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Spinal cord injury (SCI) is one of the most incapacitating neurological disorders. It involves complex pathological processes that
include a primary injury and a secondary injury phase, or a delayed stage, which follows the primary injury and contributes to
the aggravation of the SCI pathology. Oxidative stress, a key pathophysiological event after SCI, contributes to a cascade of
inflammation, excitotoxicity, neuronal and glial apoptosis, and other processes during the secondary injury phase. In recent
years, increasing evidence has demonstrated that sirtuins are protective toward the pathological process of SCI through a variety
of antioxidant mechanisms. Notably, strategies that modulate the expression of sirtuins exert beneficial effects in cellular and
animal models of SCI. Given the significance and novelty of sirtuins, we summarize the oxidative stress processes that occur in
SCI and discuss the antioxidant effects of sirtuins in SCI. We also highlight the potential of targeting sirtuins for the treatment
of SCI.

1. Introduction

Spinal cord injury (SCI) is a common central nervous system
injury characterized by varying degrees of sensorimotor dys-
function, which can often lead to paraplegia, quadriplegia,
and other pathologies that significantly affect the quality of
life of a patient. The total global incidence of SCI has been
estimated to be 3.6–195.4 cases per million people [1]. In
the United States alone, the annual incidence of SCI is
approximately 54 cases per million, with approximately
17,730 new cases of SCI occurring each year [2]. Due to its
prevalence in young and middle-aged adults, predominantly
in the age group of 35–64 years [3], SCI imposes a great eco-
nomic and medical burden on society. Statistically, the life-
time cost of medical care and other injury-related expenses
for a SCI patient is estimated to be 1.47–3.03 million dollars

[4]. In addition to its impact on society, SCI also places a tre-
mendous physical and psychological burden on the patients
themselves, especially with the improvement of the survival
rate of SCI patients in recent years. Methylprednisolone
(MP) is currently the only FDA-approved drug recognized
for the treatment of SCI. However, owing to the narrow win-
dow of administration time and numerous side effects, only a
small proportion of SCI patients benefit from MP adminis-
tration [5–7]. Therefore, there is an urgent need to identify
new molecular target candidates and elucidate their cellular
mechanism of action to develop new therapeutics for SCI.

Oxidative stress refers to an imbalance between oxidative
and antioxidant cellular pathways in an organism, leading to
the accumulation of excessive free radicals, including reactive
oxygen species (ROS) and reactive nitrogen species, which in
turn cause a series of cytotoxic effects. To date, oxidative
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stress has been demonstrated to play a central role in the
pathogenesis of SCI [8–10]. Previous studies have shown that
large amounts of ROS are generated immediately following
SCI, which can induce oxidative stress if not neutralized
promptly [11, 12]. More importantly, oxidative stress is asso-
ciated with secondary events [13–16], such as inflammatory
response, excitotoxicity, and neuronal and glial cell apoptosis
after primary injury. Notably, the spinal cord is particularly
vulnerable to peroxidation by ROS because of its high poly-
unsaturated fatty acid content [9]. Therefore, the spinal cord
is highly susceptible to oxidative damage. The significance of
ROS and lipid peroxidation during SCI has been validated by
numerous experimental and clinical studies [17–22], and
therapeutic strategies targeting oxidative stress pathways
are increasingly showing promising applications.

Sirtuins, a conserved class of nicotinamide adenine dinu-
cleotide (NAD)+-dependent protein deacetylases, are repre-
sented in mammals by seven member enzymes (SIRT1-7)
[23, 24]. As the understanding of the function of the sirtuin
family has improved, researchers have begun to focus on
their antioxidant effects. Many studies have shown that sir-
tuins, particularly SIRT1 and SIRT3, are involved in cellular
antioxidant defense mechanisms [25–27]. The redox signal-
ing pathways regulated by sirtuins often are the ones that,
when altered, play important roles in the occurrence and
development of various pathologies [28–30], including SCI.
This suggests that sirtuins are promising antioxidant
enzymes that could be molecular targets for the treatment
of SCI. In this review, we provide a synopsis of the involve-
ment of oxidative stress in SCI and summarize the results
from available literature, discussing the mechanisms and
therapeutic approaches that target sirtuins to protect the spi-
nal cord from oxidative stress-induced injury after SCI.

2. Pathophysiology of SCI

The pathophysiology of SCI involves two consecutive stages:
a primary injury and a secondary injury [31, 32]. The pri-
mary injury refers to the stage of spinal cord damage that
occurs immediately after the direct injury to the spinal cord,
and it is usually the decisive element for the severity of SCI.
Several common mechanisms can cause primary injury,
including compression, contusion, shear, laceration, and
acute stretching [33]. Generally, the spinal cord damage that
constitutes primary injury is characterized by the disruption
of neural parenchyma, shearing of the axonal network,
destruction of the glial membrane, and vascular disruption
[34]. The secondary injury is a delayed and prolonged path-
ological stage triggered by the primary injury, which aggra-
vates the spinal cord tissue damage through a cascade of
biological events [14, 15, 32, 35–41], including ischemia, vas-
cular dysfunction, edema, excitotoxicity, formation of free
radicals, glial and neuronal apoptosis, and inflammatory
response. Currently, it has become evident that most of the
posttraumatic degeneration of the spinal cord is caused by
the secondary injury, which can occur during a period rang-
ing from minutes to years after the primary injury, resulting
in further damage to the surrounding tissues [42–44]. There-
fore, neuroprotective interventions at the stage of the second-

ary injury, within an advisable “time window”, are essential
to reduce cord damage and preserve neurological function.

The secondary injury involves pathophysiological pro-
cesses that can be categorized into three contiguous phases
that develop over time: the acute, subacute, and chronic
phases [34, 42]. The acute phase, the dominant period in
the secondary injury process, can be characterized by the
pathophysiological processes of vascular disruption, continu-
ous hemorrhage, and the resulting progressive ischemia and
edema [32, 45, 46]. These pathophysiological events contrib-
ute to additional elements of the secondary injury cascade,
including generation of free radicals, lipid peroxidation,
inflammation, ionic dysregulation, excitotoxicity, and apo-
ptosis and necrosis of neurons [14, 16, 47–50]. After the pri-
mary injury, the damage to the microcirculation leaves the
adjacent tissues in a state of hypoperfusion, and the resulting
ischemia and hypoxia further lead to the swelling of neurons
and glial cells, blocking the conduction of action potentials
[51]. Excitotoxicity is mainly caused by excessive activation
of glutamate receptors. Following injury, extracellular gluta-
mate can reach excitotoxic levels within a few minutes, which
contributes to the influx of Ca++ and Na+ [16, 52]. Subse-
quently, high levels of intracellular Ca++ trigger a series of
destructive events, including free radical formation, which
ultimately leads to neuronal cell death [48]. In addition, the
activation of microglia begins almost immediately after
injury, along with an increase in proinflammatory cytokines
such as TNF-α and IL-β, which can be detected a few
minutes after the injury [53, 54]. In the subacute phase, apo-
ptosis of oligodendrocytes is a significant pathological feature
[55], with apoptotic oligodendrocytes fragmenting into apo-
ptotic bodies, which are subsequently cleared by phagocyto-
sis. The phagocytic response is most evident during the
subacute phase. It may contribute to the removal of apoptotic
fragments from the lesion and can somewhat promote the
growth of axons by removing the myelin debris [53]. Over
time, various proinflammatory and anti-inflammatory medi-
ators peak one after another during this period [56], which
constitutes another important hallmark of this phase. On
the one hand, inflammation can remove cellular debris and
provide a favorable environment for tissue repair and regen-
eration; on the other hand, excessive activation of inflamma-
tory cascades can exacerbate the damage [13]. Thus,
inflammation should be regarded as a double-edged sword,
which possesses both neuroprotective and neurotoxic prop-
erties [46]. Furthermore, inflammation and oxidative stress
are closely related and interacting with pathological pro-
cesses during SCI. It is critical to gain insight into the charac-
teristics of the inflammatory response and to delineate
beneficial and deleterious aspects of it to target them thera-
peutically. In addition, astrocytes around the lesion begin to
proliferate and become hypertrophic during the subacute
phase, forming a gliotic scar. Apart from scar formation,
astrocytes also play a critical role in maintaining ionic
homeostasis and restoring the integrity of the blood-brain
barrier after SCI [57]. The chronic phase of SCI is character-
ized by the maturation of the lesion, which eventually forms a
cavity surrounded by glial and fibrotic scars. However, up to
30% of SCI patients have spinal cord cavities that remain
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progressive during the chronic phase, leading to delayed neu-
rological damage and neuropathic pain [36, 58].

ROS production and apoptosis are crucial processes in
the pathophysiology of SCI, as described in the following
section.

3. Oxidative Stress in SCI

3.1. Production and Elimination of Reactive Oxygen Species.
Previous studies have shown that a large number of free rad-
icals are generated after SCI, represented by ROS, which are
important contributors to secondary damage [11, 12]. It is
well known that ROS are the normal by-products of oxygen
metabolism, and include superoxide, hydroxyl radicals, sin-
glet oxygen, and hydrogen peroxide [59]. Under physiologi-
cal conditions, low intracellular concentrations of ROS
facilitate the maintenance of cellular homeostasis by stimu-
lating endogenous antioxidant defense mechanisms and
enhancing cellular repair processes [60]. However, excessive
production of ROS can overwhelm the antioxidant defenses
and can have lethal effects on cells by damaging vital cellular
components such as lipids, proteins, and nucleic acids. For
example, ROS can induce lipid peroxidation, which tends
to attack and degrade polyunsaturated lipids [61]. These
lipids are essential components of biological membranes,
and their disruption results in cellular dysfunction, ultimately
leading to cell death. Meanwhile, ROS are known to react with
the components of proteins, including cleavage of the poly-
peptide chain, directed protein degradation, and amino acid
side chain modifications [62]. Additionally, ROS-induced oxi-
dation of DNA can cause a range of reactions, such as disrup-
tion of the purine and pyrimidine bases [63].

Mitochondria are the “powerhouse” of cells, utilizing
approximately 90% of intracellular oxygen by oxidative
phosphorylation; meanwhile, mitochondria are also the
major source of intracellular ROS [64]. In the pathogenesis
of SCI, ROS generation is closely associated with postinjury
ischemia and secondary reperfusion injury [49]. More
importantly, Wingrave et al. [65] found that impairment of
mitochondrial structure and function occurred in a rat model
of SCI, which further led to substantial ROS formation. Ele-
vated ROS can cause cell membrane damage and organelle
dysfunction via lipid peroxidation, which then leads to a cas-
cade of secondary injury events, including disruption of cal-
cium homeostasis and release of excitatory amino acids. All
these events, in turn, may further lead to mitochondrial dys-
function and increased ROS production, resulting in a
vicious cycle that ultimately leads to neural cell death [8,
66]. In addition to mitochondria, ROS may also originate
from other organelles and cellular compartments [67, 68]
such as peroxisomes, lysosomes, and the endoplasmic reticu-
lum, or from the action of cytosolic oxidases.

There are several endogenous antioxidant defense
mechanisms, including enzymatic and nonenzymatic antiox-
idants, that maintain cellular homeostasis. Specific enzymatic
antioxidants primarily include superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase. These enzymes
play a crucial role in cellular antioxidant defense. For
instance, SOD exerts its antioxidant effects by converting

superoxide to hydrogen peroxide; the decomposition of
hydrogen peroxide can then be accomplished by catalase or
glutathione peroxidase [59, 69]. Nonenzymatic antioxidants
mainly include vitamin C and E, glutathione, and flavonoids
[70]. All these antioxidant defense mechanisms ensure that
cells scavenge the right amount of ROS to maintain cellular
homeostasis under physiological conditions. However, when
excess ROS exceed their own scavenging capacity, the cells
will suffer from oxidative stress damage.

3.2. Oxidative Stress and Apoptosis. Apoptosis, or pro-
grammed cell death, is a controlled and energy-consuming
process that occurs in multicellular organisms [47]. Numer-
ous studies have shown that apoptosis is one of the major
pathological manifestations of secondary injury [55, 71–73],
and its severity directly affects the recovery of motor function
in SCI patients to a large extent. Therefore, the inhibition of
neuronal and glial apoptosis during secondary injury is a pri-
ority in the treatment of SCI. Liu et al. found that apoptosis of
neurons occurs predominantly in the early stages of SCI and
gradually decreases thereafter [14]; oligodendrocytes are the
main cell population that undergoes apoptosis between 24h
and 3 weeks after SCI [73, 74]. A growing amount of evidence
suggests that oxidative stress is closely associated with neuro-
nal and glial apoptosis [15]. During the secondary damage
phase of SCI, high levels of ROS induce lipid peroxidation
of biological membranes. 4-hydroxynonenal, a lipid peroxi-
dation product, has been found to accumulate after experi-
mental SCI and to induce apoptosis when added to cultures
of PC-12 cells or hippocampal neurons in vitro [72, 75].
Therefore, attenuating apoptosis during the period of sec-
ondary injury by suppressing excessive oxidative stress
deserves further investigation.

4. Role of Sirtuins in Oxidative Stress

4.1. Distribution and Function of Sirtuins. The protein
encoded by the silent information regulator 2 (Sir2) gene
was first discovered in yeast and is believed to have the func-
tion of activating telomerase and ribosomal DNA, prolong-
ing lifespan [26]. Sir2 homologs found in humans and
mammals are named sirtuins, which are histone deacetylases
with NAD+-dependent properties [76]. Sirtuins, although
homologous to Sir2, differ in their N- and C-terminal struc-
tural domains, which usually consist of a conserved catalytic
domain and variable N- and C-terminal structural domains
[76]. The sirtuin family proteins (SIRT1-7) are localized in
the nucleus, cytoplasm, and mitochondria, and they are
expressed in multiple organs and tissues in humans and
mammals [77]. The diversity of subcellular localization
affects the functions of the sirtuin family proteins in cells.
According to the molecular analysis of the conserved core
domain sequence of sirtuins from various organs and tissues,
the seven members of the sirtuin family are divided into four
groups: SIRT1, SIRT2, and SIRT3 as class I; SIRT4 as class II;
SIRT5 as class III; and SIRT6 and SIRT7 as class IV [26].
Among them, SIRT1 is the most widely studied member of
the sirtuin family, owing to its crucial role in many biological
processes including oxidative stress response, cellular
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metabolism, glucose homeostasis, and insulin secretion [26,
78, 79]. The human SIRT1 gene is on chromosome 10 and
encodes a protein consisting of 746 amino acids that contains
the NAD-binding catalytic core domain [76]. SIRT1 is
expressed in a variety of tissues and cells in vivo, including
the central nervous system, cardiomyocytes, hepatocytes,
glomerular cells, and skeletal muscles [26]. Under physiolog-
ical conditions, SIRT1 is present in the nucleus and cyto-
plasm and acts mainly in the nucleus to deacetylate
transcription factors such as peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α), p53, forkhead
box O (FOXO) s, and nuclear factor-kappa B (NF-κB) [76].
SIRT2 is an NAD+-dependent deacetylase, and the human
SIRT2 gene, composed of 18 exons, is on chromosome 19
at q13 [77]. The SIRT2 protein is found in the cytoplasm
and enters the nucleus during the G2/M transition, affecting
the cell cycle [80]. SIRT2 is widely expressed in different
organs and tissues, and actively participates in antioxidant-
and redox-mediated cellular homeostasis [77]. SIRT2 possibly
plays a role in cancer; however, it is unclear whether it acts as a
tumor suppressor or as an oncogene. SIRT3, SIRT4, and
SIRT5 enzymes are mainly located in the mitochondria where
they regulate mitochondrial metabolism, energy production,
and the formation of ROS to help maintain metabolic homeo-
stasis [76]. SIRT3 possesses NAD+-dependent deacetylase
activity, and the human SIRT3 gene is located on chromosome
11 at p15.5 [81]. SIRT3 is mainly distributed in mitochondria-
rich tissues and organs, such as kidneys, brain, heart, and liver,
and it is relatively less abundant in the testis, lung, ovary, and
thymus [82]. The deacetylase activity of SIRT3 is expressed
upon cleavage by mitochondrial processing peptidase [83]. In
recent years, as the number of SIRT3-related studies has
increased, the role of SIRT3 in the regulation of mitochondrial
respiratory function, redox homeostasis, insulin response,
metabolic adaptation, and stem cell differentiation has been
demonstrated [84]. In addition to its deacetylase activity,
SIRT4 mainly acts as an ADP-ribosyl transferase, primarily
in the kidneys, liver, heart, testis, and skeletal muscle, where
SIRT4 plays a regulatory role in mitochondrial function, anti-
oxidant defense, lipid metabolism, and insulin secretion [85].
SIRT5 is a mitochondrial sirtuin that regulates mitochondrial
respiration and redox homeostasis and has been found to have
enzymatic activities such as deacetylase, desuccinylase, and
demalonylase. SIRT5 is capable of removing acetyl, succinyl,
and malonyl groups from the lysine residues of proteins [86].
The human SIRT6 gene is located on chromosome 19 and
encodes a protein, known to be a nuclear protein, that deace-
tylates histone H3 lysine 9 and lysine 56 [87]. Studies have
shown that SIRT6 plays a key role in human telomere and
genome stability, oxidative stress, inflammation, and metabo-
lism of glucose and lipids [25, 88]. Knockout of the SIRT7 gene
in mice induces multisystemic mitochondrial dysfunction, as
well as reduced lifespan [89]. SIRT7 is a nuclear protein that
regulates RNA polymerase 1-mediated transcription with
highly selective histone deacetylase activity, which plays a key
role in chromatin regulation, tumor formation, and cellular
transformation programs [90]. Table 1 shows the enzymatic
activity, intracellular distribution, and potential mechanisms
of action of the sirtuin family proteins relevant for SCI.

4.2. Sirtuins-Mediated Antioxidant Defense

4.2.1. SIRT1 and SIRT2. The antioxidant defense activity of
SIRT1 is mostly due to its deacetylation of multiple targets,
including PGC-1α, p53, FOXOs, and NF-κB (Figure 1). Qin
et al. [91] found that resveratrol could inhibit oxidative stress
and apoptosis through the SIRT1/FOXO3a and PI3K/AKT
pathways, thereby reducing radiation-induced intestinal
injury. Mammalian FOXOs belong to the O class of the
FOX transcription factor superfamily, which includes four
members: FOXO1, FOXO3, FOXO4, and FOXO6 [92].
FOXOs play an important role in a variety of physiological
processes, including cell cycle, apoptosis, oxidative stress
protection, and homeostasis maintenance [93]. SIRT1 acti-
vates the transcriptional activity of some members of the
FOXO family of proteins to exert protective effects against
oxidative stress, maintain blood glucose homeostasis, and
suppress inflammation. SIRT1 also inhibits the transcrip-
tional activity of those FOXO genes involved in apoptosis,
thus protecting the cells from apoptosis [94]. Brunet et al.
[95] found that oxidative stress induced the translocation of
FOXO3 from the cytoplasm to the nucleus, and in turn,
SIRT1 deacetylated FOXO3, ultimately promoting cell sur-
vival. FOXOs can also regulate SIRT1 transcription by bind-
ing to SIRT1 promoter elements, upregulating SIRT1 mRNA
expression and protein levels, and protecting against oxida-
tive stress and aging-related diseases [96]. It was also shown
that the SIRT1 activator resveratrol prevents cell death by
reducing oxidative stress and protecting mitochondrial func-
tion in neuronal cell lines [97]. PGC-1α is a transcriptional
coactivator that interacts with the nuclear receptor PPAR-γ
to regulate genes involved in energy metabolism and is a
major regulator of mitochondrial biogenesis [98]. Chen
et al. [99] found that SIRT1 plays an important role in the
maintenance of cellular redox homeostasis by deacetylating
PGC-1α, activating and inducing its expression, promoting
mitochondrial biosynthesis, increasing the level of antioxi-
dant enzymes, and inhibiting the NADPH oxidase in vivo.
The tumor suppressor p53 requires posttranscriptional mod-
ifications, including phosphorylation and acetylation, for its
activation, and these modifications occur in a variety of stress
situations [100]. Oxidative stress increases p53 nuclear trans-
location and enhances DNA binding capacity and transcrip-
tional activity, leading to cell cycle arrest or apoptosis [91].
Kume et al. [100] demonstrated that SIRT1 inhibits the activ-
ity of p53 by deacetylating p53, thereby preventing apoptosis
induced by oxidative stress. NF-κB is a key protein that reg-
ulates inflammatory responses [101]. In the acute phase of
inflammation, mitochondria produce excess ROS that fur-
ther activate NF-κB to induce the expression of proinflam-
matory mediators, exacerbating the inflammatory response
and resulting in damage to the organism [102]. SIRT1
inhibits the NF-κB signaling pathway by deacetylating p65,
a subunit of NF-κB, to alleviate inflammatory responses
and oxidative stress [103]. In SIRT1 knockout embryonic
stem cells, H2O2-induced oxidative stress leads to elevated
expression of the apoptotic genes BAX and PUMA. SIRT1
reduces mitochondrial damage and protects cells from

4 Oxidative Medicine and Cellular Longevity



Table 1: Basic characteristics of sirtuins and the potential mechanisms in SCI.

Class Sirtuins
Intracellular
distribution

Activity Function Potential mechanisms

I SIRT1 Nucleus, cytoplasm Deacetylase
Oxidative stress,

inflammation, apoptosis,
autophagy, metabolism

SIRT1 activated by resveratrol
inhibits neuronal apoptosis in
SCI rats, reduces tissue damage,
and promotes motor function

recovery by activating autophagy
mediated by the SIRT1/AMPK

signaling pathway [131]
SIRT1 activated by resveratrol
promotes sonic hedgehog

signaling to exert antioxidant
and anti-inflammatory effects to
inhibit fibrous scar formation

after SCI [135]
MLN4924 significantly attenuates
oxidative stress and neuronal
cell death by regulating SIRT1
expression during spinal cord

ischemia-reperfusion injury [30]
miR-448 inhibits neuronal apoptosis
and improves neurological function
by upregulating SIRT1, thereby
alleviating spinal cord ischemia-

reperfusion injury [142]
SIRT1 exerts neuroprotective effects
by downregulating Wnt/β-catenin

signaling to inhibit microglia
activation, thereby reducing

inflammation and cellular stress
in the early stages of SCI [144]
The SIRT1/Nrf2 pathway in
astrocytes can be activated by

NFAT5, which exerts antioxidative
stress effects against oxygen-glucose-

serum deprivation/restoration
damage [145].

SIRT2 Nucleus, cytoplasm Deacetylase
Cell cycle, oxidative
stress, inflammation

SIRT2 promotes the differentiation
of ependymal stem cell into neurons

after SCI by increasing the
deacetylation of stable

Ac-α-tubulin in microtubules
to improve neural recovery [147]

SIRT3 Mitochondria Deacetylase
Oxidative stress,

apoptosis, autophagy,
metabolism

SIRT3 and PGC-1α protect rat
spinal cord motor neurons from
mutant SOD1(G93A)-induced

mitochondrial fragmentation and
neuronal cell death by maintaining
mitochondrial dynamics [148]

II SIRT4 Mitochondria
Deacetylase, ADP-ribosyl

transferase
Inflammation, oxidative

stress, metabolism

SIRT4 inhibits the
antineuroinflammatory

activity of regulatory T cells
infiltrating in the traumatically

injured spinal cord by
suppressing the AMPK
signaling pathway [149]
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apoptosis by positively regulating autophagy [104]. The
expression of SIRT1 is downregulated by miR-182-5p, which
was identified as a direct target of circERCC2. Xie et al. [105]
found that circERCC2 responds to oxidative stress by target-
ing themiR-182-5p/SIRT1 axis, significantly activating mito-
phagy, reducing degradation of the extracellular matrix, and
inhibiting apoptosis. This result shows that SIRT1 expression
plays a role in oxidative stress by regulating apoptosis and
mitophagy. The findings above also further validate that the
mechanism of SIRT1 as an antioxidant may be attributed to
its deacetylation of multiple targets (including PGC-1α,
p53, FOXOs, and NF-κB), although the process is also regu-
lated by miRNAs and other noncoding RNAs.

It has been reported that ROS production is a significant
trigger for SIRT2 upregulation [77] and that SIRT2 activity is
involved in cellular responses to oxidative stress [106]. Qu
et al. [107] demonstrated that the inhibition of SIRT2 accel-
erates the development of diabetic osteoarthritis (OA), and
the upregulation of SIRT2 alleviates the development of dia-
betic OA by inhibiting oxidative stress and inflammation,
which may be related to histone H3 deacetylation. However,
Kaitsuka et al. [108] found that SIRT2 inhibition induces
VEGF, hypoxia-inducible factor-1α (HIF-1α), and heme
oxygenase-1 gene expression and protects neuronal viability
from oxidative stress. The contrasting results suggest that
additional studies are needed to investigate whether it is the
inhibition or the upregulation of SIRT2 that confers a protec-
tive effect on oxidative stress, or whether there are tissue-
specific differences in SIRT2 function.

4.2.2. SIRT3, SIRT4, and SIRT5. The mitochondrial sirtuins
SIRT3, SIRT4, and SIRT5 act as key regulators of mitochon-
drial metabolism, oxidative stress, and cell survival. Several
studies have demonstrated that SIRT3, through its deacetyla-
tion activity, can activate glutamate dehydrogenase in amino
acid metabolism [109]; long-chain acyl-coenzyme A dehy-

drogenase in fatty-acid oxidation [110]; succinate dehydro-
genase and isocitrate dehydrogenase 2 (IDH2) in the
tricarboxylic acid cycle [109, 111]; and NADH dehydroge-
nase, ATP synthase, and acetyl-CoA synthetase 2 in the elec-
tron transport chain of oxidative respiration [112–114].
These enzymatic activities enhance mitochondrial oxidative
respiration, ensuring the stability of mitochondrial energy
metabolism and reducing ROS production. SIRT3 promotes
ROS scavenging in mitochondria by enhancing the activities
of various enzymes in the antioxidant system. Studies have
shown that SIRT3 deacetylates and activates manganese
SOD (MnSOD) in mitochondria and reduces ROS levels in
response to oxidative stress [115]. In addition, SIRT3 deace-
tylates and activates mitochondrial IDH2, leading to ele-
vated NADPH levels and an increased ratio of reduced
glutathione to oxidized glutathione in mitochondria, thereby
enhancing the mitochondrial glutathione antioxidant
defense system [116]. It has also been shown that SIRT3
can deacetylate acetylated FOXO3a and increase the mRNA
expression level of FOXO3a-dependent CAT, reducing the
level of intracellular ROS to protect the heart [117]. There-
fore, it can be suggested that SIRT3 can alleviate ROS-
induced oxidative stress by directly or indirectly increasing
the activities of ROS-scavenging enzymes such as MnSOD
and CAT and by increasing the intracellular levels of
reduced glutathione. All these results suggest that SIRT3,
through its deacetylation activity, may regulate a variety of
enzymes, transcription factors, and biological factors that
play an important role in the regulation of oxidative stress
processes.

A previous study suggested that overexpression of SIRT4
contributes to the inhibition of inflammatory responses and
oxidative stress during OA and that SIRT4 could be a target
for OA therapy [118]. However, Luo et al. [119] obtained
contrasting results, as they found that SIRT4 promotes oxi-
dative stress in angiotensin II-induced myocardial hypertro-
phy by increasing ROS levels and inhibiting SIRT3-mediated

Table 1: Continued.

Class Sirtuins
Intracellular
distribution

Activity Function Potential mechanisms

III SIRT5 Mitochondria
Deacetylase, desuccinylase,

demalonylase
Oxidative stress,

apoptosis, metabolism

SIRT5 plays a major role in
PKCε-mediated neuroprotection
against cortical degeneration
and neural cell death following

cerebral ischemia [150]

IV SIRT6 Nucleus
Deacetylase, demyristoylase,
depalmitoylase, ADP-ribosyl

transferase

DNA repair, oxidative
stress, apoptosis, autophagy,
inflammation, metabolism

SIRT6 could act as a protective
factor to attenuate SCI by

inhibiting inflammation, oxidative
stress, and cell apoptosis [152]

SIRT7 Nucleolus Deacetylase
Oxidative stress, apoptosis,

rRNA transcription

SIRT7 may protect neurons from
oxygen-glucose deprivation and

reoxygenation-induced damage by
regulating the p53-mediated

proapoptotic signaling
pathway [154]

Abbreviations: SIRT: sirtuin; SCI: spinal cord injury; AMPK: AMP-activated protein kinase; phosphatase and tensin homolog: PTEN; PKCε: protein kinase C
epsilon; PGC-1α: peroxisome proliferator-activated receptor-γ coactivator-1α.
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deacetylation of MnSOD, thereby promoting hypertrophic
growth, fibrogenesis, and cardiac dysfunction. Therefore,
it is still unclear whether SIRT4 activity exerts a beneficial
role in decreasing oxidative stress levels, and further stud-
ies will be needed to explore SIRT4 function on redox
homeostasis.

SIRT5 plays an important role in inhibiting peroxisome-
induced oxidative stress, protecting the liver, and inhibiting
the occurrence of hepatocellular carcinoma [120]. Ye et al.
[121] found that SIRT5, because of its effect of stimulating
cell proliferation and tumor growth in response to oxidative
stress, could be a potential target for clinical cancer
research. Zhou et al. [122] demonstrated that SIRT5 regu-
lates cellular NADPH homeostasis and redox potential by
promoting IDH2 desuccinylation and glucose-6-phosphate
dehydrogenase deglutarylation. The current findings dem-
onstrate that SIRT5 may be involved in oxidative homeosta-
sis and tumor development by regulating oxidative stress
processes.

4.2.3. SIRT6 and SIRT7. Several studies have demonstrated
the potential antioxidant activity of SIRT6 and SIRT7
toward different forms of oxidative stress [87, 123–128].
Huang et al. [87] found that the inhibition of SIRT6
increased the levels of inflammatory mediators and ROS,
aggravating inflammation and oxidative stress, thus exacer-
bating diabetic cardiomyopathy. Collins et al. [123] demon-
strated that by regulating specific members of the
peroxiredoxin catalytic cycle, SIRT6 could maintain chon-
drocyte redox homeostasis. Zhou et al. [124] demonstrated

that SIRT6 protects from acetaminophen-induced hepato-
toxicity by reducing oxidative stress and promoting hepato-
cyte proliferation. Knockdown of FOXO6 enhances nuclear
factor erythroid 2-related factor 2 (Nrf2) activation through
upregulation of SIRT6, protecting cardiomyocytes from
hypoxia-induced apoptosis and oxidative stress [125]. The
results above suggest that SIRT6 may play a significant role
in redox homeostasis by inhibiting oxidative stress and
inflammation.

Vakhrusheva et al. [126] found that SIRT7-deficient pri-
mary cardiomyocytes showed a significant increase in basal
apoptosis, suggesting a key role of SIRT7 in regulating oxida-
tive stress and cell death in the heart. The mechanism for the
cardioprotective effect of SIRT7 may be due to the fact that
SIRT7 increases resistance to cytotoxicity and oxidative stress
by deacetylating p53. Lewinska et al. [127] found that vascu-
lar smooth muscle cells exhibited SIRT7 downregulation and
increased p53 stability in response to curcumin-induced oxi-
dative damage. The mechanism for this effect may be that
SIRT7 downregulation reduces RNA polymerase 1-
mediated transcription and stabilizes p53 to activate the tar-
get protein p21, which ultimately leads to cell cycle arrest.
HIF is an important transcription factor that mediates adap-
tation to hypoxia [128]. The mechanism by which SIRT7 reg-
ulates HIF activity differs from that of other sirtuins because
SIRT7 downregulates HIF at the protein and transcriptional
level in a way that is independent of deacetylase activity
[128]. The above results indicate SIRT7may play a regulatory
role in oxidative stress by regulating P53 stability and HIF
activity.
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Figure 1: SIRT1 regulates different target genes against oxidative stress. The oxidative stress resistance of SIRT1 is partly attributable to its
deacetylation of multiple targets, including PGC-1α, p53, FOXO3a, and NF-κB. Among them, FOXO3a interacts with p53, forming a
complex that promotes the binding of p53 and SIRT1, stimulates SIRT1 expression, and inhibits apoptosis and oxidative stress. (ROS:
reactive oxygen species; CAT: catalase; MnSOD: manganese superoxide dismutase).
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5. Targeting Sirtuins for Potential Therapeutic
Applications in SCI

5.1. Therapeutic Potential of Targeting SIRT1 in SCI. SIRT1 is
widely distributed throughout the brain and spinal cord in
rodents and humans, with subcellular localization predomi-
nantly in the nucleus [129]. Numerous studies have shown
that SIRT1 plays a key role in the central nervous system
(CNS) by regulating various intracellular activities [30, 130–
146]. Resveratrol, a classical activator of SIRT1, has been
reported to inhibit apoptosis of VSC4.1 motor neurons by
promoting SIRT1-mediated autophagy [130]. Zhao et al.
[131] found that resveratrol could inhibit neuronal apoptosis
in SCI rats, reduce tissue damage, and promote recovery of
motor function by activating autophagy mediated by the SIR-
T1/AMPK signaling pathway. Moreover, many studies have
shown that resveratrol is beneficial in various in vitro and
in vivo models of neuronal death and degeneration in the
CNS. However, Tang et al. suggested that the neuroprotective
effects of resveratrol may not be directly mediated by SIRT1,
but more likely by AMPK [132]. AMPK is an enzyme that
plays a role in cellular energy homeostasis, largely activating
the uptake and oxidation of glucose and fatty acids when cel-
lular energy is scarce. AMPK also regulates the initiation of
autophagy, exerting antioxidant effects. Studies have shown
that AMPK is involved in the prevention of oxidative stress
due to the activation of SIRT1 and FOXO1 [133]. Similar
results demonstrating the protective effects of AMPK/-
SIRT1-mediated autophagy on spinal cord neurons were also
reported by Yan et al. [134]. Resveratrol has also been shown
to activate the SIRT1-mediated sonic hedgehog signaling to
exert antioxidant and anti-inflammatory effects to inhibit
fibrous scar formation after SCI [135]. Furthermore, resvera-
trol protects the lung from SCI-induced inflammatory dam-
age by upregulating SIRT1 expression and inhibiting NF-κB
activity, making it a treatment option for lung disease occur-
ring after SCI [136]. Additionally, melatonin also exerts neu-
roprotective effects on SCI by activating autophagy and
inhibiting apoptosis via the SIRT1/AMPK signaling pathway
[137]. Chen et al. found that SRT1720, a SIRT1 agonist, con-
tributed to improved outcomes after SCI in wild-type mice
by inhibition of inflammation; however, SIRT1-knockout
mice exhibited worse locomotor recovery [138]. Notably,
MLN4924, a potent inhibitor of the NEDD8-activating
enzyme, significantly attenuates oxidative stress and neuronal
cell death by regulating SIRT1 expression during spinal cord
ischemia-reperfusion injury [30]. Further experiments are
needed to verify whether resveratrol directly activates SIRT1
to exert neuroprotective effects; however, it is clear that SIRT1
plays an important role in neuroprotection after SCI.

Several miRNAs have been reported to be potential ther-
apeutic targets for SCI by regulating SIRT1. Yu et al. [139]
found that SIRT1 contributes to the inhibition of apoptosis
via the p53 signaling pathway in SCI, both in vivo and
in vitro, whereas miR-494 inhibits this process and induces
apoptosis by targeting SIRT1. In addition, miR-138-5p has
been reported to play important roles in the development
of SCI by regulating the PTEN/AKT signaling pathway via
SIRT1 [140]. Wang et al. [141] demonstrated that the deple-

tion of miR-30c protects PC-12 cells from apoptosis and
inflammation caused by oxygen-glucose deprivation through
targeting SIRT1, thereby mitigating spinal cord ischemia-
reperfusion injury. Moreover, downregulation of miR-448
inhibits neuronal apoptosis and improves neurological func-
tion by upregulating SIRT1 to reduce spinal cord ischemia-
reperfusion injury [142]. Consequently, more miRNAs tar-
geting SIRT1 should be investigated and developed as poten-
tial strategies to treat SCI.

Microglia, with their polysynaptic and plastic character-
istics, are intrinsic immune effector cells in the CNS and
release a variety of cytotoxic substances in acute neurodegen-
erative diseases that directly damage neurons and lead to
neuronal death in the CNS [143]. Thus, microglia activation
is a key factor in posttraumatic inflammation and oxidative
stress. Consequently, regulation of microglia activation is
crucial for the recovery of neuronal function. Lu et al. [144]
demonstrated that SIRT1 exerts neuroprotective effects by
downregulating Wnt/β-catenin signaling to inhibit microglia
activation, thereby reducing local inflammation and cellular
stress in the early stages of SCI. Astrocytes also play impor-
tant roles in the repair and reconstruction of SCI. The
SIRT1/Nrf2 pathway in astrocytes can be activated by
NFAT5, which exerts antioxidative stress effects against
oxygen-glucose-serum deprivation/restoration damage
[145]. Notably, reduced SIRT1 is also one of the injury mech-
anisms causing impairment in CNS energy homeostasis after
SCI in a Western diet, which is linked to astrocyte metabo-
lism [146]. These results confirm the crucial roles of SIRT1
during the pathological process of SCI and highlight SIRT1
as an effective target for the treatment of SCI.

5.2. Therapeutic Effects of Targeting Other Sirtuins for SCI.
Many studies have explored the roles of six sirtuins other
than SIRT1 for the treatment and functional recovery of
SCI [108, 147–155]. SIRT2 promotes the differentiation of
ependymal stem cells into neurons after SCI by increasing
the deacetylation of stable Ac-α-tubulin in microtubules to
improve neural recovery [147]. However, Kaitsuka et al.
[108] demonstrated that SIRT2 inhibition activates HIF-1α
signaling and protects neuronal viability from oxidative
stress. This opposite conclusion regarding SIRT2 may be
related to the different time points of its role in SCI patho-
physiology. Song et al. [148] found that SIRT3 and PGC-1α
protect rat spinal cord motor neurons from mutant
SOD1(G93A)-induced mitochondrial fragmentation and
neuronal cell death by maintaining mitochondrial dynamics.
Recently, SIRT4 was shown to inhibit the antineuroinflam-
matory activity of regulatory T cells infiltrating the traumat-
ically injured spinal cord by suppressing the AMPK signaling
pathway [149]. SIRT5 plays a major role in PKCε-mediated
neuroprotection against cortical degeneration and neural cell
death following cerebral ischemia [150]. However, SIRT5 has
both antiapoptotic and proapoptotic effects. Subcellular
localization may be a significant determinant of the effect of
SIRT5 on neuron viability [151]. Furthermore, SIRT6 also
acts as a protective factor against SCI by inhibiting inflamma-
tion, oxidative stress, and cell apoptosis to attenuate damage
[152]. However, Shao et al. [153] showed that SIRT6
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enhanced the damage induced by oxidative stress in neuronal
cells, which was related to necrotic cell death and increased
ROS production. In addition, SIRT7 may protect neurons
from oxygen-glucose deprivation and reoxygenation-
induced damage by regulating the p53-mediated proapopto-
tic signaling pathway [154]. The protective effects of low con-
centrations of ferulic acid on PC12 cells against H2O2-
induced apoptosis were partially mediated by SIRT7 [155].
The above research results indicate that sirtuins are promis-
ing potential targets for the prognosis and treatment of SCI.
However, in order to better apply therapeutic approaches tar-
geting sirtuins in SCI, it is necessary to elucidate the distinct
roles of sirtuins in different pathophysiological phages and
the appropriate time window for therapeutic intervention.

6. Concluding Remarks

The research discussed herein supports that oxidative stress
and its products can damage important macromolecules,
such as lipids, proteins, and DNA, disrupting intracellular
homeostasis and biological functions. After a primary injury
of the spinal cord, excessive ROS-induced oxidative damage
is closely associated with neuroinflammation, excitotoxicity,
and cell death, which represent hallmarks of the secondary
damage cascade. Based on these findings, therapeutic strate-
gies targeting oxidative stress and relevant signaling are
expected to be effective in mitigating secondary injury, as
documented in preclinical experiments. In the last decade,
accumulating in vitro and in vivo studies have indicated that
sirtuins are promising therapeutic targets in SCI. However,
these therapies have been studied under certain in vitro con-
ditions or in animal models of SCI that are not fully represen-
tative of the pathophysiology of SCI in humans. In addition,
most of the studies did not involve transgenic animal models,
which could have provided stronger evidence that antioxi-
dant protection in SCI is dependent on sirtuins. Therefore,
to better utilize sirtuins against oxidative stress in the treat-
ment of SCI, more extensive studies in animal models and
human clinical trials are needed to validate these therapeutic
approaches.
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