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Biomarkers are indicators of disease occurrence and pro-
gression. They can be used to assess normal biological and
pathogenic processes or pharmacologic responses to a thera-
peutic intervention and, in some cases, may serve as potential
drug and prognostic targets. In the postgenomic era, the
omics techniques have been applied and served as high-
throughput screening for identification of potential biomark-
ers for pathogenesis of several diseases including cancers
and metabolic diseases, as well as infectious diseases. These
biomarkers would lead to the improved understanding of the
mechanism of pathogenesis and might be clinically useful
as the molecular targets for better diagnosis, prognosis, and
treatment.

In this special issue, there are six articles: two reviews
and four original research articles. The first review article
focuses on the application of proteomics in the discovery
of cancer biomarkers, while the others focus specifically on
biomarkers in nasopharyngeal carcinoma derived through
omics approaches. Two research articles focus on protein
biomarkers in cholangiocarcinoma using proteomics, one
of which attempted to search for serum diagnostic markers
and the other investigated the biomarkers for metastasis.
Finally, the other two original papers address the relationship
between gene polymorphic and miRNA biomarkers and dis-
eases. Thus, the articles in this special issue represent a broad
spectrum of experimental approaches and areas of investiga-
tion and demonstrate a wide array of molecular biomarker
research.

In “Novel Serum Biomarkers to Differentiate Cholan-
giocarcinoma from Benign Biliary Tract Diseases Using a

Proteomic Approach,” T. Janvilisri et al. identified proteins in
the serum that can potentially discriminate the patients with
cholangiocarcinoma from individuals with benign biliary
tract diseases through proteomic approach using highly strin-
gent analysis with cross-validation. They identified potential
serum molecular markers that are worth further validation
and could be useful for distinguishing between these two dis-
eases with similar appearance, leading to better therapeutic
measures.

In “Proteomics in Cancer Biomarkers Discovery: Chal-
lenges and Applications,” R. M. Sallam provided us with a
perspective review that summarizes the potential use of
proteomics approach to identify molecular targets in can-
cer research with examples of three of the most studied
cancers including lung, breast, and ovarian cancers. This
review describes the appreciation of proteomics in cancer
research, which makes us understand tumor biology better,
facilitates the development of biomarkers, and, most impor-
tantly, makes us move towards bedside applications in cancer
management.

In “Analysis of Serum MicroRNAs as Potential Biomarker
in Coronary Bifurcation Lesion,” Y. Liu et al. investigated
circulating miRNAs for coronary bifurcation lesion in order
to identify potential biomarkers. They performed miRNA
profiling using microarray to screen the serum miRNAs
profiles of patients with coronary bifurcation lesion and cor-
onary nonbifurcation lesions. The miRNAs identified in this
study may play a part in pathogenesis of coronary bifurcation
lesion and could serve as novel biomarkers for the diagnosis
and prognosis of this disease in the future.
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In “Comparative Proteomic Analysis of Human Cholan-
giocarcinoma Cell Lines: SI00A2 as a Potential Candi-
date Protein Inducer of Invasion,” K. Wasuworawong et al.
attempted to identify metastatic protein markers in cholan-
giocarcinoma through protein expression profiling of highly
invasive cell line, KKU-M213, and lowly invasive one, KKU-
100. They proposed that SI00A2 could potentially be a key
protein involved in the progression of cholangiocarcinoma
and may pose as a biomarker as well as a novel therapeutic
target for this type of cancer.

In the review “Omics-Based Identification of Biomark-
ers for Nasopharyngeal Carcinoma,” T. Janvilisri provided
an overview of the discovery of molecular biomarkers for
nasopharyngeal carcinoma through the emerging omics
technologies including genomics, miRNA-omics, transcrip-
tomics, proteomics, and metabolomics. A large number of
potential biomarkers for this disease related to various patho-
physiological states have been discussed. This review article,
thus, could be a reference point for downstream research in
the field of nasopharyngeal carcinoma biomarkers.

In “Polymorphisms in C-Reactive Protein and Glypican-5
Are Associated with Lung Cancer Risk and Gartrokine-1
Influences Cisplatin-Based Chemotherapy Response in a
Chinese Han Population,” S. Zhang et al. investigated poly-
morphic variations in seven genes including CRP, GPC5,
ACTA2, AGPHDI, SECI4L5, RBMS3, and GKNI, which have
previously been associated with lung cancer. They found the
relationship between CRP and GPC5 variants and risks for
lung cancer. Variation in GKNI has also been shown to cor-
relate to chemotherapy response in the Chinese population.

At present, the biomarker data are blooming through the
omics research. It will be a challenge to merge a vast amount
of data and acquire biological meanings to resolve a daunt-
ing conundrum of different diseases. Integrative approaches
together with further validations will be necessary. The
editorial team hopes that this special issue will be useful for
investigators in the field.
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Background and Aim. Cholangiocarcinoma (CCA) is the most frequent biliary malignancy, which poses high mortality rate due to
lack of early detection. Hence, most CCA cases are present at the advanced to late stages with local or distant metastasis at the time of
diagnosis. Currently available tumor markers including CA19-9 and CEA are inefficient and of limited usage due to low sensitivity
and specificity. Here, we attempt to identify serum tumor markers for CCA that can effectively distinguish CCA from benign biliary
tract diseases (BBTDs). Methods. Serum samples from 19 CCA patients and 17 BBTDs were separated by SDS-PAGE followed with
LC-MS/MS and were subjected to statistical analysis and cross-validation to identify proteins whose abundance was significantly
elevated or suppressed in CCA samples compared to BBTDs. Results. In addition to identifying several proteins previously known to
be differentially expressed in CCA and BBTDs, we also discovered a number of molecules that were previously not associated with
CCA. These included FAM19A5, MAGED4B, KIAA0321, RBAK, and UPE3B. Conclusions. Novel serum biomarkers to distinguish
CCA from BBTDs were identified using a proteomic approach. Further validation of these proteins has the potential to provide a

biomarker for differentiating CCA from BBTDs.

1. Introduction

Cholangiocarcinoma (CCA) is one of the highly aggressive
malignant tumors that arise from the cholangiocytes lining
biliary trees [1]. The incidence and mortality of the disease
continue to increase worldwide, and the highest incidence has
been observed in the Southeast Asia, especially in Thailand
[2, 3]. The prognosis of this malignancy is poor due to its
silent clinical characteristics, difficulties in early diagnosis,
and limited therapeutic measures. At present, radiotherapy
and chemotherapy do not significantly improve the survival
rate, while the resection of detected tumors at the early stage
offers the best curative treatment [4]. Clinical presentations of
most CCA patients include biliary tract obstruction; however,
many cases of benign biliary tract diseases (BBTDs) are also

presented with similar clinical symptoms [5]. Differences
in the treatment and prognosis between CCA and BBTDs
urge us a need to identify accurate tumor biomarkers that
can differentially diagnose the CCA from BBTDs. As CCA
typically grows along the bile duct without protruding out-
ward as a forming mass, therefore current imaging techniques
including ultrasound, computed tomography (CT), and mag-
netic resonance imaging (MRI) are not efficient to reveal
this lesion [6]. Laboratory assessments for CCA are often
not sensitive, nor specific enough. Distinguishing between
benign and malignant causes of biliary tract obstruction
based on biopsies is rather difficult and usually inadequate
to provide an accurate measure. Currently, determination
of the serum marker carbohydrate antigen 19-9 (CA19-9)
concentration is routinely applied in most laboratories for
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CCA detection. However, a wide range of sensitivity (50—
90%) and specificity (54-98%) of this biomarker for CAA
has been reported [7-9], and the elevated serum CA19-9 has
also been observed in patients with BBTDs [10, 11]; therefore,
the use of CA19-9 for differentiating CCA and BBTDs is not
reliable. Other serum markers including carcinoembryogenic
antigen (CEA) and cancer antigen 125 (CA125) have also been
used for detecting CCA, but these markers are not satisfactory
for CCA detection due to low specificity and sensitivity
for screening [12-14]. Hence, identification of new tumor
markers in the serum would be beneficial in the clinical
management of this disease.

In recent years, quantitative proteomics has gained con-
siderable attention and investment in order to identify diag-
nostic biomarkers for several diseases, including a variety of
cancers [15]. In the present study, the proteome of serum
samples from CCA patients were quantitatively compared
with that of patients with BBTDs, who have shared many
molecular and imaging features with CCA. A large-scale
quantitative global protein profiling of serum coupled with
bioinformatic analyses would identify a proteomic signature
for effectively differentiating CCA from BBTDs. Patterns of
differentially serum protein expression between CCA and
BBTD patients were exploited for development of diagnostic
or prognostic tool for this type of cancer.

2. Methods

2.1. Serum Samples. Serum samples were collected from
obstructive jaundice patients who underwent endoscopic
retrograde cholangiography (ERCP) or biliary tract surgery at
Rajavithi Hospital. The use of human materials was approved
by the research ethics committee of Rajavithi Hospital.
Seventeen patients with BBTDs and 19 CCA patients were
enrolled in this study. The diagnosis of CCA was carried
out using one of the following criteria: (i) tissue biopsy; (ii)
cytology plus radiological (CT scan or MRI) and clinical
observation to identify tumor progression at a follow-up of
at least two months. Serum samples from these patients were
separated by centrifugation and stored at —80°C within 1h.
The biochemical determinations of serum markers, including
CEA and CA19-9, were performed using routine automated
methods in the Pathological Laboratory at Rajavithi Hospital.

2.2. Sample Preparation, Electrophoresis, and Trypsin Diges-
tion. Samples were treated with protease inhibitor cocktail
and protein extraction from serum was carried out in lysis
buffer containing 8 M urea and 10 mM dithiothreitol (DTT).
Protein concentration was determined using Bradford pro-
tein assay with bovine serum albumin as a standard. Fifty
micrograms of total serum proteins were resolved on 12.5%
SDS-PAGE. The gel was then fixed for 30 min in a fixing
solution containing 50% methanol, 12% acetic acid, and
0.05% formaldehyde, washed twice for 20 min in 35% ethanol,
and then sensitized in 0.02% (w/v) sodium thiosulfate for
2min with mild agitation. After washing twice for 5min
each with deionized water, the gel was then stained with
0.2% (w/v) silver nitrate for 20 min and washed twice prior
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to the detection in a developing solution (6% (w/v) sodium
carbonate, 0.02% (w/v) sodium thiosulfate and 0.05% for-
malin). The staining was stopped by incubation in 1.5% Na,
EDTA solution for 20 min. Finally, the stained gel was washed
three times for 5min each with deionized water. The gel
was scanned using a GS-710 scanner (Bio-Rad, Benicia, CA)
before being stored in 0.1% acetic acid until in-gel tryptic
digestion.

The gel lanes were divided into 5 fractions accord-
ing to the standard protein markers and then subdivided
into 15 ranges. Each gel range was chopped into pieces
(1mm’/piece), which were dehydrated in 100% acetonitrile
(ACN) for 5 min with agitation and dried at room temper-
ature for 15min. Subsequently, the cysteine residues were
blocked with 10mM DTT in 10 mM NH,HCO; for 1h at
room temperature and alkylated with 100 mM iodoacetamide
in 10mM NH,HCO; for 1h at room temperature in the
dark. The gel pieces were dehydrated twice in 100% ACN
for 5min and then were incubated with 0.20 ug trypsin in
50% ACN/10 mM NH,HCO; for 20 min. Purified peptide
fractions were dried and reconstituted in 2% ACN and 0.1%
formic acid for subsequent LC-MS/MS.

2.3. Liquid Chromatography-Tandem Mass Spectrometry
(LC/MS-MS). The LC-MS/MS analysis was carried out using
a Waters nanoACQUITY ultra performance liquid chroma-
tography coupled with a SYNAPT HDMS mass spectrometer.
A 5-uL aliquot of peptide fractions was injected using a built-
in nanoACQUITY auto sampler onto a Symmetry CI8
trapping column (200 um x 180mm, 5um particle size;
Waters) at 10 uL/min flow rate for on-line desalting and
then separated on a C-18 RP nano-BEH column (75 ym id x
200 mm, 1.7 um particle size, Waters) and eluted in a 30 min
gradient of 2% to 40% ACN in 0.1% formic acid (FA) at
350 nL/min, followed by a 10-min ramping to 80% ACN-
0.1% FA and a 5-min holding at 80% ACN-0.1% FA. The
column was reequilibrated with 2% ACN-0.1% FA for 20 min
prior to the next run. The MS nanoion source contained a
10-um analyte emitter (New Objective, Woburn, MA) and
an additional 20-um reference sprayer through which a
solution of 200 fmol/uL Glu Fibrinopeptide B (Glufib) in
25% ACN-0.1% FA was constantly infused at 200 nL/min
for external lock mass correction at 30s intervals. For all
measurements, the MS instrument was operated in V mode
(at 10,000 resolution) with positive nanoES ion mode.
The instrument was tuned and calibrated by infusion of
200-fmol/pL Glufib and set up for a spray voltage at 2.7kV
and sample cone voltage at 45eV. The spectral acquisition
time was 0.6sec. In MS expression mode, low energy of
trap was set at a constant collision energy of 6 V. In elevated
energy of MS expression mode, the collision energy of trap
was ramped from 15 to 40 V during each 0.6-s data collection
cycle with one complete cycle of low and elevated energy.
In transfer collision energy control, 4V and 7V were set
for low and high energy, respectively. The quadrupole mass
analyzer was adjusted such that ions from m/z 200 to 1990
were efficiently transmitted.
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TaBLE 1: Clinical characteristics of patients with benign biliary tract
diseases (BBTDs) and cholangiocarcinoma (CCA) in this study.

Characteristics BBTDs CCA P values
Number of patients 17 19 —
Sex
(Male : female) 10:7 10:9 0.085
Age (years)
Mean + S.D. 52.6 +13 60.9 +13 0.285
CEA (U/mL)
Median 8.70 9.87
0.711
(Min-max) (0.62-118.30) (1.47-410.40)
CA19-9 (ng/mL)
Median 48.03 4355.50
0.015
(Min-max) (0.60-10000) (0.60-10000)

2.4. Data Processing, Protein Identification, and Data Analysis.
Continuum LC-MS data were processed using ProteinLynx
Global Server version 2.4 (Waters) for ion detection, clus-
tering, and mass correction. Protein identification was per-
formed with the embedded ion accounting algorithm against
NCBI human protein database with the minimum cutoffs of
two peptides/proteins. The relative quantitation ratios were
log,-transformed, processed with median normalization for
each sample and rank normalization across the data set. The
data were subjected to a 6-fold cross-validation. A differen-
tially expressed (DE) protein was defined as having a P value
of <0.01, based on t-distribution with Welch approximation,
in all data sets in the fold validation. The visualization and
statistical analyses were performed using the MultiExperi-
ment Viewer (MeV) in the TM4 suite software [16]. Other
information including protein categorization and biological
function was analyzed according to protein analysis through
evolutionary relationships (Panther) protein classification
[17]. Known and predicted functional interaction networks of
identified proteins were derived from the STRING database
version 9.1 [18].

2.5. Statistical Analysis. Comparisons between the quan-
titative variables were performed using either the Mann-
Whitney U or Student’s ¢-test, where appropriate. Qualitative
variables were reported as counts, and comparisons between
independent groups were performed using Pearson Chi-
squared tests. P values of less than 0.05 were considered
significant.

3. Results

3.1. Patient Characteristics. A total of 36 subjects were
included in this serum proteome study, of which 17 were
diagnosed as having BBTDs and 19 were diagnosed as having
CCA. The BBTD cases included intrahepatic duct stones,
common bile duct stones, and benign bile duct strictures. The
CCA cases included perihilar cholangiocarcinoma, intrahep-
atic cholangiocarcinoma, and middle and distal common bile
duct cancer. The clinical characteristics of the patients in this
study are shown in Table 1. No statistically significant differ-
ences were found among the data of the BBTD patients and

[ [

Serum from Serum from
patients with benign patients with
biliary tract disease cholangiocarcinoma
n=17) (n=19)
| |
|
| |
,/ (((: ’/,’ "f ¢ f’ . 12.5%
EEEEEEEEES SDS-PAGE
ELISA measurement I
of routine diagnostic Ry
markers including )
CEA and CA19-9 Trypsin digestion

LC-MS/MS -analysis

Protein identification
and quantification

|

‘ Statistical analysis ‘

|

K-fold
cross-validation

FIGURE 1: Schematic diagram of the experimental workflow. Serum
samples were collected from 17 BBTD patients and 19 CCA patients,
which were then subjected to routine ELISA for CEA and CA19-9.
Purified proteins from these samples were then separated by SDS-
PAGE. After migration, entire lanes were divided into 5 sections,
which were excised into slices and treated with in-gel digestion.
The resulting tryptic peptides were subjected to reverse-phase LC-
MS/MS, from which the mass spectrometric results were then
analyzed for protein identification and quantification. The relative
quantitation ratios were subjected to statistical analyses and 6-fold
cross-validation to retrieve the DE proteins between BBTDs and
CCA.

those with CCA regarding gender, age, and CEA. Although
the level of CA19-9 in the serum of patients with CCA was
significantly higher when compared to the control patients,

the range of detection in both groups was exactly the same
(0.60-10000).

3.2. Serum Proteome Profiling. An overview of the experi-
mental strategy conducted in this study is shown in Figure 1.
The proteome of serum samples from CCA patients was
compared with the serum proteome of the BBTD controls in
order to identify the proteins in serum, in particular those
that are secreted or leaked from tissues including potential
differential protein biomarkers from tumor cells. A total of
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TaBLE 2: A list of differentially expressed serum proteins between CCA and BBTDs. The protein expression measurements were averaged
and represented as log,-transformed intensity values with standard deviation. The P values are also indicated.

Protein names ID details GI accession CCA BBTD P values
mean + SD mean + SD

CCA > BBTD
ABHDII Alpha/beta hydrolase domain-containing protein 11 23200008 120 £ 0.4 0.82+0.3 0.002
- irgl';;(zﬂdlzed LDL immunoglobulin light chain variable 62868476 0.88 4 03 0.55 + 0.3 0.004

Chain L, crystal structure of the Fab fragment of
— nimotuzumab. An antiepidermal growth factor 255311843 1.93+£0.2 1.72+0.3 0.010
receptor antibody

— Complement factor H 758073 -0.86+0.3 -1.51+0.5 0.001
COG7 Conserved oligomeric Golgi complex subunit 7 23957690 -0.50+ 0.4 -1.23+0.5 <0.001
DHDDS Dehydrodolichyl diphosphate synthase 13177736 014 £ 0.6 -0.61+0.5 0.005
MLHI1 DNA mismatch repair protein 4557757 -0.49 £ 0.5 -1.00 £ 0.5 0.004
EIF3] Eukaryotic translation initiation factor 3 subunit J 83281438 240+ 0.4 1.95+0.4 0.002
FAMI9A5 FAMI9AS5 protein 71052198 0.98+0.3 —-0.69 £ 0.7 <0.001
HBZ Hemoglobin subunite zeta 4885397 -0.23+0.3 -0.78 + 0.4 0.001
V4-34 IgG 2632200 054+04 0.20+0.2 0.001
— Immunoglobulin heavy chain variable region 37694587 1.46 + 0.4 0.93+0.5 0.003
IGK Immunoglobulin kappa light chain VL] region 21669309 1.98+0.3 1.68 £ 0.1 <0.001
IL16 Interleukin 16 119619506 015+0.4 -0.36 £ 0.6 0.008
KIAA0321 KIAA0321 protein 2224583 -0.25+0.8 -1.70 £ 0.9 0.002
KIAA0612 KIAAO0612 protein 34327964 -117£ 0.4 -1.76 + 0.5 0.006
KIAA0896 KIAA0896 protein 71891755 0.18 + 0.6 -0.50 £ 0.6 0.003
MAGED4B Melanoma-associated antigen D4 29337296 033+0.3 -117 £ 0.9 0.002
NXF3 Nuclear RNA export factor 3 11545757 0.59 +0.4 -029+0.5  <0.001
PAXBPI PAX3- and PAX7-binding protein 1 22035565 0.64 0.1 0.39+0.2 0.001
LOC390791 Peptidyl-prolyl cis-trans isomerase A-like 310113085 -0.50+0.3 -124 +0.4 0.002
PLEKHO?2 gzgl‘éfr“; homology domain-containing family O 33457316 —029+04  —091+04 0.0
PLEKHM?2 PLEKHM?2 protein 26251859 -0.46 £ 0.4 -1.06 £ 0.5 0.002
RBAK RB-associated KRAB zinc finger protein 13430850 0.17+0.5 -0.96+0.7  <0.001
PTPRG Receptor tyrosine phosphatase gamma 1263069 0.90+0.3 0.54 +0.2 <0.001
RPS10 Ribosomal protein S10 3088338 0.99£0.2 0.67 +0.1 <0.001
NOB1 RNA-binding protein NOB1 7661532 -0.81+£0.4 -1.26 £ 0.4 0.002
VAT1 Synaptic vesicle membrane protein VAT-1 18379349 0.57 £ 0.4 0.15+0.3 0.003
TRAC-1 T3 receptor-associating cofactor-1 1911770 0.12+0.3 -0.28+0.2  <0.001
— Unnamed protein product 10433849 1.67+£0.5 0.77+0.3 <0.001
— Unnamed protein product 21752201 0.27+0.2 -0.07 £ 0.3 0.001

CCA <BBTD
GCAT 2-Amino-3-ketobutyrate coenzyme A ligase 7657118 -1.62+0.5 -117 £ 0.3 0.002
ALB Albumin 119626083 1.05+0.3 145+ 0.3 <0.001
SERPINA1 Alpha-l-antitrypsin 1703025 0.84+0.4 1.24+0.3 <0.001
A2M Alpha-2-macroglobulin 177872 -0.04+ 0.4 0.52+0.3 <0.001
AGT Angiotensinogen 4261988 0.09 + 0.6 0.79 £0.2 <0.001
apo All Apolipoprotein 671882 0.04+0.3 0.31+0.2 0.003
APOB Apolipoprotein B-100 105990532 -1.67 £0.4 -0.86 £ 0.5 <0.001
ARID5B AT-rich interactive domain-containing protein 5B 74136549 0.08 0.5 0.71£0.7 0.006
BAZ2 BWSCR?2 associated zinc-finger protein BAZ2 6002480 -0.50 £ 0.9 0.23+0.3 0.005

Clorf87 Clorf87 protein 27503780 -0.91+0.4 -0.49+0.3 0.001
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TaBLE 2: Continued.
Protein names ID details GI accession CCA BBTD P values
mean + SD mean + SD

c¢GMP phosphodiesterase 2366987 011+0.4 0.73+0.3 <0.001
PDEA Iililsilonn?,v?rlgrliudeosome Containing A Testis-Specific 296863399 256404 2204405 0.002
C4A Complement C4-A 476007827 -0.81+0.7 -0.02+0.3 <0.001
DCAFI15 DDBI- and CUL4-associated factor 15 78486540 0.87+0.4 1.31+0.2 <0.001
FN1 Fibronectin 1 53791223 -0.98 £ 0.5 -0.29+0.4 <0.001
FLJ00044 FLJ00044 protein 10440418 -1.02+ 0.4 -0.59+0.2 0.004
FLJ16008 FLJ16008 protein, isoform CRA_b 119615716 1.79 £ 0.1 1.94 + 0.2 0.006
GNG5 i‘éﬁﬁﬁegra‘r‘fﬁ;de'binding protein G(D/G(S)/G(O) 4885287 0.94+03 12401  <0.001
hCG_1817987 hCG1817987 119612015 -0.09+£0.3 0.36 £0.3 <0.001
hCG_1981701 hCG1981701 119572460 -114 £ 0.5 -0.52+0.5 0.002
hCG_2008076 hCG2008076 119592316 0.05+0.4 0.42+0.2 0.012
hCG_2008267 hCG2008267 119592800 -0.07 £ 0.4 0.35+0.2 0.001
hCG_201157 hCG201157 119576573 0.64+0.3 0.89+0.3 0.009
hCG_2020343 hCG2020343 119629275 -0.95+0.4 -0.27+0.4 <0.001
— Hypothetical protein 12224988 -1.46 £ 0.5 -0.90 £ 0.4 <0.001
FLJ22688 Hypothetical protein FLJ22688, isoform CRA_b 119572924 -0.93+0.6 -017+£0.4 <0.001
LOC286076 Hypothetical protein LOC286076 119602615 1.19 + 0.4 1.52+ 0.2 0.003
IgAl Ig Aalphal Bur 223099 1.84 + 0.6 2.28+0.3 0.006

Immunoglobulin heavy chain variable region 37694587 148 £0.3 1.70+0.1 0.007
ITIH1 Interalpha (globulin) inhibitor H1 825681 -0.74 + 0.4 0.08 +£0.6 0.001
ITIH2 Interalpha (globulin) inhibitor H2 119606784 -1.44+0.5 -0.54+0.4  <0.001
KRT1 Keratin 1 11935049 -112+0.3 -0.56 + 0.4 <0.001
KRT10 Keratin-10 307086 -2.40+ 0.5 -1.50 £ 0.6 <0.001
KIAA0366 KIAA0366 protein 2224673 -1.45+ 0.4 -0.61+ 0.6 <0.001
KIAA0920 KIAA0920 protein 40788986 1.05+0.3 1.37 £ 0.2 <0.001
KIAAI234 KIAA1234 protein 6330736 -0.70+ 0.4 -0.38+£0.3 0.007
KIAAI1529 KIAA1529 protein 7959325 133+ 0.3 2.38+0.4 <0.001
MAGEB2 Melanoma-associated antigen B2 222418639 -0.48£0.3 -0.07 £0.4 0.001
MTDH Metadherin 119612168 -0.45+0.3 -0.09+£0.3 <0.001
MUCI16 Mucin-16 74716283 -0.49 £ 0.5 0.41+0.4 <0.001
MYOT Myotilin 5803106 -0.41+£0.5 0.30£0.3 <0.001
NPTX1 Neuronal pentraxin 1 1438954 1.51+0.3 174+ 0.2 0.010
PLG Plasminogen 38051823 1.67 +£0.3 217+ 0.4 <0.001
GALNT2 Polypeptide N-acetylgalactosaminyltransferase 2 4758412 -0.99 £ 0.3 -0.50 £0.3  <0.001
FAMS3E Protein FAMS83E 153251792 0.70 £ 0.5 1.33+0.3 0.006
LOC100131107 Putative UPF0607 protein ENSP00000383783 239741331 1.03 £0.7 2.07+£0.7 0.002
RAB-R RAB-R protein 4102709 -0.83+0.4 -0.05+0.3 0.002
UPF3B Regulator of nonsense transcripts 3B 18375528 -217 £ 0.5 -0.99+0.6  <0.001

RIMBP3 protein 71052030 0.07+0.4 0.69 £ 0.4 <0.001
RIMBP3 Suppressor of cytokine signaling 3 54695958 0.85+0.4 1.23+0.2 0.004

Testis specific kinase-1 21886788 -1.65+0.3 -1.07 £0.7 0.005
TTC34 Tetratricopeptide repeat protein 34 239741018 -0.54 + 0.5 0.34+0.3 <0.001
TPO Thyroid peroxidase 4680721 0.69 + 0.4 115+0.2 <0.001
. Ubiquitously transcribed tetratricopeptide repeat 148733192 143104 Z088405 0.001
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TABLE 2: Continued.

Protein names ID details GI accession CCA BBTD P values
mean + SD mean + SD
— Unnamed protein product 34531956 0.84+0.3 117 +0.2 <0.001
— Unnamed protein product 10435479 0.76 + 0.4 115+0.3 0.003
— Unnamed protein product 194384842 124+0.3 1.67 £0.2 <0.001
— Unnamed protein product 22760231 114+ 0.5 177+ 0.3 <0.001
— Unnamed protein product 194381130 -2.08+0.4 -1.34+0.5 <0.001
DBP Vitamin D-binding protein 455970 0.88+0.5 130 £0.3 0.007
ZNF410 Zinc finger protein 410 119601547 -0.27 £ 0.4 0.46£0.3 <0.001
ZnF_RBZ ZIS1 4191327 0.03+0.4 0.55+0.4 0.001

951 proteins were identified in all samples. Among these,
the ones with altered expression levels in the serum of CCA
patients compared to those of BBTD patients were identified.
To reduce the effect of biological and experimental variations
and the possibility of false-positive protein identification, 6-
fold cross-validations were performed. In each fold, BBTD
and CCA samples were randomly split into a training set (30
cases with 13-15 BBTD and 15-17 CCA) and an independent
validation set (6 cases with 2-4 BBTD and 2-4 CCA).
Only proteins identified and quantifiable in all folds in
cross-validation were further analyzed, allowing for stringent
and sensitive protein identification and quantification of
differential proteins.

3.3. Identification of Differentially Expressed Proteins between
CCA and BBTDs. Applying a P value cutoft of <0.01 yielded
a total of 94 candidate proteins, with 32 of them up and 62
down in observed abundance for the serum samples from
CCA patients comparing to the BBTD controls (Table 2
and Figure 2(a)). We also tested the discriminatory power
of these differentially expressed proteins using unsupervised
hierarchical clustering. As shown in Figure 2(c), the spectral
counts for these proteins resulted in near complete separation
of the CCA cases from the BBTD control cases with only
two exceptions where BBTD cases were clustered with the
CCA samples. However, the PCA scores plot based on the
normalized data of serum samples showed a clear separation
between the CCA patients and BBTD controls (Figure 2(b)).

The Panther classification system was used to identify
the functional attributes of the 94 potential CCA-selective
proteins. The analysis of the abundance of each functional
category revealed substantial differences in CCA serum
proteome compared to the BBTD serum proteome. The
number of each functional class of differentially expressed
proteins is schematically depicted in Figure 3. The analysis
revealed significant enrichment of proteins related to a
number of various biological functions such as cell adhesion
molecules, cytoskeletal proteins, defense/immunity proteins,
enzymes and the modulators, extracellular matrix proteins,
membrane traffic proteins, nucleic acid-binding proteins,
receptors, signaling molecules, structural proteins, transcrip-
tion factors, transfer/carrier proteins, and transporters. To
gain an overview of the biological interaction among the
identified proteins, we also constructed the protein-protein

functional networks using String database (Figure 4). The
protein network analysis provides us a clearer view of a
complex framework of proteins that might result in the
differences in CCA and BBTDs.

To determine the distinguishing performance of the top
five differentially expressed proteins in terms of fold-change,
the comparison of the averaged log, folds of family with
sequence similarity 19 (chemokine (C-C motif)-like), mem-
ber A5 (FAMI9A5) protein, KIAA0321 protein, melanoma-
associated antigen D4 (MAGED4B), RB-associated KRAB
zinc finger protein (RBAK), and regulator of nonsense tran-
scripts 3B (UPF3B), between CCA and BBTD cases from all
cross-validation cohorts was shown in Figure 5. However,
due to the limited resources and the lack of availability of an
independent validation set, the diagnostic relevance of such
molecules for CCA requires further investigation.

4. Discussion

CCA is the second most prevalent primary hepatobiliary
malignancy and represents about 3% of all gastrointestinal
cancers [1]. It is associated with inflammatory conditions
in the biliary system, and patients with risk factors such
as primary sclerosing cholangitis and liver fluke infestations
have a higher risk for CCA development [1-3]. The generally
late clinical presentation of CCA results in a high mortality.
At present, the most commonly studied and routinely used
serum biomarkers for detecting CCA include CEA and CA19-
9 [6]. However, they are nonspecific to CCA and can be
elevated in the setting of other gastrointestinal malignancies
or other benign conditions, such as cholangitis, cirrhosis, and
hepatolithiasis [7-14]. Based on the results in this study, both
CEA and CA19-9 could not also distinguish the patients with
CCA and BBTDs in our sample cohort as both appeared
to be nonspecific for either case. Hence, there is an urgent
need for new diagnostic targets. In this study, we evaluated
the differential proteome in the serum between the BBTD
controls and CCA patients and identified potential biomarker
panels to aid in the diagnosis of these common liver diseases.

Total proteins were retrieved from the whole serum
without the depletion of high abundant proteins due to
the fact that additional steps may not help enrich the level
of low abundant proteins and may reduce reproducibility
from one sample to the others [19]. Among the identified
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proteins, we found that a number of them had previously
been described in the context of CCA, confirming the validity
of our quantitative proteomic approach. These included
overexpression of MAGED4 [20] and DNA mismatch repair
protein (MLHI) [21, 22], downregulation of albumin (ALB)
[20], apolipoprotein B (APOB) [20], apolipoprotein A-II
(APOA?2) [20], and interalpha (globulin) inhibitor HI (ITTH1)
[20, 23]. Expression of serum alpha 1-macroglobulin (A2M)
was found to be significantly higher in BBTD compared to
CCA patients. Consistently, it has also been reported that
the serum A2M increased in patients with liver malignancies
including CCA but markedly elevated in hepatic cirrhosis
[24]. Fibronectin 1 (FN1) in serum of CCA patients seemed
to be lower than that of BBTD patients. Biliary FN1 has
been reported as a differential biomarker of benign and
malignant diseases [25]. Similarly, serum plasminogen (PLG)
of CCA cases was significantly lower than that of BBTD
controls. PLG in malignant livers including CCA has been
demonstrated to be lower than that of the cirrhosis patients
[26]. Other serum proteins were also found differentially
expressed between CCA and BBTD including angiotensino-
gen (AGT), ADAM metallopeptidase with thrombospondin
type 1 motif 3 (ADAMTS3), hemoglobin, zeta (HBZ), keratin-
1 (KRT1), keratin-10 (KRT10), and serpin peptidase inhibitor,

clade A (alpha-1 antiproteinase, antitrypsin), and member
1 (SERPINALI). However, the validation of these identified
proteins is needed in order to determine if they can be
clinically useful as differential biomarkers for CCA and
BBTD.

The top five proteins which exhibited the maximal fold
change between CCA and BBTD consisted of FAMI9AS5,
MAGED4B, KIAA0321, RBAK, and UPF3B. FAMI9A5
belongs to the TAFA family of small secreted proteins, which
are brain-specific and distantly related to MIP-1 alpha, a
member of the CC-chemokine family [27]. This family of
proteins has been postulated to function as brain-specific
chemokines or neurokines that act as regulators of immune
and nervous cells, although the association of this protein and
CCA pathogenesis has yet to be evaluated. For MAGED4B,
its overexpression has been linked to malignant tumors and
poor patient outcome in many types of cancer including
breast [28], oral squamous cell carcinoma [29], and hepato-
cellular carcinoma [30]. However, there are no data available
on the expression and the diagnostic or prognostic relevance
of MAGED4B in CCA and BBTDs. KIAA0321 is a zinc finger
FYVE domain-containing protein, which mediates binding
of these proteins to membrane lipids and may be involved in
the abscission step of cytokinesis. However, the relevance of
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this protein and cancer development is yet to be elucidated
[31]. RBAK is a member of a known family of transcriptional
repressors that contain zinc fingers of the Kruppel type,
which interacts with the tumor suppressor retinoblastoma
1. It has been shown that RBAK is expressed ectopically in
human fibroblast cells [32]. Since fibroblasts in the stroma
of desmoplastic cancers provide optimal microenvironment
for CCA progression and they usually become susceptible
for apoptosis [33], it would therefore be possible that over-
expression of serum RBAK in CCA patients may be from
apoptogenic cancer-associated fibroblasts. UPF3B has been
reported to be overexpressed in the patients with alcoholic

hepatitis [34], but there is currently no link on UPF3B and
cancer yet.

In conclusion we identified proteins in the serum that
can potentially discriminate patients with CCA from BBTD
individuals through proteomic approach using highly strin-
gent analysis with cross-validation. These proteins will be
clinically useful to prevent misdiagnosis between CCA and
BBTD as they have similar clinical symptoms. Further inde-
pendent validation of these biomarkers is certainly required
using greater numbers of samples from patients with CCA
and a wider range of BBTD conditions to test its robustness
and obtain the ones with the greatest diagnostic power for
differentiating patients with CCA from BBTD controls.
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Nasopharyngeal carcinoma (NPC) is a head and neck cancer that is highly found in distinct geographic areas, such as Southeast Asia.
The management of NPC remains burdensome as the prognosis is poor due to the late presentation of the disease and the complex
nature of NPC pathogenesis. Therefore, it is necessary to find effective molecular markers for early detection and therapeutic
measure of NPC. In this paper, the discovery of molecular biomarker for NPC through the emerging omics technologies including
genomics, miRNA-omics, transcriptomics, proteomics, and metabolomics will be extensively reviewed. These markers have been
shown to play roles in various cellular pathways in NPC progression. The knowledge on their function will help us understand in
more detail the complexity in tumor biology, leading to the better strategies for early detection, outcome prediction, detection of

disease recurrence, and therapeutic approach.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a cancer of the head
and neck region that arises from the squamous epithelial cells
covering the surface of nasopharynx, the uppermost part of
the pharynx extending from the base of the skull to the upper
surface of the soft plate [1]. The incidence of NPC varies
greatly on the basis of ethnic and geographical backgrounds.
While NPC is a rare malignancy in most parts of the world, it
is one of the most common cancers in the East and Southeast
Asia including China, Hong Kong, Taiwan, Singapore,
Malaysia, and Thailand [2]. The annual incidence of NPC in
the United States is about 5 per 100,000. The annual incidence
of the NPC in the southern part of China including Taiwan
is more than 10 per 100,000 and is up to 30 per 100,000 in
Hong Kong. The annual incidence of the NPC in Southeast
Asia such as Malaysia and Thailand is ~20 per 100,000
and ~7 per 100,000, respectively [2]. The etiological factors
for NPC include the Epstein-Barr virus (EBV) infection,
ethnics, genetic susceptibility, environmental factors, and
consumption of food with volatile nitrosamines [3, 4].

NPC can be diagnosed and staged by a biopsy of the
tissue mass, together with positron emission tomography
(PET) and computed tomography (CT). However, most of

NPC patients tend to present at a more advanced stage of
the disease because the primary anatomical site of tumor
growth is located in the silent painless area. Moreover, NPC
in advanced stages exhibits higher metastatic potential than
other head and neck squamous cell carcinomas [5]. On the
basis of local anatomic constraints of NPC and its tendency to
present with cervical lymph node metastasis, surgery has no
role for definitive therapy. At present, radiotherapy represents
the standard treatment for NPC. The disease tends to be
more sensitive to radiation than other cancers, but the success
depends mostly on the tumors stages, which tend to be in the
advanced stages at the point of diagnosis. The 5-year survival
rate of stages I and II NPC ranges from 72 to 90%. However,
the 5-year survival rates of stages III and IV NPC are ~55%
and 30%, respectively, due to a relatively high incidence of
locoregional recurrence or metastasis [6]. In case of advanced
tumors, both regional-control and distant metastatic tumors,
the patients are usually treated with systemic therapy. Con-
current chemotherapy is generally accepted to have a role in
management of locally advanced disease. The combination
chemotherapy has been used with concurrent cisplatin and
radiation followed by adjuvant cisplatin and 5-fluorouracil
(7, 8].
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FIGURE 1: A network map of molecular biomarkers for nasopharyngeal carcinoma identified through omics technologies. Detailed

information is described in the text.

NPC patients mostly appear in advanced stages of the
disease and have a poor prognosis because of late presentation
of lesions, limited knowledge of molecular pathogenesis, lack
of reliable and robust biomarkers for early detection, and
poor response to available therapies [9]. One of the reasons
for the lack of effective molecular markers is that NPC is a
highly complex multifactorial disease caused by an interac-
tion of host genetics with the macro- and microenvironment
that is influenced by EBV chronic infection and other envi-
ronmental factors, in a multistep process of tumorigenesis
[10]. In-depth understanding of the molecular alterations in
and across the cellular pathways involved in NPC carcino-
genesis can certainly facilitate the integration of diagnosis,
anticancer drug discovery, and therapy for NPC. In the
postgenomics era, an exponential growth of our knowledge
on the disease etiology, carcinogenesis, and progression has

been gained through an adoption of high-throughput tech-
nologies including genomics, transcriptomics, proteomics,
metabolomics, and bioinformatics together with integration
and application of systems biology. An increasing mass of
these omics data has leads us to identify potential molecular
targets for diagnosis, prognosis, and therapeutic treatment.
The scope of this review is to shed light on the current findings
of NPC biomarker discovery through the omics approaches.
An overview of NPC biomarkers identified through omics
approaches described herein is illustrated in Figure 1 using
GeneMania (http://www.genemania.org/).

2. Genomics

Biomarkers at the genomic level can be retrieved by compar-
ative genomic hybridization (CGH), exome sequencing, and
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whole genome sequencing. These biomarkers can identify
genomic alterations including single-nucleotide polymor-
phisms (SNPs), copy number variations (CNVs), and other
structural variations in the genome and may have functional
significance in the pathophysiology of a defined phenotype.
As genomic instability including amplification of oncogenes
and/or deletion of tumor suppressor genes, together with
dysfunction of the gene by point mutations, can be an early
event marker in carcinogenesis of NPC, and there are several
CGH studies to analyze the gain and the loss of genetic
materials in the genome. Chen and colleagues [11] performed
CGH on a total of 51 NPC cases including 25 primary and 26
recurrent tumors. They reported the chromosomal hotspots
for copy number gains including the chromosome arms 12p,
1q, 11q, 12q, and 17q and losses including 3p, 9p, 11q, 13q,
and 14q. They also showed that there was no additional
chromosomal alteration in the recurrent tumors compared
to the primary cancers. A few other studies based on CGH
approach have also been reported [12-15]. The patterns of
genomic imbalances in NPC from these CGH data appeared
to be largely consistent with those identified in banding
analysis and loss of heterozygosity studies. However, the
discrepancy between these studies exists, which may be due
to the different cohorts of samples with different clinico-
pathological backgrounds, reflecting variations in distinct
types of carcinogens to the oncogenic process. Furthermore,
the existing CGH data of 103 NPC cases were integrated
and input into evolutionary tree models, which revealed the
chromosomal loss of 3p and the gain of chromosome 12 as an
important hallmark for an early event for NPC carcinogenesis
[16].

In the past decade, microarray technology has served
as an essential tool for examination of genetic profiles of
biological samples and enables us to analyze more than ten
thousand genes at a time, which can reveal genetic abnor-
malities in cancers at a genome-wide level. The principle
of microarray is based on the complementary hybridization
between nucleotide chains such as DNA-to-RNA strands
and DNA-to-DNA strands [17]. A microarray is basically
a microscopic slide with up to hundreds of thousands of
DNA fragments, which are dotted on its surface with ~50-
150 ym diameter. The fragments are robotically printed or
synthesized in situ. Each DNA fragment has a corresponding
complementary DNA that binds to it. The genomic DNA
can be isolated from tumor and/or normal samples, which
can then be labeled with fluorophores such as cyanine-3
(Cy3; green) and cyanine-5 (Cy5; red) prior to hybridization.
These labeled DNAs are added to the slide and thousands of
hybridization reactions occur between input DNA samples
and DNA probes on the microarray slides. After microarray
laser scanning, the fluorescence values at each spot reveal the
relative levels of copy number of the corresponding region
[18]. Array-based CGH has therefore been used extensively
to detect and quantify genomic aberrations in NPC and map
onto chromosomal positions to identify relevant oncogenes
or tumor suppressor genes. Hui and coworkers [19] utilized
array-CGH to simultaneously investigate amplification of
58 oncogenes throughout the genome of 15 NPC samples
including five cell lines, two xenografts, and eight primary

tumours. The frequency of oncogenes including MYCLI,
TERC, ESR, and PIK3CA were found to be amplified in the
NPC samples. Other array-CGH experiments on different
NPC samples have also been reported and revealed similar
geographic variations in the frequencies of chromosome
aberrations [15, 20, 21].

Recently, a genome-wide analysis of chromosome copy
number was performed in the C666-1 cell line and from
15 NPC biopsies using high-density microarrays [22]. The
data are in broad agreement with the data from conventional
CGH, in which the copy loss at 3p, 9p, and 11q was observed.
It has been revealed that several tumor suppressor genes
such as CDKN2A, ZMYNDIO, RASSFI, NDRGI, TACC2,
and CACNA2D?2 are significantly enriched within genomic
regions that are frequently deleted; however, no significant
correlation is established between the presence of potential
tumor promoting genes and the genomic regions exhibiting
gain of copy number [22]. As aberrant DNA methylation
has been recognized to be associated with the transcriptional
inactivation of genes related to cancer development, the
application of microarrays has also been extended to study
genome-wide DNA methylation patterns in NPC. Zhang
and collaborators [23] investigated the methylation alter-
ations in the genome of taxol-resistant NPC cell lines. The
differential methylation profiles between the taxol-sensitive
and taxol-resistant cells have been demonstrated, where
the global hypermethylation was found in the latter case.
The hypermethylated genes, namely, DLCI, PEGIO0, and the
hypomethylated genes, namely, ABCC5, CHFR, ERBB2, and
GSTPI, were identified and confirmed as downregulated
and upregulated, respectively, in the resistant cells. Yang
and colleagues [24] also applied the microchip containing
~27k CpG loci covering more than 14,000 genes at single-
nucleotide resolution to evaluate the effect of trichostatin A,
one of the most potent HDAC inhibitors, on genome-wide
DNA methylation pattern of a NPC cell line CNE2. Their data
showed that the DNA methylation in trichostatin A-treated
cells appeared to be higher in total compared to the controls.
The hypermethylation of genes, namely DAP3, HSPBI, and
CLDN, was identified in the treated group and the results
were validated through quantitative reverse transcription
polymerase chain reaction to confirm them as downregulated
genes upon the treatment.

The discovery of variations in the DNA sequence of
tumor cells associated with clinical significance has been
hurled ahead by next-generation sequencing technologies. A
combination of whole-exome and targeted deep sequencing,
as well as SNP array analysis has been applied in order
to characterize the mutational landscape of 128 NPC cases
[25]. The results revealed multiple recurrent copy number
variations with the most frequent deletion region covering
the gene CDKN2A on 9p21. The loss of this chromosomal
region has also been identified in the conventional CGH
[11-15], providing further support for this NPC hotspot.
Differential copy numbers in the genes, namely, CCNDI,
AKT2, MYC, and TP53, have also been observed. Interro-
gating pathway analyses also highlighted the dysregulation
of cellular pathways involving in chromatin modification
and ERBB-PI3K signaling pathway. Furthermore, the data



indicated that the alterations in ERBB-PI3K pathway were
linked to the more advanced stages and the survival of NPC
patients with ERBB-PI3K mutations was shorter than the
patients without such mutations [25]. Our recent work also
supported this notion, where we demonstrated the abnormal
expression of ERBB proteins and showed that the expression
of ERBB3 was associated with patient survival and could serve
as a novel and valuable predictor for prognostic evaluation of
patients with NPC [26].

3. Transcriptomics

Expression biomarkers are traditionally derived through the
measurement of a single gene or a cluster of biochemical and
histopathological molecules in a given pathway. Transcrip-
tomics or gene expression profiling offers evaluation of the
levels of gene expression of all transcripts in a given sample
at the same time. The conceptual idea of transcriptomics is
that the genes involved in a particular pathophysiology often
function in a concerted fashion and therefore the genes with
similar expression patterns may be functionally associated
and/or under similar molecular regulation [27]. Initially,
suppression subtractive hybridization has been applied on a
cohort of libraries of PCR-amplified cDNA fragments that
differ between control (normal) and experimental (cancer)
transcriptome [28]. Zhang and coworkers constructed the
human embryo nasopharynx cDNA library in order to isolate
and screen tissue-specific genes of human nasopharynx and
new tumor suppressor genes of NPC [29, 30]. Microarray-
assisted analysis of subtracted cDNA libraries constructed by
suppression subtractive hybridization has been performed to
search for differentially expressed genes and screen candi-
date molecular markers in NPC [31]. The differential tran-
scriptomes of 9 NPC cases, 3 NPC cell lines, and 10 chronic in-
flammation of nasopharyngeal mucosa tissue samples and
the result validation using real-time quantitative reverse tran-
scription polymerase chain reaction and in situ hybridization
techniques revealed that the palate, lung, and nasal epithe-
lium carcinoma (PLUNC) and Homo sapiens cell division
cycle 37 Homo sapien cell division cycle 37 homolog (Sac-
charomyces cerevisiae)-like 1 (CDC37L1) might serve as the
potential molecular biomarkers for NPC [31].
High-throughput technologies based on the well-estab-
lished DNA microarray represent the most cost-effective and
convenient means to assess the gene expression profiles.
However, a number of biological replicates or samples of the
same condition as well as additional validation through qRT-
PCR are necessary to eventually identify the biomarkers for
class prediction on an independent validation set as the true
changes in gene expression are often underestimated [32]. As
the chronic EBV infection poses as one of the causative risk
factors for NPC, the application of the microarray platform to
distinguish transcriptome of the EBV— and EBV+ NPC cells
has enabled us to gain more understanding of EBV-specific
signals for NPC tumorigenesis [33]. A set of EBV-regulated
genes has been identified, involved in cellular processes such
as cell proliferation, cell cycle control, and cell mobility [33].
Because NPC tissue is heterogeneous comprising cancer cells,
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infiltrating inflammatory cells, and nonneoplastic nasopha-
ryngeal epithelium and stroma, tissue microdissection of
NPC and normal epithelial nasopharynx has been applied to
select specific types of cells on the slides prior to being sub-
jected to the gene expression profiling analysis. Collectively,
these data point to the differential NPC genes involving in the
cell cycle, apoptosis, tumor suppressors, cell adhesion, and
motility [34-37]. The Wnt pathways, such as wingless-type
MMTYV integration site family, member 5A (WNT5A), FZD7,
casein kinase II3 (CSNK2B), -catenin (CTNNBI1), CREB-
binding protein (CREBBP), and dishevelled-associated acti-
vator of morphogenesis 2 (DAAM2), transforming growth
factor B (TGFp), and mitogen-activated protein kinase sig-
naling pathway, have been found to be induced in NPC
[35, 38]. Furthermore, among these genes, cyclin D1 has
been shown to be the prognostic biomarker for NPC patients
[37].

Microarray technology has also been used to explore
the biological functions of novel genes in NPC at different
metastatic features, clinical stages, and aggressive states.
According to the metastatic states, the comparison of global
gene expression patterns in NPC cells lines 5-8F (high
tumorigenic and metastatic) and 6-10B (low tumorigenic
and metastatic) revealed a cohort of genes involving in cell
cycle, apoptosis, metastasis, chemokine, and immunomodu-
lation, which potentially mediate their differential metastatic
characteristics. Among them, PTHLH has been suggested
to regulate the WNT pathway through the DKKI gene to
affect metastasis and the apoptosis processes of NPC [39].
However, the validation in an independent set of samples is
required to confirm this finding. Su et al. [40] identified a
number of transcription factors including ATF1 and ATF2 to
be associated with clinical stages. The potential downstream
molecules for these transcription factors include the epithelial
growth factor receptor (EGFR/ERBBI) and matrix metallo-
proteinase 2 (MMP-2). As the main pathological type of NPC
appears to be nonkeratinizing carcinoma, gene expression
profile changes have been evaluated among differentiated-
type nonkeratinizing NPC cases, which revealed possible
molecular subtypes [41]. It has been shown that the expres-
sion of cyclin D2 (CCND2) could serve as a molecular marker
for the more aggressive tumor subtype and a strong predictor
for survival time in this group of NPC patients.

The more recent RNA sequencing (RNASeq) approach
utilizes deep-sequencing technologies to identify differential
expression of an entire genome at any specific sample in
any given time point, albeit rather expensive at present
[42]. Szeto and colleagues characterized the transcriptomes
of undifferentiated EBV-positive NPC xenograft X666 and
its derived cell line C666, well-differentiated NPC cell line
HKI, and the immortalized nasopharyngeal epithelial cell
line NP460 using Solexa sequencing [43]. A total of 2,812
differentially expressed genes were identified among these
samples and together with gene enrichment analysis, the
extracellular matrix organization, beta-1 integrin cell surface
interactions, and the PI3K/AKT, ERBB, and Wnt pathways
were dysregulated in NPC [43]. In agreement with these
findings, comparison of the gene expression of tumor cells
and normal controls in recent studies also revealed that
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the Wnt, PI3K/AKT, and ERBB signalling pathways were
dysregulated [22, 25].

A large number of NPC gene expression profiles have
emerged in public databases. It is challenging to integrate
these data from several datasets to yield maximal informa-
tion. Researchers have employed meta-analysis of transcrip-
tomic data by integrating them from multiple studies to suc-
cessfully identify new prognostic and diagnostic markers for
cancer and other diseases [44]. It involves a systematic search
for proper datasets and data retrieval, filtering, reprocessing,
integration, and analysis [45]. However, the common prob-
lems in meta-analysis exist and are challenging. Identification
of proper studies for meta-analysis is a time-consuming
process as experimental information is often stored in a
free-text format. The completeness and correctness of infor-
mation largely depend on the thoroughness of the authors,
and this issue constitutes a major challenge for microar-
ray meta-analysis. Recently, there are a few published works
on the meta-analyses of nasopharyngeal carcinoma using
microarrays. Chen and collaborators combined the bioinfor-
matics with evidence from biological experiments as a new
way to gain more insights into the molecular mechanism
of EBV-regulated neoplastic transformation [46]. By using
a meta-analysis approach, they separated the sample into
2 metasets. The meta-A set was meta-analyzed to identify
gene commonly activated or deactivated on EBV infection/
reactivation in NPC (EBV reactivation in NPC versus EBV+/
EBV—NPC). The meta-B set was meta-analyzed to obtain
differentially expressed genes that are common in NPC and
primary effusion lymphoma or PEL (EBV+/EBV—NPC ver-
sus EBV+/EBV—PEL). The meta-A and meta-B analyses
revealed 23 and 45 differentially expressed genes, respectively.
Then they integrated meta-A, meta-B, and related tran-
scription factors into an interaction network using acquired
information. A network of 23 meta-A genes in EBV-infected
cells linked by some related transcription factors, of which
the main nodes involve transcription factors JUN, CD9 and
HOXAO9. The 45 genes of meta-B network are connected by
few related transcription factors CDKNIA, NFKBI, and MYC.
The genes in meta-A and meta-B sets have been mapped
into connected regulatory networks. There are 3 common
genes between 2 sets including DEK, ITGA6, and DUSP1
[46]. Moreover, the regulatory network of genes involved in
the EBV-dependent NPC reveals that NPC transformation
depends timely on the regulation of DEK, CDK inhibitor,
p53, RB, and several transcriptional cascades, which are
interrelated by E2F, AP-1, NK-«B, and STAT3 among others
during latent and lytic cycles [46]. The meta-analysis of EBV-
related tumor data may lead to further understanding of the
EBV-related neoplastic transformation.

4. MicroRNA Omics

MicroRNAs (miRNAs) are a family of small noncoding
nucleotide sequences which are able to complementarily bind
to and negatively regulate gene expression at the posttran-
scriptional level, leading to either mRNA degradation or
translational repression [47]. Primary miRNAs are usually

transcribed from introns or noncoding regions and are
cleaved in the nucleus by Drosha enzyme to yield hairpin
precursor miRNAs (pre-miRNAs). Pre-miRNAs are then
translocated into the cytoplasm and are subsequently cleaved
by RNase III Dicer, giving rise to miRNA. These miRNA
fragments execute their regulatory role as element of the
RNA-induced silencing complex (RISC) [48, 49]. Research
on miRNA as cancer biomarkers has gain considerable
attention as miRNAs have been shown to play a role in
fundamental cellular processes including cell proliferation
and cell death and negatively control the expression of several
cancer promoting proteins. In contrast to other types of
molecular markers, miRNAs are relatively stable in the body
and tissues, rendering them better candidates for cancer
biomarkers [50].

A recent study investigated the miRNA expression pro-
files of two poorly differentiated NPC cell lines, CNE-2 and 6-
10B, and their radioresistant sublines using next-generation
deep sequencing [51]. Together with qRT-PCR validation,
3 downregulated miRNAs including miR-324-3p, miR-93-
3p, and miR-4501, 3 upregulated miRNAs including miR-
371a-5p, miR-34c-5p, and miR-1323, and 2 novel miRNAs
have been identified to play a role in NPC radioresistance.
One of the downstream targets for miR-324-3p is WNT2B,
which has been reported to participate in the mediated
NPC radioresistance [52]. However, identification of other
downstream targets of these miRNAs needs further inves-
tigations. Furthermore, miRNA expression profiles in 312
paraffin-embedded specimens of NPC and 18 specimens of
noncancer nasopharyngitis have been assessed. A total of
41 miRNA were differentially expressed between NPC and
noncancer counterparts. The authors proposed a signature of
five miRNAs with a prognostic value in addition to the TNM
staging system [53]. In another study, differentially expressed
plasma miRNAs in NPC patients including miR-483-5p,
miR-103, and miR-29a were identified by next-generation
sequencing as potential prognostic markers for NPC [54].

5. Proteomics

Proteomics approaches have been applied to discover cancer
biomarkers. In the early days, the gel-based assay, in which
two-dimensional gel electrophoresis (2DE) is coupled with
mass spectrometry (MS), is utilized to screen the proteins
with differential abundance between samples of different
conditions of interest [55]. However, the disadvantages of
this method include the time and labor inefliciency as well
as low recovery rate of proteins. The gel-independent assay,
in which liquid chromatography (LC) is used to separate
peptides/proteins instead of 2DE and is combined with MS
for protein identification, has later gained popularity as it
offers superior protein identification and quantitation [56].
In the cell culture model, several proteomics-based molec-
ular markers have been identified in various experimental
settings. Jiang and coworkers [57, 58] reported the differential
proteomes of a poorly differentiated squamous NPC cell line,
CNE2, upon the treatment with 12-O-tetradecanoylphorbol
13-acetate (TPA), a known potent carcinogen for NPC. The



results revealed upregulation of triosephosphate isomerase
(TPI1) and 14-3-3 protein sigma (SFN) as well as downreg-
ulation of reticulocalbin 1 precursor (RCN1), nucleophos-
min (NPMI1), mitochondrial matrix protein pl precursor
(HSPD1), and stathmin (STMNI1) in CNE2 cells follow-
ing TPA treatment. Another study analyzed the proteomic
profiles of an EBV-associated NPC cell line, C666-1, and
a normal NP cell line, NP69, which showed that annexin
II and beta-2-tubulin were suppressed in NPC cells [59].
Validation with immunocytochemistry also revealed that the
downregulation of annexin II was positively correlated with
lymph node metastasis, pointing to its potential application
as a prognostic factor for NPC [59]. The proteins linked to
the radioresistant trait of the NPC cells have been identified
through proteomics in two independent studies using a
radioresistant subclone cell line (CNE2-IR) derived from
NPC cell line CNE2 [60, 61]. Feng et al. found the reduced
expression of 14-3-3¢ and the increased expression of Maspin,
GRP78, and Mn-SOD in CNE2-IR cells compared to the
control CNE2. The results were confirmed by Western blot
and immunohistochemistry, suggesting that these proteins
could serve as predicting biomarkers for patient response
to radiotherapy and their dysregulation might be involved
in the radioresistance of NPC [60]. On the other hand, Li
et al. identified 16 differentially expressed proteins including
upregulation of Nm23 HI and downregulation of annexin
A3 in the radioresistant NPC cells [61]. The different obser-
vations may arise from the fact that these two studies may
have two different radioresistant sublines of CNE2 cells.
Another study using the highly differentiated CNEI cells
and its radioresistant CNEI-IR subline demonstrated that
the elevated level of heat shock protein 27 (HSP27) might
play a role in radioresistance [62]. Moreover, differential
proteomics of the CNE-2 and its highly metastatic subclone,
S-18, and the knockdown experiment also suggested that
HSP27 plays an important role in cancer metastasis and
the corresponding downstream molecules could be NF-xB,
MMPY9, and MMPI1 [63]. Therefore, HSP27 could serve as
prognostic and therapeutic target.

Comparative proteomics has been performed to identify
differential expression proteins between the EBV—and EBV+
NPC cells [64]. Upon the EBV infection, a total of 12 proteins
were identified as being significantly upregulated and associ-
ated with (i) signal transduction including voltage-dependent
anion-selective channel protein 1 (VDACI), S100-A2, hsc-
70 interacting protein (Hip-70), ubiquitin, TPTI-like protein,
and 4F2 cell surface antigen; (ii) cytoskeleton formation
including keratin-75, tubulin beta-8 chain B, and dynein light
chain 1; (iii) metabolic pathways including l-lactate dehy-
drogenase B chain (LDH-B) and triosephosphate isomerase
(TIM); and (iv) DNA bindings including high mobility group
protein Bl (HMG-1) [64]. These proteins provide a hint on
the EBV-related mechanisms of NPC carcinogenesis and pose
as potential biomarkers for the interaction of NPC-EBV. As
cancer cells usually secrete biomolecules to enhance their
proliferation, reduce apoptosis, and invade immune system
[65], a few studies on differential secretomes for NPC have
attempted to identify the secreted proteins that might be use-
ful as cancer biomarkers and therapeutic targets. The secreted
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proteomes of two NPC cell lines including NPC-TW02 and
NPC-TWO04 cell lines were analyzed and a total of 23 proteins
retrieved in both cell lines. Validation with Western blotting
and immunohistochemistry confirmed their results, which
indicated that fibronectin, Mac-2 BP, and PAI-1 might be
potential molecular markers for NPC diagnosis [66]. Other
secretome studies [67-70] also identified a cohort of proteins
that might be useful as NPC biomarkers including chloride
intracellular channel 1 (CLICI) and C-C motif chemokine 5
(CCL5).

Several studies combined the laser capture microdis-
section of NPC tissues and proteomic analysis to identify
protein markers for NPC. RKIP, a member of the phosphat-
idylethanolamine-binding protein family, has been identified
to be a NPC metastasis suppressor and its suppression has
been associated with the aggressiveness through the activa-
tion of MAPK pathway [71, 72]. The expression of stathmin,
14-3-3, and annexin I in NPC tissues has been shown to
be correlated with differentiation and/or metastatic potential
of the NPC cells; thus the dysregulation of these proteins
might play a role in NPC development [73]. Among all
identified proteins, cathepsin D [74, 75], cytokeratin 18 [76],
L-plastin, SI00A9 [77], a stroma-associated protein periostin
[78], galectin-1[79], keratin-8, SEN, and stathmin-1[75] have
been suggested to be biomarkers for NPC differentiation,
progression, and prognosis.

As human blood holds a large reservoir of proteins and
provides a less invasive mean of analytes for diagnosis, differ-
ential serum proteomics have been performed to identify
even slight changes of certain proteins, which could poten-
tially be biomarkers for NPC. Serum amyloid A protein
(SAA) has been identified to be useful for invigilating the
recurrent NPC cases [80]. Elevated levels of blood coagula-
tion-related proteins including plasma kallikrein (KLKBI)
and thrombin-antithrombin III complex (TAT) have been
observed in NPC and could provide a diagnostic value for
NPC cases [81]. A glycoprotein component of fibrinogen FGA
in the serum has also been associated with NPC [82]. Apart
from the individual protein markers, the MS signatures of
the serum proteome in normal controls and NPC patients
at different stages [83-85] and NPC with different levels of
radiosensitivity [86] have been shown to be distinct.

It has been shown that the ERBB signaling pathway is
dysregulated in NPC [25, 26]. This pathway is known to be
tightly regulated by phosphorylation and dephosphorylation.
Ruan and collaborators [87] have attempted to identify the
downstream proteins, which are affected by stimulation of
epithelial growth factor (EGF), by evaluating the phospho-
proteome of CNE2 cells. A total of 33 proteins were identified
in CNE2 upon the treatment with EGE. Among the identified
proteins, glutathione S-transferase P1 has been validated
using Western immunoblotting and knockdown experiments
and has been linked to drug resistant trait in NPC cells
[87]. Mitochondrial proteomes of the NPC cell lines 5-8F
and 6-10B have been compared in order to find a clue for
molecular mechanism of NPC metastasis and biomarkers
related to metastasis [88]. A total of 16 mitochondrial proteins
including PRDX3 and SOD2 were identified and serve as
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potential biomarkers for NPC. As these proteins are involved
in the cellular response to reactive oxygen species, their
abnormal function would play a role in oxidative stress, which
could in turn mediate NPC metastasis [88].

6. Metabolomics

Metabolomics is considered to be a relatively new field of
omics that simultaneously monitors many hundreds and
thousands of small molecule metabolites from biofluids and
tissue samples [89]. In any given conditions, a concerted
function of metabolic processes occurs within a cell, which is
readily changing in different physiological conditions. Hence,
metabolomics represents a biochemical footprint of a phys-
iological state of a cell. Metabolic profiles can be measured
using nuclear magnetic resonance (NMR) spectroscopy and
MS-based assays coupled with gas chromatography (GC-
MS) or liquid chromatography (LC-MS) [90]. Differential
metabolomes between case and control samples will lead to
a cohort of molecules that has potential for early diagnosis,
therapy, and understanding of the pathogenesis of many
diseases. The metabolomics for NPC is still in its infancy.
Recently, the metabolites of sera samples from 40 normal
controls and 39 NPC patients were analyzed to find novel
metabolic biomarkers [91]. Three novel candidate biomarkers
including glucose, glutamate, and pyroglutamate were iden-
tified with the high specificity, suggesting that glycolysis and
glutamate metabolism are involved in NPC carcinogenesis.
Further validation of these molecules is warranted with larger
cohorts of patients to prove their usefulness in terms of
diagnosis. Yi et al. [92] performed a GC-MS-based metabolic
profiling of 402 serum samples from NPC patients and
normal controls. Metabolites including glucose, linoleic acid,
stearic acid, arachidonic acid, proline, b-hydroxybutyrate,
and glycerol 1-hexadecanoate were shown to have high
distinguishing power of NPC from the healthy controls.
Moreover, the metabolic signatures of the NPC patients
who received radiotherapy appeared to resemble those of
the normal controls, pointing to the possibility of applying
metabolomics in assessing therapeutic effects.

7. Concluding Remarks

The omics technology enables the high-throughput profiling
in the levels of genomics, epigenomics, transcriptomics,
proteomics, and metabolomics, which lead to the large
amount of data and together with bioinformatic tools can
retrieve novel biomarkers. Current omics research in NPC
has been reviewed, focusing on the biomarker discovery.
A large number of potential biomarkers for NPC related
to various pathophysiological states have been identified.
However, extensive validation of these molecules in a larger
cohortand in a multicenter platform is essential to verify their
usefulness as biomarkers. In the future, it will be challenging
to integrate the vast amount of multiomics data to gain
better understanding of molecular basis of this complex
malignancy.
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Cholangiocarcinoma (CCA) is a bile duct cancer, commonly found in Asia including Thailand and especially in the northeastern
region of Thailand. To identify the proteins involved in carcinogenesis and metastasis of CCA, protein expression profiles of
high-invasive KKU-M213 and low-invasive KKU-100 cell lines were compared using a comparative GeLC-MS/MS proteomics
analysis. A total of 651 differentially expressed proteins were detected of which 27 protein candidates were identified as having
functions involved in cell motility. A total of 22 proteins were significantly upregulated in KKU-M213, whereas 5 proteins were
downregulated in KKU-M213. S100A2, a calcium-binding protein in S100 protein family, is upregulated in KKU-M213. SI00A2
is implicated in metastasis development in several cancers. The protein expression level of SI00A2 was verified by Western blot
analysis. Intriguingly, high-invasive KKU-M213 cells showed higher expression of SI00A2 than KKU-100 cells, consistent with
proteomic data, suggesting that SI00A2 may be a key protein involved in the progression of CCA. However, the biological function
of S100A2 in cholangiocarcinoma remains to be elucidated. SI00A2 might be a potential biomarker as well as a novel therapeutic

target in CCA metastasis.

1. Introduction

Cholangiocarcinoma (CCA) is a malignant tumor that
originates from epithelial cells of the bile duct. CCA is
difficult to diagnose and the curative treatment remains
challenging. Due to its late clinical manifestation, morbidity
and mortality rates of CCA are high and its incidence has
been increasing over the past three decades, especially in
northeastern Thailand [1]. CCA is often associated with
metastasis which is a highly complicated process that involves
cell motility, invasion, angiogenesis, intravasation of tumor
cells into the blood stream, and finally extravasation and col-
onization of tumor cells at secondary sites [2]. The migration
and invasion properties have been a hallmark of cancer
[3] including CCA, in incrimination of disease severity. In
particular, metastasis is one of the major hindrances to

the treatment of CCA and many cancer types that cause
more than 90% of cancer-associated mortality [4]. Moreover,
CCA is resistant to radio- and chemotherapy, and surgical
resection is the only effective therapy against this type
of cancer [5-7]. Hence, understanding the mechanism of
invasion and metastasis will be important in identifying key
players involved, which may lead to development of effective
targeted therapy against this deadly disease.

Here, we compared the protein profiles of two human
CCA cell lines with different metastatic abilities, KKU-M213
and KKU-100. KKU-M213, a high-invasive cell line, origi-
nated from adenosquamous CCA with well differentiation
and KKU-100, a low-invasive cell line, was isolated from
adenocarcinoma CCA with poor differentiation [8]. Studying
the differential protein patterns of these cell lines allowed
us to identify several proteins which might be the key
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determinant of the metastatic properties of the CCA cells and
might be beneficial as a future drug target.

Proteomics analysis is currently considered to be a
powerful tool for global evaluation of protein expression,
and proteomics has been widely applied in analysis of
diseases, especially in fields of cancer research. In this study,
we employed a comparative SDS-PAGE coupled with LC-
MS/MS (GeLC-MS/MS) based proteomics approach [9] to
compare the protein expression profile of the high-invasive
KKU-M213 cell line with low-invasive KKU-100 cell line to
better understand the development and metastasis of CCA.
MS/MS spectra of obtained proteins were identified based on
NCBI human database. This technique can identify potential
candidate proteins that might be involved in the different
degrees of invasiveness displayed by the two CCA cell lines.
Differential expression at transcription and protein expres-
sion levels of a candidate protein was further confirmed by
quantitative real-time PCR and Western blot analysis.

2. Materials and Methods

2.1 Cell Culture. Human cholangiocarcinoma cell lines,
KKU-M213 and KKU-100, were kindly provided by Professor
Banchob Sripa (Khon Kaen University, Khon Kaen, Thai-
land). Cells were cultured in Ham’s F-12 nutrient mixture
medium (Invitrogen Corp., Auckland, NZ) supplemented
with 10% fetal bovine serum (FBS), 100 U/mL penicillin,
100 pg/mL streptomycin sulfate (Invitrogen Corp., Auckland,
NZ), and 15 mM HEPES (USB Corp., OH, USA). Cells were
incubated at 37°C in a humidified atmosphere with 5% CO,.

2.2. Invasion Assay. Invasion assay was determined by
Matrigel transwell in vitro invasion assay as previously
described [10] with some modification. In brief, the upper
chamber of a transwell unit (6.5 mm diameter polycarbonate
membrane with 8 ym pore size) (Corning Incorporated Life
Science, Corning, NY) was coated with 30 ug of Matrigel
(BD Biosciences, Bedford, MA). Cells (80% confluent) were
harvested using 0.25% Trypsin-EDTA (Invitrogen Corp.,
Auckland, NZ) and resuspended in serum-free media. A
200 pL aliquot of cell suspension (10° cells) was added to the
upper chamber. The lower chamber was filled with 600 uL
of media containing 1% FBS. After 12 hours of incubation
at 37°C under CO, atmosphere, noninvading cells in the
upper chamber were removed and cells that invaded the
Matrigel and had attached to the lower surface of the transwell
membrane were fixed with 25% methanol for 15min and
stained with 0.5% crystal violet. Invaded cells were counted in
5 random fields under light microscope at 10x magnification.
The reported values represent mean + SE of the results
obtained from three independent experiments.

2.3. Preparation of Cell Lysates. Cells were washed twice
with cold PBS containing 100 uM Na;VO,, trypsinized and
collected by centrifugation. Cell pellets were kept in —80°C
prior to use. The pellets were lysed in Tris-lysis buffer
(20 mM Tris-HCI, pH 7.5; 150 mM NaCl; 10 mM NaF; 1% (v/v)
Triton-X) supplemented with 1mM Na;VO,, 1mM PMSE
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and protease inhibitors (Sigma, UK) and chilled on ice for
30 min. Lysates were centrifuged at 13000 rpm for 10 min at
4°C to discard cell debris and protein concentration in the
supernatant was determined by Lowry assay [11]. The cell
lysates were stored at —20°C.

2.4. One-Dimension Gel Electrophoresis and Tryptic In-Gel
Digestion. Cell lysates (30 ug) were mixed in loading buffer
(312.5 mM Tris-Cl, pH 6.8, 50% glycerol, 10% SDS, 0.05% bro-
mophenol blue, 12.5% 2-B-mercaptoethanol) and boiled for
5min before being applied on a 12.5% SDS-polyacrylamide
gel (BioRad, Hercules, CA) using Hoefer apparatus. After
Coomassie blue staining, gel slices were excised, cut into
1mm?® cubes, and subjected to in-gel tryptic digestion. The
excised gel slices were reduced with 10mM DTT/10 mM
NH,HCO;, alkylated with 100 mM IAA/10 mM NH,HCO;,
and digested with 1ng protein per 20 ng sequencing grade
trypsin (Promega, Germany) at 37°C overnight.

2.5. Protein Identification Using LC-MS/MS. Tryptic peptides
were protonated with 0.1% formic acid before injection into
NanoAcquity system (Waters Corp., Milford, MA) equipped
with a Symmetry C,g 5 ym, 180-ym x 20-mm Trap column
and a BEHI30 C;g 1.7 ym, 100-ym x 100-mm analytical
reversed phase column (Waters Corp., Milford, MA). [Glu!]
fibrinopeptide B was used as the reference sprayer of the
NanoLockSpray source of the mass spectrometer. Analysis
of tryptic peptides was performed using a SYNAPT HDMS
mass spectrometer (Waters Corp., Manchester, UK). The
time-of-flight analyzer of the mass spectrometer was exter-
nally calibrated with [Glu'] fibrinopeptide B. The quadrupole
mass analyzer was adjusted such that ions from m/z 300 to
1,800 were efficiently transmitted. BSA, used for normaliza-
tion, was performed along with the samples.

MS intensities of individual LC-MS analysis were dif-
ferentially quantified by using DeCyder MS Differential
Analysis Software (GE Healthcare, USA). PepMatch module
was used for evaluating the average abundance ratio of each
sample peptide, allowing for automated detection of peptides
and assignment of charge states. The MS/MS data was
searched against the NCBInr database and identified by using
Mascot software (Matrix Science, London, UK). Database in-
terrogation was implemented as follows: taxonomy—homo
sapiens; database—NCBInr; enzyme—trypsin; fixed modifi-
cation—carbamidomethyl; variable modification—oxidation
of methionine residues; mass values—monoisotopic; peptide
mass tolerance—2 Da; peptide charge state—1+, 2+, and
3+. Protein accession numbers were classified according to
their biological function by PANTHER Classification system
version 8.1 (http://www.pantherdb.org/geneListAnalysis.do).

2.6. Western Blot Analysis. A total of 30 ug of protein lysates
was separated by 12% SDS-PAGE and then transferred to
PVDF membrane (Pall, Germany) by semidry electroblotting
at constant voltage (25 V) for 60 min. The membranes were
blocked with 5% BSA in 1x TBS-N for 1 hr and then incubated
with anti-S1I00A2 primary antibody (Abcam, UK) at 4°C
overnight. The blots were washed three times for 5min
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with TBS-N buffer and incubated with anti-rabbit HRP-
conjugated secondary antibody (Santa Cruz Biotechnology
Inc., Santa Cruz, CA) at room temperature for 30 min. Signals
were detected using Amersham ECL Prime Western Blotting
Detection Reagent (GE Healthcare, USA).

2.7. Quantitative Real-Time PCR. Total RNA was extracted
using illustra RNAspin Mini kit (GE Healthcare, USA)
as described by the manufacturer. 1ug of total RNA was
converted to cDNA using ImProm-II Reverse Transcription
System kit (Promega, Germany) using random hexamer
primers according to the manufacturer’s description.
The PCR reaction was performed in a final volume of 20 yL
containing 100 ng of cDNA, 300 nM of each primer, and 10 uL
FastStart Universal SYBR Master (Roche, Germany). Specific
primers were as follows: SI00A2 forward 5'-CTGGGTCTG-
TCTCTGCCACC-3', S100A2 reverse 5'-GCAGGAGTA-
CTTGTGGAAGGTAGTG-3' and B-actin forward 5'-CTC-
TTCCAGCCTTCCTTCCT-3', B-actin reverse 5’ -AGCACT-
GTGTTGGCGTACAG-3'. 'Thermal cycling conditions
were as follows: denaturing at 95°C for 10 min followed
by 40 cycles of 95°C for 15s and 60°C for 30s. Real-time
PCR was performed on Mx3000P QPCR System (Agilent
Technologies, USA). All PCR amplifications were conducted
in triplicate. The 278CT method [12] was used to calculate
the relative gene expression level.

2.8. Statistical Analysis. Statistical analysis was performed
using Student’s t-test with P < 0.05 considered to be
significant.

3. Results and Discussion

Cell invasion using the Boyden-transwell migration assay
revealed that the KKU-M213 cells displayed approximately
8-fold higher level of invasiveness than KKU-100 cells
(Figure 1). The results were consistent with previous report
[13] that KKU-M2I13 is a high-invasive cell line while KKU-
100 is a low-invasive cell line. A comparative SDS-PAGE of
protein lysates of both cell types initially indicated differences
in intensity of protein bands as shown in Figure 2. Upon
in-gel tryptic digestions coupled with LC-MS/MS (GeLC-
MS/MS) analysis of the protein lysates of high-invasive KKU-
M213 cells and low-invasive KKU-100 cells, six hundred
and fifty-one differentially expressed proteins were identified.
These proteins were classified into 8 groups of functional
proteins according to their biological processes synergized
by UniProtKB, using PANTHER classification system. These
proteins were categorized as cellular component (32%),
transcription and translation process (15%), metabolic pro-
cess (12%), signal transduction (11%), immune response
(10%), cell motility (4%), unknown (13%), and others (3%)
(Figure 3). Among these, 27 proteins were identified belong-
ing to the cell motility group. The relative expression of these
proteins was determined by reciprocal common fraction
between peptide intensities of the two cell lines. With this
approach, a total of 22 proteins were found to be significantly

10,000 1

8,000

6,000

4,000 A

2,000

Number of invading cells

KKU-M213 KKU-100

Cell lines

FIGURE 1: In vitro invasion assays of KKU-M213 and KKU-100
cells were conducted in a transwell unit coated with Matrigel. Cells
in serum-free medium were plated in the upper chamber of a
transwell unit. After 12 hours of incubation, cells invading to the
lower compartment of the transwell unit were stained and counted.
The numbers of invading cells are presented as mean + SE of results
obtained from three independent experiments, P < 0.01, compared
with KKU-100 cell line.
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FIGURE 2: Differential expression of proteins comparing between
KKU-M213 and KKU-100 cell lines. 30 yg of protein lysates was
separated in 12.5% SDS-PAGE with constant amplitude (20 mA/gel).
The gel was stained with Coomassie blue R-250 to visualize protein
bands.

upregulated in KKU-M213 (Table 1), whereas 5 proteins were
downregulated in KKU-M213 (Table 2).

As shown in Table 1, the expression of SI00A2 is notably
higher in KKU-M213 than in KKU-100. The SI00A2 protein
is a calcium-binding protein in S100 protein family and has
been implicated in the initiation and progression of human
cancers such as epithelial ovarian cancer, pancreatic cancer,
and gastric cancer [14, 15] and is associated with cancer
metastasis process [15-17]. Further verification of the protein
expression level of SI00A2 by Western blot analysis using an
antibody specific to SI00A2 confirmed that the expression of
S100A2 in KKU-M213 is obviously higher than KKU-100 cells
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TABLE 1: Overexpression of proteins in KKU-M213 compared to KKU-100.
Protein ID details Sequence Score Fold*
gi[5174661 Protein S100A2 ELPSFVGEK 22.51 1.80
¢i[18088719 Tubulin, beta ISVYYNEATGGK 60.59 1.68
gi|12667788 Myosin-9 IAQLEEQLDNETK 33.10 158
¢i|4885583 Rho-associated protein kinase 1 SVAMCEMEK 2.96 1.47
2i|66346662 Rho GTPase-activating protein 8 isoform 1 KDGDLTMWPR 20.28 1.42
gi|46249758 Ezrin IALLEEAR 49.55 1.33
gi|5174735 Tubulin beta-4B chain INVYYNEATGGK 64.96 1.29
¢i|116063573 Filamin-A isoform 1 SPFEVYVDK 36.32 1.27
gi|4502101 Annexin Al TPAQFDADELR 93.72 1.24
¢i[33469929 Pikachurin isoform 1 precursor QKIVEGMAEGGFTQIK 3.99 1.23
gi[47059046 Protocadherin-23 isoform 1 AVPPRMPAVNLGQVPPK 9.20 1.23
¢i|4501891 Alpha-actinin-1 isoform b AGTQIENIEEDFRDGLK 20.13 1.21
¢i|336020355 Mitogen-activated protein kinase 4 isoform 2 LTANETQSASSTLQK 10.91 1.21
gi|50845388 Annexin A2 isoform 1 GVDEVTIVNILTNR 79.32 1.20
gi|28372535 Tctex] domain-containing protein 3 VQQILTESLK 30.94 1.20
gil40788018 Rho GTPase-activating protein 11A isoform 2 MSSNTEKK 8.47 118
i|105990514 Filamin-B isoform 2 VLFASQEIPASPFR 40.73 115
gi[224451128 Protein eyes shut homolog isoform 1 ISDISFHYEFHLK 13.75 115
gi[122937398 Cytoplasmic dynein 2 heavy chain 1 isoform 2 AADLKDLNSR 15.59 113
gi[4503355 Dedicator of cytokinesis protein 1 KVTAKIDYGNR 3.12 110
gi|7662284 Protein-methionine sulfoxide oxidase MICAL2 AAHLASMFGHGDFPQNK 11.55 1.08
gi|7657532 Protein S100A6 LMEDLDR 36.48 1.08
*Statistical significance was determined by Student’s ¢-test (P < 0.05).
TABLE 2: Overexpression of proteins in KKU-100 compared to KKU-M213.

Protein ID details Sequence Score Fold®
gi|4504981 Galectin-1 SEVLNLGK 30.26 2.33
gi[4506091 Mitogen-activated protein kinase 6 RLDHDNIVK 9.03 1.39
i|62548860 Matrilin-2 isoform a precursor NENSAKDMK 12.44 1.21
gi|53828924 Neuropeptides B/W receptor type 1 TYSAAR 9.92 1.22
¢i|6005810 Mitogen-activated protein kinase 1 isoform 2 LGGGTYGEVFK 8.48 L12

*Statistical significance was determined by Student’s ¢-test (P < 0.05).
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FIGURE 3: Gene ontology pie-charts showed categorization of 651
identified proteins from MS/MS spectra according to their biological
processes using the PANTHER classification system.

(Figure 4(a)), in compliance with the expression profile of
proteomic analysis. Moreover, SI00A2 had higher expression
in KKU-M213 than MMNK-1, a normal cholangiocyte cell
line, since SI00A2 protein expression was not detected in
MMNK-I cells (data not shown). The expression of SI000A2
at transcription level as determined by quantitative real-
time PCR also elucidated about 850-fold higher expression
in KKU-M213 than KKU-100 (Figure 4(b)). Altogether the
expression levels of SI00A2 in correlation with the invasive-
ness of KKU-M213 cells implied that SI00A2 might be a
key protein involved in the progression of CCA. SI00A2 has
been reported to be a potential biomarker for diagnosis and
prognosis in many types of cancer [14], with overexpression
and downregulation in various types of cancer [15, 18-22].
The role of SI00A2 in promoting NSCLC metastasis [18] and
migration/invasion in hepatocellular carcinoma [23] has also
been documented. The SI00A2 expression has been shown
to be necessary for TGF-f-mediated migration/invasion [23]
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FIGURE 4: Validation of S100A2 in cholangiocarcinoma KKU-M213 and KKU-100 cell lines. (a) Western blot analysis. (b) Quantitative real-
time PCR. Data are presented as mean + SE of SI00A2 mRNA level normalized with B-actin mRNA obtained from three independent

experiments, P = 0.003, compared with KKU-100 cell line.

and was regulated by TGF-f-induced MEK/ERK signaling.
Ectopic expression of SI00A2 also elucidated that SI00A2
regulated PI3K/Akt signaling, a potent pathway involved in
epithelial-mesenchymal transition (EMT) [24]. Furthermore,
S100A2 can interact with p53 to modulate its transcriptional
activity in the calcium-dependent manner [25] while Smad3
does not need calcium ion to interact with S1I00A2 [24].
Taken together our findings of the SI00A2 differential over-
expression in KKU-M213 signified its role in invasive ability
in CCA. Recently, immunohistochemistry of resected CCA
tissues illustrated that SI00A2 expression level was correlated
with severity of CCA cancer progression and suggested it as a
potential biomarker for the diagnosis of cholangiocarcinoma
patients [26]. However, the biological function of SI00A2
toward invasiveness and progression of cholangiocarcinoma
still needs further investigations. Importantly our results
suggested that SI00A2 could be a candidate biological marker
and novel target for diagnosis of CCA metastasis.

4. Conclusions

Our study aims to compare the protein profiles of the two
CCA cell lines, KKU-M213 and KKU-100, with an attempt
to identify proteins associated with invasiveness of CCA.
SDS-PAGE coupled with LC-MS/MS (GeLC-MS/MS) is a
potential initial technique to obtain an entire protein expres-
sion profile, followed by further verification steps. With this
method, we showed a profile of proteome alterations in
the two CCA cells with different invasive ability. We have
identified 651 proteins that were found to be differentially
expressed between the two cell lines and could be categorized
into atleast 6 functional groups including cellular component
(32%), transcription and translation process (15%), metabolic

process (12%), signal transduction (11%), immune response
(10%), and cell motility (4%). In cell motility group, SI00A2,
a calcium-binding protein, which had pronouncedly 1.8-
fold higher expression in high-invasive KKU-M213 cells,
has been identified. Higher expression of SI00A2 was con-
firmed at both transcription and protein expression levels.
Our results suggested that SI00A2 could be a significant
candidate marker of CCA carcinogenesis and possibly a novel
therapeutic target in CCA metastasis. Further investigation of
the biological function of SI00A2 in CCA could be pursued
by overexpressing of SI00A2 in SI00A2-depleted cell line
and by an approach using knock-down protein expression in
S100A2-expressing cell line. Finally our observations by pro-
teomic approach provided useful insights for understanding
the mechanism involved in CCA carcinogenesis and could
have implications in improved CCA diagnosis and prognosis
capability.
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Recent evidence suggests that cell-derived circulating miRNAs may serve as the biomarkers of cardiovascular diseases. However,
no study has investigated the potential of circulating miRNAs as biomarker for coronary bifurcation lesion. In this study, we
aimed to characterize the miRNA profiles that could distinguish coronary bifurcation lesion and identify potential miRNAs as
biomarkers of coronary bifurcation lesion. We employed miRNA microarray to screen serum miRNAs profiles of patients with
coronary bifurcation lesion and coronary nonbifurcation lesions. We identified 197 miRNAs differentially expressed, including 150
miRNAs upregulated and 47 miRNAs downregulated. We chose 3 miRNAs with significant differences for further testing in 200
patients. RT-PCR analysis of serum samples confirmed that miR30d was upregulated and miR1246 was downregulated in the serum
of coronary bifurcation lesion patients compared with nonbifurcation lesion patients. Our findings suggest that these miRNAs may
have a role in the pathogenesis of coronary bifurcation lesion and may represent novel biomarkers for the diagnosis and prognosis

of coronary bifurcation lesion.

1. Introduction

Coronary artery disease (CAD) is one of the leading causes of
death worldwide. The pathogenesis of CAD remains incom-
pletely understood and both genetic and environmental
factors are involved in this complex disease [1, 2]. Coronary
bifurcation lesion is the most challenging lesion in percu-
taneous coronary interventional medicine because the rate
of restenosis and major adverse cardiac event is significantly
higher than nonbifurcation lesion [3]. MicroRNAs (miRNAs)
are key regulators of gene expression that have been widely
associated with a variety of diseases [4, 5]. Recent evidence
suggests that cell-derived circulating miRNAs may serve as
the biomarkers of cardiovascular diseases including CAD [6].
However, no study has investigated the potential of circulat-
ing miRNAs as biomarker for coronary bifurcation lesion.

In this study, we aimed to characterize the miRNA
profiles that could distinguish coronary bifurcation lesion
and identify potential miRNAs as biomarkers of coronary
bifurcation lesion.

2. Methods

2.1. Patients. In the matched case-control study, we recruited
5 patients with coronary bifurcation lesion aged 45-87 years
(average 72.4 + 16.4 years) and 5 control patients with coro-
nary nonbifurcation lesion aged 46-75 years (average 59.6 +
11.7 years). For large sample validation, we recruited 100
patients with coronary bifurcation lesion aged 45-88 years
(average 67.8+10.9 years) and 100 control patients with coro-
nary nonbifurcation lesion aged 40-84 years (average 65.5 +
10.2 years). Serum samples of all subjects were collected.

Coronary bifurcation lesion was defined as a junction of
a main vessel and a side branch (with a minimal diameter of
1.5 mm) [7]. Coronary bifurcation lesion patients and control
subjects had no other concomitant diseases, including severe
cardiomyopathy or valvular heart disease, lung disease, sig-
nificant cardiac dysfunction or liver and kidney dysfunction,
thrombotic disease or blood disease, and connective tissue
disease or malignancy or active infection such as hepatitis and
tuberculosis.
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2.2. Serum Samples. The blood was collected from each
subject into EDTA anticoagulant tube and centrifuged at
3,000 rpm for 10 min, and the supernatant was stored at
-80°C.

2.3. RNA Extraction. Total RNA was isolated using TRIzol
(Invitrogen) and miRNeasy Mini Kit (QIAGEN) according
to the manufacturer’s instructions. RNA was dissolved in
nuclease-free water by passing a few times through a pipette
tip. RNA quality and quantity were measured by using
nanodrop spectrophotometer (ND-1000, Nanodrop Tech-
nologies) and RNA integrity was determined by gel elec-
trophoresis.

2.4. RNA Labeling. RNA was labeled using miRCURY
Hy3/Hy5 Power Labeling Kit (Exiqon, Vedbaek, Denmark)
according to the manufacturer’s guideline. One microgram of
each sample was 3'-end-labeled with Hy3TM fluorescent
label, using T4 RNA ligase. The mixture was incubated for
30 min at 37°C, and the reaction was terminated by incuba-
tion for 5 min at 95°C. Then, 3.0 uL of labeling buffer, 1.5 uL of
fluorescent label (Hy3TM), 2.0 uL of DMSO, and 2.0 yL of
labeling enzyme were added into the mixture. The labeling
mixture was incubated for 1h at 16°C, and the reaction was
terminated by incubation for 15 min at 65°C.

2.5. miRNA Microarray. Hy3TM-labeled samples were
hybridized on the miRCURYTM LNA Array (v.18.0)
(Exiqon) according to the manufacturer’s manual. Following
the hybridization, the slides were achieved, washed several
times using Wash Buffer Kit (Exiqon), and finally dried by
centrifugation for 5min at 400 rpm. Then, the slides were
scanned using the Agilent Microarray Scanner (part number
G2505C).

2.6. Quantitative RT-PCR. Quantitative PCR was performed
on an ABI 7500 system (Applied Biosystems, Foster City,
CA). RNA was reverse transcribed with the TagMan miRNA
Reverse Transcription Kit (ABI) according to the manufac-
turer’s instructions. Subsequently, 2.5 ul of the product was
used for detecting miRNA expression by quantitative poly-
merase chain reaction with TagMan miRNA Assay Kits
(ABI).

2.7. Data Analysis. The intensity of green signal was calcu-
lated after background subtraction and four replicated spots
of each probe on the same slide have been averaged. We used
Median Normalization Method to obtain “Normalized Data,”
Normalized Data = (Foreground — Background)/median;
the median was 50 percent quantile of microRNA intensity
which was larger than 30 in all samples after background
correction. After normalization, the statistical significance
of differentially expressed miRNA was analyzed by t-test.
A threshold cut-oft value was set to 1 fold change which
indicates that the expression of a given miRNA is uniform
in both case and control groups. The fold change of greater
than 1 indicated upregulated miRNAs, whereas the fold
change of less than 1 indicated downregulated miRNAs.
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TABLE 1: The characteristics of the patients for microarray analysis.

Coronary
Coronary . .
. . . nonbifurcation
bifurcation lesion .
lesion
n=>5
n=>5

Age (years) 724 +16.4 59.6 +11.7
Males 4 (80%) 2 (40%)
Hypertension 4 (80%) 4 (80%)
Diabetes 0 (0%) 0 (0%)
Stroke 2 (40%) 2 (40%)
Current smoker 2 (40%) 2 (40%)
Lesion site LAD 4 (80%) 1(20%)
Lesion site LM 0(0%) 4 (80%)
Lesion site RCA 1(20%) 0 (0%)
Lesion calcification 0 (0%) 3(60%)
Needing rotablation 0 (0%) 1(20%)
Restenosis 0 (0%) 1(20%)
Thrombus 1(20%) 1(20%)
TIMI grade 0 3(60%) 2 (40%)
TIMI grade 1 2 (40%) 3 (60%)
Medina classification 111 0 (0%) 4 (80%)

Unsupervised hierarchical clustering and correlation analysis
was performed on miRNA data. Data were expressed as
mean + SD and analyzed using SPSS13.0 software. Categorical
variables were compared by x? test, and continuous variables
were compared by ¢-test. A value of P < 0.05 was considered
significant.

3. Results

3.1. The Characteristics of the Patients. To characterize the
miRNAs profiles of coronary bifurcation lesion, we recruited
5 patients with coronary bifurcation lesion and 5 patients
with coronary nonbifurcation lesion as the control. The
characteristics of these patients were listed in Table 1.

3.2. Identification of miRNAs Expression Patterns of Patients
with Coronary Bifurcation Lesion. We performed microarray
analysis to identify miRNAs expression patterns of patients
with coronary bifurcation lesion. We made a heat map to
visualize the results of the two-way hierarchical clustering of
miRNAs (Figure 1). The color scale shown at the top illus-
trated the relative expression level of a miRNA: red repre-
sented a high relative expression level while green represented
a low relative expression level [8].

Furthermore, we made a Volcano plot to illustrate miR-
NAs differentially expressed between coronary bifurcation
lesion and coronary nonbifurcation lesion (Figure 2). We
identified 197 miRNAs differentially expressed between coro-
nary bifurcation lesion and coronary nonbifurcation lesion,
including 150 miRNAs upregulated and 47 miRNAs down-
regulated (Supplemental File 1 in Supplementary Material
available online at http://dx.doi.org/10.1155/2015/351015).
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FIGURE 1: Heat map illustrating the expression patterns of upreg-
ulated and downregulated miRNAs in patients with bifurcation
lesion. Upregulated miRNAs were indicated by red while downregu-
lated miRNAs were indicated by green. The three candidate miRNA

markers miR30d, miR222, and miR1246 were underlined in red.

TaBLE 2: Confirmation of differential miRNA expression in 200

patients.
Bifurcation lesion Nonblfgrcaﬂon
(1 = 100) lesion P
(n=100)
Age (years) 678 £10.9 65.5+10.2 0.377
Males 52 56 0.55
Smoker 52 50 0.82
Hypertension 61 60 0.76
Diabetes 28 30 0.51
miR30d level 0.0258 + 0.0566 0.0017 £ 0.0006  0.000
miR222 level 0.1024 + 0.0616 0.0953 £0.0693  0.881
miR1246 level 0.0346 £+ 0.0567 0.3004 £+ 0.2469 0.000
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FIGURE 2: miRNAs differentially expressed in patients with bifur-
cation lesion and patients with nonbifurcation lesion. The volcano
plots illustrated miRNAs differentially expressed: dots in black
indicted the miRNAs that did not reach significant changes of
expression; dots in red on the left indicated the miRNAs that had
significant downregulation of expression; and dots in red on the
right indicated the miRNAs that had significant upregulation of
expression.

3.3. Confirmation of Different miRNAs in Serum of Patients
with Coronary Bifurcation Lesion. To confirm our results, we
chose three of the most differentially expressed miRNAs,
including 2 upregulated (miR30d and miR222) and one
downregulated (miR1246), which showed difference by more
than 10 times. We enrolled 100 patients with bifurcation lesion
and 100 patients with nonbifurcation lesion. As illustrated in
Table 2, there were no significant differences in the two
groups, including the age, the gender, the status of smoking,
hypertension, and diabetes.

As shown in Figure 3, RT-PCR analysis showed that
circulating serum level of miR30d was profoundly elevated in
patients with coronary bifurcation lesion compared to nonbi-
furcation lesion patients (P < 0.05). Circulating level of
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FIGURE 3: qRT-PCR analysis of several miRNAs differentially
expressed in case and control groups. Case: bifurcation lesion
patients; control: nonbifurcation lesion patients. Shown were rep-
resentative data from three independent experiments.

miR222 was modestly but not significantly increased in coro-
nary bifurcation lesion patients compared to nonbifurcation
lesion patients (P = 0.881). Moreover, serum level of
miR1246 was significantly lower in bifurcation lesion patients
than in nonbifurcation lesion patients (P < 0.05). These data
confirmed our results of microarray analysis.

4. Discussion

Coronary artery disease (CAD) is a multifactorial disease that
can be influenced by a multitude of environmental and heri-
table risk factors. CAD has serious impact on human life and
health. Coronary atherosclerosis is a main reason that causes
CAD. Atherosclerosis is a chronic and progressive pathologic
process characterized by the accumulation of lipid and
fibrous elements in the large arteries, which causes a num-
ber of cardiovascular-related diseases. The development of
atherosclerosis involves the following steps: foam cell forma-
tion, fatty streak accumulation, migration and proliferation
of vascular smooth muscle cells (VSMCs), and fibrous cap
formation. Finally, the rupture of the unstable fibrous cap
causes thrombosis that leads to unstable coronary syndromes,
myocardial infarction, and stroke.

Coronary intervention is an effective means of coronary
heart disease treatment. Coronary bifurcation is prone to
develop atherosclerotic plaque due to turbulent blood flow
and high shear stress. Treatment of coronary bifurcation
lesion represents a challenging area in interventional cardiol-
ogy but recent advances in percutaneous coronary interven-
tions (PCI) have led to the dramatic increase in the number of
patients successfully treated percutaneously. Compared with
nonbifurcation interventions, bifurcation interventions have
a lower rate of procedural success, higher procedural costs,
longer hospitalization, and a higher clinical and angiographic
restenosis. Introduction of drug-eluting stents (DES) has
resulted in a lower event rate and reduction of main vessel
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(MV) restenosis. However, side branch (SB) ostial residual
stenosis and long-term restenosis remain a problem [9].

MicroRNAs (miRNAs) are a class of short, noncod-
ing, single stranded RNA molecules, approximately 22
nucleotides in length. They negatively regulate gene expres-
sion either through inhibition of mRNA translation or by pro-
moting mRNA degradation. Emerging evidence suggests that
miRNAs are pivotal regulators of various processes including
cell proliferation, differentiation, apoptosis, survival, motility,
and morphogenesis [10]. Recently, specific miRNA expres-
sion profiles have been reported as a prognostic factor or a
predictive factor for disease progression. In particular, serum
miRNAs may be used as a biomarker in diagnosis [6]. In
pathological process, miRNAs are linked to myocardial
hypertrophy, myocardial fibrosis, heart failure, and arrhyth-
mias. A series of miRNAs are involved in pathological pro-
gression of coronary heart disease and play pivotal roles in
the development of the disease [11-13].

Hoekstra et al. investigated the potential of miRNAs as
biomarkers for CAD and reported that unstable angina
pectoris patients could be discriminated from stable patients
based on the relatively high expression levels of miR-134,
miR-198, and miR-370 in peripheral blood mononuclear cells
[14]. Therefore, we hypothesized that in CAD serum miRNA
levels could be changed and those miRNAs can be used
as the biomarkers. In this study, we performed microarray
analysis to identify 197 miRNAs differentially expressed
in the serum of patients with coronary bifurcation lesion,
including 150 miRNAs upregulated and 47 miRNAs down-
regulated. After a rigorous selection, we screened 3 miRNAs
differentially expressed, including downregulated miR1246
and upregulated miR30d and miR222. Further large sample
validation in 200 patients demonstrated a distinct serum
miRNA expression pattern in patients with coronary bifurca-
tion lesion; miR30d was upregulated and miR1246 was down-
regulated compared with nonbifurcation lesion patients.
Consistent with our results, a recent study reported that
miR30d was upregulated in diabetic cardiomyopathy [15].
Therefore, miR30d may be a promising marker and thera-
peutic target for various cardiovascular diseases. miR222 has
been shown to play an important role in the regulation of
vascular inflammation [16]. In this study, we found that
circulating level of miR222 was not significantly increased in
coronary bifurcation lesion patients compared to nonbifur-
cation lesion patients. It will be important to further confirm
the function of miR222 in coronary bifurcation lesion. Up
to now, miR1246 is mainly reported to be involved in cancer
development [17, 18]. The role of miR1246 in cardiovascular
diseases needs further studies.

5. Conclusions

This is the first study using microarray method to investigate
the association between serum miRNAs and coronary bifur-
cation lesion. Evaluation of the screened up- and downregu-
lated miRNAs according to their target mRNAs and biologi-
cal significance will give some clues for their functional role in
coronary bifurcation lesion. Our findings suggest that these
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miRNAs may have a role in the pathogenesis of coronary
bifurcation lesion and may represent novel biomarkers for the
diagnosis and prognosis of coronary bifurcation lesion.
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With the introduction of recent high-throughput technologies to various fields of science and medicine, it is becoming clear
that obtaining large amounts of data is no longer a problem in modern research laboratories. However, coherent study designs,
optimal conditions for obtaining high-quality data, and compelling interpretation, in accordance with the evidence-based systems
biology, are critical factors in ensuring the emergence of good science out of these recent technologies. This review focuses on the
proteomics field and its new perspectives on cancer research. Cornerstone publications that have tremendously helped scientists
and clinicians to better understand cancer pathogenesis; to discover novel diagnostic and/or prognostic biomarkers; and to suggest
novel therapeutic targets will be presented. The author of this review aims at presenting some of the relevant literature data that
helped as a step forward in bridging the gap between bench work results and bedside potentials. Undeniably, this review cannot

include all the work that is being produced by expert research groups all over the world.

1. Introduction

In the -omics era, the nature of high-throughput technolo-
gies, their capabilities, limitations, performance quality, and
applicability are among factors determining their significance
and influence not only in pure exploratory research, but also
in potential clinical use.

Advances to the field of genomics and related compu-
tational tools are constantly being produced and applied in
cancer-related research [1]. However, other fields are needed
to complement the limitations of the genomics approach.

Proteomics-based strategy in studying diseases is con-
sidered one of the dynamic and innovative tools that could
confirm, complement, or quite often provide more elaborate
information beyond that obtained by other high-throughput
approaches. While several genes were identified by genomics
technologies to be specifically related to cancers [2], the func-
tion of such genes and the data interpretation in the context of
functional networks require the power of proteomics. More-
over, although studies focusing on detecting the differential

expression of mRNA have been extremely informative, they
do not necessarily correlate with the functional protein
concentrations. Macromolecules, in general, and proteins, in
particular, are highly dynamic molecules. Mechanistically,
proteins can be subjected to extensive functional regulation
by various processes such as proteolytic degradation, post-
translational modification, involvement in complex struc-
tures, and compartmentalization. Proteomics is concerned
with studying the whole protein repertoire of a defined entity,
be it a biological fluid, an organelle, a cell, a tissue, an organ, a
system, or the whole organism. Therefore, in-depth studying
of proteomics profiles of various biospecimens obtained from
cancer patients are expected to increase our understanding
of tumor pathogenesis, monitoring, and the identification of
novel targets for cancer therapy. In addition, an essential goal
for applying proteomics to study cancers is to adapt its high-
throughput tools for regular use in clinical laboratories for
the purpose of diagnostic and prognostic categorization of
cancers, as well as in assessing various cancer therapeutic
regimens.
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Similar to other high-throughput technologies, pro-
teomics has been generating a vast amount of data in the
form of lists of hundreds or thousands of proteins that are
differentially expressed, whether increase or decrease, as a
cause or consequence of ongoing physiological, developmen-
tal, or pathological events. Interpretation and analysis of
such flood of information depend on building on existing
data stored in constantly updated databases. Obviously,
researchers have to be extra-cautious in designing their work
in the first place, ensuring that good analytical tracks are
being undertaken, to avoid snow ball effect and erroneous
outcomes [3]. Scientifically sound analysis of the information
flow as it represents complex networks and interactions of
intra-, inter-, and extra-cellular environments should be the
ultimate goal. Unraveling such complexity is the focus of
interest for several research groups. For instance, a mass
spectroscopy- (MS-) based draft of human proteome has
been recently reported, which incorporated huge amount of
proteomics data both from public accessed databases as well
as from several research groups’ work [4].

The complexity of proteomics technologies when applied
to cancer research increases even more due to the current
concept of cancer heterogeneity. As a matter of fact, cancer
heterogeneity and biospecimen variables are considered by
some researchers the most crucial and challenging point for
all —omics technologies at their application in cancer studies
[5].

Moreover, an integrated approach for research performed
on cancers and diseases, in general, is recommended when
designing studies with the intention of discovering dis-
ease biomarkers as argued by George Poste: “...The dismal
patchwork of fragmented research on disease-associated
biomarkers should be replaced by a coordinated ‘big science’
approach” [6]. Such study designs have to comply with
standardized and validated guidelines.

2. Mechanisms of Proteomic
Changes in Cancer

Although exact causes of most cancers are not clearly defined,
cancer is thought to result from a combination of genetic
and environmental abnormalities. Several genomic defects
have been implicated, including mutations, variation in copy
number, chromosomal anomalies, and alternative splicing.
One potential mechanism for the proteomic variation in
cancer is the ubiquitous aneuploidy, which is defined as an
imbalanced chromosomal content [7]. Aneuploid cells are
thought to be under proteotoxic stress as a result of defective
proteostasis; the latter is the state of dynamic equilibrium
in which protein synthesis and correct folding are balanced
with protein degradation. This state is a manifestation of
several machineries that cooperatively ensure proper protein
turnover while allowing for the conformational flexibility
that is critical for proteins’ biological functions. Therefore,
defective proteostasis will result in not only proteotoxic stress,
but also cellular dysfunction and subsequent pathologies
[8]. Recent findings have shed some light into the yet-not-
fully-understood mechanisms underlying the association
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between aneuploidy, proteotoxic stress, and abnormal cel-
lular proliferation and tumorigenesis [7]. However, this
association is still a matter of controversy and is lacking
straightforward relationship pattern; for instance, an extra
chromosome that results in increased gene expression and
a theoretical increased protein production is not necessarily
translated into an actual elevation of circulating protein
levels, since there is high possibility of overwhelming the
cellular protein folding apparatus, leading to chronic pro-
tein misfolding and subsequent protein degradation. It is
proposed that certain proteins, such as various kinases and
multimeric protein complexes, have increased requirements
for the cellular protein folding apparatus, and hence they are
more susceptible to misfolding than others. This and other
relevant examples are comprehensively reviewed by Donnelly
and Storchova [7]. Emerging evidence linking aneuploidy,
defective proteome, and cancer development is of obvious
significance as it provides potential for treating aneuploid
cancer cells using suitable antineoplastic agents targeting the
proteostatic machinery [9]. This will be discussed in more
details later.

Another potential mechanism for proteomics changes in
cancers is the consequence of defective protein structure and
hence function. Mutations in cancer-associated genes can
be manifested in defective protein structure. These defects
can exert their deleterious impact through changing protein
stability and causing the protein to be more susceptible for
degradation; changing the protein’s functional site residues;
or changing the affinity controlling protein-protein interac-
tions [10].

Genomic and proteomic changes in cancer could be fur-
ther followed up by the recently emerged field of “interactome
profiling” focusing on network-centered approach, that is
providing an enormous amount of data representing protein
interactions and the influence of protein structures. This is
reviewed recently by Gulati and coworkers and is beyond the
scope of the current review [11].

3. Cancer Biomarkers’ Applications:
Challenges and Recommended Solutions

3.1. Cancer Heterogeneity. The current concept of cancer
heterogeneity and biospecimen variables is considered by
some researchers as one of the most crucial and challenging
points for proteomics as well as for other -omics technologies,
at their application in cancer studies. Recently, intratu-
moral heterogeneity was examined in invasive breast cancer,
comparing biospecimens obtained by intraoperative image-
guided, core-needle biopsies to surgical biopsies taken from
the center and the periphery of cancer breast. Proteomics
techniques undertaken in that study have demonstrated
that even though most biomarkers studied did not manifest
significant intratumoral heterogeneity, protein and phospho-
protein levels were affected by biospecimen type, as well as by
other preanalytic variables, including surgical manipulation
and the duration of cold ischemia [5]. A recent approach
to circumvent the challenge of tumor heterogeneity and to
extract meaningful data from formalin-fixed tissue blocks has
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been suggested, combining matrix-assisted laser desorption
ionization (MALDI) with imaging (MALDI imaging mass
spectroscopy; MALDI-IMS). This approach is unique as it
allows proteomics-based studies to provide both patient-
specific and cancer-specific information as a means for
biomarker discovery and cancer tissue classification. It also
provides morphology-based proteomics analysis for cancer
tissue [12]. In addition, studies using MALDI-IMS analysis of
specific cancer tissues generate peptide reference datasets to
facilitate peptide identification in future studies on the same
cancer type. However, several technical challenges still exist
including low signal to noise ratio and low mass accuracy
[13]. In a recent work studying prostate cancer, Shipitsin and
coworkers have developed a biopsy simulation procedure by
tissue microarrays aiming at exaggerating prostate cancer
tissues” variation that is expected in clinical practice. Their
approach has provided a useful model for predicting cancer
aggressiveness through reliable biomarkers, regardless of
sample variation [14].

3.2. Cancer Early Detection. Detecting cancer at an early
stage, when there is a better chance for its treatment, is
a real challenge to the scientific and medical communities
as most clinical blood biomarkers assays do not have the
required sensitivity and specificity necessary for that purpose.
In an interesting approach focusing on ovarian cancer, Hori
and Gambhir have recently developed a mathematical model
looking at the estimated time at which ovarian cancer can be
detected by measuring the amount of the cancer antigen 125
(CA125) shed from the tumor during its growth. Surprisingly
and despite the reported sensitivity of the CA 125 measur-
ing assays, the authors reported that a tumor could grow
unnoticed for more than 10 years and reach a size of more
than 2.5 cm before becoming detectable. This mathematical
approach might yield similar finding in other tumor types,
and the model can be extended to virtually any solid cancer
and associated biomarkers, according to the authors’ sugges-
tions [15]. Nevertheless, a lot of debate has emerged regarding
the applicability of this approach in other types of tumor
and the sort of assumptions used in its calculation [16]. This
example illustrates a unique approach to test the applicability
of circulating biomarkers™ assays in early cancer detection,
cancer prognosis, and therapeutic response and monitoring.
Combining panels of circulating biomarkers, rather than a
single molecule, with newly developed or newly updated
technologies such as imaging procedures might be more
informative in terms of early diagnosis, accurate assessment
of the prognosis, and response to therapy in cancer patients
(16, 17].

3.3. Protocols for Developing Tumor Biomarkers. More than
a decade ago, several research groups have formulated mul-
tisteps strategies for developing tumor biomarkers. Ham-
mond and Taube’s phased approach involved the following
steps/phases: the biomarker discovery, the development of
an assay system, the performance of preliminary analysis for
the biomarker’s clinical potential, the standardization and
assessment of the biomarker’s measuring assay, and finally

the validation of that assay for clinical use [18]. Despite
the strict step-wise analytical criteria of this strategy, pre-
analytical issues were not sufficiently addressed. About the
same period of time, Pepe and colleagues suggested another
strategy that focused on the need for accurate definition of
the study’s aims and its outcomes together with strict criteria
for specimen selection, sample size calculation, and experi-
mental methods [19]. Several years later, the same group has
suggested a more rigorous study design for the development
of tumor biomarkers, emphasizing that the described design
would maintain a high research quality and improve the
possibility of obtaining a clinically promising biomarker
ready for subsequent rigorous scrutiny [20]. Common biases
that plagued the process of biomarker discovery research
were claimed to be avoided if this design, which was called
“nested case-control study design” was strictly followed. The
design included prospective collection of specimens before
outcome ascertainment from a case-control study cohort that
is relevant to the clinical application under study, and blind
assessment of the biomarker in specimens obtained from
randomly selected case and control subjects. The authors
described various aspects of their design in relation to the
clinical context, biomarker performance criteria, biomarker
test, and study size [20].

3.4. General Guidelines for a Good Study Design for Biomark-
ers’ Discovery. In order to plan a good study design for
cancer biomarkers discovery, several aspects have to be
meticulously tackled. This was reviewed in more details
elsewhere [21, 22] and is summarized in the following section.
Firstly, careful planning starting with the formulation of a
research question supported by convincing evidence for its
importance and relevance to a clinically pressing problem.
A rational choice of the most suitable analytical tests to
approach this research question is of equal significance.
The performance characteristics for such test(s), in terms of
specificity, sensitivity, and positive and negative predictive
power, should be appropriate for the experimental design and
clearly described. In addition, theverification and validation
strategies of the method(s) performed and the clear and
detailed description of the samples’ nature, collection, and
storage protocols have to be openly defined. Details of the
samples’ source, as the subjects’ age, gender, disease stage,
medications taken, and lifestyle are necessary to be high-
lighted as well. Furthermore, in cancer tissues biomarkers-
related research, the sampling procedures are of critical
importance due to their heterogeneity. Therefore, collecting
a representative sample is important in order to obtain
reliable data. Likewise, sample size calculation is a crucial
component of the study coherence and if carefully conducted
will average out sample heterogeneity. Moreover, protocols of
executing the experiments should maintain basic and critical
points, such as incorporating proper blank(s), positive and
negative control samples, and reference compound(s) within
each run for the analytical procedure. Details of the quality
performance of instrumentation and their calibration are
equally important for the procedure’s validation. Collectively,



every step in the study design and execution has to be clearly
described in sufficient details to allow for reproducing the
work and/or comparing the data.

The scientific communities have been working diligently
to standardize the procedures of proteomics-generated data
optimum utilization. Useful data repositories have been
constructed such as Panorama (https://panoramaweb.org/)
that, together with portals for proteomics assays involved in
targeting cancer-related proteins and peptides, will enable
researchers interested in specific protein or peptide to obtain
the standard operating procedures (SOPs) for those assays,
their quality assessment, and validation proofs [22].

4. Proteomics Techniques Used in
Cancer Research

Research studying protein alterations in cancer existed for
more than 70 years [23]; however it was only in the last
3 decades or so that recent proteomics technologies have
been extensively utilized in deciphering protein differential
expression in human cancers [24]. Various approaches have
been carried out, taking advantage of the recent analytical
techniques and advanced bioinformatics. In general, two
main proteomics tracks can be undertaken, the “shotgun” or
“bottom-up” methods and the targeted proteomics methods.
A recent set of “best practices” for MS-based assay devel-
opment using the concept of “fit-for-purpose” was recently
published following a workshop that was held in mid-2013 in
the United States of America’s National Institutes of Health
(NIH) with representatives from different institutes involved
in the development and/or utilization of targeted proteomics
assays [22]. The following section starts by briefly describing
basic techniques such as 2D gel electrophoresis, difference in
gel electrophoresis (DIGE), and MS, followed by introducing
more recent technologies and combined applications such as
protein microarray and combined proteomics and imaging
methods.

Polyacrylamide gel electrophoresis (PAGE) and isoelec-
tric focusing (IEF) have been the basis for the 2D PAGE
techniques resolving proteins based on their molecular mass
and isoelectric points, respectively. This approach has been
frequently applied to analyze cancer cells proteins for more
than 2 decades [25] and is still in use [26]. Further advance-
ment in this approach has been the result of introducing
fluorescent dyes and in-gel comparative proteomic analysis in
the technique of 2D-DIGE. This is usually coupled to protein
spot analysis by fluorescence gel scanners, spots’ picking, and
enzyme digestion, followed by identification by one of the
MS-based available techniques.

Advancements in MS resulted in optimal performance
in the low mass range of proteins. In-depth profiling of
plasma and other biofluids proteomes results in identification
of proteins that span more than six logs of protein abun-
dance. As such, it has been the method of choice in many
cancer applications [24]. To detect low-abundance proteins,
an initial samples’ preclearing step might be performed to
remove the high-abundance proteins, such as albumin and
immunoglobulins. However, this carries the risk of depleting
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the samples from the low-abundance and low-molecular
weight proteins that are bound to the circulating carrier
proteins. The latter have been demonstrated to act as a
reservoir storing diagnostic information within the accumu-
lated bound low-molecular weight potential biomarkers [27].
Incorporation of bead-based immunoassays may also be used
to better identify low abundance proteins [17].

MS use in protein analysis has undergone several stages
of technical advancement and improved instrumentation
efficiency. MALDI-MS [28] and electrospray ionization (ESI)
MS, combined with advancements in protein fractionation
and separation, as liquid chromatography (LC) and gas
chromatography (GC) and labeling techniques, are exam-
ples of such technological developments. This has been
thoroughly reviewed in several articles [24, 29-31]. More
recently, proteomics approach has been extended to involve
studying of epigenetic processes in cancer research. The
use of MS-based proteomics in studying various aspects
of chromatin biology and in evaluating specific histone
posttranslational modifications resulted in the discovery of
chromatin-associated proteins and multisubunit complexes
that can be considered epigenetic biomarkers with future
potential in cancer diagnosis and therapy. This has gained a
wide attention and was recently reviewed by Bartke et al. [32].

Microarray is considered one of the most exciting devel-
opments in high-throughput technologies. Simultaneous
measuring of the expression of thousands of genes (gene
microarray) or proteins (protein microarray) and detection
of genomic or proteomic biomarkers, respectively, that are
tightly linked to cancer development and/or progression
have revolutionized the cancer research studies. Recently,
such technologies have been applied to study a relatively
uncommon category of cancer patients who are presenting
with metastatic cancer without any obvious anatomically
detectable primary tumor, the so called cancer of unknown
primary or CUP [33].

In addition, the targeted proteomic approach of selected
reaction monitoring (SRM) has been developed and widely
applied, for instance, to detect mutant proteins in the col-
orectal cancer tissue and in the fluid obtained from potential
precancerous pancreatic cysts [34]. Other recent approaches
have been described in the literature, including a multi-
plexed microfluidic immunohistochemistry-/immunocyto-
chemistry-based quantitative proteomics profiling of cancer
samples [35].

Combining proteomics and imaging-based methods has
been recently described. Shipitsin and coworkers were able
to identify a panel of 5 protein biomarkers for prostate
cancer lethality using an automated, integrated quantitative
multiplex immunofluorescence in situ imaging approach
[36]. Such combination is thought to produce more clinically
representing data in terms of the actual in vivo environment
where the active proteins exert their functions. This is because
such approach was designed to measure the levels and
activity status of protein biomarkers in defined intact tissue
regions, avoiding the need to lyse the tissues of interest
that is commonly performed in the traditional proteomics
approaches. Wider range of applications and comparative
studies to more established proteomics approaches is still in
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progress. In a different context, integrating proteomics and
imaging tools to gain more insight into the pathogenesis
of cancer progression and penetrability at the molecular
level is recently experimented. An article describing such
mechanistic-oriented approach was recently published by Oh
and colleagues [37]. This group used their advanced integra-
tive tools to study caveolae at the blood-solid tumor interface
in vivo aiming to reveal molecular portals to infiltrate solid
tumors of mammary, prostate, and lung origins. They were
able to reveal a transvascular pumping system and define
some of its component proteins, as caveolin 1 and annexin
Al, that are affecting tumor uptake of various agents. Such
approach will probably get a large scale attention as it can be
applied to assess the effectiveness of therapeutic agents based
on their ability to cross the biological barriers in vivo and find
their way into the solid tumors.

5. Examples of Proteomics Research
Applications in Various Cancer Types

In various types of cancer, the biomarkers discovery is
expected to improve one or more of the following critical
applications: early diagnosis and prognosis and monitor-
ing of disease progression, its response to therapy, and its
recurrence. High-throughput hypothesis-generating meth-
ods have revealed hundreds to thousands of cancer associated
proteins (CAPs). This implies that hundreds to thousands
of potential protein biomarkers have been suggested in the
literature and are awaiting proper validation. It is only after
validating these molecules that they can be considered for
application in diverse clinical setting such as diagnosis, prog-
nosis, disease staging, and patients’ categorization. This is a
critical aspect in translational cancer research [38, 39]. Classi-
cally, hypothesis-testing has been performed using antibody-
based methods, such as enzyme-linked immunosorbent
assays (ELISA). However the limited availability of validated
ELISAs and their high cost and time-consuming nature,
together with the technical challenges of assay multiplexing,
all have been obstacles hindering the use of these assays in
validating the rapidly evolved lists of potential cancer protein
biomarkers [40].

Due to the lagging in high-throughput hypothesis-testing
methods, these CAPs cannot yet be applied in clinical setting.
Therefore, a pressing need for accurate, precise, and sensitive
validation assays has been the driving force for an ongoing
extensive recent research. One promising track has gener-
ated selected reaction monitoring (SRM) assays of targeted
proteomics. SRM assays have been recently developed and
refined for many human CAPs that are functionally related to
cancer driver mutations. They have been used to measure the
detectability of target proteins in the circulation or urine and
have resulted in reproducible quantification across cohort of
cancer patients’ samples. Therefore, these assays are thought
to represent a valuable resource for accelerating and planning
biomarker verification studies [41].

The following section describes some of the proteomics
research outcomes in three of the most-studied cancers: lung,
breast, and ovarian cancers. A more detailed discussion will

be presented for the ovarian cancer aiming at emphasizing
few points of critical significance. For instance, various
perspectives in approaching the subject of cancer biomarkers,
the need to standardize and optimize study design, preanalyt-
ical and analytical assays components, and strict validation
strategies are among the points to be discussed in more
detail for ovarian cancer. A description of how proteomics
has helped in clarifying the ovarian cancer markers for
carcinogenesis, cancer progression, diagnosis, prognosis, and
targets for therapeutic treatment will be presented as well.

5.1. Lung Cancer Biomarkers: Implications from Proteomics.
Lung cancer signatures in plasma have been studied both in
mouse models and in human with data implying concordance
between findings in both species [42]. Circulating levels of
EGFR as well as other biomarkers as SFTPB and WFDC2
were significantly different in lung cancer cases relative to
control. As with the case of other types of cancer, finding
a marker or a panel of markers, which has a screening
power, if measured in prediagnostic biological sample is an
important goal, as it carries the potential for application in
early detection or even screening strategies of lung cancer
in addition to the potential use for monitoring subjects
diagnosed with the disease [42]. Unfortunately, this goal is
not yet achieved. As mentioned in previous sections, recent
technologies integrating proteomics and imaging tools are
being used, with promising results, to gain better insight for
the pathogenesis of lung cancer at the molecular levels. This is
expected to improve our understanding of the effectiveness of
anticancer therapies in terms of their ability to be successfully
delivered in the required dosage to solid tumors [37].

5.2. Breast Cancer Biomarkers: Implications from Proteomics.
Proteomics approach in studying breast cancer has also been
progressing and yielding promising findings with both diag-
nostic and therapeutic applications. An example of combined
in vitro and in vivo approaches involving deep analysis of
cultured breast cancer cell lines was obtained from tumors
of defined breast cancer stages and validated using human
breast cancer tissue. This approach has demonstrated that
the tumor stage-specific proteomic signatures extracted from
the in vitro study were validated on tissue microarrays.
Transformed cells showed proteomic signatures characteriz-
ing the loss of tissue architecture and the cellular metabolic
changes [43]. Remarkably, recent work has shown that the
plasma proteome in breast cancer also indicates the tumor
microenvironment-derived proteins involved in a number of
innate physiologic processes such as wound repair, immune
response, and tissue remodeling [44].

5.3. Ovarian Cancer Biomarkers: Implications from Pro-
teomics. Recent epidemiological studies have demonstrated
that ovarian cancer remains a serious condition that is
considered the most lethal gynecological malignancy [45].
Unfortunately, very few cases are diagnosed at clinically early
stages, and the vast majority are diagnosed at late stages
with the tumor already spread distantly [45]. Moreover,
due to the low prevalence of ovarian cancer, no screening



test is available for population screening. In fact, with the
condition’s low prevalence, a screening test has to be of an
extremely high specificity to possess an acceptable positive
predictive value [46]. The condition is pathologically not-
very-well understood, and, few years ago, the use of molecular
profiling has confirmed that ovarian cancer represents a
heterogeneous class of diseases that are sharing a common
organ [47]. Therefore, there is a pressing need for discovering
novel biomarkers to improve the outcomes of such a serious
disease.

Ovarian cancer-induced altered biologic processes are
expressed as aberrant molecules that belong to various
biochemical families, such as DNA, mRNA, proteins (and
related subfamilies as glycosylated proteins, peptides, and
autoantibodies), and metabolites. The recent technology
breakthroughs in genomics and proteomics fields have pos-
itively influenced our understanding of the pathophysiology
of the disease.

To date, only 2 individual circulating biomarkers, CA
125 and human epididymis protein 4 (HE4), are approved
by the American Food and Drug Administration (FDA) for
monitoring treatment and detecting recurrence in ovarian
cancer patients. In addition, the FDA has recently approved
two algorithms to be used clinically as a supplement for
decision making for preoperative adnexal mass patients [46].

Several research groups worldwide focus on studying the
altered biology in ovarian cancer and to discover promis-
ing molecular mediator(s) as biomarkers or as therapeutic
targets, using proteomics tools. Such tools target, beside
the proteins repertoire, other related biochemical entities,
for example, the glycosylated proteins (glycomics), the low
molecular weight peptides (peptidomics), the metabolites
(metabolomics), and the antitumor antibodies (immunopro-
teomics). These entities have been reviewed recently by Leung
et al. [46]. Mechref and coworkers have described major
advances in both preanalytical separation methods and MS
that allowed for increasingly comprehensive characterization
of glycosylated proteins repertoire (the glyome) and cancer-
specific glycoproteins in various types of cancers including
ovarian cancer [48]. Although the detection and character-
ization of aberrantly glycosylated proteins in biospecimens
still face technical challenges, recent advances in MALDI-MS
and in the preanalytical enrichment methods such as peptide-
N-glycosidase digestion and chromatographic separation
have enabled glycoproteomics techniques to positively add
to the list of cancer-specific glycoproteins [49-51]. Glycosy-
lation as a posttranslational modification is described as het-
erogeneous, structurally complex, widespread, and cell- and
protein-specific process. Therefore, in studying the cancer-
specific glycans, researchers are faced with both technical
limitations and uncertainty in the biological interpretation.
Examples of the technical challenges are the heterogeneity of
the glycans resulting in a collection of glycoforms and isomers
for each glycoprotein and the limited ability of most current
proteomics technologies to precisely differentiate these forms
and isomers. Moreover, following the discovery of candidate
glycan biomarker(s), there should be reliable quantitative
validation assays, with good specificity for the glycan epitope,
as well as good sensitivity. Currently, there have been trials
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to develop such assays, using lectin or antibody capturing
technology; however these are not yet sufficiently available
for strict validation. To complicate the matters even more,
researchers struggle to determine the biological implications
for the aberrant glycoproteins’ profiles in cancer states. In
the context of ovarian cancer, it is not clear whether the
components of glycomic profiles published in the literature
are unique to this cancer or, alternatively, are a consequence of
cancer-related metabolic defect(s). Therefore, more rigorous
investigations are clearly needed in this field [52].

The study of the global metabolites population in biospec-
imens, the metabolome, by MS-based assays has been
increasingly utilized in the field of cancer biomarkers dis-
covery. Biological fluids as urine and serum or plasma are
the usual specimens used. Urine specimens are sometimes
preferred in proteomics and related technologies for the
biomarkers discovery over serum or plasma. The reasons
for this preference include the relatively low total protein
concentration in normal urine and the noninvasive nature for
urine sample collection. Urine sample is relatively free from
high molecular mass proteins making it less complicated than
the serum/plasma samples [53]. Proteomics technologies as
ultraperformance LC quadrupole time-of-flight MS (UPLC-
Q-TOF MS), hydrophilic interaction chromatography, and
reversed-phase LC MS were able to identify several metabo-
lites in the urine of ovarian cancer patients as compared to
healthy control subjects. Interestingly, some of these metabo-
lites were discriminatory between early and late clinical
stages of those patients [54, 55]. Recently the metabolomics
profiles of plasma samples obtained from epithelial ovarian
cancer (EOC), benign ovarian tumor (BOT), uterine fibroid,
and healthy controls using UPLC were published. Fifty-
three metabolites were identified in this work as specific
biomarkers for EOC. Again, these metabolites were able to
discriminate EOC from BOT and uterine fibroids, as well
as early-stage from late-stage EOC. The critical analysis of
the aberrant metabolites has identified unique metabolic
pathways that were disturbed in cancer cases, namely, those
of phospholipids metabolism, tryptophan catabolism, and
fatty acid 3-oxidation. These findings are expected to increase
our understanding of ovarian cancer pathophysiology [56].
Despite the noticeable advances in this approach, a number
of confounding variables are still hindering the introduction
of metabolomics for full clinical application. Technical lim-
itations include the biases related to preanalytical factors as
sample collection and storage conditions. Biological limita-
tions involve the unstable nature of metabolites that may be
extensively transformed during transition from the cancer
site to the biospecimen collected or even after collection.
Moreover, other confounding factors include the subjects’
age, smoking habits, sleep patterns, and lifestyle. Hence,
standardized and robust protocols are needed to eliminate
such biases and to allow for assay’s precision [46].

Ascites fluid has been studied as a source for proteomics
and metabolomics potential biomarkers in ovarian cancer,
with an advantage over plasma or serum due to its close prox-
imity to the site of the tumor. Comparing malignant ascites
with cirrhosis ascites’ metabolomes has identified 41 metabo-
lites that differed significantly between both pathologies.
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Detailed analysis of these metabolites has revealed that most
of the cancer-specific metabolites belong to signaling path-
ways. Similarly, proteomic analysis has identified even more
molecules discriminating the ovarian cancer from cirrhosis
ascites. Interestingly, spliceosomal proteins and RNAs were
found in the ovarian cancer ascites, a finding suggesting that
these molecules might play an essential role in intercellular
communications between cancer cells [57].

More recently, low-molecular weight proteomics or pep-
tidomics has been used in studying biospecimens as blood,
urine, ascites, or even tumor tissue, seeking to identify
unique biomarkers for the ovarian cancer [58-60]. This
approach, although still in the beginning, is promising, and,
if standardized, is suggested to complement the conventional
proteomics approach as it reflects the cancer-related pro-
tease activity. However, the lack of standardized protocols
and of robust quantifying validation assays is hindering its
widespread use.

The last decade has also witnessed a novel approach in
cancer biomarkers discovery that targets identifying cancer
related populations of antitumor antibodies, the so called
immunoproteome [61, 62]. However, similar to peptidomics,
this approach is still lacking appropriate validation assays
before any applications for the identified potential biomark-
ers can be suggested.

As mentioned above, the proteomic profiling of plasma
is quite challenging due to the high dynamic range of protein
concentration which makes it hard to identify low-abundance
proteins. Some researchers have turned their attention into
more proximal biofluids such as the ovarian-tumor-tissue-
interstitial fluid as more promising sample sources [63].
However, because a good sample for clinical use should
be easily accessible, results of the biomarkers candidates
produced by this approach must be assessed and rigorously
tested in more clinically relevant body fluids, such as serum,
urine, or saliva, before being considered as a tumor specific
biomarker [64]. As previously mentioned, screening assays
for ovarian cancer among healthy individuals are lacking and
are indeed seriously needed due to the aggressive course of
the late-diagnosed disease. This is not-yet-feasible despite the
ongoing active research. For instance, Moore and coworkers
have combined an immunoassay for CA 125 with a proteomic
approach: surface enhanced laser desorption ionization time
of flight MS (SELDI TOF MS) to assess and quantify a panel
of 7 biomarkers (apolipoprotein Al, truncated transthyretin,
transferrin, hepcidin, f-2-microglobulin, connective tissue
activating protein III, and inter-alpha trypsin inhibitor heavy
chain 4), aiming at improving the specificity and sensitivity of
detecting EOC in preclinical cases using prediagnostic serum
samples [65]. The experimental design was based on previous
published work by the same research group demonstrating
that using this combination in postdiagnostically collected
sera has increased the sensitivity for detecting ovarian cancer
beyond CA 125 alone [66]. However, addition of these
biomarkers to CA 125 failed to enhance the sensitivity for
preclinical diagnosis [65]. The need is still pressing for a
biomarker or a panel of biomarkers that could be relied on
in screening for ovarian cancer. Strong and evidence-based
data can be a real challenge but should not be rushed to

produce. More than a decade ago, serum proteomic patterns
capable of discriminating normal subjects from ovarian
cancer patients were published and got a lot of attention, both
in the scientific community and among the decision makers
and sponsoring agents [67]. However, more scrutinizing
analysis for those findings has demonstrated a defect in the
experimental design that prevented their reproducibility and
that emphasized on the critical importance of a good design
to obtain reproducible data [3].

Essentially, extensive advances in the traditional pro-
teomics and its more recent related technologies are pro-
ducing vast amounts of data for ovarian cancer. Appropriate
standardization and validation of assaying these potential
biomarkers, whether individually or in combinations, are
critical, prior to introducing them as clinical determinants,
for screening, diagnosis, prognosis, and monitoring for the
response of treatment or for recurrence.

From the previous section, it is evident that results
obtained from proteomics and related technologies con-
tributed positively in the past and are expected to remain
capable of doing so in the future, to obtain better understand-
ing for ovarian cancer. The following discussion highlights
few examples of various aspects of this contribution.

(1) Ovarian cancer pathogenesis: Proteomics has resulted
in better insight into the molecular bases of ovarian
cancer pathogenesis. For instance, overexpression of
particular signaling pathways’ molecules within ovar-
ian cancer cells have been described in the literature as
a possible mechanism underlying or associated with
the condition. Signaling pathways involved in cancer
cell differentiation, survival (proliferation or apopto-
sis), migration, and metabolism are most commonly
affected during the pathogenesis of cancer ovary.
Examples of these pathways include the lysophospha-
tidic acid, the phosphatidylinositol 3-kinase, NF B,
the MAPK, and the vascular endothelial growth factor
signaling pathways [68, 69]. These findings provide
essential information about potential diagnostic and
prognostic markers, as well as therapeutic targets for
future pharmacotherapeutic-oriented ovarian cancer
research. Furthermore, recent publications demon-
strating the results obtained from a large Gynecologic
Oncology Group trial are producing promising data.
For instance, specific patterns of glycans were found
to be discriminatory in distinguishing epithelial ovar-
ian cancer and low malignant potential ovarian tumor
cases from normal individuals. The candidate glycan
biomarkers demonstrated sensitivity and specificity
high enough to suggest further in-depth validation
prior to using them as diagnostic markers for early
detection of ovarian cancer [51].

(2) Etiologically, ovarian cancers can be sporadic or
hereditary. Risk factors that increase women’s suscep-
tibility to ovarian cancers include genetic mutations
as those reported in BRCAland BRCA2 genes and the
mutations in the DNA mismatch repair genes charac-
terizing Lynch syndrome [70]. Proteomics techniques



can be performed to detect the profile(s) charac-
terizing these mutations. For instance, a proteomic
signature predicting the malignant transformation
of conditions with high risk of developing ovarian
cancers, such as ovarian endometriosis and pelvic
inflammation during ovarian carcinogenesis, is of
great significance [71]. Increasing awareness of the
hereditary aspect of gynecological tumors such as
breast and ovarian cancer has resulted in a remarkable
interest in screening populations at high risk for
these malignancies. Specialized cancer centers and
institutes have been formulating programs aiming
at multidisciplinary coordinated approach for eval-
uating women with high risk of breast and ovarian
cancers, organizing appropriate clinical care, updat-
ing relevant recommendations and guidelines, pro-
viding support to patients, and facilitating enrollment
in appropriate research studies and registries [72].
Proteomics analysis has been performed for sam-
ples obtained during the surgical procedure of risk-
reducing bilateral salpingooophorectomy (RRBSO)
that is undertaken for women of high risk category.
LC/MS MS and protein network database algorithms
were used to evaluate the proteomic profiles char-
acterizing the pathological changes in this group of
high risk women. Few years ago, a high-throughput
workflow for analyzing the proteomes of pelvic tis-
sues (peritoneal, fallopian tube, and ovarian surface
epithelial samples collected at the time of this surgery)
has been described. The aim for this approach was to
discover novel biomarkers that could have predictive
or diagnostic value in the pelvic tissues to identify
precancerous and cancerous proteomic changes of
high risk deleterious mutations carriers [73].

(3) Ovarian cancer progression: The transition of benign

ovarian tissue into its early malignant transformed
state is such a critical step that should be extensively
studied aiming to obtain a descriptive profile for it,
since, as already mentioned, the ovarian cancers have
notoriously poor prognosis and a highly aggressive
clinical course. Proteomics technologies have been
involved in following up ovarian cancer progres-
sion by evaluating the protein expression profiles in
cancers of different clinical and pathological stages
and in normal ovarian epithelium tissues. By per-
forming 2D electrophoresis combined with MALDI-
TOF/TOF techniques, Li and coworkers have iden-
tified 54 aberrantly expressed proteins in serous
ovarian cancers. The expression of one of those
proteins, the glia maturation factor beta (GMFB),
was further analyzed in large cohort of patients with
various stages of ovarian cancers and was found to
be significantly increased as compared to normal,
benign, or borderline ovarian tissues. The statistically
significant positive correlation between the expres-
sion of GMFB and the FIGO staging of the tumor,
and the association between this protein’s expression
and a poor disease-free survival and overall survival,
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together with the multivariate analysis results, all
have suggested that this protein is an independent
prognostic factor for disease-free survival and overall
survival in the studied serous ovarian cancer patients
[74]. Other research groups have performed slightly
different approaches on various biospecimens. For
instance, combining shotgun proteomics and SRM
MS, Elschenbroich and colleagues have published the
results of in-depth proteomics analysis of ovarian
cancer ascites as compared to ascites from benign
ovarian tumors. They have designed an analysis
pipeline that included discovery-based proteomics,
bioinformatics, and targeted proteomics quantifica-
tion of the detected cancer biomarkers candidates
[75]. Combined 2-DE and MS/MS analysis has been
used to study the ovarian cancer tissue, interstitial
fluid, and peritoneal effusion, as compared to normal
tissue and fluid, in specimens obtained surgically [76].
This comparative analysis has revealed differential
expression of six proteins that are involved in cell
cycle progression and apoptosis, as well as in signal
transduction pathways. One of those proteins, the
calgranulin, was reported to be significantly overex-
pressed in all pathological samples and to represent
a potential diagnostic and/or prognostic biomarker.
Other studies have reported changes in N-linked
glycan structures and their expression as diagnostic
signature in ovarian cancer patients [50]. A shot-
gun quantitative proteomic evaluation of benign and
malignant epithelial ovarian tumors as compared to
normal tissue, using iTRAQ technology with LC-
MALDI-TOF/TOF and LC-ESI-QTOF MS/MS was
published two years ago. The PI3K/Akt signaling
pathway was reported as a significant pathway capable
of discriminating the clinicopathologically different
tissues studied [77]. More recently, MS analysis of
the secretome from ex vivo coculturing of ovar-
ian cancer cells and peritoneal cells to detect pro-
teomic markers of their interactions was suggested
to reflect the metastasizing nature of ovarian cancers.
A protein, Mucin 5AC was suggested as a potential
biomarker for the invasiveness of ovarian cancers
since its expression was significantly elevated in the
ovarian-peritoneal cells coculture as compared to
monoculture of each type of cells [78]. Furthermore,
overexpression of class III 3-tubulin within the ovar-
ian tumor microenvironment was recently demon-
strated to have prognostic power predicting poor
overall survival in patients treated with neoadjuvant
chemotherapy [79].

(4) Targets for therapeutic means: A rare histologic sub-

set of ovarian cancer, clear cell ovarian cancer, is
known to have low survival relative to other types of
ovarian cancers. Genomics and immunohistochemi-
cal studies have demonstrated similar gene and pro-
tein expression profiles to clear cell cancers in other
organs, specifically the kidney and uterus. Therefore,
it might be recommended to consider therapeutic
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approach of this serious cancer histotype based on
the protein expression profile, rather than on the
organ affected [80]. Few years ago, Anglesio and
coworkers have demonstrated that women with clear
cell ovarian cancer had shown a positive response to
Sunitinib, a drug used with relatively successful out-
come in patients with renal cancers [81]. Additional
new perspectives for novel targets in ovarian cancer
therapy are being examined utilizing data obtained
from various high-throughput technologies [82].

6. Can Proteomics Research Findings
in Cancer Be Translated into Clinically
Oriented Research?

As already mentioned, massive applications of recent -omics
technologies in cancer research have started since the last
century and have been constantly evolving so far. These
have been translated into genomics and proteomics cancer
signatures. The translation of biomarker discoveries into
potential anticancer agents is highly dependent on the quality
of data generated, which is influenced by several factors as
mentioned above [83]. Wilhelm and colleagues have recently
reported an MS-based draft of human proteome. Among
their findings of human proteome expression, they confirmed
high levels of expression of functional proteins in relation
to specific cancer. For instance, the protooncogene EGFR,
which was discovered in the eighties of the last century [84],
was recently found to be highly expressed in a confined
manner to certain cancerous tissue as in breast cancer. Beta-
catenin, a member of the Wnt signaling pathway, was also
highly expressed in colon cancer cells, where it participated
in the development of the malignancy [4]. These findings and
others represent a rich source of information and a platform,
based on which researchers can design projects aiming at
discovering novel anticancer agents. The following section
summarizes information from 2 research groups working on
example of such agents, the EGFR kinase inhibitors and the
heat shock protein 90 (Hsp90) inhibitors.

6.1. EGFR Kinase Inhibitors. Studying the cellular mecha-
nisms of cancer in general and of drug action in particular
has been a hot area in proteomic cancer research. This
area holds a promising outcome of clinical significance and
hence the hope of moving cancer proteomics from bench
to bed side [24]. Using cancer cell line panel developed by
the National Cancer Institute (NCI) as a model system for
different tissue types and genetic diversity of human cancers,
and analyzing the massive amount of information obtained
by bioinformatics, Moghaddas and coworkers have shown a
strong cell line clusters based on tissue type. Hundreds of
differentially expressed proteins were demonstrated in this
model system, which are potential biomarkers for different
tumor properties. Moreover, by integrating their proteomic
data to the publicly accessed transcriptomic data for this
model system, the authors have shown consistency between
mRNA and protein expression. They were also capable of
demonstrating that protein expression can be correlated to

many FDA-approved anticancer drug response, both drug
sensitivity and resistance [85]. Of special importance as
anticancer drug targets are various families of cellular protein
kinases. Kinases represent important oncogene classes and
are key players in intracellular signaling; subsequently their
differential expression and/or functional dysregulation can
be a cause or consequence of tumorigenesis. Therefore, not
surprisingly, kinases are important anticancer therapeutic
targets [86, 87]. The EGFR kinase inhibitors erlotinib and
lapatinib have been used in cancer therapy. Recently, pro-
teomics approach in cancer cell lines using elastic net analysis
has been utilized for the identification of markers for drug
sensitivity (positive-effect-size) or resistance (negative-effect-
size) [4].

6.2. HSP90 Inhibitors. Hsp90 is a molecular chaperone that is
essential for the correct folding, stability, and hence functions
of many proteins. As such, it is part of a system that functions
in both physiological and pathological states [88]. Cancer
cells are considered chaperone addict, since they have special
requirement for the protein folding machinery components
to deal with the surplus of proteins being synthesized. The
significance of targeting Hsp90 in cancer therapy lies in
the nature of its clients, since many of them belong to the
family of oncogenes, including tyrosine kinases, transcription
factors, and cell cycle regulatory proteins. Therefore, inhibit-
ing Hsp90 leads to degradation of such proteins through
the proteasome machinery. The use of Hsp90 inhibitors in
treating cancer has been promising in certain solid tumors as
well as in hematological malignancies. This has been recently
reviewed by Garcia-Carbonero and coworkers [89].

7. Conclusion and Perspectives

Proteomics approach in studying many diseases including
cancer is producing data that complements those produced
by other high-throughput technologies. Such technologies
should aim beyond the mere generation of lists of differen-
tially expressed macromolecules and their derivatives, as a
cause or consequence of the studied pathology. For instance,
careful interpretation of proteomics data has shed some light
on the underlying mechanisms leading to cancer forma-
tion. Examples discussed in the present review include the
association between aneuploidy, proteotoxic stress, abnormal
cellular proliferation, and tumorigenesis; the defective pro-
teins’ structure and hence function secondary to gene muta-
tions; and the consequent aberrant networks interactions of
abnormal protein repertoire in cancer states. Nevertheless,
the field is faced with numerous biological and technical
challenges as a result of the concepts of cancer heterogeneity,
samples variables, and poor study designs. These challenges
can be minimized by proper study designs, implementing
strict protocols paying attention to every step in the pro-
cess, establishing robust validation assays, and exploring
innovative tools or even combinations of tools. Besides the
traditional proteomics techniques that are constantly being
advanced, more recent approaches combining proteomics
with other technologies such as imaging are unraveling



10

the complexity of the proteomics changes in cancer and are
producing data that are thought to be more representing to
the in vivo situation and tumor environment. Examples of
three of the most studied cancers, lung, breast, and ovarian
cancers, have been discussed illustrating various perspectives
in approaching the subject of cancer biomarkers, the need
to standardize and optimize study design, preanalytical and
analytical assays components, and strict validation strate-
gies. Overall, common objectives for proteomics studies in
cancer are to better understand tumor biology, to facilitate
the development of biomarkers and, most importantly, to
move towards bedside applications in cancer management.
Refining the huge amount of information obtained from
proteomics and related technologies is required to enable
transition to clinical validation, which is an ultimate goal for
many proteomics-centered studies.
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The role of genetics in progression of cancer is an established fact, and susceptibility risk and difference in outcome to chemotherapy
may be caused by the variation in low-penetrance alleles of risk genes. We selected seven genes (CRB GPC5, ACTA2, AGPHDI,
SECI4L5, RBMS3, and GKNI) that previously reported link to lung cancer (LC) and genotyped single nucleotide polymorphisms
(SNPs) of these genes in a case-control study. A protective allele “C” was found in rs2808630 of the C-reactive protein (CRP). Model
association analysis found genotypes “T/C” and “C/C” in the dominant model and genotype “T/C” in the overdominant model
of rs2808630 associated with reduced LC risk. Gender-specific analysis in each model showed that genotypes “T/T” and “C/C” in
rs2352028 of the Glypican 5 (GPC5) were associated with increased LC risk in males. Logistic regression analysis showed “C/T”
genotype carriers of rs4254535 in the Gastrokine 1 (GKNI) had less likelihood to have chemotherapy response. Our results suggest
a potential association between CRP and GPC5 variants with LC risk; variation in GKNI is associated with chemotherapy response

in the Chinese Han population.

1. Introduction

Lung cancer is the most common malignancy in the world
and is reported to have an increasing incidence in developing
countries [1, 2]. According to the global cancer statistics, in
2008 approximately 1.6 million people were diagnosed with
lung cancer, and there were 1.4 million deaths [3]. Tobacco
smoke, environmental pollution, occupational exposures,
and preexisting lung disease increase the risk of lung cancer.
However, patients have been diagnosed with lung cancer in
the absence of these risk factors [4-6]. Genetic susceptibility
to lung cancer independent of established risk factors has not
yet been clearly defined.

Despite considerable advances in the field of tumor biol-
ogy, the majority of patients with lung cancer are diagnosed
at an already advanced stage and thus surgical resection
is not a feasible treatment option. Platinum-based doublet
chemotherapy is the current standard of therapy in this sit-
uation. However, the response to chemotherapy among lung
cancer patients has significant variation. We hypothesize that
the susceptibility risk and variation in outcome to chemother-
apy may be caused by the variation in low-penetrance alleles.

In this study, we selected single nucleotide polymor-
phisms (SNPs) from seven different genes (CRP (C-reactive
protein), GPC5 (Glypican 5), ACTA2 (actin, alpha 2, smooth
muscle, aorta), AGPHDI (aminoglycoside phosphotransferase
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domain containing 1), SECI4L5 (SECI14-like 5), RBMS3 (RNA
binding motif, single stranded interacting protein 3), and GKNI
(Gastrokine 1)) that have been linked to lung cancer [7-
13]. We analyzed each tag single nucleotide polymorphism
(tSNP) for lung cancer risk in a case-control study involving
Chinese population. Multivariate logistic regression analysis
was used to test the association between gene polymorphisms
and chemotherapy response.

2. Materials and Methods

2.1. Study Participants. A case-control study involving the
Chinese study population of 309 lung cancer patients and
310 controls was conducted at the First Affiliated Hospital of
Xi'an Jiaotong University. All included patients had recently
diagnosed and histopathologically confirmed primary lung
cancer. The control subjects were recruited from the health
check-up center of the First Affiliated Hospital of Xian
Jiaotong University, which they had visited for an annual
health examination. Patients were ascertained to be free from
any acute or chronic pathology. Their cancer-free status was
reconfirmed by testing for plasma levels of carcinoembry-
onic antigen and alpha-fetoprotein. Blood samples from the
patients were collected before initiation of chemotherapy or
radiotherapy. Demographic and related clinical data of the
study population was collected by a face-to-face question-
naire and medical case record. Patients were categorized as
smokers or nonsmokers. The smokers were defined as those
who smoked one cigarette/pipe per day for twelve months
or longer at any time in their life. All of the participants
were genetically unrelated ethnic Han Chinese from Shaanxi
Province and provided written informed consent for their
participation in the present study. The protocols for this study
were conducted according to the Declaration of Helsinki and
were approved by the Institutional Review Boards of both
the First Affiliated Hospital of Xian Jiaotong University and
Northwest University.

Five milliliters of whole blood were collected from each
subject into tubes containing ethylenediaminetetraacetic acid
(EDTA) at the time of initial diagnosis. After centrifugation,
the samples were stored at —80°C until further use.

2.2.  Evaluation of Cisplatin-Based Chemotherapeutic
Response. There are all together 113 lung cancer patients who
received cisplatin based first-line chemotherapy and satisfied
the following criteria: Eastern Cooperative Oncology Group
(ECOQ) performance status (PS) < 1, age > 18 years, and
adequate bone marrow reserve, as well as satisfactory
liver and renal function. These patients were in clinical
stage III or IV and had a measurable lesion on computed
tomography scan at the beginning of treatment. The patients
received chemotherapy every 3 weeks, for a maximum of six
cycles or until disease progression or unacceptable toxicity
occurred. Response to treatment was determined according
to the Response Evaluation Criteria in Solid Tumor Group
(RECIST) guidelines after two cycles of chemotherapy and
every two cycles thereafter [14]. For data analysis, patients
achieving complete response (CR) or partial response (PR)
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were considered “responders,” and patients with stable
disease (SD) or progressive disease (PD) were defined
as “nonresponders” [15]. Multivariate logistic regression
analysis was used to test the association between gene
polymorphisms and chemotherapy response.

2.3. tSNP Selection and Genotyping. All seven tSNPs in the
selected genes were associated with lung cancer and with
minor allele frequencies (MAF) greater than 5% in the
HapMap CHB (Chinese Han Beijing) population. DNA was
extracted from whole blood by GoldMag-Mini Whole Blood
Genomic DNA Purification Kit (GoldMag Co., Ltd., Xi'an
City, China). The concentration was measured by NanoDrop
2000 (Thermo Scientific, Waltham, Massachusetts, USA). The
design of primers, SNP genotyping, and data processing were
performed by Sequenom MassARRAY platform Software
(Sequenom Co., Ltd., San Diego, California, USA) [16, 17].

2.4. Statistical Analysis. Statistical analysis was undertaken
using statistical software (SPSS 16.0; Chicago, IL) and
Microsoft Excel. A two-sided P value < 0.05 was considered
the threshold for statistical significance. Hardy-Weinberg
equilibrium (HWE) of each tSNP in control group was tested
by Fisher’s exact test. The differences in allelic frequencies
between case and control groups were compared via the Chi-
squared test [18]. Associations between genotypes and lung
cancer risk were tested in different genetic models (codom-
inant, dominant, recessive, overdominant, and log-additive)
by SNPStats website software http://bioinfo.iconcologia.net/
snpstats/start.htm [19]. Testing of odds ratios (ORs) with
95% confidence intervals (CIs) was performed by uncondi-
tional logistic regression analysis with adjustment for gender
and age [20]. Akaike’s Information Criterion and Bayesian
Information Criterion were applied to estimate the best-fit
model for each SNP. Association between genotypes and lung
cancer risk was determined by SNPStats for gender-specific
populations under each model [19].

3. Results

We recruited 309 patients (74 females and 235 males, mean
age at diagnosis 58 years, range 25-85, SD + 10) and 310
healthy (113 females and 197 males, mean age at diagnosis
50 years, range 29-75, SD + 8) individuals into our study
(Table 1). The genotype profiles of our study patients are
shown in Supplementary Table S1 in the Supplementary
Material available online at http://dx.doi.org/10.1155/2015/
824304. The SNPs and primers used in the multiplexed SNP
MassEXTENED assay are presented in Table 2. None of the
tSNPs that we evaluated among the control group deviated
from HWE (Table 3). We hypothesized that the minor allele
of each SNP was a risk factor compared with the wild-type
allele.

A significant protective allele “C” was found in rs2808630
of the CRP gene based on the crude P value of 0.05 (OR =
0.66; 95% CI, 0.48-0.91; P = 0.01) by Chi-square test
(Table 3). Various genetic models were applied to calculate
genetic risk. Reduced risk for lung cancer was associated with
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TaBLE 1: Characteristics of patients and controls.

Characteristics thrrllgzc';g;;:r (Cilo:t;)é)
Age (means + SD, year) 582+10.2 50.3+8.1
Sex

Male 235 76.1 197 63.5

Female 74 239 113 36.5
Smoking status

Never 94 30.4 188 60.6

Ever 215 69.6 122 39.4

No. %

Histology

Adenocarcinoma 110 35.6

Squamous cell carcinoma 116 375

Small-cell carcinoma 66 21.3

Large-cell carcinoma 2 0.6

Unspecified lung cancer 15 5.0
Stage

I 67 21.7

II 52 16.8

III 69 22.3

v 118 38.2

Data uncertain 3 1.0

the genotypes “T/C” and “C/C” in rs2808630 (OR = 0.66, 95%
CI, 0.44-0.98; P = 0.036) in the dominant model and the
genotype “T/C” (OR = 0.65, 95% CI, 0.43-0.98; P = 0.037) in
the overdominant model (Table 4). Each tSNP was analyzed
in a gender-specific population under each model. We found
that the genotypes “T/T” and “C/C” in 152352028 of the GPC5
gene were associated with increased lung cancer risk in males
in the overdominant model (Table 5). rs2808630 in CRP and
rs2352028 in GPC5 were both associated with lung cancer
risk.

“C/T” genotype distribution in the rs4254535 of the
GKNI gene was significantly higher in nonresponders than
in responders (34.62% versus 14.29%, P = 0.029) (Table 6).
Logistic regression analysis showed that “C/T” genotype
carriers had poor response for chemotherapy as compared
to “T/T” genotype carriers (OR 3.287, 95% CI, 1.135-9.522;
P = 0.029) after adjustment for age, gender, smoking status,
histology, stage, and chemotherapy regimens.

However, as shown in Tables 3, 4, and 6, the significance
levels were attenuated after applying a strict Bonferroni
correction, indicating a likely association between positive
tSNPs and risk of lung cancer and chemotherapy response.

4. Discussion

In this case-control study, we selected tSNPs with MAF
greater than 5% in the HapMap CHB population to ensure
that the statistical power was sufficient for data analysis.
Our results firstly suggest that polymorphisms in CRP and
GPC5 genes have an association with susceptibility risk of

lung cancer in the Chinese Han population. The multivariate
logistic regression analysis shows that polymorphism in
GKNI influences chemotherapy response.

The CRP gene, located in 1q23.2, encodes CRP protein
which has several host defense-related functions, including
recognition and elimination of foreign pathogens and dam-
aged host cell. CRP is an acute-phase protein that increases
during the host response to tissue injuries, including infec-
tion, trauma, surgery, myocardial infarct, and cancer [8, 21].
There are three potential mechanisms linking CRP to cancers.
One is that tumor growth promotes tissue inflammation and
increases the level of CRP. Another possibility is that cancer
cells increase production of inflammatory proteins, which
leads to high CRP levels in cancer patients. Besides, CRP
may promote tumor growth in chronic inflammation [22].
Elevated CRP levels are associated with poor prognosis of
lung, hepatic, renal, colorectal, and ovarian cancers [23-29].

Our study found that rs2808630, an intronic SNP within
the CRP gene, was significantly linked with lung cancer
risk in both allelic and genotypic association analysis of a
Chinese population. We also ascertained a significant allele
“C” and genotypes “T/C” and “C/C” in rs2808630 in the
dominant model and genotype “T/C” in the overdominant
model that is protective against lung cancer development. We
hypothesize that rs2808630 variant of the CRP gene could
have decreased the level of CRP or reduced the activity of
CRP in the presence of allele “C”. A recent study by Xu et al.
[30] found that 5 SNPs in the CRP gene (including rs2808630)
were uncorrelated with lung cancer risk. They recruited 96
lung cancer patients and 124 controls of different races. This
disparity in findings could be attributed to the small sample
size and racial or regional differences in study populations.
To our knowledge, our study is the first genotype/allele-based
study that describes the association between SNPs within the
CRP locus and lung cancer risk in a Chinese population.

The GPC5 gene is a member of the glypican gene family
and has eight exons encoding 572 amino acids in a large
genomic region (1.47 Mb) of chromosome 13q31.3. Reduction
of GPC5 protein is linked to lung cancer [7]. A previous
study involving American population reported an association
(OR = 1.46, 95% CI 1.26-1.70, P = 5.94 x 10™°) between
the single nucleotide polymorphism rs2352028 and lung
cancer risk in never smokers [31] but failed to replicate
in Caucasian [32] and Chinese [33] populations, indicating
that the sensitivity and specificity of rs2352028 in terms of
smoking status may not be similar in between races. Our
study observed the variation between gender and found that
genotypes “T/T” and “C/C” in rs2352028 of the GPC5 gene
are associated with increased lung cancer risk in males (under
the overdominant model, after adjusting for age).

The GKNI gene is located in 2p13.3 and has a protective
function on gastric antral mucosa by facilitating restoration
and proliferation after injury. As it is expressed in normal
gastric tissue but absent in gastric cancer tissues, GKNI
protein is treated as a potential biomarker for gastric cancer
[34]. It is also found downregulated in placental tissue and
cell [35]. Although current research focuses on the potential
clinical use of GKNI in the treatment of tumor, little is
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TaBLE 3: Candidate tSNPs.

Gene  Chromosome Minor MAF MAF P value for Pvalue P value
iti 95% CI
SNPID name position Position  Allele allele (case) (control) HWE test ORs ’ from x*>  adj.”
rs2808630 CRP 1q23.2 159680868 C/T C 0.135 0.191 0.982 0.66 0.48 0.91 0.010 0.070
rs1926203 ACTA2 10923.31 90727334 G/T T 0.167 0.150 0.999 113 0.83 1.53 0.436 1
rs2352028 GPC5 13q31.3 92445229 C/T T 0.198 0.225 0.319 0.85 0.65 112 0.248 1
rs8034191 AGPHDI 15925.1 78806023 C/T C 0.034 0.032 0.841 1.05 0.56 196 0.874 1
r$9635542 SECI4L5 16p13.3 5001380 AlIG G 0.463 0.437 0.897 111 0.89 139 0.360 1
rs4254535 GKNI 2pl13.3 69198388 C/T C 0.204 0.217 0.317 093 0.70 1.22 0.577 1
rs1530057 RBMS3 3p24.1 29575463 A/C A 0.065 0.078 0.788 0.82 0.53 1.27 0.368 1
* P value was adjusted by Bonferroni correction.
TABLE 4: Relationship between rs2808630 of CRP and lung cancer risk (adjusted by gender and age).
Model Genotype Control (N, %) Case (N, %) OR (95% CI) P value P value adj.” AIC BIC
T/T 189 (65.4%) 218 (75.4%) 1.00
Codominant T/C 90 (31.1%) 64 (221%)  0.64(0.43-0.97) 0.100 0.500 7102 732.0
c/C 10 (3.5%) 7 (2.4%) 0.80 (0.28-2.30)
0, 0,
Dominant T 189 (65.4%) 218 (75.4%) 1.00 0.036 0.180 708.3 725.8
T/C-C/C 100 (34.6%) 71 (24.6%) 0.66 (0.44-0.98)
! 0, 0,
Recessive T/T-T/C 279 (96.5%) 282 (97.6%) 1.00 0.850 1 7127 7301
c/C 10 (3.5%) 7 (2.4%) 0.90 (0.32-2.58)
- 0, (V)
Overdominant TT-cic 199 (68.9%) 225 (77.8%) 1.00 0.037 0.185 708.3 725.8
T/C 90 (31.1%) 64 (22.1%) 0.65 (0.43-0.98)
Log-additive 0.72 (0.51-1.02) 0.061 0.305 709.2 726.6
AIC: Akaike’s information criterion; BIC: Bayesian information criterion.
* P value was adjusted by Bonferroni correction.
TABLE 5: 152352028 of GPC5 and gender cross-classification interaction.
Genotype Female Male P value
Control Case OR (95% CI) Control Case OR (95% CI)
C/C-T/T 82 47 1.00 110 163 1.80 (1.12-2.88) 0.019
C/T 31 27 1.42 (0.72-2.80) 87 71 0.98 (0.58-1.64) '

(N = 618, adjusted by age) under over-dominant model.

known about its expression and function in other organ
systems or the significance of GKNI polymorphisms in
cancer. Our study firstly reports that polymorphismin GKNI
is influence cisplatin based chemotherapy response in lung
cancer patients. The SNPs from the other four genes (ACTA2,
AGPHDI, SECI4L5, and RBMS3) included in this study did
not reach any statistically significant association with lung
cancer risks or cisplatin based chemotherapy response in our
study population.

There are certain intrinsic limitations in our study and
must be noted. The sample size was not as large as some other
lung cancer association studies. We performed Bonferroni
correction in our statistical analysis and found no statistical
significant associations between CRP and GPC5 SNPs and
lung cancer risk, neither in GKNI polymorphisms nor in
response to cisplatin-based chemotherapy, which could be
attributed to the relatively small sample size that may not
satisty all the seven independent hypotheses at the same time.
Adjustments for multiple tests, like Bonferroni correction, are
needed for medical association studies but may create more

problems. The main weakness of Bonferroni correction is that
the results depend on the number of other tests performed.
True important differences may be deemed nonsignificant
since the likelihood of type II errors is also increased
[36]. Cumulatively, our findings provide evidence that poly-
morphisms in C-reactive protein and Glypican 5 genes are
associated with lung cancer risk, and GKNI determines
chemotherapy response in Chinese population. We believe
our results will encourage further studies to understand the
function of these genes.

Abbreviations

tSNP: Tag single nucleotide polymorphism
CRP: C-reactive protein gene

GPC5: Glypican 5 gene

ACTA2:  Actin, alpha 2, smooth muscle, aorta gene

AGPHDI: Aminoglycoside phosphotransferase domain
containing 1 gene
SECI4L5: SECI4-like 5 gene
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TABLE 6: Genotype and the allele frequencies of candidate genes in chemotherapy patients.

Genotype/allele Responder Nonresponder OR* 95% CI P value® P value adj.”
N % N %

152808630

T/T 25 71.43 64 82.05 1.000

T/C 9 25.71 10 12.82 0.434 0.158 1.194 0.142 0.994

C/C 1 2.86 4 513 1.652 0.166 14.670 0.791 1

T 59 84.29 138 88.46

C 11 15.71 18 13.04 0.700 0.311 1.572 0.386 1
1rs1926203

G/G 23 65.71 55 70.51 1.000

G/T 12 34.29 17 21.79 0.592 0.245 1.435 0.244 1

T/T 0 0 6 7.70 # # # 0.999 1

G 58 82.86 127 81.41

T 12 17.14 29 18.59 1104 0.526 2.316 0.989 1
152352028

C/C 22 72.86 57 73.08 1.000

C/T 13 3714 21 26.92 0.623 0.267 1.457 0.221 1

T/T 0 0 0 0 — _ _ _

C 57 81.43 135 86.54

T 13 18.57 21 13.46 0.682 0.320 1.455 0.269 1
rs8034191

T/T 34 9714 74 94.87 1.000

T/C 1 2.86 4 513 1.838 0.198 17.068 0.477 1

c/C 0 0 0 0 — — — —

T 69 98.57 152 97.44

C 1 1.43 4 2.56 1.816 0.199 16.547 0.485 1
1s9635542

A/A 10 28.57 20 25.64 1.000

G/A 17 48.57 37 47.44 1.088 0.420 2.819 0.866 1

G/G 8 22.86 21 26.92 1.312 0.431 3.996 0.809 1

A 38 54.29 76 48.72

G 32 45.71 80 51.28 1.250 0.710 2.200 0.619 1
154254535

T/T 28 80.00 46 58.97 1.000

C/T 5 14.29 27 34.62 3.287 1.135 9.522 0.029 0.203

C/C 2 5.71 5 6.41 1.522 0.276 8.378 0.901 1

T 61 87.14 119 76.28

C 9 12.86 37 23.72 2.107 0.955 4.649 0.109 0.763
rs1530057

C/C 33 94.29 71 91.03 1.000

C/A 2 5.71 7 95.51 1.627 0.320 8.260 0.659 1

A/A 0 0 0 0 — — — —

C 68 9714 149 95.51

A 2 2.86 7 4.49 1.597 0.323 7.891 0.671 1

P value < 0.05 indicates statistical significance; OR: odds ratio; CI: confidence interval.

 Adjusted by age, gender, smoke status, histology, stage, and chemotherapy regimens.

*When a factor cell associated with the odds ratio is zero, extremely high odds ratios may occur, and it is the same with extremely low odds ratios. It is because
the algorithm estimating the logistic coefficient (and hence also exp., the odds ratio) is unstable, failing to converge while attempting to move iteratively toward
positive infinity (or negative infinity).

— Some of the mutated genotypes do not exist in the study subjects, so the relative statistics cannot be calculated.

* P value was adjusted by Bonferroni correction.
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RBMS3: RNA binding motif, single stranded interacting
protein 3 gene

GKNI:  Gastrokine 1 gene

LC: Lung cancer

MAF: Minor allele frequency
HWE: Hardy-Weinberg equilibrium
OR: Odds ratio

CL Confidence intervals.
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