, 𝜌𝑖 >0, ∀𝑖). Optimizing using the Lagrange multipliers method, we
obtain that the distance matrices must fulfill this

𝐴 𝑖 = [𝜌𝑖 det (𝐹𝑖)]1/𝑚 𝐹𝑖−1 (10)

where 𝐹𝑖 is the fuzzy covariance matrix of each one of the
segments.

𝐹𝑖 = ∑𝑁𝑗=1 (𝜇𝑖𝑗)𝑚 (𝑧𝑗 − V𝑖) (𝑧𝑗 − V𝑖)𝑇
∑𝑁𝑗=1 (𝜇𝑖𝑗)𝑚 (11)

The parameters of this algorithm are, in addition to the
general parameters of segmentation, the volumes of the
groups 𝜌𝑖. If we do not have knowledge about this value, we
set 1.

We have tested several measures to check which ones fits
better to segment our dataset [27].

8 Complexity

Centers = 2; FPC = 0.95 Centers = 3; FPC = 0.86 Centers = 4; FPC = 0.80

Centers = 5; FPC = 0.54 Centers = 6; FPC = 0.54 Centers = 7; FPC = 0.41

Centers = 8; FPC = 0.35 Centers = 9; FPC = 0.44 Centers = 10; FPC = 0.27

Figure 6: Results of the pro-Isis users with different levels of segmentation.

3. Results and Discussion

Once the previous methodology was defined and pro-
grammed, the Kaggle dataset with the pro-Isis Twitter reg-
istered users was firstly used. As criterion to choose which
distance matrix and number of distances to be used, the
configuration that allows a highmembership degree for most
of data has been established. For this dataset, the maximum
value was obtained using the Gustafson-Kessel algorithm
with two segments, as seen in Figure 6.

With this criterion, the division has been performed
according to the variables mentioned (frequency, sentiment),
eigenvector, and coherently with the rest of variables; it is
possible to identify a more dangerous user group (red) and
a less active group (blue).

However, one of themain advantages of thismethodology
is that we can identify users that have been identified within
one group more than another, in spite of having a low
membership degree. Figure 6 shows the membership degree
to both groups, and the marked zone would be a user zone
to be analyzed in detail. For example, with this same dataset,
establishing a fuzzy membership threshold of 35-65%, we
would obtain 2 doubtful users among 74 profiles. These

2 users are the focus of our work and should be studied
individually and in time, to check whether they remain in the
same place or have turned their behaviour to a more radical
one, as seen in Figures 7 and 8.

To verify the consistency of our methodology, we per-
formed a new experiment with an expanded dataset, added to
the profiles identified as “fan boys”. We have included other
profiles considered of interest because of their connections
with the users of the first set.

When downloading Twitter information, we have dis-
carded the number of followers (aswe have the information of
users whom mention/retweet and are mentioned/retweeted)
and number of publications (as we have the number of tweets
published in the sampling).

After filtering users by those who generate content and
those who receive it, we programmed a weighted graph to
obtain centrality measures in our network.

The best segmentation value was obtained using Maha-
lanobis distance in two clusters, obtaining a FPC of 0.85 as we
can see in Figure 9, which are represented the FPC obtained
in base to the number of fuzzy clusters.

To clarify the results, in Figure 10 we are representing
segmentation in base to the variables that we have used to

Complexity 9

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

freq sentiment eigenSEGUIDORES

m
en

ci
on

aL
en

gt
h

m
en

ci
on

ad
oL

en
gt

h
fre

q
se

nt
im

en
t

ei
ge

n
SE

G
U

ID
O

RE
S

mencionaLength mencionadoLength

Figure 7: Distribution of the variables used in the fuzzy clustering.

calculate it, as frequency, eigenvector, and number of times
that it has been mentioned.

For this experiment, if we set a fuzzy membership
threshold of 0.45, we find 123 users to be studied from the
3395 in total. As in the previous case, these users, represented
as the blue box of Figure 11, are susceptible to be studied and
monitored to trace their behavior along time.

On the other hand, after identifying the most active users,
we checked how many of the users categorized as active
users in the first dataset were categorized as active as well
as in this second set (blue group). From 74 users of the
first categorization, 59 were correctly grouped, and the fuzzy
membership of 15 left users is represented in the boxplot
of Figure 12. The distribution of the membership shows that
more than 25%of these false positive and negative users had a

very weak membership (between 0.50 and 0.6), whichmeans
that these users should be traced to check their behavior using
our methodology.

4. Conclusions

The use of social networks as a manner to broadcast infor-
mation has become a popular way to attract new followers to
terrorism in general and Jihadism in particular. In this work,
we have developed a methodology to identify potentially
dangerous users that remain partially hidden, separated from
those that are best known for being very active. In fact,
the terrorist attack in Barcelona in 2017 was organized by
terrorists whose profiles had not been classified as dangerous.
Detecting and monitoring those new profiles can be crucial

10 Complexity

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

X2

X1

Membership degree

Figure 8: Membership degree function remarking the zone of users that should be analyzed.

Centers = 2; FPC = 0.85 Centers = 3; FPC = 0.74 Centers = 4; FPC = 0.72

Centers = 5; FPC = 0.66 Centers = 6; FPC = 0.66 Centers = 7; FPC = 0.67

Centers = 8; FPC = 0.67 Centers = 9; FPC = 0.67 Centers = 10; FPC = 0.64

Figure 9: Representation of the FPC in base to the number of clusters.

Complexity 11

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

fre
q

se
nt

im
en

t
ei

ge
n

be
tw

ee
n

between

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

1
.0

0
.5

0
.0

freq sentimenteigen

m
en

ci
on

aL
en

gt
h

m
en

ci
on

ad
oL

en
gt

h

mencionaLength mencionadoLength

Figure 10: Segmentation variables for experiment 2.

to prevent or predict future terrorist actions and terrorist
recruiting.

The presented methodology consists of defining a dataset
of users plus several metrics to locate influential users.
In addition, other metrics are obtained like frequency or
the sentiment of their tweets. These metrics are used as
vectors to perform segmentation of data. For this type of
procedures, it is recommendable to use Soft Computing
techniques that deal with the imprecision of the informa-
tion. In the present problem we have used fuzzy clustering
techniques to point out those users that were susceptible
to be more active in the future and in consequence to be
followed in time to check their behavior. Moreover, the anal-
ysis techniques proposed involve unsupervised algorithm,
so they can be applied continuously, thereby this same

methodology could be used to monitor users marked as
fuzzy.

As for future works, we would like to expand this
methodology other environments where user profiles could
have similar patterns, like pedophilia or fake news. Fake news
is known to have an important economical impact if they
damage the image of a company and an important political
impact if they can manipulate a significant number of voters.

Data Availability

The Kaggle dataset used to support the findings of this
study have been deposited in the Kaggle repository under
the name How ISIS Uses Twitter: https://www.kaggle.com/
fifthtribe/how-isis-uses-twitter.

https://www.kaggle.com/fifthtribe/how-isis-uses-twitter
https://www.kaggle.com/fifthtribe/how-isis-uses-twitter

12 Complexity

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

X2

X1

Membership degree

Figure 11: Membership degree function of experiment 2.

0.8

0.6

0.4

0.2

1

Figure 12: Boxplot representing the categorization of the most active users.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] J. Jordan, F. M. Mañas, and N. Horsburgh, “Strengths and
weaknesses of grassroot jihadist networks: the madrid bomb-
ings,” Studies in Conflict & Terrorism, vol. 31, no. 1, pp. 17–39,
2008.

[2] A. Bermingham, M. Conway, L. McInerney, N. O’Hare, and A.
F. Smeaton, “Combining social network analysis and sentiment
analysis to explore the potential for online radicalisation,” in

Proceedings of the 2009 International Conference on Advances in
Social Network Analysis and Mining (ASONAM), pp. 231–236,
Athens, Greece, July 2009.

[3] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
of influence through a social network,” in Proceedings of the
9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’03), pp. 137–146, New York,
NY, USA, August 2003.

[4] J. H. Fowler andN.A. Christakis, “Dynamic spread of happiness
in a large social network: longitudinal analysis over 20 years in
the Framingham heart study,” British Medical Journal, vol. 337,
Article ID a2338, 9 pages, 2008.

[5] C.Mao andW.Xiao, “A comprehensive algorithm for evaluating
node influences in social networks based on preference analysis
and random walk,” Complexity, vol. 2018, pp. 1–16, 2018.

Complexity 13

[6] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, “Network
analysis in the social sciences,” Science, vol. 323, no. 5916, pp.
892–895, 2009, American Association for the Advancement of
Science.

[7] C. Ordóñez Galán, F. Sánchez Lasheras, F. J. de Cos Juez, and A.
Bernardo Sánchez, “Missing data imputation of questionnaires
by means of genetic algorithms with different fitness functions,”
Journal of Computational and Applied Mathematics, vol. 311, pp.
704–717, 2017.

[8] M. Delgado, M. J. Mart́ın-Bautista, D. Sánchez, and M. A. Vila,
“Mining text data: special features and patterns,” in Pattern
Detection and Discovery, vol. 2447 of Lecture Notes in Computer
Science, pp. 140–153, Springer, Berlin, Germany, 2002.

[9] W. Aziguli, Y. Zhang, Y. Xie et al., “A robust text classifier based
on denoising deep neural network in the analysis of big data,”
Scientific Programming, vol. 2017, Article ID 3610378, 10 pages,
2017.

[10] C. J. de la Torre, D. Sánchez, I. Blanco, andM. J.Mart́ın-Bautista,
“Text mining: techniques, applications, and challenges,” Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 26, no. 04, pp. 553–582, 2018, World Scientific
Publishing Company.

[11] A.Hamdi, N.Monmarché,M. Slimane, andA.M.Alimi, “Fuzzy
rules for ant based clustering algorithm,” Advances in Fuzzy
Systems—Applications andTheory, vol. 2016, Article ID 8198915,
16 pages, 2016.

[12] I. A. Atiyah, A. Mohammadpour, and S. M. Taheri, “K C -
means: a fast fuzzy clustering,”Advances in Fuzzy Systems—Ap-
plications and Theory, vol. 2018, Article ID 2634861, 8 pages,
2018.

[13] R. Singh, J. Singh, and R. Singh, “Fuzzy based advanced
hybrid intrusion detection system to detect malicious nodes in
wireless sensor networks,”Wireless Communications andMobile
Computing, vol. 2017, Article ID 3548607, 14 pages, 2017.

[14] G. Bello-Orgaz, J. J. Jung, and D. Camacho, “Social big data:
Recent achievements and new challenges,” Information Fusion,
vol. 28, pp. 45–59, 2016.

[15] Z. Su, Q. Xu, and Q. Qi, “Big data in mobile social networks: a
QoE-oriented framework,” IEEE Network, vol. 30, no. 1, pp. 52–
57, 2016.

[16] G. Kossinets and D. J. Watts, “Empirical analysis of an evolving
social network,” Science, vol. 311, no. 5757, pp. 88–90, 2006.

[17] J. Klausen, E. T. Barbieri, A. Reichlin-melnick, and A. Y.
Zelin, “The YouTube jihadists: a social network analysis of al-
muhajiroun’s propaganda campaign,” Perspective on Terrorism,
vol. 6, no. 1, pp. 1–12, 2012, Terrorism Research Institute, http://
www.jstor.org/stable/26298554.

[18] M. E. J. Newman,Networks: An Introduction, Oxford University
Press, Oxford, UK, 2010.

[19] L. ÁlvarezMenéndez, F. J. de Cos Juez, F. Sánchez Lasheras, and
J. A. Álvarez Riesgo, “Artificial neural networks applied to can-
cer detection in a breast screening programme,” Mathematical
and Computer Modelling, vol. 52, no. 7-8, pp. 983–991, 2010.

[20] P. J. G. Nieto, J. R. A. Fernández, F. S. Lasheras, F. J. de Cos
Juez, and C. D. Muñiz, “A new improved study of cyanotoxins
presence from experimental cyanobacteria concentrations in
the Trasona reservoir (Northern Spain) using the MARS tech-
nique,” Science of the Total Environment, vol. 430, pp. 88–92,
2012.

[21] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp.
338–353, 1965.

[22] R. L. Cannon, J. V. Dave, and J. C. Bezdek, “Efficient imple-
mentation of the fuzzy c-means clustering algorithms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 2, pp. 248–255, 1986.

[23] J. C. Dunn, “Well-separated clusters and optimal fuzzy parti-
tions,” Journal of Cybernetics, vol. 4, no. 1, pp. 95–104, 1974,
Taylor & Francis Group.

[24] J. C. Bezdek, “Objective function clustering,” in Advanced
Applications in Pattern Recognition, pp. 43–93, Springer, Boston,
MA, USA, 1981.

[25] D. E. Gustafson andW. C. Kessel, “Fuzzy clusteringwith a fuzzy
covariance matrix,” in Proceedings of the 1978 IEEE Conference
on Decision and Control including the 17th Symposium on
Adaptive Processes, pp. 761–766, 1979.

[26] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clus-
tering,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 7, pp. 773–780, 1989.

[27] H.-C. Liu, J.-M. Yih, D.-B. Wu, and S.-W. Liu, “Fuzzy C-
mean algorithm based on “complete” Mahalanobis distances,”
in Proceedings of the 2008 International Conference on Machine
Learning and Cybernetics (ICMLC), pp. 3569–3574, Kunming,
China, July 2008.

http://www.jstor.org/stable/26298554
http://www.jstor.org/stable/26298554

Research Article
Effect of the Sampling of a Dataset in
the Hyperparameter Optimization Phase over the Efficiency of
a Machine Learning Algorithm

Noem-DeCastro-Garc-a ,1 Ángel Luis Muñoz Castañeda,2

David Escudero Garc-a,2 and Miguel V. Carriegos1

1Departamento de Matemáticas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
2Research Institute on Applied Sciences in Cybersecurity, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain

Correspondence should be addressed to Noemı́ DeCastro-Garcı́a; ncasg@unileon.es

Received 7 December 2018; Accepted 17 January 2019; Published 4 February 2019

Guest Editor: Fernando Sánchez Lasheras

Copyright © 2019 Noemı́ DeCastro-Garcı́a et al.This is an open access article distributed under the Creative Commons Attribution
License,whichpermits unrestricteduse, distribution, and reproduction in anymedium, provided the original work is properly cited.

Selecting the best configuration of hyperparameter values for a Machine Learning model yields directly in the performance
of the model on the dataset. It is a laborious task that usually requires deep knowledge of the hyperparameter optimizations
methods and the Machine Learning algorithms. Although there exist several automatic optimization techniques, these usually
take significant resources, increasing the dynamic complexity in order to obtain a great accuracy. Since one of the most critical
aspects in this computational consume is the available dataset, among others, in this paper we perform a study of the effect of using
different partitions of a dataset in the hyperparameter optimization phase over the efficiency of a Machine Learning algorithm.
Nonparametric inference has been used tomeasure the rate of different behaviors of the accuracy, time, and spatial complexity that
are obtained among the partitions and the whole dataset. Also, a level of gain is assigned to each partition allowing us to study
patterns and allocate whose samples are more profitable. Since Cybersecurity is a discipline in which the efficiency of Artificial
Intelligence techniques is a key aspect in order to extract actionable knowledge, the statistical analyses have been carried out over
five Cybersecurity datasets.

1. Introduction

AMachine Learning (ML) solution for a classification prob-
lem is effective if it works efficiently in terms of accuracy and
the required computational cost.The improvement of the first
factor is faced on by several points of view that could affect to
the second one in different forms.

The simplest way to get aMLmodel with a good accuracy
is by testing and comparing different ML algorithms for the
same problem and choosing, finally, the one that performs
better. However, it is clear that, for instance, a decision tree
model does not require, in general, as much computational
time andmemory to be trained as aMultilayer Perceptron. So,
wewill need to adjust the achieved accuracywith the available
resources.

Another usual effective approach to reach a high accuracy
is working with large training datasets. Nevertheless, this

solution is limited because of the associated computational
cost (obtaining and storing the data, cleaning and transfor-
mation processes, and learning from the data). A possible
alternative to thementioned problem is to reduce the training
without losing too much information [1, 2]. However, these
kinds of solutions used to need an expensive data preprocess-
ing phase.

The research related to this aspect, in addition to usual
filtering the data, is focused on how to optimize the training
set, and not only reduce it. The progressive sampling method
shows that the performance with random samples with
determined sizes is equal or more effective than working
with the entire dataset [3]. Also, this solution used to be
perfected with specifications about the classes’ distribution,
the selection of the samples, or the treatment of unbalanced
datasets [4–6].

Hindawi
Complexity
Volume 2019, Article ID 6278908, 16 pages
https://doi.org/10.1155/2019/6278908

http://orcid.org/0000-0002-5610-0153
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6278908

2 Complexity

On the other hand, tuning hyperparameters of a ML
algorithm is a critical aspect of the model training process
that is considered the best practice for obtaining a successful
Machine Learning application [7]. The Hyperparameters
Optimization (HPO) problem requires a deep understanding
of the ML model at hand due to the hyperparameters values
settings and their effectivity, depending strongly on the
ML algorithm, and the type of hyperparameter, discrete or
continuous values. Also, it is a very costly process due to
the large number of possible combinations to test and the
needed resources to carry out the computations. Excluding
the human expert of the process and minimizing the hyper-
parameter configurations to test are the underlying ideas in
the automatic HPO.

Given a supervised ML algorithm, the continuous HPO
is usually solved by gradient descent-based methods [8–
10]. In the discrete case, not all optimization methods are
suitable. Themost common approaches to the HPO problem
in the discrete case can be divided into two: Bayesian [11]
and decision-theoretic methods. However, there are other
optimization algorithms that are applied to the problem of
hyperparameter values selection.This is the case, for instance,
of the derivative-free optimization, the genetic algorithms
such as Covariance Matrix Adaptation Evolutionary Strate-
gies (CMA-ES), or the simplex Nelder-Mead (NM) method
[12–14]. In addition, continuous optimization methods, such
as the Particle Swarm (PS) used for the ML algorithms
of least-squares support vector machines [15–17], could be
applied over discrete HPO problems [18].

Bayesian HPO algorithms balance the exploration pro-
cess for finding promising hyperparameter configurations
and the exploitation of the setting configuration in order to
obtain always better results or gain more information with
each test [19]. Consequently, Bayesian HPO are serialized
methods that are difficult to parallelize, but they usually
can find better combinations of hyperparameters in a few
iterations.One of themost important BayesianHPOmethods
is the Model-Based Optimization (SMBO). In the SMBO
techniques, the way to construct the surrogate function to
model the error distribution provides different methods.
There are those that use Gaussian Process (GP) [20] or tree-
based algorithms such as the Sequential Model Automatic
Configuration (SMAC) or the Tree Parzen Estimators (TPE)
method [21, 22]. On the other hand, the decision-theoretic
approaches are based on the idea to search combinations
of hyperparameter in the hyperparameter space, computing
their accuracy, and finally pick the one that performed the
best. If we test over a fixed domain of hyperparameters values,
we have the grid search. More effective than grid search, even
than some Bayesian optimization techniques, is the random
sampling of different choices Random Search (RS) [23]. It is
easy to implement, independent of previous knowledge, and
easily parallelizable.Other optimization approaches also have
reached very good results when applied to the selection of
hyperparameter values. This is the case of research of [24]
where evolutionary computation is used over deep neural
networks.

Although applying HPO algorithms on a ML model
reflects a great improvement in the results’ quality of the

models’ accuracy, we cannot overlook the computational
complexity to implement these techniques. It is a critical issue
because obtaining a good performance by applying HPO
could require generations’ samples, several function evalua-
tions, and expensive computational resources. For example,
the GP methods usually require a high number of itera-
tions. Likewise, some derivative-free optimizations behave
poorly in hyperparameter optimization problems because the
optimization target is smooth [25]. In addition, some ML
algorithms such as the neural networks are especially delicate
because the number of possible values for the hyperparame-
ters grows exponentially with the number of hidden layers.
Other HPO algorithms are designed taking into account
these limitations.

Recently, a Radial Basis Function (RBF) has been pro-
posed as a deterministic surrogate model to approximate
the error function of the hyperparameters through dynamic
coordinate search that requires fewer evaluations in Mul-
tilayer Perceptron (MLP) and convolutional neural net-
works [26]. In [27], the Nelder-Mead and coordinate-search
(derivative-free) methods are tested over deep neural net-
works, presenting more efficient numerical results than other
well-known algorithms. Another option is to try to accelerate
the algorithm. In [28], one way to implement the scheme
Successive Halving (SH) is developed. The main ingredient
behind SH is based on the observation that most of the
HPOalgorithms are iterativewhich suggests that stopping the
algorithm when testing with a set of hyperparameters is not
giving good results can be a good option.

Examples of this application are the accelerated RS
version (2x) [29, 30] orHyperband [31], which is based on the
bandit-based approach. In this problem, a fixed finite set of
resources must be distributed between different choices in a
way that maximizes their expected gain. One recent example
is developed in [19], where an algorithm for optimization
of discrete hyperparameters based on compressed sensing is
introduced, Harmonica.

We can also find studies about the effect of these HPO
methods in the efficiency of the ML algorithms comparing
different methods [32], or the possible options that can be
tuned when a HPO algorithm runs over a dataset such as
the number of iterations, number of hyperparameters, type
of optimization, etc. [24, 33]. As far as we know, in the
above context, analyzing the efficiency of the automatic HPO
methods for specific supervised ML problems in terms of the
size of the used dataset is needed.

The goal in this article is to carry out an empirical
statistical analysis about the effect of the factor size of datasets
used in the stage of the HPO in the performance of several
ML algorithms. The studied response variables are the main
issues in the efficiency of the algorithm: quality and dynamic
complexity [34]. Regarding the quality, we take into account
the most used metric for the goodness of a ML model, that
is, the Accuracy. The others variables are the time complexity
and the spatial complexity (amount of memory it requires
for execution with a given input) due to these issues usually
are influent limited resources. The underlying idea is to
allocate the proportion of the whole dataset that maintains
or improves the quality of the accuracy of the obtained

Complexity 3

ML models and optimizing the dynamic complexity of the
algorithms.

The research questions that will be studied are the follow-
ing:

RQ1: Given a dataset, are there statistically meaningful
differences in the performance (accuracy, time, and special
complexity) of a ML algorithm when the HPO method it is
applied to samples of different size of the dataset?

In the case that we obtain a positive answer, we follow to
the next questions.

RQ2: Which are the effect and the behavior of each HPO
algorithm depending on the dataset’s size? In which cases we
can gain efficiency if the HPO algorithm operates over small
samples?

RQ3: Are the above results reliable? That is, are the
results consistent for different HPO algorithms and different
datasets?

In order to answer the research questions formulated
above, an experiment has been carried out with different pub-
licly available datasets about learning some tasks regarding
cybersecurity events. Cybersecurity is a challenging research
area due to the sophistication and the amount of kind
of Cybersecurity attacks, which, in fact, increase very fast
as time goes by. In this framework, the traditional tools
and infrastructures are not useful because we deal with
big data created with a high velocity, and the solutions
and predictions must be faster than the threats. Artificial
Intelligence and ML analytics have turned out in one of
the most powerful tools against the cyberattackers (see [35–
41]), but obtaining actionable knowledge from a database
of Cybersecurity events by applying ML algorithms usually
is a computationally expensive task for several reasons. A
database of Cybersecurity contains, in general, a huge amount
of dynamical, and unstructured but highly correlated and
connected data, sowe need to deal with some costly aspects of
the quality of the data such as noise, trustworthiness, security,
privacy, heterogeneity, scaling, or timeliness [42–44]. Also,
the information is highly volatile, so the key issue is to get the
profit as faster as possible, with the best possible performance
and the smallest cost of resources and time. Then, the study
of the complexity of applying Data Science over databases
of Cybersecurity is an emergent and necessary field in order
to increase confidence and social profit from automatizing
processes and develop prescriptive policies to prevent and
react to incidents faster and more secure.

Experimental analyses have been carried out in order to
investigate the possible statistical differences over the effi-
ciency of the Machine Learning algorithms Random Forest
(RF), Gradient Boosting (GB), and MLP among using dif-
ferent sizes of samples in several HPO selection algorithms.
We have used nonparametric statistical inference because,
in an experimental design in the field of computational
intelligence, these types of techniques are very useful to
analyze the behavior of a method with respect to a set of
algorithms [45]. In addition and based on the results of the
above tests, we have assigned a profit level for each size of the
whole dataset in terms of the response variables: accuracy,
time, and spatial complexity. Finally, we have discussed the
observed patterns and obtained results.

The paper is structured as follows. In Section 2, we
describe the problem definition. In Section 3 we develop the
Materials and Methods. This section includes the analyzed
selected methods, both HPO and ML algorithms with the
libraries or tools that we have used. Also, the tested datasets
and the sampling of partitions have been explained, as well
as the statistical analyses that have been carried out. In
Section 4, the results and the discussion are included. Finally,
our conclusions and references are given.

2. Problem Definition

LetP be a distribution function. A Machine Learning algo-
rithm, 𝐴, is a functional that maps each data set containing
i.i.d. samples from P, 𝐷𝑡𝑟𝑎𝑖𝑛, to a function 𝑓𝐴,𝐷𝑡𝑟𝑎𝑖𝑛 fl
𝐴(𝐷𝑡𝑟𝑎𝑖𝑛) that belongs to certain space of functions and that
minimizes a fixed expected loss L(𝐷𝑡𝑟𝑎𝑖𝑛, 𝑓𝐴,𝐷𝑡𝑟𝑎𝑖𝑛). Usually
one has two more ingredients in this general framework.
On one hand, the target space of functions of the algorithm
depends on certain parameters, 𝜆 = (𝜆1, . . . , 𝜆𝑛), that might
take discrete or continuous values and that has to be fixed
before applying the algorithm. In order to make explicit the
dependency on 𝜆, we will use the notation 𝐴𝜆 to refer to the
algorithm and 𝑓𝜆 to refer to the target functions of 𝐴𝜆. On
the other hand, another data set obtained from P, 𝐷𝑡𝑒𝑠𝑡, is
given and serves to evaluate the loss,L(𝐷𝑡𝑒𝑠𝑡 , 𝑓𝐴𝜆 ,𝐷𝑡𝑟𝑎𝑖𝑛), of the
function provided by the algorithm over data independent
from𝐷𝑡𝑟𝑎𝑖𝑛.

Let Λ be the hyperparameter space, that is, the space
in which 𝜆 takes values, and fix both the train and the test
data sets. Denote by 𝐷 fl 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑡𝑒𝑠𝑡 the union of both
data sets. In this situation the only data that remains free in
L(𝐷𝑡𝑒𝑠𝑡, 𝑓𝐴𝜆,𝐷𝑡𝑟𝑎𝑖𝑛) are the hyperparameters 𝜆 = (𝜆1, . . . , 𝜆𝑛).
Assume further that we are dealing with a classification
Machine Learning problem, so that we can take L to be the
error rate, that is, oneminus the cross-validation value. In this
situation one can define the following function:

Φ𝐴,𝐷 : Λ 󳨀→ [0, 1]

𝜆 󳨃󳨀→ mean𝐷𝑡𝑒𝑠𝑡L (𝐷𝑡𝑒𝑠𝑡, 𝑓𝐴𝜆 ,𝐷𝑡𝑟𝑎𝑖𝑛)
(1)

The HPO problem consists on minimizing Φ𝐴,𝐷 and, there-
fore, a HPO algorithm is a procedure that tries to reach 𝜆∗ fl
min𝜆(mean𝐷𝑡𝑒𝑠𝑡L(𝐷𝑡𝑒𝑠𝑡, 𝑓𝐴𝜆 ,𝐷𝑡𝑟𝑎𝑖𝑛)).

Usually, in practice, one has a dataset 𝐷 that is split into
two parts, 𝐷1, 𝐷2, one for the optimization of the hyperpa-
rameters of theMachine Learning model and another one for
training (and testing) the Machine Learning model with the
given hyperparameters. The goal of the article is focused on
how the size of the dataset in the HPO phase influences the
performance of classifier given at the output of the training
phase.

Suppose we have a ML model 𝐴, a HPO algorithm 𝐻,
and a dataset 𝐷.The dataset 𝐷 is split into different partitions
randomly. We denote by 𝑃𝑗(𝐷) the partition 𝑗 of the dataset
𝐷, andwe assume that the size of𝑃𝑗(𝐷) is smaller than the size
of𝑃𝑙(𝐷) for 𝑗 < 𝑙.Then, applying𝐻 to the problem defined by
Φ𝐴,𝑃𝑗(𝐷), we find optimal hyperparameters𝜆𝑗 that can be used

4 Complexity

Table 1: HPO algorithms. The star symbol ∗ means that the chosen algorithms have needed some minor modifications.

Name Reference Ready? Python minimal version Smart Library
PS [15, 16] √ 2.7 y 3 X [18]
TPE [21] √∗ 2.7 y 3 X [51]
CMA-ES [13] √ 2.7 y 3 X [52]
NM [14] √ 2.7 y 3 √ [52]
RS [23] √ 2.7 y 3 X [52]
SMAC [22] √ 3 X [53]

over𝐷𝑡𝑟𝑎𝑖𝑛 to create a classifier that will be tested on𝐷𝑡𝑒𝑠𝑡. We
denote the cross-validation value obtained in this last process
by𝐴𝑐𝑐𝑗. Also, the train time and the total time of the process
and the spatial complexity spent will be collected (denoted by
𝑇𝐶𝑗 and 𝑆𝐶𝑗 respectively) for the analysis.

The study that will be done is statistical, so we will con-
sider several datasets as well as manyMachine Learning algo-
rithms. Different state-of-the-art HPO algorithms will be
considered and applied to every possible combination of
Machine Learning models and datasets in order to compare
them.

3. Materials and Methods

Experiments were conducted testing eight HPO methods
over five cybersecurity datasets for three ML algorithms.

3.1. HPO Methods and ML Algorithms. As we mentioned
above, we have evaluated the efficiency of the three well-
known classifiers and predictorMachine Learning techniques
algorithms: RF, GB, and MLP, commonly used in classifica-
tion and prediction problems. The library used is [46].

Ensembles methods are commonly used because are
based on the underlying idea that many different joint pre-
dictors will perform in a better way than any single predictor
alone. Ensembling techniques could be divided into bagging
and boosting methods.

First ones build many independent learners that are
combined with average methods in order to give a final
prediction. These handle overfitting and reduce the variance.
Themost known example of bagging ensemblemethods is the
RF. An RF is a classifier consisting of a chain of decision tree
algorithms. Each tree is constructed by applying an algorithm
to the training set and an additional random vector that is
sampled via bootstrap resampling, so the trees will run and
give independent results (see [47]). The scikit-learn imple-
mentation, RandomForestClassifier, combines classifiers by
calculating an average of their probabilistic prediction, in
contrast to the original publication. In the case of RF, we
have twomainhyperparameters: the number of decision trees
that we should use and the maximum depth for each of
them.

Second ones, Boosting, are ensemble techniques in which
the predictors are made sequentially, learning from the
mistakes of the previous predictor in order to optimize the
subsequent learner. It usually takes less time/iterations to
reach close to actual predictions, but we have to choose the

stopping criteria carefully. These reduce bias and variance
and can with the overfitting. One example of the most
common boosting methods is GB. The library that is used
is the GradientBoostingClassifier, and we tune the discrete
hyperparameters that are the number of predictors and the
maximum depth of them.

On the other hand, an artificial neural network is a model
that is organized in layers (input layer, output layer, and
hidden layers). An MLP is a modification of the standard
linear perceptron where multiple layers of connected nodes
are allowed.The standard algorithm for training aMLP is the
backpropagation algorithm (see [48, 49]). Class MLPClas-
sifier in Scikit-learn implements MLP training algorithms
for this ML model. By default, MLPClassifier has only one
hidden layer with 100 neurons, the activation function for the
hidden layer is f (x) = max(0, x), and the solver for weight
optimization is “Adam” [50]. In this study, we will allow two
hidden layers and we will run the number of neurons in each
of these hidden layers.

In Table 1, the selected HPO algorithms to study are
developed. Also, the references related to each one are given,
as well as the minimal version of Python for which these
algorithms work. In addition, we highlight if they are smart:
that it is, if they stop by themselves in contrast to a number of
iterations (trials) must be proposed.

3.2. Datasets. The choice of datasets selected for the experi-
ments was motivated by different reasons: available in public
servers, diversity in the number of instances, classes, and
features, and relating to cybersecurity. The set of datasets
D = {𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5} is described in Table 2.

Regarding the transformation of features data of treatable
datasets, this has been performed manually by Python.

Dataset 𝐷1 is a collection of spam (advertisements for
products/web sites, make money fast schemes, chain letters,
pornography, etc.) and nonspam e-mails whose purpose is to
construct spam filters. Dataset 𝐷2 is a database obtained by a
real-time localization system for an autonomous robot with
examples that are constructed with simulated attacks (Denial
of Service and Spoofing) and nonattacks. Dataset 𝐷3 is about
de detection of Phishing websites. 𝐷4 is a data set suggested
to solve some of the inherent problems of the well-known
KDD󸀠99 data set.This has been treated by the approach given
in [59, 60]. Finally, 𝐷5 contains transactions made by credit
cards. This unbalanced collection of data includes examples
labeled as fraudulent or genuine. Also, the features are the
result of a PCA transformation.

Complexity 5

Table 2: Description of the set of datasetsD.

Dataset Name Instances Features Classes Reference
𝐷1 Spambase 4601 57 2 [54]
𝐷2 Robots in RTLS 6422 12 3 [55]
𝐷3 Phishing websites 11055 30 2 [56–58]
𝐷4 Intrusion Detection (NSL-KDD) 148517 39 5 [59, 60]
𝐷5 Credit Card Fraud Detection 284807 30 2 [61]

Table 3: Description of the partitions of the set of datasetsD.

Dataset 𝑃1 𝑃2 𝑃3 𝑃4
𝐷1 383 766 2300 4601
𝐷2 535 1070 3211 6422
𝐷3 921 1842 5527 11055
𝐷4 12376 24752 74258 148517
𝐷5 23733 47467 142403 284807

Also, the datasets have different number of instances as
well as features and number of classes of the target variable.

3.3. Sampling and Collection of Data. For each dataset 𝐷𝑖,
four partitions, {𝑃𝑗(𝐷𝑖)}𝑗=1,...,4, have been created in a random
way. These correspond to the proportions that are obtained
when multiplied by 1/2, 1/6, 1/12 the whole set (P = {𝑃1 =
8, 3%, 𝑃2 = 16, 3%, 𝑃3 = 50%, 𝑃4 = 𝐷𝑖}). We denote by
𝑃𝑗(𝐷𝑖) the partition on the dataset 𝐷𝑖 where 𝑖 = 1, . . . , 5
and 𝑗 = 1, 2, 3, 4. These proportions have been chosen due
to the fact that, in this way, we can deal with an amount
of instances of different order of magnitude, (102, 103, 104,
and 105, having similar orders in the same partition of each
dataset; see Table 3.

On the other hand, we fix once and for all a partition
𝐷𝑡𝑟𝑎𝑖𝑛𝑖 ∪ 𝐷V𝑎𝑙𝑖𝑑

𝑖 = 𝐷𝑖 for each 𝐷𝑖 into train data (80%) and
validation data (20%), as well as a partition with the same
proportion for each partition 𝑃𝑗(𝐷𝑖).

Finally, in order to build response variables to measure
the goal of the study, we apply each 𝐻𝑘 ∈ H over the
all partitions, 𝑃𝑗(𝐷𝑖), obtaining the hyperparameter config-
uration 𝜆𝑘𝑖,𝑗. Then, the learning algorithm with the obtained
hyperparameter configuration is run over 𝐷𝑡𝑟𝑎𝑖𝑛𝑖 to construct
a classifier that is validated over𝐷V𝑎𝑙𝑖𝑑

𝑖 . At this step, we collect
the accuracy obtained. This scenario is repeated 50 iterations.
Also, the total time and spatial complexity of all process are
stored. Then we create three response variables. We denote
by 𝐴𝑐𝑐𝑘𝑖,𝑗 the 50 × 1 array where the 𝑚-th component is
the accuracy of the predictive model tested on 𝐷V𝑎𝑙𝑖𝑑

𝑖 that
was trained over 𝐷𝑡𝑟𝑎𝑖𝑛𝑖 with the hyperparameters (𝜆𝑘𝑖,𝑗)𝑚 at
the 𝑚-th iteration. We can measure the time and the spatial
complexity used along this process and collect these data in
two 50 × 1 arrays, 𝑇𝐶𝑘𝑖,𝑗, and 𝑆𝐶𝑘𝑖,𝑗, respectively.

The time complexity, measured in seconds, is the sum
of the time needed by the HPO algorithm for finding the
optimum hyperparameters and the time needed by the ML
algorithm for the training phase. The spatial complexity,

measured in Kb, is defined as the maximum of use of
memory along theHPOalgorithm run, including the internal
structures of the algorithm as well as train and test datasets
load.

3.4. Technical Specifications. The analyses have been carried
by the authors at high-performance computing facilitated by
SCAYLE (www.scayle.es) over HP ProLiant SL270s Gen8 SE,
with 2 processors Intel Xeon CPU E5-2670 v2 @ 2.50GHz
with 10 cores each one, and 128 GB of RAM memory. They
are equipped with 1 hard disk of 1TB and cards Infiniband
FDR 56Gbps.

The analyses script has been implemented in Python
language. Python uses an automated manager system of
memory called garbage collector that releases the unused
memory space.This phenomenonmight be nondeterministic
and certain fluctuations shown in the results may be due to
not releasing the memory in that case.

It is worth noting that different technical tools (either
software or hardware) could affect to the data about time and
spatial complexity that have been collected. This is a fact that
should be taken into account if we want to measure the effect
of data sizes over the response variables in absolute terms,
that is, over a single HPO algorithm. However, the influence
of the technical specifications in the response variables is
not a relevant factor in this study. This is a comparative
study in which all the measures are collected under the same
conditions, and the possible effect of the technical elements
on the data is the same in each experiment. It is expected that
the same behavior of the comparative encountered patterns
will appear with other technical characteristics.

3.5. Analysis. The aim of the study is to decide if the size
of data is a factor that influences in the efficiency of a ML
algorithm using a HPOmethod among partitions of the data.

We perform the following statistical analysis:

(1) First, for each level of the size, that is, the partitions 𝑃𝑗
where 𝑗 = 1, 2, 3, 4, we study the normality of 𝐴𝑐𝑐𝑘𝑖,𝑗

http://www.scayle.es

6 Complexity

Table 4: Level of gains where ‘ =,<,>’ denotes statistically meaningful equality and differences, 𝑀𝑒 represents the median, and 𝑗 < 𝑙.

Level Condition
9 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) > 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) < 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙)
8 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) > 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) = 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙)
7 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) = 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) < 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙)
6 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) = 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) = 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙)
5 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) > 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) > 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙) & Δ 𝑗,𝑡(𝑆𝐶

𝑘
𝑖) < Δ 𝑗,𝑡(𝐴𝑐𝑐𝑘𝑖) & Δ 𝑗,𝑡(𝑆𝐶

𝑘
𝑖) < Δ 𝑗,𝑡(𝑇𝐶𝑘𝑖)

4 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) = 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) > 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙) & Δ 𝑗,𝑡(𝑆𝐶
𝑘
𝑖) < Δ 𝑗,𝑡(𝑇𝐶𝑘𝑖)

3 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) < 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) < 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙) & Δ 𝑗,𝑡(𝑆𝐶
𝑘
𝑖) > Δ 𝑗,𝑡(𝐴𝑐𝑐𝑘𝑖) & Δ 𝑗,𝑡(𝑇𝐶𝑘𝑖) > Δ 𝑗,𝑡(𝐴𝑐𝑐𝑘𝑖)

2 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) < 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙)& 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) = 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙) & Δ 𝑗,𝑡(𝑇𝐶𝑘𝑖) > Δ 𝑗,𝑡(𝐴𝑐𝑐𝑘𝑖)
1 If 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑗) < 𝑀𝑒(𝐴𝑐𝑐𝑘𝑖,𝑙) & 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑗) > 𝑀𝑒(𝑆𝐶𝑘𝑖,𝑙) & Δ 𝑗,𝑡(𝑇𝐶𝑘𝑖) > Δ 𝑗,𝑡(𝐴𝑐𝑐𝑘𝑖) & Δ 𝑗,𝑡(𝑇𝐶𝑘𝑖) > Δ 𝑗,𝑡(𝑆𝐶

𝑘
𝑖)

0 In another case

(resp., 𝑇𝐶𝑘𝑖,𝑗 and 𝑆𝐶𝑘𝑖,𝑗). Once it has been determined
that these data do not follow a normal statistical
distribution, we have performed nonparametric tests.
Wilcoxon’ test for two paired samples was conducted
in order to decide whether there are statistically
meaningful differences or not among 𝐴𝑐𝑐𝑘𝑖,1, 𝐴𝑐𝑐𝑘𝑖,2,
𝐴𝑐𝑐𝑘𝑖,3, and𝐴𝑐𝑐𝑘𝑖,4 (resp., for𝑇𝐶𝑘𝑖,𝑗 and 𝑆𝐶𝑘𝑖,𝑗) for all𝐷𝑖 ∈
D, 𝐻𝑘 ∈ H and for the three selected ML algorithms
(RF, GB, and MLP). The choice of this test is due to
the fact that the response variables that we compare
are obtained by the application of the ML algorithms
over the dataset 𝐷𝑖 with the splits 𝐷𝑡𝑟𝑎𝑖𝑛𝑖 and 𝐷V𝑎𝑙𝑖𝑑

𝑖 ,
but with the different setting (𝜆𝑘𝑖,⋅)

∗ and (𝜆𝑘𝑖,4)
∗. The

study has been carried out with a significance level
𝛼 = 0.05.

(2) At this point, we have applied the inference described
over the accuracy, the time, and the spatial com-
plexity. Then, we have obtained the 𝑝-values of each
partition’s comparison for each response variable,
for each HPO method, and for each 𝐷𝑖. That is six
comparisons for 𝑃1𝑉𝑠𝑃4 along five datasets providing
a total of 30 decisions about statistical equality or not
for each ML algorithm (the same process for 𝑃2𝑉𝑠𝑃4,
𝑃3𝑉𝑠𝑃4, respectively). Then, we have computed the
rate of 𝑝-values that provides statistical differences by
comparison of partitions, by response variables, and
in a total way.

(3) From the results obtained in Wilcoxon’s tests we
assign to each 𝑃𝑗(𝐷𝑖) a level of gain with regard to
𝑃4(𝐷𝑖) for 𝑗 = 1, 2, 3. The mapping is carried out
according to Table 4 where △𝑗,𝑡(𝐴𝑐𝑐𝑘𝑖) denotes the
rate of absolute difference of the median accuracy
between operating with the model obtained through
HPO on 𝑃𝑗(𝐷𝑖) and 𝑃4(𝐷𝑖) (resp., spatial and time
complexity). Namely,

△
𝑗,𝑡

(𝐴𝑐𝑐𝑘𝑖) =
󵄨󵄨󵄨󵄨󵄨𝑀𝑒 (𝐴𝑐𝑐𝑘𝑖,𝑗) − 𝑀𝑒 (𝐴𝑐𝑐𝑘𝑖,𝑡)

󵄨󵄨󵄨󵄨󵄨
min [𝑀𝑒 (𝐴𝑐𝑐𝑘𝑖,𝑗) ,𝑀𝑒 (𝐴𝑐𝑐𝑘𝑖,𝑡)]

(2)

△
𝑗,𝑡

(𝑆𝐶𝑘𝑖) =
󵄨󵄨󵄨󵄨󵄨𝑀𝑒 (𝑆𝐶𝑘𝑖,𝑗) − 𝑀𝑒 (𝑆𝐶𝑘𝑖,𝑡)

󵄨󵄨󵄨󵄨󵄨
min [𝑀𝑒 (𝑆𝐶𝑘𝑖,𝑗) ,𝑀𝑒 (𝑆𝐶𝑘𝑖,𝑡)]

(3)

△
𝑗,𝑡

(𝑇𝐶𝑘𝑖) =
󵄨󵄨󵄨󵄨󵄨𝑀𝑒 (𝑇𝐶𝑘𝑖,𝑗) − 𝑀𝑒 (𝑇𝐶𝑘𝑖,𝑡)

󵄨󵄨󵄨󵄨󵄨
min [𝑀𝑒 (𝑇𝐶𝑘𝑖,𝑗) ,𝑀𝑒 (𝑇𝐶𝑘𝑖,𝑡)]

(4)

This correspondence is shown for each algorithm 𝐻𝑘
and dataset 𝐷𝑖.
The design of Table 4 was done based on how many
response variables show a positive efficiency rate
when optimizing the hyperparameter values with a
smaller partitions instead of the whole dataset. First,
we have created nine levels of gain (9 is the highest
level), each of them determined by the number of
response variables in which we reach more efficient
results prioritizing the accuracy against T.C. and S.C.
Also, we have sorted the levels of gain from the best
combination to the worst, dropping those combi-
nations in which the loss is larger than the profit.
Due to the Python garbage collector, the response
variable with a more clear increasing trend should
be the time complexity instead of spatial complexity.
Then, we suppose that the inequality T.C.(𝑃𝑗(𝐷𝑖)) <
T.C.(𝑃4(𝐷𝑖)) holds always true.

(4) Finally, we compute the average of gain of the smaller
partitions in a general way, per datasets, and ML
algorithms. These results let us measure the reliability
of the conclusions.

4. Results and Discussion

The first research question deals with whether the size of a
partition used in the HPO phase influences in certain sense
on the efficiency of the algorithm.Once the comparison’s tests
described in the above section have been done, we account,
for each ML model, how many combinations show statis-
tically significant differences across all the HPO methods
and all the datasets. Although we find an influence on the
response variables, we do not know whether this influence is
positive or not. So, the second research question is focused on

Complexity 7

Table 5: Statistically significant differences in each dimension for all HPO across all𝐷𝑖 of RF for each comparison between 𝑃𝑗(𝐷𝑖) and𝑃4(𝐷𝑖)
and the total (%).

Combination Accuracy Time Complexity Spatial Complexity (Acc+T.C.+S.C)
𝑃1 Vs 𝑃4 13/30 = 43.33% 30/30 = 100% 30/30 = 100% 73/90 = 81.11%
𝑃2 Vs 𝑃4 12/30 = 40% 29/30 = 96.66% 30/30 = 100% 71/90 = 78.88%
𝑃3 Vs 𝑃4 3/30 = 10% 29/30 = 96.66% 30/30 = 100% 62/90 = 68.88%
(𝑃1 + 𝑃2 + 𝑃3) Vs 𝑃4 28/90 = 31.11% 88/90 = 97.77% 90/90 = 100%

Table 6: Statistically significant differences in each dimension for all HPO across all𝐷𝑖 of GB for each comparison between𝑃𝑗(𝐷𝑖) and𝑃4(𝐷𝑖)
and the total (%).

Combination Accuracy Time Complexity Spatial Complexity (Acc+T.C.+S.C)
𝑃1 Vs 𝑃4 19/30 = 63.33% 29/30 = 96.66% 30/30 = 100% 78/90 = 86.66%
𝑃2 Vs 𝑃4 20/30 = 66.66% 29/30 = 96.66% 29/30 = 96.66% 78/90 = 86.66%
𝑃3 Vs 𝑃4 14/30 = 46.66% 28/30 = 93.33% 30/30 = 100% 72/90 = 80%
(𝑃1 + 𝑃2 + 𝑃3) Vs 𝑃4 53/90 = 58.88% 86/90 = 95.55% 89/90 = 98.88%

Table 7: Statistically significant differences in each dimension for all HPO across all 𝐷𝑖 of MLP for each comparison between 𝑃𝑗(𝐷𝑖) and
𝑃4(𝐷𝑖) and the total (%)).

Combination Accuracy Time Complexity Spatial Complexity (Acc+T.C.+S.C)
𝑃1 Vs 𝑃4 4/30 = 13.33% 29/30 = 96.66% 30/30 = 100% 63/90 = 70%
𝑃2 Vs 𝑃4 5/30 = 16.66% 28/30 = 93.33% 30/30 = 100% 63/90 = 70%
𝑃3 Vs 𝑃4 1/30 = 3.33% 26/30 = 86.66% 30/30 = 100% 57/90 = 63.33%
(𝑃1 + 𝑃2 + 𝑃3) Vs 𝑃4 10/90 = 11.11% 83/90 = 92.22% 90/90 = 100%

the study of this differences and equalities. Next, we analyze
the reliability of the results. Finally, we include an overview
of the global results that are obtained.

4.1. ResearchQuestion 1. In the case of RF, the results included
in Table 5 show that the obtained accuracy in the 31.11% of
possible combinations between the smaller partitions and
the whole dataset can be considered statistically different.
However, the time and spatial complexity have a very high
amount of statistically significant differences (97.77% and
100%, respectively). Hence spatial and time complexity are
affected by the size of the dataset (as expected). But, on the
other hand, the size of the dataset does not impact on the
accuracy in a critical way.

Also, we can see that the partition 𝑃1(𝐷𝑖) reaches the
highest number of differences in the accuracies, as well as
in time and spatial complexity, while the behavior of the
partition 𝑃3(𝐷𝑖) is the more statistically similar to the whole
dataset. Note that, in the 90 % of the cases, the accuracy
obtained with this partition can be considered equal to
accuracy obtained with 𝑃4 = 𝐷𝑖. Note that the behavior of
the accuracies shows an increasing trend of similarity related
to the increasing size of the partition.

In the case of GB, the results included in Table 6 show that
the obtained accuracy in the 41.12% of possible combinations
among the smaller partitions and the whole dataset can be
considered statistically equivalent. However, the time and
spatial complexity have a very high amount of statistically
significant differences (95.55% and 98.88%, respectively). So,

we can confirm that the dataset’s size has an effect on these
last dimensions in a strong way, and over the accuracy in a
medium level.

Regarding the concrete partitions, we have a greater
homogeneity of the results in the GB than in RF, although
𝑃3(𝐷𝑖) remains as the partition with the most similar accu-
racy with respect to the whole dataset (53.34 %). If we
take into account the three response variables the rate of
differences is quite high, 𝑃3(𝐷𝑖) being the most similar
with an 80% of differences. Note that, in this case, there is no
increasing trend of similarity in the accuracies as the size
grows up.

Finally, in the case of MLP, the results included in
Table 7 show that the obtained accuracies in the 88.89 %
of possible combinations among the smaller partitions and
the whole dataset can be considered statistically equal. Then,
the accuracy is not being quite affected by the size of the
dataset used in the HPO phase. However, the time and
spatial complexities have a very high amount of statisti-
cally significant differences (92.22% and 100%, respective-
ly).

It is worth noting that 𝑃3(𝐷𝑖) has obtained 96.67% of
equivalent accuracies, but the behavior of the similarity in the
accuracies, sorted by the size of the partition, is not found
either in this case.

In general, we have found a high effect of the dataset’s
size used in the HPO over the time and spatial complexity,
for the three ML algorithms. In the case of the accuracy,
the ensemble methods (RF and GB) show a medium effect

8 Complexity

Table 8: Patterns of profit.

ML method Pattern 1 Pattern 2 Pattern 3 Pattern 4
RF NM SMAC, RS PS, TPE, CMA-ES
GB RS NM, TPE, CMA-ES SMAC, PS
MLP RS, SMAC CMA-ES PS, TPE, NM

Table 9: Average rate of statistically significant differences in each dimension for all HPO across all 𝐷𝑖 for all ML algorithms and for each
comparison between 𝑃𝑗(𝐷𝑖) and 𝑃4(𝐷𝑖) (%).

Combination Accuracy Time Complexity Spatial Complexity
𝑃1 Vs 𝑃4 39.99% 97.77% 100%
𝑃2 Vs 𝑃4 41.10% 95.55% 98.88%
𝑃3 Vs 𝑃4 19.99% 92.21% 100%
(𝑃1 + 𝑃2 + 𝑃3) Vs 𝑃4 33.7% 95.18% 99.62%

(around a rate of 40%), while in the MLP, the level of effect is
very low.

4.2. Research Question 2. In order to study in depth whether
the considered effect is positive or negative when we work
with smaller partitions, the evolution of the response vari-
ables as the size of the partition grows up is developed. We
are going to study how are the encountered differences in each
dimension of the efficiency.

In Figures 1, 2, and 3, the charts of the evolution of the
behavior of the studied dimensions are shown for each dataset
𝐷𝑖 and for RF, GB, and MLP, respectively.

Both the time and spatial complexity appear with an
increasing trend, the first one being more highlighted. Also,
the case of spatial complexity is more variable in the case
of MLP than in the ensemble methods. So, in order to gain
efficiency when tuning the hyperparameters with a smaller
proportion of data, different levels are assigned according to
Table 4. As we have mentioned above, the levels of profit are
proposed in terms of the gain in the accuracy and spatial
complexity due to the fact that the time complexity shows a
clear increasing trend.

Note that, in general, is not true that the accuracy
increases as the size of the partition used for the HPO phase
does. This can be seen more clearly when the ML model is
GB or MLP and, certainly, depends on the dataset. See, for
instance, the three charts for𝐷2 and𝐷3 in Figures 1, 2, and 3.

The gain’s averages obtained in RF, GB, and MLP are
included in Figures 4, 5, and 6.

In all the studied ML algorithms, we can obtain a gain
when smaller partitions are used toHPO.Also, we can clearly
find four different patterns (see Table 8).The first and second
one show that the partition 𝑃2 obtains the highest and the
lowest profit. The third one is an increasing trend from 𝑃1 to
𝑃3. In the case of MLP, we also detect another pattern that
stabilizes the gain from 𝑃2.

In the case of RF, the lowest level of gain is 4.5 and the
maximum value is 7. The other ensemble method, GB, has
obtained levels of profit between 2.5 and 8. Finally, the MLP
algorithm shows values between 5 and 7.5. Then, the neural

network is the algorithm in which the HPO phase performs
better with smaller partitions, followed by RF and GB.

In addition, for all ML algorithms there is at least one
HPO algorithm that obtains a profit of level greater than 6 in
the smaller partitions 𝑃1 and 𝑃2, namely, the NM algorithm.
In case of 𝑃3, it is should be noted that the minimum level of
gain is 5.5 for all HPO and ML techniques.

4.3. Research Question 3. If we compute the average of gain
in each dataset, we obtain the results shown in Figure 7.

The averages of the profit level for RF are between 3.2
and 8.5, being the largest dataset 𝐷5 the one in which we
reach more efficiency working with smallest partition and
showing a decreasing trend. On the other hand, the dataset
𝐷3 is the one in which we get less gain of efficiency. The
same behavior is presented in MLP up to a little loss of level,
between 2.5 and 7.5. In the case of GB, the averages of the
profit level are between 3.2 and 7.2, being the largest dataset
𝐷4 the one in which we reach more efficiency working with
smallest partition.

Finally, we can conclude that, in a general way, in all
datasets we obtain efficiency optimizing the hyperparameter
values with smaller partition, although the data were different
in terms of features, number of instances, or classes of the
target variable. So, the results are consistent and reliable.

4.4. Global Results. In Table 9 we include the global average
rate of statistically significant differences in each dimension
(see Tables 5, 6, and 7). As we have mentioned above, time
and spatial complexity show an increasing trend directly
related to the size of the partition. Therefore, the high rate of
differences appearing in these variables in Table 9 is intuitive
and expected. However, the behavior of the accuracy is
different. We can observe that the accuracy that we get with
smaller partitions is statistically equivalent to the obtained
accuracy with the whole dataset in more than the 60% of the
cases. This rate is greater than 80% for P3 (the 50% of the all
dataset). This fact should be taken into account, especially in
case of big data contexts, in order to optimize the available

Complexity 9

P1 P2 P3 P4
Partition

0.905

0.910

0.915

0.920

Ac
cu

ra
cy

(a) Accuracy in𝐷1-RF

P1 P2 P3 P4
Partition

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ti
m

e

(b) Time in𝐷1-RF

P1 P2 P3 P4
Partition

105000
107500
110000
112500
115000
117500
120000
122500

M
em

or
y

(c) Spatial complexity in𝐷1-RF

P1 P2 P3 P4
Partition

0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935

Ac
cu

ra
cy

(d) Accuracy in𝐷2-RF

P1 P2 P3 P4
Partition

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ti
m

e

(e) Time in𝐷2-RF

P1 P2 P3 P4
Partition

100000
102000
104000
106000
108000
110000
112000

M
em

or
y

(f) Spatial complexity in𝐷2-RF

P1 P2 P3 P4
Partition

0.920
0.925
0.930
0.935
0.940

Ac
cu

ra
cy

(g) Accuracy in𝐷3-RF

P1 P2 P3 P4
Partition

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ti
m

e

(h) Time in𝐷3-RF

P1 P2 P3 P4
Partition

114000
116000
118000
120000
122000
124000
126000
128000

M
em

or
y

(i) Spatial complexity in𝐷3-RF

P1 P2 P3 P4
Partition

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

(j) Accuracy in𝐷4-RF

P1 P2 P3 P4
Partition

5
10
15
20
25
30
35

Ti
m

e

(k) Time in𝐷4-RF

P1 P2 P3 P4
Partition

250000
275000
300000
325000
350000
375000
400000
425000

M
em

or
y

(l) Spatial complexity in𝐷4-RF

PS
TPE
CMA

NM
RS
SMAC

P1 P2 P3 P4
Partition

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

(m) Accuracy in𝐷5-RF

PS
TPE
CMA

NM
RS
SMAC

P1 P2 P3 P4
Partition

0
50

100
150
200
250
300
350

Ti
m

e

(n) Time in𝐷5-RF

PS
TPE
CMA

NM
RS
SMAC

P1 P2 P3 P4
Partition

300000
350000
400000
450000
500000
550000

M
em

or
y

(o) Spatial complexity in𝐷5-RF

Figure 1: Accuracy, time, and spatial complexity of RF.

10 Complexity

P1 P2 P3 P4
Partition

0.900
0.905
0.910
0.915
0.920
0.925

Ac
cu

ra
cy

(a) Accuracy in𝐷1-GB

P1 P2 P3 P4
Partition

0
2
4
6
8

10

Ti
m

e

(b) Time in𝐷1-GB

P1 P2 P3 P4
Partition

108000
110000
112000
114000
116000
118000
120000

M
em

or
y

(c) Spatial complexity in𝐷1-GB

P1 P2 P3 P4
Partition

0.915
0.920
0.925
0.930
0.935

Ac
cu

ra
cy

(d) Accuracy in𝐷2-GB

P1 P2 P3 P4
Partition

0

1
2
3
4
5
6

Ti
m

e

(e) Time in𝐷2-GB

P1 P2 P3 P4
Partition

100000
102000
104000
106000
108000
110000
112000
114000
116000

M
em

or
y

(f) Spatial complexity in𝐷2-GB

P1 P2 P3 P4
Partition

0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950

Ac
cu

ra
cy

(g) Accuracy in𝐷3-GB

P1 P2 P3 P4
Partition

0
2
4
6
8

10
12
14

Ti
m

e

(h) Time in𝐷3-GB

P1 P2 P3 P4
Partition

114000
116000
118000
120000
122000
124000
126000
128000

M
em

or
y

(i) Spatial complexity in𝐷3-GB

P1 P2 P3 P4
Partition

0.975

0.980

0.985

0.990

0.995

Ac
cu

ra
cy

(j) Accuracy in𝐷4-GB

P1 P2 P3 P4
Partition

0

500

1000

1500

2000

2500

Ti
m

e

(k) Time in𝐷4-GB

P1 P2 P3 P4
Partition

300000

350000

400000

450000

M
em

or
y

(l) Spatial complexity in𝐷4-GB

P1 P2 P3 P4
Partition

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

PS
TPE
CMA

NM
RS
SMAC

(m) Accuracy in𝐷5-GB

P1 P2 P3 P4
Partition

0
200
400
600
800

1000

Ti
m

e

PS
TPE
CMA

NM
RS
SMAC

(n) Time in𝐷5-GB

P1 P2 P3 P4
Partition

250000
300000
350000
400000
450000
500000
550000

M
em

or
y

PS
TPE
CMA

NM
RS
SMAC

(o) Spatial complexity in𝐷5-GB

Figure 2: Accuracy, time, and spatial complexity of GB.

Complexity 11

P1 P2 P3 P4
Partition

0.895
0.900
0.905
0.910
0.915
0.920
0.925

Ac
cu

ra
cy

(a) Accuracy in𝐷1-MLP

P1 P2 P3 P4
Partition

0
200
400
600
800

1000
1200

Ti
m

e

(b) Time in𝐷1-MLP

P1 P2 P3 P4
Partition

110000
120000
130000
140000
150000
160000

M
em

or
y

(c) Spatial complexity in𝐷1-MLP

P1 P2 P3 P4
Partition

0.64
0.66
0.68
0.70
0.72
0.74

Ac
cu

ra
cy

(d) Accuracy in𝐷2-MLP

P1 P2 P3 P4
Partition

0
10
20
30
40
50

Ti
m

e

(e) Time in𝐷2-MLP

P1 P2 P3 P4
Partition

100000

110000

120000

130000

140000

M
em

or
y

(f) Spatial complexity in𝐷2-MLP

P1 P2 P3 P4
Partition

0.928
0.930
0.932
0.934
0.936
0.938
0.940
0.942
0.944

Ac
cu

ra
cy

(g) Accuracy in𝐷3-MLP

P1 P2 P3 P4
Partition

0
50

100
150
200
250
300
350

Ti
m

e

(h) Time in𝐷3-MLP

P1 P2 P3 P4
Partition

120000
130000
140000
150000
160000
170000

M
em

or
y

(i) Spatial complexity in𝐷3-MLP

P1 P2 P3 P4
Partition

0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91

Ac
cu

ra
cy

(j) Accuracy in𝐷4-MLP

P1 P2 P3 P4
Partition

0

500

1000

1500

2000

Ti
m

e

(k) Time in𝐷4-MLP

P1 P2 P3 P4
Partition

300000
350000
400000
450000
500000
550000

M
em

or
y

(l) Spatial complexity in𝐷4-MLP

P1 P2 P3 P4
Partition

0.99827
0.99828
0.99829
0.99830
0.99831
0.99832
0.99833

Ac
cu

ra
cy

PS
TPE
CMA

NM
RS
SMAC

(m) Accuracy in𝐷5-MLP

P1 P2 P3 P4
Partition

0
200
400
600
800

1000
1200
1400

Ti
m

e

PS
TPE
CMA

NM
RS
SMAC

(n) Time in𝐷5-MLP

P1 P2 P3 P4
Partition

300000
350000
400000
450000
500000
550000
600000
650000
700000

M
em

or
y

PS
TPE
CMA

NM
RS
SMAC

(o) Spatial complexity in𝐷5-MLP

Figure 3: Accuracy, time, and spatial complexity of MLP.

12 Complexity

P1-P4 P2-P4 P3-P4
Partitions

4.5

5.0

5.5

6.0

6.5

7.0

G
ai

n
fo

r R
F

(v
s.

pa
rt

iti
on

 4
)

particle swarm
tpe
cma-es

nelder-mead
random search
smac

Figure 4: Average of gain for each smaller partition with respect to
the whole dataset in RF.

P1-P4 P2-P4 P3-P4
Partitions

3

4

5

6

7

8

G
ai

n
fo

r G
B

(v
s.

pa
rt

iti
on

 4
)

particle swarm
tpe
cma-es

nelder-mead
random search
smac

Figure 5: Average of gain for each smaller partition with respect to
the whole dataset in GB.

resources and avoid loosing quality in an eventual solution
based on ML.

Once we have statistically and globally analyzed the
efficiency of a ML algorithm when we use smaller partitions
instead of the whole dataset, the next step is going in depth
over those cases in which differences are encountered. It
should be noted that these could provide a gain or a loss of
effectiveness. Also, a statistically difference in the accuracy,
for example, could be due to a variation as low as a few ten
thousandth of the total. In these cases, the relevance of this
difference is meaningfully related to the order of gain or loss
in the time and spatial complexity. The global average of the
level of gain, according to Table 4, is included in Table 10 (see
Figures 4, 5, 6, and 7).

P1-P4 P2-P4 P3-P4
Partitions

5.0

5.5

6.0

6.5

7.0

7.5

G
ai

n
fo

r M
LP

C
(v

s.
pa

rt
iti

on
 4

)

particle swarm
tpe
cma-es

nelder-mead
random search
smac

Figure 6: Average of gain for each smaller partition with respect to
the whole dataset in MLP.

Table 10: Average level of profit for all ML algorithms considered
and for each comparison between 𝑃𝑗(𝐷𝑖) and 𝑃4(𝐷𝑖) across all HPO
and 𝐷𝑖 (%).

Combination HPO 𝐷𝑖
𝑃1 Vs 𝑃4 5.04 5.04
𝑃2 Vs 𝑃4 5.44 5.475
𝑃3 Vs 𝑃4 6.33 6.175

The obtained global results show an average level of profit
between 5.04 and 6.33 over 9 with an increasing trend related
to the size of the partition.

5. Conclusions and Future Work

Cybersecurity is a dynamical and emerging research disci-
pline that faces on problems which are increasingly complex
and that requires innovative solutions.The value of a database
of Cybersecurity is very high due to the actionable knowledge
that we extract from it, but in the most cases, we have to
deal with a big volume of data that entails expensive costs of
resources and time. Artificial Intelligence techniques, such as
Machine Learning, are powerful tools that allow us to extract
and generate knowledge inCybersecurity, among other fields.

One of the main issues, in order to reach quality results by
Machine Learning, is the optimization of the hyperparameter
values of the algorithm. However, the automatic HPO meth-
ods suppose a cost in terms of dynamical complexity.

In thiswork, we have developed a statistical analysis of the
fact of using smaller samples of the dataset for this process,
and its influence on the effectiveness of theMachine Learning
solution. The study was carried out over five different public
datasets of Cybersecurity. The results let us conclude that
working with smaller partitions turns out to bemore efficient
thanperforming the same processwith thewhole dataset.The
obtained gain is different depending on theML algorithmand

Complexity 13

P1-P4 P3-P4
3

4

5

6

7

8

G
ai

n
fo

r R
F

(v
s.

pa
rt

iti
on

 4
)

D5
D3
D1
D2
D4

P2-P4
Partitions

(a) Grain of RF for dataset

D5

P1-P4 P3-P4
3

4

5

6

7

G
ai

n
fo

r G
B

(v
s.

pa
rt

iti
on

 4
)

D3
D1
D2
D4

P2-P4
Partitions

(b) Grain of GB for dataset

P1-P4 P3-P4

3

4

5

6

7

G
ai

n
fo

r M
LP

C
(v

s.
pa

rt
iti

on
 4

)

D5
D3
D1
D2
D4

P2-P4
Partitions

(c) Grain of MLP for dataset

Figure 7: Average of gain for each smaller partition with respect to the whole dataset in each dataset 𝐷𝑖.

the HPO technique providing the highest level of profit with
the 50% of the dataset.

As future work, the following landmark would be to
search what is the optimal partition to obtain the best gain,
as well as studying other HPO methods over more types of
ML algorithms.

Acronyms

CMA-ES: Covariance Matrix Adaptation
EvolutionaryStrategies

GP: Gaussian Process
GB: Gradient Boosting

HPO: Hyperparameters Optimization
ML: Machine Learning
MLP: Multilayer Perceptron
NM: Nelder-Mead
PS: Particle Swarm
RBF: Radial Basis Function
RS: Random Search
RF: Random Forest
SMAC: Sequential Model Automatic

Configuration
SMBO: Sequential Model-Based Optimization
SH: Successive Halving
TPE: Tree Parzen Estimators.

14 Complexity

Data Availability

The datasets supporting this meta-analysis are from previ-
ously reported studies and datasets, which have been cited.
The processed data are available from the corresponding
author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank the Spanish National
Cybersecurity Institute (INCIBE), who partially supported
this work. Also, in this research, the resources of the Centro
de Supercomputación de Castilla y León (SCAYLE, www
.scayle.es), funded by the “European Regional Development
Fund (ERDF)”, have been used.

References

[1] Z. Cheng and Z. Lu, “A Novel Efficient Feature Dimensionality
Reduction Method and Its Application in Engineering,” Com-
plexity, vol. 2018, Article ID 2879640, 14 pages, 2018.

[2] I. Czarnowski and P. Jędrzejowicz, “An Approach to Data
Reduction for Learning fromBigDatasets: Integrating Stacking,
Rotation, and Agent Population Learning Techniques,” Com-
plexity, vol. 2018, Article ID 7404627, 13 pages, 2018.

[3] F. Provost, D. Jensen, and T. Oates, “Efficient progressive sam-
pling,” in Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 23–32,
San Diego, Calif, USA, 1999.

[4] W. Ng and M. Dash, “An Evaluation of Progressive Sampling
for Imbalanced Data Sets,” in Proceedings of the Sixth IEEE
International Conference on Data Mining Workshops, Hong
Kong, China, 2006.

[5] F. Portet, F. Gao, J. Hunter, and R. Quiniou, “Reduction of Large
Training Set by Guided Progressive Sampling: Application to
Neonatal Intensive Care Data,” in Proceedings of the Intelligent
Data International Workshop on Analysis in Medicine and Phar-
macology (IDAMAP2007), pp. 1-2, Amsterdam, Netherlands,
July 2007.

[6] G. M. Weiss and F. Provost, “Learning when training data are
costly:The effect of class distribution on tree induction,” Journal
of Artificial Intelligence Research, vol. 19, pp. 315–354, 2003.

[7] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown,
“Auto-WEKA: Combined selection and hyperparameter opti-
mization of classification algorithms,” in Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2013), pp. 847–855, 2013.

[8] Y. Bengio, “Gradient-based optimization of hyperparameters,”
Neural Computation, vol. 12, no. 8, pp. 1889–1900, 2000.

[9] J. Luketina, M. Berglund, K. Greff, and T. Raiko, “Scalable
gradient-based tuning of continuous regularization hyperpa-
rameters,” CoRR, 2015, https://arxiv.org/abs/1511.06727.

[10] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-
based hyperparameter optimization through reversible learn-
ing,” in Proceedings of the 32Nd International Conference on
International Conference onMachine Learning (ICML’15), vol. 37,

pp. 2113–2122, 2015, http://dl.acm.org/citation.cfm?id=3045118
.3045343.

[11] L. Mockus, V. Tiesis, and A. Zilinskas, “The application of
bayesian methods for seeking the extremum,” Towards Global
Optimization, 1978.

[12] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
derivatibe-free otpimization, MPS/SIAM Series on Optimization,
2009, http://epubs.siam.org/doi/book/10.1137/1.9780898718768.

[13] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation,
vol. 9, no. 2, pp. 159–195, 2001.

[14] J. A. Nelder and R. Mead, “A simplex method for function
minimization,”The Computer Journal, vol. 7, no. 4, pp. 308–313,
1965.

[15] M. Clerc and J. Kennedy, “The particle swarm-explosion, sta-
bility, and convergence in a multidimensional complex space,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 1,
pp. 58–73, 2002.

[16] X. C. Guo, J. H. Yang, C. G. Wu, C. Y. Wang, and Y. C. Liang,
“A novel LS-SVMs hyper-parameter selection based on particle
swarm optimization,” Neurocomputing, vol. 71, no. 16-18, pp.
3211–3215, 2008.

[17] J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan
Kaufmann, 2001.

[18] F. Fortin, F. De Rainville, M. Gardner, M. Parizeau, and C.
Gagné, “DEAP: Evolutionary algorithms made easy,” Journal
of Machine Learning Research, vol. 13, pp. 2171–2175, 2012,
https://github.com/DEAP/deap.

[19] E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter Opti-
mization: A Spectral Approach,” in In Proceedings of the Sixth
International Conference on Learning Representations, 2018.

[20] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Proceedings of
the Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems
2012 (NIPS 2012), pp. 2960–2968, 2012.

[21] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Proceedings of the Neural
Information Processing Systems 2011 (NIPS 2011), pp. 2546–2554,
2011.

[22] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential
Model-Based Optimization for General Algorithm Configura-
tion,” in Learning and Intelligent Optimization (LION), C. A. C.
Coello, Ed., vol. 6683 of Lecture Notes in Computer Science, pp.
507–523, Springer, Berlin, Germany, 2011.

[23] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, pp.
281–305, 2012.

[24] W. Konen, P. Koch, O. Flasch et al., “Tuned Data Mining: A
Benchmark Study on Different Tuners,” in Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO-2011), SIGEVO/ACM, New York, NY, USA, 2011.

[25] E. R. Sparks, A. Talwalkar, D. Haas et al., “Automating model
search for large scale machine learning,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing (SoCC 2015), pp.
368–380, 2015.

[26] I. Ilievski, T. Akhtar, J. Feng, and C. A. Shoemaker, “Efficient
hyperparameter optimization for deep learning algorithms
using deterministic RBF surrogates,” in Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, pp. 822–
829, San Francisco, Calif, USA, 2017.

https://arxiv.org/abs/1511.06727
http://dl.acm.org/citation.cfm?id=3045118.3045343
http://dl.acm.org/citation.cfm?id=3045118.3045343
http://epubs.siam.org/doi/book/10.1137/1.9780898718768
https://github.com/DEAP/deap

Complexity 15

[27] Y. Ozaki, M. Yano, and M. Onishi, “Effective hyperparameter
optimization using Nelder-Mead method in deep learning,” in
Proceedings of the IPS Transactions on Computer Vision and
Applications, pp. 9–20, 2017.

[28] K. G. Jamieson and A. Talwalkar, “Non-stochastic best arm
identification and hyperparameter optimization,” in In Proceed-
ings of the 19th International Conference on Artificial Intelligence
and Statistics (AISTATS 2016), pp. 240–248, 2016.

[29] B. Recht, Embracing the random, 2016, http://www.argmin.net/
2016/06/23/hyperband.

[30] B. Recht,Thenews of auto-tuning, 2016, http://www.argmin.net/
2016/06/20/hypertuning/.

[31] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal-
walkar, “Hyperband: a novel bandit-based approach to hyper-
parameter optimization,” Journal of Machine Learning Research
(JMLR), vol. 18, pp. 1–52, 2017.

[32] P. Koch, B. Wujek, O. Golovidov, and S. Gardner, “Automated
Hyperparameter Tuning for Effective Machine Learning,” in
Proceedings of the SAS Global Forum 2017 Conference, SAS
Institute Inc, Cary, NC, USA, 2017, http://support.sas.com/
resources/papers/proceedings17/SAS514-2017.pdf.

[33] K. Eggensperger, F. Hutter, H. H. Hoos, and K. Leyton-Brown,
“Efficient benchmarking of hyperparameter optimizers via
surrogates,” in Proceedings of the Twenty-Ninth Association for
the Advancement of Artificial Intelligence, pp. 1114–1120, 2015.

[34] P. Turney, “Types of cost in inductive concept learning,” in
Proceedings of the ICML ’2000 Workshop on Cost-Sensitive
Learning, pp. 15–21, 2000.

[35] D. Bogdanova, P. Rosso, and T. Solorio, “Exploring high-level
features for detecting cyberpedophilia,” Computer Speech and
Language, vol. 28, no. 1, pp. 108–120, 2014.

[36] P. Galán-Garcı́a, J. Gaviria de la Puerta, C. Laorden Gómez,
I. Santos, and P. G. Bringas, “Supervised Machine Learning
for the Detection of Troll Profiles in Twitter Social Network:
Application to a Real Case of Cyberbullying,” in Proceed-
ings of the International Joint Conference SOCO’13-CISIS’13-
ICEUTE’13. Advances in Intelligent Systems and Computing, Á.
Herrero et al., Ed., vol. 239, Springer, 2014.

[37] S. Miller and C. Busby-Earle, “The role of machine learning
in botnet detection,” in Proceedings of the 11th International
Conference for Internet Technology and Secured Transactions
(ICITST), pp. 359–364, Barcelona, Spain, 2016.

[38] J. R. Moya, N. DeCastro-Garcı́a, R. Fernández-Dı́az, and J. L.
Tamargo, “Expert knowledge and data analysis for detecting
advanced persistent threats,” Open Mathematics, vol. 15, no. 1,
pp. 1108–1122, 2017.

[39] A. Shenfield, D. Day, and A. Ayesh, “Intelligent intrusion
detection systems using artificial neural networks,” ICT Express,
vol. 4, no. 2, pp. 95–99, 2018.

[40] F. Vanhoenshoven, G. Napoles, R. Falcon, K. Vanhoof, and M.
Koppen, “Detecting malicious URLs using machine learning
techniques,” in Proceedings of the 2016 IEEE Symposium Series
on Computational Intelligence (SSCI), pp. 1–8, Athens, Greece,
December 2016.

[41] M. Zanin, M. Romance, S. Moral, and R. Criado, “Credit
Card Fraud Detection through Parenclitic Network Analysis,”
Complexity, vol. 2018, Article ID 5764370, 9 pages, 2018.

[42] N. DeCastro-Garcı́a, Á. L. Muñoz Castañeda, M. Fernández
Rodŕıguez, and M. V. Carriegos, “On Detecting and Removing
Superficial Redundancy in Vector Databases,” Mathematical
Problems in Engineering, vol. 2018, Article ID 3702808, 14 pages,
2018.

[43] V. N. Gudivada, R. Baeza-Yates, and V. V. Raghavan, “Big data:
Promises and problems,” The Computer Journal, vol. 48, no. 3,
pp. 20–23, 2015.

[44] R. Baeza-Yates, “Big Data or Right Data,” in Proceedings of the
7th Alberto Mendelzon International Workshop on Foundations
of Data Managements, CEURWorkshop Proceedings 1087, p. 14,
2013.

[45] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining:
experimental analysis of power,” Information Sciences, vol. 180,
no. 10, pp. 2044–2064, 2010.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[47] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[48] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms, Spartan Books, Washington, DC,
USA, 1961.

[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Internal Representations by Error Propagation,” in Parallel
Distributed Processing: Explorations in the Microstructure of
Cognition, D. E. Rumelhart, J. L. McClelland, and The PDP
research group, Eds., vol. 1, MIT Press, 1986.

[50] D. Kingma and J. Ba, “Adam: Amethod for stochastic optimiza-
tion,” 2014, https://arxiv.org/abs/1412.6980.

[51] J. Bergstra J, D. Yamins, and D. Cox, “Hyperopt: a Python
library for optimizing the hyperparameters ofmachine learning
algorithms,” in In Proceedings of the 12th Python in Science
Conference (SciPy 2013), pp. 13–20, 2013.

[52] M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. De Moor,
Easy Hyperparameter Search Using Optunity, 2014, https://
github.com/claesenm/optunity.

[53] M. Lindauer, K. Eggensperger, M. Feurer et al., SMAC v3:
Algorithm Configuration in Python, 2017, https://github.com/
automl/SMAC3.

[54] M. Hopkins, E. Reeber, G. Forman, and J. Suermondt, “Dataset
Spambase,” UCI Machine Learning Repository [http://archive
.ics.uci.edu/ml/datasets/spambase]. Irvine, CA: University of
California, School of Information and Computer Science. 2017.

[55] Á.M.Guerrero-Higueras,N.DeCastro-Garcı́a, andV.Matellán,
“Detection of Cyber-attacks to indoor real time localization
systems for autonomous robots,” Robotics and Autonomous
Systems, vol. 99, pp. 75–83, 2018.

[56] M. Rami, T. L. McCluskey, and F. A. Thabtah, “An Assessment
of Features Related to Phishing Websites using an Automated
Technique,” in Proceedings of the International Conferece For
Internet Technology And Secured Transactions (ICITST 2012),
pp. 492–497, IEEE, London, UK, 2012.

[57] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Intelligent
rule-based phishing websites classification,” IET Information
Security, vol. 8, no. 3, pp. 153–160, 2014.

[58] R. M. Mohammad, F. Thabtah, and L. Mc-Cluskey, “Predicting
phishing websites based on self-structuring neural network,”
Neural Computing and Applications, vol. 25, no. 2, pp. 443–458,
2014.

[59] L. Dhanabal and S. P. Shantharajah, “A Study on NSL-KDD
Dataset for Intrusion Detection System Based on Classification
Algorithms,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 4, no. 6, 2015.

http://www.argmin.net/2016/06/23/hyperband
http://www.argmin.net/2016/06/23/hyperband
http://www.argmin.net/2016/06/20/hypertuning/
http://www.argmin.net/2016/06/20/hypertuning/
http://support.sas.com/resources/papers/proceedings17/SAS514-2017.pdf
http://support.sas.com/resources/papers/proceedings17/SAS514-2017.pdf
https://arxiv.org/abs/1412.6980
https://github.com/claesenm/optunity
https://github.com/claesenm/optunity
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3
http://archive.ics.uci.edu/ml/datasets/spambase
http://archive.ics.uci.edu/ml/datasets/spambase

16 Complexity

[60] “NSL-KDD Dataset,” https://github.com/defcom17/NSL KDD,
2015.

[61] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi,
“Calibrating Probability with Undersampling for Unbalanced
Classification,” in Symposium on Computational Intelligence and
Data Mining (CIDM), IEEE, 2015, https://www.openml.org/d/
1597.

https://github.com/defcom17/NSL_KDD
https://www.openml.org/d/1597
https://www.openml.org/d/1597

Research Article
Practical Employment of Granular Computing to Complex
Application Layer Cyberattack Detection

RafaBKozik ,1 Marek Pawlicki ,1 MichaB ChoraV,1 andWitold Pedrycz2

1 Institute of Telecommunications and Computer Science, UTP University of Science and Technology, Bydgoszcz, Poland
2Department Electrical and Computer Engineering, University of Alberta, Canada

Correspondence should be addressed to Rafał Kozik; rkozik@utp.edu.pl

Received 12 October 2018; Revised 28 December 2018; Accepted 6 January 2019; Published 16 January 2019

Guest Editor: Fernando Sánchez Lasheras

Copyright © 2019 Rafał Kozik et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Network and information security are regarded as some of the most pressing problems of contemporary economy, affecting both
individual citizens and entire societies, making them a highlight for homeland security. Innovative approaches to handle this
challenge are undertaken by the scientific community, proposing the utilization of the emerging, advanced machine learning
methods.This very paper puts forward a novel approach to the detection of cyberattacks taking inventory of the practical application
of information granules. The feasibility of utilizing Granular Computing (GC) as a solution to the most current challenges in
cybersecurity is researched. To the best of our knowledge, granular computing has not yet been widely examined or used for
cybersecurity application purposes. The major contribution of this work is a method for constructing information granules from
network data. We then report promising results on a benchmark dataset.

1. Introduction and Rationale

In the lifecycle of any technological advancement, the appli-
cation domain and the target user base grow, shift and alter.
However, the very technological advancements that con-
tribute to the users’ well-being can be twisted into submission
bymalevolent agents. Apart from the obvious uses, which are
beneficial to the society, they can also be both the origin and
the objective of a cybercrime.

It does not require exhaustive research to notice that the
number and the severity of attacks targeted at the application
layer is on the rise.

This situation is echoed by the rankings of cyberattacks,
e.g., by OWASP [1], where SQLIA (SQL Injection Attack)
and XSS (Cross Site Scripting) are on top of the list. Selected
examples of critical systems which were successfully attacked
through the application layer are the flight management
system in Poland or the energy grid inUkraine [2].Therefore,
we aim at proposing novel methods to effectively detect
and counter the cyberattacks in the application layer. The
research we are conducting aims at investigating the ability of
the emerging methods of machine learning to counter these
attacks. Several attempts have beenmade to utilize innovative

machine learning solutions to tackle the cyberattack problem.
Those solutions include lifelong learning intelligent systems
or deep learning [3, 4].

We hereby offer, in this paper, the implementation in the
domain of cybersecurity of yet another emerging concept,
namely Granular Computing.

Therefore, the major contribution of this paper is the
application of a granular computing paradigm for cyberse-
curity.

We propose to extract information granules (which can
also be known as tokens) in order to better understand the
structure, semantics, andmeaning ofHTTP requests. Such an
approach allows for effective anomaly detection, as is proven
by the results we report.

In particular, the main contributions of this paper are

(i) an innovative anomaly detection algorithm based on
extracted information granules;

(ii) a description of packet structure;
(iii) an efficient method for request sequence encoding

and classification; and
(iv) evaluation of the proposed approach.

Hindawi
Complexity
Volume 2019, Article ID 5826737, 9 pages
https://doi.org/10.1155/2019/5826737

http://orcid.org/0000-0001-7122-3306
http://orcid.org/0000-0001-5881-6406
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5826737

2 Complexity

The remainder of the paper is structured as follows: Section 2
is focused on current trends and challenges related to
cybersecurity and anomaly detection approaches, Section 3
discusses the application of granular computing in cyber-
security, and Section 4 presents an approach for extracting
information granules from network data, while Section 5
presents the results of the conducted experiments. Conclu-
sions are given thereafter.

2. Cybersecurity: A Quick Primer on
Challenges and Trends

The rising numbers of attacks aimed at citizens, societies and
even seemingly secure systems built for critical infrastruc-
tures are easily observable [2, 5].The inadequacy of signature-
based systems in cyberattack detection is one of the primary
causes of this situation. Whenever new attacks are created,
or even slightly modified families of malware are utilized,
those systems, which constitute an industry standard, fall
short of properly handling the hazard until new signatures
are added. Anomaly detectors, which could tackle either new,
or obfuscated attacks, are likely to generate false positives.
There is a plethora of solutions that aim at countering attacks
targeting the application layer. Many of those products use
the signature-based approach. The signature-based category
of cyber-attack detection includes Intrusion Prevention and
Detection Systems (IDS and IPS) which use a predefined set
of patterns (called signatures) to identify an attack. IPS and
IDS are deployed to improve the security of computer systems
and networks through detection (in the case of IDS) and
blocking (in the case of IPS) of the cyberattacks.

Another class of solutions is called WAF (Web Appli-
cation Firewall [6–8]). Those solutions are based on black
and white listing approach. Classification of requests sent
from client to server is performed. WAFs work on the basis
of regular expressions, patterns, and signatures to detect
cyberattacks. The predefined patterns (or rules) are typically
compared to the content of incoming requests (either the
header or the payload). A very popular IDS/IPS open product
is called SNORT [9]. It is an open source project with a
community of users who can freely modify the software,
providing new rules to the Snort engine.

Injection attacks such as SQL or XSS occur when an
improperly validated request containing malicious code is
sent to an interpreter as part of a command or query. XSS
flaws might occur when the application processes malicious
data and sends it to a web browser without proper validation
or escaping (the reformatting of ambiguous characters). By its
nature, XSS allows attackers to execute scripts in the victim’s
browser. This leads to hijacking user sessions, defacing web
sites, or redirecting the user to malicious sites.

The problem of developing effective signatures for such
attacks is a highly complex one, as these attack vectors and
patterns lend themselves to obfuscation. Another drawback
of many WAF solutions is the fact that those are based on
the preliminary (or previously learnt) assumptions regard-
ing the request’s structure (e.g., [6, 7]). However, different
protocols utilizing HTTP as the transportation protocol are

characterized by different payload structures. For example,
the structure sent via a plain HTML form is different from
that of a GWT-RPC or a SOAP call. In such cases a number
of pre-prepared signatures will not match a differently-
structured payload, and in consequence, those attacks will
not effectively be detected.

Another approach toHTTP traffic anomaly detectionwas
presented in [10]. The authors applied a DFA (Deterministic
Finite Automaton) to compare the requests described by
means of tokens. The method based on the n-grams applied
for anomaly detection and cyber-attacks detection has been
presented in [11]. Other systems have also implemented
algorithms to analyze the n-grams, for example with the
use of statistical analysis [12], Self-Organizing Maps [13],
Bloom filters [14], and a wide variety of different machine
learning classifiers [15]. However, depending on the analyzed
protocols and the methodology used to analyze n-grams,
researchers report very diverse results for n-grams tech-
niques. For instance, in [11] authors reported a high number
of false positives for various state of the art methods. In
contrast, authors in [16] reported a recognition rate of over
85%, while having quite low false positive rate of only 1%.

3. Information Granules in Cybersecurity

One of the most serious challenges of the methods and
algorithms used in cybersecurity is being able to reach
a correct understanding of the network data. Undeniably,
cyberecosystems are quickly changing, as are the character-
istics of the data. This fluctuation of properties produces
uncertainty and difficulties in data partitioning/clustering.
It is profoundly challenging to construct correct generaliza-
tions, rules and thresholds, and substandard choices greatly
decrease the efficiency of typical pattern recognition and
anomaly detection algorithms. In addition, many of the used
pattern recognition techniques do not try to incorporate or
even take into account the semantics of the analyzed network
data.

We propose the utilization of the practical elements of
Granular Computing for anomaly detection as a solution of
the preceding problems.

Granular computing refers to a general data analysis and
recognition framework, incorporating data partitioning into
so called information granules.

Granular Computing emerged as a general structure of
data processing and knowledge discovery utilizing items
called information granules. The very concept of granulation
appeared independently in an array of fields, including fuzzy
and rough sets or cluster analysis [17]. Granules are align-
ments of elements drawn together by their similarity, close-
ness or functionality [18]. A granule which occurs at a partic-
ular granularity level conveys a certain aspect of the modelled
issue [19]. In situations with a certain degree of uncertainty
granules can provide a convenient solution. This property
can be translated into a certain economy when dealing with
intricate problems. The tolerance for uncertainty bears a
degree of resemblance to human thinking itself [18]. What
follows is the utilization of Granular Computing in designing

Complexity 3

real-life smart systems. The hierarchical nature of Granular
Computing in conjunction with the basics of human rea-
soning conveyed in its premise makes it a perfect match for
meaningful abstraction on various levels of detail [20].

Granules are essentially tiny parts of a larger construct,
which describe a particular facet of that construct, when
viewed from a particular level of granulation [21]. As an
illustration of this principle one can consider how in cluster
analysis objects can be grouped together based on similarity
or distance functions. Since objects grouped in one cluster
should exemplify a strong degree of similarity, clusters can be
considered as granules [20]. Granules can be, thus, amassed
into larger collections, which are then perceived as new,
larger granules or divided into smaller pieces, which aremore
specific [21].

Ideally, the extracted information granules should comply
with the Principle of Justifiable Granularity (PJG) [22]. PJG
is a guideline for information granules to best comply with
two competing requirements: justifiability and specificity. It
stipulates that the constructed granules cover the relevant
portion of the data, but should not be highly dispersed
across the dataset. This can be achieved by selecting granules
that resemble relevant semantics describing the data. Typical
practical methods of granular computing are fuzzy sets [23],
rough sets [24–26], and intuitionistic sets [27].

Granular computing allows for better data understanding
through the incorporation of semantic aspects, similari-
ties and uncertainties. Granular computing has been used
recently for the analysis of spatiotemporal data [28], to
concept-cognitive learning from large and multi-source data
in formal concept analysis [29].

Granular Computing has been used to estimate a power
plant’s electrical power output [30].The principles of granular
computing are utilized to cluster the data with regard to
the distance between granules, and the density of the newly
constructed granules. Data prepared this way is fed into
an Adaptive Neuro-Fuzzy Inference System (ANFIS). The
procedure has been tested and proven to be a close fit [30].

Another application of granular computing allows for the
recognition of faces that were surgically altered. Multiple lev-
els of granules are created, some granules contain information
about the whole face, some about specific regions, and some
about the fine detail of specific features. Those granulation
levels are then directed to classifiers [31].

The utilization of granular computing allowed for the
creation of more accurate medical classifiers, which has an
appreciable value in medical procedures. Data is granulated
on multiple levels with regards to the Euclidean distance of
the data points to the centroids. This distance constitutes
the level of granulation, with higher granulation achieved
through enlarging the distance.Data onmultiple levels is then
served to classifiers, which return a value between 0 and 1.The
values are then introduced to a final stage classifier [32].

One of the recent research papers proposed a system
introducing granular computing to financial markets. The
proposed method of time series forecasting bested the state-
of -the-art benchmark algorithms. Clustering is performed
with an adaptation of the possibilistic fuzzy c-means algo-
rithm, supplemented with the ability to process intervals. The

algorithm recursively gauges cluster centers as it brings in
novel data [33].

Granular computing can be used to increase the calcu-
lating speed when solving the economic dispatch problem
in order to reach the minimal running cost of a power grid.
The described method breaks down a large power grid into
smaller components which are treated as equivalent power
stations.Theprocess can be repeated, obtaining a finer level of
granulation with each iteration. Determining optimal values
on each level, before trying to reach a global optimum, makes
the procedure both quicker and easier [34].

We apply our own methods to construct a practical
solution based on information granules obtained from the
network data.

To the best of our knowledge, granular computing has
not yet been widely examined nor adapted for cybersecurity
application purposes. One of the rare published papers is
authored by Napoles et al. [35]. The authors addressed
the problem of modeling and classification for network
intrusion detection by utilizing a recently proposed gran-
ular model named Rough Cognitive Networks (RCN). The
authors both proposed and defined RCN for detection of
atypical (abnormal and potentially dangerous) patterns in
the network traffic. RCN has been delineated as a sig-
moid FCM (Fuzzy Cognitive Map). Map concepts denote
information granules corresponding to the RST (Rough Set
Theory) -based positive, boundary and negative regions of
decision classes. Learning mechanisms for RCN are based
on a self-adaptive Harmony Search algorithm. The pro-
posed model has been evaluated with the NSL-KDD dataset
(https://github.com/defcom17/NSL KDD) and is shown to be
a suitable and promising approach for detecting abnormal
traffic in computer networks. Future work will address
validation and further evaluation of the model based on real
network traffic.

In the upcoming section we present our innovative meth-
ods for extracting information granules to counter cyber-
attacks in the application layer.

4. Proposed Approach for Extracting
Information Granules from Network
Data in Cybersecurity

Hereby we propose a new method for the clustering of mul-
tiple HTTP sequences utilizing a machine-learning classifier
and granular computing approach.

As a way of grasping the semantics and the granularity,
we use the information about the request structure and the
statistical measurements of the structure content to detect
anomalous behavior of untrusted sessions between client and
server.

An overview of the proposed algorithm is presented
in Figure 1, while a general overview of the granulation
procedure utilized in our approach is presented in Figure 2.

As can be seen later in Section 5, the conducted experi-
ments confirm the promising results and we can report that
the proposed approach andmethod is competitive with other
state-of-the-art solutions.

https://github.com/defcom17/NSL_KDD

4 Complexity

HTTP
request

finding a model
through URL

structure
comparison

checking
the

model

A/N

grouping
by URL

Structure
Extraction

building
the model

learning phase

Figure 1: High-level overview of the proposed algorithm.

Granulation
browse.php?cat=old&page=1
(browse.php?cat=old&page=1)

browse.php?cat=old&page=1
(browse.php?)(cat=old&page=1)

browse.php?cat=old&page=1
(browse.php?cat)=old(&page=)1

browse.php?cat=old&page=1
(b)(r)(o)(w)(s)(e)(.)(p)(h)(p)(?)(c)(a)(t)(=)(o)(l)(d)(&)(p)(a)(g)(e)(=)(1)

one large granule

optimal granulation level

each character a granulelevel n

level 1

browse.php?cat=old&page=1

(header/body)

GET

GET

http

http

1
2

3
...

n
browse.php?cat=new&page=15

Figure 2: The overview of the granulation algorithm. The HTTP requests undergo a textual semantic segmentation of similar requests. The
optimal level of granulation reveals data that can be used to calculate the feature vector.

The crucial advantage of the method proposed in this
paper is that it is invariant to the underlying protocol
stack (the method is protocol agnostic). In other words, it
does not need to be tuned to any of the used protocols
or application interfaces using HTTP for transport (e.g.,
the RESTful API, and SOAP). Hypertext Transfer Protocol
(HTTP) is now frequently used due to its simplicity and
reliability in assuring communication between computers in

distributed networks and allowing for increased usage of the
web applications.

In our method, we apply a granular computing approach
and extract information granules from HTTP requests.

An information granule in this approach is defined as a
recurring sequence of information, which shares semantics
for all the requests sent to the same resource or server (in
Figure 2).

Complexity 5

x=12&y=34

x=56&y=67

x=78&y=84

...

x= 12 &y= 34

67

84

56

78

token 1 token 2

phase 1:
extraction
of tokens
from samples

phase 2:
calculating
the distribution
of features

Figure 3: The parameter encoding approach.

The analysis of each single request can result in several
granules (tokens). Our goal is to extract granules that will
identify in the analyzed requests the delimiters of regions
representing positions injected with cyberattacks or mal-
ware.

After these tokens are found, we have to describe the
sequences between them by calculating their statistical prop-
erties (these tokens are represented on the optimal granula-
tion level in Figure 2). We propose a two-step segmentation
ofHTTP requests. In the first step we divide the request space
into smaller subsets to perform further calculations in the
parallelized manner. In the second step we perform the actual
segmentation of requests in order to identify their structure.
The structure is described and represented by the extracted
information granules. Those information granules (shaded
boxes in Figure 3) allow us to identify the clusters in the
feature space consisting of the feature vectors extracted from
the granularized data.

Afterwards, when feature vectors are assigned to the
appropriate clusters, we apply a machine-learning classifier.
The classification task is to assign them either to the normal
or anomalous class. In our experiments we have used various
supervised methods.These have been explained in the exper-
iments section.

In order to extract the granules we implemented the
known LZW compression method (Lempel-Ziv-Welch [36,
37]). Firstly, we create the LZW dictionary D which allows
us to transform the textual input (e.g., logs) into natural
numbers (see the following):

𝐷 : 𝑤𝑜𝑟𝑑 󳨀→ {𝑖 : 𝑖€𝑁} (1)

The algorithm performs scanning within the set S in order
to find the successively longer subsequences. This step is
performed until the algorithm finds a sequence that does not
yet belong to the dictionary. The found substring is added to
the dictionary unless it is already represented. The described

6 Complexity

Data: Set of HTTP payloads S
Result: Dictionary D
s = empty string
while there is still data to be read in S do

end
end

else

ch ← read a character
if (s + ch) ∈ D then

s ← s+ch;

D ← D ∪ (s+ch);
s ← ch;

Figure 4: The algorithm for creating the dictionary D.

procedure repeats until the entire dataset is scanned. The
described algorithm is shown in Figure 4.

At the end of the processing a set S of HTTP payloads, the
dictionary D, containing a list of sequences is created.

This dictionary has the form of an unordered list. Posi-
tions in the list can be taken only by one word.The dictionary
D is implemented as a hash-table to achieveO(1) lookup time.

Of course, as in LZWmethod, creating the dictionary D,
also allows for compressing the data. The algorithm replaces
words by numbers corresponding to the position of the
sequence in the dictionary.

It is worth noticing that even after the single scan of the
data, we can extract a reasonable number of candidates for
appropriate information granules. Of course, it is not a trivial
task, given the need to achieve balance between the specificity
and justifiability. Another advantage is the compression of the
data.

Still we have to further process the dictionary in order to
obtain the collection of information granules. First condition
is that we remove all the candidates that do not appear in all
the samples used for structure extraction. In the next step we
remove the sequences that also appear elsewhere as the sub-
sequences of others.

TheHTTP requests have the form of character sequences,
whose lengths vary.

Moreover, single granule can appear at different positions
in consecutive HTTP requests. Also the distance between
granules may vary and, additionally, it happens that some-
times one granule is a subset of another information granule.

In our approach, we propose to use IDC (Idealized Char-
acter Distribution) method. We calculate it in the training
phase from normal requests sent to a web application (the
assumption is that the requests are normal, and manual
inspection is needed in this step). The IDC is calculated as
the mean value of all the character distributions. During the
detection phase, we calculate and evaluate the probability that
the character distribution of a sequence is an actual sample
drawn from its ICD. Hereby, we use the well-known Chi-
Square metric.

Equation (2) is used for computing the value of the Chi-
Square metric Dchisq(Q) for a sequence Q:

𝐷𝑐ℎ𝑖𝑠𝑞 (𝑄) =
𝑁

∑
𝑛=0

(𝐼𝐶𝐷𝑛 − ℎ𝑛 (𝑄))
2

𝐼𝐶𝐷𝑛
(2)

whereN indicates the number of bins in the histogram(in our
approach we used N=9), ICD the distribution established for
all the samples, and h() the distribution of the sequenceQ that
is being tested.

In order to calculate the distributions we count the
number of characters that fall into each of the range of the
ASCII table. We use the following ranges for this distribution
count: <0,31>,<32,47>,<48,57>, <58,64>, <65,90>,<91,96>,
<97,122>, <123,127>, and <128,25>.The chosen ASCII ranges
represent different types of signs such as numbers, quotes,
letters, or special characters and in result represent well the
distribution. The histogram that is used here will have 9 bins
(due to 9 ranges).

5. Experiments

The CSIC10 benchmark dataset [38] was used for the experi-
ments. It contains several thousand HTTP protocol requests
which are organized in a form similar to the Apache Access
Log. The dataset was developed at the Information Security
Institute of CSIC (Spanish Research National Council) and
it contains the generated traffic targeted to an e-Commerce
web application. For convenience, the data was split into
anomalous, training, and normal sets. The dataset con-
tains approx. 36000 normal and 25000 anomalous requests.
The anomalous requests are not always cyberattacks. They
might refer to some anomalies (e.g., requesting unavailable
resource), but more importantly they contain a wide range
of application layer attacks, such as SQL injection, buffer
overflow, information gathering, files disclosure, CRLF injec-
tion, XSS, server side include, and parameter tampering. To
understand the results it is important to remember that the
requests targeting hidden (or unavailable) resources are also
considered anomalies. Some examples of such anomalies are
requests for configuration files, default files, or session IDs
in a URL (symptoms of an http session takeover attempt).
Moreover, the requests with an appropriate format (e.g., a
telephone number composed of letters) are also labeled as
anomalies. As authors of the dataset explained, such requests
may not have a malicious intent but nevertheless they do not
follow the normal behavior of the web application. Still, there
is no other appropriate, publicly available dataset for the web
attack detection problem where we could reliably compare
our results.

To verify our method based on information granule
extraction we checked how our solution handles different
quantities of learning data. As it is the typical case, in our
experiments we also used the 10-fold approach.

The 10-fold cross-validation, also known as rotation
estimation, is a model validation technique applied for
evaluation of a machine learning model effectiveness in
generalising themodel to anunforseen dataset.Themethod is
utilised in spotting problems like overfitting or selection bias.
It provides an overview of how the model might perform.
In general, k-fold cross-validation achieves results less biased
than other methods based on splitting the dataset into
training and testing data subsets (e.g., repeated random sub-
sampling). Cross-validation averages the results of all the

Complexity 7

Table 1: True positive rate and false positive rate for different
learning algorithms.

Algorithm True Positive Rate False Positive Rate
ICD 97,8% 8,1%
DS AdaBoost 93,7% 0,1%
RepTree 93,1% 0,3%
Random Forest 91,9% 0,7%

folds to come up with a more accurate assessment of a model
performance.

In our case, the data used in learning and evaluation
purposes is divided randomly into 10 parts (folds). One
part of the data (10% of the entire dataset) is used for
evaluation while the remaining 90% is used for training
(e.g., establishing model parameters).The whole procedure is
repeated 10 times, so each time a different part of the dataset
is used for evaluation and a different part is used for training.
The results for all 10 folds are averaged to yield an overall error
estimate.

5.1. Comparison of Different Classification Techniques. In this
experiment we have compared the effectiveness of various
machine learning methods. As it was explained earlier first
the granules are extracted and data for each granule is
encoded used histograms. These histograms are used to train
the algorithms.

It must be noticed that ICD is purely anomaly detec-
tion method and it can be trained on normal data. Other
algorithms require both normal and anomalous data. As it
is shown in Table 1 the ICD algorithm achieves the highest
anomaly detection (TPR). However, the number of false
alarms in contrast to other methods is relatively high.

5.2. Assessment of Training Dataset Size Impact of Classifica-
tion Effectiveness. For each fold we deliberately picked only a
subset of data to train the classifier. In such approach, we still
have the same number of testing samples (common baseline
for comparison) even if we have used only a fraction of the
available training data. The entire 10-fold cross validation
is repeated for different proportions of the training data,
namely, 1%, 10%, 20%, and 100%. Results are presented in
Table 2.

To obtain a better overview of the effectiveness of
our method we calculated and present the ROC curves.
The ROC curve for 300 learning samples is presented in
Figure 5, while the curve for 32400 samples is presented in
Figure 6.

6. Conclusions

In this paper we have proposed using the elegant theory
of Granular Computing (GC) as the new approach to
cybersecurity and network anomaly detection. The major
contribution and innovation of this work is the first practical

70

75

80

85

90

95

100

TP
R

[%
]

10 20 30 400
FPR [%]

With granulation Without granulation

Figure 5: ROC curves for the Chi-Square metric comparing
effectiveness of anomaly detection when granules for payload are
extracted and otherwise. The experiment was conducted for an
algorithm trained on 300 samples.

With granulation Without granulation

70

75

80

85

90

95

100
TP

R
[%

]

10 20 30 400
FPR [%]

Figure 6: ROC curves for the Chi-Square metric comparing
effectiveness of anomaly detection when granules for payload
are extracted and otherwise. The experiment conducted for an
algorithm trained on 32000 samples.

implementation of the method to extract information gran-
ules in order to detect cyberattacks. The proposed solution
is designed to work with a typical HTTP-based, request-
response web application. It can be described as an anomaly
detection tool that receives HTTP requests, analyses their
content, extracts information granules, and classifies those
either as normal or as anomalies. We conducted the set of
experiments on a standard benchmark dataset and typical
evaluation scenarios. We report promising results, which
demonstrate the efficiency of our approach and motivate
our further research in applying Granular Computing to the
cybersecurity domain (e.g., for other types of attacks in other
layers).

Data Availability

The data used to support the findings of this study are
included within the article.

8 Complexity

Table 2: True positive rate and false positive rate for different numbers of learning samples.

TP Rate [%] FP Rate [%] Data Set Size Number of samples
86,6 1.8 1% 300
95,6 5,8 10% 3000
96,9 6,8 20% 6000
97,7 8,1 100% 32400

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] “OWASP Top 10, 2013, OWASP project homepage,” 2018.
[2] M. Choraś, R. Kozik, A. Flizikowski, W. Hołubowicz, and R.

Renk, “Cyber Threats Impacting Critical Infrastructures,” in
Managing the Complexity of Critical Infrastructures, R. Setola,
V. Rosato, E. Kyriakides, and E. Rome, Eds., vol. 90, pp. 139–161,
Springer International Publishing, Cham, Switzerland, 2016.

[3] M. Choraś, R. Kozik, R. Renk, and W. Hołubowicz, “The con-
cept of applying lifelong learning paradigm to cybersecurity,”
Intelligent Computing Methodologies, pp. 663–671, 2017.

[4] D. Ariu, I. Corona, R. Tronci, and G. Giacinto, “Machine
Learning in Security Applications,” Transactions on Machine
Learning and Data Mining, vol. 8, no. 1, 2015.

[5] R. Kozik, M. Choraś, A. Flizikowski, M. Theocharidou, V.
Rosato, and E. Rome, “Advanced services for critical infrastruc-
tures protection,” Journal of Ambient Intelligence and Human-
ized Computing, vol. 6, no. 6, pp. 783–795, 2015.

[6] “SCALP, Project homepage,” http://code.google.com/p/apache-
scalp/, 2018.

[7] “PHPIDS, Project homepage,” 2018.
[8] “OWASP Stinger, Project homepage,” https://www.owasp.org/

index.php/Category:OWASPStingerProject, 2018.
[9] “SNORT, Project homepage,” http://www.snort.org/, 2018.
[10] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest, “Learning

DFA representations of HTTP for protecting web applications,”
Computer Networks, vol. 51, no. 5, pp. 1239–1255, 2007.

[11] D. Hadžiosmanović, L. Simionato, D. Bolzoni, E. Zambon, and
S. Etalle, “N-Gramagainst theMachine:On the Feasibility of the
N-GramNetwork Analysis for Binary Protocols,” in Research in
Attacks, Intrusions, and Defenses, pp. 354–373, 2012.

[12] K. Wang and S. J. Stolfo, “Anomalous payload-based network
intrusion detection,” in Recent Advances in Intrusion Detection,
vol. 3224, pp. 203–222, Springer, Berlin, Germany, 2004.

[13] D. Bolzoni, S. Etalle, P. Hartel, and E. Zambon, “POSEIDON:
A 2-tier anomaly-based network intrusion detection system,”
in Proceedings of the 4th IEEE International Workshop on
Information Assurance, IWIA 2006, pp. 144–156, UK, April
2006.

[14] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: a con-
tent anomaly detector resistant to mimicry attack,” in Recent
Advances in Intrusion Detection, vol. 4219, pp. 226–248,
Springer, Berlin, Germany, 2006.

[15] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, andW. Lee, “McPAD:
a multiple classifier system for accurate payload-based anomaly
detection,”Computer Networks, vol. 53, no. 6, pp. 864–881, 2009.

[16] K. L. Ingham and H. Inoue, “Comparing Anomaly Detection
Techniques for HTTP,” Recent Advances in Intrusion Detection,
pp. 42–62, 2007.

[17] T. Y. Lin and C. J. Liau, “Granular computing and rough sets,” in
Data Mining and Knowledge Discovery Handbook, O. Maimon
and L. Rokach, Eds., pp. 535–561, Springer, Boston, Mass, USA,
2005.

[18] L. A. Zadeh, “Toward a theory of fuzzy information granulation
and its centrality in human reasoning and fuzzy logic,” Fuzzy
Sets and Systems, vol. 90, no. 2, pp. 111–127, 1997.

[19] A. Bargiela andW. Pedrycz, “The roots of granular computing,”
in Proceedings of the IEEE International Conference on Granular
Computing, pp. 806–809, 2006.

[20] Y. Yao, “A partition model of granular computing,” Transactions
on Rough Sets I, vol. 1, pp. 232–253, 2004.

[21] Y. Y. Yao, “Granular Computing,” in Proceedings of the 4th
ChineseNational Conference on Rough Sets, vol. 31, pp. 1–5, 2004.

[22] W. Pedrycz and W. Homenda, “Building the Fundamentals of
Granular Computing: A Principle of Justifiable Granularity,”
Applied So� Computing, vol. 13, no. 10, pp. 4209–4218, 2013.

[23] C. Wagner, S. Miller, J. M. Garibaldi, D. T. Anderson, and T.
C. Havens, “From interval-valued data to general type-2 fuzzy
sets,” IEEETransactions on Fuzzy Systems, vol. 23, no. 2, pp. 248–
269, 2015.

[24] F. Gong, M.-W. Shao, and G. Qiu, “Concept granular comput-
ing systems and their approximation operators,” International
Journal of Machine Learning and Cybernetics, vol. 8, no. 2, pp.
627–640, 2017.

[25] Y. H. Qian, J. Liang, and C. Y. Dang, “Incomplete multigran-
ulation rough set,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 40, no. 2, pp. 420–431, 2010.

[26] M. I. Ali, B. Davvaz, and M. Shabir, “Some properties of
generalized rough sets,” Information Sciences, vol. 224, pp. 170–
179, 2013.

[27] B. Huang, Y. Zhuang, and H. Li, “Information granulation
and uncertainty measures in interval-valued intuitionistic
fuzzy information systems,” European Journal of Operational
Research, vol. 231, no. 1, pp. 162–170, 2013.

[28] M. Song, W. Shang, L. Wang, and W. Pedrycz, “Analysis of
spatiotemporal data relationship using information granules,”
International Journal of Machine Learning and Cybernetics, vol.
8, no. 5, pp. 1439–1446, 2017.

[29] J. Niu, C. Huang, J. Li, and M. Fan, “Parallel computing
techniques for concept-cognitive learning based on granular
computing,” International Journal of Machine Learning and
Cybernetics, vol. 9, no. 11, pp. 1785–1805, 2018.

[30] W. Sun, J. Zhang, and R. Wang, “Predicting electrical power
output by usingGranular Computing basedNeuro-Fuzzymod-
eling method,” in Proceedings of the 27th Chinese Control and
Decision Conference, CCDC 2015, pp. 2865–2870, China, May
2015.

http://code.google.com/p/apache-scalp/
http://code.google.com/p/apache-scalp/
https://www.owasp.org/index.php/Category:OWASPStingerProject
https://www.owasp.org/index.php/Category:OWASPStingerProject
http://www.snort.org/

Complexity 9

[31] K. Vimitha andM. Jayasree, “Recognizing faces from surgically
altered face images using granular approach,” in Proceedings of
the 2017 International Conference on Wireless Communications,
Signal Processing and Networking (WiSPNET), pp. 463–466,
Chennai, India, March 2017.

[32] M. Al-Shammaa and M. F. Abbod, “Granular computing
approach for the design of medical data classification systems,”
in Proceedings of the IEEE Conference on Computational Intelli-
gence in Bioinformatics andComputational Biology, CIBCB 2015,
pp. 1–7, Canada, August 2015.

[33] L. Maciel, R. Ballini, and F. Gomide, “Evolving granular ana-
lytics for interval time series forecasting,” Granular Computing,
vol. 1, no. 4, pp. 213–224, 2016.

[34] X. Li and L. Fang, “Research on economic dispatch of large
power grid based on granular computing,” in Proceedings of
the 2016 IEEE PES Asia Pacific Power and Energy Engineering
Conference, APPEEC 2016, pp. 1130–1133, China, October 2016.

[35] G. Nápoles, I. Grau, R. Falcon, R. Bello, and K. Vanhoof, “A
Granular Intrusion Detection System Using Rough Cognitive
Networks,” Recent Advances in Computational Intelligence in
Defense and Security, vol. 621, pp. 169–191, 2016.

[36] T. A.Welch, “A Technique for high-performance data compres-
sion,”
e Computer Journal, vol. 17, no. 6, pp. 8–19, 1984.

[37] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEETransactions on Information
eory, vol. 23,
no. 3, pp. 337–343, 1977.

[38] C. Torrano-Gimnez, A. Prez-Villegas, and G. Alvarez, “The
HTTP dataset CSIC 2010,” http://users.aber.ac.uk/pds7/csic-
dataset/csic2010http.html.

http://users.aber.ac.uk/pds7/csicdataset/csic2010http.html
http://users.aber.ac.uk/pds7/csicdataset/csic2010http.html

