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Based on the price-quantity adjustment behaviour principle of the non-Walrasian equilibrium theory, this paper adopted a new
QUE (quantity adjustment user equilibrium) criterion to formulate the route comfort choice behaviour. The purpose of the
present paper is to establish a proportional-switch adjustment model which aims to reflect the route adjustment behaviour
interaction between the traditional UE (user equilibrium) travellers and the QUE travellers and converge to a mixed equilibrium
state. It is assumed that a group of road network travellers follow the UE criteria by choosing the travel route with the purpose of
minimizing their route travel time (travel cost). In addition, the other group of travellers follow the QUE criteria by selecting the
route with the largest residual capacity to achieve a more comfortable travel experience. The travel route adjustment behaviour of
the two group travellers generates the dynamic traffic flow evolution towards the mixed equilibrium, and the route adjusting flow
is proportional to the difference of traveller decision-making variable among the alternative routes. Simple illustrative examples
are used to evaluate the performance of the proposed model, and the uniqueness and stability of the solution are demonstrated by
applying the variational inequality and Lyapunov stability theorem.

1. Introduction

DTA (dynamic traffic assignment) model has been a focus
research area for a long time with a growing influence on the
traffic control and guidance promoted by the development
of ITS (intelligence transportation system) emerging,
leading to a greater interest in understanding the travel
choice decision behaviour and the adjustment behavioural
mechanisms [1-4]. Route choice behaviour is the basis of the
traffic flow, and researchers have carried out a number of
studies for dynamic traffic flow evolution problems to
deepen the understanding of travellers’ route choice be-
haviour decision-making mechanism [5-8]. The dynamic
models are classified into five categories in the early re-
searches: the simplex gravity flow dynamics, proportional-
switch adjustment process, network tatonnement process,
projected dynamical system, and evolutionary traffic flow
dynamics. The difference between the five types of methods
lies in the convergence speed of the established evolutionary

model and the stability in equilibrium state [9-12]. Guo et al.
[13] established a link-based discrete dynamic system model
and depicted the rational adjustment process of network
traffic flow from disequilibrium to an equilibrium state,
which formulated more general behaviour compared with
the five categories of dynamical system models.
Traditional dynamic traffic assignment problem assumes
that travellers’ route adjustment behaviour is aimed to re-
duce their travel cost; therefore, dynamic traffic flow evo-
lution models converged to the equilibrium solution with
minimizing the travel cost. There are three well-known
network equilibrium states in the network traffic flow
analysed studies. In detail, both of them capture travellers’
cost-minimization behaviour with a difference in the form of
the travel cost. Furthermore, travellers choose the actual
shortest route in the route decision process to form a UE
(user equilibrium), and travellers shift to the route to de-
crease the system aggregate travel time to form an SO
(system optimum). At last, travellers adjust their routes
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according to the perceived route travel time to form an SUE
(stochastic user equilibrium). Although these classical traffic
flow equilibrium conditions differ in the form of travel time,
they share the same route rapidity choice criterion, which
can embody the travellers’ preference of route rapidity and
reflect the price signal affection. It is apparent that all
existing models in the literature were formulated based on a
single route rapidity choice preference, where the route
travel time is the core indicator. This approach has been
widely applied in various network traffic flow models
[14-18]. However, with the rapid economic growth and
social development, people-oriented considerations, such as
traffic safety and travel satisfaction, have been the dominant
research direction [19-22].

Basically, the existing dynamic traffic flow evolution
models are mainly classified according to the modelling
approaches as daily and intraday, deterministic and sto-
chastic, continuous time and discrete time, and route-based
and link-based. Huang and Lam [23] established a route-
based day-to-day dynamic system to depict the traffic flow
adjustment process considering the network queuing,
studied travellers’ equilibrium path and travel time decision-
making behaviour, and demonstrated the existence of dis-
crete time dynamic UE solution with the iterative stability of
the proposed algorithm. Secondly, Peeta and Yang [24]
established route guidance control strategies and analysed
the stability of dynamic traffic assignment with the example
of UE objective model and SO objective model, which de-
velops a general procedure for the stability analysis of dy-
namic traffic assignment problems. In addition, He et al. [25]
showed that the route-based traffic flow evolution model had
the path-overlapping problem and the route-flow-non-
uniqueness problem caused by different initial route flow
patterns. A link-based dynamic traffic flow assignment
model is established, which has the classic UE solution, to
depict the traveller’s daily route adjustment behaviour and
the evolution process of traffic flow. In order to depict the
joint evolution trajectory of travellers’ departure time and
mode choices, Liu et al. [26] established a traffic flow dy-
namic model considering the impact of traveller inertia in a
bimodal transportation system and analysed the dynamic
interactions between transport users and traffic information
provider.

With the purpose to deepen the understanding of
travellers’ route choice decision behaviour mechanisms,
Watling and Hazelton [27] established a mathematical
model to simulate the day-to-day dynamic adjustment
system through the deterministic process and stochastic
process models for both continuous and discrete time and
described the route selection behaviour made by network
travellers based on their travel experiences. Interestingly,
Ehrgott et al. [28] considered several alternative principles of
traveller’s route decision-making behaviour and established
an SUE model based on random utility theory to study this
multiobjective problem, which extends the conventional
SUE model with single route choice quality. In addition,
Long et al. [29] proposed an SO-DTA (system optimum
dynamic traffic assignment) model that accommodated the
environmental objectives, which are more accurate than
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existing models and can capture the trade-off between
emissions and travel time. Meanwhile, Hoang et al. [30]
proposed a novel mathematical programming framework
for the information-based SUE-DTA (stochastic user
equilibrium dynamic traffic assignment) problem, which can
underpin the linkage between UE and SO solutions by the
FIFO (first in first out) principle. An ISM (incremental
solution methods) is developed with the improvement of
finding global optimal information-based SUE solution in
terms of both accuracy and computation.

With the continuous improvement of science and
technology, road network travellers can obtain the network
information reflecting the travel environment and condi-
tions through various methods, which are the real basis of
travellers’ different travel route decision-making criteria
[31, 32]. In the reality, travellers make their route decision
based on their preference, such as travel safety degree, travel
service degree, travel outlay, or travel time, which have been
the hot issue for the travellers’ behaviour research [33-40].
Trafhic flows based on these route choice preferences evolve
into different equilibrium trajectories and converged to
different equilibrium states [41, 42]. Therefore, all kinds of
traffic flows formed by travellers exist simultaneously under
different criteria.

Aiming to find a link or route flow patterns in a traffic
network with various route choice behaviour criteria and to
describe the interaction evolution process of mixed traffic
flow, extensive studies have focused on the mixed traffic flow
of multiple classes of travellers in recent years. Huang and Li
[43] grouped the travellers according to their own value of
time (VOT) and further divided them into two categories
with different travel disutility perception variations
according to whether the ATIS device is equipped. A
multiclass, multicriteria (cost versus time) logit-based traffic
equilibrium assignment problem is established, which was
solved by combining logit assignment with a successive
average method, providing an insight into the different
responses of heterogeneous travellers to the information
service. Furthermore, Zhang et al. [44] considered travellers’
perceived utility differences by combining the travel time
disutility and the time-irrelevant travel disutility and as-
sumed that travellers follow either UE or CN (Cour-
not-Nash equilibrium) routing criteria. And a multiclass
multicriteria mixed equilibrium model is proposed to study
this evolution behaviour. Meanwhile, a uniform road toll
strategy is developed by utilising the dual theory to promote
the UE-CN mixed equilibrium to the SO. Moreover, Han
et al. [45] established a daily dynamic adjustment system of
the traffic flow under ATIS (advanced travel information
system) and analysed the influence of ATIS on the stability of
the traffic network. They concluded that the route flows
associated with travellers equipped with ATIS satisfied the
UE conditions and the travellers without ATIS will choose
their routes in accordance with the logit-based route choice
probability.

To flexibly reveal the various traffic flow dynamic
adjusting processes induced by different criteria of route
choice behaviour, several dynamic traffic flow models have
been studied recently. Zhou et al. [46, 47] established a
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discrete dynamic evolution model of traffic flow mixed
equilibrium, which described traveller’s multiple route ad-
justment behaviour with and without ATIS and simulated
the evolution trajectory of traffic flow converging to UE-SUE
mixed equilibrium state under given ATIS market pene-
tration. Their research revealed the effect of the adoption of
ATIS on the day-to-day flow dynamics. Bagloee et al. [48]
divided travellers into two categories: perfect cooperation
and perfect competition, where travellers with perfect co-
operation followed the SO criterion and travellers with
perfect competition were subject to the UE criterion. A UE-
SO mixed equilibrium model is formulated by applying the
nonlinear complementarity problem, which can accom-
modate a more general type of functions, namely, asym-
metric delay functions. Moreover, Delle Site [49] separated
travellers into three categories: (a) travellers equipped with
predictive ATIS, (b) travellers equipped with static ATIS and
subject to it, and (c) travellers not equipped with ATIS or not
subject to it. They proposed an MUE (mixed user equilib-
rium) model to form the dynamic day-to-day processes and
investigated the impacts of the inertia and the availability of
ATIS with differentiated functionalities (predictive and
static) on equilibrium travel times. Furthermore, the dy-
namic evolution models can be categorised by travellers’
route choice behaviour criterion and the corresponding
stable equilibrium state. Prominent examples include the
single equilibrium models and the mixed equilibrium
models, in which travellers follow the UE, SO, SUE, CN, or
their hybrid behaviour criterion, respectively. We summa-
rize the typical day-to-day flow dynamic models in Table 1.

Previous studies assumed that the equilibrium state of
the road network is generated by the decision-making
process of traveller’s route rapid choice behaviour crite-
rion, which means that travellers always shift to a less
costly alternative route if such a route is available. In the
dynamic evolution model of mixed equilibrium traffic flow
that does not consider the route comfort choice behaviour
criterion, all travellers’ route adjustment behaviours
conform to the cost-minimization principle, and the
corresponding mixed equilibrium state is generally
manifested as UE-SUE, UE-SO, UE-CN-SO, etc. This kind
of mixed equilibrium only differs in the expression form of
travel time, and in fact, it still takes route travel time as the
travellers’ only decision variable, which is inconsistent
with the real transportation system. In actuality, travellers
have independent characteristics, and their route choice
decision behaviour is influenced by many internal factors
as well as external conditions. Even under the same traffic
condition and provided with the same road network in-
formation, some travellers may choose the fastest route,
while others pay more attention to the overall travel
comfort, such as road scenery, service level, and safety
degree. In order to effectively describe the evolution
process of traffic flow in road network under multiple
traveller classes and multiple equilibrium criteria more
effectively, Huang et al. [50] established a daily traffic flow
dynamic regulation model based on the economic price-
quantity regulation principle utilising the network
tatonnement process method and proposed a new route

residual capacity index to reflect road network travellers’
comfort pursuit behaviour.

Unlike the existing studies with a single route rapidity
adjustment behaviour criterion in which all the travellers
were assumed to follow the same route cost-minimum
behaviour mechanism, route comfort adjustment principles
are considered in this study. We apply the route rapidity and
comfort adjustment criteria stimulatingly to individual
travel route selection behaviour, which means that indi-
viduals will comprehensively consider the route cost and the
route surplus capacity to make a route decision. When
applied to the traveller group, the aggregated effect is per-
formed the way that some travellers choose the shortest
route and some travellers choose the most comfortable
route, as discussed in this study [51]. Specifically, travellers
with route rapidity requirement are likely to choose the
shortest route with the minimum route cost under the
current traffic condition for their trips in the next day, and
their traffic flow evolution process converges to the tradi-
tional UE state, while travellers with route comfort re-
quirement are supposed to follow the route comfort
behaviour criterion based on the current traffic condition,
and their traffic flow evolves to a stable state, which is defined
as QUE (quantity adjusting user equilibrium). Taking the
route cost and the route surplus capacity as the decision
variables for two group travellers, respectively, this paper
established a dynamic proportional-switch adjustment
model to depict the day-to-day evolution process and vi-
sualise the UE-QUE mixed equilibrium state formed by the
interaction between the mixed traffic flows. In addition, the
properties of the proposed dynamic switch model and its
mixed equilibrium solution are analysed and discussed.
Reasonable interpretations of these assumptions are pre-
sented to demonstrate that the route adjustment principle
and the dynamic model proposed in this study have rich
behavioural implications other than being a mathematical
expression.

The proposed mixed traffic flow proportion-switch
adjustment model with multiroute choice behaviour cri-
terion not only reflected the heterogeneity of travellers
within the different route adjustment principles but also
described the different travel route adjusting process of
travellers related to their different decision variables.
Meanwhile, it also considered the influence of the road
network traffic flow and travel costs generated by the two
groups of travellers on each other’s route decisions and
effectively depicted the interaction relationship between
the road network travellers. The research results of this
paper can not only enrich the existing research on mixed
equilibrium evolution by reflecting the adjustment
mechanism of road network traffic flow and its equilibrium
state more comprehensively but also describe the evolution
process of traffic flow in line with the actual road network
conditions more effectively. Hence, it improves the per-
ception of the automatic adjustment mechanism and the
changing pattern of road network traffic flow after the
disturbance, which lays a foundation for the rational for-
mulation of urban traffic congestion evacuation policy and
the acquisition of reliable traffic flow prediction results. In
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TaBLE 1: Typical day-to-day flow dynamic models.
Authors Bek'lav%our Stable state Remarks
criterion
Single A link-based discrete dynamic system model was proposed to depict the rational
Guo et al. [13] UE . . Y
equilibrium adjustment process of traffic flow to an equilibrium state
Huang and Lam Single A route-based day-to-day dyn)am1c. system considering the I?etwork. queuing was
UE s formulated to study travellers’ equilibrium path and travel time decision-making
[23] equilibrium .
behaviour
Peeta and Yang Single Route guidance control strategies and a general procedure for the stability analysis
UE/SO e . .
[24] equilibrium of dynamic traffic assignment problems were developed
Sinle A link-based dynamic traffic flow assignment model was established to depict the
He et al. [25] UE e traveller’s daily route adjustment behaviour and the evolution process of traffic
equilibrium low
. Single A traffic flow dynamic model considering the impact of traveller inertia in a
Liu et al. [26] UE e . . . .
equilibrium bimodal transportation system was investigated
. . A mathematical model to simulate the day-to-day dynamic adjustment system and
Watling and Single . . .
SUE g the route selection behaviour made by network travellers based on their travel
Hazelton [27] equilibrium . .
experiences was described
Ehrgott et al. [28] SUE S.ll:lglve An SUE model based on randqm 'thll}ty theory was performed to study the
equilibrium multiobjective problem
Long et al. [29] 50 S'lljlglf? A system optimum dyrllamlc traffic assignment rpodel that accommodated the
equilibrium environment objectives was introduced
Sinale A novel mathematical programming framework was investigated for the
Hoang et al. [30] SUE oy information-based stochastic user equilibrium dynamic traffic assignment
equilibrium
problem
A multiclass, multicriteria (cost versus time) logit-based traffic equilibrium
. Mixed assignment problem was analysed, which grouped travellers according to their
Huang and Li [43] SUE-SUE equilibrium  own value of time and further divided travellers with different travel disutility
perception variations
Mixed A multiclass multicriteria mixed equilibrium model that considered travellers’
Zhang et al. [44] UE-CN-SO e perceived utility differences was proposed to study the evolution behaviour, and a
equilibrium . e
uniform road toll strategy by utilising the dual theory was developed
Han et al. [45] UE-SUE M{xefi A daily traffic flow dynamic ad)ustment system was presented under ATIS
equilibrium environment
Mixed A discrete dynamic evolution model of traffic flow mixed equilibrium was shown
Zhou et al. [46] UE-SUE equilibrium  to describe traveller’s multiple route adjustment behaviour with and without ATIS
A mixed user equilibrium model was proposed to form the dynamic day-to-day
. Mixed processes and investigate the impacts of the inertia and the availability of ATIS
Delle Site [49] SUE-SUE-SUE equilibrium  with differentiated functionalities (predictive and static) on equilibrium travel

times

Note: UE: user equilibrium; SO: system optimum; SUE: stochastic user equilibrium; CN: Cournot-Nash equilibrium.

addition, this study expands the decision influencing fac-
tors of travellers’ route choice, which reflects travellers’
individual characteristics more flexible, and significantly
deepens the understanding of network traffic flow and
improves the level of urban traffic management.

2. Mixed Equilibrium State

2.1. Quantity Adjustment User Equilibrium. Existing studies
on the equilibrium state of traffic flow assumed that the
network travellers behave in a way to minimize their travel
time, which is defined as the route rapidity choice behaviour
criterion in this paper. According to the different mani-
festation of travel time, they can be divided into three
categories: the traffic flow generated by the route decisions
based on actual travel time decision convergences to the
traditional UE (user equilibrium) state, the traffic flow
formed by the route decision according to perceived path
travel time leads to an SUE (stochastic user equilibrium)

state, and the traffic flow produced by the system marginal
time minimization oriented decision forms an SO (system
optimal) state. Such equilibrium states take route travel
time-travel price as the only decision variable of travellers’
route choice behaviour.

Based on the price-quantity adjustment behaviour
principle of the non-Walrasian equilibrium theory in eco-
nomics, this paper assumes that the travellers’ route choice
behaviour is not only affected by the travel price signal-travel
time but also influenced by the quantity signal, which is
considered through the route surplus capacity indicator to
reflect the travellers’ preference to travel comfort degree. The
route surplus capacity is the difference between the route
maximum capacity and the route flow, which concerns the
physical capacity of the network route and indicates the
travel comfort degree. In addition, the route with a larger
surplus capacity indicates a higher degree of the route service
level, including road infrastructure facilities, environmental
satisfaction, and travel fluency.
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When the current network flow is zero, the traveller
chooses the route with the largest capacity to experience the
most comfortable travel. With the gradual increase of road
network flow, the residual capacity on all alternative paths
will decrease, and the route travel comfort degree will de-
crease. Therefore, travellers will adjust their route selection
according to the route travel comfort, and the route flow will
shift to the alternative path with larger residual capacity. This
route adjustment behaviour will lead the traffic flow to a
stable state, which is defined as QUE (quantity adjustment
user equilibrium) state in this research.

2.2. Mixed Equilibrium. When applying the dual constraint
of price and quantity to the route selection behaviour of road
network travellers, it means that a group of network trav-
ellers take the minimum travel price as the goal, and the
traffic flow formed by such travellers’ route decision-making
behaviour finally stabilises in the price adjustment user
equilibrium, that is, Wardrop UE state, while the other
group of travellers expect the maximum comfort travel
experience, and the traffic flow formed by such travellers’
route decision-making behaviour finally stabilises in the
QUE state. These two groups of travellers coexist in the road
network, so that different decision-making behaviours of
route selection interact and influence each other and finally
form a UE-QUE mixed equilibrium state. The corre-
sponding dynamic adjustment behaviour of traffic flow is the
evolution process of mixed regulation traffic flow.

Given a network G = (T, A), assuming that the travel
demand of travellers in the first group following the UE
principle is expressed as d,,, the travel demand of travellers
in the second group following the QUE principle is denoted
by d,,. The flows of travellers on route r € R, in these two

~r
groups are represented by f7 and f,, respectively. These
route flows are grouped into two vectors and can be
expressed by

f=(fl:weW,reR,),
= o (1)
f:(fw: weW,re Rw).
The flow conservation condition is given by
2 fu=du
reR,
- (2)
> fu=du
r€R,,

The traffic flow on the link a € A is the aggregated link
flow from two groups, which is

X, = Z Z (S;a(f; + _?;), acA. (3)

weW reR,,

Travellers in the first group take the minimum travel
price as the goal, following the UE route rapidity choice
behaviour assumption, in which all travellers are supposed
to shift to the alternative shorter route to reduce their actual
travel time given the current information. The corre-
sponding traffic flow evolution process finally stabilises in
the price adjustment user equilibrium, that is, Wardrop UE

state. When the traffic network travel demand is low, the
route travel time is relatively low, so travellers in the first
group select the shortest route with the most rapid time.
With an increase in the network travel demand, the route
travel time is increased since the traffic demand is gradually
assigned to the traffic route network, which evolves to a
congested state. Under this circumstance, travellers in the
first group are supposed to shift to an alternative route where
travel time is less compared with the current route. In
addition, the traffic flow will be stable in the equilibrium
state where all routes have the same travel time which is
equal to the minimum route travel time for the OD pair. This
route shift behaviour is predefined as route rapidity choice
behaviour, and the formed network equilibrium state is the
Wardrop UE state.

In the UE state, the route cost of all used routes between
each OD pair is equal to the minimum route cost and less
than (or equal to) the other routes with no flows. The
equilibrium condition of travellers in the first group fol-
lowing the UE principle is

frw >0, Z 617 [ta (xa)] = Uy
acA

fo=0 % 87 [t (x,)] 2 14y, (4)
acA

acA reR,weW,

where u,, denotes the minimal travel time between OD pair
w.

Whereas travellers in the second group expect the
maximum comfort travel experience, they follow the QUE
route comfort choice behaviour assumption, in which all
travellers are supposed to shift to the alternative path with a
larger residual capacity to increase their travel comfort
degree given the current information. The corresponding
traffic flow evolution process finally stabilises in the quantity
adjustment user equilibrium, QUE state. When the traffic
network travel demand is low, the capacities of all routes are
relatively high, and travellers in the second group will select
the maximum-surplus-capacity route with the most com-
fortable travel route. With the increase of travel demand, the
surplus capacities of all routes are reduced since the network
gradually evolves to a congested state. Under this circum-
stance, travellers in the second group are supposed to shift to
an alternative route where the surplus capacity is greater
compared with the current route. In addition, the traffic flow
will be stable in the equilibrium state where all route surplus
capacities are the same and equal to the maximum surplus
capacity of the OD pair. This route shift behaviour is pre-
defined as the route comfort choice behaviour, and the
formed network equilibrium state is called the quantity
adjustment user equilibrium.

The maximum traffic capacity of the route r € R, is
expressed as

K, = min (87K,). (5)
The surplus capacity of the route r € R, is given by

srw(?;) = max{Kr - ]A‘;,O}. (6)



The maximum surplus capacity in the OD pair w is
defined as

vy = max{s(f,)} %

In the QUE state, the route surplus capacities of all used
routes between each OD pair are equal to the maximum
surplus capacity and greater than (or equal to) the other
routes with no flows [51]. The equilibrium condition of
travellers in the second group followed the QUE principle is

frw>0, s’(j?r)zv ,

.?lruzo’s(fw)— V> (8)
re€R,, weWw.
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3. Mixed Equilibrium Switch Model

The adjustment route flow of route / in OD pair w on day n,
selected by travellers in the first group, is denoted by
fu(m) = yiu(n). Assume that the adjustment route flow of
the first group travellers between two alternative routes is
proportional to the route cost difference in the dynamical
system [24]. When the route cost of the route k is larger than
the route cost of route I on time n: ¢k > ¢!, the adjustment
flow from route k to [ is positive: y* —!(n) > 0 conversely, if
the route k has lesser cost than the route I: ¢k <!, the
corresponding adjustment flow is negative: yw_’l (n) <05
and the travellers do not switch if the route costs are equal.
Mathematically, the adjustment route flow can be expressed
as

kHl(n) =a- goﬁjﬁl(c,f(n)), kle Ry;weWw, (9)
@fﬁ(ﬂ), ika—ClZO,
e fmy =1 (10)
@-ffu(n), ifc; —¢; <0,
1

V)= yy () =

k#1 k#l

where a(0 < @< 1) is the route flow adjustment ratio. Since
the right-hand side of equation (9) is continuous, there exists
a solution f fu (n) to equation (9) as a well-defined dynamical
system. Equation (9) describes the magnitude and direction
of the flow switching between two paths. ! (n) is contin-
uous because it is a summation of yﬁﬁ L(n).

Likewise, the adjustment route flow of route [ in OD pair
w on day n, ghosen by travellers in the second group, is
denoted by f,(n) =73 (n). Assume that the adjustment

e, f (),

a9y

k,lERw;wEW, (11)

route flows of the second group travellers are inverse rate
with the route surplus capacity difference. When the route
surplus capacity of route k is larger than route / on time
i3 sk > !, the adjustment flow from route k to [ is negative:

l(n) <05 1f the route surplus capacity of route k is less
than route I: s <!, the corresponding adjustment flow is
positive: yk_’l (n) > 0 and the travellers do not switch if the
route surplus capacity is equal. Mathematically, the ad-

justment route flow can be stated as

P =a-¢5 (s, F(), kleR,wew, (12)
(s . W 7 G, i s — 520,
o s Ty =1 (13)
Sl;sk)-j?];(n), if s, —5,<0,
Sk

~1
Yy (1) =
k#1 k#l1

Since the right-hand side of equation (12) is continuous,
there exists a solution f, () to equation (12) as a well-defined
dynamical system. Equation (12) describes the magnitude and

Vol =Y a-gy (s f(n),

a>0; k,leR,;weW. (14)

direction of the flow switching between two paths 7 (n) is
continuous because it is a summation of y yw (n)
Combining equations (11) and (14), we obtain
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¥, (m) = Y agk™ (e, f (n)),
k+l1

P(m) = Y agt (s, f (n)), (15)
k+1

a>0;k,leR,;weW.

Yo () =Y i, (n)
r€R,,
= Y (hm+y,m)
kleRynk #1
= Y (agy (e f () + gl
kiR k#1
(o) i al
kleR Nk #1 Ck
( @) gty alt
kleR Nk #1 G

Since },cx vy, (n) =0, it follows that }, ., f7,(n) is a

constant;  hence  from  }, f,,(0)=d,,  then
Yrer,Juw () =
o) =) 3,
r€R,
= Y (Gam+y,m)
kleR, Nk #1

Based on equations (9)-(11), the aggregate route ad-
justment flow of travellers in the first group on day # can be
formulated as

o (e f(n)

(16)

)f (n)) 0, ifc—¢=0,

)f ()) 0, ifce—¢<0.

According to equations (12)-(14), the summation of the
route adjustment flow of travellers in the second group on
day n can be expressed by

= Y (o s T ) +agy (s T ()

kJeR, Nk #1 (17)
(0‘( ) f (n) +a ( ) f ()) 0, ifs,—s>0,
kleR nk#1 s
> (ocw-}i(n)+aw-?;(n)):0, if s —5,<0,
kleR, nk#1 Sk Sk
where ZreRw?; (n) = ZreRw]C;(o) =d,; the flow conserva- ym = e ¥ f(”))’ (18)
tion constraint is satisfied. y(n) = Z a-O((s,f(n),

Furthermore, the route adjustment flow switching model
for a general network with multiple O-D pairs can be
expressed as

where
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T, (¢, f(n)) 0 0 7
0 Y, (c,f(n) 0
Y(c,f(n) = ,
0 0
L 0 0 V¥, (cf(n))l
[ D, (s, (n)) 0 0 1
~ 0 D, (s, f(n) 0
(s, £ (m) = ’ :
0 0
Lo 0 @, (s,f(n)]
[ 0 ok (e, k—1(n) : : ]
19
(pﬁﬁl (¢, k—>1(n)) 0 (1)
VY, (c.f(n) = 0 (pﬁHl (¢, f(n) - |
q)ﬁﬁl (c,f(n)) 0
L 0.
[ 0 ¢ (s, £ () |
¢ (s, £ () 0
D, (s, f(n)) = 0 ¢k s, f(n) - |
¢ (s, £ (n)) 0
L 0
1 " . ' f(n+1)=£f(n)+y(n),
Each element (y,,(n) and ¥, '(n)) in system (18) is Fne D) =F(n) + 5 (),
continuous. Consequently, the solution existence for system (22)
(18) is guaranteed. £(0) = £,
Therefore, the route flow of the first group in route / on = ~(0)
day n+1is fO)=£f".
futn+ D= f,m+ Y agi e f). (200
k= 4. Property Analyse

And the route flow of the second group in route / on day
n+1 can be stated as

Fone)=Fum+ Y agh (s, F (m).

k#l

(20b)

Then, the adjustment route flow switching model can be
restated as

fon+1)=fL,(m+Y

k+l1

ags, " (c, f (), (21a)

Font)=Fum+ Y agh (s, F (m).

k#1

(21b)

Combining equations (18), (21a), and (21b), given the
initial  conditions:  (n€ [0,N]), f(n=0)= %  and
f(n=0)=f, the mixed equilibrium switch model is given
by

4.1. Equivalence between Stable State and Mixed Equilibrium
Condition. In the present section, we establish a mixed
equilibrium switch model, and if it reaches a stable point
(£*,f), which means

{f* (n+1) =£"(n),

fm+1)=f (n), (23)

then, it follows that all the adjustment route flow is zero:
Y () =) a¥(c.f"(n) =0,
y*(n) = Z ocCD(s,]A‘* (n)) =0.

Assume that the route [ is the shortest route with the
minimum route travel cost in OD pair w, stated as

(24)

cﬁ,ZciU:uw>0, k#leR,. (25)
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Substituting equations (10) into (24), we have

=Y agh e, f(m) =Y a (6 )f()—

k#1 k#1 Ck
(26)

The route flow is nonnegative, and so, there is
fﬁ) (n) >0, k € R,,, w € W; combining it with equations (25)
and (26) we get

>0,k =c =u

fr=0,ck>c = (27)
k,le_Rw,u)ewv.

Likewise, assuming that the route [ is the most com-
fortable route with the maximum surplus capacity in the OD
pair w, then

1_ k
Sy = V25,20,

k#l€R,, (28)

Substituting equations (13) into (24), we have

V=Y oy (s f00) = Z“(’sk =3 7=

k%l k%l
(29)

With the nonnegative property of route flow, which is
»>20,keR,, weW, and combining it with equations
(28) and (29), it then follows that

—d =
fw>0’ Sw_sw_vw>

~k

Fu=0. sh<s, =, (30)
k,leR,, weW.

It can be seen that equations (27) and (30) are actually
the equilibrium conditions of the travellers in two groups,
which shows that the stable point (f*, ) of the proposed
switch model is equivalent to the mixed equilibrium
condition.

4.2. Uniqueness of Solution. Based on the variational in-
equality (VI) theory, it is clear that the mixed equilibrium
switch model (22) can be rewritten as the following VI
problem:

F(f*,?")T : (;:; ) =Y Y a-¥(cf) (f-£)
+Y Y a-o(s,f) (f-F)
>0.
(31)

We note that it is known that if the function F(f, f) is
strictly monotone with (f,f), then there exists a unique
model solution.

Proof. Assume that (f/, f ) and (f*, f ) are solutions to the
VI problem (31), and (f7, )+ ((f, f ), so that

9
Z(Zcx-‘l’(c,fl))~(f—f/)+zza.q)(s,f’).(f_f’)zo,
(32)

MY ¥(er))- )+ Y(Ya-o(sF))-(F-F)20
(33)

Let (£,f) = (f,f ) in equation (32) and (f,f) = (f1,f)
in equation (33), and adding the resulting inequalities, one
T

obtains
" —fr
o I )
f -t

Y[(Zaven)-(Tawer)
Y[(Zeo6m)-(Teosi)]
(34)

Apparently, the inequality (34) is in contradlctlon to the
definition of strict monotonicity. Hence (f/, f) = (f*, f );
the uniqueness of the solution holds. O

4.3. Stability of Solution. LaSalle’s theorem is used to address
the stability properties of the mixed equilibrium switch
model. The candidate Lyapunov function [11] that we ap-
plied for the travellers of the first group is

x(n)
viFon = [ tondn (35)

It represents the objective function of the UE assign-
ment. Since x(n) is a linear transformation of f (n) from
equation (3), || f (n)|| — oo, |lx (n)| — o0, and t (x (n)) is
a monotomcally increasing function of x(rn). Hence,
f(n) — oo, t(n)dy — oo and hm"f N—coV
(f (n)) = oo, Wthh means that V(f(n)) is a contmuously
differentiable, positive definite radially unbounded function.
Equation (35) can be expanded as

x(n) n
v =[ o= o Slan

=J t()dfjfdn

(36)

Here, n° is the initial time in the dynamical switch system

corresponding to the initial state f(0), n/ is the time in the
dynamical switch system when the system reaches the state
f (n). Equation (36) converts equation (35) to an integral along
a route in the plane parameterized by n. The conversion is to
avoid dealing with the complex interactions among x (), which
is caused by the different classes of route choice behaviour
principle in this research. And so the derivative of the Lyapunov
function along the trajectories of the switch process is

([0t ) (i f) (& f1dmdin
dt ’
(37)

where (dy/df) = (dx/df) = (d(6f)/df) =8, t(n)(dy/df)
=t(n)d =c¢, and (df/dn) = f = y. Therefore,

V) =S (o) =



10

/
n

d(J () (dnrdf) (d f/dn)dn)

V(f(n)= m (38)

=c-y(n) =CoZ(x‘I’(c,f(n)).

Now, from our earlier remark in Section 4.1, if and only
if the dynamic switch process reaches the mixed equilibrium

state, condition { p>c J;k holds and V' ( f*(n)=c
Y a¥* (c,f(n)) = 0. Then c>0, a>0, f(n)>0, and
Y (c,f(n)) is not positively invariant, so V( f (n)) is non-
positive definite.

The candidate Lyapunov function [25] that we applied
for the travellers of the second group is

W m) =Y Fn): (v-s). (39)

Apparently, the surplus capacity decreases with the in-
crease of network route flow, that is, f )T,sl, (v—9)T.
Hence f(n) — 00, Zf(n) (v—5) — 00 and
lim W (f (n)) = 0o, which means that W (f (n))isa
contf nuous‘ﬁr differentiable, positive definite radially un-
bounded function. Equation (39) can be rewritten as

d(f(n))
W(f(n))——(f( ))-d(f( A
aw - A
= 3G I
(40)
where
AW (F (n) _[oW (f (m) oW (f(n) aW(?(n))]
dFm)  Lo(fim) o(f.m)  o(f,m)
=[-s, =5, - =5, ] = s,
(41)
and so,

W(f(n)=-s-yn)=-s-Y ad(s, f(n). (42)

If and only if the dynamic switch process reaches the

~k
mixed equilibrium state, condition { k< fy = w holds,
Sk = =s" f >0
and W(j‘* (n)) = —s* - Y a®* (s,j?(n)) =0. Then, s>0,

a>0, ]AC(n) >0, and D (s, _7 (n)) is not positively invariant, so
W ( f (n)) is nonpositive definite too.

Above all, the dynamic switch model (22) is stable and
the solution of the dynamic switch model (22) converges to
the mixed equilibrium state.

5. Numerical Example

In this subsection, we study the performance of the proposed
dynamic traffic flow adjustment model, which synthetically
considers the travellers with a different route choice behaviour
principle. The tested network is shown in Figure 1 [25]. The
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Ficure 1: Test traffic network.

TaBLE 2: The parameters in the link travel time functions.

Link 0 Ca
1 8 63
2 16 60
3 6 74
4 12 65
5 10 60
6 10 68
7 12 68
8 14 71
9 8 60
10 6 66
11 7 64
12 8 67

traffic demand pattern between the OD pairs is assumed to be
D =240; assuming that 50% of the travellers follow the
quantity adjustment principle, § = 50%, then the traffic de-
mand of the first group and the second group is d = 120 and
d = 120. The route adjustment flow ratio is assumed as & = 0.6.

The incidence matrix of routes and links for the network
is given in equation (43), and a simplified link travel time
function that is often used in practice developed by the U.S.
BPR (Bureau of Public Roads) is listed as follows, with free-
flow travel time and link capacity given in Table 2:

r1 100000010017
100100010001
100001010010
AT = , (43)
001100100001

001001100010

(0000111001004

4
t,(x,) =1 [1 + 0.15(ﬁ) ] Va € A. (44)
Ca
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FIGURE 2: Evolutionary trajectories of route flows (a)
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FIGURE 3: Evolutionary trajectories of route flows (a) and route surplus capacity (b) for travellers in the second group.

Figure 2 shows the evolution process of route flows and
correspondent route travel time for travellers in the first group,
while Figure 3 depicts the evolution process of route flows and
correspondent route surplus capacity for travellers in the
second group. Meanwhile, the route flow pattern and the
corresponding route travel time in the mixed equilibrium state

for travellers in the first group are tabulated in Table 3 as f and
¢, and the route flow pattern and the corresponding route
surplus capacity in the mixed equilibrium state for travellers in
the second group are tabulated in Table 3 as f and s.

By combining Figures 2 and 3 with Table 3, it shows that
the specific evolution process wherein the traffic flows
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TaBLE 3: Route flow, route travel cost, and surplus capacity in mixed equilibrium for travellers.
Route Link f c f s
1 1,2,9,12 30.25 71.30 17.50 42.50
2 1,4, 8, 12 0.00 77.81 20.50 42.50
3 1, 6,8, 11 27.93 71.30 20.50 42.50
4 3,4,7,12 36.77 71.30 22.50 42.50
5 3,6,7, 11 25.06 71.30 21.50 42.50
6 5, 6,7, 10 0.00 75.23 17.50 42.50
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gradually converges to the equilibrium state after a fluctuant
period. The above observation indicates that travellers in the
first group, following UE principle, will evolve to a UE state,
in which the travel costs of all used routes between the same
OD pairs are equal and minimal, and travellers in the second
group, following QUE principle, will evolve to a quantity-
adjusted user equilibrium state in which the route surplus
capacities of all used routes between the same OD pairs are
equal and maximum.

Next, we test the performance of our mixed equilibrium
switch model under different small constant flow adjustment
ratios. Figures 4(a)-4(c) depict the evolution processes of
flows in the mixed equilibrium state for travellers in the first
group and the second group when the adjustment ratio is set
to be 0.1, 0.3, and 0.5, respectively. It shows that, with
different initial traffic flow patterns and route adjustment
ratios, the dynamic system shares the same final equilibrium
traffic flow pattern, which further testifies the uniqueness
and stability of solution for the proposed mixed equilibrium
switch model.

Parameter o represents the proportion of travellers who
reconsider their routes in the next day according to the
current network information, where the travellers in the first
group shift to the route with lesser route travel time and the
travellers in the second group switch to the route with higher
route surplus capacity to experience more comfortable
travel. Figure 4 shows that, with the increased value of «, the
number of travellers who adjust their route choice is in-
creased. This shows that a larger « will make the corre-
sponding trajectory smoother and steadier and the
fluctuation smaller. This means that, with an increase in the
number of travellers who adjust their current route choice in
accordance with the network information during the evo-
lution process, the total benefit achieved by the route ad-
justment decision increases, which encourages travellers to

shift to the equilibrium state. Therefore, the convergent
speed is accelerated, and the evolution process from dis-
equilibrium to equilibrium is shortened.

Clearly, from the above results, we can observe that
traffic flows all converge to the stable state after a fluctuant
period and that the proposed route adjustment switch model
simulates the ideal traffic flow evolution of the two groups of
travellers’ route choice behaviour. Table 3 shows that, for
travellers in the first group, the demand is entirely loading in
the routes with the minimum travel times in the stable state,
and the flows in the second group are stable when all of the
surplus capacities of the routes are equal. Hence, the stable
state is exactly the mixed equilibrium state formed by the
different behaviours of these two groups of travellers. From
Figure 4, we find that a smaller flow adjustment ratio will
make the corresponding trajectory converge to the equi-
librium slower, which is caused by the inactive route ad-
justment behaviour of travellers. And the evolution process
under the quantity regulation is always smoother compared
with the one under the price regulation with the same other
condition, which is mainly caused by the different percep-
tion degree of price signal and quantity signal in the traffic
network. In general, the travel surplus capacity is more
visualised than the travel cost, so that the quantity adjust-
ment behaviour is a universal phenomenon that should not
be neglected in the areas of travel behaviour analysis.

6. Conclusions

With the rapid development of science and technology and
the urbanisation process, new traffic patterns have emerged
from large-scale urban infrastructure construction, road
network expansion, and so on. To rationally characterise the
traffic flow dynamic evolution process from disequilibrium
to equilibrium, we studied the new quantity adjustment user
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equilibrium criterion and the classic user equilibrium cri-
terion based on the price-quantity adjustment behaviour
principle of the non-Walrasian equilibrium theory. This
paper categorises all travellers into two groups according to
their route choice behaviour and simulates the dynamic
evolution process of the interacted traffic flow. Thus, a
proportional-switch adjustment model is established to
reflect the route adjustment behaviour interaction between
the traditional UE travellers and the QUE travellers, which
converged to a mixed equilibrium state. This mixed equi-
librium not only considers the diversity of the route selection
criteria of the travellers but also elaborates on the interaction
between the different travellers’ groups. This deepens the
understanding of network traffic flows and improves the
level of urban traffic planning and management.

This work opens up several opportunities for further
research, including (1) the possibility of ascertaining the
proportional relationship of different traveller groups in
mixed equilibrium, (2) possibilities to devise the appropriate
forms defining the different route comfort and the corre-
sponding traffic flow equilibrium conditions, and (3) the
extension of the decision factors in route choice process,
such as the inherent preference, previous experience, and
social interaction of transportation information.

Notations

T: Set of nodes

A: Set of links, where a € A

W: Set of origin-destination pairs,
where w e W

R, Set of routes in OD pair w, where
r.k,1 € R,

X, Traffic flow on the link a € A

t,=t,(x,) Travel time function on link
acA

0 Element of link-route incidence
matrix, where & = 1 if the route
r € R, contains linka, and 0
otherwise

d,: Travel demand of travellers in

R the first group

dy: Travel demand of travellers in
the second group

fr: Traffic flows of travellers in the

~, first group on route r € R,

fu Traffic flows of travellers in the

second group on route r € R,
Set of route flows of travellers in
the first group

Set of route flows of travellers in
the second group

f=(fl:weW,reR,):

f= (?; weW,r €eR,):

e Travel time of route r € R,

U, Minimal travel time between OD
pair w

K,: Maximum traffic capacity of the

route r € R,
Surplus capacity of the route
r € R,

Journal of Advanced Transportation

V! Maximum surplus capacity in
OD pair

¥ (n): Adjustment route flow of
travellers in the first group on the
route | in OD pair w at day n

7, (n): Adjustment route flow of

travellers in the second group on
the route / in OD pair w at day n
y= (), weW,l€R,): Setof adjustment route flows of
travellers in the first group
7= (3, weW,leR,): Set of adjustment route flows of
travellers in the second group
a(0<a<l): Route flow adjustment ratio
B: Proportion of the travellers in the
second group follows the
quantity adjustment principle
ok Adjustment flow function of
travellers in the first group from
route k to [ in OD pair w
Adjustment flow function of
travellers in the second group
from route k to I in OD pair w
n: The dynamical system time unit
that relates only to the solution
procedure and has no mapping
to the real system, which is
defined as a day in this paper.

k—1,
w
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Identifying flow patterns from massive trajectories of car tourists is considered a promising way to improve the management of
tourism traffic. Previous researches have mainly focused on tourist movements at the macro-scale, such as inbound, domestic, and
urban tourism using flow maps. Compared with modeling the flow patterns of tourists at the macro-scale, modeling tourist flow at
the microscale is more complicated. This paper takes Dapeng Island located in Shenzhen as the study area and uses the car
recognition devices to collect traffic flow. Firstly, car tourists are separated from the mixed traffic flow after analyzing the spatial-
temporal characteristics of tourists and residents. Next, daily graphs of tourist movements between road segments and tourist
attractions are constructed. Finally, a frequent subgraph mining algorithm is used to extract the flow patterns of car tourists. The
experimental results show that (1) car tourists have obvious preferences in the selection of trip time and tourist attractions; (2) the
intercity tourists tend to take multidestination trips rather than a single destination trip in the same type of attractions; (3) car
tourists are inclined to park their cars in an easy-to-access place, even if the attractions visited are changed. The main contribution
of this paper is to present a new method for discovering the flow patterns of car tourists hidden in massive amounts of license

plate data.

1. Introduction

Due to the flexibility and convenience of road trans-
portation, car-based tourism (travel in owned or rented cars,
also named driving tours [1], car tourism [2], and self-
driving tours [3]; for simplicity, this paper uses the term car
tourism) has been one of the popular forms for leisure and
recreation. Recently, car tourism has been growing rapidly in
China, and its scale is continuing to expand with the im-
provement of road infrastructure and the growth of car
ownership. A statistical report indicated that by 2015, there
were 2.34 billion car tourists in China, accounting for more
than 58.5% of the total domestic tourists [4]. It can be
foreseen that the percentage of car tourists will increase over
time. However, car tourists need to share roads in urban
areas or tourist attractions with residents, and they depend
on the road network to achieve circulation between the

places of origin and multiple tourist attractions. Currently,
urban roads are heavily crowded. When a large number of
tourist cars enter the road network during peak tourist
season, the pressure on road traffic management may be
increased. It is worth noting that this phenomenon is severe
for coastal tourist attractions.

Coastal islands are one of the favorite tourist destina-
tions. The development of road network on the islands often
precedes the development of tourist attractions, and new
infrastructures and facilities are being built to handle the
increase in tourist traffic. Thus, tourism activities tend to be
superimposed on a spatial system and infrastructure net-
work that was not explicitly designed to cater to them and
tourism activities can be unevenly distributed [5]. Addi-
tionally, some islands are connected to the mainland. The
roads entering and leaving these islands have become bot-
tlenecks for tourism transportation, which poses challenges
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to the coordination of traffic on and off islands. Moreover, in
contrast to commuting transportation, tourism trans-
portation has different characteristics in time and space, and
it requires more comfort and convenience. The problems
mentioned above show that if tourism transportation is not
taken seriously in traffic management, it is likely to increase
travel difficulties for residents, and it will affect the travel
willingness of tourists and the sustainable development of
tourism transportation.

The recording and analysis of trajectories are essential
for understanding the movement of tourists and the
management of tourist traffic, such as the optimal location
and development of transportation facilities and the re-
distribution of tourists. However, the lack of practical
approaches for the collection of relevant data limits the
detailed exploration of tourist mobility. The traditional
method involves paper-and-pencil or computer interviews,
which are expensive and time-consuming. The collected
data are also typically limited in terms of personal infor-
mation such as family composition, age structure, and
favorite tourist attractions [6]. Recently, with the devel-
opment of sensors such as GPS tracker, video recognition
device, and RFID, which can capture movement data in
real-time and with spatial and temporal details, the tra-
jectory-based data analysis methods have been widely used
in transportation research. The analysis results provide
real-time and future traffic information for road traffic
managers and travelers, as well as technical support for the
relief of traffic jams. However, current observations of road
traffic are limited to statistical information such as traffic
volume, occupancy, and speed. Movement patterns are
depicted in a flow graph or reported by visual descriptions
rather than exploring flow patterns. Additionally, road
traffic has the characteristics of variability and correlation
in time and space. Previous researches have demonstrated
that sectional traffic flow is interrelated to the distances and
locations of monitoring points and the topology of road
network. Therefore, it is necessary to consider the structure
of road network and the correlation between time and
space in the analysis of tourist traffic. This consideration is
more useful in explaining the deeper behavior of tourist
traffic.

This study is an attempt to investigate the flow patterns
of car tourists by applying a frequent subgraph mining
algorithm. This algorithm can take into account the
correlation of traffic flows captured by video sensors.
From the graph and flow perspective, a coastal island is
used as an experimental area to explore the dynamic
relationship between multiple tourist attractions and key
road segments. This paper is organized as follows. The next
section reviews related work on movement pattern mining
and the methods for analyzing trajectory-based data on
tourists and traffic flows. Section 3 introduces the study
area (Dapeng Island, Shenzhen, China). Section 4 de-
scribes the distribution of the monitoring points in detail.
Section 5 introduces the data and methods used in this
paper. Section 6 presents the results of flow patterns
generated by car tourists. Finally, we finish with a dis-
cussion and conclusion.
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2. Related Work

In recent years, movement patterns have been analyzed
frequently from transportation to tourism, such as the
research of movement patterns hidden in taxis [7-11],
buses [12, 13], railways [14], tourist movements [15-20],
and even in geo-tagged media datasets [21, 22]. In terms of
tourism transportation research, the efficient manage-
ment of tourist traffic requires a sound understanding of
car tourists’ spatial movement patterns because these
patterns provide critical information, e.g., the flow vol-
ume and spatial transfer direction, for the planning of new
transportation facilities and the redistribution of tourist
flow. As is well known, movement is an intrinsic attribute
of traffic flow that changes over time with respect to the
spatial location of people, goods, and cars. The patterns
implied in moving datasets are not repeatedly produced
by a single car tourist, but rather by a huge number of cars
that appear in the same area. In most cases, the collected
moving datasets of traffic entities are relatively large in
volume and complex in structure. Therefore, it is neces-
sary to use data mining algorithms and visual analytics
techniques to extract useful and relevant information,
regularities, and structures from massive movement
datasets. The data mining algorithms used in trans-
portation are varied. These algorithms focus on clustering
[8], density, and sequential characteristics [9, 10] in time
and space. The leisure activities of car tourists are carried
out in a road network. The activity sequences can be
modeled in a graph that consists of different nodes (for
example, parking lots and cultural sites) and edges with
direction that are the order of locations visited. For this
kind of dataset, graph mining is a widely used method that
finds interesting patterns in graph representation data
[23]. The detected patterns are typically expressed as
graphs, which may be subgraphs of graphical data or more
abstract expressions of the trends reflected in data [24].
One form of graph mining is frequent subgraph mining,
which is used to identify frequently occurring patterns
(subgraphs) across a collection of “small” graphs or in a
“large” graph [25]. Various subgraph mining algorithms
have been proposed. These algorithms can be further
classified based on the search strategies, i.e., either
breadth-first or depth-first searches. The depth-first
search strategy is more computationally efficient, such as
in gSpan (graph-based Substructure pattern mining) [26],
MoFa (Molecule Fragment Miner) [27], FFSM (Fast
Frequent Subgraph Mining) [28], and Gaston (GrAph/
Sequence/Tree extractiON) [29], SPIN (Spanning tree
based maximal graph mining) [30]. However, FFSM and
Gaston cannot be used for directed graphs without major
changes. Only MoFa is suitable for finding directed fre-
quent subgraphs, and for gSpan, only minor changes are
necessary [31]. Other related works include significant
pattern mining Leap [32], maximal frequent subgraph
mining Margin [33], and frequent subgraphs in multi-
graphs [34].

During the past few years, trajectory-based methods
have been used to analyze transportation systems
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[10, 11, 13, 14]. In many applications, moving entities are
considered moving points whose trajectories (i.e., paths
through space and time) can be visualized and analyzed. In
transportation, the collected trajectory data can be presented
in origin-destination (OD) data with aggregation methods
[35]. Such OD data can be visualized with a set of techniques,
including flow maps [36, 37] and OD maps [38]. Never-
theless, the study of the spatial dimensions of tourism re-
mains a mostly underexplored area of research, although this
research area is expanding due to the advances of new in-
formation and communication technologies (ICT). Tradi-
tional approaches in tourism can be divided into two
categories, which are direct observation techniques (e.g.,
interviews, trip diaries, and recall diaries) and non-
observation techniques (e.g., GPS tracking and video
tracking), but the use of nonparticipant observation only is
the best technique for privacy reasons [5]. Even with ICT
support, this technique has difficulties in data collection, and
the large-scale sampling of passenger data is costly. Most
published studies related to movement patterns are still
descriptive, and they employ small sample sizes that are
highly controlled. Moreover, this kind of research is focused
on the human movement in tourist intradestination. There
have been a few studies that have explored car-related spatial
movement patterns in tourist destinations. Even so, the
research was aimed at large-scale car tourists’ activities [39]
or used the questionnaire method, which is prone to biases
and errors [40]. Therefore, given the requirements of pro-
tecting privacy, increasing data volume, and avoiding in-
vestigator biases, it is necessary to conduct flow pattern
research based on continuous time-series data acquired
from sensors.

3. Study Area

Dapeng Island, located in the east of Shenzhen (as shown in
Figure 1), is an essential node in the “Guangdong-Hong
Kong-Macao Greater Bay Area,” and it is the only pioneer
zone of national tourism reform and innovation in Guang-
dong province. Dapeng has abundant tourism resources, such
as Dapeng Ancient City, National Geological Park, and Folk
Village. The “Shenzhen Tourism Statistics Bulletin” showed
that a total of 139 million tourists visited this city in 2018. The
increase was 5.97 percent each year, of which only one-tenth
was group tourists. This indicates that most tourism activities
are carried out by individual visitors. Because of topo-
graphical constraints, tourism transportation on the island
has not been fully developed. Owned and rented car tours are
the main modes of visiting the island for individual tourists.
The Dapeng Transportation Bureau has analyzed the trend of
motorized travel demand on the island and predicted that the
total annual traffic flow would be 504000 cars/year. At the
peak time of “Golden Week,” about 35000 cars/day entered
into the island, of which 79% were car tourists.

4. Distribution of Monitoring Points

Urban transportation systems usually employ GPS tech-
nology to capture taxi and bus tracks. Different from this

kind of public transportation research, this paper aims to
analyze the flow patterns of car tourists at multiple attrac-
tions. It is difficult to install GPS device on each personal car.
Therefore, we chose roadside monitoring devices to collect
traffic flow. In addition, urban road network includes ex-
pressways, ordinary roads, and community roads. It has a
large number of nodes and complex structure. In order to
monitor each road segment, many devices will need to be
deployed on roads. So, the key road segments and tourist
attractions were selected as the locations of monitoring
points. Five video devices were deployed at key roads, and
two video devices were deployed in parking lots. The labels
of monitoring devices are Al, A2, A5, A7, A10, P1, and P2
(as shown in Figure 2).

The detected tourist flow at each monitoring point is
shown in Table 1.

5. Methods

In this study, a cloud-based database system was established
to store traffic data after they were uploaded via 4G com-
munication technologies. The collected data includes license
plate numbers, time of passage, and labels for monitoring
points. In order to protect tourists’ private information,
license plate numbers were changed into car IDs and only
the registration places of cars were extracted. After data
collection period, the license plate numbers will be deleted
from the database.

The proposed approach is outlined in Figure 3. This
section introduces the detailed steps for the mining of
frequent flow patterns of car tourists at the microscale in a
tourist intradestination. First, car tourists were separated
from mixed traffic flow after analyzing the temporal
characteristics of collected data. Second, spatial move-
ment graphs of traffic flow were reconstructed for each
day. Each movement graph is a connected and directed
graph where vertices are monitoring points and directed
edges are tourist flow between two monitoring points.
Then, a frequent subgraph mining algorithm (gSpan) was
used to detect the flow patterns between road segments
and tourist attractions. Next, in order to reduce the
number of frequent flow patterns, small overlapping
subgraphs were removed from the results. Finally, we
analyzed the spatial-temporal characteristics of flow
patterns intradestination.

5.1. Preprocessing Source Data. When collecting data, it is
inevitable that problem data will be collected. This can be
caused by a problem with the device, such as an aging or
damaged camera. Additionally, a license plate may be
blurred, blocked, or damaged, especially in bad weather,
which can affect the efficiency of car recognition. Fur-
thermore, it is challenging to identify some special
characters and confusing numbers on license plates. The
above issues can lead to data distortion. To ensure the
accuracy and reliability of the analyzed results, the col-
lected data need to be processed at first. The rules of
processing are as follows:
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TaBLE 1: Car tourists detected at monitoring points.

Label Location Detected car tourists

Al Kuinan Road Dapeng Community and Xinda Community

A2 Dongchong Road Dongchong Community

A5 Pengfei Road Dapeng community and Dapeng Ancient City, Jiaochangwei Folk Village, Dongshan Temple
A7 Fumin Road Nan’ao Community

Al0 Nanxi Road Xichong Community

P1 Jiaochangwei Park Lots Jiaochangwei Folk Village

P2 Ancient City Park Lots Dapeng Ancient City, Dongshan Temple

Recognition devices for
cars

N
Cloud database

system

Preprodess data

Find the vehicles that visit the
island each week

Count the number of weeks that
each car appears in a month

Find the vehicles in parking lot
during the research period

RYENYER

Analyze the time characteristics
of source data

N N N

Extract the valid records

Extract continuous data, during
this period, all monitoring
device is normal operation

/ Separate car tourists and \
commuting residents based on
the weekly threshold and the
historical vehicles in the
parking lots

v

Construct the sequence data of
monitoring points that each
vehicle passes each day in
chronological order

v

Create the traffic spatial
movement graph from the
sequence data each day

Create graph dataset

Frequent sub-graph mining
Remove small overlapping
sub-graphs

v

NN/

Spatio-temporal charateristics
of vehicles

Spatial flow patterns of car
tourists

N

Analyze spatio-temporal
characteristics and tourist flow
patterns

FIGURE 3: The detailed steps for mining frequent patterns in tourist flow.

(1) Deleted irrelevant fields: The primary information
such as car license plate number, label of monitoring
device, and collection time is retained.

(2) Removed null values and corrected license plate
attributions.

(3) Eliminated invalid data, such as special car license
plates and duplicate data.

(4) Corrected confusing letters and numbers in car
icense plates.

5.2. Identifying Car Tourists. In this study, tourist flow was
divided into three types. One type consisted of commuters
on the island, the next consisted of intracity tourists (local
weekend tourists in Shenzhen), and the last type consisted of
intercity tourists (leisure tourists from outside of Shenzhen).
The collected data came from the cameras on the roads and
in parking lots. These three types of flows were mixed to-
gether in the collected data. It is necessary to separate the
different types of traffic flows. The detailed steps are shown
in Figure 4.

The data collected from the parking lots were classified
into intracity tourists and intercity tourists according to the
registration location of car license plates.

As we know, the number of trips made by tourists and
local commuters is different. Tourists only visit the island
occasionally on weekends or holidays. Local residents on the
island might drive more times per week. Therefore, we took a
week as a unit and determined if a car had visited the island
during that week. If so, this car would be tagged once. Then,

we counted the number of weeks a car appeared in each
month. If the number of weeks visited exceeded a predefined
threshold, this car was considered to be a commuter.
Otherwise, this car was considered to be a tourist.

Therefore, for the data collected from roads, we first set a
threshold manually based on the statistics of the number of
weeks visited in one month to distinguish island commuters
and tourists. Next, we categorized visitors into intracity car
tourists and intercity car tourists based on where their
license plates are registered. Finally, different types of traffic
flows were separated and aggregated.

In order to verify the usability and reliability of the proposed
method, the visiting characteristics of all cars were analyzed. The
result is shown in Figure 5. As can be seen, the proportion of
weeks in one month in which the car appears is the highest,
reaching 88.86%. The percentage of cars appearing on the island
for less than two weeks is 95%. In addition, we counted the
percentage of cars in the parking lots relative to the total
number of cars. The ratio is 78.6%, which is close to the ratio of
79% counted by Dapeng Transportation Bureau during peak
tourist periods. The ratio of the number of weeks visited in one
month (88.86%) is greater than the statistical result of Trans-
portation Bureau (79%). We think that the Transportation
Bureau only considered the tourists in parking lots. Therefore,
the threshold in this study is one week for extracting car tourists.

5.3. Reconstructing the Spatial Movement Graphs. In order to
model the flow patterns of car tourists, labeled direct graphs
are used to construct movement relationships between
monitoring points. In particular, each vertex of the direct
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graph corresponds to a monitoring point, and each edge
corresponds to a directed connection between two moni-
toring points passed by car tourists. The related definitions
are as follows:

Definition 1. Label Graph. Given a set of vertices
V = {v}, v,..., ¥}, a set of edges connecting two vertex in
V, E=1e, = (v, vj)lvi, v; € Vi, a set of vertex labels
L(V)={lb(v,)IVv; €V}, and a set of edge labels
L(E) ={lb(ey,) | Ve, € E}, e, is a direct edge that has the start
vertex v; and end vertex v;, then a label graph G is repre-
sented as

G =(V, E, L(V), L(E)). (1)

In the graph dataset, the label of an edge is represented by a
label pair of two monitoring points in the tourist visiting order.
A graph consists of edges connecting the monitoring points
visited by each tourist in one day. The advantage of using the
vertex label pair as an edge label is that it maintains the
temporal and spatial order of the two monitoring points that
tourists pass through. When mining a labeled graph, the
spatial-temporal order of monitoring points in results could be

preserved. Using this representation, the problem of finding
frequent flow patterns of car tourists becomes a problem of
mining frequent subgraphs in all movement graphs.

5.4. Mining Frequent Subgraphs. Some definitions related to
frequent subgraph mining are given below.

Definition 2. Subgraph. A subgraph g, = (V,, E,) of graph
g, is a graph in which V,cV |, E, =E, n (V, xV),)

Definition 3. Support of a subgraph g. Given a labeled graph
dataset G, = {g1> 92> - - > g,}> the support or frequency of a
subgraph g is the percentage (or number) of graphs in Gp,.

Definition 4. Frequent subgraph. A frequent subgraph is a
graph whose support is not less than a minimum support
threshold. The minimum support threshold represents the
minimum number of occurrences of a subgraph. To obtain
the frequent patterns, we chose to manually set the value of
minimum threshold.

Definition 5. Mini Code. First, a depth-first search is per-
formed on the graph to form a DFS (depth-first search) tree,
and then this tree is scanned. The order of the scanned edges
constitutes a sequence called the DFS Code. The DFS Codes
are sorted in a lexicographic order to find the smallest DFS
code that uniquely identifies the graph. This minimum DFS
Code is called the mini Code.

After constructing the movement graphs of tourist flow,
the subgraph mining method was used to explore the frequent
patterns. As demonstrated in related works, there are many
kinds of subgraph mining algorithms. The AGM (Apriori-
based Graph Mining) [41] can discover all frequent subgraphs
(both connected and disconnected) in a graph database that
satisfy a specific minimum support constraint. This algorithm
uses an approach similar to Apriori, and it requires 40
minutes to 8 days to find the result subgraphs in a dataset
containing 300 chemical compounds. The algorithm FSG
(finding frequently occurring subgraphs in large graph) [42]
adopts an adjacent representation of a graph and an edge-
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TaBLE 2: Types of car tourist visiting the island.
Types Number of records Number of graphs
All car tourists 361693 76
Intracity car tourists in Shenzhen 240452 76
Intercity car tourists outside Shenzhen 121241 75

growing strategy to find all of the connected subgraphs that ~ pruning false positives used in AGM and FSG. gSpan can
frequently appear in a graph database. The results have shown  complete the same task in 10 seconds. Considering the ef-
that FSG can be finished in 600 seconds. gSpan [26] is  ficiency, in this study, gSpan was used to mine frequent
designed to reduce or avoid the candidate generation and  subgraphs in a directed graph dataset and then find the
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FiGure 8: Flow patterns inferred from intracity tourists.

TaBLE 3: The list of flow patterns inferred from intracity tourists.

Patterns

(A1 — P2and A1&P1)
Al — P2 — P1 — Al
Al — A2and Al&P1sP2
Al — Al0and Al&P1P2

Figures

Figure 8(a)
Figure 8(b)
Figure 8(c)
Figure 8(d)

frequent subgraphs with maximum length in the results as the
flow patterns of car tourists. The algorithmic details of gSpan
are available in reference [26]. An extended instruction is
given below. The method consisted of two steps: (1) Finding
the frequent subgraphs using gSpan: First, the frequencies of
edges and nodes of all graphs was calculated. Second, the
frequencies were compared with the minimum support
threshold and the infrequent edges and nodes were removed.
Then, the remaining nodes and edges were reordered
according to the frequency. And, the frequency of each edge
was calculated again. Finally, the subgraphs of the restored
graph were mined according to mini Code and it was de-
termined whether the current DES encoding is the minimum
code or not. If so, current edges were added to the results, and

further attempts were made to add possible edges. If not, the
mining process was finished. (2) Finding frequent subgraphs
with maximum length: There are a large number of subgraphs
in the obtained results, and some subgraphs are partial graphs
of the others. Therefore, this kind of subgraph was deleted by
comparing the labels of nodes and edges, and the final results
were the maximum frequent subgraphs.

6. Results

In this section, we first analyzed the spatial and temporal
distribution of tourist flows by statistical methods and maps.
Then, we divided the tourist flows into intracity car tourists
and intercity car tourists and used a frequent subgraph
mining algorithm for pattern recognition. Finally, we
summarized the movement patterns of all tourists.

6.1. Spatial-Temporal Characteristics of the Tourist
Traffic Flow

6.1.1. Temporal Characteristics. Figure 6(a) depicts 295
days of data before any preprocessing was applied. Due to
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FIGURE 9: Flow patterns inferred from intercity tourists.
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TaBLE 4: The list of the flow patterns inferred from intercity tourists.

Figures Patterns

Figure 9(a) Al — P2 — P1

Figure 9(b) Al PlsP2

Figure 9(c)
Figure 9(d)
Figure 9(e)

Al — Pland A1 — P2
A5 — P1 — A10
Al0 — P1&P2and A10 A2

the failure of device communication or power, the con-
structed movements graphs may be incomplete, which
would lead to the loss of frequent subgraphs. Therefore,
we selected 76 days of valid data as the dataset for frequent
pattern mining. Figure 6(b) shows that (1) the tourist
flows at A2 and A10 near the sandy beaches has similar
temporal characteristics. Their peak hours of tourist
volume occur both on holidays and weekends, while on
weekdays, the flow curves are relatively stable. (2) P1 and
P2 are located in two parking lots. Although there are
differences in the tourist volumes, the trends are similar.
(3) For the two entrances to the tourist attractions, the
average daily volume of tourist traffic at Al is 0.7 times
that of A5. After sorting the volume of tourist traffic,
Pengcheng Community has the most car tourists, followed
by two tourist attractions with a sandy beach (i.e.,
Dongchong and Xichong Community), and the least
visited attraction is Nanao Community.

6.1.2. Spatial Characteristics. Figure 7 shows the flow map of
the aggregated tourists transferring in multiple monitoring
point pairs. The tourist volumes are depicted and sorted in
the left bar chart in the figure, and the link thickness rep-
resents the traffic volume. As can be seen, the links with the
largest traffic volume are A5P1, A5P2, P2P1, A10A2,
A1P1, and Al P2 (A5P1 is a simplified form for A5-P1,
which represents the forth and back tourist flow between A5
and P1). These links could be divided into two areas,
C1(Al, A5,P1,P2) and C2(A2, A10). Further inspection
reveals that the number of tourists transferring between P1
and P2 in area C1 is close to the value between A2 and A10
in area C2, but the number of tourists visiting P1 and P2 is
3.12 times that of A2 and A10.

6.2. Analyses of the Detected Flow Patterns. The flow map is
intuitive, but it suffers from serious visual clutter, and it is
difficult to read because of overlapping flows. It can also be
seen in Figure 7 that the flow map only shows the traffic
volumes between the monitoring points in the tourist
destination. But, it could not express the spatial transfer
directions of car tourists. Therefore, these facts motivate us
to find a new approach to solve these problems. This section
describes the use of frequent subgraph mining algorithm to
explore the spatial flow patterns with directions in tourist
traffic and to obtain the maximum frequent patterns from
the daily tourist movement graphs according to a predefined
minimum support threshold. By using the identification
method of car tourists introduced in Section 5, two types of

data were extracted and used for the subsequent flow pattern
mining (listed in Table 2).

6.2.1. Flow Patterns of Intracity Tourists in Shenzhen.
The experiments were conducted with the dataset of intracity
car tourists in Shenzhen (as shown in Table 2). The mini-
mum support threshold for gSpan was set to 73. The spatial
flow patterns are represented in Figure 8 and listed in Ta-
ble 3. The inferred patterns could be divided into two groups.
One group consists of the patterns shown in Figures 8(a) and
8(b), which show the tourist spatial transfer process in area
Cl. The other group contains the patterns shown
Figures 8(c) and 8(d), which represent the tourists trans-
ferring between area Cl and area C2. The two groups
demonstrate that the intracity car tourists who arrived at P1
and P2 preferred to choose Kuinan Road at Al instead of
Pengfei Road at A5. The difference between Figures 8(a) and
8(b) is the existence of the circle tourist flow. The difference
between Figures 8(c) and 8(d) is the presence of tourists flow
back and forth. The tourist flow from Al to A2 have only one
direction. One of the reasons may be that this study failed to
find a suitable monitoring point on Pingxi Road, resulting in
the loss of directionality for this part of tourist flow.

6.2.2. Flow Patterns of Intercity Car Tourists. Figure 9 shows
flow patterns of intercity car tourists. The dataset used in this
section is composed of intercity tourists (as shown in Ta-
ble 2). The minimum support threshold for gSpan was set to
56. The result flow patterns are sorted by the support
threshold, as listed in Table 4.

From these patterns, the following could be con-
cluded. (1) The most frequent patterns are shown in
Figures 9(a)-9(c). The frequencies of the discovered flow
patterns are 62, 62, and 61, respectively. These three
patterns describe the preference of intercity tourists for
area C1. This kind of tourists first visited one of attractions
near a parking lot P1 or P2 and then visited another
attraction, or just visited one tourist attraction near P1 or
P2.(2) The above three patterns are different from those of
the intracity tourists in Shenzhen. There is no circle tour
between P1, P2, and Al. The reason for this is that some
tourists chose to continue drive to area C2. (3) The
minimum support threshold of these two patterns, as
shown in Figures 9(d) and 9(e), is significantly smaller
than that shown in Figures 9(a)-9(e), but it reflects the
spatial transfer preferences of tourists from neighboring
cities in areas C1 and C2. In Figure 9(d), the car tourists
tended to drive directly from A5 to Al0 after visiting
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FIGURE 10: Flow patterns of all tourists.

attractions near P1l. As shown in Figure 9(e), the car = However, there is no tourist flow to Al and A5. The reason
tourists that flowed between A10 and A2 went back to P1 ~ for this may be that the traffic flow of Pingxi Road (the
and changed car parking lots between P1 and P2.  expressway in and out of the peninsula) was not
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TaBLE 5: The list of flow patterns inferred from all tourists.

Figures

Patterns

Figure 10(a)
Figure 10(b)
Figure 10(c)
Figure 10(d)
Figure 10(e)

(A1 — A10 — Al)and (A10 — P1eP2)and (P1 — Al)
(Al®Al0and A1 — Pland A1 — P2)
(Ale&Pl10and A1 — P2 — P1 — Al)

(AlePlsP2and Al A106A2)
(Al&Pl1oP2and A1 — A2)

monitored. This part of traffic flow could directly arrive
and then leave from Al0.

6.2.3. Flow Patterns of All Tourists. 'This section presents an
exploration of the spatial flow patterns of all car tourists. The
results are shown in Figure 10. The minimum support
threshold for gSpan was set to 73, which means that 73 of the
76 graphs contained the discovered flow pattern. The result
patterns are listed in Table 5.

All of the patterns shown in Figure 10 have tourist
flow between area C1 and area C2. This is consistent with
the trend in the flow map (shown in Figure 7). As the
picture shows, Al is the main entrance for tourists to
enter and exit Dapeng Island. Some of the car tourists
drove to P1 or P2, and the rest flowed to A0 or A2.
Figures 10(a)-10(c) show the directions of tourist flows
between the Dapeng Community, Pengcheng Commu-
nity, and Xichong Community. Figure 10(d) shows the
directions of tourist flows between Dapeng Community,
Pengcheng Community, and Dongchong Community.
Figure 10(e) represents only the directions of tourist flows
between Dapeng Community and Dongchong Commu-
nity. Furthermore, the directions of tourist flows in area
C1 and area C2 or between area Cl and area C2 are
different. Taking Figures 10(a)-10(c) as examples, al-
though the orders of P1 and P2 that are accessed from Al
have a lack of regularity, they have their own charac-
teristics when considering the accompanying paths to
A10. These examples indicate that if there is a tourist flow
between Al and A10, it could be divided into two cases. In
one case, some of the tourists returned directly, and in the
other case, some of the tourists flowed to P1. In the first
case, either the tourist flow passing by Al first accessed P2
and then visited P1, or both P1 and P2 had tourists at the
same time. In the second case, some of the tourists
returned from A10, visited P1 and P2, and then left the
island.

7. Conclusions and Discussions

7.1. Conclusions. In order to facilitate the management of
tourist traffic flow, the car tourists in Dapeng Island were
taken as a research case. The experimental analysis used real
data captured by video devices in the research area. Due to the
lack of suitable device installation locations, the captured
picture from the video device had a certain distance from the
road. The catch rate of the tourists’ cars was low. However, the
detailed time-series data in one day could be collected.
Compared with the manual survey, the collected data was

improved in terms of reliability and richness. A day was
chosen as the time unit for frequent pattern mining. After
selecting the available data, we divided the data of cars into
intracity and intercity tourists. Next, the license plate data
were transformed into movement graphs according to the
visited location sequence between multiple monitoring
points. The intricate flow patterns of the car tourists were
discovered by gSpan algorithm, which had the best perfor-
mance in terms of the quality of the results and the execution
time and which had already proven to be efficient for frequent
subgraph mining. The conclusions are as follows:

(1) The car tourists had obvious preferences in the se-
lection of trip time and tourist attractions (shown in
Figures 6 and 7). In terms of time, the curves of
tourist flow at each monitoring point were similar.
There were a large number of car tourists at various
attractions on holidays, but the volume of car tourists
was relatively lower on weekdays. The same types of
attractions had the similar trends in tourist flow,
such as the two attractions with a sandy beach
(Dongchong Community and Xichong Community)
and the ancient city and cultural attractions (Dapeng
Ancient City and Dongshan Temple). In terms of
space, the attractions that are close to the entrance of
a scenic area and rich in tourist resources were more
popular with tourists. However, due to the terrain
barrier in the scenic area, the traffic conditions af-
fected the movements of tourists between multiple
attractions.

(2) Different types of car tourists had similar spatial
choices in scenic area (shown in Figures 8-10). For
example, different types of tourists had flow patterns
that described the movements in one area (as shown
in Figures 8(a), 8(b) and 9(a)-9(c)) and the move-
ments between different areas (as shown in
Figures 8(c), 8(d), 9(d), and 9(e)). The intercity
tourists and intracity tourists had different choices in
scenic spots. The intercity tourists would take
multidestination trips instead of single destination
trips in the same type of attractions. As can be seen in
Figures 8 and 9, there are the two sandy beach at-
tractions in area C2, the intracity tourists tend to visit
one of them, while the intercity tourists would visit
both attractions. Specifically, to save time and
money, intercity tourists would visit multiple at-
tractions in one trip instead of making multiple trips.
Additionally, another difference was that there was
no circlet in area C1 for intercity tourists and no
traffic flow between A2 and A10 for intracity tourists.
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(3) Although the patterns depicted on the map look
complicated and messy, after the patterns are con-
verted to rules, they become clear. In pattern maps,
only Figures 8(b), 9(a), and 9(d) show a clear uni-
directionality. The rest is complex and is difficult to
compare. As we can see from Figure 8(a), the
intracity tourists passing point Al could be divided
into two groups, one group flowed to parking lot P1,
and then leaved the scenic area from P1. The other
group flowed to parking lot P2. Two groups have
simultaneity in tourist routes. So, we could convert
the flow patterns to rules and use “and” to illustrate
the simultaneity of different routes in the same
pattern (as shown in Tables 3-5). By this way, all
patterns can be applied to traffic control system for
regional tourism.

(4) Large primary attractions are more attractive than
smaller secondary attractions. Looking from the
arrow on the pattern maps, tourists always visit area
C1 first and then select area C2. The main reason is
that area C1 has abundant tourism resources and
diverse tourism activities. For example, there are
cultural attractions (e.g., Dapeng Ancient City and
Dongshan Temple), sandy beach entertainments,
and large parking lots for tourists in area C1. These
factors are also often considered in the evaluation of
the importance of attractions in tourism network.

(5) The tourists tended to park their cars in an easy-to-
access place, even if the visited attractions are
changed, as shown in Figures 8(a)-8(d), 9(b), and
9(e). Again, here we take area C1 as an example. The
distance between the Dapeng Ancient City and
Dongshan Temple is about 1km. On the pattern
maps, we can see that there are two-way arrows
pointing to the two parking lots P1 and P2. This
indicates that the car tourists tended to park their
cars to the nearest parking lot, so that they could pick
them up when the tour destination is changed.

7.2. Discussions. Tourist flow is the key to traffic man-
agement in tourism destinations, and it affects the de-
velopment of tourism on an island and the experience of
tourists. The recent development of transport technolo-
gies has shown that traffic flow data will be increasingly
collected and it will be available for data analysis.
Therefore, advanced data analytics should be used to
interpret and depict the complex movements of car
tourists. The proposed approach in this study was
intended to find (i) the statistical summaries of the spatial-
temporal characteristics of car tourists in the research
area, helping to discover patterns from the mass car
license plate data; (ii) the flow patterns of intercity and
intracity tourists, helping to illustrate the different pref-
erences of the two types of car tourists; and (iii) the most
frequent patterns of all tourists, helping to identify the law
of tourist movement and make efficient policy for the
management of tourist traffic flow. The presented ap-
proach enriched the analytical methodology of tourist
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traffic flow and suggested a shift from the conventional
and complicated paper or computer interview-based
method to a dynamic flow graph-based method. Fur-
thermore, we have shown how transportation data pro-
vides hard-to-obtain insights and quantitative results for
tourists.

In order to illustrate the law of spatial movement of
tourists, related studies have proposed a variety of macro
flow patterns [43-45]. For example, in 2008, McKercher [46]
proposed 11 prominent route styles in urban destinations.
The macropatterns retain only the main components and
simplify the details and are often used in tourism man-
agement to guide destination development. Compared with
modeling the flow patterns of tourists at the macrolevel,
modeling tourist flow at the microscale is more complicated.
Lew and McKercher [17] noted that it is a challenge to
balance model effectiveness and usability. The reason is that
simple patterns may not provide enough details for use and
complex patterns may be difficult to interpret and apply. In
this study, we used the video devices installed at key nodes of
road network to collect tourist traffic flows and used the
frequent subgraph mining algorithm to discover flow pat-
terns at the microscale. The extracted patterns can be
converted into rules and applied to the traffic control system
for the management of regional tourists. The difficulty of
finding and applying patterns at microscale could be
overcome by this way.

During the peak period of tourism, the number of car
tourists in the scenic area increases sharply. It is easy to
result in road congestion and uneven distribution of
tourists between attractions. With the use of traffic flow
data, the daily, monthly, and seasonal characteristics of
tourists can be analyzed, the future tourist flow can be
predicted, and the flow patterns can be obtained by data
mining methods. Thus, the traffic management department
can effectively control the tourist traffic flow, and the
tourism department can develop attractive tourism prod-
ucts to achieve a spatial balance of the distribution of
tourists, reduce traffic congestion and harmful gas emis-
sions and weaken the impact of tourism environment and
human body.

Inside a scenic area, attractions form a complex net-
work of tourist flow due to the frequent spatial interaction.
Each attraction is both the origin and destination of car
tourists. Due to the differences in attractiveness, degree of
development, and convenience of transportation, tourists
have shown special preferences when choosing attractions
and trip routes. Accordingly, effective identification of
these preferences will be beneficial to the development of
tourist market and will also helpful for tour planners to
understand how tourists see the spatial connection of
multiple attractions. However, traditional manual surveys
are time-consuming and laborious, and the amount of data
obtained is small. It is difficult to reveal tourist preferences
by this way. Frequent subgraph mining algorithms provide
a desirable method for identifying the spatial preferences of
tourists. This kind of method could perform well under the
support of a large amount of movement data between
attractions.
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This study has several limitations. Firstly, due to lack of
power supply facilities, it was unable to collect the traffic data
for each day. When applying the model to the actual control
of tourist traffic flow, it is necessary to further co-operate
with the traffic management department to obtain com-
prehensive traffic flow data. Secondly, this study focused on
the mining of flow patterns, the influencing factors behind
the identified patterns were not further analyzed. As men-
tioned by Lew and McKercher [17], factors related to tourists
and destinations can affect how tourists move or travel in a
destination. These factors include family composition, in-
come, and valid information obtained before travelling. It is
difficult to obtain these factors by relying only on the traffic
flow data collected in the traffic monitoring system.
Therefore, in future work, field investigation will be
necessary.
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Reasonable deployment of connected and automated vehicle (CAV) lanes which separating the heterogeneous traffic flow
consisting of both CAVs and human-driven vehicles (HVs) can not only improve traffic safety but also greatly improve the overall
roadway efliciency. This paper simplified CAV lane deployment plan into the problem of traffic network design and proposed a
comprehensive decision-making method for CAV lane deployment plan. Based on the traffic equilibrium theory, this method
aims to reduce the travel cost of the traffic network and the management cost of CAV lanes using a bilevel primary-secondary
programming model. In addition, the upper level is the decision-making scheme of the lane deployment, while the lower level is
the traffic assignment model including CAV and HV modes based on the decision-making scheme of the upper level. After that, a
genetic algorithm was designed to solve the model. Finally, a medium-scaled traffic network was selected to verify the effectiveness
of the proposed model and algorithm. The case study shows that the proposed method obtained a feasible scheme for lane
deployment considering from both the system travel cost and management cost of CAV lanes. In addition, a sensitivity analysis of
the market penetration rate of CAVs, traffic demand, and the capacity of CAVLs further proves the applicability of this model,

which can achieve better allocation of system resources and also improve the traffic efficiency.

1. Introduction

Recently, connected and automated driving technology has
attracted the attention of automobile enterprises, universi-
ties, and scientific research institutions due to the great
function of intelligent networking technology in improving
traffic safety [1, 2], road capacity [3, 4], energy consumption
[5-7], driving experience [8], etc. In addition, the devel-
opment of connected and automated driving technology has
prompted the rapid progress of a new generation of intel-
ligent transportation systems [9]. It can be predicted for a
considerable time to come with the scenario for a traffic
development mode coexisting with CAVs and HVs.

As a new generation of the automobile, CAVs have
natural differences in driving behavior compared with HVs.

They need more accurate environmental perception, less
headway, and shorter reaction times with following and
changing lanes [10]. Currently, the main control strategies
for CAV technology focus on adaptive cruise control (ACC)
and cooperative adaptive cruise control (CACC). First of all,
ACC strategy is to obtain the acceleration and speed of the
front vehicle through on-board detection equipment (via
vehicle-to-vehicle (V2V) communication) and realize ac-
celeration optimization control through the ACC control
system. Secondly, CACC is based on ACC and realizes
vehicle formation via V2V technology to maintain a smaller
headway, thus can greatly improving traffic efficiency
[11-13]. Due to truck drivers experience significantly higher
risk of suffering serious injury and fatality than passenger
vehicle drivers [14, 15], a number of machine learning
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models were established to examine crash severity on
roadway segments [16, 17]. Until now, truck CACC is be-
lieved as one of the potentially effective solutions to these
challenges. However, CACC will be affected by HV's or other
emergencies, when the CACC market penetration rate
(MPR) is low. In addition, the formation of CACC vehicles
will deactivate and switch to ACC or human-driven mode,
which results in a drop for the road’s vehicle capacity. Zeng
et al. [18] studied the impairment of capacity caused by the
failure of a CACC formation in the freeway merging area.
The simulation results showed that the reduction of capacity
in the merging area is 15.4%-17.2% under the same MPR
compared with the pipeline capacity. In addition, Qin et al.
[19] established the fundamental diagram model for the
heterogeneous traffic flow of CACC vehicles mixed with
ACC vehicles and found that the capacity of the hetero-
geneous traffic flow is lower than an HV traffic flow situation
when the CACC MPR is less than 40%.

In order to better accommodate CAVs, some scholars
considered providing special roadway rights for CAVs so
that they make a separation of CAVs from the mixed traffic,
such as the Connected and Automated Vehicle Lanes
(CAVLs) which are studied in this paper. In this strategy,
CAVs are supposed to use the dedicated lane on which
homogeneous traffic flow of CAVs is created [20]. On the
contrary, setting CAVL will reduce the number of lanes for
accommodating other HVs. If the CAVL deployment is not
set properly, it will lead to a great waste of road system
resource and cause drastic congestion in the traffic flow and
decreases the overall performance of the road. For system
planning, policymakers are interested in understanding
possible sets of system enhancement options to meet their
performance goals and obtain the most cost-effective de-
ployment strategies for the future. Therefore, to improve the
capacity and safety characteristics of existing traffic facilities,
how to design and deploy CAVLs become an urgent
problem for policymakers.

In traffic flow research, one important problem has
aroused much attention: how the impact in roadway ca-
pacity will evolve as the connected and automated driving
technologies mature and the penetration rate gradually
increases? Some existing studies provide effective methods
to solve this issue. During the theoretical research, Ghiasi
etal. [21] developed an analytical capacity model to calculate
the impact of different CAV technology scenarios and de-
termine the optimal number of dedicated CAV lanes using
the Markov chain method. Chen et al. [22] presented a
mathematical framework to optimize a time-dependent
deployment plan of autonomous vehicle lanes on a trans-
portation network with heterogeneous traffic stream. In
their work, the per-lane capacity can become tripled when it
is converted from a regular lane to an AV lane. In order to
shed light on how traffic operational capacity will change
with the introduction of AVs, Chen et al. [23] developed a
general theoretical framework to determine the valid do-
mains of different lane policies and, more generally, AV
distributions across lanes with respect to demand, as well as
optimal solutions to accommodate AVs. Simulation is an-
other significant method which can be utilized to investigate
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this problem. Liu et al. [24] analyzed the influence of the
CAVL strategy on multilane freeway facilities under the
mixed traffic flow. The analysis results showed that the
strategy of CAVs lanes can improve pipeline capacity by 22%
compared with conventional strategy with the CACC MPR
approaching 60%. Talebpour et al. [25] examined the im-
pacts of reserving one lane of a four-lane highway for AVs on
traffic flow dynamics and travel time reliability. It was found
that throughput can be improved significantly if the AV
penetration rate is greater than 30%. Ye and Yamamoto [20]
investigated the performance of traffic flow under different
numbers of CAV dedicated lanes, compared it with mixed
flow situation, and found that the benefit of setting CAVLs
can only be obtained within a medium density range.

However, it is well known from “Braess” paradox
[26, 27] that unilaterally improving the capacity of an
existing link or adding a new link in the network instead of
reducing the unit travel cost within the network. Therefore,
some scholars turned to study the CAVL deployment
problem for the transport network level. For example, Chen
et al. [28] developed a mathematical framework to optimally
design AV zones and developed a mixed-integer bilevel
programming model to optimize the deployment plan.
However, there is limited systematic research talking about
the optimization of CAVLs deployment considering the total
travel expense and the management cost of CAVLs.

As a result, this paper proposes an optimization method
for CAVL deployment plan considering from the viewpoints
of the whole traffic network. The objective of this method is
to reduce the travel cost of the traffic network as well as the
management cost of CAVLs. A primary-secondary method
with a bilevel programming model is established. The upper
level is the decision-making scheme of lane deployment,
while the lower level assigns traffic flow including CAV
mode and HV mode using the upper-level scheme. Based on
the characteristics of the model, a genetic algorithm is
creatively designed to solve the abovementioned models,
and a medium-sized network is listed as an example to be
analyzed in this research.

The remainder of this paper is structured as follows.
Section 2 presents the mathematical formulation to optimize
the CAVLs deployment plan and to describe the flow dis-
tributions of both CAVs and HVs. Section 3 designs a ge-
netic algorithm to solve the proposed bilevel programming
optimization model. Section 4 conducts numerical studies
and sensitivity analysis. Finally, conclusions and recom-
mendations are delivered in Section 5.

2. Mathematical Formulation

2.1. Problem Description. “Connected and automated ve-
hicle lanes” refer to a lane management method that pro-
vides the exclusive right for CAVs to travel on some links of
the traffic network according to the traffic demand. The
following conditions need to be considered when setting
CAVLs: the first condition is lane conditions, which exists at
least two or more lanes going on the same direction and
there is no interference from other traffic modes besides
HVs; the second condition is the traffic conditions, which
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the basic capacity of HV lanes will not be affected by the
CAVLs; and the third one is the link conditions, which the
link has the construction conditions needed for CAVLs,
such as the requirements for the layout of communication
equipment and the construction cost.

One of the key points for CAVL deployment is that the
decision-making scheme for every kind of lane should be
coordinated in order to achieve the best combination effect.
The best combination effect will be achieved only after
setting a reasonable scale on the network. The second key
point is that travellers will choose the most advantageous
route for themselves according to the well-established CAVL
schemes, and the traffic flow can be balanced under the
current network conditions. The third consideration is that
the traffic organizer will optimize the scheme of the CAVLs
based on the equilibrium state caused by the travellers route
choice behavior. Finally, a master-slave game (also known as
a Stackelberg game) is formed between the traffic organizers
and the travellers.

In summary, CAVL deployment is a systematic problem
that is really necessary to consider the deployment, con-
sidering from the level of the traffic network. In addition, the
master-slave game relationship exists between traffic plan-
ning organizers and travellers. Finally, a comprehensive
decision will be achieved based on the traffic equilibrium
theory.

2.2. Assumptions and Definitions. The analyzed model
established in this section is based on the following
assumptions:

(i) There are only two kinds of managed lanes in this
research: CAVLs and HV lanes

(ii) The topology of the traffic network is predefined

known

(iii) The traffic demand among the origin-destination
(OD) pairs is predefined known and unsaturated

(iv) The scope of CAVs cooperation could not affected
by V2V communication distance in CAVLs, that is,
CAVs are all fully communicated in each CAVLs

2.3. Primary-Secondary Method with Bilevel Programming
Model. For the optimization problem of CAVL deployment,
the traveller aims to minimize the travel cost or travel time,
while the government planning department enhances how
to design or improve the traffic network under a limited
investment to maximize the performance of a certain system.
With the need of comprehensive decision-making for two
different lanes, this paper establishes a primary-secondary
bilevel programming model. The upper level establishes the
decision-making scheme for lane deployment, and the ob-
jective function is the system cost including the travel cost
and the management cost of CAVLs. In addition, the lower
level utilizes the User-Equilibrium (UE) model to describe
the traffic flow assignment of the CAV mode and HV mode,
respectively, according to the decision-making scheme of the
upper level. The assignment results obtained from the route

choice of two travel modes are used to evaluate the per-
formance of the decision-making scheme.

Considering the constraints of the number of lanes and
link capacity, a decision-making scheme to minimize the
system cost is established in the upper-level planning. The
formulation of the model is listed as follows:

min F(nsv) =y (xcvtcv + xHVtHV) D [(x +x, ) 2]
aeD aeD
+ Z wens”,
acA

(1)
1<nV<n, VaceA, (2)
0<n)'<n,—1, VaeA, (3)
n,=nS" +n, VaeA, (4)
x, = xS +x, VaeA, (5)

where equation (1) is the objective function; equations (2)
and (3) are the constraints of the number of CAVLs and HV
lanes, which ensure that the number of HV lanes is not less
than one; equation (4) is the conservation of lane number;
and equation (5) is the conservation of link flow. In equation
(1), the first term is the sum travel cost of links with CAVLs,
the second term is the sum travel cost of links without
CAVLs, and the third term is the sum management cost of
CAVLs.

In the lower-level planning, the flows should be differ-
entiated in the route selection for the HV mode and CAV
mode. In order to promote the CAV mode, CAV traffic flow
is first loaded, initial cost of the unmodified links is updated
when the network is balanced, and then HV traffic flow is
loaded. Therefore, there is a primary-secondary relationship
for the two traffic flow assignment models.

The assignment model of CAV traffic flow is listed as
follows:

Cv

min ) J ’ tsv(xsv,ncv)dw, (6)
acA
s.t. Z fCVk = quSV, (r,s) € RS, (7)
f&k >0, kep, (rs) €RS, (8)
Z frVk(SCVk, aEA, (9)
(r,5)€RS keP
Cv B
Cv 0 xa
t =t 41+« , acA
: a{ [t e |
(10)

The assignment model of HV traffic flow is listed as
follows:
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FIGURE 1: Flow chart of algorithm.

Hv

xﬂ
min Y J tI:V(xSV, Y nacv)dw, (11)
acAJ 0
st. Y f =g (r,5) €RS, (12)
keP,
>0keP, (s €RS, (13)
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x”vz Z Zfrs‘srs’ ac€aA, (14)
(r,5)€RS keP,
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a a 1

where equations (7) and (12) are flow conservation con-
straints; equations (8) and (13) are nonnegative constraints
on the route flow; equations (9) and (14) describe the re-
lationship between the link flow and route flow; and
equations (10) and (15) are Bureau of Public Road (BPR)
functions which are undetermined coeflicients.

3. Solution Algorithm

In view of the complexity of the bilevel programming model,
this paper creatively utilizes the genetic algorithm to search
the optimal scheme. The specific steps of the algorithm are
listed and shown in Figure 1.

Step 1 (initialization): relevant parameters of the ge-
netic algorithm are defined, including population size
P, generation gap, crossover probability, mutation
probability, and maximum evolution number N,,. This
algorithm uses integer coding: the specific form of

v, n$Y, ..., n$"}, whose values range among

coding is {n$",nt", . ..
{0,1,...,(n, - 1)}. Let generation N =1 and

FIGURE 2: Nguyen-Dupuis network schematic diagram.

TaBLE 1: Basic traffic demand of each OD pair.

OD Origin Destination Demand
1 1 2 600
2 1 3 900
3 4 2 750
4 4 3 750

population p = 1, and randomly generate the CAVLs
deployment scheme.

Step 2 (traffic assignment model of lower level): the
Frank-Wolfe (F-W) algorithm [29] is used to solve the
traffic flow assignment model of the CAV mode. The
link cost is updated according to the equilibrium result,
and choose it as the initial cost of the HV mode. After
that, our research team continues to solve the traffic
flow assignment model of the HV mode with the F-W
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TaBLE 2: Parameters of the Nguyen-Dupuis network.

Link Origin Destination Number of lanes Free flow time Current lane capacity
1 1 5 2 4 150
2 1 12 3 6 150
3 4 5 2 5 150
4 4 9 2 8 150
5 5 6 4 4 150
6 5 9 3 10 150
7 6 7 4 4 150
8 6 10 3 8 150
9 7 8 4 4 150
10 7 11 3 10 150
11 8 2 2 6 150
12 9 10 4 4 150
13 9 13 2 8 150
14 10 11 4 4 150
15 11 2 3 5 150
16 11 3 2 7 150
17 12 6 2 4 150
18 12 8 2 12 150
19 13 3 2 6 150

TaBLE 3: Optimal scheme of CAVLs.

Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 11
Number of CAVLs 0 0 0 0 0 1 0 O 1 0 0 1 0 0 0 0 0 0 0 0

algorithm, and the results of the two assignment results

5
are transmitted back to the upper level. 24 <10 : B — .
Step 3 (calculate the fitness function of upper level): The 23 .
objective function of bilevel programming established 2l i
in this paper is the system cost with the value greater
than zero, and this is a minimization problem. Hence, 21 il
the reciprocal of the objective function is chosen as the z 2r .
fitness function, and the fitness of each individual is 2 19l |
calculated according to x5V, t5, x!V, and t!IV which can g
be solved from the lower level. & 18 ¢ 7
Step 4: let p = p + 1. Repeat Steps 2 and 3 until p>P. L7+ T
Step 5 (iteration): evolutionary operations such as se- L6 | 1
lection, crossover, and mutation [30] are carried out 15 L ]
according to the fitness of individuals, and then the L
population is updated. 00 20 30 40 50 60 70 80 90 100
Step 6:let N = N + 1. Repeat Steps 2 to 5until N = N ;; Iterations
then, we get the optimal solution. FIGURE 3: Evolutionary process diagram of algorithm.
4. Numerical Examples _
TABLE 4: Lane deployment schemes for different MPR.
4.1. Basic Settings and Results. This paper uses the Nguyen Link Link Link  Link  Link .
and Dupuis test network as a case study. The network has 13 MPR (%) 6 9 12 14 g Other links
nodes, 19 links, and 4 OD pairs [31]. The basic topology of 10 1 0 > 0 0 0
the network is shown in Figure 2, where the red node 20 1 2 0 0 0 0
represents the traffic demand generation point and the blue 30 1 1 1 0 0 0
node represents the traffic demand attraction point. Table 1 40 1 1 1 1 0 0
shows the OD traffic demand. Table 2 is the basic attribute 50 0 2 1 2 0 0
information of the network including the number of lanes, 60 2 0 2 0 1 0
free-flow time, and current lane capacity. 70 1 1 3 0 0 0
According to the existing literature [25], the basic traffic 80 2 2 2 0 0 0
90 2 2 2 0 0 0

capacity of a CAV lane is about twice of an HV lane, and
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FIGURE 4: Sensitivity analysis of the CAV MPR. (a) The total number of CAVLs. (b) System cost.

CACC strategy is effective only when CACC MPR is more
than 30%. The management cost of CAVLs includes con-
struction cost and maintenance cost with the management
cost of a single CAVL is 500. Let a be 0.15 and  be 4.0 in the
BPR function. The basic parameters of the genetic algorithm,
respectively, are the population size is 50, generation gap is
0.9, crossover probability is 0.75, mutation probability is
0.05, and maximum evolution times is 100. When CAV
MPR reaches 30%, the lane deployment scheme is shown in
Table 3, and the running process of the algorithm is shown in
Figure 3. As can be seen from Figure 3, the algorithm
converges when iterations reach the 20th generation. The
total number of CAVLs is 3 with the management cost is
1500. In addition, the system cost is 147416.8 and the system
travel cost is 145916.8.

4.2. Sensitivity Analysis. In this section, the authors mainly
analyze the impact of market penetration rate of CAVs,
traffic demands, and the capacity of the CAVLs in the
proposed method.

4.2.1. Market Penetration Rate of CAVs. In the future, the
market will inevitably experience a long transition phase of
CAVs coexisting with HVs as connected and automated
driving technology. Therefore, it is greatly necessary to
analyze the influence of this method when CAV MPR
changes.

Fixing the traffic demand of each OD pair and the ca-
pacity of the CAVLs, the CAV MPR is adjusted between 10%
and 90%. Then, the genetic algorithm designed in this paper
was used to solve the bilevel programming model. Con-
sidering the local convergence of the genetic algorithm, ten
experiments were carried out on each group of parameters,
and the minimum target was chosen as the final result, which
is shown in Table 4 and Figure 4.

As can be seen from Table 4 and Figure 4(a), the total
number of CAVLs can be the same with the increase of CAV
MPR, but the deployment location of the lanes is different.
This analysis shows that MPR in the planning year needs to
be accurately estimated when lanes are set up, and it also
shows the necessity of CAVLs deployment considering from
the network level. The traffic volume of CAV increases with
the increase of MPR. Only when the traffic volume of CAV
reaches a certain scale and the cost of adding CAVLs is lower
than the increase of the travel cost, the strategy of adding
CAVLs is beneficial. According to the statistics of CAV lanes
under all the MPRys, it is found that the probability of CAV
lanes set in links 6, 9, 12, and 14 is the greatest, which also
verifies the feasibility of the calculation results shown in this
paper.

Likewise, the system cost shows a downward trend with
the increasing of CAV MPR, which declines rapidly in the
early stage and slowly in the later stage as seen in
Figure 4(b). This is because the MPR is gradually
approaching its critical value with the increasing of CAV
MPR accompanied with the utilization rate of CAVLs and
the actual capacity of the link increasing. However, when
the CAV MPR exceeds its critical value, the utilization rate
of HV lanes decreases together with the actual capacity of
the link. In the latter stage, the increase of CAV MPR has
little effect on the decreasing of the travel time due to the
traffic demand constraints. If the number of CAVLs
continue to increase, it will add to the cost of lane man-
agement together with increasing the system cost of the
system at the same time.

4.2.2. Traffic Demand. During the design of CAVLs, the
impact of traffic demand on the decision-making scheme
is also needed to be analyzed except considering the
change of CAV MPR. In addition, the intrinsic mechanism
of the model is complex with many factors involved in
traffic demand forecasting. Additionally, it is necessary to
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consider the variations of system performance under
different traffic demands with many uncertainties in the
actual situation. Therefore, CAV MPR is fixed and located
at 30%. The total traffic demand is multiplied by the
growth factor of 100%-200% compared with the original
basis, while the proportion of OD traffic demand remains
unchanged.

In addition, the total number of CAVLs is the same
(Figure 5(a)) when the growth rate of traffic demand varies
between 1.3 and 1.7, which results from the optimal utili-
zation of lane function by the route selection behavior of
CAVs. The total number of CAVLs also doubles when traffic
demand doubles. In addition, Figure 5(b) shows that the
system cost increases exponentially with the increase of
traffic demand.

4.2.3. Capacity of the CAVLs. Since the capacity of the
CAVLs is highly sensitive to the performance of CAV in
terms of its average headway, sensitivity analysis on the
capacity of the CAV lane would be necessary. Therefore,
fixing the CAV MPR and the traffic demand, the capacity of
CAVLs is multiplied by the factor of 150%-300% compared
with the basic lane capacity. The results of the total number
of CAVLs and the system cost are shown in Figure 6(a) and
Figure 6(b), respectively.

As can be seen from Figure 6(a), the total number of
CAVLs shows a trend of increasing first and decreasing later,
and its values are the same when the ratio of CAVLs to the
basic lane capacity varies between 1.8 and 2.3. When the
capacity of CAVLs is low, the cost of adding CAVLs is
greater than the reduction of system travel cost, so CAVLs



are deployed in a small number. When the capacity of
CAVLs s high, fewer CAVLs can meet the traffic demand. In
addition, Figure 6(b) shows that the system cost decreases
with the increase of CAVLs capacity.

5. Conclusions

To sum up, this paper proposes an optimization method for
CAVL deployment plan, which aims to solve the problem
with capacity drops when HV's are mixed into CACC systems.
This method creatively simplified the CAVL deployment into
a traffic network design problem and established a bilevel
primary-secondary programming model. The upper level
generated the decision-making scheme of the lane deploy-
ment scheme, and the lower level assigned the traffic flow
including the CAV mode and HV mode according to the
decision-making scheme of the upper level. The equilibrium
results of the lower level were used to evaluate the perfor-
mance of the upper level. Due to the characteristics of the
model, a genetic algorithm was designed to solve this model.
The numerical results show that the proposed method can
obtain a feasible scheme with the consideration of both the
system cost and the management cost for CAVLs. The sen-
sitivity analysis results of CAV MPR, traffic demands, and the
capacity of CAVLs further validate the feasibility and flexi-
bility of the proposed method.

However, there are also some limitations where HV's give
preferences to CAVs when assigning flow in the lower-level
model, which is different from the general situation with
two-mode flow assigned simultaneously. Regarding to the
value of lane management cost, it needs to be quantified
more accurately by considering from much more aspects.
Due to the large number of variables when applying the
proposed model in large-size network, the genetic algorithm
may not converge. A combination algorithm combining the
advantages of genetic algorithm and active set algorithm will
be proposed in future studies.

Abbreviations

G(V, A): Traffic network, where V is the node of the traffic
network and A is the link set

D: Set of links with CAVLs

D: Set of links without CAVLs

RS: Set of demand of OD pair

X, Flow of link a

xtv Flow of HVs on link a

xSV Flow of CAVs on link a

FEK. Route flow of CAVs

fHvk. " Route flow of HVs

t%: Link cost of link a under free flow

t,(e): Cost function of link a

sV Cost function of link a € D

£ Cost function of link a €D

we: Management cost of single CAVL

Nyt 0-1 variables; if a € D, then #, = 1; otherwise,
fa =0

tgz Link cost of link a under free flow
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c: Basic capacity of HV lane

CH: Basic capacity of CAVLs

n,: Total number of lanes of link a
nilv: Number of HV lanes on link a
ncv: Number of CAVLs on link a.
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As the accident-prone sections and bottlenecks, highway weaving sections will become more complicated when it comes to the
mixed-traffic environments with connected and automated vehicles (CAVs) and human-driven vehicles (HVs). In order to make
CAVs accurately identify the driving behavior of manual-human vehicles to avoid traffic accidents caused by lane changing, it is
necessary to analyze the characteristics of the mandatory lane-changing (MCL) process in the weaving area. An analytical MCL
method based on the driver’s psychological characteristics is proposed in this study. Firstly, the driver’s MLC pressure concept was
proposed by leading in the distance of the off-ramp. Then, the lane-changing intention was quantified by considering the driver’s
MLC pressure and tendentiousness. Finally, based on the lane-changing intention and the headway distribution of the target lane,
an MLC positions probability density model was proposed to describe the distribution characteristics of the lane-changing
position. Through the NGSIM data verification, the lane-changing analysis models can objectively describe the vehicle lane-
changing characteristics in the actual scenarios. Compared with the traditional lane-changing model, the proposed models are
more interpretable and in line with the driving intention. The results show significant improvements in the lane-changing safe

recognition of CAVs in heterogeneous traffic flow (both CAVs and HVs) in the future.

1. Introduction

As one of the basic driving behaviors, lane-changing
manoeuver directly affects the fluency and safety of traffic
flow. Compared with car-following, the lane-changing
process is more complicated and dangerous. Previous
studies have shown that lane changing is a key factor causing
highway accidents [1-7]. As CAVs enter the road, highway
weaving areas will become more chaotic and dangerous.
CAV, as a passive party, needs to change its operating state
in real time according to the operating state of manual-
human vehicles to avoid collisions. Therefore, it is crucial to
study the lane-changing characteristics of manual-human
vehicles to avoid vehicle collisions. However, most re-
searches mainly use statistical models and probability

models to analyze various factors influencing traffic acci-
dents in a fixed scenario, lacking the analysis of traffic flow
theory, which is of low extensibility [8]. Based on the above
research foundation, this paper will use the traffic flow
theory and driver characteristics to analyze the vehicles’
lane-changing behavior in expressway weaving area.

The lane-changing manoeuver is divided into discre-
tionary lane change (DLC) and mandatory lane change
(MLC) according to its motivation [9, 10]. MLC is the
necessary lane-changing behavior to achieve certain de-
mands; DLC is an unnecessary lane change behavior. It can
be seen that the MLC is an aggressive and necessary
manoeuver, which has a great influence on the traffic flow.
As an important part of the highway, the weaving section
undertakes the merging and the diverging of the traffic flow.
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In weaving section, all lane-changing manoeuvers belong to
MLC (driving into the highway; leaving the highway), which
are the manoeuver that must be completed in time; oth-
erwise, it will affect the operation of the highway segment. So
the weaving section becomes the bottleneck of the highway
[3-5, 11, 12].

In the past research, in order to simplify and facilitate the
modeling, it is considered that the lane-changing process is
only affected by the traffic conditions (the gap of the target
lane, the traffic capacity, and the speed, etc.). Sun and
Elefteriadou [13] found that the MLC process is also closely
related to the driver’s psychological characteristics (such as
aggressiveness, vigilance, and lane-changing pressure)
through data investigation. However, the existing models
have not fully analyzed the influence of the driver’s psy-
chological characteristics on the lane-changing process [13].

To address this challenge, the concept of lane-changing
pressure is introduced to describing the drivers’ pressure
fluctuation in MLC. The MLC pressure is quantified by the
distance between the vehicle and the off-ramp. Then, using
the lane-changing pressure as an indicator, this paper
proposed an MLC intention model and a gap acceptance
model to analyze the driver’s intention to change lanes. The
proposed model is based on the driver’s intention and in-
clination, which overcomes the defect of traditional models
only using traffic conditions as a fixed indicator. Finally,
combining the target lane headway distribution and MLC
intention, a lane change probability density model is pro-
posed to describe the lane-changing characteristics in the
weaving area.

The rest of the paper is structured as follows: Section 2
reviews previous literature on mandatory lane-changing
models. Section 3 analyzes the characteristics of MLC and
proposes that the MLC is a continuous behavior. Section 4
constructs an MLC positions probability density function.
Section 5 uses NGSIM data to verify the proposed theory and
models. Finally, the conclusions and future work are pre-
sented in Section 6.

2. Literature Review

At present, the lane-changing decision-making models
mainly include rule-based models [14-19], discrete models
based on utility theory [9, 10, 20, 21], and artificial intelli-
gence models [22-28].

The main idea of the rule-based model is to formulate
different driving rules according to different driving envi-
ronments. The advantages of rule-based models are trace-
ability and simple implementation for specific scenarios. The
drivers choose whether to change lanes by some simple rules.
However, for complicated traffic conditions, a rule-based
model can require a substantial work in order to be extended
into more general scenarios. The most representative rule-
based model is Gipps’ lane-changing model [14]. Gipps
believes that a driver’s lane-changing decision is the result of
three problems: (1) Is it possible to change lanes? (2) Is it
necessary to change lanes? (3) And is it desirable to change
lanes? After Gipps’ pioneering work, many people have
expanded the lane-changing decision-making model, such

Journal of Advanced Transportation

as CORSIM Model [29], ARTEMiS Model [12], Cellular
Automata Model [30], and Game Theory Model [31]. By
extending Gipps’ model to the highway, Yang and Kout-
sopoulos [19] invented a microscopic traffic simulator
(MITSIM) that includes a car-following model and a lane-
changing model. They classify lane changing as mandatory
or discretionary and model the lane-changing decision-
making as a continuous four-step process: (1) decide to
consider the LC, (2) select the target lane, (3) find ac-
ceptable gaps, (4) and implement the changes. The gap
acceptance algorithm receives and checks for gaps in the
target lane to perform the required lane change. Although
the rule-based modeling framework in Yang et al. is similar
to the Gipps’ model (1986), one of the distinguishing
features of their model is that, instead of considering the
lane-changing decision-making as a deterministic process,
it introduces the lane-changing probability to build the
model.

The main idea of the discrete model is to use the utility
function to evaluate the driving gain of each lane. Discrete
models based on utility functions have the advantage of
allowing evaluation of multiple decision criteria by com-
bined weighting and can thus more easily be extended to
complex scenarios. However, a large number of different
weighting parameters can result in time-consuming pa-
rameter tuning and tractability difficulties, and vehicle lane
change is a continuous process. The first discrete-choice
model based on the utility function was proposed by
Ahmed et al. [10, 11] and further refined by Toledo et al.
[20, 32]. Ahmed et al. [9, 10] used the gap between the
vehicles as the main influencing factor of the utility
function, using the utility function to simulate the impact
of the gap on the driver. Then, through the field data, the
binomial logit model is used to calibrate the weighting
parameters of the utility function. Ahmed’s model divides
the lane change type into MLC and DLC but does not
explain the driver’s choice of both sides. For a clearer
understanding of the type of vehicle lane change, based on
the basis of the Ahmed model, Toledo et al. [20, 32]
proposed a probabilistic lane-changing decision model to
describe the relationship between MLC and DLC. The
relationship is captured by considering two types of lane
changes in a single utility function, and a discrete-choice
framework is chosen to simulate the strategy and operation
of the driver’s lane change decision. Most of the above
studies are modeled on vehicle trajectory data, even though
driver characteristics have a significant impact on all as-
pects of the lane process. But driver characteristics are not
considered because driver’s feature data extraction is dif-
ficult and the workload is huge, so most lane change de-
cision models lack them. To explicitly incorporate the
impact of driver characteristics, Sun and Elefteriadou [13]
conducted a survey to determine and understand the
driver’s driving behavior in various lane change scenarios.
The study reveals the types, causes, and main factors of each
driver type in the lane-changing decision process and the
links between them.

The artificial intelligence lane-changing decision
methods use a computer to simulate the driver’s thinking
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and actions during the driving process and judge the
environment to determine whether it is necessary to
change lanes, whether it is necessary to change lanes, and
the choice of target lanes. The artificial intelligence models
impose some artificial intelligence algorithms, such as
fuzzy logic [22], artificial neural networks [23], and
Bayesian classification [24, 25], to explore the potential
determinants of driver lane change behavior. The artificial
intelligence models are completely data-driven and do not
have any physical meaning parameters; it is inconvenient
to analyze the performance of the method and the scenario
expansion and does not consider the driver’s psycho-
logical factors.

Through a review of the lane-changing models, it is
found that the existing lane-changing models have not fully
considered the driver’s influence on the lane changing.
However, these features are important for accurately de-
scribing the lane-changing behavior, and the relevant ex-
planatory variables should be included in the future lane-
changing model. In this paper, a new research idea based on
lane-changing pressure is proposed to express the charac-
teristics of the MCL in highway weaving section, and an
MCL model is established based on the driver’s driving
characteristics. The traditional methods only consider the
influence of the traffic flow characteristics of the target lane
on the lane change. Considering the driver’s psychology of
being forced to change lanes, this paper introduces the
driver’s pressure to lane change (which is reflected by the
distance between the vehicle and the off-ramp) into the MCL
model, which is supposed to better describe the actual traffic
situation.

3. Mandatory Lane Change Behavior

MLC is a necessary lane-changing behavior to achieve a
certain demand, such as merging and diverging. DCL is an
unessential lane-changing behavior, usually to achieve
expectations speed or keep a certain distance from the car
in front [9, 10]. Therefore, compared with the DCL, the
drivers who have MLC demand will improve aggres-
siveness, and it is easy to cause traffic accidents. For this
issue, this paper studies the MLC scenarios of vehicles
leaving the highway, as shown in Figure 1. When the
vehicle has the demand leaving the highway, it will choose
whether to change lanes to the right lane according to the
current driving environment, then enter the weaving
section, and finally enter the off-ramp. The MLC process is
a continuous process and is divided into four phases: (1)
determining the target lane, (2) generating the intention
to change lanes, (3) finding acceptable gaps, and (4) ex-
ecuting lane changing. The lane-changing decision pro-
cess is shown in Figure 2. The MLC is a complicated
process involving road conditions (total traffic capacity,
vehicle arrival rate of on-ramp and off-ramp, and auxiliary
lane layout), driver characteristics, and so on. Therefore, it
is difficult to quantify various factors. After introducing
the concept of driver’s lane-changing pressure, this paper
will systematically study the various stages of the MLC
process.

4. MLC Models

4.1. MLC Pressure. MLC pressure refers to the pressure
generated by the drivers who havse lane-changing demand
before the last lane-changing node (LLCN). It is easy to
know that the closer the driver is to the off-ramp, the
stronger the desire to change lanes is generated. So, assume
that the driver’s MLC pressure is quantified by the available
parameter of distance in this paper. The quantitative models
were proposed as follows:

[w<x";d")]_, d <x,<S,
/= (1)

0, x,>S,

n

where f denotes the lane-changing pressure value; x,, de-
notes the distance of the vehicle n from the off-ramp; d;
denotes the distance of the LLCN of the lane i from the off-
ramp; S denotes the length of the weaving. While the vehicle
does not enter the weaving (x,, > S), the drivers do not have
MLC pressure; thatis, f = 0. While x,, <, the pressure that
the driver starts to generate, the closer the distance to the off-
ramp, the greater the lane change pressure. While the vehicle
reaches the LLCN (x, = d;), the MLC pressure is 0o, and the
vehicle must change lanes. & € N*.
The formula for calculating w is as follows:

w = o+ BN + Ay + B3, (2)

where f3, B, 5,> and f3; denote coeflicient of each parameter,
respectively; N denotes the number of lanes that need to be
crossed; A, denotes the average arrival rate of vehicles on the
segment at time unit; A, denotes the average arrival rate of
the on-ramp vehicles at time unit.

The MLC pressure model is helpful to analyze the influence
of the driver’s psychological factors on the lane-changing
behavior. Secondly, quantifying the driver’s pressure is helpful
to promote the identification and behavior prediction of the
MHYV characteristics on the heterogeneous traffic flow in the
future and reduce the conflict between the CAVs and the
MHYV. Some characteristic parameters of drivers (gender, age,
occupation, etc.) can also be added into the model.

4.2. MLC Intention. Yang and Koutsopoulos [19] proposed
that mandatory lane changing occurs when drivers have to
change lanes in order to

(a) connect the link on their path

(b) bypass a lane blockage downstream

(c) avoid entering a restricted use lane

(d) respond to lane use sign or speed limit sign

The MCL studied by Yang et al. are limited to (b) and (c).
In addition, the intention to change lanes in the weaving area
belongs to (a); drivers tend to change lanes early to avoid the
lane-changing pressure. That is, the lower the pressure, the

stronger the driver’s intention to change lanes. Based on the
MLC model, a new MLC intention model is proposed:
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= exp [(Bo + BN +/32/115:' BsAy) (x, — dy)]* X
d;<x,<S,
(3)

where ¢ (x,/t, >t .) denotes the intention generated of
the vehicle 7 at a distance of x meters from off-ramp.
t, 2T, in denotes that there is a traversable gap in the
ta;get lane, which will analyze the determination of the
traversable gap in the next section. The MLC intention
model describes the intensity of the MLC intention at dif-
ferent location. The model is helpful to analyze the driving
behavior characteristics in the weaving section and also
obtains some driving potential preferences of the driver.

4.3. Gap Acceptance. The lane-changing decision is not only
determined by the driver’s personal driving-preference but
also closely related to the driving environment. Only when
there is an acceptable gap in the target lane, the vehicles can
enter into the target lane. Therefore, the headway of the
target lane is the key factor for the successful imple-
mentation of lane changing. Erlang distribution is a more
general distribution model of traffic characteristics such as
headway and speed. According to the change of parameter
“k” in the distribution function, there are different distri-
bution functions. The Erlang probability density function is
as follows (as shown in Figure 3):
( At)k_ 1

g(t) =de M

(k=1 “)

k=1,2,3,....

When k =1, the Erlang distribution is equal to the
negative exponential distribution; when k=00, a steady
headway distance is produced. This shows that the pa-
rameter k in the Erlang distribution can reflect the condi-
tions of various traffic flows between the free traffic flow and
the crowded traffic flow. As the value of k increases, the more
crowded the traffic is, the more crowded the traffic flow
becomes. So that, it is difficult for drivers to drive freely.
Therefore, the value of k is a rough representation of the
degree of nonrandomness, and the degree of nonrandom-
ness increases as the value of k increases.

The value of k is calculated as follows:

m2

k=§, (5)
9 kf. N9 k. f.
m:AIt: J_gl JfJ: j=1 JfJ’ (6)
-1 fi N
SZ—;i(k— Po S k-mif @
“nor 2 kimm) =gy 2 (ke m) S

I
—

i=1 i

where m denotes the vehicle arrival rate during time # S*
denotes the variance; t denotes the duration (s) or distance
(m) of each count interval; g denotes the number of the
groups; f; denotes the frequency of the number of vehicles
arriving is k; in t; k; denotes the number of vehicles arriving
in t; N denotes the total number of observation intervals; K is
an integer.

Previous studies [12, 32] assumed that the safe crossing
gap was a fixed value or followed a normal distribution.
However, due to the fact that lane changing is mandatory in
the weaving area, the closer the vehicle was to the LLCN, the
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greater the driver’s desire to enter the target lane was. As a
result, it is assumed that the minimum acceptable gap is
proportional to the distance and proposes a minimum ac-
ceptable gap model:

t
txn_min = Ed (S - xn)’ (8)

where t, ., is minimum acceptable merging headway
chosen by the vehicle n. t; is minimum acceptable merging
headway expected by drivers in general driving
environment.

So, the probability of acceptable gap in the target lane is
as follows:

k-1
(k) - | )‘%

(9)

— Akt
n

i€ K
= z (Aktxn,min) 1—|

i
i=0

The selection of manual-human vehicles’ lane-changing
gap is dynamic, which has great interference to CAVs
trajectory planning. If CAVs are blindly conservative or
aggressive, it is easy to cause vehicle collisions. Therefore, the
acceptable gap acceptance model proposed in this paper can
provide an important technical means for MCL identifica-
tion of CAVs, which provides a guarantee for traffic safety in
mixed-traffic flows.

4.4. MLC Execution. Two conditions should be met for the
successful implementation of MLC: the driver has the MLC
intention and the target lane has an acceptable gap. When
both conditions are met, the vehicle can successfully change
lanes to the target lane. Suppose the driver has the intention
to change lanes which is event A, and there is the acceptable
gap in the target lane which is event B. According to the lane
change intention model and headway distribution model

proposed previously, the MLC probability density function
can be obtained:

P(x,) = P(AB) = P(A)P(B),
_(xn B di)a
S¥(By + BN + ByA; +B3A,) " (10)

[ -, (A (ta/S)x,)""
J (t4/9)x, Ae (k-1 ~

P(x,) = eXp[

where P (x,) is the probability density function of MLC in
the weaving area. This model can predict the lane-changing
behavior for advanced driver assistance system (ADAS) to
avoid crash and trajectory planning [27, 28].

5. Case Study and Models Verification

5.1. Scenarios and Data Description. The NGSIM trajectory
data is obtained by the US Federal Highway Administration
(FHWA) for the purpose of conducting the “Next Gener-
ation Simulation” program [33]. The data is collected by the
high-altitude camera to capture the vehicle’s driving process,
and then the video processing software is used to restore the
precise position of each vehicle in the study section at 10
frames per frame or 15 frames per second. This paper uses
the data of the US-101 highway section in NGSIM. The
length of the detected section is 640 meters and there are five
lanes. In addition, it also includes a couple of ramps and an
auxiliary lane. The effective data is obtained by processing
the trajectory data, as shown in Table 1. The road segment
diagram is shown in Figure 4.

It can be seen from the figure that the segment has a
weaving section and the collected trajectory data is complete.
157 cars which have finished MLC were extracted from the
data.

5.2. MLC Analysis and Models Verification

5.2.1. MLC Intention Model. In order to accurately capture
the driver’s intention to change lanes and to verify the re-
liability of the MLC intention model proposed in this paper,
we extracted some trajectory in free flow. That is, there are
no vehicles in auxiliary lane (lane 6) during this period. As
shown in Figure 5, in the absence of other vehicle inter-
ferences, lane-changing positions are mainly concentrated at
140-200 meters from the downstream. There are few ve-
hicles that choose to change lanes at the end of lane 5. The
reason for this phenomenon is that drivers with MLC de-
mand tend to enter lane 6 as early as possible to relieve
pressure. While A, =0, the MLC intention model is as
follows:

_(xn _di)w
S¥(By + BN +BoA) |
(11)

As shown in Figure 6, the curve represents the rela-
tionship between ¢ and x,,, and the histogram represents the

¢(x,[1,=0,i=1)=exp
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frequency at which all vehicles change lanes at x,, during the
detection period. The fit of the model proposed is 92.3%,
which can more accurately describe the intention of the

driver to change lanes.

5.2.2. Gap Acceptance Model. When there is no vehicle in
front of the subject vehicle within the detection section, the
default ID of the vehicle in front is “0,” and the headway is
also “0.” Although the headway is zero in data, but the actual
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headway is large. To this end, we divide the headway into two
parts. The first part is that there is a certain headway, and the
other part is “0.” Therefore, the driver’s acceptable headway
is divided into two parts t =0 or t >1,:

0<t< Ly min

(12)

{ Refuse changing lanes,

Acceptchanginglanes, t=0ort>f, .,
where t denotes headway.

This paper uses the Erlang distribution to fit the lane
headway of lane 6, as shown in Figure 7. It is found that the
frequency of the headway is zero, accounting for 43%, which
indicates that the weaving zone is in good operating con-
dition. When k = 2, the Erlang distribution function fits
better to the headway of lane 6 (Figure 8).

The driver’s acceptable gap is related to the driver’s own
driving style and is also related to the distance from on-
ramp. The vehicle headway (¢, ,..)-distance (x,) scatter
plot is drawn by collecting the headway data at the time of
the vehicles change lanes. Vehicles mainly change lanes
within 150-200 meters. As the distance decreases, the range
of the headway is also reduced. They conform to the fol-
lowing relationship:

to <t,<t =5.e(72%), (13)

X_max

5.2.3. MLC Positions Distribution. In this paper, the local
coordinates of the MLC lane-changing positions are col-
lected in weaving section of US-101 highway. The trajectory
scatter plot (Figure 9) and heat map (Figure 10) of the lane
change position are drawn according to the local coordinates.
Lane 6 starts at 636.7 feet and ends at 1333.8 feet, respectively.
As can be seen from the two figures, lane change points are
mainly concentrated in the range of 650-750 feet in the
horizontal coordinate. Drivers tend to change lanes at the
front of weaving area to lane 6 which can eliminate the
pressure of lane change, instead of choosing lanes after
measuring lane utility. This indicates that there is a trace to
follow when the vehicle chooses to change lanes. And the rule
of driver changing lanes can provide important guidance for
CAVs lane-changing recognition to avoid collision.

According to the MCL probability density function
proposed in this paper, the following formula can be
obtained:

P(xn) = (p(xn/txn 2 Tx_ min) -G (h 2 tx) >

t —(x,—d) 2),t
=(1+A —dxn>exp[ = -2y,
( 2 Bo + BN + oAy + Bsh, S

(xn _d) ]
Bo+ BN +BA |

+ 0.43 - exp [

(14)

where P (x,) represents MLC probability density function
and 0.43 in the model represents the proportion when the
headway is zero, as shown in Figure 7. It can be seen from
Figure 11 that the model proposed in this paper can
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traditional model, the proposed models explore the vehicle
lane-changing process from the driver’s level, which is more
explanatory and expandable. It can provide the basis for
CAVs vehicle to change lane recognition in heterogeneous

The data used to support the findings of this study are
available from the corresponding author upon request.
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FIGURE 11: Histogram of lane-changing position.

accurately describe the drivers’ selection trend of the lane-
changing timing in the weaving section. But there is a
difference in a part at x, >200 meters for the reason that
when establishing the MLC pressure model, this paper as-
sumes that the pressure of the lane change is inversely
proportional to the intention which makes the default op-
timal position of changing lanes be at front position of the
auxiliary lane. However, when the pressure accumulates to a
certain value, the MCL intention reaches the maximum
value. How much pressure the driver generates is needed to
be studied; the MCL intention will reach the peak.

6. Conclusion

Inspired by the principle of discretionary lane change
models, this paper proposes a method based on driver’s
psychological pressure to analysis MLC. The main factor for
driving the driver to DLC is the lanes’ utility, and the main
factor for driving the driver to MLC is the lane-changing
pressure. Therefore, this paper proposes a new concept
named lane-changing pressure to analyze the MLC stages.
And obtaining the following research results, (1) the MLC
pressure model is proposed by leading in the lane-changing
pressure from the distance of the off-ramp. (2) Based on the
MLC pressure, an MLC intention model is proposed, which
describes the driver’s preference for lane-changing positions
in the weaving section. (3) By researching the driver’s MLC
intention and the probability of acceptable gaps, an MLC
positions probability density function is proposed.

It is verified that the proposed models can objectively
describe the characteristics of the lane-changing process in
the weaving section by the NGSIM data. Compared with the
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Vehicular collision and hazard warning is an active field of research that seeks to improve road safety by providing an earlier
warning to drivers to help them avoid potential collision danger. In this study, we propose a new type of a collision warning system
based on aggregated sectional information, describing vehicle movement processed by a roadside unit (RSU). The proposed
sectional information-based collision warning system (SCWS) overcomes the limitations of existing collision warning systems
such as the high installation costs, the need for high market penetration rates, and the lack of consideration of traffic dynamics. The
proposed SCWS gathers vehicle operation data through on-board units (OBUs) and shares this aggregated information through
an RSU. All the data for each road section are locally processed by the RSU using edge computing, allowing the SCWS to effectively
estimate the information describing the vehicles surrounding the subject vehicle in each road section. The performance of the
SCWS was evaluated through comparison with other collision warning systems such as the vehicle-to-vehicle communication-
based collision warning system (VCWS), which solely uses in-vehicle sensors; the hybrid collision warning system (HCWS),
which uses information from both infrastructure and in-vehicle sensors; and the infrastructure-based collision warning system
(ICWS), which only uses data from infrastructure. In this study, the VCWS with a 100% market penetration rate was considered to
provide the most theoretically similar result to the actual collision risk. The comparison results show that in both aggregation and
disaggregation level analyses, the proposed SCWS exhibits a similar collision risk trend to the VCWS. Furthermore, the SCWS
shows a high potential for practical application because it provides acceptable performance even with a low market penetration
rate (30%) at the relatively low cost of OBU installation, compared to the VCWS requirement of a high market penetration rate ata
high installation cost.

1. Introduction

Roadway safety is one of the most critical issues that re-
searchers have studied to improve safety and reduce fatal-
ities. Previous research has demonstrated a causal
relationship between driver inattention, close distance be-
tween vehicles, and car accidents [1, 2]. In addition to the
effects of driver inattention, the limits of human cognitive
abilities, especially near curves or intersections, have also
been found to be a causal factor in many accidents. Many
studies have accordingly developed systems to prevent

accidents and mitigate their consequences by adopting
advanced technology, such as the advanced driver assistance
system (ADAS) [3] and cooperative intelligent trans-
portation service (C-ITS), based on sensor technologies,
vehicle-to-vehicle (V2V) communication, and vehicle-to-
infrastructure (V2I) communication [4].

An ADAS is designed to mitigate the severity of an
accident and prevent it if possible by supporting the driver’s
abilities to avoid it. The forward collision warning system or
forward collision avoidance system is the most extensively
studied type of ADAS and is mainly based on in-vehicle
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sensors [3, 5-9]. An ADAS contributes to improving vehicle
safety by providing a warning signal to the driver and au-
tomatically activating the braking system in an emergency
situation [10]. However, many current implementations of
ADAS have a limited ability to completely prevent an ac-
cident. First, due to the limited field of view of distance
sensors, the detection ability of an ADAS is degraded in
some situations such as near curves, hills, or intersections
[11]. Second, an ADAS requires a high installation cost to
provide sufficient accuracy with a large field of view
[5,12, 13]. In other words, sensors that can detect the activity
of other vehicles at a sufficient distance to prevent an ac-
cident considering driver reaction times and Vehicle speed
can be too costly to widely penetrate the market. Many
ADAS implementations therefore use in-vehicle sensors to
produce warning signals based on information from a
limited range of up to 100 or 150 meters from the vehicle
[14]. However, this range may not be sufficient to anticipate
a possible collision risk arising from traffic further down-
stream from the subject vehicle in time for the driver to
safely conduct necessary actions to prevent a dangerous
situation, especially in a free flow traffic state. By the time the
limited range of these in-vehicle sensors finally detect danger
downstream, an abrupt and potentially late warning may be
issued as the necessary information cannot be updated in the
system in time.

The C-ITS is designed to improve vehicle safety using a
combination of V2V communication and V2I communi-
cation. In a C-ITS, connected vehicles (CVs) equipped with
on-board units (OBUs) communicate safety-related infor-
mation such as vehicle speed, vehicle acceleration, traffic
signals, weather conditions, and steering status to each other
and obtain road condition information from a roadside unit
(RSU). This system can use these data to provide a warning
signal to the driver when a hazardous event occurs down-
stream, such as an accident, road work, or a slow-moving or
stopped vehicle. By allowing the driver to react to an up-
coming hazardous situation in advance, a C-ITS can reduce
the frequency and severity of accidents.

Due to the tremendous potential of the C-ITS approach
for improving vehicle safety, various types of collision and
hazard warning systems have been proposed and tested in
the United States, Europe, Japan, and South Korea, including
curve warning, right turn warning, and slow vehicle warning
systems [15, 16]. The collision and hazard warning systems
applied by a C-ITS can be classified as V2V communication-
based or V2I communication-based according to the
communication method. A V2V communication-based
system is based on safety messages generated from the OBUs
contained in vehicles. Representative V2V applications in-
clude forward collision warnings in the United States [17]
and in South Korea [16], as well as emergency electronic
braking lights [18] and precrash/postcrash warnings [19] in
Europe. A V2I communication-based system provides a
warning signal to the driver based on information generated
by and transmitted from an RSU. In this system, accidents
and hazardous events are detected by roadside sensors using
technology such as lidar, radar, and cameras [20, 21].
Representative V2I applications include queue warnings
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[22] in the United States, hazardous location notifications
[16] in South Korea, and traffic jam ahead and stationary
vehicle notifications [19] in Europe.

In previous research and predeployment projects, C-ITS
applications have shown good safety performance and
considerable potential in terms of accident reduction and
improvement of user comfort [16, 18, 23]. However, a C-ITS
requires a high market penetration rate of OBUs to realize a
high quality of service or justify the high RSU installation
cost. Additionally, the performance of a C-ITS may be
considerably hindered by the communication latency of the
connected sensors.

Collision warning systems based solely on data collected
by infrastructure without OBUs, known as infrastructure-
based collision warning systems (ICWS), have also been
studied [24, 25]. These systems determine collision risk using
only information from road infrastructure to provide a
warning signal to drivers. This system has advantages such as
easy implementation and fully utilization of legacy trans-
portation systems. However, this system is of limited use as a
practical warning service to drivers because it cannot pro-
duce a personalized collision risk for each driver. Specifi-
cally, the utility of the data acquired by road infrastructure
may be hindered by an averaging effect that only produces
an aggregate value for a vehicle population in a given link
when this data is created by, for instance, a wide distribution
of speeds and acceleration. Even if the vehicle population
within a given link is smoothly distributed with speeds
similar to that of the subject driver, a small number of
aggressive drivers that constitute a minority of the entire
population in the link may disrupt the stability of the vehicle
population and pose a serious danger to the subject driver.
Accordingly, the hybrid collision warning system (HCWS)
has been proposed to overcome such limitations of the
ICWS [26, 27]. These hybrid systems use information that
represents each road section together with information from
individual vehicles. However, they also possess a limited
ability to produce highly accurate collision risks for each
vehicle in a link. Collision warning systems solely based on
V2V communication may offer a solution to this weakness;
however, the success of such V2V-based collision warning
systems (VCWS) is contingent upon a high market pene-
tration rate in order to provide reliable communications, as
mentioned above.

Previously proposed collision warning systems must
overcome several limitations before they can be widely used.
Collision warning systems based on in-vehicle sensors such
as ADAS have a limited field of view, resulting in a weakness
in detecting danger arising from downstream areas. Addi-
tionally, the application of ADAS is limited due to its high
installation cost. Collision warning systems based on in-
frastructure only acquire averaged data from their target
road links; thus, they lack detailed information describing
individual drivers in a calculation that may be critical in
disturbing the link stability. Communications-based colli-
sion warning systems, also known as CV technology, can
overcome the limitations of the in-vehicle sensor-based
collision warning systems by transmitting microscopic in-
formation such as vehicle speed, location, and angle to
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surrounding vehicles. This system can quickly and cost-
effectively determine the collision risk arising in a down-
stream area by utilizing information from neighboring ve-
hicles and infrastructure. However, this system requires a
high market penetration rate of OBUs and highly reliable
information obtained from roadside infrastructure. Failure
to meet these requirements leads to a low performance of
communication-based collision warning systems. Indeed,
collision warning information generated from roadside
detection systems is yet not reliable as they are still being
developed for commercial use.

To provide a satisfactory and reliable warning service
under a lower market penetration rate, in this study we
propose the sectional information-based collision warning
system (SCWS). The proposed SCWS estimates the move-
ment of surrounding vehicles using sectional traffic infor-
mation gathered from OBUs in each vehicle. This information
is then gathered and distributed using edge computing
technology installed in RSUs. This system was designed to
meet three objectives. First, the proposed collision warning
system must achieve high warning signal accuracy under a
relatively low market penetration rate. Second, by actively
utilizing information from the OBUs in CVs, the system
should be implemented at a lower installation cost compared
to sensor-based collision warning systems. Third, the system
must have the ability to consider the dynamic changes in
surrounding traffic status and collision risk of the subject
vehicle. The following sections describe and evaluate the
proposed SCWS according to these objectives.

2. Sectional Information-Based Collision
Warning System

n this paper, we propose the SCWS, which estimates the
collision risk of a subject vehicle based on data gathered from
the OBUs of the CVs in each road section. This system
provides a warning signal to the driver when the vehicleisin a
dangerous situation, such as a high collision risk. Unlike the
VCWS, in which vehicles directly communicate and transfer
in-vehicle information such as the exact location, speed, and
acceleration of the leading vehicle to each other, the SCWS
calculates the collision risk on its own by combining the data
from the subject vehicle such as speed and acceleration with
data acquired from RSUs. This system only shares the rep-
resentative information for each road segment from the RSU,
which describes the surrounding traffic state that the subject
vehicle will experience in the immediate future.

The proposed SCWS calculates the collision risk of the
subject vehicle using the surrogate safety measure [28]. This
measure is a safety performance indicator that represents the
accident risk based on microscopic traffic parameters such as
speed, space headway, and acceleration. In the following
sections, we describe the surrogate safety measure used to
calculate collision risk in the proposed SCWS.

2.1. Measurement for Collision Risk Calculation. The sur-
rogate safety measure is a widely used method for calculating
the collision risk of a subject vehicle, and many safety

surrogate measures have been proposed by researchers such
as the time-to-collision and stopping distance index [29-31].
Among these various safety surrogate measures, the decel-
eration-based safety surrogate measure (DSSM) was applied
in this study [28]. This measure reflects the mechanical
performance of individual vehicles, such as braking per-
formance and maximum acceleration rate, as well as per-
sonal driving behavior, such as jerk and transition time, with
higher hazard detection accuracy than other surrogate safety
measures [32, 33]. The equations governing the DSSM are as
follows:
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where a,, (t) and a,,_, (t) are the respective acceleration rates
of the subject vehicle and leading vehicle at time ¢, b, ,
and b, , | are the respective maximum braking perfor-
mances of the subject vehicle and leading vehicle, v, (¢) and
v,_; (t) are the respective speeds of the subject vehicle and
leading vehicle at time ¢, v, (t + 7) is the expected speed of
the subject vehicle after 7, x,(t) and x,_, (t) are the re-
spective locations of the subject vehicle and leading vehicle
at time t, L, and L,_; are the respective maximum varia-
tions of acceleration of the subject vehicle and leading
vehicle, s,_; is the length of the leading vehicle, and b,, (t) is
the required deceleration rate of the subject vehicle to avoid
an accident at time t.

In equation (3), DSSM estimates the collision risk using the
ratio of the required deceleration rate to the maximum braking
performance of the subject vehicle. The required deceleration is
determined as the minimum deceleration rate required to
avoid an accident when the leading vehicle reduces its speed at
its maximum deceleration rate. The maximum braking per-
formance of the subject vehicle depends on its braking ca-
pabilities. By dividing the required deceleration rate by the
maximum braking performance, the DSSM can estimate a
customized collision risk for any subject vehicle.

2.2. SCWS Architecture. 'This study constructed the SCWS
based on equations (1)-(3). Figures 1 and 2 show the
configuration and data flow of the proposed SCWS. As seen
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Figure 1: Configuration of the proposed SCWS.
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FiGUure 2: Data flow of the proposed SCWS.

in Figure 1, the SCWS consists of three parts: (1) a distance
sensor such as a radar sensor or vision sensor, (2) an RSU,
and (3) an OBU. Using the distance sensor, the distance
between the subject vehicle and the leading vehicle is esti-
mated every 0.1 seconds and transmitted to the OBU. Four
functions are implemented within the OBU. First, it gathers
the sensor data from the subject vehicle, such as speed,
acceleration, jerk, and preferred braking performance, in
real-time. Second, it uploads these data to the RSU, which
calculates the representative values for each road segment

using edging computing. Third, the OBU downloads the
representative traffic-related values for the road segment
from the RSU, which is regarded as describing the leading
vehicle, to calculate the collision risk using the driving data
from the subject vehicle. Fourth, the estimated collision risk
is displayed on the screen of the OBU, which provides
appropriate warning signals to the driver through audio and
visual indicators.

The data from individual drivers on the subject road
segment is processed by the RSU as shown in Figure 3, which



Journal of Advanced Transportation

Road segment j

Road segment j + 1

S UL IR ) R ) | DR s w0
R R T S R B R e
!

p— - - .’ o
(e (€ D! RO O d ) j_m o m)
~. ) i , - 7
\\\\‘\ \\\\ \\\ ,Il / //// ///’//

\\\\ \\\ \\ I // /// //,

\\\\ S ‘e v K - .-
el T Vol
T RSC LT

-

Road Space Speed Acceleration Jerk Braking
seoment 1D headway (m/s) (m/s?) (m/s%) Performance
’ (m) (m/s?)
j 0001 150 20 -5 2 10

j 0002 200 27 6.1 4 10

j 0003 80 15 48 -3 12
j+1 001 70 12 5 3 11
j+1 002 50 20 4 ) 10

FIGURE 3: Concept of data gathering method applied in the proposed SCWS.

demonstrates the major point of differentiation between the
SCWS and previously proposed collision warning systems
[13, 34-36]. In previously proposed collision warning sys-
tems, especially the VCWS, the exact location of the leading
vehicle and detailed information describing its operation
(e.g., acceleration and speed) are required. These require-
ments necessitate a highly reliable communication system
and high market penetration rate of various in-vehicle
sensors and communication devices [13, 34-36]. However,
in the proposed SCWS, the information describing the
surrounding vehicles is gathered in a representative form as
shown in Figure 3. The data collected from each road
segment is regarded as the leading vehicle information used
in equations (1)-(3) for each subject vehicle and is calculated
as follows:

YNV (1)
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W () =2 i) ©)
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where v L (t) is the speed of the leading vehicle in road
segment j contalmng a total of N7 (t) sample vehicles at time
t, v/ is the speed of the ith vehicle in road segment j at time £,
al_, (t) is the acceleration of the leading vehicle in road

segment j containing a total of N/ (¢) sample vehicles at time
t, al is the acceleration of the ith vehicle in road segment j at
time ¢, h)_, (¢) is the space headway of leading vehicle in road
segment j containing a total of N/ (t) sample vehicles at
time #, and /! is the space headway of the ith vehicle in road
segment j at time £.

As shown in equations (4)-(6), the SCWS does not re-
quire any individual driving information from the sur-
rounding vehicles or a high market penetration rate to
provide road condition information, as is required by the
VCWS. Instead, the proposed SCWS calculates the collision
risk based on average data and the estimated traffic situation
in each road segment. This method is intimately linked with
previous research that claims that traffic state and changes are
closely related to collision risk and accident frequency
[37, 38]. Compared to other collision warning systems such as
the VCWS and ADAS, which respectively require a high
market penetration rate and a high installation cost, the
SCWS can be efficiently applied in practice because the cost of
an OBU is much lower than the installation cost of an ADAS.

3. Case Study

3.1. Benchmark Models. To evaluate the proposed SCWS, its
performance was compared with that of three other collision
warning systems, the VCWS, HCWS, and ICWS. The VCWS
uses information from the in-vehicle sensors of both the
subject vehicle and the surrounding vehicles through V2V
communication. The HCWS uses information from both



infrastructure and in-vehicle sensors. The ICWS uses only
data from road infrastructure.

The VCWS is the most advanced collision warning
method and as such is able to calculate the most accurate
collision risk between the subject and leading vehicles under
the assumption that all information describing the leading
vehicle can be shared with adjacent vehicles through a novel
V2V communication technology [27]. Thus, it is regarded as
the ideal system in this paper. The collision risk using VCWS
was calculated with equations (1)-(3).

The HCWS has been proposed as an improved collision
warning system by providing higher stability than a collision
warning system based solely on in-vehicle sensors when
implemented before VCWS technologies have a sufficient
market penetration rate. The HCWS estimates the sur-
rounding traffic situation of the subject vehicle and hy-
bridizes this estimated data with in-vehicle sensor data to
calculate the collision risk [27]. The HCWS extracts rep-
resentative values describing the traffic situation on the road
segment using macroscopic traffic variables such as density,
flow, and speed collected from loop detectors, as opposed to
the use of microscopic driving data to do so in the SCWS.
The representative values for each road segment and the
associated collision risk are calculated in the HCWS using
the following equations:

2
bmax,Subject ’ [VSubject (1) + ASubject () T]
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[2 : K : bmax,Subject + VLeader (t) ]
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where bgpie. (£) is the required deceleration of the subject
vehicle, Vubject (t) is the speed of the subject vehicle at time t,
ALg;dr;r (t) is the estimated acceleratlon of the subject vehicle
based on infrastructure data, V7 eya drelr (t) is the estimated
velocity of the subject vehicle based on infrastructure data,
brnax subject 1S the maximum braking performance of the
subject vehicle, Jgpjec is the maximum variation of subject
vehicle acceleration, DSSMér&%;th (t) is the collision risk of the
subject vehicle at time £, V1™ (¢) is the average speed at
detector i over 30's, HM™ js the average spacing at detector i
over 30s, and ASubJect(t) is the acceleration of the leading
vehicle at time t.

The ICWS is a collision warning system solely based on
the macroscopic information collected by road sensors such
as loop detectors [27]. The collision risk is calculated in the
ICWS using the following equations:

2
Infra (t) _ _max [Vzlilira (t) + AInfra (t) . T] (12)
[2 K- bmax ,Subject + V}E{ra (t)z]

K=-H""+[2.

1
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[21 +(AT () + by, )—( i g )

T
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7
+ [vinf“ (/2 + A" (7). % H(AT () 4 b,)
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4] J ’
(13)
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where b%“fr"‘ (t) is the required deceleration for infrastructure
section 1, A%“f“‘(t) is the estimated acceleration for infra-
structure section i, b, is the representative maximum
braking performance for all vehicles, J is the representative
value for maximum variation in acceleration, and
DSSMlI»“fra (t) is the risk of collision in infrastructure section i
over 30 s starting at time t.

3.2. Evaluation Method. To evaluate the different collision

warning systems, the collision risk was calculated using the
DSSM (t) for the VCWS and SCWS, DSSM 2 (¢) for the
HCWS, and DSSMInfra (t) for the ICWS. When calculatmg
the collision risk, a maximum deceleration rate of —3.96 m/s”

(~13 ft/s*) was assumed, extracted from the top 1% of the
cumulative distribution of decelerations at the study site and
representing the driver’s maximum allowable value with
reference to previous work [28]. Other required microscopic
information describing vehicle movements, such as location,

speed, space headway, and acceleration, as well as
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macroscopic information (e.g., flow, density, and speed) was
directly extracted from next generation simulation (NGSIM)
trajectory data collected at highway US-101 in California, the
United States, between 07 : 50 am and 08 : 35 am on June 15,
2005 [39]. The V2V and V2I communication delay was set to
0.1's and data processing time was set to 0.1's [40].

The performance of the proposed SCWS was obtained by
calculating the collision risk based on averaged data col-
lected from roadway vehicles by an RSU and microscopic
data from the subject vehicle using equations (1)-(6). The
performance of the ICWS was obtained by calculating the
collision risk based only on the macroscopic data obtained
from the road detection system using equations (12)-(15).
The performance of the HCWS was obtained by calculating
the collision risk based on both macroscopic data from
infrastructure and microscopic data from the subject vehicle
using equations (7)-(11). The performance of the VCWS was
obtained by calculating the collision risk based only on the
microscopic data from neighboring vehicles and the subject
vehicle using equations (1)-(3). Table 1 provides details of
the data sources and aggregation levels of the ICWS, HCWS,
SCWS, and VCWS.

To evaluate the performance of the proposed SCWS, the
collision risk estimated by the four systems was compared at
two levels: the aggregation level and disaggregation level. In
the aggregation level analysis, the average collision risks
determined by the four systems were compared over 30s.
The performance of the collision warning systems at this
level reflects their suitability for application as a macroscopic
road control system, such as setting variable speed limits,
variable message signs, and collision warnings for road
sections with multiple links. In the disaggregation level
analysis, the collision risks of the four systems are plotted in
0.1s intervals, and the root mean square errors (RMSE) of
the ICWS, HCWS, and SCWS are calculated under the
assumption that the VCWS with 100% market penetration
rate produces the most ideal estimation of collision risk.

4. Experiment Results

4.1. Comparison of Collision Warning Systems. Figure 4
shows comparisons of the RMSE values for the VCWS
and ICWS, the VCWS and HCWS, and the VCWS and
SCWS for three different cases, assuming that the results of
the VCWS are the ideal values. It can be observed that,
among the other collision warning systems, the SCWS
provides the most similar performance to the VCWS: the
RMSE of the SCWS is lower than that of the ICWS and
HCWS. The average RMSE value of the SCWS when
compared to the VCWS of 0.27 may initially seem too large
to accept the former as a replacement for the latter. However,
the difference in the results of the two systems may be at-
tributed to the difference in the absolute quantity of the peak
values of the VCWS and SCWS, as shown in the following
results. When the warning threshold values for the two
systems are adjusted, this difference may decrease and the
potential for the SCWS to replace the VCWS may be even
greater when the market penetration rate of the VCWS is
low.

Figure 5 shows two examples of the calculated collision
risk under the four different collision warning systems at
the aggregation level. In both examples, the ICWS and
HCWS underestimate the collision risk compared to the
SCWS and VCWS because they average the speed, ac-
celeration, and distance between vehicles. In terms of
warning timing, the ICWS occasionally produces a later
warning signal than the other collision warning systems.
This late warning could be due to the system delay inherent
to the ICWS due to the preprocessing of big-data sets and
the data acquisition process. This delay in warning signal
could be critical as a late signal could fail to prevent an
accident, degrading the reliability of the collision warning
system.

In contrast to the ICWS and HCWS, the collision risk
estimated by the SCWS shows similar trends to that
estimated by the VCWS: the low peaks and high peaks of
the estimated collision risk occur at almost the same time.
The similar timing and magnitude of estimated collision
risk indicate that the SCWS has the potential to be used
instead of the VCWS by simply replacing the actual
leading vehicle’s information with the average data from
vehicles sampled on the road segment. Moreover, the
SCWS can detect dangerous situations earlier than the
VCWS in some cases. A possible reason for this is that the
area across which the SCWS can gather data is larger than
the collection range of the VCWS. To produce a collision
risk between the leading vehicle and subject vehicle, the
VCWS only considers the movement data from the
leading vehicle, so only imminent risk is identified by the
VCWS. However, the SCWS uses data gathered from
multiple vehicles traveling along the same road section,
allowing it to produce estimates of upcoming collision
risk arising downstream based on the overall data and
react to an impending collision risk faster than the
VCWS.

Figure 6 shows a disaggregation level comparison of
the collision risks estimated by the four different collision
warning systems for a car-following example. Note that
the ICWS shows a constant value for collision risk over a
plot of 0.1's time intervals, as it only provides collision
warnings using 30s averaged data. Thus, the ICWS
produces a collision risk for the entire road segment, not
for individual drivers. However, the SCWS, VCWS, and
HCWS provide collision risks for individual vehicles and
all generally show very similar trends except at several
points in Figure 6(a). The difference in the values of the
collision risk estimated by the SCWS and HCWS is due to
the difference in the estimated velocity of the leading
vehicle, as shown in Figure 6(c), in which the SCWS
produces a leading vehicle speed somewhat similar to that
determined by the VCWS. The differences between the
SCWS and VCWS shown in Figure 6 are caused by the
slight underestimation of collision risk using the SCWS
due to the higher estimated speed of the leading vehicle.
Overall, however, the SCWS shows a similar performance
to the VCWS, especially when the leading vehicle exhibits
a similar driving behavior to the surrounding traffic
condition.
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TaBLE 1: Data source for four collision warning systems.
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FiGURE 4: RMSE between the VCWS and the ICWS, HCWS, and
SCWS for three cases.

5. Verification of SCWS Applicability

The proposed SCWS is based on the gathered data from the
OBUs of the vehicles on the road, so the accuracy of this
system will vary considerably according to different market
penetration rates. To apply the SCWS in practice, the effect
of market penetration rate on the collision warning accuracy
must be understood. Figure 7 shows the results of this
analysis. In all cases, the RMSE of the SCWS decreases as the
market penetration rate increases, but the rate of decrease is
different depending on the market penetration rate. When
the market penetration rate less than 30%, the RMSE is
significantly reduced with greater market penetration rate;
when the market penetration rate is greater than 40%, the
rate of decrease of the RMSE is slower and nearly constant
with greater penetration rate. These results thus indicate that
in practical application, the proposed SCWS can be effec-
tively implemented with an approximately 30% market
penetration rate. In other words, with an approximately 30%
market penetration of vehicle OBUs, the proposed SCWS
can provide similar performance to the VCWS with a 100%
market penetration rate.

The proposed SCWS relies on edge computing in the
RSU to gather and distribute the data among the OBUs. This
system has enormous potential for data sharing but is also
potentially limited in application as a collision warning
system due to the possible time delay required for data

transmission. To demonstrate the effects of this limitation on
the practical application of the proposed SCWS, the effect of
time delay on the accuracy of the SCWS was analyzed as
shown in Figure 8. On average, the RMSE between the
VCWS and SCWS slightly increases as the time delay in-
creases from 0.2s to 2s. However, this increase in RMSE
between the VCWS and SCWS is insignificant in all cases.
This result accordingly shows that the SCWS is robust to the
issues of time delay.

6. Conclusion

In this paper, we proposed a sectional information-based
collision warning system (SCWS) that does not require
exact information from the leading vehicle (e.g., exact
location) but calculates the collision risks based only on
the sectional data from an roadside unit (RSU) gathered
using vehicle-to-infrastructure (V2I) communication. The
SCWS calculates the collision risk based on the deceler-
ation-based safety surrogate measure (DSSM), a mea-
surement of collision risk between two vehicles, and issues
a collision warning signal when the estimated value of
collision risk is higher than the threshold value. Unlike
previously proposed collision warning systems, in which
the subject vehicle must directly communicate with its
neighboring vehicles, the SCWS uploads the information
describing the subject vehicle’s operation (e.g., speed,
acceleration, and braking performance) to the RSU and
downloads the representative values for each road segment
through V2I communication. The main concept under-
lying the SCWS is that the downloaded data, which rep-
resents the surrounding traffic situation, indirectly
represents the status of the leading vehicle based on the
assumption that the collision risk of the subject vehicle is
significantly affected by the average movement of the
surrounding vehicles and the traffic state of the road
segment.

To demonstrate its capabilities, this paper compared the
performance of the SCWS with that of three other systems,
namely, the infrastructure-based collision warning system
(ICWS), hybrid collision warning system (HCWS), and
vehicle-to-vehicle communication-based collision warning
system (VCWS). The results of the comparisons indicate
that the SCWS produces a similar trend to the VCWS
(assuming a 100% market penetration rate) and that the
SCWS sometimes issues warning signals to the driver
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FIGURE 5: Aggregated level comparison of collision risk calculated using four different collision warning systems: (a) example 1; (b) example 2.
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FIGURE 6: Disaggregation level comparison of collision risks calculated using four different collision warning systems for car-following Case
1 in terms of (a) DSSM, (b) driving data, (c) estimated velocity, and (d) estimated acceleration.

earlier than the VCWS in the aggregation level. The earlier
warning signal issued by the SCWS is achieved through the
use of a wider area of gathered data because data down-
loaded from the RSU contains indirect information de-
scribing the traffic conditions on the road further
downstream. In the disaggregation level, the SCWS also
shows a similar trend to the VCWS at most points. The

observed difference between the SCWS and VCWS is
possibly caused by the slightly higher leading vehicle speed
estimated by the SCWS.

Furthermore, to demonstrate the practical application of
the proposed SCWS, the effect of market penetration rate
and time delay on the root mean square error when com-
pared to the VCWS was analyzed for three cases. The result
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shows that the collision risk estimated by the proposed SCWS
with a 30% market penetration rate is similar to the collision
risk estimated by the VCWS with a 100% market penetration
rate. This indicates that the proposed SCWS can overcome the
limitations of current connected-vehicle (CV) technology
requiring a high market penetration rate in order to produce
accurate warning signals [41]. Indeed, by applying the pro-
posed SCWS to current CVs, it appears possible to solve the
problem of system performance degradation during the early
stage of CV technology introduction.
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The approaches monitoring fatigue driving are studied because of the fact that traffic accidents caused by fatigue driving often have
fatal consequences. This paper proposes a new approach to predict driving fatigue using location data of commercial dangerous
goods truck (CDT) and driver’s yawn data. The proposed location data are from an existing dataset of a transportation company
that was collected from 166 vehicles and drivers in an actual driving environment. Six different categories of the predictor set are
considered as fatigue-related indexes including travel time, day of week, road type, continuous driving time, average velocity, and
overall mileage. The driver’s yawn data are used as a proxy for ground truth for the classification algorithm. From the six different
categories of the predictor set, we obtain a set of 17 predictor variables to train logistic regression, neural network, and random
forest classifiers. Then, we evaluate the predictive performance of the classifiers based on three indexes: accuracy, F1-measure, and
area under the ROC curve (AUROC). The results show that the random forest is more suitable for predicting fatigue driving using
location data according to its best accuracy (74.18%), F1-measure (62.02%), and AUROC (0.8059). Finally, we analyze the
relationship between fatigue driving and driving environment according to variable importance described by random forest. In
summary, our results obviously exhibit the potential of location data for reducing the accident rate caused by fatigue driving

in practice.

1. Introduction

The transportation volume of the CDT continues to rise
throughout the world with the rapid development of the
modern manufacturing and logistics industries [1]. Danger-
ous goods transportation has a high potential risk which refers
to the possibility of incurring traffic accidents with disastrous
consequences [2, 3]. For example, explosions in densely
populated areas or the release of toxic chemicals can lead to
casualties directly or indirectly through environmental deg-
radation [4]. Dangerous goods usually have characteristics,
such as flammable, explosive, volatile, easy-corrosive, and so
on. Thus, the transportation accidents involving dangerous
goods usually show the following features: unpredictability,
severe losses, and sudden and long-term effects [5]. When the

catastrophic accidents occur, the consequences cannot be
often controlled and lowered [6]. Therefore, the safety of
dangerous goods transportation has caught the attention of
the public, transportation companies of dangerous goods, and
decision makers and researchers within governmental and
nongovernmental safety organization [7, 8].

Fatigue driving is one of the main reasons for fatal traffic
accidents according to the causality analysis of traffic acci-
dents [9, 10]. Up to 20 percent of traffic accidents are caused
by fatigue driving [11-13]. Commercial truck drivers have
relatively long driving time and are more prone to fatigue.
Studies show that fatigue driving has been a major reason for
commercial truck accidents [14-16]. Fatigue driving of
commercial truck drivers increases the accident rate and leads
to severe property loss, injuries, and fatalities [17-20].
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Many previous researches have focused on the fatigue
driving problem of commercial truck drivers [21-25].
Various sources and types of real-time data have been used
in detecting driving fatigue. Physiological signals, being
continuously available, objective, and fairly direct indicators,
were often used to detect fatigue [26]. The electroenceph-
alogram (EEG) and electrooculogram (EOG) are often used
as a medium for detection [27-29]. However, EEG signals
are very susceptible to noise and movements of the body
[30]. EOG detection removes some problems of EEG; it only
gives reasons for a certain aspect of the degree of human
fatigue [28]. In addition, most physiological signal acqui-
sition devices need to contact the driver’s body, which may
interfere with the normal operation of the driver and affect
the driving safety. Thus, the alternative approaches without
contacting the driver’s body were developed using camera
and other driving data. Fatigue may affect driver’s behaviors
including face and body activities [31]. The ocular and eyelid
movements are often used to detect fatigue [32]. However,
the image acquisition device is expensive and easy to be
affected by the light. So, some other relative detection in-
formation was used to detect driving fatigue. The standard
deviation of lane position (SDLP) or steering wheel
movements are also often measured to detect the drivers’
fatigue [33-35].

The above studies mainly focus on real-time detection of
fatigue, which is a good approach to reduce the effects of
fatigue driving. However, it may be not enough. When the
fatigue is detected, the commercial driver is already on a
transport mission and is difficult to abandon the mission or
recover from a short rest [36]. If we can use historical data to
predict the fatigue status of drivers before a new transportation
mission, managers can select the drivers who are not prone to
fatigue to undertake the more heavy transportation task by
adjusting transportation plans. Fatigue driving is not only
related to the driver’s current driving, but also related to the
driver’s previous driving task intensity [37-39]. Long and
hectic work schedules will increase the odds of driver fatigue
[17, 21, 23, 25, 40-42]. Studies showed that the odds of driver
fatigue increased heavily as the continuous days of driving
increased [43, 44]. This might be a result of “accumulated
fatigue” among the drivers due to long and continuous days of
driving [44, 45]. The driver’s recent driving tasks and driving
environment can be used to predict the possibility of driver
fatigue. The results can provide accurate information for
driving tasks arrangement and early driver fatigue
intervention.

The primary objective of this study is to propose an
approach for predicting driver fatigue using character-
istics of driver’s recent driving task and driving envi-
ronment extracted from location data and then use these
characteristics to predict the possibility of driver fatigue.
At present, studies focused on prediction of fatigue
driving have emerged [26, 46, 47]. However, to the best
knowledge of the authors, the approaches to predict fa-
tigue using drivers’ recent driving task and driving en-
vironment characteristics extracted from location data are
yet to come. The contributions of this paper can be
summarized as follows:

Journal of Advanced Transportation

(1) Previous studies mainly used real-time data from
drivers or vehicles to detect fatigue, but few studies
used the historical data. In addition, previous studies
have suggested that fatigue driving is intimately
related to the driver’s previous driving task intensity
[37-39]. The proposed approach predicts fatigue
driving using the drivers’ recent driving task and
driving environment characteristics

(2) There have been studies on the prediction of fatigue
driving [26, 46, 47]; however, most studies focus on
short-time forecasting. Few studies research on long-
term prediction methods, specifically on commercial
dangerous goods truck (CDT). At present, there is no
research on prediction of fatigue driving of CDT
within the scope of our literature review. The pro-
posed approach can use the location data of CDT to
predict fatigue driving of CDT

(3) At present, most studies on the prediction of fatigue
driving mainly use physiological and behavioral in-
dicators. However, physiological and behavioral
measurements may interfere with the driver’s normal
driving, and the corresponding detection devices are
relatively expensive and inconvenient to carry, which
brings some difficulties to the future popularization
and application of real driving conditions. To the best
of our knowledge, there has not been a solution that is
noninvasive and accurate. The proposed approach
uses the location data of CDT to predict fatigue. The
location data of CDT are available in many countries,
so using location data makes the approach very
scalable. In China, all CDTs are equipped with satellite
positioning system and the data are uploaded to the
national management system. However, we have not
found any research on predicting fatigue driving using
location data. The proposed approach is established
based on six different categories of the predictor set
only using raw location data

The paper is organized as follows. Section 2 details the study
dataset. The overview for the methodology is described in Section
3. The obtained results are presented and discussed in Sections 4
and 5. Finally, conclusions to the paper are provided in Section 6.

2. Data

2.1. Data Description. We obtained data from the database of
a transportation company in the south of China that currently
comprises more than 200 CDTs. It has more than 580 drivers
and more than 250 managers. The registered capital of the
company is about 8 million dollars, with total assets of 32
million dollars. Each vehicle was equipped with devices which
contains a GPS sensor, yawn detecting camera, and wireless
transmission system. Because of the privacy restrictions of the
database, we only took the location data and yawn data from
the company’s 166 CDT for 11 months in 2017. The location
data were updated every 10 seconds, containing vehicle’s plate
number, speed, latitude, longitude, direction and location
address, and time stamp. The yawn data included the vehicle’s
plate number and the specific time of yawning.
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The mileage can be calculated from latitude and longitude
data. Continuous driving time can be obtained using the time
stamp and speed which is used to judge whether the vehicle is
driving or not. The road type containing urban roads, highway
except freeway, and freeway can be obtained using GIS systems.
Some data were rejected due to the following reasons:

(i) The error in the data (e.g., the error in time or speed
makes it impossible to accurately determine
whether the vehicle is driving.)

(ii) Failure of the GPS sensor for a long time, so that the
location data were not available

(iil) Failure of the yawn detecting device for a long time,
so that the yawn data were not available

(iv) Too much location data were interrupted due to
signal blocking (e.g., too much data of the latitude
and longitude are interrupted, so that excessive
mileage cannot be accurately calculated)

These cases finally led to a reduction of the location data
by 5 vehicles to 161. The outliers were not further eliminated
because we believed that their impact on the prediction
results was insignificant due to the large data size.

2.2. Predictor Variables. The predictor variables are derived
from raw location data. Traffic safety researchers have inferred
some risk factors related to fatigue from observed-accident
statistics, such as travel time, average velocity, mileage, road
type, and so on [48, 49]. In addition, studies have shown that
the risk factors such as travel time, average velocity, road type,
and driving environment have significant impact on truck
safety [50-52]. According to these risk factors, we designed six
different categories of the predictor set including travel time,
day of week, road type, continuous driving time, average
velocity, and overall mileage. By accumulating mileage be-
tween every adjacent two data points of CDT, overall mileage
M of each CDT can be calculated using latitude and longitude.
Continuous driving time is an important index for predicting
driver fatigue, so we take the average continuous driving time
and the longest continuous driving time (C1-2) to measure
driving time. Except for overall mileage and continuous
driving time, we discretize the four other categories of the
predictor set into a fixed number of intervals, where each
interval corresponds to a predictor variable. Travel time is
divided into five variables T1-5 that catch vehicle traveling at
different times. Two other predictor variables catch vehicle
traveling on weekdays and weekends (W1-2), while another
variable triplet differentiates the three road types (R1-3). We
separate average velocity into four variables V1-4, where the
fourth interval includes mileage accumulated at velocities
larger than 80 km/h (i.e., 80 km/h is the maximum speed limit
for the CDT in China). The overview of predictor variables is
shown in Table 1.

We assume that cumulative fatigue driving on the target
day is strongly related to the task of the previous week. The
predictor variables for specific target day were calculated
using data from the previous week. We define the accu-
mulated mileage of the previous week as the mileage

accumulated from day t—1 to day t—7 on day t. The ac-
cumulated mileage of day t is described as
t-1
PAM, = ) P, (1)

i=t-7

where PAM; represents the accumulated mileage of the day
t, P; represents the mileage of the ith day, and ¢ is an integer
greater than 7.

We use the location data of the 161 vehicles to calculate
predictor variables of each day which was described in
Table 1. Except for continuous driving time, values of the 15
predictor variables are the mileage accumulated in a week
before target day (i.e., the predictor variables of day t are
accumulated for day t—1 to day t—7 on the dependent
variable). The predictor variables, which have different di-
mensions and change intervals, may result in some indi-
cators to be ignored and affect the results of data analysis.
Therefore, we normalize all predictor variables, where the
normalized equation for all predictor variables except for
overall mileage and continuous driving time is

X' =— (2)
M
where X is the values of all predictor variables except for
overall mileage and continuous driving time and M is the
values of overall mileage.
The normalized equation for continuous driving time C
is
c-C

C* _ min ,
C_ _—c_ (3)

max  “min

where C,,.y is the values of the maximum continuous driving
time, Cpyi, is the values of the minimum continuous driving
time, and their values are obtained across 161 vehicles in 11
months. And we furthermore normalize overall mileage M
by taking the logarithm of M and dividing it by the logarithm
of the M maximum:

. log,, (M)
10810 (Mmax),

where the maximum of M is also obtained across 161 ve-
hicles in 11 months. The descriptive statistics of all predictor
variables are shown in Table 2.

Except for continuous driving time, values of the 15
predictor variables are the mileage accumulated in a week. It
may cause the collinearity problem of the generated pre-
dictor variables at the same time. This problem is an un-
wanted property for most classifiers and is especially
troublesome for logistic regression [53, 54].

Therefore, we select the method of factor analysis to solve
the collinearity problem of logistic regression. Factor analysis is
a multivariate analysis method that converts multiple variables
into several integrated variables (or latent variables), which are
mainly used to reduce the number of variables and classify
variables with high correlation, using common factors instead.
In this study, principal component analysis is used to extract
factors with eigenvalues greater than 1 as common factor.
Table 3 presents the eigenvalues, the percentage of variance, the

(4)
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TaBLE 1: Predictor variables.

Group

Variable description

Travel time (T)

Day of week (W)
Road type (R)

Continuous driving time (C)

Average velocity (V)

Overall mileage (M)

T1: 0 am and 5 am
T2: 5 am and 9 am
T3: 9 am and 5 pm
T4: 5 pm and 10 pm
T5:10 pm and 12 pm
W1: weekdays except Friday
W2: weekends with Friday
RI1: urban roads
R2: highway except the freeway
R3: freeway
Cl: average continuous driving time
C2: longest continuous driving time
V1: 0km/h-40km/h
V2: 40 km/h-60 km/h
V3: 60 km/h-80 km/h
V4: over 80km/h (has only a lower bound)
M: mileage traveled per day

TaBLE 2: Descriptive statistics of all predictor variables.

Variable Mean 1st Q 2nd Q (median) 3rd Q
T1 0.076 0.000 0.034 0.123
T2 0.168 0.078 0.159 0.243
T3 0.496 0.395 0.484 0.604
T4 0.208 0.124 0.221 0.285
T5 0.052 0.000 0.040 0.092
w1 0.592 0.497 0.577 0.678
w2 0.408 0.321 0.423 0.503
R1 0.263 0.130 0.238 0.345
R2 0.227 0.072 0.136 0.355
R3 0.510 0.265 0.566 0.774
C1 0.501 0.333 0.487 0.669
C2 0.314 0.178 0.273 0.413
V1 0.213 0.084 0.153 0.260
V2 0.285 0.151 0.245 0.375
V3 0.497 0.292 0.538 0.699
V4 0.005 0.000 0.000 0.000
M 0.717 0.695 0.742 0.775

cumulative eigenvalue, and the cumulative percentage of
variance associated with each factor. It reveals that the first four
factors explain approximately 76.9% of total variance. Finally,
the number of common factors is determined to be 4.

Fatigue may be determined according to the physical ac-
tivities and human behavior [55]. The driver’s yawn data are
used as a proxy for ground truth for the classification algo-
rithm. If the driver yawns in target day, the driver is considered
to be fatigued in this day. In this paper, fatigue, indicated by
yawning, is predicted by our approach using location data of
CDT. According to Kiang’s suggestions on classifier selection
[56], our approach considers three types of classifiers, namely,
logistic regression, neural networks, and random forest.

In a supervised classification problem, a training set is
usually used to construct classification models and the
independent testing set is used to testify the predictive
performance of these models [57]. Therefore, for logistic
regression, we randomly divided the dataset with 4
common factors into two subsets, in which 70% of the

whole dataset were included in the training set and the
remaining 30% were included in the testing set. For neural
network, we randomly divided the normalized dataset
with 17 predictor variables in Table 1 into two subsets, in
which 70% of the whole dataset were used for training and
30% were used for testing. Cutler et al. suggested that the
random forest algorithm included the interactions among
the variables, so there was no collinearity problem faced
by other models [58]. Therefore, for random forest, we
randomly divided the unnormalized dataset with 17
predictor variables in Table 1 into two subsets, in which
70% of the whole dataset were used for training and 30%
were used for testing.

3. Research Approach

3.1. Logistic Regression. This paper judges whether the driver
is fatigued by whether the driver is yawning. Since the de-
pendent variable is binary, we establish a binary logistic model:
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TaBLE 3: Eigenvalues, percent of variance, cumulative eigenvalue, and cumulative percent of variance for factor analysis.

Factor Eigenvalue Percentage of variance Cumulative eigenvalue Cumulative percentage of variance
1 6.343 37.313 6.343 37.313
2 2.860 16.826 9.203 54.139
3 2.413 14.192 11.616 68.331
4 1.458 8.574 13.074 76.905
5 0.931 5.479 14.005 82.384
6 0.658 4.028 14.663 86.412
7 0.519 3.052 15.182 89.465
8 0.445 2.616 15.627 92.080
9 0.392 2.307 16.019 94.387
10 0.345 2.029 16.364 96.416
11 0.259 1.523 16.623 97.939
12 0.245 1.443 16.868 99.382
13 0.104 0.610 16.972 99.992
14 0.001 0.006 16.973 99.998
15 0.000 0.002 17 100.000
16 1.022E-13 6.010E-13 17 100.000
17 7.399E-14 4317E-13 17 100.000

) p where x; represents the input from the previous layer and N

Logit (P) = ln<1 _ p) ot Zﬂ Xjt+e () represents the total number of nodes in the previous layer.

where P is the probability of the dependent variable Y=1
(i.e., the probability of the driver yawning), the independent
variable X; is the various factors affecting the driver’s fatigue
(i.e., the common factor extracted by the factor analysis
method), B; is the regression coefficients of the independent
variable Xj, a is a constant term, and & is an error term.

3.2. Neural Network. In this paper, the multilayer perceptual
neural network algorithm is used to train data samples. The
multilayer perceptual neural network is a forward-structured
artificial neural network that uses a backpropagation algo-
rithm for training. The network consists of an input layer,
hidden layers, and an output layer. The input layer corre-
sponds generally to features to classify and is used to receive
input data. The hidden layer may have multiple layers for
learning data and storing training results. The output layer
corresponds to the defined classes and each class corresponds
to a node in the output layer. It is used to output results. Each
layer consists of multiple nodes, each of which can be passed
to the next layer up to the output layer. Excluding the input
node, all other nodes multiply the input by its own weighting
factor w, plus the offset b, and then combine its own nonlinear
activation function to produce the output [59].

The optimization algorithm of multilayer perceptual
neural network adopts the adjusted conjugate gradient al-
gorithm and the activation function of each layer is different.
The middle layer node uses the hyperbolic tangent function
as the activation function:

X - X
tanh x = l. (6)
eX+e ™

The output layer node uses the Softmax function as the
activation function:

£ ) = ZNe— 7)

n=le"

We use the 17 predictor variables normalized in Table 1 as
the network input and choose to use a layer of hidden neurons
based on the data characteristics. In order to determine the
optimal number of nodes in the hidden layer, we first make
the number of nodes in the hidden layer equal to the number
of nodes in the input layer. Then, we gradually reduce the
number of nodes and simultaneously calculate generalization
errors, training errors, deviations, and variances. The number
of nodes at this point is our choice when the generalization
error has dropped and before it begins to increase again. We
finally determined that the optimal number of nodes in the
hidden layer is 13. Figure 1 shows the structure of the
established neural network model. The comparison between
neural network and logistic regression is common, and related
studies have found that neural network is superior to logistic
regression due to its complex model structure [60, 61].

3.3. Random Forest. Random forest proposed by Breiman is
an ensemble learning algorithm which constructs multiple
decision trees through bootstrap aggregation [62]. Each tree
is a standard Classification or Regression Tree (CART) that
uses the so-called Decrease of Gini Impurity (DGI) as a
splitting standard of the node [63]. Instead of using all input
variables, random forest selects at random a subset of the
input variables to split each node when growing a CART
[64]. Each tree predicts a classification independently and
“votes” for the corresponding class. The majority of the votes
determine the optimal result of the random forest model
[65]. The operating principle of random forest is summa-
rized as follows and shown in Figure 2.

(i) k subsets of the sample D1, D2 ,..., Dk are drawn
from the total sample set D using the bagging
technique. The sample size of subsets Dk is the same
as the total sample set D.

(ii) k decision trees are constructed according to the k
subsets and obtain k classification results.
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FIGUre 1: Schematic diagram of multilayer perceptual neural
network structure.

(iii) Optimal results are obtained by voting.

To execute the random forest algorithm, the open source
software, Python, which provides a language and environment
for statistical calculation, was used. Before training the random
forest model, tuning its hyperparameter is necessary to obtain
random forest model with the best predictive performance.
Two important hyperparameters, namely, the number of
classification trees (ntree) and the number of variables tried at
each split (mtry), have a significant effect on the performance
of the model. Regarding the hyperparameters mtry, many
studies use the value recommended by Breiman mtry = sqrt
(M), where M is the number of predictor variables [66]. In this
study, mtry = 4. Therefore, we only tuned the hyperparameters
ntree and its tuning range was 10-4000. We compared the
random forest models with different hyperparameters ntree
using the average error rate from 5-fold cross-validation. As
shown in Figure 3, the average error rate decreased sharply
when ntree increased from 10 to 60. When ntree increased
from 60 to 2200, the average error rate had slightly different
trends; however, generally, the average error rate decreased
slightly. When increased from 2200 to 4000, the average error
rate almost remained stable. Therefore, ntree =2200 was de-
termined as the optimal value. Finally, the optimum hyper-
parameters were determined to be 2200 trees with the number
of variables tried at each split being 4.

3.4. Model Evaluation. For the training results, three indexes
including accuracy, Fl-measure, and area under the ROC
curve (AUROC) are used to evaluate the predictive perfor-
mance of the classifiers. Although more indexes can be used to
evaluate the predictive performance of the classifiers, we
believe that these three indexes can complete the comparison
between logistic regression and neural network classifiers. The
numbers of true negatives (TN), true positives (TP), false
positives (FP), and false negatives (FN) are used as a
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FIGURE 3: Average error rate of hyperparameter tuning.

measurement to assess the performance of classifiers. Dif-
ferent terms are used in different domains. Accuracy is the
most basic index for assessing the performance of classifiers. It
is used as an overall measure and calculated as

TP + TN

_ , 8
AUy = TP+ TN + FP + FN ®)

where TP and TN indicate correctly classified cases and FP and
EN indicate the incorrectly classified cases. However, the skewed
class distribution of samples, in reality, makes traditional metrics
such as accuracy unable to properly reflect the performance of
the classifiers [67]. Therefore, another index, Fl-measure, is
proposed to evaluate performance and calculated as

2TP
Fl - measure = ———————— )
2TP + FP + FN

Accuracy and Fl-measure evaluate the performance of
the classifiers by comparing predicted class labels. In this
sense, they can actually be thought to measure different
aspects of the same coin, and show recognized disadvantages
[68]. Therefore, the receiver operating characteristic (ROC)
curve is used to measure the performance of classifiers. The
curve is generated by plotting true positives as the per-
centage of all positives and negative ones in the sample [69].
We hope to reduce ROC performance to a single scalar value



Journal of Advanced Transportation

representing expected performance to evaluate the perfor-
mance of classifiers, so the AUROC is considered as an
additional index. AUROC gives a single measure of overall
accuracy that is independent of any particular threshold
[70, 71]. Larger AUROC value indicates that better pre-
dictive model is a generally accepted rule for determining a
model’s performance when comparing various models.

4. Results

4.1. Model Comparison and Selection. We trained logistic
regression, neural network, and random forest using the
training set and calculated accuracy, Fl-measure, and
AUROC value of every model based on the testing set.

Figure 4 depicts the results for classification performance
of logistic regression, neural network, and random forest
models. Obviously, the accuracy, F1-measure, and AUROC of
the random forest are higher than the logistic regression and
neural network (i.e., the predictive performance of the ran-
dom forest is better). Therefore, the random forest is more
suitable to use location data to predict fatigue driving than
logistic regression and neural network. It can be seen from
Figure 4 that the accuracy of the random forest is 74.18%.
Although this accuracy is not too high, it can be accepted
compared to other fatigue driving detection methods based
on vehicle information. In addition, more than 60% of F1-
measure reveals its ability to detect real yawn, which means
the number of a missed yawn is reduced using the random
forest classification. The random forest was selected to predict
fatigue driving using predictor variables.

4.2. Variable Importance Analysis. After determining the
random forest model as the optimal prediction model, we
analyzed the relationship between fatigue driving and
driving task of last week according to variable importance
described by random forest.

Variable importance (called “variable importance score”
in this study) reflects every predictor variable’s contribution
to the total risk. The random forest model computes variable
importance scores by assessing the importance of every
predictor variable using the Gini decrease index [72]. The
computation was implemented based on the “featur-
e_importances_” in the random forest package of open
source software, Python. Figure 5 provides the normalized
variable importance scores (i.e., the sum of the importance
scores for all variables is one).

Fatigue driving has a close relationship with the driving
task of last week. By comparing the variable importance in
Figure 5, the paper draws the following conclusions:

(1) It is not difficult to see from Figure 5 that the im-
portance scores of average continuous driving time
(C1) and longest continuous driving time (C2) are the
highest among all the predictor variables. This shows
that continuous driving time is closely related to fatigue
driving. Fatigue driving refers to the phenomenon that
the driver produces dysfunction of physiology and
mental function after driving for a long time so that
driving skills decline objectively. Prolonged driving will
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make driver mental overload and cause task-related
fatigue [45]. Therefore, the continuous driving time of
the driver must be strictly controlled to avoid accidents
caused by prolonged driving.

(2) During the predictor variables of travel time group,
the importance scores of travel time between 5 am
and 9 am (72) and travel time between 5 pm and 10
pm (T4) are the highest. This shows that the driver is
more likely to be fatigued when driving in these two
time periods for a long time, which is basically
consistent with the previous research results [73, 74].
In addition, it has been extensively proven that the
number of accidents related to fatigue driving in-
crease in the early morning and late evening [45, 75].
The time period indicated by T4 is extremely fragile.
This is because, after a day of hard work, the driver
will have a series of tired symptoms such as dry eyes,
dry throat, and yawning. The time period indicated



by T2 is early morning, which is the time period
when fatigue driving and traffic accidents are most
likely to occur. During this time, the human circa-
dian rhythm is in a state of slow brain reaction, lower
blood pressure, and stiff and paralyzed blood vessels
in the hands and feet. Therefore, in order to avoid
fatigue driving, the driver’s driving time should be
reasonably arranged and the driver should try to
avoid driving in these two periods. The importance
scores of travel time between 10 pm and 12 pm (T5)
and travel time between 0 am and 5 am (T1), in
contrast, were found to be lower than all other
variables of travel time (T). Apparently it seems
surprising. But we can see from Table 2 that the mean
of these two time periods is relatively small, which
indicates that the driver rarely travels during these
two time periods. One reason for this may be due to
the relatively higher accident rate compared to other
time periods; the company deliberately controls the
driver not to drive during this time period.

(3) It is not surprising to observe that the importance

scores of the average velocity (V) consistently decrease
from average velocity over 80 km/h (V4) to average
velocity between 0 and 40 km/h (V1). Therefore, the
importance scores for V4 (0.104) > V3 (0.040) > V2
(0.036) > V1 (0.035). This shows that the driver is more
likely to be fatigued when driving at a high speed for a
long time. It has been extensively proven that the
higher the driving speed is, the easier the driver is to be
fatigued [76]. The higher the driving speed, the greater
the degree of tension or concentration of the driver’s
central nervous system and the greater the mental and
physical energy consumed. At the same time, the
driver’s field of vision narrows as the speed of the
vehicle increases, and the information that is missed
increases, making the driver more nervous. It is worth
mentioning that the importance scores of average
velocity between 40 and 60 km/h (V2) and average
velocity between 0 and 40km/h (V1) are relatively
lower than other predictor variables and the impor-
tance of average velocity over 80 km/h (V4) is relatively
higher. This shows that when the driver drives in the
environment in which the speed is lower than 60 km/h
for a long time, the driver is not prone to fatigue, but
once the driver drives in the environment where the
speed exceeds 80 km/h for a long time, the driver is
more likely to be fatigued. Therefore, the driving speed
of the vehicle should be reasonably controlled to avoid
the driver driving at a high speed for a long time.

(4) It can be seen from Figure 5 that the importance scores

of the road type (R) consistently increase from urban
roads (R1) to freeway (R3). This shows that the driver is
more likely to be fatigued when driving on the freeway
for a long time, which is consistent with previous
research [74, 76, 77]. In addition, it has been reported
that 40 percent of the accidents caused by fatigue
driving occur on freeways [78]. The freeway has neither
traffic signal control nor pedestrians, nonmotor
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vehicles, and other low-speed motor vehicles. Driving
on this road for a long time is easy to cause the driver to
sleep. In addition, when driving on the freeway, the
driver’s energy is always in a state of high tension, and
the physical exertion is increased, and the speed of the
vehicle will be unconsciously increased, and even the
brake deceleration consciousness will be lost. Driving
in such an environment for a long time can also make
the driver feel tired. Therefore, it is necessary to adopt
the fatigue warning device when the driver is driving
on the freeway.

(5) We can also find that the importance score of weekends
with Friday (W2) is higher than the importance score of
weekdays except Friday (W1) from Figure 5. This in-
dicates that the driver is more likely to be fatigued when
driving on weekends for a long time. This is because the
driver will continue to accumulate fatigue as he drives
on weekdays, which makes the driver’s fatigue index
relatively higher on weekends. This provides a basis for
a reasonable arrangement of driver travel time.

5. Discussion

This paper has offered a brand new approach to predict driving
fatigue using location data of CDT. The existing approach to
predict driving fatigue mainly uses physiological and behav-
ioral indicators. However, physiological and behavioral mea-
surements may interfere with the driver’s normal driving, and
the corresponding detection devices are relatively expensive.
Our approach predicts fatigue using the location data of CDT
which are collected without interfering with the driver’s normal
driving. Location data acquisition equipment is relatively in-
expensive and is generally installed in commercial trucks. These
are beneficial to the future popularization and application of
real driving conditions. In addition, most studies on the
prediction of fatigue driving focus on short-time forecasting.
Few studies research on long-term prediction methods, spe-
cifically on commercial trucks. Our approach addresses the
long-term prediction of fatigue driving in commercial trucks.

5.1. Model Application Illustration. The proposed approach
can be used not only for driving fatigue prediction of
commercial dangerous goods transport vehicles but also for
other transport vehicles. In addition, our approach can
directly use the location data of the vehicle to predict fatigue,
which not only solves the problem that most domestic
commercial transport vehicles do not have the image ac-
quisition device installed, but also has no disadvantages of
other detection approaches that interfere with the driver.
Our approach can also aid decision making and is a useful
complement to real-time monitoring. Even if the transport
vehicles are equipped with the image acquisition device, our
approach is also necessary to help prevent fatigue. What is
also worth noting about our approach is that it can not only
be used to predict fatigue, but also provide a basis for
transportation companies to arrange transportation mission
reasonably. Figure 6 depicts the application of the prediction
approach.
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FIGURE 6: Application of the prediction approach.

The proposed approach can be used to optimize the daily
task arrangement of the transportation company. In the first
phase, the transportation company will complete a long-
term transportation task schedule, which may be used for a
week or a month, based on the contracts signed and the
number of drivers. At the same time, the location data of the
driver during the transportation task are automatically
collected.

In the second phase, 17 indicators can be calculated
automatically and each driver’s likelihood of fatigue in the
next day was dynamically predicted. The prediction re-
sults can help optimize the daily schedule of trans-
portation tasks.

In the third phase, the importance of each factor in the
past short term can help the transportation company
managers to formulate the long-term task schedule. Do your
best to avoid long hours in which drivers are prone to
fatigue.

5.2. Research Limitations and Future Research Needs.
Some methodological and conceptual limitations should be
considered in the interpretation of our results. These limi-
tations make us consider using other models to further
improve prediction accuracy in future research. This would
involve the combination of different classifiers [79]. We
should also use the data from other dangerous goods
transportation companies to verify our results. Due to the
limited data acquisition properties, our approach only an-
alyzes the influence of six predictor sets. In the future, other
available related variables should also be considered to
extend the set of predictor variables and yield further

improvements to predictive performance and the guidance
of analysis results. Driver’s physique, lifestyle, stress, and
other factors have a certain impact on the predictive per-
formance of our model. Therefore, if the driver’s relevant
information can be obtained and used as predictor variables,
the accuracy of the model will be further improved. In
addition, seasonal changes have a significant impact on our
approach; future efforts should be made to eliminate the
effects of the seasons, thus making our approach more
complete.

6. Conclusion

In order to solve the fatigue driving problem of dangerous
goods transportation, this paper proposed an approach that
used location data obtained from a transportation company
to predict fatigue driving and further analyzed the rela-
tionship between fatigue driving and driving environment.
The proposed approach can be used to predict fatigue
driving using the location data of CDT which were collected
without interfering with the driver’s normal driving and
provide a basis for transportation companies to arrange
transportation mission reasonably. The main findings were
concluded as follows:

(1) We used logistic regression, neural network, and
random forest techniques to predict fatigue driving
from the location data. To choose a more suitable
classifier as a predictive model, we obtained a set of 17
predictor variables from the six different categories of
the predictor set related to fatigue to train and compare
logistic regression, neural network, and random forest
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classifiers. By analyzing and comparing the classifica-
tion performance results of logistic regression, neural
networks, and random forest models, we found that
accuracy (74.18%), F1-measure (62.02%), and AUROC
(0.8059) of random forest were separately best, so
random forest was more suitable for predicting fatigue
driving using location data

(2) To provide a basis for the transportation company to
arrange transportation reasonably, after determining
the random forest model as the optimal prediction
model, we analyzed the relationship between fatigue
driving and driving environment according to var-
iable importance described by random forest. We
found that fatigue driving was closely related to
driving conditions such as travel time, continuous
driving time, driving speed, road type, and so on. The
period extremely prone to fatigue driving is early
morning and the evening, and the driver is more
prone to fatigue on weekdays than on weekends. The
higher the driving speed is, the easier the driver is to
be fatigued. The probability of fatigue driving on the
freeway is higher than that of highway and urban
road. These conditions can provide a basis for the
company to avoid driver fatigue driving, thereby
reducing traffic accidents.
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Connected and automated vehicle (CAV) technologies have great potential to improve road safety. However, an emerging
type of mixed traffic flow with human-driven vehicles (HDVs) and CAVs has also arisen in recent years. To improve the
overall safety of this mixed traffic flow, a novel car-following model is proposed to control the driving behaviors of the above
two types of vehicles in a platoon from the perspective of a mechanical system, mass-spring-damper (MSD) system.
Furthermore, a quantitative index is proposed by incorporating the psychological field theory into the MSD model. The
errors of spacing and speed in the car-following processes can be expressed as the accumulation of the virtual total energy,
and the magnitude of the energy is used to reflect the danger level of vehicles in the mixed platoon. At the same time, the
optimization model of minimum total energy is solved under the constraints of vehicle dynamics and the mechanical
characteristics of the MSD system, and the optimal solutions are used as the parameters of the MSD car-following model.
Finally, a mixed platoon composed of 3 CAVs and 2 HDV's without performing lane changing is tested using the driver-in-
the-loop test platform. The test results show that, in the mixed platoon, CAV's can optimally adjust the intervehicle spacing
by making full use of the braking distance, which also provides sufficient reaction time for the driver of HDV to avoid rear-
end collisions. Furthermore, in the early stage of the emergency braking, the spacing error is the dominant factor influencing
the car-following behaviors, but in the later stage of emergency braking, the speed error becomes the decisive factor of the
car-following behaviors. These results indicate that the proposed car-following model and quantitative index are of great
significance for improving the overall safety of the mixed traffic flow with CAVs and HDVs.

1. Introduction

Due to the slow expansion of the road network, traffic os-
cillations, and traffic accidents occur frequently in road
traffic. 'The emerging connected and automated vehicle
technologies, however, offer great potential for enhancing
traffic operations and improving the roadway capacity under
existing road infrastructure, which helps make traffic flow
more stable, more efficient, and safer. This is because CAV's
are able to share driving information with others in real time,
which makes the motion of CAVs more cooperative [1].
Vehicle platooning is a typical application that stands out in
the domain. Thus, it has obtained extensive research

interests and a great variety of research is indicating that
platooning of CAVs can tremendously improve traffic safety
[2-5] and energy efficiency [6]. It is worth noting that most
research is focusing on the pure platoon of CAVs, but CAVs
and HDVs will coexist in the near future [7-10]. Therefore,
the most likely formation of vehicular platoons will be a
mixture of CAVs and HDVs. This complex traffic envi-
ronment will bring huge challenges to traffic flow modeling,
control, and management when considering the stochastic
driving characteristics of humans and the uncertainty of the
interaction between CAVs and HDVs. Thus, how to make
these two types of vehicles operate coordinately is the key to
enhance traffic safety.
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Modeling the mixed traffic flow is a feasible way to solve
this problem. Many scholars have carried out in-depth re-
search on the car-following models of vehicular platoons,
which are mainly divided into the following categories:
stimulus-response models [11], safety distance models [12],
psycho-physical models [13], artificial intelligence model
[14], optimal velocity model [15], intelligent driver model
[16], and cellular automata model [17]. The advantages of
these car-following models have been widely recognized in
the field of transportation. More recently, some researchers
have proposed car-following models combined with two
different models to capture the driving behaviors of CAVs
and HDVs, respectively. For example, Gong et al. [8] pro-
posed a cooperative control method for mixed platoons to
ensure the stability and safety of the platoons. In addition,
the CAVs and HDVs adopted the MPC model and Newell
model, respectively. The results indicate that this novel
platoon control method can dampen traffic oscillation
propagation and stabilize the traffic flow more efficiently for
the entire mixed platoon. Zhu et al. [9] proposed a novel car-
following model with adjustable sensitivity and smoothing
factor for mixed traffic flow. The car-following model of
HDVs selected optimal velocity model (OVM), while the
car-following model of CAVs reduced its sensitivity factor
on the basis of OVM. The numerical simulation results show
that the proposed model is able to stabilize the mixed traffic
flow and suppress the traffic jam. Zhao et al. [18] proposed a
cooperative eco-driving model for mixed platoons, where
HDVs were modeled by the OVM and CAVs are controlled
by the MPC model. This model achieves better performance
for the overall traffic. In these above-mentioned research
studies, HDVs and CAVs used different car-following
models under the mixed traffic environment, and they have
achieved good results in improving mixed traffic efficiency
and safety to a certain extent. However, the stochastic vehicle
performance and driving behavior of CAVs and HDVs are
not considered and employing two models will make the
control system more complicated. Furthermore, it is un-
coordinated for an integrated platoon system to use two
different models to capture the motion of vehicles in the
mixed platoon.

Furthermore, considering the similarity between the
acceleration or deceleration behavior in traffic flow and the
scaling properties of spring [19], some scholars modeled the
traffic flow from the perspective of a mechanical system—the
mass-spring (MS) system. For instance, Wang et al. [20]
established a car-following model by regarding both the
stopping (deceleration) process and the starting (accelera-
tion) process as spring systems. Compared with traditional
stimulus-response car-following models, the proposed
model can better explain traffic flow phenomena and drivers’
behavior. In the actual car-following process, the relative
spacing and speed of two adjacent vehicles are two im-
portant indices. Therefore, some scholars applied the MSD
theory to describe the interaction between vehicles in a
platoon [21-23], and the MSD model was capable of en-
hancing traffic safety and increasing roadway capacity.
However, all the proposed MSD models were only applicable
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to the platoons that are entirely made up of HDVs or CAVs.
Because the MSD system has natural stability characteristics
and is widely used to represent interactions with uncertain
environments [24], we propose a novel car-following model
for the mixed platoon under the same simplified framework
based on the virtual MSD theory, which has a great ad-
vantage over the traditional platoon model in both the
stability analysis and the stable operation. Unlike the pre-
vious models, both HDVs and CAVs share the identical
framework in the proposed model and it takes both the
spacing errors and speed errors into account, which can
more accurately describe the car-following behaviors of
CAVs and HDVs.

Another problem of traffic flow is how to quantify the
level of risk in car-following processes, which has a sig-
nificant impact on driving behaviors. K. Vogel [25] com-
pared with two safety indices “time headway (TH)” and
“time to collision (TTC)” in different traffic situations.
However, when the speed of the following vehicle is near or
equal to that of the preceding vehicle, TTC changes sharply;
when the speed of the preceding vehicle changes relatively
large, TH will underestimate the danger of the car-following
process. In other words, it is insufficient for TTC and TH to
quantify the risk level of car-following. Lu et al. [26] pro-
posed safety margin (SM) as a suitable quantitative index of
risk perception based on the risk homeostasis theory.
Compared with TTC and TH, SM more suitably quantifies
the level of risk in car-following processes. Inspired by it, in
this manuscript, combining with the psychological field
theory, we utilize the magnitude of virtual total energy as a
quantitative index of danger in the car-following processes
based on the MSD car-following model.

The remainder of this paper is organized as follows:
Section 2 presents the modeling, car-following rules, and
spacing policy of a mixed vehicular platoon. Section 3
presents a novel car-following model of mixed platoons from
the perspective of a mechanical system, and the string stability
of the mixed platoon is analyzed based on the MSD model. In
Section 4, the virtual total energy is proposed as a quantitative
index based on the psychological field theory and MSD model
to reflect the danger level of vehicles in the car-following
processes. The optimization model of minimum total energy
is solved under the constraints of vehicle dynamics and the
mechanical characteristics of MSD system in Section 5. In
Section 6, a mixed platoon is tested in the driver-in-the-loop
test platform to verify the validity of the proposed MSD car-
following model. Finally, conclusions are made.

2. Control of Vehicular Platoon

2.1. Modeling of Mixed Platoon. As shown in Figure 1, a
mixed platoon consisting of # cars travels on the highway in
a single lane, where the i" vehicle is a HDV. In this platoon,
x; is the position of the i vehicle and v; is the speed of the i

vehicle. Therefore, for the i vehicle, the spacing errors can
be defined as

8':x'_1_xi_L_dsy (1)

1 1
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FIGURE 1: Model of a mixed platoon.
where L denotes the length of the vehicle and d; represents |5:]
the desired distance between the i and i— 1" vehicles. lgl, = sup 2 (7)

The kinematic differential equation of the intervehicle
spacing error is

81‘ =X~ X - ds =Via Vi ds‘ 2)

The control target of the platoon model is that the
intervehicle spacing errors and the relative speed of any
adjacent vehicles tend to be zero.

2.2. Car-Following Rules. String stability should be guaran-
teed when vehicles travel in a fleet. Because the spacing error
is not expected to be zero when the preceding vehicle ac-
celerates or decelerates, it is necessary to describe how the
spacing error is propagated along the platoon when using the
same spacing policy. The stable driving of a platoon needs to
ensure that the spacing error does not amplify along the
platoon [27]. Therefore, the desired characteristic of the
transmission attenuation of spacing errors can be described as

[0l < 1821l (3)

Let G(S) be the transfer function related to the spacing
errors of consecutive vehicles in a fleet, we obtain

_ 9;(s)
G;(s) = 5.5 (4)
When
1G(s)lloo < 1, (5)
we obtain
l6:]l, < [10:-1.- (6)

Equation (6) ensures that the energy of the output error
is less than that of the input error. However, it is difficult for
this condition to fully meet the desired characteristics of the
transmission attenuation of spacing errors.

The co-norm of G(S) and the 1-norm of g (t) can make
the output value of the system correlate with the input value
of the system:

set 91

To satisfy equation (3), the formula below needs to be
satisfied.

lgll, <1. (8)

According to the theory of linear systems, we obtain
IG (O] <G (jw)lleo < lIgll;- (9)

When g (t) >0, we get

G (0)] = H:o g(t)dt

< jm gt =lgl,.  (10)
0

Therefore, equation (8) that satisfies the desired char-
acteristics of the transmission attenuation of spacing errors
can be replaced by the following two conditions:

{ IG()leo =1,

11
gt)>0, Vt=0, (1)

where G(S) is the transfer function of the spacing error of
consecutive vehicles in the fleet and g(t) is the impulse
response function.

2.3. Spacing Policy. The spacing policy for longitudinal
control of vehicular platoons is mainly divided into two
types: constant spacing [28] and variable spacing [29]. When
adopting the constant spacing, the distance between two
adjacent vehicles in the platoon does not change with driving
conditions, which can tremendously increase the traffic
density. However, adopting this spacing policy requires
more complicated communication methods, and in the case
of external interference or large communication delay, this
spacing policy will seriously affect the stability and safety of
the platoon. Therefore, in order to ensure the string stability
of the mixed platoon, we adopt the constant time-headway
(CTH) policy.

For the CTH policy, the desired spacing between two
consecutive vehicles varies linearly with speed:



d, = hs, + s (12)

where h is the time headway and s, represents the minimum
safety spacing.

It can be seen from formula (12) that when the speed of
the host vehicle increases, the corresponding distance be-
tween the adjacent vehicles also increases. When the pre-
ceding vehicle brakes urgently, it can provide sufficient
braking distance for the following vehicle to avoid collision.

Therefore, the spacing error can be expressed as

0; =x; —x;— L—hx; —s,. (13)

When /=0, the CTH policy will become a constant spacing
policy.

3. MSD Car-Following Model and Stability
Analysis of Mixed Platoon

In this section, we build the car-following model of a
platoon from the perspective of a mechanical system, the
mass-spring-damper system, to describe the car-following
behaviors. We consider the vehicle as a mass and assume
that there are a spring and a damper between every two
adjacent masses. In the MSD model for HDVs
(Figure 2(a)), k;; is the spring stiffness between the i-1th
vehicle and the i vehicle and c,; is the damping coefficient
between the i—1™ vehicle and the i™ vehicle. Likewise, in
the MSD model for CAVs (Figure 2(b)), k,; is the spring
stiffness between the i—1'" vehicle and the i vehicle and c,;
is the damping coefficient between the i—1" vehicle and the
i™ vehicle. When a fast-moving CAV/HDV is approaching
a slow-moving CAV/HDV, the MSD model will exert a
force on the fast-moving CAV/HDYV to decelerate. On the
contrary, when the speed of the following CAV/HDV is
smaller than that of the preceding CAV/HDYV, the MSD
model will exert a reactive force on the following CAV/
HDV to accelerate.

For the upcoming mixed traffic flow composed of CAV's
and HDVs, we extend the MSD system to establish a car-
following model for mixed platoons. At the same time, in
order to reduce the complexity of the model, the following
assumptions are made:

(1) Vehicles travel on a straight, dry, and flat road
without performing lane changing

(2) Vehicle weight, maximum deceleration, aerody-
namic drag coefficient, and rolling resistance coef-
ficient are known

Based on the above assumptions, the MSD car-fol-
lowing model for a mixed platoon is shown in Figure 2(c),
where the leading vehicle and the i vehicle are HDV's and
the other vehicles are CAVs. In addition, k,; and ¢, ;
represent the spring stiffness and damping coefficient
between CAVs. Furthermore, k,; and ¢;; represent the
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spring stiffness and damping coefficient between CAV and
HDV, respectively.

The differential equation of motion for a mixed platoon
can be expressed as

Mx = f(t) + Cx + Kx. (14)

Therefore,

)’i:if(t)+£5c+5x, (15)
M M M

where M is the mass matrix, K is the spring stiffness matrix,
C is the damping coefficient matrix, f(t) is the force matrix, x
is the displacement matrix, and x and X are the first de-
rivative and the second derivative of x versus time,
respectively:

T

x= (X X oo Xy X Xy oo Xy X))
f)=(f0--000--00),
my
m
M= ¢ ,
My
mc
-k, k, 0 0 0 0 0 0
.k, —k, -k k 0
K= a a t t ,
0 ko —k,—k, k,
0 0 0 0 0 0 k, -k,
4 Ca 0 0 0 0 0 0
0 0 C, —Co—C [oh 0 0 0
C= >
0 0 0 [oh —C,—C €, 0 0
0 0 0 0 0 0 c, —¢C

(16)

where my; is the mass of HDV and m. is the mass of CAV.

In the car-following processes, spacing error and speed
error are two important factors for the stability analysis of a
platoon. Therefore, we introduce the spacing error and speed
error into equation (14) simultaneously, and it can be
expressed as

M§=f(t)+C8+K'S, (17)

where M’ is the mass matrix, K’ is the spring stiffness matrix,
C’ is the damping coefficient matrix, f'(t) is the force matrix, §
is the spacing error matrix, and § and 8 are the speed error
matrix and the acceleration error matrix, respectively:
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FIGURE 2: MSD car-following models. (a) MSD model for HDVs. (b) MSD model for CAVs. (¢) Mixed MSD model.

8=(0, 8, .. 0y & Sy - Bn 6,0)s
fr(t)=(mcf 0...000 ... 00)",

mpMc
M, = mHmC >
mc
—(my +mg)k, myk, 0 0 0 0 0 0 O
. . L (18)
K = 0 0 0 myk, -(my+me)k, mck, 0 0 0 |,
0 0 0 0 0 0 0 k, -2k,
—(my +mg)e, myc, 00 0 0 0 0 O
C' = 0 0 0 myc, ~(my+mc)e, mec, 0 0 0
0 0 0 0 0 0 0 ¢, -2,

Therefore, to ensure the driving stability of a mixed
In the mixed MSD system, the last vehicle only receives  platoon, it is necessary to meet the condition as follows:

unidirectional force. Therefore, starting from the last vehicle of
’ G =G, (s) - G, (s),...,G <L 21
the platoon, we can obtain the transfer function of spacing error: " 1 (9) ||°° " 1(8)- G (9) n(9 "°° D)

8,(s)  (c/mg)s+(kime)
8,1 (s) 2+ (2c/me)s + (2kime)

G (s) = (190 4, Risk Quantification
i i In car-following processes, the driving behaviors of vehicles
Going one step forward, we obtain are mainly affected by the surroundings. On the one hand, to
5, .(s) G, (s) reduce the travel time, the host vehicle intends to accelerate;
5 ) =1-G G ) (20) on the other hand, the danger of collision with the preceding
n=i-1 1 i-1 vehicle forces it to constantly adjust the speed to ensure

Gi(s) =



safety. Therefore, a precise and suitable risk index plays an
important role in car-following processes.

4.1. Risk Quantification for HDVs. Driving behavior is the
result of the driver’s judgment based on his/her psy-
chological expectations under the stimulation of external
environmental information. There is a psychological field
during the HDV car-following processes [30]. When the
external traffic environment changes, it will exert the
forces on the psychological field, thereby adjusting the
speed and direction of the vehicle. To describe the car-
following behaviors of HDVs, in this manuscript, we
propose a quantitative index, virtual total energy, based
on the MSD car-following model and psychological field
theory. We divide the drivers’ psychological status into
three zones, which are shown in Figure 3. When the
virtual total energy varies with car-following errors,
drivers’ psychological status will be in different zones.
Correspondingly, they will perform different vehicle
maneuvers, as shown in Figure 4. For example, when the
platoon is disturbed during driving, such as the sudden
deceleration of the leading vehicle, this will cause the
spacing errors Ax and speed errors Av of the following
vehicles to suddenly increase. Correspondingly, in the
MSD system, the energy generated by springs and
dampers will be greater, which will produce a sense of
depression for the driver, forcing him/her to perform
braking until his/her psychological depression has dis-
appeared. When the leading vehicle accelerates, the
driver’s psychology depression is fully released, and the
following vehicle will also accelerate until it travels at the
desired speed. Ideally, when the following vehicle travels
exactly as the preceding vehicle, the driver will maintain
the vehicle’s speed. Therefore, it is appropriate for the
virtual total energy to quantify the level of danger during
the car-following processes.

In the MSD model, when the distance between two
adjacent cars is less or greater than the desired distance, the
spring will be compressed or stretched. According to
Hooke’s law, the force generated by a spring is proportional
to its deformation variable Ax. From the relationship of
work and energy, we know that when the spacing error is Ax,
the energy generated by the spring is

V= J- kx dx. (22)
Ax

When the speed of the following car is less than or
greater than that of the leading car, the energy consumption
of the damper is

D, :j cvdv. (23)
Av
Therefore, in the MSD system, when the platoon is

disturbed by external environment, the virtual energy
generated by the i™ vehicle can be expressed as

Et,i = Vt,i + Dt,i' (24)
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At the same time, the virtual total energy of the entire
platoon can be expressed as

Ep, = Z Voi+ Z D,;. (25)

4.2. Risk Quantification for CAVs. CAVs can quickly obtain
the driving information (speed and position) from other
vehicles within the communication range. Therefore, the
CAV:s can detect abnormal driving behaviors in the platoon
earlier and take actions in advance. Although there is no
psychological field during the car-following process of
CAVs, in the MSD system, they still use the spacing errors
and speed errors of adjacent vehicles as the control reference
index. Therefore, in this manuscript, we consider the virtual
total energy as a proper index to reflect the risk of a platoon
based on the MSD car-following model:

Er, = Z Vit Z D,;. (26)

5. Parameter Optimization Based on Minimum
Total Energy

In the mixed MSD system, k, and c, represent the control
gains of relative position and relative speed between adjacent
CAVs; k, and ¢, represent the control gains of relative po-
sition and relative speed between CAV and HDV, respec-
tively. For the vehicle in the mixed platoon, the virtual
energy generated by the interference from the external
environment can be expressed as

1 1
By =5 0(k)- A +50(0) - AV, (27)
_ | k;, k between CAVs
where (k) = {kt, k between CAVandHDY 274
W)= 1% ¢ between CAVs
"~ |¢» ¢ betweenCAVand HDV'

It can be seen from equation (27) that the values of k, (k;)
and ¢, (¢) will directly affect the energy accumulation of
CAVs and HDV's during the car-following processes, so it is
necessary to optimize their values to get a better control
effect of the mixed platoon.

The magnitude of E represents the virtual energy gen-
erated by the corresponding car-following errors. When a
vehicle collides, we assume that E = 0o, which means that the
vehicle’s car-following errors reach the maximum. In the
car-following processes without an accident, as E gradually
becomes smaller, the vehicle’s car-following errors also
become smaller. When E=0, it means that the vehicle is
driving at the desired speed and intervehicle spacing
completely, and the driving status is in absolute safety. When
the leading vehicle performs emergency braking, the CAVs
in the platoon can obtain the driving information of the
leading vehicle and the preceding vehicle in real time
through V2X technology and immediately apply the brakes.
At this point, the virtual energy generated by the car-fol-
lowing errors from CAVs is small. However, if it is followed
by a HDV, the driver needs a certain reaction time to take
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FIGURE 4: Vehicle maneuvers based on drivers’ psychological status.

corresponding measures. Obviously, the virtual energy
generated by the pair of HDV and CAV will be relatively
large, which will cause the vehicles to be unstable or even
have a collision. The ideal situation is that when the CAVs
brake, they will not only consider their own driving con-
ditions but also reserve a certain braking distance for the
HDVs that follow them. Although this will increase the
CAVs accumulated energy, the increased braking distance
can greatly improve the driving safety for the following
HDVs, which also reduces the energy accumulation. Overall,
the total energy of the platoon will be reduced because
collisions are avoided. Therefore, for the mixed vehicular
platoon based on the MSD system, we propose taking the
minimum total energy as the optimization objective of the
car-following model:

minZ%w(k) A+ Z%w(c) A (28)

Based on the assumptions of Section 3, the mass m(m)
and the maximum deceleration d,, of each vehicle in the
platoon are known. The platoon when only considering the
spring is shown in Figure 5, and its dynamic equation is

mCdmax = kmaxAxmax‘ (29)

Therefore,

7
n K, n-1
me AN e
FIGURE 5: MS car-following model.
mcd
kmax = vmax (30)

max

Similarly, when the platoon only considers the effect of
the damper, we obtain

_ mCdmax

max AVmax

c (31)

In addition, for realistic control, vehicles in a mixed
platoon need to consider their actual performance and
dynamic constraints:

X =Y
1}1- = ai’ (32)
mya; = kAx;_| + ¢, Av;_; — k,Ax; + c,Av;,

where a; is the acceleration of the i vehicle.

Therefore, the parameter optimization problem based on
the minimum total energy can be expressed as



[ . 1 2 1 2
min f(x) = Ziw(k)-Axi +Z§w(c)~Avi,
S.t.)&i = Vl"

i = 4

mya; = k,Ax;_; +c,Av;_y — k,Ax; + c,Av;,

a;min<a;<a i=12,...,n,

i,min = i,max,

1 O0<k,<k (33)

a,max’

O<c,<c

a,max>

0<k, <k

t,max>

0<¢ < maxs

k, -k, <0,

¢ —¢,<0.

For the above-mentioned multidimensional constrained
nonlinear programming problem, we solve it in Matlab.
As shown in Figure 6, the red point represents the op-
timal solution of the spring stiffness (k) and damping
coeflicient (c).

6. Driver-in-the-Loop Test and Results Analysis

6.1. Establishment of Driver-in-the-Loop Platform and Test
Scenarios. In view of the high cost and high risk of actual
vehicle tests, driving simulators are widely used for research
on traffic safety and driving behaviors [31]. The driver-in-
the-loop test platform built in this manuscript is shown in
Figure 7. It mainly includes a Logitech G29 vehicle controller
(steering wheel, pedal, and gear lever) and two sorts of
simulation software (PreScan and Matlab/Simulink). Pre-
Scan provides a rich set of scene elements to restore real-life
driving conditions to a high degree, and its built-in vehicle
dynamics model supports Logitech G29 to control the ve-
hicle in real time. In addition, we build the MSD car-fol-
lowing model in Matlab/Simulink, and the joint simulation
is performed with PreScan to verify the validity of the
proposed MSD car-following model for mixed platoons.
As shown in Figure 8, the mixed vehicular platoon in-
volved in the driver-in-the-loop test consists of 3 CAVs and
2 HDVs. The first and fourth vehicles are HDVs, and the rest
are CAVs. The first HDV and the fourth HDV are controlled
by drivers through Logitech G29. At the same time, the
initial speed of each vehicle in the vehicular platoon is set to
30 m/s plus £5%, and it is made to fluctuate randomly. The
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FIGURE 6: Parameter optimization based on minimum total energy.

FIGURE 8: Test scenario for the mixed platoon.

distance between two consecutive vehicles varies according
to different velocity. At time ¢ =0, human factors cause the
leading vehicle to perform emergency braking.

6.2. Simulation Parameters. To make the simulation close to
the real scene, we assume that the mass and length of each
vehicle in the mixed platoon are different. During the car-
following processes, the deceleration of the vehicle is limited
by the vehicle’s motion characteristics and road environ-
ment. In this manuscript, all the vehicles travel straight on a
dry and flat road. Therefore, we assume that the peak rolling
adhesion coefficient is 0.85, and the maximum deceleration
of the vehicle is detailed in Table 1, where the other vehicle
simulation parameters are also expanded. To improve the
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TaBLE 1: Vehicle simulation parameters.

Vehicle number Mass (kg) Length (m) Maximum deceleration (m/s%) Initial speed (m/s) Initial position (m)
1 1570 5.48 -7.9 30.0 147.52

2 1240 4.84 -8.3 29.2 110.04

3 1350 5.12 -8.1 30.7 74

4 1680 5.68 -7.7 28.5 36.18

5 1430 5.35 -8.0 30.3 0

traffic capacity, we set the minimum safety distance to 2 m.
In addition, the values of k (k;) and ¢ (c,) will directly affect
the car-following behaviors. Thus, by adjusting the values of
k (k;) and ¢ (¢;) in the MSD car-following model, we can
simulate the driving characteristics of different drivers. The
specific parameters in this manuscript are shown in Table 2.

After setting the parameters, the car-following test can
be completed through the cyclic process shown in Figure 9.

6.3. Results Analysis. The optimal parameters in the previous
section are used to verify the validity of the MSD model for a
mixed platoon in the driver-in-the-loop test platform, and
the test results are shown in Figure 10. It can be seen from
Figure 10(a) when the leading vehicle performs emergency
breaking, each following vehicles take corresponding mea-
sures to brake. In particular, the CAV in the middle position
(the third vehicle) maintains the same deceleration as the
preceding vehicle in the early stage of braking. However, in
the later stage of breaking (the red circles in Figure 10(a)),
the deceleration of the third vehicle changes sharply under
the premise of ensuring safe driving, which reserves enough
time for the following HDV to brake. At the same time, it can
be seen intuitively from Figure 10(b) that there are no
collisions between all vehicles in the mixed platoon and the
intervehicle spacing between the three CAVs and their
preceding vehicle is always within a reasonable error range.
When the CAVs stop, the minimum distance between them
is 2.05 m, which is slightly greater than the minimum safety
distance (sp=2m). However, the minimum distance be-
tween the fourth HDV and the CAV in the middle position is
3.39m. The above results indicate that each CAV in the
mixed platoon can make full use of the braking distance and
adjust the gap between each vehicle optimally, which can
provide the driver of HDV with sufficient reaction time and
braking distance to effectively avoid rear-end collisions.

According to the analysis of the above test results, it can
be considered that the proposed MSD model can capture the
car-following behaviors of CAVs with high accuracy.
However, the MSD car-following model for HDVs needs
further analysis. Therefore, we compare the MSD model
with the traditional mass-spring (MS) model [19] using the
driver-in-the-loop test platform. We establish the test sce-
narios that are the same as that in Figure 8, and all the initial
conditions of the vehicles are also the same. The results are
shown in Figure 11.

As shown in Figure 11(a), in the early stage of braking
(0~6.2s), the maximum speed error between the MSD
model and the driver is 0.30m/s, and the variance is
0.135 m?/s* the maximum speed error between the MS

TaBLE 2: MSD system parameters.

Spring stiffness

Vehicle number Damping coefficient (kg/s)

(kg/sz)
1-2 9% 196
2-3 83 173
3-4 176 382
4-5 81 169

Velocity of preceding vehicle
velocity of following vehicle |
Intervehicle spacing

Driver in
the loop
Energy generated by

car-following errors e 1
[ |
| 1
! Accelerate |
. |
i |
v : N '
1 Maintain :
i |
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. |
| 1
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FIGURE 9: Test process of the mixed platoon.

model and the driver is 0.77m/s, and the variance is
0.227 m*/s>. In the later stage of braking (6.2~15s), the
maximum speed error between the MSD model and the
driver is 0.27 m/s, and the variance is 0.187 m*/s*>. How-
ever, the maximum speed error between the MS model
and the driver is 1.02 m/s with a variance of 0.673 m?/s”.
Overall, both car-following models can accurately de-
scribe the driver’s driving behavior during the braking
process, but the MSD car-following model is more ac-
curate than the MS car-following model. This is because
the MS model only considers the spacing errors of the
platoon. Similarly, it can be intuitively seen from
Figure 11(b) that the spacing errors of the MSD car-
following model are smaller than that of the MS car-
following model, so the MSD car-following model can
accurately describe the drivers’ driving behaviors.

In the car-following processes, the virtual energy
caused by the car-following errors in the mixed platoon is
shown in Figure 12. Figure 12(a) shows the virtual total
energy generated by the errors of spacing and speed of all
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vehicles in the platoon. Figure 12(b) and Figure 12(c)
show the energy generated by the spacing errors and speed
errors between adjacent vehicles, respectively. It can be
seen from these figures that 67.2% of the energy in the
mixed platoon is caused by the HDV (the fourth vehicle),
and the energy of spacing error and the energy of speed
error have not achieved peak simultaneously. The peak
energy of speed error (7878]) is more than triple that of
spacing error (2477]). Furthermore, in the early stage of

the emergency braking, the spacing error is the dominant
factor influencing the car-following behaviors, but in the
later stage of the emergency braking, the speed error
becomes the decisive factor of the car-following behav-
iors. Overall, CAVs possess good car-following charac-
teristics, and the errors of spacing and speed between
them are small. However, errors of spacing and speed
between HDV and CAV are relatively large during the
emergency braking processes.
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7. Conclusions

In this paper, from the perspective of a mechanical system, a
novel car-following model for mixed platoons with CAVs
and HDVs was established based on the mass-spring-
damper theory. Both relative speed and intervehicle spacing
were taken into account in this MSD car-following model,
which can effectively capture the car-following behaviors of
CAVs and HDVs. Furthermore, the driving characteristics
of different vehicles can be described by adjusting the
magnitude of the spring stiffness and damping coeflicient. At
the same time, a quantitative index was proposed in this
paper based on the psychological field theory and MSD
model, which can indicate the virtual total energy caused by
car-following errors of a mixed platoon. Therefore, the
magnitude of the energy can be used to quantificationally
reflect the danger level of vehicles in the car-following
processes. The driver-in-the-loop test was conducted to
verify the validity of the proposed MSD car-following model,
and the key parameters in the MSD system were determined
by the optimal solution based on minimum total energy.
Compared with the traditional MS car-following model, the
proposed MSD model possesses higher accuracy and it can
better describe the car-following behaviors of CAVs and
HDVs. Meanwhile, the virtual total energy is an acceptable
index to quantify the risk of a mixed platoon. Most of the
energy generated by the car-following errors of the mixed
platoon is caused by the HDV. In the early stage of emer-
gency braking, the spacing error is the dominant factor of
the car-following behaviors and the decisive factor of those
in the later stage of emergency braking is the speed error. An
obvious conclusion is that the proposed MSD car-following
model has great potential to enhance the overall safety of the
mixed traffic flow with CAVs and HDVs.

While the MSD car-following model can effectively
describe the longitudinal behavioral interactions of a mixed
platoon, some future research is still needed. First, this
research only conducted driver-in-the-loop tests on CAVs
and HDVs with the emergency braking maneuvers. In the

subsequent research, more complicated and real-life driving
conditions will be fully considered, and the effectiveness of
the MSD car-following model will be further verified. Sec-
ond, an expansion of the lateral driving behaviors based on
the MSD theory will be explored in the future.
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Aiming at solving a typical problem of past research using accident experience statistics of being unable to adapt to changing traffic flows,
this paper provides an evaluation method of the risk of vehicle rear-end collisions at red-light-camera (RLC) intersections based on
theoretical probabilities. Taking advantage of trajectory data of vehicles at the two similar intersections, which are Cao’an Road and
Lvyuan Road with RLCs and Cao’an Road and Anhong Road without RLCs in Shanghai, a binary logit (BL) model of stop-and-go
decision-making is established. Using the model and adjusting the headway and potential travel time, we can perform simulation and
analysis of rear-end collisions. The result shows that this method is feasible to analyse the influence of RLCs on rear-end collisions. The
analysis indicates that RLCs can cause higher speeds for vehicles passing the RLC intersection and more abnormal driving behaviors,
which increase the difficulty of stop-and-go decision-making. RLCs do not always lead to an increase of rear-end collisions. For vehicles
close to or far from intersection at the decision-making time, RLCs will significantly reduce the possibility of rear-end collisions;
however, for vehicles in the potential travel time of 2s~3s, RLCs will increase the probability of rear-end collisions.

In China, the following problems and challenges still
exist in the study of the safety impact of RLCs on vehicles at
intersections:

1. Introduction

In the past, running a red light during signal changes was a
common phenomenon at intersections, which had a
significant impact on the traffic safety of intersection. To
effectively solve the problem of red-light violations, red-
light cameras (RLCs) should be installed. RLCs have been
widely used worldwide for more than 20 years. RLCs are
also widely used in some large- and medium-sized cities in
China. RLCs have played a huge role in reducing inten-
tional red-light running. However, RLCs affect the
driver’s driving state and decision-making behavior at the
intersection, and many potential safety problems that may

(1) The limitations of RLC evaluation methods in mixed
traffic: the environment and driving characteristics
of mixed urban traffic are quite different from those
of foreign countries. Red-light violations and acci-
dents are affected by mixed traffic conditions. The
evaluation of RLC effects in mixed traffic is more
complex.

(2) Taking the accident rate as the metric of the eval-
uation method: the implementation of traffic acci-

be caused by RLCs have not been fully explored. There-
fore, it is important to evaluate the impact of RLC in-
stallation on vehicle operation safety. Research on RLCs
can not only find and eliminate the potential safety
hazards presented by RLCs but also provide the basis for
the future introduction of RLC installation national
standards and use principles.

dent collection systems is late, and there are many
problems facing accident records. Simultaneously,
the degree of urban renewal is quickly leading to
frequent changes in facilities, which affects the oc-
currence of accidents, making the performance of
RLC evaluation methods based on accident experi-
ence statistics in China questionable.
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This paper provides a method of evaluating the effect of
RLCs on driver’s traffic behavior based on mathematical
simulation to solve the above problems. Using driving
characteristic data of vehicles at the intersection decision-
making time, the impact analysis and evaluation of RLCs on
drivers’ stop-and-go decision-making and rear-end hazards
can be realized, therein avoiding the error and cost brought
by accident statistics. This method can adjust the traffic
parameters in the sensitivity analysis of the risk of rear-end
accidents due to RLCs; thus, it can be applied to intersections
with different traffic conditions and thus has portability. This
method can be used to set the speed limit of the road after the
installation of RLCs and can effectively reduce the potential
safety hazards of the intersection after the installation of
RLCs.

The organizational structure of this paper is as follows:
first, the relevant background of this paper is introduced.
Then, the literature review part summarizes the previous
relevant research results and presents the focus of this study.
The data collection methods used in this study appear in the
“Field Observation and Data Collection” part, mainly in-
cluding vehicles with and without RLCs, analysis of speed
characteristics, decision-making behavior, and safety con-
ditions. Based on the above data, the driving behavior model
is constructed. First, the stop-and-go model is constructed
and verified. Based on this, the rear-end collision risk model
is constructed, and the rear-end collision probability is
determined by changing the two key parameters of headway
and potential travel time. The last part of this paper discusses
the influence of RLCs on decision-making behavior during
driving and in the risk of rear-end collisions.

2. Literature Review

There have been many research efforts on the application of
RLCs, most of which focused on the occurrence of accidents
related to RLC [1-6]. Chin’s research shows that RLCs just
applied in Singapore could effectively reduce red-light vi-
olations [7]. South, Hillier, Andreassen, Retting, and others,
through accident comparisons before and after the instal-
lation of RLCs at intersections and the horizontal com-
parison of incidences of rear-end collisions, frontal
collisions, and side collisions, analysed the impact of RLCs
on traffic safety. The conclusions of these researchers are
relatively consistent; that is, RLCs may increase rear-end
collisions while reducing vehicle frontal collision and side
collision accidents [8-15].

In addition, several studies have performed behavioral
studies concerning RLCs. Helai Huang, Zeng. et al,
through the analysis of the decision-making process, found
that RLCs significantly affect the decision-making behavior
of drivers. Although RLCs can reduce the red-light vio-
lation rates of vehicles, their effect on rear-end accidents at
intersections is more complex. The possibility of RLCs
increasing or reducing rear-end accidents is closely related
to the speed of the following vehicle and the headway
between the front vehicle and the following vehicle [16-20].
Lum et al. analysed two T-intersections and one cross-
intersection and found that the RLC can effectively increase
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drivers’ stopping tendency; in addition, the RLC can ac-
centuate the distance to the stop line to affect the stopping
propensity. However, one drawback of this study was that
the possible accident risk caused by RLCs was not included
[21]. According to simulation analysis, Sun et al. found that
RLCs can significantly reduce frontal accidents and may
increase rear-end collisions. In addition, RLCs can affect a
driver’s comfort [22].

Generally speaking, past research on RLCs mainly has
the following two problems: First, the safety impact analysis
of RLCs is mostly based on accident experience statistics,
where the accident data collection cycle is long and the time
span is large, during which changes in other road traffic
parameters will lead to reductions in the credibility of the
final evaluation result. Thus, the RLC evaluation method
based on accident experience statistics has serious defects.
Second, the conclusion that RLCs can reduce the right-
angle accidents and increase the rear-end accidents at
intersections is unanimously accepted; however, the
quantitative analysis of the rear-end collision risk by RLCs
under limited conditions has not been carried out.
Therefore, it is necessary to make a systematic analysis of
the driver’s behavior characteristics, the stop-and-go de-
cision-making behavior, and the risk of traffic safety in the
case of RLCs.

3. Field Observation and Data Collection

3.1. Site Descriptions. One of the best ways to analyse the
influence of RLCs on drivers’ driving behavior is to find two
similar intersections: one is RLC intersection and the other is
non-RLC intersection. The two intersections have similar
characteristics in terms of geometric parameters, traffic flow
composition and traffic volume, traffic management mea-
sures such as speed limit, and signal timing parameters such
as phase number and the type of transition signals. It is very
difficult to select the intersection meeting the above con-
ditions. After a large-scale survey of intersections in
Shanghai urban area, two adjacent signal intersections of
Cao’an Road and Lvyuan Road and Cao’an road and
Anhong Road are finally determined. The location of the two
intersections is shown in Figure 1; the characteristics of
intersections investigated are shown in Table 1.

3.2. Data Collection. In order to obtain all the traffic data
related to driving behavior and ensure the accuracy of the
data, video recording is used in this study. Take through
lanes of the east import way as the research object. Two
synchronous cameras need to be set, among which a far side
camera was set 80 m upstream of the intersection, so as to
capture the whole decision-making process of the vehicle in
the approach. The other camera is used to record traffic
signals.

Image processing software was used to process the video.
The software can extract high-precision vehicle trajectory
data, such as vehicle speed, acceleration, position coordi-
nates, and traffic signal status at every time step. In order to
meet the need of the study on stop-and-go decision-making
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FIGURE 1: Location of the observed intersections in Shanghai.

TaBLE 1: Key parameters of the observed intersections.
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Description Lvyuan Road Anhong Road
Intersection layout “1” “1”
Width of intersection 45m 42m
Adjacent bound level Low Low
Geometry parameters Adjacent land use University Factory
Number of through lanes (westbound) 5 4 (include 1 through-right lane)
Lane length 3m 3m
Pedestrian crossing Yes Yes
Cycle 72s 90s
No. of phases 3s 3s
Signal timings Yellow time 3s 3s
Flash green 3s 3s

Transition signal

Green countdown
(i) Flash green-amber

Green countdown
(i) Flash green-amber

Traffic management RLC installation Yes No
8 Posted speed limit 80 km/h 80 km/h
Traffic flow Flow composition Percentage of car is 54% Percentage of car is 59%
Traffic volume 719 pcu/h 748 pcu/h

and rear-end accidents and to avoid the interference of other
vehicles in driving behavior, trajectory data of the last-to-
stop and the first-to-go through-ahead vehicles after the start
of the green flashing light are extracted as the most im-
portant part. Data collection and video camera coverage are
shown in Figure 2.

The method can also determine the time when the yellow
light is on, the vehicle arrival information, the position of the
vehicle in the fleet, the position of the vehicle when the
yellow light is on, the decision-making behavior of the driver
(stop, yellow light pass or violation), and so forth. The video
processing is applied to 99 vehicles stopping and 251 vehicles
passing with RLCs, among which 208 vehicles encounter
yellow lights and 25 vehicles perform red-light violations,
including 21 vehicles 3 seconds before the red lights start. A
total of 20 vehicles stop under non-RLC conditions, 351
vehicles pass, 162 vehicles encounter yellow lights, and 157

vehicles violate red lights, including 85 vehicles 3 seconds
before the red lights start.

3.3. Data Reduction

3.3.1. Statistical Analysis of Speed. Speed is an important
indicator of driving behavior; thus, this study compares the
speed of vehicles with and without the RLC from multiple
perspectives. The time of vehicles arriving at the intersection
can be divided into three categories: arrival during the tail of
green time (i.e., less than 5 s from the end of green time, EG),
arrival during the yellow-light time (3 s, AT), and arrival at
the beginning of red time (i.e., the initial 3s, BR). The
statistical characteristics of the instantaneous speed of ve-
hicles passing through the parking line in the above time
intervals are shown in Figure 3.
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FIGUure 2: Camera setting and data collection at the study intersections.
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FIGURE 3: Statistical features of speed in different period.
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By comparing the passing speed of vehicles during EG, AT,
and BR, it is found that the speed of the vehicles with RLCs,
such as the mean, minimum, maximum, and 15th percentile,
50th percentile, and 85th percentile speeds, are relatively large
compared with those of the vehicles without RLCs. Compared
with the intersection without RLCs, the average speed with
RLC:s is lower when the yellow light is on; however, the mean,
minimum, maximum, and 15th percentile, 50th percentile,
and 85th percentile speeds all increase when the vehicle enters
the intersection. From the speed analysis, RLCs have an
important impact on the driver’s speed. Compared to the case
without RLCs, RLCs enable the driver to have a higher speed
to leave the intersection entrance faster.

3.3.2. Abnormal Driving Behavior. According to previous
studies [23], the driver makes a decision after the yellow light
comes on (if the green flash or countdown is set before the
yellow light, the decision-making time will be ahead of the
yellow light) and estimates the distance from the current
position to the stop line. Therefore, the distance from the
stop line (actually reflected as the estimated time to the stop
line) is the main judgment basis for deciding on passing or
stopping. The driver’s decision-making is mainly based on
the estimated time to the stop line, while the estimated time
difference refers to the difference between the actual running
time from the decision-making time to the end of the yellow
light and the estimated time to the stop line. The main reason
for the abnormal decision-making is the estimated time
difference. A negative difference means that the vehicle will
enter the intersection at the current speed within the red
time, so the driver should choose to stop; on the contrary, a
positive difference means that the vehicle could safely pass
the stop line at the current speed before the end of the yellow
light, so the driver should do so. This is calculated as follows:

ETD=T,-T,, (1)
D
T =—4
=V, (2)

where ETD is the estimated time difference, T, is the esti-
mated time to stop line, that is, the potential travel time, T, is
the actual duration from the decision point (i.e., start of
amber/start of the flash green light) to the end of yellow light,
D, is the distance from the position making decision point to
the stop line, and V, is the instantaneous speed of the vehicle
at the current decision point. For a random sample, the
speed remains constant during the period from making
decision to passing through the stop line.

If the result of the decision does not match the estimated
time difference, it can be considered as an abnormal driving
behavior, and its statistical results can reflect the change in
the driver’s state during the decision-making process. The
difference in the driver’s judgment of the distance results in
the difference in driving behavior when passing or stopping.
After making a decision, the driver will find that he cannot
enter the intersection before the onset of red time at the
current speed; thus, he will continue to accelerate. If the
judgment error of the distance is large, the driver cannot

pass. According to the matching results of the estimated time
difference and the stop-and-go decision, the decision-
making behavior can be divided into four types: normal pass,
incorrect pass, normal stop, and abrupt stop. The decision-
making mechanism is shown in Figure 4.

We analyse the stopping vehicles and passing vehicles
during a yellow light and the initial stage of red time (3 s after
the red light starts) and calculate the decision-making be-
havior data under RLC and non-RLC conditions, respec-
tively, according to formulas (1) and (2), as shown in Table 2.

It can be seen from Table 3 that, in the case of non-RLC
conditions, the proportion of incorrect pass during passing
decisions and the proportion of abrupt stop during stopping
decisions are significantly larger than those of the intersection
with RLCs. It can be seen that installing RLCs can effectively
reduce the occurrence of incorrect pass and abrupt stop.

4. Driving Behavior Model Based on
Data Simulation

First, data were collected to establish an effective mathe-
matical model, and then the analysis of various parameters
was realized via mathematical simulation. The main ad-
vantage of mathematical simulation is its universality; that is,
with the same set of computer equipment and different
simulation software, various types of systems can be sim-
ulated and tested. This paper focuses on the impact of RLCs
on rear-end collisions during decision-making through
mathematical simulation. The main work of the simulation
model is to build the stop-and-go decision-making model
and rear-end collision probability model.

4.1. Stop-and-Go Decision-Making Model. The decision-
making model of intersection driving behavior is the stop-
and-go model. A BL model (binary logit model, BL model
for short) is easy to understand from a mathematical point of
view and provides a simple method to explain the random
probability generated by the cumulative logic density
function assumed in the basic formula. Therefore, the BL
model is the most widely used in addressing the decision-
making of a driver when deciding to stop at or pass an
intersection when encountering a yellow light. Through this
model, the impact can be realized via a sensitivity analysis of
factors related to the driver’s decision-making behavior [9].
The BL model used to simulate driver stop-and-go decision-
making is calculated as follows:

K
Logit (7;) = log(1 7_Ti7t‘> = Zﬁkxik- )
i/ k=0

In the formula, x; is a group of vectors composed of k
interpretable variables, such as the geometry, traffic volume,
and other intersection elements that can affect the driver’s
decision-making. x; is the k-th variable, and 5, is the
corresponding influence coefficient of the k-th variable.

Considering the influence of the RLC, this paper analyses
the driver’s choice behavior near the intersection during the
signal change interval, herein fully considering factors such
as the vehicle speed, the distance to the stop line when the
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FIGURE 4: Classification of decision-making behavior.

TaBLE 2: Comparison of abnormal decision behavior with RLC and without RLC.

.. Pass decision
Abnormal decision

Stop decision

Normal Wrong Wrong percentage (%) Normal Abrupt Abrupt percentage (%)
RLC 94 15 13.8 93 6 6.1
Non-RLC 109 33 23.2 18 2 10.0

TaBLE 3: Stopping probability models for stop-and-go decision.

Model Explanatory variable Coeft. S.E. Wald test df Sig. Exp (B)
. ~ Potential time (s) 2.445 0.423 33.432 1 0.000 11.528
Category 1: presence of RLC=1 Constant ~6.620 1.190 30.946 1 0.000 0.001
. - Potential time (s) 1.296 0.252 26.473 1 0.000 3.655
Category 2: presence of RLC=0 Constant ~6.709 1.093 37.713 1 0.000 0.001
Potential time (s) 1.183 0.218 69.451 1 0.000 6.129
All samples Presence of RLC 3.940 0.600 43.094 1 0.000 51.435
Constant -8.876 1.003 78.282 1 0.000 0.000

Note: log likelihood (fitting results of model) =447.892. Hosmer and Lemeshow test of goodness of fit (p) =0.329 (p = 0.329 > 0.05 indicates good result).
Area under receiver operating curve = 0.979, which gives validity of model with lower bound of 0.968 and the upper bound of 0.990 (95% confidence interval).
Percentage correct=0.923. Coeff. = coeflicient; S.E.=standard error; df=degrees of freedom; Sig. = significance. RLC is dummy variable (0 =non-RLC,

1=RLC).

yellow light is on, and whether an RLC is installed. Table 3
shows each analysis index and index value.

Table 3 shows the —2log likelihood and two pseudo-
decision coefficients, that, the Cox and Snell R squared
and the Nagelkerke R squared of the current model. The
smaller the -2log likelihood is, the closer it is to 0 and the
better the model fit is. The greater the pseudodeterminate
coefficient is, the closer it is to 1 and the higher the model
precision is. The prediction accuracy of the model shows
that correct prediction records account for 91.3% of all
samples, among which the prediction rate of the stopping
decisions is 85.7%, and the prediction rate of the passing
decisions is 94.0%. The model predictions are highly
accurate.

The stopping probability can be expressed as

1

PStOP = 8.876— 1.183* potential time— 3.940x RLC (1 or 0)’
1+e P

(4)

where RLC=1 represents RLCs installation and 0 is op-
posite; Py, is the probability of making a decision to pass.

In the model, the regression coefficient of speed is pos-
itive, the regression coefficient of distance is negative, and the
regression coefficient of whether there is an RLC installed (i.e.,
installed RLC = 1) is negative. This shows that the greater the
speed of the vehicle, the smaller the distance from the stop line
and the higher the probability of making the pass decision
when an RLC is not installed. Comparing the absolute values
of the coeflicient of each influencing factor, we can see that the
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coefhicient value of the RLC is far greater than those of speed
and distance, which shows that RLCs installation has a
significant impact on the decision-making process of passing,
which is consistent with the actual situation.

4.2. Rear-End Collision Probability Model

4.2.1. Determination of Key Influencing Parameters. For
drivers approaching the stop line when the yellow light is on,
they must decide whether to go through or to stop. If the
driving speed is high and the vehicle is very close to the stop
line, the driver should choose to cross the intersection before
red light onset. On the contrary, if the distance is far, the
driver should make a decision to brake. Two types of ab-
normal driving behaviors often occur when drivers make
decisions. One is when they are far away from the inter-
section, they make a decision to pass, which makes them
unable to pass the intersection smoothly at a normal speed.
In this case, the driver tends to speed up to pass the stop line
as fast as possible. This inappropriate action is likely to lead
to running a red light and then cause the right-angle col-
lisions with the cross traffic flow. Another situation is when
the driver makes a decision to stop when he is close to the
intersection, which results in a failure to stop safely in front
of the stop line with normal braking. Such decision-making
for emergency stopping readily leads to rear-end collisions.

When the trailing car follows the leading car, an in-
correct decision by the leading car will lead to rear-end
collisions. The necessary condition for rear-end collisions is
that the leading car chooses to stop and then the car makes a
pass decision. When a yellow light or green light is active, the
leading vehicle fails to slow down sufficiently due to an
incorrect judgment or perception error, resulting in emer-
gency deceleration. However, if the distance between the
following car and the leading car is small and the driving
speed exceeds that of the leading car, the possibility of rear-
end collisions increases.

The stop-and-go decisions made by the driver of the
leading vehicle mainly consider the distance to the stop line
and the current speed, that is, the potential travel time. Some
scholars, such as Mahalel, Zaidel, and Hayward, have clearly
pointed out that speed and distance, that is, the potential
travel time, have a significant impact on the driver’s stop-and-
go decision-making. Hence, the potential travel time was used
to study the driver’s behavior during the period from green to
yellow lights [23-25]. In addition, some studies have shown
that changes in headway will have an important impact on the
decision-making of the following vehicle and thus indirectly
affect the possibility of rear-end collisions [16]. Therefore, the
headway and the potential travel time are selected as the key
influencing factor for rear-end hazard analysis for the process
of vehicle decision-making. Under two key traffic parameters,
the risk of vehicle rear-end collision under different traffic
flow conditions is discussed.

4.2.2.  Probability Analysis of Rear-End Collisions.
Headway refers to the time interval between two consecutive
vehicles in a vehicle queue operating in the same lane passing

through a certain section. Obviously, headway, as the time
difference between two vehicles passing through the parking
line, has an impact on rear-end accidents. Therefore,
headway will be used as an important variable in the
probability analysis of rear-end collisions.

Using the developed decision model and mathematical
simulation method, the theoretical probability of rear-end
collisions at the RLC intersection under the combination of
headway and the potential travel time is obtained, as shown
in Figure 5.

Figure 5 shows that the changing trend of the probability
of rear-end collisions under different headways is the same,
and the maximum occurrence rate is potential travel time
value of 2-3s, which shows that the possibility of incon-
sistent decision-making between the leading and following
vehicles is the largest within 2s~3s from stopping line. In
other intervals, the leading and following vehicles tend to
make the same decision.

When the potential travel time takes on a certain fixed
value, the smaller the headway is, the greater the incidence of
rear-end collisions is. This indicates that the smaller the
following distance is, the greater the influence of the leading
car is. After being influenced by the driving behavior ten-
dency of the leading car, the following car will take a while to
make corresponding adjustments on the driving state.
During the reaction time period, the driving speed of the
following car may be much faster than that of the leading car,
and the time to collision (TTC) decreases sharply, which
corresponds to an increased possibility of collision.

5. Risk Impact Analysis of RLC on
Driving Behavior

5.1. The Influence of RLCs on Drivers’ Decision-Making
Behavior. The dilemma zone is caused in the process of
stop-and-go decision-making, which has always been an
important index to evaluate the safety of intersections. There
are two types of difficult areas which lead to incorrect de-
cisions [26]. Type I dilemma zone occurs when the intergeen
time is insufficient, which leads to the driver being unable to
not only achieve a safe stop before the red light turns on but
also pass through the intersection safely. Type I dilemma
zone is mainly eliminated by the design of the yellow time
and all-red time. Type II dilemma zone reflects a region in
which it is difficult for drivers to make stop-and-go deci-
sions. Therefore, Type II dilemma zone is also called the
“indecision zone.” The most typical definition of Type II
dilemma zone is the zone between the 10% probability stop
and 90% probability stop when the yellow light is on.
[26-30]. Based on the stop-and-go decision model, Type II
dilemma zone of the intersection with or without RLC is
established, as shown in Figure 6.

Figure 4 shows that the indecision zone of the RLC
intersection is 2 s-3.9 s, and the indecision zone of the non-
RLC intersection is 3.5s-6.9s. Compared with the non-
RLC intersection, the potential travel times corresponding
to 10% stop probability and 90% stop probability are 1.5s
and 3 lower, respectively. This shows that the presence of
RLC helps to reduce the difficulty of decision-making by
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drivers. This finding is consistent with the results of pre-
vious studies [21]; that is, during green or yellow lights,
RLCs is very effective in increasing the tendency of drivers
to stop.

From the perspective of the time span of the indecision
zone, RLCs can help drivers to make decisions more quickly
and decisively, which greatly increases the tendency of the
leading vehicle to choose to brake. However, the leading
vehicle’s stop decision is a necessary condition for the oc-
currence of rear-end accidents. Therefore, although setting
RLCs greatly reduces the indecision zone, it brings more
possibility to the rear-end accident. The further analysis of
the impact of RLCs on rear-end collisions is described in the
following content of the paper [31].
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5.2. The Influence of RLCs on Risk of Rear-End Collisions.
According to the actual observation, the headway of con-
tinuous saturated traffic flow is about 2s. Therefore, taking
the headway as 2 s, this paper analyses the impact of different
potential travel time on the rear-end collision probability, as
shown in Figure 7.

(i) RLCs can effectively reduce the rear-end collision
probability in ranges close to or far from the
intersection.

(ii) For vehicles with low driving speeds, RLCs will
effectively reduce the rear-end collision risk, which
indicates that the decision-making tendency of
these drivers is greatly affected by RLCs. For vehicles
with high driving speeds, RLCs have no obvious
influence on the rear-end collision probability be-
cause most of these drivers are aggressive, and their
decision-making tendency is generally affected by
RLCs.

(iii) According to the previous speed analysis, the
driving speed of most vehicles is in the range of
30km/h to 70 km/h; therefore, in the range of po-
tential traffic times of 2 s~3 s, RLCs will increase the
probability of rear-end collisions for most vehicles.

In this study, estimated time to stop line (ETSL) pro-
posed by Huang et al. was used to analyse the effect of RLCs
on the rear-end collision probability with different speeds
[16]. Through mathematical simulation, the cut-off speed
curves corresponding to the ETSL are obtained when the
headway is taken as 2 s. The area above the curve indicates an
increase in the rear-end collision probability, as shown in
Figure 8.

From Figure 8, it can be seen that 80% of the vehicles at
non-RLC intersections fall on the top of the curve, while 91%
of the vehicles at RLC intersections fall on the top. On the
whole, RLCs can lead to greater probability of rear-end
collisions, but the effect of RLCs on the risk of rear-end
collision is not obvious in a specific range.

6. Conclusions

In this study, aiming at typical problems, such as lag and
large errors in accident statistics research methods for
analysing the rear-end collision risk with RLCs installed, a
simulation analysis method of rear-end collisions based on
the probability of collision theory is proposed, and the
feasibility of this method is verified using two adjacent,
similar intersections in Shanghai. This study mainly con-
siders the driving characteristics, decision-making behavior,
and safety status of vehicles with and without RLCs. The
study not only analyses these three aspects separately but
also discusses the relevance of each analysis conclusion to
provide a comprehensive understanding of the impact of
RLCs on vehicles at intersections. The following conclusions
are drawn in this study:

(1) The method of rear-end collision risk assessment
based on mathematical simulation and calculation
can determine the rear-end collision probability at
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intersections before and after the installation of
RLCs. This method has wide applicability.

(2) RLCs have an important impact on the driver’s
speed. They can cause the vehicle speed at the in-
tersection to increase and cause more abnormal
driving behaviors, which increase the difficulty of
driver’s stop-and-go decision-making.

(3) RLCs are helpful for drivers to make the stop-and-go
decision, reduce the difficulty of decision, and in-
crease the tendency of stopping and the complexity
and possibility of rear-end collision.

(4) Unlike previous studies, we find that RLCs do not
always lead to an increase of rear-end collisions. For
the vehicle close to or far from the intersection at the
decision-making time, the RLC will significantly
reduce the rear-end collision probability; however,
for the vehicle at the potential travel time of 2s~3s,
RLCs will cause an increase of rear-end collisions.
RLCs have minimal effects on aggressive drivers who
drive at high speed at decision-making time.

(5) The probability distribution of rear-end collisions
under different traffic flow states shows that strict
speed limit management can lower the rear-end
collision risk caused by RLCs.
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Electric bikes play an important role in the urban transportation system in China. Yellow-light running behavior of riders is one of
the most critical factors for e-bike riders involved in traffic crashes at intersection. The main purpose of this study is to explore how
a variety of factors affect e-bike riders’ yellow-light running behaviors at intersection by a field observation conducted in Xi’an,
China. Based on 396 e-bike riders who faced yellow-light samples, two analytical methods, the principle component analysis
logistics model and a base logistics model, were employed to evaluate the impacts of contributing factors on e-bike riders’ yellow-
light running behavior. The modeling results showed that seven variables significantly affect the e-bike riders’ yellow-light running
behavior, which were the approaching speed of e-bike, the distance to stop line, riders’ age and gender attributes, type of e-bike,
and the characteristics of intersection including the width of intersection and the existence of physical barriers. This study can
provide valuable insights into understanding e-bike riders’ yellow-light running behavior and may also help decision makers

propose countermeasures to reduce e-bike rider-related crashes at intersection.

1. Introduction

Electric bike as one of the flexible transportation modes is
popular in China and other Asian countries, which con-
stitutes about 34% proportion among all travel modes in
China [1]. Due to the convenience in congestion traffic,
energy efficiency, and high manoeuvrability [2], the electric
bike (e-bike) has experienced a tremendous growth in China
and its total number was more than 250 million according to
the China Bicycle Industry Information Center in 2018 [3].
This trend is likely to continue with the soaring prices of fuel
and the traffic jam due to the growing ownership of motor
vehicles. More e-bikes traffic accidents may be incurred by
the surging number of e-bikes which has attracted some
safety concerns around the world. Riders are considered as
vulnerable road users since they are not protected by any
metal structures of vehicles in traffic crashes [4]. In 2015,
e-bike accidents accounted for more than 70% of nonmo-
torized traffic accidents which involved 14471 casualties [5].
The total number of road e-bike traffic accidents from 2016

to 2017 was 25990, which resulted in 4070 deaths and 28509
injuries [6]. Wu et al. revealed that over 60% of fatal crashes
involving two-wheelers resulted from violation of signal
rules [7]. According to the Chinese road rules, nonmotor-
ized traffic including regular bicycles and electric bikes
should obey the same signal as motor vehicles at signalized
intersections. Because of lower speed and inappropriate
signal controlling, e-bike riders may do an inappropriate go-
stop decision when facing signal changes. Due to the in-
sufficient clearance time, riders may meet the opposite ve-
hicles, thus causing a right-angle collision when doing a go-
decision at the onset of yellow-light. Therefore, a study
focusing on e-bike riders’ crossing behavior at intersection
in yellow-light interval is imperative.

Although the growing violation in e-bikes has attracted
widespread interest of researchers to model the signal vi-
olation behavior, few studies have investigated e-bike riders
yellow-light running behavior. Therefore, this study mainly
reviewed the red-light running behavior of e-bike riders and
the yellow-light running behaviors of motor vehicle drivers.
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Several researchers have studied associated factors,
which may influence the e-bike riders’ red-light running
(RLR) behavior. Wu et al. [7-9] focused on the rider
characteristics such as gender and age group, which were
proven to have significant impact on the RLR behavior. Wu
et al. studied that the young and middle-aged riders were
more likely to run against a red-light than the old ones and
males were more likely to act in a risk-taking manner than
females [7]. Some studies examined the effects of envi-
ronment factors on the RLR behavior. Yan et al. found that
the type of day (weekday, weekend, and holiday) and
period per day (peak and off-peak hours) had effects on
RLR violation rate. And the result showed that the RLR rate
of e-bike riders was high in off-peak hours but low on
weekends and holidays [10]. Yu et al. found that riders were
more likely to stop at the intersection with pedestrian
countdown signal devices [11]. The study conducted by
Zhang and Wu suggested that the sunshields installed at
intersection can reduce RLR violation rates of e-bikes on
both sunny and cloudy days [8]. Bai et al. found that the
type of vehicle had a significant effect on red-light running
behavior occurrences [9].

Most of yellow-light running (YLR) behavior studies
focused on motor vehicles. Some useful reviews of existing
research studies on vehicle YLR behavior can be seen as
follows. A number of studies have conducted to explore
effects of driver’s personal attributes on YLR behavior vi-
olation. The finding of the study conducted by Papaioannou
indicated that drivers’ age and gender significantly impacted
their YLR violation behavior [12]. Consistent conclusions
were found by Rakha and Haque et al. [13, 14]. Many
scholars studied the effects of vehicle operation character-
istics on yellow-light running behavior. Koll et al. concluded
that drivers were likely to pass through intersection rather
than stop with a higher approaching speed and shorter
distance [15]. Similar conclusions were found by
Papaioannou, Bharat, Hurwitz, and Ding et al. [12, 16-18].
Elmitiny et al. [19] and Pathivada, and Perumal [16] focused
on the exposures affecting the violation behavior and they
found that vehicle type had a statistically influence on the
YLR behavior.

The existing signal violation research studies have
similarities and differences in the contributing factors that
are explained in terms of the following aspects: (a) General
summarization: drivers’ characteristics including gender
and age were proved to have significant impact on the e-bike
riders’ red-light running and vehicle drivers’ yellow-light
running violation behaviors, and in both violations, vehicle
type is a significant exposure. (b) Differences of exposures:
compared with the vehicle YLR studies, the researchers
studying e-bike RLR focused on the environment exposures
(e.g., the type of day, the weather, and facilities in the in-
tersection). However, the vehicle operation characteristics
(e.g., the approaching speed and the distance to stop line)
were the crucial factors which have been proved to affect the
YLR violation in many vehicle YLR research studies.
However, till now, rare studies addressed that the operation
characteristics of the e-bike impacted the riders’ crossing
behavior in yellow-light interval. The crucial factors of
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approaching speed and distance to the stop line are taken
into consideration about how they affect the intersection
crossing behavior of riders in this study.

Modeling techniques were explored by many re-
searchers to explain the e-bike rider’s and vehicle driver’s
signal violation behavior at the signalized intersections. The
logistic regression model was the most commonly used
model to explain the signal violation behavior in studies
conducted by Wu, Zhang, Tang, and Bharat et al.
[7, 8, 11, 16]. Yan et al. used the Poisson model to describe
the e-bike cyclist’s and bicyclist's RLR behavior [10].
Elmitiny et al. proposed a decision tree model to classify the
driver’s stop-go decision behavior in yellow-light interval
[19]. Hurwitz et al. [17] and Tang et al. [20] developed a
tuzzy logic model to explain the probability of a driver’s go-
stop decision at the intersection when facing the signal
changes. In this study, the principle component analysis
logistics model is proposed to investigate e-bike riders’
yellow-light running behavior. This approach can be used
to describe how various factors affect the violation behavior
and to eliminate the multicollinearity in the observed data,
further improving the measurement accuracy. PCA lo-
gistics models have been widely applied in biometrics [21],
engineering application [22], economics [23], and man-
agement [24] fields to determine causality from collected
data. Results of these studies indicated that the PCA model
had high model accuracy.

In summary, the objective of this paper is twofold. The
first aim is to examine the effects of a set of contributing
factors on yellow-light running behavior, which included
e-bike rider characteristics (gender, age group, and the
type of vehicle), the e-bike riders” operation characteristics
(approaching speed, distance to the stop line), and the
characteristics of intersection (the width and the facility of
intersection). The second aim is to compare the PCA lo-
gistics model and base logistics model, further revealing
the contribution of variables excluded or omitted by the
base model and improving the model performance in
e-bike riders’ yellow-light running behavior analysis. The
results of this paper would explain why e-bikers infringe
the traffic signal at intersections and might help propose
some suggestions on enhancing the safety of e-bike riders,
which is a major issue in China and other developing
countries.

2. Methodology

2.1. Intersection Selected. The signal intersection chosen to
conduct this observation was in Xi’an, the provincial capital
city of Shaan Xi province, China, where the total number of
electric bikes has been estimated to be more than 3 million
[25]. The selected intersection shared the following
characteristics:

(1) The electric bike traffic flow is smooth and not
queueing
(2) An exclusive nonmotorized lane exists

(3) Before the onset of yellow-light, the signal device has
3-second green-light countdown flashing
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(4) To clearly record the approaching behaviors of e-bike
atintersection by usinga UAV camera, the landscape
trees do not exist on the side of nonmotorized lane

Details and characteristics of the selected intersection are
shown in Table 1.

2.2. Data Collection Using UAV. In this study, the field
observation approach was used to record the yellow-light
running behavior of e-bike riders, which has been com-
monly used to investigate the red-light running violation
[7,8, 10, 11] and yellow-light running behavior of road users
at urban intersections [16, 20, 26]. An unmanned aerial
vehicle which has been applied in traffic behavior analysis
[27-29] recorded e-bike riders’ crossing behaviors, and
synchronized cameras were used to collected riders’ indi-
vidual characteristics. The location of two cameras is listed in
Figure 1. The unmanned aerial vehicle, also called drone, was
operated to hover for 50 m altitude over the nonmotorized
lane located in upstream intersection. The fight altitude
ensured that it would not be visible and audible for the riders
and that the rider’s entire crossing process could be
recorded. To avoid being spotted by subjective riders and
consequently causing changes in crossing behaviors, the
synchronized camera installed was hidden behind telegraph
poles and pointed towards the riders to observe their detail
characteristics. This field survey was conducted during
weekday’s peak hour periods (8:00 a.m.9:00 a.m.; 5:30 p.m.6:
30 p.m.) in good weather conditions for 3 weeks in April
2019.

2.3. Data Extraction. All road users’ crossing behaviors were
recorded on the camera videos, but only the behaviors of
e-bike riders were extracted when they entered the scope of
the UAV camera in 6 seconds prior to the onset yellow-light
to the end of yellow-light. We restricted the coding process
to only include e-bikes straightly passing through at inter-
sections. Right-turn e-bikes were ignored because they could
not subject to the traffic signal controlling on the basis of the
road law in China. Meanwhile, left-turn e-bikes were also
excluded due to having dedicated left signal light for them.
After the coding process, video analysis software was applied
to extract trajectory information. The software could mark
the objective e-bike and automatically track its position at
the frame rate of 25 frames per second. The Cartesian co-
ordinate was established with the cross point of the pave-
ment and the stop bar as the origin which can be regarded as
a reference to extract the X and Y of e-bikes’ position (see in
Figure 2). Hence, the approaching speed and the distance to
the stop line of e-bikes could be obtained. Then, the riders’
individual characteristics coded by the synchronized camera
including gender, estimated age group, and vehicle type were
extracted and are listed in Table 2.

In order to avoid data recording mistake, two trained
graduate students independently extracted the data from
collected videos. The recoding reliability was calculated by
Cohen’s Kappa for categorical variables and intraclass
correlation for continuous variables. All the coeflicients

ranged from 0.79 to 0.99, which ensured the reliability of
extracting process.

2.4. Modeling Rider Behavior. Some limitations may exist in
predicting the result by the linear regression model due to
the binary response variables frequently involved in traffic
behavior. The logistics regression has been widely applied
and proven to be successful to model traffic safety research,
such as evaluating the contributing factors for vehicle ac-
cident [31], especially in examination of risk factors involved
in red-light running and yellow-light running behavior
[7, 8, 11, 16]. In our model, Y=1 denoted yellow-light
running behavior of e-bike riders and Y=0 denoted that
riders stopped their riding behavior in the yellow-light in-
terval. The YLR behavior model was formulated as follows:

logit(%):a+ﬁ0x0+ﬁ1x1+~-~+ﬁnxn, (1)

~Pi
where p; is the probability that events occurred, « is a
constant term, and f3; are the corresponding coeflicient of x;
estimated by the method of maximum likelihood.

The probability of the rider i running against the yellow-
light was obtained in the following equation:

P'(y-=l|x x X): exp (@ + Boxo + Brxy +-- + B x,)
i\ Vi 00 X1s o Xy, L+exp(a+foxo+pixy++Byx,)

(2)

2.5. Method of Estimating Variables’ Multicollinearity.
The logistics model presented in equations (1) and (2) as-
sumes that explanatory variables are independent. However,
the observed variables had a multicollinearity problem.
Multicollinearity may result in prejudices in the estimation
of the model and the interpretation of its parameters. In this
paper, we used two variable selection methods to eliminate
the multicollinearity problem.

2.5.1. Stepwise Regression Selection Model. The stepwise
regression has been commonly used to deal with multi-
collinearity in logistics regression process. The stepwise
regression selection method was used to extract possible
combination of explanatory variables affecting the rider
behavior at the yellow-light onset, and the final combination
of variables was decided based on whether those were sig-
nificant at a 95% confidence level using a T-test in the SPSS
22.0 software.

2.5.2. Principle Component Analysis Selection Model. In
order to obtain an accurate estimation of explanatory var-
iables under multicollinearity, principal component analysis
(PCA) was proposed to extract features of explanatory
variable. The Kaiser-Meyer-Olkin (KMO) test is shown
whether the sample data met the requirements for PCA.
Since PCA is suitable for continuous variables, categorical
principal component analysis (CATPCA) was used in this
study to transform the categorical variables into numerical
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TaBLE 1: Characteristics of study intersections.

. Wenyi North rd.-Huangheng South rd. Hanguang North rd.-Xiaozhai West Taibai North rd.-Keji rd. (T-
Intersection

(W-H intersection) rd. (H-X intersection) K intersection)
Type of intersection Four-arm Four-arm Four-arm
Approaches® SB SB E-WB
Width of intersection® (m) 60 50 75
Width of nonmotorized 27 3.0 27
lane (m)
Length of yellow-light (s) 3 3 3
Flashing countdown 3 3 3

green-light time

*NB: south-bound approach; E-WB: east-west approach. "Width of intersection: the distance between the stop line in the entrance of the intersection and the
other invisible stop line in the exit of the intersection which is the extension cord of the opposite nonmotoried lane’s stop line.

FIGURE 1: Bird’s eye view and two photos of camera view of W-H intersection.
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FIGURE 2: Image of software for data extraction.

values [32]. The CATPCA process is briefly described as ~ where each variable was dedicated by X;, j = 1,...,m, that
follows: was the j column of H, X; was measured in nominal or

Assuming that measurements of n individuals on m ordinal level. Equation (3) transformed the score into cat-
variables scores were given in an n X m scores matrix H egory quantification:
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TaBLE 2: Definition of variables coded.
Variable Definition TyPe of
variable
Gender (GEN) 0 for female; 1 for male Categorical
0 for young group (<30)
Estimated age group® (AGE) 1 for middle-age group (30-50) Categorical
2 for old group (>50)
. b 0 for bicycle-style electric bike .
Vehicle type” (VT) 1 for scooter-style electric bike Categorical
0 for without physical barriers between motorized vehicle lane and nonmotorized vehicle
Physical barrier (PB) lane Categorical
1 for with physical barriers between motorized vehicle lane and nonmotorized vehicle lane
Approaching speed (AS) The approaching speed of vehicle at the onset of the yellow Continuous
I(DI;aEgr)lce to the stop bar Vehicle’s distance to the stop bar at the onset of the yellow indication Continuous
The distance between the stop line in the entrance of the intersection and the other invisible
Width of intersection (WT) stop line in the exit of the intersection which is the extension cord of the opposite Continuous

nonmotoried lane’s stop line

“The rider’s age information extracted from the recorded videos using the estimated age group could be more effective, and the group-dividing method was
reported by Wu et al. [7]. bBicycle-style e-bike can be solely electric-powered or require pedal assistance, while the power of scooter-style e-bike only comes
from the electromotor. The speed of the scooter-style e-bike is faster than the bicycle-style ones, and the features of each type are shown in Figure 3 [30].

(b)

FIGURE 3: (a) Bicycle-style e-bike. (b) Scooter-style e-bike.

q; = ¢;(X;)- &)
The loss function was defined as

F(Q,A,B)=n"" Z tr(qjajr - B)T(qja]T. - B)> (4)

J

where Q is the matrix of category quantifications. A is the
m x p matrix of the component loadings where the j
column is denoted by a;. B is the nx p matrix of object
scores, which are the individuals on the principal compo-
nent. tr is the trace function.

The score matrix H is replaced by the matrix Q that has
the categorical variables into numerical values [23]. Then,
the PCA analysis was conducted by software SAS 9.4 to
replace the original corrected variables by uncorrelated
principal components to regress the logistics model
[21, 33, 34].

Two logistics models based on different methods (e.g.,
stepwise regression for the base logistics model and
principle component analysis for the PCA logistics model)
were employed to deal with multicollinearity. The results
about e-bike riders’ YLR behaviors were estimated and
compared.

Furthermore, the Hosmer-Lemeshow test and some
goodness-of-fit measure were used for model comparison.

3. Results

3.1. Descriptive Statistics. In 28 h high-resolution videos, a
total of 396 valid clearing intersection behaviors in the
yellow-light interval events were observed, among which 248
riders had yellow-light running behaviors. YLR riders were
divided into different characteristic groups, as summarized
in Table 3.
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TaBLE 3: Yellow-light running by each subcategory.

Intersection site

W-H intersection

Number of YLR rider

H-X intersection

T-K intersection

Total

Gender
Male 62.6% (52/83)
Female 34.8% (24/69)
Age group
Young 59% (36/61)
Middle-age 42.9% (21/49)

75% (33/44)
45.8% (11/24)

82.9% (29/35)
42.9% (12/28)

85.4% (76/89)
59.8% (52/87)

82.1% (55/67)
69.6% (64/92)

74.5% (161/216)
48.3% (87/180)

73.6% (120/163)
57.4% (97/169)

old 45.2% (19/42)
Vehicle type

Bicycle-style electric-bike 29.7% (19/64)

Scooter-style electric-bike 64.8% (57/88)
Overall 50% (76/152)

42.9% (12/28)

64.7% (44/68)

60% (3/5) 52.9% (9/17) 48.4% (31/64)
47.4% (36/76)
92% (92/100)

72.7% (128/176)

39.9% (67/168)
79.4% (181/228)
62.6% (248/396)

80% (32/40)

The overall proportion of riders who cross against yel-
low-light was 62.6%, and it varied with the intersections
(from 50% to 72.7%). The majority of observed riders were
male (216) and were aged under 50 years (332). Scooter-style
e-bike accounted for more than 57% of the total vehicles in
all intersections. The chi-square test was used to analyze the
number of YLR behavior riders in different gender, age, and
vehicle type groups. It was observed that male riders were
prone to YLR behaviors (161 vs. 87, p = 0.01). In addition,
riders who drove scooter-style e-bikes were more likely to
go against yellow-light than bicycle-style e-bike riders (181
vs. 76, p<0.01). A higher proportion of yellow-light
runners were observed in young and middle-age riders
than in old ones (73.6% and 57.4% vs. 48.4%); however,
marginal difference can be observed from the result of the
chi-square test for the number of YLR riders in the age
group (p = 0.167).

Table 4 lists the vehicle’s approaching speed and distance
to the stop line extracted from the acquired trajectory data.

The data were tested by the Levene test (F=3.307,
P <0.05) prior to Student’s t-test. The result indicated that
the mean approaching speed of YLR riders at the onset of
yellow-light was 18.9 km, significantly higher than the non-
YLR ones (t=-5.248, p <0.05) Furthermore, the distance to
the stop line was different between the YLR group and non-
YRL group (F=38.814, p<0.05; t=4.02, p<0.01). The YLR
riders were closer to the stop line than non-YLR riders
(8.0m vs. 14.9 m).

3.2. Characteristic Parameters Analysis of the YLR Behavior
Model. In order to further study the correlation of each
driver’s own characteristics in different stages, the strength
of a relationship between variables should be quantitatively
measured. Pearson correlation coefficients were evaluated by
continuous variables, and the categorical variables were
estimated by Cramer’s V coefficient by the chi-square test.
The results are listed in Table 5.

AS and VT and GEN and VT had significant positive
correlation with each other, the value of correlation coef-
ficient reaching 0.767 and 0.612, respectively. The positive
correlation coeflicient illustrated that scooter-style e-bike
riders had a higher approaching speed to clear the

intersection at the onset of yellow-light and male riders were
more likely to ride a scooter-style e-bike than bicycle-style.
In addition, gender had a significantly positive influence on
the approaching speed and the distance to the stop line
(r=0.506 and r=0.350, respectively). That is to say, at the
onset of yellow-light, in comparison with female riders,
males rode faster and were closer to the stop line. The value
of correlation coeflicients between AS and AGE and AS and
DTS were negative, reaching —0.495 and —0.05, respec-
tively. The negative correlation between AS and these two
parameters showed that the faster the approaching speed
riders had, the younger they were, and that riders with
faster approaching speed could be closer to the stop line.
Furthermore, the DTS had slight negative correlation be-
tween WI and PB (r=-0.266, r=-0.370 respectively),
which indicated that the riders were far away from the stop
line at the onset of yellow-light when the crossing distance
was longer or when there existed physical barriers sepa-
rating the motorized vehicle lane and nonmotorized ve-
hicle lane.

The variance inflation factory (VIF) was calculated to
confirm multicollinearity among the explanatory variables
in the following equation:

1
VIF, = 1-—, 5
o (5)
where R? is the model determination coefficient.

The results were as follows: VIF =[12.629, 11.396, 1.355,
1.540, 12.087, 1.637, 2.946]. Three VIF values were greater
than 5 (12.629, 11.396, and 12.087), which indicated that the
multicollinearity problem existed in explanatory variables.

3.3. Principle Component Analysis of Explanatory Variables.
Principal component analysis was used to eliminate the
multicollinearity problem of explanatory variables men-
tioned above. Four explanatory variables, physical barriers,
gender, age group and vehicle type, are the categorical
variables in this study. Therefore, we utilized CATPCA to
transform categorical variables into continuous ones. The
Kaiser-Meyer-Olkin (KMO) test was used to calculate the
four transformed variables and three original variables, and
the value of the test was 0.7 which suggested that the sample
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TaBLE 4: Descriptive statistical of operation parameters.

Mean Std. deviation Minimum Maximum The 80th percentile of speed
AS of YLR vehicle (km/h) 18.9 7.6 6.0 36.8 25.7
AS of Non-YLR vehicle (km/h) 11.3 5.9 1.7 24.9 15.8
DTS of YLR vehicle (m) 8.0 7.0 —0.468 33.2 13.5
DTS of Non-YLR vehicle (m) 14.9 9.9 -5.4 38.2 23.8
TaBLE 5: Correlation coefficient matrix. Scree plot

AS DTS WI  PB GEN AGE VT 3.0 4
AS 1
DTS -0.05* 1 251
WI 0.029 -0.266** 1
PB 0156 -0.370** 0.491** 1 o 201
GEN 0.506** 0.350** 0.60  0.007 1 %
AGE -0.495** -0.148 0.051 0.138 0.549** 1 g 15
VT 0.767** 0.109 0.05 0.056 0.612** 0.503** 1 r_%b
*Correlation is significant at the 0.05 level (2-tailed). **Correlation is 1.0 +
significant at the 0.01 level (2-tailed).

0.5
data met the requirements for PCA. Then, seven variables 0.0 -
were subjected to PCA. A two-factor structure was identified - - - - - - -
1 2 3 4 5 6 7

which explained 65.435% of the total variance (Cattell’s scree
plot presented in Figure 4). Table 6 shows the results of
component score coefficient by PCA with the Varimax
rotation method.

The object scores corresponding to each observed var-
iable on the components were achieved in the following
equations:

factor; = 0.306AS + 0.065DTS + 0.015WI + 0.069PB
+ 0.288GEN — 0.274AGE + 0.316VT,

factor, = 0.087AS - 0.385DTS + 0.420WTI + 0.460PB

- 0.103GEN — 0.004AGE + 0.017VT. @
AS, GEN, AGE, and VT had a strong absolute value of
lodging in factor; (loading values of 0.1 were used as a
cutoft point), this means that there was a strong correlation
between these explanatory variables and the factor;. All the
three variables related to cycling characteristics and indi-
vidual characteristics of e-bike riders could define factor, as
e-bike riders’ characteristics. PB and WI had a positive
projection on factor,, and GEN had a negative projection
on it. The value of GEN (-0.103) was excluded not only
because it caused interpretation difficulties but also because
of its small absolute value of loading compared with the
loading values of PB and WI. The explanatory variables of
PB and WI to factor, were related to characteristics of
intersection.

3.4. Model Estimation. The two binomial logistics models of
rides’ yellow-light running behavior which was based on the
field observation were established by the forward stepwise
(likelihood ratio) and PCA methods, respectively.

Component number

FiGure 4: Cattell’s scree plot.

3.4.1. Base Logistics Model. Based on the previous study,
seven explanatory variables were selected to explore riders’
yellow-light running behavior. Among those variables, only
the estimated age group is a three-category variable. Two
dummy variables and a consultative valuable were set for the
base logistics model, which are shown in Table 7.

Through the forward stepwise (likelihood ratio) method,
the yellow-light running behavior using the base logistics
model was established. The result is reported in Table 8.
Estimation step terminated at step® because the change in
parameter estimations is less than 0.01.

The probability prediction of YLR behavior function was
given by

_exp (-1.040 + 0.191AS - 0.2DTS + 1.826GEN)

" 1+exp (~1.040 + 0.191AS — 0.2DTS + 1.826GEN) *

(8)
The Hosmer-Lemeshow test and the value of prediction

accuracy are summarized in Table 9, respectively, to access
goodness of fit in the proposed model.

3.5. PCA Logistics Model. As mentioned earlier, we applied
principle component analysis to eliminate the multi-
collinearity of explanatory variables. The result of the PCA
logistics model, obtained from the output of the logistics
model with the uncorrelated factors, is listed in Table 10.
Hence, the PCA logistics model is given as follows:

logit (p;_;) = 0.704 + 1.027 factor, + 0.868 factor,.  (9)
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TABLE 6: Matrix of component loadings.
Component
Variables P

Factor, Factor,

Approaching speed at the onset of yellow-light (AS) 0.306 0.087
Distance to the stop line at the onset of yellow-light (DTS) 0.065 -0.385

The width of intersection (WT) 0.015 0.420

Physical barrier (PB) 0.069 0.460
Gender (GEN) 0.288 -0.103
Age (AGE) —0.274 —0.004

Vehicle type (VT) 0.316 0.017

TaBLE 7: Categorical variables coding.
Variable Parameter coding

1) (2)

Age <30 1 0

Estimated age 30< age <50 0 1
Age >50 0 0

TaBLE 8: Base logistics regression values of the predicting variables.

95% CI for exp ()

B SE Wald df Sig. Exp (B)
Lower Upper
Step® AS 0.173 0.042 17.422 1 0.000 1.189 1.096 1.290
Constant -2.042 0.618 10.901 1 0.001 0.130
AS 0.239 0.055 18.613 1 0.000 1.270 1.140 1.416
S'[epb DTS -0.145 0.038 14.730 1 0.000 0.865 0.803 0.931
Constant -1.327 0.684 3.766 1 0.052 0.265
AS 0.191 0.058 10.831 1 0.001 1.210 1.080 1.356
Step DTS —0.200 0.052 14.702 1 0.000 0.819 0.739 0.907
GEN 1.826 0.860 4,511 1 0.034 6.212 1.151 33.511
Constant —-1.040 0.695 2.242 1 0.134 0.353
*Variables entered on step 1: AS, bvariable(s) entered on step 2: DTS, and “variable(s) entered on step 3: GEN.
Substituting equations (6) and (7) into equation (8), the
probability prediction of YLR behavior PCA logit function is
given by
exp (0.704 + 0.39AS — 0.267DTS + 0.38WI + 0.47PB + 0.206GEN — 0.285AGE + 0.339VT) (10)

1+ exp (0.704 + 0.39AS - 0.267DTS + 0.38WI + 0.47PB + 0.206GEN - 0.285AGE + 0.339VT)’

Table 9 summarizes the result of goodness of fit for the
base logistics and PCA logistics models. Prediction accuracy of
the PCA logistics model was 77.8%, and the value of chi-square
calculated by the Hosmer-Lemeshow test was 5.72, while the
two values of base model were 74.7% and 6.398, respectively.

4. Discussion

Electric bike is a critic transportation mode in China and
other developing Asian countries, while it is involved in
massive casualties at intersections. The objective of this study
was to explore e-bike riders’ behavior when facing the
yellow-light interval. The results indicated that 62.6% (248/
396) of e-bike riders arriving during the yellow-light period
run against the traffic signal at intersection. This finding was

higher than that of Bharat [16]. The difference in ratio of the
number of yellow-light running behaviors may be caused by
different collecting data time.

Two types of yellow-light running behavior analytical
modelss for e-bike riders were developed, with different
multicollinearity eliminating method (forward stepwise and
PCA). Table 9 lists goodness-of-fit measures for the base
logistics model and PCA logistics model, respectively. Re-
sults revealed that the principle component analysis model
improved in overall fit as measured by the Hos-
mer-Lemeshow test and percentage correct compared to the
base model. As shown in Table 9, the PCA logistics model’s
chi-square value was smaller than that of the base model’s
which indicated that the variance between model prediction
and origin data was small (p>0.1). In addition, the
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TaBLE 9: Goodness-of-fit statistics for logistics regression.

Base logistics model PCA logistics model

Hosmer-Lemeshow test

Chi-square 6.398 5.720

df 8 8

Sig. 0.603 0.679
Percentage correct 74.7 77.8

TaBLe 10: PCA logistics regression values of the predicting
variables.

95% CI for

B SE Wald df Sig. P exp (B
(B)
Lower Upper
Factor;  1.027 0.272 14.209 1 0.000 2.791 1.637 4.760
Factor, 0.868 0.268 10.456 1 0.001 2.382 1.408 4.032

Constant 0.704 0.251 7.850 1 0.002 2.021

percentage correct also proved that the PCA logistics model
was statistically superior, which had a higher percentage
correct of 3.1%. The results suggested that stepwise re-
gression could obtain an optimal combination of variables,
but those combinations of variables may eliminate some
variables due to the small interpretation which should not be
omitted in the YLR behavior model. Therefore, the following
analysis was mainly based on PCA logistics model.

4.1. Effect of e-Bike Riders’ Operation Characteristics. The
result of the PCA model indicated that the approaching
speed had a significant positive impact on the YLR decision.
The odds ratio was 1.477(e%*) which suggested that the
rider, who traveled 1km/h faster than the other ones, was
1.477 times likely to do a go-decision against yellow-light
signal. The result was consistent with the result in a motor
vehicle observation study reported by Papaioannou [12].
One possible reason would be that the riders traveling in a
fast approaching speed may think they can pass the stop line
in the remanent yellow-light time and quickly cleared the
intersection to avoid waiting for the next green light signal.
Therefore, effectively lowering riders’” approaching speed at
the approach to the intersection may result in a significantly
less YLR violation.

The effect of distance to the stop line (DTS) on the YLR
violation was significantly negative (-0.276). The odds
ratio value was 0.765 which indicated that the riders, who
were 1m farther than the others, was 0.765 times more
liable to run against yellow-light, that was to say riders
who are closer to the stop line at the onset of yellow-light
will be more likely to cross the intersection than the one
who was far away from the stop bar. The GHM model
proposed by Gazis et al. proved that a smaller distance to
the stop distance than the vehicle’s minimum stopping
line could lead to a rear-end accident [35]. Riders may feel
they cannot safely stop before the stop line so that they
prefer continuously running against the yellow-light. This
result was in line with the previous study [16], proving
that a shorter distance to the stop line reduced the

likelihood of stopping in the yellow-light period. With
respect to the appropriate measures aiming at improving
the current situation, speed limit measure should urgently
be carried out in e-bike vehicle and strict law enforcement
related to riders violate in yellow-light signal should be
considered.

4.2. Effect of e-Bike Riders’ Characteristics. According to the
model in equation (8), gender was found to be a significant
variable to estimate the YLR behavior. Male riders had 1.299
times yellow-light running violation than female riders at
signal intersection (the odds ratio = ¢*2%), which meant that
males had more propensity to running against yellow-light
than females. Consistent result showed that the female
drivers had lower rates of signal infringement than male
drivers [36]. Also, Wu et al. analyzed information recorded
by video cameras, which implied that males were more likely
to cross the intersection in a risk-taking manner among 451
e-bikers and bicyclists [7]. The previous study conducted by
Parker et al. found that males reacted with more incon-
siderate driving and impatient driving than females when
they faced impede progress such as the signal light changing
into yellow-light or red-light [37], which may explain the
gender difference in the yellow-light running behavior.

The estimated age group was found to be significant for
prediction of the YLR behavior and had a negative effect on it.
The young group had higher violation behaviors than middle-
aged and old riders. This tied in with the findings of Chung
and Wong [38] and Zamani-Alavijeh et al. [39] that compared
to other drivers, the young driver was more likely to engage in
risky driving behavior and involved in severe accidents.
However, the result was not consistent with the result in
which the age group failed to be a significant variable for
predicting signal violation proposed by Wu et al. [7]. One
possible reason was that researchers used the stepwise re-
gression method in the logistics model, and the method of
stepwise regression could obtain an optimal combination of
variables, but this combination of variables may eliminate
some variables due to the small interpretation.

It was clearly observed that the probability of YLR was
influenced by the vehicle type. The running yellow-light
probability of scooter-style e-bike riders was 1.4 times more
than the running yellow-light probability of bicycle-style
e-bike riders (the odds ratio =e%3%°). This conformity ten-
dency was also reported in the study conducted by Bai et al.
which indicated that compared to bicycle-style riders,
e-scooter riders were more likely to show risky behavior [9].
This may be due to that the two types of e-bikes have great
difference in power performance, among which the scooter
style has a powerful engine to provide faster speed than the
bicycle style. Scooter-style e-bike riders had the ability to
clear the intersection with the strong power before the
opposite vehicle came to the intersection.

In terms of the abovementioned views, much attention
should be paid to road safety interventions for e-bike riders;
the riders need to enforce safety attitudes to change the belief
that they could safely clear the intersection with yellow-light
running in a fast speed. In addition, the punishment should
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be carried out in practice to avoid yellow-light running
behavior so that riders would take YLR behavior as an illegal
behavior rather than a normal riding behavior.

4.3. Effect of the Characteristics of Intersection. The width of
intersection had a significant positive impact on the yellow-
light running behavior. The odds ratio was 1.462 (e%3%)
which suggested that 1 m longer width may result in the
rider having 1.462 times to go against the yellow-light signal.
One possible reason was that the gap in the cross traffic is
larger in a big intersection than that in a small one; therefore,
riders consider that they may have a chance to safely cross
the intersection in an enough gap.

The probability of riders running against yellow-light in
an intersection with physical barriers was 1.6 times higher
than in intersections without physical barriers (the odds
ratio = e%*7). One possible explanation was that the existence
of a barrier between motorized vehicle lane and nonmo-
torized vehicle lane might increase speed among riders due
to the separation from motorized traffic; thus, riders may
run against the yellow-light in fast speed.

4.4. Limitation. There are several limitations in the present
study. First, the data collection in this study is performed in a
single city and in the four-leg intersection which may not be
representative of Chinese complicated intersection envi-
ronments. More data should be collected at multiple in-
tersections in other cities to validate the findings in further
study. Second, the various types of traffic light devices and
phase of traffic light may impact e-bike riders’ behavior,
which were not considered in present research. Future re-
search studies including traffic light devices and phase are
required to better understand how these variables influence
the YLR behavior. Third, the current study focused on in-
dividual e-bike rider’s yellow-light running behavior while
ignoring the impacts of platoons. E-bike riders’ yellow-light
running behavior could be affected by the behaviors of other
people, and future research is required to take these effects
into consideration.

5. Conclusion

This study sought to examine the effects of factors on e-bike
riders’ yellow-light running behavior. 396 samples were
collected using field observation in Xi’an, China, for model
development. Except for riders’ attributes, the type of
e-bikes, operation characteristics related to approaching
speed, distance to stop line, and characteristics of inter-
section including the width of intersection and the existence
of physical barriers are also considered as explanatory
variables. Given that riders have two choices either to pass or
to stop at the intersection when facing the yellow-light, two
logistics regression models, PCA logistics model and base
logistics model, have been developed to explain this
behavior.

The empirical analysis revealed a number of findings.
First, results of the PCA logistics model showed that seven
factors had significant effect on YLR behavior, while results
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of the base logistics model showed that just two factors
significantly affected YLR violation. The comparison be-
tween the results of two established models revealed that
omission of effective variables would result in lower pre-
diction accuracy of the model and misunderstanding in
riders’ YLR behavior. Second, the characteristics of opera-
tion were found to have effect on e-bike riders YLR behavior.
It was observed that the probability of stopping decreased
with the increase in the approaching speed of the e-bike and
riders’ stopping probability decreased with the increase in
their distance from the stop line when green traffic light
changed to yellow. Third, e-bike riders’ attributes were
important factors affecting YLR behaviors. Female riders
demonstrated a more obedient behavior to signals than male
riders. Riders in the old age group were more likely to stop at
the onset of yellow-light compared to other age groups. Also,
scooter-style e-bike riders were less likely to stop at the
intersection. Last but not the least, e-bike riders’ violation
behavior was affected by the intersection characteristics. The
existence of physical barrier decreased the riders’ stopping
probability. And an intersection with a shorter crossing
distance may increase the stopping probability of e-bike
riders.

Based on the findings of this study, some countermea-
sures to improve e-bike riders’” yellow-light running viola-
tion should be adopted. Adjustment of the signal time may
be necessary to reflect the e-bike operation characteristics. In
addition, YLR infringement education must be given re-
peatedly in a rider’s daily life. Moreover, a license system
should be required to e-bike riders; thus, penalization for
those YLR riders can link YLR violation with their individual
credits under a stricter enforcement at intersection. Im-
provements for the existing road infrastructure as well as
some other countermeasures are required for crossing safety
of e-bike riders.
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The stop/go decisions at signalized intersections are closely related to driving speed during signal change intervals. The speed
during stop/go decision-making has a significant influence on the dilemma area, resulting in changes of stop/go decisions and
high complexity of the decision-making process. Considering that traffic delays and vehicle exhaust pollution are mainly caused by
queuing at intersections, the stop-line passing speed during the signal change interval will affect both vehicle operation safety and
the atmospheric environment. This paper presents a comparative study on drivers’ stop/go behaviors when facing a transition
signal period consisting of 3 s green flashing light (FG) and 3's yellow light (Y) at rural high-speed intersections and urban
intersections. For this study, 1,459 high-quality vehicle trajectories of five intersections in Shanghai during the transition signal
period were collected. Of these five intersections, three are high-speed intersections with a speed limit of 80 km/h, and the other
two are urban intersections with a speed limit of 50 km/h. Trajectory data of these vehicle samples were statistically analyzed to
investigate the general characteristics of potential influencing factors, including the instantaneous speed and the distance to the
intersection at the start of FG, the vehicle type, and so on. Decision Tree Classification (DTC) models are developed to reveal the
relationship between the drivers’ stop/go decisions and these possible influencing factors. The results indicate that the in-
stantaneous speed of FG onset, the distance to the intersection at the start of FG, and the vehicle type are the most important
predictors for both types of intersections. Besides, a DTC model can offer a simple way of modeling drivers’ stopping decision
behavior and produce good results for urban intersections.

1. Introduction

At signalized intersections in most cities of China, a 3 s green
flashlight (FG) indicator and a 3 s yellow light (Y) indicator
are the most common form of transition signal setting [1-3].
The current practice shows that it is reasonable to set the
yellow light as 3's for the intersection with a speed limit of
less than 50 km/h. Once the speed limit is higher than 50 km/
h, the vehicle will often fall into the dilemma zone (DZ) due
to the higher driving speed and insufficient yellow light
duration [4-8]. In most Chinese cities, the speed limit of
high-speed intersections in rural areas is generally larger
than 60 km/h. In comparison, in urban areas, the speed limit

of high-speed intersections is usually smaller than 60 km/h.
Thus, for the above two intersections with different areas, the
setting of green flashlight (FG) can impose other effects on
the stop/go decision-making behavior of drivers.
Tremendous research efforts have done to study the
influence of FG on drivers’ decision-making behaviors as
well as to model such behaviors in response to signal change
intervals. However, few studies have compared the impact of
FG on the driver decision-making process at different types
of intersections. Furthermore, there is no study on the
specific combination of 3-second yellow light (Y) and 3-
second green flashlight (FG). This kind of signal combi-
nation is a unique feature of signalized intersections in
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TaBLE 1: Characteristics and conditions of the investigated intersections.
Intersections Cao’an Rd. and Cao’an Rd. and Cao’an Rd. and Siping Rd. and Rende Rd. and
Jiasongbei Rd. Xiangjiang Rd. Caofeng Rd. Dalian Rd. Jipu Rd.
Speed limit 80 km/h 50 km/h
Observed East-bound East-bound West-bound and east- East-bound North-bound
approaches bound
Lane layout L-T-T-T-R L-T-T-T-R L-T-T-T-R L-L-T-TR L-TR
Size 72 m 72 m 48 m 64 m 40 m
Cycle length 161s 160s 104s 200s 86
Number of phases 4 4 3 4 2
Green time 38s 45s 45s 77 s 45s
FG 3s 3s 3s 3s 3s
Y 3s 3s 3s 3s 3s
All-red time 1s 1s 1s 2s 1s
First-to-go vehicles 201 153 303 112 33
(Passenger cars/
trucks) (156/45) (119/34) (203/100) (103/9) (28/5)
Last-to-stop 156 101 272 75 53
vehicles
(Passenger cars/
trucks) (111/45) (77/24) (175/97) (68/7) (37/16)

Note: L =exclusive left-turn lane; T = through-ahead lane; R = exclusive right-turn lane; TR = shared through and right-turn lane.

80

Distance to the stop-line (m)

40

0 3 6
The FG onset  The Y onset  The Red onset

Elapsed time after the onset of FG (s)

—— Stopped vehicles (166 trucks and 363 passenger cars)
—— Passing vehicles (179 trucks and 478 passenger cars)

()

FiGgure 1: Continued.
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FIGURE 1: Vehicle trajectory data of the investigated intersections. (a) Rural intersections (the speed limit is 80km/h) and (b) urban

intersections (the speed limit is 50 km/h).

TaBLE 2: Descriptive statistics for instantaneous speed at the onset of FG (unit: km/h).

Intersection types Sublevel Sublevel Sample size Mean Std. dev Min Max

Passenger cars 363 61.8 19.1 16.7 118.9

Stop Trucks 166 53.8 17.4 21.7 115.6

Rural intersections Overall 529 59.3 18.9 16.7 118.9
Passenger cars 478 64.5 16.7 19.4 115

Go Trucks 179 56.1 15.6 5.6 100.6

Overall 657 62.2 16.8 5.6 115

Passenger cars 105 39.2 8.9 16.4 64.5

Stop Trucks 23 38.9 8.1 23.3 56.2

Urban intersections Overall 128 39.2 8.7 16.4 64.5
Passenger cars 131 45.4 10.3 15.2 68

Go Trucks 14 46.6 8.7 21.4 57.2
Overall 145 45.5 10.2 15.2 68

China. It provides a long time for the observation and
determination of the driver before stop/go decision-making,
i.e., 6. Therefore, this paper mainly focuses on the research
gap.
In this study, the Decision Tree Classification (DTC)
models are applied to analyze how drivers’ stop decisions
relate to potential influencing factors for two different types
of intersections. Firstly, vehicle trajectory data, reflecting
stop/go decision behavior of five intersections, are collected
during the signal change interval. Three of which are high-
speed intersections with a speed limit of 80 km/h in the rural
area, and two of which are intersections with a speed limit of
50 km/h in the urban area. Secondly, we use these trajectory
data, and we also carried out statistical analysis to sum-
marize the general characteristics of the potential influ-
encing factors of the two types of the intersection, including

instantaneous speed, the vehicle type, and the distance to the
intersection at the beginning of FG signal. Thirdly, the DTC
model is built based on the description of the critical design
decisions and parameters. Next, the results of the DTC
model and the discussion of findings are given accordingly.
Finally, we summarize the findings of the study, point out
the contribution of this study, and suggest future directions
of related research.

2. Literature Review

Many previous achievements have focused on the influence
of FG on the driver’s decision behavior and DZ. There are
both positive and negative conclusions about the effect of FG
in these kinds of literature studies. The positive results show
that FG can warn the driver that the phase of green light is
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TaBLE 3: Descriptive statistics for distance to the intersection at the beginning of FG (unit: m).

Intersection types Sublevel Sublevel # Mean Std. dev Min Max
Passenger cars 363 105.9 37.6 231 217.7

Stop Trucks 166 102.5 36.5 23.6 197.5

Rural intersections Overall 529 104.8 37.2 231 217.7
Passenger cars 478 56.4 26.4 32 132.9

Go Trucks 179 49.3 26.5 5.2 132.9

Overall 657 54.5 26.6 3.2 132.9

Passenger cars 105 95.7 24.9 39.8 163.1

Stop Trucks 23 96.7 355 40.4 155.6

Urban intersections Overall 128 95.8 26.9 39.8 163.1
Passenger cars 131 46.2 19.5 7.5 95.2

Go Trucks 14 60.3 233 16.7 97.7

Overall 145 47.6 20.2 7.5 97.7
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FiGure 3: Distributions of stop/go decisions for distance interval from intersections. (a) Rural intersections and (b) urban intersections.

coming to an end, and the driver can reduce the incidence of
DZ by reducing the driving speed, to avoid red light vio-
lations [1, 2, 9]. FG signal essentially plays a role in pro-
longing the duration of yellow light. Therefore, compared
with the intersections without FG, the proportion of drivers
running the red light at the intersections with FG is sig-
nificantly reduced [10-13]. Among the negative aspects, it
showed that FG could cause a significant increase in the

proportion of stop decisions [10, 11, 14]. Besides, although
FG can effectively reduce the DZ range caused by the yellow
light, it enlarges the indecision zone and enormously in-
creases the number of conservative stops and slightly en-
couraging aggressive passes slightly [13, 15]. Meanwhile, the
presentation of an FG indicator before the Y indicator
considered increasing the complexity of the driver’s stop/go
decision, leading to repeated decision-making [15, 16].
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TaBLE 4: Analysis of variance table for speed and distance of FG onset.
Variables Source Sum of square df Mean square F Sig.
Stop/go 5816.2 1 5816.2 17.9 0.000
Speed Vehicle type 7172.9 1 7172.9 22.1 0.000
P Area type 78365.9 1 78365.9 283.8 0.000
Time of the day 52384.1 1 52384.1 179.2 0.000
Stop/go 895878.7 1 895878.7 958.8 0.000
Distance Vehicle type 0.0 1 0.0 0.0 0.998
Area type 10098.6 1 10098.6 6.5 0.011
Time of the day 4374.2 1 4374.2 2.8 0.093
TaBLE 5: Precision of models for rural intersections and urban intersections.
Predicted
Models Observed . .
Stop Go Hit ratios (%)
Stop 213 49 81.30
Training Go 47 287 85.90
Rural intersections Total 43.60% 56.40% 83.90
Stop 199 68 74.50
Test Go 49 274 84.80
Total 42% 58% 80.20
Stop 61 7 89.70
Training Go 2 76 97.40
Urban intersections Total 43.20% 56.80% 93.80
Stop 52 8 86.70
Test Go 7 60 89.60
Total 46.50% 53.50% 88.20

Notably, most of the studies listed above focused on the
comparative study of FG installation or not and DZ oc-
currence and/or stopping probability.

Meanwhile, numerous studies have focused on the
modeling of driver’s decision-making behavior at the end of
the green light [17-20], the most typical of which is the
GHM model proposed by Gazis, Herman, and Maraddin
[21]. A basic assumption of the GHM model is that the
driver decides whether to stop or pass the intersection
according to the relationship between the maximum passing
distance and the minimum stopping distance at the be-
ginning of the yellow light. Several notable variants have also
been reported in the literature [22-25]. The GHM model
assumes that all drivers will choose to stop, if possible. But
Olson and Rothery [26] found that the yellow light is often
used as an extension of the green time phase in the decision-
making process. Research conducted by May [27] showed
that some drivers avoid DZ by accelerating or decelerating.
The study of Liu et al. and Wei et al. [23, 28] showed that the
theoretical hypothesis could lead to differences in driving
behavior. In general, the primary defect of the GHM model
is the lack of description of the randomness of driving
behavior. Because of this disadvantage, some other re-
searchers have attempted to explain DZ behavior through
stochastic approaches [15, 29, 30].

Many studies [12, 16, 17, 23, 31-34] believe that the
decision-making behavior of drivers is random and obeys a
specific probability distribution. The stopping probability,
which is described as a function of the speed of the vehicle,

the distance to the intersection, or the travel time to the stop-
line at the beginning of the yellow light, the type of vehicle,
etc., is expressed as binary logit model or Bayesian model.
Meanwhile, other researchers, such as Rakha et al. [35],
Hurwitz et al. [36], Kuo et al. [37], and Moore et al. [38], used
fuzzy logic theory to analyze decision-making behavior. It
should further point out that the behavioral parameters
closely related to decision-making behavior may vary due to
the influence of location conditions, driver behavior char-
acteristics, vehicle performance, etc. Also, various potential
influencing factors are often related to each other. Some
research studies [16, 29, 30, 39-41] carried out in recent
years have found that the distribution of decision-making
areas may be dynamic, rather than the certainty described by
traditional theories.

3. Data Collection and Reduction

3.1. Site Descriptions. Five intersections in Shanghai were
selected to collect the necessary data, which were a 3 s FG signal
and a 3s Y signal. These intersections are divided into two
categories, one with a speed limit of 80 km/h and the other with
a speed limit of 50 km/h. The former is mainly located on the
roads connecting the urban area and the suburban area, such as
Cao’an highway, etc., which has a large traffic flow and a high
proportion of large trucks in peak hours. The latter is mainly
located in the urban area, and the traffic composition is mostly
cars. The main characteristics and conditions of the investi-
gated intersections are shown in Table 1.
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FIGURE 4: DTC analysis results for rural high-speed intersections (training model).

3.2. Field Surveys and Vehicle Trajectory Extraction. We
select the sunny weekdays to carry out data collection,
trajectory data of vehicles collected by video recording.
Two high-definition cameras are required to record syn-
chronously. One of the cameras is installed on the high
building near the intersection, which can cover the 80 m

long area upstream of the stop-line, to record the move-
ment trajectory of the whole decision-making process.
Another camera is set at the intersection to record traffic
signals synchronously. The acquisition of travel trajectories
relies on image processing software. It is located by the
global coordinates of five related points in the shooting
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FIGURE 5: Partition for the stop/go decision model for rural high-speed intersections.

lens. Through residual analysis and t-test, it ensured that
the accuracy error is not more than 0.15m and 0.1s. The
time interval of the software-controlled is 0.1 s. Therefore,
matching the trajectory data with the signal change timing,
driving behavior parameters such as the speed, accelera-
tion, and deceleration of vehicles, and the position of each
step are obtained.

To avoid the influence of preceding vehicles, only the
last-to-stop and first-to-go vehicles after the onset of FG are
selected for analysis. The last-to-stop vehicle refers to the
vehicle selected to stop in front of the stop-line before the
start of the red light. The last means that the vehicle is the last
vehicle to make a decision in the study period. The first-to-go
vehicle refers to the first vehicle passing through the stop-
line during the study period (i.e., from the end of green light
time to the end of yellow light).

Eventually, the trajectories of 1,459 vehicles including 1,186
vehicles (345 trucks and 841 passenger cars) at the rural in-
tersections and 273 vehicles (37 trucks and 236 passenger cars)
at the urban intersections were obtained for use in subsequent
statistical analysis and model development. As shown in
Figure 1, the 1,186 vehicle trajectories collected at the rural
intersections included the trajectories of 529 vehicles selected to
stop and 657 vehicles selected to pass. In comparison, the 273
trajectories obtained from the urban intersections included the
trajectories of 128 vehicles selected to stop and 145 vehicles
selected to pass.

4. Statistical Analysis of Potential
Influencing Factors

Past research has indicated that drivers’ stopping decisions
at signalized intersections may be influenced by the speed

and distance to the stop-line immediately before the phase
transition period as well as the vehicle type and time of day
[14, 21, 22]. Therefore, statistical analysis was performed to
explore the variability of these potential influencing factors
as well as their relationships with stop/go decisions in re-
sponse to the onset of FG.

4.1. Instantaneous Speed at the Start of FG. A statistical
analysis of vehicles’ instantaneous speeds at the observed
approach lane at the start of FG is provided in Table 2.
Comparisons between the rural and urban areas indicate
that in both areas, the mean velocities of vehicles making
go decisions are higher than those of vehicles making stop
decisions. Besides, passenger cars typically have higher
rates than trucks in both rural and urban areas. Figure 2
illustrates the distributions of the stop/go decisions rel-
ative to various FG-onset speed intervals in rural and
urban areas. It finds that in a rural area, if the driver’s
speed is 60 km/h, the probabilities of stop and go decisions
are equal. The same situation occurs in an urban area
when the speed is 50 km/h, meaning that more truck
drivers decide to stop than passenger car drivers given the
same approach speed. In Figure 2(b), the situation is
similar, with more truck drivers choosing to cross the
intersection at a lower speed, which may be safer for large
vehicles.

4.2. Distance to the Intersection at the Start of FG. Table 3
presents a statistical summary of distance to the intersection
at the start of FG. It is found that the mean value of distance
for crossing drivers is shorter than that for stopping drivers.
Figure 3 illustrates the distributions of the stop/go decisions
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FIGURE 6: DTC analysis results for urban intersections (training model).

relative to various FG-onset distance intervals in rural and  truck drivers than passenger car drivers are inclined to stop
urban areas. This figure shows that it is more likely for a ~ when the distance to the intersection at the start of FG is
driver to make a go decision if he or she is farther from the  shorter than 100 m.

stop-line, and vice versa. In rural areas, for drivers located in

a distance interval of 60-100m from the stop-line, the

probability of stop decision or pass decision is close to 50%.  4.3. Analysis of Variance of Potential Influencing Factors.
The same situation is found for a distance interval of = Table 4 shows the analysis of variance (ANOVA) results for
60-80m in urban areas. In these distance intervals, it is  the speed and distance at FG onset, where this analysis is
difficult for drivers to decide whether to stop or go.  conducted to investigate the differences between every pair of
Moreover, among all drivers who make stop decisions, more factors. The ANOV A results show that multiple traffic factors,
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F1GURE 7: Partition for the stop/go decision model for urban intersections.

including stop/go decisions (p < 0.01), vehicle type (p < 0.01),
and area type (p < 0.01), exhibit significant effects with respect
to the approach speed of the vehicles at the onset of FG, but
only the stop/go decisions (p < 0.01) exhibit significant effects
with respect to the distance to the stop-line.

5. Development of Decision Tree
Classification Models

5.1. Decision Tree Models. Because of its nonparametric
nature and straightforward interpretation, DTC is proved in
the field of traffic engineering [42]. For example, in the traffic
safety evaluation, Abelldn et al. [43] use DTC to analyze the
relationship between stop/go decision, red light violation,
and traffic parameters. Some researchers [44, 45] have used
DTC methods to explore the relationship between the rel-
evant traffic rules and accident severity.

In this study, the SPSS software package is used for the
classification tree analysis. Based on the CART approach, a
classification tree model was established, and the Gini cri-
terion (or index) is used as the measure for splitting decisions.
Because the data volume is not large, the minimum number of
cases for the parent nodes was set to 30, and the minimum
number of instances of the child nodes was set to 10. Besides,
the cross-validation method (with ten folds) was used to
evaluate how to extend the tree structure to a larger pop-
ulation. The three variables were expected to be closely related
to the driver’s stop/go decision, i.e., distance, speed, and
vehicle type. The distance variable represents the distance
from the vehicle to the stop-line at the start of FG, and the
speed variable represents the vehicle’s speed at the beginning
of FG. Vehicle type variables are divided into two categories:
passenger cars and trucks (0 = passenger cars and 1 = trucks).

Table 5 shows the precision of the two developed models.
For the rural area model, the training and test accuracies are
83.9% and 80.2%, respectively, and the prediction of cross
behavior is more accurate than that of stopping the behavior.
For the urban area model, the training and test model ac-
curacies are 93.8% and 88.2%, respectively. The model is
correctly fitted.

5.2. Result Analysis at Rural High-Speed Intersections.
Figure 4 shows the classification tree diagram used for
training the stop/go decision model for rural areas.

Figure 5 shows the corresponding partitions, which are
much finer-grained than those in Figure 4. When the dis-
tance to the stop-line is shorter than 44.3 m or more pro-
longed than 116.4 m, most of the vehicles make the same
decision. When the distance is between 44.3 m and 116.4 m,
the approach speed effects on the stop/go decision.

(i) For vehicles at FG-onset distances of less than
44.3m, 97.7% of drivers will cross the intersection,
as shown in Zone 1.

(ii) By contrast, for vehicles at FG-onset distances of
more thanl16.5m, the percentage of drivers that
will cross the intersection is only 2.2%, whereas
most drivers (97.8%) will stop, as shown in Zone 6.

(iii) For vehicles at FG-onset distances between 44.3 m
and 68.9m, the most critical factor affecting the
drivers’ stop/go decisions is speed. For vehicles with
FG-onset rates higher than 48.9 km/h, most drivers
(87.3%) will cross the intersection. By contrast, for
vehicles with FG-onset speeds below than 48.9 km/h,
the vehicle type plays an essential role in the stop/go
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F1Gure 8: Comparison of the stop/go decision between rural and urban intersections.

decision. Trucks are more likely to stop than pas-
senger cars. These behaviors above and below
48.9km/h correspond to Zones 2 and 4, respectively.

drivers (97.9%) in Zone 6 will stop, since the dis-
tance to the stop-line is more significant than a
particular threshold value, in this case, 67.4 m.

(iv) Finally, for vehicles at FG-onset distances between (ii) A situation similar to that found for rural inter-

68.9m and 116.5m, the approach speed again
plays a critical role. For vehicles with FG-onset
rates higher than 66.8 km/h, most of the drivers
(71.4%) will cross the intersection. However, for

sections occurs in the classification tree for urban
intersections. The vehicle type plays a vital role in
the drivers’ stop/go decisions for vehicles in Zone 4,
where FG-onset distances are less than 57.1 m, and

vehicles with FG-onset speeds below than
66.8 km/h, most drivers (72.8%) will stop, as in-
dicated in Zone 5.

the FG-onset speeds are below 39 km/h.

(iii) For vehicles at FG-onset distances between 57.1 m
and 67.3 m with FG-onset speeds below 39 km/h, all
drivers will choose to stop (corresponding to Zone 5

in Figure 7).
5.3. Result Analysis at Urban Intersections. Figure 6 shows

the classification tree diagram used to train the stop/go
decision model for urban areas. Similar to Figure 5, the
corresponding partitions for the tree in Figure 6 are drawn in
Figure 7. This graph is divided into six zones:

(iv) For vehicles with FG-onset speeds higher than
47.8 km/h, there are two different situations: for
vehicles at FG-onset distances between 67.4 m and
94 m, 61.5% of drivers will cross the intersection,
while for vehicles at FG-onset distances greater than
94 m, 100% of drivers will choose to stop, as indi-
cated in Zones 2 and 3, respectively.

(i) As shown in Figure 7, all vehicle drivers in Zone 1
will choose to cross the intersection, while most
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5.4. Comparisons of Rural High-Speed Intersections and
Urban Intersections. The percentages of stop decisions are
shown through a color scale in Figure 8. This figure il-
lustrates that drivers tend to make stop decisions when the
vehicle is farther from the stop-line, and the approach
speed is higher, whether the intersection is in a rural or
urban area.

However, there are some differences between rural high-
speed intersections and urban intersections:

(1) Truck drivers are more conservative at urban in-
tersections, especially when they are nearer to the
stop-line at modestly low speeds (below 39 km/h).
Because of the higher speed limit at rural high-speed
intersections, such conservative decision behavior
emerges at these intersections at greater distances of
44.3~68.9m and speeds below 48.9 km/h.

(2) Due to the difference between the speed limits, most
drivers tend to stop rather than cross at urban in-
tersections when the distance exceeds 57.1 m while at
rural high-speed intersections, this distance
threshold increases to 68.9 m.

(3) When the vehicles are at a sufficiently far distance,
such as 116.5m from the stop-line at a rural in-
tersection, nearly all drivers choose to stop inde-
pendent of the approach speed. However, this
value is much smaller, specifically, 94m at an
intersection.

6. Conclusions and Future Works

This study generated two models: the first illustrates the
conditions affecting stop/go decisions in rural areas, and the
other explains the corresponding requirements in urban
areas. The data analysis indicates that the vehicle speed and
distance to the stop-line when FG is on as well as the vehicle
type are the most significant factors affecting the driver’s
stop/go decision in both rural and urban areas. The nor-
malized importance of the distance variable is 100% for both
types of sites. In rural areas, the normalized importance of
speed is higher than that in urban areas. For vehicles at FG-
onset distances between 68.9m and 116.5m, the rate be-
comes the critical factor affecting drivers’ behavior. The
probability of stop decision is almost equal to that of pass
decision, both of which are close to 0.5. The corresponding
distance interval in urban areas is between 67.4 m and 94 m.
An interesting finding of this study is that under the same
conditions, regardless of whether the intersection is in a
rural or urban area, most truck drivers tend to park more
than car drivers.

This study presents a novel way to analyze stop/go de-
cisions. The tree-based model provides a good verbal ex-
planation, which makes it easier to examine other
conditions. The classification tree provides a simple method
to model the driver’s behavior without any normal as-
sumptions. The stop/go decision-making model based on
DTC developed in this study can be used to improve the
driver behavior model embedded in microscopic traffic
simulation software.
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To better understand a driver’s driving speed selection behaviour in low illumination, a self-designed questionnaire was applied to
investigate driving ability in low illumination, and the influencing factors of low-illumination driving speed selection behaviour
were discussed from the driver’s perspective. The reliability and validity of 243 questionnaires were tested, and multiple linear
regression was used to analyse the comprehensive influence of demographic variables, driving speed in a low-illumination
environment with street lights and driving ability on speed selection behaviour in low illumination without street lights. Pearson’s
correlation test showed that there was no correlation among age, education, accidents in the past 3 years, and speed selection
behaviour in low illumination, but gender, driving experience, number of night-driving days per week, and average annual
mileage were significantly correlated with speed selection behaviour. In a low-illumination environment, driving ability has a
significant influence on a driver’s speed selection behaviour. Technical driving ability under low-illumination conditions of street
lights has the greatest influence on speed selection behaviour on a road with a speed limit of 120 km/h (8 =0.51). Risk perception
ability has a significant negative impact on speed selection behaviour on roads with speed limits of 80 km/h and 120 km/h
(B=-0.25 and 3 = —0.34, respectively). Driving speed in night-driving environment with street lights also has a positive influence

on speed selection behaviour in low illumination (f=0.61; $=0.28; 5=0.37).

1. Introduction

Night accidents are frequent and serious. Among the total
number of traffic accidents, 46% to 54% of accidents oc-
curred at night, while the traffic volume during this period
was 10%~30% of that in the daytime, causing approximately
60% of the total number of deaths [1]. The probability and
severity of traffic accidents in low-illumination environ-
mental conditions at night are much higher than those in the
daytime. A study on truck-involved accidents has found that
the probability of severe injury increases in the low illu-
mination condition [2].

The driver is in a dominant position in the trans-
portation system. Studies have shown that motor vehicle
drivers are one of the main factors leading to traffic acci-
dents. According to statistics, 80 to 90% of road traffic

accidents in China are caused by human factors, especially
driving behaviours, as traffic accidents caused by driving
errors constitute 70-80% [3].

A series of studies have been carried out on the effects of
illumination on driving behaviours, especially drivers’ visual
characteristics. Previous studies have examined the effect of
illumination on visual sensitivity. These studies found that
visual sensitivities decrease linearly with a decrease in il-
lumination [4]. Rackoff and Rockwell showed that the safety
of driving at night could be improved by increasing envi-
ronmental illumination to meet drivers’ demands for visual
information [5]. A comparative test of low illumination and
normal illumination was conducted to analyse the effects of
environmental illumination and speed on the recognition
time of objects with different colors, and a measurement
model of vehicle speed, dynamic low illumination, and
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recognition time was built [6]. Driver’s visual characteristics
and cognitive ability are directly affected by insufficient il-
lumination; thus, driving behaviour is also affected, showing
a difference from normal illumination conditions.

In the process of driving, more than 90% of the infor-
mation that the driver has is obtained by visual perception
[7]. Through continuous perception of road environment
information, the driver can make behavioural decisions and
guide the cyclic feedback process of driving behaviour [8].
Most traffic accidents are caused by poor line-of-sight
conditions [9]. In a dark night environment, it is difficult to
form a clear image on the retina due to insufficient light
entering the driver’s eyes, so it is more difficult for the driver
to perceive road environment information. Whether the
driver can accurately visualize an obstacle in front, the
difference between the brightness of the obstacle and the
contrast of the environment, and the illumination of the
environment in which the driver is located are important
factors. As the illumination of the driver’s environment
increases, the driver’s visibility of an obstacle will be reduced
due to the high brightness of the surrounding environment
[10].

The influence of illumination on the speed selection and
safety of drivers has been studied by many scholars. A study
found that illumination could affect a drivers’” speed selec-
tion and attention during driving and that an increase in
illumination could reduce the occurrence of accidents [11].
Haglund and Aberg found that 47%~58% of drivers over-
speed at night, and their self-perceived speed is lower than
the actual speed [12]. With insufficient lighting at night, the
driver’s perception of speed will be illusory. Suh and Park
and other studies found that insufficient night lighting will
make the driver feel that the speed of the vehicle is not fast,
causing the driver to accelerate or even speed [13]. Baker
found that night drivers underestimated speed and increased
driving speed [14]. Read and others found that in the study
of the effect of improving the brightness of street lamps on
the driving performance of elderly individuals at night, the
driver increased speed and reduced attention when road
lighting was installed [15]. Under certain conditions, an
increase in road brightness is helpful to some drivers, but in
other cases, it has a negative impact on the driver. In ad-
dition, low illumination affects the driver’s speed processing
ability. A reduction in illumination seriously affects visual
ability, reduces reaction time, and reduces speed processing
capability.

Driving is a complex sensory movement task. Good
driving ability is also a prerequisite for ensuring safe driving
of drivers. Driving ability includes technical driving ability
and risk perception ability. In low illumination, a driver’s
driving ability will also change to a certain extent, which in
turn affects the driver’s speed selection behaviour. However,
there are few studies on driving ability and speed selection
behaviour in low illumination at home and abroad.

Therefore, the purpose of this paper is to study the
influence of driving ability on speed selection behaviour in
low-illumination conditions and combine the driver’s per-
sonal attributes to separately analyse speed selection be-
haviours under the two scenarios of street lights at night and
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no street lights at night. The corresponding data were ob-
tained through a questionnaire survey, and a multiple re-
gression model of driving speed selection in low
illumination was established to provide a theoretical basis
for road speed management in low illumination.

2. Research Methods

2.1. Measures. The existing methods of researching driver
behaviours can be divided into driving simulator technology
[16], real-time driving environmental big data [17], real
vehicle experiment [18], mathematical model [19], and
questionnaires [20]. Different from the former methods, the
latter one measures the behaviours via psychological per-
spective. In the present study, a questionnaire instrument
was used, which is a cost-effective way in examining driver
behaviours based on psychological characteristics.

According to the purpose of this study, the “driver
survey questionnaire in low illumination” consists of three
parts: driver demographic information, speed selection
behaviour, and driving ability scale in low illumination. The
selection of items was mainly based on mature question-
naires that have been widely used in the industry and
screening from the items of those questionnaires. In addi-
tion, drivers were interviewed, and the interview results
showed that a driver’s sensitivity to illumination was poor
and that the perception and understanding of low illumi-
nation were different. Therefore, the questionnaire did not
define low illumination by light intensity but described a
low-illumination environment as a “night environment.”

After the preliminary design and formation of the
questionnaire, teachers and graduate students of the Traffic
Safety Institute were invited to conduct evaluations, and 10
professional drivers were invited to pre-fill according to
driving situations in low illumination in the past year and to
propose amendments. Finally, some questions were ad-
justed, modified, and replaced. The specific design contents
of the questionnaire were as follows:

2.1.1. Demographic Information. The demographic infor-
mation included gender, age, driving experience, education,
average annual mileage, number of night-driving days per
week, number of traffic accidents that occurred at night in
the past three years, deduction in 2017, deduction due to low
illumination, and self-assessment of the influence of a low-
illumination environment on driving performance and
driving skills.

2.1.2. Speed Selection Behaviour. The speed limit value has a
significant impact on driving speed, and a driver will choose
to increase or decrease speed with a change in the road speed
limit value [21]. Therefore, this study combines road clas-
sification and common speed limit values to classify roads
into three types: urban roads/low-grade highways (speed
limit: 60 km/h), high-grade highways (speed limit: 80 km/h),
and expressways (speed limit: 120 km/h). Drivers were asked
to answer six questions about speed selection: in night-
driving environment with street lights, the driving speed
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(WSL60) that is preferred on a road with a speed limit of
60 km/h; in night-driving environment without street lights,
the driving speed (WOSL60) that is preferred on a road with
a speed limit of 60 km/h; in night-driving environment with
street lights, the driving speed (WSL80) that is preferred on a
road with a speed limit of 80 km/h; in night-driving envi-
ronment without street lights, the driving speed (WOSL80)
that is preferred on a road with a speed limit of 80 km/h; in
night-driving environment with street lights, the driving
speed (WSL120) that is preferred on a road with a speed
limit of 120km/h; and in night-driving environment
without street lights, the driving speed (WOSL120) that is
preferred on a road with a speed limit of 120 km/h.

2.1.3. Driving Ability Scale in Low Illumination.
Referring to the driving skills assessment questionnaire
designed by Zheng [22], the traffic scenario was set as a low-
illumination environment at night and was specifically di-
vided into two scenarios of street lights at night and no street
lights at night. The specific contents are shown in Tables 1
and 2. Drivers were required to self-report by scoring on the
form to evaluate their driving ability in a low-illumination
environment at night. Each item was scored in the form of a
Likert 5-point scale, from “I = completely inconsistent” to
“5=completely consistent.” The items were set in the op-
posite direction; the lower the score was, the better the
driving ability was.

2.2. Experimental Process. The questionnaire was conducted
through a field survey, and drivers were required to fill in the
questionnaire according to their actual driving conditions in
low illumination at night. Participants participated in the
survey voluntarily and anonymously, and it took approxi-
mately 10 minutes to complete the questionnaire. The driver
will be paid 10 yuan after the investigation is completed.

2.3. Data Collection. A total of 266 questionnaires were
collected in this survey, and 243 valid questionnaires were
finally collected, excluding those that were incomplete or
had less than one year of driving experience. Participants
included 182 men and 61 women, with an average age of 31.9
years (SD =7.319) and ages ranging from 20 to 55 years old;
average driving experience of 5.6 years (SD =5.127); and
average annual mileage of 160.27 million kilometres
(SD =2.1119). The average number of night-driving days per
week was 2.426 days (SD = 1.8644), the average deduction in
2017 was 2.35 (SD = 3.449), and the average deduction due to
low illumination at night was 0.18 (SD =0.72).

3. Results

3.1. Descriptive Analysis. Under the condition with street
lights, the average driving speed of a driver is 58.61 km/h
(SD=8.795), 77.13km/h (SD=8.654), and 110.88km/h
(SD =10.594) on roads with speed limits of 60 km/h, 80 km/
h, and 120 km/h, and the corresponding speed reduction in
night-driving environment with street lights is 14.09%

(M=50.35km/h, SD=10.139), 18.13% (M=63.15km/h,
SD=7.811), and 11.89% (M =97.70km/h, SD =7.360), re-
spectively; that is, a driver will drive at a speed approximately
15% lower than normal when driving in a low-illumination
environment.

3.2. Reliability and Validity Analysis. To ensure the reliability
and validity of the research results, it is necessary to test the
reliability and validity of the self-compiled driving ability
scale in low illumination. Among the results, the Kai-
ser-Meyer-Olkin (KMO) value of the driving ability scale in
the case of street lights at night is 0.937, which is greater than
the standard value of 0.5, and the Bartlett sphericity test
result reaches the level of significance (p <0.01). The KMO
value of the driving ability scale in the case of no street lights
at night is 0.948, which is greater than the standard value of
0.5, and the Bartlett sphericity test results reach the level of
significance (p <0.01), indicating that the data are suitable
for factor analysis [23].

Principal component analysis was used to conduct the
maximum rotation of variance for the driving ability scale
with and without street lights at night. In the case of street
lights at night, the driving ability scale obtains two factors
with eigenvalues greater than 1, named “Technical Driving
Ability 17 (TDA1) and “Risk Perception Ability 1”7 (RPA1).
The questionnaire consists of 16 items, these two factors
explain 81.62% of the total variance, and the load of each
item is above 0.66. The specific results are shown in Table 1.
The factor structure agrees with the theoretical conception,
and the validity of the questionnaire structure is good.

In the case of no street lights at night, the driving ability
scale obtains two factors with eigenvalues greater than 1,
named “Technical Driving Ability 2” (TDA2) and “Risk
Perception Ability 2” (RPA2). The questionnaire consists of
22 items, these two factors explain 76.34% of the total
variance, and the load of each item is above 0.71. The specific
results are shown in Table 2. The factor structure agrees with
the theoretical conception, and the validity of the ques-
tionnaire structure is good.

Cronbach’s « coeflicients were used for reliability
analysis of the scale to measure its reliability. When « > 0.7,
the questionnaire is acceptable. Cronbach’s & coeflicient of
the driving ability scale for street lights at night used in this
study is 0.976, and the combined reliability of the two factors
is 0.962 and 0.969; Cronbach’s « coefficient of the driving
ability scale for no street lights at night is 0.975, and the
combined reliability of the two factors is 0.961 and 0.975,
indicating that the questionnaires have ideal reliability.

3.3. Correlation Analysis. The Pearson correlation coefficient
method is adopted to measure the correlation between a
driver’s personal attributes and speed selection behaviour in
low illumination without street lights. The specific results are
shown in Table 3. The gender of the driver and average
number of night-driving days per week are significantly
correlated with speed selection behaviour on roads with
speed limits of 60 km/h and 80 km/h, respectively, in night-
driving environment without street lights; driving
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TaBLE 1: Factor structure and load of the driving ability scale in environments with street lights at night.

Item Item content TDA1 RPAI1

1 When there are street lights at night, I can control the vehicle smoothly on the road 0.85

2 When there are street lights at night, I can control the vehicle steadily on slippery roads 0.82

4 When there are street lights at night, I can park safely and correctly on the ramp 0.84

8 I have mastered the methods and techniques of emergency steering at night with street lights 0.67

13 When there are street lights at night, I can always safely avoid in case of an emergency 0.82

21 When there are street lights at night, I can drive reasonably by observing the movements of pedestrians and other 073
vehicles '

23 When there are street lights at night, I can overtake safely and reasonably 0.82

12 When there are street lights at night, I can plan or choose routes to avoid getting lost and taking long detours 0.70

14 When there are street lights at night, I can detect potential traffic dangers on the road 0.77

16 When there are street lights at night, I can keep a safe driving distance from the vehicle in front 0.85

17 When there are street lights at night, I can get a good grasp of the surrounding traffic situation when driving the 076
vehicle '

18 When there are street lights at night, I can react quickly in case of an emergency during driving 0.84

20 When there are street lights at night, I can make a quick decision when I encounter a choice during driving 0.83

22 When there are street lights at night, I can notice the dynamic state of the roadside 0.84

24 When there are street lights at night, I can judge the safe speed of the road according to different road conditions 0.81

25 When there are street lights at night, I can pay attention to the dynamics near my vehicle while driving 0.80

TABLE 2: Factor structure and load of the driving ability scale in environments with no street lights at night.

Item Item content TDA1 RPAIl

28 When there is no street light at night, I can control the vehicle smoothly on the road 0.78

29 When there is no street light at night, I can control the vehicle steadily on slippery roads 0.79

31 When there is no street light at night, I can park safely and correctly on the ramp 0.78

32 I can drive steadily and safely at night without street lights 0.82

33 When there is no street light at night, I can drive the vehicle smoothly at night (such as slow acceleration and 0.85

deceleration) ’

35 I have mastered the methods and techniques of emergency steering at night without street lights 0.75

36 I mastered the skills of braking quickly and controlling the car at night without street lights 0.73

37 When there is no street light at night, I can still complete the necessary driving action in an emergency 0.76

38 When there is no street light at night, I can skilfully use various electronic navigation equipment in the vehicle 0.75

46 When there is no street light at night, I can change lanes reasonably in heavy traffic 0.76

51 When there is no street light at night, I can overtake safely and reasonably 0.77

30 When there is no street light at night, I will observe the surrounding traffic conditions before driving 0.79

34 When there is no street light at night, I can adjust the driving speed according to the driving situation 0.86

m When there is no street light at night, I can get a good grasp of the surrounding traffic situation when driving the 0.82
vehicle '

45 When there is no street light at night, I can react quickly in case of an emergency during driving 0.81

47 When there is no street light at night, I can make a quick decision when I encounter a choice during driving 0.80

48 When there is no street light at night, I can drive reasonably by observing the movements of pedestrians and other 0.83
vehicles ’

50 When there is no street light at night, I can notice the dynamic state of the roadside 0.72

52 When there is no street light at night, I can judge the safe speed of the road according to different road conditions 0.80

53 When there is no street light at night, I can pay attention to the dynamics near my vehicle while driving 0.87

54 When there is no street light at night, I can quickly detect dangerous behaviours of other drivers. 0.83

55 When there is no street light at night, I can quickly identify pedestrians crossing the road ahead 0.87

experience is significantly related to speed selection be-
haviour on a road with a speed limit of 80 km/h; total annual
deduction is significantly related to speed selection behav-
iour on a road with a speed limit of 60 km/h; and the average
annual mileage is significantly correlated with the speed
selection behaviour on roads with speed limits of 60 km/h
and 120 km/h. Speed selection behaviour in low illumination
without street lights is significantly correlated with speed
selection behaviour in night-driving environment with street
lights with speed limits of 60 km/h, 80 km/h, and 120 km/h,

respectively. Age, education, and accidents in the past 3 years
are not correlated with speed selection behaviour in night-
driving environment with street lights.

3.4. Difference Analysis. An independent -test was used to
analyse the differences in speed selection behaviour for
different driving experience and average annual mileage in a
low-illumination environment without street lights. The
specific results are shown in Table 4. The results show that
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TaBLE 3: Correlation analysis between a Driver’s personal attributes
and speed selection behaviour in low illumination.

WOSL60 WOSL80 WOSL120

Gender 0.143* 0.240*" 0.096

Age 0.006 0.115 0.040

Education 0.004 -0.103 0.001

Driving experience 0.109 0.147* 0.090

Average annual mileage 0.182*  0.107 0.203*"
Number of night-driving days 0229%*  0.129* ~0.074
per week

Deduction in the past year 0.164" 0.086 0.121

Accidents in the past 3 years 0.031  -0.065 0.054

WSL60 0.665**  0.255"*  0.220*"
WSL80 0.566"*  0.457** 0.328*"
WSL120 0.398**  0.439"*  0.388*"

drivers tend to choose the speeds WOSL60, WOSL80, and
WOSL120 in a low-illumination environment without street
lights with road speed limits of 60km/h, 80km/h, and
120 km/h, respectively, that have significant differences in
terms of driving experience and average annual mileage.
Under the same speed limit conditions, the greater the
driving experience and the higher the average annual
mileage are, the higher the speed selection in a low-illu-
mination environment.

3.5. Predictors of Speed Selection Behaviour. Since the driving
ability of a driver in low illumination cannot be directly
observed, multiple linear regression analysis is used in this
paper to predict the preferred speeds WOSL60, WOSLSO0,
and WOSL120 in a low-illumination environment without
street lights with speed limits of 60km/h, 80km/h, and
120 km/h, respectively, as shown in Table 5. The driver’s
gender, age, education, driving experience, average annual
mileage, number of night-driving days per week, total an-
nual deduction, and accidents in the past 3 years are taken as
demographic variables and included in the regression model
as the first step. The driving speeds that a driver tends to
choose on roads with the three different speed limit con-
ditions in a low-illumination environment with street lights
are gradually incorporated into the regression model in the
second step. The driving skills under street lights at night and
the driving skills under no street lights at night are gradually
incorporated into the regression model in the third step.

The total explanatory power of the regression model for
WOSL60 is 48.3%, among which the driver’s number of
night-driving days per week, WSL60, and WSL120 are
significant predictors. Demographic variables have 10.9%
explanatory power (F (8,234)=3.581, p =0.001), WSL60
has 38.1% explanatory power (F (9,233)=24.847,
p =0.000), and WSL120 has 1.5% explanatory power (F
(10,232) =23.629, p = 0.000).

The total explanatory power of the regression model for
WOSLS0 is 37.4%, among which the driver’s gender, edu-
cation, total annual deduction, WSL80, WSL120, TDAI, and
RPALI are significant predictors. The explanatory power of
demographic variables is 12.9% (F (8,234)=4.318,
p = 0.000). The explanatory power of WSL80 and WSL120

for WOSL8O0 is 16.9% (F (9,233) =10.977, p = 0.000) and 4%
(F (10,232) =11.818, p = 0.000), respectively, indicating that
the higher the driver’s preferred speed is on a road with
street lights and an 80km/h or 120 km/h speed limit, the
higher the driver’s preferred speed on a road with an 80 km/
h speed limit in a low-illumination environment. In addi-
tion, the explanatory power of RPA1 is 1.8% (F (12,230) =
13.026, p = 0.000), and the explanatory power of TDA1 to
WOSLS80 is 4.9% (F (11,231) =13.223, p = 0.000), indicating
that the stronger the driver’s technical driving ability is
under the condition of street lights at night, the higher the
speed the driver tends to choose on a road with a speed limit
of 80 km/h in a low-illumination environment. However, the
stronger that risk perception ability is under the condition of
street lights at night, the lower the speed selection is.

The driver’s number of night-driving days per week, total
annual deduction, WSL120, TDA1, and RPA?2 are significant
predictors of WOSL120, and the total explanatory power of
the regression model is 30.9%. Among them, the explanatory
power of demographic variables is 7.5% (F (8,234) =2.373,
p =0.018), and the explanatory power of WSL120 to
WOSL120 is 14.7% (F (9,233) =7.371, p = 0.000), indicating
that the higher the driver’s preferred speed is on a road with
street lights conditions and a speed limit of 120 km/h, the
higher the driver’s preferred speed on a road with a speed
limit of 120km/h in a low-illumination environment
without street lights. The explanatory power of TDA1 is 6.8%
(F (10,232)=9.437, p =0.000), indicating that the more
skilled the driver is at driving with street lights at night, the
higher the value of WOSL120. RPA2 has a minimum ex-
planatory power of 5.1% (F (11,231)=10.819, p = 0.000),
indicating that the higher the driver’s risk perception ability
is under the condition of street lights at night, the lower the
value of WOSL120 is.

4. Discussion

This study aims to explore the relationships between speed
selection behaviour and demographic variables and driving
ability in a low-illumination environment by questionnaires
and analysis. The results show that there are significant
differences in terms of driving experience and average an-
nual mileage affecting drivers’ preferred speeds in a low-
illumination environment. Drivers” driving skills in a low-
illumination environment have a significant predictive effect
on speed selection behaviour. In addition, gender, driving
experience, average annual mileage, average number of
night-driving days per week, and total annual deduction
were found to be significantly correlated with speed selection
behaviour in low illumination without street lights.

4.1. Validation of the Driving Ability Scale. Based on previous
questionnaire designed by Zheng [22], we confirmed the
validation of the newly developed scale concerning a low-
illumination environment at night and the scenarios of street
lights at night/no street lights at night. In the case of street
lights at night, it yielded 2 factors explaining 81.62% of the
variance, Cronbach’s « values of factors were above 0.9, and
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TaBLE 4: Difference analysis of speed selection behaviour in low illumination.

. Driving experience M (SD) Average annual mileage M (SD)

Variable T T
<6 years >6 years <15,000 km >15,000 km
WOSL60 48.91 (10.450) 52.89 (9.080) 2.986""* 48.39 (9.782) 53.41 (9.974) 3.878%**
WOSL80 61.94 (7.674) 65.28 (7.632) 3.276*** 62.09 (7.308) 64.79 (8.313) 2.657**
WOSL120 96.84 (7.253) 99.20 (7.346) 2.433" 96.45 (7.125) 99.63 (7.338) 3.354*"*
*p<0.05, **p<0.01, and *** p <0.005.
TaBLE 5: Regression prediction model of speed selection behaviour in low illumination.

. WOSL60 WOSL80 WOSL120

Variable 5 N N
AR B AR B AR B
Step 1: enter 0.109 0.129 0.075
Gender 0.002 0.124* 0.049
Age -0.06 -0.007 -0.1
Education -0.068 —-0.141%* -0.018
Driving experience 0.109 0.041 0.036
Average annual mileage 0.042 -0.086 0.047
Number of night-driving days per week 0.114* -0.006 -0.204***
Deduction in the past year 0.066 —-0.149** 0.136*
Accidents in the past 3 years -0.042 -0.101 0.003
Step 2: stepwise
WSL60 0.381 0.609***
WSL80 0.169 0.277***
WSL120 0.015 0.139** 0.04 0.223*** 0.147 0.374"**
Step 3: stepwise
TDA1 0.049 0.445"** 0.068 0.513***
RPA1 0.018 —0.248""
TDA2
RPA2 0.051 —0.343*"*
R*=0.483 R*=0.374 R*=0.309

*p<0.05 **p<0.01, and ***p <0.005.

values of factor loading were above 0.66. Moving onto the
other scale, it also yielded 2 factors explaining 76.34% of the
total variance, Cronbach’s a values of factors were above 0.9,
and the load of each item is above 0.71. The results show that
the two scales are effective; the items have high factorial
weight and good internal consistency. The first dimension,
“Technical Driving Ability,” mainly examined the ability to
operate and control the vehicles. The second one, “Risk
Perception Ability,” showed the drivers’ ability to perceive
environmental factors and potential risks. The findings were
in line with previous studies relating to driving ability as-
sessment [24, 25].

4.2. Factors Influencing Speed Selection Behaviours in Low
Illumination. Driver characteristics have also been found to
influence speed selection. In terms of demographic variables,
gender was significantly correlated with speed selection
behaviour, with men driving at a higher speed than their
counterparts. This is in line with the results of Sadia et al,,
who suggested that the average speed of women are relatively
lower than the men’s and women showing a basic lower
speed choice [26]. Research focused on demographic
characteristics, finding that men drive generally faster than
women, and the young drive faster than older ones [27, 28].

However, the impact of age on speed selection behaviour in
low illumination without street lights was not significant in
the present study. The importance of road safety education
for males may promote safer driving.

There are significant differences in terms of driving ex-
perience and average annual mileage affecting drivers’ speed
selection behaviours in a low-illumination environment. Under
the same speed limit conditions, the greater the driving ex-
perience and the higher the average annual mileage are, the
higher the speed selection in a low-illumination environment
is. This may be because the more experienced that drivers are,
the more confident they are in themselves, believing that they
can handle the handling of vehicles and emergencies well even
in low-light environments. This is similar with previous
findings, such as Spolander proposed that with increased ex-
perience, drivers perceive themselves as having higher skills
[29] and Xu et al. suggested that the assessment of perceptual-
motor skills improved with increased driving experience [30].
However, research shows that even for drivers with experience,
safety education for driving at night still needs to be
strengthened [31].

Under the low-illumination condition of street lights at
night, the driver’s technical driving ability TDA1 has a
significant ability to predict the driver’s preferred speed on
roads with speed limits of 80km/h and 120 km/h. The
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stronger the technical driving ability is, the faster the speed
that the driver tends to choose is, which indicates that a
driver with better driving skills believes that he can also
complete braking and collision avoidance in a short time and
short distance in the case of emergency in a low-illumination
environment. However, in low illumination, especially when
there are no street lights at night, due to the shortening of the
visual range, when a driver discovers obstacles or emer-
gencies, the distance between them is greatly shortened
compared with that of high-illumination conditions. It is
difficult for drivers driving at a high speed to complete
braking within this distance, resulting in collision accidents.
Therefore, it is necessary to strengthen the safety education
of drivers who have rich driving experience and often drive
at night to clarify the dangers of high-speed driving in low
illumination.

The risk perception ability in low-illumination condi-
tions with street lights at night RPA1 and the risk perception
ability in low-illumination conditions without street lights at
night RPA2 are significant predictors of driver speed se-
lection behaviour on roads with speed limits of 80 km/h and
120 km/h, respectively. The stronger the driver’s risk per-
ception ability is, the slower speed that the driver tends to
choose is, which indicates that a driver with stronger risk
perception ability is more cautious when driving in a low-
illumination environment and will choose a slower driving
speed. In addition, the research results show that in low-
illumination conditions with street lights at night, the
driver’s technical driving ability and risk perception ability
have significant predictive ability for speed selection be-
haviour: the better the technical driving ability is, the faster
the speed that the driver tends to choose is; the stronger the
risk perception ability is, the lower the speed that the driver
tends to choose is. However, in low-illumination conditions
without street lights at night, only risk perception ability has
a significant predictive ability for speed selection behaviour.
This may be because technical driving ability mainly depends
on the driver’s ability to control the vehicle; however, in the
absence of street lights, the driver’s visual range is severely
limited, and he cannot effectively judge the surrounding
environment, which leads to an inability to exert the original
driving ability. However, risk perception ability is a psy-
chological state that is more reflected in the driver’s awe of
traffic safety and subjective cognition. Therefore, for driving
safety education at night, we should pay attention not only to
the improvement of driving skills but also to the im-
provement of traffic safety awareness.

The driving speed in a low-illumination environment
with street lights has a positive effect on speed selection
behaviour in low illumination. The driving speed on a road
with a speed limit of 120 km/h under a low-illumination
environment with street lights has a significant positive effect
on speed selection behaviour on roads with speed limits of
60 km/h, 80 km/h, and 120 km/h in low illumination without
street lights. Therefore, speed management in a low-illu-
mination environment with street lights should be
strengthened, especially for expressways with 120km/h
speed limits, where the degree of traffic accident damage is
relatively high, to severely punish speeding behaviour,

strictly control driving speeds, reduce driving speeds under
the condition of low illumination, and reduce the risk of
accidents in low illumination and accident severity. Severe
punishment for speeding behaviour and strict control of a
driver’s speed are conducive to reducing the driver’s driving
speed in low illumination, reducing the accident risk and
accident severity in low illumination.

5. Conclusion

In this study, a “driver survey questionnaire in low illumi-
nation” effectively revealed the influencing factors of driver’s
speed selection behaviour in low illumination from the
driver’s perspective. The results show that the education and
the total deduction score have a significant negative impact on
speed selection behaviour in low illumination without street
lights with a speed limit of 80 km/h, while gender have a
significant positive impact. Night-driving days have a sig-
nificant negative impact on speed selection behaviour in low
illumination without street lights with a speed limit of
120 km/h, while deduction has a significant positive influence.
Technical driving ability has a positive effect on peed selection
behaviour in low illumination without street lights, while risk
perception ability has a negative effect. The driving speed of a
driver in a low-illumination environment with street lights
has a positive influence on the choice of driving speed in low
illumination without street lights, and the driving speed on a
road with a speed limit of 120 km/h has a significant positive
influence on speed selection behaviour on roads with speed
limits of 60 km/h, 80 km/h, and 120 km/h under the condition
of low illumination without street lights.

This study provides a theoretical foundation for the
prevention of speed selection behaviours in a low-illumi-
nation environment. Regarding the design of further in-
terventions, the emphasis on road safety education among
males and experienced drivers may help promote safer
driving in a low-illumination environment.

6. Limitations

There are some limitations in this study. This study suffers
from the typical limitations of studies based on self-reported
data, in which potential vulnerability to sources of bias are
present. However, various existing studies have shown that
self-reported data are basically consistent with actual data
and can be used in experimental research [32]. Another
limitation is that the survey was conducted only in Hefei,
Anhui, China, and did not cover other cities. Future studies
should compare several Chinese cities to validate the con-
clusions reported here.

Data Availability

The data used to support the findings of this study have not
been made available because we have no right to share it.
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Transportation is an important factor that affects energy consumption, and driving behavior is one of the main factors affecting
vehicle fuel consumption. The purpose of this paper is to improve fuel consumption monitoring databases based on mobile phone
data. Based on the mobile phone terminals and on-board diagnostic system (OBD) installed in taxis, driving behavior data and
fuel consumption data are extracted, respectively. By matching the driving behavior data collected by a mobile phone with the fuel
consumption data collected by OBD, the correlation between driving behavior and fuel consumption is explored, so that vehicle
fuel consumption could be predicted based on mobile phone data. The fuel consumption prediction models are built using back
propagation (BP) neural network, support vector regression (SVR), and random forests. The results show that the average speed,
average speed except for idle (ASEI), average acceleration, average deceleration, acceleration time percentage, deceleration time
percentage, and cruising time percentage are important indicators for fuel consumption evaluation. All three models could predict
fuel consumption accurately, with an absolute relative error less than 10%. The random forest model is proved to have the highest
accuracy and runs faster, making it suitable for wide application. This method lays a foundation for monitoring database

improvement and fine management of urban transportation fuel consumption.

1. Introduction

Vehicle energy consumption and pollutant emissions are key
problems for the healthy and sustainable development of urban
transportation. With the continuous growth of car ownership
in China, the energy consumption of its private cars increased
4.2 times, from 13.12 to 68.34 million tons of standard coal,
from 2005 to 2015. Based on growth of the population, GDP,
and the proportion of secondary and tertiary industries of
China, the trend of future transportation energy consumption
can be predicted. The energy consumption of private cars will
continue to increase before 2020, when it is expected to reach
117.38 million tons of standard coal [1]. Therefore, reducing
energy consumption has become one of the most important
challenges in the transportation field.

Among many factors that affect the energy consumption
of vehicles, driving behavior plays an important role. Re-
search conducted by Ford Motor Company [2] shows that
improvement of driving behavior could improve fuel
economy by 25% in the short term. Providing drivers with
continuous eco-driving feedback in the long term could lead
to a 10% reduction in fuel consumption. Hiraoka et al. [3]
studied the influence of ecological driving behavior on fuel
consumption and found that giving feedback on fuel con-
sumption information to drivers could improve fuel econ-
omy by 10%. In addition, the eco-driving instructions given
to drivers could improve the fuel economy by approximately
15%. Ahn and Rakha [4] analyzed the influence of drivers’
route choice on vehicle fuel consumption, and the results
indicated that energy consumption and exhaust emissions
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are significantly reduced by minimizing high-emission
driving behavior. Thus, it is important to study the corre-
lation between driving behavior and energy consumption
and to use driving behavior to predict energy consumption.

At present, there is a significant volume of research on
prediction models of energy consumption based on
driving behavior. Hu et al. [5] conducted some real vehicle
tests and a questionnaire survey to study the influence of
driving style on the fuel consumption of electric vehicles
on urban roads and constructed a prediction model for the
fuel consumption of electric vehicles. Xu et al. [6] con-
structed two kinds of truck fuel consumption prediction
models using driving behavior data obtained from the
Internet of vehicles. The dynamic relationship between
truck fuel consumption and truck drivers’ driving be-
havior was described using an energy consumption index,
and a generalized regression neural network model was
established to predict truck fuel consumption. Zhao et al.
[7] built a fuel consumption prediction model of urban
road sections based on driving behavior by applying a
machine learning algorithm, and the model could intui-
tively show the distribution characteristics of fuel con-
sumption in basic sections of the Beijing expressway.

Data sources supporting the studies of fuel consumption
prediction are mostly based on the data collected from the
main controller of the vehicle, and an on-board diagnostic
system (OBD) in conjunction with a questionnaire. The
controller and OBD are limited by the equipment instal-
lation cost and drivers’ installation willingness, so can only
realize small-scale data management for small areas and with
high uncertainty. The data collection form of a questionnaire
also lacks flexibility, and it is difficult to guarantee the quality
of the data.

With the rapid development of mobile terminal tech-
nology, the application of mobile phone sensors has been
promoted. Mobile phone terminals have been used in the
collection of driving behavior data and for the warning of
dangerous driving. Johnson and Trivedi [8] proposed a
system using dynamic time warping (DTW) and smart-
phone-based sensor fusion to detect nonaggressive and
aggressive driving behavior, which gave audible feedback
when it detected aggressive driving. Guido et al. [9] used the
vehicle tracking data from smartphone sensors to estimate
the safety performance of driving (including the deceleration
rate to avoid crashes and the time to collision), and the crash
risks in south-bound and north-bound lanes were analyzed.
The application of the mobile phone terminal in driving
safety has played an important role in the evaluation of
vehicle fuel consumption. Because driving behavior data
collected by mobile terminals are more detailed and easier to
popularize, they lay a foundation for enriching urban road
fuel consumption databases.

At present, the fuel consumption and emission data
monitored by the statistical monitoring platform for the
Beijing Municipal Transportation Administration are
mostly based on OBD devices. The data collection objects
are mainly taxi drivers, bus drivers, and truck drivers and
do not cover all transportation enterprises. The mobile
phone terminal provides a possibility for a larger scale of
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data collection. Fuel consumption cannot be directly
collected by mobile phone terminals, but it could be
predicted accurately by exploring the correlation between
mobile phone and OBD data. At the same time, the
driving behavior data collected by the mobile phone are
influenced by the types, placement, shaking (caused by
vehicle vibration), and drivers’ usage of the phone,
resulting in the instability of the driving behavior data, so
a lot of calibration work needs to be done on the data. By
constructing a fuel consumption prediction model, the
application of mobile phone data could be used to cal-
culate the fuel consumption of vehicles, which saves the
installation cost of OBD equipment and provides a the-
oretical basis for traffic management departments to more
accurately monitor urban traffic fuel consumption.

This study proposes a vehicle fuel consumption pre-
diction method based on Global Positioning System (GPS)
data collected from a smartphone. Taxi drivers participated
in this experiment. By matching the driving behavior data of
the mobile phone and the fuel consumption data of the OBD
terminal, the driving behavior indexes that affect fuel
consumption were screened, and the fuel consumption
prediction models were constructed using machine learning
algorithms. The prediction model of drivers’ individual fuel
consumption based on mobile phone data could not only
further improve the real-time monitoring database of fuel
consumption with strong error tolerance but also provide
technical support for macro control of urban transportation
energy consumption and effectiveness evaluation of the
transportation energy policy.

2. Method

2.1. Analysis Framework. Since mobile phones cannot ob-
tain the data of vehicles’ fuel consumption directly, the
driving behavior data collected from mobile phones and the
fuel consumption collected from OBD were matched, and
the fuel consumption prediction model was built. In the
process of model construction, the data collected from
mobile phones and OBD were both applied. After the model
was built, larger-scale traffic fuel consumption was able to be
predicted using only the driving behavior data collected
from the mobile phones. The framework of model con-
struction is shown in Figure 1. The steps of fuel consumption
prediction are as follows:

(1) Data collection: natural driving behavior data of
multiple drivers were collected based on GPS, linear
accelerometer, gyroscope, and other sensors of
mobile phones. At the same time, the real-time
vehicle fuel consumption data were collected by the
OBD  terminal installed in the vehicle
simultaneously.

(2) Index extraction: the data of mobile phones and
OBD terminals were combined based on time. By
comparing the consistency and difference of driving
behavior data of the two terminals, the indexes for
predicting vehicle fuel consumption based on mobile
phone data were extracted.
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FiGure 1: The framework of model construction. OBD means on-
board diagnostic system and BP represents back propagation.

(3) Model construction: the training set and test set were
selected randomly, and the fuel consumption pre-
diction models were built using a back propagation
(BP) neural network, a support vector machine, and
a random forest.

(4) Effect evaluation: by building the fuel consumption
prediction models several times and comparing the
accuracy and efficiency of the three prediction
models using different methods, the best method to
predict vehicle fuel consumption based on mobile
terminals is proposed.

2.2. Prediction Model. BP neural networks, support vector
regression (SVR), and random forests are several common
prediction methods with high accuracy and operation effi-
ciency. This study built three types of prediction models,
compared the difference in the prediction results, and finally
we chose the best model for fuel consumption prediction.

2.2.1. BP Neural Network. An artificial neural network
(ANN) is an operation model that mimics the process of
neurons transmitting perceptual information to the human
brain. This method has the characteristics of self-learning
and high efficiency when processing nonlinear, unstruc-
tured, and large sample data. The error back propagation
algorithm (BP neural network) [10] is one of the most widely
used supervised learning algorithms in artificial neural
networks. After the weights of the network are randomly
selected, the BP neural network uses the back propagation
method to update weights to minimize loss, and finally the
connection weights of the network are determined. The

structure of the vehicle fuel consumption prediction model
based on a BP neural network is shown in Figure 2.

After screening the prediction indexes of fuel con-
sumption, n indexes are determined as input variables. There
are 5 neurons in the hidden layer, and the output y is the
predicted fuel consumption. The connection weight between
the input layer and the hidden layer is w;;, and the con-
nection weight between the hidden layer and the output
layer is wj. First, the sample is transmitted through the
input layer, and the data is converted into a nonlinear array
within a certain range using the excitation function. Then,
the nonlinear array reaches the output layer through
weighting and outputs the results. If the error between the
output fuel consumption and the actual fuel consumption
exceeds the set of the expected error, the weight coefficient is
corrected by back propagation. The network is repeat trained
until the error is within the expected error, and the vehicle
fuel consumption prediction model based on BP neural
network is finally built.

2.2.2. Support Vector Regression (SVR). As a supervised
machine learning algorithm, support vector machines are
mainly applied to classification problems and regression
problems [11]. The support vector machine algorithm
transforms nonlinear problems into linear problems in high-
dimensional space by constructing kernel functions, which
gives the problem a geometrical explanation. The structure
of the vehicle fuel consumption prediction model based on
SVR is shown in Figure 3.

For a given set of samples {X;, y;},i=1,2, ..., m, X is the
n-dimensional input vector (including » driving behavior
indicators) and y is the corresponding fuel consumption.
The input vector is mapped to high-dimensional space, and
the output y can be calculated as follows:

fX)=w-9(X)+b, (1)

where w is the weight vector, ¢ (-) is the mapping function
that maps the input vector to the high-dimensional feature
space, and b is the bias term.

By adding a convex optimization problem and relaxation
factor, the support vector regression problem can be con-
verted into the following equivalent solution:

minimize |l + cg(ei +E)
[ f(X)-w" - 9(Xi) -bse+d
wT-go(Xi)+b—f(Xi)§s+§i 2
s.t. 1&.6>0
i=1,2,...,n
C>0,
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where E,-,E,- are the slack variables; C is the penalty-factor,
which reflects the importance of outlier points; and ¢ is the
insensitive loss function coefficients, which can ignore the
error of the true value within a certain range and affect the
final number of support vectors.

Three parameters, namely, & C, and the kernel
function, should be determined when using the SVR al-
gorithm to predict vehicle fuel consumption. The input
vector is the n indicators required for fuel consumption
prediction, and the output is vehicle fuel consumption. ¢
and C are determined by dividing them into several small
cells according to certain rules. The model error corre-
sponding to the variable value of each cell is calculated,
and the variable values of the small cells with the mini-
mum error are selected. The radial basis function (RBF)
has a better performance in the application of SVR

[12, 13]. Therefore, the kernel function adopted in this
study is RBF, and the calculation method is as follows:

K(X, X/) _ e—||X—x'||2/az (3)

where ¢ is the hyperparameter of the RBF kernel, which is
able to determine the range characteristics of input data and
the correlation extent between support vectors.

2.2.3. Random Forest. A random forest (RF) is an effective
classification method for prediction and classification [14]. A
random forest is composed of a large number of decision
trees. On the basis of decision trees, random processes are
added to the row and column vectors, so as to avoid the
potential overfitting problem of decision trees. For each tree,
the training sample is sampled with replacement, and the
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out-of-bag (OOB) data in each tree accounts for approxi-
mately 37% of the total data. The main calculation steps of
the random forest regression algorithm are as follows:

First of all, k groups of training sample sets were
selected by sampling with replacement. Secondly, m
features were randomly selected from n features in each
training sample set as splitting nodes, and k decision trees
were generated. The node splitting of each decision tree
adopted the principle of minimum mean square error,
which minimizes the sum of mean square deviations of
two groups of datasets after splitting. Finally, the pre-
dicted vehicle fuel consumption was obtained by aver-
aging the predicted value of k decision trees. The structure
of the vehicle fuel consumption prediction model based
on the random forest is shown in Figure 4.

The three models have their advantages and disadvan-
tages on the basis of different datasets. This study con-
structed three kinds of fuel consumption prediction models,
and the most suitable and efficient model was chosen to
predict fuel consumption.

3. Data Source and Index Extraction

3.1. Data Source. Experimental data were collected from
OBD terminals installed in taxis and mobile phone termi-
nals, and the sampling interval was 1s. The data types that
were collected are shown in Table 1.

The experiment was conducted in August 2017, and 20
drivers participated in the experiment to collect natural
driving data for 15 days. All the taxicabs were Elantra with
a 4-cylinder, 1.6-liter engine and were certified by the
national-level-IV emission standard. On-board diagnos-
tics (OBD) were installed in each taxicab during the ex-
periment to collect driving behavior and fuel
consumption data. The OBD devices have been widely
used in Beijing taxi companies for over five years for
monitoring the fuel consumption and emission data by
the statistical monitoring platform for the Beijing Mu-
nicipal Transportation Administration. The instantaneous
fuel consumption of vehicles collected from OBD is
calculated by relevant parameters such as engine load rate,
engine speed, peak air inflow, and fuel correction factor.
By comparing the fuel consumption calculated by OBD
with the fuel consumption collected by CAN bus (cal-
culated by fuel injection pulse width), the error of the
instantaneous fuel consumption was within +3% and the
error of average fuel consumption per 100 km was 0.74%
[15]. Meanwhile, drivers were asked to install software on
their own mobile phone and keep the software running
while driving to collect GPS data. The software is based on
the android system and is specifically developed to collect
GPS data from mobile phone sensors and calculate driving
behavior. The two types of data were collected and
uploaded to the cloud simultaneously.

Before the experiment, a mobile phone holder was given
to each driver and held in the same position in the vehicle.
The screen of the phone was placed perpendicular to the
horizontal line. Mobile phone direction sensors were applied

to the test to ensure that the location of the mobile phone is
fixed and unified, and drivers were required to keep their
phones in place while driving.

Although both the OBD and the mobile phone have GPS
and drivers are required to place the mobile phone in a fixed
position during driving, the output results of GPS data col-
lected from OBD and mobile phone are different, which may
be caused by the shaking of mobile phone when the vehicle
vibrates or the differences of mobile phone type. In the actual
driving process, mobile phone shaking and type differences are
inevitable. Therefore, this study assumes that the construction
of the fuel consumption prediction model could reduce the
influence of data error collected by mobile phones and predict
the fuel consumption accurately without the OBD device.

3.2. Index Extraction. By matching the data collected from
the OBD and mobile phone terminals, the daily driving
behavior of each driver and the corresponding fuel
consumption could be obtained. There are many driving
behavior factors that affect the fuel consumption of ve-
hicles [16]. Seven indicators which could be calculated by
mobile phone data were selected to predict fuel con-
sumption. The types and definitions of the indicators are
shown in Table 2. The acceleration condition is defined as
acceleration greater than 0.1 m/s?, the deceleration con-
dition is defined as acceleration less than —0.1 m/s*, and
the condition of cruising is defined as the absolute value of
acceleration less than 0.1 m/s”. By averaging the driving
behaviors of 20 drivers over 15 days, a total of 300 sets of
data can be obtained.

Although road conditions, weather, and other factors
also have a great influence on fuel consumption, they are
not considered in this study. The main objective of this
study is to evaluate the daily eco-driving level of taxi
drivers, so as to help the traffic management department
to monitor and improve the eco-driving skills of taxi
drivers, and eco-driving training courses could be pro-
vided to drivers with poor eco-driving skills to reduce fuel
consumption. Therefore, it is necessary to estimate the
daily average fuel consumption (L/100km) for taxi
drivers. Since each taxi driver drives a different route each
day, it is difficult to count all road types throughout the
day. Although ignoring the influence of road conditions
and other factors resulted in a decrease in the prediction
accuracy of fuel consumption, the method adopted in this
study is more applicable to a wider range of conditions
and could estimate the daily ecological driving level of the
drivers. The method also provides the feasibility dem-
onstration for the future refined fuel consumption pre-
diction. In the future research, the fuel consumption
prediction results of drivers under different road condi-
tions (such as ramps, curves, and intersections) would be
analyzed and compared, so as to improve the accuracy of
vehicle fuel consumption prediction.

Pearson correlation analysis was adopted to verify the
correlation between driving behavior data from OBD and
mobile phone terminals, and the results are shown in
Table 3. It can be seen that, except for the cruising time
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FIGURE 4: The structure of vehicle fuel consumption prediction model based on the random forest.

TaBLE 1: Data types collected from the OBD terminal and mobile phone terminal.

OBD termination Mobile phone termination
Time Time

The global positioning system (GPS) latitude and longitude The GPS latitude and longitude
GPS direction angle Elevation

Speed in car dashboard GPS speed

GPS speed X-direction acceleration
Revolutions per minute (RPM) Y-direction acceleration
Torque Z-direction acceleration
State of air condition X-direction angular acceleration
Oxygen sensor state Y-direction angular acceleration
The instantaneous fuel consumption Z-direction angular acceleration

TABLE 2: Related indexes to predict fuel consumption.

Indicators Definition Unit

Vmean = (1/T)21T:1V1

Average speed Ve, where v; is the speed of i second and T is the total driving time of one day km/h
Average speed except for idle (ASEI) Viean = (1T )Z.TZIV
1 ;. .. . ! ! . km/h
V inean where T" is the driving time of one day except idle
a, = (1/t,)Y a; )
: = + a i=1%i
Average acceleration @, where g; is the acceleration of i second and ¢, is the driving time of acceleration per day m/s
o a = (1ty)ye a; )
Average deceleration a_ where t, is the driving time of deceleration per day m/s
Acceleration time percentage P, P, = (t,/T)-100% %
Deceleration time percentage P, P, = (t;/T) - 100% %
= . 1009
Cruising time percentage P, . Pe . .(tC/T.) 100% . %
where t. is the driving time of cruising per day
FC = YT FC,/distance L
Fuel consumption FC where FC; is the instantaneous fuel consumption of i second and distance is the total 100 km
driving distance per day
TaBLE 3: Correlation analysis of driving behavior collected from OBD and mobile phone terminals.
Pearson correlation coefficient P value
Average speed V.. 0.975 <0.001
ASEI V. . 0.936 <0.001
Average acceleration a, 0.793 <0.001
Average deceleration a_ 0.670 <0.001
Acceleration time percentage P, 0.662 <0.001
Deceleration time percentage P, 0.662 <0.001

Cruising time percentage P, 0.060 0.467
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percentage, the other driving behavior indicators calcu-
lated by OBD and mobile phones are significantly cor-
related, with a correlation coefficient above 0.6. The
reason for the difference in the cruising time percentage is
that there are some differences in sampling accuracy
between mobile phones and OBD, so the value of speed
and acceleration calculated by GPS data collected from
mobile phones and OBD are not exactly the same. The
high correlation of multiple indicators indicates that the
method of using mobile phone data to predict fuel con-
sumption is feasible.

In order to verify the correlation between the data
collected by mobile phone and the fuel consumption data
collected by OBD and extract the relevant indexes for
predicting fuel consumption, the relationship between
different driving behavior indexes collected from mobile
phones and fuel consumption collected from OBD were
analyzed; the results are shown in Figure 5. As can be seen
from Figure 5(a), the higher the average driving speed of
the driver, the lower the fuel consumption. There is a
strong correlation between average speed and fuel con-
sumption. Since this study only considered the average
driving speed of each day, the maximum average speed
does not exceed 50, and the relationship between fuel
consumption and speed is linear. From the perspective of
instantaneous speed, fuel consumption increases when it
exceeds 80 km/h, and the speed and fuel consumption are
u-shaped curves [17]. The relationships between average
acceleration/deceleration and fuel consumption are
shown in Figures 5(b) and 5(c). The results show that a
driver with heavy acceleration or deceleration during a
day’s driving would consume more fuel. Figure 5(d)
shows the relationship between acceleration time per-
centage, deceleration time percentage, cruising time
percentage, and fuel consumption. The results show that
for a journey with lower fuel consumption, the driving
time of cruising takes a larger proportion and the driver
has less idle behavior, and a journey with high fuel
consumption usually shows the driver as idle for a long
time. Time percentage and fuel consumption also show a
certain correlation, but these trends are not as obvious as
the impact of the value of speed or acceleration on fuel
consumption. In order to verify the influence of various
driving behavior indexes on fuel consumption and select
the related indexes of fuel consumption prediction,
correlation analyses are examined in the following
section.

Pearson correlation is a common filter-based feature
selection method. By analyzing the Pearson correlation
between driving behavior data collected by mobile phones
and fuel consumption data collected by OBD, the key driving
behavior indexes that affect vehicle fuel consumption can be
selected through filtering. The results are shown in Table 4.
All the driving behavior indexes are significantly correlated
with fuel consumption (P < 0.05). Therefore, the indicators
of average speed, ASEI, average acceleration, average de-
celeration, acceleration time percentage, deceleration time
percentage, and cruising time percentage are selected to
predict fuel consumption.

4. Results and Discussion

4.1. Model Training. The process of building the fuel
consumption prediction model based on taxi drivers’ daily
driving behavior data is shown in Figure 6. On the one
hand, the indicators of average speed, ASEI, average ac-
celeration and deceleration, acceleration time percentage,
deceleration time percentage, and cruising time per-
centage of each driver during each day were calculated
using the driving behavior data collected from the mobile
phone terminal. On the other hand, the instantaneous fuel
consumption data of the vehicle were collected through
the OBD terminal and converted into daily fuel con-
sumption data. The two sources of data (driving behavior
data and daily fuel consumption data) were matched
through the collection time. Of all data collected, 75%
were randomly selected as training samples and the
remaining data were test samples. The fuel consumption
prediction models were constructed based on the BP
neural network, SVR, and random forest. To ensure the
accuracy and stability of the prediction model, sample
selection and model training were conducted 10 times. By
comparing the difference in predicted fuel consumption
and actual fuel consumption between the three models,
the accuracy of using mobile phone data to predict vehicle
fuel consumption was evaluated.

In the fuel consumption prediction model based on BP
neural network, the “trainlm” algorithm was used for
training, the logarithmic function “tansig” was used for
the exciting function, and the linear function “purelin”
was used for the node transfer function. The training times
of the model were set as 100 times, and the convergence
condition was set as the error of the model which is less
than 0.001.

Based on the fuel consumption prediction model of
SVR, the determination of the value of the insensitive loss
function and penalty parameter was based on the ex-
haustive method, and the optimal value of the two co-
efficients was calculated by limiting the number of
iterations to make the error less than a certain absolute
value. The radial basis function (RBF) was taken as the
kernel function of the SVR model.

Based on the fuel consumption prediction model of the
random forest, 50 regression trees were set for training. The
relationship between the number of regression trees and the
out-of-bag error is shown in Figure 7. It can be seen that with
the increase in the number of regression trees, the model
error decreases, and the model is converged when there are
about 50 regression trees.

4.2. Evaluation Results. The fuel consumption prediction
results of one training process are shown in Figure 8. The
figure shows the approximation degree between the three
fuel consumption prediction results (BP neural network,
SVR, and random forest) and the actual fuel consumption.
As can be seen from Figure 8, some points with a larger
deviation are the prediction results of the BP neural network
model. However, in general, the three prediction models
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TaBLE 4: Correlation analysis of driving behavior collected from mobile phone termination and fuel consumption collected from OBD.

Fuel consumption

Pearson correlation coefficient P value
Average speed V.. -0.8 <0.001
ASEI V! .. -0.659 <0.001
Average acceleration a, 0.515 <0.001
Average deceleration a_ -0.314 <0.001
Acceleration time percentage P, -0.363 <0.001
Deceleration time percentage P, -0.293 <0.001
Cruising time percentage P -0.229 0.005
have a good fitting degree; the prediction results are basically 2
distributed on both sides of y = x with a high approximation RMSE = M)
degree. n

In order to evaluate the accuracy and efficiency of the

three fuel consumption prediction models, four indexes, K = ’f Vi 100%|, (4)
namely, the root-mean-square error (RMSE), mean absolute Vi

percentage error K, R-squared, and model running time,

were compared. The calculation methods of the first three of
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FIGURE 7: Out-of-bag error of the random forest model.

where f; is the predicted fuel consumption, y; is the actual
fuel consumption, ¥ is the average fuel consumption, and »n
is the number of samples.

The model evaluation results are shown in Table 5. It
can be seen that the three models all show high prediction
accuracy. The RMSE is 0.78-0.89 L/100 km, the absolute
relative error (K) is 6.9%-7.5%, and the R-squared is
greater than 0.5, indicating that the three models can
accurately predict the fuel consumption of vehicles with
the data collected by mobile phones. By comparing the

errors and efficiency among the three models, it can be
seen that the model based on the random forest has higher
accuracy than BP neural network or SVR, and the running
time of the random forest model is far lower than that of
the BP neural network and SVR models. Therefore, the
fuel consumption prediction model based on the random
forest is effective and efficient for predictions based on
individual driving behavior collected from mobile phones
and is more suitable for practical applications to larger
sample datasets.
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FIGURE 8: Fuel consumption prediction results.

TaBLE 5: Model evaluation results.

Prediction method Root-mean-square error (RMSE) K R-squared Time (s)
BP neural network 0.872 0.075 0.547 0.724
Support vector regression 0.888 0.073 0.519 0.933
Random forest 0.783 0.069 0.635 0.140

5. Conclusion

In this study, driving behavior data and fuel consumption
data of taxi drivers collected from OBD and mobile phone
terminals, respectively, were matched. The correlation
between driving behavior and fuel consumption was
analyzed, and relevant driving behavior indicators af-
fecting fuel consumption were extracted through the
filter-based feature selection method. Using the seven
selected driving behavior indicators (namely, average
speed, ASEI, average acceleration, average deceleration,
acceleration time percentage, deceleration time percent-
age, and cruising time percentage), three fuel consump-
tion prediction models based on a BP neural network,
SVR, and a random forest were constructed.

The results of model error and the run time comparison
analysis show that the three models could predict fuel
consumption accurately, and the random forest model had
the highest accuracy and efficiency, with an RMSE of
0.783 L/100 km, mean absolute percentage error (K) of 6.9%,
and model running time of 0.14 s. This finding is consistent
with the research of Wickramanayake and Bandara [15],
which also shows that random forest models are most ef-
fective in predicting fuel consumption based on driving
behavior data. The research object of Wickramanayake and
Bandara is the fuel consumption prediction of the bus, and
this study focuses on the fuel consumption of the taxicabs.
At the same time, the driving behavior data of this study are
collected from mobile phones with higher flexibility and
complexity rather than a fixed GPS device. This method
could predict vehicle fuel consumption with high accuracy
and efficiency based on cell phone data and provide strong

support for traffic management departments to monitor the
ecological levels of driving behavior of taxi drivers.

It is worth emphasizing that in the early stage of model
construction, driving behavior data collected by mobile
phones and fuel consumption data collected by OBD are
applied. After the prediction model is built, mobile phone
data can be directly used to predict the daily fuel con-
sumption of drivers without installing OBD devices. Ap-
plication of this method could change the traditional way of
fuel consumption acquisition, and the use of mobile phone
data to evaluate the ecological impacts of individual driving
behavior could save the cost of equipment installation. At
the same time, since not all taxi drivers are willing to install
OBD devices in their taxicabs, this method could help in-
crease the user data source, which could greatly improve the
database size of taxi fuel consumption. Therefore, the
method in this study could improve the depth, breadth, and
refinement level of fuel consumption monitoring and
management of taxi drivers” driving behavior, thus laying a
theoretical foundation and providing technical support for
the city to reduce fuel consumption.

This study aims to propose a method to predict vehicle
energy consumption using mobile phone data. Although the
sample size used in this study is limited, it provides a basis
for larger scale and more accurate fuel consumption pre-
diction. In future research, the collection of samples will be
further expanded, and the fuel consumption under various
road conditions, traffic conditions, and weather conditions
would be considered. Through the data enrichment, model
optimization, and improvement of the prediction indicators,
the method could lay a theoretical foundation for the precise
energy consumption supervision of taxi enterprises.
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Meanwhile, since taxicabs are relatively homogenous, the
fuel consumption prediction model in this study was fixed,
taking only taxi drivers as the research object. In future
study, more types of vehicles, such as buses and trucks, could
be considered. Differentiated fuel consumption prediction
models based on different vehicle types could be constructed
to further improve the monitoring and management of
urban energy consumption.
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An intersection is a typical emission hot spot in the urban traffic network. And frequent violations such as running the red light
have been a critical social problem at signalized intersections in developing countries. This article aimed to quantify the impact of
violations (behaviors which will block the fleet) on emissions at signalized intersections. Increased emissions of vehicles affected
by violations are of two levels: (1) trajectory level for the first four affected vehicles and (2) traffic flow level for the subsequent
vehicles. At the trajectory level, the study focuses on the second-by-second activities of the first four affected vehicles. First, the
trajectory model of the first affected vehicle is developed. Then, the trajectory of the other three vehicles is constructed using the
Gipps car-following model. At the traffic flow level, a linear emission model is developed to describe the relationship between
emission factors and idling time in the one-stop (vehicle stop once) and two-stop (vehicle stop twice) scenarios based on the global
position system (GPS)-collected data at 44 intersections in Beijing. Based on the linear emission model, increased emissions at the
traffic flow level are calculated as knowing the number of stops and idling time before and after violations. The analysis of the
subsequent vehicles is divided into unsaturated and saturated conditions. Under the unsaturated condition, the emissions have
barely increased due to the increase of idling time for one-stop vehicles caused by the violations. Under the saturated conditions,
the emission increment increases sharply as the one-stop vehicle gradually transforms to a two-stop vehicle because of violations,
and the maximum emission increment reaches 45% in half an hour in the case. The increment of emissions decreases steadily as

the proportion of two-stop vehicles reaches 100% after violations, while the proportion before violations keeps increasing.

1. Introduction

In recent years, urban vehicle pollution has threatened
human health. Air pollutants can cause pulmonary and
cardiovascular diseases and chronic obstructive pulmonary
disease, and decrease lung function [1]. According to the
WHO report, air pollution resulted in 3.7 million premature
deaths worldwide in 2012 [2]. In the United States, mo-
torized vehicles are responsible for 57% of emissions [3].
An intersection is a typical emission hot spot in the
urban traffic network [4], especially in a densely populated
metropolis like Beijing. Extensive studies have been carried
out on vehicle emissions around intersections, and illustrate
that high emissions at intersections mainly resulted from
unstable traffic operation and stop-and-go vehicle activity

[5-7] and lead to high pollutant exposure, particularly to
pedestrians and cyclists around the intersections.

When vehicles, pedestrians, and cyclists arrive at the
intersection, each traffic subject follows the corresponding
rules and passes through the intersection orderly. How-
ever, violation behaviors, one of the core factors, are
frequently observed in developing countries such as China
[8]. Frequent violations will not only aggravate traffic risk
but also worsen the stop-and-go condition of vehicles. Four
typical violations at intersections are shown in Figure 1
frequent violations of pedestrians and bicycles block the
vehicle fleet, aggravating stop-and-go behaviors at inter-
sections. In this article, the critical problem of quantifying
emission increments caused by violations has been
discussed.
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FIGURE 1: Violations at signalized intersections under mixed traffic in Beijing. (a) Crossing the intersection diagonally. (b) Running the red
light. (c) Waiting in front of the motorway. (d) Intruding into the lane.

Motor vehicles, bicycles, and pedestrians are three
typical traffic components of mixed traffic flow intersections.
Their relationships are variable and complex due to the
conflict in time and space. Existing studies indicated that
violations were frequently observed in developing countries
and had a significant impact on driving operation [7]. Re-
searches on the impact of violations on emissions can be
summarized into two categories: (1) intersection emission
estimation and (2) violation characteristics and impact
analysis.

In terms of intersection emission estimation, existing
studies indicated that steady speed, shortest delays, and fewest
stops are the best operations for emission reduction [9, 10];
nonsmooth traffic operations and stop-and-go activity were
the main reasons for high emissions at intersections; and
much more time was spent in the acceleration mode after
highly interrupted movements of vehicles [11-13]. During the
acceleration period, an engine operates at a high level, which
leads to excessive fuel consumption and emissions [14, 15]. In
existing studies, extensive studies have been carried out on
vehicle emission around intersections. Rakha and Ding an-
alyzed the impact of stops on vehicle fuel consumption and
emissions and found that vehicle fuel consumption was more
sensitive to cruise-speed levels [13]. Papson et al. used a time-
in-mode model with MOVES to analyze vehicle emissions at
congested and uncongested signalized intersections [16].
Zhang et al. developed the SIDRA model to estimate inter-
section emissions with MOVES, and acceleration mode in-
cluded constant acceleration and linearly decreasing
acceleration (3). Gokhale and Pandian developed a semi-
empirical box model to predict CO concentration based on

the assumed traffic flow pattern at intersections [17]. Braven
et al. estimated vehicle emissions at a signalized intersection
by using VISSIM [18].

In terms of violation characteristic analysis, it can be
summarized into two categories. (1) Violation characteristics
mainly include two aspects: (a) for the influencing factors
(waiting time, group size of pedestrians, gender, nonmotor
vehicle type, and so on), existing studies indicated that these
factors had an obvious impact on intersection violations
[19-21], and (b) for the frequency model, violation proba-
bility model [22] and violation waiting time model [23] were
developed to predict the frequency of violations. (2) Impact
of interference has an impact on vehicles, both at the tra-
jectory level and the traffic flow level. At the trajectory level,
Przybyla established a dynamic car-following model for
driving distraction [24]. At the traffic flow level, interference
has an impact on vehicle speed [25] and further influences
intersection capacity [26-28].

The mechanism of the trajectory and emission charac-
teristics affected by interference has not been fully under-
stood. Further investigation is thus necessary. Hence, this
article was aimed at quantifying the impact of violations on
emissions at intersections. The content of this article is
divided based on the following two aspects. (1) Variations in
vehicle operating affected by violations. Variations of vehicle
headways and trajectories are analyzed based on manual
investigation data. (2) Based on the analysis above, increased
emissions of vehicles affected by violations included two
levels: (a) modeling at the trajectory level for second-by-
second activities of the first four affected vehicles and (b)
modeling at the traffic flow level for the aggregated
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parameters (number of stops and idling time) of the sub-
sequent vehicles after the first four vehicles. A numerical
simulation is conducted to assess the impact of violations on
emissions based on the existing study.

2. Materials and Methods

In this study, violations are defined as the behavior that will
block the vehicle fleet. Pedestrians and cyclists are the ob-
jectives of violations.

Increased emissions of vehicles affected by violations
include two levels (see Figure 2): (1) trajectory level for the
first four affected vehicles and (2) traffic flow level for the
subsequent vehicles. At the trajectory level, the study focused
on second-by-second activities of the first four affected
vehicles. First, the trajectory model of the first affected
vehicle is developed. Then, the trajectory of the other three
vehicles is constructed by using the Gipps car-following
model. At the traffic flow level, a linear emission model that
can describe the relationship between emission factors and
idling time in the one-stop and two-stop scenarios is de-
veloped by using Global Position System (GPS)-collected
data at 44 intersections in Beijing. Increased emissions are
calculated by the number of stops and idling time before and
after violations based on the linear emission model. Finally, a
case study is conducted to assess the impact of violations on
vehicle emissions at signalized intersections.

2.1. Data Collection. This article includes two types of data.
(1) Manual investigation data are used for describing the
vehicle operating characteristics under violation. (2)
Emission data are used for developing the linear emission
model, which can explain the relationship between emission
factors and idling time in the one-stop and two-stop
scenarios.

2.1.1. Manual Investigation Data. Video data of 8 signalized
intersections under mixed traffic were collected in Beijing,
China, which are used to model the operating of vehicles
affected by violations. The data include intersection attri-
butes and violation data.

(1) Intersection attributes

(a) Channelization information
(b) Signal information

(2) Violation data: Violation data were acquired from
videos frame by frame, which included three parts.

(a) Trajectories data. The crosswalk grid is constructed
by crosswalks in the four directions of the inter-
section (see Figure 3). Based on the crosswalk grid in
the video, positions of vehicles at each time step are
collected, and 10 groups of trajectories are collected
under the influence of violations.

(b) Headway. 171 groups of time headway are collected
from video, and each group includes five headways
of vehicle fleet after the violation with a precision of
0.02s.

(c) Idling time of the first affected vehicle. The time
precision is 0.02s, and 66 groups of data are
collected.

2.1.2. Emission Data. The emission data includes two parts.

(1) Emission rate. Vehicle emission data are derived
from the local emission rate model for light-duty
gasoline vehicles [29, 30]. The emission standard of
China IV was selected to provide the emission rates
for LDVs, which is more common in Beijing
compared with other emission standards.

(2) Global positioning system (GPS) trajectory data.
1666 valid trajectories of data, whose range is 200
meters of the intersection radius, were selected from
44 arterial and collector intersections in Beijing.
Vehicle specific power (VSP, kW/ton) is estimated
after data quality control [31]. Other details about
the data are listed as follows:

(i) Date, from April 25th, 2004, to April 16th, 2013;
(ii) Time, from 5:00 to 23:00; and

(iii) Speed, from 0 to 133 km/h (for the whole trajectory
to ensure accuracy of the GPS device), with a
precision of 0.1 km/h [32].

2.2. Variations of Vehicle Operating Affected by Violations.
Increased emissions of vehicles affected by violations in-
cluded two levels: (1) trajectory level for the first four affected
vehicles and (2) traffic flow level for the subsequent vehicles.
At the trajectory level, the study focused on second-by-second
activities of the first four affected vehicles. At the traffic flow
level, the study focused on the number of stops and idling time
before and after violations of the subsequent vehicles after the
first four vehicles. Increased emissions of the two levels are the
total increased emissions under the violation condition.

The characteristics of headway under violations are
shown in Figure 4. When the violation occurs, the headway
of the first affected vehicle will increase obviously. From the
first affected vehicle to the fourth, the headways gradually
return to be stable. The impact of violations on the vehicle
fleet disappears after the fourth vehicle. As a result, the first
four vehicles are determined as vehicles affected by viola-
tions in the trajectory level.

4

tlost = Z(thead,after,i - thead,before,i )’ (1)
i=1

where ). (s) is the total lost time of violation behaviors. i is
the i™ vehicle after the violation location. thead.after (8) 18 the
headway after the violation, and fheadpefore () is the time
headway before the violation.

Vehicles trajectories under the violation are shown in
Figure 5. The x-axis is time, and the y-axis is the distance. The
negative y-axis is the location of the queuing vehicles, and
the positive y-axis is downstream of the intersection.

The red point represents the location and time of the
violation. 7 is the reaction time plus braking time, and S, is
the corresponding distance. The first affected vehicle will
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return to normal speed after the process of deceleration-
idling-acceleration. The second vehicle starts to decelerate
after the reaction time of D, since the first affected vehicle
began to decelerate. The deceleration of the second vehicle is
less than the first vehicle as the interference decreases as the
impact of the violation spreads in the vehicle fleet. The
second vehicle begins to accelerate after the reaction time of
A, since the first affected vehicle accelerated. When the y-
axis of D, and A, is the same, the second affected vehicle will
have a second stop; the process of the second vehicle is
deceleration-idling-acceleration; if not, the process is de-
celeration-acceleration.

The interference is gradually transmitted to the rear of
the vehicle fleet, as described above. When the speed is low
enough, the subsequent vehicles will extend the idling time
to eliminate the interference as the fifth vehicle. Then, the
subsequent vehicles will pass the intersection with the sat-
urated time headway.

2.3. Trajectory Level. At the trajectory level, the objective is
the first four affected vehicles after the violation. It is nec-
essary to divide the model into two parts: (1) the trajectory
model for the first vehicle and (2) the car-following model
for the other three vehicles.
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2.3.1. The First Affected Vehicle. The trajectory of the first
affected vehicle can be described when the following two
factors are determined: (1) idling time and (2) acceleration
and deceleration data.

For the idling time, sixty-six groups of idling time data in
violation situations are collected. The average idling time is
2.08 s (standard deviation is 3.03).

For the acceleration and deceleration data, a corre-
sponding relationship between vehicle speed and accelera-
tion is developed in the low-speed range based on GPS
trajectory data (see Figure 6).

As shown in Figure 6, based on the GPS trajectory
data of 44 intersections, a total of 18,709 pieces of valid
data of the first 10-s deceleration and 10-s acceleration
around the idling time are extracted. At low speed, each
speed corresponds to a group of accelerations. In other
words, the process of acceleration and deceleration in
violation conditions can be totally described after
knowing the initial speed before violations. The accel-
eration of the first affected vehicle can be calculated as
equations (2)-(3):

ag, = random(arange(vs,,)), when acceleration or deceleration,

(2)

a=0,v=0, whenidling, (3)
where V, are the speeds in the acceleration and deceleration
states at time t; the states are acceleration and deceleration
when s is a and d, respectively. drange (V) are the corre-
sponding acceleration range of V,, and V,;, Each corre-
sponding acceleration range has a database in which random
values are taken by numerical simulation.

2.3.2. The Rear Three Vehicles of the First Four Affected
Vehicles. The rear three vehicles decelerate after the sudden
stop of the first affected vehicle. At the intersection, acceler-
ation of the rear vehicle is closely related to the speed of the
preceding vehicle, the speed of the rear vehicle, and the dis-
tance between the two vehicles. The Gipps car-following model
can not only fulfill the above requirement but also generate
rather realistic VSP distributions among the car-following
models [33], which are calculated as equations (4)-(6):
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2
Vv (t+ 1) = —1d,, + \jrzdz + dn{Z X () = %, () = S,y ] =79, (1) + Vnc_zl v } ©
n-1

where a,, (m/ s?) is the maximum desired acceleration of the
following vehicle; d,, (m/s?) is the maximum desired de-
celeration of the following vehicle; d,, , (m/s®) is the esti-
mation of the maximum desired deceleration of the leading
vehicle; T (s) is the apparent reaction time; S, is the ef-
fective length of a vehicle, which consists of the vehicle
length and the minimum distance between the vehicles; 0 is
the additional delay for braking, which is 0.5; and «, 8, and y
are parameters, which are 2.5, 0.025, and 0.5, respectively.

ZiERi : VSPBini,trajectory,x _ ZiERi : VSPBini,normal,x

2.3.3. Emission Increment at Trajectory Level. At the tra-
jectory level, the study focused on second-by-second ac-
tivities of the first four affected vehicles. Two different
models are developed: one is the trajectory model of the
first vehicle, while the other is the Gipps car-following
model of the three rear vehicles. The trajectory model of
four vehicles affected has been developed above; thus,
increased emission factors of the four vehicles can be
calculated as follows:

EFincreased,trajectory,x = 3600 - (
Veffected,x

(7)

), x=12,3,4,
v

normal,x
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where EFihcreased,trajectory,x (g/km) is the increased emission
factors of the x'" affected vehicle, VSP Bin; grajectory,x 15 the
time fraction in the i VSP bin of trajectory after violations,
and Vegecreaxr (km/h) is the average speed after violations.

2.4. Traffic Flow Level. At the traffic flow level, a linear
emission model that can describe the relationship between
emission factors and idling time in the one-stop and two-
stop scenarios is developed by using GPS-collected data at 44
intersections in Beijing. Increased emissions are calculated
by the number of stops and idling time before and after
violations based on the linear emission model.

2.4.1. Linearly Emission Model. In this section, a linear
emission model which can describe the relationship between
emission factors and idling time in the one-stop and two-stop
scenarios is developed. The emission model is developed based
on the emission rate data and 85 VSP distributions, which are
constructed based on the number of stops and idling time.

(1) VSP Distribution. Based on field measurements from the
available research on emissions, there are three typical tra-
jectories for a vehicle passing through an intersection (see
Figure 7): (a) No stop, (b) one stop, and (c) multiple stops at
the intersection (30, 31). It is hypothesized that each of these
speed profiles generates different levels of emissions, with type
three generating the highest amount of emission due to longer
idling time and more acceleration and deceleration circles.

The equation for calculating VSP is provided by equation
(8). VSP values are binned at an interval of 1kW/ton. This
article analyzes the VSP bins of —20 kW/ton to 20 kW/ton.
More than 98% of the VSP data are in this range.

A-v,+B-v}+C-v}

m

VSP, = +(a,+g-sin@)-v, (8)
where a, (m/s?) is the acceleration, g (m/s?) is the acceler-
ation due to gravity, which is 9.8 m/s* and sin 6 is the road
grade. A (kw-s/m), B (kw-s?/m?), and C (kw-s*>/m°>) are road
load coefficients, representing rolling resistance, rotational
resistance, and aerodynamic drag, respectively; the values of
A, B, and C are 0.156461, 0.0020002, and 0.000493, respec-
tively. m (ton) is the vehicle weight, and the value is 1.4788 ton.

Based on GPS trajectory data, idling time rarely exceeds
150s for one-stop vehicles, or 275s for two-stop vehicles.
Thus, 85 VSP distributions are developed based on the
number of stops, idling time, and division of upstream and
downstream (see Table 1).

(2) Emission Rates. Vehicle emission rate data were derived
from the local emission rate model for light-duty gasoline
vehicles (see Figure 8), and the type of gasoline emission
standard is China IV.

(3) Emission Factors. Idling time and number of stops are the
most important changes under the violation. Therefore, the
eimssion factors have two key parameters: number of stops
and the idling time based on GPS data (see Figure 8). The

200
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50 P

line

50 100 7 150 4 200
50 | y e

-100 |
-150

-200

Distance (m)
o

Time (s)

—— No stop
—— One stop
—— Two stop

FiGure 7: Three types of GPS trajectories at mixed-flow
intersection.

TaBLE 1: Information of the eighty-five VSP distributions.

Serial Spatial position Number of  Idling

number P P stops time (s)

1 D(.)wnstrea'm of 0 0
intersection

) I.Jpstrearr'l of 0 02
intersection

3 L.Ipstrearr.l of 1 95
intersection

4 Upstream of 1 5~10
intersection

5 Upstream of 1 10~15
intersection

30 Upstream of 1 135~140
intersection

31 Upstream of 1 140~145
intersection

32 Upstream of 1 145~150
intersection

33 Upstream of 2 10~15
intersection

34 Upstream of 2 15~20
intersection

35 Upstream of 2 20~25
intersection

83 Upstream of 2 260~265
intersection

84 Upstream of 2 265~270
intersection

85 Upstream of 2 270~275
intersection

downstream emission factor is constant, as there is no stop.
The emission factors are calculated as follows:

3600 - » ,ER;VSPBin,
EFV — Zl i lnz’ (9)
v
where EF, (g/km) is the emission factor at the average speed
of v (km/h). ER; (g/s) is the mean emission rate of the ith
VSP Bin. VSP Bin, is the fraction in the i VSP Bin.
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The emission factors increase linearly with the increase in
idling time, as shown in Figure 9. The difference in emission
factors between one-stop and two-stop vehicles is small under
the same idling time. It is because the two-stop vehicle keeps a
low speed and low acceleration, while the corresponding VSP
value is concentrated around zero, and the corresponding
emission rate is also small. But the range of the idling time of
one-stop and two-stop vehicles is obviously different. The
emission factor model is shown as follows:

EF,; +b,, c=1,2i=1234  (10)

i+ 1d11ng c,i?

where EF;, EF; (g/km) are emissions of types i and j. When i =1,
2, 3, 4, EF; is the emission factor of CO,, CO, NOy, and HC of
one-stop vehicles, respectively. When c¢=1, 2, EF; is the
emission factor of one-stop and two-stop vehicles, respectively.
tidling 18 the idling time of the vehicle. a; and b; are parameters.

2.4.2. Variations of Vehicles Operating at Traffic Flow Level.
At the traffic flow level, the study focused on the number of
stops and idling time for the subsequent vehicles after the
first four vehicles, which is divided into two scenarios (see
Figure 10).

(1) Unsaturated condition of the vehicle fleet after being
disturbed by violations;

(2) Saturated condition of the vehicle fleet after being
disturbed by violations.

As shown in Figure 10, the total lost time of the first four
affected vehicles is 4s in the unsaturated condition. The
idling time of subsequent vehicles increases by 4, and the
number of stops is still one. Under the saturated condition,
two vehicles will transform from one stop to two stops due to
the increased idling time. And the idling time of two-stop
vehicles increases by 4 s. Suppose that the maximum number
of stops for all vehicles is two. Subsequent vehicles are di-
vided into three types: (type A) one-stop vehicle, the increase
in idling time is equal to the total lost time, (type B)
transformation from one-stop vehicle to two-stop vehicle,
and (type C) two-stop vehicle, the increase in idling time is
equal to the total lost time of cycles.

Under the unsaturated condition, the subsequent ve-
hicles are all type A. Under the saturated condition, vehicles
that passing through the intersection are types A, B, and C at
the beginning. As cycles pass, type A vehicles will disappear
first, followed by type B vehicles. After all vehicles transform
to two-stop vehicles, vehicles passing through the inter-
section are all type C.

As shown in Figure 11, VSP distributions of vehicles with
and without violations are divided into three conditions,
which corresponds to types A, B, and C (see Figure 11). For
types A and C, the number of stops of affected vehicles is
constant. Thus, the difference in VSP distributions of ve-
hicles with and without violations is small. For type B, the
number of stops transforms from one to two, and the idling
time increment is the sum of the lost time and the red-light
time. The frequency of VSP distributed above 0 kW/ton will
be much highly affected by violations.

Take equation (10) as a reference. The emission model
has been developed based on the number of stops and idling
time. The operation change of subsequent vehicles, which
are after the first four affected vehicles, is reflected in the
number of stops and idling time. Therefore, increased
emissions of the subsequent vehicles can be obtained by the
emission model above. Based on equation (11), the nu-
merical simulation method is used to calculate the emissions
under violation conditions.

EFincreased,ﬂow,y = (acAfter,i “Lafter T bcAfter,i) (11)

_(acBefore,i “thefore T chefore,i)’

where EFjncreased flow,y (g/km) is the 1ncreased emission
factors of subsequent vehicles. y is the ™ vehicle of vehicles
going through the intersection in the cycle. t,g., is the idling
time after violations, and fyefore (5) is the idling time without
violations. cAfter and cBefore are stopping numbers before
and after violations, respectively.

2.5. Increased Emissions Affected by Violations. The analysis
of emissions affected by violations includes two levels. At
the trajectory level, the study focused on second-by-
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FIGURE 9: Emission factor model based on the number of stops and idling time.

second activities of the first four affected vehicles. At the
traffic flow level, the study focused on the aggregated
parameters (number of stops and idling) for the subse-
quent vehicles after the first four vehicles, and the con-
ditions are divided into two categories: unsaturated and

saturated conditions of the vehicle fleet disturbed by
violations.

The sum of the increased emissions on these two levels is
the total emission at intersections affected by violations,
which can be calculated as follows:
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Ficure 10: Characteristics of subsequent vehicles after violations.
e+3 n 7) The two objects to be compared are (1) vehicle
ZX=eEFincreased,trajectory,x + Zx:e+4 EFincreased,ﬂow,x ( ) .. . ) . P . ( )
AE = ST (EF, + BF ) -D, emissions in this cycle before the violation and (2)
=L\ downstream the same vehicles after violations. The number of
(12) vehicles is the same.

where AE (%) is the increased emission increment of the
cycle. e is the ™ vehicle, which is the location of the first
affected vehicle. n is the vehicle number of the cycle.
EFincreased trajectory,x (§/km) is the increased emission factors
of the first four affected vehicles. EFiycreased,flow,y (g/km) is
the increased emission factors of the subsequent vehicles
after the first four affected vehicles. EF; (g/km) is the normal
emission factors of vehicles. EFjownstream (g/km) is the
emission factors downstream of the intersection. D (km) is
the distance of the study range, which is 200 meters.

3. Case Study

Numerical simulations are designed in the case. The impact
of violations on intersection emissions can be quantified
based on the model built at the trajectory and traffic flow
levels. The numerical simulation object of the case is the
arterial (north-south) direction of the intersection. The
seven simulation conditions are listed as follows:

(1) The average lost time is 5.52s according to the vi-
olation data.

(2) Traffic flow arrival distribution conforms to Poisson
distribution.

(3) The research scope is in 200 meters of the
intersection.

(4) The maximum number of stops is two.

(5) The average speed of the normal vehicle at the in-

tersection is 16.74km/h according to the 1666
trajectories.

(6) The frequency of violations is 1 time/cycle/lane based
on the actual statistics.

3.1. Case Intersection. A typical intersection in Beijing (Anli
and Huizhong North) is chosen as a reference for the case
intersection, which is the arterial and collector protected
intersection. The simulation object is the arterial (north-
south) direction of the intersection. The signal information
and channelization information are shown in Table 2.

3.2. Results and Discussion. When the volume is 38 veh/lane/
cycle, for example, emission increment under violations in the
case study is as shown in Figure 12 The x-axis indicates the
cycle number, and the y-axis indicates the emission increment
under the impact of violations. VSN means “the number of
stops of vehicles is increasing after violations.” Figure 12
explains the impact of violations on emissions at intersec-
tions under the volume from the following four aspects.

(1) The cycle number is less than 13: emission increment
increases as VSN until the proportion of two-stop
vehicles after violation reaches 100%.(saturated flow/
(volume - saturated flow after violations) =13).

(2) The cycle number is equal to 13: all vehicles have to
stop twice after violations.

(3) The cycle number is between 13 and 26: the stopping
number is two and the stopping time is increasing,
the growth rate of emission after violations has a
slower trend, and is even smaller than the growth
rate of emission before violations.

(4) The cycle number is over 26: the three-stop vehicle
will appear after violations.

Based on the analysis above, emission increment under
violations in the case study is shown in Figure 13 The x-axis
indicates the vehicle volume, and the y-axis indicates the
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F1Gure 11: VSP distributions of vehicles with and without violations. (a) One-stop vehicle (type A). (b) The vehicle transforms from one stop

to two stops (type B). (c) Two-stop vehicle (type C).

emission increment under the influence of violations. And
different volumes will have different simulation cycles to
avoid three-stop vehicles. Taking CO, as an example, the
increment of CO, emissions can be divided into unsaturated
and saturated states.

(1) Under the unsaturated condition, the emission in-
crement is constant, and when the volume is 35 veh/
lane/cycle, the emissions have barely increased
(1.08%) because the stopping number is constant and
the idling time only increases by 5.52s.
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TABLE 2: Signal and channelization information of case intersection.

Signal information (s)

Channelization information

Phase Green Yellow All red L Lane number
. Direction . .
North-south straight 74 3 2 Straight Left Right
North-south turn left 42 3 2 North 3 1 1
East phase 34 3 2 South 3 1 Straight-right
West phase 28 3 2 East 0 1 Straight-right
Cycle time 198 West 1 1 Straight-right
04 VSN is increasing TSV is equal to 100%
h 1
6ol :
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5 i
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2 !
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b
01234567 8 91011121314151617181920212223242526
Cycle number
Cycle time (s) Green time (s) Lost time (s)
198 74 5.52
Volume Saturated flow Saturated flow after violations
(veh/cycle) (veh/cycle) (veh/cycle)
38 37 35
FIGURE 12: Emission increment after violations such as cycle passing (volume = 38 veh/lane/cycle).
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FIGURE 13: Emission increment after violations for saturated/unsaturated conditions as cycle passing.
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(2) Under the saturated condition, the emission incre-
ment increases sharply as the one-stop vehicle
gradually transforms to the two-stop vehicle because
of violations. As the proportion of two-stop vehicles
after violations reaches 100%, and as the proportion
before violations keeps increasing, the increment of
emissions will decrease steadily. At the ninth cycle
(half an hour), the emission increment is changed
from 45% to 33% as the volume is changed from 36
to 42 veh/lane/cycle.

(3) As the cycle passes, the increment emissions of vi-
olations will have another increasing-decreasing
process when three-stop vehicles appear. And a more
increasing-decreasing process will appear when
multiple-stop vehicles appear.

4. Conclusions

This paper studies the impact of violations on emissions at
intersections based on the real-world driving trajectory data.
First, the characteristics of vehicle operating affected by
violations are analyzed. Second, a violation emission model
is developed to evaluate emission increment under trajectory
and traffic flow levels. Finally, a numerical simulation is
conducted to assess the impact of violations on emissions
based on the existing study. The main findings from the
research can be summarized as follows.

The headway stabilized by the fourth affected vehicle,
and the average total lost time caused by violations is 5.52s.
The effect of violations can be divided into trajectory and
traffic flow levels.

The proposed emission model under trajectory and
traffic flow levels can be used for estimating the impact of
violations. The trajectory is modeled by the Gipps car-fol-
lowing model, and the proposed linear emission model
based on the number of stops and idling time is used for the
traffic flow level. At the trajectory level, the first four vehicles
have obvious trajectory characteristics. The operating mode
of the first affected vehicle is deceleration-idling-accelera-
tion. The other three vehicles are modeled by the Gipps car-
following model. At the traffic flow level, the proposed linear
emission model based on the number of stops and idling
time is used for estimating the emission of subsequent
vehicles.

The emission increment is constant under the unsatu-
rated condition and is 1.08% when the volume approaches
saturated flow. The emission increment increases sharply as
the one-stop vehicle gradually transforms to the two-stop
vehicle because of violations under the saturated condition,
and the maximum emission increment reaches 45% in half
an hour in the case. The increment of emissions decreases
steadily as the proportion of two-stop vehicles after viola-
tions reaches 100%, and the proportion before violations
keeps increasing.

More emission numerical simulations for different types
and frequencies of violations are recommended for further
studies. In addition, three-stops and above should be con-
sidered in high-frequency violation scenarios.

13

Data Availability

Previously reported emission data were used to support this
study and are available at https://doi.org/10.3141/2627-08
and https://doi.org/10.3141/2570-09. These prior studies
(and datasets) are cited at relevant places within the text as
references [30, 32]. The manual investigation data used to
support the findings of this study are included within the
article.

Disclosure

This paper was submitted for presentation at the annual
meeting of the 98" Transportation Research Board.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was supported by the National Key R&D
Program of China (#2018YFB1600701), the Fundamental
Research Funds for the Central Universities (#2018YJS081),
and the Natural Science Foundation of China (NSFC)
(#51678045 and 51578052). The authors are thankful to all
personnel who provided technical support and helped with
data collection and processing.

References

[1] R.J. Laumbach, “Outdoor air pollutants and patient health,”
American Family Physician, vol. 81, no. 2, pp. 175-180, 2010.
[2] M. Krzyzanowski, B. Kunadibbert, ]J. S. Chneider et al,
“Health effects of transport-related air pollution,” Journal of
Health Effects of Transport-Related Air Pollution, vol. 97, no. 5,
pp. 418-419, 2005.
F. Khalighi and E. Christofa, “Emission-based signal timing
optimization for isolated intersections,” Transportation Re-
search Record: Journal of the Transportation Research Board,
vol. 2487, no. 1, pp. 1-14, 2015.
Federal Highway Administration, Carbon Monoxide Cate-
gorical Hot-Spot Finding, Federal Highway Administration,
Washington, DC, USA, 2017.
[5] Y. Zhang, X. Chen, X. Zhang, G. Song, Y. Hao, and L. Yu,
“Assessing effect of traffic signal control strategies on vehicle
emissions,” Journal of Transportation Systems Engineering and
Information Technology, vol. 9, no. 1, pp. 150-155, 2009.
L. Zhang, Y. Yin, and S. Chen, “Robust signal timing opti-
mization with environmental concerns,” Transportation Re-
search Part C: Emerging Technologies, vol. 29, no. 1, pp. 55-71,
2013.
[7]1 M. Franklin, X. Yin, R. Urman, R. Lee, S. Fruin, and
R. Mcconnell, “Environmental factors affecting stress in
children: interrelationships between traffic-related noise, air
pollution, and the built environment,” in Proceedings of the
HEI Annual Conference, Washington, DC, USA, May 2019.
J. Xing, J. Hua, and P. Hao, “Study on pedestrian crossing rate
at signal-controlled intersections,” Journal of Technology &
Economy in Areas of Communications, vol. 16, no. 5,
pp- 14-19, 2014, Chinese article.

[3

[4

[6

[8


https://doi.org/10.3141/2627-08
https://doi.org/10.3141/2570-09

14

[9] C. Minh and K. Sano, “Analysis of motorcycle effects to
saturation flow rate at signalized intersection in developing
countries,” Journal of the Eastern Asia Society for Trans-
portation Studies, vol. 5, pp. 1211-1222, 2003.

[10] A. Stevanovic, J. Stevanovic, K. Zhang, and S. Batterman,
“Optimizing traffic control to reduce fuel consumption and
vehicular emissions: integrated approach with VISSIM,
CMEM, and VISGAOST,” Transportation Research Record:
Journal of the Transportation Research Board, vol. 2128, no. 1,
p. 105, 2009.

[11] X. Sun, X. Chen, Y. Qi, B. Mao, and L. Yu, “Analyzing the

effects of different advanced traffic signal status warning

systems on vehicle emission reductions at signalized inter-
sections,” in Proceedings of the Presented at 95th Annual

Meeting of the Transportation Research Board, Washington,

DC, USA, January 2016.

K. Chen and L. Yu, “Microscopic traffic-emission simulation

and case study for evaluation of traffic control strategies,”

Journal of Transportation Systems Engineering and Informa-

tion Technology, vol. 7, no. 1, pp. 93-99, 2007.

[13] H. Rakha and Y. Ding, “Impact of stops on vehicle fuel
consumption and emissions,” Journal of Transportation En-
gineering, vol. 129, no. 1, pp. 23-32, 2002.

[14] H. C. Frey, N. M. Rouphail, and H. Zhai, “Speed- and facility-

specific emission estimates for on-road light-duty vehicles on

the basis of real-world speed profiles,” Transportation Re-
search Record: Journal of the Transportation Research Board,

vol. 1987, no. 1, pp. 128-137, 2006.

H. Zhai, H. C. Frey, and N. M. Rouphail, “A vehicle-specific

power approach to speed- and facility-specific emissions

estimates for diesel transit buses,” Environmental Science ¢

Technology, vol. 42, no. 21, pp. 7985-7991, 2008.

A. Papson, S. Hartley, and K. Kuo, “Analysis of emissions at

congested and uncongested intersections with motor vehicle

emission simulation,” Transportation Research Record: Jour-

nal of the Transportation Research Board, vol. 2270, no. 1,

pp. 124-131, 2012.

[17] S. Gokhale and S. Pandian, “A semi-empirical box modeling

approach for predicting the carbon monoxide concentrations

at an urban traffic intersection,” Atmospheric Environment,

vol. 41, no. 36, pp. 7940-7950, 2007.

K. Braven, A. Abdel-Rahim, K. Henrickson, and A. Battles,

Modeling Vehicle Fuel Consumption and Emissions at Sig-

nalized Intersection. Publication KLK721, National Institute

for Advanced Transportation Technology, University of

Idaho, Moscow, Idaho, 2012.

[19] M. Brosseau, S. Zangenehpour, N. Saunier, and L. Miranda-
Moreno, “The impact of waiting time and other factors on
dangerous pedestrian crossings and violations at signalized
intersections: a case study in montreal,” Transportation Re-
search Part F: Traffic Psychology and Behaviour, vol. 21,
pp. 159-172, 2013.

[20] G. Ren, Z. Zhou, W. Wang, Y. Zhang, and W. Wang,
“Crossing behaviors of pedestrians at signalized intersections:
observational study and survey in China,” Transportation
Research Record: Journal of the Transportation Research
Board, vol. 2264, no. 1, pp. 65-73, 2011.

[21] X. Wang, Y. Xu, P. J. Tremont, and D. Yang, “Moped rider
violation behavior and moped safety at intersections in
China,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2281, no. 1, pp. 83-91,
2012.

(12

[15

(16

[18

Journal of Advanced Transportation

[22] V. Perumal, S. Marisamynathan, Study on pedestrian crossing
behavior at signalized intersections,” Journal of Traffic and
Transportation Engineering, vol. 2, no. 1, pp. 103-110, 2014.

[23] M. Huan, M. Yang, and B. Jia, “Modeling cyclist violation
behavior at signalized intersection in China,” in Proceedings of
the 2012 Fifth International Joint Conference on Computational
Sciences and Optimization, IEEE, Harbin, China, June 2012.

[24] J. Przybyla, J. Taylor, J. Jupe, and X. Zhou, “Estimating risk
effects of driving distraction: a dynamic errorable car-fol-
lowing model,” Transportation Research Part C: Emerging
Technologies, vol. 50, pp. 117-129, 2015.

[25] L. He, “Study on traffic efficiency of illegal lane change on
signal intersection,” Doctoral thesis, Chang’an University,
Xi’an, China 2017. (Chinese article).

[26] J.B.Zhang, L. Yu, G. Song, J. Huang, and J. Guo, “Operational
characteristics of signalized under mixed traffic: case in
Beijing,” in Proceedings of the Presented at 98th Annual
Meeting of the Transportation Research Board, Washington,
DC, USA, January 2019.

[27] Y. Guo, Q. Yu, Y. Zhang, and J. Rong, “Effect of bicycles on the
saturation flow rate of turning vehicles at signalized inter-
sections,” Journal of Transportation Engineering, vol. 138,
no. 1, pp. 21-30, 2012.

[28] X. Liang, Z. Liu, and Q. Kun, “Capacity analysis of signalized
intersections under mixed traffic conditions,” Journal of
Transportation Systems Engineering and Information Tech-
nology, vol. 2, no. 11, pp. 91-99, 2011.

[29] D. Xie, G. Song, J. Guo, J. Sun, and L. Yu, “Development and
application of an online dynamic emission model for traffic
networks: a case study of Beijing,” in Proceedings of the
Presented at 97th Annual Meeting of the Transportation Re-
search Board, Washington, DC, USA, January 2018.

[30] C.Li, L. Yu, W. He, Y. Cheng, and G. Song, “Development of
local emissions rate model for light-duty gasoline vehicles:
beijing field data and patterns of emissions rates in EPA
simulator,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2627, no. 1, pp. 67-76,
2017.

[31] Report of Overall Architecture Design and Technical Difficult
of the Distribution Regular Pattern of Traffic Emissions,
Technical Report for Center for Transportation Sector Energy
Reduction and Emissions Mitigation of Beijing, Beijing Jiao-
tong University, Beijing, China, 2014.

[32] J. Zhang, L. Yu, J. Guo, Y. Cheng, W. He, and G. Song,
“Optimized adjustment of speed resolution and time align-
ment data for improving emissions estimations,” Trans-
portation Research Record: Journal of the Transportation
Research Board, vol. 2570, no. 1, pp. 77-86, 2016.

[33] H.Lu, G. Song, and L. Yu, “A comparison and modification of
car-following models for emission estimation,” in Proceedings
of the Transportation Research Board 95th Annual Meeting,
Transportation Research Board of the National Academies,
Washington, DC, USA, January 2016.



Hindawi

Journal of Advanced Transportation
Volume 2020, Article ID 6304651, 11 pages
https://doi.org/10.1155/2020/6304651

Research Article

WILEY

Hindawi

Analysis of the Impact of Traffic Violation Monitoring on the
Vehicle Speeds of Urban Main Road: Taking China as an Example

Fuquan Pan (,' Yongzheng Yang,' Lixia Zhang ®,' Changxi Ma(®,” Jinshun Yang®,

1

and Xilong Zhang

1

!School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong 266520, China
2School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

Correspondence should be addressed to Fuquan Pan; fuquanpan@yeah.net and Lixia Zhang; zlxzhanglixia@163.com

Received 3 January 2020; Accepted 12 February 2020; Published 20 March 2020

Guest Editor: Feng Chen

Copyright © 2020 Fuquan Pan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, there are more and more applications of traffic violation monitoring in some countries. The present work aims to
analyze the vehicle speeds nearby road traffic violation monitoring area on urban main roads and find out the impact of road traffic
violation monitoring on the vehicle speeds. A representative urban main road section was selected and the traffic flow was
recorded by camera method. The vehicle speeds before, within, and after the road traffic violation monitoring area were obtained
by the calculation method. The speed data was classified and processed by SPSS software and mathematical method to establish the
vehicle speed probability density models before, within, and after the road traffic violation monitoring area. The results show that
the average speed and maximum speed within the traffic violation monitoring area are significantly slower than those before and
after the traffic violation monitoring area. 70.1% of the vehicles before the road traffic violation monitoring area were speeding,
and 80.2% of the vehicles after the road traffic violation monitoring area were speeding, while within the road traffic violation
monitoring area, the speeding vehicles were reduced to 15.9%. When vehicles pass through the road traffic violation monitoring
area, the vehicle speeds tend to first decrease and subsequently increase. In its active area, road traffic violation monitoring can
effectively regulate driving behaviors and reduce speeding, but this effect is limited to the vicinity of the traffic violation
monitoring. The distribution of vehicle speeds can be calculated from vehicle speed probability density models.

1. Introduction

In many countries, with the development of the social
economy, the number of automobiles has increased yearly,
and a series of problems such as road congestion mess in
traffic order and traffic accidents becomes frequent [1-7].
Traffic accidents can cause huge casualties and economic
losses [8]. To maintain traffic order and reduce the occur-
rence of traffic accidents, traffic violation monitoring sys-
tems have been installed in some risk road sections (such as
school sections and main road sections). A traffic violation
monitoring system can capture and process various traffic
violations such as speeding, illegal lane changes, and traffic
sign violations in the active area. It primarily uses computer
image processing technology and communication technol-
ogy and obtains illegal vehicle information through an

automatic detection device. It can regulate driving behaviors
and ensure road traffic safety [9-13]. Some scholars have
studied the effect of traffic violation monitoring on driving
behaviors and vehicle speed. Zhu et al. [14] believed that
trafic violation monitoring significantly affects driving
behaviors. Traffic violation monitoring can effectively reduce
the probability of traffic accidents. Traffic violation moni-
toring has a positive effect on road traffic safety. Pan et al.
[15, 16] found that intersection traffic violation monitoring
can effectively regulate the behavior of drivers and reduce
the occurrence of speeding, which helps to reduce the oc-
currence of traffic accidents. Luo et al. [17] obtained drivers’
opinions on traffic violation monitoring through a ques-
tionnaire survey, and they noted that traffic violation
monitoring can alert the driver and reduce the occurrence of
speeding, illegal lane changes, and other behaviors. Zhang
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et al. [18] analyzed the effect of traffic violation monitoring
on driving behaviors from the psychological point of view.
They believe that traffic violation monitoring may negatively
affect driving behaviors and that rear-end accidents sig-
nificantly increase under traffic violation monitoring. Qian
[19] studied driving behaviors under traffic violation
monitoring at intersections and proposed that traffic vio-
lation monitoring helps to ensure traffic safety. Jiang et al.
[20] studied the impact of traffic violation monitoring on
traffic accidents at intersections in response to China’s
specific national conditions. They believe that traffic viola-
tion monitoring can reduce the occurrence but increase the
severity of traffic accidents. Ahmed and Abdel-Aty [21]
analyzed traffic accidents at intersections and found that
traffic violation monitoring would reduce left-turn traffic
accidents but increase traffic accidents in other directions.
Chai et al. [22] believed that traffic violation monitoring has
different effects on different types of traffic accidents. Traffic
violation monitoring reduces the occurrence of collision
accidents, but the probability of rear-end accidents in-
creases. Pulugurtha and Otturu [23] analyzed traffic acci-
dents with or without traffic violation monitoring at
intersections and found that traffic violation monitoring at
intersections increased rear-end accidents by 50% but re-
duced total traffic accidents by 16%. Higgins et al. [24]
believed that traffic violation monitoring significantly affects
driving behaviors and that most drivers and nondrivers
support the installation of traffic violation monitoring.

At present, research on the impact of traffic violation
monitoring on drivers is mostly concentrated at the inter-
section and focuses on the impact of traffic violation
monitoring on traffic accidents. There are few studies on
road traffic violation monitoring. In recent years, some
countries such as China have implemented the large-scale
installation of traffic violation monitoring facilities on urban
roads to regulate driving behaviors, but the mechanism of
the impact of traffic violation monitoring on drivers is not
clear. To clarify the rationale and necessity of road traffic
violation monitoring, we explore the impact of road traffic
violation monitoring on driving behaviors and traffic safety.
This work conducts field measurements through cameras,
obtains vehicle speed data from different sections (before,
within, and after the road traffic violation monitoring area),
and studies the impact of road traffic violation monitoring
on vehicle speeds.

2. Methodology

2.1. Data Collection Site. The road section selected in this
study is a typical urban main road, Jialingjiang East Road,
located in Huangdao District, Qingdao, Shandong Province,
China. This traffic violation monitoring site is located on
Jialingjiang East Road, specifically at 2000 m west of the
intersection of Jialingjiang East Road and Hengshan Road in
Huangdao District, Qingdao, and 500 m west of the south
gate of Jialingjiang Road Campus of the Qingdao University
of Technology. Its geographical location is shown in
Figure 1.
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FIGURE 1: Geographic location of the data collection area.

Jialingjiang East Road is a one-way three-lane road with
an isolation barrier in the middle of the road to isolate the
two-way traffic flow. The traffic violation monitoring device
on this road is in the form of cantilever beams, which can
completely cover 3 lanes, as shown in Figure 2.

2.2. Data Acquisition Method. The data acquisition devices
are mainly cameras. The central point of the traffic violation
monitoring area in this paper refers to the center point of the
visual field of the traffic violation monitoring camera. One
video device each is set up at the center of the traffic violation
monitoring area as well as 100 m before and after it, and
these devices are used to measure the speed of the same
vehicle passing through the three places. Traffic violation
monitoring is typically installed above the road. The in-
stallation height is generally 4.5m, and the monitoring
device is at an angle of approximately 60° to the road plane.
Therefore, the center of the monitoring area is approxi-
mately 8 m ahead of the monitoring device.

The data collection took two days and was completed
four times; each recording took thirty minutes. The col-
lection time is concentrated in the common period. The data
collection section is a representative urban main road sec-
tion with a speed limit of 40km/h. The vehicle speed
measurement method is shown in Figure 3.

The speed measurement steps are as follows:

(1) Place cameras at points 1, 2, and 3, install and debug
the cameras, and make preparations. Make sure that
the camera has no visual field barrier at the shooting
site.

(2) Set three background markers on the opposite side of
the road and find three background markers on the
camera screen.

(3) When the camera, vehicle, and background markers
are aligned, make a vertical line from the vehicle to
the roadside and record the vertical points as Sy, S5,
and S;.

(4) After the data have been collected in the field, the
video is processed, and the required data are
recorded. The speed and acceleration of the vehicle
cannot be directly obtained from the video but can be
calculated based on the collected data.
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FIGURE 2: Actual road conditions of the data collection road section.
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FIGURE 3: Vehicle speed measurement method.
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In the formula, V is the average speed of the corre-
sponding section. Because the distances among signs 1, 2,
and 3 are relatively small, V can also be considered the
instantaneous speed, S is the length of the corresponding
section, T is the time difference between vehicles passing
through the section, and a is the average acceleration of the
vehicle passing the corresponding section. Since the distance
between marker 1 and marker 3 is relatively small, the
acceleration can be considered the instantaneous
acceleration.

The data acquisition and data processing of measure-
ment points 2 and 3 are identical to those of measurement
point 1. After screening, 515 groups were obtained, totaling
1,545 valid vehicle data.

2.3. Sample Size Test of the Data. Due to the error of the
measuring device and limited ability of the observer to
identify the organ, there will be errors in the placement,
sighting, and reading of the instrument

In addition, external conditions such as temperature,
humidity, wind, and atmospheric refraction during the
observation will directly affect the observed data. Therefore,
to ensure the accuracy of the experimental results and reduce
the impact of errors on the experimental results, the amount
of measurement data must be guaranteed. Only when the
sample size reaches the minimum sample size requirement
do the experimental results become credible, and whether
the sample size of the test data satisfies the requirements can
be determined by the following formula:

N=Z2p(1—p). )
EZ

In the formula, N is the minimum number of samples
required for the experiment; Z is the confidence coefficient,
which is used to characterize the reliability. When the



confidence is 90%, Z = 1.65, and when the confidence is 95%,
Z=1.96; with higher confidence, a larger sample size is
required; E is the maximum allowable error in data mea-
surement. The smaller the allowable error, the larger the
sample size required; and P is the ratio of the number of
measured samples to the total traffic flow during the mea-
surement period. In this paper, the maximum allowable
error is 5%, and the confidence is 95%. After the calculation,
the minimum sample size is 384. The sample size of this
paper is much larger than the minimum sample size, so the
sample size of this paper satisfies the requirements.

3. Data Analysis and Results

3.1. Speed Analysis. The vehicle speed statistics and vehicle
speed distribution are shown in Table 1 and Figures 4 and 5.

Table 1 shows that the average speed and maximum speed
within the traffic violation monitoring area are significantly
slower than those before and after the traffic violation
monitoring area. Thus, the road traffic violation monitoring
system can effectively alert the driver to follow the traffic
regulations and suppress the occurrence of speeding. In turn,
the probability of traffic accidents decreases. When the vehicle
passes through the sections before, within, and after the road
traffic violation monitoring, the general trend of the average
speed is first a reduction and subsequently an increase, which
indicates that the road traffic violation monitoring interferes
with the typical driving behavior and induces the occurrence
of traffic accidents [25, 26]. The road traffic violation mon-
itoring is not absolute for traffic safety. On the one hand, road
traffic violation monitoring can reduce the probability of
accidents in the active area; on the other hand, traffic violation
monitoring may increase the probability of accidents within
the transitional areas before and after the traffic violation
monitoring.

Figure 4 shows that before the traffic violation moni-
toring area, the maximum speed is greater than 40 km/h in
70.1% of the cases; the second most common speed range is
30-40 km/h, occurring in 26.4% of the cases; and the least
common speed range is less than 30 km/h, occurring in 3.5%
of the cases. Within the traffic violation monitoring area, the
most common maximum speed is 30-40 km/h (more than
70%), the second most common range is greater than 40 km/h
(15.9%), and the least common range is less than 30 km/h
(11.8%). After the traffic violation monitoring area, the most
common maximum speed is greater than 40 km/h (80.2%),
the second most common range is 30-40 km/h (18.4%), and
the least common range is less than 30 km/h (1.4%). When a
vehicle is driving within the traffic violation monitoring area,
speeding is obviously reduced. Most drivers drive at a speed
slightly lower than the speed limit standard. When they leave
the traffic violation monitoring area, the frequency of
speeding is the highest, which is related to factors such as the
psychological relaxation of the driver immediately after
leaving the traffic violation monitoring area and the personal
characteristics of the drivers.

Figure 5 consists of 515 sets of vehicle speed data,
arranged according to the order of data collection. Figure 5
shows that within a given set of speed data, the speed of the
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vehicle before and after the monitoring area is generally
higher, and the speed of the vehicle within the monitoring
area is generally the lowest. Thus, for a single vehicle, when it
passes through the three sections before, within, and after
the traffic violation monitoring area, the speed trend has a
greater probability of first decreasing and subsequently
increasing. According to statistics, among the 515 sets of
data, 358 sets of data had the slowest speed in the monitoring
area, which accounts for 70% of the total sample. Hence, 70%
of the vehicles have the obvious behavior of first decelerating
and subsequently accelerating when passing through the
road traffic violation monitoring area. It can also be un-
derstood that when a vehicle passes through the road traffic
violation monitoring area, there is a 70% probability that it
will first decelerate and subsequently accelerate.

3.2. Hypothesis Test. Whether the road traffic violation

monitoring significantly affects the driving behaviors and

speeds is related to the rationale of road traffic violation

monitoring installation. To determine whether the road

traffic violation monitoring will affect vehicle speed, the

single-factor hypothesis test is conducted for the data.
Test hypothesis

Hy:uy =uy = us. (3)

In other words, road traffic violation monitoring has no
significant impact on speeds:

H,y: uy,u,,us notall equal. (4)

In other words, road traffic violation monitoring has a
significant impact on speeds:

S N O
SST=ZZ(Xij—X),

j=li=1

S
ssa=Y Y (x;-X),
j=li=1
s
ssE=Y ] (x;-X,). ©)
j=1i=1
s
MsA = 22
fa
SSE
MSE = 2%
fe

In the formula, u;, u,, and us are the speeds before,
within, and after the road traffic violation monitoring area,
respectively; SST is the total variation, which is the reflection
of the difference among all test data; SSE is the error square
sum, i.e., the sum of squares of deviations between the
measured values of different measurement positions and the
average values of the positions. SSE can reflect the fluctu-
ations caused by the average errors; SSA is the sum of the
squared effects, which is the sum of the squares of the de-
viations between the average of the measured values at
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TABLE 1: Speed statistics.

Before the traffic violation

Within the traffic violation

After the traffic violation

Position . L. ..
monitoring area monitoring area monitoring area

Average (km/h) 48.0 37.8 50.3
Variance 100.0 49.0 94.1
Standard deviation 10.0 7.0 9.7
Range 46.0 46.0 45.0
Coefficient of 209 18.2 19.3
variation

Skewness 0.6 1.4 0.4
Kurtosis 2.8 3.9 2.3
Maximum (km/h) 71.0 70.0 71.0
Minimum (km/h) 26.0 24.0 27.0

80
72.23

Percent (%)

<30 30-40

40-50 >50

Speed (km/h)

Before the traffic violation monitoring area
Within the traffic violation monitoring area
After the traffic violation monitoring area

FIGURE 4: Vehicle speed distribution.

different points and the total average; # is the total number of
vehicle speed data; s is the number of groups of vehicle speed
data; fris the degree of freedom between groups, fr=n-1;f,
is the degree of freedom in the group, f,=n-s; f, is the
overall degree of freedom, f4=8-1; MSA is the variance
within the group; and MSE is the variance between groups.

The variance analysis table is obtained by processing the
vehicle speed data using MATLAB software, as shown in
Table 2.

Since Fo> Fy; (2, 1542), Hy is rejected; i.e., the road
traffic violation monitoring has a significant impact on
vehicle speeds.

3.3. Acceleration Analysis. The acceleration statistics and
acceleration distribution are shown in Table 3 and Figures 6,
and 7.

Table 3 shows that the average acceleration at different
positions (before, within, and after the traffic violation

monitoring area) is significantly different. Generally, before
the road traffic violation monitoring area, the driver tends to
slow down; in the road traffic violation monitoring area, the
driver tends to travel at a constant speed; and after the road
traffic violation monitoring area, the driver tends to accel-
erate. In addition, when the vehicle passes through the road
traffic violation monitoring area, the overall trend of the
vehicle speeds is first a decrease and subsequently an
increase.

Figure 6 consists of 515 sets of acceleration data,
arranged according to the order of acquisition. Figure 6
shows that the acceleration before the monitoring area is
mostly distributed in (-1.3, —0.5), the acceleration in the
monitoring area is mostly distributed in (0.4, 0.4), and the
acceleration after the monitoring area is mostly distributed
in (0.6, 1.4). Hence, before the monitoring area, the driver
tends to slow down; in the monitoring area, the driver tends
to drive at a uniform speed; and after the monitoring area,
the driver tends to accelerate. Taking any of the 515 sets of
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FIGURE 5: Vehicle speed distribution.

TABLE 2: Analysis of variance.

Source of variance Square of deviance Degree Variance F F, Significance

Between groups 107.95 2 202.98 F,=4.55 Fy05 (2, 1542) =3.00 Significant

Within group 67.91 1542 70.92 — Fpor (2, 1542)=4.61 —

Sum 175.86 1544 — — — —

TaBLE 3: Acceleration statistics.

Position Before the traffic violation Within the traffic violation After the traffic violation monitoring
monitoring area monitoring area area

Average (m/s?) -0.76 0.03 0.92

Variance 0.4 0.1 0.2

Standard deviation 0.6 0.3 0.4

Range 2.0 1.6 1.7

Coefficient of 785 51.9 59.0

variation

Skewness -0.8 0.5 -0.3

Kurtosis -0.3 2.6 -0.9

Maximum (m/s?) 0.5 1.1 2.9

Minimum (m/s?) -2.7 -1.2 -0.6

data, the acceleration rate is very likely less than 0 before the
monitoring area, approximately 0 in the monitoring area,
and greater than 0 after the monitoring area. Thus, near the
traffic violation monitoring area, a single driver has a high
probability of first decelerating, subsequently driving at a
constant speed, and finally accelerating.

Figure 7 shows that the acceleration range in the traffic
violation monitoring area is the smallest, followed by that
before the monitoring area and that after the monitoring
area, where the acceleration is most dispersed. Thus, the
traffic order within the traffic violation monitoring area of
the road section is the best, the traffic violation monitoring
area before the road section is second best, and the order

after the traffic violation monitoring area of the road section
is the most chaotic, which increases the probability of rear-
end accidents before the road traffic violation monitoring
area and the probability of speeding and illegal overtaking
after the road traffic violation monitoring area.

3.4. Normality Test. The Kolmogorov-Smirnov test, also
called the K-S test, is a commonly used method in statistical
analysis. It compares the data required for statistical analysis
with another set of standard data to obtain the deviation
between it and the standard data. The Kolmogorov-Smirnov
test is often used to test the normality of the data
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distribution. When the P value is greater than 0.05, the
measured data can be considered to obey a normal distri-
bution [27].

The Shapiro-Wilk test, also called the S-W test, is a
method of normal distribution testing for frequency data.
When the P value is greater than 0.05, the measured data can
be considered to obey a normal distribution [28].

The Kolmogorov-Smirnov test and the Shapiro-Wilk
test are two commonly used methods for normal distri-
bution detection. The largest difference between them is that

the Kolmogorov-Smirnov test is suitable for the statistical
analysis of a large number of data samples, and the Sha-
piro-Wilk test is suitable for the statistical analysis of a small
number of data samples. In this paper, the sample number of
vehicle speed data is moderate, so both test methods are
used. The speed data are processed by SPSS software, and the
results are shown in Table 4.

Table 4 shows that for both the Kolmogorov-Smirnov
test and the Shapiro-Wilk test, the P values for vehicle speed
before, within, and after the road traffic violation monitoring



area are greater than 0.05, which indicates that the distri-
butions of vehicle speed before, within, and after the road
traffic violation monitoring area obey a normal distribution.

3.5. Modeling and Analysis

(1) The vehicle speed distribution model within the road
traffic violation monitoring area is as follows. Table 1
shows that the speeds nearby the road traffic violation
monitoring area obey a normal distribution of N
(37.8, 49) and that the probability density function is

_ b (x-37.8798)
f(-x) - me . (6)

In equation (6), x is the vehicle speed. According to
equation (6), the distribution curve is shown as
Figure 8, and the average vehicle speed within the
road traffic violation monitoring area is slightly
lower than the maximum speed limit of the road.

By analogy, it can be concluded that the average
speed within the monitoring area is approximately
0.95a on a road with a maximum speed limit of a km/
h. Hence, on a road with the highest speed limit of a
km/h, the vehicle speed probability density model
within the road traffic violation monitoring area is

I _(x-0.95a)98)
= ¢ (x=0950)/5%) 7
f (%) \/987Te @)

In equation (7), x is the vehicle speed. From equation
(7), the distribution curve is shown as Figure 9, and it
can be calculated that when a vehicle with a maxi-
mum speed limit of a km/h travels in the monitored
area, there is a 68.2% probability that its speeds are in
the range of (0.95a -7, 0.95a + 7) km/h, with a 95%
probability in the range of (0.95a - 14, 0.95a + 14)
km/h.

(2) The model of vehicle speed distribution before the
road traffic violation monitoring area, i.e., the vehicle
speed distribution model within the transition zone
before the road traffic violation monitoring area, is as
follows. Table 1 shows that the vehicle speeds before
the monitoring area obey the normal distribution of
N (48,100), and compared with the values within the
monitoring area, the average speed and standard
deviation before the monitoring area are slightly
higher. Assuming that the length of the transitional
zone before the traffic violation monitoring area is
100m and the transition is completed at 30 m in
front of the center of the monitoring area, it is
considered that the vehicle uniformly decelerates
throughout the transitional area and the variance of
the vehicle speed distribution has a positive corre-
lation with the vehicle speed. Therefore, on a road
with the maximum speed limit of @ km/h, the vehicle
speed probability density model at b m in front of the
center of the road traffic violation monitoring area is
inferred to be
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f (x) = 1 _—([x-(0.84a+0.0035ab)]*/2 (6,2+O.03b)2)’

\27(6.2 + 0.03b)>

30 < b< 130.
(8)

In equation (8), x is the vehicle speed. From equation
(8), the distribution curve is shown as Figure 10, and
it can be calculated that when a vehicle is about to
enter the transition zone before the road traffic vi-
olation monitoring with a maximum speed limit of
a km/h, there is a 68.2% probability that its speeds
are in the range of (1.3a—-10.1, 1.3a+10.1) km/h
and a 95% probability in the range of (1.3a—20.2,
1.3a+20.2) km/h; for §; at any point in the former
transition zone, the distance between S, and
the center of the traffic violation monitoring area is
L'm, and with 68.2% probability, the range of the
vehicle speeds at that point is (0.84a—0.03L +
0.0035aL — 6.2, 0.84a + 0.03L + 0.0035aL + 6.2) km/h,
and with 95% probability, the range of vehicle
speeds is (0.84a—0.06L +0.0035aL — 12.4, 0.84a+
0.06L +0.0035aL + 12.4) km/h. When a vehicle is
about to leave the former transition zone, there is a
68.2% probability that its speeds are in the range of
(0.95a -7, 0.95a+7) km/h and a 95% probability in
the range of (0.95a — 14, 0.95a + 14) km/h.

(3) The model of vehicle speed distribution after the

road traffic violation monitoring area, i.e., the vehicle
speed distribution model within the transition zone
after the road traffic violation monitoring area, is as
follows. Table 1 shows that the vehicle speed after the
monitoring area obeys the normal distribution of N
(50.3, 94), and compared with the values in the
monitoring area, the average speed and standard
deviation after the monitoring area are slightly
higher. Assuming that the length of the transitional
section after the traffic violation monitoring area is
100 m and the transition is completed at 30 m past
the center of the monitoring area, it is considered
that the vehicle is driving uniformly decelerating
throughout the transitional area and the variance of
the vehicle speed distribution is positively correlated
with the vehicle speeds. Therefore, on a road with the
maximum speed limit of a km/h, the vehicle speed
probability density model at c-m past the center of
the road traffic violation monitoring area is inferred
to be

fx) = 1 —( [x—(0.82a+040044ac)]2/2(642+0403c)2))

27 (6.2 + 0.03¢)?

30 <c<130.
(9)

In equation (9), x is the vehicle speed. From equation (9),
the distribution curve is shown as Figure 11, and it can be
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TaBLE 4: Kolmogorov-Smirnov test and Shapiro-Wilk test results.

Kolmogorov-Smirnov

Statistical

Shapiro-Wilk
Degree Sig Statistical Degree Sig

Before the traffic violation monitoring area 0.13
Within the traffic violation monitoring area 0.13
After the traffic violation monitoring area 0.06

515 0.19 0.93 515 0.22
515 0.30 0.94 515 0.27
515 0.17 0.98 515 0.11

308 378 44.8 51.8
F— 68.29% —]

} 95% |

183
Nl
o)

FiGcure 8: Distribution curve of equation (6).

095a-14 095a-7 0952  0.95a+7 0.95a+14 x
|— 68.2% ——
| |

[ 95% |

FIGURe 9: Distribution curve of equation (7).

calculated that when a vehicle is about to enter the transition
zone after the road traffic violation monitoring area with a
maximum speed limit of a km/h, there is a 68.2% probability
that its speeds are in the range of (0.95a -7, 0.95a + 7) km/h
and a 95% probability in the range of (0.95a — 14, 0.95a + 14)
km/h; for S, at any point in the posttransition zone, the
distance between S, and the center of the traffic violation
monitoring area is L-m. With 68.2% probability, the vehicle
speeds at that point are in the range of (0.82a-
0.03L +0.0044aL — 6.2, 0.82a + 0.03L + 0.0044aL + 6.2) km/h,
and with a 95% probability, its speeds are in the range of
(0.82a—-0.06L +0.0044aL — 12.4, 0.82a+ 0.06L + 0.0044aL

0.84a - 0.06L +
0.84a +
0.0035aL

%y

0.0035aL - 12.4
0.84a - 0.03L +
0.0035aL - 6.2
0.84a + 0.03L +
0.0035aL + 6.2
0.84a + 0.06L +

0.0035aL + 12.4

68.2%

95% I

Figure 10: Distribution curve of equation (8).

0.82a - 0.06L +
0.82a +
0.0044aL

0.0044al - 124
0.82a - 0.03L +

0.0044aL - 6.2
0.82a + 0.03L +

0.0044al + 6.2
0.82a + 0.06L +

0.0044al + 12.4

68.2%
95% i

FiGgure 11: Distribution curve of equation (9).

+12.4) km/h. When a vehicle is about to leave the post-
transition zone, there is a 68.2% probability that its speeds
are in the range of (1.39a—10.1, 1.39a+10.1) km/h and a
95% probability in the range of (1.39a —20.2, 1.39a + 20.2)
km/h.

By comparing equations (8) and (9), we find that the
entry of the road traffic violation monitoring area from the
former transition zone and the entry of the posttransition
zone following the road traffic violation monitoring area
form a pair of approximately opposite processes.
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4. Discussion and Conclusions

To further study the impact of road traffic violation
monitoring on vehicle speeds, the following issues
require further study:

(1) In the case of constant road facilities, weather
conditions often affect vehicle speed distribution.
The time period during which the data were collected
by the institute had normal weather on sunny days. If
the weather is raining, snowy, or foggy, the condition
or pattern may differ from the results of this study.

(2) The concept of traffic safety among different drivers
often varies. Therefore, the behavioral responses of
different drivers who encounter traffic violation
monitoring often vary. This study randomly col-
lected vehicle data and cannot understand the
drivers’ traffic safety conceptions. In this case, there
is a lack of understanding of the drivers’ traffic safety
conceptions.

(3) The road selected in this study is an urban main road.
Traffic violation monitoring on different functional
levels may have different effects on vehicle speeds.
Other situations require further study.

By analyzing the impact of road traffic violation
monitoring on the vehicle speeds, this paper pro-
duces the following conclusions:

(1) The vehicle speed distributions before, within, and
after the road traffic violation monitoring area are all
normally distributed. The average speed of vehicles
within the monitoring area is slightly lower than the
maximum speed limit of the road. The average speed
of vehicles before and after the monitoring area is
higher than the speed limit of the road of 40 km/h.

(2) Before and after the road traffic violation monitoring
area, the traffic order is chaotic, and the probability
of speeding and other behaviors is large. The road
traffic violation monitoring is within its scope, which
can effectively regulate driving behaviors and reduce
the occurrence of illegal activities such as speeding,
but its scope of action is limited to a small area. If a
driver lacks safety awareness, deterrence that relies
solely on traffic violation monitoring does not
guarantee sustained traffic safety.

(3) The distribution of vehicle speeds can be calculated
from vehicle speed probability density models. In the
road with a maximum speed limit of a km/h, there is
a 68.2% probability that the vehicle speeds are in the
range of (0.84a —0.03L +0.0035aL — 6.2, 0.84a + 0.03
L+0.0035aL +6.2) km/h and a 95% probability in
the range of (0.84a—0.06L +0.0035aL —12.4, 0.84a
+0.06L +0.0035aL + 12.4) km/h before the traffic
violation monitoring area; there is a 68.2% proba-
bility that the vehicle speeds are in the range of
(0.95a -7, 0.95a +7) km/h and a 95% probability in
the range of (0.95a — 14, 0.95a + 14) km/h within the
traffic violation monitoring area; and there is a 68.2%
probability that the vehicle speed is in the range of
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(0.82a—0.03L + 0.00444L - 6.2, 0.82a+0.03L +
0.0044aL +6.2) km/h and a 95% probability in the
range of (0.82a—0.06L+0.0044aL —12.4, 0.82a+
0.06L + 0.0044aL + 12.4) km/h after the traffic vio-
lation monitoring area.

(4) The traffic phenomena of vehicles entering the road
traffic violation monitoring area from the former
transition zone and vehicles entering the post-
transition zone past the road traffic violation mon-
itoring area are approximately opposite.
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Current studies on traffic crash prediction mainly focus on the crash frequency and crash severity of freeways or arterials.
However, collision type for urban expressway crash is rarely considered. Meanwhile, with the rapid development of urban
expressway systems in China in recent years, traffic safety problems have attracted more attention. In addition, the traffic
characteristics are considered to be a potentially important predictor of traffic accidents; however, their impact on crashes has
been controversial. Therefore, a crash frequency predicting model for urban expressway considering collision types is proposed in
this study. The loop detector traffic data and historical crash data were aggregated based on the similarities of the traffic conditions
5 minutes before crash occurrence, among which crashes were divided by collision type (rear-end collision and side-impact
collision). The impact of traffic characteristics along with weather variables as well as their interactions on crash frequency was
modelled by using negative binomial regression model. The results indicated that the influence of traffic and weather factors on
two collision types shared similar trend, but different level. For rear-end collisions, crash frequency increased with lower average
speed and high traffic volume under low speed limit. And when the speed limit is high, higher average speed coupled with larger
volume increases the probability of crash. Higher average speed and traffic volume increase the probability of side-impact
collisions, without being affected by the speed limit. The findings of the present study could help to determine efficient safety
countermeasures aimed at improving the safety performance of urban expressway.

1. Introduction

With the rapid development of Chinese cities, residents’
demand for travel and the increasing number of motor
vehicles put forward higher requirements for the operation
efficiency of cities. Urban expressway is a key part of the
city roadway networks, which is of great significance to
improve the travel efficiency. Compared with main arterial
roads, urban expressway is characterized by large traffic
volume and higher speed [1], resulting in frequent traffic
crashes in recent years. In 2017, 6652 road crashes occurred
causing 1673 deaths and 6862 injuries along the urban
expressway [2]. Analysing the influence factors of urban
expressway traffic crashes and establishing a crash

prediction model play important roles for improving traffic
safety.

A large number of studies on crash prediction models
were mainly carried out from the aspects of crash frequency
estimation and the crash severity prediction at the macro
level (e.g., yearly, monthly) [3-6]. The Highway Safety
Manual (HSM) prediction model represents the most widely
used approach for road safety assessment, developing the
safety prediction procedures for rural highways, urban and
suburban arterials in the 2010 version of the HSM [7].
Taking factors such as traffic flow, road geometry, and so on
into consideration, the HSM provides a prediction method
for estimating the expected average frequency of single- and
multiple-vehicle fatal-and-injury crashes.
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Establishing the traffic crash model based on the his-
torical crash data to analyse the relationship between crash
frequency and the relevant risk factors such as roadway
geometry variables has been a focus for a long time. Based on
crash data of freeway, Ma et al. analysed the influence of road
length, traffic environment, and other risk factors on crash
rate [8]. Xie et al. analysed the relationship among crash
probability and intersection characteristics and traffic vol-
ume based on the data of signalized intersections in
Shanghai. The results showed that the number of lanes and
average speed at intersections would have a significant
impact on the crash probability [9]. There are also some
scholars who have studied the prediction methods based on
dividing crashes into single- and multivehicle crashes [10],
but there are few studies conducted on the collision type
(rear-end collision, side-impact collision, etc.), particularly
in China. There is strong empirical evidence that the pre-
diction model of crash frequency based on collision type can
help better understand the influence of the crash occurrence
contributing factors on specific collision type, especially in
real-time risk assessment [11, 12].

Due to the impact of real-time driving environment data
such as traffic flow on traffic accidents, and with the tech-
nology progress of traffic data detection and storage, real-
time crash risk assessment has become a research hotspot in
the field of traffic safety. Chen et al. adopted a zero-inflated,
negative binomial regression model to estimate hourly crash
frequency using real-time environmental and traffic data
[13]. In order to explore the complex interactions among
characteristics, the mixed logit model was adopted for his
further research [14], which showed that environment and
traffic were critical to the likelihood of collisions. Choudhary
et al. explored the relationships between traffic character-
istics and the occurrence of crashes based on traflic data
collected through inductive loop detectors. The results in-
dicated that crash probability is related to higher speeds,
greater volume, and high between-lanes speed variation [15].
Shi et al. explored the impact of real-time traffic flow on
urban expressway crash probability [16]. The crash risk
analysis models were developed for total crashes and time-
related crashes to reveal the significant factors that affect
crash risk [17]. In addition, typical scenarios leading to an
accident were found from the modelling results. In the
following research, Yu et al. investigated the impacts of data
aggregation schemes on the relationships between operating
speed and traffic safety; additionally, a U-shaped relation-
ship between operating speed and crash occurrence was
identified [18].

Traffic characteristics are widely adopted as important
indicators of crash frequency, but the research results on its
safety effect are not consistent. The inconsistencies among
the results may be relevant to the different data sources, low
quality of data, and different analytical methods. Speed is
considered to be one of the most important factors leading to
crashes. Speed management interventions such as Variable
Speed Limits (VSL) or fundamental speed limit settings are
introduced to improve road capacity and safety. The ap-
plication of speed limit settings relies on the in-depth un-
derstanding of the quantitative relationships between
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operating speeds and traffic safety to determine strategies to
reduce the crash risk. Previous studies have shown positive
associations of average speed with crashes [19], while single-
vehicle crashes and fatal-and-injury crashes involving
multiple vehicles increase with the increase of the average
speed [20]. However, others have shown a negative or an
insignificant relationship between average speed and crash
risk [21, 22]. In addition, some scholars have suggested that
the safety effect of average speed would vary with road types
[23]. As for the impact of speed limit on crash risk, some
studies have found that speed limit is positively correlated
with crash frequency and severity [24], and high speed limit
road sections are often associated with high crash risk.
However, Gou et al. mentioned that the crash frequency may
be reduced due to better road facilities with high speed limit
sections [25]. What is more, the safety effect of speed seemed
to be related to other traffic variables such as traffic flow. For
example, Kononov et al. have shown that higher crash risk is
associated with high-speed driving in high-density traffic
flow [26].

In summary, most studies on traffic crash prediction
mainly focus on the crash frequency and crash severity on
freeway or intersections, while the study considering the
collision type of urban expressway crash is rare. Moreover,
the relationship between traffic characteristics and crash
probability needs to be further discussed. Weather condi-
tions have been found to be associated with accident risk,
especially rainy weather [27]. This study explores the impact
of traffic characteristics and weather variable on crash fre-
quency. Data from Wuhan urban traffic management sys-
tems were utilized here and crashes are divided by collision
type (rear-end collision, side-impact collision; collision type
statistics reveal that rear-end collision and sideswipe colli-
sions are the most common type of collision [28], and other
collision types are excluded from the analysis because of the
limited number). Data aggregated following a condition-
based approach to reflect the conditions prior to crash
occurrence are more accurate [18]. Finally, the relationships
between relevant factors and traffic safety were conducted
using negative binomial regression model.

The remaining of the paper is organized as follows. The
data are collected and the negative binomial regression
model is proposed for crash risk assessment. Sections 3
presented and discussed the results and the verification of
the model. The paper ended with conclusions and limita-
tions and looked forward for further study.

2. Data Collection and Preparation

To predict the crash frequency of urban expressway, his-
torical crash, real-time traffic, and weather data have been
utilized. Two urban expressways crossing over the river in
Wuhan were chosen to be the data collection area, totalling
3,986 meters per direction. Inductive loop detectors and
video monitoring were installed in the study area to provide
real-time traffic flow data. Considering the design charac-
teristics of urban expressways, the two-way lanes were
considered to be independent of each other. Three datasets
were used to build the database: (1) historical crash data
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from January 1, 2018 to October 31, 2018. It was obtained
from the traffic accident archives recorded by Wuhan
Municipal Public Security Bureau in detail, including in-
formation concerning crash occurrence time, location,
weather, and collision types. During the study, there were
536 crashes in total, in which 321 were rear-end collisions
and 135 were side-impact collisions. Considering the high
frequency of rear-end and side-impact collision, this study
only discussed the impact of the crash occurrence con-
tributing factors on these two kinds of collisions and finally
obtained a total of 466 collision samples. Moreover, weather
conditions were also extracted from this dataset, which were
divided into two categories in this study to indicate whether
it was rainy or not. When a crash occurs, its weather data is
usually recorded accurately by professional traffic police
based on the weather information collected by the nearest
weather station; (2) roadway posted speed limit. The speed
limit on the road, as the upper limit of real-time speed, has
critical impact on crash risk. The speed limits of the urban
expressway sections studied are 50 km/h and 70 km/h, re-
spectively, and remained consistent during the study period;
(3) traffic data detected by Loop Detectors (LDs) located
along the study area. Lane-based average speed and total
volume at 5-minute interval were provided by LDs data,
which could provide analysis with high-quality traffic flow
data. For each crash, Mile Maker (MM) or Chinese char-
acters associated with the crash records were used to de-
scribe its location, and the traffic data can be exactly matched
with crash data according to the occurrence location and
time recorded.

In the raw data of the LDs, there are abnormal values
caused by equipment problems and other random errors,
which can be identified by setting appropriate value interval
of parameters, so as to screen out the unrealistic value [29].
The invalid values of parameters include (1) speed < 0 km/h
or speed > 100 km/h; (2) speed > 0 km/h and volume = 0; and
(3) volume >0 and speed=0km/h. Previous studies have
shown that data aggregation has a significant impact on the
results of the crash modelling. Abdel-Aty et al. compared the
crash risk prediction effect of data aggregated at intervals of
three minutes and five minutes and found that the latter
provided more information for analysis and had better
research significance [30]. The random noise can be effec-
tively reduced by aggregating the data into five-minute
intervals. Considering that the weather conditions generally
do not change in a short period of time, the hourly collected
weather conditions were matched with crashes to provide
the weather information for model building [15]. In addi-
tion, traffic characteristics (average speed, traffic volume,
etc.) 5 minutes just prior to the crash time had great con-
tribution to their occurrence [29]. Therefore, the traffic data
five minutes prior to the reported crash time and the weather
conditions at the reported crash time were identified and
defined as the precrash condition to construct the crash
prediction model and finally obtain a total of 466 precrash
conditions. For example, the crash occurred at 9:30; then
traffic data from 9:20 to 9:25 (a 5-minute window) col-
lected by the LDs closest to the crash occurrence location
and the weather information extracted from the traffic

accident archives were extracted to form the precrash
condition as shown in Figure 1.

3. Methods

3.1. Variable Setting. Based on the impact of data aggre-
gation on crash modelling, a scenario-based data aggrega-
tion approach of significance has been proposed to identify
the traffic conditions just prior to the crashes which might
lead to crashes. For the scenario-based analysis, crashes were
aggregated based on the similarity of the traffic conditions
just before the crashes as employed by Yu et al. [18]. Precrash
conditions, coupled with speed limit, were used as the
control variable to define the potential crash scenarios,
which were classified into equal frequency categories [15].
Firstly, the average speed was divided into 25 equal groups
with a 4-percentile step; then each speed quantile was di-
vided into 3 categories with a 33-percentile step for traffic
volume. Further, the sequence was followed by splitting the
speed limit into two equal quantiles for each quantile of
traffic volume. Similarly, the weather (rain/no rain) con-
ditions were divided into two equal-frequency groups for
each volume category. Finally, a total of 300 scenarios (i.e.,
25x3x2x2) were created, representing all the possible
traffic conditions just prior to the crashes.

The 300 condition-based scenarios were matched with
crashes that occurred under these traffic conditions and the
crash frequency of each scenario was expressed by collision
types (rear-end collisions and side-impact collisions).
Therefore, an analysis dataset was formed by aggregating
crashes into the same scenario. The traffic characteristics of
each scenario were represented by the median values of
average speed and traffic volume. Since it makes sense to
study the relationship between traffic variables and crashes
further, the potential interaction among traffic variables also
needs to be taken into account. In this study, multiple in-
teraction terms were utilized to study their impact on crash
frequency in addition to the individual traffic variables.
Table 1 presents the summary statistics of the scenario-based
dataset.

4. Modelling

Statistical counting models have been widely utilized for
crash frequency prediction. The Poisson regression model is
a basic model to analyse the impact of potential factors on
crash frequency and requires the mean and variance of crash
frequency to be equal [31]. However, the dispersion and low
probability of traffic accidents do not satisfy the assumption
of Poisson’s distribution. This phenomenon of variance
bigger than the mean value is usually called overdispersion.
The negative binomial regression model is an extension of
the Poisson regression model to handle this problem by
introducing an error term that obeys Gamma distribution
on the basis of Poisson’s regression model. This study ex-
plored the relationship between independent variables and
rear-end collision and side-impact collision by establishing
two negative binomial regression models. The expected
crashes can be expressed as follows:
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FIGUre 1: The precrash condition.
TaBLE 1: Summary statistics of the scenario-based dataset.
Variable Description Mean SD Min Max
Average speed (km/h) Median speed for the crash occurrence scenario  37.68 8.04 2098  80.77
Vol}lme (vehicles in 5min interval per lane, = Median volume per lane foT the crash occurrence 12697 4419 12 209875
vehicles) scenario
Speed limit (km/h) 50 km/h or 70 km/h 60 60 50 70
Weather =0 if rain; =1 otherwise 0.5 0.5 0 1
Average speed * volume (km/h *vehicles) — 4644.11 1565.61 547.68 8143.15
Average speed * speed limit (km/h * km/h) — 2178.36 641.01 1049  5653.9
Volume #* speed limit (vehicles * km/h) — 7148.54 2283.65 840 10756.67
Crash frequenc Rear-end collisions 1.07 2.09 0 10
4 Y Side-impact collisions 0.45 1.41 0 6

Aig = exp(ﬂykxyk + &) (1)

where A, refers to the expected crash frequency for k collision
type of the scenario i. X is a set of explanatory variables for k
collision type, such as traffic volume, speed limit, etc. 8. is the
corresponding regression parameters to be estimated for k
collision type. ¢; is the error term, which follows the Gamma
distribution, with a mean value of 1 and a variance of a?. So,
the variance of the crash frequency distribution is

VAR[yy] = E[yu] [1 + aE[yp]] = Ay (1 + k), (2)

where y; represents the observed crash frequency for k
crash type of the scenario i, VAR [ y;; ] represents its variance,
and E[y;] is the expected crash frequency. Then, the
probability density function of the negative binomial re-
gression model is formulated as follows:

= r(yik+(1/0£)) “/\ik Vik 1 1«
STy + DT (L) \ 1+ ady o)
(3)

Among them, I'(-) is a Gamma function. When a = 0,
the negative binomial regression model is the same with
Poisson’s regression model; when « > 1, the data deviation is
large; when « < 1, the data deviation is small. Since the large
deviation of traffic crash data, the negative binomial model is
widely used for traffic crash prediction.

P(yu)

5. Performance Evaluation of Prediction

Akajke Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) were used to assess the overall
goodness-of-fit. Note that lower values of these measures
signify better statistical fit. To further evaluate the models, two
forecasting accuracy measures were adopted: Mean Absolute
Deviation (MAD) and Mean Squared Error (MSE) [32].

MAD describes the magnitude of average bias in model
prediction:

1 n
MAD = ; Z|yik - A’ik|’ (4)
i=1

where y;, is the observed crash frequency for k crash type of
the scenario i and A is the predicted one.

On the other hand, MSE refers to the mean value of the
square misprediction of the estimated models. MSE is
computed as follows:

1 n
MSE = " Z (Vi = A)’. (5)
i=1

MSE and MAD can be used to describe the accuracy of
the model fitting. In general, the lower the value indicated,
the better the prediction of observed data. However, the
range of their values is not limited, and the validity of the
model is usually tested by artificially defining a reasonable
range. Therefore, R? is further introduced to describe the
accuracy of the model, and its value ranges from 0 to 1. The
larger R?, the better the model fitting effect, and when R* is
greater than 0.4, the model is considered to have a good fit.

R2 _ Z?:llik — yik)2 (6)
Z?:l(yik - )’ik)2>

where y;, is the observed average crash frequency for k crash
type of the scenario i.

6. Results and Discussion

Given the 0.05 significance level, the models were fitted by
the Maximum Likelihood Estimation (MLE) method with
the help of STATA 15.0 software. All the traffic variables
along with their multiplicative interaction combinations and
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rain were taken as explanatory variables in both multivariate
models. The best fitted variable combination for crash fre-
quency prediction included all traffic and weather variables
plus the interaction between average speed and speed limit.
The performance of prediction was evaluated and Table 2
presents the values of these measures.

The result shows that the negative binomial model has
good prediction performance for the rear-end collision and
the side-impact collision. The significant variables in the two
models include average speed, traffic volume, weather, speed
limit, and the interaction between average speed and speed
limit. In Table 2, a positive (negative) sign for a variable in
the crash count component indicates that an increase in the
variable is likely to result in more (less) vehicle crashes. Some
variables have similar influences on the two types of crashes.
For instance, the parameter for traffic volume reveals a
positive association with crash proportion in both models,
indicating that the frequency of rear-end collisions and side-
impact collisions will increase with the increase of traffic
volume [7, 15, 18]. The estimated result of weather variable
implies that the presence of rain has a negative effect on
crash rates, which is consistent with previous studies
[33-35]. The high crash risk in rainy weather may have a
certain relationship with poor road conditions and reduced
visibility, which leads to longer stopping distance and longer
reaction time. However, the parameter estimate value of the
same significance variable is different in the two models,
indicating that the same variable has different effects on the
two types of crash frequency. For example, in the rear-end
collision prediction model, the weather coeflicient is
—1.4399, while being —0.9787 in the side-impact collision
prediction model, indicating that compared with the side-
impact collision, rainfall has a greater impact on the rear-end
collisions. The probability of rear-end collisions in a rainy
environment is relatively high. It can be explained that when
driving in rainy days, the stopping distance becomes longer
due to the wetness of pavement, which are more likely to lead
to rear-end collision.

Further analysis of the impact of road average speed
and speed limit on the crash frequency was conducted.
Due to the existence in interaction terms, although the
estimation results of these two parameters were negative,
we cannot draw the conclusion that they are negatively
related to the crash frequency. In order to observe the
contribution of the interaction between average speed and
speed limit to the crash frequency, the crash rates are
plotted in Figures 2(a) and 2(b) for the rear-end collision
and the side-impact collision, respectively. The speed limit
design of urban expressway generally ranges from 60 km/h
to 100 km/h in China. In addition, considering that there
was a research object with speed limit of 50 km/h in this
study, the range of speed limit range was determined to be
50 km/h-100 km/h, and the corresponding average speed
range is 0 km/h-100 km/h. The results show that the in-
fluence of their interaction on rear-end collision and side-
impact collision is different. For the rear-end collision,
when the speed limit is low, the crash frequency will
decrease with the increase of speed limit coupled with a
low average speed. However, when the speed limit

5
TaBLE 2: Estimation results of negative binomial model.
Rear-end Side-impact
Variables collisions collisions
Mean P value Mean P value
Intercept 11.4970 0.0000 13.1129 0.0015
Average speed -0.1561 0.0080 -0.1236 0.0195
Volume 0.0027 0.0121 0.0044 0.0431
Rain -1.4399 0.0000 -0.9787 0.0006
Speed limit -0.1917 0.0000 -0.2565 0.0007

Average speed * speed limit  0.0028 0.0067 0.0026 0.0134
AIC 490.61 392.37

BIC 510.58 412.66
MAD 1.42 1.23

MSE 2.63 3.45

R? 0.75 0.63

continues to increase, the crash frequency is positively
related to the average speed. But for side-impact collision,
no matter what the speed limit is, the average speed limit
performs positive, indicating that the crash frequency
increases with the rise of average speed.

The relationship between average speed, traffic volume,
and crashes is further analysed, and the surface relationship
diagrams of average speed and traffic volume with rear-end
collision and side-impact collision under different speed
limit conditions were plotted, respectively, as shown in
Figure 3. For rear-end collision, the curves show that high
crash risk associates with low average speed when the speed
limit is low. When the speed limit is low, vehicles tend to
drive at a lower speed, which to some extent promotes the
occurrence of traffic congestion. Many studies, including
those of Golob et al. and Christoforou et al., have shown that
traffic congestion is one of the most significant precursors of
rear-end collisions [11, 13, 36]. In the case of traffic con-
gestion, drivers must adjust the speed in short time and short
distance, making it more likely to lead to a rear-end collision,
which is consistent with the results of this paper. When the
speed limit is high, crash seems to be triggered at higher
average speed and volumes. The vehicle tends to drive at a
high speed under high speed limit. The vehicle inertia is too
large to brake within a safe distance, leading to higher
probability of a rear-end collision crash. In addition, it is
clear that rear-end collision potential increase when the
traffic volume is higher. This may be due to more interaction
between vehicles at higher flow conditions leading to an
increased tendency for rear-end collisions. Similar findings
are also found in other studies [37].

The results in Figure 4 show that for the side-impact
collisions, when traffic volume increase, the frequency of
side-impact collision increases, which may be related to
more frequent lane change behaviour of vehicles in high-
flow conditions. This finding is similar to the work of
Christoforou et al. who reported that side-impact collisions
are more likely to be positively correlated with traffic volume
[11]. Further, side-impact collisions are more probable to
occur for high levels of traffic average speed [38]. One
possible explanation could be that side-impact collisions are
usually associated with lane change operations, which are
more prone to crash at high speeds. The relationship
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FIGURE 2: The impact of the interaction between average speed and speed limit on the crash frequency. (a) For the rear-end collision. (b) For
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between these variables and the frequency of different crash
types can be applied on safety improvement and
management.

7. Conclusions

Traffic crash prediction is a hot topic in the field of traffic
safety and keeps developing. In view of the shortage of urban
expressway crash prediction and the controversial issue of
the influence of speed on safety, the traffic and weather
variables were used to predict the crash risk. This study
developed crash risk analysis models for rear-end collision
and side-impact collision with loop detector traffic data and
historical crash data. For the purpose of exploring traffic
conditions that leads to accidents, the data of Wuhan urban
expressway were aggregated based on the similarity of traffic
conditions in 5 minutes prior to crash occurrence. The
impact of traffic variables along with their interactions and
the weather condition on crash frequency was conducted by
the negative binomial regression model. The results show
that average speed, traffic volume, speed limit, and weather
have significant impact on crash frequency and the influence
of factors on two collision types is similar but with different
degree. Specifically, the existence of rain increases the crash
risk, especially for rear-end collisions. Higher traffic volume
increases the crash risk. The impact of average speed on rear-
end collision and side-impact collision on urban expressway
is different. Specifically, under the lower speed limit, the
probability of rear-end collision increases with the decrease
of road average speed. At the higher speed limit, the
probability of rear-end collision increases with the rise of
road average speed. Regardless of the speed limit, with the
increase of road average speed and traffic flow, the frequency
of side-impact collision will increase.

In general, the specific combinations of traffic charac-
teristics increase the probability of crash occurrences. These
results are helpful to understand the crash risks under
different traffic conditions and provide a basis for formu-
lating traffic management countermeasures effectively. The
results can be applied to real-time traffic management,
where drivers can be warned via variable message sign once
it is defined to be vulnerable to existing traffic conditions. In
addition, the crash prediction model can also be applied to
the evaluation and planning of road improvement projects
when it is used to monitor the road safety level in real time.
However, there are some limitations in this study. For ex-
ample, due to the limited number of single-vehicle crashes,
this study did not conduct the prediction model for it.
Moreover, in order to better understand the impact of traffic
characteristics on traffic crashes, further study of collision
types is needed. At last, due to the existence of traffic het-
erogeneity, further crash risk analysis should consider the
heterogeneous influence of various factors on traffic safety.
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Mega elliptical roundabout is a new intersection on rural multilane highways. This intersection was developed in a previous paper
using simulation data, and the authors found that it is better than interchange (full cloverleaf) in most scenarios of traffic flow.
Basically, there are no guidelines or procedures for designing mega elliptical roundabout in AASHTO Green Book, Federal
Highway Administration guides, and Highway Capacity Manual. Thus, the purpose of this study is to analyze the traffic operation
performance and propose a methodology for calculating the capacity of mega elliptical roundabout and also the level of service by
gap acceptance theory. Moreover, this research studied the influence of different values of truck ratios and also different values of a
major highway speed on geometric design and traffic operation performance for mega elliptical roundabout. To validate the
thoroughness of the proposed methodology, VISSIM simulations were conducted. This research will assist practitioners in
determining the appropriate geometric design, assessing mega elliptical roundabout intersections, and making comparisons with

other alternatives.

1. Introduction

The designs of conventional intersections cannot often re-
lieve congestion without incurring increased conflicts and
also significant improvement costs. Thus, there is a great
need for alternative intersections offering the potential to
reduce delay, improve safety, and reduce the influence on the
environment with fewer effects and a lower cost than tra-
ditional solutions [1-4]. Therefore, the authors proposed a
new type of intersections which is called “mega elliptical
roundabout” in a previous paper [5]. Totally, they analyzed
1134 scenarios by VISSIM software to analyze the initial
feasibility and determine the best scenarios of geometric
design for mega elliptical roundabout intersections. They
compared mega elliptical roundabout with the interchange
(full cloverleaf). They found that mega elliptical roundabout
as an intersection is better than the interchange (full clo-
verleaf) in some scenarios of traffic flow, but mega elliptical

roundabout as an interchange is better than the interchange
(full cloverleaf) in all scenarios of traffic flow relative to delay
time, fuel consumption, and emission.

Based on the previous studies, intersection analysis
models generally fall into three categories: simulation
models, empirical models, and analytical models. Simulation
models are useful in the initial feasibility analysis of new
types of intersections which do not have Highway Capacity
Manual (HCM) procedures and in comparing them with
current intersections [6-14]. Empirical models rely on field
data to develop relationships between geometric design
features and performance measures such as capacity and
delay [15-18]. Analytical models are based on the concept of
gap acceptance theory, conflict theory, or probability theory
[19-29].

The empirical models are generally better but cannot be
used to analyze mega elliptical roundabout at present be-
cause mega elliptical roundabout is a new type of
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intersections, so no field data are available, while the initial
feasibility analysis of mega elliptical roundabout has been
introduced in another work by simulation models [5].

There are no guidelines or procedures for the design of
mega elliptical roundabout in AASHTO Green Book,
Federal Highway Administration (FHWA) guides, and
Highway Capacity Manual (HCM). Therefore, this research
analyzed the traffic operation performance and used the gap
acceptance theory to propose a methodology for calculating
the capacity of mega elliptical roundabout and also the level
of service, to assist practitioners in determining the ap-
propriate geometric design.

The remainder of this research is organized as follows.
Section 2 introduces the literature review. Section 3 shows
the basic concept of this study. Section 4 presents the
proposed methodology. Section 5 shows the assumptions
and built-up models. Section 6 presents the statistical
analysis of built-up models. Section 7 demonstrates the case
description and methodology validation. Section 8 intro-
duces the sensitivity analysis. Section 9 gives the conclusions
of this study and proposes future work.

2. Review of the Previous Studies

Mega elliptical roundabout is a new intersection. Its form is an
elongated ellipse combining the best functions of the
roundabout and the unconventional median U-turn (UMUT)
intersection [5]. Therefore, the first efforts for this work
looked at the studies related to estimating the capacity and
level of service for roundabout, conventional median U-turn
(MUT) intersection, and UMUT intersection to determine the
ideal methodology to estimate the capacity and level of service
for mega elliptical roundabout intersection.

2.1. Roundabout Intersection. Because vehicles enter the
roundabout only when the gap in the circulating traffic is
large enough, the capacity of the roundabout depends
primarily on the circulating flow and the availability of gaps.
Therefore, roundabout capacity is measured in terms of the
entry capacity, whether by gap acceptance theory [30-32],
empirical models [33-39], simulation models [40-43],
conflict theory [44], or others [45-47].

Yap et al. [48] examined the worldwide state-of-the-art
in roundabout capacity modeling, covering the three main
methodologies on which models are based: fully empirical,
gap acceptance, and simulation. They found that due to their
limitations, each of these methodologies on its own cannot
completely explain the complex behavioural and physical
processes involved in roundabout entries; hence, all the
models require strong semiempirical or fully empirical bases
using data obtained from their countries of origin. Differ-
ences in driver behaviour and methodologies thus result in
differences in predicted capacities by the various models,
and although local calibration allows some transferability, it
is often limited by the availability of data or an incomplete
understanding of the relationships between model param-
eters and capacity.
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Little research exists from the viewpoint of the weaving
section in capacity estimation for the roundabout. Diah et al.
[49] introduced a model to predict the weaving section flow
at the weaving area of Malaysian conventional roundabout
by regression models, while Diah et al. [50] studied the
relation between the roundabout performance, geometric
design of roundabout, and weaving section flow process
using Paramics software. Wang and Yang [51] proposed a
method to estimate the capacity of the roundabout by
modeling weaving gap acceptance at the weaving sections,
but they did not calibrate their method.

In the literature, only one paper by Wu and Brilon [52]
treated the whole roundabout intersection as one entity.
They believe that the total roundabout capacity can be
obtained according to traffic volumes for the movements at
the intersection by their method, but they did not calibrate
their method by empirical data.

The Highway Capacity Manual [53] only provides a
methodology for estimating the capacity of each entry lane
and the level of service for the single-lane and multilane
roundabout. However, HCM [53] neglected the weaving
section when designing the roundabout.

2.2. MUT Intersection. Al-masaeid [54] used empirical and
gap acceptance approaches to predict the capacity and the
delay of U-turn movement at median openings of four lane-
divided arterials. Florida Department of Transportation
(FDOT) sponsored a lot of projects to develop a model to
estimate delay and travel time for two alternatives: right turn
followed by U-turn (RTUT) and direct left turn (DLT)
[55-57]. Zhou et al. [58] assessed the operational effects of
an RTUT and a DLT. They used field data from eight sites in
the Tampa and Clearwater areas of Florida to develop delay
and travel-time models. They found that vehicles making a
DLT experienced longer delay and travel times than those
that made an RTUT.

Zhou et al. [59] introduced the regression model for
predicting the average weaving speed in weaving segments at
RTUT. Also, they developed a theoretical equation to de-
termine the optimal location of median openings on
roadways. Liu et al. [60] analyzed the operational effects of
RTUT as an alternative to DLT. They collected the field data
from 34 sites in central Florida. They developed a binary logit
model to the number of drivers who would like to make an
RTUT instead of a DLT under different roadway geometric
and traffic conditions.

Zhao et al. [61] proposed a lane-based optimization
model for the integrated design of the MUT and formulated
a multiobjective mixed-integer nonlinear programming
problem to optimize the intersection design types, the layout
of the intersection, and the signal timings simultaneously.
They conducted a numerical analysis to evaluate the per-
formance of the proposed design under various demand and
layout scenarios, but they did not calibrate their method by
empirical data. Dash et al. [62] used four different methods
to estimate the critical gap of U-turns: modified Raff,
maximum likelihood, macroscopic probability equilibrium,
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and merging behaviour approach by collecting data at seven
median openings in India.

The Highway Capacity Manual [53] provides a meth-
odology for estimating the capacity and level of service for
MUT intersection. However, HCM [53] neglected the
weaving section when designing the MUT intersection.

2.3. UMUT Intersection. Shahi and Choupani [15] con-
ducted traffic operation analysis of the UMUT design by the
field data. They developed a regression model to calculate the
travel time of the minor street through traffic, travel time of
the left-turn traffic, speed of the nonweaving flows, weaving
time, and speed of the U-turning vehicles. The developed
models have been compared with the RTUT models which
have been developed by FDOT [55-57]. They found that
FDOT models always overestimate travel times.

3. Basic Concept

3.1. Mega Elliptical Roundabout Characteristics. As shown in
Figure 1, the mega elliptical roundabout has two essential
features.

The first feature is the central island that is elongated on
the major highway for providing enough length for weaving
sections. Moreover, the form of this island is an ellipse that
has an ellipse element (b) for providing a suitable basic
ellipse roadway radius in order to be appropriate for heavy
vehicles that make a U-turn on basic ellipse roadway.

The second feature is the ellipse roadway, which has
three parts: the basic ellipse roadway, weaving sections, and
nonweaving sections [5].

3.2. The Operation Analysis of Mega Elliptical Roundabout.
The mega elliptical roundabout reroutes both of the through
and left-turning traffic coming from a minor highway
through right turns in order to merge them with the traffic of
a major highway on the weaving sections, followed by
U-turn on a basic ellipse roadway. Left-turning traffic for a
major highway must also make a U-turn on a basic ellipse
roadway then a right turn on a minor highway. The conflict
between merging the through traffic for a major highway
and the traffic from cross-highway can be treated by putting
a “Yield” sign on a minor highway and basic ellipse roadway.
It gives the priority for a major highway through traffic, as
shown in Figure 1.

3.3. The Weaving Pattern on Mega Elliptical Roundabout.
To analyze mega elliptical roundabout intersection, it first
needs to be broken down into four parts as shown in Fig-
ure 2. Second, it needs to convert the intersection turning
movements into the weaving volumes. As shown in Figure 2
the volumes are V; to V5.

Two weaving patterns are defined in the HCM [53].
According to HCM [53], in two-sided weaving sections, only
the movement from ramp to ramp is considered a weaving
movement, where the movement of the major highway does

not need any lane change, while the minor highway
movement needs more than one lane change.

The vehicle movement weaving pattern on mega ellip-
tical roundabout is like a two-sided weaving section con-
figuration where the right hand on-ramp is followed by the
left hand off-ramp or vice versa. As shown in Figure 3, basic
ellipse roadway-to-minor-highway vehicles must cross all
the lanes in order to execute their desired maneuver, while
the major highway vehicles do not need any lane change.
Note that the movement in part 1 is like that in part 3. Also,
as shown in Figure 4, the minor highway to basic ellipse
roadway vehicles must cross all the lanes in order to execute
their desired maneuver, while the nonweaving vehicles do
not need any lane change. Note that the movement in part 2
is like that in part 4.

There are few studies concerning the operation of two-
sided weaving sections. Lertworawanich and Elefteriadou
[63-65] proposed a methodology for calculating the capacity
for all weaving section types based on linear programing
techniques and gap acceptance theory. They compared this
methodology with the HCM [66] weaving sections model
and field capacity. They found that this methodology pro-
vides capacity estimates nearer to the observed capacity
values in the field than HCM [66, 67].

Also, in two papers by Zhang and Rakha [68, 69] and a
doctoral thesis by Yihua Zhang, analytical models for cal-
culating the capacity of all weaving section types were de-
veloped using simulated data collected by INTEGRATION
software. They validated the analytical models against field
observations gathered in Toronto. They found a high con-
sistency between analytical models and field. Also, they found
that the proposed analytical models calculate the capacity for
weaving sections within 12% of the simulated data, while
HCM [66] procedures exhibit errors within 114%.

However, in this research, we have decided to use the gap
acceptance model proposed by HCM [53] with some
modifications to suit estimation of the weaving section
capacity for mega elliptical roundabout for the following
reasons:

(1) Asdescribed in Section 2, most researchers estimated
roundabout capacity in terms of entry capacity.
However, the mega elliptical roundabout differs
from a roundabout in traffic operations [5].

(2) Researchers who analyzed the roundabout from the
viewpoint of the weaving section did not calibrate
their method. Also, the weaving pattern on mega
elliptical roundabout is like a two-sided weaving
section, while the weaving pattern on the round-
about is like a one-side weaving section.

(3) Researchers who analyzed the MUT and UMUT
intersections from the viewpoint of the weaving
section did not estimate the weaving section
capacity.

(4) HCM [53] neglected the weaving section when de-
signing the roundabout and MUT intersection.

(5) Mega elliptical roundabout is new idea for inter-
sections, so no field data are available at present.
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(6) HCM is an international reference manual super-
vised by an independent committee of experts in this
field and therefore is often the basis for policy de-
cisions when choosing an intersection.

4. Methodology

This section aims to propose a methodology for calculating
the capacity of mega elliptical roundabout in addition to the
level of service by gap acceptance theory. The general

methodology for analyzing mega elliptical roundabout in-
tersection operations is shown in the flowchart in Figure 5.
These methodology steps are described in detail as follows:

Step 1: adjust volume.

HCM [53] proposed equation (1) to convert demand
volumes to flow rates at equivalent ideal conditions.

V.

1
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FIGURE 3: The weaving pattern for weaving section on mega el-
liptical roundabout (part 1). Viya m = traffic volume in outer lane
from major highway to minor highway (veh/h)-V3; Vs N = traffic
volume from major highway to nonweaving section (veh/h)-
V,+ Vi; Vi = conflicting volume from basic ellipse roadway to
minor highway (veh/h)-Vi; + Vy; Vpyn=traffic volume in inner
lane from basic ellipse roadway to nonweaving section (veh/h)-V;;
Vi = total weaving volume in the weaving section (veh/h)-Vg 3
Vaw = total nonweaving volume in the weaving section (veh/h)-
Vmami+ Vyvan+ Ve

Minor
highway

VMI.MA

Ve+ V,+V, VNma .
Vs

VN,B

Major
highway

FIGURE 4: The weaving pattern for weaving section on mega el-
liptical roundabout (part 2). Viyyma = traffic volume in outer lane
from minor highway to major highway (veh/h)-Vy;
Vs = conflicting traffic volume from minor highway to basic
ellipse roadway (veh/h)-Vg+ V;; Vima =traffic volume from
nonweaving section to major highway (veh/h)-V,+ Vig;
Vg =traffic volume in inner lane from nonweaving section to
basic ellipse roadway (veh/h)-V7y; Viy = total weaving volume in the
weaving section (veh/h)-Vy g; Vnw = total nonweaving volume in
the weaving section (veh/h)-Vyma + Vama + Vs

where v is the peak 15-minute flow rate in an hour (pc/
h), V'is the hourly volume (veh/h), PHF is the peak-hour
factor, and fyy is the heavy vehicle adjustment factor
estimated in

1

Fwv =15, (B = 1)

(2)

Adjust volume.

v

Determine the number of lanes for mega elliptical
roundabout.
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v

Determine the weaving sections length for mega
elliptical roundabout.
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Determine the weaving section capacity for mega
elliptical roundabout.
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Determine lane-changing rates.
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Determine LOS for weaving sections on mega
elliptical roundabout.

FIGURE 5: Methodology flowchart.

where Py is the proportion of buses and trucks in a
traffic stream and Er is passenger car equivalents for
buses and trucks. By following HCM [53], the Ervalue
is assumed as 1.5, which is the proposed value for
intersections in the level area.

Step 2: determine the number of lanes for mega el-
liptical roundabout.

Mohamed et al. [5] found that the best scenarios of
mega elliptical roundabout are the following: when the
number of lanes of weaving section (Wyy) equals the
number of lanes of the nonweaving section (Wyyw) and
also equals the number of lanes of major highway plus
one lane.

Wyy = Wyw =number of lanes of major highway +1
Moreover, the number of lanes of basic ellipse roadway
(Wp) equals the number of lanes of minor highway.
Wy =number of lanes of minor highway

where Wiy is the number of lanes of weaving section,
Whw is the number of lanes of the nonweaving section,
and Wy is the number of lanes of basic ellipse roadway,
as shown in Figure 2.

Step 3: determine the weaving sections length for mega
elliptical roundabout.

HCM [53] defined the weaving section length (short
length) as the distance between the end points of any
barrier markings that prohibit or discourage lane



changing. Consequently, several geometric design
scenarios for mega elliptical roundabout intersection
were drawn using AutoCAD software to determine the
relationship between the weaving section length (Lyy)
and ellipse elements (a) and (b), as described in Section
5. The following is a regression equation that can es-
timate the length of weaving section based upon ellipse
elements (a) and (b).

If b=0.5a
Ly =0.868a—-7.271. (3)

If b=0.75a

Ly = 0.721a + 12.528, (4)

where a is ellipse element (ft), b is ellipse element (ft),
and Lyy is the weaving section length for mega elliptical
roundabout intersection (ft), as shown in Figure 2.
Step 4: determine weaving section capacity.

The HCM [53] proposed equation (5) to estimate the
capacity. It is important to mention that the Nyyp term
in the equation of HCM [53] has been deleted because it
equals zero for two-sided weaving sections.

C =[Cy - [438.2 (1 + VR)"®] +(0.0765  Lyy)]

* Wy * fry,

(5)

where C is the capacity for weaving section (veh/h/In),
Cy is the capacity for major highway under ideal
conditions and free-flow speed (pc/h/In), and VR is the
weaving ratio. It is the ratio of the weaving flow rate to
the total flow rate in weaving section (pc/h) estimated
in

VR = _Vw
- (vw + Vi)’ ©

where vy, is the total weaving flow rate (pc/h) and vy
is the total nonweaving flow rate in weaving section

(pc/h).
Step 5: determine lane-changing rates.

Lane changes fall into three different categories: (1)
Lane-changes which must be made by the weaving
vehicles to complete a weaving maneuver successfully
happen when the weaving vehicles leave weaving
section on the lane nearest to their entry point and
enter weaving section on the lane nearest to their
desired destination. (2) Additional lane changes which
may be made by the weaving vehicles happen when
weaving vehicles enter weaving section on the lane next
to the lane nearest to their desired destination or these
vehicles leave on the lane next to the lane nearest to
their entry point. These lane changes are based upon
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driver choices because these are optional. (3) Lane
changes which may be made by nonweaving vehicles in
weaving section are generally made for avoiding
weaving turbulence. These lane changes are based upon
driver choices because these are always optional [67].

As shown in Figure 3, the basic ellipse roadway to
minor highway vehicles must make one required lane
change, assuming they enter the weaving section on the
right lane of basic ellipse roadway. Thus, LCpy;=1. As
shown in Figure 4, the minor highway to basic ellipse
roadway vehicles must also make one required lane
change, assuming they enter the weaving section on the
left lane of minor highway. Thus, LCy;p =1. The fol-
lowing lane-changing values can be computed from
equations (7) and (8)

For part 1 or part 3

LCyin = LCpy * VB mr- (7)
For part 2 or part 4

LCyix = LCyi * Varps (8)

where LCpy is the minimum number of the lane
changes (Ic/h), LCpy is the minimum number of the
required lane changes for basic ellipse roadway to
minor highway (lc/h), vy is the flow rate of basic
ellipse roadway to minor highway (pc/hr), LCyp is the
minimum number of the required lane changes for
minor highway to basic ellipse roadway, and vy  is the
flow rate of minor highway to basic ellipse roadway (pc/
hr).

The total number of the lane changes made within the
weaving section can be predicted by expanding the
value of LCypy to include the number of optional lane
changes which are made by both the weaving vehicles
and the nonweaving vehicles. The total number of the
lane changes which are made by weaving vehicles is
calculated as

LCy = LCyy +0.39 [ (Ly — 300)**W7, (1 +ID)*®],
9)

where LCyy is the total number of lane changes made by
weaving vehicles (pc/h) and ID is interchange density
(int/mi).

The total number of the lane changes which are made
by the nonweaving vehicles is calculated as follows.

Firstly, estimate the index

(Ly * ID # vy )
10000 ’

INDEX = (10)

Then, select the equation from Table 1 based upon the
index value.
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TaBLE 1: The equations for estimating the number of nonweaving lane changes [53].

Index Equation for LCyw

<1300 LCyw = (0.206vyy) + (0.542 Lyy) — (192.6 W)
>1300 and <1950 LCyw = Wy + [(LCxws — LCxw1) * [INDEX — 1300/650]]
>1950 LCyw, = 2135 + 0.233 (vyyy — 2000)

Here, LCyyw is the total number of the lane changes
which are made by the nonweaving vehicles (pc/h). The
value of LCyw must be equal to or greater than zero.

The total number of lane changes occurring in weaving
section (LC,y) is estimated as

LCu; = LCy + LCyy- (11)

Step 6: determine the average speeds for nonweaving
and weaving vehicles.

The average speeds for nonweaving and weaving ve-
hicles are estimated by the following regression-based
equations proposed by HCM [53]:

(FFS - 15)
Sy=15+] > 2
W +[ (1+WI) ]
0.0048
S = FFS = (0.0072 % LCyx ) —(&>
WW

0.789
LC
WI = 0.226(—ALL> ,
LW

. ( Y + Vaw )
(vw/sw) + (Vaw/Snw)

(12)

where Sy is the average speed of the weaving vehicles
(mi/h), FES is the free-flow speed of the major highway
(mi/h), WI is the weaving intensity factor of the
weaving speed, Sxw is the average speed of the non-
weaving vehicles (mi/h), v is the total nonweaving and
weaving flow rate (pc/h), and S is the average speed of
all the vehicles in weaving sections (mi/h).

Step 7: determine the radius of basic ellipse roadway,
entry radius, exit radius, and ellipse elements (a and b).
AASHTO [70] proposed equation (13) to estimate the

radius of basic ellipse roadway, entry radius, and exit
radius.

A
R= 872, (13)
15(f +0.01e)
where R is radius of basic ellipse roadway which is equal
to the entry radius as well the exit radius (ft), as shown
in Figure 2. f is side friction factor, and e is rate of basic
ellipse roadway superelevation.

As described in Section 5, the ellipse elements (a) and
(b) can be estimated based upon the radius of basic
ellipse roadway (R) by the following regression

equations.
If b=0.5a

a=3.954R - 27.427. (14)
If b=0.75a

a = 1778 R — 8.846. (15)

Step 8: determine LOS for weaving sections on mega
elliptical roundabout.

The HCM [53] proposed equation (16) to estimate the
density from the average speed.

D :(%) (16)

where D is average density within the weaving section (pc/
mi/ln) and v is the total nonweaving and weaving flow rate
(pc/h). From Table 2, we can determine the LOS.

5. Built-Up Models

By using AutoCAD software, several geometric design
scenarios for mega elliptical roundabout intersection were
drawn. The linear regression analysis was also used to de-
termine the following relationships:

The relationship between the weaving section length
(Lw) and the ellipse elements (a) and (b)—equations
(3) and (4)

The relationship between the radius of basic ellipse
roadway (Rp.sic) and the ellipse elements (a) and (b)—
equations (14) and (15)

The relationship between the length of basic ellipse
roadway (Lg) and the ellipse elements (a) and (b)—
equations (17) and (18)

The mega elliptical roundabout provides appropriate
storage lanes for vehicles making a U-turns by providing a
sufficient length of basic ellipse roadway. The length of basic
ellipse roadway (Lg) can be estimated based upon the ellipse
elements (a) and (b) by the following regression equations:

If b=0.5q,
Ly =0.235a —29.365. (17)

If b=0.75a,



TaBLE 2: Level of service for weaving sections on mega elliptical
roundabout intersection [53].

Level of service Density range (pc/mi/In)

0-12
>12-24
>24-32
>32-36
>36-40

>40

mmg O W

Ly =0.524a - 44.016, (18)

where Ly is the length of basic ellipse roadway (ft), as shown
in Figure 2.

The regression models were developed using AutoCAD
data with the following assumptions and characteristics:

The entry radius of major highway (Reqey) equals the
entry radius of minor highway, as shown in Figure 2

The entry radius (Renyy) equals the radius of basic
ellipse roadway (Rp,sic) and also equals the radius of exit
(Rexit) whether for the minor or major highway, as
shown in Figure 2

Lane width equals 12.00 ft

Median width of the major and minor highway equals
32.80 ft

The minimum value for an ellipse element (a) in all
scenarios equals 328 ft

The maximum value for an ellipse element (a) in
scenarios when (b=0.5a) equals 4920 ft

The maximum value for an ellipse element (a) in
scenarios when (b=0.75a) equals 2130 ft

The intersection is four-legged

The intersection is a six-lane-divided highway with a
four-lane-divided highway

6. Statistical Analysis of Built-Up Models

The regression models were developed using the data that
were compiled by the AutoCAD software, and a linear re-
gression method was accomplished using SPSS software.
Regression results of the relationship between the weaving
section length (L) and ellipse element (a) and also of the
relationship between the length of basic ellipse roadway (L)
and ellipse element (a) when (b=0.5a) and also when
(b=0.75a) are shown in Table 3. Moreover, regression re-
sults of the relationship between the ellipse element (a) and
the radius of basic ellipse roadway (R) when (b= 0.5a) and
also when (b =0.75a) are shown in Table 4.

R-square value of all linear models is very high (99.9%),
which means that 99.9% of the variation independent var-
iables can be explained by these models. Also, for all models,
the value of the standard error of the estimate (positive
square root of variance of the errors), which typically
measures the difference between dependent variables value
with the “true” value, is relatively small.
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Similar to the standard error of the estimate, the stan-
dard error presents the standard error of the coefficient
estimates. Essentially, they measure how these coeflicients
vary from sample to sample. The models are more reliable as
the standard error decreases. The t-statistic is the coefficient
divided by its standard error. This is based on the following
assumption: if the standard errors of the estimate (pop-
ulation errors) are normally distributed, then it can be
shown that the sample estimates for coefficients of the model
follow a t-distribution [71]. The t-statistic represents the size
of the standard error relative to the estimated coefficient;
therefore, the model quality improves as the absolute value
of t-statistic increases. For those reasons, we can conclude
that these models are adequate for predicting the dependent
variables.

7. Model Validation and Analysis

7.1. Case Description. To validate the thoroughness of the
proposed methodology, VISSIM simulations were con-
ducted. Mega elliptical roundabout intersection which was
analyzed was the intersection of the six-lane-divided
highway with the four-lane-divided highway, where the
intersection was four-legged. The study used hypothetical
values of traffic volumes. Traffic volumes of the major
highway approaches were varied from 1000 to 2500 veh/h/
approach with 500veh/h/approach increments (ie., 4
volume levels). Also, traffic volumes of the minor highway
were varied from 500 to 1000veh/h/approach with
500 veh/h/approach increments (i.e., 2 volume levels). The
left-turn volume percentage, the right-turn volume per-
centage, and the proportion of trucks and buses were
considered equal to 20%. The major highway speed was
considered 62mi/h, the peak-hour factor (PHF) equals
0.95, the basic ellipse roadway superelevation equals 2%,
and the ellipse element (b) equals 0.75 ellipse element (a).
In total, seven scenarios of traffic volume combination for
the mega elliptical roundabout design were analyzed, in-
cluding different levels of the major highway volume and
minor highway volume.

7.2. Methodology Validation. To test the accuracy of the
proposed methodology, the simulation models for each
scenario listed above were built with the VISSIM software
package. The parameters were obtained based on the ob-
servation of the real two-sided weaving sections in Harbin to
ensure its rationality, and the parameters of the VISSIM
simulation model must be modified accordingly. Seven
simulations of different random seeds were conducted, and
the final results were the average values over seven simu-
lations. The results of the estimation models and simulations
for density and average speed are given in Table 5 when the
traffic volume for the minor highway equals 500 veh/h.
Moreover, these results are given in Table 6 when the traffic
volume for the minor highway equals 1000 veh/h.

For all traffic volume cases on the major highway and
minor highway, there was no significant difference in
methodology results and simulation for estimating average
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TABLE 3: Regression results of the relationship between Lyy, Lg, a, and b.
Independent variables
Equation number Dependent variables P Std. error of the estimate R?
Constant a (ft)
If b=0.5a
Coefficients -7.271 0.868
3 Lw Standard error 2.658 0.001 5.027 1.00
t-statistics -2.735 849.058
Coeflicients -29.365 0.235
20 Ly Standard error 5.219 0.002 9.869 0.999
t-statistics -5.627 117.287
If b=0.75a
Coefficients 12.528 0.721
4 Lw Standard error 2.357 0.002 3.321 1.00
t-statistics 5.315 382.886
Coeflicients -44.016 0.524
21 Ly Standard error 4.736 0.004 6.673 1.00
t-statistics -9.294 138.455
TABLE 4: Regression results of the relationship between a, R, and b.
Independent variables
Equation number Dependent variables P Std. error of the Estimate R’
Constant R (ft)
If b=0.5a
Coefficients -27.427 3.954
17 a Standard error 3.715 0.006 6.968 1.00
t-statistics —-7.383 705.367
If b=0.75a
Coefficients -8.846 1.778
18 a Standard error 1.128 0.002 1.580 1.00
t-statistics -7.84 1115.688

TaBLE 5: Results of methodology, simulations, and relative error when the traffic volume for the minor highway equals 500 veh/h.

Traffic volume for
the major highway

Part 1 or part 3
Average speed (mi/h) Density (pc/mi/ln) LOS Average speed (mi/h) Density (pc/mi/ln) LOS

Part 2 or part 4

VISSIM 52.85 7.6 A 52.7 6.7 A

1000 Methodology 55.2 8.4 A 56.2 7.2 A
Relative error 4.4% 10.5% 6.6% 7.4%

VISSIM 51.9 10.7 A 51.88 8.7 A

1500 Methodology 53.9 11.8 A 55.8 9.3 A
Relative error 3.8% 10.28% 7.5% 6.9%

VISSIM 49.5 14.2 B 50.2 11.03 A

2000 Methodology 52.4 15.5 B 55.4 11.5 A
Relative error 5.8% 9.1% 10.3% 4.2%

VISSIM 43.7 19.6 B 45.9 14.2 B

2500 Methodology 51 19.3 B 54.9 13.7 B
Relative error 16.7% -1.5% 19.6% -3.5%

speed as well as density. The relative error range was [1.5%,
19.6%] for the average speed, while the relative error range
was [-3.5%, 13.4%] for the density. The main cause of the
existing relative error was the random VISSIM simulation
results which led to some deviations from the average speed
and density in the estimated models.

8. Sensitivity Analysis

8.1. Impact of Trucks Proportion on the Value of Ellipse Element
(a), Density, and Average Speed. To study the influence of
different ratios of trucks on geometric design and traffic
operation performance for mega elliptical roundabout, the
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TaBLE 6: Results of methodology, simulations, and relative error when the traffic volume for the minor highway equals 1000 veh/h.

Traffic volume for
the major highway

Part 1 or part 3

Part 2 or part 4

Average speed (mi/h) Density (pc/mi/ln) LOS Average speed (mi/h) Density (pc/mi/ln) LOS

VISSIM 52 9.7 A 49.6 10.2 A

1000 Methodology 52.8 11 A 52.8 11 A
Relative error 1.5% 13.4% 6.4% 7.8%

VISSIM 49.8 13.2 B 449 13.57 B

1500 Methodology 51.4 14.6 B 523 13.3 B
Relative error 3.2% 10.6% 16.4% -1.9%

VISSIM 46.6 16.75 B 44.3 16.2 B

2000 Methodology 50 18.5 B 51.8 15.7 B
Relative error 7.3% 10.4% 16.9% -3%

proposed methodology was used to predict the value of an
ellipse element (a), density, and average speed at different
ratios of trucks. The used scenarios are the same scenarios
described in Section 7.1, but with different values of truck
ratios which are 2, 5, 10, 15, and 20%.

The relationships between major highway traffic volume
and the value of an ellipse element (a), density, and average
speed for vehicles on the weaving sections for mega elliptical
roundabout at different ratios of trucks when minor highway
traffic volume equals 500 veh/h and 1000 veh/h are presented
in Figures 6 and 7, respectively. The figures show that the
average speed for vehicles decreases with the increase in truck
ratios, but the differences are not significant. The decrease in
average speed may be because of traffic interaction that occurs
due to increasing the truck proportion, while the fact that the
differences are not significant may be because mega elliptical
roundabout is not conventional intersection. It gives priority
to the vehicles entering from the major highway. Therefore,
the movement on the weaving sections of mega elliptical
roundabout intersection is like the movement on the two-
sided weaving sections of any highway.

Moreover, the density increases with the increase in
truck ratios, but the differences are not significant. This is
most likely because the average speed decreases with the
increase in truck ratios, thereby increasing the density, as
described in equation (16).

In addition, the value of an ellipse element (a) decreases
with the increase in truck ratios, but the differences are not
significant. This is most likely because the average speed
decreases with the increase in truck ratios that can lead to
decreasing the value of radius of basic ellipse roadway, as
described in equation (13), thereby decreasing the ellipse
element (a), as described in equations (14) and (15).

Based on the above analysis, the influence of the different
ratios of trucks on geometric design and traffic operation
performance for mega elliptical roundabout is not significant.

8.2. Impact of Major Highway Speed on the Value of Ellipse
Element (a), Density, and Average Speed. To study the in-
fluence of different values of a major highway speed on
geometric design and traffic operation performance for
mega elliptical roundabout, the proposed methodology was
used to predict the value of an ellipse element (a), density,
and average speed at different values of a major highway

speed. The used scenarios are the same scenarios described
in Section 7.1, but with different values of a major highway
speed which were 30, 40, 45, 50, and 62 mi/h.

The relationships between major highway traffic volume
and the value of an ellipse element (a), density, and average
speed for vehicles on the weaving sections for mega elliptical
roundabout at different values of a major highway speed
when minor highway traffic volume is equal to 500 veh/h and
1000 veh/h are presented in Figures 8 and 9, respectively. The
figures show that the average speed for vehicles increases
with the increase in major highway speed, but the density
decreases. This is probably because mega elliptical round-
about gives priority to the vehicles entering from the major
highway. Therefore, the movement on the weaving sections
of mega elliptical roundabout is like the movement on the
two-sided weaving sections of any highway.

Also, the value of an ellipse element (a) increases with
the increase in major highway speed because the average
speed for vehicles increases, which can lead to increasing the
value of radius of basic ellipse roadway, thereby increasing
the ellipse element (a), as described in equations (13)-(15).
Moreover, the value of an ellipse element (a) has doubled
when the major highway speed increased from 30 mi/h to
40 mi/h, 40 mi/h to 50 mi/h, and 50 mi/hr to 62 mi/h. This is
probably because mega elliptical roundabout island has an
ellipse element (b) for providing a suitable radius for basic
ellipse roadway in order to be appropriate for heavy vehicles
that make a U-turn on basic ellipse roadway. This radius is
calculated based on the average speed for vehicles on
weaving sections from equation (13).

Furthermore, the average speed on part 2 or part 4 is
greater than the average speed on part 1 or part 3 for mega
elliptical roundabout in all scenarios. This is probably be-
cause total weaving volume on part 2 or part 4 is lower than
total weaving volume on part 1 or part 3, as shown in
Figures 3 and 4, thereby increasing the average speed. For
the same reason, the value of an ellipse element (a) is always
calculated according to the average speed on part 2 or part 4
from equations (14) and (15)

By analyzing Figure 8, it is possible to confirm the
following.

In the case of the value of major highway speed equal to
30 mi/hr, minor highway volume =500 veh/h, ellipse ele-
ment (a) =410 ft, and major highway volume < 1500 veh/h,
density is lower than 32 pc/mi/ln (level of service A-B-C).
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Also, in the case of the value of major highway speed equal to
40 mi/hr, minor highway volume =500 veh/h, ellipse ele-
ment (a) =771 ft, and major highway volume <2000 veh/h,
density is lower than 32 pc/mi/ln (level of service A-B-C).

By analyzing Figure 9, it is possible to confirm the
following.

In the case of the value of major highway speed equal to
30 mi/hr, minor highway volume = 1000 veh/h, ellipse ele-
ment (a) =410 ft, and major highway volume <1000 veh/h,
density is lower than 32 pc/mi/ln (level of service A-B-C).
Also, in the case of the value of major highway speed equal to
40 mi/hr, minor highway volume = 1000 veh/h, ellipse ele-
ment (a) =771 ft, and major highway volume < 1500 veh/h,
density is lower than 32 pc/mi/In (level of service A-B-C).

Based on the above analysis, in highways that have a
speed equal to 30 mi/hr, the suitable design of mega elliptical
roundabout is ellipse element (a) =410 ft and ellipse element
(b) =308 ft. This is suitable in the following cases: the values

of a major highway volume < 1500 veh/h and minor highway
volume < 500 veh/h; or the values of a major highway vol-
ume < 1000 veh/h and minor highway volume < 1000 veh/h.
Also, in highways that have a speed equal to 40 mi/hr, the
suitable design of mega elliptical roundabout is ellipse el-
ement (a)=771ft and ellipse element (b)=578ft. This is
suitable the following cases: the values of a major highway
volume <2000 veh/h and minor highway volume = 500 veh/
h; or the values of a major highway volume < 1500 veh/h and
minor highway volume =1000veh/h. Moreover, in high-
ways that have a speed equal to 45, 50 and 62 mi/hr, the
suitable design of mega elliptical roundabout is ellipse el-
ement (b)=0.75 ellipse element (a), and ellipse element
(a) = 1053, 1398, and 2493 ft, respectively. This is suitable in
the following cases: the values of a major highway vol-
ume < 2500 veh/h and minor highway volume <500 veh/h;
or the values of a major highway volume <2000 veh/h and
minor highway volume < 1000 veh/h.
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9. Conclusions

In this paper, the performance of traffic operations was
analyzed for mega elliptical roundabout intersection.
Moreover, this paper proposed a methodology for esti-
mating the capacity and level of service for mega elliptical
roundabout intersections by gap acceptance theory. Fur-
thermore, explicit VISSIM simulations were performed after
calibrating them with field data from real two-sided weaving
sections in Harbin to verify the accuracy of the proposed
methodology. In addition, regression analysis was imple-
mented by SPSS software to obtain the relationships of el-
lipse elements with the radius of basic ellipse roadway, the
length of basic ellipse roadway, and the length of weaving
section. Regression models were developed using the data
that were compiled by the AutoCAD software for several
geometric design scenarios for mega elliptical roundabout
intersection. Also, the influence of different values of truck
ratios and also different values of a major highway speed on
geometric design and traffic operation performance for
mega elliptical roundabout was studied. Based on the re-
gression analysis, methodology validation, and sensitivity
analysis, the following can be concluded:

(1) In mega elliptical roundabout intersection, the
weaving sections are the key to the efficiency of the
intersection as a whole

(2) The models built up in this study are adequate to
predict the dependent variables

(3) Estimation methodology of the average speed and
the density on the weaving sections of mega elliptical
roundabout was confirmed to have a reasonable
accuracy

(4) The influence of the different ratios of trucks on
geometric design and traffic operation performance
for mega elliptical roundabout is not significant,
while the influence of the different ratios of a major
highway speed is significant

In conclusion, it is clear that this study analyzed the
performance of traffic operations and suggested a method for
designing mega elliptical roundabout intersections to assist
practitioners in determining the appropriate geometric de-
sign. Based on the previous studies, the traffic operation and
safety are the main measures for assessing the intersections
[72-76]. Therefore, further research will be needed to assess
the safety performance of mega elliptical roundabout. We
plan to use a surrogate safety assessment model developed by
FHWA to compare safety aspects of the proposed intersection
with those of other alternative intersections.
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The problem of choosing the optimal parameters of service by carriers in public transport passenger flows is considered. This
problem is modeled as a two-stage game. At the first stage, the players (carriers) select the parameters of their service (the number
and schedule of vehicles, etc.). At the second stage, the players announce the prices of service and the consumers choose an
appropriate service. The Wardrop equilibrium is applied to the competition model with rational consumers preferring the carriers
with minimum cost, where the cost of service includes the price and also the expected trip time. The equilibrium in the pricing
game is found and the optimal parameters of service as a solution to a noncooperative game are determined. Some results of

computer simulations are presented.

1. Introduction

Trafhic control is the subject of many studies. Since the 1950s,
models with different optimality principles and corre-
sponding numerical methods have been used in this area of
research. In 1952, Wardrop hypothesized that any transport
system reaches equilibrium after a certain period of time and
also formulated two principles of an equilibrium distribu-
tion of traffic flows [1]. In accordance with the Wardrop
principles, the trip time on all existing routes is the same for
all road users and less than the trip time of any road user
deviating from his route; moreover, the average trip time is
minimized. At present, the concept of Wardrop equilibrium
is the main tool in the theory of transport flows [2, 3].

In this paper, we investigate the problem of equilibrium
traffic flows for passengers of urban public transport, which
includes buses, trolleybuses, trams, subway, taxis, and bicycles.

In the Wardrop approach, the cost of a transport service for
users (passengers) is the trip time when using a corresponding
carrier. This principle can be generalized by considering the
costs composed of the trip time and also the total costs of road

users on all routes. Similar to the Wardrop model, users are
assumed to be rational agents who compare the costs from
using a particular service and choose a service with the lowest
costs. The cost function may include the price of a service, the
average trip time, risks, and other relevant factors.

As an illustration to this problem, the choice of routes
around the city of Qingdao can be considered, see Figure 1.
At the end of lectures, students of Qingdao University (point
A) move to the Qingdao railway station (point B). They can
choose one of the three bus routes shown in the diagram. All
buses have different schedules and different ticket prices.
Being guided by these parameters, students are distributing
themselves among the routes in accordance with the
Wardrop principle or its generalization.

In [4], this generalization was made for the cost function
that includes the price of service plus the trip time spent.
Equations for calculating the equilibrium in this model were
obtained using the Karush-Kuhn-Tucker theorem.

The behavior of users was taken into account in a
number of other research works as well. For example, in [5],
part of the users was considered to be oblivious; while the
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FiGure 1: Routes in city of Qingdao.

rational users follow a strategy that minimizes their indi-
vidual cost, an oblivious user prefers cheapest routes.

It is also important to consider the case in which users
can choose a free mode of transportation, such as bicycles or
motorcycles. Now this way of transportation is given a lot of
attention [6]. In addition, many local authorities subsidize
public transport, and then tickets for some municipal
transport become much cheaper than for commercial
transport. This can greatly affect the equilibrium in the
distribution of passenger flows.

Note that the type of latency functions for public
transport can be selected in different ways. Some publica-
tions followed this approach within the framework of
queueing theory, see [7-11].

For a transport flow of intensity A, the cited authors
defined the latency as the average service time 1/ (u — 1), i.e.,
as the expected sojourn time of a user in a queueing system
M/M/n. In paper [11], the Wardrop principle was applied to
networks of general topology and the BPR (Bureau of Public
Road) latency functions [12].

The efficiency of a city traffic control system can be
evaluated through the price of anarchy, initially introduced
by Koutsopias and Papadimitriou [13]. This is the ratio of the
social costs of the traffic system in the competitive and
cooperative cases. The price of anarchy was evaluated for
different classes of latency functions. Roughgarden showed
that the price of anarchy is exactly 4/3 in the case of linear
latency functions [11]. For the polynomial latency functions
of maximum degree d, Roughgarden [11] established that
the price of anarchy is (d + 1)""4/((d + 1)""V"¥ - d). The
price of anarchy was also studied for latency functions that
involve a delay function of M/M/1 queues [8, 11, 14]. These
results were obtained for the Wardrop model, where the

consumers minimize the expected trip time. For a gener-
alized case in which the costs include the trip time and price
of service, in paper [15] it was demonstrated that the price of
anarchy can be infinite. The influence of oblivious users on
the price of anarchy was analyzed in [5].

In addition to the problem of finding equilibrium flows
in a transport system, for each carrier, it is important to
determine the optimal parameters of passenger service, such
as schedule, the number, type and size of vehicles, and the
time interval and speed of vehicles.

In the following, we formulate this problem as a two-stage
game-theoretic model. At the first stage, the players choose
the parameters of their service. At the second stage, the
players announce the prices of service and the consumers
select an appropriate service. We consider rational consumers
for whom the cost of service includes the price and trip time.
The Wardrop equilibrium is applied to determine the optimal
flow in the network. Since the payoffs of the players are
known, we return to the first stage and find the optimal
parameters of service as the equilibrium in the new game.

This game can be considered as a variant of the mul-
tileader multifollower Stackelberg game [16, 17]. In such
games, multiple Stackelberg leaders compete in a nonco-
operative game following which followers play a nonco-
operative game amongst themselves, taking the decisions of
leaders as fixed. Under this approach, each player in our
transportation game can be represented by two agents, a
leader, and a follower. The leading agent is responsible for
the service parameters, which may include the number of
transport units and schedule, and the follower is responsible
for the service prices.

The paper is organized in the following way. In Section 2,
we give a formalization of the two-stage transportation game
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with pricing. In Section 3, we construct equilibrium in the
two-player game on two parallel routes with the linear la-
tency function. In Section 4, we introduce an externality into
this model and calculate equilibrium in the two-stage game.
In Section 5, we find equilibrium for a transportation system
with a possible use of service free of charge. We analyze this
model for the latency function of the form M/M/1. In
Section 6, we outline further research.

2. Two-Stage Game

Consider a two-stage noncooperative nonzero-sum game of
n players, which is associated with a queueing system that
operates on a transportation network. Denote a trans-
portation n player game by I' = (N, G, {Z};cnp {H}ieny?
where N =1{l1,...,n} means the set of players (carrlers)
serving passengers on a graph G = (V, E) with a node set
V(|[V| = m) and an edge set E. For each player i, there exists a
set of routes Z; from a starting node v, € V to a destination
node v, €V served by player i Therefore, Z; =
{Ry: v, v, € V}, i=1,...,n Each route represents a path,
ie, a sequence of nodes connected by edges R, =
(V> V1> - - -» ¥;) so that the end of one edge is the beginning
of another edge (v, v 1),..., (v, v) € E.

We assume that the passenger flows over this graph are
Poisson processes of some intensity. We introduce the
matrix of flow intensities {A,,} from node v, to node v, for
different s,t =1,...,m

The game is organized as follows. At the first stage, the
players determine the parameters of service on each route,
such as schedule, the number and size of vehicles, and the
time interval and speed of vehicles. Denote these control
parameters by q' for each playeri=1,...,n

Thus, at the first stage, each player i determines the

control parameters ¢',,R, € Z;, and a strategy profile
{¢'.i € N} is formed accordmgly.

At the second stage, each player i establishes prices p of

its service on each route R € Z,. As a result, a strategy profile

Z={pR,Re Z,i=1,...,n} is formed. We assume that
the passengers minimize their expected costs, which include
the price of service and also the expected sojourn time (trip
time). The expected trip time is a nondecreasing function of
traffic intensity that takes the form f, (1) on each route R,.
The latency function f, (A,) can be described by 1/ (u,, — A;)
(in accordance with queueing theory) [9-11] or can have the
linear t, (1 + a A /c,) or polynomial t (1 + ay, (A,/cy)’)
forms (the well-known BPR latency function) [11]. Here, t,
is the trip time on an unoccupied route; ¢, specifies the
capacity of a route; the constants a, and f, capture route-
specific features that may affect the impact of the flow-to-
capacity ratio on the trip time.

Denote by u(p,t) the costs of passengers who used a
service with a ticket price p and a trip time t. In papers
[4, 15], the costs were expressed as the ticket price plus the
expected trip time, and the customers were assumed to
choose the cheapest service. In this case, the incoming
Poisson flow of intensity A is decomposed into n subflows
of intensities A}, where Y| A}, = A,. Note that A}, =0 if the
set Z; of player i has no path R,.

The costs of a passenger preferring service i on some
route R, € Z; include the price of the service and also the
expected trip time:

”(Pit’Ait)- (1)

Following the Wardrop principle, we assume that the
equilibrium costs of all passengers on competing directions
coincide for all services. This feature allows evaluating the
intensities A}, for all servicesi = 1,...,n and routes R,. That
is,

“(Pit’Ait) = u(p;jt’/lzt)’ (2)

foralli, jsuch that R, € Z;and R, € Z,. If the price of some
service on a route turns out to be too high, the passenger flow
is distributed among other services, and the former service
does not compete. In other words, equilibrium prices should
be found among balanced prices.

The payoff of player i € N can be defined by its income
per unit time from serving all flows on all routes of this
player minus the operating costs, i.e.,

Hl<plz) = Z )Lstpst i( )’ ieN. (3)

(st):Ry€Z;

Thus, we have a two-stage game of n players. First, we fix
the parameters of service {q',i € N}. Next, we find a Nash
equilibrium in the pricing game with the payoff function (1),
where the cost C;(q') is excluded. Let {p;,i € N} be the
equilibrium in the pricing game. The prices and flows in the
equilibrium will depend on the service parameters g =
{4'.i € N}.

Then, we return to the first stage and find a Nash
equilibrium in the game with payoffs (1) among the strat-

egies g = {q',i € N}

3. Game of Two Players on Two Parallel
Routes with Linear Latency Function

Our analysis begins with the transportation game of two
carriers rendering their services between two points v, and
v,. We assume that carriers 1 and 2 (players 1 and 2) are
operating on two parallel routes.

Let the service time of player i have the linear BPR la-

tency function:
ti(l ; ai(ﬁ)) (4)
Ci

where i = 1, 2. For player i, the parameter t; corresponds to
the speed along a route, ¢; is a capacity of the route, and « is
some parameter. At the second stage, we fix the parameters
q' = (t;,c;, ) and ¢* = (5, ¢;, ,), but we will return to the
problem of their choice later.

The incoming flow is a Poisson process with an intensity
A. At the second stage, the players announce the prices of
service, p; and p,, respectively. The passengers select the
minimum-cost service. As a result, the incoming flow is
decomposed into two subflows with intensities A, and A,,
where A, + A, = L.



The costs of passengers include the price of service and
the expected trip time. We assume that the costs are a convex
combination of these criteria:

u(p,/\)=kp+(1—k)t(1+(x(%)>, (5)

where k: 0<k<1. Because the parameters k, a, and c are
constant, without loss of generality we may simplify the
expression of the costs:

u(p,)l):p+t<1+%). (6)

In accordance with the Wardrop principle, in an equi-
librium the intensities of subflows A; and A, satisfy the
balance equation:

Uy (P1> P A A) =y (P1s P2 Ao Ay)

0rp1+t1(1+£>:p2+t2(1+h>, (7)
¢y (%)

A +A, = A
From these equations, we obtain

1 = P2 —pitt —t +(6/6)A

b (ti/ey) + (ta/cy)
(8)
1 = pi—py+ty =ty +(t/c;))
) = .
(ti/ey) + (ta/cy)
Consider the pricing game with the payofts:
hy (P> p2) =P
(9)
hy (P1> 2) = AP
This is a convex game with the equilibrium:
L1 t t
Pl = 5(1‘2 -t +/\(é+ 25)),
(10)
.1 t, ot
P = g(ﬁ —t, +A<zé+é)).
The intensities of subflows in the equilibrium are
.t =t +A(t/e; +2t,/cy)
b 3(ty/cy +tylcy)
(11)
oo t, + A(2t,/c; +t,/c,)
=

3(t /ey +tylcy)

Now, we return to the first stage of the game. The
equilibrium payoffs (2) of players, H,(p},p;) and
H,(py,p5), depend on the parameters of service,
q, = (t;,¢;) and g, = (t,,¢,). Choosing specific values of
these parameters, we may adjust the costs. This leads to a
new game with the payoff functions:

Journal of Advanced Transportation

(t, —t, + A(ty/c, +2t5/c,))

H, (‘11"12) = 9(t1/cl N tz/Cz) -¢ (tl’cl)’
t—t, + A(2t/c; + ,1c,))*
H,(q,-9,) = t 29(t1/E1 it:/cz)z ) -Gy (ty00),
(12)

where C, and C, are the operating costs of players for these
parameters of service.

3.1. Computer Simulations. In this section, the results of
computer simulations in which we find the equilibrium
parameters (¢},t5) for the cost functions C, (¢,) = r,/t3 and
C, (t,) = r,/t3 are presented.

Table 1 shows the equilibrium parameters (t},t;) cal-
culated for the fixed values ¢; = ¢, = 1 and the costs
C,(t,) =r,/t3,Cy(t,) = r,/t3, where r; = 1 and r, = 1.5.

In this case, the capacities of both routes are equal and
the only difference concerns the costs. Since r, <r,, the
second service is more expensive.

Clearly, if the incoming flow is increasing, the prices and
the payofts in the equilibrium are also increasing. However,
there is some irregularity in the behavior of equilibrium
operating times (speeds) of services as follows. Under in-
creasing the incoming flow, the equilibrium operating time
t, of the first service is decreasing; however, the equilibrium
operating time ¢, of the second service is first decreasing and
then, after some instant, starts increasing.

The second service is more expensive; therefore, the
equilibrium payoff of the first service is higher than that of
the second service.

4. Game of Two Players with Externalities

Consider a transportation network composed of two parallel
routes with the linear latency functions:

F1) =t (1 +aA, + b)),

(13)
o) =t (1 +a,A, +bM)).

Two carriers (players) are serving consumers on the two
parallel routes with prices p;, and p,, respectively. The in-
coming flow A is decomposed into two subflows A, and A,,
AL+, = A, on routes 1 and 2, respectively. We assume that
the flow A is sufficiently large that all routes are used by the
consumers.

Here, the parameters a, and a, describe an internal effect
of the subflows A, and A, on routes 1 and 2, respectively. By
analogy, the parameters b, and b, describe an external effect
of the subflows A, and A, on routes 1 and 2.

We assume thata; > b;,b > i# j; the internal effect is more
important than the external one for traffic control. However,
the external parameters may significantly affect the traffic
delays and can be a goal of improvement in a transportation
system.

Following the same considerations as in Section 3, we
obtain the equilibrium prices and flows in the pricing game.
In accordance with the Wardrop principle, in equilibrium,
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TaBLE 1: Optimal parameters of services in equilibrium.

A t) t, pi P, A A HY  H;

1 1.772  2.656 2.656 1.772 0.6 04 1.274 0.496
11 1.732 2,610 2.841 1.934 0.654 0.445 1.526 0.642
1.2 1.696 2.582 3.039 2.094 0.710 0.489 1.811 0.800
1.3 1.660 2572 3.252 2.249 0.768 0.531 2.138 0.969
1.4 1.624 2.587 3.493 2402 0.829 0570 2.519 1.146
1.5 1.585 2.632 3.773 2.552 0.894 0.605 2.978 1.327

the intensities of the subflows A, and A, satisfy the balance
equation p, + f, (A) = p, + f, (A). This yields

1 Py Pyttt (agt, —bit)A
L=

A >
(14)
LTkt bt (at; = byty)A
2 A g
where A = a,t, + a,t, — bjt; — b,t,.
For the pricing game with the payoffs,
h b} = A’ b
1 (P1p2) =iy (15)
hy (p1> P2) = Mapas
we find equilibrium
« 1
P =3 (t, =ty +A(arty = bty + 2(ayt, - byty))),
(16)
« 1
Py =3 (t =ty +A(2(art; = byty) + agty — byty)).
The intensities of subflows in the equilibrium are
A =2
A
(17)
)
A = A

Now, consider the game at the first stage. The equilib-
rium payofts of the players, H, (p], p;) and H, (p}, p3),
depend on the parameters ¢, = (f,,a,,b;) and
q, = (ty,a,,b,) of the latency functions. Changing these
parameters, the players can improve the transportation
system. However, this procedure can be rather expensive.

Let the players be interested in reducing the external
influence on their own traffic. In other words, player 1 seeks
to minimize b, while player 2 seeks to minimize b,. In this
case, we arrive in the game with the payoff functions:

(ty =ty +A(ayt, —byty +2(agt, - b1t1)))2 _

H, (bl’bZ) = 9A (O (b1)>
t—t, + A(2(ayt; = bot,) + ayt, — byt))

HZ(bDbZ) — ( 1 2 ( ( 1%1 9A2 2) 2°2 1 1)) _CZ(bZ)’

(18)

where C,andC, the operating costs of players for these
parameters of service.

4.1. Computer Simulations. We assume that the latency
functions have form

1) =2(1+3 +b)A,),

(19)
f2(A) =3(1+21, +b,A).

Hence, the first route is faster than the second one for
small traffic, but the latency is increasing more intensively
for large traffic.

Then, the equilibrium prices are

P |
p=3 (1+1(18-3b, —4b,)),
(20)
.1
P =3 (-1+ (18 - 6b, — 2b)).

As aresult, the payoff functions in this game are given by

(1+A(18-3b, - 4b))*
9(12 - 2b, - 3b,)

Hl(bl’bz): O (tl’al’bl)’

(1+A(18 - 6b, — 2b,))?
9(12 - 2b, - 3b,)

H, (bpbz) = -G, (tz’az’bz)-

(21)

For example, if the cost functions have the form C; (b;) =
¢;/b;,i = 1,2 and the intensity of trafficis A = 1, we obtain the
following equilibrium values in this game, see Table 2.

Clearly, increasing the cost yields gives higher equilib-
rium values for b; and b,. At the same time, the prices of
both services (and hence the payoffs) are decreasing ac-
cordingly. Also, we may conclude that the parameters t;,i =
1,2 are more important for the payoffs than a;,i = 1, 2. Here,
t, <t, and a, >a,, but in equilibrium, we obtain H, > H,.

5. Transportation Game with Possible Use of
Service Free of Charge

Our analysis proceeds to the transportation game with
externality in which two carriers are rendering their services
between two points v; and v,, and, in addition, the con-
sumers can use a cheap transportation service with a fixed
price p,.

It can be a free-of-charge way of personal transportation,
e.g., biking (which matches the case p, = 0). Also, in some
cities, the local government is supporting public transport
and the price of bus tickets is sufficiently small.

A usual way of transportation in a city is presented in
Figure 2. A person who has to travel from a starting point v,
to a destination point v, can choose bike or public transport
(bus or taxi). Both means of public transport are faster than
bike but costly. Thus, the choice depends on personal
preferences.

We assume that the service time of player i has the
exponential probability density function with an intensity y;
on the route (v;,v,), i =1,2. These parameters form a
strategy profile (g',g?) of the players at the first stage of the
game.
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TaBLE 2: Optimal parameters of services in equilibrium.
=003 =006 ¢ =009 c,=012
b,=0.187 b, =0187 b, =0.187 b, =0.187
b,=0.157 b, =0223 b,=0273 b,=0316
o —o03 P1=5925 p =581 p =581l p, =5768
LEU 25227 p,=5096 p, =499 p, =4.910
H,=2988 H,=2974 H,=2964 H,=2.955
H,=2259 H,=2101 H,=1979 H,=1877
b, =0.265 b, =0265 b, =0265 b, =0.265
b,=0.157 b,=0222 b,=0273 b, =0315
c —00s P17 5823 p,=5758 p, =5707 p, =5.665
LZO® 5 25176 p,=5046 p,=4944 p, = 4859
H,=2856 H,=2842 H,=2831 H,=2822
H,=2444 H, =208 H,=1965 H,=1863
b, =0326 b, =0325 b, =0325 b, =0.324
b,=0.157 b, =0222 b,=0273 b, =0315
o —og9 P1=5742 p =5678 p =5627 p, =5586
1Z0Y 25135 p,=5006 p,=4904 p, =4.820
H,=2754 H,=2740 H,=2729 H, =2.720
H,=2233 H,=2075 H,=1953 H,=1852
b, =0.376 b, =0.375 b, =0375 b, =0.375
b,=0.157 b,=0222 b,=0272 b, =035
o —opy P1=5675 p =561l p =556 p, =558
LZ0 5 25102 p,=4972  p,=4872 p, =4786
H,=2669 H,=2654 H,=2644 H,=2.635
H,=2224 H,=2066 H,=1944 H,=1842
A
i > M
A R
— —> th
Ao
Bke [———>

FIGURE 2: Scheme of public urban transport.

The incoming flow is a Poisson process with an intensity
A.In accordance with queueing theory, for the Poisson flow A

Cc
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and a traffic flow y on the route (v;,v,), the expected trip
time is given by 1/(4 — A). Consequently, for a consumer
selecting the service p; or y, (or deciding to use bike, 4,), the
expected trip time is yt; — A;, where A, is a flow in this route
ji=0,1,2.

We assume that the parameters p;,i=0,1,2 are fixed
and consider the second stage of the game. At the second
stage, players 1 and 2 announce the prices of service, p, and
P, respectively. Let the passengers be rational and select the
minimum-cost service. Then, the incoming flow is
decomposed into three subflows with intensities A, A,, and
Ag> where g+ 1, +1, = A

We assume that the costs of passengers are described by a
convex combination of the price of service and the expected
trip time. Without loss of generality, we define the cost of
service i by

)L’)

i i

uﬂp,t)zpﬁﬂ% i=1,2, (22)

where p; is the price of service i; 1/ (y; — A;) is the expected
trip time on the route i; ¢ is some constant. The equilibrium
intensities of the subflows A, A, and A, satisfy the balance
equation:

c Cc

c
=p + =p,+ > 23
to — Ao s =M P2 ty =My (23)

Dot

Ao+ A+, =, (24)

where p, is fixed.
Consider the pricing game with the payoft functions:

hy (p1> P2) = Mpys

(25)
hy (p1> P2) = Mapa.
Let A <y, <y; <p, and also let p, be fixed. We find the
best response of player 1. To calculate a maximum of the
tunction h, (p,, p,), consider the Lagrange function:

c c c
L (pAsA,) = poAy +k + - Po— +k t—— Py~ | (26)
1 (P A dy) = pidy 1<P1 i Po P‘O_(A_AI_AZ)) z(Pz ty— 1, Po Ho—(/\—/h—/\z))

The first-order optimality conditions yield:

oL, =L +k =0,

op,

oL, c c c

- =p, +k + +k, =0,
oAy ( (b1 = /11)2 (ko = A0)2> (ko = )‘0)2

oL, 1 1 1

— =k +k, + ) =0.

) (ko = /\0)2 ( (b2 = /\2)2 (ko = )‘0)2

(27)

Hence,
ky = -2y,

A (uy - )‘2)2 (28)
(ur = /\2)2 + (4o = )‘0)2).

2:

Substituting this result into (27) gives

Pf=/\1¢< S = 2). (29)
(=) (2= A2)" + (4o = Ao)
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The best response of player 2 is obtained by analogy:

Py = A2c< ! 5+ 3 ! 2>. (30)
(= A2)" (= M)+ (uo = Ao)

Equations (23), (24), (29), and (30) determine the
equilibrium prices and equilibrium flows for the given values
#y and p,.

Let us return back to the first stage of the game. At the
first stage, we have the game with the payoft functions:

H, (5 p;) = My py = Cy (1) = /\%C<

H, (41> t15) = Mapy = Cy () = A§c<

where A, and A, satisfy (23) and (24).

5.1. Computer Simulations. Consider a passenger flow with
intensity A = 3. Let the passengers choose among three
possibilities for reaching a destination point: biking, using a
bus, and hailing a taxi. Three capacities p, y;, and y, cor-
respond to these cases. For example, if y, = 2, y; = 2.1, and
U, = 2.5, from equations (23), (24), (29), and (30), we find
the optimal equilibrium prices:

P =0.685,
(32)
P, =0.793.
The flows which correspond to these prices are
Ay = 1.302,
A, =0.762, (33)
1, = 0.936.

The payofts of the players are hj =0.5223 and
h3 = 0.7426.

We assume that the costs for supporting the service of
these players are described by

C1(!41) = Ch”i (34)

&) (!42) = Cz.“;

with ¢; =0.025 and ¢, = 0.022. Then, the payoffs of the
players calculated with the costs are

H, =0.4121,
(35)
H, = 0.6051.

Now, for this flow A = 3, let the biking capacity be the
same, p, = 2, and also let the players invest some money to
change the capacities p; and y,

We assume the first player decides to change the in-
tensity from y; = 2.1to y; = 2.2. In new equilibrium, we find
that the optimal prices are

1 1
+ =C (1),
(b1 = /11)2 (4~ Az)z + (4o - Ao)z>
(31)
+ : > C, (1)
— L)
(2= )" (s = A0)" + (g = do)”
Py = 0.669,
(36)
p5> = 0.746.
The flows which correspond to these prices are
A, = 1.276,
A, = 0.796, (37)
A, =0.927.

The payoffs of the players calculated with the costs are

H, = 0.4124,
(38)
H, = 0.5546.

Clearly, the strategy y, = 2.2 is more profitable for the
first player than u; = 2.1. Applying the sequence of best
responses of players, we obtain the Nash equilibrium for this
case. We find the equilibrium intensities for the service:

py = 2.225,
(39)
W = 2.436,
with the payoffs
H} =0.438,
(40)
H;, = 0.545.

Table 3 presents the resulting equilibrium y} and y;
calculated for different values of the flow A =2,2.1,...,3
and the free-of-charge flow y, = 2 and the costs of service in
the form ¢, (,) = ¢y} and ¢, (4,) = c,p3, where ¢; = 0.025
and ¢, = 0.022.

Clearly, for higher flows, at equilibrium, the players
increase the prices of services p; and p;. But the picture is
not the same for the equilibrium capacities 4} and y5. The
capacities are firstly increasing and after some instant start
decreasing. The equilibrium capacity of the carrier with
smaller cost is larger than the capacity with higher cost, i.e.,
u> > uj. Interestingly, for higher flows the difference be-
tween these capacities y; — y; is reduced.



TaBLE 3: Optimal parameters of services in equilibrium.

A Ay M A I I Pi ps Hy H,

2.0 0.822 0.478 0.701 2.168 2.681 0.257 0.344 0.005 0.083
2.1 0.843 0.529 0.728 2.245 2.700 0.281 0.357 0.023 0.099
2.2 0.868 0.577 0.755 2.307 2.716 0.305 0.373 0.043 0.120
2.3 0.896 0.620 0.784 2.356 2.731 0.330 0.392 0.066 0.143
2.4 0.928 0.660 0.812 2.393 2.740 0.356 0.414 0.092 0.171
2.5 0.963 0.698 0.839 2.420 2.744 0.384 0.439 0.121 0.203
2.6 1.003 0.730 0.866 2.430 2.740 0.415 0.470 0.156 0.242
2.7 1.047 0.765 0.888 2.440 2.720 0.452 0.504 0.197 0.284
2.8 1102 0.792 0.906 2.420 2.680 0.499 0.550 0.249 0.340
29 1171 0.812 0917 2370 2.610 0.563 0.615 0.317 0.414
3.0 1.282 0.813 0.905 2.230 2.440 0.688 0.742 0.435 0.541

6. Conclusion

The central point in the model is the concept of rational
consumers. It has been assumed that after announcing prices
of services, the consumers select the minimum-cost service
in the expected sense. The cost includes the price of service
and also the expected trip time. It has been assumed that the
consumers consider two criteria and make a decision taking
both criteria into account. For example, if the incoming flow
A is decomposed into subflows A;,i € N, the passengers
joining the flow A; will pay p; for this service and waste some
time f;(A;),i € N.

In future research we plan to consider the role of
boundedly rational consumers in the sense of being obliv-
ious to other consumers’ influences on traffic flows, in a
competitive transport system, where prices motivate the
equilibrium between all players in the market, firms, and
consumers. In this approach while the rational users follow a
strategy that minimizes their individual cost, an oblivious
user prefers fast routes.

A quite appropriate hypothesis is that the choice of
consumers is balanced by an objective function. In this
paper, the convolution of criteria has been adopted. It is
possible to use other approaches as well. For multicriteria
problems, the Nash Bargaining Solution (NBS) approach is
widespread. In this case, NBS corresponds to an optimal
allocation A;,i € N, that minimizes an objective function.
This issue will be considered in further research.
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The aim of this study was to evaluate the effects of driver-related factors on crash involvement of four different types of commercial
vehicles—express buses, local buses, taxis, and trucks—and to compare outcomes across types. Previous studies on commercial
vehicle crashes have generally been focused on a single type of commercial vehicle; however, the characteristics of drivers as factors
affecting crashes vary widely across types of commercial vehicles as well as across study sites. This underscores the need for
comparative analysis between different types of commercial vehicles that operate in similar environments. Toward these ends, we
analyzed 627,594 commercial vehicle driver records in South Korea using a mixed logit model able to address unobserved
heterogeneity in crash-related data. The estimated outcomes showed that driver-related factors have common effects on crash
involvement: greater experience had a positive effect (diminished driver crash involvement), while traffic violations, job change,
and previous crash involvement had negative effects. However, the magnitude of the effects and heterogeneity varied across
different types of commercial vehicles. The findings support the contention that the safety management policy of commercial
drivers needs to be set differently according to the vehicle type. Furthermore, the variables in this study can be used as promising
predictors to quantify potential crash involvement of commercial vehicles. Using these variables, it is possible to proactively
identify groups of accident-prone commercial vehicle drivers and to implement effective measures to reduce their involvement
in crashes.

1. Introduction

Commercial vehicles have a high risk of traffic injury because
they are driven long distances, which often leads to driver
fatigue [1]. Moreover, when involved in traffic crashes, the
heavy weight of such vehicles generates greater impact
damage on the occupants of other vehicles or pedestrians
[2, 3]. In South Korea in the year 2018, commercial vehi-
cles—buses, taxis, and trucks—were involved in 43,632
traffic accidents, resulting in 67,262 injuries (20.8% of total
traffic injuries) and 692 deaths (18.3% of total traffic injuries)
[4]. Considering that commercial vehicles account for only

6.2% of total registered vehicles in South Korea, the pro-
portions of traffic injuries and deaths involving commercial
vehicles are substantially higher than those of other vehicle
classes. While controlling for driving distance, commercial
vehicles had 792.7 traffic accidents and 12.6 traffic deaths per
one billion km, both of these values were 1.5 times greater
than the values for noncommercial vehicles. In general, a
large portion of traffic crashes is caused by driver-related
factors [5].

Previous studies have mainly used two approaches to
evaluate the effect of driver-related factors on traffic acci-
dents. One approach used questionnaires or interviews to
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evaluate psychological factors deriving from latent driver
characteristics such as personality and attitude [6-12]. The
use of self-reported data had the advantage of allowing the
collection of enough samples to adopt statistical models, but
it raised concerns about what are called “dishonest biases”
and that the variables were unobservable in practical use.
Due to these limitations, safety practitioners and scholars
turned to the analysis of more measurable traffic-crash data.
Such studies were generally performed with a focus on a
single type of commercial vehicle [1, 13-19]. Although the
vehicle types were different, driver characteristic variables
such as age, gender, education, driving experience, license
type, violation history, crash history, and job change history
were commonly specified as explanatory variables
[1, 10, 14-18, 20]. On the other hand, coeflicient estimates of
those common variables varied widely across types of
commercial vehicles, as well as across study sites [21]. This
underscores the need for a comparative analysis of different
types of commercial vehicles operated in comparable en-
vironments. Such research would reveal the differential
effects of driver characteristics on commercial vehicle safety
while controlling for site-specific effects.

In the field of traffic-crash research, logistic regression
has proven to be a popular and reliable way to reveal the
relationships between response variables and explanatory
variables [22-24]. However, in the case of logistic regression,
a fixed, unique coeflicient represents the effect of a particular
factor on all individuals. This could lead to bias in the in-
terpretation of the results, given that the incidence of one
individual’s crash is inherently heterogeneous [25]. There-
fore, for the analysis of crash-related data, it is necessary to
use a model that can explain unobserved heterogeneity. To
address the issue, previous researchers used other, more
promising approaches: several statistical and econometric
methods are available to account for unobserved hetero-
geneity [26-29]. In many recent studies, mixed logit models
have been used to account for unobserved heterogeneity of
variables by applying individual-specific coefficients to
standard logit models [30-33].

In this context, the aim of the present study was to
evaluate the effect of driver characteristics on traffic crashes
of four different types of commercial vehicles—express and
local buses, taxis, and trucks—and to compare outcomes
across types. Toward these ends, we analyzed commercial
vehicle driver records in South Korea using a mixed logit
model that could address unobserved heterogeneity in
crash-related data. This study is distinct in that long-term
driver characteristic variables were used for the crash
analysis. A total of 627,594 commercial vehicle driver data
were processed and the accumulated crash counts, traffic
violations, and job changes from driver license acquisition
date were used in the model. Furthermore, to control for
site-specific effects, which set limitations on many previous
studies in which only one type of commercial vehicle was
analyzed, a comparative analysis of four vehicle types that
operate in the same environment was executed to reveal the
differences according to vehicle type. The results of this study
can be used to establish traffic safety improvement policies
by the characteristics of each commercial vehicle type.

Journal of Advanced Transportation

2. Data Description

Records on 627,594 commercial vehicle drivers without
identifiable personal information were obtained from the
Korea Transportation Safety Authority (KTSA). The dataset
contains driver information including date of birth, gender,
issue date of commercial driver’s license, violation records,
previous job changes, license type (i.e., type of commercial
vehicle), and crash records. In this study, only data for male
drivers were used due to the insufficient sample size of
female commercial vehicle drivers.

The dependent variable is binary: whether the drivers
had been involved in traffic accidents for the recent three
years between July 2014 and June 2017. Independent vari-
ables include driver’s age, driving experience (in years),
violation rate (numbers of violations per 10 years), job
change rate (numbers of job changes per year), and previous
crash involvement rate (numbers of crashes per 10 years).
Driver age was discretized into several levels for convenience
of analysis, while other variables remained as continuous
variables. Descriptive statistics of variables are provided for
each vehicle type from Tables 1-4.

Overall, the proportion of crash involvement was found
to vary across types of commercial vehicles. Higher crash
involvement was observed in local buses and taxis, which is
presumed to be because they operate mainly in urban en-
vironments. The distribution patterns are also different. The
proportion of recent crash involvement of trucks ranged
from approximately 5% to 10%, while taxis ranged from 15%
to 30%, showing an almost threefold difference. This trend
was similar for other variables. The proportion of crash
involvement tended to increase as age increased; however,
taxi and truck drivers showed the highest rate at 21-30, and
there was no clear trend of crash rate increase with age. The
proportions of recent crash involvement of local bus, express
bus, and taxi drivers were highest at 5-15 years of driving
experience. For truck drivers, the rate was highest at 1-5
years. As traffic violation rate increased, the proportion of
recent crash involvement tended to increase. However, the
levels that had the highest proportions were different
depending on the vehicle type. Local bus and express bus
drivers had the highest traffic violation rates of 0.15-0.2. Taxi
drivers had values of 0.1-0.15 and truck drivers have values
above 0.2. The higher the job change rate, the higher the
proportion of recent crash involvement. There is also a
tendency similar to that of job change rate for past crash
rates.

3. Methods

In this study, a mixed logit model was used to unveil sig-
nificant factors that affect the crash involvement of com-
mercial vehicle drivers in South Korea. The mixed logit
model assumes that the effects of the parameters on the logit
model are different for each individual [31]. Thus, the model
can account for unobserved factors that are not captured
directly through the data. To compare the explanatory power
of the mixed logit model, we performed the log-likelihood
ratio test with the logistic regression model that is using only
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TaBLE 1: Descriptive statistics of variables for local bus.

Variable description Number of samples Minimum Maximum Mean SD
Dependent variable
Recent crash involvement 0=not involved in the crash for three years 63,256 — — — —
1 =involved in the crash for three years 12,179 — — — —
Independent variables
21-30 316 0 1 0 0.06
31-40 4,250 0 1 0.06 0.23
Driver age 41-50 20,640 0 1 0.27  0.44
51-60 36,744 0 1 049 05
More than 61 13,485 0 1 0.18 0.38
Driving experience Years of driving 75,435 0.04 59.33 16.26 9.72
Violation rate Total number of violations per 10 years 75,435 0 7.5 0.08 0.22
Job change rate Total number of job changes per year 75,435 0 48 0.27 0.8
Crash rate Total number of crashes per 10 years 75,435 0 4.44 038 04

TaBLE 2: Descriptive statistics of variables for express bus.

Variable description

Number of samples Minimum Maximum Mean SD

Dependent variable

Recent crash involvement 0=not involved in the crash for three years 42,730 — — — —
1 =involved in the crash for three years 4,109 — — — —
Independent variables
21-30 290 0 1 0.01  0.07
31-40 2,054 0 1 0.04 0.2
Driver age 41-50 10,011 0 1 0.21 0.41
51-60 24,574 0 1 04 049
More than 61 85,021 0 1 033 047
Driving experience Years of driving 46,839 0.04 50.75 16.47 10.29
Violation rate Total number of violations per 10 years 46,839 0 9.11 012 0.21
Job change rate Total number of job changes per year 46,839 0 48 0.34 0.98
Crash rate Total number of crashes per 10 years 46,839 0 3.44 0.35 0.38
TaBLE 3: Descriptive statistics of variables for taxi.
Variable description Number of samples Minimum Maximum Mean SD
Dependent variable
Recent crash involvement 0=not involved in the crash for three years 182,557 — — — —
1 =involved in the crash for three years 37,287 — — — —
Independent variables
21-30 161 0 1 0 0.02
31-40 2,839 0 1 0.01 0.11
Driver age 41-50 24,574 0 1 0.11 0.31
51-60 86,748 0 1 039 048
More than 61 105,522 0 1 048 05
Driving experience Years of driving 219,844 0.04 55.25 18.94 9.86
Violation rate Total number of violations per 10 years 219,844 0 14.5 0.09 0.21
Job change rate Total number of job changes per year 219,844 0 96 0.2 081
Crash rate Total number of crashes per 10 years 219,844 0 4.41 0.32 0.34

fixed parameters. In the logistic regression model, the co-
efficient f3 value is fixed. The probability that driver i belongs
to recent crash category », consisting of two categories that
are involved or not involved, is shown in the following
equation:

eﬂxn,t

P,;= Z]e—ﬁxf (1)

In the mixed logit model, it is assumed that the coef-
ficient is not fixed to § but is individual-specific f3;, and the
probability of crash involvement could be expressed as
shown in the following equation:

e/"ixn,i
P;= ZKTXJ (2)
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TaBLE 4: Descriptive statistics of variables for truck.

Variable description

Number of samples Minimum Maximum Mean SD

Dependent variable

Recent crash involvement 0=not involved in the crash for three years 268,245 — — — —
1 =involved in the crash for three years 17,231 — — — —

Independent variables
21-30 2,704 0 1 0.01  0.09
31-40 31,887 0 1 011 0.31
Driver age 41-50 85,021 0 1 0.3 045
51-60 102,815 0 1 036 0.48
More than 61 63,049 0 1 0.22 041
Driving experience Years of driving 285,476 0.04 58.25 12.66 9.51
Violation rate Total number of violations per 10 years 285,476 0 11.43 0.12 0.29
Job change rate Total number of job changes per year 285,476 0 48 013  0.62
Crash rate Total number of crashes per 10 years 285,476 0 3.65 0.22  0.29

In order to derive a consistent estimated value through
the above equation, it is necessary to use various data for
each individual. That is, it is difficult to use the above
equation with limited crash data. In the mixed logit model, it
is assumed that f3; is a random parameter that is estimated
for each individual. Therefore, given f3;, the probability of
having a crash experience for driver i could be expressed by
the following equation:

B

Pn,i _
E B Zjeﬂixjvi. (3)

Since the above equation is a conditional probability, the
unconditional probability is derived as equation (4) through
integration using the probability density function of f3;:

[ (Bui) (B ag.
o

where f (f8;/¢) is a probability density function for f; having
a parameter of ¢. The normal distribution is most widely
used as a function of the probability density of random
parameters, and a uniform distribution is appropriate for
dummy variables [34]. In this study, the multidimensional
integration of f3; is necessary because the factors related to
driver characteristics are reflected by several variables in-
stead of one. It is difficult to calculate a multidimensional
integral because of the complicated processes of numerical
integration, such as the quadrature method, but this integral
can be calculated by a simulation-based maximum likeli-
hood method. In many works in the literature, Halton draws
have proven to be the most efficient way of estimating
coefficients [35-37]. We used a free statistical package R to
implement the mixed logit model in this study. The risk
factors include driver characteristics such as age, driving
experience, traffic violation rate, job change rate, and pre-
vious crash rate. The response variable is a binary variable:
whether or not a driver had a crash experience in the period
from July 2014 to June 2017.

4. Results and Discussion

The results of the mixed logit model derived in this study
successfully converged for all vehicle types, and the variables

with random parameters showed statistically significant
results. Heterogeneity variables have statistically significant
results for standard deviation. In the derived model, there
were significant differences among commercial vehicle
types. Variables with heterogeneity were different for each
vehicle type, and the sizes of statistically significant coefhi-
cients were also different. First, compared to the model using
only fixed parameters, the log-likelihood ratio test was used
to verify the explanatory power of the mixed logit model. The
test results are shown in Table 5.

In the results of the log-likelihood ratio test, it was found
that all models in this study that applied random parameters
were superior to models using fixed parameters. The express
bus model was statistically significant at the level of 95%
confidence and the other models were significant at the level
of 99.9% confidence. This is because random parameters
applied to each model were able to reflect driver hetero-
geneity, which could not be considered in the fixed-pa-
rameter model.

The coefficient estimation results of the variables ob-
tained using the mixed logit model are provided in Table 6.
Among the eight variables used in this study, the variables
that showed statistical significance differed between com-
mercial vehicle types. Driving experience, traffic violation
rate, and crash rate were statistically significant at a 99%
confidence level in all models, and job change rate was
statistically significant in all vehicle types except local bus.
The driver’s age was statistically significant at the level of
95% confidence in all models for the age group of 61 and
older. There were differences in statistical significance for the
other age groups by vehicle type. Heterogeneous variables
also had different levels of statistical significance depending
on the vehicle type. In the case of traffic violation rate, all
vehicle types showed heterogeneity according to drivers, and
the driving experience variable exhibited heterogeneity for
all vehicle types except express bus. The age group of 31 to 40
years exhibited heterogeneity in groups of truck and taxi,
while the older driver group (51 to 60 years) and job change
rate variables exhibited heterogeneity only in a taxi.

The coefficient of the oldest age group for all vehicle
types is positive. This could be interpreted showing that the
oldest group of drivers had increased risk of crash in-
volvement compared to drivers in the reference group (21 to
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TaBLE 5: Log-likelihood ratio test result for the fixed and random parameter logit models.
Local bus Express bus Taxi Truck
Fixed Random Fixed Random Fixed Random Fixed Random
Degrees of freedom 9 17 9 17 9 17 9 17
Log-likelihood at convergence -32,778 —32,743 -13,616 —13,608 -94,393 -93,665 -63,042 -62,856
)(2 69.356 15.812 1,457.9 370.83
p value <0.001"** 0.045" <0.001"** <0.001***
TaBLE 6: Model estimation results for significant independent variables.
. Local bus Express bus Taxi Truck
Variable
Coef. St. dev. Coef. St. dev. Coef. St. dev. Coef. St. dev.
Driver age
(ref.: 21-30)
31-40 -0.83 -1.76 -1.61" 5.20" —1.477%* 3.49%%*
41-50 0.08 -0.11 -0.34 -0.31
51-60 0.77+** 0.14 1.19* 0.87* -0.03
61 and above 0.97*** 0.53* 1.70*** 0.25**
Violation rate 0.83"~ 1.59*** 0.90"** 0.59%* 1.45%** 1.517** 0.92%** 1.33%**
Driving experience —0.03*** 0.01* —0.02%"* —0.04""* 0.01° —0.03"** 0.02%**
Job change rate 0.01 0.04** -0.44*** 5.65*** 0.06***
Crash rate 0.60"** 0.72*** 1.25%** 1.00**
Constant -2.20"*" -2.69""* -3.02%*" -2.89"""
Number of observations 75,435 46,839 285,476 219,844

Note. Coef. = coefficient, st. dev. =standard deviation, ***p <0.001, **p <0.01, *p <0.05, and'p <0.1.

30 years). This finding was consistent with the findings
reported in previous studies [38-43]. Similarly, Valent et al.
[39] reported that drivers aged 65 and above had a signif-
icantly increased risk of fatal injury for most kinds of
transportation modes. As is well known, as people age, their
cognitive and perceptual faculties deteriorate, which could
increase crash risk [44-46]. Especially, local bus drivers in
their 51 s and 60 s also had positive coeflicients, while results
for this age group with other vehicle types were not sig-
nificant. Unlike other types of vehicles, local buses have
tightly spaced schedules, which means they have to speed up
and cut other vehicles off in order to meet the intervals,
which leads to high labor intensity on the part of the driver.
Therefore, for local bus drivers, the older driver management
age range should be wider than for other vehicle drivers.
On the other hand, truck and taxi drivers in their 30s
and 40s exhibited heterogeneity. Among heterogeneous
variables that have different effects on traffic crashes, the
probability of the positive impact of the crash involvement
could be calculated if the standard deviation of the coeffi-
cients derived from each variable was statistically significant.
The traffic violation rate, a variable that is heterogeneous for
all vehicle types, with values of 69.89%, 93.67%, 75.53%, and
83.28%, affects involvement in crashes as it increases.
Generally, traffic violations are a major risk to road safety, as
confirmed by the results of many previous studies. The
results of this study also show that up to 93% of drivers
increase the risk of crashes, depending on the type of ve-
hicles, when traffic violation rates increase if all other var-
iables are kept constant. Similarly, many researchers have
found a positive relationship between traffic violations and

crash occurrence [6, 47-50]. However, most of the studies
have been conducted on general drivers; only a few studies
have been conducted on commercial vehicle drivers [10]. In
the case of a commercial vehicle driver, heterogeneity in
traffic violations occurred because the vehicle type and
driving environment are different from those of general
drivers. Especially for local buses, about 30% of drivers have
an effect of reducing crash involvement when the violation
rate increases. This is because the violation rate used in this
study is the count value of all traffic violations. Not all traffic
violations, as defined by national law, are directly related to
crashes. Traffic violations that include violations that in-
crease the risk of a crash, as found in the previous literature,
are speeding and drunk driving; however, violations also
include items not directly related to crash involvement such
as parking violations or designated lane violations. There-
fore, a more detailed analysis of traffic violations is required
to identify crash-related violations of commercial vehicle
drivers.

For driving experience, express buses had a fixed coef-
ficient of —0.02; local buses, trucks, and taxis exhibited
heterogeneity. For vehicle types with heterogeneity in the
driving experience, the probability values for drivers who
reduced the risk of crashes as driving experience increases
were as follows: 99.77% for local bus, 95.66% for truck, and
99.99% for a taxi. This indicates that most drivers with short
driving experience are likely to have recently been involved
in a crash, regardless of vehicle type. This is in line with the
fact that accident rates tend to diminish with experience
[9, 51, 52]. Cooper et al. [52] revealed that crash rates of
novice drivers aged 16 to 55 decreased with increasing



experience. McCartt et al. [9] used survival analysis to de-
termine that the risk of a first crash during the first month of
licensure was much higher than during any of the next 11
months. As has been previously found, the driving expe-
rience has a positive effect on driving skills [53, 54].

For express bus and truck drivers, the relationship be-
tween job change rate and crashes was found to be statis-
tically significant, with positive coefficients, meaning that a
job change increases the risk of crash involvement. The job
change rate is a variable that represents a comprehensive
measure of overall driver behavior. Frequent job changes
imply that the duration of driving experience at a job po-
sition is not sufficient for that driver to be fully adept at the
job and that the driver’s overall skills and adaptation to the
commercial vehicle industry may not be satisfactory.
However, little research has been conducted to evaluate job
change as a predictor of crash involvement of commercial
vehicle drivers. Corsi and Fanara [55] reported that motor
carriers with high driver turnover had significantly higher
crash rates than those with lower turnover rates. Extending
this research, Staplin and Gish [56] estimated the risk of
crash involvement as a function of job change rate among
truck drivers. However, these studies were based on uni-
variate analysis, which might have caused confounding
issues.

Meanwhile, taxi drivers, as examined in this study,
exhibited heterogeneity in job change rate, with 46.9% af-
fecting the increase of crash involvement and 53.1% affecting
the decrease. In this context, the outcomes of this study
provide solid evidence that the job change rate is a reliable
crash predictor for express bus and truck drivers. For taxi
and local bus drivers, it is not clear that job change rate
increases the risk of a crash; it is found that when using job
change rates for commercial vehicle driver safety manage-
ment, it needs to be applied to specific vehicle types.

In contrast, a driver’s previous safety performance,
represented by the variable of crash rate, has a statistically
significant effect on crash involvement for all commercial
vehicle drivers. This is consistent with previous findings
[1, 57]. Since the coefficient of the crash rate was not het-
erogeneous for all vehicle types, intensive safety manage-
ment is needed for drivers who have higher crash rates,
regardless of vehicle type.

5. Conclusions

The present study provides the first report on crashes of
commercial vehicle drivers operating four different types of
vehicles in Korea. The information in 627,594 driver records
obtained from the Korea Transportation Safety Authority
was used in this study to evaluate the effects of driver-related
factors on crash involvement of four types of commercial
vehicles: local buses, express buses, taxis, and trucks. Then,
the outcomes were compared across vehicle types. We se-
lected a mixed logit model able to account for unobserved
heterogeneity in the driver data and revealed the relation-
ships between commercial vehicle driver characteristics and
crash involvement. The dependent variable was the crash
involvement of commercial vehicle drivers for the most
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recent three years, and five driver-related factors were
specified as explanatory variables.

The log-likelihood ratio test showed that the mixed logit
model derived from this study was superior to the logit
model using fixed parameters. The estimated outcomes
showed that driver-related factors have common effects on
crash involvement: driver experience diminished driver
crash involvement, while driver traffic violations, job change,
and previous crash involvement had negative effects.
However, the magnitude of the effects and heterogeneity
varied across different types of commercial vehicles. In the
case of local buses, unlike other vehicle types, the job change
rate was not statistically significant and the range of ages that
increased the risk of crash involvement was wider than other
types. Moreover, the crash rate increased the crash in-
volvement in all vehicle types, and taxis, in particular, had a
higher coefficient than other vehicle types. Therefore, the
result of this study supports the contention that the safety
management policy of commercial drivers needs to be set
differently according to the vehicle type. Furthermore, be-
cause all the variables used in this study were measurable, the
expected crash involvement could be estimated using
commercial vehicle driver records by vehicle type. By
properly using the outcomes, it should, therefore, be possible
to proactively identify groups of accident-prone commercial
vehicle drivers and to implement effective measures such as
education and, if necessary, enforcement.

There are also several limitations of this study related to
limitations in the data available. This study did not reflect
other variables that might affect crash involvement, such as
the average daily driving time related to labor intensity. In
addition, it is necessary to study further the relationship
between lists of traffic violations by vehicle type and crash
involvement. If more information is available about com-
mercial drivers in the future, more in-depth research to
improve traffic safety will be possible.
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In order to improve the driver’s physiological and psychological state, the driver’s mental load which is caused by sight distance,
lighting, and other factors in the tunnel environment should be quantified via modeling the spatiotemporal data. The experimental
schemes have been scientifically designed based on methods of traffic engineering and human factor engineering, which aims to
test the driver’s spatiotemporal data of eye movement and ECG (electrocardiogram) index in the tunnel environment. Firstly, the
changes in the driver’s spatiotemporal data are analyzed to judge the changing trend of the driver’s workload in the tunnel
environment. The results show that the cubic spline interpolation function model can fit the dynamic changes of average pupil
diameter and heart rate (HR) growth rate well, and the goodness of fit for the model group is above 0.95. So, tunnel environment
makes the driver’s typical physiological indicators fluctuate in the coordinates of time and space, which can be modeled and
quantified. Secondly, in order to analyze the classification of tunnel risk level, a fusion model has been built based on the functions
of average pupil diameter and HR growth rate. The tunnel environmental risk level has been divided into four levels via the fusion
model, which can provide a guidance for the classification of tunnel risk level. Furthermore, the fusion model allows tunnel design
and construction personnel to adopt different safety design measures for different risk levels, and this method can effectively
improve the economy of tunnel operating safety design.

1. Introduction

Tunnel is a typical bad visual environment, and driving in
tunnel environment is a relatively dangerous activity.
Amundsen and Ranes analyzed the traffic accident data in
Norway and pointed out that the accident severity in the
tunnel is higher than that in the highway [1]. A survey from
Italy shows that severe accident rates and cost rates in
tunnels were higher than those on the corresponding mo-
torways [2]. Driving performance in tunnels is different
from freeway driving, and darker lighting conditions and
enclosed space will make drivers nervous and increase the
effort required to maintain lateral control of the vehicle,
which will affect drivers” psychological state and driving
behavior [3, 4]. Related research shows that visual inter-
vention is an effective method in vehicle trajectories’ in-
tervention [5, 6], and the tunnel safety can be improved by

using visual intervention method to affect the driver’s
driving behavior in tunnel section. Therefore, it is of
practical significance to study the driver’s physiological and
psychological state in tunnel environment, which reduces
the accident rate in tunnel environment.

There are many factors that affect the safety of tunnel
driving: road alignment, transition of antisliding perfor-
mance, traffic states, and differences in internal and external
environments [7]. In recent years, scholars have carried out
lots of research about the highway traffic safety to improve
the driving safety, especially for the tunnel environment
[8, 9]. Manser and Hancock studied how the type of visual
pattern and presence of texture applied to transportation
tunnel walls differentially affected driving performance
based on simulated driving experiment [10]. Meng et al.
proposed a novel quantitative risk assessment model to
assess the risks in the nonhomogeneous urban road tunnels
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in 2011, and the inverse Gaussian regression model had been
used to estimate the rear-end vehicle crash frequency in road
tunnels; then the relationship between the time to collision
and its contributing factors had been establish in 2012
[11-13]. Calvi and D’Amico analyzed the driver’s speed
characteristics and speed control in tunnel environment
based on simulated driving [14]. Rudin-Brown et al. ex-
plored the influence of mobile phone use on driving safety in
the tunnel based on the method of simulated driving [15].
Kircher and Ahlstrom investigated the impact of tunnel
illumination and design on driving performance; then
Kircher and Ahlstrom discovered that the driver’s attention
had a higher impact on performance than tunnel design [16].
Moretti et al. proposed a life-cycle cost analysis method to
maximize energy saving and road safety via LED (Light-
Emitting Diode) technology [17, 18].

Scientific research on the driver’s physiology and
psychology began in the early nineteenth century. In recent
years, with the improvement of medical research and the
use of advanced instruments, scholars have continuously
explored the integration of physiology and traffic engi-
neering [19, 20]. Many scholars have studied the physio-
logical and psychological characteristics of drivers in
tunnel environment, which can provide experience for the
selection of indicators and data analysis in this paper. Cho
et al. calibrated the threshold of illumination intensity in
tunnels based on the driver’s visual characteristics [21]. He
et al. recorded the eye movement parameters of drivers
passing through the tunnel and analyzed the influence of
tunnel lighting environment on driving safety [22]. Feng
et al. studied changes in physiological and behavioral
characteristics in longitudinal segments of urban under-
pass tunnels by conducting a real-vehicle experiment [23].
Kening et al. conducted the real-vehicle experiment with
participants under different tunnels, in order to study the
driver mental workload variation in exit of super long
tunnel on expressway [24]. Chen et al. carried out a driving
simulator experiment based on a box truck module, in
order to investigate the safety of the truck under crosswind
at the bridge-tunnel section [25]. It can be seen that eye
movement index, electrocardiogram index, electroen-
cephalogram index, workload, and mental load are com-
monly used by scholars [26, 27]. Because the tunnel
environment mainly affects the driver’s vision and the
enclosed space will bring tension and anxiety, this paper
mainly chooses two indicators of eye movement and
electrocardiogram.

At present, the research of the driver safety in tunnel
environment mainly focuses on the analysis of the driver’s
speed, vision, and ECG characteristics in tunnel environ-
ment. On the basis of scientific experiment design and data
acquisition, scholars use statistical methods to analyze the
distribution of the driver’s physiological and psychological
indicators in tunnel environment, which provides a refer-
ence for the experimental design and statistical analysis of
this paper. However, the existing research cannot reflect the
temporal and spatial distribution of drivers’ physiological
and psychological state in tunnel environment and cannot
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evaluate the risk level of different road section in tunnel
environment. Thus, this paper aims to explore the spatio-
temporal distribution of driver’s physiological and psy-
chological indicators and study the classification of the risk
level in tunnel environment. Firstly, the driver’s spatio-
temporal data of eye movement and ECG index are tested in
the tunnel environment. Secondly, models of average pupil
diameter and HR growth rate change trend are constructed
in different spatial nodes of tunnel. Lastly, a classification
model of tunnel risk level is constructed to effectively
evaluate the risk level of different road sections in tunnel
environment.

The remainder of this paper is organized as follows.
Section 2 describes the methodology of the simulated driving
experiment. Section 3 gives some experimental results for
eye movement characteristics and ECG index. Then, models
of the driver’s average pupil diameter and HR rate are il-
lustrated in Section 4, and the classification model of tunnel
risk level is also achieved. Finally, this paper ends with some
conclusions in Section 5.

2. Method

2.1. Participant. A total of 31 participants participated in the
experiment; all drivers who are involved in the test hold a
driver license and already have driving experience in the
tunnel. Due to the age and gender of the test subjects’
unbalanced distribution, the driver’s age and gender
differences are ignored during the process of data analysis.

2.2. Experimental Equipment and Scenario. The main ex-
perimental equipment of this experiment is as shown in
Figure 1, including the six-degree-of-freedom traffic safety
simulation driving device for constructing the simulated
driving environment, MP36R physiological tester for col-
lecting the driver’s ECG index, SMI wireless glasses for
collecting the driver’s eye movement index, and other re-
lated auxiliary equipment, such as laptops, timers, etc.

The objective of this study is to investigate the temporal
and spatial distribution of drivers” physiological and psy-
chological indicators in tunnels. To this end, a common
section of highway was designed according to the Technical
Standard of Highway Engineering (2014). The test scenes
are based on the two-lane straight highway with design
speed of 80 km/h. The cross section of the highway com-
prises two 3.75-meter-wide lanes and two 2.5-meter-wide
shoulders. The total length of the highway is 10.1 km, in-
cluding 3 tunnels, of which, each tunnel is 700 m long, and
the interval between the two adjacent tunnels is 2km
(Figure 2). To ensure that the simulated environment is
consistent with the real highway environment, there was
some simulated vehicles moving in the same direction as
the test vehicle, so that the traffic conditions are free-flow
during the simulation. Trees, vertical speed limit signs, and
traffic barriers were also added in the roadside to ensure
drivers have the same feeling as real highway environment
when driving in the test scenes.
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FIGURE 2: Experimental road conditions.

2.3. Experimental Procedure. The experiment has been
carried out according to the following steps:

Step 1. The time of the experimental equipment has
been checked to ensure that the time of all equipment is
unified, and then a preliminary experiment has been
conducted to ensure the reliability of the whole
experiment.

Step 2. The SMI wireless glasses and the physiological
instrument have been worn and calibrated for the test
drivers. Then, the drivers have one hour to operate the
driving stimulation to ensure the reliability of experi-
mental data, so that drivers’ strangeness on the sim-
ulated driving platform can be eliminated.

Step 3. The official experiment has been carried out,
drivers in the test run normally according to the ex-
perimental design route, and the start time of the ve-
hicle was used as the time base point to record the
arrival and departure time of the driver in each tunnel
section.

Step 4. The experimental data has been saved and the
validity of the data has been checked after the exper-
iment. Then, all the drivers completed the experiment
according to the process strictly.

2.4. Data Collection. According to the experimental results,
eye movement and ECG data of different drivers fluctuates
greatly when the driver passes the first tunnel and the third

tunnel, due to that different drivers have different adapt-
ability to the simulated driving scenario. Some drivers have
not adapted to the simulated driving platform fully during
the first tunnel, and some drivers have adapted to the en-
vironmental parameters of the tunnel during the third
tunnel. Therefore, the following research is based on the eye
movement and ECG data of the second tunnel.

According to the switching time of the experimental
scene recorded by the experimenter, the eye movement data
analysis software can directly derive the fixation duration,
the average pupil diameter, the blink duration, et al. Part of
the eye movement data during the second tunnel is shown in
Table 1.

Similar to eye movement data, the heart rate (HR) value
during the second tunnel can be directly derived from the
physiological data analysis software. Because of the indi-
vidual differences between drivers, simply analyzing for the
HR values is likely to cause large errors. Therefore, this paper
uses the driver’s HR growth rate for analysis and modeling.
The calculation formula for heart rate indicators is shown in
(1); the HR value and HR growth rate data is shown in Table 2.

n —n
L P 100%. (1)
My

N. =

1

In this formula, N; indicates the driver’s heart rate at a
certain moment, #; indicates the HR value of the driver at a
certain moment, and 7, indicates the average HR value of
the driver in a calm state.



4 Journal of Advanced Transportation
TaBLE 1: Eye movement data during the second tunnel.
Fixation duration  Average pupil diameter  Blink duration Average pupil size Average pupil size  Dispersion
Item
(ms) (mm) (ms) (px) X (px) Y Y
1 199 4.9 99 82 67.5 12
2 98 34 166 70.7 47.7 3
3 232 32 129 72.1 471 27
4 66 3.3 365 69 48 2
5 66 34 199 72 47.5 5
TaBLE 2: Data of the HR value and HR growth rate.
Participant 1 Participant 2 Participant 31

Heart rate HR growth rate Heart rate HR growth rate Heart rate HR growth rate
1 103.448 0.293 85.714 0.143 90.634 0.208
2 101.351 0.267 87.977 0.173 88.757 0.183
3 100.334 0.254 84.746 0.130 87.719 0.170
4 99.338 0.242 79.576 0.061 81.967 0.093
3. Results

3.1. Analysis of Eye Movement Characteristics. As shown in
Table 3, the eye movement data of the driver in the tunnel
environment is counted within a time window of 30s. By
comparing the driving concentration and mental load of
drivers in the tunnel and normal driving environment, it is
found that the number of blinks of the driver in the tunnel is
significantly smaller than the number of blinks in the normal
environment (P <0.05), and the average blink time in the
tunnel (306.93 ms) is also smaller than the average blink time
in the normal environment (323.87 ms), which indicates that
drivers are more attentive and have a higher mental load in
the tunnels due to the dim light and poor visual distance. In
addition, the numbers of gazes and scans in the tunnel are
significantly less than those of driving in normal situations
(P <0.01), while the average gaze time is higher than normal
(219.60 ms). There is no significant difference in average scan
time between the two groups (the tunnel is 79.79 ms, normal
80.24 ms), which indicates that the driving environment in
the tunnel is more monotonous than in the normal envi-
ronment [22], and drivers need to observe the surroundings
more frequently in the normal environment than in the
tunnel environment, and their sight will move more
frequently.

The pupil diameter is an important indicator of the
driver’s sensitivity to light source [22]. The size of the pupil is
affected by the illuminance: the larger the illuminance value,
the smaller the pupil diameter. The average pupil diameter
data is selected from the 60 s before entering the tunnel to
the 60s after leaving the tunnel. The result is shown in
Figure 3.

According to Figure 3, drivers need to be more focused in
the tunnel because of the poor sight, and the pupil diameter is
larger than the pupil diameter in the normal environment.
During the process of entering tunnel, the diameter of the
driver’s pupil shows a trend of gradual increase. The driver’s
concentration and mental load are increasing. During the
process of leaving the tunnel, the diameter of the driver’s pupil

TaBLE 3: Analysis of the driver’s eye movement data in the tunnel
environment.

Items Mean Sd T p
. Tunnel 12.00 7.979
Blink count Freeway 2229 10.193 -2.10 0.049
Blink duration average Tunnel 306.93 106.464 20.39 0706
(ms) Freeway 323.87 41.923
o Tunnel 37.86 11.423
Fixation count Freeway 72.86 11.452 —5.73 0.000
Fixation duration Tunnel 227.51 103.510 018 0.864
average (ms) Freeway 219.60 59.490
Tunnel 36.00 14.900
Saccade count Freeway 7114 19.308 —-3.81 0.003
Saccade duration Tunnel 79.79 4.591
average (ms) Freeway 80.24 5.930 -0.16 0.875

shows a trend of sharp decrease due to the sudden increase of
light. At the same time, the driver’s line of sight is severely
obstructed, and appropriate measures (such as reducing the
speed) are needed to prevent accidents. After leaving the
tunnel, the diameter of the driver’s pupil gradually rises and
returns to the normal level.

3.2. Analysis of Driver’s ECG Index in the Tunnel Environment

3.2.1. The Driver’s HR Growth Rate. The HR growth rate
from the 60s before entering the tunnel to the 60s after
leaving the tunnel is selected as the analysis data. The result is
shown in Figure 4.

Previous studies have shown that the change in heart rate
is a direct reflection of the driver’s psychological tension. The
changes of HR growth rate indicate that the driver’s psy-
chological tension is tight, which will lead to the driver’s
misjudgment and misoperation, thus causing traffic acci-
dents. From Figure 4, we can see that the driver’s HR growth
rate increases in the tunnel section ranging from 12% to
27%; the HR growth rate in the normal section is maintained
at a relatively stable level. When the driver begins to enter
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FIGURE 4: Changes of HR growth rate during driving through a tunnel.

the tunnel, the driver’s HR growth rate increases. The
driver’s heart rate is maintained at a certain level in the
tunnel. When the driver is about to leave the tunnel, the
driver’s heart rate rises. As the vehicle leaves the tunnel, the
driver’s heart rate gradually returns to a stable value. It is
worth noting that the driver’s heart rate does not suddenly
become stable after entering the tunnel; it is a gradual
process. The main reason for the change in the driver’s
heart rate during the process of passing the tunnel is the
sudden change of sight distance and lighting conditions.
After vehicle enters the tunnel, the driver gradually adapts
to the sight distance and lighting conditions inside the
tunnel, so the driver’s heart rate gradually changes to a
stable level.

3.2.2. Heart Rate Variability. HRV (heart rate variability) is
a method that has been widely used in the academic liter-
ature. It reflects the state of ANS (autonomic nervous

system) [28]. It is therefore a good objective tool for
assessing emotional responses [29]. There are a number of
different measurements which are derived from the interval
between heartbeats (RR).

Time-domain analysis of HRV mainly included the
following:

(i) MEAN: mean value of the RR intervals

(ii) SDNN: standard deviation of the RR intervals

(iii) RMSSD: root mean square of successive differences

(iv) SDSD: standard deviation of difference between

adjacent RR intervals.

Frequency-domain analysis of HRV mainly included the
following:
(i) HF: high frequency
(ii) LF: low frequency
(iii) LF/HF: the low frequency and high frequency ratio.



The driver’s heart is innervated by both sympathetic and
vagal nerves. Under normal conditions, the excitability of
vagus nerve is dominant. Under fatigue, excitation, and
tension, sympathetic nerve is dominant. In terms of time-
domain index, according to the data in Table 3, the average
MEAN of RR interval of drivers decreases after entering the
tunnel section; that is, the number of inner jumps of drivers
in the tunnel section increases, which indicates that drivers
have a certain degree of tension because of the bad visual
distance. In the tunnel section, the SDNN index value of
drivers increased, which indicates that the sympathetic nerve
activity increases, the parasympathetic nerve activity de-
creases, and the mental load increases. The trend of RMSSD
and SDSD is the same as that of SDNN. After entering the
tunnel, drivers are affected by bad sight distance and the
index values increases.

In terms of frequency-domain indicators, according to
the data in Table 4, after the driver entered the tunnel
section, the driver’s LF value increases and the HF value
decreases due to the deterioration of the driving envi-
ronment, indicating that the driver’s vagus nerve activity is
weakened during this process, sympathetic activity is en-
hanced, the driver’s mental condition is increasingly un-
stable, and physiological indicators vary greatly. On the one
hand, because the visibility of the road is low in this en-
vironment, the driver’s line of sight is smaller than the safe
distance of the vehicle, and the driver needs to constantly
adjust the speed and the nerves are tight. On the other
hand, in order to prevent the driver from colliding with
other vehicles, it is necessary to concentrate, and therefore
the tunnel conditions have greater mental stress on the
driver.

4. Modeling

4.1. Driver’s Average Pupil Diameter Modeling. The tunnel
environment has a significant impact on the driver’s eye
movement and ECG indicators. In order to quantify the
trend of this influence, the variation of the average pupil
diameter has been obtained by the interpolation method.
First, a certain number of data points are selected from the
driving process from 30 seconds before entering the tunnel
to 30 seconds after leaving the tunnel. Then the interpo-
lation function of the driving process is obtained by using
cubic spline interpolation method, and the function f (x) is
drawn with the help of MATLAB, as shown in Figure 5(a).
According to the different functional areas of the tunnel,
the function is divided into three stages: before entering the
tunnel (f;), inside the tunnel (f,), and after leaving the
tunnel (f;); time axes of functions f; and f, are coordinate
origins at the start of entering the tunnel, and the time axis
of function f; is coordinate origins at the start of leaving the
tunnel.

The fitted models are shown in (2)-(4). The R-square and
RMSE of each model are shown in Table 5. The results of the
cubic spline interpolation function fitting of each model are
shown in Figures 5(b)-5(d). According to Table 4 and
Figure 5, it can be clearly seen that the R-square value of the
model is greater than 0.95, and the RMSE values are all less
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TaBLE 4: Time- and frequency-domain indicators of the driver’s
heart rate variability.

Freeway Tunnel
Items
Mean Sd Mean Sd

MEAN 0.732 0.116 0.683 0.112
SDNN 0.052 0.043 0.067 0.076
RMSSD 0.062 0.092 0.082 0.101
SDSD 0.037 0.050 0.065 0.087
HF 0.821 0.095 0.797 0.078
LF 0.179 0.090 0.206 0.078
LF/HF 0.218 0.156 0.258 1.580

than 0.1, which satisfies the accuracy requirements in sta-
tistics, indicating that the goodness of fit of each model is
higher.

£, (x) = 0.000757x" + 0.05438x + 4.917, (2)
x —0.5788\?
f2 (X) =1.989 exp(— <W) )
(3)

x —20.14\>
+4.802 exp( — <7> ,
28.89
f5(x) = 3.488 — 0.3046 cos (0.1751x)

, (4)
—0.5425sin(0.1751x).

4.2. Driver’s HR Growth Rate Modeling. According to the
ideas in part 4.1, the variation of the average pupil diameter
has been obtained by the interpolation method, and the
function g(x) is drawn with the help of MATLAB as
shown in Figure 6(a). According to the different functional
areas of the tunnel, the image is divided into three stages:
before entering the tunnel (g,), inside the tunnel (g,), and
after leaving the tunnel (g;). The fitting model of the
driver’s HR growth rate in different functional sections of
the tunnel is shown in (5)-(7). The R-square and RMSE of
each model are shown in Table 6; the results of the cubic
spline interpolation function fitting of each model are
shown in Figures 6(b)-6(d). According to Table 6 and
Figure 6, it can be clearly seen that the R-square value of
the model is greater than 0.99, and the RMSE values are all
less than 0.5, which satisfies the accuracy requirements in
statistics, indicating that the goodness of fit of each model

is higher.
x —5.366\2
g1(x) = 28-18‘”‘1’(‘ (iss ) )

X + 27.06\>
+13.76 exp| — (W) s

g, (x) = —0.0001704x" + 0.01292x” — 0.2877x> + 1.432x
+27.98,
(6)
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FIGURE 5: Piecewise cubic spline interpolation function model of average pupil diameter. (a) Piecewise cubic spline interpolation function.

(b) Function f; fitting. (c) Function f, fitting. (d) Function f; fitting.

TaBLE 5: Evaluation index of the driver’s average pupil diameter
fitting model in tunnel environment.

Evaluation index fi b f
R-square 0.9999 0.9928 0.9578
RMSE 0.002563 0.04015 0.09991

(x) = —1.985¢e + 04 e (x— 14’1>2
=-1. xp| - (F—F—
9s P\ 1751

x — 14.09\?
+1.986e + 0.4 exp| — <W> .

(7)

4.3. Classification Model of Tunnel Risk Level. Tunnels are
typical bad sight distance environments; driving in tunnels is
very dangerous and easy to cause traffic accidents. In order
to improve the driving safety in the tunnel environment, the
tunnel design and construction personnel will optimize the
safety of the tunnel, which needs so much of money and so
many of material resources. Therefore, it is necessary to
establish a classification model of tunnel risk level, which
allows tunnel design and construction personnel to adopt

different safety design measures for road sections on dif-
ferent risk levels. Tunnel manager can effectively improve
the design economics of tunnel environmental safety.

In order to classify the risk level of the tunnel envi-
ronment, a fusion model T (x) needs to be built based on the
functions f (x) and g(x). In the fusion model, T'(x) is the
risk assessment value of tunnel environments, « is the weight
coefficient of the driver’s HR growth rate,(1 —«) is the
weight coeflicient of the driver’s average pupil diameter,
f'(x) is the dimensionless form to f (x), and g’ (x) is the
dimensionless form to g(x). Then, the fusion model is
shown as

T(x) = af' (x) +(1 - a)g' (x). (8)

According to the research results in 4.1 and 4.2, the
functions f (x) and g (x) need dimensional standardization.
The models for dimensional standardization are shown as

f(x) - f('x)max
f(x)max - f(x)min’

g(x) - g(x)max
g (x)max -9 (x)min.

fl(x)=

(9)

g (x) =
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FiGURE 6: HR growth rate piecewise cubic spline interpolation function model. (a) Piecewise cubic spline interpolation function. (b)

Function g, fitting. (c) Function g, fitting. (d) Function g5 fitting.

TaBLE 6: Evaluation index of the driver’s HR growth rate fitting
model in tunnel environment.

Evaluation index 9 9> g3
R-square 0.9992 0.991 0.9996
RMSE 0.07524 0.3807 0.06458

Based on (8), T, is defined to represent the risk as-
sessment value of the common road section without tunnel
or bridge, and the time interval (g, b) is defined as the time
for driving in the common road section without tunnel or
bridge; then T, can be calculated by

b
T - ! jT(x)dx. (10)

" b-ala

The determination of the classification criteria of tunnel
environmental risk level needs large amounts of traffic ac-
cident data, the experimental data that obtained in this study
cannot be used to determine the classification criteria ac-
curately, and there is no relevant research that has defined
this criterion as well. Thus, for ease of use, the tunnel en-
vironmental risk level has been divided into four levels in
this study, which are normal state, light danger, moderate

danger, and severe danger. So, when the value of T'(x) is less
than or equal to T,, tunnel environmental risk level is
normal; when the value of T'(x) is more than T, and less
than or equal to 1.5T,, tunnel environmental risk level is
light danger; when the value of T (x) is more than 1.5T, and
less than or equal to 2T, tunnel environmental risk level is
moderate danger; and when the value of T'(x) is more than
2T,, tunnel environmental risk level is severe danger. The
classification criteria of tunnel environmental risk level are
shown in Table 7.

To verify the validity of the classification model, this
research selects the road section of 30 seconds before en-
tering the second tunnel to 30 seconds after leaving the
second tunnel as the studied area. As there is no relevant
research to prove the weight coeflicient relationship between
the driver’s HR growth rate and the average pupil diameter
in the tunnel environment at present, this paper takes a =0.5
as an example to study the tunnel environment risk clas-
sification. T, can be calculated according to (10), and
T, = 0.7495; the results are shown in Figure 7.

As shown in Figure 7, the tunnel area can be divided into
nine road sections according to classification model of
tunnel risk level. Among the nine road sections, risk level of
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TaBLE 7: Classification criteria of tunnel environmental risk level.

Level Normal state

Light danger

Moderate danger Severe danger

Criterion T(x)<T,

T,<T(x)<15T,

1.5T, <T(x)<2T, T (x)>2T,

Tunnel entrance

mmmmm Severe danger

Moderate danger

Tunnel exit

mmmmm Light danger

mmmsm Normal

Figure 7: The results of tunnel environment risk level classification.

one road section is severe danger, risk level of three road
sections is moderate danger, risk level of three road sections is
light danger, and risk level of two road sections is normal.
Compared with the total length of the tunnel area that has
been studied in this paper, the lengths of road sections at
different risk level are 17.8% (severe danger), 27.4% (mod-
erate danger), 27.0% (light danger), and 27.8% (normal). So, if
tunnel managers focus on optimizing road sections with risk
level of severe danger (17.8%), nearly 82.2% of the con-
struction funds can be saved and the economic benefits in the
tunnel construction can be greatly improved.

5. Conclusions

This paper has tested the eye movement and ECG indicators
in the tunnel environment and constructed the cubic spline
interpolation function modeling. The main conclusions are
as follows:

(1) The driver’s blinking times and average blinking time
in tunnels are lower than the normal level, but the
average fixation time is higher than the normal level.
In the process of entering the tunnel, the driver’s
pupil diameter shows a trend of gradual increase, and
in the process of leaving the tunnel, the driver’s pupil
diameter shows a trend of sharp decrease. Results
show that the tunnel environment has a significant
impact on the driver’s eye movement index, with
abnormal fluctuations in blinking times, average
blinking time, and pupil diameter.

(2) The driver’s HR growth rate changes significantly

during the tunnel section, which ranges from 12% to
27%. In the process of entering tunnel, the HR

growth rate increases continuously and then main-
tains a relatively stable level in the tunnel. In the
process of leaving the tunnel, the HR growth rate
begins to decline and gradually returns to normal
value. The results show that the tunnel environment
also has a significant impact on the driver’s heart rate
index.

(3) The time-domain and frequency-domain indicators
of the driver’s heart rate variability fluctuate in
varying degrees during driving in tunnels, among
which the SDSD index changes obviously, and the
maximum fluctuation range is 75.6%, which indi-
cates that the driver’s mental load increases greatly in
this environment and results in a strong sense of
tension, panic, and fatigue.

(4) Based on the statistical analysis of the driver’s eye
movement and ECG index, the cubic spline inter-
polation function is introduced to accurately fit the
dynamic trend of the driver’s physiological index in
the 30 s interval before and after entering and exiting
the tunnel. The goodness of fit of each model is above
0.95, which indicates that the impact of the tunnel
environment on the driver’s eye movement and ECG
indicators can be quantified and predicted.

(5) A fusion model is constructed based on the models of
the driver’s average pupil diameter and HR growth
rate to classify the risk level of the tunnel environ-
ment. According to this fusion model, the risk level
of the tunnel environment can be divided into four
levels, and the lengths of road sections with different
risk level are 17.8% (severe danger), 27.4% (moderate
danger), 27.0% (light danger), and 27.8% (normal).
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(6) The classification model of tunnel risk level can
provide guidance for the classification of tunnel risk
level, and tunnel personnel for design and con-
struction can adopt different safety design measures
for different risk levels, which can effectively improve
the economy of tunnel operating safety design.

Data Availability

The driver’s spatiotemporal data of eye movement and ECG
(electrocardiogram) index in the tunnel environment that
are used to support the findings of this study are currently
under embargo, while the research findings are commer-
cialized. Requests for data, 12 months after publication of
this article, will be considered by the corresponding author.
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The purpose of this study is to explore the factors associated with car use for short trips. Using the data collected from a travel
survey conducted with car users in Kunming, the structural equation model is employed to explore the structural relationships
between car use for short trips, attitudes toward cars and alternative travel modes, sociodemographics, and the built environment.
The results show that instrumental and symbolic attitudes toward cars are positively related to the affective attitude, and these
three attitudes have a significant effect on car use for short trips. The symbolic attitude of drivers is negatively associated with their
walking and cycling attitudes. Drivers with a better cycling attitude use a car less frequently for short trips. Concurrently, the
effects of sociodemographics and the built environment on the attitudes and car use for short trips are also identified. The findings
may contribute to understanding the car use behavior and help policy makers to identify methods for reducing car use

more clearly.

1. Introduction

In recent decades, with the rapid economic development and
urbanization in China, cars are being increasingly used by
families. Statistics from the National Bureau of Statistics of
China in 2018 show that the number of private cars has
reached 20.6 million [1]. Cars have gradually become an
important travel mode in urban residents’ daily life. In-
creased car use brought a series of negative problems, such as
traffic congestion and air pollution, which have put tre-
mendous pressure on energy crisis and climate change.
There is a general consensus that we need to reduce car
trips to minimize these negative impacts [2]. Although it
should be admitted that car use is necessary in response to
some certain needs, unnecessary usage of cars must be re-
duced, particularly for some short trips. In fact, a majority of
our daily trips by cars are proved to be short [3]. A study in
Sydney showed that nearly a quarter of the car trips were less
than 5min in duration [4]. According to the fourth Com-
prehensive Traffic Survey in Beijing in 2010, car trip dis-
tances of less than 5km accounted for more than 40% of the

total number of car trips [5]. Short-distance car trips may
require more fuel and generate more harmful emissions,
such as carbon monoxide (CO), because they are always
driven in urban areas with cold engines, compared with
long-distance trips [6, 7]. Unlike long-distance trips, short
trips in a car can be more easily replaced by other travel
modes, such as walking and cycling. This is more likely to
reduce car use for short trips. Moreover, promoting drivers
to substitute car use with active travel modes also benefits
public health and contributes to a low-carbon society [8].

Existing studies have analyzed the determinants of car
use from different perspectives. These include sociodemo-
graphics of the traveler [9, 10], attitudes and perceptions
toward cars [11, 12], built environment [13, 14], and the
instrumental function of the car itself [15-17]. However,
only a few studies have focused on car use for short trips. A
Dutch study [6] investigated short car trips from along-term
travel survey of 35 car drivers. The results attributed the
usage of cars for short trips to the transport of heavy goods
and passengers. Another study [18] showed that the con-
venience of parking a car induced the park and ride demand,
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and weather influenced the decisions of drivers to use cars
for short trips. Additional influencing factors such as the
individual and household socioeconomic status of the
traveler, availability of cars and alternative modes, trip
purpose, and the built environment of their residence also
play an essential role in choosing the mode for short trips
19, 20].

Opverall, the influencing mechanism of car use for short
trips is not well understood, and several issues need to be
further explored. First, the attitudes of travelers toward cars
play an important role in explaining car use. Although the
existing studies have investigated the instrumental, affective,
and symbolic attitudes toward cars and their effects on car
use [21-23], it is necessary to verify the effects of these
attitudes on car use for short trips further. Second, besides
the attitudes of car users toward their cars, we should also
pay attention to their attitudes toward alternative travel
modes. This may help to understand the reasons they select
cars instead of alternative modes. Third, the effects of
sociodemographics and the built environment on car use for
short trips require further exploration. Examining these
issues will contribute to a more comprehensive under-
standing of car use for short trips. In this study, using data
collected from a travel survey conducted with car users in
Kunming, the structural equation model (SEM) is employed
to explore the structural relationships between the car use
for short trips, attitudes toward different travel modes,
sociodemographics, and the built environment.

The remainder of this article is structured as follows. The
next section introduces the conceptual model. Section 3
presents the data collection, key variables, and method.
Section 4 discusses the model results. Our conclusions are
presented in the final section.

2. Conceptual Model

Existing studies have generally proven that attitudes have a
significant impact on car use. Attitudes toward cars mainly
consist of three components: instrumental aspect, symbolic
aspect, and affective aspect [22-24]. The instrumental
function of the car leads people to prefer using cars than
other travel modes because they move faster and are always
available for the trips [25]. Symbolic function could display
drivers’ social identity and express their self-concept to some
extent [23]. Affective function refers to drivers’ emotional
feelings, such as the pleasure of driving and the passion for
speed [12, 24]. In exploring the relationship among in-
strumental function, symbolic function, and affective
function of the car, Steg and Tertoolen [21] proposed a
theoretical model that car use depended on social, affective,
and instrumental motivations; meanwhile, instrumental and
symbolic motivations have an effect on affective motivation.
Steg and his colleagues further verified this model empiri-
cally [22, 23]. Gatersleben [26] also reported that affective
function of a car depended on its instrumental function and
symbolic function.

The initial conceptual model structure of the interrela-
tionships is presented in Figure 1. According to the theo-
retical model proposed by Steg and Tertoolen [21], the model
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assumed that car use depended on instrumental, symbolic,
and affective attitudes, and the affective attitude was a
consequence of the instrumental and symbolic attitude.
These three attitudes affect car use in the meanwhile.
Considering that walking and cycling are the main al-
ternatives to cars for short trips, we also included the impact
of drivers’ attitudes toward walking and cycling. In our
hypothesis, walking and cycling attitudes directly influence
car use for short trips, and the awareness of drivers about the
environmental problems is considered to affect the car use,
walking, and cycling attitudes. Besides the interrelationships
between the three attitudes toward cars, the walking and
cycling attitudes of car users are also verified. In the model,
these attitudes are included as latent variables, which are
measured by a series of attitude indicators. All these attitudes
and car use for short trips are assumed to be influenced by
sociodemographics and the built environment.

3. Research Design

3.1. Data Collection. The data for this study were obtained
through a short-distance travel survey conducted in May
2019 in Kunming. Kunming is the capital of the Yunnan
province in southwest China. Kunming is a representative
of numerous Chinese cities with a hierarchical center
structure and comparative size. The urban region of Kunming,
which consists of the five districts: Chenggong, Wuhua,
Panlong, Xishan, and Guandu, is shown in Figure 2.
Approximately 3.6 million individuals live in the urban area
of Kunming, the population density in 2018 was 10902
inhabitants/km?.

Given the objectives of the study, we only selected
respondents who are car users. The questionnaire included
questions about their sociodemographic characteristics,
driving information, attitudes, perceptions toward differ-
ent travel modes, and information about their last 5 short
trips (less than 4 km). The respondents were approached at
multiple automobile 4S shops, garages, and public parking
lots located in the five districts. All the respondents were
given a reward of 10 CNY. In each district, we planned to
obtain approximately 70 random samples. A total of 341 car
users completed the questionnaires, and 26 questionnaires
were eliminated owing to incomplete responses. Overall,
the database used for this study included 315 valid samples.
In general, the survey captured various car users in
Kunming, and the sample was representative of the car
users with respect to gender, age, household income, and
employment status. A description of the sample is provided
in Table 1.

3.2. Key Variables. The variables used in the analysis in-
clude personal and household characteristics, built envi-
ronment, attitudes, and car use for short trips. The
definition of short trip varies between studies [7, 27-29].
Lee et al. defined 8 km as the maximum distance for a short
round trip (4km for a one-way trip) [7]. de Nazelle et al.
used 3 miles (4.8 km) as the threshold value for a short trip
[27]. According to the report of the 2016 Kunming Urban
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Residents Travel Survey [30], the average distance cycled is
2.9km, and 75.6% of all cycling trips are less than 4 km.
Almost all walking trips are within 4km. Considering
walking and cycling are potential alternatives to short car
trips, a short trip is defined as a one-way trip within 4 km.
Car use for short trips is an outcome variable. In our model,
the percentage of trips made by a car in the past five short
trips is the measure of car use. Consequently, the values
range from 0 to 1, and the mean is 0.49.

The personal and household characteristics included
gender, age, education level, employment status, driving
experience, annual household income, and car ownership.
Age is classified into three categories: 18-30, 31-50, and
older than 50. Education level is classified into two cate-
gories: high school or less, and college or higher. Two
categories are differentiated for employment status: staff and
others, where staff mainly includes being an employee in an

a participant for short trips, is also considered. The domi-
nance of a car in a family is classified into three categories:
tully dominated by yourself, used more by yourself, and used
more by your family members.

In this study, the built environment variables only in-
clude the number of bus stops around the residences of the
respondents and the linear distance from their residence to
the city center. Because the average pedestrian distance to
bus stops is generally approximately 500m [31, 32], we
searched for the number of bus stops within a radius of
500 m from the residences of the participants. The average
number of bus stops around their residences is 9.17, and the
standard deviation is 4.60. Considering the overall layout of
Kunming, this study adopted the Dongfeng Square (marked
in Figure 1) as the city center. The average linear distance
from respondents’ residences to Dongfeng Square is
10.02km, and the standard deviation is 7.62.

According to the theoretical model proposed by Steg and
Tertoolen [21], the attitudes toward a car include instru-
mental, symbolic, and affective attitudes. In this study, these
attitudes were the latent variables and measured by their
indicators. The participants indicated the degree of agree-
ment on a Likert scale ranging from 1 (totally disagree) to 7
(totally agree) for each statement. The statements were
designed in accordance with the studies exploring how at-
titudes influence car use [2, 18, 23, 24] and with actual
situations of the survey area.

The instrumental attitude is measured by five statements:
“Using a car allows me to choose my own route,” “Using a
car can protect me against bad weather,” “A car can make it
easy to go out at any time,” “A car can make it easy to reach
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TaBLE 1: Sample characteristics.

Variables Classification Cases Percentage (%)
Male 200 63.5
Gender Female 115 36.5
18-30 156 49.5
Age 31-50 141 44.8
>50 18 5.7
. High school or less 63 20.0
Education level College or higher 252 80.0
Employment status Staff 210 66.7
ploy Others 105 333
<100,000 133 422
Annual household income (CNY) 100,000-200,000 121 38.4
>200,000 61 19.4
. 1 206 65.4
Car ownership > 109 346
Fully dominated by yourself 110 34.9
Dominance of the car Used more by yourself 108 34.3
Used more by your family 97 30.8
Driving experience (years) 0-10 258 819
§ xp ¥ >10 57 18.1

any place directly,” and “A car can pick up passengers and
carry capacity.” The symbolic attitude is measured by four
statements: “A car can distinguish me from the rest of
people,” “A car can express my taste and hobby,” “A car can
show my success to others,” and “A car can make me more
confident.” The affective attitude is measured by four
statements: “Driving can make me enthusiastic,” “Driving is
enjoyable,” “I'm fond of my car,” and “I feel everything is
under control when I drive.”

Considering that walking and cycling are the main al-
ternatives to car use for short trips, we also investigated the
attitudes of the participants toward walking and cycling. The
Statements are “Cycling can benefit my health” and “Cycling
is enjoyable” are designed for measuring the attitude toward
cycling. Statements “Walking can benefit my health” and
“Walking is enjoyable” are for measuring the attitude toward
walking [33]. Moreover, the environmental problem
awareness is measured using the following statements: “Car
emission is an important cause of air pollution” [34] and “I
think transportation has a huge impact on the environment,
and I support low-carbon travel.” Descriptive statistics of all
the attitude statements are shown in Table 2.

» <«

3.3. Method. The structural equation model (SEM) has been
widely used for exploring the travel behavior [35, 36]. In this
study, the SEM was employed to explore the structural re-
lationships between the car use for short trips, attitudes to-
ward different travel modes, sociodemographics, and the built
environment. SEM was chosen for its ability to capture both
the effects of exogenous variables on endogenous variables,
and the effects of endogenous variables on each other [37].

The model was developed by using MPLUS Version7
software. In this study, the attitude indicators were collected
on a seven-point Likert scale and were treated as categorical
variables. The sociodemographic attributes were also
grouped to be included in the model. Therefore, we used an

available method named weighted least square parameter
estimator (WLSMV), which is a robust estimator designed
for processing categorical-dependent variables with robust
standard errors and does not require a large sample size [38].

The final model was modified in two phases. First, based
on the conceptual model, all the variables and relationships
were included in the model. Second, based on the model
output, except the direct links between the attitudes toward
the travel modes and car use for short trips, we discarded the
links when the direct effects were not significant.

4. Results

4.1. Model Fit Indices. Table 3 lists the model-fitted indices
from several aspects. The y* statistic is used to measure the
discrepancy between the model-based and observed co-
variance matrices. Because the y” statistic increases with the
sample size, it is not considered as a good measure of the
goodness of fit. To reduce the sensitivity of the x* statistic to
the sample size, it can be divided by the degrees of freedom.
The value of y*/dfis 2.55, which is lower than the cutoff value
of 3.0; values of 3 or less indicate a good fit [36]. The
comparative fit index (CFI) and Tucker-Lewis index (TLI)
are used to evaluate he improvement of the hypothesized
model compared with the independence model with un-
related variables [39]. The value of the CFI is 0.926, and TLI
is 0.917, indicating that the model has an acceptable fit. The
value of the root-mean-square error of approximation
(RMSEA) is 0.070, which exhibits a reasonable fit.

4.2. Measurement of Attitude Latent Variables. In the
structural equation context, the measurement model spec-
ifies how the latent variables are measured by the observed
variables. In our model, the attitude latent variables are
measured by a series of attitudinal statements (mentioned in
chapter 3.2.2). Table 4 lists the statements included in each
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TaBLE 2: Descriptive statistics of the attitudes.

Attitudes Number of statements Mean SD Cronbach alpha
Instrumental attitude 5 5.75 1.28 0.82
Symbolic attitude 4 3.23 2.32 0.79
Affective attitude 4 4.41 1.81 0.82
Cycling attitude 2 5.41 1.44 0.71
Walking attitude 2 5.68 1.30 0.74
Environmental awareness 2 5.36 1.47 0.70
TaBLE 3: Model fit result.

Y ) p 1df CFI TLI RMSEA
Desired values p>0.05 <3.0 >0.9 >0.9 <0.08
Model-based values 1022.825 (165) 0.00 2.55 0.926 0.917 0.070

TaBLE 4: The results of measurement model.

Standardized factor

Two-tailed p

Latent variables Attitude statements . S.E.
loading value
Using the car allows me to choose my own route. 0.772 0.029 <0.001
Instrumental attitude Using the car could protect me against bad weather. 0.707 0.030 <0.001
towards car The car could make me easy to go out at any time. 0.868 0.021 <0.001
The car could make me easy to reach any place directly. 0.713 0.029 <0.001
The car could pick up passengers and carry capacity. 0.706 0.031 <0.001
The car can distinguish me from the rest of people. 0.880 0.015 <0.001
Symbolic attitude towards The car could express my taste and hobby. 0.869 0.016 <0.001
car The car could show my success to others. 0.916 0.012 <0.001
The car could make me more confident. 0.923 0.012 <0.001
Driving could bring me enthusiasm. 0.907 0.024 <0.001
Affective attitude towards Driving is enjoyable. 0.714 0.029 <0.001
car I'm fond of my car. 0.534 0.038 <0.001
I feel everything under control when I drive. 0.549 0.039 <0.001
. . Cycling could benefit my health. 0.901 0.024 <0.001
Attitude towards cycling ! éycling is enjoyab}lle. 0.754 0.028  <0.001
. . Walking could benefit my health. 0.860 0.025 <0.001
Attitude towards walking V\%alking is enjoyab}l’e. 0.895 0.024  <0.001
. Car emission is an important reason for air pollution. 0.714 0.034 <0.001

Environmental problem I think transportation has a great impact on environment and I

awareness 0.583 0.038 <0.001

support the low-carbon travel.

attitude latent variable and the standardized factor loadings
for each statement. All the statements in the measurement
model have standardized factor loadings larger than 0.5, and
all of them are significant at p <0.001.

4.3. Structural Relationships and Effects between Endogenous
Variables. Figure 3 displays the relationships between the
endogenous variables, along with the corresponding stan-
dardized weights. Both the instrumental and symbolic at-
titudes have statistically significant positive effects on the
affective attitude. The magnitude of the effect on the affective
attitude by the instrumental attitude is smaller than that by
the symbolic attitude. The environmental problem aware-
ness shows a significant positive impact on both the walking

and cycling attitudes. Car users with a better environmental
awareness have a higher evaluation of the benefits brought
by walking and cycling. We also find significant negative
effects of the symbolic attitude on walking and cycling at-
titudes. These results indicate that car users who care more
about the symbolism of a car have a lower evaluation of
walking and cycling.

The direct and indirect effects of the attitude variables on
car use for short trips are listed in Table 5. The affective
attitude has a significant positive direct effect on car use for
short trips. The direct effect of the instrumental attitude is
not statistically significant. However, the instrumental at-
titude has a significant indirect effect on car use for short
trips based on the affective attitude. In terms of the symbolic
attitude, it has a significant positive total indirect effect on
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Ins;:;:zcelztal Walking attitude
0.527**
Affe‘c'tive 0.303**| Percentage of
attitude car use for
x short trips
0.685"*
Csaytﬁz(gic ~0.295"* Cycling attitude
-0.228"*
-0.154"*
FIGURE 3: Structural relationships between the endogenous variables (note: *p <0.1 and **p <0.05).
TaBLE 5: Standardized direct, indirect, and total effects of the attitudes on car use.
Attitudes Direct effect Indirect effect Total effect
Instrumental attitude 0.002 0.160** 0.162**
Symbolic attitude -0.295** 0.234** -0.061**
Affective attitude 0.303** 0.303**
Cycling attitude -0.190* -0.190*
Walking attitude 0.113 0.113
Environmental problem awareness -0.06 -0.06

Note: *p<0.1 and ** p <0.05.

car use for short trips via three mediating variables. In detail,
it has a significant positive indirect effect on car use for short
trips via the affective attitude. Moreover, the symbolic at-
titude has a significant positive indirect effect on car use for
short trips based on the cycling attitude and none through
the walking attitude. Different from our expectations, the
symbolic attitude has a negative direct and total effect on car
use for short trips. In terms of the individual attitude toward
the alternative modes, the cycling attitude has a negative
effect on car use for short trips. This indicates that drivers
with a better cycling attitude use a car less for short trips.
However, the walking attitude is less related to car use for
short trips.

4.4. Effects of the Exogenous Variables on Attitudes and Car
Use. Table 6 lists the direct, indirect, and total effects of the
exogenous variables on the attitudes and car use for short
trips. The total effect is the sum of the direct and indirect
effects. In terms of personal characteristics, age is negatively
related to the affective attitude. It appears the affection of an
individual for a car decreases with increasing age. Age also
has a significant negative indirect effect on car use for short
trips through the affective attitude. Gender has a significant
positive direct effect on the affective attitude and positive
indirect effect on car use for short trips. This indicates that
men have a deeper affection for a car and are more likely to
use cars for short trips when compared with women. The
education level has a significant negative direct effect on the
symbolic attitude and negative indirect effect on the affective
attitude via the symbolic attitude. Simultaneously, car users
with a college education are more are likely to have a higher

evaluation of the benefits of walking and cycling when
compared with those with a high school education or less.
Nevertheless, the total effect of the education level on car use
is not significant. Compared with others, staff is positively
related to car use for short trips. The driving experience is
positively related to the instrumental attitude and has a
positive indirect effect on the affective attitude through the
instrumental attitude. Although the indirect effect of the
driving experience on car use for short trips is positive,
the total effect is negative.

In terms of the household characteristics, compared with
the reference group with an annual household income below
100,000 CNY, the group with an annual household income
above 200,000 CNY has a significant positive direct effect on
the symbolic attitude. It also has a significant positive in-
direct effect on the affective attitude and negative indirect
effect on the cycling and walking attitudes through the
symbolic attitude. Moreover, both the higher income groups
have a significant negative direct effect on the cycling at-
titude. According to the total effect, people belonging to the
group with an annual household income above 200,000 CNY
are more likely to use a car for short trips. Car use is also
positively related to the car ownership in a household and
car dominance.

In terms of the built environment, people living in a
residential area with more bus stops are less likely to use a car
for short trips. The linear distance to the city center has a
significant positive direct effect on the instrumental attitude
and positive indirect effect on the affective attitude through
the instrumental attitude. According to the total effect, car
use is positively related to the linear distance to the city
center.
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5. Conclusion and Discussion

This aim of this study is to explore the reasons why car use is
attractive for short trips. Using the data collected from a
travel survey conducted with car users in Kunming, the SEM
is employed to explore the structural relationships between
the car use for short trips, attitudes toward different travel
modes, sociodemographics, and the built environment.

This study emphasizes the effects of the affective, in-
strumental, and symbolic attitudes toward cars on car use for
short trips. The results indicate that the instrumental and
symbolic attitudes toward cars have a significantly positive
direct effect on affective attitude. This result is consistent
with that of Lois and Lopez-Séez [24], which confirmed that
drivers with high evaluation of the instrumental and sym-
bolic effects of a car will increase their affection for their cars.
The affective attitude has a significant positive direct and
total effect on car use for short trips. Coincident with the
finding of Steg [23], in our model, the instrumental attitude
is not directly related to car use. The results reflect that
compared with the instrumental function provided by cars,
drivers’ affection of cars seems to play a more important role
in their car use for short trips.

It is noteworthy that although the symbolic attitude has a
positive indirect effect on car use, the total effect is negative
because the magnitude of the negative direct effect is rela-
tively larger. To explain this result, we offer several possible
reasons. First, the dominance of a car in a family is related to
the individual car use. We compared the average scores of
the symbolic attitude statements of the drivers who have
different car dominances in their families. The average scores
of the three categories are as follows: fully dominated by
yourself (3.10), used more by yourself (3.05), and used more
by your family members (3.35). This result shows that the
drivers with more car dominance, which usually implies
more car use, have a lower evaluation of the symbolic
function. It may also indicate a psychological phenomenon
that the more you lack something, the more you care about
it. Second, the subjective biases of the respondents may also
lead to this result. The average score of the symbolic attitude
statements is the lowest among all the attitude statements.
This may be the same situation as in the study by Steg et al.
[22] in which when people were asked to evaluate the at-
tractiveness of the aspects of car use, they deliberately
avoided the symbolism of a car. We believe that the effect of
the symbolic attitude on car use for short trips requires
turther verification and explanation by empirical and the-
oretical studies.

In agreement with Lois and Lopez-Saez [24], the affective
attitude and car use are positively related to men and young
drivers. Young drivers’ higher evaluation of the affective
effect of a car may lead their short trips use cars more.
Education and the annual household income are also related
to these attitudes, except the instrumental attitude. Con-
currently, the number of bus stops around the residences has
a negative effect on car use for short trips. These results
confirm that people living in neighborhoods who are easily
accessible by transit tend to reduce car use [39, 40].
Moreover, as the distance to the city center increases, drivers
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will have a higher evaluation of the instrumental and
affective attitudes toward a car and will use a car more for
short trips. This result is similar to the previous study in
China [41] that people being close to city center tend to
reduce the car use. In addition, the employment status,
driving experience, car dominance, and car ownership in a
household have significant effects on car use for short
trips.

Encouraging people to choose walk and cycle is one way
to reduce unnecessary car use and improve individual health
outcomes [42]. In this study, we also investigate the attitudes
of car users toward walking and cycling, to gain a more
comprehensive understanding of the views on the active
modes of people who use cars in their daily lives. The results
show significant negative effects of the symbolic attitude on
the walking and cycling attitudes. Furthermore, the cycling
attitude of drivers is negatively related to car use for short
rips. However, the walking attitude has no significant effect
on car use for short trips.

All of these findings may contribute to understanding
car use behavior for short trips. Our research fills the gaps in
the study of short car trips from a psychological perspective.
Several implications for policymakers may be drawn from
this study. Our results demonstrate the attitudes play an
important role in car use for short trips. Greater attention
should be given to psychological strategies to change the
perceptions and attitudes toward cars. Furthermore, in order
to promote a modal shift from short car trips to cycling, it
may be worthwhile to make car users aware of the benefits of
cycling through education and publicity. Our results dem-
onstrate that the attitudes and car use for short trips are
related to the sociodemographics of car users. Therefore,
policies should be tailored toward specific targeted groups to
make them more effective [23]. In addition, our results also
claim that improving the accessibility of public transport can
effectively reduce car use.

The current study also has several limitations. First, our
data were based on the perception of the participants of their
short trips. The difficulty of recalling past behaviors and their
perceptions of travel information may have led to a certain
bias. Second, this study only included a few built environ-
ment factors. Other factors such as the walking and cycling
environment, neighborhood design, and land use are also
essential factors influencing people to choose active modes
[42]. In the future, we will consider more built environment
factors to promote the shift of drivers from cars to active
modes for short trips.

Data Availability

The data for this study was obtained through a short-
distance travel survey conducted in May 2019 in Kunming,
Yunnan province, China. The data will be available to the
scientific community by a data article, which will be sub-
mitted to an appropriate journal in the near future.
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Plenty of studies on exclusive lanes for Connected and Autonomous Vehicle (CAV) have been conducted recently about traffic
efficiency and safety. However, most of the previous research studies neglected comprehensive consideration of the safety impact
on different market penetration rates (MPRs) of CAVs, traffic demands, and proportion of trucks in mixture CAVs with human’s
driven vehicle environment. On this basis, this study is to (1) identify the safety impact on exclusive lanes for CAVs under different
MPRs with different traffic demands and (2) investigate the safety impact of trucks for CAV exclusive lanes on mixture en-
vironment. Based on the Intelligent Driver Model (IDM), a CAV platooning control algorithm is proposed for modeling the
driving behaviors of CAVs. A calibrated 7-kilometer freeway section microscopic simulation environment is built by VISSIM.
Four surrogate safety measures, including both longitudinal and lateral safety risk indexes, are employed to evaluate the overall
safety impacts of setting exclusive lanes. Main results indicate that (1) setting one exclusive lane is capable to improve overall safety
environment in low demand, and two exclusive lanes are more suitable for high-demand scenario; (2) existence of trucks worsens
overall longitudinal safety environment, and improper setting of exclusive lanes in high trucks, low MPR scenario has adverse
effect on longitudinal safety; and (3) setting exclusive lanes have better longitudinal and lateral safety improvement in high-truck
proportion scenarios. Setting one or two exclusive lanes led to [+42.4% to —52.90%] and [+45.7% to —55.2%] of longitudinal risks
while [-1.8% to —87.1%] and [-2.1% to —85.3%] of lateral conflicts compared with the base scenario, respectively. Results of this
study provide useful insight for the setting of exclusive lanes for CAVs in a mixture environment.

1. Introduction include California PATH [5] and SARTRE [6]. It seems perfect

if all vehicles on roads are connected and autonomous.
Recent research studies on Connected and Autonomous Ve- However, human-driven vehicles (HDVs) and CAVs will co-
hicle (CAV) based on the Internet of Things (IoT), artificial  exist in a long period, and some researchers argued that the
intelligence, sensor technology, and other emerging technolo-  safety impact is mainly decided by the market penetrate rates

gies have made it ready for real-world applications in the near ~ (MPRs) of CAVs [3]. On the contrary, CAV-HDV and HDV-
future [1]. It has been well recognized that CAV has the ca-  CAV interactions still need more experimental data [7]. Hence,
pability of enhancing traffic safety, efficiency, and reducing  the early application of CAVs is making sense to build on
emission [2-4]. Early field experiments of this technology  exclusive lanes, which is a much simpler environment. Besides,
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large quantities of optimization methods on autonomous
driving have been conducted, such as multivehicle cooperative
stability control of CAVs [8], platoon controllers for CAVs
including the Proportional-Integral-Derivative controller
([9, 10]), car-following model-based controller [11] , interpo-
lating controller [12], and so on. Cooperative vehicle and in-
frastructure for optimizing signal control on arterials or urban
intersections and multivehicle platooning control have the
possibility to be successfully applied on exclusive lanes for CAVs
in the near future [13-15].

One primary consideration of this paper is to identify the
safety impact on exclusive lanes for CAVs on different MPRs
with different traffic demands. A considerable amount of
previous studies agrees that exclusive lanes for CAVs en-
hance safety, capacity, and efficiency of freeway facilities
compared with CAVs and HDVs sharing the same lanes
(e.g., MPRs<100%) [16, 17]. However, none of them has
discussed how to set one, two, or more exclusive lanes
according to different traffic demands. It is irrational to place
an exclusive lane with relatively low MPRs of CAVs on a
congested freeway since compressing the headway to HDV's
would induce higher traffic crash risk and worsen conges-
tion. Hence, careful discussion on the impact of exclusive
lanes for connected and autonomous vehicles is necessary.

Another equipollence consideration is the influence of
trucks on safety impacts for CAV exclusive lanes on different
traffic compositions [18]. Previous research studies often
assumed that only a few trucks exist on traffic, which means
that traffic mostly consists of cars. In fact, the existence of
trucks is not only changing the speed distribution but also
influences actual road capacity as it is longer, heavier, and
clumsier than cars [19]. Traditionally, these differences
between trucks and cars can be neglected in modeling the
traffic system since the proportion of the truck is rare on
most uncongested freeways. However, with the rapid de-
velopment of China, road freight transportation, almost by
trucks, takes up nearly three-quarters of the total freight
volume in China [20], which produces large quantities of
freight demands on the freeway. As the proportion of trucks
increase, speed difference enlarged, and its safety impact is
no longer negligible. Particularly in the situation that ex-
clusive lanes have taken over one or two lanes for CAVs, the
maintaining of overall safety impacts is questionable. Be-
sides, experiments have conducted and pointed out that
heavy-duty trucks’ close-distance driving will result in a
significant fuel reduction [21, 22]. Additional efforts need to
be made to the influence of high-truck proportion toward
the safety impact of freeway exclusive lanes for CAVs for the
early application of CAVs.

The homogeneous CAV traffic is believed to be beneficial
for the application and operation of autonomous vehicles,
and the setting philosophy of CAV exclusive lanes still needs
further investigation. Accordingly, in this paper, we try to
make a supplement to previous research studies on inves-
tigating safety impacts of exclusive lanes for CAVs on dif-
ferent traffic demands and compositions to determine when
it is better to set exclusive lanes.

The contribution of this paper is threefold. First, a
platoon control algorithm is developed to incorporate the
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cooperation of autonomous vehicles in the traditional IDM
model. Second, we deployed a simulation environment with
surrogate safety measures technology to investigate the
safety impact of the exclusive lane. Third, we conduct a
comprehensive comparison analysis to analyse the safety
impact on the impact of CAVs on the exclusive lane and
pointed out useful perspectives for the operation of the CAV
exclusive lane.

2. Literature Review

2.1. Evaluating Impacts of CAVs. Many research studies of
realistically modeling CAV systems with platoon control in
varied scenarios have been conducted in recent years;
however, relatively few in the literature focus on exclusive
lanes for CAVs. There are two major approaches for ex-
clusive lane research studies: analytical modeling and
computer simulation. One of the springboards is from the
improvement of traffic flow, including increasing string
stability, capacity, or preventing CAVs degraded to AVs
(without cooperative) [23-26]. The above studies revealed
the pros and cons of setting up exclusive lanes from the
traffic flow theory perspective. On the contrary, Rahman and
Abdel-Aty [27] applied surrogate safety measures to evaluate
the safety impact of exclusive lanes for CAVs. Besides, other
research studies on the safety impacts of CAVs applied
surrogate safety measures [28, 29] presented the feasibility of
this kind of evaluation. Details of aforementioned literatures
are summarized in Table 1.

2.2. Simulation-Based Approaches. Simulation testbeds and
approaches for research studies of CAVs or autonomous
vehicles are still necessary since the proof that CAVs bring
safety on roads is insufficiency. Microscopic simulation-
based CAV studies have utilized different kinds of simu-
lation platforms. Besides simulation platforms, CAV car-
following algorithms are also necessary. The driving be-
havior for CAVs and human drivers are very different. To
build car-following models for CAVs, earlier studies have
applied Intelligent Driver Model (IDM) [21, 30, 31], Newell’s
car-following model [32, 33], full velocity difference (FVD)
model [34], MICroscopic Model for Simulation of Intelli-
gent Cruise Control (MIXIC) [35], and so on. Research [36]
reviewed these car-following models and pointed out that
the Intelligent Driver Model is one of the most used models,
and it is considered to be more suitable to simulate behaviors
of CAVs in the real world since it is able to model turbu-
lence, oscillation, and other traffic flow characteristics.

2.3. Safety Impacts of Trucks. According to the Freeway
Administration of Jiangsu Province (FAJ), China, the
running speed of trucks in the Ninghu Freeway is at a range
of 48km/h to 78 km/h, far less than 65~119 km/h for hu-
man-driven cars. Such a speed difference is one of the main
causes of crashes. Researchers have found the relationship
between speed differences with accidents is given by the so-
called Solomon curve or Crash Risk Curve [20, 37, 38]. The
curve largely follows U-shape, which means that a larger



Journal of Advanced Transportation

TaBLE 1: Summary of previous research studies for connected and autonomous vehicles with mixture environment.

Study Base model Scenarios Main results
. . Exclusive lanes for CAV could provide up to 5.5 times
A platooning model (similar . .
. . . the capacity of the conventional freeway when platoon
[23] with Wiedemann 99 for 1 exclusive lane L . .
HDV) size is 20, interplatoon spacing is 50 meters, and
intraplatoon spacing is 1 meter
1, 2 exclusive lanes and 3 exclusive rows . . .
[24] Cellular automata for CAVs on 2 lanes. MPRs =0, 10%, . . ., Excluswe. l.a nes for CAV will greatly 1mprov§: the grafﬁc
90% condition of the freeway on MPRs =10%-80%
. Setting CAV exclusive lanes at low MPRs deteriorates
- 0,
[25] Cellular automata 0, 1, or 2 exclusive 1a;10e(;. MFPRs=0, 10%, the performance of overall traffic flow throughput,
n T particularly under a low-density level
1 exclusive lane with 3 strategies: forced- Optional use of the exclusive lane without any limitation
[26] Not available everywhere, forced-reserved, and on the type of operation could improve congestion,
optional-everywhere increase 30% capacity for a four-lane freeway
[27] IDM model for CAV, 0 or 1 exclusive lane Connected vehicles’ platooning on the exclusive lane
Wiedemann 99 for HDV outperformed all lane scenarios
Wiedemann 99 for HDV, MPRs =0, 25%, 50%, 75%, and 100% ona C'*v® Dring about compelling benefit to road safety as
[28] traffic conflicts significantly reduce even at low
IDM model for CAV freeway .
penetration rates
. 0, 0, 0, 0, 0,
Mixture (IDM, Wiedemann MPRs = 30%, 40/]’ 6(.) o SO.A]’ apd 100% CAV:s reduce segment crash risk significantly in terms
[29] on an arterial with 9 signalized

and modified Bando) intersections

of five surrogate measures of safety

speed difference indicates more accidents. Due to the speed
difference, conflicts between cars and trucks occurred.
Hence, the Administration has tried to separate truck traffic
by forbidding their running on the leftmost two lanes, but
strong conflicts still exist on weaving areas, and safety im-
pacts of trucks need investigation.

3. Methodologies

The evaluation of safety impacts of CAV exclusive lanes is
implemented on a freeway designed in the PTV-VISSIM
platform with the External Driver Model. Driving behaviors
of CAVs, including car-following and lateral lane change
decisions, are coded in C++ language as a Dynamic Link
Library (DLL) plug-in, which allows users to override
original VISSIM default driving behaviors. This section
describes an overall simulation framework of evaluating
safety impacts of CAV exclusive lanes, including model
calibration, driving behaviors of CAVs and HDVs, and
surrogate safety measure indexes. The overall architecture of
this study is presented in Figure 1.

Three main assumptions of this study are as follows: (1)
all CAVs would follow the proposed platooning control
algorithm. (2) Communication technology of CAVs adopted
Dedicated Short-Range Communications (DSRC) with a
constant communication range of 300 meters. (3) The
perception-reaction time for CAVs maintains a constant
value.

3.1. CAVs with Platooning Control Algorithm

3.1.1. Longitudinal Car-Following Model. In this paper, the
Intelligent Driver Model (IDM), proposed by [39], is chosen
as a car-following model for CAVs, while human-driven
vehicles (e.g., cars and trucks) follow Wiedemann 99 model,

which originated from the default car-following model of
VISSIM, and it has good performance on simulating human
driver’s driving behavior. The IDM model can be denoted as

apm (t+1,) = max{ b, Ay [1 —(V—z)é —(%)2] }

vAv
and |
where t, = the perception-reaction time, a,, = the maximum
acceleration, b,, = the maximum deceleration, v =the speed
of the following vehicle, v, =the desired speed, & =the ac-
celeration exponent (with a constant value of 4), s =the gap
distance between the leading vehicle and the following ve-
hicle, sy =the minimum gap distance at standstill, T = the
safe time headway, and b =the desired deceleration.

The parameters of the IDM model for calibrating driving
behaviors of CAVs should be calibrated by field-tested data
which are difficult to access in current automated technology
level. Thankfully, previous research studies have built and
calibrated this model for Adaptive Cruise Control (ACC),
and later, researches extended their study based on similar
values of the parameters. In this study, the parameters of the
CAV behavior model are chosen from research studies
[27-29], which are shown in Table 2.

st =5+ max[O, vT +

3.1.2. Vehicular Interaction between CAV-CAV, CAV-HDYV,
and HDV-HDV/CAV. What needs to be pointed out is that
the safe time headway T varies from interact types on
Table 3. If the front vehicle is a CAV, then the follower will
keep driver behavior with the leader by using an aggressive
headway (0.85 s), while when the leading vehicle is an HDV,
the follower will keep a conservative driving strategy with a
safer time headway (2.0s). Previous research studies have
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FIGURE 1: Architecture of the study on safety impacts of CAV’s exclusive lanes.

TABLE 2: Parameter values of the IDM model.

Parameter Value Parameter Value
a,, 1.0m/s® T 0.855/2.0s
b,, ~8.0 m/s’ ty 0.55
vy 120 km/h b -2.8m/s>

TaBLE 3: Value for the desired headway.

Interaction type (follower-leader) Desired headway (sec) Range (sec) Literature

HDV-CAV .

HDV-HDV 1.52 1.0-1.8 [40], the value was calibrated from the FAJ
CAV-CAV 0.85 0.6-2.0 [41]

CAV-HDV 2.0 0.8-2.2 [42]

pointed out the proper range for desired headways of CAV-
HDV, CAV-CAV, and HDV-HDV, which are also shown in
Table 3.

Additionally, a headway examination is deployed. The
reason for examination is derived from the point that the
IDM model only considers the current speed difference
between the leading vehicle and the following vehicle but
ignores the acceleration of the leading vehicle. Since the
communication delay and the perception-reaction time are
unignorable, lacking of considering the acceleration of the
leading vehicle might cause the following vehicle too late to
act when the leading vehicle is in a sudden brake. In doing
so, we propose a trimming method, which calculates the
distance of the leading and the following vehicles in 2.0
seconds (Figure 2) by using the current acceleration cal-
culated by the IDM model. If the gap between two vehicles
after 2.0s is smaller than the minimum gap at a standstill
(2.0 m), the current vehicle’s acceleration will decrease per
0.1 m/s%, and repeat calculation until the gap is acceptable.
The trimming method might increase safety, whereas reduce
efficiency. However, how to achieve a balance between safety
and efficiency still needs further investigation, which is not

covered in this study. Some readers might also doubt the
integrity of control logic shown in Figure 2 as it seems to be
missing the logic of exiting the platoon when a CAV is ready
to leave the freeway. Actually, as the CAV leaves the platoon,
the CAV would try changing its lane close to the ramp under
the premise of keeping safety. In this case, the CAV is no
longer in the platoon control mode. The leaving freeway
behavior of a single CAV makes no difference on the platoon
control logic for remaining CAVs on the exclusive lane.

3.1.3. Lateral Lane Change Decision to Form or Join the
Platoon. Derived from the IDM model, the platooning
concept is implemented for regulating the driving behaviors
from individual AVs to CAVs. To maintain the platoon, the
CAVs on the searching mode will try to search the Nearest
CAV (NCAYV) in the DSRC communication range con-
stantly. When an NCAV is found, the individual CAV will
try to form a platoon from the rear, front, or middle cut-in
by sending a join request. If the gap for lane change to form a
platoon or join an existing platoon is not enough, the on
platooning NCAV will slightly slow down to increase the
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FIGure 2: Platoon controlling algorithm for CAVs.

gap. Ifan HDV is found downstream on the current lane, the
CAYV will follow it with a cautious headway (e.g., change to
CAV-HDV interaction types). If no vehicle is found
downstream in the DSRC range, the individual CAV is
allowed to cruise with an increasing 10% of the speed limit as
the desired speed to search the NCAV. Note that if the
current NCAV does not meet the platooning requirement,
the CAV will set the second nearest CAV as NCAV.

3.2. Simulation Testbed Construction

3.2.1. Exclusive Lane Scenarios. The simulation testbed is an
around 7km segment of Ninghu Freeway, a four-lane
freeway in Jiangsu province connecting Shanghai and
Nanjing, China, with a speed limit of 120 km/h for cars and
80 km/h for trucks. The testbed section consists of three on-
ramps and two oft-ramps with approximately 30% trucks. In
this study, we designed three scenarios of CAV’s exclusive
lanes, and Figure 3 formulates three deployment scenarios
for testing. The base scenario serves as the base condition of
the Ninghu segment for this study. The exclusive lane
scenarios’ access to one or two leftmost exclusive lanes for
CAVs is studied. The left-lane deployment of exclusive lanes
causes weaving activities around on-ramps and off-ramps.
Therefore, the weaving length for CAVs toward or leaving
the exclusive lane has to be considered. According to the
experience on the existing bus managed lane, 300 meters of

weaving length for the exclusive lane entry/exit is recom-
mended by the FAJ.

3.2.2. Calibration and Validation. One of the most im-
portant parts of any simulation-based studies is calibration.
In this study, humans’ driving behavior data were collecting
by the Administration of Ninghu Freeway from field de-
tectors, and these data are applied for calibration and val-
idation. Traffic volume and speed from field detectors on 16:
30-19:30, September 30th, 2018, collected from 16 field
detectors were aggregated into 10 minutes and used as
vehicle inputs. The first 30 minutes of simulation time and
the last 30 minutes cool-down time of the simulation are
excluded for calibration and validation. The calibration
target can be described as

Zt (Vobs (t) _ Vsim (t, 6))2
T (¥ (1)’

Zt (qobs (t) _ qsim (l’, 0))2
(g (1)

mine =

(2)

where &= calibrate error, g°* (t) = observed traffic volume
on collecting interval f, v"bs(t):average observed travel
speed on the interval t, 0 = parameter vectors for simulation,
q"™ (t, 6) = traffic volume on collecting the interval ¢ in
simulation, and v*™ (¢, ) =average travel speed on col-
lecting interval ¢ in simulation. Calibrate result shows that
the average calibrate error is 4.66%, which meets the
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FIGURE 3: Description of three deployment scenarios.

requirement for further simulation. After calibration, CCO0,
CCl1, and CC2 in Wiedemann 99 model are calibrated to
2.1m, 1.52s, and 0.60, respectively. Due to missing of sta-
tistic data, the lengths and weighs of cars and trucks are
adopted to default normal distributions.

3.3. Surrogate Measures of Safety. Surrogate safety measures
are a widely utilized technique to evaluate the risk of crashes
on traffic facilities (e.g., freeway and urban road network);
although crashes are rare, they may cause severe conse-
quences. Machine learning and statistical-based approaches
have been applied to analyze crashes attributes according to
crash records [43], but records of crashes between CAVs and
HDVs are insuflicient yet. Therefore, many effective indexes
have been proposed by former researchers for evaluating
crash risks in mixture environment; among them, Time-to-
Collision (TTC) is one of the most common indicators which
can be used for calculating the safety between two individual
vehicles for every simulation second or interval of subsecond.
The TTC notion was firstly proposed by [44] which is referred
to the time that remains until a collision between the leading
and following vehicle if the speed of the following vehicle is
over than the leading vehicle and the speed difference is
maintained. The TTC notion can be described as

Xy (k) = x; (k) -1
Viq (k) - Vi (k) ’

vy (k) > v, (k),
TTC, (k) =

00, otherwise,

(3)

where TTC; (k) =the time-to-collision of the vehicle i at
simulation instant k, x = the position of the vehicle i, v =the
speed of the vehicle 7, and [ =the length of the preceding
vehicle i — 1.

3.3.1. Longitudinal Safety Measurement. It is intuitive that
the smaller TTC value means higher crash risk. Although
TTC reflects the rear-end collision risk closely, it needs to be
aggregated to the more aggregated indicators for statistically
compatible analysis. For this sake, two surrogate measures of
safety, derived from TTC and denoted as Time Exposed
Time-to-collision (TET) and Time Integrated Time-to-col-
lision (TIT), proposed by [45], are used for building a re-
lationship between simulation data and longitudinal safety
of the CAV.

The TET represents the total time exposed in the risk of
collision, characterized by TTC value lower than the
threshold TTC* value :

N
TET (k) = ) 8, x Ak,

i=1
1, VO<TIC, (k) <TTC",
6t = (4)

0, otherwise,

T
TET = ) TET (k),
k=0
where k = simulation time instant (warm-up time excluded),
Ak =simulate time steps (=0.1s), TTC; (k) =the time-to-
collision of the vehicle i at simulation instant k. N = the total
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number of vehicles, T =the simulation period, and
TTC" =the threshold of TTC. TTC" is applied to identify
from considering ones driving is safe or unsafe, and its value
varies from 1s to 3s.

The TIT notion is also an index that measures the entity
of the TTC lower than TTC". The reciprocal transformation
is put into consideration since lower TTC means higher
collision risk, and it can be described as

I 1 1
TIT(K) = ¥ | e ———| x Ak,
& ;[TTCi(k) Toved Rk

when 0 < TTC; (k) < TTC",

T
TIT (k) = ) TIT (k).
k=0

(5)

Additionally, the Rear-End Crash Risk Index (RCRI),
proposed by [46], was designed on the background of rear-
end crashes which are the most common type of crashes in
traffic facilities and are used for evaluating longitudinal road
safety. The index illustrates a rear-end crash may appear if a
leading vehicle makes a sudden brake, and the following fails
to react and decelerate to safe distance in time. In this case,
the stopping distance of the following vehicle should be
smaller than the leading vehicle for preventing collision, and
this relationship can be expressed as

2
vy (k)
Paop =B xh 0+ o
2
vi (k) (6)
Dgopr = Vr (k) x PRT + Txa (0 ar (k)
Dstop,F < Dstop,L’

where Dy, ; and Dy, p are the stopping distance of the
leading vehicle and the following vehicle, v; (k) and vy (k)
are the speed of two vehicles at simulation instant k, ay (k)
and a; (k) are the acceleration of two vehicles, h (k) is the
time headway, [ is the length of the leading vehicle, and PRT
is the perception-reaction time with a constant value of 1.5s
recommended by the American Association of State
Highway and Transportation Officials (AASHTO). Similar
to TTC, RCRI needs to be aggregate to an index for mea-
suring surrogate safety, which is proposed by [27] and
denoted as the Time Exposed Rear-End Crash Risk Index
(TERCRI):

N

TERCRI (k) = Z RCRI (k) x Ak,
i=1

1’ Dstop,F > Dstop,L’

RCRI (k) = { (7)

, otherwise,

T
TERCRI = Z TERCRI (k).
k=0

3.3.2. Lateral Safety Measurement. The mentioned indexes
above are all associated with longitudinal safety. However,
angle and sideswipe crashes, which are highly associated with
lateral safety, are also common at freeway mainline or
weaving zones along with rear-end crashes. Thus, it is nec-
essary to measure lateral safety for CAV environment. In
order to evaluate the angle and sideswipe crash risk of CAVs,
the Surrogate Safety Assessment Model (SSAM) is used in this
study. SSAM is developed by the Federal Freeway Admin-
istration, which has several parameters to measure conflicts.
SSAM utilizes trajectory files (*.fzp) outputted from VISSIM
and checks for traffic conflicts using predefined TTC and Post
Encroachment Time (PET), Speed Difference (DeltaS), and
some other thresholds. The default value of TTC and PET is
1.5s and 55, respectively. Along with the investigation of
conflicting vehicles, SSAM provides conflict results classified
by the conflict type (i.e., rear-end, lane change, and crossing).
In this study, the number of lane change conflicts (#LCC) of
different scenarios is analyzed by SSAM.

Collection of surrogate safety measures is also imple-
mented by the External Driver Model (EDM). The aggre-
gated value of TET, TIT, TERCRI, and LCC is calculated
directly by every simulation step for all vehicles. Note that
although human-driven vehicles deployed the External
Driver Model to collect SSAM data, their driving behavior
maintaining is unchanged.

4. Results and Discussion

Traffic crashes are rare on freeways. Hence, surrogate safety
measures are a widely used technology to evaluate the crash
risk. In this paper, in order to evaluate the read-end collision
risk and lane change conflict, four surrogate safety measures,
including TET, TIT, TERCRI, and #LCC, are employed. The
first three indexes were directly outputted by the modified
External Driver Model, and the last index was transferred to
SSAM to identify #LCC. It must be noted that although the
threshold value of TTC was chosen as 2.0s, a sensitivity
analysis for TTC values of 1.0, 1.5, 2.0, 2.5, and 3.0 s was also
conducted, and the result shows that the threshold has
negligible effects on crash risks. We tested three scenarios (0,
1, or 2 exclusive lane (s)) with consideration of different
traffic demands (2000, 4000, 6000, or 8000veh/h) and
compositions (truck proportion=0, 10%, 20%, and 30%;
CAV MPRs =0, 10%, 20% and 30%). Note that the chosen
ratios of truck and classifications of traffic demand were
derived from the field data from the Ninghu Freeway.

4.1. Overall Analysis. Classified by traffic volume, original
scatter values are converted to contour maps, and results are
presented in Figures 4-7, which represent overall safety
impacts of CAV exclusive lanes on different traffic demands
and compositions. The input values of traffic demand cover
all types of vehicles for this segment (e.g., not the single lane
volume); therefore, the capacity constraint that the capacity
of the freeway is around 2000 ver/h/In can be met.
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FIGURE 4: Safety evaluation results of CAV’s exclusive lane on volume = 2000 veh/h.

Horizontal arrangement of figures has colored to the
same color scales for comparison. The colors are generated
by interpolation from blue to red, which stands for lower and
higher values, respectively. It must be pointed out that al-
though these figures seem to have little distinction among

different colors, their absolute values are very different.
Value of total TET in 2,000, 4,000, 6,000, and 8,000 veh/h
with 0% truck, 0% MPRs, and 1 exclusive lane is 387553,
1131240, 1936829, and 2060508 seconds, respectively. On
the contrary, for detailed analysis, a line chart analysis for
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FIGURE 5: Safety evaluation results of CAV’s exclusive lane on volume =4000 veh/h.
TET and LCC on MPRs=10% and 20% is presented in For all situations, we found that, with the increase of
Figure 8. Finally, an overall longitudinal and lateral safety =~ truck proportion, longitudinal safety risk indexes (e.g.,
impact comparison of setting exclusive lane scenarios to-  TET, TIT, and TERCRI) are at a rise in all scenarios,

ward the base scenario is shown in Table 4. indicating that heterogeneity of traffic composition
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FIGURE 6: Safety evaluation results of CAV’s exclusive lane on volume = 6000 veh/h.

contributes to rear-end crash risks. In general, the vari-
ations of three longitudinal safety risk indexes are largely
similar, and since TET and TIT are different aggregate
forms of TTC, their trend seem to be more similar. The

similarity indicates that all three indexes are capable to be
replaced by each other. In this regard, we choose TET to
stand for longitudinal result in longitudinal safety impact
analysis, while for #LCC, which represents lateral crash
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FIGURE 7: Safety evaluation results of CAV’s exclusive lane on volume = 8000 veh/h.

risks, appeared to decrease with the increase of truck  car and trucks. A possible explanation is that due to the
proportion firstly and then slowly rise in low MPRs of  limitation of available lanes, trucks’ lane changes are less
CAVs according to Figure 8 (1c-1d; 2¢c-2d; 3¢c-3d; 4c-4d).  than cars, and with the increase of truck proportion,
This difference reflects different driving behaviors between ~ overall performance is deteriorating, and some radical
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Figure 8: Comparison of safety impacts between MPRs =10% and MPRs =20%.

might not truly reflect the real-world situations, the impact
of lane change still needs further examination from field
test data [48].

drivers would try to change the current lane for ensuring
their efficiency. Since literature [47] has pointed out using
simulation data for analyzing LCC has its limitation and it
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TABLE 4: Safety impacts of setting exclusive lanes compared with the base scenario.
2000 veh/h 4000 veh/h 6000 veh/h 8000 veh/h
— 109 0,
MPRs =10% Trucks (%) Tpr ()  LCC (%) TET (%) LCC (%) TET (%) LCC (%) TET (%) LCC (%)
0 -205 19.5 —40.4 8.7 —42.4 11.0 11.6 7.9
| exclusive lane 10 -76 8.1 -388 6.6 244 17.1 19.7 13.8
20 -7.0 13.9 -32.1 9.4 -52 23.0 29.6 21.8
30 1.8 283 -175 28.9 9.6 27.6 36.5 16.6
0 -24.9 30.5 —44.7 26.1 -25.1 45 14.1 18.6
5 exclusive lanes 10 ~14.2 21.0 —45.7 30.9 ~11.6 73.6 27.0 59.7
20 -125 30.6 -39.0 29.8 4.9 47.8 359 56.9
30 23 34.8 -22.8 352 18.5 451 42.9 48.6
2000 veh/h 4000 veh/h 6000 veh/h 8000 veh/h
—9209 0
MPRs =20% Trucks (%) Tpr (%)  LCC (%) TET (%) LCC (%) TET (%) LCC (%) TET (%) LCC (%)
0 18.6 26 6.8 1.8 35 70.5 395 15.0
| exclusive lane 10 28.9 17.4 11.2 16.5 14.8 39.8 350 19.7
XS 20 29.9 10.0 16.0 9.8 18.7 24.0 42.4 39.6
30 38.1 326 23.9 324 30.0 2.9 47.5 39.7
0 17.1 32 44 21 8.6 74.0 42.4 41
5 exclusive lancs 10 25.9 26.1 5.8 26.6 14.9 55.7 418 65.5
20 27.1 25.0 10.8 26.2 27.4 58.1 493 68.3
30 35.0 45.7 19.8 46.0 373 451 53.8 67.9
2000 veh/h 4000 veh/h 6000 veh/h 8000 veh/h
= 0, 0,
MPRs =30% Trucks (%) Tpr (%)  LCC (%) TET (%) LCC (%) TET (%) LCC (%) TET (%) LCC (%)
0 315 61.3 23.9 61.7 243 87.1 29.1 238
| exclusive lanc 10 40.7 4.0 27.8 3.9 25.9 60.4 32.9 52.8
ustve fa 20 443 125 32.8 111 31.2 421 40.4 57.8
30 52.9 14.3 40.1 13.8 36.5 50.8 451 543
0 317 387 24.4 383 25.6 85.3 352 33.1
5 exclusive lanes 10 39.0 12.0 26.2 10.5 25.9 59.6 43.4 77.1
usty 20 43.0 37.5 30.9 36.1 33.4 474 50.5 77.6
30 51.1 28.6 387 27.7 425 51.7 552 77.6

4.2. Safety Impacts of Exclusive Lanes. As the TIT, TET, and
TERCRI indexes are shown in Figures 4-7 (la-3c), we
found that setting of exclusive lanes in MPRs < 10% led to
slight increase of longitudinal safety risks on vol-
ume =2000 veh/h (Figure 4 (la-1c)) and continuing at a
rise with the increasing of truck proportion (Figure 8
(la-4a)). Compared with the base scenario, setting ex-
clusive lanes in traffic demands >4000 veh/h and MPRs
<10% inducing higher rear-end risks, which indicates
only in situation that traffic demand is large enough could
the CAV’s exclusive lane have positive impact on safety. As
the MPRs increased to 20% (Figure 8 (1b-4b)), the lon-
gitudinal and lateral safety improve proportionately
compared with the base scenario.

As for the LCC index shown in Figures 4-7 (4a-4c), for
all traffic demands, setting of exclusive lanes reduce overall
LCCs, and the difference exists on the extent of decrease.
Longitudinal comparison among demands shows that
higher traffic demands have better improvement of LCC
compared with low traffic demands.

Numerical comparison for exclusive lane scenarios is
also conducted in Table 4 for further analyzing safety
impact. As is depicted in Table 4, setting one or two
exclusive lanes led to [+42.4% to —52.90%] and [+45.7% to
—55.2%] for longitudinal crash risks (TET) while [-1.8%
to —87.1%] and [-2.1% to —85.3%] for lateral crash risks

compared with the base scenario, respectively. Only in
MPRs=10% and demands lower than 6000veh/h sce-
narios, the setting of exclusive lanes has adverse effect on
longitudinal, which indicates that in other scenarios,
setting exclusive lanes for CAVs outweigh than the base
scenario. It must be noted that the improvement of
longitudinal crash risks arose with the increase of truck
proportion. This is explainable as the driving behavior of
trucks is largely homogenous. On the contrary, total
longitudinal crash risks are at a sharp rise according to
Figure 8 (la-3b) with increasing of truck proportions,
which indicates that setting exclusive lanes for CAVs have
better safety improvement when truck’s proportion is
over 20%.

We also focused on the comparison of the number of
exclusive lanes. As longitudinal indexes depicted on the low
demand scenario, the distinction between one or two ex-
clusive lanes is generally inconspicuous on low truck
proportion, while in low traffic demand, high truck pro-
portion, and low MPR condition, the setting of two ex-
clusive lanes caused an increase of longitudinal rear-end
risks compared with one exclusive lane scenario, indicating
that setting two exclusive lanes for this situation is unwise.
Only in demand = 8000 veh/h situation, two exclusive lane
scenarios outweighs one exclusive lane scenario on both
longitudinal and lateral safety improvement.
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5. Conclusions and Future Study

In this work, safety evaluation of exclusive lanes for CAV on
the freeway is conducted using a calibrated microscopic
simulation model with surrogate safety measures. This paper
firstly modelled the mixture environment [49, 50] of CAVs
platooning with HDVs and then designed three exclusive
lane scenarios and deployed surrogate safety measures to
reveal pros and cons of exclusive lanes. In this paper, four
surrogate safety measure indexes, including both longitu-
dinal and lateral indexes, are developed. Results show that
(1) setting one exclusive lane is capable of improving the
overall safety in low demand, and setting two exclusive lanes
is more suitable for the high-demand scenario; (2) the ex-
istence of trucks worsens the overall longitudinal safety, and
improper settings of exclusive lanes in high truck’s pro-
portion and low MPRs situation could even worsen the
longitudinal safety, which should be avoided; (3) setting
exclusive lanes has better longitudinal and lateral safety
improvement in high truck proportion scenarios; (4) when
the MPRs are larger than 15%, setting exclusive lanes for
CAVs can considerably reduce the overall crash risks, and
the safety improves as the proportion of trucks increases;
and (5) the variation among TET, TIT, and TERCRI is very
similar, indicating that the three indexes can replace each
other.

This paper highlights (1) the influence of trucks on the
safety impact of setting exclusive lanes for CAVs on the
freeway and (2) reveals the dynamic safety relationship
among traffic demand, composition, MPRs, and the number
of exclusive lanes. The authors hope these results can be
helpful to determine when it is suitable to set the exclusive
lane for CAVs. The proposed surrogated safety measures can
be extended to other freeway scenarios (i.e., 2 or 3 lane
freeway), and the application of exclusive lanes for CAVs has
great potential in practice.

Due to inadequate data, this simulation-based research
study still needs further examination and calibration with
field-test data of autonomous vehicles. This paper also has
some shortcomings as it only considered total safety im-
pacts for freeway facility whereas neglecting detail inves-
tigation of its component. Merging speed and driving
ability (e.g., lane change confidence, lane-keeping insta-
bility, and the merging location) on weaving areas can
affect the crash risk ([51-53]), and these factors should be
further analyzed. From authors view, more lateral safety
risk indexes should be developed and examined to well-fit
real-world situation for mixture CAV with HDV envi-
ronment in future studies.
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