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Multistability is a critical property of nonlinear dynamical
systems, where a variety of phenomena such as coexisting
attractors can appear for the same parameters but with
different initial conditions. The flexibility in the system’s
performance can be achieved without changing parameters.
Complex dynamics have been observed in multistable sys-
tems, and we have witnessed systems with multistability in
numerous fields ranging across physics, biology, chemistry,
electronics, and mechanics, as well as reported applications
in oscillators and secure communications. It is now well
established from a variety of studies that multistable systems
are very sensitive to both random noise and perturbations.
Numerous studies such as open-loop control, feedback
control, adaptive control, intelligent control, and stochastic
control have been attempted to control multistable systems.

Recent attention has focused more on extraordinary
cases of systems with multistability, such as systems with
megastability and extreme multistability. A megastable
system can display countably infinite number of coexisting
attractors, whereas an extreme multistable system can ex-
hibit an uncountably infinite number of coexisting attrac-
tors. However, there are still various theoretical and
technical issues which should be investigated in such
multistable systems. Circuit design (numerical and hard-
ware) of multistable systems is a related research problem
with real-world applications, and fractional-order modelling
and realization of multistable systems also constitute a

complex and challenging task. Furthermore, circuit reali-
zations (simulations and hardware design) of multistable
systems are useful for various practical applications in
engineering.

This special issue aims to introduce and discuss novel
results, control techniques, and circuit simulations for
complex nonlinear systems with multistability. We had
received a total of 94 submissions. After the review process,
the acceptance rate is approximately 35.1%. This special issue
contains 33 articles, the contents of which are summarized as
follows.

In the article by M. F. Tsotsop et al, a new elegant
hyperjerk system with three equilibria and hyperbolic sine
nonlinearity is investigated. In contrast to other models of
hyperjerk systems where either hidden or self-excited
attractors are obtained, the case reported in this work
represents a unique one which displays the coexistence of
self-excited chaotic attractors and stable fixed points. The
dynamic properties of the new system are explored in terms
of equilibrium point analyses, symmetry, and dissipation
and existence of attractors as well. Common analysis tools
(i.e., bifurcation diagram, Lyapunov exponents, phase
portrait, etc.) are used to highlight some important phe-
nomena such as period-doubling bifurcation, chaos, peri-
odic windows, and symmetric restoring crises. More
interestingly, the system under consideration shows the
coexistence of several types of stable states, including the
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coexistence of two, three, four, six, eight, and ten coexisting
attractors. In addition, the system is shown to display
antimonotonicity and offset boosting. Laboratory experi-
mental measurements show very good coherence with the
theoretical predictions.

The objective of the article by J. H. Pérez-Cruz is to
estimate the unmeasurable variables of a multistable chaotic
system using a Luenberger-like observer. First, the ob-
servability of the chaotic system is analyzed. Next, a Lip-
schitz constant is determined on the attractor of this system.
Then, the methodology proposed by Raghavan and the result
proposed by Thau are used to try to find an observer. Both
attempts are unsuccessful. In spite of this, a Luenberger-like
observer can still be used based on a proposed gain. The
performance of this observer is tested by numerical simu-
lation showing the convergence to zero of the estimation
error. Finally, the chaotic system and its observer are
implemented using 32-bit microcontrollers. The experi-
mental results confirm good agreement between the re-
sponses of the implemented and simulated observers.

Semitensor product theory can deal with matrix mul-
tiplication with different number of columns and rows.
Therefore, a new chaotic system for different high dimen-
sions can be created by employing a semitensor product of
chaotic systems with different dimensions so that more
channels can be selected for encryption. R. Wang et al.
propose a new chaotic system generated by the semitensor
product applied on Qi and Lorenz systems. The corre-
sponding dynamic characteristics of the new system are
discussed in this article to verify the existences of different
attractors. The detailed algorithm is illustrated in this article.
The FPGA hardware encryption implementations are also
elaborated and conducted. Correspondingly, the random-
ness tests are realized as well, and compared with those of the
individual Qi system and Lorenz system, the proposed
system in this article owns the better randomness charac-
teristic. The statistical analyses, differential analyses, and
correlation analyses are also discussed.

The article by M. Yao et al. focuses on power generation
and nonlinear dynamic behaviors on a new bistable pie-
zoelectric-electromagnetic energy harvester. Three different
kinds of piezoelectric cantilever beam structures, which
include the monostable piezoelectric cantilever beam, the
bistable piezoelectric cantilever beam with the spring and the
magnet, and the bistable piezoelectric cantilever beam with
the spring, magnet and coil, are designed. The power gen-
eration efficiency and dynamic behaviors for each structure
are experimentally studied, respectively. Due to the spring
introduced, the system easily goes through the potential
barrier. Experimental results show that the power generation
structure of the bistable piezoelectric-electromagnetic har-
vester can vibrate between two steady states in a wider range
of the frequency. Therefore, the effective frequency band-
width is broadened about 2 Hz when the spring is introduced
under the condition of the suitable magnetic distance.
Comparing with the power generation efficiency for three
different kinds of structures, it is found that the bistable
piezoelectric-electromagnetic harvester has the optimum
characteristics, which include the optimal magnetic distance
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of 15mm, the optimal load of 8 MQ), and the parameter
variation law of coils. For this structure, the influences of the
external excitation and the magnetic distance on the output
voltage and dynamic behaviors of the system are examined.

In the article by X. Liu et al, a new fractional-order
discrete noninvertible map of cubic type is presented. Firstly,
the stability of the equilibrium points for the map is ex-
amined. Secondly, the dynamics of the map with two dif-
ferent initial conditions are studied by numerical simulation
when a parameter or a derivative order is varied. A series of
attractors are displayed in various forms of periodic and
chaotic ones. Furthermore, bifurcations with the simulta-
neous variation of both the parameter and the order are also
analyzed in the three-dimensional space. Interior crises are
found in the map as a parameter or an order varies. Thirdly,
based on the stability theory of fractional-order discrete
maps, a stabilization controller is proposed to control the
chaos of the map, and the asymptotic convergence of the
state variables is determined. Finally, the synchronization
between the proposed map and the fractional-order discrete
Loren map is investigated. Numerical simulations are used
to verify the effectiveness of the designed synchronization
controllers.

Aiming at the problem of weak security of compressed
sensing, J. Yu et al. combine the cryptographic character-
istics of chaotic systems with compressed sensing technol-
ogy. In the actual research process, the existing image
encryption technology needs to be applied to hardware. This
article focuses on the combination of image encryption
based on compressed sensing and digital logic circuits. The
authors propose a novel technology of parallel image en-
cryption based on a sequence generator. It uses a three-
dimensional chaotic map with multiple stability to generate
a measurement matrix. This study also analyzes the effec-
tiveness, reliability, and security of the parallel encryption
algorithm for source noise pollution with different distri-
bution characteristics. Simulation results show that parallel
encryption technology can effectively improve the efficiency
of information transmission and greatly enhance its security
through key space expansion.

In the article by X. Hu and P. Zhou, a 3D multistability
chaotic system with two coexisting conditional symmetric
attractors is studied by using a circuit block diagram and
realized by using an electronic circuit. The simulation results
show that two coexisting conditional symmetric attractors
are emerged in this electronic circuit. Furthermore, syn-
chronization of this 3D multistability chaotic system and its
electronic circuit is studied. It shows that the linear resistor
and the linear capacitor in parallel coupling can achieve
synchronization in this chaotic electronic circuit. That is, the
output voltage of the chaotic electronic circuit is coupled via
one linear resistor and one linear capacitor in parallel
coupling. The simulation results verify that synchronization
of the chaotic electronic circuit can be achieved.

In the article by J. Zhang and X. Xi, a decision-making
competition game model concerning governments, agri-
cultural enterprises, and the public, all of which participate
in the reduction of nitrogen emissions in the watersheds, is
established based on bounded rationality. First, the stability
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conditions of the equilibrium points in the system are
discussed, and the stable region of the Nash equilibrium is
determined. Then, the bifurcation diagram, maximal Lya-
punov exponent, strange attractor, and sensitive dependence
on the initial conditions are shown through numerical
simulations. The research shows that the adjustment speed
of three players’ decisions may alter the stability of the Nash
equilibrium point and lead to chaos in the system. Among
these decisions, a government’s decision has the largest effect
on the system. In addition, authors found that some pa-
rameters will affect the stability of the system; when the
parameters become beneficial for enterprises to reduce ni-
trogen emissions, the increase in the parameters can help
control the chaotic market. Finally, the delay feedback
control method is used to successfully control the chaos in
the system and stabilize it at the Nash equilibrium point. The
research of this article is of great significance to the envi-
ronmental governance decisions and nitrogen reduction
management.

L. Huang et al. have constructed a new 4D memristor-
based chaotic system by using a smooth flux-controlled
memristor to replace a resistor in the realization circuit of a
3D chaotic system. Compared with general chaotic systems,
the chaotic system can generate many coexisting attractors.
The proposed chaotic system not only possesses hetero-
geneous multistability but also possesses homogenous
multistability. When the parameters of the system are fixed,
the chaotic system only generates two kinds of chaotic
attractors with different positions in a very large range of
initial values. Different from other chaotic systems with
continuous bifurcation diagrams, this system has discrete
bifurcation diagrams when the initial values change. In
addition, this article reveals the relationship between the
symmetry of coexisting attractors and the symmetry of
initial values in the system. The dynamic behaviors of the
new system are analyzed by the equilibrium point and
stability, bifurcation diagrams, Lyapunov exponents, and
phase orbit diagrams. Finally, the chaotic attractors are
captured through circuit simulation, which verifies nu-
merical simulation.

L. K. Kengne et al. investigate the dynamics of a simple
jerk system with a hyperbolic tangent whose symmetry is
broken by adding a constant term modelling an external
excitation force. They demonstrate that the modified system
experiences several unusual and striking nonlinear phe-
nomena including coexisting bifurcation branches, hyster-
etic dynamics, coexisting asymmetric bubbles, critical
transitions, and multiple (i.e., up to six) coexisting asym-
metric attractors for some suitable ranges of system pa-
rameters. These features are highlighted by exploiting
common nonlinear analysis tools such as graphs of the
largest Lyapunov exponent, bifurcation diagrams, phase
portraits, and basins of attraction. The control of multi-
stability is investigated by using the method of linear aug-
mentation. The authors demonstrate that the multistable
system can be converted to a monostable state by smoothly
adjusting the coupling parameter. The theoretical results are
confirmed by performing a series of PSpice simulations
based on an electronic analogue of the system.

The article by A. Letafat et al. introduces an energy
management strategy (EMS) for a hybrid energy system
(HES) of a ferry boat with the goal to optimize the per-
formance and reduce the operation cost. HES considered for
the ferry boat consists of different devices such as the
proton-exchange membrane fuel cell (PEMFC), LI-ION
battery bank, and cold ironing (CI). PEMFC systems are
appropriate to employ as they are not polluting. The battery
bank compensates for the abrupt variations of the load as the
fuel cell has a slow dynamic against sudden changes of the
load. Also, CI systems can improve the reduction of the
expenses of energy management, during hours where the
ferry boat is located at the harbor. To study the performance,
the cost, and the pollution contribution (CO,, NOy, and
SOy) of the proposed hybrid energy management strategy
(HEMS), we compare it against three various types of HEM
from the state-of-the-art and also available rule-based
methods in the literature. The analysis results show a high
applicability of the proposed HES. All results in this article
have been obtained in the MATLAB software environment.

The article by R. J. Escalante-Gonzalez and E. Campos
presents an approach to design a multistable system with the
one-directional (1D), two-directional (2D), and three-di-
rectional (3D) hidden multiscroll attractor by defining a
vector field on R® with an even number of equilibria. The
design of multistable systems with hidden attractors remains
a challenging task. Current design approaches are not as
flexible as those that focus on self-excited attractors. To
facilitate a design of hidden multiscroll attractors, they
propose an approach that is based on the existence of self-
excited double-scroll attractors and switching surfaces
whose relationship with the local manifolds associated to the
equilibria leads to the appearance of the hidden attractor.
The multistable systems produced by the approach could be
explored for potential applications in cryptography since the
number of attractors can be increased by design in multiple
directions while preserving the hidden attractor allowing a
bigger key space.

In the article by C. Dai et al., a heterogeneous diffusive
prey-predator system is first proposed and then studied
analytically and numerically. Some sufficient conditions are
derived, including permanence and extinction of the system
and the boundedness of the solution. The existence of the
periodic solution and its stability are discussed as well.
Furthermore, numerical results indicate that both the spatial
heterogeneity and the time-periodic environment can in-
fluence the permanence and extinction of the system di-
rectly. The numerical results are consistent with the
analytical analysis.

A. K. Tarboush and Z. Zhang investigate the impact of a
periodically evolving domain on the dynamics of the dif-
fusive West Nile virus. A reaction-diffusion model on a
periodically and isotropically evolving domain which de-
scribes the transmission of the West Nile virus is proposed.
In addition to the classical basic reproduction number, the
spatial-temporal basic reproduction number depending on
the periodic evolution rate is introduced, and its properties
are discussed. Under some conditions, they explore the long-
time behavior of the virus. The virus will go extinct if the



spatial-temporal basic reproduction number is less than or
equal to one. The persistence of the virus happens if the
spatial-temporal basic reproduction number is greater than
one. They consider a special case when the periodic evo-
lution rate is equivalent to one to better understand the
impact of the periodic evolution rate on the persistence or
extinction of the virus. Some numerical simulations are
performed in order to illustrate the analytical results. The
theoretical analysis and numerical simulations show that the
periodic change of the habitat range plays an important role
in the West Nile virus transmission; in particular, the in-
crease in periodic evolution rate has a positive effect on the
spread of the virus.

The stability of grazing bifurcation is lost in three ways
through the local analysis of the near-grazing dynamics
using the classical concept of discontinuity mappings in
the two-degree-of-freedom vibroimpact system with
symmetrical constraints. For this instability problem, Z.
Wang et al. presented a control strategy for the stability of
grazing bifurcation by controlling the persistence of local
attractors near the grazing trajectory in this vibroimpact
system with symmetrical constraints. Discrete-in-time
teedback controllers designed on two Poincare sections are
employed to retain the existence of an attractor near the
grazing trajectory. The implementation relies on the sta-
bility criterion under which a local attractor persists near a
grazing trajectory. Based on the stability criterion, the
control region of the two parameters is obtained, and the
control strategy for the persistence of near-grazing
attractors is designed accordingly. Especially, the chaos
near codimension-two grazing bifurcation points was
controlled by the control strategy. In the end, the results of
numerical simulation are used to verify the feasibility of
the control method.

In the article by L. Ge and S. Chen, a new data-driven
learning method is investigated based on the dynamical data
of the system. A regularized regression wavelet (RRW)
approach is proposed to optimize the learning result for the
system fault. Based on the optimizing results, a fault tolerant
stability scheme is given. Then, the efficiency of the proposed
technique is verified by a vertical take-off and landing
(VTOL) aircraft stability example.

F. Yu et al. have introduced a novel multistable 5D
memristive hyperchaotic system and its application. The
interesting aspect of this chaotic system is that it has different
types of coexisting attractors, chaos, hyperchaos, periods,
and limit cycles. First, a novel 5D memristive hyperchaotic
system is proposed by introducing a flux-controlled mem-
ristor with quadratic nonlinearity into an existing 4D four-
wing chaotic system as a feedback term. Then, the phase
portraits, Lyapunov exponential spectrum, bifurcation di-
agram, and spectral entropy are used to analyze the basic
dynamics of the 5D memristive hyperchaotic system. For a
specific set of parameters, we find an unusual metastability,
which shows the transition from chaotic to periodic (period-
2 and period-3) dynamics. Moreover, its circuit imple-
mentation is also proposed. By using the chaoticity of the
novel hyperchaotic system, they have developed a random
number generator (RNG) for practical image encryption
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applications. Furthermore, security analyses are carried out
with the RNG and image encryption designs.

The disk dynamo system, which is capable of chaotic
behaviours, is obtained experimentally from two disk dy-
namos connected together. It models the geomagnetic field
and is used to explain the reversals in its polarity. Actually,
the parameters of the chaotic systems exhibit random
fluctuation to a greater or lesser extent, which can carefully
describe the disturbance made by environmental noise. In
the article by C. Feng et al.,, the global dynamics of the
chaotic disk dynamo system with random fluctuating pa-
rameters are concerned, and some new results are presented.
Based on the generalized Lyapunov function, the globally
attractive and positive invariant set is given, including a two-
dimensional parabolic ultimate boundary and a four-di-
mensional ellipsoidal ultimate boundary. Furthermore, a set
of sufficient conditions is derived for all solutions of the
stochastic disk dynamo system being global convergent to
the equilibrium point. Finally, numerical simulations are
presented for verification.

In the article by F. Yu et al., multistable modified fourth-
order autonomous Chua’s chaotic system is investigated. In
addition to the dynamic characteristics of third-order Chua’s
chaotic system itself, what interests authors is that this
modified fourth-order autonomous Chua’s chaotic system
has five different types of coexisting attractors: double-scroll,
single-band chaotic attractor, period-4 limit cycle, period-2
limit cycle, and period-1 limit cycle. Then, inductorless
modified fourth-order autonomous Chua’s chaotic circuit is
proposed. The active elements as well as the synthetic in-
ductor employed in this circuit are designed using second-
generation current conveyors (CClIs). The reason for using
CClIs is that they have high conversion rate and operation
speed, which enable the circuit to work at a higher frequency
range. The Multisim simulations confirm the theoretical
estimates of the performance of the proposed circuit. Finally,
using the RK-4 numerical algorithm of VHDL 32-bit 1Q-
Math floating-point number format, inductorless modified
fourth-order autonomous Chua’s chaotic system is imple-
mented on FPGA for the development of embedded engi-
neering applications based on chaos. The system is simulated
and synthesized on the Virtex-6 FPGA chip. The maximum
operating frequency of modified Chua’s chaotic oscillator
based on FPGA is 180.180 MHz. This study demonstrates
that hardware-based multistable modified fourth-order
autonomous Chua’s chaotic system is a very good source of
entropy and can be applied to various embedded systems
based on chaos, including secure communication, cryp-
tography, and random number generator.

J. Zhou and X. Chen construct a supply chain consisting
of a manufacturer and a retailer. Considering channel in-
tegration and service cooperation, two dynamic Stackelberg
game models are established: one without unit profit allo-
cation (M) and the other one with unit profit allocation
(M?). In two dynamic models, the authors analyze the
influence of relevant parameters on the stability and com-
plexity of the dynamic system and system profit by nonlinear
system theory and numerical simulation. They found that
the higher adjustment parameters can cause the system to
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lose stability, showing double-period bifurcation or wave-
shape chaos. The stable region becomes larger with increase
in service value and value of unit profit sharing. Besides,
when the system is in the chaotic state, the authors found
that the profit of the system will fluctuate or even decline
sharply; however, keeping the parameters in a certain range
is helpful in maintaining the system stability and is con-
ducive to decision makers to obtain steady profits. In order
to control the chaos phenomenon, the state feedback
method is employed to control the chaotic system well. This
study provides some valuable significance to supply chain
managers in channel integration and service cooperation.

Q. Li et al. consider a Stackelberg game model in a dual-
channel supply chain, which is composed of a manufac-
turer and a retailer. The manufacturer and the retailer
consider fairness concern in the market competition, and
the manufacturer takes market share and profit as his/her
business objectives. The entropy complexity and the dy-
namic characteristic of the dual-channel system are ana-
lyzed through mathematical analysis and numerical
simulation, such as local stability, bifurcation, entropy, and
chaos. The results show that, with the increase of price
adjustment speed, the dual-channel supply chain is more
complex and falls into a chaotic state in which system
entropy increases; the stability of the dual-channel supply
chain will be robust with the increase of weight of market
share and weaken with the increase of the fairness concern
level of the manufacturer and the retailer. The high level of
fairness concern of the manufacturer and the retailer is
always disadvantageous to the leading manufacturer but
not always bad for the follower retailer. The performance of
the dual-channel supply chain is improved with a high level
of the manufacturer’s fairness concern and reduced with a
high level of the retailer’s fairness concern. They also found
that the retailer will gain more profits in the chaotic state
than the stable state in the Stackelberg game model. The
variable feedback control method is applied to control the
chaos of the dual-channel supply chain, and choosing
appropriate control parameters can make the dual-channel
supply chain system return to the stable state from the
chaotic state or delay the system to enter the bifurcation
state. The research results can provide a guideline for
enterprise decision-making.

In the article by B. Yan et al., dynamical complexity and
multistability of electrostatic waves are investigated in four-
component homogenous and magnetized lunar wake
plasma constituting beam electrons, heavier ions (alpha
particles, He™), protons, and suprathermal electrons. The
unperturbed dynamical system of the considered lunar wake
plasma supports nonlinear and supernonlinear trajectories
which correspond to nonlinear and supernonlinear elec-
trostatic waves. On the contrary, the perturbed dynamical
system of lunar wake plasma shows different types of
coexisting attractors including periodic, quasi-periodic, and
chaotic, investigated by phase plots and Lyapunov expo-
nents. To confirm chaotic and nonchaotic dynamics in the
perturbed lunar wake plasma, 0-1 chaos test is performed.
Furthermore, a weighted recurrence-based entropy is
implemented to investigate the dynamical complexity of the

system. Numerical results show the existence of chaos with
variation of complexity in the perturbed dynamics.

The Kadomtsev—Petviashvili equation is one of the well-
studied models of nonlinear waves in dispersive media and
in multicomponent plasmas. In the article by H.-Y. Wu et al,,
the coupled Alice-Bob system of the Kadomt-
sev—-Petviashvili equation is first constructed via the parity
with a shift of the space variable x and time reversal with a
delay. By introducing an extended Bicklund transformation,
symmetry-breaking soliton, symmetry-breaking breather,
and symmetry-breaking lump solutions for this system are
presented through the established Hirota bilinear form.
According to the corresponding constants in the involved
ansatz function, a few fascinating symmetry-breaking
structures of the presented explicit solutions are shown.

B. Feng is concerned with a linear thermoelastic lami-
nated Timoshenko beam, where the heat conduction is given
by Cattaneo’s law. B. Feng firstly proves the global well-
posedness of the system. For stability results, the author
establishes exponential and polynomial stabilities by in-
troducing a stability number y.

G. Kai et al. study the influence of two-delay feedback
on the nonlinear dynamics behavior of the financial sys-
tem, considering the linear stability of the equilibrium
point under the condition of single delay and two delays.
The system undergoes Hopf bifurcation near the equi-
librium point. The stability and bifurcation directions of
Hopf bifurcation are studied by using the normal form
method and central manifold theory. The theoretical re-
sults are verified by numerical simulation. Furthermore,
one feature of the proposed financial chaotic system is that
its multistability depends extremely on the memristor
initial condition and the system parameters. It is shown
that the nonlinear dynamics of the financial chaotic system
can be significantly changed by changing the values of time
delays.

Results of A. Hadjimichael et al. show that classical
assumptions for fisheries management can yield severe
instabilities in the quantified views of socioecological
tradeoffs, making their ability to inform stakeholder
preferences questionable. The complex ecological inter-
actions implied by different parameterizations of such
systems yield highly complex and nonlinear dynamic
properties with multiple distinct basins of attraction. The
authors show that small changes in the deeply uncertain
representations of predator-prey systems can fundamen-
tally shift their dynamics and the validity of candidate
management strategies for harvest. Insights from this study
highlight the importance of ensuring models capture deep
uncertainties, as well as a breadth of financial and eco-
logical criteria, when searching for robust management
options for resilient fisheries.

A class of two-parameter mixed-mode oscillation with
time delay under the action of amplitude modulation is
studied by Y. Qian and W. Meng. The investigation is from
four aspects. Firstly, a parametric equation is considered as
a slow variable. By the time-history diagram and phase
diagram, the authors can find that the system generates a
cluster discovery image. Secondly, the Euler method is used



to discrete the system and obtain the discrete equation.
Thirdly, the dynamic characteristics of the system at dif-
ferent time scales are discussed when the ratio of the
natural frequency and the excitation frequency of the
system is integer and noninteger. Fourthly, the authors
discuss the influence of time delay on the discovery of
clusters of this kind of system. The research shows that the
time lag does not interfere with the influence of the cluster
image, but the dynamics of the upper and lower parts of the
oscillation in each period will be delayed. So, they can
improve peak performance by adjusting the time lag and
obtain the desired peak. Finally, the authors explore the
multistate dynamic response of a two-dimensional non-
autonomous Duffing system with higher order. According
to the bifurcation diagram and the time-history curve,
bistable state will appear in the system within the critical
range. With the gradual increase of parameters, the chaotic
attractor will suddenly disappear which will lead to the
destruction of the bistable state.

F. A. Rihan et al. study the dynamics of a two-prey one-
predator system, where the growth of both prey populations
is subject to Allee effects, and there is a direct competition
between the two-prey species having a common predator.
Two discrete time delays 7; and 7, are incorporated into the
model to represent the reaction time of predators. Sufficient
conditions for local stability of positive interior equilibrium
and existence of Hopf bifurcations in terms of threshold
parameters 7; and 7; are obtained. A Lyapunov functional is
deducted to investigate the global stability of positive in-
terior equilibrium. Sensitivity analysis to evaluate the un-
certainty of the state variables to small changes in the Allee
parameters is also investigated. Presence of Allee effect and
time delays in the model increases the complexity of the
model and enriches the dynamics of the system. Some
numerical simulations are provided to illustrate the effec-
tiveness of the theoretical results. The model is highly
sensitive to small changes in Allee parameters at the early
stages and with low population densities, and this sensitivity
decreases with time.

The article by S. M. Boulaaras et al. deals with the study
of the existence of weak positive solutions for sublinear
Kirchhoft elliptic systems with the zero Dirichlet boundary
condition in the bounded domain Q ¢ R" by using the sub-
supersolution method.

The article by Y. Bouizem et al. deals with the study of the
existence of weak positive solutions for a new class of the
system of elliptic differential equations with respect to the
symmetry conditions and the right-hand side which has
been defined as multiplication of two separate functions by
using the sub-supersolution method.

By introducing a flux-controlled memristor model
with absolute value function, a 5D multistable four-wing
memristive hyperchaotic system (FWMHS) with linear
equilibrium points is proposed in the article by F. Yu et al.
The dynamic characteristics of the system are studied in
terms of the equilibrium point, perpetual point, bifur-
cation diagram, Lyapunov exponential spectrum, phase
portraits, and spectral entropy. This system is of the group
of systems that have coexisting attractors. In addition, the
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circuit implementation scheme is also proposed. Then, a
secure communication scheme based on the proposed 5D
multistable FWMHS with disturbance inputs is designed.
Based on parametric modulation theory and Lyapunov
stability theory, synchronization and secure communi-
cation between the transmitter and the receiver are re-
alized, and two message signals are recovered by a
convenient robust high-order sliding mode adaptive
controller. Through the proposed adaptive controller, the
unknown parameters can be identified accurately, the gain
of the receiver system can be adjusted continuously, and
the disturbance inputs of the transmitter and the receiver
can be suppressed effectively. Thereafter, the convergence
of the proposed scheme is proven by means of an ap-
propriate Lyapunov functional, and the effectiveness of
the theoretical results is testified via numerical
simulations.

The article by S. S. Askar and A. Al-khedhairi studies
the dynamic characteristics of triopoly models that are
constructed based on a 3-dimensional Cobb-Douglas
utility function. The article presents two parts. The first
part introduces a competition among three rational firms
on which their prices are isoelastic functions. The com-
petition is described by a 3-dimensional discrete dy-
namical system. The authors examine the impact of
rationality on the system’s steady-state point. The sta-
bility/instability of this point is illustrated. Numerically,
the authors give some global analysis of the Nash point
and its stability. The second part deals with heterogeneous
scenarios. It consists of two different models. In the first
model, the authors assume that one competitor adopts the
local monopolistic approximation mechanism (LMA),
while the other opponents are rational. The second model
assumes two heterogeneous players with the LMA
mechanism against one rational firm. Studies show that
the stability of the NE point of those models is not
guaranteed. Furthermore, simulation shows that when
firms behave rational with symmetric costs, the stability of
the NE point is achievable.

The article by H. Wu et al. presents a novel and simple
three-dimensional (3D) chaotic system by introducing
two sine nonlinearities into a simple 3D linear dynamical
system. The presented sine system possesses nine equi-
librium points consisting of five index-2 saddle foci and
four index-1 saddle foci which allow the coexistence of
various types of disconnected attractors, also known as
multistability. The coexisting multiple attractors are
depicted by the phase plots and attraction basins.
Coexisting bifurcation modes triggered by different
initial values are numerically simulated by two-dimen-
sional bifurcation and complexity plots under two sets of
initial values and one-dimensional bifurcation plots
under three sets of initial values, which demonstrate that
the abundant coexisting multiple attractors” behaviors in
the presented sine system are related not only to the
system parameters but also to the initial values. A sim-
ulation-oriented circuit model is synthesized, and PSIM
(power simulation) screen captures well validate the
numerical simulations.
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This paper focuses power generation and nonlinear dynamic behaviors on a new bistable piezoelectric-electromagnetic energy
harvester. Three different kinds of piezoelectric cantilever beam structures, which include the monostable piezoelectric cantilever
beam, the bistable piezoelectric cantilever beam with spring and magnet, and the bistable piezoelectric cantilever beam with
spring, magnet, and coil, are designed. The power generation efficiency and dynamic behaviors for each structure are experi-
mentally studied, respectively. Due to the spring introduced, the system easily goes through the potential barrier. Experimental
results show that the power generation structure of the bistable piezoelectric-electromagnetic harvester can vibrate between two
steady states in a wider range of the frequency. Therefore, the effective frequency bandwidth is broadened about 2 Hz when the
spring is introduced under the condition of the suitable magnetic distance. Comparing with the power generation efficiency for
three different kinds of structures, it is found that the bistable piezoelectric-electromagnetic harvester has the optimum
characteristics, which include the optimal magnetic distance of 15 mm, the optimal load of 8 M(), and the parameters variation law
of coils. For this structure, the influences of the external excitation and the magnetic distance on the output voltage and dynamic

behaviors of the system are examined.

1. Introduction

The energy harvesting technology is a way to convert the
energy of the environment into electrical energy, for ex-
ample, solar energy, heat energy, sound energy, wind energy,
and vibration energy. Based on much research results, the
conversion efficiency of the environmental vibration energy
is the best. Therefore, the vibration energy harvester has been
widely studied. At present, there are three kinds of the vi-
bration energy harvesters, such as the electrostatic type, the
piezoelectric type, and the electromagnetic type. Since the
electrostatic type of the energy harvester requires the ex-
ternal power supply and has usually the complex structure,
there are few studies. Because the piezoelectric structure and
the electromagnetic structure have great harvesting

efficiencies and do not need the external power supply, these
two structures have been widely investigated. In recent years,
scholars have theoretically and experimentally studied the
power generation efficiency and dynamic behaviors of the
piezoelectric beam structure and the electromagnetic power
generation structure. A number of innovative structures
have been proposed. The study on energy harvesters of
piezoelectric type, electromagnetic type, and piezoelectric-
electromagnetic combined type is introduced as follows.
The first type of the vibration energy harvesting is the
piezoelectric type, which utilizes the piezoelectric effect of
materials to convert the vibration energy of the environment
into the electrical energy. The piezoelectric power generation
has advantages of the great output voltage, the simple
structure, no electromagnetic interference, and no pollution.
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The piezoelectric power generation structures do not need
the external power supply, so it has been widely investigated.
Researchers have designed many kinds of the piezoelectric
energy harvesters. Roundy et al. [1] studied a method of
power supply for wireless sensor nodes based on low am-
plitude vibrations. The results of simulations showed that the
output power of the piezoelectric structure was obviously
great. Leland and Wright [2] designed and tested a vibration
energy harvester with the tunable resonance frequency. This
structure reduced its resonance frequency by using the novel
method of an axially compressing piezoelectric beam. Beeby
et al. [3] did a review of the vibration energy harvesting for
the wireless and self-powered microsystems applications.
There were three main approaches that could be used to
capture the vibration energy of the environment. The ad-
vantages and disadvantages of each technology were de-
scribed in this review. Mann and Owens [4] investigated a
nonlinear energy harvester, which used magnetic interac-
tions to design a generator with a bistable potential well.
Both theoretical and experimental results showed that the
potential well-escaped phenomenon broadened the effective
frequency bandwidth of the energy harvester. Stanton et al.
[5] examined a bistable nonlinear piezoelectric generator,
which could respond in a wide range of the frequencies.
Erturk and Inman [6] explored the relation between the
power generation efficiency and nonlinear vibration of the
bistable piezoelectric cantilever beam. They found that the
magnetic piezoelectric structure had a larger vibration
amplitude and a greater output power than the piezoelectric
structure without magnet. Ferrari et al. [7] established a
nonlinear energy harvesting system of the single magnet.
The experimental results indicated that the bistable motion
significantly improved the output voltage and the output
power. Ma et al. [8] theoretically and experimentally in-
vestigated a magnetic piezoelectric energy harvester. The
frequency bandwidth of the magnetic piezoelectric structure
was broadened effectively compared with the piezoelectric
structure without magnet. Arrieta et al. [9] examined a novel
piezoelectric energy harvester with the bistable cantilevered
structure. The bistable cantilevered structure enhanced the
harvesting efficiency of the system. Al-Ashtari et al. [10]
introduced a new design of the energy harvester, which
improved the output power without changing the resonance
frequency of the structure. The stiffness of the structure was
added by the attractive force between two permanent
magnets. Theoretical and experimental results showed that
the great output power was generated when the piezoelectric
cantilever beam only had a slight deformation. Ali and Kyle
[11] explored a vibration energy harvester based on a
miniature asymmetric air-spaced cantilever beam, which can
generate the great power density. It was sufficient to support
the electric power of the most wireless sensor nodes. Fan
et al. [12] designed a roller to actuate vibration of the pie-
zoelectric beam, which can capture the energy from both
sway and bidirectional vibrations. Yao et al. [13] investigated
complicated nonlinear dynamic behaviors of the simply
supported laminated composite piezoelectric beam sub-
jected to the axial load and the transverse load. Numerical
results showed that the periodic motions and the chaotic
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motions existed in nonlinear vibrations of the system. Jemai
et al. [14] studied parameter optimization of a vibration
energy harvester by using piezocomposite material and
interdigitated electrode. Arkadiusz et al. [15] exploited the
snap-through phenomenon between two stable states of a
bistable energy harvesting device. Xie and Wang [16] ex-
amined a high efficient cylinder composite piezoelectric
energy harvester. The newly designed cylinder piezoelectric
energy harvester can provide more efficient energy har-
vesting under a higher dimension and a higher rotating
speed of the roller.

The second type of the vibration energy harvesting is the
electromagnetic type, which uses Faraday’s law of electro-
magnetic induction to convert the vibration energy of the
environment into the electrical energy. The power genera-
tion structure of the electromagnetic induction does not
require the external power supply. It has been widely used in
the field of the power generation. Galchev et al. [17] in-
vestigated an electromagnetic vibration power generator,
which can efficiently harvest the energy from low-frequency
excitations and nonlinear vibrations. Sari et al. [18] exam-
ined a wideband electromagnetic vibration generator. The
microgenerator generated the stable output power in a wide
range of the external excitation frequencies. Mann and Sims
[19] experimentally and theoretically investigated a novel
energy harvesting device, which used the magnetic levitation
to design an oscillator with the tunable resonance frequency.
The results showed that the nonlinear phenomenon can be
exploited to improve the effectiveness of the energy har-
vesting devices. Sardini and Serpelloni [20] experimentally
studied a nonlinear electromagnetic energy harvester for
capturing the vibration energy of the low frequency. The
effectiveness of harvesting of the nonlinear structure was
greater than that of the linear structure. Zorlu et al. [21]
presented a new electromagnetic energy harvester based on
vibration, which harvested the energy from low-frequency
vibration within a range of 1-10 Hz. The electromagnetic
energy harvester with the magnet and the spring was pro-
posed by Foisal et al. [22]. The friction between the magnet
and the tube was reduced by using the lubricant in order to
improve the output voltage. Ramlan et al. [23] carried out an
experimental study to illustrate the dynamic characteristic of
the dual mode and the bistable nonlinear energy harvester
under the harmonic excitation. The nonlinear device had a
greater power generation efficiency than that of the linear
device. Kremer and Liu [24] investigated the energy har-
vester with the nonlinear energy sink. It had the capacity of
absorbing the energy in a wide range of frequencies. Seol
et al. [25] studied the combined energy harvester with si-
multaneous triboelectric and electromagnetic power gen-
eration. Resali and Salleh [26] investigated the performance
of two types of the electromagnetic power generation de-
vices, which one used the wound coil wire and the other used
the printed circuit board coil.

The third type of the vibration energy harvesting is the
piezoelectric-electromagnetic combined power generation
structure. In order to improve the power generation effi-
ciency of the energy harvester, there is a new trend towards
simultaneously ~using the piezoelectric type, the
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electromagnetic type, the photovoltaic type, and other en-
ergy conversion types. Since the electromechanical coupling
coeflicient of the electromagnetic and piezoelectric power
generation structure is great, the piezoelectric-electromag-
netic combined power generation structures are paid more
attention. The prospects of the combined power generation
devices are valued by many experts. Wacharasindhu and
Kwon [27] experimentally dug into a novel microenergy
harvester, which can harvest the energy from typing motions
on the computer keyboard. Tadesse et al. [28] analyzed a
multimode energy harvesting device, which combined
electromagnetic and piezoelectric energy harvesting mech-
anism. The harvesting efficiency of the device was improved
in a wide range of the frequencies. Challa et al. [29] studied a
coupled piezoelectric-electromagnetic energy harvesting
technique for improving the performance of the power
generation devices. Karami and Inman [30] proposed a
novel combined energy harvester, which used the nonlinear
harvesting mechanisms to improve the output power and
broaden the frequency bandwidth. A novel piezoelectric and
electromagnetic combined energy harvester was investigated
by Yang et al. [31]. When the polarization direction of
magnets was perpendicular to the plane of coils, coils
generated the maximum output voltage. Wang et al. [32]
examined a two-degree-of-freedom combined energy har-
vester based on the piezoelectric and electromagnetic con-
duction. They concluded that the power generation
efficiency of the combined energy harvester was greater than
that of the single energy harvester. Mahmoudi et al. [33]
validated the enhancement of the performance of a com-
bined nonlinear energy harvester by theoretical investiga-
tion, which is based on the piezoelectric and electromagnetic
transduction. Hamid and Yuce [34] designed a new wearable
energy harvesting system combined piezoelectric and elec-
tromagnetic energy harvesters. It harvested the energy from
low-frequency vibrations of the human motion. It showed
that the combined power generation structure could be
applied to the life. Yao et al. [35, 36] studied carefully power
generations of the bistable energy harvester with L-shaped
piezoelectric cantilever beam.

The piezoelectric power generation structures combined
with electromagnetic induction were studied by a few
scholars. At present, most of investigations were focused on
the monostable piezoelectric-electromagnetic combined
power generation structure. There were few investigations
on the bistable piezoelectric-electromagnetic combined
power generation structures. A multimode vibration gen-
erator, which combines the piezoelectric power generation,
the electromagnetic power generation, and the bistable
structure, is designed. This multimode vibration generator
has been applied for the international patent (PCT/CN2015/
077888), and the patent has been public. In the next study,
the power generation efficiency of the bistable piezoelectric-
electromagnetic combined power generation structure is
explored, and dynamic behaviors of it are analyzed.

In this paper, the power generation efficiency and dy-
namic behaviors of the bistable piezoelectric-electromag-
netic combined energy harvester based on vibration are
mainly studied. The design of both bistable and multimode

structure improves the power generation efficiency of the
piezoelectric part and the electromagnetic part. The magnet
at the end of the spring does the telescopic reciprocating
motion in the tube so that the magnetic flux of the coil is
constantly changing to induce electromotance. The influence
of external excitation frequencies, external excitation am-
plitudes, magnetic distances, loads, and coils on the power
generation efficiency of the bistable piezoelectric-electro-
magnetic combined power generation structure is explored.
Dynamic behaviors of the system under the different ex-
ternal excitation are studied. Comparing with the earlier
studies given by Yao et al. [37], this paper is extended to add
the analysis of the potential energy for the bistable power
generation structure and explore the influences of the
magnetic distance, the optimal external load, and coils on
the power generation.

2. Experimental Setups

In the experiment, the piezoelectric cantilever beam, coils,
magnets, and the spring are fixed on the fixture. The fixture is
fixed on the vibration exciter. The signals are sent to the
power amplifier by the signal generator to control vibration
of the piezoelectric cantilever beam. The displacement of
vibration of the piezoelectric cantilever beam is captured by
using the high precision laser detector, and the time-dis-
placement data are obtained. Then, data are sent to computer
by the LK-G controller. The output voltage of the system is
measured by multimeter. Finally, time-displacement data
are analyzed by the LK-Navigator and Origin software. The
experimental setups include the YE1311 signal generator, the
YE5874 power amplifier, the JZK series of the electric vi-
bration exciter, the high precision laser detector, the mul-
timeter, and the LK-Navigator, as shown in Figure 1(a). The
experiment fixture and the circuit are shown in Figure 1(b).

3. Experimental Materials

The materials used in the experiment are the piezoelectric
beam, coils, resistances, springs, magnets, and wires, as
shown in Figure 2. The piezoelectric material used in the
experiment is the PVDF. The PVDF material is not easily
damaged when the cantilever beam vibrates with a large
vibration amplitude. The base layer of the piezoelectric beam
is the brass. The PVDF layers and the brass are combined by
the conductive adhesive. The length of the piezoelectric
beam is 90 mm, the width is 10 mm, and the thickness is
0.51 mm, respectively. The thickness of the PVDF layer is 30
microns. The piezoelectric materials on the upper and lower
layers are fully covered. The piezoelectric strain constant is
17 PC/N. The piezoelectric voltage constant is 0.2 Vm/N. The
size of the square magnet at the end of the piezoelectric beam
is 8mm x 5mm x 2mm. The diameter of the cylindrical
magnet at the end of the spring is 10 mm, and the thickness is
8 mm. The coil is the copper wire. The length of the soft
spring is 20 mm, and the initial wire diameter of the spring is
0.5 mm. The initial spring stiffness is 1018 N/m, as calculated
by the formula k = (Gd*/8D?), where k indicates the spring
stiffness; G denotes the shear module of the spring and
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FiGure 1: Experimental setups: (a) experimental apparatus; (b) experimental fixture and circuit.
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FIGURE 2: Experimental materials: (a) variable resistance; (b) magnet; (c) PVDF piezoelectric beam; (d) coil; (e) wire; (f) spring and magnet
connection; (g) load.
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G =8 x 10" Pa; d is the initial wire diameter of the spring
and d = 0.5 mm; and D represents the initial diameter of the
spring and D = 8.5mm. The spring does the telescopic
movement with a large amplitude when the magnetic force is
weak.

4. Potential Energy of the Bistable
Experimental Model

At present, most of scholars have investigated the monostable
piezoelectric-electromagnetic combined power generation
structure. Since the monostable structure has some disad-
vantages, a bistable model for the piezoelectric cantilever
beam power generation structure is proposed. Moreover, a
coil is added to introduce the electromagnetic induction
power generation. The model of the structure in this paper is
shown in Figure 3. There is a magnet on the opposite position
of the piezoelectric cantilever beam, which is fixed at the end
of the soft spring in the sleeve. The inner surface of the sleeve
is smooth. The magnet does the reciprocating motion in the
sleeve. So, the magnetic flux changes continuously through
the coil, which results in generating the electromotance.
Since the formation of the bistable structure is mainly
caused by the magnetic potential energy of the system, the
analysis of the potential energy for the bistable power gen-
eration structure needs to be performed. The bistable beam has
two stable positions and an unstable position, as shown in
Figure 4(a). The potential function of the bistable piezoelectric-
electromagnetic combined generator is established as follows:

U=Ug+Uy +Uyg, (1)

where Uy indicates the structural potential energy, U, is the
magnetic potential energy, and Uy denotes the elastic po-
tential energy.

Based on the von Karman nonlinear strain displacement
relation, the strain displacement relation of the x direction is
given as follows:

ou, 1(ouw, ? azwo
=—+-=—| - 2
5= ox 2<ax) o @

The constitutive equations of the piezoelectric layer are
described as follows:

T =CS-dE,
D =dS 3)
=dS +¢E,
where T indicates the stress, D is the electric displacement, C
denotes the modulus of the elasticity, S represents the strain,
d is the piezoelectric constant, E indicates the electric field
intensity, and ¢ denotes the dielectric constant.
Therefore, the structural potential energy of the system is
expressed as follows:

1 1
Ug = S LS(CS —dE)dv - 5 LE(dS —¢E)dv,

(4)
\Y4
E=—0—
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where v is the volume of the piezoelectric beam, V indicates
the electric potential difference, and (h; — h,) represents the
thickness of piezoelectric layer.

The structural potential energy is obtained as follows:
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Next, the magnetic potential energy of the system is

established in this section. First of all, the repulsive force of
two magnets can be described as follows [38]:

3 h,, B} .
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where [, indicates the length of the magnet, w,, is the width
of the magnet, h,, denotes the height of the magnet, y
represents the magnetic permeability, B, indicates the
magnetic flux density on the magnet polarity surface, and d,,
is the distance between two magnets.

The vertical component force F, of the repulsive force F,
is related to the displacement w,, along the vertical direction
of the magnet, and it can be written as follows:

Wo
Vud v d, 7

The magnetic potential energy is expressed as follows:

F,=F,x

z
UM = J FZdZ
0
(8)
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where k, represents the repulsive force F,.
Finally, the elastic potential energy of the system is

calculated. The expression for the deformation of the spring
is obtained as follows:

F, k,d,,
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FIGURE 4: Bistable model and the potential curve of the structure: (a) mechanical model of the structure; (b) the relation of the potential well

and the bistable state.

Substituting equations (5), (8), and (10) into equation
(1), the potential function is obtained as follows:

where k, indicates the stiffness coefficient of the spring.
The elastic potential energy of the system is written as

follows:
2 2
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[9, 10], it is known that vibrations of the first-order mode for
the beam play an important role during vibration. The power

Based on the practical working condition of the structure
and theoretical and numerical studies given by Arrieta et al.
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generation of the bistable piezoelectric-electromagnetic
combined structure mainly depends on vibration of the first-
order mode in the beam. Galerkin approach is applied to
obtain ordinary differential equations for the potential of the
system. Galerkin approach is derived by the Taylor ex-
pansion method, which is a mathematically convergent
method. Thus, the first-order discretization of equation (11)
is expressed as follows:

wy = ¢ (Dw, (), (12)

where ¢, (x) = chd;x — cosA;x + ((shA,l —sin A1)/ (chA 1 +
cos A1) (shA,x — sin A, x).

Substituting equation (12) into equation (11), the po-
tential function is obtained by calculating as follows:

I
U = Luw, - Lw; + [;w; - 2Lw, + I{ —°— ) -1,
wi + I

(13)
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Bistable states of the system exist in a certain practical
physical parameter range. The potential energy equation (13)
of the system is derived from the practical bistable model.
Since we have conducted a series of experimental studies in
this paper, in the process of experiments, we need to
compare experimental results by changing the practical
parameters, such as magnetic distances, coils, and loads.
Thus, parameters of the model are not unique. In order to
ensure the universality of the study, dimensionless param-
eters were used. The parameters of equation (13) are selected
as 1, =06, 1,=006 I, =—4, I, =—0.1, I; = 0.2, I, = 0.3,
and I, = 0.1, and Figure 4(b) is obtained by Maple software.
Conclusions can be drawn from Figures 4(a) and 4(b) that
the structure has two stable states, which correspond to the
upper potential well and the lower potential well. The
structure has one unstable state, which corresponds to the
potential barrier. Therefore, the generator is the bistable
structure. When the piezoelectric cantilever beam obtains
the enough large energy to go through the potential barrier,
the structure can vibrate between the two stable states. Thus,
the frequency bandwidth of the power generation for the
structure is broadened. The power generation efficiency of
the structure is greatly improved. The schematic diagram of
the overall experimental model is shown in Figure 5.

The power generation structure with the bistable states
and multimode generates much larger energy when the
beam produces a large amplitude vibration. Since the spring
is soft, the magnet moves fast inside the coil when the pi-
ezoelectric beam vibrates between two stable positions.
When the piezoelectric cantilever beam moves from each

where

stable position to the unstable position, the repulsive force
between magnets increases gradually. Based on the bistable
structure, the spring component is introduced. When the
spring is compressed, the repulsive force of the structure
with the spring is smaller than that of the structure without
the spring. Under the case of the spring, the energy required
to pass through the barrier is reduced in the structure. The
piezoelectric cantilever beam is easier to go through the
potential barrier. The combination of the bistable states and
multimode structure makes the piezoelectric beam vibrate
between two stable positions easily, and the power gener-
ation efficiency of the system is greatly improved. Therefore,
the piezoelectric-electromagnetic combined generator has
much a greater power generation efficiency.

5. Experimental Result Analysis

The power generation efficiency and dynamic behaviors of
the piezoelectric-electromagnetic combined generator are
investigated. The power generation efficiency of the single
piezoelectric cantilever beam structure and the piezoelectric-
electromagnetic combined power generation structure is
compared. Then, magnetic distances, coils, and loads of the
structure are optimized. The diagrams of experimental
setups are shown in Figure 6. Figures 6(a) and 6(b) indicate
the piezoelectric cantilever beam placed in the upper po-
tential well and the lower potential well, respectively. In the
experiment, three different kinds of power generation
structures are studied, as shown in Figure 7. The structure A
is the conventional monostable piezoelectric cantilever beam
structure. The structure B indicates the bistable piezoelectric
cantilever beam structure introduced the spring and the
magnet. The structure C is the bistable piezoelectric-elec-
tromagnetic combined power generation structure, which
introduced the spring, the magnet, and the coil.

5.1. Power Generation Efficiency of Structures

5.1.1. Influence of Excitation Frequencies on the Power
Generation of Structures. Firstly, the power generation of
the structure A and the structure B is investigated. In order
to ensure the reliability of the experimental results, four
groups of experiments are performed under the conditions
of different magnetic distances. The external excitation is
given in the form of the sinusoidal signal A sinwt. The
external excitation amplitude is selected as 2.5V. The ex-
ternal excitation frequency increases from 5Hz to 20 Hz
with 0.2 Hz step size. In the experiment, the effective output
voltage is defined to compare the effective frequency
bandwidth of different structures. Thus, it is assumed that
the effective output voltage is greater than or equal to 3V.
The effective frequency bandwidth is the difference between
the maximum external excitation frequency and the mini-
mum external excitation frequency in the range of the ef-
fective voltage. In the experiment, the maximum output
voltage of the structure A is 12.337V, and the effective
frequency bandwidth of structure A is 4 Hz.

In the first group, the magnetic distance of structure B is
15mm. The experimental results are shown in Figure 8, in
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FIGURE 8: Relation of the frequency-voltage of the structure A and
the structure B is given when the initial magnetic distance of the
structure B is 15 mm.

which the maximum output voltage of structure B is
15.214 V. The output voltage of structure B is greater than
that of structure A. The range of two black dashed lines,
which are vertical to the horizontal axis, is the effective
frequency bandwidth of structure A, as shown in Figure 8.
The range of two red dashed lines is the effective frequency
bandwidth of structure B, as shown in Figure 8. The effective
frequency bandwidth of structure B is 5.8 Hz. The effective
frequency bandwidth of structure B is wider than that of
structure A.

In the second group, the magnetic distance of structure B
is 14mm. The results can be seen from Figure 9 that the
maximum output voltage of structure B is 14.882V. The
maximum output voltage of the bistable structure B is
greater than that of the monostable structure A. The effective
frequency bandwidth of structure B is 5.8 Hz. Comparing
with structure A, the effective frequency bandwidth of
structure B is broadened.

In the third group, the magnetic distance of structure B is
13 mm. It can be shown from Figure 10 that the maximum
output voltage of structure B is 12.478 V. The maximum
output voltage of the system is improved. The effective
frequency bandwidth of structure B is 6.2 Hz. The effective
frequency bandwidth of the system is broadened.

In the fourth group, the magnetic distance of structure B
is 12 mm. The effective frequency bandwidth of the system is
4 Hz. Since the magnetic distance of 12 mm is too small, the
repulsive force between two magnets is too great. The pi-
ezoelectric cantilever beam cannot go through the potential
barrier so that the beam cannot conduct a large amplitude
vibration. The results show that the magnetic distance is too
small to generate the large output voltage.

Based on the above experiments, it is found that the
piezoelectric cantilever beam is easier to go through the
potential barrier when the spring and the magnet are in-
troduced under the condition of a suitable magnetic

Voltage (V)

Frequency (Hz)

—a— Structure A
—e— Structure B

FIGURE 9: Relation of the frequency-voltage of the structure A and
the structure B is given when the initial magnetic distance of the
structure B is 14 mm.
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Frequency (Hz)

—s— Structure A
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FIGURE 10: Relation of the frequency-voltage of the structure A and
the structure B is given when the initial magnetic distance of the
structure B is 13 mm.

distances. Therefore, the cantilever beam produces large
amplitude vibrations in a wide range of frequencies. The
effective frequency bandwidth of the system is broadened
under the case of a suitable magnetic distance after the
spring is introduced.

In the following experiment, the power generation of
structure B and structure C is studied. Experiments are
carried out to confirm what the range of magnetic distances
is good for the power generation of structure B and structure
C. It is found that the power generation efficiency of the
system is relatively great when the magnetic distance is from
11 mm to 16 mm. Therefore, the magnetic distances of this
experiment are 11 mm, 12 mm, 13 mm, 14 mm, 15 mm, and
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16 mm. The comparison of the power generation efficiency
of structure B and structure C under the different magnetic
distances is given, as shown in Table 1. Based on the bistable
piezoelectric cantilever beam structure with the spring and
the magnet, it is found that the output voltage is improved,
and the effective frequency bandwidth is broadened when
the coil is introduced. According to Table 1, the maximum
output voltage of structure B and structure C is further
compared, as shown in Figure 11. It can be seen in Figure 11
that the introduction of the coil improves the maximum
output voltage of structure C. The conclusion is drawn that
the power generation efficiency of structure C is the best
among three kinds of structures.

Subsequently, the influence of excitation frequencies on
the power generation of structure C under the different
magnetic distances is studied. Figure 12 is obtained when
magnetic distances are 12 mm, 13 mm, 14 mm, and 15mm,
respectively. It can be observed from Figure 12 that the
output voltage of the system is quite small when the
structure just starts to vibrate in the low-frequency range.
When the external excitation frequency increases to 9.5 Hz,
the piezoelectric cantilever beam goes through the potential
barrier to perform a larger amplitude vibration. The output
voltage of the system improves sharply. The structure
generates the maximum output voltage when the external
excitation frequency is about 9.8 Hz. When the external
excitation frequency continues to increase, the output
voltage decreases gradually. Therefore, the power generation
efficiency of the structure is the best when the external
excitation frequency is near the frequency of passing
through the potential barrier.

It is found from Figure 12 that the power generation ef-
ficiency of the structure is very small when the magnetic dis-
tance is 12 mm. Since the magnetic distance is less than 12 mm,
the magnetic force is too great. The energy required becomes
greatly when the cantilever beam goes through the potential
barrier. So, the cantilever beam cannot go through the potential
barrier easily. The cantilever beam only conducts small am-
plitude vibration near the one stable position, and the power
generation efficiency of the system is not good. The conclusion
can be obtained that the power generation efficiency of structure
C can be improved under suitable magnetic distances.

5.1.2. Influence of External Excitation Amplitudes on the
Power Generation of Structures. In the above experiment,
the piezoelectric cantilever beam goes through the potential
barrier when the external excitation frequency is about
9.5Hz. So, the external excitation frequency is selected as
9.5Hz. The external excitation amplitude increases from
0.5V to 2.5V with 0.1 V step size. The magnetic distances are
13 mm, 14 mm, and 15 mm, respectively. The experimental
results are shown in Table 2. Compared with the output
voltage of structure B, the output voltage of structure C
improves 6.2% when the magnetic distance is 15mm. The
output voltage of structure C is improved 8.29% than that of
structure B when the magnetic distance is 14 mm. Compared
with structure B, the output voltage of structure C improves
1.72% when the magnetic distance is 13 mm.

Complexity

In this section, we mainly discuss the influence of ex-
ternal excitation amplitudes on the power generation of
three different kinds of structures. Conclusions are obtained
from Figure 13 that the power generation efficiency of
structure B and structure C is worse than that of structure A
when the external amplitude is less than 1.3 V. Since the
cantilever beam cannot go through the potential barrier, the
structures show the monostable vibration behaviors and the
power generation efficiency of the structures are quite small.
When the cantilever beam goes through the potential bar-
rier, the output voltage of structure B and structure C
improves greatly. The output voltages of structure B and
structure C are greater than that of structure A. It is found
from Figure 13 that the output voltage of structure B and
structure C improves rapidly when the external excitation
amplitude is greater than 2.3 V.

5.2. Dynamic Behaviors of Structures. The power generation
efficiency of structures mainly depends on two factors,
which one is the output frequency bandwidth and the other
is the output voltage of the structure. In the above experi-
mental studies, we mainly analyze the influence of external
excitation frequencies and amplitudes on the power gen-
eration of structures in order to determine what structure
produces the most largest power generation. Based on the
experimental results, we have drawn the following
conclusions:

(1) From the opinion of the output frequency band-
width, the power generation of structure B is better
than that of structure A, and the power generation of
structure C is better than that of structure B. The
output frequency bandwidth of structure C is the
best among three kinds of structures.

(2) From the opinion of the output voltage, the output
voltages of structure B and structure C are greater
than that of structure A when the external excitation
amplitude is greater than 2.3V. Structure B and
structure C produce almost the same amount of the
output voltage.

(3) In a word, the power generation efficiency of the
structure C is the best among three kinds of struc-
tures, and the power generation of the structure A is
the worst. Structure A is the monostable structure,
and both structure B and structure C are bistable
structures. Since the output frequency bandwidth of
the bistable structure is wider than that of the
monostable structure, the power generation effi-
ciency of structures B and C is better than that of
structure A.

(4) The power generation capacity of the bistable
structure depends on the nonlinear dynamic char-
acteristics of the structure. So, complicated dy-
namical behaviors of structures A and C need to be
further analyzed. In order to find the advantages of
dynamical characteristics for the bistable structure,
dynamic behaviors of the monostable structure and
the bistable structure are comparatively studied.
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TaBLE 1: Comparison of the power generation efficiency of the
structure A, the structure B, and the structure C is given when the

external excitation frequency is studied.
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A is the conventional monostable piezoelectric cantilever beam; B indicates the
bistable piezoelectric cantilever beam with the spring and the magnet; C indicates
the bistable piezoelectric cantilever beam with the spring, the magnet, and the coil.
Freq indicates the effective frequency bandwidth of structures; V' indicates the
maximum output voltage; V% indicates the growth rate of the maximum output
voltage; V% indicates the average growth rate of the output voltage.
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FiGure 11: Maximum output voltage of the structure B and the
structure C.

According to the above experiment of the influence of
external excitation amplitudes on the power generation of
structures, it is found that the output voltage of structure C
improves rapidly when the external excitation amplitude is
greater than 2.3 V. But, the maximum excitation amplitude,
which the experimental equipment can provide, is 2.5V.
Thus, the external excitation amplitude is selected as 2.5 V in
this experiment. In the previous experiment, the power
generation efficiency of the structures is worse when the
excitation frequency is greater than 30 Hz. Therefore, the
external excitation frequency increases from 5Hz to 30 Hz.
Dynamic behaviors of the piezoelectric cantilever beam are
analyzed when magnetic distances are 13 mm, 14 mm, and
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FIGURE 12: Relation of the voltage-frequency of different magnetic
distances.

TaBLE 2: Comparison of the power generation efficiency of the
structure A, the structure B, and the structure C is given when the
external excitation amplitude is studied.

Magnetic distance

(mm) Structure V (V) V%
— A 12.281 —
15 c 152 62
14 c oy 8
. s e

A is the conventional monostable piezoelectric cantilever beam; B indicates
the bistable piezoelectric cantilever beam with the spring and the magnet; C
indicates the bistable piezoelectric cantilever beam with the spring, the
magnet, and the coil. V indicates the maximum output voltage; V% in-
dicates the average growth rate of the output voltage.

15 mm, respectively. Based on the above experiment, we find
that the output voltage becomes larger with the increase in
the vibration amplitude of the piezoelectric beam. The value
of the output voltage relies on the amplitude of vibration for
the structure.

5.2.1. Dynamic Behaviors of the Structure A. When the
external excitation frequency is changed from 5Hz to
20.6 Hz, dynamic behaviors of the cantilever beam show the
period-1 motion, as shown in Figure 14. When the external
excitation frequency is changed from 20.6Hz to 30Hz,
dynamic behaviors of the quasiperiod motion are obtained,
as shown in Figure 15. In the experimental study of this
paper, the material of the piezoelectric cantilever beam is
PVDF, which is relatively flexible and prone to the large
deformation. At the same time, the length-width ratio of the
piezoelectric cantilever beam is larger, which is easy to
produce the large deformation. Although structure A is a



12 Complexity

16
14 |
12

10 +

Voltage (V)

0.5 1.0 1.5 2.0 2.5
Amplitude (V)

—a— Structure A
—e— Structure B
—a— Structure C

FIGURE 13: Relation of the voltage-amplitude of three structures is given when magnetic distances of the structure B and the structure C are
both 14 mm.

0.4 80
60 |
. 40 +
: .
:/ g 20 I~
o
- z oo
g g
7 i
a 40 b
60 |
14 L ! ) | ] _80 I ! ! | i | I | |
30 31 32 33 34 35 -14 -12 -10 -08 -06 -04 -02 00 02 04
Time (s) Displacement (mm)
() (b)
0.8 -
0.6
g
)
<
E 04
a,
=
<
0.2
00 1 1 | 1 ]
0 10 20 30 40 50
Frequency (Hz)

(c)
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frequency Q = 15Hz: (a) waveform; (b) phase portrait; (c) amplitude spectrum.
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FIGURre 15: Quasiperiodic motion of the structure A is obtained for the external excitation frequency Q = 20.8 Hz: (a) waveform; (b) phase

portrait; (c) amplitude spectrum.

conventional monostable system, it has nonlinear phe-
nomena. Thus, the quasiperiod motion in structure A is
caused by geometric nonlinearity with the large deforma-
tion. Dynamic behaviors of structure A are given as follows:
period-1 motion — quasiperiod motion. It can be seen
from experimental results that nonlinear dynamic behaviors
of the conventional monostable piezoelectric cantilever
beam are not obvious. The vibration amplitude of the
quasiperiod motion for structure A is smaller than that of the
period-1 motion. Therefore, the power generation efficiency
of the period-1 motion for structure A is better than that of
the quasiperiod motion.

5.2.2. Dynamic Behaviors of the Structure C. Dynamic be-
haviors of structure C are analyzed in this section. When the
magnetic distance is chosen as 15 mm, dynamic behaviors of
the system change 10 times. When the magnetic distance is
selected as 14 mm, dynamic behaviors of the system change
12 times. When the magnetic distance is 13 mm, dynamic
behaviors of the system change 10 times. The chaotic motion
occurs in vibration of the structure under the conditions of
three different magnetic distances. It is observed that rich

and complex nonlinear dynamic behaviors occur in vibra-
tion of the system when the spring and the magnet are
introduced.

Dynamic behaviors of structure C are shown in
Figures 16-27 when the magnetic distance is selected as
14 mm. In these figures, (a) is the waveform diagram of the
system, (b) is the phase portrait of the system, and (c) is the
amplitude spectrum of the system. When the external ex-
citation frequency is from 5Hz to 10.4 Hz, the period-1
motion appears in the system, as shown in Figure 16. When
the external excitation frequency is less than 9.5Hz, the
cantilever beam vibrates only in the upper potential well so
that the vibration amplitude of the beam is small and in-
creases slowly. When the external excitation frequency in-
creases to 9.8 Hz, the piezoelectric cantilever beam goes
through the potential barrier, and the vibration amplitude of
the beam increases sharply. A snap-through phenomenon
occurs in the output voltage of the system, in which the
output voltage of the system reaches the maximum value.
Existence of a snap-through phenomenon corresponds to
the period-1 motion in vibration of the system.

When the external excitation frequency increases to
10.4Hz, Figure 17 shows the occurrence of the chaotic
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amplitude spectrum.
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FIGURE 19: Multiperiod motion of the system is obtained for the external excitation frequency Q = 12.2 Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.
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F1Gure 20: Chaotic motion of the system is obtained for the external excitation frequency Q = 12.4 Hz: (a) waveform; (b) phase portrait; (c)

amplitude spectrum.
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(c) amplitude spectrum.

motion in vibration of the cantilever beam. Since the vi-
bration amplitude of the chaotic motion becomes small, the
output voltage of the system decreases. When the external
excitation frequency changes from 12Hz to 12.2Hz, the

dynamic behavior of the system shows the period-2 motion,
as shown in Figure 18. The vibration amplitude of the pe-
riod-2 motion is larger than that of the chaotic motion.
When the external excitation frequency changes from
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FiGgure 25: Chaotic motion of the system is obtained for the external excitation frequency Q = 19.6 Hz: (a) waveform; (b) phase portrait;
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FIGURE 27: Period-1 motion of the system is obtained for the external excitation frequency Q = 27.4 Hz: (a) waveform; (b) phase portrait;
(c) amplitude spectrum.

12.2Hz to 12.4 Hz, the dynamic behavior of the system il-  excitation frequency range of 0.2Hz. When the external
lustrates the multiple period motion, as shown in Figure 19.  excitation frequency changes from 12.4Hz to 13 Hz, the
The vibration amplitude becomes large in the external  dynamic behavior of the chaotic motion is obtained, as
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shown in Figure 20. The nonlinear dynamic behavior is
obvious, and the piezoelectric cantilever beam continues
to vibrate between two stable states. When the external
excitation frequency changes from 13 Hz to 13.4 Hz, the
dynamic behavior of the system shows the multiple period
motion, as shown in Figure 21. When the external exci-
tation frequency changes from 13.4Hz to 14.2Hz, the
dynamic behavior of the system displays the period-3
motion, as shown in Figure 22. When the external exci-
tation frequency changes from 14.2Hz to 14.6 Hz, the
dynamic behavior of the system demonstrates the qua-
siperiod motion, as shown in Figure 23. The piezoelectric
cantilever beam cannot go through the potential barrier,
and the output voltage of the system decreases signifi-
cantly. According to the above dynamical analysis, it is
found that the system can go through the potential barrier
to realize the bistable structure at the appropriate fre-
quency range when the magnetic distance is given. The
repulsive force between two magnets can be self-tuning by
introducing the spring, and the energy going through the
potential barrier decreases. The system can vibrate be-
tween two stable states, and the output voltage is greater in
a wide range of frequencies.

When the external excitation frequency gradually be-
comes larger, the system can only vibrate in the one stable
state. When the external excitation frequency is chosen from
14.6 Hz to 19.6 Hz, the dynamic behavior of the period-1
motion is obtained, as shown in Figure 24. When the ex-
ternal excitation frequency changes from 19.6 Hz to 23 Hz,
there is the appearance of the chaotic motion in the system,
as shown in Figure 25. When the external excitation fre-
quency changes from 23 Hz to 26 Hz, the dynamic behavior
of the system shows the period-1 motion. The vibration
amplitude of the system increases slightly, and the output
voltage improves slightly.

When the external excitation frequency continues to
increase, the piezoelectric cantilever beam vibrates between
two stable states again. When the external excitation fre-
quency changes from 26 Hz to 27.4Hz, the dynamic be-
havior of the system demonstrates the period-2 motion and
the output voltage of the system improves, as shown in
Figure 26.

When the external excitation frequency is increased
continuously, the system comes back to the one stable state
again. When the external excitation frequency changes from
27.4Hz to 30Hz, the dynamic behavior of the period-1
motion is obtained, as shown in Figure 27. The vibration
amplitude of the cantilever beam is quite small when the
external excitation frequency is larger than 30Hz. The
phenomenon of two stable states cannot appear in vibration
of the piezoelectric cantilever beam.

According to the above analysis of the experimental
results, the law of dynamic behaviors for the system is given
as follows: period-1 motion — chaotic motion —
period-2 motion — multiple period motion — chaotic
motion — multiple period motion — period-3 motion
— quasiperiod motion — period-1 motion — -
chaotic ~ motion — period-1  motion — period-2
motion — period-1 motion.

Complexity

When external excitation frequencies are 10.4 Hz, 12 Hz,
and 19.6 Hz, respectively, the chaotic motion occurs in vi-
bration of structure C under the case of the magnetic dis-
tance of 15 mm. There is the existence of the chaotic motion
in structure C under the case of the magnetic distance of
13mm when the external excitation frequency is 11.8 Hz,
12.4Hz, and 14 Hz, respectively. The experimental results
show that dynamic behaviors of the system are complex
when the structure is introduced the spring and the magnet.
The bistable phenomenon and the self-tuning magnetic
distance are beneficial to broaden the effective frequency
bandwidth of the structure.

5.3. Influence of the Magnetic Distance on the Power
Generation. The purpose of investigating the magnetic
distance is to improve the performance of the multimode
power generation device. The problem proposed is whether
there is an optimum range of the initial magnetic distances,
which make the power generation efficiency of the structure
greater. Since the optimum range of the initial magnetic
distances exist in the system, the energy through the po-
tential barrier is reduced. The piezoelectric beam easily
produces large amplitude vibration between two stable
states. In order to obtain an optimum range of the initial
magnetic distances, the experiments are conducted under
the case of the different magnetic distances. Through further
analysis, the optimal initial magnetic distance is found,
which makes the power generation efficiency of the system
greatest.

In the experiment, the external excitation amplitude is
selected as 2.5V, and the external excitation frequency in-
creases from 5Hz to 20 Hz. It is obtained from previous
experiments that the power generation efficiency of the
system is great when the initial magnetic distances are se-
lected from 11mm to 16 mm. Figure 28 shows that the
power generation efficiency of the system is greater when the
initial magnetic distances are 13 mm, 14 mm, and 15mm,
respectively. Therefore, the optimum range of the initial
magnetic distances is from 13mm to 15mm. When the
initial magnetic distances are too small, the piezoelectric
beam cannot go through the potential barrier, which results
in the smaller output voltage. When the initial magnetic
distances are too large, it is difficult to realize the bistable
structure. The cantilever beam cannot produce large am-
plitude vibration in a wide range of frequencies. Therefore,
the performance of the power generation for the system is
improved effectively in an optimum range of the initial
magnetic distances.

In the following experiment, the optimal magnetic
distance is studied in the optimum range of the initial
magnetic distances, which are changed from 11mm to
16 mm. It is observed from Figure 29 that the optimal initial
magnetic distance is 15 mm.

5.4. Optimal External Load of the Structure. In fact, the power
generation device is required to connect with the external
load. The external load must affect the output power of the
system. So, there is the optimal external load, which makes
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the output power of the system greatest. In this experiment,
the external loads are connected at the end of the generator.
The output power of structure C is calculated by measuring
the output voltage of each external load. Through the ex-
perimental analysis, the optimal external load of the system
is obtained.

In the experiment, the external excitation amplitude is
2 V. The external excitation frequency increases from 5 Hz to
30 Hz. Experimental results show that the output power of
the system is very low when external loads are less than
1 MQ, as shown in Figure 30. Firstly, the output power is
examined when external loads are 1 MQ, 3 MQ, and 5MQ,
respectively, as shown in Figure 31(a). The output power of
the system increases with the increase in external loads.
Then, external loads are chosen as 6 MQ, 8 M(), and 10 MQ.
It is shown in Figure 31(b) that the output power of the
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FIGURE 30: Relation of the power-frequency of the system is given
when external loads are selected as 300kQ, 500kQ, 1 MQ, and
5MQ, respectively.

external load 8 MQ) is greater than that of the external load
6 MQ. When the external load is 8 MQ), the output power is
maximum. When the external load increases to 10 M), the
output power decreases. Figure 31(c) illustrates that the
output power of the system decreases with the increase in
external loads when external loads of 11 MQ and 12 MQ are
studied. In order to analyze whether the optimal external
load of the system is about 8 M, the output power of the
system is further studied when external loads are from 7 MQ
to 9 MQ. Experimental results show that the output power of
the system with the external load of 8 MQ) is the greatest, as
shown in Figure 31(d). Based on Figure 31, the conclusion is
drawn that the optimal external load of the system is about
8 MQ). Figure 32 further exhibits the relationship between
the output power and the external load of the system.

Based on the above experiment, we have obtained the
optimal external load of the system is 8 MQ. It is further
studied whether different initial magnetic distances affect the
optimal load of the system. In the experiment, the initial
magnetic distances are selected as 12mm and 15mm, re-
spectively. The external excitation amplitude of two groups
of experiments is both selected as 2 V. It can be seen from
Figure 33 that optimal external loads are both 8 MQ) under
two different initial magnetic distances. Therefore, the initial
magnetic distance cannot have an effect on the optimal
external load of the system.

5.5. Influence of Coils on the Power Generation. In the above
experiment, the influence of external excitation frequencies,
external excitation amplitudes, magnetic distances, and
loads on the power generation of the system is studied. In the
following experimental investigation, the influence of coils
from the electromagnetic induction generator on power
generation of the system is examined. The coil is the copper
wire. The main parameters of coils include the height, turns,
and the wire diameter. Since the power generation efficiency
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F1GURE 31: Relation of the power-frequency of different external loads is given: (a) external loads are 1 MQ,3 MQ, and 5 M), respectively;
(b) external loads are 6 MQ), 8 MQ), and 10 MQ, respectively; (c) external loads are 10 MQ, 11 MQ, and 12 MQ, respectively; (d) external

loads are 7MQ, 8 MQ, and 9 MQ, respectively.

of structure C is the greatest, the influence of parameters of
coils on the power generation efficiency of structure C is
studied. In the experiment, the external excitation amplitude
is selected as 2 V. The influence of heights, turns, and wire
diameters of the coil on the power generation efficiency is
investigated. =~ Experimental results are shown in
Figures 34-37.

In the first step, the influence of the coil height on the
power generation efficiency of the system is examined.
When the effect of the coil height is studied, the other
parameters of coils remain unchanged in the same group of
the experiment. The relationship between the output voltage
and the external excitation frequency is investigated under
the different coil heights. Two different turns of coils are
selected to prove that the coil height has a universal effect on
power generation of structure C. When turns of coils are

selected as 100, Figure 34(a) is obtained. Figure 34(a)
demonstrates the comparison of the power generation of
the system when heights of coils are selected as 10 mm and
20 mm, respectively. When heights of coils are not changed
and turns of coils are chosen as 200, Figure 34(b) is given. It
can be obtained from Figures 34(a) and 34(b) that the output
voltage of the system, whose the coil height is 10 mm, is
greater than that of the system, whose coil height is 20 mm.
Therefore, the power generation efficiency of the system
decreases when the coil height increases.

Secondly, the influence of the coil turns on the power
generation of the system is analyzed, as shown in Figures 35
and 36. The turns of coils are 50 turns, 100 turns, 150 turns,
and 200 turns, respectively. The power generation efficiency
of the coil of 100 turns is greater than that of the coil of 50
turns, as shown in Figure 35(a). It can be seen from
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Figure 35(b) that the power generation efficiency of the
system decreases when turns of coils increase from 100 turns
to 150 turns. It can be obtained from Figure 35(c) that the
power generation efficiency of the system decreases when
turns of coils increase from 150 turns to 200 turns.
Therefore, the power generation efliciency of the system is
the greatest when turns of the coil are 100 turns. The result
also can be drawn from Figure 36 that the coil has optimal
turns, which make the power generation efficiency of the
system greatest.

Finally, the influence of wire diameters of the coil on the
power generation efficiency of the system is investigated, as
shown in Figure 37. The output voltage of the system im-
proves with the decrease in wire diameters of coils.
Therefore, the power generation efficiency of the system is
improved when wire diameters of coils are increased.

6. Conclusions and Discussion

In this paper, three different kinds of generators are
designed: one is the monostable piezoelectric cantilever
beam structure (structure A), and other two kinds of
structures are bistable piezoelectric cantilever beam struc-
tures (structures B and C). The power generation and dy-
namic behaviors of the different structures are investigated.
Following conclusions are drawn:

(1) Comparing the monostable structure with the bistable
structure, the power generation of structures B and C
is better. The bistable structure is easier to go through
the potential barrier by introducing the spring so that
the cantilever beam vibrates between two stable states
in a wide range of frequencies when the magnetic
distance is suitable. When the magnetic distance is
very small, the structure produces the larger magnetic
force. So, the cantilever beam is difficult to go through
the potential barrier, and the nonlinear dynamic
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behavior is not obvious. When the magnetic distance
is too large, the system makes the magnetic force quiet
small. The bistable phenomenon of the cantilever
beam disappears. Thus, the system improves the
output voltage and broadens the effective frequency
bandwidth under the condition of the suitable mag-
netic distance. When the bistable structure is intro-
duced in the electromagnetic power generation, the
output voltage of the system can be further improved.
Therefore, the power generation of structure C is the
best among three kinds of generators.

(2) The power generation capacity of the bistable
structure depends on the nonlinear dynamic char-
acteristics of the structure. So, dynamical behaviors
of structure C have been studied in detail. The ex-
perimental results show that dynamic behaviors of
the system are rich and complex when the spring and
the magnet are introduced. The repulsive force be-
tween two magnets can be self-tuning, and the en-
ergy through the potential barrier decreases when
the spring is introduced. The system can vibrate
between two stable states and the output voltage is
greater. The bistable phenomenon and the self-
tuning magnetic distance are beneficial to broaden
the effective frequency bandwidth of the structure.

(3) The smaller the energy passes through the potential
barrier, the greater the power generation efficiency is
produced by structure C. Since the magnetic distance
affects the energy through the potential barrier, it is
needed to find the optimal magnetic distance. In the
experiment, the optimum range of the initial mag-
netic distance and the optimal magnetic distance is
investigated in detail. It is found that the optimal
initial magnetic distance is 15 mm, which makes the
power generation efficiency of the system greatest.

(4) In fact, the power generation of structure C is re-
quired to connect with the external load, which can
affect the output power of the system. So, there is the
optimal external load, which makes the output
power of the system greatest. In the experiment, the
influence of the external loads on the output power is
studied under different initial magnetic distances. It
is found that the optimal external load is 8 MQ. In
addition, the initial magnetic distance cannot have
an effect on the optimal external load of the system.

(5) Since structure C includes the electromagnetic in-
duction generator, the influence of coils on power
generation is needed to further examine. In the
experiment, the influence of heights, turns, and wire
diameters of the coil on the power generation effi-
ciency is investigated in detail. It is found that the
power generation efficiency of the system decreases
when heights of coils increase. The optimal turns of
coils are found, which makes the power generation
efficiency of the system greatest. It is also observed
that the wire diameter of the coil is too large to
improve the power generation efficiency of the
system.
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In this contribution, a new elegant hyperjerk system with three equilibria and hyperbolic sine nonlinearity is investigated. In
contrast to other models of hyperjerk systems where either hidden or self-excited attractors are obtained, the case reported in this
work represents a unique one which displays the coexistence of self-excited chaotic attractors and stable fixed points. The dynamic
properties of the new system are explored in terms of equilibrium point analyses, symmetry and dissipation, and existence of
attractors as well. Common analysis tools (i.e., bifurcation diagram, Lyapunov exponents, and phase portraits) are used to
highlight some important phenomena such as period-doubling bifurcation, chaos, periodic windows, and symmetric restoring
crises. More interestingly, the system under consideration shows the coexistence of several types of stable states, including the
coexistence of two, three, four, six, eight, and ten coexisting attractors. In addition, the system is shown to display anti-
monotonicity and offset boosting. Laboratory experimental measurements show a very good coherence with the
theoretical predictions.

d"x dx dx
1. Introduction a f et ) (1)

Most authors have been interested in chaotic systems
because of their sensitivity to the initial conditions and
also to the variation of system parameters. Since the
discovery of this phenomenon by Lorenz [1], many
classical chaotic systems have emerged. We can mention
the Rossler system [2], Chen system [3], Jafari system [4],
Pham system [5], and Lii system just to name a few [6]. In

When n=3, we have (d’x/df®)= f((d*x/dt?),
(dx/dt), x), which is called “jerk system” [13]. For n>4, (1)
turns to “hyperjerk system” or “snap system” [14]. In the
literature, several authors have studied the latter. Generally,
these systems exhibit multistability phenomenon which are
the coexistence of multiple attractors solely depending on
the initial conditions. These attractors are generally classified

the last few years, special attention has been given to “jerk
systems” because of their simplicity and complex dy-
namics [7-12]. From a mathematical point of view, a
generalization of the jerk dynamics is usually given in the
following form:

into two categories, namely, self-excited and hidden
attractors [15-20]. Remember that self-excited attractors
exist in systems with unstable equilibrium points [21-23]. In
contrast, hidden attractors are characterized by the systems
with no equilibrium [24-29], either by a line or a curve of
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equilibrium points, or system with stable equilibrium points
[24, 25]. In addition, hidden attractors have a basin of at-
traction which does not intersect with the neighborhoods of
equilibria.

Interested by the self-excited attractors, many authors
applied different techniques to hyperjerk systems. Some of
these authors introduced different types of nonlinearities. For
instance, in 2006, Cklouverakis and Sprott [22] presented a
numerical study of a simple subclass of hyperjerk systems and
showed that the 4™ and 5" order hyperjerk systems developed
some simple chaotic behaviors. In 2015, Sundiarapandian and
coworkers [23] presented a new hyperchaotic 4-D hyperjerk
system by adding a quadratic nonlinearity to the hyperjerk
system of Chlouverakis-Sprott system. The authors present
some qualitative and quantitative analyses of the new system.
In 2017, Daltzis et al. [13] introduced a new hyperjerk system
with two nonlinearities (absolute value and quintic term) and
showed that the new system can develop hyperchaotic be-
haviors. Recently, Leutcho et al. [21] presented a new
hyperjerk circuit with hyperbolic sine function and demon-
strated that the novel proposed system is the unique one
which is capable to exhibit the coexistence of nine periodic
and chaotic attractors.

Motivated by the above mentioned results, we present a
new hyperjerk system with nonlinear position feedback in-
volving a hyperbolic sine function. Our circuit is derived from
the hyperjerk system proposed by Dalkirian and Sprott [7] by
replacing the exponential nonlinearity by the hyperbolic sine
function. The striking aspect of the proposed system is its
ability to develop the coexistence of up to ten disconnected
attractors including periodic, chaotic, and point attractors. The
objectives of this work are as follows: (a) to present an ana-
Iytical study of the proposed hyperjerk system; (b) to highlight
regions in which we observe the coexistence of multiple
attractors; (c) to point out some striking features like anti-
monotonicity and offset boosting; and (d) to verify the fea-
sibility of the proposed model through an experimental study.

This research is organized as follows. Section 2 deals with
the modeling process. The electronic consuration of the
hyperjerk circuit is presented and the suitable mathematical
model is derived to describe the dynamics of the novel
hyperjerk, wherein some basic properties of the model are
equally presented. In Section 3, the bifurcation structures of
the system are investigated numerically. Also, in this section,
some tools are used to show multistability observed in the
novel system. Section 4 contains experimental study, and at
the end of this section, it appears that coherence is observed
between the theoretical and experimental analysis. Finally,
Section 5 presents conclusion.

2. Description and Analysis of the Model

2.1. Circuit Description. It is important to know that the new
circuit proposed here derives from the hyperjerk system pro-
posed by Dalkirian and Sprott [7]. It is obtained by substituting
the exponential nonlinearity by the hyperbolic sine function.
Figure 1 represents the schematic diagram of the novel
hyperjerk circuit. The circuit consists of four successive inte-
grators associated to several feedback loops. In addition, the
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nonlinear feedback loop linked with the pair of semiconductor
diodes (D,,D,) is applied to the first integrator. The sym-
metrical nature [30] of the system is due to the antiparallel
configuration of the diodes. In such type of configuration, the
voltage across each diode is equal to the voltage of the resulting
two-terminal device, while the current is the addition of the
currents flowing through each diode. The symmetrical property
of the nonlinearity is necessary for the occurrence of symmetric
attractors [30]. We would like to recall that the pair of semi-
conductor diodes is the only nonlinear element responsible for
the chaotic behavior displayed by the whole electronic circuit.

2.2. State Equations. The following assumptions will be
adopted throughout our analysis. Firstly, we considered that
capacitors and operational amplifiers are ideal with the latter
operating in linear domains. Secondly, the current-voltage
characteristic (3) of the pair of semiconductor diodes
(D, and D,) is obtained from the Shockley diode equation
[31, 32] as follows:

Iy=1Ip —Ip = Is[exp(V/nVy) - 1]

_ (2)

- Is[exp(=V /nV ) = 1] = 2Igsinh (V4/nVy),
where Ig, Vi = (k,T/q), k;, T, g, and n(1<n<2) are the
intrinsic parameters of the diodes. By applying Kirchhoft’s
laws to Figure 1 and considering the above assumptions, it
can be shown that the voltages V,, V,, V5, and V; satisfy the
following set of four coupled first-order nonlinear differ-
ential equations:

( dVl_V2
Ydt R’
dv, Vs
2dt R,
1 (3
v, v,
dt RS
v, Vv, Vv, Vv, Vv,
T T T T T 1.
[ ™dt R, R, R, R

C (4 a

Applying the following change of variables:

t = TRC,
Vref = 1011VT’
ijref = V]- (j=1,2,3,4),
a=R/R,,
b = R/R >
’ (4)

¢ =R/R,

d = R/Ry,
m = R/R,,,

e = R/Rea

Y= ZRIS/Vref’
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F1Gure 1: Electronic circuit realization of the novel 4-D hyperjerk system with hyperbolic sine nonlinearity. Its simplicity is remarkable. The
pair of semiconductor diodes implements the hyperbolic nonlinearity of the model.

we get the normalized circuit equations which are expressed
by the following smooth nonlinear fourth-order differential
equations easy for numerical integration:

X = Xy,

X, = mxs,

: (5)
X5 =dxy,

X4 = cx; — bx, —ex; —ax, — ysinh(x,),

where the dot represents differentiation concerning the
dimensionless time 7. Note that the nonlinear function only
depends on the state variable x, in system (5). y will be kept
constant throughout the numerical analysis: y = 0.0011.
Therefore, during the bifurcation analysis of the 4-D system,
¢ is considered like the control parameter (i.e., with respect
to R.). The values of electronic components used for both the
numerical and experimental analyses are listed in Table 1.
System (5) can be expressed equivalently in the general
hyperjerk form as follows:

¥, = mbex, —dysinh (x,) — mbdx, — deX, —ax,.  (6)

By observing equation (6), it can be noticed that our
model belongs to the wider class of “elegant” hyperjerk
dynamical systems defined in [14]. More interestingly, our
model (5) represents one of the simplest autonomous 4-D
systems reported recently, displaying the coexistence of up
to ten fixed points, periodic and chaotic attractors.

2.3. Symmetry, Dissipation, and Existence of Attractors.
Equation (5) being invariant following the transformation
(%1, %y, %3, %4) & (—%1,—X,,—X3,—x,), we can conclude
that we will have a couple of solutions for a given parameter

TaBLE 1: List of electronic components used during the analyses.

Values

Components

Case A Case B
R, 300Q — 1.7kQ) 5.555kQ)
R, 1.666kQ) 2.631kQ)
R, 10kQ 4kQ — 6kQ)
Ry 2kQ 7.407kQ)
R, 5kQ) 673.4Q
R, 10kQ 4.545kQ)
R, Ry, R:, (numerical study) 10kQ 10kQ
R, R, (experimental study) 10kQ 10kQ
R, (experimental study) 100kQ 100kQ
Cy, Cy, G5, Cy 10nF 10nF
D,, D, 1N4148 1N4148

range. So, if (x,, x,, X3, x,) is a solution of our system, then its
symmetry (—x,,—X,,—X3,—x,) will also be a solution. All
these makes it possible to highlight the symmetrical nature of
our system. In order to verify the dissipation property of our
system, it is necessary to calculate the volume contraction rate
(A = (V-1dV/dt)). For every point of space (x;,x,, X3, x,)"
[33, 34], it is given by the following expression:

A -a<0. (7)

“0x, 0x, O0x; O0x,
The above expression is negative and does not depend on

the space coordinates of the system, and thus we can

conclude that the introduced system is dissipative.

2.4. Fixed Point Analysis. By canceling the right side of
equation (5), it is possible to determine the equilibrium



points of the system which play a crucial role in the study
of the system dynamics. The resolution of equation (8)
permits to obtain different equilibrium points of the
system.

x, =0,
S (8)
x, =0,

cxy — bx, —ex; —ax, — ysinh(x;) = 0.

Note that the point E, (0,0,0,0) is a trivial equilibrium
point, while E, and E, are the solutions of the transcendental
equation:

cx; —ysinh(x;) = 0. (9)

By fixing ¢ =2.442 and maintaining y at the same
previous value, we obtain the other nontrivial equilibrium
points (E;, E,) = (+£10.79,0,0,0). The stability of the sys-
tem in the neighborhood of those equilibrium points is
studied by resolving the characteristic equation (12),
resulting from the below equation:

det(M; - AI;) =0, (10)

where I, represents the 4 x 4 identity matrix and M, the
Jacobian matrix defined as follows:

0 1 0 0
y 0 0 m 0 -
I 0 0 0 d|

c—ycosh(x}) -b —e -a

The characteristic equation obtained is A* + ¢;A°+ ¢,A* +
A+ ¢y =0, with

Co = —md(c -y cosh(x(l))),

= mdb,
a=m (12)
¢, =ed,
c; =a.

By applying the Lyapunov stability theory, it is shown
that at the equilibrium  point  E,(0,0,0,0),
¢ —y>0=>¢;,<0, and thus the equilibrium E, is unstable
since the characteristic equation has coefficients with dif-
ferent signs. In contrast, the stability of the nonzero equi-
librium points (E, , (£10.79, 0,0, 0)) depends on the control
parameters m and b. By applying the Routh-Hurwitz cri-
terion [32, 33], we have shown that for b <b,, = 3.4397 and
b>b,, = 5.56, the nontrivial equilibrium points are unsta-
ble, but for b, <b < b,,, they are stable. These critical values
are obtained from the calculation of the Hopf bifurcation
conditions:

Wyept = V (mdb/a),

(13)
1 —
bcl,cZ :E<ea + A)’

with A = (ea/m)? + (4a2/md) (¢ — cosh (10.79)).
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Equation (13) provides the frequency of stable oscilla-
tions as well as the critical values of b, , corresponding to
the Hopf bifurcation of the system. From Table 2, it follows
that in the regime of (periodic or chaotic) oscillations, the
three equilibria are unstable, and thus the system generates
self-excited oscillations. For the following parameters
a=18,d=135 e=15 m=3, and ¢ = 2.442, the equi-
librium point E; (0, 0, 0, 0) remains unstable for all values of
control parameter b. Moreover, for some values of bifur-
cation parameter b, the nontrivial equilibria have pure
imaginary roots, and thus the system presents the Hopf
bifurcation. In order to verify the existence of the Hopf
bifurcation in the system, eigenvalue locus is plotted. It
shows the existence of Hopf bifurcation in the system which
is characterized by the intersection of the eigenvalue locus
with the imaginary axis. By observing Figures 2(a) and 2(b),
we can certify that the new hyperjerk system presents Hopf
bifurcation.

3. Numerical Computation

3.1. Numerical Techniques. System (5) is resolved numeri-
cally in order to highlight the rich variety of bifurcation that
can be observed in a new hyperjerk system. The dynamic
properties of the model were numerically simulated in Turbo
Pascal using the fourth-order Runge-Kutta method with a
constant time step size of 2 x 10~%, and parameters are taken
in extended precision mode. The transient phase is canceled
by integrating the system for a long time. The bifurcation
diagram and the Lyapunov exponent are the traditional tools
that measure the dependence of the system on the initial
conditions as well as the sequence that leads to chaos in the
system. The algorithms of Wolf and his collaborators [35]
are used for calculating the Lyapunov exponents.

3.2. Bifurcation, Chaos in a Novel Hyperjerk Circuit.
Different scenarios exhibited by the proposed hyperjerk
system are obtained by plotting the bifurcation diagrams.
The bifurcation diagram of Figure 3(a) is obtained by
plotting the local maxima of the variable x; according to the
bifurcation parameter a, the other parameters being fixed at
c=1,b=6,d =5,e=2,and m = 1. It can be noted that it is
a period-doubling route to chaos because the transition from
period-1 attractor to double-band chaos is as follows: pe-
riod-1 — period-2 — period-4 — single-band
chaos — period-5 — single-band chaos — double-
band chaos. Figure 4 clearly shows the above transition. It is
obtained by progressively varying the control parameter. The
exact nature of the attractors mentioned above is defined by
the graphs of the four largest Lyapunov exponents shown in
Figure 3(b). We can observe in Figure 3(b) that periodic
attractors are characterized by A, = 0, 1,, A5, and A, <0, while
chaotic attractors have the following characteristics: A, >0,
A, =0, A;, and A, <0. A perfect coherence is observed be-
tween the bifurcation diagram and the corresponding graphs
of the four largest Lyapunov exponents. In order to show the
complexity of the new hyperjerk circuit, the chaotic attractor
has been projected on several planes (Figures 5(a)-5(f)), as well
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TaBLE 2: Corresponding eigenvalues of each equilibrium point according to the bifurcation parameter b.

Values of bifurcation parameter
b

Eigenvalues at nontrivial fixed (E;, E,), 11,,,5,4,4

Eigenvalues at the origin E, (0,0, 0, 0)
AbAy, Ag, A,

3.1
3.2

3.4397

3.5
5.55

5.56

5.59
9.12

—0.9641 + 3.4906i 0.0641 + 2.7165i (unstable)
—0.9461 + 3.4712i 0.0461 + 2.7346i (unstable)
—0.9000 + 3.4206i + 2.7820i (neutral,
Hopf bifurcation)
—0.0023 + 3.5339i —0.8977 + 2.6358i (stable)
—0.0093 + 3.5246i —0.8907 + 2.6459i (stable)
+ 3.5370i —0.9000 + 2.6324i (neutral,
Hopf bifurcation)
—0.9476 + 3.2070i 0.0476 + 3.0071i (unstable)
0.3784 + 4.0088i —1.2784 + 2.0827i (unstable)

—0.5719 + 4.4347i —1.1041 0.4478 (unstable)
-0.5618 + 4.4350i —1.1185 0.4422 (unstable)

—0.5378 + 4.4358i —1.1536 0.4292 (unstable)

-0.5318 + 4.4361i —1.1625 0.4260 (unstable)
—0.3297 + 4.4591i —1.4757 0.3351 (unstable)

—0.3287 + 4.4593i —1.4772 0.3347 (unstable)

—0.3258 + 4.4598i —1.4819 0.3336 (unstable)
—0.0077 + 4.5497i —2.0210 0.2363 (unstable)

Img (1)
o

Img (1)
o

I —

-2.5 -2

-1.5

-1 0.5

Real (1)
(a)

-0.5 0

FIGURE 2: Representation of eigenvalue locus in the complex plan (Re (1), Im (1)) with the following parameter values: (a) a = 1.8, b = 3.8,
c=2442,d =135 e=14.85and 2<m<10; (b) a=1.8,b=3.8,d = 1.35, e = 14.85, 2<m < 10, and 2.34 < ¢ <12.985. The appearance of
eigenvalues in complex conjugate pairs justifies the symmetry observed in the system and intersection of the curve with imaginary axis
shows the presence of the Hopf bifurcation in the system.
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FIGURE 3: (a) Bifurcation diagram showing local maxima of the coordinate x; versus c and (b, c) the corresponding graphs of four largest
Lyapunov exponents plotted in the range 6<a<30, with ¢=1, b=6, d=5 e=2, and m=1 and initial conditions
(1 (0), x5 (0), x5 (0), x4, (0)) = (0,0,2.4,0).
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FiGURE 4: Continued.
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FIGURE 4: Numerical phase space trajectories showing routes to chaos in the system when varying the control parameter c: (a) period-1 for
a =7, (b) period-2 for a = 12.38, (c) period-4 for a = 13, (d) period-8 for a = 13.49, (e) single-band chaos for a = 14.6, (f) period-5 for
a =16.08, (g) single -band chaos for a = 16.7, (h) single-band chaos for a = 20, and (h) double-band chaos for a = 30. Initial conditions
(x,(0), x, (0), x5 (0), x, (0)) are (0,0,2.4,0). The others parameters are fixed as follows: c=1,b=6,d=5,e=2,and m = 1.
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FIGURE 5: 2-D projection of the phase portraits of symmetric double-band chaotic attractors (a-f) of system (3) plotted into planes (x; — x,),
(x5 = x3), (x, — x4), (x5 — x,) and corresponding double-sided Poincaré section (e) in the plane x; = 0. Parameters are the same as those in Figure 4.

as the Poincaré section (Figure 5(g)). We can observe that the
double-band chaos completely changes when moving from one
plane to another. For the value of the bifurcation parameter

a=17.04, the coexistence of four periodic and chaotic
attractors is observed in the novel proposed system (see Fig-
ure 6). In order to illustrate the Hopf bifurcation previously
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FiGure 6: Coexistence of four attractors (a pair of period-11 limit cycle and a pair of chaotic attractors) with a = 17.04, and their cor-

responding initial conditions are (+4.8,0,0,0) and (+1.2,0,0,0).

proved by theoretical calculations, the bifurcation diagram of
Figure 7 has been represented. Stable state is characterized by a
fixed point with A, <0, while oscillatory state is characterized
by Apex = 0.

3.3. Multistability. In this section, we demonstrate the va-
riety of dynamical regimes in the new 4-D system. We show
that depending on the values of the system parameters, the
system exhibits very rich dynamics and bifurcation sce-
narios. A multistable system is a system with various
coexisting stable states (chaotic, point, and periodic state)
under the same system parameters, with different initial
conditions. In recent years, the phenomenon of multi-
stability phenomenon has been reported in many nonlinear
dynamic systems [13, 36-46].

3.3.1. Coexistence of Attractors with respect to Bifurcation
Parameter c. By changing the system parameters and
considering ¢ as bifurcation parameter, we observe a
completely different behavior. In addition, a very interesting

phenomenon which is the coexistence of multiple attractors
appears in the new 4-D hyperjerk. For this phenomenon to
be illustrated, the bifurcation diagrams of Figure 8 are
plotted using the following method:

(i) The blue diagram is obtained by simultaneously
increasing the value of the control parameter c as
well as the initial condition x(0). At each itera-
tion, we assign to x (0) the new value of the control
parameter c.

(ii) The red diagram is obtained by incrementing ¢ from
its minimum value 2.34 to its maximum value 2.985,
with a carefully chosen step. Note that the solutions
of the system at each iteration are considered as the
initial condition of the next iteration.

(iii) The cyan diagram respects the previous procedure,
with the initial condition (-10.67,0,0,0), whereas
the black diagram follows the same procedure as
previously described but the only difference is the
decrease of the control parameter c. The initial
condition is (10,0,0,0).
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FIGURE 7: (a) Bifurcation diagram showing local maxima of the coordinate x, versus b and (b) the corresponding graph of largest Lyapunov

exponent (A,
(%, (0), x5 (0), x5 (0), x4, (0)) = (0,0,9.333,0).
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) plotted by decreasing b in the range 3.5<b<9.12, witha = 1.8, m = 3, ¢ = 2.442,d = 1.35, and e = 15 and initial conditions
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FIGURE 8: symmetric coexisting bifurcation diagrams showing complex structure of the new hyperjerk for a=1.8, b=3.8,d=1.35, e = 14.85,
and m = 2.2. Initial conditions y(0) = z(0) = w(0) = 0 and x(0) are fixed as follows for obtaining these diagrams: red diagrams for
increasing ¢ with x (0) = 5.25, black diagram for decreasing c with x (0) = ~10, cyan diagrams for increasing ¢ with x (0) = —10.67, magenta
diagram for increasing and decreasing, started at ¢ = 2.5442 with x (0) = —4, and blue diagram for starting ¢ with same initial condition

x(0) = ¢. For more information, see Table 3.

(iv) The magenta diagram is obtained by increasing the
control parameter ¢ from 2.398 to 2.985, followed by
decreasing the bifurcation parameter ¢ from 2.398
to 2.34.

We can observe in Figure 8 several windows of coex-
isting attractors. For more details about the methods used to
plot the bifurcation diagrams of Figure 8, see Table 3. The
enlarged bifurcation diagram of Figure 9 shows the hys-
teretic domain, plotted in the range 2.442 < ¢ <2.488, and the
techniques used to plot the diagrams are also presented in

Table 3. Figure 9 shows the coexistence of six and eight
different limit cycles, chaotic and point attractors. Some
sample phase portraits showing the coexistence of six and
eight attractors are presented in Figures 10 and 11, re-
spectively. Some basins of attractions showing the initial
conditions domains of the coexisting attractors are pre-
sented in Figure 12. The coexistence of four attractors is
clearly denoted (a pair of periodic attractors (black and
yellow) and a pair of chaotic attractors (blue and green)).
Note that there is a perfect symmetry between the different
cross sections of the competing attractors.
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TaBLE 3: Techniques used to obtain coexisting bifurcation diagrams and corresponding initial conditions.

Fig.no Color graph Parameter range Sweeping direction Initial condition (x; (0), x, (0), x; (0), x, (0))
Blue 2.34<¢<2.985 Upward (¢,0,0,0)
Red 2.34<¢<2.985 Upward (5.25,0,0,0)
Fieure 8 Cyan 2.34<¢<2.985 Upward (-10.67,0,0,0)
& Black 2.985<c<2.34 Downward (-10,0,0,0)
Magenta 2.398 <¢<2.985 Upward (-4,0,0,0)
2.398<c<2.34 Downward (-4,0,0,0)
Red 2,442 <¢c<2.488 Upward (5,0,0,0)
Fieure 9 Black 2.488<c<2.442 Downward (5,0,0,0)
8 Cyan 2.442 <¢c<2.488 Upward (-10.67,0,0,0)
Magenta 2.442 <c<2.488 Upward (12,0,0,0)
Blue 2.802<m<2.865 Upward (-5.5,0,0,0)
2.738 <m <2.802 Downward
Figure 13 Red 2.802<m<2.865 Upward (12.8,0,0,0)
gu 2.738 <m<2.802 Downward
Magenta 2.802<m <2.865 Upward (-10.1,0,0,0)
2.738<m <2.802 Downward
I"I'I I L4 I L ‘
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£ |
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FIGURE 9: Enlargement of bifurcation diagram of Figure 8 plotted in the range 2.442 < ¢ <2.488 showing the region in which the system
exhibits multiple coexisting attractors. The system parameters are the same as the one of Figure 8.

The initial conditions of the coexistence of ten attractors
exhibited by the proposed hyperjerk system are presented in
Figure 13. The bifurcation like sequence of Figure 13 shows
the variation of x5 (0) in terms of the control parameter c,
and the other initial conditions are set to zero
(x1(0) = x, (0) = x,(0) = 0). Note that chaotic attractors are
characterized by an unlimited number of points, while
periodic attractors are characterized by a finite number of
points. In the same line, the basin of attraction shows the
different domains of convergence of similar attractors. The
phase portrait of Figure 14 illustrates the coexistence of ten
attractors. The initials conditions of the coexisting attractors
are given in Table 4.

3.3.2. Coexistence of Attractors with respect to Bifurcation
Parameters m and b. In order to investigate the sensitivity of
the new hyperjerk system in terms of the bifurcation pa-
rameter 1, the other parameters are fixed as follows: a = 1.8,
b=3.8, c=2442, d = 1.35, and e = 14.85. We found that

the novel hyperjerk system can exhibit striking bifurcation
sequences when varying the control parameter m in the
range 2 <m<4.18. With reference to Figure 11, the bifur-
cation diagram in black and the one in blue are obtained by
increasing and decreasing the values of the parameter m,
while the one in red is obtained by fixing the initial con-
ditions at (x,;(0), x,(0),x5(0),x,(0)) = (-4,0,0,0). A
window of hysteretic dynamics can be identified in the range
2.6 <m <2.9. The enlarged bifurcation diagram of Figure 12
clearly illustrates the domain of the coexistence of multiple
attractors observed in the new hyperjerk system according to
the bifurcation parameter m. Different methods used to plot
these bifurcation diagrams are presented in Table 3. Up to six
different periodic, chaotic, and point attractors can be ob-
tained by only changing the initial conditions. For instance,
sample phase portraits of the coexistence of six distinct
attractors are presented in Figure 13.

During the mathematical analyses, it has been shown that
the Hopf bifurcation was depending on the control parameter
m. The bifurcation diagram of Figure 13(a) clearly illustrates this
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Figure 10: Bifurcation like sequence showing local maxima of the coordinate x; versus the initial condition _ plotted in the range
0<x(0)<30,witha =1.8,b =3.8,c =2.5442,d = 1.35, and e = 14.85. It can be observed the coexistence of ten periodic, chaotic, and point
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FIGURE 11: (a, b) Bifurcation diagrams showing local maxima of the coordinate x, versus m and (c) the corresponding graph of largest
Lyapunov exponent (A,,.) plotted in the range 2<m<4.18, with a = 1.8, b= 3.8, c = 2.442, and d = 1.35.
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FiGure 12: Enlargement of the bifurcation diagram of Figure 11(a) showing the region in which the system exhibits multiple coexisting
attractors. This region corresponds to values of m in the range: 2.735 < m < 2.865. Three sets of data are superimposed. For more information

about the methods used to plot, see Table 3.

phenomenon characterized by the stable state followed by the
unstable state. Moreover, this control parameter also highlights
the coexistence of multiple attractors exhibited by the new 4-D
system. By considering the following sets of the parameters:
a=18,b=3.5,c=2442,d =1.35, e =15, and m = 3, we
discover that the new 4-D system displays the coexistence of
four distinct chaotic and point attractors. The phase portraits of
the Figure 14 and their corresponding cross section of the basin
of attraction clearly show the coexistence phenomenon and also
give the initial condition domain of each attractor. The green
and black domains represent the initial conditions regions of the
pair of chaotic attractors, while the yellow domain represents
the initial condition regions of the pair of point attractors.

3.4. Offset Boosting Scenario. Another property of system (3)
is the possibility to develop an offset boosting effect. In our
model, x, appears only in the fourth line of equation (3), and
thus this variable is a bootable variable [47-52]. Assuming
the transformation x, — x; + k where k is a constant,
equation (5) can be rewritten accordingly as

X = Xy,
X, = mxs,
X5 =dxy,

Xy = c(x; + k) — bx, — ex; — ax, — ysinh(x; + k).
(14)

Figure 19 clearly presents offset boosting of the double-
band chaotic attractor. The following values of parameter:
k =0 (blue), k =10 (red) and k = —10 (green) are used to
plot them in x7-x, and x;-x3 planes.

3.5. Antimonotonicity. By decreasing the value of the
control parameter e(15<e<20), we can observe the

formation and destruction of periodic orbits via reverse
period-doubling bifurcation sequences. This interesting
phenomenon has been reported in the literature. It is re-
ported in various nonlinear systems such as Duffing os-
cillator [12], Chua circuit [53], and second-order nonlinear
nonautonomous circuit [54, 55]. This phenomenon was
reported for the first time in the hyperjerk system by
Leutcho et al. [21]. The creation of periodic seas in the
parameter space is the necessary requirement for a non-
linear system to experience forward and reverse period-
doubling cascade [21]. Sample illustrations are represented
in Figure 20, where some bifurcation diagrams are shown.
These diagrams are obtained for each discrete value of the
control parameter c. In Figure 20, note that for ¢ = 2.5442,
we have period-2 bubble and for a slight adjustment of the
control parameter ¢, period-4 bubble is observed for
¢ = 2.8442, whereas for ¢ = 2.9, we have a period-8 bubble.
In the same order, chaotic bubbles are formed for
¢ =297, and ¢ = 2.99. The increase of control parameter c
causes the creation of other bubbles, and it finally results in
an infinite tree (like chaos).

4. Experimental Study

The objective of this section is to confirm the above
theoretical results by realizing a laboratory experimental
study. For this purpose to be achieved, several approaches
have been proposed in the literature to implement chaotic
circuit (by using many types of off-the-shelf electronic
components [56] or field-programmable gate array
(FPGA) technology [57-60] or field-programmable-an-
alog-array (FPAA) technology [61, 62] just to name a
few). Only oft-the-shelf electronic components (i.e., re-
sistors, capacitors, pair of semiconductor diodes
(D, = D, = 1N4148), and TL084 operational amplifiers
types with a power supply of +15 VDC) are used to realize
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FiGure 13: Coexistence of six different attractors (a pair of period-2 limit cycle, a pair of chaotic attractors, and a pair of fixed point attractor)
for the following values of system parameters:a =1.8, b=3.8, ¢ =2442, d = 1.35, e =14.85, and m = 2.802. Initial conditions
(%, (0), x5 (0), x5 (0), x4, (0)) are, respectively, (£5.5,0,0,0), (+12.8,0,0,0), and (+10.1,0,0,0).

the schematic diagram of Figure 1. The following values R, = 5kQ), and R; = 2.941kQ (for the other parameters,
of electronic circuit components are used during the  see Table 1 case A). The complete sequence of phase
experimental process: R, = R, = R=10kQ, R, = 1.67kQ),  portraits plotted in (x,,x4) plan is obtained by adjusting



Complexity 15

20 T T T . T 15

15+

10 +

Xy 0

10 }

—-15 }

-20 : : : : : -15 : : :
-15 -10 -5 0 5 10 15 -20 -10 0 10 20
X2

(a) (b)

0.5F

xz(o)

X3 0F

-0.5

-20 -10 0 10 20

(c) (d)

FIGURE 14: (a, b) Coexistence of four distinct attractors (a pair of chaotic attractors represented in x, — x, and x, — x5 plans), (c) a pair of
fixed point attractor) and their corresponding basin of attraction. Initial conditions (x; (0),x,(0),x;(0),x,(0)) are,
respectively, (+£7.15,0, + 8.613,0) and (+12.8,0,0,0). The rest of the parameters area = 1.8,b = 3.5, ¢ = 2.442,d = 1.35,e = 15,and m = 3.
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FiGgure 15: Continued.
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Figure 15: Cross sections of basin of attraction for x5 (0) = x,(0) = 0, x,(0) = x,(0) =0, x,(0) = x;(0) =0, and x,(0) = x,(0) =0
corresponding to the asymmetric pair of chaotic (blue and green) and period-2 attractors (yellow and black) obtained for ¢ = 2.44. Red
regions correspond to unbounded motion.

TaBLE 4: Details of the coexistences observed in the novel hyperjerk system.

Fion® Type of coexistences Values of control Initial condition
s P parameter (x,(0), x5 (0), x5 (0), x4 (0))

o . L . (2) (0,0, + 44.4,0)

Figure 16 A symmetric pair of period-2 attractors, a symmetric pair of chaotic c=244 () (0,0, + 48, 0)

attractors, and a pair of fixed point. (©)(0,0, + 26.4,0)

(2) (0,0, + 25.2,0)

A symmetric pair of period-2 attractors, a symmetric pair of chaotic (5)(0,0, + 48, 0)

Figure 17  attractors, a symmetric pair of pegg;i& attractors, and a pair of fixed c=2.454 (©)(0,0, + 10.8,0)
potnt. (d)(0,0, * 26.4,0)
(A”A;,A,) (0,0, + 45.6,0)
A symmetric pair of period-2 attractors, a fixed point, a symmetric pair of (b) (0,0, + 18,0)
Figure 18  period-12 attractors, 2 symmetric pairs of chaotic attractors, and a pair of c=2.5442 (c) (0,0, +49.2,0)
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FiGure 16: Coexistence of six different attractors (a pair of symmetric period-2 limit cycle, a pair of symmetric period-9 limit cycle, a pair of
symmetric chaotic attractors, and a pair of point attractors). The values of others system parameters are fixed as follows: a = 1.8, b = 3.8,
d =1.35, e = 14.85, and m = 2.2. Initial conditions are given in Table 4.
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FiGure 17: Coexistence of eight different attractors (a pair of symmetric period-2 limit cycle, a pair of symmetric chaotic attractors, and a
pair of point attractors). The parameters are the same as those in Figure 16. Initial conditions are given in Table 4.
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F1GURE 18: Coexistence of ten different attractors (a pair of symmetric period-2 limit cycle, 2 pair of symmetric chaotic attractors, a pair of
symmetric period-9 limit cycle, and a pair of point attractors). The parameters are the same as those in Figure 16. Initial conditions are given

in Table 4.

the  control  resistor R, in  the  range
333,33 <R, <1.66kQ. It can be seen in Figure 21 a good
coherence between the numerical results (left side) and
the experimental ones (right side). By changing the values

of electronic components: R, = 600 Q,R, = 2.116kQ, R, =
421kQ, R, =784 Q, R, = 3.234kQ), and R, = 5.16 kQ (for
the other parameters, see Table 1 case B), the coexistence
of attractors emerges. Figure 22 clearly illustrates the
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(a)
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FIGUure 19: Offset boosting of the double-band chaotic attractor with the following values of parameter: k = 0(blue), k = 10(red), and
k = —10(green). The other parameters are the same as those in Figure 4.
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F1GURE 20: Bifurcation diagrams showing local maxima of the coordinate x, of the attractor in Poincaré cross section in terms of the control
parameter a (bubbling): (a) period-2 bubble for ¢ = 2.5442, (b) period-4 bubble for ¢ = 2.8442, (c) period-8 bubble for ¢ = 2.9, (d) single-
band chaos bubble for ¢ = 2.93, (e) single-band chaos bubble for ¢ = 2.99, and (f) double-band chaos bubble for ¢ = 3.0.
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(e)

FiGURE 21: Experimental phase portraits (right column) and corresponding numerical ones (left column) obtained by a direct integration of
the system (1) confirming the scenario to chaos in the system for varying Ra (i.e., parameter a): (a) period-1 for R, = 1.428, (b) period-2 for
R, =807, (c) single-band chaos for R, = 684, (d) single-band chaos for R, = 500, and (e) double-band chaos for R, = 333, 33. The scales are
X =0.2V/divand Y = 0.5V/div.
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F1GURE 22: Coexistence of multiples attractors for R, = 5.16 kQ). Both periodic and chaotic attractors appear randomly in the experiment
when switching on and off the power supply. The scales are X = 5V/div and Y = 2V/div for all pictures.

coexistence of fixed points, period-2 attractor, and cha-
otic attractor. Those attractors appear randomly by
switching on and oft the power supply. We can conclude
that the mathematical model proposed in this work
perfectly describes the real behavior of the novel
hyperjerk circuit.

5. Conclusion

This work has proposed and investigated a new chaotic
hyperjerk circuit with three equilibrium points having hy-
perbolic sine nonlinearity. The chaotic behavior observed in
the system is due to the nonlinear component formed by two
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antiparallel diodes. Classical nonlinear analysis tools have been
used to study the complete dynamics of the system. The bi-
furcation analysis of the new circuit shows that the chaotic
double-band attractor arises from the period-doubling scenario
followed by the symmetry recovering crisis event. In addition,
some properties of the system such as antimonotonicity and
offset boosting have been revealed. In particular, various re-
gions in the parameter space in which the system develops the
coexistence of up to ten disconnected attractors consisting of
stable fixed points, limit cycles, and strange attractors have been
reported. The coexistence of periodic, chaotic, and stable fixed
points discovered in this work has not yet been reported in a
hyperjerk system (at least as simple as the case discussed) and
thus merits dissemination. To validate the theoretical study
presented in this work, the new chaotic hyperjerk circuit has
been realized and used for the investigations. Experimental
results agree well with those obtained during the numerical
experiment, thus confirming the feasibility of the proposed
model. Owing to its extreme simplicity coupled with extremely
rich dynamics, the new hyperjerk circuit introduced in this
work has potential utility for information encryption as well as
for other chaos-based applications [62].
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Semitensor product theory can deal with matrices multiplication with different numbers of columns and rows. Therefore, a new
chaotic system for different high dimensions can be created by employing a semitensor product of chaotic systems with different
dimensions, so that more channels can be selected for encryption. This paper proposes a new chaotic system generated by
semitensor product applied on Qi and Lorenz systems. The corresponding dynamic characteristics of the new system are discussed
in this paper to verify the existences of different attractors. The detailed algorithms are illustrated in this paper. The FPGA
hardware encryption implementations are also elaborated and conducted. Correspondingly, the randomness tests are realized as
well, and compared to that of the individual Qi system and Lorenz system, the proposed system in this paper owns the better

randomness characteristic. The statistical analyses and differential and correlation analyses are also discussed.

1. Introduction

With the coming of 5G technology, more and more in-
formation is transformed by video, and video information
security becomes more and more important in practical
applications especially for long-distance transmission [1, 2].
The existing traditional encryption methods, such as DES
and AES, however, cannot meet the high requirements for
real time [3]. Therefore, it is necessary to focus on making
progresses in the encryption technology in order to meet the
real-time requirements.

People never stop studying the chaotic systems since
Lorenz proposed the first chaotic system. Except for the
typical chaotic systems, such as Chen, Lv, and Qi systems,
some new different types of chaotic systems are generated as
well, such as multistable chaotic hyperjerk system [4], a class
of factional-order partial differential systems [5], multistable
modified fourth-order autonomous Chua’s system [6],

coexisting chaotic attractors chaotic systems [7-9], and
chaotic system generation with memristors [10]. The authors
in reference [11] present a MDMBCAs design method
without reconstructing nonlinear function. Correspond-
ingly, chaotic systems are employed in different areas such as
modeling neurodegenerative disease [12] and image and
video encryptions [13-18]. It is known that the character-
istics of chaotic systems, such as pseudorandomness and
sensitivity to initial values, meet the requirements of en-
cryption discussed in the Shannon’s epoch-making paper
“Communication Theory of Secrecy Systems.” Conse-
quently, it is hot for researchers to focus on the image and
video data encryption, where the encrypted sequences are
generated by chaotic systems in order to satisfy the need for
remote communications and other applications. Multiple
hardware platforms are implemented on encryptions such as
FPGA, ARM, or circuits implementation [19-32]. Thus,
different encryption methods based on various hardware
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platforms are proposed in many articles [19]. The authors in
reference [20] propose chaos encryption and decryption
operated on FPGA and tested by TESTUOL. The study in
[21, 22] implements scrambling and antisqueezing of RGB
three primary color pixel position and video chaotic en-
cryption and decryption of pixel value on arm and a digital
programmable audio encryption based on chaos system on
FPGA. The effectiveness of chaotic secure communication
system method is proved by using adder and multiplier of
FPGA [23]. A generalized improved chaotic transformation
mapping is proposed in [24]. Based on this mapping, the
speech encryption of position transformation network is
implemented on FPGA. Meanwhile, [25] realizes FPGA
circuit output of three-dimensional chaotic system without
balancing points on FPGA. The study in [26] implements the
multibutterfly chaotic attractor problem on FPGA. The
study in [27] proposes a Kolmogorov-type three-dimen-
sional chaotic system and implements the chaotic system on
FPGA. The study in [28] implements an application of high-
dimensional digital chaos system (HDDCS) in image en-
cryption in a limited precision range on FPGA. The study in
[29] proposes a fractional order three-dimensional chaotic
system with four wing chaotic attractors implemented on
FPGA. The study in [30] proposes a sinusoidal chaotic model
(SCM) and uses FPGA to implement chaotic mapping to
verify its complexity and larger chaotic range. SOPC tech-
nology is used to realize the video processing of FPGA and
the data receiving and sending of ARM [15]. A method of
generating pseudorandom number based on chaotic system
is proposed and implemented on FPGA [31]. In addition to
FPGA and arm, [32, 33] also use improved modular circuit
design in hyperchaotic system. The study in [34] studies the
security of the latest three-dimensional chaotic self-syn-
chronization flow secret key and a single secret key algo-
rithm. The study in [35] proposes a method for a high-
dimension chaotic system implemented on FPGA and also
provides comparison among different methods, such as Real
Domain Chaotic System (RDCS), Integer Domain Chaotic
System (IDCS), Chaotic Bitwise Dynamical System (CBDS),
and Higher-Dimensional Digital Chaotic Systems (HDDCS)
implemented on FPGA. Compared to these methods, the
proposed method can solve the dynamical degradation issue.
The study in [36] discusses the Orthogonal Frequency Di-
vision Multiplexing-Passive Optical Network (OFDM-
PON) method which initiates a method for real-time video
encryption with chaotic systems. Chen. et al. design an
encryption algorithm using chaotic control methods and
implement this method on FPGA and ARM hardware
platforms. Furthermore, the comparisons of the encryption
method based on ARM and FPGA are discussed by mixing
the advantages of each platform to achieve better real-time
performance [15, 23, 24].

Semitensor product is a matrix operation first proposed
by Cheng et al. [37]. This method breaks the restriction of
matrix product; that is, the column dimension of the front
matrix must be the same with the row dimension of the back
matrix. Then semitensor product realizes the multiplication
for matrices with different dimensions. Therefore, this
method makes the matrices product more easily and can be
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applied in much wider areas. Semitensor product method is
also extended in nonlinear issues and multiple areas such
Boolean network control, game theory, compressed sensing,
and data fusion [38-40]. The study in [41] provides the
literature review for the applications of semitensor product
in engineering areas. This paper is inspired by the typical
characteristics of semitensor product method mentioned
previously which provides a new idea to generate chaotic
systems. The new chaotic systems can be employed in real-
time video encryption areas as well.

The main contribution of this paper is to employ the
unique characteristic of the semitensor product to form a
new chaotic system with different-order chaotic systems, Qi
and Lorenz systems, in order to enhance the randomness of
the sequence. Then the dynamic characteristics of the new
chaotic system are analyzed, and the system is applied in
video encryption. When compared to the individual chaotic
system, the new one constructed by semitensor product has
the overwhelmed pseudorandomness.

The rest of the paper is arranged as follows. Section 2
presents a new chaotic system formed by semitensor product
theory. Furthermore, the corresponding dynamic charac-
teristics of the system are analyzed. Section 3 provides the
detailed encryption implementation based on FPGA with
the new chaotic system. NIST test and the corresponding
stochastic analysis are conducted as well in this section. The
conclusion of the paper is drawn in Section 4.

2. A New Chaotic System Based on the
Semitensor Product Theory

2.1. Preliminaries of Semitensor Product. Normally, the
semitensor product operation includes left semitensor
product operation and right semitensor product operation.
Left semitensor product operation meets the multiple-di-
mension condition; that is, n=tx p (t€N"). Or if p=sxn
(s € N™), the operation is right semitensor product operation.

Lemma 1. Assume matrix A is m x n, matrix B is p x q, and
n=txp (teN") [42]. Let A be divided into a blocking matrix
[AL ..., A, where A; (i=1, ..., t) is an m X p matrix. Then
the left semitensor product is defined as

A" B = (A]VPBP, APBPY, ATCPBP, L AP BPA)
(1)
where “x ” is the left semitensor product.
Lemma 2. If AeM,,,,, and BE M, then
AxB=A(Bsl,), (2)

where ® is the Kronecker product of matrices [42].

2.2. A New Chaotic System Generated by Semitensor Product
Theory. Qi system is a hyperchaotic system with two pos-
itive Lyapunov exponents, 3 and 13, under certain condi-
tions [28]. And it could be used for secure communication
due to its large positive Lyapunov exponents. It is known
that Qi system is described as follows:
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= a(xQ2 - le) + xQZxQS’

xQz = b(le + xQz) - XQ1XQ3> 3)

=.
=]
|

Xq3 = —€X3 — Xy t X1 X2>
XQ4 = _de4 + fo3 + XleQz,

where xq; (i=1, 2, 3,4) is the state variable and a, b, ¢, d, and f
are the related system parameters. System (3) is a hyper-
chaotic system, when 49 <a<55, 20<b<24, ¢=13, d=8,
e=33, and f=30.

The first chaotic system under study is a Lorenz chaotic
system [28]. The dynamics of the system are shown in

Xx=0(y-x),
y=rx-—y-xz, (4)
z=xy-pz,

where x, y, and z are state variables and o, , and f3 are the
related system parameters. The typical system parameters for
Lorenz chaotic system are selected as o=10, r=28, and
B=8/3.

It is relaxed for semitensor product operation only to
satisfy the multiple-dimension condition. Therefore, dif-
ferent numbers state variables of systems can be selected
and conduct semitensor operation. For example, this paper
selects a two-dimension state variable (xy)T of Lorenz
system and a four-dimension state variable (xq1xg2%Xq3Xqa)

It is obvious that the dynamics of (7) still include three
state variables of Lorenz system, x, y, and z. Therefore, insert

- XX A
0 (x5 —x;) +axy —x) + =22
X
X,
. 0 (X6 = x;) + b (%, +x,) ==
P67 [Exg + Xk ] o(y—x)xqg + ax(xQ2 - le) + XXXqQ3
X XX, + XX o(y—x)x +bx(x + X, )—xx X X1%2
2 Q@ Q y Q Q t X Q1*Q3 0 (x,—x3) — cx3 —exy +
X5 XXz + XXq3 0(y — X)xXq3 — €XXq3 — €XXqq + XX X
X1%3
: : . 0(xg—x4) —dx, + fx; +
X4 XXqq + XXqy 0(y —X)xqq —dx xgq + fXXq3 + XX X2 (=) st fxs
X5 YXq1 T VX (rx—y- xz)xQl + ay(xQ2 - le) + VX2 X3 X - X5 — X,2 + a(x6 B xs) + XeX7
X
X¢ YXQ t VX (rx—y—x2)xq + by(le + xQz) ~ YXQ1 %03
X VX3 + VX rxz—x6—xzz+b(x5+x6)_xSX7
7 VX3 T VX3 (rx —y —x2)xq3 = CyXqs = €yXqs + ¥YXq1XQ2
L% ] LyXqu+ yXos ] X — Y —X2Z)Xoy — AY Xou + [ VX035 + VX1 X X5X
L (rx =y = X2)xqq —dy Xq4 + [yXqs + YXq1%qa FXy = Xy — K32 — CXy — € + 58
X
Xs5X
X, = Xg — X,2 — dxg + fx; + 20

T of Qi system to operate semitensor product. The result is
shown as follows:

T 7T
le le le
X X X0 X2
HKQ”QyQ. (5)
y X3 XQ3 XQ3

It is observed that the result of equation (5) is eight-
dimension column vector which is equivalent to the new
system state variable vector (312X 3% 4X5X6X7Xg) 3 that s,

- - - -

X1 XXqQ1
X, XX,
X, XX03
Xy | _| XX - ©)
Xs YXq1
X6 VX
X7 YXq3
L Xg 1 LYXqQ4d

Differentiate each state variable in equation (6), and
substitute equations (3) and (4) into the result. Then the
following equation can be derived:

(7)

equation (4) into equation (7) and then form a complete
eleven-dimension system as illustrated in the following:



Xy = 0(xg—x,) —dx, + fx; +

Xy = ¥X3 — X7 — X3Z — CX7 — €Xg +

Xx=0(y—-x),

y=rx—y-xz,

| 2 =xy - fz.

[-0—-a a 0 0
b b-0 0 0
0 0 -o0-c -e
0 0 f -o-d
1 0 0 0

Jio = 0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

L O 0 0 0

The corresponding polynomial is

FA=AA+pHA-1f (D)

X5 =1X) — X5 — X1Z2 +a(xg— X5) + ——

Xg =TXy — Xg — X,2 + b(x5 + x¢) —

Xg = 1Xy — Xg — X4Z —dxg + fX; +

- X, X
Xy =0(x5—x1)+a(x2—x1)+ﬁ,
%y = 0(x6 = X,) +b(x; + %)) _x1x3’

XX,

Xy = 0(x,—x;3) — CX3 —exy + —,
X

X1%,

>

X5X6

>

X5X6
bl
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As seen from equation (8), if one substitutes x — —x,
y— —y,and z — z, 2= (—x)(-y) - Pz =xy - Bz, it
proves that it is symmetric with respect to z variable for x
and y.

2.3. Numerical Analysis of the New System. The paper ana-
lyzes some dynamics characteristics of the new system in-
cluding symmetry, dissipativity, equilibrium point,
equilibria, bifurcation diagram, Lyapunov diagram, and
phase portraits.

2.3.1. Symmetry. As described in system (8), the system is
symmetry with respect to z-axis since the system is invariant
under the coordinate transformations: (x, x,, X3, X4, X5, X4,

(8) X XgpX ,¥,2) == (=X, =Xy, =X3, =Xy, —Xs5, ~Xg> —X7, —Xg,
- X,—),2).
2.3.2. Dissipativity. The divergence of system (12) is given by
v.p=90 9, 9 9 Ofw O
0x, 0x, Oxg Ox Ody 0z 9)
=—50-2a+2b-2c-2d-5-p,
and when —50 —2a +2b—-2c—-2d-5- <0, the system
undergoes dissipation.
2.3.3. Equilibria. As shown in system (8), x, y, and z could
not be zero when calculating equilibria. Then the equilibria
of system (8) are (0,0,0,0,0,0,0,0, =++/5(r—1),
++/f(r—1), r—1). One has
0 0 0 0 0 07
o 0 0 0 0 0
0 o 0 0 0 0
0 0 o 0 0 0
a 0 0 0 0 0
b-1 0 0 0 0 0 (10)
0 -1-¢ -e 0 0 0
0 f -1-d 0 0 0
0 0 0 -0 0 0
0 0 0 1 -1 0
0 0 0 * \/ﬁ(l’ -1 % \//3(7’ -1 ﬁ-equilibria

(11)

where f (1) is an eighth-order polynomial. It is obvious that
atleast 0, 1, and —p are eigenvalues of system (8) for the these
equilibrium points; therefore, not each real part of the
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eigenvalues is negative. Then it can be concluded that these
are not stable equilibrium points.

2.3.4. Bifurcation Diagram, Lyapunov Diagram, and Phase
Portraits. It is known that when 49<a<55, 20<b<24,
c=13, d=8, e=33, and f=30, Qi system is a hyperchaotic
system. When ¢ =10, r=28, and §=8/3, Lorenz system is a
chaotic system. Therefore, the paper selects the parameters
a=50, c=13, d=8, e=33, f=30, 0=10, r=28, and $=8/3
and varies b to analyze the bifurcation of system (12) as
shown in Figure 1(a). As the bifurcation diagram shows, the
system demonstrates the chaotic characteristics when
b € [-5,26]. The corresponding Lyapunov diagram is il-
lustrated in Figure 1(b). Furthermore, partial phase portraits
of system (7) for different initials when b =24 are shown in
Figures 1(c). One has
( XpX3

Xy =10(x5 —x7) +50(x, — x;) + o

Xy =10(xg — x5) +b(x, + x7) — xl;C3,

XX
%3 =10 (x,—x3) — 13x; — 33x, + 1x 2

XX
%y = 10 (xg—x,) — 8x4 + 30x; + 2,

) X6X7
X5 = 28x, — x5 — x,2 + 50 (x4 — x5) + —,

. X5X
Xg = 28X, — Xg — X,2 + b (x5 + x5) — =, (12)

. X5Xg
Xy =28x3 —x; — x32 — 13x, — 33x5 + ,

. X5Xg
Xg = 28x, — xg — x42 — 8xg + 30x, + ——,
y

x=10(y - x),

y=28x-y-xz,

. 8
Z=Xy—§.

Figures 1(c)-1(f) illustrate different phase portraits in-
cluding x; versus x,, x, versus x4, X3 versus x, and x versusz
when b = 24 for two initial value sets, the initial values for the
blue line phase portraits are 0.01418, 0.04217, 0.09157,
0.07922, 0.09594, 0.06557, 0.00357, 0.08491, 0.09339,
0.06787, and 0.07577, and those for the red line phase

portraits are 0.01417, 0.04218, 0.09156, 0.07921, 0.09593,
0.06558, 0.00356, 0.08492, 0.09338, 0.06788, and 0.07576.
These portraits demonstrate that system (12) has obvious
chaotic attractors and approaches periodic characteristics as
initial values changes.

3. Encryption Implementation with the New
Chaotic System Based on FPGA

This paper employs the random sequence of system (12) as
the random sequence to encrypt video data and realize the
hardware implement on FPGA. Figure 2 is the FPGA
hardware diagram used for the encryption. The main
components are HDMI, ZYNQ, JTAG, and source interface.
The video is collected from JTAG, then the encryption al-
gorithm is performed in ZYNQ powered by 5V DC, and the
outputs will be shown in the monitor through HDMI.

The encryption algorithm is described in the following,
and the corresponding block diagram is demonstrated in
Figure 3:

Step 1: to generate the random sequences for each state
variable for both discretized Qi system and Lorenz
system, respectively.

Step 2: to generate the random sequence for the new
system (12) constructed by semitensor product oper-
ation on (xq; Xg2 X03 Xo4) " and (x y)".

Step 3: to generate the sequence x;=(x;;, X;, X;3,. . ., Xi33)
by the new system (i=1,2,...,8,j=1,2,...,32), where
x;; is a binary number, i represents the number of state
variables, and j is the bit number for each state variable.
Choose a sequence xi with fixed bits from ¢ to g; that is,

(i=1,2, &8, 1<t<q<32).
(13)

¢; () =((x; mod 27) mod 2°7),

Make an XOR operation on ¢; (n) and divide video data
based on pixels; that is,

m(n) = ((xi mod ZH) mod 2t7q) ® (m), (14)

where @ is the XOR operation.

3.1. Discretization for the New System and Its Implementation
Based on FPGA. In the hardware experiment, it is impossible
to implement the continuous Lorenz and Qi chaotic systems
because of limitation of the bit width in FPGA. Therefore, it
is necessary to discretize continuous system first. Multiple
methods can be used to discretize a differential equation
such as Euler method, improved Euler method, and Runge-
Kutta method. To meet the requirement of real-time per-
formance and the limitation of hardware implementation,
Euler method is used to discretize the differential equations
due to its low computation complexity. First, Euler method
is used to discretize Qi and Lorenz systems, respectively. The
corresponding process of Qi system is proposed as follows:
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FIGURE 2: FPGA hardware diagram.
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[x;(n)]i=1,2,..,8
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Video data  |——m (n)—> p (n)——>

FIGURE 3: Block diagram of encryption algorithm.

(le (n+1) - xq, (n))

. = a(xQ2 (n) = xq1(n) + xq, (M)xq; (n)),

(xQ2 (n+1) - xq, (n))

- =b(xg; (1) + X0(n)) — Xy (Mxgs (1)),

(xQ3 (n+1) = xq3 (n))

. = —CXqs ((n) —exqq () + xq; (Mxq, (n)),

(xQ4 (n+1) - x4 (n))

= —de4((n) + fxqs (1) + xq; (Mxq, (n)).

(15)

T

Then, the iteration equations of Qi system are shown in
xXq1 (n+1) = arxg, (n) + (1 - ar)xg, (n) + 1xq, (M)xq; (1),
Xqp (n+1) = brxg, (1) + (1 +b1)xq, (1) — Txq; (M)x0; (1),
Xqz (n+1) = (1 = c1)xq; (1) — eTxgy (1) + 17X, (M)x (1),

X4 (n+1) = (1 —dr)xg, (1) + frxg; (1) + X0 (M)x0, (n).
(16)

Similarly, the discrete Lorenz system is

(Xt D =X )= ),

< M:m(m—y(m—x(n)z(n% (17)

z(n+1)-z(n)

=x(n)y(n) - Bz (n).

T

Correspondingly, the iteration equations of Lorenz system

are



x(n+1)=o0ty(n)+(1-o07)x(n),
y(n+1)=rrx(n) +(1-1)y(n) —1x(n)z (n), (18)
z(n+1) =1x(n)yn) +(1-pr)z(n).

In general, FPGA can store float data and fixed-point
data. Since fixed-point data require less computing resources
than that of float data, this paper uses 64-bit fixed-point
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number to represent the data. The detailed data format of 64-
bit fixed-point numbers is shown in Figure 4.

In Figure 4, I represents the integer part of 64-bit fixed-
point numbers, and f is the fractional part.

As mentioned before, because of the limitation of bit
width in FPGA, all data are truncated numbers in hardware
implementation. Therefore, the Qi and Lorenz system
becomes

[xq (n+ 1)] = arlxg, (n)] + (1 - at)xg; (M)] + Tlxg, (M) ]1x0q; (M)],
lxqo (n+1)] = brlxg (m)] + (1 +b7)|xq, ()] — Tlxq (M) ]1x03 (M),
[xqs (n+ 1)] = (1 = c7)[xq3 (M)] — erlxqy (M)] + Tlxq0 (M) [x0; (M)],
lxqs(n+1)] = (1-dr)lxg (] + frlxgs (M)] + 7lx0; ()]0 ()],

(19)

[x(n+1)] =otly(m] +(1-o01)x(m)],
ly(n+ D] =rrlx(m)] + (1 -1)ly#n)] -1lx(n)]lz(n)], (20)
lz(n+1)] =1lx(#) ||y ()] + (1 - Br)lz(n)].

Let the iteration step be 7=0.00001 and use the same
parameters in system (12). Then substitute them into (19)

and (20), respectively. Therefore, Qi system and Lorenz
system are changed as follows:

lxqr (n+1)] = 0.9995[x, (n)] +0.0005] x5, ()] + 0.00001 | x0, (1) ][ x5 ()],
lxqy (n+1)] = 0.0002]x; (1)] +1.0002| xq, (n)] — 0.00001 | xq; (1) ][xq3 ()],
[xgs (n+1)] = 0.99987| xq; ()] = 0.00033| x5, ()] +0.00001 | x, (1) || xq; (m)],
[xqq (n+ 1)] = 0.00008| x4 ()] + 0.9997 x5 ()] + 0.00001 x5, (1) ][ X, (1) ],

(21)

[x(n+1)] =0.0001]y ()] +0.9999|x (n)],
Ly(n+1)] =0.00028] x (1)] + 0.99999] y (n)] — 0.00001|x (1)]|z (n)], (22)
[z(n+1)] =0.00001|x (n)]y(n)] +0.9999733|z (n)].

To iterate Qi system and Lorenz system and make
semitensor product operation on these two systems after
each iteration, respectively, the discretized first 8 state
variables of the new system are obtained:

[ x,(n+1) =[x(n+1)] x|xq (n+1)],
X (n+1) =|lx(n+1)] x|xg (n+1)],
x3(n+1) =lx(n+1)] x|xg; (n+1)],
xg(n+1) =lx(n+1)] x|xg (n+1)], (23)
4 23
xs(n+1) =ly(n+1)] x|xq (n+1)],
xe(n+1)=|y(n+1)] x[xQZ(n+ ],
x;(n+1) =ly(n+1)] x|xg (n+1)],
| xg(n+1)=|y(n+1)] x[xQ4(n+ ],

where x;(n+ 1) and x; (n) are system state variables. | y (n +
1)] is the approximate value of y (n+ 1) using fixed-point
number.

3.2. Implementation and Analysis of Encryption Algorithm of
the New Chaotic System. In order to ensure the randomness
of the random sequence, therefore, select the low bits from ¢
to q as shown in Figure 5. The positions of these bits are not
close to those of sign and exponent bits. Then the chosen
random encryption sequence, ¢; (n), is shown in equation
(17). This paper selects t=1 and g=6:

¢; (n) = mod (( lxzit(rll)J) 2q_t+1), i=1,2,...,8.

(24)

Random sequences which are selected from eight states
based on the method mentioned previously are combined to
generate the random sequence, ¢ (n):

,cg (1)), (25)

In order to resist the differential attack and decrease the
correlation between adjacent random sequences, the paper
selects the very first iteration sequence among every N it-
erations and stacks these selected sequences to construct a

c(n) =(c; (n),c, (v), ...
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FIGURE. 4: Data format for 64-bit fixed-point numbers.
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FiGure 5: The schematics of numbered data bits.

random sequence, ¢ (1), as shown in equation (18). This can
improve the randomness of the random sequence.

Next, the random sequence, ¢ (1), conducts XOR op-
eration with the divided video data. Since a frame video data
includes tricolor integer sequences, R (1), G (1), and B (n),
these three sequences will be encrypted simultaneously after
changing the random sequence, ¢ (n), into three columns
evenly, ¢t (n), & (n), and ¢ (n):

p1(n) =c' (m)@R(n),
pr(n) = (e G(n), (26)
ps(n) = (@ B(n),

where p, (n), p, (n), and p; (n) are encrypted sequences and
@ is an XOR operation. One has

EXO)
d< =

R(w - g ) ® py ()

<[X1 (H)J 2‘1 t+1 ) @Cl (n)® R (n),

[%, ()] gt

iy
0d<[ (n)J
(s

®p,(n)]

)
)

' (myeG(n),

I
g

Lx (n)J

q t+1

B(n) = mod

®[p;(n)]

= mod(mod([%, ()], 2'),2"" ) @’ (n) @ B(n),

(27)

where [?cp/ (m)], p' = 1,2,3 are receiver terminal sequences.

3.3. Analysis for NIST Test. NIST test is provided by National
Institute of Standards and Technology, and it is a standard to test
the randomness of a random sequence. According to the en-
cryption algorithm in this paper, ¢ (1) in equation (25) should be
tested by NIST standard. The comparisons of the random se-
quence among the new system, Qi system, and Lorenz system, ¢
(n), ¢1, (n), and cq (n), are conducted which are obtained from
serial interfaces. The results of the tests are shown in Table 1.

As shown in Table 1, all the test results for the random
sequences of the new system meet the NIST test index

standards. Partial test results are larger than 0.8, which means
these random indexes are quite close to those of the real
random sequences. The randomness indexes and some other
test results are better than those generated from Lorenz system
and Qi system, such as frequency, block frequency, cumulative
sums, nonoverlapping template, approximate entropy, random
excursions, random excursions variant, and linear complexity.

3.4. Statistical Analyses. Vivado IDE is used to conduct the
hardware simulation. The paper also performs the statistics
analysis for the encrypted video data generated by hardware.
Figure 6(a) is one picture of a video before encryption.
Figure 6(b) is the encrypted picture of a video.

Figure 7 demonstrates the comparisons of statistics
histogram between the original and encrypted pictures.

Figure 7 demonstrates the comparisons of statistics
histograms between the original and encrypted pictures. As
illustrated in Figure 7(a), the difference of the pixels dis-
tribution is obvious. However, distribution of different
pixels for the encrypted picture shown in Figure 7(b) is the
approximately uniform distribution. It can be concluded
that the proposed encryption algorithm for the new system
can better resist statistic attack effectively.

3.5. Differential Analysis. Differential attack is used to
measure the sensitivity of plaintext change for the encryp-
tion algorithm and commonly uses NPCR (Number of Pixels
Change Rate) and UACI (Unified Average Changing In-
tensity) as indexes defined as follows:

Y. D(e )
NPRC = =/ "7+ 100%,
WX H x 100%
1 |C(e)f)_c/(eyf)| 0
UACI = W Z oo x 100%,
(28)
NPRC = ) NPRC (m),
i (29)

UACI = Z UACI (m),

where C (e, f) is the pixel value before encryption and C' (e,
f) is the pixel value after encryption. If C (e, f) =C' (e, f), D
(e, /) =0, else 1. NPRC and UACI calculated by (29) and the
proposed system and encryption algorithm are 99.60% and
12.28% for the first-time encryption, respectively. Therefore,
the ability to resist differential attack improves to some
extent. In video encryption application, the requirement for
encryption speed is more concerned.

3.6. Correlation Analysis. Correlation analysis is used to
check whether the neighbor pixels are close or not. This
paper analyzes the correlation for Figure 6. The paper selects
5000 random pixels from the original and the encrypted
images and analyzes the correlation among these random-
pixel pairs as shown in Figure 8. As Figure 8 illustrates, the
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TaBLE 1: NIST test results for the random sequences of the new system, Lorenz system, and Qi system (the number of sequences is 100, and
their lengths are 1000000).

Statistical test P value of ¢; (n) P value of ¢q (n) P value of ¢ (n) Test results of ¢ (n) Proportion
Frequency 0.000000 0.236810 0.474986 v/ 100/100
Block frequency (m =128) 0.289667 0.699313 0.946308 ~/ 99/100
Cumulative sums 0.000000 0.108791 0.779188 v/ 100/100
Runs 0.000000 0.554420 0.075719 v/ 100/100
Longest run 0.419021 0.383827 0.289667 v/ 100/100
Rank 0.851383 0.996335 0.289667 v 100/100
FFT 0.911413 0.911413 0.213309 v/ 99/100
Nonoverlapping template (m=9) 0.000003 0.181557 0.983453 v/ 100/100
Overlapping template (m=9) 0.181557 0.935716 0.924076 / 100/100
Universal 0.616305 0.289667 0.014550 v/ 97/100
Approximate entropy (m = 10) 0.000000 0.798139 0.816537 v/ 99/100
Random excursions 0.008879 0.319084 0.739918 v/ 64/64
Random excursions variant 0.213309 0.289667 0.949602 v/ 64/64
Linear complexity (M= 500) 0.010988 0.013569 0.108791 v 99/100
Serial (m=16) 0.616305 0.028817 0.262249 +/ 100/100

(a) (b)

(c)

F1GURE 6: The original and encrypted pictures of a video and the corresponding encrypted video data through FPGA. (a) The original picture
of a video. (b) The encrypted picture of a video. (c) Encrypted video data shown on a monitor.
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FIGURE 7: Histogram between the original and encrypted pictures. (a) Histogram of the original picture. (b) Histogram of the encrypted picture.
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F1GURE 8: Correlation analyses for the original and encrypted figures in Figure 6. (a) Correlation analysis for the original figure as shown in
Figure 6(a). (b) Correlation analysis for the encrypted figure as shown in Figure 6(b).

correlation dramatically decreases when comparing two
figures before and after encryption as shown in Figure 6.

4. Conclusions

This paper proposed a new chaotic system generated by
using semitensor product on two chaotic systems, and the
related dynamic characteristics are analyzed. The new sys-
tem is employed in video encryption as well, and the pro-
posed method can generate 8 or even 12 state variables when
compared to Qi system and Lorenz system which only
generate 7 state variables at most in one iteration period. The
proposed method can improve the speed of random se-
quence generation. The NIST test results demonstrate that
the pseudorandomness of new system is better than that of
single Qi system and single Lorenz system.

The proposed encryption algorithm based on semitensor
product can be used in other chaotic systems. The synchro-
nization of the new system can be implemented by synchro-
nizing two original chaotic systems separately. In this paper,
FPGA is used to implement the generation of the new chaotic
system and to encrypt video data. The corresponding statistics
and differential and correlation analyses were also conducted
which demonstrates that the new system has obvious advan-
tages, such as better random features, better resistance to
differential attacks, and lower pixel correlation for encrypted
images. The future work will focus on the decryption of video
information by the proposed chaotic system generated by the
semitensor product method in hardware.
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The objective of this paper is to estimate the unmeasurable variables of a multistable chaotic system using a Luenberger-like
observer. First, the observability of the chaotic system is analyzed. Next, a Lipschitz constant is determined on the attractor of this
system. Then, the methodology proposed by Raghavan and the result proposed by Thau are used to try to find an observer. Both
attempts are unsuccessful. In spite of this, a Luenberger-like observer can still be used based on a proposed gain. The performance
of this observer is tested by numerical simulation showing the convergence to zero of the estimation error. Finally, the chaotic
system and its observer are implemented using 32-bit microcontrollers. The experimental results confirm good agreement

between the responses of the implemented and simulated observers.

1. Introduction

Due to the absence or high cost of sensors, some of the
variables associated with the dynamics of a system could
not be available for measurement. Nevertheless, if the
system must be monitored or a state feedback controller
implemented, such unmeasurable variables should be es-
timated. Consequently, an aggregated dynamic system
(observation scheme) based on the system model and the
measurable states must be incorporated to reconstruct the
unavailable variables. In 1996, Luenberger proposed for the
first time, an observer and a design methodology for linear
systems [1]. Currently, the problem of state estimation for a
linear system is well understood, and the solution is well
established. However, the nonlinear case is more chal-
lenging. For this case, a first proposal of a solution was
provided by Thau in [2] in which structure of the

Luenberger observer was applied to Lipschitz nonlinear
systems. In this context, the structure is known as the
Luenberger-like observer. Based on this observer, Thau
presented sufficient conditions to guarantee the asymptotic
convergence to zero of the estimation error. However, no
design procedure to find the observer gain was provided. In
[3], Xia and Gao showed a necessary condition for the
existence of an exponential observer. Tsinias provided
sufficient conditions and a simple approach for the ob-
server design [4]. In fact, this approach was a direct ex-
tension of the observer design in the linear case. Based on
the off-line solution of an algebraic Riccati equation,
Raghavan and Hedrick proposed an iterative procedure of
observer design for a class of Lipschitz nonlinear systems
[5]. In [6-11], different kinds of observers were studied for
chaotic systems. The main use of an observer in chaotic
systems is for synchronization [12-19].
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A chaotic system is a dynamical system with the
following properties: (1) high sensitivity to initial con-
ditions, (2) dense periodic orbits, and (3) topological
mixing. Consequently, it is impossible to carry out ac-
curate predictions about its long-term dynamic behavior
[20-23]. In spite of that, the boundedness of its states can
be guaranteed. Chaotic systems can be classified according
to the nature of its equilibrium points as (a) no-equi-
librium systems; in this kind of systems, there are no real
equilibrium points, (b) stable equilibrium systems [24]; in
this case, the real parts of all eigenvalues associated with
the equilibrium point are negative, (c) line equilibrium
systems [25]; there is an infinite number of equilibrium
points along a straight line, and (d) curve equilibrium
systems; the equilibrium points form a locus such as a
circle [26], square [27], and three-leaved clover [28]. All
these aforementioned systems belong to the general class
of chaotic systems with hidden attractors.

Some chaotic systems have an additional very inter-
esting property: they can have two or more coexisting
attractors [29-37]. For the same set of parameters, each
attractor can be reached depending on the selected initial
condition. Such systems are known as multistable chaotic
systems [38-41], and they have received increasing at-
tention during the last decade due to their potential ap-
plications [42-44].

In this paper, the attention is focused on the state es-
timation of a multistable chaotic system proposed by
Kapitaniak and coauthors in [45] using a Luenberger-like
observer. The system has two attractors for the same set of
parameters. The main contribution of this paper is as fol-
lows: for the first time, the Kapitaniak system has (a) its
basins of attraction thoroughly studied, (b) its observability
analyzed, (c) an observer is proposed for it, and (d) the
system and its corresponding observer are implemented
using 32-bit microcontrollers.

Q ={(x), %5, x3) | %, € [-4.9150,10.8287], x,

Thus, the following bounds for x;,x,, and x; can be
established:

|x1| <X| max = 11,
|x2| <Xy max = 14, (3)

|%3] < X3, may = 22.5.

Finally, it is important to mention that system (1) can
briefly be represented as

x = Ax + f (x), (4)

Complexity

2. Multistable Kapitaniak Chaotic System

A three-dimensional chaotic system with a fixed point
attractor and a hidden strange attractor was presented in
[45]. Each one of these attractors can be reached depending
on the selected initial condition. The mathematical model of
the system is given as follows:

X = X3,
3(.:2 = —xl - x3> (1)

X3 = 0.1x; +5x, — x5 + x;x, — 0.3x,x5 + 1,

where x,, x,, and x; are the system’s states. By using Wolf’s
algorithm, the Lyapunov exponents of system (1) can be
calculated as L, =0.1501,L, =0, and L; =-1.1501. As
L, >0, it can be confirmed that system (1) is chaotic. Ad-
ditionally, the Kaplan-Yorke dimension can be determined
as Dyy = 2.1305. By inspection, the equilibrium point is
given by (0,-0.2,0). The eigenvalues associated with it are
A, = —0.9835and \,; = —0.0082 + 2.2547i. Thus, it can be
concluded that this equilibrium is stable. This equilibrium
point can be reached, for example, by taking the initial
condition as (2, 3,0). With respect to the strange attractor,
this can be reached, for example, by using the initial con-
dition (5.4,-1.8,3.3) (see [45]). The projections of this
attractor on x, — x,,X, — X3, and x; — x5 planes are pre-
sented in Figure 1.

The attractor was obtained by simulation of equation (1)
using Simulink® with solver ode45 (Dormand-Prince),
relative tolerance le — 6, absolute tolerance le — 7, start time
0, and stop time 500 sec. If the stop time is increased to
1,000,000 sec, it can be determined that the chaotic states of
system (1) belong to the following set:

€ [-5.3136,13.7184], x5 € [-14.6249, 22.3794]}. (2)

where

x:=[x; x, x; ]T)

[0 0 1
A=(-10 -1}
(0.1 5 -1 (5)
[ 0
f(x):= 0
| X%, —0.3x,x3 +1
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X2

FIGURE 1: Projections of the strange attractor of system (1) with the initial condition (5.4,-1.8,3.3): (a) x, — x, phase plane, (b) x, — x5

phase plane, and (c) x; — x5 phase plane.

3. Basin of Attraction

The basin of attraction of an attractor comprises the set of
points in the state space that leads to the attractor [46, 47].
The current system (1) has two attractors including a fixed
point attractor and a chaotic hidden strange attractor. The
basin of attraction of both attractors is shown in Figure 2 on
the x,-x, plane (Figure 2(a)) and on the x,-x; plane
(Figure 2(b)). In the first case, the plane is chosen such that
x5 = 0. Orbits are started at every pixel in a region of interest
and followed until they return to the Poincare section or
diverge to infinity, and the corresponding initial point is
colored accordingly: red, if it identifies the chaotic attractor,
light green, if it identifies the fixed point attractor, and white,
otherwise. Similarly, for completeness, we choose the plane
containing the equilibrium x, = —0.2 and perform similar
operations as before. The resultant basin of attraction can be
appreciated, as shown in Figure 2(b).

Moreover, it is important to classify and quantify the
basin of attraction based on the work reported in [48].
According to the results, a probability function considered at
large distances is the basis for classifying and quantifying
chaotic attractors’ basins. The function at large distances, has
power law scaling:

P(r) =10 ®)

ry
where P (r) is the probability that an initial condition at a
distance r from the attractor lies within the basin of at-
traction, and P, and y are the classification and

quantification parameters. Based on these parameters, the
basin of a chaotic system can be grouped into one of four
classes [48]. As Figure 3 shows, system (1) has a class 3 fractal
basin with noninteger power law scaling. The basin of at-
traction of the chaotic attractor extends to infinity, but since
the codimension of the basin is almost 2, the basin most
likely has a narrow width.

4. Problem Formulation

Let us focus on the case when not all the states of system (1)
are available for measurement because the corresponding
sensors do not exist or they are very expensive. In this case,
we can represent system (4) as

{X:Ax+f(x),

ox )

where y is the output vector and C is the constant output
matrix with appropriate dimension. Throughout this work,
we consider that the output is simply given by

y =X (8)

This means that
C=[100] 9)
To reproduce the unavailable states x, and x5, we need to
use a dynamic system known as an observer. For the linear

case, Luenberger proposed a well-known structure of an
observer. For the nonlinear case, we could use a
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()

FIGURE 2: Basin of attraction of the chaotic system (1) viewed along the plane x; = 0 (a) and along the plane x, = —0.2 (b).

P =1758.2808/71.868 (class 3) 4

IgP

-17

lg(r)

FIGURe 3: The chaotic system (1) has a class 3 fractal basin that
extends to infinity and with a noninteger power law scaling.

generalization of this structure called the Luenberger-like
observer. For system (7), this observer is given by

{§=Ai+f(i)+L(Y—?),
y=Cx,

(10)

where X is the observer’s state and L is a constant gain
matrix. The Luenberger-like observer is formed by the model
of the original system (with the true state x replaced by the
estimated state X), plus a linear correction term.

The difference between the states of the observer (10)

and the system (7) is called the estimation error which is
defined as

e =x—-X (11)

The problem of state estimation consists of finding an
appropriate gain matrix L in such a way that lim,_, e =0,
that is, e converges asymptotically to zero.

5. Observability Analysis

Before attempting to find the observer gain, or in general, to
use any observation scheme, a fundamental question must
be resolved. That is, what are the conditions under which the
reconstruction problem of the unmeasurable states of a
system has a solution?

Definition 1 (see [49, 50]). System (7) is said to be observable
over the time interval [¢t,, t,],t; > t,, if the knowledge of the
output y over [t,, t;] suffices to uniquely determine the
initial state x(¢,) completely.

The observability analysis for linear systems is a well-
understood problem. However, the case for nonlinear sys-
tems is subtler and more complicated. Results on the ob-
servability of nonlinear systems are discussed in [51] and
references therein. In this work, these results are summa-
rized for an unforced system with a unique output like
system (7).

Consider the extended output vector as

y
Y=yl (12)

j

The observability matrix for the nonlinear case is defined as
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s

= (13)

Q

Corollary 1 (see [50]). System (7) is locally observable in a
neighbourhood of the point x at time t, if

det(Q) #0. (14)

Remark 1. Although the Kalman condition for observability
of linear systems is necessary and sufficient, condition
expressed in (14) is only sufficient.

To begin with the observability analysis for system (7),
the extended output vector is calculated as

Y X1 Xy
Y=(y|=[%]= X3
¥ X 0.1x; +5x5 — x3 + X%, — 0.3x,x3 + 1
(15)
Next, the observability matrix can be determined as
1 0 0
oY
Q=—= 0 0 1 . (16)
0x

0.1+x,-03x;3 5+x; —1-0.3x,

It is easy to show that
det(Q) = -5 — x;. (17)
Thus, system (7) loses its observability only when
x; = -5.
6. Raghavan Observer

In this section, observer gain L is tried to be determined
using the Raghavan procedure. First, the Lipschitz constant
of system (7) must be found.

Q z{(xl’x2>x3) I lxll <X max = 11

Thus, F is a matrix whose elements are the maximum
absolute values of each corresponding element in the Ja-
cobian matrix (19) on the set Q). Next, F can be determined as

0 0 0
F=| o 0 o | (22)
20.75 11 3.3

Finally, the Lipschitz constant for f on the set Q) is given by

y =|F| = 23.7161, (23)

where |F| denotes the two-norm of F, that is,

IE| = \Mmax(FTF), and AmaX(FTF) denotes the maximum

eigenvalue of F'F.

6.1. Lipschitz Constant Determination

Definition 2 (see [49, 52]). A function f(x): R" — R" is
said to be locally Lipschitz on Q ¢ R" if there exists a
constant y (known as the Lipschitz constant) such that for all
X;, X, € Q, the following inequality holds:

1€ (x;) = £(x)|| < plx1 = %o (18)

Finally, f is said to be globally Lipschitz if it satisfies (18)
with Q = R".

Lemma 1 (see [49, 52]). If a function f: R" — R" is
continuously differentiable on a set QO ¢ R”", then it is locally
Lipschitz on Q.

Taking into account Lemma 1, Khalil [52] proposed a
procedure to calculate the Lipschitz constant y [53]. Al-
though this procedure produces conservative results, it is
enough for the purpose of this work. First, for the function f
given in (5), let us calculate its Jacobian matrix as

0 0 0
of (x)

. 19
5% 0 0 0 (19)

x, —0.3x; x; —0.3x,;

Let us define the matrix F as

of
F = max|—]|, (20)
xeQ 10X
where
|x2| <Xy max = 14 |x3| < X3 max = 22.5}. (21)

6.2. Raghavan Design Procedure. The procedure proposed
by Raghavan is based on the following result.

Theorem 1 (see [5]). Given system (7) and its observer (10),
if there exists € >0 such that the following algebraic Riccati
equation (ARE) has a symmetric, positive definite solution P:

1
AP +PA" + P<y21 - —CTC)P +1+el=0, (24)
€

then, by selecting the observer gain as L = (1/2¢)PCT, the
estimation error e = X — X converges asymptotically to zero for
all £ with a Lipschitz constant y.

Remark 2. A necessary condition for the existence of a
symmetric, positive definite solution P is that the pair (A, C)
be detectable.



Let us apply Algorithm 1 to our problem. We must verify
that (A, C) is detectable. Let us define the observability
matrix O using (6) and (9) as

C 1 0 0
O=|CA|=]0 0 1] (25)
CA? 0.1 5 -1

The rank of O is 3, that is, the pair (A, C) is observable, a
stronger condition than detectability. Now, by setting
€ =10.9227, we use Algorithm 1 implemented in Matlab®
with command “are” for the solution of equation (24). The
algorithm gives a result until the 14th iteration when
€ = 1/1500. With this value, the corresponding solution of
equation (24) is

0.0326 0.0003 0.0000
P =|-0.0015 0.0002 —0.0419 |. (26)

—0.0012 0.0425 0.0016

However, as can be easily verified, P is not a symmetric
matrix. Besides, smaller values for ¢ do not produce a
symmetric matrix either. Thus, the algorithm has failed.

6.3. Scaling of System. If Algorithm 1 does not work, a
possible solution could be to scale the chaotic system (1).
Consider the variables z,, z,,and z; defined as

. z = b
1= kl’

)

42, = k_, (27)

2

X3
Z3 = k—,

3

where k,, k,, and k; are the positive constants. By taking the
first derivative of (27) with respect to time and substituting
(1), after some algebraic operations, can be found that

_ ksz,
1~ kl >
k k
1 Zz _k_;ZI - k_zZS,
. k k. k
L 23 =0.1 k_;zl + 5k—§zz - Z3+ llc—;ZlZz - 0.3k,z23 + K
(28)
Succinctly, system (28) can be represented as
z=Az+f(z),
(29)
v, =Cz,

where
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r k3_
0o o0 =
k,
~_ | k ks
A= k, 0 k|
30
0.1+ 5& -1 (30)
Lk Tk
- 0 -
f(z) = 0 ,
k. k 1
_]1(—322122 —0.3k,z,25 + ko

and ¥, is the output of system (29), that is, ¥, = z,.
To find the Lipschitz constant of scaled system (29), the
Jacobian matrix of f is determined as

[ 0 0 0 ]
of (z) 0 0 0
= N 31
. (31)
kK k.k
2, —03kz; 2z, —0.3k,z,
L ks ky |
and the matrix F for (31), that is, F, is given by
[ 0 0 07
ky ky ky
—14+0.3-—+225 —=11 3.3
| K, k, ks ]

Thus, the scaled Lipschitz constant can be calculated as
7 =|Fl. (33)

To try to find a positive result for Algorithm 1, it is
important to reduce y. This can be achieved by reducing k;,
and k, and increasing k;. The minimum value for y is 3.3.
Although different values for k,, k,, k5, and ¢ are tested,
Algorithm 1 does not work on the scaled system (28). Thus,
it can be inferred that there does not exist a Raghavan
observer for Kapitaniak system (1).

7. Thau Observer

In [2], Thau provided a sufficient condition to guarantee the
asymptotic convergence to zero of the estimation error.
However, a systematic procedure of design was not pro-
vided. That is, to use this result, first, the user must propose a
value of gain for the observer by trial and error.
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Step 1. Set ¢ to a positive value.
Step 2. Solve ARE (24).

Step 3. If P is symmetric and positive definite, then L = (1/2¢)PCT and the process is terminated.
Step 4. If not, set € = ¢/2, and go to Step 2. If ¢ is below some precision value, abandon the method.

ALGORITHM 1: Procedure to obtain the observer gain [5].

Theorem 2 (see [2,49]). Given system (7), the corresponding
observer (10), a symmetric positive definite matrix Q,, and an
observer gain L, proposed by the user, such that A — LC is
Hurwitz, if the following Lyapunov equation:

(A-LC)'P, +P,(A-1C) = -Q,, (34)

has a symmetric positive definite solution P, which satisfies
the following inequality:
Amin (Ql)

Y 2P o

where A, (Q,) and A, (P,) are the minimum eigenvalues
of Q, and the maximum eigenvalue of P,, respectively; then,
the estimation error e converges asymptotically to zero.

It should be noted that relation in (35) can be increased if
the minimum eigenvalue of Q; is increased and/or the
maximum eigenvalue of P, is reduced. According to [54, 55],
the ratio in (35) can be maximized if Q; =I. To apply
Theorem 2 to our problem, several values for the gain ob-
server L are proposed. In spite of the exhaustive search, the
inequality (35) cannot be satisfied. In this case, the scaled
system (28) is considered. Several combinations of values for
ky, k,, ks, and observer gain are tested. However, attempts
are again unsuccessful. Thus, it can be inferred that the Thau
observer does not exist for Kapitaniak system (1).

8. Luenberger-Like Observer

In spite of the negative results of the previous sections, it is
important to take into account that Theorems 1 and 2
provide only sufficient conditions. If these conditions are not
satisfied, this does not mean the nonexistence of the
Luenberger-like observer. In fact, in this section, the exis-
tence of a Luenberger-like observer (10) for Kapitaniak
chaotic system (1) is verified by numerical simulation.
Consider the following value for the observer gain L:

24.4844
L=|-1.0968 |. (36)
-0.9137

Once the gain L has been proposed, the observer (10) can
easily be simulated. Models for the chaotic system (7) and for
the corresponding observer (10) are built on Simulink”. The
initial condition for the chaotic system is again (5.4, -1.8, 3.3)
as in Section 2. As the states are not available, it is reasonable
to propose the initial condition of the observer simply as
(0,0,0). For a fair comparison with respect to the experi-
mental results of the following section, the simulation is

accomplished using solver ode4 (Runge-Kutta) with a fixed
step size of 0.0004 sec, a start time 0, and a stop time 10 sec. In
Figure 4, the observation process is shown, whereas in Fig-
ure 5, the signal of the estimation error e is presented.

As can be appreciated from Figure 5, the estimation error
converges asymptotically to zero.

9. Microcontroller Implementation and
Experimental Results

The implementation is accomplished using two Teensy USB
Development Board based on the 72 MHz Cortex-M4 3.3V
signal microcontroller. The chaotic system (7) is imple-
mented on the first board, whereas the corresponding
Luenberger-like observer (10) is implemented on the second
board. A block diagram of this implementation is shown in
Figure 6.

Both systems are implemented using solver ode4
(Runge-Kutta) with a fixed step size of 0.0004 sec. Since the
observer requires signal x, as an input, a unidirectional
communication between the microcontrollers must be set.
The communication is achieved using an analog to digital
conversion based on PWM and a digital to analog converter
built on the microcontroller. The following process is ac-
complished: (1) the first microcontroller with the chaotic
system provides the states x;,x,, and x5, (2) the states are
sent by the PWM port (10-bit resolution and 5Mhz fre-
quency), and also the states are scaled, (3) the PWM signals
go to a low-pass RC filter with a cutoff frequency of 30 Hz,
(4) the output of this filter is taken by an analog to digital
converter of the second microcontroller. This converter has a
10-bit resolution and a sample frequency of 5 MHz, (5) the
digital signal is scaled to the original range, (6) the second
microcontroller with the Luenberger-like observer produces
the states X,,X,, and X5, (7) the observer states are scaled, (8)
these states are sent to the PWM port, and (9) such signals go
to a second low-pass filter. The states of the chaotic systems
and the states of the observer are sent by serial communi-
cation to a computer for visualization (see Figure 7). At the
same time, the outputs of both low-pass filters are sent to an
oscilloscope to verify the measurements.

To facilitate the implementation process and the re-
production of our results, the pseudocodes for the master
microcontroller and the slave microcontroller are as follows:

Pseudocode of the master microcontroller:
BEGIN
Initial conditions of states

define step time
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Time (sec) Time (sec)

(@ (b)

Time (sec)
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FIGURE 4: Observation process (true state, solid line; estimated state, dashed line) for (a) x, and X, (b) x, and X,, and (c) x5 and X;.
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FiGure 5: Time evolution of the estimation error e.
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FIGURE 6: Block diagram of the implementation.



Complexity

Time (sec)

(a)

Time (sec)

()
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(c)

FIGURE 8: Observation process for the implemented systems (true state, solid line; estimated state, dashed line) for (a) x, and X,, (b) x, and
X,, and (¢) x; and.X;.

main loop function ()
{
Calculate states through the Runge-Kutta method
{x1
x2
X3
}

Applied offset to states of the original system to get
positives values in the PWM port and the scale factor
for distributing the values in all range of the PWM port

Sx1=(x1 + offset)* scale factor

Sx2 = (x2 + offset)* scale factor

Sx3 = (x3 + offset)* scale factor
Send values through the PWM port
PWM output «— (Sx1)
PWM output «— (8x2)
PWM output «— (8x3)
Calculate time delay for the sample time
}
Pseudocode of the observer microcontroller:
BEGIN
Initial conditions of states
define step time

main loop function ()
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FiGure 9: Time evolution of the estimation error e for the
implemented systems.

{

Read values of the real system through the analog to
digital converter and remove the offset and the scale
factor

x1_r «— (analog input/scale factor)-offset
x2_r «— (analog input/scale factor)-offset
x3_r «— (analog input/scale factor)-offset

Calculate observer states, using the x1_r state and the
Runge-Kutta method

{x1_O
x2_O
x3_0

}

Calculate error between the real or original system and
the observer system

Applied offset to observer states to get positives values
in the PWM port and the scale factor for distributing
the values in all range of the PWM port

Sx1_O=(x1_0O + offset)* scale factor

Sx2_0=(x2_0O + offset)* scale factor

Sx3_0=(x3_0O + offset)* scale factor
Send values through the PWM port

PWM output «— (Sx1_O)

PWM output «— (5x2_0)

PWM output «—— (8x3_0O)

Send states of real system, states of observer system, and
error of systems through the serial/USB port

Calculate time delay for the sample time
}

In Figures 8 and 9, the experimental results are pre-
sented. The observation process is shown in Figure 8 for the
first states, second states, and third states, respectively, of the
implemented systems. Finally, the estimation error between
the implemented chaotic system and the implemented ob-
server can be appreciated in Figure 9.
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In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium
points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical
simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and
chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the
three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability
theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic
convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order
discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed

synchronization controllers.

1. Introduction

In the recent several decades, chaos is an attractive phe-
nomenon in nonlinear dynamical systems, which has been
extensively analyzed and studied deeply. It is well known
that chaos was first detected in continuous nonlinear sys-
tems. Its characteristics and the existence in discrete dy-
namical maps have also been the interesting topics. Many
discrete maps with chaotic attractors have been proposed,
such as the Logistic map, Hénon map, and Lozi map [1-5].
With the rapid development of fractional calculus, many
works including chaos, control, and synchronization for
fractional-order continuous systems have been reported
[6-18]. It should be pointed out that the fractional discrete
maps were not paid enough attention and properly explored
until recently [19].

In 1974, Diaz and Olser first put forward the fractional
difference [20]. Up to now, fractional-order discrete maps
have obtained more and more attention. In [21], a discrete

fractional Hénon map was introduced, and its chaotic be-
havior was discussed. Dynamics, stabilization, and syn-
chronization for several fractional-order maps, such as the
Ikeda map, Loren map, and Lozi map, were studied in
[22-28]. The discrete fractional calculus can avoid the te-
dious information or calculation error of the numerical
discretization for the continuous ones due to the nonlocal
property [29]. Therefore, more and more discrete maps with
fractional operators need to be presented, and more
abundant and complex dynamics behaviors need to be
explored. Besides, it is well known that fractional-order
discrete maps are sensitive not only to the small disturbance
of parameters and initial conditions but also to the variation
of fractional orders [30], which are the unique advantages of
fractional-order systems. For this reason, a fractional-order
discrete map is more suitable for data encryption and secure
communications. Furthermore, fractional-order discrete
maps have simple forms and rich dynamics, which are good
for system analysis and numerical computation. Based on
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these, investigation of a new fractional-order discrete map
including dynamics, stabilization, and synchronization is
necessary and important for the development of fractional
calculus.

In [31, 32], a two-dimensional noninvertible map with
cubic order nonlinearity, which was taken as a chaotic
cryptosystem, was proposed and studied. The evolution of
attractors and their basins have been analyzed deeply and
explained thoroughly. A noncyclic chaotic attractor for
the map was displayed in [33]. Based on these, we extend
the map to the fractional case and study its dynamics. The
stability of the equilibrium points for the map is exam-
ined. By the bifurcation graphs and phase diagrams, the
dynamics of the fractional-order discrete map with two
different initial conditions is displayed as a parameter or a
derivative order varies. Furthermore, bifurcations with
the simultaneous variation of both a parameter and the
order are also analyzed in the three-dimensional space.
Interior crises occur in the map with the variation of a
parameter or the order.

The main motivation of our work is to know whether
bifurcations and chaos, which the integer-order discrete
map possesses, also exist in the fractional-order coun-
terpart. In fact, these dynamics behaviors do exist in the
fractional-order map, and multifaceted complex dy-
namics is observed by means of the numerical simula-
tions. For a chaotic system, control and synchronization
are very important for its application in practical prob-
lems. In our work, we are also interested in studying the
control and synchronization for the fractional-order map.
Based on the stability theory of fractional-order discrete
maps, a stabilization controller is proposed to control the
chaos of the map. The synchronization between the
proposed map and a fractional-order discrete Loren map
is studied and realized.

2. Discrete Fractional Calculus

In this section, we will recall the definition and related

theories for the discrete fractional calculus. In the following,

the symbol AV X (#) represents the v order Caputo type delta

fractional calculus of a function X (t): N, — R with N, =
{a,a+1,a+2,...} [34], which is expressed as follows:

Cav (n—-v) 1 )

X (0= 8,"X(0) = o ; .

C(t=s—-1D"DA"X (s),

where v ¢ N is the order, t e N,,,_,, and n=[v]+ 1. In
formula (1), the vth fractional sum of ATX (t) is defined as
[35, 36]

t—v
AX (1) = ﬁ Y (t-s-1)"VX(s), (2)

where t € N,,,, v>0. t) represents the falling function
which is defined according to the Gamma function T as

Complexity

(v) _ F(t+ 1)

TTGU+1-v) (3)

Generally speaking, the following method is employed to
compute the numerical solutions for a fractional-order
discrete map.

For an equation with the fractional calculus operator,

CAZu(t):f(t+v—1,u(t+v—1)), @)
Au(a) = un=[vl+1l, k=0,1,2,...,n-1,
the equivalent discrete integral one is
1 t—v
u(t) = ug (t) + —— (t-s-1D"Vf(s+v-1u
O, 2 /
-(s+v-1)), teN,,,
(5)

where u (£) = Y120 ((t = a) P/T (k + 1) A*u(a).

The following theorem is used to analyze the stabilization
and synchronization for fractional discrete maps. For the
proof of the theorem, please refer to the literature [37].

Theorem 1. The zero equilibrium of a linear fractional
discrete system:

CAVX(t) = MX (t+v-1), (6)

where X (t) = (x, (t), %, (£), -, x, (£))T, 0<v<1,M € R™"
andVt € N, ,_,, is asymptotically stable if

|/1i| <(2 cos —|arg/1,»| — ﬂ) ,
2-v

(7)

|arg ;| >%, i=1,2,...,n
for all the eigenvalues A of M.

3. A Fractional-Order Discrete Map

3.1. Description of the Map. Firstly, the two-dimensional
discrete map with cubic nonlinearity in [31-33] is described
as follows:

{x(n+ 1) = y(n),
y(n+1) =b(-x>(n) + x(n)) +c(=y* (n) + y (n)),
(8)

where x(n)and y(n) are the state variables and bandc
parameters. The first-order difference of (8) is formulated as

x(n+1)=yn -x(n),
{y(n+ 1) =b(-x*(n) + x(n)) +c(-y* (n) + y(n)) — y(n).
(9)
By employing the Caputo-like delta difference given in

(1) with the starting point a, the corresponding fractional
map is
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y(t—-1+v)-x(t-1+v),

{ CAYx(t) =

CAy(t) =b(-x*(t-1+v)+x(t-1+0v))+c(-y*(t-1+0)+ y(t -1 +v)) -

Based on equations (4) and (5), we can obtain

x(t)—x(a)+m5;1 (t—s-—

y(t) _y(a)+r( ) s=a+1

where (t—s—1)"Y/T(v) is the discrete kernel function
and  ((t-s-1)""VT(v) = (T(t-s)/ (T () (t —s— v+

() F(n j+1)

I'(n-j+v)
I'(n- ]+1)( (

1
yW),ﬂ@+r()Z

In the rest of the paper, the low limit a is fixed as 0.

3.2. Stability of Equilibrium Points. Now, we turn to study
the stability of equilibrium points for map (10). By the simple
computation, we can get the three equilibrium points:

El (0) 0)’

E +\/1—L +\]1— ! )
23\~ b+c b+c)

when b+ c¢>1. The map has only one equilibrium point
E, (0,0) when b+ c<1. The Jacobian matrix of map (10)
evaluated at an equilibrium point E, = (x*, y*) is

-1 1
]lz[b(—3x*+1) c(—3y*+1)—1]. (14

The corresponding eigenvalues for the equilibrium point
E;(0,0) are A;, = (c/2) £ (V4b +c?/2). In this paper, we
only consider the case of map (10) with positive parameters.

Z (t-s-1)" 1)( (—x(t—1+v)3+x(t—1+v))

y(t—1+v). (10)

DUV (y(t-1+v) —x(t—1+0)),

(11)

+c(—y(t— 1+0v)? +y(t-1 +v)) -y(t-1 +v)),

1))). Based on this, the numerical solution for the fractional
discrete map (10) can be obtained, which is as follows:

x(m) = x(a) + o - ZF(” IO (o1 x (- 1)

(12)

=G -D+x(-D)+c(-y*G-D+y(i-1)-y(i-1D).

Therefore, the zero equilibrium point E, is unstable due to
largA;| = 0 < (vn/2) on the basis of Theorem 1.

For a fractional-order discrete map, the stability of a zero
equilibrium point can be determined easily based on The-
orem 1. Therefore, we will use a very simple method pro-
posed in [38] for handling with the nonzero equilibrium
points. For more special details about the method, please
refer to Remark 2.5 in the literature [38].

In order to analyze the stability of the nonzero equi-
librium  points  E,5;, let  x, =+/1-(1/(b+c)),

vy, =+1-(1/(b+c)), x3=-1-(1/(b+c)), and y; =

-y1-(1/(b+c)). Through the following variable
transforms,
2 (E-1+0)=x(t-1+0v)—x,,
Zp(t-1+0)=y(t-1+0v) -y,
(15)

Zy (t-1+0)=x(t-1+0)— x5,
Zyp(t-1+0)=y({—-1+0v) -y,

we can get two newly maps with a zero equilibrium point:



which are corresponding to E, ;, respectively. The Jacobian
matrix of maps (16) and (17) evaluated at the zero equi-
librium point is

-1 1
] =
2 [—3bx§+b —3cy§+c—1]
(18)

R
-3bx}+b -3cyl+c-1]

Complexity

[(CAY (2, (£) +x,) = CALzy, (£) = 25y (E = 1+ 0) + Y, — 25, (= 1 + ) — x5,

{ CAs (2 (1) + ,) = CDzy () = b( (25 (E = 1 +0) +X,)° + 2y (£ = 1 + 1) + x,) (16)
‘ +c(—(z22(t— 1 +v)+y2)3+zzz(t—l+v)+y2)—zzz(t—l+u)—y2,

[(CAY (25, (8) +2x3) = CA z3y (1) = 255 (E = 1+ 0) + 3 — 23y (£ = 1+ 0) — x5,

1 CAY (23 () + y3) = ALz, (8) = b(—(z31 (t—1+0)+x;) +2; (t-1+0)+ x3) (17)

A+c(—(z32(t—1+v)+y3)3+z32(t—1+v)+y3)—z32(t—1+v)—y3,

The corresponding eigenvalues of J, for the zero equi-
librium point are

2b — ¢ + \/-(2b + 2¢ — 3) (4b* — 2bc? + 4bc — 263 + 3¢2) + 2bc + 2¢2

(19)

A3,4 =

When the parameters of map (10) are choosen as b =
2.2andc =0.95 and the order is taken as v =0.98, the
corresponding eigenvalues are A;, = —1.4976 + 1.4343i. By
simple computation, we can obtain

[ .
larg ;| = 2.3788>— = 1.5379, i=3,4,
2

v
;| = 2.0736 >(2cos%> =1.4538, i=3,4,

(20)

which means the equilibrium point E, ; is unstable in this
case according to Theorem 1.

4. Dynamics Analysis

In this section, the dynamics of the fractional-order dis-
crete map (10) with the variation of a parameter or the
fractional order and the bifurcations with the simultaneous
variation of both a parameter and the order v will be
analyzed in detail.

4.1. Dynamics as the Parameter b Varies. When the order
v = 0.98 and parameter ¢ = 0.95, the dynamics of map (10)
with the variation of the parameter b is analyzed. The bi-
turcation diagrams and the corresponding largest Lyapunov
exponents (LLE) spectrums with two different initial con-
ditions x; = (0.8,-0.4) and x,, = (0.8,0.4) are displayed in
Figure 1. From which we can see that the dynamics of the

2(b+c)

map is abundant and shows a symmetry with different initial
conditions in this case.

The evolution of the trajectories for different b with x, is
depicted in Figure 2. In the phase plane, there is a fixed point
which means the map is period-1 for b = 1 (Figures 2(a) and
2(b)). The map has a limit cycle attractor for b = 1.5, see
Figure 2(c), which means a Hopf bifurcation occurs as the
parameter b increases from 1 to 1.5. The shape of the limit
cycle changes as b increases further (Figures 2(d) and 2(e)).
The map keeps chaotic when b varies from 1.75 to 2.2. In
Figure 2(g), three small chaotic attractors appear in the
phase plane when b = 1.9 and convert to one large attractor
when b = 1.95 (Figure 2(h)). From Figures 2(i) and 2(j), we
can see that the chaotic attractor becomes a large one
suddenly, which implies that an interior crisis occurs as b
increases from 2 to 2.2.

The dynamics of the map with the initial condition x,,
which is similar to Figure 2, is displayed in Figure 3. From
the global dynamics perspective, the two chaotic attrac-
tors, which are depicted in Figures 2(i) and 3(i), collide
with each other and convert to a large one (Figures 2(j)
and 3(j)).

4.2. Dynamics as the Parameter c Varies. The fractional order
v is fixed as 0.98 and the parameter b = 2.2, and the dy-
namics of map (10) when c is varied in the interval of [0.2, 1]
with two initial conditions x;; and x, are studied. Firstly,
the bifurcation diagrams and the corresponding LLE
spectrums with x,, and x,, are plotted in Figure 4. From
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which we can see that the dynamics of the map is different
from that of the map as the parameter b varies and lost the
symmetry.

0)

1.5

The phase diagrams for the map with x,; are shown in

Figure 5. The map is period-2 when ¢ = 0.2 (Figures 5(a) and
5(b)), and the periodic behavior persists for a long time until
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FIGURE 5: The phase diagrams of system (10) with the initial condition x,,;: (a) ¢ = 0.20, (b) the discrete time evolution of the state variable

x (n) with ¢ = 0.20, (c) ¢ = 0.80, and (d) c = 0.88.

¢ =0.79. When ¢ = 0.8, the system is chaotic and the chaotic
attractor is depicted in Figure 5(c). As ¢ increases from 0.87
to 0.88, the chaotic attractor becomes a large one, which
means an interior crisis occurs.

The dynamics of the map with the initial condition x,
is displayed in Figure 6. The map keeps chaotic as the
parameter ¢ changes in the interval of [0.2, 1], and the
chaotic attractor has different formations. A chaotic
attractor consists of four small parts in the phase space
when the parameter ¢ increases from 0.2 to 0.28
(Figures 6(a)-6(c)) and converts to a whole one when ¢ =
0.29 (Figure 6(d)). The system is period-5 when ¢ = 0.4,
and the phase diagram and the discrete time evolution of
the state variable x (n) are plotted in Figures 6(e) and 6(f).
When the parameter ¢ increases from 0.87 to 0.88, the
chaotic attractor becomes a large one suddenly
(Figures 6(g) and 6(h)), which implies that an interior
crisis occurs.

The stable region for the map in the b — ¢ parameter
plane with v = 0.98 is plotted in Figure 7 in order to give a
guidance of choosing values of the parameters. From this
figure, we can see that map (10) is chaotic when b = 2.2 and
c=0.95.

4.3. Dynamics as the Order v Varies. The parameters are fixed
as b = 2.2 and ¢ = 0.95, the dynamics of map (10) is studied
when the order v is varied in this section. The bifurcation
diagrams and the corresponding LLE spectrums with x,
and x,, are plotted in Figure 8. From which it can be seen
that the dynamics of the map also shows a symmetry with
different initial conditions in this case.

For different values of the v, the phase diagrams with
Xy, are shown in Figure 9. The map has period-1 attractor
for v =0.7 (Figure 9(a)), and a limit cycle for v =0.71
(Figure 9(b)), which means a Hopf bifurcation, occurs as
the order v increases. The shape of the limit cycle changes

as v increases (Figure 9(c)). The map exists as a multicycle
attractor for v = 0.83, see Figure 9(d). As the order in-
creases to 0.84, the attractor becomes a chaotic one which
is consisted by several small parts (Figure 9(e)). The small
parts combine into one attractor when v =0.86
(Figure 9(f)). From Figures 9(g) and 9(h), it is clear that
the chaotic attractor has three small parts in the phase
plane when v = 0.89, and these parts become a whole one
when v = 0.9. The chaotic attractor in Figure 9(i) becomes
a large one (Figure 9(j)) when the order varies from 0.95 to
0.96.

The phase diagrams with initial condition x;, as the
order varies from 0.7 to 0.96 are shown in Figure 10, which
are symmetric with those of the map withx,,. From the
global dynamics perspective, the two chaotic attractors,
which are depicted in Figures 9(i) and 10(i), collide with
each other and convert to a large one (Figures 9(j) and
10()))-

4.4. Bifurcation with the Simultaneous Variation of Both
Parameter and Order v. In this section, the bifurcations of
map (10) as a parameter and the order variation with the
initial conditions x,,; and x,, are studied. Firstly, the value of
parameter c is fixed as 0.95. The bifurcation diagram of the
map is depicted in Figure 11, when the parameter
b €[0.2,2.2] and the order v € [0.5,1] change simulta-
neously. Secondly, the value of parameter b is set as 2.2.
Figure 12 shows the bifurcation diagram of the map with the
variation of the parameter b € [0.2,2.2] and the order
v € [0.5,1]. From these figures, it can be seen that map (10)
is periodic when the order is less than a certain threshold and
appears chaotic behavior when the order is greater than the
certain threshold.

In other words, the dynamics of map (10) becomes
regular as the derivate order v decreases from 1 to 0.5 and
complex as the derivate order v increases from 0.5 to 1.



Complexity

1 . . . . . 1 . . .
0oL o~ — | 0.9} ,
2
\// 0.8 4
0.8} _
0.7 | -
Eo7t =
- o6 ]
0.6} — I -
C / 05} 1
0.5+ \\ 1 04 L J
|
O 4 1 1 1 1 VA 1 O 3 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.4 0.6 0.8 1
(n) (n)
(a) (b)
1 . . . 1 . . .
0.9} 1
0.8} i
0.7 |
= ]
o6l
0.5
04} _
0.3
0.2 ) ) : ) 1
x(n) x(n)
(c) (d)
1 : : K T 1 T : ; T T
*
0.8} - 0.8 | ,
0.6 | N - 0.6 |- -
* - K
E E
N ® A
04} - 04 | i
02} . - 02t -
0 1 1 1 1 0 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500 3000
x(n) t
(e) )

FiGure 6: Continued.



12

1.5 T

0.5 F

y(n)

-0.5 F

Complexity

x(n)
(8

! ~1.5 !

1 1.5 15 -1

-0.5 0 0.5 1 1.5
x(n)

()

FIGURE 6: The phase diagrams of system (10) with the initial condition x,: (a) ¢ = 0.20 (b) ¢ = 0.25, (c) ¢ = 0.28, (d) ¢ = 0.29, (e) ¢ = 0.40, (f)
discrete time evolution of the state variable x (1) with ¢ = 0.40, (g) ¢ = 0.87, and (h) ¢ = 0.88.

1.5+

0.5

0.2

Unstable

Stable

0.2

0.4 0.6 0.8
c

FIGURe 7: The stable region of the map for the two parameters.

1.5

0.5 F

-1.5 1

0.5 0.6

Figure 8: Continued.




Complexity

x1073
1

0.5

-0.5

LLE

-1

15 M

-2.5

0.5

0.6 0.7 0.8 0.9

(c)

LLE

-2.5

%1072

13

+| I

i M il
Il |

I

0.5

0.6 0.7 0.8 0.9 1

(d)

Ficure 8: Bifurcation diagrams and corresponding LLE spectrums for the map with different initial values as the order v varies: (a) the
bifurcation diagram with x;;, (b) the bifurcation diagram with x,, (c) the LLE spectrum with x;;, and (d) the LLE spectrum with x,.

-0.5

-0.6 F

-0.7

y(n)

-0.8 ¢

-09

-04

-0.6 -0.5

-0.5 -

-0.7

y(n)

-0.8 + ~

-09

-0.9

FiGgure 9: Continued.

-0.75

-0.8

y(n)

-0.85

-0.2

-0.85 -0.8 -0.75

x(n)
(b)

-0.4

y(n)

-0.8

-1.2

-1.2

-0.4 -0.2



14

-0.2 T
-04 ?'s
1,
-0.6 | r' j é
08} ¥ v
E
by e e
S
12 A A .
Z12 1 0.8 0.6
0.2
ok

0.5

= -osf
=
~1k
-15 : : :
-1.5 -1 -0.5 0
x(n)

®

FIGURE 9: The phase diagrams of system (10) with the initial condition x,: (a) v = 0.70, (b) v = 0.71, (c) v = 0.81, (d) v = 0.83, (e) v = 0.84,
(f) v=0.86, (g) v=0.89, (h) v=0.90, (i) v="0.95, and (j) v = 0.96.

Complexity

-0.2

-1

1.5



Complexity

1 : T T 0.95 T T
09 E 0.9 E
*
0.8 + 4 0.85 4
= =
EN =
0.7 + 4 0.8 F 4
0.6 | E 0.75 + E
0.5 L L L 0.7 L L
0.5 0.6 0.7 0.8 0.9 1 0.75 0.8 0.85 0.9
x(n) x(n)
(a) (b)
1.1 1.2 T T T
*
1+
1+ i
*
0.9 | * *
0.8 - * e
08¢ _ .
0.7} 0.6 * 1
*
*
0.6 |
0.4 |
0.5
*
0.4
0.4 0.5 0.6 0.7 0.8 0.9 1 1.2
x(n)
(c)
1.2 T T T
—~——
L / ety | |
0.8 . 3 1
=~ Y
0.6 | 3 . v .
¥ ;:?
t i} ]
04+ 4
0_2 1 1 1 0 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 0.2 0.4 0.6 0.8 1 1.2
x(n) x(n)
(e) )

Figure 10: Continued.

15



16 Complexity

RE
. 0.6} 4
o 17 oal %
e 0.2+ %i' /:'i
i/
. ok . .
_02 L L L L L L
12 0 0.2 0.4 0.6 0.8 1
x(n)
(h)
1.5 . . . . .
1k i
0.5 | .
= 1 = of 1
B N
-05} -
“1} 4
-15 L L L L L
1.5 -15 -1 -0.5 0 0.5 1 15
x(n)
@ G

FIGURE 10: The phase diagrams of system (10) with the initial condition x,: (a) v = 0.70, (b) v = 0.71, (c) v = 0.80, (d) v = 0.83, (e) v = 0.84,
(f) v=10.86, (g) v=10.89, (h) v=0.90, (i) v=0.95, and (j) v = 0.96.

15— 1.5 —

1 14

0.5 0.5 4

= o+ T o

= =

-0.5 - -0.5 -

14 A 2.2 -1 4
-L5 7 : . b -15
0.5 0.6 0.7 0.8 0.9 02 05

v
() (b)

F1Gure 11: Bifurcation diagrams for map (10) with different initial values as the parameter b and the order v vary: (a) the bifurcation diagram
with x; and (b) the bifurcation diagram with x,.



Complexity

13 : : :
YLl
0.5 - STEETE e n ._.‘.v’,
T o - R :
= :
-0.5 //‘A
0.6
-13 02 ¢
05 0.6 0.7 0.8 0.9 1

()

17

13

05—

x(n)
[=}
|

05+

‘ : 0.6 ¢
-13 ' ' : 0.2
0.5 0.6 0.7 0.8 0.9 1

F1GURE 12: Bifurcation diagrams for map (10) with different initial values as the parameter c and the order v vary: (a) the bifurcation diagram

with x;, and (b) the bifurcation diagram with x,.

5. Stabilization

The stabilization of map (10) will be studied in this section.
From here, the case of the equilibrium to be at the origin is
considered. For convenience, the controlled map (10) is
rewritten as the following form:

{ CAx(t) = y(w) - x(w) + u; (w),

CAYy (1) = b(—x* () + x (@) + c(—* (@) + y(w)) = y (@) + 1, (),

(21)
where w=t-1+4+v and u;andu, are the stabilization

controllers.

Theorem 2. The fractional-order map (10) can be stabilized
when the controllers are designed as the following form:

{ul(t) =-y(1),

(22)
u, (1) = -b(-x*) +x(t)) —c(=y* () + y (1))

Proof. Through substituting (22) into (21), map (21) becomes

{ CA(’;x(t) = —x(w),
(23)
CAy (1) = -y (w).
Map (23) can be rewritten in the compact form:
B (x(0, 7)) = Ax (x(@)y (@), (24)

where A = ( _01 _01 ) Based on Theorem 1, it is easy to see
that the eigenvalues of A satisfy the conditions

CAx, (1) = y, (@) - x, (0) + u, (w),
CALy, (1) = b(-x3 (w) + x, (w)) +

where the subscript r denotes the response system. The
error state variables are defined as e, (t) = x, (t) — x, (¢)

larg);| = mand |A;| = 2%, fori = 1,2, which implies that the
chaos of map (10) can be controlled and the zero equilibrium
of (24) is globally asymptotically stable.

In the numerical simulations, the values of the param-
eters are fixed as b=2.2andc =0.95, and the fractional
order v = 0.98. The controllers are used to stabilize map (10)
when the iterations are chosen as n = 1000. The stabilization
results are displayed in Figure 13. It is clear that the state
variables x (1) and y (n) toward to zeros, which means the
chaos of map (10) is stabilized and the results confirm the
theoretical control results presented in Theorem 2. O

6. Synchronization

Now, we consider the synchronization of map (10). Firstly, a
fractional Lorenz map is taken as the drive system:

{ CAZxd (t) = yox (w) = 6y, (w)x, (w),
€8.y4(1) = 8(=y4(@) + X} (),

where 0<v<1 and state subscript d denotes the drive
system. Map (25) is chaotic when the parameters
y = 1.25and § = 0.75 and the derivative order v = 0.98. For
more details about the dynamics of map (25), please refer to
the literature [23]. Map (10) with synchronization con-
trollers u, (w) and u, (w), which can be described by the
following equations:

(25)

(26)

c(=y; (@) + y, (@) = ¥, (@) + , (w),

and ey(t) =y, (t) — y,(¢). If all the error states variables
tend to 0 as the time t — oo, then maps (25) and (26) are
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synchronized. The following theorem is given to ensure
the synchronization between the two maps can be
realized.

{ uy (w) = yéx, (w) = 8y, (w)xy (w) - y (w) + x4 (w),

Theorem 3. The drive and response maps (25) and (26) are
synchronized when the controllers are designed as follows:

(27)

Uy () = 8(—y4(w) + x5 (w)) = b(—x2 (w) + x, () —c (- (@) + ¥, (0) + y; (w).

Proof. The error dynamical system with fractional Caputo
difference is

{ CAZe1 ) = ¥, (0) = x, (0) — POx 4 (w) + 8y, (w)x 4 (w) + Uy (w),
CA%e, (t) = b(-x2 (w) + x, (W) + ¢ (=¥ (@) + ¥, (W) = ¥, (@) = 8 (—y4 (W) + x5 (®)) + 1 ().

By substituting controllers (27) into (28), we can obtain
the error dynamical system:

{ CAle, (1) = e, (w) — e, (w), (29)
CAle, (t) = —e, (w).
System (29) is rewritten in the compact form:

Ni(er (0, (1) = Mx (e (@)oo (@), (30)

-1
where M = 0

the matrix M satisfy the following stability condition:

1 .
1 ] It can be seen that the eigenvalues of

|/1i| <<2 coslargM_ﬂ) ,
2—-v

(31)
|arg ;] >%, i=1,2

Based on Theorem 1, we can get that the zero
equilibrium of (29) is globally asymptotically stable,
which implies the two maps (25) and (26) are
synchronized.

In the numerical simulations, the parameters are fixed as
y=1250=0.75b=22,andc =0.95 and the order is
v = 0.98. The initial conditions of the two systems (25) and
(26) are (x40, ¥40) = (0.1,0.1) and (x,q, ¥,0) = (0.8,0.4).
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The results of numerical simulations are depicted in Fig-
ure 14. From which, we can see that the error variables
ejande, converge to zero rapidly as n increases
(Figures 14(a) and 11(b)). Meanwhile, the evolution of the
state variables with time » for the two maps (25) and (26) are
synchronized under the designed controllers (27)
(Figures 14(c) and 14(d)). O

7. Conclusions and Discussion

A fractional-order discrete noninvertible map with cubic
nonlinearity is proposed in this paper. Firstly, the sta-
bility of the equilibrium points for the map is analyzed.
Secondly, the dynamics of the map with two different
initial conditions is studied by numerical simulation.
Bifurcation diagrams and phase plots are obtained as a
parameter or the fractional order varies. A series of
attractors of the map in different forms, including
equilibrium points, limit cycles, and chaotic attractors,
are plotted. Furthermore, bifurcations with the

simultaneous variation of both parameter and order are
also analyzed in the three-dimensional space. From the
global dynamics perspective, interior crises occur in the
map as a parameter or the order varies. Thirdly, based on
the stability theory of fractional-order discrete maps, the
chaos of the map is controlled by the stabilization con-
trollers. Finally, the synchronization between the pro-
posed map and a fractional-order discrete Loren map is
investigated. Numerical simulations are implemented to
verify the effectiveness of the designed controllers. The
results obtained in this paper reveal that chaos really
exists in the fractional-order formation for the map
proposed in [31-33]. More abundant local and global
dynamics are found in the fractional-order map.

It is worth mentioning that the mechanism of interior
crises occur in map (10) cannot be displayed from a global
perspective due to the absence of effective global dynamics
computation methods for fractional-order discrete maps.
Therefore, developing the effective computation methods of
global analysis for this kind of systems is our following work.
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With the rapid development of information technology in today’s society, the security of transmission and the storage capacity of
hardware are increasingly required in the process of image transmission. Compressed sensing technology can achieve data
sampling and compression at the rate far lower than that of the Nyquist sampling theorem and can effectively improve the
efficiency of information transmission. Aiming at the problem of weak security of compressed sensing, this study combines the
cryptographic characteristics of chaotic systems with compressed sensing technology. In the actual research process, the existing
image encryption technology needs to be applied to the hardware. This paper focuses on the combination of image encryption
based on compressed sensing and digital logic circuits. We propose a novel technology of parallel image encryption based on a
sequence generator. It uses a three-dimensional chaotic map with multiple stability to generate a measurement matrix. This study
also analyzes the effectiveness, reliability, and security of the parallel encryption algorithm for source noise pollution with different
distribution characteristics. Simulation results show that parallel encryption technology can effectively improve the efficiency of

information transmission and greatly enhance its security through key space expansion.

1. Introduction

Nowadays, the rapid evolution of information technology
and data networks has brought great convenience to people’s
productivity and lives [1]. As the main carrier of information
transmission, a network must store and forward a significant
amount of information at any moment [2]. Among them,
digital information is easy to store and forward, and noise
does not accumulate, which makes it easy to store and
transmit widely in the network. As an important informa-
tion carrier in digital information, the digital image is widely
used in national defense, education, medical treatment, fi-
nance, and other fields [3]. Effective encryption of digital
image information can resist illegal attacks, malicious de-
struction, and destruction of information by criminals and
realize the safe transmission of information [4]. In the
traditional process of information transmission and en-
cryption, the Nyquist sampling theorem is applied, which
indicates that the sampling frequency must be more than
twice the highest frequency when sampling a signal with

limited bandwidth in order to ensure the complete recovery
of the original signal from the sampling value [5]. In recent
years, compressed sensing as a cryptosystem has attracted
much attention owing to its low complexity and com-
pressibility in the sampling process [6]. Compressed sensing
can sample the compressible signal at the frequency far lower
than that specified by Nyquist’s sampling theorem and can
ensure that the receiver can accurately reconstruct the
original signal [7]. However, the encryption system under
the traditional compressed sensing framework is vulnerable
to plaintext attacks. To reduce the correlation between ad-
jacent pixels of the encrypted image [8], an efficient image
compression and encryption algorithm based on a chaotic
system and compressed sensing was proposed in [9]. At the
same time, owing to the use of diffusion and scrambling
operations, the chaotic system has the characteristics of
cryptography in order to achieve more effective encryption
of image information.

Compressed sensing (CS), as a new signal sampling and
compression technology [10], has been widely used in the
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field of image processing since it was proposed [11]. Ors-
demir et al. studied the robustness and security of CS-based
encryption algorithms [12]. Schulz et al. analyzed the dis-
tortion performance of compressed sensing in image
compression and compared it with traditional algorithms
[13]. Fridrich discussed the relationship between dis-
cretization and chaotic cryptosystems and proposed a two-
dimensional Baker-based symmetric image encryption al-
gorithm. This algorithm uses image chaos to scramble and
diffuse images to achieve image encryption [14]. Zhang
proposed an image encryption algorithm about plaintext-
related shuffling. This algorithm combines two types of
diffusion operations and plaintext-related transformations
to encrypt the image and uses hyper chaos to generate a
keystream [15]. Enayatifar et al. proposed an image en-
cryption scheme based on synchronous scrambling diftu-
sion, using chaos mapping and a DNA encryption algorithm
to diffuse and scramble pixels [16]. An image encryption
algorithm based on two-dimensional sinusoidal coupled
mapping and chaotic diffusion was proposed in the literature
[17]. Chen et al. proposed an optical image conversion and
encryption scheme based on a phase detection algorithm
and incoherent superposition that can realize the conversion
and encryption of color images and gray images [18]. Hua
et al. used high-speed scrambling and pixel adaptation to
encrypt an image. This can protect certain impulse noise and
prevent data loss [19]. Gong et al. proposed an image en-
cryption method combining a hyperchaotic system with a
fractional-order discrete transform [20]. Zhang et al. [21]
proposed an image encryption method combining orthog-
onal coding and double-random phase coding that can
compress all images into random signals and diffuse them
into stationary white noise. Wang et al. studied CS-based
image optimization technology in three main aspects [22].
The signal after compressed sensing processing is optimized.

To improve the computational efficiency of compressed
sensing and the security of image encryption, a parallel image
encryption technique based on a sequence signal generator
was proposed. Regarding information security, the algorithm
aims to provide a new data fusion processing technology,
design a new encryption scheme, create a plan under the
premise of guaranteeing the safety of image encryption, and
minimize the decryption time to reduce information storage.
This indirectly reduces the cost of information transmission
and storage. Owing to the sensitivity of the initial value and
the complex dynamic behavior of chaotic systems, pseudo-
random sequences with randomness, relevance, and com-
plexity can be provided. When designing a CS measurement
matrix, this algorithm introduces a chaotic system, which has
cryptographic characteristics achieved through scrambling
and diffusion [23]. Li et al. [24] proposed an image com-
munication system for IOT monitoring combined with CS
model which helps reduce the image encryption/decryption
time. Zhou et al. [25] proposed an algorithm by using double
random-phase encoding and compressed sensing to enhance
the security of digital image encryption with authentication
capability. Shi et al. [26] proposed an image CS framework
using convolutional neural network. The sampling network
adaptively learns the sampling matrix from the training
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image. This study combines compressed sensing with chaotic
cryptography to optimize the encryption effect and trans-
mission efficiency of compressed sensing and greatly improve
the key space.

In the actual information transmission process, noise
cannot be avoided, and the existence of noise seriously af-
fects the image quality. Aiming at the problem of noise-
contaminated signals and whether the original signal can be
reconstructed effectively after being encrypted and com-
pressed by the compressed sensing algorithm, Section 4 of
this article will focus on presenting the analysis of the
encrypted observation when the plaintext contains noise.
Whether the image can meet the encryption requirements
and whether the reconstructed image is accurate will be
assessed.

2. Compressed Sensing and Chaos Theory

Compressed sensing technology was originally developed
using the sparsity or compressibility of signals, and its theory
includes three key technologies [27]. The first is the sparse
representation of the target signal in order to thin the signal
to the extent possible [28]. In this, we need to obtain the
transform domain that matches the target signal y. The
second is the construction process of measurement matrix.
The target signal is compressed and sampled after passing
through the measurement matrix, so the design of the
measurement matrix needs to ensure that the effective in-
formation contained in the target signal is not lost [29]. The
receiver can effectively recover the target signal by using the
sampling value. The third is the design of the reconstruction
algorithm. The reconstruction algorithm finds the optimal
solution of the target signal by solving the optimization
problem [30]. Whether the reconstruction algorithm has
accuracy, efficiency, and stability is also key in algorithm
design.

Chaos used in this study is a new three-dimensional map
with self-excited structures as proposed by Jiang et al. in 2016
[31]. This kind of chaotic system has hidden chaotic dy-
namics, which is a new topic in nonlinear science and has
attracted extensive attention from mathematical and engi-
neering researchers in recent years. This kind of self-excited
three-dimensional mapping can provide a deeper under-
standing of the complex behavior of chaotic dynamics
hidden in discrete mapping. At the same time, the stability of
these chaotic systems can be analyzed based on the existence
of fixed points. In this algorithm, a three-dimensional
system with a single fixed point is used. The stability of the
system will be analyzed by calculating the fixed point of the
system.

2.1. Mathematical Representation of Compressed Sensing.
Suppose that a two-dimensional signal X of size N x N is
needed in the process of achieving compressed sensing to
make the signal sparse. Under the corresponding sparse
space of the signal, CS can achieve effective compression and
sampling. Using equation (1), CS can generate the sparse
representation of the signal X under y [32]:
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N
X =) Y5, =ys, (1)
n=1

where v is the sparse basis matrix and s is the projection
under the sparse basis y. In equation (1), if there exist
K (K <« N) nonzero coeflicients, the signal X is said to be
compressible under a sparse basis v, and the sparsity is K
[25]. If there is a two-dimensional matrix ¢ of size
M x N (M < N), then the original signal X can be converted
into a signal of size M x N by the following equation:

Y = ¢X = ¢ys, )

where Y is the measurement value and ¢ is the measurement
matrix. On the basis of the known measurement value Y and
measurement matrix ¢, CS can reconstruct the signal X by
solving the equation which is underdetermined. In the
traditional underdetermined equation, there should be
infinite solutions [33]; however, because s is sparse, con-
version to an optimization problem is possible. The unique
optimal solution of the underdetermined equation can be
arrived at by obtaining the minimum norm L; in the fol-
lowing equation:

min sl

st. Y = ¢ys, G)

where ||lm|| represents the L, norm, s is recovery signal, and Y
is the measurement signal. Because s is obtained using a
sparse-basis transformation, the signal X can be recovered
from the signal s through a single inverse transformation.

2.2. Three-Dimensional Map with Single Fixed Point.
From the computational point of view, if the attractor do-
main of the attractor does not intersect with a small balanced
neighborhood, then the former can be classified as a hidden
attractor; otherwise, it is called a self-excited attractor [34].
Classical chaotic attractors, such as the Lorenz, Chua, Chen,
and other chaotic systems, are self-excited attractors with
one or more unstable equilibrium points. Self-excited
attractors can be predicted by a standard calculation pro-
gram, but there is no effective method to predict the exis-
tence of hidden attractors owing to the unpredictability of
hidden attractor [35]. Hidden attractors can determine the
success or failure of a project in engineering. It has become a
new trend to study the continuous chaotic systems with
implicit and multistable attractors.

This algorithm uses a three-dimensional chaotic map
(SF1) with a single fixed point. The map was proposed in
[31], which used a computer exhaustive search program to
mine the hidden attractors contained in the map with sta-
bility. The mathematical expression is as follows:

Xk+1 = Vo
Yie1 = Zpo> (4)
Zgy = 0.6x; +0.39y; +0.65x7 — 0.65y;.

SFI =

In order to solve the fixed points of the three-dimen-
sional mapping above, it is first assumed that there are fixed

points (x*, y*,z*) in equation (4). The Jacobian matrix at
the fixed point is shown as follows:

0 1 0
J = 0 0 1. (5)
0.6+ 1.3x* 0.39 - 1.3y* 0

The characteristic equation of the above equation is
shown in the following equation:

det(M -J) =1+ pA>+gh+r=0, (6)

where p=-tr(J) =0, g=-(0.39+ 1.35y%), r =det(]) =
—(0.6 + 1.3x*), and tr is the trace of the Jacobian matrix. We
can determine the unique fixed point x* = y* =z* =0
based on the definition of the fixed point. According to
equation (6), the eigenvalues |A,| = 0.7761, |A,| = 0.7761,
and [A;] = 0.9962 of the three-dimensional system shown in
(4) can be obtained. The eigenvalues of the Jacobian matrix
at this fixed point A,, A,, and A, are all in the unit circle, that
is, [A;] < 1. Therefore, the fixed point of the three-dimen-
sional chaotic map is stable, that is, the chaotic map has the
hidden chaotic attractor of the stable fixed point. Attractors
of the chaotic maps are shown in Figure 1.

3. Parallel Compressed Sensing Encryption
Algorithm Based on Sequence Generator

In the image encryption and transmission process, the
complete image can be transmitted directly or by row or
column. The efficiency of image transmission depends on
the dimensions of the image information. In order to im-
prove the efficiency of encryption and transmission, this
study designs a block and parallel compressed sensing en-
cryption algorithm. We study this problem in detail and
introduce a logic circuit-based compressed sensing en-
cryption method in [36]. Based on this algorithm, this paper
makes a further study. By selecting appropriate block di-
mensions, the image is divided into blocks, and the blocks
are encrypted and transmitted in parallel. This method can
greatly improve the transmission efliciency of the image. In
the process of designing the measurement matrix, this al-
gorithm is based on the sensitivity and pseudorandom
performance of chaotic signals to initial values, as well as the
cryptographic characteristics of chaos under the mechanism
of diffusion and scrambling. Combined with the feature that
compressed sensing needs to rely on a measurement matrix
for compressed sampling, the security of a traditional
compressed sensing framework is not high, and the re-
construction wastes a large amount of storage resources.

3.1. Algorithm Principle. This algorithm adopts a combi-
nation of a digital logic circuit and compressed sensing
theory. First, the binary sequence signal of the length is
generated through the sequence signal generator, and the
binary sequence signal is taken as the “modulation signal.”
Based on chaotic system’s sensitivity to the “tiny distur-
bance” of the initial conditions, for chaotic systems, the
initial value of any small changes can directly affect the entire
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Ficureg 1: SF1 attractor.

chaos matrix generation. In this way, the security of image
encryption can be improved. Second, the chaos matrix
disturbed by the initial value is taken as the measurement
matrix, and the compressed sensing process is used to en-
crypt the image. In this study, a 256 x 256 image is seg-
mented into eight blocks by columns, and the image is
segmented and compressed in parallel. In order to better
present the chaotic cryptographic characteristics, this al-
gorithm diffuses and scrambles the compressed sampled
cipher text image so that the energy blocks gathered in
blocks in the cipher text image after block encryption can be
evenly distributed. This is distributed on the entire image to
achieve effective encryption and efficient transmission of the
image information. The realization principle diagram of this
algorithm is shown in Figure 2.

3.2. Sequence Signal Generator Mode. In this study, a shift
register with feedback logic circuit is designed, as shown in
Figure 3. If the number of bits of the sequence signal is m and
the number of bits of the shift register is n, then 2" >m
should be used. For example, to generate a set of 8 bit se-
quence signals such as 00101110 (time sequence from left to
right), a 3 bit shift register and a feedback logic circuit can be
used to form the required signal generator. The shift register
outputs the serial output signal from end Q,, that is, the
required sequence signal.

The sequence signal generated according to the re-
quirements can list the state transition table that the shift
register should have, as shown in Table 1. Starting from the
requirements of state transition, the requirements for the
value of input D, of the shift register are obtained.
According to the value requirements, the functional rela-
tionship between D, and Q, and Q, and Q, can be obtained
as shown in the following formula:

Dy = Q,Q[ Q) +Q,Q; + Q)Qy. (7)

The state transition table is shown in Table 1.

The clock signal is continuously added to the counter,
and the state of Q,Q;Q, circulates continuously according to
the order given in Table 1. Q, is the output end of the
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sequence signal, and the feedback logic circuit in the gen-
erator can be used as the key to modulate the initial value of
the chaotic system. It should be noted that the purpose of
generating different sequence signals can be realized only by
modifying the functional relationship of the feedback logic
circuit, so this circuit possesses the characteristics of flexi-
bility and convenience.

3.3. Parallel Compressed Sensing. In this study, the initial
value of the chaotic system is fine-tuned by the binary se-
quence signal generated in the previous section, and dif-
ferent chaotic matrices are generated as the measurement
matrices to realize the compressed sensing process. In the
image process compression and encryption using com-
pressed sensing, it is necessary to set the compression ratio,
adjust the dimensions of the measurement matrix according
to the size of the compression ratio, and realize the com-
pression sampling process of the sparse image. In this al-
gorithm, the sparse plaintext image is evenly divided into
eight blocks according to the column, and the size of each
block is 256 x 32. Compared with the transmission by
column, eight-block parallel transmission can effectively
improve the efficiency. The parallel compression sampling
process is shown in Figure 4.

It should be noted that although the parallel compressed
sensing image encryption scheme can effectively and reliably
encrypt the image, it is not bereft of some defects. Since the
plaintext image is sampled as a block, the energy of each
block in the measured value is stored centrally. To overcome
this defect, we adopt diffusion and scrambling operations to
evenly distribute the energy of the cipher text image in the
entire image. The reference formula for the diffusion process
is as follows:

Q (M=Q(n &k eQ (n-1), (8)

where Q(n) is the current operated element, Q* (n) is the
output cipher element, Q* (n—1) is the previous cipher
element, and k, (n) is the corresponding key stream.

3.4. Encryption Performance Analysis. We select a 256 x 256
gray image “Pepper” from the standard test gallery. The
image is sparsed by using a discrete wavelet transform, and
the sparse image is divided into eight parts. Each part has
dimensions of 256 x 32. The initial value of the chaotic
system is as follows: x(1)=0.17, y(1)=1.63, and
z(1) = —1.18. According to the method detailed in Section
3.1, the sequence signal generator is designed to generate the
binary signal 00101110. When the sequence signal is 1, the
initial value of chaos is fine-tuned to a step size of 1078,
When the sequence signal is 0, the initial value at this point is
kept unchanged to generate the chaotic signal. The chaos
matrix is used as the measurement matrix, and eight sub-
blocks of the image are compressed and sampled in parallel
by means of compressed sensing. The dimensions of the
measurement matrix in the encryption process are
190 x 256, so the compression ratio is 74.2%. Finally, the
encrypted cipher text image is diffused. Figure 5 shows the



Complexity

Generating measurement matrix

Compressed sensing process

Chaos
sequence

'

Measurement

Compressed
Sequence - sensing ——» Reconstruct signal X’
generator Sequence reconstruction
signal A
Sequence
l signal

matrix @

| I
| I
I i
I |
I T
| I
| I
| I
I i
I i
I i
| I
| I
| I
I i
| Chaotic system |
| I
| I
| I
I i
I i
I i
| I
| I
| I
I i
I 1
I T
| I
| I
| I
| i

FIGURE 2:

CLK
Sequential
1D % 1D @ 1D 2 signal
>C1 LCl C1 output
Qg’ Dg U sz
Dy

FIGURE 3: Signal generator based on shift register.

TasirE 1: Circuit state transition.

CLK Q, Q Q Dy
0 0 0 0« 1
1 0 0 1 | 0
2 0 1 0 i 1
3 1 0 1 | 1
4 0 1 1 i 1
5 1 1 1 | 0
6 1 1 0 i 0
7 1 0 0o 0
8 0 0 0 ---' 1

original image, encrypted image, diffused image, and dif-
ference between the encrypted image and diffused image.

As can be seen from Figure 5, the algorithm described in
this study presents a snowflake shape after encrypting sparse
images, and it is unable to distinguish any information
related to plaintext by the naked eye. From a subjective
perspective, it can be considered that this algorithm achieves
effective encryption of plaintext. Next, the encryption effect
and reconstruction effect are analyzed from an objective
perspective to verify that this algorithm can achieve the
secure encryption and effective decryption of plaintext
images. Figure 6 shows the original image, diffused image,
and their histograms.
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Parallel compression sensing encryption algorithm based on sequence generator.

The histogram in Figure 6(c) can clearly reflect the
distribution of pixel values, from which we can obtain
relevant information of the image. However, the pixel values
in Figure 6(d) are evenly distributed within the range [0,
255]. Different from the normal image, the attacker cannot
obtain any valid information of the original image from the
encrypted image. From the perspective of the histogram, this
algorithm achieves effective encryption of the plaintext
image.

Information entropy is an index used in information
theory to measure the amount of information. Conversely, the
more chaotic the system, the higher the information entropy.
For image information, the image information entropy with
high information is lower, while the image information en-
tropy with low effective information is higher. The higher the
entropy is, the more evenly the energy distribution in the
image is and the less information the attacker can obtain.
Table 2 shows the change of information entropy with the
compression ratio when the compression rate changes.

As can be seen from the table, the entropy value of the
image encrypted by the algorithm in this study is close to 8,
indicating that the algorithm achieves secure encryption of
the image.

3.5. Decryption (Reconstruction) Effect and Performance.
This algorithm uses compressed sensing to encrypt the
image. The decryption process can be regarded as the inverse
operation of the encryption process. The decryption process
can also be seen as the reconstruction process of the image.
First, the cipher text is antidiffused, and the formula is
shown as (9). The receiving end generates sequence signals
according to the key it holds and generates the initial value
control parameters of the measurement matrix. The chaotic
matrix is restored according to the control parameters, and
the measurement matrix is obtained. The sparse signal is
reconstructed by solving the optimization problem. The
formula for solving the optimization problem is shown in
(10). Finally, the plaintext image is restored by using
equation (11).
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QM =Q" (M e Q" (n-1) & k;(n), (9)
S; = arg ;E}iz% "51'“1
sty = ¢ix; = iy, (10)
i=1,...,N,
X, =vs,. (11)

According to the above process, the original image,
reconstructed image, and their histograms are shown in
Figure 7.

According to Figure 7(b), we see that this algorithm
can achieve reconstruction of cipher text. The image re-
construction reflects a clear image of effective informa-
tion. Comparing Figures 7(c) and 7(d) of the histogram,
the reconstructed image can be found in the original
image and the pixel distribution is basically similar, and
we can assume that this algorithm can realize image
reconstruction.

Structural similarity is an index that measures the
similarity of two images, and the value ranges from 0 to 1.
The closer the similarity to 1, the higher the similarity of two
images; otherwise, the greater the difference. Table 3 shows
the structural similarity between the original image and
reconstructed image at different compression rates.

As can be seen from Table 3, with an increasing com-
pression rate, the image similarity also increases. When the
compression rate is about 74.2%, the image can recover over
90%. However, the similarity of cipher text is very low, which
indicates that this algorithm can achieve the image en-
cryption requirements.

4. Encryption and Decryption Algorithms for
Noisy Images and Performance Analysis

In the process of actual transmission, the information is
composed of different kinds of noise pollution. Noise may be
derived from the source with the noise of the signal, from the
transmission channel through additive noise, or can be
derived from the actual produced physical noise. The ex-
istence of noise affects the accuracy of information trans-
mission. This section will present the analysis of whether the
algorithm can still effectively encrypt and successfully re-
construct the image when the noise is mixed at the source.

4.1. Encryption and Reconstruction Results. This study in-
tends to add Gaussian noise and salt-and-pepper noise to the
original image, sparse the original image containing noise,
and compress and perceive the sampling encryption. This is
used to verify whether the compressed sensing image en-
cryption technology optimized by this algorithm has the
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FIGURE 5: Results of gray image parallel compression perception encryption: (a) original image, (b) compressed sensing encrypted image, (c)

diffused cipher text image, and (d) difference between (b) and (c).

ability to resist source noise. The salt-and-pepper noise used
in this section has a noise density of 0.02, average Gaussian
noise of 0, variance of 0.01, and compression ratio of 0.8.
First, it is determined whether the image with noise can be
reconstructed at the receiving end. The simulation results
and histogram of adding salt-and-pepper noise to the
original image are shown in Figure 8, and the simulation
results and histogram of adding Gaussian noise are shown in
Figure 9.

As can be seen from Figures 8(b) and 9(b), after adding
noise to the original signal, the cipher text image encrypted
by the algorithm in this study still resembles a snowflake, and
the useful information in the image cannot be identified by
observation. The histograms of Figures 8(e) and 9(e) are
evenly distributed, indicating that we have successfully
hidden the effective information of the original image, and
the attacker cannot attack the algorithm using a statistical
attack. Figures 8(c) and 9(c) show the recovered images of
the encrypted image after the reconstruction algorithm. It
can be seen that although the image still contains noise, the
reconstructed image can be restored to the original image
after filtering. It shows that the algorithm has a certain ability
to resist the source noise. Since the intensity and variance of
the noise we added to the original picture are both low, by

comparing Figures 8(d), 8(f), 9(d), and 9(f), we can see that
the image is polluted with salt-and-pepper noise. The
reconstructed image has a better restoration effect after
reconstruction, the image is clear, the histogram distribution
is similar to the original image, and the signal contaminated
by Gaussian noise is greatly affected, but it can still effectively
recover the original information.

4.2. Encryption Performance Analysis. When the informa-
tion entropy of the image is low, it is vulnerable to malicious
attacks and tampering by criminals. For encrypted images,
the higher the information entropy is, the more uniform the
energy distribution in the image is and the less useful in-
formation an attacker can obtain from the grayscale dis-
tribution. Table 4 shows the changes in the entropy of the
encrypted image when the compression ratio changes
during the compression and encryption process. The noise
intensity of the salt-and-pepper noise selected during the
experiments in this section is 0.02; the mean and variance of
the Gaussian noise are 0.2 and 0.01, respectively; and the
compression rate of the compressed sensing process is
74.2%. In the table, I represents the noise intensity, M
represents the mean, and V represents the variance.
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FiGure 6: Histogram of original and encryption image: (a) original image, (b) cipher image, (c) histogram of plaintext image, (d) and

histogram of cipher text image.

TaBLE 2: Information entropy of encrypted images.

Entropy 0.3 0.4 0.5

Compression ratio
0.6 0.7 0.8 0.9 1

Cipher image 7.9920 7.9936 7.9937

7.9954

7.9960 7.9965 7.9972 7.9970

The table lists the cipher text entropies under the in-
fluence of salt-and-pepper noise and Gaussian noise with
different parameters. It shows that the entropy value of the
image after encryption in this study is close to 8, which can
achieve effective encryption.

The correlation between adjacent pixels in an image can
reflect the degree of diffusion of pixels in the image. The
correlation between adjacent pixels in an encrypted image
should be close to zero. In [33], a fractional-order Mellin
transform is used to compress the image from two directions
to obtain the encrypted image. Meanwhile, in [37], a discrete
fractional-order random measurement matrix is used to
encrypt the image from orthogonal directions. In this study,
the correlation of adjacent pixels is compared with the above

two studies to prove the effectiveness of this algorithm.
Table 5 shows the correlation of adjacent pixels under the
influence of salt-and-pepper noise and Gaussian noise,
respectively.

Figure 10 shows the adjacent pixel correlation distribution
between the plaintext image and the encrypted image when
the original signal is polluted by salt-and-pepper noise with a
noise intensity of 0.02. From the figure, we can see that the
plaintext image has a high degree of correlation, while the
adjacent pixels in the cipher text image are evenly distributed
in the pixel interval, and the correlation is very weak.
Therefore, according to the data and image results, it can be
seen that the algorithm in this study can still achieve a good
encryption effect when the signal source is polluted by noise.
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TABLE 3: Structural similarity between original image and reconstructed image.

Compression ratio

SSIM

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Reconstructed image 0.4528 0.6356 0.7761 0.8592 0.9059 0.9453 0.9607 0.9813
Cipher image 0.0025 0.0034 0.0043 0.0055 0.0066 0.0070 0.0079 0.0092

Structural similarity is an index that can measure the
similarity of two images. The structural similarity of
natural images is very high, which is reflected in the strong
correlation between the pixels of images. The value range
of structural similarity is 0 to 1. When the similarity is
close to 1, the more similar the two pictures, the more
different the two pictures. Table 6 shows the structural
similarity between the encrypted image and the original
image under the influence of salt-and-pepper noise and
Gaussian noise.

As can be seen from the table, the structural similarity of
cipher text images affected by any noise is less than 0.2,
which can achieve a satisfactory encryption effect.

4.3. Decryption (Reconstruction) Performance Analysis.
The peak signal-to-noise ratio (PSNR) refers to the ratio
between the maximum possible power of a signal and the
destructive noise power that affects its signal accuracy. It can
be defined by the mean square error (MSE), and its ex-
pression is shown as follows:

LZ
PSNR = 1010g10(m),

where L is the value range of grayscale in the image. For the
8bit image, L = 256. In general, the higher the PSNR, the
lower the distortion.

(12)
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TaBLE 4: Information entropy of encrypted images.

Compression ratio

Entropy
0.3 0.4 0.5 0.6 0.7 0.8 0.9
I1=0.02 7.9918 7.9934 7.9948 7.9948 7.9962 7.9964 7.9970
Salt-and-pepper noise I=0.05 7.9913 7.9933 7.9936 7.9955 7.9957 7.9966 7.9971
I=0.1 7.9921 7.9930 7.9944 7.9962 7.9957 7.9965 7.9971
M=0, V=0.01 7.9902 7.9939 7.9951 7.9954 7.9962 7.9955 7.9970
Gaussian noise M=0, V=0.02 7.9901 7.9928 7.9946 7.9956 7.9962 7.9969 7.9967
M=0.2, V=0.01 7.9901 7.9925 7.9950 7.9951 7.9960 7.9961 7.9971
TaBLE 5: Correlation between adjacent pixels of cipher text image.
Algorithm Horizontal direction Vertical direction Diagonal direction
Proposed algorithm (impulse noise) 0.0498 -0.0035 0.0032
Proposed algorithm (Gaussian noise) -0.0398 0.0051 0.0042
Reference [30] 0.0586 —-0.0021 0.0269
Reference [25] 0.0597 0.0766 0.0083
250 250 250
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FiGure 10: Distribution of adjacent pixels: (a) plaintext horizontal adjacent pixels, (b) plaintext vertical adjacent pixels, (c) plaintext diagonal
adjacent pixels, (d) cipher text horizontal adjacent pixels, (e) cipher text vertical adjacent pixels, and (f) cipher text diagonal adjacent pixels.

TABLE 6: Structural similarity between original image and cipher image.

SSIM (cipher image) Compression ratio

0.3 0.4 0.5 0.6 0.7 0.8 0.9
1=0.02 0.0042 0.0044 0.0064 0.0085 0.0071 0.0067 0.0074
Impulse noise I1=0.05 0.0024 0.0018 0.0049 0.0036 0.0041 0.0047 0.0052
I=0.1 0.0020 0.0026 0.0020 0.0035 0.0074 0.0066 0.0076
M=0, V=0.01 0.0.017 0.0024 0.0031 0.0054 0.0053 0.0113 0.0104
Gaussian noise M=0, V=0.02 0.0022 0.0020 0.0041 0.0031 0.0051 0.0063 0.0120

M=0.2, V=0.01 0.0023 0.0022 0.0039 0.0068 0.0089 0.0112 0.0063
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FIGURE 11: PSNR of reconstructed image: (a) PSNR of impulse noise, (b) PSNR of Gaussian noise, and (c) PSNR of filtered image.

Figure 11 shows a line chart of the peak signal-to-noise
ratio of the restored picture under the salt-and-pepper noise
with different noise intensities and Gaussian noise pollution
with different mean variances.

It can be seen from Figure 11(a) that the PSNR of the
reconstructed image increases with the reduction of salt-
and-pepper noise intensity, and the curve trend in the figure
is relatively consistent. In Figure 11(b), there are two var-
iables (mean value and variance), and the curve in the figure
has a large fluctuation. Since it has not been filtered, the
reconstructed image still contains noise. When calculating
PSNR, the noise in the image will have a certain impact on
the calculated value. The PSNR value after filtering can be
improved effectively. It can be seen from the performance

analysis of encrypted images in Tables 4-6 that the images
encrypted by the algorithm in this paper can meet the en-
cryption requirements of images. In Figure 11(c), PSNR
values under the condition of filtering salt-and-pepper noise,
filtering Gaussian noise, and no noise are given, respectively,
and it can be seen that the image quality has been signifi-
cantly improved after filtering. In Figure 11(c), the curve at
the top represents the PSNR value of the proposed algorithm
under the circumstance of no noise. When processing the
image without noise, the peak signal noise is higher, which
can meet the safety requirements.

In reference [38], Zhou et al. proposed an algorithm
based on hyperchaotic system and 2D compressive sensing
without any noise. Table 7 shows the comparison results
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TaBLE 7: Comparison of PSNR.
Proposed algorithm Reference [38]
Impulse noise Gaussian noise . .
1=0.02 M=0, V=001 Picture 1  Picture 2
PSNR 28.5603 26.5630 30.6881 26.3460

between the algorithms in this paper and those in the lit-
erature [38] for which the compression rate is 76.5625%.

The PSNR of the two pictures in reference [38] is 30.6881
and 26.3460, respectively. In the algorithm in this paper,
when the noise type is pepper-and-salt noise, the PSNR is
28.5603. When the noise type is Gaussian noise, the PSNR is
26.5630. It can be seen from the comparison that the image
encrypted by the algorithm in this paper can also achieve
effective decryption under the influence of noise.

In practical application, noise parameters are selected
according to the size of the compression rate. From the figure
above, we find that although this algorithm can recover the
original image at the receiving end owing to the noise at the
source, the effect of image reconstruction is still affected to
some extent. In this paper, we think we can use compression
rate as a measure of throughput. As can be seen from Table 3
and Figure 11, the similarity coefficient and PSNR of recon-
structed images will increase with the increase of compression
rate. However, when the compression rate reaches about 70%,
the performance of reconstructed images can be stable. When
the compression rate is more than 70%, the growth curve is
relatively flat. Therefore, in the process of encryption and
decryption, a better reconstruction effect can be achieved by
setting the compression rate at around 60%-70%. Table 8
shows the structural similarity between the reconstructed
image and the original image under the influence of noise of
different parameters when the compression ratio is 74.2%.

It can be seen from Table 8 that under the influence of
different parameter noises, the receiving end can reconstruct
the original signal and can subjectively determine the ef-
fective information in the restored image. The structural
similarity under each parameter mostly exceeds 0.5, indi-
cating that the algorithm in this study can effectively recover
the effective information of the signal when processing the
signal polluted by noise and has the certain ability to resist
the source noise.

4.4. Key Sensitivity and Key Space Analysis. Because the
encryption algorithm is highly sensitive to the key, when the
key changes slightly, this leads to the failure of decryption and
other processes. Key sensitivity refers to the degree to which
the cipher text changes when the initial key changes slightly.
Owing to the sensitivity of the initial value of the chaotic
system, we can verify the key sensitivity of this algorithm based
on this characteristic. When the chaotic system changes initial
value slightly, the reconstructed image will be greatly different.
This section studies whether the original signal has good key
sensitivity after being encrypted by the algorithm in this study.
The superimposed noise in the original signal is salt-and-
pepper noise with a noise intensity of 0.02, and the com-
pression rate in the image encryption process is 74.2%.

Complexity

Figure 12(a) is the recovery image when the key changes by an
order of magnitude of 10!, Figure 12(b) is the recovery
image when the key changes by 10~ ', and Figure 12(c) is the
recovery image when the key changes by 10716, It can be seen
that although the initial value changed only very slightly, the
reconstructed image could not recognize any effective infor-
mation, proving that the algorithm has good key sensitivity.

In the process of image encryption, the size of the key
space reflects the difficulty and complexity of attacking the
cryptographic system. The above experiments on key sensi-
tivity verification also show that the encryption algorithm
needs to have a strong dependence on the key. When the
decryption key changes slightly, the decrypted image will be
very different from the original image. As an important
reference to evaluate the encryption algorithm, the key space
directly determines whether the algorithm can resist ex-
haustive attacks. For the algorithm proposed in this study,
without considering the diffusion process or scrambling, only
the following are considered: a measurement matrix to de-
crypt, nine-chaotic-sequence signal generator, and the control
parameters of the system. According to the international
standard IEEE 754, in order to simplify the comparison, a
positive indices section is represented. The double-precision
floating-point type of valid number is 52. Table 9 lists the key
spaces of the algorithm in this study and the key spaces of
different schemes proposed by others. It can be seen from the
table that the key space in this study is at least 2°**° = 2468, In
other words, the attacker needs 2® attacks to build the
correct matrix, so the image encryption algorithm proposed
in this study is safe enough to resist brute-force attacks.

The sensitivity intensity of the plaintext can determine
the ability to resist differential attacks. The parameters used
to measure the sensitivity of the encryption algorithm to
plaintext can be described by either the number of pixels
change rate (NPCR) or the unified average changing in-
tensity (UACI). The calculation formulas of NPCR and
UACI are as follows:

NPCR——ZZE(z 7) x 100%, (13)

NMII]I

i|M 1 (i J) Mz(l il

1 j=1

UACT = f: X 100%, (14
TNxM& “ (19

where M and N are the number of rows and columns of the
image pixel and #» is the color bit depth of the image. The
NPCR and UACI of the encrypted image are listed in Ta-
bles 10 and 11, respectively, and are compared with the
critical value.

In [42], the key generated through chaos is used as the
index of row and column replacement in the image en-
cryption process, and the encryption method of row and
column replacement is adopted to encrypt the image. In
[43], a hyperchaotic system based on closed-loop modula-
tion is used to replace image pixels. In [44], piecewise linear
chaotic mapping is used to exchange binary elements in the
original image sequence with a chaotic sequence to scramble
and encrypt the image. Table 12 shows a comparison
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TaBLE 8: Structural similarity between original image and decryption image.

Original image Image with noise Noise parameter Cipher image Decrypted image SSIM

I1=0.02 0.7433
I=0.05 0.5275
(impulse noise)
I=0.1 0.3981
M=0
V=001 0.5895
M=0
V=0.02 0.4853
(Gaussian noise) M=0.2
V=0.01 0.5883
Reconstructed image Reconstructed image Reconstructed image

FIGURE 12: Key sensitivity analysis: (a) initial value change of 10714, (b) initial value change of 10~1°, and (c) initial value change of 10~ °.

TaBLE 9: Comparison of key spaces.

Algorithm Proposed algorithm Reference [12] Reference [39] Reference [40] Reference [41]
KCY space 2468 216 278 2128 296
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TaBLE 10: NPCR analysis of test image.

NPCR Ideal NPCR critical values
(%) Nios = 99.5693% N, = 99.5527% N oo = 99.5341%

99.6085 Pass Pass Pass

TaBLE 11: UACI analysis of test image.

UACL Ideal UACI critical values

(%) Ugos = 33.2824% Ugy, = 33.2255% Uy, = 33.1594%
Ughs = 33.6447% Uy}, = 33.2016% Uy, = 33.7677%

33.4632 Pass Pass Pass

TasLe 12: NPCR and UACI.

Index Our Reference  Reference Reference
scheme [42] [43] [44]

NPCR (%) 99.6094 99.6075 99.6063 97.6198

UACI (%) 33.4635 33.4195 33.3437 32.8014

between the NPCR and UACI obtained by the algorithm in
this study and the above studies. The evaluation criteria of
NPCR and UACI are given in [45].

The results show that the encrypted image can reach the
threshold standard, which verifies that the compression and
encryption algorithm proposed in this study can resist a
differential attack to some extent.

5. Conclusions

In this study, the parallel encryption technology of a se-
quence generator and chaos measurement matrix based on
noisy images is proposed. The purpose is to solve how to
combine compressed sensing technology with chaotic
cryptography for image encryption in actual hardware en-
cryption. At the same time, due to the flexibility of the
hardware circuit in this algorithm, the key in the encryption
process is easy to change, which enhances the security of the
encryption algorithm to a greater extent. This combines a
compressed sensing algorithm with the random character-
istics of chaotic signals from the perspective of security and
efficiency of information transmission. Because chaotic
signals are sensitive to initial values, this algorithm can
greatly expand the key space and effectively resist violent
attacks. Through a simulation, the feasibility of the algorithm
was verified. The algorithm can still achieve effective en-
cryption and decryption under the condition that the
original information contains noise. In Section 4, the ex-
perimental results were analyzed in detail. Through the
analysis, it could be seen that the algorithm proposed in this
study has a very high key sensitivity, and the encryption
effect of the image is ideal. In the process of restoring the
original image, it was found that this algorithm can resist a
certain degree of source noise pollution and effectively re-
cover the original signal. In terms of operational efficiency,
the algorithm encryption process needs 0.24 s, and the use of
common compression perception algorithm encryption
requires about 1s. The decryption algorithm in this study

Complexity

requires 8s and the ordinary compression perception al-
gorithm decryption needs about 10, so the algorithm in this
study using parallel transmission can effectively improve the
efficiency of information transmission. In the following
research, we will focus on whether the algorithm can resist
the influence of channel noise and realize the image en-
cryption and effective decryption.
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In this paper, a 3D multistability chaotic system with two coexisting conditional symmetric attractors is studied by using a circuit
block diagram and realized by using an electronic circuit. The simulation results show that two coexisting conditional symmetric
attractors are emerged in this electronic circuit. Furthermore, synchronization of this 3D multistability chaotic system and its
electronic circuit is studied. It shows that linear resistor and linear capacitor in parallel coupling can achieve synchronization in
this chaotic electronic circuit. That is, the output voltage of chaotic electronic circuit is coupled via one linear resistor and one
linear capacitor in parallel coupling. The simulation results verify that synchronization of the chaotic electronic circuit can

be achieved.

1. Introduction

There are many nonlinear systems known to obtain coex-
istence of multiple attractors [1-10]. The coexistence of
multiple attractors indicates that the attractor depends
crucially on the initial condition (IC). These nonlinear
systems are referred to as multistability systems. Multi-
stability has been found in various systems, including Lorenz
system [11], Rossler oscillators [12], neuronal oscillator [13],
lasers [14], DC/DC converter [15], and permanent magnet
synchronous motor [16]. Meanwhile, many multistability
chaotic systems have been reported in recent years. Kengne
etal. [17] reported a multistability chaotic system via van der
Pol oscillator and suggested an appropriate electronic
simulator. Peng and Min [18] proposed a novel multi-
stability memristive chaotic circuit and applied it to image
encryption. Chen et al. [19] introduced a multistability
modified canonical Chua’s circuit and obtained three sets of

topologically different and disconnected attractors. Pham
et al. [2] suggested a multistability chaotic system with no
equilibrium.

On the other hand, synchronous behavior, which
ensures that the states track the desired trajectory, has
attracted much research attention for its potential ap-
plications especially in secure communication and image
encryption [20]. Many chaotic electronic circuits recon-
structed for chaotic attractors in nonlinear systems have
been proposed. Therefore, synchronization of nonlinear
chaotic systems can be converted to synchronization of
chaotic electronic circuits. In recent years, linear capacitor
coupling, linear resistor coupling, and linear inductor
coupling have been used to achieve synchronization of
two identical chaotic electronic circuits, in which many
interesting results have been obtained. Liu et al. [21, 22]
realized synchronization control for Chua’s chaotic cir-
cuits and synchronization of neural circuits. Yao et al. [23]
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FIGURE 1: A symmetric pair of coexisting attractors in system (1) with a=2.5. IC=1(2, 2, 2) is red in the positive-x region and IC = (-2, -2,
—2) is black in the negative-x region. (a) The x;x, phase diagram and (b) the x;x; phase diagram.

proposed a synchronization scheme for nonlinear circuits
via induction coil coupling. Feng et al. [24] studied
synchronization and electronic circuit application of a
hidden hyperchaos system without equilibria. Singh and
Roy [25] used adaptive contraction theory to research
synchronization of a Lorenz hyperchaotic system and its
circuit realization. He et al. [26] studied the dynamics and
synchronization of conformable fractional-order hyper-
chaotic systems. Ma et al. [27] realized crack synchro-
nization for chaotic circuits via field coupling. When the
chaotic systems transform to nonlinear electronic circuits,
direct linear variable coupling between chaotic systems
can be implemented as a linear resistor coupling, and first
derivative of state variable linear coupling can be
implemented as a linear capacitive coupling or a linear
inductor coupling. In fact, the synchronization of chaotic
systems by resistor coupling is based on the consumption
of Joule heat, and the synchronization of chaotic systems
by capacitive coupling or inductor coupling is based on
electric field energy exchange or magnetic field energy
exchange.

Based on the 3D multistability chaotic system [1] re-
ported by Zhou and Ke, in which there are two coexisting
conditional symmetric chaotic attractors with different
initial conditions, the chaos synchronization achieved by
linear resistor and capacitor coupling is studied in this paper.
First, the 3D multistability chaotic system [1] is studied by
using a block diagram, and its electronic circuit is realized.
The circuit simulation results are given. Second, the syn-
chronization between two 3D multistability chaotic circuits
is discussed, and we obtain that chaos synchronization can
be achieved by using only one linear capacitor and one linear
resistor in parallel coupling.

2. A 3D Multistability Chaotic System with Two
Coexisting Conditional Symmetric Attractors
and Its Circuit Realization

Based on the 3D Li chaotic system [28], a multistability
chaotic system with two coexisting conditional symmetric
attractors has been reported by Zhou and Ke [1], which is
shown as follows:

X, = —x; +0.5x, x5 + x,X3,

(1)

X, = ax, — 1.2x,x5,
X3 = XX, — 6x3.

When 0<a<4, there are two coexisting conditional
symmetric attractors in the positive-x region and negative-x
region separately [1] with different initial conditions. For
example, let a = 2.5, the maximum Lyapunov exponent is
0.5758 [1]. The positive-x region chaotic attractor with initial
conditions (2, 2, 2) and negative-x region attractor with initial
conditions (-2, —2, —2) are shown in Figure 1, respectively.

Next, using the MATLAB Simulink module, circuit
implementation of system (1) can be realized by block dia-
gram in which all the blocks are standard basic operational
circuits. Integrators marked as “Integrator” blocks are
employed to obtain output voltage signal v; with input voltage
signal v;. Without loss of generality, the value of resistor in
each integrator is R, = 100kQ) and the value of capacitor is
C, = 10nF for dimensionless. The voltage signals v; are thus
converted to dimensionless parameter x;. All nonlinear terms
x;x; are obtained by using multipliers marked as “Product”
blocks. For example, multiplier “Product x,x,” is employed to
produce output signal x;x, with the input signals x; and x,.
All coeflicients except “1” are implemented by using gain
converters marked as “Gain” blocks. The gain converter is
composed of an inverse proportional circuit with coefficient
“K = R¢/Ry” and an inverter is linked together. Similarly, the
reference resistance is Ry =100kQ for dimensionless.
Therefore, the resistance with respect to the coeflicient is
Ry = 100/K kQ. The output signal is x, = Kx; with respect to
the input signal x; in the “Gain” blocks, and K is the gain
coefficient marked inside the block. Adders marked as “Add”
blocks are employed to realize addition and subtraction
between the input signals. Finally, all the blocks can form
three circuit loops as shown in Figure 2. Each loop corre-
sponds to a dimensionless nonlinear equation in system (1).

In the implementation of system (1) with blocks, the
properties of the chaotic system (1) can be studied by
computer simulation experiment. The evolution of each
signal x; (i=1, 2, 3) with respect to time ¢ can be demon-
strated by “Scope” block connected with corresponding
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FIGURE 2: Implementation of system (1) realized by using the block diagram in the MATLAB simulink module.

signal. “XY Graph” blocks, which play the part of an os-
cilloscope with two vertical input signals at the same time,
are employed in plotting the phase diagrams of two arbi-
trarily different signals x; and x;. As shown in Figure 3, the
phase diagrams of positive-x region attractors are observed
with the “x Initial=[2 2 2]” input into the MATLAB
workspace, and the phase diagrams of negative-x region
attractors are observed with the “x Initial=[-2 -2 -2].”
The results of circuit simulation by the MATLAB Simulink
module fit well with that of nonlinear dynamic system (1).

The circuit simulation system based on the standard
circuit described as blocks by the MATLAB Simulink
module has the advantages of intuitionistic design, simple
parameter setting, and easy debugging. In practical circuits,
however, some blocks can be combined for economy.
Multiple signals with parallel connection are adopted at the
input terminal of the integrator in order to remove adders.
The resistance of each branch in the input terminal is
properly selected to remove gains. Finally, the electronic
circuit can be obtained for practical application and the
usage of electronic components can be greatly reduced. The
electronic circuit of system (1) is shown in Figure 4. Without
loss of generality, nonlinear terms x;x; are obtained by using
a multiplier with two signals x; and x; input at the same time
and the minus of the signals is realized by using an inverter.
u represents the input terminal of the coupling signal which
is suspended herein. It means that there is no coupling signal
at this condition.

Nonlinear equations from the electronic circuit are

derived as follows:
[ dv, Vi VaVs Vs

1E - Rll R12 R13

>

dv, _ V2 Vivs

0 , 2
2dr "R, R, 2)

dvy viv, v
ST T
l "dr Ry, Ry,

Note that we set R, = 100kQ), C, = 10nF, and the time
scaling as t, = RyCy = 107 S. Let x; = vy, X, = v, X3 = 3,
and t=1/t,, A dimensionless dynamical system (3)
mapped from the circuit equations can be approached as
follows:

[(C, dx; R, R,

R,
——2xy XXy X X,
Cy dt Ry Ry, Ry3

C,d%, R, R,

= — O xa, 3
C, dt Ry Ry, ' (3)

C,dxé; R R
=35 N0k, -k,
C, dt Ry R,

It indicates that the resistance R is scaled in 100kQ,
capacitance C is scaled in 10 nF, and time ¢ is scaled in 1 ms
when circuit equations are dimensionless.

3. Synchronization of Multistability Chaotic
System (1) by Using One Linear Capacitor and
One Linear Resistor in Parallel Coupling

In this section, synchronization of multistability chaotic
system (1) is discussed. Let system (1) be the driving system.
The response system with signals y;, y,, and y; is shown as
follows:

V1= =01 +05y1y3+ 02y3
Y2 =ay;, = 1.2y, s (4)
V3= Y12 = 6.

Analogous to system (1), the corresponding circuit
schematic diagram of response system (2) can be obtained by
the MATLAB Simulink model as shown in Figure 5.

In order to study the chaotic synchronization between

driving system (1) and response system (4), the state variable
x, of driving system (1) (i.e., the output voltage signal x, in



N

XY Plot

25

Y

Complexity

5|

XY Plot

X1
(b)

s

XY Plot

F1GURE 3: Formations of the phase diagrams that are plotted by “XY Graph” in the MATLAB Simulink module block diagram. (a) x,x, phase
diagram and (b) x;x; phase diagram with IC=(2, 2, 2); (c) x1x, phase diagram and (d) x,x; phase diagram with IC=(-2, -2, -2).

Figure 2) and the state variable y, of response system (2) (i.e.,
the output voltage signal y, in Figure 5) are coupled in this
paper. They are coupled via one linear resistor R and one
linear capacitor C in parallel to form a new six-dimensional
system in this paper. In order to obtain the dimensionless
nonlinear equations of the coupled system, the unit of the
coupling resistance R is 100 kQ) and the unit of the coupling
capacitance Cis 10 nF. The circuit implementation by blocks
in the MATLAB Simulink module is shown in Figure 6.
First, the subtraction circuit with x, and y, in the input
terminal is used to obtain the output signal x, — y,. Second,
the x, — y, signal is divided into two branches. One branch is
processed by a Gain block “Ki” with the coefficient
Ky =100KkQ/R, which is equivalent to the resistive coupling.
The corresponding output signal is uy = Ky (x, — ¥,). The
other branch is processed by the combination of a Differ-
entiator block and a Gain block “K:” with the coeflicient
K¢ = C/10nF, which is equivalent to the capacitive cou-
pling. The corresponding output signal is u- = K (%, — ).

After that, the two branches are combined together by an
Add block to realize the parallel connection between the
resistor and capacitor. The final output signal
u =Ky (x, - y,) + Ko (%, — y,), right now, is the coupling
signal between driving system (1) and response system (4).
The coupling strength is proportional to Ky and K, which is
inversely proportional to the value of coupling resistance R
and proportional to the value of coupling capacitance C,
respectively. If the coupling resistance is close to zero, it is
equivalent to a direct connection between x, and y,. If the
coupling resistance approaches infinity, it is equivalent to the
coupling of a linear capacitor. If the coupling capacitance is
close to zero, it is equivalent to the coupling of a linear
resistor. At last, coupling signal u is inverse feedback input to
the adder of the second loop in the driving system and direct
feedback input to the adder of the second loop in the re-
sponse system, respectively. In this case, the second non-
linear equations of system (1) and system (4) are separately
rewritten as
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FIGURE 4: Schematic diagram of the electronic circuit realization of system (1).

(5)

{ X, = ax, — 1.2x,x5 — u,
Yy =ay, - 1.2y y; +u.

The electronic circuit described by using the block di-
agram in the MATLAB Simulink module can also be realized
for practical applications as shown in Figure 7. Herein, the
driving circuit and response circuit are represented by
subcircuit blocks whose formations are shown in Figure 4.
The signals x, and y, are connected to two input terminals of
a subtraction circuit at the same time. The value of all the
resistors is 100kQ. The output signal of the subtraction
circuit is x, — y,, which is then applied to both the resistor
and capacitor concurrently. Without loss of generality, the
unit of resistance R is 100 kQ) and the unit of capacitance Cis
10 nF in order to nondimensionalize the nonlinear equations
of circuits. Besides, the coupling terminal in the driving
system and response system connects with the feedback
signals « and —u, respectively.

When the coupled system is regarded as a new six-di-
mensional combined system, the dimensionless nonlinear
state equations of coupled circuit (Figure 7) are described as

[ X, = —x, +0.5x, %5 + X, X3,
(x2- 1)

X, = ax, — 1.2x,x; TR C(%; = ,),

X3 = X X, — 6x3,
. (6)
Y1==Y1 105y Y5+ ¥2)3

. Xy — . .
Yy =ay, - 12y,y; +%R +C (%, = 1),

[ V3 = Y12~ 6

Herein, the parameter a = 2.5, the unit of coupled re-
sistance R is 100 kQ, and the unit of coupled capacitance Cis
10 nF for dimensionless as mentioned above. The nonlinear
system (6) can be rewritten as nonlinear system:

[ X, = —x; +0.5x, x5 + x,%;3,

. _(a+of,.+cf))
= (1+2C)

>

X3 = XX, — 6x3,
1 (7)
Y1 ==y1+05y1y5+ 1,95

. (Cfx+(1+C)fy)
V2= (1+2C) ’
[ V3= Y1Y2 —6Y3.

Herein, f, and f, are introduced to simplify the form of
the nonlinear equations of system (6). Their expressions are
as follows:

fo=ax, - 1.2x,x; —@,

(8)
X%, —
fy=ay,—12y,y; +%-

In order to study the chaotic evolution of system (7),
especially the synchronization between the driving system
and response system, the difference e should be employed as
follows:
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€ =X~ )
ezzxz—yz, (9)
€3 = X3~ Y3

The corresponding error functions with respect to dif-
ference e and driving signal x are described as error system:

é; =(—-1+0.5x3)e; + x5, +(0.5x; + X, )e; — 0.5e,e; —e,e3,

(-1.2x5e; +(a—2/R)e, — 1.2x,e5 + 1.2e1e5)
(1+20) ’

€=

e;=x,e, +x,e,—6e;—ee,.
(10)

It is obvious that e = 0 is the equilibrium point of error
system (10). If equilibrium point e=0 is asymptotic sta-
bility, then chaotic synchronization between driving
system (1) and response system (4) can be achieved. It
indicates that there exists a synchronized state x=y for
driving system (1) and response system (4). In general, the
synchronization can be checked numerically by condi-
tional Lyapunov exponents (CLEs). This is that syn-
chronization occurs only if all CLEs of error system (10)
are negative.

Therefore, the CLEs of system (10) are studied by
MATLAB based on the QR decomposition method to
analyse the synchronization with respect to the variable
parameters R and C. The Jacobi matrix of the error
system (10) is
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[—1+0.5(x;—e3) x3-e; 0.5(x;—¢;)+(x,—€)]
J= -1.2(x3—e;) a-2/R -1.2(x; —¢;)
1+2C 1+2C 1+2C
! Xy — e, X, —e -6

(11)

All the CLEs have been calculated by MATLAB nu-
merical simulation with initial driving signals x, = (2, 2, 2)
and initial difference ey = (-1, —1, —1). The maximum CLEs
distribution with respect to R and C is shown in Figure 8. It
can be pointed out that the maximum CLEs are negative in
the blue area and the maximum CLEs are positive in the
yellow area. Therefore, the synchronization is realizable
when the values of the coupling resistor and coupling ca-
pacitor are located in the blue area, while it is irrealizable
when their values are in the yellow area. With the increase of
capacitance, the range of resistance synchronization
achieved is decreasing. When the capacitance C>10nF,
synchronization scarcely exists. Synchronization also dis-
appears when the resistance R is much larger, e.g,
R>160kQ.

Take R=1.0 and C=0.2; namely, the value of coupling
resistance is 100 kQ) and coupling capacitance is 2 nF as an
example. In this case, the corresponding coeflicients are
Ky =1and K = 0.2. All the three CLEs of error system (10)
are negative as 1, = -0.19, A, = —1.05, and A; = —5.50. The
equilibrium point e=0 in error system (10) is asymptotic
stability. Therefore, synchronization exists in the coupled
system (6). It is proved by circuit simulation of the MATLAB
Simulink module as shown in Figure 9. Herein, the coeffi-
cient in the Gain block “Ky” is 1 and the coefficient in the
Gain block “K¢” is 0.2. Subtraction block is employed to
obtain the difference signal. The input terminals are con-
nected with x; and y;, respectively; thus, the output signal of

Maximum CLE

Resjsta ! 5 E

00k, 0 0 on
FIGURE 8: Maximum CLEs of error system (10) with resistive and
capacitive coupling by parallel connection.

the Subtraction block is e; = x; — ;. Scope block connected
with the output terminal of the Subtraction block is used to
plot the variation of difference signal e; with respect to t. As
shown in Figure 9, it is obvious that all the three difference
signals e;(t) gradually approach zero over some time with “x
Initial=[2 2 2]” and “y Initial=[3 3 3]” are input into
the MATLAB workspace. Therefore, it is confirmed that
system (6) can achieve complete synchronization.
Generally, the synchronization performance varies
with coupling parameters. As shown in Figure 8, the
maximum CLEs of system (8) increase with respect to C
approximately when R is determined. It means that the
synchronization process slows down as C increases. Ab-
solute error err(t) is employed to estimate the synchro-

nization process:
err(t) = \lel + €3 + 3. (12)

As shown in Figure 10, absolute errors of the syn-
chronization process with different C values and R= 1.0 are
calculated. It can be verified that the larger the capacitance is,
the longer the time will be taken to achieve synchronization.
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In addition, the only resistive coupling is also studied. In
this condition, the coupling capacitance C=0 and the
nonlinear system (6) are changed as follows:

x, = —x; +0.5x, x5 + x,%3,

(%= y2)

X, = ax, — 1.2x,x, — —>—2=4
2 2 1%3 R
X3 = XX, — 6X3,
1 (13)
Y1 ==y1+05y1y5+ 1,05
(x2 —;Vz)

., = -1.2 R ——
Y2 =ay, 1yt R

[ V3= Y192 = 6.
The corresponding error system is

é; = (=1 +0.5x3)e; + x3e, + (0.5x; + x,)e; — 0.5e,e5 — e,e3,
. 2
e, = —1.2x3e, + (a —E>e2 - 1.2x,e; + 1.2¢ €5,

ey = x,e; + X8, — 6e; — ee,.
(14)
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FiGure 11: Maximum CLEs of the error system (14) with only
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The Jacobi matrix is

—14+0.5(x;—e3) x3—e;3 0.5(x;—¢;)+(x,—¢e,)

J=| -12(x;-e;) a-2 -1.2(x; — ;)

Xy — €y X, —e; -6
(15)

All the CLEs have been calculated by MATLAB nu-
merical simulation with initial driving signals x, = (2, 2, 2)
and initial difference ey = (-1, —1, —1) similarly. The maxi-
mum CLEs distribution with respect to R is shown in
Figure 11. It can be obtained that the maximum CLEs are
negative when R<1.6. It means that synchronization is
achieved when the value of coupling resistance is less than
160 kQ for only resistance coupling condition.

Take R=1.0; namely, the value of coupling resistance is
100kQ) as an example. In this case, the corresponding coef-
ficients of Gain block “Kr” is K = 1, while the corresponding
coefficients of Gain block “K¢” is K = 0 which means the
branch of capacitive coupling can even be removed. All the
three CLEs of error system (14) are negative as A, = —0.49,
A, =—-0.71, and A; = —5.30. It indicates that synchronization
exists in coupled system (13). As shown in Figure 12, it is
obvious that all the three difference signals e(f) gradually
approach zero over some time with “x Initial=[2 2 2]” and
“y Initial=[3 3 3] input into the MATLAB workspace.
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Therefore, it is confirmed that system (6) can achieve complete
synchronization with suitable values (Figure 12).

Furthermore, the synchronization performance varies
with R. As shown in Figure 11, the maximum CLEs of system
(14) decrease at first and then increase with R increasing
approximately. Therefore, the synchronization process
speeds up at first and then slows down as R increases. As
shown in Figure 13, absolute errors of the synchronization
process with different R values are calculated. It can be found
out that the time taken to achieve synchronization reduces
first and then increases when R increases.

4. Conclusions

Based on a 3D multistability chaotic system [1] reported by
Zhou and Ke, an electronic circuit is proposed in this paper.
The circuit simulation results show that there are two
coexisting conditional symmetric chaotic attractors for dif-
ferent initial conditions, which are consistent with the
findings in the reference [1]. Meanwhile, the chaotic syn-
chronization between two 3D multistability chaotic systems
with only one linear resistor and one linear capacitor in
parallel coupling is discussed. The maximum condition
Lyapunov exponents (CLEs) of the coupled system are
studied. The negative maximum CLEs indicate that chaotic
synchronization can be achieved with a capacitor and resistor
in parallel coupling in the appropriate range. Furthermore, an
electronic circuit is given to verify the synchronization
scheme. Circuit simulation results confirm that the chaos
synchronization for the 3D multistability chaotic system can
be realized. Our work provides a method to realize the
electronic circuit of the 3D multistability chaotic system and
its synchronization, which has application prospect in secret
communications and adaptive control. Future work can in-
clude the analysis of the synchronization between positive-x
region attractors and negative-x region attractors.
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In this paper, a decision-making competition game model concerning governments, agricultural enterprises, and the public, all of
which participate in the reduction of nitrogen emissions in the watersheds, is established based on bounded rationality. First, the
stability conditions of the equilibrium points in the system are discussed, and the stable region of the Nash equilibrium is
determined. Then, the bifurcation diagram, maximal Lyapunov exponent, strange attractor, and sensitive dependence on the
initial conditions are shown through numerical simulations. The research shows that the adjustment speed of three players’
decisions may alter the stability of the Nash equilibrium point and lead to chaos in the system. Among these decisions, a
government’s decision has the largest effect on the system. In addition, we find that some parameters will affect the stability of the
system; when the parameters become beneficial for enterprises to reduce nitrogen emissions, the increase in the parameters can
help control the chaotic market. Finally, the delay feedback control method is used to successfully control the chaos in the system
and stabilize it at the Nash equilibrium point. The research of this paper is of great significance to the environmental governance

decisions and nitrogen reduction management.

1. Introduction

According to the European Nitrogen Assessment, the total
economic loss caused by the reactive nitrogen in 27 countries
of the European Union amount to 70-320 billion euros per
year. The economic cost of the reactive nitrogen pollution is
about twice that of Europe’s “willingness” to pay for carbon
controls. To integrate the research on global nitrogen
emissions and nitrogen pollution, the European Union puts
forward the “nitrogen and Europe” research plan, and all
countries of the world were invited to participate. Due to the
intensification of nonpoint source nitrogen pollution in
agriculture enterprises, the problem of nitrogen pollution in
river basins is becoming more and more serious. Two-thirds
of the coastal rivers and bays in the United States are de-
graded from nutrient pollution, and nitrogen inputs in these
waters continue to increase [1]. Therefore, controlling the
input of nitrogen and phosphorus from human activities is
essential in reducing eutrophication in watersheds [2]. As

the reduction of nitrogen emission starts to attract the at-
tention of the whole world, the nitrogen emission trading
market and the nitrogen emission limits of various indus-
tries are gradually being formed, and agricultural enterprises
will face this major challenge. At the same time, govern-
ments should not only consider the environmental benefits
but also control the normal operation of the whole market.
Therefore, as the main players in the reduction of nitrogen
emissions in the river basin, any party in government and
agricultural enterprises and the social public decisions will
be influenced by the other two parties.

Some literature mainly focuses on watershed pollution
based on game theory. Initially, there has been much dis-
cussion on the treatment of environmental problems. Ni and
Wang [3] used a cooperative game to analyze the allocation
of pollution control costs in watershed pollution and ex-
plored a reasonable allocation method. Gao et al. [4] ana-
lyzed the interaction among upstream governments,
downstream governments, and the central government in
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the Eastern Route of South-to-North Water Transfer Project
based on evolutionary game theory. Secondly, there is cross-
border water pollution in the river basin. Jorgensen [5] took
the upstream and downstream areas in the river basin as the
main body of the game and analyzed whether the cooper-
ation between the upstream and downstream could solve the
problem of unreasonable pollution through the differential
game method. Frisvold and Caswell [6] used the static
bargaining game method to study the impact of pollution
control policies on the game relationship between two
countries in terms of environmental pollution control.
Third, there is a conflict of interest between subjects in the
river basin. Brcena-Ruiz [7] used the idea of a differential
game to analyze whether two governments should solve the
problem of river basin pollution by setting environmental
taxes to be the same.

The majority of nitrogen emission reduction in the
watershed is based on bounded rationality. At present, the
research on dynamic competitive game with bounded
rationality comes mainly from the following authors. Puu
[8] first found a variety of complex dynamic phenomena in
the Cournot duopoly model such as the singular attractor
with a fractal dimension. Yali [9] studied a delayed duopoly
game considering increasing marginal costs based on
bounded rationality and demonstrated that state delay is
helpful in enlarging the stability region of the system. Peng
et al. [10] and Elsadany [11] discussed the correction of a
duopoly game with bounded rationality based on the
strategy of maximizing the output expectations of enter-
prises. Yao and Xu [12] established an advertising market
competition model that considered the bounded rationality
of participants and analyzed the complex decision-making
behaviors of decision-makers in the dynamic game process.
Ding et al. [13] proposed a linear dynamic system in a
duopoly game involving renewable resource extraction
with the strategy of bounded rationality. Yao et al. [14] and
Elabbasy et al. [15] both constructed a nonlinear triopoly
game model with heterogeneous players, and the three
different decision-makers were bounded rational, adaptive,
and naive. Research by Zhao [16] investigated a novel
Cournot duopoly game model of carbon emission reduc-
tion based on the hypothesis of participant’s bounded
rationality.

Our study is closely related to reduction mechanism,
which can be divided into mandatory emission reduction
mechanism [17, 18] and incentive emission reduction
mechanism [19, 20]. Wang et al. [21] analyzed the rela-
tionship between supply chain enterprise operation and
government policy. A three-stage Stackelberg game model of
decentralized supply chain and a two-stage Stackelberg game
model of centralized supply chain were used to study the
government’s carbon emission tax policy. De Jonge [22]
proposed that the instruments of legislation, subsidies, green
taxation, and emission trading can help achieve reduction
targets for NO,. Research by Svensson and Elofsson [23]
showed that the net nitrogen reductions achieved through
environmental policy efforts and the costs of the nitrogen
reductions should be considered. According to previous
research, most scholars mainly focused on the decision-
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making game of emission reduction, price, or output of
enterprises, whereas seldom discussed the decisions of
government policies and the public. However, when the
government and the public are involved in nitrogen emis-
sion reduction work, under a series of environmental pol-
icies and public supervision, studying the complex dynamic
behavior of a game involving governments, agricultural
enterprises, and the public with bounded rationality will
have great practical significance.

The contributions of this study are as follows: first, a
reasonable decision-making mechanism for nitrogen
emission reduction is proposed considering the influence of
government and the public decisions in emission reduction.
Second, how to establish a reasonable adjustment strategy of
output, supervision intensity, and policy intensity is ex-
plored. Third, the integration of nonlinear dynamic theory
and nitrogen emission reduction management is fulfilled.
Moreover, the effects of the market price of nitrogen trading
and the subsidy standard of nitrogen emission reductions on
the decisions of three players are simulated, and it is im-
portant to adjust the parameters that will become beneficial
for enterprises to reduce nitrogen emissions. This study can
provide a theoretical guidance for reducing nitrogen pol-
lution in the watersheds.

The organization of the paper is as follows: in Section 2,
a competition model concerning governments, agricultural
enterprises, and the public is formulated; in Section 3, we
analyze the equilibrium point of the game model and give
the existence condition and local stability range of the
equilibrium point. In Section 4, the complex dynamic
behavior under a change in the adjustment speed of three
players’ decisions is analyzed. In Section 5, we apply the
delay feedback method to control chaos in the system.
Finally, some research conclusions are summarized in
Section 6.

2. Model

This main purpose of this chapter was to introduce the
aforementioned dynamic game model. Considering ni-
trogen emission trading, nitrogen emission reduction
subsidies, and marginal emission reduction costs, this
paper analyzes whether governments, agricultural enter-
prises, and the public make an optimal decision according
to their own decision rules in the game. Lanoie et al. [24]
discussed the impact of environmental policies on envi-
ronmental innovation performance, and the intensity of
environmental policies was divided into three categories:
weak, narrow, and strong. Thus, the optimal goal of the
government is to choose the appropriate policy intensity to
maximize the total utility, and the optimal goal of the
agricultural enterprise is to make the appropriate output
decision to maximize its profit when the pollution situa-
tion meets the government’s policy intensity. In terms of
the public, the best goal is to choose the appropriate su-
pervision intensity to maximize its total utility. The
meanings of specific parameters and variables are shown in
Table 1.
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TaBLE 1: Major notations.

Notations Description
x(t) The government’s policy intensity at period t
z(t) The public’s supervision intensity at period t
(1) The agricultural enterprises’ output at period ¢
A The highest price of the product in the market
C The marginal production cost
d The consumer losses caused by the unit emission of
nitrogen
E Initial unit amount of nitrogen emissions
Pe The price of emission permits
N The marginal abatement costs
Yo The initial nitrogen emission permits
The impact coefficient of policy intensity on emission
" reduction
Y, The emission reduction coefficient

The impact coefficient of supervision intensity on
Vs emission reduction
G The emission reduction subsidy coefficient
T The government’s various tax revenues
) The treatment cost of per unit nitrogen emission
h The government’s marginal supervisory cost
u The base value of the product
M The initial supervision cost of the public
M The impact coefficient of policy intensity on
supervision cost

The following assumptions are made to develop the
model:

(1) This paper is mainly aimed at agricultural enter-
prises, and the price p of the enterprises in the period
t is determined by y (t) through the inverse demand
function p =a-by, where a and b are positive
constants; the production cost of the enterprise is a
linear function, namely, C = cy.

The nitrogen emissions generated in the production
process of an enterprise are linearly related to its
output, denoted as E = ey. The emission reduction of
enterprises is related to their own technical level of
nitrogen emission reduction, the government policy
intensity, and the public’s supervision intensity. Wu
et al. [25] proposed that public participation had
significant positive effects on the reduction of both
binding and nonbinding environmental pollutant
emissions. Therefore, the emission reduction of
enterprises is [21, 26] as follows:

Q. =y1x + 7,y + 3% (1)

where ;>0 (i=1, 2, 3); thus, the final nitrogen
emission of enterprises is ey — Q,. The cost of ni-
trogen emission reduction is nQ,. When partici-
pating in nitrogen emission trading, the tradable
emission permits that enterprises need can be de-
scribed as ey — Q, — y,; then, the fee for nitrogen
emission trading is p, (ey — Q, — ¥,)-

(2) In terms of governments, the revenue function of the
government in this paper mainly includes four parts:

tax, nitrogen pollution treatment costs, supervision
cost, and subsidy expense. According to Wang et al.
[21] and Alexeev et al. [26], the nitrogen pollution
treatment costs are §(ey —Q,). The government
provides subsidies and incentives for enterprises to
reduce nitrogen emissions, so the subsidy expense
can be described as xgQ,.

(3) Regarding the public, the research of Carreira et al.
[27] showed that the degree of public participation
in corporate environmental behavior depended on
government’s policy intensity. The supervision cost
of the public on enterprises is negatively correlated
with the government’s policy intensity [28], so we
assume the supervision cost is H (z) = z(M — mx).
Based on Newig et al. [29], the utility function of the
consumer can be described as

U=u-p-H(z)-d(ey-Q,). (2)

Therefore, the profit function of a government, agri-
cultural enterprise, and the public is

(%, 9,2) =T = 8(ey — y,x + y,¥ + y32) — xh — xgy, x
T Y2y 7Y%
M, (%, y,2) = (@ =by)y —cy —=y1x + 9,y + yszn
+ Pe[yo = (ey = nix+7,y +732)]
TXGY1X T Y2yt V3%
(%, y,2) =u—p-z(M-mx)—dley —y,x+ 7,y + y32].
(3)

Then, the marginal profit of a government, enterprise,
and the public in period ¢ is

o, (t
a?((t)) =110 = h=2y,9x(t) - g (y,y (£) + y32 (1)),

%7;2((:)) =a=c—ym=pe(e=y:) +1,9% (1) - 2by (1),

omy (t) _
oz(t)

mx(t) — M + dy;.
(4)

Due to incomplete market information and limita-
tions of their own conditions in reality, when govern-
ments, agricultural enterprises, and the public make
decisions with bounded rationality, they cannot fully
predict the future market demand. Therefore, it is as-
sumed that they can only determine their decisions based
on the local estimation of marginal profit. If the marginal
profit is positive in period f, they will increase their de-
cision quantity in period t+1. Thus, a three-dimensional
discrete dynamic game model in the t+1 period is set up as
follows [30]:
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) x(t+1) = x(t) + ayx(t) %72((:)),
| AR Z;Z((t?’ (5)
|2t =2 () + @z (o) %’;3(%),
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where «;>0 (i=1, 2, and 3), respectively, represents the
adjustment speed of each bounded rational player. For the
convenience of calculation, we assume T, =7vy,0-Ah,
a=a-c—y,n—-p,(e-y,), and M, =M —dy,;, so the
dynamic adjustment mechanism of the government, en-
terprises, and the public with bounded rationality is sim-
plified as

x(t+1)=x(t) + o x(t)[T; = 2y,9x(t) — g(y,y (1) + y32(1))],
y(t+1) =y(t)+ay(t)[a; +y,g9x(t) - 2by (1)), (6)
z(t+1) = z(t) + azz (t) [mx (t) — M,].

3. Equilibrium Points and Local Stability

In order to study the dynamic behavior of the game model,
the nonnegative equilibrium point will be discussed in this
chapter. In system (6), equilibrium points are obtained by
setting x(t + 1) =x(t), y(t+ 1) = (1), and z(t + 1) = z(¢), so we
can obtain six equilibrium points:

E() = (O; 0) 0);
E —(o - o)
1 — )2b) >

E2 = Tl ;030 >
N9

E _(M1 0 Tlm—Zylng)
3=l —>h———)>
m 2ysgm

(7)

_( 2T1b - y,ga, 2a,y,+T1y, 0)
4 = > > 5
g(4y1b+y3g) 4nb+yig

Es=(x"y"2")

L+, [T) - 4y,9x - (v, +v32)]
J= Y29y
aymz

Theorem 1. If the Nash equilibrium point Es is strictly
nonnegative, the boundary equilibrium points E, E,, E,, Es,
and E, of system (6) are unstable equilibrium points.

Proof. In order to prove this result, we find the eigenvalues
of the Jacobian matrix J (x, y, z) at each boundary equilibria
E,, E,,E,, E;, and E,. The Jacobian matrix at E; is

Obviously, E,, E;, E,, E;, and E, are bounded equilib-
rium points. When M, >0,ma; +y,gM,>0, andm
(2T b - y,ga,) — gM, (4y,b + y%>g) >0, Es is a Nash equi-
librium point. To discuss the local stability of the above
equilibrium points, we must consider the Jacobian matrix of
system (6):

—0 Y2 9% 1 Ysg9x
1+ a,(a; +y,9x —4by) 0 . (8)
0 1+ oy (mx — M,)
l+a,T, 0 0
J(Ey) = 0 1+ aya, 0 , (9)
0 0 1-aM,

whose eigenvalues are A, =1+a,Ty, A, =1+ a,a,, and
Ay =1-as;M,. Since T, =y,6 — h, h is the government’s
marginal supervisory cost, and y,  represents the increase in
environmental benefits with an increase in x(t), so we can
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get 7,0 — h>0. Otherwise, the government’s policy im-
provement will not make any sense, namely, T > 0. Since
a,=a-c—-yn—p,(e—y,), ais the highest price of the
product in the market, while ¢ +y,n+ p,(e —y,) can be
regarded as the total variable costs of the enterprise. In the
actual market, the highest price of the product must be
higher than its total variable costs, namely, a, >0. With
conditions where T, >0 and a, >0, [A;| >1and|A,|>1 can
be obtained. Therefore, E is an unstable equilibrium point.
The Jacobian matrix at E; is

whose eigenvalues are A; = 1+ a; (2T;b - y,94,)/2b, A, =
1 - ayay,andA; = 1 - a;M,. Since z* >0, it is clear that
when the condition 2T,b - y,ga, >0, [A;|>1 is obtained.
Then, E, is an unstable equilibrium point.

The Jacobian matrix at E, is

1 _ -
+a, (2T,b - y,9a,) 0 0
2b
J(E,) = 0 l-aa, 0 |
i 0 0  1-aM,|
(10)
’1 —a,T, o Ty, o Ty; ]
2y, 2y,
J(E,) = 0 1+ a, (a; + T1y,/2y,) 0 , (11)
0 0 1+ a; (Tym—2y,gM,)
L 29,19 J

whose eigenvalues are A, =1-oT;, A, =1+a,(a;+
T,y,/2y,),and A = 1 + a3 (T ym — 2y, gM,)/2y, g. It is clear
that when the condition a, + T,y,/2y, >0, |A,| > 1. Then, E,

1+a (T, - 4y,9%; — v:9%3)

I(Es) = 0

a3mMzs

By calculating the eigenvalue of the Jacobian matrix
J(E5), we can find |A, =1+ «,(a, + y,gM,/m)| > 1. Thus,
E, is an unstable equilibrium point.

The Jacobian matrix at E, (x, y4,0) is

1 =2a,y,9%, —01y,9%4 —01Y39%Xy
](E4) = Y294 1-2a,by, 0
0 0 1+ oy (mx, — M,)

(13)

By calculating the eigenvalue of the Jacobian matrix
J(E,), Ay =1+a3[m(2T b —y,ga,)/g(4y,b+yig) - M,].
It is clear that when the condition m (2T b - y,ga,)-
gM, (4y,b+y59) >0, |As|>1. Thus, E, is an unstable
equilibrium point. O

is an unstable equilibrium point. Similarly, we can prove that
E; and E, are also unstable.
The Jacobian matrix at E; (x5, 0,25) is

—&1Y29%3 —&1Y39X3
1+ a,(a; +y,9x3) 0 . (12)
0 1

Theorem 2. If the system parameters satisfy M, >0, ma,+
Y,gM, >0, m(2T b - y,ga,) - gM, (4y,b +y3g) >0, and
when the following Jury conditions are performed, the Nash
equilibrium point Es is locally asymptotically stable.

Proof. In order to investigate the local stability of the Nash
equilibrium point E; = (x*, y*,z*), the Jacobian matrix at
E; is

1=20y,9x" —0yy,9x" —ayy;9x*
J(Es)=| apgy"  1-2aby" 0 [ (14)
azmz* 0 1

The characteristic equation of the matrix J (Es) is
A=A+ AN+ AL+ A, (15)



where
Ay = =3 +2a9,9x" +2a,by",
A, =3 —dayby" + @, a,y59° X" Y + ayayysgmx’zt
— 4y, 9x” + day oy, gbx” y",
Ay = -1+2a,by" +2a,y,9x" — 4aya,y,gbx" y*
2 2 % % * % * k%
XY XY~ &Y gmX Z + 20 0,0y3gmbxT Yz

(16)

The local stability conditions of the Nash equilibrium are
given by Jury’s conditions, which are the sufficient and
necessary conditions |\, <1,i =1,2,3:

1+A;+A,+A;>0,

2 2
(A5 -1)" = (A, - A43)" >0,
1-A +A,-A;>0,
Al-1<0.

(17)

Obviously, the Nash equilibrium point E; is a stable
node in the stability region defined by (17). However, if
@, &, and a; go beyond the stability region, more complex
phenomena in terms of the evolution of outputs will occur
such as bifurcation and chaos. Moreover, we found that the
local stability of the system in the Nash equilibrium point
can be decided by every parameter in (17). Based on in-
equalities (17), the three-dimensional stability domains of
the system (6) are simulated when p, and g take different
values (as shown in Sections 4.2 and 4.3). O

4. Numerical Simulations

In this section, we analyzed the dynamic behaviors of the
bounded rational players through various numerical sim-
ulations. They could observe the influence of the adjustment
speed of a;, a,, and «;, the market price of nitrogen trading
p.» and the subsidy standard of nitrogen emission reduction
g on the model. In order to study the local stability prop-
erties of the equilibrium point, it is convenient to take the
parameter values as follows: a=10,b=3,c=1,d=
0.42,y, =3,9,=05 y;=1,n=05 p,=1, e=0.6,
g=03,6=1h=0.5m=0.55 and M = 1.

4.1. The Impact of the Adjustment Speed on the Stability of the
System. Figure 1 shows the bifurcation diagram with respect
to the adjustment speed a; of a government’s policy intensity
while @,=0.21 and «;=0.5. The corresponding largest
Lyapunov exponents with respect to «; are drawn in
Figure 2. In the range a; < 1.1057, the Lyapunov exponents
are negative, which means that the Nash equilibrium point
E; is stable. When a; =1.1057, the first bifurcation point in
Figure 1 corresponds to the first peak (1.1057, —0.008) in
Figure 2, leading to the system gradually entering a period-
doubling bifurcation. Finally, when «; > 1.2340, the maximal
Lyapunov exponents are almost greater than zero, indicating
that chaotic behavior is occurring and the Nash equilibrium
point is becoming very unstable.
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FiGUre 1: Bifurcation diagram for a, =0.21 and a3 =0.5.
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FIGURE 2: Maximal Lyapunov exponent for «, =0.21 and «; =0.5.

Figure 3 shows the bifurcation diagram with respect to
the adjustment speed a, of the enterprises’ output while
a; =0.7 and a3 =0.5. The corresponding largest Lyapunov
exponents with respect to «, are drawn in Figure 4. As can be
seen from Figures 3 and 4, in the range a, <0.2279, the
Lyapunov exponents are negative, which means that the
Nash equilibrium point E is stable. When «, =0.2279, the
first bifurcation point in Figure 3 corresponds to the first
peak (0.2279, —0.0282) in Figure 4. With «, increasing to
0.2792, the second bifurcation point in Figure 3 corresponds
to the second peak (0.2792, —0.0473) in Figure 4, and the
system then gradually enters a period-doubling bifurcation.
Finally, when «, > 0.2928, the maximal Lyapunov exponents
are almost greater than zero, indicating that chaotic behavior
is occurring and the Nash equilibrium point is becoming
very unstable.

Figure 5 shows the bifurcation diagram with respect to
the adjustment speed a; of the public’s supervision intensity
while @, =0.7 and «,=0.21. The corresponding largest
Lyapunov exponents with respect to «; are drawn in
Figure 6. From Figures 5 and 6, when «; < 8.493, the Lya-
punov exponents are negative, which means that the Nash
equilibrium point E; is locally stable for small values of a;.



Complexity

15 ¢ b0l
z(t)
x(t)
F
051
0 0.05 0.1 0.15 0.2 0.25

0.3
%

FIGURE 3: Bifurcation diagram for o; =0.7 and a;=0.5.

0.6 + i

0.5+ E

0.4+ i

0.3 R

0.2 i

0.1 | i

0 | |
-0.1f . . . . . . ]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
*
FIGURE 4: Maximal Lyapunov exponent for a; =0.7 and a5 =0.5.
2 1.48
r.
L5} 1.475 | 4
z(t)
x(1)
1F 1.47 + :
y() %
05} | 1465 :
i
0 s s s s s 1.46 , s
0 2 4 6 8 10 12 0 2 4 6 8 10 12
o &3
(a) (b)

FIGURE 5: Bifurcation diagram for a; =0.7 and a, =0.21: (a) x(f) and z(t); (b) y(1).

However, in the range a; > 8.493, the system starts to enter
into the chaotic state and complex dynamic behavior occurs.

The strange attractors corresponding to Figure 1 are
shown in Figures 7-10, which shows the changing situation
for strange attractors at different values of &, while a, =0.21

and a; =0.5. When «, = 0.008, the decision-making behavior
of the government, enterprises, and the public forms a spiral
trajectory map and finally forms a gradual stability point.
However, with the finiteness of market information and the
bounded rationality of the game players, when «, >1.1057,
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the stable point gradually appears as a branch state, as shown
in Figure 8. When «; > 1.2340, it was found that the point
was no longer stable and chaos began to appear until a chaos
phenomenon in Figure 9 appeared.

Figure 10 shows the strange attractor in a chaotic state
while «; =0.7, a, =0.31, and a; =0.5. At this time, the de-
cision-making behavior of players appears to be a complex
chaos phenomenon. The strange attractors corresponding to
Figure 5 are shown in Figures 11 and 12, which shows the
change situation for strange attractors at different values of
a5 while a; =0.7 and «, =0.21. When «; increases to 8.5,
chaos has occurred and a vortex shaped attractor appears, as
shown in Figure 11. When «; > 8.5, it was found that the
vortex had evolved into a annular phase diagram, as shown
in Figure 12.

In order to further explore the chaotic phenomenon
caused by a change in the decision-making adjustment
speed, we investigated the sensitivity at the initial value of the
system (6). These numerical simulations are performed by
setting a; =1.28, a, =0.21, and a3 =0.5 (the system is in a
chaotic state at this time). It can be seen from Figure 13 that
two orbits of x(t), y(t), or z(¢) are indistinguishable at the
beginning, but after several iterations, the separation
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between them builds up rapidly; that is, subtle changes in the
initial conditions will greatly affect the results.

Through the above numerical simulation analysis, it can
be concluded that the adjustment speeds «;, «,, and a; of the
bounded rational players may greatly affect the stability of
system (6) and lead to complex chaos phenomena in the
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system. Once trapped in a chaotic market, slight changes in
various initial conditions of the government, agricultural
enterprises, and the public will greatly affect the final results.
In addition, the players cannot effectively predict various
changes in reality, which will result in their decisions not
being effectively implemented.

4.2. The Impact of the Market Price of Nitrogen Trading on the
Stability of the System. When enterprises decide whether to
trade emission permits based on their own nitrogen emis-
sions, it is necessary to compare the market price of nitrogen
trading with the cost of nitrogen emission reductions. The
emission level e and emission reduction technology level of
enterprises p, are determined by their production equip-
ment and technology, which cannot be changed quickly. The
variable cost of nitrogen emissions p,emy, can affect the
decision-making behavior of enterprises; therefore, it is the
market price of nitrogen trading that affects the stability of
the system.

Inequalities (17) define the stable range of the Nash
equilibrium point of the system under the adjustment speeds
@, &,, and a;. When the initial values of each parameter are
fixed, the region of stability for the Nash equilibrium point
E; under different values of p, is shown as in Figure 14.
When the trading price of nitrogen emissions p,=1 in-
creases to p, = 10, the stability of the system will decrease. In
addition, the Nash equilibrium point will evolve from E;
(1.0545, 1.4680, 1.2720) to E: (1.0545, 1.3180, 1.3470), in-
dicating that, with an increase in p,, the government’s policy
intensity will remain unchanged, while the enterprises’
output will be reduced and the public’s supervision intensity
will increase.

Figure 15(a) shows the bifurcation diagram with respect to
the market price of nitrogen trading p, while «; =0.7, a, =0.21,
and a; = 0.5 (the system is stable). The Nash equilibrium point
E; then becomes E* = (x*,y*,2z)= (1.0545, 1.4847—

0.0167p,, 1.2637 + 0.0083 p, ). From this Figure 15(a), it can be
observed that the equilibrium point is locally stable for the small
values of the parameter p,. When p, increases, the Nash
equilibrium point E* becomes unstable, and even complex
dynamics phenomena such as period-doubling bifurcation and
chaos appear. The main reason behind this is that an increase in
P, increases the variable cost for enterprises. When the technical
level remains unchanged, enterprises have to reduce their
output.

Figure 15(b) shows the bifurcation diagram with respect
to p, while a; =1.25, @, = 0.21, and a5 = 0.5 (the system being
in chaos). The research shows that when the adjustment
speed of policy intensity «; is too large, the public’s su-
pervision intensity will decrease to zero with an increase in
p., and the system still remains in a chaotic state.
Figure 15(c) shows the bifurcation diagram with respect to
p, while @, =0.7, &, =0.315, and a; = 0.5 (the system being in
chaos). It can be seen that when the adjustment speed of
enterprises’ output «, is too large, as p, increases, the system
gradually evolves from chaos to period-doubling bifurcation
until reaching a state of equilibrium. However, when p,
continues to increase, a complex evolution similar to that
shown in Figure 15(a) will appear and eventually enter
chaos. Figure 15(d) shows the bifurcation diagram with
respect to p, while a; =0.7, &, = 0.21, and a5 = 10 (the system
being in chaos). When the adjustment speed of the public’s
supervision intensity a; is too large, each player is still in
chaotic state with an increase in p,. The main reason for this
is that p, has an influence on the decision of enterprises’
output y(¢) by affecting the marginal profit of enterprises.
Therefore, when «, is too large, increasing p, can control
chaos.

4.3. The Impact of Subsidizing Nitrogen Emission on the
Stability of the System. The subsidy of nitrogen emission
reductions is proportional to the amount of emission
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reductions. The subsidy of emission reductions is not only a
source of income for an enterprise but also the government’s
fiscal expenditure to encourage enterprises to reduce
emissions. Therefore, the subsidy standard of the reduction
of nitrogen emissions g will affect the system.

When the subsidy standard of the reduction of ni-
trogen emissions g=0.3, the stable region of the Nash
equilibrium point is shown as in Figure 14(a). If other
parameters are fixed, the nitrogen emission reduction
subsidy standard g varies to g=0.32 from g=0.3, and we
can see that the area of the stable region increases in the
direction of &, and «;, as shown in Figure 16. Therefore,
the stability of the system will increase with an increase in
g; in addition, the Nash equilibrium point will evolve from
E (1.0545, 1.468, 1.272) to E: (1.0545, 1.4698, 0.7503),
which means that, as g increases, the government’s policy
intensity will remain unchanged, while the enterprises’
output will increase and the public’s supervision intensity
will decrease.

Figure 17(a) shows the bifurcation diagram with regard
to the subsidy standard of the nitrogen emission reduction
g while a; =0.7, a, =0.21, and a;=0.5 (the system being
stable) because the Nash equilibrium point E; at this time
becomes E* = (x*,y*,z)=(1.0545, 1.4417+0.0879g,
(2.5/g —7.0481 — 0.0439g)). From Figure 18, it can be ob-
served that the equilibrium point is locally stable for small
values of the parameter g. When g increases, the Nash
equilibrium point E* becomes unstable, and even complex
dynamic phenomena appear such as period-doubling bi-
furcation and chaos. The main reason is that the increase in
g increases the government’s variable cost, and the gov-
ernment has to reduce its policy intensity. When other
conditions remain unchanged, enterprises can obtain more
subsidies by increasing their output. At this time, the public
will reduce their supervision intensity due to the increase in
enterprises’ emission reduction. When g becomes too
large, the market cannot be balanced, and the decision-
making of the government, enterprises, and the public
cannot reach an equilibrium point any more until chaos
appears.

Figure 17(b) shows the bifurcation diagram with regard
to g while &; =1.25, &, =0.21, and a5 = 0.5 (the system being
in chaos). The research shows that when the adjustment
speed of policy intensity «, is too large, as g increases, the
public’s supervision intensity will decrease to zero, and the
system gradually evolves from chaos to period-doubling
bifurcation until reaching an equilibrium state. However,
when g continues to increase, a complex evolution similar to
that shown in Figure 17(a) will appear and eventually enter
chaos. Figure 17(c) shows the bifurcation diagram with
respect to g while a; =0.7, a,=0.315, and a;=0.5 (the
system being in chaos). It can be seen that when the ad-
justment speed of enterprises’ output «, is too large, as g
increases, the government and enterprises are still in a
chaotic state. Figures 17(d) and 17(e) show the bifurcation
diagram with respect to g while a; =0.7, &, =0.21, and
a3 =10 (the system being in chaos). When the adjustment
speed of the public’s supervision intensity «j is too large, the
system gradually evolves from chaos to an equilibrium state
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g=032.

with an increase in g. Therefore, when &, or a; is too large,
increasing g can control chaos.

The above numerical simulation shows that the market
price of nitrogen trading p, and the subsidy standard for
the reduction of nitrogen emission g are important factors
in the dynamic game among governments, enterprises,
and the public participating in the reduction of nitrogen
emissions in the basin. They not only influence the Nash
equilibrium point of the system but also affect the stable
region of the system.

5. Chaos Control

Through model analysis and numerical simulation, it is
found that when a4, a,, or a5 exceeds the critical value, the
system (6) will lose stability. At this time, the chaotic
system will have a sensitive dependence on the initial
conditions, which means that the government, enterprises,
and the public would not be able to predict the market
development and any small adjustment of the initial
conditions. Therefore, it is very important to perform
chaotic control on the system (6) to ensure that it is in a
stable equilibrium state.

There are many chaos control methods. This section uses
the delayed feedback control method proposed by Pyragas
[31] to control the chaos of the system (6). It is expressed as
u(t)=k(y(t+1-17)—y(t+1)), t>71, where k is the
controlling factor and 7 is the length of the time delay.
Substituting 7= 1 into the second equation of the system (6),
the controlled system can be modeled as

x(t+1) = x(t) + ayx () [Ty = 2p,9x(t) — g(y, ¥ (t) + y32 (1)),
y(t+1) =y(0) + %y(t) [y + pagx () — 2by(t)]>,

Z(t+1) = 2(t) + azz () [mx (£) - M,],
(18)

and the Jacobian matrix of (17) at the Nash equilibrium
point E; is
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Figure 19 shows the bifurcation diagram with regard to
the control factor k, while the initial values of the other
parameters are fixed, and a; =0.7, a, =0.315, and «; =0.5.
Figure 18 shows the largest Lyapunov exponents with regard
to the control factor k. From Figure 19, with the increase in k,
the decision variables x(), y(t), and z(t) can evolve from
chaos to periodic bifurcation and finally stabilize at the Nash
equilibrium levels. With a gradual increase in k, in the range
k> 0.384, the controlled system (18) becomes stable without
chaotic behaviors. The effects of the control factor k on the
controlled system before and after chaos are shown in
Figure 20 when k=0.45, and this figure depicts the change
process of the controlled system from chaos to a stable state
when the initial values of the bounded rational players are
(x> Y9, 20) = (0.7, 0.4, 0.3).

6. Conclusions

In this paper, bounded rationality, nitrogen emission
trading, and the subsidy of reductions in nitrogen emissions
are considered in terms of a dynamic game involving the
government, enterprises, and the public, and a decision-
making game model is established based on bounded ra-
tionality. At the same time, we analyzed the dynamic be-
havior of players with bounded rationality, the equilibrium
points of the model are discussed, and a three-dimensional
stability region of the Nash equilibrium point is presented.
Through the discussion, it can be concluded that many
parameters such as the market price of nitrogen trading p,
and the subsidy standard of nitrogen emission reductions g
would affect the stability of the system; when the parameters
become beneficial for enterprises to reduce nitrogen emis-
sions, the chaotic market will restore, and the regional
stability of the system will decrease with the increase in the
parameters. Furthermore, the numerical simulation shows
the dynamic evolution process of the decisions of the par-
ticipants. The results show that when the adjustment speed
values of the bounded rational player «;, a,, and a; are small,
the system is stable. If one of &}, «,, and «; increases beyond
the stability region of the Nash equilibrium point, bifur-
cation, chaos, and other dynamic behaviors will occur. Fi-
nally, it is proven that the delayed feedback control method
can effectively control the system in a chaos state to restore
the stable equilibrium market.

Data Availability
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the study are available from the corresponding author by
request.
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In this paper, a new 4D memristor-based chaotic system is constructed by using a smooth flux-controlled memristor to replace a
resistor in the realization circuit of a 3D chaotic system. Compared with general chaotic systems, the chaotic system can generate
coexisting infinitely many attractors. The proposed chaotic system not only possesses heterogeneous multistability but also
possesses homogenous multistability. When the parameters of system are fixed, the chaotic system only generates two kinds of
chaotic attractors with different positions in a very large range of initial values. Different from other chaotic systems with
continuous bifurcation diagrams, this system has discrete bifurcation diagrams when the initial values change. In addition, this
paper reveals the relationship between the symmetry of coexisting attractors and the symmetry of initial values in the system. The
dynamic behaviors of the new system are analyzed by equilibrium point and stability, bifurcation diagrams, Lyapunov exponents,
and phase orbit diagrams. Finally, the chaotic attractors are captured through circuit simulation, which verifies

numerical simulation.

1. Introduction

Memristor was first proposed by Chua [1] in 1971 and is the
fourth basic electronic component manufactured by HP
Labs in 2008 [2]. The discovery of memristors has caused an
upsurge in studying and applying memristors. Due to the
nonlinearity of memristor, it has been applied in many fields,
such as flash memory [2, 3], neuromorphic computing [4, 5],
neural network [6, 7], and chaotic system [8-11] based on
chaos synchronization for encryption algorithms [12, 13]
and secure communication [14, 15].

Memristor is a nonlinear element, and its resistance
depends on the voltage or current signal, so it has been
widely used in the construction of chaotic circuits in recent
years [16-19]. In 2008, Itoh and Chua proposed together a
Chua’s chaotic circuit based on memristor. The dynamic
analysis results show that Chua’s chaotic circuit based on
memristors has more complex dynamic characteristics than
classic Chua’s chaotic circuit [17]. In 2010, a Chua’s chaotic

circuit based on memristance was proposed by replacing
Chua’s diode with a smooth flux-controlled memristor and a
negative conductance [18]. In 2017, a multiscroll hyper-
chaotic system was proposed by introducing the memristor
into the jerk multiscroll system, and the numbers of scrolls
can be controlled by adjusting the coefficient before the term
related to memristor [19].

In recent years, multistability [20-25] and extreme
multistability [26-32] have become research hotspots in the
field of chaotic systems. Multistability means that when the
system parameters remain unchanged, the system can
generate more than one attractor with different initial values.
When the number of attractors is infinite, this phenomenon
is called extreme multistability. Coexisting attractors and
hidden coexisting attractors are shown in a memristive
system with many equilibrium points in reference [23]. A
wing-variable chaotic system with coexisting twin-wing
attractors is proposed by replacing one of the resistors of the
pseudo-four-wing chaotic system with a memristor in
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reference [24]. In the same year, a memristor-based chaotic
system is constructed by introducing an ideal flux-controlled
memristor with absolute value nonlinearity into an existing
hypogenetic chaotic jerk system, which can exhibit the
extreme multistability phenomenon in reference [31]. A
simplest third-order memristive chaotic system with hidden
attractors is proposed, which exhibits the extreme multi-
stability phenomenon of coexisting infinitely many attrac-
tors in reference [32].

Although multistability and extreme multistability in
memristive chaotic systems had been reported in many
existing papers, most of them researched the heterogeneous
multistability of chaotic systems, and homogenous multi-
stability was rarely reported. Heterogeneous multistability
means that under the same parameters, the chaotic system
has some chaotic attractors with different structures, while
homogenous multistability means the chaotic system can
generate attractors with the same structure, but the am-
plitudes and positions of their attractors can be different. In
this article, the mathematical model of a memristor is
employed to construct the chaotic system owning hetero-
geneous and homogenous multistabilities. Besides, the
presented memristor-based system displays other complex
dynamic characteristics, including constant Lyapunov ex-
ponents, discrete bifurcation diagrams, the symmetry of
coexisting attractors, and so on.

The rest of this paper is organized as follows. In Section
2, anew chaotic system based on the model of a memristor is
studied. And basic properties of the proposed system are
investigated, including symmetry and dissipation, equilib-
rium, and stability. In Section 3, complex dynamic behaviors
of the memristor-based chaotic system are analyzed. In
Section 4, extreme multistability of the chaotic system is
investigated by bifurcation diagrams and Lyapunov expo-
nent spectra, and the dynamic analysis results show that the
chaotic system possesses not only heterogeneous multi-
stability but also homogenous multistability. In Section 5,
the presented chaotic system is realized by analog circuit and
the experimental results are given. Finally, some conclusions
are drawn.

2. Basic Properties of the Memristive
Chaotic System

A 3D pseudo-four-wing chaotic system was proposed by Liu
and Chen [33, 34]. Actually, it is a coexisting two-wing
system, and it can be described as follows:

X =ax —-byz,
y =—cy+ Xz, (1)
z=-dz +xy,
where a, b, ¢, and d are all constants and x, y, and z are the
state variables.
By utilizing a smooth flux-controlled memristor to

substitute a resistor in realization circuit of system (1), a
novel 4D memristor-based chaotic system is given by
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X =ax-byz,

y =—cy+xz+eW (wx,
(2)

z=-dz + xy,
w = hx,

where e and h are positive parameters and W (w) is a
memductance function.
The memductance function W (w) is shown as

W (w) = f +3guw’, (3)

where f and g are two positive constants and w is the state
variable.

2.1. Symmetry and Dissipativity. The symmetry property of
chaotic systems is an important property. The memristive
chaotic system (2) is invariant if we do the transformation
(x, y,z,w) — (=x,-y,2,—w), which means system (2)
has to be symmetric with respect to z axis in state space.
The dissipativity of system (2) is expressed by the fol-
lowing formula:
VV = a_x + a_y + a_z + a_w =

ox oy taztow AT )

When a, ¢, and d satisty condition a —c—-d <0, the
system is dissipative. It means that the volume of phase space
will be contracted to zero in exponential form e~ “~<~@ and
all trajectories of the system are confined to zero volume.

2.2. Equilibria and Stability. Let the terms on left-hand side
of system (2) be zero, and we can easily observe that the
system has a line equilibrium

O={(x,yz,w)|x=y=2z=0,w=k}, (5)
where k is any real constant.

By linearizing system (2) at point O, we can obtain the
Jacobian matrix of the equation on O.

a 0 00
eW(k) -c 0 0

0= (6)
0 0 -do
h 0 00

According to the Jacobian matrix (6), the characteristic
equation can be obtained as follows:

AA=-a)(A+c)(A+d) =0. (7)

We can solve its eigenvalues easily, and they can be
expressed by

=0,

_
|

=a,

N
|

(8)

= —c,

= d.

w
|

> > > >

Ny
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The values of a, ¢, and d are all positive, so A; and A, are
always negative, and A, is always positive. Therefore, system
(2) has an unstable saddle point.

3. Dynamics of the Memristor-Based
Chaotic System

3.1. Phase Portraits and Lyapunov Exponents. The Lyapunov
exponent spectra are an effective way of judging whether the
system has chaotic behavior. The main characteristics of
nonlinear dynamical systems can be described by the
number of positive Lyapunov exponents. When the system
has only one Lyapunov exponent greater than zero, the
system has chaotic dynamic behavior. When a nonlinear
system has more than two or equal to two Lyapunov ex-
ponents greater than zero, the system has hyperchaotic
dynamic behavior.

When the parameters of the chaotic system are set as
a=4,b=6,c=20,d=5,e=0.01, f =1,3g=0.1,and h =
0.1 and the initial conditions are set to (1, 1,0, 0), system (2)
can generate chaotic attractor as shown in Figure 1. The
corresponding Lyapunov exponents are computed as 0.5161,
—-0.0104, —0.0645, and -21.5665, and the Lyapunov di-
mension dL = 3.0204, which indicates the system has cha-
otic behavior.

3.2. Poincaré Projection. The Poincaré projection is another
effective way of judging whether the system has chaotic
behaviour. Take projections x =0, y =0,z = 6,and w = 1.4,
respectively, and the system obtains the Poincaré projections
as shown in Figure 2. A large area of points can be observed
in these pictures, which indicate that the system has chaotic
behaviour.

4. Extreme Multistability in the Memristor-
Based Chaotic System

4.1. Dynamic Analysis of Heterogeneous Multistability.
Heterogeneous multistability means under the same pa-
rameters, a system can generate several or even infinitely
many coexisting attractors with different structures, while
homogenous multistability means that a chaotic system can
generate the same structure coexisting attractors but with
different positions or amplitudes.

In system (2), when the parameters are set as a = 4,
b=6,¢c=20,d=51¢=001, f=1,39=0.1, and h=0.1
and initial conditions are set as (1,0, 0, w(0)), the system can
generate various coexisting attractors depending on w(0).
The typical chaotic attractors are shown in Figure 3. Besides,
system (2) can generate other kinds of coexisting attractors,
coexisting limit cycle attractors, and symmetric limit cycle
attractor as shown in Figures 4, 5, and 6, respectively.

When w(0) is changed in the region [-50,50], the bi-
furcation diagram of the state variable w and Lyapunov
exponent spectra are shown in Figures 7(a) and 7(b), re-
spectively. As shown in Figure 7(a), the bifurcation diagram
of the state variable w is almost linear. It can be seen from
Figure 7(b) that the chaotic attractor with a positive

Lyapunov exponent is mainly located at the region
[-36,-32], [-22,22], and [32,35] (the last Lyapunov ex-
ponent is not displayed because it is always a big negative
number). And system (2) can also generate other kinds of
attractors and limit cycle attractors, which means the system
has heterogeneous multistability.

4.2. Dynamic Analysis of Homogenous Multistability. The
parameters of system (2) remain unchanged, and the initial
conditions are set as (x(0), 1,0,0). When x(0) is varied in
the region [-10%,10*], the bifurcation diagrams of the state
variable z, the state variable w, and its Lyapunov exponent
spectra are plotted in Figures 8(a), 8(b), and 8(c), re-
spectively. Besides, when x(0) is varied in the region
[-0.1,0.1], Lyapunov exponent spectra are plotted in
Figure 8(d).

It can be seen from Figure 8(a) that when the initial
condition x (0) is varied in the region [-10%,10*], the state
variable z shows two kinds of steady chaotic states. When
x(0) is varied in the region [-10%,0), state variable z is
located below or above the z axis, while x (0) is varied in the
region (0, 10*], the state variable z is all located above the z
axis. From Figure 8(b), when the initial condition x(0) is
varied in the region [-10%, 10%], there are many discrete
small line segments in bifurcation diagram of the state
variable w, which means the state variable w exists in infinite
steady chaotic states. And this phenomenon also indicates
the system can generate coexisting infinitely many attractors,
which means system (2) has the extreme multistability.
Different from other systems possessing extreme multi-
stability, system (2) only generates two kinds of chaotic
attractors with different positions in a very large range of
initial values, which are distributed along the w axis par-
allelly. As shown in Figure 8(c), it is obvious that the four
Lyapunov exponents are always approximately constant and
the largest Lyapunov exponent is always positive except for
the zero point when x (0) is varied in the region [-10%,10%],
which means system (2) can exhibit chaotic behavior except
zero point. Figure 8(d) shows that the region cannot exhibit
chaotic behavior which is very small.

Considering the particularity of system (2), it is neces-
sary to discuss the system when x(0) = 1. The control pa-
rameters of system (2) remain unchanged, and the initial
conditions are set as (0, 1,0, 0). The LEs are 4.0002, —0.2034,
-5.0005, and —19.8272, which means system (2) cannot
exhibit chaotic behavior under this circumstance.

It has been confirmed that there are coexisting infinitely
many attractors in chaotic system (2) according to the above
analysis. When x (0) is set to 10, —10, 50, +50, 100, —100, and
1, respectively, the phase portraits of coexisting infinitely
many attractors in the x — w plane, the y — w plane, the z —
w plane, and the w — z — x space are shown in Figures 9(a),
9(b), 9(c), and 9(d), respectively. Figure 9 clearly reveals the
coexistence of a large number of same attractors with dif-
ferent positions, which implies the emergence of homoge-
nous multistability. This result of the phase portraits is
consistent with the bifurcation diagrams and Lyapunov
spectrum with respect to initial condition x (0).
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FIGURE 1: Phase portraits of system (2) whena = 4,b = 6,¢c = 20,d = 5,e = 0.01, f = 1,3g = 0.1,and h = 0.1: (a) projection on x — y plane,
(b) projection on x — z plane, (c) projection on y — z plane, and (d) 3D view in the x — y — z space.

The parameters of system (2) are set as a=4, b =6,
c=20,d=5e=001, f=1, 3g=0.1, and h=0.1, the
initial conditions are set as (1, ¥(0),0,0), and the initial
condition y(0) is used as the independent variable of bi-
furcation diagram. When y(0) is changed in the region
[-10%,10*], the bifurcation diagram of the state variable w
and its Lyapunov exponent spectra are plotted in
Figures 10(a) and 10(b), respectively. As can be seen from
Figure 10(a), when the initial condition y(0) is changed in
the region [-10% 10*], there are many discrete small line
segments in bifurcation diagram of the state variable w,
which implies that there are coexisting infinitely many
attractors in system (2). It can be clearly seen from
Figure 10(b) that four Lyapunov exponents are always ap-
proximately constant and largest Lyapunov exponent is
always positive when is y(0) changed in the region
[-10% 10*], which means system (2) only exhibits chaotic
behavior.

The parameters of system (2) are set as a=4, b=6,
c=20,d=5 =001, f=1, 3g=0.1, and h=0.1, the
initial conditions are set as (1,0,z(0),0), and the initial
condition z(0) is used as the independent variable of bi-
furcation diagram. When z(0) is changed in the region

[-10%,10*], the bifurcation diagram of the state variable w
and its Lyapunov exponent spectra are plotted in
Figures 11(a) and 11(b), respectively. The bifurcation dia-
gram of the state variable w and its Lyapunov exponent
spectra are similar with those with the initial conditions set
as (1, y(0),0,0). Many discrete small line segments are more
closely clustered in the bifurcation diagram of the state
variable w for the initial conditions set as (1,0,z(0),0)
compared with the one for the initial conditions set as
(1, ¥(0),0,0). And Lyapunov exponent spectra for the initial
conditions set as (1, 0, z (0), 0) are similar with the ones for
the initial conditions set as (1, y (0), 0, 0), and four Lyapunov
exponents are always approximately constant and largest
Lyapunov exponent is always positive when z (0) is changed
in the region [-10%,10%].

4.3. Symmetry in Infinitely Many Coexisting Attractors.
Obviously, system (2) is invariant if we do the transfor-
mation (x, y,z,w) — (—x,—y,%, —w), which means that
(x,,z,w) and (-x,—y,z,—w) are all solutions to the
equation of the system. This symmetry characteristic of
system (2) could be served to explain the presence of
symmetric coexisting attractors in state space.
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FIGURE 2: Poincaré sections of system (2): (a) projection on y — w plane when Poincaré section is x = 0, (b) projection on x — w plane when
Poincaré section is ¥ = 0, (c) projection on x — w plane when Poincaré section is z = 6, and (d) projection on x — y plane when Poincaré
section is w = 1.4.

12

FiGUre 3: Phase portraits of coexisting infinitely many attractors in (a)y — w and (b) planes (the blue one starts from initial conditions
(1,0,0, 1), the red one starts from (1,0,0,—1), the yellow one starts from (1,0,0,4), and the black one starts from (1,0,0,—4)).



6 Complexity

30

FIGURE 4: Phase portraits of coexisting attractors in (a)x — y and (b)x — z planes (the blue one starts from initial conditions (1, 0,0, 22) and
the red one starts from (1,0,0,-22)).
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FIGURE 5: Phase portraits of coexisting limit cycle attractors in (a)x — y and (b)x — z planes (the blue one starts from initial conditions
(1,0,0,26) and the red one starts from (1,0,0,-26)).
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FIGURE 12: Phase portraits of symmetric coexisting infinitely many attractors in chaotic system (2) (the blue one starts from initial
conditions (1,1,-10, 1), the red one starts from (-1,-1,-10,—-1), the pink one starts from (10,20, 15,2), and the cyan one starts from
(-10,-20, 15, -2)).
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FIGURE 13: (a) Bifurcation diagram of the state variable z and (b) bifurcation diagram of the state variable w with respect to initial conditions
(1,1,2(0), 1).

12 T T T T T T T T T 4 T T T T T T T T T

2 b I . |

|I I
()-w hlﬂ Ml IH!Illl |II|| '|I|If h' i" 'HI“ M 'ﬁ“ N H# H

e
E_zﬂ l’:ﬁ W lhh le.wl.mﬁ n | h m LR
| i |

I | 1N "\ |

-4 | | | 4
2t . I \
|

ol ] -6 | 1 E
I | | ||| I
-100 -80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 100

z(0) z(0)

() (b)

FIGURE 14: (a) Bifurcation diagram of the state variable z and (b) bifurcation diagram of the state variable w with respect to initial conditions
(_1) _1> z (0)> _1)



Complexity

11

x O C1
|
_O X
R3 C2
1|
N y o—ANN I
ro— AW :
R, —o0
+
T TS T T 1
: ||C4 |
. 1l |
! 1
1
I 1
x ot |
: Ra + w Rb :
: AN W
I 1
— 1
! N R, |
1
: AMA— |
! -
C3
-X O_,—l
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If we set parameters as a=4, b=6, ¢ =20, d =5,
e=0.01, f=1,3g =0.1, and & = 0.1, the system can gen-
erate many pairs of symmetric coexisting attractors for the
corresponding conditions set as (x(0), ¥ (0),z(0), w(0))
and (-x(0),-(0),z(0),—w(0)). And two pairs of sym-
metric coexisting attractors of these are shown in Figure 12,
where the blue one and the red one are a pair of symmetric
attractors and the pink one and the cyan one are another pair
of symmetric attractors. The projections of the symmetric
attractors on the coordinate planes can be shown in the form
of central symmetry or axial symmetry. In system (2), it is
centrosymmetric on the x — y plane, the x — w plane, and
the y — w plane and axisymmetric on the x — z plane, the

y — z plane, and the z — w plane. It is worth noting that the
structures of many coexisting attractors in Figure 9 are the
same roughly, and there are differences in the details. But the
structures of each pairs of coexisting attractors in Figure 12
are symmetric exactly.

In order to further verify symmetry of coexisting infi-
nitely many attractors in chaotic system (2), bifurcation
diagrams of the state variable z and the state variable w are
given. The parameters of system (2) are assigned as a = 4,
b=6,c=20,d=5=0.01, f=0.1,3g=0.1,and h = 0.1,
and the initial conditions are set as (1,1,z(0), 1), and the
initial condition z (0) is used as the independent variable of
bifurcation diagram. When z(0) is varied in the region
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FIGURE 16: PSpice simulated phase portraits of chaotic

[-100, 100], the bifurcation diagrams of the state variable z
and the state variable w are plotted in Figures 13(a) and
13(b), respectively. Similarly, the parameters of system (2)
remain unchanged, the initial conditions are set as
(-1,-1,z(0),-1), and the initial condition z (0) is used as
the independent variable. When z (0) is varied in the region
[100, -100], the bifurcation diagrams of the state variable z
and the state variable w are plotted in Figures 14(a) and
14(b), respectively.
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attractors with initial voltages (1V,0.1V,0V,0V).

A comparison of the Figures 13(a) and 14(a) indicates
that bifurcation diagrams of the state variable z for the initial
conditions set as (1,1,z(0),1) and (-1,-1,z(0),—1) are the
same exactly. And a comparison of the Figures 13(b) and
14(b) shows that they are symmetric about the horizontal
axis. This phenomenon reflects the fact that when the pa-
rameters of system (2) set as a=4, b=6, ¢ =20, d =5,
e =0.01, f =1,3g = 0.1, h = 0.1, the structures of coexisting
attractors with conditions set as (1,1,z(0),1) and
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FIGURE 17: PSpice simulated phase portraits of chaotic attractors with initial voltages (-1V,0.1V,0V,0V).

(-1,-1,2(0), —1) are symmetric with respect to z coordi-
nate axis.

We compared the advantages and disadvantages of this
system with other improved Liu-and-Chen systems in the
literature [11, 23, 24]. The system proposed in reference [11]
is a three-dimensional chaotic system without memristor.
And it can generate three-scroll and four-scroll chaotic
attractors. The system in reference [23] is a four-dimensional
chaotic system with two memristors, which can generate

various kinds of attractors and hidden attractors. The system
in reference [24] is a four-dimensional chaotic system with a
memristor, which can generate three-wing, four-wing, and
coexisting two-wing chaotic attractors. It has line equilib-
rium points. This system has a line equilibrium, within
which the attractors generated are hidden. The new system is
a four-dimensional chaotic system with a memristor, which
can generate coexisting infinitely many attractors distributed
along the w axis parallelly. It produces hidden attractors
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because it has a line equilibrium. In addition, the system has
discrete bifurcation diagrams and many symmetrical
coexisting attractors. Compared with above improved Liu-
and-Chen systems, we can find that chaotic systems with
memristor have more complex dynamic behaviors than
chaotic systems without memristor and are more likely to
have extreme multistability.

5. Circuit Implementation

In this section, complex dynamic behaviors of the proposed
chaotic system can be observed by analog circuit, where
integrated operational amplifiers and multipliers are used to
construct the circuit for generating chaotic attractors. Supply
voltages of operational amplifiers are E = + 15V. The input
and output range of all the multipliers is between —15V to
15 V. However, the values of the state variables x, y, z, and w
may be out of this range. Thus, it is necessary that state
variables X, y, z, and w are compressed to the 1/10 of original
system to be limited in the region of (-15V, 15V), which is
the reference voltage of the operational amplifiers. At the
same time, taking the time scale factor RC into account,
system (2) after scale transformation can be represented as
follows:

RCx = ax — 10byz,

RCy = —cy + 10xz + e(f + 300gw?)x,
RCz = —dz + 10xy,

RCw = hx.

)

A flux-controlled memristor depicted in the dashed box
of Figure 15 is applied to construct the chaotic circuit. The
analog circuit of system (2) is shown in Figure 15. The state
equations can be obtained as follows:

(g =t
Ry R

. v, v.v v, v
Cpo,=—Z 4 224 X4 Xw)
7 Ry Ry R. R,
1 (10)
. v v,V
C3VZ =__Z+ al y)
R Rg
R
~C4vw=R—x,

a

where v,, v,, v,, and v, are the voltages on capacitors.
Compared with (9) and (10), the parameters are taken as
follows: C, =C, =C; = C, =C, R; = (R/a), R, = (R/10b),
Ry = (R/c), R,=(R/10), Ry=(R/d), Rs= (R/10),
R, = (R/h), R, = (R/(e*3g*100)), and R, = (R/ef).
System (2) can generate coexisting infinitely many
attractors when the parameters are setasa = 4,b = 6, ¢ = 20,
d=5e=0.01, f=1,39g=0.1,and h = 0.1. Let us take R =
100kQ and C = 10000 nF, and the resistance parameters can
be obtained as R, =25kQ, R, =167kQ, R;=5kQ,
R,=10kQ, R,=20kQ, R,=10kQ, R, =1000kQ,
R, = 1000k, and R, = 10000 kQ. Also, the initial voltages
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of all capacitors are set as (1V,0.1V,0V,0V) (initial
voltages of all capacitors should be compressed to the 1/10 of
original values). According to the above parameter settings,
circuit simulation of chaotic attractor can be obtained by
PSpice as shown in Figure 16. Similarly, when the initial
voltages of all capacitors are set as (-1V,0.1V,0V,0V),
circuit simulation of chaotic attractor can be obtained by
PSpice as shown in Figure 17. Obviously, the chaotic
attractors obtained in the analog circuit well verify those
shown by numerical simulations.

6. Conclusion

A new memristor-based chaotic system with coexisting in-
finitely many attractors is proposed by using a smooth flux-
controlled memristor to replace a resistor in the analog circuit
of the three-dimensional chaotic system. The system has a line
equilibrium and exhibits homogenous and heterogeneous
multistabilities. The dynamical behaviors of the system are
analyzed by equilibrium point and stability, phase portraits,
bifurcation diagrams and Lyapunov exponent spectra, and so
on. Compared with general chaotic systems, this chaotic
system has some special properties. When the parameters of
system are fixed, the chaotic system only generates two kinds
of chaotic attractors with different positions in a very large
range of initial values and has constant Lyapunov exponent
spectra. In addition, the system has discrete bifurcation di-
agrams, which has not been found in existing chaotic systems.
Further, the relationship between the symmetry of the
coexisting attractors and the symmetry of initial values in the
system is explored and verified by phase portraits and bi-
furcation diagrams. Finally, the chaotic system is realized by
analog circuit, and the numerical simulation results are
verified by the simulation results of the analog circuit. The
complex dynamical behaviors of the proposed system are very
useful for various chaos-based information encryption and
secure communication applications.
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Symmetry is an important property found in a large number of nonlinear systems. The study of chaotic systems with symmetry
is well documented. However, the literature is unfortunately very poor concerning the dynamics of such systems when their
symmetry is altered or broken. In this paper, we investigate the dynamics of a simple jerk system with hyperbolic tangent
nonlinearity (Kengne et al., Chaos Solitons, and Fractals, 2017) whose symmetry is broken by adding a constant term modeling
an external excitation force. We demonstrate that the modified system experiences several unusual and striking nonlinear
phenomena including coexisting bifurcation branches, hysteretic dynamics, coexisting asymmetric bubbles, critical transitions,
and multiple (i.e., up to six) coexisting asymmetric attractors for some suitable ranges of system parameters. These features are
highlighted by exploiting common nonlinear analysis tools such as graphs of largest Lyapunov exponent, bifurcation diagrams,
phase portraits, and basins of attraction. The control of multistability is investigated by using the method of linear aug-
mentation. We demonstrate that the multistable system can be converted to a monostable state by smoothly adjusting the
coupling parameter. The theoretical results are confirmed by performing a series of PSpice simulations based on an electronic
analogue of the system.

1. Introduction

Recently, a particular attention has been paid to the study of
nonlinear and chaotic dynamic systems. This is due to the
rapid development of increasingly powerful computers on
the one hand and on the other hand to the many potential
applications in several fields of science and engineering.
These systems are capable of several forms of complexity
such as chaos, hyperchaos, multirhythmicity, bifurcations,
intermittency, hysteresis, and multistability [1-3]. Con-
cerning the latter feature, it should be noted that a

multistable dynamic system is capable of displaying two or
more attractors for the same set of parameters. In this sit-
uation, each of the coexisting attractors is connected with an
attraction basin that represents all the initial conditions
leading to the underlined attractor [4]. Fixed points, limit
cycles, toruses, and chaotic attractors can coexist in the same
system, in various combinations depending on the choice of
parameters. The term extreme multistability refers to the
situation where an infinite number of attractors coexist
[5-9]. Multistability is relevant from the view point of
practical application as it may give rise to unexpected and
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even disastrous consequences [10]. If the phenomenon of
multistability is encountered in dynamic systems with no
symmetry property, it should be noted that symmetric
systems are much more likely to develop this phenomenon
[10]. Concerning the symmetry property, it should be
mentioned that it is shared by many systems in several fields
of science and engineering [2, 4]. In addition to multi-
stability mentioned above, symmetric dynamic systems
exhibit interesting behaviors such as period doubling,
spontaneous symmetry breaking, merging crisis, hysteresis,
and intermittency [1]. The study of symmetrical systems is
well documented. However, to the best of the authors’
knowledge, the literature is very poor concerning the be-
havior of these systems when their symmetry is altered or
broken. The symmetry break purposefully induced in a
nonlinear dynamical system may be adjusted to discover
many complex nonlinear phenomena (e.g., multi-
rhythmicity, bursting, coexisting bubbles, hysteresis, critical
transitions, and coexisting multiple asymmetric attractors)
as previously discussed in several nonlinear systems [11-17].

In this work, we consider a simple jerk system with
hyperbolic tangent nonlinearity [18] whose symmetry is
broken by the introduction of an additive constant k. We
address the chaos generation mechanism, the formation of
bubbles of bifurcation, and the coexistence of multiple
attractors in both the symmetric (k = 0) and the asymmetric
(k+0) regimes of operation. For convenience, recall that
jerk dynamic systems [19-23] refer to 3D ordinary differ-
ential equations (ODEs) in the form X = J (x, x, X) where the
nonlinear vector function J(-) indicates the “jerk” (i.e., the
time derivative of the acceleration). The hyperbolic tangent
function is relevant in numerous problems such as nonideal
operational amplifiers, activation function in neural net-
work, magnetization in ferromagnetic systems, and solar
wind-driven magnetosphere-ionosphere systems [24-28].
Multistability in simple jerk dynamic systems has recently
drained tremendous research interest in varied fields of
science and technology resulting in several publications. On
this line, Kengne and colleagues reported the coexistence of
four self-excited mutually symmetric attractors in a jerk
system possessing a cubic nonlinearity [23] based on both
numerical and experimental methods. This striking feature
of multiple attractors is mainly due to the system’s symmetry
and thus is also obtained with a hyperbolic sine [29], a
hyperbolic tangent [18], a composite tanh-cubic nonlinearity
[21], or a voltage controlled memristor [30], whose intrinsic
current-voltage characteristics has the form of a pinched
hysteresis loop. Despite the pertinence and the importance
of the abovementioned results, we would like to stress that all
cases of multistability discussed so far is restricted to
symmetric jerk systems; also, multistability in jerk dynamic
systems in case of a broken symmetry is very little studied.
Motivated by previous results on jerk dynamical systems,
this paper focuses on the effects engendered by symmetry
break in a simple autonomous jerk system with hyperbolic
tangent nonlinearity previously analyzed in [18]. Thus, the
novel chaotic flow is smoothly tuned to behave either
symmetrically or to develop no symmetry property using a
single parameter. Importantly, the investigations clearly
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reveal that the modified system can experience coexisting
bubbles of bifurcation, coexisting multiple (symmetric or
asymmetric) attractors, and crises phenomena not found in
the original symmetric system [18]. Despite the fact that the
addition of a constant term may be viewed as a purely
mathematical technique to induce new nonlinear phe-
nomena, one of the key motivations is that symmetries are
rarely exact in real physical systems, and some symmetry-
breaking imperfections are always present [31-33].

The structure of the paper is as follows. Section 2 de-
scribes the evolution equations of the modified jerk system
with hyperbolic tangent and analyses possible symmetries.
Analytical conditions for the occurrence of Hopf-type
bifurcations are established, and the stability of the equi-
librium points is investigated with respect to parameters. In
Section 3, numerical results concerning the bifurcation
behaviour of the model, the coexistence of numerous
attractors, and the coexistence of bubbles of bifurcation are
presented. The control of multistability based on the linear
augmentation scheme is described in Section 4. Section 5 is
concerned with the experimental study of the modified
system. A convenient electronic circuit (i.e., the analogue
simulator) is designed for investigating the extremely
complex dynamics of the system. PSpice simulation ex-
periment supports the results of the theoretical study.
Finally, Section 6 presents the conclusions of the whole
work.

2. Description and Analysis of the Model

2.1. The Model. The state equation of the autonomous jerk
system, which is considered in this work, is expressed by the
following third-order nonlinear system (ODEs) with a single
nonlinear function:

X = Xy,
X, = axs, (1a)
X3 = —px, = pxs + @ (%),

¢ (x1) = =k = 3(x, — 2 tanh(x,)), (1b)

where a, 4, and y denote (real) positive control parameters.
Notice that the nonlinearity is smooth and involves only one
state variable (i.e., x,). Here, k is the symmetry control
parameter of the model. Specifically, fork = 0, system (1)
exhibits a perfect symmetry and reduces to the case pre-
viously studied by Kengne and coworkers [18]. The case k # 0
corresponds to an asymmetric model for which more
complex nonlinear phenomena arise (that cannot be
explained by using the symmetry arguments) including, for
instance, the presence of multiple coexisting asymmetric
attractors, coexisting bifurcation branches, and crisis events
(see Section 4). The graphical representations of the non-
linear function ¢ (-) are provided in Figure 1 for several
discrete values of parameterk. Interestingly, we would like to
quote that the hyperbolic tangent nonlinearity has also been
considered in many problems related to neural networks and
Chua’s system as well [24-28]. The inclusion of this non-
linear term in model (1) engenders the extremely complex
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px(x)

FIGURE 1: Graphical representation of the nonlinear function ¢ (x) = —k — 3x + 6tanh(x) for four discrete values of the symmetry
parameter k. Notice that the number (one, two, or three) of zeros of ¢, (-) depends crucially on the value of parameter k.

and striking bifurcation patterns developed by the whole
system. The most “elegant” form [4] of system (1) is achieved
by expressing it as a jerk equation:

X = —ayx — ux + ag; (x). (2)

Finally, it should be remarked that the state variable x,
appears solely in the third equation and, consequently,
represents an offset boosted variable [34, 35].

2.2. Symmetry and Dissipation. As previously indicated
above, it can easily be seen that systems (la) and (1b) are
symmetric with respect to the origin of the coordinates for
the special casek = 0.0. For this singular case, systems (la)
and (1b) represent an inversion invariant nonlinear dynamic
system, provided that it remains unchanged when per-
forming the coordinate substitution: (x, (t),x, (t),x; (t))&=
(=x, (t),—x, (£),—x5 (£)). As a result, all attractors of systems
(1a) and (1b) occur either as individual symmetric attractors
or as mutually symmetric couples. This property is the key
ingredient to justify the presence of multiple coexisting
stable states appearing for some suitable sets of system
parameters. More importantly, a suitable exploitation of the
symmetry property of the evolution equation simplifies
considerably the numerical experiment (e.g., the stability
analysis, the calculation of phase space trajectory, and the
basins of attraction as well).

More generally, systems (1a) and (1b) are nonsymmetric
for any value of k # 0.0. However, we notice the invariance of
systems (la) and (1b) following the coordinate
transformation (x; (), x, (t), x5 (), k) = (—x; (£), —x, (t), -
x5 (1), —k). Consequently, we restrict our analysis for positive
values of parameter k all over this work. The dynamics for
negative values of k can be deduced from the Ilatter
transformation.

The divergence of the vector field (1a) and (1b) is
computed as follows:

_0X; 0x, 0X3
T 0x;, Ox, 0x;

_0(xy) . 9 (axs) . 0(—k — yx, — ux3 — 3x; + 6tanh(x,))
T ox, ox, 0x; ’
=-u<0.

(3)

It follows that, for any point x = (x;,x,,x5) in phase
space, the divergence is always negative. Accordingly, system
(1) is dissipative and consequently can develop attractors
[1-3].

2.3. Fixed Point Analysis. The study of equibria always
represents the first issue to be addressed when performing
the investigation of a nonlinear dynamic system. Their study
yields preliminary insights into the dynamics of complete
system [1-4]. By equating to zero all the derivatives in system
(5), we found that (see Figure 1), for |k| <k, ,, = 7.57, there
exist three different rest points E, = (x,,0,0) (n=0,1,2),

where x; verifies the following transcendental equation:

k+3(x—2tanh(x)) =0. (4)

In view of the graph presented in Figure 1, we notice that,
for |k| = kx> the system has two fixed points, while a single
equilibrium point exists in case |k| > k.. Throughout the rest
of this work, we restrict our analysis for values of k where the
system exhibits three fixed points. It should be remarked that,
for k = 0.0, the system displays three symmetric fixed points
amongst which the origin [18]. Using the set of parameters
defined above, the roots equation (4) have been numerically
obtained for two discrete values of k (i.e., k= 0.00 and
k = 0.25) by using the “fzero” build in function of Matlab.
Recall that the “fzero” function is a MATLAB subroutine to
search for the zeros of a single variable real-value function. As



sample results, we have obtained the following fixed points: (i)
Ey(0,0,0) and E,,(+1.9150,0) for k=0.0; (i
E,(0.083,0,0), E,(1.813,0,0), and E, (-2.013,0,0) for
k =0.25. We notice that the positions of the equilibrium
points in state space are defined solely by the value of
parameter k. Evaluated at any given fixed point E (X, 0, 0), the
Jacobian matrix of system (1) takes the following form:

0 1 0
M] = 0 0 a |. (5)
3 —6tanh® (%) —p —u

We obtain the related eigenvalues A;(j =1,2,3) by
searching for the zeros of the characteristic polynomial:

P(1) = det(M; - AI;) = 1> + uA* + ayd - 3a(1 - 2tanh’ (%)),
(6)

where I; refers to the 3 x 3 identity matrix. From the graphs
in Figure 1, we notice that the equilibrium point E; has its x-
coordinate with magnitude smaller than unity. Also, the
related characteristic polynomial possesses coeflicients with
different signs, and thus, E,, is always unstable according to
the Routh stability theorem. The stability of the pair of fixed
points (E, and E,) changes with the values of parameters «
and y. From both the Routh-Hurwitz stability criterion [1, 2]
and the Hopf bifurcation theorem, we derived the following
results about the stability of the above pair of equilibrium
points. Each of the fixed points E, (n = 1,2) remains stable
only for values of y >y, (x,,) = ¥, = 3(2tanh? (x,,) — 1)/u. If
the parameter y is brought beyond the critical valuey,,, the
fixed point E;becomes unstable. We now investigate the
Hopf bifurcation related to the fixed point E,, (n = 1,2) when
y is considered as the bifurcation control parameter. The
following analytical conditions have been derived:

3(2 tanh® (x,,) - 1)

xn = n = (7a)
Yu (x,) =y p

Wy (xn) = VA > (7b)

N A (70)

¢ dayl,-,. S 2+2ay, ¢

As a result, systems (la) and (1b) exhibit a Hopf bi-
furcation from E, (n =1,2) when y = yy(x,), and a limit
cycle will develop around the point E,, (n = 1,2). Equation
(7b) defines the frequency of oscillations (w;;), while the
transversality condition is expressed by equation (7c). As
sample numerical results, both equilibrium points E, and E,
undergo a Hopf bifurcation at y =y, =y, = 2.496 for k =
0.0 and ¢ = 1.0. In contrast, for k = 0.25 and u = 1.0, the
Hopf bifurcation values are y,, = 2.40 and y_, = 2.58, re-
spectively, for E; and E,. From the study presented above,
we conclude that both three equilibriums are unstable in any
regime (periodic or chaotic oscillations) of operation, and
systems (la) and (Ib) exhibit self-excited attractors ac-
cordingly [36,37].

Complexity

3. Numerical Study

3.1. Scenario to Chaos. To highlight the influence of system
parameters on the dynamics of the system, we keep a = 10.0
and use y and k as control parameters. Figure 2 provides the
bifurcation diagrams of the coordinate x, against pand
related plots of largest Lyapunov exponent [38] for two
different values of k (i.e., k=0.00 and k = 0.25). These
diagrams are obtained by scanning the parameter downward
without resetting the values of initial conditions, starting the
system from the initial state (+0.5,0,0), respectively. We
know that, for k = 0.0 (see Figure 2), the system is symmetric
as well as related dynamical structures (i.e., equilibrium
points, attractors, and basins of attractions). For this par-
ticular case, it can be seen from the diagram of Figure 2 (left
panel) that there exist two symmetric bifurcation branches
(blue and magenta), exhibiting a period doubling sequence
to chaos for decreasing y. These branches merge at ap-
proximately y = 1.0 via the well-known symmetry recov-
ering the crisis process. At this point, two mutually
symmetric mono-scroll chaotic attractors (corresponding to
the blue and magenta branches) combine to form a double-
scroll strange attractor (see Figure 3). Completely different
routes are found in the nonsymmetric system (i.e., k #0.0).
In fact, for a nonzero value of parameter k (e.g., k = 0.25), it
can be captured from Figure 2 (right panel) that a pair of
asymmetric limit cycles with different periodicity experi-
ences each its own route of period doubling cascade to chaos
when the control parameter y is decreased in small steps.
Accordingly, blue and magenta bifurcation branches display
a horizontal shift which increases with parameter k. For
example, in the bifurcation plot of Figure 2 (right panel), the
first period doubling takes place at y = 0.15 for the blue
branch and y = 0.25for the red one. Here, the merging
process never occurs. Instead, the series of period doublings
of coexisting asymmetric cycles yields an asymmetric
double-scroll strange attractor (see Figure 4). Moreover,
most fascinating properties of the asymmetric system is the
sudden disappearance (via a critical transition) of one of the
bifurcation branches (i.e., the magenta branch; see Figure 2)
when decreasing the control parameter y for any nonzero
value of k. Past this crisis event, the system experiences a
single attractor that metamorphoses to an asymmetric
double-scroll chaotic attractor as yis further decreased.

3.2. Coexistence of Multiple Attractors. The coexistence of
multiple stable states [10] is one of the most attractive
properties the jerk system considered in this work. This
intriguing feature has been deeply investigated for the
symmetric system (i.e., kK = 0.00) in the reference work [18].
In this section, we investigate the impact of the excitation
term (k) on the mechanism governing the generation of
multiple solutions. In this regard, several bifurcation plots
are produced following appropriate numerical techniques
[18] in order to track parameter domains corresponding to
the presence of multiple coexisting stable states. As sample
results, Figure 5 shows the bifurcation diagrams of local
maxima of x, variable, obtained when varying parameter a
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FIGURE 2: Bifurcation diagrams (a, b) of the system showing local maxima of the coordinate x; versus parameter y computed for a = 5 both
for the symmetric (k=0.000) and the asymmetric (k=0.250) modes of oscillations. The corresponding graph of maximal Lyapunov
exponent is shown in the lower panel (c, d).
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Figure 3: Continued.
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FIGURE 3: Sample chaotic phase portraits of the symmetric system: (a) a pair of period-1 cycles fory = 1.6; (b) a pair of period-2 cycles
fory = 1.4; (c) a pair of period-4 cycles for y = 1.323; (d) two mutually symmetric spiraling strange attractors for y = 1.18; (e) a double-scroll
strange attractor fory = 1.078. Initial conditions are not critical but fixed as (x (0), y (0),z(0)) = (1,0, 0). The rest of parameters are k = 0.0,

a=>5.0, and y = 1.0.

in the range 5 < a < 30 for four discrete values of k. Details of
numerical procedures employed to produce these plots are
described in Table 1. These diagrams display the intricate
phenomenon of parallel branches and hysteresis which
justify the occurrence of multiple attractors for several
parameter sets. More importantly, notice that the merging
process does occur for the symmetric system (i.e., k = 0.00).
In contrast, one of the branches undergoes a critical tran-
sition and collapses for nonzero values of parameter k when
the control parameter y is slowly decreased. The numerical
techniques used to obtain those diagrams are provided in
Table 1. A close examination of Figure 5 reveals that various
combinations of coexisting attractors can be obtained when
suitably selecting the system parameters. For example,
Figure 6 presents the coexistence of two different chaotic
attractors (a, b) computed for a = 15.0 using two different
values of initial conditions. The corresponding cross section

of the basins of attraction is provided in (c) using the same
colors as the relevant attractors. In this figure, the red zone
indicates unbounded dynamics. In the same line, Figure 7
depicts three different asymmetric coexisting attractors and
corresponding cross sections of the basin of attraction. More
interestingly, by choosing appropriately the values of system
parameters and initial conditions, four asymmetric coex-
isting attractors can be found as exemplified in Figure 8. A
more intriguing situation is depicted in Figure 9 where up to
five different asymmetric attractors coexist. The corre-
sponding bifurcation like sequence of local maxima of the
coordinate x, versus initial condition x, (0) is provided in
the graph of Figure 9(f). The cases reported above relate to
the asymmetric mode of operation, and a different config-
uration of coexisting attractors occurs in the symmetric
regime where coexisting attractors now appear only in
mutually symmetric pairs (see Figure 10).
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FiGUure 4: Computer-generated phase space trajectories of the system projected onto the y-z planes obtained for some discrete values of
parameter y: (a) coexistence of two period-1 limit cycles for y = 1.6; (b) coexistence of period-1 and period-2 cycles for y = 1.4; (c)
coexistence of period-4 and period-2 cycles for y = 1.359; (d) coexistence of two nonsymmetric strange attractors for y = 1.2; (e) a
nonsymmetric strange attractor for y = 1.16; (f) an asymmetric double-scroll strange attractor for y = 1.0. The computations are done with
k =0.25, 4 = 1.0, and a = 5.0. Initial conditions are (x(0), y(0),z(0)) = (+1,0,0).
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FiGure 5: Enlargements of the bifurcation diagrams of the system showing various coexisting bifurcation branches and hysteresis, computed
for three different values of parameterk, namely, k = 0.000, k = 0.025, and k = 0.250. Detail numerical procedures used to obtain those
diagrams are provided in Table 1. The rest of parameters are same as in Figure 5.

TaBLE 1: Detailed numerical procedures used to obtain the bifurcation diagrams of Figure 5.

Initial condition

Graph identification Color data Parameter range Sweeping direction
P 8 pis (x1 (0), %, (0), x5 (0))
Magenta 17.25<a<19 Upward (0.1,0,0)
k=0.000 Green 17.70<a <19 Upward (0.2,0,0)
Blue 5<a<19 Downward (0.6,0,0)
Blue 17.25<a<19.25 Upward (+2,0,0)
Red 17.5<a<19.18 Downward (-2,0,0)
k=0.025 Black 17.25<a<19.25 Upward (-5,0,0)
Magenta 17.25<a<17.86 Downward (-0.8,0,0)
Green 17.5<a<19.18 Downward (1,0,0)
Blue 15<a<20 Downward (5,0,0)
k= 0250 Black 15<a<20 Downward (-5,0,0)
e Red 15<a<20 Upward (-5,0,0)
Green 16.92<a<18.20 Upward (3,0,0)

From the above investigations, we notice that the oc-
currence of multiple attractors is possible both in the un-
forced (i.e., k = 0.0) and the forced (k#0.0) regimes. The
latter situation is being much more challenging for analysis
provided that the occurrence of multiple solutions cannot be

explained based on symmetry arguments. At this point, we
would like to stress that the occurrence of multiple attractors
has reported numerous other problems from diverse fields of
science and technology. This feature can be advantageously
exploited in engineering applications such as image
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FIGURE 6: Coexistence of two different attractors for a = 12.0, y = 1.0, 4 = 0.95, and k = 0.25. Initial conditions (x, (0), x, (0), x; (0)) are
(0.4,0,0) and (0.4, 0, 0)for (a) and (b), respectively. The corresponding cross section of the basins of attraction is provided in (c) using the
same colors as the relevant attractors. The red zone denotes unbounded dynamics.

encryption and random signal generation as well. However,
in cases where only a single stable attractor is desired, some
control strategies may be developed. Detailed analysis
concerning this point is out of the scope of this paper.
Accordingly, interested readers may obtain precious in-
formation from the review work of [10].

3.3. Coexisting Bubbles of Bifurcation. Another interesting
and striking event revealed monitoring the parameters of
system (1) is the phenomenon of antimonotonicity [39-44].
In fact, the period doubling transition to chaos followed by
the reverse bifurcation scenario is found when varying the
control parameter a for several values of y in case of a zero
forcing term (i.e., k = 0.0). Sample results are depicted in
Figure 11 which presented five bifurcation plots of the
coordinate x versus a for five discrete values of y. In each
case of the diagrams in Figure 11, there are two symmetric
bifurcation diagrams due to the symmetry of the model.
From Figure 11, we note that a period-1 bubble is obtained

for y = 1.0. As y decreases the sequenceP,bubble — P,
bubbles — P, bubble — Pg;  bubbles — full, Fei-
genbaum tree takes place. This behavior corresponds to the
symmetric system (k=0.0) and much more complex
nonlinear dynamics arise in the presence of a nonzero ex-
citation force (i.e., k#0.0), as exemplified in Figure 12. This
latter figure depicts the bifurcation plots of the coordinate x
against parameter a obtained for several discrete values of k
while maintaining y = 1.475 and y = 0.875. In contrast to
the situation presented in Figure 11, lower and upper bi-
furcation branches are nonsymmetric, depicting a horizontal
shift and exhibiting different periodicities. This striking
behavior (engendered by symmetry break) is rarely reported
and thus represents an enriching contribution to the be-
havior of these types of systems.

4. Control of Multistability

Recently, a control method referred to as linear augmen-
tation is described which is suitable to control the dynamics
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FiGure 7: Coexistence of three different attractors for a = 16.85,y = 1.0, 4 = 0.95, and k = 0.25 . Initial conditions (x; (0), x, (0), x5 (0)) are
(-1.8,0,0) for attractor in (a), (—1.6,0,0)for attractor in (b), and (0.4,0,0) for attractor in (c). Green, magenta, and yellow colors
correspond to the attractors in (a), (b), and (c), respectively. The red zone corresponds to unbounded dynamics.

of a nonlinear system without perturbing the system’s pa-
rameters [45-47]. In this strategy, a nonlinear dynamic
system is coupled with a linear one. The motivations of this
coupling scheme are twofold: (a) to stabilize the steady state
in a given nonlinear oscillator; (b) to adjust the number of
coexisting attractors for a multistable system. Accordingly,
the dynamics of the jerk system with hyperbolic tangent
nonlinearity coupled to a linear system is described by the
following fourth-order system:

X = Xy,
X, = axs,
. (8)
X3 = —yx, — yx3 — k — 3x; + 6 tanh (x;) + u,
u=-ou-98(x-p).

Here, 0> 0 represents the decay parameter of the linear

systemu, & denotes the coupling strength, and f§ is the
control parameter, which serves to locate the position of the

equilibrium points. For § = 0, both oscillators evolve inde-
pendently, and the linear system exhibits a fixed-point
motion. For a nonzero coupling coefficient (i.e., § # 0), there
is a mutual influence between the nonlinear oscillator and
the linear system resulting in the symmetry breaking of the
whole system even for k =0.0. The fixed points of the
coupled system are yielded by the following nonlinear al-
gebraic system:

{—k— 3x, + 6tanh (x;) + 6u = 0,

—ou—-6(x—-p)=0. ®)

System (9) clearly shows that the fixed points are
asymmetrically located in state space, and their number
strongly depends on the values of the linear system pa-
rameters as well as the coupling strength. Considering the
case where the system develops six distinct periodic and
chaotic attractors, we examine the range of coupling pa-
rameter corresponding to a monostable behavior of the
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FiGure 8: Coexistence of four different attractors for a = 18.0, y = 1.0, p = 0.95, and k = 0.25. Initial conditions (x, (0), x, (0), x5 (0)) are
(~1.8,0,0) for the period-3 cycle in (a) with blue basin, (-1.6, 0, 0) for the chaotic attractor in (b) with green basin, (0.2, 0, 0) for attractor in
(c) with magenta basin, and (0.4,0,0) for attractor in (d) with yellow basin. (¢) Red zones indicate unbounded dynamics.
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FiGure 9: Coexistence of five different attractors for a = 17.85, y = 1.0, g = 0.95, and k = 0.025. Initial conditions (x, (0), x, (0), x5 (0)) are
(-0.12,0,0) for (a), (-1.12,0,0) for (b), (0.648,0,0) for (c), (0.128,0,0) for (d), and (-0.048,0,0) for (e). The bifurcation-like sequence of
local maxima of the coordinate x, versus initial condition x, (0)obtained with (x, (0),x, (0)) = (0, 0)is provided in graph in (f).
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F1Gure 10: Coexistence of six different attractors for a = 17.77, y = 1.0, g = 0.95, and k = 0.0. Initial conditions (x, (0), x, (0), x; (0)) are
(£ 0.104, 0, 0) for the pair of period-6 cycles (a, b), ( £ 0.4, 0, 0)for the pair of three-band chaotic attractors (¢, d), and ( + 0.2, 0, 0)for two-
band chaotic attractors (e, f).
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FiGure 11: Bifurcation diagrams of the system showing local maxima of the coordinate x, versus the control parameter a computed for
some discrete values of y keeping ¢ = 1.0 and k = 0.00. In each diagram, the blue and red branches are obtained by scanning the parameter
downward (i.e., downward continuation) starting with initial conditions (-0.5,0,0) and (0.5,0,0), respectively.
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F1GURe 12: Bifurcation diagrams of the coordinate x, versus a showing coexisting bubbles of bifurcation computed for five discrete value of
k, keepingy = 1.475 and u = 1.0. In each diagram, the blue and red branches are obtained by scanning the parameter downward (i.e.,
downward continuation) starting with initial conditions (-0.5,0,0) and (0.5,0,0), respectively.
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FiGure 13: Bifurcation diagram illustrating the transition from a multistable state to monostability when smoothly varying the coupling
strength in the range 0 <§<0.80. The rest of parameters are a = 17.77, y = 1.0, and y = 0.95. Regions A, B, C, and D correspond to the
coexistence of five, four, three, and two attractors, respectively, while a single attractor is observed in region E. Six sets of data are
superimposed. These data are obtained by scanning the parameter upward starting from each of the six coexisting attractors (see text).
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F1GURE 14: Coexistence of two different attractors for § = 0.50 using two different initial conditions and corresponding cross section of the
basins of attraction. Blue and green basins correspond, respectively, to the period-1 and the chaotic attractor, respectively, while red zone
denotes unbounded dynamics. The rest of parameters are same as in Figure 18.
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FIGURE 15: A single attractor (a) for § = 0.75 and corresponding cross section of the basins of attraction (b). Green zones represent the basin
of attraction of the chaotic attractor, while red zone denotes unbounded dynamics. The rest of parameters are same as in Figure 18.

coupled system. To this end, the parameters are fixed as in
the caption of Figure 13. The latter figure shows the bi-
furcation diagrams illustrating the transition from a mul-
tistable state (see Figure 10) to monostability when smoothly
varying the coupling strength in the range 0 <6< 0.80. Re-
gions A, B, C, and D correspond to the coexistence of five,
four, three, and two attractors, respectively, while a single
attractor is observed in region E. Six sets of data are
superimposed. These data are obtained by scanning the
parameter upward starting from each of the six coexisting
attractors without resetting the initial conditions. We
present in Figures 15 and 16 sample phase portraits of the
system (corresponding cross sections of the basins of at-
traction), highlighting the transition of the system to a
monostable state.

5. PSpice Simulations

It is predicted from the above results that the jerk system
with a single hyperbolic tangent function can undergo
extremely varied dynamic behaviors. The design and
implementation of a convenient electrical circuit (i.e., the
analogue simulator) for the experimental study of the
model are presented in this section. PSpice simulation [48]
investigations are carried out to check the results of an-
alytical and numerical analyses. The possibility of moni-
toring capacitors initial voltages and evaluating the
corresponding impact on the behavior of the whole circuit
represents one of the main advantages of using of PSpice.
Interestingly, evidence of several coexisting stable solu-
tions [49-54] in the system may easily be demonstrated
both in the symmetric and the asymmetric modes of
operation. Moreover, the hardware realization of theo-
retical chaotic mathematical models is convenient for
engineering utilization including, for instance, random
signal generation, chaos-based communications, and
image encryption.

5.1. Design of the Experimental Circuit. The circuit diagram
of the proposed electronic simulator is shown in
Figures 16(a) and 16(b). The hyperbolic tangent nonlin-
earity module [53, 54] whose detailed schematic diagram is
depicted in Figure 16(b) consists of resistors, a dual-
transistor pair, a pair of operational amplifiers, and a dc
current source. A detailed analysis of the hyperbolic
tangent circuit can be found in [53, 54]. Operational
amplifiers and related circuitry (in Figure 16(a)) imple-
ment the basic operations of addition, subtraction, and
integration. By choosing a suitable time scaling, the
simulator outputs can directly be displayed on the screen
of a double trace oscilloscope by feeding the output voltage
of X, to the X input and the output voltage of X, to the Y
input. With the hypothesis of ideal operational amplifiers
operating in their linear regime, upon applying Kirchhoft
current and voltage laws to the circuit diagram in
Figure 16(a), it can be established that the voltages X, X,
and X, satisty the set of three coupled first-order nonlinear
differential equations:

(dX, X,

dt, RC

dx, X

T TRe (10)
t, R,C

dX; V. 3X, X, X, 6tanh(X,)

dt, RC RC RC RC RC

Choosing the following rescale of time and variables: ¢, =
tRC; X, = x;, x 1V (k = 1,2,3), system (10) is identical to
system (1) with the following definition of parameters:

RV,
a=RIR;; y=R/R; p=R/R; sz_W' (11)
k
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FIGURE 16: Electronic circuit implementation (a) of system. The circuit realization of tangent hyperbolic values function is shown in (b). The
values of electronic circuit components used for the analysis are listed in Table 2.

choosing the value of the three capacitors.

From the above equations, it follows that the dynamics of
system (1(a) and 1(b)) can be simulated at any desired
frequency (within the bandwidth of op. amplifiers) by

5.2. PSpice Simulation Results. The behavior of the circuit
shown in Figure 16 is studied in PSpice by employing the
values of parameters provided in Table 2 in order to check
the theoretically predicted results of Section 3, in particular
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TaBLE 2: The values of electronic components used for PSpice simulations.
Parameters Signification Values
R, Resistance 0.52KQ
Rc Resistance 1KQ
R, Resistance 10KQ
R Resistance 12KQ
R, Tunable resistance Tunable
R, Resistance Tunable
R, Resistance Tunable
C, C,, Cy Capacitance 10nF
Vee Voltage source 15V e
I, Current source 1.1mA
T, T, Amplifier transistors NPN Q2N2222
U;(i=1,2,34) Operational amplifiers TLOS84
Uy» Uy, Operational amplifiers TL082
Figure 16 is partially reproduced from (J) [18].
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FIGURE 17: Two-dimensional views (left panel) of the symmetric double-scroll chaotic attractors computed for a = 5.0, 4 = 1.0, and k =
0.00 and the corresponding PSpice simulation results (right panel) obtained for R, = 11.13k and Ry, = co with the initial point (0.5,0,0).
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corresponding PSpice simulation results (right panel) obtained for R, = 12k, R = 576 k), and R, = 12k} with the initial point (0.5,0,0).
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FIGURE 19: PSpice simulation results showing the coexistence of four different asymmetric attractors for R, = 666 Q2, R, = 12.631kQ,
R, =12kQ, and R, =576kQ obtained with four different initial conditions (v, (0),v.,(0),v. (0)): (a) a period-3 limit cycle
for(0.4,0.0,0.0); (b) a chaotic attractor for(0.2,0.0,0.0); (c) a period-3 limit cycle for (—0.303,0.0,0.0); (d) a period-2 limit cycle for

(~1.8,0.0,0.0).

the period doubling route to chaos and the presence of
coexisting bifurcation branches. R, (ie., equivalently
parametery) is chosen as main bifurcation control resistor.
The electronic components’ values (R = 12k, R, = 12kQ,
R, =2.4kQ, and R, = 00; see Table 2) are selected so as to
match the dimensionless values (a = 5.0 and p = 1.00 ) of
Section 3 in view of allowing the comparison between theory
and PSpice results. When varying progressive resistorR,, we
observe the same sequence of bifurcations described in
PSpice. Sample results showing the projections of the
double-scroll attractor emanating from the merging crisis of
coexisting asymmetric mono-scroll chaotic attractors for
R, =11.13kQ are provided in Figure 17 along with cor-
responding theoretical ones. Similarly, Figure 18 depicts
various projections of the asymmetric double-scroll chaotic
attractor obtained in PSpice (right panel) and the corre-
sponding theoretically obtained ones (left panel) when the
control resistors are fixed as R, =12kQ, R, =576kQ,
R, =2.4KkQ, and R, =12kQ. The bifurcation sequences
observed in PSpice perfectly agree with those of theoretical
studies carried out in Section 3. On the contrary, using the
electronic component values fixed as R, =12kQ,
R, =576k, R, =666Q, and R, =12.631k(Q), we have
observed the coexistence of four different asymmetric
attractors, namely, a pair of asymmetric period-3 cycles, a
period-2 cycle, and a chaotic attractor when starting the
system from four different initial conditions (see Figure 19).
The latter situation is identical to the case reported in
Figure 8 during the theoretical analysis. We have avoided the
inclusion of other cases of multistability obtained in PSpice
for the sake of brevity. We would like to point out the
existence of some small shifts in the values of the control
resistor R, in PSpice in comparison to the theoretically
predicted values. Such discrepancies are mainly due to the

unavoidable simplifications adopted during the modeling
step of the analogue simulator (e.g., ideal bipolar junction
transistor model and ideal op. amplifier model, in com-
parison with more realistic/complex models implemented in
PSpice).

6. Concluding Remarks

In summary, this paper has explored the dynamics of a
simple chaotic jerk system with hyperbolic tangent non-
linearity whose symmetry is destroyed by the adding a
constant term acting as an external excitation force. We have
shown that the modified system exhibits several unusual and
interesting nonlinear patterns such as coexisting bifurcation
branches, hysteretic behaviors, coexisting symmetric and
asymmetric bubbles, critical phenomena, and multiple (i.e.,
two, three, four, five, or six) coexisting asymmetric attractors
for some appropriately chosen sets of its parameters. These
features were illustrated by exploiting common nonlinear
analysis tools such as graphs of largest Lyapunov exponent,
bifurcation diagrams, phase portraits, and basins of at-
traction. The control of multistability based on the linear
augmentation scheme is exploited to tune the system from
the state of six coexisting attractors to monostability. An
appropriate electronic analogue of the system was designed
and simulated in PSpice. The theoretical results show a very
good agreement with the PSpice simulation investigations.

The model considered in this work can be regarded as
prototypal autonomous 3D system with three rest points and
an odd symmetry. Also, we conjecture that the dynamics
induced by symmetry break observed in this work may also
be found when using the jerk equation with other types of
nonlinearities (e.g., cubic, quintic, hyperbolic sine, and
piece-wise quadratic). Moreover, the extension of the
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analysis presented in this paper to cases of other chaotic
oscillators such as Chua’s, Shinriki, autonomous van der
Pol-Duffing, and hyperjerk circuits is under consideration.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Today’s remarkable challenge of maritime transportation industry is the detrimental contamination generation from fossil fuels.
To tackle such a challenge and reduce the contribution into air pollution, different power solutions have been considered; among
others, hybrid energy-based solutions are powering many ferry boats. This paper introduces an energy management strategy
(EMS) for a hybrid energy system (HES) of a ferry boat with the goal to optimize the performance and reduce the operation cost.
HES considered for the ferry boat consists of different devices such as proton exchange membrane fuel cell (PEMFC), LI-ION
battery bank, and cold ironing (CI). PEMFC systems are appropriate to employ as they are not polluting. The battery bank
compensates for the abrupt variations of the load as the fuel cell has a slow dynamic against sudden changes of the load. Also, CI
systems can improve the reduction of the expenses of energy management, during hours where the ferry boat is located at the
harbor. To study the performance, cost and the pollution contribution (CO,, NOy, SOy) of the proposed hybrid energy
management strategy (HEMS), we compare it against three various types of HEM from the state-of-the-art and also available rule-
based methods in the literature. The analysis results show a high applicability of the proposed HES. All results in this paper have

been obtained in the MATLAB software environment.

1. Introduction

Renewable energy resources (RESs) have received growing
attention in supplying the required energy of different
systems during the last years. The marine industry has also
been affected by this trend. Application of renewable and
clean energies for supplying the required energy of the
marine vessels like small ships and boats is growing and this
has led to introducing the concept of Electric Ferry Boats
(EFBs) in the marine industry. Different combinations of
fossil fuel-based resources and RESs such as diesel gener-
ators (DGs), fuel cells (FCs), solar panels, storage batteries
(SBs), and cold ironing (CI) [1-3] can be used in the EFBs for
supplying the demand and providing the propulsion force of
these boats. In this situation, optimal energy management of

the EFB is an important subject from the viewpoint of both
ship owners and reliability concerns that should be con-
sidered to reduce the operation cost while considering the
operation constraints of the equipment.

Optimal energy management of the marine vessels has
been studied before in the literature. The authors of [4]
provided an energy management schedule in the electric
ship according to the Model Predictive Control (MPC) to
optimize the concordance between power generators and
batteries’ energy-saving under high-power ramp rate loads.
The authors of [5] proposed manner-based energy man-
agement by means of Fuzzy Logic (FL) and Proportional-
Integration (P-I) control in an all-electric ship with only
electric storage devices. Abkenar et al. [6] apply a genetic
algorithm to find the proper and safe operation of fuel cells
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in an electric ship with fuel cells and energy storage system.
A subhourly energy management technique based on MPC
has been employed for electric ships in an integrated power
network having a variety of equipment such as FC, battery,
photovoltaic cells, and two DGs [7]. Tang et al. [8] propose
an optimal energy resources scheduling model for a large
green ship supplied with diesel, battery, photovoltaic, and
cold ironing. Different constraints of the model are involved
in the objective function and hence, an unconstrained, large-
scale, global optimization method is applied to solve the
optimization problem. In [9], a nonlinear programming
approach is used to find the optimal energy management of
an all-electric ship supplied with a hybrid storage system.
Optimal power resources scheduling of a ship with diesel
generators and batteries alongside a combined cooling and
heat power plant is formulated in [10]. The dynamic pro-
gramming approach is used in [11] to solve the energy
management problem of EFB with an energy storage system.
Rule-based is applied in [12] to perform the energy man-
agement for a ship with a hybrid FC and battery energy
system. Applying this method leads to a straightforward
lookup table method which cannot necessarily lead to an
optimal solution. Particle Swarm Optimization (PSO) al-
gorithm is utilized in [13] for energy management of the
shipboard loads. Hou et al. [14] solve the optimal energy
management of a hybrid energy storage system for tracking
the energy fluctuations of the shipboard loads. In [15], in-
tegrated perturbation analysis and sequential programming
algorithms and MPC methods are used to solve the energy
management problem of a boat with hybrid ultracapacitors
and batteries. Optimal power allocation for a hybrid diesel
engine and electric motor is performed for a ship without an
energy storage system in [16].

There are also some studies in the literature that focus on
each equipment of the EFBs such as CI possibility, pollution
control, FCs characteristics, and application of solar panels
and wind turbines in the EFBs. CI is one of the practical,
beneficial energy generation sources to supply power during
the ship berthing onshore or harbor where the energy re-
quirements of the ship are provided through the port’s
connection of the ship to the Microgrids (MGs) or power
networks located onshore. Nevertheless, CI has a low pol-
lution rate [17, 18]. Over recent years, different studies have
been conducted to optimize the utilization of CI. For in-
stance, in [19], significant effects of the CI on the bus voltages
and power quality of the Electrical and Distribution Network
around Coast Zone have been investigated. The authors of
[20] introduce a CI technology to assess the air pollution due
to the presence of a ferry boat in port and a cost-benefit
analysis to evaluate the profit quantity of the socioeconomic
“Copenhagen-Denmark.”

To minimize the perilous air pollutant, suspended
particles (CO,, NO,, and SO,), particularly the sulfur re-
duction rate, as well as component expenses of the system, a
combined coast-side power source CI with liquefied natural
gas (LNG) has been provided in [21]. Furthermore, in [21],
an optimization algorithm based on a nonlinear model was
implemented to find the best way for costs and emission
terms.

Complexity

FC is another energy generation source to satisfy the load
demand of EMSs [22, 23]. Generally, the system operation of
the FCs is based on a transform process, wherein the chemical
energy is converted into electrical power [24]. Universally,
FCs with various chemical fuels and distinguishing features
have been deployed in maritime transportation and power
electrical industry including low and high-temperature
polymer membrane fuel cell (LT-HT-PEMFC), phosphoric
acid fuel cell (PAFC), and solid oxide fuel cell (SOFC) [25].
Nonetheless, multiple disparate works have been carried out
in previous studies on FCs. For instance, proton exchange
membrane fuel cell (PEMFC) is a process, in which two el-
ements such as oxygen and hydrogen are used for anode and
cathode electrodes of the FC’s cells to generate power. Zero
emission, fast launch, high productivity and power density,
low noise and operating temperature, and solid electrolyte are
the several important features of the PEMFC.

In order to increase the ship power efficiency, a hybrid
fuel cell system by considering several schedules is provided
in [26] to decrease the rate of fuel or total energy con-
sumption of the hybrid system. The authors of [27] studied
the level of safety and hazardous operability of the molten
carbonate fuel cell tanker in nautical systems. Moreover, FL
approach has been applied for Failure Mode and Effect
Analysis (FMEA) in the presence of FC with molten carbon
fuel and gas turbine system for liquefied hydrogen tanker in
the marine driven technology [28].

Considering the environmental protection as another
important issue in the maritime transportation industry,
many research efforts have been devoted to reduce the
underlying pollution during recent years. The use of re-
newable energy sources, such as photovoltaic (PV) and wind
turbine, is one of the alternatives that have been proposed.
On the contrary, these sources, due to the weather depen-
dency, cannot handle the total power of the ship during peak
loads. Thus, to deal with this scenario, other renewable or
fossil fuel resources must be used to provide energy. Bat-
teries can also be used parallel to the PV and wind turbines
to increase the efficiency of the systems with renewable
energy resources [29]. This process will be accompanied by
operation cost and environmental contamination.

Reviewing the abovementioned studies shows that there
is a gap in the literature in the field of optimal daily energy
management of EFBs with FCs as the main source of energy
and batteries alongside with the CI. Most of the research
studies that are performed in the field of marine vessels are
focused on the ships with diesel generators such as [4, 7, 8]
and [10], which are not categorized in the field of zero-
emission boats. Some of the studies in the field of energy
management for zero-emission EFBs consider only the
energy storage systems as the main energy resource of the
boats like [5, 9] and [11]. On the contrary, the design and
application of zero-emission EFBs with the hybrid of FCs
and batteries as the main energy resources have received
growing attention during the last years. While there are
some studies in the field of this type of ships such as [6, 12],
these studies perform the energy management for short time
intervals and their main goals are satisfying the dynamic
constraints of the equipment.
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In this paper, an optimal hybrid energy management
strategy (HEMS) for an EFB with the FCs as the main energy
resource, batteries, and possibility of CI at the harbors is
proposed. The goal is obtaining an optimal power scheduling
for the FCs, batteries, and CI that minimizes the total op-
eration cost while considering the different operation
constraints of the equipment. The characteristics of the
proposed test system are adopted from practical research
performed in [30, 31]. The capacities of FC systems are
considered such that they can supply the total load power of
the ship at any weather condition independently. The battery
banks installed on the ship will compensate for the unex-
pected variations of the load because of the FC system slow
dynamic. Moreover, the CI system can supply the ship’s load
power during the existence of the ship at the harbor, at hours
where the price of CI system energy is lower than the price of
FC system energy. In order to compare the simulation re-
sults of the proposed test system with other available hybrid
energy systems for the boats, three different types of the
energy systems that are based on the fossil fuel as the main
energy resource are modeled and compared with the pro-
posed model in this paper. Plus, the rule-based method
introduced in [12] is also modeled and its results are
compared with the proposed method.

The rest of this paper is organized as follows. Section 2
describes the topology of the electrical ferry boat. Section 3
expresses the hybrid energy management of the ship, in-
cluding FC, battery, and CI. Finally, simulation results and
conclusion are presented in Sections 4 and 5, respectively.

2. The Topology of the Electrical Ferry
Boat Description

The topology of the proposed hybrid energy system for the
considered ferry boat is illustrated in Figure 1 [30, 31]. This work
considers a ferry boat equipped with two PEMFC systems with
200kW and a PEMFC system with 100 kW capacity. In ad-
dition, 20 hydrogen reservoirs with 18.8 kg content from Luxer-
GMT with 5,000 psi equivalent to 350 bar at high-pressure gas
have been embedded on the ship which are adequate for one
operational day without refueling. Also, the mentioned ferry
boat has two electromotors with 250 kW rated power for each
one. Furthermore, a room consisting of batteries is necessary to
save and manage the power generation surplus of FC output
after setting up the FC system on the ship. LI-ION batteries with
200 kWh charge capacity (two 100 kWh units) are utilized in the
ferry boat to load power compensation. The FCs can contin-
uously produce power along with the 24-hour duration because
the FC installation on the ship is without any affiliation to the
weather conditions. Therefore, no other renewable energy or
fossil fuel sources are needed to supply the ship’s loads. Since the
total load demand of the ferry boat is met by FCs on an hourly
basis, the battery bank installed on the ship requires low power
for load supply. This has led to using a small size battery. Thus,
employing the battery bank with a small size and not using the
fossil fuel resource lead to a significant reduction in the ex-
ploitation cost of ship’s hybrid energy system and air pollution
as well. Ergo, the hybrid energy management strategy (HEMS),
is carried out in the presence of FC and battery bank, while the

ship is in sailing conditions. Nevertheless, the electric load
requirement of the vessel is directly supplied through FC output
and the excess of FC power is utilized to feed the battery room.
FCs have slow dynamics; therefore, they cannot supply the
unanticipated overload in hours with load abrupt variation.
Hereupon, the batteries with a fast dynamic can be an ap-
propriate choice to compensate for the power shortage caused
by load variation. In this regard, the batteries can receive the
energy through the surplus energy of FC and deliver the power
to feed the vessel’s load.

Table 1 represents the high-speed ferry boat technical
specifications. However, all this information may not be
necessary for performing the daily energy management of
this boat. In order to model the different equipment in the
energy management system, (1) the PEMFC systems are
considered as a single FC system with a capacity equal to the
sum of the generation capacities of all PEMFC systems, (2)
all the batteries are considered as a single battery with the
capacity of the sum of the capacities of available batteries in
the boat, and (3) total load including electromotor load and
shipboard loads are modeled as a single load.

3. Hybrid Energy Management Strategy of
the Ship

As mentioned before, the goal of this paper is proposing an
optimal energy management model for the understudy EFB
that minimizes the operation cost and satisfies the operation
constraints of the equipment. To this end, first, the objective
function is presented, and then the operation constraints of
FCs, batteries, and CI are modeled separately. Before starting
