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,e current research paper deals with the worldwide problem of photovoltaic (PV) power forecasting by this innovative
contribution in short-term PV power forecasting time horizon based on classification methods and nonlinear autoregressive with
exogenous input (NARX) neural network model. In the meantime, the weather data and PV installation parameters are collected
through the data acquisition systems installed beside the three PV systems. At the same time, the PV systems are located in
Morocco country, respectively, the 2 kWp PV installation placed at the Higher Normal School of Technical Education (ENSET) in
Rabat city, the 3 kWp PV system set at Nouasseur Casablanca city, and the 60 kWp PV installation also based in Rabat city. ,e
multisite modelling approach, meanwhile, is deployed for establishing the flawless short-term PV power forecasting models. As a
result, the implementation of different models highlights their achievements in short-term PV power forecasting modelling.
Consequently, the comparative study between the benchmarking model and the forecasting methods showed that the forecasting
techniques used in this study outperform the smart persistence model not only in terms of normalized root mean square error
(nRMSE) and normalized mean absolute error (nMAE) but also in terms of the skill score technique applied to assess the short-
term PV power forecasting models.

1. Introduction

,e reports by Renewables 2017 Global Status and Inter-
national Energy Agency (IEA) confirmed that the solar PV
power has grown tremendously which implied many eco-
nomic and social benefits. ,e cumulative solar PV capacity,
meanwhile, reached 398GWwhich generated over 460 TWh
and represented around 2% of global power energy [1].
However, the penetration of renewable energy particularly
the solar PV remains trivial in comparison to the fuel and
coal-fired power plants due to numerous technical and

economic challenges. In this case, the need for high pene-
tration of solar PV in power systems is chronic and required.
,e solar PV, meanwhile, depends on the weather param-
eters and the location of PV installation, which are un-
predictable and affect the daily solar energy generation.
However, in the case of solar PV grid-tied, the poor electrical
grids cannot support this source of energy. For that reason,
the strong penetration of solar PV energy in the global
energy mix has driven the thinking to next generation of
electrical power grids and the renovation of most existence
electrical grids to host the new mode of solar PV and
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guaranteeing its integration. In this case, the need to smart
energy management systems (SEMS) that incorporate the
forecasting methods of solar PV power is an important key
to overcome many trials of renewable energy challenges and
allow them (especially the PV power) the flexibility in terms
of control and monitoring. Moreover, the forecasting
methods can help the integration of natural and sustainable
energy resources and encourage the adoption of recent
energy systems such as microgrids, which are smart small
microgenerations based on microsources including the re-
newable energy. ,e microgrids, meanwhile, request ad-
vanced techniques of control and forecasting to overcome
the effect of solar PV variability. Also, the use of short-term
PV power forecasting algorithms can support the integration
of solar PV in microgrids by providing the profile of PV
power for next 24 hours, which can aid the control flexibility,
regulation, monitoring, and dispatching of microgrids. In
addition, further advantages of PV power forecasting such as
the economic returns which they are clear in the planning of
energy generation, which supported by the demand fore-
casting. However, the elctricity cost optimization.

,e current research article states the need for accurate
short-term PV power forecasting due to its positive effect on
scheduling. ,ey can help the energy market operators
escape the potential penalties due to the eccentricities be-
tween the planned and produced energies. ,is research
study, meanwhile, suggests the best design of PV power
forecasting model, which consisted on selecting the right
future time horizon that means the choice of time between
the current time and the needed future time, choosing the
right forecasting resolution, and selecting the suitable
forecasting approach. ,e time horizons mostly considered
by the literature include very short term that starts from
some seconds and ends in few minutes also includes the
“time scale starts from several days to several months. In
addition, the spatial horizon is also needed for PV power
forecasting, which can display the total of space foreseen by
the forecasting model; this forecasting horizon begins from
one site to regional areas, also called regional forecast or
multisite forecast [2]. Moreover, the need for forecasting
approaches is primal for forecasting modelling. In the
meantime, the survey of literature showed that the PV power
forecasting is possible by using the direct and indirect
techniques. ,e direct technique, meanwhile, resides on
counting directly the amount of PV power in a future time
horizon; also, the experts recommend the techniques of
artificial intelligence and machine learning for short-term
PV power forecasting. ,e indirect technique or solar ir-
radiation forecasting consists on transforming the solar
irradiation forecasting through a PV model to the PV power
[3]. ,e literature review also recognized three main ap-
proaches for PV power forecasting modelling [4]. ,ey
include the physical approach based on real model of PV
installation, the physical model, the rental of equipment, etc.
,e statistical approach includes methods belonging to the
artificial intelligence, data mining, and machine learning.
,e hybrid approach is a new approach that gathers the
techniques of different approaches or considers the col-
laboration between techniques of the same approach.

Certainly, other approaches used for PV power forecasting
include the time series, regressive, and probabilistic
methods.

In the meantime, the literature review showed some
related research articles in short-term PV power fore-
casting topic based on artificial neural networks and
classification methods. In this case, the review article by
Inman et al. [5] showed successful applications of solar
forecasting methods and other theories related to the PV
power resources and forecasting. ,e focus of this paper,
meanwhile, is about the comparative study established
between the artificial neural networks and K-nearest
neighbors (KNNs), which both considered methods of
artificial intelligence. ,e review article by Voyant et al. [6]
presented a list of machine learning methods including the
K-NN method which is considered as the groundwork for
this current research paper. ,e research paper by Zamo
et al. [7] presented a set of PV power forecasting methods
called (PEARP). In the meantime, the focus of this study is
about the use of data provided by 28 PV power plants,
which encourage the use of data provided by multiple sites
for feeding the forecasting models such as the case of this
current research paper. ,e research study by Almonacid
et al. [8] proposed multilayer perceptron neural network
for forecasting the global irradiance and air temperature,
alongside with NAR neural network that is used for cal-
culating the PV power; however, the use of NAR did not
take into account the effect of outputs on the forecasting
results; nevertheless, the present research paper proposed
NARX instead of NAR. ,e research article by Chu et al.
[9] presented three smart models for reforecasting PV
power; the models included the KNN; nevertheless, in
their study, they did not combine the KNN method with
any algorithm of similarity and thus it is very clear in their
results. ,is present research paper is also inspired by the
studies conducted by Li et al. and Gigoni et al. [10, 11]
which presented some useful methods for data normali-
zation and assessments for error minimization measured
between the forecasted and real PV powers.

,e context of this research paper is the contribution to
resolve the dilemma of short-term PV power forecasting by
the application of similarity algorithm (SA) with the KNN
method and NARX neural network model applied to three
different sites with varied sizes and distinct geographical
locations. ,e forecasting model, meanwhile, consisted on
choosing the right variables that fit more the pattern of PV
power and then the use of artificial intelligence methods.,e
SA method, meanwhile, calculates the distance between the
weather variables and PV system parameters. In addition,
the KNN, which is a straightforward method, is used for
short-term PV power forecasting with NARX neural net-
work. ,e main goal of this research article, meanwhile, is
contributing to the short-term PV power forecasting
modelling. Also, this research article highlights the effect of
distance between the PV power installations on short-term
PV power forecasting by answering the need for optimal
number of variables that fit more the PV power [12].
Moreover, the smart persistence model is used in this study
as the benchmarking model of PV power forecasting.
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,e body of this research article contains the outline of
PV system at Rabat ENSET School, which consists of a
profound study of DC and AC installation, alongside the
model of PV system. In the meantime, the highlight of
equipment that used for measuring the weather and PV
system parameter data. Moreover, the presentation of solar
PV power forecasting methods explains the process of
forecasting modelling as well as the contrast on useful
equations and models used in this topic. Lastly, the dem-
onstration of results and the perspectives are presented.

2. Outline of PV System at Rabat ENSET School

,e purpose of this section is building the PV model of the
PV system located at ENSET School. In this case, the PV
model supports the PV power forecasting modelling since it
allows the complete understanding of the PV system and the
knowledge of important PV parameters. With the aim to
facilitate the study of PV system, this research article con-
siders the separation of DC and AC parts. In the meantime,
the modelling of PV system starts from the study of the PV
system location and the DC and AC materials. ,e PV
system at ENSET School, meanwhile, availed for lighting.
However, the extra power incorporates the electrical grid
since the grid-tied inverter is used for the integration service
as illustrated in Figures 1 and 2.

2.1.OverviewofGeographicalCharacteristics of ENSETSchool
Location. ,e ENSET School located in Rabat of Morocco
benefits from an extraordinary site, which is most of the time
sunny. For further information about the system location,
Table 1 shows the geographical coordinates of the ENSET
School site. ,is location holds a PV system of 2 kWp
established by eight (8) PV panels installed in south facing as
illustrated in Figures 3(a) and 3(b).

,e ENSET PV system equipped by eight PV panels has
the identical electrical features as shown in Table 2.

2.2. PV System Electrical Characteristics

2.2.1. PV System DC Parameters. ,e DC component of the
PV system includes a metallic structure designed for eight
PV modules, a DC junction box that contains the DC circuit
breakers, and the electrical cables as shown in Figures 3(a)
and 3(b). In the meantime, the serial configuration of PV
panels is adopted with the aim to answer the input voltage
required by the inverter. Furthermore, Table 3 provides
further data about the PV array installed at the ENSET
ground.

In this study, the single diode model is used for PV
modelling. ,e implementation and simulation of the PV
model, meanwhile, based on MATLAB software are shown
in Figure 4. In addition, the PVSYST software used to
simulate the voltage at the maximum power point tracking
(MPPT) of the PV array, which is designed to provide the
essential input voltage of the inverter, is illustrated in
Figure 5.

2.2.2. PV System AC Parameters. ,e second part of PV
system modelling regards the AC kit, which covers an in-
verter, the AC junction box that contains the AC circuit
breakers, and the electrical cables. Furthermore, the inverter
used to convert the PV power provided by the PV array as
well as to order the device of power limitation is shown in
Figure 6. Table 4, meanwhile, provides further data about the
AC part.

PV panels

DC junction
box

AC junction
box

Grid-tied
inverter

Inverter
and

charger

Batteries bank

Load

Ground network

Figure 1: Synoptic diagram of the PV system at ENSET School; this
one reflected the small-scale microgrid with the system of storage
(batteries bank) and grid-tied inverter.

(d)

(c)

(a)

(e)

(b)

(f)

Figure 2:,e photo of the DC and AC equipment of the PV system
of 2 kWp located at Rabat city of Morocco. (a) ,e grid-tied in-
verter (SMA Sunny Boy 2000 HF). (b) ,e junction box for grid-
tied part, which holds the circuit breaker. (c) ,e junction box for
off-grid part, which contains the circuit breaker. (d) ,e inverter/
charger, which is doted by the options of voltage control, battery
charger, and inverter (Victron Energy). (e) ,e bank of waterproof
gel batteries (12V-220 Ah) of Victron Energy brand. (f ) ,e gear,
which is used for monitoring the PV system and data registering
(Solar Log 1200).

Table 1: ,e PV system geographical coordinates.

Site City/country Latitude Longitude Altitude (m)
ENSET
School

Rabat/
Morocco 34.0°N 6.0°W 135

Journal of Electrical and Computer Engineering 3



2.2.3. Balances and Main Results. ,is part presents the
main analysis of the energy produced by the whole PV
system of the ENSET School over the year as shown in
Figures 7 and 8. ,e energy over year, meanwhile, remains
unpredictable and depends on the location of PV system and
the days and the season of the year. Although, in Morocco,
the daily energy for December and January months is less
than other periods because this two months belong to the
winter season. For further analysis in terms of losses of the
energy provided by the ENSET PV system, the chart in
Figure 9 illustrates the estimation of the PV system losses
over the year, which is 10.3%.

2.3. Overview of theMonitoring Gear of the ENSET School PV
System. ,e PV system at ENSET School includes a sensor

network that embeds sensors of ambient temperature,
module temperature, wind speed, and solar irradiance. ,e
sensors can provide the data through RS485/422 cables or

(a) (b)

Figure 3: ENSET School PV system. (a) ,e panels’ orientation. (b) ,e panels’ structure.

Table 2: ,e electrical characteristics of PV modules of the ENSET
PV system.

Module PV Si-poly
Manufacturer Solar World

Model SUNMODULE PLUS SW 250
POLY

Power at maximum point power
pmpp(W) 250

Open circuit voltage Vco (V) 37, 6
Voltage at maximum point power
Vmpp (V) 30, 5

Open circuit current Ico (A) 8, 81
Current at maximum point power
Impp (A)

8, 27

Module efficiency (%) 14, 91%

Table 3: ,e DC parameters of the ENSET PV system.

PV modules in series 8
PV modules in parallel N/A
Metallic structure 8
Tilt ° 26
PV array area (m2) 13, 4
PV module area (m2) 11, 7
Array global power at nominal conditions (STC) kWc 2
Array global power at operating conditions (50°C) kWp 2, 13
Array operating characteristics (50°C) Umpp (V) 256
Array operating characteristics (50°C) Impp (A) 8

100 W/m2

200 W/m2

400 W/m2

600 W/m2

800 W/m2

1000 W/m2

10 35 40205 30150 25
Voltage Uco (V)

Figure 4: ,e IV curve provided by the model of the installed PV
panel of brand SUNMODULE PLUS SW 250 POLY; the simulation
used diverse values of plan of array irradiance (POA).
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Figure 5: A snapshot view of the PV array at ENSET School. ,is
architecture corresponds to the series configuration of PV modules
since the value of array voltage is the total of the voltage of each
individual PV module.
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Ethernet mode to the central data acquisition called solar
log, which is able to communicate the data through the
website and android application. ,e solar log’s target,
meanwhile, is ensuring the management and monitoring of
the ENSET PV system including the visualization, optimi-
zation, and management process of self-consumption and
grid-tied PV system. In the meantime, this equipment
achieves the drop of power generation. At the same time, this
equipment can ensure the limitation of reactive current
through an installed external box.

However, with the aim of establishing the database for
forecasting modelling, the website as well as the USB device
used to export the data needs from the solar log in Excel files
is illustrated by the diagram in Figure 10.

3. Data and Methods of Solar Photovoltaic
Power Forecasting

3.1. Data Normalization. ,e standardization or data nor-
malization corresponds to the process of scaling the data
through mathematical equations. ,e data normalization,
meanwhile, is worthwhile for the flawlessness of PV power
forecasting models, for example, neural networks perform
better when inputs have the appropriate scale. ,e Z-score is
known as the best used normalization method, which
corresponds to the number of standard deviations from the

mean. Furthermore, the mean and standard deviation are
used to calculate the Z-score of data.

3.1.1. Mean. Equation (1) provides the mathematical form
for finding the mean value of a specified variable.

Vm �
1
n

􏽘

n

j�1
Vj, (1)

where Vm is the mean value of the vector parameters V, n is
the number of elements in V, and Vj is the jth element in V.

3.1.2. Standard Deviation. ,e standard deviation provides
the spreading of values. In addition, it is mostly practical to
set the range of data [13]. In the case of total population,
equation (2) provides the mathematical structure for cal-
culating the standard deviation of a specified variable.
Moreover, when the data are a sample, equation (3) is
preferred.

std1 �

��������������

1
n

􏽘

n

j�1
Vj − Vm􏼐 􏼑

2

􏽶
􏽴

, (2)

std2 �

�����������������

1
n − 1

􏽘

n

j�1
Vj − Vm􏼐 􏼑

2

􏽶
􏽴

, (3)

where Vj is the jth element in vector V and Vm is the mean
value of V.

3.1.3. Z-Score. Equation (4) is used to calculate the Z-score
value of a stated variable.

Zscore �
V − Vm

std
, (4)
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Figure 6:,e energy distribution from the inverter, which depends on PV array voltage and current; in this case, the operating voltage of the
inverter corresponds to 175–560V.

Table 4: Recaps of simulation of ENSET’s AC PV system.

Inverter SMA
Model Sunny Boy 2000 HF
Unit nominal power kW AC 2
Operating voltage (V) 175–560
Total nominal power kw AC 2
Produced energy kWh/year 3483
Specific production kWh/kWp/year 1741
Performance ratio PR (%) 90, 90%
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Figure 7: Assessment of ENSET PV array efficiency based on PVSYST software for each individual month of the year.
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where V is the vector of original values, Vm is the mean value
of V, and std is the standard deviation of the data.

3.2. Physical Model of Photovoltaic Power Forecasting. ,e
physical model of PV power forecasting is the most common
one, which is based on the data measurement from both PV
systems and weather stations [14].

3.2.1. Mathematical Expression of PV Power. ,e PV power
produced by solar PV panels can be predictable by using a
mathematical equation [15] as shown in the following
equation:

Ppv � ξ · Sm · N · Irr, (5)

whereN is the number of solar PV panels, Sm is the surface of
a solar PVmodule, Irr is the solar radiation on the plan of PV
module, andξis the instantaneous performance of the solar
PV panel. ,e expression of ξ is shown in the following
equation:

ξ � ξr · 1 − Γtcstc · Γmd − Γstc( 􏼁( 􏼁, (6)

where ξr is the reference efficiency of the PV module under
STC conditions, Γtcstc is the temperature coefficient under
STC conditions, which is a value given by the manufacturer,
and Γmd and Γstc are, respectively, the temperatures of the
module at STC conditions and under any conditions.

3.2.2. Expression of Energy Irradiance. ,e effective irradi-
ance received by the PV cell can be calculated by using the
following equation:

Irr � Ieff + ∇d Idc + Irs( 􏼁, (7)

where Ieff is the efficient irradiance, Idc is the energy irra-
diance diffused by the sky, Irs is the energy irradiance re-
flected from the ground, and ∇d is the fraction of diffuse.

3.2.3. Mathematical Expression of SANDIA Cell Temperature
Model. ,e Sandia Energy first proposed the SANDIA cell
temperature model as a part of the Sandia PV system
performance model [16]. Equation (8) meanwhile, calculates
the temperature of PV module in degrees Celsius (C).

Γmd � Irr · e
a+b.ws

+ Γat, (8)

where a and b are the temperature coefficients,ws is the wind
speed, and Γat is the ambient temperature.

In the meantime, the temperature of PV cell in degrees
Celsius is available by using

Γcelpv � Γmd +
Irr

1000
αt, (9)

where αt is a coefficient of temperature.

3.3. Correlation of Calculated and Measured Data. ,e PV
power measured from the PV system is totally different from
the PV power calculated by a PVmodel according to [17]. In
the meantime, the PV power calculated by a PV model is
equal to the PV power measured multiplied by a coefficient
λpow as shown in the following equation:fd10

Pcal � λpow · Preal. (10)

,e similar analysis above is practical for calculating the
temperatures as shown in the following equation:fd11

Γmd � λtemp · Γreal. (11)

3.4. Artificial Neural Networks (ANNs). Machine learning
(ML) and artificial intelligence are considered as the advanced
techniques since they allow the easy classification and fore-
casting of data. ,e ML includes the ANNs. ,eir objective is
asking the machine to classify the data by splitting, but
sometimes the error revealed the presence of misclassified
data. ,erfore, the aim of error function is getting the in-
formation about the misclassified data and also modelling the
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Figure 10: Solar log deployment for the ENSET School PV system.
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error.,e error functionmeanwhile is either discrete which is
convenient for the classification problems or continuous
which is suitable for the optimization problems. In the
meantime, the gradient descent is applicable for minimization
criteria. ,e probability is also used to describe the error
function since the product of probabilities defines this
function. ,erefore, the existence of times of probabilities
revealed that there is no error, and the maximum likelihood is
determined. Moreover, the error function is guilty for the
choice of right activation function in the ANNs modelling.

In this paper, the NARX neural network is used with
feedback or closed loop architecture with time delay for both
external inputs and feed-forwards from outputs as shown in
Figure 11. ,e closed loop also called parallel architecture,
meanwhile, is convenient for multistep PV power forecasting
[18]. In this item, the NARX neural network with two layers is
applied for short-term PV power forecasting model as well as
used to contribute in the flawlessness of PV power forecasting.

3.5. Classification of Weather and PV System Parameters.
,e process of classification of weather variables and PV
system parameters is useful to distinct the variables that fit
more the pattern of measured PV power and to classify them
according to their importance as primary, secondary, etc.,is
process realized through computer algorithms is based on
mathematical equations such as the Euclidian distance, root
mean square Euclidian distance difference, and weighted
hybrid distance.,e Euclidian distance, meanwhile, is used to
calculate the distance between the elements of PV power
vector and the elements of other variables. In the meantime,
the root mean square Euclidian distance differences are used
to cut the prime variable and the weighted hybrid distance is
used to compute the rank of other external variables. In this
paper, the classification rank is six variables.

Equation (12) is practical for calculating the Euclidian
distance between the elements of PV power vector for days d
and d+ 1.

D vj, d, d′􏼐 􏼑 �

���������������

􏽘

τ

t�1
P

(d)
t − P

(d′)
t􏼒 􏼓

2

􏽶
􏽴

. (12)

Furthermore, equation (13) is useful to compute the
Euclidian distance between the elements of other variables
for days d and d+ 1.

D vj, d, d′􏼐 􏼑 �

��������������

􏽘

τ

t�1
v

(d)
j,t − v

(d′)
j,t􏼒 􏼓

2

􏽶
􏽴

· (13)

However, to cut the prime external variable, the algo-
rithm should organize the variables that fit more the PV
power pattern by calculating the root mean square Euclidian
distance differences (I) as shown in the following equation:

I P, vj􏼐 􏼑 �

���������������������������������

􏽐
n
d′�2 􏽐

d′−1
d�1 D P, d, d′( 􏼁 − D vj, d, d′􏼐 􏼑􏼐 􏼑

2

(1/2)n · (n − 1)
,

􏽶
􏽴

(14)

where (1/2)n · (n − 1) corresponds to the distance size and n
is the variable dimension.

In addition, to discover the rank of other external
variables, the weighted hybrid distance (ζ) and the root
mean square weighted hybrid distance differences (ζΔ) are
calculated for the Euclidian distance of the prime external
variable and the Euclidian distance of other variables for
days d and d + 1 as shown in equations (15) and (16).

ζ vj, d, d′􏼐 􏼑 � 1 − cvj􏼐 􏼑D Rv1, d, d′( 􏼁 + cvjD vj, d, d′􏼐 􏼑,

(15)

ζ Rv2, d, d
f

􏼐 􏼑 � 1 − cRv2( 􏼁D Rv1, d, d
f

􏼐 􏼑 + cRv2D Rv2, d, d
f

􏼐 􏼑,

(16)

where Rvj is the jth label of the variable found by the
similarity algorithm and cvj is a coefficient whose value is
chosen as the smallest. In the perspective of this article, the
algorithm of similarity is applicable to the data provided by
the three sites that are previously discussed.

3.6. ApproximateMethod for Information Extraction from the
Data. ,e question there is how one can sort the forecasted
day from forecasting result. ,e extraction of the forecasted
day is going to be hard when big data are available. In the
meantime, equations (17) and (18) below are practical and
helpful for finding the corresponding day and month in the
forecasting result. Equation (17) is developed to sort the
forecasted day from big data and finds its label in months of
year.

Δf �
fd

Ndy

, (17)

where Δf is the month of year, fd is the forecasted day, and
Ndy � 30.42167 corresponds to the average of 365 days of
year.,e result given by equation (17) is often with a comma
where the decimal part corresponds to the month and the
fractional part corresponds to the day of month.

Furthermore, equation (18) is practical to find the
sorting of similar days to the forecast day.

Δs �
Sd

Ndy

, (18)

where Δs is the month of year. ,e outcome given by this
equation has often a decimal part that corresponds to the
month, and the fractional part corresponds to the day of
month.

3.6.1. Example. ,e detected day by the algorithm of sim-
ilarity is fd � 324 and Δf � 10.652. ,erefore, the result
corresponds to the month October and the fractional part
0.652 timed by the coefficient Ndy matches the day 20.
Finally, the forecast day corresponds to 20 October.

3.7. Error Metrics of PV Power Forecasting. ,e mean ab-
solute error (MAE) and root mean square error (RMSE) are
mostly relevant and practical methods for assessing the
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accuracy of PV power forecasting models [3]. ,e MAE,
meanwhile, is used for finding the steady distance between
the real and the outputted values from forecast models.
,erefore, theMAE is appropriately practical for estimating
the persistent forecast errors, whereas the RMSE deals with
severely large errors in square order. Equations (19) and (20)
show, respectively, the structure of MAE and RMSE.

MAE �
1
n

􏽘

n

j�1
Pfor − Preal

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (19)

RMSE �

����������������

1
n

􏽘

n

j�1
Pfor − Preal( 􏼁

2

􏽶
􏽴

, (20)

where Pfor is the forecasted PV power and Preal is the
measured PV power.

However, to compare results generated from forecast
models, the skill score Δf is the most practical method [19].
Equation (21) shows the structure of skill score technique.

Δsk � 1 −
Mfx

Mfz

, (21)

where Mfx corresponds to the result from the forecasting
model j and Mfz corresponds to the result from the model
j+ 1.

4. Results and Discussion

4.1. SimulationResults. ,is research paper provides the best
results based on simulation of two kinds of model that
belong to two different areas of artificial intelligence mod-
elling. ,e first part of simulation concerns the results of
artificial neural network application, specifically the use of
NARX neural network model, and the second part of
simulation concerns the application of classification
methods, specifically the use of K-nearest neighbors with
similarity algorithm to forecast the short-term PV power.

4.1.1. Weather and PV System Data. ,e building of data-
base is the key process of forecasting modelling, and it has
taken more time than expected. In the case of PV power
forecasting study, two kinds of data can be initiated which
are the weather data from meteorological stations and the
PV system data measured directly from PV systems. In
addition, for the subject of this research paper, the data used

to feed the PV power forecasting models correspond to three
different locations characterized by size dissimilarity. In the
meantime, the PV system data at ENSET School provide
2247 hours of weather and PV system data; besides, the
Casablanca and Rabat sites provide 8760 hours of weather
and PV system data. Furthermore, the PVGIS which is a
platform of weather data from the European Commission is
used to provide other meteorological data from 2007 to 2016
for each site which they also used to feed the forecasting
process as shown in Table 5 [20].,e platforms Excel, R, and
MATLAB were used to create the database and imple-
menting different forecasting models.

4.1.2. NARX Neural Network for PV Power Forecasting.
,e NARX neural network model is applicable for both
weather and PV system data provided by the locations de-
scribed above. In the meantime, the implementation of NARX
pursues the separation or multimodel approach that means the
implementation of NARX model for each individual site.

(1) NARX Forecasting Model for 2 kWp PV Power Station.
,e implementation of NARX forecasting model on ENSET
School PV system and PVGIS weather data for the chosen
days 25, 26, and 27 February shows satisfactory results that
are clear by the PV power curves as presented in Figure 12.
,e NARX model of the ENSET PV system, meanwhile,
contains three (3) hidden neurons.

(2) NARX Forecasting Model for 3 kWp PV Power Station.
,e implementation of NARX model of PV system on
Casablanca (3 kWp) PV system shows satisfactory results for
the chosen days 27, 28, and 29 November, which are clear by
the PV power curves as shown in Figure 13. In this path, the
NARX neural network model contains eleven (11) hidden
neurons.

(3) NARX Forecasting Model for 60 kWp PV Power Station.
,e NARX neural network model applied to forecast the
quantity of PV power (60 kWp) of another site located at
Rabat city illustrates satisfactory results for the chosen days
27, 28, and 29 November as shown by the PV power curves
in Figure 14. In the meantime, the NARX model contains
fourteen (14) hidden neurons.

,erefore, the best performance of NARX is taken from
the epoch with the lowest validation error. ,e NARX
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Figure 11: NARX neural network general scheme.
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forecasting model, meanwhile, revealed perfect results in
terms of skill scores in comparison with the smart persis-
tence model as shown in Table 6. ,e use of straightforward

ANNs such as the NARX model for PV power forecasting
shows excellent results. Nevertheless, the process of fore-
casting by NARX model takes more time such as the time
allowed to the data preparation and standardization. In
addition, the presence of some slighted outliers stresses the
NARX neural network models and reduces their efficiency,
which drives the thinking to other methods.

4.1.3. Similarity Algorithm and KNN for PV Power
Forecasting. The first part of this approach concerns the
algorithm of similarity that is based on root mean squared
difference distancesI, which is used to detect the similar
days to the forecast day. ,e variable with the lowest I is
ordered as the prime external variable. ,e other vari-
ables are classed regarding their calculated root mean
square weighted hybrid difference distances ζΔ. ,e
second part uses the KNN model to forecast the short-
term PV power.

In addition, the proposed forecasting process uses the
same data shown in Table 5 for feeding the models of dif-
ferent locations. In the meantime, this research paper
considers six external variables chosen by the similarity
algorithm for each individual site as presented, respectively,
in Table 7 for the 2 kWp PV station, Table 8 for the 3 kWp
PV station, and Table 9 for the 60 kWp PV station.

Furthermore, the simulation results for both classification
and forecasting noticeably present best results as shown,
respectively, in Figure 15 for the 20 February forecasting day
of the 2 kWp PV system, Figure 16 for the 26 September
forecasting day of the 3 kWp PV system, and Figure 17 for the
7 July forecasting day of the 60 kWp PV system. ,e result
summary of the similarity algorithm is shown in Table 10.

,erefore, the KNN forecasting model presents satis-
factory results in terms of skill scores in comparison with the

Table 5: Summary of locations and input/output sizes used to feed
the forecasting models.

Sites Input variables Output variables
Rabat 60kWp 8760× 82 8760×1
Casablanca 3kWp 8760× 82 8760×1
Rabat 2Kwp 2247× 82 2247×1
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Figure 12: NARX neural network for forecasting days 25, 26, and
27 February of the year.
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Figure 13: NARX neural network for forecasting days 27, 28, and
29 November of the year.
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Figure 14: NARX neural network for forecasting days 27, 28, and
29 November of the year.
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Table 6: Summary of accuracy assessment of NARX neural network forecasting model for each location.

Metrics/Locations Rabat 60kWp Rabat 2kWp Casablanca 3kWp
RMSENARX 27 (%) 10.145 — 11.178
RMSEPERSISTENCE 27 (%) 23.339 — 22.887
ΔskRMSE27

(%) 0.565 — 0.511
MAE NARX 27 (%) 5.130 — 8.333
MAEPERSISTENCE 27 (%) 15.642 — 15.448
ΔskRMSE27

(%) 0.672 — 0.460
RMSENARX 28 (%) 5.948 — 6.570
RMSEPERSISTENCE 28 (%) 15.570 15.098
ΔskRMSE28

(%) 0.617 — 0.564
MAE NARX 28 (%) 3.508 — 3.593
MAEPERSISTENCE 28 (%) 9.297 — 9.041
ΔskRMSE28

(%) 0.622 — 0.602
RMSENARX 29 (%) 8.036 — 11.178
RMSEPERSISTENCE 29 (%) 16.261 — 15.763
ΔskRMSE29

(%) — — —
MAE NARX 29 (%) 4.841 — 7.082
MAEPERSISTENCE 29 (%) 9.210 — 8.977
ΔskRMSE29

(%) 0.474 — 0.211
RMSENARX 25 (%) — 10.043 —
RMSEPERSISTENCE 25 (%) — 75.119 —
ΔskRMSE25

(%) — 0.866 —
MAE NARX 25 (%) — 5.491 —
MAEPERSISTENCE 25 (%) — 79.015 —
ΔskMAE25

(%) — 0.930 —
RMSENARX 26 (%) — 12.099 —
RMSEPERSISTENCE 26 (%) — 17.641 —
ΔskRMSE26

(%) — 0.314 —
MAE NARX 26 (%) — 7.699 —
MAEPERSISTENCE 26 (%) — 11.412 —
ΔskMAE26

(%) — 0.325 —
RMSENARX 27 (%) — 8.945 —
RMSEPERSISTENCE 27 (%) 11.212 —
ΔskRMSE27

(%) — 0.202 —
MAE NARX 27 (%) — 6.393 —
MAEPERSISTENCE 27 (%) — 6.688 —
ΔskMAE27

(%) — 0.044 —

Table 7: Classification of variables according to I and ζΔ for 2 kWp PV power station.

Rvj vj c I ζΔ
Rv1 Module temperature (ENSET)∗ — 0.005508720545916 —
Rv2 Relative humidity (R76)∗∗ 10−5 — 0.019802673656454
Rv3 Wind direction (R76) 10−6 — 0.019802837275625
Rv4 Ambient temperature (R76) 10−7 — 0.019802846771643
Rv5 Ambient temperature (ENSET) 10−8 — 0.019802847417763
Rv6 Direct normal irradiance (R76) 10−9 — 0.019802847479204
∗∗R76: weather data from 2007 to 2016 of Rabat. ∗ENSET: data of 2018 from ENSET School location at Rabat.

Table 8: Classification of variables according to I and ζΔ for 3 kWp PV power station.

Rvj vj c I ζΔ
Rv1 Ambient temperature (NC)∗ — 0.005508720545916 —
Rv2 Module temperature (NC) 10−5 — 0.001322625296966
Rv3 Relative humidity (C76)∗∗ 10−6 — 0.001322639903851
Rv4 Wind speed (C76) 10−7 — 0.001322641151184
Rv5 Direct normal irradiance (C76) 10−8 — 0.001322641234634
Rv6 Ambient temperature (C76) 10−9 — 0.001322641242248
∗∗C76: weather data from 2007 to 2016 of Casablanca. ∗NC: data from Nouasseur location at Casablanca.

Journal of Electrical and Computer Engineering 11



persistence model as shown in Table 11. ,e K is chosen
equal to one (1) since in this simulation, just one day is
detected as similar to the forecast day.

4.2. Discussion and Outlines. In the first case, the contri-
bution in short-term PV power forecasting through the
employment of classification techniques and artificial neural

Table 9: Classification of variables according to I and ζΔ for 60 kWp PV power station.

Rvj vj c I ζΔ
Rv1 Ambient temperature (Rabat)∗∗ — 0.0007698674850908259 —
Rv2 Module temperature (Rabat) 10−5 — 0.001365317131326
Rv3 Relative humidity (R76)∗ 10−6 — 0.001365332792013
Rv4 Wind speed (R76) 10−7 — 0.001365334030451
Rv5 Direct normal irradiance (R76) 10−8 — 0.001365334123127
Rv6 Wind direction (R76) 10−9 — 0.001365334131037
∗∗Rabat: data from a PV installation of 60 kWp location at Rabat. ∗R76: weather data from 2007 to 2016 of Rabat.
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Figure 15: Similarity algorithm combined with KNN for forecasting the PV power of 20 February.

PV power forecasting of day 26 September

166 8 10 18 2012 2214 242 4
Hours

0

500

1000

1500

2000

Po
w

er
 (W

p)

Forecasted day: 26-Sept
Similar day: 03-Sept
KNN Model

Figure 16: Similarity algorithm combined with KNN for forecasting the PV power of 26 September.
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networks. Although, the both approaches are belonging to
the artificial intelligence and machine learning. In the
meantime, the KNN with similarity algorithm and NARX
neural network models is established for each individual PV
power system described in the aforementioned sections.

,e forecasting system showed satisfactory results due to
the use of similarity algorithm for selecting the significant
variables, which means the classification of variables that fit
more pattern of PV power. Hence, this process of selection
decreases the time of modelling.

Moreover, the application of KNN method combined
with the similarity algorithm revealed perfect results in
comparison to the benchmarking model as well as the ap-
plication of NARX neural network for short-term PV power
forecasting. ,e NARX neural network, meanwhile, is a
robust and powerful model since it takes into account the

effect of outputs that feed-forwarded to inputs (see Fig-
ure 11). Nevertheless, it needs huge size of data that are used
particularly for training, testing, and validation. For that
reason, the NARX model is applied to the overall data of
each individual location.

Consequently, the classification methods showed perfect
results in terms of modelling simplicity in comparison to the
artificial neural networkmodels that suffer from the overfitting
and memorization problems, even though data normalization
performs well. In short, this research article recommends the
process of similarity algorithm associated with KNN as the
flawless short-term PV power forecasting model.

In the second case, the research article has proven the
effect of distance between PV systems on short-term PV
power forecasting modelling. ,e examination of results,
meanwhile, has shown that the similarity algorithm must be
employed to the weather and PV system parameters of each
individual site even if the sites belong to the same geo-
graphical location (e.g., in this study, Rabat city covers two PV
systems, 2 kWp and 60 kWp, respectively). However, the
distance between PV system locations is an important pa-
rameter. ,erefore, this confirmation is very significant when
there is a need for multisite PV power forecasting modelling.

5. Conclusions

As a conclusion, firstly, this research article shows best
results from the use of NARX and KNNmethods.,erefore,
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Figure 17: Similarity algorithm combined with KNN for forecasting the PV power for 7 July.

Table 10: Summary results of assessment of accuracy of similarity algorithm for each location.

Site Forecasted day index Similar day index RMSE (%) sim MAE (%) sim
Rabat 60 kWp 07-Jul 20-Jun 2.307 2.119
Casablanca 3 kWp 26-Sept 03-Sept 7.357 5.782
Rabat 2 kWp 20-Feb 07-Feb 4.450 2.858

Table 11: Summary results of assessment of accuracy of KNN
forecast model for each location.

Metrics/Locations Rabat
60 kWp

Rabat
2 kWp Casablanca 3 kWp

RMSEKNN (%) 0 0 0
RMSEPERSISTENCE (%) 2.808 31.010 9.125
ΔskRMSE−KNN

(%) 1 1 1
MAEKNN (%) 0 0 0
MAEPERSISTENCE (%) 2.224 29.838 6.717
ΔskMAE−KNN

(%) 1 1 1
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this present research article recommends the practice of
classification techniques such as KNN combined with
similarity algorithm for flawless short-term PV power
forecasting. Furthermore, the optimization of forecasting
modelling by selecting the optimal parameters is required
since the choice of optimal variables that fit more the pattern
of PV power can lead to forecasting error minimization and
improving the forecasting accuracy. Secondly, this research
article presents the effect of distance between PV power
installations on PV power forecasting process. ,erefore,
this new parameter needs more studies and developments to
show its real effect on forecasting models.

For future work, the advanced neural networks with
optimization methods will be able to give a further solution
to the dilemma of short-term PV power forecasting, as well
as the consideration of other variables and parameters.
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In this paper, stochastic fractal searchmethod (SFS) is employed for solving the optimal reactive power flow (ORPF) problem with
a target of optimizing total active power losses (TPL), voltage deviation (VD), and voltage stability index (VSI). SFS is an effective
metaheuristic algorithm consisting of diffusion process and two update processes. ORPF is a complex problem giving challenges
to applied algorithms by taking into account many complex constraints such as operating voltage from generators and loads,
active and reactive power generation of generators, limit of capacitors, apparent power limit from branches, and tap setting of
transformers. For verifying the performance, solutions of IEEE 30 and 118-bus systemwith TPL, VD, and VSI objectives are found
by the SFS method with different control parameter settings. Result comparisons indicate that SFS is more favorable than other
methods about finding effective solutions and having faster speed. As a result, it is suggested that SFS should be used for ORPF
problem, and modifications performed on SFS are encouraged for better results.

1. Introduction

In the power system, optimal reactive power flow (ORPF) is
not only one of the best famous optimization problems but
also a very complex problem. In the ORPF problem, two
variables need to be considered such as control variables and
dependent variables. Control variables are voltage of gen-
eration buses, on load tap-changer setting of transformers
and generated reactive power of capacitor banks, while
dependent variables are voltage of load buses, apparent
power flow of transmission lines, and reactive power of
generators. So, themajor objectives of suchORPF problem is
to find control variable so that others have values falling into
a permitted operating range [1, 2]. Traditionally, the ORPF
problem concentrates on reducing three individual objec-
tives such as power losses of transmission lines, voltage
deviation, and voltage stability index. So, a power system

economically and stably operates when these goals are fully
achieved.

In the last decades of the 20th century, the ORPF
problem has been successfully addressed by many con-
ventional methodologies called deterministic methodologies
such as the Newton method [3], linear programming [4–7],
interior point method [8, 9], quadratic programming
method [10, 11], and dynamic programming method [12].
With appearance of the mentioned methods, they proved
their strong points in dealing with the ORPF problem having
linear constraints and differentiable functions for applica-
tion, but a large system or more complicated constraints and
their applicability must be stopped to make rooms for new
methods which have a promising ability.

Luckily, developing computer science supported re-
searchers much in creating new population-based methods
to handle drawbacks of conventional methods. �ese
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methods have been successfully and widely applied to
solving the ORPF problem, consisting many original
methods, improve/modified methods, or combined/hybrid
methods. �ey have been constantly developed and have
become a big method family such as particle swarm opti-
mization (PSO) family [13–17], differential evolution (DE)
family [18–21], and genetic algorithm (GA) family [22–25],
while many standard methods have been also applied in
[26–34]. Sahli et al. [16] presented a combination between
particle swarm optimization and tabu search (PSO-TS) by
incorporating the best search function of PSO and TS. It was
capable of finding the global solution and avoiding to fall
into local optimum. By the way of evaluation of results
attained from the standard IEEE 30-bus system with ob-
jective of power loss minimization, PSO-TS has seen better
solution quality than other methods as conventional DE,
PSO, and TS. Furthermore, a modified version of PSO called
modified pseudogradient search-particle swarm optimiza-
tion (MPG-PSO) has been proposed in [17]. MPG-PSO has
the most powerful ability in the PSO family due to applying
pseudogradient theory for determining the best velocity
direction. As a result, the method has overtaken other PSO
methods involving PSO using the time-varying inertia
weight factor (PSO-TVIW), PSO using time-varying ac-
celeration coefficients (PSO-TVAC), self-organizing particle
swarm optimization using time-varying acceleration coef-
ficients (SPSO-TVAC), PSO using constriction factor (PSO-
CF), pseudogradient-based PSO (PG-PSO), PSO using
stochastic weight trade-off factor (SWT-PSO), and SWT-
PSO using pseudogradient method (PGSWT-PSO). Dif-
ferential evolution (DE) family has been offered for ORPF-
like traditional differential evolution (DE), hybrid ant system
and differential evolution method (HAS-DE) [20], and
hybrid double differential evolution technique and modified
teaching learning technique (DDET-MTLT) [21]. In [20],
Huang and Huang have replaced the selection operation of
DE by the ant system to enhance the global search capability
and avoid falling into local minima and decrease compu-
tational time. DDET-MTLT [21] was a combination of
double differential evolution technique (DDET) and mod-
ified teaching learning technique (MTLT). �e obtained
results of DDET-MTLT have been compared to some
methods on IEEE-30 and IEEE 118-bus systems. Besides,
variants of genetic algorithm have been applied for ORPF
such as genetic algorithm (GA) [22], enhanced genetic al-
gorithm (EGA) [23], modified NSGA-II (MNSGA-II) [24],
self-adaptive real coded genetic algorithm (SARCGA) [25],
and hybrid evolutionary programming technique HEP [25].

In addition to the three above method family, other
standard methodologies have been also applied for solving
ORPF problem such as gravitational search algorithm (GSA)
[26], ant lion optimizer (ALO) [27], quasi-oppositional
teaching learning based optimization (QOTLBO) [28],
teaching learning based optimization (TLBO) [28], Pooled-
neighbor swarm intelligence algorithm (PNSA) [29], hybrid
Nelder–Mead simplex-based firefly algorithm (HFA-NMS)
[30], chaotic krill herd algorithm (CKHA) [31], artificial bee
colony algorithm (ABC) [32], exchange market algorithm
(EMA) [33], backtracking search algorithm (BTSA) [34], and

harmony search algorithm (HSA) [35]. In summary, all
methods have demonstrated their qualification for addressing
almost constraints of ORPF problem with acceptable
solutions.

In this article, we present a standard stochastic fractal
search (SFS) with the goal determining minimization of
three different individual objectives of ORPF problem such
asminimizing TPL, reducing of VD, and enhancing VSI.�e
standard stochastic fractal search [36] was developed in 2014
by Salimi. It has been applied for addressing twenty-three
standard benchmark functions and has proven its profi-
ciency in finding optimal solutions better than many
methods available in this literature. In [37], Tran at al. have
applied an improved SFS (ISFS) method and SFS method for
dealing with the ORPF problem. Only the IEEE 30-bus
system with three objectives consisting of total power losses,
voltage deviation and L-index have been employed for
comparing and evaluating the real performance of the SFS
method and ISFS method. From the minimum, average, and
maximum fitness functions obtained from the three ob-
jectives, ISFS has been considered to be more effective than
the SFS method. However, Tran at al. [37] have not taken the
setting of control parameters into account. In fact, SFS has
three important control parameters consisting of walk
factor, population size, and the maximum number of iter-
ations. Among the three parameters, the walk factor has high
impact on working performance of the diffusion process;
meanwhile, population size has high contribution to the first
update and the second update processes. So, in this paper, we
focus on the setting of control parameters to overcome such
mentioned shortcoming of the work in [37]. Furthermore,
we also expand study cases by considering both IEEE 30-bus
system and IEEE 118-bus system with the three mentioned
objectives. As a result, the novelty and the main contribution
of the paper are as follows:

(i) Finding optimal solutions for IEEE 30-bus and 118-
bus transmission power networks of ORPF problem
by using the SFS method

(ii) Testing the real performance of the SFSmethod with
the change of population size and iterations

(iii) Tuning the best walk factor for determining more
appropriate equation for diffusion of the SFS method

(iv) Illustrating the fluctuations of search process of SFS
method with different settings;the simulation can
support to evaluate the real performance of SFS and
the impact of each parameter on the real perfor-
mance of the SFS method

(v) Demonstrating the effectiveness and robustness of
the SFS method by comparing total power losses,
load bus voltage, and enhancement of voltage profile

Apart from the introduction, other parts of the paper are
as follows: single objective functions and constraints of
electric components are mathematically formulated in
Section 2. �e structure of the SFS method consisting of
diffusion and the first and the second update techniques are
described in detail in Section 3. Computation steps of solving
ORPF problem by using the SFS method are shown in
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Section 4. �e results obtained by SFS and other methods
from two standard IEEE transmission power networks with
30 buses and 118 buses are compared and discussed in
Section 5.�e whole work of the paper is summarized in and
concluded in Section 6.

2. Formulation of ORPF Problem

�e ORPF problem is constructed by considering mini-
mization of total active power losses (Ploss), reduction of load
bus voltage deviation (VD), and enhancement of voltage
stability as objectives and taking into account operating
voltage of generators and loads, apparent power limit of
branches, reactive power generation of generators, and
active and reactive power balance equations.�e structure of
ORPF problem is described in detail as follows.

2.1. Objectives of ORPF Problem. �ree main objectives of
the ORPF problem considered in the paper consist of
minimization of total active power losses, minimization of
voltage deviation at load buses, and minimization of L-index
in which minimization of L-index is corresponding to the
enhancement of voltage stability. �e three objectives can be
seen in formulas (1)–(3) as follows:

Minimize􏽘 Ploss � 􏽘

Nbus

i�1
􏽘

Nbus

j�1
j≠i

Gij V
2
i + V

2
j􏽨

− 2ViVj cos βi − βj􏼐 􏼑􏽩,

(1)

Minimize VD � 􏽘

Nload

i�1
Vloadi − Vref

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (2)

Minimize L − index � max Lj􏼐 􏼑; j � 1, ..., Nbus, (3)

where Gij is the conductance of conductor ij; βi and βj are
the phases of voltage at buses i and j, respectively; Vloadi is
the voltage of load bus i; Vref is expected to be the voltage
equaling 1.0 pu; and Lj is called L-index of-bus j [16].

Basically, L-index is within the range from 0 to 1 in
which 0 is the best value and 1 is the worst value. �e power
system is considered to be working stably when L-index is
close to 0, and it is working unstably or it will be collapsed in
some seconds if L-index is close to 1. So, the main task to
keep the power system working stably and economically is to
reduce L-index close to 0. However, it is hard to tune control
parameter for obtaining 0 value for L-index.

2.2. Constraints of ORPF Problem. ORPF are constrained by
equality and inequality constraints covering the whole
transmission power network. �e equality constraints are
considering active and reactive power balance while the
inequality constraints are upper and lower limitations of
electricity components and working parameters of power
network.

�e two equality constraints are as follows:

PGi − Pdi � Vi 􏽘

Nbus

j�1
Vj gij cos βi − βj􏼐 􏼑 + bij sin βi − βj􏼐 􏼑􏽨 􏽩,

(4)

QGi + Qci − Qdi � Vi 􏽘

Nbus

j�1
Vj gij sin βi − βj􏼐 􏼑 − bij cos βi − βj􏼐 􏼑􏽨 􏽩.

(5)

where gij and bij are real and unreal terms of admittance of
conductor ij, respectively. �e inequality constraints are
limitations of reactive power output and voltage of gener-
ators, the reactive power output of capacitors, tap values of
transformers, voltage of load buses, and apparent power of
lines. All the inequality constraints are as follows:

QGi,min ≤QGi ≤QGi,max; i � 1, ..., NG, (6)

VGi,min ≤VGi ≤VGi,max; i � 1, ..., NG, (7)

Qci,min ≤Qci ≤Qci,max; i � 1, ..., Nc, (8)

Ti,min <Ti <Ti,max; i � 1, ..., Nt, (9)

Vloadi,min ≤Vloadi ≤Vloadi,max; i � 1, ..., Nload, (10)

Sl ≤ Sl,max; l � 1, ..., Nbranch. (11)

3. Stochastic Fractal Search Algorithm

3.1. Diffusion Technique. SFS is an improved version of
fractal search and was developed by Salimi in 2014 [36]. SFS
is constructed by three main processes including diffusion
and two different update processes. Consequently, SFS has
three new solution generations in each iteration in which the
diffusion process plays the most important role. �e dif-
fusion process uses Gaussian random walk for generating
new solutions as follows:

X
1
s,new � Gaussian Gbest, σ( 􏼁 + rand × Gbest − Xs( 􏼁, (12)

X
1
s,new � Gaussian Xs, σ( 􏼁, (13)

σ �
log(CI)

CI
× Xs − Gbest( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (14)

where Gbest is the best solution among the set of points. CI is
the current iteration.

As seen from equations (12) and (13), the diffusion
process can be accomplished by using either equations (12)
or (13) meanwhile the two equations have amajor difference.
Equation (12) uses Gaussian random walk around the best
solution and an updated step by using (Gbest − Xs) while
equation (13) only employs random walk around Xi. Due to
the difference, SFS must propose one more control pa-
rameter, called walk factor (WF) to control the use of either
equations (12) or (13). �e walk factor is compared to a
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random number and the result will lead to a decision of used
equation. If walk factor is higher than the random number,
equation (12) is employed for producing new solution for the
sth solution. Otherwise, equation (13) is selected. �e dif-
fusion technique can be performed by using Algorithm 1.

3.2. Second Update Technique. �e first update is the second
new solution generation and is performed by the following
equation:

X
2
s,new � Xrandom1 − rand × Xrandom2 − Xs( 􏼁, (15)

where Xrandom1 and Xrandom2 are solutions chosen randomly
in the current set of solutions and X2

s,new is the new solution
of solution Xs.

3.3. !ird Update Technique. After implementing the first
update, the second update equivalent to the third new so-
lutions is carried out for updating solutions of the second
generation and is expressed by

X
3
s,new �

X2
s,new − rand × Xrandom1 − Gbest( 􏼁, forRNs ≤ 0.5

X2
s,new + rand × Xrandom2 − Xrandom3( 􏼁, forRNs > 0.5

⎧⎨

⎩

(16)

where Xrandom1, Xrandom2, and Xrandom3 are three random
solutions chosen from the current set and RNs is a random
number ranging from 0 to 1 for solution s.

4. Implementation of SFS for ORPF Problem

4.1. Initialization. �e ORPF problem can be solved by
using mathpower 4.1 programming after a set of control
variables is predetermined by the SFS problem. In fact, the
control variable set that has to be inserted into the program
is the voltage of thermal generators (VG1, . . ., VGNG), tap
values of transformers (T1, . . ., TNt), and reactive power
output of capacitor banks (Qc1, . . ., QcNc). �us, each point
(corresponding to each solution) of the SFS method must
represent all the variables and is randomly produced as
follows:

Xs � Xmin + rand × Xmax − Xmin( 􏼁; s � 1, ..., Npop,

(17)

where Xmin and Xmax are the lowest and highest values of
such control variables.

4.2. Fitness Function. As a result, the fitness function is
constructed equaling the sum of objective function and
penalty terms [17]. For three single objective functions in-
cluding total power loss, voltage deviation, and L-index,
three corresponding fitness functions are formulated as
follows:

FFs � 􏽘 Ploss + VPF · ΔQGi + ΔVloadi + ΔSl( 􏼁
2
,

FFs � VD + VPF · ΔQGi + ΔVloadi + ΔSl( 􏼁
2
,

FFs � L − index + VPF · ΔQGi + ΔVloadi + ΔSl( 􏼁
2
.

(18)

where 􏽐 Ploss, VD and L-index are obtained by using
equations (1)–(3), VPF is the penalty factor for the vio-
lation of the dependent variable, and ΔQGi,ΔVloadi, and
ΔSl are penalty terms corresponding to the violation of
QGi in constraint (6), Vloadi in constraint (10), and Sl in
constraint (11).

�e penalty terms are determined by

ΔQGi �

0, if QGi,min <QGi <QGi,max,

QGi,min − QGi􏼐 􏼑, if QGi,min ≥QGi,

QGi − QGi,max􏼐 􏼑
2
, if QGi,max ≤QGi,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔVloadi �

0, if Vloadi,min <Vloadi <Vloadi,max,

Vloadi,min − Vloadi􏼐 􏼑, if Vloadi,min ≥Vloadi,

Vloadi − Vloadi,max􏼐 􏼑
2
, if Vloadi,max ≤Vloadi,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔSl �

0, if Sl ≤ Sl,max,

Sl − Sl,max􏼐 􏼑, else.

⎧⎪⎨

⎪⎩

(19)

4.3. Termination Condition. �e three main processes of the
SFS method will be terminated when current iteration (CI) is
equal to the maximum iteration (MI), which is pre-
determined initially.

5. Numerical Results

In the section, we test the performance of the SFS method
for the ORPF problem with two systems having 30
buses and 118 buses under considering three objectives
such as power loss, voltage deviation, and L-index. �e
method is executed on Matlab program language and a
computer with the processor of Core i7, 2.4 GHz, and 4 GB
of RAM.

5.1. Results Obtained on IEEE 30-Bus System. In the section,
we implement the SFS method for optimizing total power
losses, voltage deviation, and L-index of the IEEE 30-bus

Set a value to WF
For s� 1 to Npop

Randomly produce a random number λs for the
sth solution
If WF is higher than λs

Using equation (12) for updating the
sth new solution

Else
Using equation (13) for updating the
sth new solution

End
end

ALGORITHM 1: Diffusion technique for the first generation of new
solutions.
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system by setting different values to control parameters such
as population size, maximum iteration, and walk factor. �e
IEEE 30-bus system consists of 6 generators, 24 loads, and 41
branches, 9 VAR compensators, and 4 transformers [38]. In
order to indicate the impact of control parameters on results,
we perform three testing cases as follows:

(1) �e first testing case: tune different values for
population size while fixing the maximum iteration
at value of 200

(2) �e second testing case: tune different values for the
maximum iteration while fixing population size to
the best value obtained by the first testing case

(3) �e third testing case: tune different values for walk
factor while fixing population size and the maximum
iteration at the best value obtained by the first testing
case and the second testing case

�e three testing cases are presented in Section 5.1.1,
while the comparison of results from SFS method and other
ones is shown in Section 5.1.2 and Section 5.2.

5.1.1. Analysis of Control Parameters on Results Obtained by
SFS Method. �e results in terms of the best, mean, worst
power losses, standard deviation, and simulation time for
each run (ST) are shown in Tables 1–3 corresponding to the
first, second, and third testing cases. �e results from Table 1
indicate that population size of 10 is high enough for finding
the best solution while increasing the population size to 15
and 20 cannot find a better solution but average and
maximum power losses can be improved whereas simulation
time is increased. Figure 1 also gives the same evaluation
since the curve in blue has high number of solutions with
better fitness than other curves.

Table 2 show the results obtained by setting different
values to the maximum iteration while keeping the pop-
ulation size at 10. �e maximum iteration is increased from
50 to 250 with a step of 50. �e best power loss implies that
SFS method can find the best solution at different values of
the maximum iteration such as 200 and 250; meanwhile,
smaller number of iterations cannot reach the same best
solution.�e best optimal solution of MI� 200 andMI� 250
has the same quality; meanwhile, the mean fitness function
value of 50 runs from MI� 250 is smaller. In spite of the
advantage of MI� 250, SFS should adopt the most appro-
priate number of iterations is 200 because it can find as good
as solution but it can reduce simulation time. Figure 2 shows
that the curve in blue has many solutions with the same
fitness as those from curve in black.

From Tables 1 and 2 as well as from Figures 1 and 2, it
can result in the selection of population size and the
maximum iteration in which the best value of the comer is 10
while the most appropriate value of the later is 200. By using
the two values, walk factor’s impact on performance of the
SFS method is tried by setting it to 0, 0.2, 0.4, 0.6, 0.8, and 1.
Table 3 and Figure 3 show that the walk factor to be 1 is the
best value for reaching the best solution, whereas other

values cannot reach the same best solution. As observing
from the best power loss, the walk factor with higher value
can support the SFS method find superior solutions. In fact,
power loss is the highest at WF� 0, and it decreases since the
factor approaches to 1. So, it can conclude that diffusion
technique becomes more effective if equation (12) is used to
replace equation (13).

5.1.2. Result Comparisons for IEEE 30-Bus System. �e re-
sults in terms of minimum, average, maximum, and
standard deviation accompany with control parameters
including MI and Npop from SFS and other methods are
reported in Tables 4–6 for power loss, voltage deviation,
and L-index, respectively. Besides, saving percentage (%) of
the SFS method compared with each one is also calculated
and reported in the tables for further comparisons. Saving
percentage from these tables can see that SFS outperforms
most methods excluding PSO-TS [16] and ISFS [37] for
power loss objective and QOTLBO [28] for voltage devi-
ation objective. Saving values show that these methods get
improvement over SFS by 0.137%, 0.295%, and 2.45%;
however, only ISFS [37] has found better solution than SFS,
meanwhile PSO-TS [16] has not reported MI and Npop for
comparison of convergence speed and recalculated mini-
mum of QOTLBO is 0.1031, which is much higher than
reported value of 0.0856. Clearly, QOTLBO is less effective
than SFS. SFS can get improvement over other methods for
power loss optimization from 0.7% to 8.365%, for voltage
deviation optimization from 1.68% to 57.51%, and for
L-index from 13.26% to 32.82%. Clearly, the improvement
is significant and optimal solution of SFS is much better
than those from other methods. Furthermore, convergence
speed of SFS is also faster or approximate with other
compared methods since SFS uses MI = 200, Npop = 10,
while those from others are 100 and 50, 200 and 20, or
MI = 30,000.

Optimal solutions of three optimization cases are given
in Table 7.

5.2. Results Obtained on IEEE 118-Bus System. �is section
uses the IEEE 118-bus system consisting of 54 generator
buses, 64 load buses, and 186 transmission lines, 14 VAR
compensators, and 9 transformers [37] (Table 8). We im-
plement the SFS method for optimizing total power losses of
the system by setting different values to population size and
the maximum iteration. In the first trial, we increase the
population size from 10 to 100 with a change of 10 and fixing
the maximum iteration to 150 and 200. In the second trial,
population size is selected to be 50 and 75; meanwhile, the
maximum iteration is increased from 50 to 400 with a step of
50. �e optimal solution obtained by SFS method is given in
Table 9. In addition, the results in terms of the best power
loss, mean power loss, and success rate (SR) in percentage
are, respectively, shown in Tables 9 and 10. From the two
tables, it is clear that SFS can improve search ability since the
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population size and the maximum iteration are increased
but simulation time is also increased. 113.021MW in Table 9
indicates SFS can find the best solution with the setting of
Npop = 60, 70, 80, 90, and 100, and MI = 150, and Npop = 50,
60, 70, 80, 90, and 100 and MI = 200. Clearly, Npop = 60 and
MI = 150 are the best selection for the case of tuning pop-
ulation size and fixing the maximum iteration. SFS cannot

improve result better if the population size is set to higher
than 60 for MI = 150 and 70 for MI = 200. Similarly,
113.021MW in Table 10 indicates that Npop = 50 and
MI = 200 and Npop = 75 and MI = 150 are the best selection
for finding the best performance of the SFS method. Im-
provement of the best solution fails if increasing MI to
higher than 200 for Npop = 50 and to higher than 150 for
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Figure 1: �e impact of population size on obtained fitness values of 50 trial runs.

Table 1: Results obtained by setting different values to Npop, and fixing MI� 200 and WF� 1.0.

Population size �e best TPL (MW) Mean TPL (MW) �e worst TPL (MW) Std. dev. TPL (MW) ST (s)
5 5.0708 5.2901 6.3250 0.1847 10.2
10 4.5275 4.6732 5.1844 0.1399 19.7
15 4.5275 4.6639 5.1688 0.1370 29.4
20 4.5275 4.6499 5.1430 0.1352 38.2

Table 2: Results obtained by setting different values to MI, and fixing Npop � 10 and WF� 1.0.

MI �e best TPL (MW) Mean TPL (MW) �e worst TPL (MW) Std. dev. TPL (MW) ST (s)
50 6.3838 7.1500 8.1395 0.2252 6.2
100 6.2561 7.0070 7.9767 0.2207 12.1
150 4.7539 6.3063 7.2588 0.1876 18.6
200 4.5275 4.6732 5.1844 0.1399 23.9
250 4.5275 4.6078 5.0029 0.1321 30.0

Table 3: Results obtained by setting different values to WF and fixing Npop � 10 and MI� 200.

Walk factor (WF) �e best TPL (MW) Mean TPL (MW) �e worst TPL (MW) Std. dev. TPL (MW) ST (s)
0 6.9724 7.1687 7.6936 0.2154 20.2
0.2 5.9854 6.6453 7.6325 0.2129 20.1
0.4 5.5236 6.1780 7.2167 0.1707 19.7
0.6 4.7539 4.7900 5.3659 0.1560 19.6
0.8 4.5366 4.7293 5.7132 0.1430 19.8
1.0 4.5275 4.6732 5.1844 0.1399 19.5
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Figure 3: �e impact of walk factor on obtained fitness values of 50 trial runs.
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Figure 2: �e impact of the maximum iteration on obtained fitness values of 50 trial runs.

Table 4: Comparisons for TPL of the IEEE 30-bus system.

Method �e best TPL (MW) Mean TPL (MW) �e worst TPL (MW) Std. dev. TPL
(MW) MI Npop Saving percentage (%)

PSO-TS [16] 4.5213 — — — — — − 0.137
TS [16] 4.9203 — — — — — 7.983
PSO [16] 4.6862 — — — — — 3.387
ALO [27] 4.59 100 — 1.362
QOTLBO [28] 4.5594 4.5601 4.5617 0.037 100 50 0.700
TLBO [28] 4.5629 4.5695 4.5748 0.0564 100 50 0.776
SGA [35] 4.9408 5.0378 5.1651 — 30,000 — 8.365
PSO [35] 4.9239 4.972 5.0576 — 30,000 — 8.051
HSA [35] 4.9059 4.924 4.9653 — 30,000 — 7.713
SFS [37] 4.5777 — — 1.05 100 20 1.097
ISFS [37] 4.5142 — — 0.012 — — − 0.295
SFS 4.5275 4.6732 5.1844 0.1399 200 10
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Table 6: Comparisons for VSI of the IEEE 30-bus system.

Method �e best L-index (pu) Mean L-index (pu) �e worst L-index (pu) Std. dev. L-index
(pu) MI Npop

Saving percentage
(%)

PSO-TVIW [17] 0.1258 0.127 0.1289 0.0008 200 20 19.95
PSO-TVAC [17] 0.1499 0.1513 0.1544 0.0009 200 20 32.82
SPSO-TVAC [17] 0.1271 0.1285 0.1297 0.0006 200 20 20.77
PSO-CF [17] 0.1261 0.1279 0.1295 0.0008 200 20 20.14
PG-PSO [17] 0.1264 0.1297 0.1313 0.0008 200 20 20.33
SWT-PSO [17] 0.1488 0.1634 0.1806 0.0074 200 20 32.33
PGSWT-PSO [17] 0.1394 0.1537 0.1749 0.0081 200 20 27.76
MPG-PSO [17] 0.1241 0.1266 0.1298 0.001 200 20 18.86
BA [27] 0.1191 — — — 100 40 15.45
GWO [27] 0.118 — — — 100 40 14.66
ABC [27] 0.1161 — — — 100 40 13.26
ALO [27] 0.1161 — — — 100 40 13.26
QOTLBO [28] 0.1242 0.1245 0.1247 0.0452 100 50 18.92
TLBO [28] 0.1252 0.1254 0.1258 0.0454 100 50 19.57
SFS [37] 0.1252 — — 0.021 100 20 19.569
ISFS [37] 0.1245 — — 0.004 100 20 19.116
SFS 0.1007 0.1043 0.1138 0.0026 200 10 —

Table 5: Comparisons for VD of the IEEE 30-bus system.

Method �e best VD (pu) Mean VD (pu) �e worst VD (pu) Std. dev. VD (pu) MI Npop Saving percentage (%)
PSO-TVIW [17] 0.1038 0.1597 0.5791 0.1112 200 20 15.51
PSO-TVAC [17] 0.2064 0.2376 0.5796 0.0153 200 20 57.51
SPSO-TVAC [17] 0.1354 0.1558 0.1833 0.0103 200 20 35.23
PSO-CF [17] 0.1287 0.1557 0.4041 0.0404 200 20 31.86
PG-PSO [17] 0.1202 0.144 0.2593 0.0222 200 20 27.04
SWT-PSO [17] 0.1614 0.1814 0.2296 0.133 200 20 45.66
PGSWT-PSO [17] 0.1539 0.2189 0.5532 0.0656 200 20 43.01
MPG-PSO [17] 0.0892 0.1078 0.2518 0.0298 200 20 1.68
QOTLBO [28] 0.0856 0.0872 0.0907 0.0314 200 10 − 2.45
TLBO [28] 0.0913 0.0934 0.0988 0.0403 100 50 3.94
SFS [37] 0.122 — — 0.016 100 20 28.115
ISFS [37] 0.089 — — 0.0031 100 20 1.461
SFS 0.0877 0.1207 0.1577 0.0155 200 10 —

Table 7: Optimal solutions of the IEEE 30-bus system.

Variable TPL objective VD objective L-index objective
VG1 1.1000 1.0055 1.0807
VG2 1.0952 1.0011 1.0538
VG5 1.0750 1.0173 1.0739
VG8 1.0765 1.0120 1.0089
VG11 1.0873 1.0320 1.0801
VG13 1.0999 1.0234 1.0851
T1 1.0500 1.0500 0.9000
T2 0.9200 0.9000 0.9000
T3 1.0100 1.0000 0.9000
T4 0.9800 0.9700 0.9000
Qc1 5.0000 4.0000 5.0000
Qc2 5.0000 2.0000 5.0000
Qc3 5.0000 4.0000 0.0000
Qc4 5.0000 3.0000 0.0000
Qc5 3.0000 5.0000 5.0000
Qc6 5.0000 3.0000 3.0000
Qc7 3.0000 5.0000 5.0000
Qc8 4.0000 5.0000 5.0000
Qc9 2.0000 3.0000 1.0000

8 Journal of Electrical and Computer Engineering



Npop = 75. So, it can conclude that the best selection for
population size and the maximum iterations are Npop = 60
and MI = 150. �e results from the setting are reported for
comparisons with other methods shown in Table 11. �e

saving percentage of SFS compared with other methods is
from 0.09% to 9.1%, while SFS is only less effective than
QOTLBO [28] by − 0.66%. �e comparison indication can
conclude that optimal solution of SFS is the second best

Table 9: Result obtained by setting MI� 150, MI� 200 and different values for population size.

Npop
MI� 150 MI� 200

�e best TPL (MW) Mean TPL (MW) SR (%) ST (s) �e best TPL (MW) Mean TPL (MW) SR (%) ST (s)
10 161.620 206.233 15 46 156.772 193.034 18.69 61
20 154.186 196.747 25 90 149.560 184.155 31.15 119
30 145.552 187.696 47 126 141.185 175.684 54 163
40 135.945 179.062 54 181 131.867 167.602 61 239
50 122.894 159.423 65 226 113.021 149.220 75 302
60 113.021 134.793 88 275 113.021 126.166 89 354
70 113.021 130.075 92 317 113.021 121.750 94 422
80 113.021 125.783 95 359 113.021 124.651 96 477
90 113.021 121.758 94 402 113.021 120.662 98 534
100 113.021 117.618 95 449 113.021 116.559 98 572

Table 8: Optimal solution of the IEEE 118-bus transmission power network.
VG1 (pu) 1.0081 VG62 1.0223 VG113 1.005
VG4 1.0439 VG65 1.0563 VG116 1.0379
VG6 1.0376 VG66 1.051 T8 (pu) 0.9762
VG8 1.0081 VG69 1.0574 T32 1.0192
VG10 1.0267 VG70 1.0308 T36 1.0031
VG12 1.0309 VG72 1.0204 T51 0.9785
VG15 1.004 VG73 1.0374 T93 0.9981
VG18 1.0021 VG74 1.0043 T95 1.0081
VG19 0.9992 VG76 0.989 T102 1.0132
VG24 1.0069 VG77 1.0298 T107 0.9963
VG25 1.0436 VG80 1.0471 T127 0.9821
VG26 1.0356 VG85 1.0349 QC5 (MVAR) − 2.349
VG27 1.0366 VG87 0.9944 QC34 7.4927
VG31 1.023 VG89 1.0764 QC37 − 16.55
VG32 1.0212 VG90 1.0575 QC44 6.8138
VG34 1.0266 VG91 1.0464 QC45 3.8515
VG36 1.0244 VG92 1.0515 QC46 5.0318
VG40 1.0371 VG99 1.0285 QC48 7.1142
VG42 1.0388 VG100 1.0516 QC74 5.985
VG46 1.0173 VG103 1.0361 QC79 10.574
VG49 1.0469 VG104 1.0148 QC82 14.366
VG54 1.0366 VG105 1.0133 QC83 6.8917
VG55 1.0321 VG107 1.0265 QC105 6.4333
VG56 1.0328 VG110 1.0201 QC107 2.3679
VG59 1.0388 VG111 1.0197 QC110 5.3222
VG61 1.0221 VG112 1.0261

Table 10: Result obtained by setting Npop � 50 and Npop � 75 and different values for the maximum iterations.

MI
Npop � 50 Npop � 75

�e best TPL (MW) Mean TPL (MW) SR (%) ST (s) �e best TPL (MW) Mean TPL (MW) SR (%) ST (s)
50 154.308 212.230 12 72 124.323 198.647 25 107
100 125.454 202.467 54 147 119.124 189.510 69 221
150 119.011 193.154 77 226 113.021 130.221 82 340
200 113.021 131.027 91 293 113.021 121.887 90 437
250 113.021 129.590 93 365 113.021 121.107 92 545
300 113.021 126.856 95 438 113.021 120.545 94 656
350 113.021 123.036 97 511 113.021 114.952 96 768
400 113.021 119.578 98 583 113.021 114.648 96 876
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among all compared methods. Furthermore, search speed
of SFS is in the fastest group once MI and Npop are, re-
spectively, 150 and 60, while those from others are 200 and
40, 300 and 15, and 100 and 50. In summary, SFS can find
optimal solutions with higher quality than most compared
methods; however, compared with some best methods, SFS
is also less potential. Consequently, we suggest SFS should
be used as an optimization tool for the ORPF problem and
it is more promising if SFS is improved by proposing
modifications.

6. Conclusion

In the paper, we apply the SFS method for finding optimal
solutions of the ORPF problem for different objectives con-
sisting of power loss, voltage deviation, and voltage stability
index. Two different power systems with 30 buses and 118
buses are employed for running the SFS method and results
found by SFS together with control parameters are compared
with those fromothermethods. As a result, SFS becomes one of
the best methods searching the best optimal solutions for each
case and its search speed is also faster than most methods. SFS
can own the outstanding points, thanks to its construction
consisting of three new solution generations, diffusion process,
first update process, and the second update process. However,
the performance of SFS still copes with constriction, leading to
worse results than several methods about solution and speed.
�us, we suggest SFS should be used for finding solutions of the
ORPF problem but modifications should be performed on the
conventional SFS for improving the search ability.
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Nbus: Number of all buses in network
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of load i

Sl,max: Capacity of branch l.

Data Availability

�e information of transmission lines and loads in IEEE 30-
bus power transmission power network and IEEE 118-bus
power transmission power network used to support the
finding of this study have been taken from [38].

Conflicts of Interest

�e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

�is research was funded by Funds for the Science and
Technology Development of the University of Danang,
under project no. B2019-DN01-19.

References

[1] T. Nguyen, D. Vo, N. Vu Quynh, and L. Van Dai, “Modified
Cuckoo search algorithm: a novel method to minimize the
fuel cost,” Energies, vol. 11, no. 6, p. 1328, 2018.

[2] J. Chintam and M. Daniel, “Real-power rescheduling of
generators for congestion management using a novel Satin
Bowerbird optimization algorithm,” Energies, vol. 11, no. 1,
p. 183, 2018.

[3] D. Sun, B. Ashley, B. Brewer, A. Hughes, and W. Tinney,
“Optimal power flow by Newton approach,” IEEE Transac-
tions on Power Apparatus and Systems, vol. PAS-103, no. 10,
pp. 2864–2880, 1984.

Table 11: Comparisons for TPL of the IEEE 118-bus system.

Method �e best TPL (MW) Mean TPL (MW) �e worst TPL (MW) Std. dev. TPL (MW) MI Npop
Saving percentage

(%)
PSO-TVIW [17] 116.8976 118.234 126.6222 1.6009 200 40 3.32
PSO-TVAC [17] 124.3335 129.749 134.1254 2.156 200 40 9.10
SPSO-TVAC [17] 116.2026 117.355 118.139 0.4696 200 40 2.74
PSO-CF [17] 115.6469 116.986 119.8378 0.8655 200 40 2.27
PG-PSO [17] 116.6075 119.396 127.0772 2.107 200 40 3.08
SWT-PSO [17] 124.1476 129.371 141.6147 3.309 200 40 8.96
PGSWTPSO [17] 119.427 122.781 125.762 1.2455 200 40 5.36
MPG-PSO [17] 115.06 116.462 118.35 0.528 200 40 1.77
SARCGA [25] 113.12 113.968 — 0.0002 300 15 0.09
HEP [25] 115.58 115.8 — 0.0018 300 15 2.21
QOTLBO [28] 112.2789 113.769 115.4516 0.0244 100 50 − 0.66
TLBO [28] 116.4003 121.390 118.4427 0.0482 100 50 2.90
SFS 113.0213 134.793 233.4538 2.91894 150 60

10 Journal of Electrical and Computer Engineering



[4] O. Alsac, J. Bright, M. Prais, and B. Stott, “Further devel-
opments in LP-based optimal power flow,” IEEE Transactions
on Power Systems, vol. 5, no. 3, pp. 697–711, 1990.

[5] G. Opoku, “Optimal power system VAR planning,” IEEE
Transactions on Power Systems, vol. 5, no. 1, pp. 53–60, 1990.

[6] B. Stott and J. Marinho, “Linear programming for power-
system network security applications,” IEEE Transactions on
Power Apparatus and Systems, vol. PAS-98, no. 3, pp. 837–
848, 1979.

[7] A. M. Chebbo and M. R. Irving, “Combined active and re-
active despatch. I. problem formulation and solution algo-
rithm,” IEE Proceedings-Generation, Transmission and
Distribution, vol. 142, no. 4, pp. 393–400, 1995.

[8] S. Granville, “Optimal reactive dispatch through interior
point methods,” IEEE Transactions on Power Systems, vol. 9,
no. 1, pp. 136–146, 1994.

[9] E. Rezania and S. M. Shahidehpour, “Real power loss minimi-
zation using interior point method,” International Journal of
Electrical Power & Energy Systems, vol. 23, no. 1, pp. 45–56, 2001.

[10] V. H. Quintana and M. Santos-Nieto, “Reactive-power dis-
patch by successive quadratic programming,” IEEE Trans-
actions on Energy Conversion, vol. 4, no. 3, pp. 425–435, 1989.

[11] N. Grudinin, “Reactive power optimization using successive
quadratic programming method,” IEEE Transactions on
Power Systems, vol. 13, no. 4, pp. 1219–1225, 1998.

[12] F.-C. Lu and Y. Y. Hsu, “Reactive power/voltage control in a
distribution substation using dynamic programming,” IEE
Proceedings-Generation, Transmission and Distribution,
vol. 142, no. 6, pp. 639–645, 1995.

[13] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and
Y. Nakanishi, “A particle swarm optimization for reactive
power and voltage control considering voltage security as-
sessment,” IEEE Transactions on Power Systems, vol. 15, no. 4,
pp. 1232–1239, 2000.

[14] M. A. Abido, “Multiobjective particle swarm optimization for
optimal power flow problem,” in Handbook of Swarm In-
telligence, Springer, Berlin, Heidelberg, Germany, 2011.

[15] K. Mahadevan and P. S. Kannan, “Comprehensive learning
particle swarm optimization for reactive power dispatch,”
Applied Soft Computing, vol. 10, no. 2, pp. 641–652, 2010.

[16] Z. Sahli, A. Hamouda, A. Bekrar, and D. Trentesaux, “Hybrid
PSO-tabu search for the optimal reactive power dispatch
problem,” in Proceedings of the IECON 2014-40th Annual
Conference of the IEEE Industrial Electronics Society, Dallas,
TX, USA, November 2014.

[17] J. Polprasert, W. Ongsakul, and V. N. Dieu, “Optimal reactive
power dispatch using improved pseudo-gradient search
particle swarm optimization,” Electric Power Components and
Systems, vol. 44, no. 5, pp. 518–532, 2016.

[18] M. Varadarajan and K. S. Swarup, “Differential evolution
approach for optimal reactive power dispatch,” Applied Soft
Computing, vol. 8, no. 4, pp. 1549–1561, 2008.

[19] A. A. A. E. Ela, M. A. Abido, and S. R. Spea, “Differential
evolution algorithm for optimal reactive power dispatch,”Electric
Power Systems Research, vol. 81, no. 2, pp. 458–464, 2011.

[20] C.-M. Huang and Y.-C. Huang, “Combined differential
evolution algorithm and ant system for optimal reactive
power dispatch,” Energy Procedia, vol. 14, pp. 1238–1243,
2012.

[21] M. Ghasemi, M. M. Ghanbarian, S. Ghavidel, S. Rahmani, and
E. Mahboubi Moghaddam, “Modified teaching learning al-
gorithm and double differential evolution algorithm for op-
timal reactive power dispatch problem: a comparative study,”
Information Sciences, vol. 278, pp. 231–249, 2014.

[22] K. Iba, “Reactive power optimization by genetic algorithm,” IEEE
Transactions on Power Systems, vol. 9, no. 2, pp. 685–692, 1994.

[23] M. S. Kumari and S.Maheswarapu, “Enhanced genetic algorithm
based computation technique for multi-objective optimal power
flow solution,” International Journal of Electrical Power & Energy
Systems, vol. 32, no. 6, pp. 736–742, 2010.

[24] S. Jeyadevi, S. Baskar, C. K. Babulal, and M. Willjuice Iru-
thayarajan, “Solving multiobjective optimal reactive power
dispatch using modified NSGA-II,” International Journal of
Electrical Power & Energy Systems, vol. 33, no. 2, pp. 219–228,
2011.

[25] P. Subbaraj and P. N. Rajnarayanan, “Optimal reactive power
dispatch using self-adaptive real coded genetic algorithm,”
Electric Power Systems Research, vol. 79, no. 2, pp. 374–381,
2009.

[26] S. Duman, Y. Sönmez, U. Güvenç, and N. Yörükeren, “Op-
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