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Multistability is a critical property of nonlinear dynamical
systems, where a variety of phenomena such as coexisting
attractors can appear for the same parameters but with
different initial conditions. �e flexibility in the system’s
performance can be achieved without changing parameters.
Complex dynamics have been observed in multistable sys-
tems, and we have witnessed systems with multistability in
numerous fields ranging across physics, biology, chemistry,
electronics, and mechanics, as well as reported applications
in oscillators and secure communications. It is now well
established from a variety of studies that multistable systems
are very sensitive to both random noise and perturbations.
Numerous studies such as open-loop control, feedback
control, adaptive control, intelligent control, and stochastic
control have been attempted to control multistable systems.

Recent attention has focused more on extraordinary
cases of systems with multistability, such as systems with
megastability and extreme multistability. A megastable
system can display countably infinite number of coexisting
attractors, whereas an extreme multistable system can ex-
hibit an uncountably infinite number of coexisting attrac-
tors. However, there are still various theoretical and
technical issues which should be investigated in such
multistable systems. Circuit design (numerical and hard-
ware) of multistable systems is a related research problem
with real-world applications, and fractional-order modelling
and realization of multistable systems also constitute a

complex and challenging task. Furthermore, circuit reali-
zations (simulations and hardware design) of multistable
systems are useful for various practical applications in
engineering.

�is special issue aims to introduce and discuss novel
results, control techniques, and circuit simulations for
complex nonlinear systems with multistability. We had
received a total of 94 submissions. After the review process,
the acceptance rate is approximately 35.1%.�is special issue
contains 33 articles, the contents of which are summarized as
follows.

In the article by M. F. Tsotsop et al., a new elegant
hyperjerk system with three equilibria and hyperbolic sine
nonlinearity is investigated. In contrast to other models of
hyperjerk systems where either hidden or self-excited
attractors are obtained, the case reported in this work
represents a unique one which displays the coexistence of
self-excited chaotic attractors and stable fixed points. �e
dynamic properties of the new system are explored in terms
of equilibrium point analyses, symmetry, and dissipation
and existence of attractors as well. Common analysis tools
(i.e., bifurcation diagram, Lyapunov exponents, phase
portrait, etc.) are used to highlight some important phe-
nomena such as period-doubling bifurcation, chaos, peri-
odic windows, and symmetric restoring crises. More
interestingly, the system under consideration shows the
coexistence of several types of stable states, including the
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coexistence of two, three, four, six, eight, and ten coexisting
attractors. In addition, the system is shown to display
antimonotonicity and offset boosting. Laboratory experi-
mental measurements show very good coherence with the
theoretical predictions.

�e objective of the article by J. H. Pérez-Cruz is to
estimate the unmeasurable variables of a multistable chaotic
system using a Luenberger-like observer. First, the ob-
servability of the chaotic system is analyzed. Next, a Lip-
schitz constant is determined on the attractor of this system.
�en, the methodology proposed by Raghavan and the result
proposed by �au are used to try to find an observer. Both
attempts are unsuccessful. In spite of this, a Luenberger-like
observer can still be used based on a proposed gain. �e
performance of this observer is tested by numerical simu-
lation showing the convergence to zero of the estimation
error. Finally, the chaotic system and its observer are
implemented using 32-bit microcontrollers. �e experi-
mental results confirm good agreement between the re-
sponses of the implemented and simulated observers.

Semitensor product theory can deal with matrix mul-
tiplication with different number of columns and rows.
�erefore, a new chaotic system for different high dimen-
sions can be created by employing a semitensor product of
chaotic systems with different dimensions so that more
channels can be selected for encryption. R. Wang et al.
propose a new chaotic system generated by the semitensor
product applied on Qi and Lorenz systems. �e corre-
sponding dynamic characteristics of the new system are
discussed in this article to verify the existences of different
attractors. �e detailed algorithm is illustrated in this article.
�e FPGA hardware encryption implementations are also
elaborated and conducted. Correspondingly, the random-
ness tests are realized as well, and compared with those of the
individual Qi system and Lorenz system, the proposed
system in this article owns the better randomness charac-
teristic. �e statistical analyses, differential analyses, and
correlation analyses are also discussed.

�e article by M. Yao et al. focuses on power generation
and nonlinear dynamic behaviors on a new bistable pie-
zoelectric-electromagnetic energy harvester. �ree different
kinds of piezoelectric cantilever beam structures, which
include the monostable piezoelectric cantilever beam, the
bistable piezoelectric cantilever beamwith the spring and the
magnet, and the bistable piezoelectric cantilever beam with
the spring, magnet and coil, are designed. �e power gen-
eration efficiency and dynamic behaviors for each structure
are experimentally studied, respectively. Due to the spring
introduced, the system easily goes through the potential
barrier. Experimental results show that the power generation
structure of the bistable piezoelectric-electromagnetic har-
vester can vibrate between two steady states in a wider range
of the frequency. �erefore, the effective frequency band-
width is broadened about 2Hz when the spring is introduced
under the condition of the suitable magnetic distance.
Comparing with the power generation efficiency for three
different kinds of structures, it is found that the bistable
piezoelectric-electromagnetic harvester has the optimum
characteristics, which include the optimal magnetic distance

of 15mm, the optimal load of 8MΩ, and the parameter
variation law of coils. For this structure, the influences of the
external excitation and the magnetic distance on the output
voltage and dynamic behaviors of the system are examined.

In the article by X. Liu et al., a new fractional-order
discrete noninvertible map of cubic type is presented. Firstly,
the stability of the equilibrium points for the map is ex-
amined. Secondly, the dynamics of the map with two dif-
ferent initial conditions are studied by numerical simulation
when a parameter or a derivative order is varied. A series of
attractors are displayed in various forms of periodic and
chaotic ones. Furthermore, bifurcations with the simulta-
neous variation of both the parameter and the order are also
analyzed in the three-dimensional space. Interior crises are
found in the map as a parameter or an order varies. �irdly,
based on the stability theory of fractional-order discrete
maps, a stabilization controller is proposed to control the
chaos of the map, and the asymptotic convergence of the
state variables is determined. Finally, the synchronization
between the proposed map and the fractional-order discrete
Loren map is investigated. Numerical simulations are used
to verify the effectiveness of the designed synchronization
controllers.

Aiming at the problem of weak security of compressed
sensing, J. Yu et al. combine the cryptographic character-
istics of chaotic systems with compressed sensing technol-
ogy. In the actual research process, the existing image
encryption technology needs to be applied to hardware. �is
article focuses on the combination of image encryption
based on compressed sensing and digital logic circuits. �e
authors propose a novel technology of parallel image en-
cryption based on a sequence generator. It uses a three-
dimensional chaotic map with multiple stability to generate
a measurement matrix. �is study also analyzes the effec-
tiveness, reliability, and security of the parallel encryption
algorithm for source noise pollution with different distri-
bution characteristics. Simulation results show that parallel
encryption technology can effectively improve the efficiency
of information transmission and greatly enhance its security
through key space expansion.

In the article by X. Hu and P. Zhou, a 3D multistability
chaotic system with two coexisting conditional symmetric
attractors is studied by using a circuit block diagram and
realized by using an electronic circuit. �e simulation results
show that two coexisting conditional symmetric attractors
are emerged in this electronic circuit. Furthermore, syn-
chronization of this 3D multistability chaotic system and its
electronic circuit is studied. It shows that the linear resistor
and the linear capacitor in parallel coupling can achieve
synchronization in this chaotic electronic circuit. �at is, the
output voltage of the chaotic electronic circuit is coupled via
one linear resistor and one linear capacitor in parallel
coupling. �e simulation results verify that synchronization
of the chaotic electronic circuit can be achieved.

In the article by J. Zhang and X. Xi, a decision-making
competition game model concerning governments, agri-
cultural enterprises, and the public, all of which participate
in the reduction of nitrogen emissions in the watersheds, is
established based on bounded rationality. First, the stability
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conditions of the equilibrium points in the system are
discussed, and the stable region of the Nash equilibrium is
determined. �en, the bifurcation diagram, maximal Lya-
punov exponent, strange attractor, and sensitive dependence
on the initial conditions are shown through numerical
simulations. �e research shows that the adjustment speed
of three players’ decisions may alter the stability of the Nash
equilibrium point and lead to chaos in the system. Among
these decisions, a government’s decision has the largest effect
on the system. In addition, authors found that some pa-
rameters will affect the stability of the system; when the
parameters become beneficial for enterprises to reduce ni-
trogen emissions, the increase in the parameters can help
control the chaotic market. Finally, the delay feedback
control method is used to successfully control the chaos in
the system and stabilize it at the Nash equilibrium point.�e
research of this article is of great significance to the envi-
ronmental governance decisions and nitrogen reduction
management.

L. Huang et al. have constructed a new 4D memristor-
based chaotic system by using a smooth flux-controlled
memristor to replace a resistor in the realization circuit of a
3D chaotic system. Compared with general chaotic systems,
the chaotic system can generate many coexisting attractors.
�e proposed chaotic system not only possesses hetero-
geneous multistability but also possesses homogenous
multistability. When the parameters of the system are fixed,
the chaotic system only generates two kinds of chaotic
attractors with different positions in a very large range of
initial values. Different from other chaotic systems with
continuous bifurcation diagrams, this system has discrete
bifurcation diagrams when the initial values change. In
addition, this article reveals the relationship between the
symmetry of coexisting attractors and the symmetry of
initial values in the system. �e dynamic behaviors of the
new system are analyzed by the equilibrium point and
stability, bifurcation diagrams, Lyapunov exponents, and
phase orbit diagrams. Finally, the chaotic attractors are
captured through circuit simulation, which verifies nu-
merical simulation.

L. K. Kengne et al. investigate the dynamics of a simple
jerk system with a hyperbolic tangent whose symmetry is
broken by adding a constant term modelling an external
excitation force. �ey demonstrate that the modified system
experiences several unusual and striking nonlinear phe-
nomena including coexisting bifurcation branches, hyster-
etic dynamics, coexisting asymmetric bubbles, critical
transitions, and multiple (i.e., up to six) coexisting asym-
metric attractors for some suitable ranges of system pa-
rameters. �ese features are highlighted by exploiting
common nonlinear analysis tools such as graphs of the
largest Lyapunov exponent, bifurcation diagrams, phase
portraits, and basins of attraction. �e control of multi-
stability is investigated by using the method of linear aug-
mentation. �e authors demonstrate that the multistable
system can be converted to a monostable state by smoothly
adjusting the coupling parameter. �e theoretical results are
confirmed by performing a series of PSpice simulations
based on an electronic analogue of the system.

�e article by A. Letafat et al. introduces an energy
management strategy (EMS) for a hybrid energy system
(HES) of a ferry boat with the goal to optimize the per-
formance and reduce the operation cost. HES considered for
the ferry boat consists of different devices such as the
proton-exchange membrane fuel cell (PEMFC), LI-ION
battery bank, and cold ironing (CI). PEMFC systems are
appropriate to employ as they are not polluting. �e battery
bank compensates for the abrupt variations of the load as the
fuel cell has a slow dynamic against sudden changes of the
load. Also, CI systems can improve the reduction of the
expenses of energy management, during hours where the
ferry boat is located at the harbor. To study the performance,
the cost, and the pollution contribution (CO2, NOX, and
SOX) of the proposed hybrid energy management strategy
(HEMS), we compare it against three various types of HEM
from the state-of-the-art and also available rule-based
methods in the literature. �e analysis results show a high
applicability of the proposed HES. All results in this article
have been obtained in the MATLAB software environment.

�e article by R. J. Escalante-González and E. Campos
presents an approach to design a multistable system with the
one-directional (1D), two-directional (2D), and three-di-
rectional (3D) hidden multiscroll attractor by defining a
vector field on R3 with an even number of equilibria. �e
design of multistable systems with hidden attractors remains
a challenging task. Current design approaches are not as
flexible as those that focus on self-excited attractors. To
facilitate a design of hidden multiscroll attractors, they
propose an approach that is based on the existence of self-
excited double-scroll attractors and switching surfaces
whose relationship with the local manifolds associated to the
equilibria leads to the appearance of the hidden attractor.
�e multistable systems produced by the approach could be
explored for potential applications in cryptography since the
number of attractors can be increased by design in multiple
directions while preserving the hidden attractor allowing a
bigger key space.

In the article by C. Dai et al., a heterogeneous diffusive
prey-predator system is first proposed and then studied
analytically and numerically. Some sufficient conditions are
derived, including permanence and extinction of the system
and the boundedness of the solution. �e existence of the
periodic solution and its stability are discussed as well.
Furthermore, numerical results indicate that both the spatial
heterogeneity and the time-periodic environment can in-
fluence the permanence and extinction of the system di-
rectly. �e numerical results are consistent with the
analytical analysis.

A. K. Tarboush and Z. Zhang investigate the impact of a
periodically evolving domain on the dynamics of the dif-
fusive West Nile virus. A reaction-diffusion model on a
periodically and isotropically evolving domain which de-
scribes the transmission of the West Nile virus is proposed.
In addition to the classical basic reproduction number, the
spatial-temporal basic reproduction number depending on
the periodic evolution rate is introduced, and its properties
are discussed. Under some conditions, they explore the long-
time behavior of the virus. �e virus will go extinct if the
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spatial-temporal basic reproduction number is less than or
equal to one. �e persistence of the virus happens if the
spatial-temporal basic reproduction number is greater than
one. �ey consider a special case when the periodic evo-
lution rate is equivalent to one to better understand the
impact of the periodic evolution rate on the persistence or
extinction of the virus. Some numerical simulations are
performed in order to illustrate the analytical results. �e
theoretical analysis and numerical simulations show that the
periodic change of the habitat range plays an important role
in the West Nile virus transmission; in particular, the in-
crease in periodic evolution rate has a positive effect on the
spread of the virus.

�e stability of grazing bifurcation is lost in three ways
through the local analysis of the near-grazing dynamics
using the classical concept of discontinuity mappings in
the two-degree-of-freedom vibroimpact system with
symmetrical constraints. For this instability problem, Z.
Wang et al. presented a control strategy for the stability of
grazing bifurcation by controlling the persistence of local
attractors near the grazing trajectory in this vibroimpact
system with symmetrical constraints. Discrete-in-time
feedback controllers designed on two Poincare sections are
employed to retain the existence of an attractor near the
grazing trajectory. �e implementation relies on the sta-
bility criterion under which a local attractor persists near a
grazing trajectory. Based on the stability criterion, the
control region of the two parameters is obtained, and the
control strategy for the persistence of near-grazing
attractors is designed accordingly. Especially, the chaos
near codimension-two grazing bifurcation points was
controlled by the control strategy. In the end, the results of
numerical simulation are used to verify the feasibility of
the control method.

In the article by L. Ge and S. Chen, a new data-driven
learning method is investigated based on the dynamical data
of the system. A regularized regression wavelet (RRW)
approach is proposed to optimize the learning result for the
system fault. Based on the optimizing results, a fault tolerant
stability scheme is given.�en, the efficiency of the proposed
technique is verified by a vertical take-off and landing
(VTOL) aircraft stability example.

F. Yu et al. have introduced a novel multistable 5D
memristive hyperchaotic system and its application. �e
interesting aspect of this chaotic system is that it has different
types of coexisting attractors, chaos, hyperchaos, periods,
and limit cycles. First, a novel 5D memristive hyperchaotic
system is proposed by introducing a flux-controlled mem-
ristor with quadratic nonlinearity into an existing 4D four-
wing chaotic system as a feedback term. �en, the phase
portraits, Lyapunov exponential spectrum, bifurcation di-
agram, and spectral entropy are used to analyze the basic
dynamics of the 5D memristive hyperchaotic system. For a
specific set of parameters, we find an unusual metastability,
which shows the transition from chaotic to periodic (period-
2 and period-3) dynamics. Moreover, its circuit imple-
mentation is also proposed. By using the chaoticity of the
novel hyperchaotic system, they have developed a random
number generator (RNG) for practical image encryption

applications. Furthermore, security analyses are carried out
with the RNG and image encryption designs.

�e disk dynamo system, which is capable of chaotic
behaviours, is obtained experimentally from two disk dy-
namos connected together. It models the geomagnetic field
and is used to explain the reversals in its polarity. Actually,
the parameters of the chaotic systems exhibit random
fluctuation to a greater or lesser extent, which can carefully
describe the disturbance made by environmental noise. In
the article by C. Feng et al., the global dynamics of the
chaotic disk dynamo system with random fluctuating pa-
rameters are concerned, and some new results are presented.
Based on the generalized Lyapunov function, the globally
attractive and positive invariant set is given, including a two-
dimensional parabolic ultimate boundary and a four-di-
mensional ellipsoidal ultimate boundary. Furthermore, a set
of sufficient conditions is derived for all solutions of the
stochastic disk dynamo system being global convergent to
the equilibrium point. Finally, numerical simulations are
presented for verification.

In the article by F. Yu et al., multistable modified fourth-
order autonomous Chua’s chaotic system is investigated. In
addition to the dynamic characteristics of third-order Chua’s
chaotic system itself, what interests authors is that this
modified fourth-order autonomous Chua’s chaotic system
has five different types of coexisting attractors: double-scroll,
single-band chaotic attractor, period-4 limit cycle, period-2
limit cycle, and period-1 limit cycle. �en, inductorless
modified fourth-order autonomous Chua’s chaotic circuit is
proposed. �e active elements as well as the synthetic in-
ductor employed in this circuit are designed using second-
generation current conveyors (CCIIs). �e reason for using
CCIIs is that they have high conversion rate and operation
speed, which enable the circuit to work at a higher frequency
range. �e Multisim simulations confirm the theoretical
estimates of the performance of the proposed circuit. Finally,
using the RK-4 numerical algorithm of VHDL 32-bit IQ-
Math floating-point number format, inductorless modified
fourth-order autonomous Chua’s chaotic system is imple-
mented on FPGA for the development of embedded engi-
neering applications based on chaos.�e system is simulated
and synthesized on the Virtex-6 FPGA chip. �e maximum
operating frequency of modified Chua’s chaotic oscillator
based on FPGA is 180.180MHz. �is study demonstrates
that hardware-based multistable modified fourth-order
autonomous Chua’s chaotic system is a very good source of
entropy and can be applied to various embedded systems
based on chaos, including secure communication, cryp-
tography, and random number generator.

J. Zhou and X. Chen construct a supply chain consisting
of a manufacturer and a retailer. Considering channel in-
tegration and service cooperation, two dynamic Stackelberg
game models are established: one without unit profit allo-
cation (M) and the other one with unit profit allocation
(Mε). In two dynamic models, the authors analyze the
influence of relevant parameters on the stability and com-
plexity of the dynamic system and system profit by nonlinear
system theory and numerical simulation. �ey found that
the higher adjustment parameters can cause the system to
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lose stability, showing double-period bifurcation or wave-
shape chaos. �e stable region becomes larger with increase
in service value and value of unit profit sharing. Besides,
when the system is in the chaotic state, the authors found
that the profit of the system will fluctuate or even decline
sharply; however, keeping the parameters in a certain range
is helpful in maintaining the system stability and is con-
ducive to decision makers to obtain steady profits. In order
to control the chaos phenomenon, the state feedback
method is employed to control the chaotic system well. �is
study provides some valuable significance to supply chain
managers in channel integration and service cooperation.

Q. Li et al. consider a Stackelberg game model in a dual-
channel supply chain, which is composed of a manufac-
turer and a retailer. �e manufacturer and the retailer
consider fairness concern in the market competition, and
the manufacturer takes market share and profit as his/her
business objectives. �e entropy complexity and the dy-
namic characteristic of the dual-channel system are ana-
lyzed through mathematical analysis and numerical
simulation, such as local stability, bifurcation, entropy, and
chaos. �e results show that, with the increase of price
adjustment speed, the dual-channel supply chain is more
complex and falls into a chaotic state in which system
entropy increases; the stability of the dual-channel supply
chain will be robust with the increase of weight of market
share and weaken with the increase of the fairness concern
level of the manufacturer and the retailer. �e high level of
fairness concern of the manufacturer and the retailer is
always disadvantageous to the leading manufacturer but
not always bad for the follower retailer. �e performance of
the dual-channel supply chain is improved with a high level
of the manufacturer’s fairness concern and reduced with a
high level of the retailer’s fairness concern. �ey also found
that the retailer will gain more profits in the chaotic state
than the stable state in the Stackelberg game model. �e
variable feedback control method is applied to control the
chaos of the dual-channel supply chain, and choosing
appropriate control parameters can make the dual-channel
supply chain system return to the stable state from the
chaotic state or delay the system to enter the bifurcation
state. �e research results can provide a guideline for
enterprise decision-making.

In the article by B. Yan et al., dynamical complexity and
multistability of electrostatic waves are investigated in four-
component homogenous and magnetized lunar wake
plasma constituting beam electrons, heavier ions (alpha
particles, He++), protons, and suprathermal electrons. �e
unperturbed dynamical system of the considered lunar wake
plasma supports nonlinear and supernonlinear trajectories
which correspond to nonlinear and supernonlinear elec-
trostatic waves. On the contrary, the perturbed dynamical
system of lunar wake plasma shows different types of
coexisting attractors including periodic, quasi-periodic, and
chaotic, investigated by phase plots and Lyapunov expo-
nents. To confirm chaotic and nonchaotic dynamics in the
perturbed lunar wake plasma, 0-1 chaos test is performed.
Furthermore, a weighted recurrence-based entropy is
implemented to investigate the dynamical complexity of the

system. Numerical results show the existence of chaos with
variation of complexity in the perturbed dynamics.

�e Kadomtsev–Petviashvili equation is one of the well-
studied models of nonlinear waves in dispersive media and
inmulticomponent plasmas. In the article by H.-Y.Wu et al.,
the coupled Alice–Bob system of the Kadomt-
sev–Petviashvili equation is first constructed via the parity
with a shift of the space variable x and time reversal with a
delay. By introducing an extended Bäcklund transformation,
symmetry-breaking soliton, symmetry-breaking breather,
and symmetry-breaking lump solutions for this system are
presented through the established Hirota bilinear form.
According to the corresponding constants in the involved
ansatz function, a few fascinating symmetry-breaking
structures of the presented explicit solutions are shown.

B. Feng is concerned with a linear thermoelastic lami-
nated Timoshenko beam, where the heat conduction is given
by Cattaneo’s law. B. Feng firstly proves the global well-
posedness of the system. For stability results, the author
establishes exponential and polynomial stabilities by in-
troducing a stability number χ.

G. Kai et al. study the influence of two-delay feedback
on the nonlinear dynamics behavior of the financial sys-
tem, considering the linear stability of the equilibrium
point under the condition of single delay and two delays.
�e system undergoes Hopf bifurcation near the equi-
librium point. �e stability and bifurcation directions of
Hopf bifurcation are studied by using the normal form
method and central manifold theory. �e theoretical re-
sults are verified by numerical simulation. Furthermore,
one feature of the proposed financial chaotic system is that
its multistability depends extremely on the memristor
initial condition and the system parameters. It is shown
that the nonlinear dynamics of the financial chaotic system
can be significantly changed by changing the values of time
delays.

Results of A. Hadjimichael et al. show that classical
assumptions for fisheries management can yield severe
instabilities in the quantified views of socioecological
tradeoffs, making their ability to inform stakeholder
preferences questionable. �e complex ecological inter-
actions implied by different parameterizations of such
systems yield highly complex and nonlinear dynamic
properties with multiple distinct basins of attraction. �e
authors show that small changes in the deeply uncertain
representations of predator-prey systems can fundamen-
tally shift their dynamics and the validity of candidate
management strategies for harvest. Insights from this study
highlight the importance of ensuring models capture deep
uncertainties, as well as a breadth of financial and eco-
logical criteria, when searching for robust management
options for resilient fisheries.

A class of two-parameter mixed-mode oscillation with
time delay under the action of amplitude modulation is
studied by Y. Qian and W. Meng. �e investigation is from
four aspects. Firstly, a parametric equation is considered as
a slow variable. By the time-history diagram and phase
diagram, the authors can find that the system generates a
cluster discovery image. Secondly, the Euler method is used
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to discrete the system and obtain the discrete equation.
�irdly, the dynamic characteristics of the system at dif-
ferent time scales are discussed when the ratio of the
natural frequency and the excitation frequency of the
system is integer and noninteger. Fourthly, the authors
discuss the influence of time delay on the discovery of
clusters of this kind of system. �e research shows that the
time lag does not interfere with the influence of the cluster
image, but the dynamics of the upper and lower parts of the
oscillation in each period will be delayed. So, they can
improve peak performance by adjusting the time lag and
obtain the desired peak. Finally, the authors explore the
multistate dynamic response of a two-dimensional non-
autonomous Duffing system with higher order. According
to the bifurcation diagram and the time-history curve,
bistable state will appear in the system within the critical
range. With the gradual increase of parameters, the chaotic
attractor will suddenly disappear which will lead to the
destruction of the bistable state.

F. A. Rihan et al. study the dynamics of a two-prey one-
predator system, where the growth of both prey populations
is subject to Allee effects, and there is a direct competition
between the two-prey species having a common predator.
Two discrete time delays τ1 and τ2 are incorporated into the
model to represent the reaction time of predators. Sufficient
conditions for local stability of positive interior equilibrium
and existence of Hopf bifurcations in terms of threshold
parameters τ∗1 and τ∗2 are obtained. A Lyapunov functional is
deducted to investigate the global stability of positive in-
terior equilibrium. Sensitivity analysis to evaluate the un-
certainty of the state variables to small changes in the Allee
parameters is also investigated. Presence of Allee effect and
time delays in the model increases the complexity of the
model and enriches the dynamics of the system. Some
numerical simulations are provided to illustrate the effec-
tiveness of the theoretical results. �e model is highly
sensitive to small changes in Allee parameters at the early
stages and with low population densities, and this sensitivity
decreases with time.

�e article by S. M. Boulaaras et al. deals with the study
of the existence of weak positive solutions for sublinear
Kirchhoff elliptic systems with the zero Dirichlet boundary
condition in the bounded domainΩ ⊂ RN by using the sub-
supersolution method.

�e article by Y. Bouizem et al. deals with the study of the
existence of weak positive solutions for a new class of the
system of elliptic differential equations with respect to the
symmetry conditions and the right-hand side which has
been defined as multiplication of two separate functions by
using the sub-supersolution method.

By introducing a flux-controlled memristor model
with absolute value function, a 5D multistable four-wing
memristive hyperchaotic system (FWMHS) with linear
equilibrium points is proposed in the article by F. Yu et al.
�e dynamic characteristics of the system are studied in
terms of the equilibrium point, perpetual point, bifur-
cation diagram, Lyapunov exponential spectrum, phase
portraits, and spectral entropy. �is system is of the group
of systems that have coexisting attractors. In addition, the

circuit implementation scheme is also proposed. �en, a
secure communication scheme based on the proposed 5D
multistable FWMHS with disturbance inputs is designed.
Based on parametric modulation theory and Lyapunov
stability theory, synchronization and secure communi-
cation between the transmitter and the receiver are re-
alized, and two message signals are recovered by a
convenient robust high-order sliding mode adaptive
controller. �rough the proposed adaptive controller, the
unknown parameters can be identified accurately, the gain
of the receiver system can be adjusted continuously, and
the disturbance inputs of the transmitter and the receiver
can be suppressed effectively. �ereafter, the convergence
of the proposed scheme is proven by means of an ap-
propriate Lyapunov functional, and the effectiveness of
the theoretical results is testified via numerical
simulations.

�e article by S. S. Askar and A. Al-khedhairi studies
the dynamic characteristics of triopoly models that are
constructed based on a 3-dimensional Cobb–Douglas
utility function. �e article presents two parts. �e first
part introduces a competition among three rational firms
on which their prices are isoelastic functions. �e com-
petition is described by a 3-dimensional discrete dy-
namical system. �e authors examine the impact of
rationality on the system’s steady-state point. �e sta-
bility/instability of this point is illustrated. Numerically,
the authors give some global analysis of the Nash point
and its stability. �e second part deals with heterogeneous
scenarios. It consists of two different models. In the first
model, the authors assume that one competitor adopts the
local monopolistic approximation mechanism (LMA),
while the other opponents are rational. �e second model
assumes two heterogeneous players with the LMA
mechanism against one rational firm. Studies show that
the stability of the NE point of those models is not
guaranteed. Furthermore, simulation shows that when
firms behave rational with symmetric costs, the stability of
the NE point is achievable.

�e article by H. Wu et al. presents a novel and simple
three-dimensional (3D) chaotic system by introducing
two sine nonlinearities into a simple 3D linear dynamical
system. �e presented sine system possesses nine equi-
librium points consisting of five index-2 saddle foci and
four index-1 saddle foci which allow the coexistence of
various types of disconnected attractors, also known as
multistability. �e coexisting multiple attractors are
depicted by the phase plots and attraction basins.
Coexisting bifurcation modes triggered by different
initial values are numerically simulated by two-dimen-
sional bifurcation and complexity plots under two sets of
initial values and one-dimensional bifurcation plots
under three sets of initial values, which demonstrate that
the abundant coexisting multiple attractors’ behaviors in
the presented sine system are related not only to the
system parameters but also to the initial values. A sim-
ulation-oriented circuit model is synthesized, and PSIM
(power simulation) screen captures well validate the
numerical simulations.
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*is paper focuses power generation and nonlinear dynamic behaviors on a new bistable piezoelectric-electromagnetic energy
harvester. *ree different kinds of piezoelectric cantilever beam structures, which include the monostable piezoelectric cantilever
beam, the bistable piezoelectric cantilever beam with spring and magnet, and the bistable piezoelectric cantilever beam with
spring, magnet, and coil, are designed. *e power generation efficiency and dynamic behaviors for each structure are experi-
mentally studied, respectively. Due to the spring introduced, the system easily goes through the potential barrier. Experimental
results show that the power generation structure of the bistable piezoelectric-electromagnetic harvester can vibrate between two
steady states in a wider range of the frequency. *erefore, the effective frequency bandwidth is broadened about 2Hz when the
spring is introduced under the condition of the suitable magnetic distance. Comparing with the power generation efficiency for
three different kinds of structures, it is found that the bistable piezoelectric-electromagnetic harvester has the optimum
characteristics, which include the optimal magnetic distance of 15mm, the optimal load of 8MΩ, and the parameters variation law
of coils. For this structure, the influences of the external excitation and the magnetic distance on the output voltage and dynamic
behaviors of the system are examined.

1. Introduction

*e energy harvesting technology is a way to convert the
energy of the environment into electrical energy, for ex-
ample, solar energy, heat energy, sound energy, wind energy,
and vibration energy. Based on much research results, the
conversion efficiency of the environmental vibration energy
is the best.*erefore, the vibration energy harvester has been
widely studied. At present, there are three kinds of the vi-
bration energy harvesters, such as the electrostatic type, the
piezoelectric type, and the electromagnetic type. Since the
electrostatic type of the energy harvester requires the ex-
ternal power supply and has usually the complex structure,
there are few studies. Because the piezoelectric structure and
the electromagnetic structure have great harvesting

efficiencies and do not need the external power supply, these
two structures have been widely investigated. In recent years,
scholars have theoretically and experimentally studied the
power generation efficiency and dynamic behaviors of the
piezoelectric beam structure and the electromagnetic power
generation structure. A number of innovative structures
have been proposed. *e study on energy harvesters of
piezoelectric type, electromagnetic type, and piezoelectric-
electromagnetic combined type is introduced as follows.

*e first type of the vibration energy harvesting is the
piezoelectric type, which utilizes the piezoelectric effect of
materials to convert the vibration energy of the environment
into the electrical energy.*e piezoelectric power generation
has advantages of the great output voltage, the simple
structure, no electromagnetic interference, and no pollution.
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*e piezoelectric power generation structures do not need
the external power supply, so it has been widely investigated.
Researchers have designed many kinds of the piezoelectric
energy harvesters. Roundy et al. [1] studied a method of
power supply for wireless sensor nodes based on low am-
plitude vibrations.*e results of simulations showed that the
output power of the piezoelectric structure was obviously
great. Leland andWright [2] designed and tested a vibration
energy harvester with the tunable resonance frequency. *is
structure reduced its resonance frequency by using the novel
method of an axially compressing piezoelectric beam. Beeby
et al. [3] did a review of the vibration energy harvesting for
the wireless and self-powered microsystems applications.
*ere were three main approaches that could be used to
capture the vibration energy of the environment. *e ad-
vantages and disadvantages of each technology were de-
scribed in this review. Mann and Owens [4] investigated a
nonlinear energy harvester, which used magnetic interac-
tions to design a generator with a bistable potential well.
Both theoretical and experimental results showed that the
potential well-escaped phenomenon broadened the effective
frequency bandwidth of the energy harvester. Stanton et al.
[5] examined a bistable nonlinear piezoelectric generator,
which could respond in a wide range of the frequencies.
Erturk and Inman [6] explored the relation between the
power generation efficiency and nonlinear vibration of the
bistable piezoelectric cantilever beam. *ey found that the
magnetic piezoelectric structure had a larger vibration
amplitude and a greater output power than the piezoelectric
structure without magnet. Ferrari et al. [7] established a
nonlinear energy harvesting system of the single magnet.
*e experimental results indicated that the bistable motion
significantly improved the output voltage and the output
power. Ma et al. [8] theoretically and experimentally in-
vestigated a magnetic piezoelectric energy harvester. *e
frequency bandwidth of the magnetic piezoelectric structure
was broadened effectively compared with the piezoelectric
structure without magnet. Arrieta et al. [9] examined a novel
piezoelectric energy harvester with the bistable cantilevered
structure. *e bistable cantilevered structure enhanced the
harvesting efficiency of the system. Al-Ashtari et al. [10]
introduced a new design of the energy harvester, which
improved the output power without changing the resonance
frequency of the structure. *e stiffness of the structure was
added by the attractive force between two permanent
magnets. *eoretical and experimental results showed that
the great output power was generated when the piezoelectric
cantilever beam only had a slight deformation. Ali and Kyle
[11] explored a vibration energy harvester based on a
miniature asymmetric air-spaced cantilever beam, which can
generate the great power density. It was sufficient to support
the electric power of the most wireless sensor nodes. Fan
et al. [12] designed a roller to actuate vibration of the pie-
zoelectric beam, which can capture the energy from both
sway and bidirectional vibrations. Yao et al. [13] investigated
complicated nonlinear dynamic behaviors of the simply
supported laminated composite piezoelectric beam sub-
jected to the axial load and the transverse load. Numerical
results showed that the periodic motions and the chaotic

motions existed in nonlinear vibrations of the system. Jemai
et al. [14] studied parameter optimization of a vibration
energy harvester by using piezocomposite material and
interdigitated electrode. Arkadiusz et al. [15] exploited the
snap-through phenomenon between two stable states of a
bistable energy harvesting device. Xie and Wang [16] ex-
amined a high efficient cylinder composite piezoelectric
energy harvester. *e newly designed cylinder piezoelectric
energy harvester can provide more efficient energy har-
vesting under a higher dimension and a higher rotating
speed of the roller.

*e second type of the vibration energy harvesting is the
electromagnetic type, which uses Faraday’s law of electro-
magnetic induction to convert the vibration energy of the
environment into the electrical energy. *e power genera-
tion structure of the electromagnetic induction does not
require the external power supply. It has been widely used in
the field of the power generation. Galchev et al. [17] in-
vestigated an electromagnetic vibration power generator,
which can efficiently harvest the energy from low-frequency
excitations and nonlinear vibrations. Sari et al. [18] exam-
ined a wideband electromagnetic vibration generator. *e
microgenerator generated the stable output power in a wide
range of the external excitation frequencies. Mann and Sims
[19] experimentally and theoretically investigated a novel
energy harvesting device, which used the magnetic levitation
to design an oscillator with the tunable resonance frequency.
*e results showed that the nonlinear phenomenon can be
exploited to improve the effectiveness of the energy har-
vesting devices. Sardini and Serpelloni [20] experimentally
studied a nonlinear electromagnetic energy harvester for
capturing the vibration energy of the low frequency. *e
effectiveness of harvesting of the nonlinear structure was
greater than that of the linear structure. Zorlu et al. [21]
presented a new electromagnetic energy harvester based on
vibration, which harvested the energy from low-frequency
vibration within a range of 1–10Hz. *e electromagnetic
energy harvester with the magnet and the spring was pro-
posed by Foisal et al. [22]. *e friction between the magnet
and the tube was reduced by using the lubricant in order to
improve the output voltage. Ramlan et al. [23] carried out an
experimental study to illustrate the dynamic characteristic of
the dual mode and the bistable nonlinear energy harvester
under the harmonic excitation. *e nonlinear device had a
greater power generation efficiency than that of the linear
device. Kremer and Liu [24] investigated the energy har-
vester with the nonlinear energy sink. It had the capacity of
absorbing the energy in a wide range of frequencies. Seol
et al. [25] studied the combined energy harvester with si-
multaneous triboelectric and electromagnetic power gen-
eration. Resali and Salleh [26] investigated the performance
of two types of the electromagnetic power generation de-
vices, which one used the wound coil wire and the other used
the printed circuit board coil.

*e third type of the vibration energy harvesting is the
piezoelectric-electromagnetic combined power generation
structure. In order to improve the power generation effi-
ciency of the energy harvester, there is a new trend towards
simultaneously using the piezoelectric type, the
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electromagnetic type, the photovoltaic type, and other en-
ergy conversion types. Since the electromechanical coupling
coefficient of the electromagnetic and piezoelectric power
generation structure is great, the piezoelectric-electromag-
netic combined power generation structures are paid more
attention. *e prospects of the combined power generation
devices are valued by many experts. Wacharasindhu and
Kwon [27] experimentally dug into a novel microenergy
harvester, which can harvest the energy from typing motions
on the computer keyboard. Tadesse et al. [28] analyzed a
multimode energy harvesting device, which combined
electromagnetic and piezoelectric energy harvesting mech-
anism. *e harvesting efficiency of the device was improved
in a wide range of the frequencies. Challa et al. [29] studied a
coupled piezoelectric-electromagnetic energy harvesting
technique for improving the performance of the power
generation devices. Karami and Inman [30] proposed a
novel combined energy harvester, which used the nonlinear
harvesting mechanisms to improve the output power and
broaden the frequency bandwidth. A novel piezoelectric and
electromagnetic combined energy harvester was investigated
by Yang et al. [31]. When the polarization direction of
magnets was perpendicular to the plane of coils, coils
generated the maximum output voltage. Wang et al. [32]
examined a two-degree-of-freedom combined energy har-
vester based on the piezoelectric and electromagnetic con-
duction. *ey concluded that the power generation
efficiency of the combined energy harvester was greater than
that of the single energy harvester. Mahmoudi et al. [33]
validated the enhancement of the performance of a com-
bined nonlinear energy harvester by theoretical investiga-
tion, which is based on the piezoelectric and electromagnetic
transduction. Hamid and Yuce [34] designed a new wearable
energy harvesting system combined piezoelectric and elec-
tromagnetic energy harvesters. It harvested the energy from
low-frequency vibrations of the human motion. It showed
that the combined power generation structure could be
applied to the life. Yao et al. [35, 36] studied carefully power
generations of the bistable energy harvester with L-shaped
piezoelectric cantilever beam.

*e piezoelectric power generation structures combined
with electromagnetic induction were studied by a few
scholars. At present, most of investigations were focused on
the monostable piezoelectric-electromagnetic combined
power generation structure. *ere were few investigations
on the bistable piezoelectric-electromagnetic combined
power generation structures. A multimode vibration gen-
erator, which combines the piezoelectric power generation,
the electromagnetic power generation, and the bistable
structure, is designed. *is multimode vibration generator
has been applied for the international patent (PCT/CN2015/
077888), and the patent has been public. In the next study,
the power generation efficiency of the bistable piezoelectric-
electromagnetic combined power generation structure is
explored, and dynamic behaviors of it are analyzed.

In this paper, the power generation efficiency and dy-
namic behaviors of the bistable piezoelectric-electromag-
netic combined energy harvester based on vibration are
mainly studied. *e design of both bistable and multimode

structure improves the power generation efficiency of the
piezoelectric part and the electromagnetic part. *e magnet
at the end of the spring does the telescopic reciprocating
motion in the tube so that the magnetic flux of the coil is
constantly changing to induce electromotance.*e influence
of external excitation frequencies, external excitation am-
plitudes, magnetic distances, loads, and coils on the power
generation efficiency of the bistable piezoelectric-electro-
magnetic combined power generation structure is explored.
Dynamic behaviors of the system under the different ex-
ternal excitation are studied. Comparing with the earlier
studies given by Yao et al. [37], this paper is extended to add
the analysis of the potential energy for the bistable power
generation structure and explore the influences of the
magnetic distance, the optimal external load, and coils on
the power generation.

2. Experimental Setups

In the experiment, the piezoelectric cantilever beam, coils,
magnets, and the spring are fixed on the fixture.*e fixture is
fixed on the vibration exciter. *e signals are sent to the
power amplifier by the signal generator to control vibration
of the piezoelectric cantilever beam. *e displacement of
vibration of the piezoelectric cantilever beam is captured by
using the high precision laser detector, and the time-dis-
placement data are obtained.*en, data are sent to computer
by the LK-G controller. *e output voltage of the system is
measured by multimeter. Finally, time-displacement data
are analyzed by the LK-Navigator and Origin software. *e
experimental setups include the YE1311 signal generator, the
YE5874 power amplifier, the JZK series of the electric vi-
bration exciter, the high precision laser detector, the mul-
timeter, and the LK-Navigator, as shown in Figure 1(a). *e
experiment fixture and the circuit are shown in Figure 1(b).

3. Experimental Materials

*e materials used in the experiment are the piezoelectric
beam, coils, resistances, springs, magnets, and wires, as
shown in Figure 2. *e piezoelectric material used in the
experiment is the PVDF. *e PVDF material is not easily
damaged when the cantilever beam vibrates with a large
vibration amplitude.*e base layer of the piezoelectric beam
is the brass. *e PVDF layers and the brass are combined by
the conductive adhesive. *e length of the piezoelectric
beam is 90mm, the width is 10mm, and the thickness is
0.51mm, respectively. *e thickness of the PVDF layer is 30
microns. *e piezoelectric materials on the upper and lower
layers are fully covered. *e piezoelectric strain constant is
17 PC/N.*e piezoelectric voltage constant is 0.2 Vm/N.*e
size of the square magnet at the end of the piezoelectric beam
is 8mm × 5mm × 2mm. *e diameter of the cylindrical
magnet at the end of the spring is 10mm, and the thickness is
8mm. *e coil is the copper wire. *e length of the soft
spring is 20mm, and the initial wire diameter of the spring is
0.5mm.*e initial spring stiffness is 1018N/m, as calculated
by the formula k � (Gd4/8D3), where k indicates the spring
stiffness; G denotes the shear module of the spring and
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Figure 1: Experimental setups: (a) experimental apparatus; (b) experimental fixture and circuit.
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Figure 2: Experimental materials: (a) variable resistance; (b) magnet; (c) PVDF piezoelectric beam; (d) coil; (e) wire; (f ) spring and magnet
connection; (g) load.
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G � 8 × 1010 Pa; d is the initial wire diameter of the spring
and d � 0.5mm; and D represents the initial diameter of the
spring and D � 8.5mm. *e spring does the telescopic
movement with a large amplitude when themagnetic force is
weak.

4. Potential Energy of the Bistable
Experimental Model

At present, most of scholars have investigated the monostable
piezoelectric-electromagnetic combined power generation
structure. Since the monostable structure has some disad-
vantages, a bistable model for the piezoelectric cantilever
beam power generation structure is proposed. Moreover, a
coil is added to introduce the electromagnetic induction
power generation. *e model of the structure in this paper is
shown in Figure 3.*ere is a magnet on the opposite position
of the piezoelectric cantilever beam, which is fixed at the end
of the soft spring in the sleeve. *e inner surface of the sleeve
is smooth. *e magnet does the reciprocating motion in the
sleeve. So, the magnetic flux changes continuously through
the coil, which results in generating the electromotance.

Since the formation of the bistable structure is mainly
caused by the magnetic potential energy of the system, the
analysis of the potential energy for the bistable power gen-
eration structure needs to be performed.*e bistable beam has
two stable positions and an unstable position, as shown in
Figure 4(a).*e potential function of the bistable piezoelectric-
electromagnetic combined generator is established as follows:

U � US + UM + UE, (1)

where US indicates the structural potential energy, UM is the
magnetic potential energy, and UE denotes the elastic po-
tential energy.

Based on the von Karman nonlinear strain displacement
relation, the strain displacement relation of the x direction is
given as follows:

S �
zu0

zx
+
1
2

zw0
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− z
z
2
w0

zx
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*e constitutive equations of the piezoelectric layer are
described as follows:

T � CS − dE,

D � dS + εE,
(3)

where T indicates the stress, D is the electric displacement, C
denotes the modulus of the elasticity, S represents the strain,
d is the piezoelectric constant, E indicates the electric field
intensity, and ε denotes the dielectric constant.

*erefore, the structural potential energy of the system is
expressed as follows:

US �
1
2

􏽚
v
S(CS − dE)dv −

1
2

􏽚
v
E(dS − εE)dv,

E � −
V

h3 − h4( 􏼁
,

(4)

where v is the volume of the piezoelectric beam, V indicates
the electric potential difference, and (h3 − h4) represents the
thickness of piezoelectric layer.

*e structural potential energy is obtained as follows:
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(5)

Next, the magnetic potential energy of the system is
established in this section. First of all, the repulsive force of
two magnets can be described as follows [38]:
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(6)

where lm indicates the length of the magnet, wm is the width
of the magnet, hm denotes the height of the magnet, μk

represents the magnetic permeability, Br indicates the
magnetic flux density on the magnet polarity surface, and dm

is the distance between two magnets.
*e vertical component force Fz of the repulsive force F0

is related to the displacement w0 along the vertical direction
of the magnet, and it can be written as follows:

Fz � F0 ×
w0�������

w
2
0 + d

2
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(7)

*e magnetic potential energy is expressed as follows:
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(8)

where kp represents the repulsive force F0.
Finally, the elastic potential energy of the system is

calculated. *e expression for the deformation of the spring
is obtained as follows:

Δx �
Fx
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2
m

􏽱 , (9)

Complexity 5



where ks indicates the stiffness coefficient of the spring.
*e elastic potential energy of the system is written as

follows:
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Substituting equations (5), (8), and (10) into equation
(1), the potential function is obtained as follows:
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(11)

Based on the practical working condition of the structure
and theoretical and numerical studies given by Arrieta et al.

[9, 10], it is known that vibrations of the first-order mode for
the beam play an important role during vibration.*e power
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Figure 3: Model of the generator.
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Figure 4: Bistable model and the potential curve of the structure: (a) mechanical model of the structure; (b) the relation of the potential well
and the bistable state.
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generation of the bistable piezoelectric-electromagnetic
combined structure mainly depends on vibration of the first-
order mode in the beam. Galerkin approach is applied to
obtain ordinary differential equations for the potential of the
system. Galerkin approach is derived by the Taylor ex-
pansion method, which is a mathematically convergent
method. *us, the first-order discretization of equation (11)
is expressed as follows:

w0 � ϕ1(x)w1(t), (12)

where ϕ1(x) � chλ1x − cos λ1x +((shλ1l − sin λ1l)/(chλ1l +

cos λ1l))(shλ1x − sin λ1x).
Substituting equation (12) into equation (11), the po-

tential function is obtained by calculating as follows:
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where I0 � (1/l) 􏽒
l

0 [ϕ1′(x)]2dx, I1 � (1/2) 􏽒
1
0 􏽒

v
CI20ϕ1

(x)dv dx − 􏽒
1
0(kp/8d

��
d

√
)ϕ51(x)dx, I2 � 􏽒

1
0 􏽒

v
CI0ϕ1(x)ϕ1″

(x)zdv dx, I3 � (1/2) 􏽒
1
0 􏽒

v
Cϕ1 (x)[ϕ1″(x)]2zdv dx + 􏽒

1
0 􏽒

v

(V dI0/(h3 − h4))ϕ1(x)dv dx + 􏽒
1
0(kp/2dm)[ϕ1(x)]3dx, I4 �

(1/2) 􏽒
1
0 􏽒

v
(V d/(h3 − h4))ϕ1(x)ϕ1″(x)zdv dx, I5 � (1/2) 􏽒

1
0

(k2
p/2ks)ϕ1(x)dx, I6 � (d2

m /ϕ21(x)), and I7 � (1/2) 􏽒
1
0 􏽒

v

(εV2/(h3 − h4)
2)ϕ1(x)dv dx.

Bistable states of the system exist in a certain practical
physical parameter range.*e potential energy equation (13)
of the system is derived from the practical bistable model.
Since we have conducted a series of experimental studies in
this paper, in the process of experiments, we need to
compare experimental results by changing the practical
parameters, such as magnetic distances, coils, and loads.
*us, parameters of the model are not unique. In order to
ensure the universality of the study, dimensionless param-
eters were used. *e parameters of equation (13) are selected
as I1 � 0.6, I2 � 0.06, I3 � −4, I4 � −0.1, I5 � 0.2, I6 � 0.3,
and I7 � 0.1, and Figure 4(b) is obtained by Maple software.
Conclusions can be drawn from Figures 4(a) and 4(b) that
the structure has two stable states, which correspond to the
upper potential well and the lower potential well. *e
structure has one unstable state, which corresponds to the
potential barrier. *erefore, the generator is the bistable
structure. When the piezoelectric cantilever beam obtains
the enough large energy to go through the potential barrier,
the structure can vibrate between the two stable states. *us,
the frequency bandwidth of the power generation for the
structure is broadened. *e power generation efficiency of
the structure is greatly improved. *e schematic diagram of
the overall experimental model is shown in Figure 5.

*e power generation structure with the bistable states
and multimode generates much larger energy when the
beam produces a large amplitude vibration. Since the spring
is soft, the magnet moves fast inside the coil when the pi-
ezoelectric beam vibrates between two stable positions.
When the piezoelectric cantilever beam moves from each

stable position to the unstable position, the repulsive force
between magnets increases gradually. Based on the bistable
structure, the spring component is introduced. When the
spring is compressed, the repulsive force of the structure
with the spring is smaller than that of the structure without
the spring. Under the case of the spring, the energy required
to pass through the barrier is reduced in the structure. *e
piezoelectric cantilever beam is easier to go through the
potential barrier. *e combination of the bistable states and
multimode structure makes the piezoelectric beam vibrate
between two stable positions easily, and the power gener-
ation efficiency of the system is greatly improved. *erefore,
the piezoelectric-electromagnetic combined generator has
much a greater power generation efficiency.

5. Experimental Result Analysis

*e power generation efficiency and dynamic behaviors of
the piezoelectric-electromagnetic combined generator are
investigated. *e power generation efficiency of the single
piezoelectric cantilever beam structure and the piezoelectric-
electromagnetic combined power generation structure is
compared. *en, magnetic distances, coils, and loads of the
structure are optimized. *e diagrams of experimental
setups are shown in Figure 6. Figures 6(a) and 6(b) indicate
the piezoelectric cantilever beam placed in the upper po-
tential well and the lower potential well, respectively. In the
experiment, three different kinds of power generation
structures are studied, as shown in Figure 7. *e structure A
is the conventional monostable piezoelectric cantilever beam
structure. *e structure B indicates the bistable piezoelectric
cantilever beam structure introduced the spring and the
magnet. *e structure C is the bistable piezoelectric-elec-
tromagnetic combined power generation structure, which
introduced the spring, the magnet, and the coil.

5.1. Power Generation Efficiency of Structures

5.1.1. Influence of Excitation Frequencies on the Power
Generation of Structures. Firstly, the power generation of
the structure A and the structure B is investigated. In order
to ensure the reliability of the experimental results, four
groups of experiments are performed under the conditions
of different magnetic distances. *e external excitation is
given in the form of the sinusoidal signal A sinωt. *e
external excitation amplitude is selected as 2.5V. *e ex-
ternal excitation frequency increases from 5Hz to 20Hz
with 0.2Hz step size. In the experiment, the effective output
voltage is defined to compare the effective frequency
bandwidth of different structures. *us, it is assumed that
the effective output voltage is greater than or equal to 3V.
*e effective frequency bandwidth is the difference between
the maximum external excitation frequency and the mini-
mum external excitation frequency in the range of the ef-
fective voltage. In the experiment, the maximum output
voltage of the structure A is 12.337V, and the effective
frequency bandwidth of structure A is 4Hz.

In the first group, the magnetic distance of structure B is
15mm. *e experimental results are shown in Figure 8, in
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which the maximum output voltage of structure B is
15.214V. *e output voltage of structure B is greater than
that of structure A. *e range of two black dashed lines,
which are vertical to the horizontal axis, is the effective
frequency bandwidth of structure A, as shown in Figure 8.
*e range of two red dashed lines is the effective frequency
bandwidth of structure B, as shown in Figure 8. *e effective
frequency bandwidth of structure B is 5.8Hz. *e effective
frequency bandwidth of structure B is wider than that of
structure A.

In the second group, themagnetic distance of structure B
is 14mm. *e results can be seen from Figure 9 that the
maximum output voltage of structure B is 14.882V. *e
maximum output voltage of the bistable structure B is
greater than that of the monostable structure A.*e effective
frequency bandwidth of structure B is 5.8Hz. Comparing
with structure A, the effective frequency bandwidth of
structure B is broadened.

In the third group, themagnetic distance of structure B is
13mm. It can be shown from Figure 10 that the maximum
output voltage of structure B is 12.478V. *e maximum
output voltage of the system is improved. *e effective
frequency bandwidth of structure B is 6.2Hz. *e effective
frequency bandwidth of the system is broadened.

In the fourth group, the magnetic distance of structure B
is 12mm.*e effective frequency bandwidth of the system is
4Hz. Since the magnetic distance of 12mm is too small, the
repulsive force between two magnets is too great. *e pi-
ezoelectric cantilever beam cannot go through the potential
barrier so that the beam cannot conduct a large amplitude
vibration. *e results show that the magnetic distance is too
small to generate the large output voltage.

Based on the above experiments, it is found that the
piezoelectric cantilever beam is easier to go through the
potential barrier when the spring and the magnet are in-
troduced under the condition of a suitable magnetic

distances. *erefore, the cantilever beam produces large
amplitude vibrations in a wide range of frequencies. *e
effective frequency bandwidth of the system is broadened
under the case of a suitable magnetic distance after the
spring is introduced.

In the following experiment, the power generation of
structure B and structure C is studied. Experiments are
carried out to confirm what the range of magnetic distances
is good for the power generation of structure B and structure
C. It is found that the power generation efficiency of the
system is relatively great when the magnetic distance is from
11mm to 16mm. *erefore, the magnetic distances of this
experiment are 11mm, 12mm, 13mm, 14mm, 15mm, and
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16mm. *e comparison of the power generation efficiency
of structure B and structure C under the different magnetic
distances is given, as shown in Table 1. Based on the bistable
piezoelectric cantilever beam structure with the spring and
the magnet, it is found that the output voltage is improved,
and the effective frequency bandwidth is broadened when
the coil is introduced. According to Table 1, the maximum
output voltage of structure B and structure C is further
compared, as shown in Figure 11. It can be seen in Figure 11
that the introduction of the coil improves the maximum
output voltage of structure C. *e conclusion is drawn that
the power generation efficiency of structure C is the best
among three kinds of structures.

Subsequently, the influence of excitation frequencies on
the power generation of structure C under the different
magnetic distances is studied. Figure 12 is obtained when
magnetic distances are 12mm, 13mm, 14mm, and 15mm,
respectively. It can be observed from Figure 12 that the
output voltage of the system is quite small when the
structure just starts to vibrate in the low-frequency range.
When the external excitation frequency increases to 9.5Hz,
the piezoelectric cantilever beam goes through the potential
barrier to perform a larger amplitude vibration. *e output
voltage of the system improves sharply. *e structure
generates the maximum output voltage when the external
excitation frequency is about 9.8Hz. When the external
excitation frequency continues to increase, the output
voltage decreases gradually. *erefore, the power generation
efficiency of the structure is the best when the external
excitation frequency is near the frequency of passing
through the potential barrier.

It is found from Figure 12 that the power generation ef-
ficiency of the structure is very small when the magnetic dis-
tance is 12mm. Since the magnetic distance is less than 12mm,
the magnetic force is too great. *e energy required becomes
greatly when the cantilever beam goes through the potential
barrier. So, the cantilever beam cannot go through the potential
barrier easily. *e cantilever beam only conducts small am-
plitude vibration near the one stable position, and the power
generation efficiency of the system is not good. *e conclusion
can be obtained that the power generation efficiency of structure
C can be improved under suitable magnetic distances.

5.1.2. Influence of External Excitation Amplitudes on the
Power Generation of Structures. In the above experiment,
the piezoelectric cantilever beam goes through the potential
barrier when the external excitation frequency is about
9.5Hz. So, the external excitation frequency is selected as
9.5Hz. *e external excitation amplitude increases from
0.5V to 2.5V with 0.1 V step size.*emagnetic distances are
13mm, 14mm, and 15mm, respectively. *e experimental
results are shown in Table 2. Compared with the output
voltage of structure B, the output voltage of structure C
improves 6.2% when the magnetic distance is 15mm. *e
output voltage of structure C is improved 8.29% than that of
structure B when the magnetic distance is 14mm. Compared
with structure B, the output voltage of structure C improves
1.72% when the magnetic distance is 13mm.

In this section, we mainly discuss the influence of ex-
ternal excitation amplitudes on the power generation of
three different kinds of structures. Conclusions are obtained
from Figure 13 that the power generation efficiency of
structure B and structure C is worse than that of structure A
when the external amplitude is less than 1.3V. Since the
cantilever beam cannot go through the potential barrier, the
structures show the monostable vibration behaviors and the
power generation efficiency of the structures are quite small.
When the cantilever beam goes through the potential bar-
rier, the output voltage of structure B and structure C
improves greatly. *e output voltages of structure B and
structure C are greater than that of structure A. It is found
from Figure 13 that the output voltage of structure B and
structure C improves rapidly when the external excitation
amplitude is greater than 2.3V.

5.2. Dynamic Behaviors of Structures. *e power generation
efficiency of structures mainly depends on two factors,
which one is the output frequency bandwidth and the other
is the output voltage of the structure. In the above experi-
mental studies, we mainly analyze the influence of external
excitation frequencies and amplitudes on the power gen-
eration of structures in order to determine what structure
produces the most largest power generation. Based on the
experimental results, we have drawn the following
conclusions:

(1) From the opinion of the output frequency band-
width, the power generation of structure B is better
than that of structure A, and the power generation of
structure C is better than that of structure B. *e
output frequency bandwidth of structure C is the
best among three kinds of structures.

(2) From the opinion of the output voltage, the output
voltages of structure B and structure C are greater
than that of structure A when the external excitation
amplitude is greater than 2.3V. Structure B and
structure C produce almost the same amount of the
output voltage.

(3) In a word, the power generation efficiency of the
structure C is the best among three kinds of struc-
tures, and the power generation of the structure A is
the worst. Structure A is the monostable structure,
and both structure B and structure C are bistable
structures. Since the output frequency bandwidth of
the bistable structure is wider than that of the
monostable structure, the power generation effi-
ciency of structures B and C is better than that of
structure A.

(4) *e power generation capacity of the bistable
structure depends on the nonlinear dynamic char-
acteristics of the structure. So, complicated dy-
namical behaviors of structures A and C need to be
further analyzed. In order to find the advantages of
dynamical characteristics for the bistable structure,
dynamic behaviors of the monostable structure and
the bistable structure are comparatively studied.
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According to the above experiment of the influence of
external excitation amplitudes on the power generation of
structures, it is found that the output voltage of structure C
improves rapidly when the external excitation amplitude is
greater than 2.3V. But, the maximum excitation amplitude,
which the experimental equipment can provide, is 2.5 V.
*us, the external excitation amplitude is selected as 2.5V in
this experiment. In the previous experiment, the power
generation efficiency of the structures is worse when the
excitation frequency is greater than 30Hz. *erefore, the
external excitation frequency increases from 5Hz to 30Hz.
Dynamic behaviors of the piezoelectric cantilever beam are
analyzed when magnetic distances are 13mm, 14mm, and

15mm, respectively. Based on the above experiment, we find
that the output voltage becomes larger with the increase in
the vibration amplitude of the piezoelectric beam. *e value
of the output voltage relies on the amplitude of vibration for
the structure.

5.2.1. Dynamic Behaviors of the Structure A. When the
external excitation frequency is changed from 5Hz to
20.6Hz, dynamic behaviors of the cantilever beam show the
period-1 motion, as shown in Figure 14. When the external
excitation frequency is changed from 20.6Hz to 30Hz,
dynamic behaviors of the quasiperiod motion are obtained,
as shown in Figure 15. In the experimental study of this
paper, the material of the piezoelectric cantilever beam is
PVDF, which is relatively flexible and prone to the large
deformation. At the same time, the length-width ratio of the
piezoelectric cantilever beam is larger, which is easy to
produce the large deformation. Although structure A is a

Table 1: Comparison of the power generation efficiency of the
structure A, the structure B, and the structure C is given when the
external excitation frequency is studied.

Magnetic
distance (mm) Structure Freq (Hz) V (V) V% V%

— A 4 12.337 — —

16 B 4.4 10.127 13.8 9.14C 5.4 11.521

15 B 5.8 15.214 6.71 10.11C 6.8 15.806

14 B 5.8 14.882 3.47 7.81C 7.2 15.399

13 B 6.2 12.478 10.44 19.24C 7.0 13.781

12 B 4 6.634 7.21 4.14C 4.2 7.112

11 B 1.6 4.26 13.8 8.21C 1.8 4.85
A is the conventional monostable piezoelectric cantilever beam; B indicates the
bistable piezoelectric cantilever beam with the spring and the magnet; C indicates
the bistable piezoelectric cantilever beamwith the spring, themagnet, and the coil.
Freq indicates the effective frequency bandwidth of structures; V indicates the
maximum output voltage; V% indicates the growth rate of the maximum output
voltage; V% indicates the average growth rate of the output voltage.
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Figure 11: Maximum output voltage of the structure B and the
structure C.
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Figure 12: Relation of the voltage-frequency of different magnetic
distances.

Table 2: Comparison of the power generation efficiency of the
structure A, the structure B, and the structure C is given when the
external excitation amplitude is studied.

Magnetic distance
(mm) Structure V (V) V%

— A 12.281 —

15 B 15.096 6.2C 15.246

14 B 15.065 8.29C 15.217

13 B 13.426 1.72C 13.451
A is the conventional monostable piezoelectric cantilever beam; B indicates
the bistable piezoelectric cantilever beam with the spring and the magnet; C
indicates the bistable piezoelectric cantilever beam with the spring, the
magnet, and the coil. V indicates the maximum output voltage; V% in-
dicates the average growth rate of the output voltage.
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Figure 14: Period-1 motion of the structure A is obtained for the external excitation amplitude W � 2.5V and the external excitation
frequency Ω � 15Hz: (a) waveform; (b) phase portrait; (c) amplitude spectrum.
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conventional monostable system, it has nonlinear phe-
nomena. *us, the quasiperiod motion in structure A is
caused by geometric nonlinearity with the large deforma-
tion. Dynamic behaviors of structure A are given as follows:
period-1 motion⟶ quasiperiod motion. It can be seen
from experimental results that nonlinear dynamic behaviors
of the conventional monostable piezoelectric cantilever
beam are not obvious. *e vibration amplitude of the
quasiperiodmotion for structure A is smaller than that of the
period-1 motion. *erefore, the power generation efficiency
of the period-1 motion for structure A is better than that of
the quasiperiod motion.

5.2.2. Dynamic Behaviors of the Structure C. Dynamic be-
haviors of structure C are analyzed in this section. When the
magnetic distance is chosen as 15mm, dynamic behaviors of
the system change 10 times. When the magnetic distance is
selected as 14mm, dynamic behaviors of the system change
12 times. When the magnetic distance is 13mm, dynamic
behaviors of the system change 10 times.*e chaotic motion
occurs in vibration of the structure under the conditions of
three different magnetic distances. It is observed that rich

and complex nonlinear dynamic behaviors occur in vibra-
tion of the system when the spring and the magnet are
introduced.

Dynamic behaviors of structure C are shown in
Figures 16–27 when the magnetic distance is selected as
14mm. In these figures, (a) is the waveform diagram of the
system, (b) is the phase portrait of the system, and (c) is the
amplitude spectrum of the system. When the external ex-
citation frequency is from 5Hz to 10.4Hz, the period-1
motion appears in the system, as shown in Figure 16. When
the external excitation frequency is less than 9.5Hz, the
cantilever beam vibrates only in the upper potential well so
that the vibration amplitude of the beam is small and in-
creases slowly. When the external excitation frequency in-
creases to 9.8Hz, the piezoelectric cantilever beam goes
through the potential barrier, and the vibration amplitude of
the beam increases sharply. A snap-through phenomenon
occurs in the output voltage of the system, in which the
output voltage of the system reaches the maximum value.
Existence of a snap-through phenomenon corresponds to
the period-1 motion in vibration of the system.

When the external excitation frequency increases to
10.4Hz, Figure 17 shows the occurrence of the chaotic
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Figure 15: Quasiperiodic motion of the structure A is obtained for the external excitation frequency Ω � 20.8Hz: (a) waveform; (b) phase
portrait; (c) amplitude spectrum.
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14 Complexity



A
m

pl
itu

de
 (m

m
)

2.5

2.0

1.5

1.0

0.5

0.0

Frequency (Hz)
0 5 10 15 20 25 30

(c)

Figure 17: Chaotic motion of the system is obtained for the external excitation frequencyΩ � 10.8Hz: (a) waveform; (b) phase portrait; (c)
amplitude spectrum.
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Figure 18: Period-2 motion of the system is obtained for the external excitation frequency Ω � 12Hz: (a) waveform; (b) phase portrait; (c)
amplitude spectrum.
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Figure 19: Multiperiodmotion of the system is obtained for the external excitation frequencyΩ � 12.2Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.
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Figure 20: Chaotic motion of the system is obtained for the external excitation frequencyΩ � 12.4Hz: (a) waveform; (b) phase portrait; (c)
amplitude spectrum.
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Figure 21: Multiperiod motion of the system is obtained for the external excitation frequencyΩ � 13.2Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.
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Figure 22: Period-3 motion of the system is obtained for the external excitation frequencyΩ � 13.8Hz: (a) waveform; (b) phase portrait; (c)
amplitude spectrum.
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Figure 23: Continued.
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motion in vibration of the cantilever beam. Since the vi-
bration amplitude of the chaotic motion becomes small, the
output voltage of the system decreases. When the external
excitation frequency changes from 12Hz to 12.2Hz, the

dynamic behavior of the system shows the period-2 motion,
as shown in Figure 18. *e vibration amplitude of the pe-
riod-2 motion is larger than that of the chaotic motion.
When the external excitation frequency changes from
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Figure 23: Quasiperiodmotion of the system is obtained for the external excitation frequencyΩ � 14.2Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.
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Figure 24: Period-1 motion of the system is obtained for the external excitation frequency Ω � 14.6Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.
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Figure 25: Chaotic motion of the system is obtained for the external excitation frequency Ω � 19.6Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.
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Figure 26: Continued.
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12.2Hz to 12.4Hz, the dynamic behavior of the system il-
lustrates the multiple period motion, as shown in Figure 19.
*e vibration amplitude becomes large in the external

excitation frequency range of 0.2Hz. When the external
excitation frequency changes from 12.4Hz to 13Hz, the
dynamic behavior of the chaotic motion is obtained, as
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Figure 26: Period-2 motion of the system is obtained for the external excitation frequency Ω � 26.8Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.

–3.25

–3.30

–3.35

–3.40

–3.45

–3.50

–3.55

–3.60

–3.65

D
isp

la
ce

m
en

t (
m

m
)

30.0 30.5 31.0 31.5 32.0
Time (s)

(a)

30

20

0

10

–10

–20

–30

Ve
lo

ci
ty

 (m
m

/s
)

–3.6 –3.5 –3.4 –3.3
Displacement (mm)

(b)

0.20

0.15

0.10

0.05

0.00

A
m

pl
itu

de
 (m

m
)

0 5 10 15 20 25 30
Frequency (Hz)

(c)

Figure 27: Period-1 motion of the system is obtained for the external excitation frequency Ω � 27.4Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.
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shown in Figure 20. *e nonlinear dynamic behavior is
obvious, and the piezoelectric cantilever beam continues
to vibrate between two stable states. When the external
excitation frequency changes from 13Hz to 13.4 Hz, the
dynamic behavior of the system shows the multiple period
motion, as shown in Figure 21. When the external exci-
tation frequency changes from 13.4 Hz to 14.2 Hz, the
dynamic behavior of the system displays the period-3
motion, as shown in Figure 22. When the external exci-
tation frequency changes from 14.2 Hz to 14.6 Hz, the
dynamic behavior of the system demonstrates the qua-
siperiod motion, as shown in Figure 23. *e piezoelectric
cantilever beam cannot go through the potential barrier,
and the output voltage of the system decreases signifi-
cantly. According to the above dynamical analysis, it is
found that the system can go through the potential barrier
to realize the bistable structure at the appropriate fre-
quency range when the magnetic distance is given. *e
repulsive force between two magnets can be self-tuning by
introducing the spring, and the energy going through the
potential barrier decreases. *e system can vibrate be-
tween two stable states, and the output voltage is greater in
a wide range of frequencies.

When the external excitation frequency gradually be-
comes larger, the system can only vibrate in the one stable
state. When the external excitation frequency is chosen from
14.6Hz to 19.6Hz, the dynamic behavior of the period-1
motion is obtained, as shown in Figure 24. When the ex-
ternal excitation frequency changes from 19.6Hz to 23Hz,
there is the appearance of the chaotic motion in the system,
as shown in Figure 25. When the external excitation fre-
quency changes from 23Hz to 26Hz, the dynamic behavior
of the system shows the period-1 motion. *e vibration
amplitude of the system increases slightly, and the output
voltage improves slightly.

When the external excitation frequency continues to
increase, the piezoelectric cantilever beam vibrates between
two stable states again. When the external excitation fre-
quency changes from 26Hz to 27.4Hz, the dynamic be-
havior of the system demonstrates the period-2 motion and
the output voltage of the system improves, as shown in
Figure 26.

When the external excitation frequency is increased
continuously, the system comes back to the one stable state
again. When the external excitation frequency changes from
27.4Hz to 30Hz, the dynamic behavior of the period-1
motion is obtained, as shown in Figure 27. *e vibration
amplitude of the cantilever beam is quite small when the
external excitation frequency is larger than 30Hz. *e
phenomenon of two stable states cannot appear in vibration
of the piezoelectric cantilever beam.

According to the above analysis of the experimental
results, the law of dynamic behaviors for the system is given
as follows: period-1 motion⟶ chaotic motion⟶
period-2 motion⟶ multiple period motion⟶ chaotic
motion⟶ multiple period motion⟶ period-3 motion
⟶ quasiperiod motion⟶ period-1 motion⟶ -
chaotic motion⟶ period-1 motion⟶ period-2
motion⟶ period-1 motion.

When external excitation frequencies are 10.4Hz, 12Hz,
and 19.6Hz, respectively, the chaotic motion occurs in vi-
bration of structure C under the case of the magnetic dis-
tance of 15mm. *ere is the existence of the chaotic motion
in structure C under the case of the magnetic distance of
13mm when the external excitation frequency is 11.8Hz,
12.4Hz, and 14Hz, respectively. *e experimental results
show that dynamic behaviors of the system are complex
when the structure is introduced the spring and the magnet.
*e bistable phenomenon and the self-tuning magnetic
distance are beneficial to broaden the effective frequency
bandwidth of the structure.

5.3. Influence of the Magnetic Distance on the Power
Generation. *e purpose of investigating the magnetic
distance is to improve the performance of the multimode
power generation device. *e problem proposed is whether
there is an optimum range of the initial magnetic distances,
which make the power generation efficiency of the structure
greater. Since the optimum range of the initial magnetic
distances exist in the system, the energy through the po-
tential barrier is reduced. *e piezoelectric beam easily
produces large amplitude vibration between two stable
states. In order to obtain an optimum range of the initial
magnetic distances, the experiments are conducted under
the case of the different magnetic distances. *rough further
analysis, the optimal initial magnetic distance is found,
which makes the power generation efficiency of the system
greatest.

In the experiment, the external excitation amplitude is
selected as 2.5V, and the external excitation frequency in-
creases from 5Hz to 20Hz. It is obtained from previous
experiments that the power generation efficiency of the
system is great when the initial magnetic distances are se-
lected from 11mm to 16mm. Figure 28 shows that the
power generation efficiency of the system is greater when the
initial magnetic distances are 13mm, 14mm, and 15mm,
respectively. *erefore, the optimum range of the initial
magnetic distances is from 13mm to 15mm. When the
initial magnetic distances are too small, the piezoelectric
beam cannot go through the potential barrier, which results
in the smaller output voltage. When the initial magnetic
distances are too large, it is difficult to realize the bistable
structure. *e cantilever beam cannot produce large am-
plitude vibration in a wide range of frequencies. *erefore,
the performance of the power generation for the system is
improved effectively in an optimum range of the initial
magnetic distances.

In the following experiment, the optimal magnetic
distance is studied in the optimum range of the initial
magnetic distances, which are changed from 11mm to
16mm. It is observed from Figure 29 that the optimal initial
magnetic distance is 15mm.

5.4.OptimalExternalLoadof theStructure. In fact, the power
generation device is required to connect with the external
load. *e external load must affect the output power of the
system. So, there is the optimal external load, which makes

22 Complexity



the output power of the system greatest. In this experiment,
the external loads are connected at the end of the generator.
*e output power of structure C is calculated by measuring
the output voltage of each external load. *rough the ex-
perimental analysis, the optimal external load of the system
is obtained.

In the experiment, the external excitation amplitude is
2V.*e external excitation frequency increases from 5Hz to
30Hz. Experimental results show that the output power of
the system is very low when external loads are less than
1MΩ, as shown in Figure 30. Firstly, the output power is
examined when external loads are 1MΩ, 3MΩ, and 5MΩ,
respectively, as shown in Figure 31(a). *e output power of
the system increases with the increase in external loads.
*en, external loads are chosen as 6MΩ, 8MΩ, and 10MΩ.
It is shown in Figure 31(b) that the output power of the

external load 8MΩ is greater than that of the external load
6MΩ. When the external load is 8MΩ, the output power is
maximum. When the external load increases to 10MΩ, the
output power decreases. Figure 31(c) illustrates that the
output power of the system decreases with the increase in
external loads when external loads of 11MΩ and 12MΩ are
studied. In order to analyze whether the optimal external
load of the system is about 8MΩ, the output power of the
system is further studied when external loads are from 7MΩ
to 9MΩ. Experimental results show that the output power of
the system with the external load of 8MΩ is the greatest, as
shown in Figure 31(d). Based on Figure 31, the conclusion is
drawn that the optimal external load of the system is about
8MΩ. Figure 32 further exhibits the relationship between
the output power and the external load of the system.

Based on the above experiment, we have obtained the
optimal external load of the system is 8MΩ. It is further
studied whether different initial magnetic distances affect the
optimal load of the system. In the experiment, the initial
magnetic distances are selected as 12mm and 15mm, re-
spectively. *e external excitation amplitude of two groups
of experiments is both selected as 2V. It can be seen from
Figure 33 that optimal external loads are both 8MΩ under
two different initial magnetic distances. *erefore, the initial
magnetic distance cannot have an effect on the optimal
external load of the system.

5.5. Influence of Coils on the Power Generation. In the above
experiment, the influence of external excitation frequencies,
external excitation amplitudes, magnetic distances, and
loads on the power generation of the system is studied. In the
following experimental investigation, the influence of coils
from the electromagnetic induction generator on power
generation of the system is examined. *e coil is the copper
wire. *e main parameters of coils include the height, turns,
and the wire diameter. Since the power generation efficiency
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Figure 28: Relation of the voltage-frequency of the structure C is
given when initial magnetic distances are selected as 11mm,
12mm, 13mm, 14mm, 15mm, and 16mm, respectively.
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of structure C is the greatest, the influence of parameters of
coils on the power generation efficiency of structure C is
studied. In the experiment, the external excitation amplitude
is selected as 2V. *e influence of heights, turns, and wire
diameters of the coil on the power generation efficiency is
investigated. Experimental results are shown in
Figures 34–37.

In the first step, the influence of the coil height on the
power generation efficiency of the system is examined.
When the effect of the coil height is studied, the other
parameters of coils remain unchanged in the same group of
the experiment. *e relationship between the output voltage
and the external excitation frequency is investigated under
the different coil heights. Two different turns of coils are
selected to prove that the coil height has a universal effect on
power generation of structure C. When turns of coils are

selected as 100, Figure 34(a) is obtained. Figure 34(a)
demonstrates the comparison of the power generation of
the system when heights of coils are selected as 10mm and
20mm, respectively. When heights of coils are not changed
and turns of coils are chosen as 200, Figure 34(b) is given. It
can be obtained from Figures 34(a) and 34(b) that the output
voltage of the system, whose the coil height is 10mm, is
greater than that of the system, whose coil height is 20mm.
*erefore, the power generation efficiency of the system
decreases when the coil height increases.

Secondly, the influence of the coil turns on the power
generation of the system is analyzed, as shown in Figures 35
and 36. *e turns of coils are 50 turns, 100 turns, 150 turns,
and 200 turns, respectively. *e power generation efficiency
of the coil of 100 turns is greater than that of the coil of 50
turns, as shown in Figure 35(a). It can be seen from
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Figure 31: Relation of the power-frequency of different external loads is given: (a) external loads are 1MΩ,3MΩ, and 5MΩ, respectively;
(b) external loads are 6MΩ, 8MΩ, and 10MΩ, respectively; (c) external loads are 10MΩ, 11MΩ, and 12MΩ, respectively; (d) external
loads are 7MΩ, 8MΩ, and 9MΩ, respectively.
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Figure 35: Relation of the voltage-frequency of the system is given when turns of coils are selected as 50, 100, 150, and 200, respectively: (a)
coil turns are 50 and 100, respectively; (b) coil turns are 100 and 150, respectively; (c) coil turns are 150 and 200, respectively.
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Figure 35(b) that the power generation efficiency of the
system decreases when turns of coils increase from 100 turns
to 150 turns. It can be obtained from Figure 35(c) that the
power generation efficiency of the system decreases when
turns of coils increase from 150 turns to 200 turns.
*erefore, the power generation efficiency of the system is
the greatest when turns of the coil are 100 turns. *e result
also can be drawn from Figure 36 that the coil has optimal
turns, which make the power generation efficiency of the
system greatest.

Finally, the influence of wire diameters of the coil on the
power generation efficiency of the system is investigated, as
shown in Figure 37. *e output voltage of the system im-
proves with the decrease in wire diameters of coils.
*erefore, the power generation efficiency of the system is
improved when wire diameters of coils are increased.

6. Conclusions and Discussion

In this paper, three different kinds of generators are
designed: one is the monostable piezoelectric cantilever
beam structure (structure A), and other two kinds of
structures are bistable piezoelectric cantilever beam struc-
tures (structures B and C). *e power generation and dy-
namic behaviors of the different structures are investigated.
Following conclusions are drawn:

(1) Comparing the monostable structure with the bistable
structure, the power generation of structures B and C
is better. *e bistable structure is easier to go through
the potential barrier by introducing the spring so that
the cantilever beam vibrates between two stable states
in a wide range of frequencies when the magnetic
distance is suitable. When the magnetic distance is
very small, the structure produces the larger magnetic
force. So, the cantilever beam is difficult to go through
the potential barrier, and the nonlinear dynamic

behavior is not obvious. When the magnetic distance
is too large, the systemmakes themagnetic force quiet
small. *e bistable phenomenon of the cantilever
beam disappears. *us, the system improves the
output voltage and broadens the effective frequency
bandwidth under the condition of the suitable mag-
netic distance. When the bistable structure is intro-
duced in the electromagnetic power generation, the
output voltage of the system can be further improved.
*erefore, the power generation of structure C is the
best among three kinds of generators.

(2) *e power generation capacity of the bistable
structure depends on the nonlinear dynamic char-
acteristics of the structure. So, dynamical behaviors
of structure C have been studied in detail. *e ex-
perimental results show that dynamic behaviors of
the system are rich and complex when the spring and
the magnet are introduced. *e repulsive force be-
tween two magnets can be self-tuning, and the en-
ergy through the potential barrier decreases when
the spring is introduced. *e system can vibrate
between two stable states and the output voltage is
greater. *e bistable phenomenon and the self-
tuning magnetic distance are beneficial to broaden
the effective frequency bandwidth of the structure.

(3) *e smaller the energy passes through the potential
barrier, the greater the power generation efficiency is
produced by structure C. Since the magnetic distance
affects the energy through the potential barrier, it is
needed to find the optimal magnetic distance. In the
experiment, the optimum range of the initial mag-
netic distance and the optimal magnetic distance is
investigated in detail. It is found that the optimal
initial magnetic distance is 15mm, which makes the
power generation efficiency of the system greatest.

(4) In fact, the power generation of structure C is re-
quired to connect with the external load, which can
affect the output power of the system. So, there is the
optimal external load, which makes the output
power of the system greatest. In the experiment, the
influence of the external loads on the output power is
studied under different initial magnetic distances. It
is found that the optimal external load is 8MΩ. In
addition, the initial magnetic distance cannot have
an effect on the optimal external load of the system.

(5) Since structure C includes the electromagnetic in-
duction generator, the influence of coils on power
generation is needed to further examine. In the
experiment, the influence of heights, turns, and wire
diameters of the coil on the power generation effi-
ciency is investigated in detail. It is found that the
power generation efficiency of the system decreases
when heights of coils increase. *e optimal turns of
coils are found, which makes the power generation
efficiency of the system greatest. It is also observed
that the wire diameter of the coil is too large to
improve the power generation efficiency of the
system.

5

4

3

2

1

0

Vo
lta

ge
 (V

)

6 8 10 12 14
Frequency (Hz)

Wire diameter of coil is 0.1mm
Wire diameter of coil is 0.3mm
Wire diameter of coil is 0.5mm

Figure 37: Relation of the voltage-frequency of the system is given
when wire diameters of coils are selected as 0.1mm, 0.3mm, and
0.5mm, respectively.

Complexity 27



Data Availability

*e data used to support the findings of this study are in-
cluded within the article. Any reader can access the data
supporting the conclusions of the study.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*e authors gratefully acknowledge the support of the
National Natural Science Foundation of China (NNSFC)
(grant nos. 11772008, 11172009, 11372015, 11232009,
10872010, 11290152, and 10732020), Tianjin Natural Science
Foundation (grant no. 19JCZDJC32300), and the ASME/
IDETC-CIE Conference.

References

[1] S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level
vibrations as a power source for wireless sensor nodes,”
Computer Communications, vol. 26, no. 11, pp. 1131–1144,
2003.

[2] E. S. Leland and P. K. Wright, “Resonance tuning of piezo-
electric vibration energy scavenging generators using com-
pressive axial preload,” Smart Materials and Structures,
vol. 15, no. 5, pp. 1413–1420, 2006.

[3] S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting
vibration sources for microsystems applications,” Measure-
ment Science and Technology, vol. 17, no. 12, pp. 175–195,
2006.

[4] B. P. Mann and B. A. Owens, “Investigations of a nonlinear
energy harvester with a bistable potential well,” Journal of
Sound and Vibration, vol. 329, no. 9, pp. 1215–1226, 2009.

[5] S. C. Stanton, C. C. McGehee, and B. P. Mann, “Nonlinear
dynamics for broadband energy harvesting: investigation of a
bistable piezoelectric inertial generator,” Physica D: Nonlinear
Phenomena, vol. 239, no. 10, pp. 640–653, 2010.

[6] A. Erturk and D. J. Inman, “Broadband piezoelectric power
generation on high-energy orbits of the bistable duffing os-
cillator with electromechanical coupling,” Journal of Sound
and Vibration, vol. 330, no. 10, pp. 2339–2353, 2010.

[7] M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, and
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In this contribution, a new elegant hyperjerk system with three equilibria and hyperbolic sine nonlinearity is investigated. In
contrast to other models of hyperjerk systems where either hidden or self-excited attractors are obtained, the case reported in this
work represents a unique one which displays the coexistence of self-excited chaotic attractors and stable fixed points.)e dynamic
properties of the new system are explored in terms of equilibrium point analyses, symmetry and dissipation, and existence of
attractors as well. Common analysis tools (i.e., bifurcation diagram, Lyapunov exponents, and phase portraits) are used to
highlight some important phenomena such as period-doubling bifurcation, chaos, periodic windows, and symmetric restoring
crises. More interestingly, the system under consideration shows the coexistence of several types of stable states, including the
coexistence of two, three, four, six, eight, and ten coexisting attractors. In addition, the system is shown to display anti-
monotonicity and offset boosting. Laboratory experimental measurements show a very good coherence with the
theoretical predictions.

1. Introduction

Most authors have been interested in chaotic systems
because of their sensitivity to the initial conditions and
also to the variation of system parameters. Since the
discovery of this phenomenon by Lorenz [1], many
classical chaotic systems have emerged. We can mention
the Rossler system [2], Chen system [3], Jafari system [4],
Pham system [5], and Lü system just to name a few [6]. In
the last few years, special attention has been given to “jerk
systems” because of their simplicity and complex dy-
namics [7–12]. From a mathematical point of view, a
generalization of the jerk dynamics is usually given in the
following form:

dnx

dtn
� f

dn− 1x

dtn−1 , . . . ,
dx

dt
, x􏼠 􏼡. (1)

When n � 3, we have (d3x/dt3) � f((d2x/dt2),

(dx/dt), x), which is called “jerk system” [13]. For n≥ 4, (1)
turns to “hyperjerk system” or “snap system” [14]. In the
literature, several authors have studied the latter. Generally,
these systems exhibit multistability phenomenon which are
the coexistence of multiple attractors solely depending on
the initial conditions.)ese attractors are generally classified
into two categories, namely, self-excited and hidden
attractors [15–20]. Remember that self-excited attractors
exist in systems with unstable equilibrium points [21–23]. In
contrast, hidden attractors are characterized by the systems
with no equilibrium [24–29], either by a line or a curve of
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equilibrium points, or system with stable equilibrium points
[24, 25]. In addition, hidden attractors have a basin of at-
traction which does not intersect with the neighborhoods of
equilibria.

Interested by the self-excited attractors, many authors
applied different techniques to hyperjerk systems. Some of
these authors introduced different types of nonlinearities. For
instance, in 2006, Cklouverakis and Sprott [22] presented a
numerical study of a simple subclass of hyperjerk systems and
showed that the 4th and 5th order hyperjerk systems developed
some simple chaotic behaviors. In 2015, Sundiarapandian and
coworkers [23] presented a new hyperchaotic 4-D hyperjerk
system by adding a quadratic nonlinearity to the hyperjerk
system of Chlouverakis–Sprott system. )e authors present
some qualitative and quantitative analyses of the new system.
In 2017, Daltzis et al. [13] introduced a new hyperjerk system
with two nonlinearities (absolute value and quintic term) and
showed that the new system can develop hyperchaotic be-
haviors. Recently, Leutcho et al. [21] presented a new
hyperjerk circuit with hyperbolic sine function and demon-
strated that the novel proposed system is the unique one
which is capable to exhibit the coexistence of nine periodic
and chaotic attractors.

Motivated by the above mentioned results, we present a
new hyperjerk system with nonlinear position feedback in-
volving a hyperbolic sine function. Our circuit is derived from
the hyperjerk system proposed by Dalkirian and Sprott [7] by
replacing the exponential nonlinearity by the hyperbolic sine
function. )e striking aspect of the proposed system is its
ability to develop the coexistence of up to ten disconnected
attractors including periodic, chaotic, and point attractors.)e
objectives of this work are as follows: (a) to present an ana-
lytical study of the proposed hyperjerk system; (b) to highlight
regions in which we observe the coexistence of multiple
attractors; (c) to point out some striking features like anti-
monotonicity and offset boosting; and (d) to verify the fea-
sibility of the proposed model through an experimental study.

)is research is organized as follows. Section 2 deals with
the modeling process. )e electronic consuration of the
hyperjerk circuit is presented and the suitable mathematical
model is derived to describe the dynamics of the novel
hyperjerk, wherein some basic properties of the model are
equally presented. In Section 3, the bifurcation structures of
the system are investigated numerically. Also, in this section,
some tools are used to show multistability observed in the
novel system. Section 4 contains experimental study, and at
the end of this section, it appears that coherence is observed
between the theoretical and experimental analysis. Finally,
Section 5 presents conclusion.

2. Description and Analysis of the Model

2.1. Circuit Description. It is important to know that the new
circuit proposed here derives from the hyperjerk system pro-
posed by Dalkirian and Sprott [7]. It is obtained by substituting
the exponential nonlinearity by the hyperbolic sine function.
Figure 1 represents the schematic diagram of the novel
hyperjerk circuit. )e circuit consists of four successive inte-
grators associated to several feedback loops. In addition, the

nonlinear feedback loop linked with the pair of semiconductor
diodes (D1, D2) is applied to the first integrator. )e sym-
metrical nature [30] of the system is due to the antiparallel
configuration of the diodes. In such type of configuration, the
voltage across each diode is equal to the voltage of the resulting
two-terminal device, while the current is the addition of the
currents flowing through each diode.)e symmetrical property
of the nonlinearity is necessary for the occurrence of symmetric
attractors [30]. We would like to recall that the pair of semi-
conductor diodes is the only nonlinear element responsible for
the chaotic behavior displayed by the whole electronic circuit.

2.2. State Equations. )e following assumptions will be
adopted throughout our analysis. Firstly, we considered that
capacitors and operational amplifiers are ideal with the latter
operating in linear domains. Secondly, the current-voltage
characteristic (3) of the pair of semiconductor diodes
(D1 andD2) is obtained from the Shockley diode equation
[31, 32] as follows:

Id � ID1
− ID2

� IS exp Vd/ηVT( 􏼁 − 1􏼂 􏼃

− IS exp −Vd/ηVT( 􏼁 − 1􏼂 􏼃 � 2ISsinh Vd/ηVT( 􏼁,
(2)

where IS, VT � (kbT/q), kb, T, q, and η(1< η< 2) are the
intrinsic parameters of the diodes. By applying Kirchhoff’s
laws to Figure 1 and considering the above assumptions, it
can be shown that the voltages V1, V2, V3, and V4 satisfy the
following set of four coupled first-order nonlinear differ-
ential equations:

C1
dV1

dt
�

V2

R
,

C2
dV2

dt
�

V3

Rm

,

C3
dV3

dt
�

V4

Rd

,

C4
dV4

dt
�

V1

Rc

−
V2

Rb

−
V3

Re

−
V4

Ra

− Id.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Applying the following change of variables:

t � τRC,

Vref � 10ηVT,

xjVref � Vj (j � 1, 2, 3, 4),

a � R/Ra,

b � R/Rb,

c � R/Rc

d � R/Rd,

m � R/Rm,

e � R/Re,

c � 2RIS/Vref ,

(4)
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we get the normalized circuit equations which are expressed
by the following smooth nonlinear fourth-order differential
equations easy for numerical integration:

_x1 � x2,

_x2 � mx3,

_x3 � dx4,

_x4 � cx1 − bx2 − ex3 − ax4 − c sinh x1( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where the dot represents differentiation concerning the
dimensionless time τ. Note that the nonlinear function only
depends on the state variable x1 in system (5). c will be kept
constant throughout the numerical analysis: c � 0.0011.
)erefore, during the bifurcation analysis of the 4-D system,
c is considered like the control parameter (i.e., with respect
toRc).)e values of electronic components used for both the
numerical and experimental analyses are listed in Table 1.
System (5) can be expressed equivalently in the general
hyperjerk form as follows:

x⃜1 � mbcx1 − dc sinh x1( 􏼁 − mbd _x1 − de €x1 − a _x1. (6)

By observing equation (6), it can be noticed that our
model belongs to the wider class of “elegant” hyperjerk
dynamical systems defined in [14]. More interestingly, our
model (5) represents one of the simplest autonomous 4-D
systems reported recently, displaying the coexistence of up
to ten fixed points, periodic and chaotic attractors.

2.3. Symmetry, Dissipation, and Existence of Attractors.
Equation (5) being invariant following the transformation
(x1, x2, x3, x4)⟺ (−x1, −x2, −x3, −x4), we can conclude
that we will have a couple of solutions for a given parameter

range. So, if (x1, x2, x3, x4) is a solution of our system, then its
symmetry (−x1, −x2, −x3, −x4) will also be a solution. All
these makes it possible to highlight the symmetrical nature of
our system. In order to verify the dissipation property of our
system, it is necessary to calculate the volume contraction rate
(Λ � (V− 1dV/dt)). For every point of space (x1, x2, x3, x4)

T

[33, 34], it is given by the following expression:

Λ �
z _x1

zx1
+

z _x2

zx2
+

z _x3

zx3
+

z _x4

zx4
� −a< 0. (7)

)e above expression is negative and does not depend on
the space coordinates of the system, and thus we can
conclude that the introduced system is dissipative.

2.4. Fixed Point Analysis. By canceling the right side of
equation (5), it is possible to determine the equilibrium

Rd Rm

C1C2C3C4

V4 –V3 V2 –V1

R
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R0″
D1

D2

id

R
R
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BA
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Rc
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U4 U3 U2 U1

× ×
–
+

–
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–
+

–
+

–
+

–
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Figure 1: Electronic circuit realization of the novel 4-D hyperjerk system with hyperbolic sine nonlinearity. Its simplicity is remarkable.)e
pair of semiconductor diodes implements the hyperbolic nonlinearity of the model.

Table 1: List of electronic components used during the analyses.

Components
Values

Case A Case B
Ra 300Ω − 1.7kΩ 5.555kΩ
Rb 1.666kΩ 2.631kΩ
Rc 10kΩ 4kΩ − 6kΩ
Rd 2kΩ 7.407kΩ
Re 5kΩ 673.4Ω
Rm 10kΩ 4.545kΩ
R, R0, R′

′
0 (numerical study) 10kΩ 10kΩ

R, R0 (experimental study) 10kΩ 10kΩ
R’′
0 (experimental study) 100kΩ 100kΩ

C1, C2, C3, C4 10nF 10nF

D1, D2 1N4148 1N4148
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points of the system which play a crucial role in the study
of the system dynamics. )e resolution of equation (8)
permits to obtain different equilibrium points of the
system.

x2 � 0,

x3 � 0,

x4 � 0,

cx1 − bx2 − ex3 − ax4 − c sinh x1( 􏼁 � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Note that the point E0(0, 0, 0, 0) is a trivial equilibrium
point, while E1 and E2 are the solutions of the transcendental
equation:

cx1 − c sinh x1( 􏼁 � 0. (9)

By fixing c � 2.442 and maintaining c at the same
previous value, we obtain the other nontrivial equilibrium
points (E1, E2) � (±10.79, 0, 0, 0). )e stability of the sys-
tem in the neighborhood of those equilibrium points is
studied by resolving the characteristic equation (12),
resulting from the below equation:

det MJ − λId􏼐 􏼑 � 0, (10)

where Id represents the 4 × 4 identity matrix and MJ the
Jacobian matrix defined as follows:

MJ �

0 1 0 0

0 0 m 0

0 0 0 d

c − c cosh x0
1( 􏼁 −b −e −a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

)e characteristic equation obtained is λ4 + c3λ
3+ c2λ

2 +

c1λ + c0 � 0, with

c0 � −md c − c cosh x
0
1􏼐 􏼑􏼐 􏼑,

c1 � mdb,

c2 � ed,

c3 � a.

(12)

By applying the Lyapunov stability theory, it is shown
that at the equilibrium point E0(0, 0, 0, 0),
c − c> 0⟹c0 < 0, and thus the equilibrium E0 is unstable
since the characteristic equation has coefficients with dif-
ferent signs. In contrast, the stability of the nonzero equi-
librium points (E1,2(±10.79, 0, 0, 0)) depends on the control
parameters m and b. By applying the Routh–Hurwitz cri-
terion [32, 33], we have shown that for b< bc1 � 3.4397 and
b> bc2 � 5.56, the nontrivial equilibrium points are unsta-
ble, but for bc1 < b< bc2, they are stable. )ese critical values
are obtained from the calculation of the Hopf bifurcation
conditions:

ωHopf �
��������
(mdb/a)

􏽰
,

bc1,c2 �
1
2

ea

m
±

��
Δ

√
􏼒 􏼓,

(13)

with Δ � (ea/m)2 + (4a2/md)(c − cosh(10.79)).

Equation (13) provides the frequency of stable oscilla-
tions as well as the critical values of bc1,c2 corresponding to
the Hopf bifurcation of the system. From Table 2, it follows
that in the regime of (periodic or chaotic) oscillations, the
three equilibria are unstable, and thus the system generates
self-excited oscillations. For the following parameters
a � 1.8, d � 1.35, e � 15, m � 3, and c � 2.442, the equi-
librium point E0(0, 0, 0, 0) remains unstable for all values of
control parameter b. Moreover, for some values of bifur-
cation parameter b, the nontrivial equilibria have pure
imaginary roots, and thus the system presents the Hopf
bifurcation. In order to verify the existence of the Hopf
bifurcation in the system, eigenvalue locus is plotted. It
shows the existence of Hopf bifurcation in the system which
is characterized by the intersection of the eigenvalue locus
with the imaginary axis. By observing Figures 2(a) and 2(b),
we can certify that the new hyperjerk system presents Hopf
bifurcation.

3. Numerical Computation

3.1. Numerical Techniques. System (5) is resolved numeri-
cally in order to highlight the rich variety of bifurcation that
can be observed in a new hyperjerk system. )e dynamic
properties of the model were numerically simulated in Turbo
Pascal using the fourth-order Runge–Kutta method with a
constant time step size of 2 × 10− 3, and parameters are taken
in extended precision mode. )e transient phase is canceled
by integrating the system for a long time. )e bifurcation
diagram and the Lyapunov exponent are the traditional tools
that measure the dependence of the system on the initial
conditions as well as the sequence that leads to chaos in the
system. )e algorithms of Wolf and his collaborators [35]
are used for calculating the Lyapunov exponents.

3.2. Bifurcation, Chaos in a Novel Hyperjerk Circuit.
Different scenarios exhibited by the proposed hyperjerk
system are obtained by plotting the bifurcation diagrams.
)e bifurcation diagram of Figure 3(a) is obtained by
plotting the local maxima of the variable x1 according to the
bifurcation parameter a, the other parameters being fixed at
c � 1, b � 6, d � 5, e � 2, and m � 1. It can be noted that it is
a period-doubling route to chaos because the transition from
period-1 attractor to double-band chaos is as follows: pe-
riod-1 ⟶ period-2 ⟶ period-4 ⟶ single-band
chaos ⟶ period-5 ⟶ single-band chaos ⟶ double-
band chaos. Figure 4 clearly shows the above transition. It is
obtained by progressively varying the control parameter. )e
exact nature of the attractors mentioned above is defined by
the graphs of the four largest Lyapunov exponents shown in
Figure 3(b). We can observe in Figure 3(b) that periodic
attractors are characterized by λ1 � 0, λ2, λ3, and λ4 < 0, while
chaotic attractors have the following characteristics: λ1 > 0,
λ2 � 0, λ3, and λ4 < 0. A perfect coherence is observed be-
tween the bifurcation diagram and the corresponding graphs
of the four largest Lyapunov exponents. In order to show the
complexity of the new hyperjerk circuit, the chaotic attractor
has been projected on several planes (Figures 5(a)–5(f)), as well
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Table 2: Corresponding eigenvalues of each equilibrium point according to the bifurcation parameter b.

Values of bifurcation parameter
b

Eigenvalues at nontrivial fixed (E1, E2), λ1, λ2, λ3, λ4
Eigenvalues at the origin E0(0, 0, 0, 0)

λ1, λ2, λ3, λ4
3.1 −0.9641 ± 3.4906i 0.0641 ± 2.7165i (unstable) −0.5719 ± 4.4347i −1.1041 0.4478 (unstable)
3.2 −0.9461 ± 3.4712i 0.0461 ± 2.7346i (unstable) −0.5618 ± 4.4350i −1.1185 0.4422 (unstable)

3.4397 −0.9000 ± 3.4206i ± 2.7820i (neutral,
Hopf bifurcation) −0.5378 ± 4.4358i −1.1536 0.4292 (unstable)

3.5 −0.0023 ± 3.5339i −0.8977 ± 2.6358i (stable) −0.5318 ± 4.4361i −1.1625 0.4260 (unstable)
5.55 −0.0093 ± 3.5246i −0.8907 ± 2.6459i (stable) −0.3297 ± 4.4591i −1.4757 0.3351 (unstable)

5.56 ± 3.5370i −0.9000 ± 2.6324i (neutral,
Hopf bifurcation) −0.3287 ± 4.4593i −1.4772 0.3347 (unstable)

5.59 −0.9476 ± 3.2070i 0.0476 ± 3.0071i (unstable) −0.3258 ± 4.4598i −1.4819 0.3336 (unstable)
9.12 0.3784 ± 4.0088i −1.2784 ± 2.0827i (unstable) −0.0077 ± 4.5497i −2.0210 0.2363 (unstable)
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Figure 2: Representation of eigenvalue locus in the complex plan (Re(λ), Im(λ)) with the following parameter values: (a) a � 1.8, b � 3.8,
c � 2.442, d � 1.35, e � 14.85, and 2≤m≤ 10; (b) a � 1.8, b � 3.8, d � 1.35, e � 14.85, 2≤m≤ 10, and 2.34≤ c≤ 12.985. )e appearance of
eigenvalues in complex conjugate pairs justifies the symmetry observed in the system and intersection of the curve with imaginary axis
shows the presence of the Hopf bifurcation in the system.
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Figure 3: (a) Bifurcation diagram showing local maxima of the coordinate x1 versus c and (b, c) the corresponding graphs of four largest
Lyapunov exponents plotted in the range 6≤ a≤ 30, with c � 1, b � 6, d � 5, e � 2, and m � 1 and initial conditions
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Figure 4: Continued.
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Figure 4: Numerical phase space trajectories showing routes to chaos in the system when varying the control parameter c: (a) period-1 for
a � 7, (b) period-2 for a � 12.38, (c) period-4 for a � 13, (d) period-8 for a � 13.49, (e) single-band chaos for a � 14.6, (f ) period-5 for
a � 16.08, (g) single -band chaos for a � 16.7, (h) single-band chaos for a � 20, and (h) double-band chaos for a � 30. Initial conditions
(x1(0), x2(0), x3(0), x4(0)) are (0, 0, 2.4, 0). )e others parameters are fixed as follows: c � 1, b � 6, d � 5, e � 2, and m � 1.
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as the Poincaré section (Figure 5(g)). We can observe that the
double-band chaos completely changes whenmoving from one
plane to another. For the value of the bifurcation parameter

a � 17.04, the coexistence of four periodic and chaotic
attractors is observed in the novel proposed system (see Fig-
ure 6). In order to illustrate the Hopf bifurcation previously
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Figure 5: 2-D projection of the phase portraits of symmetric double-band chaotic attractors (a-f) of system (3) plotted into planes (x1 − x4),
(x2 − x3), (x2 − x4), (x3 − x4) and corresponding double-sided Poincaré section (e) in the planex1 � 0. Parameters are the same as those in Figure 4.
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proved by theoretical calculations, the bifurcation diagram of
Figure 7 has been represented. Stable state is characterized by a
fixed point with λmax < 0, while oscillatory state is characterized
by λmax ≥ 0.

3.3. Multistability. In this section, we demonstrate the va-
riety of dynamical regimes in the new 4-D system. We show
that depending on the values of the system parameters, the
system exhibits very rich dynamics and bifurcation sce-
narios. A multistable system is a system with various
coexisting stable states (chaotic, point, and periodic state)
under the same system parameters, with different initial
conditions. In recent years, the phenomenon of multi-
stability phenomenon has been reported in many nonlinear
dynamic systems [13, 36–46].

3.3.1. Coexistence of Attractors with respect to Bifurcation
Parameter c. By changing the system parameters and
considering c as bifurcation parameter, we observe a
completely different behavior. In addition, a very interesting

phenomenon which is the coexistence of multiple attractors
appears in the new 4-D hyperjerk. For this phenomenon to
be illustrated, the bifurcation diagrams of Figure 8 are
plotted using the following method:

(i) )e blue diagram is obtained by simultaneously
increasing the value of the control parameter c as
well as the initial condition x(0). At each itera-
tion, we assign to x(0) the new value of the control
parameter c.

(ii) )e red diagram is obtained by incrementing c from
its minimum value 2.34 to its maximum value 2.985,
with a carefully chosen step. Note that the solutions
of the system at each iteration are considered as the
initial condition of the next iteration.

(iii) )e cyan diagram respects the previous procedure,
with the initial condition (−10.67, 0, 0, 0), whereas
the black diagram follows the same procedure as
previously described but the only difference is the
decrease of the control parameter c. )e initial
condition is (10, 0, 0, 0).
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Figure 6: Coexistence of four attractors (a pair of period-11 limit cycle and a pair of chaotic attractors) with a � 17.04, and their cor-
responding initial conditions are (±4.8, 0, 0, 0) and (±1.2, 0, 0, 0).
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(iv) )e magenta diagram is obtained by increasing the
control parameter c from 2.398 to 2.985, followed by
decreasing the bifurcation parameter c from 2.398
to 2.34.

We can observe in Figure 8 several windows of coex-
isting attractors. For more details about the methods used to
plot the bifurcation diagrams of Figure 8, see Table 3. )e
enlarged bifurcation diagram of Figure 9 shows the hys-
teretic domain, plotted in the range 2.442≤ c≤ 2.488, and the
techniques used to plot the diagrams are also presented in

Table 3. Figure 9 shows the coexistence of six and eight
different limit cycles, chaotic and point attractors. Some
sample phase portraits showing the coexistence of six and
eight attractors are presented in Figures 10 and 11, re-
spectively. Some basins of attractions showing the initial
conditions domains of the coexisting attractors are pre-
sented in Figure 12. )e coexistence of four attractors is
clearly denoted (a pair of periodic attractors (black and
yellow) and a pair of chaotic attractors (blue and green)).
Note that there is a perfect symmetry between the different
cross sections of the competing attractors.

4 5 6 7 8 9
9

9.5

10

10.5

11

11.5

12

12.5

13

b

x1

(a)

4 5 6 7 8 9
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

b

λ m
ax

(b)

Figure 7: (a) Bifurcation diagram showing local maxima of the coordinate x1 versus b and (b) the corresponding graph of largest Lyapunov
exponent (λmax) plotted by decreasing b in the range 3.5≤ b≤ 9.12, with a � 1.8, m � 3, c � 2.442, d � 1.35, and e � 15 and initial conditions
(x1(0), x2(0), x3(0), x4(0)) � (0, 0, 9.333, 0).
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Figure 8: symmetric coexisting bifurcation diagrams showing complex structure of the new hyperjerk for a� 1.8, b� 3.8, d� 1.35, e� 14.85,
and m � 2.2. Initial conditions y(0) � z(0) � w(0) � 0 and x(0) are fixed as follows for obtaining these diagrams: red diagrams for
increasing c with x(0) � 5.25, black diagram for decreasing c with x(0) � −10, cyan diagrams for increasing c with x(0) � −10.67, magenta
diagram for increasing and decreasing, started at c � 2.5442 with x(0) � −4, and blue diagram for starting c with same initial condition
x(0) � c. For more information, see Table 3.
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)e initial conditions of the coexistence of ten attractors
exhibited by the proposed hyperjerk system are presented in
Figure 13. )e bifurcation like sequence of Figure 13 shows
the variation of x3(0) in terms of the control parameter c,
and the other initial conditions are set to zero
(x1(0) � x2(0) � x4(0) � 0). Note that chaotic attractors are
characterized by an unlimited number of points, while
periodic attractors are characterized by a finite number of
points. In the same line, the basin of attraction shows the
different domains of convergence of similar attractors. )e
phase portrait of Figure 14 illustrates the coexistence of ten
attractors. )e initials conditions of the coexisting attractors
are given in Table 4.

3.3.2. Coexistence of Attractors with respect to Bifurcation
Parameters m and b. In order to investigate the sensitivity of
the new hyperjerk system in terms of the bifurcation pa-
rameter m, the other parameters are fixed as follows: a � 1.8,
b � 3.8, c � 2.442, d � 1.35, and e � 14.85. We found that

the novel hyperjerk system can exhibit striking bifurcation
sequences when varying the control parameter m in the
range 2≤m≤ 4.18. With reference to Figure 11, the bifur-
cation diagram in black and the one in blue are obtained by
increasing and decreasing the values of the parameter m,
while the one in red is obtained by fixing the initial con-
ditions at (x1(0), x2(0), x3(0), x4(0)) � (−4, 0, 0, 0). A
window of hysteretic dynamics can be identified in the range
2.6≤m≤ 2.9. )e enlarged bifurcation diagram of Figure 12
clearly illustrates the domain of the coexistence of multiple
attractors observed in the new hyperjerk system according to
the bifurcation parameter m. Different methods used to plot
these bifurcation diagrams are presented in Table 3. Up to six
different periodic, chaotic, and point attractors can be ob-
tained by only changing the initial conditions. For instance,
sample phase portraits of the coexistence of six distinct
attractors are presented in Figure 13.

During the mathematical analyses, it has been shown that
the Hopf bifurcation was depending on the control parameter
m.)e bifurcation diagramof Figure 13(a) clearly illustrates this

Table 3: Techniques used to obtain coexisting bifurcation diagrams and corresponding initial conditions.

Fig.n0 Color graph Parameter range Sweeping direction Initial condition (x1(0), x2(0), x3(0), x4(0))

Figure 8

Blue 2.34≤ c≤ 2.985 Upward (c, 0, 0, 0)

Red 2.34≤ c≤ 2.985 Upward (5.25, 0, 0, 0)

Cyan 2.34≤ c≤ 2.985 Upward (−10.67, 0, 0, 0)

Black 2.985≤ c≤ 2.34 Downward (−10, 0, 0, 0)

Magenta 2.398≤ c≤ 2.985 Upward (−4, 0, 0, 0)

2.398≤ c≤ 2.34 Downward (−4, 0, 0, 0)

Figure 9

Red 2.442≤ c≤ 2.488 Upward (5, 0, 0, 0)

Black 2.488≤ c≤ 2.442 Downward (5, 0, 0, 0)

Cyan 2.442≤ c≤ 2.488 Upward (−10.67, 0, 0, 0)

Magenta 2.442≤ c≤ 2.488 Upward (12, 0, 0, 0)

Figure 13

Blue 2.802≤m≤ 2.865 Upward (−5.5, 0, 0, 0)

2.738≤m≤ 2.802 Downward
Red 2.802≤m≤ 2.865 Upward (12.8, 0, 0, 0)

2.738≤m≤ 2.802 Downward
Magenta 2.802≤m≤ 2.865 Upward (−10.1, 0, 0, 0)

2.738≤m≤ 2.802 Downward

x1

x1
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5

20

0

–20
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c

2.45 2.46 2.47 2.48
c

Fixed point branch

Figure 9: Enlargement of bifurcation diagram of Figure 8 plotted in the range 2.442≤ c≤ 2.488 showing the region in which the system
exhibits multiple coexisting attractors. )e system parameters are the same as the one of Figure 8.
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Figure 11: (a, b) Bifurcation diagrams showing local maxima of the coordinate x1 versus m and (c) the corresponding graph of largest
Lyapunov exponent (λmax) plotted in the range 2≤m≤ 4.18, with a � 1.8, b � 3.8, c � 2.442, and d � 1.35.
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Figure 10: Bifurcation like sequence showing local maxima of the coordinate x3 versus the initial condition . plotted in the range
0≤x(0)≤ 30, with a � 1.8, b � 3.8, c � 2.5442, d � 1.35, and e � 14.85. It can be observed the coexistence of ten periodic, chaotic, and point
attractors.
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phenomenon characterized by the stable state followed by the
unstable state. Moreover, this control parameter also highlights
the coexistence of multiple attractors exhibited by the new 4-D
system. By considering the following sets of the parameters:
a � 1.8, b � 3.5, c � 2.442, d � 1.35, e � 15, and m � 3, we
discover that the new 4-D system displays the coexistence of
four distinct chaotic and point attractors.)e phase portraits of
the Figure 14 and their corresponding cross section of the basin
of attraction clearly show the coexistence phenomenon and also
give the initial condition domain of each attractor. )e green
and black domains represent the initial conditions regions of the
pair of chaotic attractors, while the yellow domain represents
the initial condition regions of the pair of point attractors.

3.4.Offset Boosting Scenario. Another property of system (3)
is the possibility to develop an offset boosting effect. In our
model, x1 appears only in the fourth line of equation (3), and
thus this variable is a bootable variable [47–52]. Assuming
the transformation x1⟶ x1 + k where k is a constant,
equation (5) can be rewritten accordingly as

_x1 � x2,

_x2 � mx3,

_x3 � dx4,

_x4 � c x1 + k( 􏼁 − bx2 − ex3 − ax4 − c sinh x1 + k( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Figure 19 clearly presents offset boosting of the double-
band chaotic attractor. )e following values of parameter:
k � 0 (blue), k � 10 (red) and k � −10 (green) are used to
plot them in x1-x4 and x1-x3 planes.

3.5. Antimonotonicity. By decreasing the value of the
control parameter e(15≤ e≤ 20), we can observe the

formation and destruction of periodic orbits via reverse
period-doubling bifurcation sequences. )is interesting
phenomenon has been reported in the literature. It is re-
ported in various nonlinear systems such as Duffing os-
cillator [12], Chua circuit [53], and second-order nonlinear
nonautonomous circuit [54, 55]. )is phenomenon was
reported for the first time in the hyperjerk system by
Leutcho et al. [21]. )e creation of periodic seas in the
parameter space is the necessary requirement for a non-
linear system to experience forward and reverse period-
doubling cascade [21]. Sample illustrations are represented
in Figure 20, where some bifurcation diagrams are shown.
)ese diagrams are obtained for each discrete value of the
control parameter c. In Figure 20, note that for c � 2.5442,
we have period-2 bubble and for a slight adjustment of the
control parameter c, period-4 bubble is observed for
c � 2.8442, whereas for c � 2.9, we have a period-8 bubble.
In the same order, chaotic bubbles are formed for
c � 2.97, and c � 2.99. )e increase of control parameter c

causes the creation of other bubbles, and it finally results in
an infinite tree (like chaos).

4. Experimental Study

)e objective of this section is to confirm the above
theoretical results by realizing a laboratory experimental
study. For this purpose to be achieved, several approaches
have been proposed in the literature to implement chaotic
circuit (by using many types of off-the-shelf electronic
components [56] or field-programmable gate array
(FPGA) technology [57–60] or field-programmable-an-
alog-array (FPAA) technology [61, 62] just to name a
few). Only off-the-shelf electronic components (i.e., re-
sistors, capacitors, pair of semiconductor diodes
(D1 � D2 � 1N4148), and TL084 operational amplifiers
types with a power supply of ±15 VDC) are used to realize

2.74 2.76 2.78 2.8 2.82 2.84 2.86
–12
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–2

m

x 1
(τ

)

Figure 12: Enlargement of the bifurcation diagram of Figure 11(a) showing the region in which the system exhibits multiple coexisting
attractors.)is region corresponds to values of m in the range: 2.735≤m≤ 2.865.)ree sets of data are superimposed. For more information
about the methods used to plot, see Table 3.
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the schematic diagram of Figure 1. )e following values
of electronic circuit components are used during the
experimental process: Rc � Rm � R � 10 kΩ, Rb � 1.67 kΩ,

Re � 5kΩ, and Rd � 2.941 kΩ (for the other parameters,
see Table 1 case A). )e complete sequence of phase
portraits plotted in (x1, x4) plan is obtained by adjusting
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Figure 13: Coexistence of six different attractors (a pair of period-2 limit cycle, a pair of chaotic attractors, and a pair of fixed point attractor)
for the following values of system parameters:a � 1.8, b � 3.8, c � 2.442, d � 1.35, e � 14.85, and m � 2.802. Initial conditions
(x1(0), x2(0), x3(0), x4(0)) are, respectively, (±5.5, 0, 0, 0), (±12.8, 0, 0, 0), and (±10.1, 0, 0, 0).
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Figure 14: (a, b) Coexistence of four distinct attractors (a pair of chaotic attractors represented in x1 − x2 and x2 − x3 plans), (c) a pair of
fixed point attractor) and their corresponding basin of attraction. Initial conditions (x1(0), x2(0), x3(0), x4(0)) are,
respectively,(±7.15, 0, ± 8.613, 0) and (±12.8, 0, 0, 0). )e rest of the parameters area � 1.8, b � 3.5, c � 2.442, d � 1.35, e � 15, and m � 3.
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Figure 15: Continued.
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Table 4: Details of the coexistences observed in the novel hyperjerk system.

Fig.n0 Type of coexistences Values of control
parameter

Initial condition
(x1(0), x2(0), x3(0), x4(0))

Figure 16 A symmetric pair of period-2 attractors, a symmetric pair of chaotic
attractors, and a pair of fixed point. c � 2.44

(a)(0, 0, ± 44.4, 0)

(b)(0, 0, ± 48, 0)

(c)(0, 0, ± 26.4, 0)

Figure 17
A symmetric pair of period-2 attractors, a symmetric pair of chaotic
attractors, a symmetric pair of period-9 attractors, and a pair of fixed

point.
c � 2.454

(a)(0, 0, ± 25.2, 0)

(b)(0, 0, ± 48, 0)

(c)(0, 0, ± 10.8, 0)

(d)(0, 0, ± 26.4, 0)

Figure 18
A symmetric pair of period-2 attractors, a fixed point, a symmetric pair of
period-12 attractors, 2 symmetric pairs of chaotic attractors, and a pair of

fixed point.
c � 2.5442

(A”A1,A2“)(0, 0, ± 45.6, 0)

(b)(0, 0, ± 18, 0)

(c)(0, 0, ± 49.2, 0)

(d)(0, 0, ± 48, 0)

(e)(0, 0, ± 26.4, 0)
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Figure 15: Cross sections of basin of attraction for x3(0) � x4(0) � 0, x2(0) � x4(0) � 0, x2(0) � x3(0) � 0, and x1(0) � x4(0) � 0
corresponding to the asymmetric pair of chaotic (blue and green) and period-2 attractors (yellow and black) obtained for c � 2.44. Red
regions correspond to unbounded motion.

–6 –4 –2 0 2 4 6
–6

–4

–2

0

2

4

6

x3

x2

(a)

x3

–10 –5 0 5 10
–10

–5

0

5

10

x2

(b)

Figure 16: Continued.
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Figure 16: Coexistence of six different attractors (a pair of symmetric period-2 limit cycle, a pair of symmetric period-9 limit cycle, a pair of
symmetric chaotic attractors, and a pair of point attractors). )e values of others system parameters are fixed as follows: a � 1.8, b � 3.8,
d � 1.35, e � 14.85, and m � 2.2. Initial conditions are given in Table 4.
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Figure 17: Coexistence of eight different attractors (a pair of symmetric period-2 limit cycle, a pair of symmetric chaotic attractors, and a
pair of point attractors). )e parameters are the same as those in Figure 16. Initial conditions are given in Table 4.
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the control resistor Ra in the range
333, 33Ω≤Ra ≤ 1.66 kΩ. It can be seen in Figure 21 a good
coherence between the numerical results (left side) and
the experimental ones (right side). By changing the values

of electronic components: Re � 600Ω,Ra � 2.116 kΩ, Rb �

4.21 kΩ, Rm � 784Ω, Rd � 3.234 kΩ, and Rc � 5.16 kΩ (for
the other parameters, see Table 1 case B), the coexistence
of attractors emerges. Figure 22 clearly illustrates the
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Figure 18: Coexistence of ten different attractors (a pair of symmetric period-2 limit cycle, 2 pair of symmetric chaotic attractors, a pair of
symmetric period-9 limit cycle, and a pair of point attractors).)e parameters are the same as those in Figure 16. Initial conditions are given
in Table 4.
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Figure 19: Offset boosting of the double-band chaotic attractor with the following values of parameter: k � 0(blue), k � 10(red), and
k � −10(green). )e other parameters are the same as those in Figure 4.
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Figure 20: Bifurcation diagrams showing local maxima of the coordinate x1 of the attractor in Poincaré cross section in terms of the control
parameter a (bubbling): (a) period-2 bubble for c � 2.5442, (b) period-4 bubble for c � 2.8442, (c) period-8 bubble for c � 2.9, (d) single-
band chaos bubble for c � 2.93, (e) single-band chaos bubble for c � 2.99, and (f) double-band chaos bubble for c � 3.0.
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Figure 21: Experimental phase portraits (right column) and corresponding numerical ones (left column) obtained by a direct integration of
the system (1) confirming the scenario to chaos in the system for varying Ra (i.e., parameter a): (a) period-1 for Ra � 1.428, (b) period-2 for
Ra � 807, (c) single-band chaos for Ra � 684, (d) single–band chaos for Ra � 500, and (e) double-band chaos for Ra � 333, 33.)e scales are
X � 0.2V/div and Y � 0.5V/div.
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coexistence of fixed points, period-2 attractor, and cha-
otic attractor. )ose attractors appear randomly by
switching on and off the power supply. We can conclude
that the mathematical model proposed in this work
perfectly describes the real behavior of the novel
hyperjerk circuit.

5. Conclusion

)is work has proposed and investigated a new chaotic
hyperjerk circuit with three equilibrium points having hy-
perbolic sine nonlinearity. )e chaotic behavior observed in
the system is due to the nonlinear component formed by two

Figure 22: Coexistence of multiples attractors for Rc � 5.16 kΩ. Both periodic and chaotic attractors appear randomly in the experiment
when switching on and off the power supply. )e scales are X � 5V/div and Y � 2V/div for all pictures.
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antiparallel diodes. Classical nonlinear analysis tools have been
used to study the complete dynamics of the system. )e bi-
furcation analysis of the new circuit shows that the chaotic
double-band attractor arises from the period-doubling scenario
followed by the symmetry recovering crisis event. In addition,
some properties of the system such as antimonotonicity and
offset boosting have been revealed. In particular, various re-
gions in the parameter space in which the system develops the
coexistence of up to ten disconnected attractors consisting of
stable fixed points, limit cycles, and strange attractors have been
reported. )e coexistence of periodic, chaotic, and stable fixed
points discovered in this work has not yet been reported in a
hyperjerk system (at least as simple as the case discussed) and
thus merits dissemination. To validate the theoretical study
presented in this work, the new chaotic hyperjerk circuit has
been realized and used for the investigations. Experimental
results agree well with those obtained during the numerical
experiment, thus confirming the feasibility of the proposed
model. Owing to its extreme simplicity coupled with extremely
rich dynamics, the new hyperjerk circuit introduced in this
work has potential utility for information encryption as well as
for other chaos-based applications [62].
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[6] J. Lü and G. Chen, “A new chaotic attractor coined,” Inter-
national Journal of Bifurcation and Chaos, vol. 12, no. 03,
pp. 659–661, 2002.

[7] F. Y. Dalkiran and J. C. Sprott, “Simple chaotic hyperjerk
system,” International Journal of Bifurcation and Chaos,
vol. 26, no. 11, p. 1650189, 2016.

[8] S. J. Linz, “Nonlinear dynamical models and jerky motion,”
American Journal of Physics, vol. 65, no. 6, pp. 523–526, 1997.

[9] J. Kengne, Z. T. Njitacke, A. N. Negou, M. Fouodji Tsostop, and
H. B. Fotsin, “Coexistence of multiple attractors and crisis route
to chaos in a novel chaotic jerk circuit,” International Journal of
Bifurcation and Chaos, vol. 26, no. 5, p. 1650081, 2016.

[10] J. Kengne, A. N. Negou, and D. Tchiotsop, “Anti-
monotonicity, chaos and multiple attractors in a novel au-
tonomous memristor-based jerk circuit,” Nonlinear
Dynamics, vol. 88, no. 4, pp. 2589–2608, 2017.

[11] J Kengne, V. R. F. Signing, J. C. Che djou, and G. D. Leutcho,
Nonlinear behavior of a novel chaotic jerk circuit: anti-
monotonicity, crisis and multiple coexisting attractors,” In-
ternational Journal of Dynamics and Control, vol. 6, pp. 1–18,
2017.

[12] Z. T. Njitacke, J. Kengne, and L. K. Kengne, “Anti-
monotonicity, chaos and multiple coexisting attractors in a
simple hybrid diode-based jerk circuit,” Chaos, Solitons &
Fractals, vol. 105, pp. 77–91, 2017.

[13] P. Daltzis, S. Vaidyanathan, V. T. Pham, C. Volos,
E. Nistazakis, and G. Tombras, “Hyperchaotic attractor in a
novel hyperjerk system with two nonlinearities,” Circuits,
Systems, and Signal Processing, vol. 37, no. 2, pp. 613–635,
2018.

[14] J. C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows,
World Scientific Publishing, Singapore, 2010.

[15] A. P. Kuznetsov, S. P. Kuznetsov, and N. V. Stankevich, “A
simple autonomous quasiperiodic self-oscillator,” Commu-
nications in Nonlinear Science and Numerical Simulation,
vol. 15, no. 6, pp. 1676–1681, 2010.

[16] N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, “Ana-
lytical-numerical method for attractor localization of gener-
alized Chua’s system∗,” IFAC Proceedings Volumes, vol. 43,
no. 11, pp. 29–33, 2010.

[17] N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, and
V. I. Vagaitsev, “Hidden attractor in chua’s circuits,” in
Proceedings of the 8th International Conference Informatics in
Control, Automation and Robotics, pp. 279–283, ICINCO,
Noordwijkerhout, )e Netherland, 2011.

[18] N. V. Kuznetsov, G. A. Leonov, and S. M. Seledzhi, “Hidden
oscillations in nonlinear control systems,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 2506–2510, 2011.

[19] G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Hidden
attractor in smooth Chua systems,” Physica D: Nonlinear
Phenomena, vol. 241, no. 18, pp. 1482–1486, 2012.

[20] G. A. Leonov and N. V. Kuznetsov, “Hidden attractors in
dynamical systems. From hidden oscillations in hilbert-
Kolmogorov, aizerman, and kalman problems to hidden
chaotic attractor in chua circuits,” International Journal of
Bifurcation and Chaos, vol. 23, no. 1, pp. 1330002–1330011,
2013.

[21] G. D. Leutcho, J. Kengne, and L. K. Kengne, “Dynamical
analysis of a novel autonomous 4-D hyperjerk circuit with
hyperbolic sine nonlinearity: chaos, antimonotonicity and a
plethora of coexisting attractors,” Chaos, Solitons & Fractals,
vol. 107, pp. 67–87, 2018.

[22] K. E. Chlouverakis and J. C. Sprott, “Chaotic hyperjerk sys-
tems,” Chaos, Solitons & Fractals, vol. 28, no. 3, pp. 739–746,
2006.

[23] V. Sundarapandian, C. Volos, V. T. Pham, and K. Madhavan,
“Analysis, adaptive control and synchronization of a novel 4-
D hyperchaotic hyperjerk system and its SPICE imple-
mentation,” Archives of Control Sciences, vol. 25, no. 1,
pp. 135–158, 2015.

[24] C. Li, “Coexisting hidden attractors in a 4-D simplified Lorenz
System,” International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering, vol. 24, p. 1450034, 2013.

[25] B. Bao, X. Zou, Z. Liu, and F. Hu, “Generalized memory
element and chaotic memory system,” International Journal of
Bifurcation and Chaos, vol. 23, no. 8, p. 1350135, 2013.

[26] S. Ren, S. Panahi, K. Rajagopal, K. Akgul, V. T. Pham, and
S. Jafari, “A new chaotic flow with hidden attractor: the first
hyperjerk system with no-equilibrium,” Zeitschrift für
Naturforschung A, vol. 73, 2018.

Complexity 23



[27] S. Vaidyanathan, S. Jafari, V. T. Pham, A. T. Azar, and
F. Alsaadi, “A 4-D chaotic hyperjerk system with a hidden
attractor, adaptive backstepping control and circuit design””
Archive of Control Sciences, vol. 28, no. 2, pp. 239–254, 2018.

[28] J. Kengne, S. Jafari, and Z. T. Njitacke, “Dynamic analysis and
electronic circuit implementation of a novel 3D autonomous
system without linear terms,” Communications in Nonlinear
Science and Numerical Simulation, vol. S1007-5704, no. 17,
pp. 30126–30130, 2017.

[29] J. C. Sprott, “A proposed standard for the publication of new
chaotic systems,” International Journal of Bifurcation and
Chaos, vol. 21, no. 9, pp. 2391–2394, 2011.

[30] A. Buscarino, L. Fortuna, M. Frasca, and L. V. Gambuzza, “A
chaotic circuit based on Hewlett-Packard memristor,” Chaos,
vol. 22, no. 2, Article ID 023136, 2012.

[31] M. P. Hanias, G. Giannaris, A. Spyridakis, and A. Rigas, “Time
series analysis in chaotic diode resonator circuit,” Chaos,
Solitons & Fractals, vol. 27, no. 2, pp. 569–573, 2006.

[32] D. W. Sukow, M. E. Bleich, J. Gauthier, and J. E. S. Socolar,
“Controlling chaos in a fast diode resonator using extended
time-delay auto-synchronization: experimental observations
and theoretical analysis,” Chaos, vol. 7, no. 4, pp. 560–576,
1997.

[33] S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison-
Wesley, Boston, MA, USA, 1994.

[34] N. ah and B. Balachandran, Applied Nonlinear Dynamics:
Analytical, Computational and Experimental Methods, John
Wiley & Sons, Hoboken, NJ, USA, 1995.

[35] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “De-
termining Lyapunov exponents from a time series,” Physica D:
Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985.

[36] L. Chunbiao and J. C. Sprott, “An infinite 3-D periodic lattice
of chaotic attractors,” Physics Letters A, vol. 382, no. 8,
pp. 581–587, 2017.

[37] L. Chunbiao, J. C. Sprott, T. Kapitaniak, and T. Lu, “Infinite
lattice of hyperchaotic strange attractors,” Chaos, Solitons and
Fractals, vol. 109, pp. 76–82, 2018.

[38] F. T. Fozin, J. Kengne, and F. B. Pelab, “Dynamical analysis
and multistability in autonomous hyperchaotic oscillator with
experimental verification,”Nonlinear Dynamics, vol. 93, no. 2,
pp. 653–669, 2018.

[39] N. Z. Tabekoueng, D. I. Sami, J. Kengne, and Cheukem,
“Coexistence of firing patterns and its control in two neurons
coupled trough an asymmetric electrical synapse,” Chaos,
vol. 30, Article ID 023101, 2020.

[40] K. L. Kamdjeu, J. Kengne, P. R. J. Mboupda, and
T. T. H. Kamdem, “Dynamics, control and symmetry
breaking aspects of an infinite equilibrium chaotic system,”
International Journal of Dynamics and Control, 2020.

[41] H. Chang, Y. Li, and F. Yuan, “Extreme multistability with
hidden attractors in a simple memristor-based circuit,” In-
ternational Journal of Bifurcation and Chaos in Applied Sci-
ences and Engineering, vol. 29, no. 6, 2019.

[42] Q. Lai, C. Chen, X. W. Zhao, J. Kengne, and C. Volos,
“Constructing chaotic system with multiple coexisting
attractors,” IEEE Acesss, vol. 7, 2019.

[43] Q. Lai, K. D. P. Kuate, F. Liu, and H. C. H. Iu, “An extremely
simple chaotic system with infinitely many coexisting
attractors,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 1, 2019.

[44] K. Rajagopal, P. J. Singh, K. B. Roy, and A. Karthikeyan,
“Dissipative and conservative chaotic nature of a new quasi-
periodically forced oscillator with megastability,” Chinese
Journal of Physics, vol. 58, 2019.

[45] Y. Li and J. Zeng, “A unique jerk system with abundant
dynamics: symmetric or asymmetric bistability, tristability,
and coexisting bubbles,” Brazilian Journal of Physics, vol. 50,
2020.

[46] M. Tuna, A. Karthikeyan, K. Rajagopal, M. Alçın, and
I. Koyuncu, “Hyperjerk multiscroll oscillators with mega-
stability: analysis, FPGA implementation and A novel ANN-
ring-based true random number generator,” International
Journal of Electronics and Communications, vol. 112, 2019.

[47] C. Li, X. Wang, and G. Chen, “Diagnosing multistability by
offset boosting,” Nonlinear Dynamics, vol. 90, 2017.

[48] C. Li, J. C. Sprott, A. Akgul, H. H. C. Lu, and Y. Zhao, “A new
chaotic oscillator with free control,” Chaos, vol. 27, Article ID
083101, 2017.

[49] C. Li, J. C. Sprott, and Y. Mei, “An infinite 2-D lattice of
strange attractors,” Nonlinear Dynamics, vol. 89, 2017.

[50] C. Li, J. C. Sprott, W. Hu, and Y. Xu, “Infinite multistability in
a self-reproducing chaotic system,” International Journal of
Bifurcation and Chaos, vol. 27, no. 10, Article ID 1750160,
2017.

[51] C. Li, J. C. Sprott, T. Kapitaniak, and T. Lu, “Infinite lattice of
hyperchaotic strange attractors,” Chaos, Solitons & Fractals,
vol. 109, pp. 76–82, 2018.

[52] C. Li and J. C. Sprott, “An infinite 3-D quasiperiodic lattice of
chaotic attractors,” Physics Letters A, vol. 382, no. 8,
pp. 581–587, 2018.

[53] S. P. Dawson, C. Grebogi, J. A. Yorke, I. Kan, and H. Koçak,
“Antimonotonicity: inevitable reversals of period-doubling
cascades,” Physics Letters A, vol. 162, no. 3, pp. 249–254, 1992.

[54] L. Kocarev, K. S. Halle, K. Eckert, and L. O. Chua, “Exper-
imental observation of antimonotonicity in Chua’s circuit,”
International Journal of Bifurcation and Chaos, vol. 3, no. 4,
pp. 1051–1055, 19933.

[55] I. Manimehan and P. Philominathan, “Composite dynamical
behaviors in a simple series-parallel LC circuit,” Chaos, Sol-
itons & Fractals, vol. 45, no. 12, pp. 1501–1509, 2012.

[56] I. M. Kyprianidis, I. N. Stouboulos, P. Haralabidis, and
T. Bountis, “Antimonotonicity and chaotic dynamics in a
fourth-order autonomous nonlinear electric circuit,” Inter-
national Journal of Bifurcation and Chaos, vol. 10, no. 08,
pp. 1903–1915, 2000.

[57] S. P. Dawson, C. Grebogi, and H. Koçak, “Mechanism for
antimonotonicity in scalar maps with two critical points,”
Physical Review E, vol. 48, no. 3, pp. 1676–1682, 1993.

[58] V.-T. Pham, A. Akgul, C. Volos, S. Jafari, and T. Kapitaniak,
“Dynamics and circuit realization of a no-equilibrium chaotic
system with a boostable variable,” AEU-International Journal
of Electronics and Communications, vol. 78, pp. 134–140, 2017.

[59] E. Tlelo-Cuautle, A. D. Pano-Azucena, J. J. Rangel-Magda-
leno, V. H. Carbajal-Gomez, and G. Rodriguez-Gomez,
“Generating a 50-scroll chaotic attractor at 66 MHz by using
FPGAs,” Nonlinear Dynamics, vol. 85, no. 4, pp. 2143–2157,
2016.

[60] B. Muthuswamy and S Banerjee, A Route to Chaos Using
FPGAs, Complexity and Computation Springer International
Publishing, Berlin, Germany, 2015.

[61] E. Tlelo-Cuautle, J. J. Rangel-Magdaleno, A. D. Pano-Azu-
cena, P. J. Obeso-Rodelo, and J. C. Nunez-Perez, “FPGA
realization of multi-scroll chaotic oscillators,” Communica-
tions in Nonlinear Science and Numerical Simulation, vol. 27,
no. 1-3, pp. 66–80, 2015.

[62] I. Koyuncu, A. T. Ozcerit, and I. Pehlivan, “Implementation of
FPGA-based real time novel chaotic oscillator,” Nonlinear
Dynamics, vol. 77, no. 1-2, pp. 49–59, 2014.

24 Complexity



Research Article
Analyses andEncryption Implementationof aNewChaotic System
Based on Semitensor Product

Rui Wang ,1,2 Peifeng Du,2,3 Wenqi Zhong,2,4 Han Han,2,5 and Hui Sun 2

1Tianjin Key Laboratory for Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China,
Tianjin 300300, China
2College of Information Engineering and Automation, Civil Aviation University of China, Tianjin 300300, China
3School of Electronics and Communication Engineering (SECE), Sun Yat-sen University, Guangzhou 510006, China
4School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
5North China Research Institute of Electro-Optics, Beijing 100015, China

Correspondence should be addressed to Rui Wang; wrhappyfuture@hotmail.com and Hui Sun; shhappy1@hotmail.com

Received 4 January 2020; Revised 27 April 2020; Accepted 21 May 2020; Published 17 July 2020

Guest Editor: Viet-+anh Pham

Copyright © 2020 Rui Wang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Semitensor product theory can deal with matrices multiplication with different numbers of columns and rows. +erefore, a new
chaotic system for different high dimensions can be created by employing a semitensor product of chaotic systems with different
dimensions, so that more channels can be selected for encryption. +is paper proposes a new chaotic system generated by
semitensor product applied onQi and Lorenz systems.+e corresponding dynamic characteristics of the new system are discussed
in this paper to verify the existences of different attractors. +e detailed algorithms are illustrated in this paper. +e FPGA
hardware encryption implementations are also elaborated and conducted. Correspondingly, the randomness tests are realized as
well, and compared to that of the individual Qi system and Lorenz system, the proposed system in this paper owns the better
randomness characteristic. +e statistical analyses and differential and correlation analyses are also discussed.

1. Introduction

With the coming of 5G technology, more and more in-
formation is transformed by video, and video information
security becomes more and more important in practical
applications especially for long-distance transmission [1, 2].
+e existing traditional encryption methods, such as DES
and AES, however, cannot meet the high requirements for
real time [3]. +erefore, it is necessary to focus on making
progresses in the encryption technology in order to meet the
real-time requirements.

People never stop studying the chaotic systems since
Lorenz proposed the first chaotic system. Except for the
typical chaotic systems, such as Chen, Lv, and Qi systems,
some new different types of chaotic systems are generated as
well, such as multistable chaotic hyperjerk system [4], a class
of factional-order partial differential systems [5], multistable
modified fourth-order autonomous Chua’s system [6],

coexisting chaotic attractors chaotic systems [7–9], and
chaotic system generation with memristors [10].+e authors
in reference [11] present a MDMBCAs design method
without reconstructing nonlinear function. Correspond-
ingly, chaotic systems are employed in different areas such as
modeling neurodegenerative disease [12] and image and
video encryptions [13–18]. It is known that the character-
istics of chaotic systems, such as pseudorandomness and
sensitivity to initial values, meet the requirements of en-
cryption discussed in the Shannon’s epoch-making paper
“Communication +eory of Secrecy Systems.” Conse-
quently, it is hot for researchers to focus on the image and
video data encryption, where the encrypted sequences are
generated by chaotic systems in order to satisfy the need for
remote communications and other applications. Multiple
hardware platforms are implemented on encryptions such as
FPGA, ARM, or circuits implementation [19–32]. +us,
different encryption methods based on various hardware
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platforms are proposed in many articles [19]. +e authors in
reference [20] propose chaos encryption and decryption
operated on FPGA and tested by TESTU01. +e study in
[21, 22] implements scrambling and antisqueezing of RGB
three primary color pixel position and video chaotic en-
cryption and decryption of pixel value on arm and a digital
programmable audio encryption based on chaos system on
FPGA. +e effectiveness of chaotic secure communication
system method is proved by using adder and multiplier of
FPGA [23]. A generalized improved chaotic transformation
mapping is proposed in [24]. Based on this mapping, the
speech encryption of position transformation network is
implemented on FPGA. Meanwhile, [25] realizes FPGA
circuit output of three-dimensional chaotic system without
balancing points on FPGA.+e study in [26] implements the
multibutterfly chaotic attractor problem on FPGA. +e
study in [27] proposes a Kolmogorov-type three-dimen-
sional chaotic system and implements the chaotic system on
FPGA.+e study in [28] implements an application of high-
dimensional digital chaos system (HDDCS) in image en-
cryption in a limited precision range on FPGA. +e study in
[29] proposes a fractional order three-dimensional chaotic
system with four wing chaotic attractors implemented on
FPGA.+e study in [30] proposes a sinusoidal chaotic model
(SCM) and uses FPGA to implement chaotic mapping to
verify its complexity and larger chaotic range. SOPC tech-
nology is used to realize the video processing of FPGA and
the data receiving and sending of ARM [15]. A method of
generating pseudorandom number based on chaotic system
is proposed and implemented on FPGA [31]. In addition to
FPGA and arm, [32, 33] also use improved modular circuit
design in hyperchaotic system. +e study in [34] studies the
security of the latest three-dimensional chaotic self-syn-
chronization flow secret key and a single secret key algo-
rithm. +e study in [35] proposes a method for a high-
dimension chaotic system implemented on FPGA and also
provides comparison among different methods, such as Real
Domain Chaotic System (RDCS), Integer Domain Chaotic
System (IDCS), Chaotic Bitwise Dynamical System (CBDS),
and Higher-Dimensional Digital Chaotic Systems (HDDCS)
implemented on FPGA. Compared to these methods, the
proposedmethod can solve the dynamical degradation issue.
+e study in [36] discusses the Orthogonal Frequency Di-
vision Multiplexing-Passive Optical Network (OFDM-
PON) method which initiates a method for real-time video
encryption with chaotic systems. Chen. et al. design an
encryption algorithm using chaotic control methods and
implement this method on FPGA and ARM hardware
platforms. Furthermore, the comparisons of the encryption
method based on ARM and FPGA are discussed by mixing
the advantages of each platform to achieve better real-time
performance [15, 23, 24].

Semitensor product is a matrix operation first proposed
by Cheng et al. [37]. +is method breaks the restriction of
matrix product; that is, the column dimension of the front
matrix must be the same with the row dimension of the back
matrix. +en semitensor product realizes the multiplication
for matrices with different dimensions. +erefore, this
method makes the matrices product more easily and can be

applied in much wider areas. Semitensor product method is
also extended in nonlinear issues and multiple areas such
Boolean network control, game theory, compressed sensing,
and data fusion [38–40]. +e study in [41] provides the
literature review for the applications of semitensor product
in engineering areas. +is paper is inspired by the typical
characteristics of semitensor product method mentioned
previously which provides a new idea to generate chaotic
systems. +e new chaotic systems can be employed in real-
time video encryption areas as well.

+e main contribution of this paper is to employ the
unique characteristic of the semitensor product to form a
new chaotic system with different-order chaotic systems, Qi
and Lorenz systems, in order to enhance the randomness of
the sequence. +en the dynamic characteristics of the new
chaotic system are analyzed, and the system is applied in
video encryption. When compared to the individual chaotic
system, the new one constructed by semitensor product has
the overwhelmed pseudorandomness.

+e rest of the paper is arranged as follows. Section 2
presents a new chaotic system formed by semitensor product
theory. Furthermore, the corresponding dynamic charac-
teristics of the system are analyzed. Section 3 provides the
detailed encryption implementation based on FPGA with
the new chaotic system. NIST test and the corresponding
stochastic analysis are conducted as well in this section. +e
conclusion of the paper is drawn in Section 4.

2. A New Chaotic System Based on the
Semitensor Product Theory

2.1. Preliminaries of Semitensor Product. Normally, the
semitensor product operation includes left semitensor
product operation and right semitensor product operation.
Left semitensor product operation meets the multiple-di-
mension condition; that is, n� t× p (t ∈Ν+). Or if p � s× n
(s ∈Ν+), the operation is right semitensor product operation.

Lemma 1. Assume matrix A is m× n, matrix B is p × q, and
n� t× p (t ∈Ν+) [42]. Let A be divided into a blocking matrix
[A1, . . ., At], where Ai (i� 1, . . ., t) is an m× p matrix. >en
the left semitensor product is defined as

A
m×n ⋉B

p×q
� A

m×p
1 B

p×q
, A

m×p
2 B

p×q
, A

m×p
3 B

p×q
, . . . , A

m×p
t B

p×q
􏼐 􏼑

m×tq
,

(1)

where “⋉ ” is the left semitensor product.

Lemma 2. If A ∈Mm×tp and B ∈Mp×q, then

A⋉B � A B⊗ It( 􏼁, (2)

where ⊗ is the Kronecker product of matrices [42].

2.2. A New Chaotic System Generated by Semitensor Product
>eory. Qi system is a hyperchaotic system with two pos-
itive Lyapunov exponents, 3 and 13, under certain condi-
tions [28]. And it could be used for secure communication
due to its large positive Lyapunov exponents. It is known
that Qi system is described as follows:

2 Complexity



_xQ1 � a xQ2 − xQ1􏼐 􏼑 + xQ2xQ3,

_xQ2 � b xQ1 + xQ2􏼐 􏼑 − xQ1xQ3,

_xQ3 � −cxQ3 − exQ4 + xQ1xQ2,

_xQ4 � −dxQ4 + fxQ3 + xQ1xQ2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where xQi (i� 1, 2, 3, 4) is the state variable and a, b, c, d, and f
are the related system parameters. System (3) is a hyper-
chaotic system, when 49≤ a≤55, 20≤ b≤ 24, c� 13, d� 8,
e� 33, and f� 30.

+e first chaotic system under study is a Lorenz chaotic
system [28]. +e dynamics of the system are shown in

_x � σ(y − x),

_y � rx − y − xz,

_z � xy − βz,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where x, y, and z are state variables and σ, r, and β are the
related system parameters.+e typical system parameters for
Lorenz chaotic system are selected as σ � 10, r� 28, and
β� 8/3.

It is relaxed for semitensor product operation only to
satisfy the multiple-dimension condition. +erefore, dif-
ferent numbers state variables of systems can be selected
and conduct semitensor operation. For example, this paper
selects a two-dimension state variable (xy)T of Lorenz
system and a four-dimension state variable (xQ1xQ2xQ3xQ4)

T of Qi system to operate semitensor product. +e result is
shown as follows:

x

y
􏼢 􏼣⋉
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xQ2

xQ3

xQ4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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T

. (5)

It is observed that the result of equation (5) is eight-
dimension column vector which is equivalent to the new
system state variable vector (x1x2x3x4x5x6x7x8)T; that is,

x1

x2

x3

x4

x5

x6

x7

x8
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�

xxQ1

xxQ2

xxQ3

xxQ4

yxQ1

yxQ2

yxQ3

yxQ4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Differentiate each state variable in equation (6), and
substitute equations (3) and (4) into the result. +en the
following equation can be derived:

_x1

_x2

_x3

_x4

_x5

_x6

_x7

_x8
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�

_xxQ1 + x _xQ1

_xxQ2 + x _xQ2

_xxQ3 + x _xQ3

_xxQ4 + x _xQ4

_yxQ1 + y _xQ1

_yxQ2 + y _xQ2

_yxQ3 + y _xQ3

_yxQ4 + y _xQ4
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�

σ(y − x)xQ1 + ax xQ2 − xQ1􏼐 􏼑 + xxQ2xQ3

σ(y − x)xQ2 + bx xQ1 + xQ2􏼐 􏼑 − xxQ1xQ3

σ(y − x)xQ3 − cxxQ3 − exxQ4 + xxQ1xQ2

σ(y − x)xQ4 − dx xQ4 + fxxQ3 + xxQ1xQ2

(rx − y − xz)xQ1 + ay xQ2 − xQ1􏼐 􏼑 + yxQ2xQ3

(rx − y − xz)xQ2 + by xQ1 + xQ2􏼐 􏼑 − yxQ1xQ3

(rx − y − xz)xQ3 − cyxQ3 − eyxQ4 + yxQ1xQ2

(rx − y − xz)xQ4 − dy xQ4 + fyxQ3 + yxQ1xQ2
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�

σ x5 − x1( 􏼁 + a x2 − x1( 􏼁 +
x2x3

x

σ x6 − x2( 􏼁 + b x2 + x1( 􏼁 −
x1x3

x

σ x7−x3( 􏼁 − cx3 − ex4 +
x1x2

x

σ x8−x4( 􏼁 − dx4 + fx3 +
x1x2

x

rx1 − x5 − x1z + a x6 − x5( 􏼁 +
x6x7

x

rx2 − x6 − x2z + b x5 + x6( 􏼁 −
x5x7

x

rx3 − x7 − x3z − cx7 − ex8 +
x5x6

x

rx4 − x8 − x4z − dx8 + fx7 +
x5x6

x
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.

(7)

It is obvious that the dynamics of (7) still include three
state variables of Lorenz system, x, y, and z.+erefore, insert

equation (4) into equation (7) and then form a complete
eleven-dimension system as illustrated in the following:

Complexity 3



_x1 � σ x5 − x1( 􏼁 + a x2 − x1( 􏼁 +
x2x3

x
,

_x2 � σ x6 − x2( 􏼁 + b x2 + x1( 􏼁 −
x1x3

x
,

_x3 � σ x7−x3( 􏼁 − cx3 − ex4 +
x1x2

x
,

_x4 � σ x8−x4( 􏼁 − dx4 + fx3 +
x1x2

x
,

_x5 � rx1 − x5 − x1z + a x6 − x5( 􏼁 +
x6x7

y
,

_x6 � rx2 − x6 − x2z + b x5 + x6( 􏼁 −
x5x7

y
,

_x7 � rx3 − x7 − x3z − cx7 − ex8 +
x5x6

y
,

_x8 � rx4 − x8 − x4z − dx8 + fx7 +
x5x6

y
,

_x � σ(y − x),

_y � rx − y − xz,

_z � xy − βz.
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(8)

As seen from equation (8), if one substitutes x⟶ −x,
y⟶ −y, and z⟶ z, _z � (−x)(−y) − βz � xy − βz, it
proves that it is symmetric with respect to z variable for x
and y.

2.3. Numerical Analysis of the New System. +e paper ana-
lyzes some dynamics characteristics of the new system in-
cluding symmetry, dissipativity, equilibrium point,
equilibria, bifurcation diagram, Lyapunov diagram, and
phase portraits.

2.3.1. Symmetry. As described in system (8), the system is
symmetry with respect to z-axis since the system is invariant
under the coordinate transformations: (x1, x2, x3, x4, x5, x6,

x7, x8, x , y, z)⟶ (−x1, −x2, −x3, −x4, −x5, −x6, −x7, −x8,

− x, −y, z).

2.3.2. Dissipativity. +e divergence of system (12) is given by

∇ · f �
zf1

zx1
+

zf2

zx2
+ · · · +

zf8

zx8
+

zf9

zx
+

zf10

zy
+

zf11

zz

� −5σ − 2a + 2b − 2c − 2 d − 5 − β,

(9)

and when −5σ − 2a + 2b − 2c − 2d − 5 − β< 0, the system
undergoes dissipation.

2.3.3. Equilibria. As shown in system (8), x, y, and z could
not be zero when calculating equilibria. +en the equilibria
of system (8) are (0, 0, 0, 0, 0, 0, 0, 0, ±

�������
β(r − 1)

􏽰
,

±
�������
β(r − 1)

􏽰
, r − 1). One has

J1,2 �

−σ − a a 0 0 σ 0 0 0 0 0 0

b b − σ 0 0 0 σ 0 0 0 0 0

0 0 −σ − c −e 0 0 σ 0 0 0 0

0 0 f −σ − d 0 0 0 σ 0 0 0

1 0 0 0 −1 − a a 0 0 0 0 0

0 1 0 0 b b − 1 0 0 0 0 0

0 0 1 0 0 0 −1 − c −e 0 0 0

0 0 0 1 0 0 f −1 − d 0 0 0

0 0 0 0 0 0 0 0 −σ 0 0

0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 ±
�������
β(r − 1)

􏽰
±

�������
β(r − 1)

􏽰
β
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

equilibria

(10)

+e corresponding polynomial is

f(λ) � λ(λ + β)(λ − 1)f1(λ) (11)
where f1(λ) is an eighth-order polynomial. It is obvious that
at least 0, 1, and −β are eigenvalues of system (8) for the these
equilibrium points; therefore, not each real part of the
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eigenvalues is negative. +en it can be concluded that these
are not stable equilibrium points.

2.3.4. Bifurcation Diagram, Lyapunov Diagram, and Phase
Portraits. It is known that when 49≤ a≤ 55, 20≤ b≤ 24,
c� 13, d� 8, e� 33, and f� 30, Qi system is a hyperchaotic
system. When σ � 10, r� 28, and β� 8/3, Lorenz system is a
chaotic system. +erefore, the paper selects the parameters
a� 50, c� 13, d� 8, e� 33, f� 30, σ � 10, r� 28, and β� 8/3
and varies b to analyze the bifurcation of system (12) as
shown in Figure 1(a). As the bifurcation diagram shows, the
system demonstrates the chaotic characteristics when
b ∈ [−5, 26]. +e corresponding Lyapunov diagram is il-
lustrated in Figure 1(b). Furthermore, partial phase portraits
of system (7) for different initials when b� 24 are shown in
Figures 1(c). One has

_x1 � 10 x5 − x1( 􏼁 + 50 x2 − x1( 􏼁 +
x2x3

x
,

_x2 � 10 x6 − x2( 􏼁 + b x2 + x1( 􏼁 −
x1x3

x
,

_x3 � 10 x7−x3( 􏼁 − 13x3 − 33x4 +
x1x2

x
,

_x4 � 10 x8−x4( 􏼁 − 8x4 + 30x3 +
x1x2

x
,

_x5 � 28x1 − x5 − x1z + 50 x6 − x5( 􏼁 +
x6x7

y
,

_x6 � 28x2 − x6 − x2z + b x5 + x6( 􏼁 −
x5x7

y
,

_x7 � 28x3 − x7 − x3z − 13x7 − 33x8 +
x5x6

y
,

_x8 � 28x4 − x8 − x4z − 8x8 + 30x7 +
x5x6

y
,

_x � 10(y − x),

_y � 28x − y − xz,

_z � xy −
8
3z

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Figures 1(c)–1(f) illustrate different phase portraits in-
cluding x1 versus x2, x2 versus x4, x3 versus x, and x versusz
when b� 24 for two initial value sets, the initial values for the
blue line phase portraits are 0.01418, 0.04217, 0.09157,
0.07922, 0.09594, 0.06557, 0.00357, 0.08491, 0.09339,
0.06787, and 0.07577, and those for the red line phase

portraits are 0.01417, 0.04218, 0.09156, 0.07921, 0.09593,
0.06558, 0.00356, 0.08492, 0.09338, 0.06788, and 0.07576.
+ese portraits demonstrate that system (12) has obvious
chaotic attractors and approaches periodic characteristics as
initial values changes.

3. Encryption Implementation with the New
Chaotic System Based on FPGA

+is paper employs the random sequence of system (12) as
the random sequence to encrypt video data and realize the
hardware implement on FPGA. Figure 2 is the FPGA
hardware diagram used for the encryption. +e main
components are HDMI, ZYNQ, JTAG, and source interface.
+e video is collected from JTAG, then the encryption al-
gorithm is performed in ZYNQ powered by 5V DC, and the
outputs will be shown in the monitor through HDMI.

+e encryption algorithm is described in the following,
and the corresponding block diagram is demonstrated in
Figure 3:

Step 1: to generate the random sequences for each state
variable for both discretized Qi system and Lorenz
system, respectively.
Step 2: to generate the random sequence for the new
system (12) constructed by semitensor product oper-
ation on (xQ1 xQ2 xQ3 xQ4)T and (x y)T.
Step 3: to generate the sequence xi�(xi1, xi2, xi3,. . ., xi32)
by the new system (i� 1, 2, . . ., 8, j� 1, 2, . . ., 32), where
xij is a binary number, i represents the number of state
variables, and j is the bit number for each state variable.
Choose a sequence xi with fixed bits from t to q; that is,

ci(n) � xi mod 2q
( 􏼁mod 2t−q

􏼐 􏼑, (i � 1, 2, &, 8, 1≤ t< q≤ 32).

(13)

Make an XOR operation on ci (n) and divide video data
based on pixels; that is,

m(n) � xi mod 2t−1
􏼐 􏼑mod 2t−q

􏼐 􏼑⊕ (m), (14)

where ⊕ is the XOR operation.

3.1. Discretization for the New System and Its Implementation
BasedonFPGA. In the hardware experiment, it is impossible
to implement the continuous Lorenz and Qi chaotic systems
because of limitation of the bit width in FPGA. +erefore, it
is necessary to discretize continuous system first. Multiple
methods can be used to discretize a differential equation
such as Euler method, improved Euler method, and Runge-
Kutta method. To meet the requirement of real-time per-
formance and the limitation of hardware implementation,
Euler method is used to discretize the differential equations
due to its low computation complexity. First, Euler method
is used to discretize Qi and Lorenz systems, respectively. +e
corresponding process of Qi system is proposed as follows:
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xQ1(n + 1) − xQ1(n)􏼐 􏼑

τ
� a xQ2(n) − xQ1(n)) + xQ2(n)xQ3(n)􏼐 􏼑,

xQ2(n + 1) − xQ2(n)􏼐 􏼑

τ
� b xQ1(n) + xQ2(n)) − xQ1(n)xQ3(n)􏼐 􏼑,

xQ3(n + 1) − xQ3(n)􏼐 􏼑

τ
� −cxQ3 (n) − exQ4(n) + xQ1(n)xQ2(n)􏼐 􏼑,

xQ4(n + 1) − xQ4(n)􏼐 􏼑

τ
� −dxQ4 (n) + fxQ3(n) + xQ1(n)xQ2(n)􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

+en, the iteration equations of Qi system are shown in
xQ1(n + 1) � aτxQ2(n) +(1 − aτ)xQ1(n) + τxQ2(n)xQ3(n),

xQ2(n + 1) � bτxQ1(n) +(1 + bτ)xQ2(n) − τxQ1(n)xQ3(n),

xQ3(n + 1) � (1 − cτ)xQ3(n) − eτxQ4(n) + τxQ1(n)xQ2(n),

xQ4(n + 1) � (1 − dτ)xQ4(n) + fτxQ3(n) + τxQ1(n)xQ2(n).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

Similarly, the discrete Lorenz system is
x(n + 1) − x(n)

τ
� σ(y(n) − x(n)),

y(n + 1) − y(n)

τ
� rx(n) − y(n) − x(n)z(n)

z(n + 1) − z(n)

τ
� x(n)y(n) − βz(n).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (17)

Correspondingly, the iteration equations of Lorenz system
are

x3
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Figure 1: Bifurcation diagram along with b variation and partial phase portraits for different initial values (blue line for the first initial value
set and red line for the second initial value set).

Source interface

ZYNQ

HDMI JTAG

Figure 2: FPGA hardware diagram.

Semitensor

Video data m (n)

c (n)

p (n)

⌊ze (n + 1)⌋

⌊ye (n + 1)⌋

⌊xe (n + 1)⌋

⌊xe
Q1 (n + 1)⌋

⌊xe
Q2 (n + 1)⌋

⌊xe
Q3 (n + 1)⌋

⌊xe
Q4 (n + 1)⌋

⌊xi (n)⌋ i = 1, 2, ..., 8

mod (mod (⌊xi (n)⌋, 2t–1), 2t–q)

Figure 3: Block diagram of encryption algorithm.
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x(n + 1) � στy(n) +(1 − στ)x(n),

y(n + 1) � rτx(n) +(1 − τ)y(n) − τx(n)z(n),

z(n + 1) � τx(n)y(n) +(1 − βτ)z(n).

⎧⎪⎪⎨

⎪⎪⎩
(18)

In general, FPGA can store float data and fixed-point
data. Since fixed-point data require less computing resources
than that of float data, this paper uses 64-bit fixed-point

number to represent the data.+e detailed data format of 64-
bit fixed-point numbers is shown in Figure 4.

In Figure 4, I represents the integer part of 64-bit fixed-
point numbers, and f is the fractional part.

As mentioned before, because of the limitation of bit
width in FPGA, all data are truncated numbers in hardware
implementation. +erefore, the Qi and Lorenz system
becomes

⌊xQ1(n + 1)⌋ � aτ⌊xQ2(n)⌋ +(1 − aτ)⌊xQ1(n)⌋ + τ⌊xQ2(n)⌋⌊xQ3(n)⌋,

⌊xQ2(n + 1)⌋ � bτ⌊xQ1(n)⌋ +(1 + bτ)⌊xQ2(n)⌋ − τ⌊xQ1(n)⌋⌊xQ3(n)⌋,

⌊xQ3(n + 1)⌋ � (1 − cτ)⌊xQ3(n)⌋ − eτ⌊xQ4(n)⌋ + τ⌊xQ2(n)⌋⌊xQ1(n)⌋,

⌊xQ4(n + 1)⌋ � (1 − dτ)⌊xQ4(n)⌋ + fτ⌊xQ3(n)⌋ + τ⌊xQ1(n)⌋⌊xQ2(n)⌋,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

⌊x(n + 1)⌋ � στ⌊y(n)⌋ +(1 − στ)⌊x(n)⌋,

⌊y(n + 1)⌋ � rτ⌊x(n)⌋ +(1 − τ)⌊y(n)⌋ − τ⌊x(n)⌋⌊z(n)⌋,

⌊z(n + 1)⌋ � τ⌊x(n)⌋⌊y(n)⌋ +(1 − βτ)⌊z(n)⌋.

⎧⎪⎪⎨

⎪⎪⎩
(20)

Let the iteration step be τ � 0.00001 and use the same
parameters in system (12). +en substitute them into (19)

and (20), respectively. +erefore, Qi system and Lorenz
system are changed as follows:

⌊xQ1(n + 1)⌋ � 0.9995⌊xQ2(n)⌋ + 0.0005⌊xQ1(n)⌋ + 0.00001⌊xQ2(n)⌋⌊xQ3(n)⌋,

⌊xQ2(n + 1)⌋ � 0.0002⌊xQ1(n)⌋ + 1.0002⌊xQ2(n)⌋ − 0.00001⌊xQ1(n)⌋⌊xQ3(n)⌋,

⌊xQ3(n + 1)⌋ � 0.99987⌊xQ3(n)⌋ − 0.00033⌊xQ4(n)⌋ + 0.00001⌊xQ2(n)⌋⌊xQ1(n)⌋,

⌊xQ4(n + 1)⌋ � 0.00008⌊xQ4(n)⌋ + 0.9997⌊xQ3(n)⌋ + 0.00001⌊xQ1(n)⌋⌊xQ2(n)⌋,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

⌊x(n + 1)⌋ � 0.0001⌊y(n)⌋ + 0.9999⌊x(n)⌋,

⌊y(n + 1)⌋ � 0.00028⌊x(n)⌋ + 0.99999⌊y(n)⌋ − 0.00001⌊x(n)⌋⌊z(n)⌋,

⌊z(n + 1)⌋ � 0.00001⌊x(n)⌋⌊y(n)⌋ + 0.9999733⌊z(n)⌋.

⎧⎪⎪⎨

⎪⎪⎩
(22)

To iterate Qi system and Lorenz system and make
semitensor product operation on these two systems after
each iteration, respectively, the discretized first 8 state
variables of the new system are obtained:

x1(n + 1) � ⌊x(n + 1)⌋ ×⌊xQ1(n + 1)⌋,

x2(n + 1) � ⌊x(n + 1)⌋ ×⌊xQ2(n + 1)⌋,

x3(n + 1) � ⌊x(n + 1)⌋ ×⌊xQ3(n + 1)⌋,

x4(n + 1) � ⌊x(n + 1)⌋ ×⌊xQ4(n + 1)⌋,

x5(n + 1) � ⌊y(n + 1)⌋ ×⌊xQ1(n + 1)⌋,

x6(n + 1) � ⌊y(n + 1)⌋ ×⌊xQ2(n + 1)⌋,

x7(n + 1) � ⌊y(n + 1)⌋ ×⌊xQ3(n + 1)⌋,

x8(n + 1) � ⌊y(n + 1)⌋ ×⌊xQ4(n + 1)⌋,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where xi(n+ 1) and xi (n) are system state variables. ⌊y(n +

1)⌋ is the approximate value of y (n+ 1) using fixed-point
number.

3.2. Implementation and Analysis of Encryption Algorithm of
the New Chaotic System. In order to ensure the randomness
of the random sequence, therefore, select the low bits from t
to q as shown in Figure 5. +e positions of these bits are not
close to those of sign and exponent bits. +en the chosen
random encryption sequence, ci (n), is shown in equation
(17). +is paper selects t� 1 and q� 6:

ci (n) � mod
⌊xi(n)⌋
2t− 1􏼠 􏼡, 2q−t+1

􏼠 􏼡, i � 1, 2, . . . , 8.

(24)
Random sequences which are selected from eight states

based on the method mentioned previously are combined to
generate the random sequence, c (n):

c(n) � c1(n), c2(v), . . . , c8(n)( 􏼁. (25)

In order to resist the differential attack and decrease the
correlation between adjacent random sequences, the paper
selects the very first iteration sequence among every N it-
erations and stacks these selected sequences to construct a
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random sequence, c (n), as shown in equation (18). +is can
improve the randomness of the random sequence.

Next, the random sequence, c (n), conducts XOR op-
eration with the divided video data. Since a frame video data
includes tricolor integer sequences, R (n), G (n), and B (n),
these three sequences will be encrypted simultaneously after
changing the random sequence, c (n), into three columns
evenly, c1 (n), c2 (n), and c3 (n):

p1(n) � c
1
(n)⊕R(n),

p2(n) � c
2
(n)⊕G(n),

p3(n) � c
3
(n)⊕B(n),

(26)

where p1 (n), p2 (n), and p3 (n) are encrypted sequences and
⊕ is an XOR operation. One has

􏽢R(n) � mod
⌊􏽢x1(n)⌋

2t
, 2q− t+1

􏼠 􏼡⊕p1(n)

� mod
⌊􏽢x1(n)⌋

2t
, 2q− t+1

􏼠 􏼡⊕ c
1
(n)⊕R(n),

􏽢G(n) � mod
⌊􏽢x2(n)⌋

2t
, 2q− t+1

􏼠 􏼡⊕ ⌊p2(n)⌋

� mod
⌊􏽢x2(n)⌋

2t
, 2q− t+1

􏼠 􏼡⊕ c
1
(n)⊕G(n),

􏽢B(n) � mod
⌊􏽢x3(n)⌋

2t
, 2q− t+1

􏼠 􏼡⊕ ⌊p3(n)⌋

� mod mod ⌊􏽢x3(n)⌋, 2t
􏼐 􏼑, 2t− q

􏼐 􏼑⊕ c
3
(n)⊕B(n),

(27)

where ⌊􏽢xp′(n)⌋, p′ � 1, 2, 3 are receiver terminal sequences.

3.3. Analysis for NIST Test. NIST test is provided by National
Institute of Standards and Technology, and it is a standard to test
the randomness of a random sequence. According to the en-
cryption algorithm in this paper, c (n) in equation (25) should be
tested by NIST standard. +e comparisons of the random se-
quence among the new system, Qi system, and Lorenz system, c
(n), cL (n), and cQ (n), are conducted which are obtained from
serial interfaces. +e results of the tests are shown in Table 1.

As shown in Table 1, all the test results for the random
sequences of the new system meet the NIST test index

standards. Partial test results are larger than 0.8, which means
these random indexes are quite close to those of the real
random sequences. +e randomness indexes and some other
test results are better than those generated from Lorenz system
and Qi system, such as frequency, block frequency, cumulative
sums, nonoverlapping template, approximate entropy, random
excursions, random excursions variant, and linear complexity.

3.4. Statistical Analyses. Vivado IDE is used to conduct the
hardware simulation. +e paper also performs the statistics
analysis for the encrypted video data generated by hardware.
Figure 6(a) is one picture of a video before encryption.
Figure 6(b) is the encrypted picture of a video.

Figure 7 demonstrates the comparisons of statistics
histogram between the original and encrypted pictures.

Figure 7 demonstrates the comparisons of statistics
histograms between the original and encrypted pictures. As
illustrated in Figure 7(a), the difference of the pixels dis-
tribution is obvious. However, distribution of different
pixels for the encrypted picture shown in Figure 7(b) is the
approximately uniform distribution. It can be concluded
that the proposed encryption algorithm for the new system
can better resist statistic attack effectively.

3.5. Differential Analysis. Differential attack is used to
measure the sensitivity of plaintext change for the encryp-
tion algorithm and commonly uses NPCR (Number of Pixels
Change Rate) and UACI (Unified Average Changing In-
tensity) as indexes defined as follows:

NPRC �
􏽐e,fD(e, f)

W × H
× 100%,

UACI �
1

W × H
× 􏽘

e,f

C(e, f) − C′(e, f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
× 100%,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

�NPRC � 􏽘
m

NPRC (m),

�UACI � 􏽘
m

UACI (m),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

where C (e, f) is the pixel value before encryption and C′ (e,
f ) is the pixel value after encryption. If C (e, f )�C′ (e, f ), D
(e, f )� 0, else 1. NPRC and UACI calculated by (29) and the
proposed system and encryption algorithm are 99.60% and
12.28% for the first-time encryption, respectively. +erefore,
the ability to resist differential attack improves to some
extent. In video encryption application, the requirement for
encryption speed is more concerned.

3.6. Correlation Analysis. Correlation analysis is used to
check whether the neighbor pixels are close or not. +is
paper analyzes the correlation for Figure 6. +e paper selects
5000 random pixels from the original and the encrypted
images and analyzes the correlation among these random-
pixel pairs as shown in Figure 8. As Figure 8 illustrates, the

ffffffff ffffffff ffffffff ffffffff ffffffff
4024

IIIIIIII IIIIIIII IIIIIIII

Figure. 4: Data format for 64-bit fixed-point numbers.

q t 164 63

… … …

Figure 5: +e schematics of numbered data bits.
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Table 1: NIST test results for the random sequences of the new system, Lorenz system, and Qi system (the number of sequences is 100, and
their lengths are 1000000).

Statistical test P value of cL (n) P value of cQ (n) P value of c (n) Test results of c (n) Proportion
Frequency 0.000000 0.236810 0.474986 √ 100/100
Block frequency (m� 128) 0.289667 0.699313 0.946308 √ 99/100
Cumulative sums 0.000000 0.108791 0.779188 √ 100/100
Runs 0.000000 0.554420 0.075719 √ 100/100
Longest run 0.419021 0.383827 0.289667 √ 100/100
Rank 0.851383 0.996335 0.289667 √ 100/100
FFT 0.911413 0.911413 0.213309 √ 99/100
Nonoverlapping template (m� 9) 0.000003 0.181557 0.983453 √ 100/100
Overlapping template (m� 9) 0.181557 0.935716 0.924076 √ 100/100
Universal 0.616305 0.289667 0.014550 √ 97/100
Approximate entropy (m� 10) 0.000000 0.798139 0.816537 √ 99/100
Random excursions 0.008879 0.319084 0.739918 √ 64/64
Random excursions variant 0.213309 0.289667 0.949602 √ 64/64
Linear complexity (M� 500) 0.010988 0.013569 0.108791 √ 99/100
Serial (m� 16) 0.616305 0.028817 0.262249 √ 100/100

(a) (b)

(c)

Figure 6:+e original and encrypted pictures of a video and the corresponding encrypted video data through FPGA. (a)+e original picture
of a video. (b) +e encrypted picture of a video. (c) Encrypted video data shown on a monitor.
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Figure 7: Histogram between the original and encrypted pictures. (a) Histogram of the original picture. (b) Histogram of the encrypted picture.
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correlation dramatically decreases when comparing two
figures before and after encryption as shown in Figure 6.

4. Conclusions

+is paper proposed a new chaotic system generated by
using semitensor product on two chaotic systems, and the
related dynamic characteristics are analyzed. +e new sys-
tem is employed in video encryption as well, and the pro-
posed method can generate 8 or even 12 state variables when
compared to Qi system and Lorenz system which only
generate 7 state variables at most in one iteration period.+e
proposed method can improve the speed of random se-
quence generation. +e NIST test results demonstrate that
the pseudorandomness of new system is better than that of
single Qi system and single Lorenz system.

+e proposed encryption algorithm based on semitensor
product can be used in other chaotic systems. +e synchro-
nization of the new system can be implemented by synchro-
nizing two original chaotic systems separately. In this paper,
FPGA is used to implement the generation of the new chaotic
system and to encrypt video data. +e corresponding statistics
and differential and correlation analyses were also conducted
which demonstrates that the new system has obvious advan-
tages, such as better random features, better resistance to
differential attacks, and lower pixel correlation for encrypted
images. +e future work will focus on the decryption of video
information by the proposed chaotic system generated by the
semitensor product method in hardware.
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+e objective of this paper is to estimate the unmeasurable variables of a multistable chaotic system using a Luenberger-like
observer. First, the observability of the chaotic system is analyzed. Next, a Lipschitz constant is determined on the attractor of this
system. +en, the methodology proposed by Raghavan and the result proposed by +au are used to try to find an observer. Both
attempts are unsuccessful. In spite of this, a Luenberger-like observer can still be used based on a proposed gain. +e performance
of this observer is tested by numerical simulation showing the convergence to zero of the estimation error. Finally, the chaotic
system and its observer are implemented using 32-bit microcontrollers. +e experimental results confirm good agreement
between the responses of the implemented and simulated observers.

1. Introduction

Due to the absence or high cost of sensors, some of the
variables associated with the dynamics of a system could
not be available for measurement. Nevertheless, if the
system must be monitored or a state feedback controller
implemented, such unmeasurable variables should be es-
timated. Consequently, an aggregated dynamic system
(observation scheme) based on the system model and the
measurable states must be incorporated to reconstruct the
unavailable variables. In 1996, Luenberger proposed for the
first time, an observer and a design methodology for linear
systems [1]. Currently, the problem of state estimation for a
linear system is well understood, and the solution is well
established. However, the nonlinear case is more chal-
lenging. For this case, a first proposal of a solution was
provided by +au in [2] in which structure of the

Luenberger observer was applied to Lipschitz nonlinear
systems. In this context, the structure is known as the
Luenberger-like observer. Based on this observer, +au
presented sufficient conditions to guarantee the asymptotic
convergence to zero of the estimation error. However, no
design procedure to find the observer gain was provided. In
[3], Xia and Gao showed a necessary condition for the
existence of an exponential observer. Tsinias provided
sufficient conditions and a simple approach for the ob-
server design [4]. In fact, this approach was a direct ex-
tension of the observer design in the linear case. Based on
the off-line solution of an algebraic Riccati equation,
Raghavan and Hedrick proposed an iterative procedure of
observer design for a class of Lipschitz nonlinear systems
[5]. In [6–11], different kinds of observers were studied for
chaotic systems. +e main use of an observer in chaotic
systems is for synchronization [12–19].
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A chaotic system is a dynamical system with the
following properties: (1) high sensitivity to initial con-
ditions, (2) dense periodic orbits, and (3) topological
mixing. Consequently, it is impossible to carry out ac-
curate predictions about its long-term dynamic behavior
[20–23]. In spite of that, the boundedness of its states can
be guaranteed. Chaotic systems can be classified according
to the nature of its equilibrium points as (a) no-equi-
librium systems; in this kind of systems, there are no real
equilibrium points, (b) stable equilibrium systems [24]; in
this case, the real parts of all eigenvalues associated with
the equilibrium point are negative, (c) line equilibrium
systems [25]; there is an infinite number of equilibrium
points along a straight line, and (d) curve equilibrium
systems; the equilibrium points form a locus such as a
circle [26], square [27], and three-leaved clover [28]. All
these aforementioned systems belong to the general class
of chaotic systems with hidden attractors.

Some chaotic systems have an additional very inter-
esting property: they can have two or more coexisting
attractors [29–37]. For the same set of parameters, each
attractor can be reached depending on the selected initial
condition. Such systems are known as multistable chaotic
systems [38–41], and they have received increasing at-
tention during the last decade due to their potential ap-
plications [42–44].

In this paper, the attention is focused on the state es-
timation of a multistable chaotic system proposed by
Kapitaniak and coauthors in [45] using a Luenberger-like
observer. +e system has two attractors for the same set of
parameters. +e main contribution of this paper is as fol-
lows: for the first time, the Kapitaniak system has (a) its
basins of attraction thoroughly studied, (b) its observability
analyzed, (c) an observer is proposed for it, and (d) the
system and its corresponding observer are implemented
using 32-bit microcontrollers.

2. Multistable Kapitaniak Chaotic System

A three-dimensional chaotic system with a fixed point
attractor and a hidden strange attractor was presented in
[45]. Each one of these attractors can be reached depending
on the selected initial condition. +e mathematical model of
the system is given as follows:

_x1 � x3,

_x2 � −x1 − x3,

_x3 � 0.1x1 + 5x2 − x3 + x1x2 − 0.3x1x3 + 1,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where x1, x2, and x3 are the system’s states. By using Wolf’s
algorithm, the Lyapunov exponents of system (1) can be
calculated as L1 � 0.1501,L2 � 0, and L3 � −1.1501. As
L1 > 0, it can be confirmed that system (1) is chaotic. Ad-
ditionally, the Kaplan–Yorke dimension can be determined
as DKY � 2.1305. By inspection, the equilibrium point is
given by (0, −0.2, 0). +e eigenvalues associated with it are
λ1 � −0.9835 and λ2,3 � −0.0082 ± 2.2547i. +us, it can be
concluded that this equilibrium is stable. +is equilibrium
point can be reached, for example, by taking the initial
condition as (2, 3, 0). With respect to the strange attractor,
this can be reached, for example, by using the initial con-
dition (5.4, −1.8, 3.3) (see [45]). +e projections of this
attractor on x1 − x2,x2 − x3, and x1 − x3 planes are pre-
sented in Figure 1.

+e attractor was obtained by simulation of equation (1)
using Simulink® with solver ode45 (Dormand–Prince),
relative tolerance 1e− 6, absolute tolerance 1e− 7, start time
0, and stop time 500 sec. If the stop time is increased to
1,000,000 sec, it can be determined that the chaotic states of
system (1) belong to the following set:

Ω � x1, x2, x3( 􏼁 x1 ∈ [−4.9150, 10.8287], x2 ∈ [−5.3136, 13.7184]
􏼌􏼌􏼌􏼌 , x3 ∈ [−14.6249, 22.3794]􏽮 􏽯. (2)

+us, the following bounds for x1, x2, and x3 can be
established:

x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤x1,max � 11,

x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤x2,max � 14,

x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤x3,max � 22.5.

(3)

Finally, it is important to mention that system (1) can
briefly be represented as

_x � Ax + f(x), (4)

where

x :� x1 x2 x3􏼂 􏼃
T
,

A :�

0 0 1

−1 0 −1

0.1 5 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

f(x) :�

0

0

x1x2 − 0.3x1x3 + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(5)
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3. Basin of Attraction

+e basin of attraction of an attractor comprises the set of
points in the state space that leads to the attractor [46, 47].
+e current system (1) has two attractors including a fixed
point attractor and a chaotic hidden strange attractor. +e
basin of attraction of both attractors is shown in Figure 2 on
the x1-x2 plane (Figure 2(a)) and on the x1-x3 plane
(Figure 2(b)). In the first case, the plane is chosen such that
x3 � 0. Orbits are started at every pixel in a region of interest
and followed until they return to the Poincare section or
diverge to infinity, and the corresponding initial point is
colored accordingly: red, if it identifies the chaotic attractor,
light green, if it identifies the fixed point attractor, and white,
otherwise. Similarly, for completeness, we choose the plane
containing the equilibrium x2 � −0.2 and perform similar
operations as before. +e resultant basin of attraction can be
appreciated, as shown in Figure 2(b).

Moreover, it is important to classify and quantify the
basin of attraction based on the work reported in [48].
According to the results, a probability function considered at
large distances is the basis for classifying and quantifying
chaotic attractors’ basins.+e function at large distances, has
power law scaling:

P(r) �
P0

rc
, (6)

where P(r) is the probability that an initial condition at a
distance r from the attractor lies within the basin of at-
traction, and P0 and c are the classification and

quantification parameters. Based on these parameters, the
basin of a chaotic system can be grouped into one of four
classes [48]. As Figure 3 shows, system (1) has a class 3 fractal
basin with noninteger power law scaling. +e basin of at-
traction of the chaotic attractor extends to infinity, but since
the codimension of the basin is almost 2, the basin most
likely has a narrow width.

4. Problem Formulation

Let us focus on the case when not all the states of system (1)
are available for measurement because the corresponding
sensors do not exist or they are very expensive. In this case,
we can represent system (4) as

_x � Ax + f(x),

y � Cx,
􏼨 (7)

where y is the output vector and C is the constant output
matrix with appropriate dimension. +roughout this work,
we consider that the output is simply given by

y � x1. (8)

+is means that

C � 1 0 0􏼂 􏼃. (9)

To reproduce the unavailable states x2 and x3, we need to
use a dynamic system known as an observer. For the linear
case, Luenberger proposed a well-known structure of an
observer. For the nonlinear case, we could use a

x2
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Figure 1: Projections of the strange attractor of system (1) with the initial condition (5.4, −1.8, 3.3): (a) x1 − x2 phase plane, (b) x2 − x3
phase plane, and (c) x1 − x3 phase plane.
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generalization of this structure called the Luenberger-like
observer. For system (7), this observer is given by

_􏽢x � A􏽢x + f(􏽢x) + L(y − 􏽢y),

􏽢y � C􏽢x,

⎧⎨

⎩ (10)

where 􏽢x is the observer’s state and L is a constant gain
matrix.+e Luenberger-like observer is formed by themodel
of the original system (with the true state x replaced by the
estimated state 􏽢x), plus a linear correction term.

+e difference between the states of the observer (10)
and the system (7) is called the estimation error which is
defined as

e :� x − 􏽢x. (11)

+e problem of state estimation consists of finding an
appropriate gain matrix L in such a way that limt⟶∞e � 0,

that is, e converges asymptotically to zero.

5. Observability Analysis

Before attempting to find the observer gain, or in general, to
use any observation scheme, a fundamental question must
be resolved.+at is, what are the conditions under which the
reconstruction problem of the unmeasurable states of a
system has a solution?

Definition 1 (see [49, 50]). System (7) is said to be observable
over the time interval [t0, t1],t1 > t0, if the knowledge of the
output y over [t0, t1] suffices to uniquely determine the
initial state x(t0) completely.

+e observability analysis for linear systems is a well-
understood problem. However, the case for nonlinear sys-
tems is subtler and more complicated. Results on the ob-
servability of nonlinear systems are discussed in [51] and
references therein. In this work, these results are summa-
rized for an unforced system with a unique output like
system (7).

Consider the extended output vector as

Y �

y

_y

€y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

+eobservability matrix for the nonlinear case is defined as
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Figure 2: Basin of attraction of the chaotic system (1) viewed along the plane x3 � 0 (a) and along the plane x2 � −0.2 (b).
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Figure 3: +e chaotic system (1) has a class 3 fractal basin that
extends to infinity and with a noninteger power law scaling.
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Q �
zY
zx

. (13)

Corollary 1 (see [50]). System (7) is locally observable in a
neighbourhood of the point x at time t, if

det(Q)≠ 0. (14)

Remark 1. Although the Kalman condition for observability
of linear systems is necessary and sufficient, condition
expressed in (14) is only sufficient.

To begin with the observability analysis for system (7),
the extended output vector is calculated as

Y �

y

_y

€y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

x1

_x1

€x1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

x1

x3

0.1x1 + 5x2 − x3 + x1x2 − 0.3x1x3 + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(15)

Next, the observability matrix can be determined as

Q �
zY
zx

�

1 0 0

0 0 1

0.1 + x2 − 0.3x3 5 + x1 −1 − 0.3x1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

It is easy to show that

det(Q) � −5 − x1. (17)

+us, system (7) loses its observability only when
x1 � −5.

6. Raghavan Observer

In this section, observer gain L is tried to be determined
using the Raghavan procedure. First, the Lipschitz constant
of system (7) must be found.

6.1. Lipschitz Constant Determination

Definition 2 (see [49, 52]). A function f(x): Rn⟶ Rn is
said to be locally Lipschitz on Ω ⊂ Rn if there exists a
constant c (known as the Lipschitz constant) such that for all
x1, x2 ∈ Ω, the following inequality holds:

f x1( 􏼁 − f x2( 􏼁
����

����≤ c x1 − x2
����

����. (18)

Finally, f is said to be globally Lipschitz if it satisfies (18)
with Ω � Rn.

Lemma 1 (see [49, 52]). If a function f: Rn⟶ Rn is
continuously differentiable on a set Ω ⊂ Rn, then it is locally
Lipschitz on Ω.

Taking into account Lemma 1, Khalil [52] proposed a
procedure to calculate the Lipschitz constant c [53]. Al-
though this procedure produces conservative results, it is
enough for the purpose of this work. First, for the function f
given in (5), let us calculate its Jacobian matrix as

zf(x)

zx
�

0 0 0

0 0 0

x2 − 0.3x3 x1 −0.3x1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Let us define the matrix F as

F � max
x∈Ω

zf
zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (20)

where

Ω � x1, x2, x3( 􏼁 x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤x1,max � 11, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤x2,max � 14, x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ x3,max � 22.5
􏼌􏼌􏼌􏼌􏽮 􏽯. (21)

+us, F is a matrix whose elements are the maximum
absolute values of each corresponding element in the Ja-
cobianmatrix (19) on the setΩ. Next, F can be determined as

F �

0 0 0

0 0 0

20.75 11 3.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

Finally, the Lipschitz constant for f on the setΩ is given by

c � ‖F‖ � 23.7161, (23)

where ‖F‖ denotes the two-norm of F, that is,
‖F‖ �

���������

λmax(FTF)

􏽱

, and λmax(FTF) denotes the maximum
eigenvalue of FTF.

6.2. Raghavan Design Procedure. The procedure proposed
by Raghavan is based on the following result.

Theorem 1 (see [5]). Given system (7) and its observer (10),
if there exists ε> 0 such that the following algebraic Riccati
equation (ARE) has a symmetric, positive definite solution P:

AP + PAT
+ P c

2I −
1
ε
CTC􏼒 􏼓P + I + εI � 0, (24)

then, by selecting the observer gain as L � (1/2ε)PCT, the
estimation error e � x − 􏽢x converges asymptotically to zero for
all f with a Lipschitz constant c.

Remark 2. A necessary condition for the existence of a
symmetric, positive definite solution P is that the pair (A,C)

be detectable.
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Let us apply Algorithm 1 to our problem.Wemust verify
that (A,C) is detectable. Let us define the observability
matrix O using (6) and (9) as

O �

C

CA

CA2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0 0

0 0 1

0.1 5 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)

+e rank ofO is 3, that is, the pair (A,C) is observable, a
stronger condition than detectability. Now, by setting
ε � 10.9227, we use Algorithm 1 implemented in Matlab®with command “are” for the solution of equation (24). +e
algorithm gives a result until the 14th iteration when
ε � 1/1500. With this value, the corresponding solution of
equation (24) is

P �

0.0326 0.0003 0.0000

−0.0015 0.0002 −0.0419

−0.0012 0.0425 0.0016

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (26)

However, as can be easily verified, P is not a symmetric
matrix. Besides, smaller values for ε do not produce a
symmetric matrix either. +us, the algorithm has failed.

6.3. Scaling of System. If Algorithm 1 does not work, a
possible solution could be to scale the chaotic system (1).

Consider the variables z1, z2, and z3 defined as

z1 �
x1

k1
,

z2 �
x2

k2
,

z3 �
x3

k3
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where k1, k2, and k3 are the positive constants. By taking the
first derivative of (27) with respect to time and substituting
(1), after some algebraic operations, can be found that

_z1 �
k3z3

k1
,

_z2 � −
k1

k2
z1 −

k3

k2
z3,

_z3 � 0.1
k1

k3
z1 + 5

k2

k3
z2 − z3 +

k1k2

k3
z1z2 − 0.3k1z1z3 +

1
k3

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Succinctly, system (28) can be represented as

_z � Az + f(z),

y1 � Cz,

⎧⎨

⎩ (29)

where

z :� z1 z2 z3􏼂 􏼃
T

,

A :�

0 0
k3

k1

−
k1

k2
0 −

k3

k2

0.1
k1

k3
5

k2

k3
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f(z) :�

0

0

k1k2

k3
z1z2 − 0.3k1z1z3 +

1
k3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(30)

and y1 is the output of system (29), that is, y1 � z1.
To find the Lipschitz constant of scaled system (29), the

Jacobian matrix of f is determined as

zf(z)

zz
�

0 0 0

0 0 0

k1k2

k3
z2 − 0.3k1z3

k1k2

k3
z1 −0.3k1z1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

and the matrix F for (31), that is, F, is given by

F �

0 0 0

0 0 0

k1

k3
14 + 0.3

k1

k3
22.5

k2

k3
11 3.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

+us, the scaled Lipschitz constant can be calculated as

c � ‖F‖. (33)

To try to find a positive result for Algorithm 1, it is
important to reduce c. +is can be achieved by reducing k1
and k2 and increasing k3. +e minimum value for c is 3.3.
Although different values for k1, k2, k3, and ε are tested,
Algorithm 1 does not work on the scaled system (28). +us,
it can be inferred that there does not exist a Raghavan
observer for Kapitaniak system (1).

7. Thau Observer

In [2], +au provided a sufficient condition to guarantee the
asymptotic convergence to zero of the estimation error.
However, a systematic procedure of design was not pro-
vided.+at is, to use this result, first, the user must propose a
value of gain for the observer by trial and error.
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Theorem 2 (see [2, 49]). Given system (7), the corresponding
observer (10), a symmetric positive definite matrixQ1, and an
observer gain L, proposed by the user, such that A − LC is
Hurwitz, if the following Lyapunov equation:

(A − LC)
TP1 + P1(A − LC) � −Q1, (34)

has a symmetric positive definite solution P1 which satisfies
the following inequality:

c<
λmin Q1( 􏼁

2λmax P1( 􏼁
, (35)

where λmin(Q1) and λmax(P1) are the minimum eigenvalues
of Q1 and the maximum eigenvalue of P1, respectively; then,
the estimation error e converges asymptotically to zero.

It should be noted that relation in (35) can be increased if
the minimum eigenvalue of Q1 is increased and/or the
maximum eigenvalue of P1 is reduced. According to [54, 55],
the ratio in (35) can be maximized if Q1 � I. To apply
+eorem 2 to our problem, several values for the gain ob-
server L are proposed. In spite of the exhaustive search, the
inequality (35) cannot be satisfied. In this case, the scaled
system (28) is considered. Several combinations of values for
k1, k2, k3, and observer gain are tested. However, attempts
are again unsuccessful. +us, it can be inferred that the+au
observer does not exist for Kapitaniak system (1).

8. Luenberger-Like Observer

In spite of the negative results of the previous sections, it is
important to take into account that +eorems 1 and 2
provide only sufficient conditions. If these conditions are not
satisfied, this does not mean the nonexistence of the
Luenberger-like observer. In fact, in this section, the exis-
tence of a Luenberger-like observer (10) for Kapitaniak
chaotic system (1) is verified by numerical simulation.
Consider the following value for the observer gain L:

L �

24.4844

−1.0968

−0.9137

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (36)

Once the gain L has been proposed, the observer (10) can
easily be simulated. Models for the chaotic system (7) and for
the corresponding observer (10) are built on Simulink®. +e
initial condition for the chaotic system is again (5.4, −1.8, 3.3)

as in Section 2. As the states are not available, it is reasonable
to propose the initial condition of the observer simply as
(0, 0, 0). For a fair comparison with respect to the experi-
mental results of the following section, the simulation is

accomplished using solver ode4 (Runge–Kutta) with a fixed
step size of 0.0004 sec, a start time 0, and a stop time 10 sec. In
Figure 4, the observation process is shown, whereas in Fig-
ure 5, the signal of the estimation error e is presented.

As can be appreciated from Figure 5, the estimation error
converges asymptotically to zero.

9. Microcontroller Implementation and
Experimental Results

+e implementation is accomplished using two Teensy USB
Development Board based on the 72MHz Cortex-M4 3.3V
signal microcontroller. +e chaotic system (7) is imple-
mented on the first board, whereas the corresponding
Luenberger-like observer (10) is implemented on the second
board. A block diagram of this implementation is shown in
Figure 6.

Both systems are implemented using solver ode4
(Runge–Kutta) with a fixed step size of 0.0004 sec. Since the
observer requires signal x1 as an input, a unidirectional
communication between the microcontrollers must be set.
+e communication is achieved using an analog to digital
conversion based on PWM and a digital to analog converter
built on the microcontroller. +e following process is ac-
complished: (1) the first microcontroller with the chaotic
system provides the states x1,x2, and x3, (2) the states are
sent by the PWM port (10-bit resolution and 5Mhz fre-
quency), and also the states are scaled, (3) the PWM signals
go to a low-pass RC filter with a cutoff frequency of 30Hz,
(4) the output of this filter is taken by an analog to digital
converter of the secondmicrocontroller.+is converter has a
10-bit resolution and a sample frequency of 5MHz, (5) the
digital signal is scaled to the original range, (6) the second
microcontroller with the Luenberger-like observer produces
the states 􏽢x1,􏽢x2, and 􏽢x3, (7) the observer states are scaled, (8)
these states are sent to the PWMport, and (9) such signals go
to a second low-pass filter. +e states of the chaotic systems
and the states of the observer are sent by serial communi-
cation to a computer for visualization (see Figure 7). At the
same time, the outputs of both low-pass filters are sent to an
oscilloscope to verify the measurements.

To facilitate the implementation process and the re-
production of our results, the pseudocodes for the master
microcontroller and the slave microcontroller are as follows:

Pseudocode of the master microcontroller:
BEGIN
Initial conditions of states
define step time

Step 1. Set ε to a positive value.
Step 2. Solve ARE (24).
Step 3. If P is symmetric and positive definite, then L � (1/2ε)PCT and the process is terminated.
Step 4. If not, set ε � ε/2, and go to Step 2. If ε is below some precision value, abandon the method.

ALGORITHM 1: Procedure to obtain the observer gain [5].
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Figure 4: Observation process (true state, solid line; estimated state, dashed line) for (a) x1 and 􏽢x1, (b) x2 and 􏽢x2, and (c) x3 and 􏽢x3.

e1
e2 e3

–4
–3
–2
–1

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 100
Time (sec)

Figure 5: Time evolution of the estimation error e.
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Figure 6: Block diagram of the implementation.
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main loop function ()
{
Calculate states through the Runge–Kutta method
{ x1

x2
x3

}
Applied offset to states of the original system to get
positives values in the PWM port and the scale factor
for distributing the values in all range of the PWM port

Sx1 = (x1 + offset)∗ scale factor
Sx2 = (x2 + offset)∗ scale factor

Sx3 = (x3 + offset)∗ scale factor
Send values through the PWM port

PWM output⟵ (Sx1)
PWM output⟵ (Sx2)
PWM output⟵ (Sx3)

Calculate time delay for the sample time
}
Pseudocode of the observer microcontroller:
BEGIN
Initial conditions of states
define step time
main loop function ()

Figure 7: Data visualization on the computer screen.
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Figure 8: Observation process for the implemented systems (true state, solid line; estimated state, dashed line) for (a) x1 and 􏽢x1, (b) x2 and
􏽢x2, and (c) x3 and.􏽢x3.
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{
Read values of the real system through the analog to
digital converter and remove the offset and the scale
factor

x1_r⟵ (analog input/scale factor)-offset
x2_r⟵ (analog input/scale factor)-offset
x3_r⟵ (analog input/scale factor)-offset

Calculate observer states, using the x1_r state and the
Runge–Kutta method
{ x1_O

x2_O
x3_O

}
Calculate error between the real or original system and
the observer system
Applied offset to observer states to get positives values
in the PWM port and the scale factor for distributing
the values in all range of the PWM port

Sx1_O= (x1_O+ offset)∗ scale factor
Sx2_O= (x2_O+ offset)∗ scale factor
Sx3_O= (x3_O+ offset)∗ scale factor

Send values through the PWM port
PWM output⟵ (Sx1_O)
PWM output⟵ (Sx2_O)
PWM output⟵ (Sx3_O)

Send states of real system, states of observer system, and
error of systems through the serial/USB port
Calculate time delay for the sample time
}

In Figures 8 and 9, the experimental results are pre-
sented. +e observation process is shown in Figure 8 for the
first states, second states, and third states, respectively, of the
implemented systems. Finally, the estimation error between
the implemented chaotic system and the implemented ob-
server can be appreciated in Figure 9.
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[26] T. Gotthans and J. Petržela, “New class of chaotic systems with
circular equilibrium,” Nonlinear Dynamics, vol. 81,
pp. 1143–1149, 2015.

[27] T. Gotthans, J. C. Sprott, and J. Petrzela, “Simple chaotic flow
with circle and square equilibrium,” International Journal of
Bifurcation and Chaos, vol. 26, no. 8, Article ID 1650137, 2016.

[28] S. Mobayen, C. K. Volos, S. Kaçar, and Ü. Çavuşoğlu, “New
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In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium
points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical
simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and
chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the
three-dimensional space. Interior crises are found in the map as a parameter or an order varies. ,irdly, based on the stability
theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic
convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order
discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed
synchronization controllers.

1. Introduction

In the recent several decades, chaos is an attractive phe-
nomenon in nonlinear dynamical systems, which has been
extensively analyzed and studied deeply. It is well known
that chaos was first detected in continuous nonlinear sys-
tems. Its characteristics and the existence in discrete dy-
namical maps have also been the interesting topics. Many
discrete maps with chaotic attractors have been proposed,
such as the Logistic map, Hénon map, and Lozi map [1–5].
With the rapid development of fractional calculus, many
works including chaos, control, and synchronization for
fractional-order continuous systems have been reported
[6–18]. It should be pointed out that the fractional discrete
maps were not paid enough attention and properly explored
until recently [19].

In 1974, Diaz and Olser first put forward the fractional
difference [20]. Up to now, fractional-order discrete maps
have obtained more and more attention. In [21], a discrete

fractional Hénon map was introduced, and its chaotic be-
havior was discussed. Dynamics, stabilization, and syn-
chronization for several fractional-order maps, such as the
Ikeda map, Loren map, and Lozi map, were studied in
[22–28]. ,e discrete fractional calculus can avoid the te-
dious information or calculation error of the numerical
discretization for the continuous ones due to the nonlocal
property [29]. ,erefore, more and more discrete maps with
fractional operators need to be presented, and more
abundant and complex dynamics behaviors need to be
explored. Besides, it is well known that fractional-order
discrete maps are sensitive not only to the small disturbance
of parameters and initial conditions but also to the variation
of fractional orders [30], which are the unique advantages of
fractional-order systems. For this reason, a fractional-order
discrete map is more suitable for data encryption and secure
communications. Furthermore, fractional-order discrete
maps have simple forms and rich dynamics, which are good
for system analysis and numerical computation. Based on
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these, investigation of a new fractional-order discrete map
including dynamics, stabilization, and synchronization is
necessary and important for the development of fractional
calculus.

In [31, 32], a two-dimensional noninvertible map with
cubic order nonlinearity, which was taken as a chaotic
cryptosystem, was proposed and studied. ,e evolution of
attractors and their basins have been analyzed deeply and
explained thoroughly. A noncyclic chaotic attractor for
the map was displayed in [33]. Based on these, we extend
the map to the fractional case and study its dynamics. ,e
stability of the equilibrium points for the map is exam-
ined. By the bifurcation graphs and phase diagrams, the
dynamics of the fractional-order discrete map with two
different initial conditions is displayed as a parameter or a
derivative order varies. Furthermore, bifurcations with
the simultaneous variation of both a parameter and the
order are also analyzed in the three-dimensional space.
Interior crises occur in the map with the variation of a
parameter or the order.

,e main motivation of our work is to know whether
bifurcations and chaos, which the integer-order discrete
map possesses, also exist in the fractional-order coun-
terpart. In fact, these dynamics behaviors do exist in the
fractional-order map, and multifaceted complex dy-
namics is observed by means of the numerical simula-
tions. For a chaotic system, control and synchronization
are very important for its application in practical prob-
lems. In our work, we are also interested in studying the
control and synchronization for the fractional-order map.
Based on the stability theory of fractional-order discrete
maps, a stabilization controller is proposed to control the
chaos of the map. ,e synchronization between the
proposed map and a fractional-order discrete Loren map
is studied and realized.

2. Discrete Fractional Calculus

In this section, we will recall the definition and related
theories for the discrete fractional calculus. In the following,
the symbol CΔυaX(t) represents the υ order Caputo type delta
fractional calculus of a function X(t): Na⟶ R with Na �

a, a + 1, a + 2, . . .{ } [34], which is expressed as follows:

CΔυaX(t) � Δ− (n− υ)
a X(t) �

1
Γ(n − υ)

􏽘

t− (n− υ)

s�a

· (t − s − 1)
(n− υ− 1)Δn

X(s),

(1)

where υ ∉ N is the order, t ∈ Na+n− υ, and n � ⌈υ⌉ + 1. In
formula (1), the υth fractional sum of Δn

s X(t) is defined as
[35, 36]

Δ− υ
a X(t) �

1
Γ(υ)

􏽘

t− υ

s�a

(t − s − 1)
(υ− 1)

X(s), (2)

where t ∈ Na+υ, υ> 0. t(υ) represents the falling function
which is defined according to the Gamma function Γ as

t
(υ)

�
Γ(t + 1)

Γ(t + 1 − υ)
. (3)

Generally speaking, the following method is employed to
compute the numerical solutions for a fractional-order
discrete map.

For an equation with the fractional calculus operator,
CΔυau(t) � f(t + υ − 1, u(t + υ − 1)),

Δku(a) � uk.n � ⌈υ⌉ + 1, k � 0, 1, 2, . . . , n − 1,

⎧⎨

⎩ (4)

the equivalent discrete integral one is

u(t) � u0(t) +
1
Γ(υ)

􏽘

t− υ

s�a+n− υ
(t − s − 1)

(υ− 1)
f(s + υ − 1, u

· (s + υ − 1)), t ∈ Na+n,

(5)

where u0(t) � 􏽐
n− 1
k�0((t − a)(k)/Γ(k + 1))Δku(a).

,e following theorem is used to analyze the stabilization
and synchronization for fractional discrete maps. For the
proof of the theorem, please refer to the literature [37].

Theorem 1. -e zero equilibrium of a linear fractional
discrete system:

CΔυaX(t) � MX(t + υ − 1), (6)

where X(t) � (x1(t), x2(t), · · · , xn (t))T , 0< υ≤ 1,M ∈ Rn×n

and ∀t ∈ Na+1− υ, is asymptotically stable if

λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< 2 cos

arg λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − π

2 − υ
􏼠 􏼡

υ

,

arg λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>

υπ
2

, i � 1, 2, . . . , n,

(7)

for all the eigenvalues λ of M.

3. A Fractional-Order Discrete Map

3.1. Description of the Map. Firstly, the two-dimensional
discrete map with cubic nonlinearity in [31–33] is described
as follows:

x(n + 1) � y(n),

y(n + 1) � b − x3(n) + x(n)( 􏼁 + c − y3(n) + y(n)( 􏼁,
􏼨

(8)

where x(n) andy(n) are the state variables and b and c

parameters. ,e first-order difference of (8) is formulated as
x(n + 1) � y(n) − x(n),

y(n + 1) � b − x3(n) + x(n)( 􏼁 + c − y3(n) + y(n)( 􏼁 − y(n).
􏼨

(9)

By employing the Caputo-like delta difference given in
(1) with the starting point a, the corresponding fractional
map is

2 Complexity



CΔυax(t) � y(t − 1 + υ) − x(t − 1 + υ),

CΔυay(t) � b − x3(t − 1 + υ) + x(t − 1 + υ)( 􏼁 + c − y3(t − 1 + υ) + y(t − 1 + υ)( 􏼁 − y(t − 1 + υ).

⎧⎨

⎩ (10)

Based on equations (4) and (5), we can obtain

x(t) � x(a) +
1
Γ(υ)

􏽘

t− υ

s�a+1
(t − s − 1)

(υ− 1)
(y(t − 1 + υ) − x(t − 1 + υ)),

y(t) � y(a) +
1
Γ(υ)

􏽘

t− υ

s�a+1
(t − s − 1)

(υ− 1)
b − x(t − 1 + υ)

3
+ x(t − 1 + υ)􏼐 􏼑􏼐

+ c − y(t − 1 + υ)3 + y(t − 1 + υ)􏼐 􏼑 − y(t − 1 + υ)􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where (t − s − 1)(υ− 1)/Γ(υ) is the discrete kernel function
and ((t − s − 1)(υ− 1)/Γ(υ)) � (Γ(t − s)/(Γ(υ)Γ(t − s − υ+

1))). Based on this, the numerical solution for the fractional
discrete map (10) can be obtained, which is as follows:

x(n) � x(a) +
1
Γ(υ)

􏽘

n

j�1

Γ(n − j + υ)

Γ(n − j + 1)
(y(j − 1) − x(j − 1)),

y(n) � y(a) +
1
Γ(υ)

􏽘

n

j�1

Γ(n − j + υ)

Γ(n − j + 1)
b − x

3
(j − 1) + x(j − 1)􏼐 􏼑 + c − y

3
(j − 1) + y(j − 1)􏼐 􏼑 − y(j − 1)􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

In the rest of the paper, the low limit a is fixed as 0.

3.2. Stability of Equilibrium Points. Now, we turn to study
the stability of equilibrium points for map (10). By the simple
computation, we can get the three equilibrium points:

E1(0, 0),

E2,3 ±
�������

1 −
1

b + c

􏽲

, ±
�������

1 −
1

b + c

􏽲

􏼠 􏼡,

(13)

when b + c> 1. ,e map has only one equilibrium point
E1(0, 0) when b + c≤ 1. ,e Jacobian matrix of map (10)
evaluated at an equilibrium point E∗ � (x∗, y∗) is

J1 �
− 1 1

b − 3x∗ + 1( ) c − 3y∗ + 1( 􏼁 − 1
􏼢 􏼣. (14)

,e corresponding eigenvalues for the equilibrium point
E1(0, 0) are λ1,2 � (c/2) ± (

������
4b + c2

√
/2). In this paper, we

only consider the case of map (10) with positive parameters.

,erefore, the zero equilibrium point E1 is unstable due to
|arg λ1| � 0< (υπ/2) on the basis of ,eorem 1.

For a fractional-order discrete map, the stability of a zero
equilibrium point can be determined easily based on ,e-
orem 1. ,erefore, we will use a very simple method pro-
posed in [38] for handling with the nonzero equilibrium
points. For more special details about the method, please
refer to Remark 2.5 in the literature [38].

In order to analyze the stability of the nonzero equi-
librium points E2,3, let x2 �

������������
1 − (1/(b + c))

􏽰
,

y2 �
������������
1 − (1/(b + c))

􏽰
, x3 � −

������������
1 − (1/(b + c))

􏽰
, andy3 �

−
������������
1 − (1/(b + c))

􏽰
. ,rough the following variable

transforms,

z21(t − 1 + υ) � x(t − 1 + υ) − x2,

z22(t − 1 + υ) � y(t − 1 + υ) − y2,

z31(t − 1 + υ) � x(t − 1 + υ) − x3,

z32(t − 1 + υ) � y(t − 1 + υ) − y3,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

we can get two newly maps with a zero equilibrium point:
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CΔυa z21(t) + x2( 􏼁 � CΔυaz21(t) � z22(t − 1 + υ) + y2 − z21(t − 1 + υ) − x2,

CΔυa z22(t) + y2( 􏼁 � CΔυaz22(t) � b − z21(t − 1 + υ) + x2( 􏼁
3

+ z21(t − 1 + υ) + x2􏼐 􏼑

+ c − z22(t − 1 + υ) + y2( 􏼁
3

+ z22(t − 1 + υ) + y2􏼐 􏼑 − z22(t − 1 + υ) − y2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

CΔυa z31(t) + x3( 􏼁 � CΔυaz31(t) � z32(t − 1 + υ) + y3 − z31(t − 1 + υ) − x3,

CΔυa z32(t) + y3( 􏼁 � CΔυaz32(t) � b − z31(t − 1 + υ) + x3( 􏼁
3

+ z31(t − 1 + υ) + x3􏼐 􏼑

+ c − z32(t − 1 + υ) + y3( 􏼁
3

+ z32(t − 1 + υ) + y3􏼐 􏼑 − z32(t − 1 + υ) − y3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

which are corresponding to E2,3, respectively. ,e Jacobian
matrix of maps (16) and (17) evaluated at the zero equi-
librium point is

J2 �
− 1 1

− 3bx2
2 + b − 3cy2

2 + c − 1
􏼢 􏼣

�
− 1 1

− 3bx2
3 + b − 3cy2

3 + c − 1
􏼢 􏼣.

(18)

,e corresponding eigenvalues of J2 for the zero equi-
librium point are

λ3,4 � −
2b − c ±

������������������������������������
− (2b + 2c − 3) 4b2 − 2bc2 + 4bc − 2c3 + 3c2( )

􏽰
+ 2bc + 2c2

2(b + c)
. (19)

When the parameters of map (10) are choosen as b �

2.2 and c � 0.95 and the order is taken as υ � 0.98, the
corresponding eigenvalues are λ3,4 � − 1.4976 ± 1.4343i. By
simple computation, we can obtain

arg λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 2.3788>

υπ
2

� 1.5379, i � 3, 4,

λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 2.0736> 2 cos

arg λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − π

2 − υ
􏼠 􏼡

υ

� 1.4538, i � 3, 4,

(20)

which means the equilibrium point E2,3 is unstable in this
case according to ,eorem 1.

4. Dynamics Analysis

In this section, the dynamics of the fractional-order dis-
crete map (10) with the variation of a parameter or the
fractional order and the bifurcations with the simultaneous
variation of both a parameter and the order υ will be
analyzed in detail.

4.1. Dynamics as the Parameter b Varies. When the order
υ � 0.98 and parameter c � 0.95, the dynamics of map (10)
with the variation of the parameter b is analyzed. ,e bi-
furcation diagrams and the corresponding largest Lyapunov
exponents (LLE) spectrums with two different initial con-
ditions x01 � (0.8, − 0.4) and x02 � (0.8, 0.4) are displayed in
Figure 1. From which we can see that the dynamics of the

map is abundant and shows a symmetry with different initial
conditions in this case.

,e evolution of the trajectories for different b with x01 is
depicted in Figure 2. In the phase plane, there is a fixed point
which means the map is period-1 for b � 1 (Figures 2(a) and
2(b)). ,e map has a limit cycle attractor for b � 1.5, see
Figure 2(c), which means a Hopf bifurcation occurs as the
parameter b increases from 1 to 1.5. ,e shape of the limit
cycle changes as b increases further (Figures 2(d) and 2(e)).
,e map keeps chaotic when b varies from 1.75 to 2.2. In
Figure 2(g), three small chaotic attractors appear in the
phase plane when b � 1.9 and convert to one large attractor
when b � 1.95 (Figure 2(h)). From Figures 2(i) and 2(j), we
can see that the chaotic attractor becomes a large one
suddenly, which implies that an interior crisis occurs as b

increases from 2 to 2.2.
,e dynamics of the map with the initial condition x02,

which is similar to Figure 2, is displayed in Figure 3. From
the global dynamics perspective, the two chaotic attrac-
tors, which are depicted in Figures 2(i) and 3(i), collide
with each other and convert to a large one (Figures 2(j)
and 3(j)).

4.2.Dynamics as theParameter cVaries. ,e fractional order
υ is fixed as 0.98 and the parameter b � 2.2, and the dy-
namics of map (10) when c is varied in the interval of [0.2, 1]
with two initial conditions x01 and x02 are studied. Firstly,
the bifurcation diagrams and the corresponding LLE
spectrums with x01 and x02 are plotted in Figure 4. From
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Figure 1: Bifurcation diagrams and corresponding LLE spectrums for the map with different initial values as the parameter b varies: (a) the
bifurcation diagram with x01, (b) the bifurcation diagram with x02, (c) the LLE spectrum with x01, and (d) the LLE spectrum with x02.
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Figure 2: ,e phase diagrams of map (10) with the initial condition x01: (a) b � 1, (b) the discrete time evolution of the state variable x(n)

with b � 1, (c) b � 1.5, (d) b � 1.6, (e) b � 1.7, (f ) b � 1.75, (g) b � 1.9, (h) b � 1.95, (i) b � 2, and (j) b � 2.2.
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which we can see that the dynamics of the map is different
from that of the map as the parameter b varies and lost the
symmetry.

,e phase diagrams for the map with x01 are shown in
Figure 5.,e map is period-2 when c � 0.2 (Figures 5(a) and
5(b)), and the periodic behavior persists for a long time until
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Figure 3: ,e phase diagrams of map (10) with the initial condition x02: (a) b � 1, (b) the discrete time evolution of the state variable x(n)

with b � 1, (c) b � 1.5, (d) b � 1.6, (e) b � 1.7, (f ) b � 1.75, (g) b � 1.8, (h) b � 1.9, (i) b � 2, and (j) b � 2.2.
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c � 0.79. When c � 0.8, the system is chaotic and the chaotic
attractor is depicted in Figure 5(c). As c increases from 0.87
to 0.88, the chaotic attractor becomes a large one, which
means an interior crisis occurs.

,e dynamics of the map with the initial condition x02
is displayed in Figure 6. ,e map keeps chaotic as the
parameter c changes in the interval of [0.2, 1], and the
chaotic attractor has different formations. A chaotic
attractor consists of four small parts in the phase space
when the parameter c increases from 0.2 to 0.28
(Figures 6(a)–6(c)) and converts to a whole one when c �

0.29 (Figure 6(d)). ,e system is period-5 when c � 0.4,
and the phase diagram and the discrete time evolution of
the state variable x(n) are plotted in Figures 6(e) and 6(f ).
When the parameter c increases from 0.87 to 0.88, the
chaotic attractor becomes a large one suddenly
(Figures 6(g) and 6(h)), which implies that an interior
crisis occurs.

,e stable region for the map in the b − c parameter
plane with υ � 0.98 is plotted in Figure 7 in order to give a
guidance of choosing values of the parameters. From this
figure, we can see that map (10) is chaotic when b � 2.2 and
c � 0.95.

4.3.Dynamics as theOrderυVaries. ,e parameters are fixed
as b � 2.2 and c � 0.95, the dynamics of map (10) is studied
when the order υ is varied in this section. ,e bifurcation
diagrams and the corresponding LLE spectrums with x01
and x02 are plotted in Figure 8. From which it can be seen
that the dynamics of the map also shows a symmetry with
different initial conditions in this case.

For different values of the υ, the phase diagrams with
x01 are shown in Figure 9. ,e map has period-1 attractor
for υ � 0.7 (Figure 9(a)), and a limit cycle for υ � 0.71
(Figure 9(b)), which means a Hopf bifurcation, occurs as
the order υ increases. ,e shape of the limit cycle changes

as υ increases (Figure 9(c)). ,e map exists as a multicycle
attractor for υ � 0.83, see Figure 9(d). As the order in-
creases to 0.84, the attractor becomes a chaotic one which
is consisted by several small parts (Figure 9(e)). ,e small
parts combine into one attractor when υ � 0.86
(Figure 9(f )). From Figures 9(g) and 9(h), it is clear that
the chaotic attractor has three small parts in the phase
plane when υ � 0.89, and these parts become a whole one
when υ � 0.9. ,e chaotic attractor in Figure 9(i) becomes
a large one (Figure 9(j)) when the order varies from 0.95 to
0.96.

,e phase diagrams with initial condition x02 as the
order varies from 0.7 to 0.96 are shown in Figure 10, which
are symmetric with those of the map withx01. From the
global dynamics perspective, the two chaotic attractors,
which are depicted in Figures 9(i) and 10(i), collide with
each other and convert to a large one (Figures 9(j) and
10(j)).

4.4. Bifurcation with the Simultaneous Variation of Both
Parameter and Order υ. In this section, the bifurcations of
map (10) as a parameter and the order variation with the
initial conditions x01 and x02 are studied. Firstly, the value of
parameter c is fixed as 0.95. ,e bifurcation diagram of the
map is depicted in Figure 11, when the parameter
b ∈ [0.2, 2.2] and the order υ ∈ [0.5, 1] change simulta-
neously. Secondly, the value of parameter b is set as 2.2.
Figure 12 shows the bifurcation diagram of the map with the
variation of the parameter b ∈ [0.2, 2.2] and the order
υ ∈ [0.5, 1]. From these figures, it can be seen that map (10)
is periodic when the order is less than a certain threshold and
appears chaotic behavior when the order is greater than the
certain threshold.

In other words, the dynamics of map (10) becomes
regular as the derivate order υ decreases from 1 to 0.5 and
complex as the derivate order υ increases from 0.5 to 1.
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Figure 5: ,e phase diagrams of system (10) with the initial condition x01: (a) c � 0.20, (b) the discrete time evolution of the state variable
x(n) with c � 0.20, (c) c � 0.80, and (d) c � 0.88.
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Figure 9: ,e phase diagrams of system (10) with the initial condition x01: (a) υ � 0.70, (b) υ � 0.71, (c) υ � 0.81, (d) υ � 0.83, (e) υ � 0.84,
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Figure 10: Continued.
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Figure 11: Bifurcation diagrams for map (10) with different initial values as the parameter b and the order υ vary: (a) the bifurcation diagram
with x01 and (b) the bifurcation diagram with x02.
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5. Stabilization

,e stabilization of map (10) will be studied in this section.
From here, the case of the equilibrium to be at the origin is
considered. For convenience, the controlled map (10) is
rewritten as the following form:

CΔυax(t) � y(ω) − x(ω) + u1(ω),

CΔυay(t) � b − x3(ω) + x(ω)( 􏼁 + c − y3(ω) + y(ω)( 􏼁 − y(ω) + u2(ω),

⎧⎨

⎩

(21)

where ω � t − 1 + υ and u1 and u2 are the stabilization
controllers.

Theorem 2. -e fractional-order map (10) can be stabilized
when the controllers are designed as the following form:

u1(t) � − y(t),

u2(t) � − b − x3(t) + x(t)( 􏼁 − c − y3(t) + y(t)( 􏼁.
􏼨 (22)

Proof. ,rough substituting (22) into (21), map (21) becomes
CΔυax(t) � − x(ω),

CΔυay(t) � − y(ω).

⎧⎨

⎩ (23)

Map (23) can be rewritten in the compact form:
CΔ

υ
a(x(t), y(t))

T
� A ×(x(ω), y(ω))

T
, (24)

where A �
− 1 0
0 − 1􏼠 􏼡. Based on ,eorem 1, it is easy to see

that the eigenvalues of A satisfy the conditions

|argλi| � π and |λi| � 2υ, for i � 1, 2, which implies that the
chaos of map (10) can be controlled and the zero equilibrium
of (24) is globally asymptotically stable.

In the numerical simulations, the values of the param-
eters are fixed as b � 2.2 and c � 0.95, and the fractional
order υ � 0.98. ,e controllers are used to stabilize map (10)
when the iterations are chosen as n � 1000. ,e stabilization
results are displayed in Figure 13. It is clear that the state
variables x(n) andy(n) toward to zeros, which means the
chaos of map (10) is stabilized and the results confirm the
theoretical control results presented in ,eorem 2. □

6. Synchronization

Now, we consider the synchronization of map (10). Firstly, a
fractional Lorenz map is taken as the drive system:

CΔυaxd(t) � cδxd(ω) − δyd(ω)xd(ω),

CΔυayd(t) � δ − yd(ω) + x2
d(ω)( 􏼁,

⎧⎨

⎩ (25)

where 0< υ< 1 and state subscript d denotes the drive
system. Map (25) is chaotic when the parameters
c � 1.25 and δ � 0.75 and the derivative order υ � 0.98. For
more details about the dynamics of map (25), please refer to
the literature [23]. Map (10) with synchronization con-
trollers u1(ω) and u2(ω), which can be described by the
following equations:

CΔυaxr(t) � yr(ω) − xr(ω) + u1(ω),

CΔυayr(t) � b − x3
r(ω) + xr(ω)( 􏼁 + c − y3

r(ω) + yr(ω)( 􏼁 − yr(ω) + u2(ω),

⎧⎨

⎩ (26)

where the subscript r denotes the response system. ,e
error state variables are defined as ex(t) � xr(t) − xd(t)

and ey(t) � yr(t) − yd(t). If all the error states variables
tend to 0 as the time t⟶∞, then maps (25) and (26) are
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Figure 12: Bifurcation diagrams for map (10) with different initial values as the parameter c and the order υ vary: (a) the bifurcation diagram
with x01 and (b) the bifurcation diagram with x02.
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synchronized. ,e following theorem is given to ensure
the synchronization between the two maps can be
realized.

Theorem 3. -e drive and response maps (25) and (26) are
synchronized when the controllers are designed as follows:

u1(ω) � cδxd(ω) − δyd(ω)xd(ω) − yd(ω) + xd(ω),

u2(ω) � δ − yd(ω) + x2
d(ω)( 􏼁 − b − x3

r(ω) + xr(ω)( 􏼁 − c − y3
r(ω) + yr(ω)( 􏼁 + yd(ω).

⎧⎪⎨

⎪⎩
(27)

Proof. ,e error dynamical system with fractional Caputo
difference is

CΔυae1(t) � yr(ω) − xr(ω) − cδxd(ω) + δyd(ω)xd(ω) + u1(ω),

CΔυae2(t) � b − x3
r(ω) + xr(ω)( 􏼁 + c − y3

r(ω) + yr(ω)( 􏼁 − yr(ω) − δ − yd(ω) + x2
d(ω)( 􏼁 + u2(ω).

⎧⎨

⎩ (28)

By substituting controllers (27) into (28), we can obtain
the error dynamical system:

CΔυae1(t) � e2(ω) − e1(ω),

CΔυae2(t) � − e2(ω).

⎧⎨

⎩ (29)

System (29) is rewritten in the compact form:
CΔυa e1(t), e2(t)( 􏼁 � M × e1(ω), e2(ω)( 􏼁

T
, (30)

whereM �
− 1 1
0 − 1􏼢 􏼣. It can be seen that the eigenvalues of

the matrix M satisfy the following stability condition:

λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< 2 cos

arg λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − π

2 − υ
􏼠 􏼡

υ

,

arg λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>

υπ
2

, i � 1, 2.

(31)

Based on ,eorem 1, we can get that the zero
equilibrium of (29) is globally asymptotically stable,
which implies the two maps (25) and (26) are
synchronized.

In the numerical simulations, the parameters are fixed as
c � 1.25, δ � 0.75, b � 2.2, and c � 0.95 and the order is
υ � 0.98. ,e initial conditions of the two systems (25) and
(26) are (xd0, yd0) � (0.1, 0.1) and (xr0, yr0) � (0.8, 0.4).
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Figure 13: ,e results of the stabilization of system (10): (a) the variation of x(n) with n and (b) the variation of y(n) with n.
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,e results of numerical simulations are depicted in Fig-
ure 14. From which, we can see that the error variables
e1 and e2 converge to zero rapidly as n increases
(Figures 14(a) and 11(b)). Meanwhile, the evolution of the
state variables with time n for the two maps (25) and (26) are
synchronized under the designed controllers (27)
(Figures 14(c) and 14(d)). □

7. Conclusions and Discussion

A fractional-order discrete noninvertible map with cubic
nonlinearity is proposed in this paper. Firstly, the sta-
bility of the equilibrium points for the map is analyzed.
Secondly, the dynamics of the map with two different
initial conditions is studied by numerical simulation.
Bifurcation diagrams and phase plots are obtained as a
parameter or the fractional order varies. A series of
attractors of the map in different forms, including
equilibrium points, limit cycles, and chaotic attractors,
are plotted. Furthermore, bifurcations with the

simultaneous variation of both parameter and order are
also analyzed in the three-dimensional space. From the
global dynamics perspective, interior crises occur in the
map as a parameter or the order varies. ,irdly, based on
the stability theory of fractional-order discrete maps, the
chaos of the map is controlled by the stabilization con-
trollers. Finally, the synchronization between the pro-
posed map and a fractional-order discrete Loren map is
investigated. Numerical simulations are implemented to
verify the effectiveness of the designed controllers. ,e
results obtained in this paper reveal that chaos really
exists in the fractional-order formation for the map
proposed in [31–33]. More abundant local and global
dynamics are found in the fractional-order map.

It is worth mentioning that the mechanism of interior
crises occur in map (10) cannot be displayed from a global
perspective due to the absence of effective global dynamics
computation methods for fractional-order discrete maps.
,erefore, developing the effective computation methods of
global analysis for this kind of systems is our following work.

0 50 100 150 200
n

–0.2

0

0.2

0.4

0.6

0.8

1
e 1

(n
)

(a)

0 50 100 150 200
n

–0.2

0

0.2

0.4

0.6

0.8

1

e 2
(n

)

(b)

0 50 100 150 200
n

–3

–2

–1

0

1

2

3

x d
(n

), 
x r

(n
)

(c)

0 50 100 150 200
n

y d
(n

), 
y r

(n
)

0

1

2

3

4

5

(d)

Figure 14: ,e simulation results for the synchronization of map (10): (a) the error state variable e1(n) with the variation of n, (b) the error
state variable e2(n) with the variation of n, (c) the state variables xd(n) andxr(n) with the variation n, and (d) the state variables
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[4] M. Hénon, “A two-dimensional mapping with a strange
attractor,” Communications in Mathematical Physics, vol. 50,
no. 1, pp. 69–77, 1976.

[5] P. R. Lozi, “Un atracteur étrange du type attracteur de
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With the rapid development of information technology in today’s society, the security of transmission and the storage capacity of
hardware are increasingly required in the process of image transmission. Compressed sensing technology can achieve data
sampling and compression at the rate far lower than that of the Nyquist sampling theorem and can effectively improve the
efficiency of information transmission. Aiming at the problem of weak security of compressed sensing, this study combines the
cryptographic characteristics of chaotic systems with compressed sensing technology. In the actual research process, the existing
image encryption technology needs to be applied to the hardware. +is paper focuses on the combination of image encryption
based on compressed sensing and digital logic circuits. We propose a novel technology of parallel image encryption based on a
sequence generator. It uses a three-dimensional chaotic map with multiple stability to generate a measurement matrix. +is study
also analyzes the effectiveness, reliability, and security of the parallel encryption algorithm for source noise pollution with different
distribution characteristics. Simulation results show that parallel encryption technology can effectively improve the efficiency of
information transmission and greatly enhance its security through key space expansion.

1. Introduction

Nowadays, the rapid evolution of information technology
and data networks has brought great convenience to people’s
productivity and lives [1]. As the main carrier of information
transmission, a network must store and forward a significant
amount of information at any moment [2]. Among them,
digital information is easy to store and forward, and noise
does not accumulate, which makes it easy to store and
transmit widely in the network. As an important informa-
tion carrier in digital information, the digital image is widely
used in national defense, education, medical treatment, fi-
nance, and other fields [3]. Effective encryption of digital
image information can resist illegal attacks, malicious de-
struction, and destruction of information by criminals and
realize the safe transmission of information [4]. In the
traditional process of information transmission and en-
cryption, the Nyquist sampling theorem is applied, which
indicates that the sampling frequency must be more than
twice the highest frequency when sampling a signal with

limited bandwidth in order to ensure the complete recovery
of the original signal from the sampling value [5]. In recent
years, compressed sensing as a cryptosystem has attracted
much attention owing to its low complexity and com-
pressibility in the sampling process [6]. Compressed sensing
can sample the compressible signal at the frequency far lower
than that specified by Nyquist’s sampling theorem and can
ensure that the receiver can accurately reconstruct the
original signal [7]. However, the encryption system under
the traditional compressed sensing framework is vulnerable
to plaintext attacks. To reduce the correlation between ad-
jacent pixels of the encrypted image [8], an efficient image
compression and encryption algorithm based on a chaotic
system and compressed sensing was proposed in [9]. At the
same time, owing to the use of diffusion and scrambling
operations, the chaotic system has the characteristics of
cryptography in order to achieve more effective encryption
of image information.

Compressed sensing (CS), as a new signal sampling and
compression technology [10], has been widely used in the
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field of image processing since it was proposed [11]. Ors-
demir et al. studied the robustness and security of CS-based
encryption algorithms [12]. Schulz et al. analyzed the dis-
tortion performance of compressed sensing in image
compression and compared it with traditional algorithms
[13]. Fridrich discussed the relationship between dis-
cretization and chaotic cryptosystems and proposed a two-
dimensional Baker-based symmetric image encryption al-
gorithm. +is algorithm uses image chaos to scramble and
diffuse images to achieve image encryption [14]. Zhang
proposed an image encryption algorithm about plaintext-
related shuffling. +is algorithm combines two types of
diffusion operations and plaintext-related transformations
to encrypt the image and uses hyper chaos to generate a
keystream [15]. Enayatifar et al. proposed an image en-
cryption scheme based on synchronous scrambling diffu-
sion, using chaos mapping and a DNA encryption algorithm
to diffuse and scramble pixels [16]. An image encryption
algorithm based on two-dimensional sinusoidal coupled
mapping and chaotic diffusion was proposed in the literature
[17]. Chen et al. proposed an optical image conversion and
encryption scheme based on a phase detection algorithm
and incoherent superposition that can realize the conversion
and encryption of color images and gray images [18]. Hua
et al. used high-speed scrambling and pixel adaptation to
encrypt an image.+is can protect certain impulse noise and
prevent data loss [19]. Gong et al. proposed an image en-
cryption method combining a hyperchaotic system with a
fractional-order discrete transform [20]. Zhang et al. [21]
proposed an image encryption method combining orthog-
onal coding and double-random phase coding that can
compress all images into random signals and diffuse them
into stationary white noise. Wang et al. studied CS-based
image optimization technology in three main aspects [22].
+e signal after compressed sensing processing is optimized.

To improve the computational efficiency of compressed
sensing and the security of image encryption, a parallel image
encryption technique based on a sequence signal generator
was proposed. Regarding information security, the algorithm
aims to provide a new data fusion processing technology,
design a new encryption scheme, create a plan under the
premise of guaranteeing the safety of image encryption, and
minimize the decryption time to reduce information storage.
+is indirectly reduces the cost of information transmission
and storage. Owing to the sensitivity of the initial value and
the complex dynamic behavior of chaotic systems, pseudo-
random sequences with randomness, relevance, and com-
plexity can be provided. When designing a CS measurement
matrix, this algorithm introduces a chaotic system, which has
cryptographic characteristics achieved through scrambling
and diffusion [23]. Li et al. [24] proposed an image com-
munication system for IOT monitoring combined with CS
model which helps reduce the image encryption/decryption
time. Zhou et al. [25] proposed an algorithm by using double
random-phase encoding and compressed sensing to enhance
the security of digital image encryption with authentication
capability. Shi et al. [26] proposed an image CS framework
using convolutional neural network. +e sampling network
adaptively learns the sampling matrix from the training

image. +is study combines compressed sensing with chaotic
cryptography to optimize the encryption effect and trans-
mission efficiency of compressed sensing and greatly improve
the key space.

In the actual information transmission process, noise
cannot be avoided, and the existence of noise seriously af-
fects the image quality. Aiming at the problem of noise-
contaminated signals and whether the original signal can be
reconstructed effectively after being encrypted and com-
pressed by the compressed sensing algorithm, Section 4 of
this article will focus on presenting the analysis of the
encrypted observation when the plaintext contains noise.
Whether the image can meet the encryption requirements
and whether the reconstructed image is accurate will be
assessed.

2. Compressed Sensing and Chaos Theory

Compressed sensing technology was originally developed
using the sparsity or compressibility of signals, and its theory
includes three key technologies [27]. +e first is the sparse
representation of the target signal in order to thin the signal
to the extent possible [28]. In this, we need to obtain the
transform domain that matches the target signal ψ. +e
second is the construction process of measurement matrix.
+e target signal is compressed and sampled after passing
through the measurement matrix, so the design of the
measurement matrix needs to ensure that the effective in-
formation contained in the target signal is not lost [29]. +e
receiver can effectively recover the target signal by using the
sampling value. +e third is the design of the reconstruction
algorithm. +e reconstruction algorithm finds the optimal
solution of the target signal by solving the optimization
problem [30]. Whether the reconstruction algorithm has
accuracy, efficiency, and stability is also key in algorithm
design.

Chaos used in this study is a new three-dimensional map
with self-excited structures as proposed by Jiang et al. in 2016
[31]. +is kind of chaotic system has hidden chaotic dy-
namics, which is a new topic in nonlinear science and has
attracted extensive attention from mathematical and engi-
neering researchers in recent years. +is kind of self-excited
three-dimensional mapping can provide a deeper under-
standing of the complex behavior of chaotic dynamics
hidden in discrete mapping. At the same time, the stability of
these chaotic systems can be analyzed based on the existence
of fixed points. In this algorithm, a three-dimensional
system with a single fixed point is used. +e stability of the
system will be analyzed by calculating the fixed point of the
system.

2.1. Mathematical Representation of Compressed Sensing.
Suppose that a two-dimensional signal X of size N × N is
needed in the process of achieving compressed sensing to
make the signal sparse. Under the corresponding sparse
space of the signal, CS can achieve effective compression and
sampling. Using equation (1), CS can generate the sparse
representation of the signal X under ψ [32]:
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X � 􏽘
N

n�1
ψnsn � ψs, (1)

where ψ is the sparse basis matrix and s is the projection
under the sparse basis ψ. In equation (1), if there exist
K(K≪N) nonzero coefficients, the signal X is said to be
compressible under a sparse basis ψ, and the sparsity is K

[25]. If there is a two-dimensional matrix ϕ of size
M × N(M<N), then the original signal X can be converted
into a signal of size M × N by the following equation:

Y � ϕX � ϕψS, (2)

where Y is the measurement value and ϕ is the measurement
matrix. On the basis of the knownmeasurement value Y and
measurement matrix ϕ, CS can reconstruct the signal X by
solving the equation which is underdetermined. In the
traditional underdetermined equation, there should be
infinite solutions [33]; however, because s is sparse, con-
version to an optimization problem is possible. +e unique
optimal solution of the underdetermined equation can be
arrived at by obtaining the minimum norm L0 in the fol-
lowing equation:

min ‖s‖0

s.t. Y � ϕψs,
(3)

where ‖m‖ represents the L0 norm, s is recovery signal, andY

is the measurement signal. Because s is obtained using a
sparse-basis transformation, the signal X can be recovered
from the signal s through a single inverse transformation.

2.2. &ree-Dimensional Map with Single Fixed Point.
From the computational point of view, if the attractor do-
main of the attractor does not intersect with a small balanced
neighborhood, then the former can be classified as a hidden
attractor; otherwise, it is called a self-excited attractor [34].
Classical chaotic attractors, such as the Lorenz, Chua, Chen,
and other chaotic systems, are self-excited attractors with
one or more unstable equilibrium points. Self-excited
attractors can be predicted by a standard calculation pro-
gram, but there is no effective method to predict the exis-
tence of hidden attractors owing to the unpredictability of
hidden attractor [35]. Hidden attractors can determine the
success or failure of a project in engineering. It has become a
new trend to study the continuous chaotic systems with
implicit and multistable attractors.

+is algorithm uses a three-dimensional chaotic map
(SF1) with a single fixed point. +e map was proposed in
[31], which used a computer exhaustive search program to
mine the hidden attractors contained in the map with sta-
bility. +e mathematical expression is as follows:

SFI �

xk+1 � yk,

yk+1 � zk,

zk+1 � 0.6xk + 0.39yk + 0.65x2
k − 0.65y2

k.

⎧⎪⎪⎨

⎪⎪⎩
(4)

In order to solve the fixed points of the three-dimen-
sional mapping above, it is first assumed that there are fixed

points (x∗, y∗, z∗) in equation (4). +e Jacobian matrix at
the fixed point is shown as follows:

J �

0 1 0

0 0 1

0.6 + 1.3x∗ 0.39 − 1.3y∗ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

+e characteristic equation of the above equation is
shown in the following equation:

det(λI − J) � λ3 + pλ2 + qλ + r � 0, (6)

where p � − tr(J) � 0, q � − (0.39 + 1.35y∗), r � det(J) �

− (0.6 + 1.3x∗), and tr is the trace of the Jacobian matrix. We
can determine the unique fixed point x∗ � y∗ � z∗ � 0
based on the definition of the fixed point. According to
equation (6), the eigenvalues |λ1| � 0.7761, |λ2| � 0.7761,
and |λ3| � 0.9962 of the three-dimensional system shown in
(4) can be obtained. +e eigenvalues of the Jacobian matrix
at this fixed point λ1, λ2, and λ3 are all in the unit circle, that
is, |λi|< 1. +erefore, the fixed point of the three-dimen-
sional chaotic map is stable, that is, the chaotic map has the
hidden chaotic attractor of the stable fixed point. Attractors
of the chaotic maps are shown in Figure 1.

3. Parallel Compressed Sensing Encryption
Algorithm Based on Sequence Generator

In the image encryption and transmission process, the
complete image can be transmitted directly or by row or
column. +e efficiency of image transmission depends on
the dimensions of the image information. In order to im-
prove the efficiency of encryption and transmission, this
study designs a block and parallel compressed sensing en-
cryption algorithm. We study this problem in detail and
introduce a logic circuit-based compressed sensing en-
cryption method in [36]. Based on this algorithm, this paper
makes a further study. By selecting appropriate block di-
mensions, the image is divided into blocks, and the blocks
are encrypted and transmitted in parallel. +is method can
greatly improve the transmission efficiency of the image. In
the process of designing the measurement matrix, this al-
gorithm is based on the sensitivity and pseudorandom
performance of chaotic signals to initial values, as well as the
cryptographic characteristics of chaos under the mechanism
of diffusion and scrambling. Combined with the feature that
compressed sensing needs to rely on a measurement matrix
for compressed sampling, the security of a traditional
compressed sensing framework is not high, and the re-
construction wastes a large amount of storage resources.

3.1. Algorithm Principle. +is algorithm adopts a combi-
nation of a digital logic circuit and compressed sensing
theory. First, the binary sequence signal of the length is
generated through the sequence signal generator, and the
binary sequence signal is taken as the “modulation signal.”
Based on chaotic system’s sensitivity to the “tiny distur-
bance” of the initial conditions, for chaotic systems, the
initial value of any small changes can directly affect the entire
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chaos matrix generation. In this way, the security of image
encryption can be improved. Second, the chaos matrix
disturbed by the initial value is taken as the measurement
matrix, and the compressed sensing process is used to en-
crypt the image. In this study, a 256 × 256 image is seg-
mented into eight blocks by columns, and the image is
segmented and compressed in parallel. In order to better
present the chaotic cryptographic characteristics, this al-
gorithm diffuses and scrambles the compressed sampled
cipher text image so that the energy blocks gathered in
blocks in the cipher text image after block encryption can be
evenly distributed. +is is distributed on the entire image to
achieve effective encryption and efficient transmission of the
image information. +e realization principle diagram of this
algorithm is shown in Figure 2.

3.2. Sequence Signal Generator Mode. In this study, a shift
register with feedback logic circuit is designed, as shown in
Figure 3. If the number of bits of the sequence signal is m and
the number of bits of the shift register is n, then 2n ≥m

should be used. For example, to generate a set of 8 bit se-
quence signals such as 00101110 (time sequence from left to
right), a 3 bit shift register and a feedback logic circuit can be
used to form the required signal generator. +e shift register
outputs the serial output signal from end Q2, that is, the
required sequence signal.

+e sequence signal generated according to the re-
quirements can list the state transition table that the shift
register should have, as shown in Table 1. Starting from the
requirements of state transition, the requirements for the
value of input D0 of the shift register are obtained.
According to the value requirements, the functional rela-
tionship between D0 and Q2 and Q1 and Q0 can be obtained
as shown in the following formula:

D0 � Q2Q1′Q0 + Q2′Q1 + Q2′Q0′. (7)

+e state transition table is shown in Table 1.
+e clock signal is continuously added to the counter,

and the state ofQ2Q1Q0 circulates continuously according to
the order given in Table 1. Q2 is the output end of the

sequence signal, and the feedback logic circuit in the gen-
erator can be used as the key to modulate the initial value of
the chaotic system. It should be noted that the purpose of
generating different sequence signals can be realized only by
modifying the functional relationship of the feedback logic
circuit, so this circuit possesses the characteristics of flexi-
bility and convenience.

3.3. Parallel Compressed Sensing. In this study, the initial
value of the chaotic system is fine-tuned by the binary se-
quence signal generated in the previous section, and dif-
ferent chaotic matrices are generated as the measurement
matrices to realize the compressed sensing process. In the
image process compression and encryption using com-
pressed sensing, it is necessary to set the compression ratio,
adjust the dimensions of the measurement matrix according
to the size of the compression ratio, and realize the com-
pression sampling process of the sparse image. In this al-
gorithm, the sparse plaintext image is evenly divided into
eight blocks according to the column, and the size of each
block is 256 × 32. Compared with the transmission by
column, eight-block parallel transmission can effectively
improve the efficiency. +e parallel compression sampling
process is shown in Figure 4.

It should be noted that although the parallel compressed
sensing image encryption scheme can effectively and reliably
encrypt the image, it is not bereft of some defects. Since the
plaintext image is sampled as a block, the energy of each
block in the measured value is stored centrally. To overcome
this defect, we adopt diffusion and scrambling operations to
evenly distribute the energy of the cipher text image in the
entire image.+e reference formula for the diffusion process
is as follows:

Q
∗
(n) � Q(n) ⊕ kd(n) ⊕ Q

∗
(n − 1), (8)

where Q(n) is the current operated element, Q∗(n) is the
output cipher element, Q∗(n − 1) is the previous cipher
element, and kd(n) is the corresponding key stream.

3.4. Encryption Performance Analysis. We select a 256 × 256
gray image “Pepper” from the standard test gallery. +e
image is sparsed by using a discrete wavelet transform, and
the sparse image is divided into eight parts. Each part has
dimensions of 256 × 32. +e initial value of the chaotic
system is as follows: x(1) � 0.17, y(1) � 1.63, and
z(1) � − 1.18. According to the method detailed in Section
3.1, the sequence signal generator is designed to generate the
binary signal 00101110. When the sequence signal is 1, the
initial value of chaos is fine-tuned to a step size of 10− 8.
When the sequence signal is 0, the initial value at this point is
kept unchanged to generate the chaotic signal. +e chaos
matrix is used as the measurement matrix, and eight sub-
blocks of the image are compressed and sampled in parallel
by means of compressed sensing. +e dimensions of the
measurement matrix in the encryption process are
190 × 256, so the compression ratio is 74.2%. Finally, the
encrypted cipher text image is diffused. Figure 5 shows the
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Figure 1: SF1 attractor.
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original image, encrypted image, diffused image, and dif-
ference between the encrypted image and diffused image.

As can be seen from Figure 5, the algorithm described in
this study presents a snowflake shape after encrypting sparse
images, and it is unable to distinguish any information
related to plaintext by the naked eye. From a subjective
perspective, it can be considered that this algorithm achieves
effective encryption of plaintext. Next, the encryption effect
and reconstruction effect are analyzed from an objective
perspective to verify that this algorithm can achieve the
secure encryption and effective decryption of plaintext
images. Figure 6 shows the original image, diffused image,
and their histograms.

+e histogram in Figure 6(c) can clearly reflect the
distribution of pixel values, from which we can obtain
relevant information of the image. However, the pixel values
in Figure 6(d) are evenly distributed within the range [0,
255]. Different from the normal image, the attacker cannot
obtain any valid information of the original image from the
encrypted image. From the perspective of the histogram, this
algorithm achieves effective encryption of the plaintext
image.

Information entropy is an index used in information
theory tomeasure the amount of information. Conversely, the
more chaotic the system, the higher the information entropy.
For image information, the image information entropy with
high information is lower, while the image information en-
tropy with low effective information is higher. +e higher the
entropy is, the more evenly the energy distribution in the
image is and the less information the attacker can obtain.
Table 2 shows the change of information entropy with the
compression ratio when the compression rate changes.

As can be seen from the table, the entropy value of the
image encrypted by the algorithm in this study is close to 8,
indicating that the algorithm achieves secure encryption of
the image.

3.5. Decryption (Reconstruction) Effect and Performance.
+is algorithm uses compressed sensing to encrypt the
image.+e decryption process can be regarded as the inverse
operation of the encryption process. +e decryption process
can also be seen as the reconstruction process of the image.
First, the cipher text is antidiffused, and the formula is
shown as (9). +e receiving end generates sequence signals
according to the key it holds and generates the initial value
control parameters of the measurement matrix. +e chaotic
matrix is restored according to the control parameters, and
the measurement matrix is obtained. +e sparse signal is
reconstructed by solving the optimization problem. +e
formula for solving the optimization problem is shown in
(10). Finally, the plaintext image is restored by using
equation (11).

Sequence
generator

Chaotic system

Measurement
matrix Φ

Sequence
signal

Chaos
sequence

Compressed
sensing
Y = ΦΧ

Observed signal Y

Compressed
sensing

reconstruction

Scrambling diffusion

Sequence
signal

Original signal Χ

Reconstruct signal Χ′

Generating measurement matrix Compressed sensing process

Figure 2: Parallel compression sensing encryption algorithm based on sequence generator.
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Figure 3: Signal generator based on shift register.

Table 1: Circuit state transition.

CLK

0
1
2
3
4
5
6
7
8

Q2

0
0
0
1
0
1
1
1
0

Q1

0
0
1
0
1
1
1
0
0

D0

1
0
1
1
1
0
0
0
1

Q0

0
1
0
1
1
1
0
0
0
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Q(n) � Q
∗
(n) ⊕ Q

∗
(n − 1) ⊕ kd(n), (9)

􏽢si � arg min
si∈RN

si

����
����1

s.t. 􏽢yi � ϕixi � ϕiψisi,

i � 1, . . . , N,

(10)

􏽢xi � ψ􏽢si. (11)

According to the above process, the original image,
reconstructed image, and their histograms are shown in
Figure 7.

According to Figure 7(b), we see that this algorithm
can achieve reconstruction of cipher text. +e image re-
construction reflects a clear image of effective informa-
tion. Comparing Figures 7(c) and 7(d) of the histogram,
the reconstructed image can be found in the original
image and the pixel distribution is basically similar, and
we can assume that this algorithm can realize image
reconstruction.

Structural similarity is an index that measures the
similarity of two images, and the value ranges from 0 to 1.
+e closer the similarity to 1, the higher the similarity of two
images; otherwise, the greater the difference. Table 3 shows
the structural similarity between the original image and
reconstructed image at different compression rates.

As can be seen from Table 3, with an increasing com-
pression rate, the image similarity also increases. When the
compression rate is about 74.2%, the image can recover over
90%. However, the similarity of cipher text is very low, which
indicates that this algorithm can achieve the image en-
cryption requirements.

4. Encryption and Decryption Algorithms for
Noisy Images and Performance Analysis

In the process of actual transmission, the information is
composed of different kinds of noise pollution. Noise may be
derived from the source with the noise of the signal, from the
transmission channel through additive noise, or can be
derived from the actual produced physical noise. +e ex-
istence of noise affects the accuracy of information trans-
mission. +is section will present the analysis of whether the
algorithm can still effectively encrypt and successfully re-
construct the image when the noise is mixed at the source.

4.1. Encryption and Reconstruction Results. +is study in-
tends to add Gaussian noise and salt-and-pepper noise to the
original image, sparse the original image containing noise,
and compress and perceive the sampling encryption. +is is
used to verify whether the compressed sensing image en-
cryption technology optimized by this algorithm has the

Controls 
parameter generation

p1

Controls 
parameter generation

p2

Controls 
parameter generation

pn

Controls 
parameter generation

p1

Chaotic sequence 
generation

H1

Chaotic sequence 
generation

H1

Compression and 
sampling

Compression and 
sampling

Secret key 1

If key = 0

If key = 1

Y1

Y1

Controls 
parameter generation

p2

Chaotic sequence 
generation

H2

Chaotic sequence 
generation

H2

Compression and 
sampling

Compression and 
sampling

Secret key 2

If key = 0

If key = 1

Y2

Y2

Controls 
parameter generation

pn

Chaotic sequence 
generation

Hn

Chaotic sequence 
generation

Hn

Compression and 
sampling

Compression and 
sampling

Secret key n

If key = 0

If key = 1

Yn

Yn

Figure 4: Parallel sampling compression of compressed sensing process.

6 Complexity



ability to resist source noise. +e salt-and-pepper noise used
in this section has a noise density of 0.02, average Gaussian
noise of 0, variance of 0.01, and compression ratio of 0.8.
First, it is determined whether the image with noise can be
reconstructed at the receiving end. +e simulation results
and histogram of adding salt-and-pepper noise to the
original image are shown in Figure 8, and the simulation
results and histogram of adding Gaussian noise are shown in
Figure 9.

As can be seen from Figures 8(b) and 9(b), after adding
noise to the original signal, the cipher text image encrypted
by the algorithm in this study still resembles a snowflake, and
the useful information in the image cannot be identified by
observation. +e histograms of Figures 8(e) and 9(e) are
evenly distributed, indicating that we have successfully
hidden the effective information of the original image, and
the attacker cannot attack the algorithm using a statistical
attack. Figures 8(c) and 9(c) show the recovered images of
the encrypted image after the reconstruction algorithm. It
can be seen that although the image still contains noise, the
reconstructed image can be restored to the original image
after filtering. It shows that the algorithm has a certain ability
to resist the source noise. Since the intensity and variance of
the noise we added to the original picture are both low, by

comparing Figures 8(d), 8(f), 9(d), and 9(f), we can see that
the image is polluted with salt-and-pepper noise. +e
reconstructed image has a better restoration effect after
reconstruction, the image is clear, the histogram distribution
is similar to the original image, and the signal contaminated
by Gaussian noise is greatly affected, but it can still effectively
recover the original information.

4.2. Encryption Performance Analysis. When the informa-
tion entropy of the image is low, it is vulnerable to malicious
attacks and tampering by criminals. For encrypted images,
the higher the information entropy is, the more uniform the
energy distribution in the image is and the less useful in-
formation an attacker can obtain from the grayscale dis-
tribution. Table 4 shows the changes in the entropy of the
encrypted image when the compression ratio changes
during the compression and encryption process. +e noise
intensity of the salt-and-pepper noise selected during the
experiments in this section is 0.02; the mean and variance of
the Gaussian noise are 0.2 and 0.01, respectively; and the
compression rate of the compressed sensing process is
74.2%. In the table, I represents the noise intensity, M
represents the mean, and V represents the variance.

Original image

(a)

Encryption image

(b)

Diffused image

(c)

Difference between two encrypted images

(d)

Figure 5: Results of gray image parallel compression perception encryption: (a) original image, (b) compressed sensing encrypted image, (c)
diffused cipher text image, and (d) difference between (b) and (c).
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+e table lists the cipher text entropies under the in-
fluence of salt-and-pepper noise and Gaussian noise with
different parameters. It shows that the entropy value of the
image after encryption in this study is close to 8, which can
achieve effective encryption.

+e correlation between adjacent pixels in an image can
reflect the degree of diffusion of pixels in the image. +e
correlation between adjacent pixels in an encrypted image
should be close to zero. In [33], a fractional-order Mellin
transform is used to compress the image from two directions
to obtain the encrypted image. Meanwhile, in [37], a discrete
fractional-order random measurement matrix is used to
encrypt the image from orthogonal directions. In this study,
the correlation of adjacent pixels is compared with the above

two studies to prove the effectiveness of this algorithm.
Table 5 shows the correlation of adjacent pixels under the
influence of salt-and-pepper noise and Gaussian noise,
respectively.

Figure 10 shows the adjacent pixel correlation distribution
between the plaintext image and the encrypted image when
the original signal is polluted by salt-and-pepper noise with a
noise intensity of 0.02. From the figure, we can see that the
plaintext image has a high degree of correlation, while the
adjacent pixels in the cipher text image are evenly distributed
in the pixel interval, and the correlation is very weak.
+erefore, according to the data and image results, it can be
seen that the algorithm in this study can still achieve a good
encryption effect when the signal source is polluted by noise.
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Figure 6: Histogram of original and encryption image: (a) original image, (b) cipher image, (c) histogram of plaintext image, (d) and
histogram of cipher text image.

Table 2: Information entropy of encrypted images.

Entropy
Compression ratio

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cipher image 7.9920 7.9936 7.9937 7.9954 7.9960 7.9965 7.9972 7.9970
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Structural similarity is an index that can measure the
similarity of two images. +e structural similarity of
natural images is very high, which is reflected in the strong
correlation between the pixels of images. +e value range
of structural similarity is 0 to 1. When the similarity is
close to 1, the more similar the two pictures, the more
different the two pictures. Table 6 shows the structural
similarity between the encrypted image and the original
image under the influence of salt-and-pepper noise and
Gaussian noise.

As can be seen from the table, the structural similarity of
cipher text images affected by any noise is less than 0.2,
which can achieve a satisfactory encryption effect.

4.3. Decryption (Reconstruction) Performance Analysis.
+e peak signal-to-noise ratio (PSNR) refers to the ratio
between the maximum possible power of a signal and the
destructive noise power that affects its signal accuracy. It can
be defined by the mean square error (MSE), and its ex-
pression is shown as follows:

PSNR � 10 log10
L2

MSE
􏼠 􏼡, (12)

where L is the value range of grayscale in the image. For the
8 bit image, L � 256. In general, the higher the PSNR, the
lower the distortion.

Original image

(a)

Reconstructed image

(b)

Column diagram of original image

0 50 100 150 200 250

0

100

200

300

400

500

600

700

800

(c)

Column diagram of reconstructed image

0 50 100 150 200 250

0

100

200

300

400

500

600

700

800

(d)

Figure 7: Histogram of original and reconstructed image: (a) original image, (b) reconstructed image, (c) histogram of original image, and
(d) histogram of reconstructed image.

Table 3: Structural similarity between original image and reconstructed image.

SSIM
Compression ratio

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Reconstructed image 0.4528 0.6356 0.7761 0.8592 0.9059 0.9453 0.9607 0.9813
Cipher image 0.0025 0.0034 0.0043 0.0055 0.0066 0.0070 0.0079 0.0092
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Add noise to the image

(a)
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(b)

Reconstructed image
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Column diagram of encryption image
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Figure 8: Encryption and reconstruction of noisy images: (a) image with noise, (b) cipher image, (c) reconstructed image, (d) filtered image,
(e) histogram of cipher text image, and (f) histogram of filtered image.
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Add noise to the image
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Figure 9: Encryption and reconstruction of noisy images: (a) image with noise, (b) cipher image, (c) reconstructed image, (d) filtered image,
(e) histogram of cipher text image, and (f) histogram of filtered image.
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Table 4: Information entropy of encrypted images.

Entropy Compression ratio
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Salt-and-pepper noise
I� 0.02 7.9918 7.9934 7.9948 7.9948 7.9962 7.9964 7.9970
I� 0.05 7.9913 7.9933 7.9936 7.9955 7.9957 7.9966 7.9971
I� 0.1 7.9921 7.9930 7.9944 7.9962 7.9957 7.9965 7.9971

Gaussian noise
M� 0, V� 0.01 7.9902 7.9939 7.9951 7.9954 7.9962 7.9955 7.9970
M� 0, V� 0.02 7.9901 7.9928 7.9946 7.9956 7.9962 7.9969 7.9967
M� 0.2, V� 0.01 7.9901 7.9925 7.9950 7.9951 7.9960 7.9961 7.9971

Table 5: Correlation between adjacent pixels of cipher text image.

Algorithm Horizontal direction Vertical direction Diagonal direction
Proposed algorithm (impulse noise) 0.0498 − 0.0035 0.0032
Proposed algorithm (Gaussian noise) − 0.0398 0.0051 0.0042
Reference [30] 0.0586 − 0.0021 0.0269
Reference [25] 0.0597 0.0766 0.0083
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Figure 10: Distribution of adjacent pixels: (a) plaintext horizontal adjacent pixels, (b) plaintext vertical adjacent pixels, (c) plaintext diagonal
adjacent pixels, (d) cipher text horizontal adjacent pixels, (e) cipher text vertical adjacent pixels, and (f) cipher text diagonal adjacent pixels.

Table 6: Structural similarity between original image and cipher image.

SSIM (cipher image) Compression ratio
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Impulse noise
I� 0.02 0.0042 0.0044 0.0064 0.0085 0.0071 0.0067 0.0074
I� 0.05 0.0024 0.0018 0.0049 0.0036 0.0041 0.0047 0.0052
I� 0.1 0.0020 0.0026 0.0020 0.0035 0.0074 0.0066 0.0076

Gaussian noise
M� 0, V� 0.01 0.0.017 0.0024 0.0031 0.0054 0.0053 0.0113 0.0104
M� 0, V� 0.02 0.0022 0.0020 0.0041 0.0031 0.0051 0.0063 0.0120
M� 0.2, V� 0.01 0.0023 0.0022 0.0039 0.0068 0.0089 0.0112 0.0063
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Figure 11 shows a line chart of the peak signal-to-noise
ratio of the restored picture under the salt-and-pepper noise
with different noise intensities and Gaussian noise pollution
with different mean variances.

It can be seen from Figure 11(a) that the PSNR of the
reconstructed image increases with the reduction of salt-
and-pepper noise intensity, and the curve trend in the figure
is relatively consistent. In Figure 11(b), there are two var-
iables (mean value and variance), and the curve in the figure
has a large fluctuation. Since it has not been filtered, the
reconstructed image still contains noise. When calculating
PSNR, the noise in the image will have a certain impact on
the calculated value. +e PSNR value after filtering can be
improved effectively. It can be seen from the performance

analysis of encrypted images in Tables 4–6 that the images
encrypted by the algorithm in this paper can meet the en-
cryption requirements of images. In Figure 11(c), PSNR
values under the condition of filtering salt-and-pepper noise,
filtering Gaussian noise, and no noise are given, respectively,
and it can be seen that the image quality has been signifi-
cantly improved after filtering. In Figure 11(c), the curve at
the top represents the PSNR value of the proposed algorithm
under the circumstance of no noise. When processing the
image without noise, the peak signal noise is higher, which
can meet the safety requirements.

In reference [38], Zhou et al. proposed an algorithm
based on hyperchaotic system and 2D compressive sensing
without any noise. Table 7 shows the comparison results
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Figure 11: PSNR of reconstructed image: (a) PSNR of impulse noise, (b) PSNR of Gaussian noise, and (c) PSNR of filtered image.
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between the algorithms in this paper and those in the lit-
erature [38] for which the compression rate is 76.5625%.

+e PSNR of the two pictures in reference [38] is 30.6881
and 26.3460, respectively. In the algorithm in this paper,
when the noise type is pepper-and-salt noise, the PSNR is
28.5603. When the noise type is Gaussian noise, the PSNR is
26.5630. It can be seen from the comparison that the image
encrypted by the algorithm in this paper can also achieve
effective decryption under the influence of noise.

In practical application, noise parameters are selected
according to the size of the compression rate. From the figure
above, we find that although this algorithm can recover the
original image at the receiving end owing to the noise at the
source, the effect of image reconstruction is still affected to
some extent. In this paper, we think we can use compression
rate as a measure of throughput. As can be seen from Table 3
and Figure 11, the similarity coefficient and PSNR of recon-
structed images will increase with the increase of compression
rate. However, when the compression rate reaches about 70%,
the performance of reconstructed images can be stable. When
the compression rate is more than 70%, the growth curve is
relatively flat. +erefore, in the process of encryption and
decryption, a better reconstruction effect can be achieved by
setting the compression rate at around 60%–70%. Table 8
shows the structural similarity between the reconstructed
image and the original image under the influence of noise of
different parameters when the compression ratio is 74.2%.

It can be seen from Table 8 that under the influence of
different parameter noises, the receiving end can reconstruct
the original signal and can subjectively determine the ef-
fective information in the restored image. +e structural
similarity under each parameter mostly exceeds 0.5, indi-
cating that the algorithm in this study can effectively recover
the effective information of the signal when processing the
signal polluted by noise and has the certain ability to resist
the source noise.

4.4. Key Sensitivity and Key Space Analysis. Because the
encryption algorithm is highly sensitive to the key, when the
key changes slightly, this leads to the failure of decryption and
other processes. Key sensitivity refers to the degree to which
the cipher text changes when the initial key changes slightly.
Owing to the sensitivity of the initial value of the chaotic
system, we can verify the key sensitivity of this algorithm based
on this characteristic. When the chaotic system changes initial
value slightly, the reconstructed image will be greatly different.
+is section studies whether the original signal has good key
sensitivity after being encrypted by the algorithm in this study.
+e superimposed noise in the original signal is salt-and-
pepper noise with a noise intensity of 0.02, and the com-
pression rate in the image encryption process is 74.2%.

Figure 12(a) is the recovery image when the key changes by an
order of magnitude of 10− 14, Figure 12(b) is the recovery
image when the key changes by 10− 15, and Figure 12(c) is the
recovery image when the key changes by 10− 16. It can be seen
that although the initial value changed only very slightly, the
reconstructed image could not recognize any effective infor-
mation, proving that the algorithm has good key sensitivity.

In the process of image encryption, the size of the key
space reflects the difficulty and complexity of attacking the
cryptographic system. +e above experiments on key sensi-
tivity verification also show that the encryption algorithm
needs to have a strong dependence on the key. When the
decryption key changes slightly, the decrypted image will be
very different from the original image. As an important
reference to evaluate the encryption algorithm, the key space
directly determines whether the algorithm can resist ex-
haustive attacks. For the algorithm proposed in this study,
without considering the diffusion process or scrambling, only
the following are considered: a measurement matrix to de-
crypt, nine-chaotic-sequence signal generator, and the control
parameters of the system. According to the international
standard IEEE 754, in order to simplify the comparison, a
positive indices section is represented. +e double-precision
floating-point type of valid number is 52. Table 9 lists the key
spaces of the algorithm in this study and the key spaces of
different schemes proposed by others. It can be seen from the
table that the key space in this study is at least 252∗9 � 2468. In
other words, the attacker needs 2468 attacks to build the
correct matrix, so the image encryption algorithm proposed
in this study is safe enough to resist brute-force attacks.

+e sensitivity intensity of the plaintext can determine
the ability to resist differential attacks. +e parameters used
to measure the sensitivity of the encryption algorithm to
plaintext can be described by either the number of pixels
change rate (NPCR) or the unified average changing in-
tensity (UACI). +e calculation formulas of NPCR and
UACI are as follows:

NPCR �
1

N × M
􏽘

M

i�1
􏽘

N

j�1
E(i, j) × 100%, (13)

UACI �
1

N × M
􏽘

M

i�1
􏽘

N

j�1

M1(i, j) − M2(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
× 100%, (14)

where M and N are the number of rows and columns of the
image pixel and n is the color bit depth of the image. +e
NPCR and UACI of the encrypted image are listed in Ta-
bles 10 and 11, respectively, and are compared with the
critical value.

In [42], the key generated through chaos is used as the
index of row and column replacement in the image en-
cryption process, and the encryption method of row and
column replacement is adopted to encrypt the image. In
[43], a hyperchaotic system based on closed-loop modula-
tion is used to replace image pixels. In [44], piecewise linear
chaotic mapping is used to exchange binary elements in the
original image sequence with a chaotic sequence to scramble
and encrypt the image. Table 12 shows a comparison

Table 7: Comparison of PSNR.

Proposed algorithm Reference [38]
Impulse noise Gaussian noise Picture 1 Picture 2I� 0.02 M� 0, V� 0.01

PSNR 28.5603 26.5630 30.6881 26.3460
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Table 8: Structural similarity between original image and decryption image.

Original image Image with noise Noise parameter Cipher image Decrypted image SSIM

(impulse noise)

I� 0.02 0.7433

I� 0.05 0.5275

I� 0.1 0.3981

(Gaussian noise)

M� 0

0.5895V� 0.01

M� 0

0.4853V� 0.02

M� 0.2

0.5883V� 0.01

Table 9: Comparison of key spaces.

Algorithm Proposed algorithm Reference [12] Reference [39] Reference [40] Reference [41]
Key space 2468 216 278 2128 296

Reconstructed image

(a)

Reconstructed image

(b)

Reconstructed image

(c)

Figure 12: Key sensitivity analysis: (a) initial value change of 10− 14, (b) initial value change of 10− 15, and (c) initial value change of 10− 16.
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between the NPCR and UACI obtained by the algorithm in
this study and the above studies. +e evaluation criteria of
NPCR and UACI are given in [45].

+e results show that the encrypted image can reach the
threshold standard, which verifies that the compression and
encryption algorithm proposed in this study can resist a
differential attack to some extent.

5. Conclusions

In this study, the parallel encryption technology of a se-
quence generator and chaos measurement matrix based on
noisy images is proposed. +e purpose is to solve how to
combine compressed sensing technology with chaotic
cryptography for image encryption in actual hardware en-
cryption. At the same time, due to the flexibility of the
hardware circuit in this algorithm, the key in the encryption
process is easy to change, which enhances the security of the
encryption algorithm to a greater extent. +is combines a
compressed sensing algorithm with the random character-
istics of chaotic signals from the perspective of security and
efficiency of information transmission. Because chaotic
signals are sensitive to initial values, this algorithm can
greatly expand the key space and effectively resist violent
attacks.+rough a simulation, the feasibility of the algorithm
was verified. +e algorithm can still achieve effective en-
cryption and decryption under the condition that the
original information contains noise. In Section 4, the ex-
perimental results were analyzed in detail. +rough the
analysis, it could be seen that the algorithm proposed in this
study has a very high key sensitivity, and the encryption
effect of the image is ideal. In the process of restoring the
original image, it was found that this algorithm can resist a
certain degree of source noise pollution and effectively re-
cover the original signal. In terms of operational efficiency,
the algorithm encryption process needs 0.24 s, and the use of
common compression perception algorithm encryption
requires about 1 s. +e decryption algorithm in this study

requires 8 s and the ordinary compression perception al-
gorithm decryption needs about 10 s, so the algorithm in this
study using parallel transmission can effectively improve the
efficiency of information transmission. In the following
research, we will focus on whether the algorithm can resist
the influence of channel noise and realize the image en-
cryption and effective decryption.
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In this paper, a 3D multistability chaotic system with two coexisting conditional symmetric attractors is studied by using a circuit
block diagram and realized by using an electronic circuit. ,e simulation results show that two coexisting conditional symmetric
attractors are emerged in this electronic circuit. Furthermore, synchronization of this 3D multistability chaotic system and its
electronic circuit is studied. It shows that linear resistor and linear capacitor in parallel coupling can achieve synchronization in
this chaotic electronic circuit. ,at is, the output voltage of chaotic electronic circuit is coupled via one linear resistor and one
linear capacitor in parallel coupling. ,e simulation results verify that synchronization of the chaotic electronic circuit can
be achieved.

1. Introduction

,ere are many nonlinear systems known to obtain coex-
istence of multiple attractors [1–10]. ,e coexistence of
multiple attractors indicates that the attractor depends
crucially on the initial condition (IC). ,ese nonlinear
systems are referred to as multistability systems. Multi-
stability has been found in various systems, including Lorenz
system [11], Rössler oscillators [12], neuronal oscillator [13],
lasers [14], DC/DC converter [15], and permanent magnet
synchronous motor [16]. Meanwhile, many multistability
chaotic systems have been reported in recent years. Kengne
et al. [17] reported a multistability chaotic system via van der
Pol oscillator and suggested an appropriate electronic
simulator. Peng and Min [18] proposed a novel multi-
stability memristive chaotic circuit and applied it to image
encryption. Chen et al. [19] introduced a multistability
modified canonical Chua’s circuit and obtained three sets of

topologically different and disconnected attractors. Pham
et al. [2] suggested a multistability chaotic system with no
equilibrium.

On the other hand, synchronous behavior, which
ensures that the states track the desired trajectory, has
attracted much research attention for its potential ap-
plications especially in secure communication and image
encryption [20]. Many chaotic electronic circuits recon-
structed for chaotic attractors in nonlinear systems have
been proposed. ,erefore, synchronization of nonlinear
chaotic systems can be converted to synchronization of
chaotic electronic circuits. In recent years, linear capacitor
coupling, linear resistor coupling, and linear inductor
coupling have been used to achieve synchronization of
two identical chaotic electronic circuits, in which many
interesting results have been obtained. Liu et al. [21, 22]
realized synchronization control for Chua’s chaotic cir-
cuits and synchronization of neural circuits. Yao et al. [23]
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proposed a synchronization scheme for nonlinear circuits
via induction coil coupling. Feng et al. [24] studied
synchronization and electronic circuit application of a
hidden hyperchaos system without equilibria. Singh and
Roy [25] used adaptive contraction theory to research
synchronization of a Lorenz hyperchaotic system and its
circuit realization. He et al. [26] studied the dynamics and
synchronization of conformable fractional-order hyper-
chaotic systems. Ma et al. [27] realized crack synchro-
nization for chaotic circuits via field coupling. When the
chaotic systems transform to nonlinear electronic circuits,
direct linear variable coupling between chaotic systems
can be implemented as a linear resistor coupling, and first
derivative of state variable linear coupling can be
implemented as a linear capacitive coupling or a linear
inductor coupling. In fact, the synchronization of chaotic
systems by resistor coupling is based on the consumption
of Joule heat, and the synchronization of chaotic systems
by capacitive coupling or inductor coupling is based on
electric field energy exchange or magnetic field energy
exchange.

Based on the 3D multistability chaotic system [1] re-
ported by Zhou and Ke, in which there are two coexisting
conditional symmetric chaotic attractors with different
initial conditions, the chaos synchronization achieved by
linear resistor and capacitor coupling is studied in this paper.
First, the 3D multistability chaotic system [1] is studied by
using a block diagram, and its electronic circuit is realized.
,e circuit simulation results are given. Second, the syn-
chronization between two 3D multistability chaotic circuits
is discussed, and we obtain that chaos synchronization can
be achieved by using only one linear capacitor and one linear
resistor in parallel coupling.

2. A 3DMultistability Chaotic System with Two
Coexisting Conditional Symmetric Attractors
and Its Circuit Realization

Based on the 3D Lü chaotic system [28], a multistability
chaotic system with two coexisting conditional symmetric
attractors has been reported by Zhou and Ke [1], which is
shown as follows:

_x1 � −x1 + 0.5x1x3 + x2x3,

_x2 � ax2 − 1.2x1x3,

_x3 � x1x2 − 6x3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

When 0≤ a≤ 4, there are two coexisting conditional
symmetric attractors in the positive-x region and negative-x
region separately [1] with different initial conditions. For
example, let a � 2.5, the maximum Lyapunov exponent is
0.5758 [1]. ,e positive-x region chaotic attractor with initial
conditions (2, 2, 2) and negative-x region attractor with initial
conditions (−2, −2, −2) are shown in Figure 1, respectively.

Next, using the MATLAB Simulink module, circuit
implementation of system (1) can be realized by block dia-
gram in which all the blocks are standard basic operational
circuits. Integrators marked as “Integrator” blocks are
employed to obtain output voltage signal vi with input voltage
signal _vi. Without loss of generality, the value of resistor in
each integrator is R0 � 100 kΩ and the value of capacitor is
C0 � 10 nF for dimensionless. ,e voltage signals vi are thus
converted to dimensionless parameter xi. All nonlinear terms
xixj are obtained by using multipliers marked as “Product”
blocks. For example, multiplier “Product x1x2” is employed to
produce output signal x1x2 with the input signals x1 and x2.
All coefficients except “1” are implemented by using gain
converters marked as “Gain” blocks. ,e gain converter is
composed of an inverse proportional circuit with coefficient
“K � Rf/RK” and an inverter is linked together. Similarly, the
reference resistance is Rf � 100 kΩ for dimensionless.
,erefore, the resistance with respect to the coefficient is
RK � 100/K kΩ. ,e output signal is xo �Kxi with respect to
the input signal xi in the “Gain” blocks, and K is the gain
coefficient marked inside the block. Adders marked as “Add”
blocks are employed to realize addition and subtraction
between the input signals. Finally, all the blocks can form
three circuit loops as shown in Figure 2. Each loop corre-
sponds to a dimensionless nonlinear equation in system (1).

In the implementation of system (1) with blocks, the
properties of the chaotic system (1) can be studied by
computer simulation experiment. ,e evolution of each
signal xi (i� 1, 2, 3) with respect to time t can be demon-
strated by “Scope” block connected with corresponding
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Figure 1: A symmetric pair of coexisting attractors in system (1) with a� 2.5. IC� (2, 2, 2) is red in the positive-x region and IC� (−2, −2,
−2) is black in the negative-x region. (a) ,e x1x2 phase diagram and (b) the x1x3 phase diagram.
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signal. “XY Graph” blocks, which play the part of an os-
cilloscope with two vertical input signals at the same time,
are employed in plotting the phase diagrams of two arbi-
trarily different signals xi and xj. As shown in Figure 3, the
phase diagrams of positive-x region attractors are observed
with the “x Initial� 2 2 2􏼂 􏼃” input into the MATLAB
workspace, and the phase diagrams of negative-x region
attractors are observed with the “x Initial� −2 −2 −2􏼂 􏼃.”
,e results of circuit simulation by the MATLAB Simulink
module fit well with that of nonlinear dynamic system (1).

,e circuit simulation system based on the standard
circuit described as blocks by the MATLAB Simulink
module has the advantages of intuitionistic design, simple
parameter setting, and easy debugging. In practical circuits,
however, some blocks can be combined for economy.
Multiple signals with parallel connection are adopted at the
input terminal of the integrator in order to remove adders.
,e resistance of each branch in the input terminal is
properly selected to remove gains. Finally, the electronic
circuit can be obtained for practical application and the
usage of electronic components can be greatly reduced. ,e
electronic circuit of system (1) is shown in Figure 4. Without
loss of generality, nonlinear terms xixj are obtained by using
a multiplier with two signals xi and xj input at the same time
and the minus of the signals is realized by using an inverter.
u represents the input terminal of the coupling signal which
is suspended herein. It means that there is no coupling signal
at this condition.

Nonlinear equations from the electronic circuit are
derived as follows:

C1
d _v1

dτ
� −

v1

R11
+

v2v3

R12
+

v1v3

R13
,

C2
d _v2

dτ
�

v2

R21
−

v1v3

R22
,

C3
d _v3

dτ
�

v1v2

R31
−

v3

R32
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Note that we set R0 � 100 kΩ, C0 � 10 nF, and the time
scaling as t0 � R0C0 � 10− 3 S. Let x1 � v1, x2 � v2, x3 � v3,
and t � τ/t0. A dimensionless dynamical system (3)
mapped from the circuit equations can be approached as
follows:

C1

C0

d _x1

dt
� −

R0

R11
x1 +

R0

R12
x2x3 +

R0

R13
x1x3,

C2

C0

d _x2

dt
�

R0

R21
x2 −

R0

R22
x1x3,

C3

C0

d _x3

dt
�

R0

R31
x1x2 −

R0

R32
x3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

It indicates that the resistance R is scaled in 100 kΩ,
capacitance C is scaled in 10 nF, and time t is scaled in 1ms
when circuit equations are dimensionless.

3. Synchronization of Multistability Chaotic
System (1) byUsingOneLinearCapacitor and
One Linear Resistor in Parallel Coupling

In this section, synchronization of multistability chaotic
system (1) is discussed. Let system (1) be the driving system.
,e response system with signals y1, y2, and y3 is shown as
follows:

_y1 � −y1 + 0.5y1y3 + y2y3,

_y2 � ay2 − 1.2y1y3,

_y3 � y1y2 − 6y3.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Analogous to system (1), the corresponding circuit
schematic diagram of response system (2) can be obtained by
the MATLAB Simulink model as shown in Figure 5.

In order to study the chaotic synchronization between
driving system (1) and response system (4), the state variable
x2 of driving system (1) (i.e., the output voltage signal x2 in
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Figure 2: Implementation of system (1) realized by using the block diagram in the MATLAB simulink module.
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Figure 2) and the state variable y2 of response system (2) (i.e.,
the output voltage signal y2 in Figure 5) are coupled in this
paper. ,ey are coupled via one linear resistor R and one
linear capacitor C in parallel to form a new six-dimensional
system in this paper. In order to obtain the dimensionless
nonlinear equations of the coupled system, the unit of the
coupling resistance R is 100 kΩ and the unit of the coupling
capacitance C is 10 nF.,e circuit implementation by blocks
in the MATLAB Simulink module is shown in Figure 6.
First, the subtraction circuit with x2 and y2 in the input
terminal is used to obtain the output signal x2 − y2. Second,
the x2 − y2 signal is divided into two branches. One branch is
processed by a Gain block “KR” with the coefficient
KR � 100 kΩ/R, which is equivalent to the resistive coupling.
,e corresponding output signal is uR � KR(x2 − y2). ,e
other branch is processed by the combination of a Differ-
entiator block and a Gain block “KC” with the coefficient
KC � C/10 nF, which is equivalent to the capacitive cou-
pling.,e corresponding output signal is uC � KC( _x2 − _y2).

After that, the two branches are combined together by an
Add block to realize the parallel connection between the
resistor and capacitor. ,e final output signal
u � KR(x2 − y2) + KC( _x2 − _y2), right now, is the coupling
signal between driving system (1) and response system (4).
,e coupling strength is proportional to KR and KC, which is
inversely proportional to the value of coupling resistance R
and proportional to the value of coupling capacitance C,
respectively. If the coupling resistance is close to zero, it is
equivalent to a direct connection between x2 and y2. If the
coupling resistance approaches infinity, it is equivalent to the
coupling of a linear capacitor. If the coupling capacitance is
close to zero, it is equivalent to the coupling of a linear
resistor. At last, coupling signal u is inverse feedback input to
the adder of the second loop in the driving system and direct
feedback input to the adder of the second loop in the re-
sponse system, respectively. In this case, the second non-
linear equations of system (1) and system (4) are separately
rewritten as

(a) (b)

(c) (d)

Figure 3: Formations of the phase diagrams that are plotted by “XYGraph” in theMATLAB Simulink module block diagram. (a) x1x2 phase
diagram and (b) x1x3 phase diagram with IC� (2, 2, 2); (c) x1x2 phase diagram and (d) x1x3 phase diagram with IC� (−2, −2, −2).
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_x2 � ax2 − 1.2x1x3 − u,

_y2 � ay2 − 1.2y1y3 + u.
􏼨 (5)

,e electronic circuit described by using the block di-
agram in theMATLAB Simulinkmodule can also be realized
for practical applications as shown in Figure 7. Herein, the
driving circuit and response circuit are represented by
subcircuit blocks whose formations are shown in Figure 4.
,e signals x2 and y2 are connected to two input terminals of
a subtraction circuit at the same time. ,e value of all the
resistors is 100 kΩ. ,e output signal of the subtraction
circuit is x2 − y2, which is then applied to both the resistor
and capacitor concurrently. Without loss of generality, the
unit of resistance R is 100 kΩ and the unit of capacitance C is
10 nF in order to nondimensionalize the nonlinear equations
of circuits. Besides, the coupling terminal in the driving
system and response system connects with the feedback
signals u and –u, respectively.

When the coupled system is regarded as a new six-di-
mensional combined system, the dimensionless nonlinear
state equations of coupled circuit (Figure 7) are described as

_x1 � −x1 + 0.5x1x3 + x2x3,

_x2 � ax2 − 1.2x1x3 −
x2 − y2( 􏼁

R
− C _x2 − _y2( 􏼁,

_x3 � x1x2 − 6x3,

_y1 � −y1 + 0.5y1y3 + y2y3,

_y2 � ay2 − 1.2y1y3 +
x2 − y2( 􏼁

R
R + C _x2 − _y2( 􏼁,

_y3 � y1y2 − 6y3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Herein, the parameter a � 2.5, the unit of coupled re-
sistance R is 100 kΩ, and the unit of coupled capacitance C is
10 nF for dimensionless as mentioned above. ,e nonlinear
system (6) can be rewritten as nonlinear system:

_x1 � −x1 + 0.5x1x3 + x2x3,

_x2 �
(1 + C)fx + Cfy􏼐 􏼑

(1 + 2C)
,

_x3 � x1x2 − 6x3,

_y1 � −y1 + 0.5y1y3 + y2y3,

_y2 �
Cfx +(1 + C)fy􏼐 􏼑

(1 + 2C)
,

_y3 � y1y2 − 6y3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Herein, fx and fy are introduced to simplify the form of
the nonlinear equations of system (6). ,eir expressions are
as follows:

fx � ax2 − 1.2x1x3 −
x2 − y2( 􏼁

R
,

fy � ay2 − 1.2y1y3 +
x2 − y2( 􏼁

R
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

In order to study the chaotic evolution of system (7),
especially the synchronization between the driving system
and response system, the difference e should be employed as
follows:
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Figure 4: Schematic diagram of the electronic circuit realization of system (1).
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e1 � x1 − y1,

e2 � x2 − y2,

e3 � x3 − y3.

(9)

,e corresponding error functions with respect to dif-
ference e and driving signal x are described as error system:

_e1 � −1+0.5x3( 􏼁e1 + x3e2 + 0.5x1 + x2( 􏼁e3 −0.5e1e3 − e2e3,

_e2 �
−1.2x3e1 +(a −2/R)e2 −1.2x1e3 +1.2e1e3( 􏼁

(1+2C)
,

_e3 � x2e1 + x1e2 −6e3 − e1e2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

It is obvious that e � 0 is the equilibrium point of error
system (10). If equilibrium point e � 0 is asymptotic sta-
bility, then chaotic synchronization between driving
system (1) and response system (4) can be achieved. It
indicates that there exists a synchronized state x � y for
driving system (1) and response system (4). In general, the
synchronization can be checked numerically by condi-
tional Lyapunov exponents (CLEs). ,is is that syn-
chronization occurs only if all CLEs of error system (10)
are negative.

,erefore, the CLEs of system (10) are studied by
MATLAB based on the QR decomposition method to
analyse the synchronization with respect to the variable
parameters R and C. ,e Jacobi matrix of the error
system (10) is
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Figure 5: Implementation of response system (2) realized by block diagram in the MATLAB Simulink module.
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Figure 6: Implementation of the coupled system realized by block diagram in the MATLAB Simulink module.
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J �

−1 + 0.5 x3 − e3( 􏼁 x3 − e3 0.5 x1 − e1( 􏼁 + x2 − e2( 􏼁

−1.2 x3 − e3( 􏼁

1 + 2C

a − 2/R
1 + 2C

−1.2 x1 − e1( 􏼁

1 + 2C

x2 − e2 x1 − e1 −6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

All the CLEs have been calculated by MATLAB nu-
merical simulation with initial driving signals x0 � (2, 2, 2)
and initial difference e0 � (−1, −1, −1). ,e maximum CLEs
distribution with respect to R and C is shown in Figure 8. It
can be pointed out that the maximum CLEs are negative in
the blue area and the maximum CLEs are positive in the
yellow area. ,erefore, the synchronization is realizable
when the values of the coupling resistor and coupling ca-
pacitor are located in the blue area, while it is irrealizable
when their values are in the yellow area. With the increase of
capacitance, the range of resistance synchronization
achieved is decreasing. When the capacitance C> 10 nF,
synchronization scarcely exists. Synchronization also dis-
appears when the resistance R is much larger, e.g.,
R> 160 kΩ.

Take R� 1.0 and C� 0.2; namely, the value of coupling
resistance is 100 kΩ and coupling capacitance is 2 nF as an
example. In this case, the corresponding coefficients are
KR � 1 and KC � 0.2. All the three CLEs of error system (10)
are negative as λ1 � −0.19, λ2 � −1.05, and λ3 � −5.50. ,e
equilibrium point e� 0 in error system (10) is asymptotic
stability. ,erefore, synchronization exists in the coupled
system (6). It is proved by circuit simulation of theMATLAB
Simulink module as shown in Figure 9. Herein, the coeffi-
cient in the Gain block “KR” is 1 and the coefficient in the
Gain block “KC” is 0.2. Subtraction block is employed to
obtain the difference signal. ,e input terminals are con-
nected with xi and yi, respectively; thus, the output signal of

the Subtraction block is ei � xi − yi. Scope block connected
with the output terminal of the Subtraction block is used to
plot the variation of difference signal ei with respect to t. As
shown in Figure 9, it is obvious that all the three difference
signals ei(t) gradually approach zero over some time with “x
Initial� 2 2 2􏼂 􏼃” and “y Initial� 3 3 3􏼂 􏼃” are input into
the MATLAB workspace. ,erefore, it is confirmed that
system (6) can achieve complete synchronization.

Generally, the synchronization performance varies
with coupling parameters. As shown in Figure 8, the
maximum CLEs of system (8) increase with respect to C
approximately when R is determined. It means that the
synchronization process slows down as C increases. Ab-
solute error err(t) is employed to estimate the synchro-
nization process:

err(t) �

���������

e21 + e22 + e23

􏽱

. (12)

As shown in Figure 10, absolute errors of the syn-
chronization process with different C values and R� 1.0 are
calculated. It can be verified that the larger the capacitance is,
the longer the time will be taken to achieve synchronization.
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In addition, the only resistive coupling is also studied. In
this condition, the coupling capacitance C� 0 and the
nonlinear system (6) are changed as follows:

_x1 � −x1 + 0.5x1x3 + x2x3,

_x2 � ax2 − 1.2x1x3 −
x2 − y2( 􏼁

R
,

_x3 � x1x2 − 6x3,

_y1 � −y1 + 0.5y1y3 + y2y3,

_y2 � ay2 − 1.2y1y3 +
x2 − y2( 􏼁

R
,

_y3 � y1y2 − 6y3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

,e corresponding error system is
_e1 � −1 + 0.5x3( 􏼁e1 + x3e2 + 0.5x1 + x2( 􏼁e3 − 0.5e1e3 − e2e3,

_e2 � −1.2x3e1 + a −
2
R

􏼒 􏼓e2 − 1.2x1e3 + 1.2e1e3,

_e3 � x2e1 + x1e2 − 6e3 − e1e2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

,e Jacobi matrix is

J �

−1 + 0.5 x3 − e3( 􏼁 x3 − e3 0.5 x1 − e1( 􏼁 + x2 − e2( 􏼁

−1.2 x3 − e3( 􏼁 a −
2
R

−1.2 x1 − e1( 􏼁

x2 − e2 x1 − e1 −6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

All the CLEs have been calculated by MATLAB nu-
merical simulation with initial driving signals x0 � (2, 2, 2)
and initial difference e0 � (−1, −1, −1) similarly. ,e maxi-
mum CLEs distribution with respect to R is shown in
Figure 11. It can be obtained that the maximum CLEs are
negative when R< 1.6. It means that synchronization is
achieved when the value of coupling resistance is less than
160 kΩ for only resistance coupling condition.

Take R� 1.0; namely, the value of coupling resistance is
100 kΩ as an example. In this case, the corresponding coef-
ficients of Gain block “KR” is KR � 1, while the corresponding
coefficients of Gain block “KC” is KC � 0 which means the
branch of capacitive coupling can even be removed. All the
three CLEs of error system (14) are negative as λ1 � −0.49,
λ2 � −0.71, and λ3 � −5.30. It indicates that synchronization
exists in coupled system (13). As shown in Figure 12, it is
obvious that all the three difference signals ei(t) gradually
approach zero over some time with “x Initial� 2 2 2􏼂 􏼃” and
“y Initial� 3 3 3􏼂 􏼃” input into the MATLAB workspace.
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Figure 9: Variation of the difference e with R� 1.0 and C� 0.2.
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,erefore, it is confirmed that system (6) can achieve complete
synchronization with suitable values (Figure 12).

Furthermore, the synchronization performance varies
with R. As shown in Figure 11, the maximumCLEs of system
(14) decrease at first and then increase with R increasing
approximately. ,erefore, the synchronization process
speeds up at first and then slows down as R increases. As
shown in Figure 13, absolute errors of the synchronization
process with different R values are calculated. It can be found
out that the time taken to achieve synchronization reduces
first and then increases when R increases.

4. Conclusions

Based on a 3D multistability chaotic system [1] reported by
Zhou and Ke, an electronic circuit is proposed in this paper.
,e circuit simulation results show that there are two
coexisting conditional symmetric chaotic attractors for dif-
ferent initial conditions, which are consistent with the
findings in the reference [1]. Meanwhile, the chaotic syn-
chronization between two 3D multistability chaotic systems
with only one linear resistor and one linear capacitor in
parallel coupling is discussed. ,e maximum condition
Lyapunov exponents (CLEs) of the coupled system are
studied. ,e negative maximum CLEs indicate that chaotic
synchronization can be achieved with a capacitor and resistor
in parallel coupling in the appropriate range. Furthermore, an
electronic circuit is given to verify the synchronization
scheme. Circuit simulation results confirm that the chaos
synchronization for the 3D multistability chaotic system can
be realized. Our work provides a method to realize the
electronic circuit of the 3D multistability chaotic system and
its synchronization, which has application prospect in secret
communications and adaptive control. Future work can in-
clude the analysis of the synchronization between positive-x
region attractors and negative-x region attractors.
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In this paper, a decision-making competition game model concerning governments, agricultural enterprises, and the public, all of
which participate in the reduction of nitrogen emissions in the watersheds, is established based on bounded rationality. First, the
stability conditions of the equilibrium points in the system are discussed, and the stable region of the Nash equilibrium is
determined. +en, the bifurcation diagram, maximal Lyapunov exponent, strange attractor, and sensitive dependence on the
initial conditions are shown through numerical simulations. +e research shows that the adjustment speed of three players’
decisions may alter the stability of the Nash equilibrium point and lead to chaos in the system. Among these decisions, a
government’s decision has the largest effect on the system. In addition, we find that some parameters will affect the stability of the
system; when the parameters become beneficial for enterprises to reduce nitrogen emissions, the increase in the parameters can
help control the chaotic market. Finally, the delay feedback control method is used to successfully control the chaos in the system
and stabilize it at the Nash equilibrium point. +e research of this paper is of great significance to the environmental governance
decisions and nitrogen reduction management.

1. Introduction

According to the European Nitrogen Assessment, the total
economic loss caused by the reactive nitrogen in 27 countries
of the European Union amount to 70–320 billion euros per
year. +e economic cost of the reactive nitrogen pollution is
about twice that of Europe’s “willingness” to pay for carbon
controls. To integrate the research on global nitrogen
emissions and nitrogen pollution, the European Union puts
forward the “nitrogen and Europe” research plan, and all
countries of the world were invited to participate. Due to the
intensification of nonpoint source nitrogen pollution in
agriculture enterprises, the problem of nitrogen pollution in
river basins is becoming more and more serious. Two-thirds
of the coastal rivers and bays in the United States are de-
graded from nutrient pollution, and nitrogen inputs in these
waters continue to increase [1]. +erefore, controlling the
input of nitrogen and phosphorus from human activities is
essential in reducing eutrophication in watersheds [2]. As

the reduction of nitrogen emission starts to attract the at-
tention of the whole world, the nitrogen emission trading
market and the nitrogen emission limits of various indus-
tries are gradually being formed, and agricultural enterprises
will face this major challenge. At the same time, govern-
ments should not only consider the environmental benefits
but also control the normal operation of the whole market.
+erefore, as the main players in the reduction of nitrogen
emissions in the river basin, any party in government and
agricultural enterprises and the social public decisions will
be influenced by the other two parties.

Some literature mainly focuses on watershed pollution
based on game theory. Initially, there has been much dis-
cussion on the treatment of environmental problems. Ni and
Wang [3] used a cooperative game to analyze the allocation
of pollution control costs in watershed pollution and ex-
plored a reasonable allocation method. Gao et al. [4] ana-
lyzed the interaction among upstream governments,
downstream governments, and the central government in
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the Eastern Route of South-to-North Water Transfer Project
based on evolutionary game theory. Secondly, there is cross-
border water pollution in the river basin. Jorgensen [5] took
the upstream and downstream areas in the river basin as the
main body of the game and analyzed whether the cooper-
ation between the upstream and downstream could solve the
problem of unreasonable pollution through the differential
game method. Frisvold and Caswell [6] used the static
bargaining game method to study the impact of pollution
control policies on the game relationship between two
countries in terms of environmental pollution control.
+ird, there is a conflict of interest between subjects in the
river basin. Bárcena-Ruiz [7] used the idea of a differential
game to analyze whether two governments should solve the
problem of river basin pollution by setting environmental
taxes to be the same.

+e majority of nitrogen emission reduction in the
watershed is based on bounded rationality. At present, the
research on dynamic competitive game with bounded
rationality comes mainly from the following authors. Puu
[8] first found a variety of complex dynamic phenomena in
the Cournot duopoly model such as the singular attractor
with a fractal dimension. Yali [9] studied a delayed duopoly
game considering increasing marginal costs based on
bounded rationality and demonstrated that state delay is
helpful in enlarging the stability region of the system. Peng
et al. [10] and Elsadany [11] discussed the correction of a
duopoly game with bounded rationality based on the
strategy of maximizing the output expectations of enter-
prises. Yao and Xu [12] established an advertising market
competition model that considered the bounded rationality
of participants and analyzed the complex decision-making
behaviors of decision-makers in the dynamic game process.
Ding et al. [13] proposed a linear dynamic system in a
duopoly game involving renewable resource extraction
with the strategy of bounded rationality. Yao et al. [14] and
Elabbasy et al. [15] both constructed a nonlinear triopoly
game model with heterogeneous players, and the three
different decision-makers were bounded rational, adaptive,
and naive. Research by Zhao [16] investigated a novel
Cournot duopoly game model of carbon emission reduc-
tion based on the hypothesis of participant’s bounded
rationality.

Our study is closely related to reduction mechanism,
which can be divided into mandatory emission reduction
mechanism [17, 18] and incentive emission reduction
mechanism [19, 20]. Wang et al. [21] analyzed the rela-
tionship between supply chain enterprise operation and
government policy. A three-stage Stackelberg gamemodel of
decentralized supply chain and a two-stage Stackelberg game
model of centralized supply chain were used to study the
government’s carbon emission tax policy. De Jonge [22]
proposed that the instruments of legislation, subsidies, green
taxation, and emission trading can help achieve reduction
targets for NOx. Research by Svensson and Elofsson [23]
showed that the net nitrogen reductions achieved through
environmental policy efforts and the costs of the nitrogen
reductions should be considered. According to previous
research, most scholars mainly focused on the decision-

making game of emission reduction, price, or output of
enterprises, whereas seldom discussed the decisions of
government policies and the public. However, when the
government and the public are involved in nitrogen emis-
sion reduction work, under a series of environmental pol-
icies and public supervision, studying the complex dynamic
behavior of a game involving governments, agricultural
enterprises, and the public with bounded rationality will
have great practical significance.

+e contributions of this study are as follows: first, a
reasonable decision-making mechanism for nitrogen
emission reduction is proposed considering the influence of
government and the public decisions in emission reduction.
Second, how to establish a reasonable adjustment strategy of
output, supervision intensity, and policy intensity is ex-
plored. +ird, the integration of nonlinear dynamic theory
and nitrogen emission reduction management is fulfilled.
Moreover, the effects of the market price of nitrogen trading
and the subsidy standard of nitrogen emission reductions on
the decisions of three players are simulated, and it is im-
portant to adjust the parameters that will become beneficial
for enterprises to reduce nitrogen emissions. +is study can
provide a theoretical guidance for reducing nitrogen pol-
lution in the watersheds.

+e organization of the paper is as follows: in Section 2,
a competition model concerning governments, agricultural
enterprises, and the public is formulated; in Section 3, we
analyze the equilibrium point of the game model and give
the existence condition and local stability range of the
equilibrium point. In Section 4, the complex dynamic
behavior under a change in the adjustment speed of three
players’ decisions is analyzed. In Section 5, we apply the
delay feedback method to control chaos in the system.
Finally, some research conclusions are summarized in
Section 6.

2. Model

+is main purpose of this chapter was to introduce the
aforementioned dynamic game model. Considering ni-
trogen emission trading, nitrogen emission reduction
subsidies, and marginal emission reduction costs, this
paper analyzes whether governments, agricultural enter-
prises, and the public make an optimal decision according
to their own decision rules in the game. Lanoie et al. [24]
discussed the impact of environmental policies on envi-
ronmental innovation performance, and the intensity of
environmental policies was divided into three categories:
weak, narrow, and strong. +us, the optimal goal of the
government is to choose the appropriate policy intensity to
maximize the total utility, and the optimal goal of the
agricultural enterprise is to make the appropriate output
decision to maximize its profit when the pollution situa-
tion meets the government’s policy intensity. In terms of
the public, the best goal is to choose the appropriate su-
pervision intensity to maximize its total utility. +e
meanings of specific parameters and variables are shown in
Table 1.
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+e following assumptions are made to develop the
model:

(1) +is paper is mainly aimed at agricultural enter-
prises, and the price p of the enterprises in the period
t is determined by y(t) through the inverse demand
function p � a − by, where a and b are positive
constants; the production cost of the enterprise is a
linear function, namely, C � cy.
+e nitrogen emissions generated in the production
process of an enterprise are linearly related to its
output, denoted as E � ey. +e emission reduction of
enterprises is related to their own technical level of
nitrogen emission reduction, the government policy
intensity, and the public’s supervision intensity. Wu
et al. [25] proposed that public participation had
significant positive effects on the reduction of both
binding and nonbinding environmental pollutant
emissions. +erefore, the emission reduction of
enterprises is [21, 26] as follows:

Qe � c1x + c2y + c3z, (1)

where ci > 0 (i� 1, 2, 3); thus, the final nitrogen
emission of enterprises is ey − Qe. +e cost of ni-
trogen emission reduction is nQe. When partici-
pating in nitrogen emission trading, the tradable
emission permits that enterprises need can be de-
scribed as ey − Qe − y0; then, the fee for nitrogen
emission trading is pe(ey − Qe − y0).

(2) In terms of governments, the revenue function of the
government in this paper mainly includes four parts:

tax, nitrogen pollution treatment costs, supervision
cost, and subsidy expense. According to Wang et al.
[21] and Alexeev et al. [26], the nitrogen pollution
treatment costs are δ(ey − Qe). +e government
provides subsidies and incentives for enterprises to
reduce nitrogen emissions, so the subsidy expense
can be described as xgQe.

(3) Regarding the public, the research of Carreira et al.
[27] showed that the degree of public participation
in corporate environmental behavior depended on
government’s policy intensity. +e supervision cost
of the public on enterprises is negatively correlated
with the government’s policy intensity [28], so we
assume the supervision cost is H(z) � z(M − mx).
Based on Newig et al. [29], the utility function of the
consumer can be described as

U � u − p − H(z) − d ey − Qe( 􏼁. (2)

+erefore, the profit function of a government, agri-
cultural enterprise, and the public is

π1(x, y, z) � T − δ ey − c1x + c2y + c3z( 􏼁 − xh − xgc1x

+ c2y + c3z,

π2(x, y, z) � (a − by)y − cy − c1x + c2y + c3zn

+ pe y0 − ey − c1x + c2y + c3z( 􏼁􏼂 􏼃

+ xgc1x + c2y + c3z,

π3(x, y, z) � u − p − z(M − mx) − d ey − c1x + c2y + c3z􏼂 􏼃.

(3)

+en, the marginal profit of a government, enterprise,
and the public in period t is

zπ1(t)

zx(t)
� c1δ − h − 2c1gx(t) − g c2y(t) + c3z(t)( 􏼁,

zπ2(t)

zy(t)
� a − c − c2n − pe e − c2( 􏼁 + c2gx(t) − 2by(t),

zπ3(t)

zz(t)
� mx(t) − M + dc3.

(4)

Due to incomplete market information and limita-
tions of their own conditions in reality, when govern-
ments, agricultural enterprises, and the public make
decisions with bounded rationality, they cannot fully
predict the future market demand. +erefore, it is as-
sumed that they can only determine their decisions based
on the local estimation of marginal profit. If the marginal
profit is positive in period t, they will increase their de-
cision quantity in period t+1. +us, a three-dimensional
discrete dynamic game model in the t+1 period is set up as
follows [30]:

Table 1: Major notations.

Notations Description
x(t) +e government’s policy intensity at period t
z(t) +e public’s supervision intensity at period t
y(t) +e agricultural enterprises’ output at period t
A +e highest price of the product in the market
C +e marginal production cost

d
+e consumer losses caused by the unit emission of

nitrogen
E Initial unit amount of nitrogen emissions
pe +e price of emission permits
N +e marginal abatement costs
y0 +e initial nitrogen emission permits

c1
+e impact coefficient of policy intensity on emission

reduction
c2 +e emission reduction coefficient

c3
+e impact coefficient of supervision intensity on

emission reduction
G +e emission reduction subsidy coefficient
T +e government’s various tax revenues
δ +e treatment cost of per unit nitrogen emission
h +e government’s marginal supervisory cost
u +e base value of the product
M +e initial supervision cost of the public

M +e impact coefficient of policy intensity on
supervision cost
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x(t + 1) � x(t) + α1x(t)
zπ1(t)

zx(t)
,

y(t + 1) � y(t) + α2y(t)
zπ2(t)

zy(t)
,

z(t + 1) � z(t) + α3z(t)
zπ3(t)

zz(t)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where αi > 0 (i� 1, 2, and 3), respectively, represents the
adjustment speed of each bounded rational player. For the
convenience of calculation, we assume T1 � c1δ − h,
a1 � a − c − c2n − pe(e − c2), and M1 � M − dc3, so the
dynamic adjustment mechanism of the government, en-
terprises, and the public with bounded rationality is sim-
plified as

x(t + 1) � x(t) + α1x(t) T1 − 2c1gx(t) − g c2y(t) + c3z(t)( 􏼁􏼂 􏼃,

y(t + 1) � y(t) + α2y(t) a1 + c2gx(t) − 2by(t)􏼂 􏼃,

z(t + 1) � z(t) + α3z(t) mx(t) − M1􏼂 􏼃.

⎧⎪⎪⎨

⎪⎪⎩
(6)

3. Equilibrium Points and Local Stability

In order to study the dynamic behavior of the game model,
the nonnegative equilibrium point will be discussed in this
chapter. In system (6), equilibrium points are obtained by
setting x(t+ 1)� x(t), y(t+ 1)� y(t), and z(t+ 1)� z(t), so we
can obtain six equilibrium points:

E0 � (0, 0, 0),

E1 � 0,
a1

2b
, 0􏼒 􏼓,

E2 �
T1

2c1g
, 0, 0􏼠 􏼡,

E3 �
M1

m
, 0,

T1m − 2c1gM1

2c3gm
􏼠 􏼡,

E4 �
2T1b − c2ga1

g 4c1b + c2
2g( 􏼁

,
2a1c1 + T1c2

4c1b + c2
2g

, 0􏼠 􏼡,

E5 � x
∗
, y
∗
, z
∗

( 􏼁

(7)

Obviously, E0, E1, E2, E3, and E4 are bounded equilib-
rium points. When M1 > 0, ma1 + c2gM1 > 0, andm

(2T1b − c2ga1) − gM1(4c1b + c2
2g)> 0, E5 is a Nash equi-

librium point. To discuss the local stability of the above
equilibrium points, we must consider the Jacobian matrix of
system (6):

J �

1 + α1 T1 − 4c1gx − g c2y + c3z( 􏼁􏼂 􏼃 −α1c2gx −α1c3gx

α2c2gy 1 + α2 a1 + c2gx − 4by( 􏼁 0

α3mz 0 1 + α3 mx − M1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Theorem 1. If the Nash equilibrium point E5 is strictly
nonnegative, the boundary equilibrium points E0, E1, E2, E3,
and E4 of system (6) are unstable equilibrium points.

Proof. In order to prove this result, we find the eigenvalues
of the Jacobian matrix J(x, y, z) at each boundary equilibria
E0, E1, E2, E3, and E4. +e Jacobian matrix at E0 is

J E0( 􏼁 �

1 + α1T1 0 0

0 1 + α2a1 0

0 0 1 − α3M1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

whose eigenvalues are λ1 � 1 + α1T1, λ2 � 1 + α2a1, and
λ3 � 1 − α3M1. Since T1 � c1δ − h, h is the government’s
marginal supervisory cost, and c1δ represents the increase in
environmental benefits with an increase in x(t), so we can
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get c1δ − h> 0. Otherwise, the government’s policy im-
provement will not make any sense, namely, T1 > 0. Since
a1 � a − c − c2n − pe(e − c2), a is the highest price of the
product in the market, while c + c2n + pe(e − c2) can be
regarded as the total variable costs of the enterprise. In the
actual market, the highest price of the product must be
higher than its total variable costs, namely, a1 > 0. With
conditions where T1 > 0 and a1 > 0, |λ1|> 1 and |λ2|> 1 can
be obtained. +erefore, E0 is an unstable equilibrium point.

+e Jacobian matrix at E1 is

J E1( 􏼁 �

1 + α1 2T1b − c2ga1( 􏼁

2b
0 0

0 1 − α2a1 0

0 0 1 − α3M1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

whose eigenvalues are λ1 � 1 + α1(2T1b − c2ga1)/2b, λ2 �

1 − α2a1, and λ3 � 1 − α3M1. Since z∗ > 0, it is clear that
when the condition 2T1b − c2ga1 > 0, |λ1|> 1 is obtained.
+en, E1 is an unstable equilibrium point.

+e Jacobian matrix at E2 is

J E2( 􏼁 �

1 − α1T1
α1T1c2

2c1

α1T1c3

2c1

0 1 + α2 a1 + T1c2/2c1( 􏼁 0

0 0
1 + α3 T1m − 2c1gM1( 􏼁

2c1g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

whose eigenvalues are λ1 � 1 − α1T1, λ2 � 1 + α2(a1+

T1c2/2c1), and λ3 � 1 + α3(T1m − 2c1gM1)/2c1g. It is clear
that when the condition a1 + T1c2/2c1 > 0, |λ2|> 1. +en, E2

is an unstable equilibrium point. Similarly, we can prove that
E3 and E4 are also unstable.

+e Jacobian matrix at E3(x3, 0, z3) is

J E3( 􏼁 �

1 + α1 T1 − 4c1gx3 − c3gz3( 􏼁 −α1c2gx3 −α1c3gx3

0 1 + α2 a1 + c2gx3( 􏼁 0

α3mz3 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

By calculating the eigenvalue of the Jacobian matrix
J(E3), we can find |λ2 � 1 + α2(a1 + c2gM1/m)|> 1. +us,
E3 is an unstable equilibrium point.

+e Jacobian matrix at E4(x4, y4, 0) is

J E4( 􏼁 �

1 − 2α1c1gx4 −α1c2gx4 −α1c3gx4

α2c2gy4 1 − 2α2by4 0

0 0 1 + α3 mx4 − M1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(13)

By calculating the eigenvalue of the Jacobian matrix
J(E4), λ3 � 1 + α3[m(2T1b − c2ga1)/g(4c1b + c2

2g) − M1].
It is clear that when the condition m(2T1b − c2ga1)−

gM1(4c1b + c2
2g)> 0, |λ3|> 1. +us, E4 is an unstable

equilibrium point. □

Theorem 2. If the system parameters satisfy M1 > 0, ma1+

c2gM1 > 0, m(2T1b − c2ga1) − gM1(4c1b + c2
2g)> 0, and

when the following Jury conditions are performed, the Nash
equilibrium point E5 is locally asymptotically stable.

Proof. In order to investigate the local stability of the Nash
equilibrium point E5 � (x∗, y∗, z∗), the Jacobian matrix at
E5 is

J E5( 􏼁 �

1 − 2α1c1gx∗ −α1c2gx∗ −α1c3gx∗

α2c2gy∗ 1 − 2α2by∗ 0

α3mz∗ 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (14)

+e characteristic equation of the matrix J(E5) is

fλ � λ3 + A1λ
2

+ A2λ + A3, (15)
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where
A1 � −3 + 2α1c1gx

∗
+ 2α2by

∗
,

A2 � 3 − 4α2by
∗

+ α1α2c
2
2g

2
x
∗
y
∗

+ α1α3c3gmx
∗
z
∗

− 4α1c1gx
∗

+ 4α1α2c1gbx
∗
y
∗
,

A3 � −1 + 2α2by
∗

+ 2α1c1gx
∗

− 4α1α2c1gbx
∗
y
∗

− α1α2c
2
2g

2
x
∗
y
∗

− α1α3c3gmx
∗
z
∗

+ 2α1α2α3c3gmbx
∗
y
∗
z
∗
.

(16)

+e local stability conditions of the Nash equilibrium are
given by Jury’s conditions, which are the sufficient and
necessary conditions |λi|< 1, i � 1, 2, 3:

1 + A1 + A2 + A3 > 0,

A2
3 − 1( 􏼁

2
− A2 − A1A3( 􏼁

2 > 0,

1 − A1 + A2 − A3 > 0,

A2
3 − 1< 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

Obviously, the Nash equilibrium point E5 is a stable
node in the stability region defined by (17). However, if
α1, α2, and α3 go beyond the stability region, more complex
phenomena in terms of the evolution of outputs will occur
such as bifurcation and chaos. Moreover, we found that the
local stability of the system in the Nash equilibrium point
can be decided by every parameter in (17). Based on in-
equalities (17), the three-dimensional stability domains of
the system (6) are simulated when pe and g take different
values (as shown in Sections 4.2 and 4.3). □

4. Numerical Simulations

In this section, we analyzed the dynamic behaviors of the
bounded rational players through various numerical sim-
ulations. +ey could observe the influence of the adjustment
speed of α1, α2, and α3, the market price of nitrogen trading
pe, and the subsidy standard of nitrogen emission reduction
g on the model. In order to study the local stability prop-
erties of the equilibrium point, it is convenient to take the
parameter values as follows: a � 10, b � 3, c � 1, d �

0.42, c1 � 3, c2 � 0.5, c3 � 1, n � 0.5, pe � 1, e � 0.6,
g � 0.3, δ � 1, h � 0.5, m � 0.55, andM � 1.

4.1.2e Impact of the Adjustment Speed on the Stability of the
System. Figure 1 shows the bifurcation diagram with respect
to the adjustment speed α1 of a government’s policy intensity
while α2 � 0.21 and α3 � 0.5. +e corresponding largest
Lyapunov exponents with respect to α1 are drawn in
Figure 2. In the range α1 < 1.1057, the Lyapunov exponents
are negative, which means that the Nash equilibrium point
E5 is stable. When α1 � 1.1057, the first bifurcation point in
Figure 1 corresponds to the first peak (1.1057, −0.008) in
Figure 2, leading to the system gradually entering a period-
doubling bifurcation. Finally, when α1 > 1.2340, themaximal
Lyapunov exponents are almost greater than zero, indicating
that chaotic behavior is occurring and the Nash equilibrium
point is becoming very unstable.

Figure 3 shows the bifurcation diagram with respect to
the adjustment speed α2 of the enterprises’ output while
α1 � 0.7 and α3 � 0.5. +e corresponding largest Lyapunov
exponents with respect to α2 are drawn in Figure 4. As can be
seen from Figures 3 and 4, in the range α2 < 0.2279, the
Lyapunov exponents are negative, which means that the
Nash equilibrium point E5 is stable. When α2 � 0.2279, the
first bifurcation point in Figure 3 corresponds to the first
peak (0.2279, −0.0282) in Figure 4. With α2 increasing to
0.2792, the second bifurcation point in Figure 3 corresponds
to the second peak (0.2792, −0.0473) in Figure 4, and the
system then gradually enters a period-doubling bifurcation.
Finally, when α2 > 0.2928, the maximal Lyapunov exponents
are almost greater than zero, indicating that chaotic behavior
is occurring and the Nash equilibrium point is becoming
very unstable.

Figure 5 shows the bifurcation diagram with respect to
the adjustment speed α3 of the public’s supervision intensity
while α1 � 0.7 and α2 � 0.21. +e corresponding largest
Lyapunov exponents with respect to α3 are drawn in
Figure 6. From Figures 5 and 6, when α3 < 8.493, the Lya-
punov exponents are negative, which means that the Nash
equilibrium point E5 is locally stable for small values of α3.

0 0.2 0.4 0.6 0.8 1 1.2
α1

0

0.5

1

1.5 y(t)

z(t)

x(t)

Figure 1: Bifurcation diagram for α2 � 0.21 and α3 � 0.5.

–0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2
α1

Figure 2: Maximal Lyapunov exponent for α2 � 0.21 and α3 � 0.5.
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However, in the range α3 > 8.493, the system starts to enter
into the chaotic state and complex dynamic behavior occurs.

+e strange attractors corresponding to Figure 1 are
shown in Figures 7–10, which shows the changing situation
for strange attractors at different values of α1 while α2 � 0.21

and α3 � 0.5.When α1 � 0.008, the decision-making behavior
of the government, enterprises, and the public forms a spiral
trajectory map and finally forms a gradual stability point.
However, with the finiteness of market information and the
bounded rationality of the game players, when α1 > 1.1057,

0 0.05 0.1 0.15 0.2 0.25 0.3
α2

0.5

1

1.5 y(t)

z(t)

x(t)

Figure 3: Bifurcation diagram for α1 � 0.7 and α3 � 0.5.

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
α2

Figure 4: Maximal Lyapunov exponent for α1 � 0.7 and α3 � 0.5.
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Figure 5: Bifurcation diagram for α1 � 0.7 and α2 � 0.21: (a) x(t) and z(t); (b) y(t).
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the stable point gradually appears as a branch state, as shown
in Figure 8. When α1 > 1.2340, it was found that the point
was no longer stable and chaos began to appear until a chaos
phenomenon in Figure 9 appeared.

Figure 10 shows the strange attractor in a chaotic state
while α1 � 0.7, α2 � 0.31, and α3 � 0.5. At this time, the de-
cision-making behavior of players appears to be a complex
chaos phenomenon.+e strange attractors corresponding to
Figure 5 are shown in Figures 11 and 12, which shows the
change situation for strange attractors at different values of
α3 while α1 � 0.7 and α2 � 0.21. When α3 increases to 8.5,
chaos has occurred and a vortex shaped attractor appears, as
shown in Figure 11. When α3 > 8.5, it was found that the
vortex had evolved into a annular phase diagram, as shown
in Figure 12.

In order to further explore the chaotic phenomenon
caused by a change in the decision-making adjustment
speed, we investigated the sensitivity at the initial value of the
system (6). +ese numerical simulations are performed by
setting α1 � 1.28, α2 � 0.21, and α3 � 0.5 (the system is in a
chaotic state at this time). It can be seen from Figure 13 that
two orbits of x(t), y(t), or z(t) are indistinguishable at the
beginning, but after several iterations, the separation

between them builds up rapidly; that is, subtle changes in the
initial conditions will greatly affect the results.

+rough the above numerical simulation analysis, it can
be concluded that the adjustment speeds α1, α2, and α3 of the
bounded rational players may greatly affect the stability of
system (6) and lead to complex chaos phenomena in the

–0.2

–0.15

–0.1

–0.05

 0

 0.05

0 2 4 6 8 10 12
α3

Figure 6: Maximal Lyapunov exponent for α1 � 0.7 and α2 � 0.21.
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Figure 7: Strange attractors for α1 � 0.008.
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Figure 8: Strange attractors for α1 � 1.18.
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Figure 9: Strange attractors for α1 � 1.25.
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Figure 10: Strange attractors for α2 � 0.31.
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Figure 12: Strange attractors for α3 � 10.5.
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Figure 11: Strange attractors for α3 � 8.5.
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system. Once trapped in a chaotic market, slight changes in
various initial conditions of the government, agricultural
enterprises, and the public will greatly affect the final results.
In addition, the players cannot effectively predict various
changes in reality, which will result in their decisions not
being effectively implemented.

4.2.2e Impact of theMarket Price of Nitrogen Trading on the
Stability of the System. When enterprises decide whether to
trade emission permits based on their own nitrogen emis-
sions, it is necessary to compare the market price of nitrogen
trading with the cost of nitrogen emission reductions. +e
emission level e and emission reduction technology level of
enterprises c2 are determined by their production equip-
ment and technology, which cannot be changed quickly.+e
variable cost of nitrogen emissions peemc2 can affect the
decision-making behavior of enterprises; therefore, it is the
market price of nitrogen trading that affects the stability of
the system.

Inequalities (17) define the stable range of the Nash
equilibrium point of the system under the adjustment speeds
α1, α2, and α3. When the initial values of each parameter are
fixed, the region of stability for the Nash equilibrium point
E5 under different values of pe is shown as in Figure 14.
When the trading price of nitrogen emissions pe � 1 in-
creases to pe � 10, the stability of the system will decrease. In
addition, the Nash equilibrium point will evolve from E5
(1.0545, 1.4680, 1.2720) to E5′ (1.0545, 1.3180, 1.3470), in-
dicating that, with an increase in pe, the government’s policy
intensity will remain unchanged, while the enterprises’
output will be reduced and the public’s supervision intensity
will increase.

Figure 15(a) shows the bifurcation diagram with respect to
the market price of nitrogen trading pe while α1 � 0.7, α2 � 0.21,
and α3 � 0.5 (the system is stable). +e Nash equilibrium point
E5 then becomes E∗ � (x∗, y∗, z) � (1.0545, 1.4847−

0.0167pe, 1.2637 + 0.0083pe). From this Figure 15(a), it can be
observed that the equilibrium point is locally stable for the small
values of the parameter pe. When pe increases, the Nash
equilibrium point E∗ becomes unstable, and even complex
dynamics phenomena such as period-doubling bifurcation and
chaos appear.+emain reason behind this is that an increase in
pe increases the variable cost for enterprises.When the technical
level remains unchanged, enterprises have to reduce their
output.

Figure 15(b) shows the bifurcation diagram with respect
to pe while α1 � 1.25, α2 � 0.21, and α3 � 0.5 (the system being
in chaos). +e research shows that when the adjustment
speed of policy intensity α1 is too large, the public’s su-
pervision intensity will decrease to zero with an increase in
pe, and the system still remains in a chaotic state.
Figure 15(c) shows the bifurcation diagram with respect to
pe while α1 � 0.7, α2 � 0.315, and α3 � 0.5 (the system being in
chaos). It can be seen that when the adjustment speed of
enterprises’ output α2 is too large, as pe increases, the system
gradually evolves from chaos to period-doubling bifurcation
until reaching a state of equilibrium. However, when pe

continues to increase, a complex evolution similar to that
shown in Figure 15(a) will appear and eventually enter
chaos. Figure 15(d) shows the bifurcation diagram with
respect to pe while α1 � 0.7, α2 � 0.21, and α3 � 10 (the system
being in chaos). When the adjustment speed of the public’s
supervision intensity α3 is too large, each player is still in
chaotic state with an increase in pe. +e main reason for this
is that pe has an influence on the decision of enterprises’
output y(t) by affecting the marginal profit of enterprises.
+erefore, when α2 is too large, increasing pe can control
chaos.

4.3. 2e Impact of Subsidizing Nitrogen Emission on the
Stability of the System. +e subsidy of nitrogen emission
reductions is proportional to the amount of emission
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Figure 13: Sensitive dependence on initial conditions: (a) two orbits of x(t) with initial values x1 � 0.7001 and x0 � 0.7; (b) two orbits of y(t)
with initial values y1 � 0.4001 and y0 � 0.4; (c) two orbits of z(t) with initial value z1 � 0.3001 and z0 � 0.3.
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Figure 15: Bifurcation diagram with respect to pe: (a) α1 � 0.7, α2 � 0.21, and α3 � 0.5; (b) α1 � 1.25, α2 � 0.21, and α3 � 0.5;
(c) α1 � 0.7, α2 � 0.315, and α3 � 0.5; (d) α1 � 0.7, α2 � 0.21, and α3 � 10.
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Figure 14: +e stability region of E5 in α1, α2 , and α3-plane under different values of pe: (a) pe � 1; (b)pe � 10.
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reductions. +e subsidy of emission reductions is not only a
source of income for an enterprise but also the government’s
fiscal expenditure to encourage enterprises to reduce
emissions. +erefore, the subsidy standard of the reduction
of nitrogen emissions g will affect the system.

When the subsidy standard of the reduction of ni-
trogen emissions g � 0.3, the stable region of the Nash
equilibrium point is shown as in Figure 14(a). If other
parameters are fixed, the nitrogen emission reduction
subsidy standard g varies to g � 0.32 from g � 0.3, and we
can see that the area of the stable region increases in the
direction of α2 and α3, as shown in Figure 16. +erefore,
the stability of the system will increase with an increase in
g; in addition, the Nash equilibrium point will evolve from
E5 (1.0545, 1.468, 1.272) to E5′ (1.0545, 1.4698, 0.7503),
which means that, as g increases, the government’s policy
intensity will remain unchanged, while the enterprises’
output will increase and the public’s supervision intensity
will decrease.

Figure 17(a) shows the bifurcation diagram with regard
to the subsidy standard of the nitrogen emission reduction
g while α1 � 0.7, α2 � 0.21, and α3 � 0.5 (the system being
stable) because the Nash equilibrium point E5 at this time
becomes E∗ � (x∗, y∗, z) � (1.0545, 1.4417 + 0.0879g,
(2.5/g − 7.0481− 0.0439g)). From Figure 18, it can be ob-
served that the equilibrium point is locally stable for small
values of the parameter g. When g increases, the Nash
equilibrium point E∗ becomes unstable, and even complex
dynamic phenomena appear such as period-doubling bi-
furcation and chaos. +e main reason is that the increase in
g increases the government’s variable cost, and the gov-
ernment has to reduce its policy intensity. When other
conditions remain unchanged, enterprises can obtain more
subsidies by increasing their output. At this time, the public
will reduce their supervision intensity due to the increase in
enterprises’ emission reduction. When g becomes too
large, the market cannot be balanced, and the decision-
making of the government, enterprises, and the public
cannot reach an equilibrium point any more until chaos
appears.

Figure 17(b) shows the bifurcation diagram with regard
to g while α1 � 1.25, α2 � 0.21, and α3 � 0.5 (the system being
in chaos). +e research shows that when the adjustment
speed of policy intensity α1 is too large, as g increases, the
public’s supervision intensity will decrease to zero, and the
system gradually evolves from chaos to period-doubling
bifurcation until reaching an equilibrium state. However,
when g continues to increase, a complex evolution similar to
that shown in Figure 17(a) will appear and eventually enter
chaos. Figure 17(c) shows the bifurcation diagram with
respect to g while α1 � 0.7, α2 � 0.315, and α3 � 0.5 (the
system being in chaos). It can be seen that when the ad-
justment speed of enterprises’ output α2 is too large, as g

increases, the government and enterprises are still in a
chaotic state. Figures 17(d) and 17(e) show the bifurcation
diagram with respect to g while α1 � 0.7, α2 � 0.21, and
α3 � 10 (the system being in chaos). When the adjustment
speed of the public’s supervision intensity α3 is too large, the
system gradually evolves from chaos to an equilibrium state

with an increase in g. +erefore, when α1 or α3 is too large,
increasing g can control chaos.

+e above numerical simulation shows that the market
price of nitrogen trading pe and the subsidy standard for
the reduction of nitrogen emission g are important factors
in the dynamic game among governments, enterprises,
and the public participating in the reduction of nitrogen
emissions in the basin. +ey not only influence the Nash
equilibrium point of the system but also affect the stable
region of the system.

5. Chaos Control

+rough model analysis and numerical simulation, it is
found that when α1, α2, or α3 exceeds the critical value, the
system (6) will lose stability. At this time, the chaotic
system will have a sensitive dependence on the initial
conditions, which means that the government, enterprises,
and the public would not be able to predict the market
development and any small adjustment of the initial
conditions. +erefore, it is very important to perform
chaotic control on the system (6) to ensure that it is in a
stable equilibrium state.

+ere are many chaos control methods.+is section uses
the delayed feedback control method proposed by Pyragas
[31] to control the chaos of the system (6). It is expressed as
u(t) � k(y(t + 1 − τ) − y(t + 1)), t> τ, where k is the
controlling factor and τ is the length of the time delay.
Substituting τ � 1 into the second equation of the system (6),
the controlled system can be modeled as
x(t + 1) � x(t) + α1x(t) T1 − 2c1gx(t) − g c2y(t) + c3z(t)( 􏼁􏼂 􏼃,

y(t + 1) � y(t) +
α2

(k + 1)
y(t) a1 + c2gx(t) − 2by(t)􏼂 􏼃􏼡,

z(t + 1) � z(t) + α3z(t) mx(t) − M1􏼂 􏼃,

(18)

and the Jacobian matrix of (17) at the Nash equilibrium
point E5 is
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Figure 16: +e stability region of E5 in α1, α2 , and α3-plane for
g � 0.32.
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Figure 17: Bifurcation diagram with respect to g: (a) α1 � 0.7, α2 � 0.21, and α3 � 0.5; (b) α1 � 1.25, α2 � 0.21, and α3 � 0.5; (c)
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J
’

E5( 􏼁 �

1 − 2α1c1gx∗ −α1c2gx∗ −α1c3gx∗

α2
(k + 1)

c2gy
∗ 1 −

α2
(k + 1)

2by
∗ 0

α3mz∗ 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

Figure 19 shows the bifurcation diagram with regard to
the control factor k, while the initial values of the other
parameters are fixed, and α1 � 0.7, α2 � 0.315, and α3 � 0.5.
Figure 18 shows the largest Lyapunov exponents with regard
to the control factor k. From Figure 19, with the increase in k,
the decision variables x(t), y(t), and z(t) can evolve from
chaos to periodic bifurcation and finally stabilize at the Nash
equilibrium levels. With a gradual increase in k, in the range
k> 0.384, the controlled system (18) becomes stable without
chaotic behaviors. +e effects of the control factor k on the
controlled system before and after chaos are shown in
Figure 20 when k� 0.45, and this figure depicts the change
process of the controlled system from chaos to a stable state
when the initial values of the bounded rational players are
(x0, y0, z0) � (0.7, 0.4, 0.3).

6. Conclusions

In this paper, bounded rationality, nitrogen emission
trading, and the subsidy of reductions in nitrogen emissions
are considered in terms of a dynamic game involving the
government, enterprises, and the public, and a decision-
making game model is established based on bounded ra-
tionality. At the same time, we analyzed the dynamic be-
havior of players with bounded rationality, the equilibrium
points of the model are discussed, and a three-dimensional
stability region of the Nash equilibrium point is presented.
+rough the discussion, it can be concluded that many
parameters such as the market price of nitrogen trading pe

and the subsidy standard of nitrogen emission reductions g

would affect the stability of the system; when the parameters
become beneficial for enterprises to reduce nitrogen emis-
sions, the chaotic market will restore, and the regional
stability of the system will decrease with the increase in the
parameters. Furthermore, the numerical simulation shows
the dynamic evolution process of the decisions of the par-
ticipants. +e results show that when the adjustment speed
values of the bounded rational player α1, α2, and α3 are small,
the system is stable. If one of α1, α2, and α3 increases beyond
the stability region of the Nash equilibrium point, bifur-
cation, chaos, and other dynamic behaviors will occur. Fi-
nally, it is proven that the delayed feedback control method
can effectively control the system in a chaos state to restore
the stable equilibrium market.
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In this paper, a new 4D memristor-based chaotic system is constructed by using a smooth flux-controlled memristor to replace a
resistor in the realization circuit of a 3D chaotic system. Compared with general chaotic systems, the chaotic system can generate
coexisting infinitely many attractors. +e proposed chaotic system not only possesses heterogeneous multistability but also
possesses homogenous multistability. When the parameters of system are fixed, the chaotic system only generates two kinds of
chaotic attractors with different positions in a very large range of initial values. Different from other chaotic systems with
continuous bifurcation diagrams, this system has discrete bifurcation diagrams when the initial values change. In addition, this
paper reveals the relationship between the symmetry of coexisting attractors and the symmetry of initial values in the system. +e
dynamic behaviors of the new system are analyzed by equilibrium point and stability, bifurcation diagrams, Lyapunov exponents,
and phase orbit diagrams. Finally, the chaotic attractors are captured through circuit simulation, which verifies
numerical simulation.

1. Introduction

Memristor was first proposed by Chua [1] in 1971 and is the
fourth basic electronic component manufactured by HP
Labs in 2008 [2]. +e discovery of memristors has caused an
upsurge in studying and applying memristors. Due to the
nonlinearity of memristor, it has been applied inmany fields,
such as flashmemory [2, 3], neuromorphic computing [4, 5],
neural network [6, 7], and chaotic system [8–11] based on
chaos synchronization for encryption algorithms [12, 13]
and secure communication [14, 15].

Memristor is a nonlinear element, and its resistance
depends on the voltage or current signal, so it has been
widely used in the construction of chaotic circuits in recent
years [16–19]. In 2008, Itoh and Chua proposed together a
Chua’s chaotic circuit based on memristor. +e dynamic
analysis results show that Chua’s chaotic circuit based on
memristors has more complex dynamic characteristics than
classic Chua’s chaotic circuit [17]. In 2010, a Chua’s chaotic

circuit based on memristance was proposed by replacing
Chua’s diode with a smooth flux-controlled memristor and a
negative conductance [18]. In 2017, a multiscroll hyper-
chaotic system was proposed by introducing the memristor
into the jerk multiscroll system, and the numbers of scrolls
can be controlled by adjusting the coefficient before the term
related to memristor [19].

In recent years, multistability [20–25] and extreme
multistability [26–32] have become research hotspots in the
field of chaotic systems. Multistability means that when the
system parameters remain unchanged, the system can
generate more than one attractor with different initial values.
When the number of attractors is infinite, this phenomenon
is called extreme multistability. Coexisting attractors and
hidden coexisting attractors are shown in a memristive
system with many equilibrium points in reference [23]. A
wing-variable chaotic system with coexisting twin-wing
attractors is proposed by replacing one of the resistors of the
pseudo-four-wing chaotic system with a memristor in
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reference [24]. In the same year, a memristor-based chaotic
system is constructed by introducing an ideal flux-controlled
memristor with absolute value nonlinearity into an existing
hypogenetic chaotic jerk system, which can exhibit the
extreme multistability phenomenon in reference [31]. A
simplest third-order memristive chaotic system with hidden
attractors is proposed, which exhibits the extreme multi-
stability phenomenon of coexisting infinitely many attrac-
tors in reference [32].

Although multistability and extreme multistability in
memristive chaotic systems had been reported in many
existing papers, most of them researched the heterogeneous
multistability of chaotic systems, and homogenous multi-
stability was rarely reported. Heterogeneous multistability
means that under the same parameters, the chaotic system
has some chaotic attractors with different structures, while
homogenous multistability means the chaotic system can
generate attractors with the same structure, but the am-
plitudes and positions of their attractors can be different. In
this article, the mathematical model of a memristor is
employed to construct the chaotic system owning hetero-
geneous and homogenous multistabilities. Besides, the
presented memristor-based system displays other complex
dynamic characteristics, including constant Lyapunov ex-
ponents, discrete bifurcation diagrams, the symmetry of
coexisting attractors, and so on.

+e rest of this paper is organized as follows. In Section
2, a new chaotic system based on the model of a memristor is
studied. And basic properties of the proposed system are
investigated, including symmetry and dissipation, equilib-
rium, and stability. In Section 3, complex dynamic behaviors
of the memristor-based chaotic system are analyzed. In
Section 4, extreme multistability of the chaotic system is
investigated by bifurcation diagrams and Lyapunov expo-
nent spectra, and the dynamic analysis results show that the
chaotic system possesses not only heterogeneous multi-
stability but also homogenous multistability. In Section 5,
the presented chaotic system is realized by analog circuit and
the experimental results are given. Finally, some conclusions
are drawn.

2. Basic Properties of the Memristive
Chaotic System

A 3D pseudo-four-wing chaotic system was proposed by Liu
and Chen [33, 34]. Actually, it is a coexisting two-wing
system, and it can be described as follows:

_x � ax − byz,

_y � − cy + xz,

_z � − dz + xy,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where a, b, c, and d are all constants and x, y, and z are the
state variables.

By utilizing a smooth flux-controlled memristor to
substitute a resistor in realization circuit of system (1), a
novel 4D memristor-based chaotic system is given by

_x � ax − byz,

_y � − cy + xz + eW(w)x,

_z � − dz + xy,

_w � hx,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where e and h are positive parameters and W(w) is a
memductance function.

+e memductance function W(w) is shown as

W(w) � f + 3gw
2
, (3)

where f and g are two positive constants and w is the state
variable.

2.1. Symmetry and Dissipativity. +e symmetry property of
chaotic systems is an important property. +e memristive
chaotic system (2) is invariant if we do the transformation
(x, y, z, w)⟶ (− x, − y, z, − w), which means system (2)
has to be symmetric with respect to z axis in state space.

+e dissipativity of system (2) is expressed by the fol-
lowing formula:

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
+

z _w

zw
� a − c − d. (4)

When a, c, and d satisfy condition a − c − d< 0, the
system is dissipative. It means that the volume of phase space
will be contracted to zero in exponential form e− (a− c− d) and
all trajectories of the system are confined to zero volume.

2.2. Equilibria and Stability. Let the terms on left-hand side
of system (2) be zero, and we can easily observe that the
system has a line equilibrium

O � (x, y, z, w) | x � y � z � 0, w � k􏼈 􏼉, (5)

where k is any real constant.
By linearizing system (2) at point O, we can obtain the

Jacobian matrix of the equation on O.

Jo �

a 0 0 0

eW(k) − c 0 0

0 0 − d 0

h 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

According to the Jacobian matrix (6), the characteristic
equation can be obtained as follows:

λ(λ − a)(λ + c)(λ + d) � 0. (7)

We can solve its eigenvalues easily, and they can be
expressed by

λ1 � 0,

λ2 � a,

λ3 � − c,

λ4 � − d.

(8)
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+e values of a, c, and d are all positive, so λ3 and λ4 are
always negative, and λ2 is always positive. +erefore, system
(2) has an unstable saddle point.

3. Dynamics of the Memristor-Based
Chaotic System

3.1. Phase Portraits and Lyapunov Exponents. +e Lyapunov
exponent spectra are an effective way of judging whether the
system has chaotic behavior. +e main characteristics of
nonlinear dynamical systems can be described by the
number of positive Lyapunov exponents. When the system
has only one Lyapunov exponent greater than zero, the
system has chaotic dynamic behavior. When a nonlinear
system has more than two or equal to two Lyapunov ex-
ponents greater than zero, the system has hyperchaotic
dynamic behavior.

When the parameters of the chaotic system are set as
a � 4, b � 6, c � 20, d � 5, e � 0.01, f � 1, 3g � 0.1, and h �

0.1 and the initial conditions are set to (1, 1, 0, 0), system (2)
can generate chaotic attractor as shown in Figure 1. +e
corresponding Lyapunov exponents are computed as 0.5161,
− 0.0104, − 0.0645, and − 21.5665, and the Lyapunov di-
mension dL � 3.0204, which indicates the system has cha-
otic behavior.

3.2. Poincaré Projection. +e Poincaré projection is another
effective way of judging whether the system has chaotic
behaviour. Take projections x � 0, y � 0, z � 6, and w � 1.4,
respectively, and the system obtains the Poincaré projections
as shown in Figure 2. A large area of points can be observed
in these pictures, which indicate that the system has chaotic
behaviour.

4. Extreme Multistability in the Memristor-
Based Chaotic System

4.1. Dynamic Analysis of Heterogeneous Multistability.
Heterogeneous multistability means under the same pa-
rameters, a system can generate several or even infinitely
many coexisting attractors with different structures, while
homogenous multistability means that a chaotic system can
generate the same structure coexisting attractors but with
different positions or amplitudes.

In system (2), when the parameters are set as a � 4,
b � 6, c � 20, d � 5, e � 0.01, f � 1, 3g � 0.1, and h � 0.1
and initial conditions are set as (1, 0, 0, w(0)), the system can
generate various coexisting attractors depending on w(0).
+e typical chaotic attractors are shown in Figure 3. Besides,
system (2) can generate other kinds of coexisting attractors,
coexisting limit cycle attractors, and symmetric limit cycle
attractor as shown in Figures 4, 5, and 6, respectively.

When w(0) is changed in the region [− 50, 50], the bi-
furcation diagram of the state variable w and Lyapunov
exponent spectra are shown in Figures 7(a) and 7(b), re-
spectively. As shown in Figure 7(a), the bifurcation diagram
of the state variable w is almost linear. It can be seen from
Figure 7(b) that the chaotic attractor with a positive

Lyapunov exponent is mainly located at the region
[− 36, − 32], [− 22, 22], and [32, 35] (the last Lyapunov ex-
ponent is not displayed because it is always a big negative
number). And system (2) can also generate other kinds of
attractors and limit cycle attractors, which means the system
has heterogeneous multistability.

4.2. Dynamic Analysis of Homogenous Multistability. +e
parameters of system (2) remain unchanged, and the initial
conditions are set as (x(0), 1, 0, 0). When x(0) is varied in
the region [− 104, 104], the bifurcation diagrams of the state
variable z, the state variable w, and its Lyapunov exponent
spectra are plotted in Figures 8(a), 8(b), and 8(c), re-
spectively. Besides, when x(0) is varied in the region
[− 0.1, 0.1], Lyapunov exponent spectra are plotted in
Figure 8(d).

It can be seen from Figure 8(a) that when the initial
condition x(0) is varied in the region [− 104, 104], the state
variable z shows two kinds of steady chaotic states. When
x(0) is varied in the region [− 104, 0), state variable z is
located below or above the z axis, while x(0) is varied in the
region (0, 104], the state variable z is all located above the z

axis. From Figure 8(b), when the initial condition x(0) is
varied in the region [− 104, 104], there are many discrete
small line segments in bifurcation diagram of the state
variable w, which means the state variable w exists in infinite
steady chaotic states. And this phenomenon also indicates
the system can generate coexisting infinitely many attractors,
which means system (2) has the extreme multistability.
Different from other systems possessing extreme multi-
stability, system (2) only generates two kinds of chaotic
attractors with different positions in a very large range of
initial values, which are distributed along the w axis par-
allelly. As shown in Figure 8(c), it is obvious that the four
Lyapunov exponents are always approximately constant and
the largest Lyapunov exponent is always positive except for
the zero point when x(0) is varied in the region [− 104, 104],
which means system (2) can exhibit chaotic behavior except
zero point. Figure 8(d) shows that the region cannot exhibit
chaotic behavior which is very small.

Considering the particularity of system (2), it is neces-
sary to discuss the system when x(0) � 1. +e control pa-
rameters of system (2) remain unchanged, and the initial
conditions are set as (0, 1, 0, 0). +e LEs are 4.0002, − 0.2034,
− 5.0005, and − 19.8272, which means system (2) cannot
exhibit chaotic behavior under this circumstance.

It has been confirmed that there are coexisting infinitely
many attractors in chaotic system (2) according to the above
analysis. When x(0) is set to 10, − 10, 50, +50, 100, − 100, and
1, respectively, the phase portraits of coexisting infinitely
many attractors in the x − w plane, the y − w plane, the z −

w plane, and the w − z − x space are shown in Figures 9(a),
9(b), 9(c), and 9(d), respectively. Figure 9 clearly reveals the
coexistence of a large number of same attractors with dif-
ferent positions, which implies the emergence of homoge-
nous multistability. +is result of the phase portraits is
consistent with the bifurcation diagrams and Lyapunov
spectrum with respect to initial condition x(0).
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+e parameters of system (2) are set as a � 4, b � 6,
c � 20, d � 5, e � 0.01, f � 1, 3g � 0.1, and h � 0.1, the
initial conditions are set as (1, y(0), 0, 0), and the initial
condition y(0) is used as the independent variable of bi-
furcation diagram. When y(0) is changed in the region
[− 104, 104], the bifurcation diagram of the state variable w

and its Lyapunov exponent spectra are plotted in
Figures 10(a) and 10(b), respectively. As can be seen from
Figure 10(a), when the initial condition y(0) is changed in
the region [− 104, 104], there are many discrete small line
segments in bifurcation diagram of the state variable w,
which implies that there are coexisting infinitely many
attractors in system (2). It can be clearly seen from
Figure 10(b) that four Lyapunov exponents are always ap-
proximately constant and largest Lyapunov exponent is
always positive when is y(0) changed in the region
[− 104, 104], which means system (2) only exhibits chaotic
behavior.

+e parameters of system (2) are set as a � 4, b � 6,
c � 20, d � 5, e � 0.01, f � 1, 3g � 0.1, and h � 0.1, the
initial conditions are set as (1, 0, z(0), 0), and the initial
condition z(0) is used as the independent variable of bi-
furcation diagram. When z(0) is changed in the region

[− 104, 104], the bifurcation diagram of the state variable w

and its Lyapunov exponent spectra are plotted in
Figures 11(a) and 11(b), respectively. +e bifurcation dia-
gram of the state variable w and its Lyapunov exponent
spectra are similar with those with the initial conditions set
as (1, y(0), 0, 0). Many discrete small line segments are more
closely clustered in the bifurcation diagram of the state
variable w for the initial conditions set as (1, 0, z(0), 0)

compared with the one for the initial conditions set as
(1, y(0), 0, 0). And Lyapunov exponent spectra for the initial
conditions set as (1, 0, z (0), 0) are similar with the ones for
the initial conditions set as (1, y(0), 0, 0), and four Lyapunov
exponents are always approximately constant and largest
Lyapunov exponent is always positive when z(0) is changed
in the region [− 104, 104].

4.3. Symmetry in Infinitely Many Coexisting Attractors.
Obviously, system (2) is invariant if we do the transfor-
mation (x, y, z, w)⟶ (− x, − y, z, − w), which means that
(x, y, z, w) and (− x, − y, z, − w) are all solutions to the
equation of the system. +is symmetry characteristic of
system (2) could be served to explain the presence of
symmetric coexisting attractors in state space.
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Figure 1: Phase portraits of system (2) when a � 4, b � 6, c � 20, d � 5, e � 0.01, f � 1, 3g � 0.1, and h � 0.1: (a) projection on x − y plane,
(b) projection on x − z plane, (c) projection on y − z plane, and (d) 3D view in the x − y − z space.
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Figure 10: (a) Bifurcation diagram of the state variable w and (b) Lyapunov spectrum with respect to initial condition y(0) in the region
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Figure 13: (a) Bifurcation diagram of the state variable z and (b) bifurcation diagram of the state variable w with respect to initial conditions
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If we set parameters as a � 4, b � 6, c � 20, d � 5,
e � 0.01, f � 1, 3g � 0.1, and h � 0.1, the system can gen-
erate many pairs of symmetric coexisting attractors for the
corresponding conditions set as (x(0), y(0), z(0), w(0))

and (− x(0), − y(0), z(0), − w(0)). And two pairs of sym-
metric coexisting attractors of these are shown in Figure 12,
where the blue one and the red one are a pair of symmetric
attractors and the pink one and the cyan one are another pair
of symmetric attractors. +e projections of the symmetric
attractors on the coordinate planes can be shown in the form
of central symmetry or axial symmetry. In system (2), it is
centrosymmetric on the x − y plane, the x − w plane, and
the y − w plane and axisymmetric on the x − z plane, the

y − z plane, and the z − w plane. It is worth noting that the
structures of many coexisting attractors in Figure 9 are the
same roughly, and there are differences in the details. But the
structures of each pairs of coexisting attractors in Figure 12
are symmetric exactly.

In order to further verify symmetry of coexisting infi-
nitely many attractors in chaotic system (2), bifurcation
diagrams of the state variable z and the state variable w are
given. +e parameters of system (2) are assigned as a � 4,
b � 6, c � 20, d � 5, e � 0.01, f � 0.1, 3g � 0.1, and h � 0.1,
and the initial conditions are set as (1, 1, z(0), 1), and the
initial condition z(0) is used as the independent variable of
bifurcation diagram. When z(0) is varied in the region
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Figure 15: Circuit diagram of memristive system (2).
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[–100, 100], the bifurcation diagrams of the state variable z

and the state variable w are plotted in Figures 13(a) and
13(b), respectively. Similarly, the parameters of system (2)
remain unchanged, the initial conditions are set as
(− 1, − 1, z(0), − 1), and the initial condition z(0) is used as
the independent variable. When z(0) is varied in the region
[100, − 100], the bifurcation diagrams of the state variable z

and the state variable w are plotted in Figures 14(a) and
14(b), respectively.

A comparison of the Figures 13(a) and 14(a) indicates
that bifurcation diagrams of the state variable z for the initial
conditions set as (1, 1, z(0), 1) and (− 1, − 1, z(0), − 1) are the
same exactly. And a comparison of the Figures 13(b) and
14(b) shows that they are symmetric about the horizontal
axis. +is phenomenon reflects the fact that when the pa-
rameters of system (2) set as a � 4, b � 6, c � 20, d � 5,
e � 0.01,f � 1, 3g � 0.1, h � 0.1, the structures of coexisting
attractors with conditions set as (1, 1, z(0), 1) and
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Figure 16: PSpice simulated phase portraits of chaotic attractors with initial voltages (1V, 0.1V, 0V, 0V).
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(− 1, − 1, z(0), − 1) are symmetric with respect to z coordi-
nate axis.

We compared the advantages and disadvantages of this
system with other improved Liu-and-Chen systems in the
literature [11, 23, 24]. +e system proposed in reference [11]
is a three-dimensional chaotic system without memristor.
And it can generate three-scroll and four-scroll chaotic
attractors.+e system in reference [23] is a four-dimensional
chaotic system with two memristors, which can generate

various kinds of attractors and hidden attractors.+e system
in reference [24] is a four-dimensional chaotic system with a
memristor, which can generate three-wing, four-wing, and
coexisting two-wing chaotic attractors. It has line equilib-
rium points. +is system has a line equilibrium, within
which the attractors generated are hidden.+e new system is
a four-dimensional chaotic system with a memristor, which
can generate coexisting infinitely many attractors distributed
along the w axis parallelly. It produces hidden attractors
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Figure 17: PSpice simulated phase portraits of chaotic attractors with initial voltages (− 1V, 0.1V, 0V, 0V).
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because it has a line equilibrium. In addition, the system has
discrete bifurcation diagrams and many symmetrical
coexisting attractors. Compared with above improved Liu-
and-Chen systems, we can find that chaotic systems with
memristor have more complex dynamic behaviors than
chaotic systems without memristor and are more likely to
have extreme multistability.

5. Circuit Implementation

In this section, complex dynamic behaviors of the proposed
chaotic system can be observed by analog circuit, where
integrated operational amplifiers and multipliers are used to
construct the circuit for generating chaotic attractors. Supply
voltages of operational amplifiers are E � ± 15V. +e input
and output range of all the multipliers is between − 15V to
15V. However, the values of the state variables x, y, z, and w

may be out of this range. +us, it is necessary that state
variables x, y, z, and w are compressed to the 1/10 of original
system to be limited in the region of (− 15V, 15V), which is
the reference voltage of the operational amplifiers. At the
same time, taking the time scale factor RC into account,
system (2) after scale transformation can be represented as
follows:

RC _x � ax − 10byz,

RC _y � − cy + 10xz + e f + 300gw2( 􏼁x,

RC _z � − dz + 10xy,

RC _w � hx.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

A flux-controlled memristor depicted in the dashed box
of Figure 15 is applied to construct the chaotic circuit. +e
analog circuit of system (2) is shown in Figure 15. +e state
equations can be obtained as follows:

C1 _vx �
vx

R1
−

vyvz

R2
,

C2 _vy � −
vy

R3
+

vxvz

R4
+

vx

Rc

+
vxv2w
Rb

􏼠 􏼡,

C3 _vz � −
vz

R5
+

vxvy

R6
,

C4 _vw �
vx

Ra

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where vx, vy, vz, and vw are the voltages on capacitors.
Compared with (9) and (10), the parameters are taken as
follows: C1 � C2 � C3 � C4 � C, R1 � (R/a), R2 � (R/10b),
R3 � (R/c), R4 � (R/10), R5 � (R/d), R6 � (R/10),
Ra � (R/h), Rb � (R/(e∗3g∗100)), and Rc � (R/ef).

System (2) can generate coexisting infinitely many
attractors when the parameters are set as a � 4, b � 6, c � 20,
d � 5, e � 0.01, f � 1, 3g � 0.1, and h � 0.1. Let us take R �

100 kΩ and C � 10000 nF, and the resistance parameters can
be obtained as R1 � 25 kΩ, R2 � 1.67 kΩ, R3 � 5 kΩ,
R4 � 10 kΩ, R5 � 20 kΩ, R6 � 10 kΩ, Ra � 1000 kΩ,
Rb � 1000 kΩ, and Rc � 10000 kΩ. Also, the initial voltages

of all capacitors are set as (1V, 0.1V, 0V, 0V) (initial
voltages of all capacitors should be compressed to the 1/10 of
original values). According to the above parameter settings,
circuit simulation of chaotic attractor can be obtained by
PSpice as shown in Figure 16. Similarly, when the initial
voltages of all capacitors are set as (− 1V, 0.1V, 0V, 0V),
circuit simulation of chaotic attractor can be obtained by
PSpice as shown in Figure 17. Obviously, the chaotic
attractors obtained in the analog circuit well verify those
shown by numerical simulations.

6. Conclusion

A new memristor-based chaotic system with coexisting in-
finitely many attractors is proposed by using a smooth flux-
controlled memristor to replace a resistor in the analog circuit
of the three-dimensional chaotic system.+e system has a line
equilibrium and exhibits homogenous and heterogeneous
multistabilities. +e dynamical behaviors of the system are
analyzed by equilibrium point and stability, phase portraits,
bifurcation diagrams and Lyapunov exponent spectra, and so
on. Compared with general chaotic systems, this chaotic
system has some special properties. When the parameters of
system are fixed, the chaotic system only generates two kinds
of chaotic attractors with different positions in a very large
range of initial values and has constant Lyapunov exponent
spectra. In addition, the system has discrete bifurcation di-
agrams, which has not been found in existing chaotic systems.
Further, the relationship between the symmetry of the
coexisting attractors and the symmetry of initial values in the
system is explored and verified by phase portraits and bi-
furcation diagrams. Finally, the chaotic system is realized by
analog circuit, and the numerical simulation results are
verified by the simulation results of the analog circuit. +e
complex dynamical behaviors of the proposed system are very
useful for various chaos-based information encryption and
secure communication applications.
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2Unité de Recherche de Matière Condensée, d’Electronique et de Traitement du Signal (UR-MACETS), Department of Physics,
University of Dschang, P.O. Box 67, Dschang, Cameroon
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Symmetry is an important property found in a large number of nonlinear systems. +e study of chaotic systems with symmetry
is well documented. However, the literature is unfortunately very poor concerning the dynamics of such systems when their
symmetry is altered or broken. In this paper, we investigate the dynamics of a simple jerk system with hyperbolic tangent
nonlinearity (Kengne et al., Chaos Solitons, and Fractals, 2017) whose symmetry is broken by adding a constant term modeling
an external excitation force. We demonstrate that the modified system experiences several unusual and striking nonlinear
phenomena including coexisting bifurcation branches, hysteretic dynamics, coexisting asymmetric bubbles, critical transitions,
and multiple (i.e., up to six) coexisting asymmetric attractors for some suitable ranges of system parameters. +ese features are
highlighted by exploiting common nonlinear analysis tools such as graphs of largest Lyapunov exponent, bifurcation diagrams,
phase portraits, and basins of attraction. +e control of multistability is investigated by using the method of linear aug-
mentation. We demonstrate that the multistable system can be converted to a monostable state by smoothly adjusting the
coupling parameter. +e theoretical results are confirmed by performing a series of PSpice simulations based on an electronic
analogue of the system.

1. Introduction

Recently, a particular attention has been paid to the study of
nonlinear and chaotic dynamic systems. +is is due to the
rapid development of increasingly powerful computers on
the one hand and on the other hand to the many potential
applications in several fields of science and engineering.
+ese systems are capable of several forms of complexity
such as chaos, hyperchaos, multirhythmicity, bifurcations,
intermittency, hysteresis, and multistability [1–3]. Con-
cerning the latter feature, it should be noted that a

multistable dynamic system is capable of displaying two or
more attractors for the same set of parameters. In this sit-
uation, each of the coexisting attractors is connected with an
attraction basin that represents all the initial conditions
leading to the underlined attractor [4]. Fixed points, limit
cycles, toruses, and chaotic attractors can coexist in the same
system, in various combinations depending on the choice of
parameters. +e term extreme multistability refers to the
situation where an infinite number of attractors coexist
[5–9]. Multistability is relevant from the view point of
practical application as it may give rise to unexpected and
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even disastrous consequences [10]. If the phenomenon of
multistability is encountered in dynamic systems with no
symmetry property, it should be noted that symmetric
systems are much more likely to develop this phenomenon
[10]. Concerning the symmetry property, it should be
mentioned that it is shared by many systems in several fields
of science and engineering [2, 4]. In addition to multi-
stability mentioned above, symmetric dynamic systems
exhibit interesting behaviors such as period doubling,
spontaneous symmetry breaking, merging crisis, hysteresis,
and intermittency [1]. +e study of symmetrical systems is
well documented. However, to the best of the authors’
knowledge, the literature is very poor concerning the be-
havior of these systems when their symmetry is altered or
broken. +e symmetry break purposefully induced in a
nonlinear dynamical system may be adjusted to discover
many complex nonlinear phenomena (e.g., multi-
rhythmicity, bursting, coexisting bubbles, hysteresis, critical
transitions, and coexisting multiple asymmetric attractors)
as previously discussed in several nonlinear systems [11–17].

In this work, we consider a simple jerk system with
hyperbolic tangent nonlinearity [18] whose symmetry is
broken by the introduction of an additive constant k. We
address the chaos generation mechanism, the formation of
bubbles of bifurcation, and the coexistence of multiple
attractors in both the symmetric (k � 0) and the asymmetric
(k≠ 0) regimes of operation. For convenience, recall that
jerk dynamic systems [19–23] refer to 3D ordinary differ-
ential equations (ODEs) in the form x

...
� J(x, _x, €x) where the

nonlinear vector function J(·) indicates the “jerk” (i.e., the
time derivative of the acceleration). +e hyperbolic tangent
function is relevant in numerous problems such as nonideal
operational amplifiers, activation function in neural net-
work, magnetization in ferromagnetic systems, and solar
wind-driven magnetosphere-ionosphere systems [24–28].
Multistability in simple jerk dynamic systems has recently
drained tremendous research interest in varied fields of
science and technology resulting in several publications. On
this line, Kengne and colleagues reported the coexistence of
four self-excited mutually symmetric attractors in a jerk
system possessing a cubic nonlinearity [23] based on both
numerical and experimental methods. +is striking feature
of multiple attractors is mainly due to the system’s symmetry
and thus is also obtained with a hyperbolic sine [29], a
hyperbolic tangent [18], a composite tanh-cubic nonlinearity
[21], or a voltage controlled memristor [30], whose intrinsic
current-voltage characteristics has the form of a pinched
hysteresis loop. Despite the pertinence and the importance
of the abovementioned results, we would like to stress that all
cases of multistability discussed so far is restricted to
symmetric jerk systems; also, multistability in jerk dynamic
systems in case of a broken symmetry is very little studied.
Motivated by previous results on jerk dynamical systems,
this paper focuses on the effects engendered by symmetry
break in a simple autonomous jerk system with hyperbolic
tangent nonlinearity previously analyzed in [18]. +us, the
novel chaotic flow is smoothly tuned to behave either
symmetrically or to develop no symmetry property using a
single parameter. Importantly, the investigations clearly

reveal that the modified system can experience coexisting
bubbles of bifurcation, coexisting multiple (symmetric or
asymmetric) attractors, and crises phenomena not found in
the original symmetric system [18]. Despite the fact that the
addition of a constant term may be viewed as a purely
mathematical technique to induce new nonlinear phe-
nomena, one of the key motivations is that symmetries are
rarely exact in real physical systems, and some symmetry-
breaking imperfections are always present [31–33].

+e structure of the paper is as follows. Section 2 de-
scribes the evolution equations of the modified jerk system
with hyperbolic tangent and analyses possible symmetries.
Analytical conditions for the occurrence of Hopf-type
bifurcations are established, and the stability of the equi-
librium points is investigated with respect to parameters. In
Section 3, numerical results concerning the bifurcation
behaviour of the model, the coexistence of numerous
attractors, and the coexistence of bubbles of bifurcation are
presented. +e control of multistability based on the linear
augmentation scheme is described in Section 4. Section 5 is
concerned with the experimental study of the modified
system. A convenient electronic circuit (i.e., the analogue
simulator) is designed for investigating the extremely
complex dynamics of the system. PSpice simulation ex-
periment supports the results of the theoretical study.
Finally, Section 6 presents the conclusions of the whole
work.

2. Description and Analysis of the Model

2.1. 4e Model. +e state equation of the autonomous jerk
system, which is considered in this work, is expressed by the
following third-order nonlinear system (ODEs) with a single
nonlinear function:

_x1 � x2,

_x2 � ax3,

_x3 � −cx2 − μx3 + φk x1( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩
(1a)

φk x1( 􏼁 � −k − 3 x1 − 2 tanh x1( 􏼁( 􏼁, (1b)

where a, μ, and c denote (real) positive control parameters.
Notice that the nonlinearity is smooth and involves only one
state variable (i.e., x1). Here, k is the symmetry control
parameter of the model. Specifically, for k � 0, system (1)
exhibits a perfect symmetry and reduces to the case pre-
viously studied by Kengne and coworkers [18].+e case k≠ 0
corresponds to an asymmetric model for which more
complex nonlinear phenomena arise (that cannot be
explained by using the symmetry arguments) including, for
instance, the presence of multiple coexisting asymmetric
attractors, coexisting bifurcation branches, and crisis events
(see Section 4). +e graphical representations of the non-
linear function φk(·) are provided in Figure 1 for several
discrete values of parameterk. Interestingly, we would like to
quote that the hyperbolic tangent nonlinearity has also been
considered inmany problems related to neural networks and
Chua’s system as well [24–28]. +e inclusion of this non-
linear term in model (1) engenders the extremely complex
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and striking bifurcation patterns developed by the whole
system.+emost “elegant” form [4] of system (1) is achieved
by expressing it as a jerk equation:

x
...

� −ac _x − μ€x + aφk(x). (2)

Finally, it should be remarked that the state variable x1
appears solely in the third equation and, consequently,
represents an offset boosted variable [34, 35].

2.2. Symmetry and Dissipation. As previously indicated
above, it can easily be seen that systems (1a) and (1b) are
symmetric with respect to the origin of the coordinates for
the special casek � 0.0. For this singular case, systems (1a)
and (1b) represent an inversion invariant nonlinear dynamic
system, provided that it remains unchanged when per-
forming the coordinate substitution: (x1(t),x2(t),x3(t))⟺
(−x1(t),−x2(t),−x3(t)). As a result, all attractors of systems
(1a) and (1b) occur either as individual symmetric attractors
or as mutually symmetric couples. +is property is the key
ingredient to justify the presence of multiple coexisting
stable states appearing for some suitable sets of system
parameters. More importantly, a suitable exploitation of the
symmetry property of the evolution equation simplifies
considerably the numerical experiment (e.g., the stability
analysis, the calculation of phase space trajectory, and the
basins of attraction as well).

More generally, systems (1a) and (1b) are nonsymmetric
for any value of k≠ 0.0. However, we notice the invariance of
systems (1a) and (1b) following the coordinate
transformation(x1(t), x2(t), x3(t), k)⟺(−x1(t), −x2(t), −

x3(t), −k). Consequently, we restrict our analysis for positive
values of parameter k all over this work. +e dynamics for
negative values of k can be deduced from the latter
transformation.

+e divergence of the vector field (1a) and (1b) is
computed as follows:

Λ �
z _x1

zx1
+

z _x2

zx2
+

z _x3

zx3
,

�
z x2( 􏼁

zx1
+

z ax3( 􏼁

zx2
+

z −k − cx2 − μx3 − 3x1 + 6 tanh x1( 􏼁( 􏼁

zx3
,

� −μ< 0.

(3)

It follows that, for any point x � (x1, x2, x3) in phase
space, the divergence is always negative. Accordingly, system
(1) is dissipative and consequently can develop attractors
[1–3].

2.3. Fixed Point Analysis. +e study of equibria always
represents the first issue to be addressed when performing
the investigation of a nonlinear dynamic system.+eir study
yields preliminary insights into the dynamics of complete
system [1–4]. By equating to zero all the derivatives in system
(5), we found that (see Figure 1), for |k|< kmax ≈ 7.57, there
exist three different rest points En � (xn, 0, 0) (n � 0, 1, 2),
where xj verifies the following transcendental equation:

k + 3(x − 2 tanh(x)) � 0. (4)

In view of the graph presented in Figure 1, we notice that,
for |k| � kmax, the system has two fixed points, while a single
equilibrium point exists in case |k|> kmax.+roughout the rest
of this work, we restrict our analysis for values of k where the
system exhibits three fixed points. It should be remarked that,
for k � 0.0, the system displays three symmetric fixed points
amongst which the origin [18]. Using the set of parameters
defined above, the roots equation (4) have been numerically
obtained for two discrete values of k (i.e., k � 0.00 and
k � 0.25) by using the “fzero” build in function of Matlab.
Recall that the “fzero” function is a MATLAB subroutine to
search for the zeros of a single variable real-value function. As
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Figure 1: Graphical representation of the nonlinear function φk(x) � −k − 3x + 6 tanh(x) for four discrete values of the symmetry
parameter k. Notice that the number (one, two, or three) of zeros of φk(·) depends crucially on the value of parameter k.
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sample results, we have obtained the following fixed points: (i)
E0(0, 0, 0) and E1,2(±1.915, 0, 0) for k � 0.0; (ii)
E0(0.083, 0, 0), E1(1.813, 0, 0), and E2 (−2.013, 0, 0) for
k � 0.25. We notice that the positions of the equilibrium
points in state space are defined solely by the value of
parameter k. Evaluated at any given fixed point E(x, 0, 0), the
Jacobian matrix of system (1) takes the following form:

MJ �

0 1 0

0 0 a

3 − 6 tanh2(x) −c −μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

We obtain the related eigenvalues λj(j � 1, 2, 3) by
searching for the zeros of the characteristic polynomial:

Ρ(λ) � det MJ − λId􏼐 􏼑 � λ3 + μλ2 + acλ − 3a 1 − 2 tanh2(x)􏼐 􏼑,

(6)

where Id refers to the 3 × 3 identity matrix. From the graphs
in Figure 1, we notice that the equilibrium point E0 has its x-
coordinate with magnitude smaller than unity. Also, the
related characteristic polynomial possesses coefficients with
different signs, and thus, E0 is always unstable according to
the Routh stability theorem. +e stability of the pair of fixed
points (E1 and E2) changes with the values of parameters α
and c. From both the Routh–Hurwitz stability criterion [1, 2]
and the Hopf bifurcation theorem, we derived the following
results about the stability of the above pair of equilibrium
points. Each of the fixed points En(n � 1, 2) remains stable
only for values of c> cc(xn) � ccn � 3(2 tanh2(xn) − 1)/μ. If
the parameter c is brought beyond the critical value ccn, the
fixed point Ejbecomes unstable. We now investigate the
Hopf bifurcation related to the fixed point En (n � 1, 2) when
c is considered as the bifurcation control parameter. +e
following analytical conditions have been derived:

cH xn( 􏼁 � ccn �
3 2 tanh2 xn( 􏼁 − 1􏼐 􏼑

μ
, (7a)

ωH xn( 􏼁 �
����
accn

√
, (7b)

Re
dλ
dc|c�cc

􏼠 􏼡 �
−a

2 + 2accn

≠ 0. (7c)

As a result, systems (1a) and (1b) exhibit a Hopf bi-
furcation from En (n � 1, 2) when c � cH(xn), and a limit
cycle will develop around the point En (n � 1, 2). Equation
(7b) defines the frequency of oscillations (ωH), while the
transversality condition is expressed by equation (7c). As
sample numerical results, both equilibrium points E1 and E2
undergo a Hopf bifurcation at c � cc1 � cc2 ≈ 2.496 for k �

0.0 and μ � 1.0. In contrast, for k � 0.25 and μ � 1.0, the
Hopf bifurcation values are cc1 ≈ 2.40 and cc2 ≈ 2.58, re-
spectively, for E1 and E2. From the study presented above,
we conclude that both three equilibriums are unstable in any
regime (periodic or chaotic oscillations) of operation, and
systems (1a) and (1b) exhibit self-excited attractors ac-
cordingly [36,37].

3. Numerical Study

3.1. Scenario to Chaos. To highlight the influence of system
parameters on the dynamics of the system, we keep a � 10.0
and use c and k as control parameters. Figure 2 provides the
bifurcation diagrams of the coordinate x1 against cand
related plots of largest Lyapunov exponent [38] for two
different values of k (i.e., k � 0.00 and k � 0.25). +ese
diagrams are obtained by scanning the parameter downward
without resetting the values of initial conditions, starting the
system from the initial state (±0.5, 0, 0), respectively. We
know that, for k � 0.0 (see Figure 2), the system is symmetric
as well as related dynamical structures (i.e., equilibrium
points, attractors, and basins of attractions). For this par-
ticular case, it can be seen from the diagram of Figure 2 (left
panel) that there exist two symmetric bifurcation branches
(blue and magenta), exhibiting a period doubling sequence
to chaos for decreasing c. +ese branches merge at ap-
proximately c � 1.0 via the well-known symmetry recov-
ering the crisis process. At this point, two mutually
symmetric mono-scroll chaotic attractors (corresponding to
the blue and magenta branches) combine to form a double-
scroll strange attractor (see Figure 3). Completely different
routes are found in the nonsymmetric system (i.e., k≠ 0.0).
In fact, for a nonzero value of parameter k (e.g., k � 0.25), it
can be captured from Figure 2 (right panel) that a pair of
asymmetric limit cycles with different periodicity experi-
ences each its own route of period doubling cascade to chaos
when the control parameter c is decreased in small steps.
Accordingly, blue and magenta bifurcation branches display
a horizontal shift which increases with parameter k. For
example, in the bifurcation plot of Figure 2 (right panel), the
first period doubling takes place at c � 0.15 for the blue
branch and c � 0.25 for the red one. Here, the merging
process never occurs. Instead, the series of period doublings
of coexisting asymmetric cycles yields an asymmetric
double-scroll strange attractor (see Figure 4). Moreover,
most fascinating properties of the asymmetric system is the
sudden disappearance (via a critical transition) of one of the
bifurcation branches (i.e., the magenta branch; see Figure 2)
when decreasing the control parameter c for any nonzero
value of k. Past this crisis event, the system experiences a
single attractor that metamorphoses to an asymmetric
double-scroll chaotic attractor as cis further decreased.

3.2. Coexistence of Multiple Attractors. +e coexistence of
multiple stable states [10] is one of the most attractive
properties the jerk system considered in this work. +is
intriguing feature has been deeply investigated for the
symmetric system (i.e., k � 0.00) in the reference work [18].
In this section, we investigate the impact of the excitation
term (k) on the mechanism governing the generation of
multiple solutions. In this regard, several bifurcation plots
are produced following appropriate numerical techniques
[18] in order to track parameter domains corresponding to
the presence of multiple coexisting stable states. As sample
results, Figure 5 shows the bifurcation diagrams of local
maxima of x1 variable, obtained when varying parameter a
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Figure 3: Continued.
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Figure 2: Bifurcation diagrams (a, b) of the system showing local maxima of the coordinate x1 versus parameter c computed for a � 5 both
for the symmetric (k� 0.000) and the asymmetric (k� 0.250) modes of oscillations. +e corresponding graph of maximal Lyapunov
exponent is shown in the lower panel (c, d).
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in the range 5≤ a≤ 30 for four discrete values of k. Details of
numerical procedures employed to produce these plots are
described in Table 1. +ese diagrams display the intricate
phenomenon of parallel branches and hysteresis which
justify the occurrence of multiple attractors for several
parameter sets. More importantly, notice that the merging
process does occur for the symmetric system (i.e., k � 0.00).
In contrast, one of the branches undergoes a critical tran-
sition and collapses for nonzero values of parameter k when
the control parameter c is slowly decreased. +e numerical
techniques used to obtain those diagrams are provided in
Table 1. A close examination of Figure 5 reveals that various
combinations of coexisting attractors can be obtained when
suitably selecting the system parameters. For example,
Figure 6 presents the coexistence of two different chaotic
attractors (a, b) computed for a � 15.0 using two different
values of initial conditions. +e corresponding cross section

of the basins of attraction is provided in (c) using the same
colors as the relevant attractors. In this figure, the red zone
indicates unbounded dynamics. In the same line, Figure 7
depicts three different asymmetric coexisting attractors and
corresponding cross sections of the basin of attraction. More
interestingly, by choosing appropriately the values of system
parameters and initial conditions, four asymmetric coex-
isting attractors can be found as exemplified in Figure 8. A
more intriguing situation is depicted in Figure 9 where up to
five different asymmetric attractors coexist. +e corre-
sponding bifurcation like sequence of local maxima of the
coordinate x1 versus initial condition x1(0) is provided in
the graph of Figure 9(f ). +e cases reported above relate to
the asymmetric mode of operation, and a different config-
uration of coexisting attractors occurs in the symmetric
regime where coexisting attractors now appear only in
mutually symmetric pairs (see Figure 10).
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Figure 3: Sample chaotic phase portraits of the symmetric system: (a) a pair of period-1 cycles forc � 1.6; (b) a pair of period-2 cycles
for c � 1.4; (c) a pair of period-4 cycles for c � 1.323; (d) twomutually symmetric spiraling strange attractors for c � 1.18; (e) a double-scroll
strange attractor forc � 1.078. Initial conditions are not critical but fixed as (x(0), y(0), z(0)) � (1, 0, 0). +e rest of parameters are k � 0.0,
a � 5.0, and μ � 1.0.

6 Complexity



3

2

1

0

–1

–2

–3
–4 –2 0 2 4 6

x3

x2

(a)

3

2

1

0

–1

–2

–3

x3

–4 –2 0 2 4 6
x2

(b)

3

2

1

0

–1

–2

–3

x3

–4 –2 0 2 4 6
x2

(c)

3

2

1

0

–1

–2

x3

–4 –2 0 2 4 6
x2

(d)

2

1.5

1

0

0.5

–0.5

–1

–2

–1.5

x3

–6 –4 –2 0 2 4
x2

(e)

3

2

1

0

–1

–2

–3

x3

–5 0 5 10
x2

(f )

Figure 4: Computer-generated phase space trajectories of the system projected onto the y-z planes obtained for some discrete values of
parameter c: (a) coexistence of two period-1 limit cycles for c � 1.6; (b) coexistence of period-1 and period-2 cycles for c � 1.4; (c)
coexistence of period-4 and period-2 cycles for c � 1.359; (d) coexistence of two nonsymmetric strange attractors for c � 1.2; (e) a
nonsymmetric strange attractor for c � 1.16; (f ) an asymmetric double-scroll strange attractor for c � 1.0. +e computations are done with
k � 0.25, μ � 1.0, and a � 5.0. Initial conditions are(x(0), y(0), z(0)) � (±1, 0, 0).
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From the above investigations, we notice that the oc-
currence of multiple attractors is possible both in the un-
forced (i.e., k � 0.0) and the forced (k≠ 0.0) regimes. +e
latter situation is being much more challenging for analysis
provided that the occurrence of multiple solutions cannot be

explained based on symmetry arguments. At this point, we
would like to stress that the occurrence of multiple attractors
has reported numerous other problems from diverse fields of
science and technology. +is feature can be advantageously
exploited in engineering applications such as image
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Figure 5: Enlargements of the bifurcation diagrams of the system showing various coexisting bifurcation branches and hysteresis, computed
for three different values of parameterk, namely, k � 0.000, k � 0.025, and k � 0.250. Detail numerical procedures used to obtain those
diagrams are provided in Table 1. +e rest of parameters are same as in Figure 5.

Table 1: Detailed numerical procedures used to obtain the bifurcation diagrams of Figure 5.

Graph identification Color data Parameter range Sweeping direction Initial condition
(x1(0), x2(0), x3(0))

k� 0.000
Magenta 17.25≤ a≤ 19 Upward (0.1, 0, 0)

Green 17.70≤ a≤ 19 Upward (0.2, 0, 0)

Blue 5≤ a≤ 19 Downward (0.6, 0, 0)

k� 0.025

Blue 17.25≤ a≤ 19.25 Upward (+2, 0, 0)

Red 17.5≤ a≤ 19.18 Downward (−2, 0, 0)

Black 17.25≤ a≤ 19.25 Upward (−5, 0, 0)

Magenta 17.25≤ a≤ 17.86 Downward (−0.8, 0, 0)

Green 17.5≤ a≤ 19.18 Downward (1, 0, 0)

k� 0.250

Blue 15≤ a≤ 20 Downward (5, 0, 0)

Black 15≤ a≤ 20 Downward (−5, 0, 0)

Red 15≤ a≤ 20 Upward (−5, 0, 0)

Green 16.92≤ a≤ 18.20 Upward (3, 0, 0)
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encryption and random signal generation as well. However,
in cases where only a single stable attractor is desired, some
control strategies may be developed. Detailed analysis
concerning this point is out of the scope of this paper.
Accordingly, interested readers may obtain precious in-
formation from the review work of [10].

3.3. Coexisting Bubbles of Bifurcation. Another interesting
and striking event revealed monitoring the parameters of
system (1) is the phenomenon of antimonotonicity [39–44].
In fact, the period doubling transition to chaos followed by
the reverse bifurcation scenario is found when varying the
control parameter a for several values of c in case of a zero
forcing term (i.e., k � 0.0). Sample results are depicted in
Figure 11 which presented five bifurcation plots of the
coordinate x versus a for five discrete values of c. In each
case of the diagrams in Figure 11, there are two symmetric
bifurcation diagrams due to the symmetry of the model.
From Figure 11, we note that a period-1 bubble is obtained

for μ � 1.0. As c decreases the sequenceP1bubble ⟶ P2
bubbles⟶ P4 bubble⟶ P8 bubbles⟶ full, Fei-
genbaum tree takes place. +is behavior corresponds to the
symmetric system (k � 0.0) and much more complex
nonlinear dynamics arise in the presence of a nonzero ex-
citation force (i.e., k≠ 0.0), as exemplified in Figure 12. +is
latter figure depicts the bifurcation plots of the coordinate x

against parameter a obtained for several discrete values of k

while maintaining c � 1.475 and μ � 0.875. In contrast to
the situation presented in Figure 11, lower and upper bi-
furcation branches are nonsymmetric, depicting a horizontal
shift and exhibiting different periodicities. +is striking
behavior (engendered by symmetry break) is rarely reported
and thus represents an enriching contribution to the be-
havior of these types of systems.

4. Control of Multistability

Recently, a control method referred to as linear augmen-
tation is described which is suitable to control the dynamics
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Figure 6: Coexistence of two different attractors for a � 12.0, c � 1.0, μ � 0.95, and k � 0.25. Initial conditions (x1(0), x2(0), x3(0)) are
(0.4, 0, 0) and (−0.4, 0, 0)for (a) and (b), respectively. +e corresponding cross section of the basins of attraction is provided in (c) using the
same colors as the relevant attractors. +e red zone denotes unbounded dynamics.
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of a nonlinear system without perturbing the system’s pa-
rameters [45–47]. In this strategy, a nonlinear dynamic
system is coupled with a linear one. +e motivations of this
coupling scheme are twofold: (a) to stabilize the steady state
in a given nonlinear oscillator; (b) to adjust the number of
coexisting attractors for a multistable system. Accordingly,
the dynamics of the jerk system with hyperbolic tangent
nonlinearity coupled to a linear system is described by the
following fourth-order system:

_x1 � x2,

_x2 � ax3,

_x3 � −cx2 − μx3 − k − 3x1 + 6 tanh x1( 􏼁 + δu,

_u � −σu − δ(x − β).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Here, σ ≥ 0 represents the decay parameter of the linear
systemu, δ denotes the coupling strength, and β is the
control parameter, which serves to locate the position of the

equilibrium points. For δ � 0, both oscillators evolve inde-
pendently, and the linear system exhibits a fixed-point
motion. For a nonzero coupling coefficient (i.e., δ ≠ 0), there
is a mutual influence between the nonlinear oscillator and
the linear system resulting in the symmetry breaking of the
whole system even for k � 0.0. +e fixed points of the
coupled system are yielded by the following nonlinear al-
gebraic system:

−k − 3x1 + 6 tanh x1( 􏼁 + δu � 0,

−σu − δ(x − β) � 0.
􏼨 (9)

System (9) clearly shows that the fixed points are
asymmetrically located in state space, and their number
strongly depends on the values of the linear system pa-
rameters as well as the coupling strength. Considering the
case where the system develops six distinct periodic and
chaotic attractors, we examine the range of coupling pa-
rameter corresponding to a monostable behavior of the
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Figure 7: Coexistence of three different attractors for a � 16.85, c � 1.0, μ � 0.95, and k � 0.25 . Initial conditions (x1(0), x2(0), x3(0)) are
(−1.8, 0, 0) for attractor in (a), (−1.6, 0, 0)for attractor in (b), and (0.4, 0, 0) for attractor in (c). Green, magenta, and yellow colors
correspond to the attractors in (a), (b), and (c), respectively. +e red zone corresponds to unbounded dynamics.
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Figure 8: Coexistence of four different attractors for a � 18.0, c � 1.0, μ � 0.95, and k � 0.25. Initial conditions (x1(0), x2(0), x3(0)) are
(−1.8, 0, 0) for the period-3 cycle in (a) with blue basin, (−1.6, 0, 0) for the chaotic attractor in (b) with green basin, (0.2, 0, 0) for attractor in
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Figure 9: Coexistence of five different attractors for a � 17.85, c � 1.0, μ � 0.95, and k � 0.025. Initial conditions (x1(0), x2(0), x3(0)) are
(−0.12, 0, 0) for (a), (−1.12, 0, 0) for (b), (0.648, 0, 0) for (c), (0.128, 0, 0) for (d), and (−0.048, 0, 0) for (e). +e bifurcation-like sequence of
local maxima of the coordinate x1 versus initial condition x1(0)obtained with (x1(0), x2(0)) � (0, 0)is provided in graph in (f).
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Figure 10: Coexistence of six different attractors for a � 17.77, c � 1.0, μ � 0.95, and k � 0.0. Initial conditions (x1(0), x2(0), x3(0)) are
( ± 0.104, 0, 0) for the pair of period-6 cycles (a, b), ( ± 0.4, 0, 0)for the pair of three-band chaotic attractors (c, d), and ( ± 0.2, 0, 0)for two-
band chaotic attractors (e, f ).
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Figure 11: Bifurcation diagrams of the system showing local maxima of the coordinate x1 versus the control parameter a computed for
some discrete values of c keeping μ � 1.0 and k � 0.00. In each diagram, the blue and red branches are obtained by scanning the parameter
downward (i.e., downward continuation) starting with initial conditions (−0.5, 0, 0) and (0.5, 0, 0), respectively.
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Figure 12: Bifurcation diagrams of the coordinate x1 versus a showing coexisting bubbles of bifurcation computed for five discrete value of
k, keepingc � 1.475 and μ � 1.0. In each diagram, the blue and red branches are obtained by scanning the parameter downward (i.e.,
downward continuation) starting with initial conditions (−0.5, 0, 0) and (0.5, 0, 0), respectively.
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Figure 13: Bifurcation diagram illustrating the transition from a multistable state to monostability when smoothly varying the coupling
strength in the range 0≤ δ ≤ 0.80. +e rest of parameters are a � 17.77, c � 1.0, and μ � 0.95. Regions A, B, C, and D correspond to the
coexistence of five, four, three, and two attractors, respectively, while a single attractor is observed in region E. Six sets of data are
superimposed. +ese data are obtained by scanning the parameter upward starting from each of the six coexisting attractors (see text).
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Figure 14: Coexistence of two different attractors for δ � 0.50 using two different initial conditions and corresponding cross section of the
basins of attraction. Blue and green basins correspond, respectively, to the period-1 and the chaotic attractor, respectively, while red zone
denotes unbounded dynamics. +e rest of parameters are same as in Figure 18.
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coupled system. To this end, the parameters are fixed as in
the caption of Figure 13. +e latter figure shows the bi-
furcation diagrams illustrating the transition from a mul-
tistable state (see Figure 10) to monostability when smoothly
varying the coupling strength in the range 0≤ δ ≤ 0.80. Re-
gions A, B, C, and D correspond to the coexistence of five,
four, three, and two attractors, respectively, while a single
attractor is observed in region E. Six sets of data are
superimposed. +ese data are obtained by scanning the
parameter upward starting from each of the six coexisting
attractors without resetting the initial conditions. We
present in Figures 15 and 16 sample phase portraits of the
system (corresponding cross sections of the basins of at-
traction), highlighting the transition of the system to a
monostable state.

5. PSpice Simulations

It is predicted from the above results that the jerk system
with a single hyperbolic tangent function can undergo
extremely varied dynamic behaviors. +e design and
implementation of a convenient electrical circuit (i.e., the
analogue simulator) for the experimental study of the
model are presented in this section. PSpice simulation [48]
investigations are carried out to check the results of an-
alytical and numerical analyses. +e possibility of moni-
toring capacitors initial voltages and evaluating the
corresponding impact on the behavior of the whole circuit
represents one of the main advantages of using of PSpice.
Interestingly, evidence of several coexisting stable solu-
tions [49–54] in the system may easily be demonstrated
both in the symmetric and the asymmetric modes of
operation. Moreover, the hardware realization of theo-
retical chaotic mathematical models is convenient for
engineering utilization including, for instance, random
signal generation, chaos-based communications, and
image encryption.

5.1. Design of the Experimental Circuit. +e circuit diagram
of the proposed electronic simulator is shown in
Figures 16(a) and 16(b). +e hyperbolic tangent nonlin-
earity module [53, 54] whose detailed schematic diagram is
depicted in Figure 16(b) consists of resistors, a dual-
transistor pair, a pair of operational amplifiers, and a dc
current source. A detailed analysis of the hyperbolic
tangent circuit can be found in [53, 54]. Operational
amplifiers and related circuitry (in Figure 16(a)) imple-
ment the basic operations of addition, subtraction, and
integration. By choosing a suitable time scaling, the
simulator outputs can directly be displayed on the screen
of a double trace oscilloscope by feeding the output voltage
of X1 to the X input and the output voltage of X2 to the Y
input. With the hypothesis of ideal operational amplifiers
operating in their linear regime, upon applying Kirchhoff
current and voltage laws to the circuit diagram in
Figure 16(a), it can be established that the voltages X1, X2,
and X3 satisfy the set of three coupled first-order nonlinear
differential equations:

dX1

dte

�
X2

RC
,

dX2

dte

�
X3

RaC
,

dX3

dte

� −
Vcc

RkC
−
3X1

RC
−

X2

RcC
−

X3

RμC
+
6 tanh X1( 􏼁

RC
.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Choosing the following rescale of time and variables: te �

tRC; Xk � xk × 1V(k � 1, 2, 3), system (10) is identical to
system (1) with the following definition of parameters:

a � R/Ra; c � R/Rc; μ � R/Rμ; k �
R

Rk

Vcc

1V
. (11)
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Figure 15: A single attractor (a) for δ � 0.75 and corresponding cross section of the basins of attraction (b). Green zones represent the basin
of attraction of the chaotic attractor, while red zone denotes unbounded dynamics. +e rest of parameters are same as in Figure 18.
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From the above equations, it follows that the dynamics of
system (1(a) and 1(b)) can be simulated at any desired
frequency (within the bandwidth of op. amplifiers) by
choosing the value of the three capacitors.

5.2. PSpice Simulation Results. +e behavior of the circuit
shown in Figure 16 is studied in PSpice by employing the
values of parameters provided in Table 2 in order to check
the theoretically predicted results of Section 3, in particular

U1 U2

R/6

Rγ

C3 C2
C1

X3

X2

–X2

X1

R/3

–Tanh(.)
B A

R
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R
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Figure 16: Electronic circuit implementation (a) of system.+e circuit realization of tangent hyperbolic values function is shown in (b).+e
values of electronic circuit components used for the analysis are listed in Table 2.
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Table 2: +e values of electronic components used for PSpice simulations.

Parameters Signification Values
R0 Resistance 0.52KΩ
RC Resistance 1KΩ
R1 Resistance 10KΩ
R Resistance 12KΩ
Ra Tunable resistance Tunable
Rμ Resistance Tunable
Rc Resistance Tunable
C1, C2, C3 Capacitance 10nF

VCC Voltage source 15VDC

I0 Current source 1.1mA

T1, T2 Amplifier transistors NPN Q2N2222
Ui (i � 1, 2, 3, 4) Operational amplifiers TL084
U01, U02 Operational amplifiers TL082
Figure 16 is partially reproduced from (J) [18].
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Figure 17: Continued.
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Figure 17: Two-dimensional views (left panel) of the symmetric double-scroll chaotic attractors computed for a � 5.0 , μ � 1.0, and k �

0.00 and the corresponding PSpice simulation results (right panel) obtained for Rc � 11.13 kΩ and Rk �∞ with the initial point (0.5, 0, 0).
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Figure 18: Continued.
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Figure 18: Two-dimensional views (left panel) of the asymmetric double-scroll chaotic attractors computed for a � 5.0 and k � 0.25 and the
corresponding PSpice simulation results (right panel) obtained for Rc � 12 kΩ, Rk � 576 kΩ, andRμ � 12kΩwith the initial point (0.5, 0, 0).
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Figure 19: Continued.
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the period doubling route to chaos and the presence of
coexisting bifurcation branches. Rc (i.e., equivalently
parameterc) is chosen as main bifurcation control resistor.
+e electronic components’ values (R � 12 kΩ, Rμ � 12 kΩ,
Ra � 2.4 kΩ, and Rk �∞; see Table 2) are selected so as to
match the dimensionless values (a � 5.0 and μ � 1.00 ) of
Section 3 in view of allowing the comparison between theory
and PSpice results. When varying progressive resistorRc, we
observe the same sequence of bifurcations described in
PSpice. Sample results showing the projections of the
double-scroll attractor emanating from the merging crisis of
coexisting asymmetric mono-scroll chaotic attractors for
Rc � 11.13 kΩ are provided in Figure 17 along with cor-
responding theoretical ones. Similarly, Figure 18 depicts
various projections of the asymmetric double-scroll chaotic
attractor obtained in PSpice (right panel) and the corre-
sponding theoretically obtained ones (left panel) when the
control resistors are fixed as Rc � 12 kΩ, Rk � 576 kΩ,
Ra � 2.4 kΩ, and Rμ � 12 kΩ. +e bifurcation sequences
observed in PSpice perfectly agree with those of theoretical
studies carried out in Section 3. On the contrary, using the
electronic component values fixed as Rc � 12 kΩ,
Rk � 576 kΩ, Ra � 666Ω, and Rμ � 12.631 kΩ, we have
observed the coexistence of four different asymmetric
attractors, namely, a pair of asymmetric period-3 cycles, a
period-2 cycle, and a chaotic attractor when starting the
system from four different initial conditions (see Figure 19).
+e latter situation is identical to the case reported in
Figure 8 during the theoretical analysis. We have avoided the
inclusion of other cases of multistability obtained in PSpice
for the sake of brevity. We would like to point out the
existence of some small shifts in the values of the control
resistor Rc in PSpice in comparison to the theoretically
predicted values. Such discrepancies are mainly due to the

unavoidable simplifications adopted during the modeling
step of the analogue simulator (e.g., ideal bipolar junction
transistor model and ideal op. amplifier model, in com-
parison with more realistic/complex models implemented in
PSpice).

6. Concluding Remarks

In summary, this paper has explored the dynamics of a
simple chaotic jerk system with hyperbolic tangent non-
linearity whose symmetry is destroyed by the adding a
constant term acting as an external excitation force. We have
shown that the modified system exhibits several unusual and
interesting nonlinear patterns such as coexisting bifurcation
branches, hysteretic behaviors, coexisting symmetric and
asymmetric bubbles, critical phenomena, and multiple (i.e.,
two, three, four, five, or six) coexisting asymmetric attractors
for some appropriately chosen sets of its parameters. +ese
features were illustrated by exploiting common nonlinear
analysis tools such as graphs of largest Lyapunov exponent,
bifurcation diagrams, phase portraits, and basins of at-
traction. +e control of multistability based on the linear
augmentation scheme is exploited to tune the system from
the state of six coexisting attractors to monostability. An
appropriate electronic analogue of the system was designed
and simulated in PSpice. +e theoretical results show a very
good agreement with the PSpice simulation investigations.

+e model considered in this work can be regarded as
prototypal autonomous 3D systemwith three rest points and
an odd symmetry. Also, we conjecture that the dynamics
induced by symmetry break observed in this work may also
be found when using the jerk equation with other types of
nonlinearities (e.g., cubic, quintic, hyperbolic sine, and
piece-wise quadratic). Moreover, the extension of the
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Figure 19: PSpice simulation results showing the coexistence of four different asymmetric attractors for Ra � 666Ω, Rμ � 12.631 kΩ,
Rc � 12 kΩ, and Rk � 576 kΩ obtained with four different initial conditions (vc1

(0), vc2
(0), vc3

(0)): (a) a period-3 limit cycle
for(0.4, 0.0, 0.0); (b) a chaotic attractor for(0.2, 0.0, 0.0); (c) a period-3 limit cycle for (−0.303, 0.0, 0.0); (d) a period-2 limit cycle for
(−1.8, 0.0, 0.0).
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analysis presented in this paper to cases of other chaotic
oscillators such as Chua’s, Shinriki, autonomous van der
Pol-Duffing, and hyperjerk circuits is under consideration.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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Today’s remarkable challenge of maritime transportation industry is the detrimental contamination generation from fossil fuels.
To tackle such a challenge and reduce the contribution into air pollution, different power solutions have been considered; among
others, hybrid energy-based solutions are powering many ferry boats. ,is paper introduces an energy management strategy
(EMS) for a hybrid energy system (HES) of a ferry boat with the goal to optimize the performance and reduce the operation cost.
HES considered for the ferry boat consists of different devices such as proton exchange membrane fuel cell (PEMFC), LI-ION
battery bank, and cold ironing (CI). PEMFC systems are appropriate to employ as they are not polluting. ,e battery bank
compensates for the abrupt variations of the load as the fuel cell has a slow dynamic against sudden changes of the load. Also, CI
systems can improve the reduction of the expenses of energy management, during hours where the ferry boat is located at the
harbor. To study the performance, cost and the pollution contribution (CO2, NOX, SOX) of the proposed hybrid energy
management strategy (HEMS), we compare it against three various types of HEM from the state-of-the-art and also available rule-
based methods in the literature. ,e analysis results show a high applicability of the proposed HES. All results in this paper have
been obtained in the MATLAB software environment.

1. Introduction

Renewable energy resources (RESs) have received growing
attention in supplying the required energy of different
systems during the last years. ,e marine industry has also
been affected by this trend. Application of renewable and
clean energies for supplying the required energy of the
marine vessels like small ships and boats is growing and this
has led to introducing the concept of Electric Ferry Boats
(EFBs) in the marine industry. Different combinations of
fossil fuel-based resources and RESs such as diesel gener-
ators (DGs), fuel cells (FCs), solar panels, storage batteries
(SBs), and cold ironing (CI) [1–3] can be used in the EFBs for
supplying the demand and providing the propulsion force of
these boats. In this situation, optimal energy management of

the EFB is an important subject from the viewpoint of both
ship owners and reliability concerns that should be con-
sidered to reduce the operation cost while considering the
operation constraints of the equipment.

Optimal energy management of the marine vessels has
been studied before in the literature. ,e authors of [4]
provided an energy management schedule in the electric
ship according to the Model Predictive Control (MPC) to
optimize the concordance between power generators and
batteries’ energy-saving under high-power ramp rate loads.
,e authors of [5] proposed manner-based energy man-
agement by means of Fuzzy Logic (FL) and Proportional-
Integration (P-I) control in an all-electric ship with only
electric storage devices. Abkenar et al. [6] apply a genetic
algorithm to find the proper and safe operation of fuel cells
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in an electric ship with fuel cells and energy storage system.
A subhourly energy management technique based on MPC
has been employed for electric ships in an integrated power
network having a variety of equipment such as FC, battery,
photovoltaic cells, and two DGs [7]. Tang et al. [8] propose
an optimal energy resources scheduling model for a large
green ship supplied with diesel, battery, photovoltaic, and
cold ironing. Different constraints of the model are involved
in the objective function and hence, an unconstrained, large-
scale, global optimization method is applied to solve the
optimization problem. In [9], a nonlinear programming
approach is used to find the optimal energy management of
an all-electric ship supplied with a hybrid storage system.
Optimal power resources scheduling of a ship with diesel
generators and batteries alongside a combined cooling and
heat power plant is formulated in [10]. ,e dynamic pro-
gramming approach is used in [11] to solve the energy
management problem of EFB with an energy storage system.
Rule-based is applied in [12] to perform the energy man-
agement for a ship with a hybrid FC and battery energy
system. Applying this method leads to a straightforward
lookup table method which cannot necessarily lead to an
optimal solution. Particle Swarm Optimization (PSO) al-
gorithm is utilized in [13] for energy management of the
shipboard loads. Hou et al. [14] solve the optimal energy
management of a hybrid energy storage system for tracking
the energy fluctuations of the shipboard loads. In [15], in-
tegrated perturbation analysis and sequential programming
algorithms and MPC methods are used to solve the energy
management problem of a boat with hybrid ultracapacitors
and batteries. Optimal power allocation for a hybrid diesel
engine and electric motor is performed for a ship without an
energy storage system in [16].

,ere are also some studies in the literature that focus on
each equipment of the EFBs such as CI possibility, pollution
control, FCs characteristics, and application of solar panels
and wind turbines in the EFBs. CI is one of the practical,
beneficial energy generation sources to supply power during
the ship berthing onshore or harbor where the energy re-
quirements of the ship are provided through the port’s
connection of the ship to the Microgrids (MGs) or power
networks located onshore. Nevertheless, CI has a low pol-
lution rate [17, 18]. Over recent years, different studies have
been conducted to optimize the utilization of CI. For in-
stance, in [19], significant effects of the CI on the bus voltages
and power quality of the Electrical and Distribution Network
around Coast Zone have been investigated. ,e authors of
[20] introduce a CI technology to assess the air pollution due
to the presence of a ferry boat in port and a cost-benefit
analysis to evaluate the profit quantity of the socioeconomic
“Copenhagen-Denmark.”

To minimize the perilous air pollutant, suspended
particles (CO2, NOx, and SOx), particularly the sulfur re-
duction rate, as well as component expenses of the system, a
combined coast-side power source CI with liquefied natural
gas (LNG) has been provided in [21]. Furthermore, in [21],
an optimization algorithm based on a nonlinear model was
implemented to find the best way for costs and emission
terms.

FC is another energy generation source to satisfy the load
demand of EMSs [22, 23]. Generally, the system operation of
the FCs is based on a transform process, wherein the chemical
energy is converted into electrical power [24]. Universally,
FCs with various chemical fuels and distinguishing features
have been deployed in maritime transportation and power
electrical industry including low and high-temperature
polymer membrane fuel cell (LT-HT-PEMFC), phosphoric
acid fuel cell (PAFC), and solid oxide fuel cell (SOFC) [25].
Nonetheless, multiple disparate works have been carried out
in previous studies on FCs. For instance, proton exchange
membrane fuel cell (PEMFC) is a process, in which two el-
ements such as oxygen and hydrogen are used for anode and
cathode electrodes of the FC’s cells to generate power. Zero
emission, fast launch, high productivity and power density,
low noise and operating temperature, and solid electrolyte are
the several important features of the PEMFC.

In order to increase the ship power efficiency, a hybrid
fuel cell system by considering several schedules is provided
in [26] to decrease the rate of fuel or total energy con-
sumption of the hybrid system. ,e authors of [27] studied
the level of safety and hazardous operability of the molten
carbonate fuel cell tanker in nautical systems. Moreover, FL
approach has been applied for Failure Mode and Effect
Analysis (FMEA) in the presence of FC with molten carbon
fuel and gas turbine system for liquefied hydrogen tanker in
the marine driven technology [28].

Considering the environmental protection as another
important issue in the maritime transportation industry,
many research efforts have been devoted to reduce the
underlying pollution during recent years. ,e use of re-
newable energy sources, such as photovoltaic (PV) and wind
turbine, is one of the alternatives that have been proposed.
On the contrary, these sources, due to the weather depen-
dency, cannot handle the total power of the ship during peak
loads. ,us, to deal with this scenario, other renewable or
fossil fuel resources must be used to provide energy. Bat-
teries can also be used parallel to the PV and wind turbines
to increase the efficiency of the systems with renewable
energy resources [29]. ,is process will be accompanied by
operation cost and environmental contamination.

Reviewing the abovementioned studies shows that there
is a gap in the literature in the field of optimal daily energy
management of EFBs with FCs as the main source of energy
and batteries alongside with the CI. Most of the research
studies that are performed in the field of marine vessels are
focused on the ships with diesel generators such as [4, 7, 8]
and [10], which are not categorized in the field of zero-
emission boats. Some of the studies in the field of energy
management for zero-emission EFBs consider only the
energy storage systems as the main energy resource of the
boats like [5, 9] and [11]. On the contrary, the design and
application of zero-emission EFBs with the hybrid of FCs
and batteries as the main energy resources have received
growing attention during the last years. While there are
some studies in the field of this type of ships such as [6, 12],
these studies perform the energy management for short time
intervals and their main goals are satisfying the dynamic
constraints of the equipment.
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In this paper, an optimal hybrid energy management
strategy (HEMS) for an EFB with the FCs as the main energy
resource, batteries, and possibility of CI at the harbors is
proposed.,e goal is obtaining an optimal power scheduling
for the FCs, batteries, and CI that minimizes the total op-
eration cost while considering the different operation
constraints of the equipment. ,e characteristics of the
proposed test system are adopted from practical research
performed in [30, 31]. ,e capacities of FC systems are
considered such that they can supply the total load power of
the ship at any weather condition independently.,e battery
banks installed on the ship will compensate for the unex-
pected variations of the load because of the FC system slow
dynamic. Moreover, the CI system can supply the ship’s load
power during the existence of the ship at the harbor, at hours
where the price of CI system energy is lower than the price of
FC system energy. In order to compare the simulation re-
sults of the proposed test system with other available hybrid
energy systems for the boats, three different types of the
energy systems that are based on the fossil fuel as the main
energy resource are modeled and compared with the pro-
posed model in this paper. Plus, the rule-based method
introduced in [12] is also modeled and its results are
compared with the proposed method.

,e rest of this paper is organized as follows. Section 2
describes the topology of the electrical ferry boat. Section 3
expresses the hybrid energy management of the ship, in-
cluding FC, battery, and CI. Finally, simulation results and
conclusion are presented in Sections 4 and 5, respectively.

2. The Topology of the Electrical Ferry
Boat Description

,e topology of the proposed hybrid energy system for the
considered ferry boat is illustrated in Figure 1 [30, 31].,iswork
considers a ferry boat equipped with two PEMFC systems with
200kW and a PEMFC system with 100kW capacity. In ad-
dition, 20 hydrogen reservoirs with 18.8 kg content from Luxer-
GMT with 5,000psi equivalent to 350bar at high-pressure gas
have been embedded on the ship which are adequate for one
operational day without refueling. Also, the mentioned ferry
boat has two electromotors with 250 kW rated power for each
one. Furthermore, a room consisting of batteries is necessary to
save and manage the power generation surplus of FC output
after setting up the FC systemon the ship. LI-IONbatteries with
200kWh charge capacity (two 100kWhunits) are utilized in the
ferry boat to load power compensation. ,e FCs can contin-
uously produce power along with the 24-hour duration because
the FC installation on the ship is without any affiliation to the
weather conditions. ,erefore, no other renewable energy or
fossil fuel sources are needed to supply the ship’s loads. Since the
total load demand of the ferry boat is met by FCs on an hourly
basis, the battery bank installed on the ship requires low power
for load supply. ,is has led to using a small size battery. ,us,
employing the battery bank with a small size and not using the
fossil fuel resource lead to a significant reduction in the ex-
ploitation cost of ship’s hybrid energy system and air pollution
as well. Ergo, the hybrid energy management strategy (HEMS),
is carried out in the presence of FC and battery bank, while the

ship is in sailing conditions. Nevertheless, the electric load
requirement of the vessel is directly supplied through FC output
and the excess of FC power is utilized to feed the battery room.
FCs have slow dynamics; therefore, they cannot supply the
unanticipated overload in hours with load abrupt variation.
Hereupon, the batteries with a fast dynamic can be an ap-
propriate choice to compensate for the power shortage caused
by load variation. In this regard, the batteries can receive the
energy through the surplus energy of FC and deliver the power
to feed the vessel’s load.

Table 1 represents the high-speed ferry boat technical
specifications. However, all this information may not be
necessary for performing the daily energy management of
this boat. In order to model the different equipment in the
energy management system, (1) the PEMFC systems are
considered as a single FC system with a capacity equal to the
sum of the generation capacities of all PEMFC systems, (2)
all the batteries are considered as a single battery with the
capacity of the sum of the capacities of available batteries in
the boat, and (3) total load including electromotor load and
shipboard loads are modeled as a single load.

3. Hybrid Energy Management Strategy of
the Ship

As mentioned before, the goal of this paper is proposing an
optimal energy management model for the understudy EFB
that minimizes the operation cost and satisfies the operation
constraints of the equipment. To this end, first, the objective
function is presented, and then the operation constraints of
FCs, batteries, and CI are modeled separately. Before starting
the formulation, the power flow of the ship in the case that
the boat is sailing and the case that the boat is at the harbor is
described. Figure 2 indicates the power flow of the system
when the boat is sailing. P1 is the generated power by the FCs
that is consumed by the boat loads. P2 is the generated power
of the FCs that is charged in the batteries. ,e sum of P1 and
P2 represents the total generated power by the FCs. P3 is the
discharged power by the batteries to the boat loads.

When the ship is at the harbor, the CI can also be
performed. Figure 3 represents this situation. P4 is the
consumed power the boat loads through the CI and P5
represents the stored energy in the batteries through CI.

3.1. Objective Function. Operation costs of the understudy
zero-emission EFB are the cost of buying the required hy-
drogen for FCs plus the cost of the CI in the hours that the
ship is at harbor. Moreover, a cost related to the degradation
rate of the batteries is also considered in the models [8]. ,is
cost is modeled by multiplying a predefined price (Cb) by the
amount of discharged power of the batteries during the
operation horizon. So, the total operation cost of the EFB is
formulated as follows:

CT � 􏽘
24

t�1
CH × MH(t) + ρ(t) × P4(t) + P5(t)( 􏼁 + Cb × P3(t)( 􏼁.

(1)
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First term of objective function is the cost of consuming
MH(t) mass of hydrogen in the price of CH. Second term is
the cost of buying (P4(t) + P5(t)) kWh energy in the price
of ρ(t) through the CI and third term refers to the degra-
dation rate of the batteries.

3.2. Fuel Cell Operation Cost and Constraints. ,e price of
buying hydrogen is assumed to be known. ,e mass of
consumed hydrogen in each hour of the day should be
found. To this end, the relation between the generated power
and output power of the FCs and the relation between the
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Figure 1: ,e proposed circuit of the hybrid energy system.

Table 1: Technical characteristics of the PEM fuel cell-battery hybrid system.

Type High-speed passenger ferry
Overall length 24.5m
Beam 8m
Average speed 25.3 knots (47.2 km/h)
Maximum speed 32.5 knots (60.67 km/h)
Distance 8 nm
Total voyage time 9 hours
Fuel cell power 2 PEMFC of 200 kW each and a PEMFC of 100 kW
Hydrogen price 1.35 ($/kg)
Average shaft power 235.41 kW
Main engine power (MEP) 500 kW
Hydrogen fuel (kg) 376
Hydrogen per tank (kg) 18.8
Number of tanks 20
Battery capacity (kWh) 200
Battery charge efficiency 85%
Battery discharge efficiency 100%
Initial state of charge 85 kWh
Minimum allowable capacity (Smin) 60 kWh (30% of the battery capacity)
Maximum allowable capacity (Smax) 170 kWh (85% of the battery capacity)
Total investment cost of battery banks (F) 3562 $
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generated power of the FCs and consumedmass of hydrogen
are used. ,e efficiency formula is used to find the relation
between the generated power and output power of the FCs.
,e efficiency curve of the FCs is presented in Figure 4.
According to Figure 4, the efficiency of the FCs varies by
changing the loading of the FCs. For the sake of simplicity,
this curve is estimated by a fixed value for efficiency that
according to references [32, 33] is 0.45.,e relation between
the generated power of the FCs and the consumed mass of
hydrogen is written using the conversion coefficient that is
equal to 0.03 (kg/kWh). So, the relation between the total
output power of the FCs, i.e., P1 + P2, and the consumed
mass of the hydrogen is written as follows:

MH(t) �
P1(t) + P2(t)

0.45
× 0.03. (2)

,e output power of the FCs is limited to the maximum
nominal output power of all FCs. In addition, the output
power of the FCs is positive. Below constraint is defined to
consider these limitations:

0≤P1(t) + P2(t)≤P
max
FC , (3)

P1(t)≥ 0, (4)

P2(t)≥ 0. (5)

3.3. Cold-Ironing Cost and Constraints. CI is an electrical
energy transmission system which is used to supply the
required power of the ship equipment. ,e power is
transmitted from the coast outlet to the ship and devices
such as batteries. So, CI is considered in the aforesaid power
flow dispatching, when the ferry ship or vessel is at the
harbor.

In this work, the electricity price changes in the CI
system are given over different hours of the day. ,e high,
average, and low prices are considered for the peak, stan-
dard, and off-peak hours, respectively. In this regard, the
workaday electricity price of CI is defined in equation (6) as
follows:

ρ(t) �

ρp, t ∈ [7.10) ∪ [18.20),

ρs, t ∈ [6.7) ∪ [10.18)∪[20.22),

ρo, t ∈ [0.6) ∪ [22.24),

⎧⎪⎪⎨

⎪⎪⎩
(6)

where the CI system price at tth hour is denoted by ρ(t). ,e
ρp, ρs, and ρo demonstrate the price for peak, standard, and
off-peak hours and are presented in Table 2.

Since the CI is possible just in the case that the boat is at
the harbor, the injected power by CI is considered equal to
zero when the boat is sailing. So, the constraint below is
considered in the model:

P4(t) � 0 in hours that the boat is sailing, (7)

P5(t) � 0 in hours that the boat is sailing. (8)

3.4. Batteries Degradation Cost and Operation Constraints.
Charging and discharging power of the battery bank are
determined through the FC power generated and load de-
mand at given hour t. t is an integer demonstrating the tth

hour. One of the main challenges for modeling the batteries’
operation is determining the value of the price that is
considered for the batteries in (1), i.e., Cb. ,is cost refers to
the degradation rate of the batteries and tries to reduce the
aging rate of the batteries as much as possible. Studies show
that this cost is mostly dependent on the discharged power of
the batteries. Hence, only discharged power is considered in
the objective function (1). In many studies in the literature, a
constant value is assigned to this cost [18, 34].,is paper also
considers a constant value for this price. ,e proposed
method in [8] is used to determine the proper value for Cb.
In [8], the concept of Depth of Discharge (DoD) and
rainflow approach is used to calculate the Cb. In this method,
first, for a dispatching plan, the SOC profile of the batteries is
estimated.,en, the cycles of SOC profile is determined, and
the DoD of each cycle (Dw) is calculated using the proposed
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P1

Fuel cell Battery Ship load

P2

P5

Cold-ironing connection system

P3

P4

Figure 3: ,e topology of the fuel cell-battery-cold ironing.

200
0

10

20

30

40

50

60

40 60
Load factor (%)

Fu
el

 ce
ll 

ef
fic

ie
nc

y 
(%

)

80 100

Figure 4: PEMFC efficiency curve.

Complexity 5



method in [35]. Finally, the formulations below are used to
calculate the Cb:

Cb � 􏽘
l

w�1

F

Nw

, (9)

wherein F is the total investment cost of battery banks. Nw is
calculated by equation (10) as follows:

Nw � −3278D
4
W − 5D

3
W + 12823D

2
W − 14122DW + 5112,

(10)

l is the number of charging and discharging cycles calculated
through the rainflow approach, and D and NW are the
discharge depth and cycle lifetime, respectively [35]. Cb

obtained in (9) is used in (1) as a constant to consider the
operation cost related to the batteries.

,e batteries state of charge (SOC) at any hour t, S(t),
depends on the SOC at the prior hour S(t − 1).,e following
situation must be considered for the energy flows from t− i
to t. ,e hourly battery SOC will be achieved via equations
(11) and (12) [34].

Under sail,

S(t) � S(t − 1) + ηcP2(t) −
1
ηd

P3(t). (11)

At anchor,

S(t) � S(t − 1) + ηc P2(t) + P5(t)􏼂 􏼃 −
1
ηd

P3(t), (12)

wherein both ηc and ηd represent the charging and dis-
charging efficiency of the batteries, respectively. Considering
equations (12) and (13), the current SOC can be expressed
through the initial SOC S(0) of a day in equations (13) and
(14).

Under sail,

S(t) � S(0) + ηc 􏽘

t−1

W�0
P2(W) −

1
ηd

􏽘

t−1

W�0
P3(W). (13)

At anchor,

S(t) � S(0) + ηc 􏽘

t−1

W�0
P2(W) + P5(W)􏼂 􏼃 −

1
ηd

􏽘

t−1

W�0
P3(W).

(14)

,e total energy storage of the battery bank should not
be less than the minimum Smin and higher than the maxi-
mum Smax permissible capacity. ,is theorem is described in
relation (15) as follows:

Smin ≤ S(t)≤ Smax. (15)

3.5. PowerGeneration andConsumptionBalanceConstraints.
Equations (16) and (17) define the power flow when the ship
is at anchorage and under sail.

Under sail,

P1(t) + P3(t) + P5(t) � PL(t), (t � 1, 2, . . . ., N). (16)

At anchor,

P1(t) + P3(t) � PL(t), (t � 1, 2, . . . ., N). (17)

In equations (16) and (17), PL(t) is the electrical load
demand of the vessel at tth hour.

Proposed formulation (1)–(17) represents a linear model
for the optimization problem of energy management in the
zero-emission EFB. MATLAB software is used to solve this
problem. By solving this problem, optimal hourly scheduling
of FCs, batteries, and CI systems is obtained.

4. Simulation Results and Analysis

In this section, first, the proposed case study results are com-
pared with the results of the four different case studies of hybrid
energy systems of ferry boats. ,en, the proposed optimization
method is compared with the proposed rule-based method in
reference [12] for hybrid FC/battery ferry boat.

4.1. Comparing the Energy Management Results for Different
Case Studies. In this section, energy management, operation
cost, and pollution rate results of the proposed hybrid FC/
battery ferry boat are compared with three other hybrid
energy system cases presented in [8]. ,e energy resources
related to the first case study include diesel generator/cold
ironing (CI). ,e energy systems used in the second case
study are diesel generator/battery and CI. ,e third case
study consists of hybrid energy systems such as the pho-
tovoltaic (PV)/battery/diesel generator/CI. ,ese cases are
modeled using the proposed method in [8]. In order to
formulate the models in cases 1–3, optimization problems
similar to the proposed formulation (1)–(17) in this paper
are used considering the fact that FCs’ variables, cost, and
constraints are replaced by the variables, cost, and con-
straints of diesel generators and PV similar to the proposed
method in [8]. ,e proposed model in this paper is also
considered as the fourth case in the following simulations. It
is well worth mentioning that the 24-hour profile of the
ship’s load power considered for four case studies is the
same. Figure 5 shows the profile of the load power of the
ship. ,e traveling scenario (including under-sail and at-
anchor hours) is the same for all four cases. ,e ferry boat is
located in the anchor at hours (1 to 8), (13 to 16), and (20 to
24), and for the rest of the hours the ship is patrolling on the
sea.

In the first case study, since the ferry boat is just
equipped with a diesel generator, CI will supply a portion of
the load power of the ferry boat during the hours where the
ship is at anchor and receive the energy from the diesel
generator while the ship is patrolling on the sea. However,
this scenario leads to cost and air pollution enhancement.
,e results of case 1 are depicted in Figure 6.

Table 2: HEMS assessed parameter.

Parameter Value
Cold ironing price for peak period (ρp) 0.31538 $/kWh
Cold ironing price for standard period (ρs) 0.15948 $/kWh
Cold ironing price for low period (ρo) 0.06558 $/kWh
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,e battery bank considered for the second case study
provides the part of the load power of the ship at some hours,
wherein the pollution rate and cost have been reduced in
comparison to the first case study, although the total op-
eration cost due to the battery bank installation will increase.
Figure 7 demonstrates the simulation results of case 2. As
shown in Figure 7, in this case, the battery charges in hour 1:
00 and discharges in hour 7:00.

,e PV available in the third case study covers the part of
the consumption power of the ship without using the fossil
fuel which leads to decrease in the generated power rate
through the diesel generator. Under such condition, the total
cost of the energy supply and ecological contamination will
decrease compared to the first and second cases, although
the generated pollution rate due to the energy management
used in the third case is high. ,e size of PV is considered
equal to 7 kWh. Figure 8 shows the results related to case 3.

,e management strategy applied for cases 1–3 is
according to the process wherein the needed load of the ship
is provided through the CI system at hours, and the energy
price received from the CI system is cheaper than the diesel
system, during the presence of the ship at anchor. On the

other hand, if the energy price received from the diesel
generator is cheaper than CI system, at least 50% of the load
power is supplied via CI system because of the ecological
contamination diesel generator function. Under such con-
ditions, the rest of the load power is provided by the diesel
generator.

HEMS of case 4 is investigated and related results are
depicted in Figures 9–12. Figure 9 illustrates the generated
power of all resources in the boat. Except for the hours when
the ship is at anchor in port, the power generated by FC (P1)
provides all needed load power of the ship at per hours
without the use of renewable energy resources or other fossil
fuel to handle the ship’s load power. In addition, a part of
generated power by FC system is used for the charging of the
battery banks (P2). Since the FC systems have slow dynamics
against the unexpected variations of the load power, ergo,
the battery banks embedded on the ship, because of their fast
dynamic, should compensate and cover the load abrupt
changes. In this respect, the energy management strategy is
considered somehow; at least 10 percent of the ship’s load
power is provided through the battery banks discharging
power (P3), during the hours that FC is supplying the needed
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Figure 7: Hybrid energy management system case 2.
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ship’s load power as shown in Figure 10. Due to the lower
energy price of CI system compared with the FC system at
(1–6) and (23-24) hours, the ship will receive the required
energy from the CI system (P4) while being at anchor in port;
also the battery bank can be charged from CI system (P5) if
needed. ,is fact is shown in both Figures 9 and 10. For the
rest of the hours, while the ship is at the harbor, FC covers the
load power of the ship due to the cheaper price of FC system
compared with CI, although a small part of ship’s load power
is compensated by the battery banks because of FC system
weak dynamic. ,e charging and discharging process of the
batteries is depicted in Figure 11. Since the batteries should
supply at least 10 percent of the load in hours that the FCs are
active, batteries are frequently charged and discharged in
different hours to have enough stored energy for covering 10
percent of the load in the next hours.

,e hydrogen consumption process is presented in
Figure 12. In hours that the FCs are not active, the mass of
hydrogen consumption is zero. But in other hours, hydrogen
is consumed and mass of remained hydrogen in the tank
reduces.

All expenses value and pollution rate related to each of the
four cases are listed in Table 3 separately. According to Ta-
ble 3, the total costs and contamination rate
(CO2, NOX, and SOX) obtained from the energy manage-
ment of case 1 are in high range. In case 2, the rate of total cost
and ecological contamination is less than case 1 because of less
fossil fuel usage. ,e use of PV in the energy management
process of case 3 leads to reducing the total cost and pollution
rate compared with case 1 and case 2, whereas the rate of costs
and pollution is still high. Moreover, the installation of PV
systems on the ship leads to the operation cost enhancement
in this respect. As can be seen from Table 3 as the proposed
case can satisfy the main objective of this paper which is to
eliminate the emissions of CO2,NOX, and SOX, the energy
management considered for case 4 has a completely ac-
ceptable cost compared to the other three cases.

4.2. Comparing the Proposed Optimization Method with the
Rule-Based Method in [12]. In order to compare the effi-
ciency of the proposed method with available methods in the
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Figure 10: Injected power to the load by different resources in case 4.
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literature, the proposed rule-based method in [12] that is the
available method for energy management of the hybrid FC/
battery boat is modeled for the understudy case system.
More information about the rules and assumptions of this

rule-based method is presented in [12]. HEMS results are
illustrated in Figure 13. ,e operation cost of the rule-based
method is also presented in Table 4. Comparing the sim-
ulation results indicates that the operation cost of the rule-
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Figure 12: Output power of FCs and consumed hydrogen in case 4.

Table 3: Comparison of total costs and emission factors for different energy management strategy.

Case type Under-sail cost ($) At-anchor cost ($) Total cost ($) CO2 (kg) NOx (kg) SOx (kg)
Case 1 395.497 117.672 477.179 3123.871 11.434 8.141
Case 2 357.532 117.682 475.214 3106.796 11.372 8.097
Case 3 354.682 117.682 472.081 3079.572 11.272 8.026
Case 4 426.486 69.530 496.016 0 0 0
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Figure 13: Hybrid energy management system rule-based method.

Table 4: Total costs and emission factors for rule-based method.

Case type Under-sail cost ($) At-anchor cost ($) Total cost ($) CO2 (kg) NOx (kg) SOx (kg)
Proposed method 426.486 69.530 496.016 0 0 0
Rule-based 438.655 72.309 510.964 0 0 0
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based method in both under-sail and at-anchor situations is
more than the operation cost obtained in this paper by the
proposed method. ,is results in 4% increase in total op-
eration cost at the rule-based method compared to the
proposed method in this paper.

5. Conclusion

Hybrid energy management system (HEMS) installation on
the ships with optimal energy management can have a re-
markable impact on the maritime industry to supply the
power of the ship’s load demand. ,e nautical industry
targets, such as environmental protection, are not satisfied if
the hybrid energy system applied for the ship is considered
without optimal energy management. In this paper, four
different case studies based on HEMS have been considered
for the ferry boat, wherein each case study is along with
optimal energy management. Also, all cases were analyzed
and compared in terms of total costs and the generated rate of
contamination. ,e total cost obtained from case 1 (diesel
generator/cold ironing) is 477.179 $ and the rate of pollution
(CO2,NOX, and SOX) is 3123.871 kg, 11.434 kg, and 8.141 kg.
,e results of the total expenses and pollution rate
(CO2,NOX, and SOX), regarding the energy sources used in
case 2 (diesel generator/cold ironing/battery) are 475.214 $
and 3106.796 kg, 11.372 kg, and 8.097 kg, respectively. ,e
obtained results of costs and pollution rate
(CO2,NOX, and SOX), from the hybrid energy system uti-
lized in case 3 (diesel generator/cold ironing/battery/PV), are
472.081 $ and 3079.572 kg, 11.272 kg, and 8.026 kg. Finally,
case 4 is the major case study proposed in this literature. ,e
hybrid energy system used for this case includes fuel cell/
battery and cold ironing. Although the total cost obtained
from case 4 is 496.016 $, the rate of generated contamination
(CO2,NOX, and SOX) is zero. ,us, by comparing the ob-
tained results from case 4, although the HEMS proposed in
this paper acceptably enhances the expenses compared with
other cases, it drastically reduces the environmental con-
tamination (CO2,NOX, and SOX). ,e proposed method in
this paper is also compared with the proposed rule-based
method in the literature. Simulation results show that ap-
plying the proposed method in this paper reduces the total
operation cost by about 4% compared to the rule-based
method. ,ereupon, the proposed test system and optimi-
zation method can be useful for the maritime transportation
industry and improve the clean air as well.
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Camino a la Presa San José 2055, Lomas 4 Sección 78216, San Luis Potośı, Mexico
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Copyright © 2020 R. J. Escalante-González and Eric Campos. ,is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this work, we present an approach to design a multistable system with one-directional (1D), two-directional (2D), and three-
directional (3D) hidden multiscroll attractor by defining a vector field on R3 with an even number of equilibria. ,e design of
multistable systems with hidden attractors remains a challenging task. Current design approaches are not as flexible as those that
focus on self-excited attractors. To facilitate a design of hidden multiscroll attractors, we propose an approach that is based on the
existence of self-excited double-scroll attractors and switching surfaces whose relationship with the local manifolds associated to
the equilibria lead to the appearance of the hidden attractor. ,e multistable systems produced by the approach could be explored
for potential applications in cryptography, since the number of attractors can be increased by design in multiple directions while
preserving the hidden attractor allowing a bigger key space.

1. Introduction

Piecewise linear systems that display scroll attractors have
been studied since the publication of the well-known Chua’s
circuit. ,e attractor exhibited by Chua’s circuit is an ex-
ample of chaotic attractor whose chaotic nature has been
explained through the Shilnikov method. Some works have
extended this system in order to obtain a greater number of
scrolls or different geometries. According to [1], an attractor
with three or more scrolls in the attractor is considered a
multiscroll attractor. Recently in [2], the generation of scroll
attractors via multistable systems have been observed.

According to [3], there are two classes of attractors, one
of them is a class called self-excited attractors that includes
all the attractors excited by unstable equilibria, i.e., the basin
of attraction intersects with an arbitrarily small open
neighborhood of equilibria [4]. Examples of this class are the
well-known Lorenz attractor [5] and the scroll attractor of
Chua’s circuit [6]. ,e other class is called hidden attractors
and their basins of attractions do not contain neighborhoods
of equilibria. Some hidden attractors have been studied in

[7–19]. ,ere are some works focused on control systems
with hidden attractors, as in references [20, 21]. Most works
related to multiscroll attractors are based on the first class.
Multiscroll attractors have been reported in
[12, 13, 18, 19, 22–26]. In [27], a system with a multiscroll
chaotic sea was introduced.

Multistability can be considered undesirable for some
applications, so some works focus on how to avoid this
behavior. For example, in [28], a method that allows to
transform a periodic or chaotic multistable system into a
monostable was studied, and some experiments were carried
out with a fiber laser doped with erbium. However, for some
applications it may be considered desirable to be able to
switch frommonostable to bistable behavior, for example, in
[29], a parameterized method to design multivibrator cir-
cuits with stable, monostable, and bistable regimes was
proposed.

Some works deal with multistable systems with infinite
number of equilibria and their electronic realization [30, 31].

A study on the widening of the basin of attraction of a
class of piecewise linear (PWL) systems was recently
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performed in [2]. In this work, a bifurcation from a bistable
system with two self-excited double-scroll attractors to a
multistable system with two self-excited attractors and one
hidden attractor was reported. Other study on the emer-
gence of hidden double-scroll attractors in a class of PWL
systems is reported in [32].

Based on the observations made in previous works, a
question of whether or not it is possible to generate a hidden
multiscroll attractor with scrolls along more than one di-
rection emerges. Depending on the number of directions in
which the scrolls in the attractor extend, they are usually
referred to as one-directional (1D), two-directional (2D),
and three-directional (3D) grid scroll attractors.

Here, we introduce an approach for the construction of
multistable PWL systems that exhibit hidden multiscroll
attractors with 1D, 2D, and 3D grid arrangements. In
Section 2, a system with a chaotic double-scroll self-excited
attractor is introduced. In Section 3, the construction is
extended to 1D grid scroll self-excited attractor; then, the
equilibria are separated by pairs to generate multistable
systems with hidden and self-excited attractors. In Section 4,
the construction is generalized to 1D grid scroll hidden
attractor. In Section 5, the construction is generalized to 2D
and 3D grid scroll hidden attractors; in Section 6, conclu-
sions are given.

2. Heteroclinic Chaos

Let P � P1, . . . , Pη􏽮 􏽯(η> 1) be a finite partition of X ⊂ R3,
that is, X � ∪ 1≤i≤ηPi, and Pi ∩Pj � ∅ for i≠ j.,e approach
to generate hidden attractors is based on the existence of
self-excited attractors; thus, the class of systems considered
in this work are those that present a saddle equilibrium point
in each element of the partition P that is called an atom.

We denote the closure of a set Pi as cl(Pi). For each pair
of adjacent atoms Pi and Pj, i≠ j, SWi,j � cl(Pi)∩ cl(Pj) is
the switching surface.

Consider a dynamical system T : X⟶ X whose dy-
namic is given by

_x � Ax + f(x)B, (1)

where x � (x1, x2, x3)
T ∈ R3 is the state vector and

A � αij􏽮 􏽯 ∈ R3×3 is a linear operator whose matrix is as
follows:
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, (2)

where a, b ∈ R+, and c ∈ R− . ,us, the linear operator A has
a negative real eigenvalue λ1 � c with the corresponding
eigenvector v1 and a pair of complex conjugate eigenvalues
with positive real part, λ2 � a + ib and λ3 � a − ib, with the

corresponding eigenvectors v2 and v3, respectively. ,e ei-
genvectors are given by

v1 �

1

0

1
2
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0

− 1

0
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0

1
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(3)

B � (β1, β2, β3)
T ∈ R3 is a constant vector, and

f : X⟶ R is a functional such that f(x)B is a constant
vector in each atom Pi, and there exists an equilibrium point
x ∗eqi

� (x∗1eqi

, x∗2eqi

, x∗3eqi

)T � − f(x)A− 1B, with i � 1, . . . , η, in
each atom Pi. ,us, in each atom Pi there exists a saddle
equilibrium point with a local stable manifold of dimension one
given by Ws

x ∗eqi

� x + x ∗eqi
: x ∈ span v1􏼈 􏼉􏽮 􏽯. A two-dimensional

local unstable manifold is given by Wu
x ∗eqi

�

x + x ∗eqi
: x ∈ span v2, v3􏼈 􏼉􏽮 􏽯.

We begin to explain the generation of chaotic
attractors by first considering a partition with two
atoms P � P1, P2􏼈 􏼉 and the constant vector B ∈ R3 given
by

B �

−
a

3
−
2c

3

b

3

a

3
−

c

3
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, (4)

and the functional f given by

f(x) �
− α, x ∈ P1,

α, x ∈ P2,
􏼨 (5)

with 0< α ∈ R.
Please note that the vector − B is the first column of the

linear operator A, and thus, system (1) can be rewritten as
_x � A(x1 − f(x), x2, x3)

T. ,en, the functional f(x) de-
termines the location of the equilibria along the x1-axis. So,
x ∗eqi

� (x∗1eqi

, x∗2eqi

, x∗3eqi

)T ∈ Pi, i � 1, 2.

Proposition 1. If the PWL system (1) is given by (2), (4), and
(5), then the functional f(x) determines the location of the
equilibria along the x1-axis.
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Proof. Let A � [A1, A2, A3] be the linear operator so that
each Ai, i � 1, 2, 3, is a column vector. Since B � − A1, then
x
.

� Ax + f(x)B can be rewritten as
_x � x1 − f(x)( 􏼁A1 + x2A2 + x3A3, (6)

and then

_x � A x1 − f(x), x2, x3( 􏼁
T
. (7)

Now, in order to find the equilibria, we equate the vector
field to zero:

0 � A x1 − f(x), x2, x3( 􏼁
T
. (8)

Since A≠ 0, it follows that

x ∗eq � (f(x), 0, 0)
T

. (9)

,us, the equilibria is determined by f(x) given by (5) along
the x1-axis.

According to f(x), the first components of the equilibria
fulfill that x∗1eq1

<x∗1eq2
.

,e switching plane SW has associated an equation
􏽢Ax1 + 􏽢Bx2 + 􏽢Cx3 + D � N · xT + D � 0, with 􏽢A> 0, and
N � (􏽢A, 􏽢B, 􏽢C) is the normal vector. ,en, the atoms Pi,
i � 1, 2, are defined as follows:

P1 � x ∈ R3 : x3 > 0, N · xT ≤ − D􏼈 􏼉∪ x ∈ R3 : x3 ≤ 0, N · xT < − D􏼈 􏼉,

P2 � x ∈ R3 : x3 > 0, N · xT > − D􏼈 􏼉∪ x ∈ R3 : x3 ≤ 0, N · xT ≥ − D􏼈 􏼉.
(10)

□
Assumption 1. ,e switching plane SW intersects the
x1-axis at the midpoint between the equilibrium points x∗eq1
and x∗eq2

.

Proposition 2. Under Assumption 1, each atom Pi given by
(10), i � 1, 2, contains an equilibrium point of the PWL
system (1) given by (2), (4), and (5).

Proof. We want to prove that if a system is given by (1), (2),
(4), and (5), then ∃ x∗eq1

∈ P1 and ∃ x∗eq2
∈ P2. From (9) and

(5), the two equilibrium points are

x∗eq1
� (− α, 0, 0)

T and x∗eq2
� (α, 0, 0)

T
. (11)

From Assumption 1, the parameter D can be defined as
D � − xsw1

􏽢A, where xsw1
∈ (x∗1eq1

, x∗1eq2
) is the intersection of

SW with the x1-axis:

N · x∗eq1
� − α􏽢A,

N · x∗eq2
� α􏽢A.

(12)

,us,

N · x∗eq1
< − D,

N · x∗eq2
> − D,

(13)

from (10) x∗eq1
∈ P1 and x∗eq2

∈ P2. □

Proposition 3. If SW � cl(P1)∩ cl(P2) � x ∈ R3: 2x1−􏼈

x3 � 0}, the stable and unstable manifolds of the PWL system
(1) given by (2), (4), and (5) intersect at two points given by
xin1

� ((α/3), 0, (2α/3))T and xin2
� (− (α/3), 0, − (2α/3))T.

Proof. ,e equilibrium points are located at
x∗eq1

� (− α, 0, 0)T and x∗eq2
� (α, 0, 0)T. In each atom Pi, the

equilibrium point x ∗eqi
has a local stable manifold (14) of

dimension one given by Ws
x ∗eqi

� x + x ∗eqi
: x ∈ span v1􏼈 􏼉􏽮 􏽯 and

a two-dimensional local unstable manifold given by

Wu
x ∗eqi

� x + x ∗eqi
: x ∈ span v2, v3􏼈 􏼉􏽮 􏽯. ,us, the local mani-

folds are given as follows:

W
s
x∗eq1

� x ∈ P1 : x1 + α � 2x3, x2 � 0􏼈 􏼉, (14)

W
u
x∗eq1

� x ∈ P1 : x1 + x3 � − α􏼈 􏼉, (15)

W
s
x∗eq2

� x ∈ P2 : x1 − α � 2x3, x2 � 0􏼈 􏼉, (16)

W
u
x∗eq2

� x ∈ P2 : x1 + x3 � α􏼈 􏼉. (17)

According to (18), the stable and unstable manifolds, and
the intersection points are given by

xin1
� cl W

s
x∗eq1

􏼒 􏼓∩ cl W
u
x∗eq2

􏼒 􏼓 � ((α/3), 0, (2α/3))
T
, (18)

xin2
� cl W

s
x∗eq2

􏼒 􏼓∩ cl W
u
x∗eq1

􏼒 􏼓 � (− (α/3), 0, (2α/3))
T
. (19)

,ese points belong to SW. □

Assumption 2. ,e parameters a and b control the oscil-
lation around the equilibrium point x ∗eqi

, and we consider
b/a> 10.

Proposition 4. :e hyperbolic system given by (1), (2), (4),
and (5) generates a pair of heteroclinic orbits if the switching
surface between the atoms P1 and P2 is given by the plane
SW � cl(P1)∩ cl(P2) � x ∈ R3: 2x1 − x3 � 0􏼈 􏼉.

Proof. We want to show that there exist initial conditions
x01, x02 ∈ SW, such that two solution curves φ(x01, t) and
φ(x02, t) of the hyperbolic system given by (1), (2), (4), and
(5) fulfill that φ(x01, t)⟶ x∗eq1

and φ(x02, t)⟶ x∗eq2
as

t⟶∞ and φ(x01, t)⟶ x∗eq2
and φ(x02, t)⟶ x∗eq1

as
t⟶ − ∞; in particular, these initial conditions correspond
to the intersection points cl(Ws

x∗eq1
)∩ cl(Wx∗eq2

) and
cl(Ws

x∗eq2
)∩ cl(Wu

x∗eq1
).
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From (2), the linear operator A can be expressed as

A � QEQ
− 1

, (20)

where Q � v1 v2 v3􏼂 􏼃 and

E �

c 0 0

0 a − b

0 b a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (21)

,e intersection points xin1
and xin2

belong to SW and
xin1
∈ P1 and xin2

� P2. Because these points xin1
and xin2

belong to the stable manifolds Ws
x∗eq1

and Ws
x∗eq2

, respectively,
they are points whose trajectories remain in atoms P1 and
P2, respectively.

By definition, x∗1eq1
� − x∗1eq2

; then, the x2-axis belongs to
the plane SW. ,e sets cl(Wu

x ∗eqi

)∩ SW, for i � 1, 2, can be
written as follows:

(0, ϵ, 0)
T

+ xini
: ϵ ∈ R􏽮 􏽯, for i � 1, 2. (22)

Consider the following changes of coordinates
z(i) � Q− 1(x − x ∗eqi

), for i � 1, 2. ,en, the vector field in z(i)

coordinates for the space given by the atom Pi is given by
_z(i) � Ez(i), with i � 1, 2.

Since Q− 1(0, ϵ, 0)T � (0, − ϵ, 0)T, the sets given by (22) in
z(i) coordinates are given as follows:

(0, ϵ, 0)
T

+ Q
− 1 xini

− x ∗eqi
􏼐 􏼑 : ϵ ∈ R􏽮 􏽯, for i � 1, 2,

(23)

where z(i)
ini

� Q− 1(xini
− x ∗eqi

) � ((− 1)i+14α/3, 0, 0)T is a point
on the z

(i)
1 -axis that corresponds to the transformation of the

intersection points xini
∈ Pi to z(i)

ini
∈ Q− 1(x − x ∗eqi

): x ∈ Pi􏽮 􏽯,
for i � 1, 2.

When t> 0, φ(xin1
, t) remains in the atom P1, the

transformation of xin1
under Q− 1(xin1

− x∗eq1
) is

z(1)
in1

� (4α/3, 0, 0)T. In a similar way, when t> 0, φ(xin2
, t),

remains in the atom P2, the transformation of xin2
under

Q− 1(xin2
− x∗eq2

) is z(2)
in2

� (− 4α/3, 0, 0)T. So, z(i)
ini

belongs to
the stable manifold Ws

z∗eqi

, for i � 1, 2; then, the trajectories
z(i)(t) � eEtz(i)

ini
⟶ 0 when t⟶∞. ,is implies that

lim
t⟶∞

φ xin1
, t􏼐 􏼑 � x∗eq1

,

lim
t⟶∞

φ xin2
, t􏼐 􏼑 � x∗eq2

.
(24)

When t< 0, φ(xin1
, t) leaves the atom P1 and enters to

atom P2, the transformation of xin1
under Q− 1(xin1

− x∗eq2
) to

z(2)
in1
∈ Q− 1(x − x∗eq2

)n : x ∈ cl(P2)􏽮 􏽯 is z(2)
in1

� (0, 0, 2α/3)T. In
a similar way, when t< 0, φ(xin2

, t) leaves the atom P2 and
enters to atom P1, the transformation of xin2

under
Q− 1(xin2

− x∗eq1
) to z(1)

in2
∈ Q− 1(x − x∗eq1

) : x ∈ cl(P1)􏽮 􏽯 is
z(1)

in2
� (0, 0, − 2α/3)T. ,us, z(j)

ini
� (0, 0, (− 1)j2α/3)T is a

point on the axis z
(j)
3 and belongs to cl(Wu

z∗eqj

) for i, j ∈ 1, 2{ }

and i≠ j .

With the uncoupled system in z(i) coordinates, we can
analyze the flow on the plane z

(i)
2 − z

(i)
3 and see how the flow

converges at the equilibrium point z∗ (i)
eqj

when t⟶ − ∞:

_z
(i)
2 � az

(i)
2 − bz

(i)
3 ,

_z
(i)
3 � bz

(i)
2 + az

(i)
3 ,

z
(i)
2 _z

(i)
2 + z

(i)
3 _z

(i)
3 � a z

(i)
2􏼐 􏼑

2
+ z

(i)
3􏼐 􏼑

2
􏼒 􏼓.

(25)

If r2 � (z
(i)
2 )2 + (z

(i)
3 )2, then r _r � ar2

_r � ar, (26)

r � r0e
at

. (27)

As 0< a ∈ R, so r⟶ 0 when t⟶ − ∞. ,en, the
trajectories z(i)(t) � eEtz(i)

ini
⟶ 0 when t⟶ − ∞. ,is

implies that

lim
t⟶ − ∞

φ xin1
, t􏼐 􏼑 � x∗eq2

, and lim
t⟶ − ∞

φ xin2
, t􏼐 􏼑 � x∗eq1

,

(28)

,us, the heteroclinic orbits are defined as

HO1 � x ∈ φ xin1
, t􏼐 􏼑 : t ∈ (− ∞,∞)􏽮 􏽯,

HO2 � x ∈ φ xin2
, t􏼐 􏼑 : t ∈ (− ∞,∞)􏽮 􏽯.

(29)

As example, consider systems (1), (2), (4), and (5) with
the parameters a � 0.2, b � 5, c � − 3, α � 1, which fulfills
(10) with the switching surface SW � cl(P1)∩ cl(P2)

� x ∈ R3: 2x1 − x3 � 0􏼈 􏼉. ,en, heteroclinic chaos emerges
from this system, a double-scroll attractor is exhibited, as
it is shown in Figure 1(b), for the initial condition
x0 � (0, 0, 0)T. □

3. Multiple Self-Excited Attractors

A study on the widening of the basins of attraction of
multistable switching dynamical system with symmetrical
equilibria is performed in [2]. In this study, the increment of
distance between the equilibria of the self-excited double-
scroll attractors increases the basin of attraction of both
attractors. ,e study also reveals that, for the system under
study, there is a distance at which a hidden double-scroll
attractor emerges.

Based on the idea of generating hidden scroll attractors
from sufficiently separated self-excited attractors, we con-
sider now a partition with more atoms P � P1, P2, P3, P4􏼈 􏼉

along with the PWL system (1), with A and B given by (2)
and (4), respectively. For this partition, the functional f(x)

is defined in the four atoms as follows:

f(x) �

− α − c, x ∈ P1,

α − c, x ∈ P2,

− α + c, x ∈ P3,

α + c, x ∈ P4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)
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where 0< α, c ∈ R and c> α. Now, there are four atoms and
each atom contains an equilibrium point, x ∗eqi

� (x∗1eqi

,

x∗2eqi

, x∗3eqi

)T ∈ Pi, i � 1, 2, 3, 4. ,e first components of the
equilibrium points fulfill that x∗1eqi

<x∗1eqi+1
, i � 1, 2, 3.

,ere are three switching planes and each switching plane
SWi,i+1 crosses the x1-axis and is located between the equi-
librium points x ∗eqi

and x∗eqi+1
, i � 1, 2, 3.

,e switching plane SWij with i, j ∈ 1, . . . , η􏼈 􏼉 has as-
sociated an equation Aijx1 + Bijx2 + Cijx3 + Dij � Nij·

xT + Dij � 0, where Aij > 0 and Nij � (Aij, Bij, Cij) is the
normal vector. ,en, in order to know if a point x belongs to
a Pi the following conditions are considered:

If x ∈ x ∈ R3 : x3 > 0,Nij · xT ≤ − Dij􏽮 􏽯,

then x ∈ Pk for a k≤ i,

If x ∈ x ∈ R3 : x3 > 0,Nij · xT > − Dij􏽮 􏽯,

then x ∈ Pk for a k≥ j,

If x ∈ x ∈ R3 : x3 ≤ 0,Nij · xT ≥ − Dij􏽮 􏽯,

then x ∈ Pk for a k≥ j,

If x ∈ x ∈ R3 : x3 ≤ 0,Nij · xT < − Dij􏽮 􏽯,

then x ∈ Pk for a k≤ i.

(31)

If x ∈ Pk for a k≥ i and x ∈ Pk for a k≤ i, it follows that
x ∈ Pi.

,e equilibria are located on the x1-axis at

x∗eq1
�

− (c + α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq2
�

− (c − α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq3
�

(c − α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq4
�

(c + α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(32)

so x∗eq1
∈ P1, x∗eq2

∈ P2, x∗eq3
∈ P3, and x∗eq4

∈ P4.

Assumption 3. ,e distance between the self-excited
attractors should be big enough to allow the existence of a
hidden double-scroll attractor, so we consider (c/α)≥ 10.

Consider three switching surfaces with the following
orientation:

SW1,2 � cl P1( 􏼁∩ cl P2( 􏼁 � x ∈ R3 : 2x1 − x3 � − 2c􏼈 􏼉,

SW2,3 � cl P2( 􏼁∩ cl P3( 􏼁 � x ∈ R3 : 2x1 − x3 � 0􏼈 􏼉,

SW3,4 � cl P3( 􏼁∩ cl P4( 􏼁 � x ∈ R3 : 2x1 − x3 � 2c􏼈 􏼉,

(33)

–2
x1 2

–1

1
–1

1

x2

x3

(a)

–2
x1 2 –1

1
–1

1

x2

x3

(b)

Figure 1: In (a) the heteroclinic loop of system (1), (2), (4), and (5) with the switching surface x ∈ R3: 2x1 − x3 � 0􏼈 􏼉 and the parameters
a � 0.2, b � 5, c � − 3, α � 1 and in (b) a double-scroll attractor that emerges from an heteroclinic loop using the following initial condition
x0 � (0, 0, 0)T.
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which fulfill that
SWi,(i+1) ∩ x ∈ R3 : x3 > 0􏼈 􏼉 ∈ Pi,

SWi,(i+1) ∩ x ∈ R3 : x3 ≤ 0􏼈 􏼉 ∈ Pi+1.
(34)

,e switching surfaces given in (33) along with the
condition given in (34) ensure the existence of the four
heteroclinic orbits. Moreover, cl(Wu

x∗eq2
)∩Ws

x∗eq3
≠∅ and

cl(Wu
x∗eq3

)∩Ws
x∗eq2
≠∅.

As example, consider the system with parameters
a � 0.2, b � 5, c � − 3, α � 1, and c � 10, the system presents
two self-excited attractors; however, the hidden double-scroll
attractor is not present and a transitory double-scroll oscillation
is exhibited instead. Figure 2(a) shows in blue the trajectory for
the initial condition x0 � (0, 0, 0)T for a time t ∈ [0, 150] a.u.
(arbitrary units).,us, an enough separation of the self-excited
double-scroll attractors is not sufficient to produce a hidden
double-scroll attractor.

,e absence of a hidden attractor is related to the
switching plane SW2,3 and how the trajectories of the
transitory double-scroll cross it near the stable manifolds.
Consider now the following switching surfaces:

SW1,2 � cl P1( 􏼁∩ cl P2( 􏼁 � x ∈ R3 : 2x1 − x3 � − 2c, x3 < 0􏼈 􏼉,

SW2,3 � cl P2( 􏼁∩ cl P3( 􏼁 � x ∈ R3 : x1 � 0􏼈 􏼉,

SW3,4 � cl P3( 􏼁∩ cl P4( 􏼁 � x ∈ R3 : 2x1 − x3 � 2c, x3 > 0􏼈 􏼉.

(35)

With the change in SW2,3, the intersections
cl(Wu

x∗eq2
)∩Ws

x∗eq3
� ∅ as well as cl(Wu

x∗eq3
)∩Ws

x∗eq2
� ∅.

Furthermore, the distance from cl(Wu
x∗eq2

)∩ SW2,3 to
Ws

x∗eq3
∩ SW2,3 and by symmetry from cl(Wu

x∗eq3
)∩ SW2,3 to

Ws
x∗eq2
∩ SW2,3 allow the trajectories to cross SW2,3 far from

the stable manifolds and allowing the existence of the hidden
double-scroll attractor.

As example, consider the system given by (1), (2), (4), and
(30) with a � 0.2, b � 5, c � − 3, α � 1, and c � 10 and the new
switching surfaces given by (35). Figure 2(b) shows in blue the
trajectory for the initial condition x0 � (0, 0, 0)T for a time
t ∈ [50000, 51000] a.u.,e trajectory reaches the hidden double-
scroll instead of converging to one of the self-excited attractors. A
trajectory has been simulated for a time t> 1000000 to verify that
the double-scroll oscillation is not a transitory behavior and that
the trajectory does not converge to a self-excited attractor.

,e construction can be further extended to the number of
scrolls desired just by adding two atoms for each scroll; for
instance, for a triple scroll attractor the partition isP � P1, . . . ,􏼈

P6} and a possible set of switching surfaces is given by
SW1,2 � cl P1( 􏼁∩ cl P2( 􏼁 � x ∈ R3 : 2x1 − x3 � − 4c, x3 < 0􏼈 􏼉,

SW2,3 � cl P2( 􏼁∩ cl P3( 􏼁 � x ∈ R3 : x1 � − c􏼈 􏼉,

SW3,4 � cl P3( 􏼁∩ cl P4( 􏼁 � x ∈ R3 : 2x1 − x3 � 0, x3 > 0􏼈 􏼉,

SW4,5 � cl P4( 􏼁∩ cl P5( 􏼁 � x ∈ R3 : x1 � c􏼈 􏼉,

SW5,6 � cl P5( 􏼁∩ cl P6( 􏼁 � x ∈ R3 : 2x1 − x3 � 4c, x3 > 0􏼈 􏼉,

(36)

with

f(x) �

− α − 2c, x ∈ P1,

α − 2c, x ∈ P2,

− α, x ∈ P3,

α, x ∈ P4,

− α + 2c, x ∈ P3,

α + 2c, x ∈ P4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

,en, the equilibria are located at the x1-axis with
x∗1eq1

� − 2c − α, x∗1eq2
� − 2c + α, x∗1eq3

� − α, x∗1eq4
� α,

x∗1eq5
� 2c − α, and x∗1eq6

� 2c + α.

4. Generalization

,e number of scrolls for a hidden scroll attractor exhibited
by the system from the previous section depends on the
number of self-excited attractors. In order to simplify the
description for a large number of scrolls, a generalization is
introduced in this section. Consider a dynamical system
T : X⟶ X whose dynamic is given by

_x � Ax + BF(x), (38)

where x � (x1, x2, x3)
T ∈ R3 is the state vector,

A � αij􏽮 􏽯 ∈ R3×3 is the linear operator given by (2), and F is
a functional such that BF(x) is a constant vector in each
atom Pi. ,e saddle equilibrium point of each atom is given
by x ∗eqi

� (x∗1eqi

, x∗2eqi

, x∗3eqi

)T � (F(x), 0, 0)T, with i � 1, . . . , η.
F(x) is defined as follows:

F(x) � αg 2 x1 − f1 x1( 􏼁( 􏼁 − x3, x3( 􏼁 + f1 x1( 􏼁, (39)

where

f1 x1( 􏼁 � 􏽘

Nx1

j�1
cu x1 + 2c(j − 1) − c Nx1

− 1􏼐 􏼑􏼐 􏼑, (40)

with Nx1
∈ Z+. ,e parameters α and c fulfill Assumption 3.

,e function u(y) is the Heaviside step function:

u(y) �
1, if y≥ 0,

− 1, if y< 0,
􏼨 (41)

and g is a step function defined as follows:

g(y, z) �

1, if y> 0 and z≥ 0,

− 1, if y≤ 0 and z≥ 0,

1, if y≥ 0 and z< 0,

− 1, if y< 0 and z< 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(42)

Note that g(y, z) is equal to u(y), when z< 0; while, for
z≥ 0, it is similar to u(y) with the only difference that 0 is
mapped to 1 instead of − 1.

Please note that − B is the first column of the operator A

and therefore system (38) can be rewritten as follows:
_x � Ax − AB(x), (43)
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where B : X⟶ X is a vector valued function defined as
follows:

B(x) �

B1

B2

B3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

αg 2 x1 − f1 x1( 􏼁( 􏼁 − x3, x3( 􏼁 + f1 x1( 􏼁

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(44)

such thatAB(x) is a constant vector in each atomPi.,e saddle
equilibrium point of each atom is now given by
x ∗eqi

� (x∗1eqi

, x∗2eqi

, x∗3eqi

)T � B(x), with i � 1, . . . , η.
To understand the form of B(x), it is useful to separate B1

and analyze the effect of each term of the sum, i.e., the effect of
the term αg(2(x1 − f1(x1)) − x3, x3) and the effect of
f1(x1).

First, consider the function f1(x1) whose plot resembles
a stair centered at the origin whose plateaus are of 2c in
height and width. Two examples for Nx1

� 3 and Nx1
� 6 are

shown in Figure 3.
,us, f1(x1) generates Nx1

switching planes of the form
x ∈ R3 : x1 � ϵ ∈ R􏼈 􏼉, which are parallel to the plane x2 − x3.

,en,f1(x1) generates a partitionR � R1, . . . , RNx1+1􏼚 􏼛 ofX.
Now, consider the term αg(2(x1 − f1(x1)) − x3, x3), and

this term generates a switching plane x ∈ Ri: 2(x1−􏼈

f1(x1)) − x3 � 0} for i � 1, . . . , Nx + 1. Since f1(x1) takes
Nx1

+ 1 values, then αg(2(x1 − f1(x1)) − x3, x3) generates
Nx1

+ 1 switching planes, one for each element of the partition
R. ,us, the elements Ri are split and the partition
P � P1, . . . , P2Nx1+2􏼚 􏼛 is generated.

In this way, B(x) locates two equilibrium points with a
separation of 2α in the middle of each element Ri (along x1)
for i � 1, . . . , Nx1

+ 1. In the partition P, B(x) locates an
equilibrium point in each Pi for i � 1, . . . , 2Nx1

+ 2.

,us, the equilibria along the x1-axis is located in Nx1
pairs, each pair of nearby equilibrium points have a sepa-
ration of 2α. Let us denote the midpoint of the line that joins
a pair μ of nearby equilibria as cpμ with μ � 1, . . . , (Nx1

+ 1).
,en, the distance from cpi to cpi+1 is 2c. ,e purpose of this
distribution for the equilibria is to allow the existence of
double-scroll self-excited attractors that are separated
enough from other double-scroll self-excited attractors in a
way that these resemble equilibria for the generation of a
bigger scroll attractor at a larger scale. ,is larger scroll
attractor is indeed the hidden scroll attractor.

,e equilibria are located along the x1-axis as follows:

x
∗
1eq1

� (0)2c − c Nx1
􏼐 􏼑 − α,

x
∗
1eq3

� (1)2c − c Nx1
􏼐 􏼑 − α,

x
∗
1eq5

� (2)2c − c Nx1
􏼐 􏼑 − α,

⋮

x
∗
1eq2Nx1 − 1

� Nx1
− 1􏼐 􏼑2c − c Nx1

􏼐 􏼑 − α,

x
∗
1eq2Nx1+1

� Nx1
􏼐 􏼑2c − c Nx1

􏼐 􏼑 − α,

x
∗
1eq2

� (0)2c − c Nx1
􏼐 􏼑 + α,

x
∗
1eq4

� (1)2c − c Nx1
􏼐 􏼑 + α,

x
∗
1eq6

� (2)2c − c Nx1
􏼐 􏼑 + α,

⋮

x
∗
1eq2Nx1

� Nx1
− 1􏼐 􏼑2c − c Nx1

􏼐 􏼑 + α,

x
∗
1eq2Nx1+2

� Nx1
􏼐 􏼑2c − c Nx1

􏼐 􏼑 + α.

(45)
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8
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Figure 2: Simulation of the system given by (1), (2), (4), and (30) with a � 0.2, b � 5, c � − 3, α � 1, c � 10, and α � 1 for the initial condition
x � (0, 0, 0)T in blue. In (a) the surfaces are defined by (33) and (34), the simulation is shown for t ∈ [0, 300]a · u. (arbitrary units), and the
trajectory converges to one of the self-excited attractors in red. In (b) the surfaces are defined by (35) and the simulation is shown for
t ∈ [50000, 51000]a · u., and the hidden attractor emerges.
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,e switching planes located in the middle of the self-
excited attractors are given as follows:

SW1,2 � x ∈ R3
: 2 x1 − x

∗
1eq1

+ α􏼐 􏼑􏼐 􏼑 − x3 � 0, x1 <x
∗
1eq2

+(c − α)􏽮 􏽯,

SW3,4 � x ∈ R3
: 2 x1 − x

∗
1eq3

+ α􏼐 􏼑􏼐 􏼑 − x3 � 0, x
∗
1eq3

− (c − α)≤x1 < x
∗
1eq4

+(c − α)􏽮 􏽯,

⋮

SW2Nx1+1,2Nx1+2 � x ∈ R3
: 2 x1 − x

∗
1eqNx1+1

+ α􏼒 􏼓􏼒 􏼓 − x3 � 0, x
∗
eq2Nx1+1

− (c − α)≤ x1􏼚 􏼛.

(46)

,e rest of the switching surfaces are

SW2,3 � x ∈ R3
: x � x

∗
1eq2

+(c − α)􏽮 􏽯,

SW4,5 � x ∈ R3
: x � x

∗
1eq4

+(c − α)􏽮 􏽯,

⋮

SW2Nx1− 2,2Nx1− 1 � x ∈ R3
: x � x

∗
1eq2Nx1 − 2

+(c − α)􏼚 􏼛,

SW2Nx1 ,2Nx1+1 � x ∈ R3
: x � x

∗
1eq2Nx1

+(c − α)􏼚 􏼛.

(47)

To illustrate the construction, consider the parameters
a � 0.2, b � 5, c � − 7, and Nx1

� 1, the system presents two
self-excited attractors and a hidden double-scroll attractor,
which is shown in Figure 4(a).

According to the definition, the attraction basin of a
hidden attractor does not intersect neighborhoods of
equilibria. Figure 5 shows the cut of the numerically eval-
uated basins of attraction given by the plane x3 � 0. Each
double-scroll self-excited attractor has its own attraction
basin shown in red and green. Also, the attractor around
these double-scroll self-excited attractors has its own at-
traction basin shown in blue and the intersection of this
basin with the attraction basins of the self-excited attractor is

the empty set. Because all equilibria of the system belong to
the attraction basin of the self-excited attractors, the at-
traction basin of the attractor around the self-excited
attractors does not contain an equilibrium point. So, the
attractor around the self-excited attractors is a hidden
attractor.

Another numerical approach to verify that it is a hidden
attractor consist in performing a long-time simulation of a
trajectory and make sure that the trajectory does not con-
verge to a self-excited attractor. In Figure 6, it is shown that
the simulation for the initial condition x0 � (0, 0, 0)T with
t ∈ [1000000, 10001000]. ,is last approach requires less
computing time, so it was the approach used in all the
examples in the manuscript.

For a second example, considerNx1
� 4; then, the system

presents five self-excited attractors and a hidden 5-scroll
attractor shown in Figure 4(b).,us, the number of scrolls is
equal to the number of self-excited attractors, which is
Nx1

+ 1.

5. Extension for 2D and 3D Grid Scroll
Hidden Attractors

,e approach presented in Section 4 can be further extended
for 2D and 3D grid scroll hidden attractors. ,e idea is to

2γ

2γ

f 1
(x

1)

x1

Nx = 3

(a)

2γ

2γ

f 1
(x

1)

x1

Nx = 6

(b)

Figure 3: ,e plot of the function f1(x1) for (a) Nx1
� 3 and (b) Nx1

� 6.
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add switching surfaces, which are parallel to the planes x1 −

x2 and x1 − x3.
,is requires the modification on B(x), for simplicity,

the functions fi(·) are written as fi:

B(x) �

f4 + f1 −
wf2

c

f2

f3 +
wf2

c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (48)

where

f2 � E2 􏽘

Nx2

k�1
cu x2 + 2c(k − 1) − c Nx2

− 1􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠, (49)

f3 � E3 􏽘

Nx3

l�1
cu x3 −

wf2

c
􏼠 􏼡 + 2c(l − 1) − c Nx3

− 1􏼐 􏼑􏼠 􏼡⎛⎝ ⎞⎠,

(50)

f1 � 􏽘

Nx1

j�1
cu x1 +

wf2

c
􏼠 􏼡 + 2c(j − 1) − c Nx1

− 1􏼐 􏼑􏼠 􏼡,

(51)
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–33
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Figure 4: Simulation of the hidden attractor (in blue) and the self-excited attractors (in red) exhibited by system (43) with parameters
a � 0.2, b � 5, and c � − 7. In (a) and (b) B(x) is given by (44) with Nx1

� 1 and Nx1
� 4, respectively. In (c) B(x) is given by (48) with

E2 � 0, E3 � 1, Nx1
� 2, and Nx3

� 2. In (d) B(x) is given by (48) with E2 � 1, E3 � 1, Nx1
� 2, Nx2

� 2, Nx3
� 2, and w � 0.2.
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f4 � αg 2 x1 +
wf2

c
− f1􏼠 􏼡 − x3 −

wf2

c
− f3􏼠 􏼡,􏼠

x3 −
wf2

c
− f3􏼠 􏼡􏼡,

(52)

where (52) w≥ 0, E2, E3 ∈ 0, 1{ }, and Nx1
, Nx2

, Nx3
∈ Z+.

Let us denote the equilibria found in Section 4 as x∗1D
eqj

�

(x∗1D
1eqj

, x∗1D
2eqj

, x∗1D
3eqj

)T for j � 1, . . . , 2Nx1
+ 2. ,en, the new

equilibria for the new B(x) in (48) are found from

x∗3D
jkl � x∗1D

eqj
+

0

0

E1l( 􏼁2c − cNx3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

0

E2k( 􏼁2c − cNx2

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

−
wf2(y)

c

0

wf2(y)

c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (53)

where k � 1, . . . , 2Nx2
+ 2 and l � 1, . . . , 2Nx3

+ 2. ,e
switching surfaces are now restricted on x2 and x3 and
located according to the new equilibria.

As example, consider the parameters a � 0.2, b � 5,
c � − 7, and w � 0.2 with E2 � 0, E3 � 1, Nx1

� 2, and Nx3
�

2 for a 2D-grid scroll hidden attractor shown in Figure 4(c)
and E2 � 1, E3 � 1, Nx1

� 2, Nx3
� 2, and Nx3

� 2 for a 3D-
grid scroll hidden attractor shown in Figure 4(d).

6. Conclusions

In this work, the question of whether or not it is possible to
generate a hidden multiscroll attractor with an arrangement
of scrolls along more than one direction from multiple self-
excited attractors was addressed. It was found that the
separation between self-excited double-scroll attractors and
the switching plane between these self-exited attractors lead

x1
–20 20

x2

–20

20

(a)

x1
–15 –5

x2

–2

2

(b)

x1
5 15

x2

–2

2

(c)

Figure 5: Cut of basins of attraction of system (43) with parameters a � 0.2, b � 5, c � − 7, and Nx1
� 1 at x3 � 0. Red and green dots belong

to the basins of attraction of self-excited attractors, and blue dots belong to the basin of attraction of the hidden attractor. In (a) grid of 0.5
and in (b) and (c) grid of 0.1.

–22 –12

–11

11

12

x1

x 2
x 3

22

Figure 6: Simulation of the hidden attractor exhibited by system (43) with parameters a � 0.2, b � 5, c � − 7, and Nx1
� 1 for

t ∈ [1000000, 10001000].
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to the emergence of a hidden attractor. A generalized
construction was proposed for the generation of multistable
systems with self-excited double-scroll chaotic attractors and
a hidden multiscroll/grid attractor. ,e coexistence of self-
excited attractors and a hidden attractor is presented via
PWL systems and the approach considers for each scroll in
the hidden attractors a self-excited attractor inside the scroll.
As future work, we envision working on the answer to the
following question: is it possible to generate multistability
with more than one hidden attractor?
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and R. Femat, “Multiscroll attractors by switching systems.
Chaos,” An Interdisciplinary Journal of Nonlinear Science,
vol. 20, no. 1, 2010.
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In this paper, a heterogeneous diffusive prey-predator system is first proposed and then studied analytically and numerically.
Some sufficient conditions are derived, including permanence and extinction of system and the boundedness of the solution. )e
existence of periodic solution and its stability are discussed as well. Furthermore, numerical results indicate that both the spatial
heterogeneity and the time-periodic environment can influence the permanence and extinction of the system directly. Our
numerical results are consistent with the analytical analysis.

1. Introduction

Due to the complexity of ecosystems, prey-predator dy-
namics have always drawn interest among mathematical
ecologists, as well as experimental ecologists [1–3]. )e
significance of studying prey-predator dynamics is to gain
insights into the complex ecological processes. Prey-pred-
ator models, as the base of researching prey-predator dy-
namics, have attracted increasing attention [4–7]. Since
Holling [8] introduced the concept of the functional re-
sponse, a lot of studies have been devoted to the under-
standing of the effect of functional response on prey-
predator dynamics [9]. Usually, the functional response is
assumed to be either prey dependent or ratio dependent in
prey-predator models [10, 11].

A classical general prey-predator system can be written
as follows [12]:

dN

dt
� f(N)N − g(N, P)P, (1a)

dP

dt
� h(g(N, P), P)P, (1b)

where N and P denote the prey and predator densities,
respectively, f(N) is the prey growth rate, g(N, P) is the
functional response, and h(g(N, P), P) is the per capita
growth rate of predators. Let h(g(N, P), P) �

eg(N, P) − m(P), then equation (1b) can be rewritten as
follows:

dP

dt
� (eg(N, P) − m(P))P, (2)

where e is the conversion efficiency and m(P) is the specific
mortality of predators in absence of prey. For the function
m(P), the most widely accepted assumption [13] is
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m(P) � μ, where μ is a constant describing the death rate of
the predator. However, Cavani and Farkas [14] introduced
another function for m(P):

m(P) �
c + δP

1 + P
, (3)

where c is the mortality at low density and δ is the limiting,
maximal mortality (obviously, c< δ). )e specific mortality
(3) depends on the quantity of predators, which suggests that
the predator mortality is neither a constant nor an un-
bounded function, and increasing with quantity. Obviously,
when c � δ, equation (3) can be simplified to a constant
death rate type. Prey-predator systems with this nonconstant
death rate have been studied by some researchers [15–17].

Additionally, in order to understand patterns and the
mechanisms of spatial distribution of interacting species, the
dispersal process is taken into consideration [18–20]. )us,
the spatiotemporal dynamics of a prey-predator system can
be presented by a couple of reaction-diffusion equations
based on equations (1a) and (2) [10, 21, 22]:

zN

dt
� f(N)N − g(N, P)P + DNΔN, (4a)

zP

dt
� (eg(N, P) − m(P))P + DPΔP, (4b)

where DN and DP are the prey and predator diffusion co-
efficients, respectively, and the Laplace operator Δ describes
the spatial dispersal.

Because of the emergence of Lotka–Volterra models
[23, 24], a logistic type growth f(N) is usually assumed for
the prey species in the models. Some functional response
g(N, P) are taken into account in many works, such as
Holling type [25], Michaelis–Menten type [26, 27], and
Beddington–DeAngelis type [28, 29]. Especially, many bi-
ologists argued that the ratio-dependent theory is more
suitable for describing prey-predator systems in many sit-
uations [13, 30–32]. Since Ardini and Ginzburg proposed
the ratio-dependent prey-predator system, the prey-preda-
tor systems with ratio-dependent functional response are
widely studied [13, 33–36], and many interesting results are
obtained.

Based on model (4a) and (4b), in this paper, we employ
the ratio-dependent functional response and the noncon-
stant death rate (i.e., equation (3)) and assume that the
growth rate of prey population follows the logistic growth
type. Moreover, let u and v be the prey density and the
predator density, respectively. )en, the resulting system is

zu

zt
� ru 1 −

u

K
􏼒 􏼓 −

auv

bv + u
+ μ1Δu, x ∈ Ω, t> 0, (5a)

zv

zt
�

euv

bv + u
−

c + δv

1 + v
v + μ2Δv, x ∈ Ω, t> 0, (5b)

zu

zn
�

zv

zn
� 0, x ∈ zΩ, t> 0, (5c)

where Ω ∈ Rn is a bounded domain with smooth boundary
zΩ.

In system (5a)–(5c), when c � δ � μ, the system without
diffusion is so-called the Michaelis–Menten ratio-dependent
predator-prey system, which has been studied by many
researchers. Kuang and Beretta [37] systematically studied
the global behaviors of solutions and obtained some new and
significant results, but many important open questions re-
main to be unsolved. For these open questions, Hsu et al.
[38] resolved the global stability of all equilibria in various
cases and the uniqueness of limit cycles by transforming the
Michaelis–Menten-type ratio-dependent model. Xiao and
Ruan [39] investigated the qualitative behavior of the
Michaelis–Menten-type ratio-dependent model at the origin
in the interior of the first quadrant and confirmed that the
origin is indeed a critical point inducing rich and compli-
cated dynamics. Additionally, when the diffusion process is
considered, the Michaelis–Menten ratio-dependent preda-
tor-prey system with diffusion can produce rich spatial
patterns, which makes it a widely studied system for pattern
formation [10, 40–43].

While c< δ, Kovács et al. [44] incorporated delays into
system (5a)–(5c) and studied the qualitative behaviour of the
system without diffusion. Yun et al. [45] presented an ef-
ficient and accurate numerical method for solving system
(5a)–(5c) with a Turing instability and studied the existence
of nonconstant stationary solutions. Aly et al. [46] studied
Turing instability for system (5a)–(5c) and showed that
diffusion-driven instability occurs at a certain critical value
analytically. In these works, parameters in system (5a)–(5c)
are always considered as constants.

However, it seems that there is no research for con-
sidering spatial heterogeneity and time-periodic environ-
ment in system (5a)–(5c). It is well known that spatial
heterogeneity occurs at all scales of the environment [47].
Additionally, interactive populations often live in a fluctu-
ating environment [48], where some environmental con-
ditions such as temperature, light, availability of food, and
other resources usually vary in time. Specially, some data
depending on season in systems may be periodic functions
of time. )us, more realistic models to describe ecosystem
should be nonautonomous systems with spatial heteroge-
neity. With this mind, we propose the following system to
study effects of spatial heterogeneity and time-periodic
environment on prey-predator dynamics:

zu(t, x)

zt
� r(t, x)u(t, x) 1 −

u(t, x)

K(t, x)
􏼠 􏼡

−
a(t, x)u(t, x)v(t, x)

b(t, x)v(t, x) + u(t, x)
+ μ1Δu(t, x),

(6a)

zv(t, x)

zt
�

e(t, x)u(t, x)v(t, x)

b(t, x)v(t, x) + u(t, x)

−
c(t, x) + δ(t, x)v(t, x)

1 + v(t, x)
v(t, x) + μ2Δv(t, x),

(6b)

zu(t, x)

zn
�

zv(t, x)

zn
� 0, x ∈ zΩ , t> 0, (6c)
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where u(t, x) and v(t, x) represent the densities of the prey
and predator, respectively, at a space point x and time t; for
simplification, u(t, x) and v(t, x) are rewritten as u and v in
the rest of this paper, respectively; r(t, x) is the intrinsic
growth rate of prey population; K(t, x) denotes the envi-
ronmental carrying capacity of prey population; a(t, x) is the
capturing rate of the predator; b(t, x) is the half saturation;
and e(t, x) denotes the conversion rate. )e term c(t, x) +

δ(t, x)v(t, x)/1 + v(t, x) describes the specific mortality of
predators in absence of prey population, where c(t, x) is the
mortality at low density and δ(t, x) is the limiting, maximal
mortality. )e terms μ1Δu(t, x) and μ2Δv(t, x) with positive
diffusion coefficients μ1 and μ2 represent the nonhomoge-
neous dispersion of the prey and the predator, respectively.
Neumann boundary conditions (see equation (6c)) are
employed, which characterize the absence of migration.
Here, we assume that prey and predator populations are
confined to a fixed bounded space domain Ω ∈ Rn with
smooth boundary zΩ and Ω � Ω∪ zΩ.

)e rest of the paper is organized as follows. In Section 2,
some conditions and definitions are given. In Section 3,
dynamics of system (6a)–(6c) are studied, including
boundedness, permanence, extinction, and periodic solu-
tion. Moreover, a series of numerical simulations are carried
out for further study of the dynamics of system (6a)–(6c)
in Section 4. Finally, the paper ends with conclusion in
Section 5.

2. Preliminaries

Let R,Z, and N be the sets of all real numbers, integers, and
positive integers, repectively, andR+ � [0, +∞). We assume
that the following condition holds throughout the paper:

(H) )e functions r(t,x), K(t,x), a(t,x), b(t,x), c(t,x),

e(t,x), δ(t,x) are bounded positive-valued functions on
R×Ω, continuously differentiable in t and x, and are pe-
riodic in t with period τ>0.

Moreover, for a continuous function ϕ(t, x), we denote
ϕL � inf(t,x)ϕ(t, x) and ϕM � sup(t,x)ϕ(t, x).

Definition 1. Solutions of system (6a)–(6c) are ultimately
bounded if there exist positive constants N1 andN2 such
that for every solution (u(t, x, u0, v0), v(t, x, u0, v0), there
exists a moment of time T � T(u0, v0)> 0 such that

u t, x, u0, v0( 􏼁≤N1,

v t, x, u0, v0( 􏼁≤N2,
(7)

for all x ∈ Ω and t≥T.

Definition 2. System (6a)–(6c) is permanent if there exist
positive constants ζ and η such that for every solution with
nonnegative initial functions u0(x)≢0 and v0(x)≢0, there
exists a moment of time 􏽢t � 􏽢t(u0, v0) such that

ζ ≤ u t, x, u0, v0( 􏼁≤ η,

ζ ≤ v t, x, u0, v0( 􏼁≤ η,
(8)

for all x ∈ Ω and t≥􏽢t.

Consider the following equations:
zu

zt
− dΔu + f(t, x, u) � 0, (t, x) ∈ (0, T] × Ω, (9a)

zu

zn
� 0, (t, x) ∈ (0, T] × zΩ . (9b)

)en, we have the following definition.

Definition 3. A function 􏽢u: (0, T] ×Ω⟶ R is called a
lower solution of equations (9a) and 9b if it satisfies

z􏽢u

zt
− dΔ􏽢u + f(t, x, 􏽢u)≤ 0, (t, x) ∈ (0, T] × Ω, (10a)

z􏽢u

zn
≤ 0, (t, x) ∈ (0, T] × zΩ . (10b)

To analyze dynamics of system (6a)–(6c), the following
results will be needed.

Theorem 1 (Walter [49]). Suppose that vector-functions
v(t,x) � (v1(t,x), . . . ,vm(t,x)) and w(t,x) � (w1(t,x), . . . ,

wm(t,x)),m≥1, satisfy the following conditions:

(i) Cey are of class C2 in x, x ∈ Ω and of class C1 in
(t, x) ∈ [a, b] × Ω, where Ω ∈ Rn is a bounded do-
main with a smooth boundary;

(ii) vt − μΔv − g(t, x, v)≤wt − μΔw − g(t, x, w), where
(t, x) ∈ [a, b] × Ω, μ � (μ1, . . . , μm)> 0 (inequalities
between vectors are satisfied coordinate-wise), and
vector function g(t, x, u) � (g1(t, x, u), . . . ,

gm(t, x, u)) is continuously differentiable and qua-
simonotonically increasing with respect to
u � (u1, . . . , um):

zgi t, x, u1, . . . , um( 􏼁

zuj

≥ 0, i, j � 1, . . . , m, i≠ j; (11)

(iii) zv/zn � zw/zn � 0, (t, x) ∈ [a, b] × zΩ.

Cen, v(t, x)≤w(t, x) for (t, x) ∈ [a, b] × Ω.

Theorem 2 (Smith [50]). Assume that T and d are positive
real numbers, a function u(t, x) is continuous on [0, T] × Ω,
continuously differentiable in x ∈ Ω, with continuous de-
rivatives z2u/zxizxj and zu/zt on (0, T] × Ω, and u(t, x)

satisfies the following inequalities:
zu

zt
− dΔ u + c(t, x)u≥ 0, (t, x) ∈ (0, T] ×Ω,

zu

zn
≥ 0, (t, x) ∈ (0, T] × zΩ,

u(0, x)≥ 0, x ∈ Ω,

(12)

where c(t, x) is bounded on (0, T] × Ω. Cen, u(t, x)≥ 0 on
(0, T] × Ω.

Moreover, u(t, x) is strictly positive on (0, T] ×Ω if
u(t, x) is not identically zero.
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3. Main Results

3.1. Boundedness. From the biological and ecological view-
point, we are always interested in the nonnegative solutions.
)us, the following theorem is given first in system (6a)–(6c).

Theorem 3. Suppose that the condition (H) holds, then
nonnegative and positive quadrants of R2 are positively in-
variant for system (6a)–(6c).

Proof. Let (u(t, x, u0, v0), v(t, x, u0, v0)) be a solution of
system (6a)–(6c) with initial condition u0(x)≥ 0(≢0),

v0(x)≥ 0(≢0). Additionally, 􏽢u is a solution of the following
system:

z􏽢u

zt
− μ1Δ􏽢u − 􏽢u r

L
−

aM

bL
−

rM

KL
􏽢u􏼠 􏼡 � 0, 􏽢u(0, x) � u0(x).

(13)

From system (6a), we can obtain
zu

zt
− μ1Δu − r(t, x)u 1 −

u

K(t, x)
􏼠 􏼡 +

a(t, x)uv

b(t, x)v + u

≤
zu

zt
− μ1Δu − u r

L
−

aM

bL
−

rM

KL
u􏼠 􏼡,

(14)

which implies 􏽢u(t, x) is a lower solution of system (6a).
According to )eorem 2, it is obvious that 􏽢u(t, x)≥ 0 for all
x ∈ Ω and t> 0. Furthermore, due to u0(x)≥ 0(≢0),
􏽢u(t, x)> 0 holds for all x ∈ Ω and t> 0. )us, u(t, x)> 0
holds because u(t, x) is bounded from below by positive
function 􏽢u(t, x).

For system (6b), it can be simply verified that 􏽢v(t, x) is a
lower solution of system (6b), where 􏽢v(t, x) satisfies

z􏽢v

zt
− μ2Δ􏽢v + δM

􏽢v � 0,

􏽢v(0, x) � v0(x).

(15)

By the similar argument to u(t, x), we can prove the
positiveness of v(t, x).

)is completes the proof.
Based on )eorem 3, we will discuss ultimate bound-

edness of solutions in system (6a)–(6c), and then the fol-
lowing theorem can be obtained. □

Theorem 4. If the condition (H) holds, then all solutions of
system (6a)–(6c) with nonnegative initial conditions are ul-
timately bounded.

Proof. From system (6a), it can be found that the following
inequality holds:

0 �
zu

zt
− μ1Δu − r(t, x)u 1 −

u

K(t, x)
􏼠 􏼡 +

a(t, x)uv

b(t, x)v + u

≥
zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡.

(16)

Let u(t, x, u0) be a solution of

zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡 � 0, (17)

then

zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡 � 0

≥
zu

zt
− μ1Δu − u r

M
−

rL

KM
u􏼠 􏼡.

(18)

According to )eorem 1, we can get u(t,x,u0,v0)≤
u(t,Mu), where Mu satisfies ‖u0(x)‖C �max

x∈Ω
|u0(x)|≤Mu. By the uniqueness theorem, it is obvious that
the solution u(t,Mu) with initial conditions independent of
x does not depend on x for t>0. )erefore, u(t,Mu) is the
solution of the following ordinary differential equation:

du

dt
� u r

M
−

rL

KM
u􏼠 􏼡. u 0, Mu( 􏼁 � Mu. (19)

Hence, we have

u t, x, u0, v0( 􏼁≤ u t, Mu( 􏼁⟶
rMKM

rL
, as t⟶∞.

(20)

)us, there exists a positive constant M1 in system
(6a)–(6c) such that u(t, x)≤M1, starting with somemoment
of time.

For predator population v, by system (6b), we have

0 �
zv

zt
− μ2Δv − v

e(t, x)u

b(t, x)v + u
−

c(t, x) + δ(t, x)v

1 + v
􏼠 􏼡

�
zv

zt
− μ2Δv − v

e(t, x)u

b(t, x)v + u
− δ(t, x) −

c(t, x) − δ(t, x)

1 + v
􏼠 􏼡

≥
zv

zt
− μ2Δv + c

L
v −

eMM1

bL
,

(21)

which implies that v(t, x, u0, v0)≤ v(t, Mv), where v(t, Mv)

is a solution of the following initial value problem:

dv

dt
� − c

L
v +

eMM1

bL
, v 0, Mv( 􏼁 � Mv, (22)

and Mv satisfies ‖v0(x)‖C � max
x∈Ω|v0(x)|≤Mv. Obvi-

ously, we can obtain that

v t, Mv( 􏼁 � Mve
− cLt

+
eMM1

bLcL
⟶

eMM1

bLcL
, as t⟶∞.

(23)

)erefore, v(t, x, u0, v0) is also ultimately bounded.
)is completes the proof. □
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3.2. Permanence

Theorem 5. Under the condition (H), if the following
inequalities

r
L

−
aM

bL
> 0, (24a)

e
L

− δM > 0, (24b)

hold, then system (6a)–(6c) is permanent, i.e., there exist
positive constants mi and Mi (i� 1, 2) such that any solution
of system (6a)–(6c) with nonnegative initial functions
u0(x)(≢0) and v0(x)(≢0) satisfies (u(t, x), v(t, x)) ∈ S �

(u, v): m1 ≤ u􏼈 (t, x)≤M1, m2 ≤ v(t, x)≤M2}, starting with
a certain time.

Proof. Under the condition (H), we can know from )eo-
rem 4 that there exists Mi(i � 1, 2) such that
u(t, x)≤M1, v(t, x)≤M2, starting with some moment of
time. By comparison principle, if u0(x)≥ 0(≢0) and
v0(x)≥ 0(≢0), then u(t, x, u0, v0)> 0 and v(t, x, u0, v0)> 0
for all x ∈ Ω and t> 0.

)us, for some small ε> 0, we can get initial conditions
(u(ε, x, u0, v0), v(ε, x, u0, v0)) separated from zero by the
solution on the interval t≥ ε. Without loss of generality, we
assume that min

x∈Ωu0(x) � mu,min
x∈Ωv0(x) � mv. )en,

the following inequality holds:

0 �
zu

zt
− μ1Δu − u r(t, x) −

r(t, x)

K(t, x)
u􏼠 􏼡 +

a(t, x)uv

b(t, x)v + u

≤
zu

zt
− μ1Δu − u r

L
−

aM

bL
−

rM

KL
u􏼠 􏼡.

(25)

Obviously, we can get

0 �
z􏽢u

zt
− μ1Δ􏽢u − 􏽢u r

L
−

aM

bL
−

rM

KL
􏽢u􏼠 􏼡

≤
zu

zt
− μ1Δu − u r

L
−

aM

bL
−

rM

KL
u􏼠 􏼡.

(26)

Consequently, for t≥ 0, we have

u t, x, u0, v0( 􏼁≥ 􏽢u t, mu( 􏼁. (27)

)us, the solution u(t, x, u0, v0) is bounded from below
by a solution of the following logistic equation:

d􏽢u

dt
� 􏽢u r

L
−

aM

bL
−

rM

KL
􏽢u􏼠 􏼡, 􏽢u(0) � mu. (28)

)us, by)eorem 1 and condition (24a) and (24b), we have

u t, x, u0, v0( 􏼁≥ 􏽢u(t, x)⟶
KL rL − aM/bL( 􏼁

rM
, as t⟶∞

(29)

)erefore, there exists a positive constant m1 such that
u(t, x, u0, v0)≥m1 for t large enough.

By system (6b), the following inequality holds:
zv

zt
− μ2Δv − v

e(t, x)u

b(t, x)v + u
−

c(t, x) + δ(t, x)v

1 + v
􏼠 􏼡

≤
zv

zt
− μ2Δv + δM

− e
L

􏼐 􏼑v +
bMeL

m1
v
2
.

(30)

By a similar analysis to u, we have v(t, x, u0, v0)≥
􏽢v(t, mv), where 􏽢v(t, mv) is a solution of the following system:

z􏽢v

zt
− μ2Δ􏽢v + δM

− e
L

􏼐 􏼑􏽢v +
bMeL

m1
􏽢v
2
, 􏽢v(0) � mv. (31)

According to condition (24b), we can obtain that there
exists a positive m2 such that v(t, x, u0, v0)≥m2 for t large
enough.)us, system (6a)–(6c) is permanent, starting with a
certain time.

)is completes the proof. □

3.3. Extinction. In this section, we will discuss the extinction
of predator species, and then the following theorem arrives
in system (6a)–(6c).

Theorem 6. If the condition (H) holds, and

e
M

− c
L < 0, (32)

then, v(t, x)⟶ 0 as t⟶∞.

Proof. Suppose Mv is a fixed positive constant guaranteeing
Mv ≤ v0(x), and v(t, Mv) is the solution of the following
initial value problem:

zv

zt
� v e

M
− c

L
􏼐 􏼑,

v 0, Mv( 􏼁 � Mv.

(33)

By system (6b), we have

0 �
zv

zt
− μ2Δv + v −

e(t, x)u

b(t, x)v + u
+

c(t, x) + δ(t, x)v

1 + v
􏼠 􏼡

≥
zv

zt
− μ2Δv + c

L
− e

M
􏼐 􏼑v.

(34)

)us, according to )eorem 1, we can deduce that
v(t, x, u0, v0)≤ v(t, Mv)⟶ 0 as t⟶∞ if inequality (32)
holds.

)is completes the proof. □

3.4. Periodic Solution. In this section, we will study the
periodic solutions in system (6a)–(6c) by constructing a
proper Lyapunov function.

Theorem 7. Under the condition (H), assume that system
(6a)–(6c) is permanent, that is, there exist positive constants
N and M such that an arbitrary solution of system (6a)–(6c)
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with nonnegative initial functions not identically equal to zero
satisfies the condition:

(u(t, x), v(t, x)) ∈ E � (u, v): N≤ u(t, x)≤M,{

N≤ v(t, x)≤M},
(35)

starting with a certain moment of time. If

λM(W)< 0, (36)

where λM is the maximal eigenvalue of the following matrix:
E11 E12

E21 E22
􏼠 􏼡, (37)

where

E11 � 2 r
M

−
rL

KM
N −

aLbLN2

bMM + M( )
2􏼠 􏼡,

E22 � 2 − δL
+

δM − cL

(1 + N)2
+

eMM2

bLN + N( )
2􏼠 􏼡,

E12 � E21 � a
M

+
eM

bL
.

(38)

)en system (6a)–(6c) has a unique and strictly positive
τ-periodic solution, which is globally asymptotically stable.

Proof. Let (u(t, x), v(t, x)) and (u(t, x), v(t, x)) be two
solutions of system (6a)–(6c) bounded by constants N and

M from below and above, respectively. Consider the fol-
lowing function:

L(t) � 􏽚
Ω

(u(t, x) − u(t, x))
2

+(v(t, x) − v(t, x))
2

􏽨 􏽩dx.

(39)

By system (6a)–(6c), we can get its derivative:
dL(t)

dt
�2􏽚
Ω

(u − u)
zu

zt
−

zu

zt
􏼠 􏼡dx+2􏽚

Ω
(v − v)

zv

zt
−

zv

zt
􏼠 􏼡dx

� 2μ1􏽚
Ω

(u − u)Δ(u − u)dx+2μ2􏽚
Ω

(v − v)Δ(v − v)dx

+ 2􏽚
Ω

(u − u) u r −
r

K
u􏼒 􏼓 −

auv

bv+u
􏼒 􏼓􏼔 − u r −

r

K
u􏼒 􏼓 −

auv

bv+u
􏼒 􏼓􏼕dx

+ 2􏽚
Ω

(v − v)
euv

bv+u
−

c+δv

1+v
v􏼠 􏼡􏼢 −

euv

bv+u
−

c+δv

1+v
v􏼠 􏼡􏼣dx

� I1 +I2 +I3 +I4.

(40)

)en, from the boundary condition (6c),

I1 + I2 � − 2μ1􏽚
Ω
∇2(u − u)dx − 2μ2􏽚

Ω
∇2(v − v)dx

≤ − 2μ1􏽚
Ω

|∇(u − u)|
2dx − 2μ2􏽚

Ω
|∇(v − v)|

2dx≤ 0.

(41)

For other terms I3 and I4,

I3 + I4 � 2􏽚
Ω

(u − u) r(u − u) −
r

K
(u − u)(u + u) +

auv

bv + u
−

auv

bv + u
􏼒 􏼓dx

+ 2􏽚
Ω

(v − v) − δ(v − v) +
c − δ
1 + v

v −
c − δ
1 + v

v +
euv

bv + u
−

euv

bv + u
􏼠 􏼡dx

� 2􏽚
Ω

(u − u)
2

r −
r

K
(u − u) −

abvv

(bv + u)(bv + u)
􏼠 􏼡dx

+ 2􏽚
Ω

(v − v)
2 euu

(bv + u)(bv + u)
−

c − δ
(1 + v)(1 + v)

− δ􏼠 􏼡

+ 2􏽚
Ω

(u − u)(v − v)
ebvv

(bv + u)(bv + u)
−

auu

(bv + u)(bv + u)
􏼠 􏼡dx

≤ 2􏽚
Ω

(u − u)
2

r
M

−
rL

KM
N −

aLbLN2

bMM + M( )
2􏼠 􏼡dx

+ 2􏽚
Ω

(v − v)
2 eMM2

bLN + N( )
2 +

δM − cL

(1 + N)2
− δL

􏼠 􏼡

+ 2􏽚
Ω

|u − u||v − v| a
M

+
eM

bL
􏼠 􏼡dx

≤ λM􏽚
Ω

(u − u)
2

+(v − v)
2

􏽨 􏽩dx.

(42)
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By condition (36), we have

L(t)≤L(0)e
λMt⟶ 0, as t⟶∞, (43)

which implies that ‖u(t, x) − u(t, x)‖⟶ 0 and ‖v(t, x) −

v(t, x)‖⟶ 0 as t⟶∞, where ‖ · ‖ is the norm of the
space L2(Ω). Additionally, by condition (35), solutions of
system (6a)–(6c) are bounded in the space C1+v(Ω,R2),
where 0< v< 2l − (n/p) and (1/2) + (n/2p)< l< 1.

)erefore,

lim
t⟶∞

sup
x∈Ω

|u(t, x) − u(t, x)| � 0,

lim
t⟶∞

sup
x∈Ω

|v(t, x) − v(t, x)| � 0.
(44)

Consider the sequence (u(kτ, x, u0, v0), v(kτ, x,

u0, v0)) � W(kτ, W0), k ∈ N. )en, W(kτ, W0), k ∈ N􏼈 􏼉 is
compact in the space C(Ω) × C(Ω). Let W be a limit of this
sequence, then W(τ, W) � W.

Actually, because W(τ,W(knτ,W0)) � W(knτ,

W(τ,W0)) and W(knτ,W(τ,W0)) − W(knτ,W0)⟶ 0 as
kn⟶∞, we have

‖W(τ, W) − W‖C ≤ W(τ, W) − W τ, W knτ, W0( 􏼁( 􏼁
����

����C

+ W τ, W knτ, W0( 􏼁( 􏼁 − W knτ, W0( 􏼁
����

����C

+ W knτ, W0( 􏼁 − W
����

����C
⟶ 0 as n⟶∞.

(45)

)us, the sequence W(kτ, W0), k ∈ N􏼈 􏼉 has a unique
limit point. Otherwise, suppose that the sequence has two
limit points W � limn⟶∞W(knτ, W0) and
􏽥W � limn⟶∞W(knτ, W0), then we can get the following
result from (45) and 􏽥W � W(knτ, 􏽥W):

‖W − 􏽥W‖C ≤ W − W knτ, W0( 􏼁
����

����C

+ W knτ, W0( 􏼁 − 􏽥W
����

����C
⟶ 0, n⟶∞.

(46)

Hence,W � 􏽥W.)e solution (u(t, x, u, v), v(t, x, u, v)) is
the unique periodic solution of system (6a)–(6c), and it is
asymptotically stable using equation (44).

)is completes the proof. □

4. Numerical Results

In the previous section, we have obtained some interesting
results of system (6a)–(6c). However, due to the complexity
of system (6a)–(6c), it becomes much more difficult to
provide in-depth analysis. )us, here, we perform some
numerical simulations to investigate prey-predator dy-
namics further.

According to )eorem 5, when rL − aM/bL > 0 and eL −

δM > 0 holds, system (6a)–(6c) is permanent under condi-
tion (H). Figure 1 shows that system (6a)–(6c) is permanent,
where rL − aM/bL ≈ 0.1> 0 and eL − δM � 0.528> 0. When
e � 0.005 − 0.002 sin(π ∗ t/10), other parameters are the
same as the ones in Figure 1, and we can get a numerical
solution of system (6a)–(6c) (see Figure 2). It is obvious that
predator population v is extinct ultimately, which is con-
sistent with )eorem 6 because eM − cL � − 0.008< 0.

In section 3.4, the existence of periodic solution was
discussed, and its stability and uniqueness were analyzed as
well. In fact, Figure 1 has shown the existence of a periodic
solution. Yet, we here take another set of function corre-
sponding to the parameters of system (6a)–(6c), which is
only the periodic function of time t with period 200. )e
corresponding numerical solutions are shown in Figure 3.
Clearly, the numerical solution is periodic in t with the
period of 200 (see Figures 3(c) and 3(d)), but it is homo-
geneous in space (see Figures 3(a) and 3(b)). Compared to
Figure 3, we consider another situation that the parameters
of system (6a)–(6c) are functions with respect to both time t

and space x. We find the solution is still periodic, but it is
heterogeneous in space (see Figure 4). It is evident that the
spatial heterogeneity is the reason giving rise to the oscil-
lation of the solution in space.

Additionally, we find that the spatial heterogeneity can
promote the permanence of the system. Figure 5 indicates
that the extinction occurs in system (6a)–(6c). However,

1

2

100

100

50x

t

u

0 0
200 300 400

(a)

5

4

3

2
100

100

50

0
x

v

t0 200 300 400

(b)

Figure 1: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) �

1.1 + 0.1 sin(π ∗ t/10), K(t, x) � 2 + 0.5 ∗ cos(π ∗ t/10), a(t, x) � 0.8 + 0.005 ∗ cos(π ∗ t/10), b(t, x) � 0.9 + 0.005 ∗ cos(π ∗ t/10),
e(t, x) � 0.7 − 0.002 ∗ cos(π ∗ t/10), c(t, x) � 0.02 + 0.005 ∗ cos(π ∗ t/10), δ(t, x) � 0.12 + 0.05 ∗ cos(π ∗ t/10), μ1 � 1, and μ2 � 1.
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when we set r(t, x) � 0.9 + 0.001 sin(5∗ π ∗ t/100) +

0.1 cos(5∗ π ∗ x/100) (other parameters are the same as the
ones in Figure 5), we get a very interesting result, that is,
system (6a)–(6c) becomes permanent (see Figure 6). Like-
wise, other parameters are explored by repeating the same
procedure, and similar results are obtained, which are

omitted here. Obviously, the spatial heterogeneity plays an
important role in dynamics of system (6a)–(6c).

Let all the parameters be constant, then there exists a
nonconstant stationary solution in system (6a)–(6c), as
shown in Figure 7. Furthermore, we consider the parameters
depending on time t based on Figure 7, but the result shows
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0
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0 0
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Figure 2: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v.
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Figure 3: Numerical solutions of system (6a)–(6c): (a) prey population u, (b) predator population v, (c) profile of u(t) at x � 50, and
(d) profile of v(t) at x �50. Here, r(t,x) �1.2+0.1sin(π ∗ t/100),K(t,x) �2+0.5cos(π ∗ t/100), a(t,x) �0.8+0.005cos(π ∗ t/100), b(t,x) �

0.9+0.005cos(π ∗ t/100), e(t,x) �0.7 − 0.005sin(π ∗ t/100), c(t,x) �0.02+0.01cos(π ∗ t/100), δ(t,x) �0.12+0.05cos(π ∗ t/100), μ1 �1,
and μ2 �1.
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that the extinction of both prey and predator occurs (see
Figure 8). However, when the parameter r depends on space
x except for time t, it can be found from Figure 9 that system

(6a)–(6c) is still permanent. Although both Figures 7 and 9
show the spatial heterogeneity of population distribution,
their natures are different. )e spatial heterogeneity in
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Figure 4: Numerical solutions of system (6a)–(6c): (a) prey population u, (b) predator population v, (c) profile of u(t) at x � 50, and
(d) profile of u(x) at t � 1200. Here, r(t,x) � 1.2+0.1sin(π ∗ t/100)+0.01cos(4∗π ∗ x/100)∗ sin(4∗π ∗ x/100), K(t,x) � 2 +

0.5cos(π∗t/100) + cos(4∗π∗x/100), a(t,x) � 0.8+0.005cos(π∗t/100) +0.1cos(4∗π∗x/100), b(t,x) � 0.9+0.005cos(π∗t/100) +

0.1cos(4∗π ∗ x/100), e(t,x) � 0.7 − 0.005sin(π∗t/100) +0.1cos(4∗π∗x/100), c(t,x) � 0.02+0.01cos(π ∗t/100) +0.001cos(4∗π∗x/100),
δ(t,x) � 0.12+0.05cos(π∗t/100) +0.01cos(4∗π∗x/100), μ1 � 1, and μ2 � 1.
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Figure 5: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) � 0.9+ 0.001 sin(5∗
π ∗ t/100), K(t, x) � 10 + 0.5 cos(5∗ π ∗ t/100), a(t, x) � 0.8 + 0.005 cos(5∗ π ∗ t/100), b(t, x) � 0.78 + 0.005 cos(5∗ π ∗ t/100),
e(t, x) � 0.7 − 0.005 sin(5∗ π ∗ t/100), c(t, x) � 0.02 + 0.001 cos(5∗ π ∗ t/100), δ(t, x) � 0.12 + 0.05 cos(5∗ π ∗ t/100), μ1 � 1, and μ2 � 1.
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Figure 6: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v.
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Figure 7: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) � 0.9, K(t, x) � 10,
a(t, x) � 0.8, b(t, x) � 0.8, e(t, x) � 0.7, c(t, x) � 0.02, δ(t, x) � 0.12, μ1 � 0.01, and μ2 � 20.
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Figure 8: Numerical solutions of system (6a)–(6c): (a) prey population u and (b) predator population v, where r(t, x) �

0.9 + 0.001 sin(5∗ π ∗ t/100), K(t, x) � 10 + 0.5 sin(5∗ π ∗ t/100), a(t, x) � 0.8 + 0.005 sin(5∗ π ∗ t/100), b(t, x) � 0.8 + 0.005 sin(5∗
π ∗ t/100), e(t, x) � 0.7 − 0.005 sin(5∗ π ∗ t/100), c(t, x) � 0.02 + 0.001 sin(5∗ π ∗ t/100), δ(t, x) � 0.12 + 0.05 sin(5∗ π ∗ t/100),
μ1 � 0.01, and μ2 � 20.
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Figure 7 is induced by the diffusion, while in Figure 9 it
depends on the space variation of parameters. For other
parameters of system (6a)–(6c), we can obtain similar re-
sults, which are omitted here.

5. Conclusion

In this paper, we first propose a reaction-diffusion system
(6a)–(6c) to describe the interaction between the prey and
the predator, where the spatial heterogeneity and the time-
periodic environment are considered. In order to study the
boundedness of solution, the positive invariance of system
(6a)–(6c) is discussed, and the results demonstrate that
nonnegative and positive quadrants of R2 are always pos-
itively invariant for system (6a)–(6c) when the condition (H)
holds. Based on this, we find that all solutions of system
(6a)–(6c) are ultimately bounded as long as the initial
conditions are nonnegative. Also, we discuss the perma-
nence of system (6a)–(6c) and obtain the sufficient condi-
tions. Moreover, we derive the sufficient conditions for the
extinction of predator population. Obviously, these condi-
tions are very significant for studies of permanence and
extinction of the system. When system (6a)–(6c) is per-
manent, we discuss the existence of a periodic solution,
which suggests that a unique and strictly positive periodic
solution with fixed period exists under certain conditions.

According to theoretical analysis, some numerical results
are given, which show further dynamics in system (6a)–(6c).
Results from literature [45, 46] indicate that Turing patterns
can exist in system (5a)–(5c) (i.e., system (6a)–(6c) without
spatial heterogeneity and time-periodic environment). After
taking time-periodic environment into account, we find that
both prey population and predator population are extinct.
However, when the combination of spatial heterogeneity
and time-periodic environment is considered, it is dem-
onstrated that both prey population and predator pop-
ulation are permanent, which means that spatial
heterogeneity tends to enhance the persistence of prey and
predator population. Additionally, when prey population
and predator population are permanent, our results show
that solutions of system (6a)–(6c) seem to be periodic

because of the time-periodic environment and the spatial
heterogeneity. )us, we want to emphasize that spatial
heterogeneity and time-periodic environment indeed play a
significant role in prey-predator dynamics.
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In this paper, we investigate the impact of a periodically evolving domain on the dynamics of the diffusive West Nile virus. A
reaction-diffusion model on a periodically and isotropically evolving domain which describes the transmission of the West Nile
virus is proposed. In addition to the classical basic reproduction number, the spatial-temporal basic reproduction number
depending on the periodic evolution rate is introduced and its properties are discussed. Under some conditions, we explore the
long-time behavior of the virus. )e virus will go extinct if the spatial-temporal basic reproduction number is less than or equal to
one. )e persistence of the virus happens if the spatial-temporal basic reproduction number is greater than one. We consider
special case when the periodic evolution rate is equivalent to one to better understand the impact of the periodic evolution rate on
the persistence or extinction of the virus. Some numerical simulations are performed in order to illustrate our analytical results.
Our theoretical analysis and numerical simulations show that the periodic change of the habitat range plays an important role in
theWest Nile virus transmission, in particular, the increase of periodic evolution rate has positive effect on the spread of the virus.

1. Introduction

West Nile virus (WNv) is an arbovirus with natural trans-
mission cycle between mosquitoes and birds. When infected
mosquitoes bite birds or other animals including humans,
they transmit the virus [1]. WNv is different from other
arbovirus since it involves a cross infection between birds
(hosts) and mosquitoes (vector) and those birds might travel
with spatial boundaries. Also, WNv can be passed via vertical
transmission from mosquito to its offspring which increases
the survival of the virus [2]. WNv was first isolated and
identified in 1937 from the blood of a febrile woman in the
West Nile province of Uganda during research on yellow fever
virus [3]. It is worthmentioning thatWNv is endemic in some
temperate and tropical regions such as Africa and the Middle
East; it has now spread to North America; the first epidemic
case was introduced in New York City in 1999 and then
propagated across the USA [4–6]. )e USA had experienced
one of its worst epidemics in 2012; there were 5387 cases of
infections in humans [7]. As we know, there are no

indications that the spread of the virus has stopped. Con-
sequently, it is very necessary to acquire some insights into the
propagation of WNv in the mosquito-bird population.

Mathematical nonspatial models have been proposed
and analyzed in an attempt to study the transmission dy-
namics of WNv, in order to elucidate control strategies
[2, 6, 8, 9]. It is essential to study and understand its temporal
and spatial spread, but most of the models are focused on the
nonspatial transmission dynamics of the virus between birds
and mosquitoes.

With respect to spatial models of WNv, Lewis et al. [4]
studied the spatial spread of WNv to describe the movement
of birds and mosquitoes, established the existence of trav-
elling waves, and calculated the spatial spreading rate of the
infection. )e effects of vertical transmission in the spatial
dynamics of the virus for different bird species were pro-
posed by Maidana and Yang in [10], and they studied the
travelling wave solutions of the model to determine the
speed of virus dissemination. Liu et al. [11] presented the
directional dispersal of birds and impact on spatial spreading
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of WNv. Likewise, Lin and Zhu studied spatial spreading
model and dynamics of WNv in birds and mosquitoes with
free boundary [12].

To investigate the existence of travelling wave and cal-
culate the spatial spread rate of infection, Lewis et al. in [4]
proposed the following simplified WNv model:

zIb

zt
� D1ΔIb + αbβb

Nb − Ib( 􏼁

Nb

Im − cbIb, (x, t) ∈ Ω ×(0, +∞),

zIm

zt
� D2ΔIm + αmβb

Am − Im( 􏼁

Nb

Ib − dmIm, (x, t) ∈ Ω ×(0, +∞),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where the positive constants Nb and Am denote the total
population of birds and adult mosquitoes; Ib(x, t) and
Im(x, t) represent the populations of infected birds and
mosquitoes at the location x in the habitat Ω ⊂ RN and at
time t≥ 0, respectively, and Ib(x, 0) + Im(x, 0)> 0. )e
parameters in the above system are defined as follows:

(i) αm, αb: WNv transmission probability per bite to
mosquitoes and birds, respectively

(ii) βb: biting rate of mosquitoes on birds
(iii) dm: adult mosquito death rate
(iv) cb: bird recovery rate from WNv
(v) D1, D2: diffusion coefficients for birds and mos-

quitoes, respectively

As in [13], throughout this paper, we assume that the
mosquitoes’ population does not diffuse (D2 � 0).

For the corresponding spatially independent model of
(1), the basic reproduction number is

R0 �

���������

αmαbβ
2
bAm

dmcbNb

􏽳

, (2)

such that for 0<R0 < 1, the virus always vanishes, while for
R0 > 1, a nontrivial epidemic level appears, which is globally
asymptotically stable in the positive quadrant [4]. As pointed
out in [14], the basic reproduction number R0 is a very
important concept in epidemiology and it defined as an
expected number of secondary cases produced by a typical
infected individual during its entire period of infectiousness
in a completely susceptible population, and mathematically
it is introduced as the dominant eigenvalue of a positive
linear operator. It is important to mention that usually the
basic reproduction numbers for the nonspatial models are
calculated by the next generation matrix method [15], while
for the spatially dependent systems, the numbers could
expressed in terms of the principal eigenvalue of related
eigenvalue problem [16] or the spectral radius of next in-
fection operator [17].

)e dynamics of the spatial dependence model (1) has
been studied. )e existence and nonexistence of the coex-
istence states in a heterogeneous environment have been
investigated in [18]. )e impact of the environmental het-
erogeneity and seasonal periodicity on the transmission of
WNv was considered in [19].

In recent years, the impact of change of the habitat range
on biological population has attracted much attention. We
know there are two aspects: one is the domain changing with
unknown boundary, which describes the domain change
induced by the activity of population itself, and the other is the
domain changing with known boundary, which characterizes
the domain change induced by objective environments. For
the domain changing with unknown boundary, many re-
searchers have proposed and considered the free boundary
problem, for example, [20–23] for the persistence of invasive
species and [24, 25] for the transmission of diseases. In ad-
dition, Tarboush et al. [13] discussed the corresponding free
boundary problem to model (1). Wang et al. investigated the
spreading speed for a WNv model with free boundary in a
homogeneous environment [26]. )eir results indicated that
the asymptotic spreading speed of the WNv model with free
boundary is strictly less than that of the corresponding model
in Lewis et al. [4]. For the domain changing with known
boundary, there are also some papers, for instance, [27–30]
for a growing domain and [31–34] for a periodically evolving
domain. In [31], the authors introduced the periodically
evolving domain into a single-species diffusion logistic model
and studied the influence of periodic evolution on the survival
and extinction of species. Recently, Zhang and Lin considered
the diffusive model for Aedes aegypti mosquito on a peri-
odically evolving domain in order to explore the diffusive
dynamics of Aedes aegypti mosquito [32]. )eir results in-
dicated that the periodic domain evolution has a significant
impact on the dispersal of Aedes aegypti mosquito. To in-
vestigate the impact of periodically evolving domain on the
mutualism interaction of two species, Adam et al. [33] studied
a mutualistic model on the periodic evolving domain. )ey
suggested that the periodic evolution of domain places sig-
nificant influence on the interaction of two species. Zhu et al.
[34] used a periodic evolving domain to investigate the
gradual transmission of a dengue fever model. )ey found
that the periodic domain evolution has a significant effect on
the transmission of dengue.

In this paper, we will consider the impact of the periodic
evolving domain on the dynamics of a diffusive WNv model
corresponding to system (1). We followed the methods of
Adam et al. [33], Zhang and Lin [32], and Zhu et al. [34].

)e rest of this paper is organized as follows. We will
present the formulation of our problem in Section 2. In
Section 3, we introduce the spatial-temporal basic
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reproduction number and present its properties. )e exis-
tence and nonexistence of the periodic solutions on a pe-
riodically evolving domain Ωt are discussed in Section 4.
Section 5 is devoted to the attractivity of periodic solutions
on a periodically evolving domain Ωt. In Section 6, we deal
with the existence, nonexistence, and attractivity of the
periodic solutions on a fixed domain Ω0. Some numerical
simulations are given in Section 7. Section 8 provides some
conclusions.

2. Model Formulation

Motivated by [27], we let Ωt ⊂R
n(n≥ 1) be a periodically

evolving domain and zΩt be the evolving boundary. For any

point, x(t) ∈ Ωt satisfies x(t + T) � x(t) for some positive
constant T. Also, we assume that the domain Ωt grows
uniformly and isotropically, that is,

x(t) � ρ(t), for allx(t) ∈ Ωt and (y, t) ∈ Ω0 ×[0, T],

(3)

where ρ(t) ∈ C1[[0, T]; (0,∞)] and y represents the spatial
coordinates of the initial domain Ω0. Moreover, ρ(t) is T-
periodic in time, i.e., ρ(t + T) � ρ(t), ρ(0) � 1 and _ρ(t)≥ 0
for t> 0.

According to the principle of mass conservation and
Reynolds transport theorem [35], in this paper, we will focus
on the following problem:

zIb

zt
+ a · ∇Ib + Ib(∇ · a) � D1ΔIb + αb(x(t), t)βb(x(t), t)

Nb − Ib( 􏼁

Nb

Im − cb(x(t), t)Ib, in Ωt,

zIm

zt
+ a · ∇Im + Im(∇ · a) � αm(x(t), t)βb(x(t), t)

Am − Im( 􏼁

Nb

Ib − dm(x(t), t)Im, in Ωt,

Ib(x(t), t) � Im(x(t), t) � 0, on zΩt,

Ib � Ib,0(x), Im � Im,0(x), in Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where Ib(x(t), t) and Im(x(t), t) represent the densities of
infected birds and mosquitoes at position x(t) ∈ Ωt and
time t, respectively, and Ib,0(x) and Im,0(x) are positive
smooth functions in Ω0. )e functions αb(x(t), t),
βb(x(t), t), cb(x(t), t), αm(x(t), t), and dm(x(t), t) are all
sufficiently smooth, T-periodic, and strictly positive when
t≥ 0. According to [36, 37], the evolution of domain Ωt

generates a flow velocity a(x(t), t). In addition, the evolving
domain Ωt represents two kinds of extra terms into the
problem, one of which is the advection terms ∇Ib · a and
∇Im · a representing the transport of material around Ωt at
a rate determined by the flow a, and the other is the dilution
terms (∇ · a)Ib and (∇ · a) Im due to local volume
expansion.

Since problem (4) is involving the terms of advection and
dilution, it is not easy to study the long-time behavior of its
solutions; therefore, we will transform the continuously

deforming domain in problem (4) to a fixed domain by using
Lagrangian transformations [29, 36].

We suppose that a(x(t), t) � _x(t) is the flow velocity,
which is identical to the domain velocity.

)is means that a � _x(t) � _ρ(t)y � ( _ρ(t)/ρ(t))x(t).
Define

Ib(x(t), t) � u(y, t),

Im(x(t), t) � v(y, t),
(5)

and assume

αb(x(t), t) ≡ αb(y, t), αm[x(t), t] ≡ αm(y, t),

βb(x(t), t) ≡ βb(y, t),

cb(x(t), t) ≡ cb(y, t), dm(x(t), t) ≡ dm(y, t).

(6)

)erefore, problem (4) is transformed to

zu

zt
−

D1(y, t)

ρ2(t)
Δu +

n _ρ(t)

ρ(t)
u � αb(y, t)βb(y, t)

Nb − u( 􏼁

Nb

v − cb(y, t)u, y ∈ Ω0, t> 0,

zv

zt
+

n _ρ(t)

ρ(t)
υ � αm(y, t)βb(y, t)

Am − v( 􏼁

Nb

u − dm(y, t)v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0, y ∈ zΩ0, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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with the periodic condition

u(y, 0) � u(y, T),

v(y, 0) � v(y, T),

y ∈ Ω0,

(8)

and under the initial condition

u(y, 0) � η1(y) � Ib,0(y),

v(y, 0) � η2(y) � Im,0(y),

y ∈ Ω0.

(9)

Moreover, we assume that the functions αb(y, t),
αm(y, t), βb(y, t), cb(y, t), and dm(y, t) ∈ Cα,α/2(Ω0 ×

[0,∞)) for some α ∈ (0, 1); all are positive bounded in the

sense that there exist constants α∗b , αb∗, α∗m, αm∗, β
∗
b , βb∗, c∗b ,

cb∗, d∗m, and dm∗ such that αb∗ ≤ αb(y, t)≤ α∗b , αm∗ ≤ αm

(y, t)≤ α∗m, βb∗ ≤ βb(y, t)≤ β∗b , cb∗ ≤ cb(y, t)≤ c∗b , and
dm∗ ≤dm(y, t)≤d∗m. Furthermore, αb(y, t) � αb(y, t + T),
αm(y, t) � αm(y, t + T), βb(y, t) � βb(y, t + T),
cb(y, t) � cb (y, t + T), and dm(y, t) � dm(y, t + T) for all
t> 0.

3. Spatial-Temporal Basic
Reproduction Number

In this section, we will introduce the spatial-temporal basic
reproduction number R0(ρ) and exhibit its properties. To
address this, we consider the following linearized periodic
reaction-diffusion problem:

zu

zt
−

D1

ρ2(t)
Δu � αb(y, t)βb(y, t)v − cb(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡u, y ∈ Ω0, t> 0,

zv

zt
� αm(y, t)βb(y, t)

Am

Nb

u − dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T),

y ∈ zΩ0, t> 0,

y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Employing the ideas go back to [17, 32, 38], and we letCT

be the ordered Banach space consisting of all T-periodic and
continuous functions from R to C(Ω0, R)‖·‖ with the
maximum norm C+

T � η ∈ CT : η(t)y≥ 0, for all t ∈ R,􏼈

y ∈ Ω0} and the positive cone η ∈ CT. For any given
η(y, t) � η(t)y, we have m � (m1, m2) ∈ CT × CT. Next, we
suppose that is the density distribution at the spatial location
y ∈ Ω0 and time s and let Φ(t, s), t≥ s{ } be the evolution
family determined by

zu

zt
−

D1

ρ2(t)
Δu � − cb(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡u, y ∈ Ω0, t> 0,

zv

zt
� − dm(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0, y ∈ zΩ0, t> 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Define the operator G(t) by

G(t)ϕ � G1(t)ϕ2, G2(t)ϕ1􏼂 􏼃, for allϕ ∈ CT × CT, t> 0,

(12)

where

G1(t)ϕ2 � αb(·, t)βb(·, t)ϕ2,

G2(t)ϕ1 � αm(·, t)βb(·, t)
Am

Nb

ϕ1.
(13)

Now under the same boundary conditions in problem
(11), we let Φ1(t, s), t≥ s􏼈 􏼉 and Φ2(t, s), t≥ s􏼈 􏼉 be the evo-
lution families determined by the first equation and second
equation in problem (11), respectively. Moreover, let A and
B be two bounded linear operator defined by

Am � A1m1, A2m2( 􏼁,

Bm � B1m2, B2m1( 􏼁,
(14)

for m ∈ CT × CT, where [A1m1](t) � 􏽒
∞
0 Φ1(t, t − s)m1(t −

s)ds and [A2m2](t) � 􏽒
∞
0 Φ2(t, t − s)m2(t − s)ds, [B1m2] �

G1 (t)m2, [B2m1] � G2(t)m1, and define

Lm � ABm � A1B1m2, A2B2m1( 􏼁. (15)

Consequently, we define the spatial-temporal basic re-
production number of system (10), that is,

R0(ρ) � r(L), (16)

where r(L) is spectral radius of the operator L.
With the above discussion, we have the following result

(see [19, 32] for more details).

Lemma 1. sign[1 − R0(ρ)] � sign(λ0), where R0(ρ) � μ0 is
the principal eigenvalue of the eigenvalue problem
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zϕ
zt

−
D1

ρ2(t)
Δϕ �

αb(y, t)βb(y, t)

μ
ψ − cb(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡ϕ, y ∈ Ω0, t> 0,

zψ
zt

� αm(y, t)βb(y, t)
Am

Nbμ
ϕ − dm(y, t) +

n _ρ(t)

ρ(t)
􏼠 􏼡ψ, y ∈ Ω0, t> 0,

ϕ(y, t) � ψ(y, t) � 0, y ∈ zΩ0, t> 0,

ϕ(y, 0) � ϕ(y, T), ψ(y, 0) � ψ(y, T), y ∈ Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

and λ0 is the principal eigenvalue of the eigenvalue problem

zϕ
zt

−
D1

ρ2(t)
Δϕ � αb(y, t)βb(y, t)ψ − cb(y, t) +

n _ρ(t)

ρ(t)
􏼢 􏼣ϕ + λϕ, y ∈ Ω0, t> 0,

zψ
zt

� αm(y, t)βb(y, t)
Am

Nb

ϕ − dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡ψ + λψ, y ∈ Ω0, t> 0,

ϕ(y, t) � ψ(y, t) � 0, y ∈ zΩ0, t> 0,

ϕ(y, 0) � ϕ(y, T),ψ(y, 0) � ψ(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

In what follows, we will present the properties of the
spatial-temporal basic reproduction number R0(ρ), that is,
μ0. Note that problem (17) is degenerate, so we will not able
to derive the existence of the principal eigenvalue by using
Krein–Rutman theorem [39] because of the lack of com-
pactness for the solution semigroup. )erefore, we first
transform the equations of (17) to one equation. To achieve
this, let

g1(y, t) � cb(y, t) +
n _ρ(t)

ρ(t)
,

g2(y, t) � dm(y, t) +
n _ρ(t)

ρ(t)
,

(19)

and then the second equation of (17) can be written as
zψ
zt

� αmβb(y, t)
Am

Nbμ
ϕ − g2(y, t)ψ, (20)

which gives rise to

e
􏽒

t

0
g2(y,s)dsψ􏼠 􏼡

t

� αmβb(y, t)
Am

Nbμ
ϕe

􏽒
t

0
g2(y,s)ds

. (21)

Together with the periodic condition ψ(y, 0) � ψ(y, T),
direct computations yield

ψ(y, t) �
e

−􏽒
t

0
g2(y,s)ds

1 − e
− 􏽒

t

0
g2(y,s)ds

􏽚
T

0
αmβb(y, τ)

Am

Nbμ
ϕ(y, τ)e

−􏽒
τ

T
g2(y,s)ds

+ 􏽚
t

0
αmβb(y, τ)

Am

Nbμ
ϕ(y, τ)e

−􏽒
τ

t
g2(y,s)ds

≔
1
μ

G[ϕ(y, t)].

(22)

Here, one can easily see that the function G(ϕ(y, t)) is
monotonically nondecreasing with respect to βb(y, t) and
decreasing with respect to dm(y, t). Hence, problem (17)
reduces to the following form:

zϕ
zt

−
D1

ρ2(t)
Δϕ �

αb(y, t)βb(y, t)

μ2
G[ϕ(y, t)] − cb(y, t) +

n _ρ(t)

ρ(t)
􏼢 􏼣ϕ, y ∈ Ω0, t> 0,

ϕ(y, t) � 0, y ∈ zΩ0, t> 0,

ϕ(y, 0) � ϕ(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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By employing the integration by parts to problem (23)
and denoting the principal eigenvalue of (17) as μ0, we obtain

μ0 ≤ sup
ϕ∈G1 ,ϕ≠ 0

�����������������������������������������

􏽚
T

0
􏽚
Ω0
αm(y, t)βb(y, t)Am/NbG(ϕ)dydt

􏽚
T

0
􏽚
Ω0

D1/ρ
2
(t)|∇ϕ|

2dydt + 􏽚
T

0
􏽚
Ω0

g1(y, t)ϕ2dydt

􏽶
􏽵
􏽵
􏽵
􏽴

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (24)

where

G1 � ϕ ∈ C2+α,1+(α/2) Ω0 ×[0, +∞)( 􏼁 : ϕ(y, t) � 0, fory ∈zΩ0, t ∈ [0, +∞), ϕ is T − periodicin t􏽮 􏽯. (25)

For formula (24), in some special cases, we can replace
the sign of inequality (≤ ) by equality sign by using the
variational methods [40–42].

In order to give the relationship between the spatial-
temporal basic reproduction number R0(ρ) and the periodic
evolution rate ρ(t), we adopt the notation ρ− 2 � 1/T
􏽒

T

0 (1/ρ2(t))dt. λ∗ is the principal eigenvalue of the following
eigenvalue problem:

−Δφ � λ∗φ, y ∈ Ω0,

φ � 0, y ∈ zΩ0.
􏼨 (26)

Consequently, we have the following result.

Theorem 1. 4e following assertions are valid:

(a) If αb(y, t) � αb(t), αm(y, t) � αm(t), βb(y, t) �

βb(t), cb(y, t) � cb(t), and dm(y, t) � dm(t), then
the principal eigenvalue R0(ρ) for (17) is expressed by

R0(ρ)≥

�����������������������������������

1/T 􏽒
T

0

�����������������������

αb(t)αm(t)β2b(t) Am/Nb( 􏼁dt

􏽱

􏼔 􏼕
2

1/T 􏽒
T

0 dm(t)dt 1/T 􏽚
T

0
cb(t)dt + λ∗D1ρ−2􏼢 􏼣

􏽶
􏽵
􏽵
􏽴

.

(27)

(b) Moreover, if αb(y, t) � α∗b , αm(y, t) � α∗m,
βb(y, t) � β∗b , cb(y, t) � c∗b , and dm(y, t) � d∗m, then
we have

R0(ρ)≥

������������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ρ−2 + c∗b􏽨 􏽩

􏽶
􏽴

. (28)

Furthermore,

R0(1) �

���������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ + c∗b􏽨 􏽩

􏽶
􏽴

, (29)

in the sense that ρ(t) � 1.

Proof. Let

ϕ(y, t) � p(t)φ(y),

ψ(y, t) � q(t)φ(y),

(y, t) ∈ Ω0 ×(0,∞),

(30)

where p(t) and q(t) are functions to be determined later and
[λ∗,φ(y)] is the principal eigenpair of the eigenvalue
problem

−Δφ � λ∗φ, y ∈ Ω0,

φ � 0, y ∈zΩ0.
􏼨 (31)

Together with (17), we obtain

dp(t)

dt
�
αb(t)βb(t)

R0(ρ)
q(t) −

D1λ
∗

ρ2(t)
+ cb(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡p(t),

dq(t)

dt
� αm(t)βb(t)

Am

NbR0(ρ)
p(t) − dm(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡q(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where

p(t) � p(t + T),

q(t) � q(t

t � [0,∞),

(33)

and (R0(ρ); p(t)φ(y), q(t)φ(y)) is the unique principal
eigenpair of problem (17).

Rewriting (32) as

1
p(t)

dp(t)

dt
�
αb(t)βb(t)

R0(ρ)

q(t)

p(t)
−

D1λ
∗

ρ2(t)
+ cb(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡,

1
q(t)

dq(t)

dt
� αm(t)βb(t)

Am

NbR0(ρ)

p(t)

q(t)
− dm(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(34)
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and integrating from 0 to T yield

1
R0(ρ)

􏽚
T

0
αb(t)βb(t)

q(t)

p(t)
dt � 􏽚

T

0

D1λ
∗

ρ2(t)
+ cb(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡dt,

Am

NbR0(ρ)
􏽚

T

0
αm(t)βb(t)

p(t)

q(t)
dt � 􏽚

T

0
dm(t) +

n _ρ(t)

ρ(t)
􏼠 􏼡dt.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(35)

By using Hölder inequality, one can easily obtain that

R0(ρ)
2 ≥

(1/T) 􏽒
T

0

���������������������

αb(t)αm(t)β2b(t) Am/Nb( 􏼁

􏽱

dt􏼒 􏼓
2

(1/T) 􏽒
T

0 dm(t)dt (1/T) 􏽒
T

0 cb(t)dt + λ∗D1ρ−2􏼒 􏼓

.

(36)

)e proof of assertion (a) is completed.
For assertion (b), since we assumed that all coefficients

are constants, we can get

R0(ρ)≥

������������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ρ−2 + c∗b􏽨 􏽩

􏽶
􏽴

, (37)

directly from (27).

To prove the rest of assertion (b), let ρ(t) ≡ 1, that is,
Ωt � Ω0 is a fixed domain and rewrite (32) as

dp(t)

dt
�
α∗b β
∗
b

R0(1)
q(t) − D1λ

∗
+ c
∗
b( 􏼁p(t),

dq(t)

dt
� α∗mβ

∗
b

Am

NbR0(1)
p(t) − d

∗
mq(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

which are explicitly given by

p(t) � e − D1λ
∗− c∗

b
+ Cα∗

b
β∗b /R0(1)( )( )t,

q(t) � Ce − D1λ
∗− c∗

b
+ Cα∗

b
β∗b /R0(1)( )( )t,

⎧⎨

⎩ (39)

with

C �
−d∗m + D1λ

∗ + c∗b +

����������������������������������������

d∗m − D1λ
∗ − c∗b􏼐 􏼑

2
+ 4 Amα∗b β∗b( 􏼁

2α∗m/NbR2
0(1)􏼐 􏼑

􏽱

2 α∗b β
∗
b /R0(1)􏼐 􏼑

. (40)

According to (38), direct computations yield

R0(1) �

���������������

Amα∗b β∗b( 􏼁
2α∗m

Nbd∗m D1λ
∗ + c∗b􏽨 􏽩

􏽶
􏽴

, (41)

which is consistent with the result given from the variational
method. □

4. Periodic Solutions on Evolving Domain

In this section, we discuss the existence and nonexistence of
T-periodic solutions. To begin, we first consider the T-pe-
riodic boundary problem corresponding to (7) and (8):

zu

zt
−

D1

ρ2(t)
Δu � f1(t, u, v), y ∈ Ω0, t> 0,

zv

zt
� f2(t, u, v), y ∈ Ω0, t> 0,

u(y, t) � υ(y, t) � 0, y ∈ zΩ0, t> 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T), y ∈ Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where

f1(t, u, v) � αb(y, t)βb(y, t)
Nb − u( 􏼁

Nb

v − cb(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡u,

f2(t, u, v) � αm(y, t)βb(y, t)
Am − v( 􏼁

Nb

u − dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡v.

(43)

Complexity 7



For later analysis, we give the following definition of
upper and lower solutions.

Definition 1. A pair of functions (􏽥u, 􏽥v), (􏽢u, 􏽢v) in C2,1[Ω0 ×

(0,∞)∩C(Ω0 × [0,∞))] is called ordered upper and lower
solutions of problem (42), if (0, 0)≤ (􏽢u, 􏽢v)≤ (􏽥u, 􏽥v)≤
(Nb, Am) and

z􏽥u

zt
−

D1

ρ2(t)
Δ􏽥u≥f1(t, 􏽥u, 􏽥v), y ∈ Ω0, t> 0,

z􏽥υ
zt
≥f2(t, 􏽥u, 􏽥v), y ∈ Ω0, t> 0,

z􏽢u

zt
−

D1

ρ2(t)
Δ􏽢u≤f1(t, 􏽢u, 􏽢v), y ∈ Ω0, t> 0,

z􏽢υ
zt
≤f2(t, 􏽢u, 􏽢v), y ∈ Ω0, t> 0,

􏽥u(y, t)≥ 0≥ 􏽢u(y, t), 􏽢v(y, t)≥ 0≥ 􏽢v(y, t), y ∈ zΩ0, t> 0,

􏽥u(y, 0)≥ 􏽥u(y, T), 􏽢u(y, 0)≤ 􏽢u(y, T), y ∈ Ω0,

􏽢υ(y, 0)≥ 􏽢υ(y, T), 􏽢v(y, 0)≤ 􏽢v(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Now we are in a position to state the existence and
nonexistence of T-periodic solutions to problem (42) as well
as problems (7) and (8). To begin with, in the following result
we give the existence of T-periodic solution.

Theorem 2. If R0(ρ)> 1, then problem (42) admits at least
one positive T-periodic solution (u(y, t), v(y, t)).

Proof. Since R0(ρ)> 1, one can easily verify that (􏽥u, 􏽥v) �

(Nb, Am) and (􏽢u, 􏽢v) � (δϕ, δψ) are ordered upper and lower
solutions of problem (42), where δ is positive constant and
small enough, (ϕ,ψ) ≡ (ϕ(y, t),ψ(y, t)) is (normalized)
positive eigenfunction corresponding to λ0, and λ0 is the
principal eigenvalue of periodic-parabolic eigenvalue
problem (11) (for more details, see [19]).

To establish the nonexistence of a T-periodic solution to
problem (42), we have the following result. □

Theorem 3. If R0(ρ)≤ 1, then problem (42) has no positive
T-periodic solution.

Proof. Suppose that (u∗(y, t), v∗(y, t)) is a positive T-pe-
riodic solution of problem (42), that is, (u∗(y, t),

v∗(y, t))> (0, 0) in Ω0 × (0,∞) and satisfies

zu∗

zt
−

D1

ρ2(t)
Δu∗ +

n _ρ(t)

ρ(t)
u
∗

� αb(y, t)βb(y, t)
Nb − u∗( 􏼁

Nb

v
∗

− cb(y, t)u
∗
, y ∈ Ω0, t> 0,

zv∗

zt
+

n _ρ(t)

ρ(t)
v
∗

� αm(y, t)βb(y, t)
Am − v∗( 􏼁

Nb

u
∗

− dm(y, t)v
∗
, y ∈ Ω0, t> 0,

u∗(y, t) � v∗(y, t) � 0, y ∈ zΩ0, t> 0,

u∗(y, 0) � u∗(y, T), v∗(y, 0) � v∗(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

From the above equations, we have

zu∗

zt
−

D1

ρ2(t)
Δu∗ < αb(y, t)βb(y, t)v

∗
− cb(y, t) +

n _ρ(t)

ρ(t)
􏼢 􏼣u

∗
, y ∈ Ω0, t> 0,

zv∗

zt
< αm(y, t)βb(y, t)

Am

Nb

u
∗

− dm(y, t) +
n _ρ(t)

ρ(t)
􏼠 􏼡v

∗
, y ∈ Ω0, t> 0,

u∗(y, t) � v∗(y, t) � 0, y ∈ zΩ0, t> 0,

u∗(y, 0) � u∗(y, T), v∗(y, 0) � v∗(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)
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Recalling (17), one can easily deduce from the mono-
tonicity of the principal eigenvalue R0(ρ) that R0(ρ)> 1 by
comparing (17) and (46), which contradicts the fact
R0(ρ)≤ 1. □

5. Attractivity of Periodic Solutions

In this section, we first construct the true solutions of
problem (42) and then present the attractivity of T-periodic
solutions to problems (8) and (9) in relation to the minimal
and maximal T-periodic solution of problems (8) and (9). In
what follows, we construct the true solutions of problem (42)
by using the monotone iterative scheme. Let

k1 � c
M
b + αM

b βM
b

Am

Nb

+ n
_ρ(t)

ρ(t)
􏼠 􏼡

M

,

k2 � d
M
m + αM

m βM
b + n

_ρ(t)

ρ(t)
􏼠 􏼡

M

,

F1 � k1u + f1(t, u, v),

F2 � k2v + f2(t, u, v),

(47)

where fm � min(−∞,∞)×[0,T]f(t) and fM � max(−∞,∞)×[0,T]

f(t) for any given continuous T-periodic function f. It is
easy to verify that both F1 and F2 are nondecreasing with
respect to u and v. )en, problem (42) is equivalent to

zu

zt
−

D1

ρ2(t)
Δu + k1u � F1(t, u, v), y ∈ Ω0, t> 0,

zv

zt
+ k2v � F2(t, u, υ)v, y ∈ Ω0, t> 0,

u(y, t) � v(y, t) � 0, y ∈ zΩ0, t> 0,

u(y, 0) � u(y, T), v(y, 0) � v(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Using (u(0), v(0)) � (Nb, Am) and (u(0), v(0)) � (δϕ, δψ)

as an initial iteration, one can construct a sequence
(u(i), v(i))􏼈 􏼉 from the iteration process

u
(i)
t −

D1

ρ2(t)
Δu(i)

+ k1u
(i)

� F1 t, u
(i− 1)

, v
(i− 1)

􏼐 􏼑, y ∈ Ω0, t> 0,

v
(i)
t + k2υ(i) � F2 t, u(i− 1), v(i− 1)􏼐 􏼑, y ∈ Ω0, t> 0,

u
(i)
t −

D1

ρ2(t)
Δu

(i)

+ k1 u
(i)

� F1 t, u
(i− 1)

, v
(i− 1)

􏼠 􏼡, y ∈ Ω0, t> 0,

v
(i)
t + k2v

(i) � F2 t, u(i− 1), v(i− 1)( 􏼁, y ∈ Ω0, t> 0,

u(i)(y, t) � u(i)(y, t) � v(i)(y, t) � v(i)(y, t) � 0, y ∈ zΩ0, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

with the periodic condition

u(i)(y, 0) � u(i− 1)(y, T), v(i)(y, 0) � v(i− 1)(y, T), y ∈ Ω0,

u(i)(y, 0) � u(i− 1)(y, T), v(i)(y, 0) � v(i− 1)(y, T), y ∈ Ω0,

⎧⎨

⎩

(50)

where i � 1, 2, . . ..
Under condition R0(ρ)> 1, we know that (Nb, Am) and

(δϕ, δψ) are ordered upper and lower solution of problem
(42). Taking (Nb, Am) and (δϕ, δψ) as initial iteration and
employing ideas of [43] with the monotonicity of f1 and f2,
it follows that the well-defined sequences governed by (49)
and (50) possess the monotone property

(􏽢u, 􏽢v)≤ u
(i− 1)

, v
(i− 1)

􏼐 􏼑≤ u
(i)

, v
(i)

􏼐 􏼑≤ u
(i)

, v
(i)

􏼐 􏼑

≤ u
(i− 1)

, v
(i− 1)

􏼐 􏼑≤ (􏽥u, 􏽥v).
(51)

)erefore, the pointwise limits

lim
i⟶∞

u
(i)

, v
(i)

􏼐 􏼑 � (u, v),

lim
i⟶∞

u
(i)

, v
(i)

􏼐 􏼑 � u, v( 􏼁,
(52)

exist and their limits possess the relation

(􏽢u, 􏽢v) ≤ u(i), v(i)( 􏼁≤ u, v( 􏼁≤ u, v( 􏼁≤ u(i), v(i)􏼐 􏼑≤ (􏽥u, 􏽥v).

(53)

)erefore, (u, v) and (u, v) are the true positive T-pe-
riodic solutions of problem (42). Moreover, (u, v) and (u, v)

in respect are the maximal and minimal solutions in the
sense that (u, υ) is any other solution of (42) in
〈(􏽢u, 􏽢v), (􏽥u, 􏽥v)〉, and then (u, v)≤ (u, v)≤ (u, v). Further-
more, if u(y, 0) � u(y, 0) or v(y, 0) � v(y, 0), then (u, v) �

Complexity 9



(u, v) ≔ (u∗, v∗) and (u∗, v∗) is the unique solution of (42)
in Ω0.

From the above conclusions, we have the following
result.

Theorem 4. Let (􏽥u, 􏽥v) and (􏽢u, 􏽢υ) be a pair of ordered upper
and lower solutions of (42), respectively, and then the se-
quences (u(i), v(i))􏽮 􏽯 and (u(i), v(i))􏼈 􏼉 provided from (49), (50)
converge monotonically from above to a maximal solution
(u, v) and from below to a minimal solution (u, v) in Ω0,
respectively, and satisfy the relation

(􏽢u, 􏽢v)≤ u
(i)

, v
(i)

􏼠 􏼡≤ u
(i+1)

, v
(i+1)

􏼠 􏼡≤ u
(i+1)

, v
(i+1)

􏼠 􏼡

≤ u
(i)

, v
(i)

􏼐 􏼑≤ (􏽥u, 􏽥v)

≤ u
(i)

, v
(i)

􏼠 􏼡≤ (􏽥u, 􏽥v).

(54)

Moreover, if u(y, 0) � u(y, 0) or v(y, 0) � v(y, 0), then
(u, v) � (u, v) � (u∗, v∗) and (u∗, v∗) is the unique solution
of (42) in Ω0.

For problems (8) and (9), (􏽥u, 􏽥v) and (􏽢u, 􏽢v) defined in (44)
are also the ordered upper and lower solutions provided the
initial condition is replaced by

(􏽢u, 􏽢v)≤ η1(y), η2(y)≤ (􏽥u, 􏽥v)( 􏼁􏼂 􏼃, inΩ0. (55)

Applying (u(0), v(0)) � (􏽥u, 􏽥v) and (u(0), v(0)) � (􏽢u, 􏽢v) as
an initial iteration again, we denote the sequences generated
by (49) as (u

(i)
A , v

(i)
B )}􏽮 and (u

(i)
A , v

(i)
B )􏽮 􏽯 such that

u
(i)
A , v

(i)
B )(y, 0) � u

(i)
A , v

(i)
B􏼐 􏼑(y, 0) � η1(y), η2(y)􏼂 􏼃􏼈 􏼉, y ∈ Ω0.􏼐

(56)

)e following three lemmas follow from [43], so we omit
their proofs here.

Lemma 2. 4e sequences (u
(i)
A , v

(i)
B )}􏽮 and (u

(i)
A , v

(i)
B )􏽮 􏽯 con-

verge monotonically to a unique solution (u(y, t), v(y, t)) of
problems (7) and (8) and satisfy the relation

(􏽢u, 􏽢v)≤ u
(i−1)
A , v

(i−1)
B􏼐 􏼑≤ u

(i)
A , v

(i)
B􏼐 􏼑≤ (u, v)

≤ u
(i)
A , v

(i)
B􏼐 􏼑≤ u

(i−1)
A , v

(i−1)
B􏼐 􏼑≤ (􏽥u, 􏽥v),

(57)

on Ω0 × [0,∞).

Lemma 3. For any i and j, if the pairs (u(i), v(i)) and
(u(j), v(j)) are ordered upper and lower solutions to problem
(42), then they are also ordered upper and lower solutions of
(7) and (9) provided that (u(j), v(j))(y, 0)≤ [η1(y), η2(y)]

≤ (u(i), v(i))(y, 0) in Ω0.

Lemma 4. Let (u, v)(y, t; η1, η2) be the solution of (7) and
(9) with any

η1(y), η2(y)( 􏼁 ∈ S0, (58)

where

S0 � η1, η2( 􏼁 ∈ C Ω0( 􏼁 : (􏽢u, 􏽢v)(y, 0)≤ η1, η2( 􏼁􏼈

≤ 􏽥u, 􏽥v)(y, 0) onΩ0( 􏼉.
(59)

4en,

u
(i)

, v
(i)

􏼠 􏼡(y, t)≤ (u, v) y, t + iT; η1, η2( 􏼁≤ u
(i)

, v
(i)

􏼐 􏼑(y, t),

(60)

on Ω0 × [0,∞).

In the next theorem, we present the attractivity of T-
periodic solutions to problems (7) and (9) in relation to the
maximal and minimal T-periodic solution of problems (7)
and (8).

Theorem 5. Let (u, v)(y, t; η1, η2) be any solution of prob-
lems (7) and (9). 4e following assertions hold:

(a) If R0(ρ)> 1, then

lim
i⟶∞

u y, t + iT; η1, η2( 􏼁, v y, t + iT; η1, η2( 􏼁( 􏼁

�
u, v( 􏼁(y, t) if (􏽢u, 􏽢v)≤ η1, η2( 􏼁≤ u, v( 􏼁 inΩ0,

(u, v)(y, t) if (u, υ)≤ η1, η2( 􏼁≤ (􏽥u, 􏽥v) inΩ0.
􏼨

(61)

In addition, for any (η1, η2) ∈ S0,

u, v( 􏼁(y, t)≤ (u(y, t + iT), v(y, t + iT)) η1, η2( 􏼁

≤ (u, v)(y, t), onΩ0 ×[0,∞),
(62)

as i⟶∞. Furthermore, if (u, v)(y, t) � (u, v)(y, t):

� (u∗, v∗), then

lim
i⟶∞

(u, v) y, t + iT; η1, η2( 􏼁 � u
∗
, v
∗

( 􏼁,

onΩ0 ×[0,∞).
(63)

(b) If R0(ρ)≤ 1, then for any (η1, η2),

lim
t⟶∞

(u, v) y, t; η1, η2( 􏼁 � (0, 0). (64)

Proof. Let (ui, vi)(y, t) � (u, v)(y, t + iT; η1, η2) for every
i � 1, 2, . . ., where (η1, η2) ∈ S0 (see Lemma 4). It follows
from Lemma 2 that the solution (ui, υi) is in Ω0 × [0,∞)

and, in particular, (􏽢u, 􏽢v)(y, t + T)≤ (u1, v1)≤ (􏽥u, 􏽥v)(y, t +

T) on Ω0 × [0,∞). Next, we consider (7) with the initial
condition [η1(y), η2(y)] in Ω0. By the iteration process in
(49) for i � 1, we have

u
(1)

, v
(1)

􏼐 􏼑(y, 0) � u
(0)

, v
(0)

􏼐 􏼑(y, T) � (􏽥u, 􏽥v)(y, T),

u
(1)

, v
(1)

􏼠 􏼡(y, 0) � u
(1)

, v
(1)

􏼠 􏼡(y, T) � (􏽢u, 􏽢v)(y, T).
(65)
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)erefore, one can see that

u
(1)

, v
(1)

􏼠 􏼡(y, 0)≤ u1, v1( 􏼁(y, 0)≤ u
(1)

, v
(1)

􏼐 􏼑(y, 0), (66)

in Ω0.
According to Lemma 2, (u(1), v(1))(y, t) and

(u(1), v(1))(y, t) are ordered upper and lower solutions of
(7), respectively, when [η1(y), η2(y)] � (u1, υ1)(y, 0) inΩ0.
With respect to )eorem 4, we can see that

u
(1)

, v
(1)

􏼠 􏼡(y, t)≤ u1, v1( 􏼁(y, t)≤ u
(1)

, v
(1)

􏼐 􏼑(y, t), (67)

on D. By the principle of induction,

u
(i)

, v
(i)

􏼠 􏼡(y, t)≤ ui, vi( 􏼁(y, t)≤ u
(i)

, v
(i)

􏼐 􏼑(y, t) (68)

holds on Ω0 × [0,∞). On the other hand, relation (63)
directly follows from (62) with the assumption that
(u, v)(y, t) � (u, v)(y, t): � (u∗, v∗). )e proof of assertion
(a) is completed.

When it comes to assertion (b), in fact, it is easy to see
that (Nb, Am) and (0, 0) are a pair of ordered upper and
lower solutions of problems (7) and (8). Using the same
argument as in assertion (a), as well as the fact that (0, 0) is
the unique solution to problems (7) and (8), we can conclude
that the solution (u, v)(y, t; η1, η2) of problem (7), associ-
ated with any nonnegative initial function pair
(η1(y), η2(y)), possesses the convergence property

lim
i⟶∞

(u, v) y, t + iT; η1, η2( 􏼁 � (0, 0), (69)

which is equivalent to

lim
t⟶∞

(u, v) y, t; η1, η2( 􏼁 � (0, 0). (70)
□

6. The Impact of Evolving Domain

To better understand the impact of periodic evolving do-
main, in this section, we assume that ρ(t) ≡ 1, that is, Ωt �

Ω0 is a fixed domain, and then problem (7) becomes

zU

zt
− D1(y, t)ΔU � αb(y, t)βb(y, t)

Nb − U( 􏼁

Nb

V − cb(y, t)U, y ∈ Ω0, t> 0,

zV

zt
� αm(y, t)βb(y, t)

Am − V( 􏼁

Nb

U − dm(y, t)V, y ∈ Ω0, t> 0,

U(y, t) � V(y, t) � 0, y ∈ zΩ0, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

with the periodic condition

U(y, 0) � U(y, T),

V(y, 0) � V(y, T),

y ∈ Ω0,

(72)

and under the initial condition

U(y, 0) � η1(y) � Ib,0(y),

V(y, 0) � η2(y) � Im,0(y),

y ∈ Ω0.

(73)

By the similar arguments as in Section 2, we have the
following eigenvalue problem corresponding to problems
(71) and (72):

Φt − D1ΔΦ � αb(y, t)βb(y, t)Ψ − cb(y, t)Φ + λΦ, y ∈ Ω0, t> 0,

Ψt � αm(y, t)βb(y, t)
Am

Nb

Φ − dm(y, t)Ψ + λΨ, y ∈ Ω0, t> 0,

Φ(y, t) � Ψ(y, t) � 0, y ∈ zΩ0, t> 0,

Φ(y, 0) � Φ(y, T),Ψ(y, 0) � Ψ(y, T), y ∈ Ω0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)

where (Φ,Ψ) is the eigenfunction corresponding to the
principal eigenvalue and R∗0 � R0(1) is the principal ei-
genvalue of the eigenvalue problem
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Φt − D1ΔΦ �
αb(y, t)βb(y, t)

R∗0
Ψ − cb(y, t)Φ, y ∈ Ω0, t> 0,

Ψt � αm(y, t)βb(y, t)
Am

NbR∗0
Φ − dm(y, t)Ψ, y ∈ Ω0, t> 0,

Φ(y, t) � Ψ(y, t) � 0, y ∈ zΩ0, t> 0,

Φ(y, 0) � Φ(y, T),Ψ(y, 0) � Ψ(y, T), y ∈ Ω0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)

Moreover, ( 􏽥U, 􏽥V) � (Nb, Am) and ( 􏽢U, 􏽢V) � (δΦ, δΨ)

are ordered upper and lower solutions of problems (71) and
(73), where δ is positive constant and small enough.

)emain results of this section are given in the following
two theorems which are parallel to )eorems 2–5.

Theorem 6. 4e following statements are valid:

(a) If R∗0 > 1, then problems (71) and (72) possess a
maximal positive T-periodic solution (U, V) and a
minimal positive T-periodic solution (U, V). Besides,
if (U, V)(y, 0) � (U, V)(y, 0), then (U, V) � (U,

V) ≔ (U∗, V∗) and (U∗, V∗) is the unique T-periodic
solution of problems (71) and (72) .

(b) If R∗0 ≤ 1, then problems (71) and (72) have no positive
T-periodic solution.

Theorem 7. Let (U, V)(y, t; η1, η2) be the solution of
problems (71) and (73).

(a) If R∗0 > 1, then

lim
i⟶∞

(U, V) y, t + iT; η1, η2( 􏼁

�
U, V( 􏼁(y, t) if ( 􏽢U, 􏽢V)≤ η1, η2( 􏼁≤ U, V( 􏼁, inΩ0,

(U, V)(y, t) if (U, V)≤ η1, η2( 􏼁≤ ( 􏽥U, 􏽥V), inΩ0.

⎧⎨

⎩

(76)

Moreover, for any (η1, η2) ∈ S∗0 ,

U, V( 􏼁(y, t)≤ (U, V) y, t + iT; η1, η2( 􏼁≤ (U, V)(y, t),

onΩ0 ×[0,∞),

(77)

as i⟶∞. Additionally, if (U, V)(y, t) � (U, V)

(y, t) ≔ (U∗, V∗), then

lim
i⟶∞

(U, V) y, t + iT; η1, η2( 􏼁 � U
∗
, V
∗

( 􏼁(y, t),

onΩ0 ×[0,∞).
(78)

(b) If R∗0 ≤ 1, then for any (η1, η2),

lim
t⟶∞

(U, V) y, t + iT; η1, η2( 􏼁 � (0, 0), (79)

uniformly for y ∈ Ω0, where

S
∗
0 � η1, η2( 􏼁 ∈ C Ω0( 􏼁 : ( 􏽢U, 􏽢V)(y, 0)≤ η1, η2( 􏼁􏽨

≤ 􏽥U, 􏽥V)(y, 0), inΩ0( 􏽩.
(80)

)anks to the above analysis, here we adopt the integral
average value ρ− 2 � 1/T 􏽒

T

0 (1/ρ2(t))dt generated by the
evolution rate ρ(t). It is easy to see that the spreading or
vanishing of the virus on periodically evolving domain depends
on the spatial-temporal basic reproduction number R0(ρ),
while on the fixed domain, it depends onR∗0 .When ρ− 2 < 1, we
haveR0(ρ)> 1, whichmeans that the spreading of the virus has
increased.Meanwhile, if ρ− 2 > 1, thenR0(ρ)≤ 1, which implies
that the spreading of the virus has decreased.When the domain
is fixed, the parallel results hold with R∗0 � R0(1), then the
virus in the case of vanishing.

7. Numerical Simulation and Discussion

In this section, we first carry out numerical simulations to
illustrate the theoretical results obtained in previous sec-
tions. Our focus is the impact of periodic evolving domain
on the transmission of the West Nile virus (WNv).

For simplicity, first we fix
Am

Nb

� 20,

αb � 0.88,

αm � 0.16,

cb � 0.01,

D1 � 0.06,

λ∗ � π2
,

Ω0 � (0, 1),

Ib,0(x) � 0.3 sin(πx),

Im,0(x) � 0.2 sin(πx) + 0.1 sin(3πx),

(81)

and then change the value of the evolution rate ρ(t) to
observe the long time behavior of problems (7) and (9).

Example 1. In systems (7) and (9), we fix βb � 0.3 anddm �

0.029 with ρ(t) � 1. Direct calculations show that

12 Complexity



R0(1) �

���������������

Am/Nbαb βb( 􏼁
2αm

d∗m D1λ
∗ + cb( 􏼁

􏽳

�

������������������������
20 × 0.88 × 0.09 × 0.16

0.029 ×(0.06 × 9.8596 + 0.01)

􏽳

> 1.

(82)

Hence, the solution of problems (7) and (9) tends to
positive steady states (see Figures 1 and 2), which implies
that the virus will persist in a fixed domain.

Example 2. In systems (7) and (9), we choose βb � 0.09
and dm � 0.29 with ρ(t) � 1. Direct calculations show that

R0(1) �

���������������

Am/Nbαb βb( 􏼁
2αm

dm D1λ
∗ + cb( 􏼁

􏽳

�

�����������������������
20 × 0.88 × 0.0081 × 0.16

0.29 ×(0.06 × 9.8596 + 0.01)

􏽳

< 1.

(83)

It is easy to see that the solution of problems (7) and (9)
decays to zero quickly (see Figures 3 and 4), which implies
that the virus will be extinct in a fixed domain.

Example 3. In systems (7) and (9), we set βb � 0.3 anddm �

0.029 with ρ(t) � e0.1(1− cos(4t)). Direct calculations show that
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Figure 1: ρ(t) � 1. R0(1)> 1, which implies that the solution tends to steady state in a fixed domain.
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Figure 2: )e corresponding cross-sectional view (a) and contour one (b) for the solution of problems (7) and (9), which means that the
domain is fixed when the evolution rate ρ(t) � 1.
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ρ− 2 �
2
π

􏽚
π/2

0
e
0.1(1−cos(4t))dt ≈ 0.8269< 1,

R0(ρ)≥

���������������

Am/Nbαb βb( 􏼁
2αm

dm D1λ
∗ρ−2 + cb􏼐 􏼑

􏽶
􏽴

�

��������������������������������
20 × 0.88 × 0.09 × 0.16

0.029 ×(0.06 × 9.8596 × 0.8269 + 0.01)

􏽳

> 1.

(84)

)erefore, it is easy to see that the solution of problems (7)
and (9) converges to a positive periodic steady state (see
Figures 5 and 6), which means that the virus with periodically

evolving domain will persist. Consequently, we can see that
ρ−2 < 1 has positive effect on the persistence of WNv.

Example 4. In systems (7) and (9), we set βb � 0.09 anddm �

0.29 with ρ(t) � e0.2(cos(4t)−1). Direct calculations show that

ρ−2 �
2
π

􏽚
π/2

0
e
0.2(cos(4t)− 1)dt ≈ 1.5221> 1,

���������������

Am/Nbαb βb( 􏼁
2α∗m

dm D1λ
∗ρ−2 + cb􏼐 􏼑

􏽶
􏽴

�

�������������������������������
20 × 0.88 × 0.0081 × 0.16

0.29 ×(0.06 × 9.8596 × 1.5221 + 0.01)

􏽳

< 1.

(85)

)erefore, one can easily see that the solution of problems
(7) and (9) tends to zero quickly (see Figures 7 and 8), which
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Figure 3: ρ(t) � 1. R0(1)< 1, which implies that the solution decays quickly to zero in a fixed domain.
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Figure 4: )e corresponding cross-sectional view (a) and contour one (b) for the solution of problems (7) and (9), which implies that the
domain is fixed when the evolution rate ρ(t) � 1.
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Figure 5: ρ(t) � e0.1(1− cos(4t)). ρ−2 < 1, R0(ρ)> 1, which means that the solution of problems (7) and (9) converges to a positive periodic
steady state.
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Figure 6: )e corresponding cross-sectional view (a) and contour one (b) for the solution of problems (7) and (9), which implies that the
domain is periodically evolving when the evolution rate ρ(t) � e0.1(1−cos(4t)).
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Figure 7: ρ(t) � e0.2(cos(4t)− 1). ρ−2 > 1, R0(ρ)< 1, which means that the solution (u, v) tends to zero.
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means that the virus with periodically evolving domain will be
extinct. Consequently, we can say that ρ−2 > 1 has negative
effect on the persistence of WNv.

8. Conclusions

Recently, the impact of periodic evolution domain has been
attracting considerable attention. In [31], Jiang and Wang
studied the impact of periodic evolution on the single-
species diffusion logistic model. Asymptotic profile of a
mutualistic model on a periodically evolving domain has
been investigated by Adam et al. in [33]. )e diffusive model
for Aedes aegypti mosquito on a periodically evolving do-
main has been considered by Zhang and Lin in [32]. Zhu
et al. [34] constructed a dengue fever model and studied its
asymptotic profile on a periodically evolving domain. )ese
studies indicated that the periodic domain evolution has a
significant impact on the dispersal of species and trans-
mission of infectious diseases.

In this paper, we study a diffusive West Nile virus model
with periodical and isotropic domain evolution. To cir-
cumvent the difficulty induced by the advection and dilution
terms, we transform the model to a reaction-diffusion model
in a fixed domain. We introduce the spatial-temporal basic
reproduction number R0(ρ) depending on the periodic
evolution rate ρ(t). In the case that all parameters are
constants and ρ(t) ≡ 1, the explicit formula for the spatial-
temporal basic reproduction number is presented ()eorem
1). Moreover, to better understand the impact of periodic
evolution value on the persistence or extinction of the virus,
we assume ρ(t) ≡ 1, that is, the periodic domainΩt becomes
a fixed domain Ω0. Furthermore, the notation
ρ−2 � (1/T) 􏽒

T

0 1/ρ
2(t)dt is utilized as an average value. Our

results show that if R0(ρ)> 1 depending on the evolution
rate ρ(t), then the virus will persist and all solutions possess

the attractor 〈(u, v), (u, v)〉, which is the sector between the
maximal and minimal T-periodic solutions (u, v) and (u, v)

of problems (7) and (8) ()eorems 2–4) (a), whereas, if
R0(ρ)≤ 1, then any solution of problems (7) and (8) decays
to (0, 0), that is, the virus is in the case of extinction
()eorem 3 and 5) (b). In the case that ρ(t) ≡ 1, we in-
troduce R∗0 . For this case, if R∗0 > 1, the model admits a
maximal and minimal T-periodic solutions, while if R∗0 ≤ 1,
the model has no positive solution ()eorem 6 and 7). It is
important to mention that numerical simulation in this
paper is presented by using some parameters given in Lewis
et al. [4], namely, Am/Nb � 20, αb � 0.88, αm � 0.16,

cb � 0.01, βb � 0.3, and dm � 0.029.
From our theoretical and numerical results, we believe

that the periodic domain evolution has a significant impact
on the transmission of WNv.
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,e stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the
classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical con-
straints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the
persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-
in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the
grazing trajectory. ,e implementation relies on the stability criterion under which a local attractor persists near a grazing
trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for
the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing
bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify
the feasibility of the control method.

1. Introduction

Grazing bifurcation, one type of discontinuity-induced
bifurcations, has been extensively studied in vibroimpact
system as it has complex dynamics and is widely en-
countered in many engineering examples. On analysis of
the dynamics near grazing in a general class of impact
oscillator systems, a classical concept of analysis is the so-
called discontinuity-mapping approach initially con-
ceived of by Nordmark [1, 2] (see [3, 4] for an overview).
,e analysis is usually carried out by finding an appro-
priate local map describing the system dynamics in
neighborhood of the grazing event. ,e local map can
then be combined with an analytic Poincaré map to give
the so-called grazing normal form whose dynamics can be
shown to be topologically equivalent to those of the
underlying flow. ,e grazing normal form derived by the
discontinuity-mapping approach is used to analyze the

local dynamics in the vicinity of a grazing trajectory. As
shown in [5–8], the normal form map of the rigid impact
oscillator contains a square-root term causing a singu-
larity in the first derivative, which results in an abrupt loss
of the stability. And different bifurcation scenarios as-
sociated with switching between impacting motions and
nonimpacting motions near grazing were also described.
In particular, the discontinuity-mapping approach was
used by Fredriksson and Nordmark [9] to establish
conditions for the persistence or disappearance of a local
attractor in the vicinity of a grazing periodic trajectory. In
addition, some conditions for the persistence of a local
attractor in the immediate vicinity of quasiperiodic
grazing trajectories in an impacting dynamical system
were formulated by ,ota and Dankowicz [10]. When the
stability conditions of grazing bifurcation are degenerate,
the codimension-two would occur, which is always a hot
topic. Kowalczyk et al. [11] proposed a strategy for
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classification of codimension-two discontinuity-induced
bifurcations of limit cycles in piecewise smooth systems
and studied their nonsmooth transitions. Foale [12]
analyzed the results of a special codimension-two grazing
bifurcation in a single-degree-of-freedom impact oscil-
lator by using the impact surface as a Poincaré section. In
addition, the study also shows that the bifurcation of the
saddle node bifurcation and the flip bifurcation can meet
at a certain codimension-two grazing points in the pa-
rameter plane. ,ota et al. [13] studied the distribution of
codimension-two grazing bifurcation point according to
the discontinuous mapping in the single-degree-of-
freedom collision oscillator and discussed the possible
dynamic characteristics of the system response near this
bifurcation point. Xu et al. [14] studied the codimension-
two grazing bifurcation of n-degree-of-freedom vibrators
with bilateral constraints and obtained and simplified the
existence conditions of codimension-two grazing bifur-
cation. Similar phenomena about codimension-two
grazing bifurcation can also be found in Refs. [15, 16]. Yin
et al. [17] discussed the important role of some degen-
erated grazing bifurcation points in the transition be-
tween saddle node bifurcation and period doubling
bifurcation. Dankowicz and Zhao [18, 19] studied the
grazing bifurcations of the codimension-one and the
codimension-two of a class of impact microactuators.

,e loss of local attractors near grazing bifurcation
may arise catastrophic changes of system response and
lead to codimension-two or more complicated bifurca-
tion; therefore, controlling near-grazing dynamics be-
comes necessary and significant. Dankowicz and Jerrelind
[20] used the linear feedback control method to control
the grazing bifurcation of the piece smooth dynamic
system, so that the system has local attractors near the
grazing orbit. Dankowicz and Svahn [21] presented for the
existence of event-driven control strategies that guarantee
the local persistence of system attractors with at most low-
velocity contact in vibro impacting oscillators. Misra and
Dankowicz [22] developed a rigorous control paradigm
for regulating the near-grazing bifurcation behavior of
limit cycles in piecewise-smooth dynamical systems. Yin
et al. [23] analyzed the stability for near-grazing period-
one impact motion to suppress grazing-induced insta-
bilities. ,e bounded eigenvalues are further confined to
the unit circle, and the continuous transition between the
nonimpact motion and the controlled impact motion is
obtained. Xu et al. [24] discussed the control problem of
near-grazing dynamics in a two-degree-of-freedom
vibroimpact system with a clearance.

Based on the concept of controlling the persistence of
local attractors near the grazing trajectory in impact os-
cillator with unilateral constraints mentioned in [20–24],
this paper aims to control the stability of grazing bifur-
cation or control the persistence of local attractors near
the grazing trajectory in this vibroimpact system with
symmetrical constraints. Compared with impact oscillator

with unilateral constraint, the instability problems near
grazing trajectory become more complex for impact os-
cillator with symmetrical constraints as mentioned in
[17]. ,e stability of double grazing motion bifurcation in
the system is lost in three ways, and the existence con-
ditions of the codimension-two grazing bifurcation occur
in four different cases accordingly. For this complex
unstable problem, analytic expressions of stability crite-
rion are obtained in this paper. Based on the stability
criterion, the stability control strategy of the persistence of
near-grazing attractors is proposed. Furthermore, the
chaos near codimension-two grazing bifurcation points
was controlled by the control strategy. ,is paper is or-
ganized as follows. In Section 2, a two-degree-of-freedom
vibroimpact system with symmetrical constraints is in-
troduced. In Section 3, near-grazing bifurcation dynamics
are analyzed. In Section 4, the discrete-in-time feedback
control method is designed to maintain the persistence of
the local attractor of double grazing period motion. In
Section 5, numerical simulation is used to verify the
feasibility of the control method. Finally, the conclusion is
given in Section 6.

2. Mechanical Model and Double Grazing
Periodic Motion

Figure 1 shows the schematic model of a two-degree-of-
freedom impact oscillator with a clearance. Masses M1
and M2 are connected to linear viscous dampers C1 and C2
by linear springs with stiffness K1 and K2, respectively.
,e harmonic forces of the amplitude P1 and P2 are
applied to the masses M1 and M2, respectively, and the
harmonic force is applied only to the mass in the hori-
zontal direction. ,e mass M1 moves between the sym-
metrical rigid stops A and C. When the mass M1 strikes
rigid stop A or C, the motion becomes a nonlinear motion
and the impact is described by the recovery factor R.
Assuming that the damping in the mechanical model is
the Rayleigh type proportional damping, it can be known
that (C1/K1) � (C2/K2).

,e governing equation is described by
M1 0

0 M2

⎡⎢⎣ ⎤⎥⎦
€X1

€X2

⎡⎢⎢⎣ ⎤⎥⎥⎦ +
C1 −C1

−C1 C1 + C2

⎡⎢⎣ ⎤⎥⎦
_X1

_X2

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
K1 −K1

−K1 K1 + K2

⎡⎢⎣ ⎤⎥⎦
X1

X2

⎡⎢⎣ ⎤⎥⎦ �
P1

P2

⎡⎢⎣ ⎤⎥⎦sin(ΩT + τ), X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<D􏼐 􏼑.

(1)

When |X1| � D, the collision occurs. At this time, the
collision equation is as follows:

_X1+ � −R _X1−, X1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � D􏼐 􏼑, (2)

where _X and €X represent the first and second derivatives of
X with respect to time T, respectively. _X1+ indicates the
instantaneous speed at which the mass M1 approaches the
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rigid stop A or C. _X1− indicates the instantaneous speed at
which the mass M1 leaves the rigid stop A or C.

Introduce the nondimensional quantities as follows:

μm �
M2

M1
,

μk �
K2

K1
,

μc �
C2

C1
,

μc � μk,

p �
P2

P1 + P2
,

ω � Ω

���
M1

K1

􏽳

,

t � T

���
K1

M1

􏽳

,

ζ �
C1

2
������
K1M1

􏽰 ,

d �
DK1

P1 + P2
,

x1 �
X1K1

P1 + P2
,

x2 �
X2K1

P1 + P2
.

(3)

According to equations (1)–(3), the system can be
transformed into nondimensional forms.

1 0

0 μm

􏼢 􏼣
€x1

€x2
􏼢 􏼣 +

2ζ −2ζ

−2ζ 2ζ 1 + μc( 􏼁
􏼢 􏼣

_x1

_x2
􏼢 􏼣

+
1 −1

−1 1 + μk

􏼢 􏼣
x1

x2
􏼢 􏼣 �

1 − p

p
􏼢 􏼣sin(ωt + τ), x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<d􏼐 􏼑,

(4)

_x1+ � −R _x1−, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � d􏼐 􏼑,

(5)
where _x and €x represent the first and second derivatives of x

with respect to the nondimensional time t, respectively.
Suppose Ψ be the canonical modal matrix of equation

(4), and coordinate transformation of equation (4). Let x �

Ψξ 4.
(4)

I€ξ + C _ξ + Λξ � P sin(ωt + τ), (6)
where ω1 and ω2 represent the eigenfrequencies of the
system, x � (x1, x2)

T, ξ � (ξ1, ξ2)
T, I is the unit matrix, Λ

and C are diagonal matrices, Λ � diag[ω2
1,ω2

2],
C � 2ζΛ � diag[2ζω2

1, 2ζω2
2], and P � ΨT(1 − p, p)T. ,e

general solution of equation (4) is given by

xi � 􏽘
2

j�1
Ψij e

− ηj t− t0( ) aj cosωdjt + bj cosωdjt􏼐 􏼑􏼒

+ Aj sin(ωt + τ) + Bj cos(ωt + τ)􏼑,

_xi � 􏽘
2

j�1
Ψij e

− ηj t− t0( ) bjωdj − ajηj􏼐 􏼑cosωdjt􏼐􏼒

− ajωdj + bjηj􏼐 􏼑sinωdjt􏼑

+ Ajω cos(ωt + τ) − Bjω sin(ωt + τ)􏼑,

(7)

where i � 1, 2, t0 represents the time at which the mass M1
collides with the rigid stop A or C; we set the mass M1 to
collide with the rigid stop A when t0 � 0.Ψij is an element of
the canonical modal matrix Ψ, ηj � ζω2

j , and
ωdj �

������
ω2

j − η2j
􏽱

. ,e initial conditions and modal parame-
ters of the system determine the integral constants aj and bj.
Aj and Bj are amplitude parameters, and the expression is
given by

Aj �
1

2ωdj

ω + ωdj

ω + ωdj􏼐 􏼑
2

+ η2j
−

ω − ωdj

ω − ωdj􏼐 􏼑
2

+ η2j
⎛⎜⎝ ⎞⎟⎠fj,

Bj �
ηj

2ωdj

1

ω + ωdj􏼐 􏼑
2

+ η2j
−

1

ω − ωdj􏼐 􏼑
2

+ η2j
⎛⎜⎝ ⎞⎟⎠fj.

(8)

According to the initial conditions and periodic con-
ditions of the double grazing periodic-n motion, the exis-
tence conditions of two-degree-of-freedom impact oscillator
double grazing periodic-n motion is as follows:

C2 C1

K2 K1

X2 X1

M2 M1

2B

A

P2sin(ΩT + τ) P1sin(ΩT + τ)

Figure 1: Schematic of the two-degree-of-freedom impact oscil-
lator with symmetrical constraints.
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d �

������

d2
1 + d2

2

􏽱

,

τ � arctan
d1

d2
􏼠 􏼡,

(9)

where d1 � Ψ11A1 + Ψ12A2 and d2 � Ψ11B1 + Ψ12B2.
In addition, in order to ensure that the impacting cycle of

the mass M1 does not adhere to rigid stop, the acceleration
a∗ of the mass M1 satisfies a∗ < 0 and the acceleration a∗ of
the mass M2 satisfies a∗ > 0.

3. Near-Grazing Dynamics

3.1. *e Stability Criterion of Double Grazing Bifurcation.
Let p be a state vector, such that x � (x1, v1, x2, v2, p)T ∈ R5,
and it follows that

dx

dt
� _x � f(x) � v1, a1, v2, a2, 0( 􏼁

T
, (10)

where ai represents the acceleration of the oscillator as a
function of xi, vi. Define ϕ(x, t) as the local flow function
associated with f(x). Suppose that the movement of the
oscillator is limited by symmetrical rigid constraints placed
at |x1| � d corresponding to state space discontinuity sur-
faces D1 and D2, where

D1 � h
D1(x, d) � d − x1 � 0,

D2 � h
D2(x, d) � −d − x1 � 0.

(11)

,e oscillator moves between two rigid stops when
hD1(x, d)> 0 and hD2(x, d)< 0. When hD1(x, d) � 0 or
hD2(x, d) � 0, the oscillator collides with the rigid stop. In
addition, let hP1(x) � h

D1
x (x, d)f(x) � −v1, h

P2
x (x) � hD2

(x, d)f(x) � −v1.
When the oscillator collides with the constraint, we

establish a function R(x) with a characteristic restitution
coefficient R to represent the jumpmap, i.e., R(x) represents
the instantaneous state after the collision and before the
collision, where

R(x) � x1, −Rv1, x2, v2, p( 􏼁
T
. (12)

,e state space trajectory and the grazing contact points
of D1 and D2 are, respectively, corresponding to points x∗1

and x∗2, so that

h
D1 x
∗1

, d
∗

􏼐 􏼑 � 0,

h
P1 x
∗1

􏼐 􏼑 � −v
∗1
1 � 0,

d
dt

h
P1(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�x∗1
� h

P1
x x
∗1

􏼐 􏼑f x
∗1

􏼐 􏼑 � −a
∗1
1 > 0,

h
D2 x
∗2

, d
∗

􏼐 􏼑 � 0,

h
P2 x
∗2

􏼐 􏼑 � −v
∗2
1 � 0,

d
dt

h
P2(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�x∗2
� h

P2
x x
∗2

􏼐 􏼑f x
∗2

􏼐 􏼑 � −a
∗2
1 < 0.

(13)

Choose a constant phase angle θ∗ as a Poincaré section,
and it has the following form: Π1 � 􏽢x ∈ R5 × S1 | θ � θ∗􏼈 􏼉,
where 􏽢x � (x1, _x1, x2, _x2, p, θ)T, θ � ωt + τ. ,e modulus of
θ is 2π, θ∗ � τ∗. Since the periodic trajectory of the system is
symmetrical, we set another Poincaré section as
Π2 � 􏽢x ∈ R5 × S1 | θ � θ∗ + π􏼈 􏼉.

With d as the bifurcation parameter, we define the flow
maps P1(x) and P2(x) by the evolution of the smooth flow
Φ(·, T) on the Poincaré sections Π1 and Π2; the expressions
of P1(x) and P2(x) are as follows:

P1(x) � x
∗2

+ N1 x − x
∗1

􏼐 􏼑 + M1 d − d
∗

( 􏼁 + h.o.t, (14)

where N1 �(z/zx)P1(x)|x�x∗1 ,d�d∗ and M1 �(z/zd)P1
(x)|x�x∗1 ,d�d∗.

P2(x) � x
∗1

+ N2 x − x
∗2

􏼐 􏼑 + M2 d − d
∗

( 􏼁 + h.o.t, (15)

where N2 �(z/zx)P2(x)|x�x∗2 ,d�d∗ and M2 �(z/zd)

P2(x)|x�x∗2 ,d�d∗.
,e critical bifurcation value d∗ can be obtained from

expression (9). Since the vector field f(x) and the smooth
flow function Φ(·, T) do not contain the bifurcation pa-
rameter d, the values of the matrices M1 � M2 � 0.

We use the discontinuous mapping method introduced
by Nordmark to analyze the system; the two discontinuous
maps DM1 and DM2 are introduced into the neighborhood
of points x∗1 and x∗2 such that the surface P1(x) is invariant
under DM1,i.e., x ∈ P1(x), DM1(x) ∈ P1(x). ,e same
surface P2(x) is invariant under DM2, i.e.,
x ∈ P2(x), DM2(x) ∈ P2(x). According to the discontin-
uous mapping method, the discontinuous mapping of DM1
and DM2 is expressed by

DM1 �

Id, hD1(x, d)≥ 0,

x∗1 + β1

������������
2

h
P1
x x∗1( )f ∗1( )

􏽳
���������
−hD1(x, d)

􏽰
, hD1(x, d)< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where

β1 � f x
∗1

􏼐 􏼑 − gx x
∗1

􏼐 􏼑f x
∗1

􏼐 􏼑,

DM2 �

Id, hD2(x, d)≤ 0,

x∗2 + β2

������������
2

h
P2
x x∗2( )f ∗2( )

􏽳
���������
−hD2(x, d)

􏽰
, hD2(x, d)> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where

β2 � f x
∗2

􏼐 􏼑 − gx x
∗2

􏼐 􏼑f x
∗2

􏼐 􏼑. (18)

According to (13)–(17), the composite maps
􏽥P1 � P1(x) ∘ DM1 and 􏽥P2 � P2(x) ∘ DM2 are written as
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􏽥P1 �

x∗2 + N1 x − x∗1( 􏼁 + h.o.t, hD1(x, d)≥ 0,

x∗2 + N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )

􏽳
���������
−hD1(x, d)

􏽰
+ h.o.t, hD1(x, d)< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

􏽥P2 �

x∗1 + N2 x − x∗2( 􏼁 + h.o.t, hD2(x, d)≤ 0,

x∗1 + N2β2

�������������
2

h
P2
x x∗2( )f x∗2( )

􏽳
���������
−hD2(x, d)

􏽰
+ h.o.t, hD2(x, d)> 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

We will discuss the stability of double grazing bifurca-
tion using the Poincaré map 􏽥P � 􏽥P2 ∘ 􏽥P1. Starting from the
vicinity of the grazing point, whether it is at the impact side
or the nonimpact side, if it is still close to the grazing point
after the iterative mapping 􏽥P, then the local attractor near
the grazing trajectory exists; we refer to such scenario as a
continuous grazing bifurcation or we say that the grazing
bifurcation is stable. Otherwise, we refer to scenario as a
discontinuous grazing bifurcation.

When point x starts from the impact side near the
grazing point x∗1, hD1(x, d)< 0. Here, we can think of the
hD1(x, d) approximation as h

D1
x (x∗1)(x − x∗1). Similarly, we

consider the hD2(x, d) approximation as h
D2
x (x∗2)(x − x∗2).

If

h
D2
x x
∗2

􏼐 􏼑 􏽥P1(x) − x
∗2

􏼐 􏼑

� h
D2
x x
∗2

􏼐 􏼑N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )

􏽳
���������
−hD1(x, d)

􏽰
≤ 0,

(21)

it means 􏽥P1(x) is located at the nonimpact side near the
grazing point x∗2.

After the iteration of the mapping 􏽥P2, if

h
D1
x x
∗1

􏼐 􏼑 􏽥P2
􏽥P1(x) − x

∗1
􏼐 􏼑

� h
D1
x x
∗1

􏼐 􏼑N2N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )

􏽳
���������
−hD1(x, d)

􏽰
< 0,

(22)

then,

h
D1
x x
∗1

􏼐 􏼑N2N1β1 < 0. (23)

It means the impact point impacts discontinuity surface
D1 again and the impact will be perpetuated, which results in
a large stretching in a direction given by the image of the
vector β1 under the Jacobian N1 and N2. ,erefore, the local
attractor near the grazing trajectory does not exist.
According to the analysis, the stability criterion of grazing
bifurcation under which a local attractor persists near a
grazing trajectory is formulated as follows:

h
D2
x x
∗2

􏼐 􏼑N1 N2N1( 􏼁
(n− 1)β1 ≤ 0, (24)

and

h
D1
x x
∗1

􏼐 􏼑 N2N1( 􏼁
nβ1 ≥ 0, (25)

for all positive integer n.
According the same method, another stability criterion

of grazing bifurcation under which a local attractor persists
near a grazing trajectory is formulated as follows:

h
D1
x x
∗1

􏼐 􏼑N2 N1N2( 􏼁
(n− 1)β2 ≥ 0, (26)

and

h
D2
x x
∗2

􏼐 􏼑 N1N2( 􏼁
nβ2 ≤ 0, (27)

for all positive integer n.

3.2. Codimension-Two Grazing Bifurcation. ,e local
attractor near grazing trajectory is lost in there ways.

Case 1. If

h
D2 x
∗2

􏼐 􏼑 􏽥P1(x), d( 􏼁

� h
D2
x x
∗2

􏼐 􏼑N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )

􏽳
���������
−hD1(x, d)

􏽰
< 0,

(28)

i.e., h
D2
x (x∗2)N1β1 < 0, and

h
D1 x
∗1

􏼐 􏼑 􏽥P2
􏽥P1(x)( 􏼁, d( 􏼁

� h
D1
x x
∗1

􏼐 􏼑N2N1β1

�������������
2

h
P1
x x∗1( )f x∗1( )

􏽳
���������
−hD1(x, d)

􏽰
< 0,

(29)

i.e., h
D1
x (x∗1)N2N1β1 < 0, then it means that the point from

the impact side near the grazing point x∗1 will impact the
discontinuous surface D1 again after the iteration of the
mapping 􏽥P and the impact will continue, which results in a
large stretching in a direction given by the image of the
vector β1 under the Jacobian N1 and N2; therefore, the local
near-grazing attractor will lose, where discontinuous grazing
bifurcation occurs.

If the impact point is followed by nonimpacting for some
iterations but eventually impacts discontinuous surface D1,
the impact will be perpetuated which lead to the instability of
grazing bifurcation or the loss of near-grazing attrators.

,erefore,
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h
D2
x x
∗2

􏼐 􏼑N1 N2N1( 􏼁
iβ1 < 0,

h
D1
x x
∗1

􏼐 􏼑 N2N1( 􏼁
j+1β1 < 0,

(30)

for any 0≤ i≤ j, the stability of grazing bifurcation will be
lost, where i and j are positive integers.

Case 2. When the point x satisfying h
D1
x (x − x∗1)< 0 is from

the impact side near the grazing point x∗1, if
h

D2
x (x∗2)N1β1 > 0 and h

D2
x (x∗2)N1N2β2 > 0, it means that

the impact point will impact with the discontinuous surface
D2 again and the impact will continue, and the grazing
bifurcation is discontinuous.

If the impact point is followed by nonimpacting for some
iterations but eventually impacts discontinuous surface D2,
the impact will be perpetuated. Finally, the stability of
grazing bifurcation will also be lost.

,at is,

h
D2
x x
∗2

􏼐 􏼑N1 N2N1( 􏼁
iβ1 > 0,

h
D2
x x
∗2

􏼐 􏼑 N1N2( 􏼁
j+1β2 > 0,

(31)

for any j≥ i≥ 0, the stability of grazing bifurcation will be
lost.

Case 3. When the point x satisfying h
D1
x (x − x∗1)< 0 is from

the impact side near the grazing point x∗1, if
h

D2
x (x∗2)N1β1 > 0 and h

D1
x (x∗1)N2β2 < 0, this means that the

impact point will impact with the discontinuous surfaces D1
and D2 again and the impact will continue, and the grazing
bifurcation is discontinuous. If the impact point is followed
by non-impacting for some iterations but eventually impacts
discontinuous surface D1 and D2 the impact will be per-
petuated. Finally, the stability of grazing bifurcation will also
be lost.

,at is,

h
D2
x x
∗2

􏼐 􏼑N1 N2N1( 􏼁
iβ1 > 0,

h
D1
x x
∗1

􏼐 􏼑N2 N1N2( 􏼁
jβ2 < 0,

(32)

for any j≥ i≥ 0, the stability of grazing bifurcation will be
lost.

According to the above analysis, the conditions of
codimension-two grazing bifurcation are obtained as follows
(the definition of such points is seen in Ref. [10]):

h
D1
x x
∗1

􏼐 􏼑 N2N1( 􏼁
nβ1 � 0,

h
D1
x x
∗1

􏼐 􏼑N2 N1N2( 􏼁
nβ2 � 0,

h
D2
x x
∗2

􏼐 􏼑N1 N2N1( 􏼁
nβ1 � 0,

h
D2
x x
∗2

􏼐 􏼑 N1N2( 􏼁
nβ2 � 0,

(33)

where n � 0, 1, 2, . . ..

4. Controlling the Persistence of Near-
Grazing Attractors

As the lose of stability for grazing bifurcation may arise
catastrophic changes of system response and codimension-
two even more complicated bifurcation, it is necessary to
control the stability of grazing bifurcation by controlling the
persistence of the local near-grazing attractor. We use
discrete-in-time feedback control to stabilize the grazing
bifurcation. Two constant phase angles are defined as
Poincaré sections, and two discrete-in-time feedback con-
trollers on Poincaré sections are designed. After that, we
obtain a new compound map and then control the stability
of the grazing bifurcation by controlling the parameters on
the controller.

We define the other two constant phase angles as
Poincaré sections Π3 and Π4, where Π3 � 􏽢x ∈ R5􏼈 × S1 | θ �

θ∗ + (π/2)} and Π4 􏽢x ∈ R5 × S1 | θ � θ∗ + (3π/2)􏼈 􏼉.
According to P1(x) and Π3, we define the mappings

P3(x): Π1⟶Π3 and P4(x): Π3⟶Π2, and the resulting
expansion is as follows:

P3(x) � x
∗3

+ N3 x − x
∗1

􏼐 􏼑 + h.o.t,

P4(x) � x
∗2

+ N4 x − x
∗3

􏼐 􏼑 + h.o.t,
(34)

where x∗3 is the fixed point of the grazing orbit on the
Poincaré section Π3, N3 �(z/zx)P3(x)|x�x∗1, and
N4 �(z/zx)P4(x)|x�x∗3.

In the same way, according to P2(x) and Π4, we define
the mappings P5(x): Π2⟶Π4 and P6(x): Π4⟶Π1,
and the expansion is as follows:

P5(x) � x
∗4

+ N5 x − x
∗2

􏼐 􏼑 + h.o.t,

P6(x) � x
∗1

+ N6 x − x
∗4

􏼐 􏼑 + h.o.t,
(35)

where x∗4 is the fixed point of the grazing orbit on the
Poincaré section Π4, N5 �(z/zx)P5(x)|x�x∗2, and
N6 �(z/zx)P6(x)|x�x∗4.

Discrete-in-time feedback controllers are designed on
the Poincaré sections Π3 and Π4, respectively, as follows:

G1(x) �

x1

v1

x2

v2

k1 x1 − x∗31( 􏼁 + k2 v1 − v∗31( 􏼁 + k3 p − p∗( 􏼁 + p∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2(x) �

x1

v1

x2

v2

k4 x1 − x∗41( 􏼁 + k5 v1 − v∗41( 􏼁 + k6 p − p∗( 􏼁 + p∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)
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We can calculate the expressions of maps G1(x) and
G2(x) which have the following forms:

G1(x) � x
∗3
1 + G1x x − x

∗3
1􏼐 􏼑,

G2(x) � x
∗4
1 + G2x x − x

∗4
1􏼐 􏼑,

(37)

where

G1x �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

k1 k2 0 0 k3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2x �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

k4 k5 0 0 k6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

,e combining the map G1(x) and P3(x), P4(x), obtain
a controlled map as Pg1(x) � P4(x)∘G1(x)∘P3(x), expan-
sion as follows:

Pg1(x) � x
∗2

+ N4G1xN3 x − x
∗1

􏼐 􏼑 + h.o.t, (39)

where G1x �(z/zx)G1(x)|x�x∗3.
Similarly, combining the map G2(x) with the map

P5(x), P6(x), the map under control
Pg2(x) � P6(x)∘G2(x)∘P5(x), is obtained and its expansion
has the following forms:

Pg2(x) � x
∗1

+ N6G2xN5 x − x
∗2

􏼐 􏼑 + h.o.t, (40)

where G2x �(z/zx)G2(x)|x�x∗4.
We can calculate the expressions of Ni as follows:

Ni �

△ △ △ △ △

△ △ △ △ △

△ △ △ △ △

△ △ △ △ △

0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

where i � 3, 4, 5, 6 and the symbol Δ refers to a nontrivial
coefficient.

Combining (39) and (15), we construct a composite map
of 􏽥Pg1 � Pg1(x)∘DM1; the expressions are as follows:

􏽥Pg1 �

x∗2 + Ng1 x − x∗1( 􏼁 + h.o.t, hD1(x, d)≥ 0,

x∗2 + Ng1β1

�������������
2

h
P1
x x∗1( )f x∗1( )

􏽳
���������
−hD1(x, d)

􏽰
+ h.o.t, hD1(x, d)< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(42)

where Ng1 � N4G1xN3. Similarly, we can combine (40) and (17) to construct a
composite map of 􏽥Pg2 � Pg2(x)∘DM2; the expression is as
follows:

􏽥Pg2 �

x∗1 + Ng2 x − x∗2( 􏼁h.o.t, hD2(x, d)≤ 0,

x∗1 + Ng2β2

�������������
2

h
P2
x x∗2( )f x∗2( )

􏽳
���������
−hD2(x, d)

􏽰
+ h.o.t, hD2(x, d)> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

where Ng2 � N6G2xN2.
According to the analysis in Section 3, there are three

cases in which the grazing bifurcation is unstable, where
discontinuous grazing bifurcation occurs. For Case 1, the
impact point will impact with the discontinuous surface D1
again after some iterations and the impact will be perpet-
uated. Based on the stability criteria (24) and (25), we control
k1 − k6 on the controller to ensure that h

D2
x (x∗2)Ng1

(Ng2Ng1)
n− 1β1 ≤ 0 and h

D1
x (x∗1)(Ng2Ng1)

nβ1 ≥ 0, for

positive integer n, such that the grazing bifurcation will be
continuous.

For Case 2, the impact point will impact with the dis-
continuous surface D2 again after some iterations and the
impact will be perpetuated. Based on the stability criteria
(26) and (27), we control k1 − k6 on the controller so that
h

D2
x (x∗2)(Ng1Ng2)

nβ2 ≤ 0 and h
D1
x (x∗1)Ng2(Ng1Ng2)

n− 1

β2 ≥ 0 for positive integer n. ,e grazing bifurcation will be
continuous.
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For Case 3, the impact point will impact with the dis-
continuous surfaces D1 and D2 again, and after some itera-
tions, the impact will be perpetuated. Based on the stability
criteria (24) and (25) or (26) and (27), the grazing bifurcation
will be continuous by controlling parameters k1 − k6 to ensure
the local attractor near grazing bifurcation persists.

For the codimension-two grazing bifurcation point, the
persistence of near-grazing attractors is also controlled by
controlling k1 − k6 based on the stability criteria (24) and
(25) or (26) and (27). For example, if h

D1
x (x∗1)(N2

N1)
nβ1 � 0, we might let h

D2
x (x∗2)Ng1(Ng2Ng1)

n− 1β1 ≤ 0
and h

D1
x (x∗1)(Ng2Ng1)

nβ1 ≥ 0 by controlling k1 − k6.
If h

D1
x (x∗1)N2(N1N2)

nβ2 � 0, we might let h
D2
x (x∗2)

(Ng1Ng2)
nβ2 ≤ 0 and h

D1
x (x∗1)Ng2(Ng1Ng2)

n− 1β2 ≥ 0 by
controlling k1 − k6.

5. Numerical Experiments

For this system, we take suitable parameters μm � 6.0, μk �

3.0, ω � 0.63, R � 0.82, ζ � 0.2, andp � 2.513 as an exam-
ple. d is supposed as the bifurcation parameter; the critical
value d∗ � 1.61139 for grazing bifurcation is obtained from
formula (9). According to the analysis of near-grazing dy-
namics in Section 3, under the set of fixed parameters,
h

D2
x (x∗2)N1β1 � −0.128027< 0 and h

D1
x (x∗1)N2N1β1 �

−0.078865< 0. ,e impact point will impact with the dis-
continuous surfaces D1 again and the impact will be per-
petuated, which satisfies the instability conditions in Case 1.
,e bifurcation diagram as shown in Figure 2(a) is obtained
through numerical simulation by discontinuity maps (19)
and (20). It is clear that the grazing bifurcation is discon-
tinuous because the discontinuous transition occurs at the
bifurcation point d − d∗ � 0. In addition, we take Π2 as the
Poincaré section; the bifurcation diagram as shown in
Figure 2(b) is obtained through direct numerical simulation
by (4) and (5), and it is clear that the discontinuous jump
also occurs at the grazing bifurcation point d − d∗ � 0.

We use the control method in Section 4 to stabilize the
unstable grazing bifurcation phenomena. When the parame-
ters of k1, k3 and k4, k6are fixed, the ranges of parameters k2
and k5 are calculated according to control strategy, which is
named two-dimensional control region of k2 and k5. Here, we
select k1 � −0.5, k3 � −1, k4 � −0.5, and k6 � −1 as the fixed
parameters; a two-dimensional control region graph of k2 and
k5 is obtained as shown in Figure 3(a), where k2 is x−axis, k5 is
y−axis, and the blue region is the region of control parameters
for ensuring the stability of the grazing bifurcation.

We select k2 � −5.8 and k5 � −5.8 to control the system
and draw Figure 4(a) through the discontinuity maps (40)
and (41). At the same time, we take Π2 as the Poincaré
section and obtain Figure 4(b) by direct numerical simu-
lation. As shown in Figures 4(a) and 4(b), there exists the
local attractor near grazing bifurcation.

Take the set of parameters μm � 6.0, μk � 3.0, ω � 0.48,

R � 0.82, ζ � 0.2, p � 2.013, as an example. d∗ � 0.65183, is
obtained from equation (9). Without control,
h

D2
x (x∗2)N1N2N1β1 � −0.00868998< 0 and h

D1
x (x∗1)

(N2N1)
2β1 � −0.00822255< 0. are obtained under the

above fixed parameters. It satisfies the instability conditions
in case 1 according to expression (30). ,e bifurcation di-
agram as shown in Figure 2(c) is obtained through nu-
merical simulation by discontinuity maps (19) and (20). It is
clear that the grazing bifurcation is discontinuous because
the discontinuous transition occurs at the bifurcation point
d − d∗ � 0. In addition, we take Π2 as the Poincaré section,
and the bifurcation diagram as shown in Figure 2(d) is
obtained through direct numerical simulation by (4) and (5);
it is clear that the discontinuous jump also occurs at the
grazing bifurcation point d − d∗ � 0.

Based on the stability criterion mentioned in Section 4,
we select k1 � −0.6, k3 � −1, k4 � −0.6, and k6 � −1 as the
fixed parameters; a two-dimensional control region graph of
k2 and k5 is obtained as shown in Figure 3(b), where k2 is
x−axis, k5 is y−axis, and the blue region is the region of
control parameters for ensuring the stability of the grazing
bifurcation.,en, we select k2 � −5.8 and k5 � −5.8 to control
the system, and the bifurcation diagram is obtained as shown in
Figure 4(c) by the discontinuity maps (40) and (41). In ad-
dition, we take Π2 as the Poincaré section and obtain
Figure 4(d) by direct numerical simulation. As shown in
Figures 4(c) and 4(d), there exists the local attractor near
grazing bifurcation.

Fixed parameters μm � 6.0, μk � 3.0, ω �

0.5649677, R � 0.82, ζ � 0.2, p � 0.813. the critical val-
ued∗ � 1.821554, such that h

D1
x (x∗1)(N2N1)

5β1 � 0. It
corresponds to the codimension-two grazing bifurcation.
We obtain the bifurcation diagram Figure 2(e) through
numerical simulation by the discontinuity maps (19) and
(20). As shown in Figure 2(e), the system is in a complex
chaotic state near the grazing point. ,en, we take Π2 as the
Poincaré section and obtain Figure 2(f ) by direct numerical
simulation.

Based on the control strategy mentioned in Section 4, we
select k1 � −0.6, k3 � −1, k4 � −0.6, and k6 � −1 as the
fixed parameters; a two-dimensional control region graph of
k2 and k5 is obtained as shown in Figure 3(c), where k2 is
x−axis, k5 is y−axis, and the blue region is the region of
control parameters for suppressing the chaos. ,en, we
select k2 � −5.8 and k5 � −5.8 to control the system, and the
bifurcation diagram is obtained as shown in Figure 4(e) by
the discontinuity maps (40) and (41). In addition, we takeΠ2
as the Poincaré section and obtain Figure 4(f ) by direct
numerical simulation.

Comparing Figure 2 with Figure 4, it is shown that the
results obtained bymappings are in good agreement with the
direct numerical simulation, and the control effect is further
verified.
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6. Conclusions

,e discontinuous grazing bifurcation is often accompanied
by a jump phenomenon. In addition, complex chaotic re-
gions occur near the codimension-two bifurcation points.

How to avoid the dramatic change of system response
caused by jump phenomenon of grazing bifurcation or the
codimension-two bifurcation point is an urgent requirement
for the control mechanism of discontinuous grazing bi-
furcation. In this paper, a discrete-in-time feedback control
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Figure 2: Bifurcation diagram from the grazing bifurcation. (a)(1/1) impact periodic motions based on the numerical simulation obtained
by the discontinuity maps (19) and (20). (b) Direct numerical simulation on Poincaré sectionΠ2 of (1/1) impact periodic motions. (c)(1/2)

impact periodic motions based on the numerical simulation obtained by the discontinuity maps (19) and (20). (d) Direct numerical
simulation on Poincaré section Π2 of (1/2) impact periodic motions. (e) ,e codimension-two grazing bifurcation points based on the
numerical simulation obtained by the discontinuity maps (19) and (20). (f ) Direct numerical simulation on Poincaré section Π2 of the
codimension-two grazing bifurcation points.
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strategy is used to control the near-grazing dynamics of
double grazing period motion in a two-degree-of-freedom
vibroimpact system with symmetrical constraints. Com-
pared to unilateral constrained systems, the stability crite-
rion of double grazing period motion becomes more
complex. Based on the stability criterion, the control strategy

is designed to control the near-grazing dynamics and the two
parameters’ control region is obtained. For the case of
discontinuous grazing bifurcation, we take two jumping
phenomena (jumping from nonimpact periodic motion to
(1/1) and (1/2) impact periodic motion) as examples to
stabilize grazing bifurcation by controlling the parameters
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Figure 3:,e parameters k2 and k5 control region. (a),e grazing bifurcation of (1/1) impact periodic motions. (b),e grazing bifurcation
of (1/2) impact periodic motions. (c) ,e codimension-two grazing bifurcation points.
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Figure 4: Bifurcation diagram of a stable grazing bifurcation after control. (a)(1/1) impact periodic motions based on the numerical
simulation obtained by the discontinuity maps (38) and (39). (b) Direct numerical simulation on Poincaré section Π2 of (1/1) impact
periodic motions. (c)(1/2) impact periodic motions based on the numerical simulation obtained by the discontinuity maps (38) and (39). (d)
Direct numerical simulation on Poincaré section Π2 of (1/2) impact periodic motions. (e) ,e codimension-two grazing bifurcation points
based on the numerical simulation obtained by the discontinuity maps (38) and (39). (f ) Direct numerical simulation on Poincaré sectionΠ2
of the codimension-two grazing bifurcation points.
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on the controller. In addition, the chaos dynamics near
codimension-two grazing bifurcation point is controlled by
using this strategy. Finally, the feasibility of the control
strategy is illustrated by comparing the numerical simulation
of composite mapping with the direct numerical simulation
of Poincare section.
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In this paper, a new data-driven learning method is investigated based on the dynamical data of the system. A regularized
regression wavelet (RRW) approach is proposed to optimize the learning result for the system fault. Based on the optimizing
results, a fault tolerant stability scheme is given.&en, the efficiency of the proposed technique is verified by a vertical take-off and
landing (VTOL) aircraft stability example.

1. Introduction

&e analysis of the data-driven learning method in this paper
aims at developing a reliable learning algorithm and ap-
plying the method to practical engineering systems. Spe-
cifically, we will show how the proposed data-driven
learning technique is applied to the dynamical system.

Stability is a fundamental property in modern engi-
neering systems. How to stabilize a system is well studied in
the past decades. Plenty of stability controllers are proposed,
for example, variable structure control [1], fuzzy control [2],
sliding mode control [3], and adaptive neural control [4].
Various undesirable effects are always existed in many en-
gineering applications, such as time-delay [4], fault [5, 6],
and uncertainty [7]. In most cases, plenty of these effects can
be observed by available measurement data; however in
some cases, they are not easily described by existing
mathematical models. In particular, these data contain
meaningful features of the engineering applications. It is
highly desirable to develop new techniques to learn the
system data and generate a reliable algorithm based on the
real data to cope with those fast changes in the complex
systems directly. In this paper, we developed a learning
model to address the issue of stabilizing dynamical systems
from a different prospective.

During the last decade, data-driven innovation has be-
come a hot topic across different research sectors and

provides new challenges associated with various network
design, such as sensor networks and telecommunication
networks. &e network data constitute infrastructural in-
formation that could be used in many ways to produce
different products and services. It provides additional in-
formation over the limitation of traditional system models
and also enables creation of knowledge that is crucial for a
new design. Recently, there are some data-driven control
research studies available in the literature. For example,
sampled data stabilization techniques for the T-S fuzzy
system were proposed in [8]. A recurrent neural network-
based data-driven control was constructed for the steady-
state analysis in [9]. In addition, a lot of research studies have
been undertaken to study the data-driven methods in in-
dustrial processes, see [10] for a survey. As one may know,
the engineering systems are generally operated under dif-
ferent industrial environments. &e classic model-based
approach could be difficult to stabilize a real system in these
types of applications. Hence, one may consider the data-
driven approach to analyze the stability of the engineering
system.

In particular, faulty issues in highly complexity dynamical
systems always exist and are strongly reflected in the collected
data. It has certainly a great effect on the safety requirement,
and thus the fault reconstruction problem is one of the main
concerns in the distributed network control design. &e fault
reconstruction problem was studied for sensor networks in
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[11], and the results were used for the room temperature
monitoring application. Recently, the fault tolerant consensus
issue was researched in multiagent systems considering un-
certainty in [12]. Data-drivenmethods formonitoring and fault
diagnosis on the benchmark Tennessee Eastman process were
investigated in [13].

In this paper, we propose a constructive data learning
approach to analyze the effect of the fault. In addition, based
on the learning result, the fault tolerant stability of the
dynamical system is well studied. &e method used in this
paper is based on the RRW technique. It should be pointed
out that the wavelet functions are used for nonlinear
transformation function. Incorporating the time-frequency
localization properties of wavelets, it has a strong learning
ability for complex nonlinear system modelling. Especially,
the wavelet approach has the advantage of dealing with rapid
changes of data [14–16]. Inspired by the approach of
multiresolution analysis, this paper provides a new data-
driven approach for studying fault tolerant stability by
applying this powerful wavelet tool. A detailed mathematical
approach is constructed to deal with the effect of faults. In
this paper, we aim to use the collected data from the dy-
namical system to stabilize the system. &e novelties and
advanced features of this paper are as follows:

(1) Compared with the existing stability problem, this
paper addresses the fault effect in the dynamical
system. In addition, the designed technique used in
this paper is a data-driven learning method which is
based on a regularized regression wavelet neural
network.

(2) It is worth noting that most of the aforementioned
literature is about data-driven stability analysis
without considering to use a wavelet neural network.
In this paper, we use the wavelet neural network-
based learning control to stabilize the dynamical
system which has the advantage of dealing with rapid
changes of the sensor data and fault.

(3) A detailed mathematical calculation for the recon-
struction of the fault in this paper has been given,
which potentially contributes to the real-world ap-
plication of this paper.

&e remainder of this paper is organized as follows: in
Section 2, some preliminaries are proposed. In Section 3,
data-driven fault tolerant stability is analyzed. In Section 4, a
VTOL aircraft stability problem is analyzed to illustrate the
effectiveness of the theoretical results. &e final section
concludes this paper.

2. Preliminaries

We consider a dynamical system described by the state
equation:

_x(t) � Ax(t) + B(u(t) + g(x(t))), (1)

where x(t) ∈Rn is the state of the system, g(x(t)) ∈Rq is
the fault, u(t) ∈Rq is the actuator control input, and
A ∈Rn×n and B ∈Rn×q are the known system parameters.

&e sensor output of this system is taken to be the same as
the state vector.

As is well known, for the fault g(x(t)), the common
assumption is that the uncertainty is norm bounded by a
constant [12, 17]. In classical fault tolerant analysis for a
dynamical system, one may use adaptive control to stabilize
those faulty systems, see [12, 17]. In addition, the afore-
mentioned fault assumptions in literature mostly require the
fault to be differential, see [11] and the reference therein.
However, due to the unpredictability of the fault, one cannot
estimate the bound of the fault g(x(t)), not to mention the
differential requirement of the fault. In this paper, we re-
leased these assumptions by using a data-driven learning
method based on the least-square regularized regression
approach.

Before we propose the main results, we first focus on the
initial data collecting procedure. Firstly, the system is as-
sumed to be normal, i.e., this system is without fault. It is
known that, to stabilize system (1) without fault, that is, to
stabilize the following system:

_x(t) � Ax(t) + Bu(t). (2)

One can define the feedback control as u(k) � −Kx(k),
with the matrix A − BK Hurwitz. &en, based on this
construction, we initially collected the data with the feedback
control u(k) � −Kx(k). However, it should be pointed out
that while the fault is considered, system (1) may be unstable.
Next, based on the data generated by the faulty system, we
will identify the fault by using the following results.

We let z(t) be the regression vector in the regression
model, z(t) � x(t). For the state sensor output x(t), we
calculate the derivative of state x(t) numerically, i.e., _x(t) �

(x(t + h) − x(t))/h mathematically, where h is the numer-
ically sampling period. &en, we can obtain y(t) as _x(t) −

Ax(t) − Bu(t) which is assumed to be the data output. We
use this relation to evaluate data samples as z(t), y(t)􏼈 􏼉

T

t�0.

3. Main Results

&e data-driven learning problem is formulated as

g ∈HT

min 1
T

􏽘

T

t�1
‖y(t) − Bg(x(t))‖

2
+ ]‖g‖

2
T

⎡⎣ ⎤⎦, (3)

where g � [g1, g2, . . . , gq]T, ‖gi‖
2 � 〈gi, gi〉HT

, and the
regularization constant ] is used to make a trade-off between
the empirical approximation error and the complexity of the
model. &e solution of the above optimization problem is
expressed as

gi xv( 􏼁 � 􏽘
T

t�1
cgit

K xv, x(t)( 􏼁. (4)

Next, we shall consider the nonlinear function ap-
proximation method in this paper. &e reproducing kernel
Hilbert space (RKHS) is defined to be the closure of linear
span of a set of functions, with the kernel functions used for
approximation be nonlinear functions. In this paper, we use
Morlet WNN kernel:
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KWNN x, x′( 􏼁 � 􏽙

n

i�1
cos ω0

xi − xi
′( 􏼁

ai

􏼠 􏼡exp −
xi − xi
′( 􏼁
2

2a2
i

⎛⎝ ⎞⎠.

(5)

&e Morlet wavelet is a wavelet composed of a complex
exponential (carrier) multiplied by a Gaussian window
(envelope).&e parameterω0 > 0 represents the dilation, and
the parameter ai > 0 represents translation. &ese two pa-
rameters can be adjusted by users. One can find the theo-
retical analysis for optimal dilation and translation
parameters selection in [15]. &en, the RKHS is a space of
nonlinear functions and has good approximation perfor-
mance. We solve the above optimization problem which is
given by the following theorem.

Theorem 1. For the optimization problem (3), the solution is
obtained by the following formula:

gj(x) � 􏽘

T

t�1
ljtKWNN(x(t), x), (6)

where ljt is the solution of the following equation:

T] + IT ⊗B
T
B􏼐 􏼑G Iq ⊗Tm􏼐 􏼑L􏼐 􏼑l � IT ⊗B

T
􏼐 􏼑y, (7)

where

Tm � Tmij􏼐 􏼑
T×T

, Tmij � KWNN(x(j), x(i)), (8)

and G and L satisfy gT � GgT and l � Ll, respectively, with

gjT � gj(x(1)), gj(x(2)), . . . , gj(x(T))􏽨 􏽩
T ∈RT

,

gT � g1T, g2T, . . . , gqT􏽨 􏽩
T ∈RTq

,

gtT � g1(x(t)), g2(x(t)), . . . , gq(x(t))􏽨 􏽩
T ∈Rq

,

gT � g1T, g2T, . . . , gTT􏼂 􏼃
T ∈RTq

,

lj � lj1, lj2, . . . , ljT􏽨 􏽩
T ∈RT

,

l � l1, l2, . . . , lq􏽨 􏽩
T ∈RTq

,

lt � l1t, l2t, . . . , lqt􏽨 􏽩
T ∈Rq

,

l � l1, l2, . . . , lT􏼂 􏼃
T ∈RTq

.

(9)

Proof. Introduce an orthonormal wavelet ϕp,q􏽮 􏽯 in L2
ρ(X).

&eir corresponding eigenvalues are λp,q􏽮 􏽯. &en, we have gi �

􏽐
∞
p,q�−∞ cgip,qϕp,q for any gi ∈HWNN. &e parameters cgip,q

are to be chosen to minimize the objective function (3).
Let

P �
1
T

􏽘

T

t�1
(y(t) − Bg(x(t)))

T
(y(t) − Bg(x(t))) + ]‖g‖

2
T

�
1
T

􏽘

T

t�1
􏽘

n

i�1
yi(t) − 􏽘

q

j�1
bijgj(x(t))

2
+ ]‖g‖

2
Tgj(x(t))

2
+ ]‖g‖

2
T.

(10)

Then, one can obtain

zP

zcgjp,q

� −
2
T

􏽘

T

t�1
􏽘

n

i�1
yi(t) − 􏽘

q

j�1
bijgj(x(t))⎛⎝ ⎞⎠bijϕp,q(x(t))

+ 2
]cgjp,q

λp,q

� −
2
T

􏽘

T

t�1
􏽘

n

i�1
bijyi(t) − bij 􏽘

q

j�1
bijgj(x(t))⎛⎝ ⎞⎠ϕp,q(x(t))

+ 2
]cgjp,q

λp,q

.

(11)

Considering the minimum optimization problem, we
have

cgjp,q � λp,q

􏽐
T
t�1 􏽐

n
i�1 bijyi(t) − bij 􏽐

q
j�1 bijgj(x(t))ϕp,q(x(t))

T]
.

(12)

Using the fact that

KWNN(x(t), x) � 􏽘
∞

p,q�−∞
λp,qϕp,q(x(t))ϕp,q(x), (13)

we can get

gj(x) � 􏽘
∞

p,q�−∞
cgjp,qϕp,q(x)

� 􏽘
∞

p,q�−∞
λp,q

􏽐
T
t�1 􏽐

n
i�1 bijyi(t) − bij 􏽐

q

j�1 bijgj(x(t))􏼐 􏼑ϕp,q(x(t))

T]
ϕp,q(x)

�
􏽐

T
t�1 􏽐

n
i�1 bijyi(t) − bij 􏽐

q
j�1 bijgj(x(t))􏼐 􏼑KWNN(x(t)x)

T]

� 􏽘
T

t�1
ljtKWNN(x(t)x).

(14)

Complexity 3



From (9),

gjT � Tmlj,

gT � Iq ⊗Tm􏼐 􏼑l,
(15)

we have

T]lt � B
T
y(t) − B

T
BgtT,

T]l � IT ⊗B
T

􏼐 􏼑y − IT ⊗B
T
B􏼐 􏼑gT

� IT ⊗B
T

􏼐 􏼑y − IT ⊗B
T
B􏼐 􏼑GgT

� IT ⊗B
T

􏼐 􏼑y − IT ⊗B
T
B􏼐 􏼑G Iq ⊗Tm􏼐 􏼑l

� IT ⊗B
T

􏼐 􏼑y − IT ⊗B
T
B􏼐 􏼑G Iq ⊗Tm􏼐 􏼑Ll.

(16)

&e theorem is obtained.
&e above optimization problem leads to the following

approximation results:

gi ∈HT

min
‖Bg(x(t)) − Bg(x(t))‖. (17)

&en, by using the cross-validation method, we can
estimate the approximation error e in (17) which is not
exactly known. In practice, define ς as the upper bound of the
approximation error which can be computed by the data
learning algorithm. In fact, one can find that a good ap-
proximation error at O(10− 3) or even a smaller value can be
obtained in simulations by using sufficiently large data
samples for the learning. To ensure the control design to be
robust under faulty data, the upper bound of the approxi-
mation error ς is set to be 10e in our data learning algorithm.

&at is, ‖Bg(x(t)) − Bg(x(t))‖ ≤ ς. &is construction is
explained based on the following facts: as onemay know that
the design of the control is based on future system process
which is fully unknown. &is makes the learning of future
fault very difficult. Although the cross-validation method
can estimate the error very well, there will still be some
differences between the estimated fault and the true fault.
&at is to say, the learned fault obtained by approximating
the trained data can reflect most of the parts of the fault
function, but not the exactly true fault. Nevertheless, the
parameter ς produced from training data can provide a good
result and is used to estimate the approximate error.

In the following, we will give a theorem to design the
fault tolerant control based on the approximation result. □

Theorem 2. Considering the system with the fault given in
(1), the system will be stabilized under the following control:

u(t) � B
T
Px(t) − sign B

T
Px(t)􏼐 􏼑ς − g(x(t)), (18)

where P> 0 is the unique solution to the algebraic Riccati
equation (ARE):

A
T
P + PA − PBB

T
P + I � 0. (19)

Proof. Introduce the following Lyapunov candidate:

V(t) � x
T
(t)Px(t). (20)

&en, the derivative of V(t) satisfies

_V(t) � 2 Axt(t)n + qBh B
T
Px(t) − sign B

T
Px(t)􏼐 􏼑ς − g(x(t)) + g(x(t), k)􏼐 􏼑􏼐 􏼑

T
Px(t)

� x
T
(t) A

T
P + PA􏼐 􏼑x(t) + x

T
(t)PBB

T
Px(t)

− ςsign B
T
Px(t)􏼐 􏼑B

T
Px(t) + e

T
g(t)BB

T
Px(t)

≤ x
T
(t) A

T
P + PA + PBB

T
P􏼐 􏼑x(t).

(21)

From (19), the theorem is obtained. □

Remark 1. In this paper, the data-driven learning method
is proposed to identify the system fault. It should be
pointed out that there exist some problems which remain
to be solved: (i) since the data are collected for learning, it
is well known that identification efficiency can be im-
proved as more data samples are collected. &e amount of
data to be collected to improve the efficiency of the al-
gorithm is still an open problem; (ii) from (3), one can find
that there exists a regularization constant, ] in (3), to
reduce the model complexity and the learning error. &e
constant is always case dependent; (iii) the choice of the
dilation ω0 and violation ai in the Morlet WNN kernel is
also case dependent. One can refer to WNN for learning
function in [14, 15].

Remark 2. In this paper, the data-driven learning method is
given to analyze the system fault. &is is different from the
classic fault tolerant analysis in the networked system.
Classically, the fault analysis used the model-based ap-
proach, see [17–19] and the reference therein, in which they
solved the fault tolerant problem in a system basis. However,
in this paper, we analyze the fault fully based on the his-
torical data, and some useful data-based results are obtained.
&is makes a new insight in applying data learning strategies
in the fault research area.

Remark 3. &e results obtained in this paper aim to solve the
stability problem in a dynamical system considering fault by
using the WNN-based method. &rough&eorem 1, we can
obtain the detailed formula for the approximation of the
system fault effect in (1). One can refer to (17) for details. In
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addition, with the given equations (6)–(9), one can easily
calculate the mathematical form of the control in (18). All
these procedures contribute to the application of the ob-
tained results in real-world engineering problems.

4. Application

In this section, the VTOL aircraft stability problem is
proposed to verify the method in &eorem 2. One typical
VTOL aircraft model can be found in Yakovlev Yak-38
which is a Soviet Navy VTOL aircraft intended for their light
carriers, cargo ships, and capital ships.&e dynamical system
is described by

_x(t) � Ax(t) + B(u(t) + g(x(t))). (22)

&e parameter matrices A and B are given as follows:

A �

−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.3681 −0.707 1.42

0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B �

0.4422 0.1761

3.5446 −7.5922

−5.52 4.49

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

Based on the proposed method, we use the control
u(t) � −BTPx(t) to collect data in [5 s, 10 s], where

P �

2.2932 0.1056 0.0837 −0.9103

0.1056 0.1940 0.1357 −0.0156

0.0837 0.1357 0.2681 0.1683

−0.9103 −0.0156 0.1683 1.8079

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

&e fault considered in the first 10 seconds is given by

g(x(t)) �
sin x1(t)( 􏼁 − 2sin x3(t)( 􏼁

2sin x2(t)( 􏼁 − sin x4(t)( 􏼁
􏼠 􏼡. (25)

&en, we can learn the fault effect Bg(x(t)) numerically
through the optimization (3) approach result in (7), see
Figure 1. In Figure 1, it can be found that the dashed lines
and solid lines are very close which means that the opti-
mization problem in (3) is well solved by using the proposed
&eorem 1. &e fault considered in the system is given in
(25). For illustration purpose, the parameter ] in (3) is 0.8.
&e dilation and violation constants in (5) are set to be
ω0 � 0.5 and a1 � a2 � a3 � a4 � 2. &e control proposed in
(18) is applied at t � 10 s with the ς equal to 0.3. &e tra-
jectory of the system is shown in Figure 2. In Figure 2, we
aim to show the effectiveness of the proposed controller in
(18). From the trajectory of x(t) in Figure 2, one can find
that the system is stabilized since the value of x(t) goes to
zero. One can see that the chattering phenomena is shown in
this figure.&is is due to the fact that the control (18) is based
on the function sign. One may use other functions to replace

the sign, which may lead to a bounded domain of the tra-
jectory, see [12].

Next, we will consider different fault effects in [0 s, 50 s].
&e fault of the aircraft in [0 s, 20 s] is

g(x(t)) �
sin x2(t)( 􏼁 − 2sin x3(t)( 􏼁 + sin x4(t)( 􏼁

sin x1(t)( 􏼁 − 2sin x2(t)( 􏼁
􏼠 􏼡.

(26)

&e fault of this system in [20 s, 50 s] is

6 7 8 9 10
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y1 (t)
y2 (t)
y3 (t)
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∑b3jgj (t)
∑b4jgj (t)

Trajectory of learn

Figure 1: Learning result (this figure shows the learning result in
(6) which is based on the optimization problem in (3). 􏽐 bijgj, i �

1, 2, 3, 4{ } represents 􏽐
q

j�1 bijgj, i � 1, 2, 3, 4{ }, see (10) for the detail
calculation).
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Figure 2: Trajectory of the state (this figure shows the trajectory of
the dynamical system (22) with the given fault in (25) by using the
proposed learning-based control in (18)).
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g(x(t)) �
−0.5

−0.5
􏼠 􏼡. (27)

We analyze the whole process in the following sessions:

Session 1: observation time interval: [20 s, 35 s];
Session 2: data collection time intervals: [5 s, 10 s] and
[35 s, 40 s];
Session 3: data-driven learning control time intervals:
[10 s, 20 s] and [40 s, 50 s].

During the first 5 seconds, the operation system data are
collected. One may observe that the system is not stable from
the collected data. &en, we make the judgement that the
system is faulty. In the next 5 seconds, we collect the data and
use the proposed learning technique in&eorem 1 to identify
the fault. From the data learned results, one may use the
control in (18) to stabilize the system. From Figure 3, one can
see that, after the controller is applied, the system is stabilized.

Considering the changing fault at 20 s, it can be observed
that the previous control is failed to stabilize the system in
the time interval [20 s, 30 s]. &is makes us to remove the
aforementioned controller and repeat the observation-col-
lection learning progress. &e details are given as following
steps: (1) collect data in [35 s, 40 s]; (2) use the proposed
learning technique to identify the fault; (3) apply the newly
identified results into the controller (18).

From Figure 3, one can see that, after the controller is
applied at 40 s, the system goes to the stability state during
[40 s 50 s]. In Figure 3, we consider different fault effects in
different time intervals during the system operating. One can
find that if two faults are observed at different time, we can
always apply the proposed controller in (18) by using the
collected data to stabilize the system in the time intervals
[10 s, 20 s] and [40 s, 50 s].

5. Conclusion

In this paper, fault tolerant stability is given based on data-
driven learning techniques. A regularized regression wavelet
approach is proposed for the data-based fault identification.
&e data-driven scheme is investigated under the consid-
eration to minimize the error between the fault effect and
data samples. Based on the learning result, data-driven
control is proposed to stabilize the system. Finally, a sim-
ulation example is exploited to show the effectiveness of the
main result.
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Novel memristive hyperchaotic system designs and their engineering applications have received considerable critical attention. In
this paper, a novel multistable 5Dmemristive hyperchaotic system and its application are introduced.3e interesting aspect of this
chaotic system is that it has different types of coexisting attractors, chaos, hyperchaos, periods, and limit cycles. First, a novel 5D
memristive hyperchaotic system is proposed by introducing a flux-controlled memristor with quadratic nonlinearity into an
existing 4D four-wing chaotic system as a feedback term. 3en, the phase portraits, Lyapunov exponential spectrum, bifurcation
diagram, and spectral entropy are used to analyze the basic dynamics of the 5D memristive hyperchaotic system. For a specific set
of parameters, we find an unusual metastability, which shows the transition from chaotic to periodic (period-2 and period-3)
dynamics. Moreover, its circuit implementation is also proposed. By using the chaoticity of the novel hyperchaotic system, we
have developed a random number generator (RNG) for practical image encryption applications. Furthermore, security analyses
are carried out with the RNG and image encryption designs.

1. Introduction

In recent years, chaos systems have become the subject ofmany
studies in the fields of science and engineering. A large number
of new chaotic systems have been proposed one after another,
and their application scopes are more and more extensive
[1–8]. With the progress of science and technology, chaos has
been applied not only to communication [9–12], image pro-
cessing [13–15], complex networks [16–21], synchronization
[22–27], electronic circuits [28–30], and optimization [31–35]
but also to encryption studies [36–41]. 3is is because chaotic
signal has good pseudorandom, initial-value sensitive, and
long-term unpredictable characteristics, which enhances the
confusion and diffusion of encrypted data.

Due to themore complex structure and dynamic behavior
of the hyperchaotic system, in order to better meet the needs

of secure communication and information hiding, people
propose to construct hyperchaotic systems to improve the
complexity of the systems. At present, hyperchaotic systems
are usually constructed by loading feedback controller on 3D
or 4D continuous chaotic systems [42–46]. 3e feedback
controllers are divided into linear and nonlinear, among
which the nonlinear-feedback term will further increase the
complexity and unpredictability of the system, which is more
suitable for the construction of hyperchaos [47–51].

Memristor is a kind of hardware implementation com-
ponent of memory nonlinear electronic memristor chaotic
circuit, which has research significance in chaotic secure
communication, image encryption, neural networks, and
other fields [52–56]. It describes the relationship between
magnetic flux and charge. 3e concept of the memristor was
proposed by Chua in 1971 [57], and it was not until 2008 that
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HP laboratory realized the first real memristor [58]. Because
of the nonlinear and memory characteristics of the mem-
ristor, as the feedback term of the hyperchaotic system, it can
produce complex nonlinear dynamic phenomena, which
provides a new development space for the design of the
hyperchaotic system. At present, the main method is to use
the memristor as the feedback term in typical chaotic systems
to construct hyperchaotic systems. In [59], a novel 5D
hyperchaotic four-wing memristive system (HFWMS) was
proposed by introducing a flux-controlled memristor with
quadratic nonlinearity into a 4D hyperchaotic system, the
dynamic characteristics of the HFWMS were analyzed, and
the FPGA realization of the 5DHFWMSwas also reported. In
[60], a new memristive system was presented by replacing the
resistor in the circuit of modified Lü system with the flux-
controlled memristor, respectively, which could exhibit a
hyperchaotic multiwing attractor, and the values of two
positive Lyapunov exponents were relatively large. 3e dy-
namical behaviors and the circuit implementation were also
carried out.

Coexisting attractors depend on the symmetry of the
systems and the initial condition of the systems [61].
Multistability refers to the phenomenon that the system
shows different dynamic characteristics and different
attractors coexist under same parameters [62]. In recent
years, the study of multistability and coexistence attractors is
a hot topic in nonlinear dynamics [63–70]. Lai et al. [63]
showed the coexistence behavior of different attractors
under different initial conditions and parameter values, such
as four limit cycles, and two double-scroll attractors with a
limit cycle. In [65], a new 4D fractional order chaotic system
was proposed by adding a variable to the 3D chaotic system.
3is new system had no equilibrium point, but it could also
show rich and complex hidden dynamics. Zhang et al. [66]
introduced a state variable into a 3D chaotic system and then
analyzed the dynamic characteristics of the new system
under different initial conditions, proving that the new
system has extreme multistability. In fact, various systems
exhibiting multistability have been proposed. However, a
review of literature revealed that this remarkable behavior is
rare in 5D memristive hyperchaotic system with coexisting
multiple attractors. Such systems cannot be ignored. Because
of their complexity, the generated signals are usually used for
secure communication and random number generation.

With the development of communication technology
and the coming of information age, people are more and
more aware of the important role of information security
[71–76], and the research of various security protection has
become the current research hotspot [77–82]. As an im-
portant part of information security transmission, random
number generator (RNG) has been paid more and more
attention. 3e unpredictable and unrepeatable random
number sequence which can be produced by RNG plays an
important role in information encryption. Based on Shan-
non information theory, in order to ensure the absolute
security of communication, the RNG with high speed,
unpredictability, and good randomness has great research
value [83–89]. 3e chaotic system is a kind of complex
nonlinear motion, which is highly sensitive to the initial

conditions, and its orbit is unpredictable for a long time.
3erefore, the chaotic system shows very good cryptography
characteristics.

In recent years, people are committed to the research and
design of chaos-based RNGs [90–93]. Sometimes the key of
generating random sequence by chaos is the choice of
chaotic systems. However, most RNGs based on chaos have
a typical disadvantage. 3at is to say, the limited precision of
all processors may cause the chaotic system to degenerate
into periodic function or fixed point [94]. In order to
overcome this disadvantage, a generator based on hyper-
chaos was proposed in [94].3e self-shrinking generator was
used to disturb the hyperchaotic sequence to reduce the
period degradation and improve the sequence performance,
which was superior to many other linear-feedback-shift
register-based generators. Random numbers created in the
chaotic systems are tested according to the randomness tests
with the highest international standards such as AIS-31 and
NIST 800 22 and then are ready to be used in encryption
applications [95, 96]. In encrypted applications, it is not
enough to encrypt data only. Encrypted data must also be
equipped with the highest possible reliability. In order to
prove the high level of reliability, some security analysis
must be carried out according to the data type. Key space,
sensitivity, floating frequency, histograms, correlation, and
information entropy analysis are common security analysis
in the literature [97–99].

Motivated by undiscovered features of systems with
coexisting multiple attractors, we introduce a novel multi-
stable 5D memristive hyperchaotic system with a line of
equilibrium and its practical chaos-based application in the
present work. 3e rest of this work is organized as follows.
Section 2 describes the mathematical model of the novel
multistable 5D memristive hyperchaotic system. Dynamical
properties and circuit realization of the system are inves-
tigated in Sections 3 and 4, respectively. Section 5 presents a
random number generation (RNG) using the chaoticity of
the multistable 5D memristive hyperchaotic system, while
security analyses are also carried out with the RNG designed.
To validate the performance of the RNG, the application of
image encryption is employed in Section 6, we also employ
standard security analysis whose outcome is compared
alongside available state-of-the-art methods. Finally, we
conclude in Section 7.

2. A Novel Multistable 5D Memristive
Hyperchaotic System

Recently, Yu and Wang [100] proposed a 4D four-wing
chaotic system, and its mathematical model is

_x � − ax + yz,

_y � by − xz,

_z � xy − cz + dw,

_w � xy − ew,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x, y, z, and w are the state variables and a, b, c, d, and e
are the system parameters. When a � 10, b � 12, c � 60, d � 2,
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and e � 3, system (1) can display a fully four-wing chaotic
attractor under the initial conditions (2, 1, 1, 2).

Memristor is a passive two terminal device which de-
scribes the relationship between flux φ and charge q. In this
paper, the memristor is controlled by flux, and the rela-
tionship between the current flowing through the two ter-
minal device and the port voltage can be expressed as
follows:

i � W(φ)u, _φ � u, (2)

where W(φ) is the memductance function of the flux-
controlled memristor and defined as

W(φ) � f + 3gφ2
. (3)

Based on system (1), by introducing the memristor
model in (3) to the third equation of system (1), a novel 5D
memristive hyperchaotic system is presented as follows:

_x � − ax + yz,

_y � by − xz,

_z � xy − cz + dw f + 3gu2( 􏼁,

_w � xy − ew,

_u � − z,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where a, b, c, d, e, f, and g are the system parameters. When
the typical parameters are fixed as a � 10, b � 12, c � 30, d � 2,
e � 4, m � 0.1, and n � 0.01 and the initial conditions are
chosen as (2, 1, 1, 2, 2), the memristive system (4) exhibits
a four-wing hyperchaotic attractor, as shown in Figure 1,
from which it can be seen that the system has topologically
more complex attractor structure than system (1) presented
by [100]. 3e memristive chaotic system (4) has the same
symmetry as the original 4D chaotic system (1) and
remains unchanged under the coordinate transformation
(x, y, z, w, u)⟶ ( ±x,∓y, − z, − w, − u).

Equilibrium points of system (4) are obtained by setting
its right-hand side to zero, that is,

− ax + yz � 0,

by − xz � 0,

xy − cz + dw f + 3gu2( 􏼁 � 0,

xy − ew � 0,

− z � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

According to equation (5), it is easy to see that system (4)
has a line equilibrium point O � 􏼈(x, y, z, w, u) | x �

y � z � w � 0, u � l􏼉, where l is any real constant. 3e
Jacobian matrix at the online equilibrium point O of system
(4) is

Jo �

− a z y 0 0

− z b − x 0 0

y x − c d f + 3gu2( 􏼁 6dwgu

y x 0 − e 0

0 0 − 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

According to (6), the characteristic equation can be
obtained as

λ(λ + e)(λ + c)(λ + a)(λ − b) � 0. (7)

It is easy to get λ1 � 0, λ2 � − e, λ3 � − a, λ4 � − c, and λ5 � b
because the values of system parameters a, b, c, and e are
greater than zero, so λ2, λ3, and λ4 are negative, λ5 is
positive, so system (4) has unstable saddle point. 3e
dissipativity of memristive chaotic system (4) can be de-
scribed as

∇V �
d _x

dx
+
d _y

dy
+
d _z

dz
+
d _w

dw
+
d _u

du
� − a + b − c − e. (8)

Since − a + b − c − e � − 32 satisfies ∇V < 0, system (4) is
dissipative.

3. DynamicAnalysis of theNovel 5DMemristive
Chaotic System

In this section, we will use the tools of bifurcation dia-
gram, Lyapunov exponent spectrum, time series, and
phase diagram and use the fourth-order Runge–Kutta
algorithm to study the complex dynamic behavior of
system (4) through MATLAB. 3e proposed memristive
chaotic system (4) has particularly complex dynamic
characteristics, including coexistence attractors of the
same type and different types, multistability, and transient
transfer phenomena.

3.1. Lyapunov Exponent Spectrum and Bifurcation Diagram.
It is very interesting that there are different dynamic be-
haviors (such as periodic phenomena, quasi-periodic, cha-
otic attractors, and hyperchaotic attractors), according to
different differential equations of parameter values. 3e
system parameters are set as b � 12, c � 30, d � 2, e � 4, m �

0.1, and n � 0.01, the initial conditions are chosen as
x(0) � 2, y(0) � 1, z(0) � 1, w(0) � 2, and u(0) � 2, and
the parameter a is the bifurcation parameter of the system.
Figure 2(a) is the corresponding Lyapunov exponent
spectrum (in order to make the graph display clear, the fifth
Lyapunov index is omitted here), and Figure 2(b) is the
bifurcation diagram when the parameter a of the system
changes from 0 to 20 with the state variable x. It can be seen
from Figure 2(b) that as the parameter a gradually increases
in the range, the system leads from periodic state to chaos
and then to period, with some quasi-periodic windows and
transient transfer phenomena in the middle. Table 1 lists the
dynamic behavior of parameter a in different ranges and its
Lyapunov exponent. 3erefore, it can be shown that system
(4) has a very rich and complex dynamic behavior:

(i) When 0 ≤ a ≤ 1.6, the maximum Lyapunov ex-
ponent of system (4) is zero (λ1 � 0, λ2,3,4,5 < 0), so
the system is in a multiperiod state.

(ii) When 1.6 ≤ a < 2.2, 5.8 < a < 11.5, and 12.4 < a <
13.1, the system has a positive Lyapunov exponent
(λ1>0, λ2 � 0, λ3,4,5 < 0) and is in a chaotic state.

Complexity 3



(iii) When 3.1 ≤ a ≤ 14.8, system (4) has two positive
Lyapunov exponents (λ1,2 > 0, λ3 � 0, λ4,5 < 0), so the
system is hyperchaotic.

(iv) When 14.8 < a ≤ 17.9, the Lyapunov exponent of the
system has two zeros (λ1,2 � 0, λ3,4,5 < 0), and the
system is quasi-periodic.

(v) When 17.9 < a ≤ 20, the maximum Lyapunov
exponent of system (4) is zero (λ1 � 0, λ2,3,4,5 <
0), which is different from that of the system in
the multiperiod state (0 ≤ a ≤ 1.6), but the
parameter a is only in the limit cycle state in this
range.
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Figure 2: (a) Lyapunov exponent spectrum (the fifth LE is out of plot) and (b) bifurcation diagram for increasing parameter a ∈ [0, 20].

Table 1: Dynamical behavior and Lyapunov exponents under different parameter ranges of a.

a (λ1, λ2, λ3, λ4, λ5) Behavior of dynamics

0 ≤ a ≤ 1.6 (0, − , − , − , − ) Multiperiod
1.6 ≤ a < 2.2 (+, 0, − , − , − ) Chaotic attractor
2.2 ≤ a ≤ 5.8 (0, − , − , − , − ) Transient chaos, stable state period-2
5.8 < a < 11.5 (+, 0, − , − , − ) Chaotic attractor
11.5 ≤ a ≤ 12.4 (0, − , − , − , − ) Transient chaos, stable state period-3
12.4 < a < 13.1 (+, 0, − , − , − ) Chaotic attractor
13.1 ≤ a ≤ 14.8 (+, +, 0, − , − ) Hyperchaotic attractor
14.8 < a ≤ 17.9 (0, 0, − , − , − ) Quasi-periodic state
17.9 < a ≤ 20 (0, − , − , − , − ) Limit cycle
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Figure 1: 3e four-wing chaotic attractor of system (4): (a) in the x − y − z plane, (b) in the y − z plane, (c) in the x − z plane, and (d) time-
domain waveform of x.
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(vi) When 2.2 ≤ a ≤ 5.8 and 11.5 ≤ a ≤ 12.4, the most
interesting and also very important is the existence
of transient chaos and steady-state periodic phe-
nomena. Firstly, the system has a positive Lya-
punov exponent, but when it reaches a certain time
range, the maximum Lyapunov exponent becomes
zero.

3.2. Multistability in the 5D Memristive Chaotic System.
In order to study the coexistence attractors and other
characteristics of the system better, it is necessary to give
some disturbance to the initial conditions under the
condition of keeping the system parameters constant.
Figure 3 shows the dynamic behavior with coexistence
bifurcation, in which the initial conditions of blue
trajectory and red trajectory are (2, 1, 1, 2, 2) and
(− 2, − 1, 1, 2, 2), respectively. It can be seen from Figure 3
that, under these two initial conditions, the bifurcation
mode of the system is almost the same, so the system has
exactly the same coexistence attractor under these two
conditions. Table 2 is a summary of the dynamic char-
acteristics of different parameter values a. Figure 4 shows
coexisting multiple attractors of system (4) for different
parameter values a. Figure 4(a) shows that the system has
the coexisting two-wing period-1 attractors for a � 1;
Figure 4(b) shows that the system has two-wing chaotic
attractors coexisting when a � 2; Figure 4(c) shows that
the phenomenon is very rare, the system has transient
chaos, and then transfers to stable state of period-2
for a � 3.2. When a � 8, Figure 4(d) is very similar to the
two-wing chaotic attractors, as shown in Figure 4(b);
3e system has four-wing chaotic attractors coexisting
for a � 10.1 (see Figure 4(e)). It is very similar to the
phenomenon in Figure 4(c), but it is different that
Figure 4(f ) has the coexistence of stable state of period-3
for a � 11.7. It is different from the previous two kinds of
two-wing chaotic attractors; when a � 14.6, the system has
the coexisting two-wing hyperchaotic attractors, as shown
in Figure 4(g). Figure 4(h) shows that when a � 17, the
system has coexistence quasi-periodic phenomenon.
Figure 4(i) shows that when a � 18.2, the system has
coexistence limit cycle with period-1 under two different
initial conditions.

If a chaotic system has different states of coexistence
attractors under different initial conditions, the system has
better randomness and is more suitable for random
number generation, image encryption, secure communi-
cation, and other fields. As shown in Figure 5, system (4)
has coexistence of various types of attractors under the
initial conditions (2, 1, 1, 2, 2) and (− 2, 1, 1, 2, 2), such as
two-wing multiperiod and two-wing period-5 coexist
(Figure 5(a)), different two-wing chaotic attractors coexist
(Figure 5(b)), periodic-2 and two-wing chaotic attractors
coexist (Figures 5(c) and 5(d)), two-wing chaotic attractors
coexist with quasi-period (Figure 5(e)), and two-wing
chaotic attractors coexist with four-wing chaotic attractors
(Figure 5(f )).

3.3. TransientChaos. Due to the appearance of nonattractive
saddle point in phase space, chaos appears in the system in a
limited period of time. After a period of time, the system
finally becomes a nonchaotic state, which is called transient
chaos. In practice, transient chaos is more common than
permanent chaos. A close observation of Figure 2 shows that,
in the interval ranges [2.2, 5.8]∪ [11.5, 12.4] of system pa-
rameter a, a periodic window appears in Figure 2(b), but
Figure 2(a) does indicate that the system is in a chaotic state
in this range. 3is dynamic behavior with two different
characteristics is called transient transfer behavior. With the
evolution of time, system (4) changes from chaotic behavior
to periodic behavior.

When a � 3, the time-domain waveform in the time
interval [0,200] is shown in Figure 6(a), and Figures 6(b)–
6(e) are the phase portraits of the system in x-z plane in
different time intervals. It is clear from Figure 6(a) that the
system is chaotic in t ∈ [0, 40] and periodic in
t ∈ [40, 200]. From Figures 6(b)–6(e), it is verified that the
system evolves from chaos to period gradually with time.
Figure 7 also proves that the system does have transient
chaos. Different from Figure 6, with the evolution of time,
Figure 6 finally becomes a stable state period-2, while
Figure 7 tends to a stable state period-3. 3e above-
mentioned two cases show that the nonlinear phenom-
enon from transient chaos to stable state period is not a
sudden phenomenon, and it needs a process like chaos
bifurcation. For example, when t ∈ [0, 40] in Figure 6 is at
a chaotic state but it is not just a stable state periodic
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Figure 3: Bifurcation diagram with different initial values, the blue
is (2, 1, 1, 2, 2) and the red is (− 2, − 1, 1, 2, 2).

Table 2: Dynamical behavior under different parameter of a when
b � 12, c � 30, d � 2, e � 4, m � 0.1, and n � 0.01.

a Dynamics Figure
1.0 Limit cycle with period-1 Figure 4(a)
2.0 Two-wing chaotic attractor Figure 4(b)
3.2 Stable state period-2 Figure 4(c)
8.0 Two-wing chaotic attractor Figure 4(d)
10.1 Four-wing chaotic attractor Figure 4(e)
11.7 Stable state period-3 Figure 4(f )
14.6 Hyperchaotic attractor Figure 4(g)
17.0 Quasi-periodic Figure 4(h)
18.2 Limit cycle with period-1 Figure 4(i)
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Figure 4: Various coexisting hidden attractors with different values of parameter a in the y-z plane: (a) a� 1.0, (b) a� 2.0, (c) a � 3.2, (d) a� 8.0,
(e) a � 10.1, (f) a � 11.7, (g) a � 14.6, (h) a � 17.0, and (i) a � 18.2. 3e blue one from the initial values (2, 1, 1, 2, 2) and the other from
(− 2, − 1, 1, 2, 2).
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burning, the chaotic phase portraits will change from
Figures 6(b)–6(e), which needs the same time interval
(about [0, 100]) to completely change from chaos to
period. Figures 6(b) and 6(c) are transient chaotic
attractors, and Figures 6(d) and 6(e) are steady-state
periodic states. Figure 6(a) is the time-domain waveform
of state variable x, which is different from the time series
generated by the general chaotic system. Before t � 40, the
system is in chaotic state, and then it will slowly convert to
periodic state.

4. Electronic Circuit Design

Using hardware circuit to realize the chaos mathematical
model is a hot issue in practical application. 3e circuit
design diagram of the 5D memristive hyperchaotic
system (4) is shown in Figure 8. In the circuit design,
LF347 is used as the operational amplifier, AD633JN is
used as the multiplier chip, and the multiplication factor
is 0.1/V. 3e operating voltage of the operational am-
plifier is ±E � ±15 V, and the actual saturation voltage
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Figure 6: Transient chaos, steady-state period-2. (a) Time-domain waveform of x in the time interval [0, 200], (b) phase portrait of the
chaotic attractor in the x-z, (c) chaotic attractor, (d) phase portrait of multiperiod, and (e) steady-state period-2. Under the initial values
(2, 1, 1, 2, 2) and system parameter a � 3.2.
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measured by the operational amplifier and multiplier
is ±|Vsat|≈±13.5V. Since the variables in the phase
portraits shown in Figure 1 are beyond the linear dy-
namic range, we must scale the system, and the relevant
circuit equations are as follows:

_vx � −
1

R1Cx

vx +
1

10 · R2Cx

vyvz,

_vy �
1

R3Cy

vy −
1

10 · R4Cy

vxvz,

_vz �
1

10 · R5Cz

vxvy −
1

R6Cz

vz −
1

Cz

Rvw

R11
+

R

100R12
v
2
uvw􏼠 􏼡,

_vw �
1

10 · R8Cw

vxvy −
1

R9Cw

vw,

_vu �
1

R10Cu

vz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where R1 � R/a, R3 � R/b, R6 � R/c, R9 � R/e,
R11 � R/dm, andR12 � R/(100 · 3dn). According to the pa-
rameters given in system (4), b� 12, c� 30, d � 2, e � 4,m� 0.1,
and n � 0.01, we set Cx � Cy � Cz � Cw � Cu � C � 10 nF, R �

100 kΩ, R2 � R4 � R5 � R8 � 10 kΩ, R3 � 8.25 kΩ, R6 � 3.32 kΩ,
R9 � 25 kΩ, R11 � 500 kΩ, and R12 � 16.5 kΩ. Figure 9 shows
the phase portraits which are obtained by Multisim simulator.
Compared with the MATLAB simulation Figure 4, it can be
clearly seen that the phase portraits of Figure 9 and system (4)
in initial condition (2, 1, 1, 2, 2) are exactly the same, which
confirm the correctness of the proposed 5D memristive
hyperchaotic system (4).

5. RNG Design with the Novel Multistable 5D
Memristive Hyperchaotic System

5.1.5eDesign of RNG. Random numbers are widely used in
image encryption, information security, computer, and
other fields, so the research on RNGs is particularly

important. Because the chaotic system has high sensitivity
and strong complexity to parameters and initial conditions,
random numbers generated by using the chaotic system as
an entropy source of RNG have strong randomness. Al-
gorithm 1 is a pseudocode for designing a RNG. As shown in
Algorithm 1, (1) the initial conditions of the chaotic system,
step value Δh, and sampling interval are given; (2) the
fourth-order Runge–Kutta algorithm (RK4) is used to solve
the differential equation of the chaotic system to obtain the
32 bit output of the chaotic system, in which 0–21 bit are
used for the design of the RNG; (3) XOR the output 22 bit x,
y, z, and w, respectively, to improve the randomness; (4) the
abovementioned two steps to obtain the test bit stream are
combined

In order to better evaluate the performance of generating
random numbers of chaotic systems, NIST 800.22 with
international high standard is used for random test. NIST
800.22 includes 15 test methods: frequency test, run test,
overlapping templates test, linear complexity test, etc.3e 22
bit sequence generated from the chaotic system must be
large enough for RNG test. If the p valueT of NIST 800.22 is
more than 0.0001, it shows that the p valueT is uniformly
distributed and the sequence is random. NIST test is carried
out with 130 sample sequences of 1M bit length generated by
the chaotic random number generator. 3e test results are
shown in Table 3. All p valueT are greater than the threshold
value of 0.0001, so RNG passed the test. 3e lowest pass rate
for each statistical test is about 0.975.

5.2. Security Analyses

5.2.1. Key Space Analysis. 3e main purpose of designing a
random number sequence generator is encryption, and the
size of key space determines the ability to withstand ex-
haustive attack. 3e larger the key space, the better the
encryption effect. In order to ensure the security of en-
cryption, the key space should be greater than 2128. In this
paper, the proposedmultistable 5Dmemristive hyperchaotic
system is used to construct a RNG, which can effectively
increase the size of the key space. Five 16 bit keys are used to
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Figure 7: Transient chaos, stable state period-3. (a) Time-domain waveform of x in the time interval [0, 200] and (b) stable state period-3,
under the initial values (2, 1, 1, 2, 2) and system parameter a � 11.5.
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set the initial conditions (x0, y0, z0, w0, u0) of the hyper-
chaotic system, and seven 16 bit keys are used to set the
parameters a, b, c, d, e, f, and g of the hyperchaotic system.
3ere are 192 bit keys in total, so the key space of this paper is
2192 > 2128, so the method used in this paper can effectively
resist exhaustive attack.

5.2.2. Key Sensitivity Analysis. 3e chaos system is very
sensitive to the initial value, so the random numbers
generated by the chaotic system have good randomness.
Generally, we make small changes to the initial value, and
then judge the initial value sensitivity of the RNG by the bit
change rate of two sequences. 3e closer the bit change rate
is to 50%, the more sensitive it is to the initial value. Given
x(0) � 2, x(0)′ � 2.00000001, a � 10, and a′ � 10.00000001
and the length of random number sequence is 10120000
bits, the change rate of bit with initial value is shown in
Table 4. It can be seen that when the random sequence
changes only 10− 8, the system’s bit change rate is close to
50%, so the random sequence generator is very sensitive to
the initial value of the 5D hyperchaotic system. Figure 10 is
a time-domain waveform obtained by 50 iterations of
the abovementioned two initial values. Figures 10(a) and
10(b) are time-domain oscillograms when the parameter
value a and initial condition x change, respectively. 3e
blue line represents the sequence generated when the
system parameter value remains unchanged, and the red
line represents the sequence generated by iteration when
the initial value changes. As shown in Figure 10, when
t ⊂ [0, 8], the sequence curves of two different initial values
coincide completely. After t � 8, the sequence curves of
different initial values begin to separate, and the difference
is more obvious with the increase of time. All the above

show that the RNG is very sensitive to the initial value and
small initial value changes will have a great impact on the
sequence.

5.2.3. Correlation Analysis. Correlation is another impor-
tant measure of randomness. For an ideal random number
sequence, the autocorrelation function is δ. 3e cross-
correlation function is 0. Figure 11 is the correlation graph
of two random sequences generated by the RNG, given the
initial conditions x(0) � 2 and x(0)′ � 2.00000001.
Figure 11(a) is the autocorrelation graph of the sequence,
and Figure 11(b) is the crosscorrelation graph of the se-
quence. From these two figures, it can be seen that the
random sequence generated by the RNG based on the 5D
hyperchaotic system has strong randomness. In order to
further verify the key sensitivity of the generated random
number, two similar equal length sequences are generated
by the RNG through small changes in the initial value of the
system, and the correlation coefficient is used for testing.
Correlation coefficient can measure the statistical rela-
tionship between sequences. If the correlation coefficient is
zero, then there is no correlation between the two se-
quences. If it is ±1, then there is a strong correlation be-
tween the two sequences. In the experiment, one initial
condition of the 5D chaotic system (4) changes 10− 8, all
system parameters remain unchanged, and two groups of
random sequences with a length of 4048000 bits are
generated. 3e correlation value is calculated by MATLAB,
and Table 5 is obtained. It can be noted that the correlation
values obtained by changing the five initial conditions are
very close to zero, so there is almost no correlation between
the two sequences. 3is shows that the random number
produced in this paper is very sensitive to the initial value.
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6. Image Encryption

With the rapid development of computer technology, image
information acquisition, processing, transmission, and other
related technologies have been rapidly developed and ap-
plied and have been widely studied by scholars [101–110].
Among them, image encryption plays an increasingly im-
portant role in the fields of information security, military,
medicine, and meteorology and has become a hot issue of
social concern. Chaotic systems show good randomness

because of their strong initial value and parameter sensi-
tivity, and they are widely used in the field of image en-
cryption [111–120]. In this section, as a typical application,
we will use the random number generated by the proposed
RNG for image encryption.

Suppose the size of the original image is m × n, where m
and n are the number of rows and columns of the image pixel
matrix, respectively, and the pixel gray value is an integer
between 0 and 255. 3e specific operation steps of
encrypting image with random number are as follows:

(1) start
(2) Given the initial condition, parameter value, step value Δh and sampling interval of chaotic system (4);
(3) while (least 100M. Bit data) do
(4) Using RK4 algorithm to solve chaotic system (4), 32 bit x, y, z, w, u has obtained;
(5) Select the last 22 bit number of 32 bit x, y, z, and w;
(6) Obtain the bit stream of the chaotic system (4) by XOR x and y, z, and w;
(7) Get test bit stream according to 5 and 6;
(8) end while
(9) End

ALGORITHM 1: RNG design algorithm pseudocode.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Various attractorswith different values of resistanceR1 in the y-z plane observed frommultisim simulation: (a)R1 � 100 kΩ, (b)R1 � 50 kΩ,
(c) R1 � 31.6 kΩ, (d) R1 � 12.5 kΩ, (e) R1 � 10 kΩ, (f) R1 � 8.5 kΩ, (g) R1 � 6.81 kΩ, (h) R1 � 6.0 kΩ, and (i) R1 � 5.5 kΩ.
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Figure 11: Correlation of random sequences: (a) autocorrelation and (b) crosscorrelation.
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Figure 10: Time-domain waveform of x in the time interval [0, 50]. (a) parametersa � 10 and a′ � 10.00000001 and (b) initial values x(0) � 2
and x(0)′ � 2.00000001.

Table 3: 3e results of RNG NIST 800.22 tests.

NIST statistical test p valueT Proportion Result
Frequency (monobit) test 0.037157 0.975 Successful
Block frequency test 0.706149 0.983 Successful
Cumulative sums test 0.287306/0.204076 0.983/0.983 Successful
Runs test 0.602458 0.983 Successful
Longest-run test 0.074177 1 Successful
Binary matrix rank test 0.422034 0.983 Successful
Discrete fourier transform test 0.392456 1 Successful
Nonoverlapping templates test 0.605808 0.9875 Successful
Overlapping templates test 0.804337 1 Successful
Maurer’s universal statistical test 0.602458 0.975 Successful
Approximate entropy test 0.195163 0.9917 Successful
Random excursions test 0.407530 0.9844 Successful
Random excursions variant 0.455004 0.9861 Successful
Serial test 1 0.551026 0.975 Successful
Serial test 2 0.637119 1 Successful
Linear complexity test 0.985035 1 Successful

Table 4: Initial value sensitivity analysis of random sequences.

Initial value Amount of change Changed number of bits p (%)
x(0) 10–8 5060283 50.0028
a 10–8 5059553 49.9956
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Step 1: using the proposed multistable 5D memristive
hyperchaotic system, the random sequence is generated
iteratively according to the given system parameters
and initial conditions.
Step 2: transform the pixels in the image into a one-
dimensional sequence I with a length of m × n in the
order of traversal hierarchy.
Step 3: ensure the randomness of the sequence and
discard the previous n iterations. Continue the iteration
to generate the binary sequence ofm × n × 8 bits. 3en,
we convert every 8 bits of binary sequence into an
integer, ranging from 0 to 255. Finally, we get an integer
sequence of length m × n: i � 1, 2, . . ., M × N.
Step 4: use the random sequence generated by the
system to scramble all the pixel values in one-dimen-
sional sequence I to get the scrambled sequence I′.
Step 5: store the generated image as the final encrypted
image.

Decryption is the reverse of encryption.

6.1. Simulation Results. In this paper, the Lena image with
the size of 256 × 256 is used as the encrypted plain image
(note that the same photo is used in all subsequent safety
analysis comparisons with other references), and the keys
are a � 10, b � 12, c � 30, d � 2, e � 4, m � 0.1, and n � 0.01
and (x1(0), x2(0), x3(0), x4(0), x5(0)) � (2, 1, 1, 2, 2). 3e
results of encryption and decryption of Lena images are
shown in Figure 12, where Figure 12(a) is the original plain
image, Figure 12(b) is the encrypted image, and
Figure 12(c) is the decrypted image successfully decrypted
using the key. It can be seen that the encrypted image does
not have the characteristics of the original plain image, and
the decrypted image is exactly the same as the original plain
image.

6.2. Security Analyses

6.2.1. Histogram Analysis. Histogram is used to display the
distribution characteristics of pixels. In the encryption al-
gorithm, changing the distribution characteristics is very
important. If the probability of all intensity pixels generated
is equal in the histogram of the encrypted image, the en-
cryption has a high degree of symmetry and good unifor-
mity. Figures 13(a) and 13(b), respectively, represent the
histogram of the plain image and the encrypted image. It can
be seen that the original plain image has obvious statistical
characteristics, while the probability of each gray value of the

encrypted image is almost equal. 3erefore, encrypted im-
ages can effectively resist statistical analysis attacks.

6.2.2. Correlation Analysis. 3ere is usually a strong cor-
relation between adjacent pixels in an image, so a good
encryption algorithm should be able to produce cipher
images with low correlation, so as to hide image information
and resist statistical attacks. 3e correlation of adjacent
pixels is determined by the following formula:

rx,y �
E((x − E(x)))((y − E(y)))

���������
D(x)D(y)

􏽰 , (10)

where

E(x) �
1
N

􏽘

N

i�1
xi,

D(x) �
1
N

􏽘

N

i�1
xi − E(x)( 􏼁

2
,

(11)

where E(x) and D(x) represent the expectation and var-
iance of the variable x, and rx,y is the correlation coefficient
of adjacent pixels x and y. Figure 14 shows the phase di-
agrams of Lena plain text image and cipher text image with
adjacent pixel points in all directions upward (where (a)
and (b) are horizontal directions, (c) and (d) are vertical
directions, and (e) and (f ) are diagonal directions). It can be
seen from these figures that the adjacent pixel values of the
plain image are located near the line with slope 1, indicating
that the two adjacent pixels are highly correlated. 3e pixel
values of the cipher image are scattered throughout the
region, indicating a low correlation between the adjacent
pixels. Table 6 shows the test values of correlation in three
directions: horizontal, vertical, and diagonal. It can be seen
that the adjacent pixels of the plain image have high
correlation (rx,y⟶ 1), and the adjacent pixels of the cipher
image have low correlation (rx,y⟶ 0). At the same time,
compared with the corresponding results of References
[111–114], it shows that the proposed encryption algorithm
has lower correlation between adjacent pixels and can more
effectively resist statistical attacks.

6.2.3. Information Entropy. Information entropy is an
important index to reflect the randomness of information.
3e more uniform the distribution of pixel gray value, the
greater the information entropy, the greater the random-
ness, and the higher the security. 3e calculation formula is
as follows:

Table 5: Correlation value of random sequence.

Initial conditions Amount of change Changed value Correlation value
x(0) � 2 10–8 x(0)′ � 2.00000001 0.00066917
y(0) � 1 10–8 x(0)′ � 1.00000001 − 0.00047467
z(0) � 1 10–8 x(0)′ � 1.00000001 0.0017
w(0) � 2 10–8 x(0)′ � 2.00000001 0.00071957
u(0) � 2 10–8 x(0)′ � 2.00000001 − 0.00069381
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H � 􏽘

256

i�1
pilog2

1
pi

, (12)

where pi is the probability of occurrence of pixel points with
a pixel value of i. For grayscale images, the ideal value of
information entropy is 8. As listed in Table 7, by comparing
the information entropy of cipher and the cipher images in
References [115–118], it can be concluded that the infor-
mation entropy value of the encrypted images in the al-
gorithm in this paper is closer to the ideal value 8, and the

encrypted images are closer to the random signal source,
which can effectively resist the entropy attack.

6.2.4. Differential Attack. Pixels change rate (Number of
Pixels Change Rate, NPCR) and normalized pixels flat
change strong degree (Unified Average Changing Intensity,
UACI) can be used to measure to express the sensitivity of
the encryption algorithm, which is an important indicator of
measuring algorithm ability to resist differential attack.
NPCR and UACI, respectively, represent the proportion and
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Figure 13: Histogram of (a) plain image and (b) cipher image.

(a) (b) (c)

Figure 12: Image encryption and decryption. (a) Original plain image, (b) cipher image, and (c) decryption image.
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Figure 14: Correlation of two adjacent pixels of the plain image lena (256 × 256) and its cipher image. (a) Horizontal direction in plain
image, (b) horizontal direction in cipher image, (c) vertical direction in plain image, (d) vertical direction in cipher image, (e) diagonal
direction in plain image, and (f) diagonal direction in cipher image.

Table 6: Correlation coefficients of the plain and cipher images.

Image
Plain image Cipher image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Ours 0.94505 0.96653 0.91917 0.00068299 − 0.0007768 − 0.0036362
Reference [111] 0.964227 0.982430 0.965609 − 0.038118 − 0.029142 0.002736
Reference [112] 0.812688 0.837959 0.782053 0.001251 − 0.003543 0.001449
Reference [113] 0.91848 0.82921 0.80731 0.011899 0.018062 0.036784
Reference [114] 0.97165 0.98730 0.95440 0.00312 − 0.00317 − 0.00310
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degree of change in the pixel value of the corresponding
position.3e larger the proportion and the higher the degree
of change, the stronger the antiattack capability of the al-
gorithm. 3e calculation formulas are as follows:

NPCR �
􏽐

M
i�1 􏽐

N
j�1 D(i, j)

M × N
× 100%,

D(i, j) �

c1, P1(i, j)≠P2(i, j),

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

UACI �
1

M × N

􏽐
M
i�1 􏽐

N
j�1 P1(i, j) − P2(i, j)( 􏼁

255
× 100%,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where M × N is the size of the image, P1(i, j) and P2(i, j),
respectively, represent the pixel values of the positions
corresponding to the plain and cipher. When the NPCR and
UACI of the image are close to the ideal values of
99.6094070% and 33.4635070%, the algorithm has good
safety [112, 121]. As listed in Table 8, the algorithm in this
paper is more sensitive to the plain than the NPCR and
UACI values in References [111–120] can meet the security
requirements and have a good ability to resist differential
attacks.

7. Conclusion

In this study, a novel multistable 5D memristive hyper-
chaotic system with line equilibrium is first introduced.
Dynamical analysis is performed in terms of phase portraits,
Lyapunov exponential spectrum, bifurcation diagram, and
spectral entropy. Several interesting properties such as
multistability and transient chaos have been revealed by
using classical nonlinear analysis tools. 3en, an electronic
circuit is designed, and its accuracy is verified by Multisim
simulation. As the engineering application, a new chaos-
based RNG is designed and internationally accepted NIST
800.22 random tests are run. Security analyses are carried
out and they have proved that the design can be used in
cryptography applications. Finally, a chaotic image en-
cryption is proposed based on the random number se-
quences; security analyses show that the algorithm has good
security and can resist common attacks.
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.e disk dynamo system, which is capable of chaotic behaviours, is obtained experimentally from two disk dynamos connected
together. It models the geomagnetic field and is used to explain the reversals in its polarity. Actually, the parameters of the chaotic
systems exhibit random fluctuation to a greater or lesser extent, which can carefully describe the disturbance made by envi-
ronmental noise. .e global dynamics of the chaotic disk dynamo system with random fluctuating parameters are concerned, and
some new results are presented. Based on the generalized Lyapunov function, the globally attractive and positive invariant set is
given, including a two-dimensional parabolic ultimate boundary and a four-dimensional ellipsoidal ultimate boundary. Fur-
thermore, a set of sufficient conditions is derived for all solutions of the stochastic disk dynamo system being global convergent to
the equilibrium point. Finally, numerical simulations are presented for verification.

1. Introduction

.emagnetic field has reversed its polarity many times along
geological history [1]. To geophysics, their fundamental goal
is a coherent understanding of the structure and dynamics of
the Earth’s interior. A number of investigators worked hard
in order to establish the state of the Earth’s dynamo. Bullard
studied a disk dynamo with the intention of discussing
possible analogies between them and those of a homoge-
neous dynamo which is supposed to be the origin of the
magnetic field of the Earth and other celestial bodies. Before
long, Japanese geophysicist Rikitake [2] found that reversals
of electric current generated by a circuit can often occur even
in a very simple system such as the one with two disk dy-
namos..e behaviour of the system is far different from that
of the single disk dynamo, which never has a reversal of the
electric current. .en, a simple mechanical model used to
study the reversals of the Earth’s magnetic field is a two-disc

dynamo system idealized by Rikitake. .e model consists of
two identical single Faraday-disk dynamos of the Bullard
type coupled together. For simplicity, we denote the angular
velocities of their rotors by x3 and x4 and the currents
generated by x1 and x2, respectively. .en, with appropriate
normalization of variables, the dynamical equations can be
described by the following set of ordinary differential
equations [3, 4]:

_x1 � − μ1x1 + x2x3,

_x2 � − μ2x2 + x1x4,

_x3 � q1 − ϵ1x3 − x1x2,

_x4 � q2 − ϵ2x4 − x1x2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where q1 and q2 are the torques applied to the rotors and μ1,
μ2, ϵ1, and ϵ2 are the positive constants representing dissi-
pative effects of the disk dynamo system. Rather, from the
physical meaning of the equation, the parameters μ and ϵ
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represent the power consumption and mechanical damping
dissipation of disk dynamo, respectively. When the pa-
rameters are μ1 � 3, μ2 �1, ϵ1 � 0.1, ϵ2 � 0.2, q1 � 3, and q2 �1
for initial states (x1(0), x2(0), x3(0), x4(0))� (2.2, 2.0, 10.5,
20), the numerical simulation shows that the corresponding
Lyapunov exponents are 0.28, 0, − 0.10, and − 4.47. .ere
exists one positive Lyapunov exponent suggest that system
(1) has a chaotic attractor..e chaotic attractor’s projections
in the coordinate planes x1 − x2 − x3 and x2 − x3 − x4 are
shown in Figure 1.

One the one hand, since the Lorenz system [5] was
presented, there is a huge volume of the literature devoted to
the studies of the Lorenz system and other classical chaotic
systems, which are closely related but not topologically
equivalent to the Lorenz system, such as Chen system [6], Lü
system [7], and Yang system [8]. In a sense defined by
Vaněček and Čelikovský [9, 10], the Chen system is a dual
system to the Lorenz system and the Lü system and Yang
system represent a transition between the Lorenz and the
Chen systems. For the Lorenz family system, mathemati-
cians, physicists, and engineers from various fields have
studied the characteristics of systems, bifurcations, routes to
chaos, essence of chaos, and chaos synchronization. By
ignoring mechanical damping dissipation that parameters
ϵ1 � ϵ2 � 0 and setting q1 � q2 �1 and μ1 � μ2 � μ, we can write
x3 � z and x4 � z − α, where α is a constant of the motion.
Finally, coupled dynamos (1) can be written in the following
simple form [11]:

_x1 � − μx1 + x2z,

_x2 � − μx2 + x1(z − α),

_z � 1 − x1x2.

⎧⎪⎪⎨

⎪⎪⎩
(2)

System (2) has a three-dimensional attractor similar to
the Lorenz attractor although both systems are obviously not
topologically equivalent [11]..e chaotic behavior and other
properties, synchronization and control of the disk dynamo
system and disk dynamo-like chaotic systems (2), were
extensively studied (see, for instance, [11–16] and their
references).

On the other hand, Arnold [17] has pointed out that the
parameters in the chaotic systems exhibit random fluctua-
tion to a greater or lesser extent due to various environ-
mental noise. Scholars usually estimate them by average
values plus some error terms [18]. In general, by the well-
known central limit theorem, the error terms follow normal
distributions. For the best incorporate (natural) randomness
into the mathematical description of the phenomena and to
provide a more accurate description of it, we model the
stochastic disk dynamo system by replacing the parameters
μ1, μ2, ϵ1, ϵ2, q1, and q2 by μ1⟶ μ1 + σ1dW(t),
μ2⟶ μ2 + σ2dW(t), ϵ1⟶ ϵ1 + σ3dW(t), ϵ2⟶ ϵ2 +
σ4dW(t), q100⟶ q1 + q10dW(t), and q2⟶ q2 + q20dW(t),
where W(t) are the mutually independent Brownian mo-
tions. .en, one gets the following system of stochastic
differential equations:

dx1(t) � − μ1x1 + x2x3( 􏼁dt + σ1x1dW(t),

dx2(t) � − μ2x2 + x1x4( 􏼁dt + σ2x2dW(t),

dx3(t) � q1 − ϵ1x3 − x1x2( 􏼁dt + σ3x3 + q10( 􏼁dW(t),

dx4(t) � q2 − ϵ2x4 − x1x2( 􏼁dt + σ4x4 + q20( 􏼁dW(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

To illustrate the stochastic effects clearly, we performed
simulations for the corresponding stochastic case of Fig-
ure 1. .e corresponding stochastic case uses the same
parameters and initial values. Let μ1 � 3, μ2 �1, ϵ1 � 0.1,
ϵ2 � 0.2, q1 � 3, and q2 �1 and initial states (x1(0), x2(0), x3(0),
x4(0))� (2.2, 2.0, 10.5, 20) additionally have the perturbed
parameters σ1 � 0.1, σ2 � 0.1, σ3 � 0.01, σ4 � 0.01, q10 � 0.1,
and q20 � 0.1. .e projections in the coordinate planes
x1 − x2 − x3 and x2 − x3 − x4 are shown in Figure 2. Com-
paring Figures 1 and 2, we can see the difference between the
deterministic case and stochastic case. Actually, the behavior
of system will change even if the parameters suffer small
perturbation. Suppose that other parameters remain un-
changed and only ϵ2 change; let μ1 � 3, μ2 �1, ϵ1 � 0.1,
ϵ2 � 0.2, q1 � 3, and q2 �1, initial states (x1(0), x2(0), x3(0),
x4(0))� (2.2, 2.0, 10.5, 20), and the perturbed parameters
σ1 � 0, σ2 � 0, σ3 � 0, σ4 � 0.01, q10 � 0, and q20 � 0. Time
series x1 diagram of the deterministic case and stochastic
case are shown in Figure 3.

Chaos synchronization is a very important topic in chaos
theory. Enormous research activities have been carried out
in chaos synchronization bymany researchers from different
disciplines, and lots of successful experiments have been
reported. Many scholars, by using capacitor coupling [19],
induction coil coupling [20], and resistance coupling [21] to
realize the synchronization of chaotic systems, have obtained
good results. In chaotic synchronization, the boundedness of
the system is a very important prerequisite. In fact, ultimate
boundedness of chaotic dynamical systems is always one of
the fundamental concepts in dynamical systems. .is plays
an important role in investigating the stability of the
equilibrium, estimating the Lyapunov dimension of
attractors and the Hausdorff dimension of attractors, the
existence of periodic solutions, chaos control, and chaos
synchronization. Technically, to locate and estimate the
relative position of the attractor is a difficult work even in a
deterministic system [22–26]. For the deterministic system,
Yu and Liao [27] give the concept of the exponential at-
tractive set and estimate the globally attractive and positive
invariant set of the typical Lorenz system. For the stochastic
system, some results of the estimation global attractive set
have also been obtained, for the stochastic Lorenz-Stenflo
system [18], the stochastic Lorenz-Haken system [28], the
stochastic Lorenz-84 system [29], the stochastic Lorenz
system family [30], the stochastic Rabinovich system
[31, 32], and other stochastic systems [33, 34].

In this paper, by using a technique combining the
generalized Lyapunov function theory and optimization,
globally exponential attractive set and a four-dimensional
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ellipsoidal ultimate bound are derived, which can help us to
locate the relative position of the attractor. .e two-di-
mensional parabolic ultimate bound is also established. And
numerical results to estimate the ultimate bound are also
presented for verification. We hope that the investigation of
this paper can help understanding the rich dynamic of the
stochastic disk dynamo system and offer some enlighten-
ments for the study of the reversals of the Earth’s magnetic
field.

.is paper is organized as follows. In Section 2, the
cylindrical bound of stochastic disk dynamo system (3) is
presented. In Section 3, globally exponential attractive set

and positive invariant set of the system are derived. In
Section 4, the stochastic stability of system (3) is studied. In
each section, we also give corresponding numerical results,
respectively. .e conclusions are given in Section 5.

2. Cylindrical Bound

Theorem 1. Let l13 � min 2(μ1 − (1/2)σ21), ϵ1 − (1/2)σ23􏼈 􏼉

and l24 � min 2(μ2 − (1/2)σ23), ϵ2 − (1/2)σ24􏼈 􏼉. Suppose that
the parameters 2μ1 > σ21, 2μ2 > σ22, 2ϵ1 > σ23, and 2ϵ2 > σ24,
σ1 ≥ 0(i � 1, 2, 3, 4). 8en, the set Ω is the bound for system
(3), in the sense that system (3) is the cylindrical bound,
where

Ω � X | E x2
1 + x2

3􏼂 􏼃≤
q1 + q10σ3( 􏼁

2

l13 ϵ1 − (1/2)σ23( 􏼁
+

q210
l13

, E x
2
2 + x

2
4􏽨 􏽩􏼨

≤
q2 + q20σ4( 􏼁

2

l24 ϵ2 − (1/2)σ24( 􏼁
+

q220
l24

􏼩.

(4)

Proof

Step 1. Construct a positive definite and radically un-
bounded Lyapunov function on R2:

V13 x1, x3( 􏼁 �
1
2

x
2
1 + x

2
3􏼐 􏼑. (5)

Applying Itô’s formula, one has
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Figure 2: Simulated phase portraits of stochastic disk dynamo system (3) with parameters μ1 � 3, μ2 �1, ϵ1 � 0.1, ϵ2 � 0.2, q1 � 3, q2 �1,
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Figure 1:.e disk dynamo system exhibits chaotic behavior of system parameters μ1 � 3, μ2 �1, ϵ1 � 0.1, ϵ2 � 0.2, q1 � 3, and q2 �1 and initial
values (x0, y0, z0, u0)� (2.2, 2.0, 10.5, 20).

Complexity 3



dV13 � − μ1x
2
1 − ϵ1x

2
3 + q1x3 +

1
2

σ21x
2
1 + σ3x3 + q10( 􏼁

2
􏼐 􏼑􏼔 􏼕dt

+ σ1x
2
1 + σ3x

2
3 + q10x3􏼐 􏼑dW(t)

≤ − μ1 −
1
2
σ21􏼒 􏼓x

2
1 −

1
2
ϵ1 −

1
2
σ23􏼒 􏼓x

2
3 + L13􏼔 􏼕dt

+ σ1x
2
1 + 2σ3x

2
3 +

q210
4σ3

􏼠 􏼡dW(t)

≤ l13V13 + L13( 􏼁dt + l3V13 +
q210
4σ3

􏼠 􏼡dW(t),

(6)

where

l13 � min 2 μ1 −
1
2
σ21􏼒 􏼓, ϵ1 −

1
2
σ23􏼚 􏼛,

l3 � max 2σ1, 4σ3􏼈 􏼉;

L13 �
q1 + q10σ3( 􏼁

2

2 μ1 − (1/2)σ21( 􏼁
+
1
2
q
2
10.

(7)

Similar to the proof of .eorem 1, we can obtain

E V13 −
L13

l13
􏼢 􏼣≤ V13 x1 t0( 􏼁, x3 t0( 􏼁( 􏼁 −

L13

l13
􏼢 􏼣exp − l13 t − t0( 􏼁􏼈 􏼉.

(8)

.erefore, one has limt⟶+∞EV13 ≤ (L13/l13); that is to
say, the following inequality holds as t⟶+∞:

E x
2
1 + x

2
3􏽨 􏽩≤

2L13

l13
. (9)

Step 2. Construct a positive definite and radically un-
bounded Lyapunov function on R2:

V24 x2, x4( 􏼁 �
1
2

x
2
2 + x

2
4􏼐 􏼑. (10)

Similar to the proof of Step 1, we can obtain

dV24 ≤ l24V24 + L24( 􏼁dt + l4V24dW(t), (11)

where

l24 � min 2 μ2 −
1
2
σ23􏼒 􏼓, ϵ2 −

1
2
σ24􏼚 􏼛,

l1 � max 2σ3, 4σ4􏼈 􏼉;

L24 �
q2 + q20σ4( 􏼁

2

2 ϵ2 − (1/2)σ24( 􏼁
+
1
2
q
2
20.

(12)

.erefore, the following inequality holds as t⟶+∞:

E x
2
2 + x

2
4􏽨 􏽩≤

2L24

l24
. (13)

By Step 1 and Step 2, system (3) is the cylindrical bound.

Remark 1. Let σ1 � σ2 � σ3 � σ4 � 0; then system (3) is de-
terministic. .eorem 2 contains the results given in [12] as
special cases.

Let μ1 � 3, μ2 �1, ϵ1 � 0.1, ϵ2 � 0.2, q1 � 3, q2 �1,
σ1 � σ2 � 0.1, σ3 � σ4 � 0.01, and q10 � q20 � 0.1, and initial
values (x0, y0, z0, u0) � (2.2, 2, 2.5, 3). Calculate l13 � 0.099950
and L24 � 0.199950. We give the following estimate of the
ultimate boundary:

Ω � X | E x
2
1 + x

2
3􏽨 􏽩≤ 901.601426, E x

2
2 + x

2
4􏽨 􏽩≤ 25.112567􏽮 􏽯.

(14)

.e corresponding projections of exponentially attrac-
tive sets are shown in Figure 4.

And we also have the following results:

Ex1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 30.026679,

Ex2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 5.011244,

Ex3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 30.026679,

Ex4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 5.011244.

(15)

.e numerical solutions, which are stochastic processes,
of stochastic dynamo system (3) are obtained by the
Euler–Maruyama method. All the stochastic processes’
scopes and the ultimate boundary of the corresponding
expectations are listed in Table 1. From Table 1, we are
pleased to see that the simulation results and the theoretical
results of (14) and (15) are consistent.

3. Globally Exponentially Attractive Set

Theorem 2. Let l0 � min μ1 − (1/2)σ21, μ2−􏼈 (1/2)σ22, ϵ1−
(1/2)σ23, ϵ2 − (1/2)σ24}, and L � (L1/l0). Suppose that the
parameters 2μ1 > σ21, 2μ2 > σ22, 2ϵ1 > σ23, and 2ϵ2 > σ24. 8en,
for any constant λ> 0, the following estimate holds on
system (3):

E[V(X) − L]≤ V X0( 􏼁 − L􏼂 􏼃exp − l0 t − t0( 􏼁􏼈 􏼉. (16)

In particular,

Ω � X | EV(X)≤ 2L{ } � X | E x
2
1 + λx

2
2 + x

2
3 + λx

2
4􏽨 􏽩≤ 2L􏽮 􏽯

(17)

is a globally exponential attractive set of system (3), where

V(X) �
1
2

x
2
1 + λx

2
2 + x

2
3 + λx

2
4􏼐 􏼑,

L1 �
q1 + q10σ3( 􏼁

2

2 ϵ1 − (1/2)σ23( 􏼁
+ λ

q2 + q20σ4( 􏼁
2

2 ϵ2 − (1/2)σ24( 􏼁
+
1
2
q
2
10 +

1
2
λq

2
20.

(18)

Proof. Define the Lyapunov on R4, where

V(X) �
1
2

x
2
1 + λx

2
2 + x

2
3 + λx

2
4􏼐 􏼑. (19)

Applying Itô’s formula to (19), one has

4 Complexity



dV(X) � x1 − μ1x1 + x2x3( 􏼁 + λx2 − μ2x2 + x1x4( 􏼁􏼂

+ x3 q1 − ϵ1x3 − x1x2( 􏼁 + λx4 q2 − ϵ2x4 − x1x2( 􏼁

+
1
2

σ21x
2
1 + λσ22x

2
2 + σ3x3 + q10( 􏼁

2
􏽨

+ λ σ4x4 + q20( 􏼁
2
􏽩􏽩dt

+ σ1x
2
1 + λσ2x

2
2 + σ3x

2
3 + q10x3􏼐

+ λσ4x
2
4 + λq20x4􏼑dW(t)

� − μ1 −
1
2
σ21􏼒 􏼓x

2
1 − λ μ2 −

1
2
σ22􏼒 􏼓x

2
2 − ϵ1 −

1
2
σ23􏼒 􏼓x

2
3􏼔

− λ ϵ2 −
1
2
σ24􏼒 􏼓x

2
4 + q1 + q10σ3( 􏼁x3

+ λ q2 + q20σ4( 􏼁x4 +
1
2

q
2
10 + λq

2
20􏼐 􏼑􏼕dt

+ σ1x
2
1 + λσ2x

2
2 + σ3x

2
3 + q10x3 + λσ4x

2
4􏼐

+ λq20x4􏼁dW(t)

� −
1
2

μ1 −
1
2
σ21􏼒 􏼓x

2
1 −

1
2
λ μ2 −

1
2
σ22􏼒 􏼓x

2
2􏼔

−
1
2
ϵ1 −

1
2
σ23􏼒 􏼓x

2
3 −

1
2
λ ϵ2 −

1
2
σ24􏼒 􏼓x

2
4 + F(X)􏼕dt

+ 2σ1x
2
1 + 2λσ2x

2
2 + 2σ3x

2
3 + 2λσ4x

2
4 + G(X)􏽨 􏽩dW(t),

(20)

where

F(X) � −
1
2

μ1 −
1
2
σ21􏼒 􏼓x

2
1 −

1
2
λ μ2 −

1
2
σ22􏼒 􏼓x

2
2

−
1
2
ϵ1 −

1
2
σ23􏼒 􏼓x

2
3 −

1
2
λ ϵ2 −

1
2
σ24􏼒 􏼓x

2
4

+ q1 + q10σ3( 􏼁x3 + λ q2 + q20σ4( 􏼁x4

+
1
2

q
2
10 + λq

2
20􏼐 􏼑,

G(X) � − σ1x
2
1 − λσ2x

2
2 − σ3x

2
3 + q10x3 − λσ4x

2
4 + λq20x4.

(21)

.en,

F(X) ≤ sup
x∈R4

F(X) �
q1 + q10σ3( 􏼁

2

2 ϵ1 − (1/2)σ23( 􏼁
+ λ

q2 + q20σ4( 􏼁
2

2 ϵ2 − (1/2)σ24( 􏼁

+
1
2
q
2
10 +

1
2
λq

2
20 � L1,

(22)

G(X)≤ sup
x∈R4

G(X) �
q210
4σ3

+
λq220
4σ4

� L2. (23)

From (22) and (23), we can obtain

dV(X) ≤ − l0V(X) + L1􏼂 􏼃dt + l1V(X) + L2􏼂 􏼃dW(t). (24)

where
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Figure 4: .e projection of exponentially attractive set of the stochastic dynamo system with μ1 � 3, μ2 �1, ϵ1 � 0.1, ϵ2 � 0.2, q1 � 3, q2 �1,
σ1 � σ2 � 0.1, σ3 � σ4 � 0.01, and q10 � q20 � 0.1, and initial values (x0, y0, z0, u0)�(2.2, 2, 2.5, 3).

Table 1: Ultimate boundary for stochastic dynamo system.

Scopes of stochastic processes Simulated results of expectation .eoretical estimates of expectation
− 7.692934≤ x1≤ 7.736921 Ex1 � 0.104873 |Ex1|≤ 30.026679
− 1.484651≤ x2≤ 2.785851 Ex2 � 0.033916 |Ex2|≤ 5.011244
1.160790≤ x3≤ 22.686710 Ex3 �19.921792 |Ex3|≤ 30.026679
− 1.372995≤ x4≤ 3.000000 Ex4 � 0.248853 |Ex4|≤ 5.011244
2.652947≤ r1≤ 526.916239 Er1 � 410.415404 0≤Er1≤ 901.601426
0.000000≤ r2≤13.000000 Er2 � 0.525692 0≤Er2≤ 25.112567
r1 � x2

1 + x2
3; r2 � x2

2 + x2
3.
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l0 � min μ1 −
1
2
σ21, μ2 −

1
2
σ22, μ3 −

1
2
σ23, μ4 −

1
2
σ24􏼚 􏼛,

l1 � 4max σ1, σ2, σ3, σ4􏼈 􏼉.

(25)

From (24) and the calculating the expectation, one
obtains

EV(X)≤V X0( 􏼁 + 􏽚
t

t0

− l0EV(X) + L1􏼂 􏼃ds. (26)

From above inequality, one can obtain

EV(X)≤V X0( 􏼁exp − l0 t − t0( 􏼁􏼈 􏼉 + L1 􏽚
t

t0

exp − l0 s − t0( 􏼁􏼈 􏼉ds

� V X0( 􏼁exp − l0 t − t0( 􏼁􏼈 􏼉 +
L1

l0
1 − exp − l0 t − t0( 􏼁􏼈 􏼉􏼈 􏼉.

(27)

Let L � (L1/l0). When EV(X) − L> 0, EV(X0) − L> 0, the
following estimate holds:

E[V(X) − L]≤ V X0( 􏼁 − L􏼂 􏼃exp − l0 t − t0( 􏼁􏼈 􏼉. (28)

.us,
lim

t⟶∞
EV(X)≤L. (29)

.at is,

Ω � X | EV(X)≤ 2L{ } � X | E x
2
1 + λx

2
2 + x

2
3 + λx

2
4􏽨 􏽩≤ 2L􏽮 􏽯.

(30)

Theorem 3. Let l0 � min μ1 − (1/2)σ21, μ2 − (1/2)σ22,􏼈

ϵ1 − (1/2)σ23, ϵ2 − (1/2)σ24}, and L � (Lλη/l0). Suppose that
the parameters 2μ1 > σ21, 2μ2 > σ22, 2ϵ1 > σ23, and 2ϵ2 > σ24.
8en, for any constant λ> 0 and η ∈ R, the following estimate
holds on system (3):

E[V(X) − L]≤ V X0( 􏼁 − L􏼂 􏼃exp − l0 t − t0( 􏼁􏼈 􏼉. (31)

In particular,

Ω � X | EV(X)≤ 2L{ } � X | E x
2
1􏽨 + λx

2
2 + x3 + λη( 􏼁

2
􏽮

+ λ x4 − η( 􏼁
2 ≤ 2L􏽯

(32)
is a globally exponential attractive set of system (3), where

V(X) �
1
2

x
2
1 + λx

2
2 + x3 + λη( 􏼁

2
+ λ x4 − η( 􏼁

2
􏽨 􏽩,

Lλη �
q1 + q10σ3 − (1/2)λησ23( 􏼁

2

2 ϵ1 − (1/2)σ23( 􏼁
+
1
2
λ2η2 ϵ1 −

1
2
σ23􏼒 􏼓

+ ληq1 +
1
2
q
2
10

+ λ
q2 + q20σ4 − (1/2)ησ24( 􏼁

2

2 ϵ2 − (1/2)σ24( 􏼁
+
1
2
η2 ϵ2 −

1
2
σ24􏼒 􏼓􏼢

− ηq2 +
1
2
q
2
20􏼣.

(33)

Proof. .e proof is the same as that for .eorem 2; we omit
it here.

Remark 2. Let σ1 � σ2 � σ3 � σ4 � q10 � q20 � 0; then, system
(3) is deterministic. .eorem 3 contain the results given in
[12] as special cases.

In .eorem 3, let μ1 � 3, μ2 �1, ϵ1 � 0.1, ϵ2 � 0.2, q1 � 3,
q2 �1, σ1 � σ2 � 0.1, σ3 � σ4 � 0.01, q10 � q20 � 0.1, and initial
values (x0, y0, z0, u0)� (2.2, 2, 10.5, 20).We give the following
estimate of the ultimate boundary:

Ω � X |E x
2
1 + x

2
2 + x3 + 1( 􏼁

2
+ x4 − 1( 􏼁

2
􏽨 􏽩≤ 1034.644495􏽮 􏽯.

(34)

.is is the globally exponential attractive set and positive
invariant set of the stochastic disk dynamo system.

.en, we have the following results of the ultimate
boundary about x1 − x2 − x3, x1 − x2 − x4, x1 − x3 − x4, and
x2 − x3 − x4, which are the exponentially attractive sets of the
stochastic disk dynamo system:

E x
2
1 + x

2
2 + x3 + 1( 􏼁

2
􏽨 􏽩≤ (32.165890)

2
,

E x
2
1 + x

2
2 + x4 − 1( 􏼁

2
􏽨 􏽩≤ (32.165890)

2
,

E x
2
1 + x

2
2 + x3 + 1( 􏼁

2
+ x4 − 1( 􏼁

2
􏽨 􏽩≤ (32.165890)

2
,

E x
2
2 + x3 + 1( 􏼁

2
+ x4 − 1( 􏼁

2
􏽨 􏽩≤ (32.165890)

2
.

(35)

.e numerical solutions, which are stochastic processes,
of stochastic dynamo system (3) are obtained by the
Euler–Maruyama method. .e simulated time series about
x2
1 + x2

2 + (x3 + 1)2 + (x4 − 1)2 is displayed in Figure 5. In
addition, the stochastic processes’ scopes is

9.887650≤ x
2
1 + x

2
2 + x3 + 1( 􏼁

2
+ x4 − 1( 􏼁

2 ≤ 580.748156,

(36)

and the corresponding expectation is

E x
2
1 + x

2
2 + x3 + 1( 􏼁

2
+ x4 − 1( 􏼁

2
􏽨 􏽩 � 457.015926. (37)

It is nice to see that the simulation results and the
theoretical results of (34) are consistent.

4. Stochastic Stability

.e purpose of this section is to seek condition for the
asymptotic behavior of system (3).

Theorem 4. When perturbed parameters σ3 � σ4 � q10 �

q20 � 0, suppose that the parameters 2μ1 > σ21 and 2μ2 > σ22. If
(q1/ϵ1) + (q2/ϵ2)<

�����������������

(2μ1 − σ21)(2μ2 − σ22)
􏽱

, the equilibrium
position (0, 0, (q1/ϵ1), (q2/ϵ2)) of system (3) is stochastically
asymptotically stable.

Proof. Let V(X) � (1/2)(x2
1 + x2

2 + (x3 − (q1/ϵ1))
2+

(x4 − (q2/ϵ2))
2. .en,

6 Complexity



LV � x1 − μ1x1 + x2x3( 􏼁 + x2 − μ2x2 + x1x4( 􏼁 + x3 −
q1

ϵ1
􏼠 􏼡 q1 − ϵ1x3 − x1x2( 􏼁

+ x4 −
q2

ϵ2
􏼠 􏼡 q2 − ϵ2x4 − x1x2( 􏼁 +

1
2

σ21x
2
1 + σ22x

2
2􏼐 􏼑

� − μ1 −
1
2
σ21􏼒 􏼓x

2
1 − μ2 −

1
2
σ22􏼒 􏼓x

2
2 − ϵ1 x3 −

q1

ϵ1
􏼠 􏼡

2

− ϵ2 x4 −
q2

ϵ2
􏼠 􏼡

2

� − x1x2x3 −
q1

ϵ1
x4 −

q2

ϵ2
􏼠 􏼡

μ1 −
1
2
σ21 −

1
2

q1

ϵ1
+

q2

ϵ2
􏼠 􏼡 0 0

−
1
2

q1

ϵ1
+

q2

ϵ2
􏼠 􏼡 μ2 −

1
2
σ22 0 0

0 0 ϵ1 0

0 0 0 ϵ2
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� − x1x2x3 −
q1

ϵ1
x4 −

q2

ϵ2
􏼠 􏼡Q

x1

x2

x3 −
q1

ϵ1

x4 −
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ϵ2
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)

When the parameters 2μ1 > σ21, 2μ2 > σ22, and
(q1/ϵ1) + (q2/ϵ2)<

�����������������

(2μ1 − σ21)(2μ2 − σ22)
􏽱

, the matrix Q is
positive-definite. .us, LV is negative-definite. .en, from

.eorem 4.2.3 of [35], the equilibrium position
(0, 0, (q1/ϵ1), (q2/ϵ2)) of system (3) is stochastically as-
ymptotically stable.
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Figure 5: Time series diagrams of the stochastic dynamo system with u1 � 0.2, u2 � 0.5, ϵ1 � 0.5, ϵ2 � 0.1, q1 � 5.9, q2 � 9.15,
σ1 � σ2 � σ3 � σ4 � 0.1, and q10 � q20 �1, and initial values (x0, y0, z0, u0)� (2.2, 2, 10.5, 20).
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Remark 3. When the perturbed parameters
σ1 � σ2 � σ3 � σ4 � q10 � q20 � 0, system (3) is deterministic.
Suppose μ1 � μ2, ϵ1 � ϵ2, and q1 � q2; then, condition
(q1/ϵ1) + (q2/ϵ2)<

�����������������

(2μ1 − σ21)(2μ2 − σ22)
􏽱

is reduced to
(q/ϵ)< μ. .at is to say, the deterministic disk dynamo
system is stable when (q/ϵ)< μ. .at conclusion is coinci-
dent with the result of the literature [4].

Remark 4. Comparing the conditions of .eorem 3 and
.eorem 4, the results show that the asymptotically stability
of the stochastic disk dynamo system occurs when
(q1/ϵ1) + (q2/ϵ2)<

�����������������

(2μ1 − σ21)(2μ2 − σ22)
􏽱

, which means the
stochastic disk dynamo system will not show chaotic
behavior.

Let u1 � 2.5, u2 � 2.6, ϵ1 � 0.5, ϵ2 �1, q1 � 1.5, q2 � 2,
σ1 � 1, σ2 �1, and σ3 � σ4 � q10 � q20 � 0, and initial values (x0,
y0, z0, u0)� (2.2, 2, 10.5, 20). In Figure 6, the number results
show that the trivial solution of system (3) is stochastically
asymptotically stable.

5. Conclusions

.e coupled dynamo system is a nonlinear dynamical system
which is capable of chaotic behaviours. It models the geo-
magnetic field and is used to explain the reversals in its
polarity. Actually, the parameters of the chaotic systems
exhibit random fluctuation to a greater or lesser extent,
which can carefully describe the disturbance made by en-
vironmental noise. .e global dynamics of the chaotic disk
dynamo system with random fluctuating parameters are
concerned, and some new results are presented. Based on the
generalized Lyapunov function, the globally attractive and
positive invariant set is given, including a two-dimensional
parabolic ultimate boundary and a four-dimensional ellip-
soidal ultimate boundary. Furthermore, a set of sufficient
conditions is derived for all solutions of the stochastic disk

dynamo system being global convergent to the equilibrium
point. .e stochastic disk dynamo system will not show
chaotic behavior when the system is stable. Finally, nu-
merical simulations are presented for verification.
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In this paper, a multistable modified fourth-order autonomous Chua’s chaotic system is investigated. In addition to the dynamic
characteristics of the third-order Chua’s chaotic system itself, what interests us is that this modified fourth-order autonomous Chua’s
chaotic system has five different types of coexisting attractors: double-scroll, single band chaotic attractor, period-4 limit cycle,
period-2 limit cycle, and period-1 limit cycle. *en, an inductorless modified fourth-order autonomous Chua’s chaotic circuit is
proposed.*e active elements as well as the synthetic inductor employed in this circuit are designed using second-generation current
conveyors (CCIIs).*e reason for using CCIIs is that they have high conversion rate and operation speed, which enable the circuit to
work at a higher frequency range. *e Multisim simulations confirm the theoretical estimates of the performance of the proposed
circuit. Finally, using RK-4 numerical algorithm of VHDL 32-bit IQ-Math floating-point number format, the inductorless modified
fourth-order autonomous Chua’s chaotic system is implemented on FPGA for the development of embedded engineering ap-
plications based on chaos. *e system is simulated and synthesized on Virtex-6 FPGA chip. *e maximum operating frequency of
modified Chua’s chaotic oscillator based on FPGA is 180.180MHz. *is study demonstrates that the hardware-based multistable
modified fourth-order autonomous Chua’s chaotic system is a very good source of entropy and can be applied to various embedded
systems based on chaos, including secure communication, cryptography, and random number generator.

1. Introduction

Nonlinear phenomena widely exist in natural science, en-
gineering technology, and social science. Since 1960, the
research and application of nonlinear systems have been
more and more extensive. Many problems in complex
networks [1–7], memristor [8–11], electronic circuits
[12–15], image processing [16–21], economics [22], and
other fields can be attributed to the study of nonlinear
systems. Chaos is a special state of motion in a nonlinear
system, which is a random-like behavior generated by a
deterministic system and is extremely sensitive to initial
values and highly dependent on them [23–28]. Entropy is

usually used to describe the complexity of chaotic systems.
*erefore, it is of great significance to study the entropy of
nonlinear systems [29–31].

With the rapid development of computer technology,
the accompanying information security issues have attracted
more and more attention and become a hot issue [32–42].
Chaos is widely used in cryptosystems, random numbers,
and secure communications [43–49], and it has become a
hot topic in nonlinear circuits and systems. In the realization
of chaotic circuits, researchers have proposed many new
methods to design different types of chaotic circuits [50–55].
Among them, Chua’s chaotic circuit [56–58] has attracted
wide attention because of its simple structure, bifurcation,
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and chaotic complex dynamic characteristics. *ere are
many research contents and achievements on this circuit,
such as Chua’s dual circuit [59], transformed Chua’s circuit
[60], multiscroll Chua’s circuit [61], and hyperchaotic
Chua’s circuit [62, 63].

Multistability is a critical property of nonlinear dy-
namical systems, where a variety of behaviors such as
coexisting attractors can appear for the same parameters, but
different initial conditions. *e flexibility in the system’s
performance can be archived without changing parameters
[64, 65]. *is has become a very popular research topic and
some important research results have been achieved recently
[11, 66–69]. In [66], a 4D memristor-based Colpitts system
was proposed by employing an ideal memristor to substitute
the exponential nonlinear term of original 3D Colpitts os-
cillator model, from which the initials-dependent extreme
multistability was exhibited by phase portraits and local
basins of attraction. In [67], an ideal voltage-controlled
memristor emulator-based canonical Chua’s circuit was
investigated. With the voltage-current model, the initial
condition-dependent extreme multistability was explored
through analyzing the stability distribution of line equilib-
rium point and then the coexisting infinitely many attractors
were numerically uncovered in such a memristive circuit by
the attraction basin and phase portraits. In [69], a 5D
multistable four-wing memristive hyperchaotic system
(FWMHS) with linear equilibrium points was proposed by
introducing a flux-controlled memristor model with abso-
lute value function. A secure communication scheme based
on the proposed 5D multistable FWMHS with disturbance
inputs was also designed. To our best knowledge, fourth-
order autonomous Chua’s chaotic systems with multi-
stability are rare in literature. *erefore, it is of great sig-
nificance to study a fourth-order Chua’s chaotic system with
multistability.

In recent years, there exist several studies related to
fourth-order autonomous Chua’s chaotic circuits [70–73].
*e design of a new fourth-order autonomous nonlinear
electric circuit using two active elements, one linear negative
conductance, and one nonlinear resistor has been proposed
by Koliopanos et al. to show rich dynamic behavior of
Chua’s circuit [71]. In the performed study by Liu et al., the
design of fourth-order Chua’s circuit has been proposed
with a piecewise-linear nonlinearity and with a smooth cubic
nonlinearity which could produce different kinds of
attractors [72]. Wang et al. designed a fourth-order Chua’s
circuit using a capacitor, a resistance, and a controlled-
source constituted by stair functions in the third-order
Chua’s circuit which could generate multidirectional mul-
tiscroll (MDMS) chaotic attractors [73]. However, the
passive inductors are used in the circuits proposed in
[70–73]. In fact, the parameters of passive inductor are not
only difficult to control accurately in the actual Chua’s
circuit, but also very easy to be affected by frequency, en-
vironment, and other factors. Generally speaking, the in-
ternal resistance of the inductor will affect the oscillating
circuit, and the larger the value of the inductor, the greater
the internal resistance of the inductor, and the greater the
impact on the circuit. In order to minimize the influence

of the internal resistance of the inductor on the circuit, the
actual inductor can be replaced by the active inductor in
the experiment. *e active inductor can be equivalent to the
ideal inductor without internal resistance consumption
[74, 75].

Meanwhile, these modified Chua’s circuits generally use
ordinary voltage-mode operational amplifiers as active de-
vices. Because the gain-bandwidth product of voltage-mode
operational amplifiers is limited (usually several megahertz),
it is necessary to balance the gain and bandwidth in the design
of circuits.*at is to say, in order to get a large circuit gain, the
operating frequency of the circuit can only be reduced
[76–79]. And the current-mode devices have good frequency
gain characteristics. *e bandwidth of these kind of devices is
almost independent of gain, so there is no need to weigh the
gain and bandwidth in the designed circuit, which can im-
prove the working frequency of the circuit [80]. In recent
years, the current-mode devices to realize Chua’s circuit have
gradually become a new research direction. In [81], active
simulated inductor and piecewise nonlinear resistor in the
circuit were all realized by second-generation current con-
veyors (CCIIs), so that the circuit was more stable and can
work in higher frequency than does the usual Chua’s circuit.
*e circuit also had the advantages in that the current waves
and the corresponding phase diagrams could be tested easily.
Jothimurugan et al. [82] reported an improved imple-
mentation of an inductorless third-order autonomous ca-
nonical Chua’s circuit. *e active elements as well as the
synthetic inductor employed in this circuit were designed
using current feedback operational amplifiers (CFOAs). *e
implementation of inductorless makes the experimental
construction of Chua’s circuit simple and compact.

Many analog implementations of chaotic systems in
electronic circuits have been reported in recent decades,
such as the well-known breadboard with discrete compo-
nents [10, 13, 27, 28] and CMOS technology for integrated
circuit (IC) design [12, 23, 24]. However, breadboard is not
easy to carry, maintain, and store data, and IC design has a
long cycle and high cost [83–87]. Meanwhile, in some
chaotic information systems, digital implementation may be
necessary, for example, in embedded chaos-based applica-
tion areas and many other chaotic digital information
systems. Digital chaotic generators have been implemented
by varied structures such as Digital Signal Processor (DSP)
[88, 89] and Field Programmable Gate Array (FPGA)
[90–94]. In order to calculate complex mathematical op-
erations, the DSP chips are optimized operations sequen-
tially. Constant-time autonomous chaotic systems are
characterized by at least three differential equations and at
least three outputs.*erefore, it takes a long time for systems
based on DSP to calculate the output signal values in turn.
On the other hand, the FPGA chip can run in parallel and
has a relatively flexible architecture. *erefore, the design
and test cycle cost of the FPGA chip is extremely low.
Moreover, because of its reprogrammability, high speed, and
large capacity, the implementation of FPGA is of great
significance in the fields of information security, encryption,
cryptography, communication, and other applications
[95, 96].

2 Complexity



In recent years, the design of chaotic system based on
FPGA has been extensively studied. In [90], by the help of
fourth-order of RK4 method, Sundarapandian-Pehlivan
chaotic systemwas proposed in VHDL 32-bit IEEE 754-1985
floating-point number standard on Virtex-6 FPGA chip. In
[91], autonomous Lu-Chen chaotic system was implemented
on Virtex-6 FPGA chip using Heun numerical algorithm in
VHDL 32-bit IQ-Math fixed-point number format. In [92],
with the method of Artificial Neural Networks, the design of
Pehlivan-Uyaroglu chaotic system was implemented in
VHDL IEEE 754 single precision floating-point number
format on Virtex-6 FPGA chip. A 3D nonequilibrium
chaotic system using RK4 numerical algorithm with IEEE
754-1985 floating-point number standard on Virtex-6 FPGA
chip was designed in [93]. In [94], the implementation of
multibutterfly chaotic system in FPGA by applying the
Xilinx (Vivado) system generator was proposed.

*e objective of this study is twofold. First, based on a
multistable modified fourth-order autonomous Chua’s
chaotic circuit introduced in [70], an improved imple-
mentation of an inductorless modified fourth-order au-
tonomous Chua’s chaotic circuit is proposed. *e active
elements as well as the synthetic inductor employed in this
circuit are designed using CCIIs. *e reason for employing
CCIIs is that, compared with circuits designed with voltage
operational amplifiers, CCIIs have better characteristics
such as high conversion rate and high working speed, so
that the circuit can work in higher frequency ranges.
Second, the RK-4 method in a hardware description lan-
guage (VHDL) is used to model the modified fourth-order
autonomous Chua’s chaotic system, and the model is tested
comprehensively on Xilinx Virtex-6 FPGA chip. *e phase
portraits of the output result of the system based on FPGA
are given. *e design results of the modified Chua’s chaotic
oscillator based on FPGA are compared with those of
computer, which verifies the correctness of the design
based on digital circuit.

*e structure of this paper is as follows: a multistable
modified fourth-order autonomous Chua’s chaotic system is
investigated and the dynamic characteristics are discussed in
Section 2. An inductorless modified fourth-order autono-
mous Chua’s chaotic circuit is constructed by using CCII in
Section 3. *e Multisim simulation results of the induc-
torless modified Chua’s chaotic circuit are also given. In
Section 4, the FPGA-based model of the modified fourth-
order autonomous Chua’s chaotic system is introduced and
simulation results of FPGA-based model are presented.
Finally, conclusions are outlined in Section 5.

2. Multistable Modified Fourth-Order
Autonomous Chua’s Chaotic System

2.1. Modified Fourth-Order Autonomous Chua’s Chaotic
Circuit. By adding a linear resistor and a linear capacitor to
the classical Chua’s chaotic circuit, a modified fourth-order
autonomous Chua’s chaotic circuit is introduced in [70], as
shown in Figure 1. According to Kirchhoff’s law, the dy-
namics of this circuit is governed by the following equations:
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(1)

where VC1
, VC2

, VC3
, and iL are state variables which denote

the voltage across C1, the voltage across C2, the voltage
across C3, and current through L, respectively. According to
the principle of Chua’s diode in classical Chua’s chaotic
circuit, the characteristic curve of Chua’s diode NR in (1) can
be graphically represented as in Figure 2 and is given by

f VC1
􏼐 􏼑 � GbVC1

+
1
2

Ga − Gb( 􏼁 × VC1
+ Ea

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − VC1
− Ea

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

(2)

where Ga and Gb are the slopes of the outer and inner re-
gions, respectively, and ±Ea denote the breakpoints.

2.2. Multistable Modified Fourth-Order Autonomous Chua’s
Chaotic System

2.2.1. System Generation and Dynamics Analysis. When x �

VC1
/Ea, y � VC2

/Ea, z � iLR/Ea, w � VC3
/Ea, α � C2/C1,

β � C2R
2/L, c1 � R/R0, c2 � C2/C3, equation (1) can be

expressed as follows:
_x � α[y − x − f(x)],

_y � x − y + z,

_z � −β(y − w),

_w � −c2 z + c1w( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

When the parameters are selected as C1 � 10nF, C2 �

100nF, L � 17.64mH, R � 1.68kΩ, C3 � 2μF, Ea � 1, Ga �

−1.28ms, Gb � −0.69ms, and R0 � 60Ω, we can get α � 10,
β � 16, c1 � 28, and c2 � 0.05. A double-scroll chaotic

–

+
+

–

L

iR
iL

VRNR
C1C2

R

C3

VC1

–

+
VC2

–

+
VC3
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Figure 1: Modified fourth-order autonomous Chua’s chaotic
circuit.

Complexity 3



attractor is generated by MATLAB simulation under the
initial condition [0,0.1, 0, 0], as shown in Figure 3. As can be
seen from Figure 3, when the parameters of the system
satisfy certain conditions, a self-excited oscillation attractor
called double-scroll, like Chua’s circuit, will also be gener-
ated. Chaotic orbits are currents circling around strange
attractors [59]. *e nonperiodicity of chaotic oscillation can
be clearly seen from the time-domain waveforms, as shown
in Figure 4.

*e dynamic system described by differential equation
(3) is symmetric with respect to origin and corresponds to
the characteristics of Chua’s diode NR. If the characteristics
of Chua’s diode NR are divided into three sections; that is,

f(x) �

Gbx + Ga − Gb( 􏼁, x> 1,

Gax, −1≤ x≤ 1,

Gbx − Ga − Gb( 􏼁, x< −1,

⎧⎪⎪⎨

⎪⎪⎩

�

−0.69x − 0.59, x> 1,

−1.28x, −1≤ x≤ 1,

−0.69x + 0.59, x< −1.

⎧⎪⎪⎨

⎪⎪⎩

(4)

*e three subspaces in the state space of (4) are
D1 � (x, y, z, w) | x> 1􏼈 􏼉,

D0 � (x, y, z, w) | −1≤ x≤ 1􏼈 􏼉,

D−1 � (x, y, z, w) | x< −1􏼈 􏼉.

⎧⎪⎪⎨

⎪⎪⎩
(5)

*ere are unique equilibrium points in three subspaces
of the state space. *e three unique equilibrium points are

P
+

� (2.1388, 0.0738, −2.0650, 0.0738) ∈ D1,

Q � (0, 0, 0, 0) ∈ D0,

P
−

� (−2.1388, −0.0738, 2.0650, −0.0738) ∈ D−1.

(6)

Linearization is carried out at the equilibrium point
Q(0, 0, 0, 0), and the linearizationmatrix is obtained as follows:

2.8 10 0 0

1 −1 1 0

0 −16 0 16

0 0 −0.05 −1.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Four eigenvalues of the above matrix can be calculated:
3.9298, −1.0103 + 3.3587i, −1.0103 − 3.3587i, and −1.5092,

linearized at equilibrium points P+ and P− , and the line-
arized matrix can be obtained as follows:

−3.1 10 0 0

1 −1 1 0

0 −16 0 16

0 0 −0.05 −1.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Four eigenvalues of the above matrix are calculated:
−4.5531, 0.1295 + 3.4095i, 0.1295 − 3.4095i, −1.2060. *ere-
fore, all equilibrium points P+, Q, and P− are saddle points.
In the macroscopic view of chaotic attractors, holes are
formed near P+ and P− , respectively, which are like two
whirlpools twisted together, showing a double-scroll chaotic
strange attractor (Figure 3). *is is the result of the com-
bination of global stability and local instability. Chaotic
orbits are the flow whirling around the strange attractor.*e
adjacent trajectories show a tendency of mutual exclusion
and separation at an exponential rate [70].

*ere are many interesting chaotic phenomena when the
system parameters are changed continuously. However, in
order to debug the experimental circuit conveniently in the
future, only the resistance R is changed to observe the x − y

plane at the ends of C1 and C2. In the simulation process, the
x − y plane at the ends of C1 and C2 also shows that period-1
limit cycle, period-2 limit cycle, period-4 limit cycle, and
single-band chaotic attractor are shown in Figure 5 and
Table 1. It can be seen that the modified Chua’s chaotic
circuit exhibits abundant dynamic behavior of period
doubling bifurcation sequence.

2.2.2. Multistability Analysis. Multistability allows flexibility
of system performance without changing parameters, and
appropriate control strategies can be used to induce
switching behavior between different coexisting states. In
order to study the complex dynamic characteristics of the
system better, it is necessary to give some disturbance to the
initial conditions, that is, to change the initial conditions of
the system under the condition of keeping the system pa-
rameters unchanged. Figure 6 shows the coexistence phe-
nomenon of the system under two different initial
conditions. *e initial condition of the blue trace is
0, 0.1, 0, 0􏼂 􏼃 and the initial condition of the red trace is
0, −0.1, 0, 0􏼂 􏼃. It can be seen from Figure 6 that, under

these two initial conditions, the attractors exhibited by the
system are exactly the same, but the directions of the tra-
jectories are different, which all depend on the symmetry of
the system. Figure 6 shows the coexistence attractors for
different parameter values β and c1. Figure 6(a) shows that
the system has coexisting double-scroll chaotic attractors.
Figure 6(b) shows that the system has coexisting single band
chaotic attractors. Figure 6(c) shows that the system shows
coexisting period-4 limit cycle. It is very interesting that
Figure 6(d) shows that the system has a period-2 limit cycle
coexistence phenomenon. Figure 6(e) shows that the system
has a period-1 limit cycle coexistence phenomenon.
Figure 6(f ) is a time-domain waveform diagram of state x,
and its parameter values are the same as period-1 limit cycle.

iR = f (VR)

A –Eb –Ea
D

E

GcGb

Gc
VR

B Gb
Ga Ea Eb

C
F

Figure 2: Five-segment piecewise linear V − I characteristic of the
nonlinear resistor.
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Figure 3: MATLAB simulation results of the modified Chua’s chaotic circuit: (a) in x − y plane, (b) in x − z plane, (c) in x − w plane, and
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Figure 4: Time-domain waveforms of chaotic system (3).
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Figure 5: *e period doubling scenario in the modified Chua’s chaotic circuit shown in Figure 1: (a) single band chaotic attractor
(R � 1734Ω), (b) period-4 limit cycle (R � 1770Ω), (c) period-2 limit cycle (R � 1775Ω), and (d) period-1 limit cycle (R � 1801Ω).
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3. Inductorless Modified Fourth-Order
Autonomous Chua’s Chaotic Circuit
Based on CCII

3.1. Inductorless Modified Chua’s Chaotic Circuit Realized by
CCII. Current conveyor is a kind of electronic device with
good high frequency performance, strong versatility, and
flexibility, which has attracted wide attention of scholars
[76–81]. In this part, a modified Chua’s chaotic circuit realized
by current conveyor is proposed.*e key is to realize piecewise
linear resistance NR and inductance L in Chua’s chaotic circuit
by using CCII commercial chip AD844 (current feedback
operational amplifier) as the basic active device.

3.1.1. CCII. CCII is one of the most commonly used active
devices in current-mode circuits.*e symbolic representation
of CCII is shown in Figure 7. Port relationship of CCII is

IY � 0,

VX � VY,

IZ � KIX,

(9)

where VX and IX are the voltage and current of X-terminal,
VY and IY are the voltage and current of Y-terminal, and VZ

and IZ are the voltage and current of Z-terminal, respec-
tively. K is the transmission coefficient of the current
conveyor. When K � 1, it is the in-phase current conveyor,
and when K � −1, it is the reverse-phase current conveyor.
*e in-phase current conveyor can be implemented with one
AD844, while the reverse-phase current conveyor needs two
AD844. *e implementation circuits are shown in
Figures 8(a) and 8(b), respectively.

3.1.2. Five-Segment Piecewise Nonlinear Resistance (NR).
Generally, when we use CCII to construct a nonlinear
functional circuit, the five-segment piecewise nonlinear

Table 1: Chaotic phenomena of the modified Chua’s chaotic system by increasing resistance R values.

Chaotic phenomena Range of R R α β c1 c2 Figure

Single band chaotic attractor 1734Ω–1769Ω 1734Ω 10 17.05 28.9 0.05 Figure 5(a)
Period-4 limit cycle 1770Ω–1774Ω 1770Ω 10 17.76 29.5 0.05 Figure 5(b)
Period-2 limit cycle 1775Ω–1800Ω 1775Ω 10 17.86 29.58 0.05 Figure 5(c)
Period-1 limit cycle 1801Ω–1992Ω 1801Ω 10 18.39 30.02 0.05 Figure 5(d)
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Figure 6: Coexisting attractors for the different parameter values β and c1 and the initial conditions are 0, 0.1, 0, 0􏼂 􏼃 and
0, −0.1, 0, 0􏼂 􏼃 which are shown in blue and red, respectively: (a) coexisting double-scroll chaotic attractors, (b) coexisting single band

chaotic attractors, (c) coexisting period-4 limit cycle, (d) coexisting period-2 limit cycle, (e) coexisting period-1 limit cycle, and (f) coexisting
time-domain waveform diagram of state x.
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Figure 7: Symbolic representation of CCII.
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resistance is employed. As shown in Figure 2, the input
voltage is given to make it work in the middle of three BCDE
segments. A five-piece nonlinear resistance [81] can be
formed by parallel connection of two CCIIs, as shown in
Figure 9(a). In Figure 2, the five-segment piecewise non-
linear resistance (NR) V–I characteristic curve ABCDEF is
generated by the circuit structure, the BCDE section has the
characteristics of nonlinear negative resistance, and Chua’s
chaotic circuit mainly works in this curve section. *e
turning voltage and slope of the two circuits are Ea, Eb, Ga,
and Gb, respectively. *erefore, the V–I characteristic curve
of the five-segment piecewise nonlinear resistance can be
obtained as follows:

f(v) �

Gcv − Gb − Gc( 􏼁Eb − Ga − Gb( 􏼁Ea, v< −Eb,

Gbv + Ga − Gb( 􏼁Ea, −Eb ≤ v< −Ea,

Gav, −Ea ≤v≤Ea,

Gbv + Ga − Gb( 􏼁Ea, Ea <v≤Eb,

Gcv − Gb − Gc( 􏼁Eb − Ga − Gb( 􏼁Ea, Eb <v.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

According to the structure characteristics of the circuit
shown in Figure 2, the slope expressions of each section are
as follows:

Ea � −R
1

R4
+

1
R8

􏼠 􏼡,

Gb � R
1

R5
−

1
R4

􏼠 􏼡,

Gc � R
1

R1
+

1
R5

􏼠 􏼡.

(11)

*e turning voltages of the circuit are

Ea �
R8

R7 + R8
VCC,

Eb �
R4

R3 + R4
VCC,

(12)

where VCC is the power supply voltage of the amplifier.
Figure 9(b) shows the five-segment piecewise nonlinear
resistance V–I characteristic curve of Figure 9(a)’s circuit

which is simulated by Multisim. It can be seen that the curve
is completely consistent with the performance of Figure 2.

3.1.3. Lossless Grounded Active Inductor (Leq). Although
inductor is an important passive device in IC design, it is not
easy to integrate because it cannot integrate itself. *erefore,
spiral inductors are widely used in integrated circuits. Even
so, there are some disadvantages, such as low adjustability,
weight, large area, and high cost [82]. *erefore, in order to
overcome these difficulties, inductance simulators are used
as substitutes for spiral inductors in many circuit applica-
tions [97]. In this study, a lossless grounded active inductor
based on CCII developed by Yang is used [81]. *is is be-
cause CCII has proven to be very useful in either current or
voltage-mode signal processing circuits.*e principle circuit
of the lossless grounded active inductor realized by CCII is
shown in Figure 10.

In Figure 10, CCII-, Z1, and Z2 form a voltage amplifier.
CCII+, Z2, and Z3 form a current amplifier. *e input
voltage vi is added to the Y-terminal of CCII- and amplified
by the voltage amplifier composed of CCII-, Z1, and Z2.
According to the voltage-current relationship of CCII, if
K � 1, the equivalent input impedance of the circuit shown
in Figure 9(a) is

Zin �
Z1Z2

Z3
. (13)

It can be seen that the circuit shown in Figure 10 is an
impedance converter, which can realize impedance con-
version. By changing the properties of impedance Z1, Z2,
and Z3, different equivalent impedance can be obtained. If
Z1 � R1, Z2 � R2, and Z3 � 1/SC, the circuit can realize a
lossless grounded active inductor, and the equivalent in-
ductance value of the lossless grounded active inductor is

Leq � R1R2C. (14)

3.1.4. Inductorless Modified Fourth-Order Autonomous
Chua’s Chaotic Circuit. Figure 11 shows the modified
Chua’s chaotic circuit designed using CCII. *e upper part
inside the dash box of the circuit simulates a grounded
inductor (Leq), the right part inside the dash box is piecewise
five-segment linear NR designed using CCII, and the left
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–

X

Y

AD844

CCII+

iz

Z

(a)

+

–

X

Y

CCII–

iz
AD844

+

–

AD844 Z

(b)

Figure 8: Implementation of the in-phase current conveyor (a) and the reverse-phase current conveyor (b).
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part inside the dash box of the circuit is a linear RC network.
*e inspection of the present circuit configuration reveals
that all the four state variables VC1, VC2, iL, and VC3, as stated
in (1), are available from the circuit. *e simulated induc-
tance Leq is composed of one CCII+, two CCIIs-, and one
capacitor C4. RC network is composed of C1, C2, C3, R0, and
R. C2, C3, and Leq constitute resonant circuit. C1 and
piecewise linear resistance circuit are connected in parallel.
Resistor R connects linear circuit and nonlinear circuit to
form chaotic circuit. *e values of components are taken in
Table 2. *is circuit is biased with ±15V supply. A double-
scroll attractor is observed for R � 1680Ω as shown in
Figure 12.*rough the simulation of the circuit, we have also
observed a variety of dynamic behaviors, such as single band
chain attractor, period-4 limit cycle, period-2 limit cycle,
period-1 limit cycle, steady state, and limit cycle, as shown in
Figure 13. It can be seen that the Multisim simulation results
are in good agreement with the theoretical analysis, which
verifies the feasibility of the modified Chua’s circuit.

4. FPGA Implementation of the Multistable
Modified Fourth-Order Autonomous Chua’s
Chaotic System

*e multistable modified fourth-order autonomous Chua’s
chaotic system presented in this study is modeled on Lab-
VIEW FPGA using Runge-Kutta (RK-4) algorithm, which is
one of the most popular numerical differential equation
decryptionmethods in the literature. According to the 32-bit
IEEE 754-1985 floating-point number standard, the design is

coded on VHDL (Very-High-Speed High Speed Integrated
Circuit Hardware Description Language) [98]. IP core
generator developed by Vivado 2018.3 Design Tools system
is used to design chaotic oscillator based on FPGA, such as
multiplier, subtractor, and adder, which conform to IEEE
754-1985 standard.

4.1. RK-4 Algorithm. Runge-Kutta (RK) algorithm is a high
precision one-step algorithm widely used in engineering.
*e theoretical basis of the algorithm is derived from
Taylor’s formula and the slope approximation to express the
differential. It predicts the slope of several points several
times in the integral interval, then carries out weighted
averaging, which is used as the basis for the next point, and
thus constructs a numerical integration calculation method
with higher accuracy [90]. If the slopes of four points are
calculated beforehand, it is the fourth-order Runge-Kutta
(RK-4) algorithm. For differential equation _y � f(x, y), the
theoretical formula of RK-4 is as follows:

K1 � f xk, yk( 􏼁,

K2 � f xk +
Δh
2

, yk +
Δh
2

K1􏼠 􏼡,

K3 � f xk +
Δh
2

, yk +
Δh
2

K2􏼠 􏼡,

K4 � f xk + Δh, yk + ΔhK3( 􏼁,

yk+1 � yk +
Δh
6

(K1 + 2K2 + 2K3 + K4),

(15)

where K1, K2, K3, K4 denote the first-order reciprocal of the
output variable, that is, the differential at a point, expressed
as the slope.*e iteration step isΔh � 0.001. Figure 14 shows
the block diagram of Chua’s oscillator using RK-4 algorithm.
x0, y0, z0, and w0 signals are the initial conditions (IC) for
the system to start running. In the design, they are defined as
32-bit symbolic floating-point numbers, which are deter-
mined internally by the user. *e purpose of the multiplexer
unit (MUX) is to select the external initial conditions at the

Z1

Z2

Z3Zin

vi
ii

Y
X

CCII– Z

X
YCCII+Z

Z1Z2
Z3

Zin =

Figure 10: Lossless grounded active inductor circuit implemented
by CCII.
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Figure 9: Five-segment piecewise nonlinear resistance implemented by two CCIIs: (a) circuit structure and (b) V–I characteristic simulated
by Multisim.
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start or the internal values provided by the RK4-based os-
cillator unit in the successive steps. In the continuous steps
after the start of operation, the xk+1, yk+1, zk+1, and wk+1
signals generated by the oscillator unit are used as feedback
inputs of the multiplexing unit, that is, the input signals of
the next step, such as xk, yk, zk, and wk. *e oscillator unit
consists of six modules: K1, K2, K3, K4, ys, and filter, where

K1, K2, K3, K4 modules are used to calculate the values of
K1, K2, K3, K4 and ys module is used to calculate the value
of xk+1, yk+1, zk+1, wk+1. When ys does not produce the final
required calculation results, the filter unit will prevent the
intermediate value to reach the output.

4.2. FPGA Implementation. *e top level block diagram of
the modified fourth-order Chua’s oscillator based on FPGA
designed by RK-4 algorithm is shown in Figure 15. As can be
seen from Figure 15, the design system has three inputs and
five outputs. *e input signal consists of a 1-bit clock signal
(Clk), a 1-bit Reset, and a 32-bitΔh.Clk and Reset are used to
ensure synchronization between the system and other
modules. 32-bit Δh represents the step size, which is used to
determine the sensitivity of the algorithm. *e output signal
consists of four 32-bit output signals X out, Y out, Z out,
W out and 1-bit flag signal XYZW ready. When the cal-
culation generates X out, Y out, Z out, W out, the flag sig-
nal XYZW ready is output.

*e second level block diagram is composed of modified
Chua’s chaotic oscillator, floating-point to fixed-point unit,
and digital-to-analog converter, as shown in Figure 16. *e
oscillator unit has three input signals, 1-bit Run, 1-bit ,Clk
and 32-bit Δh, respectively. *e 1-bit XYZW ready data
signal provides the clock signal for the DAC unit. At the
output of chaotic oscillator based on Rk-4, there are four
floating-point standard 32-bit output signals (X out, Y out,
Z out, W out). *ese signals are equivalent to the x, y, z,
and w variables of the continuous-time chaotic system (3).
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Figure 11: Inductorless modified Chua’s chaotic circuit realized by CCII.

Table 2: Values of components used in the modified Chua’s chaotic
circuit.

Passive component Value
R0 60Ω
R1 220Ω
R2 220 kΩ
R3 220Ω
R4 2.2 kΩ
R5 22 kΩ
R6 220 kΩ
R7 22 kΩ
R8 3.3kΩ
R9 1 kΩ
R10 220 kΩ
R11 1 kΩ
R12 220 kΩ
R13 220 kΩ
R Variable
C1 10 nF
C2 100 nF
C3 2 μF
C4 17.64 nF
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(a) (b)

(c) (d)

Figure 12: Multisim simulation of double-scroll phase portraits (R � 1680Ω) of the inductorless modified Chua’s chaotic circuit: (a) in x–y
plane, (b) in x–z plane, (c) in x–w plane, and (d) in y–z plane.

(a) (b) (c)

(d) (e) (f )

Figure 13: Multisim simulation of (a) single band chaotic attractor (R � 1950Ω), (b) period-4 limit cycle (R � 1980Ω), (c) period-2 limit
cycle (R � 1990Ω), (d) period-1 limit cycle (R � 2000Ω), (e) steady state (R � 2040Ω), and (f) limit cycle (R � 1100Ω) in x–y plane.
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*e input of the floating-point to fixed-point unit is four 32-
bit output signals of the oscillator unit, which converts the
output of the former unit into 14-bit unsigned fixed-point.
*e DACmodule converts the digital signal generated by the
chaotic system into analog signal and outputs it to the os-
cilloscope. In the actual experiment, we choose

X out, Y out, and Z out to output the dual-channel DAC
module and then the oscilloscope.

4.3. FPGA Test Results. *e modified multistable fourth-
order Chua’s chaotic system based on RK-4 is synthesized on

K4

K1

K2

K3

Multiplexer
unit

IC

ys FilterMUXInputs Outputs

RK4-based
modified 

fourth-order 
Chua’s 

oscillator unit

xk+1, yk+1, zk+1, wk+1

Figure 14: *e block diagram of the FPGA-based multistable modified Chua’s chaotic oscillator unit.
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Figure 15: *e top level block diagram of the FPGA-based multistable modified Chua’s chaotic system.
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Figure 16: *e second level block diagram of the FPGA-based multistable modified Chua’s chaotic system.
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Xilinx ZYNQ-XC7Z020 chip. *e use of the chip source
and the clock speed of the system are calculated. Using
Vivado 2018.3 design tool, the data processing duration of
the modified fourth-order Chua’s chaotic system designed
in this paper is determined. *e X Out, Y Out, Z Out, and
W Out signals are equivalent to the x, y, z, and w signals in
the system. Although the 32-bit floating-point standard is
adopted in the system design, which makes it easier to
detect the time series values of these signals, the Vivado
simulation results are displayed in hexadecimal digital
format. *e results of the Xilinx ISim simulator for the
modified fourth-order Chua’s chaotic system are shown in
Figure 17 when Δh � 0.001. *e system runs in pipeline
mode and produces x, y, z, and w signals after every 320
clock cycles. Figure 18 shows the power utilized by the
system. Table 3 shows the resources utilized by the chaotic
oscillator implemented on FPGA including the clock fre-
quency. *e minimum working period of the modified
fourth-order Chua’s chaotic system signal generator based

on FPGA is 5.55 ns. Finally, the X Out, Y Out, and Z Out
signals obtained from the RK4-based FPGA design of the
system are recorded in a file in the form of 32-bit floating-
point hexadecimal number during the test step, which is
given in Table 4. *e phase portraits of the output signals
are obtained using the data set generated in decimal format
by the modified fourth-order Chua’s chaotic system
based on FPGA given in Table 4. Two pictures of the
double-scroll chaotic attractors and single band chaotic
attractor and period limit cycles obtained from the hard-
ware implementation of the RK4-based modified fourth-
order Chua’s chaotic system on FPGA are shown in Fig-
ures 19 and 20, respectively. *e results show that the phase
portraits obtained by the model based on MATLAB and
FPGA have good consistency. Although the implementa-
tion of FPGA has a reputation of being difficult to design,
with the help of system methodology, the system can re-
quire less work than the traditional software-based
implementation [99, 100].

Figure 17: Xilinx ISim simulation results of the modified multistable fourth-order Chua’s chaotic system based on FPGA.

39%

61%

27%

36%

37%

Clock:

Signals:

Logic:

I/O:

Dynamic:

0.061W

0.045W

0.063W

<0.001W

0.168W

100%

Static:

PL static:

0.108W

0.108W

(61%)

(27%)

(36%)

(37%)

(0%)

(100%)

(39%)

Figure 18: Power utilized by the system based on FPGA.

Table 3: *e Xilinx ZYNQ-XC7Z020 chip statistics of FPGA-based multistable modified fourth-order Chua’s chaotic system.

FPGA chip Slice register number LUTs number Bonded IOBs number Max. clock frequency (MHz)
ZYNQ-XC7Z020 21,711 16,430 34 180.180
Utilization (%) 20.01 30.88 27.20 —
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Table 4: *e conversion result from 32-bit floating-point number output by FPGA to decimal number.

FPGA output signals in 32-bit floating-point
number with hexadecimal format Decimal number values

X Out Y Out Z Out x(t) y(t) z(t)

3ea6c5fa 3d8e688e beb09da2 0.325729181065535 0.0695353589404750 −0.344952653576506
3eb5e9f5 3d8b58d6 beba7076 0.355300589372080 0.0680405320103716 −0.364139270662248
3ea6c5fa 3d8e688e beb09da2 0.325729181065535 0.0695353589404750 −0.344952653576506
3f80921f 3db1af46 bf22ec49 1.00445926841886 0.0867600901838271 −0.636417953148042
3f818177 3db2d8e2 bf239408 1.01176345370630 0.0873277341857656 −0.638977523652504
400097f8 3e6cb53e bfc2f4b9 2.00927537971617 0.231160129151098 −1.52309338070114
4002b408 3e70defb bfca54f4 2.04223825024841 0.235225603385658 −1.58071756451930
4004bed6 3e748682 bfd1cf6d 2.07414771146939 0.238794362382855 −1.63914268012843
404d076a 3efe07f0 c0686855 3.20357746761604 0.496154299792244 −3.63136802769324
404de8cc 3ef5d30f c06fb384 3.21733377662411 0.480125878954796 −3.74533166924290
404e9294 3eecea3c c076ae83 3.22769634415875 0.462724565296702 −3.85440145110143
bf806354 bd80f4ae 400d650e −1.00303124071647 −0.0629666870295447 2.20929280483211

Figure 19: Implementation platform and exemplification of the double-scroll chaotic attractors generated by the FPGA implementation of
the multistable modified fourth-order Chua’s chaotic system.

Figure 20: Implementation platform and exemplification of the single band chaotic attractor and period limit cycles generated by the FPGA
implementation of the multistable modified fourth-order Chua’s chaotic system.
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5. Conclusion

A multistable modified fourth-order autonomous Chua’s
chaotic system is first investigated. *en the modified
implementation of fourth-order autonomous Chua’s chaotic
circuit with CCII based active elements and synthetic in-
ductor is reported. Synthetic inductor instead of the in-
ductor coil makes the circuit more suitable for the
fabrication of integrated circuits, which can be used for the
study of coupled dynamics and spatiotemporal chaos. *e
modified Chua’s circuit exhibits abundant dynamic behavior
of period doubling bifurcation sequence. Finally, the design
of multistable modified fourth-order autonomous Chua’s
chaotic system based on discrete-time FPGA is implemented
on Xilinx Virtex-6 (ZYNQ-XC7Z020) chip using RK-4 al-
gorithm.*e maximum operating frequency of the designed
chaotic system reaches 180.180MHz. As can be observed
from the results, the chaotic signal generator based on FPGA
proposed in this paper can be used as a good entropy source
in the applications of secure communication, cryptosystem,
and random number generator.
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-is paper constructs a supply chain consisting of a manufacturer and a retailer. Considering channel integration and service
cooperation, two dynamic Stackelberg gamemodels are established: one without unit profit allocation (M) and the other one with
unit profit allocation (Mε). In two dynamic models, we analyze the influence of relevant parameters on the stability and
complexity of the dynamic system and system profit by nonlinear system theory and numerical simulation.We find that the higher
adjustment parameters can cause the system to lose stability, showing double period bifurcation or wave-shape chaos. -e stable
region becomes larger with increase in service value and value of unit profit sharing. Besides, when the system is in chaotic state,
we find that the profit of the system will fluctuate or even decline sharply; however, keeping the parameters in a certain range is
helpful in maintaining the system stability and is conducive to decision-makers to obtain steady profits. In order to control the
chaos phenomenon, the state feedback method is employed to control the chaotic system well. -is study provides some valuable
significance to supply chain managers in channel integration and service cooperation.

1. Introduction

In recent years, the development of e-commerce has brought
a strong impact on offline stores [1]. Customer volume
migrates from offline to online on a large scale. In 2018,
Tmall platform “double eleven” shopping carnival achieved a
total turnover of 12135 billion yuan.-is phenomenon is not
conducive to the development of offline stores. However,
online shopping also brings a series of problems. For ex-
ample, when buying clothes online, we cannot see the real
thing, the clothes we buy often cannot meet our needs, and
even the phenomenon of returns occurs. It can be seen that
online shopping sometimes cannot bring consumers a
perfect shopping experience. Under this background, the
retail mode of online order delivery and offline store pur-
chase emerges as the times require, namely, channel inte-
gration. At present, JD, Tmall, and Suning have arranged
offline retailer outlets to achieve effective integration of
online and offline channels. In addition, the international
fast fashion brand: UNIQLO and Zara also provides a perfect

shopping experience for customers through channel inte-
gration. Relevant empirical research studies have proved that
this mode not only meets the consumer’s shopping needs
but also increases the flow of customers in offline stores
[2, 3].

Over the past few years, many scholars have conducted
in-depth research on dual-channel and multichannel supply
chains [4–6] but rarely pay attention to online and offline
integration. Because of the conflict between traditional
channel and online channel and the change of consumer
demand, channel integration as an important model of
omnichannel has gained significant interest among aca-
demics and practitioners [3, 7]. -rough a questionnaire
survey, Lin et al. [8] revealed that the drivers of innovation in
channel integration are positively correlated with supply
performance. -e development of channel integration is
inseparable from the support of information technology.
Based on survey data from 125 multichannel retailers in
Singapore, Oh et al. [9] found that retail channel integration
enables enterprises to not only provide current products
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efficiently but also be innovative in creating future products
through IT technology. Piotrowicz and Cuthbertson [10]
discussed the influence of information technology on the
development of channel integration from the technical level.
On inventory research of channel integration, considering
the randomness of demand, the inventory backlog cost, and
the number of BOPS. Chen et al. [11] constructed and
analyzed a stochastic equilibriummodel. In an omnichannel
supply chain, Du et al. [12] studied the impact of consumer
disappointment and inventory on retailers’ optimal pricing.
Based on Gao and Su [13], Kusuda [14] considered the
retailer’s replenishment of inventory in an omnichannel
strategy and found two types of equilibrium. Besides, in the
omnichannel retailing, the characteristics of omnichannel
retailers play an important role in consumers’ response to
cross-channel integration [15]. Jin et al. [16] analyzed the
influence of orders from integration channels and customer
arrival rate on the scale of offline service area.

-e above research on channel integration focuses on the
applicable conditions of information technology, channel
inventory management, and adaptation scenario of channel
integration and enriched the research of channel integration.
In the channel operation, we find that consumers are in-
creasingly demanding retail services during the shopping
process. -e relevant literature confirms that service factors
have affected customer choice and shopping experience [17].

In the past few years, most of the research focuses on the
impact of service factors on dual-channel and multichannel
supply chains [18, 19]. In terms of channel coordination, re-
tailers provide services to consumers in a dual-channel supply
chain, which can reduce channel conflicts and improve the
relationshipwith themanufacturer [20]. Channel competition is
the inevitable result when amanufacturer adds a direct channel.
Li and Li [21] discovered that retailers’ value-added services help
to alleviate this phenomenon, but when the retailer has fair
concerns, the entire supply chain will conflict with fixed
wholesale price. In supply chain decision making, Jena and
Sarmah [22] constructed four price and service competition
models consisting of two manufacturers and one retailer and
analyzed the equilibrium decision and profit of each model.
Considering service value, Zhang and Wang [23] studied the
dynamic pricing strategy of dual-channel supply chain under
centralized and decentralized conditions. It was found that, with
increase in service value, the system stability decreases first and
then increases. Considering price, service, and discount con-
tracts, Sadjadi et al. [24] built a Stackelberg game model to
analyze the equilibrium solution and found that service and
price discounts can improve the performance of the supply
chain. In addition, scholars have explored service competition
and service contract issues [25]. When the manufacturer’s
warranty service competes with the retailer’s value-added ser-
vice, Dan et al. [26] found that when themanufacturer improves
the level of warranty service, the competition of value-added
service would be weakened. Considering the service factor, Li
et al. [27] found that the stability of the low-carbon supply chain
is related to sales service and player’s behavior. Besides, Li et al.
[28] established a dual-channel value chain and found that the
channel service value and green innovation input would reduce
the stability of supply chain.

-e above research focuses on the research of the impact of
services on the dual-channel supply chain. Few literature
studies have been carried out on supply chain channel inte-
gration and service cooperation issues. In actual operation, the
online and offline integration requires not only the support of
information technology but also the close cooperation be-
tween members of the supply chain. In order to ensure that
consumers get the corresponding services when picking up
goods offline, manufacturers and retailers are required to
cooperate with the service. In channel integration, how do
manufacturer and retailer engage in service cooperation? How
is the profit of the channel integration distributed?

It is worth noting that some scholars have recently
employed nonlinear dynamics theory and numerical sim-
ulation to study supply chain problems and have obtained
very good results [29, 30]. Ma and Xie [31] analyzed the
dynamic behavior of dynamic game models under two
scenarios and found that the stability of system depends on
the channel type. Huang et al. [32] showed the smaller risk
aversion attitude and fair concern coefficient will delay the
occurrence of chaos in the system. In a closed-loop supply
chain, Li et al. [33] analyzed the complexity entropy of the
price game model with the recovery rate and service. Ma and
Xie [34] focused on bundling goods and compared the
dynamic price strategies under two different mechanisms.
-is paper also studies dynamic game models, which is a
new model, with relatively little literature on integration
channel service cooperation. Based on the nonlinear dy-
namic theory, this paper mainly focuses on the following
issues: What impact does the different service cooperation
model have on manufacturers and retailers? What impact
does service value and unit profit sharing have on the dy-
namic behavior of the system?

Based on abovementioned factors, considering the
channel integration and service factors, the main contri-
butions of this paper are as follows:

(1) Based on service cooperation, the paper proposes
two distribution modes of profit from channel in-
tegration, discusses the stability and complexity of
the two modes, and provides a reference for decision
makers of the integration channel

(2) -e paper reveals the impact of service value and
value of unit profit sharing on the dynamic evolution
of the gamemodel and the profits of decision-makers

(3) -e paper applies nonlinear dynamic theory to the
study of channel fusion and enriches the research in
this field

-e rest of this paper is organized as follows. In Section
2, we present the model description and assumptions. In
Section 3, we set up a decentralized model without unit
profit sharing (M) and give complexity analysis by nu-
merical simulation. Section 4 sets up a decentralized model
with unit profit sharing (Mε) and performs the same dy-
namic analysis as in Section 3. In Section 5, we control the
chaotic behavior of the system by employing the state
feedback control method. Section 6 concludes this paper and
proposes management insights.
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2. Problem Description and
Model Assumptions

2.1. Model Description. In this paper, we consider a supply
chain consisting of one manufacturer and one retailer as
shown in Figure 1, where three sales channels are described.
On the one hand, the manufacturer sells the product to
customers at p1 by online channel and also sells them to the
retailer at the wholesale price w. -en, the retailer, by tra-
ditional channel, resells productions to customers at p2. On
the other hand, in order to increase sales and improve
customer experience, the integrated channel is established
by the manufacturer and retailer where customers can
browse products and pay order at p1 online and pick up
products at the retailer offline. Meanwhile, the retailer
provides customer from traditional channel and integrated
channel with service value s. In terms of profit from the
integrated channel, there are two ways of distribution: one is
the retailer obtains all the profits without unit profit sharing
with the manufacturer and the other is the manufacturer
obtains all the profit and shares unit profit ε with the retailer.
Based on this, this paper builds two game models and carries
out the complexity analysis of models.

2.2. Model Assumptions. Based on the real situation, the
following hypothesizes are proposed in this paper:

(1) Online channel and integrated channel adopt the
same price strategy, and consumers have channel
preferences.

(2) -ere is a Stackelberg game with the manufacturer as
the leader deciding on w and p1 and retailer as the
follower deciding on p2.

(3) -e service cost function of traditional channel can be
described as Cs � ηs2, where η � η′/2. Due to the
difference in service cost between the traditional
channel and integrated channel, the service cost of the
integrated channel can be described as φCs, where
φ ∈ (0, 1) is the service cost consistency coefficient.

-e related variables and parameters are reported in
Table 1.

3. Model without Unit Profit Sharing (M)

3.1. StaticModel. In this static model, the retailer obtains all
the profits of the integration channel without unit profit
sharing with the manufacturer. -e manufacturer is the
leader of the market, and the retailer is the follower. -e
manufacturer firstly decides w andp1. Correspondingly, the
retailer makes decisions p2 based on w andp1.

Considering the service value and integration channel,
based on the previous studies [26, 35], the demand functions
for the three channels could be given as follows:

Online channel demand is

Do � θ1a − ρ1p1 + c1p2. (1)

Integration channel demand is

DB � θ2a − mB p1 − s( 􏼁 + c1p2. (2)

Traditional channel demand is

DT � θ3a − mT p2 − s( 􏼁 + c1p1, (3)

where θi, i � 1, 2, 3, meet 􏽐
3
i�0 θi � 1. mB > n1c1, mT > n2c1

and ρ1 > n3c1(ni > 2, i � 1, 2, 3) represent that the price
elasticity coefficients are much larger than the cross price
elasticity coefficients.

-erefore, the profit-maximizing functions of players
can be expressed as follows:

max
p1 ,w

􏽙
m

� (w − c) θ2 + θ3( 􏼁a − mB p1 − s( 􏼁􏼂

− mT p2 − s( 􏼁 + c1 p1 + p2( 􏼁􏼃

+ p1 − c( 􏼁 θ1a − ρ1p1 + c1p2( 􏼁

s.t. w + φηs
2 <p1, c<w,

(4)

max
p2

􏽙
r

� p2 − w − ηs
2

􏼐 􏼑 θ3a − mT p2 − s( 􏼁 + c1p1􏼂 􏼃

+ p1 − w − φηs
2

􏼐 􏼑 θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

s.t. w + ηs
2 <p2.

(5)

Proposition 1. If the manufacturer and retailer pursue
the profit maximizing in the supply chain with the
integrated channel, their optimal decisions can be obtained as
follows:

w∗ �
A5A4 − A2A6

B2
2 − B3B5

,

p∗1 �
A3A6 − A2A4

A2
2 − A3A5

,

p∗2 �
c1 B3B6 − B2B4( 􏼁

mT B2
2 − B3B5( 􏼁

+
mT − c1( 􏼁 B5B4 − B2B6( 􏼁

2mT B2
2 − B3B5( 􏼁

+ B1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where
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A1 �
θ3a + mTs + mTηs2 − c1φηs2

2mT

,

A2 � − mB +
c1

2
+

c2
1

2mT

,

A3 � − mT + 2c1 −
c2
1

mT

,

A4 � mBs + mTs − B1 mT − c1( 􏼁 +
c

2
mT − 3c1 +

2c2
1

mT

􏼠 􏼡 + aθ2 + aθ3,

A5 �
2c2

1 − 2mTρ1
mT

,

A6 �
A1mTc1 + amTθ1 + c mBmT − 2c21 + mTρ1( 􏼁

mT

.

(7)

Table 1: Key notations.

Variables
DO Online channel demand
DB Integrated channel demand
DT Tradition channel demand
a -e potential market scale
θ1 -e customer’s loyalty to the online channel
θ2 -e customer’s loyalty to the integrated channel
θ3 -e customer’s loyalty to the tradition channel
ρ1 -e elasticity coefficient of the online channel demand for price
mB -e elasticity coefficient of the integrated channel demand for price
mT -e elasticity coefficient of the tradition channel demand for price
c1 Cross price elasticity coefficient
w -e wholesale price
p1 Retail price of products in the online channel and integrated channel
p2 Retail price of products in the tradition channel
s Service value
ε Value of unit profit sharing
φ -e service cost consistency coefficient
η -e service cost parameter of the traditional channel
α1 -e limited rational adjustment parameter in model M

α2 -e adaptive adjustment parameter in model M

β1 -e limited rational adjustment parameter in model Mε

β2 -e adaptive adjustment parameter in model Mε

Manufacturer CustomersIntegrated
channel

Online
channel

Traditional
channel

Retailer
w

p1

p1

p2

s

s

Figure 1: -e supply model with the integrated channel.
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Proof. See Appendix A. Integrating equations (A.5) and (A.6) with equations (4)
and (5), their estimated profit can be written as the following
equation:

􏽑
m

� w∗ − c( ) θ2 + θ3( 􏼁a − mB p∗1 − s( 􏼁 − mT p∗2 − s( 􏼁 + c1 p∗1 + p∗2( 􏼁􏼂 􏼃 + p∗1 − c( 􏼁 θ1a − ρ1p∗1 + c1p
∗
2( 􏼁,

􏽑
r

� p∗1 − w∗ − φηs2( 􏼁 θ2a − mB p∗1 − s( 􏼁 + c1p
∗
2􏼂 􏼃 + p∗2 − w∗ − ηs2( 􏼁 θ3a − mT p∗2 − s( 􏼁 + c1p

∗
1􏼂 􏼃.

⎧⎪⎪⎨

⎪⎪⎩
(8)

□
3.2.DynamicModel. -e price game between competitors is
a dynamic process. -e changing market environment and
product update will lead decision-makers to make new
decisions for the next cycle, and each decision is not simply a
repetition.

In reality, market participants are usually constrained by
capital and other factors and cannot grasp the complete
market information; therefore, their decisions are based on
the bounded rationality and adaptive expectations in the
current period. So, we build a dynamic price game model in
which players employ different price adjustment strategies.
-e manufacturer adopts the limit rational expectation to

make the wholesale price decision:
wt+1 � wt + α1wt(z􏽑m(wt, p1,t)/zwt). If the marginal profit
of the last period is negative, the manufacturer will reduce
the price of the next period by adjusting α1, otherwise,
increase it. -e manufacturer makes retail price decision
based on adaptive expectations: p1,t+1 � α2p1,t + (1 − α2)p∗1 .
-at is to say, the manufacturer adjusts the retail price of the
next period on the basis of our period and the best reply
function.

-erefore, the discrete dynamic system can be modeled
as

wt+1 � wt + α1wt − mB +
c1

2
+

c2
1

2mT

􏼠 􏼡p1,t + − mT + 2c1 −
c2
1

mT

􏼠 􏼡wt + A4􏼢 􏼣,

p1,t+1 � α2p1,t + 1 − α2( 􏼁
A3A6 − A2A4

A2
2 − A3A5

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where α1(α1 > 0) is the limited rational adjustment pa-
rameter of the manufacturer and α2(0< α2 < 1) is the
adaptive adjustment parameter.

It is easy to get the decision of retailer with wt+1p1,t+1:

p2,t+1 �
c1

mT

p1,t+1 +
mT − c1

2mT

wt+1

+
θ3a + mTs + mTηs2 − c1φηs2

2mT

.

(10)

3.2.1. Equilibrium Points and Local Stability. -is part
discusses the stability of system (9) at equilibrium points. By
setting wt+1 � wt and p1,t+1 � p1,t, there are two equilibrium
points in the discrete system of equation (9):

e1 � 0,
A3A6 − A2A4

A2
2 − A3A5

􏼠 􏼡,

e2 �
A5A4 − A2A6

A2
2 − A3A5

,
A3A6 − A2A4

A2
2 − A3A5

􏼠 􏼡.

(11)

Correspondingly, the retailer’s decisions are expressed as

p
e1
2 �

c1 A3A6 − A2A4( 􏼁

mT A2
2 − A3A5( 􏼁

+ A1,

p
e2
2 �

c1 A3A6 − A2A4( 􏼁

mT A2
2 − A3A5( 􏼁

+
A4 A2

2 − A3A5( 􏼁 mT − c1( 􏼁

2mTA2A3 A2A4 − A3A6( 􏼁
+ A1.

(12)

In a discrete system, the stability of equilibrium points
will be determined by the eigenvalues of Jacobian matrix at
the corresponding equilibrium points. -e Jacobian matrix
of system (9) is defined as follows:

J ei( 􏼁 �
1 + α1 A2p1 + 2A3w + A4( 􏼁 A2α1w

0 α2
􏼢 􏼣, i � 1, 2.

(13)

Supposing that f(λ) � λ2 − ξ1λ + ξ2 is the characteristic
polynomial of J(ei), (i � 1, 2); besides, Δ � ξ21 − 4ξ2 is its
discriminant with ξ1 � tr(j) � 1 + α1(A2p1 + 2A3w + A4) +

α2 and ξ2 � det(j) � α2 + α1α2(A2p1 + 2A3w + A4).
When λ � 1, the characteristic polynomial of Jacobian

matrix is described as follows: F(1) � 1 − tr
(J) + det(J) � α1(A2p1 + 2A3w + A4)(α2 − 1).

Complexity 5



Lemma 1 (see [36]). Defining the two values of f(λ) � 0 as
λ1 and λ2, the eigenvalues of J(ei) can be judged as follows by
Lemma 1. 9en,

(f1) |λ1|< 1 and |λ2|< 1 if and only if f(− 1)> 0 and
det(J)< 1
(f2) |λ1|> 1 and |λ2|> 1 if and only if f(− 1)> 0 and
det(J)< 1
(f3) |λ1|< 1 and |λ2|> 1 or |λ1|> 1 and |λ2|< 1 if and
only if f(− 1)< 0
(f4) λ1 � − 1 and |λ2|≠ 1 if and only if f(− 1) � 0 and
det(J)≠ 0, 2
(f5) both roots are complex and |λ1| � |λ2| � 1 if and
only if Δ< 0 and det(J) � 1

If all eigenvalues are smaller than one in modulus, this
equilibrium point is asymptotically stable. Otherwise, bifur-
cation or chaos may occur in system (9).

Proposition 2. Obviously, e1 is an unstable equilibrium
point, while e2 is the Stackelberg equilibrium point.

Proof. See Appendix B.
According to Lemma 1, the jury stability criterion of

system (9) at e2 can be expressed as follows:
g1( 􏼁 � 1 + tr J e2( 􏼁( 􏼁 + Det J e2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − tr J e2( 􏼁( 􏼁 + det J e2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − det J e2( 􏼁( 􏼁> 0,

⎧⎪⎪⎨

⎪⎪⎩
(14)

where

tr J e2( 􏼁( 􏼁 � 1 + α1 A2
A3A6 − A2A4

A2
2 − A3A5

+
2A4 A2

2 − A3A5( 􏼁

A2 A2A4 − A3A6( 􏼁
+ A4􏼠 􏼡 + α2,

det J e2( 􏼁( 􏼁 � α2 + α2α1 A2
A3A6 − A2A4

A2
2 − A3A5

+
2A4 A2

2 − A3A5( 􏼁

A2 A2A4 − A3A6( 􏼁
+ A4􏼠 􏼡.

(15)

By analyzing the above judgment conditions of equation
(14), 0< α1 < (2/K) and 0< α2 < 1 can be obtained, where K �

A2(A3A6 − A2A4 / A2
2 − A3A5) + 2A4(A2

2 − A3A5)/A2(A2
A4 − A3A6) + A4. It can be known that adjustment parameters
(α1, α2) are not related to the optimal decision e2(w∗, p∗1 ) but
are themain factors that affect the stability of e2. Service value s
affects not only α1 and α2 but also e2(w∗, p∗1 ) and then affects
the stability of system (9). When the decision parameters are
not in this range ( 0< α1 < 2/K , 0< α2 < 1), system (9) will be
unstable at e2(w∗, p∗1 ) and show bifurcation or chaos. When
the decision-maker chooses the adjustment coefficients
(α1, α2) in the stable region ( 0< α1 < (2/K) , 0< α2 < 1), the
equilibrium point e2(w∗, p∗1 ) is stable. At this point, manu-
facturers and retailers in the supply chain can achieve max-
imum profits. From the point of view of management,
managers should not only pay attention to their price ad-
justment parameters but focus on service value. Based on
eigenvalues of the Jacobianmatrix, the stability and bifurcation
of system (9) will be studied in detail in the next section by
numerical simulation. □

3.3. Complexity Dynamics Analysis and Numerical
Simulation. Due to the existence of a large number of pa-
rameters, the complexity dynamics of system (9) will be
studied intuitively by numerical simulation. Numerical
values are assigned to the following letters: a � 180,θ1 � 0.3,
θ2 � 0.3, θ3 � 0.4, ρ1 � 2.6, mB � 3, mT � 6, c1 � 1, v � 2,
η � 5, φ � 0.2, and c � 4. -us, the Stackelberg equilibrium
point can be expressed as e2 � (7.342, 15.2).

3.3.1. Complexity Dynamics with respect to αi. In this sec-
tion, the bifurcation diagram is a powerful tool to analyze the

bifurcation phenomenon of system (9). Based on stability
conditions equation (13), Figure 2 shows the 2D parameter
bifurcation in the (α1, α2) plane, which shows the paths of
system (9) to chaos. Different periods are represented by
different colors: stable (green), period-2 (blue), period-3
(yellow), period-4 (Claret), period-5 (Cyan), period-6 (red),
chaos (gray), and divergence (white). -ere are two ways to
lead to chaos in system (9). -e system enters chaos through
periodic doubling bifurcation with α1; when 0< α2 < 1, the
system goes directly into chaos with α2. When 0< α1 < 0.065,
we can know that flip bifurcation will happen when α1
increases. In short, it can be judged that the stability of the
system is not independent of α1 and α2.

Figure 3 shows the bifurcation of prices (w, p1, p2) and
the largest Lyapunov exponent (LLE) as α1 increases with
α2 � 0.5. In Figure 3(a), when α1 < 0.065, w, p1, and p2 do
not fluctuate and system (9) is in a stable state. However,
α1 > 0.065, w andp2 show first the flip bifurcation. Due to
limit, rational expectation has no effect on adaptive price
expectation, and p1 does not show fluctuation.-e LLE with
respect to α1 shown in Figure 3(b) is a powerful tool to
identify the state of system (9). When α1 � 0.065, the LLE
reaches the first zero, and w andp2 show the bifurcation
phenomenon. After it, period doubling bifurcation con-
tinues to occur, and the system goes into chaos when LLE is
more than zero.

When α1 is set to 0.04, Figure 4 gives the bifurcation
diagram of prices (w, p1, p2) and LLE of system (9) for α2
varying from 0 to 1.1. We can see that as long as the pa-
rameter is in the stability region (α2 < 1), the game will be
stable at w � 7.342, p1 � 15.2, andp2 � 22.26. In this situ-
ation, manufacturers and retailers can obtain Stackelberg
game’s optimal profit. When α2 > 1, the system directly goes

6 Complexity
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into the chaotic state without period doubling bifurcation; at
this moment, the LLE is zero in Figure 4(b). Obviously, the
influence of α2 on the system dynamic behavior is different
from that of α1 on the system dynamic behavior.

Figure 5 is the 3D diagram for the chaos of system (9)
corresponding to Figure 3(a). Red point represents the
attractor when α1 � 0.04 and α2 � 0.5, which indicates that
the trajectory of the system is fixed. In Figure 5(b), the blue
curve is the chaotic attractor of the system, when
α1 � 0.094 and α2 � 0.5, which vividly indicate the com-
plexity and uncertainty of the system in chaotic state. Fig-
ure 6 shows the attractor of system (9) with respect to
α1 � 0.04 and α2 � 1.05. In the chaotic state, w, p1, andp2
are in disorder.

Besides, when α1 � 0.094 and α2 � 0.5 or
α1 � 0.04 and α2 � 1.05, chaotic system (9) also exhibits
strong sensitivity to initial values. Here, fixing
p1 � 14 andp2 � 20, Figure 7(a) shows the sensitivity to
initial value in stable state, when w is changed from 7 to
7.001. We can find that, at the beginning of iterations, there
is a little difference, but after 5 iterations, the difference
gradually reduces to zero. Conversely, in chaos, Figure 7(b)
shows that small difference in initial values can cause a huge
deviation after 10 iterations, which warns decision-makers
to be cautious in choosing initial values when making
decisions.

3.3.2. Complexity Dynamics with respect to s. When making
price decisions, decision-makers should consider the impact
of service value on optimal decision-making, as well as the
impact of service value on the dynamic system. Figure 8
indicates the range of service values. It can be seen that w

decreases with increase in s, but w must be above zero, which
is in line with the actual situation of the market. Besides, p1
must be higher than w. -us, it can be known that
s ∈ (1.66, 2.42).

Based on stability judgment conditions in equation (14),
Figure 9 shows the 3D stable region with respect to s. When
the value of (α1, α2, s) is in this region, system (9) is stable;
otherwise, the system would not be stable. In Figure 9(b),
increase in s improves the range of α1. Figure 10 shows the
stability region composed of (α1, α2) with s fixed different
values. We can see that the stable region is least when s � 2.2
and becomes larger when s � 2.35 and 2.38. It is worth
noting that s has no effect on the region of α2. -e above
analysis shows that the larger the s is, the larger the stable
region of system (9) will be.

Next, the combined effects of s αi on system’s complexity
are discussed. A 2D bifurcation diagram with respect to s

and α1, when α2 � 0.5, is shown in Figure 11(a). Green
represents the stable region consisting of (s, α1). -e range
of α1 increases significantly and then decreases with s in-
creasing. For a given s belongs to (1.66, 2.20), the system will
experience a stable, series of period doubling bifurcations
and fall into chaos with α1 increasing. If s belongs to
(1.66, 2.20), the system will directly overflow. Figure 11(b)
shows the 2D bifurcation diagram with respect to s and
α2when α1 � 0.04. If given s belongs to (1.66, 1.694), the

system goes into the period doubling region and shows
period doubling bifurcation or chaos with α2 varying
in(0, 1). If the given s belongs to (1.694, 2.42) and
α1 ∈ (0, 1), the system is in a stable state.

By comparing Figure 11(a) with Figure 11(b), it is found
that service value s has little effect on α2. Besides, the retailer
should reasonably choose the service value when providing
services to customers; otherwise, the system will be in a
chaotic state, which is not conducive to the retailer to get
maximize profits.

3.3.3. Impact of αi and s on Profits. As the aim of enterprise
in the market is to earn profit, the manufacturer and retailer
have to pay attention to the result that whether they can get
more profits or reduce losses by adjusting α1, α2, and s. In
this section, the influence of α1, α2, and s on profits will be
researched.

-e bifurcation diagram of profits is shown in Figure 12
with α1 varying from 0 to 0.1 and α2 � 0.5. In a stable state
(α1 < 0.065), the manufacturer and retailer can get stable
returns and 􏽑m >􏽑r. If α1 > 0.065, profits show the bi-
furcation and chaos phenomenon with α1 increasing, which
is consistent with Figure 3(a). Figure 13 shows the evolution
diagram of the average profit with α1. It can be known that,
in the periodic doubling bifurcation, the average profit of the
manufacture and retailer decreases and shows a floating
trend in chaotic state.

Figure 14 shows wave-shape chaos diagrams with respect
to α2 when α1 � 0.04. As α2 increases (0< α2 < 1), system (9)
remains stable. Once α2 > 1, system (9) will go into a fluc-
tuant state, which causes a significant decline in profit.

Figure 15 shows the disordered evolution of system (9) as
α1 � 0.094 and α2 � 0.5. It can be found that the profit of
system (9) changes irregularly in chaotic state, which is
difficult for the manufacturer and retailer to predict future
profits. In actual operation, decision-makers should avoid
the appearance of this phenomenon.

Figure 16 shows the bifurcation diagram of 􏽑r and􏽑m

with respect to s as α1 � 0.04 and α2 � 0.5. Obviously, the
change of s has an impact on the dynamic evolution of
system (9) and the profits of the manufacturer and retailer. It
is shown in Figure 16 that when s is small (s< 1.8), system
(9) is in chaotic state. In this scenario, 􏽑r and 􏽑m are
difficult to be measured. Further increase in s will lead to the
appearance of period-4 state (1.8< s< 1.848), period-2 state
(1.848< s< 1.967), and stable state (1.967< s). We can see
that in stable state, increasing s is beneficial to the manu-
facturer and retailer. As s> 2.155, 􏽑r is greater than 􏽑m.
Table 2 shows the change of 􏽑m, 􏽑r, and 􏽑T with respect to
s, where 􏽑T is equivalent to 􏽑m plus 􏽑r. It can be found
that the total profit of supply chain increases with s

increasing.
Next, the combined effect of α1, α2, and s on the profits of

the manufacturer and retailer is to be explored in two
situations.

Situation 1. System (9) falls into chaos with respect to α1
and s.
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Figures 17 and 18 show the variation of 􏽑m and 􏽑r with
α1 and s. We can know that the smaller the service value is,
the more easily the profit of the manufacturer and retailer
fluctuates with α1 increasing. On the contrary, the larger the
service value, the chaotic phenomenon of system (9) will be
delayed with α1 increasing. -e profits of the manufacturer
and retailer will not be easily fluctuated. Meanwhile, the
manufacturer and retailer can obtain stable profits. But too
large α1 will also cause the system to go into chaos.

Situation 2. System (9) falls into chaos with respect to α2
and s.

As shown in Figures 19 and 20, as long as α2 is less than 1,
no matter how α2 and s change, the profits of manufacturer
and retailer will not fluctuate dramatically and the profit of
manufacturer will slightly change with s increasing. How-
ever, the profit of retailer will increase with s increasing.
Once α2 is greater than 1, the profits of manufacturer and
retailer will decline sharply.

With the variation of α1, α2, and s, system (9) probably
loses stability and shows some complex behavior, mean-
while, which will lead to a decline in profits. -erefore, a
management opinion given that manufacturer need to
choose α1 and α2 carefully when making price decisions, in
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α1 � 0.04 and α2 � 0.5. (b) α1 � 0.094 and α2 � 0.5.

10 Complexity



addition retailer need to cooperate with manufacturer to
choose reasonable service value to ensure that the system is
in a stable state and get maximize profits.

4. Model with Unit Profit Sharing (Mε)

4.1. Static Model. In this section, the manufacturer controls
the profit from the integration channel. -e retailer provides

service value s for consumers from the integration channel
and the traditional channel. Correspondingly, the manu-
facturer shares unit profit from the integration channel with
the retailer. -e manufacturer is the leader of the market,
and the retailer is the follower.

-erefore, according to equations (1)–(3), the profit
functions of the manufacturer and retailer can be described
as follows:
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Table 2: -e profits of system (9) for s (α1 � 0.06 and α2 � 0.5).

s � 1.967 s � 2.092 s � 2.155 s � 2.275 s � 2.36
􏽑m 420.4 420.1 424.8 444.5 468.1
􏽑r 291.2 383.4 424.8 496.0 536.7
􏽑T 711.6 803.5 849.6 940.5 1004.8
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Figure 17: 3D profit diagram for the manufacturer with α1 and s, as α2 � 0.5.
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max
p1 ,w

􏽙

ε

m

� p1 − c( 􏼁DO +(w − c)DT + p1 − c − ε( 􏼁DB

� p1 − c( 􏼁 θ1a − ρ1p1 + c1p2( 􏼁

+(w − c) θ3a − mT p2 − s( 􏼁 + c1p1􏼂 􏼃

+ p1 − c − ε( 􏼁 θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

s.t. c + ε<p1, c<w,

(16)

max
p2

􏽙

ε

r

� p2 − w − cv( 􏼁DT + εDB − φcsDB

� p2 − w − ηs
2

􏼐 􏼑 θ3a − mT p2 − s( 􏼁 + c1p1􏼂 􏼃

+ ε θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

− φηs
2 θ2a − mB p1 − s( 􏼁 + c1p2􏼂 􏼃

s.t. w + ηs
2 <p2.

(17)

To solve the Stackelberg equilibrium, we first find the
optimal decision of the retailer. Given w and p1, the retailer
chooses p2 to maximize. Setting (z 􏽑

ε
r /zp2) � 0,

p2 �
c1p1

2mT

+
w

2
+

s + ηs2

2
+
εc1 + aθ3 − φηc1s

2

2mT

. (18)

Submitting equation (18) into (16) and then taking the
first-order partial derivatives of 􏽑

ε
m with respect to p1 and w

can be shown as

z 􏽑
ε
m

zw
�
3
2
p1c1 − mTw +

aθ3 + mTs − ηmTs2 + φηc1s
2 + mTc − 2cc1 − 2c1ε

2

z 􏽑
ε
m

zp1
� − 2mB − 2ρ1 +

3c2
1

mT

􏼠 􏼡p1 +
3c1w

2
−

cc1

2
+

c2
1ε

2mT

+ mB(c + ε + s)

+ aθ1 + aθ2 − cρ1 +
c1 mTs + ηmTs2 + aθ3 − φηc1s

2( 􏼁

mT

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Setting (z 􏽑
ε
m /zw) � 0 and (z 􏽑

ε
m /zp1) � 0, the solu-

tion of manufacturer can be obtained as

w∗ �
4B1B2 − 6B3c1

4B2mT + 9c3
1

,

p∗1 �
− 4B3mT − 6B1c

2
1

4B2mT + 9c31
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)
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where

B1 �
aθ3 + mTs − ηmTs2 + φηc1s

2 + mTc − 2cc1 − 2c1ε
2

,

B2 � − 2mB − 2ρ1 +
3c21
mT

,

B3 � −
cc1

2
+

c2
1ε

2mT

+ mB(c + ε + s) + aθ1 + aθ2 − cρ1

+
c1 mTs + ηmTs2 + aθ3 − φηc1s

2( 􏼁

mT

.

(21)

-e Hessian matrix is

H
ε

�

− mT

3
2
c1

3c1

2
− 2mB − 2ρ1 +

3c21
mT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

As − mT (3/2)c1
(3/2)c1 − 2mB − 2ρ1 + (3c2

1/mT)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 2mBmT + 2ρ1

mT − 3c21 − (9/4)c2
1 > 16c21 − (9/4)c2

1 > 0, the Hessian matrix

(w∗, p∗1 ) is the optimal solution of the manufacturer.
Substituting equation (20) into (18), we obtain

p
∗
2 �

− 4B3mTc1 − 6B1c
3
1

8B2m
2
T + 18mTc3

1
+
4B1B2 − 6B3c1

8B2mT + 18c3
1

+
s + ηs2

2

+
εc1 + aθ3 − φηc1s

2

2mT

.

(23)

Substituting equations (20) and (23) into (16) and (17),
the optimal profit functions of manufacturer and retailer can
be described as follows:

􏽑
ε∗
m � p∗1 − c( 􏼁 θ1a − ρ1p∗1 + c1p

∗
2( 􏼁 + w∗ − c( ) θ3a − mT p∗2 − s( 􏼁 + c1p

∗
1􏼂 􏼃

+ p∗1 − c − ε( 􏼁 θ2a − mB p∗1 − s( 􏼁 + c1p
∗
2􏼂 􏼃,

􏽑
ε∗
r � p∗2 − w∗ − ηs2( 􏼁 θ3a − mT p∗2 − v( 􏼁 + c1p

∗
1􏼂 􏼃

− φηs2 θ2a − mB p∗1 − s( 􏼁 + c1p
∗
2􏼂 􏼃 + ε θ2a − mB p∗1 − s( 􏼁 + c1p

∗
2􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

4.2. Dynamic Model. In the changing market environment,
we discuss that the situation of participants’ dynamic de-
cision and the influence of relevant parameters on the dy-
namic system are more in line with the actual market. Based
on reality, this paper considers that the manufacturer em-
ploys different price adjustment strategies to make decisions
of period t + 1. In dynamic periodic decision, the

manufacturer adopts the bounded rationality expectation to
make the wholesale price decision:
wt+1 � wt[1 + β1(z 􏽑

ε
m(wt, p1,t)/zwt)] and make price de-

cisions of integration channel and direct channel based on
adaptive expectation: p1,t+1 � β2p1,t + (1 − β2)p∗1 .

-erefore, the dynamic process of the price game can be
described as

wt+1 � wt + β1wt

3
2
p1,tc1 − mTwt +

aθ3 + mTs − ηmTs2 + φηc1s
2 + mTc − 2cc1 − 2c1ε

2
􏼠 􏼡,

p1,t+1 � β2p1,t + 1 − β2( 􏼁
− 4B3mT − 6B1c

2
1

4B2mT + 9c31
.

(25)

Here, β1 is the limited rational adjustment parameter
and β2(0< β2 < 1) is the adaptive adjustment parameter.

In system (25), the manufacturer first makes the deci-
sions: wt and p1,t by β1 and β2, and the retailer are followers;
his decision p2,t+1 is directly related to wt+1 and p1,t+1 as

p2,t+1 �
c1

2mT

p1,t+1 +
1
2
wt+1 +

s + ηs2

2
+
εc1 + aθ3 − φηc1s

2

2mT

.

(26)

4.2.1. Equilibrium Points and Local Stability. According to
the theory of the fixed point, setting wt+1 � wt and
p1,t+1 � p1,t, there are two equilibrium points: eε1 and eε2:

e
ε
1 � 0,

− 4mTB3 − 6B1c
2
1

4mTB2 + 9c31
􏼠 􏼡,

e
ε
2 �

4B1B2 − 6B3c1

4B2mT + 9c3
1

,
− 4B3mT − 6B1c

2
1

4B2mT + 9c3
1

􏼠 􏼡.

(27)
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Correspondingly, the retailer’s decisions under two
equilibrium points are, respectively,

p
eε1
2 �

− 2mTB3c1 − 3B1c
3
1

4m2
TB2 + 9mTc3

1
+

s + ηs2

2

+
εc1 + aθ3 − φηc1s

2

2mT

,

p
eε2
2 �

− 2mTB3c1 − 3B1c
3
1

4m2
TB2 + 9mTc3

1
+
2B1B2 − 3B3c1

4B2mT + 9c31
+

s + ηs2

2

+
εc1 + aθ3 − φηc1s

2

2mT

.

(28)

Proposition 3. Obviously, eε1 is the boundary equilibrium
point, while eε2 is the Stackelberg equilibrium point.

Proof. See Appendix C.
According to the analysis of equilibrium points in model

M, we investigate the stability of eε2 by using Jury conditions:
g1( 􏼁 � 1 + Tr J eε2( 􏼁( 􏼁 + Det J eε2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − tr J eε2( 􏼁( 􏼁 + det J eε2( 􏼁( 􏼁> 0,

g2( 􏼁 � 1 − det J eε2( 􏼁( 􏼁> 0,

⎧⎪⎪⎨

⎪⎪⎩
(29)

where

Tr J e
ε
2( 􏼁( 􏼁 � β2 + 1 + β1

− 6B3mTc1 − 9B1c
3
1

4B2mT + 9c3
1

−
8mTB1B2 − 12mTB3c1

4B2mT + 9c31
+ B1􏼠 􏼡,

Det J e
ε
2( 􏼁( 􏼁 � β2 1 + β1

− 6B3mTc1 − 9B1c
3
1

4B2mT + 9c3
1

−
8mTB1B2 − 12mTB3c1

4B2mT + 9c3
1

+ B1􏼠 􏼡􏼢 􏼣.

(30)

By above stability judgment conditions, we can know
0< β1 < ϑ, 0< β2 < 1, where ϑ � 4B2mT + 9c3

1/− 6B3mTc1
− 9B1c

3
1 − 8mTB1B2 + 12mTB3c1 + B1(4B2mT + 9c31). When

the decision parameters are in this range
( 0< β1 < ϑ, 0< β2 < 1), system (25) will be stable at equi-
librium point eε2(w∗, p∗1 ). Due to the existence of a large
number of parameters in system (25), the stability and bi-
furcation of the system will be studied intuitively in the next
part. □

4.3. Complexity Dynamics Analysis and Numerical
Simulation. In this section, the same parameters are chosen
as in Section 3.3 furthermore, given ε � 8. Correspondingly,
the Stackelberg equilibrium is eε2 � (6.1663, 15.9983).

4.3.1. Complexity Dynamics with respect to βi. First of all, we
analyze the paths of system (25) going into chaos. Figure 21
shows the 2D parameter bifurcation in the (β1, β2) plane,
where different colors represent different periods of system
(25): stable (red), period-2 (yellow), period-3 (green), pe-
riod-4 (blue), period-5 (cyan), period-6 (claret), chaos
(gray), and divergence (white). It can be seen that system
(25) can enter into chaos by two ways. In Path 1, we fix the
value of β2(0< β2 < 1). Beginning in stable state, system (25)
goes into chaos through a series of period doubling bifur-
cations. In Path 2, given β1 ∈ (0, 0.054), change the value of
β2. It can be seen that system (25) goes directly into chaos
from the stable period. We can know the paths of system
(25) into chaos is similar to system (9), but a difference is
that system (25) enters the bifurcation period and chaos
earlier than system (9).

Next, we investigate dynamic evolution of system (25).
Figure 22 shows the behavior of dynamic system (25) with

respect to β1 when β2 � 0.5. w, p1, and p2 do not fluctuate in
Figure 22(a) when β1 < 0.054. Compared with Figure 4(a),
w andp2 are less than that in system (9). As β1 � 0.054, the
first flip bifurcation appears; meanwhile, the LLE showed in
Figure 22(b) reaches the first zero. After it, with β1 in-
creasing, system (25) goes through period doubling bifur-
cation and goes into chaos with LLE> 0.

-e dynamic evolution of system (25) with respect to β2
is shown in Figure 23. As long as β2 < 1, system (25) is always
in the stable period. As β2 > 1 and the LLE is zero in
Figure 23(b), system (25) directly goes into wave chaos
without period doubling bifurcation, which is different from
the dynamic evolution of system (25) with β1. Obviously,
wave chaos of system (25) is weaker than that of system (9)
in Figure 4.

Figure 24 shows time series of w, p1, and p2 with t when
β1 � 0.08 and β2 � 0.4. We can see that w and p2 show vi-
olent and disorderly fluctuations once system (25) becomes
unstable. But, because retailer adopts adaptive expectation
when deciding retail price, p1 is not affected by bounded
rationality adjustment parameter β1. Figure 25 indicates the
sensitivity to initial value of system (25) when
β1 � 0.08 and β2 � 0.4. It reveals that, in a chaotic system,
small difference in initial values can cause a huge deviation
after 10 iterations, which is similar to Figure 7(b). In the
unstable system, it is very difficult for decision-maker to
make the next-stage decision. -erefore, managers should
rationally adjust price decisions and choose the initial values
reasonably to keep the system stable.

4.3.2. Influence of s and ε on the Stability of the System.
In the process of cooperation, the manufacturer and retailer
have to determine service value s and value of unit profit
sharing ε because service value and unit profit sharing will
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affect the stability of system (25). According to the actual
operation of the market, the ranges of s and ε are shown in
Figures 26 and 27, respectively. To ensure that p2 is greater
than p1, we can know s> 1.62. Meanwhile, in order to be
meaningful, w must be greater than zero. -us, s can be
chosen in the range (1.62, 3.12). Similarly, only when
􏽑

ε
r >􏽑r, where 􏽑r represents the profits of retailers

without cooperating with the manufacturer, the retailer be
willing to cooperate with the manufacturer. In addition, as
􏽑

ε
r > 􏽑

ε
m, the manufacturer will terminate its cooperation

with the retailer. -erefore, we can know that ε can be
chosen in (2, 15.38).

Figure 28(a) shows the 3D stable region of the param-
eters (β1, β2, s) when ε � 8. If β1, β2, and s are in this 3D
stable region, system (25) is stable. Combining Figure 28(b)
and Table 3, we can find that s changing in (1.62, 3.12) has a

significant effect on the stable region of the system. It can be
concluded that if s is in (1.62, 3.12), the larger the service
value s will be, the larger the stable region of system (25) will
be, and service value s only affects the scope of β1 but does
not affect the scope of β2. -e conclusion is similar to that of
system (9).

Observing Figure 29 and Table 3, we can see that the
effect of ε on the stable region is similar to that of s. But the
sensitivity of ε to the stable region is weaker than that of s.

Figure 30 shows 2D bifurcation diagrams for periodic
cycles. Different colors represent different periods of system
(25), which is the same as Figure 20. In Figure 30(a), the stable
range of α1increases significantly and then decreases with s

increasing. For a given s belongs to (1.62, 2.42), system (25)
will experience the stable period and a series of period
doubling bifurcations and fall into chaos with β1 increasing. If
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Figure 21: 2D parameter bifurcation in the (β1, β2) plane.
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Figure 22: -e behavior of dynamic system (25) with respect to β1 when β2 � 0.5. (a) -e bifurcation diagram. (b) -e LLE diagram.
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s belongs to (2.42, 3.12), the system will directly overflow
with β1 increases. In Figure 30(b), if ε increases in (2, 15.38),
bifurcation and chaos will occur belatedly in system (25).
-us, improving ε is beneficial to the stability of system (25).
-emanufacturer can delay the occurrence of bifurcation and
chaos of system (25) by adjusting ε.

4.3.3. Impact of βi, s, and ε on Profits. Above all, we discuss
the influence of βi, s, and ε on the stability and complexity of
system (25). Due to system (25) stability affecting the profits
of manufacturer and retailer, next, the influence of βi, s, and
ε on profits will be investigated.

Figure 31(a) shows dynamic evolution of􏽑
ε
m and􏽑

ε
r with

β1; we can know that as β1 < 0.054, the manufacturer and
retailer can get stable returns. However, 􏽑ε

m and 􏽑
ε
r show the

bifurcation and chaos phenomenon with β1 increasing. In
Figure 31(b), in the bifurcation period, 􏽑

ε
m decreases while

􏽑
ε
r rises, which is different from system (9). As β1 increases,

the average profit shows a floating trend in chaotic state.
Figure 32 shows wave-shape chaos diagrams with respect

to β2 when β1 � 0.04. As β2 changes in (0, 1), 􏽑m and 􏽑r

remain stable. Once β2 > 1, 􏽑m and 􏽑r will go into a
fluctuant state, which causes a significant decline in profit. It
can be clearly seen that the impact of β1 on profits is sig-
nificantly different from that of β2 on profits. -at is to say,
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Figure 24: Time series of w, p1, and p2 with β1 � 0.08 and β2 � 0.4.

0 0.2 0.4 0.6 0.8 1
–5

0

5

10

15

20

β2

Pr
ic

es

p2

p1

w

(a)

0 0.2 0.4 0.6 0.8 1
–2

–1.5

–1

–0.5

0

0.5

1

X: 1.001
Y: 0

β2

LL
E

(b)

Figure 23: -e behavior of dynamic system (25) with respect to β2 when β1 � 0.04. (a) -e bifurcation diagram. (b) -e LLE diagram.
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different price adjustment expectations have different effects
on the profit of system (25).

Next, the combined effect of β1, s, and ε on the profits of
the manufacturer and retailer is to be explored in two
situations.

Situation 3. System (25) falls into chaos with respect to β1
and s.

Figure 33 shows the variation of 􏽑m and 􏽑r with β1 and
s. It indicates that, with s increasing, 􏽑m increases while 􏽑r

decreases. We can know that smaller s and bigger β1 can
easily lead system (25) into chaotic state, causing 􏽑m and 􏽑r

fluctuation. On the contrary, bigger s and smaller β1 are
helpful to keep system (25) stable and help the manufacturer
and retailer to obtain maximum profits.

Situation 4. System (25) falls into chaos with respect to β1
and ε.

As shown in Figure 34, 􏽑m decreases while 􏽑r increases
with ε increasing. Meanwhile, it can be found that the larger
ε is, the less likely the system (25) goes into bifurcation and
chaos. When β1is less than a certain value, the system is in a
stable state, and the profits of the manufacturer and retailer
are also stable. In order to ensure the stability of system (25)
and obtain stable profits, the manufacturer and retailer need
to cooperate to make price decisions and service decisions.

5. Control of Complexity Dynamics

From the above numerical simulation and analysis, it can be
seen that αi, βi, s, and ε affect the stability and complexity of
the system. Once the system goes into chaos, the whole
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market becomes disordered and unpredictable, and profits
of the supply chain fluctuate or even decline sharply. In this
state, it is difficult for the manufacturer and retailer to make
next price decisions based on current profit. -us, con-
trolling chaos is beneficial to the whole supply chain.

In chaos control, some scholars have studied the control
methods of the chaotic system [27, 32, 37]. According to the
characteristics of this paper, this paper takes system (25) as
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Figure 28: Stable region with respect to β1, β2, and s. (a) 3D stable
region. (b) 2D stable region in the (β1, β2) plane.
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Figure 29: Stable region with respect to β1, β2 , and ε. (a) 3D stable
region. (b) 2D stable region in the (β1, β2) plane.

Table 3: 2D stable region with respect to s and ε in the(β1, β2)
plane.

s/ε β1 β2
s � 2.0 (0, 0.0563) (0, 1)

s � 2.8 (0, 0.1706) (0, 1)

s � 3.0 (0, 0.4113) (0, 1)

ε � 2.0 (0, 0.0498) (0, 1)

ε � 10 (0, 0.0558) (0, 1)

ε � 15 (0, 0.0611) (0, 1)
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an example, and a chaos control method based on state
feedback is adopted. Supposing system (25) is described as
wt+1 � T1(wt, p1,t), p1,t+1 � T2(p1,t). -en, the control
system can be obtained as follows:

wt+1 � (1 − ξ)T1 wt, p1,t􏼐 􏼑 + ξwt,

p1,t+1 � T2 p1,t􏼐 􏼑.

⎧⎪⎨

⎪⎩
(31)

Namely,

wt+1 � (1 − ξ) wt + β1wt

3
2
p1c1 − mTwt +

aθ3 + mTv − ηmTv2 + φηc1v
2 + mTc − 2cc1 − 2c1ε

2
􏼠 􏼡􏼠 􏼡 + ξwt,

p1,t+1 � β2p1,t + 1 − β2( 􏼁
− 4F3mT − 6F1c

2
1

4F2mT + 9c31
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)
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where ξ is a feedback control parameter (0< ξ < 1). When
ξ � 0, system (32) is in chaotic state.

-e price evolution process of system (32) with respect
to ξ is shown in Figure 35. When ξ > 0.18, in Figure 35(a),
system (32) gets rid of chaos and four-period bifurcation and
enters into two-period bifurcation state. Continuing to
improve ξ to 0.325, system (32) goes into the stable state. In
Figure 35(b), when ξ > 0.325, the LLE (LLE< 0) confirms
that the chaos of system has been controlled effectively.

Figure 36 shows 2D bifurcation diagram with respect to
β2 and ξ. With ξ increasing, system (32) experiences chaos
and double period bifurcation and goes into stable state.
When β2 and ξ are in the red area, it is advantageous for the
manufacturer and retailer to achieve business goals. -e
sensitivity of the system compared with Figure 25 can also be
suppressed effectively in Figure 37.

6. Conclusions

In this paper, based on channel integration and service
cooperation, we build two dynamic game models: one
without unit profit allocation (M) and the other one with
unit profit allocation (Mε). In model M, first, we investigate
the influence of adjusting parameters on the evolution of
dynamic models and analyse the complex characteristics of
the dynamic model. Second, we analyzed the influence of
service value on the stability and complexity of the dynamic
system. Finally, the combined effect of adjusting parameters
and service value on the profit evolution of the dynamic
model is explored. In model Mε, we do similar research as
model M and analyze and compare model Mε with model
M. Based on adaptive feedback, the dynamic game model is
effectively controlled. -e results show the following:

(1) -e dynamic system shows bifurcation and chaos
with adjustment parameters (α1 and β1) increasing,
and the prices will fluctuate violently. Increase in
adjustment parameters (α2 and β2) will lead the
system directly into wave chaos without bifurcation.
-e manufacturer can avoid occurrence of chaos
phenomenon by reasonable price decisions.

(2) Increasing service value s and profit distribution law
ε will increase the stable region of the system. -e
larger distribution law will delay the system going
into chaos.

(3) In the two models, the effect of service value s on
profit is different. In model M, the profits of the
manufacturer and retailer increase with service value
s. In model Mε, the manufacturer’s profit increases
while the retailer’s profit decreases.

(4) When the system is in stable state, the manufacturer
and retailer can get steady and persistent profits;
once the system goes into chaos, their profits will
suffer losses. -us, keeping the relevant parameters
in a certain range is profitable for the manufacturer
and retailer to maintain the stability of the system.

However, this article does not take into account the
behavior factors of the decision-makers, such as fairness
concerns and altruistic preference. In the real market, these
factors often affect the evolution and complexity of the
dynamic system and profit of decision-makers. -ese
problems will be studied in our future research.

Appendix

A. Proof of Proposition 1

To solve the Stackelberg equilibrium, we first consider the
retailer’s optimal decision. Given w and p1, the retailer
chooses p2 to maximize

Max􏽙
r

p2( 􏼁 � p2 − w( 􏼁DT + p1 − w( 􏼁DB

− ηs
2

DT − φηs
2

DB

s.t. w + φηs
2 <p1, c<w.

(A.1)

-e solution can be solved by first-order equations
(z􏽑r(p2)/zp2) � 0:

p2 �
c1

mT

p1 +
mT − c1

2mT

w

+
θ3a + mTs + mTηs2 − c1φηs2

2mT

s.t. w + ηs
2 <p2.

(A.2)

Submitting equation (A.2) into equation (4) and then
taking the first-order partial derivatives of equation (4) with
respect to p1 and w can be shown as

z􏽑m w, p1( 􏼁

zw
� − mB +

c1

2
+

c2
1

2mT

􏼠 􏼡p1 + − mT + 2c1 −
c2
1

mT

􏼠 􏼡w + mBs + mTs

− A1 mT − c1( 􏼁 +
c

2
mT − 3c1 +

2c21
mT

􏼠 􏼡 + aθ2 + aθ3
z􏽑m w, p1( 􏼁

zp1

�
− 2mBmT + mTc1 + c2

1
2mT

w +
2c21 − 2mTρ1

mT

p1 +
A1mTc1 + amTθ1 + c mBmT − 2c21 + mTρ1( 􏼁

mT

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.3)
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Taking the second-order derivatives, we can calculate the
Hessian matrix as follows:

H
1

�

− mT + 2c1 −
c2
1

mT

− mB +
c1

2
+

c2
1

2mT

− mB +
c1

2
+

c2
1

2mT

2c2
1

mT

− 2ρ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)

Since mB > n1c1, mT > n2c1 , and ρ1 > n3c1 (ni > 2,

i � 1, 2, 3),
− mT + 2c1 − (c21/mT) − mB + (mTc1 + c2

1/2mT)

− mB + (mTc1 + c2
1/2mT) (2c2

1/mT) − 2ρ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
>

(3/2)c2
1 − (25/64)c2

1 > 0. Because the Hessian matrix H1 is
negative definite. Setting (z􏽑m(w, p1)/zw) � 0 and
(z􏽑m(w, p1)/zp1) � 0, the optimal solution of the manu-
facturer can be obtained as

w∗ �
A5A4 − A2A6

B2
2 − B3B5

,

p∗1 �
A3A6 − A2A4

A2
2 − A3A5

.

⎧⎪⎪⎪⎪⎪⎪⎨
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(A.5)

Substituting equation (A.5) into (A.2), we obtain

p
∗
2 �

c1 A3A6 − A2A4( 􏼁

mT A2
2 − A3A5( 􏼁

+
mT − c1( 􏼁 A5A4 − A2A6( 􏼁

2mT A2
2 − A3A5( 􏼁

+ A1.

(A.6)

B. Proof of Proposition 2

-e Jacobian matrix at the equilibrium points e1 is

J e1( 􏼁 �

1 + α1
A2A3A6 − A2

2A4

A2
2 − A3A5

+ A4􏼠 􏼡 0

0 α2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.1)

Correspondingly, let us define the characteristic poly-
nomial of J(e1): f(λ) � λ2 − λtr(J(e1)) + det(J(e1)). Its
characteristic values satisfy

λ − 1 + α1
A2A3A6 − A2

2A4

A2
2 − A3A5

+ A4􏼠 􏼡􏼠 􏼡 0

0 λ − α2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0.

(B.2)
It can be deduced as λ1 � α2 and

λ2 � 1 + (A3α1(A2A6 − A4A5)/A2
2 − A3A5), since

0< α1, (A3α1(A2A6 − A4A5)/A2
2 − A3A5)> 0, and it is ob-

vious that λ2 > 1; hence, the equilibrium point e1is unstable.

C. Proof of Proposition 3

-e Jacobian matrix of system (25) can be expressed as
follows:

J e
ε
i( 􏼁 �

1 + β1
3
2
p1c1 − 2mTw + B1􏼒 􏼓 w +

3
2
β1wc1

0 β2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, i � 1, 2.

(C.1)

-e Jacobian matrix at eε1 is J(eε1) �
1 + β1((− 6mTB3c1 − 9B1c

3
1/4mTB2 + 9c3

1) + B1) 0
0 β2

􏼒 􏼓; corre-

spondingly, let us define the characteristic polynomial of
J(eε1) as

f(λ) � λ2 − λtr J e
ε
1( 􏼁( 􏼁 + det J e

ε
1( 􏼁( 􏼁. (C.2)

Its characteristic values satisfy

λ − 1 + β1
− 6mTB3c1 − 9B1c

3
1

4mTB2 + 9c31
+ B1􏼠 􏼡􏼠 􏼡 0

0 λ − β2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0.

(C.3)

It can be deduced that λ1 � β2 and
λ2 � 1 + β1((− 6mTB3c1 − 9B1c

3
1/4mTB2 + 9c3

1) + B1), since
0< β2 < 1, p∗1 � (− 4mTB3 − 6B1c

2
1/4mTB2 + 9c31)> 0, and

B1 > 0. So, it is obvious that λ2 > 1; hence, the equilibrium
point eε1 is unstable and regarded as boundary equilibrium
point.
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2is paper considers a Stackelberg game model in a dual-channel supply chain, which is composed of a manufacturer and a
retailer. 2e manufacturer and retailer consider fairness concern in the market competition, and the manufacturer takes market
share and profit as his/her business objectives. 2e entropy complexity and dynamic characteristic of the dual-channel system are
analyzed through mathematical analysis and numerical simulation, such as local stability, bifurcation, entropy, and chaos. 2e
results show that, with the increase of price adjustment speed, the dual-channel supply chain is more complex and falls into a
chaotic state in which system entropy increases; the stability of the dual-channel supply chain will be robust with the increase of
weight of market share and weaken with the increase of the fairness concern level of the manufacturer and retailer. 2e high level
of fairness concern of the manufacturer and retailer is always disadvantageous to the leading manufacturer but not always bad for
the follower retailer. 2e performance of the dual-channel supply chain is improved with a high level of the manufacturer’s
fairness concern and reduced with a high level of the retailer’s fairness concern. We also find the retailer will gain more profits in
the chaotic state than the stable state in the Stackelberg gamemodel.2e variable feedback control method is applied to control the
chaos of the dual-channel supply chain, and choosing appropriate control parameters can make the dual-channel supply chain
system return to the stable state from the chaotic state, or delay the system to enter the bifurcation state. 2e research results can
provide a guideline for enterprise decision-making.

1. Introduction

Nowadays, with the development of the e-ecommerce in
China, many manufacturers or retailers establish online
direct channels which make market competition become
more and more tough and complex for participators. 2ere-
fore, choosing the proper sales strategies is vital to achieve
business objectives for the players.

Firms are mainly concerned with different business
objectives, such as maximizing revenues, market shares,
sales, or even customer satisfaction [1, 2]. 2e previous
literature assumed the decision-making only caring about
profit maximization was an oversimplification view. In
practice, a number of decision-makers not only concern on
profit but also pay attention to extending the whole market

share as can as possible, especially in the oligarchic com-
petitive market.

Business objectives, including profitability, market share,
and revenues, have been discussed by many scholars. Tadic
et al. [3] studied the effectiveness of business objectives and
key performance indicators (KPIs) of the identified business
objectives for different types of enterprises. Lohrmann
and Reichert [4] developed and shortly evaluated a refined
business objective modeling approach. Doyle [5] studied
business objectives and explored the approach to measure
performance. Keil et al. [6] introduced the impact of
business objectives on the pricing behavior.

In addition, some researchers have concentrated on
studying profitability and market share. Bell et al. [7] jus-
tified that the market share equals marketing efforts divided
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by the total marketing effort under some assumptions.
Szymanski et al. [8] pointed out that market share has a
positive effect on business profitability by performing a
meta-analysis on 276 market share-profitability findings.
Jansen et al. [9] considered a two-stage market share dele-
gation game with two competing firms and believed that if the
firm owners choose to hire amanger, then the remuneration of
the manager is weighted based on profits and sales or market
share. 2e market share also has been studied extensively in
the context of customer satisfaction and relative performance,
respectively [10, 11]. Bischi and Kopel [12] established a bridge
between gradient dynamics andmarket share and introduced a
dynamic market share model where agents were bounded
rational. Li andMa [13] considered a dual-channel gamemodel
with bounded rationality and assumed retailers have different
business objectives, and the dynamic behaviors of the system are
investigated by numerical simulation. As far as we are con-
cerned, there is no sufficient literature that explored the market
share in dynamic scenarios in the dual-channel supply chain.

2e researches in recent years focus on the behavior of the
decision-maker in market competition. Fairness concern is
widely studied by many scholars about the influence on the
price decision-making and channel coordination in the
supply chain. 2e fairness is modeled as inequity aversion
such that the retailer is willing to give up some monetary
payoff to move in the direction of more equitable outcomes.
Cui et al. [14] showed that when fairness is concerned by
the supply chain members, the manufacturer tends to make
simple wholesale price contract to coordinate the supply chain
rather than the elaborate one. Du et al. [15] studied how the
retailer’s fairness concern behaviors influence the coordina-
tion of the supply chain. Pavlov and Katok [16] analyzed the
fairness concerns with the context of incomplete information
and showed fairness would lower the efficiency of the supply
chain. Zhang and Ma [17] considered two different pricing
policies in a dual-channel supply chain with a fair caring retailer
and found that the excessive fairness concern is not always
benefit to the retailer. Chen et al. [18] modeled a Stackelberg
game model to study the horizontal fairness concern influence
on the backup supplier, and Qin [19] showed the fairness
concerns of the supplier and retailer cannot change the coor-
dination status of the supply chain in his paper. Tang et al. [20]
established two pricing models to study the retailer’s fairness
concern in a closed-loop supply chain; the result showed that
the system profit in a decentralized decision-making situation is
less than that in a centralized decision-making situation. Ma
et al. [21] investigated closed-loop supply chains under both the
centralized and decentralized closed-loop supply chains and
furnished the optimal marketing effort, collection rate, and
pricing decisions for the supply chain members. Lin and Qin
[22] compared the pricing strategies and profits in a two-level
supply chain based on absolute fairness concern and relative
fairness concern of the retailer. Li et al. [23] studied the impact
of the manufacturer’s fairness concern on cooperative adver-
tising and analyzed equilibrium problems with retailer services
as well as fairness concern in the dual-channel supply chain. Q.
H. Li and B. Li [24] developed a game model assuming the
private fairness concern is fuzzy and obtained the estimation
model by fuzzy theory. Yang and Sun [25] considered the effect

of fairness concern in a closed-loop supply chain under two
situations and found the result that a fair caringmanufacturer or
retailer would get more supply chain profits. Qin et al. [26]
studied the dynamic evolution of fair preference under the
demand of exponential function and pointed out the retailer
utility and supply chain utility are increasing with fairness in
exponential demand. Sharma et al. [27] developed a behavioral
model of fairness in a two-echelon supply chain and found that
the supply chain under the channel member’s fairness concerns
can be coordinated through option contract under certain
conditions on the pricing parameters. Zheng et al. [28] in-
vestigated the optimal decisions and profits of closed-loop
supply chains giving the retailer’s distributional fairness con-
cerns and focused on how to allocate maximum profit in a
centralized setting. Zhang et al. [29] developed a supply chain
system which includes one manufacturer and one retailer
and studied how consumer environmental awareness and
retailer’s fairness concerns affected environmental qual-
ity, wholesale price, and retail price of the green product.

According to the research of behavior tendency, people
pay attention to the fairness of income distribution quarterly
in real life [30]. When the retailers such as Jing Dong, Tmall,
and Uniqlo cooperate with their manufacturers, they are very
concerned about the fairness of profits. However, few papers
discussed the effect of fairness concern and different business
objectives simultaneously on the dual-channel supply chain as
well as analyzed the dynamic behavior of the complex system.

Complexity generates unpredictability in supply chain
behavior, affects customer satisfaction, and increases cost.
Relevant literature research attempted to use the optimizing
strategy and entropy to enhance the supply chain performance
in the system. Mart́ınez-Olvera [31] proposed an entropy-
based formulation for comparing different information
sharing approaches in a supply chain environment and val-
idated the usefulness of the proposed methodology. Mavi et al.
[32] analyzed the problem of supplier selection in the context
of supply chain risk management using Shannon entropy for
weighing criteria. Raj and Lakshminarayanan [33] aimed to
improve supply chain performance through entropy calcu-
lations. Qu and Hao [34] established the entropy model of the
fractal supply chain network organization structure and
showed that the fractal structure had prominent effect of
dropping entropy. Meng-Gang et al. [35] built an entropy
information diffusion theory model for agricultural flood and
drought risk assessment. Zuo and Kajikawa [36] proposed a
quantitative metric of entropy to measure the complexity
and robustness of supply networks. In order to cope with
complex combinatorial problems, Wang et al. [37] devel-
oped a cross-entropy algorithm for the first time in closed-
loop supply chain design and planning. Kriheli and Levner
[38] analyzed the complexity between the supply chain
components under uncertainty using the information en-
tropy. Levner and Ptuskin [39] presented the entropy-based
optimizationmodel for reducing the supply chainmodel size
and assessing the economic loss. Some scholars analyzed the
complexity of supply chain-based entropy theory [40, 41].
Lou et al. [42] analyzed the bullwhip effect in the supply
chain with the sales game and consumer returns via the
theory of entropy and complexity.
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In this paper, a Stackelberg game model is established
based on the manufacturer and retailer considering fairness
concern and different business objectives. 2e features of the
system are studied via nonlinear theory and entropy theory and
investigated by numerical simulations, such as the stable do-
main, bifurcation, Lyapunov exponent, and entropy. 2ree-
dimensional triangular meshes are carried out to describe the
fluctuation of profits and average profits of the system.

2is paper is organized as follows: Model assump-
tions and construction are presented in Section 2. Section 3
mainly analyzes the Stackelberg game model. 2e dynamic
characteristics of the Stackelberg game model are presented
in Section 4. Chaos control for the Stackelberg gamemodel is
made in Section 5. Section 6 presents the conclusion.

2. Model Assumptions and Construction

2is paper considers a manufacturer and a retailer in a two-
echelon supply chain; the manufacturer produces a single
product and distributes the product though the online direct
channel which is built by himself/herself and a traditional
retailer channel in which the traditional retailer sells the
product via his/her own traditional channel. It means cus-
tomers not only can purchase the product in the traditional
channel but also can buy in the online direct channel.

2.1. Model Assumptions. In order to make this study more
realistic, we make the following assumptions:

(1) 2e manufacturer and the retailer sell the same
products from two different channels on the basis
of price competition, and the marginal cost of the
product is c.

(2) 2e manufacturer and the retailer can only obtain
part of market information and have limited ratio-
nality in decision-making [43].

(3) Both manufacturer and the retailer consider fairness
concern in the market competition [25].

(4) 2e retailer only considers the objective of profit
maximization, while the manufacturer not only con-
siders the goal of profitmaximization but also considers
the market share goal under the price strategy [13].

2.2.ModelConstruction. Based on the previous assumptions
and related research [13], the market demands of the
manufacturer and the retailer are shown as follows:

Dr � αθ − b1pr + kpm,

Dm � α(1 − θ) − b2pm + kpr,
􏼨 (1)

where α denotes the potential market size, θ(0< θ< 1) means
the degree of customer loyalty to the traditional channel, and
αθ represents the number of customers preferring the tradi-
tional retailer channel, while α(1 − θ) represents the number of
customers preferring the online direct channel. b1 and b2 are the
price elasticity coefficients of customer demands in different
channels. 2e cross-price sensitivity of the manufacturer and
retailer is the same and represented by k, b1 > k, b2 > k.

Furthermore, the profit functions of the manufacturer
and retailer can be written as follows:

πr � pr − w( 􏼁Dr,

πm � Dm pm − c( 􏼁 + Dr(w − c).
􏼨 (2)

Both the manufacturer and the retailer have fairness
concern behavior on the profits gained of their own in the
market. According to the literature [14], the retailer’s utility
function can be described as follows:

U(w, p) � π(w, p) + fr(w, p),

fr(w, p) � −αmax(cΠ(w, p) − π(w, p), 0)

− βmax(π(w, p) − cΠ(w, p), 0),

(3)

where Π(w, p) and π(w, p) denote the monetary payoff
of the manufacturer and retailer, respectively, and α and β
represent the sensitivity coefficient of difference in payoff
between cΠ(w, p) and π(w, p). 2e retailer’s fairness feeling
depends on the comparison of relative profit of the man-
ufacturer and retailer.

Du et al. [15] also give the retailer’s utility function as

Ur � πr − λ πm − πr( 􏼁, (4)

where πm and πr are the profits of the manufacturer and the
retailer; the sensitive coefficients about profit and loss are the
same and denoted by λ. 2e fair caring depends on the
comparison of the absolute profit between the manufacturer
and the retailer; the utility of the manufacturer and the
retailer will change if there exists difference in both sides’
profits and relative profits.

From the above conditions, the utility functions of the
manufacturer and retailer in this paper are as follows:

ur � πr − λ1 πmd − πr( 􏼁,

um � μπm +(1 − μ)Lm − λ2 πr − cπmd( 􏼁,
􏼨 (5)

where λ1 is the fairness concern coefficient of the retailer and λ2
is the fairness concern coefficient of themanufacturer (0< λ1 <
1, 0< λ2 < 1), πmd is the manufacturer’s profit which is gained
from the traditional retailer channel, and μ ∈ (0, 1) denotes the
manufacturer’s balance coefficient between profits and market
share; the market share of the manufacturer is as follows:

Lm �
Dmpm

Dmpm + Drpr

. (6)

Let e1 � Dmpm and e2 � Drpr, then taking the partial
derivative of Lm with respect to e1 yields

zLm

ze1
�

e2

e1 + e2( 􏼁
2 > 0. (7)

2en, the change trends of sales revenue are the same as
the market share; this paper uses sales revenue to replace the
proportion of market share [8, 14].

3. The Stackelberg Model

In the market competition, the manufacturer is more powerful
than the retailer in the dual-channel supply chain.2erefore, we
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consider that the manufacturer is a game leader, the retailer is
the follower, and the game equilibrium is called the Stackelberg
equilibrium. In the gamemodel, the manufacturer firstly makes
decisions for his/her wholesale price (w) and online direct sale
price (pm), and then the retailer makes the price decision (pr)

on the basis of the manufacturer’s decision-making.

3.1. Single Period Game Model

3.1.1.8e Retailer’s Decision. 2e retailer’s best response can
be obtained via setting the wholesale price w and sale price pm

as fixed values, making the first derivative of ur about pr as

zur

zpr

� aθ λ1 + 1( 􏼁 + b1 −cλ1 − 2 λ1 + 1( 􏼁pr + 2λ1w + w( 􏼁

+ k λ1 + 1( 􏼁pm.

(8)

2e second derivative of the retailer’s utility function is
(z2ur/zp2

r) � −2b1(λ1 + 1)< 0, and the retailer can get
global optimal solutions. Letting (zur/zpr) � 0, the retailer’s
best reply function is obtained as follows:

p
∗
r w, pm( 􏼁 �

aθ λ1 +1( 􏼁−b1cλ1 + 2b1λ1 + b1( 􏼁w+k λ1 +1( 􏼁pm

2b1 λ1 +1( 􏼁
.

(9)

2en, we calculate the first-order partial derivatives of
p∗r (w, pm) with respect to w and pm, which can examine the
influence of w and pm on the retailer’s best price strategy:

zp∗r
zw

�
1 + 2λ1
2 + 2λ1
>
1
2
,

0<
zp∗r
zpm

�
k

2b1
<
1
2
.

(10)

From above inequality equations, we know that the
retailer’s optimal price increases with the increasing w and
pm, respectively. 2erefore, the price strategy of the retailer
will be controlled by the manufacturer’s price decision-

making. If w increases by one unit, p∗r would increase more
than 0.5 units; when pm increases by one unit, p∗r would
increase less than 0.5 units.

Substituting formula (9) into ur of formula (5), we obtain the
retailer’s optimal utility u∗r which is represented by w and pm.

3.1.2. 8e Manufacturer’s Decision. Substituting formula (9)
into um of formula (4), we obtain the manufacturer’s op-
timal utility u∗m(w, pm) which is a function with respect to
w and pm. We take the first-order partial derivatives of
u∗m(w, pm) with respect to w and pm, respectively, and
obtain the following equations:

zu∗m
zw

�
1

2 1 + λ1( 􏼁
2 aθ 1 + λ1( 􏼁

2 λ2 + cλ2 + μ( 􏼁􏽨 􏽩 + A0 + A1,

zu∗m
zpm

� −
1

2 1 + λ1( 􏼁
2 k

2 1 + λ1( 􏼁 pm −2 + λ2( 􏼁 + cμ􏼂 􏼃􏽮 􏽯

+ A2 + A3 + A4,

(11)

where

A0 � b1 w 2λ1 + 1( 􏼁 2cλ2 λ1 + 1( 􏼁 + λ2 + 2μ λ1 + 1( 􏼁􏼂 􏼃􏼈

− c cλ2 3λ21 + 4λ1 + 1􏼐 􏼑􏽨 −λ21 λ2 − 3μ( 􏼁 + 4λ1μ + μ􏽩􏽯,

A1 � k λ1 + 1( 􏼁 pm λ1 cλ2 + λ2 + μ + 2( 􏼁 + cλ2 + λ2 + μ + 1􏼂 􏼃􏼈

− cμ 2λ1 + 1( 􏼁􏼉,

A2 � a 1 + λ1( 􏼁 2b1(θ − 1) + kθ λ2 − 1( 􏼁􏼂 􏼃,

A3 � −2b2 1 + λ1( 􏼁 2pm − cμ( 􏼁 − ck cλ2 + μ􏼂

+ λ1 1 + cλ2 + μ( 􏼁􏼃,

A4 � w λ1 cλ2 + λ2 + μ + 2( 􏼁 + cλ2 + λ2 + μ + 1􏼂 􏼃.

(12)

When the second-order derivative of the manufacturer’s
utility function is concave, the manufacturer can get global
optimal solutions. 2e Hessian matrix of um is as follows:

H um( 􏼁 �

−
b1 2λ1 + 1( 􏼁 2c λ1 + 1( 􏼁 + 1􏼂 􏼃 + 2 λ1 + 1( 􏼁μ􏼂 􏼃(

2 λ1 + 1( 􏼁
2

k λ1 cλ2 + λ2 + μ + 2( 􏼁 + cλ2 + λ2 + μ + 1􏼂 􏼃

2 λ1 + 1( 􏼁

k λ1 cλ2 + λ2 + μ + 2( 􏼁 + cλ2 + λ2 + μ + 1􏼂 􏼃

2 λ1 + 1( 􏼁
−
4b1b2 + k2 λ2 − 2( 􏼁

2b1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Obviously, the first-order principal minor of the Hessian
matrix H(um) is

H um( 􏼁 � −
b1 2λ1 + 1( 􏼁 λ2 2c λ1 + 1( 􏼁 + 1􏼂 􏼃 + 2μ λ1 + 1( 􏼁􏼈 􏼉

2 λ1 + 1( 􏼁
2 < 0,

(14)

where b1 � ((k2 (λ1[(cλ2 + λ2 + μ + 2) + cλ2 + λ2 + μ+1]􏼈 􏼉
2

+

A5)/(4b2(2λ1 + 1)A6)), in which

A5 � 2 λ1 + 1( 􏼁 2 − λ2( 􏼁 2 cλ2 λ1 + 1( 􏼁 + 1􏼂 􏼃 + 2μλ2 λ1 + 1( 􏼁,

A6 � λ2 + 2 μ + cλ2( 􏼁 λ1 + 1( 􏼁.

(15)
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2en, the second-order principal minor is bigger than
zero, and H(um) is negative definite which indicates the
manufacturer can reach the maximum value when making
decisions. By solving ((zu∗m)/zw) � 0 and ( (zu∗m)/zpm) � 0,
the manufacturer’s best reply function (w∗, p∗m) can be
obtained.

Because of the complexity of the model, the expressions
of w∗, p∗m, and p∗r are very complex, and we cannot see the
interaction between variables and parameters. In the next
section, in order to analyze and study the stability of the
dynamic game model by numerical simulation, we assign
parameters according to the actual operation of the market.

3.2. Dynamic Stackelberg Game Model

3.2.1. Model Construction. In this section, a dynamic
Stackelberg game model is proposed. As a matter of
fact, firms in the real market usually obtain limited in-
formation due to the objective condition restriction, and
it indicates that decision-makers cannot get the whole
market information and the system is not always in the Nash
equilibrium state. In order to achieve maximum profit in
every competition period, the manufacturer adopts bounded

rational expectation and the myopic adjustment mechanism
to adjust price decisions dynamically based on partial es-
timation of the marginal utility of the current period; if the
marginal utility in the current period is positive, the man-
ufacturer will raise his/her price in the next period; other-
wise, the manufacturer will reduce his/her price in the next
period.

2e dynamic model can be described as follows:

w(t + 1) � w(t) + α1w(t)
zu∗m(t)

zw(t)
,

pm(t + 1) � pm(t) + α2pm(t)
zu∗m(t)

zpm(t)
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

where αi > 0 (i � 1, 2) represent the price adjustment speed
of the manufacturer according to his/her marginal profits,
which reflect the manufacturer’s learning behavior and
active managerial behavior.

2en, we can establish the discrete dynamic game
model of the dual-channel supply chain considering
fairness concern and different business objectives as
follows:

w(t + 1) � w(t) + α1w(t)
1

2 1 + λ1( 􏼁
2 aθ 1 + λ1( 􏼁

2 λ2 + cλ2 + μ( 􏼁􏽨 􏽩 + A0 + A1
⎧⎨

⎩

⎫⎬

⎭,

pm(t + 1) � pm(t) + α2pm(t) −
1

2(1 + λ1)
k
2 1 + λ1( 􏼁 pm −2 + λ2( 􏼁 + cμ􏼂 􏼃􏽨 􏽩 + A2 + A3 + A4􏼨 􏼩,

p∗r (t) �
aθλ1 + aθ − b1cλ1 + 2b1λ1w(t) + b1w(t) + kλ1pm(t) + kpm(t)

2b1 λ1 + 1( 􏼁
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

2e manufacturer’s price strategy is described by the
dynamic system (17), and the retailer’s price is directly re-
lated to w(t) andpm(t). 2e parameters α1 and α2 have a
great impact on w(t) andpm(t).

3.2.2. Model Analysis. Firstly, making w(t) � w(t + 1) and
pm(t) � pm(t + 1), we can get four equilibrium solutions of
the dynamic system (17):

E1 � (0, 0),

E2 � 0,
a λ1 + 1( 􏼁 2b1(θ − 1) + θk λ2 − 1( 􏼁􏼂 􏼃 + A7

λ1 + 1( 􏼁 k2 2 − λ1( 􏼁 − 4b1b2􏼂 􏼃
􏼠 􏼡,

E3 �
A8 + A9

b1 2λ1 + 1( 􏼁 λ2 2c λ1 + 1( 􏼁 + 1􏼂 􏼃 + 2μ λ1 + 1( 􏼁􏼈 􏼉
, 0􏼠 􏼡,

E4 � w
∗
, p
∗
m( 􏼁,

(18)

where

A7 � c b1 k cλ1λ2 + cλ2 + λ1μ + λ1 + μ( 􏼁 − 2b2 λ1 + 1( 􏼁μ􏼂 􏼃􏼈

+ μk
2 λ1 + 1( 􏼁􏽯,

A8 � λ1 + 1( 􏼁 aθ λ1 + 1( 􏼁 cλ2 + λ2 + μ( 􏼁 − ckμ 2λ1 + 1( 􏼁􏼂 􏼃,

A9 � b1c c 3λ21 + 4λ1 + 1􏼐 􏼑λ2 + λ21 3μ − λ2( 􏼁 + 4λ1μ + μ􏼂 􏼃.􏼐

(19)

2en, we can get the retailer’s equilibrium prices as p
E1
r ,

p
E2
r , p

E3
r , and p

E4
r � p∗r .

Obviously, E1, E2, and E3 are boundary unstable equi-
librium solutions because they are partly or entirely zero,
and the decision variables obviously are not allowed to be
zero in economics for decision-makers. In contrast, E4 is the
unique Stackelberg equilibrium solution. It is meaningless to
study the unstable equilibrium solution, so we only analyze
the characteristic of the Nash equilibrium solution in the
following section.
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3.2.3. Stability of the Nash Equilibrium Solution. 2e Ja-
cobian matrix of the dynamic system (17) is given as

J �

1 + α1f1
α1w k λ1 cλ2 + λ2 + μ + 2( 􏼁 + cλ2 + λ2 + μ + 1􏼂 􏼃􏼈 􏼉

2 λ1 + 1( 􏼁

α2w k λ1 cλ2 + λ2 + μ + 2( 􏼁 + cλ2 + λ2 + μ + 1􏼂 􏼃􏼈 􏼉

2 λ1 + 1( 􏼁
1 + α2f2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where

f1 �
1

2 1 + λ1( 􏼁
2 aθ 1 + λ1( 􏼁

2 λ2 + cλ2 + μ( 􏼁􏽨 􏽩 + A10 + A1,

f2 � −
1

2(1 + λ1)
k
2 1 + λ1( 􏼁 2pm −2 + λ2( 􏼁 + cμ􏼂 􏼃􏽮 􏽯 + A2

+ A11 + A4,

A10 � 2b1w 2λ1 + 1( 􏼁 λ2 2c λ1 + 1( 􏼁 + 1􏼂 􏼃 + 2μ λ1 + 1( 􏼁􏼈 􏼉

− cb1 c 3λ21 + 4λ1 + 1􏼐 􏼑λ2 + λ21 3μ − λ2( 􏼁 + 4λ1μ + μ􏽨 􏽩,

A11 � −2b2 1 + λ1( 􏼁 4pm − cμ( 􏼁 − ck cλ2 + μ􏼂

+ λ1 1 + cλ2 + μ( 􏼁􏼃.

(21)

2e characteristic polynomial of the Jacobianmatrix (20)
is taken as follows:

F(λ) � λ2 − B0λ + B1. (22)

According to Jury’s conditions, the necessary and suf-
ficient condition of asymptotic stability of the system is that
all the eigenvalues are inside the unit circle in the complex
plane, so the stability of the dynamic system (17) should
satisfy the following Jury’s conditions:

F(1) � 1 + B0 + B1 > 0,

F(−1) � 1 − B0 + B1 > 0,

F(0) � 1 − B1 > 0,

⎧⎪⎪⎨

⎪⎪⎩
(23)

where B0 and B1 are the trace and determinant of the Ja-
cobian matrix, respectively. According to condition (23), we
can give the stable region of the dynamic system (17) on the
adjustment parameters α1 and α2. Because the stable con-
dition of the dynamic system (17) is too complicated, we will
analyze the stable region and dynamic characteristic of the
dynamic system (17) by numerical simulation in the next
section.

4. Numerical Simulation

In this section, numerical simulations are carried out to
show the influence of parameters on the dynamic charac-
teristic of the dynamic system (17) via bifurcation diagrams,
entropy diagrams, largest Lyapunov exponents (LLEs),
chaotic attractors, and so on.

Here, we assign values to parameters according to
the actual operation of the market in order to facilitate
analysis: a � 100, θ � 0.6, b1 � 2, b2 � 1, k � 0.5, c � 0.6,
and c � 10.

4.1. Stability of the Dynamic System (17)

4.1.1. 8e Influence of Parameters μ, λ1, and λ2 on the Stable
Region. Figure 1 clearly presents the influence of the balance
coefficient of business objectives on the system stability.
When fixing λ1 � λ2 � 0.2, the stable region of the dynamic
system (17) is the area enclosed by the red line with μ � 0.9,
the blue line with μ � 0.6, and the green line with μ � 0.4. It
is easy to understand that market share, as one of the
business objectives of the manufacturer, has significant im-
pact on the stability of the dynamic system (17), and the stable
region of the dynamic system (17) is decreasing with in-
creasing μ. Namely, with the increase of the weight of market
share in business objectives, the stable range of the price
adjustment speed (α1, α2) is extended, which indicates the
manufacturer considering market share as part of business
objectives makes the market competition more intense.

Fixing μ � 0.6 an d λ2 � 0.2, Figure 2(a) shows that the
stable regions of system (17) are the areas enclosed by the
blue line, green line, and red line when λ1 � 0.2, 0.5, and 0.9,
respectively. Similarly, when μ � 0.6 and λ1 � 0.2 are fixed,
Figure 2(b) shows the stable regions of the dynamic system
(17) are the areas enclosed by the blue line, green line, and
red line, respectively, with λ2 � 0.2, 0.5, and 0.9. We can see
that, with the increasing level of fairness concern, the stable
regions of the dynamic system (17) will decrease. 2e stable
scope of α1 is greatly influenced with increasing λ2 than with
increasing λ1, and the stable scope of α2 is less affected by the
change of λ1 and λ2, which means that the influence of the
manufacturer’s fairness concerns on the scope of wholesale
price adjustment is greater than that of the retailer’s fairness
concern behavior and the scope of online price adjustment is
less affected by the fairness concern behavior of the man-
ufacturer and the retailer.

4.2. 8e Entropy Complexity Analysis of the Dynamic System
(17) with Changing α2. We know that entropy can measure
the chaotic degree of the system, so it is not difficult to find
that the entropy of the system is small when the system is in
the stable state and the entropy of the system is large when
the system is in the chaotic state. On the contrary, the
entropy of the system shows the probability of the occur-
rence of some particular information; when the entropy of
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the system is high, we need more information to make the
system clear. In order to better study the influence of pa-
rameters on system stability, we use an entropy graph to
show the change of the system’s stability.

Figure 3 presents the dynamic evolution process of the
dynamic system (17) with α1 � 0.02. From Figure 3(a), we
can see that the dynamic system (17) is in the stable state at
first, with increasing α2, and the dynamic system (17) has the
first bifurcation at α2 � 0.028 and then falls into chaos finally
through a series of period doubling bifurcations. Figure 3(b)
is the diagram of the LLE which can reflect the state of the
dynamic system (17), and Figure 4 shows the entropy of the
dynamic system (17) with α1 � 0.02. We can see from

Figures 3 and 4 that when the LLE is negative, the dynamic
system (17) remains stable with lower entropy. When the
LLE is positive, the dynamic system (17) falls into chaos with
higher entropy. In other words, the larger the positive
Lyapunov exponent is, the more chaotic the system is and
the greater the entropy is.

So we can make a conclusion that irrational changes of
price adjustment speed will lead to a large entropy to the
system (17) and the manufacturers must get more market
information to make a best decision and keep the dynamic
system (17) in a stable state.

Figure 5 shows the bifurcation diagram and entropy of
the dynamic system (17) with changing α2 which is in
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Figure 2: Stable regions of system (17) with different values of (a) λ1 and (b) λ2.
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Figure 1: Stable regions of system (17) with different values of μ.
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accordance with Figure 2. When λ2 � 0.6, the dynamic
system (17) has first bifurcation at α2 � 0.0245 and then falls
into chaos through the flip bifurcation and N-S bifurcation
shown in Figure 5(a), and the entropy of the dynamic system
(17) is shown in Figure 5(b). When λ2 � 0.9, the system (17)
loses its stability at the beginning which is shown in
Figure 5(c) and then falls into chaos finally through the N-S
bifurcation, and its entropy is shown in Figure 5(d). We can
see from Figure 5 that the system (17) remains stable with
lower entropy and falls into chaos with higher entropy. In
other words, the more chaotic the system (17) is, the greater
the entropy is.

From this trend described above, we can draw a con-
clusion that a faster adjustment speed of direct price or
wholesale price will pull the market into chaos through the
slip bifurcation or N-S bifurcation; the higher the level of
fairness concern from the manufacturer or retailer is, the

easier the market falls into chaos. Because the characteristic
of the dynamic system (17) is the same as the one when α1
changes, the characteristic of the dynamic system (17) with
changing α1 is not discussed in this paper.

2e state of the system is fixed when stability stays, and
the competitors in themarket canmake a profit in every time
period via changing the price. Generally speaking, stability is
beneficial for competitors to make the long-term strategies,
and the market vibrates regularly in a certain period and
returns to the same point in the periodic or limit cycle state;
hence, the competitors can forecast the process of market
and change their price strategies frequently to gain more
profit. Chaos indicates that the market becomes unpre-
dictable and irregular; it is so hard for competitors to achieve
their business objectives just relying on the initial value
sensitiveness in this situation. In most cases, chaos is an
obstacle that the market operates orderly and efficiently.

Figure 6 shows the strange attractors of the dynamic
system (17) from the four-period state to limit cycles, which
are an important characteristic of the system. Figure 7(a)
shows the price changes in the four-period state, and the
manufacturer can forecast the tendency of direct price in the
next period because the direct price is in a regular change.
Figure 7(b) presents the price changes in the chaotic state,
and the change of prices becomes irregular and unpre-
dictable. Figure 8 shows the sensitiveness of system to the
initial values with w andpr being fixed and pm change from
34.01 to 34.02. Figure 8(a) indicates the dynamic system (17)
is in four-period bifurcation, and Figure 8(b) displays the
dynamic system (17) is in the chaotic state, in which the
black line, red line, and blue line represent the fluctuations of
w, pm, an d pr, respectively. Although the difference of the
initial value is quite small, the distance between two tra-
jectories becomes large after several iterations. 2e manu-
facturer and retailer should pay more attention to the setting
of the initial value and the price evolution when the system is
in the chaotic state.
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Figure 3: Bifurcation diagram and LLE of the system (17) with varying α2 when α1 � 0.02. (a) Bifurcation diagram when λ2 � 0.2. (b) LLE
when λ2 � 0.2.
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4.3.8e Influence ofParameters on theProfits. Figure 9 shows
the average profits of the manufacturer and the retailer with
the change of α1 and α2. In the stable state, the average
profits of the manufacturer and the retailer are 692.3 and
46.79, respectively; after that, the dynamic system (17) enters
2-period bifurcation and chaotic states eventually with the
change of price adjustment speed, the average profit of the
retailer increases with increasing α1 and α2, but the man-
ufacturer’s average profit decreases sharply with increasing
α1 and α2. In Figure 10(a), the average profits of the
manufacturer and the retailer are decreased with increasing
λ1. From Figure 10(b), it is seen that the average profits of the
manufacturer and the retailer rise with increasing λ2 at the
beginning, while the average profit of the retailer increases
and that of manufacturer declines with increasing λ2; the
performance of the dual-channel supply chain is improved
with a high level of the manufacturer’s fairness concern and
declined with a high level of the retailer’s fairness concern.
We can obtain that chaos is unfavorable to the leading
manufacturer and beneficial to the follower retailer, and the

high level of fairness concern of the manufacturer and re-
tailer is always disadvantageous to the leading manufacturer
but not always bad for the follower retailer.

Figure 11 shows the influence of αi and λi on the profits
of the manufacturer and the retailer using the three-di-
mensional grid. From Figure 11(a), we obtain that when α1
and λ1 are controlled in small values, the profit of the retailer
almost remains stable; with fixed λ1 in a small region, the
retailer’s profit rises with increasing α1, but increasing α1
and λ1 simultaneously to the larger value range, the dynamic
system (17) falls into chaos and the retailer’s profit changes
violently and even has a great loss; chaos is a great disad-
vantage to achieving maximizing profit and making a long
competition strategy for the retailer in the market.

Similarly, in Figure 11(b), keeping λ2 in small values,
the manufacturer’s profits increase with the increase of α1
which indicates that the lower fairness concern of the
manufacturer and the higher adjustment speed of whole-
sale price for the retailer are beneficial to the manufacturer.
2e lower level of fairness concern of the retailer and the
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Figure 5: Bifurcation diagram and entropy of the dynamic system (17) with varying α2 when α1 � 0.02. (a) Bifurcation diagram when
λ2 � 0.6. (b) Entropy diagram when λ2 � 0.6. (c) Bifurcation diagram when λ2 � 0.9. (d) Entropy diagram when λ2 � 0.9.
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higher adjustment speed of direct selling price for the
manufacturer are beneficial to the retailer which is shown
in Figure 11(c). Figure 11(d) shows the profit of the
manufacturer influenced by α2 and λ2; when α2 stays in
small values, the higher fairness concern of the

manufacturer is good for himself/herself to obtain the
maximum profit. In the market competition, the com-
petitors should pay attention to the range of parameters,
and choosing proper values for parameters is indispensable
for them to achieve business objectives.
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Figure 6: Chaos attractors of the system (17) with (a) α1 � 0.02, α2 � 0.038, (b) α1 � 0.03, α2 � 0.035, and (c) α1 � 0.02, α2 � 0.04.
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5. Chaos Control

All the participants certainly want to achieve their own business
objectives easily and adjust their price decision frequently to
adapt the changes of market competition. Once the price
adjustment speed is out of control, the market will go out of
order and fall into chaos finally which is harmful to the stability
of the supply chain.2erefore, some measures should be taken
to delay or eliminate the occurrence of bifurcation and chaos.

As far as we are concerned, the method of variable
feedback control is widely applied to control the chaos of the
supply chain. Ma and Zhang [44] and Ma and Xie [45] have

used this method to control the chaos of the insurance
market and the supply chain system. 2e dynamic system
(17) under control can be rewritten as

w(t + 1) � w(t) + α1w(t)
zu∗m(t)

zw(t)
− vw(t),

pm(t + 1) � pm(t) + α2pm(t)
zu∗m(t)

zpm(t)
− vpm(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

2e controlled system (24) can be expressed as
follows:
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Figure 8: Sensitivity to initial values when w, pm, andpr are 28.35, 34.01, and 34.95. (a) α1 � 0.02, α2 � 0.038. (b) α1 � 0.02, α2 � 0.04.
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Figure 11: Change of profits with respect to αi(i � 1, 2) and λi(i � 1, 2). (a) Change of profit of the retailer with respect to α1 and λ1.
(b) Change of profits of the retailer with respect to α1 and λ2. (c) Change of profit of the retailer with respect to α2 and λ1. (d) Change of profit
of the manufacturer with respect to a2 and λ2.
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w(t + 1) � w(t) + α1w(t)
1

2 1 + λ1( 􏼁
2 aθ 1 + λ1( 􏼁

2 λ2 + cλ2 + μ( 􏼁􏽨 􏽩 + A0 + A1
⎧⎨

⎩

⎫⎬

⎭ − vw(t),

pm(t + 1) � pm(t) + α2pm(t) −
1

2(1 + λ1)
k
2 1 + λ1( 􏼁 −2 + λ2( 􏼁pm + cμk

2 1 + λ1( 􏼁pm􏽨 􏽩 + A2 + A3 + A4􏼨 􏼩 − vpm(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where v represents the control parameter, and selecting
an appropriate value for v is essential to delay bifurca-
tion and make the supply chain system return to a stable
state.

Next, we examine the influence of the parameter v on the
stability of the system (25). Making α1 � 0.02 and α2 � 0.04,
Figure 12 shows the bifurcation diagram and entropy with
the change of v, the controlled system (25) goes to the stable
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Figure 12: Bifurcation diagram and entropy with the change of v when α1 � 0.02 and α2 � 0.04.
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Figure 13: Price wave plot with the change of time when α1 � 0.02 and α2 � 0.04. (a) v � 0.2. (b) v � 0.38.
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state from the chaotic state with increasing v, and entropy of
the controlled system (25) becomes smaller as the system’s
instability decreases. In Figure 13(a), when v � 0.2 is fixed,
the system vibrates in a two-period orbit; then adjusting the
parameter v � 0.38 (see in Figure 13(b)), the wave plot of
prices remains at the determined value and the controlled
system (25) returns to the stable state.

From Figure 12, it is seen that the control parameter v

will affect the Stackelberg equilibrium value of the con-
trolled system (25), so the manufacturer and retailer should
make a good balance between the system’s stability and
profit maximization.

6. Conclusion

In this paper, we develop a Stackelberg game model in the
dual-channel supply chain including a manufacturer and a
retailer; both sides consider fairness concern, and the
manufacturer has different business objectives. 2e en-
tropy and complex characteristic of the dual-channel
supply chain system are analyzed by nonlinear dynamics
theory and entropy theory, such as the entropy diagram,
bifurcation diagram, LLE, stable region, and chaos
attractors. A three-dimensional triangular mesh is applied
to describe the changes of profits of the manufacturer and
retailer. 2e results show that, with the increase of price
adjustment speed, the dual-channel supply chain is more
complex and falls into a chaotic state in which system
entropy increases; the stability of the dual-channel supply
chain will be robust with the increase of the weight of
market share and weaken with the increase of the fairness
concern level of the manufacturer and retailer. 2e high
level of fairness concern of the manufacturer and retailer is
always disadvantageous to the leading manufacturer but
not always bad for the follower retailer. 2e performance
of the dual-channel supply chain is improved with a high
level of the manufacturer’s fairness concern and declined
with a high level of the retailer’s fairness concern. We also
find the retailer will gain more profits in the chaotic state
than in the stable state in the Stackelberg game model. In
addition, the variable feedback control method can ef-
fectively control the chaotic behavior of the dual-channel
supply chain.
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Dynamical complexity and multistability of electrostatic waves are investigated in a four-component homogeneous and
magnetized lunar wake plasma constituting of beam electrons, heavier ions (alpha particles, He++), protons, and suprathermal
electrons. 'e unperturbed dynamical system of the considered lunar wake plasma supports nonlinear and supernonlinear
trajectories which correspond to nonlinear and supernonlinear electrostatic waves. On the contrary, the perturbed dynamical
system of lunar wake plasma shows different types of coexisting attractors including periodic, quasiperiodic, and chaotic, in-
vestigated by phase plots and Lyapunov exponents. To confirm chaotic and nonchaotic dynamics in the perturbed lunar wake
plasma, 0 − 1 chaos test is performed. Furthermore, a weighted recurrence-based entropy is implemented to investigate the
dynamical complexity of the system. Numerical results show existence of chaos with variation of complexity in the
perturbed dynamics.

1. Introduction

'e Moon is nonconducting and has no atmosphere and
intrinsic magnetic field, so the solar wind freely interacts
with the Moon and forms a wake on the antisunward side of
the Moon [1]. 'e magnetic field of solar wind enters the
Moon easily compared with particles of solar wind. 'e
variations in density across the boundary of lunar wake steer
the solar wind plasma to replenish the void area by ambi-
polar diffusion [2, 3].'e presence of ion and electron beams
with fluctuating temperature of solar wind plasma produces
different kinds of waves. 'e wind satellite revealed ion
beams [2] and different modes of nonlinear waves [4] in the
tail region of lunar wake. A lunar orbiter SELENE revealed
the existence of electrostatic waves which are generated due
to the electrostatic instability driven by energetic solar wind
particles in the lunar wake [5].

'e particles of astrophysical plasmas such as solar wind
plasma were generally found to follow non-Maxwellian
distribution containing suprathermal particles with high-
energy tails [6]. 'e kappa distribution appropriately defines
the influence of suprathermal particles [7]. Recently, Saini
[8] and Devanandhan et al. [9] investigated arbitrary
nonlinear wave structures in two-temperature plasmas with
suprathermal electrons and found the effect of suprathermal
electrons on amplitude of solitons.

Some nonlinear systems can exhibit many solutions with
specified parameters and distinct initial conditions [10]. 'is
nonlinear behavior is termed as coexisting attractors or
multistability. Multistability behaviors [11, 12] of the
physical system act as important feature in the dynamics of
nonlinear systems. Experimentally, multistability feature
was firstly investigated in a Q-switched gas laser [13];
thereafter, various works [14, 15] were reported in different
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complex systems exhibiting multistability features. In this
study, we show multistability features of the lunar wake
plasma system for the first time.

Recently, a new wave structure called supernonlinear
wave was introduced in theoretical [16] and astrophysical
plasmas [17]. 'e nonlinear Alfvén waves and solitons
defined in the framework of derivative nonlinear Schro-
dinger equation [18] are found to support supernonlinear
waves. Tamang and Saha [19] reported supernonlinear waves
and chaotic motion in a non-Maxwellian plasma. Singh and
Lakhina [20] investigated ion-acoustic supersolitons in
multicomponent plasma. Streaming charged debris moving
in space plasma may cause an external disturbance to the
system. 'ese disturbances can disrupt the motion of the
system [21, 22]. To the best of our knowledge, the study on
dynamical properties of nonlinear electrostatic waves in
lunar wake plasma is not reported. So, in this work, we
employ the concept of nonlinear dynamics to study dy-
namical properties nonlinear electrostatic structures in
magnetized, collisionless, homogeneous plasma comprising
of beam electrons, and heavier ions (alpha particles and
He++), protons, and kappa distributed electrons.

'e article is organized as follows. In Section 2, model
equations for the lunar wake plasma system are considered.
In Section 3, dynamics of the perturbed and unperturbed
system are studied. It has been noticed that the novel system
can produce coexisting attractors under the influence of an
external forcing term. Variation of Lyapunov exponents
shows the conservative nature of the system. To quantify
chaos, Lyapunov exponents do not produce constructive
information, since very small oscillations of the Lyapunov
spectra are observed. To classify chaotic and nonchaotic
regimes, 0 − 1 chaos test [23, 24] is then implemented. 'e
analysis is given in Section 4. A dynamical complexity is also
investigated by weighted recurrence entropy [25] in Section
5. Section 6 is the conclusion.

2. Model Equations

A homogeneous four-component magnetized lunar wake
plasma constituting of protons (Np0, Tp), electron beams
(Nb0, Tb), heavier ions, such as alpha particles,
He++(Ni0, Ti), and suprathermal elections (Ne0, Te), where
Nj0 and Tj denote number densities at equilibrium state and
temperature of jth species, where j � b, e, i, and p for beam
electrons and suprathermal electrons, ions, and positrons,
respectively. Here, nonlinear electrostatic waves and drift
velocity of beam electron (Vb0) are assumed to be propa-
gating along the ambient magnetic field (B0).

'e suprathermal electrons of the lunar wake plasma are
assumed to follow the κ-distribution [26]:

fe(v) �
ne0

π(1/2)θ
Γ(k)

�
κ

√
Γ(k − (1/2))

1 +
v2

κθ2
􏼠 􏼡

− (κ)

, κ>
3
2
,

(1)

where κ represents spectral index, Γ(κ) stands for gamma
function, and θ denotes modified electron thermal velocity
given by

θ2 � 2 −
3
κ

􏼒 􏼓
Te

me

, (2)

where Te and me are electron temperature and mass, re-
spectively. 'e kappa distribution tends to Maxwellian
distribution, for κ⟶∞.

'e suprathermal electron number density is given by
[26]

ne � 1 −
ϕ

κ − (3/2)
􏼢 􏼣

− κ+(1/2)

. (3)

'e normalized fluid equations for lunar wake plasma
propagating parallel to B0 are given by

znj

zt
+

z njvj􏼐 􏼑

zx
� 0, (4)

zvj

zt
+ vj

zvj

zx
+ Zjμpj

zϕ
zx

+ 3μpjσj

nj

nj0􏼐 􏼑
2

znj

zx
� 0, (5)

z2ϕ
zx2 � ne + nb − np − Zini, (6)

where μpj � (mp/mj) is the ratio of mass of proton to mass
of jth species, n0 � ne0 + nb0 � np0 + Zini0 is equilibrium
number density, and Zj denotes the electronic charge of the
jth species with Zp � 1, Zb � − 1, and Zi � 2. In equations
(3)–(6), velocity (vj) is normalized by Ca �

������
Te/mp

􏽱
, time by

ω− 1
pp � (1/

���������
4πn0e

2/mp

􏽱
), x by λD �

���������
Te/4πn0e

2
􏽰

, ϕ by (Te/e),
and nj by n0. Furthermore, for one-dimensional case, we
consider the adiabatic index, cj � 3 for all species.

3. Dynamical Systems

3.1. Unperturbed Dynamical System. To analyze the dy-
namical properties of electrostatic waves in lunar wake
plasma, we take transformation ξ � x − Vt, whereV signifies
wave speed. Employing ξ and imposing the conditions
ϕ⟶ 0 and (dϕ/dξ) � 0 as ξ⟶ ±∞ in equations (4)–(5),
we obtain

np �
np0

2
���
3σp

􏽱 V +
���
3σp

􏽱
􏼒 􏼓

2
− 2ϕ􏼢 􏼣

1/2

− V −
���
3σp

􏽱
􏼒 􏼓

2
− 2ϕ􏼢 􏼣

1/2⎧⎨

⎩

⎫⎬

⎭, (7)
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3σi
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���μpi

􏽰 +
���
3σi

􏽰
⎛⎝ ⎞⎠

2

− 2Ziϕ
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

1/2

−
V
���μpi

􏽰 −
���
3σi

􏽰
⎛⎝ ⎞⎠

2

− 2Ziϕ
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

1/2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (8)

nb �
nb0

2
���
3σ i

􏽰
V − Vb0

���μpb

􏽰 +
���
3σb

􏽰
⎛⎝ ⎞⎠

2

+ 2ϕ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

1/2

−
V − Vb0

���μpb
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���
3σb

􏽰
⎛⎝ ⎞⎠

2

+ 2ϕ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

1/2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (9)

Again using equations (3), (7), (8), and (9) in equation
(6), we obtain

d2ϕ
dξ2

� Aϕ + Bϕ2 + Cϕ3
+ Dϕ4, (10)

where

A �
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Equation (10) is represented as the following dynamical
system:

dϕ
dξ

� y,

dy

dξ
� Aϕ + Bϕ2 + Cϕ3 + Dϕ4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Here, equation (12) represents a dynamical system with
physical parameters κ, nb0, ne0, ni0, np0, σb, σi, σp, Vbo, μpb,
μpi, and V.

Considering typical parameteric values of lunar wake
[3, 26], we set nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 ≈ 0.9,
σb � 0.0025, σi � 0.4, σp � 0.2, and Vbo � 17.14.

In Figure 1, we present probable phase plots of system
(12) for nonlinear electrostatic waves in lunar wake plasma.
Based on the values of parameters κ, np0, ni0, ne0, nb0, σp, σi,
σb, Vbo, μpb, μpi, and V, we have four distinct types of phase
plots. Each trajectory in a phase plane corresponds to a
traveling wave solution.'e phase plots presented in Figure 1
constitute different families of phase trajectories, such as
superhomoclinic (SH3,1), superperiodic (SP3,1), periodic
(P1,0), and homoclinic (H1,0) trajectories which correspond
to supersolitary, superperiodic, periodic, and solitary wave
solutions of system (12), respectively. Considering different
speeds (V) of the nonlinear wave with κ � 5, nb0 � 0.01,
ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025, σi � 0.4,
σp � 0.2, Vbo � 17.14, μpb � 1836, and μpi � 0.25187, all
qualitatively distinct phase plots are depicted in Figures 1(a)–
1(d). If we consider V � 1.1 with specified values of other
parameters, there exist only two fixed points at (ϕ0, 0) and
(ϕ1, 0), as shown in Figure 1(a), where ϕ0 � 0 and ϕ1 < 0. 'e
two fixed points (ϕ0, 0) and (ϕ1, 0) are the center and saddle
point, respectively.'e homoclinic trajectory (H1,0) at (ϕ1, 0)

and a periodic trajectory (P1,0) at (ϕ0, 0) correspond to
solitary and periodic wave solutions in lunar wake plasma.
'e phase portrait in Figure 1(b) is presented for V � 1.225
with specified values of other parameters. In this case, we
obtain a pair of saddle points and centers which occur at
(ϕ0, 0), (ϕ3, 0), (ϕ1, 0), and (ϕ2, 0), respectively, where ϕ1 < 0
and ϕ2,ϕ3 > 0. It shows signatures of superperiodic and
supersolitary wave structures due to the presence of SH3,1 and
SP3,1 trajectories. For V � 1.24, the existence of four fixed
points can still be seen and there exist a pair of P1,0 and H1,0
trajectories but there is no superperodicity as depicted in
Figure 1(c). Figure 1(d) is obtained for V � 1.3. In this case,
one saddle point at (ϕ0, 0) and a center at (ϕ1, 0) occur, where
ϕ1 < 0. 'ere also exist a class of P1,0 and H1,0 trajectories.
'us, the existence of supernonlinear waves (superperiodic
and supersoliton) is confirmed in lunar wake for the first time.

3.2. Perturbed Dynamical System. Recently, effect of the
Gaussian-shaped source term on nonlinear plasma waves is
investigated [27]. But, the nonlinear source term as an
external forcing can be of different types [28, 29]. In this
work, we consider a source term or perturbation as
f0 cos(ωξ). In presence of the source f0 cos(ωξ), the dy-
namical system (12) can be expressed in the following form:

dϕ
dξ

� y,

dy

dξ
� Aϕ + Bϕ2

+ Cϕ3
+ Dϕ4 + f0 cos(ωξ),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

where f0 is the strength and ω is the frequency of the ex-
ternal force.

In Figure 2, we depict possible phase plots of attractors
corresponding to system (13) for nonlinear electrostatic
structures of lunar wake. We display multistability for dif-
ferent values of ω by varying the initial condition with κ � 5,
nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025,
σi � 0.4, σp � 0.2, Vbo � 17.14, μpb � 1836, μpi � 0.25187,
V � 1.225, and f0 � 0.01. For ω � 0.08, we obtain
Figure 2(a) which shows chaotic and quasiperiodic attractors
in ϕy plane with initial conditions (0, − 0.00161) (green
curve) and (0, − 0.00327) (red curve), respectively. In
Figure 2(c), we set ω � 2.09 with specified values of other
physical parameters and detect the presence of three kinds of
attractors which are quasiperiodic, chaotic, and periodic-2
attractors. Quasiperiodic attractors are obtained for initial
conditions (− 0.049, 0.0021) (blue curve), (0, 0.011) (brown
curve), and (0.049, 0) (ocean green curve). Chaotic and
periodic-2 attractors are obtained for initial conditions
(− 0.049, − 0.001897) (magenta curve) and (0.013, 0) (black
curve), respectively. Here, Figure 2(b) is a part of attractors
shown in Figure 2(c). For ω � 1.08, we show chaotic and
periodic-1 attractors with initial conditions (0, − 0.0169)

(red curve) and (0.21, 0) (blue curve), respectively, in
Figure 2(d). 'us, multistability behaviors are confirmed in
lunar wake plasma in presence of external periodic force.

Lyapunov exponent is an effective tool to check the
chaotic motion of any system. For a system to be chaotic,
there must be at least one positive Lyapunov exponent. In
Figure 3, Lyapunov exponents are plotted against extent of
the external periodic force f0 with specified values of other
physical parameters as in Figure 2. Figures 3(a)–3(c) show
the Lyapunov exponents corresponding to the chaotic phase
trajectories shown in Figures 2(a)–2(d), respectively. From
Figure 3, it can be also observed that the fluctuations of
Lyapunov exponents are very small (near to 0) in all the
cases. So, chaos in (13) cannot be confirmed strongly by the
study of the Lyapunov exponent. A test of chaos is thus also
performed which is given in the following section.

4. Characterization of Chaos

In this section, we investigate chaos by 0 − 1 test method. In
0 − 1 test method, only one component, say x(n)N

k�1 (N being
the length of the component), of a system is considered
[23, 24]. Using the following transformation:

p(n, c) � 􏽘
n

j�1
x(j)cos(jc),

q(n, c) � 􏽘
n

j�1
x(j)sin(jc),

c ∈ (0, π).

(14)
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'e component x(n)N
k�1 is decomposed into two com-

ponents p and q. In [23, 24], it has been established that the
chaotic and nonchaotic behavior can be recognized by the
respective regular and Brownianmotion-like structure in the
corresponding (p, q)-plots. So, we investigate nature of the
(p, q)-plots for system (13) with the variation of
f0 ∈ [0, 0.012] and initial conditions Ik � (0, − k),

k ∈ [0.00161, 0.00327]. Some of the plots are shown in
Figure 4. It can be observed from Figures 4(a) and 4(b) that
the corresponding (p, q) clouds are of regular and Brownian
motion-like structures, respectively. It indicates nonchaotic
and chaotic dynamics in system (13) for the respective f0 �

0.001, 0.012 with k � 0.00161. On the contrary, both
Figures 4(c) and 4(d) show Brownian-like structure in the
corresponding plots with k � 0.00161, 0.0261 and
f0 � 0.012. 'us, Figure 4 shows chaotic as well as non-
chaotic dynamics with the variation of f0 and k.

In the next, we compute fluctuation of Kc with the
variations of f0 ∈ [0, 0.012] and k ∈ [0.00161, 0.00327],
where Kc is defined by

Kc � lim
n⟶∞

logMc(n)

log n
, (15)

where Mc(n) is defined as

Mc(n) � lim
N⟶∞

1
N

􏽘

N

j�1
pc(j + n) − pc(j)􏼂 􏼃

2

+ qc(j + n) − qc(j)􏼂 􏼃
2
.

(16)

'e values of Kc ≈ 0 and 1 correspond nonchaotic and
chaotic dynamics of the system. Figures 5(a) and 5(b) show
fluctuation of Kc over f0 ∈ [0, 0.012] (fixed k � 0.0032) and
k ∈ [0.00161, 0.00327] (fixedf0 � 0.012), respectively. From
Figure 5(a), it can be observed that the Kc ≈ 1 for
f0 ∈ [0, 0.0097], except f0 � 0.004, 0.005, 0.0055. It assures
that chaos in system (13) can only be seen at
f0 � 0.004, 0.005, 0.0055 when f0 ∈ [0, 0.0097]. Further-
more, Kc ≈ 1 can be seen for f0 ∈ [0.098, 0.12]. It confirms
chaotic dynamics in perturbed system (13) over the region
f0 ∈ [0.098, 0.12]. On the contrary, Figure 5(b) shows
Kc ≈ 1 for almost all values of k ∈ [0.00161, 0.00327] with
fixed f0 � 0.012. It confirms chaos in (13) over
k ∈ [0.00161, 0.00327]. We also investigate fluctuation of Kc

with the variation of (f0, k) ∈ [0, 0.012] × [0.00161,

0.00327]. 'e corresponding contour is given in Figure 5(c).
In Figure 5(c), most of the region shows Kc ≈ 1, except for
few closed regions. It establishes chaotic dynamics of system
(13) over [0, 0.012] × [0.00161, 0.00327], except few values
of (f0, k).

In the following section, we have investigated dynamical
complexity using weighted recurrence plot (WRP) [25].

5. Analysis of Dynamical Complexity

For a given n-dimensional phase space P � xi ∈ Rn􏼈 􏼉,
weighted recurrence w(i, j) is defined by

w(i, j) � e
− xi− xj

����
����, i, j � 1, 2, . . . , N, (17)
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Figure 1: Probable phase plots of the dynamical system (12) for κ � 5, nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025, σi � 0.4,
σp � 0.2, Vbo � 17.14, μpb � 1836, and μpi � 0.25187 with (a) V � 1.1, (b) V � 1.225, (c) V � 1.24, and (d) V � 1.3.
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where N is the length of the trajectory of the phase space.
As ‖xi − xj‖ indicates dispersion between xi and xj, w(i, j)

can measure exponential divergence between the trajec-
tories. 'e corresponding matrix [w(i, j)]N×N can thus
recognize disorder in the phase space. Figures 6(a) and
6(b) represent some of the weighted matrix plots for
system (13) with f0 � 0.001 and 0.012 (fixed k � 0.0032),
respectively. From Figure 6(a), it can be seen that range of
variation as well as its pattern in w(i, j) are very less as
compared to same in Figure 6(b). It indicates that the

corresponding phase space of system (13) at f0 � 0.012 is
more complex than the same at f0 � 0.001 for k � 0.001.
Furthermore, similar investigation is carried out for k �

0.00161, 0.00261 with fixed f0 � 0.012. 'e corresponding
weighted matrix plots are shown in Figures 6(c) and 6(d),
respectively. As variation in the weights is almost similar
between Figures 6(b) and 6(c), same kind of disorder can
be observed in the respective phase spaces. On the con-
trary, completely different as well as various patterns in
[w(i, j)] can be seen in Figure 6(d), which indicates higher
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Figure 2: Coexisting attractors of system (13) for κ � 5, nb0 � 0.01, ne0 � 0.99, ni0 � 0.05, np0 � 0.9, σb � 0.0025, σi � 0.4, σp � 0.2,
Vbo � 17.14, μpb � 1836, μpi � 0.25187, V � 1.225, and f0 � 0.01 and (a) ω � 0.08 with intial conditions (0, − 0.00161) (green curve) and
(0, − 0.00327) (red curve), (b) ω � 2.09 with intial conditions (0, 0.011) (brown curve), (0.013, 0) (black curve), and (0.049, 0) (ocean green
curve), (c) enlarged view of coexisting attractors enveloping attractors shown in Figure 2(c) with initial conditions (− 0.049, − 0.001897)

(magenta curve) and (− 0.049, 0.0021) (blue curve), and (d) for ω � 1.08 with initial conditions (0, − 0.0169) (red curve) and (0.21, 0) (blue
curve).
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Figure 3: Lyapunov exponents of system (13) of chaotic attractors corresponding to (a) Figure 2(a), (b) Figure 2(c), and (c) Figure 2(d).
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Figure 4: (a) and (b) represent (p, q)-plots for system (13) with f0 � 0.001 and 0.012, respectively. In order to calculate p and q, we choose
y-component of system (13) with the initial condition (0, − 0.0032). Same plots are represented in (c) and (d) with respect to the different
initial conditions (0, − 0.00161) and (0, − 0.00261) for fixed f0 � 0.012. In both the cases, the values of parameters are considered same as
chosen in Figure 2. In each calculation, the value of (c) is considered as (2π/3).
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Figure 5: (a) representsKc vs. f0 graph for system (13) withf0 ∈ [0, 0.013] and k � 0.00161. (b) representsKc vs. k for the same systemwith
k ∈ [0.00161, 0.00327] and f0 � 0.012. (c) represents [Kc(k, f0)] matrix plot with k ∈ [0.00161, 0.00327], f0 ∈ [0, 0.013]. 'e associated
color bar indicates values of Kc over the region [0.00161, 0.00327] × [0, 0.013]. In order to calculate Kc, we have taken n≪ ncut � (N/10).

8 Complexity



complex structure in the corresponding phase space
compared to the other cases.

However, the above mentioned analysis is not enough to
understand the complexity for the whole range. 'is is why
we utilize a complexity measure-weighted recurrence en-
tropy measure to investigate how complexity varies with the
variations of f0 and k. 'e weight recurrence entropy (Sw) is
defined as

Sw � − 􏽘
sk∈S

p sk( 􏼁logp sk( 􏼁, (18)

where p(sk) denotes probability of sk ∈ S � sk: sk �􏼈

(1/N) 􏽐M
j�1 ωkj, 1≤ k≤M} (M being number of events). In

our case, “events” means sks.
Using (18), we have computed fluctuation of Sw over

f0 ∈ [0, 0.012] and k ∈ [0.00161, 0.00327]. Corresponding
oscillations are given in Figures 7(a) and 7(b), respectively.
An increasing trend can be seen in Figure 7(a). It indicates
increasing pattern in the complexity with the increasing

f0 ∈ [0, 0.012] (fixed k � 0.0032). On the contrary, almost
parallel trend exists in Figure 7(b). It assures that, variation
in Sws does not fluctuate abruptly. So, complexity does not
differ significantly in system (13) with increasing
k ∈ [− 0.00161, − 0.00327] (fixed f0 � 0.012).

We further investigate complexity of system (13) over the
region (f0, k) ∈ [0, 0.012] × [0.00161, 0.00327]. 'e corre-
sponding contour is shown in Figure 7(c). In Figure 7, it can
be observed that higher complexity bounded regions are
very fewer compared with its complement. However, some
discrete increasing as well as decreasing patterns can be seen
in the whole contour.

So, the analysis on the novel system reveals that the
chaotic dynamics can be observed in system (13) for
large regions of f0 and k, but higher complexity can be
seen in the same system for small regions of f0 and k.
'erefore, chaos with high complexity in system (13) for
the interval (f0, k) ∈ [0, 0.012] × [0.00161, 0.00327] can be
observed.

20

40

60
Ti

m
e

0

0.01

0.02

0.03

20 40 60
Time

(a)

20

40

60

Ti
m

e

0

0.05

0.1

20 40 60
Time

(b)

20

40

60

Ti
m

e

0

0.05

0.1

20 40 60
Time

(c)

20

40

60

80

100

Ti
m

e

20 40 60
Time

0

0.05

0.1

0.15

0.2

0.25

(d)

Figure 6: (a) and (b) represent [w(i, j)] matrix plots for system (13) with f0 � 0.001 and 0.012, respectively. In order to calculate [w(i, j)]

matrix, we solve system (13) with the initial condition (0, − 0.0032). Same plots are represented in (c) and (d) with respect to the different
initial conditions (0, − 0.00161), (0, − 0.00261) for fixed f0 � 0.012. In both the cases, the values of parameters are considered same, as
chosen in Figure 2. In each calculation, we consider last 10,000 points on the trajectories.
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6. Conclusions

Phase portrait analysis of a novel dynamical system corre-
sponding to lunar wake has been performed in plasma
constituting of beam electrons, heavier ions (alpha particles,
He++), protons, and suprathermal electrons. Typical values
of physical parameters of lunar wake [3, 26] have been
applied in the unperturbed system to investigate qualita-
tively different phase portraits comprising of superperiodic,
superhomoclinic, periodic, and homoclinic trajectories.
'ese trajectories correspond to different types of nonlinear
and supernonlinear wave solutions. For an external periodic
perturbation due to the nonlinear source term, multistability
features have been confirmed in a lunar wake plasma system.

'e existence of multistability in such a plasma model is
never been reported. We have also investigated that the
system does not confirm chaos with the observations of
Lyapunov exponents as the Lyapunov exponents are close to
zero with conservative characteristics. To quantify the ex-
istence of chaos, we have constructed the 0 − 1 test. Fur-
thermore, a detailed dynamical complexity analysis has been
implemented by using weighted recurrence. 'e corre-
sponding results assure that the perturbed system (13) has
high complexity in some region inside the parametric space.

Data Availability

No data were used to support this study.
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0e Kadomtsev–Petviashvili equation is one of the well-studied models of nonlinear waves in dispersive media and in mul-
ticomponent plasmas. In this paper, the coupled Alice-Bob system of the Kadomtsev–Petviashvili equation is first constructed via
the parity with a shift of the space variable x and time reversal with a delay. By introducing an extended Bäcklund transformation,
symmetry breaking soliton, symmetry breaking breather, and symmetry breaking lump solutions for this system are presented
through the established Hirota bilinear form. According to the corresponding constants in the involved ansatz function, a few
fascinating symmetry breaking structures of the presented explicit solutions are shown.

1. Introduction

0e localized excitations in nonlinear evolution equations
have been studied widely, which were originated from many
scientific fields, such as fluid dynamics, plasma physics,
superconducting physics, condensed matter physics, and
optical problems. Explicitly, the inverse scattering method
[1], the Darboux transformation and the Bäcklund trans-
formation [2, 3], the Painlevé analysis approach [4–6], the
Hirota bilinear method [7, 8], and the generalized bilinear
method [9] are among important approaches for studying
these structures, especially solitary waves and solitons.

Owing to the idea of the parity-time reversal (PT)
symmetry, the nonlinear Schrödinger (NLS) equation

iAt + Axx ± A
2
B � 0,

B � 􏽢fA � 􏽢P􏽢CA � A
∗
(− x, t),

(1)

(where the operators 􏽢P and 􏽢C are the usual parity and charge
conjugation) was introduced and investigated [10]. Based on
this, the revolutionary works, which named the Alice-Bob
(AB) systems to describe two-place physical problems, were
made by Lou recently [11, 12]. 0e technical approach
originated from the so-called 􏽢P-􏽢T-􏽢C principle with 􏽢P (the
parity), 􏽢T (time reversal), and 􏽢C (charge conjugation)
[11–25]. From this, a general Nth Darboux transformation
for the AB-mKdV equation was constructed [13]. By using
this Darboux transformation, some types of 􏽢P􏽢T symmetry
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breaking solutions including soliton and rogue wave solu-
tions were explicitly obtained. Combined with their Hirota
bilinear forms, prohibitions caused by nonlocality for
nonlocal Boussinesq-KdV type systems were investigated
[14]. 0e two/four-place nonlocal Kadomtsev–Petviashvili
(KP) equation were also explicitly solved for special types of
multiple soliton solutions via a 􏽢P-􏽢T-􏽢C symmetric-anti-
symmetric separation approach [15]. From the viewpoint of
physical phenomena in climate disasters, a special ap-
proximate solution was applied to theoretically capture the
salient features of two correlated dipole blocking events in
atmospheric dynamical systems and the original two-vortex
interaction was given to describe two correlated dipole
blocking events with a lifetime through the models estab-
lished from the nonlinear inviscid dissipative and equivalent
barotropic vorticity equation in a b-plane [21, 22]. Also, a
concrete AB-KdV system established from the nonlinear
inviscid dissipative and barotropic vorticity equation in a
β-plane channel was applied to the two correlated monople
blocking events, which were responsible for the snow di-
saster in the winter of 2007/2008 that happened in Southern
China [18]. Meanwhile, the expression

f � 􏽘
]{ }

K ]{ } cosh
1
2

􏽘

N

i�1
]iξi

⎛⎝ ⎞⎠, (2)

plays a crucial role in constructing analytical group invariant
multisoliton solutions of the AB systems, including the
KdV-KP-Toda type, mKdV-sG type, NLS type, and discrete
H1 type AB systems [11–16, 18].

In this paper, we consider the KP equation (3) as an
illustrative example, which is one of the well-studied models
of nonlinear waves in dispersive media [26, 27] and in
multicomponent plasmas [28]. In the immovable laboratory
coordinate frame, it can be presented in the form

ut + cux + αuux + βuxxx( 􏼁x +
c

2
uyy � 0, (3)

where c is the velocity of long linear perturbations and α and
β are the nonlinear and dispersive coefficients which are
determined by specific types of wave and medium
properties.

0e rest of this paper is organized as follows. In Section
2, an AB-KP system is constructed based on equation (3) and
its Hirota bilinear form is presented through an extended
Bäcklund transformation. In Section 3, symmetry breaking
soliton, symmetry breaking breather, and symmetry
breaking lump solutions are generated through the estab-
lished Hirota bilinear form, according to the corresponding
constants of the involved ansatz function. Some conclusions
are given in the final section.

2. An AB-KP System and Its Bäcklund
Transformation and Bilinear Form

Based on the principle of the AB system in Refs. [11, 12],
after substituting u � 1/2(A + B) into equation (3), the AB-
KP initial equation is

Axt + Bxt +
1
2
α Ax + Bx( 􏼁

2
+ c +

1
2
α(A + B)􏼔 􏼕 Axx + Bxx( 􏼁

+ β Axxxx + Bxxxx( 􏼁 +
c

2
Ayy + Byy􏼐 􏼑 � 0,

(4)

which can be split into the coupled equations

Axt +
α
4

Ax + Bx( 􏼁
2

+ cAxx +
α
4

(A + B) Axx + Bxx( 􏼁

+ βAxxxx +
c

2
Ayy + G(A, B) � 0,

(5a)

Bxt +
α
4

Ax + Bx( 􏼁
2

+ cBxx +
α
4

(A + B) Axx + Bxx( 􏼁

+ βBxxxx +
c

2
Byy − G(A, B) � 0,

(5b)

where B is related to A through B � 􏽢P
x

s
􏽢TdA �

A(− x + x0, y, − t + t0) (􏽢P
x

s
􏽢Td expresses parity with a shift of

the space variable x and time reversal with a delay), and
G(A, B) is an arbitrary function of A and B, but should be
􏽢P

x

s
􏽢Td invariant. 0at is, G(A, B) � 􏽢P

x

s
􏽢TdG(A, B). Although

there are infinitely many functions satisfying this, we take a
nontrivial function G(A, B) as

G(A, B) �
α
2

A
2
x + AAxx − B

2
x − BBxx􏼐 􏼑, (6)

at present, and equation (5) is reduced to the following AB-
KP system:

Axt +
α
4

Ax + Bx( 􏼁 3Ax − Bx( 􏼁 +
α
4

(A − B)Bxx

+
α
4

(3A + B) + c􏼔 􏼕Axx + βAxxxx +
c

2
Ayy � 0,

(7a)

Bxt −
α
4

Ax + Bx( 􏼁 Ax − 3Bx( 􏼁 −
α
4

(A − B)Axx

+
α
4

(A + 3B) + c􏼔 􏼕Bxx + βBxxxx +
c

2
Byy � 0.

(7b)

In fact, this AB-KP system can also be derived as a special
reduction of the coupled KP system:

At + c1A + c2B( 􏼁x + c3A + c4B( 􏼁xxx + c5A + c6B( 􏼁Ax􏼂

+ c7A + c8B( 􏼁Bx]x + c9Ayy � 0,

(8a)

Bt + c1B + c2A( 􏼁x + c3B + c4A( 􏼁xxx + c5B + c6A( 􏼁Bx􏼂

+ c7B + c8A( 􏼁Ax]x + c9Byy � 0,

(8b)

by taking the reduction condition B � 􏽢P
x

s
􏽢TdA � A(− x + x0,

y, − t + t0) and letting the arbitrary constants
ci(i � 1, 2, . . . , 9) with
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c1 � c,

c2 � c4 � 0,

c3 � β,

c5 �
3α
4

,

c6 � c7 �
α
4

,

c8 � −
α
4

,

c9 �
c

2
.

(9)

Now, we introduce an extended Bäcklund
transformation:

A �
12β
α

(lnf)xx + b1(lnf)xxx + b2(lnf)xxt,

B �
12β
α

(lnf)xx − b1(lnf)xxx − b2(lnf)xxt,

(10)

where b1 and b2 are arbitrary constants and f ≡ f(x, y, t) is
a new function of variables x, y, and t, satisfying the in-
variant condition

f(x, y, t) � 􏽢P
x

s
􏽢Tdf(x, y, t) � f − x + x0, y, − t + t0( 􏼁.

(11)

When b1 � 0 and b2 � 0, equation (10) becomes the
standard Bäcklund transformation of equation (3).
Substituting the transformation equation (10) into equation
(7), we obtain a bilinear form of equation (7) as follows:

DxDt + cD
2
x + βD

4
x +

c

2
D

2
y􏼒 􏼓(f · f) � 0, (12)

whereD4
x and D2

y are the Hirota bilinear derivative operators
defined by [7, 8]

D
m
x D

n
yD

l
t(f · g) �

z

zx
−

z

zx′
􏼠 􏼡

m
z

zy
−

z

zy′
􏼠 􏼡

n
z

zt
−

z

zt′
􏼠 􏼡

l

× f(x, y, t)g x′, y′, t′( 􏼁|x′�x,y�y′ ,t′�t.

(13)

According to the properties of the Hirota bilinear op-
erator, equation (12) reads

2 ffxt − fxft( 􏼁 + 2c ffxx − f
2
x􏼐 􏼑

+ 2β ffxxxx − 4fxfxxx + 3f
2
xx􏼐 􏼑 + c ffyy − f

2
y􏼐 􏼑 � 0,

(14)

which is also the Hirota bilinear form of equation (3).
As we know, the Hirota bilinear method is direct and

effective for constructing exact solutions, in which a given
nonlinear equation is converted to a bilinear form through
an appropriate transformation. With different types of
ansatz for the auxiliary function, a variety of soliton, rational,

and periodic solutions of the nonlinear equation can be
derived.

3. Symmetry Breaking Soliton, Breather, and
Lump Solutions

In this section, we turn our attention to the Hirota bilinear
form (12) of the AB-KP systems (7a) and (7b) to derive
symmetry breaking soliton, symmetry breaking breather,
and symmetry breaking lump solutions.

3.1. Symmetry Breaking Soliton Solutions. Based on the bi-
linear form (12), we can first determine symmetry breaking
soliton solutions through the Bäcklund transformation (10)
of the AB-KP systems (7a) and (7b) with the function f being
written as a summation of some special functions
[11–16, 18]:

f � fN � 􏽘
]{ }

K ]{ } cosh
1
2

􏽘

N

i�1
]iξi

⎛⎝ ⎞⎠,

ξi � ki x −
x0

2
􏼒 􏼓 + piy − c + k

2
i β +

cp2
i

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + ηi0,

(15)

where ]{ } � ]1, ]2, . . . , ]N􏼈 􏼉, with vi � ±1, and
ki, pi, ηi0(i � 1, 2, . . . , N), c, x0, and t0 are undetermined
constants, while

K ]{ } � 􏽙
N

i<j

������������������������

c pi − pj􏼐 􏼑
2

− 6β ki − ]i]jkj􏼐 􏼑
2

􏽲

. (16)

For N � 1, equation (15) takes the form

f � f1 � cosh
ξ1
2

􏼠 􏼡,

ξ1 � k1 x −
x0

2
􏼒 􏼓 + p1y − c + k

2
1β +

cp2
1

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + η10.

(17)

However, the invariant condition (11) of this function f
(17) is not satisfied for the constants k1, p1, c, x0, t0, and η10
being not all zero. It means that it is impossible to get any
nontrivial symmetry breaking single soliton solution of
equation (12) through (10).

0e same circumstance happens when N � 3, in which
the function f of equation (15) is

f � f3 � K{} cosh
1
2

ξ1 + ξ2 + ξ3( 􏼁􏼚 􏼛

+ K 1{ } cosh
1
2

ξ1 − ξ2 − ξ3( 􏼁􏼚 􏼛

+ K 2{ } cosh
1
2

ξ1 − ξ2 + ξ3( 􏼁􏼚 􏼛

+ K 3{ } cosh
1
2

ξ1 + ξ2 − ξ3( 􏼁􏼚 􏼛,

(18)
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where

K{} � a
−
12a

−
13a

−
23,

K 1{ } � a
+
12a

+
13a

−
23,

K 2{ } � a
+
12a

−
13a

+
23,

K 3{ } � a
−
12a

+
13a

+
23,

(19a)

ξi � ki x −
x0

2
􏼒 􏼓 + piy − c + k

2
i β +

cp2
i

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + ηi0,

aij
±

�

����������������������

c pi − pj􏼐 􏼑
2

− 6β ki ± kj􏼐 􏼑
2

􏽲

, i, j � 1, 2, 3.

(19b)

Furthermore, one can verify that, for any odd N � 2n − 1
(n is a positive integer), the function f (15) does not satisfy
the invariant condition in equation (11). In other words,
symmetry breaking soliton solutions of odd orders for the
AB-KP systems (7a) and (7b) are prohibited.

For N � 2, equation (15) becomes

f � f2 � K{} cosh
ξ1 + ξ2( 􏼁

2
􏼠 􏼡 + K 1{ } cosh

ξ1 − ξ2( 􏼁

2
􏼠 􏼡,

(20)

where

K{} �

����������������������

c p1 − p2( 􏼁
2

− 6β k1 − k2( 􏼁
2

􏽱

,

K 1{ } �

����������������������

c p1 − p2( 􏼁
2

− 6β k1 + k2( 􏼁
2

􏽱

.

(21)

By fixing the real parameters,

k2 � ±k1,

p2 � − p1,

η20 � ∓η10,

(22)

the invariant condition in equation (11) is satisfied. Cor-
respondingly, by writing

f � f2 �

���

cp2
1

􏽱

cosh k1 x −
x0

2
􏼒 􏼓 − c + k

2
1β +

cp2
1

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣􏼨 􏼩

+

���������

cp2
1 − 6βk2

1

􏽱

cosh k1p1y + η10( 􏼁,

(23)

a symmetry breaking two-soliton solution of equations (7a)
and (7b) are expressed as

A �
12β
α

lnf2( 􏼁xx + b1 lnf2( 􏼁xxx + b2 lnf2( 􏼁xxt,

B �
12β
α

lnf2( 􏼁xx − b1 lnf2( 􏼁xxx − b2 lnf2( 􏼁xxt.

(24)

Figure 1 shows the symmetry breaking two-soliton
structure of solution (24) with the parameters being taken as

α � k1 � p1 � 1,

β �
1
6
,

c � 4,

x0 � t0 � η10 � 0.

(25)

Meanwhile, Figure 1(a) describes a standard two-soliton
structure (b1 � b2 � 0) for solution (24) at time t � 0. Under
this special condition, the solution A coincides with the
solution B exactly. Figures 1(b) and 1(c) are two symmetry
breaking two-soliton structures for solution (24) with the
selected parameters b1 � b2 � 10 at time t � 0. Obviously,
Figure 1(c) depicts a reversal structure of Figure 1(b) by the
solution B which is 􏽢P

x

s
􏽢Td symmetry of the solution A for the

AB-KP systems (7a) and (7b). 0is corresponds to the
phenomenon that the shifted parity and delayed time re-
versal are applied to describe two-place events [11, 12].0ese
structures are realized via the symbolic computation soft-
ware Maple efficiently.

For N � 4, the function f of equation (15) can be re-
written regularly as

f � f4 � K{} cosh
1
2

ξ1 + ξ2 + ξ3 + ξ4( 􏼁􏼚 􏼛 + K 1{ } cosh
1
2

− ξ1 + ξ2 + ξ3 + ξ4( 􏼁􏼚 􏼛

+ K 2{ } cosh
1
2

ξ1 − ξ2 + ξ3 + ξ4( 􏼁􏼚 􏼛 + K 3{ } cosh
1
2

ξ1 + ξ2 − ξ3 + ξ4( 􏼁􏼚 􏼛

+ K 4{ } cosh
1
2

ξ1 + ξ2 + ξ3 − ξ4( 􏼁􏼚 􏼛 + K 23{ } cosh
1
2

ξ1 − ξ2 − ξ3 + ξ4( 􏼁􏼚 􏼛

+ K 24{ } cosh
1
2

ξ1 − ξ2 + ξ3 − ξ4( 􏼁􏼚 􏼛 + K 34{ } cosh
1
2

ξ1 + ξ2 − ξ3 − ξ4( 􏼁􏼚 􏼛,

(26)
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where

K{} � a
−
12a

−
13a

−
14a

−
23a

−
24a

−
34,

K 1{ } � a
+
12a

+
13a

+
14a

−
23a

−
24a

−
34,

K 2{ } � a
+
12a

−
13a

−
14a

+
23a

+
24a

−
34,

K 3{ } � a
−
12a

+
13a

−
14a

+
23a

−
24a

+
34,

K 4{ } � a
−
12a

−
13a

+
14a

−
23a

+
24a

+
34,

K 23{ } � a
+
12a

+
13a

−
14a

−
23a

+
24a

+
34,

K 24{ } � a
+
12a

−
13a

+
14a

+
23a

−
24a

+
34,

K 34{ } � a
−
12a

+
13a

+
14a

+
23a

+
24a

−
34,

ξi � ki x −
x0

2
􏼒 􏼓 + piy − c + k

2
i β +

cp2
i

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + ηi0,

aij
±

�

����������������������

c pi − pj􏼐 􏼑
2

− 6β ki ± kj􏼐 􏼑
2

􏽲

, i, j � 1, 2, 3, 4.

(27)

After finishing some detailed analysis, there are two
independent real parameter selections of the symmetry
breaking four-soliton solution for (7a) and (7b), which are

k3 � ±k1,

k4 � ±k2,

p3 � − p1,

p4 � − p2,

η30 � ∓η10,

η40 � ∓η20,

(28)

with B � 􏽢Ps
􏽢TdA � A(− x + x0, y � y, − t + t0). Based on

these restrictions in (28), we have

a23
±

� a14
±

,

a34
±

� a12
±

,

K 3{ } � K 1{ },

K 4{ } � K 2{ }.

(29)

At this time, the symmetry breaking four-soliton solu-
tion of the AB-KP systems (7a) and (7b) is

A �
12β
α

lnf4( 􏼁xx + b1 lnf4( 􏼁xxx + b2 lnf4( 􏼁xxt,

B �
12β
α

lnf4( 􏼁xx − b1 lnf4( 􏼁xxx − b2 lnf4( 􏼁xxt,

(30)
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Figure 1: 0e symmetry breaking two-soliton solution (24) of the AB-KP systems (7a) and (7b), with the selecting parameters b1 and b2 are
(a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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where

f4 � K{} cosh ζ+
1 + ζ+

2( 􏼁 + K 1{ } cosh ζ −
1 + ζ+

2( 􏼁 + cosh ζ −
1 − ζ+

2( 􏼁􏼂 􏼃

+ K 2{ } cosh ζ+
1 + ζ −

2( 􏼁 + cosh ζ+
1 − ζ −

2( 􏼁􏼂 􏼃

+ K 23{ } cosh ζ −
1 − ζ −

2( 􏼁 + K 24{ } cosh ζ+
1 − ζ+

2( 􏼁

+ K 34{ } cosh ζ −
1 + ζ −

2( 􏼁,

(31)

with

ζ1
±

�
1
2

ξ1 ± ξ3( 􏼁,

ζ2
±

�
1
2

ξ2 ± ξ4( 􏼁.

(32)

If setting α� k1 � p1 � 1, β� 1/6, c � − 5,k2 � − p2 � 6/5,
and x0 � t0 � η10 � η20 � 0, we can depict the abovementioned
symmetry breaking four-soliton structure in (Figure 2). 0e
similar situation is as follows: Figure 2(a) is the standard four-
soliton structure (b1 � b2 � 0) for the solution A � B at time
t � 0. Figures 2(b) and 2(c) are two symmetry breaking four-
soliton structures for the solution A and B, respectively, with
the selected parameters b1 � b2 � 10 at time t � 0.

3.2. Symmetry Breaking Breather Solutions. When taking
p1 � p0I (p0 is a real constant and I is the imaginary unit,
I2 � − 1), a symmetry breaking breather solution of the AB-
KP systems (7a) and (7b) can read

A �
12β
α

lnfb( 􏼁xx + b1 lnfb( 􏼁xxx + b2 lnfb( 􏼁xxt,

B � 􏽢P
x

s
􏽢TdA � A − x + x0, y, − t + t0( 􏼁,

(33)

with the ansatz function

f � fb �

����

− cp2
0

􏽱

cosh k1 x −
x0

2
􏼒 􏼓 − c + k

2
1β −

cp2
0

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣􏼨 􏼩

+

����������

− cp2
0 − 6βk2

1

􏽱

cosh k1p0Iy + η10( 􏼁,

(34)

from equation (23).
By some constraints to the parameters in this solution, a

family of analytical breather solutions can be generated. For
example, when taking the real constants

c � − 4,

α � k1 � 1,

β �
1
6
,

p0 � 2,

x0 � t0 � η10 � 0,

(35)

equation (34) becomes

f � fb � 4 cosh x −
25
6

t􏼒 􏼓 +
��
15

√
cos(2y), (36)

according to Euler’s formula. 0is function indicates that the
solution has two wave components, that is, a regular solitary
wave with the propagating speed − 25/6 and a periodic wave
with period π. Figure 3 is a density plot of the breathers
defined by equation (36) with the parameters in (35).
Figure 3(a) is the standard first-order breather structure (b1 �

b2 � 0) for the solution A � B � 8(
��
15

√
cos(2y)coshx + 4)/

(4 coshx +
��
15

√
cos(2y))2 at time t � 0. Figures 3(b) and 3(c)

are two symmetry breaking breather structures for the so-
lution A, B � 8(

��
15

√
cos(2y)cos hx+ 4)/(4 coshx +

��
15

√
cos

(2y))2 ± 95 sinhx(32 + 4
��
15

√
cos(2y)coshx − 15 cos2(2y))/

(4 coshx +
��
15

√
cos(2y))3, with the selected parameters b1 �

b2 � 10 at time t � 0. As these solutions combine the trigo-
nometric cosine function with hyperbolic sine/cosine func-
tions, the property of these functions describes the symmetry
breaking breather structures [29, 30].

In the abovementioned situation, when taking the constants

c � − 4,

α � 1,

β �
1
6
,

k1 � I,

p0 � 2,

x0 � t0 � η10 � 0,

(37)

equation (34) has the expression

f � fb �
��
16

√
cos x −

23
6

t􏼒 􏼓 +
��
17

√
cosh(2y). (38)

Figure 4 is a density plot of the breathers described
according to equation (38) under the parameter selection
(37). 0at is, when the parameter k1 also takes the imaginary
unit I, the x-periodic symmetry breaking breathers of the
AB-KP systems (7a) and (7b) are formed.

0e abovementioned idea can be extended to solution
(30). After setting the parameters

c � − 5,

α � k1 � 1,

β �
1
6
,

k2 �
1
2
,

p1 � I,

p2 � − 2I,

x0 � t0 � η10 � η20 � 0,

c � − 4,

α � 1,

β �
1
6
,

k1 � p1 � − p2 � I,

k2 � − 2I,

x0 � t0 � η10 � η20 � 0,

(39)

6 Complexity



–10

–5

0

5

10

x
–10

–5
0

5
10

y

0

0.5

1

A

(a)

–10

–5

0

5

10

x
–10

–5
0

5
10

y

–20

0

20

A

(b)

–10

–5

0

5

10

x–10
–5

0
5

10
y

–20

0

20

B

(c)

Figure 2:0e symmetry breaking four-soliton solution (30) of the AB-KP systems (7a) and (7b), with the selecting parameters b1 and b2 are
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–6

–4

–2

0

2

4

6

y

–4 –2 0 2 4
x

(a)

–6

–4

–2

0

2

4

6

y

–4 –2 0 2 4
x

(b)

Figure 3: Continued.

Complexity 7



the y-periodic and x-periodic second-order breather so-
lutions can be derived, which are symmetry breaking
(Figures 5 and 6, respectively).

3.3. Symmetry Breaking Lump Solutions. As we know, the
lump solution is expressed by the rational function which is
localized in all directions in the space. Based on the long-wave

–6

–4

–2

0

2

4

6

y

–4 –2 0 2 4
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(c)

Figure 3: 0e density plot of the y-periodic symmetry breaking breathers of the AB-KP systems (7a) and (7b), with the selected parameters
b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.

–4

–2

0

2

4

6

y

–10 –5 0 5 10
x

(a)

–4

–2

0

2

4

6

y

–10 –5 0 5 10
x

(b)

–4

–2

0

2

4

6

y

–10 –5 0 5 10
x

(c)

Figure 4:0e density plot of the x-periodic symmetry breaking breather of the AB-KP systems (7a) and (7b), with the selected parameters b1
and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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Figure 5: 0e y-periodic symmetry breaking density plot of the second-order breathers of the AB-KP systems (7a) and (7b), with the
selected parameters b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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limit idea of generating lump solutions to nonlinear equa-
tions, we derive this kind of solutions of the AB-KP systems
(7a) and (7b) by taking a long-wave limit. After putting

k1 � δ1ϵ1,

k2 � δ2ϵ2,

η10 � η20 � Iπ,

(40)

into the bilinear function (20) and setting the limit
ϵ1⟶ 0, ϵ2⟶ 0, the function f can be obtained:

f � fl � δ1δ2 x −
x0

2
+ p1y − c 1 +

p2
1
2

􏼠 􏼡 t −
t0

2
􏼒 􏼓􏼢 􏼣

· x −
x0

2
+ p2y − c 1 +

p2
2
2

􏼠 􏼡 t −
t0

2
􏼒 􏼓􏼢 􏼣 +

24δ1δ2β
c p1 − p2( 􏼁

2.

(41)

When letting

p1 �
a2 + a5I

δ1
,

p2 �
a2 − a5I

δ2
,

δ1 � a1 + a4I,

δ2 � a1 − a4I,

(42)

equation (41) can be arranged in

f � fl � g
2

+ h
2

+ a7,

g � a1 x −
x0

2
􏼒 􏼓 + a2y + a3 t −

t0

2
􏼒 􏼓,

h � a4 x −
x0

2
􏼒 􏼓 + a5y + a6 t −

t0

2
􏼒 􏼓,

(43)

where ai(1≤ i≤ 7) are all real parameters to be determined.
Note that the function f in equation (43) is positive if the
parameter a7 > 0. Combining equation (43) with equations
(11) and (12), the constraining relations of these parameters
are

a3 �
a1c a2

2 − 2a2
4( 􏼁

2a2
4

,

a5 � −
a1a2

a4
,

a6 �
c a2

2 − 2a2
4( 􏼁

2a4
,

a7 � −
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

,

(44)

where all the denominators are nonzero.
0is time, solution (10) becomes

A �
12β
α

ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xx

+ b1 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxx

+ b2 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxt

,

(45a)

B �
12β
α

ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xx

− b1 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxx

− b2 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxt

,

(45b)
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Figure 6: 0e x-periodic symmetry breaking density plot of the second-order breathers of the AB-KP systems (7a) and (7b), with the
selected parameters b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.

10 Complexity



where the functions g and h are given as follows:

g � a1 x −
x0

2
􏼒 􏼓 + a2y +

a1c a2
2 − 2a2

4( 􏼁

2a2
4

t −
t0

2
􏼒 􏼓,

h � a4 x −
x0

2
􏼒 􏼓 −

a1a2

a4
y +

c a2
2 − 2a2

4( 􏼁

2a4
t −

t0

2
􏼒 􏼓,

(46)

with c, a1, a2, a4, x0, and t0 being some free real constants.
Obviously, this set of solution (45a) and (45b) represents
solitary waves in the form of rational structures, which is a
family of two-wave solutions with different velocities and
directions due to the linear functions g and h of the three
variables x, y, and t.

If the constants are taken as a1 � a4 � − 1, a2 � c �

α � 1, β � 1/6, and x0 � t0 � 0, equation (43) becomes

f � fl � x − y −
t

2
􏼒 􏼓

2
+ x + y −

t

2
􏼒 􏼓

2
− 2, (47)

according to equation (44). Figure 7 is a density plot of the
lumps by equation (36) under the abovementioned pa-
rameter selection. Figure 7(a) is a normal first-order lump
structure (b1 � b2 � 0) for the solution A � B � − 4(x2 −

y2 + 1)/(x2 + y2 − 1)2 at time t � 0. Figures 7(b) and 7(c)
are two symmetry breaking lump structures for the solution
A, B � − 4(x2 − y2 + 1)/(x2 + y2 − 1)2 ± 20x(x2 + 3x − 3y2)/
(x2 + y2 − 1)3, with the selected parameters b1 � b2 � 10, at
time t � 0. As these solutions are all rational functions, the
property of these functions describes symmetry breaking
lump structures.

Furthermore, if we take ki � δiϵi, ηi0 � πI, i � 1, 2, 3, 4,
and

p1 � 1 + I,

p2 � 1 − I,

p3 � − p1,

p4 � − p2,

δ3 � δ1,

δ4 � δ2,

(48)

after setting the limit ϵi⟶ 0, i � 1, 2, 3, 4, the function f
(26) can be simplified into
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Figure 7: 0e density plot of the symmetry breaking lumps of the AB-KP systems (7a) and (7b), with the selected parameters b1 and b2 are
(a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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f � fl � c
2

x −
x0

2
􏼒 􏼓

4
+ 4y

4
+ 4c

4
t −

t0

2
􏼒 􏼓

4
􏼢 􏼣

− 4c
3

x −
x0

2
􏼒 􏼓

3
t −

t0
2

􏼒 􏼓 + 8c
4

x −
x0

2
􏼒 􏼓

2
t −

t0
2

􏼒 􏼓
2

− 4c
2

x −
x0

2
􏼒 􏼓 t −

t0

2
􏼒 􏼓 2c

3
t −

t0

2
􏼒 􏼓

2
− 2cy

2
− 3β􏼢 􏼣

− 4c
3 2cy

2
+ 3β􏼐 􏼑 t −

t0

2
􏼒 􏼓

2
− 36cβy

2
+ 81β2.

(49)

Figure 8 shows the second-order lump structures when
c � − 4, α � 1, β � 1/6, and x0 � t0 � η10 � η20 � 0, which
are symmetry breaking.

4. Conclusion

As everyone knows, the two-place correlated physical events
widely exist in the field of natural science, and the discussed
AB physics (two-place physics) has a profound influence on
other scientific fields. In this work, by establishing a special

AB-KP system via the parity with a shift of the space variable
x and time reversal with a delay, some group invariant
solutions, such as symmetry breaking soliton, symmetry
breaking breather, and symmetry breaking lump solutions
have been presented through introducing an extended
Bäcklund transformation and the established Hirota bilinear
form. At the same time, the corresponding symmetry
breaking structures of these explicit solutions are depicted
according to the ansatz functions.

In fact, these are the following few open problems.
Firstly, we may investigate more local and nonlocal sym-
metry breaking structures, such as the cnoidal wave and
rogue wave through expression (2). Secondly, the arbitrary
function G(A, B) of A and B (which should be 􏽢P

x

s
􏽢Td in-

variant) is diverse, although we take G(A, B) � (α/2)(A2
x +

AAxx − B2
x − BBxx) in this paper. 0irdly, algebraic struc-

tures involving the related Lie point symmetry and Lie-
Bäcklund symmetry reductions, and Bäcklund transfor-
mations determined by residual symmetries may be dis-
cussed mathematically for the AB-KP systems (7a) and (7b).
Finally, the 􏽢P

x

s
􏽢Td symmetry of this paper could be gener-

alized to other nonlinear systems by taking the specific el-
ements of the larger 􏽢Ps

􏽢Td
􏽢C symmetry group [15].
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Figure 8: 0e symmetry breaking density plot of the second-order lumps of the AB-KP systems (7a) and (7b), with the selected parameters
b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 5, at time t � 0.
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In this paper, we are concerned with a linear thermoelastic laminated Timoshenko beam, where the heat conduction is given by
Cattaneo’s law. We firstly prove the global well posedness of the system. For stability results, we establish exponential and
polynomial stabilities by introducing a stability number χ.

1. Introduction

In this paper, we address the following thermoelastic lam-
inated Timoshenko beam in (0, 1) × (0,∞):

ρωtt + G ψ − ωx( 􏼁x + δθx � 0,

Iρ(3s − ψ)tt − D(3s − ψ)xx − G ψ − ωx( 􏼁 � 0,

Iρstt − Dsxx + G ψ − ωx( 􏼁 +
4
3

cs +
4
3
βst � 0,

ρ3θt + qx + δωxt � 0,

τqt + αq + θx � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

which subject to the following boundary conditions:

ωx(0, t) � ψ(0, t) � s(0, t) � θ(0, t) � 0, t ∈ (0,∞),

ωx(1, t) � ψ(1, t) � s(1, t) � θ(1, t) � 0, t ∈ (0,∞),

⎧⎪⎨

⎪⎩

(2)

and initial conditions

ω(x, 0) � ω0(x),ψ(x, 0) � ψ0(x), s(x, 0) � s0(x), θ(x, 0) � θ0(x), x ∈ (0, 1),

q(x, 0) � q0(x),ωt(x, 0) � ω1(x),ψt(x, 0) � ψ1(x), st(x, 0) � s1(x), x ∈ (0, 1),
􏼨 (3)

where ρ, G, Iρ, D, c, β, ρ3, δ, τ, and α are positive constants.
θ(x, t) represents the difference temperature and q(x, t) is
the heat flux.

Laminated beam, which is a relevant research subject due
to the high applicability of such materials in the industry,
was firstly introduced by Hansen and Spies, see, for instance
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[1, 2]. (ey introduced a mathematical model for two-lay-
ered beams with structural damping due to the interfacial
slip which is given by

ρωtt + G ψ − ωx( 􏼁x � 0,

Iρ 3stt − ψtt( 􏼁 − G ψ − ωx( 􏼁 − D 3sxx − ψxx( 􏼁 � 0,

Iρstt + G ψ − ωx( 􏼁 +
4
3

cs +
4
3
βst − Dsxx � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where the coefficients ρ, G, Iρ, D, c, and β are positive con-
stants and represent density, shear stiffness, mass moment of
inertia, flexural rigidity, adhesive stiffness, and adhesive
damping parameter, respectively. (e function ω(x, t) de-
notes the transversal displacement, ψ(x, t) represents the
rotational displacement, and s(x, t) is proportional to the
amount of slip along the interface at time t and longitudinal

spatial variable x. (e third equation describes the dynamics
of the slip.

Up till now, there are some results concerning laminated
beam equations, which are mainly concerned with global
existence and stability of the related system. By adding
suitable damping effects, such as internal damping,
(boundary) frictional damping, and viscoelastic damping, it
was shown that if the linear damping terms are added in two
of the three equations, system (4) is exponentially stable
under the “equal wave speeds” assumption (ρ/Iρ) � (G/D).
But if the damping terms are added in the three equations,
then the system decays exponentially without the equal wave
speeds assumption, see, for example, [3–17]. For thermo-
elastic laminated Timoshenko beam, there are few published
works, we can mention the results due to Liu and Zhao [18]
and Apalara [19]. In [18], the authors considered the fol-
lowing laminated beams with past history

ρφtt + G ψ − φx( 􏼁x + θx � 0,

Iρ(3ω − ψ)tt − D(3ω − ψ)xx + 􏽚
∞

0
g(s)(3ω − ψ)xx(t − s)ds − G ψ − φx( 􏼁 − θ � 0,

Iρωtt − Dωxx + G ψ − φx( 􏼁 +
4
3

cω +
4
3
βωt � 0,

kθt − τθxx + φxt +(3ω − ψ)t � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

together with the following boundary conditions:
φx(0, t) � ψ(0, t) � ω(0, t) � θ(0, t) � 0, t ∈ (0,∞),

φ(1, t) � ψx(1, t) � ωx(1, t) � θx(1, t) � 0, t ∈ (0,∞).
􏼨

(6)

(ey firstly proved the global well posedness of solutions
to the system.(emain results are the stability of the system.
If β≠ 0, they proved the exponential and polynomial sta-
bilities depending on the behavior of the kernel function g

only. If β � 0, they established exponential stability in case of
equal wave speeds assumption and lack of exponential
stability in case of nonequal wave speeds assumption.
Apalara [19] considered a laminated beam with second
sound of the form

ρωtt + G ψ − ωx( 􏼁x � 0,

Iρ(3s − ψ)tt − D(3s − ψ)xx − G ψ − ωx( 􏼁 + δθx � 0,

Iρstt − Dsxx + G ψ − ωx( 􏼁 +
4
3

cs +
4
3
βst � 0,

ρ3θt + qx + δ(3s − ψ)xt � 0,

τqt + αq + θx � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

together with the following boundary conditions:
ωx(0, t) � ψ(0, t) � s(0, t) � q(0, t) � 0, t ∈ (0,∞),

ω(1, t) � ψx(1, t) � sx(1, t) � θ(1, t) � 0, t ∈ (0,∞),
􏼨

(8)

and proved the global well posedness and established ex-
ponential and polynomial stabilities depending on the
parameter

χτ � 1 −
τρ3G
ρ

􏼠 􏼡
D

Iρ
−

G

ρ
􏼠 􏼡 −

τGδ2

ρIρ
. (9)

One can also refer to two recent results of laminated
beams with thermal damping in [20, 21], and a result of a
coupled hyperbolic equations with a heat equation of second
sound in [22].

When s � 0, system (4) reduces to the well-known
Timoshenko system, which have been widely studied. (ere
are so many papers on the Timoshenko system in the lit-
erature, most of those results recover the global well pos-
edness, stability, and long-time dynamics by adding some
kinds of damping. Here, we recall some works on the
thermoelastic Timoshenko system. Muñoz Rivera and Racke
[23] considered a Timoshenko system with thermoelastic
dissipation and established exponential stability in case of
equal wave speed assumption and polynomial stability if
wave speeds are nonequal. Almeida Júnior et al. [24] studied

2 Complexity



a thermoelastic Timoshenko beam acting on shear force.
(ey obtained the same stability results as in [23]. In ad-
dition, they proved that the polynomial decay is optimal.
Fernández Sare and Racke [25] considered a Timoshenko
system with second sound. (ey proved that the system is
not exponentially stable even if the propagation speeds are
equal. (e results were generalized by Guesmia et al. [26].
Recently, Santos et al. [27] introduced a stability number χr

for the system in [25] and established the exponential decay
result for χr � 0 and polynomial decay for χr ≠ 0 by using the
semigroupmethod. One can also find a stability result for the
Timoshenko system with second sound in Apalara et al. [28].
Feng [29] considered a Timoshenko-Coleman-Gurtin sys-
tem and studied the long-time dynamics of the system.We at
last mention the contribution of Hamadouche and Mes-
saoudi [30] and Aouadi and Boulehmi [31], where the au-
thors considered two classes of nonuniform thermoelastic
Timoshenko systems and proved global well posedness and
established some stability results.

Our goals in the present work are to study the global well
posedness and stability of systems (1)–(3). (e main points
are summarized as follows:

(i) We prove the global well posedness of systems
(1)–(3) by using Lumer–Philips theorem. (e main
result is presented in (eorem 1.

(ii) We introduce a new stability number denoted by

χ � τδ2D − Dρ − GIρ􏼐 􏼑
τρ3D

Iρ
− 1􏼠 􏼡, (10)

and we show that the system is exponential stable
when χ � 0 and polynomial stable when χ ≠ 0. (e
main results are presented in (eorems 1 and 2.

(iii) (e proof of stability results is based on the mul-
tiplier method. Since the boundary conditions here
we considered are different from those in Apalara
[19], so the multipliers we will define are greatly
different from the multipliers in Apalara [19].

It follows, from (1), that

d2

dt2
􏽚
1

0
ω(x, t)dx � 0,

τ
d
dt

􏽚
1

0
q(x, t)dx + α􏽚

1

0
q(x, t)dx � 0.

(11)

If we denote

ω(x, t) � ω(x, t) − 􏽚
1

0
ω0(x) − t 􏽚

1

0
ω1(x)dx,

q(x, t) � q(x, t) − e
− (α/τ)t

􏽚
1

0
q0(x)dx,

(12)

we easily verify that (ω,ψ, s, θ, q) satisfies (1) and in addition,

􏽚
1

0
ω(x, t)dx � 0,

􏽚
1

0
q(x, t)dx � 0,

∀t≥ 0.

(13)

Hence, Poincaré’s inequality holds for ω. In the fol-
lowing, we work with ω and q but write ω and q for
convenience.

(e remaining paper is planned as follows. In Section 2,
we study the well posedness of the system. In Section 3, we
establish the stability results.(roughout this paper, c> 0 is a
generic constant that changes from one inequality to
another.

2. Well Posedness

We start by denoting the vector-valued function by U:

U � (ω,Φ, 3s − ψ, 3Λ − Ψ, s,Λ, θ, q)
T
,

withΦ � ωt,

Ψ � ψt, andΛ � st.

(14)

(en, systems (1)–(3) can be written as
d
dt

U(t) � AU, t> 0,

U(0) � U0 � ω0,ω1, 3s0 − ψ0, 3s1 − ψ1, s0, s1, θ0, q0( 􏼁
T
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

where the operator A is defined by

AU �

Φ

−
G

ρ
ψ − ωx( 􏼁x −

δ
ρ
θx

3Λ − Ψ

D

Iρ
(3s − ψ)xx +

G

Iρ
ψ − ωx( 􏼁

Λ

D

Iρ
sxx −

G

Iρ
ψ − ωx( 􏼁 −

4c

3Iρ
s −

4β
3Iρ
Λ

−
1
ρ3

qx −
δ
ρ3
Φx

−
α
τ

q −
1
τ
θx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

We consider the following spaces:
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L
2
∗ (0, 1) � v ∈ L

2
(0, 1): 􏽚

1

0
v(x)dx � 0􏼨 􏼩,

H
1
∗ (0, 1) � H

1
(0, 1)∩ L

2
∗ (0, 1),

H
2
∗ (0, 1) � v ∈ H

2
(0, 1): vx(0) � vx(1) � 0􏽮 􏽯.

(17)

Let

H � H
1
∗ (0, 1) × L

2
∗ (0, 1) × H

1
0(0, 1) × L

2
(0, 1) × H

1
0(0, 1)

× L
2
(0, 1) × L

2
(0, 1) × L

2
∗ (0, 1)

(18)

be the Hilbert space equipped with the inner product

(U, 􏽥U)H � ρ􏽚
1

0
Φ􏽥Φdx + Iρ 􏽚

1

0
(3Λ − Ψ)(3􏽥Λ − 􏽥Ψ)dx + 3Iρ 􏽚

1

0
Λ􏽥Λdx

+ ρ3 􏽚
1

0
θ􏽥θdx + τ 􏽚

1

0
q􏽥qdx + 4c 􏽚

1

0
s􏽥sdx + D 􏽚

1

0
(3s − ψ)x(3􏽥s − 􏽥ψ)xdx

+ G 􏽚
1

0
ψ − ωx( 􏼁 􏽥ψ − 􏽥ωx( 􏼁dx + 3D 􏽚

1

0
sx􏽥sxdx.

(19)

(e domain of A is given by

DA � U ∈H

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ω ∈ H2
∗0, 1∩H1

∗0, 1, 3s − ψ, s ∈ H20, 1∩H1
00, 1,

Φ, q ∈ H1
∗0, 1, 3Λ − Ψ,Λ, θ ∈ H1

00, 1

⎧⎨

⎩

⎫⎬

⎭. (20)

(e well posedness result can be stated in the following
theorem.

Theorem 1. Let U0 ∈H, then problems (1)–(3) admit a
unique weak solution U ∈ C(R+,H). In addition, if
U0 ∈ D(A), then U ∈ C(R+, D(A))∩C1(R+,H).

Proof. It is easy to obtain that, for any U � (ω,Φ, 3s − ψ,

3Λ − Ψ, s,Λ, θ, q)T ∈ D(A),

(AU, U)H � − 4β􏽚
1

0
Λ2dx − α􏽚

1

0
q
2dx≤ 0, (21)

which implies the operator A is a dissipative operator.
In what follows, we shall show the operator Id − A is

surjective. In other words, given F � (f1, f2, f3, f4,

f5, f6, f7, f8) ∈H, we will seek a solution V � (v1, v2, v3,

v4, v5, v6, v7, v8) ∈ D(A) of

(Id − A)V � F. (22)

We rewrite (21) as

v1 − v2 � f1,

ρv2 − Gv1xx − Gv3x + 3Gv5x + δv7x � ρf2,

v3 − v4 � f3,

Iρv4 − Dv3xx − 3Gv5 + Gv3 + Gv1x � Iρf4,

v5 − v6 � f5,

Iρ +
4
3
β􏼒 􏼓v6 − Dv5xx − Gv3 − Gv1x + 3G +

4
3

c􏼒 􏼓v5 � Iρf6,

ρ3v7 + v8x + δv2x � ρ3f7,

(τ + α)v8 + v7x � τf8,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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which implies that

v2 � v1 − f1, (24)

v4 � v3 − f3, (25)

v6 � v5 − f5, (26)

v7x � − (τ + α)v8 + τf8. (27)

We infer from (27) that

v7 � − (τ + α) 􏽚
x

0
v8(y)dy + τ 􏽚

x

0
f8(y)dy. (28)

Replacing (24)–(26) and (28) in (23), we see that

ρv1 − Gv1xx − Gv3x + 3Gv5x − δ(τ + α)v8 � ρ f1 + f2( 􏼁 − τf8,

Iρv3 − Dv3xx − 3Gv5 + Gv3 + Gv1x � Iρ f3 + f4( 􏼁,

Iρ + 3G +
4
3
β +

4
3

c􏼒 􏼓v5 − Dv5xx − Gv3 − Gv1x � Iρ f5 + f6( 􏼁 +
4
3
βf5,

− ρ3(τ + α) 􏽚
x

0
v8(y)dy + v8x + δv1x � ρ3f7 − ρ3τ 􏽚

x

0
f8(y)dy + δf1x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

We multiply (29) by 􏽥v1, 􏽥v3, 􏽥v5, and (τ + α) 􏽒
x

0 􏽥v8(y)dy,
respectively, and integrate their sum over (0, 1) to get the
following variational formulation:

B v1, v3, v5, v8( 􏼁, 􏽥v1, 􏽥v3, 􏽥v5, 􏽥v8( 􏼁( 􏼁 � L 􏽥v1, 􏽥v3, 􏽥v5, 􏽥v8( 􏼁, (30)

where the bilinear form B: [H1
∗(0, 1) × H1

0(0, 1) ×

H1
0(0, 1) × L2

∗(0, 1)]2⟶ R is given by

B v1, v3, v5, v8( 􏼁, 􏽥v1, 􏽥v3, 􏽥v5, 􏽥v8( 􏼁( 􏼁

� G 􏽚
1

0
− v1x − v3 + 3v5( 􏼁 − 􏽥v1x − 􏽥v3 + 3􏽥v5( 􏼁dx + ρ􏽚

1

0
v1􏽥v1dx + Iρ 􏽚

1

0
v3􏽥v3dx

+ 3Iρ + 4β + 4c􏼐 􏼑 􏽚
1

0
v5􏽥v5dx +(τ + α) 􏽚

1

0
v8􏽥v8dx + D 􏽚

1

0
v3x􏽥v3xdx

+ 3D 􏽚
1

0
v5x􏽥v5xdx + ρ3(τ + α)

2
􏽚
1

0
􏽚

x

0
v8(y)dy􏼒 􏼓 􏽚

x

0
􏽥v8(y)dy􏼒 􏼓dx,

(31)

and the linear form L: [H1
∗ (0, 1) × H1

0(0, 1) × H1
0(0, 1) ×

L2
∗ (0, 1)]⟶ R is defined by

L 􏽥v1, 􏽥v3, 􏽥v5, 􏽥v8( 􏼁 � 􏽚
1

0
ρf1 + ρf2 − τδf8( 􏼁􏽥v1dx + Iρ 􏽚

1

0
f3 + f4( 􏼁􏽥v3dx

+ 􏽚
1

0
3Iρ + 4β􏼐 􏼑f5 + 3Iρf6􏽨 􏽩􏽥v5dx

+ δ(τ + α) 􏽚
1

0
f1􏽥v8dx

+ 􏽚
1

0
ρ3τ(τ + α) 􏽚

x

0
f8(y)dy − ρ3(τ + α)f7􏼔 􏼕

· 􏽚
x

0
􏽥v8(y)dy􏼒 􏼓dx.

(32)

We denote the Hilbert space V by

V � H
1
∗ (0, 1) × H

1
0(0, 1) × H

1
0(0, 1) × L

2
∗ (0, 1), (33)

equipped with the norm

v1, v3, v5, v8( 􏼁
����

����
2
V

� − v1x − v3 + 3v5
����

����
2
2 + v1

����
����
2
2

+ v8
����

����
2
2 + v3x

����
����
2
2 + v5x

����
����
2
2.

(34)

It is easy to get that B(·, ·) and L(·) are bounded.
Moreover there exists a positive constant m such that
B v1, v3, v5, v8( 􏼁, v1, v3, v5, v8( 􏼁( 􏼁

� G 􏽚
1

0
− v1x − v3 + 3v5( 􏼁

2dx + ρ􏽚
1

0
v
2
1dx + Iρ 􏽚

1

0
v
2
3dx

+ 3Iρ + 4β + 4c􏼐 􏼑 􏽚
1

0
v
2
5dx +(τ + α) 􏽚

1

0
v
2
8dx + D 􏽚

1

0
v
2
3xdx

+ 3D 􏽚
1

0
v
2
5xdx + ρ3(τ + α)

2
􏽚
1

0
􏽚

x

0
v8(y)dy􏼒 􏼓

2
dx

≥G 􏽚
1

0
− v1x − v3 + 3v5( 􏼁

2dx + ρ􏽚
1

0
v
2
1dx

+(τ + α) 􏽚
1

0
v
2
8dx + D 􏽚

1

0
v
2
3xdx + 3D 􏽚

1

0
v
2
5xdx

≥m v1, v3, v5, v8( 􏼁
����

����
2
V

.

(35)
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(us, B is coercive on V × V. Consequently, using
Lax–Milgram theorem, we conclude that (30) has a unique
solution:

v1 ∈ H
1
∗(0, 1),

v3, v5 ∈ H
1
0(0, 1),

v8 ∈ L
2
∗(0, 1).

(36)

Substituting v1, v3, v5, and v8 into (24)–(26) and (28),
respectively, we have

v2 ∈ H
1
∗(0, 1),

v4, v6 ∈ H
1
0(0, 1),

v7 ∈ H
1
0(0, 1).

(37)

Let 􏽥v1 ∈ H1
0(0, 1) and denote

􏽢􏽥v1(x) � 􏽥v1(x) − 􏽚
1

0
􏽥v1(s)ds, (38)

which gives us 􏽢􏽥v1 ∈ H1
∗(0, 1). Now we replace (􏽥v1, 􏽥v3, 􏽥v5, 􏽥v8)

by (􏽢􏽥v1, 0, 0, 0) in (30) to obtain

G 􏽚
1

0
− v1x − v3 + 3v5( 􏼁 − 􏽢􏽥v1x􏼐 􏼑dx + ρ􏽚

1

0
v1

􏽢􏽥v1dx

� 􏽚
1

0
ρf1 + ρf2 − τδf8( 􏼁􏽢􏽥v1dx,

(39)

i.e.,

G 􏽚
1

0
v1xx

􏽢􏽥v1dx � ρ􏽚
1

0
v1

􏽢􏽥v1dx − G 􏽚
1

0
v3x

􏽢􏽥v1dx + 3G 􏽚
1

0
v5x

􏽢􏽥v1dx

− 􏽚
1

0
ρf1 + ρf2 − τδf8( 􏼁􏽢􏽥v1dx, ∀􏽥v1 ∈ H

1
0(0, 1),

(40)

which yields

Gv1xx � ρv1 − Gv3x + 3Gv5x

− ρf1 + ρf2 − τδf8( 􏼁 ∈ L
2
(0, 1).

(41)

(us,

v1 ∈ H
2
(0, 1). (42)

Moreover, (39) also holds for any ϕ ∈ C1([0, 1]). (en,
by using integration by parts, we obtain

Gv1x(1)ϕ(1) − Gv1x(0)ϕ(0) − G 􏽚
1

0
v1xxϕ dx

+ ρ􏽚
1

0
v1ϕdx − G 􏽚

1

0
v3xϕdx

+ 3G 􏽚
1

0
v5xϕdx − 􏽚

1

0
ρf1 + ρf2 − τδf8( 􏼁ϕ dx � 0.

(43)

(en, we get for any ϕ ∈ C1([0, 1]),
Gv1x(1)ϕ(1) − Gv1x(0)ϕ(0) � 0. (44)

From (28), we obtain

v7(0) � v7(1) � 0. (45)

Since ϕ is arbitrary, we get that v1x(0) � v1x(1) � 0.

Hence, v1 ∈ H2
∗(0, 1). Using similar arguments as above, we

can obtain

v3, v5 ∈ H
2
(0, 1)∩H

1
0(0, 1),

v7 ∈ H
1
0(0, 1),

v8 ∈ H
1
∗(0, 1).

(46)

(us, V � (v1, v2, v3, v4, v5, v6, v7, v8) ∈ D(A) and A is
maximal. By using Lumer–Philips theorem, see, for example,
Liu and Zheng [32] and Pazy [33], we end the proof of the
theorem. □

3. Stability

In this section, we study the stability of systems (1)–(3).
More precisely, we establish exponential and polynomial
decay results depending on χ defined by

χ � τδ2D − Dρ − GIρ􏼐 􏼑
τρ3D

Iρ
− 1􏼠 􏼡. (47)

(e energy functional of systems (1)–(3) is defined by

E(t) � E(ω,ψ, s, θ, q)

�
1
2

􏽚
1

0
ρω2

t + Iρ (3s − ψ)t􏼂 􏼃􏽨
2

+ 3Iρs
2
t + ρ3θ

2

+ τq
2

+ 4cs
2
+ D (3s − ψ)x􏼂 􏼃

2
+ G ψ − ωx( 􏼁

2
+ 3Ds

2
x􏽩dx.

(48)

Now we give our stability results.

Theorem 2 (exponential decay). Suppose that χ � 0. For any
initial data U0 ∈H, there exist two positive constants μ and η
such that the energy functional (48) satisfies

E(t)≤ μe
− ηt

, ∀t≥ 0. (49)

Theorem 3 (polynomial decay). Suppose that χ ≠ 0. For any
initial data U0 ∈ D(A), there exists positive constant μ0 such
that the energy functional (48) satisfies

E(t)≤
μ0
t

, ∀t> 0. (50)

To prove ?eorems 1 and 2, we need the following
technical lemmas.

3.1. Technical Lemmas

Lemma 1. It holds that the energy functional E(t) is non-
increasing and satisfies

E′(t) � − 4β􏽚
1

0
s
2
tdx − α􏽚

1

0
q
2dx≤ 0. (51)
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Proof. Multiplying (1) by ωt, (3s − ψ)t, st, θ, and q, re-
spectively, integrating the results by parts and using
boundary condition (1), we easily get (51). □

Lemma 2. Define the functional F1(t) by

F1(t) � Iρ 􏽚
1

0
(3s − ψ)t(3s − ψ)dx

− ρ􏽚
1

0
ωt 􏽚

x

0
(3s − ψ)(y)dy dx.

(52)

(en, we have for any ε1 > 0,

F1′(t)≤ −
D

2
􏽚
1

0
(3s − ψ)x􏼂 􏼃

2dx

+ ε1 􏽚
1

0
ω2

tdx + c 1 +
1
ε1

􏼠 􏼡 􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx

+
δ2c2∗
2D

􏽚
1

0
θ2dx,

(53)

where c∗ > 0 is the Poincaré constant.

Proof. It follows from (1) that

F1′(t) � D 􏽚
1

0
(3s − ψ)xx(3s − ψ)dx

+ G 􏽚
1

0
ψ − ωx( 􏼁(3s − ψ)dx + Iρ 􏽚

1

0
(3s − ψ)t􏼂 􏼃

2dx

+ G 􏽚
1

0
ψ − ωx( 􏼁 􏽚

x

0
(3s − ψ)(y)dy dx

+ δ􏽚
1

0
θx 􏽚

x

0
(3s − ψ)(y)dy dx

− ρ􏽚
1

0
ωt 􏽚

x

0
(3s − ψ)t(y)dy dx.

(54)

Using integration by parts and boundary condition (1),
we arrive at

F1′(t) � − D 􏽚
1

0
(3s − ψ)x􏼂 􏼃

2dx + Iρ 􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx

− δ􏽚
1

0
θ(3s − ψ)dx

− ρ􏽚
1

0
ωt 􏽚

x

0
(3s − ψ)t(y)dy dx.

(55)

(en, by using Hölder’s, Young’s, and Poincaré’s in-
equalities, we can get (53) from (57). □

Lemma 3. ?e functional F2(t) defined by

F2(t) � ρ􏽚
1

0
ψ − ωx( 􏼁 􏽚

x

0
ωt(y)dy dx, (56)

satisfies for any ε2 > 0,

F2′(t)≤ −
G

2
􏽚
1

0
ψ − ωx( 􏼁

2dx + ε2 􏽚
1

0
ψ2

tdx + c 1 +
1
ε2

􏼠 􏼡 􏽚
1

0
ω2

tdx

+
δ2

2G
􏽚
1

0
θ2dx.

(57)

Proof. Differentiating F2(t) with respect to t and using (1),
we see that

F2′(t) � ρ􏽚
1

0
ψt 􏽚

x

0
ωt(y)dy dx − ρ􏽚

1

0
ωxt 􏽚

x

0
ωt(y)dy dx

− G 􏽚
1

0
ψ − ωx( 􏼁 􏽚

x

0
ψ − ωy􏼐 􏼑

y
dy dx

− δ􏽚
1

0
ψ − ωx( 􏼁 􏽚

x

0
θydy dx.

(58)

Using integration by parts, we obtain

F2′(t) � ρ􏽚
1

0
ψt 􏽚

x

0
ωt(y)dy dx + ρ􏽚

1

0
ω2

tdx

− G 􏽚
1

0
ψ − ωx( 􏼁

2dx − δ􏽚
1

0
θ ψ − ωx( 􏼁dx.

(59)

(en, by using Young’s inequality and Hölder’s in-
equality, we can get (57). □

Lemma 4. Define the functional F3(t) by

F3(t) � τρ3 􏽚
1

0
θ􏽚

x

0
q(y)dy dx. (60)

(en, we can get for any ε3 > 0,

F3′(t)≤ −
ρ3
2

􏽚
1

0
θ2dx + ε3 􏽚

1

0
ω2

tdx + c 1 +
1
ε3

􏼠 􏼡 􏽚
1

0
q
2dx.

(61)

Proof. Differentiating F3 with respect to t and using (1), we
obtain

F3′(t) � − τ 􏽚
1

0
qx 􏽚

x

0
q(y)dy dx − τδ􏽚

1

0
ωxt 􏽚

x

0
q(y)dy dx

− ρ3α􏽚
1

0
θ􏽚

x

0
q dy dx − ρ3 􏽚

1

0
θ􏽚

x

0
θydy dx.

(62)

Integration by parts gives us

F3′(t) � τ 􏽚
1

0
q
2dy + τδ􏽚

1

0
ωtqdx − ρ3α􏽚

1

0
θ􏽚

x

0
qdy dx

− ρ3 􏽚
1

0
θ2dx.

(63)

By using Young’s inequality and Hölder’s inequality, we
can get (61). □
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Lemma 5. ?e functional F4(t) defined by

F4(t) � − ρρ3 􏽚
1

0
θ􏽚

x

0
ωt(y)dy dx, (64)

satisfies for any ε4 > 0,

F4′(t)≤ −
ρδ
2

􏽚
1

0
ω2

tdx + ε4 􏽚
1

0
ψ − ωx( 􏼁

2dx + c 1 +
1
ε4

􏼠 􏼡 􏽚
1

0
θ2dx

+
ρ
2δ

􏽚
1

0
q
2dx.

(65)

Proof. We take the derivative of F4 and use (1) and integrate
by parts to obtain

F4′(t) � ρ􏽚
1

0
qx 􏽚

x

0
ωt(y)dy dx + ρδ􏽚

1

0
ωxt 􏽚

x

0
ωt(y)dy dx

+ ρ3G 􏽚
1

0
θ􏽚

x

0
ψ − ωy􏼐 􏼑

y
(y)dy dx

+ ρ3δ􏽚
1

0
θ􏽚

x

0
θy(y)

� − ρ􏽚
1

0
qωtdx − ρδ􏽚

1

0
ω2

tdx

+ ρ3G 􏽚
1

0
θ ψ − ωx( 􏼁dx + ρ3δ􏽚

1

0
θ2dx.

(66)

(en, using Young’s inequality, we can get (65). □

Lemma 6. Define the functional F5(t) by

F5(t) � τGδIρ 􏽚
1

0
(3s − ψ)t ψ − ωx( 􏼁dx

− τδDρ􏽚
1

0
ωt(3s − ψ)xdx

+ τρ3 Dρ − GIρ􏼐 􏼑 􏽚
1

0
θ(3s − ψ)tdx

− τ Dρ − GIρ􏼐 􏼑 􏽚
1

0
q(3s − ψ)xdx.

(67)

(en, we have for any ε5 > 0,

F5′(t)≤ −
τGδIρ

2
􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx + c1 􏽚
1

0
s
2
tdx

+ c2 􏽚
1

0
θ2dx + c3 􏽚

1

0
ψ − ωx( 􏼁

2dx

+ ε5 􏽚
1

0
(3s − ψ)x􏼂 􏼃

2dx + Cε5 􏽚
1

0
q
2dx

+ χ 􏽚
1

0
θx(3s − ψ)xdx,

(68)

where ci (i � 1, 2, 3) are positive constants.

Proof. By differentiating F5 with respect to t, we have

F5′(t) � τGδIρ 􏽚
1

0
(3s − ψ)tt ψ − ωx( 􏼁dx

􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽
:�I1

+ τGδIρ 􏽚
1

0
(3s − ψ)t ψ − ωx( 􏼁tdx

− τδDρ􏽚
1

0
ωtt(3s − ψ)xdx

􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽
:�I2

− τδDρ􏽚
1

0
ωt(3s − ψ)xtdx

+τρ3 Dρ − GIρ􏼐 􏼑 􏽚
1

0
θt(3s − ψ)tdx

􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽
:�I3

+ τρ3 Dρ − GIρ􏼐 􏼑 􏽚
1

0
θ(3s − ψ)ttdx

􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽
:�I4

− τ Dρ − GIρ􏼐 􏼑 􏽚
1

0
qt(3s − ψ)xdx

􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽
:�I5

− τ Dρ − GIρ􏼐 􏼑 􏽚
1

0
q(3s − ψ)xtdx

􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽
:�I6

.

(69)

Using equation (1) and integrating by parts, we see that

I1 � − τGδD 􏽚
1

0
(3s − ψ)x ψ − ωx( 􏼁xdx

+ τG
2δ􏽚

1

0
ψ − ωx( 􏼁

2dx,

(70)

I2 � τδDG 􏽚
1

0
ψ − ωx( 􏼁x(3s − ψ)xdx

+ τδ2D 􏽚
1

0
θx(3s − ψ)xdx,

(71)

I3 � − τ Dρ − GIρ􏼐 􏼑 􏽚
1

0
qx(3s − ψ)tdx

− τδ Dρ − GIρ􏼐 􏼑 􏽚
1

0
ωxt(3s − ψ)tdx,

(72)

I4 � −
τρ3D

Iρ
Dρ − GIρ􏼐 􏼑 􏽚

1

0
θx(3s − ψ)xdx

+
τρ3G

Iρ
Dρ − GIρ􏼐 􏼑 􏽚

1

0
θ ψ − ωx( 􏼁dx,

(73)
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I5 � α Dρ − GIρ􏼐 􏼑 􏽚
1

0
q(3s − ψ)xdx

+ Dρ − GIρ􏼐 􏼑 􏽚
1

0
θx(3s − ψ)xdx,

(74)

I6 � τ Dρ − GIρ􏼐 􏼑 􏽚
1

0
qx(3s − ψ)tdx. (75)

Inserting (70)–(75) into (69), we can obtain

F5′(t) � τG
2δ􏽚

1

0
ψ − ωx( 􏼁

2dx + τGδIρ 􏽚
1

0
ψt(3s − ψ)tdx

+
τρ3G

Iρ
Dρ − GIρ􏼐 􏼑 􏽚

1

0
θ ψ − ωx( 􏼁dx

+ α Dρ − GIρ􏼐 􏼑 􏽚
1

0
q(3s − ψ)xdx

+ χ 􏽚
1

0
θx(3s − ψ)xdx.

(76)

Recalling ψ � (ψ − 3s) + 3s and using Young’s in-
equality, we conclude that

τGδIρ 􏽚
1

0
ψt(3s − ψ)tdx

� − τGδIρ 􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx + 3τGδIρ 􏽚
1

0
st(3s − ψ)tdx

≤ −
τGδIρ

2
􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx + c1 􏽚
1

0
s
2
tdx,

(77)

τρ3G
Iρ

Dρ − GIρ􏼐 􏼑 􏽚
1

0
θ ψ − ωx( 􏼁dx

≤ c2 􏽚
1

0
θ2dx + c3 􏽚

1

0
ψ − ωx( 􏼁

2dx,

(78)

and for any ε5 > 0,

α Dρ − GIρ􏼐 􏼑 􏽚
1

0
q(3s − ψ)xdx≤ ε5 􏽚

1

0
(3s − ψ)x􏼂 􏼃

2dx

+ Cε5 􏽚
1

0
q
2dx,

(79)

which, together with (76)–(78), gives us (68). □

Lemma 7. ?e functional F6(t) defined by

F6(t) � 3Iρ 􏽚
1

0
sts dx + 2β􏽚

1

0
s
2dx, (80)

satisfies

F6′(t)≤ − 3c 􏽚
1

0
s
2dx − 3D 􏽚

1

0
s
2
xdx

+ c4 􏽚
1

0
ψ − ωx( 􏼁

2dx + 3Iρ 􏽚
1

0
s
2
tdx,

(81)

where c4 is a positive constant.

Proof. follows from (1) that

F6′(t) � − 3D 􏽚
1

0
s
2
xdx − 3G 􏽚

1

0
s ψ − ωx( 􏼁dx

− 4c 􏽚
1

0
s
2dx + 3Iρ 􏽚

1

0
s
2
tdx.

(82)

Young’s inequality gives us (82). □

3.2. Exponential Stability: Proof of ?eorem 1

Proof. We define the functional L(t) by

L(t) � NE(t) + F1(t) + N2F2(t) + N3F3(t)

+ N4F4(t) + N5F5(t) + F6(t),
(83)

whereN and Ni (i � 2, 3, 4, 5) are positive constants that will
be chosen later.

Note that

􏽚
1

0
ψ2

tdx � 􏽚
1

0
[(3s − ψ) − 3s]

2
tdx

≤ 2􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx + 18􏽚
1

0
s
2
tdx.

(84)

Replacing (84) in (57) and then combining (51)–(53),
(57)–(68), and (82), we obtain

L′(t)≤ − 4βN − c1N5 − 18ε2N2 − 3Iρ􏼐 􏼑 􏽚
1

0
s
2
tdx

−
D

2
− ε5N5􏼒 􏼓 􏽚

1

0
(3s − ψ)x􏼂 􏼃

2dx

− αN − cN3 1 +
1
ε3

􏼠 􏼡 −
ρ
2δ

N4 − Cε5N5􏼢 􏼣 􏽚
1

0
q
2dx

−
ρδ
2

N4 − ε1 − ε3N3 − cN2 1 +
1
ε2

􏼠 􏼡􏼢 􏼣 􏽚
1

0
ω2

tdx

−
τGδIρ

2
N5 − 2ε2N2 − c 1 +

1
ε1

􏼠 􏼡􏼢 􏼣 􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx

−
G

2
N2 − ε4N4 − c3N5 − c4􏼒 􏼓 􏽚

1

0
ψ − ωx( 􏼁

2dx

−
ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2 − cN4 1 +

1
ε4

􏼠 􏼡 − c2N5􏼢 􏼣 􏽚
1

0
θ2dx

− 3D 􏽚
1

0
s
2
xdx − 3c 􏽚

1

0
s
2dx.

(85)
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Taking

ε1 � 1,

ε2 �
τGδIρ

8N2
N5,

ε3 �
1

N3
,

ε4 �
G

4N4
N2,

ε5 �
D

4N5
,

(86)

we obtain

L′(t)≤ − 4βN − c1N5 −
9
4
τGδIρN5 − 3Iρ􏼒 􏼓 􏽚

1

0
s
2
tdx

−
D

4
􏽚
1

0
(3s − ψ)x􏼂 􏼃

2dx

− αN − cN3 1 + N3( 􏼁 −
ρ
2δ

N4 − Cε5N5􏼔 􏼕 􏽚
1

0
q
2dx

−
ρδ
2

N4 − 2 − cN2 1 +
8N2

N5τGδIρ
􏼠 􏼡􏼢 􏼣 􏽚

1

0
ω2

tdx

−
τGδIρ

4
N5 − 2c􏼠 􏼡 􏽚

1

0
(3s − ψ)t􏼂 􏼃

2dx

−
G

4
N2 − c3N5 − c4􏼒 􏼓 􏽚

1

0
ψ − ωx( 􏼁

2dx

−
ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2􏼢

− cN4 1 +
4N4

GN2
􏼠 􏼡 − c2N5􏼣 􏽚

1

0
θ2dx

− 3D 􏽚
1

0
s
2
xdx − 3c 􏽚

1

0
s
2dx.

(87)

At this point, we first choose N5 > 0 large enough such
that

τGδIρ

4
N5 − 2c> 0. (88)

For fixed N5, we take N2 > 0 so large that
G

4
N2 − c3N5 − c4 > 0. (89)

(en, we pick N4 > 0 large so that
ρδ
2

N4 − 2 − cN2 1 +
8N2

N5τGδIρ
􏼠 􏼡> 0. (90)

And then we choose N3 so large that

ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2 − cN4 1 +

4N4

GN2
􏼠 􏼡 − c2N5 > 0. (91)

At last, we take N> 0 large enough so that the functional
L(t) is equivalent to the energy functional E(t), i.e., there
exist two positive constants:

β1E(t)≤ L(t)≤ β2E(t), (92)

and further so that

αN − cN3 1 + N3( 􏼁 −
ρ
2δ

N4 − Cε5N5 > 0.

4βN − c1N5 −
9
4
τGδIρN5 − 3Iρ > 0,

(93)

Recalling (48), we infer that there exists a positive
constant β3 such that, for any t> 0,

L′(t)≤ − β3E(t), (94)

which, along with (92), implies

L′(t)≤ −
β3
β2

L(t). (95)

Integrating (95) over (0, t), we have, for any t> 0,

L(t)≤L(0)e
− β3/β2)�t,( (96)

which, using (95) again, gives us (49). (e proof of
(eorem 1 is done. □

3.3. Polynomial Stability: Proof of?eorem 2. In this section,
we consider the case χ ≠ 0 to prove (eorem 2.

Differentiating system (1) with respect to time, we obtain
the following system:

ρωttt + G ψ − ωx( 􏼁xt + δθxt � 0,

Iρ(3s − ψ)ttt − D(3s − ψ)xxt − G ψ − ωx( 􏼁t � 0,

Iρsttt − Dsxxt + G ψ − ωx( 􏼁t +
4
3

cst +
4
3
βstt � 0,

ρ3θtt + qxt + δωxtt � 0,

τqtt + αqt + θxt � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(97)

which subject to the following boundary conditions:

ωxt(0, t) � ψt(0, t) � st(0, t) � θt(0, t) � 0, t ∈ (0,∞),

ωxt(1, t) � ψt(1, t) � st(1, t) � θt(1, t) � 0, t ∈ (0,∞).
􏼨

(98)

For any initial data U0 ∈ D(A), system (97) is well
posed. Next, we introduce second-order energy functional
􏽥E(t) by
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􏽥E(t) � E ωt,ψt, st, θt, qt( 􏼁

�
1
2

􏽚
1

0
ρω2

tt + Iρ (3s − ψ)tt􏼂 􏼃􏽨
2

+ 3Iρs
2
tt + ρ3θ

2
t + τq

2
t + 4cs

2
t

+ D (3s − ψ)xt􏼂 􏼃
2

+ G ψ − ωx( 􏼁t􏼂 􏼃
2

+ 3Ds
2
xt􏽩dx.

(99)

By using the same arguments as in Lemma 3, we can get
the second-order energy 􏽥E(t) defined by (99) is nonin-
creasing and satisfies

􏽥E′(t) � − 4β􏽚
1

0
s
2
ttdx − α􏽚

1

0
q
2
tdx≤ 0. (100)

In Lemma 6, we have proved that, for any ε5 > 0,

F5′(t)≤ −
τGδIρ

2
􏽚
1

0
3s − ψt( 􏼁

2dx􏽨 􏽩 + c1 􏽚
1

0
s
2
tdx

+ c2 􏽚
1

0
θ2dx + c3 􏽚

1

0
ψ − ωx( 􏼁

2dx

+ ε5 􏽚
1

0
(3s − ψ)x􏼂 􏼃

2dx + Cε5 􏽚
1

0
q
2dx

+ χ 􏽚
1

0
θx(3s − ψ)xdx.

(101)

(anks to (1) and Young’s inequality, we derive that

􏽚
1

0
θ2xdx≤ c 􏽚

1

0
q
2dx + c 􏽚

1

0
q
2
tdx. (102)

(en, for any ε5 > 0,

χ 􏽚
1

0
θx(3s − ψ)xdx≤ ε5 􏽚

1

0
(3s − ψ)x􏼂 􏼃

2dx + Cε5 􏽚
1

0
θ2xdx

≤ ε5 􏽚
1

0
(3s − ψ)x􏼂 􏼃

2dx + Cε5 􏽚
1

0
q
2dx

+ Cε5 􏽚
1

0
q
2
tdx.

(103)

(erefore, the derivative of F5 satisfies

F5′(t)≤ −
τGδIρ

2
􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx + c1 􏽚
1

0
s
2
tdx

+ c2 􏽚
1

0
θ2dx + c3 􏽚

1

0
ψ − ωx( 􏼁

2dx

+ 2ε5 􏽚
1

0
(3s − ψ)x􏼂 􏼃

2dx + Cε5 􏽚
1

0
q
2dx + Cε5 􏽚

1

0
q
2
tdx.

(104)

Proof. We define the functional 􏽥L(t) by
􏽥L(t) � N(E(t) + 􏽥E(t)) + F1(t) + N2F2(t)

+ N3F3(t) + N4F4(t) + N5F5(t) + F6(t).
(105)

It follows from (51)–(53), (57)–(65), and (100)–(104) that

􏽥L′(t)≤ − 4βN − c1N5 − 18ε2N2 − 3Iρ􏼐 􏼑 􏽚
1

0
s
2
tdx −

D

2
− 2ε5N5􏼒 􏼓 􏽚

1

0
(3s − ψ)x􏼂 􏼃

2dx

− αN − cN3 1 +
1
ε3

􏼠 􏼡 −
ρ
2δ

N4 − Cε5N5􏼢 􏼣 􏽚
1

0
q
2dx

−
ρδ
2

N4 − ε1 − ε3N3 − cN2 1 +
1
ε2

􏼠 􏼡􏼢 􏼣 􏽚
1

0
ω2

tdx

−
τGδIρ

2
N5 − 2ε2N2 − c 1 +

1
ε1

􏼠 􏼡􏼢 􏼣 􏽚
1

0
(3s − ψ)t􏼂 􏼃

2dx

−
G

2
N2 − ε4N4 − c3N5 − c4􏼒 􏼓 􏽚

1

0
ψ − ωx( 􏼁

2dx

−
ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2 − cN4 1 +

1
ε4

􏼠 􏼡 − c2N5􏼢 􏼣 􏽚
1

0
θ2dx

− 3D 􏽚
1

0
s
2
xdx − 3c 􏽚

1

0
s
2dx − αN − Cε5􏼐 􏼑 􏽚

1

0
q
2
tdx.

(106)
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With the same choice of constants as in Section 3.2, we
further take N> 0 so large that

αN − Cε5 > 0. (107)

Noting that (48), we know that there exists a positive
constant μ1 such that, for any t> 0,

􏽥L′(t)≤ − μ1E(t). (108)

Since the energy functional E(t) is positive and non-
increasing, we infer (108) that, for any t> 0,

tE(t)≤􏽚
t

0
E(s)ds≤

1
μ1

( 􏽥L(0)t − n 􏽥Lq(t))≤
􏽥L(0)

μ1
,

(109)

which gives us

E(t)≤
μ0
t

, ∀t> 0. (110)

Here, μ0 � ( 􏽥L(0)t/μ1) � (E(0) + 􏽥E(0)/μ1). (e proof is
complete. □

Remark 1. We point out that the functional 􏽥L(t) is ineq-
uivalent to the energy functional E(t). (at is to say, (92)
does not hold true.
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,e complex chaotic dynamics and multistability of financial system are some important problems in micro- and macroeconomic
fields. In this paper, we study the influence of two-delay feedback on the nonlinear dynamics behavior of financial system,
considering the linear stability of equilibrium point under the condition of single delay and two delays. ,e system undergoes
Hopf bifurcation near the equilibrium point. ,e stability and bifurcation directions of Hopf bifurcation are studied by using the
normal form method and central manifold theory. ,e theoretical results are verified by numerical simulation. Furthermore, one
feature of the proposed financial chaotic system is that its multistability depends extremely on the memristor initial condition and
the system parameters. It is shown that the nonlinear dynamics of financial chaotic system can be significantly changed by
changing the values of time delays.

1. Introduction

It is widely recognized that chaos can be obtained in some
mathematically simple systems of nonlinear differential
equations. With the advent of computers, it is now possible
to study the entire parameter space of these systems that
result in some desired characteristics of the system. Recently,
there has been increasing attention to some unusual ex-
amples and application of such systems [1–8]. ,e financial
system is an extremely complex nonlinear dynamical system
composed of many elements. ,e study of the complex
nonlinear dynamics behavior of the financial system is an
important problem in the fields of micro- and macro-
economy [9]. ,e uncertain factors bring very important
influence to the description of the financial system and make
analysis of the financial systems become a very important
problem.

Researchers try to explain the core characteristics of
economic data: irregular microeconomic fluctuations, in-
stable macroeconomic fluctuations, irregular growth, and
syntax changes [10–13]. However, some inappropriate
combination of parameters in the financial system may lead
to financial markets in trouble or out of control. ,erefore, it
is necessary to make a systematic and deep study on the
internal syntax characteristics of the complicated financial
system. ,e results will reveal the bifurcation phenomena
under different parameter combinations, probe into the
causes of the complicated nonlinear dynamics phenomena,
and predict and control the complicated financial systems
[14, 15]. In addition, multistability is a critical property of
nonlinear dynamical systems when coexisting attractors can
be obtained for the same parameters, but different initial
conditions [16–19]. ,e flexibility in the systems’ perfor-
mance can be archived without changing parameters.
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Wang et al. [20] studied the bifurcation topology and the
global complexity of a class of nonlinear financial systems.
Ishiyama and Saiki [21] established the macroeconomic
growth cycle model and solved the qualitative- and quan-
titative-related unstable periodic solutions embedded in the
chaotic attractor. By using Lyapunov stability theory and
Routh–Hurwitz criterion, Zhao et al. [22] studied the global
synchronization of the three-dimensional chaotic financial
system. Yu et at. [23] used numerical simulation to analyze
the Lyapunov exponents and bifurcation diagram of chaotic
financial system. Cantore and Levine [24] studied the rep-
arameterized model with evaluation parameters. Gao et al.
[25] gave the final bounded estimator set and chaotic
synchronization analysis of the financial risks system.

Until now, one of the nonlinear economic and financial
dynamic models confirmed by economists comes from a
financial system model composed of four subblocks (pro-
duction, money, security, and labor) [15, 24, 26].

_x � z +(y − a)x, (1a)

_y � 1 − by − x
2
, (1b)

_z � − x − cz, (1c)

where x represents the interest rate, y represents the in-
vestment demand, z represents the price index, a represents
the saving amount, b represents the unit investment cost,
and c represents the elasticity of commodity demand;
a, b, and c are all normal numbers.

In real life, with the development of economy, there are
more and more factors that restrict the development of
economy. Some classical chaotic financial systems can not
reflect the laws and changes of economic development well.
For example, the factors that affect the change of interest rate
are related to the average profit rate besides investment
demand and price index, and the average profit rate is
proportional to the interest rate. ,erefore, we construct the
following improved chaotic financial system model:

_x � z +(y − a)x, (2a)

_y � 1 − by − x
2

− bxy, (2b)

_z � − x − cz, (2c)

where x is the interest rate, y is the investment demand, z is
the price index, a is the saving amount, b is the unit in-
vestment cost, and c is the elasticity of commodity demand;
a, b, and c are all normal numbers. When the parameters
a � 3, b � 0.1, and c � 1 and initial values are at points
(0.1, 2, 0.1), system (2a)–(2c) generates chaotic attractors, as
shown in Figure 1.

With the development and innovation of financial
markets, scholars have found that it will be better to add time
delay factor for describing the actual economic markets
[27–30]. Chen [31] analyzed the complex nonlinear dy-
namics, such as periodicity, quasiperiodicity, and chaotic
behavior in the delayed feedback of financial systems. Ma

and Tu [32] established a class of complex dynamic mac-
roeconomic systems and studied the effect of time delay on
savings rate and dynamic financial stability. Holyst and
Urbanowicz [33] have shown that the chaotic attractor of the
financial model can be stabilized in a periodic track by using
Pyragas delayed feedback control. In addition, Ma and Chen
[14] added the delayed feedback to the three variables of
financial system and gave some results on the existence of
Hopf bifurcation and the effect of delayed feedback. Based
on political events and other human factors, some scholars
have considered the impact of delay and feedback items (see
[28, 34]). In practice, financial behaviour is not only affected
by a single time delay but often seems to be affected by
multiple external shocks. ,ese various external influences
embody multiple delays and can be reflected in all variables,
i.e., by introducing various delayed feedback items into
interest rates x of change of interest rate, they will also have a
significant impact on system (2a)–(2c).,erefore, we further
consider the double-delay system.

_x � z +(y − a)x + k1 x(t) − x t − τ1( 􏼁( 􏼁 + k2 x(t) − x t − τ2( 􏼁( 􏼁,

(3a)

_y � 1 − by − x
2

− bxy, (3b)

_z � − x − cz. (3c)

where τ1 and τ2 are the two time delays and k1 and k2 are the
feedback control intensities.

In this paper, we study the Hopf bifurcation and non-
linear dynamics of an improved financial system with two
delays. Firstly, we study the distribution of the roots of the
characteristic equations at the equilibrium point. Sufficient
conditions for the local stability of the equilibrium point and
the existence of Hopf bifurcation are obtained. Secondly,
taking two delays as bifurcation parameters and using the
canonical form method and the central manifold theorem,
we determine the bifurcation direction of the periodic so-
lution and the explicit algorithm for the stability of the
bifurcation periodic solution. Under the premise of the
existence of local bifurcation, the existence of the bifurcation
periodic solution of this system is discussed by using the
theory of functional differential equations. Finally, the
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Figure 1: Chaotic attractor for the 3D chaotic system ((2a)–(2c)).
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correctness of the conclusion is verified by numerical
simulation.

2. Existence of Hopf Bifurcation in
Financial System

In order to study the influence of time delays on nonlinear
dynamic system, the three equilibrium points of the system
are obtained as follows:

− 1,
1 + ac

c
,
1
c

􏼒 􏼓, (4a)

0,
1
b
, 0􏼒 􏼓, (4b)

− b + c − abc

c
,
1 + ac

c
,
b − c + abc

c2
􏼠 􏼡. (4c)

Here, we only analyze the following equilibrium point:

x0, y0, z0( 􏼁 � 0,
1
b
, 0􏼒 􏼓. (5)

Linear transformations are given as

u1 � x − x0, (6a)

u2 � y − y0, (6b)

u3 � z − z0. (6c)

System (2a)–(2c) becomes the following equations:

_u1 � u3 + u2 − a +
1
b

􏼒 􏼓u1 + k1 u1(t) − u1 t − τ1( 􏼁( 􏼁

+ k2 u1(t) − u1 t − τ2( 􏼁( 􏼁,

(7a)

_u2 � − u1 − bu2 − u
2
1 − bu1, (7b)

_u3 � − u1 − cu3. (7c)

,e characteristic equation of equations (7a) and (7b) at
(0, 0, 0) is

b − c + abc + abλ + acλ −
cλ
b

+ bcλ + aλ2 −
λ2

b
+ bλ2 + cλ2 + λ3

+ e
− λτ1 − bck1 − bk1λ − ck1λ − k1λ

2
􏼐 􏼑 + e

− λτ2 − bck2 − bk2λ − ck2λ − k2λ
2

􏼐 􏼑 � 0.

(8)

Since the dynamics of differential equations with two
delays are very complex, we first discuss the case of
τ1 � τ2 � 0, then discuss the case of τ1 > 0, τ2 � 0 with single
delay, and finally discuss the case of τ1 > 0, τ2 > 0.

Case 1. τ1 � τ2 � 0.
,e characteristic equation (5) becomes

b − c + abc + ab + ac −
c

b
+ bc􏼒 􏼓λ + a −

1
b

+ b + c􏼒 􏼓λ2 + λ3 � 0.

(9)

Let

p1 � a −
1
b

+ b + c, (10a)

p2 � ab + ac −
c

b
+ bc, (10b)

p3 � b − c + abc, (10c)

and assume

H1 : p1 > 0, p3 > 0, p1p2 − p3 > 0. (11)

According to Routh– Hurwitz criterion, if H1 holds, the
equilibrium point (0, 0, 0) of system (7a)–(7c) is locally
asymptotically stable.

Case 2. τ1 > 0, τ2 � 0.
,e characteristic equation (5) becomes

b − c + abc − bck1 + abλ + acλ −
cλ
b

+ bcλ − bk1λ − ck1λ + aλ2 −
λ2

b

+ bλ2 + cλ2 − k1λ
2

+ λ3 + e
− λτ1 bck1 + bk1λ + ck1λ + k1λ

2
􏼐 􏼑 � 0.

(12)

If λ � iw is a solution of equation (12), then the real part
and imaginary part are separated and made equal to zero.
We can obtain

w
2

+ b
2 1 + ac + ck1(− 1 + m) + k1nw − w

2
􏼐 􏼑

+ b − a + k1(− 1 + m)( 􏼁w
2

+ c − 1 + k1nw − w
2

􏼐 􏼑􏼐 􏼑 � 0,

(13a)

− cw + bw ac + ck1(− 1 + m) + k1n − w( 􏼁w( 􏼁

+ b
2

a + k1(− 1 + m)( 􏼁w + c − k1n + w( 􏼁( 􏼁 � 0,
(13b)
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where m � cos(wτ1) and n � sin(wτ1). From formulas (13a) and (13b),

b
2
w

4
+ 1 − 2ab − 2b

2
+ a

2
b
2

+ b
2
c
2

+ 2bk1 − 2ab
2
k1􏼐 􏼑w

2
+ b

2
− 2bc + 2ab

2
c

+ c
2

− 2abc
2

+ a
2
b
2
c
2

− 2b
2
ck1 + 2bc

2
k1 − 2ab

2
c
2
k1 � 0.

(14)

If all the parameters in system (3a)–(3c) are given, it is
easy to calculate the numerical solution of equation (14) by
computer. ,us, the following assumptions are given.

Suppose H2 that equation (14) has at least one positive
real root.

If H2 is assumed to be true and equation (14) has two
positive real roots ωk(k � 1, 2), we have

τ1(k, j) �
1
ωk

[arc cos(p) + 2jπ], Q≥ 0,

(15a)

τ1(k, j) �
1
ωk

[2π − arc cos(p) + 2jπ], Q≤ 04, k � 1, 2, j � 0, 1 . . . ,

(15b)

where

P � −
bc − c2 + abc2 − bc2k1 − w2 + abw2 − bk1w

2

bk1 c2 + w2( )
, (16a)

Q � −
w − c2w − w3

k1 c2 + w2( )
. (16b)

± iωk is a pair of pure virtual root under τ1 � τ1(k, j) of
equation (12). Let us take

τ01 � min τ1(k, j), k � 1, 2; j � 0, 1, . . .􏼈 􏼉. (17)

Let λ(τ) � v(t) + iω(τ) be the virtual root of equation
(12) near τ1 � τ1(k, j). By differential degeneracy of equa-
tion (12) with respect to τ, we can obtain

dλ
dτ1

􏼢 􏼣

− 1

�
eλτ1 ab2 − c + abc + b2c − b2 − bc( 􏼁k1 + 2 ab + b2 + bc − 1( 􏼁λ􏼂 􏼃

bk1λ(b + λ)(c + λ)

+
3bλ2 + b2k1 + bck1 − b2ck1τ1 − b2k1λτ1 − bck1λ

2τ1
bk1λ(b + λ)(c + λ)

.

(18)

When λ � iω is substituted into equation (18), we have

d(Reλ)

dτ1
􏼢 􏼣

− 1

�
f ωk( 􏼁

Λ
. (19)

Among them,

f ωk( 􏼁 � a
2
b
2
c
2

+ b
4
c
2

+ 2b
3
k1 − 2ab

4
k1 − 2b

2
ck1 + 2bc

2
k1

+ 2 − 4ab − 4b
2

+ 2a
2
b
2

+ 2b
4

+ 2b
2
c
2

􏼐

+ 4bk1 − 4ab
2
k1􏼑wk

2

+ 2b
2

− 2ab
3

− 2b
4

+ a
2
b
4

− 2bc + 2ab
2
c

+ c
2

− 2abc
2

− 2ab
2
c
2
k1 + 3b

2
wk

4
,

(20a)

Λ � b
2
kl

2
b
2

+ wk
2

􏼐 􏼑 c
2

+ wk
2

􏼐 􏼑. (20b)

Hypothesis 1. H3:

d(Reλ)

dτ1
􏼢 􏼣

− 1

≠ 0. (21)

,erefore, there are the following theorems.

Theorem 1. If (H1), (H2), and (H3) are assumed to be true,
then the equilibrium (0, (1/b), 0) is locally stable for
τ1 ∈ (0, τ01). When τ1 > τ01 equilibrium (0, (1/b), 0) is un-
stable and Hopf bifurcation occurs in system (3a)–(3c) at
τ1 � τ01.

Case 3. τ1 > 0, τ2 > 0.
,e corresponding characteristic equation of system

(3a)–(3c) is (8). Now, let delay τ1 ∈ (0, τ01), and τ2 is taken as
a parameter. Assuming λ � iσ is the characteristic root under
the two delays in the characteristic equation (5), then
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λ3 + a −
1
b

+ b + c − k1 − k2􏼒 􏼓λ2 + ab + ac −
c

b
+ bc − bk1 − ck1 − bk2 − ck2􏼒 􏼓λ

+ b − c + abc − bck1 − bck2 + cos στ1( 􏼁 − sin στ1( 􏼁( 􏼁 bck1 + bk1λ + ck1λ + k1λ
2

􏼐 􏼑

+ cos στ2( 􏼁 − sin στ2( 􏼁( 􏼁 bck2 + bk2λ + ck2λ + k2λ
2

􏼐 􏼑 � 0.

(22)

From (22),

cos στ2( 􏼁 � −
1

bk2 c2 + σ2( )

bc − c2 + abc2 − bc2k1 − bc2k2 + bc2k1 cos στ1( 􏼁

− σ2 + abσ2 − bk1σ2 − bk2σ2 + bk1 cos στ1( 􏼁σ2
⎛⎜⎝ ⎞⎟⎠, (23a)

sin στ2( 􏼁 � −
c2k1 sin στ1( 􏼁 + σ − c2σ + k1 sin στ1( 􏼁σ2 − σ3

k2 c2 + σ2( )
. (23b)

,erefore, the equation about σ can be obtained:

b
2

− 2bc + 2ab
2
c + c

2
− 2abc

2
+ a

2
b
2
c
2

− 2b
2
ck1 + 2bc

2
k1 − 2ab

2
c
2
k1 + c

2
b
2
k1 − 2b

2
ck2

+ 2bc
2
k2 − 2ab

2
c
2
k2 + 2b

2
c
2
k1k2 + 2b

2
ck1 cos στ1( 􏼁 − 2bc

2
k1 cos στ1( 􏼁

+ 2ab
2
c
2
k1 cos στ1( 􏼁 − 2b

2
c
2
k
2
1 cos στ1( 􏼁 − 2b

2
c
2
k1k2 cos στ1( 􏼁 + b

2
c
2
k
2
1

+ 2b
2
k1 sin στ1( 􏼁 1 − c

2
􏼐 􏼑σ + 1 − 2ab − 2b

2
+ a

2
b
2

+ b
2
c
2

􏼐 + 2bk1 − 2ab
2
k1

+ b
2
k
2
1 + 2bk2 − 2ab

2
k2 + 2b

2
k1k2 − 2bk1 cos στ1( 􏼁 + 2ab

2
k1 cos στ1( 􏼁

− 2b
2
k
2
1 cos στ1( 􏼁 − 2b

2
k1k2 cos στ1( 􏼁 + b

2
k1

2
􏼑σ2 − 2b

2
k1 sin στ1( 􏼁σ3 + b

2σ4 � 0.

(24)

Obviously, equation (24) has at most a positive real root
of N(N≤ 4), which is denoted as σh(h � 1, 2, . . . N). Sim-
ilarly, the following can be obtained:

τ2(h, j) �
1
σh

[arc cos(p) + 2jπ], Q≥ 0, (25a)

τ2(h, j) �
1
σh

[2π − arc cos(p) + 2jπ], Q< 0, (25b)

where

p � −
1

bk2 c2 + σ2( )

bc − c2 + abc2 − bc2k1 − bc2k2

+bc2k1 cos στ1( 􏼁 − σ2 + abσ2

− bk1σ2 − bk2σ2 + bk1 cos στ1( 􏼁σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(26a)

Q � −
c2k1 sin στ1( 􏼁 + σ − c2σ + k1 sin στ1( 􏼁σ2 − σ3

k2 c2 + σ2( )
,

h � 1, 2, . . . N; j � 0, 1 . . . .

(26b)

,en, there is a point column τ2 � τ2(h, j) satisfying
equation (26a) and (26b),

τ02 � min τ2(h, j)􏼈 􏼉, h � 1, 2, . . . , N; j � 0, 1 . . . . (27)

Correspondingly, h � h0 ∈ 1, 2, . . . N{ } and σ � σhji
.

When τ1 ∈ (0, τ01) and τ2 ∈ τ02, equation (8) has a pair of
pure virtual root.

Hypothesis 2

H4 :
d(Reλ)

dτ2
􏼢 􏼣

− 1

≠ 0. (28)

In this way, by using the general Hopf bifurcation
theorem [35–40] for functional differential equations, the
results on the stability and bifurcation of system (3a)–(3c)
are obtained.

Theorem 2. Assuming (H4) holds and τ1 ∈ (0, τ1(2, 0))

holds, the equilibrium (0, (1/b), 0) of system (3a)–(3c) is
asymptotically stable at τ2 ∈ (0, τ02). When τ2 ∈ τ02 occurs,
Hopf bifurcation occurs in system (3a)–(3c).

3. Period Solution and Stability of
Hopf Bifurcation

In this section, we study the relevant properties of Hopf
bifurcation in financial system (3a)–(3c) under the condition
of delays τ1 > 0, τ2 > 0.

Using the ideas of Hassard et al. [36], the exact ex-
pression of Hopf bifurcation property of system (3a)–(3c) is
considered by using central manifold theorem. Here, we
consider the Hopf bifurcation of system (4a)–(4c) at the
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equilibrium point (0, 0, 0) for τ2 � τ02. ,e financial system
can be converted to the following equation:

_u(t) � Lu ut( 􏼁 + f μ, ut( 􏼁, (29)

where

u(t) � u1(t), u2(t), u3(t)( 􏼁
T ∈ R

3
, (30)

Lμ: C⟶ R
3
, f: R × C⟶ R

3
, ut(θ) � u(t + θ) ∈ C,

(31a)

Lμ(ϕ) � A(0) + B1 − τ1( 􏼁 + B2 − τ02 + μ􏼐 􏼑􏼐 􏼑. (31b)

According to systems (3a)–(3c) and (7a)–(7c), it can be
seen that

A �

1
(b − a)

+ k1 � k2 0 1

− 1 − b 0

− 1 0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32a)

B1 �

− k1 0 0
0 0 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (32b)

B2 �

− k2 0 0
0 0 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (32c)

Let

ϕ(t) � ϕ1(t), ϕ2(t), ϕ3(t)( 􏼁
Τ
. (33)

,en,

f μ, ut( 􏼁 � μ + τk( 􏼁

φ1(0)φ2(0)

− φ2
1(0)

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (34)

When the equilibrium point (0, 0, 0) of system (29)
passes Hopf bifurcation at μ � 0, the characteristic equation
has a pair of pure virtual root iσh and − iσh. According to Ritz
representation theorem, there is a matrix function of
bounded variation

Lμ(ϕ) � 􏽚
0

− τ1
dη(θ, μ)ϕ(θ), ϕ ∈ C. (35)

In fact, we can choose

η(θ, μ) �

A + B1 + B2, θ � 0,

B1 + B2, θ ∈ − τ2, 0( 􏼁,

B1, θ ∈ − τ1, − τ2( 􏼁,

0, θ ∈ − τ1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)

For ϕ � C([− τ1, 0], R3), we define

A(μ)ϕ �
dϕ(θ)

dθ
, θ ∈ − τ1, 0􏼂 􏼃, (37a)

A(μ)ϕ � 􏽚
0

− τ1
dη(ξμ)ϕξ, θ � 0, (37b)

R(μ)ϕ � 0, θ ∈ − τ1, 0􏼂 􏼃, (38a)

R(μ)ϕ � f(μ, ϕ), θ � 0. (38b)

To simplify, equation (29) can be written in the following
form:

_u(t) � A(μ)ut + R(μ)ut, (39)

in which

ut � u(t + θ), θ ∈ − τ1, 0􏼂 􏼃. (40)

,e adjoint operator A∗ that defines A for
ψ ∈ C1([0, τ1], (R3)∗) is as follows:

A
∗ψ(s) � −

dψ(s)

ds
, s ∈ 0, τ1( 􏼁, (41a)

A
∗ψ(s) � 􏽚

0

− τ1
dηT

(t, 0)ψ(− t), s � 0. (41b)

In addition, we define a bilinear form

〈ψ,ϕ〉 � ψ(0)ϕ(0) − 􏽚
0

− τ1
􏽚
θ

ς− 0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ,

(42a)

η(θ) � η(θ, 0). (42b)

According to the above analysis, σh and − iσh0
are the

eigenvalues of A(0) and A∗(0). Let q(θ) be the eigenvector
corresponding to the eigenvalue iσh0

of A(0) and q∗(θ) be
the eigenvector corresponding to the eigenvalue − iσh0

of
A∗(0). ,ere are

A(0)q(θ) � iσh0
q(θ), (43a)

A
∗
(0)q(θ) � − iσh0

q(θ). (43b)

,rough simple calculation, we can get

q(0) � (1, α, β)
T

� 1,
1

− b − σh0
i
,

1
− c − σh0

i
􏼠 􏼡

T

, (44a)

q
∗
(s) � D(1, α, β)e

isσh0 � D 1, 0,
1

− c − σh0
i

􏼠 􏼡e
isσh0

� D 1, α∗, β∗􏼐 􏼑(1, α, β)
T

− 􏽚
0

− τ1
􏽚
θ

ξ�0
D 1, α∗, β∗􏼐 􏼑

· e
− i(ξ− θ)σh0dη(θ)(1, α, β)

T
e

isσh0dξ

� D 1 + αα∗ + ββ∗ − k1τ1e
− iσh0 − k2τ

0
2e

− iσh0􏽮 􏽯,

(44b)

where D is a constant, making 〈q∗(s), q(θ)〉 � 1 valid.
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,erefore, we have

D �
1

1 + αα∗ + ββ
∗

− k1τ1e
iσh0 − k2τ02e

iσh0
. (45)

Using the same notation of Ruan et al. [37], we can
calculate the center popularity of μ � 0. Let μ1 be the solution
of equation (29) when μ � 0, defining

z(t) �〈q∗, ut〉, (46a)

W(t, θ) � W(z(t), z(t), θ) � W20(θ)
z2

2
+ W11(θ)zz

+ W02(θ)
z2

2
+ W30(θ)

z3

6
+ · · · ,

(46b)

where z and z are the local coordinates of the central epi-
demic. When μ � 0,

z(t) � iσkτkz +〈q∗(θ), f 0, W(z(t), z(t), θ) + 2Re z(t)q(θ)􏼈 􏼉( 􏼁〉

� iσh0
z + q
∗
(0) f(0, W(z(t), z(t), 0)) + 2Re z(t)q(0)􏼈 􏼉( 􏼁.

(47)

Make

f 0, W(z(t), z(t), 0) + 2Re z(t)q(0)􏼈 􏼉( 􏼁 � f0(z, z). (48)

,en,
_z(t) � iσh0

z + q
∗
(0)f0(z, z) � iσh0

z + g(z, z), (49a)

g(z, z) � g20
z2

2
+ g11zz + g02(θ)

z2

2
+ g21(θ)

z2z

2
+ · · · .

(49b)

Because

q(θ) � (1, α, β)
T
e

iθσh0 , (50a)

ut(θ) � u1t(θ), u2t(θ), u3t(θ)( 􏼁

� W(t, θ) + z(t)q(θ) + z(t)q(θ),
(50b)

we can obtain

u1t(0) � z + z + W
(1)
20

z2

2
+ W

(1)
11 zz + W

(1)
02

z2

2
+ · · · , (51a)

u2t(0) � αz + αz + W
(2)
20

z2

2
+ W

(2)
11 zz + W

(2)
02

z2

2
+ · · · ,

(51b)

u3t(0) � βz + βz + W
(3)
20

z2

2
+ W

(3)
11 zz + W

(3)
02

z2

2
+ · · · .(51c)

Based on the above formula (49b), it can be seen that

g(z, z) � q
∗
(0)f0(z, z)

� D 1, α∗, β
∗

􏼐 􏼑

u1t(0)

− u2
1t(0) − bu1t(0)u2t(0)

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� D z + z + W
(1)
20

z2

2
+ W

(1)
11 zz + W

(1)
02

z2

2
+ · · ·􏼠 􏼡

� αz + αz + W
(2)
20

z2

2
+ W

(2)
11 zz + W

(1)
02

z2

2
+ · · ·􏼠 􏼡.

(52)

By using the method of comparison coefficient, we
obtain

g20 � 2αD, (53a)

g21 � 2D
1
2
W

(1)
20 (0)α +

1
2
W

(1)
20 (0) + W

(2)
11 (0) + W

(1)
11 (0)α􏼔 􏼕,

(53b)

g02 � 2αD, (53c)

g11 � (α + α)D.

(53d)

In order to calculate W20(θ) and W11(θ), we use
_W � _ut − _zq − _zq

�
A(0)W − 2Re q∗(0)f0q(θ)􏼈 􏼉, θ ∈ − τ1, 0􏼂 􏼃,

A(0)W − 2Re q∗(0)f0q(θ)􏼈 􏼉 + f0, θ � 0,
􏼨

(54)

Make

H(z, z, θ) �
2Re q∗(0)f0q(θ)􏼈 􏼉, θ ∈ − τ1, 0􏼂 􏼃,

2Re q∗(0)f0q(θ)􏼈 􏼉 + f0, θ � 0,
􏼨 (55)

We rewrite (54):
_W � A(0)W + H(z, z, θ), (56)

H(z, z, θ) � H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · .

(57)

Using (54) and (55), one can obtain

A(0) − 2iσh0
􏼐 􏼑W20(θ) � − H20, (58a)

A(0)W11(θ) � − H11(θ), (58b)

θ ∈ − τ1, 0􏼂 􏼃, H(z, z, θ) � − q
∗
(0)f0q(θ) − q

∗
(0)f0q(θ)

� − g(z, z)q(θ) − g(z, z)q(θ).

(59a)
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,e combination formula (57) is obtained:

H20(θ) � − g20q(θ) − g02q(θ), (60a)

H11(θ) � − g11q(θ) − g11q(θ). (60b)

Using equations (58a) and (58b) and (60a) and (60b), it
is easy to obtain

W20 � 2iσh0
W20(θ) + g20q(θ) + g02q(θ), (61a)

W20 �
ig20

σh0

q(0)e
iθσh0 +

ig02

3σh0

q(0)e
− iθσh0 + Ee

2iθσh0 , (61b)

W11 � −
ig11

σh0

q(0)e
iθσh0 +

ig11

σh0

q(0)e
− iθσh0 + E2. (62)

Make

E1 � E
(1)
1 , E

(2)
1 , E

(3)
1􏼐 􏼑

T
∈ R

3
, (63a)

E2 � E
(1)
2 , E

(2)
2 , E

(3)
2􏼐 􏼑

T
∈ R

3
. (63b)

Combine formulas (58a) and (58b) again to obtain

_W20(θ) � 􏽚
0

− τ1
dη(θ)W20(θ) � 2iθσh0

W20(θ) − H20(θ),

(64a)

_W11(θ) � 􏽚
0

− τ1
dη(θ)W11(θ) � − H11(θ), (64b)

H20(0) � − g20q(0) − g02q(0) + 2(α, − 1 − bα, 0), (65a)

H11(0) � − g11q(0) − g11q(0) +(α + α, − 2 − b(α + α, 0))
T
,

(65b)

iσh0
− 􏽚

0

− τ1
e

iθσh0dη(θ)􏼠 􏼡q(0) � 0, (65c)

− iσh0
− 􏽚

0

− τ1
e

− iθσh0dη(θ)􏼠 􏼡q(0) � 0.

(65d)

Substituting equations (62) and (65a)–(65d) into (64a)
and (64b), there is

2iσh0
I − 􏽚

0

− τ1
e

iθσh0dη(θ)􏼠 􏼡E1 � 2(α, − 1 − bα, 0)
T
. (66)

,erefore,

2iσh0
+ Π 0 − 1

1 2iσh0
+ b 0

1 0 2iσh0
+ c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠E1 � 2

α

− 1 − bα

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(67)

where

Π � a −
1
b

− k1 − k2 + k2e
− 2iσh0τ

0
2 , (68a)

f τ1, τ
0
2􏼐 􏼑 � k1e

− 2iσh0τ1 + k2e
− 2iσh0τ

0
2 . (68b)

Let
E

(1)
1 �
Δ11
Δ1

, E
(2)
1 �
Δ12
Δ1

, E
(3)
1 �
Δ13
Δ1

, (69)

in which

Δ11 �

2α 0 − 1
− 2 − 2bα 2iσh0

0
0 0 2iσh0

+ c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (70a)

Δ12 �

2iσh0
+Π 2α − 1

1 − 2 − 2bα 0
1 0 2iσh0

+ c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (70b)

Δ13 �

2iσh0
+Π 0 2α

1 2iσh0
+ b − b − 2bα

1 0 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (70c)

Δ1 �

2iσh0
+ a − 1

b − k1 − k2 + f τ1, τ02( 􏼁
0 − 1

1 2iσh0
+ b 0

1 0 2iσh0
+ c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (70d)

Similarly, we can also have
a − 1

b − k1 − k2
0 − 1

1 b 0

1 b c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2 �

α + α
− 2 − b(α + α)

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠. (71)

Let
E

(1)
2 �
Δ21
Δ2

, E
(2)
2 �
Δ22
Δ2

, E
(3)
2 �
Δ23
Δ2

, (72)

where

Δ21 �

α + α 0 − 1
− 2 − b(α + α) b 0

1 0 c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (73a)

Δ22 �

a − 1
b − k1 − k2

α + α 0

1 − 2 − b(α + α) 0

1 0 c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (73b)

Δ23 �

a − 1
b − k1 − k2

0 α + α

1 b − 2 − b(α + α)

1 0 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (73c)
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Δ2 �

a − 1/b − k1 − k2 0 − 1
1 b 0
1 0 c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (73d)

Furthermore, gij can be determined by the coefficients
and time delays of system (7a)–(7c). ,us, the following
values can be calculated using the method in [37]:

C1(0) �
i

2σh0

g20g11 − 2 g11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

−
1
3

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 +
g21

2
, (74a)

μ2 � −
Re C1(0)􏼈 􏼉

e dλ/dτ02􏼈 􏼉
, (74b)

T2 � −
ImC1(0) + μ2 Im dλ/dτ02􏼈 􏼉

σh0

, (74c)

β2 � 2Re C1(0)􏼈 􏼉. (74d)

Formulas (74a)–(74d) determine the critical point above
the central flow τ02. Now, the properties of periodic solutions
of system (3a)–(3c) could be obtained. ,erefore, we obtain
the following theorem.

Theorem 3. For system (3a)–(3c), when τ1 ∈ (0, τ01),

(1) He symbol μ2 determines the orientation of Hopf
bifurcation. If μ2 > 0 (μ2 < 0), then the Hopf bifur-
cation is supercritical (subcritical). If τ2 > τ02 (τ2 < τ02),
the bifurcation period solution exists.

(2) He sign of β2 determines the stability of the bifur-
cation period solution: if β2 < 0 (β2 > 0), the period
solution is stable (unstable).

(3) He symbol T2 determines the period of bifurcation
period solution. If T2 > 0 (T2 < 0), the period solution
is increased (decreased).

4. Numerical Results and Analysis

In this section, we will give numerical simulations on the
theoretical results of Hopf bifurcation with two delays.

Given the parameters a � 3, b � 0.51, c � 1.0, k1 � 1, and
k2 � 5, it is verified that at that time τ1 � τ2 � 0, the pa-
rameters satisfy the assumption H1 that the equilibrium
point (0, (1/b), 0) of system (3a)–(3c) without time delay is
asymptotically stable.

(1) τ1 > 0, τ2 � 0
If equation (8) has a pair of pure virtual root iw and
iw, there are two positive roots w1 � 0.20211 and
w2 � 1.39915. Substituting w1 and w2 into equations
(15a) and (15b), we can obtain

τ1(1, j) � 15.5044 + 31.0872j, (75a)

τ1(2, j) � 1.39921 + 4.49073j, (j � 0, 1, 2 . . .). (75b)

,at is, τ01 � 1.39921, and we have the following result
for τ1 � τ01:

H3 :
d Reλ( 􏼁

dτ1
� 0.23975> 0. (76)

According to ,eorem 1, equilibrium point
(0, (1/b), 0) of system (3a)–(3c) is asymptotically
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Figure 2: ,e phase diagram (a) and the time series diagram (b) of system (3a)–(3c) with initial value (0.1, 2, 0.1) for τ1 � 1.5> τ01 and
τ2 � 0.
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stable for τ1 ∈ (0, τ01). Hopf bifurcation occurs when
τ1 � τ01, τ2 � 0, and a stable period solution is ob-
tained. ,e time series diagram and phase diagram
are shown in Figure 2.

(2) τ1 > 0, τ2 > 0
Let τ1 � 0.45< τ01 and consider τ2 > 0. Suppose that
equation (22) has a pair of pure virtual root iσ and
− iσ. ,en, according to equation (24), it is found that
N � 1. ,ere is σ1 � 3.05932. Substituting σ1 into
equations (25a) and (25b), we can obtain

τ2(2, j) � 0.11917 + 2.05378j, (j � 0, 1, 2 . . .). (77)

,at is, τ02 � 0.11917 and

d Reλ( 􏼁

dτ2
� 0.227516> 0. (78)

According to ,eorem 2, we know when τ2 ∈ (0, τ02),
the equilibrium point (0, (1/b), 0) is asymptotically
stable (as shown in Figure 3: τ1 � 0.45< τ01 and
τ2 � 0.1< τ02).
When τ1 � 0.45 and τ2 � τ02, Hopf bifurcation occurs
and we can have
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Figure 3: Phase diagram (a) and time sequence diagram (b) of system (3a)–(3c) with initial value (0.1, 2, 0.1) for τ1 � 0.45< τ01 and
τ2 � 0.1< τ02.
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Figure 4: Phase space (a) and time series (b) of system (3a)–(3c) with initial value (0.1, 2, 0.1) for τ1 � 0.45< τ01 and τ2 � 0.1< τ02.
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C1(0) � − 2.29734 + 4.10025i, (79a)

μ2 � 0.92535> 0, (79b)

β2 � − 4.59468< 0. (79c)

,erefore, the bifurcation direction is τ2 > τ02, and the period
solution is stable, as shown in Figure 4: τ1 � 0.45 and τ2 � 0.15.
In addition, the complex dynamics of system (3a)–(3c) could be
shown from the bifurcation diagram in Figure 5.

5. Multistability in the Improved Financial
System (3a)–(3c) with Two Delays

When τ1 � 0.45 and τ2 � 3.8, we will find the multistability
in the systems without changing parameters. Given the
parameters a � 3, b � 0.51, c � 1.0, k1 � 1, and k2 � 5, we
have obtained the periodic attractor with initial value
(0.01, 1, 0.01) in Figure 6(a). However, we also obtain chaos
for same parameters’ values but different initial values
(0.1, 0, 0) in Figure 6(b). ,erefore, when different initial
conditions are taken, the coexisting and different attractors
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Figure 5: Bifurcation diagram of system (3a)–(3c) with initial value (0.1, 2, 0.1) and τ1 � 0.45< τ01 and τ2 ∈ [1, 4].
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Figure 6: Time series of system (3a)–(3c) with τ1 � 0.45< τ01 and τ2 � 3.8: (a) initial value (0.01, 1, 0.01) and periodic orbit; (b) initial value
(0.1, 0, 0) and means chaos.
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are exhibited. We knowmultistability is a critical property of
nonlinear dynamical systems [41–44]. Since the crisis of the
financial system is subject to various factors, the nature of
the multi-steady state plays an important role in making
correct decisions for government workers.

6. Conclusion

Time delay is a very sensitive factor in financial systems with
multistability. Financial systems with multiple time delays
have richer dynamic characteristics than those with single
time delay. Two-delay feedback can effectively control the
unstable behavior of financial markets. In this paper, Hopf
bifurcation of an improved financial model with two time
delays is studied in detail. ,e existence of the bifurcation
period solution of this system is discussed by using the
theory of functional differential equations. Complexity of
the proposed financial chaotic system is studied from the
bifurcation diagram that its multistability depends extremely
on the memristor initial condition and the system param-
eters. In summary, time delay is one of the effective methods
to control the stability of the financial market, so it can
provide a theoretical reference for relevant departments to
regulate economic behavior.
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Multiple fisheries have collapsed as a result of overfishing and strong limitations in our knowledge of system conditions and
consequential ecological interactions. Fishery managers need to establish harvesting strategies that balance economic benefits
against ecological objectives, including avoiding unintended catastrophic consequences. Our results show that classical as-
sumptions for fisheries management can yield severe instabilities in our quantified views of socioecological tradeoffs, making their
ability to inform stakeholder preferences questionable.(e complex ecological interactions implied by different parameterizations
of such systems yield highly complex and nonlinear dynamic properties with multiple distinct basins of attraction. We show that
small changes in our deeply uncertain representations of predator-prey systems can fundamentally shift their dynamics and the
validity of candidate management strategies for harvest. Insights from this study highlight the importance of ensuring models
capture deep uncertainties, as well as a breadth of financial and ecological criteria when searching for robust management options
for resilient fisheries.

1. Introduction

One in four fisheries has collapsed in the latter half of the
20th century [1]. In the northwest Atlantic, most Atlantic cod
(Gadus morhua) stocks collapsed in the early 1990s in a
decline that was considered to be sudden and unexpected at
the time [2]. (e collapse has since been attributed to the
decades-long overexploitation of the system at unsustainable
levels [3] and changes in ocean climate conditions [4].
Overlooked changes in environmental conditions and sys-
tem interactions led to the collapse of the sardine (Sardinops
sagax) and anchovy (Engraulis encrasicolus) fisheries in the
northern Benguela ecosystem off the coast of Namibia in the
1970s. As both species are energy-rich prey, their collapse
culminated in significant population declines for their
predators as well [5]. In the Volga River, the construction of
dams has interrupted spawning migrations and reduced
habitat sizes, resulting in the collapse of inconnu (Stenodus
leucichthys), beluga (Huso huso), Russian sturgeon (A.

gueldenstaedtii), and herrings (Clupea harengus) [6]. (ese
catastrophic events have been attributed to imprudent hu-
man action on marine and freshwater ecosystems and to
deep uncertainty in system conditions and poorly under-
stood interactions [7, 8]. Deep uncertainty refers to situa-
tions where parameters and relationships describing the
system can be complex and difficult to estimate from em-
pirical data, and experts cannot agree on probability density
functions to describe them or on the relationships them-
selves [9, 10].

Such is the case for predator-prey theory in the trophic
ecology field. (e standard theory of predator-prey inter-
actions has largely been based on the Lotka–Volterra
equations that describe a system of two differential equations
with a simple relation of proportionality between prey
consumption and predator growth. (e core assumptions of
this model (prey growth and trophic function) have been
challenged by multiple authors on both empirical and
theoretical bases (e.g., [11–13]). Arditi and Ginzburg [14]
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argued that the trophic function should account for the
intricacies of the predation process at the macroscale (i.e.,
that the predators need to share the prey available to them).
(is proposition (the “ratio-dependent” trophic function)
sparked a strong debate [15–18] that appeared to come to its
conclusion with the general agreement that a range of
predator interference levels can be found in nature (i.e., a
predator-dependent trophic function with case-specific
levels of interference, [19]).

In this study, we consider a fishery management problem
where a fleet must develop a harvesting strategy that bal-
ances profits with the ecological stability of a predator-prey
system. We use the predator-dependent predator-prey
system of equations, proposed by Arditi and Akçakaya [20],
that includes parameter m for the level of predator inter-
ference. Accounting for predator interaction (m) and time
adaptive human prey harvesting (zt), the following discrete-
time forms of the predator-prey system equations are
defined:

xt+1 � xt + bxt 1 −
xt

K
􏼒 􏼓 −

αxtyt

ym
t + αhxt

− zt+1xt􏼢 􏼣 · e
ϵx ,

yt+1 � yt +
cαxtyt

ym
t + αhxt

− dyt􏼢 􏼣 · e
ϵy ,

(1)

where x is prey abundance, y is predator abundance, z is the
fraction of harvested prey, and t ∈ 1, 2, . . .{ } is the time index
in years. b is the prey growth rate and K is its environmental
carrying capacity. α represents the rate at which the predator
encounters the prey, h is the time it needs to consume the
prey, and c is the rate at which it converts the consumed prey
to new predators. d is the predator death rate and m is the
level of predator interference. Parameterizing the level of
predator interference in this way, allows us to move between
the two contested equation forms (predator dependence
versus not) and examine the effects of this type of parametric
uncertainty on management tradeoffs. Furthermore, this is
the first study to use this specific form of predator-prey
relationships and pair it with adaptive human harvesting of
prey. Environmental stochasticity is included using “process
noise” factors ϵx and ϵy, modeled as coming from a log-
normal distribution, ϵi ∼ Normal(0.0, σ2i ) [21–23]. Addi-
tional information on the model and its parameterization is
provided in Section 2; detailed parameter descriptions, units,
and default values are listed in Table 1.

Different system parameterizations can have profound
implications on the ways the system behaves. Even in sys-
tems without human disruption (zt � 0), the parameter
values and population interactions can affect system dy-
namics in complex ways, changing, for example, the pres-
ence and stability of equilibria between the species
(Figure 1). Focusing on the zero isoclines (i.e., the black lines
designating the prey and predator population levels that
result in either of the species having a zero growth rate), we
can identify equilibria (at the intersection of the two zero
isoclines). For the prey-dependent model, if the nontrivial
(coexistence) equilibrium is stable, it is also a global
attractor, which is the specific value that the system tends to

evolve toward, irrespective of initial conditions (Figure 1(a)).
If the equilibrium is unstable then the global attractor of the
system is a stable limit cycle (Figure 1(d)) (i.e., a closed
trajectory in the phase space with at least one other trajectory
spiraling into it, [24]). For the generalized predator-de-
pendent model, when the nontrivial (coexistence) equilib-
rium is stable, it is also a global attractor (Figure 1(b)). For
this model, if the nontrivial equilibrium is unstable, it can
either lead to stable limit cycles (Figure 1(c)) or deterministic
extinction (Figure 1(e)). When predator interference is high
(m> 1) and there is sufficient carrying capacity (K), there are
two nontrivial equilibria, only one of which is stable
(Figure 1(f )). (e instability of the nontrivial equilibrium
can therefore lead to sustained population oscillations or
extinction, depending on the model parameters and the
initial conditions [24]. As a result, the complex ecological
interactions implied by each model formulation are non-
linear and yield highly complex dynamical impacts on the
ecosystem, leading to distinct basins of attraction [25, 26].
(e complex dynamics of these systems can be further seen
in the bifurcation diagrams in Figure S1 of the Supple-
mentary Material, for all respective systems presented in
Figure 1. (e diagrams are plotted with respect to parameter
m and demonstrate both the fixed points and the periodic
orbits possible under different parameterizations. Specifi-
cally, for the systems presented in Figures 1(b)–1(d), de-
creasing values of m change the stability of the equilibrium
point, resulting in periodic behavior.

Precise estimates of predator interference, predation,
and growth and death rates are difficult to estimate from
empirical data, especially for nonartificial environments
[19, 20]. As a result, the form of functional responses for a
large number of species remains unknown [27]. (is is
concerning, as the modern ecological paradigm highlights
the significance of species interactions to the management of
populations, communities, and ecosystems [28–30]. (e
consequences of such deeply uncertain ecological dynamics
on the management objectives can therefore be significant,
potentially leading to unattained harvesting profits, or
worse, unintentional population collapse.

In this study, we quantify and analyze the tradeoffs of
managing (harvesting) a two-species fishery governed by a
predator-prey relationship and assess how deep uncertainty
in population interactions can affect the management
tradeoffs. (is application expands on the work by [31, 32]
and [33] that also sought to identify management tradeoffs
resulting from a socioecological system, as well as the im-
plications of deep uncertainty in the system’s parameters. As
illustrated in Figure 1, the system investigated in this ap-
plication exhibits a much richer variety of dynamics, in ways
that may potentially alter the topological characteristics of
the attained tradeoffs (e.g., if the parameterization shifts in a
manner that changes the stability of an equilibrium,
Figures 1(b) and 1(c)). Furthermore, the system considered
here includes an additional dimension, increasing the
complexity of maximizing economic benefits without in-
advertently driving either of the species to collapse. (e prey
can be overconsumed by the predator and harvester; the
predator can collapse if there is not enough available prey.
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Finally, we demonstrate how the concept of multiobjective
robustness can be valuable for selecting harvesting policies
that avoid triggering potentially catastrophic consequences
in harvested fisheries.

(is study aims to bridge and complement the two
intellectual threads shaping the management of fisheries:
economics and biology. As recounted by [34], seminal work
by [35, 36] helped ground a biological rationale for the
management of fisheries by illuminating the connections
between fishing effort, mortality, and dynamics. From the
economic perspective, early work by [37, 38] established an
operational foundation for the management of fisheries,
based on capital theory and investment concepts, that
addressed resource conservation by establishing an objective
that ought to be pursued by management. Optimal control
theory methods [39, 40] complemented these efforts by
describing optimal action paths to achieve this objective. In
recent decades, progressive discoveries on the importance of
complex multispecies relationships, trophic connectivity,
and ecosystem interactions have questioned the traditional
and, to this day, predominant view of fisheries management:
that of a single-species- and single-objective-based control
that establishes a “maximum sustainable yield” or an “al-
lowable biological catch” [29, 41, 42]. Work by [43, 44] and
others demonstrated that single-species assessments and
management controls may indeed produce misleading
predictions and destructive impacts on ecosystems with
multispecies interactions, and in marine environments, all
species have predator-prey relationships with other species
in their ecosystem.

On these grounds, ecosystem-based fishery manage-
ment [29, 45] has been promoted as the new paradigm for
fisheries management, advocating for the consideration
of multiple species and values. However, explicit incor-
poration of nonharvesting values has been limited in
fisheries management studies. In cases where multispe-
cies interactions are considered [46, 47], the inclusion of
nonharvesting values has been hindered by the fact that

these commodities are not typically traded in markets.
(is might lead to the underappreciation or even com-
plete omission of the nonmarket values of environmental
and ecosystem goods and services from studies aiming to
provide support for socioecological systems management
[48]. Such formulations might consequently result in the
inappropriate suggestion of strategies that promote re-
source exploitation and degrade the ecosystem and its
provisions [49, 50]. Broadening the set of fishery man-
agement objectives to include nonharvesting values could
result in fundamentally different management strategies
[47, 51, 52]. (e latest review of fisheries’ decision-
making applications using multiple criteria [53] identi-
fied several studies that considered either several species
or several objectives (including nonharvesting). How-
ever, all of the presented approaches (multiattribute
utility, linear and nonlinear goal programming, and
weighted goal programming) collapsed these multiple
objectives into one, using an a-priori formulation of the
preferences of the stakeholders to be included in the
model in the form of weights. (ese weights may not
accurately reflect the true stakeholder preferences, es-
pecially before exploring the wider set of possible options,
and in cases of nonlinear, threshold responses in the
objective space [54–56]. Furthermore, specifying specific
goals or weights before the search may miss potential
solutions that are of interest by unnecessarily limiting the
search space [57]. To the best of the authors’ knowledge,
there has been one study that applied heuristic global
optimization for the identification of management
strategies for a fishery without collapsing objectives into
one, Mardle et al. [58]. (e application used the GEN-
OCOP III genetic algorithm [59], albeit inappropriately,
with a search population and number of function eval-
uations that were too small for the problem at hand. (is
work aims to expand on the current literature by opti-
mizing state-dependent, adaptive harvesting strategies
that explicitly consider a broad range of objectives

Table 1: Description, values in the assumed state of the world (SOW), and ranges of sampled uncertain model parameters. (e fishery
harvesting plans are optimized to a system assumed to be described by the base values and then re-evaluated in 4,000 alternative SOWs
generated by a Latin Hypercube Sample across the parameter ranges listed in the table (minimum and maximum).

Parameter Description Unit Base value Minimum Maximum
α Rate at which the prey is available to the predator 1/time 0.005 0.002 2
b Prey growth rate 1/time 0.5 0.005 1

c Rate with which consumed prey is converted to
predator abundance mass/mass∗ 0.5 0.2 1

d Predator death rate 1/time 0.1 0.05 0.2

h Handling time (time each predator needs to consume
the caught prey) time 0.1 0.001 1

K Prey carrying capacity given its environmental
conditions mass∗ 2000 100 5000

m Predator interference parameter mass/mass∗ 0.7 0.1 1.5

σx

Standard deviation of stochastic noise in prey
population mass2∗ 0.004 0.001 0.01

σy

Standard deviation of stochastic noise in predator
population mass2∗ 0.004 0.001 0.01

∗(e units of these parameters depend on the units used to measure prey (x) and predator (y) abundance. If prey and predator abundance is measured in
volume then these units would equivalently change.
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(including nonharvesting), in a multiobjective optimi-
zation framework. We believe this is the first application
of stochastic multiobjective control for the identification
of robust harvesting strategies for a fishery.

(e rest of this manuscript is organized as follows. In
Section 2 we first explain the system under study and discuss
the presence and stability of equilibria. We then detail how
we used multiobjective optimization to identify candidate
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Figure 1: Direction fields and trajectories for different parameterizations of the predator-prey system. Black lines indicate zero-isoclines;
their intersections indicate nontrivial equilibria. (a) Prey-dependent system with a global attractor stable equilibrium
(α � 0.005, b � 0.5, c � 0.5, d � 0.5, h � 0.1, K � 500, m � 0). (b) Predator-dependent system with a global attractor stable equilibrium
(α � 0.005, b � 0.5, c � 0.5, d � 0.1, h � 0.1, K � 2000, m � 0.7). (c) Predator-dependent system with unstable equilibrium and limit cycles
as the global attractor (α � 0.047, b � 0.877, c � 0.666, d � 0.094, h � 0.306, K � 1893.72, m � 0.465). (d) Prey-dependent system with
unstable equilibrium and limit cycles as the global attractor (α � 0.005, b � 0.5, c � 0.5, d � 0.1, h � 0.1, K � 2000, m � 0). (e) Predator-
dependent system with unstable equilibrium and deterministic extinction (α � 1.775, b � 0.389, c � 0.441, d � 0.083, h � 0.941,
K � 4465.07, m � 0.107). (f ) Predator-dependent system with two equilibria and no global attractor (α � 0.796, b � 0.215, c � 0.565,
d � 0.137, h � 0.472, K � 4858.48, m � 1.21). All systems assume no process noise.
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harvesting strategies for five management objectives, while
constraining strategies to avoid predator collapse. Finally, we
explain how the robustness of each candidate strategy was
assessed using several satisficing criteria. In Section 3, we
present the potential values achieved in each objective by
each of the candidate management strategies and demon-
strate the significant instability of these tradeoffs, when
considering uncertainty in parameter values. We then ex-
plore how interactions between parameters affect system
stability and, consequently, the attainment of management
objectives, including avoiding predator collapse. Lastly, we
show how alternative preferences in management strategy
may affect the system and potentially avoid population
collapse in unstable systems.

2. Methods

2.1. System Equilibria and Stability. A generalized predator-
dependent predator-prey system of equations has been
modified for the purposes of this study to account for human
action by means of harvesting:

dx

dt
� bx 1 −

x

K
􏼒 􏼓 −

αxy

ym + αhx
− zx,

dy

dt
�

cαxy

ym + αhx
− dy ,

(2)

where z describes the harvesting effort performed by the
fleet.(e parameter values describing the system are listed in
Table 1 and represent our best current state of knowledge.
Since the system in this study represents a stylistic example,
these values were not derived from a specific empirical
system, but were based on values and ranges that appear in
multiple literature sources (e.g., [21–24]). In an unharvested
system, for the nontrivial (coexistence) equilibrium to exist,
the following equation must hold [24]:

c> h d. (3)

A mathematical proof of how this condition also holds
for a system with harvested prey is provided in the Sup-
plementary Material. In an unharvested system, for the
nontrivial equilibrium to be stable, the following equation
must hold:

α(hK)
1− m <(b)

m
. (4)

Biologically, when (3) holds, predators convert the
consumed prey to new predators at a higher rate than the
rate of their death d and handling time h (i.e., their losses in
time and energy). When (4) holds, the prey isocline (detailed
in the Supplementary Material) decreases as a function of x,
stabilizing the system [24]. For a system where prey is
harvested (i.e., the additional parameter z only decreases the
prey level), the condition must also hold as the prey isocline
can only further decrease as a function of x. (is is also
demonstrated experimentally by our study.

We use the stochastic, closed loop control method direct
policy search (DPS) [60], also known as parameterization-
simulation-optimization, to identify harvesting policies.(is

allows for the use of a state-aware control rule that maps the
prey population level (xt) to the harvesting effort at the next
time step (zt+1), instead of optimizing all individual har-
vesting efforts.(e following sections describe this approach
in detail, beginning with the management objectives, the
policies that were optimized, and the algorithm used.

2.2. Optimization ofHarvesting Strategies. (e optimization
is aimed at determining dynamic harvesting policies that
describe how much prey to harvest over time in order to
optimize five objectives and meet the specified constraint.
(e objectives are designed to address financial goals and
to ensure that the fish population is maintained at natural
levels; this gives rise to tradeoffs between candidate
harvesting strategies. We identify a set of “nondominated”
solutions, which is comprised of the harvesting strategies
that perform better than any other strategy in at least one
of the five objectives. (e nondominated solutions
compose optimal tradeoffs where improvement in any
single objective comes at the cost of degraded perfor-
mance in one or more of the remaining objectives. (e
objectives and constraint are described in more detail
below.

2.2.1. Maximize Harvesting Discounted Profits (Net Present
Value). (e net present value of harvesting profits for each
realization of environmental stochasticity is given by
􏽐

T− 1
t�0 zt+1,ixt,i/(1 + δ)t for Tyears, where δ is the discount rate

used to convert future benefits to present value, xt,i is prey
abundance at the tth year of the ith realization, and zt+1,i is
the harvesting effort performed for that prey. (e expected
harvesting discounted profits O1 are estimated as the average
across N realizations:

O1 �
1
N

􏽘

N

i�1
􏽘

T− 1

t�0

zt+1,ixt,i

(1 + δ)t
⎛⎝ ⎞⎠, (5)

where δ � 0.05.

2.2.2. Minimize Prey Population Deficit. (e prey pop-
ulation deficit for each realization of environmental sto-
chasticity is given by (K − xt,i)/K, where K is the prey
carrying capacity (i.e., the maximum population abundance
that can be achieved if the prey is not subjected to predation
or harvest). (e expected prey population deficit O2 is es-
timated as the average deficit over all time steps, averaged
across N realizations:

O2 �
1
N

􏽘

N

i�1

1
T

􏽘

T

i�1

K − xt,i

K
􏼠 􏼡⎛⎝ ⎞⎠. (6)

When policies are re-evaluated or reoptimized in sys-
tems with different parameter combinations (as elaborated
in Section 2.6), the respective value of K is adjusted ac-
cordingly, so as to reflect the deficit of population as it relates
to the carrying capacity implied by the new set of
parameters.
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2.2.3. Minimize Longest Duration of Consecutive Low
Harvest. Given operational costs, the fishery managers
would like to avoid long durations of consecutively low
harvest, defined by a minimum harvest limit. (e max
duration of low harvest is given by both
zt < limit and zt+1 < limit holding for all t in a realization of T
years. (e expected worst case of consecutive low harvest O3
is defined as the average of the max duration across N
realizations:

O3 �
1
N

􏽘

N

i�1
maxT ϕt,i􏼐 􏼑􏼐 􏼑,

where:

ϕt,i �

ϕt− 1,i + 1, if zt < limit,

0, otherwise,

⎧⎪⎨

⎪⎩

ϕ1,i �

1, if z1 < limit,

0, otherwise,

⎧⎪⎨

⎪⎩

(7)

where limit � 5%.

2.2.4. Maximize Worst Harvest Instance. Given operational
costs, the fishery managers would like to avoid exposure to
financial risks. Variance-minimizing strategies have been
widely employed in the literature to model behavior under
risk; authors have noted, however, that the costs of risks
associated with uncertainty often depend on higher order
moments, such as skewness and kurtosis (tail events in the
distribution) [61]. (is was approximated in this analysis by
maximizing the worst harvest instance as well as minimizing
the variance of harvest in every realization (O5, explained in
the next section). (e worst harvest instance is approxi-
mated here by the 1st percentile of harvest for every T-year
realization.(e expected worst harvest instance is calculated
as the average 1st percentile across N realizations:

O4 �
1
N

􏽘

N

i�1
percentileT zt+1,ixt,i, 1􏼐 􏼑􏼐 􏼑. (8)

2.2.5. Minimize Harvest Variance. More traditionally en-
countered in the literature is the minimization of the var-
iance of deviations from the expected profits [61, 62]. (is
objective has been approximated by estimating the variance
of the obtained harvest in every T year realization and av-
eraging across all N realizations:

O5 �
1
N

􏽘

N

i�1
VarT zt+1,ixt,i􏼐 􏼑􏼐 􏼑. (9)

2.3. Avoid Collapse of Predator Population. Considering the
unharvested predator population as a valuable species, the

population of which the managers would like to maintain,
the optimization is also subject to a constraint:

1
N

􏽘

N

i�1
ψt,i􏼐 􏼑 � 0,

where:

ψt,i �

1, if yt,i < 1,

0, otherwise,

⎧⎪⎨

⎪⎩

∀t ∈ T and∀i ∈ N.

(10)

2.4. Formulation of Harvesting Policy. For the purposes of
this study, candidate DPS control rules were used to map the
current levels of prey population (xt) to the harvesting effort
at the next time step (zt+1). (e optimization was aimed at
identifying the parameters describing the control rules,
instead of the harvesting efforts themselves, allowing for
state-based feedback control strategies. (e control rules
were in the form of Gaussian radial basis functions (RBFs),
following the formulation by [63]. (e optimization prob-
lem was formulated as follows:

MinimizeF zx( 􏼁 � − O1, O2, O3, − O4, O5( 􏼁,

z � z1, z2, . . . , zT( 􏼁,

zt+1 � 􏽘
n

i�1
wi exp −

xt( 􏼁 − ci

bi

􏼠 􏼡

2
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

(11)

where i � 1, 2, . . . , n and n is the number of RBFs used in the
function mapping; in this study n � 2. wi is the weight of the
ith RBF and the weights are formulated so as to be positive
(i.e., wi > 0 ∀i) and sum to one (i.e., 􏽐

n
i�1wi � 1). ci and bi are

the center and radius of the ith RBF. All wi, ci and bi ∈ [0, 1].
We used two RBFs and one input in this study, resulting in
six decision variables that need to be optimized for the
control rule mapping current prey population to next
harvest. More inputs can be used in the policy formulation,
but were omitted from equation (10) for the purposes of
simplicity. Note that with the application of these control
rules, the harvesting effort zt+1 will not necessarily be the
same in each of the N realizations as the harvesting action is
informed by the respective level of prey, xt, which is subject
to the environmental stochasticity at each realization.
Furthermore, this formulation assumes a perfectly accurate
measurement of the prey level at all times, as well as a
perfectly accurate execution of the harvesting strategy.(ese
simplifying assumptions have the benefit in this study of
demonstrating the severe difficulty of the class of fisheries
management problems even in optimistic formulations of
available information.

2.5. Optimization Algorithm. (e multiobjective formula-
tion was solved for N � 100 realizations of randomly
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generated environmental stochasticity, with each realization
spanningT � 100 years. Initial prey and predator population
values were assumed to be x0 � 2000 and y0 � 250. (e
parameter values for the assumed state of the world (SOW)
are listed in Table 1. (e default SOW is assumed to have a
single stable equilibrium that is a global attractor. (e pa-
rameters of the formulated policy were optimized using the
Borg multiobjective evolutionary algorithm (MOEA).
MOEAs are heuristic optimization algorithms that follow an
iterative search procedure to adapt and evolve a population
of possible solutions toward an optimized set. To do so,
MOEAs apply various probabilistic operators for mutation,
mating, archiving, and selection [64].

(e Borg MOEA has been designed for the optimization
of a wide array of many-objective, multimodal problems [65].
(e Borg MOEA is a stochastic population-based search
algorithm. Multiple diagnostic studies have demonstrated its
capacity to perform consistently well across multiple chal-
lenging applications [64]. Its success in identifying high
quality Pareto-approximate solution sets has been attributed
to its use of ϵ-dominance archiving, ϵ-progress, and its
autoadaptive exploitation of multiple search operators based
on their success in generating high quality solutions [65]. (e
numerical precision required for evaluating each objective, ϵ,
is specified by the decision maker, creating multidimensional
ϵ-boxes for ranking and archiving solutions as the algorithm
completes its search [65]. Additionally, ϵ-values provide a
control on the resolution of the Pareto-approximate set (e.g.,
[66]).(e standardmeans of specifying ϵ-values is to consider
the significance of precision in each objective.(e ϵ-values for
the five objectives were set as follows: O1: ϵ� 5, O2: ϵ� 0.005,
O3: ϵ�1, O4: ϵ�1, and O5: ϵ� 5. (e Borg MOEA was
implemented using its default parameter values, as recom-
mended by [65]. Since Borg is a stochastic optimization al-
gorithm, its search is affected by the random seed that
initializes the population and impacts its stochastic operators.
(e optimization problem was hence solved with 20 random
seed runs, each of which exploited 3,000 function evaluations.

2.6. Robustness Analysis. As illustrated in Figure 1, the pa-
rameters describing the predator-prey system can fundamen-
tally shift its dynamics and, by extension, the harvesting strategy
one should choose to employ. Given the limitations of our
knowledge of the parameters describing the modeled system
[19, 20, 27], decision makers may consider identifying potential
policies that continue to perform satisfactorily when operated
under a broad range of alternative system characteristics, also
referred to as SOWs. Such policies are termed “robust” and can
be identified using various metrics available in the decision
analysis literature [67–69]. (e domain criterion satisficing
measure [70] quantifies the fraction of potential SOWs, in
which a solution meets a desired performance (e.g., a set of
criteria), and has been widely used in the robustness literature.
When compared against other satisficing- and regret-based
measures, thismetric has been found to identify solutions in line
with the stakeholders’ performance criteria [67]. We generated
4,000 alternative SOWs using a Latin Hypercube Sample across
the ranges of the deeply uncertain parameters listed in Table 1,

assuming uniformparameter distributions.(eprey population
at each SOW was initialized at the respective sampled K-
simulated unharvested population trajectories of both prey and
predator for all SOWs can be found in Figure S3 in the Sup-
plementary Material. (e purpose of the exploratory parameter
ranges is to encompass the best available nominal estimates,
while sampling broadly enough in their feasible ranges to
discover consequential impacts.(e intent of this approach is to
shift focus from predicting system conditions to, instead, dis-
covering scenarios that are consequential to the decisionmakers
[71–73]. Our multivariate satisficing robustness measure
quantifies the percentage (%) of the SOWs in which harvest
management is possible (i.e., there is no deterministic extinc-
tion) that meet the following requirements:

(1) Net Present Value (NPV) ≥ 1, 500
(2) Prey population deficit (Prey Deficit) ≤ 0.5
(3) Longest duration of low harvest (Low Harvest Du-

ration) ≤ 5
(4) Worst harvest instance (Worst Harvest) ≥ 50
(5) Harvest variance ≤ 2300
(6) Duration of predator population collapse (Predator

Collapse) ≤ 1

(ese performance criteria should be elicited by relevant
stakeholders in a real world application. In this exploratory
work, they are set so as to reflect possible performance levels
expected by decision makers managing this system. Criteria
1, 3, 4, and 5 are each met by at least 75% of the solutions in
the assumed SOW. Criterion 2 was set based on critical fish
biomass levels for sustainable yields, as reported in the
literature [74]. Criterion 6 was met by all solutions in the
assumed SOW as it was defined as a constraint.

Even though more robust solutions may be discovered if
the optimization is conducted over a large ensemble of
deeply uncertain SOWs, said robustness might also result in
increased losses (regrets) in the assumed SOW as well as in
SOWs that are never encountered [31]. Instead, in this study,
we aim to establish a baseline of performance in the assumed
SOW, representing our best current state of knowledge, and
then re-evaluate this performance across a subjective and
wide enough range of SOWs. (is allows us to both min-
imize regret in the assumed SOW and also highlight the
existence of areas in the parametric space where manage-
ment plans might fail, despite their highly adaptive and
optimistic design, due to their ignorance of a fundamental
shift in system dynamics. Lastly, this intentionally broad
ensemble of parameter combinations produces SOWs where
extinction of one or both species is unavoidable (detailed in
the following section). Such SOWs were omitted from the
robustness analysis of the candidate solutions, so as to only
evaluate them in contexts where the choice of strategy ac-
tually matters and affects the outcomes.

3. Results and Discussion

(is section is organized as follows, with Figure 2 sum-
marizing the motivation and main findings of each section.
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In Section 3.1, we first present and discuss the objective
values attained in the assumed SOW, presented in Figure 3,
highlighting the strong tradeoffs between NPV and Prey
Deficit objectives. In Section 3.2, we explore the impacts of
deep uncertainty on the inferred tradeoffs for four other
potential SOWs. Figures 4 and 5 demonstrate severe in-
stabilities in these objective values when strategies are re-
evaluated in different SOWs. Further, Figure 5 shows that
when compared with solutions identified assuming perfect
knowledge of the SOW, there are significant losses in the
populations of the two species, despite the highly adaptive
harvesting policies. In Section 3.3, we explore how system
stability is generally affected by parametric uncertainty, by
looking at the SOWs leading to predator population col-
lapse. In Figure 6, we show that there is a multidimensional
threshold surface dividing sustained harvesting and recovery
from fishery collapse, where there are no management
tradeoffs to be attained. Finally, in Section 3.4, we posit that
the concept of multiobjective robustness can be a valuable
driver for selecting management strategies that meet nec-
essary system performance and avoid system collapse. We
present the robustness values of each candidate management
strategy in Figure 7, and the implications of choosing two of
them for the two fish populations in Figure 8. Figure 2
summarizes the methodological approach of this study, with
the motivation and main findings of each section.

3.1. Fishery Management Tradeoffs in Assumed State of the
World. (e general challenge considered by fishery man-
agement is how to best exploit the system through harvesting
while balancing multiple societal objectives with respect to
environmental sustainability and profit. Figure 3 presents a
parallel axis plot of the objective values achieved by each
optimized solution in the assumed SOW (i.e., the set of
model parameters describing the system, to which the
policies were optimized).(e performance on each objective
is represented by a vertical axis. (e points where each line
crosses a vertical axis represent the average performance
value for that objective across 100 realizations of environ-
mental stochasticity. An upward shift in one of the vertical
axes indicates increased preference in the equivalent ob-
jective performance. All lines have been shaded according to
their performance on the NPV objective.(e plot is oriented
such that the ideal solution would be a dark horizontal line
crossing the top of each vertical axis. Diagonal, intersecting
lines indicate pairwise tradeoffs between two objectives,
where improving the performance in one objective is only
possible with reduced performance in the other. One should
note that the identified solutions carry no stakeholder
preference (or weight) towards the objectives but have been
instead identified by searching the space of possibilities as
widely as possible. Presenting objective performance and
tradeoffs in such a format allows and facilitates an a-pos-
teriori elicitation and negotiation of preferences by the
decision makers [76]. For example, in systems or decision-
making contexts, where species conservation is valued more
than harvest profits, one can express such weighting by
imposing upward moving limits on the respective axes. (is

preference elicitation process should be iterative, allowing
for stakeholders with diverging preferences to evaluate the
performance and appropriateness of the candidate solutions
for the system at hand.

As indicated by the intersecting lines and the switch in
the color gradient, there appears to be strong tradeoffs
between the NPV and Prey Deficit objectives, as well as
between the Prey Deficit and the Low Harvest Duration
objectives. NPV-maximizing policies do so by harvesting
large parts of the available prey population, depleting it from
its natural levels by 58.2% on average, across all realizations.
Similarly, policies that minimize the Low Harvest Duration
to zero (i.e., harvesting at least 5% of the available prey at all
times) also severely deplete the prey population. In contrast,
policies that minimize the Prey Deficit to 5%, achieve very
low values in the NPV objective (indicated by their very light
color), as well as in the Low Harvest Duration objective.
Looking at the two objectives incorporated to minimize
financial risk, Worst Harvest and Harvest Variance, one may
note that some solutions ranking poorly with regards to their

Figure 2: Main findings on the implications of deep uncertainty on
this predator-prey system. Latin numerals indicate the Results and
Discussion sections in which each step is presented. See the main
text for further description.
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Worst Harvest perform very well in minimizing Harvest
Variance. (ese solutions also achieve low NPVs (as indi-
cated by their light color), suggesting that the low variance is
achieved by simply consistently harvesting very little at every
time step. (is observation is consistent with past robust
optimization studies (e.g., [77, 78]) that have found vari-
ance-minimizing objectives penalizing outcomes both above
and below the mean (i.e., both higher and lower profits when
only lower profits are of concern).

(e identified solutions have been optimized under the
assumption that the abstracted harvesting agent has access to
an accurate reading of the prey population at each timestep
(i.e., “error-free information”). Furthermore, the solutions
and tradeoffs that arise as a result of this formulation only
take into account uncertainty in the form of environmental
stochasticity (ϵi), which is traditionally assumed to be well
characterized. (ese assumptions are commonly employed
in the literature [52, 79, 80] and are highlighted here to
emphasize the highly optimistic nature of such optimized
strategies, even when they account for standard sources of
environmental uncertainty. In addition, the harvesting
policies assume no incidental by-catch of the predator. Our
intent is to illustrate that even in a highly optimistic har-
vested predator-prey management context, with a well-in-
formed and highly adaptive harvesting agent, deep
uncertainties that are traditionally neglected pose severe
challenges.

3.2. Tradeoff Implications of Deep Uncertainty. Figure 3
presents the objective values achieved by each policy under

a SOW representing our best knowledge of the system, a
predator-dependent system with a stable global attractor, the
dynamics of which are presented in Figure 1(b). As previously
elaborated, precise estimates of growth and death rates, pre-
dation, and interference are often difficult to estimate from
empirical data [19, 20]. Given this uncertainty in the parameter
estimates, Figure 1(c) presents the dynamics of a predator-
dependent system with a now unstable equilibrium, resulting
from slight shifts in our best estimates of the system’s pa-
rameter values. Figures 1(a)–1(f) illustrate the wide variety of
dynamic behavior that can occur as a result of uncertainty in
the system parameterization, in absence of any human dis-
turbance (harvesting). Having identified the Pareto-approxi-
mate set of solutions for the assumed SOW (Figure 3), Figure 4
presents the same set of optimized solutions with their per-
formance in a three-dimensional objective space.(e solutions
in the assumed SOW are presented in blue, and, in light red,
light orange, light green, and brown, the plot shows how their
objective values change when re-evaluated in four other SOWs.
(e parameter values for the four SOWs presented in Figure 4
are provided in Table 2.

When policies are re-evaluated in a SOW with de-
terministic extinction (dynamics presented in
Figure 1(e)), the Pareto front collapses (brown points).
Population collapse is deterministic in this SOW and
occurs even without any harvest. Deterministic extinc-
tion has been the focus of several studies [13, 24, 81],
particularly in the context of the prey- versus ratio-de-
pendent predator-prey theory. Deterministic extinction
behavior was routinely observed [24], but could not be
described by the classic prey-dependent model. (e
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behavior is explained by predators becoming more effi-
cient (higher α and c and lower h values) and dying out
after exhausting the prey.

(e policies were also re-evaluated in a parametrically
nearby SOW with a global attractor (light orange) and in a
parametrically distant SOW with a global attractor (light
green), both of which exhibit dynamic behavior akin to that
in the assumed SOW (presented in Figure 1(b)). Both re-
evaluations examine situations where the decision makers
find themselves managing a system exhibiting similar dy-
namic behavior to that assumed, but having different pa-
rameter values from their best estimates. In the nearby SOW
(light orange), a subset of candidate harvesting policies cause
significant losses in the prey population numbers (increased
values in prey population deficit) and predator population
collapse (Figure 4). In the distant SOW (light green), the
conditions for prey growth are more favorable: higher K
allows for larger prey population and higherm stabilizes the
system. In this SOW, no significant losses are exhibited in

either of the two populations and the adaptive control
policies that had been identified appear to outperform the
expected objective values achieved in the assumed SOW.
However, this is a stable SOW favorable to higher growth
and a decision maker might be inclined to inquire into what
objective values could have been achieved having had perfect
information about the SOW being managed. In other words,
if the optimization was performed, having the accurate
reading of the parameters describing the system each time,
how would the performance of those solutions differ?

Points in dark orange and dark green in Figure 4 present
the objective values achieved by the solutions identified
when re-optimizing to the equivalent nearby and distant
SOWs. In the nearby stable SOW (light and dark orange),
the significant losses in prey population numbers are re-
duced by the solutions identified through optimization with
perfect information. (is is more clearly seen in the
equivalent parallel axis plot (Figure 5(a)). Here, the solutions
identified in the assumed SOW and re-evaluated in the one
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nearby (presented in grey) are contrasted with those
achieved in the nearby SOW, having had perfect information
during the optimization (presented in shades of orange).(e
regrets are significant in the Prey Deficit objective, where the
value of the worst-performing policy could have been re-
duced from 97% to 75% with perfect information about the
SOW parameterization. More importantly, many of the
policies re-evaluated in this SOW fail to meet the Predator
Collapse constraint, with the worst-performing among them
failing 29.34% of the time. Conversely, all the policies
identified with perfect information about the SOWmeet that
constraint. Looking at the distant stable SOW (light and dark
green in Figure 4), even though the state-aware control
policies manage to avoid significant prey losses, the regrets
in this case come in the form of lower values in the NPV and
Worst Harvest objectives. (is is despite the fact that the
harvesting agent is highly adaptive and has a perfect reading
of the prey population at each timestep.

When solutions are re-evaluated in a nearby SOW
without a global attractor (light red in Figure 4), multiple
basins of attraction exist and changes in initial conditions

can lead to different equilibria (as depicted in Figure 1(f )). In
this SOW, the predators are more efficient (higher α and c
values), but also exhibit high interference (m> 1) which has
a stabilizing effect on their population [24]. In such a system,
the decision maker harvesting the prey competes with more
efficient predators and the solutions re-evaluated in this
SOW end up significantly depleting the prey (light red in
Figure 4), as well as collapsing the predator population in
most instances (grey lines in Figure 5(c)). Even if the system
dynamics are less favorable in this SOW, predator pop-
ulation collapse could have been entirely avoided by all
solutions if the optimization had perfect information about
the SOW parameters (red lines in Figure 5(c)).

3.3. System Stability Implications of Deep Uncertainty.
Figures 4 and 5 present how the initial perceptions of
tradeoffs in the original SOW would be misleading if the
fishery was actually described by the parameterizations of
the four other distinct SOWs, selected here for the purpose
of demonstration. As knowledge limits may yield broad
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parameter ranges, it is a decision relevant concern to assess
how consequential performance changes may be for the
tradeoff solutions across a broader sample of the deeply
uncertain parametric space. We therefore have explored the
impacts of 4,000 SOWs. Figure 6 presents the sampled
SOWs in the α, b, and m parametric space, with all other
parameter values kept constant. (e color of each point
indicates the percentage of the original set of tradeoff so-
lutions (%) that do not lead to inadvertent predator collapse
within each sampled SOW. Certain parameter combinations
cause deterministic extinction, as populations collapse even
in the absence of harvest; these SOWs are indicated by the

smaller dark red points in Figure 6. Even though the model
used in this study is in a discrete-time form, the continuous-
time model (equation (2) in Section 2) can be used to study
the underlying dynamics of the system. (e necessary
condition for a stable global attractor equilibrium, as derived
for this generalized system with harvest (equation (4) in
Section 2) and applied to the parametric space, is repre-
sented by the shaded surface shown in Figure 6.

(e underlying dynamics of the system can shift such
that the coexistence of the two species is deterministically
impossible. In other words, a multidimensional threshold
surface exists that separates sustained harvesting and
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Critical prey population levels, 50% and 20% of the biomass for theoretical sustainable yield indicate overfishing and endangerment,
respectively [74, 75].

Table 2: Parameter values for the assumed SOW and four distinct SOWs.(e fishery harvesting policies are optimized to the assumed SOW
(in blue). (e performance of the solutions in four distinct SOWs is highlighted in Figures 4–6.

Parameters Assumed
(blue)

Nearby and stable
(orange)

Distant and
stable (green)

Nearby and
unstable (red)

Deterministic
extinction (brown)

α 0.005 0.208 1.867 0.796 1.775
b 0.5 0.663 0.830 0.215 0.389
c 0.5 0.361 0.542 0.565 0.441
d 0.1 0.095 0.197 0.137 0.083
h 0.1 0.372 0.949 0.472 0.941
K 2000 2080.58 4610.48 4858.48 4465.07
m 0.7 0.93 1.442 1.21 0.107
σx 0.004 0.004 0.002 0.008 0.003
σy 0.004 0.003 0.005 0.009 0.007
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recovery from fishery collapse, where there are no man-
agement tradeoffs to be attained. Even though this ex-
ploratory analysis sampled the parametric space uniformly,
its intent has not been to assign equal probabilities to all
outcomes, including the deterministic extinction cases, but
rather to explore broadly to discover said threshold surface
in the parametric space. With regards to the parametric
plausibility of such a region, it could be the side effect of
permanent change in one or more critical components in the
environment of a species. Such changes may be progressive
(e.g., climate change [4] or habitat loss [6]) and lead to
permanent changes in the growth or death rates of a species,
such that it inevitably moves towards extinction [82]. When
collapse is not prescribed by the underlying dynamics, it is
evident that it can be avoided by some of the optimized
strategies, and, as a result, value preference in the objective
space becomes the most decisive consideration. When
feasible, we hypothesize that the concept of multiobjective
robustness [76, 83], achieved through compromise, can be a
valuable driver in selecting a strategy that can avoid the
collapse of the two species.

3.4. System Behavior as a Result of Decision Preferences.
Exploiting knowledge of the deterministic extinction
threshold, we shift focus to reevaluating the candidate
harvesting strategies in SOWs, where management tradeoffs
exist, and assess their robustness. To do so, we re-evaluate
each of the Pareto-approximate solutions presented in
Figure 3 in the alternative sampled SOWs and compute their
robustness using the domain criterion satisficing measure.
(is measure includes minimum performance requirements
defined by six satisficing criteria for the management
problems’ objectives and predator population collapse
constraint (detailed in Section 2). We then calculate the
percentage of SOWs where each solution meets each of the
criteria, as well as the percentage of SOWs where each
solution meets all criteria. Extinction of the two species is
deterministic in some of the SOWs, and thus the domain
criterion satisficing measure was only applied in SOWs in
which human action (and choice thereof) matters. Figure 7
presents the percentage of SOWs where each of the opti-
mized solutions meets each of the six criteria (placed on a
vertical axis). Each line is shaded according to the percentage
of SOWs where it meets all specified criteria. As with Fig-
ure 3, diagonal, intersecting lines indicate pairwise tradeoffs
in the robustness of the equivalent criteria. For example,
there appears to be a strong tradeoff between meeting the
NPV criterion in many SOWs and meeting the Prey Deficit
criterion in many SOWs. Furthermore, solutions most ro-
bust in either of those two criteria (top-most lines crossing
the vertical axes) fail to meet at least one of the other
specified criteria (indicated by their white color).

Two solutions are highlighted in this figure, ANPV and
BMO, illustrating two different robustness definitions. (e
ANPV solution meets criterion 1 (NPV≥ 1500) in the most
SOWs (leftmost vertical axis in Figure 7). NPV-maximizing
criteria (or similar metrics of discounted profits) are very
common in the bioeconomics literature (e.g., [34, 84–86]),

typically considered as the only system objective. (e BMO
solution meets all of the specified satisficing criteria in the
most SOWs, meaning that it exhibits the highest multi-
objective robustness (indicated by the line color and color
bar on the right of Figure 7). (is solution is more in line
with newer paradigms in fisheries management, with experts
calling for multiobjective perspectives and values [29, 45].
(e concept of multiobjective robustness builds on that
perspective, by identifying policies that are successful in
meeting a specified level of performance in all objectives.(e
solution most robust in NPV performs poorly in the prey
population deficit and the harvest variance criteria. (e
solution most robust across all criteria achieves robustness
by compromising individual robustness for the NPV and
low harvest duration criteria, as well as performance in the
objective space (see Supplementary Material Figure S2).

With regards to the entire set of optimized solutions and
their application in other SOWs, Figure 7 highlights that
assumptions on their stability are tenuous even in SOWs
where species coexistence and harvesting are possible (i.e.,
without deterministic extinction). Looking at criterion 2 in
particular, the most robust of the solutions in meeting that
criterion (topmost line crossing the axis) only does so in
fewer than 50% of the considered SOWs without deter-
ministic extinction and, in doing so, it harvests at very low
rates and fails to ever meet the other criteria (as indicated by
its color). Solution ANPV (most robust in criterion 1) har-
vests at very high rates and fails to meet the prey deficit
criterion. Finally, solution BMO (meeting all criteria in the
most SOWs) only performs acceptably in fewer than 50% of
the sampled SOWs. In other words, out of the original set of
optimized solutions, all of which adapting their harvest
given a perfect reading of the prey population at each
timestep, most fail to meet all the criteria in other SOWs, and
the most robust among them only does so in less than half of
the sampled SOWs without deterministic extinction. At the
same time, when looking at criteria 1 and 2, the equivalent
objectives of which are conflicting (maximizing NPV and
minimizing prey population deficit), increasing robustness
preference for any of the two inevitably reduces robustness
in the other.

Linking our observations for this socioecological system
to the broader concept of resilience, we draw from its
definition as proposed by [87]: “the capacity of a system to
absorb disturbance and reorganize while undergoing change
so as to retain essentially the same function, structure,
identity, and feedbacks.” While robustness is a related term,
it is defined as the ability of the strategies to maintain an
acceptable performance (as measured by some criteria) and
it more closely pertains to the decision space of the system, as
shaped by the decision-makers’ value preferences. As such,
the concept can be used to link complex system dynamics,
persistence, and transformation to performance measures
(albeit in a more narrow sense-that of feedback and control)
[88]. With the application of the concept of multiobjective
robustness in this paper, the identified strategy is also more
resilient across the sampled SOWs.

(is is more explicitly demonstrated in Figure 8, where
we present the trajectories of the predator-prey system as a
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result of the two harvesting strategies in the assumed SOW
and two alternative SOWs. We include five trajectories in
each of the subplots, aiming to capture imperfect readings of
the initial population levels, each starting near the natural
(unharvested) equilibrium of the system. Figure 8(a) pres-
ents the trajectories of the two populations as they result
from the implementation of the two policies in the assumed
SOW. Solution ANPV appears to harvest at significantly
higher levels (indicated by the color of each line segment)
and reduce the prey population, resulting in a reduction in
the predator population as well. Solution BMO harvests at
significantly lower levels and reduces both populations as
well, albeit to levels much closer to the natural equilibrium.
When applied in a nearby SOW with a global attractor
(Figure 8(b)), the harvesting actions behave similarly,
shifting the prey isocline, and as a result, the equilibrium
moves to lower population levels for the two species (the
dynamics of the unharvested system are presented in
Figure 1(b)). Figure 8(c) shows the two policies applied in a
SOW, where the coexistence equilibrium (trajectory starting
point) is not a global attractor. Here, the harvesting can shift
the system to a different basin of attraction so as to lead to
the collapse of the two populations. (is is avoided by the
strategy selected for being robust across the multiple ob-
jectives (BMO).

4. Conclusions

Progressive discoveries in the ecological literature have
highlighted the importance of multispecies relationships and
trophic connectivity in fisheries management, resulting in a
new proposed paradigm, that of ecosystem-based fishery
management [29, 45]. Within this new direction, multiple
species and objective values need to be taken into account.
(is simple exploratory experiment was designed with the
specific aim of complementing the current fisheries man-
agement literature with the inclusion of a multiobjective
perspective for the management of a two-species fishery.(e
formulation of the system in such a manner allows us to
demonstrate the potentially catastrophic consequences of
deep uncertainty, as manifested in our parameterized
mathematical representations of predator-prey systems that
are coupled with human actions (harvesting) and human
preferences (multiobjective tradeoffs). For this purpose, the
isoclines, equilibria, and conditions for stability were ana-
lytically derived for the harvested system and used to dis-
cover regions of the deeply uncertain parametric space that
lead to system instability and fundamentally impact the
estimated tradeoffs.(e impacts of deep uncertainty on such
a system are significant as distinct basins of attraction can be
present and also shift with only marginal changes in as-
sumed mathematical parameterizations. Human action,
manifested in the form of harvest, can move the populations
into basins of attraction where the attractor is a collapsed
system.

As a result, harvesting strategies able to navigate the
dynamic complexities of such a system need to be identified.
We demonstrate that multiobjective robustness can be
valuable as a driver for identifying fishery harvest policies

that can navigate deep uncertainties in system parameters
and relationships. It is important to note here that the
concept of multiobjective robustness is not treated as en-
tirely equivalent to resilience, but rather as an alternative
principle by which one can operationalize the identification
of such policies in a systematic manner. (e principle is
applied here with the specific aim of achieving acceptable
performance, as measured by explicit criteria, that are de-
fined subjectively and specifically for the system at hand.(e
broader concept of resilience includes a wider array of as-
pects and spatial and temporal scales, as well as system
boundaries [88], that multiobjective robustness (as applied
here) does not claim to consider. Nevertheless, management
policies that are not robust fail to meet their decision-rel-
evant criteria and, by extension, lead to a system that is also
not resilient. For these reasons, we believe that the findings
have broader implications for socioecological management
in general, where balancing conflicting economic and eco-
logical objectives is an essential yet complex task that is
further impeded by severe uncertainties in determining
tipping points and the consequences of crossing them [89].

(e system used in the study is specifically formulated at
a reduced complexity relative to those found in the math-
ematical biology literature, where multispecies systems are
typical, or in resource economics, where operational costs
andmore complex financial accounting take place. However,
the more complex models in the respective fields are not
typically paired with each other and the impacts of deep
uncertainty in the ecological system are not manifested
through to the decision space, to assess its social implica-
tions. (e socioecological model employed in this study
pairs the two perspectives to demonstrate significant im-
plications for the decision maker even when management is
operating in the optimistic context of adaptive, perfectly
informed, and perfectly implemented policies. Furthermore,
the harvesting policies assume no incidental by-catch nor
intentional harvest of the predator, as the aim has been to
highlight the implications of deep uncertainty for such a
system.

Be that as it may, this simplicity in design bears certain
limitations that future work should aim to address. First, the
information used by the state-aware control rules is limited
to the current levels of the prey fish population. In the
interest of avoiding crossing tipping points critical to the
recovery and sustainability of a fishery, additional infor-
mation can be incorporated, for example, predator pop-
ulation levels. (is would be particularly valuable for system
parameterizations that exhibit multistability (for example, in
Figure 1(f)), where remaining with the basin of attraction of
the preferred equilibrium is a vital concern. In a real ap-
plication, this would likely be accompanied by additional
costs borne by sensing and measurements. Secondly, the
control rules mapping system state to action could take
different forms to more realistically represent the harvesting
actions performed by fisheries, for example, to avoid sig-
nificantly shifting the prescribed harvest between sequential
time steps, or accidentally harvesting other species (by-
catch). Lastly, the study assumes a perfect reading of the prey
population at each time step as well as a perfect execution of
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the prescribed harvesting effort. (ese are common as-
sumptions in the literature [52, 79, 80], but result in highly
optimistic quantifications of the tradeoffs and should be
addressed in future applications. Inclusion of a learning
procedure about system parameters and dynamics, in the
form of a probabilistic approach with sequentially updated
estimates [90, 91], would also be a valuable next step.

Data Availability

(e predator-prey harvesting optimization code, re-evalu-
ation code, robustness analysis, and identified solutions are
available on Github at https://github.com/antonia-had/
Generalized_fish_game. (e optimization and Pareto-sort-
ing can be replicated using the software code available for the
Borg MOEA (http://borgmoea.org/), pareto.py (https://
github.com/matthewjwoodruff/pareto.py), and the MOEA
framework (http://moeaframework.org/).

Disclosure

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding entities.

Conflicts of Interest

(e authors declare no conflicts of interest.

Acknowledgments

(is study was partially supported by the National Science
Foundation (NSF) through the Network for Sustainable
Climate Risk Management (SCRiM) under NSF cooperative
agreement GEO-1240507 and the Penn State Center for
Climate Risk Management.

Supplementary Materials

S1 Appendix: derivation of condition (3). S2 Appendix:
derivation of the prey isocline. S1 Figure: bifurcation dia-
grams for systems presented in Figure 1, with regard to
predator interference parameter m. S2 Figure: population
trajectories for prey and predator populations under all
sampled SOWs. S3 Figure: parallel axis plot of the objective
values achieved by each optimized solution in the assumed
SOW. (Supplementary Materials)

References

[1] C.Mullon, P. Freon, and P. Cury, “(e dynamics of collapse in
world fisheries,” Fish and Fisheries, vol. 6, no. 2, pp. 111–120,
2005.

[2] W. H. Lear and L. S. Parsons, “History andmanagement of the
fishery for northern cod in NAFODivisions 2J, 3K and 3L,” in
Perspectives on Canadian Marine Fisheries Management,
W. H. Lear and L. S. Parsons, Eds., vol. 226, pp. 55–90,
Canadian Bulletin of Fisheries and Aquatic Sciences, Ottawa,
Canada, 1993.

[3] J. A. Hutchings and R. A. Myers, “What can be learned from
the collapse of a renewable resource? Atlantic Cod, Gadus

morhua, of newfoundland and labrador,” Canadian Journal of
Fisheries and Aquatic Sciences, vol. 51, no. 9, pp. 2126–2146,
1994.
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In this paper, a class of two-parameter mixed-mode oscillation with time delay under the action of amplitude modulation is
studied. ,e investigation is from four aspects. Firstly, a parametric equation is considered as a slow variable. By the time-history
diagram and phase diagram, we can find that the system generates a cluster discovery image. Secondly, the Euler method is used to
discrete the system and obtain the discrete equation. ,irdly, the dynamic characteristics of the system at different time scales are
discussed when the ratio of the natural frequency and the excitation frequency of the system is integer and noninteger. Fourthly,
we discuss the influence of time delay on the discovery of clusters of this kind of system.,e research shows that the time lag does
not interfere with the influence of the cluster image, but the dynamics of the upper and lower parts of the oscillation in each period
will be delayed. So, we can improve peak performance by adjusting the time lag and obtain the desired peak. Finally, we explore the
multistate dynamic response of a two-dimensional nonautonomous Duffing system with higher order. According to bifurcation
diagram and time-history curve, bistable state will appear in the system within the critical range. With the gradual increase of
parameters, the chaotic attractor will suddenly disappear which will lead to the destruction of the bistable state.

1. Introduction

In recent years, with the rapid development of science
and technology, the nonlinear problems of the actual
power systems in various fields have become more and
more prominent. In the national economy, national
defense industry, and engineering technology, a large
number of practical problems urgently need to be pro-
cessed by nonlinear dynamics theory and methods, which
will promote the development of nonlinear dynamics
into a more comprehensive and in-depth development
period.

,e researcher can conduct a comprehensive analysis
and discussion from two important aspects of amplitude and
frequency. For example, when we focus on low-frequency
forces, i.e., the external excitation frequency is much smaller
than the natural frequency of the original system, and the
oscillator can exhibit a typical fast-slow dynamic called
mixed-mode oscillation (MMO). Sadhu [1] researched the

canards and mixed-mode oscillations in a singularly per-
turbed two predators-one prey model. Upadhyay et al. [2]
studied mixed-mode oscillations and the synchronous ac-
tivity in the noise-induced modified Morris–Lecar neural
system. Kingston and ,amilmaran [3] discussed the
bursting oscillations and mixed-mode oscillations in the
driven Lienard system. Shimizu et al. [4] made a thorough
exploration of mixed-mode oscillations and chaos from a
simple second-order oscillator under weak periodic per-
turbation. ,e oscillating behavior appeared in the above
four articles is generally expressed as a periodic state
characterized by a combination of a relatively large am-
plitude (spike state) close to the harmonics and a small-
amplitude oscillation (stationary state). Due to its com-
plexity and diversity, the system with delayed feedback has a
wide range of practical backgrounds which are always an
inevitable hysteresis when studying the laws of the motion of
the objective. ,erefore, it has important theoretical sig-
nificance and practical value in the research of delayed
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feedback system. Inaba et al. [5] studied the feedback control
problem of network systems with discrete delay and dis-
tributed delay. ,us, unlimited distributed delays were first
introduced in discrete network domains. Weicker et al. [6]
focused on the rapid transition layers among the plateaus
and demonstrated their contribution to the total cycle. Porte
et al. [7] experimentally characterized the mechanism of
strong chaos in semiconductor lasers with delayed feedback.
Sun et al. [8] proposed a method for time delay identification
in a multidegree-of-freedom (MDOF) linear system with
multiple feedbacks. Dmitrishin et al. [9] studied the robust
stability problem of the linear delayed feedback control
(DFC) mechanism.

As one of the research directions of nonlinear dy-
namics, the multitime scale plays the nonlinear essential
characteristics in the perspective of dynamics. Its theo-
retical method has been widely applied to neuroscience,
chemistry, physics, bioscience, and other fields. ,erefore,
nonlinear systems with multiple time scales have attracted
attention of many scholars at home and abroad. ,e effects
of slow variables on the rupture of pancreatic cells were
investigated [10] on the basis of the Chay–Keizer model
with three time scales. Izumiet al. [11] discussed the re-
lationship between fast scale bifurcation and slow scale
bifurcation in the discontinuous circuit. Yu et al. [12]
studied the delayed feedback control problem of bursting
synchronization in the small-world neural network pre-
sented by the neural network in some areas of the cerebral
cortex. Yu et al. [13] studied the generation of complex
cluster patterns in the Duffing oscillator with delayed
feedback and proposed the symmetric fold-fold and
symmetric Hopf-Hopf bursting patterns. Cornforth and
Lipson [14] introduced the fast and slow analysis method
and applied it to the study of multitime scale problems in
nonlinear systems. Han et al. [15] proposed a general
method for analyzing the mixed-mode vibration of a
system with two excitation frequencies. ,e validity of this
method was verified by the Duffing and van der Pol
equations. Yang et al. [16] discussed the influence of delay
coupling on bursting synchronous differential feedback
control in the modularized neural network. Meng et al.
[17] presented and analyzed two different types of bursting
in a two-compartment neuron model with the current
feedback control due to totally different generation
mechanisms. Li et al. [18] investigated the Brusselator with
different time scales, which behave in the classical slow-
fast effect. Zhou et al. [19] established a 3D discrete system
featuring a new series of complex fast-slow behaviors
caused by different bursters. Ding and Li [20] studied the
Rulkov model with self-inhibiting synapses and time de-
lays and compared them with the Rulkov model without
self-inhibiting synapses. Fan and Wang [21] studied the
effects of different time delays and coupling intensities on
the synchronization and cluster transition of Hind-
marsh–Rose neuron system. Bertram and Rubin [22]
described the fast-slow analysis technique and applied it to
relaxation oscillations, neuronal bursting oscillations,
canard oscillations, and mixed-mode oscillations. Han
et al. [23] studied the dynamics of the bursting by Duffing

system with multifrequency excitation. Qian and Yan [24]
studied a two-degree-of-freedom nonlinear-coupled
Duffing system with an external excitation and two ex-
ternal excitations by the fast-slow analysis method. Han
et al. [25] proposed two new bursting modes, fork-shaped
delay, and multifrequency excitation of the Duffing sys-
tem. Different patterns of electrical bursting were pro-
posed, and the types and generation mechanisms of these
bursting oscillations were analyzed by using fast-slow
dynamics. For instance, Shen et al. [26] introduced the fast
and slow analysis method and applied it to the study of
multitime scale problems in nonlinear systems. Yu et al.
[27] studied the generation of some new cluster modes in
multidelay-controlled oscillators. ,e bifurcation condi-
tion of the fast subsystem and its stability related to time
delay were calculated. Zhang et al. [28] analyzed the effects
of time scales on the dynamic behavior of the system.
McKenna and Bertram [29] explained the mechanism
behind the oscillation in cells by using the fast-slow
analysis method. Han et al. [30] proposed an approximate
frequency-truncation fast-slow analysis method to analyze
the dynamics of a fast-slow system with two incommen-
surate excitation frequencies. Yu and Wang [31] analyzed
the dynamics involving different waves in a double-well
potential oscillator coupling amplitude modulation con-
trol of low frequency. Zhou et al. [32] investigated the
bursting in Sprott B system with a single excitation and
showed that Hopf bifurcation delay may exhibit due to the
effect of slow passage through the supercritical Hopf bi-
furcation. Wang et al. [33] dealt with transitions through
Melnikov thresholds and the corresponding fast-slow
dynamics in a family of biparametric mechanical
oscillators.

From nature to humanity society, the phenomenon of
time delay is everywhere. In natural and social phenomena,
the changes and development of many systems are not only
related to the current state of the system but also depend on
some past state of the system. In other words, time delay is
inevitable in the system. Plaut and Hsich [34] discussed
parametric excitation systems with time delay, through
numerical simulation, and they found that the system had
very complicated dynamics. ,en, through the method of
multiple scales, they studied the weak nonlinear time-delay
system which is only in damping and discussed the main
resonance, the harmonic resonance, superharmonic reso-
nance, and time-delayed effect on the steady-state motion
frequency amplitude curve. Raghothama and Narayanan
[35] used the incremental harmonic equilibrium (IHB)
method to analyze the dynamic response of systems with
quadratic and cubic nonlinear time-delay parameters,
studied the stability of the periodic solution of the system by
Floquet theory, and obtained the bifurcation diagram of the
system by combining the stability analysis with the path-
following algorithm with arc-length parametric continua-
tion. Maccari [36] studied dynamic response with a time-
delay state feedback of van der Pol by using the asymptotic
perturbation (asymptotic perturbation) method to get the
system amplitude and frequency equation of two groups of
slowly varying. Ji and Leung [37] considered a parametric
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excitation of Duffing time-delay feedback problems through
the multiscale method to study the main parameters of the
resonance system and analyzed the stability of the steady-
state solution. It is found that saddle bifurcation and sub-
critical fork bifurcation exist in the system equilibrium
point.

It is also an important part in the field of nonlinear
dynamics to study the multistability problem of systems.
Multistability means that a system is neither stable nor
completely unstable but switches between two or more
mutually exclusive states over time. Multistable systems are
also susceptible to noise, initial conditions, or system pa-
rameters. ,e methods of solving the problem include the
analytical method, numerical analysis method, and experi-
mental method. In the fields of chemistry, electricity,
ecology, neuroscience and so on, the characteristic of the
multistable state has been widely applied and has produced
the vital influence to the research and development of these
disciplines. ,erefore, the system containing the multistable
state has been paid attention by many scholars at home and
abroad. Loukaides et al. [38] verified that the multistable
structure could be produced by single additive
manufacturing operation through analyzing examples, nu-
merical simulation, and physical prototype of selective laser
sintering production of titanium alloy. Yang and Ma [39]
systematically studied the mechanical responses of two new
two-dimensional (2D) mechanical metamaterials and real-
ized phase transition/shape reconstruction and zero Pois-
son’s ratio on the basis of the multistable mechanism,
achieving great morphological changes. Huang and Xü [40]
obtained the mathematical model by introducing time-delay
feedback to a plane autonomous nonlinear system, and the
results showed that time delay can not only make the system
Hopf bifurcation and produce periodic vibration but also
make the system appear multistable periodic motion or
periodic attractor. Schmitz et al. [41] discussed an example
of the application of the multistable state to chemistry,
showing that the phenomenon of the multistable state is
usually described by discussing the steady-state solution of a
nonlinear process, which is given by an abstract mathe-
matical model of single variable x and evolves according to
the differential equation. Lai et al. [42] studied the dynamic
behaviors such as multistability and bifurcation of a class of
neural network systems with time delay. ,e results show
that the system has 16 kinds of stable states and its own
attractive region. Huang et al. [43] discussed the phenom-
enon of multistable synchronization in the synchronous
region of the Kuramoto phase oscillator on a one-dimen-
sional closed loop under the action of asymmetric coupling
and further theoretically analyzed its steady-state law and
steady-state stability.

Here, we describe analytical and numerical studies of a
class of two-parameter mechanical systems with delayed
feedback:

€x + _x − α _x − ax(t − τ) + bx
3

� f1 + f2 cos ω1t( 􏼁( 􏼁cos ω2t( 􏼁,

(1)

where a is the linear restoring parameter and α> 0 is the
nonlinear damping coefficient. f1 > 0 is the unmodulated
amplitude, f2 is the degree of forcing modulation, ω1 is the
modulation frequency, and ω2 is the forcing frequency.

First of all, we analyze the case for f2 � 0. By the singular
perturbation methods, equation (1) can be given by

€x + _x − α _x − ax(t − τ) + bx
3

� f1 cos ω2t( 􏼁. (2)

Let c � f1 cosω2t, and use the Euler method obtained
the following discrete systems:

xn+1 � kn,

kn+1 � a1xn + c1kn − b1 xn( 􏼁
3

− d1xn − e1kn + c,
(3)

where a1 � (Δt)2 + τΔt, b1 � b(Δt)6, c1 � 2 + αΔt, d1 � 1+

α(Δt)2, and e1 � τΔt. Set a � b � 1, α � 1,ω2 � 0.01, and
f1 � 1. Figure 1 shows the time-history curve and phase
portraits of the system when τ � 0.3. As shown in the figure,
we can found that the trajectory of system (2) undergoes
symmetrical folding bifurcation, and it is a typical fast and
slow oscillation system.

From the previous developments, this paper focuses on
a class of two-parameter mixed-mode vibrations with time
delay under the action of amplitude modulation. ,e
structure of this paper is as follows. In Section 2, the bi-
furcation of the undisturbed model will be investigated. In
Section 3, we will discuss the oscillating dynamics when
the natural frequency is equal to the excitation frequency.
In Section 4, we will study the mixed-mode oscillation
dynamics reflected by the system when the natural fre-
quency and the resonant frequency are not equal. In
Section 5, the influence of the time delay is discussed. In
Section 6, we explore the multistate dynamic response of a
two-dimensional nonautonomous Duffing system with
higher order. In Section 7, further conclusions are
presented.

2. Representation and Local Bifurcation of the
Unperturbed Model

We consider the left side of equation (1). When τ � 0.3, the
unperturbed form

_x � y,

_y � αy + ax(t − τ) − bx
3

− y
3
.

(4)

Using Taylor’s expansion, we have x(t − τ) ≈ x(t) −

τx′(t),

_x � y,

_y � αy + ax − aτy − bx
3

− y
3
.

(5)

By calculation, the system has three equilibrium points:
E±(±

���
a/b

√
, 0) and E0 � (0, 0). With α> 0 and a> 0, from

the stability analysis, we know, E± are unstable and E0 is a
saddle point. In order to improve the bifurcation analysis of
system (5), we employ the Melnikov method. Using the
following transformations,
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x � ε1/3X,

y � ε2/3Y,

t � ε1/3t1,

a � ε2/3ξ1,

τ � ε2/3τ1,

α � ε4/3ξ2,

(6)

so system (5) turns into
_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y􏼐 􏼑.
(7)

Setting ξ1 � 1 and ε � 0, we get the integrable Hamil-
tonian system as follows:

_X � Y,

_Y � X − bX
3
.

(8)

And the corresponding Hamiltonian function is
H(X, Y) � 1/2Y2 − 1/2X2 + b/4Y4. As shown in Figure 2,
the phase portraits can express the homoclinic trajectories
for H(X, Y) � 0.

In order to discuss the value of parameters, we set

x0(t) � ±
�
2
b

􏽲

sec (t),

y0(t) � ∓
�
2
b

􏽲

sec (t)tanh(t).

(9)

,e Melnikov functions
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Figure 1: Phase portraits (a) and time series (b, c) of fast-slow system (2) for a � b � α � 1, ω2 � 0.01, f1 � 1, and τ � 0.3.
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Figure 2: ,e phase portraits of Hamiltonian function.
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M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt (10)

are given to verify the existence of Hamiltonian bifurcations.
By calculating, we get the Melnikov function as

M± ξ2( 􏼁 �
4ξ2
3b

−
16
35b2

. (11)

From Melnikov function theory, when
M±(ξ2) � 4ξ2/3b − 16/35b2 � 0, that is, ξ2 � 12/35b, we get
the approximate bifurcation of homoclinic orbits. Let ξ1 � 1,
and then according to transformation equation (7), the
Melnikov threshold α � 12a2/35b. To illustrate the existence
of saddle-node bifurcations in limit cycles at this time, we
lead into a periodic orbit c(e) by the level energy of e and
period of T(e). In the case of e ∈ (− 1/4, 0), there is a small-
amplitude period; if e> 0, c(e), there becomes a large-am-
plitude period. ,erefore, the Melnikov function for cyclic
orbits is

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt. (12)

,rough numerical simulation, it can be seen that the
saddle-node bifurcations of the two periodic orbits are very
close to the Melnikov threshold. Figure 3 shows that when
the parameter enters region 2 from region 1 through the
saddle junction, the system transits from the equilibrium
state of the two small-amplitude limit cycles to a larger
amplitude periodic orbit. It also indicates that the Melnikov
threshold curve leads to the disappearance of the two limit
cycles, resulting in a stable large-amplitude limit cycle. In
order to facilitate the expansion discussed below, we only
consider the parameters of the region where there are two
small-amplitude periods and the unstable saddle point of the
ordinary equilibrium point. ,erefore, the numerical sim-
ulation parameter values given in this paper are fixed at
α � a � b � 1.

3. OscillatoryDynamics with Equal Frequencies

,is section focuses on the oscillating dynamics when the
natural frequency is equal to the excitation frequency. We
discuss the case when f2 � 0 and f1 is a variable. ,en, the
case where both f2 and f1 are variables is discussed.

3.1. Oscillation Mechanism of MMOs for f2 � 0. For f2 � 0,
we set β � cos(ω2t), and the fast system is driven by

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1β. (13)

We obtain its perturbed form by scale transformation as
follows:

_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1β􏼐 􏼑.
(14)

By further calculating the Melnikov function, we have

M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1β􏽚

+∞

− ∞
y0(t)dt.

(15)

,us, the Melnikov function of the local periodic orbit
can be expressed as

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1β􏽚

T(e)

0
y0(t)dt.

(16)

In equation (16), these basic integrals are constants.
When the value of y0(t) is given by a determined value, we
can get the critical threshold of the function. With the
change of β, f1β will periodically affect the saddle-junction
bifurcation, which leads to the phase trajectory transition
from a small-amplitude periodic orbit to a large-amplitude
periodic orbit, which further determines the oscillation
phenomenon.

Given the parameter value a � b � α � 1,ω2 � 0.1, τ �

0.3, and f1 � 1, Figure 4 shows the trajectory phase diagram
and time-history curve of the system. ,e transition of the
system between two small-amplitude periodic orbits can be
seen from Figure 4. ,is excitation oscillation can be
expressed as a closed singular orbit formed by two fast and
slow motion trajectories.

3.2. Oscillation Mechanism of MMOs as Varying f1 and f2.
When f1 ≠ 0, f2 ≠ 0, and ω1 � ω2, set β � cos(ω1t) �

cos(ω2t), and we assume

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1 + f2β( 􏼁β. (17)

Use the scale change to obtain its perturbed form as
_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1 + f2β( 􏼁β􏽨 􏽩.

(18)

,en, we get the Melnikov function
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0.5 1.0 1.5 2.00.0
a

Figure 3: Melnikov threshold curve of the unperturbed model and
the qualitative branching at b � 1.

Complexity 5



M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1(

+ f2β)β􏽚
+∞

− ∞
y0(t)dt.

(19)

And theMelnikov function of the local periodic orbit can
be written as

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1(

+ f2β)β􏽚
T(e)

0
y0(t)dt.

(20)

Once the value of y0(t) is determined in equation (20),
we can obtain the critical threshold of the function. With the
change of β, (f1 + f2β)β will periodically affect the saddle-
junction bifurcation, which leads to the phase trajectory
transit from a small-amplitude periodic orbit to a large-
amplitude periodic orbit, which determines the oscillation
phenomenon.

Take the parameter value a � b � α � 1,ω2 � ω1 �

0.01, τ � 0.3, f1 � 1, and f2 � 0.5. ,e time-history curve
of the system is seen in Figure 5. From the figures, we can
observe that the mixed-mode oscillation at this time has
two asymmetric small-amplitude periodic orbits and a set
of independent large-amplitude periodic orbits in each
period.

4. Oscillatory Dynamics with Two
Resonant Frequencies

,is section mainly discusses the mixed-mode oscillation
dynamics reflected by the systemwhen the natural frequency
and the resonant frequency are not equal. Without loss of
generality, assume that the two frequencies are proportional,
and ω1 is a positive integer multiple of ω2, i.e., ω1 � nω2, n is
an integer greater than 1, or ω1 is a noninteger multiple of
ω2, i.e., n is an irrational number, and then system (1) can be
turned into

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1 + f2 cos nω2( 􏼁( 􏼁cos ω2( 􏼁.

(21)

,en, we will discuss three cases: (1) the dynamics of the
system with n being a small positive integer; (2) the oscil-
lation behavior with n being a large positive integer; and (3)
the coupling of time-delay systems with n being an irrational
number.

4.1. Oscillation Mechanism of MMOs for a Relatively Small n.
Since n is a small real number, then the natural frequency ω1
is still a low frequency. ,us, ω1 and ω2 can be treated as a
fast and slow form with a single slow variable. Borrowing De
Moivre’s formula, we arrive at

cos(nx) � C
0
ncos

n
x + C

2
ncos

n− 2
x(i sinx)

2
+ · · ·

+ C
m
n cos

n− m
x(i sinx)

m
,

(22)

where m is the maximum value not greater than n. Let us see
some simple examples. When n takes 2 and 3, respectively,
we can get cos(2x) � 2 cos2 x − 1 and cos(3x) � 4 cos3 x −

3 cosx. Let n � 2, the oscillation behavior of the system is
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Figure 4: ,e phase trajectory (a) and time series (b) for the parameters a � b � α � 1,ω2 � 0.1, f1 � 1, f2 � 0, and τ � 0.3.

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

x

2800 3000 3200 3400 3600 3800 40002600
t

Figure 5: ,e time series for the parameters
a � b � α � 1,ω2 � ω1 � 0.01, f2 � 0.5, f1 � 1, and τ � 0.3.
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shown in Figure 6, and the values of the parameters are a �

b � 1, α � 0.1,ω1 � 0.02,ω2 � 0.01, τ � 0.5, f1 � 0.5, and
f2 � 2, respectively.

From Figure 6, the oscillation mode can be clearly di-
vided into different parts, and the upper and lower oscil-
lations are connected by the jump connection. And
compared with previous Figure 6, the number of different
oscillations is significantly increased in the gentle region and
the peak region in each cycle.

Now, considering the situation of divergence when n � 2
and setting β � cos(ω1t) and cos(ω2t) � 2β2 − 1A, we have

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1β
2

+ f2β
3

− f2β.

(23)

Perturbation form by reference to the scale change
method is

_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1β
2

+ f2β
3

− f2β􏽨 􏽩.

(24)

,en, we obtain the Melnikov function

M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1β

2
+ f2β

3
􏼐

− f2β􏼁 􏽚
+∞

− ∞
y0(t)dt.

(25)

,e Melnikov function of the local periodic orbit can be
written as

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1β

2
􏼐

+ f2β
3

− f2β􏼑 􏽚
T(e)

0
y0(t)dt.

(26)

If y0(t) in equation (26) is given, the critical threshold of
the function can be determined. With the change of β,
f1β

2 + f2β
3 − f2β periodically affects the saddle-junction

bifurcation, causing the phase trajectory to change from a
small-amplitude periodic orbit to a large-amplitude periodic
orbit and generating oscillation behavior.

4.2. Oscillation Mechanism of MMOs for a Relatively Large n.
When n is a sufficiently large integer, there is a large step gap
between the natural frequency and the excitation frequency.
Since there are many oscillatory components in each os-
cillation mode, the De Moivre’s formula cannot be used for
analysis. Now, in this example, we discuss the following.

Letting β � cos(ω2t), then system (1) can be described as

€x + _x − α _x − ax(t − τ) + bx
3

� f1 + f2 cos ω1t( 􏼁( 􏼁β.

(27)

Accordingly, its perturbation form is
_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1 + f2 cos ω1t( 􏼁( 􏼁β􏽨 􏽩.

(28)

So, the Melnikov function of the system becomes

M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1(

+ f2 cos ω1t( 􏼁􏼁 􏽚
+∞

− ∞
y0(t)dt.

(29)

,us, we obtain the Melnikov function of the periodic
orbit as follows:

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1(

+ f2 cos ω1t( 􏼁􏼁 􏽚
T(e)

0
y0(t)dt.

(30)

If we can determine the value of y0(t) in equation (30),
then we also can get the critical threshold of the function.
,e value of the natural frequency ω also affects the function
M±(ξ2, e). In this case, as β changes, the system periodically
crosses the saddle-junction of the limit cycle, resulting in
more complex oscillatory behavior.

,rough numerical simulation, we use Figure 7 to il-
lustrate the dynamic behavior of the mixed-mode oscillation
when there is a gap between the natural frequency and the
excitation frequency. Here, we set the parameters of the
system a � b � 1, α � 0.1,ω1 � 2,ω2 � 0.01, τ � 0.3, and
f1 � f2 � 0.5. From Figure 7, we can find the transition
between two local limit cycles.

4.3. Oscillation Mechanism of MMOs for an Irrational
Number n. In this section, we consider the coupled Duffing
equation with multiple-frequency external forces and
delayed feedbacks as follows:

x″ + δ1x′ − y(t − τ) + x
3

� β1 cos ω1t( 􏼁 + β3 cos ω2t( 􏼁,

y″ + δ2y′ − x(t − τ) + y
3

� β2 cos ω1t( 􏼁 + β4 cos ω2t( 􏼁,

(31)
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2800 3000 3200 3400 3600 3800 40002600
t

Figure 6: ,e time history of fast-slow system (1) at ω1 � 2ω2,
where the parameters are a � b � 1, α � 0.1,ω1 � 0.02,ω2 � 0.01,

τ � 0.3, f1 � 0.1, and f2 � 2.

Complexity 7



where δi(i � 1, 2)(δ > 0) are the dampings, βi(i � 1, 2, 3, 4)

are the excitation amplitudes, and ωi(i � 1, 2) are the cor-
responding excitation frequencies. τ(τ ≥ 0) is the time delay
and ω1 � Ο(ε), where ε≪ 1.

4.3.1. General Method. We study the dynamic behavior of
fast-slow system (31) with two slow variables by using the
fast-slow analysis method. ,e two slow variables can be
represented by functions containing c(t), that is, cos(ω1t) �

f1(c(t)) and cos(ω2t) � f2(c(t)), and the system can be
transformed into a fast-slow system with only one slow
variable c(t). ,erefore, the system can be studied by the
traditional fast-slow analysis method.

According to Taylor series expansion, we obtain

cos(nt) � f
∗
n (cos(t)), (32)

where

f
∗
n (x) � C

0
nx

n
− C

2
nx

n− 2 1 − x
2

􏼐 􏼑 + C
4
nx

n− 4 1 − x
2

􏼐 􏼑
2

− · · ·

+ i
m

C
m
n x

n− m 1 − x
2

􏼐 􏼑
m/2

.

(33)

Set ω2 � nω1 (n is a positive integer), and then equation
(32) becomes

x″ + δ1x′ − y(t − τ) + x
3

� β1c(t) + β3f
∗
n (c(t)),

y″ + δ2y′ − x(t − τ) + y
3

� β2c(t) + β4f
∗
n (c(t)),

(34)

where c(t) � cos(ω1t). Furthermore, the fast subsystem can
be regarded as

x″ + δ1x′ − y(t − τ) + x
3

� β1c + β3f
∗
n (c),

y″ + δ2y′ − x(t − τ) + y
3

� β2c + β4f
∗
n (c).

(35)

4.3.2. 3e Duffing System with Commensurate Excitation
Frequencies. We begin our analysis by considering the
case when ω1 � 0.01 and ω2 � 0.03, name ω2 � 3ω1.

Setting δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5, and β4 � 0.555.
Figure 8 shows the time-history curve of the system when
τ � 0, τ � 1, and τ � 2. As shown in the figure, periodic
oscillations occur in these states. Each periodic oscillation is
composed of large-amplitude oscillations and small-ampli-
tude oscillations. When appearing small-amplitude oscilla-
tion, the system is said to be in a resting state. When the
system trajectory passes through the bifurcation point, it loses
its equilibrium state and shows a large oscillation. At this
point, the system moves from the resting state to the excited
state. When the orbit of the system jumps back and forth
between the resting state and the excited state, it is called
bursting. ,e two frequencies are engaged in the bursting of
the system. It is seen that each bursting pattern can be divided
into two parts, i.e., the upper and lower oscillations which are
connected by catastrophic jumps.

To further study the dynamic behavior in Figure 8, the
equilibrium curve and the transformation phase diagram of
fast subsystem (32) were drawn by setting ω1 � 0.01, ω2 �

0.03, δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5 and β4 � 0.555
(see Figure 8). So, we have the fast subsystem

x″ + δ1x′ − y(t − τ) + x
3

� β1c + β3f
∗
3(c),

y″ + δ2y′ − x(t − τ) + y
3

� β2c + β4f
∗
3(c),

(36)

where c(t) � cos(0.01t) is the control parameter. Figure 9
shows the equilibrium curve and the transformation phase
diagram τ � 0. It leads to an S-shaped equilibrium curve.
,e solid line represents the stable equilibrium point, and
the dotted line represents the unstable equilibrium point;
FB indicates the fold bifurcation point, and it can be seen
from the figure that there are two stable equilibrium points
and two fold bifurcation points in the fast subsystem. With
the change of c, the system trajectory moves to the right
along the stable equilibrium and loses the balance after
meeting the fold bifurcation point and then jumps to the
lower part of the balance curve.,e system is excited from a
static state. Due to the attraction of the lower balance, the
rail line tends to be stable and exits the excited state into the
static state until c attains its maximum value, and then the
rail line moves to the left. By this way, two jumps are
completed in a cycle.

Figures 9(c)–9(f) are the equilibrium curve and the
transformation phase diagram when τ � 1 and τ � 2. ,e
solid line represents the stable equilibrium point, while the
dotted line represents the unstable equilibrium point; FB
indicates the fold bifurcation point. ,e similar fold bi-
furcation occurred in Figures 9(a) and 9(b), and almost the
same rail line was drawn. Combining the equilibrium curve
and the transformation phase diagram, we found that the
occurrence of bursting is not significantly disturbed even if
the time delay increased, and the dynamic behavior of the
system do not lose its typical characteristics with the change
of time delay.

To further study the influence of time delay on the
bursting, Figure 10 shows the plot of the peak parts of
Figures 8(a)–8(c). We find that the time delay causes the
dynamic changes in the upper and lower parts of the os-
cillation within each period.

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

x

2800 3000 3200 3400 3600 3800 40002600
t

Figure 7: ,e time history of fast-slow system (1) at ω1 � 200ω2,
where the parameters are a � b � 1, α � 0.1,ω1 � 2,ω2 � 0.01,

τ � 0.3, and f1 � f2 � 0.5.
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4.3.3. 3e Duffing System with Incommensurate Excitation
Frequencies. Now, we consider that the ratio of two fre-
quencies is not the ratio of two integers, i.e., there is at least
one of the two excitation frequencies which is irrational. We
assume that, in system (31), ω1 is a rational frequency, while
ω2 is an irrational frequency, e.g., ω2 � π/100. ,en, the
irrational frequency ω2 leads to a rational sequence
Ωn � π/100, in which πn denotes the 10− n-grade truncated π,
i.e., an approximation of π. For example, π3 � 3.141 and
π6 � 3.141592. Set δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5,
β4 � 0.555, and τ � 1. Figure 11 shows the time-history
curve of the system when ω1 � 0.01, ω2 � π/100, ω1 � 0.01,

ω2 �
�
3

√
/100, ω1 � π/100, ω2 � 0.01, and ω1 �

�
3

√
/100,

ω2 � 0.01.,e complex bursting behavior in the system with
delayed feedback is universal. Compared with Figure 8, the
upper and lower vibration of each bursting curve is more
intense.

Since the ratio of two excitation frequencies is not the
ratio of two integers, we cannot directly use the traditional
fast and slow analysis method to analyze the behavior of the
system with incommensurate excitation frequencies. So, we
try to use the numerical simulation to draw the overlap of the
bursting with incommensurate excitation frequencies and
the one with truncated and commensurate excitation

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2800 3000 3200 3400 3600 3800 40002600

(a1) (a2)

t
2800 3000 3200 3400 3600 3800 40002600

t

y

(a)

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2800 3000 3200 3400 3600 3800 40002600
t

2800 3000 3200 3400 3600 3800 40002600

(b1) (b2)

t

(b)

2800 3000 3200 3400 3600 3800 40002600
t

2800 3000 3200 3400 3600 3800 40002600

(c1) (c2)

t

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

x

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

y

(c)

Figure 8: Time series of the bursting for δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5, β4 � 0.555,ω1 � 0.01, ω2 � 0.03. (a1, a2) τ � 0, (b1, b2) τ � 1,
and (c1, c2) τ � 2.
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Figure 9: Continued.
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frequency (see Figure 12). It is shown that the yellow curve
agrees well with the red curve, i.e., the bursting pattern in
Figure 12(a) with 10− 2-grade truncated frequency agrees

well with the one in Figure 11(a), and the bursting pattern in
Figure 12(b) with 10− 3-grade truncated frequency agrees
well with the one in Figure 11(b).,erefore, we can conclude
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Figure 9: Fast-slow analysis of the bursting (a1, b1, a2, b2), (c1, d1, c2, d2), and (e1, f1, e2, f2) is related to the bursting patterns in Figure 8
(a1, a2), (b1, b2), and (c1, c2).
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Figure 10: ,e plot of the peak part of Figures 8(a)–8(c).
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Figure 11: Continued.
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that the bursting mode related to the incommensurate ex-
citation frequency can be well approximated to the
10− n-grade truncated excitation frequency.

,en, the bursting in Figure 10(a) can be used to analyze
the following system:

x″ + δ1x′ − y(t − τ) + x
3

� β1f
∗
50(c) + β3f

∗
157(c),

y″ + δ2y′ − x(t − τ) + y
3

� β2f
∗
50(c) + β4f

∗
157(c),

(37)

where c(t) � cos(0.0002t) is the control parameter so that
we can continue to study the fast subsystem by the fast-slow
analysis method.

5. TheEffect of TimeDelay onClusterDiscovery

Time delay is an important parameter of time-delay systems,
which affects the dynamic bifurcation and stability of the
system. ,is section mainly discusses the influence of time
lag on the occurrence and development of cluster discovery
before and after approximation and then confirms the ef-
fective time lag range by numerical simulation to reduce the
error size and obtain the desired peak dynamics. Here, we
mainly consider the system

€x + _x − α _x − ax(t − τ) + bx
3

� f1 cos ω2t( 􏼁. (38)

Set x(t − τ) ≈ x(t) − τx′(t) in the numerical simulation
of the two cases before and after the approximation of the
time lag which is performed.

Now, we take the parameters a � b � α � 1,ω2 � 0.01,

f1 � 1, τ � 1, τ � 0.6, τ � 0.5, and τ � 0.3. Figures 13–16
compare the time-history curves of the system before and
after approximation. From the comparison of these fig-
ures, the time lag does not affect the generation of cluster
images, respectively. By comparing the preapproximation
and the approximation of the system delay, it is found that
the approximation of the system in Figures 13 and 14
causes the dynamics of the upper and lower portions of
the oscillation to change in each cycle. Figures 15 and 16
show the approximation of the system is almost consistent
with the dynamic behavior before the approximation.
,erefore, the effective time range of the system should be
0∼0.3. In the above sections, we generally take τ � 0.3.

6. The Multistate Dynamic Response of
the System

In dynamic systems, multistability is the property that there
are multiple stable equilibrium points in the vector space
spanned by the state of the system. According to the
mathematical, there must also be points of instability be-
tween the stable points. Near the unstable equilibrium point,
any system will be sensitive to noise, initial conditions, and
system parameters, which will lead to the development of the
system in many different directions. Here, we mainly
consider the system
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Figure 11: Time series of the bursting for δ1 � 2, δ1 � 1, β1 � β2 � 1.2, β3 � 0.5, β4 � 0.555, and τ � 1. (a1, a2) ω1 � 0.01, ω2 � π/100 and
(b1, b2) ω1 � 0.01, ω2 �
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Figure 12: Bursting pattern with incommensurate excitation frequencies (red curve) agrees well with the one with truncated, commensurate
excitation frequencies (yellow curve).

–0.5

0.0

0.5

1.0

x

10570 10575 10580 10585 1059010565
t

Figure 13: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 1.
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Figure 14: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 0.6.
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_x � y,

_y � − a1x + a2y + y
5

− f cosΩt,
(39)

where x(t) and y(t) are the real function. f> 0 is the
amplitude, and ω is the frequencies. a1 and a2 are the
physical parameters.

Use the Euler method to obtain the following discrete
systems:

xn+1 � yn,

yn+1 � ayn − b xn( 􏼁 − cy
5
n + β,

(40)

where a � 2 − a2(Δt), b � a1(Δt)
2 + a2(Δt) + 1, c � (Δt)5,

and β � f cosΩt. Next, we will study the multistate dynamic
response of the above discrete system. Set a and b as the real
parameter and β as the control parameter. Controllable slow
periodic motion is expressed as Zn � f cosΩt, in which the
external excitation frequency is taken as 0.001. For conve-
nience of calculation, we set c � 1.

Now, we take β as the bifurcation parameter to explore
the coexistence of chaotic attractors, periodic attractors, and
chaotic attractors or the occurrence of numbers and sizes
when parameters a and b take different values.

Case 1. Dynamic response without jumping phenomenon.
According to Figures 17 and 18, when a � 1.2 and

β � 0.24, the system is in a single periodic motion. When
− 0.6< β< − 0.5 and 0.5< β< 0.6, the system is in double
periodic motion. And there is no jump occurring at β � 0.

Case 2. When a � 1.2 and b � 0.23, dynamic occurs in the
jumping phenomenon at β � 0.

From Figures 19 and 20, we know, when − 0.53< β<
− 0.43 and 0.43< β< 0.53, the system is in double periodic
motion. When − 0.43< β< 0.43, the system is in a single
periodic motion. But, there appear jumping phenomenon
when β is near 0.

Case 3. ,e transition of the system from the bistable state
to the chaotic attractor to the monoperiodic attractor.

As shown in Figure 21, when β±c � ±0.91, the system is
in a state of bistable, and chaotic attractor and haploid
cycle attractor coexist. When β> 0.91 and β< − 0.91, the
system enters into haploid periodic motion, and the
bistable state disappears. And we also found that as β
increases or decreases, namely, more than the critical
value, the system of the chaotic attractor suddenly
disappeared.

Case 4. ,e transition of the system from the bistable state
to the chaotic attractor to the double periodic attractor.

When a � 1.9 and b � 0.17, from Figure 22, we obtain
β±c � ±0.042, and the system is in a state of bistable, and
chaotic attractor and double period attractor coexist.
When β> 0.042 and β< − 0.042, the system enters into
double periodic motion, and the bistable state disappears.
And as β increases or decreases, namely, more than the
critical value, the system of the chaotic attractor
disappeared.

Case 5. ,e transition of the system from the bistable state
to the chaotic attractor to the quadruple periodic attractor.

When a � 1.9 and b � 0.23, from Figure 23, we obtain
β±c � ±0.026, and the system is in a state of bistable, and
chaotic attractor and haploid cycle attractor coexist. When
β> 0.026 and β< − 0.026, the system enters into quadruple
periodic motion, and the bistable state disappears. And as β
increases or decreases, namely, more than the critical value,
the system of the chaotic attractor disappeared.

Case 6. ,e transition of the system from the bistable state
to the chaotic attractor to the chaotic attractor.

From Figure 24, we obtain β±c � ±0.026, and when a �

1.9 and b � 0.14, the system is in a state of bistable, and
chaotic attractor and haploid cycle attractor coexist.
When β> 0.026 and β< − 0.026, the system enters into
quadruple periodic motion, and the bistable state dis-
appears. And as β increases or decreases, namely, more
than the critical value, the system of the chaotic attractor
disappeared.
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Figure 15: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 0.5.

10570 10575 10580 10585 1059010565
t

–0.5

0.0

0.5

1.5

1.0

x

Figure 16: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 0.3.
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7. Conclusion

In this paper, we study the mixed-mode dynamics of a class
of oscillators with time-delay modulated amplitude. Com-
bine theoretical analysis and numerical simulation to make
time-history graphs and phase diagrams to explain when the
natural frequency and excitation frequency are the same or
proportional. We use the Melnikov method to explore the
influence of threshold parameters on the bifurcation. We
also discuss the coupled time-delay Duffing system to il-
lustrate the dynamic behavior when the frequency ratio is
irrational. Meanwhile, we analyze the effect of time-delay
approximation before and after the delay approximation on
the system clustering phenomenon. Finally, we explore the
bifurcation behavior of the fast subsystem. ,e numerical
simulation results show that, near the critical value βc, the
chaotic attractor will coexist with multiple periodic orbits or
chaos. By studying the bifurcation of stability and multi-
stability of these systems with parameter excitation, these
results have certain practicability and interest for the

mathematical modeling of the systems studied in the fields of
physics, chemistry, and mechanics. We can also idealize the
required systems in more fields.
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[40] Y. Huang and J. Xü, “Multiple state-steady motion and chaos
in a class of planar autonomus nonlinear system with delayed
control,” Chinese Quarterly of Mechanics, vol. 26, no. 4,
pp. 660–672, 2005.

[41] G. Schmitz, S. Anic, Z. Cupic, and L. Kolar-Anic, “,e il-
lustration of multistability,” Journal of Chemical Education,
vol. 77, no. 1, pp. 1502–1505, 2000.

[42] Q. Lai, B. Hu, Z.-H. Guan, T. Li, D.-F. Zheng, and Y.-H. Wu,
“Multistability and bifurcation in a delayed neural network,”
Neurocomputing, vol. 207, pp. 785–792, 2016.

[43] X. Huang, C. Xu, Y. T. Sun, and Z. G. Zheng, “Multiple
synchronous states in a ring of coupled phase oscillators,”
Acta Physica Sinica, vol. 17, pp. 53–63, 2015.

18 Complexity



Research Article
Stability and Hopf Bifurcation of Three-Species Prey-Predator
System with Time Delays and Allee Effect

F. A. Rihan ,1 H. J. Alsakaji ,1 and C. Rajivganthi2

1Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
2School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, RJ 22250-900, Brazil

Correspondence should be addressed to H. J. Alsakaji; heba.sakaji@uaeu.ac.ae

Received 27 September 2019; Revised 22 December 2019; Accepted 2 January 2020; Published 31 January 2020

Guest Editor: Viet-)anh Pham

Copyright © 2020 F. A. Rihan et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Allee effect is one of the important factors in ecology, and taking it into account can cause significant impacts in the system
dynamics. In this paper, we study the dynamics of a two-prey one-predator system, where the growth of both prey populations
is subject to Allee effects, and there is a direct competition between the two-prey species having a common predator. Two
discrete time delays τ1 and τ2 are incorporated into the model to represent reaction time of predators. Sufficient conditions for
local stability of positive interior equilibrium and existence of Hopf bifurcations in terms of threshold parameters τ∗1 and τ

∗
2 are

obtained. A Lyapunov functional is deducted to investigate the global stability of positive interior equilibrium. Sensitivity
analysis to evaluate the uncertainty of the state variables to small changes in the Allee parameters is also investigated. Presence
of Allee effect and time delays in the model increases the complexity of the model and enriches the dynamics of the system.
Some numerical simulations are provided to illustrate the effectiveness of the theoretical results. )e model is highly sensitive
to small changes in Allee parameters at the early stages and with low population densities, and this sensitivity decreases
with time.

1. Introduction

)e dynamical relationship between prey and their preda-
tors has long been and will continue to be one of the
dominant themes in ecology due to its universal existence
and importance (see, e.g., [1–5]). )is relationship/inter-
action between two or more species has been essential in
theoretical ecology since the famous Lotka–Volterra equa-
tions [6, 7], which are a system of first order, nonlinear
differential equations that describe the dynamics and in-
teractions between two ormore species of biological systems.
Of course, the qualitative properties of a prey-predator
system such as stability of the steady states, bifurcation
analysis, and oscillation of the solutions usually depend on
the system parameters (see [8]).

Suppose that N(t) is the size of prey population and
P(t) is the size of the predator population at time t, then

the Lotka–Volterra model is given by the following
equations:

dN(t)

dt
� N(t) β1 − c1 − g1N(t)􏼂 􏼃 − eN(t)P(t),

dP(t)

dt
� P(t)[− c + eN(t)],

(1)

with N(0)> 0 and P(0)> 0. Here, β1 is the per capita
maximum filtering rate and c1 is the death rate of the prey
N(t), while the parameter g1 denotes the strength of intra-
specific competition. )e predator death rate and predation
rate are, respectively, denoted by c and e. In the above model,
it is assumed that prey population is subjected to logistic
growth rate and the exponential type functional response.

We should also mention here that one important
component of prey-predator relationships is the functional
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response of predators to their prey(s)’ densities. )e re-
sponse of predators to different prey densities depends on
the feeding behavior of individual predators. In [9], Holling
discussed three different types of functional responses:
Holling type I (linear), type II, and type III, etc. )ese re-
sponses are used to model the phenomena of predation,
which captures the usual properties, for instance, positivity
and increase (see also [10–13]).

)e authors believe that Allee effect and time delays
greatly increase the likelihood of local and global extinction
and can produce a rich variety of dynamic effects. It is a
natural question that how the introduction of Allee effect in
the prey growth function changes the system dynamics of
the prey-predator system. However, before we introduce the
final model, we give brief preliminaries about Allee effects
and time delays in the prey-predator model (see [14, 15]).

1.1. Allee Effect. Allee effect was firstly reported by the
American ecologist Allee [16], when he asked “what minimal
numbers are necessary if a species is to maintain itself in
nature?” Allee, in [16], shows that the growth rate is not
always positive for small densities, and it may not be de-
creasing as in the logistic model either. In general, Allee
effect mechanisms arise from cooperation or facilitation
among individuals in the species [17]. A population is said to
have an Allee effect if the growth rate per capita is initially an
increasing function for the low density. It can be classified
into two types: strong and weak. A strong Allee effect takes
place when the population density is less than the specified
threshold population considered, resulting in the species
dying out. However, if the population density is greater than
the threshold, the growth rate will remain positive [18], while
a weak Allee effect means that the per capita growth rate
cannot go below zero and remains positive.

Now, we show how an Allee effect can be modelled, and
how the per capita growth rate is affected with a weak Allee
effect or a strong Allee effect throughout the simple ex-
amples: (dN/dt) � rN2(1 − (N/K)) for a weak Allee effect
and (dN/dt) � rN(1 − (N/K))((N/A) − 1) for a strong
Allee effect.

Figure 1 shows a per capita growth rate (1/N)(dN/dt)

of the population with strong and weak Allee effects. )e
straight line shows the logistic growth, and the red curve
displays a weak Allee effect, while the blue curve shows a
strong Allee effect. )e negative density dependence at low
population sizes is described as a strong Allee effect, where
there exists a threshold population level A, such that for
N<A, (1/N)(dN/dt) < 0 (the species will die out) and for
N>A, (1/N)(dN/dt)> 0, the growth will remain positive
[18]. However, when the growth rate remains positive at
low population densities, it is considered as a weak Allee
effect.

For multispecies models, there are flexible ways to
formulate the Allee effects. For example, due to difficulties in
finding mates when prey population density becomes low,
Allee effect takes place in prey species. Herein, we propose
and incorporate an additive Allee effect of the form
b(N) ≡ (N/α1 + N) in the prey growth function of model

(1), which is considered as the probability of finding a mate
(see [19]), so that

dN(t)

dt
� N(t)

β1N(t)

α1 + N(t)
− c1 − gN(t)􏼢 􏼣 − eN(t)P(t),

dP(t)

dt
� P(t)[− c + eN(t)].

(2)

)e parameter α1 is the strength of Allee effect, α1 � 1/R,
where R is the average area that can be searched by an
individual [20]. We may notice that b(0) � 0 and b′(N)> 0
if N ∈ [0,∞), i.e., Allee effect decreases as density increases,
and limN⟶∞b(N) � 1 means that Allee effect disappears at
high densities. )erefore, the term b(N) is considered as a
weak Allee effect function in a rectangular hyperbola form,
known as Michaelis–Menten-like function [21].

1.2. Time Delays. Usually, the individuals of the prey and
predator species usually pass through various life stages
during their entire life span and the involved morphology
differs from one stage to another. Construction of delay
differential equation models is a well-known modelling
strategy to take care of the stage-specific activities which are
responsible for significant change in the dynamics of inter-
acting populations. In various existing literature studies, the
biological processes like incubation, gestation, maturation,
and reaction time, are taken care of by introducing relevant
time-delay parameters to the models for prey predator and
other types of interacting populations. Incorporating time
lags (or time delays) in biological models makes the systems
much more realistic, as it can destabilize the equilibrium
points and give rise to a stable limit cycle, causing oscillations
to grow and enriching the dynamics of themodel. Time delays
have been considered and extremely studied by many authors
in prey-predator models and biological systems (see [21–25]).

Motivation to what we mentioned above, it is interesting
and important to study the impact of time delays and Allee
effect on the dynamics of three-species prey-predator models.
In this paper, we extend the work in [26] and study the
dynamics of a two-prey one-predator system, where the
growth of both prey populations is subject to Allee effects, and
there exists a direct competition between the two-prey species
having a common predator. Two discrete time delays τ1 and
τ2 are incorporated into the predator growth equation to
represent the reaction time with each prey. Sensitivity analysis
to evaluate the uncertainty of the state variables to small
changes in the Allee parameters is also considered.

)e rest of this paper is organized as follows: Model
formulation is presented in Section 2. Local stability and
bifurcation analysis of the steady states are discussed in
Section 3, and global asymptotic stability of interior steady
state is discussed in Section 4. We also utilize sensitivity
functions to evaluate the sensitivity (uncertainty) of the state
variables (preys and predator populations) to small changes
in the severity Allee parameters through Section 5. Some
numerical simulations are presented in Section 6 to show the
effectiveness of the theoretical results. Finally, Section 7
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concludes the study with a summary of the reported findings
and future recommendations.

2. Delayed Model with Allee Effect for the Two-
Prey One-Predator System

Many studies have been done on multispecies prey-predator
systems, including local and global bifurcations and different
types of chaos (see, e.g., [26–29]). Sen et al. [26] discussed the
Allee effect on two-preys’ growth function, where the
predator is generalized. )ey explained how the Allee effect
can suppress the chaotic dynamics and the route to chaos in
prey growth by comparing it with a model without the Allee
effect. In [27], the authors studied dynamics of three species
(two preys and one predator) delayed prey-predator model
with cooperation among the preys against predation. )e
growth rate for preys is thought to be logistic. Delays are
taken just in the growth components for each of the species.
Takeuchi and Adachi [28] considered two preys with logistic
growth rates and an exponential functional response, where
the predator survives on two-prey populations. )eir results
showed that the apparent chaotic behavior is a result of the
periodic solution when one of the two-prey has greater
competitive strength than the other. Song and Li [29] ex-
plored the dynamic behaviors of a Holling II two-prey one-
predator system by introducing constant periodic releases of
predators through periodically spraying a pesticide on the
prey. )ey were then able to show that the system remains
permanent under certain conditions.

Herein, we generalize model (2) to a multispecies prey-
predator system (two-preys one-predator). )e model
consists of two teams of preys with densities x(t) and y(t),
interacting with one team of predator with density z(t). We
also incorporate Allee effects in the growth functions of the

two-prey populations, and there exists a direct competition
between the two-prey species having a common predator.

)e model takes the general form:
dx(t)

dt
� x(t)

β1x(t)

α1 + x(t)
− c1 − g1x(t)􏼢 􏼣

− αx(t)y(t) − ex(t)z(t),

dy(t)

dt
� y(t)

β2y(t)

α2 + y(t)
− c2 − g2y(t)􏼢 􏼣 − βx(t)y(t)

−
δy(t)z(t)

1 + cy(t)
,

dz(t)

dt
� − β3z(t) + εex t − τ1( 􏼁z t − τ1( 􏼁

+
εδy t − τ2( 􏼁z t − τ2( 􏼁

1 + cy t − τ2( 􏼁
,

(3)

with initial conditions

x(θ) � ϕ1(θ) > 0,

y(θ) � ϕ2(θ) > 0,

z(θ) � ϕ3(θ) > 0,

θ ∈ [− τ, 0],

τ � max τ1, τ2􏼈 􏼉.

(4)

Here, ϕi(θ) (i � 1, 2, 3) are smooth initial functions. )e
coefficients α and β represent the coefficients of competition
of two preys x and y, in the absence of predator. )e de-
scription of rest of model parameters along with their
symbols is presented in Table 1.
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Figure 1: (a))e per-capita growth rate (1/N)(dN/dt) vs. population N(t) with logistic (black dashes), strong (blue curve), and weak (red
curve) Allee effects. (b))e population growth rate (dN/dt) vs. population N(t). For the strong Allee effect, the y-intercept of the per capita
growth rate is less than zero at zero density, while in weak Allee effect, the y-intercept cannot go below zero.
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It is reasonable to assume that the death (predation) of
preys is instantaneous when attacked by their predator but
their contribution to the growth of predator population
must be delayed by some time delay. )erefore, we incor-
porated two discrete time delays τ1 and τ2 in the reaction
response functionals in the predator growth to represent the
reaction time. )e interaction between first species of prey
and predator is assumed to be governed by Holling type I.
While the interaction between the second species of prey and
predator is assumed to be governed by Holling type II
(cyrtoid functional) δy(t)z(t)/(1 + cy(t)), response indi-
cates that it is a hard-to-capture prey compared to the first
species (see Figure 2).

To investigate the role of time delay and Allee effect on
the dynamics of the system, we first discuss the boundedness
and positivity of the solutions of system (3) with the given
positive initial conditions (4).

2.1. Positivity andBoundedness of the Solution. )e positivity
of the solutions indicates the existence of the population,
while the boundedness explains the natural control of
growth due to the restriction of resources. We arrive at the
following lemma.

Lemma 1. Every solution of system (3) corresponding to
initial conditions (4) defined on [0,∞) remains positive for all
t≥ 0, which satisfies

lim
t⟶∞

sup(x(t) + y(t))≤ κ,

lim
t⟶∞

supz(t)≤N,
(5)

where κ � min β1, β2􏼈 􏼉 and N> 0.

Proof. Model (3) can be represented in a matrix form

_U(t) � F(U), (6)

where U � (x, y, z)T ∈ R3 and

F(U) �

F1(U)

F2(U)

F3(U)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

x
β1x
α1 + x

− c1 − g1x􏼠 􏼡 − αxy − exz

y
β2y
α2 + y

− c2 − g2y􏼠 􏼡 − βxy −
δyz

1+ cy

− β3z + εex t − τ1( 􏼁z t − τ1( 􏼁

+
εδy t − τ2( 􏼁z t − τ2( 􏼁

1+ cy t − τ2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

LetR3
+ � [0,∞)3, since the right-hand side of system (3)

is locally Lipschitz on C: R3+1
+ ⟶ R3, such that

Fi(U)|ui(t)�0,U∈R3
+
≥ 0, where u1 � x, u2 � y, and u3 � z.

According to [30], the solutions of (6) with initial conditions
(4) exist uniquely on the interval [0, ξ), where 0< ξ ≤∞;
therefore, all solutions exist on the first quadrant of the xyz

plane.
To prove the boundedness of solutions for system (3), let

us first consider the case when the predator is absent, so that
dx

dt
� x

β1x
α1 + x

− c1 − g1x􏼠 􏼡 − αxy ≡ G1(x, y),

dy

dt
� y

β2y
α2 + y

− c2 − g2y􏼠 􏼡 − βxy ≡ G2(x, y),

(8)

with initial conditions x(0)> 0 and y(0)> 0; we can easily
show that G1(x, y)≥ 0 for y � 0 and x< (β1 − c1)/g1, such
that β1 > c1 and G2(x, y)≥ 0 for x � 0 and y< (β2 − c2)/g2,
where β2 > c2. Adding the two equations of (8) yields
d
dt

(x + y) � x
β1x

α1 + x
− c1 − g1x􏼠 􏼡 + y

β2y
α2 + y

− c2 − g2y􏼠 􏼡

− xy(α + β)

≤x β1 − c1 − g1x( 􏼁 + y β2 − c2 − g2y( 􏼁

≤ β1x + β2y≤ κ(x + y),

(9)
where κ � min β1, β2􏼈 􏼉. If we integrate both sides of (9), we
get

Table 1: One biological meaning for the parameters of model (3).

Parameter Description
α1, α2 Strength of Allee effect
β1, β2 Per capita maximum filtering rate of population
g1, g2 Strength of intracompetition
c1, c2 Death rate for preys
α, β Coefficient of competition

e, δ Decrease rate of x(t) and y(t) due to predation by
z(t)

β3 Predator death rate

c
Magnitude of interference between the second type of

prey

∈ An equal transformation rate of predator to preys x(t)

and y(t)

zβ3

єexz Predator
z(t)

Prey 1
x(t)

Prey 2
y(t)

βxyαxy

β1x2/(α1 + x) β2y2/(α2 + y)

εδyz/(1 + cy)

γ2 yγ1x

g2 y2
g1x2

Figure 2: Mathematic scheme of the three-species predator prey
system (3).
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(x(t) + y(t))≤ (x(0) + y(0))e
− κt

. (10)

Since (x(0) + y(0))> 0, the solutions are bounded,
which clearly shows that limt⟶∞sup(x(t) + y(t))≤ κ.

To extend the analysis to (3), let us consider
0< ϕ1(θ) + ϕ2(θ) + ϕ3(0)<M, θ ∈ [− τ, 0]. Also assume that
W(t) � εx(t − τ1) + εδy(t − τ2) + z and choose 0< ρ< β3.
By considering the derivative of W, for t>T + τ for some
fixed positive time T, we have

dW

dt
+ ρW≤ εx t − τ1( 􏼁 β1 + ρ − x t − τ1( 􏼁( 􏼁

+ εδy t − τ2( 􏼁 β2 + ρ − y t − τ2( 􏼁( 􏼁 + ρ − β3( 􏼁z.

(11)

Since x and y are nonnegative and bounded by κ,

dW

dt
+ ρW≤ (ε + εδ)κ + ρ − β3( 􏼁z≤M. (12)

Due to the positivity of z and since the parametric
condition exists for ρ, the differential inequality is bounded
above, such that (dW/dt)≤M − ρW, i.e., there exists N
where 0<W(t)<N for all t>T, which implies the
boundedness of z, such that limt⟶∞supz(t)≤N. □

3. Local Stability and Hopf Bifurcation

In this section, we investigate the qualitative behaviour of
system (3) by studying the local stability of positive equi-
librium points and Hopf bifurcation analysis, which pro-
vides a deeper insight into the model to address the
behavioral change of solutions as a response to changes in a
particular parameter. Since time lags τ1 and τ2 have a sig-
nificant impact in the complexity and dynamics of the
model, we consider them as bifurcation parameters.

3.1. Existence of Interior Equilibrium Points. System (3) has
some boundary and interior equilibrium points. However, we
only focus on the dynamic analysis of interior equilibrium
points. In order to obtain the attainable equilibrium points for
system (3), the zero growth isoclines of the system are given
by x((β1x/(α1 + x)) − c1 − g1x) − αxy − exz � 0, y((β2y/
(α2 + y)) − c2 − g2y) − βxy − (δyz/(1 + cy)) � 0, and
− β3z + εexz + (εδyz/(1 + cy)) � 0, in R3

+ � (x, y, z) ∈􏼈

R3: x, y, z≥ 0}. )erefore, the equilibria are the points of
intersection of these zero growth isoclines regardless of the
parameter values.

An interior equilibrium pointE∗ ≡ (x∗, y∗, z∗) exists with
((β1x∗/(α1 + x∗)) − c1 − g1x

∗) − αy∗ − ez∗ � 0, ((β2y∗/
(α2 + y∗)) − c2 − g2y

∗) − βx∗ − (δz∗/(1 + cy∗)) � 0, and
− β3 + εex∗ + (εδy∗/(1 + cy∗)) � 0 such that x∗ � (1/εe)

(β3 − (εδy∗/(1 + cy∗)))> 0 and z∗ � (1/e) ((β1(β3(1+ cy∗)

− εδy∗) / (1 + cy∗)(εe + β3)) + g1(β3 − (εδy∗ /(1 + cy∗))) −

c1 − αy∗)> 0, where y∗ is the root(s) the following equation:

G(y) � σ1y
4

+ σ2y
3

+ σ3y
2

+ σ4y + σ5 � 0. (13)

)e coefficients σi, i � 1, . . . , 5, are defined by

σ1 � α2c
2
,

σ2 � c 2α2 + α2cg2 +
ββ2c
εe

−
βδ
e

− δα + cc2􏼠 􏼡,

σ3 �
β1δ

2ε − cδβ1β2
εe + β3

+
α2βδεc − ββ2α2c2 − βδε

εe

− δ2εg1 + cβ2 + c
2β2 + cg1δβ3 + cδc1 + α2 − δα,

σ4 �
ββ2 − α2βδε

εe
+
δβ1β2 + cδβ1β3α2 + β1α2δ

2

εe + β3

− g1α2δ
2ε + cα2δβ3g1 + cα2δc1 + cα2c2 − β2 − β2c

+ α2g2 − δβ2g1 − δc1 + c2,

σ5 �
δβ1β3α2
εe + β3

−
α2β2β
εe

− α2δβ3g1 − α2δc1 + α2c2.

(14)

)e nature of the roots for (13) is determined by noting
the sign of its discriminant [31]. )erefore, a sufficient
condition that guarantees that (13) has at least one positive
root is σ5 < 0, which leads to (δβ1β3α2/(εe + β3)) +

α2c2 < (α2β2β/εe) + α2δβ3g1 + α2δc1. )us, system (3) can
have at most four interior equilibria in the presence of the
Allee effect. However, in the absence of Allee effect, we arrive
at the following remark.

Remark 1. In the absence of the Allee effect (α1 � α2 � 0),
the interior equilibria for system (3) are reduced to at most
three interior equilibria. Consequently, Allee effect can
generate or eradicate interior equilibria. It may stabilize or
destabilize the system.

3.1.1. Existence of Bistability. )e phenomenon of bistability
has been recognized experimentally in some biological sit-
uations but much more commonly in theoretical models,
such as the dynamics of animal populations [32]. )e co-
existence between two stable attractors can be determined by
increasing or decreasing the value of some control pa-
rameters. )erefore, the system pursues one branch of
equilibrium points when increasing a control parameter
until a threshold limit point is reached at which the system
jumps to another branch of stable equilibrium points.
Bistability occurs when the system can converge to two
different equilibrium points, depending on the variation of
the initial conditions in the same parametric region. Or the
system is able to evolve into either one of two equilibrium
points by increasing or decreasing the level of one of the
system’s parameters.

)e underlying model (3) displays bistability of two
interior equilibria, which is based on the variation of the
coefficient of competition α (see Figure 3). Both equilibria
are locally asymptotically stable.
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3.2. Stability and Bifurcation Analysis of the Interior Equi-
librium E∗. Now, we study the stability of the interior
equilibriumE∗ ≡ (x∗, y∗, z∗), at which the Jacobian matrix is

J �

F1 F2 F3

F4 F5 F6

I1e
− λτ1 I2e

− λτ2 F7 + I3e
− λτ1 + I4e

− λτ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

Here,

F1 �
β1x∗

α1 + x∗( 􏼁
1 +

α1
α1 + x∗( 􏼁

􏼠 􏼡 − 2g1x
∗

− c1

− αy
∗

− ez
∗ < 0,

F2 � − αx
∗
,

F3 � − ex
∗
,

F4 � − βy
∗
,

F5 �
β2y∗

α2 + y∗( 􏼁
1 +

α2
α2 + y∗( 􏼁

􏼠 􏼡 − 2g2y
∗

− c2

− βx
∗

−
δz∗

1 + cy∗( 􏼁
2 < 0,

F6 � −
δy∗

1 + cy∗
, F7 � − β3,

I1 � εez
∗
,

I2 �
εδz∗

1 + cy∗( 􏼁
2,

I3 � εex
∗
,

I4 �
εδy∗

1 + cy∗
.

(16)

)e characteristic equation for the interior point
E∗ ≡ (x∗, y∗, z∗) is then given by

A(λ) + B(λ)e
− λτ1 + C(λ)e

− λτ2 � 0. (17)

Here,

A(λ) � λ3 + R1λ
2

+ R2λ + R3,

B(λ) � N1λ
2

+ N2λ + N3,

C(λ) � M1λ
2

+ M2λ + M3,

(18)

such that

R1 � − F1 − F5 − F7,

R2 � F1F5 + F1F7 + F5F7 − F2F4,

R3 � F2F4F7 − F1F5F7,

N1 � − I3,

N2 � F1 + F5( 􏼁I3 − F3I1,

N3 � F2F4I3 + F3F5I1 − F2F6I1 − F1F5I3,

M1 � − I4,

M2 � F1 + F5( 􏼁I4 − F6I2,

M3 � F2F4I4 + F1F6I2 − F3F4I2 − F1F5I4.

(19)

To gain insight regarding interior equilibrium E∗, we
discuss the stability of interior steady states and Hopf bi-
furcation conditions of the threshold parameters τ1 and τ2
by considering the following different cases.

Case 1. When τ1 � τ2 � 0, equation (17) becomes

λ3 + R1 + N1 + M1( 􏼁λ2 + R2 + N2 + M2( 􏼁λ

+ R3 + N3 + M3( 􏼁 � 0.
(20)

)erefore, the interior equilibrium E∗ is locally as-
ymptotically stable if

(i) (H1)R1 + N1 + M1 > 0, R3 + N3 + M3 > 0 and (R1 +

N1 + M1)(R2 + N2 + M2)>R3 + N3 + M3 holds

)us, based on Routh–Hurwitz Criteria, all the roots of
(20) have negative real parts.

Case 2. For τ1 � 0, τ2 > 0, then equation (17) becomes

λ3 + R1 + N1( 􏼁λ2 + R2 + N2( 􏼁λ + R3 + N3( 􏼁

+ M1λ
2

+ M2λ + M3􏼐 􏼑e
− λτ2 � 0.

(21)

We assume for some values of (τ2 > 0), there exists a real
number ω such that λ � iω is a root of (21); then, we get

− R1 + M1( 􏼁ω2
+ R3 + N3( 􏼁

� M1ω
2

− M3􏼐 􏼑cosωτ2 − M2ω sinωτ2,

− ω3
+ R2 + N2( 􏼁ω

� M3 − M1ω
2

􏼐 􏼑sinωτ2 − M2ω cosωτ2.

(22)

Squaring and adding both of the equations yield
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Figure 3: Bistability of two interior equilibria for the delayed
system (3), with α � 0.9 and α � 0.5. Both equilibria are locally
asymptotically stable; other parameter values are given in (45).
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ω6
+ a1ω

4
+ a2ω

2
+ a3 � 0, (23)

where

a1 � R1 + M1( 􏼁
2

− 2 R2 + N2( 􏼁 − M
2
1,

a2 � R2 + N2( 􏼁
2

− 2 R1 + M1( 􏼁 R3 + N3( 􏼁 + 2M1M3 − M
2
2,

a3 � R3 + N3( 􏼁
2

− M
2
3.

(24)

By Descartes’ rule of signs, equation (22) has at least one
positive root ω1 if

(i) (H2)R
2
1 + 2R1M1 > 2(R2 + N2) and (R3 + N3)

2 <M2
3

holds

Eliminating sinω1τ2 from (22) yields

τ2,j �
1

w1
arccos

R3 + N3( 􏼁 − R1 + N1( 􏼁w2
1( 􏼁 M1w

2
1 − M3( 􏼁 + M2 R2 + N2( 􏼁w2

1 − M2w
4
1

M3 − M1w
2
1( 􏼁

2
− M2w1( 􏼁

2
⎡⎣ ⎤⎦ +

2jπ
w1

, (25)

where j � 0, 1, 2, . . ..
By differentiating (21) with respect to τ2 such that ω � ω1

and τ2 � τ2,j, the transversality condition can be obtained in
this form:

Re
dλ
dτ2

􏼠 􏼡

− 1

�
A1A4 − A2A3

A2A4
. (26)

Here,

A1 � R2 + N2( 􏼁 − 3ω2
1􏽨 􏽩 R2 + N2( 􏼁ω2

1 − ω4
1􏼐 􏼑

+ 2 R1 + N1( 􏼁ω1 R3 + N3( 􏼁ω1 − R1 + N1( 􏼁ω3
1􏽨 􏽩,

A2 � ω4
1 − R2 + N2( 􏼁ω2

1􏼐 􏼑
2

+ R3 + N3( 􏼁ω1 − R1 + N1( 􏼁ω3
1􏼐 􏼑

2
,

A3 � M
2
2ω

2
1 + 2 M1ω

3
1 − M3ω1􏼐 􏼑M1ω1,

A4 � M2ω
2
1􏼐 􏼑

2
+ M3ω1 − M1ω

3
1􏼐 􏼑

2
.

(27)

)en, a Hopf bifurcation occurs for τ2 if
Re(dλ/dτ2)

− 1 > 0; i.e., A1A4 >A2A3. We arrive at the fol-
lowing theorem.

Theorem 1. Let (H1) and (H2) hold, where τ1 � 0; then,
there exists τ2 > 0 such that E∗ remains stable for τ2 < τ2′ and
unstable for τ2 > τ2′ , where τ2′ � min τ2,j􏽮 􏽯 defined by (25).
Moreover, system (3) undergoes a Hopf bifurcation at E∗
when τ2 � τ2′ .

Case 3. When τ2 � 0 and τ1 > 0, in the same manner of the
pervious case, we arrive at the following theorem.

Theorem 2. For system (3), with τ2 � 0, there exists a
positive number τ1, such that the equilibrium point E∗ is
locally asymptotically stable for τ1 < τ1′ and unstable for
τ1 > τ1′, where τ1′ � min τ1,j􏽮 􏽯. Furthermore, Hopf bifurcation
occurs at τ1 � τ1′:

τ1,j �
1

w0
arccos

R3 + M3( 􏼁 − R1 + M1( 􏼁w2
2( 􏼁 N1w

2
2 − N3( 􏼁 − N2 R2 + M2( 􏼁w2

2 + N2w
4
2

N1w
2
2 − N3( 􏼁

2
+ N2w2( 􏼁

2
⎡⎣ ⎤⎦ +

2jπ
w2

, (28)

where j � 0, 1, 2, . . ..

Case 4. When τ1 > 0 and τ2 > 0, we assume that τ1 as a
variable parameter and τ2 as fixed on its stable interval. Let
λ � iw as a root of (17); separating real and imaginary parts
implies

− w
3

+ R2w + M1w
2

− M3􏼐 􏼑sinwτ2 + M2w coswτ2

� N3 − N1w
2

􏼐 􏼑sinwτ1 − N2w coswτ1,

(29)

− R1w
2

+ R3 + M3 − M1w
2

􏼐 􏼑coswτ2 + M2w sinwτ2
� N1w

2
− N3􏼐 􏼑coswτ1 − N2w sinwτ1.

(30)

)us, eliminating the trigonometric functions (sinωτ1
and cosωτ1) from (29) and (30) yields

w
6

+ ξ4w
5

+ ξ3w
4

+ ξ2w
3

+ ξ1w
2

+ ξ0 � 0, (31)

where

ξ4 � − 2M1 sinwτ2,

ξ3 � R1 + M
2
1 − 2R2 − N

2
1 − 2M2 coswτ2,

ξ2 � 2 M1R2 + M3( 􏼁sinwτ2 − 2M3R1 coswτ2,

ξ1 � − 2M3R2 sinwτ2,

ξ0 � R
2
3 + M

2
3 − N

2
3 + 2M3R3 + R1M1( 􏼁coswτ2.

(32)
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Equation (31) is a preternatural equation in a compli-
cated form; it is quite difficult to predict the nature of its
roots. )us, by applying Descartes rule of signs, we can say
that (31) has at least one positive root ω0 if

(i) (H3)ξ4 > 0 sinceM1 < 0 and ξ0 < 0; therefore, we have

τ1,j �
1

w0
arccos

A D + CB

A2 + C2􏼢 􏼣 +
2jπ
w0

, j � 0, 1, 2, . . . .

(33)

Here,

A � N1w
2
0 − N3,

B � − w
3
0 + R2w0 + M3 − M1w

2
0􏼐 􏼑sinw0τ2 + cosw0τ2,

C � N2w0,

D � − R1w
2
0 + R3 + M1w

2
0 − M3􏼐 􏼑cosw0τ2

+ M2w0 sinw0τ2.
(34)

To study the Hopf bifurcation analysis, we fix τ2 in its
stable interval and differentiate equations (29) and (30) with
respect to τ1. )en, substitute τ1 � τ1,0 and w � w0, we have

Q2
d(Rλ)

dτ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ1,0
􏼠 􏼡 + Q1

d(w)

dτ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ1,0
􏼠 􏼡 � Q3,

− Q1
d(Rλ)

dτ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ1,0
􏼠 􏼡 + Q2

d(w)

dτ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ1,0
􏼠 􏼡 � Q4

(35)

where

Q1 � − 3w
2
0 + R2 + 2N1w0 − N2w0τ1,0􏼐 􏼑sinw0τ1,0

+ N2 + N1τ1w
2
0 − N3τ1,0􏼐 􏼑cosw0τ1,0

+ 2w0M1 − M2τ2w0( 􏼁sinw0τ2
+ M1τ2w

2
0 − M3τ2 + M2􏼐 􏼑cosw0τ2,

Q2 � − 2R1w0 + N1w
2
0τ1,0 − N3τ1,0 + N2􏼐 􏼑sinw0τ1,0

+ N2w0τ1 − 2N1w0( 􏼁cosw0τ1,0

+ M2 + M1w
2
0τ2 − M3τ2􏼐 􏼑sinw0τ2

+ M2w0τ2 − 2M1w0( 􏼁cosw0τ2,

Q3 � N2w
2
0 sinw0τ1,0 + N3w0 − N1w

3
0􏼐 􏼑cosw0τ1,0,

Q4 � N2w
2
0 cosw0τ1,0 + N1w

3
0 − N3w0􏼐 􏼑sinw0τ1,0.

(36)

From (35), we get
d(Rλ)

dτ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ1,0
􏼠 􏼡 �

Q2Q3 − Q1Q4

Q2
2 + Q2

1
. (37)

As Q2Q3 >Q1Q4, then Hopf bifurcation occurs for
τ1 � τ1,0.

)erefore, we arrive at the following theorem.

Theorem 3. IfE∗ exists, such that (H1) and (H3) hold, with
τ2 ∈ (0, τ2′), then there exists a positive threshold parameter
τ∗1 such that the interior equilibrium E∗ is locally asymp-
totically stable for τ1 < τ∗1 and unstable τ1 > τ∗1 , where τ∗1 �

min τ1,j􏽮 􏽯 as in (38). Additionally, system (3) undergoes Hopf
bifurcation at E∗ when τ1 � τ∗1 .

Remark 2. Similarly, for τ1 ∈ (0, τ1′), there exists a threshold
parameter τ∗2 such that the interior equilibrium E∗ is locally
asymptotically stable for τ2 < τ∗2 and unstable τ2 > τ∗2 . Also,
Hopf bifurcation occurs for system (3) as τ2 � τ∗2 , where
τ∗2 � min τ2,j􏽮 􏽯 is given by

τ2,j �
1

w3
arccos

A1D1 + C1B1

A2
1 + C2

1
􏼢 􏼣 +

2jπ
w3

, j � 0, 1, 2, . . . ,

(38)

with

A1 � M1w
2
3 − M3,

B1 � w
3
3 − R2w3 + N3 − N1w

2
3􏼐 􏼑sinw3τ1 − N2w3 cosw3τ1,

C1 � M2w3,

D1 � − R1w
2
3 + R3 + cosw3τ1 + N2w3 sinw3τ1.

(39)

)e proofs are obtained in the same manner of the above
analysis.

4. Global Stability of Interior Steady State E∗

In this section, we study the global stability of system (3)
around interior steady state E∗ ≡ (x∗, y∗, z∗).

Theorem 4. If β1α1 <g1(α1 + x∗)(α1 + x) and β2α2(1 +

cy∗) (1 + cy) + δcz∗(α2 + y∗)(α2 + y)<g2 (α2 + y∗)(α2 +

y)(1 + cy∗)(1 + cy), then system (3) is globally asymptoti-
cally stable at the interior equilibrium point E∗.

Proof. We suggest the Lyapunov function at
E∗ ≡ (x∗, y∗, z∗) of the form:

V(t) � 91 x(t) − x
∗

− x
∗ ln

x(t)

x∗
􏼠 􏼡

+ 92 y(t) − y
∗

− y
∗ ln

y(t)

y∗
􏼠 􏼡

+ 93 z(t) − z
∗

− z
∗ ln

z(t)

z∗
􏼠 􏼡,

(40)

where 91, 92, and 93 are nonnegative constants. Take de-
rivative V with respect to time t, yielding to
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_V(t) � 91
x − x∗

x
_x(t) + 92

y − y∗

y
_y(t) + 93

z − z∗

z
_z(t)

� 91 x − x
∗

( 􏼁
β1x

α1 + x
− c1 − g1x − αy − ez􏼠 􏼡

+ 92 y − y
∗

( 􏼁
β2y

α2 + y
− c2 − g2y − βx −

δyz

y(1 + cy)
􏼠 􏼡

+ 93 z − z
∗

( 􏼁 − β3 +
εex t − τ1( 􏼁z t − τ1( 􏼁

z
+
εδy t − τ2( 􏼁z t − τ2( 􏼁

z 1 + cy t − τ2( 􏼁( 􏼁
􏼠 􏼡

≤ 91 x − x
∗

( 􏼁
β1x

α1 + x
−

β1x∗

α1 + x∗
− g1 x − x

∗
( 􏼁 − α y − y

∗
( 􏼁 − e z − z

∗
( 􏼁􏼠 􏼡

+ 92 y − y
∗

( 􏼁
β2y

α2 + y
−

β2y∗

α2 + y∗
− g2 y − y

∗
( 􏼁 − β x − x

∗
( 􏼁 +

δy∗z∗

y∗ 1 + cy∗( 􏼁
−

δyz

y(1 + cy)
􏼠 􏼡

+ 93 z − z
∗

( 􏼁
εex t − τ1( 􏼁z t − τ1( 􏼁

z
+
εδy t − τ2( 􏼁z t − τ2( 􏼁

z 1 + cy t − τ2( 􏼁( 􏼁
− εex

∗
+

εδy∗

1 + cy∗
􏼠 􏼡􏼠 􏼡

≤ − 91g1 x − x
∗

( 􏼁
2

− 92g2 y − y
∗

( 􏼁
2

− 91α + 92β( 􏼁 x − x
∗

( 􏼁 y − y
∗

( 􏼁

+ εe93 − e91( 􏼁 x − x
∗

( 􏼁 z − z
∗

( 􏼁 + 91 x − x
∗

( 􏼁
β1x

α1 + x
−

β1x∗

α1 + x∗
􏼠 􏼡

+ 92 y − y
∗

( 􏼁
β2y

α2 + y
−

β2y∗

α2 + y∗
􏼠 􏼡 + 92 y − y

∗
( 􏼁

δy∗z∗

y∗ 1 + cy∗( 􏼁
−

δyz

y(1 + cy)
􏼠 􏼡

+ 93 z − z
∗

( 􏼁
ϵδy

1 + cy
−
ϵδy∗

1 + cy∗
􏼠 􏼡

≤ − 91g1 x − x
∗

( 􏼁
2

− 92g2 y − y
∗

( 􏼁
2

− 91α + 92β( 􏼁 x − x
∗

( 􏼁 y − y
∗

( 􏼁

+ εe93 − e91( 􏼁 x − x
∗

( 􏼁 z − z
∗

( 􏼁 + β191 x − x
∗

( 􏼁
2 α1

α1 + x∗( 􏼁 α1 + x( 􏼁
􏼠 􏼡

+ β292 y − y
∗

( 􏼁
2 α2

α2 + y∗( 􏼁 α2 + y( 􏼁
􏼠 􏼡 + δ92 y − y

∗
( 􏼁

− z − z∗( )

1 + cy
+

cz∗ y − y∗( 􏼁

1 + cy∗( 􏼁(1 + cy)
􏼠 􏼡

+ εδ93 y − y
∗

( 􏼁 z − z
∗

( 􏼁
1

1 + cy
−

cy

1 + cy∗( 􏼁(1 + cy)
􏼠 􏼡.

(41)

)us, based on the assumptions: β1α1 <g1
(α1 + x∗)(α1 + x), β2α2(1 + cy∗)(1 + cy) + δc z∗(α2 + y∗)

(α2 + y)<g2(α2 + y∗)(α2 + y)(1 + cy∗)(1 + cy), and ε93 <
max 91, 92􏼈 􏼉, we can get

Complexity 9



_V(t) ≤
91α1β1

α1 + x∗( 􏼁 α1 + x( 􏼁
− 91g1􏼠 􏼡 x − x

∗
( 􏼁

2

+
εδ93 − δ92
1 + cy

􏼠 􏼡 y − y
∗

( 􏼁 z − z
∗

( 􏼁

+
δ92cz∗

1 + cy∗( 􏼁(1 + cy)
+

92α2β2
α2 + y∗( 􏼁 α2 + y( 􏼁

− 92g2􏼠 􏼡

· y − y
∗

( 􏼁
2

+ εe93 − 91e( 􏼁 x − x
∗

( 􏼁 z − z
∗

( 􏼁

− 91α + 92β( 􏼁 x − x
∗

( 􏼁 y − y
∗

( 􏼁 −
εδ93cy

1 + cy∗( 􏼁(1 + cy)

· z − z
∗

( 􏼁 y − y
∗

( 􏼁≤ 0.

(42)

Hence, the proof is complete. □

5. Sensitivity Analysis to Severity of Allee Effect

Here, we study the sensitivity of model solution of (3), with
respect to the parameters α1 and α2 (strength Allee effect). It
is quite common for a model to exhibit high sensitivity to
small variations in some parameters, while showing ro-
bustness to variation in other parameters.)ere are different
ways to find the sensitivity functions of DDEs [33]. Nev-
ertheless, we utilize the so-called “direct approach” to find
sensitivity functions of model (3). )e sensitivity functions
with respect to Allee parameters αi(i � 1, 2) are denoted by

Sxαi
(t) :�

z

zαi

x(t),

Syαi
(t) :�

z

zαi

y(t),

Szαi
(t) :�

z

zαi

z(t).

(43)

Hence, sensitivity functions due to small perturbations
in Allee parameter α1 are given by a system of DDEs:

Sxα1
′ (t) � Sxα1(t)

β1x(t)

α1 + x(t)
− c1 − 2g1x(t) − αy(t) − ez(t)􏼢 􏼣 − αSyα1(t)x(t)

− eSzα1(t)x(t) + β1x(t)
α1Sxα1(t) − x(t)

α1 + x(t)( 􏼁
2

⎛⎝ ⎞⎠,

Syα1
′ (t) � Syα1(t)

β2y(t)

α2 + y(t)
− c2 − 2g2y(t) − βx(t)􏼢 􏼣 + y(t) − βSxα1(t) +

α2β2Syα1(t)

α2 + y(t)( 􏼁
2

⎡⎣ ⎤⎦

− δ
Syα1(t)z(t)

(1 + cy(t))2
+

Szα1(t)y(t)

1 + cy(t)
􏼢 􏼣,

Szα1
′ (t) � − β3Szα1(t) + εe Sxα1 t − τ1( 􏼁z t − τ1( 􏼁 + Szα1 t − τ1( 􏼁x t − τ1( 􏼁􏽨 􏽩

+ εδ
Syα1 t − τ2( 􏼁z t − τ2( 􏼁

1 + cy t − τ2( 􏼁( 􏼁
2 +

Szα1 t − τ2( 􏼁y t − τ2( 􏼁

1 + cy t − τ2( 􏼁
⎡⎣ ⎤⎦.

(44)

To estimate the sensitivity functions Sxα1
(t), Syα1

(t), and
Szα1

(t), we have to solve the system of sensitivity equations
(44) together with the original system (3).

Similarly, the sensitivity functions due to small changes
in Allee coefficient α2 satisfy the system of DDEs:
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Sxα2
′ (t) � Sxα2(t)

β1x(t)

α1 + x(t)
− c1 − 2g1x(t) − αy(t) − ez(t)􏼢 􏼣

+ β1x(t)
α1Sxα2(t)

α1 + x(t)( 􏼁
2

⎛⎝ ⎞⎠ − αSyα2(t)x(t)

− eSzα2(t)x(t),

Syα2
′ (t) � Syα2(t)

β2y(t)

α2 + y(t)
− c2 − 2g2y(t) − βx(t)􏼢 􏼣

− βSxα2(t)y(t)

+ β2y(t)
α2Syα2(t) − y(t)

α2 + y(t)( 􏼁
2

⎡⎣ ⎤⎦

− δ
Syα2(t)z(t)

(1 + cy(t))2
+

Szα2(t)y(t)

1 + cy(t)
􏼢 􏼣,

Szα2
′ (t) � − β3Szα2(t) + εe Sxα2 t − τ1( 􏼁z t − τ1( 􏼁􏽨

+ Szα2 t − τ1( 􏼁x t − τ1( 􏼁􏽩

+ εδ
Syα2 t − τ2( 􏼁z t − τ2( 􏼁

1 + cy t − τ2( 􏼁( 􏼁
2 +

Szα2 t − τ2( 􏼁y t − τ2( 􏼁

1 + cy t − τ2( 􏼁
⎡⎣ ⎤⎦.

(45)

We then solve (45) along with (3) to evaluate Sxα2
(t),

Syα2
(t), and Szα3

(t) (see Figure 4).

6. Numerical Simulations

Some numerical simulations of system (3) are carried out,
using Matlab package DDE23, to confirm our theoretical
results.We first investigate the behavior of themodel around
E∗ with parameter values:

α � 0.9,

α1 � 0.001,

α2 � 0.001,

β � 1.35,

c2 � 1,

c1 � 1,

β1 � 2,

β2 � 2,

β3 � 1,

ε � 0.5,

e � 5,

δ � 1.

(46)
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Figure 4: Sensitivity functions of model solution of system (3) with respect to Allee parameters α1 and α2. )e top banners show the
sensitivity functions for x(t), y(t) and z(t) with respect to small changes in Allee parameter α1. However, the bottom banners display the
sensitivity with respect to α2.)ey show that the model is very sensitive to the small perturbations of Allee parameters in early time intervals
and the sensitivity decreases by time. )e two parameters α1 and α2 are significant in the model and cause high impact in early stages of
interactions.
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Figure 5 shows the numerical simulations of the delayed
system (3) around the steady state E∗. )e interior steady
state E∗ is asymptotically stable when τ1 < τ∗1 and
τ2 ∈ (0, τ∗2 ). )e model undergoes a Hopf bifurcation when
τ1 � τ∗1 � 4.34 and τ2 < τ∗2 � 5.33. Figure 6 displays the Hopf
bifurcation diagrams of τ1 and τ2 which are obtained nu-
merically by maximum and minimum amplitudes of z(t).
)e left banner displays the threshold parameter τ∗1 � 4.34
with τ2 < τ∗2 , while right banner shows that the threshold
parameter τ∗2 � 5.54 with τ1 < τ∗1 .

Figure 5 displays a bistability of two interior equilibrium
points, for the DDEs model (3), when parameter α varies
from α � 0.5 to α � 0.9. If the interior equilibria exist, any
trajectory starting from the interior of R3

+ converges to one
of the interior equilibria.

Figure 7 shows the sensitivity of the dynamics of system
(3) due to small changes in the severity of Allee effects α1 and
α2. )e left banners show the numerical simulations with
different values of α1 (0.001≤ α1 ≤ 0.02) and fixed value of
α2 � 0.001, while right banners display the simulations with
different values of α2 (0.01≤ α2 ≤ 0.02) and fixed value of
α1 � 0.01.)e phase portrait gets stretched over time as α1 is
reduced, while low values of α2 increases the oscillations
over time. )e presence of Allee effect in the model enriches
the dynamics of the system, while Figure 4 exhibits the
absolute values of sensitivity functions: zx(t)/zα1,2,
zy(t)/zα1,2, and zz(t)/zα1,2 to evaluate the sensitivity of the
state variables due to a small perturbation in α1 and α2. )e
oscillation behaviour indicates that the species population is
very sensitive to small changes in the parameter. It is clear
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Figure 5: Numerical simulations of system (3) around the steady state E∗. Top banners show that E∗ is asymptotically stable when
τ1 � 5.54< τ∗1 and τ2 ∈ (0, τ∗2 ). Bottom banners display a Hopf bifurcation when τ1 � τ∗1 � 4.34 and τ2 < τ∗2 � 5.34; the other parameter
values are given in (45).
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Figure 7:)e sensitivity of the dynamics of system (3) due to small changes in the severity of Allee effect α1 and α2. )e left banners show
the numerical simulations with different values of α1(0.001≤ α1 ≤ 0.02) and fixed value of α2 � 0.001. )e right banners display the
simulations with different values of α2(0.01 ≤ α2 ≤ 0.02) and fixed value of α1 � 0.01. )e phase portrait gets stretched over time as α1
reduced, while low values of α2 increase the oscillations over time. )e presence of Allee effect in the model enriches the dynamics of the
system.
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that α1 and α2 are important in the model and have a
significant impact in the dynamics, specially in the early
stages of time. However, the sensitivity to these parameters
decreases with time.

7. Conclusion

In this paper, we established the two-prey one-predator
mode with time delays and a weak Allee effect in the preys’
growth functions, where there is a direct competition be-
tween prey populations. Although the model is simple, the
system exhibits rich dynamic behaviour such as bistability of
equilibria, Hopf bifurcation, and period doubling chaos.
Nonnegativity and boundedness of the solutions have been
investigated. Some new sufficient conditions for local and
global asymptotic stability of interior steady states have been
deduced. In addition, Hopf bifurcation with respect to time
delay threshold parameters τ∗1 and τ∗2 has been studied. )e
model undergoes a Hopf bifurcation when time delays pass
through its critical values. We also investigated the sensi-
tivity of model solutions to small perturbations in the se-
verity Allee effects α1 and α2. )e obtained results confirm
that Allee effect has a significant impact in the dynamics in
the early stages of interaction. It has been seen by the nu-
merical simulations that time delay and Allee effects play an
important role in the dynamics of prey-predator systems.
Introduction of time delay and Allee effects, in the model,
improves the stability results, enriches the dynamics of the
system, keeps the population densities in balance, and makes
the model closer to reality.

As part of future work, more sophisticated models with
harvesting terms, control variables, and effect of environ-
mental noise can be studied. Fractional derivatives, instead
of integer-order derivatives in the same or similar model, to
consider the long-term memory effect, with a saturating
functional response, will also be our future goal.
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*is paper deals with the study of the existence of weak positive solutions for sublinear Kirchhoff elliptic systems with zero
Dirichlet boundary condition in bounded domain Ω ⊂ RN by using the subsuper solutions method.

1. Introduction

In this paper, we consider the following system of differential
equations:

− A 􏽚
Ω

|∇u|2dx􏼒 􏼓Δu � λ1ua + μ1vb inΩ,

− B 􏽚
Ω

|∇u|2dx􏼒 􏼓Δv � λ2uc + μ2vd inΩ,

u � v � 0 on zΩ ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where Ω ⊂ RN (N≥ 3) is a bounded smooth domain with
C2 boundary zΩ , A, B: R+⟶ R+ are continuous func-
tions, and λ1, λ2, μ1, and μ2 are positive parameters, where
a + c< 1 and b + d< 1. *e peculiarity of this type of
problem, and by far the most important, is that it is not local.
*is is based on the presence of the operator

− A 􏽚
Ω

|∇u|
2dx􏼒 􏼓Δu respectively − B 􏽚

Ω
|∇u|

2dx􏼒 􏼓Δu􏼒 􏼓,

(2)

which contains an integral on all the fields and implies
that the equation is not a specific identity. It is clear that
these problems contribute to the transition from aca-
demia to application. Indeed, very popular for its physical

motivations, problem (1) is none other than a stationary
version of the following model which regulates the be-
havior of elastic whose ends are fixed and which is
subjected to nonlinear vibrations:

utt − M 􏽚
Ω

|∇u|2dx􏼒 􏼓Δu � h(x, u), inΩ ×(0, T),

u � 0, in zΩ ×(0, T),

u(x, 0) � u0(x), ut(x, 0) � u1(x),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where T is a positive constant and u0 and u1 are given
functions. In such problems, u expresses the displacement,
h(x, u) the extreme force, M(r) � a1r + b1, b1 the initial
tension, and a1 relates to the intrinsic properties of the wire
material (such as Young’s modulus). For more details, see
[1], as well as their references. Basically, this is a general-
ization to larger dimensions of the model originally pro-
posed in one dimension by Kirchhoff [2] in (1883):

z2u

zt2
− ρ0 + ρ1 􏽚

L

0

zu

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
dx􏼠 􏼡

zu

zx
� 0, (4)

where ρ0 is the initial tension, ρ1 represents Young’s
modulus of the material of the wire, and L its length. *e
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latter is known to be an extension of the equation of
D’Alembert waves. Indeed, Kirchhoff took into account the
changes caused by transverse oscillations along the length of
the wire. With their implications in other disciplines, and
given the breadth of their fields of application, nonlocal
problems will be used to model several physical phenomena,
and they also intervene in biological systems or describe a
process dependent on its average, such as particle density
population. Moreover, With this significant impact
strengthening the field of applications, this type of problem
has caught the interest of mathematicians and a lot of work on
the existence of solutions has emerged, particularly after the
coup de force provided by the famous Lions article [3], where
the latter has adopted an approach based on functional
analysis. Nevertheless, in most of these articles, the benefit
method is purely topological. It is only in the last decades that
this approach has been removed from variational methods
when Alves and his colleagues [4] obtained for the first time
the results of their existence through these methods. Since
then, a very fruitful development has given rise tomany works
based on this advantageous axis (see [1, 3, 5]).

In recent years, problems relating to Kirchhoff oper-
ators have been studied in several papers (we refer to [6]),
where the authors used different methods to obtain so-
lutions (1) in the case of single equation (see [6]). *e
concept of weak sub- and supersolutions was first for-
mulated by Hess and Deuel in [7, 8] to obtain existence
results for weak solutions of semilinear elliptic Dirichlet
problems and was subsequently continued by several
authors (see, e.g., [9–18]).

In our recent paper [19], we have discussed the existence
of weak positive solution for the following Kirchhoff elliptic
systems:

− A 􏽚
Ω

|∇u|2dx􏼒 􏼓Δu � λ′f(v) + μ1′h(u)inΩ,

− B 􏽚
Ω

|∇u|2dx􏼒 􏼓Δv � λ2′g(u) + μ2′τ(v)inΩ,

u � v � 0 on zΩ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Motivated by the ideas of [20], which the authors
considered a system (1) in the case A(t) � B(t) � 1, more
precisely, under suitable conditions on f, g, we will prove
that the problem which is defined in (1) admits a positive
solution In current paper, motivated by previous works in
([19, 20]), we discuss the existence of weak positive solution
for sublinear Kirchhoff elliptic systems in bounded domains
by using subsupersolutions method combined with com-
parison principle (see Lemma 2.1 in [4]).

*e outline of the paper is as follows. In the second
section, we give some assumptions and definitions related to
problem (1). In Section 3, we prove our main result.

2. Assumptions and Definitions

Let us assume the following assumption.
(H1) Assume that A, B: R+⟶ R+ are two continuous

and increasing functions and there exists ai, bi > 0, i � 1, 2,

such that

a1 ≤A(t)≤ a2,

b1 ≤B(t)≤ b2,

for all t ∈ R+
.

(6)

(H2) Suppose that a, d≥ 0, b, c> 0, a + c< 1 and
b + d< 1.

Now, in order to discuss our main result of problem (1),
we need the following two definitions.

Definition 1. Let (u, v) ∈ (H1
0(Ω) × H1

0(Ω)); (u, v) is said to
be a weak solution of (1) if it satisfies

A ‖u‖
2

􏼐 􏼑􏽚
Ω
∇u∇ϕdx � λ1􏽚

Ω
u

aϕdx + μ1v
bϕdx inΩ,

B ‖v‖
2

􏼐 􏼑􏽚
Ω
∇v∇ψdx � λ2􏽚

Ω
u

cψdx + μ2􏽚
Ω

v
dψdx inΩ,

(7)

for all (ϕ,ψ) ∈ (H1
0(Ω) × H1

0(Ω)).

Definition 2. A pair of nonnegative functions (u, v), (u, v) in
(H1

0(Ω) × H1
0(Ω)) is called a weak subsolution and super-

solution of (1) if they satisfy (u, v), (u, v) � (0, 0) on zΩ:

A ‖u‖
2

􏼐 􏼑􏽚
Ω
∇u∇ϕdx≤ λ1􏽚

Ω
u
a
ϕdx + μ1􏽚

Ω
v
b
ϕdx inΩ,

B ‖v‖
2

􏼐 􏼑􏽚
Ω
∇ v∇ψdx≤ λ2􏽚

Ω
u
c
ψ dx + μ2􏽚

Ω
v
d
ψdx in Ω,

A ‖u‖
2

􏼐 􏼑􏽚
Ω
∇u∇ϕdx≥ λ1􏽚

Ω
u

aϕdx + μ1􏽚
Ω

v
bϕdx inΩ,

B ‖v‖
2

􏼐 􏼑􏽚
Ω
∇v∇ψdx≥ λ2􏽚

Ω
u

cψdx + μ2􏽚
Ω

v
dψdx inΩ,

(8)

for all (ϕ,ψ) ∈ (H1
0(Ω) × H1

0(Ω)).

Lemma 1 [4]. Assume that M: R+⟶ R+ is a continuous
and nonincreasing function satisfying

M(s)>m0, for all s≥ s0, (9)

where m0 is a positive constant and assume that u, v are two
nonnegative functions such that

− M ‖u‖2􏼐 􏼑Δu≥ − M ‖v‖2􏼐 􏼑Δv inΩ,

u � v � 0 on zΩ ,

⎧⎨

⎩ (10)

and then u≥ v a.e. in Ω.

3. Main Result

In this section, we shall state and prove the main result of
this paper.

Theorem 1. Suppose that (H1)-(H2) hold and M is a
nonincreasing function satisfying (9). 8en, problem (1) has a
large positive weak solution for each positive parameters
λ1, λ2, μ1, and μ2.
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Proof of 8eorem 1. Let σ be the first eigenvalue of − Δ with
Dirichlet boundary conditions and ϕ1 the corresponding
eigenfunction with ‖ϕ1‖ � 1 satisfying ϕ1 > 0 in Ω and
|∇ϕ1|> 0 on zΩ .

Since bc< (1 − a)(1 − d), we can take k such that
c

1 − d
< k<

b

1 − a
. (11)

We shall verify that (u, v) � (εϕ21, ε
kϕ21) is a subsolution

of problem (1), where ε> 0 is small and specified later.
A simple calculation:

A u
���

���2􏼐 􏼑􏽚
Ω
∇ u ·∇ϕdx � 2εA u

���
���2􏼐 􏼑􏽚
Ω
ϕ1∇ϕ1 · ∇ϕdx

� 2εA u
���

���2􏼐 􏼑 × 􏽚
Ω
∇ϕ1∇ ϕ1 · ϕ( 􏼁dx􏼚

− 􏽚
Ω
∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2ϕdx􏼛

� 2εA u
���

���2􏼐 􏼑􏽚
Ω

σϕ21 − ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑ϕdx

≤ 2a2ε􏽚
Ω

σϕ21 − ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑ϕdx.

(12)

Similarly,

B v
���

���2􏼐 􏼑􏽚
Ω
∇ v ·∇ψdx � 2εk

B v
���

���2􏼐 􏼑􏽚
Ω

σϕ21 − ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑ϕdx

≤ 2b2ε
k
􏽚
Ω

σϕ21 − ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑ϕdx.

(13)

Let η> 0, μ> 0 be such that

σϕ21 − ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ 0,

x ∈ Ωη,
(14)

and μ≤ϕ1 ≤ 1 on Ω\Ωη where Ωη � x ∈ Ω: d(x, zΩ)≤ η􏼈 􏼉.

We have from (14) that

A 􏽚
Ωη
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼠 􏼡􏽚

Ωη
∇ u ·∇ϕdx≤ 0≤ λ1􏽚

Ωη
u
a
ϕdx + μ1􏽚

Ωη
v
b
ϕdx,

(15)

B 􏽚
Ωη
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼠 􏼡􏽚

Ωη
∇ v ·∇ψdx≤ 0≤ λ2􏽚

Ωη
u
c
ψdx + μ2􏽚

Ωη
v
d
ψdx.

(16)

On the other hand, in Ω\Ωη, let

r1 �
1 − a

c
,

r2 �
1 − a

1 − a − c
,

s1 �
1 − d

b
,

s2 �
1 − d

1 − d − b
.

(17)

Note that
1
r1

+
1
r2

� 1,

1
s1

+
1
s2

� 1.

(18)

We have from (11) that

1 −
a

r1
−

kb

r2
≥ 1 − a − kb> 0,

k 1 −
d

s2
􏼠 􏼡 −

c

s1
≥ k(1 − d) − c> 0.

(19)

*us, we choose ε> 0 such that

2a2ε
1− a/r1( )− kb/r2( )σϕ21 ≤ λ

1/r1
1 μ1/r21 μ2+aδ

, x ∈ Ω\Ωη,

2b2ε
k 1− d/s2( )( )− c/s1( )σϕ21 ≤ λ

1/s1
2 μ1/s22 μ2+c d

, x ∈ Ω\Ωη,

(20)

where δ � 2/(1 − a), c � 2/(1 − d). Furthermore,

aδr1 �
2a

1 − a − c
≥ 2a,

cds2 �
2 d

1 − d − b
≥ 2 d,

2s1 � 2
1 − d

b
􏼠 􏼡> 2

c

1 − a
􏼒 􏼓≥ 2c,

2r2 � 2
1 − a

c
􏼒 􏼓> 2

b

1 − d
􏼠 􏼡≥ 2b.

(21)

*ese relations and Young inequality show that

2a2ε􏽚
Ω\Ωη

σϕ21 − ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑ϕdx≤ 2a2ε􏽚
Ω\Ωη

σϕ21 · ϕdx

≤􏽚
Ω\Ωη

λ1/r11 εa/r1μaδ
􏼐 􏼑 μ1/r21 εkb/r2μ2􏼐 􏼑ϕdx

≤􏽚
Ω\Ωη

λ1/r11 εa/r1μaδ􏼐 􏼑
r1

r1
+

μ1/r21 εkb/r2μ2􏼐 􏼑
r2

r2

⎡⎢⎢⎣ ⎤⎥⎥⎦ϕdx

≤􏽚
Ω\Ωη

λ1/r11 εa/r1μaδ
􏼐 􏼑

r1
+ μ1/r21 εkb/r2μ2􏼐 􏼑

r2
􏼔 􏼕ϕdx

� 􏽚
Ω\Ωη

λ1ε
aμaδr1 + μ1ε

kbμ2r2􏼐 􏼑ϕdx

≤􏽚
Ω\Ωη

λ1ε
aϕ2a

1 + μ1ε
kbϕ2b

1􏼐 􏼑ϕdx

� 􏽚
Ω\Ωη

λ1u
a

+ μ1v
b

􏼠 􏼡ϕ dx,

(22)
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2b2ε
k
􏽚
Ω\Ωη

σϕ21 − ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑ψ dx≤ 2b2ε
k
􏽚
Ω\Ωη

σϕ21 · ψdx

≤􏽚
Ω\Ωη

λ1/s12 εc/s1μ2􏼐 􏼑 μ1/s22 εk d/s2μc d
􏼐 􏼑ψdx

≤􏽚
Ω\Ωη

λ1/s12 εc/s1μ2􏼐 􏼑
s1

s1
+

μ1/s22 εk d/s2μc d􏼐 􏼑
s2

s2

⎡⎢⎢⎣ ⎤⎥⎥⎦ψ dx

≤􏽚
Ω\Ωη

λ1/s12 εc/s1μ2􏼐 􏼑
s1

+ μ1/s22 εk d/s2μc d
􏼐 􏼑

s2
􏼔 􏼕ψdx

� 􏽚
Ω\Ωη

λ2ε
cμ2s1 + μ2ε

k dμc ds2􏼐 􏼑ψdx

≤􏽚
Ω\Ωη

λ2ε
cμ2c

+ μ2ε
k dμ2 d

􏼐 􏼑ψdx

≤􏽚
Ω\Ωη

λ2ε
cϕ2c

1 + μ2ε
k dϕ2d

1􏼐 􏼑ψdx

� 􏽚
Ω\Ωη

λ2u
c

+ μ2v
d

􏼠 􏼡ψdx.

(23)

Hence, from (15)–(23), it follows that

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 􏽚

Ωη
∇ u∇ϕdx + 􏽚

Ω\Ωη
∇ u∇ϕdx􏼢 􏼣

� A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ u∇ϕdx≤ λ1u

a
+ μ1v

b
􏼐 􏼑ϕdx,

(24)

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 􏽚

Ωη
∇ v∇ψdx + 􏽚

Ω\Ωη
∇ v∇ψdx􏼢 􏼣

� B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ v∇ψdx≤ λ2u

c
+ μ2v

d
􏼐 􏼑ψ dx.

(25)

*en, by (24) and (25), (u, v) is a subsolution of (1).
Next, we shall construct a supersolution of problem (1).

Let ω be the solution of the following problem:

− Δe � 1 inΩ,

e � 0 on zΩ.
􏼨 (26)

Let

u � C1e,

v � C2e,
(27)

where e is given by (26) and C1, C2 > 0 are large positive
real numbers to be chosen later. We shall verify that (u, v)

is a supersolution of problem (1). Let ϕ ∈ H1
0(Ω) with ϕ≥ 0

in Ω. *en, we obtain from (26) and the condition (H1)

that

A 􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u · ∇ϕdx � A 􏽚

Ω
|∇u|

2dx􏼒 􏼓C1 􏽚

Ω

∇e · ∇ϕdx

� A 􏽚
Ω

|∇u|
2dx􏼒 􏼓C1􏽚

Ω
ϕdx

≥ a1C1􏽚
Ω
ϕdx

B 􏽚
Ω

|∇v|
2dx􏼒 􏼓􏽚

Ω
∇v · ∇ψdx � B 􏽚

Ω
|∇v|

2dx􏼒 􏼓C2􏽚
Ω
∇e · ∇ψdx

� B 􏽚
Ω

|∇v|
2dx􏼒 􏼓C2􏽚

Ω
ψdx

≥ b1C2􏽚
Ω
ψdx.

(28)

Let l � ‖e‖∞. Since a< 1, d< 1, these imply that there
exist positive large constants α � a1C1, β � b1C2 such that

α≥ λ1(αl)
a

+ μ1(βl)
b
,

β≥ λ2(αl)
c

+ μ2(βl)
d
.

(29)

*us,

a1C1􏽚
Ω
ϕdx≥􏽚

Ω
λ1u

a
+ μ1v

b
􏼐 􏼑ϕdx, (30)

b1C2􏽚
Ω
ψ dx≥􏽚

Ω
λ2u

c
+ μ2v

d
􏼐 􏼑ϕdx. (31)

From (26) and (30), we can deduce that the couple (u, v)

is a subsolution of problem (1) with u ≤ u and v ≤ v for C1,

C2 large.
In order to obtain a weak solution of problem (1) we shall

use the arguments by Azouz and Bensedik [19]. For this
purpose, we define a sequence (un, vn)􏼈 􏼉 ⊂ (H1

0(Ω) ×

H1
0(Ω)) as follows: u0 ≔ u, v0 � v and (un, vn) is the unique

solution of the system

− A 􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δun � λ1ua

n− 1 + μ1vb
n− 1 inΩ,

− B 􏽚
Ω
∇vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δvn � λ2uc

n− 1 + μ2vd
n− 1 inΩ,

un � vn � 0 on zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

Problem (32) is (A, B)− linear in the sense that if
(un− 1, vn− 1) ∈ (H1

0(Ω) × H1
0(Ω)) is given, the right hand

sides of (32) are independent of un, vn.

Set A(t) � tA(t2), B(t) � tB(t2). *en, since A(R) � R,

B(R) � R, f(un− 1) � ua
n− 1, h(vn− 1) � vb

n− 1, g(un− 1) � uc
n− 1,

and τ(vn− 1) � vd
n− 1 ∈ L2(Ω).

We deduce from a result in [4] that system (32) has a
unique solution (un, vn) ∈ (H1

0(Ω) × H1
0(Ω)).

By using (32) and the fact that (u0, v0) is a supersolution
of (1), we have

− A 􏽚
Ω
∇u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu0 ≥ λ1ua

0 + μ1vb
0 � − A 􏽚

Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu1,

− B 􏽚
Ω
∇v0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv0 ≥ λ2uc

0 + μ2vd
0 � − B 􏽚

Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx􏼒 􏼓Δv1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)
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and by Lemma 1, u0 ≥ u1 and v0 ≥ v1. Also, since u0 ≥ u,
v0 ≥ v and the monotonicity of f, h, g, and τ one has

− A 􏽚
Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu1 � λ1u

a
0 + μ1v

b
0 ≥ λ1u

a
+ μ1v

b ≥

− A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ u,

− B 􏽚
Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv1 � λ2u

c
0 + μ2v

d
0 ≥ λ2u

c
+ μ2v

d ≥

− B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ v,

(34)

from which, rding to Lemma 1, u1 ≥ u, v1 ≥ v for u2, v2 we
write

− A 􏽚
Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu1 � λ1u

a
0 + μ1v

b
0 ≥ λ1u

a
1 + μ1v

b
1

� − A 􏽚
Ω
∇u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu2,

− B 􏽚
Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx􏼒 􏼓Δv1 � λ2u

c
0 + μ2v

d
0 ≥ λ2u

c
1 + μ2v

d
1

� − B 􏽚
Ω
∇v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv2,

(35)

and then u1 ≥ u2, v1 ≥ v2. Similarly, u2 ≥ u and v2 ≥ v because

− A 􏽚
Ω
∇u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu2 � λ1u

a
0 + μ1v

b
0 ≥ λ1u

a
+ μ1v

b ≥

− A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ u,

− B 􏽚
Ω
∇v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv2 � λ2u

c
1 + μ2v

d
1 ≥ λ2u

c
+ μ2v

d ≥

− B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ v .

(36)

Repeating this argument, we get a bounded monotone
sequence (un, vn)􏼈 􏼉 ⊂ (H1

0(Ω) × H1
0(Ω)) satisfying

u � u0 ≥ u1 ≥ u2 ≥ · · · ≥ un ≥ · · · ≥ u > 0, (37)

v � v0 ≥ v1 ≥ v2 ≥ · · · ≥ vn ≥ · · · ≥ v > 0. (38)

Using the continuity of the functions f, h, g, and t and
the definition of the sequences un􏼈 􏼉, vn􏼈 􏼉,there exist con-
stants Ci > 0, i � 1, . . . , 4 independent of n such that

f vn− 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C1,

h un− 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ≤C2,

g un− 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C3,

(39)

τ un− 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C4, for all n. (40)

From (39), multiplying the first equation of (32) by un

and integrating using the Holder inequality and Sobolev
embedding, we can show that

a1􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx≤A 􏽚

Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓􏽚

Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx

� λ1f vn− 1( 􏼁undx + μ1􏽚
Ω

h un− 1( 􏼁undx

≤ λ1􏽚
Ω

f vn− 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx + μ1􏽚

Ω
h un− 1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx

≤C1λ1􏽚
Ω

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx + C2μ1􏽚

Ω
un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx

≤C5 un

����
����H1

0(Ω)
,

(41)

or

un

����
����H1

0(Ω)
≤C5, ∀n, (42)

where C5 > 0 is a constant independent of n. Similarly, there
exists C6 > 0 independent of n such that

vn

����
����H1

0(Ω)
≤C6, ∀n. (43)

From (42) and (43), we infer that (un, vn)􏼈 􏼉 has a sub-
sequence which weakly converges in H1

0(Ω,R2) to a limit
(u, v) with the properties u≥ u> 0 and v≥ v > 0. Being
monotone and also using a standard regularity argument,
(un, vn)􏼈 􏼉 converges itself to (u, v). Now, letting n⟶ +∞
in (32), we deduce that (u, v) is a positive solution of system
(1). *e proof of theorem is now completed. □

4. Conclusion

In this work, we study the existence of weak positive so-
lutions for a sublinear Kirchhoff elliptic systems in bounded
domains by using the subsuper solutions method (SSM)
combined with comparison principle which have been
widely applied in many work (see for example
[4, 19, 21–25]).Validity of the comparison principle and of
the SSM for local and nonlocal problems as the stationary
Kirchhoff Equation was an important subject in the last few
years (see, for example, [26] and [23]. Moreover, the two
conditions that M is nonincreasing and H is increasing turn
out to be necessary and sufficient, at least for the validity of
the comparison principle. It is worth to notice that in [4],
Alves and Correa developed a new SSM for problem (1) to
deal with the increasing M case. *e result is obtained by
using a kind of Minty–Browder theorem for a suitable
pseudomonotone operator, but instead of constructing a
subsolution, the authors assumed the existence of a whole
family of functions which satisfy a stronger condition than
just being subsolutions; the inconvenience is that these
stronger conditions restrict the possible right hand sides in
(1). Another SSM for nonlocal problems is obtained in [4] for
a problem involving a nonlocal term with a Lebesgue norm,
instead of the Sobolev norm appearing in (1). In our next
study, we will try to apply an alternative approach using the
variational principle which has been presented in [27–29].
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�e paper deals with the study of the existence of weak positive solutions for a new class of the system of elliptic di�erential
equations with respect to the symmetry conditions and the right hand side which has been de�ned as multiplication of two
separate functions by using the sub-supersolutions method (1991 Mathematics Subject Classi�cation: 35J60, 35B30,
and 35B40).

1. Introduction

Elliptic systems of di�erential equations are of crucial im-
portance in modelization and description of a wide variety of
phenomena such as �uid dynamics, quantum physics,
sound, heat, electrostatics, di�usion, gravitation, chemistry,
biology, simulation of airplane, calculator charts, and time
prediction. PDEs are equations involving functions of sev-
eral variables and their derivatives and model multidi-
mensional systems generalizing ODEs (ordinary di�erential
equations), which deal with functions of a single variable and
their derivatives (see, for example, [1–15]).

In contrary to ODEs, there is no general result such as
the Picard–Lindelöf theorem for PDEs to settle the exis-
tence and uniqueness of solutions. Malgrange–Ehrenpreis
theorem states that linear partial di�erential equations
with constant coe¡cients always have at least one solution;
another powerful and general result in case of polynomial
coe¡cients is the Cauchy–Kovalevskaya theorem ensuring
the existence and uniqueness of a locally analytic solution

for PDEs with coe¡cients that are analytic in the unknown
function and its derivatives; otherwise, the existence of
solutions is not guaranteed at all for nonanalytic coe¡-
cients even if they have derivatives of all orders (see [16]).
Given the rich variety of PDEs, there is no general theory
of solvability. Instead, research focuses on particular PDEs
that are important for applications. It would be desirable
when solving a PDE to prove the existence and uniqueness
of a regular solution that depends on the initial data given
in the problem, but perhaps we are asking too much. A
solution with enough smoothness is called a classical
solution, but in most cases as for conservation laws, we
cannot achieve that much and allow generalized or weak
solutions. �e point is this: looking for weak solutions
allows us to investigate a larger class of candidates, so it is
more reasonable to consider as separate the existence and
the regularity problems. For various PDEs, this is the best
that can be done, and naturally nonlinear equations are
more di¡cult than linear ones. Overall, we know too much
about linear PDEs and in best cases, we can express their
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solutions but too little about nonlinear equations. For
linear PDEs, various methods and techniques can be used
for separation of variables, method of characteristics,
integral transform, change of variables, superposition
principle, or even finding a fundamental solution and
taking a convolution product to obtain the solution.
Variational theory is the most accessible and useful of the
methods for nonlinear PDEs, but there are other non-
variational techniques of use for nonlinear elliptic and
parabolic PDEs such as monotonicity and fixed point
methods, semigroup theory, and sub-supersolutions
method that played an important role in the study of
nonlinear boundary value problems for a long time.
Scorza-Dragoni’s work in [17] was one of the earliest
papers using a pair of ordered solutions of differential
inequalities to establish the existence of solution to a given
boundary value problem for a nonlinear second-order
ordinary differential equation; his work was followed later
by Nagumo in [18, 19] which inspired much work on both
ordinary and PDEs during the decade of the sixties.
Knobloch in [20] introduced the sub-supersolution
method to the study of periodic boundary value problems
for nonlinear second-order ordinary differential equations
using Cesari’s method; similar problems and techniques
were studied in [21, 22] and still the sub-supersolutions
and supersolutions are assumed to be smooth solutions of
differential inequalities. )en, the SSM were also used to
study Dirichlet and Neumann boundary value problems
for semilinear elliptic problems in [23, 24], and even for
nonlinear boundary value problems in [25–27] and also for
systems of nonlinear ordinary differential equations in
[28–30]. )e concept of weak sub-supersolutions and
supersolutions was first formulated by Hess and Deuel in
[31, 32] to obtain existence results for weak solutions of
semilinear elliptic Dirichlet problems and was subse-
quently continued by several authors (see, e.g., [33–43]).

)e study of differential equations and variational
problems with nonstandard p(x)-growth conditions is a
new and interesting topic. It arises from nonlinear elasticity
theory, electrorheological fluids, etc (see [44]). Many exis-
tence results have been obtained on this kind of problems
(see, for example, [44–57]) and in [45] a new class of an-
isotropic quasilinear elliptic equations with a power-like
variable reaction term has been investigated.

In the last few years in [51, 58–60], the regularity and
existence of solutions for differential equations with non-
standard p(x)-growth conditions have been studied and
p-Laplacian elliptic systems with p(x) � q(x) � p (a con-
stant) have been archived. In this work, we study the ex-
istence of weak positive solutions for a new class of the
system of differential equations with respect to the symmetry
conditions by using sub-supersolution method.

2. Preliminaries, Assumptions, and
Statement of the Problem

2.1. PlateProblemsand ItsHistory. In this paper, we consider
the system of differential equations:

− Δp(x)u � λp(x)[a(x)f(u)h(v)] inΩ,

− Δq(x)v � λq(x)[b(x)g(u)τ(v)] inΩ,

u � v � 0 on zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where Ω ⊂ RN is a bounded smooth domain with C2

boundary zΩ and 1<p(x), q(x) ∈ C1(Ω) are functions with
1<p− ≔ infΩp(x)≤p+ ≔ supΩp(x)<∞, 1< q− ≔ infΩq
(x)≤ q+ ≔ supΩq(x), and Δp(x) is a p(x)-Laplacian defined
as

Δp(x)u � div |∇u|
p(x)− 2∇u􏼐 􏼑, (2)

and a, b: Ω⟶ R+ are continuous functions, while
f, g, h, and τ are monotone functions in R+ such that

lim
u⟶+∞

f(u) � +∞,

lim
u⟶+∞

g(u) � +∞,

lim
u⟶+∞

h(u) � +∞,

lim
u⟶+∞

τ(u) � +∞,

(3)

satisfying some natural growth condition at u �∞.

We point out that the extension from p-Laplace operator
to p(x)-Laplace operator is not trivial, since the p

(x)-Laplacian has a more complicated structure then the
p-Laplace operator, such as it is nonhomogeneous. More-
over, many results and methods for p-Laplacians are not
valid for the p(x)-Laplacian; for example, if Ω is bounded,
then the Rayleigh quotient

λp(x) � inf
u∈W1,p(x)

0 (Ω)\ 0{ }

􏽒Ω(1/p(x))|∇u|p(x)dx

􏽒Ω(1/p(x))|u|p(x)dx
, (4)

is zero in general, and only under some special conditions,
λp(x) is positive (see [53]). Maybe the first eigenvalue and the
first eigenfunction of the p(x)-Laplacian do not exist, but
the fact that the first eigenvalue λp is positive and the ex-
istence of the first eigenfunction are very important in the
study of p-Laplacian problem. )ere are more difficulties in
discussing the existence of solutions of variable exponent
problems. In [59], the authors considered the existence of
positive weak solutions for the following p-Laplacian
problem:

− Δpu � λf(v) inΩ,

− Δpu � λg(u) inΩ,

u � v � 0 on zΩ ,

⎧⎪⎪⎨

⎪⎪⎩
(5)

where the first eigenfunction has been used to construct the
subsolution of p-Laplacian problem. Under the condition
that for all M> 0,

lim
u⟶+∞

f M(g(u))1/p− 1
􏼐 􏼑

up− 1 � 0, (6)

the authors gave the existence of positive solutions for
problem (5) provided that λ is large enough.
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In [48], the existence and nonexistence of positive weak
solutions to the following quasilinear elliptic system:

− Δpu � λuαvc inΩ,

− Δqu � λuδvβ inΩ,

u � v � 0 on zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

has been considered where the first eigenfunction has been
used to construct the subsolution of problem (7) and the
following results were obtained:

(i) If α, β≥ 0, c, δ > 0, θ � (p − 1 − α)(q − 1 − β) − cδ >
0, then problem (7) has a positive weak solution for
each λ> 0.

(ii) If θ � 0 and pc � q(p − 1 − α), then there exists
λ0 > 0 such that for 0< λ< λ0, problem (7) has no
nontrivial nonnegative weak solution. For further
generalizations of system (7), we refer to [49, 50].

As already discussed before, on the p(x)-Laplacian
problems, maybe the first eigenvalue and the first eigen-
function of the p(x)-Laplacian do not exist even if the first
eigenfunction of the p(x)-Laplacian exists. Because of the
nonhomogeneous property of the p(x)-Laplacian, the first
eigenfunction cannot be used to construct the subsolutions
of p(x)-Laplacian problems. Moreover, in [47, 61], the
authors studied the existence of solutions for problem (5),
where some symmetry conditions are imposed. )en, in
[46], the existence of positive solutions of the system was
investigated:

− Δp(x)u � λp(x)f(v) inΩ,

− Δp(x)u � λp(x)g(u) inΩ,

u � v � 0 on Ω,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

without any symmetry conditions. Motivated by the ideas
introduced in [47], the authors proved the existence of a
positive solution when λ is large enough and satisfies
condition (6) and they did not assume any symmetric
condition and did not assume any sign condition on f(0)

and g(0). Also the authors proved the existence of positive
solutions with multiparameters; in this paper, we extend this
given system of differential equations, where we establish the
existence of a positive solution for a new class of this system
with respect to the symmetry conditions by constructing a
positive subsolution and supersolution and p, q ∈ C1(Ω) are
functions, λ, λ1, λ2, μ1, and μ2 are positive parameters, and
Ω ⊂ RN is a bounded domain and we did not assume any
sign condition on f(0), g(0), h(0), and τ(0).

2.2. Preliminary Results. In order to discuss problem (1), we
need some theories on W

1,p(x)
0 (Ω) which we call variable

exponent Sobolev space. Firstly, we state some basic
properties of spaces W

1,p(x)
0 (Ω) which will be used later (for

details, see [54]).
Let us define

L
p(x)

(Ω) �

u: u is ameasurable real − valued function such that

􏽚
Ω

|u(x)|p(x)dx<∞

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (9)

We introduce the norm on Lp(x)(Ω) by

|u(x)|p(x) � inf λ> 0: 􏽚
Ω

u(x)

λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p(x)

dx≤ 1􏼨 􏼩,

W
1,p(x)

(Ω) � u ∈ L
p(x)

(Ω); |∇u| ∈ L
p(x)

(Ω)􏽮 􏽯,

(10)

with the norm

‖u‖ � |u|p(x) +|∇u|p(x),∀u ∈W
1,p(x)

(Ω). (11)

We denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in

W1,p(x)(Ω).

Proposition 1 (see [59]). 9e spaces Lp(x)(Ω), W1,p(x)(Ω),
and W

1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

)roughout the paper, we will assume that

(H1) p, q ∈ C1(Ω ) and 1<p− ≤p+, 1< q− ≤ q+

(H2) f, g, h, τ: R+⟶ R are C1 monotone functions
such that

lim
u⟶+∞

f(u) � +∞,

lim
u⟶+∞

g(u) � +∞;

lim
u⟶+∞

h(u) � +∞,

lim
u⟶+∞

τ(u) � +∞.

(12)

(H3) ∃r> 0 such that

lim
u⟶+∞

f(u)h cur/q− − 1( 􏼁

up− − 1 � 0, (13)

for all c> 0,

lim
u⟶+∞

g(u)τ kur/q− − 1( 􏼁

ur
� 0, (14)
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for all k> 0.

(H4) a, b: Ω⟶ R+ are continuous functions, such
that

a1 � min
x∈Ω

a(x),

b1 � min
x∈Ω

b(x),

a2 � max
x∈Ω

a(x),

b2 � max
x∈Ω

b(x).

(15)

We define

〈L(u), v〉 � 􏽚
Ω

|∇u|
p(x)− 2∇u∇v dx, ∀u, v ∈W

1,p(x)
0 (Ω).

(16)

)en, L: W
1,p(x)
0 (Ω)⟶ (W

1,p(x)
0 (Ω))∗ is a continuous,

bounded, and strictly monotone operator, and it is a ho-
meomorphism (see [61], )eorem 3.1).

Define A: W
1,p(x)
0 (Ω)⟶ (W

1,p(x)
0 (Ω))∗ as for all

u,φ ∈W
1,p(x)
0 (Ω),

〈A(u),φ〉 � 􏽚
Ω

|∇u|
p(x)− 2∇u∇φ + h(x, u)φ􏼐 􏼑dx, (17)

where h(x, u) is continuous on Ω × R and h(x) is in-
creasing. It is easy to check that A is a continuous bounded
mapping. Copying the proof of [44], we have the following
lemma:

Lemma 1 (see [45]) (comparison principle). Let
u, v ∈W

1,p(x)
0 (Ω) satisfy

Au − Av≥ 0 in W
1,p(x)
0 (Ω)􏼐 􏼑

∗
,

φ(x) � min u(x) − v(x), 0{ }.
(18)

If
φ(x) ∈W

1,p(x)
0 (Ω), (i.e u≥ v on zΩ), (19)

then u≥ v a.e. in Ω.

Definition 1. Let (u, v) ∈ (W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω)); the

couple (u, v) is said to be a weak solution of (1) if it satisfies

􏽚
Ω

|∇u|p(x)− 2∇u · ∇φ dx � 􏽚
Ω
λp(x)[a(x)f(u)h(v)]φ dx,

􏽚
Ω

|∇v|q(x)− 2∇v · ∇φ dx � 􏽚
Ω
λq(x)[b(x)g(u)τ(v)]ψ dx,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

for all (φ,ψ) ∈ (W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω)) with (φ,ψ)≥ 0.

Here, and hereafter, we will use the notation d(x, zΩ) to
denote the distance of x ∈ Ω to denote the distance of Ω.
Denote d(x) � d(x, zΩ) and zΩε � x ∈ Ω: d(x, zΩ)< ε{ }.

Since zΩ is C2 regularly, there exists a constant δ ∈ (0, 1)

such that d(x) ∈ C2(zΩ3δ) and |∇d(x)| � 1.
Denote

v1(x) �

cd(x), d(x)< δ,

cδ + 􏽚
d(x)

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

a2( 􏼁
2/p− − 1dt,

δ ≤ d(x)< 2δ,

cδ + 􏽚
2δ

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

a2( 􏼁
2/p− − 1dt,

2δ ≤d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2(x) �

c d(x), d(x)< δ,

cδ + 􏽚
d(x)

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

b2( 􏼁
2/p− − 1dt,

δ ≤d(x)< 2δ,

cδ + 􏽚
2δ

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

b2( 􏼁
2/p− − 1dt,

2δ ≤d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Obviously, 0≤ v1(x), v2(x) ∈ C1(Ω). Considering

− Δp(x)ω(x) � η inΩ,

ω � on zΩ ,
􏼨 (22)

we have the following result

Lemma 2 (Lemma 2.1 in [52]). If positive parameter η is
large enough and ω is the unique solution of (22), then we
have

(i) For any θ ∈ (0, 1), there exists a positive constant C1
such that

C1η
1/p+− 1+θ ≤ max

x∈Ω
ω(x), (23)

(ii) and, there exists a positive constant C2 such that

max
x∈Ω

ω(x)≤C2η
1/p− − 1

. (24)

3. Main Result

In the following, when there is no misunderstanding, we
always use Ci to denote positive constants.

Theorem 1. Assume that the conditions (H1) − (H4) are
satisfied. 9en problem (1) has a positive solution when λ is
large enough.

Proof. We shall establish )eorem 1 by constructing a
positive subsolution (ϕ1, ϕ2) and supersolution (z1, z2) of
(1) such that ϕ1 ≤ z1 and ϕ2 ≤ z2, that is, (ϕ1,ϕ2) and (z1, z2)

satisfy
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􏽚
Ω
∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇ϕ1 · ∇φ dx≤􏽚

Ω
λp(x)

a(x)f ϕ1( 􏼁h ϕ2( 􏼁􏼂 􏼃φ dx,

􏽚
Ω
∇ϕ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇ϕ2 · ∇ψ dx≤􏽚

Ω
λq(x)

b(x)g ϕ1( 􏼁τ ϕ2( 􏼁􏼂 􏼃ψ dx,

􏽚
Ω
∇z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇z1 · ∇φ dx≥􏽚

Ω
λp(x) a(x)f z1( 􏼁h z2( 􏼁􏼂 􏼃φ dx,

􏽚
Ω
∇z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇z2 · ∇ψ dx≥􏽚

Ω
λq(x) b(x)g z1( 􏼁τ z2( 􏼁􏼂 􏼃ψ dx,

⎧⎪⎪⎨

⎪⎪⎩

(25)

for all (φ,ψ) ∈ (W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω)) with (φ,ψ)≥ 0.

According to the sub-supersolution method for p(x)-Lap-
lacian equations (see [52]), problem (1) has a positive
solution.

Step 1. We will construct a subsolution of (1). Let σ ∈ (0, δ)

be small enough. Denote

ϕ1(x) �

ekd(x) − 1, d(x)< σ,

ekσ − 1 + 􏽚
d(x)

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

a1( 􏼁
2/p− − 1dt,

σ ≤ d(x)< 2δ,

ekσ − 1 + 􏽚
2δ

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

a1( 􏼁
2/p− − 1dt,

2δ ≤ d(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2(x) �

ekd(x) − 1, d(x)< σ,

ekσ − 1 + 􏽚
d(x)

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

b1( 􏼁
2/q− − 1dt, σ ≤ d(x)< 2δ,

ekσ − 1 + 􏽚
2δ

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

b1( 􏼁
2/q− − 1dt, 2δ ≤ d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

It is easy to see that ϕ1, ϕ2 ∈ C1(Ω). Denote

α � min
infp(x) − 1

4(sup|∇p(x)| + 1)
,

infq(x) − 1
4(sup|∇q(x)| + 1)

, 1􏼨 􏼩,

ζ �

min
− α

a1f(0)h(0)
􏼠 􏼡

1/p+

;
− α

a1f(0)h(0)
􏼠 􏼡

1/p−

;
− α

b1g(0)τ(0)
􏼠 􏼡

1/q+

;
− α

b1g(0)τ(0)
􏼠 􏼡

1/q−

⎡⎣ ⎤⎦, if f(0)h(0)< 0, g(0)τ(0)< 0,

min
− α

a1f(0)h(0)
􏼠 􏼡

1/p+

;
− α

a1f(0)h(0)
􏼠 􏼡

1/p−

⎡⎣ ⎤⎦, if f(0)h(0)< 0, g(0)τ(0)> 0,

min
− α

b1g(0)τ(0)
􏼠 􏼡

1/q+

;
− α

b1g(0)τ(0)
􏼠 􏼡

1/q−

⎡⎣ ⎤⎦, if f(0)h(0)> 0, g(0)τ(0)< 0,

1, if f(0)h(0)> 0, g(0)τ(0)> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

By some simple computations, we can obtain
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− Δp(x)ϕ1 �

− k ekd(x)( 􏼁
p(x)− 1

× (p(x) − 1) + d(x) +
ln k

k
􏼠 􏼡∇p∇d +

Δd
k

􏼢 􏼣, d(x)< σ,

1
2δ − σ

2(p(x) − 1)

p− − 1
−

2δ − d

2δ − σ
􏼠 􏼡 × ln ke

kσ
􏼐 􏼑 ×

2δ − d

2δ − σ
􏼠 􏼡

2/p− − 1

∇p∇d + Δd⎡⎣ ⎤⎦

× Kekσ( 􏼁
p(x)− 1 2δ− d

2δ− σ􏼐 􏼑
2(p(x)− 1)/p− − 1− 1

a1( 􏼁, σ ≤d(x)< 2δ,

0, 2δ ≤d(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Δq(x)ϕ2 �

− k ek d(x)( 􏼁
q(x)− 1

×

(q(x) − 1)

+ d(x) +
ln k

k
􏼠 􏼡∇q∇d +

Δd
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, d(x)< σ,

1
2δ − σ

2(q(x) − 1)

q− − 1
−

2δ − d

2δ − σ
􏼠 􏼡 × ln ke

kσ
􏼐 􏼑 ×

2δ − d

2δ − σ
􏼠 􏼡

2/q− − 1

∇q∇d + Δ d⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭

× Kekσ( 􏼁
q(x)− 1 2δ− d

2δ− σ􏼐 􏼑
2(q(x)− 1)/q− − 1( )− 1

b1( 􏼁, σ ≤d(x)< 2δ,

0, 2δ ≤d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

From (H2), there exists a positive constant M> 1 such
that

f(M − 1)h(M − 1)≥ 1,

g(M − 1)τ(M − 1)≥ 1.
(29)

Let σ � (1/k)lnM, then

σk � lnM. (30)

If k is sufficiently large, from (30), we have

− Δp(x)ϕ1 ≤ − k
p(x)α, d(x)< σ. (31)

Let λ � ζk. We claim that

− k
p(x)α≤ a1f(0)h(0)λp(x)

, ∀x ∈ Ω, (32)

Indeed, by definition of λ, the last inequality is obvious when
f(0)h(0) > 0.

When f(0)h(0)< 0, we can notice that

λ
k
≤

− α
a1f(0)h(0)

􏼠 􏼡

1/p(x)

, ∀x ∈ Ω, (33)

)en, we have

− Δp(x)ϕ1 ≤ − k
p(x)α≤ λp(x)

a1f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁, d(x)< σ.

(34)

Since d(x) ∈ C2(zΩ3δ), there exists a positive constant
C3 such that

− Δp(x)ϕ1 ≤ Kekσ( 􏼁
p(x)− 1

× 2δ− d
2δ− σ􏼐 􏼑

2(p(x)− 1)/p− − 1( )− 1
a1

×
1

2δ − σ
2(p(x) − 1)

p− − 1
−

2δ − d

2δ − σ
􏼠 􏼡 × ln ke

kσ
􏼐 􏼑 ×

2δ − d

2δ − σ
􏼠 􏼡

2/p− − 1

∇p∇d + Δd⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤C3 Kekσ( 􏼁
p(x)− 1

a1 ln k,

σ ≤d(x)< 2δ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

If k is sufficiently large, we have C3 ke
kσ

􏼐 􏼑
p(x)− 1

a1( 􏼁ln k � C3(kM)
p(x)− 1

a1 ln k≤ λp(x)
a1.

(36)
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)en,

− Δp(x)ϕ1 ≤ λ
p(x)

a1,

σ ≤d(x)< 2δ.
(37)

Since ϕ1(x), ϕ2(x), and f, h are monotone, when λ is
large enough, we have

− Δp(x)ϕ1 ≤ λ
p(x)

a1f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁,

σ ≤d(x) < 2δ,
(38)

− Δp(x)ϕ1 � 0≤ λp(x)
a1 ≤ λ

p(x)
a1f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁,

2δ ≤d(x).
(39)

Combining (34), (38), and (39), we can deduce that

− Δp(x)ϕ1 ≤ λ
p(x)

a(x)f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁, a.e. onΩ. (40)

Similarly,

− Δq(x)ϕ2 ≤ λ
q(x)

b(x)g ϕ1( 􏼁τ ϕ2( 􏼁( 􏼁, a.e. onΩ. (41)

From (40) and (41), we can see that (ϕ1, ϕ2) is a sub-
solution of problem (1).

Step 2. We will construct a supersolution of problem (1); we
consider

− Δp(x)z1 � λp+a2μ inΩ,

− Δq(x)z2 � λq+b2β
r inΩ,

z1 � z2 � 0 on zΩ,

⎧⎪⎪⎨

⎪⎪⎩
(42)

where r> 0 is the positive number that verifies (H3) and
β � max

x∈Ωz1(x). We shall prove that (z1, z2) is a super-
solution of problem (1).

For ψ ∈W
1,q(x)
0 (Ω) with ψ ≥ 0, it is easy to see that

􏽚
Ω
∇z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇z2 · ∇ψ dx � 􏽚

Ω
λq+

b2β
rψ dx. (43)

By (H4), for a μ large enough, using Lemma 2, we have

βr ≥g(β)τ C2 λq+

b2β
r

􏼐 􏼑
1/q− − 1

􏼒 􏼓. (44)

Hence,

􏽚
Ω
∇z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇z2 · ∇ψ dx≥􏽚

Ω
λq+

b2g max z1( 􏼁τ max z2( 􏼁ψ dx,

≥􏽚
Ω
λq(x)

b(x)g z1( 􏼁τ z2( 􏼁ψ dx.

(45)

Also, for φ ∈W
1,p(x)
0 (Ω) with φ≥ 0, it is easy to see that

􏽚
Ω
∇z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇z1 · ∇φ dx � 􏽚

Ω
λp+

a2μφ dx. (46)

By (H3) and Lemma 2, when μ is sufficiently large, we
have

a2λ
p+

μ≥
1

C2
β􏼢 􏼣

p− − 1

≥ a2λ
p+

f(β)h C2 λq+

b2β
r

􏼐 􏼑
1/q− − 1

􏼒 􏼓.

(47)

)en,

􏽚
Ω
∇z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇z1 · ∇φ dx≥􏽚

Ω
λp(x)

a(x)f z1( 􏼁h z2( 􏼁φ dx.

(48)

According to (45) and (48), we can conclude that (z1, z2)

is a supersolution of problem (1). It only remains to prove
that ϕ1 ≤ z1 and ϕ2 ≤ z2.

In the definition of v1(x), let

c �
2
δ

max
Ω

ϕ1(x) + max
Ω
∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(x)􏼠 􏼡. (49)

We claim that

ϕ1(x)≤ v1(x), ∀x ∈ Ω. (50)

From the definition of v1, it is easy to see that

ϕ1(x)≤ 2max
Ω

ϕ1(x)≤ v1(x), when d(x) � δ,

ϕ1(x)≤ 2max
Ω

ϕ1(x)≤ v1(x), when d(x)≥ δ,

ϕ1(x)≤ v1(x), when d(x)< δ.

(51)

Since v1 − ϕ1 ∈ C1(zΩδ), there exists a point x0 ∈ zΩδ
such that

v1 x0( 􏼁 − ϕ1 x0( 􏼁 � min
x0∈zΩδ

v1 x0( 􏼁 − ϕ1 x0( 􏼁( 􏼁. (52)

If v1(x0) − ϕ1(x0)< 0, it is easy to see that 0< d(x)< δ
and then

∇v1 x0( 􏼁 − ∇ϕ1 x0( 􏼁 � 0. (53)

From the definition of v1, we have

∇v1 x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � c �
2
δ

max
Ω

ϕ1 x0( 􏼁 + max
Ω
∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 x0( 􏼁􏼠 􏼡

> ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 x0( 􏼁.

(54)

It is a contradiction to

∇v1 x0( 􏼁 − ∇ϕ1 x0( 􏼁 � 0. (55)

)us, (50) is valid.
Obviously, there exists a positive constant C3 such that

c≤C3λ.
Since d(x) ∈ C2(zΩ3δ), according to the proof of

Lemma 2, there exists a positive constant C4 such that

− Δp(x)v1(x)≤C∗c
p(x)− 1+θ ≤C4λ

p(x)− 1+θ
,

a.e, inΩ, where θ ∈ (0, 1).
(56)

Complexity 7



When η≥ λp+

is large enough, we have − Δp(x)v1(x)≤ η.
According to the comparison principle, we have

v1(x)≤ω(x). (57)

From (50) and (57), when η≥ λp+

and λ≥ 1 are suffi-
ciently large, we have, for all x ∈ Ω,

ϕ1(x)≤ v1(x)≤ω(x). (58)

According to the comparison principle, when μ is large
enough, we have, for all x ∈ Ω,

v1(x)≤ω(x)≤ z1(x). (59)

Combining the definition of v1(x) and (58), it is easy to
see that, for all x ∈ Ω,

ϕ1(x)≤ v1(x)≤ω(x)≤ z1(x). (60)

When μ≥ 1 and λ is large enough, from Lemma 2, we can
see that β is large enough, and then λq+b2β

r is a large enough.
Similarly, we have ϕ2 ≤ z2. )is completes the proof.

4. Conclusion

Validity of the comparison principle and of the SSM for local
and nonlocal problems as the stationary and evolutionary
Kirchhoff Equation was an important subject in the last few
years (see, for example, [44, 53, 58, 62–66]), where the
authors showed by giving different counterexamples that the
simple assumption M increasing somewhere is enough to
make the comparison principle and SSM hold false con-
tradiction and clear up some results in the literature.
Moreover, the two conditions thatM is nonincreasing and H
is increasing turn out to be necessary and sufficient, at least
for the validity of the comparison principle. It is worth to
note that in [45, 67], C. O. Alves and F. J. S. A. Correa
developed a new SSM for problem (1) to deal with the in-
creasing M case. )e result is obtained by using a kind of
Minty–Browder theorem for a suitable pseudomonotone
operator, but instead of constructing a subsolution, the
authors assumed the existence of a whole family of functions
which satisfy a stronger condition than just being sub-
solutions; the inconvenience is that these stronger condi-
tions restrict the possible right hand sides in (1). Another
SSM for nonlocal problems is obtained in [45] for a problem
involving a nonlocal term with a Lebesgue norm, instead of
the Sobolev norm appearing in (1).
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By introducing a �ux-controlled memristor model with absolute value function, a 5D multistable four-wing memristive
hyperchaotic system (FWMHS) with linear equilibrium points is proposed in this paper.�e dynamic characteristics of the system
are studied in terms of equilibrium point, perpetual point, bifurcation diagram, Lyapunov exponential spectrum, phase portraits,
and spectral entropy.�is system is of the group of systems that have coexisting attractors. In addition, the circuit implementation
scheme is also proposed.�en, a secure communication scheme based on the proposed 5Dmultistable FWMHS with disturbance
inputs is designed. Based on parametric modulation theory and Lyapunov stability theory, synchronization and secure com-
munication between the transmitter and receiver are realized and two message signals are recovered by a convenient robust high-
order sliding mode adaptive controller. �rough the proposed adaptive controller, the unknown parameters can be identi�ed
accurately, the gain of the receiver system can be adjusted continuously, and the disturbance inputs of the transmitter and receiver
can be suppressed e�ectively.�ereafter, the convergence of the proposed scheme is proven by means of an appropriate Lyapunov
functional and the e�ectiveness of the theoretical results is testi�ed via numerical simulations.

1. Introduction

Chaotic signals are naturally invisible because of their non-
periodic continuous bandwidth spectrum, similar noise, and
extreme sensitivity to initial values. �erefore, in the past
decade, chaos has attracted more and more scientists’ interest
and research in the �elds of complex networks [1–3], electronic
circuits [4–6], image encryption [7–9], synchronization
[10–11], random number generator [12, 13], and secure
communications [14–16]. In chaotic communication systems,
how to generate chaotic signals suitable for modulation and
spread spectrum has become an issue of concern [17, 18].
Several methods for generating complex chaotic signals are
proposed, among which the generations of four-wing [19–21],
multiwing [22–24], and multiscroll [25–29] chaotic attractors
are the important achievements in recent years. Compared

with chaotic systems, hyperchaotic systems have two or more
positive Lyapunov exponents, and their motion orbits are
separated in many directions, showing more complex dynamic
behavior [30–34]. Complex hyperchaotic signals can improve
the security of chaotic secure communication and chaotic
information encryption, so hyperchaos will have a very broad
application prospect in the �eld of information engineering.

Memristor has the advantages of nanometer size, au-
tomatic memory, and nonlinear characteristics. Compared
with the traditional chaotic circuit system, a memristor
chaotic circuit has more complex chaotic characteristics
because the system is sensitive to circuit parameters and
depends on the initial value of the memristor [35–39].
Chaotic signals generated by memristor chaotic systems
have stronger pseudorandomness, which makes them have a
broader application prospect in traditional chaotic applications.
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*erefore, it is of great practical significance to design a chaotic
system and circuit based on a memristor by combining the
memristor with a nonlinear chaotic system. *e generation of
new multiwing hyperchaotic attractors based on memristors
has become a research hotspot, and many such hyperchaotic
systems have been introduced in recent years. In [39], by
introducing a flux-controlled memristor into a multiwing
system, no equilibrium hyperchaotic multiwing attractors are
observed in the memristive system. A flux-controlled mem-
ristor with linearmemductance is proposed in [40]; then, a new
hyperchaotic system is presented by adding the proposed
memristor into the Lorenz system, and the memristive system
exhibits complex dynamic characteristics such as four-wing
hyperchaotic attractors.

Multistability is one of the most important phenomena
in dynamic systems [41–50], which occurs in many fields
such as physics, biology, chemistry, economics, and elec-
tronics. Multistability allows flexibility of system perfor-
mance without changing parameters, and appropriate
control strategies can be used to induce switching behavior
between different coexisting states [41]. For chaotic systems,
hidden attractors [42–46] and infinite attractors [47–50] can
exhibit multistability. For example, complex dynamic be-
haviors of coexisting attractors [51], transient chaos [52],
and limit cycle [53] can be observed from hidden attractors.
Recently, various multistable memristive hyperchaotic sys-
tems have been proposed in many literatures. In [52], by
introducing a flux-controlled memristor model into an
existing 5D hyperchaotic autonomous system, a 6D
hyperchaotic autonomous system with hidden extreme
multistability is proposed. Some attractive dynamics are
observed like transient chaos, bursting, and offset boosting
phenomenon. In [53], by utilizing a memristor to substitute
a coupling resistor in the realization circuit of a 3D chaotic
system having one saddle and two stable node-foci, a novel
memristive hyperchaotic system with coexisting infinite
hidden attractors is presented. *e memristive system does
not show any equilibrium but can exhibit hyperchaos, chaos,
periodic dynamics, and transient hyperchaos.

With the application of network information technology,
people attach great importance to the security and confi-
dentiality of information [54–66]. Researchers are constantly
looking for new methods of confidentiality [54–66]. Secure
communication and chaotic encryption based on chaotic
synchronization have become one of the research hotspots in
the field of information security in recent years. In recent
years, the secure communication scheme based on chaotic
synchronization control has attracted extensive attention.
People have made a thorough study on it and proposed
various effective chaotic control methods, such as adaptive
control [67–68], active control [69], linear feedback control
[70, 71], and sliding mode control [72, 73]. In [69], the
synchronization of 3D chaotic systems with the same structure
is realized by using active control and adaptive control law. In
the developed secure communication system, information
signal sent over noisy channel is successfully retrieved at the
receiver. In [72], a secure communication mechanism based
on a four-wing 4D chaotic system is designed. Using high-
order sliding mode control synchronization technology,

parameter modulationmethod, and Lyapunov stability theory,
two useful signals are encrypted and recovered and the ex-
ternal interference is suppressed.

Based on the above studies, a 5D multistable FWMHS is
proposed based on the flux-controlled memristor model
with absolute value function, from which the coexisting
phenomenon of many hidden attractors are observed.
Hyperchaos is exhibited with a line of equilibria. After that,
circuitry implementation of the proposed system is in-
vestigated.*en, an adaptive asymptotic method is proposed
to identify the 5D multistable FWMHS with several un-
known parameters and to apply chaotic parameter modu-
lation in secure communication. By this method, chaotic
synchronization can be realized, unknown parameters can
be identified, message signals can be recovered, and dis-
turbance inputs can be suppressed simultaneously via a
high-order sliding mode adaptive controller, whose adaptive
parameters are adjusted according to the proposed adaptive
algorithm. By using Lyapunov functional and Barbalat’s
lemma, the convergence of the proposed scheme is analyzed.
Finally, two triangular wave signals are taken as examples for
numerical simulation. *e results show the effectiveness and
feasibility of the proposed secure communication scheme.

2. New 5D Multistable FWMHS and
Its Dynamics

2.1. System Description. A simple 5D chaotic oscillator with
five parameters and five nonlinearities is proposed, and a
flux-controlled memristor model with absolute value
function is introduced to establish the mathematical model
of the system:

_x1 � − ax1 + x2x3,

_x2 � bx2 − x1x3,

_x3 � x1x2 − cx3 + dx4W x5( 􏼁,

_x4 � x1x2 − ex4,

_x5 � − x3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a, b, c, d, and e are the parameters of the system and
x1, x2, x3, x4, andx5 are state variables. *e memductance
function W(ψ) � 1 − β|ψ| [52], ψ and β being its flux variable
and positive constant parameter, respectively. It is easy to see
that system (1) is invariant under the transformation
(x1, x2, x3, x4, x5)⟶ (±x1,∓x2, x3, x4, x5). *us, if
(x1, x2, x3, x4, x5) is a solution for a specific set of parameters,
then (±x1,∓x2, x3, x4, x5) is also a solution for the same
parameters set. So, the appearances of multiple coexisting
symmetric attractors are expected in the new system.

When the parameters are chosen as a � 10, b � 12,

c � 30, d � 2, e � 3, and β � 0.2, the Lyapunov exponents of
system (1) are calculated as LE1 � 3.5610, LE2 � 0.3092,

LE3 � 0, LE4 � − 2.0660, and LE5 � − 23.4708. It can be seen
that there are two positive Lyapunov exponents which
means system (1) can exhibit hyperchaotic dynamics. A
typical four-wing hyperchaotic attractor from system (1) is
shown in Figure 1, while the initial conditions are selected as
[0.1, 0.1, 0.1, 0.1, 0.1].

2 Complexity



2.2. Dissipativity. *e volume contraction rate of system (1)
is given by the following Lie derivatives:

∇V �
z _x1

zx1
+

z _x2

zx2
+

z _x3

zx3
+

z _x4

zx4
+

z _x5

zx5
� − a + b − c − e. (2)

Equation (2) shows that divergence is negative when
− a + b − c − e< 0. In this case, the set of system trajectories is
ultimately limited to a specific zero volume limit set and the
asymptotic motion of the new four-wing hyperchaotic
system (1) falls on the attractor.

2.3. Equilibrium Points and Stability. Equilibrium points
play an important role in the study of nonlinear systems
because they allow the system response to be characterized as
self-excited oscillation or hidden oscillation. *ese oscilla-
tions originate around the equilibrium point obtained from
system (1), by setting the left-hand side to zero as follows:

0 � − ax1 + x2x3,

0 � bx2 − x1x3,

0 � x1x2 − cx3 + dx4W x5( 􏼁,

0 � x1x2 − ex4,

0 � − x3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

It can be seen that the equilibrium states of system (3)
only depends on x1, x2, x3, and x4, but independent of x5.
System (3) has the abnormal characteristics of linear
equilibrium in (0, 0, 0, 0, x5). Since x5 in equilibrium can be
any constant, assuming that l is a real constant, the equi-
librium of system (3) can be described as follows:

O � x1, x2, x3, x4, x5( 􏼁
􏼌􏼌􏼌􏼌 x1 � x2 � x3 � x4 � 0, x5 � l􏽮 􏽯.

(4)

*e Jacobian matrix of system (3) at this line equilibrium
is

JO �

− a 0 0 0 0

0 b 0 0 0

0 0 − c d(1 − β|l|) 0

0 0 0 − e 0

0 0 0 − 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

According to Jacobian matrix (5), the characteristic
equation of system (1) can be expressed as follows:

λ(λ + e)(λ + a)(λ − b)(λ + c) � 0. (6)
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Figure 1: A typical four-wing hyperchaotic attractor of the 5D FWMHS (1) and perpetual points (red) in the (a) x1 − x2 plane, (b) x1 − x3
plane, (c) x2 − x3 plane, and (d) x3 − x4 plane.
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Five eigenvalues of system (1) can be obtained from
equation (6): λ1 � 0, λ2 � − e, λ3 � − a, λ4 � b, and λ5 � − c.

When a � 10, b � 12, c � 30, and e � 3, it is obvious that
there are λ1 � 0, λ2,3,5 < 0, and λ4 > 0.*erefore, regardless of
the parameter values, when system (1) has a line equilibrium,
there is one zero eigenvalue, one positive eigenvalue, and
three negative eigenvalues, so system (1) has unstable saddle
points.

2.4. Perpetual Points. In this paper, we study the new kind of
critical points proposed by Prasad in [74], which are called
perpetual points. *ey are defined as points where the ac-
celeration of the system becomes zero and the velocity re-
mains nonzero. According to the number of zero derivatives,
permanent points can belong to any regular point set
except R0. *e various interesting properties and uses of
these points can be found in [74–76]. According to the
definition of perpetual points in [74], system (1) possesses
two permanent points: PP1 � (

����������
bce/(e + d)

􏽰
,

���������
ace/(e + d)

􏽰
,��

ab
√

, c(
��
ab

√
/(e + d)), 0) and PP2 � (−

����������
bce/(e + d)

􏽰
,

−
���������
ace/(e + d)

􏽰
, −

��
ab

√
, − c(

��
ab

√
/(e + d)), 0). When a � 10,

b � 12, c � 30, d � 2, and e � 3, the two permanent points
are (±14.697, ±13.416, ±10.954, ±65.727, 0), which are
shown in Figure 1, while perpetual points are denoted by red
dots. We can see that the trajectories of the attractors pass
through the perpetual points, so coexistence attractors can
also be located using perpetual points.

2.5. Bifurcation Diagram and Lyapunov Exponent Spectrum.
Bifurcation diagram and Lyapunov exponent spectrum are
suitable tools for visualizing different scenes to chaos/
hyperchaos in dynamic systems. When the system pa-
rameters change, this is achieved by the expression of the
local maximum or minimum of the state variables. In
order to study the dynamic behavior of the 5D FWMHS
with parameters, we discuss the bifurcation diagram and
Lyapunov exponent spectrum of the system with in-
creasing parameter d by using Wolf’s algorithm and
maximum method, respectively. Figures 2 and 3 show the
bifurcation diagram of the state |X| and the corresponding
Lyapunov exponents’ spectrum with the range of the
parameter d taken as [0, 15], respectively, under the initial
conditions of [0.1, 0.1, 0.1, 0.1, 0.1]. It can be seen that the
bifurcation diagram is in good agreement with the Lya-
punov exponent spectrum. When 0≤ d≤ 7.52, the system
has two positive Lyapunov exponents and the system is in
the hyperchaotic state; when 7.52<d≤ 10.1, the system is
in the periodic state; when 10.1<d≤ 15, the system has one
positive Lyapunov exponent, so the system is in the chaotic
state.

2.6. 2e Complexity of Spectral Entropy. *e complexity of
spectral entropy reflects the disorder in the Fourier do-
main. We usually measure the complexity of a system by
calculating its spectral entropy. *e larger the spectral
entropy is, the higher the complexity is, and vice versa

[77–79]. In this part, the complexity of chaotic system (1)
in the parameter range is analyzed by using spectral
entropy complexity algorithm. Figure 4 is the complexity
curve of the parameter d ∈ [0, 12], which is very consistent
with the Lyapunov exponents spectrum of system (1).
When the parameter d ∈ [0, 7.52], the Lyapunov expo-
nents show that the system is hyperchaos. Similarly,
Figure 4 also shows that the waveform changes steeply in
this region, which means that the more complex the
spectrum, the higher the complexity. When
d ∈ (7.52, 10.1], the waveform changes gently, so the
spectrum is simple and the complexity is low; when
d ∈ (10.1, 12], the system is in the chaos state, and the
spectral entropy complexity curve of the system changes
greatly, so the complexity is very high.

2.7. Multistability Analysis. Multistability, the result of co-
existence of many kinds of nonlinear attractors, is the in-
herent property of many nonlinear dynamic systems. In
recent years, it has become a very important research topic
and has attracted much attention [41–50]. Multistability is
rich in the diversity of stable states of nonlinear dynamic
systems, which makes the system flexible. In particular,
when the number of coexisting attractors from a dynamic
system tends to infinite, the coexistence of infinite attractors
depending on the initial conditions of a state variable is
called extreme multistability [80].

In order to investigate the possible multistability in this
5D FWMHS, we first consider random initial conditions
while all the parameters are fixed. *ese coexisting attractors
exist in different values of all parameters, and Figure 5 shows
some symmetric coexisting attractors in state space of system
(1) for different values of the parameter d. Figure 6 shows
some coexisting multiwing attractors in state space of system
(1) for different values of the parameter dwith different initial
conditions. As can be seen in Figure 6, the occurrence of
chaos/hyperchaos, period, and quasi-period attractors coexist
with each other for selected initial conditions.

3. Circuit Design

*e above conclusions can be verified by the analog circuit.
*e analog circuit is a method that can really present the
chaotic motion state, which is more convincing than
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Figure 2: Bifurcation diagram for increasing parameter d.
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Figure 3: Lyapunov exponents’ spectrum for increasing parameter d (the fifth LE is out of plot).
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Figure 5: Symmetric coexisting attractors for parameters: (a) d � 9 and the initial conditions are [0.1, ±0.1, 0.1, 0.1, 0.1] (red and blue),
(b) d � 12.5 and the initial conditions are [0.1, − 0.1, 0.1, 0.1, 0.1] and [− 0.1, 0.1, 0.1, 0.1, 0.1] (red and blue), (c) d � 9 and the initial
conditions are [0.1, − 0.1, 0.1, 0.1, 0.1] and [2, 1, 1, 2, 2] (red and blue), and (d) d � 11.9 and the initial conditions are
[− 0.1, 0.1, 0.1, 0.1, 0.1], [0.1, − 0.1, 0.1, 0.1, 0.1] and [0.1, 0.1, 0.1, 0.1, 0.1] (blue, red, and green).
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Figure 6: Coexisting multiwing attractors for parameters: (a) d � 9 and the initial conditions are [0.1, − 0.1, 0.1, 0.1, 0.1] and [20, 1, 1, 2, 2]

(red and blue), (b) d � 8 and the initial conditions are [0.1, − 0.1, 0.1, 0.1, 0.1] and [20, 1, 1, 2, 2] (red and blue), (c) d � 12.5 and the initial
conditions are [0.1, − 0.1, 0.1, 0.1, 0.1] and [1, 0.1, 0.1, 0.1, 0.1] (red and blue), (d) d � 13.5 and the initial conditions are
[0.1, ±0.1, 0.1, 0.1, 0.1] and [2, 1, 1, 2, 2] (blue, red, and green), (e) d � 11.9 and the initial conditions are [0.1, − 0.1, 0.1, 0.1, 0.1] and
[2, 1, 1, 2, 2] (red and blue), and (f) d � 13 and the initial conditions are [0.1, 1, 0.1, 0.1, 0.1] and [2, 1, 1, 2, 2] (red and blue).
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numerical simulation. *e operational amplifiers and
multipliers are LF347 and AD633JN, respectively. Diode
uses 1N1199C when all active components are powered
with ±15V. *e schematic diagram of the circuit is
designed with Multisim 14.0 software platform, as shown
in Figure 7.

*e simulation circuit designed according to the
mathematical equation of each state of equation (1) is

shown in Figure 7. In the simulation circuit, capacitors,
resistors, analog multipliers, and integrated operational
amplifiers are used (the memristor model has been split
into two parts). According to the characteristics of the
nonlinear circuit and the basic theory of the circuit, the
mathematical equations of the states in the simulation
circuit shown in Figure 7 are obtained as shown in the
following equation:

dx1

dt
�

1
R1C1

x1 −
1

10R2C1
x2x3,

dx2

dt
�

1
R3C2

x2 −
1

10R4C2
x1x3,

dx3

dt
�

1
10R5C3

x1x2 −
1

R6C3
x3 +

1
R7C3

1 −
R12

R13
x5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡x4,

dx4

dt
� −

1
R8C4

x4 +
1

10R9C4
x1x2,

dx5

dt
� −

1
R10C5

x2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

According to the given parameters, the resistance value
in (7) can be calculated as follows:

+
–
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R2
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x3
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+
–
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–x2x1
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–
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–
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–
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–
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–

Rx5
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–
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–
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Figure 7: Hardware circuit implementation of the four-wing memristive hyperchaotic system (1).
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R

R1
� 10, R1 � 10 kΩ,

R

10R2
� 1, R2 � 10 kΩ,

R

R3
� 12, R3 � 8.33 kΩ,

R

10R4
� 1, R4 � 10 kΩ,

R

10R5
� 1, R5 � 10 kΩ,

R

R6
� 30, R6 � 3.33 kΩ,

R

R7
� 2, R7 � 50 kΩ,

R

R8
� 3, R8 � 33.33 kΩ,

R

10R9
� 1, R9 � 10 kΩ,

R

R10
� 1, R10 � 100 kΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

*e other parameters of each component in the circuit
are set as follows: R � 100 kΩ and
C1 � C2 � C3 � C4 � 0.01 μF. Under the above parameters
setting conditions, the hyperchaotic phase portraits are
obtained, as shown in Figure 8(a)–8(d), respectively. From
these diagrams, it can be seen that the circuit imple-
mentation results are basically consistent with the numerical
simulation results.

4. Secure Communication Scheme Based on the
New 5D Multistable FWMHS

In this section, based on the proposed 5Dmultistable FWMHS,
a chaotic secure communication scheme with two inputs and
two outputs is proposed. By using high-order sliding mode
control synchronization technology, parameter modulation
method, and Lyapunov stability theory, the encryption and
recovery of two message signals are realized, the gain of the
receiver can be continuously adjusted, the unknown parameters
can be accurately identified, and the disturbance inputs can be
suppressed simultaneously.

4.1. Higher-Order Sliding Mode Control 2eory. *e sliding
order r of the traditional sliding mode (r refers to the
number of continuous full derivatives of the sliding mode
variable s which are zero on the sliding mode surface
s � 0) is 1. Because s � 0 on the sliding mode surface, s is
discontinuous, the traditional sliding mode is also called
the first-order sliding mode. Traditional sliding mode
control is essentially a discontinuous control input acting
on the first derivative of the sliding mode, which makes
the traditional sliding mode control have discontinuous
and serious chattering problems. In order to restrain such
problems, the theory of high-order sliding mode control
is proposed. In the sense of Filippov, high-order sliding
mode is actually a kind of motion on a special type of
integral manifold of a discontinuous dynamic system
[81]. It can be characterized by the convergence of
switching function s(x) and derivatives up to a certain
order to zero. *e order sliding set of sliding surface s � 0
is described as follows:

s � _s � €s � · · · � s
(r− 1)

� 0. (9)

When the r-order sliding set (9) is nonempty and
assumes that it is a local integral set in the sense of
Filippov, the related motion satisfying the above formula
is called “r-order sliding mode,” with respect to the
sliding surface s � 0. At present, there is a popular design
method for high-order sliding mode variable structure
control, i.e., gain-adjustable switching control. Its
structure is as follows:

u � ksgn(s(x))s
r
(x), (10)

where the constant k is the control gain and can be adjusted.
It can be seen that the high-order sliding mode control is to
apply discontinuous control inputs to the high-order de-
rivatives of the sliding mode, which can not only greatly
weaken the chattering during system switching but also
realize the high-order dynamic characteristics of the system
[82]. *erefore, the high-order sliding mode maintains the
advantages of the traditional sliding mode, suppresses the
chattering, eliminates the restriction of relative order, and
improves the control accuracy.

4.2. SomeDefinitionsandAssumptions. Definition 1. Consider
the following form of smooth nonlinear chaotic systems:

_X � f(X, Q),

_Y � h(X),
(11)

where X � (x1, x2, . . . , xn)T ⊂ Rn is the state variable, Y �

(x1, x2, . . . , xm)T ⊂ Rm is the output state variable, and
m≤ n. f(∘) and h(∘) are smooth nonlinear functions and
Q ⊂ Rl are state vectors satisfying l≤ n. Let α(j) be the re-
ciprocal of j times of vector α. If X can be uniquely expressed
by equation (12), we think that the state variable X can be
observed by the algebraic method:
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X � ψ α, α(1)
, . . . , α(j)

􏼐 􏼑
T
, (12)

where j is an integer and ψ is a smooth function.

Definition 2. Under the same conditions as Definition 1,
when Q satisfies the following relationship:

φ1 α, α(1)
, . . . , α(j)

􏼐 􏼑 � φ2 α, α(1)
, . . . , α(j)

􏼐 􏼑Q, (13)

where φ1(∘) and φ2(∘) are smooth matrices of n × 1 and
n × n, respectively, Q is considered to be observable with the
algebraic method for output vector matrix α.

Assumption 1. *e 5D multistable FWMHS (1) proposed
above is selected as the transceiver system of the commu-
nication scheme. It is clear from Figures 1 and 2 that the five
state variables of the system oscillate within a certain range.
In fact, for most of the initial conditions and system pa-
rameters, the five state variables of system (1) are bounded in
most cases.

Assumption 2. It is assumed that both transmitter and re-
ceiver systems of secure communication mechanism are
subject to disturbance inputs of d1i, i � 1, 2, 3, 4, 5 and
d2i, i � 1, 2, 3, 4, 5, respectively, and are bounded and satisfy
|d1i|≤ ρ1i, i � 1, 2, 3, 4, 5 and |d2i|≤ ρ2i, i � 1, 2, 3, 4, 5, of
which ρ2i, ρ1i are known positive constants and satisfy
ρ2i ≥ ρ1i.

Now, we rewrite the second difference equation of
system (1) as follows:

x3 �
bx2 − _x2

x1
, (14)

then equation (14) is substituted into the first equation of
system (1) to obtain

x1 _x1 + x2 _x2 � bx
2
2 − ax

2
1. (15)

According to Definitions 1 and 2, it is obvious that
system (1) is observable by the algebraic method with respect
to two outputs x1 and x2. According to equation (15), it is
further shown that the state parameter vector Q � [a, b]T of
system (1) can be observed algebraically with respect to the
two outputs x1 and x2. *erefore, invalid states
x3, x4, andx5 and parameter vector Q can be recovered by
the two output variables at the same time.

4.3.TransceiverDesign. At the transmitter, we choose the 5D
multistable FWMHS (1) as the drive system. *e algebraic
equation with some uncertain parameters and disturbance
inputs is described as follows:

_x1 � − a(t)x1 + x2x3 + d11,

_x2 � b(t)x2 − x1x3 + d12,

_x3 � x1x2 − 30x3 + 2x4 1 − 0.2 x5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + d13,

_x4 � x1x2 − 3x4 + d14,

_x5 � − x3 + d15,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

(a) (b)

(c) (d)

Figure 8: Four-wing memristive hyperchaotic phase portraits obtained by Multisim simulations in the (a) x1 − x2 plane, (b) x1 − x3 plane,
(c) x2 − x3 plane, and (d) x3 − x4 plane.
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where x1, x2, x3, x4, andx5 are the state variables of the 5D
multistable FWMHS, and the uncertain parameters are
defined as follows:

a(t) � a + sa(t), b(t) � b + sb(t), (17)

where sa(t) and sb(t) are two useful message signals, and the
state parameter vector is Q � [a, b]T. d1i, i � 1, 2, 3, 4, 5, are
disturbance inputs and satisfy Assumption 2.

At the receiver, we define the 5D multistable FWMHS (1)
with partial uncertainties and disturbance inputs as a response
system.*e response system has two effective output variables
x1 and x2, whose algebraic equation is described as follows:

_x6 � − 􏽢a(t)x1 + x2x8 + d21 + u1,

_x7 � 􏽢b(t)x2 − x1x8 + d22 + u2,

_x8 � x1x2 − 30x8 + 2x9 1 − 0.2 x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + d23 + u3,

_x9 � x1x2 − 3x9 + d24 + u4,

_x10 � − x8 + d25 + u5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where x6, x7, x8, x9, andx10 are the state variables of the
system, and the uncertain parameters are defined as
follows:

􏽢a(t) � 􏽢a + 􏽢sa(t), 􏽢b(t) � 􏽢b + 􏽢sb(t), (19)

where 􏽢sa(t) and 􏽢sb(t) are two useful message signals after
decryption. d2i, i � 1, 2, 3, 4, 5, are disturbance inputs
and satisfy Assumption 2, U � [u1, u2, u3, u4, u5]

T are
controllers, and 􏽢Q � [􏽢a, 􏽢b]T. Figure 9 shows the
proposed secure communication scheme based on two-
input two-output with partial uncertainties and distur-
bance inputs.

4.4. Error Dynamics System Design. By subtracting system
(16) from system (18), the following error dynamics system
is obtained:

_e �

_e1

_e2

_e3

_e4

_e5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 􏽥ax1 − 􏽥sa(t)x1 + x2e3 + d11 − d21 − u1

􏽥bx2 + 􏽥sb(t)x2 − x1e3 + d12 − d22 − u2

− 30e3 + 2e4 − 0.4 x4 x5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x9 x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + d13 − d23 − u3

− 3ew + d14 − d24 − u4

− e3 + d15 − d25 − u5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where

e �

e1
e2
e3
e4
e5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

x1 − x6
x2 − x7
x3 − x8
x4 − x9
x5 − x10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q �
a

b
􏼢 􏼣,

􏽥Q �
􏽥a
􏽥b

􏼢 􏼣 �
a − 􏽢a

b − 􏽢b
􏼢 􏼣,

s(t) �
sa(t)

sb(t)
􏼢 􏼣,

􏽥s(t) �
􏽥sa(t)

􏽥sb(t)
􏼢 􏼣 �

sa(t) − 􏽢sa(t)

sb(t) − 􏽢sb(t)
􏼢 􏼣.

(21)

It can be seen that the synchronization between system
(16) and system (18) can be achieved as long as the ap-
propriate controller U � [u1, u2, u3, u4, u5]

T and the corre-
sponding parameter identification law are designed to make
the error system approach zero gradually.

4.5. High-Order Sliding Mode Controller Design. Based on
the idea of high-order sliding mode control proposed in the
previous section, we present the following corresponding
theory.

Theorem 1. If the following high-order sliding mode adap-
tive controller is designed,

U �

u1

u2

u3

u4

u5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

k1sign e1( 􏼁eλ1 + ρ11sign e1( 􏼁 − ρ21sign e1( 􏼁

k2sign e2( 􏼁eλ2 + ρ12sign e2( 􏼁 − ρ22sign e2( 􏼁

x2e1 − x1e2 − 30e3 − 0.4 x4 x5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x9 x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + ρ13sign e3( 􏼁 − ρ23sign e3( 􏼁

2e3 − 3e4 + ρ14sign e4( 􏼁 − ρ24sign e4( 􏼁

− e3 + ρ15sign e5( 􏼁 − ρ25sign e5( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)
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where k � [k1, k2]
T is the controller gain, λ ∈ Z+, λ> 1, and

sign(∘) is symbolic function. 2e adaptive parameter iden-
tification law and the useful message signal law are designed
as follows:

_􏽢Q �
_􏽢a

_􏽢b
⎡⎣ ⎤⎦ �

− x1e1

x2e2
􏼢 􏼣,

_􏽢s(t) �
_􏽢sa(t)

_􏽢sb(t)
⎡⎣ ⎤⎦ �

− x1e1

x2e2
􏼢 􏼣,

(23)

where _􏽢a and _􏽢b are the estimates of unknown parameters and
a and b are useful message signals for decryption.2e response
system (18) and the drive system (16) can be synchronized

globally and asymptotically with disturbance inputs, any
normal number k1 and k2, and any positive integer λ. By
modulation laws (17), (19), and (22), the receiver system (18)
can accurately recover useful message signals sa(t) and sb(t),
respectively.

Proof. Consider the following Lyapunov function:

V(t) �
1
2

e
T

e + 􏽥Q
T 􏽥Q + 􏽥s(t)

T
􏽥s(t)􏼔 􏼕. (24)

By calculating the derivative of V(t) along the trajec-
tories of the error system (19) and using equations (21) and
(22), we can obtain

_V(t) � e1 _e1 + e2 _e2 + e3 _e3 + e4 _e4 + e5 _e5 + 􏽥a _􏽥a + 􏽥b
_􏽥b + 􏽥sa(t)_􏽥sa(t) + 􏽥sb(t)_􏽥sb(t)

� − e1􏽥ax1 − e1􏽥sa(t)x1 + e1x2e3 + e1d11 − e1d21 − e1k1sign e1( 􏼁e
λ
1 − ρ11e1sign e1( 􏼁

+ ρ21e1sign e1( 􏼁 + ρ21e1sign e1( 􏼁 + e2
􏽥bx2 + e2􏽥sb(t)x2 − e2x1e3 + e2d12 − e2d22 − e2k2sign e2( 􏼁e

λ
2

− p12e2sign e2( 􏼁 + p22e2sign e2( 􏼁 − 30e
2
3 + 2e3e4 − 0.4e4 x4 x5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x9 x10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + e3d13 − e3d13 − e3d23

− e3x2e1 + x1e3e2 + 30e
2
3 + 0.4e4 x4 x5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x9 x10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 − p13e3sign e3( 􏼁 + p23e3sign e3( 􏼁 + p23e3sign e3( 􏼁 − 3e

2
4

+ e4d14 − e4d24 − 2e4e3 + 3e
2
3 − p14e4sign e4( 􏼁 + p24e4sign e4( 􏼁 − e3e5 + e5d15 − e5d25 + e3e5

− p15e5sign e5( 􏼁 + p25e5sign e5( 􏼁 + 􏽥ax1e1 − 􏽥bx2e2 + x1e1􏽥sa(t) − x2e2􏽥sb(t)

� − k1e1sign e1( 􏼁e
λ
1 − k2e2sign e2( 􏼁e

λ
2 + e1d11 − p11e1sign e1( 􏼁 − e1d21 − p21e1sign e1( 􏼁􏼂 􏼃

+ e2d12 − p12e2sign e2( 􏼁 − e2d22 − p22e2sign e2( 􏼁􏼂 􏼃 + e3d13 − p13e3sign e3( 􏼁 − e3d23 − p23e3sign e3( 􏼁􏼂 􏼃

+ e4d14 − p14e4sign e4( 􏼁 − e4d24 − p24e4sign e4( 􏼁􏼂 􏼃 + e5d15 − p15e5sign e5( 􏼁

− e5d25 − p25e5sign e5( 􏼁􏼂 􏼃.

(25)
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Figure 9: Secure communication scheme based on two-input and two-output with partial uncertainty parameters and disturbance inputs.
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When
ψ1i � eid1i − ρ1ieisign ei( 􏼁,

ψ2i � eid2i − ρ2ieisign ei( 􏼁,
􏼨 (26)

where ψ1i,ψ2i, (i � 1, 2, 3, 4, 5) ∈ R are the compensators for
eliminating disturbance inputs. According to the definitions
and assumptions of d1i and d2i and ρ1i and ρ2i, ψ1i ≤ψ2i can
be guaranteed, so (24) can be changed to

_V(t) � − k1e1sign e1( 􏼁e
λ
1 + k2e2sign e2( 􏼁e

λ
2􏽨 􏽩 + 􏽘

4

i�1
ψ1i − ψ2i( 􏼁

≤ − k1e2sign e2( 􏼁e
λ
2 + k2e2sign e2( 􏼁e

λ
2􏽨 􏽩

� − k1 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌e
λ
1 + k2 e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e
λ
2􏼐 􏼑.

(27)

So, _V(t) is negative definite. In fact, because of _V(t)< 0,
there are e1, e2 ∈ L¥. *e error equation (19) shows that
_e1, _e2 ∈ L¥. Integrating both sides of equation (27), it can be
obtain:

􏽚
t

0
k1 e1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 e

λ
1(t) + k2 e2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 e

λ
2(t)􏼐 􏼑dt≤V(0). (28)

According to Barbalat’s lemma, when t⟶ ¥, there are
_e⟶ ¥. *erefore, the response system (18) with

disturbance inputs and the drive system (16) with distur-
bance inputs achieve global asymptotic synchronization.

As shown in Figure 2, the state variables x1 and x2 os-
cillate aperiodically around the zero. From the above dis-
cussion, we can conclude that _e is bounded, which means that
e is continuous. According to Barbalat’s lemma, when
t⟶ ¥, there are _e⟶ ¥. By differentiating equation (19), we
also get that €es is bounded, and when t⟶ ¥, there is
€e⟶ ¥. Since when t⟶ ¥,V(t) is convergent, it is obtained
that when t⟶ ¥, two uncertain parameter errors 􏽥Q and two
useful message signal errors 􏽥s(t) are convergent. From
equation (22), when t⟶ ¥, _􏽥Qs and _􏽥s(t) converge to zero.
*erefore, the uncertain parameters a(t) and b(t) at the
receiver can be identified and the useful message signals sa(t)

and sb(t) can be accurately recovered at the same time.

4.6. Numerical Simulations. In this section, the fourth-order
Runge–Kutta method is used to simulate and verify the
theoretical analysis with the step size 0.001. At the trans-
mitter, the uncertain parameters of the system are selected as
a � 10 and b � 12 and the initial conditions of the system
are set to x1(0) � 1, x2(0) � 2, x3(0) � 3, x4(0) � 4, andx5
(0) � 5. At the receiver side, the initial conditions of the system
are set to x6(0) � 6, x7(0) � 7, x8(0) � 8, x9(0) � 9, and
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Figure 10: *e trajectories of the synchronization errors e1, e2, e3, e4, and e5.
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x10(0) � 10.*e initial conditions of uncertain parameters and
useful message signals are set to 􏽢Q(0) � [􏽢a(0), 􏽢b(0)]T �

[0.1, 0.1]T and 􏽢s(0) � [􏽢sa(0),􏽢sb (0)]T � [0.1, 0.1]T, re-
spectively. *e disturbance inputs are set as follows:

d11, d12, d13, d14, d15􏼂 􏼃
T

� [− 0.3 cos(20t), 0.2 sin(10t), 0.2 sin(10t), 0.2 cos(20t), 0.2 cos(20t)]T,

d21, d22, d23, d24, d25􏼂 􏼃
T

� [4 sin(20t), − 3 cos(10t), 3 sin(20t), 2 sin(10t), 2 sin(10t)]T.

⎧⎨

⎩ (29)

Assuming that the useful message signals sa(t) and sb(t)

are triangular function signals, and the frequencies of both
triangular function signals are 90Hz, we have

sa(t) � 0.6 sin(180πt),

sb(t) � 0.5 cos(180πt).
􏼨 (30)

At the same time, the gains of the receiver system are
chosen as k � [k1, k2]

T � [0.6, 0.8]T and sliding order λ � 4.
Figure 10 shows the synchronization error of the response
system (18) and the drive system (16), indicating that the error
tends to zero rapidly and gradually with time. Figures 11(a)
and 11(b) show that when t⟶ ¥, the estimated values of
unknown parameters 􏽢a(t) and 􏽢b(t) gradually tend to a � 10
and b � 12 over time, respectively. As shown in Figures 11(c)
and 11(d), it is easy to see that both useful message signals
sa(t) and sb(t) are accurately recovered.

5. Conclusion

In this work, a new 5D four-wing hyperchaotic system
having a flux-controlled memristor model with absolute

value function is introduced. Dynamical analysis is
performed in terms of equilibrium point, perpetual
point, phase portraits, Lyapunov exponents, bi-
furcations, and spectral entropy. In particular, the
phenomenon of extreme multistability with hidden os-
cillation is revealed and the coexistence of infinite hidden
attractors is observed. *en, the 5D multistable FWMHS
circuit is designed. Finally, a secure chaotic communi-
cation scheme of the 5D multistable FWMHS with dis-
turbance inputs based on parametric modulation theory
and Lyapunov stability theory is implemented by a
convenient robust high-order sliding mode adaptive
controller. *e proposed adaptive controller can accu-
rately identify unknown parameters, continuously adjust
the gain of the receiver system, and effectively suppress
the disturbance inputs of the transmitter and receiver.
Numerical simulations are given to demonstrate the
validity of the theories and the chaotic secure commu-
nication scheme. Our future work is to apply the system
to image encryption, random number generator, and
other fields.
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Figure 11: Estimation of uncertain parameters (a) and (b) and the recovered signal errors (c) and (d).
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�is paper studies the dynamic characteristics of triopoly models that are constructed based on a 3-dimensional Cobb–Douglas
utility function. �e paper presents two parts. �e �rst part introduces a competition among three rational �rms on which their
prices are isoelastic functions. �e competition is described by a 3-dimensional discrete dynamical system. We examine the
impact of rationality on the system’s steady state point. Studying the stability/instability of this point, which is Nash equilibrium
and is unique in those models, is illustrated. Numerically, we give some global analysis of Nash point and its stability. �e second
part deals with heterogeneous scenarios. It consists of two di�erent models. In the �rst model, we assume that one competitor
adopts the local monopolistic approximation mechanism (LMA) while the other opponents are rational. �e second model
assumes two heterogeneous players with LMAmechanism against one rational �rm. Studies show that the stability of NE point of
thosemodels is not guaranteed. Furthermore, simulation shows that when �rms behave rational with symmetric costs, the stability
of NE point is achievable.

1. Introduction

Oligopolistic competition in economic market structure has
got much attention recently. It is more complex and perfect
competition when one compares it with the monopolistic
one. When tackling this kind of competition, a wide range of
di�erent outcomes can arise, and therefore it is reasonable to
use the theory of game. Game theory has been used heavily
to model the behavior of such oligopolistic competitors.

Fully rational �rms involved in oligopolistic competition
are provided with cognitive and computational skills so that
they can perfectly identify the demand curve of produced
commodity, and therefore, the expectation of their com-
petitors’ production in the next period is achieved. Knowing
such skills makes �rms ready to solve a one period opti-
mization problem. Recent works [1–6] have investigated the
in�uence of reducing rationality in terms of computational
and informational capabilities. �ose works have yielded an

important conclusion; that is, reducing such rationality leads
to the appearance of complex dynamic characteristics of
�rms’ behaviors. In [1], some triopolistic games have been
introduced and studied using quasiconcave utility function.
�e complex behavior of a Cournot duopoly game has been
investigated in [2]. Using heterogeneous expectations, a
nonlinear duopoly game has been introduced and discussed
in [4]. Askar et al. [5] have studied the dynamic charac-
teristics of Cournot duopoly models based on unknown
inverse demand function. With nonlinear demand function,
whose in�ection points do not exist, Askar has proposed and
investigated the complex dynamic behavior of a Cournot
duopoly game.

Puu [7] has constructed a duopolistic model on which he
has used a unimodel reaction function accompanying
Cobb–Douglas consumer’s preferences. Studies carried out
by Puu have shown that the �rms’ outputs are evolved
through a chaotic scenario which in turn leads to chaos.
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Since Puu’s work, several studies have made by researchers
to look into different decisional and adjustment mechanisms
such as bounded rationality and LMA (local monopolistic
approximation) mechanisms. %e bounded rationality
mechanism requires from the competitors some local
knowledge in order to improve their outputs according to
the variations in the marginal profit. Indeed, this mechanism
makes the competitors unaware of any information or
knowledge about the demand and cost functions. Only the
competitors need to be aware of any change that occurs in
market due to small changes in the produced quantities by
estimating the marginal profit. For more details about this
mechanism, readers are advised to refer to the literature
[4, 8, 9]. %e LMA mechanism was first introduced by
Tuinstra [10]. Oligopolistic players adopting the LMA
mechanism do not have any information or knowledge
about the demand function of the market. Even though it is
unknown for the competitors, they conjecture it in linear.
%erefore, with local knowledge about the true demand
curve and the current market state in terms of quantities
produced and their prices, they estimate this linear function.

%e literature has reported several works that have
adopted such rationality and LMAmechanisms. For instance,
Pecora and Sodini have analyzed a Cournot duopoly game
whose demand function was isoelastic in continuous time
periods [11]. In [12], the LMA and the gradient rule have been
used to analyze the complex dynamic behavior of a duopoly
model. A discrete duopolistic fishery model with two agents
who adopt heterogeneous expectations has been investigated
in [13]. Both the monopolistic approximation and the gra-
dient approach have been used in [14] to study an evolu-
tionary oligopoly competition. For more related works and
simulation approaches, readers are advised to refer to [15, 16].

%e current paper discusses the influences of some
adjustment mechanisms on the stability of Nash equilibrium
point. Here, we propose and investigate different types of
triopoly games on which firms use bounded rationality and
LMA mechanisms. Our obtained results show that the re-
peated triopoly game based on rationality mechanism
converges at Nash point and implies more stability region.
On the other two games where LMA mechanism is adopted
by competed firms, the results show that the repeated games
based on that mechanism or based on a mixed type of both
rationality and LMA do not converge at Nash point due to
the complicated behaviors of systems described those games
and due to the negative quantities obtained which have no
meaning in economic market.

Briefly, the current paper is described as follows. In
Section 2, we introduce the Cobb–Douglas production
function for three oligopolistic firms. After that, the first
scenario of a rational game is constructed, and then an in-
vestigation on its complex dynamic characteristics is pre-
sented. After that, a heterogeneous game is introduced and
studied in details. Finally, conclusion is provided in Section 3.

2. Model

In 1927, the first formulation of Cobb–Douglas function was
described. In that time, Douglas sought for a functional form

by which he could use to present the data he calculated for
workers and capital. Economists today widely use this
production function to study the relationship between the
amount of two or more inputs and the amount of outputs
that can be produced by those inputs. %e current paper
assumes that the market structure consists of three firms
whose preferences are derived from Cobb–Douglas. It takes
the following form:

U � 􏽙
3

i�1
q
αi

i , 􏽘
3

i�1
αi � 1. (1)

Indeed, firms want to maximize their preferences due to
a budget constraint 􏽐

3
i�1piqi � 1, where pi, i � 1, 2, 3 is a

commodity price supplied by firm i. According to this
constraint, the following maximization problem is
constructed:

Max􏽘
3

i�1
αi log qi

􏽘

3

i�1
piqi � 1.

(2)

Equation (2) has the following solution:

qj �
αj

pj

, j � 1, 2, 3. (3)

If we sum the above for all firms, we get

p(Q) �
1
Q

,

Q � 􏽘
3

i�1
qi.

(4)

%is kind of demand is called an isoelastic function.
Now, we suppose that the firms’ costs are

Ci qi( 􏼁 � ciqi, i � 1, 2, 3, (5)

where ci > 0 is a constant marginal cost for each firm. Using
(4) and (5), each firm has its own profit as follows:

π1 �
q1

q1 + q2 + q3
− c1q1,

π2 �
q2

q1 + q2 + q3
− c2q2,

π3 �
q3

q1 + q2 + q3
− c3q3.

(6)

Game theory can be used to study the above scenario on
which the firms are three oligopolists. %e game feasible
space will be constructed with all strategies qi > 0, i � 1, 2, 3
and the payoff functions that are given in (6). Only one Nash
equilibrium point for this game is given by
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NE � q1, q2, q3( 􏼁

�
2 c2 + c3 − c1( 􏼁

c1 + c2 + c3( 􏼁
2 ,
2 c1 + c3 − c2( 􏼁

c1 + c2 + c3( 􏼁
2 ,
2 c1 + c2 − c3( 􏼁

c1 + c2 + c3( 􏼁
2

⎛⎝ ⎞⎠.

(7)

It is positive under the conditions c2 + c3 > c1, c1 + c3 > c2
and c1 + c2 > c3. In an oligopolistic competition, information
that should be available for each player about its opponent is
important and limited. %e gradient mechanism which is
important and intensively used in literature is a rule of
thumb. It requires only local knowledge about the player’s
marginal profit. It depends on some thoughts each player
should know about variations in the amount qi,t+1 − qi,t that
in turn gives exact estimation of the marginal profit zπi/zqi,t.
Firms in such competition are always seeking for a good
estimation of the current marginal profit in order to see
whether it increases or decreases its output level depending
on the information given by the marginal profit in the
previous time step. %is is governed by a positive parameter
called the speed of adjustment. %e mechanism is described
by the following discrete map:

qi,t+1 � qi,t + kiϕi, i � 1, 2, 3, (8)

where, ki > 0 is the speed of adjustment and ϕi � zπi/zqi,t.
Here, we study two different scenarios: the first scenario
assumes that the three oligopolistic firms adopt this
mechanism, while in the other we suppose that one of the
firms adopts the so-called Local Monopolistic Approxima-
tion (LMA) that is described later. Let us now construct the

first secario. Using (6), the marginal profit of each firm is
given by

ϕi �
Q − qi

Q2 − ci, i � 1, 2, 3. (9)

Substituting (9) in (8), the resulting oligopolistic game is
presented by the following discrete dynamical system:

q1,t+1 � q1,t + k
Q − q1

Q2 − c1􏼢 􏼣,

q2,t+1 � q2,t + k
Q − q2

Q2 − c2􏼢 􏼣,

q3,t+1 � q3,t + k
Q − q3

Q2 − c3􏼢 􏼣.

(10)

2.1. Local Analysis. %is subsection provides a discussion on
the steady state of the game and the local stability of system
(10). We investigate under what conditions should system
(10) be stable and where complex dynamic can influence the
stabilization of the steady states.%e following proposition is
given.

Proposition 1. %e Nash equilibrium (7) is a steady state of
the system (10) and is locally asymptotically stable provided
that k< (4/(c1 + c2 + c3)

2).

Proof. System (10) at NE point has the following Jacobian
matrix:

J �

1 − c1k c1 + c2 + c3( 􏼁
− k

4
c1 + c2 + c3( 􏼁 3c1 − c2 − c3( 􏼁

− k

4
c1 + c2 + c3( 􏼁 3c1 − c2 − c3( 􏼁

− k

4
c1 + c2 + c3( 􏼁 3c2 − c1 − c3( 􏼁 1 − c2k c1 + c2 + c3( 􏼁

− k

4
c1 + c2 + c3( 􏼁 3c2 − c1 − c3( 􏼁

− k

4
c1 + c2 + c3( 􏼁 3c3 − c1 − c2( 􏼁

− k

4
c1 + c2 + c3( 􏼁 3c3 − c1 − c2( 􏼁 1 − c3k c1 + c2 + c3( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

When games described are by discrete dynamic systems,
then studying the stability of the NE point of those systems
depends on the eigenvalues of the Jacobian matrix. %is
makes us to impose the condition |λi|< 1, i � 1, 2, 3 that
means that all the eigenvalues must be in the unit circle. %is
can be carried by recalling the following Jury conditions:

(i): 1 + a1 + a2 + a3 > 0,

(ii): 1 − a1 + a2 − a3 > 0,

(iii): 1 + a2 − a1a3 − a2
3 > 0,

(iv): 1 − a2
3 > 0,

(12)

where f(λ) � λ3 + a1λ
2 + a2λ + a3 is the characteristic

polynomial of the above Jacobian and

a1 � − λ1 + λ2 + λ3( 􏼁 � − Trace(J),

a2 � λ1λ2 + λ1λ3 + λ2λ3,

a3 � (− 1)
3λ1λ2λ3 � − Determinant(J).

(13)

From the above Jacobian and with simple calculations,
we deduce
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a1 � − (3 − 2ℓ),

a2 � 1 −
1
2
ℓ􏼒 􏼓 3 −

5
2
ℓ􏼒 􏼓,

a3 � − (1 − ℓ) 1 −
1
2
ℓ􏼒 􏼓

2
,

ℓ �
1
2

k c1 + c2 + c3( 􏼁
2
.

(14)

%is makes Jury conditions become

(i):
1
4
ℓ3 > 0,

(ii):
1
4

(2 − ℓ)(4 − ℓ)2 > 0,

(iii):
1
16

ℓ 128 − 208ℓ + 140ℓ2 − 49ℓ3 + 10ℓ4 − ℓ5􏼐 􏼑> 0,

(iv):
1
16

ℓ 8 − 5ℓ + ℓ2􏼐 􏼑 8 − 8ℓ + 5ℓ2 − ℓ3􏼐 􏼑> 0.

(15)

Simple calculations show that the first condition (i) is
always fulfilled, the condition (ii) is fulfilled under 0< ℓ < 2
(this is equivalent k< (4/(c1 + c2 + c3)

2)), and the other two
conditions hold providing that (ii) holds. %e second con-
dition (ii) becomes zero at ℓ � 2 or ℓ � 4 which means
period-doubling bifurcation (flip bifurcation) may occurs.
Furthermore, the condition (iv) can not be zero and hence
Neimark–Sacker bifurcation does not exist for the system
(10). In addition, one can easily get the eigenvalues as
follows:

λ1 � 1 −
k

2
c1 + c2 + c3( 􏼁

2
,

λ2,3 � 1 −
k

4
c1 + c2 + c3( 􏼁

2
.

(16)

%ose eignvalues are real and |λi|< 1, i � 1, 2, 3 if
k< (4/(c1 + c2 + c3)

2) which completes the proof. □

2.2. Simulation. In this section, we perform some numerical
simulation to investigate the complex behavior of system
(10). %is includes the influences of the system’s parameters
on the stability of Nash point. We start our simulation by
assuming the following parameter values: (q0,1, q0,2, q0,3) �

(0.11, 0.12, 0.13) and c1 � 0.20, c2 � 0.30 and c3 � 0.25. We
assume different values for the firms’ costs as we study first
the asymmetric case. %is makes Nash point equal
(1.2444, 0.53333, 0.88889). As shown in Figure 1(a) Nash
point is asymptotically stable for any values for the pa-
rameter k till k approaches 7.11 on where birth of period 2-
cycle arises. After that a period-doubling bifurcation (flip

bifurcation) exists. Only flip bifurcation exists in this case as
we have only two different real eigenvalues. Here, we should
highlight on the values of the costs’ parameters that must be
selected in such a way that the conditions c2 + c3 > c1, c1 +

c3 > c2 and c1 + c2 > c3 are satisfied and at the same time,
positivity of the quantities is preserved. %ose costs pa-
rameters have a great impact on the system behavior as
shown in Figure 1(b). Simulation shows that choosing values
for the costs’ parameters above 0.25 preserves positivity of
quantities but does not guarantee stability of NE point.
Figures 2(a) and 2(b) show the influence of c2 and c3 on the
behavior of system (10). Now, we investigate more the in-
fluence of the parameter k on the stability of Nash point. It is
confirmed by simulation that when increasing k above 7.11,
different types of period cycles are obtained. For example,
when k � 8.85 and the other parameter values are fixed, a
birth of stable period 2-cycle is emerged. %e time series for
this cycle is given in Figure 3(a); besides that, we give the
phase portrait of it in Figure 3(b).%is means that the system
(10) jumps to these two cycles and around the stable Nash
point during the period of competition. Fixing the quantity
produced by the third firm to 0.13, the size and shape of the
period 2-cycle basin of attraction are depicted in Figure 4.
%e red color refers to the basin of attraction of Nash point
while the blue one denotes the basin of attraction of the
period 2-cycle.

Increasing the parameter k slightly to the value of 9, we
get a stable period 4-cycle. However, those cycles are stable
but one can observe that there are negative quantities
which have no economic meaning. Figure 5(a) shows the
phase portrait of this cycle. Figure 5(b) shows the basin of
attraction of this cycle. %e basin of attraction given in
Figure 5(b) seems more complicated than that of the
period 2-cycle. %e gray color is for the Nash point which
in this case includes negative values while the other colors
are for the basin of attraction of the period 4-cycle.
Furthermore, we increase the parameter k to the value of
9.33, and hence, we get a stable period 8-cycle. Figures 6(a)
and 6(b) show the phase portrait and the basin of at-
traction of this cycle, respectively. %is figure contains
fractal structure with different colors that are embedded
with the colors of the basin of attraction of period 8-cycle.
%e white color is for nonconvergent points.

Now, we end this section by studying the symmetric
case. %is case is obtained when we set c1 � c2 � c3 � c. It
makes Nash equilibrium point become NE � (2/9c, 2/
9c, 2/9c). One can easily prove that this point is locally
stable if k< (4/9c2). Numerical simulation shows that NE
point is locally stable for values of k less than 11.22.
%erefore, an increase in kmore than that value makes the
Nash point unstable via period-doubling bifurcation
which is given in Figure 7(a) (the corresponding maxi-
mum Lyapunov exponent is plotted in Figure 7(b)).
Moreover, the coexistence of period 2-cycle is detected at
those parameters and for value of k � 12. Figures 8(a) and
8(b) show this period with its time series. %is makes us to
investigate more to see whether there are more cycles.
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Figure 2: (a) Bifurcation diagram of system (10) with respect to c2 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 8.85, c1 � 0.2, c3 � 0.25.
(b) Bifurcation diagram of system (10) with respect to c3 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 8.85, c1 � 0.2, c2 � 0.3.
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Figure 3: (a) Time series of system (10) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 8.85, c1 � 0.2, c2 � 0.3, c3 � 0.25. (b) Phase space of the
period 2-cycle of system (10) with respect to c3 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 8.85, c1 � 0.2, c2 � 0.3.
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Figure 1: (a) Bifurcation diagram of system (10) with respect to k at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), c1 � 0.2, c2 � 0.3, c3 � 0.25.
(b) Bifurcation diagram of system (10) with respect to c1 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 8.85, c2 � 0.3, c3 � 0.25.
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Figure 5: (a) Phase space of the period 4-cycle of system (10) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 9, c1 � 0.2, c2 � 0.3, c3 � 0.25. (b)
Basin of attraction of the period 4-cycle at q0,3 � 0.13, k � 9, c1 � 0.2, c2 � 0.3, c3 � 0.25.
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Figure 6: (a) Phase space of the period 8-cycle of system (10) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 9.33, c1 � 0.2, c2 � 0.3, c3 � 0.25. (b)
Basin of attraction of the period 8-cycle at q0,3 � 0.13, k � 9.33, c1 � 0.2, c2 � 0.3, c3 � 0.25.

6 Complexity



q 1
, q

2, 
q 3

0

0.5

1

1.5

2

2.5

3

10 150 5
k

(a)

–8

–7

–6

–5

–4

–3

–2

–1

0

1

M
LE

s

2 80 4 10 12 14 166
k

(b)
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Figure 8: (a) Phase space of the period 2-cycle of system (10) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 12, c � 0.25. (b) Time series for q1 at
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Figure 9: (a) Phase space of the period 4-cycle of system (10) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 14.4, c � 0.25. (b) Phase space of the
period 8-cycle of system (10) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 14.6, c � 0.2.
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Figures 9(a) and 9(b) present the phase portrait of period
4-cyle and period 8-cyle at k � 14.4 and k � 14.6 re-
spectively. We give the basin of attraction of period 8-cyle
that is described by two colors in Figure 10. We conclude
based on these obtained results that this case is better
than the previous case and the region of stability of Nash
point is bigger than that of the asymmetric case and
positivity of quantities are guarantied.

2.3. Heterogeneous Effect. %e competition described here
includes heterogeneous competitors. We assume that two
firms behave rational while the other adopts the LMA
mechanism. In [10], the definition of the LMA mechanism
has been introduced. It requires no global information
about the demand function, yet it needs the players
knowing market price pt and the corresponding produced
quantity Qt. %is can be called local information of the
price function for (pt, Qt) only.%rough some experiences
on the market, the player may be able to estimate the
price function for market values within a neighborhood
of (pt, Qt) and then compute properly the following
derivative:

zq1
f q1,t, q2,t􏼐 􏼑 � f′ Qt( 􏼁. (17)

Scenario 1. We assume that the first oligopolist is
adopting the LMA mechanism. It has been discussed that
such mechanism can be calculated by the effect of small
quantity and price variations which make the firm
(the player) evaluates the price function at each time for
the total supply Qt. %erefore, equation (17) with the
price of the first player p1,t gives the following price
function:

p
e
1,t+1 � p1,t + p′ Qt( 􏼁 Q

e
t+1 − Qt􏼂 􏼃, (18)

where Qe
t+1 � q1,t+1 + qe

2,t+1 + · · · + qe
3,t+1 and qe

2,t+1, qe
3,t+1 are

the expected outputs, i.e., the outputs which the first
oligopolist expects from its opponents at time t + 1. Now,
we consider static expectations for the second and third
oligopolists (qe

2,t+1 � q2,t, qe
3,t+1 � q3,t); then (18) takes the

form

p
e
1,t+1 �

1
q1 + q2 + q3( 􏼁

−
1

q1 + q2 + q3( 􏼁
2 q1,t+1 − q1,t􏽨 􏽩,

(19)

where p′(Qt) � 1/Q2. Now, the first oligopolist chooses its
next period strategy according to the following:

q1,t+1 � argmax
q2,t+1

p
e
1,t+1q1,t+1 − c1q1,t+1􏽨 􏽩, (20)

namely,

q1,t+1 �
1
2
q1,t +

Q

2
1 − c1Q( 􏼁,

Q � q1 + q2 + q3.

(21)

%en the resulting oligopolistic game is now described by

q1,t+1 �
1
2
q1,t +

Q

2
1 − c1Q􏼂 􏼃,

q2,t+1 � q2,t + k
Q − q2

Q2 − c2􏼢 􏼣,

q3,t+1 � q3,t + k
Q − q3

Q2 − c3􏼢 􏼣.

(22)

%e above system is a nonlinear discrete dynamic system
which consists of one LMA player against two rational
competitors.

2.3.1. Local Analysis. As previously done, we calculate here
the steady state of system (22) and study its stability and the
corresponding complex characteristics. Simple calculations
yield the NE described in (7) as the steady state of system
(22). Even though the heterogeneousness is carried out by
the first oligopolist, the steady state of system (22) is the same
steady state of system (10) where all the oligopolists adopt
the bounded rationality mechanism. %e following propo-
sition is given.

Proposition 2. %e Nash equilibrium (7) is a steady state of
system (22) and it is locally asymptotically stable if the
following conditions are satisfied.
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Figure 10: Basin of attraction of the period 8-cycle at
q0,3 � 0.13, k � 14.6, c � 0.2.
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1
16c

3c − 8c1( 􏼁c
4
k
2

+ 8 5c − 11c1( 􏼁c
2
k + 16 c1 + 3c2 + 5c3( 􏼁􏽨 􏽩> 0,

− 1
64

k
4
c
6 2c1 − c( 􏼁 + 12k

3
c
4 2c1 − c( 􏼁

2
+ 8kc

2 3c1 − 3c2 − 5c3( 􏼁 2c1 − c( 􏼁 + 32 2c1 − c( 􏼁 2c2 + c3( 􏼁 − 2c1c3( 􏼁􏽨 􏽩> 0,

− 1
16c

k
2
c
4 8c1 − 5c( 􏼁 + 24kc

2
c − c1( 􏼁 + 16c3 − 16c2 − 48c1􏽨 􏽩> 0,

c � c1 + c2 + c3.

(23)

System (22) at NE point has the following Jacobian
matrix:

c2 + c3 − c1

c1 + c2 + c3

c2 + c3 − 3c1

2 c1 + c2 + c3( 􏼁

c2 + c3 − 3c1

2 c1 + c2 + c3( 􏼁

1 −
k

4
c1 + c2 + c3( 􏼁 3c2 − c1 − c3( 􏼁 − c2k c1 + c2 + c3( 􏼁

− k

4
c1 + c2 + c3( 􏼁 3c2 − c1 − c3( 􏼁

1 −
k

4
c1 + c2 + c3( 􏼁 3c3 − c1 − c2( 􏼁

− k

4
c1 + c2 + c3( 􏼁 3c3 − c1 − c2( 􏼁 − c3k c1 + c2 + c3( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

For NE to be asymptotically stable, all the roots of the
following characteristic equation must have magnitudes of
eigenvalues less than one:

λ3 + θ1λ + θ2λ + θ3 � 0, (25)

where

θ1 �
k c2 + c3( 􏼁 c1 + c2 + c3( 􏼁

2
+ c1 − c2 + c3( 􏼁

c1 + c2 + c3( 􏼁
,

θ2 � −
k c1 + c2 + c3( 􏼁

2
k c1 + c2 + c3( 􏼁

2
c1 − 3c2 − 3c3( 􏼁 − 12c1 + 12c2 + 12c3􏼐 􏼑 − 48c1 + 16c2 + 16c3􏽨 􏽩

16 c1 + c2 + c3( 􏼁
,

θ3 �
k

8
k c1 − c2 − c3( 􏼁 c1 + c2 + c3( 􏼁

3
+ 2 c1 + c2 + c3( 􏼁 3c1 − c2 − c3( 􏼁􏽨 􏽩.

(26)

%is can be achieved if and only if the following Jury
conditions are satisfied:

ℓ1 ≔ 3 + θ1 − θ2 − 3θ3 > 0,

ℓ2 ≔ 1 − θ2 + θ3 θ1 − θ3( 􏼁> 0,

ℓ3 ≔ 1 − θ1 + θ2 − θ3 > 0.

(27)

Substituting (26) in (27) completes the proof. In order to
get more insights about the above proposition, we perform
some numerical simulations.

2.3.2. Simulation and Global Analysis. %is simulation
handles the complex characteristics of system (22). It is

devoted to investigate the results obtained by Proposition
2 and to see whether NE is stable or not. We set the
parameter values to c1 � 0.12, c2 � 0.33 and c3 � 0.25.
Figure 11(a) shows that the Nash point is locally stable
whenever varying the parameter k until the system (22)
starts bifurcating around Nash point and then high pe-
riod cycles are formed. Comparing this case with the
previous case, we see that the previous case is more stable
in terms of the stability region with respect to the pa-
rameter k. %is means that adopting LMA mechanism
does not help the firm to be more stable against its ra-
tional competitors. Figure 11(a) shows the stability of
Nash point when we increase k. We should highlight here
that choosing the costs’ parameters should satisfy the
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conditions, c2 + c3 > c1, c1 + c3 > c2 and c1 + c2 > c3.
Choosing very small values of cost parameters extends the
region of stability of Nash point. Figures 11(b) and 12(a)
and 12(b) show the influences of costs on the stability of
Nash point. As one can see, only small values of costs
should be selected; otherwise, chaotic behavior may arise.
%e corresponding Lyapunov exponent for those costs
and k is given in Figures 13(a) and 13(b). Other in-
teresting chaotic behaviors are given in Figures 14 and 15.
Figure 14(a) gives the phase portrait of a chaotic attractor
of system (22) at the parameters: k � 2.7, c1 � 0.2, c2 �

0.4, c3 � 0.8. %e time series of quantities at those pa-

rameters is shown in Figure 14(b). Figures 15(a) and
15(b) present different chaotic attractors of the system.
Period 2-cycle and period 5-cycle are obtained in Fig-
ure 16. %e basin of attraction of period 5-cycle is rep-
resented by many colors and is given in Figure 17. All
these periods are unstable.

Scenario 2. In this scenario, we assume that two monop-
olists (firm 1 and firm 2) adopt the LMA mechanism while
the other uses bounded rationality. %is means that system
(22) can be rewritten in the form
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Figure 11: (a) Bifurcation diagram of system (22) with respect to k at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), c1 � 0.2, c2 � 0.4, c3 � 0.8. (b)
Bifurcation diagram of system (22) with respect to c1 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.7, c2 � 0.4, c3 � 0.8.
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Figure 12: (a) Bifurcation diagram of system (22) with respect to c2 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), c1 � 0.2, k � 2.7, c3 � 0.8. (b)
Bifurcation diagram of system (22) with respect to c3 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.7, c1 � 0.2, c2 � 0.4.
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Figure 13: (a) Lyapunov exponents with respect to c1, c2, c3 at k � 2.7. (b) Lyapunov exponents with respect to k � 2.7, c1 � 0.2, c2 � 0.4, c3 � 0.8.
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Figure 14: (a) Chaotic attractor of system (22) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.7, c1 � 0.2, c2 � 0.4, c3 � 0.8. (b) Time series for
q1, q2, q3 at k � 2.7, c1 � 0.2, c2 � 0.4, c3 � 0.8.
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Figure 15: (a) Chaotic attractor of system (22) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.55, c1 � 0.2, c2 � 0.5, c3 � 0.7. (b) Chaotic
attractor of system (22) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.55, c1 � 0.2, c2 � 0.4, c3 � 0.8.
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q1,t+1 �
1
2
q1,t +

Q

2
1 − c1Q􏼂 􏼃,

q2,t+1 �
1
2
q2,t +

Q

2
1 − c2Q􏼂 􏼃,

q3,t+1 � q3,t + k
Q − q3

Q2 − c3􏼢 􏼣.

(28)

Proposition 3. %e Nash equilibrium (7) is a steady state of
system (32).

Now, the stability of Nash point is as previously ob-
tained, and we get Jacobian matrix as follows:

c2 + c3 − c1

c1 + c2 + c3

c2 + c3 − 3c1

2 c1 + c2 + c3( 􏼁

c2 + c3 − 3c1

2 c1 + c2 + c3( 􏼁

c1 + c3 − 3c2

2 c1 + c2 + c3( 􏼁

c1 + c3 − c2

c1 + c2 + c3

c1 + c3 − 3c2

2 c1 + c2 + c3( 􏼁

k

4
c1 + c2 + c3( 􏼁 c1 + c2 − 3c3( 􏼁

k

4
c1 + c2 + c3( 􏼁 c1 + c2 − 3c3( 􏼁 1 − c3k c1 + c2 + c3( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

whose characteristic equation is given by

λ3 + Λ1λ + Λ2λ + Λ3 � 0, (30)

where

Λ1 �
c3k c1 + c2 + c3( 􏼁

2
− c1 + c2 + 3c3( 􏼁

c1 + c2 + c3
,

Λ2 �
k c1 + c2 − 5c3( 􏼁 c1 + c2 + c3( 􏼁

2
− c1 + c2 − 11c3( 􏼁

4 c1 + c2 + c3( 􏼁
,

Λ3 � −
k c1 + c2 − 3c3( 􏼁 c1 + c2 + c3( 􏼁

2
− 2 c1 + c2 − 3c3( 􏼁

8 c1 + c2 + c3( 􏼁
.

(31)
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Figure 16: (a) Phase space of the period 2-cycle of system (22) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.55, c1 � 0.2, c2 � 0.4, c3 � 0.7.
(b) Phase space of the period 8-cycle of system (22) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 14.6, c � 0.2.
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Figure 18: (a) Bifurcation diagram of system (32) with respect to k at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), c1 � 0.24, c2 � 0.26, c3 � 0.785.
(b) Bifurcation diagram of system (32) with respect to c1 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.77, c2 � 0.26, c3 � 0.785.
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Figure 19: (a) Bifurcation diagram of system (32) with respect to c2 at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), c1 � 0.24, k � 2.77, c3 � 0.785. (b)
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Using Jury conditions and (31) we get

ℓ1 �
k c1 + c2 + 9c3( 􏼁 c1 + c2 + c3( 􏼁

2
+ 4 3c1 + 3c2 − c3( 􏼁

c1 + c2 + c3
,

ℓ2 � −
k c1 + c2 + c3( 􏼁

2
k c1 + c2 + 5c3( 􏼁 c1 + c2 − 3c3( 􏼁 c1 + c2 + c3( 􏼁

2
+ 4 c1 + c2( 􏼁

2
− 4c3 14c1 + 14c2 − c3( 􏼁􏼐 􏼑 − 4 5c1 + 5c2 + c3( 􏼁 3c1 + 3c2 − c3( 􏼁􏽨 􏽩

64 c1 + c2 + c3( 􏼁
2 ,

ℓ3 �
3 k c1 + c2 − 7c3( 􏼁 c1 + c2 + c3( 􏼁

2
+ 4 c1 + c2 + 5c3( 􏼁􏽨 􏽩

8 c1 + c2 + c3( 􏼁
.

(32)

%erefore, the Nash point system (32) is asymptotically
stable if ℓi > 0, i � 1, 2, 3.%e eigenvalues and Jury conditions
take complicated forms, and then some simulations are
carried out to investigate the conditions (32). We observe
that when ci � c, i � 1, 2, 3, both ℓ1 and ℓ2 are positive while
ℓ3 > 0 provided that kc2 < 0.62, and hence, Nash point is
asymptotically stable. On the other hand, when we take
different values of costs, i.e., c1 � 0.24, c2 � 0.26, and
c3 � 0.785, bifurcated behaviors of the system appear and
then the local stability of Nash point does not exist.
Figure 18(a) shows different bifurcated behaviors with re-
spect to the parameter k. It seems that all firms get unstable
due to the bad influences of those cost parameters and the
negative quantities that appear which are nonsense in any
economic context. Figures 18(b) and 19 give the influence of
costs on the stability of Nash point. As one can see, those
costs affect the system’s behavior even if they have taken
small values. %is is also clear from Figures 20(a) and 20(b)
where the period 2-cycle and period 4-cycle appear.

3. Conclusion

%e current paper has investigated an oligopolistic game that
consists of three competitors. Different complicated dy-
namic routes have been raised due to the adoption of two

different adjustment mechanisms, bounded rationality and
the LMA mechanism. %e demand function used to build
this game and its corresponding dynamical systems has been
derived from Cobb–Douglas production function. %e ob-
tained results have shown that the stability of Nash equi-
librium loses its stability due to the appearance of bifurcated
behaviors of those discussed systems in the manuscript. We
have concluded from the obtained results that bounded
rationality mechanism when it is adopted by firms has given
better stability for the Nash point in comparison with the
results of stability given by the LMA mechanism. Our ob-
tained results extend results existed in literature. Further-
more, we have detected several fractal structures which
require more analysis and investigations that will be
addressed in future research works. %e limitation of the
current work lies in the application of only two types of
mechanisms; the bounded rationality and LMA mechanism.
Other types of mechanisms should be considered in com-
parison, and this might include expected cooperation among
firms.

Data Availability

%e availability of data is carried out by the corresponding
author.
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Figure 20: (a) Phase space of the period 2-cycle of system (32) at (q0,1, q0,2, q0,3) � (0.11, 0.12, 0.13), k � 2.77, c1 � 0.24, c2 � 0.26, c3 � 0.785.
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�is paper presents a novel and simple three-dimensional (3-D) chaotic system by introducing two sine nonlinearities into a
simple 3-D linear dynamical system.�e presented sine system possesses nine equilibrium points consisting of �ve index-2 saddle
foci and four index-1 saddle foci which allow the coexistence of various types of disconnected attractors, also known as
multistability. �e coexisting multiple attractors are depicted by the phase plots and attraction basins. Coexisting bifurcation
modes triggered by di�erent initial values are numerically simulated by two-dimensional bifurcation and complexity plots under
two sets of initial values and one-dimensional bifurcation plots under three sets of initial values, which demonstrate that the
abundant coexisting multiple attractors’ behaviors in the presented sine system are related not only to the system parameters but
also to the initial values. A simulation-oriented circuit model is synthesized, and PSIM (power simulation) screen captures well
validate the numerical simulations.

1. Introduction

Recently, numerous nonlinear dynamical systems have been
reported that they present the coexistence of two or more
disconnected attractors with their isolated attraction basins.
�e coexisting phenomena of two or more attractors have
been encountered in nonlinear oscillating circuits [1–5],
biological neuron models [6, 7], Hop�eld neural networks
[8–11], vibroimpact system [12], superconducting quantum
interference device oscillators [13], pure mathematical
systems [14–17], and so on. �is striking phenomenon, also
known as multistability, demonstrates that the system initial
values do play an important role in the emergence of
complex coexisting attractors’ behaviors [18, 19]. For a
multistable dynamical system, it is usually challenging to
predict the �nal steady state to which the dynamical system
will tend for a given initial value since a small disturbance in
the initial value can alter the steady state of such dynamical
systems [20–23]. Multistability has great application po-
tentials in the chaos-based secure communication and in-
formation encryption [24–27], but e¡cient prediction and

control methods should be employed to make these dy-
namical systems in the desired oscillating modes [28–32].

Usually, an e�ective method for implementing the initial-
related multistability is to lead one, two, or more generic or
extended memristors in various existing circuits and systems
[15–17, 33–36]. Memristor-based circuits and systems with
di�erent types of equilibrium points are easy to exhibit
coexisting attractors’ behaviors of multistability. Compara-
tively speaking, another bene�cial and simple method for
generating initial value o�set-boosted coexisting attractors is
to put periodic trigonometric functions into speci�c o�set-
boostable dynamical systems [37–41]. When the cyclic periods
for the periodic functions are identical, any attractor will be
copied by periodic o�set boosting the initial values [37].
However, due to the reported o�set-boostable dynamical
systems with self-contained nonlinearities, the newly con-
structing multistable dynamical systems become relatively
complicated [38–41], not convenient for theoretical analyses
and hardware circuit implementations. �e algebraic sim-
plicity of system’s structure and topological complexity of
chaotic attractors are bene�ts for developing chaos-based
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cryptosystems [42]. In this paper, based on a simple 3-D linear
dynamical system and two newly introduced sine non-
linearities, a novel and extremely simple 3-D sine chaotic
system is readily constructed, from which abundant coexisting
multiple attractors’ behaviors are observed [43].

&e rest is organized as follows. In Section 2, a novel and
simple 3-D sine chaotic system is presented. It has nine
equilibrium points consisting of five index-2 saddle foci and
four index-1 saddle foci, resulting in the coexistence of up to
six types of disconnected attractors. In Section 3, by two-
dimensional bifurcation and complexity plots under two sets
of initial values and one-dimensional bifurcation plots under
three sets of initial values, coexisting bifurcation modes are
numerically simulated to demonstrate the abundant coex-
isting multiple attractors’ behaviors. In Section 4, with the
simulation-oriented circuit model, PSIM screen captures
validate the numerical simulations. &e conclusion is
summarized in Section 5.

2. System Model and Its Coexisting
Multiple Attractors

By introducing two sine nonlinearities with two coupling
coefficients into a simple 3-D linear dynamical system, a
novel 3-D sine chaotic system with simple algebraic equa-
tions is easily achieved, which is modeled by

_x � y + z − k1 sin(y),

_y � − x + z,

_z � − x − z + k2 sin(x),

(1)

where x, y, and z are the three state variables and k1 and k2
are the two positive constants.

&e presented sine system in (1) is symmetric about the
origin and dissipative. &e symmetric property can be
demonstrated by the invariance of system (1) with respect to
the transformation (x, y, z)⟷ (− x, − y, − z). &e dis-
sipativity is explained by

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
� − 1< 0. (2)

&us, the orbits are finally confined to a specific subset
with zero volume and its asymptotic motion settles onto a
standalone attractor.

&e equilibrium points of the presented sine system in
(1) are obtained by solving the following equations:

0 � y + z − k1 sin(y),

0 � − x + z,

0 � − x − z + k2 sin(x),

(3)

which is expressed as

E � (δ, σ, δ). (4)

&e values δ and σ can be yielded by solving the fol-
lowing transcendental functions:

h1 � 2δ − k2 sin(δ) � 0 (5)

h2 � σ + δ − k1 sin(σ) � 0, (6)

respectively.
&e Jacobian matrix J at E is given as

J �

0 1 − k1 cos(σ) 1

− 1 0 1

− 1 + k2 cos(δ) 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

so that the characteristic polynomial is derived as

P(λ) � λ3 + c1λ
2

+ c2λ + c3 � 0, (8)

where

c1 � 1,

c2 � 2 − k1 cos(σ) − k2 cos(δ),

c3 � 1 − k1 cos(σ)􏼂 􏼃 2 − k2 cos(δ)􏼂 􏼃.

(9)

&e above characteristic polynomial implies that Jaco-
bian matrix (7) has three nonzero roots. For these roots,
Routh–Hurwitz conditions are given as

c1 > 0,

c3 > 0,

c1c2 − c3 > 0,

(10)

i.e.,

1 − k1 cos(σ)􏼂 􏼃 2 − k2 cos(δ)􏼂 􏼃> 0,

k1 cos(σ) 1 − k2 cos(δ)􏼂 􏼃> 0.
(11)

If the conditions in (11) are satisfied, i.e., k1 cos(σ)< 1
and k2 cos(δ)< 1, E is stable, leading to the existence of the
point attractor. Otherwise, if any one of the conditions in
(11) is not satisfied, i.e., k1 cos(σ)< 1 or k2 cos(δ)< 1, E is
unstable, resulting in that unstable behaviors may be trig-
gered in the presented sine system.

Denote k1 � k2 � k and take k� 3.6 and 5 as two examples.
&e values δ and σ of the equilibrium point E in (4) are the
intersection points of two function curves h1 and h2 de-
scribed by (5) and (6), as shown in Figures 1(a) and 1(b),
respectively, from which nine pairs of δ and σ are obtained
by inspecting the intersection points, indicating the exis-
tence of nine equilibrium points in the presented sine
system. With these equilibrium points, the three nonzero
eigenvalues are calculated from the Jacobian matrix J in (7)
and the corresponding stabilities can be determined, as listed
in Table 1. &e calculation results illustrate that five index-2
saddle foci (Index-2 USF, for short) and four index-1 saddle
foci (Index-1 USF, for short) can be found, which could
emerge five disconnected attracting regions when these
attracting regions cannot be linked with each other, leading
to the coexistence of disconnected attractors.

For k� 3.6, 5, and several sets of the initial values (labeled
in Figure 2), the phase plots of coexisting multiple attractors
projected on the x-y plane are depicted in Figures 2(a) and
2(b), respectively. In Figure 2(a), a chaotic attractor coexisted
with twin small-size period-1 limit cycles, twin large-size
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period-1 limit cycles, and a relatively larger size period-1 limit
cycle. By contrast, in Figure 2(b), two chaotic attractors
coexisted with twin large-size period-1 limit cycles and a
relatively larger size period-1 limit cycle. �erefore, up to six

types of coexisting multiple attractors are numerically dis-
closed in the 3-D sine chaotic system because of the attracting
and repelling interactions between the �ve index-2 saddle foci
and four index-1 saddle foci.
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Figure 1: Values δ and σ of the equilibrium points by inspecting the intersections of two function curves h1 and h2 described by (5) and (6).
(a) k� 3.6. (b) k� 5.

Table 1: Equilibrium points, eigenvalues, and stabilities for k� 3.6 and 5.

k Equilibrium points Eigenvalues Stabilities

3.6

P0: (0, 0, 0) 1.0528± j0.4807, –3.1057 Index-2 USF
P1,2: (0, ±2.4074, 0) 1.3656, –1.1828± j1.7041 Index-1 USF

P3,8: (±1.7659, ±1.7668, ±1.7659) 0.1205± j1.9193, –1.2410 Index-2 USF
P4,7: (±1.7659, ±0.7858, ±1.7659) 1.3103, –1.1551± j1.3587 Index-1 USF
P5,6: (±1.7659, ±2.8378, ±1.7659) 0.3285± j2.6672, –1.6569 Index-2 USF

5

P0: (0, 0, 0) 1.4346± j1.0215, –3.8692 Index-2 USF
P1,2: (0, ±2.5976, 0) 2.0719, –1.5359± j2.2986 Index-1 USF

P3,8: (±2.1253, ±2.1271, ±2.1253) 0.4429± j2.9575, –1.8857 Index-2 USF
P4,7: (±2.1253, ±0.5756, ±2.1253) 2.1115, –1.5558± j2.1419 Index-1 USF
P5,6: (±2.1253, ±2.9680, ±2.1253) 0.6154± j3.4532, –2.2309 Index-2 USF
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Figure 2: Phase plots of coexisting multiple attractors projected on the x-y plane for di�erent initial values. (a) For k� 3.6, six types of
coexisting multiple attractors. (b) For k� 5, �ve types of coexisting multiple attractors.
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To detect the attracting regions of the coexisting multiple
attractors given in Figure 2, the attraction basins in the initial
value plane are used to classify different dynamical behaviors
[44]. For the two coupling coefficients used in Figure 2, the
attraction basins in the x(0)-y(0) plane with z(0) � 10− 6 are
depicted in Figure 3. &e attracting regions painted by
different colors represent the initial value regions corre-
sponding to different long-term oscillating states, i.e.,
coexisting multistable states, which are identical with the
colored trajectories appearing in Figure 2. &us, the at-
traction basins show the relatively complicated manifold
structures along with basin boundaries. Meanwhile, the
numerical results in Figure 3 demonstrate the emergence of
multistability in the presented sine system.

It can be concluded that due to the appearance of five
index-2 saddle foci and four index-1 saddle foci and their
interactions with each other, some disconnected attracting
regions are thereby formed in the neighborhoods around
these unstable saddle foci, resulting in the generation of
coexisting multiple disconnected attractors.

3. Initial Values-Related Coexisting Multiple
Bifurcation Modes

Because the presented sine system in (1) is symmetric about
the origin, the disconnected attracting regions have locally
symmetric behaviors, which are well exhibited in Figures 2
and 3. For this reason and convenient analysis, three sets of
the initial values (10− 6, 0, 0), (10− 6, 3, 0), and (10− 6, –3, 0) are
considered in next numerical plots. &e fourth-order
Runge–Kutta algorithm with the 0.01 s time step and (700 s,
800 s) time interval is used for depicting the phase plots and
bifurcation plots, whereas the fourth-order Runge–Kutta-
basedWolf’s method with the 0.01 s time step and 20 ks time
end is adopted for calculating the Lyapunov exponents.

Firstly, two-dimensional bifurcation plots (bifurcation
diagrams and dynamical maps) [23] are employed to show
complex dynamical behaviors in the presented sine system
intuitively, as shown in Figures 4 and 5. Here, both the
coupling coefficients k1 and k2 are simultaneously increased
in the region [2, 8] and two sets of initial values (10− 6, 0, 0)
and (10− 6, 3, 0) are chosen. Note that the exhibited two-
dimensional bifurcation behaviors are similar to each other
for the initial values (10− 6, 3, 0) and (10− 6, –3, 0) due to the
system symmetry.

As shown in Figure 4, the two-dimensional bifurcation
diagrams in the k1-k2 parameter plane are obtained by
calculating the periodicities of state variable x, which
demonstrate rich and complex coexisting dynamical be-
haviors related to system parameters and initial values. &e
stable points and chaotic attractors distribute in the black-
and red-colored regions, respectively, and the periodic
attractors with different periodicities situate in the other
colored regions. Comparing Figure 4(b) with Figure 4(a),
there is a big difference between the two dynamical be-
haviors in the lower right regions, which is triggered by the
initial values-dependent multistability in the presented sine
system, leading to the coexistence of multiple bifurcation
modes.

As shown in Figure 5, the two-dimensional dynamical
maps in the k1-k2 parameter plane under two sets of initial
values are depicted by evaluating the values of the largest
Lyapunov exponent. &e yellow-red-white colored regions
with different positive values of the largest Lyapunov ex-
ponent represent different chaotic behaviors, the black-
colored regions with different negative values of the largest
Lyapunov exponent only stand for stable point behaviors,
and the black-yellow colored regions with the zero largest
Lyapunov exponent represent different periodic behaviors.
In a similar manner, the dynamical behaviors described by
the dynamical maps in Figures 5(a) and 5(b) are of great
difference, which manifest how coexisting dynamical be-
haviors evolve for different initial values.

Similarly, the two-dimensional spectral entropy-based
complexity plots in the k1-k2 parameter plane are displayed
in Figure 6, where two sets of initial values (10− 6, 0, 0) and
(10− 6, 3, 0) are employed. On the basis of the Fourier
transform [32, 45], the complexity values are obtained by
calculating the spectral entropy of the time sequence of the
variable x. &e relatively large complexity value in Figure 6
indicates the appearance of an irregularly chaotic sequence,
whereas the relatively small complexity value in Figure 6
represents the occurrence of a regularly periodic sequence.
For the two sets of different initial values, there are some
differences in the complexity plots between Figures 6(a) and
6(b), implying that the system initial values have great effects
on the dynamical behaviors of the presented sine system.

&erefore, the dynamical maps shown in Figure 5 and
complexity plots shown in Figure 6 can reflect the dynamical
evolutions with the variations of the system parameters and
initial values, which are the effective supplements to confirm
the coexisting dynamical behaviors depicted by the bi-
furcation diagrams in Figure 4.

To visualize the coexisting multiple bifurcation modes
related to the initial values, three sets of initial values (10− 6, 0,
0), (10− 6, 3, 0), and (10− 6, –3, 0) are considered and both the
coupling coefficients k1 and k2 are simultaneously increased
in the region [2, 8]. Denote k1 � k2 � k as a bifurcation pa-
rameter. &e one-dimensional bifurcation plots with the
variation of the system parameter k are shown in Figure 7. In
Figure 7(a), the bifurcation diagrams drawn by the black,
blue, and red trajectories correspond to those initiated from
the initial values (10− 6, 0, 0), (10− 6, 3, 0), and (10− 6, –3, 0),
respectively. And in Figure 7(b), the first two Lyapunov
exponents associated with three sets of initial values are
drafted in the upper, middle, and bottom of Figure 7(b),
which entirely match with the bifurcation diagrams in
Figure 7(a). &erefore, when more initial values are con-
sidered, more complicated coexisting multiple bifurcation
modes can be revealed in the presented sine system.

Observed from Figure 7, abundant coexisting multiple
attractors’ behaviors related to the initial values are
exhibited, including stable points, periodic oscillations, and
chaotic oscillations along with period-doubling bifurcations,
tangent bifurcations, and crisis scenarios. When two sets of
initial values (10− 6, 3, 0) and (10− 6, –3, 0) are chosen, both the
depicted dynamical behaviors in Figure 7 are basically
identical over the entire parameter region, with only slight
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Figure 4: Two-dimensional bifurcation diagrams in the k1-k2 parameter plane through calculation of the periodicities of the state variable x
under two sets of initial values. (a) Initial values (10− 6, 0, 0). (b) Initial values (10− 6, 3, 0).
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di�erences in the parameter region (6.94, 7.58). However,
when the other two sets of initial values (10− 6, 0, 0) and (10− 6, 3,
0) are chosen, both the depicted dynamical behaviors in
Figure 7 have big di�erences in the parameter region (2.96,
5.24). As the parameter k is increased in this parameter region,
the moving orbit for (10− 6, 0, 0) goes into chaotic oscillating
state at k� 3.01 via period-doubling bifurcation route and
mutates into periodic oscillating state at k� 3.76 via chaos
crisis, whereas the moving orbit for (10− 6, 3, 0) turns into
periodic oscillating state from stable resting state at k� 3.14
and enters into chaotic oscillating state at k� 4.34 via period-
doubling bifurcation route with two relatively larger periodic
windows. Of course, in the parameter region (6.94, 7.58), some
slight di�erences between the depicted dynamical behaviors
under two sets of initial values (10− 6, 0, 0) and (10− 6, 3, 0) can
be seen for the presented sine system as well.

Except for the two examples in Figure 2, other examples
to exhibit coexisting multiple attractors’ behaviors are given
in Figure 8, where four sets of phase plots in the x-y plane are
provided together for the initial values (10− 6, 0, 0), (10− 6, 3,
0), and (10− 6, –3, 0). When k� 3, the coexistence of a period-
4 limit cycle and a pair of symmetric points is exhibited in
Figure 8(a). When k� 4.5, the coexistence of a large size
period-1 limit cycle and a pair of symmetric period-3 limit
cycles is demonstrated in Figure 8(b). When k� 7, the co-
existence of a chaotic attractor and a period-5 limit cycle is
illustrated in Figure 8(c). However, when k� 8, the co-
existence of two chaotic attractors with di�erent topologies
is disclosed in Figure 8(d). Consequently, various types of
coexisting attractors’ behaviors can be found in the pre-
sented sine system.

4. Validations by the Simulation-Oriented
Circuit Model

By employing PSIM Version 9.0.3 software, the simulation-
oriented circuit model for implementation of the presented
sine system is synthesized and its screen shot is given in
Figure 9, in which three operation channels containing three

integrators, three inverters and two sine function converters
are used to implement three state variables x, y, and z,
respectively.

Based on the simulation-oriented circuit model shown in
Figure 9, the state equations for the capacitor voltages vx, vy,
and vz are described by

RC
dvx
dt

� vy + vz −
R

Rk1
sin vy( ),

RC
dvy
dt

� − vx + vz,

RC
dvz
dt

� − vx − vz −
R

Rk2
sin vx( ).

(12)

where C1�C2�C3�C, Rk1�R/k1, and Rk2�R/k2. When
RC� 10 kΩ× 10 nF� 100 μs, i.e., R� 10 kΩ and C� 10 nF,
the circuit parameters Rk1 and Rk2 for PSIM circuit simu-
lations can be conveniently determined.

According to the system parameters k1 and k2 and the
initial values used in Figure 2, the circuit parameters Rk1 and
Rk2 have the same values, i.e., Rk1�Rk2. When
Rk1�Rk2� 2.78 kΩ and 2 kΩ, respectively, PSIM screen
captures are obtained in Figure 10, where the initial voltages
vx(0) and vz(0) of the capacitors C1 and C3 are always �xed
as 1 μV and 0V, respectively, and only the initial voltage
vy(0) of the capacitor C2 is adjusted as di�erent initial
values.

Similarly, based on the system parameters k1 and k2 and
three sets of initial values used in Figure 8, the circuit pa-
rameters are selected as Rk1�Rk2� 3.33 kΩ, 2.22 kΩ, 1.43 kΩ,
and 1.25 kΩ, respectively. �e corresponding PSIM screen
captures are attached in Figure 11, where the initial voltages
vx(0), vy(0), and vz(0) of the capacitors C1, C2, and C3 are
assigned as vx(0) � 1μV, vy(0) � 3V (or 0V and –3V), and
vz(0) � 0V, respectively.

PSIM circuit simulations in Figure 11(d) are slightly
di�erent from MATLAB numerical simulations in
Figure 8(d), which are mainly caused by the inconsistently
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Figure 8: Phase plots of coexisting attractors in the x-y plane for di�erent values of the parameter k. (a) Period-4 limit cycle coexisted
with a pair of symmetric points at k � 3. (b) Large-size period-1 limit cycle coexisted with a pair of symmetric period-3 limit cycles at
k � 4.5. (c) Chaotic attractor coexisted with period-5 limit cycle at k � 7. (d) Coexisting chaotic attractors with two topologies at k � 8.
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transient behaviors due to the existence of simulation errors
[46]. Ignoring the tiny di�erences between MATLAB nu-
merical simulations and PSIM circuit simulations, the re-
sults in Figures 10 and 11 e�ectively validate the coexisting
attractors’ behaviors disclosed in Figures 2 and 8.

Besides, it should be mentioned that the sine function
terms are the two key units for realizing the proposed 3-D
sine chaotic system. In the analog circuit experiments [47],
the sine function terms can be physically implemented using

two AD639AD trigonometric function converters. But the
system initials, corresponding to the initial capacitor volt-
ages, are hardly set in the experimental measurements. In
contrast, in the digital circuit experiments [48], the sine
function terms can be directly achieved by calling IP cores in
CORDIC library of FPGA and the system initials can be
readily preset. �erefore, a feasible way to realize the pro-
posed 3-D sine chaotic system could be implemented on the
FPGA, which is addressed in our future paper.
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5. Conclusion

�e autonomous chaotic systems can generate the con-
ventional self-excited attractors as their oscillations are
excited from the unstable determined equilibrium points.
�e mechanism for constructing chaotic systems with
coexisting multiple attractors is based on the fact that the
system equilibrium points can be reinstalled by newly in-
troduced sine nonlinearities, leading to the great variations
of their number, characteristics, and distributions [49].
�erefore, by introducing two sine nonlinearities into a
simple 3-D linear dynamical system, this paper presented a
novel and simple 3-D sine chaotic systemwith the reinstalled
�ve index-2 saddle foci and four index-1 saddle foci, from
which the abundant coexisting multiple attractors’ behaviors
were thereby revealed by numerical simulations, such as
phase plots, attraction basins, two-dimensional bifurcation
and complexity plots, and one-dimensional bifurcation
plots, and �nally validated by PSIM circuit simulations. �e

algebraic simplicity of system structure and topological
complexity of chaotic attractor are a long-term goal for
seeking a new chaotic system with coexisting behaviors,
which could acquire wide interest for its chaos-based en-
gineering applications [42, 50].
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