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Robotic intravenous poles are automated supportive instrument that needs to be triggered by patients to hold medications and needed
supplies. Healthcare engineering of robotic intravenous poles is advancing in order to improve the quality of health services to patients
worldwide. Existing intravenous poles in the market were supportive to patients, yet they constrained their movement, consumed the
time of both the patient and the nurse, and they were expensive in regard to what they offer. Although robotic poles overcame some of
the movement limitations of the commercial/market poles, they were partially automated and did not offer additional technological
features. The aim of our work was to develop a fully automated Biomedical Intravenous Pole Robot (BMIVPOT) to resolve the
aforementioned limitations and to offer new technological features to intravenous poles, thereby promoting the health services.
Several sensors and build-up materials were empirically chosen to be cost-effective and fulfill our needs. The new prototype was
divided into three steps: simulated prototype, real implementation of the prototype, and testing and evaluation. Simulation results
showed the best qualitative way to fit all the specifications in the robotic system, such as the shape, sensors, and connections in order to
provide the proper functionality of the system. Experimental and real results provided the manufactured parts, implemented sensors,
and the final robot. Testing the tracking and the flow sensor performances were provided. Evaluation of our Biomedical Intravenous
Pole Robot with alternatives showed that our robot outperforms the other poles in many aspects including the features it offers, the
percentage of interventions it comprised, the reliability, and cost-effectiveness. The overall percentage of features offered by our
Biomedical Intravenous Pole Robot was 60% higher than that offered by peer research poles and 80% higher than that of the market
poles. In addition, the average percentage of integration of interventions (architecture, sensor, wireless, tracking, and mechanical) in
the Biomedical Intravenous Pole Robot was at least 56% higher than that of the alternative poles. According to the results, Biomedical
Intravenous Pole Robot offers a cost-effective price as compared to the others. As a future prospect, we intend to add more features to
this prototype in order to enhance it, such as vital signs detection, and improve the tracking system.

1. Introduction

Robotic intravenous (IV) poles are medical supportive in-
struments under research that could be partially automated
and could hold IV medications to patients in an advanced
way [1-3]. With the introduction of research IV poles, such
as the so-called autonomous IV poles [1], and the robotic IV
pole or novel robotic IV pole [2], some improvement to the

commercial/market designs has occurred. The enhancement
was centered on the IV poles’ field of movement. In the
autonomous IV pole designed by Binger et al., the so-called
autonomous motion was achieved by the attachment of a
nylon twine between the patient and the robotic system [1],
while in the preliminary robotic IV pole designed by Sayed-
Kassem et al., the automated motion was achieved via a
joystick controlled by the patient [2, 3]. According to the
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survey results showing the benefits of the robotic IV poles
from the nurses, patients, and human resources points of
view, there was a common agreement on the advantage of
the robotic IV pole, which was designed to improve the
comfort, cost, and feasibility. The majority of nurses
(87.55%), patients (94.60%), and human resources (84%)
agreed on the health benefits of the robotic IV pole as shown
in Figure 1. Pertaining to the financial benefits of the robotic
IV pole, 61.79% of nurses, 88.45% of patients, and 67.50% of
human resources agreed on its reasonable price, while the
additional benefits exhibited the higher percentage of
agreement from patients (93.26%), nurses (91.66%), and
human resources (83%), respectively [2].

Despite the survey and the enhancement related to the
movement of research IV poles, the motion was not fully
automated, and the problems of nurses’ time consumption
and sensors’ lack were not solved completely. By comparing
their presented features and their cost, the partially automated
IV pole costs around $2000 [1], and the robotic IV pole costs
around $300 [2]. Furthermore, the robotic IV poles were
considered somehow costly as opposed to market poles [2].

Based on what preceded, the aim of our project was to
design a new fully automated prototype for what we named a
BioMedical IntraVenous Pole Robot (BMIVPOT). We hy-
pothesize that BMIVPOT enhances the healthcare service to
patients in hospitals and medical centers through its new,
fully automated, user-friendly, and reasonably priced pro-
totype. Our aim is to (i) improve the tracking system which
provides the automated movement of the robot, (ii) enhance
the detection of the saline’s level, (iii) add new sensors to
detect blood leakage in the IV tube, the saline’s flow and thus
increase the safety of the robot.

Our paper showcased the workflow for building the
different parts of the fully automated system. The workflow
comprised three main parts: simulation, hardware (com-
bining system parts), and the testing and evaluation steps.
The simulation of the system was implemented according to
the AutoCAD drawings, which permit the visualization of
the different building blocks of the full design. On the other
hand, the real construction and hardware included the
combination of the materials involved in the development of
BMIVPOT. Moreover, the testing and evaluation of the
performance and the cost-effectiveness of our prototype was
revealed through the graphs and through comparing
BMIVPOT to the existing designs and standards.

The remainder of this paper is organized as follows. In
Section 2, the types of IV poles existing in the literature were
provided. In Section 3, the BMIVPOT’s materials and
methods were introduced. In Section 4, the prototype’s
implementation was reported. In Section 5, the three types of
results, simulation, real, and testing and evaluation results,
were presented. In Section 6, the aforementioned results
were discussed, and in Section 7, a general conclusion and
future work were provided.

2. Existing Robotic Intravenous (IV) Poles

After our thorough review and research on the existing IV
poles/stands, these stands can be divided into two main

Journal of Healthcare Engineering

categories: the research IV poles and the IV poles present in
the market (shortly market poles). The research IV poles
were divided into two, the autonomous IV stand [1] and the
robotic IV stand [2], while the market/commercial IV poles
were divided into several designs, including, but not limited
to, the ambulatory patient support stand [4], Homecare IV
stand [5], hanging IV pole [6], Brewer stands [7], and Dyaun
IV stand [8, 9] as shown in Figures 2(a)-2(g). The market IV
poles are shown in Figures 2(a)-2(e), while research poles
are shown in Figures 2(f) and 2(g).

2.1. IV Poles in Research. The common research IV pole
designs are the autonomous IV stand developed by Binger
et al. [1] and the robotic IV stand developed by Sayed-
Kassem et al. [2, 3]. These two poles that were used in re-
search are shown in Figures 2(f) and 2(g), respectively.

The autonomous IV stand allows mobile medicine de-
livery without the need for the patient to maneuver the
system [1]. However, in the latter design the patient is
tethered to the device via a nylon twine attached to a gait belt
that the patient has to wear around the waist. The position of
the patient and the angle of measurement are produced by
two encoders: the potentiometer and the rotary encoder
shaft [1].

Furthermore, the robotic IV pole allows the patient to
move the stand using a joystick and releases an alarm
whenever the IV bag is emptied [2]. However, the movement
of this device depends mainly on the Radio Frequency (RF)
communication between the controller (joystick) and the
robotic base. This was achieved by sending commands to
three Direct Current (DC) motors triggering three omni
wheels, thereby controlling the translation and rotation of
the robot. The emptiness of the IV bag was detected using a
photodiode placed at the lower end of the IV bag [2].

2.2.1V Poles in the Market. Market/commercial IV poles are
the most common poles used nowadays; they comprise a
stand, wheeled base, and hooks assembled side by side, so
that the hooks are attached to the top of the stand and the
wheeled base is attached to its bottom [4]. These IV poles can
be differentiated according to the added features. Ambu-
latory patient support, shown in Figure 2(a), is a stand
associated with a horizontal support handle which aids in
moving the stand feasibly. By pushing the pole while holding
the handle, the patient exerts less force as opposed to the
usual forces applied to push an ordinary IV pole [5] as
shown in Figure 2(a). Homecare IV stand, shown in
Figure 2(b), is designed by ensuring the center of mass at its
base (bottom part), which is attached to two back supportive
wheels and two front casters [5]. The latter design provides
an easy assembly and disassembly of the device and allows
the adjustment of the elevation of the IV bag depending on
the patient’s height [5]. Moreover, the hanging IV pole,
shown in Figure 2(c), is a pole attached to the roof directly
above the patient’s bed. A drawback of such an IV stand is
that it does not permit the patient to maneuver the pole;
someone has to always hold the IV bag [6]. Besides, the
Brewer stand, shown in Figure 2(d), is a free-standing
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The Averaged Survey Results of the Preliminary Robotic IV Pole Design

Nurses Patients Human resources

m Health (%)
m Financial (%)
= Additional (%)

FIGURE 1: The averaged survey results of the preliminary robotic IV pole design [2].

(e) (®

F1Gure 2: Different intravenous (IV) stands available in the market (top) and in research (bottom). (a) Ambulatory patient support stand
[4]. (b) Homecare IV stand [5]. (c) Hanging IV pole [6]. (d) The simple free-standing pole [7]. (e) Dyaun IV stand [9]. (f) Autonomous IV
pole [1]. (g) Robotic IV pole [2].
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(c) HC-SR04 ultrasonic sensor was used as an
obstacle detector [13, 14].

(d) I2C 16x2 Arduino Liquid Crystal Display
(LCD) module [15] was used to display the
different detected and measured parameters.

mobile pole which includes improvement in hangers, ac-
cessories, and the adjustment of the stand’s height. The
primary difference of the Brewer stand as opposed to
Figures 2(a)-2(c) is in the design of the base and the number
of wheels included. A more advanced free-standing IV pole
is the Dyaun IV pole, shown in Figure 2(e); however, it is no
longer utilized nowadays [8, 9].

Both the advantages and drawbacks/disadvantages of the
IV poles existing in the market and in research were pro-
vided in Table 1. The drawbacks reported for the existing
poles were centered on its cost, the space it occupies, how it
is maneuvered, and the absence of crucial features. Thereby,

(iii) The wireless materials included the use of the Wi-Fi
NodeMCU shield which was used due to its feasi-
bility and ability to send an analog signal and several
digital signals [16, 17].

(iv) The patient’s tracking materials were as follows:

(a) The Raspberry Pi 3 was used due to its capability

these reported drawbacks triggered the development of the
fully automated BMIVPOT.

3. Biomedical Intravenous Pole
Robot (BMIVPOT)

The materials used to develop the novel prototype of the
robotic IV pole, ie, BMIVPOT, were provided. The
framework of this design is shown in Figure 3. The tracking
system is composed of the camera, the TAG, and the
controller of the image processing. The tracking system then
drove four DC motors allowing the automated movement of
the system. Moreover, the sensors of the saline level and
blood leak detectors were implemented on the IV stand, and
the parameters measured were displayed on an LCD screen.
The measured results were planned to be sent wirelessly to
the medical staff allowing them to monitor these parameters
and control the flow. In addition to the emergency system,
the DC motor was attached to four caster wheels to work
traditionally when needed.

3.1. BMIVPOT Materials. The materials needed for the
implementation of BMIVPOT prototype were selected to
achieve the fully automated tracking and to provide new
features. Noteworthily, the new features are the detected
flow rate, detected blood leak, detected volume, detected
obstacle, emergency alarm, linear velocity of BMIVPOT,
angular velocity of BMIVPOT, and the distance covered by
the BMIVPOT. These materials are listed as follows:

(i) The choice of the architecture materials was based
mainly on both the material’s weight and availability
as compared to several designs. According to Fig-
ure 3, the architecture of the BMIVPOT comprised
the IV stand, camera, and base. The Plexiglas ma-
terial was employed due to its common availability,
its hygienic property, ease of cleaning, and its cost-
effectiveness [10].

(ii) The sensor materials were as follows:

(a) A load cell was used to detect the saline’s level
and thus volume, connected to a load cell
amplifier module (HX711) [11] as shown in
Figure 3.

(b) The blood leak detector and the flowmeter were
Infrared Light-Emitting Diode (IR-LED) and
photodetector, respectively [12].

in running multiple programs simultaneously
and performing image processing at a reason-
able pace [18, 19].

(b) An 8-megapixel camera module V2 was

employed due to its compatibility with the
Raspberry Pi 3 [20]. Thereby, this camera system
could recognize the unique TAG, placed on the
patient, at larger distances [21], while ensuring
the security of each patient through the unique
TAG.

(c) The TAG used was a square-colored image with

a yellow background and red foreground as
shown in the model in Figure 4. In order to
obtain a unique identification of the patient, the
camera was implemented to focus on the
aforementioned image. Moreover, each side of
the square in the TAG/image was 15 cm. The
simple scenario of tracking the target was shown
in Figure 4 through a direct straight line. Re-
gardless of the scenario of tracking whether
simple or complex, BMIVPOT was planned to
maintain a safe distance between its boundaries
and any obstacle present within its safety dis-
tance (D, ). Also, the robot was planned to
maintain the followed target’s center of mass
within its Field of View (FOV). BMIVPOT was
also planned to maintain the target between the
distance d,;, and d,, in order to keep the
target (patient) safe in the presence of static
obstacles.

(v) The mechanical materials were as follows:

(a) The flow control system was composed of a

stepper motor (controlled by a DRV8825 motor
driver), screw, and bolt [22]. The stepper motor
was controlled by DRV8825 motor driver. The
hybrid stepper motor was selected due to its
high holding torque and low power consump-
tion [23, 24].

(b) Four DC motors were placed in the base and

connected to four Mecanum wheels in order to
provide a smooth movement associated with all
the degrees of freedom [25-27]. The high torque
DC geared motor was selected due to its high
holding torque and low power consumption
[28, 29]. In addition, two relay modules were
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TaBLE 1: The advantages and disadvantages of the IV poles existing both in research and in the market.

IV pole types Method Advantages Disadvantages

High cost (>2000); complex design; no wireless
communication between the nurse and the IV pole;
can carry only one IV bag, i.e., can withstand a low

weight; consumes a lot of power

Autonomous IV

Automated movement
stand

Research IV

oles . .
P Semiautomated movement; saline sensor

and alarm; can carry several IV bags; can be
manually controlled

Ambulatory patient  Stable; resembles the walker; helpful for
support stand patients with walking difficulties
Homecare IV stand Easy assembly and disassembly; lightweight Low load capacity, i.e., can hold slight weight merely
Occupies lower space; low probability of ~ Limited mobility area; requires nurse assistance;

transporting bacteria absence of a place to attach a medical equipment
Simple design; high strength; high system Limited mobility of patients; requires nurse
stability; smooth movement; most popular assistance
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F1GUre 3: The block diagram of the Biomedical Intravenous Robot (BMIVPOT).

employed to provide the correct voltage polarity
to the DC motors.

(c) The Arduino UNO was used to control the DC
motors.

(d) Another DC motor [28, 30] and four caster
wheels were used to form the emergency system.

3.2. BMIVPOT Development Method. In order to develop the
BMIVPOT, first a simulation of the prototype was carried out

using AutoCAD; then the real prototype construction was
achieved. The interventions that we have done to provide the
new fully automated BMIVPOT were divided into architec-
ture (related to the shape), electronic (choice of sensors),
mechanical (flow rate detection), communication (related to
the Wi-Fi technology), and the tracking intervention.

3.2.1. Simulation Method. The AutoCAD simulated draw-
ings were used to showcase the architecture intervention
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FIGURE 4: Model of the BMIVPOT, target distance, and TAG.

revealing the different geometric aspects of the design. The
architecture of the prototype was mainly composed of the
base and stand. The shape of the base was chosen to be
surface efficient; the whole surface was used and filled with
electronics. A large surface was required to realize the
electronics. Therefore, according to the empirical inference
[31], the octagonal shape, having a side of a = 27.1 cm and
an area of A =2(1+ v2)a? = 3540.81 cm® was the best
design. This shape solved the trade-off between conserving a
large surface and reducing the weight. The BMIVPOT’s
stand was planned to have a square shape in order to place
the required objects on it as shown in the studies of Hajj-
Moussa et al. and Kozah et al. [31-33].

Concerning the architecture intervention, it comprised
the AutoCAD simulation steps needed to plan for the
construction of the real BMIVPOT. The other interventions
provided specific functions to the system; the assembly and
the connection between all the materials are shown in
Figure 3.

3.2.2. Real Prototype Method. The real construction method
of BMIVPOT was based on the overall design (architecture),
sensors, wireless communication, patient’s tracking, me-
chanical, and healthcare communication services. To achieve
the architecture intervention, apply the following:

(i) Use a total Plexiglas volume of 5.019296 x 10%-m?
and thus a base of overall weight of 5.9 kg according
to W =pV, with p,.;=1180kg/m’. Choose the
stand to be aluminum with thin thickness.

Regarding the sensor’s consideration,

(i) Measure the saline’s weight to calculate the
volume.

(ii) Detect the saline’s droplet using the flow meter.

(iii) Count the droplet when it passes between the IR
emitter and the receiver, through calculating the
change in intensity values detected by the receiver.

(iv) Compute the flow rate by considering the number
of drops per minute.

(v) Place the tube near the IV insertion in the blood
detector system, in order to detect any backflow of
blood from the patient’s vein to the tube.

(vi) Detect the blood leakage when the intensity drop is
recorded by the phototransistor, give an alarm, and
send a notification to the nurse.

(vii) Place the ultrasound (US) sensors on the four sides
of the base in order to detect at least obstacles at
10cm away from the base and to provide more
security to the system.

(viii) Display the parameters measured (flow volume, time)
on an LCD screen connected to the main controller.

Regarding the wireless intervention,

(i) Integrate Wi-Fi shields on the volume detector, the
flow meter, the blood leak detector, and the flow
control system.

(ii) Provide the detected and calculated parameters (the
volume and the flow of the saline) and the blood
leakage on the cellphone of the nurses. Thereby, they
could monitor and control the saline’s flow.



Journal of Healthcare Engineering

Pertaining to the patient’s tracking,

(i) Attach the chosen camera to the IV pole in order to
track the patient’s movement by TAG recognition.
Recall that the TAG was a simple small image
printed on the back of the patient’s costume. The
TAG has the shape of a square of side (b = 15cm).

(ii) Take into consideration that the distance interval
has to be maintained between the TAG and the
camera based on the forthcoming calculations:

(a) Identify the TAG by taking 492 pixels/m as an
assumption. This resolution was used for the
identification of unknown faces in forensic
applications.

(b) Calculate the FOV of the camera according to
the study of Hajj-Moussa et al. [31].

(c) Calculate the maximum distance to get the
FOV through the right triangle shown in
Figure 5. The opposite side of the right triangle
is FOV/2, and the angle (X) is half of the angle
of the camera’s lens. Thereby, the hypotenuse
(H) is the distance taken from the camera’s
lens in order to ensure that the desired FOV is
equal to 6.4533m, where the desired hori-
zontal FOV value was 6.67 m. The calculation
was based on Figure 5 and the following
equations:

C
Radius: R = —, (1)
21

where C is the circumference of the circle.
Circumference: C = S(360A), (2)

where S was the approximated segment of the
circle, R was the radius (the FOV), and A was
the angle.

(d) Concerning the vertical FOV, repeat the same
calculation by setting FOV at 5m, the radius at
5.87, and the distance at 6 m, based on the lens’s
vertical angle. Thereby, the maximum distance
that the 8 MP camera can identify an object was
at 6.67m along the horizontal direction and
5.87m along the vertical direction, with
492 pixels/m, which was sufficient for the TAG
identification [31].

(iii) Process using the Raspberry Pi 3 the captured
images in order to identify the patient’s position,
send the coordinates of the patient to the Arduino
UNO, and trigger the IV pole to follow the patient.

Regarding the mechanical intervention,

(i) Introduce and place a flow control system on the
new BMIVPOT. While the motor rotates, the screw
rotates performing a translational motion. This final
motion causes a pressure on the IV tube which
controls the saline’s flow.

(ii) Use four DC motors to move the base.

(iii) Assume that the average acceleration of a walking
human is 0.65 m/s?, and the total mass of the system
is approximately 40 kg, including an average addi-
tional load that can be attached to the system. The
summation of forces has to be equal to the driving
force which was 26 N. Thus, according to torque
equation 7= (force) (radius of wheel), the total
torque that the four motors have to handle was
1.3N-m, i.e, 0.325N-m for each motor.

(iv) Code the Arduino UNO to control the two relay
modules, which then controls the DC motors.

(v) Drive the DC motor by two relay modules, in order
to lift up the casters so that the system moves on the
Mecanum wheels, or lower the caster down in case
of emergency.

3.2.3. Testing and Evaluation Method. The testing of the
system’s performance, feature monitoring, and cost effec-
tiveness was based on the accuracy and repeatability of the
measurements. While the evaluation was based on com-
paring the results obtained from BMIVPOT to those existing
in the market and in research. To check the function of each
sensor, follow the upcoming steps:

(i) Test the volume meter by applying a series of
known-weight stuftf and checking if the measured
values obtained by the balance were equal to them.

(ii) Test the flow meter by placing the drip chamber of
the IV bag in the flow meter’s housing and setting
the saline at “slow flow” so that you could count the
drops manually and check if the flow meter had
counted the same number of drops.

(iii) Test the blood leak detector by checking if the
alarm is triggered when blood passes in front of the
LED and the phototransistor.

(iv) Test the flow control system by checking if the
screw was pushing on the tube with the correct
pressure to provide the intended flow rate.

(v) Test the LCD display to verify if the values dis-
played are the real ones.

(vi) Test the camera and TAG-recognition/tracking of
the TAG by checking if the tracking image dis-
played the correct TAG and contour, also by
checking the processing of the images for each
frame. Test the TAG-recognition/tracking
according to the schematic representation illus-
trated in Figure 4.

(vii) Test the movement of the system relative to the
TAG by measuring the linear and angular veloc-
ities and the distance covered by BMIVPOT rel-
ative to time.

(viii) Test the wireless communication by verifying the
establishment of the connection between the server
and the sensor and by verifying the display of
results on the server, i.e., whether they were
consistent with the measured ones or not.



Journal of Healthcare Engineering

‘Opposite (O)

Adjacent (A) S

FIGURE 5: The patient’s tracking method from the Field of View (FOV) showing the distance of pixels/m to the distance calculation.

3.3. BMIVPOT Implementation. This section includes the
implementation process to build the BMIVPOT. It shows
the base implementation, stand implementation, sensors’
placement, and tracking system implementation.

3.3.1. Base Implementation. In order to build the base
according to the simulated dimensions and overall design,
the different parts forming the base were manufactured
independently then reassembled. In order to mimic the
assembly, apply the following steps:

(i) Assemble the DC motors to the Mecanum wheels,
by inserting the motors” shafts each to a bearing
fixed in the wheels.

(ii) Fix the four assembled motor-wheel parts to their
specific position on the Plexiglas floor.
(iii) Connect the motors to their relays and to the

Arduino Uno, which has to be connected to
Raspberry Pi 3 via USB cable.

(iv) Attach the casters to their manufactured holders.
(v) Fix the motor, responsible for lifting the emergency
casters up and down.

(vi) Fit the casters-holder assembly on the floor part,
where their holes have to be drilled to provide an
easy upward and downward movement for the
casters.

(vii) Connect the casters’ motor to its driver and to the
Arduino and place the batteries inside the base then
launch the stand implementation.

3.3.2. Stand Implementation. In order to assemble the stand,
apply the following steps:
(i) Fix the stand to the holder.

(ii) Insert the pyramid-shaped part into the stand then
fix it to the floor-casters assembly.

(iii) Fit the flow control stepper motor inside its box and
place it on the stand.

(iv) Connect the flow control stepper motor to its driver
and to the NodeMCU.

(v) Attach the hooks at the top of the stand then place
the sensors.

3.3.3. Placement of Sensors. In order to achieve the intended
functionality of the sensors, place a specific setup suitable for
their measured parameters and apply the following steps:

(i) Connect the load cell to the HX711 module and
then to a NodeMCU.

(ii) Fit the load cell circuit inside its box placed under
the hooks.

(iii) Place the IR LED and phototransistor inside a black
box, where the LED and the phototransistor have to
be at the same level and facing each other.

(iv) Connect the LED and the photodetector to a
NodeMCU. Then connect a 10k resistor to the
analog reading coming from the phototransistor to
the microcontroller pin.

(v) Place the three US sensors on the three sides of the
base and connect them to the Arduino UNO.

(vi) Place the US sensor at the front side of the stand
above the camera and connect it to the Raspberry
Pi 3.

(vii) Connect the blood leak detector to the NodeMCU
and place its circuit on the IV tube cable; then start
with implementing the tracking system.

3.3.4. Tracking System Implementation. To synchronize the
overall movement of the BMIVPOT with the movement of
the patient, apply the following steps:

(i) Place the TAG on the back of the patient’s costume.

(ii) Place the camera on the stand on the predefined
height to track the TAG.

(iii) Connect the camera to the Raspberry Pi 3 in order to
recognize the TAG and provide image processing.

4. Results of BMIVPOT

Herein, the results of BMIVPOT are provided. The results
were divided into three parts, the simulation results in
Section 4.1, the real results in Section 4.2, and the testing and
evaluation results in Section 4.3. As for the testing and
evaluation part, it included a comparison between BMIV-
POT and existing poles based on the performance, the
features it provides, and the cost.
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4.1. Simulation Results. The AutoCAD simulation results of
the different parts of the BMIVPOT were realized and were
represented depending on the type of intervention.

The simulated Mecanum wheels and their motors are
shown in Figure 6(a), and the simulated emergency system is
shown in Figures 6(b)-6(d).

The architecture intervention was reflected by the
simulated results of the system shown in Figures 7(a) and
7(b) which comprises the base and the pole. The base,
shown in Figure 7(a), was divided into three parts: the floor,
the casters’ holder, and the stabilizing part (with three
different views). The overall simulated system is shown in
Figure 7(c).

The sensor’s intervention was reflected by the housing
for each sensor is simulated in order to accommodate for the
electronics and materials required. The dimension of each
box was chosen according to the size of the chosen elec-
tronics and the place they occupied. The simulated blood
leak detector’s box is shown in Figure 7(d). Moreover, the
simulated flowmeter’s housing is shown in Figure 7(e).

The tracking intervention was reflected by the simulated
result of the camera and its FOV as shown in Figure 7(f). The
simulated box that fits the camera and the circuitry is shown
in Figure 7(g) in real dimensions. Furthermore, the me-
chanical intervention included the simulated flow control
system shown in Figure 7(h).

4.2. Real Results. After providing the simulation results of
the BMIVPOT, herein the real construction results are
provided as shown in Figure 8.

4.2.1. Results according to the Type of Intervention. The
architecture intervention results revealed the base of
BMIVPOT, the whole base which was assembled as shown in
Figure 8(a). The flow meter’s electronics were fitted in their
housing as shown in Figure 8(b). Moreover, the emergency
system shown in Figure 8(c) included the lifting and low-
ering of the casters, so that the system can move on
Mecanum wheels or on the casters, respectively. Besides, the
mechanical intervention included the flow control, the
motors and wheels, and the emergency system. The flow
control system’s stepper motor shown in Figure 8(d) was
fitted inside the aluminum box and its circuitry was placed
on this box. This base was made of three parts as shown in
Figure 8(e), with the attached rods and with the casters
attached to the system.

Furthermore, the sensors’ intervention was reflected by
the placement of the blood detector’s components inside the
Plexiglas box as shown in Figure 8(f).

The Wi-Fi intervention results showed the communi-
cation between the volume detector and the nurse’s work-
station through the web server and the nurse’s workstation
(see Figure 9). The flow meter percentages and rates were
represented in Figure 9(a). As for the flow control, the
wireless communication provided the nurse with the ability
to control the flow from the workstation as shown in
Figure 9(b). The blood leak detector sent wirelessly a

notification to the nurse about any possible blood backflow
in the tube as shown in Figure 9(c).

The tracking intervention result is shown in Figure 10,
where the BMIVPOT was tracking the colored TAG placed
on the patient in front of the camera.

4.3. Testing and Evaluation Results. The results for testing
BMIVPOT tracking system are shown in Figure 11. Note-
worthily, the robot could be centered in many ways; in the
scenario shown in Figure 11, the center was set to be at the
origin of the x-axis of BMIVPOT, and the five random
targets and angles are shown in Figure 11(a). The results of
tracking the TAG at @, ; with respect to the x-axis are
shown in Figure 11(b). The robot was tracking the target
while staying centered. The change in the location of the
target, i.e., the position of the patient, caused the BMIVPOT
to deviate, and the deviation was associated with a change in
the angle of movement accordingly. Thereby, the variation of
the movement (tracking) of the BMIVPOT was tested as a
function of the target location and time. The overall profile of
the variation of the movement of the BMIVPOT as a
function of the target location and time was aperiodic (see
Figure 11(b)).

The positive sign of rotation was chosen to be the
counterclockwise direction. Noteworthily, when the target
was placed at 45° from the center of the BMIVPOT, the fully
automated robot which was centered on y-axis, as shown in
Figures 11(a) and 11(b), was able to detect the target, rotated
45°, and track the target in 1.2 seconds, merely.

As the target deviates at larger angles, such as ®, and @,
the tracking time increases from 2.2 seconds to 3.2 seconds,
respectively, by an increment of 1. Thereby, it can be inferred
that according to our test when ®,,, = ®; + @', t;,, = t; + k,
where k=1s.

Furthermore, the results of testing the movement of
BMIVPOT, i.e., the linear velocity, angular velocity, and
distance relative to time features, are provided in
Figures 12(a)-12(c), respectively. The graph of the variation
of the linear velocity of robot versus time (Figure 12(a))
shows that at time ¢ = 0 seconds, the robot was at rest; as time
increases, the velocity increases gradually to reach to its
highest value of 0.785m/s at t=1sec. After 1s, the robot
moves at a constant velocity until #=15s when the patient
stopped walking, so its velocity dropped to 0m/s, while
BMIVPOT kept walking with its constant velocity until
t=15.618s to achieve the minimum distance with respect to
the patient.

Besides, the graph shown in Figure 12(b) reveals the
variation of angular velocity (rad/s) of robot versus time (s).
The robot searches for a target by turning left, then returning
back to its original position and then turning right. At t=0,
the robot is in its original position, where Wz value is 0 (rad/s).
When the robot turns left, the angular velocity increases to
reach 2.0138 (rad/s) at t=1s. Noteworthily, the angular
velocity was calculated as in the study of Kim et al. [34]. At
t=1s, the robot stops, so the value of Wz decreases back to 0
(rad/s) at t=2s. Then, the robot starts turning back to its
original position at t=2s where Wz decreases to reach
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FIGURE 6: AutoCAD drawings of the BMIVPOT wheels. (a) Mecanum motor simulation. (b) 3-Dimensional view of emergency system
simulation. (c) Side view of emergency system simulation. (d) Top view of emergency system simulation.

—2.0138 (rad/s) at t=3s since the moving direction is
clockwise. At t=3s, the robot stops, so Wz increases to reach
0 (rad/s) at t=4s. At t=4s, the robot starts turning right, so
Wz value decreases to reach —2.0138 (rad/s) at t=5s.
BMIVPOT then stops at t=5s, so Wz value increases to
reach 0 (rad/s) at t= 6 s. The robot then starts returning back
to its original position, so Wz value increases to reach 2.0138
(rad/s) at t="7s. Then, the robot stops for I satt="7s, so Wz
values decrease to reach 0 (rad/s) at t=8s. Then, from t=8s
to t=165, the robot repeats the same rotation.

Moreover, the graph shown in Figure 12(c) reveals the
distance (cm) covered by the BMIVPOT and patient
versus time (s). At t=0s, both the patient and BMIVPOT
were at the initial position close to each other, and the
patient accelerates at 0.3925 (m/s?). At t=1s, the distance
covered by the robot remains at 0 cm, while the distance
covered by the patient increases to reach 39.25cm, i.e.,
greater than the minimum distance to keep between the
robot and patient, so BMIVPOT starts moving uniformly
and following the patient. At t=2s, the distance covered
by the robot increases to reach 78.5 cm, and the distance
covered by the patient increases to reach 157 cm. Both
covered distances increase until t=15.618s, where the
patient stops walking at a distance of 1147.5cm, while
BMIVPOT keeps moving to achieve the minimum dis-
tance d,;, until =16 s where the distance covered by the
patient remains constant at 1226 cm and the distance
covered by the robot increases to reach 1196cm. At
t=16s, the robot stops moving since the distance between
the robot and patient becomes 30cm, i.e., roughly the
minimum distance to keep between.

The graph, however, shown in Figure 12(d) reveals the
flow rate versus the flow selectors. There were four selectors

for indicating the flow of saline infusion. The flow at selector
“very slow flow” is 14 drops/minute, so that the time to finish
the saline will be 24 hours. The second selector “slow flow”
will increase the flow to 28 drops/minute and decrease the
time to finish the infusion of saline to 12 hours. Selecting
“normal flow” will increase the flow to 42 drops/minutes and
decrease the time to finish the saline to 8 hours. At selector
“high flow,” the flow will be 56 drops/minute, and the time to
finish the saline infusion will be 4 hours. Besides, the results
of testing the flow sensors are provided in Figure 12(d).

To evaluate our BMIVPOT, the comparison shown in
Figure 13 was carried out between the BMIVPOT and the
systems existing in the literature, including the novel robotic
IV pole proposed by Sayed-Kassem et al., the autonomous
IV pole proposed by Binger et al., and other market or
commercial IV poles [1, 2].

A comparison perspective was taken into consideration
concerning the number of features as shown in Figure 13(a).
Noteworthily, all the features taken into consideration were
the volume detection, flow rate detection, blood leak de-
tection, flow control feature, wireless communication,
emergency system, and the fully automated movement and
tracking.

Furthermore, the comparison shown in Figure 13(b)
provides the intervention’s availability in the BMIVPOT,
commercial, autonomous, and the robotic IV poles.

Concerning the architecture, the commercial IV poles
were the reference and showed the lowest percentage of 40%
(balanced base-pole and hooks design), while the BMIVPOT
showed the highest rate of 90% (balanced base-pole with
specific built-in material, practical pole design, Mecanum
wheels, user-friendly architecture, and lack of hooks’
design).
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FIGURE 7: AutoCAD drawings of the BMIVPOTparts. (a) BMIVPOT base. (b) The pole. (c) Whole system. (d) Blood leak detector
housing.(e) Flowmeter housing. (f) Camera and its field of view. (g) Raspberry Pi 3 and camera housing. (h) The flow control system.

Also for the electronic intervention reflected by the use
of sensors, the commercial IV poles in the market showed
the lowest percentage of 0% (absence of sensors), while the
BMIVPOT showed the highest number of features of 80% (as
it possessed 8 features out of 10: obstacle detector, volume
detector, blood leak detector, flow meter, emergency alarm,

linear velocity detector, angular velocity detector, and dis-
tance covered detector and lack of vital signs’ sensors, i.e.,
temperature and blood pressure).

For the wireless intervention, BMIVPOT was exclusively
the only system that had a wireless contribution feature
(100%). As for the tracking, the BMIVPOT had the
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F1GURE 8: The real BMIVPOT construction results. (a) Whole base assembly. (b) The drip chamber inserted in the flow meter’s housing. (c)
The emergency system. (d) The flow control system. (e) The casters’ holder system. (f) The blood leak detector.
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FIGURE 9: The web server results. (a) Web server showing the volume-flow detection. (b) Flow control server page. (c) Blood leak web server.
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FIGURE 11: The variation of the movement of the BMIVPOT as a function of the target location and time. (a) The model of testing. (b) The
overall profile of the variation of the angle of deviation of BMIVPOT relative to time and target.
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Figure 10: The Biomedical Intravenous Robot (BMIVPOT) tracking the TAG.
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FIGURE 12: Testing results. (a) The linear velocity of BMIVPOT versus time. (b) The variation of the angular velocity versus time. (c) Distance
covered by robot and patient versus time. (d) Flow rate of saline solution versus flow selectors.



Journal of Healthcare Engineering

1000 -
8.00 -
6.00

400

15

Number of Features

Commercial poles

A

200
0.00 Novel robotic IV Pole

()

BMIVPOT Autonomous IV pole

Type of Intervention Availability in Each System

100% -~
90% -
80%
70% -
60% -
50% -
40% -
30%
20%
10% -

0%

Architecture Sensors

= BMIVPOT
= Commercial poles

§2,500.00
§2,00000
$1,500.00
$1,00000

$50000 -~

$0.00

Novel robotic IV pole

Wireless

()

Tracking/automated Mechanical/emergency
movement system

m Autonomous IV pole
Novel robotic IV pole

Price

Commercial poles

(c)

BMIVPOT Autonomous IV pole

FiGgure 13: Comparison between different intravenous (IV) pole systems. (a) The number of features in each system in the novel robotic IV
pole, commercial poles, BMIVPOT, and autonomous pole. (b) Interventions’ availability in each pole. (c) The cost of the poles.

maximum percentage of 100% (fully automated), while the
novel robotic IV pole had approximately half of the
BMIVPOT’s percentage 40% (semi-automated and requires
prior training).

Concerning the mechanical or emergency system in-
cluded in each design, the BMIVPOT took the highest rate
100% (since it is fully automated), while the robotic IV pole
took the half of this rate (50%: semi-automated).

The evaluation of the price of BMIVPOT was com-
pared to the IV poles designs as shown in Figure 13(c).
According to our statistics, the market price of BMIVPOT
is $1,155.29 and provided all the eight aforementioned
features.

5. Discussion

According to our statistics and our thorough literature re-
view, the BMIVPOT which costs $1, 155.29 had all the eight
aforementioned features. This could be considered as an
advantage over the other systems that could cost more or less
than the BMIVPOT, when these systems were not capable of
providing the same number of features as BMIVPOT. For
instance, Sayed-Kassem et al.’s system costs $4325.36 and
offers two features [2] as shown in Figures 13(a)-13(c); the
cost of each feature was approximately $162.68. Although
the cost of our BMIVPOT system is $1,155.29, we had seven
features; hence, the cost of each feature was approximately in
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accordance to that for the novel robotic IV pole $165. As for
the autonomous IV pole, it costs $2,167 and provides only
one feature [1]. Thereby, our system is considered to be more
cost-effective than the two existing alternatives.

Concerning the number of monitored and available
features, our system provides seven features (considers 100%
from the whole number of features) which surpasses the
features monitored and available in other techniques as
shown in Figure 13(a). While our system provides seven
features, the novel robotic IV pole provides only two features
(28.57% from the whole number of features), which are the
semi-automated movement and the volume detection. On
the other hand, the autonomous IV pole only includes one
single feature, which is the automated movement (14.2%
from the whole number of features).

In addition to what preceded, by comparing the accuracy
of the volume measurement provided by the BMIVPOT to that
of the novel robotic IV pole, the volume detection provided by
the latter is limited to one volume level, which is the bag
emptiness, while the detection provided by our BMIVPOT is
based on a continuous volume monitoring for all levels rep-
resented by percentage value as shown in Figure 9(a).

Pertaining to the patient’s safety and risk management,
the BMIVPOT included US sensors which does not harm the
patient; this safety measure was absent in the two other
systems [1, 2]. According to Sayed-Kassem et al., the pa-
tient’s safety was provided by the limited range of RF signals
sent from the joystick to the pole, which constrain the
distance of the patient from the pole [2], thereby giving
safety to the IV tube, but does not take into consideration the
patient’s safety while present in the intended range of
motion. Consequently, the BMIVPOT surpasses the novel
robotic IV pole and the autonomous IV pole, in the safety
and risk management. In addition, the US sensors provide
safety for the system itself by keeping it away from obstacles.

By comparing our system to the ambulatory IV pole [4],
the Homecare IV Pole [5], and the simple free-standing
stands [7], our system included all interventions, while only
one intervention, which is the architecture, was present in
the commercial IV poles as shown in Figure 13(b). Con-
cerning the architecture intervention, our system was similar
in terms of stability, balance, and the overall concept
(wheeled base and hooks) to the commercial IV poles
[4, 5, 7]. However, BMIVPOT was not similar to the hanging
IV pole [6], as the latter pole is attached to the roof merely.
Concerning the number of monitored and available features,
our system provides all advanced features as opposed to the
commercial IV poles as shown in Figure 13(a). Although,
commercial IV poles lacked most features, their average cost
was above $500, which is considered expensive as shown in
Figure 13(c).

The development of BMIVPOT was innovative and
research oriented to provide a fully automated IV pole that
tracks the patient while moving in a hospital. Several sim-
ulations were done in order to provide the appropriate
system’s architecture and design. Results showed that our
BMIVPOT was user-friendly. The user-friendly notation was
based on whether the patient and nurse fully trigger the IV
pole by themselves, whether they partially trigger the IV pole
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[1, 2] or whether they do not need to trigger the IV pole (full
automation). Thereby, the user-friendly BMIVPOT was
associated with the fact that patient/nurse does not need any
more to spend effort and time maneuvering the pole as
opposed to the existing poles [1, 2]. The BMIVPOT system
comprised various interventions, each providing a specific
function. BMIVPOT showed up and provided higher per-
formance percentage (80%) as compared to the other
existing systems.

The fully automated robotic IV pole, BMIVPOT, exhibited
an outstanding progress as compared to the commercial/
market IV poles [4-7, 9]. The evolution of BMIVPOT was
achieved by transforming the wheeled stand to a robot ready to
be used in healthcare organizations. Moreover, the wireless
communication provided transfer of eight features to the
nurses’ workbench. Although the patient tracking seemed to
increase the on-chip computation cost, however, each pole
followed a unique TAG printed on the back of the patient’s
costume. Upon testing the aforementioned tracking, the
camera was successfully recognizing the tag and following it in
the presence of obstacles, and at different angles as opposed to
the limitations present in research poles [1, 2].

Furthermore, by comparing our system to the existing
research poles, i.e., the autonomous IV pole developed by
Binger et al. [1] and the novel robotic IV pole developed by
Sayed-Kassem et al. [2], we found that our system surpassed
these designs in vast ways, including the number of features,
the cost-effectiveness, and the accuracy of the sensors’
measurements.

According to Sayed-Kassem et al., the so-called novel
robotic IV pole offered patients the ability to maneuver the
poles with a joystick, making them move more freely [2], and
according to Binger et al., their so-called autonomous system
was able to follow the patient, by tethering the patient with a
nylon twine to encoders and potentiometers present on the
IV pole, which were able to determine the movement and
direction of the patient while walking [1]. In comparison to
what preceded, our system took into consideration fully
automated tracking, movement, and recognition of the
patient (100%); however, the motion of the IV pole in the
Sayed-Kassem et al. system was semi-automated (50%),
since the patient still needs to hold and control the pole by a
joystick as shown in Figure 13(b). Moreover, the motion in
the Binger et al. system could not be considered automated
since the patient is still tethered to the pole, which presents a
major limitation on his movement [1].

On the other hand, our BMIVPOT provides a fully
automated movement (100%) of the IV pole, because it
requires nothing from the patient except to be in the FOV of
the camera. The overall percentage of features offered by our
Biomedical Intravenous Pole Robot was 60% (80%—20%)
higher than that offered by peer research poles and 80%
(80%—-0%) higher than the market poles. In addition, the
average percentage of integration of interventions (archi-
tecture, sensor, wireless, tracking, and mechanical) in the
Biomedical Intravenous Pole Robot was at least 56% (av-
erage interventions of BMIVPOT 94%-average interventions
of Novel Robotic IV pole 38%) higher than the alternative
poles.
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6. Conclusion

This work was conducted in order to introduce a new and
advanced version of the robotic IV pole, the fully automated
BMIVPOT. BMIVPOT is an enhancement of the previous
robotic IV pole systems in all terms, including the ease of
motion of the patient, the reduced effort spent by the nurses
to monitor the IV bag, and other vital signs.

An automated movement was provided and tested to
make the patient move freely without the need for
dragging his pole and the integration of monitoring
sensors to help the nurses. The BMIVPOT was designed
to include the tracking of the patient by camera which
provides the ability to follow the patient by a fully au-
tomated motion.

Furthermore, a wireless communication between the
sensors present on the BMIVPOT and their workstation was
established, allowing the nurse to monitor the flow, volume
and blood leakage wirelessly through the mobile phone.
Also, the BMIVPOT has an electronic emergency system,
which allows the switching between moving the system
either manually on the casters or via the automated motion
provided by the Mecanum wheels.

The BMIVPOT could improve the health outcomes for
the patients and help the nurses to accomplish their duties
and monitor the IV bag.

7. Future Work

The BMIVPOT offers many improvements; it could be
subject to several enhancements concerning its tracking
system, automated movement, the automation of the flow
control, and the addition of new biomedical sensors.

The future work emerging from the BMIVPOT con-
struction could be listed as follows:

(i) Utilizing a more powerful microprocessor able to
perform image processing at a higher speed as
opposed to the Raspberry Pi 3, also utilizing a
specialized tracking camera to reduce the on-chip
computation cost

(ii) Improving the overall architecture by making the
base smaller

(iii) Utilizing motors and wheels with less noise

(iv) Controlling the automated flow control based on
the communication between the volume detector
and the flow meter

(v) Adding new sensors that provide measurements of
the vital signs, such as the heart rate, patient’s
temperature, blood pressure, etc.

(vi) Reduce the on-chip cost of coding in Raspberry Pi 3

(vii) Implementing a mobile application which could be
installed on the nurses” phones.

Data Availability

The data used to support the findings of this study are in-
cluded within the article.
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The proliferation of physiological signals acquisition and monitoring system, has led to an explosion in physiological signals data.
Additionally, RFID systems, blockchain technologies, and the fog computing mechanisms have significantly increased the
availability of physiological signal information through big data research. The driver for the development of hybrid systems is the
continuing effort in making health-care services more efficient and sustainable. Implantable medical devices (IMD) are ther-
apeutic devices that are surgically implanted into patients’ body to continuously monitor their physiological parameters. Patients
treat cardiac arrhythmia due to IMD therapeutic and life-saving benefits. We focus on hybrid systems developed for patient
physiological signals for collection, storage protection, and monitoring in critical care and clinical practice. In order to provide
medical data privacy protection and medical decision support, the hybrid systems are presented, and RFID, blockchain, and big
data technologies are used to analyse physiological signals.

1. Introduction

The medical applications are continually increasing. For
handling physiological signals efficiently, specific tech-
nologies, such as data gathering using RFID protocols,
infrastructures, and distributed information storage based
on blockchain frameworks, are required. The hospitals
applications are adopting physiological signals to realize a
quicker way to visit these records. The physiological signals
are responsible to offer patient care, enhance the clinical
performances, and promote the clinical data research
[1-5].

Since the fog computing solves the secure storage issues
of big data in the clinical data research with minimal cost, the
fog computing technology is customizable and economical
and offers infrastructure, platform, and software. Physio-
logical signals™ analysis and migration have been proposed
for accessing and sharing physiological signal data by dif-
ferent research labs and health-care experts, which can
enable exchange of physiological signals more rapid and
suitable by using RFID technologies and smart phone app
platforms. The advantages of RFID protocols [6-9], the fog

computing, and blockchain in the medical applications
provide security and privacy protection for storing and
sharing physiological signal records. It can provide doctors
with collaboration ways through IMD [10] and RFID to help
patients in case of emergencies mode. The new model based
on blockchain can support medical background rural
healthcare and analyse data for medicines and medical re-
search [11-15].

It is urgent for different research institutions to share the
encrypted physiological signals. Therefore, privacy and se-
curity problems of physiological signals are the data owners
and research institutions’ primary focus, when the physio-
logical signals include a lot of sensitive information and the
attackers are continually trying novel approaches to steal the
physiological signals. In order to handle these problems, the
medical databases adapted blockchain, and fog computing
are proposed [16, 17]. The medical application ecosystems
allow the regulators to share and exchange physiological
signal data in Figure 1. The introduction of the blockchain-
fog-RFID based on data ecosystems ensures that the indi-
viduals take control over physiological signal information.
The proposed sharing data-driven economy shares the
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physiological signals for research and commercial purposes
in Figure 1.

In the paper, we protect cardiac IMD against security
threats by presenting a security scheme. First, we verify and
classify the IMD’s major security attacks. Second, we in-
troduce blockchain and the RFID systems to extend the IMD
architecture [10] and discuss the structures of the interop-
erability in the medical environment, as shown in Figure 2.

The motivation of the blockchian-fog-RFID method for
accelerating big data medical research based on physio-
logical signal is as follows: the method is becoming more
common due to the application of powerful computers and
the availability of physiological signals from various
sources. However, although the complexity of physiolog-
ical signals makes the complex methods particularly ap-
plicable, their application of physiological signals is
generally considered earlier than in other fields. Big data
has become a buzzword in medical innovation. Rapid
advances in artificial intelligence particularly promise to
reform medical practice from the resource allocation to the
complex diseases’ diagnosis. However, big data brings huge
risks and challenges, including major questions about
patient privacy: the importance of fairness, consent, and

patient management in data collection based on RFID; data
storage based on fog computing; and dealing with data
breaches by using blockchian. In the future, we will discuss
the method’s applications in physiological signals research:
basic research; disease management; aetiology; detection
and diagnosis; health services research; treatment devel-
opment; and treatment evaluation. The possibilities of the
blockchian-fog-RFID method for accelerating big data
medical research in physiological signals are enormous.
The paper contribution consist of four parts as follows:

(1) The security scheme is a low energy cost RFID
system in IMD. The applied authentication protocol
is implemented on the RFID circuit without energy.

(2) The applied energy harvesting scheme uses the en-
hanced WISP, which performs computational
functions and uses the harvested energy to go beyond
passive RFID tags.

(3) The presented authentication protocol enables the
authorized health-care professionals to obtain the
access permission to cardiac IMD securely in the
regular and emergency model which are determined
according to the patient’s ability to supply valid
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credentials, thanks to a biometric key distribution
scheme implemented.

(4) The schemes generate and share a master key se-
curely based on the physiological sets of the patient
collected by IMD. Monitoring and ensuring data
integrity during clinical trials is not always feasible in
current research systems. Blockchain makes the data
collected immutable, traceable, and probably more
trustworthy during clinical trials. We also improve
the way we currently report adverse events.

In conclusion, we argue that the blockchain can improve
the management of clinical trial data, enhance trust in the
clinical research process, and simplify regulatory oversight
of trials. Finally, we evaluate the security solution’s security
and performance.

The proposed model covers the many aspects of the
health industry such as doctors, patients, and pharmacies to
insurance suppliers and government. The paper shows the
applications of using RFID, blockchain technologies, and fog
computing for storing and managing the physiological signal
data. A blockchain model for sharing physiological signals is
proposed. In the next section, the combination of block-
chain, RFID, and artificial intelligence (AI) technologies is

suitable for collecting, storing, and handling heterogeneous
physiological signal. The proposed model can be used for
physiological signals management.

2. Related Work

The industry of healthcare has changed dramatically because
of the boom in clinical research for physiological signal data
sharing. We summarize the healthcare studies including
physiological signal data, patient information obtained by
fog computing, and improvements to blockchain technol-
ogy. The health-care applications of physiological signal data
adopt big data and deep learning technologies and provide
with data confidentiality and identity authentication, so as to
maintain patients’ privacy. In order to more conveniently
serve big data medical analysis, Rajan and Rajan [1] and
Faust et al. [2] proposed the importance of medical big data
privacy and the impact of data analysis on medical care.
Rajan and Rajan [1] proposed a physiological signal
monitoring scheme by using the Internet of Things (IoT).
Our schemes use IoT to improve the access method of
physiological signals and the real-time dynamic monitoring
method of the remote monitoring system, which enhances
the efficiency of the remote monitoring systems. Faust et al.



[2] summarized the application of deep learning algorithms
in physiological signals and pointed out that deep learning
methods performed better than classical analysis and ma-
chine classification methods for large and diverse datasets.
Shanthapriya and Vaithianathan [3] proposed the health
monitoring system for human regional network. The steg-
anography technologies monitor patients’ health safety and
provide patients with data confidentiality and identity au-
thentication. Orphanidou [4] reviewed big data applications
of physiological signals, pointed out how the applications
use physiological signals to provide real-time support for
medical decision making in both clinical and family settings,
and need to be overcome in clinical practice. Tartan et al. [5]
proposed a heart rate monitoring system based on mobile
devices and geographical location, which can monitor
physiological signals and send alarm information when
abnormal heart rate changes.

The health-care systems [6-9] are data-distribution
domains where many physiological signals are generated,
stored, scattered, and accessed daily by using RFID. Yuri
alvarez et al. [6] described that the contribution of RFID
technology can improve medical services, can offer hospital
tracking of patients, drugs, and medical assets, and can
improve the efficiency and safety of electronic medical
applications. Martinez Pérez et al. [7] used RFID technology
in the ICU (information management system) to track ICU
patients’ admission, nursing plan, life monitoring, pre-
scription, and drug management process, improving the
quality of patients’ care during hospitalization. Adame et al.
[8] proposed the monitoring systems for intelligent
healthcare which provides location status and tracks patients
and health-care assets. Omar et al. [9] proposed the reliable,
secure, and privacy-based medical automation and orga-
nizational information management system that can provide
real-time monitoring of vital signs of patients during hos-
pitalization for intelligent patient management.

The literatures [11-15] have been tremendous concen-
tration in blockchain applications. Xu et al. [11] provided a
decentralized resource management framework based on
blockchain by studying resource management issues. Aiging
and Xiaodong [12] proposed a blockchain-based security
and privacy protection sharing protocol to improve the
diagnosis of electronic health systems. The private block-
chain is responsible for storing personal medical informa-
tion (PHI), while alliance blockchain keeps the secure index
record of PHI. Dubovitskaya et al. [13] proposed a frame-
work for sharing EMR data for cancer patients based on the
blockchain and implemented. Lebech et al. [14] used mul-
tisignature blockchain protocol for diabetes data manage-
ment and access control, as well as sharing and encryption.
The new approach helps to share diabetes data more ef-
fectively in different institutions. Yue et al. [15] proposed the
medical data gateway (HGD) architecture based on block-
chain, which enabled patients to safely own, control, and
share the data without infringing privacy.

When different research institutions share the physio-
logical signals, the issues of privacy and security are the
primary focus of research institutions because the physio-
logical signals include the sensitive information, and the
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attackers are continually trying novel approaches to steal
information. In order to meet the privacy needs and deal
with the security problems, medical databases which use
blockchain and fog computing technology are proposed.

The enhanced trusted sharing physiological signals
model features highly secured data encryption and de-
cryption schemes. The model requires permission from the
blockchain network to share patient information among
medical staff. The proposed model encrypts and analyzes the
physiological signals through the blockchain network, big
data analysis technology, and Al technologies. Kamel et al.
[16] pointed out that blockchain technology is becoming
more and more important in the research of medicine and
medical care, proposed eight solutions of blockchain ap-
plication in medical care, and predicted that blockchain and
Al solve various medical problems in the future. Jen Hung
et al. [17] used blockchain in the drug supply chain to create
transparent drug transaction data, prevent counterfeit drugs,
and protect public health.

The abovementioned research findings do not apply
blockchain to RFID systems. However, the protocol [18]
proposed the RFID system based on blockchain and did not
apply fog computing to medical fields. It is our innovative
work to propose RFID protocol based on fog computing and
block chain technology in medical systems.

RFID protocol framework based on fog computing and
blockchain is used for medical big data collection and data
privacy protection [19-21]. Gu et al. [19] proposed a security
and privacy protection solution for fog computing, which
designs a framework for security and privacy protection
using fog computing and a privacy leakage based on context-
based dynamic and static information to improve health and
medicine infrastructure. Silva et al. [20] proposed a medical
records management architecture based on fog computing.
The architecture used blockchain technology to provide
necessary privacy protection and to allow fog nodes to
execute authorization processes in a distributed manner.
Guan et al. [21] discussed data security and privacy issues in
fog computing. They pointed out that the data security and
privacy challenges posed by fog layers and data protection
technologies in cloud computing cannot be directly applied
to fog computing. Patel added the fog computing in the
original blockchain medical data sharing sequence model
[22]. Tang et al. [23] proposed a new game theory framework
to improve the mining efficiency of blockchain network and
maximize the total benefits of blockchain network. In order
to improve the diagnosis of an electronic medical system,
Zhang and Lin [12] proposed a security and privacy pro-
tection based on the blockchain PHI sharing (BSPP) scheme.
The consensus mechanism (private blockchain and joint
blockchain) is constructed by designing a blockchain data
structure.

3. Mutual Authentication Protocol Using IMDs

The presented mutual authentication protocols for the WISP
have two modes: the regular mode shares the IMD and the
same credentials; the emergency mode is initiated when one
of the following status appear. The IMD credentials are not
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shared by the programmer; the patients cannot communi-
cate with the shared credentials; and the credentials con-
figured are expired.

3.1. The Threats and Its Influence on the Medical Record.
The threats and its influence on physiological signals are as
follows: privacy, equity, consent, and patient governance in
health information collection; discrimination in information
applications; and handling data breaches.

Because of newly developing data collection and storage
technologies to collect and analyse vast amounts of data, the
technologies (RFID, blockchain, and artificial intelligence)
enable more human experience. While strict clinical testing
is still required for handling data breaches, the technologies
will fuel a new age of precision medicine in various methods,
as shown in Table 1.

3.2. Physiological Signals Data Privacy Rules. While physi-
ological signals are the lifeblood of today’s digital society,
numerous people are not fully aware of appropriate data
collection and processing. The privacy issues are the con-
cerns in the process of generating data. It is more significant
to be considered privacy protection in healthcare, where
personal physiological signals consist of a large percentage of
the data. The rules and regulations guide the process of data
generation, transmission, access, and exchange. The privacy
storage rules are as follows: entitles patients more control
over physiological signals; establishes boundaries of physi-
ological signals’ use and release; protects the privacy of
physiological signal; enables patients to make choices wisely;
and enables patients to be aware of methods for preventing
data leakage. It is completely important to maintain the
security and privacy of physiological signals by using RFID,
fog computing, and blockchain.

3.3. Security Attacks and Requirements for IMDs. This part
shows IMDs’ main security attacks [10] and discusses the
security requirements in Figure 3. Table 2 explains the
symbols and definitions of all the authentication protocols.

3.4. Mutual Authentication Scheme in the Emergency Mode.
The IMD and programmer can securely produce and offer
the major key which is extracted from the patient’s data by
executing the presented mutual authentication protocol’s
emergency mode in Figure 4.

Stepl: the reader initiates the presented mutual au-
thentication protocol’s emergency mode by transmit-
ting the synchronization request M; = (IDg, Ng, and
flag) to the IMD.

Step2: WISP computes features V=RandPermute (Fy
UF’ W) and sends V to the reader.

Step3: the reader computes K, =H (Q) and sends
M;=(IDg, I, HMAC (Kyio, 1|Q|IDR)) to WISP.

Step4: if the number of matching characters is greater
than the predefined threshold, the WISP calculates

K'io=H (Q), and verifies Ko ?=Kpio. If the key is
successfully confirmed, WISP generates Ny, and com-
putes K=H (Ky;, | Nw) and K’ =H (K| Ny). WISP ad-
mits the reader by transmitting My = ((Nw, IDw)kbios
HMAC (Kpio» Ng|[Nyy|IDw)).

Step5: in order to determine (Ny, IDyy), the reader
decodes the message’s first part using Ky,,. After that, it
verifies the authenticity of (N, IDyw) by employing
HMAC function and comparing the result to the re-
ceived message’s second section. If they are equal, the
reader calculates K=H (Ky;, |[Nw) and K’ =H (K| Ny)
and then sends M;s = (Seq;, HMAC (K, Ny |Seq;)). The
reader sends messages (K', Seq,;) to the programmer.

Step 6: WISP verifies the session keys’” equality. IMD
collects the key of session and the relevant sequence
number.

Two modes (emergency mode and regular mode) have
the same shortcomings. First, neither model talks about how
to store large amounts of data on the database. Second, both
models have secret key leakage attacks and tracking attacks.
Third, neither model uses cloud storage technology or
blockchain technology.

3.5. Attacks for Mutual Authentication Protocol in the
Emergency Mode

3.5.1. The Reader Impersonation Attacks. The reader com-
putes Ky;,=H (Q) and then sends M;=(IDy, I, HMAC
(Kbio’ IlQlIDR)) to WISP.

In order to simplify the analysis steps, the steps 3-6 in
Figure 4 are omitted here. The tracing attacks in the
emergency mode have three phases.

(1) The testing phase: the attacker chooses the target tag
R*, monitors the first round (M, 'M,, 'M5) to R*,
and obtains the outputs keys 'Ky, = H (Q), and the
reader applies 'M; = (IDg, I, HMAC (Kyp;o, I|Q|IDg))
to WISP.

(2) The reader impersonation attacks phase: the attacker
(the counterfeit reader R’) chooses the monitored
information 'M;. The attacker monitors the output
information (*Kpio=H (Q), *M;=(IDg, I, HMAC
(Kpio> I|Q|IDR))) in the second round.

(3) The decision phase: the adversary obtained the values
(leiO) 1M3) and (sziO) 2M3)' If (leio’ IMS) # (sziO)
2M,), and the attacker confirms that R* is not R’ with
the probability 1; if ('Kpio, 'M3) = (*Kpies “Ms3), the
attacker makes sure that R* is the counterfeit R'.
Therefore, the protocol does not meet the weak
indistinguishability property and suffers from the
reader impersonation attacks.

3.5.2. Reducing the Calculation Cost of Reader and WISP.
In order to reduce the computation of the whole systems, the
HASH computational expense of the reader and WISP are
high, the proposed protocol uses the PRNG function to
replace HASH function.
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TaBLE 1: Audiences and influence functions of medical record.
Audiences Influence functions
Patients Promote diagnoses and identification of physiological signals, facilitate preventive care, and reduce costs
Doctors The rigorous diagnosis, treatment choices, monitoring disease progression, therapy response, and patient susceptibility
Researchers Perform large-scale disease modelling and efficacious therapies
Clinics Risk estimation, forecasting relapse possibility, designing criteria for discharge/readmission, predicting mortality, and
conveying potential crisis episodes
Battery
depletion Data reliability
attack
Unsecure access
during Energy Renewable
emergency preservation credentials
situations
Attacks
Attacks — Perfect forward secrecy Secure access in
targeti FAHIC (PFS) property emergency situations
geting capture and gency
authentication analysis
protocl
De Protection against battery
synchronization depletion attacks
attacks
FIGURE 3: Security attacks and requirements for secure IMDs.
TaBLE 2: Symbols and definitions of the enhanced RFID system privacy protection authentication protocol.
Symbols Definitions
C; TID}; COUNT Challenge from the DB to reader; temporary identity; count
Ri; R}; N, Response for the reader; R;® Ng; random number generated

h(COUNT + 1||RillR;)); i challenge-response; it key
PUF for the tag T; one-way hash function; XOR; concatenation
Hospital; patient; doctor

3.6. Mutual Authentication in the Regular Mode. The regular
mode ensures the secure data exchange, as shown in
Figure 5.

Stepl: the reader sends M '1 = (N, IDg, flag, HMAC (K,
Ny |IDR)) in the regular mode.

Step2: WISP can confirm the received request’s
freshness and the reader’s authenticity. If the organized
primary key has not run out, the received request from
the keys is authenticated by the WISP. By contrary, the
WISP rejects access by sending the denial message.

Step3: WISP computes K'=H (K|Nyw), and sends
M2 = ((Nbr, Nw, IDw) K HMAC (K, NRl NwlIDw)) to
reader.

Step4: when receiving the messages, the reader decodes the
first part of the messages to obtain (Nbr, Ny, and IDy).

Step5: after verifying successfully, the reader calculates
the key value K' using Ny and sends the messages
M, =(Seq;, HMAC (K', Ny | Seqy)).

Step6: WISP can confirm the message’s freshness and
the keys’ equality computed on both sides. WISP in-
crements the Nbr parameter which represents the total
number of session keys which originated from the
primary key.

Step7: WISP delivers the messages (K, Seq;, Nbr) to
awaken IMD antenna.

The attacks for mutual authentication protocol in the
regular mode.

3.6.1. Secret Key Disclosure Attacks. The attackers monitor
the delivery messages and reveal the secret keys as follows:

In Step1, M| = (Ng, IDy, flag, HMAC (K, Ng |IDg)), the
attacker discloses IDy

In Step3, M, = ((Nbr, NW, IDW) K, HMAC (K, NR|
NW/|IDW)), the attacker discloses IDW

In Step7, (K', Seql, Nbr), the attacker discloses K’
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IMD WISP

M;: (Ny, IDp, flag)

RFID reader Programmer

Record ECG

Create vault

M,: (Vault V)

Record ECG

Identify common features Q
compute key: Ky,;, = H (Q)

M: (IDg, I, HAMC(Ky,» |Q| IDp))

Compute key:
Ky = H(Q)

Select Ny,

My ({Ny, IDW}KM’ HAMC (Kp;osNg | Ny | IDy))

Compute key:
K =H (K, | Ny)
K' = H (Ky;, | Nyy)

Ms: (Seq,, HMAC, (K', Ny, | Seq;))

Compute key:
K = H (Ky;, | Nyy)
K' = H (Ky;, | Nyy)

Verify K’

(K', Seqy)

Secure communication using K’

(K', Seq,)

FIGURE 4: Mutual authentication protocol in the emergency mode (protocol 1).

3.6.2. The Tracing Attacks. In order to simplify the analysis
process, the steps 3-6 in Figure 5 are omitted here. The
tracing attacks have three phases.

(1) The testing phase: the attacker chooses the target tag T*.
Then, she/he monitors the first round (‘M,, 'M,, ‘M,
'M,) to T* and obtains the outputs keys (‘IDg, 'IDy).

(2) The tracing attacks phase: we assume that the tag set
(T° T*,...T") includes T* and the counterfeit tag T".
The attacker monitors the keys (*IDg, *IDy) in the
second round.

(3) The decision phase: the adversary obtained the values
(IDg, 'IDw) and (IDg ‘IDy). If (IDg
'IDy) # (IDg, *IDy), the attacker confirms that T’ is
not T* with the probability 1; if ('IDg, 'IDw) = (*IDg,
’IDy), the attacker makes sure that T' is T* (the
counterfeit tag T"). Therefore, the original protocol in
the regular mode does not meet the weak indistin-
guishability property and suffers from the tracing
attacks.

3.6.3. Medical Framework Based on RFID, Blockchain, and
Artificial Intelligence. At present, amounts of patients have
the comprehensive datasets which consist of clinical history
(the genetic, lifestyle data, drug, and blood biochemistry). In
addition, the consumer companies and the pharmaceutical
are willing to pay much money for the vast personal
physiological signal data applied to train their AI model via
using the machine learning. We proposed the medical
framework based on RFID, blockchain, and artificial in-
telligence, as in Figure 6.

Previous researches based on RFID, blockchain, and
artificial intelligence mainly focused on the medical ap-
plication, respectively. The studies improve the time
proficiency of physiological signal data processing and
contribute to medical data management by combining
three technologies. The effectiveness of the medical
framework involves low resource usage, large computation
time, more energy, less power, and low memory con-
sumption (Algorithm 1).
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IMD WISP RFID reader Programmer
|
! M}: <Ny, IDy, flag, HAMC (K, N | IDp> Key K
I
I
jReques
{ Check remaining
| Nbr key lifetime
| ——
[Invalid key] (Deny, flag)
_________________________________ »
[Valid key]

Select random
Ny

T
M: <{Nbr, Nyy, IDy}g HAMC (K, Ny | Ny | IDyy)>

Compute session key Compute session key
K’ = H(K | Ny) K' = H(K | Ny)

Mj: <Seq;, HMAG, (K', Nyy | Seqy)>

<K/, Seq;>
Verify K’
update Nbr

<K', Seq,, Nbr>
— ——

Secure communication using K’

FIGURE 5: Mutual authentication in the regular mode (protocol 2).
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FIGURE 6: The medical framework based on RFID, blockchain, and artificial intelligence.
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(1) Step 1

(3) Calculate A=Ng® IDg;
(4) Broadcast M;;

(5) Step 2

(6) Compare IDg;

(8) Process termination;
9) else
o) {

@11 set up V=RandPermute (F\, UFy,);

(12) Send M, to reader

(13) M, in V;

(14) Step 3

(15)  for each fi do

(16) if i = Fp then

17) The reader and the tag match each other;
(18) Calculate Ky;, =H (Q|| Nr);

(19) Send the message M5 = (I HMAC (Ky;,, I|Q|IDg));
(20) Step 4

(22) Calculate Kj;,=H (Q||Ng);
(23) if K},;,,= Kbio then

(28) Step 5

(29) if Kyio (reader) = Ky, (tag), obtain ( Ny, IDy);

(30)  Calculate S2= HMAC (K},;y> Nyl Ny |IDyy);

(31) if S2=S1 then

(32) Calculate (K, K') K=H (K;;, | Ny ), K=H (K| Ny );
(33) Send < Seq,, HMAC(K", Ny |Seq;) > to WISP

(34) Step 6

(36) If the session keys calculated on both sides are equal
(37) WISP records (K, Seql) to awaken the IMD antenna

(39 k

The proposed protocol in the emergency mode (Figure 7) is as follows:

(2) The reader initially generates the random numbers (N, IDg, flag=1);

(21) If the number of matched characteristics is greater than the predetermined threshold in WISP

(24) if HMAC (K}, I|Q|IDg) = HMAC (K}, IIQIIDp);

(25) Verify success, generate random number Ny, Calculate B= Ny, ® IDyy;

(26) Calculate K=H (K, | Ny,), and new key K’'=H (K| Ny,);

(27) Send S$1=HMAC (K}, Ng| NiylIDy) My= <{ Ny, IDy } , HMAC (Koo NgINyy|IDy)>

(35) WISP verifies the session keys’ equality calculated by both sides (WISP, reader)

(38) When IMD detects the request, begins to collect (K, Seql), and employs them to exchange data securely with the programmer

ALGORITHM 1: The suggested mutual authentication protocol in the emergency mode.

4. Security and Performance Analysis of
Protocol 3 and Protocol 4

The protocol 3 and protocol 4 are more suitable to store
physiological signals in medical applications.

4.1. Security Analysis for Protocol 3. Scheme 3 overcomes the
weaknesses of protocol 1, and the protocol 4 overcomes the
weaknesses of protocol 2.

4.1.1. The Reader Impersonation Attacks Resistance. In order
to resist the reader impersonation attacks, the reader
calculates Kj;,= PRNG (Q||Ng) using Ng. Even if the at-
tacker monitors the output information (°Ky;, = PRNG (Q||
N'g), *M3=(IDg, I, HMAC (*Kp;0, 1||Q||IDg))) using the

new nonce N’ R in the second round, the attacker cannot
counterfeit the original reader.

4.1.2. Key Leak Attack Resistance. In order to resist the key
leak attacks, WISP calculates B= N, ®ID,,; the reader
calculates K = PRNG (K, ||Ny); and K' = PRNG (K||Ny,).

4.1.3. Provision of Data Integrity Verification. In order to
meet data integrity, the protocol 3 has used HMAC hash
calculation to protect the integrity of messages (K1, Seq).

4.1.4. Provision of Scalability and Efficiency. In order to
satisfy the scalability, each tag identifier does not match the
corresponding key in DB. Therefore, the identifications of
tag keys do not match one by one in DB of the improved
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RFID reader Programmer

Step 1. Record ECG

Step 2. Record ECG
create vault

Step 2.1
M,: <Vault V>

A=N,® ID,

Step 3.1

M,: <I, HMAC (K,;,, 1| Q | IDp)>

Step 3. Identify common
features Q compute key:
K,;, = PRNG (Q || Np)

Step 4. Compute key
Ky, = PRNG (Q | Np)
Select
B=ID,, ® N,

Step 4.1

M,: <{Ny, BJK,;,, HMAC (K, Ng| Ny | IDy))>

Compute keys
K= PRNG (K,;, | Ny,)
K’ = PRNG (K | N,,)

Step 5.1

My: <Seq;, HMAC (K', N, | Seq;)>

Step 5. Compute keys
K =PRNG (K, | Ny,
K’ = PRNG (K | N,,)
K1=K®N,

Step 6. Verify K'
K2=K'®N,,

Step 6.2
<K2, Seq,>

Secure communication using K’

Step 6.1
<K1, Seq,>

FIGURE 7: The proposed mutual authentication protocol in the emergency mode (protocol 3).

protocol, which guarantees the efficiency of tag authenti-
cation and satisfies the scalability property.

4.1.5. Replay Attacks Resistance. The attacker replays the
messages to authenticate by monitoring the previous in-
formation. In order to resist replay attacks, all messages are
encrypted by using the random numbers (Nbr, Ny, and Ng)
and combined with PRNG function.

4.1.6. Provision of Data Integrity Verification. In order to
achieve the property of data integrity, we have used
PRNG calculation K’ =PRNG (K|Ny) to protect the in-
tegrity of K'.

4.2. Security Analysis for Protocol 4

4.2.1. Secret Key Disclosure Attacks Resistance. In order to
achieve anonymous and privacy requirements in improved
protocol 4, the protocol uses the XOR function to encrypt
the transmitted keys as follows:

B=IDy® Ny, K1 =K ®Ng, K2=K' &Ny

4.2.2. Tracing Attacks Resistance. The key updating mecha-
nism K’ = PRNG (K|Ny,) involves the i keys and the nonces
(N, K). The i™ key K; cannot be cracked by the (i+1) th keys
Kj., and the i sessions. The reasons are that PRNG functions
protect the parameters by the encrypted messages. Therefore,
the enhanced protocols resist the tracing attacks.
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IMD WISP

Step 1.1

M'y: <{Ny, A, flag, HMAC(K, N | ID)>

11

RFID

Programmer
reader g

Key K

Step 1. A = IDz ® Ny

Request

Step 1.2
Check remaining
___Nbr__ I key lifetime

F————p——————————-

[valid key]

Step 2. Select random N,
compute B =Ny, @ IDy,

Step 2.1

[Invalid key] <Deny, flag>

M',: <{Nbr, Ny, B}, HMAC(K, N | Ny, | ID,,)>

Step 3.1

M';: <Seq,, HMAC (K', N, | Seq,)>

Step 3. Compute session key
K’ =PRNG (K| Ny,)
K1=K'® N,

K' = PRNG (K | Ny,)
K2=K ®N,,

Step 4.2
<K2, Seq,, Nbr>

A

A

Secure communication using K’

Step 4.1
<K1, Seq,>

vy

FIGURE 8: The proposed mutual authentication protocol in the regular mode (protocol 4) (Algorithm 2).

4.2.3. Availability and Desynchronization Attacks Resistance.
In order to provide anonymity, the communication com-
ponents (tag and DB) update the shared messages after
completing the conversation. If the opponents destroy the
updating process, the authentication scheme is subjected to
desynchronization attacks. In order to guarantee the con-
fidentiality and anonymity of K, the messages synchronously
should be updated. In addition, the attacker knows the
shared key K' during the updating processes, which is
protected by the random numbers (Nyy, Ng). The improved
protocol is desynchronization resistance.

4.3. The Comparisons of Security and Performance Analysis.
Table 3 lists the computational cost for five protocols. The
computational costs of tags in protocol 3 are 3PRNG + Xor,
and the computational costs of tags in protocol 4 are
2PRNG + Xor. The safety performances of the enhanced
protocols are superior to other schemes. Compared with the
original protocol 1 and protocol 2, the improved protocols
support the security enhancements and ensure the function
such as integrity, efficiency, and user privacy.

5. Blockchain Framework for Security and
Privacy Storage and Sharing

A framework is developed to share physiological signals’
cross domain and build the radiological studies’ ledger and
patient-defined access permissions by applying the block-
chain as the distributed data store. Relative disadvantages of
the framework include the privacy’s complexity and security
models. Ultimately, the large-scale feasibility of the approach
remains to be demonstrated.

The peculiar health-care technologies are required,
such as parallel processing, distributed data network,
scalable storage, frameworks, and infrastructures. The fog
computing is economical and customizable, since fog
computing handles these complex problems in the virtual
environment and only needs to pay for the used services
and resources.

The sharing physiological signals systems are important
in different medical institutions, but the current infra-
structure for transmitting physiological signals relies on
the trust third-party intermediaries. We propose the
framework of cross-domain sharing image where the
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(1) Step 1

(2) The reader generates (Ng, IDg, flag=0);

(3) Calculate A=IDg® Ny and K=H (Ng|IDg);

(4) Transmit M'1 = <Ny, IDy, flag, HMAC (K, Ny | IDg) >

(6) if t<T then

(7)  else the key expired, access denied;
(8) Step 2

(10) Calculate K’'=H (K | Ny,), B= IDy & Ny;

Calculate S1 =HMAC (K, Ng|Ny|ID,);
(12) Step 3

IDW);
(14) Calculate S2=HMAC (K, Ng|NyID,);
If S2=S1 then
The message is true;
Calculate K’=PRNG (K |Ny,), K1 = K& NR;
(15) Transmit M’3 = Seql,HMAC(K',NWISqu)
(16) Step 4

both sides
(18) After verifying successfully, Nbr++, K2==K @ NW;

The proposed mutual authentication protocol in the regular mode is in Figure 8 as follows:

(5) When WISP receives the request, it confirms that the primary key is expired and verifies that how many session keys which
originated from the primary key exceeds the predetermined threshold

If the primary key has not expired, WISP receives the messages

(9) After WISP successful authentication, the random number Ny, is generated;

(11) Transmit M, = < {Nbr, Nw, I Dw},, HMAC (K, NNy, |ID,) >

(13)  After receiving the messages, the reader starts to parse the first part of the message through the key K to obtain (Nbr, NW,

(17) Based on the received HMAC, WISP can confirm the timeliness of the message and the equality of the session keys calculated on

(19) WISP records (K2, Seql, Nbr) to awaken the IMD antenna
(20) When IMD detects the request, collects (K1, Seql), and employs them to exchange data securely with the programmer.

ALGORITHM 2: The proposed mutual authentication protocol in the regular mode.

blockchain is used as the distributed data storage to es-
tablish patient-defined access rights. The blockchain
framework is verified to eliminate the access permission of
the third-party to protected physiological signal infor-
mation, meets many standards of the interoperable medical
system, and easily generalizes to fields beyond physio-
logical signal. We summarize the framework based on
blockchain to allow patients to securely grant electronic
access permission to their physiological signal data and
describe the advantages and disadvantages of the approach.

The actual transmission of physiological signals re-
quires the physiological signals receiver who transmits the
signed request to the URL endpoint. The individual ser-
vice is the requesting entity that the access permission of
the physiological signals study is authorized to by the
owner (patient). The studies of all patients’ physiological
signals result in the huge blockchain, far too large to
download, store, and validate for nodes running on
mobile devices. The size of the blockchain has been proven
to be the limiting element for chains storing the trans-
actional data.

Considering all of these factors, sharing the physiological
signals by using blockchain helps the interoperable health
system and has greater ability to access patients’ physio-
logical signals electronically.

5.1. Physiological Signals Data Sharing Model Based on
Blockchain [22]. Intelligent contract based on blockchain is
used to promote the security analysis and management of
medical sensors. Intelligent device invokes intelligent con-
tract and writes records of all events on blockchain. The
intelligent contract systems support real-time patient
monitoring and medical intervention by sending notifica-
tions to patients and medical professionals. The provider of
medical records can modify the physiological signals, but it
needs patient’s consent, and the patient can assign access
authority to medical records.

When applying blockchain to the construction of the
credit system, we promote the collection and supervision of
credit information in the medical field and build the new
relationship platform. It is significant to the improvement of
the credit system construction. According to the unified
evaluation criteria, the credit rating is evaluated, the result of
the rating level is publicized on the platform of block chain,
the credit rating is rewarded, and the violation of credit is
punished, so as to strengthen the construction of the credit
system in the medical field in the real sense.

The asymmetric information encryption methods need
two keys: public key and private key. After the physiological
signals are encrypted with public key, only the corre-
sponding private key can be used for decryption. On the
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M’z (N, C, flag, HMAC (K, Ny | IDp))

Request

---1 Check remaining
key lifetime
No, | IDg=C ® N,

Select random
Ny

[Invalid key] <Deny, flag>
[Validkey] — |==—=====----===---

M'y: ({Nbr, Ny, Dy}, HMAC (K, Ny | Ny | IDyy))

Key K
C=1IDy ® IDy

K’ = PRNG (K | Nyy)

M'5: (Seq,, HMAC (K', Ny, | Seq,))

K’ = PRNG (K | Ny)
K1=K' ® Nbr

Verify K’
update Nbr
K1 =K' ® Nbr

(K1, Seq;, Nbr)

Secure communication using K1

(K1, Seq;)

FIGURE 9: Secure communication protocol between the IMD and the programmer (protocol 5) (Algorithm 3).

contrary, if the private key is used to encrypt data, only the
corresponding public key can be used for decryption. If the
blockchain can be grafted, scientific research institutions
understand the probability of disease occurrence, the oc-
currence of accidents, the level of hospital management, and
claims cases and other actual situations.

(1) Use the fog-based blockchain and fog warehouse to
store medical data, as shown in Figure 10.

(1) List of medical research and patients in each
institute.

(2) Patients are authorized to access the entity set of
each study. The entities are represented by the
common part of the asymmetric key pair on the
blockchain.

(2) Definition study: the transaction builds the patient as
the master of a UID which is the specific unique
identifier and the source as the creator. Tuples stored
in block chains are transactions with double signa-
tures, similar to documents with signatures from
patients and hospital representatives. The patients
claim that the definition study has received the

medical diagnosis in the hospital, which confirms the
statement and promised to provide the study in the
previous block. The patient’s signature declaration is
obtained through the mobile application, which shares
and stores the values required allowing access to the
transaction in the future. Then, the hospital signs the
follow-up information of the patients and broadcasts
the transaction to the blockchain.

(3) Allow access: the transaction allows the owner of the

medical information research to authorize the other
party to retrieve its medical data. Patient Kp signs a
transaction to grant the function to doctor Kp. The
signed verification blocks are embedded in block-
chains. As shown in Figure 11, patients publish the
transaction after verifying the key with the doctor
through the APP platform. The patient can be au-
thorized to the legitimate doctor or institution, and the
doctor can associate any medical information received
with the correct local medical record number.

The middle column (Block Chain Medical Data Sharing
Sequence) describes the interaction between entities and
judgments in each stage and reflects the sharing medical
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The programmer can use the session key calculated by the protocol to establish the secure communication after IMD
authenticates the programmer in Figure 9.

(1) Step 1:

(2) The reader initially generates (K, C=IDz® N) and transmits the values M; =(Ng, C, flag, HMAC (K, Ny | IDg)) to the WISP.
(3) Step 2:

(4) The IMD returns Nbr and updates IDg= C® Np.

(5) Step 3:

(6) If the key is valid then
(8) else

(10) Step 4:

(12) Step 5:

K, =K @ Nbr, and sends (K, Seql, Nbr) to the IMD.

(7) The WISP selects NW and transmits the values M;:((Nbr, Nyw, IDy,), HMAC (K, Ng| Nw|IDy)) to the reader.
(9) The WISP transmits the sequences (Deny, flag) to the reader.

(11) The WISP updates K' = PRNG (K |NW), and the reader updates K' = PRNG (K | Ny) and K1 =K’ & Nbr. The reader sends the
value M3 = (Seql, HMAC (K, Ny, Seql)) to the WISP and sends the messages (K1, Seql) to the programmer.

(13) The WISP identifies K' by comparing the value K’ of the WISP with the K’ value of the reader. The WISP updates Nbr,

ALGORITHM 3: Secure communication protocol between the IMD and the programmer.

TaBLE 3: The comparisons of the performance analysis and safety performance.

Performance Protocol 1 Protocol 3 Protocol 2 Protocol 4 Protocol 5
FO No Yes No Yes No

F1 3H + Xor 3PRNG + Xor 2H + Xor 2PRNG + Xor 1PRNG+2Xor
F2 No Yes No Yes Yes

F3 No Yes No Yes Yes

F4 No Yes No Yes Yes
Attack types Protocol 1 Protocol 3 Protocol 2 Protocol 4 Protocol 5
R1 No Yes No Yes No

R2 Yes Yes Yes Yes Yes

R3 Yes Yes Yes Yes Yes
R4 Yes Yes Yes Yes Yes

R5 No Yes No Yes Yes
R6 No Yes Yes Yes Yes

FO: provision of scalability and efficiency; F1: storage cost (tag); F2: blockchain-enabled; F3: cloud computing-enabled; F4: fog computing-enabled. R1: key
leak attacks resistance; R2: replay attacks resistance; R3: desynchronization attacks resistance; R4: reader impersonation attacks resistance; R5: tracking attacks

resistance; R6: tag impersonation attacks resistance.

information by supporting distributed block chains and out-
of-block transactions.

The actual medical data transmission requires the
medical data receiver to deliver the signature request to the
medical source’s URL endpoint which creates the research.
Both requests and responses are transmitted through the
secure link of the transport layer to prevent eavesdropping.
The effective blocks are generated in the timely manner by
generating the distributed database with access permissions
and stimulating the block generator in some way. Only those
nodes with security deposits can participate in the expansion
of the chain, and any node with misconduct will be forced to
abandon its investment. The nature of blockchain provides
the direct audit of the activity of each node such as the
number of blocks generated and the failure status of the
blocks generated. The node operator can prove the node
ownership by using the private key which is corresponded to
the identity public key of the node to sign the message. The
enhanced model adds the fog computing in the original
blockchain medical data sharing the sequence model [22],

which is used to construct the blockchain for medical data
sharing.

We have showed the technology fundamentals of
blockchain and provided a summarization of the blockchain
application that can be used as a tool to allow the patient-
controlled, physiological signal’s cross-domain sharing
without the central authority. In particular, we highlighted
the way blockchain satisfies many requirements of the in-
teroperable health system. However, these technologies also
have several important limitations, and the relative merits of
existing alternatives must be considered before any large-
scale and blockchain-based application for sharing physi-
ological signals.

When receiving query request, the physiological signal
data source verifies the correctness of the signature, ensures
that the hashed data matches the previously published data
for Kp-owner via Block B, and confirms that the Kp-owner
has allowed the requestor access to these physiological signal
data via Block C. If meeting all the conditions, the response
containing the physiological signal study is returned from
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FIGURE 11: Blockchain medical data sharing sequence diagram based on fog computing.

the source. In order to prevent eavesdropping, the requests
and responses are sent to prevent eavesdropping. The spe-
cific steps of blockchain medical data sharing sequence

diagram are as follows:
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Step 1: for hospital (Kyg-owner), Ky-owner will service
physiological signals retrieval requests at https by using

on-blockchain
communication.

transaction and

off-blockchain



16

Step 2: for the patient (Kp-owner), the physiological
signals are acquired for KP-owner and KH-owner.

Step 3: for hospital, Kp-owner’s assertion is accrate and
KH-owner shares the physiological signals at the
established endpoint.

Step 4: for physician (Kp-owner), Kp-owner reviews
the physiological signals from the hospitalization.

Step 5: for patient, if the patients agree, they are Kp-
owner and will allow access.

Step 6: for patient, the patient permit Kp-owner to
access the physiological signals that were acquired by
KH-owner.

Step 7: physician uses the information in blocks (4, C)
to submit the query request for physiological signals,
signed by Kp.

Step 8: hospital valid at the physician’s signature, uses
the data in blocks (B, C) to confirm authorization and
transmits the physiological signals study in the query
response. The requests are sent by the Kp-owner at
timepoint D.

The ecosystem is consisted of the blockchain nodes and
fog storage. For example, one of the main reasons for in-
corporating fog storage technology into the ecosystem is to
supply the offline storage solution, especially for large
physiological signals. For security and privacy, the client side
would encrypt the physiological signals uploaded to the fog
storage. With the maturity of the fog storage, personal
storage may be replaced by it.

Most significantly, blockchain technology can create the
physiological signal-driven marketplace, where patients can
get real return by offering their data to research institutions,
pharmaceutical and consumer companies, the application
development community, and producing new physiological
signal data.

6. Conclusions

We extend the architecture of the IMD with blockchain,
RFID, and WISP, which increases the physiological signal
data’s confidentiality and authenticity. The enhanced RFID
protocols provide protection against tracking attacks,
readers’ impersonation attacks, and secret disclose attacks.

The physiological signal records have proved the im-
portance for the patients, and sharing and acquiring
physiological signals is essential for intelligent and advanced
medical services. The blockchain application of e-commerce
has proven that trusted and auditable transaction in peer-to-
peer networking is possible. In the paper, we have intro-
duced a blockchain-based architecture model for physio-
logical signal data on fog computing environment. Our
contributions are mainly consisted of the proposed solution
and introduction to future medical data directions in
blockchain. The paper proposes the outline to show the
framework and schemas for dealing with heterogeneous
physiological signals. Once the hybrid technologies are in-
tegrated, big data systems and AI technology have the po-
tential to offer privacy protection and data sharing and

Journal of Healthcare Engineering

transform healthcare management. In the future, we will
focus on heterogeneous physiological signal data issues
through fog computing, blockchain, and Al technology in
the realistic medical environment.

Data Availability

The paper gives an outline about the framework, and in-
ternal working and protocols for handling heterogeneous
physiological signal data. Once the hybrid technologies are
integrated, big data systems and Al technology have the
potential to offer privacy protection and data sharing,
transform healthcare management.
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In view of time delay existing in gene regulation, by using the analysis idea and methods of complex network, this paper proposes a
multi-time-delay gene regulation network analysis method based on the fuzzy label propagation. The algorithm takes the relative
change trend coefficient, the correlation coefficient, and the mutual information as the similarity measurement indexes for the
gene pair, fully reflecting the correlation of gene pairs and simultaneously obtaining the gene regulation relationship and the time
delay through the fuzzy label propagation algorithm of the semisupervised learning. Experimental results of the cell cycle-
regulated genes of yeast show that the proposed construction method of GRN can not only correctly select potential regulation
genes but also provide details about the gene regulator model, thereby more accurately constructing gene regulation network.

1. Introduction

The interaction between the implicit genes in gene ex-
pression data can be used to construct gene regulatory
network by analysing gene expression data [1]. The research
of gene regulatory network is one of the topics of post-
genomic informatics. It mainly analyses gene expression
data, uses bioinformatics methods and technologies to
identify the topological structure of gene network to deeply
understand the structure and function of biology and the
mechanism of pathological changes, and understands life
phenomena in a systematic framework [2, 3]. Gene network
research can be used to reveal the development process and
mechanism of biological tissue system and help understand
the regulation of internal substances, which can promote
people to effectively identify the cause of disease. In par-
ticular, the study of human tumor gene regulatory network
can make us have a deep understanding of the regulatory
relationship of tumor related genes and then provide basis
and guidance for tumor gene therapy. Gene regulatory
network, as the molecular basis of basic cell life activities, has
the biological characteristics of randomness, complexity,
spatiotemporal specificity, and dynamic. This makes the
construction of gene regulatory network very difficult.

The time-series gene expression data have been widely
applied in the research on the gene regulation network, and
attention to the time delay has been paid increasingly as the
important factor for the gene regulation network con-
struction [4]. The time-delay processing can be generally
classified into two types: first type—firstly calculate the time
delay among genes, then translate the time-series gene ex-
pression data to the calculated time delay to achieve the
effect of removing delay, and finally construct the gene
regulation network to analyse the regulation relationship
among the genes; second type—directly construct the time-
delay gene regulation network model and obtain the time
delay and the regulation relationship through the time-delay
regulation network method [5]. In the first type of analysis,
Ahsen et al. [6] obtained the phase and frequency of two
gene expression data in the frequency domain through the
frequency domain change and calculated the time delay on
the basis of the relationship between the phase and the
frequency. Huang et al. [7] obtained the mutual time delay
among 101 genes by using this time-delay estimation
method, constructed the gene regulation network by
adopting the concept of community detection, and obtained
the better result. The delay time obtained by this method is
not always the integer multiple of time interval, and it is
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necessary to obtain the delay removed gene expression value
by using the curve fitting method, which is not conducive to
the follow-up study.

The regulation time of gene expression in cells is not
synchronous, and the regulation delay length is also different
[8]. The existing dynamic Bayesian network model of gene
expression regulation network based on time-series gene
expression data is difficult to model the asynchronous multi-
time-delay regulation relationship [9]. In order to solve this
urgent problem, this paper proposes a semisupervised
learning method that can accurately model the asynchro-
nous and multi-time-delay regulatory relationship between
genes. It can learn the gene expression regulatory network
with asynchronous and multi-time-delay characteristics
from the time-series expression data of gene chip. In the
learning process, it can use the known class data and the
unknown class data to obtain more information and have
better learning effect.

2. Related Work

The reconstruction of gene regulatory network based on
expression data is also called reverse engineering or network
inference. In recent years, various algorithms have been
proposed by analysing gene expression data, such as GA
[10], gene programming [11], evolutionary strategies [12],
and ACO [13]. However, the GRNs modeled by the above
algorithm consist of only a limited number of genes. How to
reconstruct large-scale gene regulatory network is still an
unknown biological problem.

At present, there are various models to model gene
regulatory network. The simplest model is based on Boolean
networks. In reverse engineering, Boolean networks are used
to infer the underlying topology and the Boolean functions
at the nodes from the observed gene expression data. In
addition, continuous network is an extension of Boolean
network [14], which is also widely used to model gene
regulatory network. Nodes still represent the regulatory
effect of genes and their connections on gene expression.
Genes in biological systems show continuous range of ac-
tivity levels, and it has been considered that continuous
networks can capture some properties of gene regulatory
networks that do not exist in Boolean models. Many
methods based on continuous networks have been proposed
to infer gene regulatory networks, for example, based on
linear regression and based on mutual information. In
Arachne algorithm, the specific information of each gene
pair can be calculated in an appropriate way to get the actual
value of mutual information, and compared with the fixed
threshold value, a regulatory interaction can be inferred. In
addition, many probabilistic graphical models have been
proposed to measure the high-order dependence between
different gene expression patterns. Bayesian network is one
of the most popular methods to infer gene regulatory net-
work. In Bayesian networks, directed acyclic graphs are used
to indicate the conditional dependence between random
variables [15].

Many researchers think that the time delay among the
genes is constant value, and the time delay varies from gene

Journal of Healthcare Engineering

pairs so that the analysis on the multi-time-delay gene
regulation network was proposed in succession. To be fa-
vorable to construct the gene regulation network, the time
delay is normally regarded as the integral multiple of time
interval. Based on this, Yang et al. [16] firstly established the
time-delay gene expression matrix to dig the time-delay
regulation relationship among the genes through the deci-
sion tree classifier. Yang [17] constructed the multi-time-
delay gene regulation network by using the high-order
Markov dynamic Bayesian network. Raja Chowdhury and
Chetty [18] constructed the multi-time-delay gene regula-
tion network by using the correlation coefficient method. In
this method, the time-delay correlation coefficient among
the genes was firstly established, the maximum value of
correlation coefficient in each gene pair and the time delay
corresponding to this value were obtained through the
dynamic threshold method, and finally the maximum value
of correlation coefficient in the gene pair was compared with
the given threshold to screen the correlation coefficient
greater than the threshold and obtain the genes corre-
sponding to these correlation coefficients and the time delay
to complete the analysis on the multi-time-delay gene
regulation network. This method is simple and can effec-
tively handle the time-delay problem. Aderhold et al. [19]
established the time-delay mutual information among the
genes and constructed the multi-time-delay gene regulation
network through the dynamic Bayesian network: firstly
construct the multi-time-delay mutual information matrix
to select the larger gene in the mutual information and then
complete the analysis on the gene regulation relationship by
the dynamic Bayesian network. Better effect has been ob-
tained by this method. However, most of these time-delay
methods start from the relationship between genes but ig-
nore the characteristics of genes.

The single metrical scale was used when the similarity
among the genes was measured by the above methods. When
constructing the gene regulation network, Liu et al. [20]
pointed that the single similarity evaluation scale cannot
reflect the correlation among the genes very well, so they
evaluated the correlation among the genes by using the
combined method of correlation coefficient and interquartile
range and obtained better gene regulation relationship
through the vector analysis by taking the interquartile range of
the gene pair as the horizontal ordinate and the correlation
coeflicient as the vertical coordinate. By reference to [21, 22],
this paper combines the multi-time-delay correlation coef-
ficient, the mutual information, and the relative change trend
coeflicient to construct the new gene pair correlation eval-
uation matrix and complete the analysis on the multi-time-
delay gene regulation network through the semisupervised
learning method of fuzzy label propagation.

3. Relevant Notes

The time-series gene expression data are denoted as
V' = (x;j)nxp» Wherein x;; expresses the expression value of
gene i at the time point j and j =1,2,3,..., P. The maxi-
mum delay time among the genes is denoted as A times the
time interval.
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3.1. Time-Delay Relative Change Trend Coefficient. The
matrix obtained by gene expression data discretization is
denoted as D = (b;;) ny (p-1)-

lfx <x1(1+1)

1
bij = O, lfx~ = A(]‘+1)’ (1)

_1, lfx >x1(1+1)
where j=1,2,3,...,P- L

For any two genes m and n in the dataset, the relative
change trend coeflicient for the gene »n and the gene m at the
time point j is denoted as s,,,, ; after the gene 1 is delayed by
a unit of time and can be calculated by the following the
formulas:

b'mn,j:bmjx i=1,2,3,...

by (jray ,P-1-a, (2

s, .=b_ . xb

v = By X By 1 = 1,2.3,..,P=2-a. (3)

The value of s, ; is —1,0,1, wherein 1 indicates the
similar change trend of two genes.

The relative change trend of two genes after delay is
graded. The number of values equal to 1 is denoted as s),,,,, and
the relative change trend score for the gene # and the gene m
is denoted as score’,  after the gene n is delayed by a unit of
time.

!

score), = S (4)

P-2-a

3.2. Time-Delay Correlation Coefficient. The correlation
coefficient for the gene n and the gene m is denoted as r%,,
after the gene n is delayed by a unit of time.

Zf f‘(xmj =~ %) (Xn(jra) = %)
\/Z \/z n(j+a) — xn)z

where X,, expresses the mean value of the former P -a
expression values for the gene m and X,, expresses the mean
value of the latter P — a expression values for the gene n.

(5)

3.3. Time-Delay Mutual Information. Mutual information
expresses the shared information amount between two
genes, firstly performing interval partition for the gene
expression dataset and then calculating the delay mutual
information matrix among the genes. The mutual infor-
mation for the gene n and the gene m is denoted as M, after
the gene # is delayed by a unit of time.

M;  =H(m)+H(n) - H(m,n), (6)

where H is information entropy. The calculation method is
as shown in formulas (7) to (9):

H(m) ==Y pylog, (p), )

H(n) == pylog, (p,). ()

H(I’l’l, 1’1) = _me)nlogZ(pm,n) (9)
where m takes the former P — a expression value and n takes
the latter P — a expression value.

3.4. Gene Pair Similarity Evaluation Matrix. The gene pair
similarity evaluation matrix is I = (i, Fa) NxNx3xA> i fa
expresses the expression value of the attribute f for the gene
n and the gene m after the gene n is delayed by a unit of time,
anda =0,1,..., A, wherein the attributes of gene pair are,
respectively, relative change trend, correlation coefficient,
and mutual information. For the convenience of subsequent
analysis, the time-delay similarity evaluation matrix is
denoted as I = (i,,,,)nxnxa> Wherein i, . expresses the
similarity sample for the gene n and the gene m after the gene
n is delayed by a unit of time.

4. Multi-Time-Delay Gene Regulation Network
Based on Fuzzy Label Propagation

4.1. Algorithm Description. The converted datasets are
classified by using the fuzzy label propagation algorithm of
semisupervised learning. There are two label values: 1 and
—1, wherein 1 indicates that the regulation relationship exists
between two genes in the gene pair and -1 indicates that
there is no regulation relationship.

In the fuzzy label propagation algorithm, firstly divide I
into the labeled data set I; and the unlabeled dataset I, and
calculate the similarity S,z (n'wa) Of any two samples iy, .
and i,/ by using RBP kernel function.

! ! !
0, m=m,n=n,a=a,

S (na) (mi'a') = nd
mna) (m'n exp<||lmna 1m"““ >, other,

20?2
(10)

where o expresses the variance of difference value between
two samples.

Express the category of sample i,
F (;ynay of 1 x 2 dimensions:

.o with the vector

(1) If the sample i, € I,
1, i, € thecategory j',
(mna) j = ¢ gory J (11)
0, i, ¢ thecategory j',

where j' =1,2.

(2) If the sample i,,,, € IU, the label value of i, is
propagated from the k' adjacent samples and the
membership that i), belongs to the category j'
meets

Z S(m'n'a' (mna) (Fm'n'a' - ana) =0, (12)
l ’ / /EN(lmm)



where N (i!

mna
./
samples of i

(12):

) expresses the set composed of k' adjacent
and the results are obtained from formula

Z N (m'n'u') (mna)

F = .
i1 1 1EN (iyng) Zi;/n/ul eN (zmm)S (m'n'a") (mna)

mna

Fm'n'a"

(13)

As the category labels of unknown samples are con-
tinuously renewed, F,,,, in formula (13) is required to be
repeatedly calculated until the fuzzy category label values of
all samples are not changed.

Obtain the fuzzy label value F = (F,,,)nxnxa Of all
samples and convert the label value matrix by the following
formula:

F__, ifF___ >0,
an“ — { mna mna (14)
0, ifF,,.>0.

Convert the label value matrix by the following formula:

F _{ 1’ imena?éo’anu :maX(anl’anZ""’ana)’
mna ~ .
0, otherwise.

(15)

The regulation relationship exists between two genes
corresponding to the samples with the label value of 1, and
the time delay is a times the time interval.

4.2. Algorithm Steps

Step 1: estimate the missing value in the simulation data
set by using the missing value estimation method [23]
and construct the complete dataset.

Step 2: calculate the time-delay relative change trend
coefficient matrix, the time-delay correlation coefficient
matrix, and the time-delay mutual information matrix
of all gene pairs in the complete dataset.

Step 3: obtain the similarity evaluation matrix of gene
pair. This similarity evaluation matrix is a multidi-
mensional space matrix. For simulation simplicity, the
matrix is processed accordingly to be converted to the
two-dimensional space matrix. Make I = (i, ) Ax )x3>

wherein the row sequence of the row vector 7,/ is as
follows: no delay between the gene 1 and the gene 1,
delay 1 time unit between the gene 1 and the gene 1, and
delay A time unit between the gene N and the gene N.

Step 4: add the label value to a small number of gene
pairs, calculate the fuzzy label values of unknown gene
pairs on the basis of fuzzy label propagation algorithm,
and obtain the regulation relationship and the time
delay between the genes.

4.3. Time Complexity Analysis of Algorithm. There are two
main bottlenecks in the calculation of this algorithm. The
first is to use mutual information to find the time delay
between gene pairs, and the second is to use fuzzy label
transfer algorithm to classify datasets. It is assumed that the
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number of genes is N, the length of gene time series is T, the
maximum time delay is 71, and the number of iterations of
fuzzy label transfer algorithm is M. When we use equation
(6) to find the mutual information of a target gene and its
regulator under a certain time delay, we need to traverse the
gene expression level matrix once, and the algorithm
complexity is O(N = T). So, the time complexity of the
algorithm is O (N?Tm). The time complexity of initialization
is O(N?). The time complexity of fuzzy label transfer al-
gorithm using semisupervised learning is O (M). The time
complexity of calculating score function is O (NT). There-
fore, the total time complexity is O (N*Tm + MNT).

5. Results and Discussion

5.1. Simulation Dataset. The simulation dataset is selected
from the yeast cell gene chip data [24, 25] provided by
Spellman et al. in Stanford University, from which 6 genes
are extracted to form a small gene regulation network. The
data are as shown in Table 1.

Extract the regulation relationship among 6 genes based
on the research of Hou et al. [26]. The regulation network
structure is shown in Figure 1.

6. Results

In simulation, firstly we need to select part of samples to add
the labels. In this paper, the sample label value is set to —1
when the delay between the genes Clb6 and Clnl is 0, the
sample label value is set to 1 when the delay between the
genes Clb2 and Cln2 is 0, and the maximum time delay A is
set to 2. The simulation results are shown in Table 2.

It can be seen from Figure 1 that there are 10 pairs of
genes having the regulation relationship. Table 2 shows that
the method of this paper can correctly identify 8 pairs of
genes having the regulation relationship, accounting for 80%
of the total gene pairs having the regulation relationship, and
the accuracy is relatively perfect. In 8 pairs of genes correctly
identified, there are two pairs of genes having time delay,
namely, Swi5 and CIn2 and CIn2 and CIbl, and the time
delay is 1 unit. The change relationship of expression values
for 8 pairs of genes correctly identified is shown in Figure 2.
Horizontal coordinates represent gene expression level and
vertical coordinates represent time point of gene expression.

It can be seen from Figure 2 that the change relationships
of the gene expression data in Figures 2(a) and 2(c)-2(e) are
basically consistent and the change relationships of the gene
expression data in Figures 2(b) and 2(f)-2(h) are basically
contrary, and Figure 2(g) shows the change relationship
between the gene CIn2 and the gene CIb1 after the gene Cln2
is delayed by 1 unit of time. On the left side, the time points
corresponding to the peaks and troughs of Cln2 expression
value and Clb1 expression value are basically the same, and
the change trends are contrary; on the right side, the ex-
pression value changes of two genes are disordered to some
extent, but except for the last three time points, the ex-
pression value changes of other time points substantially
conform to the change contrary trends. Figure 2(h) shows
the expression value change relationship between the gene
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TaBLE 1: The information of selected genes.

Gene Dataset Gene Dataset Gene Dataset
Clnl YMR199W Clb2 YPR119W Clbl YGR108W
Cln2 YPL256C Clb6 YGR109C Swib YDR146C

Cln2 Clnl

Swi5 Clb2

Clb1l Clb6
FiGure 1: The structure of regulatory network formed by the 6 genes.
TaBLE 2: The correctly identified gene pairs and the time delay.

Gene pairs Cln1-Cln2 Swi5-Cln2 Swi5-Clb2 Cln2-Clb2 Cln1-Clb2 Cln2-Clbl Swi5-Clb1 Clb2-Clbl
Time delay 0 1 0 0 1 0 0

Cln2 and the gene Swi5 after the gene Cln2 is delayed by 1
unit of time. It can be seen from the figure that the change
trends of two gene expression values are contrary, wherein
the first peak of the expression value for the gene Swi5 was
obtained at the seventh time point and the first trough of the
expression value for the gene Swi5 was obtained at the
twelfth time point; the first peak of the expression value for
the gene Cln2 was obtained at the seventh time point, and
the first trough of the expression value for the gene Cln2 was
obtained at the eleventh time point; the time points of peaks
and troughs for the two genes are basically the same.
Therefore, based on the premise and assumption, the result
that the time delay between Swi5 and Cln2 and between Cln2
and Clbl is 1 time interval in the regulation is reasonable.

7. Discussion

In order to have objective and scientific comparison results,
hypothesis testing is used on the experimental results. Let the
variables X, X,, X5, X, denote the classification error rate
of algorithms proposed in this paper, reference [17], ref-
erence [20], and reference [27], respectively. Since the value
of X,,X,,X;,X, is subject to many random factors, we
assume that they submit to normal distribution,
X; ~ N(y;,07),i=1,2,3,4. Now, we compare the random
variable mean of these algorithms, y; (i =1,2,3,4). The
smaller y; is, the lower the expected classification error rate is
and the higher the efficiency is. Because the sample variance
is the unbiased estimation of the overall variance, the sample
variance value is used as an estimate of the generality

variance. In this experiment, the significance level « is set as
0.01.

Table 3 shows the comparison process on y; and other
parameters. We can see from Table 1 that the expectations of
classification error rate in this paper are far below than other
algorithms.

Next, we use some evaluation indexes to evaluate the
algorithm. TP, TN, FP, and FN are abbreviations of true
positive, false positive, true negative, and false negative,
respectively. Perform the following operations on all target
genes and regulatory genes. If the regulatory relationship
between the target gene and regulatory gene is inferred by
this algorithm and the previous literature has proved the
regulatory relationship, then the value of TP is increased by
1. If the regulatory relationship between the target gene and
regulatory gene is inferred by this algorithm, but the pre-
vious literature has not proved the regulatory relationship,
then FP is increased by 1. If the algorithm in this paper does
not infer the regulatory relationship between the target gene
and the regulatory gene and no previous literature has
proved that there is a regulatory relationship between the
target gene and the regulatory gene, then the value of TN is
increased by 1. And if the algorithm in this paper does not
infer that there is a regulatory relationship between the
target gene and the regulatory gene, but the previous lit-
erature has proved that the regulatory relationship exists,
then add 1 to the value of FN. Each algorithm evaluation
standard is evaluated by some combination of TP, FP, TN,
and FN. The most common algorithms for predicting gene
regulatory networks are sensitivity (Sn), specificity (Sp), and
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(a) (b)

(® (h)

F1GURE 2: The changing relationship of the eight gene pairs. (a) The changing relationship of Clnl and In2. (b) The changing relationship of
CIn2 and CIb2. (c) The changing relationship of CIbl and Swi5. (d) The changing relationship of Clb2 and Swi5. (e) The changing re-
lationship of CIb1 and sCIb2. (f) The changing relationship of Clnl and CIb2. (g) The change relationship between CIn2 and CIb1 after Cln2
is delayed by 1 unit of time. (h) The change relationship between Cln2 and Swi5 after Cln2 is delayed by 1 unit of time.
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TaBLE 3: Hypothesis testing for experimental results.

H,: > H,: > H,: >
Hypothesis 0 b2t 0- H12H3 0" H1 2y
e Hy:op <y, Hy: oy <y Hy: oy <py
Statistics U, = (X; =X, (\/(6?n) + (6%Iny)) U, = (X, = X3)/ (\/(02/n) + (0%/n3)) Us = (X, = X/ (63n,) + (03/n,)

Rejection region U <-2Z,=-2325 U,< -Z,=-2.325 Us;< -Z,=-2325
Value of the U, = -36.24 U, = 5832 U, = ~76.65
statistic

Conclusion H,: oy, <y, H,: oy <ps Hy: oy <py

TaBLE 4: Comparison between the methods in this paper and other
methods.

Algorithm TP TN FP FN Sn (%) Sp (%) Acc (%)

Reference [17] 12 185 27 20 37.5 87.3 80.7
Reference [20] 12 183 28 21 36.4 86.7 79.9
Reference [27] 8 180 31 25 24.2 85.3 77.0
This paper 14 187 25 18  43.8 88.2 82.4

accuracy (Acc). Sn=TP/(TP + FN), Sp=TN/(TN + FP), and
Acc=(TP+TN)/(TP +FP + TN + EN). The comparison re-
sults are shown in Table 4.

Table 4 compares the inference results of the four
methods for gene regulatory network. The sensitivity of
reference [17] method is only 37.5%, that of reference [20]
method is 36.4%, that of reference [27] method is 24.2%, and
that of the proposed method is 43.8%. It can be seen that in
the network construction of this gene, the method proposed
in this paper is better for identifying the right edge; it also
shows that the addition of transcription factor linkage site
data reduces the information loss in data processing. The
data in accuracy are also optimal, which shows that the
accuracy of network construction in this paper has been
improved.

Therefore, each gene has a complex regulatory rela-
tionship in different cell cycles. The direction of regulation
can be determined by using the method of multiple time
delay, which is in line with the mechanism of biological time
sequence activity. The introduction of transcription factor
linked site data can reduce the network complexity and
construct the regulatory network more effectively.

To sum up, the multi-time-delay gene regulation net-
work method based on the fuzzy label propagation is
feasible.

8. Conclusions

In consideration of the time delay existing in the interaction
of genes, this paper constructs the multi-time-delay gene
regulation network, uses the relative change trend coeffi-
cient, the correlation coefficient, and the mutual information
as the evaluation indexes of the gene pair to construct the
similarity matrix of the gene pairs, and then analyses the
regulation relationship and the time delay among the genes
by using the fuzzy label propagation algorithm. Due to the
high complexity of algorithm in this paper, the method
proposed in this paper is unsuitable for the construction of

large network, and the error recognition ratio will be in-
creased when the maximum time delay is set to high value.
However, the method proposed in this paper is feasible.
Therefore, how to effectively modularize the large network,
divide the large network into many small networks, and
integrate the small networks into the large network in the
analysis will be an improvement direction of the method in
this paper.
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Recently, deep reinforcement learning, associated with medical big data generated and collected from medical Internet of Things,
is prospective for computer-aided diagnosis and therapy. In this paper, we focus on the application value of the second-generation
sequencing technology in the diagnosis and treatment of pulmonary infectious diseases with the aid of the deep reinforcement
learning. Specifically, the rapid, comprehensive, and accurate identification of pathogens is a prerequisite for clinicians to choose
timely and targeted treatment. Thus, in this work, we present representative deep reinforcement learning methods that are
potential to identify pathogens for lung infection treatment. After that, current status of pathogenic diagnosis of pulmonary
infectious diseases and their main characteristics are summarized. Furthermore, we analyze the common types of second-
generation sequencing technology, which can be used to diagnose lung infection as well. Finally, we point out the challenges and
possible future research directions in integrating deep reinforcement learning with second-generation sequencing technology to
diagnose and treat lung infection, which is prospective to accelerate the evolution of smart healthcare with medical Internet of

Things and big data.

1. Introduction

Nowadays, smart healthcare has appeared to be an inter-
disciplinary subject by integrating mixed computing tech-
niques into the health administration [1, 2]. The primary
purpose of smart healthcare is to offer pervasive and per-
sonalized medical services and health protection to people.
Computer-aided diagnosis and decision making of this
personalized treatment plan is one of the current develop-
ments in precision medicine [3, 4]. Smart healthcare aims to
provide intelligent comprehensive differentiation and pre-
scription recommendation for the diagnosis and treatment
of diseases by applying artificial intelligence technology and
cloud computing to the practice of clinical medicine. It has
been greatly developed through the applications of artificial
intelligence, cloud computing, big data analysis, and Internet
of Things (IoT), and has been applied to many medical fields
such as intelligent Chinese medicine and intelligent testing.
Medical big data is to integrate the IoT system into medicine

and to integrate and classify the collected medical data
information by creating the medical Internet of Things [5, 6].
The deep learning model and the deep reinforcement
learning model are the most commonly used artificial in-
telligence models, which can be trained and simulated by
providing a large number of training examples through
medical big data. The computer aids of modern medicine
and traditional Chinese medicine have matured. Thus, there
are many well-trained deep learning models for clinical
medicine.

Pulmonary infectious diseases are common respiratory
diseases, whose clinical manifestations include cough, fever,
and chills. However, pathogens of lung infections are
complex, and it is difficult to carry out biological cultivation
and identification. Particularly, complex lung infections
have various clinical manifestations: the mortality rate is
high and the treatment is difficult, the traditional pathogen
detection methods have low positive rate; it is a long time-
consuming and complicated operation, and it is difficult to
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meet the requirements of diagnosis and treatment of
complex infectious diseases. Classical pathogen detection
methods include bacterial (fungal) culture, microscopy and
antibody testing, and PCR-based pathogen-specific nucleic
acid detection. These methods have made great progress in
the diagnosis of pulmonary infectious diseases, but they have
low sensitivity and poor timeliness; pathogen identification
information and drug resistance information are not
comprehensive, so it is impossible to identify unknown and
rare pathogenic microorganisms. Therefore, clinical diag-
nosis of pulmonary infectious diseases is very difficult.

Second-generation sequencing (SGS), also known as
next-generation sequencing technology and high-through-
put sequencing, can simultaneously sequence billions of
DNA molecules in parallel [7]. It is a group of sequencing
with high throughput, low cost, short time, and automated
sequencing technologies [8-10]. However, poor specificity is
a major problem that restricts the clinical applications of
SGS. Nonpathogenic pathogens, unrelated pathogens, and
ambiguous pathogens are often seen in SGS reports. In order
to clarify the diagnosis, the pathogen information detected
by SGS needs to be verified and interpreted using more
advanced methods [11, 12].

In this paper, we explore deep reinforcement learning for
computer-aided diagnosis and treatment of complex pul-
monary infectious diseases. We present several represen-
tative deep reinforcement learning models for the
diagnosis and treatment of potential lung infections first,
discuss the applications of the deep reinforcement learning
model in the diagnosis of second-generation genetic
testing for pulmonary infection, and summarize current
status of pathogenic diagnosis of pulmonary infectious
diseases and their main characteristics, and then we an-
alyze the results of second-generation genetic testing and
the main features of each type in common lung infections.
Finally, we point out the open challenges and possible
future research directions for intensive studies of second-
generation genetic testing integrated with deep rein-
forcement learning in lung infections, which is expected to
promote the development of intelligent healthcare and
medical Internet of Things.

In the reminder of this paper, Section 2 introduces the
deep reinforcement learning approaches that can be used for
second-generation sequencing for lung diseases detection
and treatment. Section 3 reviews the current status of
pathogenic diagnosis of pulmonary infectious diseases and
applications of SGS in detection of pulmonary pathogen
infection are discussed in Section 4. Section 5 gives the
challenges and possible future research directions for in-
tensive studies of second-generation genetic testing inte-
grated with deep reinforcement learning in lung infections.
Finally, Section 6 concludes the paper.

2. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a new research
hotspot in the field of artificial intelligence. It combines the
perception of deep learning with the decision-making ability
of reinforcement learning in a common form and enables
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direct control from raw input to output through end-to-end
learning. With the rapid development of human society, in
more and more complex real-world task tasks, deep learning
(DL) is needed to automatically learn the abstract repre-
sentation of large-scale input data and to use this repre-
sentation as a basis for self-incentive reinforcement learning
(RL) to optimize problem-solving strategies. DRL is an end-
to-end sensing and control system with strong versatility.
The learning process can be described as follows: (1) At each
moment, the agent interacts with the environment to obtain
a high-dimensional observation and uses the DL method to
perceive the observation to obtain a specific state feature
representation. (2) The value function of each action is
evaluated based on the expected return, and the current state
is mapped to the corresponding action through a certain
strategy. (3) The environment reacts to this action and gets
the next observation. By continuously cycling the above
processes, the optimal strategy for achieving the goal can be
finally obtained [13]. The framework of DRL is shown in
Figure 1.

At present, DRL technology has been widely used in
games, parameter optimization, machine vision, and other
fields. Its application is considered as an important way to
move toward general artificial intelligence [14, 15]. This
paper explores the application of DRL in second-generation
sequencing for lung infection detection.

2.1. Basic Concepts

2.1.1. Deep Learning. The concept of DL stems from artificial
neural networks. The DL model is usually composed of
multiple layers of nonlinear arithmetic units. It uses the
output of the lower layer as the input of the higher layer; in
this way, it automatically learns the abstract feature repre-
sentation from the large amount of training data to discover
the distributed characteristics of the data. Compared with
shallow networks, multi-hidden-layer network models have
better feature representation capabilities. It first uses the
unsupervised learning to conduct greedy pretraining on
layer by layer and then supervises the whole network with
supervised learning. This pretraining method provides ideal
initial parameters for deep neural networks and reduces the
optimization difficulty of deep neural networks [16, 17].
Typical DL models include Stacked Autoencoder (SAE),
Restricted Boltzmann Machine (RBM), Deep Belief Network
(DBN), and Recurrent Neural Network (RNN). With the
growth of training data and the improvement of computing
power, Convolutional Neural Network (CNN) has been
widely used in various fields.

2.1.2. Reinforcement Learning. Reinforcement learning (RL)
is a kind of learning that maps from environmental state to
action. The goal is to get the agent to get the maximum
cumulative reward in the process of interaction with the
environment [18]. The Markov decision process can be used
to model the RL problem, which is usually defined as
(S, A, p, f), where
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DL perception RL decision making

1

FIGURE 1: The framework of deep reinforcement learning.

(1) S is a collection of all environmental states. And
s, € S stands for the state of agent at time t.

(2) Ais a collection of execution actions for agent. And
a, € A stands for the action that agent takes at time .

(3)p: SxA— R is the reward function. And
r, ~ p(s;>a,) stands for the immediate reward value
of agent at state s, when executing action a,.

(4) f:SxAxS— [0,1] is the state transition prob-
ability distribution function. And s, ~ f (s a,)
stands for the probability of agent transforming from
state s, to s,,; when executing action a,.

In RL, strategy m: S x A is a map from state space to
action space, which indicated that the agent selects action
a, in state s,, performs the action, and transforms to the
next state s,,; with probability f(s,,a,), while accepting
rewards r, from environmental feedback. Assuming that
the immediate reward for each time step in the future
must be multiplied by a discount factor y, then from the
time ¢ to the end of the time T, the sum of the rewards is
defined as

Ro=3"'ry (1)

in which y € [0,1] is used to weigh the impact of future
rewards on cumulative rewards.

State action value function Q" (s, a) refers to the action a
in the current state s and always follows the strategy 7 to the
end of the plot, in which the cumulative return obtained by
the agent is expressed as

Q"(s,a):E[Rt|st=s,at:a,ﬂ]. (2)

For all state action pairs, if the return of a strategy 7* is
greater than or equal to the expected return of all other
strategies, then the strategy 7* is called the optimal strategy.
There may be more than one optimal strategy, but they share
the same state action value function.

Q" (s,a) =maxE[Rt|st =s,a, =a,rr]. (3)

s
It is called the optimal state action value function, and
the optimal state motion value function follows the Bellman

optimal equation; namely,

Q" (s,a) =Ey. g r+ymng(s',a')|s,a ) (4)

In the traditional RL, the Q-value function is generally
obtained by iterative Bellman equation:

Qi1 (s,a) =By . r+ym:}in(s',a')|s,a ) (5)
a

Herein, when i — 0o, 7*. By continuously iterating,
the state action value function will finally converge, and the
optimal strategy 7" = argmaxQ*(s,a) will be obtained.

However, for practical proalilAems, it is obviously not feasible
to solve the optimal strategy by iterative updating (5), be-
cause in the large state space, the method of solving the
Q-value function with the iterative Bellman equation is too
expensive. To tackle it, in the RL algorithm, a linear function
approximator is usually used to approximate the state action
value function, Q(s,a|6) = Q*(s,a). Besides, nonlinear
function approximators such as deep neural networks can
also be used to approximate the value function or strategy.
Therefore, DRL has attracted extensive attention in recent
years. In the next subsection, we will discuss some deep
reinforcement learning techniques that are potential for
second-generation sequencing in lung infection detection
and treatment.

2.2. DRL Techniques. In this section, we first describe three
main types of deep reinforcement learning methods, in-
cluding deep reinforcement learning based on value func-
tion, deep reinforcement learning based on strategy
gradient, and deep reinforcement learning based on search
and supervision. Afterwards, some potential deep rein-
forcement learning directions in SGS applications are
summarized, such as hierarchical deep reinforcement
learning, multitask deep reinforcement learning, multiagent
deep reinforcement learning, deep reinforcement learning
based on memory and reasoning, and so on.

2.2.1. DRL Based on Value Function. Mnih et al. [19]
combined the convolutional neural network with the Q
learning algorithm in the traditional RL and proposed the
Deep Q-Network (DQN) model. This model is used to
process visual perception-based control tasks and is a
groundbreaking work in the field of DRL. The input of the
DQN model is the four preprocessed images closest to the
current time. The input undergoes a nonlinear transfor-
mation of 3 convolutional layers and 2 fully connected layers
and finally produces a Q value for each action in the output
layer. Figure 2 shows the architecture of DQN.

In order to alleviate the instability problem in the
nonlinear network representation value function, DQN
mainly made three improvements to the traditional Q
learning algorithm. (1) DQN uses the experience replay
mechanism during the training process to tackle the ob-
tained transferred samples online. (2) In addition to using
the deep convolutional network to approximate the current
value function, DQN uses another network to generate the
target Q value. (3) DQN reduces the bonus value and error
term to a limited interval, which ensures that the Q value and
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the gradient value are within a reasonable range, which
improves the stability of the algorithm. Inspired by the
DQN, many variants are proposed, such as deep dual Q
network, deep Q network based on superior learning, deep Q
network based on priority sampling, deep cycle Q network,
and so on.

2.2.2. DRL Based on Strategy Gradient. Strategy gradientis a
commonly used strategy optimization method, which up-
dates the strategy parameters by continuously calculating the
gradient of the strategy expectation total reward for the
strategy parameters and finally converges to the optimal
strategy. Therefore, when solving the DRL problem, a deep
neural network with parameter 6 can be used to parame-
terize the representation strategy, and the strategy gradient
method is used to optimize the strategy. It is worth noting
that when solving DRL problems, the first choice is to adopt
a strategy-gradient-based algorithm. The reason is that it can
directly optimize the expected total reward of the strategy
and search for the optimal strategy directly in the strategic
space in an end-to-end manner, eliminating the cumber-
some intermediate links. Therefore, compared with DQN
and its improved model, the DRL method based on strategy
gradient is more applicable and the effect of strategy opti-
mization is better.

Typical strategy-gradient-based DRL methods include
deep strategy gradient based on actor critic, asynchronous
dominant actor critic algorithm, and so on [20].

2.2.3. DRL Based on Search and Supervision. In addition to
value-based DRL and strategy-gradient-based DRL, the
process of strategy search can be promoted by adding ad-
ditional manual supervision, which is the core idea of DRL
based on search and supervision. Monte Carlo Tree Search
(MCTS) [21], as a classic heuristic strategy search method, is
widely used in action planning in game problems. Therefore,
in the DRL method based on search and supervision,
strategy search is generally done through MCTS. For ex-
ample, the AlphaGo algorithm combines deep neural net-
works with MCTS to achieve remarkable results. Its main
idea has two points: (1) using MCTS to approximate the
value function of each state; (2) using the CNN based on
value function to evaluate the current layout and walk of the
board. AlphaGo’s complete learning system consists of the
following components:
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(1) Strategy Network. It is divided into a strategy net-
work for supervised learning and a strategy network
for RL. The role of the strategy network is to predict
and sample the next move based on the current
situation.

(2) Rollout Strategy. The goal is also to predict the next
step, but the speed of prediction is 1000 times that of
the strategy network.

(3) Value Network. According to the current situation,
the winning probability of both sides is estimated.

(4) MCTS. It integrates the strategy network, the rollout
strategy, and the value network into the process of
strategy search to form a complete system.

DRL based on search and supervision has achieved
promising results in the game areas, which has prompted
more and more researchers to transfer it to others.

2.2.4. Potential DRL in SGS. In addition to the above DRL
methods, some outstanding methods have be proposed in
recent years. In this subsection, we give a brief review of the
potential DRL in SGS, which may be used for detecting of
pulmonary pathogen infection.

(1) Hierarchical Deep Reinforcement Learning. In some
complex DRL tasks, the strategy is optimized directly to the
final goal, which is inefficient. Therefore, Hierarchical Re-
inforcement Learning (HRL) can be used to decompose the
final goal into multiple subtasks to learn the hierarchical
strategy and form a valid global strategy by combining
multiple subtask strategies [22]. Figure 3 gives the structure
of the hierarchical DQN.

Typical HRL methods include spatiotemporal abstraction
and intrinsic-motivation-based methods, internal-option-based
methods, and deep follow-up reinforcement learning. All the
ideas can be used with the complex processes of SGS for
detection of pulmonary pathogen infection.

(2) Multitask Transfer Deep Reinforcement Learning. In the
traditional DRL method, the agent after completion of each
training can only solve a single task. However, in some
complex real-world scenarios, the agent needs to be able to
handle multiple tasks at the same time. At this time, mul-
titask learning and transfer learning are extremely impor-
tant. In the RL field, Wilson et al. [23] used a hierarchical
hybrid Bayesian model to provide prior knowledge of new
tasks, enabling agents to better adapt to new task scenarios.
For partially observable random multitasking scenarios, Li
et al. [24] developed a regionalized policy representation to
describe the behaviour of agents in different task scenarios.
The method used the clustering properties contained in the
Dirichlet process to share training scenarios between similar
tasks and to pass valuable information between different
tasks. Compared with the single-task learning mode, the
multitask RL method has achieved more outstanding per-
formance in both lattice world navigation and multitarget
classification tasks. Taylor and Stone [25] proposed a way to
transfer value functions between different tasks. Fernfindez
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Vdoso [26] used a mapping that reflects the relationship
between the agent’s current and past state action pairs,
enabling the previously learned strategies to be transferred to
new tasks in a timely manner. Wang et al. [27] concluded
that the transfer learning in RL falls into two broad categories:
behavioural transfer and knowledge transfer. These two types
of transfer learning are also widely used in multitasking DRL
algorithms.

Regarding SGS for detecting of pulmonary pathogen
infection, multiple agents and multitask are promising.
Therefore, the deep reinforcement learning based on mul-
titask transfer learning is a feasible direction.

(3) Deep Reinforcement Learning Based on Memory and
Reasoning. The traditional visual-perception-based DRL
method is far worse than human beings in solving higher-
level cognition-inspired tasks. That is to say, in solving some
high-level DRL tasks, the agent not only needs strong per-
ceptual ability, but also needs certain memory and reasoning
ability to learn effective decision-making. Therefore, the ability
to give active learning and reasoning to existing DRL models is
very important.

In recent years, the research on neural network model of
external storage has made substantial progress. Graves et al.
[28] proposed a neural structure called Neural Turing
Machines (NTM), which updates the parameters of memory
structures by random gradient descent while reading and
writing data to optimize the content of memory. By adding
NTM, the neural network model has the ability to complete
some simple tasks such as copying, inversion, addition, and
subtraction, which shows that the deep neural network
model has preliminary memory and reasoning ability.
After that, Sukhbaatar et al. [29] proposed a memory
network model based on NTM for question-and-answer
system and language modelling tasks, which further im-
proved the long-term memory ability of the network.
Therefore, adding these external memory modules to the

existing DRL model can give the network a certain high-
level ability of long-term memory, active cognition, and
reasoning. In addition, the development of cognitive
neuroscience in recent years has also promoted the de-
velopment of artificial intelligence. Researchers are sim-
ulating the auxiliary learning system of the human brain to
construct an agent that can independently remember,
learn, and make decisions.

3. Current Status of Pathogenic Diagnosis of
Pulmonary Infectious Diseases

In recent years, as a result of the emergence of severe acute
respiratory syndrome (SARS) in new pathogens, a variety of
viruses, fungi, and resistant bacteria have emerged, and
infectious diseases have once again received attention.
However, there are many kinds of pathogens of infectious
diseases [30-32]. Traditional immunological tests and cul-
tivation of pathogenic microorganisms are limited; they are
not efficient and timely to provide a reliable diagnosis basis
for the clinic, especially the complex lung infection. How to
judge the pathogens? Difficulties have made many patients
with pulmonary infectious diseases fail to receive timely and
effective treatment and even death. Pulmonary infections are
mainly pneumonia and bronchiolitis and can also be
manifested as lung abscesses and granulomas. Pulmonary
infections are mainly collected from sputum and alveolar
lavage fluid. Due to the special feeding environment of the
lungs, routine detection of effective pathogen information in
serum is limited. However, patients with severe pneumonia
require mechanical ventilation, and lung tissue is difficult to
obtain. The small amount of specimens limits the detection
of pathogens of infectious lung diseases.

4. Application of SGS in Detection of Pulmonary
Pathogen Infection

At present, pathogenic diagnostic methods based on mi-
crobial culture are still the main means for diagnosing the
pathogenic diagnosis of pulmonary infectious diseases, but
they are also largely influenced by culture conditions and
antibiotic use, and the culture positive rate is low. For lung
infections, second-generation sequencing technology can be
used for the detection of a variety of pathogens, such as
bacteria, fungi, viruses, mycoplasma, etc. Also, it can also be
used for the detection of a variety of respiratory specimens,
such as sputum, throat swab, alveolar lavage fluid and blood,
and other specimens. The second-generation sequencing
technology has a higher detection rate than the traditional
culture method [33, 34]. Compared with the traditional
single-plex PCR method, it not only reduces the sample
nucleic acid requirement and expands the detection range,
but also has better specificity and sensitivity [11, 12]. De-
tection of viral pathogens mainly includes virus antigen
detection, nucleic acid detection, and virus isolation and
culture. However, the traditional virus pathogen detection
has a low positive rate; thus, it is difficult to promote and
apply in clinical practice. Second-generation sequencing
technology is superior to traditional virus detection



techniques in terms of sensitivity and accuracy. It theoret-
ically reveals all microbial information in the sample, which
can detect more virus types and its positive rate is higher
[35]. Detectable viruses include well-known upper respi-
ratory tract viruses and lower respiratory tract viruses such
as HSV and CMV in immunosuppressed hosts. With the
increasing range of pathogens based on second-generation
sequencing technology, it is found that the proportion of
viruses in respiratory infections is much higher than pre-
viously thought. The applications of SGS technology to
detect in-hospital-acquired viral pneumonia in real time and
rapid detection have shown that SGS technology can learn
evidence faster than traditional methods, so that timely
measures are taken to control outbreaks of nosocomial
infections.

Pulmonary fungal infections are characterized by high
lethality and difficulty in diagnosis and treatment. In recent
years, with the abuse of antibiotics, more and more resistant
bacterias and fungi have emerged. Pulmonary fungal in-
fection has become the leading cause of death in ventilator-
associated pneumonia, especially in patients with immu-
nosuppression. Among patients with drugs, the incidence of
fungal infections is also increasing [36]. Culture has long
dominated the diagnosis of fungal infections, but traditional
methods have inherent deficiencies in identifying mixed
infections and analyzing the flora structure and dynamics of
the flora and many fungi or undiscovered new ones. It is
difficult or even impossible to cultivate the strain. These
kinds of problems all suggest that we urgently need a new
method to assist clinical diagnosis more accurately and
quickly. Different from the bacterial DNA extraction
method, the second-generation technology in the fungal
flora structure spectrum method mainly through the am-
plification, sequencing, and analysis of the fungus ITS1
(internal transcribed spacer) and ITS2 gene fragments, using
ITS1/ITS2 gene sequencing technology, generally, 50 to 60
genera were detected, and the sequence of fungal ITS gene
obtained by sequencing can be matched by the existing gene
database. However, for the most common clinical genera of
Candida and Aspergillus, ITS gene sequencing can well
identify their ITS gene sequences, and some pathogen strains
can be distinguished at the species level. Fungi not only cause
lung dysfunction, but also because of the long treatment
time, affect the prognosis of the disease, and the second-
generation sequencing technology helps to understand the
whole picture of airway microbes from the overall structure
of the community and in complex lung infections, especially
AIDS, etc. The diagnosis of Pneumocystis is important in
immunodeficient patients [37].

Mycobacterium tuberculosis also occupies an important
position in the pathogens of lung infection. At present, the
commonly used PCR method for collection of mycobacte-
rium tuberculosis has low sensitivity and low positive rate.
The T-SPOT detection method is also applied clinically, but
the specificity is low, and the false positive rate is high.
However, the second-generation sequencing technology, the
pathogen detection, epidemiology, and typing of myco-
bacterium tuberculosis have made a leap forward. The
second-generation sequencing technology can be applied
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not only to conventional sputum, alveolar lavage fluid and
blood, but also to the detection of pleural effusion and
pericardial effusion, which greatly improves the accuracy
and sensitivity of detection, especially improving the diag-
nosis of tuberculous pleural effusion. At the same time, SGS
can classify the detected M. tuberculosis, greatly improve the
typing efficiency, and also determine the variation and
propagation source among the strains in the transmission
chain.

It is well known that the clinical microbiology labo-
ratory’s real-time PCR technology for screening and con-
firming suspected viruses must be based on known pathogen
gene sequences, but not for unknown viral pathogens. The
second-generation sequencing technology not only dis-
covers known pathogens, but also discovers completely
unknown pathogens [38, 39]. About 70% of patients with
infectious diseases cannot determine pathogen information
due to traditional detection methods and cannot be treated
in a timely and effective manner, thus worsening the con-
dition. Therefore, rapid and accurate pathogen detection
methods are of great significance for effective diagnosis and
timely control of infectious diseases. There are many types of
modern molecular typing techniques, and the most com-
monly used molecular techniques in the traceability and
monitoring of infectious diseases are multisequence typing
(MLST), pulsed-field gel electrophoresis (PFGE), and
multisite tandem repeats. Sequence analysis (MLVA), etc.,
and the emerging high-resolution WGS technology guar-
antee the accurate traceability and monitoring of infectious
diseases and can also complement each other with multiple
molecular technologies to improve the accuracy of detection.
WGS technology can track the prevalence of pathogens and
more accurately identify possible sources of pathogens
[40, 41]. And with the continuous development of this
technology, the current traceability and monitoring capa-
bilities for unknown pathogens are becoming more and
more prominent. The pathogens of severe pulmonary in-
fection are usually unclear. Currently, the clinical use of
antigen/antibody immunology methods and traditional
microbial culture techniques is used for diagnosis. However,
these methods have problems of long culture period and low
culture positive rate. The second-generation sequencing
technology is a novel DNA/RNA sequencing method based
on the detection of nucleic acid molecules, which has high
sensitivity and short time-consuming, and does not depend
on traditional pathogenic culture. The application of anti-
biotics in the early stage has little effect on the detection
results. Accurate and rapid identification of microbial
pathogens in patients with lung infections may result in
targeted antibacterial therapies, with fewer side effects and
lower costs. In particular, patients with tracheal intubation
are measured by sputum extraction from the lower respi-
ratory tract of the bronchus, which can more accurately
provide pathogenic bacteria analysis of ventilator-associated
pneumonia, further guiding clinical treatment and
prognosis. With the development of second-generation
sequencing technology, processing and sequencing time
will be further reduced. The SGS method will eventually
provide clinicians with rapid, accurate, independent
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culture-based identification of bacterial, fungal, and viral
pathogens and their antimicrobial sensitivity character-
istics [42].

Although the blood and alveolar lavage SGS tests have
revolutionized the pathogens of complex lung infections,
there are still many problems with the detection and in-
terpretation of SGS. Different from the application of SGS
detection in hereditary diseases, the complex composition of
infectious disease specimens and the low level of nucleic acid
of pathogenic microorganisms all restrict the detection of
SGS in pathogenic microorganisms of lung infection. The
first problem is sensitivity. Although SGS detection shows
great advantages over traditional methods in diagnosing rare
and rare pathogens, the sensitivity of common pathogens
such as Cryptococcus is not stronger than traditional
methods. Even if these pathogens detected by traditional
methods, SGS may not detect or detect only a very small
number of specific fragments, which affects the results. For
example, for the metagenomics detection of M. tuberculosis,
the current optimal solution is still to perform SGS se-
quencing on the basis of MGIT960 liquid culture. The reason
may be that the Mycobacterium tuberculosis are intracellular
bacteria, and the current detection method is mainly to
detect the intracellular infection with M. tuberculosis by
using the sputum supernatant; and M. tuberculosis due to
nucleic acid of GC is relatively high (60% higher), and the
melting method of most bacteria cannot fully dissociate the
nucleic acid strand of M. tuberculosis. Therefore, under the
condition of specimen processing suitable for most patho-
genic microorganisms, the detection of tuberculosis cannot
be effectively achieved. At present, direct SGS testing of
clinical specimens to diagnose M. tuberculosis infection is
very difficult. As an alternative, it is often the case that the
clinical specimens are cultured for tuberculosis and then
SGS 1is detected to improve the positive rate of clinical
specimen detection, which increases the financial burden of
the patient.

5. Discussion

Although SGS is a high-throughput test and can theoretically
detect almost all pathogenic microorganisms, it does not
completely replace all clinical pathogen detection methods.
This requires us to continue to optimize the detection
method of SGS on the one hand, so that it can cover the
range of pathogens as much as possible and improve the
detection rate. On the other hand, we must understand that
SGS technology has limitations and cannot be completely
dependent on SGS detection [43]. At the same time, tra-
ditional methods cannot be ignored, and other effective
pathogen detection methods should be retained or ex-
plored as supplements or verifications. For patients with
partial lung abscess or granuloma, because the disease is
confined to the lungs, the amount of pathogens released
into the blood and alveolar lavage fluid is limited, so for
these diseases, pathogens can only be detected by SGS
detection of tissue samples. Deep reinforcement learning
can fully learn the potential results by simulating human
brain learning and decision making based on the given

complex data. Thus, it is a good choice to integrate DRL
with SGS for clinical pathogen detection.

Poor specificity is another major problem that restricts
the clinical application of SGS. Nonpathogenic, unrelated
pathogens, and ambiguous pathogens are often seen in SGS
reports. The lungs are an open environment, connected to
the outside world, there are airway and oral colonization
bacteria, many fragments of different species can be detected
in the sputum and alveolar lavage fluid, and many unex-
plained samples can often be detected in the specimen. Part
of the reason may be the contamination of specimens and
reagents, such as environmental microbes (such as plants,
plant viruses, etc.), which are difficult to discriminate. For
these contaminations, it is necessary to eliminate the
comparison between the laboratory quality control and the
data between the specimens. DRL can combine all the related
data to learn a favorable result through training and decision
making; thus, it may effectively solve the poor specificity of
the clinical application of SGS.

In summary, by combining the deep reinforcement
learning techniques with SGS, it can eliminate the valueless
results and analyze and evaluate the meaningful results of
SGS. The core of SGS testing for the diagnosis of lung in-
fections is the identification of responsible pathogens. Since
SGS testing often yields a large number of backgrounds or
unrelated microbial fragments, it is critical to find or identify
responsible pathogens. It is first necessary to establish a
knowledge database of common microorganisms for lung
infections: a database of background microorganisms
common to each laboratory and testing unit in SGS testing
and record the number of common fragments detected. If a
suspected pathogen fragment that is not in the range of
common background bacteria appears in the SGS test of
clinical specimens, or the number of fragments of a certain
microorganism is significantly higher than the data in the
background microbial database, it is included in the sus-
pected responsible pathogen, and further methods are used
for authenticating. In the alveolar lavage fluid, possible
responsible bacteria, fungi, or virus fragments were detected
by SGS, and the proportion of the total fragments was
often extremely low, even only a few fragments, which is
difficult to be diagnosed. SGS testing is often only useful
in the diagnosis of pulmonary systemic infections, and
when pathogens for nonclinical routine screening are
detected, further use of classical pathogen detection
methods is needed for diagnosis. This requires the de-
velopment of a well-developed pathogen verification test
system, especially for pathogenic microorganisms that
are not easily detected by some common methods. Be-
cause the current SGS testing cost is still high, it cannot be
widely used in the clinic, and it also affects its timeliness.
SGS is also only a pathogen detection method, and it has
just been applied in clinical practice. Therefore, there are
also blind spots and misunderstandings of its monitoring.
The excessive expectation and interpretation of SGS
detection results can not only push up the cost of clinical
testing, but also make it effective. The examination could
not be carried out smoothly, which also led to misdiagnosis
and missed diagnosis.



However, because the optimal processing conditions and
bioinformatics analysis required for sequencing of different
specimens and pathogenic microorganisms are different, it is
currently not possible to adapt an SGS detection procedure
to all infectious pathogens. Moreover, the difference in the
location and method of the specimen will also affect the test
results. Therefore, using the deep reinforcement learning,
based on the patient’s medical history and clinical exami-
nation, the possible pathogens are presumed, the specimens
are preprocessed and then sequenced, and even different
strategies are adopted for the biosignal analysis of the se-
quencing results. Taking into account various unknown
pathogens, the detection rate of specific pathogens and the
interpretation of the results are improved. The deep rein-
forcement learning is a diagnostic basis to reduce errors. It
sets certain standards and procedures to determine whether
the detected pathogen is a responsible pathogen, and de-
signing targeted evaluation sequencing methods based on
different types of pathogens to improve the effectiveness of
SGS. Therefore, the deep reinforcement learning combined
with knowledge graph is a promising direction for SGS in the
application of pulmonary infectious diseases.

6. Conclusion

In this paper, we explore deep reinforcement learning for
computer-aided diagnosis and treatment of complex pul-
monary infectious diseases. We first present several repre-
sentative deep reinforcement learning models for the
diagnosis and treatment of potential lung infections.
Moreover, we discuss the applications of the deep rein-
forcement learning model in the diagnosis of second-gen-
eration genetic testing for pulmonary infection and
summarize the current status of pathogenic diagnosis of
pulmonary infectious diseases and their main characteris-
tics. After that, we analyze the results of second-generation
genetic testing and the main features of each type in
common lung infections. Finally, we point out the open
challenges and possible future research directions for in-
tensive studies of second-generation genetic testing inte-
grated with deep reinforcement learning in lung infections,
which may help the related researchers and medical workers.
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Medical data have the characteristics of particularity and complexity. Big data clustering plays a significant role in the area of
medicine. The traditional clustering algorithms are easily falling into local extreme value. It will generate clustering deviation, and
the clustering effect is poor. Therefore, we propose a new medical big data clustering algorithm based on the modified immune
evolutionary method under cloud computing environment to overcome the above disadvantages in this paper. Firstly, we analyze
the big data structure model under cloud computing environment. Secondly, we give the detailed modified immune evolutionary
method to cluster medical data including encoding, constructing fitness function, and selecting genetic operators. Finally, the
experiments show that this new approach can improve the accuracy of data classification, reduce the error rate, and improve the

performance of data mining and feature extraction for medical data clustering.

1. Introduction

Through the support of existing technologies, relevant
medical research organizations only rely on coupled dic-
tionary technology to classify and store medical images [1].
However, with the continuous increase of the number of
slices, some images begin to show serious frame rate overlap
phenomenon, which not only causes the sharp decline of the
original image gray level but also causes a series of image
data redundancy problems. It brings great trouble to the
mining and scheduling of the following image information.
The so-called image data redundancy refers to the phe-
nomenon of uneven or excessive storage caused by data
repetition in the process of data imaging that can lead to the
real information loss in the image and cause a certain
negative impact on the image sharpness. Frame rate overlap
is a common image fault problem, which is often associated
with image data redundancy. Under certain circumstances
[2], a certain degree of frame rate overlap may lead to a small

increase of the image sharpness. But excessive frame rate
overlap will lead to serious damage to the modal property of
the medical image, which will lead to a large increase of the
redundant region in the medical image data. Diagnosis in
medicine is related to the patient’s medication and treat-
ment. Many diseases are more complex. Data clustering
analysis is integrated into the diagnosis of diseases, such as
clinical urology and breast cancer, so that doctors can greatly
enhance the diagnosis accuracy of patients.

With the fast growth of information science, the research
of biological applications has been used for computational
science to analyze the intelligent bionic optimization algo-
rithm design and improve the ability of processing big data
and analysis [3]. Intelligent bionic algorithms mainly include
ant colony algorithm [4], particle swarm optimization (PSO)
algorithm [5], and the quantum swarm algorithm [6-8].
Swarm intelligence optimization algorithms have a good
application value in artificial intelligence design, data
clustering analysis, computer control, and other fields.
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Clustering technology is an important part in data
mining and machine learning. Domestic researchers mainly
focus on the following two aspects: (1) a clustering algorithm
dynamically determines the number of clustering centers
and (2) a clustering algorithm improves the accuracy of
clustering. Zhao et al. [9] presented a new dynamic clus-
tering method based on genetic algorithm; the main idea of
the method was that, in order to effectively overcome the
sensitivity to the initial state value clustering algorithm, it
used the maximum attribute value range partitioning
strategy and two stages and dynamic selection method in
mutation, which obtained the optimal clustering center.

Clustering analysis is a kind of unsupervised model in
pattern recognition. The task of cluster is to divide an unmarked
pattern according to the certain criteria into several subsets,
which requires that similar samples have the most similar
cluster center and dissimilar samples should be divided in
different classes. Therefore, it is also called unsupervised clas-
sification. Clustering analysis has been extensively used in data
mining, image processing, object detection, radar target de-
tection, etc. [10, 11]. Zhang et al. [12] proposed a Geometric-
constrained multiview image matching method based on
semiglobal optimization. It was obvious that some features had
more information than others in a dataset. So it was highly likely
that some features should have lower importance degrees
during a clustering or a classification algorithm due to their
lower information, their higher variances, etc. So, it was always a
desire for all artificial intelligence communities to enforce the
weighting mechanism in any task that identically used a number
of features to make a decision. Parvin and Minaei-Bidgoli [13]
proposed a weighted locally adaptive clustering algorithm that
was based on the locally adaptive clustering algorithm.

Nowadays, different clustering methods are being used to
resolve several machine learning problems. According to the
clustering criterion, different clustering algorithms can be di-
vided into clustering algorithm based on fuzzy relations in-
cluding hierarchical clustering and graph clustering and
clustering algorithm based on the objective function [14-16]. For
the objective function of optimization clustering algorithms, it
generally uses the gradient method to solve the extremum
problem. The search direction of gradient method is always
along the direction of the energy reduction, which prompts the
algorithm easily falling into local minimum value. Methods are
sensitive to the initialization of clustering algorithm in the
objective function which is a serious defect. To overcome the
above shortcomings, all proposed algorithms are used to opti-
mize objective function. Meng et al. [17] presented that the
MapReduce programming model was adopted to combine
Canopy and K-means clustering algorithms within cloud
computing environment, so as to fully utilize the computing and
storing capacity of Hadoop clustering. Large quantities of
buyers on taobao were taken as application context to do
case study through the Hadoop platform’s data mining set
Mahout. Zhang et al. [18] proposed a high-order possi-
bilistic c-means algorithm (HOPCM) for big data clus-
tering by optimizing the objective function in the tensor
space. Li et al. [19] proposed a task scheduling algorithm
based on fuzzy clustering algorithms. However, there are
still some problems, such as long convergence time.
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Moreover, deep learning-based methods are used for
feature selection. Minaei-Bidgoli et al. [20] proposed an
ensemble based approach for feature selection. The results
showed that, although the efficacy of the method was not
considerably decreased in most of cases, the method be-
came free from setting of any parameter. Some algorithms
could not properly represent data distribution character-
istics when datasets were imbalanced. In some cases, the
cost of wrong classification could be very high in a sample
of a special class, such as wrongly misclassifying cancerous
individuals or patients as healthy ones. Hu and Du [21]
tried to present a fast and efficient way to learn from
imbalanced data. This method was more suitable for
learning from the imbalanced data having very little data in
class of minority. Gao et al. [22] was devoted to the ex-
ploration of brain images for early detection of Parkinson’s
disease. All brain images were analyzed to extract Gabor 2D
features. It was also shown that the models created on
Gabor features outperform the ones created without Gabor
features. Zhao et al. [23] analyzed the triple-negative breast
neoplasm gene regulatory network using gene expression
data. We collected triple-negative breast neoplasm gene
expression data from the Cancer Genome Atlas to con-
struct a triple-negative breast neoplasm gene regulatory
network using least absolute shrinkage and selection op-
erator regression. In addition, it constructed a triple-
positive breast neoplasm network for comparison. Nejatian
[24] presented that the available additional information at
different times and conditions and gold-standard protein
complexes was employed to determine fitting thresholds.
By doing so, the problem was converted into an optimi-
zation problem. Thereafter, the problem was solved using
the firefly metaheuristic optimization algorithm.

Hence, we propose a new medical big data clustering
algorithm based on modified immune evolutionary method
under cloud computing environment to overcome the above
disadvantages in this paper. The reminder of this paper is
organized as follows: Section 2 presents big data structure
analysis in cloud computing environment. Immune evolu-
tionary algorithm is stated in Section 3. Section 4 describes
the improved clustering method in detail, Section 5 provides
the MapReduce framework, and Section 6 manifests the
experiments results. Finally, the conclusion is given in
Section 7.

2. Analysis on Storage Mechanism and
Structure of Medical Big Data in Cloud
Computing Environment

Cloud computing [25-28] is through the Internet to
provide dynamic data to extend large storage space and the
structure model. In order to evaluate the data clustering
and mining in the cloud computing environment, it needs
to build a big data storage system architecture in cloud
computing environment. Big data storage structure adopts
virtualized storage pool and depends on the computer
cluster. From top to bottom, these are the I/O (input/
output) virtual computer, USB interface layer sequence,
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and disk layer, respectively. Enterprise data center through
all kinds of terminal accesses the application service, which
makes the calculation of distribution on a large number of
distributed computers. When all the cloud computing
virtual machines are assigned to the physical machine, it
uses the following formula to calculate the global optimal
solution in this clustering process. And, it also can assign
big data feature clustering center BFy of the cloud com-
puting on the physical machine Py accordlng to the op-
timal solution:

N = Z‘Ut(PU - tFPU

1 n
a2l
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+ ; Z|Ut?w - Ut;’{?’g .
j=1

(1)

The sample is collected and analyzed to determine
whether the sample belongs to a typical sample. Assuming
that data information stream sample S = (X, X,, ..., X;)
makes sampling in time (T}, T5,...,T}). We divide blg data
set X in cloud environment into ¢ clusters, 1 <c<n.The data
segmentation can be transformed as space segmentation.
Storage structure central vector of big data is obtained:

V={v,-]-|i=1,2,...,c,j=1,2,...,5}, 2)

where V; is the i-th vector of object cluster feature.
Fuzzy division matrix can be presented as

U={ug|i=12...,ck=12. .1} (3)

Redundant data reduction is processed for a single data
source. In the process of multichannel QoS demand virtual
machine clustering, some parameters are defined as virtual
machine set Vg = {VMI,VMI, e ,VMm} and physical ma-
chine set Py = {PMl,PM], -.» Py 1+ Inspiring factor is a,
and the expect of inspiring factor is f. Biggest mining

=[x(to), x(ty + At), ..., x

x(ty + JAt)

x(ty+(m—=1)JAt) x(ty+(1+(m—1)])At) ---

where x(t) is the information flow time series of big data
clustering system in cloud computing environment, J is
the time window function of phase space reconstructed
by big data in cloud computing environment, M is the
target clustering regulator, and At is the data sampling
interval.

The discrete sample spectral characteristic X, (u) of big
data is calculated, and the main feature component is

number is I, . As a result, uploaded data blocks provide a
fixed size of data blocks, which is beneficial to analyze the
cloud clustering. Through the big data storage mechanism
analysis in cloud computing environment, it provides the
accurate data for big data clustering.

Supposing that the time series of information stream is
{x(t,+iAn)},i=1,2,...,N - 1. X and Y are attribute sets.
The vector expression of big data clustering space in the
cloud computing environment is

R =[r(ty), r(ty + At), ..., r(t, + (K = 1)At)], (4)

where r(t) is information stream time series of big data
clustering in cloud computing environment and At is data
sampling interval. The spectral characteristic X, (u) of
discrete samples of big data can be calculated as

X, (u) = s, (t)eanOt _ 1T rect Te (2m (f0t+Kt2)/2) (5)
where s_(t) is the characteristic scalar time series of big data,
e?™fot is the discrete sample center of big data clustering, and
(F,Q) is sample data high-order Bessel function statistics of
data set {X;, X,, ..., Xy}. So, we can get the confidence and
confidence interval:

kel _ k ko k
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Suppose the information flow time series in the cloud
computing environment is {x (t, + iAt)},i =0,1,...,N - 1.
Let X and Y be the set of properties. The expression of

clustering space state vector of big data in cloud computing
environment is as follows:

(to + (K = 1)At)]
x(ty) x(ty + At)
x(to +(J + 1)At)

x(ty + (K = 1)At)
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where s (t) is the characteristic scalar time series of big data and
e/2mfot is the center of discrete sample of big data clustering,
The data set is {X;, X, . .., X,,}. (F,Q) is the high-order
Bessel function statistics of the sample data to determine the
confidence of node data packets and establish the confidence



interval. The obtained confidence and confidence intervals
are
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3. Immune Evolutionary Algorithm (IEA)

IEA consists of crossover and mutation operator which
represent two strategies with group search and information
exchange. It provides optimization opportunities for each
individual. However, this inevitably produces the degrada-
tion phenomenon in some cases, and the degradation
phenomenon is quite obvious.

IEA uses some features or knowledge in original
problems to suppress the degradation phenomenon
appeared in the process of optimization. The key operation
of IEA is to construct the structure of immune operator that
is finished through vaccination and immune selection. The
immune evolutionary algorithm can improve the fitness of
the individual and prevent the group degradation, so as to
reduce the original wave phenomenon in the late evolu-
tionary algorithm and improve the convergence speed. The
main steps for immune evolutionary algorithm are as fol-
lows, and the detailed information can be obtained from
[29, 30].

(1) Randomly generate the initial parent group A,.
(2) Extract the vaccine according to prior knowledge.

(3) If the current group contains the best individual, it
stops running the process and outputs the result.
Otherwise, the procedure continues to work.

(4) Cross operation of the current k-th group A; is
conducted, and it obtains the population Bj.

(5) It makes mutation operation for B, and obtains the
population C,.
(6) It executes vaccination for C; and gets group D.

(7) It executes immune selection for D, and obtains new
parent group A,,. Then back to step 3.

4. Modified Immune Evolutionary
Algorithm for Data Clustering

Fuzzy clustering is regarded as one of the commonly used
approaches for data analysis. The Fuzzy C-means (FCM)
algorithm is the most well-known and widely used method
for fuzzy clustering and provides an optimal way to con-
struct fuzzy information granules [31]. Cluster prototypes
and membership values of data across all clusters can be
developed by optimizing the FCM clustering model. Basi-
cally, the FCM is a steepest-descent algorithm with variable
step length that is adjusted according to the majorization
principle for the step length, showing the simplicity and
efficiency of the algorithm. Therefore, we combine immune
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evolutionary algorithm and FCM to optimize the cluster
result [32, 33]. The detailed improved data clustering pro-
cesses are as follows:

The objective function of FCM is

J(X;U,V) =Y Y uyDy, (10)

k=11i=1

Dizk = (% - Vi)T (xk = v), (11)

where D;;, is the distance from k-th data point to i-th cluster
center, V = (v;,v,,...,v.) denotes the cluster center of each
class, and v; € R and m € (1,00) are fuzzy index:

,X,) CR,

[ n
U:{UERCX"W”(G [0’1]?Z"ik: 1;0< Zvik<n}.

i=1 k=1

X = (x5, %5 ...

(12)

4.1. Encoding. According to J (X;U, V), the aim of cluster is
to obtain fuzzy division matrix U and cluster prototype V of
sample X. Uand V are associated with each other. So we have
two encoding methods. First, we encode U. Suppose that n
samples need to be divided into ¢ clusters. Gene cluster a =
{a,05,...,a,}  denotes  one  clustering  result;
a; €{1,2,...,c}. When a; = k(1 <k <c), then x; belongs to
k-th cluster. Its search space is ¢". If the data samples are
bigger, the search space of this encoding is very big too.
Therefore, we adopt the second encoding method for V. The
quantized values are encoded into strings according to their
respective values. a = {a}, a,,...,q}, [ = ¢ X p. The former
p quantized values denote the first p dimension cluster
center. But it does not change with the data sample n.

4.2. Constructing Fitness Function. According to J (X;U,V),
if the clustering effect is better, the object function value is
smaller. The formula (10) is used for constructing fitness
function f:

1

AR o

4.3. Genetic Operator Selection. Genetic operator has a point
crossover, two-point crossover, and multipoint crossover
methods. The immune operator inverts the selected indi-
vidual genes based on certain probability. We can also adopt
a reverse genetic mutation operator, namely, it randomly
generates a gene in the parent group and the gene is reverted.
It basically prevents premature phenomenon. In genetic
selection methods, it adopts the roulette wheel selection
method and ranking selection. Crossover probability
p. € [0.75,0.95], p,, € [107%,1072].

4.4. Immune Vaccine Selection. The immune vaccine se-
lection properly describe two ways. It is not clear. Spe-
cifically, the first method, after collecting information,
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executes the immune vaccine. The other is an adaptive
method, namely, in the process of group evolution from
the best individual genes. It extracts useful information
and then executes the vaccine. The former is restricted
due to two reasons. The first one is it is difficult to form a
mature approach for a prior knowledge. It cannot get
effective immune vaccine. The second is, to extract the
vaccine, the work costs too much. Therefore, in the
clustering algorithm based on immune evolution, we
adopt the adaptive method to extract the vaccine.

Therefore, we get the new cluster algorithm as follows
(Figure 1).

Step 1. Fix cluster class number ¢, 1 < ¢ <#n — 1. Set fuzzy
index m € (1,+00), stop condition 7, total population
number p,, crossover probability p., mutation prob-
ability p,,, vaccination probability p,, and vaccine
update probability p,,.

Step 2. Randomly generate group P(k) with p,
individuals.

Step 3. Compute fitness of every individual.

(1) Each individual is decoded to calculate each pro-
totype parameter v;, 1 <i<c.

(2) Use v; and (8) to calculate D3.

(3) Calculate U = [u]

cxn®

If Ik = gD,
1
Ui = A m-1)’ (14)
)
Yo [dildiy]
”ik = 0, Vie 7Ik’
Z Uy =1, (15)
i€l

where I} = {i|1<i<c,dy =0} and I, = {1,2,...,c}-
I,.

(4) Use U, Dy, and (7) to calculate object function
J(X;U,V), and then it can get f for each
individual.

Step 4. Make statistics for parent group, determine the
best individual, then decompose the best individual,
and extract immune vaccine H = {h; |i = 1 - m}.

Step 5. Use p. and p,, to make crossover, mutation
operation for P (k), and get group P/ (k).

Step 6. Execute vaccination and immunization selection

for P (k) and get group P(k + 1).

Step 7. If it satisfies 7, return to Step 8. Otherwise, return
to Step 3.

Step 8. Then, it decodes the best individual, the clus-
tering prototype v; is calculated, the classification re-
sults of each sample are calculated, and this
classification result is the clustering result of data set X.

5. MapReduce Framework

In order to improve the efficiency of modified immune
evolutionary algorithm (MIEA) in processing large datasets,
this paper designs the implementation scheme of MIEA in
the MapReduce model. There are two main operations in the
mechanism processing big data clustering tasks: updating
the center of the class and fitness evaluation. Class center is
updated based on MIEA. Fitness evaluation is to calculate
the sum of Euclidean distance between each object and the
center of mass and then find the global optimal value. The
clustering program divides data objects into clusters, min-
imizes the sum of Euclidean distances between all objects
and the center of mass, and takes it as the fitness function of
MIEA. The data clustering process based on MIEA is shown
in Figure 2.

6. Experiments and Analysis

In order to verify the performance of clustering and data
mining in cloud computing environment, we conduct
abundant experiments. Medical data are taken from http://
archive.ics.uci.edu/ml/. The database is constantly updated.
Donations of data are also accepted. The database type in-
volves life, engineering, science, etc.; the record number is
from several to hundred thousand pieces. The data selected
in this paper are Breast Cancer Wisconsin (Original) Data
Set. These data sets are from the clinical case reports of the
university of Wisconsin hospital in the United States, and
each data has 11 attributes.

Due to limited space, we display only few results in here.
The computing platform is configured with Intel Core 17
4.0 GHz CPU, 16G Memory, and NVIDIA GTX 780 GPU.
The algorithm is compiled by Apache Hadoop platform. The
sampling frequency of big data is f, = 20kHz. The time
center of big data clustering is t, = 20s. Size of the data is
from 50 MB to 2 GB. Cross probability p, = 0.95, variation
probability p, = 0.3, and fuzzy index m = 2. We also select
three state-of-the-art clustering methods to make compar-
isons including HGM [34], WPC [35], and ACCH [36].

6.1. Result 1. Table 1 is the description of 11 attributes of this
dataset.

In this paper, the proposed algorithm is adopted to
calculate the weight of each feature. Features with the weight
less than a certain threshold will be removed. According to
the actual situation in this paper, 2 and3 with the smallest
weight will be removed. In the process of the algorithm, we
will randomly select sample R. Different random numbers
will lead to certain discrepancy in the weight of the result.
Therefore, this paper adopts the average method by running
it for 20 times. Then, we summarize the results to calculate
the average value of each weight as shown in Figure 3.

By analyzing the data set, the importance of attribute
weight can be obtained, which has some reference values for
clinical diagnosis and can be used for the analysis of actual
cases. This can avoid misdiagnosis as far as possible and
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TaBLE 1: Attribute description.

Name of attributes Description The serial number of characteristics
Lumps thickness 1-10 1
Cell size uniformity 1-10 2
Cell morphology uniformity 1-10 3
Marginal adhesion 1-10 4
Single epithelial cell size 1-10 5
Bare nucleus 1-10 6
Bland chromatin 1-10 7
Normal nucleoli 1-10 8
Mitosis 1-10 9

improve the diagnosis speed and accuracy. According to the
attributes, we obtain the object function optimal value as
given in Table 2.

6.2. Result 2. To evaluate the performance of proposed al-
gorithm, the composite data sets given in Table 3 are adopted.
The four public data sets are assembled into a large data set, all
of which are from UCI Machine Learning Repository with

different attributes. Four data sets are randomly copied into
several backups to form a large data set with 107 records.

F-measure is adopted as the evaluation index of
clustering quality. F-measure is calculated from
two information indexes, precision, and recall rate, de-
fined as

_ 276 j)-pGj)

F D = oG (16)
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TaBLE 2: Performance comparison.

Method HGM WPC ACCH Proposed
Accuracy (%) 65 72 76 85
Optimal value 12.54 10.31 8.75 6.59
o)
Z
TaBLE 3: Attributes of experimental datasets. ’§
%
Number Dataset Sample number Dimensionality Cluster g
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1 Iris 10000050 3 4
2 CMC 10000197 3 9
3 Wine 10000040 3 13
4 Vowel 10000822 6 3

TaBLE 4: F comparison with different methods.
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FIGURe 5: Feature extraction result with the proposed method.

Dataset number HGM WPC ACCH Proposed
1 0.678 0.796 0.853 0.912
2 0.312 0.336 0.398 0.423
3 0.493 0.528 0.735 0.796 1.0
4 0.597 0.654 0.678 0.817
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FIGURE 4: Big data two-dimensional feature distribution in cloud
computing.

where j represents the class generated by the cluster method,
i denotes the class label of original dataset, and r and p
represent recall rate and precision, respectively. Recall rate is

F1GURE 6: Comparison results.

defined as r(i,j) =n;/n;. Precision is defined as
p(i, j) = n;/n;. Here, n;; represents the divided class
number of class i. n; and n; are the data sizes of class i and
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class j, respectively. For the data set with size n, the cal-
culation formula of F-measure is
n; ..
F = Z; m]aX(F (i, 1), (17)
where the upper bound of F is 1. If the F-measure value is
larger, then the clustering quality will be higher as shown in

Table 4. With the increase of dataset number, the F value is
slightly on the whole. However, the value of 0.817 of the

proposed method is still higher than that of HGM, WPC,
and ACCH.

The following experiments are for the feature extraction
under cloud computation.

The original big data feature distribution is random as
shown in Figure 4, and it is difficult to achieve feature ex-
traction in the two-dimensional space regularity. We use the
proposed algorithm for feature extraction and processing
data clustering to build big data feature extraction model.
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The obtained feature extraction results are shown in
Figure 5.

As can be seen in Figure 5, the proposed algorithm can
effectively evaluate the feature extraction of big data in cloud
computing; the beam focusing performance is good, which
provides accurate basis for the data optimal clustering. Using
different big data clustering optimization algorithms, we get
the clustering center optimal performance curve as shown in
Figure 6.

We also get the best value and mean value within 200
iterations as shown in Figures 7-10. And, we can know that
the best value is with our proposed method.

7. Conclusions

In cloud computing environment, vast amounts of data need
to be scheduled and accessed aiming at achieving the goal of
medical data mining. This paper puts forward a new medical
big data clustering algorithm based on modified immune
algorithm. It firstly analyzes the big data structure model in
the cloud computing environment to build big data feature
extraction and information model. Designing immune
optimization algorithm for clustering, it achieves the goal of
optimization clustering for big data. Simulation results show
that the proposed algorithm improves the clustering per-
formance of big data in cloud computing environment. The
new algorithm is used for IoT data clustering, which reduces
the error rate and exhibits better performance. In the future,
we will research the deep learning methods and apply them
into actual engineering projects.
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Aim. Percutaneous kyphoplasty (PKP) is a routine operation for the treatment of vertebral compression fracture (VCF). Both local
anesthesia and general anesthesia are widely used for PKP. However, which type of anesthesia is better for PKP still remains
uncertain. This study aimed to find out whether local anesthesia or general anesthesia is more suitable for PKP. Methods. This is a
retrospective clinical trial. A total of 85 single-level VCF patients who received PKP 12 months ago were recruited in this study. 45
patients who received local anesthesia were in group L, and 40 patients with general anesthesia were in group G. Clinical,
radiological, and economic data between the two groups were collected. Results. No difference was found on preoperative data
between the two groups. The duration of operation time in group L was longer than that in group G. Within 12 months after PKP,
more complications happened in group G than those in group L. Results. This study found that there was no difference between
group L and group G before the operation in terms of baseline. The operation time in group L was shorter than that in group G and
the difference was significant. The VAS pain score in group L was significantly higher than that in group G. Clinical and ra-
diological indicators were all improved after surgery, while no other difference was detected between the two groups. More severe
complications happened in group G within 12 months after PKP, and the cost in group L was significantly less than that in group
G. Conclusion. Both local anesthesia and general anesthesia were reliable for PKP. However, local anesthesia was more efficient

and safer with less expense and more bearable pain when compared with general anesthesia.

1. Introduction

It is well known that vertebral compression fracture (VCF)
can cause severe and long time pain [1], and it may lead to
nerve injury, mental disease, and even disability without
proper treatment [2]. The incidence of VCF has been in-
creasing and the patients are becoming younger recently
[3, 4]. VCF can also cause height loss and kyphosis, which
always reduces the quality of life [5]. Long-term bedridden
can even cause deadly hypostatic pneumonia and decubitus
ulcer. Percutaneous kyphoplasty (PKP) is a good treatment
for patients of VCF who cannot bear the pain or do not get
well from conservative treatment [6]. Nowadays, both local
anesthesia and general anesthesia are widely used in the PKP
process [7-12]. However, the controversy about the best type
of anesthesia for PKP has never been stopped. As far as we
know, there were few studies focusing on this topic.

The purpose of this study is to find the best type of
anesthesia for PKP.

2. Materials and Methods

The study was authorized by the Ethics Committee of the
Second Hospital of Dalian Medical University (DMU).

2.1. Patient Population. PKP for all patients was performed
at the First Operating Room of the Second Affiliated Hos-
pital of DMU from Jan 2014 to Jan 2017. All data were
retrospectively reviewed from the medical records and bills.
The inclusion criteria [13] were planned as follows:

(1) The compression was over 15% of the height of the
injured vertebra

(2) Single-level VCF was diagnosed by doctors


mailto:wangjie1003@163.com
mailto:zhangyanjun8893@126.com
https://orcid.org/0000-0003-2806-915X
https://orcid.org/0000-0001-7571-6239
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3965961

(3) The severe back pain had been treated by conser-
vative treatments for 14 days before PKP, but not
effective enough

(4) The pain was over 5, measured by visual analogy
score (VAS)

(5) Percussion and tenderness on the posterior midline
were detected

(6) In magnetic resonance imaging (MRI), a hypo-
intense signal on T1-weighted images was observed
at the injured level

(7) In MRI, a hyperintense signal on T2-weighted stir
fat-suppressed images was observed at the injured
level

The exclusion criteria [13] were planned as follows:

(1) The fracture was caused by secondary osteoporosis
(2) The patient got coagulopathy

(3) The patient was in cachexia or ASA IV-V

(4) There was no pain caused by VCF

(5) The fracture was caused by metastatic cancer

(6) There was a symptomatic neurologic injury

According to the inclusion and exclusion criteria, a total
of 85 patients (45 patients who received local anesthesia were
in group L and 40 patients with general anesthesia were in
group G) were recruited in this study.

The demographic data of patients were collected one
day before the operation from medical records at the ward.
They included but are not limited to age, gender, body
weight, height, body mass index (BMI), and smoking
history. Injury mechanisms were divided into fall, traffic,
sports, and others. Compensation was recorded according
to the bills. The fracture level and operator were also
collected.

2.2. Outcome Measures. The outcomes indicators were set in
accordance with published research [13]. Clinical outcome
was measured by operation time, severe complications, and
VAS pain score of before, during, and after the operation.
Operation time was obtained from anesthesia records. Se-
vere complications consisted of myocardial ischemia, lung
disease, and delirium.

Zero of VAS indicated no pain. Ten of VAS meant an
ultimate pain. The VAS of patients was measured by a
researcher who did not know this study. Anteroposterior
and lateral radiographs were obtained before and after
the operation. Vertebral height and kyphotic angle (KA)
were calculated by measuring the radiographs as de-
scribed in the published article [13]. Briefly, the posterior
height (PH) of caudal vertebra under the injured level
was set as 100%. Then, the anterior height (AH) and
posterior height (PH) of the injured vertebra were cal-
culated similarly and presented as percentage of PH. The
KA was defined as an acute angle between the upper
endplate of the head-end vertebra and the lower endplate
of the tail-end vertebra.
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2.3. Expenditures. Total expenditure and expenditures for
anesthesia, device, drugs, and nursing were collected from
medical bills of each patient. The medical expenditures
outside of our institution were not involved. All participants
declared that they had no extra medical expenditure outside
of our institution from Jan 2014 to Jan 2017. Expenditures
were collected 12 months after the operation. All expen-
ditures were calculated as RMB.

2.4. Statistical Analysis. All data were analyzed by SPSS
(Version 12, SPSS Cooperation, Chicago, IL). The classified
variable was calculated by chi-square test and Fisher’s exact
test. They were shown as a figure with percentage. The
continuous variable was calculated by Mann-Whitney test,
paired or unpaired t-test with or without Welch’s correction.
Continuous variable was shown as mean + standard devia-
tion. All statistical results are presented as tables. P <0.05
indicates the difference is statistically significant.

3. Results

3.1. Subject Characteristics. According to the inclusion and
exclusion criteria, a total of 85 patients were included in this
study (Table 1). 45 patients who received local anesthesia
were recruited in group L and 40 patients undergoing
general anesthesia were in group G. Table 1 presents the
indicators of both groups at the baseline. The differences of
indicators between the two groups were not significant
(P >0.05, all).

3.2. Clinical Results. The operation time and severe com-
plications are shown in Table 1. The VAS of pain score
before, during, and after PKP was also recorded (Table 2).
The operation time in group L was significantly shorter than
that in group G (P <0.05). The incidence of severe com-
plications in group L was significantly lower than that in
group G (P <0.05). Myocardial ischemia occurred in two
patients with history of coronary heart disease during the
operation in group G. One patient with history of asthma
developed asthmatic attack just after intubation and re-
covered by spraying salbutamol aerosol and intravenous
methylprednisolone in group G. Another patient of 80 years
old developed delirium after the operation and got well 4
days later.

In both groups, the pain was significantly relieved after
the operation when compared with that before the operation
(P <0.05). However, the degree of pain relief between the
two groups had no significant difference (P> 0.05). There
was no significant difference in VAS pain score before and
after the operation between the two groups (P >0.05).
During the operation, the VAS pain score in group L was
2.939+0.9934, while it could not be assessed in group G
because of general anesthesia. However, after the operation,
no patients said they feel pain in the period of the operation,
so we still consider VAS pain score during the operation to
be 0. Thus, the VAS pain score during the operation in group
L was significantly higher than that in group G (P <0.05).
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TaBLE 1: Characteristics of the study population.

Characteristics Group L (n = 45) Group G (n = 40) P Statistical method
Age 73.43+7.181 75.01 £9.653 0.4320 Mann-Whitney test
Male 25 (55.6) 19 (47.5) 0.5179 Fisher’s exact test
Body mass index (kg/m?) 21.98+£2.511 22.99+2.719 0.1109 Mann-Whitney test
Smoking 8 (17.8) 8 (20.0) 0.6123 Fisher’s exact test
Injury mechanism 0.3596 Chi-square

Fall 29 21

Traffic or sports injury 6 10

Others 10 9
Compensation 25 (55.6) 21 (0.525) 0.8295 Fisher’s exact test
Fracture level 0.4778 Chi-square

T 15 10

L 30 30
Operator 0.4157 Chi-square

No. 1 11 10

No. 2 16 18

No. 3 9 6

No. 4 7 2

No. 5 2 4
Operation time 40.89 +29.91 59.09£21.11 0.0441 Mann-Whitney test
Severe complications 0 4 0.0451 Fisher’s exact test

Data are presented as mean + standard deviation and number (percentage values).

TaBLE 2: Comparison of VAS pain scores before, during, and after the operation in group L and group G .

Group VAS before the operation VAS during the operation VAS after the operation
Group L 7.332+0.8761 2.939 +0.9934" 0.4472 +0.6121°
Group G 7.502 +0.9874 0* 0.4459 + 0.7136°

Data are presented as mean + standard deviation. VAS, Visual Analogue Scale. *P < 0.05 when compared with preoperative VAS; "P < 0.05 when compared

with preoperative VAS.

3.3. Radiological Results. Radiological data were obtained as
described above. AH and PH were analyzed (Table 3). AH
KA in both groups was also compared (Table 4). All these
radiological indicators showed there was no significant
difference between the two groups at the same time point
(P>0.05, respectively). In the meantime, there was no
significant difference in PH presented before and after the
operation (P > 0.05). After the operation, AH in group L was
significantly increased (94.10 +21.19) than that before the
operation (80.92 + 31.64) (P < 0.05), and AH in group G was
significantly increased after the operation (93.17 +14.02)
than that before the operation (80.10 +9.169) (P < 0.05). KA
in group L was significantly decreased after the operation
(6.344 + 8.431) than that before the operation (12.04 + 7.093)
(P <0.05), and KA in group G was significantly decreased
after the operation (7.051 +4.711) than that before the op-
eration (12.01 +3.183) (P <0.05). The data shown above
demonstrated that the PKP in both groups were effective on
deformity correction.

3.4. Expenditures. The expenditures of both groups are
shown in Table 5 and Figure 1. In group L, total expenditure
and anesthesia expenditure were significantly lower than
those in group G (P <0.05). There was no significant dif-
ference between the two groups when it came to device,
drug, or nursing expenditures (P > 0.05).

4, Discussion

A desired method for the treatment of VCF should offer pain
relief and a deformity correction fast and safely [14-16].
Percutaneous vertebroplasty (PVP) and PKP have been
widely used recently, which can meet the needs of patients
who want to relief the pain and correct the deformity
[17, 18]. Some researches demonstrated that PVP and PKP
had similar effects on pain killing and function improving
[19-21]. However, recently published meta-analysis [22]
showed that PKP has more merits compared with PVP. So,
PKP should be recommended to people for the treatment of
VCF.

However, there was still controversy about which kind of
anesthesia was better for PKP as both local anesthesia and
general anesthesia are used widely at present [11, 12]. In this
study, patients with single-level VCF were included. Clinical
outcomes, radiological outcomes, and expenditures were
compared between local and general anesthesia.

Though the VAS pain score in group L during the op-
eration is higher than that in group G, there are still several
other reasons supporting the usage of local anesthesia for
PKP. First, the pain of local anesthesia during the operation
is relatively bearable (the VAS in L group is about 2.939,
Table 2). Second, the sense of pain during the operation can
be used as a protection for severe nerve injury because
patients will give feedback to the operator when the nerve is
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TaBLE 3: Comparison of anterior and posterior heights before and after the operation in L and G groups.

Group AH before the operation AH after the operation PH before the operation PH after the operation

Group L 80.92 + 31.64 94.10 +21.19* 91.15+16.99 93.17 + 14.02

Group G 80.10£9.169 90.98 +12.24° 89.91 £8.951 91.67 £9.714

Data are presented as mean + standard deviation. AH, anterior height; PH, posterior height. *P < 0.05 when compared with preoperative VAS.

TaBLE 4: Comparison of kyphotic angles before and after operation in L and G groups.

Group KA before the operation KA after the operation Change of KA
Group L 12.04 £7.093 6.344 +8.431° 3.504 £6.011
Group G 12.01+£3.183 7.051 +4.711° 3.772+4.221

Data are presented as mean + standard deviation. KA, kyphotic angle. *P <0.05 when compared with preoperative VAS.

TaBLE 5: Comparison of expenditure in group L and group G .

Expenditure Group L (n = 45) Group G (n = 40) p Statistical method

Total expenditure (RMB) 43170 + 5831 52920 + 6012 <0.0001 Mann-Whitney test
Anesthesia expenditure (RMB) 6221 £3112 14989 + 7231 <0.0001 Mann-Whitney test
Device expenditure (RMB) 34841 + 7493 35773 + 7804 0.1665 Mann-Whitney test
Drug expenditure (RMB) 1099 +399.5 1120 £509.5 0.3127 Mann-Whitney test
Nursing expenditure (RMB) 128.5+39.55 132 +44.75 0.7091 Mann-Whitney test

Data are presented as mean + standard deviation.
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FiGure 1: Comparison of expenditures between L group and G
group. Error bars represent +1 SD from the mean. *Statistically
significant (P <0.05).

going to be hurt. Third, the AH and KA between the two
groups had no significant difference, which is in consistence
with the previous published studies [23-26] and indicates that
the type of anesthesia has no impact on the treatment effect of
PKP. Therefore, local anesthesia, instead of general anesthesia,
should be adopted for PKP for the treatment of VCF.

We also found more advantages in local anesthesia for
PKP. The operation time in group L was shorter than that in

group G. Group L needed less expenditure when compared
with group G. More severe complications happened in group
G such as myocardial ischemia and infection of the lung after
the operation, while fewer happened in group L. This was
also an important reason for high expenditure in group G
too. According to the above data, local anesthesia showed its
advantages, such as shorter operation time, lower incidence
of severe complications, and less expenditure.

However, local anesthesia might not be good for all
patients with VCF. In this study, we chose patients with
single-level VCF which caused short operation time and less
expenditure. While for multiple-level VCFs, general anes-
thesia may be a good choice because of the complicated
operation and longer operation time and uncomfortable
feeling of the prone position. So the anesthesia choice is
relative and it should be planned by the patient’s VCF
condition and the patient’s desire.

Expenditures can be divided into micro- and macrocosts
[27, 28]. Macrocost focuses on the sum of the expenditures
in a specific period. The merit of macrocost is that its data are
easier to collect and calculate than that of microcost. But the
details in the macrocost will be ignored, which is its internal
drawback. In comparison, microcost lists all the items of the
expenditures in a specific period, including the resources
and the categories. So the expenditures of our study were
collected and analyzed in the method of microcost.

According to the opinion of the published article [29],
direct and indirect expenditures are supposed to be collected
for cost analysis. However, the guidelines from the UK,
Netherlands, and South Korea indicate that it is also ac-
ceptable to do the cost analysis with only direct expenditures
[30, 31]. Therefore, we collected only direct expenditures in
this study.
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Referring to the published research [32], recommen-
dations for medical procedures can be various from A to E.
Grade A means the new procedure is cheaper and equally or
more effective than the old one, which should be recom-
mended strongly. Grade E means the new procedure is less
or equally effective but more expensive, which should be
rejected. The degrees of recommendations of grades B, C,
and D are between A and E. The local anesthesia for PKP is
supposed to be scored as grade A, which means the pro-
cedure should be strongly recommended.

There are still several points for consideration. Firstly,
inherent limitations for retrospective study are not able to
be avoided. Prospective studies should be better to verify
the conclusions in the future. Secondly, the methods for
appraising clinical outcomes such as cost-utility analysis
were not applied in this study. Other researches focusing on
this topic had better apply the cost-utility analysis to get a
more affirmed conclusion [32]. Lastly, patients undergoing
local anesthesia, who still felt pain and were nervous,
should use conscious sedation, such as dexmedetomidine
plus some opioids to make patients comfortable, which
needs an anesthesiologist to keep patients safe and more
expenditure.

5. Conclusions

PKP is an effective treatment for patients with VCFs.
General anesthesia led to more serious complications,
while local anesthesia was more effective, safer, and cost
less. Therefore, although patients may endure tolerable
pain, local anesthesia is more suitable for PKP for patients
with single-level VCF when compared with general
anesthesia.
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Research in physiology and sports science has shown that fatigue, a complex psychophysiological phenomenon, has a relevant
impact in performance and in the correct functioning of our motricity system, potentially being a cause of damage to the human
organism. Fatigue can be seen as a subjective or objective phenomenon. Subjective fatigue corresponds to a mental and cognitive
event, while fatigue referred as objective is a physical phenomenon. Despite the fact that subjective fatigue is often undervalued,
only a physically and mentally healthy athlete is able to achieve top performance in a discipline. Therefore, we argue that physical
training programs should address the preventive assessment of both subjective and objective fatigue mechanisms in order to
minimize the risk of injuries. In this context, our paper presents a machine-learning system capable of extracting individual fatigue
descriptors (IFDs) from electromyographic (EMG) and heart rate variability (HRV) measurements. Our novel approach, using
two types of biosignals so that a global (mental and physical) fatigue assessment is taken into account, reflects the onset of fatigue
by implementing a combination of a dimensionless (0-1) global fatigue descriptor (GFD) and a support vector machine (SVM)
classifier. The system, based on 9 main combined features, achieves fatigue regime classification performances of 0.82 + 0.24,
ensuring a successful preventive assessment when dangerous fatigue levels are reached. Training data were acquired in a constant
work rate test (executed by 14 subjects using a cycloergometry device), where the variable under study (fatigue) gradually
increased until the volunteer reached an objective exhaustion state.

intense or stressful mental tasks and, indirectly, by physical
activities whose consequences, as De Luca [3] affirmed, are
“...characterized by a decline of alertness, mental concen-
tration, motivation, and other psychological factors. ..”.

1. Introduction

Fatigue occurs frequently in several functional tasks per-
formed on a daily basis [1]. Fatigue can be classified as ob-

jective or subjective, taking into consideration its nature [2].

Objective fatigue is a physical phenomenon, not only on
its origins but also in the effects that it produces (generating a
decrease in the capability to exert mechanical work), in op-
position to subjective fatigue, which can be directly caused by

Taking into consideration the relevance of sports in the
modern society and the fact that it is also a valuable example
of how physical activities may force the human body to reach
its limits, the brave effort of athletes to reach their maximum
performance was a great inspiration for this study.
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However, in spite of the great preponderance of the
physical component, athletes can only reach their full po-
tential when mentally and physically healthy, reason why
studying both subjective and objective fatigue becomes
interesting to achieve a global evaluation of the conse-
quences of fatigue and eventually adjust the training
programs.

Through the previous descriptions, these two types of
fatigue (objective and subjective) gradually rises due to an
intense physical or mental activity, causing the body to reach
its limit breaking the homeostasis state, due to the deficit
between the metabolic energy production/consumption and
the accumulation of metabolic waste at cellular level, con-
ditioning the normal functioning of the organic system. The
perturbation of the homeostasis state becomes a potential/
transient cause of damage to the organism or, in more
drastic situations, the effect of fatigue may be prolonged
leading to overwork, chronic fatigue syndrome, overtraining
syndrome, and immunity dysfunctions, as stated by Wan
et al. [4].

In the specific case of objective fatigue, it reflects the
inability of the organism to maintain homeostasis [4, 5] and
may result from the physiological consequences of exercise
(e.g., accumulation of metabolites, such as lactic acid [4],
within the exercising muscle). Objective fatigue can be
subdivided accordingly to its physiological origin in central
fatigue, which reflects changes at the neuronal level that
affect nerve conduction to the exercising muscle and in
peripheral fatigue that is typically associated with changes in
sarcoplasmic ionic concentrations [4, 6]. Regardless of its
origin, fatigue is consistently accompanied by decreased
physical performance [4, 7] caused by the imbalance be-
tween the rate of energy production/consumption and also
by a deficit in the recycling of metabolic waste [8]. Objective
fatigue (muscle level) may be more or less transient,
depending on the characteristics of the exercise stimulus
(i.e., intensity, duration, and volume) [9].

Regarding subjective fatigue, its effects were well defined
since early studies, namely, drowsiness, inability to con-
centrate, and physical discomfort [10]; so, a possible defi-
nition that aggregates these three types of effects will
establish subjective fatigue as a physical incapacity caused by
psychological factors, conducting to subjective feelings of
exhaustion influenced by loss of motivation or concentra-
tion [7, 11, 12].

In spite of these valuable definitions, for evaluating fa-
tigue in a precise and reliable way, more concrete and
unbiased approaches are needed, something achievable by
the conjugation of machine and human powers.

Nowadays, artificial decision support systems extend the
capabilities of the natural ones. With the help of machines,
solving complex challenges delineated by the human brain is
now much more reliable and time inexpensive. As knowl-
edge benefits from the processing power of machines, in-
credible discoveries may arise, with great impact to the daily
life of populations.

Following this line of thought, the current research
article tries to explore fatigue, both as an objective and
subjective physiological phenomenon (research variable)
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through the powerful capabilities of computational systems,
using a conjugation of electromyographic (EMG) and
electrocardiographic (ECG) signal processing methodolo-
gies together with the training of an exploratory machine-
learning system.

Since past research has shown that muscle injuries are
more frequently associated with prolonged forms of muscle
fatigue [13], there is clearly a need for a monitoring system to
identify the onset of fatigue, both in objective and subjective
terms, using an indirect and noninvasive approach.

The proposed detection model included both electro-
myographic signals and heart rate variability (HRV) pa-
rameters because fatigue develops at the muscle level
whenever the rate of oxygen delivery and utilization become
imbalanced [5]. This global monitorization of the fatigue
phenomenon (objective and subjective types) may have a
major impact on the training programs of high-performance
athletes, taking into consideration that, as previously
mentioned, the maximum performance can only be achieved
when subjects are physically and mentally healthy [14-16].

Fatigue can be evaluated through different methodolo-
gies (beyond EMG and HRV), distinguishable by the nature
of studied events. As a practical example, muscle contraction
is triggered by an (1) electrical impulse that generates (2)
chemical changes at cellular level during its propagation in
order to produce (3) a mechanical event, i.e., the muscular
contraction. The previous three points are an illustrative
demonstration of how fatigue acquisition is dependent on
(1) electrical, (2) chemical, and (3) mechanical phenomena.

Interesting studies were also conducted regarding the
mechanical and chemical nature of fatigue, namely, the
research studies of Faller et al. [17] and Kimura et al. [18]
(mechanical perspective) using accelerometric and acoustic
sensors, respectively. It was concluded that, typically, the
amplitude of the mechanical signal decreases as fatigue was
being acquired.

From the chemical point of view, the use of near-infrared
spectroscopy arises as a noninvasive methodology to mea-
sure relative changes in the oxygen levels at the muscular
level. In spite of the concentrations of oxyhemoglobin and
deoxyhemoglobin not evolving in a linear way, a specific 4-
stage pattern was found by Taelman et al. [19].

The choice of ECG/HRV and EMG data to study fatigue
is framed on the set of studies focused on the “electrical”
nature of fatigue, providing a way to understand this phe-
nomenon from its source and through multiple fatigue
categories (objective and subjective types).

However, the current study is not restricted to a
quantitative point of view, which may not be appropriate,
taking into consideration that a specific value of consensual
indicators of fatigue may flag the existence of fatigue for a
segment of subjects, while for others it is innocuous, i.e.,
fatigue-related values may vary accordingly to the subject
and experimental conditions under analysis. Due to this
difficulty, it was decided to explore fatigue phenomenon
from a qualitative and more universal point of view, through
the analysis of how certain parameters evolve in time, in-
stead of focusing on its absolute values. Since median fre-
quency represents a valid parameter for monitoring muscle
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fatigue [5], the median frequency of the EMG signal power
spectrum was one of the parameters where trends were
searched, together with other documented wavelet param-
eters [20].

We extended this trend evaluation to linear and nonlinear
HRV parameters (e.g., low- and high-frequency power as well
as short- and long-term dispersion derived from the Poincaré
analysis, respectively) extracted from the cardiac epochs (RR)
obtained on a cardiopulmonary cycloergometry trial above the
second ventilatory threshold (VT,). After identifying the most
significant EMG and HRV parameters to evaluate fatigue, we
aim to objectively classify the physiological impact of fatigue in
the performance of athletes. A successful achievement of this
purpose may ensure a way to study possible adaptations on
training programs responsible for simultaneously improving
athletes’ physical indexes and minimizing the long-term impact
of fatigue, avoiding severe injuries.

As previously mentioned, a preventive approach that
ensures the monitorization of fatigue-related patterns can be
followed by developing a computational system capable of
extracting individual fatigue descriptors (IFD) from EMG
and HRV signals, obtained during a cycloergometer exercise
performed above the second ventilatory threshold.

EMG parameters may ensure a local/muscular monito-
rization of this phenomenon, while HRV indexes are quite
relevant for a generalized/mental evaluation of the fatigue
state [4, 16, 21]. The implemented system reflects the gradual
onset of fatigue by incorporating a global fatigue descriptor
(GFD) and a support vector machine (SVM) classifier, both
supported by the evolution time series of IFD’s (such as EMG
median frequency) generated along the cycling exercise trial.

2. Materials and Methods

It should be taken into account that the following experi-
mental environment/protocol replicated some conditions
and procedures described on a past research work. One of
the authors gave his contribution in the design of the study
and also in the analysis of the results [64].

2.1. Participants. Fourteen healthy, young men (age: 24.5 £ 3.6
years; body mass index: 23.7 + 1.7 kg-m™2) were included in this
study. Participants were recruited from a local university and
community population through direct invitation or flyers. From
this population, a primary group of study was chosen and all
volunteers were accustomed to cardiopulmonary exercise.

All participants were nonsmokers and normotensive
(systolic and diastolic blood pressure values repeatedly < 120/
80 mmHg) [22].

Participants were all nonoverweight and free of any
known cardiovascular or metabolic disease, as assessed by
medical history. None of the participants were currently
using prescription or taking any medications or nutritional
supplements. Taking into consideration one of the pre-
viously mentioned inclusion criteria, participants were al-
ready accustomed to cardiopulmonary exercise testing using
a cycloergometer. For this reason, there were no familiar-
ization sessions for this specific group of participants.

Each participant was requested to avoid heavy exercise
for at least 24 h before testing and to have nothing to eat
from midnight until the testing session on the subsequent
morning (fasting conditions). Participants were also asked to
refrain from caffeine ingestion and to empty their bladders
before testing.

Participants were fully informed of the purposes, risks,
and discomfort associated with the experiment before
providing written informed consent. Informed consent was
obtained from all individual participants included in the
study. This study was carried out with the approval from the
University’s Institutional Review Board and in accordance
with the Declaration of Helsinki.

2.2. Protocol. Participants were evaluated over the course of
2 visits on separate days (within a 7-day period). Testing was
separated by at least 48 h and, to minimize the effects of
circadian and other similarly induced variations in perfor-
mance, was performed at approximately the same time of the
day (between 07.00 and 11.00 a.m.).

During the first visit, standing height and weight mea-
surements were taken with participants wearing light-weight
clothing and no shoes. Height was obtained using a stadi-
ometer with measures obtained to the nearest 0.5cm.
Weight was measured by using a digital scale (BG 42; Beurer
GmbH, Soéflinger, Germany). Body mass index was calcu-
lated by dividing the participants’ mass in kilograms by the
square of their height in meters. Subsequently, participants
performed a treadmill-graded exercise test to determine
their VT, and peak oxygen uptake (VO,,cy)-

On the second visit, each participant performed one bout
of cycloergometer exercise above the VT, to volitional ex-
haustion. All tests were performed on the same cyclo-
ergometer (Monark Ergomedic 839E, Varberg, Sweden).
Expired gas measurements were made using a portable
mixing chamber (Metamax® I, Cortex, Leipzig, Germany),
which was calibrated before each test with a known volume
and with known gas concentrations. Testing was carried out
in the laboratory with an environmental temperature be-
tween 21-24°C and a relative humidity between 44-56%.

In synthesis, Day 1 dedicated to the execution of a
“Graded Exercise Test” was focused on the assessment of
participants’ work rate (WR) near the second ventilatory
threshold (VT,), through an incremental power test, where
the cardiorespiratory fitness level was inferred.

As stated by Mourot et al. [23], the second ventilatory
threshold is “ . .the point where high-intensity exercise can no
longer be sustained...”. This parameter can be determined
through the collection and monitorization of exhaled air, fo-
cusing the analysis on changes in oxygen and carbon dioxide
concentrations. With this continuous monitorization, the
determination of VE/VCO, and VE/VO, ventilatory equiv-
alent parameters can be achieved and consequently the VT,.

On Day 2, a “Constant Work Rate Test” was conducted,
taking into consideration the WRyy _ power, producing
for each participant a set of physiological signals (EMG and
HR analysis), where fatigue pattern search took place
through digital processing.



2.2.1. Graded Exercise Test (Day 1). Graded exercise testing
was performed using an incremental cycloergometer ramp
protocol. Following a 3 min warm-up period at 60 W, work
rate was increased by 15 W-min~" until the participant was
unable to continue. The participants cycled at a self-selected
pedal rate between 60-90 rev-min~', being constantly en-
couraged by the researcher to proceed the exercise in the
desired rhythm.

The test was stopped when the pedaling rate could no
longer be maintained. VO,,,c Was defined as the highest VO,
attained in a 20 s average. Participants were considered to have
reached VO, if at least three of the following four criteria
were met: (1) plateau (increase of no more than 150 mL-min~")
in VO, with an increase in workload, (2) respiratory exchange
ratio greater than 1.1, (3) peak heart rate within 10 bpm of the
age predicted maximum, and (4) visible exhaustion [24].

All participants met at least three of these criteria. The
peak heart rate was identified as the highest value recorded
during each test. Additionally, using the time course of the
relationship between the ventilatory equivalents for oxygen
(Ve/VO,) and carbon dioxide (Ve/VCO,), the VT, for each
participant was determined by two independent in-
vestigators [25].

The VT, was defined as the minimal work rate at which
the Ve/VO, as well as the Ve/VCO, exhibited a systematic
increase. The VT, was expressed in absolute (W) intensity
and used for defining the work rate to be used by each
participant in the trial of Day 2 (WRyy = 1.15x Pyp ).
Participants included in this study exhibited a VO, of
525+ 57mLkg "min~" and work rate at VT,, s =
204.5 + 33.7W.

2.2.2. Constant Work Rate Test (Day 2). On the second day,
cycloergometry was performed at a constant work rate
(WRyr,, .) and with a periodical encouragement by the
researcher until volunteer reaches a volitional exhaustion.

During exercise, the cycling cadence was kept constant
after setting the most appropriate value in response to a brief
warm-up phase that preceded the test.

The participants were instructed to synchronize their right
lower limb to an auditory metronome provided through
speakers. Specifically, warm up was divided in 2 sets of 3 min,
separated by 1 min rest, during which the participants exercised
at their preferred cycling cadence. Then, the mean cadence
recorded during the 6 min of warm up was used as the ref-
erence cadence for performing the constant work rate test.

The EMG signals from five lower limb muscles (rectus
femoris, vastus lateralis, vastus medialis, semitendinosus, and
biceps femoris) were acquired during exercise.

In the current stage of the research, as it will be explained
with more detail, only the rectus femoris and vastus medialis
data were taken into consideration during the formal def-
inition of the proposed solutions (GFD and SVM) and
methodologies (fatigue trend identification).

The acquisition was carried out using Ag/AgCl disposable
electrodes and a signal acquisition system (biosignalsplux,
PLUX S.A., Lisbon, Portugal) of PLUX Wireless Biosignals
[26], following the recommendations of SENIAM (surface
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EMG for noninvasive assessment of muscles) [27]. The ac-
quisition system followed the directives of the International
Society of Electrophysiology and Kinesiology (acquisition at a
sampling frequency of 1000 Hz, filtering using a band-pass
filter between 10 and 500 Hz and common mode rejection
ratio of 110 dB). In parallel, we also obtained HRV data using
a Polar RS 800 G3 heart rate monitor (Polar R-R recorder,
Polar Electro, Kempele, Finland).

Among the 14 participants of the study population, HRV
data of 3 of them, collected from the constant power test of “Day
2,” were compromised due to loss of heart rate signal, so all
HRYV analysis and subsequent conclusions took into consid-
eration a smaller population. Thus, when a combined analysis of
EMG and HRV parameters was needed, it only included the
participants with valid EMG and HR data, which were 11.

2.3. Signal Processing and Analysis. Besides data collection,
our study was divided into three stages: (a) Processing Stage,
(b) Analysis Stage, and (c) Proposed Solutions.

In the Processing Stage, a list with commonly extracted
parameters from an EMG signal and HRV data was iden-
tified together with the computational methodology used to
explore the existence of trends in these parameters over time.

The subsequent Analysis Stage covers the identification of
which EMG and HRV parameters evolve over time in a
characteristic trajectory with the progression of fatigue. First,
we generated the evolution series of each parameter contained
in the EMG and HRV Processing Stage preliminary list using a
sliding window mechanism. We implemented an algorithm
similar to Thongpanja et al. [28] and subsequently identified
trends in the series using a linear regression model [29].

2.3.1. Processing Stage - Features and Sliding Window
Mechanism. From the EMG signal and HRV data, specific
events had been selected (muscular activation periods and R
peak positions, respectively).

For EMG, we followed the approach proposed by
Pimentel et al. [30], which uses the Teager-Kaiser Energy
Operator (TKEO).

For HRYV, the R wave peaks, which we used to build the
tachogram (time series with the duration of each RR interval
along the acquisition - RRy,¢0gram) Were identified through
the algorithm proposed by Pan and Tompkins [31].

After this process, a sliding window model was used for
extracting samples of a set of EMG and HRV parameters
over time, in order to explore trends. The window of di-
mension WS, slides over each sample of the time series,
taking into consideration a defined overlapping factor, de-
pendent of the chosen time-step TS,, between consecutive
windows [32]. Table 1 lists the parameters that were
extracted from the EMG signal and HRV data.

A detailed description of HRV parameters can be found
in Acharya et al. study [33] and Task Force of The European
Society of Cardiology and the North American Society of
Pacing and Electrophysiology [34]. A more exhaustive
explanation for the EMG parameters, both from the
temporal and the frequency domains, can also be found in
Cifrek et al. [5].
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TaBLE 1:

List of the various EMG and HRV parameters studied.

EMG

Time domain Frequency domain

ECG/HRV

Time-frequency domain Time domain Frequency domain

RMS' Median frequency

Total power

Power inside ULF band“
Power inside VLF band*

Maximum RR interval
Minimum RR interval

Median frequency
Major frequency

Major time Average RR interval Power inside LF band*
Mean power SDNN¥ Power inside HF band*
Area rmsSD* Median frequency
Volume Triangular index
Time dispersion SD1*
Frequency dispersion SD2*
SD1/SD2

TRMS, root mean square; *SD, standard deviation of NN intervals; *rmsSD, root mean square of successive differences; *Poincaré Standard Deviation/
Dispersion of points perpendicular (SD1) or along (SD2) the axis of line-of-identity (ellipse semiaxes 1 and 2). “ULF, ultralow frequency band ([0; 0.003] Hz);
4very low-frequency band ([0.003; 0.040] Hz); “low-frequency band ([0.040; 0.150] Hz); *high-frequency band ([0.150; 0.400] Hz).

Time-frequency information can be gathered through
the wavelet transform, which shares some principles with the
conventional Fourier analysis, namely, the decomposition of
a signal into multiple elementary frequency components,
mathematically ensured by a sequence of inner products
between the signal and the “base” function (measuring their
similarity).

However, while the “basis” of the Fourier analysis are si-
nusoidal functions, the wavelet transform provides more
freedom to the researcher, taking into consideration that the
elementary decomposition function (wavelet) can be chosen
according to the characteristics of the signal to be decomposed.

Additionally, in the wavelet domain, some temporal
information is preserved, in contrast with the Fourier do-
main being the Morlet mother wavelet (used on the current
study) explicitly defined as a function of time:

1 . .
p(0) = e e

Vbn ’

where j = /-1, f, corresponds to the center frequency of
the mother wavelet, and b is a bandwidth parameter related
to the energy spread in the frequency domain.

This mother wavelet will be progressively compressed/
stretched in a process called “scalling,” providing a way to
decompose the signal in multiple time and frequency scales.

The EMG parameters from time-frequency domain were
obtained from the scalogram (image) processing, after applying
the wavelet transform through the Morlet family and using a
scale array (1/f) defined from a set of pseudofrequencies (in
Hz) related with the typical EMG informational content (0-
500Hz), ie, 1/f = [1/499,1/497,1/495,...,1/9,1/7,1/5] =
[1.628,1.635,1.641, ..., 90.278,116.071, 162.5], as described
by Graham et al. [20].

According to this approach, Major Time and Major
Frequency define the coordinates of the centroid:

(1)
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where S(t, f) defines the scalogram (2D coordinate system
with a third virtual coordinate established by the pixel values/
colors) pixel value at coordinates (¢, f), t the time coordinate
of the pixel, f is linked with the frequency dimension, and T
and F are, respectively, the number of available columns and
rows of the scalogram (dependent on the chosen frequency
and temporal resolutions of the wavelet decomposition At =
1/F; = 1/1000 = 0.001 s and A f = 2 Hz, where F; is the data
acquisition sampling rate).

Mean Power corresponds to the average power obtained
at scalogram entries’ values. Volume, Area, Time Dispersion,
and Frequency Dispersion are all dependent on a scalogram
segmentation phase using the Otsu methodology, excluding
low-intensity values [35]. For the remaining values, the
convex volume and the convex area were then determined
using Time Dispersion and Frequency Dispersion as the
parameters that defined the maximum length of the convex
area according to the time and frequency dimensions. The
processing scheme used is depicted in Figure 1.

This scheme mainly consists in an iterative procedure
where, in each iteration, EMG and HRV data from each
participant (Par;) are analyzed in order to extract all in-
dividual parameters (P;) contained in the primordial set
(Table 1), using different sliding window mechanism
configurations, varying the window size (WS, | WSEMS =
[5,10,15,20,25] muscular activation periods and
WSHRY = [30, 40, 50, 60, 70, 80, 90, 100, 110, 120]s) and time-
step (TSy | TS = [0, 10, 25,50, 75,90]% of WS,).

Regarding the window sizes of EMG data, a brief expla-
nation should be provided, taking into consideration that each
window is composed by a set of muscular activation periods.

However, the muscular activation periods are analyzed
individually, i.e., from each muscular activation period the
parameter under evaluation is extracted. Then, the generated
set of results is averaged, giving rise to a single value, which
represents the overall data inside the window.

Each parameter P;. produced a set of Y x Z time series,
where our meta-analysis took place. Taking into consideration
the size of the population under study (11 or 14 subjects),
the number of EMG (11 indexes on all 5 muscles) and HRV
(14 indexes) parameters, and, obviously, the number of win-
dow size (Z*MG =5 and ZMRV = 10) and time-step (Y = 6)
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F1Gure 1: Illustration of the iterative process followed during data processing, so that for each participant all parameters were extracted
using the various combinations of window sizes and time-steps (Par; | Participanti; Pary, | Last participant; P, |Index/parameter k;
Py, | Lastindex/parameter; WS | Window size; WS, | Last window size; TS | Time — step; TS, | Last time — step).

configurations, it means that we were dealing with a big volume
of data to be analyzed, i.e., more than 27390 time series.

2.3.2. Analysis Stage Identification of Trends and Potential
Fatigue Descriptors

(1) Identification of Trends. Using an adaptation of a meta-
analysis procedure, by combining the descriptions of Becker
and Wu [29] and Borenstein et al. [36], we identified trends
in different time series generated in the Processing Stage (by
the application of the sliding window mechanism).

Trends were derived from the fitting of a linear re-
gression model to the time series of each parameter (pro-
viding a slope value and standard error) and converted to
two classes, either as increasing or decreasing trajectory
patterns.

Despite the fact that some EMG and HRV parameters
may not evolve linearly due to changes on our fatigue
variable, by using a linear regression model we decrease the
number of degrees of freedom in our analysis, since a rel-
atively complex time series is synthesized in a simple re-
gression line.

Subsequently, the slopes of all participants were re-
duced into a single combined slope. This final slope was
extracted to reflect the overall trajectory of change in the
parameter P, under analysis (generic parameters are used
on this section in order to present the applied processing
methodology) over time synthesizing in a single value the
population trend. This was carried out by combining the

slope of parameter P, for each participant (11 participants
for HRV and 14 participants for EMG) and computing a
weighted average (of 11 slopes for the HRV indexes and of
14 slopes for the EMG parameters). The weights were
computed as the inverse of the square of the respective
standard errors (equation (6)). For each participant Par;,
the evolution time series of the index P, has been gen-
erated through a sliding-window mechanism (with the
window size WS, and time-step TS,). For the generated
time series, the linear regression model was fitted,
returning a slope m; and a variance ¢2, . These individual
slopes and variances (1 per participant) are joined in a
combined slope (weighted average described in equation
(4)) that reflects the global behavior of P, evolution for
our population sample.

This method was applied to each one of the previously
specified parameters shown in Table 1 and combinations of
window sizes (WS,) and time-steps (TSy), presented in
Section 2.3.1.

Mgy = Ziizniwi, (4)
21w
5 1
O comb TS, (5)
where NS is the number of participants/subjects

(NSHRY = 11 and NSPMS = 14) and w, is
1

Wi = 5 (6)
m;
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Using combined slope (4) and variance (5), we then
calculated the associated 95% confidence interval as follows:

. -1 ax\ [ s
Meomb — Ft(n_z) 1- 5 O'mmmb 5 Meomb
1 o e
+ Fth) <1 B 5) Oty :| ’
(7)

where 1, and G2, _ are the estimated values of the
combined slope and Variance, respectively; F; 12) corre-
sponds to the value of the ¢-test statistic for n — 2 degrees of
freedom; and n represents sample size. The combined slope
and the confidence interval were also analyzed graphically
using the Forest Plots [37].

The computation of the combined slope and variance
associated with P, was repeated for various windows of
different sizes and time-step pairs (WS, and TS, re-
spectively). Then, to assess the quality of each combination,
we calculated the coeflicient of variation (CV) of WS, and
TS,, using the combined standard deviation (o,y,) and
slope (1)

comb
IC(1 a)x100% —

CV[Ws,,Ts, ] = Jeomb, (®)

Mcomb

The rationale behind the choice of CV as a statistical
indicator of the quality of window-size and time-step
combination is related with the fact that well-defined trends
should be characterized by (1) representative variations
(monitored by the slope) and (2) also by a small uncertainty
linked to the regression model fitting stage (monitored by
standard deviation).

(2) Potential Fatigue Descriptors. As detailed in Section
2.2.2, the experimental protocol also included an ac-
quisition of the heart rate data during recovery from
submaximal cycloergometry performed above the VT,.
The stage of data collection occurring during cyclo-
ergometry was termed “acquisition +” and that occur-
ring during postexercise recovery was termed
“acquisition —.” These data were used to identify all the
parameters that were sensitive to variations in the
magnitude of fatigue.

As described on some research works, while the
vastus medialis muscle exhibits a high level of fatigue-
resistance to cycling exercise, this is not the case for the
rectus femoris muscle [38, 39]. Thus, for the EMG pa-
rameters, “acquisition +” and “acquisition —” data were
obtained in the rectus femoris and vastus medialis, re-
spectively (two antagonistic conditions, where fatigue
patterns will be more evident or undefined/nonexistent,
respectively).

On the current stage of the project we focused our
analysis on 2 of our 5 muscles’ protocols, the choice of 5
muscles is intended to expand, in the near future, the
analysis of the pilot study; however, the data processed
for the remaining 3 muscles were extremely useful to
confirm the theoretical expectations collected from other

research articles that fatigue-induced patterns on EMG
parameters are more accentuated on the rectus femoris
and less prominent on the vastus medialis muscle
[38-40].

In scientific terms, there is a general agreement that the
study of a single case/participant or, in our case, a single trend
is not enough to draw definitive physiological conclusions
[41]. To overcome this problem, we established two criteria to
distinguish between generic- and fatigue-associated trends for
each one of the EMG and HRV indexes under analysis.

Premise: For each parameter P, the trend evaluation
procedure will be restricted to the most representative
combination of (WS, and TSy) that describes the evolution
of P, (i.e., the combination that minimized the CV).

Trend Acceptability Criteria:

(1) Taking into consideration the previous premise, for
the “acquisition +7, it is considered the existence of a
trend only if the confidence interval, linked to the
combined slope estimate of parameter Py, did not
cross the center of the Forest Plot (zero slope), be-
longing exclusively to one of its two domains
(Figure 2(a))

(2) The trend identified on “acquisition +” is only
considered a fatigue-related trend when it was ver-
ified in the “acquisition —”, a combined slope reversal
in P vs. that seen in “acquisition +”, or at least a state
of uncertainty, where confidence intervals included
values of the two domains of the Forest Plot
(Figure 2(b))

These criteria were applied sequentially. We established
that P;, descriptor did not correspond to a fatigue indicator
whenever one of these criteria was not fulfilled.

Therefore, a parameter P; is considered an individual
fatigue descriptor (IFD) if the provided algorithm steps
(section A of Supplementary Material (available here)) are
followed.

2.4. Proposed Solutions: Global Fatigue Descriptor and Binary
Classifier. Finally, the Proposed Solutions (third stage of the
research process, defined on Section 2.3) included the
definition of a global fatigue descriptor (GFD) and imple-
mentation of a binary classification system. At this point, all
the information provided by the EMG and HRV indexes was
modeled into a single value that characterized the GFD.
Then, we generated a classifier with the ability to process the
information of the Processing Stage, i.e., the selected features
derived from the identified IFD as an input and returning an
output containing one of the two classes (+ fatigue vs. —
fatigue).

The GFD corresponds to a weighted average, where each
of the individual fatigue descriptors was normalized. It
defines an input with a weight equivalent to the inverse of
the CV, determined at the end of the application of the trend
identification methodology (equation (9)).

GFD is a dimensionless parameter that may present a
value between 0 and 1:
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FIGURE 2: Forest Plots graphically synthesizing the results of the meta-analysis, based on the estimate of the combined slope and the respective
confidence interval. (a) Graphical result of the meta analysis when a trend exists. (b) Graphical result of the meta analysis when no trend exists.

_ Y IFD il x V!
2kt CVi!
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where K is the number of fatigue descriptors to be con-
sidered, IFD, [i] being a sample of the fatigue descriptor k,
and CV,, being the CV for the most favorable window-size
and time-step combination for the extraction of the IFDj
descriptor.

A calibration protocol, similar to the one described in
Section 2.2.2, was applied to each participant’s data. This
allowed representing the evolution of GFD over time in a
graphical figure. The calibration provided the maximum
values of each IFD used for normalization. Afterwards, its
distribution was computed and graphically translated into a
boxplot (Figure 3). Consequently, a profile of each partici-
pant became available to the system based on the seg-
mentation of the GFD into three regions (green, yellow, and
red), using two thresholds corresponding to the 25% per-
centile and the median value. These regions were set to assess
the magnitude of fatigue.

The proposal of 50% (median) and 25% as GFD
thresholds was mainly based on statistical concepts.

In first place, the 50% threshold was defined, taking into
consideration the intention of segmenting the GFD values
into two equally probable regions (for the known population
being the median value, less susceptible to outliers when
compared with the mean), ie., the green and red zones,
representative of innocuous and dangerous fatigue levels,
respectively.

Nevertheless, after analysing the first results (Figure 4) it
was concludedthat, in a great majority of the cases, the GFD
evolution is characterized by a first stage of abrupt decline
followed by a prolonged interval of stability, something that
could be related with the fatigue acquisition mechanism
specificities.

In fact, the physiological process of fatigue acquisition
can also be divided into two stages: (1) aerobic and (2)

anaerobic, accordingly to the dominant mechanism of
cellular energy production.

In the beginning of the exercise, the dominant energy
production mechanism is the aerobic respiration, being
considerably more efficient, but also slower than the an-
aerobic type.

After reaching the maximum rate of aerobic energy
production, the fastest anaerobic respiration gradually starts
becoming dominant, in order to suppress the energetic
needs.

The beginning point of this aerobic-anaerobic transition
period is defined as the first lactate threshold, which may be
linked with the start of the identified “stability” period in the
GFD evolution [42, 43].

However, in this transitional period, it is neither a se-
vere/dangerous (red) or innocuous (green) state of fatigue,
creating the need of including an additional category, i.e., the
yellow zone.

Replicating the splitting logic applied to green and red
regions, the original red region was divided into two equally
probable intervals, through the 25%, giving rise to the final
scale composed of three fatigue levels.

With regard to the binary support vector machine fa-
tigue classifier (the creation and training were implemented
based on Python Scikit-learn, a library specialized in ma-
chine learning), the two implemented classes corresponded
to “nonfatigued” and “fatigued,” identifying when each
participant was in its optimal physical condition or under
fatigued conditions, respectively.

The SVM model is very attractive and intuitive, taking
into consideration that it essentially works based on a Car-
tesian logic, where each example is a point (contained inside
the Cartesian space) univocally defined by N coordinates, i.e.,
each feature corresponds to a dimension of the space.

This supervised machine-learning model should be in-
cluded in the hyperplanes’ class, where, through a finite but
representative set of training examples, the major aim is to
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FIGURE 3: Graphical correspondence between the thresholds defining the fatigue zones and their origin in the box plot.
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FIGURE 4: Presentation of the evolution of the GFD for the various participants that compose the population sample (“acquisition +”),

highlighting the regions of separation between fatigue levels.

find a function f (decision function) capable of properly
returning an output/prediction (class) after receiving a new
testing example as input [44].

In order to achieve this end (identification of the de-
cision function f), the training phase of a SVM is based on
the search for the hyperplane (W-X+b=0,W e RV,beR,
X being the vector with the value of the features associated

with the testing example and W and b being the parameters
determined during the classifier training phase) that ensures
the maximization of the separation between the two groups
of training examples, which are geometrically defined by two
convex hulls.

With the two groups of training examples well delimited,
the next stage consists in an optimization procedure intended
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to identify the smallest segment that links the boundaries of
the two convex hulls. The optimum hyperplane is perpen-
dicular to this segment and crosses its central point.

The previous logic will produce the pretended decision
function f:

f(X) =sign(W.X +b), W eRV,beR (10)

This type of classifier was initially intended for binary
problems [45], which fully meet our needs to categorize
fatigue state into two classes.

Our aim is not focused on defining an absolute threshold
of fatigue, but instead a qualitative measure of when fatigue
is being acquired or not and the respective relative level of
installation.

Returning to the specific implementation of the binary
classifier, the procedure for preparing the set of training
examples was based on the segmentation of EMG and HRV
signals, from the 11 available participants into two temporal
segments with equal duration. From the first segment, the
features of the “nonfatigued” class examples were extracted,
while the other half segment (related to the final period of
the trial) was used to extract the information for the training
examples of the “fatigued” class.

Two features were extracted from each time series for the
N + M fatigue descriptors (N =4 and M = 10 being the
number of EMG and HRYV fatigue descriptors, respectively).
This was carried out to include information about their
absolute values and trends in the training phase. The for-
mulation of these features corresponds to the average value
of the normalized series (equation (11)) and the relative
variation rate (equation (12)):

L P, [j]/max
featurel = w) (11)

pend/Pstart -1
feature, = %, (12)

end ~ ‘start

where L represents the number of samples of the parameter
P, extracted from the analyzed segment of the EMG or
RR{, chogram and max, represents the maximum value of the
P, descriptor for normalization. The terms of feature,, Py*",
and Pind correspond to the P, parameter in the first and last
sample of the time series and ¢, and ¢,,4 to the respective
time instants.

The training phase was preceded by the selection of features
using recursive feature elimination [46]. Before feature selection,
each one of the 22 training examples (11 for the “nonfatigued”
class and 11 for the “fatigued” class) was characterized by an
array with 2 x (N + M) = 28 entries (Figure 5).

The classifier provides an assigned class together with an
estimate of its degree of certainty (i.e., a qualitative and
quantitative output).

3. Results

Using the methods described in Section 2.3.2, we obtained a
list of potential fatigue descriptors (that we previously refer
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as IFD) consisting of 4 EMG and 10 HRV parameters, as
summarized in Table 2.

Table 2 shows the typical evolution trend, the combi-
nation of window size, and time-step that provides a more
efficient analysis of the descriptor and the respective CV.

Due to the GFD definition, as almost all of its inputs
(IFD) decrease with the onset of fatigue, this is the typical
behavior for the GFD in most participants. Figure 4 em-
phasizes the observed evolution for the 11 participants,
presenting valid EMG and HRV acquisitions, while Table 2
defines the identified weights contained inside the formal
definition of GFD. The threshold values, between colored
zones, were determined by averaging the thresholds ob-
tained for each participant on the calibration protocol. The
error bars illustrate the standard deviation associated with
the calculated mean value. As for the classification, the
results highlight how class and GFD evolve in parallel for
most of the participants.

Regarding the feature selection stage, the original
training array was composed by 28 entries. The feature
selection procedure generated a considerable reduction in
the number of meaningful features, which decreased to 9.

We executed a recursive feature elimination stage
through a Leave One Out cross-validation strategy. With this
strategy, different sets of features were tested sequentially,
removing in each iteration the less meaningful feature until
reaching the limit case, where only one feature remained.
The performance of the trained classifiers (1/iteration of the
cross-validation procedure) was evaluated. The complete list
of classifiers’ score provided a way to understand which is
the most effective set of features to train the binary classifier.

The feature, was considered the most relevant for a set of
9 parameters correspondent to HRV Group | Average RR,
SDNN, Triangular Index, SD2, Fourier Median Frequency,
Power in LF Band and Power in HF Band, EMG Group |
Wavelet Median Frequency and Wavelet Major Frequency.

Regarding the results of the trained classifier, we found
that, in the initial phase of the test, the “nonfatigued” class
was assigned with a high degree of certainty. Then, the
certainty of assignment of this class decreased gradually until
the “fatigued” class began to be dominant towards the end of
the exercise trial (Figure 6). Feature extraction in the test
examples differs slightly from the training phase procedure,
disregarding averages and using instantaneous values so that
classes can be returned over time, during the real-time
processing of data.

For evaluating the quality of the classifier, a cross-val-
idation method based on a Stratified K-Fold (K=11 folds)
strategy was applied, providing an accuracy score of
0.82 £ 0.24 with a 95% confidence interval between [0.68;
0.96].

4. Discussion

In this study, we implemented a monitoring system capable
of showing trends on the evolution of EMG and HRV pa-
rameters during cycloergometry, using an indirect and
noninvasive approach to qualitatively evaluate the fatigue
progression.
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Feature 1

(3} (P[j)/maxz,)/L

Feature 2

(PP = Dty = 1)

\ SDNN (HRV)

11

[Time-series] of
N =4 EMG fatigue descriptors

Fourier] median frequency (EMG)
Wavelet] median frequency (EMG)
Wavelet] major frequency (EMG)

[
i
[Wavelet] major time (EMG)

[Time-series] of
M =10 HRYV fatigue descriptors

Maximum duration of RR intervals (HRV)
Minimum duration of RR intervals (HRV)
Average duration of RR intervals (HRV)
rmsSD (HRV)

Triangular index (HRV)

Power in LF band (HRV)

Power in HF band (HRV)

Fourier median frequency of tachogram (HRV) |

FiGure 5: Diagram presenting the initial set of 28 features (before feature selection), obtained through the extraction of 2 parameters
(feature, and feature,) from the time series of N = 4 EMG and M = 10 HRV fatigue descriptors (described in Section 2.3.1 and identified on

Section 3).

TaBLE 2: List of the various EMG and HRV fatigue descriptors with the typical evolution trend in fatigue conditions and the most

appropriate combination of window size and time-step.

. . . . . Coeflicient of ~ m,,, + Half length of Typical
Signal Domain Parameter Window size Time-step variation 950 CI evolution
EMG Frequency  Median frequency 10 muscular 1 muscular 1.22x 1072 -3.01x1072 + 8.02x 107 1

activations activation
EMG . Lme Median frequency 10 muscular 1 museular ) )00 g7 1072 1 152 x 107 1
frequency activations activation
EMG . Lime Major frequency 10 muscular 1 muscular 75 00 339,102 4 1.26 x 1073 1
frequency activations activation
EMG  Lime Major time 25 museular 0 musealar 5 g 02 5195 10 4 4,46 x 1077 1
frequency activations activations
HRV ~ Time  Maximum duration of 30 3s 1.25%x1072  -1.82x 107! + 5,16 x 10~ 1
RR intervals
HRV ~ Time  Minimum duration of 30 3s 894x10° -171x107 +3.46x 1073 l
RR intervals
HRV ~ Time Average duration of RR 30 3s 9.13x 103 176 x 107! + 3.64 x 1073 1
intervals
HRV  Time rmsSD* 50 455 192x102 -3.87x 107 + 1.68 x 10 1
HRV Time SDNN* 30s 3s 517x 1072 —6.09%x 1073 +7.12x 1074 1
HRV Time Triangular index 60s 30s 2.04x107% -4.01x1072 + 1.85%x 1073 l
HRV Time SD2* 30s 3s 425x102  -1.09x1072 +1.05x 1073 1
HRV Frequency  Power in LF band? 30s 3s 5.78 x 1072 -1.51 +1.97x 107! l
HRV Frequency  Power in HF band* 30s 3s 541x102% -851x 107! +1.04 x 107! l
HRV Frequency  Median frequency 30s 3s 1.51x1072  3.65x 107 + 1.25x 1074 1

Ao, refers to the combined slope and CI to the confidence interval (m,,,,, + half length of 95% CI). *SDNN refers to standard deviation of NN intervals;
*rmsSD refers to root mean square of successive differences; *Poincaré Standard Deviation/Dispersion of points perpendicular (SD1) or along (SD2) the axis
of line-of-identity (ellipse semiaxes 1 and 2). “Low-frequency band ([0.040; 0.150] Hz); *high-frequency band ([0.150; 0.400] Hz).

One of our main concerns was related with the appli-
cability of EMG parameters extracted from the Fourier
domain, taking into account that we were dealing with
dynamic muscular contractions, where the stationarity
criterium can be affected due to changes in force, speed,
muscle length, and electrode relative location along the
cycling trial [47-49].

In order to avoid a possible problem of nonstationarity
EMG, wavelet analysis was conducted, considering that it is
not based on the assumption of stationarity [50-52].

However, we are still interested on exploring method-
ologies that require less computational resources, such as
short-time Fourier transform (STFT), which is based on the
conventional Fourier transform but applied on a sequence of
short sliding windows. Direct application of the Fourier
transform in EMG data collected during dynamic/cyclic
tasks is not appropriate [48], but STFT will be viable if the
size of the time windows under analysis is sufficiently short
to avoid the effect of nonstationarities during the application
of the Fourier transform [47, 49, 50, 52-54]. The common
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FIGURE 6: Demonstration of the evolution in the classification attributed by the support vector machine throughout the “acquisition +”

collected in the various elements of the population sample.

size of our EMG processing windows is approximately equal
to 1second, corresponding to the muscular activation pe-
riod, which is in accordance with some studies executed in
similar experimental conditions [49, 52].

Before proceeding with the discussion, it should be noted
that, in our analysis, each window is composed by multiple
muscular activation periods. As an illustrative example, the
most favorable window-size configuration to extract Fourier
Median Frequency (Table 2) will be composed by a set of 10
muscular activation periods.

Each muscular activation period is a subwindow, and
from each of these subwindows, the respective Fourier
power spectrum is generated and the Fourier Median Fre-
quency is determined.

So, returning to our illustrative example, each window
originally generates 10 Fourier Median Frequency values,
which will be averaged, giving rise to an overall Fourier
Median Frequency value for the window under analysis.

With this approach, in each window, it is ensured that
(1) the stationarity conditions are fulfilled, taking into
account that each power spectrum was generated from
subwindows (individual muscular activation’s) with less
than 1 second and (2) the average of the set of Fourier
Median Frequency values minimizes the influence of
outliers.

Regarding HRV analysis, in spite of the fact that a re-
lationship between physical fatigue and HRV patterns can be
established [55-56], the most common applications are
related with subjective/mental fatigue [57-59].

As declared before, the projection of our computa-
tional system with both EMG and HRV parameters was
intended to collect patterns related with physical and
subjective fatigue, ensuring a global evaluation of the
fatigue state.

So, with HRV parameters, we believe that it is possible
to reach subjective/mental fatigue patterns and also
complement the physical/local information gathered with
EMG.

Taking these concerns into consideration, several EMG
and HRV parameters were modeled with the purpose of
identifying trends described by the global fatigue index that
was extracted from the data obtained during and after ex-
ercise performed above the VT,.

The trend identification phase gave rise to an extensive
list of fatigue descriptors.

Identified trends were reasonably supported by past
study results, namely, the decrease of EMG median fre-
quency [3, 5], wavelet parameters [20], SD2, absolute power
in LF and HF bands [56, 60, 61] and increase of heart rate
(inverse of RR interval duration) [60].
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Then, the descriptor list was refined, through a pre-
training feature selection methodology, to avoid re-
dundancies in the definition of the global fatigue descriptor
and in the training of the support vector machine (Table 2).
As referred previously and taking into account that the
global fatigue descriptor is defined as an average of these
individual fatigue descriptors, it denotes a decreasing trend
with the progression of the trial, evolving in parallel with the
probability of accuracy in the decision returned by the bi-
nary classifier.

These results (trend identification, evolution of the global
fatigue descriptor, and training of the binary classifier) show
different dependencies with regard to the coefficient of var-
iation. The coeflicient of variation enabled detecting the best
sliding window mechanism combination (window size and
time-step) for generating the evolution time series of each
EMG and HRV index contained in the preliminary list
(Table 1). This is fundamental for all the subsequent research,
since it is from these time series that trends were identified
and individual fatigue indexes were found and used next at
the definition of the global fatigue descriptor and during the
training of the classifier. Among the different assessment
possibilities and considering the combined slopes and stan-
dard deviations here obtained, our approach emerged as a
reasonable method to optimize the sliding window mecha-
nism procedure for extracting each descriptor. Regarding the
trained classifier, its main purpose is to distinguish data into
two extreme conditions: Fatigued and Nonfatigued, but we
were also concerned in tracking how the system behaves in
the intermediate state between these two extreme conditions,
which, as stated in Section 2.4, can be achieved through a
quantitative metric: Degree of Certainty.

So, the classifier has two outputs: (1) a qualitative result
(class: [Fatigued, Nonfatigued]) and (2) a quantitative result
(degree of certainty).

If the main focus was only the qualitative result, the
chosen training approach (splitting the training data into
two half-size temporal segments) could create some prob-
lems, because, in practical terms, it will be possible that data
collected in the beginning of the trial and in the middle will
produce the same qualitative result (Nonfatigued class). But,
if both qualitative and quantitative outputs (returned by the
classifier) are taken into account, the previous undesirable
situation can be avoided and the system is able to distinguish
data collected from the beginning and middle of the trial,
because the degree of certainty in the middle will be con-
siderably lower than in the beginning (as demonstrated by
almost the full set of results available on Figure 6).

In spite of the binary nature of the classifier, when it
returns the Nonfatigued class as a result of input test data,
the system is not stating in an absolute way that the test data
are related to a Nonfatigued state, giving, instead, a prob-
ability of this state.

Of course, to guarantee the reliability of the used ap-
proach (for segmenting the training data), some assump-
tions were needed:

(1) At the beginning of the trial, the volunteer should be
in an absolute Nonfatigued state, which was
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guaranteed by the resting hours and absence of in-
tense physical activity on the hours precedent to the
trial

(2) The variable under study (“Fatigue”) is incremented
during the trial, which means that the volunteer state
is gradually becoming away from the Nonfatigued
class and entering in the Fatigued one

(3) At the end of the trial, it is assumed that the vol-
unteer was in an absolute Fatigued state, which is a
reasonable consideration taking into account the
exhaustion and inability to proceed when the ex-
ercise was reached

(4) Fatigue is acquired in a constant rate, condition
reasonably ensured by the constant work rate used
on the cycloergometry test

In terms of the feature selection stage of the SVM
classifier, it should be refined in the future (removing some
redundant components), taking into consideration that after
performing a Principal Component Analysis (PCA), it was
concluded that 79% of the informational content intrinsic to
the 9 features can be ensured by using only 2 principal
components, i.e., the dimensionality of our classifier can be
considerably reduced (as demonstrated by PCA and by the
produced graphical results presented in Figure 7).

In fact, reducing the dimensionality of the classifier
produced very interesting results in the performance eval-
uation stage through a Stratified k-Fold Strategy. The average
classification accuracy decreased a little (from 82% to 77%),
but the 95% confidence interval has shrunk from +24% to
+19%, which means that the classification system was
simplified but kept its effectiveness.

After a careful analysis of the original results, it was
noticed that the classification accuracy could be further
improved.

This increase of accuracy was achievable with a simple
adjustment in the training stage of the classifier. Instead of
splitting the acquired EMG and HRYV signals into two halves
(the first half, representative of the “nonfatigued” class, while
the second is linked to the “fatigued” class), training data
from the “nonfatigued” class can be extracted from the 1%
quarter and the “fatigued” data from the 4" quarter segment
of the original full-time acquisitions.

With the previous approach, for each class, an increase
on the specificity of the training examples is ensured, taking
into consideration that the excluded EMG and HRV data
(from the 2™ and 3™ quarter segments of each trial) are
related to a transition stage between “nonfatigued” and
“fatigued” classes and not exclusively to one of these two
classes.

Through the previous adjustments in the feature selec-
tion/training stage, the estimated overall classification ac-
curacy increased to 95% + 8%, while the practical results,
using a sliding-window mechanism to evaluate the evolution
of fatigue instantaneous classification, were maintained (as
demonstrated in Figures 6 and 8).

The combination of information from different fatigue
descriptors relied on the GFD and support vector machine.
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FIGURE 7: Demonstration of viability of reducing the dimesionality of the classification system, taking into consideration that with only 2
principal components a very reasonable separation between “Fatigued” and “Nonfatigued” class is ensured.

Nevertheless, it should be considered that the GFD corre-
sponds to an exploratory approach that still needs a more
profound validation. For instance, the definition of GFD
thresholds is based on a statistical criterion, while deeper
physiological correspondences could be relevant, ie., the
present results are promising, although a strong physio-
logical connection/meaning should be found, in order to
achieve a more solid interpretation.

4.1. Limitations. Currently, this classification system is
tuned for acquisitions similar to those reported in the
experimental protocol (during a cycling task with the
monitoring of rectus femoris muscle). In a first look, it
could be expected that this restrictive training procedure
would entail an undesired biased behavior of the classifier
(with more false positives). We believe that the choice of
using only one muscle at the training phase will not cause a
biased behavior, which would be problematic, because we
have two well-defined acquisition segments representative
of “nonfatigued” and “fatigued” classes. However, it is
probable that the classifier reveals an excess of specificity
(working well for data acquired from rectus femoris and
worst for other muscles).

When tested with other muscles, or motor tasks, the
classifier accuracy might be compromised because the
manifestation of fatigue varies substantially between dif-
ferent muscles and exercise paradigms [62]. In line with this
concept, new acquisitions will be extremely important to
further overcome these limitations and allow a more gen-
eralized and accurate tool for monitoring the onset of fatigue
noninvasively.

The present version of the system also requires a cali-
bration test for a correct operation, which is essential for IFD
normalization. Normalized values, used as inputs of GFD
and for generation of the support vector machine training
arrays, decrease the impact of the variability in the fatigue
acquisition process, typical between participants.

Additionally, the dimension of the population sample
should be increased in order to achieve more solid gener-
alizations and to reduce unexpected behavior of the binary
classifier and global fatigue descriptor. This need is rein-
forced by the results reported for participants 1, 6, and 10,

where the binary classifier suddenly flags an abrupt re-
covering period in the middle/end of the trial.

As previously referred, physiological patterns of fatigue
are considerably subject specific, which means that by in-
creasing the training population, the resultant model will
ensure a better generalization.

However, the size of the population sample is probably
not the only reason for the reported short-term (participants
1, 6, and 10) and long-term (participants 4 and 8) behavior.
The trained SVM model was based on a linear kernel due to
its computational elegance and simplicity [44].

In spite of requiring less computational resources, its
simplicity may create some rigidity on the definition of the
hyperplane responsible for separating the two classes under
analysis (“nonfatigued” vs “fatigued”), taking into account
that geometrically it corresponds to a straight line in a 2D
space.

For increasing the generalization/adaptability of the
model, in the future, the kernel could be changed to a
polynomial or a radial basis function (RBF) type, which
could achieve a better separation of frontier points (as the
ones highlighted on Figure 7), decreasing the occurrence of
incorrect classification results.

5. Practical Applications

The described functionalities were implemented as a plugin
of OpenSignals software, which emerges as an intuitive tool
for processing physiological signals acquired by the systems
designed and marketed by PLUX Wireless Biosignals,
namely, in the biosignalsplux (PLUX Wireless Biosignals,
2015). The interface provides some sections for user in-
teraction intended to the configuration of the processing
algorithms, presenting the results divided into four zones,
including EMG and HRV events detected (periods of muscle
activation and R peaks) and the evolution of each of the IFD,
the GFD, and the support vector machine class assigned.

With these processing functionalities, the computational
system defines an interesting solution that can be applied in
research studies and even by coaches and athletes, helping to
prevent overtraining condition and ultimately the occur-
rence of muscular injuries.
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FIGURE 8: Evolution in the classification attributed by the support vector machine throughout the “acquisition +” collected in the various
elements of the population sample after reviewing the segmentation methodology of the training data.

6. Conclusion

In the final analysis, we can conclude that 4 EMG (Median
Frequency, from Fourier and Wavelet analysis; Major Fre-
quency; Major Time) and 10 HRV parameters (Maximum,
Minimum and Average RR Interval; SDNN; rmsSD; Triangular
Index; SD2; Power in LF and HF Band; Median Frequency),
i.e., 14 individual fatigue descriptors, exhibited a tendentious
behavior over time in the participants included in our
population. This tendentious behavior, according to the
proposed trend evaluation methodology, is a demonstration
of the correlation between the variable under study (fatigue)
and the selected EMG and HRV parameters.

Taking into consideration the previously stated impor-
tance of the coefficient of variation to qualify the degree of
correlation between changes in the experimental variable
and the evolution of the extracted parameters, it can be
concluded that Fourier Median Frequency will be the best
EMG fatigue descriptor while Average and Minimum RR
Intervals duration are the most meaningful HRV parame-
ters, due to the lower CV values.

Combined information from these descriptors was
achieved by the definition of our own global fatigue de-
scriptor, an index that reflects the simultaneous impact of
fatigue at the neuromuscular and cardiac autonomic level
(objective nature) and also in a more global perspective
when including HRV parameters, relevant indicators of
mental/subjective fatigue. Since the implemented processing
system extracts all information using a sliding window
mechanism, a future adaptation of the system to a real-time

analysis can be facilitated. The actual version is interesting
within the context of exercise training because it may aid the
estimation of the optimal individual workload during an
acute exercise session. Ultimately, within the context of
chronic endurance exercise, we speculate that this approach
might be valuable for prophylaxis against overtraining and
its negative side effects [63, 64].

A future implementation could benefit from the pre-
viously mentioned real-time algorithm. This would provide
the user an automatic and immediate feedback about fatigue
development.

In the work presented, our promising results on com-
bined fatigue indices and the related classification approach
are already providing novel tools for fatigue assessment that
pave the way for broader, more robust, studies with larger
populations that could potentially be established as pre-
ventive fatigue assessment mechanisms.

Data Availability

The acquired physiological data used to support the findings
of this study are also restricted, in order to protect patient
privacy. However, data may become accessible in some
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access to confidential data, through the corresponding au-
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Conflicts of Interest

The authors declare that there are no conflicts of interest.


mailto:gramos@plux.info

16

Acknowledgments

The authors thank Ms. Carolina Teoddsio for assistance
during the data collection. The acquired data were collected
within the projected PTDC/DTP-DES/5714/2014-Contra-
lateral effects of low intensity resistance training combined
with blood flow restriction, funded by Fundagio para a
Ciéncia e Tecnologia (FCT), and J. R. Vaz was supported by
NIH-P20GM109090 and by the University of Nebraska at
Omaha Office of Research and Creative Activity. Jodo
Rodrigues participates in “INOVA4Health-Programme in
Translational Medicine” with a FCT grant I&D 2015-2020,
while Guilherme Ramos was supported in the first phase by
AHA CMUP-ERI/HCI/0046. The authors acknowledge the
support that Miquel Alfaras received from ITN AffecTech,
under the Marie Sktodowska Curie Actions (ERC H2020
Project ID: 722022).

Supplementary Materials

A. Algorithm for Identification of IFD. (Supplementary
Materials)

References

[1] R. M. Enoka and J. Duchateau, “Translating fatigue to human
performance,” Medicine & Science in Sports ¢ Exercise,
vol. 48, no. 11, pp. 2228-2238, 2016.

[2] M. Gruet, J. Temesi, T. Rupp, P. Levy, G. Y. Millet, and
S. Verges, “Stimulation of the motor cortex and corticospinal
tract to assess human muscle fatigue,” Neuroscience, vol. 231,
pp. 384-399, 2013.

[3] C. J. De Luca, “Myoelectrical manifestations of localized
muscular fatigue in humans,” Critical Reviews in Biomedical
Engineering, vol. 11, no. 4, pp. 251-279, 1984.

[4] J.-j. Wan, Z. Qin, P.-y. Wang, Y. Sun, and X. Liu, “Muscle
fatigue: general understanding and treatment,” Experimental
& Molecular Medicine, vol. 49, 2017.

[5] M. Cifrek, V. Medved, S. Tonkovi¢, and S. Ostoji¢, “Surface
EMG based muscle fatigue evaluation in biomechanics,”
Clinical Biomechanics, vol. 24, no. 4, pp. 327-340, 2009.

[6] M. ]. Zwarts, G. Bleijenberg, and B. G. M. van Engelen,
“Clinical neurophysiology of fatigue,” Clinical Neurophysi-
ology, vol. 119, no. 1, pp. 2-10, 2008.

[7] J. Shi, Y. P. Zheng, X. Chen, and Q. H. Huang, “Assessment of
muscle fatigue using sonomyography: muscle thickness
change detected from ultrasound images,” Medical Engi-
neering & Physics, vol. 29, no. 4, pp. 472-479, 2007.

[8] W. Ament and G. J. Verkerke, “Exercise and fatigue,” Sports
Medicine, vol. 39, no. 5, pp. 389-422, 2009.

[9] B. Bigland-Ritchie and J. J. Woods, “Changes in muscle
contractile properties and neural control during human
muscular fatigue,” Muscle & Nerve, vol. 7, no. 9, pp. 691-699,
1984.

[10] H. Yoshitake, “Three characteristic patterns of subjective
fatigue symptoms,” Ergonomics, vol. 21, no. 3, pp. 231-233,
1978.

[11] B. Pageaux and R. Lepers, “Chapter 16-the effects of mental
fatigue on sport-related performance,” in Sport and the Brain:
The Science of Preparing, Enduring and Winning, Part C, vol.
240, Elsevier, Amsterdam, Netherlands, 2018.

Journal of Healthcare Engineering

[12] C.-E. Benoit, O. Solopchuk, G. Borragan, A. Carbonnelle,
S. Van Durme, and A. Zénon, “Cognitive task avoidance
correlates with fatigue-induced performance decrement but
not with subjective fatigue,” Neuropsychologia, vol. 123,
pp. 30-40, 2019.

[13] S. L. Rozzi, S. M. Lephart, and F. H. Fu, “Effects of muscular
fatigue on knee joint laxity and neuromuscular characteristics
of male and female athletes,” Journal of Athletic Training,
vol. 34, no. 2, pp. 106-114, 1999.

[14] J. Borresen and M. Ian Lambert, “The quantification of
training load, the training response and the effect on per-
formance,” Sports Medicine, vol. 39, no. 9, pp. 779-795, 2009.

[15] E. Tonnessen, @. Sylta, T. A. Haugen, E. Hem, L. S. Svendsen,
and S. Seiler, “The road to gold: training and peaking char-
acteristics in the year prior to a gold medal endurance per-
formance,” PloS One, vol. 9, no. 7, Article ID 101796, 2014.

[16] L. Schmitt, J. Regnard, and G. P. Millet, “Monitoring fatigue
status with HRV measures in elite athletes: an avenue beyond
RMSSD?,” Frontiers in Physiology, vol. 6, p. 343, 2015.

[17] L. Faller, G. N. Nogueira Neto, V. L. S. N. Button, and
P. Nohama, “Avaliagdo da fadiga muscular pela mecano-
miografia durante a aplicagdo de um protocolo de EENM,”
Brazilian Journal of Physical Therapy, vol. 13, no. 5,
pp. 422-429, 2009.

[18] T. Kimura, M. Fujibayashi, S. Tanaka, and T. Moritani,
“Mechanomyographic responses in quadriceps muscles
during fatigue by continuous cycle exercise,” European
Journal of Applied Physiology, vol. 104, no. 4, pp. 651-656,
2008.

[19] J. Taelman, J. Vanderhaegen, M. Robijns, G. Naulaers,
A. Spaepen, and S. Van Hulffel, “Estimation of muscle fatigue
using surface electromyography and near-infrared spectros-
copy,” Oxygen Transport to Tissue XXXII, vol. 701, pp. 353
359, 2011.

[20] R. B. Graham, M. P. Wachowiak, and B. J. Gurd, “The as-
sessment of muscular effort, fatigue, and physiological ad-
aptation using EMG and wavelet analysis,” PLoS One, vol. 10,
no. 8, pp. 1-13, 2015.

[21] H.-G. Kim, E.-]. Cheon, D.-S. Bai, Y. H. Lee, and B.-H. Koo,
“Stress and heart rate variability: a meta-analysis and review of
the literature,” Psychiatry Investigation, vol. 15, no. 3,
pp. 235-245, 2018.

[22] P. K. Whelton, R. M. Carey, W. S. Aronow et al.,, “2017
ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/
PCNA guideline for the prevent ion, detection, evaluation, and
management of high blood pressure in adults: a report of the
American College of Cardiology/American Heart Association
Task Force on Clinical Practice Guidelines,” Hypertension, vol. 71,
no. 6, pp. el3-ell5, 2017.

[23] L. Mourot, N. Fabre, A. Savoldelli, and F. Schena, “Second
ventilatory threshold from heart-rate variability: valid when
the upper body is involved?,” International Journal of Sports
Physiology and Performance, vol. 9, no. 4, pp. 695-701, 2014.

[24] E. Howley, D. R. Bassett, and H. G. Welch, “Criteria for
maximal oxygen uptake: review and commentary,” Medicine
and Science in Sports and Exercise, vol. 27, no. 9, pp. 1292-
1301, 1995.

[25] K. Wasserman, B. J. Whipp, S. N. Koyl, and W. L. Beaver,
“Anaero bic threshold and respiratory gas exchange during
exercise,” Journal of Applied Physiology, vol. 35, no. 2,
pp. 236-243, 1973.

[26] PLUX Wireless Biosignals, “Biosignalsplux hub-data sheet,”
Tech. Rep., 2015.


http://downloads.hindawi.com/journals/jhe/2020/6484129.f1.pdf
http://downloads.hindawi.com/journals/jhe/2020/6484129.f1.pdf

Journal of Healthcare Engineering

[27] H. ]. Hermens, B. Freriks, C. Disselhorst-Klug, and G. Rau,
“Development of recommendations for SEMG sensors and
sensor placement procedures,” Journal of Electromyography
and Kinesiology, vol. 10, no. 5, pp. 361-374, 2000.

[28] S. Thongpanja, A. Phinyomark, P. Phukpattaranont, and
C. Limsakul, “Mean and median frequency of EMG signal to
determine muscle force based on time-dependent power
spectrum mean and median frequency of EMG signal to
determine muscle force based on time- dependent power
spectrum,” Electronics and Electrical Engineering, vol. 19,
no. 3, pp. 51-56, 2013.

[29] B.]. Becker and M.-J. Wu, “The synthesis of regression slopes
in meta-analysis,” Statistical Science, vol. 22, no. 3, pp. 414-
429, 2007.

[30] A.Pimentel, R. Gomes, B. H. Olstad, and H. Gamboa, “A new
tool for the automatic detection of muscular voluntary
contractions in the analysis of electromyographic signals,”
Interacting with Computers, vol. 27, no. 5, pp. 492-499, 2015.

[31] J. Pan and W. J. Tompkins, “A real-time QRS detection al-
gorithm,” IEEE Transactions on Biomedical Engineering,
vol. BME-32, no. 3, pp. 230-236, 1985.

[32] J. Rodrigues, D. Belo, and H. Gamboa, “Noise detection on
ECG based on agglomerative clustering of morphological
features,” Computers in Biology and Medicine, vol. 87,
pp. 322-334, 2017.

[33] U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and

J. S. Suri, “Heart rate variability: a review,” Medical and Bi-

ological Engineering and Computing, vol. 44, no. 12,

pp. 1031-1051, 2006.

Task Force of the European Society Electrophysiology, “Heart

rate variability-standards of measurement, physiological in-

terpretation, and clinical use task,” Circulation, vol. 93, no. 5,

pp. 1043-1065, 1996.

[35] N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. 9, no. 1, pp. 62-66, 1979.

[36] M. Borenstein, L. V. Hedges, J. P. T. Higgins, and

H. R. Rothstein, “A basic introduction to fixed-effect and

random-effects models for meta-analysis,” Research Synthesis

Methods, vol. 1, no. 2, pp. 97-111, 2010.

S. Lewis and M. Clarke, “Forest plots: trying to see the wood

and the trees,” BM]J, vol. 322, no. 7300, pp. 1479-1480, 2001.

[38] D. M. Rouffet and C. A. Hautier, “EMG normalization to
study muscle activation in cycling,” Journal of Electromyog-
raphy and Kinesiology, vol. 18, no. 5, pp. 866-878, 2008.

[39] T. V. Camata, L. R. Altimari, and H. Bortolotti, “Electro-
myographic activity and rate of muscle fatigue of the quad-
riceps Femoris during cycling exercise in the severe domain,”
Journal of Strength and Conditioning Research, vol. 25, no. 9,
pp. 2537-2543, 2011.

[40] M. Knaflitz and P. Bonato, “Time-frequency methods applied
to muscle fatigue assessment during dynamic contractions,”
Journal of Electromyography and Kinesiology, vol. 9, no. 5,
pp. 337-350, 1999.

[41] A. Koumarianou, P. Pelekasis, M. Kontogoni, and C. Darviri,
“How to encounter the development of panic disorder during
adjuvant breast cancer chemotherapy: a case study,” Journal of
Clinical Case Reports, vol. 5, no. 1, pp. 1-2, 2015.

[42] R. K. Binder, M. Wonisch, and U. Corra, “Methodological
approach to the first and second lactate threshold in in-
cremental cardiopulmonary exercise testing,” European
Journal of Cardiovascular Prevention & Rehabilitation, vol. 15,
no. 6, pp. 726-734, 2008.

[34

(37

17

[43] O. Faude, W. Kindermann, and T. Meyer, “Lactate threshold
concepts,” Sports Medicine, vol. 39, no. 6, pp. 469-490, 2009.

[44] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and
B. Scholkopf, “Support vector machines,” IEEE Intelligent
Systems and Their Applications, vol. 13, no. 4, pp. 18-28, 1998.

[45] C. Cortes and V. Vapnik, “Support-vector networks,” Ma-
chine Learning, vol. 20, no. 3, pp. 273-297, 1995.

[46] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi,
“Recursive feature elimination with random forest for PTR-
MS analysis of agroindustrial products,” Chemometrics and
Intelligent Laboratory Systems, vol. 83, no. 2, pp. 83-90, 2006.

[47] P. Bonato, S. H. Roy, M. Knaflitz, and C. J. de Luca, “Time-
frequency parameters of the surface myoelectric signal for
assessing muscle fatigue during cyclic dynamic contractions,”
IEEE Transactions on Biomedical Engineering, vol. 48, no. 7,
pp. 745-753, 2001.

[48] D. Farina, “Interpretation of the surface electromyogram in
dynamic contractions,” Exercise and Sport Sciences Reviews,
vol. 34, no. 3, pp. 121-127, 2006.

[49] M. Vitor-Costa, H. Bortolotti, and T. V. Camata, “EMG
spectral analysis of incremental exercise in cyclists and non-
cyclists using Fourier and Wavelet transforms,” Revista
Brasileira de Cineantropometria & De-sempenho Humano,
vol. 14, no. 6, pp. 660-670, 2012.

[50] J.L.Dantas, T. V. Camata, M. A. O. C. Brunetto, A. C. Moraes,
T. Abréo, and L. R. Altimari, “Fourier and wavelet spectral
analysis of EMG signals in isometric and dynamic maximal
effort exercise,” in Proceedings of the 2010 Annual Inter-
National Conference of the IEEE Engineering in Medicine and
Biology, vol. 2010, pp. 5979-5982, Buenos Aires, Argentina,
September 2010.

[51] A. Phinyomark, C. Limsakul, and P. Phukpattaranont,
“Application of wavelet analysis in EMG feature extraction for
pattern classification,” Measurement Science Review, vol. 11,
no. 2, pp. 45-52, 2011.

[52] M. Bigliassi, P. R. Scalassara, T. F. D. Kanthack, T. Abrdo,
A. C. d. Moraes, and L. R. Altimari, “Fourier and wavelet
spectral analysis of EMG signals in 1-km cycling time-trial,”
Applied Mathematics, vol. 05, no. 13, pp. 1878-1886, 2014.

[53] D. Maclsaac, P. A. Parker, and R. N. Scott, “The short-time
Fourier transform and muscle fatigue assessment in dynamic
contractions,” Journal of Electromyography and Kinesiology,
vol. 11, no. 6, pp. 439-449, 2001.

[54] R. A. da Silva, C. Lariviére, A. B. Arsenault, S. Nadeau, and
A. Plamondon, “The comparison of wavelet- and Fourier-
based electromyographic indices of back muscle fatigue
during dynamic contractions: validity and reliability results,”
Electromyography and Clinical Neurophysiology, vol. 48, no. 3-
4, pp. 147-162, 2008.

[55] B. Makivi¢, M. Niki¢ Djordjevi¢, and M. S. Willis, “Heart rate
variability (HRV) as a tool for diagnostic and monitoring
performance in sport and physical activities,” Journal of
Exercise Physiology Online, vol. 16, no. 3, 2013.

[56] S. Sarmiento, J. M. Garcia-Manso, J. M. Martin-Gonzélez,
D. Vaamonde, J. Calder6n, and M. E. Da Silva-Grigoletto,
“Heart rate variability during high-intensity exercise,” Journal
of Systems Science and Complexity, vol. 26, no. 1, pp. 104-116,
2013.

[57] Y. Tran, N. Wijesuriya, M. Tarvainen, P. Karjalainen, and
A. Craig, “The relationship between spectral changes in heart
rate variability and fatigue,” Journal of Psychophysiology,
vol. 23, no. 3, pp. 143-151, 2009.

[58] M. Patel, S. K. L. Lal, D. Kavanagh, and P. Rossiter, “Applying
neural network analysis on heart rate variability data to assess



18

(59]

(60]

(61]

(62]

(63]

(64]

driver fatigue,” Expert Systems with Applications, vol. 38,
no. 6, pp. 7235-7242, 2011.

J. Murgoitio Larrauri, J. L. G. Temino, and M. J. G. Larrea,
“Heart rate variability-knowing more about HRV analysis and
fatigue in transport studies,” Proceedings of the International
Congress on Cardiovascular Technologies, pp. 107-114, 2013.
F. O. Cottin, C. MéDigue, P.-M. LepréTre, Y. Papelier,
J.-P. Koralsztein, and V. R. Billat, “Heart rate variability
during exercise performed below and above ventilatory
threshold,” Medicine & Science in Sports & Exercise, vol. 36,
no. 4, pp. 594-600, 2004.

A. P. Pichon, C. de Bisschop, M. Roulaud, A. Denjean, and
Y. Papelier, “Spectral analysis of heart rate variability during
exercise in trained subjects,” Medicine & Science in Sports &
Exercise, vol. 36, no. 10, pp. 1702-1708, 2004.

R. M. Enoka, “Mechanisms of muscle fatigue: central factors
and task dependency,” Journal of Electromyography and Ki-
nesiology, vol. 5, no. 3, pp. 141-149, 1995.

D. Ioannis, “Potential adverse biological effects of excessive
exercise and overtraining among healthy individuals,” Acta
Medica Martiniana, vol. 14, no. 3, pp. 5-12, 2014.

G. Vilhena de Mendonca, C. Teodédsio, and P. M. Bruno,
“Sexual dimorphism in heart rate recovery from peak exer-
cise,” European Journal of Applied Physiology, vol. 117, no. 7,
pp. 1373-1381, 2017.

Journal of Healthcare Engineering



Hindawi

Journal of Healthcare Engineering
Volume 2019, Article ID 4159676, 13 pages
https://doi.org/10.1155/2019/4159676

Research Article

Hindawi

Removal of EMG Artifacts from Multichannel EEG Signals Using
Combined Singular Spectrum Analysis and Canonical

Correlation Analysis

Qingze Liu®,' Aiping Liu®,' Xu Zhang
and Xun Chen ®’

) Xiang Chen,! Ruobing Qian )2

'Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China

“Department of Neurosurgery,

The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230036, China
’Department of Electronic Engineering and Information Science, University of Science and Technology of China,

Hefei 230026, China

Correspondence should be addressed to Aiping Liu; aipingl@ece.ubc.ca and Ruobing Qian; gianruobing@fsyy.ustc.edu.cn

Received 20 August 2019; Accepted 29 November 2019; Published 31 December 2019

Academic Editor: Rafael Morales

Copyright © 2019 Qingze Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Electroencephalography (EEG) signals collected from human scalps are often polluted by diverse artifacts, for instance electro-
myogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) artifacts. Muscle artifacts are particularly difficult to
eliminate among all kinds of artifacts due to their complexity. At present, several researchers have proved the superiority of combining
single-channel decomposition algorithms with blind source separation (BSS) to make multichannel EEG recordings free from EMG
contamination. In our study, we come up with a novel and valid method to accomplish muscle artifact removal from EEG by using the
combination of singular spectrum analysis (SSA) and canonical correlation analysis (CCA), which is named as SSA-CCA. Unlike the
traditional single-channel decomposition methods, for example, ensemble empirical mode decomposition (EEMD), SSA algorithm is a
technique based on principles of multivariate statistics. Our proposed approach can take advantage of SSA as well as cross-channel
information. The performance of SSA-CCA is evaluated on semisimulated and real data. The results demonstrate that this method

outperforms the state-of-the-art technique, EEMD-CCA, and the classic technique, CCA, under multichannel circumstances.

1. Introduction

As a representatively noninvasive technique of reflecting
electrical activities generated by the cerebral cortex, elec-
troencephalography (EEG) is widely used for numerous
practical applications in the biomedical engineering field. It
owns the benefits of low cost, easy usability, and high
temporal resolution. For example, EEG recordings are im-
portant for the description of the irritant and ictal onset
zones in the presurgical evaluation of refractory partial
epilepsy [1]; motor imagery EEG signals provide an im-
portant basis for designing a way to communicate between
the brain and computer [2]; by making use of sparse EEG
compressive sensing, person identification is possible [3];
and EEG can be utilized with other physiological data of

different types to make a study of brain functions [4].
Nevertheless, with relatively low amplitudes, EEG is often
polluted by many kinds of nonbrain artifacts mainly from
the electromyogram (EMG), electrooculogram (EOG), and
electrocardiogram (ECG) interferences. Thus, it is difficult to
continue subsequent signal analysis. If the pollution is very
heavy, the EEG waves may be completely masked so that we
cannot interpret the brain activity contained in EEG signals
[5]. Therefore, it has been attracting increasing attention that
how to effectively eliminate these artifacts in the last few
decades [6, 7].

Compared with EOG and ECG artifacts, there are more
troubles in the domain of removing EMG artifacts [8, 9]. As
we all know, many kinds of movements involving but not
limited to eye movement, mastication, and facial expression
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are generated by a number of muscles around the head. EEG
can be easily influenced anywhere on the human scalp by the
activity of each muscle via volume conduction. EMG arti-
facts have the characteristics of high amplitude, non-
stereotyped scalp topographies, and extensive frequency
domain distributions, which increase the difficulty in
denoising.

In previous studies, researchers have successfully ex-
plored blind source separation (BSS) approaches to handle
multichannel EEG data for accomplishing artifact elimi-
nation. Both independent component analysis (ICA) and
canonical correlation analysis (CCA) belong to the most
classic methods. ICA exploits higher-order statistics (HOS)
of data to decompose the multichannel signals into in-
dependent components (ICs). The ICs representing the
underlying sources are reserved, but artifact-related ICs are
identified and discarded; hence, we can reconstruct relatively
artifact-free EEG subsequently. As a well-known and ef-
fective BSS method, ICA is widely adopted for artifact re-
moval from EEG since its first application in the field of
brain electrical noise reduction [10, 11]. A study comparing
fifteen diverse algorithms of ICA for denoising muscle ar-
tifacts has been published, which provides us with a helpful
reference [12]. However, when it comes to the EMG removal
problem of EEG, ICA might not perform well [9]. By making
use of HOS information, ICA is better at eliminating the
artifacts whose scalp topographies are stereotyped such as
EOG. Muscle artifacts usually own a lot of different scalp
topographies involving the activities of a group of muscles.
Moreover, ICA does not exploit the temporal structure of
muscle activities. Later on, canonical correlation analysis
(CCA) has been advised to achieve EMG artifact removal
[13]. By utilizing second-order statistics (SOS) information,
CCA is able to obtain sources which are autocorrelated to the
great extent and mutually uncorrelated. Since EMG artifacts
have a broad frequency spectrum, their autocorrelation is
low while the autocorrelation of EEG rhythms is high rel-
atively. CCA can utilize this obvious characteristic to
eliminate EMG artifacts. Simulation studies [13-15] and
clinical studies [16, 17] have proved the superiority of CCA
beyond ICA frequently for suppressing muscle artifacts in
EEG.

However, with low signal-to-noise ratio (SNR) and
complex contamination, ICA and CCA cannot perform well
enough when denoising noisy EEG [6, 15]. As application
scenarios of EEG devices tend to change from the traditional
experimental condition to the realistic complex dynamic
environment, muscle artifacts are inevitably generated due
to the head movement and they are often pretty heavy. In
recent years, studies show that combining more than one
algorithm might obtain optimal results for removing arti-
facts from the EEG signals [7, 18, 19]. Usually, combining
single-channel decomposition methods with BSS is highly
recommended.

It is common that the combination mentioned above is
applied to process single-channel EEG [20]. Since BSS
implicitly has the limitation that potential sources must be
not more than utilizable channels in number, the single-
channel EEG can be decomposed into multidimensional
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data sets by single-channel decomposition methods to satisfy
the requirements of BSS. For example, the combination of
the wavelet transform (WT) with ICA [21], ensemble em-
pirical mode decomposition (EEMD) with multiset CCA
(MCCA) [22], and so on. In order to eliminate muscle
artifacts from multichannel EEG recordings, if we process
the multichannel EEG by means of channel by channel using
the combination mentioned above, the relationship between
channels may be ignored. To overcome this shortcoming, an
EEMD-ICA approach has been suggested to improve the
artifact elimination effect for multichannel EEG signals [23].
The EEMD-ICA approach employs ensemble empirical
mode decomposition (EEMD) [24] to firstly obtain a
number of intrinsic mode functions (IMFs) from each
channel of EEG data. Then, the acquired IMFs relating to
EMG artifacts are selected according to predefined rules.
When applied to the chosen IMFs, ICA has the ability of
concentrating the contents involving artifacts into several
specific ICs. By discarding the ICs related to artifacts, we can
obtain the relatively artifact-free data ultimately in the re-
construction step. It has been proved that this EEMD-ICA
approach outperforms ICA and wavelet-ICA [25]. The su-
perior performance over ICA demonstrates that exploring
the information of every signal channel by single-channel
decomposition methods first is of great significance to the
contaminated multichannel EEG. The superior performance
over wavelet-ICA is not hard to explain. While wavelet
transform (WT) decomposes a signal adopting the method
of determining in advance, and it is not easy in practice to
select the best mother wavelets, EEMD is an entirely data-
driven method, where no prior knowledge is required during
decomposition. As we have discussed, CCA is better suited
to eliminate muscle artifacts with complex and multiform
scalp topographies. Very recently, replacing ICA with CCA,
the EEMD-CCA method outperforms different techniques,
including ICA, CCA, and EEMD-ICA, for eliminating
muscle artifacts from EEG with multiple channels [26]. As
far as we know, it gets the best results on multichannel EEG
denoising. But EEMD decomposes the signal merely in
terms of the amplitude and frequency information [15], and
it cannot separate EEG contents from EMG artifacts over-
lapping in the relatively higher-frequency band. The IMFs
relating to EMG artifacts usually represent high-frequency
bands. Since the amplitude of EEG contents in the IMFs
mainly containing muscle artifacts is much lower than the
amplitude of EMG artifacts, it is extremely difficult to extract
brain activity drowned in artifacts. Therefore in this article,
we utilize singular spectrum analysis (SSA) to accomplish
single-channel decomposition and propose a new archi-
tecture to process multichannel EEG data.

Singular spectrum analysis (SSA) is a kind of spectrum
estimation technique with no need for parameters to do the
decomposition for the raw signal according to the co-
variance property of data [27] and the characteristic of
original signal [28]. In addition to its great success in terms
of handling climatic, meteorological, and geophysical data
[29], the SSA-based algorithm has been used to analyse EEG
signals. Maddirala and Shaik made use of the method based
on SSA to eliminate EOG [30] and motion artifacts [31] from
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EEG in the case of only one channel; Teixeira et al. presented
an approach to extract high-amplitude artifacts [32]; Hu
et al. suggested utilizing the method derived from SSA to
extract desired brain rhythms [33]. On the basis of these
studies, we know that SSA can succeed in separating EEG
composed of different sources, which are mixed with each
other in the time-frequency domain. Cheng et al. have
demonstrated that SSA is more powerful than EEMD in
decomposing single-channel EEG [34].

In our proposed method, with the goal of eliminating
EMG artifacts from multichannel EEG data, SSA algorithm
is utilized twice. It decomposes each channel of multi-
channel EEG signals to acquire a collection of interpretable
components. The two data sets of relatively clean EEG
reconstructed from the process of two-time SSA de-
composition are handled with CCA to get further noise
reduction. Here, we set a suitable threshold value for the
autocorrelation to select the components containing EEG
information automatically. Our proposed SSA-CCA ap-
proach is applied to semisimulated data and real-life data,
respectively; meanwhile, we make a comparison with the
most effective technique, EEMD-CCA, and the classic
technique, CCA.

The main contribution of our study is that we suc-
cessfully solved the problem for removing EMG artifacts
from EEG data in the multichannel situation. Our proposed
technique is novel and performs very well. This scheme not
only takes advantage of SSA to conduct time series analysis
better than EEMD, but also utilizes a new framework to seek
crosschannel interdependence with the help of BSS. It is also
novel that we distinguished components of different content
types by calculating the autocorrelation coefficients of SSA
components.

The organization of the remaining paper is as follows: the
proposed method and the methods used to do the com-
parison are described in Section 2. In Section 3, the synthetic
and real-life data are briefly introduced. Section 4 presents
the denoising results. Section 5 offers an intensive discussion
and summarizes the work in this paper in the end.

2. Methods

We will introduce the suggested SSA-CCA method and the
methods used to compare, i.e., CCA and EEMD-CCA in
the following text of this section. The notations will be
employed throughout the article as follows: lowercase italic
letters (x, y, ...) are on behalf of scalars, lowercase boldface
letters (x,y, ...) take the place of vectors, boldface capitals
(X, Y, ...) represent matrices, and furthermore italic capitals
(G, T, ...) are on behalf of the number of rows and columns.
Vector or matrix transposition can be represented by the
uppercase superscript T (e.g., x| as well as Y). In our study,
the multichannel EEG signal is written as a matrix X whose
size is C x T It means that this signal includes C channels
and T sampling points. The time course is represented as
X(t) = [x,(£), %, (1), ..., xc (D))" (t=1,2,...,T).

The entire flow diagram of the suggested SSA-CCA
scheme is as shown in Figure 1. As it can be seen, SSA-CCA
contains the following five steps: (1) utilizing SSA to

decompose each channel into a collection of reconstructed
components (RCs); (2) selecting RCs related to EEG ac-
tivity to reconstruct a multichannel relatively clean EEG,
mrcEEG, and the multichannel relatively clean EMG,
mrcEMG, in the meanwhile; (3) decomposing mrcEMG by
SSA again to extract possible EEG content just like step (1)
and step (2); (4) applying CCA to the two data sets of
mrcEEG from step (1) and step (3) for removing artifacts
and obtaining cleaned mrcEEG; and (5) adding the two
cleaned mrcEEG data up to get the desired artifact-free
EEG. The description of details about our proposed ap-
proach is provided as follows.

2.1. Decomposition of Each Channel Using SSA. SSA is a very
effective approach for analyzing time series. Considering a N
sampled signal of one dimension as x (t) = (x;,%,,...,Xy),
the SSA algorithm is composed of two stages, which are
named as decomposition and reconstruction, respectively.
There are also two independent steps at each stage. To be
more specific, the decomposition stage involves time-delay
embedding and singular value decomposition (SVD). First,
when conducting the embedding step, the original one-di-
mensional signal x can be mapped into a trajectory matrix X
whose size is L x K:

xl x2 oo xK

Xy X3 ot Xk
X=(xpXp..0Xxg)=| = 7 ) (1)

Xp Xpy1 00 XN

where L is on behalf of the window length for segmenting the
data and x;(1<i<K) denotes the lagged vector as one
column in the matrix X and here, we define K = N - L + 1.
In the obtained trajectory matrix, all the antidiagonal ele-
ments are the same, and the matrix of this type is called
Hankel matrix. Then, with the purpose of calculating SVD of
matrix X, the SVD step can be accomplished by utilizing the
eigenvalue decomposition (EVD) of the covariance matrix
C, where C = XX Here, all eigenvalues and eigenvectors of
the covariance matrix C are denoted as A;,1,,...,A; and
Vi, Vy,...,Vp, respectively. It must be pointed out that the
eigenvalues and corresponding eigenvectors are sorted in-
herently following the order of magnitude decrease, i.e.,
A=A, >,..., =A; >0. The elementary matrices are defined
as

X; = YA vy,

[ R A4

(i=1,2,...,L), (2)

where u; = Xv,/1/A;. Now, the trajectory matrix X can be
expressed as

X =

™=

I
—

L
X; = ; \/)Tiviui. (3)

1 1

Reconstruction consists of grouping and diagonal av-
eraging. The SSA grouping involves dividing the indices I,, =
1,2,..., Linto G different groups. The trajectory matrix after
the grouping step is denoted by
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FIGURE 1: A flow diagram for the SSA-CCA approach. Here, the grey rectangles represent artifact-related components.

G
X=) X, )

Jj=1

where X is the trajectory matrix and I; is an ensemble of
indices for the j* group, j=1,...,G. In the condition of
G =L, grouping of this type is known as elementary
grouping. We conduct elementary grouping in this paper,
ie, j=1,...,L. In the final step called diagonal averaging
since each submatrix X; is hankelized, we can transform the
acquired Hankel matrix into a new series through the op-
eration of changing the antidiagonal elements of the matrix.
The element values on the opposite diagonal of the Hankel
matrix will be replaced with their mean value, which will be
used to generate the signal of one dimension later. The
reconstructed time series are referred to as reconstructed
components (RCs) or SSA components in general. Thus, the
original N sampled signal x(f) can be presented by

L
x(t) = ) X (b), (5)

=1
where X7 (t) denotes the j™ RC with elementary grouping.

2.2. RCs Selection. According to our introduction to the SSA
decomposition principle, it can be seen that there is no
difference between choosing indices one wants at the
grouping step and selecting proper RCs after elementary
grouping while extracting a desired signal. However, there is
no general criterion for indices or RCs selection [35]. When
the energy of our expected signal is high enough and the
signal that we need can be well defined in advance, the
minimum description length (MDL) criterion works well for
automatic grouping of trajectory matrices according to the

magnitude of the eigenvalues [32]. Besides, in order to
extract the dominating rhythms contained in EEG, re-
searchers group the eigenvectors by exploring the charac-
teristic of the eigenvalue pairs [36].

As we all know, muscle artifacts have a wide spectrum in
the frequency domain and they behave very much like white
noise, whose autocorrelation is much lower in comparison. The
group rules above have a bad performance when applied to
EMG artifact removal. Here, we recommend calculating the
autocorrelation coeflicient of each RC. The autocorrelation
coefficient is a widely adopted indicator for the muscle artifact
removal issue to select artifact-related components generated
by EEMD [26]. Picking out RCs with relatively higher auto-
correlation values can ensure that the useful information of
EEG signals is reserved. We set an appropriate threshold value
for the autocorrelation to identify and pick out RCs related to
EEG rhythms before reconstruction automatically. Suppose
one RC is represented as c(¢), let ¢, (¢) equal to c(¢) and ¢, ()
be the time-delayed version, ie., ¢, (t) = ¢(t — 1). The calcu-
lation formula of autocorrelation R is as follows:

re_ Elle®-E(c () (e ®) - E(e,(1)))]
VE[ (¢ (0 = E(c; (0))’]E[ (2 (8) - E(c, (1))]

(6)

where E is the operator that computes the expectation.
The RCs with autocorrelation values less than the
threshold are picked out to generate relatively clean EEG.
When one has finished this process channel by channel, the
multichannel relatively clean EEG, denoted as mrcEEG, is
obtained. And the multichannel relatively clean EMG,
denoted as mrcEMG, can be obtained by subtracting
mrcEEG from the original mixed EEG. Here, a relatively



Journal of Healthcare Engineering

lower threshold is suggested in order to avoid too much loss
of brain activity information.

2.3. Further Treatment of Muscle Artifact with CCA. The
mrcEEG is processed by CCA to achieve further artifact
elimination. Let Z, (t) be equal to the mrcEEG matrix Z (t),
which includes C channels and T sampling points, mean-
while Z,(t) be the time-delayed version, i.e,
Z,(t) = Z(t — 1). CCA maximizes the correlation coefficient
(CC) between the related sources generated from Z, () and
Z, (t). This results in an objective function as follows, which
aims at strengthening the correlation as best as it can be-
tween the mixtures of the variates from Z, and Z,:

T
w W
a 1 ZIZ 2 (7)

WW T T
v \/W1211W1\/W2222W2

where ), the autocovariance matrices of Z,, Y, is the
autocovariance matrices of Z,, and ),, is the cross-
covariance matrix of Z, and Z,, in addition w, and w, are
the weight vectors. In our definition, S, denotes the whole
canonical variates generated from Z, and S, denotes those
generated from Z,. Traditionally, CCA is considered as a BSS
technique by making the estimated sources highly correlated
between S, and S, and mutually uncorrelated within each
respective matrix. By this means, the rows in S, are arranged
in the decreasing order of autocorrelation. In comparison to
EEG content, the autocorrelation of EMG artifacts is rela-
tively lower. Therefore, CCA has the ability to concentrate
these artifacts into the last several sources. Finally, we can set
sources relating to artifacts to zero in the reconstruction step
to achieve further artifact elimination.

2.4. Artifact Removal and Signal Reconstruction. In this part,
by letting the artifact-related sources to be zero and oper-
ating the inverse process of CCA, the denoised mrcEEG data
can be acquired. Then, the mrcEMG in Section 2.2 should be
processed the same way as the original mixed EEG using the
combination of SSA and CCA. We find that twice is enough
for applying this combination. Finally, add the two cleaned
mrcEEG data up. The desired artifact-free multichannnel
EEG is done.

2.5. Introduction to State-of-the-Art Methods

2.51. CCA for Muscle Artifact Elimination. The CCA
method has been described in Section 2.3. One can also
consult the original work [13].

2.5.2. EEMD-CCA Method for Muscle Artifact Elimination.
First, there is an introduction to EEMD. Empirical mode
decomposition (EMD), as one well-known decomposition
method firstly suggested by Huang et al., is suitable to
process many kinds of time variable and complex signals.
EMD can decompose a one-dimensional signal into a
number of intrinsic mode functions (IMFs), refer to [37] for

decomposition details. A single-channel signal x(t) can be
decomposed in the form of

N
x(t) = ch +r, (8)
=1

where ¢; denotes the j"IMF, j=1,2,...,N and r, denotes
the residual component after extracting all N IMFs. But the
original EMD algorithm has its own inherent disadvantage.
It is easily influenced by noise, and the phenomenon of
mode-mixing is possible to occur among diverse IMFs.
Therefore, Wu and Huang [24] came up with a noise-
assisted method for data analysis, known as ensemble EMD
(EEMD), to solve this problem. EEMD independently adds
white noise to the raw signal with a number of individual
trials when applying the original EMD. At last, EEMD takes
the mean of a collection of IMFs as the definition of its IMFs.
In this paper, we have tried different ensemble numbers
when utilizing EEMD (i.e., 10, 50, and 100) and there is no
significant difference when the number of ensembles is not
less than 50. Considering the computational cost and to get
the best possible result, 50 ensembles were used. The noise
standard deviation was determined as 0.2 times the standard
deviation of the raw data according to experience as rec-
ommended [24]. The implementation of EEMD-CCA in-
cludes six steps. The details of this algorithm are provided in
the work [26].

3. Data Generation and Description

In order to conduct performance evaluation of different
techniques appearing in this article, we made use of semi-
simulated data and real-life data. The semisimulated EEG
signals are derived by mixing real pure EEG with pure EMG,
both collected from different subjects. The real-life data set
comes from a patient suffering from epileptic seizures. The
details of these data are shown as follows.

3.1. Semisimulated Data. The semisimulated data set was
generated from real EEG and EMG data, which were derived
from different people. The 19-channel pure EEG data were
recorded when 20 subjects in good health participated in the
experiment, whose sampling rate was 500 Hz and processed
by a high-passed filter with 1 Hz cutoff frequency to elim-
inate the baseline noise. The original EMG signals acting as
muscle artifact sources were collected with 23 healthy vol-
unteers involved, whose sampling rate was also 500 Hz to
match with EEG data. The length of data is 10 seconds for
both types of data. The instrument and details of data ac-
quisition can be found in [26].

To make sure that the sources were independent with
each other and randomly chosen, each EMG source was
selected among diverse EMG recordings across different
subjects. Thus, an independent EMG source matrix Spyq
could be formed, and it includes 19 channels with 10 seconds
of data in each channel. By multiplying a 19 x 19 mixing
matrix A with the EMG source matrix Sgyg, a simulated
EMG matrix Xpy;q containing 19 channels was generated. To
ensure sufficient spatial structure, there were 5 to 8 nonzero



elements in each column of the matrix A. Thus, each EMG
source from the source matrix S synchronously exists in 5 to
8 channels of the simulated EMG matrix Xpys. The number,
values, and positions of nonzero entries in each column of
the matrix A were decided at random on the basis of uniform
distribution [6]. At last, the data generated above were
utilized to form the mixed EEG signal X as follows:

X = Xgpg + A - Xpyveo 9

where A determines the contribution of EMG artifacts. The
contamination levels can be controlled by adjusting the SNR
values. SNR is calculated as

RMS (X
SNR = ﬂ, (10)
RMS (1 Xga10)
where we define the root mean square (RMS) as
1 &I
RMS (X) = ﬁZZX (c, 1), (11)

c=1t

Il
—

where C represents how many channels there are and T
represents how many time sampling points there exist. The
values of SNR were within a range from 0.5 to 4.5, which are
changed taking 0.5 as the step length. As an example, data of
pure EEG, pure simulated EMG, and mixed EEG are pre-
sented in Figure 2.

In our study, two evaluation indexes were adopted for
the semisimulated experiment. The first evaluation indicator
was called the relative root mean squared error (RRMSE),
which was expressed as

RMS (XEEG - 5‘(EEG)
RMS (Xee)

RRMSE = , (12)

where Xppg is the EEG data after being processed to
eliminate artifacts. The second evaluation measure was the
correlation coefficient (CC) between the pure EEG served as
ground truth in each channel and its denoised version. We
calculated the average CC (ACC) values over all channels to
estimate the ability of the methods for preserving true brain
activity. Note that these two indicators were applied to
mean-removed signals.

3.2.Real Data. An available real-life ictal EEG recording was
utilized to evaluate the performance between our proposed
method and the other two methods on data of the real
person. As shown in Figure 3, these data are scalp EEG
signal, which contains 21 channels, lasts for 10, and has a
sampling rate of 250 Hz. It was processed by a band-pass
filter from 0.3 to 35Hz. Muscle artifacts can be found in
channels F7, T3, T5, C3, and T1 between 0 and 4s and in
channels F8, T4, F4, C4, and P4 between 5 and 10s.

Since real data lacks the ground truth to serve as a
reference, both RRMSE and ACC cannot be utilized to
perform evaluation. Power spectral density (PSD) is an
effective and well-known way to describe the energy
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distribution of time series in the frequency domain. Dif-
ferent from muscle artifacts, the EEG components are
mainly at a lower frequency. Hence, the values of PSD
belong to a well-denoised EEG signal which have a tendency
to decrease at high frequencies (e.g., above 30 Hz) and at the
same time they follow more closely the PSD values of the raw
EEG signal at low frequencies (e.g., below 25 Hz).

4. Results

4.1. Semisimulated Data. To make a quantitative comparison,
the semisimulated data were handled by all the methods in this
paper to automatically eliminate EMG artifacts. There were a
total of 20 collected EEG recordings generated from 20 dif-
ferent subjects. In order to sufficiently utilize each EEG re-
cording, 10 independent results were obtained by adding 10
respective simulated EMG matrices, which were randomly
produced by the recorded EMG signals. Thus, there were 200
mutually independent results in all per SNR value, and the
mean as well as standard deviation at the corresponding SNR
value were calculated. According to the method description in
Section 2, CCA can isolate the final obtained components
related to muscle artifacts into the last several components.
Since we own the ground truth here, all the methods will
definitely receive their best performance by discarding the
optimal number of components at each SNR value. The
meaning of the optimal number is that removing fewer or
more last components cannot get better results than removing
the last components of this number.

The window length L for SSA is empirically recommended
as 200. At the SNR value of 1, after the raw mixed EEG signal
is decomposed by SSA, the autocorrelation coefficients of
reconstructed components (RCs) are shown in Figure 4(a).
We recommend setting the threshold to be 0.82. The RCs
whose autocorrelation coeflicients are above the threshold are
selected to reconstruct multichannel relatively clean EEG,
mrcEEG. The left RCs generate multichannel relatively clean
EMG, mrcEMG. Then, mrcEMG is also decomposed by SSA
and the autocorrelation coefficients of RCs are described in
Figure 4(b). Now, the RCs related to EEG are isolated rela-
tively behind. With eigenvalues and the corresponding RCs
arranged in the decreasing order of magnitude, according to
reference [38], the SSA algorithm can be regarded as a bank of
finite impulse response (FIR) filters. The filters are data
adaptive, and the filter corresponding to the higher-energy
component is located in the relatively front position of the RC
sequence. In Figure 4(b), the sum of eigenvalues corre-
sponding to EEG-related RCs accounts for 3.13% of the sum
of all eigenvalues, which means that after picking out EEG-
related RCs, the reconstructed EMG signal contains almost no
EEG information. Thus, there is no need to further de-
compose the EMG signal reconstructed from mrcEMG,
considering the time cost of the SSA algorithm.

The final obtained results are displayed in Figure 5. The
threshold of EEMD-CCA at step (2) in Section 2.5.2 is 0.95 as
recommended [26]. It can be seen that SSA-CCA performs
best per SNR value in terms of RRMSE and ACC. EEMD-
CCA has a better performance than CCA, reproducing the
results in [26].
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FIGURE 2: (a) Pure EEG data Xy, (b) pure simulated EMG data X5, and (c) mixed EEG data X contaminated with SNR = 1.5. The
horizontal axis is on behalf of time variation with the second as the unit.
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FIGURE 4: (a) The autocorrelation coefficients of RCs for the original mixed EEG signal at SNR 1, and (b) the autocorrelation coefficients of
RCs for the mrcEMG. The blue line is threshold 0.82.
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FIGURE 5: For the semisimulated experiment, the quantitative comparison of methods per different SNR value of (a) RRMSE and (b) ACC.

4.2. Real-Life Data. When it comes to the real data, without  artifact removal are applied. In order to get a closer look, a
the ground truth, the two evaluation indexes of RRMSE and  channel lightly polluted and a channel heavily contaminated by
ACC cannot be employed to illustrate the denoising effects of ~ muscle artifacts were picked out, they were T2 and T5, re-
these methods. Here, the comparative results on qualitative  spectively. The temporal waveforms after applying three dif-
time domain waveforms and the PSD values before and after ~ ferent methods to the real EEG are described in Figures 6 and 7.
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FiGure 6: The denoised EEG (red) of channel T2 presented together with the raw EEG (grey) by applying (a) CCA, (b) EEMD-CCA, and
(c) SSA-CCA. The horizontal axis is on behalf of time variation with the second as the unit.
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F1GURE 7: The denoised EEG (red) of channel T5 presented together with the raw EEG (grey) by applying (a) CCA, (b) EEMD-CCA, and
(c) SSA-CCA. The horizontal axis is on behalf of time variation with the second as the unit.

The grey color denotes the original real-life data, and the red
color denotes the cleaned data. From Figure 6, EEMD-CCA
and SSA-CCA could perfectly deal with lightly contaminated
EEG since the artifacts appearing at around 5.3 s and 9.2 s were
removed and the seizure activity was reserved very well. The
resulting signal of CCA could also follow the original wave-
form, but the artifacts were not eliminated very cleanly. From
Figure 7, when EEG was corrupted with heavy artifacts, it could
be seen that there were still a lot of visible artifacts in the result
of CCA. In addition, the cleaned signal failed to go after the raw
signal at the segment free from artifacts between 4 s and 10s.
But EEMD-CCA and SSA-CCA can deal with this situation
successfully. The denoised signals closely followed the raw
signal segments where there were no artifacts and visible ar-
tifacts could not be found. By carefully examining the wave-
form details in Figures 6 and 7, we are able to conclude that
SSA-CCA is more powerful than EEMD-CCA in preserving
brain activity. There are more details in the waveform of SSA-
CCA, meaning that more EEG information can be preserved.
For further illustration of this point, we also computed the
values of PSD for the raw EEG data and the artifact-attenuated
EEG data processed by these three methods. The PSD values
are plotted channel by channel in Figure 8.

As it can be seen in Figure 8, the EEG signals in channels
Fz, Cz, and Pz are merely lightly polluted. Therefore, the PSD
values (black) of these channels are relatively higher at low
frequencies and lower at high frequencies. Noticing the
characteristics of the spectrum distribution in Fz, Cz, and Pz,
we can note that true EEG contents in the raw EEG are
originally concentrated at low frequencies (e.g., 1-25Hz).
There are obvious EEG rhythms at about 10 Hz and between
1 and 5 Hz. For the channels polluted by heavy artifacts, such
as T4, C4, T3, and C3, the PSD values at high frequencies are
relatively higher. The goal of denoising is to maximally
suppress the effects of muscle activity and meanwhile
minimally cause a loss to brain activity.

From Figure 8, the performance of CCA is un-
satisfactory. CCA does not have enough effect on removing
muscle artifacts (e.g., F7 and P4), causing the insufficient
energy decrease in the high-frequency band, or removes
both brain and muscle contents, resulting in the energy
decrease in almost all frequency bands (e.g., T3 and C4). This
is because the sources decomposed by CCA are mainly the
mixture of muscle artifacts and ongoing EEG signals. On the
contrary, both EEMD-CCA and SSA-CCA can largely
remove muscle artifacts, comparing the PSD values at high
frequencies with those of the original EEG signal. And the
PSD values between 1 and 5 HZ and around 10 Hz are nearly
unchanged from the raw EEG signal in almost all channels,
demonstrating the ability of retaining EEG content for the
two methods. However, when observing the results between
EEMD-CCA and SSA-CCA more closely, we are able to see
that the PSD values in terms of EEMD-CCA decrease
sharply from about 15 Hz while the PSD values in terms of
SSA-CCA tend to keep relatively higher between 15 and
25Hz in almost all channels. Thus, SSA-CCA can preserve
EEG information not only in the low-frequency band but
also in the relatively higher frequency band. To be more
specific, in the frequency band of 15-25 Hz, the PSD values
of SSA-CCA are very close to those of the original EEG
signal with little contamination in channels Fz, Cz, Pz, Té6,
and O2, indicating that EEG information is well retained;
meanwhile, taking the PSDs of the original EEG signal
heavily contaminated in channels T3, C3, C4, and T4 as a
reference, the PSD values of SSA-CCA are lower, indicating
that muscle artifacts are removed. EEMD-CCA thought-
lessly ignores the brain activity in the frequency band of
15-25Hz. Hence, SSA-CCA is more powerful than EEMD-
CCA in extracting EEG information of higher frequency.

In addition, by using the proposed SSA-CCA method,
the final denoised EEG data are shown in Figure 9. As we can
see, compared with the raw EEG data, muscle artifacts
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Figure 8: Continued.
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FIGURE 8: Power spectral density of the raw EEG and the denoised EEG processed by different methods in our study. The horizontal axis is
frequency with unit Hz, and the vertical axis is PSD with unit dB: (a) Fp1; (b) Fp2; (c) F7; (d) F3; (e) Fz; (f) F4; (g) F8; (h) T1; (i) T2; (j) T3;
(k) C3; (1) Cz; (m) C4; (n) T4; (o) T5; (p) P3; (q) Pz; (r) P4; (s) T6; (t) OL; (u) O2.

FIGURE 9: The reconstructed EEG (red) after eliminating EMG
artifacts presented together with the raw EEG (grey).

completely disappeared while the EEG content was well
reserved.

5. Discussion and Conclusion

According to the relevant discussions in [26, 39], it is
crucially important to guarantee the signal quality of EEG by
means of muscle artifact removal. Different from ocular and
cardiac artifacts, muscle artifacts with highly nonstereotyped
scalp topographies are especially challenging to be elimi-
nated. This may be the reason why ICA, a well-known and
widely used tool, does not perform well for removing muscle
artifacts. Although ICA has a good effect on ocular and
cardiac artifact removal, based on previous studies
[9, 13-17, 23, 26], there is no need to apply ICA for com-
parison in the multichannel EMG artifact removal task in
this paper. Instead, CCA makes use of the unique charac-
teristics of muscle activity such as low autocorrelation,
resulting in an improved performance. However, the tra-
ditional multichannel BSS techniques, like CCA, are capable
of extracting the underlying myogenic sources as many as
the number of EEG channels at most. When the SNR is very
low with complex and severe contamination, the potential
sources might be more than utilizable channels in number.

Under these circumstances, combining single-channel de-
composition methods with BSS is recommended, for ex-
ample, EEMD-CCA.

As we all know, the architecture of the human head is
often regarded as a volume conductor, so that the in-
terference of each muscle can readily appear anywhere on
the scalp. Thus, the signal in each channel generates from the
mixture of different underlying sources, bringing in cross-
channel dependence. The main advantage of single-channel
decomposition may be that this technique fully explores
single-channel information to discover independent EEG
sources. The subsequent division of sources in each channel
reduces the complexity of the EEG signal, and the following
BBS method is applied to conduct further noise reduction
with the crosschannel information. The algorithm archi-
tectures of EEMD-CCA and SSA-CCA are different, but they
both take advantage of combining single-channel de-
composition with BSS. Since EEMD decomposes signals
merely according to amplitude and frequency, the frequency
spectrum of the artifact sources derived from EEMD often
overlaps with that of EEG sources. The identified artifact-
related IMFs absolutely contain EEG content, which is
drowned in the artifacts. Even CCA cannot completely
extract the EEG content from the artifact-related IMFs. The
high-frequency EEG is mixed with the last sources aban-
doned by CCA. This explains why a lot of loss was caused by
EEMD-CCA in the frequency band of 15-25Hz processing
the real data. However, taking advantage of the information
of eigenvalues, SSA is able to distinguish diverse sources
even mixed in the time-frequency domain. It can be seen
that EEG-related RCs with low eigenvalues, accounting for a
small portion of EEG contents, are nicely separated by SSA
in Figure 4. The high-frequency EEG part is not dominant in
the pure EEG; thus, it tends to be the EEG-related RCs with
low eigenvalues and is well retained by SSA. As for muscle
artifacts owning extensive frequency domain distributions,
SSA can get better results than EEMD.

The window length L of SSA is selected according to the
condition, i.e., L > f/ f}, where f is the lowest frequency of
the desired component and f is the sampling frequency
[40]. This choice can make sure that the size of L is large
enough to include one period of the desired source at least.
Therefore, we set the L to be 200 and 100 for semisimulated
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data and real data, respectively. In practical applications, the
real data recordings are complicated and it is hard to select a
proper window length. Fortunately, we tested different
window length values (i.e., 200, 150, 100, and 50) with all
other parameters unchanged. The results on semisimulated
data and real data were very similar, all leading to advantages
over EEMD-CCA. It demonstrates that in our proposed
method, SSA is not sensitive to L, showing the generality of
the method. We recommend choosing the window length L
according to the condition L > f/ f, if one wants to obtain a
detailed decomposition by SSA. But in practice, L is pro-
posed to be between 50 and 100, considering the good
decomposition effect and low time cost. It must be men-
tioned that Maddirala et al. grouped the eigenvectors on the
basis of the local mobility of the eigenvectors to eliminate
muscle artifacts from EEG [41]. We also used the local
mobility to distinguish RCs and found the results were
totally consistent with the criterion of calculating the au-
tocorrelation. In our proposed method, two thresholds of
the autocorrelation coeflicient should be determined, one for
choosing EEG-related RCs and the other for CCA discarding
artifact-related sources. In [26] for EEMD, to preserving
EEG content as much as possible in the early processing step,
the first threshold is relatively higher (0.95 used in our study)
for selecting artifact-related IMFs. While in our proposed
method, the first threshold is set to be lower, in order to pick
out EEG-related RCs as possible. Through experiments, the
thresholds around 0.8 are recommended (0.82 used in our
study). In the semisimulation study, with ground truth, the
optimally selected number of abandoned components can be
determined for all the methods, thus the second threshold is
not needed. In the real-life data study, the second threshold
values ranged from 0.80 to 0.99 were examined through
direct visual inspection of both temporal and spectral
contents before and after muscle artifact elimination. All the
methods adopt 0.9 as the second threshold for a fair
comparison.

For practical applications, we tested the time cost of
conducting CCA, EEMD-CCA, and SSA-CCA. In SSA, cal-
culating the eigenvalues of the trajectory matrix is time-
consuming work. On the premise of not affecting the effect of
denoising, L was set to be 50 for comparison. The realization
was completed in MATLAB (MathWorks Inc., Novi, MI,
USA) and operated under Microsoft Windows 10 x 64 on a
computer with Intel(R) and Core(TM) i5-8400 2.80 GHz
CPU and 16.0GB RAM. At each SNR from 0.5 to 4.5
changing with a 0.5 step, there were 200 independent
implementations for semisimulated data mentioned above.
The average time costs for CCA, EEMD-CCA, and SSA-CCA
over the EEG data with 19 channels and the length of
10 seconds were 0.0118 s, 4.4469 s, and 3.6665 s with standard
deviations 0.0007, 0.1529, and 0.0218. As you can see, the
computational cost of SSA-CCA can be completely accepted.

We have proved that SSA-CCA is a satisfactory tool for
muscle artifact elimination when processing the multichannel
EEG signals. Nowadays, with portable or wearable EEG de-
vices for long-term mobile monitoring becoming increasingly
prevalent, the present EEG devices have a tendency to own
only a small number of channels [18]. Unfortunately, our
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method might not be the optimal choice due to the channel
limitation in the few-channel situation [39]. Thus, we might
improve the current processing architecture of SSA-CCA to
satisfy the needs of removing muscle artifacts from few-
channel EEG signals in the near future.

Data Availability

There are two data sets used, semisimulated data and real-life
data. The semisimulated data used to support the findings of
this study are available from the authors Qingze Liu and
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mail.ustc.edu.cn and aipingl@ece.ubc.ca, respectively. The
real-life data are publicly available from the BioSource da-
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kuleuven.be/sista/members/biomedng/biosource.html.”
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Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical
images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are
common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep
learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for
medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the
region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our
proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D
image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder
under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each
group. Simulation results show that the new method can boost the segmentation accuracy. And, it has strong robustness compared

with other segmentation methods.

1. Introduction

Medical imaging makes a critical difference in clinical di-
agnosis [1-3]. Recently, with the progress of medical im-
aging technology and the continuous development of
artificial intelligence image processing, medical image
processing technology has gradually developed into a key
research field. It is vital in clinical application. The aim of
medical image segmentation technology is to segment the
interested part by some deep automatic segmentation al-
gorithms and make the segmentation results as close as
possible to the original structure of the region [4]. Seg-
mentation of medical image has big significance in clinical
diagnosis and pathological diagnosis. Measuring lesion
volume with segmented images can assist doctors to de-
termine the disease and make treatment plans [5].
Medical imaging segmentation (MIS) is an indispensable
stage in ROI (region of interest) extraction, quantitative
analysis, and 2D reconstruction. The images will be seg-
mented with the same or similar features (such as intensity,

color, and texture) into separated areas, particularly to ex-
tract the lesion areas with special meanings or other regions
of interest (ROI) from the complex background, so as to
provide basis for clinical analysis [6]. Magnetic Resonance
Imaging (MRI) uses the principle of nuclear magnetic
resonance, which not only has high soft tissue resolution but
also provides rich and high-resolution three-dimensional
brain tissue information. Therefore, how to segment the
medical images accurately in MRI images is becoming a
challenging task in medical image research [7].

Through the analysis of research status, we summarize
three kinds of traditional MIS methods: (1) manual seg-
mentation method, which is tedious, excessive labor, sub-
jective, prone to error, and not suitable for large-scale
research [8]; (2) semiautomatic segmentation method,
which requires accurate control of prior parameters and
consumes much time in the process of parameter tuning [9];
(3) the traditional segmentation methods such as graph-
based, deformation model, and active appearance model
[10-12], which is based on simple registration method.
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However, due to the differences between the hippocampus,
in terms of the segmentation efficiency and accuracy, a
simple registration method is still not ideal.

Currently, deep learning has attracted more attention,
and the model based on deep CNN and its variants have
been diffusely used in various fields of medical image
processing and also achieved better results [13-15]. For
example, Cha [16] presented MR brain image automatic
segmentation method using a CNN network. The method
was independent on explicit features only requiring a single
MR (magnetic resonance) image. Lu et al. [17] used two-
dimensional convolutional neural network to evaluate the
segmentation of electron microscope images. Zhang et al.
[18] adopted deep CNN to evaluate the segmentation of
multimodal brain images. Although the models based on
CNN have obtained better performance, these methods
have a common problem, namely, all networks take image
block as input, due to a large amount of overlapping image
blocks, the redundant computation will increase the time
cost for testing the network, and the image block size will
influence the capability of the trained network. To solve the
problem of image segmentation, many researchers have
come up with many approaches based on the fully con-
volutional network (FCN) model to remedy limitations of
image segmentation. FCN can take the entire image as the
input of the network and generate the corresponding
output of the whole image, thus avoiding the problems
caused by the use of image blocks. However, it had low
efficiency. So, a deep multiscale CNN model is put forward
for medical image segmentation. The major contributions
are illustrated as follows:

(1) First, we extract the regions of interest from the raw
medical images. Then, the data augmentation is
operated to obtain more training dataset. The en-
coder, U-net, and decoder models are used for
constructing our proposed segment framework.

(2) Encoder is mainly responsible for feature extraction
of 2D image slice.

(3) In different scales of the decoder, it will acquire the
features of each encoder’s block by deconvolution
operation, and then the U-net joins them together.

(4) The decoding is mainly responsible for the upsam-
pling of the feature graph after feature extraction of
each group.

This paper is originated as follows. In Section 2, related
works are introduced for the image segmentation. Section 3
describes the proposed DMCNN in detail. In Section 4, we
conduct experiments and give analysis. Section 5 concludes
the work.

2. Related Works

2.1. Inception Model. In order to make the convolutional
neural network have better learning ability, the most direct
and effective method is to make the network layer deeper.
However, there are some disadvantages in this operation: (1)
if the training number and dataset are limited, more
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parameters will easily lead to overfitting; (2) if the network is
larger, it is hard to utilize due to the greater endless com-
putation; (3) the deeper the network is, the gradient will
disappear, which leads to the diffusion of gradient. Under
this situation, it is difficult to optimize the network model.
Inception v1 is proposed in 2014 [19], the convolution layer
of 1 x1,3x3,and 5 x 5, and pooling layer of 3 x 3 are stacked
together, which increases the width of the network and also
enhances the adaptability of the network in terms of the
scale. This operation can extract features from different
scales. An important improvement in Inception v31 is de-
composition, the two-dimensional convolution of Nx N is
divided into two-dimensional convolutions of 1 xN and
Nx 1. The advantage of this method is that it can not only
accelerate the computation but also increase the nonlinearity
of the network.

2.2. Batch Normalization. BN aims to add a standardized
processing for the input data of each layer in the training
process of neural network, which also belongs to the network
layer. Previously, we mentioned that in addition to the
output layer of the network, the parameters of the lower
layer of the network are updated during the training, which
caused the change of the distribution of the input data in the
latter layer. In each layer, it is better to add a preprocessing
operation. For example, the data in the third layer of net-
work are normalized. Then, it inputs the third layer for
calculation, so that we can solve the problem of “Internal
Covariate Shift” [20-22]. By introducing batch standardi-
zation method, the network’s convergence speed will be
greatly increased. The overfitting can also be controlled. The
dropout and regularization operation will be realized with
little utilization.

2.3.  End-To-End Models and Jump Connections.
Compared to the traditional image block-based convolu-
tional neural network model, the end-to-end model utilizes
the entire image as input. The entire image will be generated
as output [23, 24]. The image block-based model needs to
foretell each size of pixel in the slice separately. Therefore,
the end-to-end model adopted in this paper can evidently
decrease the time consumption when segmenting images.
Generally, end-to-end models primarily include fully CNN
and faster CNN. It combines the feature maps of different
levels. Unlike FCN, the U-net model adopts jump con-
nection to join the feature information obtained from the
shrinking coding path and the deconvolution operation in
the expanded path together which is favourable for
obtaining multiscale feature information to strengthen the
network’s feature extraction ability.

3. Proposed DMCNN

3.1. Data Preprocessing. For the acquired medical images,
the region of interest should be extracted and preprocessed
to serve as the samples for training and testing the network.
After that, gray level regularization is carried out on all
acquired ROIs. And, the mean and SD (standard deviation)
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are measured. The gray level regularization is assessed by
subtracting mean value and dividing by SD. In the subse-
quent training and testing process, the extracted images are
transported into the network model as samples, and the
extracted region is shown in Figure 1. For example, the size
of the raw image is 256 x 256, and after ROI extraction, we
get the 128128 patch and input it into network for
training.

3.2. Data Extension. Since labeled public medical image
datasets are little online and they are inconvenient to use,
training a deep CNN model is troublesome [25]. In our
proposed model, we first adopt some newest data argu-
mentation methods to expand the raw data in order to in-
crease the number of available training samples. In this paper,
five data expansion methods are adopted including vertical
direction reversal, random angle rotation, random transla-
tion, horizontal direction reversal, and image deformation.
Figure 2 shows an example of the image expansion.

3.3. Proposed Network Model. To raise the accuracy of
medical image segmentation, spatial information of images
and relevant information between 2D slices are effectively
utilized. The proposed deep multiscale convolutional neural
network model contains three parts: encoder, U-net, and
decoder as shown in Figure 3.

3.3.1. Encoder. Itis mainly responsible for feature extraction
of 2D slices, whose network structure is shown in Figure 4.
Small convolution kernel in convolutional network is
conducive to capturing local information, while large con-
volution kernel is conducive to capturing global informa-
tion. However, ROIs are different in 2D slices, and it is
difficult to select an accurate and universal convolution
kernel. For this purpose, we use three different convolution
layers (1 x 1, 3x3, 5%5) to extract information of multiple
scales in Inception V1, which can extract more features.
Additionally, to reduce the amount of computation,
asymmetric convolution kernel is used in this experiment to
decompose the N x N two-dimensional convolution into two
one-dimensional convolutions with 1xN and Nx 1.
Meanwhile, to expand the receptive field of convolution
and perfectly obtain multiscale information without in-
creasing the size of parameters, this paper adds dilated
convolutions with expansion coefficients of 2 and 4, re-
spectively. For an ordinary convolution layer of 3 x 3, the
receptive field of its convolution kernel is 3 x 3. In this paper,
after the employment of dilated convolution (DC), the size
of parameters remains unchanged, but the receptive field of
the convolution kernel becomes 7 x 7 and 15 x15. It can be
seen that DC greatly increases the receptive field of the
convolution layer without increasing parameters number.
As shown in Figure 4, there are three kinds of dilated
convolution with expansion coeflicients of 1, 2, and 4, re-
spectively, in the encoded part, and the receptive fields of the
corresponding convolution kernel are 3x3, 7x7 and
15x 15, respectively. After using the three receptive fields

Raw image

Ficure 1: Extracted ROL

:

Raw image

FIGURE 2: Proposed medical image segment model.

with different sizes, it is not only conducive to feature ex-
traction but also conducive to better capturing the patho-
logical area features.

Then, after cascading the feature graphs extracted from
five different convolution layers, we utilize two ordinary 3 x 3
convolution layers in feature extraction process. Finally, to
reduce the size of the feature map, it connects a maximum
pooling layer. In Figure 4, the number of channels in each
convolution layer is 16. Considering the convergence of
networks, batch normalization is added behind the convo-
lution layer, and ReLu layer is used as the activation function.

3.3.2. U-Net Model. Figure 5 shows the proposed U-net
network structure employed. The U-net network structure
contains two parts as follows:

(a) Contractile encoder part on the left. It processes
input medical images.

(b) Decoder part on the right. It produces labeled
output.

(c) The skip connection. It can cascade the features of
each block in the encoder. Features are obtained by
deconvolution operation in the decoder.

The U-net model in this paper is displayed as Figure 5.
The proposed entire U-net network consists of twenty-
eight convolution layers. In here, twenty-four convolution
layers are spread over four convolution blocks and four
deconvolution blocks. The contraction encoder in deep
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FIGURE 3: Proposed medical image segment model.

N features

Ficure 4: Encoder structure.

» »
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>
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3 up-convolution blocks  Conv + BN + Conv +
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F1GURE 5: Deep multiscale U-net model.

multiscale U-net covers four convolution blocks shown in
left of Figure 4. Each convolutional block contains two
convolutional layers (conv). Each convolutional layer uti-
lizes a 3 x 3 convolutional kernel to carry out the convo-
lution. The step size is 1. Synchronously, each convolutional
layer follows a BN layer and a ReLu layer to modify the
network performance. ReLu activation function has sparse
ability, and it can better learn the relatively sparse features
from the effective data dimension and play the role of feature

automatic decoupling. In each convolution block, its first
convolution layer can double feature graphs. The number of
feature graphs will be increased to 64. After four convolution
layers, the number of feature graphs is increased from 64 to
1024. Between each convolution block, the sampling method
of traditional U-net adopts maximum pooling. In this paper,
we use the 2x2 convolution kernel with step length 2 for
down-conv operation to achieve a convolution block feature
on the image of the sampling operation. Through this down-
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conv operation, the size of feature graph is reduced by half
with iterative deepening, so that the size of input original
image is decreased from 128 x 128 layer by layer to 8 x 8.

The expansion decoder of the U-net model contains
three deconvolution blocks as shown in the right of Figure 6.
The deconvolution up-conv operation adopts the 3x3
convolution kernel. The step size is 2, and the size of the
feature graph is increased by twice the original size through
the deconvolution operation. This process can recover the
feature graph as the raw input image in the last deconvo-
lution block. Meanwhile, the number of feature graphs is
halved after each deconvolution operation. The feature
graphs obtained by deconvolution are cascaded with the
corresponding feature graphs in the convolution block as the
feature input of the deconvolution block. Two convolution
layers are in each deconvolution block. The 3 x 3 convolu-
tion kernel is utilized (the step size is 1). The first convo-
lution layer will reduce the number of feature graphs by half
after every cascading. Not exactly the same as the original
U-net structure, the presented U-net structure is filled with
zero filler in each convolution layer. According to formula
(1), the output size of the deep multiscale CNN model can be
guaranteed to be consistent with the input image data size by
using zero padding:

(Tipput — F +2P)

Ioutput = T’ ( 1)

where I, and I, are on behalf of the input and output
images’ size in DMCNN, respectively. F represents the
convolution kernel with size 3 x 3. P denotes the fill size with
1x1. S=1 stands for step size in this paper.

At the end of the proposed U-net model in this paper, we
skillfully adopt a convolution layer (whose size is 1 x 1) to
lessen the number of feature graphs to 1. The final output
will be disposed by the Sigmoid function. We can obtain the
value of each pixel between 0 and 1. The lesion area is a
probability distribution. Through the above processing, the
final image is considered as the probability graph of
DMCNN. The value corresponding to each pixel indicates
the probability that the point belongs to the lesion.

3.3.3. Decoding Part. It is mainly responsible for upsam-
pling the feature graph after extracting each group feature,
and the structure is shown in Figure 7. The decoder section
contains one deconvolution layer and one convolution layer.
Both deconvolution and convolution have batch-normali-
zation and ReLu. After the upsampling, the feature graph
becomes the same resolution as the input image. Finally, the
final segmentation result is obtained by softmax classifier to
analyze the end-to-end segmentation.

3.4. Loss Function. Different from the commonly used pixel
point-based softmax loss function [26, 27], Dice loss
function is based on region loss function. In medical image
segmentation, Dice index is often used to measure the
overlap rate between the object and the detection area. If the
Dice value is larger, then the overlap degree is higher, and

the segmentation effect is better. However, Dice index
cannot be directly used as a loss function, so we use the
improved Dice function. Dice function is a function that
gives feedback to network parameters after independent
evaluation for each area [28]. The calculation form and
process of Dice function are in good agreement with medical
image segmentation. Therefore, Dice loss function used in
this paper is defined as follows:
: 23 pigi
Dice(g, p) = 1 - ==L

DS e D) (2’
where g stands for the ground truth. p is the predicted value.
v is the number of pixels in each image block. Dice always is
used as a loss function, when comparing the probability
graph with the labeled. The background part whose labeled
value is 0 will not be calculated into the loss to avoid the
situation of unbalanced category and accelerate the con-
vergence of the network and improve the segmentation
accuracy.

4. Results and Discussion

4.1. Dataset and Evaluation Index. The dataset is from ADNI
(Alzheimer’s Disease Neuroimaging Initiative: adni.loni.usc.
edu) [29, 30]. In this advanced researches, 100 groups of
brain MRI images and segmented hippocampal tags are
obtained from ADNI library. From this group, 80 groups are
randomly selected for cross-validation, and the remaining 20
groups are for testing.

To improve the segmentation veracity, this study pre-
processes the data with three steps. First, consider that the
hippocampus only accounts for a small part of the whole
brain MRI image and other parts are invalid areas. The pixel
values in brain MRI are statistically analyzed, and the images
are cropped into 80 x 80 x40 including the hippocampus
and the blank area around it. In this way, invalid background
information can be reduced without any influence on the
integrity of valid information. Second, to accelerate the
convergence of the network and consider the inconsistency
of the pixel values of MRI images in ADNI, the mean and SD
methods are utilized to normalize the images. Thirdly,
making allowances for the small number of samples in the
dataset, we enhance the obtained MRI images by left rotation
and right rotation and finally obtain 400 MRI images.

To accurately reflect the performance differences be-
tween algorithms, we use uniform platform. The hardware
environment of the experiment is NVIDIA GTX1060Ti,
Intel Corei7 processor, and the software environment was
Keras2.2.4. In the experiment, glorot normal distribution
method is used to initialize the weight. The image size is
300 x 300 pixel used in this section. Execution environment
is GPU and Geforce GTX 1060. The parameters used in
DMCNN are given in Table 1.

To quantitatively evaluate the performance of the new
approach, dice similarity coefficient (DSC), sensitivity
(SEN), and predictive positivity value (PPV) are selected as
the evaluation indexes for the medical image segmentation
result. They are defined as follows:


http://adni.loni.usc.edu
http://adni.loni.usc.edu
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Ficure 6: Convolution block and Up-convolution block structure.
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FiGure 7: Decoder structure.

TaBLE 1: Parameters in this experiment.

Learning rate 0.001

Batch size 8
L2 regularization 0.0001

TasLE 2: Hippocampus segment results with DMCNN.

Images DSC SEN PPV
100 88.37 89.65 89.54
400 90.58 91.92 92.73
PNnT
DSC=2—r,
P+T
pPnT
SEN = ——, (3)
T
PPV = pPnT
=5

where P denotes the lesion region segmented by the pre-
sented algorithm. T expresses the region of Ground truth.
PNT represents the pixel region of the intersection between
the algorithm’s segmentation region and the true segmen-
tation region.

TasLE 3: Hippocampus segment results with DMCNN and single-
scale CNN.

Method DSC SEN PPV
Single-scale CNN 86.54 86.95 87.31
Multiscale CNN 91.26 90.89 91.57

TaBLE 4: Hippocampus segment results with different U-net
models.

Method DSC SEN PPV
U-net 89.26 88.73 89.45
2D U-net 89.65 89.21 90.14
Proposed 91.23 90.87 91.58

TaBLE 5: Hippocampus segment results with different methods.

Method DSC SEN PPV Time
TLWK 84.62 83.17 86.54 11.5s
MNF 87.13 86.45 87.53 11.8s
SUSAN 88.62 88.92 89.85 10.2s
DMCNN 92.54 91.87 92.08 8.5s

4.2. Comparative Analysis of Segmentation. In this paper,
100 images before augmentation and 400 images after
augmentation are segmented by the proposed method. The
evaluation indexes in above section are used for evaluation.
The comparison results of DSC, SEN, and PPV are given in
Table 2.

From Table 2, it reveals that data augmentation can
greatly improve the segmentation accuracy. This also fully
proves the importance of datasets in the deep learning model
construction process. The size of the datasets can directly
affect the learning capability of the model.

To verify that DMCNN can effectively capture infor-
mation between slices, we conduct the comparison between
multiscale convolutional neural network and single-scale
CNN in this paper. Other conditions remain unchanged.
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(a) (b) (c) (d)

FIGURE 8: Segmentation of hippocampus with different algorithms. (a) Original images of hippocampus with initial seed points (blue).
Results of the (b) TLWK model; (c) MNF method; (d) SUSAN method; (¢) DMCNN method.

(e)

(a)

FIGURE 9: Segmentation results: (a) original image; (b) TLWK method; (c) MNF method; (d) SUSAN method; (¢) DMCNN method.
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FIGURE 10: Segmentation results: (a) original image; (b) TLWK method; (c) MNF method; (d) SUSAN method; (¢) DMCNN method. The

first row is sarcoma, and the second is meningioma.

TABLE 6: IoU results with different methods.

Method Hippocampus ~ Retina ~ Sarcoma  Meningioma
TLWK 72.48 81.73 75.48 73.69
MNEF 78.31 84.56 79.35 78.24
SUSAN 82.37 88.57 82.54 81.53
DMCNN 89.62 90.24 89.66 88.74

The effectiveness of the proposed model can be observed
from Table 3.

We can see that the segmentation accuracy of DMCNN
is significantly higher than that of single-scale CNN, which
turther verifies that DMCNN can better learn more feature
information between slice sequences than single-scale CNN.

Meanwhile, we study the effect of different network
models on experiment results. Two representative seg-
mentation methods including U-net and 2D U-net network
model are compared with our deep multiscale U-net given in
Table 4. The segmentation accuracy obtained by the
DMCNN method is higher than that of the other two
methods, indicating that it can extract features more effi-
ciently and improve the segmentation accuracy.

Compared with the multiple groups of up- and down-
sampling layers in U-net and 2D U-net networks, the
proposed network model only contains one up- and
downsampling layer, which greatly reduces the size of the
parameters. The number of parameters of the encoding part
and decoding part is below 5000, which significantly reduces
the computation time in this article.

We also conduct comparison experiment with state-of-
the-art segment methods including TLWK [31], MNF [32],
and SUSAN [33] on our medical data. The results are given
in Table 5.

TLWK adopted the traditional random forest regression
method, and MNF adopted the multiscale method. They are
all automatic segmentation methods, due to the large gap
between different individuals, and the accuracy and

efficiency of segmentation are often not ideal, which is not as
high as the precision of the automatic segmentation method
in this paper. SUSAN simply improves 2D U-net, so the
results are not very good. In general, the proposed method
combining convolution neural network and multiscale
U-net model is superior to other current methods for
medical image segmentation. And, the time consumption is
shorter than other methods too.

Figures 8-10 are the segmentation comparison results in
terms of hippocampus, retinal blood vessel, sarcoma, and
meningioma.

Given the segmented image, the IoU measure gives the
similarity between the predicted region and the ground truth
region for an object and is defined by following equation:

TP (4)

JoU= ——«—
FP + TP + FN

where TP, FP, and FN denote the true positive, false positive,
and false negative counts, respectively. The results are given
in Table 6. We can see that the proposed segment method
has the better result.

5. Conclusions

This paper proposes a medical image segmentation method
based on multiscale convolutional neural network. This
method can realize automatic segmentation of medical
images and has high accuracy of segmentation. The CNN
model in this paper not only reduces the amount of com-
putation but also effectively captures multiscale information.
In addition, the use of U-net fully mines the relevant in-
formation between slice sequences. Taking relevant medical
image segmentation as an example, the experimental results
on ADNI database show that the segmentation method in
this paper is superior to other methods. The proposed
method can perform segmentation tasks more easily and
accurately. In the future, studying on deeply deep learning
methods to segment images and applying them into different
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types of images and different practical engineering are
warranted.
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To reduce the high mortality rate from cardiovascular disease (CVD), the electrocardiogram (ECG) beat plays a significant role in
computer-aided arrhythmia diagnosis systems. However, the complex variations and imbalance of ECG beats make this a
challenging issue. Since ECG beat data exist in heavily imbalanced category, an effective long short-term memory (LSTM)
recurrence network model with focal loss (FL) is proposed. For this purpose, the LSTM network can disentangle the timing
features in complex ECG signals, while the FL is used to resolve the category imbalance by downweighting easily identified normal
ECG examples. The advantages of the proposed network have been verified in the MIT-BIH arrhythmia database. Experimental
results show that the LSTM network with FL achieved a reliable solution to the problem of imbalanced datasets in ECG beat
classification and was not sensitive to quality of ECG signals. The proposed method can be deployed in telemedicine scenarios to

assist cardiologists into more accurately and objectively diagnosing ECG signals.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
death worldwide [1]. According to the World Health Or-
ganization, about 17.9 million people died of CVD in 2016,
accounting for 31% of all deaths. Arrhythmia is caused by
improper intracardiac conduction or pulse formation, which
can affect heart shape or disrupt the heart rate [2]. An
electrocardiogram (ECG) is a comprehensive manifestation
of the electrical signal activity of the human heart. Obtaining
the detailed physiological state of various parts of the heart
by collecting signals is an indispensable means of clinical
objective diagnosis. Automated analysis and diagnosis based
on ECG data have a reliable clinical diagnostic reference
value for arrhythmia [3].

Many methods for automatic classification of ECGs have
been proposed. The type of ECG beat can be distinguished by
the time-domain [4], wavelet transform [5], genetic algo-
rithm [6], support vector machine (SVM) [7], Bayesian [8],
or other methods. Although the above classification methods

achieve high accuracy on experimental datasets, their per-
formance is highly dependent on the extraction character-
istics of fixed or manual design methods. Manually
designing extracted features may increase computational
complexity throughout the process, especially in the
transform domain.

Deep learning constitutes the mainstream of machine
learning and pattern recognition. It provides a structure in
which feature extraction and classification are performed
together [9]. Deep learning has been widely used in many
fields, such as image classification [10], target detection [11],
and disease prediction [12]. It is also effectively used to
analyze bioinformatics signals [13-17]. Acharya et al. [13]
proposed a nine-layer convolutional neural network (CNN)
to automatically identify five ECG beat types. Yildirim et al.
[15] designed an end-to-end 1D-convolutional neural net-
work (1D-CNN) model for arrhythmia detection. Hannun
et al. [16] developed a deep neural network (DNN) to detect
12 rhythm ECG classes. Oh et al. [17] used U-Net
autoencoder to detect five arrhythmias. The input of CNN
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through its unique weight-sharing mechanism is a spatial
change, that is, the spatial data with the image as a typical
example perform well. However, recurrent neural networks
(RNNs) are more appropriate for chronological changes in
the appearance of sample sequences.

Long short-term memory (LSTM) network is a special
type of RNN that is widely used for time series analysis. It
can effectively retain historical information and realize
learning of long-term dependence information of text. It has
been used in many fields, such as natural language pro-
cessing [18] and speech recognition [19]. LSTM is also used
for the detection of ECG arrhythmias. [20-23]. Yildirim [20]
proposed a new model for deep bidirectional LSTM net-
work- (BLSTM-) based wavelet sequences (WS) to classified
electrocardiogram (ECG) signals. Oh et al. [22] proposed a
combined network model using CNN and LSTM for ECG
arrhythmia diagnosis. Hou et al. [23] introduced a new
algorithm based on deep learning that combines LSTM with
SVM for ECG arrhythmia classification.

The imbalance of the ECG dataset is an additional
challenge to accurately classify ECG beats. There are two
problems in the training process: (1) low training efficiency,
because normal ECG beats occupying a large proportion of
the dataset are prone to negative effects, and (2) de-
generation of the model when a normal ECG beat over-
whelms training. Some researchers have attempted to
address imbalance in the ECG beat data when diagnosing
arrhythmia. Sanabila et al. [24] used the generated over-
sampling method (GenOMe) to solve the problem of im-
balanced arrhythmias, which generated new data points with
specific distributions (beta, gamma, and Gaussian) as con-
straints. Rajesh and Dhuli [25] employed three data-level
preprocessing techniques on an extracted feature set to
balance the distribution of ECG heartbeats. These were
random oversampling and undersampling (ROU), synthetic
minority oversampling technique with random under-
sampling (SMOTE + RU), and distribution-based balancing
(DBB). As an alternative to resampling the input ECG beat
data or feature set, focal loss addresses imbalanced dataset
classification by downweighting easy normal ECG beat
examples so that their contribution to the loss is small even if
their number is large, that is, focal loss concentrates network
training on hard ECG beat types, which may constitute a
small part of the dataset.

Inspired by the idea of FL to solve the problem of
imbalanced category classification and LSTM populariza-
tion technology, an effective LSTM with FL is proposed to
handle imbalanced ECG beat data on the MIT-BIH ar-
rhythmia database. LSTM automatically extracts the timing
characteristics of complex ECG signals, and FL mitigates
the problem of ECG class imbalanced distribution faced by
the LSTM network, enabling the network to effectively
train all categories. The experimental results show that the
proposed model achieved state-of-the-art performance on
imbalanced ECG beat data and outperformed previous
results. Furthermore, we conduct experiments on both
denoised and without denoised ECG datasets, and results
demonstrate the proposed model is not sensitive to quality
of ECG signals.
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2. Methodology

Arrhythmia classification using deep learning generally
includes two basic stages: preprocessing and classification. In
the preprocessing stage, the Daubechies 6 (db6) discrete
wavelet transform is used to remove noise from the ECG
signal. The ECG heartbeat is then extracted using the sliding
window search method, and the data are normalized using
Z-score. The LSTM network is proposed for ECG heartbeat
classification. The details and theoretical background of
these methods are discussed in the following sections.

2.1. Preprocessing. Preprocessing includes denoising and
segmentation of ECG signals.

2.1.1. Noise Removal. We denoised the raw data with the
Daubechies 6 (db6) discrete wavelet transform [26], and the
denoised ECG signals were input to the LSTM network. The
original and denoised ECG signals are shown in Figure 1.

2.1.2. ECG Beat Segmentation. We used the sliding window
search method on the sample map extraction (see Figure 2).
The MIT-BIH arrhythmia database provided annotations for
ECG beat class information verified by independent experts.
Since R-peak detection algorithms achieved more than 99%
specificity and sensitivity [27-29], we used the R-peak an-
notation file directly. All ECG signals were segmented into
sequences that were 250 samples long and centered on the
annotated R-peaks. Note that we used an ECG beat with a
length of 250 points by default, but there is no common
standard for their size.

2.2. Method

2.2.1. Problem Description. To achieve the detection of ar-
rhythmia, the softmax regression model is used as the last
layer of the LSTM network structure. For the input training
set, R ={(xD,yW), ..., (xD,yD), . (x, y™)} 0 is
the number of ECG beats containing the class labels. x? is
an ECGbeat. y € {0,1,2,3,4,5, 6,7} is the category label of
the x¥. 0,1, 2, 3, 4, 5, 6, and 7 are the representations of N,
LBBB, RBBB, APC, NESC, ABERR, NPC, and AESC, re-
spectively. If y = 0, x is a N (normal); otherwise, x is one
of the arrhythmia types. For an ECG beat x?, the output
through the LSTM network is z®, as shown in

Z(i) :g(x(i);e)) (1)

where g (-) is a process function, describing the process of an
ECG signal from the input layer to the last full connection
layer, and 0 is the relevant parameter in the LSTM network.

The last output vector z? of full connection layer is ECG
signal feature extracted by LSTM network. It is fed to the
softmax layer which calculates the probability of each ECG
beat category. Equation (2) is the softmax function used in
the proposed network:
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where C is the number of ECG beat categories. 7 is the
class probability that the LSTM gives to the input feature
vector z(.

—~ (i)

2.2.2. LSTM Recurrent Network. Long short-term memory
(LSTM) is a time-recurrent neural network. It is suitable for
time-series prediction of important events, and the delay
interval is relatively long [30]. The neural network can ef-
fectively retain historical information and realize learning of
long-term dependence information of text. The LSTM
network consists of an input gate, forget gate, output gate,
and cell unit to update and retain historical information.
Figure 3 shows an LSTM block.

The forget gate f, in the LSTM memory block is con-
trolled by a simple single neuron. It determines which in-
formation must be retained or discarded to enable the
storage of historical information. The input gate 7, is a
section where the LSTM block is created by a neuron and
previous memory unit effects. It is activated to determine
whether to update the historical information to the LSTM
block. The candidate update content c;, is calculated by a
tanh neuron. The current time memory cell state value ¢, is
calculated from the current candidate cell ¢, the previous
time state c,_;, the input gate information 7,, and the forget
gate information f,. o, of the LSTM block at the current time
is generated at the output gate. Finally, a, determines the
amount of information about the current cell state that will

-

C1

FIGURE 3: Long short-term memory block.

be output. The activation of each gate and the update of the
current cell state can be calculated as follows:

fi= sigmoid(Wf Naxpe] + bf),

-~

. = sigmoid(W; - [a,_1, X, ¢, ] + b;),

Cin = tanh (Wc : [at—l’ Xt Ct—l] + bc)’

(3)

¢ =froc iy Cin
o, = sigmoid (W, - [a,1, X, ¢, 1] + b,),

a, = o, - tanh(c,).

After calculating the hidden vector for each position, we
considered the last hidden vector as the ECG signal rep-
resentation. We fed it to a linear layer with an output length
of the classification number and added a softmax output
layer to classify the ECG beat as N, LBBB, RBBB, APC,
NESC, ABERR, NPC, or AESC.



In this paper, we use the four-layer LSTM architecture
including an input layer, an LSTM layer, and two fully
connected layers. The structure of the proposed LSTM for
imbalanced ECG signal feature extraction and classification
tasks is shown in Figure 4.

2.2.3. Focal Loss for Imbalanced ECG Beat Data. Focal loss is
a more effective way to deal with the issue of imbalanced
datasets. It is obtained by transforming the cross-entropy
(CE) loss function. The CE is calculated by

CE () = -log(). (4)

The focal loss [31] is a dynamically scaled CE, where the
scaling factor decays to zero as the confidence of the clas-
sification increases. Intuitively, this scaling factor can au-
tomatically downweight the contribution of normal ECG
examples during training, and model training focuses
quickly on the hard examples. The FL can be calculated by

FL(y) = -(1-3)"- log(y), y=0, (5)
where (1 —-79)" is a modulating factor and y is a focusing
parameter. The purpose of the modulation factor is to reduce
the weights of easily categorizable ECG beats so that the
model is more focused on ECG beats that are difficult to
classify during training. When an ECG beat is misclassified
and ¥ is small, the value of the modulation factor is close to 1
and the loss is barely affected. Loss value is calculated using
FL according to the block diagram in Figure 5.

Optimization of the network parameters is important.
There are many types of gradient descent optimization al-
gorithms, such as Adagrad, Adadelta, Adam, and Nadam.
This work uses the Nadam algorithm. This is an effective
gradient descent optimization algorithm that combines the
Adam and NAG algorithms to calculate adaptive learning
rates for different parameters. Overall, Nadam performs
better than other gradient descent optimization methods in
practical applications [32].

3. Experiment and Results

3.1. Experiment Setup. The LSTM network proposed in this
study ran on the deep learning framework Tensorflow 1.12.0
in the Microsoft Windows 10 64 bit operating system. The
computer server was configured with an 8-GB Intel (8) Core
(TM) i5-7000 processor. Considering the effectiveness of the
classification results, we set the epochs to 350. The loss curve
and accuracy curve during the training and verification
process of the LSTM network using FL (y = 2) are shown in
Figure 6. By observing the curve of Figure 6, after 350
epochs, the network converged and the overall classification
accuracy was stable. The average time required to train the
model in one epoch was approximately 191s. Please note
that this epoch setting was only used to easily evaluate the
impact of other learning parameters on the network clas-
sification results and is not guaranteed to be the best con-
figuration for LSTM network.
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3.2. Materials. We used the MIT-BIH arrhythmia database
provided by the Massachusetts Institute of Technology [33].
It comes from 47 clinical patients and contains 48 annotated
ECG records. Each group is approximately 30 minutes long
and is sampled at a rate of 360 Hz by a 0.1-100 Hz band pass
filter, for a total of approximately 650,000 sample points.

There are more than 109,000 marker beats from 16
heartbeat categories. All beats are marked by two or more
cardiologists. The normal category has the most data vol-
ume, and the category with the least data are supraven-
tricular premature beats (only two samples). This study used
eight ECG beat types: N, LBBB, RBBB, APC, NESC, ABERR,
NPC, and AESC. These beat types and their statistics are
listed in Table 1.

From Table 1, it is found that there is a heavy imbalance
between normal and abnormal ECG beats. Because of im-
balanced ECG beat data, the network model tends to learn
the distribution of major ECG beat data, while there is
insuflicient learning of minority ECG beat data, and we are
often concerned with the lesser categories of abnormal ECG
beats.

The dataset had a total of 93,371 ECG beats. We used
10% of all ECG data as the testing set. In the remaining ECG
data, 90% of the data were used as the training set and 10% as
the validation set. The training and validation sets were used
to adjust the parameters and determine the optimal number
of elements of the designed model. The model performance
was evaluated using a testing set that was not previously
used.

3.3. Evaluation Metrics. We used five metrics to evaluate the
performance of the proposed network: accuracy, recall,
precision, specificity, and F1 score. Accuracy is the pro-
portion of correctly classified ECG beats of all ECG beats,
which reflects the consistency between test results and real
results. However, recall, precision, and specificity are less
biased in evaluating the performance of the classifier on the
imbalanced dataset. The F1 score is the harmonic mean of
precision and recall. Five evaluation metrics can be calcu-
lated as follows:

TPs + TNs
ACC = ’
(accuracy) TPs + TNs + FPs + FNs
TPs
E ) = ———
R (reca ) TPs + FNs
TPs
PR ision) = 5 50 i
(precision) TPs + FPs X
TNs
P ificity) = —————-
SP (specificity) TNs + FPs
2 x RE x PR
Fl=—r—r
RE + PR

The classification categories in this study are not binary,
so we use the confusion matrix to express the TP, FP, TN,
and FN metrics built for a classification test. The confusion
matrix makes it easy to generate the above four metrics.
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3.4. Network Parameter Configuration. To obtain the best
learning parameters of our proposed LSTM network, we
quantitatively analyzed the impact of different learning
parameters on the experimental results. The optimal pa-
rameter value was determined by evaluating the classifica-
tion accuracy of the experimental results of multiple cases on
the testing set.

After 350 epochs, the LSTM network converged and the
classification accuracy was stable. The settings of the LSTM
network parameters to obtain the best classification accuracy
are shown in Table 2.

In this experiment, we analyzed the impact of various
learning parameters on the classification performance of the
proposed LSTM network with FL. The primary network
parameters included the dropout, batch size, and y pa-
rameter of FL.

We evaluated different dropouts for the proposed net-
work with an increasing dropout proportion. The other
learning parameter settings took the default values in

Table 2. Table 3 shows the classification accuracy on the
testing set with different dropout proportions after 350
epochs.

By comparing the results of Table 3, we can see that the
performance of our proposed LSTM network is not im-
proved by increasing the dropout proportion. Therefore, the
optimal dropout value of the LSTM network structure is
around zero.

Then, we studied the effect on the LSTM network per-
formance of changing the initial settings of the batch size.
We evaluated the performance of five different batch sizes, as
shown in Table 4.

Based on the results of Table 4, increasing or decreasing
the size of the batch does not necessarily improve the
performance of our proposed LSTM network. A larger batch
size allows for more accurate estimation of the gradient, but
it is prone to overfitting. The small batch size has a stan-
dardizing effect, but there is a risk of inefficiency, and it is not
possible to stop or to not match the strategy early. For the
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FIGURE 6: Training of the LSTM with FL (y = 2). (a) Loss curve. (b) Accuracy curve.

TaBLE 1: ECG beat types used in this work.

ECG beat types Annotation Number of beats
Normal beat N 75,020

Left bundle branch block LBBB 8,072
Right bundle branch block RBBB 7,255
Atrial premature contraction APC 2,546
Nodal (junctional) escape beat NESC 229
Aberrated atrial premature beat ABERR 150
Nodal (junctional) premature beat NPC 83

Atrial escape beat AESC 16

Total — 93,371

TaBLE 2: LSTM network default parameter settings.

LSTM cells Network layers Optimizer Dropout Epoch Batch size Cost function y
64 4 Nadam 350 128 Focal loss 2

TasLE 3: Classification accuracy of different dropout proportions.

Dropout 0 010 015 0.20 025 0.30
ACC of testing set (%) 99.26 98.7 99.21 98.46 99.09 99.07

TaBLE 4: Classification accuracy of different batch sizes.

Batch size 32 64 128 256 512
ACC of testing set (%) 81.20 97.87 9926 99.11 98.72

dataset and network structure used in this paper, the optimal
batch size is 128.

The y parameter is the most critical parameter for FL.
The effect of changing y on the performance of our proposed
LSTM network was investigated. The effect on the distri-
bution of the loss for abnormal ECG beats was minor. For
normal beats, however, increasing the value of the parameter
y heavily reduced the loss of correctly classified normal
beats, allowing the model to focus on the misclassified
abnormal ECG beats. After 350 epochs, the classification

accuracy associated with the testing dataset was calculated
and is given in Table 5 for six y values. The other learning
parameters are the same as in Table 2.

From the results shown in Table 5, we can see that in-
creasing or decreasing y did not improve the performance of
the LSTM network with FL. The best y parameter value is 2
for the proposed network.

4. Results and Discussion

In this study, we proposed a LSTM network structure to
achieve the goal of imbalanced ECG signal classification. The
ECG beat data were classified by the LSTM network, and
then, we trained the LSTM network using FL. By setting the
CE as the benchmark, the feasibility of using the FL to
classify the imbalanced ECG beats was proved. We verified
the effectiveness of the LSTM network structure by com-
paring with state-of-the-art methods.

Performance measures of the model were evaluated
using a confusion matrix. The cost function of the LSTM



Journal of Healthcare Engineering

TaBLE 5: Overall accuracy of FL over different y parameter.

y parameter 0 0.5 1 2 3 4
ACC of testing set (%) 98.85 99.08 99.03 99.26 99.11 98.82

network uses CE to calculate the confusion matrix on the
testing set, as shown in Figure 7(a). The diagonal values in
the confusion matrix represent the correct classification of
ECG beats. Other LSTM network structure parameters
(except y) are the same as in Table 2. The cost function of the
LSTM network uses FL to calculate the confusion matrix on
the testing set, as shown in Figure 7(b). Other LSTM net-
work parameters are the same as in Table 2.

By comparing and analyzing the confusion matrix of
LSTM network with CE and LSTM network with FL in
Figure 7, we can see that the LSTM network with FL
performs better on the imbalanced ECG dataset than the
LSTM network with CE. When the FL is examined, it
appears that the LSTM network provides better recognition
performance over most classes. Examining the CE, the
LSTM network appears to provide lower recognition
performance over most class. Also, for the CE, 41 APC
beats are misclassified into N beats, while for the FL (y = 2),
32 APC beats are misclassified into N beats. This is because
there is no big difference in the shape of the two beats, but
there is a specific, difficult-to-position wave anomaly (e.g.,
the PR segment is extended). Table 6 shows the PR, RE, SP,
and F1 of the LSTM network with CE and LSTM network
with FL on the testing set.

By comparing the results in Table 6, the validity of the
LSTM network with FL is verified on imbalanced ECG data.
From this table, it can be observed that the LSTM network
with FL (y = 2) achieves an ACC of 99.26%, a RE of 99.26%,
a PR of 99.30%, a SP of 99.14%, and an F1 score of 99.27%.
The LSTM network with CE achieves 98.70% ACC, 98.70%
RE, 98.05% PR, a SP of 98.75%, and 98.36% F1 score. Al-
though the performance improvement by the LSTM net-
work with FL seems not to be large compared to that of the
LSTM network with CE, in a real diagnosis, even a minor
accuracy improvement can hold great value for human
health and life.

To more intuitively compare the effectiveness of the
above two methods (CE and FL), we next analyze the results
using the precision-recall curve (PR curve). For the category
imbalance problem, the PR curve is considered to be su-
perior to the receiver operating characteristic curve (ROC
curve) [34]. As shown in Figure 8, for the input of the
imbalanced ECG data, the PR curve of each category is
drawn from the classification results using the CE (shown in
Figure 8(a)) and the FL (shown in Figure 8(b)), respectively.
Compared with the CE, when the LSTM network proposed
in this paper uses the FL, most categories obtain a relatively
high area under the PR curve (AUC). Therefore, our pro-
posed LSTM network with FL is effective in solving the
category imbalance ECG dataset.

To verify the robustness of the proposed LSTM network
with FL in a noisy environment, the network is also analyzed
without denoised and the results are listed in Table 7. The
performance measurements in Table 7 show that the LSTM

network with FL (y = 2) achieved a classification result close
to the result of denoised ECG recordings. It shows the
advantages of denoised network and also illustrates the
robustness of the network.

The proposed network can be deployed in telemedicine
scenarios. The ECG data of heart patients are collected
through wearable devices and transmitted to the cloud via
the Internet. Data analysis is carried out through the pro-
posed model in this study to assist cardiologists into more
accurately and objectively diagnose ECG signals.

The proposed model was primarily studied on the MIT-
BIH arrhythmia database. According to the AAMI standards
(ANSI/AAMI EC57: 1998), all the beats in the MIT-BIH
arrhythmia database are grouped into five main classes.
However, this is not always desirable. The type of arrhythmia
can be judged by the specific ECG beat and the regularity of
the beat type. Repeated APC beats can become dangerous
arrhythmias such as atrial fibrillation when a patient has a
potential structural heart problem. Bundled branch blocks
impede the normal pathway of electrical impulses through
the conduction system to the ventricles. This causes asyn-
chronous ventricular contractions and heart function de-
terioration, which may lead to life-threatening situations.

To assess the performance of the proposed network, we
compared it to some state-of-the-art methods in the liter-
ature. We record the performance of the proposed network
model (in bold) and the recent representative techniques for
ECG beat classification using the MIT-BIH arrhythmia
database in Table 8.

From Table 8, it is evident that our proposed LSTM
network with FL achieved good performance. The difference
between our study and other studies in the literature is that
we used deep learning to classify category-imbalanced ECG
beat data. For the classification of class-imbalanced ECG
arrhythmias, we proposed a LSTM network with FL. There
are also studies in the literature on the classification of
imbalanced ECG data [24, 25]. The main difference is that
our study uses FL that modifies the loss function, which
makes the LSTM network more focused on feature learning
of abnormal ECG beats that are prone to misclassification
and improves the accuracy of arrhythmia classification.
Regarding the RE, our proposed LSTM network with FL
achieved a best result on the testing set. This means that it
has a smaller number of false negatives, i.e., abnormal ECG
beats which are erroneously classified as normal ECG beats.
Furthermore, this method avoids the problem of the effective
information reduction caused by the undersampling method
or the problem of the network training time increase caused
by the oversampling method.

The highlights of our proposed network are as follows:

(i) Feature extraction and selection techniques are not
needed

(if) Our important finding is that the proposed method
can improve the classification accuracy rate of
categories with arrhythmia

(iii) Our proposed method is robust under without
denoised ECG recordings
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FIGURE 7: Confusion matrix obtained by the LSTM network using different loss functions on the testing set: (a) CE and (b) FL (y = 2).

TaBLE 6: LSTM network classification results on the testing set using two different loss methods.

Cost function ACC (%) RE (%) SP (%) PR (%) F1 (%)
Cross entropy 98.70 98.70 98.05 98.75 98.36
Focal loss (y = 2) 99.26 99.26 99.14 99.30 99.27
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FIGURE 8: Precision-recall curves for every class. (a) Using CE and (b) using FL (y = 2) method.
TaBLE 7: LSTM network with FL (y = 2) classification results on the testing set.
ACC (%) RE (%) SP (%) PR (%) F1 (%)
Denoised 99.26 99.26 99.14 99.30 99.27

Without denoised 99.07 99.07 98.99 99.13 99.09
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TaBLE 8: Comparison between the related work and the method proposed in this work.

Works Year Classes Methods ACC (%) RE (%) SP (%)
Martis et al. [35] 2013 5 beat types DCT + PCA, PNN 99.52 98.69 99.91
Raj et al. [7] 2016 16 beat types DOST, SVM-PSO 99.18 — —
Sharma and Ray [36] 2016 6 beat types EMD, HHT, SVM 99.51 98.64 99.77
Gutiérrez-Gnecchi et al. [37] 2017 8 beat types PNN 98.89 — —
Jung and Lee [38] 2017 4 beat types WKNN 96.12 96.12 99.97
Li et al. [6] 2017 6 beat types GA-BPNN 97.78 97.86 99.54
Rajesh and Dhuli [25] 2018 5 beat groups DBB, AdaBoost 99.10 97.90 99.40
W. Li and J. Li [14] 2018 16 beat types LDP, DNN 98.37 — —
Yildirim. [20] 2018 5 beat types DULSTM-WS2 99.25 — —
Oh et al. [22] 2018 5 beat types CNN-LSTM 98.10 97.50 98.70
Plawiak and Acharya [39] 2019 17 classes DGEC 99.37 94.62 99.66
Yildirim et al. [21] 2019 5 beat types LSTM 99.23 99.00 99.00
Our work 2019 8 beat types LSTM, FL 99.26 99.26 99.14

DCT: discrete cosine transform; GMM + EM: Gaussian mixture modeling with enhanced expectation maximization; DOST: discrete orthogonal stockwell
transform; SVM-PSO: PSO-tuned support vector machine; EMD: empirical mode decomposition; HHT: Hilbert-Huang transform; PNN: probabilistic
neural network; WKNN: weighted k-nearest neighbor; NRSC: neighborhood rough set; DWT: discrete wavelet transform; GA-BPNN: genetic algorithm-
backpropagation neural network; DNN: deep neural network; DULSTM-WS: deep unidirectional LSTM network-based wavelet sequences; DBLSTM-WS:
deep bidirectional LSTM network-based wavelet sequences; LDP: local deep field; DBB: distribution-based balancing; FL: focal loss; DGEC: deep genetic

ensemble of classifiers.

The disadvantages of our proposed network are as
follows:

(i) This study is conducted only on eight ECG beat types

(ii) The proposed network is the time cost of the training
phase

5. Conclusions and Future Work

In this study, we proposed a LSTM network with FL to
improve the training effect by inhibiting the impact of a
large number of easy normal ECG beat data on model
training. The results show that the LSTM network with FL
achieved an accuracy, recall, precision, specificity, and F1
score of 99.26%, 99.26%, 99.30%, 99.14%, and 99.27%,
respectively. Experimental results of the MIT-BIH ar-
rhythmia database demonstrate the effectiveness and ro-
bustness of the proposed network. The proposed method
can be deployed in telemedicine scenarios to assist car-
diologists into more accurately and objectively diagnosing
ECG signals.

The study was conducted only on eight ECG beat types.
To generalize the results, various types and numerous beats
should be incorporated in future research. And, we also plan
to add different levels of noise to ECG signals to discuss the
performance of the LSTM with the FL model.
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Motor imagery is one of the classical paradigms which have been used in brain-computer interface and motor function recovery.
Finger movement-based motor execution is a complex biomechanical architecture and a crucial task for establishing most
complicated and natural activities in daily life. Some patients may suffer from alternating hemiplegia after brain stroke and lose
their ability of motor execution. Fortunately, the ability of motor imagery might be preserved independently and worked as a
backdoor for motor function recovery. The efficacy of motor imagery for achieving significant recovery for the motor cortex after
brain stroke is still an open question. In this study, we designed a new paradigm to investigate the neural mechanism of thirty
finger movements in two scenarios: motor execution and motor imagery. Eleven healthy participants performed or imagined
thirty hand gestures twice based on left and right finger movements. The electroencephalogram (EEG) signal for each subject
during sixty trials left and right finger motor execution and imagery were recorded during our proposed experimental paradigm.
The Granger causality (G-causality) analysis method was employed to analyze the brain connectivity and its strength between
contralateral premotor, motor, and sensorimotor areas. Highest numbers for G-causality trials of 37 £ 7.3, 35.5 + 8.8, 36.3 + 10.3,
and 39.2 +9.0 and lowest Granger causality coefficients of 9.1 +£3.2, 10.9+3.7, 13.2+ 0.6, and 13.4 + 0.6 were achieved from the
premotor to motor area during execution/imagination tasks of right and left finger movements, respectively. These results
provided a new insight into motor execution and motor imagery based on hand gestures, which might be useful to build a new
biomarker of finger motor recovery for partially or even completely plegic patients. Furthermore, a significant difference of the
G-causality trial number was observed during left finger execution/imagery and right finger imagery, but it was not observed
during the right finger execution phase. Significant difference of the G-causality coefficient was observed during left finger
execution and imagery, but it was not observed during right finger execution and imagery phases. These results suggested that
different MI-based brain motor function recovery strategies should be taken for right-hand and left-hand patients after
brain stroke.

1. Introduction pathway between brain and computer using noninvasive

measurements [1, 2]. Several classical BCI paradigms were
EEG-based brain-computer interfaces (BCIs) have been  developed for helping handicapped people to interact with
used for building an advanced communication or control  the environment by controlling a smart home, robotic arm,
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and a wheelchair using brain activity based on event-related
potential (ERP) such as the P300 wave [3, 4] or based on
steady-state visually evoked potential (SSVEP) [5] and
motor imagery [6, 7].

The mental process during motor execution or motor
imagery has been widely used for building BCI systems in
several domains [8-10]. This mental process has also showed
the potential applications in the rehabilitation field for
patients who suffered from brain strokes [11, 12]. These
patients who lost some motor functions after brain stroke
might be able to reactivate some brain areas such as sen-
sorimotor area [13] by using BCI based on motor imagery as
one of the most effective surrogate motor training methods
[14]. When patients perform or imagine hand gestures or
finger movements during rehabilitation exercise sessions,
they activate more areas of the brain and therefore maximize
the neuroplastic benefits. These kinds of movement require a
greater overall activation of muscle contraction and there-
fore probably require the firing of a greater number of
cortical cells. Furthermore, the sophisticated movements of
fingers are important to accomplish many complex tasks in
daily life. Unfortunately, the patient who suffered contra-
lateral hemiparesis after brain stroke lose the ability of
moving their fingers which means they lose the ability of
motor execution [15, 16]. Stroke is a kind of impaired ce-
rebrovascular diseases. The number of patients who suffered
from this disease in recent years was about 2 million per
year, age standardized incidence is about 21/6250, and 70%~
80% of stroke patients have different degrees of movement
disorders. Based on the motion, performing physical therapy
is helpful for the recovery of motor function in patients with
cerebral apoplexy but requires patients to have a certain
ability of independent movement. Most stroke patients have
poor exercise ability in the early rehabilitation stage, during
which exercise imagination therapy can play an important
role [17, 18]. However, the ability of motor imagery might be
a useful option for restoring and recovering the motor
functions [19, 20]. Which kind of motor imagery strategy is
more suitable according to the patients’ condition, e.g.,
subject-dependent recovery protocol, and which kind of
feature is more suitable to evaluate subject-dependent motor
function can be evaluated and can be employed to build a
neurofeedback system to improve the motor recovery
protocol. Whether the brain connectivity can be used as an
effective feature for motor function evaluation and motor
recovery is found. The efficacy of motor imagery for neural
prosthetics control and motor recovery after brain stroke is
still very much an open question.

Beta-band activities play an important role in motor
imagery. In previous research papers, researchers noticed
that event-related desynchronization occurs during left
hand, right hand, foot, and tongue motor imagery tasks
[21-23]. They showed a significant usage of beta-band ac-
tivities for motor recovery in stroke patients [17-24].

Brain function is increasingly understood to be a result
of extensively interconnected neurons which means the
brain connection reflects the brain function such as de-
cision-making [25-27] and motor function recovery [28-
31]. Asymmetry also exists in the perspective of functional
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connectivity [32]. It has been shown that right-handed
subjects who completed the motor imagination tasks with
the right hand had more effective connections between the
auxiliary motor area and other brain regions than those who
completed the motor imagination tasks with the left hand
and so on. This lateralization of the cerebral cortex may be
related to the asymmetry of the brain structure of right-
handed subjects [33].

To investigate the brain connectivity during finger motor
execution and motor imagery tasks, a new EEG experimental
paradigm using thirty finger gestures was designed. Right-
handed subjects only participated in the proposed experi-
ment. First, they were instructed to watch a short video and
mimic the finger movements by performing the movements.
Second, they were asked to imagine the finger movements
for sixty trials for each movement. However, we investigated
beta-band activity of EEG signals which was recorded and
extracted from both scenarios: motor execution and motor
imagery. Also, the Granger causality (G-causality) analysis
method was applied to calculate the brain network between
contralateral primary motor area, premotor area, and pri-
mary sensory area. G-causality coefficients of motor exe-
cution and imagery under left-hand and right-hand
conditions were computed and analyzed. G-causality is the
most adopted criterion for causal inference in brain re-
cordings knowing that the number of G-causality over many
trials or observation epochs means how many times sta-
tistically significant brain connection was built and the
coefficients of G-causality indicate the strength of the brain
connections. Using these G-causality characteristics, we
were able to investigate the efficacy of motor imagery of
finger movements using noninvasive measurements and
compare it with motor execution.

2. Method

2.1. Data Recording and Experimental Paradigm. For re-
ducing signal interferences, EEG experiments were held in
the electromagnetic shielding room (Figure 1) at Beijing
Anding Hospital, Capital Medical University, China. This
study was approved by the Ethics Committee of North China
University of Science and Technology, Hebei Province,
China (Number: 2019002). All participants provided written
informed consent. Eleven healthy people (7 males and 4
females) were recruited to participate in this study. All of
them are right-handed and have no experience in motor
execution and/or motor imagery EEG-based BCI experi-
ments. Chirality is determined by the Edinburgh handedness
inventory (EHI). EHI produces scores ranging from —100
(strongly left handed) to 0 (unbiased handedness) and 100
(strongly right handed). The average score of handedness of
the subjects is 90.84, and the standard deviation is 5.79. The
average age of them is 25 years (the range is from 22 to 27).

The subjects were instructed to sit down on a com-
fortable chair in front of the computer screen which was
about 50 cm away from their eyes. Before the experiment, a
clear explanation of the framework of experimental para-
digm was given to the subjects. The experimental paradigm
was designed by using E-prime which is a software package
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(a)

(b)

F1GURE 1: Experiment setup of real-time recording of EEG signals during performing or imagining finger movements. We can see in this
picture, two subfigures from left to right: the experimental electromagnetic shielding room and the data collection and analysis platform Net
Station (i.e., real-time streaming, recording, and some preprocessing of multichannel EEG data) and experimental paradigm interface.

used to design and run simulation experiments, with a focus
on psychological and cognitive science.

The 128 EEG channels were recorded during two sce-
narios: motor execution and motor imagery of finger
movements by using EGI signal acquisition system (Brain
products, Germany). The sampling rate was 1000 Hz, where
oversampling produced no significant changes in timing and
amplitude. As recording setting, EEG signals were band
passed from 0.1 Hz to 50 Hz and saved with the Net Station
system, as shown in Figure 1. We removed high frequency
bands such as high and low gamma bands because it is hard
to get them in a single trial using noninvasive measurements
such as EEG.

In the beginning of each session, a clear guideline of the
proposed experiment was shown in the screen to guide the
subjects and make them more familiar with the experimental
paradigm process. The subjects were able to understand fully
the experimental paradigm and complete the whole in-
structions more attentively. The subjects could take few
minutes’ rest after each session.

For each trial, the finger gestures during execution and
imagery phases were arranged within 15s, containing three
instructions or tips of 2 seconds for each task, gesture video
of 3, finger motor execution of 3 s, and motor imagery of
3s. Task tip 1 indicates that the video will start. One of thirty
finger movements was shown randomly during the gesture
video time. Task tips 2 and 3 indicated the subjects to
perform or imagine the same finger movement at motor
execution and motor imagery phases, respectively. Then, the
subject can take a rest at a duration from 6 seconds to 8
seconds. Then, the next trial will be conducted (Figure 2).

2.2. Brain Region of Interest Selection. In this research, the
difference between motor execution and motor imagery was
investigated. The premotor area, primary motor area, and
primary sensory area might be the most relevant brain areas
during performing and imagining a finger movement. The
position of 128 channels is shown in Figure 3. Due to the low
spatial resolution of EEG signals, two electrodes E13 and E20
and E112 and E118 were averaged to calculate the brain

activities of the left and right premotor area, respectively,
according to location of the premotor area in previous EEG-
TMS research [34]. The electrodes E36 correspond to the left
motor areas. The electrodes E104 correspond to the primary
right motor areas. The electrodes E52 correspond to the left
primary sensory areas. The electrodes E92 correspond to the
right primary sensory areas.

2.3. EEG Data Processing. The EEGLab toolbox [35] was
used for the preprocessing phase of raw EEG data. In this
phase, we have checked the quality of EEG signals by
checking the signal-to-noise ratio. Then, the bad channels
with obvious artifacts (e.g., clear muscles artifact or strong
blink) were removed using EEGLab functions and were not
included in results analysis. However, few trials only were
not recorded correctly. In our proposed experiment, 60 trials
of EEG signals for each subject were recorded for left and
right finger movements during motor execution and motor
imagery phases. The numbers of valid trials of each subject
are shown in Table 1.

The 128 EEG signals were down sampled from 1 KHz to
500 Hz for reducing data size. Then, the baseline of EEG
signals was reset called baseline drift [36]. There are several
methods to remove baseline drift, such as the median fil-
tering method [37], wavelet transform method [38], high-
pass filtering method [39, 40], and curve fitting method [41].
In this paper, weighted least squares- (WLS-) [42] based
local linear regression method is employed to fit the original
data of each segment to zero. Figures 4 and 5 show EEG
signals before and after removing baseline drift, respectively.

The ICA method was used to remove the artifact in EEG
signals such as eye movements (EOG signal) per session. At
first, EEG signals were decomposed by ICA, and the limited
number of components was determined through the
whitening stage of PCA. The ICA decomposed components
in spatial distribution map of each EEG signal are shown in
Figure 6, respectively. It was clear that the energy of the
second component was mainly concentrated in the area
around the eyes, which was consistent with the EOG signal
area in the prefrontal cortex. Thus, artifact of the eye
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FIGURE 2: The experimental paradigm. The gesture execution and imaginary phase contains three task tips and three duration of playing
gesture video (3 seconds), motor execution, and imagery (2 seconds), in which each of thirty finger movements were used. Thirty finger
movements are okay, no, begun to refer, phase modulation, crane, right, scope, aircraft, geometry, crowded, scissors, cut, there, kneading,
clap, planer, money, broom, fan, double, frost, question marks, grip, rain, circuitous, approximately equal to, blame, recruit, at noon, and

catch.

movement can be removed from EEG signals by deleting the
second component.

After removing the eye movements’ artifacts, the beta-
band activities (14-30 Hz) during —0.5 to 3 second periods of
the motor execution and imagery onset were feature selected
for Granger causality brain connectivity calculation.

2.4. Granger Causality Brain Connectivity Calculation.
The Granger causality analysis model is based on the
autoregressive model, which depends on the time priority of
signals and can be used to measure the degree of mutual
influence between signals. And it can be used to explore the
temporal relationship between regions of interest in order to
reveal the directional information flow between brain re-
gions. The Granger causality analysis model was already
used for computing the brain connection of decision-
making and motor recovery [25-29], which showed that the
Granger causality analysis is effective for analyzing the brain.

Given the two wide-sense stationary time series X and Y,
which have constant means and variances. If the predictive
effect of the variable X by using the past information of X
and Y is better than the predictive effect using the past
information of X significantly, then the variable X is the

Granger cause by the variable Y [43]. The autoregressive
model of X can be calculated by the following equation.
Constrained regression model:

p
X, =ay+ Z o X, + e, (1)

i=1

Unconstrained regression mode (u):
P q
X, =g+ ) aX, ;+Y BY, +e, (2)
i=1 i=1

where o, represents the constant term; p and g are the
maximum lag number of variables X and Y, respectively; and
¢ and ¢, denoted residuals of constrained and un-
constrained regression models, respectively. The Bayesian
information criterion (BIC), Akaike information criterion
(AIC), and experiential method are usually used to calculate
the lag number of the regression model. In the study, the
max lag of X and Y was set to 20.

The sum of squared residuals of constrained regression
models can be calculated by the following equation:

RSS, = (p + 1)e.. (3)
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FI1GURE 3: The EEG electrode position of 128 channels. Using the EGI signal acquisition system Net Station (Brain product, Germany), 128
EEG channels were recorded.

TABLE 1: Number of valid trials.

Left finger execution Left finger imagery Right finger execution Right finger imagery
Subject 1 55 53 58 56
Subject 2 54 50 52 54
Subject 3 56 56 49 53
Subject 4 50 48 54 54
Subject 5 56 58 52 54
Subject 6 46 52 54 50
Subject 7 54 54 56 56
Subject 8 58 58 56 58
Subject 9 53 54 57 55
Subject 10 53 54 53 57
Subject 11 30 44 58 55

The sum of squared residuals of unconstrained re- (RSS, —RSS,,)/p 5)

gression models can be calculated by the following equation: = RSS, /(T -p—q-1)
2
RSS,, = (p+ D, (4)  where Tis the number of sample size which used to estimate

X. p and q are the maximum lag number in the regression
Then, the F test was applied to confirm the statistics ~ model. If the signification is confirmed, variable Y Granger
significant of the residuals: causes variable X.
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FIGURE 4: Representative EEG signals before baseline drift. There is a total of 128 channels of data. The figure shows the EEG waveform of
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FiGUre 5: EEG signals after baseline drift. There is a total of 128 channels of data. The figure shows the EEG waveform of 1-20 channels.

According to the definition of Granger, the causality
coefficient of Y on X can be calculated as

var (sx).
var(e, )

Noted that there exists two kinds of Granger causality
interrelations Fy_ ,y and Fy__y, but Fy_  y# +Fy .

In this study, EEG signals which were recorded from
contralateral premotor, primary motor, and primary sensory
area in motor execution and imagery experiment were set as
X and Y, and Granger causality relation was calculated trial
by trial.

For example, EEG signal in the premotor area was set as
Y, and EEG signal in the motor area was set as X. If Fy,__y,
we noted this relationship as Granger causality from the
premotor to motor area.

(6)

Fy_x=In

There are six Granger causality relations between con-
tralateral different brain areas: from premotor to motor,
from premotor to sensory, from motor to sensory, from
motor to premotor, from sensory to premotor, and from
sensory to motor. Because some trials do not have any static
significant relation, the number of Granger causality trials
was computed. Then, the Granger causality coefficient of
significant Granger causality trials was calculated.

3. Result

The G-causality result of one trial from premotor to motor is
shown in Figure 7. In Figure 7(a), the beta-band activities of
premotor and motor EEG signals are shown. In Figure 7(b),
the original motor EEG and predicted signal only from
motor EEG and predicted signal from premotor EEG and
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FIGURE 6: Spatial distribution map of ICA decomposition components. After ICA processing, 18 independent components are obtained,
which can be seen as eye electrical components from the second component.

motor EEG are shown, respectively. From Figure 7(c), the
predicted error reduced by using premotor EEG and motor
EEG. Thus, significant Granger causality exists in this trial.

The number of trials which has Granger causality re-
lation during left finger execution, left finger imagery, right
finger execution, and right finger imagery experiment is
shown in Tables 2-5, respectively. The bold number showed
the highest number of Granger causality trial between the
premotor to motor area. The number of trials from right
premotor to motor area was 37 +7.3 (mean * standard de-
viation), from premotor to sensory area was 29.7 +11.3,
from motor to sensory area was 27.8 + 10.6, from motor to
premotor area was 23.5 + 7.9, from sensory to premotor area
was 23.4+7.5 and from sensory to motor area was
28.5+12.9 during left finger execution.

A two-way ANOVA is then applied to analyze the
number of Granger causality trials between different brain
areas. The number of Granger causality from right premotor
to right motor area is significantly higher than from right
motor to right premotor and from right sensory to right
premotor area (Fjg5=4.51, p=1.8x107), and no other
significant differences are observed between the number of
Granger causality trials between brain areas during the left
finger execution phase.

The number of Granger causality from the right pre-
motor to right motor area is significantly higher than that
from the right sensory to right premotor area (F;o5=2.41,

p=492x 1072), and no other significant differences are
observed between the number of Granger causality between
brain areas during the left finger imagery phase.

No significant differences are observed between the
number of Granger causality between the whole brain areas
(F105=1.99, p =9.67 x 1072) during the right finger exe-
cution phase.

The number of valid Granger causality trials from left
premotor to left motor area, left motor to left sensory area,
and left premotor to left sensory are significantly higher than
that from right sensory to right premotor area (F5=11.03,
p =3.44x1077), from left motor to left motor area is sig-
nificantly higher than left motor to left premotor area, and
no other significant differences are observed between the
number of Granger causality between brain areas during the
right finger imagery phase.

The Granger causality coeflicient of the Granger cau-
sality trial during left finger execution, left finger imagery,
right finger execution, and right finger imagery experiment
is shown in Tables 6-9, respectively. The bold number
showed the lowest Granger causality coeflicient between the
premotor to motor area. The number of trials from right
premotor to motor area was 9.1 +3.2, from premotor to
sensory area was 13.9 + 0.6, from motor to sensory area was
13.8 £ 0.7, from motor to premotor area was 14.1 + 0.5, from
sensory to premotor area was 13.6 + 0.7, and from sensory to
motor area was 13.2 +0.8 during left finger execution.
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FIGURE 7: Granger causality result of one finger movement trial.
TasLe 2: The number of Granger causality trials in left finger No other significant Granger causality coefficient dif-
execution. ferences are observed between brain areas (Fjos=0.39,
To p = 0.85) during the right finger imagery phase.
From
PMA right MA right SA right . .
PMA right NAN 37+7.3 297+113 4 Discussion
MA right 23.5+79 NAN 27.8+10.6 The brai . Ived i . d
SA right 234475 28.5+12.9 NAN e brain areas involved in motor execution and motor

A two-way ANOVA is then applied to analyze the
Granger causality coeflicient between different brain areas.
The Granger causality coefficient from right premotor to
right motor area is significantly lower than other brain areas
(F105=23.09, p=6.16%x10712), and no other significant
Granger causality coefficient differences are observed be-
tween brain areas during the left finger execution phase.

The Granger causality coeflicient from right premotor to
right motor area is significantly lower than other brain areas
(F105=6.03, p=193%x10"*), and no other significant
Granger causality coefficient differences are observed be-
tween brain areas during the left finger imagery phase.

No other significant Granger causality coefficient dif-
ferences are observed between brain areas (Fjos=0.89,
P = 0.49) during the right finger execution phase.

imagery were investigated by using fMRI [44-46] and PET
[44]. Stephan et al. suggested that imaginative motion ac-
tivated medial and lateral premotor areas, anterior cingulate
areas, and ventral motor anterior areas. The motor execution
associated with imaginative movement leads to additional
activity in the left primary sensory cortex and premotor area,
the premotor cingulate area, and the rostral portion of the
left superior parietal cortex [44]. Porro et al. also supports
the hypothesis that motor imagery and motor execution are
involved in overlapping neural networks in peripheral
cortical regions [45]. Ehrsson et al. demonstrated that
voluntary motion images of fingers, toes, and tongue acti-
vated specific motion representations of corresponding body
parts especially in the lateral primary motor cortex [46].
These researches showed that the motor execution and
motor imagery of finger movement shared some common
brain areas and can be distinguished in premotor areas.
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TaBLE 3: The number of Granger causality trials in left finger
imagery.

To
From
PMA right MA right SA right
PMA right NAN 355+8.8 29.3+8.8
MA right 271+£9.2 NAN 28.3+10.7
SA right 25.5+7.4 314+12.4 NAN

TaBLE 4: The number of Granger causality trials in right finger
execution.

T
From ©
PMA left MA left SA left
PMA left NAN 36.3+10.3 34.5+8.2
MA left 24.5+10.9 NAN 30.5+9.3
SA left 25.6+9.6 31.8+9.4 NAN

TaBLE 5: The number of Granger causality trials in right finger
imagery.

To
From
PMA left MA left SA left
PMA left NAN 39.2+9.0 36.1+7.7
MA left 242 +5.7 NAN 33.1+9.1
SA left 22.3+5.6 314+7.4 NAN

TABLE 6: Granger causality coeflicient of left finger execution.

To
From . . .
PMA right MA right SA right
PMA right NAN 91+3.2 13.9+£0.6
MA right 141+0.5 NAN 13.8+0.7
SA right 13.6 £0.7 13.2+£0.8 NAN

TaBLE 7: Granger causality coefficient of left finger imagery.

To
From . . .
PMA right MA right SA right
PMA right NAN 10.9+£3.7 14.0 £ 0.6
MA right 14.0+0.4 NAN 13.9+£0.7
SA right 13.5+£0.9 13.3£0.5 NAN

TaBLE 8: Granger causality coefficient of right finger execution.

T
From °
PMA left MA left SA left
PMA left NAN 13.2+0.6 13.4+0.9
MA left 13.6+0.7 NAN 13.6+1.1
SA left 13.7+0.9 13.7+0.6 NAN

Motor imagery may serve as a potential motor training to the
rehabilitation of motor control [47] for the patients who
suffered from severe upper limb contralateral hemiparesis
after brain stroke [48, 49].

9
TaBLE 9: Granger causality coefficient of right finger imagery.
To
From
PMA left MA left SA left
PMA left NAN 13.4+£0.6 13.4+0.8
MA left 13.7+£0.8 NAN 13.6 £1.0
SA left 13.6 £0.8 13.5+£0.6 NAN

In this paper, we investigated the neural mechanism of
thirty finger movements in two scenarios: motor execution
and motor imagery using the G-causality analysis model.
Eleven subjects joined the experiment and performed and
imagined left and right finger gestures. EEG signals were
recorded simultaneously during motor execution and
movement imagery tasks. Beta-band activities of primary
motor area, premotor area, and primary sensory area were
the most relevant selected feature and then analyzed. We
aimed to investigate whether the Granger causality relation
can be used for motor function evaluation and motor
recovery.

Previous magnetoencephalography studies observed
clear movement-related power decreases in the alpha (8-
13Hz) and beta (13-30 Hz) band to 0.5s during bilateral
hand movements in both scenarios: motor execution and
motor imagery. In addition, a clear postmovement beta
rebound between 0.5 and 1s was observed when someone
moves his/her bilateral hands [50]. Thus, the beta-band EEG
signals from —0.5 to 3 seconds of the motor execution and
imagery onset were feature selected and analyzed.

We mainly investigated the number of Granger causality
trials and Granger causality coefficient between different
brain areas during finger motor execution and imagery
experiment. The highest number of Granger causality trials
37+7.3, 35.5+8.8, 36.3+10.3, and 39.2 £ 9.0 was achieved
from premotor to motor area during left motor execution
and imagery and right finger motor execution and imagery,
respectively, as shown in Tables 2-5.

These results suggested the most important connection
in motor function was from premotor to motor area, which
is consistent with previous research on the neuronal pop-
ulation activity model [51]. It suggested Granger causality
results were related to motor function and might be used as
an efficient feature for motor function evaluation.

Hammer et al. showed the neurons in premotor and
motor area activities in the neuronal population level
according to the balance of excitatory and inhibitory syn-
aptic input. In addition, significant difference of the Granger
causality trial number was observed during left finger exe-
cution and imagery and right finger imagery, but not ob-
served during the right finger execution phase.

Meanwhile, the lowest Granger causality coeflicients
9.1+3.2,10.9+3.7, 13.2+0.6, and 13.4 + 0.6 were achieved
from premotor to motor area during left motor execution
and imagery and right finger motor execution and imagery,
respectively, as shown in Tables 6-9. Significant difference of
the Granger causality coeflicient was observed during left
finger execution and imagery, but not observed during right
finger execution and imagery phase.
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Several researches showed the significant difference in
the brain cortex between left-handed and right-handed
subjects. Male right handers showed a significant deeper
central sulcus on the left hemisphere than on the right in
previous research study [52]. The asymmetry of central
sulcus depth is significantly different between left-handed
and right-handed individuals in the contralateral hemi-
sphere [53]. In addition, when right-handed subjects per-
formed motor tasks with their right hand, the activation
intensity of the cortex in the left hemisphere of the brain was
higher than that in the right hemisphere [54-56].

The results in this study also suggested the significant
differences between left and right finger motor Granger
connection and coefficient may be caused by the reason that
all of participants in this study were right-handed. These
results also suggested that different MI-based brain motor
function recovery strategy should be taken for right-hand
subjects and left-hand patients to build an efficient motor
recovery protocol after brain stroke. The left-hand subjects
should be enrolled to confirm the results in the future. In the
future study, we would like to measure the Granger causality
in the contralateral motor, motor, and sensorimotor areas of
the right and left hemispheres of patients with stroke and
then calculate the Granger causality intensity between the
brain areas. The efficacy of the motor imagery paradigm
might be obtained by the Granger causality model com-
paring heal people with patients.

There are some limitations in this research. Only beta-
band activity of EEG signals was calculated to build the brain
network. Compared with ECoG signals, the gamma activity
in EEG signals was not so clear and high quality [1, 57]. The
alpha band and gamma band were not included although
beta-band activity was known to reflect motor function well.
Although these areas including the main parts of motor
functions are still not enough for free voluntary movement
[58, 59], the brain network in present work only focus on left
and right sides of the primary motor area, premotor area,
and primary sensory area, in totally six points. More areas
should be considered, and the brain connectivity should be
more investigated in the future work.
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