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Nanofluids are generally utilized in providing cooling, lubrication phenomenon, and controlling the thermophysical properties of
the working fluid. In this paper, nanoparticles of Al2O3 are added to the base fluid, which flows through the counterflow
arrangement in a turbulent flow condition. The fluids employed are ethylbenzene and water, which have differing velocities on
both the tube and the shell side of the cylinders. A shell tube-type heat exchanger is used to examine flow characteristics,
friction loss, and energy transfer as they pertain to the transmission of thermal energy. The findings of the proposed method
showed that the efficiency of a heat exchanger could be significantly improved by the number, direction, and spacing of baffles.
With the inclusion of nanoparticles of 1% volume, the flow property, friction property, and heat transfer rate can be
considerably improved. As a result, the Nusselt number and Peclet numbers have been increased to 261 and 9.14E+5. For a
mass flow rate of 0.5 kg/sec, the overall heat transfer coefficient has also been increased to a maximum value of 13464. The
heat transfer rate of the present investigation with nanoparticle addition is 4.63% higher than the Dittus–Boelter correlation.
The friction factor is also decreased by about 17.5% and 11.9% compared to the Gnielinski and Blasius correlation. The value
of the friction factor for the present investigation was found to be 0.0376. It is hence revealed that a suitable proportion of
nanoparticles along with the base fluids can make remarkable changes in heat transfer and flow behavior of the entire system.

1. Introduction

The world of thermal engineering is centered on the term
heat exchanger (HX), which is necessary for several indus-
tries that are required for heat reduction economically.
Hence, the HX with low operational and management costs
was designed with operating cooling fluids that extract the
generated heat. The shell-tube style HX is recognized for
its easiness in design; in general, it comprises the following

parts: shell, tube, baffles, and fluids. The shell forms the out-
ermost portion by enclosing all other parts and is liable for
carrying the cooling fluids from entry to exit over the tubes.
The tube transmits the boiling fluid generated from the sys-
tem by the cooling fluid, where there is heat transfer among
the fluids. Chandran et al. [1] reported that the baffles are
arrayed to alter the flow course of the cooling fluid in the
HX. These varieties of HX have higher reliability than the
other types as they can be operated at high pressure and
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possess a higher surface area to volume ratio and effective-
ness that can be easily enhanced by accumulating the tubes.
In general, the heat transfer calculation by CFD is a compli-
cated process as it requires a computer with more power and
space. Hence, the resolving of models is required.

Numerous sorts of cooling fluids implemented in the HXs
involve varieties of water, oils, and other organic compounds.
Applications of heat exchangers are vast and require a thor-
ough knowledge to cover each aspect. Among the applications,
their primary use is in the process industry, mechanical equip-
ment, and home appliances. Heat exchangers are employed
for heating district systems extensively. Air conditioners and
refrigerators use heat exchangers to condense or evaporate
the fluid. Moreover, it also has applications in milk processing
to do pasteurization.

Nanofluids are solid-liquid compound materials com-
prising solid nanoparticles or nanofibers with proportions
usually from 1 to 100 nm dispersed in the fluid medium.
This type of fluid is not just a plain liquid-solid combination.
In comparison, the utmost critical condition of a nanofluid
is an agglomerate-free stable suspension over an extended
period without instigating any chemical alterations to its
base fluid. This could be accomplished by reducing the den-
sity amid solids and liquids or by enhancing the viscosity of
fluids, i.e., through the addition of nanometer-sized particles
and by inhibiting particles from agglomeration, the settling
of particles could be avoided [2]. Extensive research has been
carried out on alumina-water and TiO2–water, and the
appropriate nanofluid for this study was chosen as Al2O3–
water nanofluid.

The influences of those cooling fluids on the perfor-
mance of the heat exchanger were demonstrated through
several pieces of research [3]. When heat flux remains con-
stant, the Nu number of Al2O3 and TiO2 increases with a
surge of Re number if the experiment is conducted on hor-
izontal circular tube underflow of turbulent nature. They
also conveyed that when there is a 3% volume escalation
in concentration, there is nearly a 12% decrease in convec-
tive heat transfer coefficient. In HX with two pipes by
deploying copper oxide/ethylene and alumina/ethylene gly-
col, Zamzamian et al. [4] resolved that with an upswing in
temperature and volume concentration, the heat transfer
increases by 50% underflow of turbulent nature with low
nanofluid concentration.

Li and Xuan [5] research on comparing the Darcy
Weisbach friction factor and the heat transfer coefficient
analytically on the Cu-water nanofluids determined an
enhancement in heat transfer rate under laminar/turbulent
flow. However, the value of f remains constant with an
increase in nanofluids. The correlation stated that with an
upsurge in volume concentration, heat transfer rate increases
[6] based on their study deploying Al2O3 nanofluid under the
flow of turbulent nature. Wen and Ding [7] indicated that
there is progress in the heat transfer rate with improvement
in Re number by consuming alumina nanoparticles. In their
experiment, the addition of nanoparticles increases the ther-
mal behavior of the nanofluid system which was unravelled
by Choi and Eastman [8]. Bahiraei et al. [9] as well as Anoop
et al. [10] established that the larger the particles of nano-

fluid, the lesser would be the rate of heat transfer and added
that the shape and size of the nanoparticle with its tempera-
ture upset the performance of heat transfer corresponding to
nanofluid.

The research conducted by Qi et al. [11] revealed a coin-
cidence between the base fluid characteristics and a negligi-
ble pressure drop. The behavior of heat transfer deploying
CuO/ethylene glycol nanofluid under natural convection
by Abu-Nada and Chamkha [12] showed the escalation in
the factor of friction and dynamic viscosity with the order
of alumina nanoparticle dispersion in water. [13] illustrated
the sizable improvement in heat transfer and turbulence rate
when the nanoparticles were added to the base fluids. Nam-
buru et al. [14] had led the experiment with several nano-
fluids added to the ethylene glycol water and analyzed that
the heat transfer performance numerically concluded that
nanofluid had enhanced features than base fluid. There
was an increase in Re and Nu numbers when the nanoparti-
cle concentration increased [15]. The study conducted by
[16] identified that the transport property depends on the
size, shape, and volume fraction of nanoparticles. Heris
et al. [17] had numerically analyzed and exhibited substan-
tial variation in the thermo-physical characteristics of base
fluid when nanoparticles dispersed to it.

The dimpled helical tube was implemented by Suresh
et al. [18] for experimentation on friction deploying CuO-
water nanofluid to emulate the base fluid [19]. The influence
of nanoparticle characteristics on thermal conductivity is
listed. Concentrating on the viscosity and conductivity (ther-
mal) as vital properties, Kumar et al. [20] determined that
the nanoparticles improve thermal behavior. Nnanna [21]
highlighted that at high temperature, the Nu and Re number
increases correspondingly with the heat transfer rate of HX.

After the intensive literature survey, this work deals with
the numerical investigation of the forced convective HX and
different flow behavior of fluids and nanoparticles (Al2O3)
with homogeneous and counterflow arrangements under
the flow of turbulent nature. The analysis is done for the dif-
ferent flow rates with and without nanofluid having 36%
baffle cut arrangements without inclination similar to the
investigation carried out by Irshad et al. [22]. The study also
establishes a substantial rise in the heat transfer properties
when baffled with different spacing. The hot and cold fluid
is considered ethylbenzene, and nanofluids have different
velocities on both shell and tube optimum combination.

2. Methodology

2.1. Shell Tube Type Heat Exchanger (STHX). Shell being the
wall of STHX comprises a tube arrangement which carries
the hot fluid, and corresponding cooling fluid flows along
the performance of the baffles in the shell side. The size
and length of the shell depend primarily on the number of
tubes and their arrangement. Here, the geometry modelling
was carried out using ANSYS Space Claim, while the analy-
sis was made using the finite volume method as in Compu-
tational Fluid Dynamics (CFD) tool.

This study deals with the estimation of fluid flow and
friction properties of a cold fluid added with nanoparticles
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of spherical dimensions in a shell and tube type heat
exchanger. Here, ethyl-benzene is used as a hot fluid at a
temperature of about 340K, whereas the cold fluid is of
two types, i.e., water and water-Al2O3 nanofluid fluid
(WANF) at a temperature of 300K. The tube parameters
such as diameter, pitch layout, and counts were determined
for this HX [3].

The property of ethylbenzene is flammable and explosive,
and ethylbenzene can be dangerous. Vapors can travel to a
source of ignition and then flashback. Ethylbenzene can
spread fire by floating on water. Inflammatory and poisonous
gases can be produced during combustion as given in Table 1.

The studies by Irshad et al. [22] show that pitch arrange-
ment, number, orientation, and spacing of baffles, along with
their direction, can extraordinarily alter the overall efficacy
of the heat exchanger. In this present study, the triangular
pitch has been selected for the tube bundles as it offers better
results regarding enhanced surface area per unit length, i.e.,
maximum tube density. These tubes are generally built as
bundles that can be easily dismounted from the tube
arrangement (TFD-HE13–STHX Design). The properties
of Al2O3 nanoparticles are given in Table 2.

The specifications of STHX have been taken from the
studies of Irshad et al. [22] and are given in Table 3. The prop-
erties of base fluid and nanoparticles are given in Table 4.

The parameters of STHX were chosen according to the
Tubular Exchanger Manufacturers Association (TEMA)
Standards and were designed as in Figures 1(a) and 1(b).

The modelled STHX then meshed initially with a rela-
tively coarser mesh, ending in 58645 elements. This mesh
comprised mixed elements of both tetrahedral and hexahe-
dral cells with triangular and quadrilateral faces at the
boundaries. It was noted from the previous studies that hex-
ahedral cells are usually advised for a fine capturing of the
profile. Hence, for this criterion, a fine mesh was made with
maximum care at the wall regions and edges, which are all
the regions of high temperature and pressure gradients.

The contours of initially made coarse mesh were ana-
lyzed with that of the fine mesh. They observed that the lat-
ter mesh resolves better over the regions of high pressure
and temperature gradient than the former. The contours
depicted a refinement in meshing, particularly at the inlet
and outlet regions which would help in the better acquisition
of heat transfer and pressure drop. A completely grid-
independent model was obtained by interpreting the tem-
perature and pressure gradients.

During fine meshing, the aspect ratio of the elements was
maintained the same as that of the aspect ratio of coarse
mesh as it possesses only a negligible effect on meshing.
The resulting meshed model comprised about 2184591 ele-
ments and 4473951 nodes. The different sections of the
meshed model are shown in Figure 2.

The main objective of this study is to determine the fluid
flow and friction properties along with the alterations in
overall heat transfer due to the addition of nanoparticles in
the carrier fluid.

2.2. Governing Equation of Motion. For a fluid to flow, it
should obey the three governing equations of motion: conti-
nuity, momentum, and energy [23]. The three equations of
motion are expressed as follows:

Table 1: Physical and chemical properties of ethylbenzene.

Property Information

Molecular weight 106.17

Color Colorless

Physical state Liquid

Boiling point 136.19°C

Melting point -94.975°C

Density 0.8670

Partition coefficients 4.34

Vapor pressure 7mmHg

Autoignition temperature 432°C

Flash point 15°C

Table 2: Properties of Al2O3 nanoparticles.

Properties Values

Density 3.69 g/cm3

Flexural strength 330MPa

Elastic modulus 300GPa

Shear modulus 124GPa

Bulk modulus 165GPa

Poisson’s ratio 0.21

Compressive strength 2100MPa

Thermal conductivity 18W/(m.K)

Specific heat 880 J/(Kg.K)

Table 3: Geometric dimension of STHX.

Specification of STHX Dimension

The inner diameter of the shell 90mm

Length of the shell 600mm

The outer diameter of the tube 20mm

Number of tubes 7

Tube pitch geometry 30mm, triangular

Baffle cuts 36%

Baffle spacing 86mm

Baffle thickness 3mm

Number of baffles 6

Table 4: Properties of base fluid and nanoparticles.

Properties Base fluid (water) Nanoparticle (Al2O3)

Density 998.2 kg/m3 3690 kg/m3

Thermal conductivity 0.608W/(m.K) 18W/(m.K)

Dynamic viscosity 0.001002 kg/(m.s) —

Specific heat capacity 4182 J/(kg.K) 880 J/(kg.K)
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Continuity equation:

∂ρ
∂t

+∇: ρVð Þ = 0: ð1Þ

Momentum equation:

ρ
DV
Dt

= ∇:τij − ∇p + ρF: ð2Þ

Energy equation:

ρ
De
Dt

+p ∇:Vð Þ = ∂Q
∂t

−∇:q + φ, ð3Þ

where ρ indicates the density of the fluid, V indicates the
velocity of the fluid, τij Indicates the viscous stress tensor,

p indicates pressure, F indicates body forces in the system,
e indicates the internal energy of the fluid, Q indicates heat
transfer, t indicates the time, φ indicates dissipation, and ∇
:q indicates heat lost by conduction.

2.3. Data Analysis. The fluid flow properties and the friction
properties of nanofluids are determined from the base values
of particles used in the heat exchanger. These are determined
using the below-mentioned formulae. Anoop et al. [10] pro-
vided the density of nanofluid resulting through the mixing
of the base fluid, i.e., water and nanoparticles of Al2O3 is
obtained through in

ρnf = 1 − φð Þρf + φ ρp

h i
: ð4Þ

Z
X

Y

(a)

Z X

Y

(b)

Figure 1: (a) STHX model. (b) Tube bundle arrangement with baffles inside the shell.
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In the same manner, the specific heat capacity of the
nanofluid is given as [10]

ρCp

À Á
nf
= 1 − φð Þ ρCp

À Á
f
+ φ ρCp

À Á
p
: ð5Þ

In Equation (6), the effective thermal conductivity of the
resultant nanofluid comprising the solid-liquid mixture can
be expressed as [24]

Knf = Kf

K + 2Kf − 2φ Kf − K
À ÁÀ Á

K + 2Kf + φ K f − K
À ÁÀ Á : ð6Þ

Similarly, in Equation (7), the dynamic viscosity of
nanofluids with very low volume concentrations of nanopar-
ticles is given by the Einstein model of 1906 [25]:

μnf
μf

= 1 + 2:5φ½ �, ð7Þ

where the subscripts f , p and nf refer to the base fluid, nano-
particles, and nanofluids, respectively. The next parameter
that is to be determined is the overall heat transfer rate of
the system, which is given as

0.018 0.053

0.000 0.035 0.070 (m)

Figure 2: Meshed model.
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The overall heat transfer rate,Q = _mCpnf
Tout − T inð Þ: ð8Þ

Here, _m is the mass flow rate of the nanofluid system,
and Tout and T in are the outlet and inlet temperatures of
the nanofluids. In the case of the friction factor of the sys-
tem, it is obtained through [26]

f nf = 0:961 Re−0:375 φ0:052: ð9Þ

In Equation (9), Re is the Reynolds’ number which
determines the nature of the flow and is given as [27, 28]

Re =
VDe

ϑ
: ð10Þ

The obtained results regarding heat transfer rate and
friction factor were then correlated with various models of
heat transfer correlations by Dittus–Boelter (Equation (11)
and Equation (12)), Gnielinski (Equation (13)), and Blasius
(Equation (14)) presented as in the below equations [29, 30].

hiDi

k
= 0:023

GiDi

μ

� �0:8 Cpμ

k

� �0:3
, ð11Þ

Q = hAΔT , ð12Þ
f = 0:79 ln Reð Þ − 1:64ð Þ−2, ð13Þ

f =
0:316
Re0:25

: ð14Þ

2.4. Grid Independence Test. Grid independence study is
considered an important procedure in all CFD analyses.
The reason is that the solution which is delivered by the
CFD software should be independent of the grid size [1].
This study helps find an optimum point for a suitable,
accurate solution for the problem with reduced computa-
tional resources. With the help of the obtained optimum
mesh, the accuracy of the result would be good enough
to get all relevant flow features, its gradient, and so on.
Grid-independent study is conducted for the turbulent
flow regime for four grid quantities such as 0.5 million,
1 million, 1.5 million, 2 million, 2.5 million, and 3 million.

The friction factor f is taken as one of the parameters to
check the grid in dependency. Nusselt number evaluations
are employed to discover the fewest number of grids pos-
sible without affecting numerical findings, and this proce-
dure is known as the Grid Independence Test. From the
study, the 2.1 million grid quantity is selected for further
computations since the parameters with the higher mesh
density of 60 ðwidthÞ × 70 ðdepthÞ × 600 ðlengthÞ for the
fluid domain do not have appreciable variation as shown
in Figure 3. Hence, a comparatively less mesh density is
selected for the solid domain.

3. Validation

Figures 4 and 5 show the comparison of the heat transfer
rate with baffle inclination plots for Irshad et al. [22], the
Dittus–Boelter relation, and the current work. After careful
observation, it is revealed that the validated results and the
numerical data match pretty well, with maximum variations
of 6.9% and 4.63%, respectively.
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Figure 3: Grid independence study for the turbulent regime.
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Figure 6: Temperature contour with 1% nanoparticle addition.

3.400e+002

3.360e+002

3.320e+002

3.280e+002

3.240e+002

3.200e+002

3.160e+002

3.120e+002

3.080e+002

3.040e+002

3.000e+002

Temperature
contour 8

0.015 0.045

0 0.03 0.060 (m)
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4. Results and Discussions

The present investigation portrays the inclusion of alumin-
ium oxide nanoparticles along with the base fluid water in
suitable proportion and the way it enhanced the flow prop-
erty, friction property, and heat transfer rates is represented
in the form of temperature contours, plots, etc.

4.1. Temperature Contour with 1% Nanoparticle Addition.
The temperature contour with 1% Al2O3 nanoparticle addi-
tion is shown in Figure 6. It is clear that the heat gained by
the cold fluid is clearly visible from the contour. From the
computational domain, it is clear that cold fluid accepts
the heat energy at a uniform rate from the hot fluid. Here,
turbulence is fair, and heat transfer rate is appreciable.

4.2. Temperature Contour at Inlet and Outlet of Hot Fluid
and Cold Fluid. The temperature contour at inlet of the
hot fluid is shown in Figure 7. The temperature contour at
outlet of cold fluid is shown in Figure 8.

In both inlets and outlets, the contour geometry is good,
and heat is transferred perfectly between the boundaries.
Even though the flow was a little bit not perfect during initial
heat exchange process, it is made up and became uniform
during the remaining process.

4.3. Variation of Nusselt Number with Reynolds Number
with 1% Alumina. The variation of Nusselt number with
Reynolds number with 1% alumina is shown in Figure 9.

Here, the Nusselt number value is increased to 267 because
of nanoparticle addition and quite higher without the appli-
cation of nanoparticle. Nusselt number increases when
Reynolds number is increased. Due to greater velocity rate,
better heat transfer rates can be achieved. Higher heat trans-
fer rates will lead to a higher Nusselt number.

4.4. Effect of Friction Factor with Reynolds Number for 1%
Alumina. The effect of friction factor with Reynolds number
for 1% alumina is shown in Figure 10. The effect of friction
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Figure 8: The temperature contour at outlet of cold fluid.

0

300

200

250

150

100

50

32389.575 46270.822
Reynolds number

N
us

se
lt 

nu
m

be
r

69406.233

Numerical study

Figure 9: Variation of Nusselt number with Reynolds number with
1% alumina.
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factor with Reynolds number for 1% alumina is shown in
Figure 10. The f value is showing not much variation when
Reynolds number is increased, and the value keeps on
decreasing also. The above minor change can be neglected.

4.5. Variation of Overall Heat Transfer Coefficient with Mass
Flow Rate for 1% Alumina. The variation of overall heat
transfer coefficient with mass flow rate for 1% alumina is
shown in Figure 11. Here, overall heat transfer coefficient
is also found to be at its extreme value when alumina parti-
cles are used as nanoparticle. The thermal conductivity of
the alumina particles is high. So, this inherent thermal con-
ductivity resulted in a higher U value, and it will result in a
higher Nusselt number too. When the mass flow rate is
increased to 0.593, the U value will be at the point of
13464 which is quite significant. But the lesser mass flow
rates yield a lower U value.

4.6. Nusselt Number–Peclet Number Relationship for 1%
Alumina. The effect of Nusselt number with Peclet number
for 1% aluminum oxide is shown in Figure 12.

The value of Peclet number and Nusselt number are
directly proportional. From the analysis, the Peclet number

obtained in all the four flow rates is better. The nanofluid
shows greater potential in enhancing the heat transfer pro-
cess. This is because the suspended ultrafine particles
remarkably increase the k value, and Nusselt number is
increased. The increase in the value of Peclet number
resulted in an increased boundary layer thickness and a
slight increase in the friction factor also.

4.7. Effect of Flow Velocity for 1% Alumina. The effect of
overall heat transfer coefficient at different concentrations
of alumina at 0.7m/sec velocity is shown in Figure 13.

For a velocity of 0.7m/sec and at a particle concentration
of 1%, a higher overall heat transfer value of 10771 is
attained which shows that 1% nanoparticle water combina-
tion gave appreciable results.

4.8. Effect of Tube Side Outlet Temperature for 1% Alumina
at Different Baffle Inclinations. The effect of tube side outlet
temperature for alumina with different baffle inclinations is
shown in Figure 14. When baffle inclination increases, tube
side outlet temperature also increases. The outlet tempera-
ture of the tube outlet is dependent upon the turbulence.
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Figure 10: Effect of friction factor with Reynolds number for 1%
alumina.
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Figure 11: Variation of overall heat transfer coefficient with mass
flow rate for 1% alumina.
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Figure 12: Nusselt number–Peclet number relationship for 1%
alumina.
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concentrations of alumina at 0.7m/sec velocity.
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Tube side temperature reaches a value of 338°C which shows
that heat transfer rate is appreciating.

4.9. Effect of Shell Side Outlet Temperature for 1% Alumina
at Different Baffle Inclinations. The effect of shell side outlet
temperature for alumina with different baffle inclinations is
shown in Figure 15.

It is clear from the plot that shell side temperature shows
a sudden decrease at 20° baffle inclinations because of lesser
aggregation of nanoparticles with the base fluid. The opti-
mum value of shell side temperature is closer to 335 deg.
C. The heat transfer characteristics of Alumina-water nano-
fluid is high at 1% particle concentration.

5. Conclusions

The convective heat transfer performance of alumina-water
nanofluid flowing through the shell and tube heat exchanger
was investigated numerically, and the effects of nanofluid
temperature, concentration and volume flow rates, friction
factor, overall heat transfer coefficient, Nusselt number, Pec-
let number, and shell side and tube side temperatures of
nanofluid were investigated. Studies revealed that water

along with Al2O3 nanoparticles of 1% volume concentration
has a better heat transfer rate compared with normal base
fluid alone, i.e., only water. All studies have proved that, a
substantial increase in the heat transfer rate occurs, followed
by an earlier convergence history. It is also understood that
addition of nanoparticle positively affects the flow and fric-
tion properties of the entire system. The following conclu-
sions have been obtained.

(1) Studies proved that an increase in Reynolds number
increases the value of Nusselt number and reaches
the peak value of 261 at 1% alumina concentration.
The heat exchange rate is very much higher and took
reasonable iterations to make the solutions con-
verged. The maximum time taken to complete one
iteration is 2 minutes

(2) The quantitative value of the friction factor for the
current investigation was observed to be 0.0376
which is not much deviating from the previous
investigation which were 17.5% and 11.9% from
Gnielinski and Blasius correlations

(3) The thermal conductivity of alumina nanoparticles is
very high, and this inherent property enhanced the
overall heat transfer coefficient (U) value to 13464
at a mass flow rate of 0.593 kg/sec. When mass flow
rate decreases, overall heat transfer coefficient also
decreases

(4) The value of Peclet number was seen directly pro-
portional throughout the analysis with Nusselt num-
ber because the suspended ultrafine particles
remarkably increased the value of thermal conduc-
tivity, K , and the Peclet number increases the peak
value of 9.14E+5. The increase in the value of Peclet
number resulted in an increased boundary layer
thickness and a slight increase in the friction factor
also

(5) Studies revealed that when tube side fluid velocity is
increased to 0.7m/sec led to an increase of overall
heat transfer to about 10771. It is clear that when
tube velocity is increased, U value would tremen-
dously be increased

(6) The optimal values of shell side and tube side outlet
temperature are 335K and 338K which showed that
heat exchange phenomenon is good

(7) It is further concluded that the heat transfer rate can
then be enhanced if twisted inserts are accommo-
dated inside the tube side

Nomenclature

Cp: Specific heat at constant pressure, J/(kg.K)
HX: Heat exchanger
K : Thermal conductivity, W/(m.K)
P: Pressure, (N/m2)
T : Temperature (K)
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Figure 14: Effect of tube side outlet temperature for alumina with
different baffle inclinations.
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Figure 15: Effect of shell side outlet temperature for alumina with
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SBHX: Segmental baffle heat exchanger
STHX: Shell and tube heat exchanger
μ: Dynamic viscosity, Kg/(m.s)
ρ: Density, (kg/m3)
υ: Kinematic viscosity (m2/s)
φ: Nanoparticle volume concentration
f : Friction factor
De: Equivalent diameter for shell side, (m)
V : Velocity, (m/s).
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To establish an accurate model to optimize the vertical cooling process of the sinter, the inverse problem method is used to
calculate the gas-solid heat transfer coefficient based on the gas outlet temperature, which is fitted into the correlation. The
research indicates that the increase in the gas velocity is beneficial to the enhancement of the gas-solid heat transfer. With the
gas velocity ug increasing from 0.8m·s-1 to 1.6m·s-1, the heat transfer coefficient hv increases by about twice. But this effect will
weaken with the increase in the particle size. Besides, the reduction of the particle size is conducive to improving the
convective heat transfer intensity between the gas and solid. With the particle size decreasing, this enhancement effect is
progressively evident. At ug of 0.8m·s-1, the increasing extent of hv is 1142.25W·m-3·K-1 with the particle size decreasing from
20~25mm to 15~20mm, while that is 3152.65W·m-3·K-1 with the particle size decreasing from 15~20mm to 10~15mm. In
addition, the variation of the measured value of the Nusselt number with the Reynolds number has the same trend as
predicted values obtained by other works. However, there is a considerable deviation in the value. Among them, the minimum
value of the mean relative error is 26.81%. It is proved that the previous empirical correlations are no longer applicable, while
the predicted value of this work is in good agreement with the measured value with the mean deviation of only 7.61%.
Therefore, the modified correlation can accurately predict the gas-solid heat transfer characteristics in the sinter bed, which
lays a foundation for the numerical design and optimization of the new process.

1. Introduction

In 2020, China has formulated the strategy of the “double
Carbon.” The targets of the Carbon Peak and Carbon Neu-
trality will be achieved in 2030 and 2060, respectively. It
brings the opportunity for the development of the clean
energy industry, including the solar and wind energy. Mean-
while, it has brought great challenges to the traditional
industry, such as the iron and steel industry. With the for-
mulation of the “double Carbon” strategy, the energy con-
servation and emission reduction have become the main
theme of the development of the iron and steel industry.
Although a number of advanced technologies of the
energy-saving and emission reduction have been applied
[1–4], the energy consumption and pollutant emission in

the iron and steel industry still account for the high propor-
tion in the whole industry, especially in the sintering process
[5, 6]. Moreover, the waste heat utilization rate of the sinter-
ing process is far lower than the international level. There-
fore, the waste heat utilization technology of the sinter has
become an important focus for the green development of
the iron and steel industry.

However, the waste heat recovery rate of the annular
cooling process is less than 30% [7], as shown in
Figure 1(a). Therefore, the sinter vertical cooling process
[7] has been proposed recently based on the coke dry
quenching process [8], as shown in Figure 1(b). The vertical
process transforms the heat transfer mode from the cross
flow to the countercurrent flow by changing the cooler from
the horizontal structure to the vertical structure [9].
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Moreover, the new process can increase the recovery rate of
the waste heat to about 80%, increase the outlet temperature
of the exhaust gas from 150~380°C to 500~550°C, and
reduce the air leakage rate from 35~50% to nearly zero [7].
Therefore, the application of the new process is one of the
important ways to improve the energy-saving and emission
reduction of the iron and steel industry.

However, there are few engineering cases of the success-
ful application at present. In addition, the test run indicates
that the outlet temperatures of the sinter and exhaust gas are
higher and lower than the expected value, respectively [10].
This not only causes the reduction of the sinter treatment
capacity but also decreases the recovery rate and quality of
the waste heat. It can be attributed to the unreasonable
design of the structure and operating parameters, which
reduces the heat transfer efficiency in the vertical furnace.
The characteristics of the flow resistance and heat transfer
are the basis of the design and optimization for the process
parameter, which significantly affects the feasibility of the
new process [11]. At present, a lot of work has been carried
out on the experimental study of resistance characteristics in
the sinter bed, and the applicable resistance correlation has
been obtained [12–21]. First of all, Liu et al. considered the
irregularity of the sinter to modify the resistance correlation
[12]. Tian et al. also found that the flow regime in the sinter
bed was very easy to be destroyed. Its turbulent degree was
higher than the spherical particle, which led to a great
increase in the resistance [16]. Besides, Feng et al. corrected
the resistance coefficient by using the bed voidage and found
that the critical Reynolds number increased as a third-order
relationship with the increase of the particle diameter [13].
In addition, it was found that the pressure drop was basically
the same along the radial direction except at the wall. There-
fore, the wall effect was considered for the correlation cor-
rection [14, 15]. What’s more, the influence of the wall on
the gas flow decreased with the increase of the irregularity
of the sinter [17]. In addition, Pan et al. found that the addi-
tion of the small-size sinter (0~10mm) led to the increase of

the resistance by 2~3 times [18]. Therefore, Zhang et al. con-
sidered the effect of the particle size distribution to correct
the resistance correlation [19–21]. It was also found that
the resistance in the sinter bed with the narrow particle size
distribution is lower than that with the wide particle size
distribution.

In addition, many scholars have done a lot of research on
gas-solid heat transfer characteristics in the particle bed and
obtained the corresponding heat transfer correlations
[22–29], as shown in Table 1. First of all, Ranz et al. fitted
the heat transfer correlation applicable to the packed bed
of the single particle layer [27]. Wakao et al. further consid-
ered the influence of the axial fluid heat dispersion to modify
the heat transfer correlation of the spherical particles [22].
What’s more, Gputa et al. found that the heat transfer factor
depended not only on the particle Reynolds number but also
on the bed void [23, 24]. To reduce the scattering degree
between the experimental data and the fitting value, the
bed voidage should be introduced to modify the correlation
[24]. However, Singhal et al. thought that previous studies
did not consider very dense particle ensembles, i.e., having
the bed voidage of less than 0.4 [28]. Previous correlations
were more suitable for fluidized beds than packed beds.
For large particles, the gas-particle heat transfer in packed
beds was typically a much more important limiting factor
than in fluidized beds. Therefore, Singhal et al. present a
new numerical methodology for deriving heat transfer corre-
lations of very dense particle packed beds [28]. In addition,
Will et al. corrected the correlation by considering the ther-
mal radiation and natural convection and expanded the
application range of the Reynolds number [29]. It was also
found that when the Reynolds number was greater than
2.9× 105, the heat transfer coefficient suddenly increased.
Besides, the studies of Ref. [30–33] indicated that the pack-
ing structure of particles had a significant impact on the heat
transfer. The comprehensive heat transfer performance of
the ordered packing mode is better than that of the disor-
dered packing mode. In the ordered packing mode, the gas
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Figure 1: Comparison of two kinds of the sinter waste heat recovery processes: (a) annular cooling process; (b) vertical cooling process.

2 International Journal of Photoenergy



channel is more uniform, which makes the gas-solid contact
more sufficient. Yang et al. [30, 34] and Wu et al. [31] also
analyzed the influence of the particle size distribution. They
found that the temperature field and flow field in the bed
with non-uniform particles were more uneven than that of
uniform particles. It resulted in a significant reduction in
the comprehensive heat transfer performance. This may be
attributed to that the packing structure of non-uniform par-
ticles is more disordered than that of uniform particles.

However, the previous research mainly focuses on spher-
ical or regular particles, while there are few studies on the
extremely irregular particles such as the sinter. Also, Yang
[35, 36] found that the bed of ellipsoidal particles not only
had lower gas resistance than the spherical particle bed but
also had higher heat transfer performance. In addition,
Tavasoli et al. [37] showed that the heat transfer correlation
of spherical particles could be applied to spherocylinder par-
ticles only by modifying the particle diameter of spherocy-
linder. The above research indicates that the influence of
the particle shape on the heat transfer cannot be ignored,
and the previous correlation of regular particles is no longer
applicable. Therefore, it is very necessary to study the gas-
solid heat transfer characteristics in the irregular sinter bed.

In recent years, scholars have also carried out some
related research on the heat transfer characteristics of the
sinter. First of all, Zheng et al. [9] obtained the gas-solid heat
transfer coefficient of the sinter by the logarithmic mean
temperature difference (LMTD) method with using the
moving bed. It can be found that the change trend of the
heat transfer coefficient with the Reynolds number was con-
sistent with the predicted value of Wakao’s correlation [22].
However, there was a large deviation in the value, which was
caused by the difference of the particle shape. Due to the
limitation of the discharge device, the particle size range in
the study was only 5~20mm, which was far smaller than
the typical particle size in the actual engineering production.
Besides, Jang and Chiu [38] proposed the heat transfer cor-
relation by combining experiment and numerical methods.
But it was aimed at the cross-flow heat exchange mode of
the annular cooling process. This was not suitable for the
countercurrent heat exchange mode of the vertical cooling
process. In addition, Pan et al. [18], Huang et al. [39], and
Feng et al. [40] used the fixed bed to study the heat transfer

characteristics of the sinter based on LMTD method, and
put forward the heat transfer correlation. When calculating
the heat transfer coefficient by LMTD method, the arith-
metic mean of the inlet and outlet temperatures was
regarded as the average temperature of the whole bed. They
considered that the temperature in the bed changed linearly
with the height, which was inconsistent with the actual situ-
ation of the exponential change. Based on the above short-
comings, this paper studies heat transfer characteristics of
the sinter with the typical particle size in the actual produc-
tion by using the fixed bed. The inverse heat transfer prob-
lem method [41–43] is adopted to calculate the heat
transfer coefficient, which is fitted as the heat transfer corre-
lation suitable for the sinter.

2. Experimental Method and Data Processing

2.1. Experimental Apparatus and Procedure. To measure the
temperature during the cooling process of the sinter, a hot
test-bed is constructed, as shown in Figure 2. The test-bed
consists of five parts, which are the packed bed, air supply
system, heating control system, measurement system, and
data acquisition system, respectively. Firstly, the inner diam-
eter and height of the packed bed are 209mm and 900mm,
respectively. Secondly, the air supply system includes the fre-
quency conversion blower and two ball valves. The flow rate
and flow direction of the gas can be controlled by adjusting
the blower frequency and valve switch, respectively. Thirdly,
the heating control system includes the temperature control
cabinet, two temperature-controlled thermocouples, and
electric heating wire. The sinter is heated to the design tem-
perature by controlling the heating program. Fourthly, the
measurement system is composed of the vortex flowmeter
and K-type thermocouples, which are used to measure the
flow rate of the gas and the temperature of the gas and solid,
respectively. Fifthly, the data acquisition system is the Agi-
lent data acquisition instrument, recording the temperature
and flow rate of the gas during the cooling process.

The sinter used in the experiment comes from the pro-
duction site of an iron and steel company. After screening,
the heat transfer characteristics of seven kinds of typical
particle sizes [16, 20, 21] are studied, as shown in
Table 2. The equivalent particle diameter and bed voidage

Table 1: Summary of previous correlations in the Nusselt number form for the gas-solid heat transfer in the particle packed bed.

Researcher Heat transfer correlation Equation

Wakao et al. [22] Nu = 2 + 1:1Rep0:6Pr1/3 (1)

Thodos et al. [23] Nu = 1/εð Þ 2:876 + 0:3023Rep0:65
À Á

Pr1/3 (2)

Gputa et al. [24] Nu = 1/εð Þ 0:0108 + 0:929/Rep0:65 − 0:483
À ÁÀ Á

RepPr1/3 (3)

Ramos et al. [25] Nu = 2 + 0:7Rep0:5Pr1/3 (4)

Handley and Heggs [26] Nu = 1/εð Þ0:255Rep2/3Pr1/3 (5)

Ranz [27] Nu = 2 + 0:6Rep0:5Pr1/3 (6)

Singhal et al. [28] Nu = 2:67 + 0:53Rep0:77Pr0:53 (7)

Will et al. [29] Nu = 2 + 0:493Rep1/2 + 0:0011 Rep (8)
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are characterized by the equal volume method and weigh-
ing method, respectively [19, 20]. To provide accurate ther-
mophysical properties for the calculation of the heat
transfer coefficient, Figure 3 shows the specific heat and
thermal conductivity of the sinter measured by the methods
of the scanning calorimetry and laser flash, respectively.
Besides, the mass and heating process under different particle
sizes are the same to ensure the comparability of the experi-
mental results. First of all, the sinter is heated from the room
temperature to 500°C at the heating rate of 10K·min-1. Sec-
ondly, it is kept at 500°C for 3 h. Then, the gas is blown into
the bed at the set flow rate to cool the sinter for 1 h. During
the cooling process, the gas outlet temperature shall be
recorded as the original data for calculating the heat transfer
coefficient. Finally, the above process is repeated to measure
the gas outlet temperature under different flow rates and par-
ticle sizes, so as to analyze the influence of the flow rate and
particle size.

2.2. Calculation Method of the Volumetric Heat Transfer
Coefficient. The sinter cooling process is essentially the
forced convection heat transfer of the gas in the porous

medium formed by the accumulation of sinter particles, as
shown in Figure 4.

Therefore, this paper adopts the inverse heat transfer
problem method in the porous media [41–43] to calculate
the heat transfer coefficient. First of all, the forward problem
model is established based on the reasonable assumptions:

(1) It is considered that the gas flows only along the axial
direction of the bed, ignoring the heat transfer in
the circumferential and radial directions. Therefore,
the cooling process can be regarded as the one-
dimensional unsteady process

(2) The bed formed by the accumulation of sinter parti-
cles can be regarded as the homogeneous and isotro-
pic porous medium

(3) The heat transfer between the sinter and air is carried
out by the convection, which is in the local non-
thermal equilibrium

According to the above assumptions, the following
mathematical model can be established [41–43].

Table 2: Experimental conditions and characteristic parameters for 7 kinds of particle sizes.

Particle size d (mm)
Equivalent particle
diameter dp (mm)

Bed voidage ε Bed height L (m) Gas velocity ug (m·s-1)

5~10 5.76 0.5728 0.5673 0.8, 1.0, 1.2, 1.4, 1.6

10~15 11.11 0.5939 0.6162 0.8, 1.0, 1.2, 1.4, 1.6

15~20 14.72 0.6038 0.6434 0.8, 1.0, 1.2, 1.4, 1.6

20~25 19.50 0.6073 0.6576 0.8, 1.0, 1.2, 1.4, 1.6

25~30 23.55 0.6118 0.6748 0.8, 1.0, 1.2, 1.4, 1.6

35~40 30.97 0.6203 0.6945 0.8, 1.0, 1.2, 1.4, 1.6

45~50 38.80 0.6293 0.7149 0.8, 1.0, 1.2, 1.4, 1.6
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of thermocouple
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conversion blower

Vortex
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Ball valve-2
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TCT: Temperature controlled thermocouple
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Figure 2: Schematic diagram of the gas-solid heat transfer test-bed for the sinter.
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(1) Energy equation of the gas:

∂ ερgcpgTg
� �

∂t
+
∂ ερgvgcpgTg
� �

∂z
= ε

∂
∂z

λg
∂Tg
∂z

� �
+ hv Ts − Tg

À Á
, ð1Þ

where ρg is the density of the gas, kg·m-3; cpg is the specific
heat of the gas, J·kg-1·°C-1; λg is the thermal conductivity of
the gas, W·m-1·°C-1; Tg is the temperature of the gas, °C; Ts

is the temperature of the sinter, °C; hv is the volumetric heat
transfer coefficient, W·m-3· °C-1.

(2) Energy equation of the sinter:

∂ 1 − εð ÞρscpsTs
À Á

∂t
= 1 − εð Þ ∂

∂z
λs

∂Ts
∂z

� �
+ hv Tg − Ts

À Á
,

ð2Þ

where ρs is the density of the sinter, kg·m-3; cps is the specific
heat of the sinter, J·kg-1·°C-1; λs is the thermal conductivity
of the sinter, W·m-1·°C-1.

At the beginning of the cooling process, the temperature
of the gas and solid is the same, which is the temperature
measured by the thermocouple at the end of the insulation
stage. The boundary conditions of energy equations for the
gas and solid are as follows:

Tg t, z = 0ð Þ = Tg,in,

− 1 − εð Þλs
∂Ts t, z = 0ð Þ

∂z
= hv Tg,in − Ts t, z = 0ð ÞÀ Á

,

λg
∂Tg t, z = Lð Þ

∂z
= 0,

λs
∂Ts t, z = Lð Þ

∂z
= 0,

ð3Þ

where Tg,in is the inlet temperature of the gas, which is the
same as the ambient temperature, °C.
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Figure 3: Measured data of the thermal conductivity λs and specific heat cps of the sinter at different temperatures.
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Figure 4: Schematic diagram of the physical model for the sinter
cooling process.

5International Journal of Photoenergy



Next, the method of the numerical solution is intro-
duced. First of all, the physical model is discretized by the
outside node method to determine the mesh element, node
position, and control volume, as shown in Figure 5.

Besides, the energy equation is discretized by the control
volume integration method to obtain the discrete equation.
The algebraic equation of each element after discretization
is shown in Eqs. (4) and (5).

(1) Discretization equation of the gas:

εi ρgcpg
� �j−1

i
Δz + ρgvg

� �
0
cj−1pg,iΔt + εiλ

j−1
g,i+1

Δt
Δz

+ εiλ
j−1
g,i−1

Δt
Δz

+ hvΔtΔz
� �

Á T j
g,i − εiλ

j−1
g,i−1

Δt
Δz

+ ρgvg
� �

0
cj−1pg,i−1Δt

� �
T j
g,i−1 − εiλ

j−1
g,i+1

Δt
Δz

T j
g,i+1

= εi ρgcpg
� �j−1

i
ΔzT j−1

g,i + hvΔtΔzT
j−1
s,i :

ð4Þ

(2) Discretization equation of the solid:

1 − εið Þ ρscps
À Á j−1

i
Δz + 1 − εið Þλj−1

s,i+1
Δt
Δz

+ 1 − εið Þλj−1
s,i−1

Δt
Δz

+ hvΔtΔz
� �

Á T j
s,i − 1 − εið Þλj−1

s,i−1
Δt
Δz

T j
s,i−1 − 1 − εið Þλj−1

s,i+1
Δt
Δz

T j
s,i+1

= 1 − εið Þ ρscps
À Áj−1

i
ΔzT j−1

s,i + hvΔtΔzT
j−1
g,i ,

ð5Þ

where j and j − 1 represent this moment and the last
moment; i − 1, i, and i + 1 represent the last node, this node,

and the next node, respectively; Δz and Δt represent the time
step and space step, m and s, respectively.

By discretizing the controlling equation of each element,
a series of algebraic equations can be obtained to form an
algebraic equation system similar to Eq. (6).

b1x1 + c1x2 = d1

a2x1 + b2x2 + c2x3 = d2

⋯

aixi−1 + bixi + cixi+1 = di

⋯

am−1xm−2 + bm−1xm−1 + cm−1xm = dm−1

amxm−1 + bmxm = dm

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

: ð6Þ

The algebraic equation system is solved by the tridiago-
nal matrix algorithm (TDMA) based on the Gauss elimina-
tion method. Finally, the computer language C# is used to
write the calculation program to realize the above algorithm,
thereby solving the sinter cooling process.

To obtain the solution independent of the space and
time, the temperature field in the bed under different time
and space steps is calculated by the numerical model. The
change of the gas outlet temperature Tg,out with the time is
shown in Figure 6. It is found that the change of Tg,out is
no longer significant when Δz and Δt are less than
0.35mm and 3 s, respectively. However, the further reduc-
tion of the time step and space step would greatly increase
the amount of the calculation, while the improvement of
the calculation accuracy is limited. Therefore, Δz and Δt
are set to 0.35mm and 3 s in this paper, respectively.

To verify the accuracy of the numerical model, the
experimental data in Ref. [39] are compared with the
calculated value of this model, as shown in Figure 7.
First of all, Figure 7(a) shows that the variation trend
of the measured value and calculated value with the
time is basically consistent. Besides, Figure 7(b) indicates
that the relative error between the measured value and
predicted value is less than 5%. Therefore, the numerical
model established can well predict the cooling process of
the sinter.

Figure 8 shows the whole process of calculating the heat
transfer coefficient by using the inverse problem method.
Firstly, the value of the convective heat transfer coefficient
hv is assumed. Combined with conditions of the geometric
parameters, physical properties, gas inlet temperature, and
initial temperatures of the gas and solid, the calculated value
of the gas outlet temperature ðTg,outÞcal is solved by the
numerical model. Then, the absolute deviation δ is obtained
by comparing the calculated value of the gas outlet temper-
ature ðTg,outÞcal with the measured value ðTg,outÞexp. If δ is

less than 1 × 10−3, the assumed value is the measured value
of the heat transfer coefficient at this moment. Otherwise,
the heat transfer coefficient hv is modified based on the devi-
ation δ between ðTg,outÞcal and ðTg,outÞexp [42]. Using the

1

m-1

i

i + 1

i-1

2

m

Mesh element

Figure 5: Schematic diagram of the mesh discretization of the
physical model.
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modified heat transfer coefficient, the energy equation is
resolved until δ is less than 1 × 10−3.

2.3. Analysis of the Uncertainty. Since this paper uses the
inverse problem method to calculate the heat transfer coeffi-
cient, it is difficult to use the error transfer theory to directly
analyze the uncertainty [44]. For the inverse problem

method, the uncertainty analysis generally adopts the
method of setting the manual error [44]. The error of this
experiment mainly comes from the measurement of the
temperature, flow rate of the gas, and height of the sinter
bed. The measurement accuracy of the thermocouple and
flowmeter is class I, and the measurement errors of the
temperature and flow rate are 0.4% and 1.0%, respectively.
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Figure 6: The change of the gas outlet temperature Tg,out with the time t: (a) different space steps Δz; (b) different time steps Δt.
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The accuracy of the straight rule used to measure the bed
height is 1mm. Since the minimum height of the bed layer
of seven kinds of sinters is greater than 500mm, the max-
imum error is less than 0.2%. Then, the uncertainty
caused by these three parameters on the heat transfer coef-
ficient hv is analyzed by the method of setting manual
error.

First of all, the heat transfer coefficient hv of three differ-
ent particle sizes under the gas velocity of 0.8m·s-1 is set, as
shown in Figure 9. Based on the heat transfer coefficient, the
outlet temperature of the gas is calculated by the numerical
model, as shown in Figure 10. Besides, the standard devia-
tion corresponding to the relative error is used to generate
the random number of the normal distribution as the
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Figure 7: Verification of the numerical model: (a) change of the calculated value and measured value of the gas outlet temperature Tg,out
with time t; (b) comparison between the calculated value ðTg,outÞcal and measured value ðTg,outÞexp of the gas outlet temperature.
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manual error [44]. Then, the error is added to the exact
value as the input parameter of the inverse problem to recal-
culate the heat transfer coefficient. Finally, the influence of
the measurement error is estimated by comparing the recal-
culated heat transfer coefficient with the set value.

The following is a brief description of the temperature
measurement error as an example. The gas outlet tempera-
ture with the error can be obtained by Eq. (7):

Tg,out
À Á

err = Tg,out
À Á

exact + ξTg,out
, ð7Þ

where ðTg,outÞexact is the outlet temperature of the gas with-
out the error, °C; ðTg,outÞerr is the outlet temperature of the
gas with the error, °C; ξTg

is the normally distributed ran-

dom number. The standard deviation σ of the normal distri-
bution function is 0.08, corresponding to the temperature
measurement error of 0.4% [44]. Figure 11(a) compares
the heat transfer coefficient based on ðTg,outÞexact and
ðTg,outÞerr. It is found that calculation errors of the heat
transfer coefficient with the particle size of 5~10mm,
25~30mm, and 45~50mm are 11.75%, 5.13%, and 3.67%,
respectively. In addition, the measurement errors of the gas
flow rate and bed height are estimated by the same method,
as shown in Figures 11(b) and 11(c), respectively. The errors
caused by the flow rate on the heat transfer coefficient for the
sinters of 5~10mm, 25~30mm, and 45~50mm are 6.11%,
3.96%, and 2.32%, respectively. The errors caused by the
bed height for the sinters of 5~10mm, 25~30mm, and
45~50mm are 0.89%, 0.38%, and 0.31%, respectively. The
comparison indicates that the temperature measurement
has the greatest impact on the heat transfer coefficient,
followed by the flow rate of the gas. The influence of the
bed height can be almost ignored.

3. Experimental Results and Discussions

3.1. Effect of the Gas Velocity on Gas-Solid Heat Transfer
Characteristics. Figure 12 illustrates the change of the gas
outlet temperature Tg,out and its change rate dTg,out with

the cooling time t in the sinter bed of the 5~10mm under
different gas velocities ug. Since the gas outlet temperature
is repeatedly measured three times under each condition,
the curve in Figure 12(a) is the average value of the three
results. Since the number of experiments is small, the error
bar should be calculated by using the t-distribution. The sig-
nificance level selected in this paper is 0.05, that is, the con-
fidence probability is 95%. Firstly, the t-distribution table
shows that t0:05/2ð2Þ is 4.3027. Besides, the standard error
S�x is calculated as follows:

S�x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑3

i=1 xi − �xð Þ2
3 × 3 − 1ð Þ

s
, ð8Þ

where xi represents the gas outlet temperature measured by
each time; �x represents the mean value of the three results.
Therefore, the error bar is t0:05/2S�x, as shown in Figure 12(a).

Firstly, the curve of Tg,out moves to the left side of the
time axis with the increase of ug. This indicates that the time
required for the cooling process decreases with the increase
in ug. The completion time for the cooling process decreases
from about 39min to 22min with ug increasing from
0.8m·s-1 to 1.6m·s-1, which is shortened by 43.59%. Besides,
both the steep degree of the dTg,out curve and the peak value
of dTg,out increase with the increase of ug. The peak value of
dTg,out increases from 29.16°C·min-1 to 55.28°C ·min-1 with
ug increasing from 0.8m·s-1 to 1.6m·s-1, which increases by
about 1 time. The above result shows that the increase of
ug is conducive to improve the heat transfer between the
gas and solid.

For the cooling process of the sinter, the heat transfer
mode between the gas and solid is mainly the convective
heat transfer. The viscous force caused by the viscosity
occupies an absolute advantage at the wall. This results in
the existence of the laminar flow boundary layer on the par-
ticle surface, also known as the heat transfer boundary layer.
The heat transfer in this area mainly depends on the heat
conduction. Due to the small thermal conductivity of the
gas, the temperature difference in the laminar flow area is
large. Therefore, the heat transfer resistance mainly concen-
trated in the boundary layer. But the heat transfer in the tur-
bulent region outside the boundary layer mainly depends on
the mixing effect caused by the velocity fluctuation. As a
result of the violent mixing of fluid particles, there is basi-
cally no temperature difference in the turbulent area, which
can be considered no heat transfer resistance. Therefore, the
thermal resistance of the convective heat transfer mainly
depends on the boundary layer. The thicker the boundary
layer, the greater the thermal resistance and the weaker the
convective heat transfer. The increase of the gas velocity
increases the degree of the gas turbulence, which thins the
boundary layer and reduces the heat transfer resistance
[11]. Consequently, the intensity of the gas-solid convective
heat transfer is improved.

Figure 13 shows the change of the mean value
ðdTg,outÞmean and peak value ðdTg,outÞpeak of the change rate

t
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Figure 8: The whole process of calculating the heat transfer
coefficient by the inverse problem method.
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of the gas outlet temperature with the gas velocity ug under

different kinds of sinters. It is found that the steep degree
of the fitting curve reduces with the increase in the particle
size. When the particle size increases from 5~10mm to
45~50mm, the slopes of the ðdTg,outÞmean curve and

ðdTg,outÞpeak curve decrease by 55.61% and 70.36%, respec-

tively. This indicates that the increase in the particle size will

weaken the effect of the gas velocity on the gas-solid heat
transfer. This is attributed to the increase of the heat con-
duction resistance within the particle [45].

Figure 14 illustrates the variation of the volumetric heat
transfer coefficient hv with the cooling time t in the sinter
bed of the 5~10mm at different gas velocities ug. Firstly, it
is observed that hv increases with the increase of ug. At the
cooling time of 40min, hv increases from 16288W·m-3·K-1
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Figure 9: Volumetric heat transfer coefficients hv set for three different kinds of sinters.
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Figure 11: Continued.
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to 49599W·m-3·K-1 with ug increasing from 0.8m·s-1 to
1.6m·s-1, which increases by about twice. Since the turbulent
degree of the gas increases with the increase in ug, the thick-
ness of the boundary layer decreases. This would decrease
the thermal resistance. Besides, hv is smaller in the initial
stage of the cooling process but increases gradually with
the cooling continuing. Since the gas temperature in the
bed is high at the initial stage, the viscosity coefficient is
large, which is about 1.8 times that of the room temperature.
Therefore, the viscous resistance of the gas on the particle
surface increases, which increases the thickness of the
boundary layer and heat transfer resistance. As the cooling
process continues, the gas temperature decreases. At this
time, the viscosity coefficient of the gas decreases, thereby
reducing the thickness of the boundary layer. Therefore,
the heat transfer resistance decreases, improving the convec-
tive heat transfer coefficient. In addition, the greater the gas
velocity ug, the faster the heat transfer coefficient hv
increases in the initial stage. The time of the initial stage at
ug of 0.8m·s-1 and 1.6m·s-1 is about 25min and 8min,
respectively, which is shortened by 68%. As shown in
Figure 12, the decreasing rate of the gas temperature with
the cooling time increases with the increase in ug. This
would increase the decreasing range of the viscosity coeffi-
cient. Therefore, the faster the gas temperature in the bed
decreases with the increase in ug, the greater the decrease
of the viscosity coefficient. Therefore, the decreasing extent
of the thickness of the boundary layer increases with the

increase in ug, which makes the increase of the heat transfer
coefficient faster in the initial stage.

3.2. Effect of the Equivalent Particle Diameter on Gas-Solid
Heat Transfer Characteristics. According to the experimental
data under the gas velocity ug of 0.8m·s-1, the change curves
of the gas outlet temperature Tg,out and its change rate
dTg,out for sinters with different particle sizes are plotted in
Figure 15. Firstly, the smaller the particle size, the higher
the gas outlet temperature in the initial stage. At the cooling
time of 1min, Tg,out with the particle size of 45~50mm and
5~10mm are 305.91°C and 453.54°C with an increase of
147.63°C, respectively. Besides, the steepness of the dTg,out
curve increases with the reduction of the particle size, indi-
cating that the time required for cooling is shortened. The
cooling time with the particle size of 15~20mm and
5~10mm is about 51.5min and 39.0min with the reduction
of 12.5min, respectively. In addition, the peak value
ðdTg,outÞpeak of the dTg,out increases with the particle size

decreasing. ðdTg,outÞpeak increases from 8.27°Cmin-1 to

29.25°Cmin-1 with the particle size decreasing from
45~50mm to 5~10mm, which increases by about 2.5 times.
The above results show that the reduction of the particle size
is beneficial to improve the intensity of the gas-solid convec-
tive heat transfer. This is attributed to the following two
main reasons [9, 40, 45]. Firstly, the bed voidage reduces
with the decrease in the particle size. It makes the real
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Figure 11: Influence of the measurement error on the heat transfer coefficient hv : (a) error of the temperature; (b) error of the gas flow rate;
(c) error of the bed height.
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velocity of the gas in the bed increase under the same flow
rate of the gas. Therefore, the boundary layer of the heat
transfer will become thin with the increase in the gas turbu-
lence. This makes the thermal resistance decrease. Secondly,

the specific surface area of particles increases with the parti-
cle size decreasing. It makes the gas-solid contact more suf-
ficient, resulting in an increase in the total heat exchange
area.
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Figure 12: Variations of the gas outlet temperature Tg,out and its change rate dTg,out with the cooling time t in the sinter bed of the 5~10mm
under different gas velocities ug.
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Figure 16 illustrates the mean value ðdTg,outÞmean and
peak value ðdTg,outÞpeak of the change rate of the gas outlet

temperature with the equivalent particle diameter dp under
different gas velocities ug. It can be seen that ðdTg,outÞmean
and ðdTg,outÞpeak not only increase with the reduction of dp
but also show the growth trend in the increasing extent. In
addition, Figure 17 shows that the heat transfer coefficient
hv increases with the reduction of dp, and the increasing
extent also increases. When the sinter is cooled to 40min,
the increasing extent is 1142.25W·m-3·K-1 with the particle
size decreasing from 20~25mm to 15~20mm, while that is
3152.65W·m-3·K-1 with the particle size decreasing from
15~20mm to 10~15mm. The above results indicate that
the reduction of dp is beneficial to improve the gas-solid
convective heat transfer, which is more and more significant.
First, Figure 18 shows that the specific surface area increases
with the particle size decreasing, which makes the gas-solid
contact more sufficient. Besides, the reduction in the bed
voidage ε with the particle size decreasing makes the turbu-
lent degree of the gas increase. This reduces the heat transfer
resistance. Finally, the variation range of the specific surface
area and bed voidage also increases with the reduction in the
particle size.

4. Modification of the Gas-Solid Heat
Transfer Correlation

For the cooling process of the sinter, the main factors affect-
ing the gas-solid heat transfer characteristics include the bed

voidage ε, equivalent particle diameter dp, gas velocity ug,
specific heat of the gas cpg, viscous coefficient of the gas μg,
thermal conductivity of the gas λg, density of the gas ρg,
and volumetric coefficient of the gas-solid heat transfer hv.
To fit the heat transfer correlation, the following expressions
are usually used for the dimensionless treatment of the
above factors.

Nu =
hadp
λg

, ð9Þ

where Nu is the Nusselt number representing the intensity
of the convective heat transfer; ha = hv/Spv is the area heat
transfer coefficient of the gas-solid convection, W·m-2·K-1;
Spv = 6ð1 − εÞ/dp is the specific surface area of particles,
m2·m-3.

Pr =
μgcpg
λg

, ð10Þ

where Pr is the Prandtl number, which is the ratio of the
dynamic viscosity coefficient to the thermal diffusivity.

Rep =
ρgugdp
μg

, ð11Þ

where Rep is the particle Reynolds number, representing the
gas flow state in the particle bed.
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Based on the form of previous correlations [23, 24, 26],
the dimensionless gas-solid heat transfer correlation of the
sinter is fitted according to the experimental data as follows:

Nu = 1
ε0:356

1:779 + 0:0256Rep0:851
À Á

Pr1/3: ð12Þ

The fitting correlation coefficient R2 of the above for-
mula is 0.99015. Figure 19 compares the measured value of
the Nusselt number Nu with the predicted value calculated
by this work and other works. Furthermore, the comparison
is made by means of the mean relative deviation (MRD), as
given by
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Figure 15: Variation of the gas outlet temperature Tg,out and its change rate dTg,out with the cooling time t for the different kinds of sinters at
the gas velocity of 0.8m·s-1.
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MRD %ð Þ = 1
N
〠
N

i=1

Nucal,i −Nuexp,i
Nuexp,i

����
���� × 100, ð13Þ

where Nuexp and Nucal are the measured value and calcu-
lated value of the Nusselt number Nu, respectively.

First of all, the change trend of the measured value of the
Nusselt number Nu is consistent with the predicted value
obtained by this work, that is, it increases with the increase
of the Reynolds number Re. Besides, the measured value is
evenly distributed on both sides of the predicted curve with
the mean relative deviation of only 7.61%. Therefore, the
heat transfer correlation obtained by this paper can be used
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Figure 16: Change of the mean value ðdTg,outÞmean and peak value (ðdTg,outÞpeak) of the change rate of the gas outlet temperature with the
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to accurately predict the gas-solid heat transfer characteris-
tics in the sinter bed.

In addition, it is found that the variation of the measured
value of the Nusselt number with the Reynolds number has
the same trend as predicted values obtained by other works

[9, 22–26, 40]. However, there is a considerable deviation
in the value. Among them, the minimum value of MRD is
26.81%, and the maximum value of MRD is as high as
177.32%. This may be attributed to the different shape of
packed particles in the bed. Compared with the previous
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Figure 17: Variation of the volumetric heat transfer coefficient hv with the cooling time t for the different kinds of sinters at the gas velocity
of 0.8m·s-1.
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particles, the shape of sinter particles is more irregular,
resulting in different gas channels from regular particles
[9]. Therefore, the heat transfer correlation of regular parti-
cles is no longer applicable to the sinter.

5. Conclusions

To establish an accurate model to optimize the vertical cool-
ing process of the sinter, the key is to apply an accurate heat
transfer correlation. Therefore, the heat transfer characteris-
tics in the sinter bed with the typical particle size are exper-
imentally studied. The inverse problem method is used to
calculate the gas-solid heat transfer coefficient based on the
gas outlet temperature, which is fitted into the correlation.

The results show that the heat transfer between the gas
and sinter is significantly enhanced with the increase in the
gas velocity. At the cooling time of 40min, hv increases from
16288W·m-3·K-1 to 49599W·m-3·K-1 with ug increasing
from 0.8m·s-1 to 1.6m·s-1, which increases by about twice.
But this effect is gradually weakened with the increase in
the particle size. With the particle size increasing from
5~10mm to 45~50mm, the slopes of the ðdTg,outÞmean curve
and ðdTg,outÞpeak curve decrease by 55.61% and 70.36%,

respectively. In addition, the reduction of the particle size
is also conducive to the enhancement of the heat transfer
intensity. With the particle size decreasing, this effect is pro-
gressively evident. When the sinter is cooled to 40min, the
increasing extent of hv is 1142.25W·m-3·K-1 with the particle
size decreasing from 20~25mm to 15~20mm, while that is

3152.65W·m-3·K-1 with the particle size decreasing from
15~20mm to 10~15mm.

In addition, it is found that the variation of the measured
value of the Nusselt number with the Reynolds number has
the same trend as predicted values obtained by other works
[9, 22–26, 40]. However, there is a considerable deviation
in the value. Among them, the minimum value of MRD is
26.81%, and the maximum value of MRD is as high as
177.32%. It is proved that the previous empirical correlations
are no longer applicable due to the difference of the shape.
While the predicted value of this work is in good agreement
with the measured value with the mean deviation of only
7.61%. Therefore, the modified correlation can accurately
predict the gas-solid heat transfer characteristics in the sinter
bed.

Nomenclature

cp: Specific heat capacity (J·kg-1·K-1)
d: Particle size (m)
dp: Equivalent particle diameter (m)
hv: Volumetric heat transfer coefficient

(W·m-3·K-1)
ha: Surface heat transfer coefficient (W·m-2·K-1)
L: Bed height (m)
Nu: Nusselt number (−)
Pr: Prandtl number (−)
Rep: Particle Reynold number (−)
Spv : Specific surface area (m2·m-3)
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Figure 19: Comparison between the measured value of the Nusselt number Nu and predicted value of this work and other works.
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T : Temperature (°C)
Tg, Tg,in, Tg,out: Gas temperature, inlet gas temperature,

outlet gas temperature, respectively (°C)
dTg,out: Change rate of the gas outlet temperature

(°C·min-1)
Ts: Sinter temperature (°C)
t: Time (s)
ug: Gas velocity (m·s-1)
z: Ordinate (m).

Greeks

ε: Bed voidage (−)
λ: Thermal conductivity (W·m-1·K-1)
δ: Absolute error (−)
σ: Standard error (−)
ξ: Random number of the normal distribution (−)
ρ: Density (kg·m-3)
μ: Dynamic viscosity of the gas (Pa·s).

Subscripts

p: Particle
s: Sinter
g: Gas
err: Error
cal: Calculation
exp: Experiment.
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This study presents a theoretical study on the super thin and conductive thermal absorber with built-in corrugated channels on
the basis of previous field experiments. The flow and heat transfer characteristics of the corrugated channels are simulated to
identify the factors affecting photovoltaic/thermal (PV/T) system efficiency. The influences of the structural parameters such as
the corrugation number, the corrugation area, and the flow channel width on the water outlet temperature and heat collection
are discussed in order to support the structural optimization design of the hybrid PV/T system. The simulation results were
validated to be in good agreement with experimental results. The results indicate that increasing inlet water velocity leads to a
decrease in the outlet temperature. It was found that the corrugation area and the flow channel width have impacts on the
outlet temperature of the hybrid PV/T collector panel. When the flow channel width of the absorber plate is reduced from
4mm to 3mm, the outlet temperature attained is between 298 and 302K, and the heat collection is in the range of 16.2–
51.4MJ/h. This led to an increase in the amount of heat collected by 18.6%.

1. Introduction

The solar photovoltaic/thermal (PV/T) system is one of the
key research focuses of the solar energy utilization field due
to its high thermal energy output and comprehensive utiliza-
tion compared with PV or solar thermal systems alone [1, 2].
It was widely used in several industries, like power generation
stations [3–5], dryers [6, 7], building heating [8, 9, 10], and
desalination systems [11–13]. In recent years, great progress
has been made in the optimization and application of solar
photovoltaic/thermal (PV/T) systems.Nomatter inwhat field
the PV/T system is used, improving its performance is the key
and final objective. Many studies have been conducted to
investigate the PV/T system performance involving utilizing
PCM [14–16], using nanofluids [17, 18], concentrated appli-
cation [19, 20], and air and water configurations [1, 21, 22]
by various methodologies such as experimental, analytical,
numerical, and simulation techniques. Due to the structure
and performance improvement of the heat collector having a
great influence on the whole PV/T system components’ effi-

ciency, technologies for this purpose, including the cooling
channel design or modifications of the PV/T systems, have
been developed substantially. This includes using single and
double pass and using fins, suspended plates, concentrating
plates, etc.

Hissouf et al. [23] investigated the theoretical perfor-
mance of a PV/T solar collector employing three different geo-
metrical shapes of fluid circulation channels (circular tube,
half tube, and square tube) and a heat transfer fluid of pure
water and ethylene glycol-water (EG-W) mixture. The half
tube design is found to provide the best photovoltaic cooling
effect and thehighest efficiency.Theuse of purewater aswork-
ing fluid improves thermal and electrical yields by 4.5% and
1.85%, respectively, compared to the EG-W mixture. A new
type (double pass) of photovoltaic/thermal panel and a novel
latent heat storage unit integrated with the condenser of the
heat pump were designed and manufactured in Kosan and
Aktas’ study [8]. The numerical analysis was performed using
the Ansys Fluent program to characterize the thermal behav-
ior of the phase changematerial in the latent heat storage unit.
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It was observed that the heat pump system’s average coeffi-
cient of performance varied between 2.93 and 3.18. The pho-
tovoltaic/thermal panel was able to store 1.07 kWh of
electrical energy and produce 9.59% more electricity than
the photovoltaic panel alone. Yu et al. [24] investigated a novel
solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal
(MC-LHP-PV/T) system through experimental measure-
ments. A prototype MC-LHP-PV/T system employing R-
134a as working fluid was designed and measured to evaluate
its solar thermal and electrical efficiencies and its impact fac-
tors. The results found that a lower inlet water temperature,
a higher water flow rate, a higher ambient temperature, and
a larger height difference between the condenser and the evap-
orator can help to increase the solar thermal efficiency of the
system. Compared to existing PV/T and BIPV/T systems,
the new MC-LHP-PV/T system achieved 17.20% and
33.31% higher overall solar efficiency. By utilizing numerical

and experimental approaches, Çiftçi et al. [25] developed
and analyzed a vertical hybrid PV/T solar dryer. Their results
showed that the thermal efficiency values of the finned vertical
PV/T collector weremuch higher than those of the finless ver-
tical PV/T collector. The sustainability index values of finless
and finned drying systems were between 2.16-2.75 and 2.38-
3.25, respectively. Arslan et al. [26] designed a new type of
finned air fluid photovoltaic/thermal collector and performed
numerical and experimental analysis on it. It was reported that
0.42% improvement in electrical efficiency occurred due to the
cooling of PV. The average thermal and electrical efficiency
obtained for the PV/T was 49.5% and 13.98%, respectively,
with a mass flow rate of 0.04553 kg/s. To achieve higher ther-
mal and electrical efficiencies, Yao et al. [27] designed and
optimized the fluid channel pattern of the solar-assisted PV/
T heat pump. The optimized two-phase flow channel pattern
had significant improvements in temperature uniformity,
thermal and electrical efficiencies, and hydraulic behavior.
Fan et al. [28] developed amultiobjective design optimization
strategy for hybrid photovoltaic/thermal collector- (PV/T-)
solar air heater (SAH) systems with fins to maximize thermal
energy generation and net electricity gains. To improve the
cooling capacity and required pump power of parallel cooling
channels (PCCs), Yu et al. [29] studied the heat transfer in par-
allel cooling channels with periodically expanded grooves
(PEGs).

The hybrid photovoltaic/thermal (PV/T) collector with
internal corrugated channels studied in this work has the
characteristics of using pass or fins mentioned above. It
was developed by Xu et al. [30] to retrofit the existing PV
panel into a photovoltaic/thermal (PV/T) panel. The current
study is thus built up on top of the previously reported
works in the literature [30, 31] which conducted a parallel
comparative investigation on the PV and PV/T panel sys-
tems through both laboratory and field experiments. The
previous study [30] has shown that the electrical efficiency
of the PV/T unit can be improved by 16.8% through the

Flat plate metal sheet Metal sheet with corrugations

Laser welding

Outlet

Inlet

(a) (b)

Figure 1: Schematic of the thermal absorber (a) and the associated PV/T prototypes (b).

Table 1: Relevant parameters of the heat absorber plate core.

Items Parameters

Absorber plate material Iron

Large corrugation’s diameter 35mm, 25mm

Small corrugation’s diameter 20mm, 15mm

Inlet/outlet diameters 20mm

Inlet/outlet lengths 50mm

Flow channel width 4mm

Table 2: Material parameters.

Items
Density
(kg/m3)

Specific heat
volume (J/

kg·K)

Thermal
conductivity
(W/m·K)

Coefficient
viscosity (kg/

m)

Water 998.2 4182 0.6 0.001003

Iron 8030 502.48 16.27 —
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use of a super thin-conductive thermal absorber, and the
thermal efficiency reaches 65%. Compared with the same
PV, the hybrid PV/T panel could enhance the electrical
return by nearly 3.5% and increase the overall energy output
by nearly 324.3%.

The overall energy output of hybrid PV/T panels is
mainly related to heat collection efficiency. To improve the
efficiency of solar energy conversion of PV/T systems, it is
necessary to investigate the factors affecting the heat transfer

performance of the absorber plate. The geometric character-
istics of the absorber plate are also key factors affecting the
internal flow and heat transfer characteristics. In addition,
the optimized structural parameters should meet the
demands of different sizes and thicknesses of a wall body
and installation convenience. However, it is difficult to
achieve the temperature and velocity of the working medium
in the plate through laboratory measurements and identify
the influence of factors on the absorber plate’s heat transfer
performance due to its complex structure. In this work, a
CFD model of the super thin-conductive thermal absorber
was established on the basis of the previous field experiment
[31]. The flow and heat transfer characteristics of the corru-
gated channels are simulated to identify the key factors
affecting the PV/T system efficiency. Finally, the influences
of the structural parameters, such as corrugation areas, cor-
rugation numbers, and flow channel width, on the flow and
heat transfer characteristics are discussed to support the
structural optimization design of the hybrid PV/T panel
with corrugated cooling channels.

2. Methodology

2.1. Photovoltaic/Thermal (PV/T) Panel with Corrugated
Cooling Channels. The PV/T in this article is designed by
attaching the PV panel to a super thin-conductive thermal
absorber through a series of U-shaped resilient metal clips.
The thermal absorber was laser-welded together through
two parallel thin flat plate metal sheets with a 1mm thick-
ness. One sheet was extruded by a machinery mold to for-
mulate arrays of mini corrugations while the other sheet
remained smooth. These two metal sheets form the built-in
turbulent flow channels with a 4mm width, which engen-
ders high heat transfer capacity. The corner holes are cut
on the four corners of the corrugated sheet as the working
medium water’s inlet and outlet channels with a spacing of
4 cm. The physical map and plane schematic diagram of
the heat-absorbing core are shown in Figure 1, and the rele-
vant parameters of the heat absorber plate are shown in
Table 1.

2.2. Mathematical Model. In this article, a CFD model was
established using the hybrid PV/T panel with large and small
corrugations as the research objects. To simplify the simula-
tion, the following assumptions are made:

(1) The irradiance, ambient temperature, and inlet water
temperature are constant

(2) The working medium water is considered to be an
incompressible liquid

(3) The materials’ properties are constant

(4) The flow is fully developed

The solid boundary involved in the simulation model is
iron. The physical property parameters of water and iron
are shown in Table 2. The same boundary condition as in
the reference experiment [31] was adopted; that is, the front
of the collector was kept as a constant heat source.
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Figure 2: Location of the measuring points set on the absorber
plate.
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Figure 3: Temperature comparison of different measurement
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2.2.1. Model Equations. Considering that the heat absorber is
an ultrathin type of superconducting tablet, the internal flow
of fluid had streamline curvature and vortex due to the cor-
rugations. The fluid was affected largely by the wall in the
internal, and its turbulence developed insufficiently near
the wall surface. The realizable k‐εmodel was chosen for this
study because it more accurately predicts the performance of
the flat plate absorber. Its specific expression was as follows:

ρ
∂k
∂τ

+ ρuj
∂k
∂xi

= ∂
∂xi

μ + μt
σk

� �
∂k
∂xj

" #
+Gk +Gb − ρε − YM + Sk,

ð1Þ

where ρ and μ are the density and viscosity of the water,
respectively; τ is the time; k is the turbulent energy; μt is
the turbulent viscosity; xi and xj are the displacement in
the x and y directions, respectively; u and v are the velocity
of water along the x and y axis, respectively; Gk is the turbu-
lent kinetic energy term that is generated by the laminar
velocity gradient; Gb is the turbulent kinetic energy term that
is generated by buoyancy; ε is the turbulent dissipation rate;
YM refers to the wave generated by the transition diffusion
in compressible turbulence; Sk is defined as the turbulent
kinetic energy; and σk is the turbulent Prandtl number in
the k equation.

The governing equation for the dissipation ratio ε is as
follows:

ρ
∂ε
∂τ

+ ρuj
∂ε
∂xj

= ∂
∂xj

μ + μt
σε

� �
∂ε
∂xj

" #
+ ρC1Sε − ρC2

ε2

k + ffiffiffiffiffi
vε

p + C1ε
ε

k
C3εGb + Sε,

ð2Þ

where σɛ is the turbulent Prandtl number in ɛ equation, Sɛ is
defined as the turbulent dissipation source, C1ɛ andC2 are
constants, and C3ɛ is the influence term of buoyancy on

the dissipation rate:

C1 = max 0:43, η

η + 5

� �
,

η = S
k
ε
,

ð3Þ

where S is the influence term of average strain rate on
turbulence.

2.2.2. Numerical Method and Boundary Conditions. The
ICEM module of commercial computational fluid dynamics
(CFD) software Ansys Fluent was used to establish the geo-
metric model and carry out the structural mesh division.
Three-dimensional single precision was selected. The SIM-
PLE algorithm and an uncoupled implicit solver were used
for the solution. The heat transfer surface grid encryption
technology, boundary layer mesh technology, and general
grid interface (GGI) mesh link technology were used. Grid
independence verification was also conducted. When the
number of grids is about 2.17 million, the outlet temperature
error is less than 2%.

For the incompressible flow in channels, the following
boundary conditions are set according to the actual operat-
ing conditions of the experimental platform [31]:

(1) The inlet velocity v ranges from 0.2 to 1.5m/s, and
the inlet water temperature T in is 293K

(2) The outlet was the outflow of quality

(3) The wall surface was chosen to be made of iron. To
simplify the simulation, when simulating the influ-
ence of temperature difference on the water’s flow
and heat transfer characteristics inside the plate, all
the wall surfaces were assumed adiabatic, except
the outer heating surface, which was set at a corre-
sponding constant temperature

2.3. Model Validation. To validate the numerical model
developed in this work, the numerical simulation results

(a)

Large
corrugations

Small
corrugations

(b)

Figure 4: The metal sheet with smooth surface (a) and metal sheet with corrugations (b).
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for the inlet water temperature, the outlet temperature, and
the temperature near the plate center (T9) and two sides
(T11), considering an inlet flow velocity of 1.5m/s, are com-
pared with the experimental data from Li et al. [31]. The
experimental temperature was obtained by setting 14 mea-
suring points (T6-T19) on the back board of the hybrid plate
(as shown in Figure 2). The minimum and maximum tem-
peratures recorded by the temperature sensor are
-323~473K, respectively. At 11:30, it is noted that the exper-
imental and numerical simulation inlet water temperatures
are approximate and are selected for comparison, as illus-
trated in Figure 3.

Overall, the temperature distribution at the different
measurement points is similar in the case of experimental
and numerical simulations. The maximum reported discrep-
ancy is around 0.5%, exhibited at point T9. The differences
may be due to the positions of the experimental measure-
ment points. The flow channel is too narrow to install a tem-
perature monitor to get the temperature of the water inside.
Except for the inlet and outlet temperatures, the rest of the
measuring points are arranged on the back board of the
hybrid plate during the experiment. The thermal absorber
is made up of two super thin metal sheets. It was considered
that the back board temperature is approximately equal to
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Figure 5: Temperature distribution (in K) at different inlet flow velocities.
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the internal water temperature at steady state conditions. It
is noted that when the inlet flow velocity is high, the rate
of heat removal from the PV panel is low, which leads to
insufficient heat transfer by the internal working medium.
Therefore, the simulated outlet temperature is higher than
the experimentally measured one. In a previous study pre-
sented in the literature [22], the water outlet temperature
was found to drop as the inlet water velocity increased. In
general, the temperature distributions by simulation show
reasonable agreement with the test results. Hence, the
numerical model can accurately predict the heat transfer of
the hybrid absorber’s internal flow channels.

3. Results and Discussions

This study firstly analyzed the flow and heat transfer charac-
teristics of the water in the present absorber plate under dif-
ferent inlet velocities and heating surface temperatures.
Then, the flow and heat transfer characteristics were simu-
lated by changing the structural parameters of the hybrid
PV/T panel, such as corrugation numbers, corrugation areas,
and flow channel width, while other conditions were main-
tained constant. Finally, the optimization direction was
given by comparing it with the previous hybrid heat collec-
tor and the flat plate heat collector. The flat plate collector
is laser-welded together by two parallel metal sheets with a
smooth surface (Figure 4(a)). The hybrid collector is laser-
welded together by two parallel metal sheets. One sheet has
corrugations (Figure 4(b)), while the other sheet remains
smooth.

3.1. Effect of the Internal Temperature and Inlet Velocity.
When the inlet velocity is greater than 1.0m/s, the water
outlet temperature drops very little. The water outlet tem-
perature is 297.54K when the inlet flow velocity is 1.0m/s,

and it drops to 297.45K when the inlet flow velocity is
1.5m/s. The temperature distribution in the parallel heating
surface direction is similar. Therefore, in order to identify
the influence of inlet velocity and heating surface tempera-
ture on the heat absorber, this study simulated the water
temperature and velocity distributions at different condi-
tions: the inlet velocity was increased by a 0.1m/s increment
from 0.2 to 1.0m/s, and the heating surface temperature was
298, 303, 308, and 313K, respectively. The geometry param-
eters and other conditions are constant.

The water temperature inside the PV/T panel drops as
the inlet water velocity increases (Figure 5). At a low inlet
flow velocity (0.2m/s), it can be seen that the water temper-
ature is high due to the fact that the rate of heat removal
from the PV panel is high at low inlet flow rates. The tem-
perature distribution in the parallel heating surface direction
is similar no matter how the water inlet velocity changes
(Figure 5). The temperature near the plate exit is high, while
the part near the entrance is low. The temperature of the
absorber plate is symmetrical about the symmetry axis, and
the temperature on both sides is lower than at the center.

According to the temperature difference between the
collector inlet and outlet, heat collection at different water
inlet velocities can be obtained (Figure 6). The outlet tem-
perature decreases with the increase in the water inlet veloc-
ities. This is due to the fact that at low flow velocities, the
working fluid will take more time to absorb heat from a
PV panel compared to the case at high speeds. In general,
increasing the flow rate will lead to a decrease in the PV tem-
perature [32], and thus, the rate of heat removal from the PV
panel is thus low. As the inlet velocity increases, the heat col-
lection per hour increases, and the amplitude decreases
gradually. When the velocity varies from 0.2 to 1.0m/s, the
heat collection is in the range of 14.8-43.1MJ/h.

Figure 7 shows the water temperature distribution at dif-
ferent heating surface temperatures with water inlet velocity
being 0.5m/s. All the temperature distributions at different
heating surfaces have a similar trend. The temperature near
the middle is slightly higher than it is on either side. The
temperatures near the two exits are high, and the tempera-
tures near the entrances are low. This may also be due to
the flow velocity distribution of the working medium inside
the plate (Figure 8). The water velocity on both sides is high,
while it is low near the middle part. Compared to the sides,
the water in the middle has a longer flow path and a lower
velocity. This relatively low velocity, along with the high rate
of heat removal from the PV panel, results in sufficient heat
exchange between the PV panel and the water.

Figure 9 shows the outlet temperature and heat collec-
tion under different heating surface temperatures with the
inlet velocity being 0.5m/s. The outlet temperature and heat
collection per hour increase with the rise of the heating sur-
face temperatures. The trend is linear, and the rate is
decreasing. Under this condition, the outlet temperature of
the heat collector is between 298 and 313K, and the heat col-
lection per hour is in the range of 12.3~53.5MJ. An increase
in the PV panel temperature leads to an increase in the out-
let temperature due to the rise in the work medium temper-
ature, which was also reported in the study conducted by
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Figure 6: Outlet temperature and hourly heat collection of heat
absorber.
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Abdin and Rachid [33]. It was also found that the PV effi-
ciency drops with the rise in the PV panel temperature.

3.2. Effect of the Geometry Parameters

3.2.1. Corrugation Number. Two ways to change the corru-
gation number were investigated in this study. One is
removing all the small corrugations and keeping all the large
corrugations retained (Figure 10), and the other is removing
all the large corrugations and keeping all the small corruga-
tions retained. The panel size, other geometric parameters,
model, and boundary conditions remain constant. The out-
let temperatures of three types of plates under different inlet
velocities are shown in Figure 11.

No matter how the corrugation number changes, the
heat transfer performance of the hybrid PV/T collector with
corrugations is higher than the flat plate collector, and the
changing trend of the outlet temperature is similar. As the
inlet velocity increases, the outlet temperature decreases

while the heat collection increases. When the water inlet
velocity changes from 0.2 to 1.0m/s, the heat collection is
between 15.0 and 44.0MJ per hour.

The changes in the corrugation number on the hybrid
PV/T collector performance are not so significant. The
impact of the corrugation number on the outlet temperature
and heat collection has a certain relationship with the inlet
velocity. The outlet temperature of the absorber plate after
removing all the small corrugations is slightly higher com-
pared with the original absorber plate when the inlet velocity
is less than 0.4m/s or more than 0.7m/s. However, when the
inlet velocity is between 0.4m/s and 0.6m/s (Figure 11), the
outlet temperature of the absorber plate after removing all
the small corrugations becomes slightly lower than the orig-
inal absorber plate. While the outlet temperature of the
absorber plate after removing all the large corrugations is
slightly higher when the inlet velocity is less than 0.45m/s,
it is slightly lower when the inlet velocity is more than
0.45m/s (Figure 11).
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Figure 7: Temperature distribution of water (in K) at different heating surface temperatures.
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The differences in the shape of the collector surface have
a direct impact on the flow of the heat transfer fluid and the
overall heat transfer coefficient [32]. Removing all the small
or large corrugations will increase the contact area between
the fluid and the absorber plate and thus lead to sufficient
heat transfer. However, it also decreases the flow distur-
bances between the two panels, leading to a weakened heat
transfer. A previous study [34] also reported that the pres-
ence of sinusoidal corrugations provides higher flow distur-
bances, resulting in a significant enhancement in heat
transfer. On the other hand, the influence of the corrugation
number on the outlet temperature could be offset by the
changes in the inlet velocity. That is why the impact of the
changes in the corrugation number on the hybrid PV/T col-
lector performance is not so significant.

3.2.2. Corrugation Area. Two ways to change the corrugation
area were studied in this work. One is changing all the small
corrugations to the large ones (Figure 12), and the other is
changing all the large corrugations to the small ones. The
panel size, other geometric parameters, model, and bound-
ary conditions are the same as with the original absorber
plate. The outlet temperature and heat collection of three
types of plates under different inlet velocities are shown in
Figure 13.

As shown in Figure 13, as the inlet velocity increases, the
outlet temperature gradually decreases, and the decreasing
amplitude comes to a lower level. When the inlet velocity
changes from 0.2 to 1.0m/s, the outlet temperature of the
absorber plate with all small corrugations changed to the
large ones is between 301 and 298K, and the heat collection
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Figure 8: Velocity distribution of internal working fluids (in m/s) at different heating surface temperatures.
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is in the range of 14.8 to 46.2MJ/h. Compared with the orig-
inal heat absorber plate, the heat collection per hour
increases gradually at the same flow velocity, and the maxi-
mum increment of heat collection is 6.6%. While the
absorber plate’s outlet temperature is between 301 and
297K after changing all large corrugations to the small ones,
the heat collection is in the range of 14.7-35.7MJ/h
(Figure 13).

With the inlet velocity changing, the outlet temperature
of the original plate and the plate with changing corrugation
area is significantly higher than the flat plate. When the inlet
velocity is greater than 0.4m/s, the outlet temperature of the
heat absorber plate with all small corrugations changing to
the large ones is higher than the original plate (Figure 13).
However, when the inlet velocity is greater than 0.5m/s,
the outlet temperature of the present absorber plate after
changing all large corrugations to the small ones is lower
than the original plate (Figure 13).

The outlet temperature increased after changing the cor-
rugation area, especially after changing all small corruga-
tions to the large ones when the inlet flow velocity was
greater than 0.4m/s. Besides, due to the flow around the cor-
rugations, the internal water was heated by the back-facing
of the PV plate, which was also heated by the increased cor-
rugations. The PV temperature decreases with the increase
in the water inlet velocity. Moreover, changing the corruga-
tion area especially changing all large corrugations to the
small ones could increase the contact area between the water
and the absorber panel. However, it also reduces the flow
disturbances caused by the corrugations.

The mass flow rate considered in this study is based on
the previously reported experimental evaluation of the PV/
T panel, employing a nominal mass flow rate of 0.83 Lmin-
1m-2 and a maximum mass flow rate of 3.83 Lmin-1m-2.
Previous studies [22, 30] reported that increasing the fluid
flow rate leads to a lower outlet temperature and a higher
thermal efficiency of the PV/T panel. It also reported that
the experimental thermal efficiency will reach its “optimum
point” at a mass flow rate of 5 L/min [22]. Therefore, the
PV/T panel exhibits an optimal mass flow rate at a certain
solar irradiance. The optimal mass flow rate and the struc-
tural parameters, such as the corrugation number and the
area, will be considered in the subsequent applied study,
referring to the local solar irradiance in combination with
the mass flow rate to obtain the high thermal efficiency.
Therefore, changing corrugation area does affect the
absorber plate performance to a certain extent, but the opti-
mal corrugation area that improves the heat transfer charac-
teristics should be further studied.
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Figure 9: Outlet temperature and heat collection at different
heating temperatures.

Figure 10: Heat absorber plate with removing all the small
corrugations (right).
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Figure 11: Outlet temperature comparison of three types of
absorber plates after changing the corrugation number.
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3.2.3. Flow Channel Width. Two ways to change the flow
channel width were implemented in this study. One is
changing the width from 4 to 5mm (Figure 14(a)), and the
other is changing to 3mm (Figure 14(b)). The plate size,
other geometric parameters, model, and boundary condi-
tions are the same as for the original plate. The outlet tem-
perature and heat collection of three types of absorber
plates under different inlet velocities are shown in Figure 14.

As shown in Figure 15, as the flow velocity increases, the
outlet temperature gradually decreases. When the inlet

velocity changes from 0.2 to 1.0m/s, the outlet temperature
of the plate with a 5mm width is between 297 and 302K,
and the heat collection is in the range of 16.1-39.2MJ/h.
Compared to the original absorber plate, when the inlet
velocity is less than 0.3m/s, the outlet temperature of the
plate with a 5mm width flow channel is higher. On the other
hand, the outlet temperature is lower than that of the origi-
nal absorber plate when the inlet velocity is greater than
0.4m/s.

The outlet temperature of the absorber plate with a
3mm width flow channel is significantly higher than both
the flat plate and the original plate at different inlet veloci-
ties, which is between 298 and 302K. The heat collection is
in the range of 16.3-51.4MJ/h. Compared with the original
PV/T panel, the heat collection per hour increases gradually
at the same flow velocity, and the maximum increment in
heat collection is 18.6%. This may be owing to the corruga-
tions and narrow flow channel increasing flow obstruction.
The presence of corrugations provides higher flow distur-
bances and pressure drop increases with the decrease in
the fin spacing, leading to significant enhancement in heat
transfer [34, 35].

The heat transfer characteristics of the hybrid PV/T
panel could be improved by changing the flow channel
width from 4mm to 3mm. Regardless of the employed
velocity, the outlet temperature of the absorber plate with a
3mm flow channel width is higher than that of an absorber
plate with a 4mm channel width. However, the best channel
width to enhance the performance of the heat absorber plate
should match the corrugation number and area. The collec-
tor structure could be optimized when the heat collection
generated by changing corrugation area and corrugation
number, combined with the heat caused by changing the
flow channel width, is positive, which will be carried out in
the follow-up study.

Above all, the flow channel width has influences on out-
let temperature and heat collection of the hybrid PV/T
panel. The heat transfer performance of the hybrid PV/T

Figure 12: Heat absorber plate with changing all small corrugations to large ones (right).
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collector with corrugations is higher than the flat plate col-
lector no matter how to change its relevant parameters,
which accords with the previous study [34] that also
reported that the PV/T panel could enhance thermal effi-
ciency compared to the stand-alone PV panel.

4. Conclusion

In this study, the steady-state flow and heat transfer charac-
teristics of a hybrid PV/T collector with corrugated channels
were investigated numerically to investigate the influence of
the inlet velocity and heating surface temperature on the
thermal performance of the PV/T collector. In order to sup-
port the structural optimization of the heat absorber plate to
improve the heat collection efficiency, the influences of the

structural parameters such as corrugation number, corruga-
tion area, and flow channel width on the heat transfer char-
acteristics were also discussed. The numerical results
indicated that

(1) compared with the collector with a flat plate, the out-
let temperature of the hybrid PV/T panel with the
added corrugations is significantly increased

(2) the outlet temperature and heat collection of the
hybrid PV/T panel are affected by the water inlet
velocity, corrugated area, and flow channel width

(3) when the inlet velocity is greater than 0.4m/s, the
outlet temperature of the collector plate with all the
small corrugations changed to the large ones is
higher than the original heat absorber plate, enhanc-
ing the heat collection

(4) as the width between the two plates of the hybrid
PV/T collector decreases from 4mm to 3mm, the
improvement of flow heat transfer characteristics
significantly leads to the performance enhancement
of the heat collection

This study is complementary to the previous studies [30,
31], is limited to the comprehensive effect of the structure
parameters of the built-in corrugated channels on the flow
and heat transfer, and expands the library of comprehensive
evaluation and optimal design of the built-in corrugated
channels. The use of a particular absorber is considered
based on its uniformity, pressure drop, heat transfer area,
mass flow rates, etc. In future investigations, the optimal cor-
rugation number, corrugation area, and flow channel width
will be combined with laboratory measurements for a more
comprehensive and detailed evaluation.

Data Availability

Some or all data, models, or codes that support the findings
of this study are available from the corresponding author
upon reasonable request.
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Figure 14: (a) 5mm width flow channel and (b) 3mm width flow channel.
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The addition of nanomaterials to molten salts can significantly improve their thermal performance. To explore the enhancement
mechanisms, this work prepared carbonate salt nanofluids with binary carbonate as base salt and 20 nm SiO2 and 20 nm MgO
nanoparticles as additives by the commonly used aqueous solution method. Then, the key performance and micromorphology
of the carbonate salt nanofluids are characterized by differential scanning calorimetry, thermal gravimetric analysis, laser flash
analysis, and micromorphology analysis. Results showed that the 20 nm SiO2 nanomaterials instead of the 20 nm MgO
nanomaterials exerted higher effects on latent heat while the 20 nm MgO nanomaterials instead of the 20 nm SiO2
nanomaterials exerted higher effects on the sensible heat, thermal conductivity, and high-temperature stability of carbonated
salt. In addition, different nanostructures were observed in SiO2-based and MgO-based molten salt nanofluids, respectively.
Innovatively, formation mechanisms of molten salt nanofluids were proposed based on cloud nuclei to explain the different
enhancements in this work.

1. Introduction

As efficient thermal energy storage (TES) materials, molten
salt has been widely used in the fields of waste heat recovery,
concentrating solar power, and valley power utilization [1,
2]. In recent years, researchers observed that nanomaterials
can further improve the TES performance of molten salts
and reduce the size of TES systems which will save initial
investment cost greatly from investors [3].

In the development process of molten salt nanofluids,
Shin and Banerjee conducted the first work and found the
anomalous effect of nanomaterials on carbonate salt [3]. In
their innovative work [3], Shin and Banerjee added SiO2
nanoparticles to binary carbonate salt (61.5mol.% Li2CO3-
37.5mol.% K2CO3) and found a maximal increase of 24%

in specific heat. Moreover, they attributed the anomalous
increase to the percolation networks observed in their car-
bonate salt nanofluid. Later, nanomaterials like SiO2, MgO,
Al2O3, SiC, carbon nanotubes (CNTs), graphene, TiO2,
and their mixtures have also been used as additives [4]. Shin
and Banerjee [5] added 1.0wt.% of 10 nm Al2O3 nanoparti-
cles to the above binary carbonate salt by the aqueous solu-
tion (AS) method, and they obtained that the maximum
specific heat increased by about 33% as well as a large num-
ber of chain-like nanostructures. Shin and Banerjee [6] pre-
pared carbonate salt nanofluids by dispersing 1.0wt.% of
SiO2 nanoparticles to the binary carbonate eutectic via the
AS method. They observed maximal increases of 14.59% in
specific heat and 47% in thermal conductivity, respectively.
Shin and Banerjee [7] found high-dense network
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substructures in alkali chloride nanofluids with SiO2 nano-
particles and proposed the three-mode mechanism: (a) the
specific heat of nanoparticles is higher than that of the bulk
of SiO2; (b) solid-fluid interaction energy; and (c) liquid
molecules are layered on the surface of the nanoparticles,
forming a semi-solid layer. Now, the first mode has been
confirmed to be not applicable to some molten salt nano-
fluids. Tiznobaik and Shin [8] found needle-like structures
in binary carbonate salt nanofluids with SiO2 nanoparticles,
and they concluded that the high specific surface area of the
embedded nanoparticles and the nanoparticle-induced
needle-like structures appear to be related to the enhance-
ment of specific heat. Shin and Banerjee [5] considered that
the chain-like nanostructures in molten salt nanofluids were
responsible for the improvement of specific heat of molten
salt nanofluids and that the specific heat can only be
improved by the secondary long-range nanostructures
formed in carbonate salt nanofluids. Shin and Banerjee [6]
attributed the increased thermal conductivity of carbonate
salt nanofluids to the observed percolation networks with a
higher density phase. Shin et al. [9] considered that a salt
component electrostatically interacts with nanoparticles to
lead to a microseparation phenomenon of the molten salt
mixture, and then, the separated component salt crystallizes
on the nanoparticle surface to form the fractal-like fluid
nanostructures, which enhance the specific heat of molten
salt nanofluids. They also observed the theoretical thermo-
dynamic mixing model [10], thermal conductivity by
Hamilton-Crosser model [11], and Maxwell-Garnett model
[12] for traditional nanofluids that do not match with the
molten salt nanofluids. Rizvi and Shin [4] proposed the the-
ory “development of dendritic structure” to describe the for-
mation of molten salt nanofluids based on theories of the
electric double layer and the microsegregation of a binary
mixture due to electrostatic interaction and explained how
the specific heat of molten salt nanofluids is increased. This
theory considers that the dendritic structure on nanoparti-
cles is only one component salt molecule in the molten salt
mixture. However, this mechanism is difficult to explain
other enhancements like the heat of fusion and the thermal
conductivity. Tiznobaik and Shin [13] dispersed 1.0wt.% of
SiO2 nanoparticles to binary carbonate (62mol.% lithium
carbonate-38mol.% potassium carbonate) and observed that
the specific heat was increased by about 26%. They also con-
cluded that the carbonate salt nanofluids are a mixture of
solid nanoparticles, solid nanostructures near nanoparticles,
and liquid salt while nanostructures are the cause of increase
of specific heat.

Moreover, researchers all over the world are devoted to
molten salt nanofluids. Tiznobaik et al. [14] compared the
specific heat of the above binary carbonate salt with
1.0wt.% of different 10nm nanoparticles, and they observed
that the specific heat of MgO, SiO2, and Al2O3 nanoparticles
increased by 22%, 27%, and 33%, respectively. Tiznobaik
et al. [14] considered that the great specific surface of nano-
particles induced the secondary long-range nanostructures
in molten salt nanofluids, and the secondary long-range
nanostructures primarily dominated the improvement of
specific heat of carbonate salt nanofluids. Jo and Banerjee

[15] dispersed 0.1wt.% of 50nm graphite nanoparticles to
the above binary carbonate and obtained the maximum
increase of specific heat of 57%. They also found dense com-
pressed layers on the surface of graphite nanoparticles by
scanning electron microscopy (SEM). Jo and Banerjee [16]
investigated the effect of multiwalled CNTs on the specific
heat of above carbonate salt and found the maximal
increases of 15% and 12% in specific heat in liquid and solid
state, respectively. Kwak et al. [17] added 2.5wt.% of SiO2
nanoparticles to a binary carbonate (62mol.% lithium
carbonate-38mol.% potassium carbonate) by the AS
method, and a maximal increase of 14.59% in specific heat
was observed. Based on their research results, Keblinski
et al. [18] considered that both the ballistic and the direct
or fluid-mediated clustering effects provide a way for rapid
heat transport. In addition, they thought that the liquid layer
at the liquid/particle interface should be at least several
nanometers. Xue et al. [19] found that the thickness of layer-
ing of the simple liquid atoms at the liquid-solid interface
was several atoms using molecular dynamic simulations
and thought that the layering of the simple liquid atoms at
the liquid-solid interface did not have any noticeable effect
on the heat transport properties. Nevertheless, they also
thought that the thickness of the complex liquid atom layer-
ing at the liquid-solid interface could extend over longer dis-
tances from the interfaces. Oh et al. [20] found the ordered
molecule layer at the liquid aluminum/sapphire interface
by TEM tests. Using LiNO3 liquid and 10-nm Al2O3 nano-
particles, Matthew [21] calculated the thickness of adsorbed
layer on the interface. A thickness of 7:1 ± 0:6 nm for
enthalpy of fusion and a thickness of 5:3 ± 0:5 nm for spe-
cific heat are obtained for 1.0% Al2O3 nanoparticles while
a thickness of 7:1 ± 0:6 nm for enthalpy of fusion and a
thickness of 6:7 ± 0:6 nm for specific heat are obtained for
2.0% Al2O3 nanoparticles. This thickness is in the order as
what has been reported in literatures [20, 22]. Hentschke
[23] argued that the impact of nanoparticles on surrounding
liquid was of long range (100 nm or farther) and the formed
interfacial mesolayers interacted with each other, which
improved the specific heat of molten salt nanofluids. Our
recent work [24] found that SiO2 nanoparticles can also
enhance the heat of fusion, specific heat, thermal conductiv-
ity, and upper operating temperature of single component
salts. Sang and Liu [25] studied the effect of different nano-
particles on a ternary carbonate salt (40wt.% K2CO3-
40wt.% Li2CO3-20wt.% Na2CO3), and maximal increases
of 116.8%, 73.9%, 56.5%, and 66.5% in specific heat were
observed by adding SiO2, CuO, TiO2, and Al2O3 nanoparti-
cles. Meanwhile, they attributed the increase of specific heat
to the dispersion state and quantities of the formed needle-
like nanostructures.

It is concluded from the above review that the increased
levels in latent heat, specific heat, and thermal conductivity
obtained by different researchers are quite different while
different microstructures are observed although the nano-
particle, the base salt, and the preparation method employed
by these researchers are the same. Therefore, explanations
on the enhancement mechanisms of nanoparticles on base
salt by different authors are abhorrent.
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To explain the enhancement mechanisms of nanoparti-
cles on molten salts, innovatively, this work proposed the
formation mechanisms of molten salt nanofluids from the
perspective of molecules according to the experimental
results in this work and publications and attempted to inter-
pret the mechanism of enhancing the thermal performance
of molten salts by adding nanoparticles.

2. Materials and Methods

To provide a basis for the formation mechanisms proposed
in Section 3.4, some experiments have been done based on
the existing composition of molten salt nanofluid in pub-
lished literatures.

2.1. Material Preparation. In this work, analytical reagents
(Li2CO3 and K2CO3) were used as component salts to pre-
pare base salt. MgO nanoparticles and SiO2 nanoparticles
were added as additives to prepare carbonate nanofluids,
respectively. The purity of the component salts is above
99.0% while the SiO2 nanoparticles and the MgO nanoparti-
cles were selected with the purity of over 99.8%. MgO and
SiO2 nanoparticles with a mass fraction of 1.0 were dispersed
into the base salt (62mol.% Li2CO3-38mol.% K2CO3),
respectively. Table 1 shows the specific properties of compo-
nent salts and nanomaterials.

In this work, the base salt (binary carbonate salt) is pre-
pared with the following steps:

(1) Dried component salts of sodium carbonate and
potassium carbonate in a muffle furnace at 300 °C
for at least 24 h

(2) Weight the dried component salts based on the
appropriate mass ratio by an analytical balance
(ME 104/02, Mettler Toledo, 0.1mg) [24],
respectively

(3) Ground the component salts in a high-speed disinte-
grator for 10 s to form a base salt to prepare molten
salt nanofluids

(4) Dried the base salt in a drying oven at 170 °C for the
next preparation process

Molten salt nanofluids containing SiO2 and MgO nano-
particles are prepared by the AS method, respectively, as
described below (Figure 1):

(1) Weighted the base salt and nanoparticles according
to preset mass ratio by an analytical balance,
respectively

(2) Dispersed different mass ratios of nanoparticles into
deionized water at a mass ratio of 1 : 10 and then stir-
red the solution for 2 h through an ultrasonic agita-
tor to form a homogeneous suspension

(3) Dissolved the base salt into the nanoparticle suspen-
sion and stirred until completely dissolved

(4) Evaporated the suspension in a vacuum drying oven
at 95 °C for dehydration to form carbonate salt
nanofluid powers

(5) Further dried the carbonate salt nanofluid powers at
170 °C for 24h to ensure complete dehydration of
material

Carbonate nanofluids containing SiO2 nanoparticles are
coded as SiO2-nfs, and carbonate nanofluids containing
MgO nanoparticles are coded as MgO-nfs.

To evaluate homogeneity of nanoparticle dispersion in
molten salt nanofluids, three samples were taken from three
different locations (P1, P2, and P3), as illustrated in Figure 2.
For SiO2-nfs, samples taken from the three locations were
coded as samples s11, s12, and s13 while samples taken from
the three places were coded as samples s21, s22, and s23 for
MgO-nfs.

2.2. Characterization Methods and Uncertainty Analysis. To
analyze the dispersion uniformity of nanoparticles in molten
salt nanofluids, three samples were taken from different loca-
tions of the beaker for every carbonate salt nanofluid. In this
work, a synchronous thermal analyzer (STA 449 F3, NETSCH)
[24]) was performed to obtain the specific heat, melting point,
and heat of fusion of the base salt and molten salt nanofluids
using high-purity nitrogen (99.999%) as protective gas and
purge gas. Three melting-solidification cycles were carried out
at 10K/min intervals for each sample, and aluminum crucibles
were used for the tests. The continuous thermal cycle experi-
ment of the sample is carried out in STA 449 F3, and measure-
ments were repeated seven times for each sample under the
same conditions. The sample was heated from 200 to 550 °C
and then cooled to 200 °C in the furnace of the STA 449 F3, dur-
ing which the heating rate and cooling rate were both 10K/min.

A laser flasher (LFA 467, NETSCH) was performed to
obtain the thermal diffusivity of the base salt and molten salt
nanofluids using high-purity nitrogen (99.999%) as protec-
tive gas and purge gas, and the thermal conductivity of sam-
ple was calculated according to the formula in the literature
[27]. Each temperature point was measured seven times, and
platinum-rhodium crucibles were used for the tests. Scan-
ning electron microscopy (SEM, SU8000, Hitachi) was per-
formed to observe the micromorphology of base salt and
molten salt nanofluids to find potential reasons for the dif-
ferences in the samples.

Table 1: Specific properties of the component carbonates and
nanomaterials.

Materials Purity
Size,
nm

Tm,°C
ΔHm,
kJ/kg

λ, W/
(m·K) Manufacturer

K2CO3 ≥99% — 898 200 1.88

Ref. [26]
Na2CO3 ≥99% — 858 280 1.84

SiO2 ≥99.8% 20 — — —

MgO ≥99.8% 20 — — —
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The experimental measurement uncertainty was calculated
according to themethod in the literature [28]; with comprehen-
sive consideration of the standard uncertainty of classes A and
B, the measurement uncertainties of the melting point, latent
heat, specific heat, and thermal conductivity were calculated
to be 0.31 °C, 0.55 J/g, 0.025 J/(g·K), and 0.023W/(m·K), respec-
tively, in this work.

2.3. Homogeneity and Thermal Stability of Molten
Salt Nanofluids

2.3.1. Homogeneity of Nanoparticles. To evaluate the dispers-
ing homogeneity of nanoparticles in carbonate nanofluids,
three samples are taken from the three different locations for
each nanofluid as described in Section 2.1, and their specific
heats are measured, respectively. Table 2 shows the average
solid and liquid state specific heats of carbonate nanofluids.
In this table, the test results in the first three lines are the aver-
age of three cycles.

Table 2 shows that by addingMgO nanoparticles, the aver-
age specific heats of the three samples from the three locations
are 27.5% and 34.1% higher than those of the base salt in solid
state and liquid state, while by adding SiO2 nanoparticles, the
average specific heats of the three samples from different places
are only 11.0% and 20.7% higher than those of the base salt in
both solid and liquid states. Especially, the standard deviations
of the three samples of MgO-nfs are 0.012 J/(g·K) in solid state
and 0.054 J/(g·K) in liquid state, while the standard deviations of
the three samples of SiO2-nfs are 0.022 J/(g·K) in solid state and
0.036 J/(g·K) in liquid state. These standard deviations indicate
that the dispersion of nanoparticles in the three locations is
homogeneous.

2.3.2. Thermal Stability. To investigate the thermal stability of
both carbonate nanofluids, the carbonate nanofluid samples

were measured repeatedly through ten continuous heating-
cooling cycles of 200-560-200 °C. Excluding the phase change
process, the average specific heat of carbonate salt nanofluids
in solid state and liquid state is shown in Figure 3.

Figure 3 indicates that the average specific heat of both
carbonate salt nanofluids keeps generally constant and no
obvious variation is found in the specific heats of both car-
bonate nanofluids after undergoing ten continuous
heating-cooling cycles. This indicates that both carbonate
nanofluids have excellent thermal stability.

The thermogravimetric curves of both carbonate nano-
fluids during the heating process are shown in Figure 4. It
is observed that the mass losses are 3.49% for MgO-nfs
and 4.32% for SiO2-nfs, respectively, as the carbonate nano-
fluids are heated up to 1000 °C. The mass loss of base salt is
greater than that of both carbonate nanofluids. Obviously,
during the heating process, the mass loss of MgO-nfs is less
than that of SiO2-nfs, especially, as the heating temperature
is above 800 °C. This indicates that MgO-nfs has better ther-
mal stability than SiO2-nfs.

3. Results and Discussion

3.1. TES Capacity. To investigate the influence of nanoparti-
cles on the phase change process, the melting point and the
latent heat have been measured. Figure 5 depicts the heat
flow of the base salt and nanofluids over temperature.

It is clear from Figure 5 that the heat flow curve of SiO2-
nfs moves obviously to the right while the heat flow curve of
MgO-nfs keeps nearly unchanged. However, the melting
peaks of the base salt are lower than the melting peaks of
both nanofluids. Figure 5 indicates that both the MgO nano-
particles and the SiO2 nanoparticles have an effect on the
melting process, but the effects are obviously different.

To verify the equipment, the melting temperature and
the latent heat of the base salt were measured and are listed
in Table 3, which are consistent with those in refs. [29, 30].

Table 3 indicates the melting temperature and mean
latent heat of the carbonate nanofluids. It is observed that
the change of the melting point of SiO2-nfs is significantly
smaller than that of MgO-nfs. On the contrary, the increase
of the latent heat of SiO2-nfs is larger than that of MgO-nfs.
This confirms the fact again that SiO2 nanoparticles have lit-
tle impact on the melting point of molten salts [28].

Nanomaterial

Nanomaterial
suspension

Scale Scale

Stirring

Deionized
water

Base salt
Preset stirring time

Ultrasonic agitator

Molten salt nanofluid
solution

Evaporate at 95°C Keep at 170°C for
at least 24 hours

Vacuum dryer Vacuum dryer

Figure 1: Preparation process of molten salt nanofluids by the AS method.

P1

P3

P2

Figure 2: Carbonate nanofluid sampling locations inside the
beaker.
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Apparently, to increase the TES capacity, the SiO2-nfs is
more beneficial than the MgO-nfs.

In addition, higher specific heat means larger sensible heat
to be stored in a TES system. Figure 6 illustrates the specific
heat of the base salt, SiO2-nfs, andMgO-nfs. It is observed that
the specific heat of both carbonate nanofluids is all larger than
that of the base salt either before or after the phase change.
However, the specific heat of MgO-nfs is much higher than
that of SiO2-nfs. This means that the MgO nanoparticles have
a greater influence on the sensible heat storage capacity of car-
bonate nanofluids than that of the SiO2 nanoparticles. Further,
the increases in specific heat of both carbonate nanofluids
before the phase change are smaller than those after the phase
change, respectively. In addition, the specific heat of both
nanofluids increases near linearly over temperature in liquid
state.

Figure 6 illustrates that the addition ofMgO nanoparticles
is superior to the SiO2 nanoparticles to the binary carbonate
for the purpose of sensible heat improvement.

The total TES capacity by the carbonate salt nanofluids
consists of the specific heat of the low-temperature ramp-up
section, the specific heat of the high-temperature ramp-up sec-

tion, and the latent heat and the latent heat. Therefore, the
total TES capacity can be calculated by equation (1):

qTES = qL + qs,s + qs,l, ð1Þ

where
qs,s =

Ð Tmelt
T init

cp,sdT , qs,l =
Ð Tmax
Tmelt

cp,ldT , qL = hm:

In this work, the initial calculating temperature for TES cal-
culation was 350 °C and the terminal calculating temperature
was 550 °C. Figure 7 presents the TES capacity of carbonate
nanofluids prepared in this work at different temperatures in
the test temperature range.

It is observed that the TES capacity of MgO-nfs increases
faster than that of SiO2-nfs in solid state. This is because the for-
mer has higher specific heat than the latter. However, since the
latent heat of the MgO-nfs is smaller than that of SiO2-nfs, the
TES capacity of MgO-nfs is close to that of SiO2-nfs with the
termination of the melting process. Further, MgO-nfs also has
higher specific heat than SiO2-nfs in liquid state; therefore, the
TES capacity of MgO-nfs increases still faster than that of
SiO2-nfs in the liquid state.

In all, from the point of view of total TES capacity, MgO-
nfs are superior to SiO2-nfs.

3.2. Thermal Conductivity. Thermal conductivity of samples
has a decisive influence on heat conduction and convective
heat transfer in TES devices, and an improvement in thermal
conductivity significantly enhances the heat transfer perfor-
mance. The thermal conductivity of samples in this work
was calculated according to the equations in the literature
[27]. The average measured thermal diffusivity of binary car-
bonate salt is 0.217mm2/s. The average thermal diffusivity
and the thermal conductivity at different temperatures are
illustrated in Figure 8. Obviously, the thermal diffusivities of
binary carbonate salt nanofluids are all higher than those of
their base salt while the thermal diffusivity of MgO-nfs is
higher than that of SiO2-nfs. Similarly, the thermal conductiv-
ities of the binary carbonate salt nanofluids are all far higher
than those of their base salt while the thermal conductivity
of MgO-nfs is far higher than that of SiO2-nfs.

Table 4 indicates the detailed values of thermal diffusivity
and thermal conductivity. From Table 4, it was observed that
the thermal conductivity of MgO-nfs increased by a maxi-
mum of 55.7%, which is 26.1% higher than that of SiO2-nfs.
Therefore, MgO-nfs is superior to SiO2-nfs in terms of heat
transfer performance.

3.3. Microscopic Analysis. In Section 2.3, the homogeneity of
nanoparticles in molten salt nanofluids has been verified by
at least 18 measurements of the specific heat of 6 samples.
To determine the micromorphological differences between
the two molten salt nanofluids, a SEM was performed to
observe the micromorphological of both carbonate nano-
fluids. The microstructures of binary carbonate salt and car-
bonate nanofluids are shown in Figure 9.

Figures 9(a) and 9(b) show the microstructure of the
base salt at different magnifications. It is observed that the
surface of the binary carbonate salt is relatively smooth
and dense with an ice-like surface. There is no other special

Table 2: Specific heat of the carbonate salt nanofluids.

Material
Base salt + MgO, J/

(g·K)
Base salt + SiO2, J/

(g·K)
Solid Liquid Solid Liquid

S11/S21 1.576 2.090 1.378 1.913

S12/S22 1.599 2.141 1.362 1.849

S13/S23 1.586 2.033 1.405 1.908

Average value 1.587 2.088 1.382 1.880

SD 0.012 0.054 0.022 0.036

Increment by 27.5% 34.1% 11.0% 20.7%
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Figure 3: Specific heat of nanofluids after solid-liquid cycles.
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Table 3: Latent heat and melting temperature of base salt, SiO2-nfs, and MgO-nfs.

Material
Melting temperature Latent heat, J/g

Avg. value, °C SD Increase by, °C Avg. value SD Increased by, %

Base salt 488.1 0.32 — 351.2 0.64 —

+1.0 wt.% SiO2 (20 nm) 488.7 0.57 +0.6 381.4 0.8 8.6

+1.0 wt.% MgO (20 nm) 486.9 0.75 −1.2 355.2 0.95 1.1
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structure found in the base salt. Figures 9(c) and 9(d) show
the microstructure of MgO-nfs. Compared to the binary car-
bonate salt, massive honeycomb-like crystals are observed.
These crystals are almost uniformly distributed. In addition,
this carbonate salt nanofluid seems sparse with pore-like
structures. Therefore, the specific surface area is increased
greatly. It seems that nanoparticles were evenly dispersed

in molten salt. Figures 9(e) and 9(f) show the micromor-
phology of SiO2-nfs. For this carbonate nanofluid, the
microstructure is completely different from the base salt
and MgO-nfs. These crystals are with sharp thorns and are
covered by the emulsion-like substance, which seems to be
raised stalactite. Moreover, these crystals are evenly distrib-
uted. Obviously, the specific surface area of this molten salt
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Figure 6: Specific heat of the base slat, SiO2-nfs, and MgO-nfs.
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nanofluid is between the base salt and MgO-nfs. In addition,
it is found that no obvious agglomeration of nanoparticles is
observed in both carbonate nanofluids.

3.4. Mechanisms of Formation and Performance
Enhancement. The above results show that both types of
nanoparticles have significant but different impacts on the

thermal performance and the micromorphology of base salt.
However, how do the molten salt nanofluids form? What is
the mechanism of enhancement?

3.4.1. Formation of Molten Salt Nanofluid. As nanoparticle
size approaches atom size, atom density on the nanoparticle
surface is very high. Therefore, there are a lot of free bonds
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Figure 7: TES capacity of base salt, SiO2-nfs, and MgO-nfs variates over temperature.
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connecting free atoms which lack coordination atoms. This
causes the nanoparticles to have high unsaturation, high
chemical activity, high specific surface energy, and strong
hydrophilicity. Therefore, nanoparticles can easily interact
with water and form hydroxyl groups on their surface.

According to the AS method presented in Section 2.1,
nanoparticles (as illustrated in Figure 10(a)) firstly are dis-
persed into deionized water by ultrasonic agitation.

As nanoparticles meet water molecules, free atoms on
nanoparticle surface will split water molecules into -OH
groups and -H atoms to fill unsaturated free bonds and form
the first layer, namely, the hydroxyl group layer, on the
nanoparticle surface (from Figure 10(b)). Meanwhile, the
ultrasonic agitation accelerates the formation of hydroxyl
groups. This layer is also depicted by the green annulus in
Figures 10(d)–10(f).

SiO2 nanoparticles with amorphous space structure have
irregular Si-O tetrahedral branched network. As can be seen
from Figure 10(c), hydroxyl groups with space distance less
than 3Å in a nanoparticle and between adjacent nanoparti-
cles will interact with each other to form hydrogen bonds
while water molecules will also interact with isolated
hydroxyls and pair hydroxyls on nanoparticle surface to
form additional hydrogen bonds with the increase of mixing
time. However, for MgO nanoparticles, the free atoms and
the formed hydroxyl groups are equal in the pace distance,
which is more than 3Å. Therefore, there are no hydrogen
bonds formed by adjacent hydroxyl groups on the same
nanoparticle. This is one of the main differences between
SiO2 nanoparticles and MgO nanoparticles during the inter-
action with water molecules. Moreover, during the ultra-
sonic agitation process, the soft-agglomerated nanoparticle
clusters will break up into individual nanoparticles and
smaller nanoparticle clusters, while some individual nano-
particles will collide with each other and form hard-
agglomerated nanoparticle clusters with different sizes. They
also form hydroxyl groups and then hydrogen bonds on the
surface of hard nanoparticle clusters. At this stage, the inter-
action flux between nanoparticles and water molecules
reduces to zero while the nanoparticle surface is full of water
molecules connected by hydrogen bonds.

As we know, it is not easy for molten salt ions to interact
with hydrogen bonds on nanoparticle surface. As base salts
are added, under the interaction of Van der Waals between
nanoparticle and molten salt ions and the electrostatic force

between hydrogen bonds and molten salt ions, the molten
salt ions move closer to the nanoparticle surface, as illus-
trated in Figure 10(e). Figure 10(e) shows that the molten
salt ions are adsorbed to the nanoparticle surface layer by
layer to form cloud nuclei. Massive cloud nuclei, centered
with nanoparticles and surrounded by molten salt ions, form
in molten salt nanofluid until the interaction between the
outermost molten salt ions and surrounding nanoparticles
reaches a dynamic thermodynamic equilibrium [24]. How-
ever, more potassium ions will be adsorbed by the centered
nanoparticles due to their larger zeta potential. Therefore,
the ratio of potassium ions to sodium ions in cloud nuclei
is larger than that in the base salt, which has been verified
by the literature [4]. These cloud nuclei suspend in salt-
water solution which appears translucent. During the mixing
process, insufficient agitation time cannot produce the max-
imum number of cloud nuclei and some nanoparticles may
not form saturated cloud nuclei while too long agitation
would destroy some cloud nuclei and cause some cloud
nuclei to agglomerate hardly.

In engineering applications, to produce molten salt
nanofluid for convenient transportation, water must be
evaporated completely. During this process, the molten salt
nanofluid will crystallize and the solid cloud nuclei will form
as the water evaporates completely. Before molten salt nano-
fluids are charged into the TES tanks, the molten salt nano-
fluids have to be melted into liquid at first.

As mentioned above, molten salt ions located at the edge
of cloud nuclei are in dynamic equilibrium. When the tem-
perature of the molten salt nanofluid rises to its terminal
melting temperature, the molten salt ions located outside
the cloud nuclei melt completely. With a further increase
of the molten salt nanofluid temperature, molten salt ions
inside the cloud nuclei gradually lose their dynamic equilib-
rium and melt starting from the edge to the center of the
cloud nuclei. As the temperature of molten salt nanofluid
rises to some level above the melting point, the molten salt
ions adsorbed by Van der Waals force inside the cloud
nuclei melt completely. At this time, water molecules are still
adsorbed by the hydrogen bonds between hydroxyl groups
and water molecules and the Van der Waals force between
the nanoparticle and water molecules. Therefore, water mol-
ecules are still difficult to leave the nanoparticle surface.
When the temperature of molten salt nanofluid rises to a
higher level, the hydrogen bonds start to break. As the

Table 4: Thermal conductivity and thermal diffusivity of base salt, SiO2-nfs, and MgO-nfs.

Material 525 °C 550 °C 600 °C 650 °C 700 °C

Base salt
α (mm2/s) 0.207 0.212 0.230 0.223 0.217

λ (W/(m·K)) 0.641 0.651 0.700 0.671 0.644

MgO-nfs

α (mm2/s) 0.242 0.236 0.239 0.250 0.248

λ (W/(m·K)) 0.997 0.967 0.969 1.002 0.983

Enhancement (%) 55.7 48.6 38.4 49.3 52.5

SiO2-nfs

α (mm2/s) 0.218 0.215 0.243 0.230 0.234

λ (W/(m·K)) 0.807 0.793 0.885 0.830 0.835

Enhancement (%) 26.0 21.9 26.4 23.7 29.6
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hydrogen bonds inside the cloud nuclei are broken, the
adsorbed water molecules will leave the cloud nuclei and
evaporate from molten salt nanofluid while hydroxyl groups
will form again on the nanoparticle surface. However, as the
temperature for hydroxyl groups to leave the nanoparticle is
far higher than the operating temperature of the molten salt
nanofluid, hydroxyl groups will keep being adsorbed on the
nanoparticle surface. Therefore, the cloud nuclei in the mol-
ten salt nanofluid prepared by the AS method consist of
three parts: the centered nanoparticle, the hydroxyl groups
(middle layer), and the molten salt (outer layer), as illus-
trated in Figure 11.

The other difference between the SiO2 nanoparticles and
the MgO nanoparticles is that both types of nanoparticles
have completely different physicochemical properties.
Therefore, the cloud nuclei that they formed in their molten
salt nanofluids are completely different in size and structure.
This also leads to the difference of cloud nuclei in micromor-
phology in SiO2-nfs and MgO-nfs.

3.4.2. Enhancement of Specific Heat. The carbonate nano-
fluids are prepared to undergo some melting/high-tempera-
ture-heating/solidification cooling cycles. Through the above
experiments, the authors observed that the specific heat of

SU8000 9.1 mm ×5.00 k10.0 kV SE (U) 5/16/2018 10.0 um

(a) Base salt (5000x)

SU8000 9.1 mm ×10.00 k10.0 kV SE (U) 5/16/2018 5.00 um

(b) Base salt (10,000x)

SU8000 9.1 mm ×5.00 k10.0 kV SE (U) 5/16/2018 10.00 um

(c) Base salt + 1.0% MgO (5000x)

SU8000 9.1 mm ×10.00 k10.0 kV SE (U) 5/16/2018 5.00 um

(d) Base salt + 1.0% MgO (10,000x)

SU8000 9.1 mm ×5.00 k10.0 kV SE (U) 5/16/2018 10.00 um

(e) Base salt + 1.0% SiO2 (5000x)

SU8000 9.1 mm ×10.00 k10.0 kV SE (U) 5/16/2018 5.00 um

(f) Base salt + 1.0% SiO2 (10,000x)

Figure 9: Micromorphology of the base salt, SiO2-nfs, and MgO-nfs.
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the carbonate nanofluids increased abnormally. Based on the
formation mechanisms proposed in Section 3.4.1, the anom-
alous increase in the specific heat can be explained as
follows.

After the bulk salt melts completely with the temperature
increase of bulk salt, the salt inside the cloud nuclei starts to
melt gradually from the edge to the inside of the cloud nuclei
due to the total interaction between the centered nanoparti-
cle and the molten salt ions inside the cloud nuclei that is
larger than that between the centered nanoparticle and the
bulk molten salt ions outside the cloud nuclei. In addition,
with the reduction of distance between the centered nano-
particle and the molten salt ions inside the cloud nuclei,
the total interaction between the centered nanoparticle and
the molten salt ions inside the cloud nuclei increases rapidly.

As we know, when the temperature rises up to some
level, the molten salt nanofluid system will reach a new
molecular dynamic equilibrium. With the further increase
of bulk nanofluid temperature, the distance between nano-
particles and molten salt ions inside the cloud nuclei will
become larger and larger. Then, molten salt ions will leave

the cloud nuclei and the diameter of cloud nuclei will be
smaller and smaller, as illustrated in Figure 12, which is con-
sistent with the layer-by-layer desorption scenario [21]. Dur-
ing this process, much more heat is needed, which explains
why the specific heat of molten salt nanofluid increases. Oth-
erwise, more heat will be released during the overall temper-
ature reduction. Due to the formation of the cloud core
structure, the specific heat of carbonate nanofluids prepared
by the aqueous solution method increases sharply after
layer-by-layer analysis, with an increase of ~121.85% [31].

3.4.3. Enhancement of Heat of Fusion. Undeniably, when the
molten salt nanofluid system reaches some molecular
dynamic equilibrium, the centered nanoparticles interact
not only with molten salt ions inside the cloud nucleus but
also with those molten salt ions in the bulk salt. The main
difference between the molten salt ions inside the cloud
nuclei and the bulk molten salt ions is that molten salt ions
in both fields are in different molecular dynamic equilibria.
Once pure thermal energy is input into the molten salt
nanofluid system, the equilibria will be broken and new
equilibria tend to form. Therefore, the melting of bulk mol-
ten salt has to overcome the interaction force between nano-
particles and bulk molten salt ions. At this moment, some
more thermal energy has to be supplied. This means that
the latent heat of molten salt nanofluid increases. However,
because the interaction force between nanoparticles and
bulk molten salt ions is very weak, this increase of the heat
of fusion is very small. The review shows that the latent heat
increases by 33% when different nanoparticles are added to
binary carbonate [14]. The increase in latent heat is much
smaller compared to the increase in specific heat.

3.4.4. Enhancement of Thermal Conductivity. As can easily
be imagined, there is an interaction force between different

SiO2 NP

SiO2 NP
SiO2 NP

SiO2 NP

SiO2 NPContact with water stir with water

Stir with saltDynamic equilibrium

(a) (b) (c)

(f) (e) (d)

Salt m ole cu el s

SiO2 NP

Figure 10: Formation mechanism of molten salt nanofluids prepared by AS method. (a) SiO2 nanoparticle. (b) SiO2 nanoparticle with
hydroxyl groups. (c) SiO2 nanoparticle with hydroxyl groups and water molecules. (d) Thumbnail of Figure 10(c). (e) Molten salt ions
move toward nanoparticle. (f) Formed cloud nucleus with three attached layers.

SiO2 NP

Figure 11: Structure of cloud nuclei in the molten salt nanofluid by
the AS method after a high-temperature heating/solidification
cycle.
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cloud nuclei. This interaction force will cause some adjacent
cloud nuclei to approach and form different shapes of chains
made up of cloud nuclei, as illustrated in Figure 13. These
chains are very small relative to the great volume of the car-
bonate salt nanofluid, and therefore, the distribution of these
chains in the carbonate salt nanofluid is random.

According to the ballistics in nanoparticles and the direct
or fluid-mediated clustering effects [18], phonons can trans-
port heat through nanoparticles and cloud nuclei and finally
transport through the chains of cloud nuclei rapidly. There-
fore, the thermal diffusivity and the thermal conductivity of
carbonate salt nanofluids are increased greatly.

However, because the cloud nuclei formed in SiO2-nfs
are different from those formed in MgO-nfs, the increased
levels of both carbonate salt nanofluids are different. In addi-
tion, different mixing times, different evaporation con-
tainers, ratio of water to nanoparticles, and other factors
will form different cloud nuclei in size and structure, which

will cause the different increase levels of carbonate salt nano-
fluids. It indicated that the addition of nanoparticles (SiO2
and carbon nanotubes) to carbonate increased the thermal
conductivity by 50% [32]. The increase in thermal conduc-
tivity is also different with the addition of different
nanoparticles.

3.4.5. Effect on Microstructure. As we know, SiO2 is an atom
crystal while magnesia is an ionic crystal. Also, as mentioned
above, SiO2 nanoparticles with an amorphous space struc-
ture have an irregular Si-O tetrahedral branched network
while MgO nanoparticles have a regular space structure. In
addition, both the SiO2 nanoparticles and the MgO nano-
particles have different physicochemical properties. There-
fore, the cloud nuclei in both molten salt nanofluids have
different sizes and different crystal structures though struc-
tures of the cloud nuclei in both molten salt nanofluids look
similar. The difference in structure inevitably leads to the
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Figure 12: Diameter change of cloud nuclei over temperature.
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difference in micromorphology of SiO2-nfs and MgO-nfs.
This is also sure for molten salt nanofluids with the same
type but different concentrations of nanoparticles by differ-
ent mixing times. Though the base salt and nanoparticles
are the same, the cloud nuclei also have different sizes and
different structures in these molten salt nanofluids, which
are caused by the different mixing time and other factors.

4. Conclusions

This work innovatively proposed the formation mechanisms
of molten salt nanofluids based on a molecular perspective,
and the formation mechanisms were used to explain the
enhancement mechanisms of nanomaterials on carbonate
salt based on experimental data obtained in this work. Some
conclusions are made as follows:

(1) Specific heat is improved by maximal 20.7% and
34.1% by SiO2 and MgO nanoparticles while the ther-
mal conductivity is increased by maximal 29.6% and
55.7%, respectively. The high-temperature stability of
MgO-nfs is better than that of SiO2-nfs while the
two types of molten salt nanofluids have excellent
homogenization

(2) Different nanostructures have been observed in SiO2-
nfs andMgO-nfs, which are formed because of the dif-
ferent sizes and structures of cloud nuclei and led to
the different enhancement of their thermal energy
storage performance

(3) Cloud nuclei formed in the molten salt nanofluid dur-
ing the preparation process by the AS method, which
is made of four parts: the centered nanoparticle, the
hydroxyl groups (middle layer), the water molecules,
and the molten salt (outer layer). After a high-
temperature heating/solidification cycle, the cloud
nuclei are simplified into three parts: the centered
nanoparticle, the hydroxyl groups (middle layer), and
the molten salt (outer layer). These cloud nuclei are dif-
ferent due to the different nanomaterials, mixing time,
and some other factors

(4) Interaction between nanoparticles and bulk molten
salt enhances the heat of fusion while the process
of molten salt molecules leaving or approaching the
cloud nuclei enhances the specific heat of molten salt
nanofluids and the chains of cloud nuclei enhance
the thermal conductivity of molten salt nanofluids

4.1. Future Work. In the following work, we will further
investigate homogenization after a long-time static place-
ment and fluid flow. More detailed formation mechanisms
will be explored and analyzed further.
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In this research work, dimple texture tubes and silicon dioxide (SiO2) nanofluid were used to analyze the performance
parameters of a solar water heater. For this purpose, SiO2 was mixed with deionized (DI) water using an ultrasonic
dispersion device to prepare the nanofluids (SiO2/DI-H2O). The size of the nanoparticle was in the range of 10-15 nm.
Different volume concentrations of the nanoparticles in the range of 0.1% to 0.5%, in steps of 0.1%, were chosen to prepare
the nanofluids to carry out the experiments. Apart from this, computational fluid dynamics (CFD) tool was used to
numerically analyze the parameters affecting the performance of the solar water heater, as well as the fluid flow pattern in
the dimple texture tube. During the experiment, the mass flow rate of the base fluid (water) varied in the range of 0.5 kg/
min to 3.0 kg/min in steps of 0.5 kg/min. The added advantage of the dimple texture tube design led to an increase in
turbulence in the flow pattern, resulting 34.2% increase in the convective heat transfer efficiency compared with the plain
tube. Among all experimental modules, SiO2/DI-H2O with a mass flow rate of 2.5 kg/min and 0.3% volume concentration
gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater.
The efficiency metrics of the experimental results were compared with the simulation results, and it was in the acceptable
range with an overall deviation of ±7.42%.

1. Introduction

Based on the global energy consumption rate, 86% of the
global energy is produced from fossil fuels which demands
a continuous rise in the requirement for fossil fuels. Conse-
quently, COx and NOx emissions from fossil fuels signifi-
cantly influence global warming [1]. This circumstance
demands the development of renewable energy technology
to reduce greenhouse gas emissions and air pollution simul-
taneously. Solar thermal, geothermal, biomass, marine, solar,
and hydropower are a few renewable energy sources globally
[2]. A solar collector is an efficient device to capture the
maximum solar energy from the sun [3]. The performance
of solar thermal systems can be further improved by system
optimization, heat transfer enhancement, and operation
optimization. The efficient operation of solar thermal sys-

tems combined with thermal energy storage systems is the
most important aspect of a large-scale solar energy utiliza-
tion. It should be noted that the utilization of solar thermal
energy will substantially impact the building environment.

Flat-plate collectors, evacuated tubes, and parabolic col-
lectors are the common types of solar collectors, and each
has its advantages and disadvantages based on the heat
transfer rate. Based on the application, the heat transfer
tubes in flat-plate and evacuated tube solar collectors vary
in shape and size. A vacuum is used to keep the absorption
plate within a glass tube in an evacuated solar collector to
decrease heat loss due to convection. A greater temperature
may be maintained in the evacuated tube solar collector than
in the flat-plate collector, which has a lower efficiency [1, 4,
5]. When erection costs are taken into account for solar
panels, the solar collector’s energy efficiency remains less
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[6, 7]. Hence, an increase in the efficiency of the different
solar collectors is a prime aspect to be focused on.

The solar thermal systems’ effectiveness entirely relies on
their collectors’ performance. Thermal and photovoltaic sys-
tems in the solar collectors are utilized to convert sunlight
into heat with the help of working fluids like air or water
[8, 9]. From an economic point of view, flat-plate collectors
are used to heat the working fluids. But the efficiency and
performance are poor. Several researchers have conducted
considerable research to increase the efficiency and perfor-
mance of flat-plate collectors without affecting the cost
[10]. Most researchers suggested that utilizing nanofluids
in place of ordinary fluids in solar collectors can increase
the performance of the flat-plate collectors. Bai et al. [11]
investigated nanofluids which are the suspensions of water
and nanoparticles in the range of 1–100 nm in size. They
identified that this kind of working fluid has a higher ther-
mal conductivity than its base fluid. The use of nanofluids
in solar thermal systems has significant positive impacts on
environmental, economic, and thermal aspects.

Moravej et al. [12] experimentally investigated the impact
of substituting water with surfactant-free water using flat-plate
solar collectors with rutile TiO2–water nanofluids as a working
fluid. They followed the ASHRAE standard; as per the stan-
dard, the flow rate of the heat transfer fluid (HTF), the sun
irradiation, and the temperature difference between the intake
and outflow were analyzed. They concluded that the thermal
efficiency could be improved by using TiO2–water nanofluids
instead of water alone. Mahian et al. [13] investigated the
usage of four different nanofluids (Al2O3water, TiO2/water,
SiO2/water, and Cu/water) in a mini-channel-based solar col-
lector. They found that Cu/water nanofluid exhibits the opti-
mum temperature at the exit and the lowest entropy at the
source with an increase in thermal efficiency. Parvin et al.
[14] conducted a numerical study to examine the direct
absorption collector, direct convection heat transfer efficacy,
and entropy production using Cu–water nanofluid as the
working fluid. They analyzed the effect of the Nusselt number,
entropy generation Bejan number, collector efficiency, and
solid volume fraction of nanoparticles on the collector’s per-
formance. They identified that isotherms and heat functions
for varied solid volume fractions and inertia forces signifi-
cantly affect the collector’s performance.

Noghrehabadi et al. [15] investigated the direct absorp-
tion of a flat-plate solar collector by a low-temperature
SiO2/water nanofluid. They evaluated the influence of one
of the stable nanofluids on the efficiency of a symmetric col-
lector in light of the previous results. In a flat-plate collector,
water and a SiO2/water nanofluid with a mass fraction of 1%
are tested as coolants. They concluded that employing SiO2/
water nanofluid as a coolant increases the collector efficiency
by improving its optical and thermophysical characteristics.
Ghalambaz et al. [16] investigated the viscosity and thermal
conductivity fluctuation of Al2O3 nanofluid as a working
fluid. They reported that with the increase in the concentra-
tion of Al2O3 nanofluid, the thermal conductivity increased,
and the viscosity of the working fluid decreased. Further-
more, they observed a 12.8% improvement in thermal effi-
ciency while the volume concentration of the nanoparticle

was 1%. Sujith et al. [17] studied the thermal conductivity
of Al2O3 and copper oxide (CuO) nanofluids, and they
revealed that the increase in the concentration of the nano-
fluids significantly affects the thermal conductivity. Further-
more, they observed that the thermal conductivity of CuO
nanofluid was greater than that of Al2O3 nanofluid at the
same concentration ratio.

Verma et al. [18] inspected the effect of thermal perfor-
mance of a flat-plate solar collector, employing nanofluids of
Al2O3, CuO, SiO2, TiO2, and graphene with multiwall carbon
nanotube (MWCNT). They reported that thermal efficiency
was enhanced by 23.5% withMWCNT nanofluid as the work-
ing medium. Yan et al. [19] investigated the thermal conduc-
tivity and transmissivity of the nanofluid of SiO2 and water
with a mass fraction of 1%, 3%, and 5%. They also numerically
analyzed the solar-collector vacuum tubes filled with water
(5wt. %) and nanofluid of SiO2 using a computer model. They
identified that the heat transfer properties of the SiO2/water
nanofluid were improved. Also, it was absorbed that the tem-
perature and velocity distributions of the nanofluid of SiO2
had a significant impact on the heat transfer than that of the
ordinary fluids. Yousefi et al. [20] experimentally studied the
effects of Al2O3/water nanofluid as a working fluid in a flat-
plate solar collector. Their study employed the nanofluid with
0.2% and 0.4% weight fraction and 15nm particle size and a
controlled mass flow rate of nanofluid in the range of 1 to 3
litres per minute, giving an increase in thermal efficiency of
28.3% in comparison to pure water.

Sundar and Sharma [21] experimentally investigated the
effect of Al2O3 nanoparticles in deionized water as working
fluid in a solar heater inserted with and without a twisted
tap. They conclude that the copper tube channels’ thermal
efficiency was significantly inserted with a twisted tap. Ekici-
ler [22] numerically investigated the heat transfer phenome-
non of Al2O3 nanoparticles with a volume fraction of 1% to
5% in a duct with a backwards-facing step. They observed
that the Nusselt number and Reynolds numbers were
directly proportional to the increase in the volume percent-
age of the Al2O3 nanoparticles. Thansekhar and Anbumee-
nakshi [23] studied the effect of nanofluids on the
improvement of heat transfer rate in a microchannel heat
sink. They identified that a higher volume concentration of
Al2O3 nanoparticles in the nanofluid exhibits an enhanced
heat transfer rate compared to SiO2 nanoparticles.

Kalidoss et al. [24] focused on Therminol 55-TiO2 nano-
fluids for solar energy storage. They utilized Fresnel lenses,
secondary reflectors, and a glass-type evacuated absorber
tube to improve the photothermal conversion efficiency.
They suggested that improvement in nanofluid concentra-
tion enhances the thermal conductivity, and the significance
of optical absorbance indicates nanofluids’ stability. Cardoso
et al. [25] evaluated the influence of TiO2/SiO2 nanoparticles
in terms of surface area, SEM/TEM morphology, and phase
transaction temperature. They found that photoanodes with
3% SiO2 are more efficient due to increased surface area, and
SiO2 passivation of imperfections increases the photocur-
rent. Ayoobi and Ramezanizadeh [26] documented the per-
formance and efficiency of the solar still combined with a
flat-plate collector in terms of energy, exergy, economic,
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and productivity. They observed that maximum efficiency of
60% was obtained in the flat-plate collector by improving the
evaporation rate with the aid of six microcompartments in
the collector basin. Cao et al. [27] numerically investigated
the entropic properties of flat-plate solar collector (FPSC)
with the number of swirls generating nozzles. They pre-
dicted the overall system performance using NE, NS, Nu,
and heat transfer improvement (HTI). They found that the
maximum value of HTI and efficiency were 1.7 and 0.9,
respectively, for the quad nozzle.

From the extensive literature review on the relevance to
the present works, it was observed that many authors had
adopted various methods to improve the performance of
solar water heaters by using the following techniques such
as varying nanoparticles size, use of mini-channel-based
solar collector, adoption of multiwall carbon nanotube, use
of twisted tap design, and use of microchannel heat sink. It
was clear that none of the researchers has used dimple tex-
ture tubes with nanoparticles for performance improvement
analysis and has not documented computational analysis for
dimpled tube texture using CFD.

In the present investigation, the authors have presented a
numerical and experimental analysis of a parabolic plate
solar water heater using a tube in tube type heat exchanger,
with a dimple inner tube having a P/D ratio of 3. Also, the
authors have used deionized water and nanoparticles of
SiO2 of size 10-15 nm at volume concentrations of 0.1 to
0.5% in steps of 1% to prepare the nanofluid. During the
investigation, the mass flow rate of the water in the tube
was varied in the range of 0.5 kg/min to 3.0 kg/min in steps
of 0.5 kg/min to analyze the absolute energy of the parabolic
collector, heat loss from the dimpled tube, parabolic collec-
tor efficiency, gradient temperature of the dimpled tube, fric-
tion factor for the working fluid, Reynolds number, Nusselt
number, and convective heat transfer coefficient of the dim-
pled tube. Also, the velocity, temperature, and pressure con-
tour of the PTSC were analyzed using CFD.

2. Material and Methods

In the present investigation, the performance parameters of
a parabolic trough solar collector (PTSC) were analyzed
using SiO2 nanoparticles with deionized water. The concen-
tration of the nanoparticles varied in the range of 0.1 to 0.5%
in steps of 1%. Apart from this, the copper tube of the solar
water heater was modified to make dimples on it to create
more turbulence in the working fluid. Also, the mass flow
rate of the water in the tube was varied as 0.5 kg/min,
1.0 kg/min, 1.5 kg/min, 2.0 kg/min, 2.5 kg/min, and 3.0 kg/
min to analyze the absolute energy of the parabolic collector,
heat loss from the dimpled tube, parabolic collector effi-
ciency, gradient temperature of the dimpled tube, friction
factor for the working fluid, Reynolds number, Nusselt num-
ber, and convective heat transfer coefficient of the dimpled
tube. Also, the performance parameters of a PTSC were ana-
lyzed by using the CFD tool (Fluent 18.0). The experimental
and the numerical results were compared and presented in
subsequent sections.

2.1. Design and Experimental Setup. The experimental setup
used in this present research is a geometric model consisting
of a dimpled tube of 1200mm in length and 50mm in diam-
eter, connected to a circular 1500-litre reservoir containing
working fluids, as shown in Figure 1. The solar radiation
strength of the outer dimpled tube was 847W/m2, and it
provided a steady heat flow with a turbulent flow of
500W/m2. SiO2/DI-H2O was used as nanofluid in the pres-
ent investigation, and it has a volume concentration of 0.1-
0.5% in steps of 0.1%. The dimple diameter chosen for mak-
ing the dimple was 0.05mm. The dimples were fabricated on
the outer surface of the tube with the help of a screw-type
punching die made of cast iron.

The specification of the experimental setup is given in
Table 1. The temperature measurements of the glazed solar
collector were recorded at an inclination angle of 45°. Two
mercury-bar thermometers were fitted to measure the work-
ing fluid temperature at the inlet and outlet of the PTSC sep-
arately. A positive displacement pump was used to maintain
the flow across the PTSC, and the flow was regulated with
the help of control valves. The mass flow rate of the working
fluid flow was measured with a flow meter, and it varied
from 0.5 kg/min to 3.0 kg/min depending on the valve regu-
lation and the stages of the experiment. A sun meter was
used to measure the solar radiation intensity, and it was
found to be 847W/m2.

2.2. Nanofluid Preparation. The nanofluid was made of
nanopowder of SiO2 of 99.7% purity, 20 nm average size,
and pH7, and density was 4170 kg/m3. The nanofluids were
made with 0.1 to 0.5 percent volume of nanoparticles in
steps of 0.1% each. The ultrasonic dispersion setup for the
nanofluid preparation is shown in Figure 2. By using this
setup, the dispersion of the nanoparticles takes place in DI
water to avert accumulation and assures a pH of 7. The spec-
ifications of the nanoparticles are given in Table 2. SiO2
nanoparticles have been purified in the ambient air with a
mesh size of 0.5μm. The thermophysical features of nano-
fluids were compared theoretically and experimentally and
explained in subsequent sections. The properties of nano-
fluids are given in Table 3.

2.3. Governing Equation. The problem statement can be
expressed in the form of governing equations [9, 18], as
shown below:

du
dx

+ dv
dy

+ dw
dz

= 0: ð1Þ

The momentum equations in x, y, and z are as follows
[9, 18]:

ρSiO2

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+w
∂w
∂z

� �

= −
∂p
∂x

+ μ
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

 !
− ρSiO2

∝SiO2
gx T − Trefð Þ,

ð2Þ
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The energy is given by [9, 18]

ρSiO2
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� �

= keff
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∂2T
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+ ∂2T
∂y2

+ ∂2T
∂z2

 !
:

ð5Þ

The density for both the base fluid and the SiO2 nano-
particles can be calculated using the correlation presented
below [9, 18]:

ρSiO2
= φ CP:ρð Þ + 1 − φð Þ βρð ÞSiO2

: ð6Þ

SiO2 nanofluid’s thermal conductivity was calculated
using the Maxwell model, which can be expressed in terms
of the following equation [9]:

kSiO2

kf
=
2kf + ks + 2φkf − 2φks
2kf + ks − φkf − φks

: ð7Þ

The successful dynamic viscosity association of Brink-
man has been used in this analysis [9]

μSiO2
=

μf

1 − φð Þ2:5 : ð8Þ

The evacuated tunnel was cut up and down. Hence, the

Dimple tube

Parabolic collector
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Inlet
temperature

(T1)
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Pump

Reservior

Tank
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Flow control valve

Heat exchanger

Outlet
temperature

(T2)

Sun

(a)

(b)

Figure 1: (a) Layout of the experimental setup. (b) Photograph of the experimental setup.
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heat was applied only to the upper part, where the lower part
was unheated. The top portion of the dimpled tube is
expected to receive 50% to 57% of solar radiation, while
the bottom receives less radiation unless the solar water
heater uses the reflector. The solar radiation intensity was
recorded from 8 am morning to 5 pm the evening using a
sun meter. 952W/m2 maximum sunlight radiation intensity
had been reached in the afternoon. The heated stream
around the dimpled tube has been considered to be 847W/
m2 in this analysis.

2.4. Grid Independence Test. Fine mesh size and shape are
the critical parameters to ensure the accuracy and quick
computational time of the CFD numerical calculation. In
this analysis, 3D meshes were utilized in the ANSYS plat-
form to analyze the influence of grid numbers on the maxi-
mum inside tank temperature. Figure 3 shows the highest
temperature within the tank converged at 308K. In the com-
putational domain, the element size was maintained in the
range of 586275.

2.5. Performance Analysis. The performance analysis was
carried out using two different techniques, and the estima-
tion readings were recorded from 8 am to 5pm. SiO2 levels
and flow speeds are measured in the dimples tube. The
experiments were carried out in six stages to achieve consis-
tency, and each stage consisted of 30 minutes. The collection
time constant of 64.25% complies with ASHRAE require-
ments; each 60-minute cycle was further separated into 20-
minute subcycles. Furthermore, the PTSC collector perfor-
mance was determined by linear regression at a minimum
of 20 data points at different inlet water temperatures to
carry out the steady-state model. Data was collected regu-
larly for several months.

2.6. Analysis of Collector Efficiency. The collector efficiency
reveals the entire radiation of the incident from the opening
area, and the collector produces the available heat gain as
shown in [9]

Qg = CPSiO2
TO − TIð Þ: ð9Þ

In Equation (10), the efficiency of solar collector for
PTSC has been obtained by [9]

ηc =
Qg

Aa
=
CPSiO2

TO − TIð Þ
Aa

: ð10Þ

The collector performance curve is plotted for a
sequence of 16 data points. A linear reverse fitting procedure
is used to locate the slope and intercepts. The following
equations denote the collector’s productivity as shown in [9]

ηc = ατ FRð Þ − ULFR

C
TO − TI

I

� �
: ð11Þ

As shown in Equation (11), where FRðηcÞ = ατðFRÞ indi-
cates the energy parameter is consumed, ULFR/C indicates
the parameter of removal energy, and ðTO − TIÞ/I indicates
the parameter of heat loss or collector’s function curve.
The relationship between the heat loss parameter and

Table 1: Specification of the experimental setup.

Specification Dimensions

Collector length 1800mm

Width of collector 1200mm

Length of absorber plate 1650mm

Thermal conductivity of absorber plate 387W (mK)-1

Width of the absorber plate 1000mm

Plate thickness 5 cm

The density of plate material 8954 kg/m3

The diameter of the riser pipe 0.0125m

The diameter of the header pipe 2.5 cm

The riser and head of thickness 7 cm

Tube centre to centre distance 11.25 cm

Glass and absorber plate between the spacing 30 cm

Thermal conductivity of insulation material 0.044W (mK)-1

The density of the insulation material 200 kg/m3

The thickness of the insulation material 0.05m

Area of the absorber plate 960 × 1000mm

The thickness of the riser tube 1mm

SiO2 nano power Di-H2O (De-ionized water)

H2O
H H

O

Nanofluid in UP 400S
ultrasonic processor

Figure 2: Ultrasonic dispersion setup for the preparation of
nanofluid.

Table 2: Specification of the nanoparticle.

Properties Values

Nanoparticle material SiO2

Density 4170 kg/m3

Molar mass of SiO2 60.0843 g/mol

Nanoparticle size 10-15 nm

Melting point 1986K

Boiling point 2503K

Thermal conductivity 1.38W/mK

Crystal structure Cristobalite

Purity of nanoparticle 99.7%

Specific surface area 160m2/g

Volume density 4170 kg/m3

Specific heat 880 kJ/kgK
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collector efficiency is shown in Equation (11). These values
were compared to prior versions using the new one. The
FRðηcÞ and ατðFRÞ intercept component with a linear regres-
sion approach. The collector’s overall efficiency for SiO2 at
0.3% has been 62.25% increased from 54.25% on the level
of base fluid at a comparable flow rate based on the regres-
sion equation of the DI water and quality of the SiO2 nano-
fluids. Experimental studies suggest that the highest exit

temperate of T = 93:15°C has been recorded due to the higher
period of interaction between the recipient surface and the
working fluid at a lower mass flow rate (0.5 kg/min–3.0 kg/
min). In comparison, the temperature graduate of ΔT =
ðTO − TIÞ was lower at the peak flow rate (m = 1:0 kg/s)
and corresponded to a more significant convective heat
transfer coefficient. In this investigation, parameters such as
friction factor, uncertainty analysis, Reynolds number, solar

Table 3: Properties of nanofluids.

Properties
DI H2O-SiO2

0.1%
DI H2O-SiO2

0.2%
DI H2O-SiO2

0.3%
DI H2O-SiO2

0.4%
DI H2O-SiO2

0.5%

Density, kg/m3 1014 1025 1029 1035 1042

Specific heat, kJ/kgK 410.6 414.8 418.5 422.7 427.8

Convective heat transfer coefficient, W/m2K 0.6723 0.7562 0.7825 0.8251 0.8452

Viscosity, m2/s 0.411e−6 0.388e−6 0.377e−6 0.286e−6 0.257e−6

Boiling point, °C 2950 2958 2960 2968 2970

Molar mass, g/mol 60.08 62.72 64.28 66.82 69.86

(a) (b)

(c)

Figure 3: (a) Plain tube. (b) Dimpled tube. (c) Dimpled tube with nanofluid.
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collector efficiency, Nusselt number, and convective heat
transfer coefficient were determined in the solar PTSC
system.

2.7. Uncertainty Analysis. For analysis and regression tech-
niques, all experimental values are averaged in numerical
and CFD analysis. The uncertainties of the variable effects
resulting from derived variables (ηc, Re, Nu, and f ) were dis-
covered in the experimental calculation of independent var-
iables (T , Qg). The standard deviation has been manipulated
by derived Equation (12) since each variable has been mea-
sured over a minimum of three intervals.

∋R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∋1∂S
∂X1

� �
+ ∋2∂S

∂X2

� �
+ ∋3∂S

∂X3

� �
+⋯⋯⋯

∋N∂S
∂XN

� �� �s
:

ð12Þ

Based on Equation (12) [9], the proportional error is cal-
culated as follows:

ER =
∋R
S
%: ð13Þ

Solar PTSC performance depends explicitly on normal
direct irradiance, fluid inlet temperature, mass flow rate,
and outlet temperature (ηc, Re, Nu, f , T , and Qg). The fol-
lowing equation gives us clarity regarding the performance
of the solar collector, as shown in [9, 18]

ηc = f TO, TI , T ,Qg

� �
, ð14Þ

∋ηc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ηc
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∋TO
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+ ∂ηc

∂TI
∋TI

� �
+ ∂ηc

∂TO
∋Qg

� �
+⋯⋯⋯

∂ηc
∂T
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� �" #vuut :

ð15Þ

In Equation (16), flow rate with velocity (m/s) can be
expressed as [9]

∋V =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∂V
∂m

∋m

r
: ð16Þ

In Equation (17), Nusselt number (Nu) with Reynolds
number can be expressed as [9]

∋Nu =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂Nu
∂ Re ∋Re

r
: ð17Þ

In Equation (18), Reynolds number (Re) with velocity
can be expressed as [9]

∋Re =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ Re
∂∋V

∋V

s
: ð18Þ

In Equation (19), friction factor (f ) with pressure drop
ðΔPÞ can be expressed as [9]

∋f =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂f
∂ΔP

∋ΔP

r
: ð19Þ

The field under curves was eventually used to compare
cases for the collector’s overall efficiency index.

3. Results and Discussion

3.1. Flow of Velocity. For validating the experimental analysis
with simulation, the developed CFD models’ velocity magni-
tude was compared with the experimental values. Furthermore,
there was a positive correlation between the experimental values
for CFD analysis, as shown in Figure 4. Themagnitude of veloc-
ity has been determined in a steady state and utilized to deter-
mine the numerical model’s prediction efficiency. The
magnitude velocity displays the effects of the velocity contour
in the dimples tube. The flow behaviour is almost identical in
both experimental and CFD analysis, as illustrated in Figure 4.
Flow behaviour demonstrates a fair and accurate estimation
process and numerical procedure. In the experimental analysis,
nanoparticles of SiO2 containing the volume of concentration
0.1-0.5 percent were used to absorb the SiO2 levels in a solar
dimpled tube. The base fluid, nanoparticles, and nanofluid ther-
mophysical properties are comparatively analyzed.

3.2. Temperature Contour. The dimpled tube temperature
contour at different inclination angles with different nano-
fluid levels for PTSC is shown in Figure 5. The dimpled tube
flow is bailment-based, where the SiO2 nanofluid fills the
outer core of the dimpled tube, where the cold water from
the tank is passed through the inner core of the dimpled tube.
The inclination angle of the PTSC rises from 30° to 60°. At the
same time, the dimpled tube temperature decreases because
of a reduced buoyancy strength produced in the vicinity of
a tube and tank joint. Furthermore, the greatest velocity
and temperature have been achieved at a volume fraction of
0.3 percent in all angles. The magnitude plot of 0.1-0.5%
nanofluid and three distinct inclination angles at the tube
inlet are analyzed. Results showed that the dimpled tube flow
velocity at a tilt angle of 45° was recorded to be high. SiO2
fluid has been assumed to significantly influence thermosi-
phon phenomena at the analysis phase, contributing to the
above results.

3.3. Pressure Contour. The disparity between average Nusselt
numbers and volume spacing is shown in Figure 6 for the
various inclination angles from 30° to 60°. The average Nus-
selt number increases for all inclination angle values with the
increment in volume fraction. However, the rising inclina-
tion angle reduces the mean amount of Nusselt number for
the entire volume fraction concentration. This is induced
by developing and reducing the mean Nusselt number of
the weak secular recirculation at the higher inclination
angles. The adjustments in the Nusselt number in the heated
walls for 0.5 percent volume at different angles are observed.
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The experimental outcomes confirmed that the higher Nus-
selt numbers are attained at a small inclination angle.

3.4. Comparison Absolute Energy. Figure 7 shows the energy
consumed ατðFRÞ with the variation in flow velocity for dif-
ferent concentrations of nanoparticles.

A maximum range of 5.43% greater than the base fluid
has been observed in the 0.5 kg/min mass flow rate. The
inclusion of SiO2 nanoparticles is utilized to increase the
absorbed energy factor, and it depends on the velocity of
nanoflows, thermal conductivity, and basic heat power of
the operating fluid. The heat absorption of nanoparticles is

(a)

Velocity
contour 1

0.000
0.050
0.099
0.149
0.199
0.248
0.298
0.348

0.398
0.447
0.497

(m s^−1)

(b)

Velocity
contour 1

0.000
0.052
0.104
0.156

0.261
0.209

0.313
0.365
0.417
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0.521

(m s^−1)

(c)

Figure 4: (a) Flow of water in dimpled tube. (b) Low velocity with low flow rate. (c) High velocity with high flow rate.
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Figure 5: (a) Analysis of low temperature. (b) Analysis of high temperature.
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significantly improved at a volume concentration of 0.3%
because the flow rate decreases and the fluid viscosity
increases. Furthermore, Reynolds number also decreased.
As a result, it contributed to the reduction in the thermal
transfer coefficient and reduced the Nusselt number. The
energy factor is absorbed for three different flow rates with
the relative temperature of PTSC curves (0.5 kg/min-3.0 kg/
min). For each of the flow rates, the efficiency is determined
by the heat loss parameter ΔT = ðTO − TIÞ. The optimum
collector efficiency of 62.35% was observed at flow rate of
2.5 kg/min and nanoparticle volume concentration of 0.3%.
The variation in Nusselt number and Reynolds number is
directly proportional to the heat augmentation rate. The
working fluid in the dimpled tube with 0.3% of volume con-
centration of nanoparticles, at 2.5 kg/min, increases the Nus-

selt number by 2.5 times compared to the plain tube. It
clearly shows that the presence of dimples significantly
affected the improvement in heat transfer rate.

3.5. Analysis of Collector Efficiency. Figure 8 shows the collec-
tor efficiency improved by 11% and that the convective heat
transfer increased by 34.25% relative to the base fluid. The
collector efficiency and heat transfer have been enhanced
due to increased SiO2 nanoparticles’ absorbance and absorp-
tion coefficient. Consequently, a pressure drop in the gradi-
ent temperature increased the convective heat transfer
coefficient for nanofluids as expressed as ΔT = ðTO − TIÞ.
For higher volume concentrations (0.1 to 0.5%), there is an
11% improvement in the solar PTSC quality compared with
base fluid. The finding shows that the collector efficiency
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Figure 6: (a) Low-pressure contour. (b) High-pressure contour.
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Figure 7: (a) Mass flow rates vs. absolute energy parameter. (b) Volume concentration vs. heat loss.
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has been improved by 0.4%, while the volume concentration
is rising by 0.5% at the various flow speeds. Since solar PTSC
performance increased by an average of 0.5%, the volume’s
optimum concentration decreased to 0.3%. The flow rate is
often shown to be inversely proportional to the temperature
of the gradient. As a result, the flow rate increased, and the
heat transfer coefficient improved in SiO2 with the dimpled
tube resulting in a significant improvement in the collector’s
performance.

3.6. Analysis of Gradient Temperature. Figure 9 depicts the
temperature gradient maps at varying flow rates and concen-
trations of SiO2 nanoparticles and convective heat transfer
coefficients at different flow rates. These two graphs would

conveniently correlate the temperature, flow rate difference,
and heat transmission coefficient. Furthermore, the temper-
ature difference is minimal, and the heat transfer coefficient
is proportionally greater at velocity variance. The heat trans-
fer coefficient is smaller during higher flow rates of the con-
tact time on the surface (flow over time). At the same time,
the heat transfer coefficient is higher at a lower flow rate. For
nanofluids, a temperature gradient of 28.322°C has been
achieved at a lower mass flow rate and a temperature gradi-
ent of 7.45°C at a higher velocity flow rate.

3.7. Effect of Nusselt Number. The velocity flow and concen-
tration plots are illustrated in Figure 10 for experimental and
expected Nusselt numbers. An error value of ±3.12% has
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Figure 8: (a) Mass flow rate vs. collector efficiency (%). (b) Volume concentration vs. collector efficiency (%).

40

45

50

55

60

65

70

75

0.5 1 1.5 2 2.5 3

G
ra

di
en

t t
em

pe
ra

tu
re

 (C
)

Mass flow rate (kg/min)
Plain tube with SiO2 (Exp)
Plain tube with SiO2 (CFD)
Dimple tube with SiO2 (Exp)
Dimple tube with SiO2 (CFD)

(a)

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5

G
ra

di
en

t t
em

pe
ra

tu
re

 (C
)

Volume concentration (%)

Plain tube with SiO2 (Exp)
Plain tube with SiO2 (CFD)
Dimple tube with SiO2 (Exp)

Dimple tube with SiO2 (CFD)

(b)

Figure 9: (a) Mass flow rate vs. gradient temperature. (b) Volume concentration vs. gradient temperature.

10 International Journal of Photoenergy



been observed between the CFD analysis and experimental
values. Empirical correlation calculations are performed
based on varying volume concentrations and velocity flow
rates as per Equations (16) and (17) for different Reynolds
numbers and Nusselt numbers. The developed model signif-
icantly improved the collector efficiency by 62.32% for the
Reynolds number range of (3256 < Re < 9685) and Prandtl
(6.324 to 9.254). Based on the outcomes obtained from
CFD and experimental analysis, a volume concentration of
0.3% at 2.5 kg/min exhibits an 11% increment in heat trans-
fer efficiency compared to other flow characteristics.

3.8. Effect of Friction Factor. The experimental and CFD
analysis plots for friction factors with various concentrations

and flow rates are illustrated in Figure 11. The friction factor
is measured as a product of pressure drop and the surface
roughness of the dimpled tube. Furthermore, the average
pressure drop is recorded as 2.36 kPa for the solar PTSC
system. In the current model, the deviation from the esti-
mated friction factor is roughly ±4.62%. The expected fric-
tion factor for a higher Reynolds number can deviate in a
range of ±11%. The efficiency metrics of experimental and
CFD analysis with various flow rates and concentrations of
nanoparticles and the deviations can be recorded as approx-
imately ±7.42% percent. It shows efficiency index combina-
tions for different Reynolds numbers and concentrations of
nanoparticles. At 0.1-0.5% of the volume concentrations
and a volume flow rate of 2.5 kg/min, the maximum output
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index is 2.42. The SiO2 nanofluid output index is larger than
1; in the PTSC application, the heat transfer increased in this
research. The efficiency variations are based on pH changes
and thermophysical nanofluid properties of SiO2. Particle
size affects the solar performances of PTSCs. Nanoparticles
of more significant sizes tend to spread and absorb radiation.
The measurement of the SiO2 nanoparticles should be 50 nm
to provide efficient heat transfer rates. In this analysis, the
average size of the SiO2 nanoparticles is 50nm. The heat
transfer has been improved in this research, and SiO2 nano-
particles were efficient for PTSC solar applications.

3.9. Variation of Pressure Drop Concerning Dimpled Texture
Tube. Figure 12 portrays the variation of pressure drop with
the variation in nanoparticle volume concentration and
mass flow rate. From Figure 12, it is observed that with an
increase in the concentration of nanoparticles, the pressure
drop increases irrespective of the mass flow rate of the water.
This is due to the rise in the volume density of the nanopar-
ticles in the nanofluid, which resulted in a more viscous flow
of the nanofluid due to an increase in density. From
Figure 12, it was also observed that dimpled tubes with
SiO2 nanoparticles exhibited a higher drop in pressure com-
pared to the plain tube with SiO2. This is due to increased
obstacles to fluid flow due to dimple texturing on the tube
surface. Apart from this, the dimpled texture offers more
drag force to be experienced by the molecules adjacent to
the inner tube layer during its dynamic condition. The pres-
sure drop of the solar water heater has increased gradually
with the increase in the mass flow rate of water. At a maxi-
mum mass flow rate of 3.0 kg/min and 0.5% volume concen-
tration, the pressure drop has been increased by around 5.5%
compared to the mass flow rate of 2.5 kg/min. The errors

observed in the experiment and simulation are 6.2% and
2.5%, respectively, indicating the linear relationship between
the experiment and simulation outcomes. Furthermore, the
pressure drop results of the experimental condition are sig-
nificantly higher than the simulation results.

4. Conclusions

The research analyzed SiO2 efficiency in heat transfer for
solar PTSC applications. Tests were performed using various
concentrations of nanoparticles and mass flow rates. The
numerical prediction was made on the SiO2/water nanofluid
collector, evacuated by thermosiphon, using commercial
ANSYS tools. For various conduit angles, the effect of nano-
particle volume fraction on the collector’s thermal efficiency
was studied. The most significant conclusions achieved in
this study are as follows:

(1) The nanoparticle volume fraction increases the heat
conductivity and Nusselt number of solar evacuation
pipes

(2) The inclination of 45° plays a significant role in
enhancing the thermal efficiency and increases the
evacuated tunnel’s thermosiphon effect

(3) At the nanoparticle volume fraction and angle of
inclination of 0.3 percent and 45 degrees, respec-
tively, the optimum speed and heat transfer change
were observed

(4) The nanofluid’s output index is 2.42 with a 0.3%
mass flow rate and concentration of 2.5 kg/s. The
PSPC with SiO2 nanofluid has a maximum overall
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efficiency of 34.25%, which is 11% higher than that
of the base fluid

Adopting this technology in operating the solar water
heater may enhance heat transfer efficiency. This technology
will provide added advantages to commercial solar water
heaters in both the industrial and domestic sectors.
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To peak carbon dioxide emissions and carbon neutrality, hydrogen energy plays a pivotal role in the energy system dominated by
wind power and solar power. The proton exchange membrane (PEM) electrolytic hydrogen production technology has advantages
of higher current density, higher hydrogen purity, higher load flexibility, and balanced grid load, becoming one of effective ways to
consume renewable energy. Experimental analysis finds that the present PEM electrolyser cannot maintain a stable operating
temperature as the input power changes; the polarization curve would distort with the change of temperature. This work
proposes a PEM electrolyser coupled with the thermal energy storage device to meet power fluctuation and frequent start and
stop caused by renewable resources. Through the involvement of the thermal storage device, electrolytic system is able to
operate quickly and persistently in an efficient condition. The coupled system effectively reduces energy consumption in the
process of start-stop or load changing, which can effectively adapt to the power fluctuation and frequent start and stop caused
by renewable energy.

1. Introduction

The randomness and fluctuation of renewable energy are
bringing great challenges to power network security nowa-
days. How to economically and efficiently use wind or solar
power through energy storage technology has become a
challenging topic in the global energy field [1]. Hydrogen
has attracted widespread attention that it will play an
important role in the future as a secondary energy carrier
in addition to electricity. Hydrogen energy has the charac-
teristics of large-scale reserves, environmentally friendly,
and renewable, which meets the requirements of sustainable
development of environment [2, 3]. The electrolysis system
converts excess electricity into hydrogen, which can be
reused as fuel or converted back into electricity by fuel cells
when electric power is needed [4].

The principle technologies of hydrogen production by
electrolysis focus on alkaline and proton exchange mem-
brane (PEM). Troostwijk and Diemann first discovered
electrolysis in 1789 [5]; so far, Alkaline Electrolysers
(AWE) are long established in industry but involve hazard-
ous chemicals and alkaline impurities, and purification is
needed before use [6, 7].

In 1966, General Motors developed the first electrolytic
cell based on the Solid Polymer Electrolyte (SPE) concept,
overcoming the disadvantages of alkaline corrosion and
pollution of alkaline electrolytic cells. Solid polymer mem-
branes, also known as proton exchange membranes, provide
high electrical conductivity, allowing compact design and
high-pressure operation [8]. Figure 1 shows a cross-section
of a PEM water electrolyser [9]. PEM cell is compact, mainly
composed of anode and cathode plates, diffusion layers,
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catalytic layers, and proton exchange membrane. The cata-
lyst layer can be applied directly to the film or to the porous
transport layer (3-3′) to equalize the current distribution.
Liquid water is pumped through anodic channels to provide
feedstock for the reaction and to expel heat generated during
the reaction.

The thickness of proton exchange membrane is around
5~7mm, which is beneficial to proton conductivity, allowing
higher current densities to be achieved [10]. Due to low gas
crossover rate of the polymer electrolyte membrane, PEM
electrolyser is able to work under a wide range of power
density (5%~120%) [11]. The PEM electrolytic hydrogen
production technology has advantages, such as higher cur-
rent density (generally 2~3A/cm2), higher hydrogen purity
(up to 99.999%), higher load flexibility (5%~120%), and bal-
anced grid load [12].

Significant efforts have been made to improve the per-
formance of the PEM electrolyser by modeling works to dis-
cuss the hydrogen crossover through the membrane and
difference, such as temperature, mass transfer coefficient,
hydrogen concentration in oxygen, and liquid/gas diffusion
layer (LGDL) compression and operating pressure [12].
Babar et al. [13] developed an equivalent electrical model
for the PEM electrolyser, an input current–voltage (I–V)
characteristic for a single PEM electrolyser cell was modeled
through a series of experiment, and it has been observed that
the electrolysis energy efficiency was in the range of 65–68%
at steady-state conditions. Atlam et al. [14], through a
single-channel-based three-dimensional CFD model, stud-
ied the influence of the key performance parameter of a
PEM water electrolyser. The CFD model successfully pre-
dicted the current–voltage polarization curve. Carmo et al.
[9], Han et al. [15], and Deshmukh and Boehm [16] used
similar mathematical models to analyse the effect of current
density, temperature, pressure, and membrane properties on
the performance of the PEM electrolyser. Their modeling
results can help to improve electrolysis system performance.
In addition, Ma et al. [17] illustrated temperature distribu-
tion along the membrane-electrode assembly under different
voltages through the simulation of the internal structure of
the electrolytic cell. Three-dimensional (3D) models were
also used by Upadhyay et al. [18] and Xu et al. [19]. It is
found by Upadhyay et al. that the stack temperature is one
of the most influencing parameters and a higher tempera-
ture (313K to 353K) is optimal for the PEM electrolyser
[18]. Through studying the detailed distribution of two
phases in anode flow channel, it is found by Xu et al. that

the cell performance is improved by 0.171V at 3Acm−2 by
replacing the traditional parallel flow with the new flow
field [19].

Another part of the research is based on a combination
of experiments and simulations. The thermal effects in the
development of electrolyser models were also considered.
The common method is to improve or verify the accuracy
of the simulation model through experimental test results
or empirical formulas [20]. Kim et al. [21] proved the effect
of chemical reaction, chemical component thermodynamics,
external ambient temperature, and Joule effect on the
PEM electrolyser through experimental measurements. The
results presented that the dynamic temperature impacted
for both current and voltage. Aouali et al. [22] compared
modeling results and lab-scale experimental data, and an
acceptable mismatch of temperature dynamic performance
was found in the PEM electrolyser system.

Water quality is another one of the influencing parame-
ters to the performance of PEM electrolysis. Li et al. [23]
investigated long-term Fe3+ ion contamination effects on
the performance of single PEM cell. Though measuring
membrane thickness and fluoride count on the cathode side,
it is proved that membrane was attacked by radicals formed
from hydrogen peroxide due to the existence of Fe3+ ions.
The contamination effects of many other cations were also
investigated by many researchers, such as Ca2+ [24, 25],
Na+ [24, 26], and Cu2+ [27].

Drawing on the research history of the PEM electrolyser,
there are few studies on power fluctuation and frequent
start-stop of electrolytic cell system. This work will discuss
the impact of power changes on the PEM electrolyser system
and proposed a coupled PEM electrolyser with an energy
storage device. Through the combination of solar heat col-
lection device and thermal energy storage device, heat can
be used in electrolysis process and keep its efficient opera-
tion when input power is fluctuant.

2. System Description

It is found that the PEM electrolyser cannot be maintained
in the high-efficiency operating range, when renewable
energy is connected to the hydrogen production system,
resulting in the increase of overvoltage and instantaneous
energy consumption (see details in Section 4.1). A thermal
energy storage device can maintain the operating tempera-
ture of the PEM electrolyser and drives system in a higher
performance. Figure 2 shows the layout of a PEM electroly-
ser system integrated with thermal energy storage device.
The novel system can operate in two modes, namely, normal
mode and power fluctuation mode, respectively.

The heat storage is temporarily out of work at normal
mode. It should be noted that purified water is required to
fill the water loop before the system can be started. When
the electrolysis process begins, purified water is continuously
pumped through the heat exchanger to the electrolytic cell;
in the process of electrolysis, hydrous oxygen is produced
at the anode and hydrous hydrogen at the cathode. Hydro-
gen is stored in a high-pressure tank after separation and
purification. The water returns to the relay water tank from

1 2’ 3’ 4’ 5’

E+ (V)E– (V)

Ucell2345

Figure 1: Schematic representation of a PEM water electrolysis cell:
1: proton exchange membrane, 2/2′: catalytic layer, 3/3′: porous
transport layer, 4/4′: channel, and 5/5′: plate [9].
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the bottom of the separator after oxygen separation, and
the oxygen is collected or exhausted from the upper part
of the separator.

Power fluctuation mode launches when power fluctuates
or system starts. The medium (water) in the energy storage
device transfers the heat to the purified water, forcing its tem-
perature to rise rapidly to reach the optimal temperature of the
electrolytic cell. Two points should be clarified; one is that pre-
treated water is pumped to the relay water tank only when its
level is low, thus replenishing the PEM electrolyser with the
water consumed during the reaction; the second is that the
fan is launched when the water is close to the temperature bar-
rier. Due to the characteristics of the catalyst and membrane,
the operating temperature of the PEM electrolyser is com-
monly lower than 90°C, although there are differences of oper-
ating temperature in these studies [5, 9, 12].

3. Establishment of the Coupled
PEM Electrolyser

According to the coupled PEM electrolyser system selected
in this work, the corresponding PEM electrolyser system
(hydrogen production test bench) is established, mainly
including the PEM electrolyser, water separation subsystem,
purification subsystem, heat storage subsystem, pressurizing
subsystem, and controlling and monitoring subsystem, as
shown in Figure 3. The rated power of the PEM electrolyser
system is about 60 kW, affording 3 stacks operating synchro-
nously, and it should be noted that only 1 PEM electrolyser
stack is used during the whole experiment. designed hydro-
gen yield 4Nm3/h, and purity is about 99.99%. To ensure the
reliability of the experimental system, a throttle valve is used
to reduce pressure at the outlet of the oxygen path. Concen-

tration detection and alarm devices are also installed around
the platform to ensure the test safety.

3.1. Separation Subsystem. The gas-water separator is used
for separating liquid droplets from the gas when the removal
rate of liquid impurities in the gas is very high. This subsys-
tem consists of hydrogen separators and oxygen separators,
and their structure and function are similar. Hydrogen and
oxygen flow out from cathode and anode, respectively, with
a certain proportion of liquid water, and enter the primary
separator for gas-liquid separation. The function of the sep-
arator is to make the gas change direction suddenly in the
flow, separating water droplets from the gas. The water
droplets gather at the bottom of the separator and flows back
to relay water tank. The function of the secondary separator is
to further remove water in hydrogen or oxygen after the
primary separator; thus, it has the function of gas-liquid sepa-
ration and cooling and dehumidification. The design parame-
ters of primary and secondary hydrogen separators are listed
in Table 1, and Figure 4 shows the real pictures of primary
and secondary hydrogen separators and primary and second-
ary oxygen separators, from left to right, respectively.

3.2. Purification Subsystem. The hydrogen produced by the
PEM electrolyser removed almost all liquid water after the
separation processes, and the purification subsystem is used
to further remove gaseous water from hydrogen to ensure
the purity. The hydrogen purification subsystem consists of
two adsorption towers in parallel. One adsorption tower is
in an adsorption state, and the other is in a regeneration
state. The adsorbent is a combination of alumina and molec-
ular sieve, the upper layer of adsorption tower uses molecu-
lar sieve, and the lower part uses activated alumina. The
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Figure 2: Schematic diagram of the PEM electrolyser system coupled with energy storage device.

3International Journal of Photoenergy



rated parameters of purification subsystem are listed in
Table 2.

3.3. Heat Storage Subsystem. Heat storage subsystem is used
to simulate the process that solar energy or other renewable
energy participates in the performance improvement of the
PEM electrolyser. Solar or other renewable energy is stored
as heat in a subsystem, and the stored heat, through a plate
heat exchanger, can be used for PEM electrolysis when input
power is fluctuant. The design parameters of circulating water
pump are listed in Table 3, and Figure 5 shows the real pic-
tures of the circulating water pump and plate heat exchanger.

3.4. Pressurizing Subsystem. The circulating water pump is a
pressurization equipment, through the impeller rotating to
form the pressure difference between the inlet and the outlet.
It is used to overcome the resistance loss of circulating water
system, leading to water continuously flowing in the loop. In
a PEM electrolyser system, the circulating water pump is one
of the key equipment to steadily provide reaction water,

Figure 3: 60 kW PEM electrolyser test bench internal 3D model drawing and actual external view.

Table 1: Main parameters of primary and secondary separators.

Name
Value

Primary hydrogen
separator

Secondary hydrogen
separator

Primary oxygen
separator

Secondary oxygen
separator

Pressure (MPa) 0.1-3.5 0.1-3.5 0.1-3.5 0.1-3.5

Temperature (°C) 65 20 65 20

Design separation rate (%) 90 90 90 90

Size (mm) Ф300 × 1800 Ф300 × 1600 Ф300 × 1800 Ф300 × 1600

Figure 4: Primary and secondary separators.

Table 2: Main parameters of the purification subsystem.

Name Value

Maximum flow (Nm3/h) 20

Outlet purify (%) ≥99.99
Pressure range (MPa) 3-3.5

Adsorbent Alumina, molecular sieve

Table 3: Main parameters of the heat storage subsystem.

Name Value

Heat transfer medium Water

Storage temperature (°C) 80-90

Pressure range (MPa) 0.1-0.5

Outlet flow (L/min) 20-40
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meanwhile, and circulating water can also take heat out of the
PEM electrolyser, which ismainly generated by ohmic overpo-
tential [5]. Because the working pressure range of electrolytic
cell is 0.1-3.2MPa, the selected circulating water pump must
withstand pressure. The design parameters of the circulating
water pump are listed in Table 4, and Figure 6 shows the real
pictures of the circulating water pump.

60 kW PEM electrolyser system is mainly used for per-
formance testing of electrochemical reactor polarization
curve, electrochemical impedance, electrochemical adsorp-
tion area, and hydrogen current density and can monitor
the current and voltage of the PEM electrolyser in real time
and monitor hydrogen concentration and oxygen concentra-
tion to prevent safety problems.

4. Results and Discussions

The testing process of the PEM electrolyser system was
divided into two parts: PEM electrolytic process and thermal
energy-involved electrolytic process. This section analysed
the changes of parameters such as operating temperature
of substances at the entrance of the PEM electrolyser during
these two processes. Meanwhile, the relevant polarization
curves were measured during the two processes. Figure 7
shows the PEM electrolyser used in the experiment, and
the details of membrane electrode assembly (MEA) used in
the test are shown in Table 5.

4.1. PEM Electrolytic Process. Preparatory works, such as
pipeline cleaning or water circulation flowing, should be fin-
ished before launching the PEM electrolyser, and this prepa-
ratory time was not accounted into the whole test. It should
be noted that the PEM electrolyser runs in constant current
mode, and the power supply adjusted the voltage continu-
ously according to the characteristics of the PEM electrolytic
cell, so that the current was approximately fixed. The water
flow into the electrolyser was maintained at 200mL/min

per cell. Figures 8 and 9 present the operation process of
the test which almost lasts 55 minutes. The current density
increased by around 0.2A/cm2 each time as the voltage
gradually stabilizes until it reached to about 0.715A/cm2;
the electrolyser continued to operate for 1600 s. During the
process of 1600 s operation, load variation tests were done
twice at 1800 s and 2250 s, respectively. Then, the current
density was gradually increased to the peak value of
0.881A/cm2, and after continuous operation for 200 s, the
current density was gradually reduced to 0 to complete the
whole test.

It can be found that there was no remarkable increase in
the water outlet temperature of the cell during the early stage
of the test (from 0 to 500 s); obviously, 200mL/min water
flow was excessive for the electrolytic cell at this current
density. When the current density increased to a relatively
high value, the outlet water temperature gradually rises. In

Figure 5: Heat storage and plate heat exchanger.

Table 4: Main parameters of the circulating pump.

Name Value

Flow range (L/min) 10-50

Temperature range (°C) 5-90

Pressure range (MPa) 0.1-3.5

Lift (m) 10

Motor type Variable-frequency

Rated power (kW) 1.5

Figure 6: Circulating water pump.

Figure 7: The PEM electrolyser used in the experiment.
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constant current mode, the voltage dropped slightly as the
temperature increases, which was mainly because the activa-
tion overpotential and ohmic overpotential presented a sig-
nificant drop as the temperature increases [5–7], as shown
in Figure 10. However, due to the characteristics of the cat-
alyst and membrane, the PEM electrolyser cannot operate
persistently without a temperature barrier [5, 10]. It can be
concluded that higher temperature is beneficial to reduce
the energy consumption of electrolytic cell as long as it is
within the temperature limit.

In order to suit the randomness and fluctuation of wind
power and solar power, hydrogen production system had to
run under variable power for a long time, and its start-stop

frequency is often more than that of hydrogen production
system connected to the power grid. Meanwhile, intermit-
tent operation may lead to changes in operating temperature
that affect the efficiency of the PEM electrolyser. Figure 11
illustrates the effect of operating temperature on the voltage
of the PEM cell, the temperature changes from 20°C to over
60°C in the process of the current density rising from small
to large, and the performance improvement was caused by
the higher temperature of large current density. It is found
that the electrolytic cell cannot maintain a stable operating
temperature as the input power changes; the polarization
curve would distort with the change of temperature. There-
fore, with renewable energy linked to hydrogen production
systems, the PEM electrolyser cannot be maintained in the
high-efficiency operating range, further resulting in the
increase of overvoltage and instantaneous energy consump-
tion. Ignoring errors between simulation and experimental
results, dashed lines in Figure 11 clarify the polarization
curve of electrolytic cell at constant temperature. In the case
of input power fluctuations or continuous start-stop for sev-
eral times, a renewable energy storage device can maintain
the operating temperature of the PEM electrolyser and
may keep the system at a higher efficiency.

4.2. Thermal Energy-Involved Electrolytic Process. Before the
thermal energy-involved experiment, energy storage device
stored solar or other renewable energy in the form of heat
in a medium (using purified water in this process) before-
hand. The initial temperature of the energy storage device
was set at around 85°C. Figures 12 and 13 described the ther-
mal energy-involved electrolytic process. The circulating
water temperature reached ~58°C in 30 seconds due to the
heat received from the heat storage device. As the current
density increases (around 0.63A/cm2 in ~380 seconds), the
heat generated by the electrolytic cell can maintain the oper-
ating temperature, and the heat storage device stops heating.
Meanwhile, in order to prevent the electrolytic cell overheat-
ing, cooling fan starts to cool down the circulating water.

Table 5: Details of membrane electrode assembly.

Name Type/value

Proton exchange membrane Nafion 115

Active area of MEA 160 cm2

Cathode Carbon paper

Anode Titanium fiber felt

Pressure range 0.1-3.2MPa

Water flow 200mL/min
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The power of the cell was 185W, and the voltage was about
1.67V under stable operation condition.

The performance improvement of the PEM electrolyser
with heat storage involved is found in Figure 14. With the
participation of heat storage device, the polarization curve

of the PEM electrolytic cell showed a similar trend to the
simulation results; their errors were less than 3%. The max-
imum difference of power consumption per cell can reach
~12W, as shown in Figure 15. The PEM electrolyser
installed with heat storage presented a higher current density
(more charge transfer) under the same power consumption,
which means a higher hydrogen yield (maximum increment
of 5.04%). It is concluded that the PEM hydrogen produc-
tion system coupled with the thermal energy storage device
can effectively adapt to the power fluctuation and frequent
start and stop caused by renewable energy, so that the
hydrogen production system operated in a higher perfor-
mance range.

5. Conclusions

In this work, a PEM hydrogen production system coupled
with the thermal storage device was proposed to meet power
fluctuation and frequent start and stop caused by renewable
resources. It is found that the present PEM electrolyser
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cannot maintain an approximately fixed temperature as the
input power changes; the polarization curve would distort
with the change of temperature. By optimizing the structure
of the PEM system, the inlet water temperature of electroly-
ser reached ~58°C in 30 seconds and promoted the electro-
lytic system to run quickly and persistently in an efficient
condition. Meanwhile, the coupled system can effectively
reduce electrolytic voltages during the process of start-stop
or load changing, and the maximum difference of power
consumption per cell can reach ~12W. Therefore, the
PEM hydrogen production system coupled with the thermal
storage device can effectively adapt to the power fluctuation
and frequent start and stop caused by renewable energy.
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The vertical waste heat recovery technology of the sinter in the iron and steel industry will be a great driving force for China to
realize the “double Carbon” in the near future. For promoting the application of the new technology, the influence of the confined
wall on the pressure distribution and pressure drops of the gas flow in the sinter bed was experimentally studied. For the irregular
sinter with the rough surface, the gas pressure near the wall is higher than that at the center. Moreover, the radial distribution of
the dimensionless pressure is nearly the same at different gas velocities. Therefore, whatever flow state the gas is in, the wall effect
on irregular sinters only reduces the pressure drop of the gas flow, which is different from that on spherical particles. The vertical
wall limits the randomness and uniformity of the particle accumulation, which is further intensified with the increase of the
particle irregularity and particle size. Therefore, the confined wall causes a greater difference in the gas pressure between the
wall and the center. With the particle size increasing from 5~10mm to 55~60mm, the ratio of the gas pressure between the
wall and the center increases from 1.03 to 1.26. If the wall effect is ignored, the pressure drop of the gas flow would be
overestimated by 16.01% on average, whereas the correlation of the wall correction can well predict the pressure drop with the
mean error and maximum error of 2.74% and 9.48%, respectively.

1. Introduction

To realize the development system of the green economy,
China has put forward the targets of the Carbon Peak in
2030 and Carbon Neutrality in 2060. At present, there are
mainly two technical routes to solve this problem. On the
one hand, it is the large-scale application of the new energy,
such as the solar energy. On the other hand, it is the energy
conservation and emission reduction of the traditional
industry, such as the iron and steel industry [1–3]. The latest
statistics show that the energy consumption of the iron and
steel industry accounts for about 20% of the whole industry.
In all processes of the iron and steel industry, the energy
consumption of the sintering process ranks second, which
is about 19% higher than the international level. Therefore,

the efficient recovery of the waste heat of the sinter is the
most promising method to reduce the energy consumption
of the iron and steel industry. This will be a great driving
force for China to realize the “double Carbon” in the near
future.

To improve the rate of the energy-saving and emission
reduction, the sinter vertical tank cooling (SVTC) process
has been newly proposed by imitating the coke dry quench-
ing (CDQ) process [4]. Compared with the existing annular
cooling process, the SVTC process can increase the recovery
rate of the sensible heat from 30% to 80% and reduce the air
leakage rate from 35~55% to nearly 0%. Before the industrial
application, it is necessary to study the feasibility of the
SVTC process in the laboratory scale, that is, gas-solid heat
transfer characteristics and gas flow characteristics [5, 6].
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Gas flow characteristics not only affect the gas-solid heat
transfer but also determine the energy consumption of fans,
thus affecting the feasibility and economy of the process [5,
7–9]. Therefore, it is of great significance to reliably predict
the pressure drop of the gas in the sinter vertical tank.

Since the shape of the sinter is very irregular and its
particle size is large, the sinter vertical tank is essentially
the packed bed with irregular and large particles [9, 10].
Therefore, some related researches have been carried out to
accurately predict the pressure drop of the gas in the sinter
bed in recent five years [5–13]. Results show that the pres-
sure drop of the gas increases linearly with the height of
the sinter layer increasing, increases in a quadratic relation-
ship with the gas velocity increasing, and declines exponen-
tially with the equivalent particle size increasing. Moreover,
considering the influences of the particle size [5, 12], particle
size distribution [8, 13], voidage [7], particle shape [10, 12],
and wall effect [6, 11], the empirical correlations of the pres-
sure drop are obtained by modifying the Ergun equation.
However, the application of the Ergun equation is based
on the assumption of the uniform packed bed, which ignores
the wall effect of finite packed beds in practice [14–22]. It
can only accurately describe infinite packed beds or packed
beds with the large ratio of the bed diameter to particle
diameter (D/dp > 50 : 1). Owing to the existence of the con-
fined wall in real beds, particles can only be packed finitely
near the wall. This would increase the wetted surface area
and the local voidage near the wall. Compared to the pre-
dicted value obtained the by the Ergun equation for the same
average voidage, the combined effect may lead to the
increase or decrease in the pressure drop of the gas flow [20].

For studying the wall effect, a lot of effort has been done.
However, different conclusions have been drawn [14–30].
Some researchers have found that the wall effect can increase
the pressure drop of the gas flow compared with an identical
infinite bed [14], while others have found that this would
cause a decline [23]. However, most studies indicate that
the effect of the confined wall depends not only on the value
of D/dp, but also on the Reynolds number or the gas flow
regime [16, 18, 20, 22, 24, 25]. Whatever the Reynolds num-
ber is, the wall effect can be ignored when D/dp is higher
than 50, whereas when D/dp is lower than 50, the combined
influences of the wall friction and the voidage would have
opposite results on the pressure drop at different Reynolds
numbers. At the low Reynolds number (i.e., laminar flow),
the friction effect of the wall plays a prominent role, leading
to the increase in the pressure drop of the gas, while the
voidage effect is dominant at the high Reynolds number
(i.e., turbulent flow), causing a decline in the pressure drop
of the gas.

However, most of previous studies on the wall effect are
focused on spherical particles. To our best knowledge, there
are few studies on irregular particles due to the complexity of
the particle shape [31–33]. Although Feng et al. [6] and Tian
et al. [11] considered the wall effect to modify the equation
of the pressure drop, the influences of the confined wall on
the pressure distribution and pressure drops of the gas flow
in the sinter bed are still unclear. Therefore, this paper stud-
ies experimentally the wall effect on the gas flow characteris-

tics in the bed with irregular sinters under the background of
the SVTC process. Furthermore, the accuracy of two correla-
tions without and with the wall correction in predicting the
pressure drop is compared.

2. Experimental Method and Data Processing

2.1. Experimental Apparatus. Figure 1 is a schematic dia-
gram of the experimental apparatus for measuring the gas
pressure in the sinter bed. This apparatus is composed of
the fan, the cylindrical packed bed, and the system of the
measurement and acquisition. The frequency conversion
blower is selected for the gas supply to precisely control
the gas flow rate in the test. As the main part of the appara-
tus, the height (H) and inner diameter (D) of the packed bed
are 1000mm and 400mm, respectively. The vortex flowme-
ter with the compensation of the temperature and pressure is
applied to measure the gas flow rate under the standard con-
dition. To acquire the information of the gas pressure inside
the bed, a pressure transmitter with the length of 650mm is
used, and the measured data are collected by the paperless
recorder. Basic parameters of above instruments are illus-
trated in Table 1.

The gas operation state in the experiment is designed
according to that of the sinter vertical cooling process. The
gas is first blown into the packed bed from the bottom,
transported through the sinter layer, and then discharged
to the outside of the bed from the outlet. To make the gas
flow uniformly distributed on the cross section of the
entrance, an air distributor with uniform openings is
installed at the bottom. Six pressure taps with an interval
of 200mm are evenly arranged along the vertical direction.
For analyzing the influence of the wall effect, thirteen mea-
suring points with an interval of the 25mm are set uniformly
along the radial direction at each pressure tap. Then, these
measured data are used to calculate the average gas pressure
of the cross section.

Vortex
flowmeter 

Frequency 
conversion blower

Paperless recorder

Air distributor Pressure transmitterOutlet

Packed bed

Air duct

Supporting device

Figure 1: The sketch of the experimental apparatus for measuring
the gas pressure in the sinter bed.
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2.2. Experimental Materials and Characterization Methods.
The sinter particles are from HBIS Group Hansteel Com-
pany in China. All experiments are carried out within the
representative particle size range of 5~60mm [9, 34–36]. It
is sieved into 11 kinds of particle sizes in the interval of
5mm, as shown in Figure 2. It can be seen that the sinter
shape is very irregular, and its surface is rough and porous.

To describe the sinter in detail, the particle characteris-
tics are characterized in this paper. Firstly, the apparent den-
sity ρa for the sinter of each particle size is measured by the
displacement method [8, 9, 11], as shown in the following
equation:

ρa =
m1

m3 − m2 −m4ð Þ ρH2O, ð1Þ

where ρH2O is the density of the water; m1 and m3 are the
mass of the dry sinter and the wet sinter, respectively; m2
is the mass of the sinter and test basket in the water; m4 is
the mass of the test basket in the water.

Besides, the bulk density ρb is measured by the direct
weighing method [8, 9, 11], as follows:

ρb =
G1 −G2ð Þ

V
, ð2Þ

where G1 is the total mass of the sinter and test container; G2
and V are the mass and volume of the test container,
respectively.

The bed voidage ε and shape factor ϕ of sinter particles
are determined by Equation (3) [8–11] and Equation (4)
[33, 37], respectively, as follows:

ε = 1 − ρb
ρa

, ð3Þ

ϕ = 0:7295ε2 − 2:4963ε + 1:8537: ð4Þ
In addition, 50 sinters of each particle size are randomly

selected, and the equivalent particle size dp is obtained by the
equal volume method [8–11], as follows:

dp =
ffiffiffiffiffiffiffiffiffiffi
6ms
πρa

,3

s
ð5Þ

where ms is the mean mass of the single sinter.
The particle characteristic parameters of the sinter

obtained by above methods are shown in Table 2. A wide

range of the gas velocity is also designed for the test condi-
tion of each kind of the sinter.

2.3. Data Processing. For infinite packed beds with spherical
particles, the pressure drop of the gas flow is usually pre-
dicted by the Ergun equation, as follows [6, 7, 9, 12]:

ΔP
L

= k1
1 − εð Þ2μg ⋅ ug

ε3dp
2 + k2

ρg 1 − εð Þ ⋅ ug2
ε3dp

, ð6Þ

where k1 and k2 are the viscous loss coefficient and the iner-
tial loss coefficient, respectively; ΔP, L, and ΔP/L are the
pressure drop of the gas flow through the sinter layer, the
height of the sinter layer, and the pressure drop per unit
height, respectively; ug, ρg, and μg are the velocity, density,
and dynamic viscosity of the gas, respectively.

Table 1: Basic parameters of experimental instruments.

Instrument Mode Range Accuracy

Frequency conversion blower HRD 65FU-100/7.5 3720m3·h-1, 9 kPa,100Hz —

Vortex flowmeter LUGB1315C-P3Z 150~3000m3·h-1 1.0%

Pressure transmitter CGYL-202 0~10 kPa 0.5%

Paperless recorder LD-300G 4~20mA, 8 channels 0.2%

5∼10 mm 10∼15 mm 15∼20 mm 20∼25 mm

(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

25∼30 mm 30∼35 mm 35∼40 mm 40∼45 mm

45∼50 mm 50∼55 mm 55∼60 mm

Figure 2: Photographs taken on 11 kinds of the sieved sinter
samples within the ranges of (a) 5~10mm, (b) 10~15mm, (c)
15~20mm, (d) 20~25mm, (e) 25~30mm, (f) 30~35mm, (g)
35~40mm, (h) 40~45mm, (i) 45~50mm, (j) 50~55mm, and
(k) 55~60mm.
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For irregular particles, the shape factor ϕ is often intro-
duced to modify the correlation of the pressure drop, as fol-
lows [10, 12]:

ΔP
L

= k1
1 − εð Þ2μg ⋅ ug
ε3 ϕdp
� �2 + k2

ρg 1 − εð Þ ⋅ ug2
ε3 ϕdp
� � : ð7Þ

To facilitate the linear fitting, the dimensionless parame-
ters, i.e., friction pressure drop f p and particle Reynolds
number Rep, are usually introduced, as follows [6, 7, 9, 12]:

f p =
ΔP
L

ε3 ϕdp
� �2

1 − εð Þ2μgug
,

Rep =
ρgug ϕdp

� �
μg 1 − εð Þ :

ð8Þ

Then, Equation (7) can be simplified to the dimension-
less form expressed by

f p = k1 + k2 Rep: ð9Þ

For finite packed beds, the wall corrected factor M is
introduced as follows [6, 11, 20, 22, 30]:

M = 1 +
2dp

3D 1 − εð Þ : ð10Þ

Then, Equation (9) can be arranged as follows:

f w = k1w + k2w Rew, ð11Þ

where f w is the wall-modified friction pressure drop, f w =
f p/M2; Rew is the wall-modified particle Reynolds number,
Rew= Rep/M [6, 11]; k1w and k2w are the wall-modified vis-
cous loss coefficient and the wall-modified inertial loss coef-
ficient, respectively.

Moreover, Table 3 shows the relative uncertainty of
main parameters estimated by the error transfer formula
[8–11]. For example, the particle Reynolds number Rep can
be calculated as follows:

δ Rep
� �
Rep

=
δ ρg

� �
ρg

0
@

1
A

2

+
δ ug
� �
ug

 !2

+
δ dp
� �
dp

 !2
2
64

+ δ ϕð Þ
ϕ

� �2
+

δ μg

� �
μg

0
@

1
A

2

+ δ 1 − εð Þ
1 − ε

� �2
3
75
1/2

,

ð12Þ

where δ is the absolute uncertainty of the corresponding
parameter.

3. Experimental Results and Discussion

3.1. Effect of the Confined Wall on the Bulk Density and Bed
Voidage. Figure 3 shows the changes of the bulk density ρb

Table 2: Particle characteristic parameters and test conditions for 11 kinds of sinters.

Particle size
(mm)

Equivalent particle
sizedp (mm)

Ratio of bed to particle
diameterD/dp

Shape factor
ϕ

Apparent density
ρa (kg·m-3)

Bulk density
ρb (kg·m-3)

Voidage
ε

Gas velocity
ug (m·s-1)

5~10 5.56 71.62 0.663 3847.61 1643.85 0.5727 0.4, 0.8, 1.2, 1.6, 2.0

10~15 10.90 36.69 0.629 3726.41 1513.40 0.5938
0.4, 0.8, 1.2, 1.6, 2.0,

2.4

15~20 14.48 27.62 0.612 3656.28 1448.69 0.6037
0.4, 0.8, 1.2, 1.6, 2.0,

2.4, 2.8

20~25 19.21 20.82 0.607 3614.62 1419.46 0.6073
0.4, 0.8, 1.2, 1.6, 2.0,

2.4, 2.8

25~30 23.28 17.18 0.599 3561.80 1382.78 0.6118
0.4, 0.8, 1.2, 1.6, 2.0,

2.8, 3.2

30~35 26.82 14.91 0.591 3547.14 1359.18 0.6168
0.4, 0.8, 1.2, 1.6, 2.0,

2.8, 3.2

35~40 30.82 12.98 0.586 3536.25 1342.54 0.6204
0.4, 0.8, 1.2, 1.6, 2.0,

2.8, 3.6

40~45 34.99 11.43 0.581 3526.84 1327.55 0.6236
0.4, 0.8, 1.2, 1.6, 2.0,

2.8, 3.6

45~50 38.49 10.39 0.572 3523.35 1306.08 0.6293
0.4, 0.8, 1.2, 1.6, 2.0,

2.8, 3.6

50~55 43.27 9.24 0.568 3523.09 1297.22 0.6318
0.4, 0.8, 1.2, 1.6, 2.0,

2.8, 3.6

55~60 47.39 8.44 0.561 3522.73 1282.11 0.6361
0.4, 0.8, 1.2, 1.6, 2.0,

2.8, 3.6
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and the bed voidage ε with the particle size under five
repeated experiments. With the particle size increasing, ρb
decreases and ε increases, respectively. This change trend is
consistent with the published results [6, 9, 10]. It can be
observed from Table 2 that the particle shape factor ϕ grad-
ually reduces with the increase in the particle size. This
means that the irregularity of sinters increases, which makes
it easier to form bridges when the sinter particles are heaped
up. Therefore, the voids between particles in the bed would
increase with the increase of the particle size. Besides, it is
also found that the reproducibility and uncertainty of ρb
and ε are getting worse with D/dp decreasing, which is sim-
ilar to results obtained by Tian et al. [11] and Raichura [17].
This indicates that the wall effect limits the randomness and
uniformity of the particle accumulation in the bed. What's
more, the influence of the confined wall becomes more sig-

nificant with the increase in the particle irregularity and par-
ticle size. This further intensifies the nonrandomness and
heterogeneity of the particle accumulation.

3.2. Effect of the Confined Wall on the Gas Pressure
Distribution. Figure 4 illustrates the radial distribution of
the gas pressure (P) at the bed height of L = 0mm under
four kinds of particle sizes (i.e., 5~10mm, 20~25mm,
40~45mm, and 55~60mm). As the radial position (r)
moves from the center to the wall, the gas pressure (P)
gradually increases at different gas velocities. This indicates
that the pressure drop of the gas near the wall is relatively
low due to the wall effect for the finite bed of irregular sin-
ters. It is different from the wall effect on spherical parti-
cles. The confined wall can increase the viscous loss term
of the wall friction effect and decrease the inertial loss term
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Figure 3: Variation of the bulk density ρb and voidage ε of the sinter bed with the particle size under five repeated experiments.

Table 3: Summary of the relative uncertainty of main parameters.

Parameter Symbol Uncertainty/% Parameter Symbol Uncertainty/%

Equivalent particle size dp 3.07 Pressure drop per unit height ΔP/L 4.45

Apparent density ρa 1.42 Particle Reynolds number Rep 4.87

Bulk density ρb 2.15 Friction pressure drop f p 6.52

Voidage ε 2.58 Wall-modified Reynolds number Rew 6.31

Shape factor ϕ 2.58 Wall-modified friction pressure drop f w 7.65
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Figure 4: Continued.
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of the voidage effect [16, 18, 20, 24, 25]. Only in the lami-
nar flow, the viscous loss plays a leading role to increase the
pressure drop of the gas, whereas under the turbulent flow,
the inertial loss is dominant to reduce the pressure drop of
the gas [18, 20, 24, 25]. The previous study [11] shows that
the gas flow in the sinter bed is easy to reach the turbulent
regime or transitional regime due to the irregularity of par-
ticles. It is mainly attributed to two aspects. On the one
hand, the irregular particles lead to irregular gas channels
in the bed, which is easy to destroy the stability of the gas
flow. On the other hand, the irregular shape causes the

uneven distribution of the gas channel. This would increase
of the real velocity of the gas flow in the channel. In addi-
tion, the surface of sinter particles is very rough and full of
concaves and convexes [9, 10]. Therefore, the friction effect
of the confined wall is not necessarily greater than that of
the sinter surface. Based on the above two points, the effect
of the wall friction on the pressure drop is relatively weak
in the irregular sinter bed. Moreover, the bed voidage
increases gradually from the center to the wall [38–41].
Therefore, the pressure drop of the gas is relatively low in
the region close to the wall. The gas pressure near the wall
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Figure 4: The radial distribution of the gas pressure (P) at the bed height of L = 0mm under four kinds of particle sizes of (a) 5~10mm, (b)
20~25mm, (c) 40~45mm, and (d) 55~60mm.
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Figure 5: Continued.
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Figure 5: The radial distribution of the dimensionless gas pressure (P/P0) at the bed height of L = 0mm under four kinds of particle sizes of
(a) 5~10mm, (b) 20~25mm, (c) 40~45mm, and (d) 55~60mm.
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Figure 6: The radial distribution of the average dimensionless gas pressure (P/P0) for different gas velocities at the bed height of L = 0mm
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is larger than that of the interior, especially for the large
particle at the high gas velocity.

To further analyze the influence of the gas velocity,
Figure 5 illustrates the distribution of the dimensionless
gas pressure (P/P0, P0 is the gas pressure at the center) with
the dimensionless radial distance (r/R, R is the radius of the
sinter bed). It is found that the radial dimensionless pressure
distribution is nearly the same at different gas velocities. This
means that the gas velocity does not change the wall effect
on the pressure drop in the bed of the irregular particle.
Therefore, whatever state the gas flow is in, the influence
of the confined wall on the irregular particle only reduces
the pressure drop in the bed.

Figure 6 illustrates the radial distribution of the average
dimensionless gas pressure (P/P0) at different gas velocities
under 11 kinds of particle sizes. It is observed that the values
of P/P0 increase with the particle size increasing (i.e., the
decrease of D/dp). With the particle size increasing from

5~10mm to 55~60mm, P/P0 near the wall increases from
1.03 to 1.26. This indicates that the confined wall has a more
significant effect on large particles. With the increase in the
particle size, the difference of the voidage between the wall
and the center becomes larger [38], and the uniformity of
the voidage distribution becomes worse [39, 40].

3.3. Effect of the Gas Velocity and Equivalent Particle Size on
the Pressure Drop. Figure 7 illustrates the variation of the
pressure drop of the gas flow per unit height (ΔP/L) with
the gas velocity (ug) under different particle sizes. Firstly, it
is seen that ΔP/L increases with the increase of ug, fitting
well with the quadratic function in the form of ΔP/L = a ⋅
ug

2 + b ⋅ ug. The correlation coefficients of all fitting curves
are greater than 0.99985, as shown in Table 4. This is consis-
tent with the results published [5, 7, 12]. Similar to the
Ergun equation, the pressure drop of the gas is composed
of the viscous loss linearly related to ug and the inertial loss
of a quadratic relationship with ug. As ug increases, the

boundary layer gradually disappears and the collision
between the gas and particles is increasingly intensified
[12, 42]. Therefore, the inertial loss becomes the dominant
factor, resulting in a sharp increase in the pressure drop of
the gas flow. Moreover, it can be observed from Table 4 that
the coefficients of the quadratic function, a and b, decline
with the particle size increasing, which is similar with other
studies [5, 7, 12]. Also, the bed voidage increases with the
increase of dp, as shown in Figure 3. This causes a reduction
in the instability and specific surface area of the gas flow.
Therefore, it makes in the inertial loss and viscous loss
decrease [42].

3.4. Analysis of the Empirical Correlation of the
Pressure Drop

3.4.1. Considering the Wall Effect. According to Equation
(11), the relationship between the wall-modified friction
pressure drop f w and the wall-modified particle Reynolds
number Rew can be linearly fitted by the least square
method. The obtained wall-modified viscous loss coefficient
k1w and inertial loss coefficient k2w for each particle size are
shown in Figure 8(a). In addition, Figure 8(a) indicates that
k1w decreases and k2w increases with the increase of D/dp,
respectively. This change trend is similar to that obtained
by others [11, 17]. Therefore, k1w and k2w are determined
as functions of D/dp,

k1w = 540 + 639e ‐0:0581D/dpð Þ,
k2w = 2:73‐1:883e ‐0:0733D/dpð Þ:

ð13Þ

Then, f w is expressed as follows:

f w = 540 + 639e ‐0:0581D/dpð Þ + 2:73‐1:883e ‐0:0733D/dpð Þh i
Rew:

ð14Þ

The mean relative error (MRE) between the measured
value and the predicted value of the pressure drop per unit
height is calculated by

MRE %ð Þ = 1
n
〠
n

j=1

ΔP/Lj
cal − ΔP/Lj

exp
			 			

ΔP/Lj
exp

× 100, ð15Þ

where j is the serial number of experimental data, j = 1,
2,⋯⋯ , n; n is the number of experimental data; ΔP/
Lexp and ΔP/Lcal are the measured value and the predicted
value of the pressure drop per unit height, respectively.

It is found that the predicted values by Equation (14)
achieve a satisfied agreement with the measured values, as
shown in Figure 8(b). The MRE and maximum error are
2.74% and 9.48%, respectively. Therefore, the correlation of
the wall correction can well predict the pressure drop of
the gas flow through the packed bed of irregular sinters.

3.4.2. Ignoring the Wall Effect. For the comparison, the cor-
relation of the pressure drop without the wall correction is

Table 4: Coefficients of the fitting function between the pressure
drop per unit height (ΔP/L) and gas velocity (ug) under 11 kinds
of particle sizes.

Particle size (mm)
ΔP/L = a ⋅ ug2 +

b ⋅ ug Correlation coefficient R2

a b

5~10 2111.29 659.22 0.99985

10~15 988.75 389.39 0.99808

15~20 645.57 307.56 0.99979

20~25 456.34 251.17 0.99980

25~30 352.03 226.56 0.99941

30~35 283.05 193.26 0.99908

35~40 235.07 164.72 0.99941

40~45 199.09 141.37 0.99951

45~50 170.91 123.26 0.99952

50~55 148.51 109.60 0.99947

55~60 130.01 98.09 0.99959
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also fitted by the least square method according to Equation
(9), as shown in Figure 9(a). The correlation of the pressure
drop between the friction factor f p and the particle Reynolds
number Rep is expressed by

f p = 3357 + 2:388 Rep: ð16Þ

It is found from Figure 9(b) that most of the predicted
values by Equation (16) are larger than the measured values.
Since the wall effect leads to the decrease of the pressure
drop, the pressure drop of the gas in the sinter bed will be
overestimated when it is assumed to be an infinite packed
bed. Therefore, the prediction accuracy of the correlation
of the pressure drop without the wall correction will decline.
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The MRE and maximum error are as high as 16.01% and
139.84%, respectively.

4. Conclusions

The vertical waste heat recovery technology of the sinter will
be a great driving force for China to realize the “double Car-
bon.” To promote the application of the new technology, the

wall effect on the gas flow characteristic in the bed with
irregular sinters was studied by the experimental method.

(1) The irregularity of the sinter increases with the
particle size increasing, which causes an increase
in the bed voidage. Besides, the vertical wall limits
the randomness and uniformity of the particle
accumulation. This effect is further intensified with
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the increase of the irregularity and particle size,
which makes the reproducibility and uncertainty of
the voidage become worse

(2) As the radial position moves from the center to the
wall, the gas pressure increases gradually. Moreover,
the radial distribution of the dimensionless pressure
is nearly the same at different gas velocities. There-
fore, the wall effect on irregular sinters only reduces
the pressure drop of the gas no matter what state the
gas flow is in, which is different from the wall effect
on spherical particles. Besides, the wall effect is
increasing significantly with the particle size increas-
ing (i.e., the decrease of D/dp). With the particle size
increasing from 5~10mm to 55~60mm, the dimen-
sionless gas pressure near the wall increases from
1.03 to 1.26

(3) When the wall effect is ignored, the pressure drop of
the gas would be overestimated by 16.01% on aver-
age, whereas the empirical correlation of the wall
correction can well predict the pressure drop of the
gas in the packed bed of the irregular sinter with
the mean error and maximum error of 2.74% and
9.48%, respectively

Nomenclature

D: Diameter of the sinter bed, m
dp: Equivalent particle size, m
D/dp: Ratio of the bed to particle diameter
f p: Friction pressure drop
f w: Wall-modified friction pressure drop
H: Height of the packed bed, m
G1: The total mass of the sinter and test container, kg
G2: The mass of the test container, kg
k1: Viscous loss coefficient
k1w: Wall-modified viscous loss coefficient
k2: Inertial loss coefficient
k2w: Wall-modified inertial loss coefficient
L: Height of the sinter layer, m
m1: Mass of the dry sinter, kg
m2: Mass of the sinter and test basket in the water, kg
m3: Mass of the wet sinter, kg
m4: Mass of the test basket in the water, kg
ms: Mean mass of the single sinter, kg
M: Wall correction factor
P: Gas pressure, Pa
P0: Gas pressure at the centerline, Pa
P/P0: Dimensionless gas pressure
P/P0: Average dimensionless gas pressure
ΔP: Pressure drop of the gas through the sinter bed, Pa
ΔP/L: Pressure drop per unit height, Pa·m-1

ΔP/Lcal: Calculated value of the pressure drop per unit
height, Pa·m-1

ΔP/Lexp: Experimental value of the pressure drop per unit
height, Pa·m-1

ug: Gas velocity, m·s-1
V : Volume of the test container, m3

r: Radial distance, m
R: Radius of the packed bed, m
Rep: Particle Reynolds number
Rew: Wall-modified particle Reynolds number.

Greeks

ρa: Apparent density of the sinter, kg·m-3

ρb: Bulk density of the sinter, kg·m-3

ρg: Density of the gas, kg·m-3

ρH2O: Density of the water, kg·m-3

ε: Bed voidage
ϕ: Shape factor
μg: Dynamic viscosity of the gas, Pa·s.

Subscripts

p: Particle
g: Gas
w: Wall
cal: Calculation
exp: Experiment.

Abbreviations

MRE: Mean relative error
SVTC: Sinter vertical tank cooling
CDQ: Coke dry quenching.
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The application of the sinter vertical cooling technology in the iron and steel industry is conducive to the realization of the double
carbon in China. To reduce the energy consumption and improve the economy of the new process, the gas flow resistance in the
sinter bed under the layered distribution pattern was experimentally studied. The gas flow resistance of most of the layered
distribution modes is lower than that of the random distribution mode. Among all layered arrangement modes, the layered
mode with the particle size increasing from the bottom-up has the lowest resistance, followed by the layered mode with the
particle size decreasing from the bottom-up. These two modes ensure the feasibility of the application of the layered
distribution pattern in the continuous production of the moving bed. Besides, increasing the number of layers benefits the
reduction of the gas flow resistance, which has a more significant effect on the layered mode with the particle size increasing
from the bottom-up. For the sinter mixture with the equivalent particle diameter of 11.45mm, the gas resistance of the modes
with the particle size increasing and decreasing from the bottom-up decreases by 11.71% and 8.26% with the layer number
increasing from three to five, respectively. Also, the effect of the layered distribution pattern on the gas flow resistance
progressively weakens with increasing the equivalent particle diameter. For the five-layer distribution mode with the particle
size increasing from the bottom-up, the gas resistance decreases by 2.72% with the equivalent particle diameter increasing from
11.45mm to 15.45mm, while that decreases by 4.61% with the equivalent particle diameter increasing from 15.45mm to
19.45mm. What's more, the change of the equivalent particle diameter has a more significant influence on the layered mode
with the particle size decreasing from the bottom-up. With the equivalent particle diameter increasing from 15.45mm to
19.45mm under the five-layer distribution pattern, the gas resistance of the layered mode with the particle size increasing from
the bottom-up reduces by 4.61%, while that of the mode with the particle size decreasing from the bottom-up reduces by 7.38%.

1. Introduction

For realizing the green economic development system, China
has put forward the targets of Carbon Peak in 2030 and Car-
bon Neutrality in 2060. Apart from vigorously developing
the clean energy, including the solar energy, the breakthrough
in the energy conversation and emission reduction technology
of the traditional industry is a very important aspect, such as
the iron and steel industry. The latest statistics show that the
energy consumption of the iron and steel industry accounts

for about 20% of the whole industry [1–4]. Among all pro-
cesses, the energy consumption of the sintering process
accounts for approximately 10~15% of the iron and steel
industry, second only to the ironmaking process [5]. In the
sintering process, the sensible heat of the sinter makes up
about 70% of the waste heat resource. Therefore, improving
the recovery rate of the sensible heat is of great significance
for reducing the energy consumption of the sintering process
and even the iron and steel industry. This would be a most
promising method for China to realize the “double Carbon.”
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At present, the waste heat recovery of the high-
temperature sinter is mainly through the annular cooling
process. Since the air leakage rate of the annular cooler is
as high as 35~50% and the cooling gas can only be heated
to 150~380 °C, the recovery rate of the waste heat from the
sinter is less than 30%. Given the shortcomings of the exist-
ing process, the vertical tank cooling process of the sinter has
been newly proposed based on the coke dry quenching pro-
cess [6, 7]. It is estimated that the vertical cooling process
can increase the temperature of the cooling gas to 500~550
°C and increase the recovery rate from 30% to 80%.

The feasibility of the sinter vertical tank cooling process
mainly depends on the gas-solid heat transfer and the gas flow
resistance. The gas flow characteristic not only is the basis of the
gas-solid heat transfer but also directly determines the pressure
of the required fan and the power of the matching motor. For
the sinteringmachine with the annual capacity of 4million tons
of the sinter, the heights of the sinter layer in the annular cooler
and the vertical cooler are 0.8~1.5m [5, 8–11] and 7~10m [12,
13], respectively. Therefore, the gas flow resistance of the verti-
cal cooler is much higher than that of the annular cooler. The
excessive resistance not onlymakes it difficult for the gas to pass
through the sinter layer but also reduces the efficiency of the
gas-solid heat transfer and increases the energy consumption.
Therefore, how to reduce the gas flow resistance is the key to
the application of the sinter vertical tank cooling process.

In recent years, the relevant scholars have carried out
some experimental researches on the resistance characteris-
tic of the gas flow in the sinter bed [14–21]. Results showed
that the gas flow resistance increased linearly with the bed
height increasing [14], increased in a quadratic relationship
with the increase of the gas velocity [14, 15], and decreased
exponentially with the increase of the particle size and voi-
dage [15]. Tian et al. [16] also found that the wall effect on
the gas flow resistance can be ignored for 19 <D/dp < 35
(the ratio of the bed diameter D to the particle diameter dp
). However, the wall effect would lead to the reduction of
the gas flow resistance for 7 <D/dp < 19. When the crushed
sinter was added to the sinter mixture, the gas flow resis-
tance in the bed would increase by 2~3 times [19]. In addi-
tion, the related studies on other particles are mainly
concerned on the influences of the wall effect [22–24], parti-
cle shape [25–29], and particle size distribution [28–32] on
the gas flow resistance. Therefore, there are few studies on
how to reduce the gas flow resistance in the sinter bed.

In the actual production, the particle size of the sinter is
nonuniform, but has a wide particle size distribution [17].
Therefore, the traditional distribution pattern, namely, the ran-
dom distribution pattern, would cause the uneven distribution
of the particle size and voidage in the sinter bed [33, 34]. The
gas flow in the random bed is very disordered [35], leading to
a sharp increase in the gas flow resistance and the uneven cool-
ing of the high-temperature sinter. Besides, the gas flow in the
packed bed with the double-size sinter was more disordered
than that in the packed bed with themonosize sinter [18]. Com-
pared with the particle bed of the wide particle size distribution,
the gas flow in the particle bed of the narrow particle size distri-
bution is more uniform, and the gas flow resistance is lower

[36]. Based on the above reason, the layered distribution pattern
based on the particle size is proposed [33, 34]; that is, the sinter
mixture with the wide particle size distribution is divided into a
variety of sinters with the narrow particle size distribution for
the layered distribution. The numerical studies showed that
the flow field and temperature distribution in the layered bed
are relatively uniform [35]. Also, the recovery rate of the waste
heat under the layered distribution pattern can be raised by
about 14% compared with the random distribution pattern
[33, 34].

Air distributor Outlet

Packed bed

Pressure transmitter

Paperless recorder

Supporting device

Vortex
flowmeter Air duct

Frequency
conversion blower

Figure 1: A sketch of the experimental apparatus for measuring the
gas flow resistance in the sinter bed.
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Figure 2: The original particle size distribution of sinter samples.
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According to the above findings, the layered distribution
pattern is beneficial to improve the uniformity of the gas
flow and the sinter temperature in the packed bed. However,
it is not known whether the uniform distribution of the gas
flow is beneficial to reduce the gas flow resistance in the sin-
ter bed. Therefore, from the viewpoint of reducing the
energy consumption, the influence of the layered distribu-
tion pattern on the gas flow resistance is studied through
experiments, thereby determining the optimal layered distri-
bution mode.

2. Experimental Method

2.1. Experimental System. In this study, the experimental
apparatus is constructed to measure the gas flow resistance
in the sinter bed, as shown in Figure 1. As the main part
of the experimental apparatus, the height and the inner
diameter of the cylindrical bed are 1000mm and
400mm, respectively. The air distributor with the uniform
openings is arranged at the bed bottom to obtain the uni-

form flow field in the cross-section. Six pressure taps are
evenly arranged along the axial direction. For each tap, 9
measuring points are uniformly set along the radial direc-
tion to calculate the average pressure of the cross-section.
The pressure transmitter (CGYL-202) with the length of
650mm is selected to acquire the pressure information,
the measured range and accuracy of which are 0~5 kPa
and 0.5%, respectively. The frequency conversion blower
(HRD 65FU-100/7.5) is selected to precisely control the
gas flow rate. The vortex flowmeter with the compensation
of the temperature and pressure (type: LUGB1315C-P3Z)
is used to measure the gas flow rate under the standard
condition (273.15K and 101.325 kPa). The measured range
and accuracy of the flowmeter are 150~2500Nm3·h-1 and
1.0%, respectively.

2.2. Particle Characteristics of the Sinter. The sinter particles
come from HBIS Group Hansteel Company in China. Before
the test, five batches of original sinter mixtures are screened
to obtain the particle size distribution, as shown in Figure 2.

(a) 5~60 mm (b) 5~10 mm (c) 10~15 mm (d) 15~20 mm

(e) 20~25 mm (f) 25~30 mm (g) 30~35 mm (h) 35~40 mm

(i) 40~45 mm (j) 45~50 mm (k) 50~55 mm (l) 55~60 mm

Figure 3: Photographs taken on the sinter of 5~60mm: (a) the unsorted sinter mixture with the multisize; (b–l) 11 kinds of the sieved sinter
with the monosize.

Table 1: Expressions of the measured and calculated method for characteristic parameters of sinter particles.

Characteristic parameter Expression Equation

Apparent density of the monosize sinter [17, 18] ρa,s = m1/m3 − m2 −m4ð Þð Þρw (i)

Equivalent diameter of the monosize sinter [16, 17, 21] dp,s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ms/πρa,s3

q
(ii)

Apparent density of the sinter mixture [18] ρa,m =〠n

i=1wiρa,si (iii)

Equivalent diameter of the sinter mixture [29–31, 36] dp,m =〠n

i=1wi/〠
n

i=1wi/dp,si (iv)

Bulk density [17, 18] ρb = M1 −M2ð Þ/V (v)

Voidage [16–18, 21] ε = 1 − ρb/ρa (vi)
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It is observed that the particle size distribution among five
batches of sinter mixtures is nearly consistent. Note that
the sinter with the particle size range of 5~60mm accounts
for more than 85% of the total weight. Thus, they are taken
for the test of the layered distribution, as shown in Figure 3.

To characterize the sinter of each monosize, the apparent
density ρa,s defined as Equation (i) in Table 1 is measured by
the drainage method [17, 18], as shown in Figure 4. The
equivalent particle diameter dp,s is calculated by Equation
(ii) in Table 1 with the equal volume method [16, 17, 21].
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Table 2: Characteristic parameters of the three kinds of sinter mixtures.

Equivalent particle diameter dp,m
(mm)

Apparent density ρa,m
(kg·m-3)

Bulk density ρb,m
(kg·m-3)

Total height of the sinter bed L
(cm)

Voidage
ε

11.45 3676.09 1663.47 45.30 0.5475

15.45 3622.03 1581.00 47.11 0.5635

19.45 3589.73 1512.95 49.23 0.5785
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Table 3: All three-layer arrangement modes for the sinter mixture with the equivalent particle diameter of 11.45mm.

Mode of the layered
arrangement

Particle size range of the sinter in
each layer d (mm)

Total height of the sinter layer L
(cm)

Ratio of the resistance increase Sk
(%)

Bed bottom→bed top
First
layer

Second
layer

Third
layer

0
Random distribution mode

(control condition)
45.30 /

1 5~15 15~35 35~60 47.02 -13.99

2 5~15 35~60 15~35 46.54 -6.92

3 15~35 5~15 35~60 46.65 -9.65

4 15~35 35~60 5~15 46.14 -10.95

5 35~60 5~15 15~35 46.03 3.93

6 35~60 15~35 5~15 46.92 -11.89

Table 4: All five-layer arrangement modes for the sinter mixture with the equivalent particle diameter of 11.45mm.

Mode of the layered
arrangement

Particle size range of the sinter in each layer d
(mm)

Total height of the sinter
layer L (cm)

Ratio of the resistance
increase Sk (%)

Bed bottom→bed top
First
layer

Second
layer

Third
layer

Fourth
layer

Fifth
layer

0 Random distribution mode (control condition) 45.30 /

1 5~15 15~25 25~35 35~45 45~60 47.36 -25.70

2 15~25 25~35 35~45 45~60 5~15 46.25 -0.56

3 25~35 35~45 45~60 5~15 15~25 47.12 -14.99

4 35~45 45~60 5~15 15~25 25~35 47.27 -10.19

5 45~60 5~15 15~25 25~35 35~45 46.74 -2.93

6 5~15 25~35 45~60 15~25 35~45 46.70 -3.32

7 15~25 35~45 5~15 25~35 45~60 46.58 2.95

8 25~35 45~60 15~25 35~45 5~15 46.37 -2.04

9 35~45 5~15 25~35 45~60 15~25 46.23 -4.63

10 45~60 15~25 35~45 5~15 25~35 45.85 -5.13

11 5~15 35~45 15~25 45~60 25~35 45.25 -1.75

12 15~25 45~60 25~35 5~15 35~45 45.51 -7.09

13 25~35 5~15 35~45 15~25 45~60 46.71 -1.52

14 35~45 15~25 45~60 25~35 5~15 46.16 4.85

15 45~60 25~35 5~15 35~45 15~25 45.84 3.99

16 5~15 45~60 35~45 25~35 15~25 46.02 3.24

17 15~25 5~15 45~60 35~45 25~35 46.04 1.74

18 25~35 15~25 5~15 45~60 35~45 46.22 -10.90

19 35~45 25~35 15~25 5~15 45~60 46.01 -3.91

20 45~60 35~45 25~35 15~25 5~15 46.62 -20.15

Table 5: Summary of the relative uncertainty of parameters in this study.

Parameter Symbol Uncertainty (%) Parameter Symbol Uncertainty (%)

Equivalent particle diameter dp 1.51 Gas velocity ug 1.00

Apparent density ρa 1.42 Voidage ε 1.81

Bulk density ρb 1.12 Gas resistance ΔP 0.50
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For the multisize sinter mixture composed of a variety of the
monosize sinter, the apparent density ρa,m and equivalent
particle diameter dp,m can be calculated by Equation (iii) in
Table 1 [18] with the weighted method and Equation (iv)
in Table 1 with the weighted harmonic mean method
[29–31, 36], respectively. For multisize sinter mixtures and

monosize sinters, the bulk density ρb can be measured by
the weighing method of Equation (v) in Table 1 [17, 18].
The bed voidage ε can be calculated by Equation (vi) in
Table 1 [16–18, 21].

To study the influence of the particle size distribution on
the gas flow resistance under the layered distribution
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pattern, three types of sinter mixtures are designed, as
shown in Figure 5. The equivalent particle diameters dp,m
of the three kinds of sinter mixtures are 11.45mm,
15.45mm, and 19.45mm, respectively. To ensure the com-
parability of experimental results, the mass of the three kinds
of sinter mixtures is the same, which is 94.30 kg. The charac-
teristic parameters of the sinter mixture obtained by the
above methods are shown in Table 2.

To analyze the effect of the layer number on the gas flow
resistance, two types of the layered distribution patterns are
studied. The first type is divided into three layers, which is com-
posed of the three kinds of sinters with the particle size of
5~15mm, 15~35mm, and 35~60mm. The second type is
divided into five layers, which contains the five kinds of sinters
with the particle size of 5~15mm, 15~25mm, 25~35mm,
35~45mm, and 45~60mm. The bulk density ρb, apparent den-
sity ρa, and voidage ε of the sinter of each particle size are mea-
sured by means of the above methods, as shown in Figure 6.

To analyze the effect of the gas velocity ug, the gas resis-
tance in the layered bed is measured under the five kinds of
gas velocities, namely, 0.4, 0.8, 1.2, 1.6, and 2.0m·s-1. The
conventional random distribution pattern is also studied as
the control experiment, as shown in Figure 7. To study the
effect of the layered arrangement mode, the gas resistance
in the bed of the sinter mixture with the equivalent particle
diameter of 11.45mm is measured under 6 kinds of three-
layer arrangement modes and 20 kinds of five-layer arrange-
ment modes based on the orthogonal design, as shown in
Tables 3 and 4, respectively. Tables also list the ratio of the
resistance increase Sk for different layered arrangement
modes compared with the random distribution mode, which
is defined as follows:

Sk =
1
n
〠
n=5

i=1

ΔPi
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where Sk is the ratio of the resistance increase of the k-th lay-
ered arrangement mode; ΔPi

r and ΔPi
k represent the gas

resistance of the i-th gas velocity under the random distribu-
tion mode and the k-th layered arrangement mode, respec-
tively; and i is the condition of the i-th gas velocity.

2.3. Uncertainty Analysis. The uncertainty analysis of
parameters is calculated by the theory of the error transfer
[21, 37–39]. Suppose the relationship between the parameter
y and k variables is as follows:

y = f x1, x2, x3,⋯,xkð Þ, ð2Þ

where x1, x2, x3,⋯, xk are k independent variables.
Then the absolute uncertainty of y (Δy) can be calculated

according to the absolute uncertainty of each independent
variable (Δx1, Δx2, Δx3,⋯, Δxk) as follows:

Δy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
k

j=1

∂f
∂xj

Δxj

 !2
vuut : ð3Þ

Therefore, the relative uncertainty of y is expressed as

Δy
y

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
k

j=1

Δxj
xj

 !2
vuut : ð4Þ

The relative uncertainty of each parameter is shown in
Table 5.

3. Experimental Results and Discussion

3.1. Analysis of the Three-Layer Arrangement Mode. Figure 8
shows the change of the gas flow resistance (ΔP) with the gas
velocity (ug) under the three-layer layered mode and the
random mode for the sinter mixture with the equivalent par-
ticle diameter of 11.45mm. It can be observed that ΔP
increases in a quadratic relationship with the increase of ug
. With the increase of ug, the collision between the gas and
sinter particles will intensify. Therefore, the turbulent degree
of the gas flow increases, which makes the gas resistance
increase [14].

Based on the data in Figure 8, the ratio of the resistance
increase Sk under different three-layer arrangement modes is
calculated, as shown in Figure 9(a). It can be found that the
gas flow resistance (ΔP) of most of the layered arrangement
modes is lower than that of the random distribution mode.
On the one hand, the mixing degree of sinters under the lay-
ered distribution mode is lower than that of the random dis-
tribution mode. Therefore, Figure 6(a) shows that the
voidage of each layer under the layered distribution mode
is larger than that of the random distribution mode. This
reduces the viscous resistance and the inertial resistance of
the gas flow [14, 40]. On the other hand, the interval width
of the particle size of the sinter in each layer under the lay-
ered distribution mode is narrower than that of the random
distribution mode. The voidage distribution along the radial
direction under the layered bed is more uniform, which
reduces the disorder of the gas flow [35, 36].

Also, it can be seen from Figure 9(a) that the gas flow resis-
tance of mode 1 and mode 6 is the smallest, which is 13.99%
and 11.89% lower than that of the random distribution mode,
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respectively. It can be seen from Table 3 that mode 1 and
mode 6 are the arrangement modes with the particle size
increasing and decreasing from the bed bottom to the bed
top, respectively. As can be seen from Figure 9(b), the bed
height of these two modes is the highest. This indicates that
themixing degree of particles at the interface of adjacent layers
is the lowest due to the continuous change of the particle size.
Therefore, the disorder degree of the gas flow through the bed
and the local resistance at the interface are relatively the low-
est. Unexpectedly, the gas resistance of mode 5 is 3.93% higher
than that of the random distribution mode. However, the ratio
of the resistance increase is very small. Therefore, the gas flow
resistance in the packed bed under the five-layer layered distri-
bution pattern is further studied.

3.2. Analysis of the Five-Layer Arrangement Model. As
shown in Figure 10 based on the sinter mixture with the
equivalent particle diameter of 11.45mm, the gas flow resis-
tance ΔP is compared between all five-layer layered modes
and the random distribution mode. Notably, Figure 10(a)
shows that there are indeed several layered modes, ΔP of
which is higher than that of the random distribution mode.

Based on the ratio of the resistance increase Sk of
Figure 11(a), all layered modes can be divided into three cat-

egories, namely, Sk > 0%, 0 > Sk > −10%, and Sk < −10%.
According to Figure 11(b), the average bed heights of the
layered mode of Sk > 0%, 0 > Sk > −10%, and Sk < −10% are
45.88 cm, 46.41 cm, and 46.88 cm, respectively. For the same
batch of the sinter mixture, the bed voidage reduces with the
decrease of the bed height. The lower the bed voidage, the
greater the gas flow resistance. Besides, it can be seen from
Table 4 that the particle size of the sinter between adjacent
layers changes greatly under the five layered modes of Sk >
0%. The great change of the particle size between adjacent
layers would produce two factors to increase the resistance.
On the one hand, the mixing degree of sinter particles
between adjacent layers increases. This makes the unifor-
mity of the voidage distribution along the radial distribution
reduce, which increases the turbulent degree of the gas flow.
On the other hand, the change range of the voidage along
the axial direction at the interface of adjacent layers
increases. This makes the gas flow expand or contract
abruptly at the interface, increasing the local resistance. For
the layered mode of Sk < −10%, the particle size of the sinter
between adjacent layers changes little, which basically shows
the continuous increase or the continuous decrease. The
mixing degree of the sinter between adjacent layers reduces.
This not only improves the uniformity of the voidage
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distribution along the radial direction, but also reduces the
variation range of the axial voidage at the interface. There-
fore, the gas can flow evenly through the sinter layer, which
reduces the turbulent degree and the local resistance of the
gas flow.

As can be seen from Figure 11(a) for the five-layer distri-
bution pattern, the gas flow resistance of modes with the
particle size increasing and decreasing from the bottom-up
(i.e., modes 1 and 20) is also the lowest, which is 25.70%
and 20.15% lower than that of the random distribution
mode, respectively. For the layered distribution pattern, the
layered mode with the particle size increasing from the
bottom-up has the smallest resistance, followed by the mode
with the particle size decreasing from the bottom-up. Com-
pared with the layered mode with the particle size increasing
from the bottom-up, the small-size sinter in the upper layer
can be easily filled into gaps between the large-size sinters in
the lower layer for the mode with the particle size decreasing
from the bottom-up. Therefore, the packing structure of the
mode with the particle size decreasing from the bottom-up is
more complex, intensifying the disorder and resistance of
the gas flow.

3.3. Effect of the Layer Number. Figure 12 illustrates the effect
of the layer number on the gas flow resistance. In
Figure 12(b), Sk

∗ is defined as the ratio of the resistance
decrease of the layered distribution mode compared to the
random distribution mode. As seen from Figure 12(a), the
gas flow resistance of the three-layer bed is higher than that
of the five-layer packed bed under two kinds of layered
modes with the particle size increasing and decreasing from
the bottom-up. Besides, Figure 12(b) indicates that the gas

flow resistance of the mode with the particle size decreasing
from the bottom-up declines by 8.26% with the layer num-
ber increasing from three to five, while that decreases by
11.71% for the mode with the particle size increasing from
the bottom-up. Therefore, the increase of the layer number
is not only conducive to further reduce the gas flow resis-
tance, but also has a more significant impact on the mode
with the particle size increasing from the bottom-up. This
can be attributed to the following two aspects. On the one
hand, the sinter with the particle size of 15~35mm under
the three-layer distribution pattern is composed of the sinter
with the particle size of 15~25mm and 25~35mm under the
five-layer distribution pattern. And the sinter with the parti-
cle size of 35~60mm consists of the sinter with the particle
size of 35~45mm and 45~60mm. Therefore, the packing
structure in the three-layer packed bed is more complex.
The distribution homogeneity of the voidage and particle
size along the radial direction reduces, which increases the
disorder degree of the gas flow [36]. On the other hand,
Figure 6 shows that the bed voidage of the sinter with the
particle size of 15~25 and 25~35mm is bigger than that of
the sinter with the particle size of 15~35mm. And the voi-
dage of the sinter with the particle size of 35~45 and
45~60mm is also bigger than that of the sinter of with the
particle size of 35~60mm. Therefore, the overall voidage of
the three-layer packed bed is smaller, leading to an increase
in the gas flow resistance [40].

3.4. Effect of the Equivalent Particle Diameter. Figure 13
compares the gas flow resistance of the three types of sinter
mixtures under the three kinds of distribution modes. The
gas flow resistance of the three modes decreases with the
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increase of the equivalent particle diameter dp,m. Table 2
shows that the overall voidage of the sinter mixture increases
with the increase of dp,m. This leads to the reduction of the
flow instability and specific surface area, decreasing the iner-
tial resistance and viscous resistance.

Based on the data in Figure 13, the ratio of the resistance
decrease Sk

∗ of the two five-layer modes under the three
kinds of equivalent particle diameters dp,m is calculated, as
shown in Figure 14. The ratio of the resistance decrease
Sk

∗ under two kinds of layered modes decreases with the
increase of the equivalent particle diameter dp,m. Moreover,
Sk

∗ of the mode with the particle size increasing from the
bottom-up decreases by 2.72% with dp,m increasing from
11.45mm to 15.45mm, while that decreases by 4.61% with
dp,m increasing from 15.45mm to 19.45mm. This indicates
that the effect of the layered distribution pattern on the resis-
tance reduction progressively weakens with the increase of
dp,m. It can be seen from Figure 5 that the proportion of
the small-size sinter and the large-size sinter would decrease
and increase when the equivalent particle diameter
increases, respectively. Therefore, it is easier to form large
gaps between particles. For the layered distribution mode,
the possibility of the small particle in adjacent layers filling
into gaps between large particles under the action of the
gravity increases. The nonuniformity of the voidage distri-
bution along the radial direction increases, which makes
the layered mode close to the random mode to some extent.
Therefore, the increase of the equivalent particle diameter
weakens the effect of the layered distribution mode on the
disorder degree of the gas flow.

With the increase of the equivalent diameter dp,m,
Figure 14 also shows that the change range of the ratio of
the resistance decrease Sk

∗ for the mode with the particle
size decreasing from the bottom-up is greater than that for
the mode with the particle size increasing from the
bottom-up. When the equivalent particle diameter dp,m
increases from 15.45mm to 19.45mm, Sk

∗ of the mode with
the particle size increasing from the bottom-up decreases by
4.61%, while that of the mode with the particle size decreas-
ing from the bottom-up decreases by 7.38%. Hence, the
increase of the equivalent particle diameter has a greater
influence on the mode with the particle size decreasing from
the bottom-up. For the layered mode with the particle size
increasing from the bottom-up, the size of the gap between
sinters in the lower layer is smaller than that of the sinter
in the upper layer. The sinter particles in the upper layer
are difficult to fill into gaps in the lower layer. Therefore,
the packing structure of the sinters is almost unchanged.
The increase of the equivalent particle diameter has little
effect on the bed structure of the mode with the particle size
increasing from the bottom-up. For the mode with the par-
ticle size decreasing from the bottom-up, the probability of
the small-size sinter in the upper layer filling into gaps
between the large particles in the lower layer increases grad-
ually with the increase of the equivalent particle diameter
dp,m. The packing structure of the mode with the particle
size decreasing from the bottom-up is more similar to that
of the random mode. Therefore, the gas resistance of the
mode with the particle size decreasing from the bottom-up
is more significantly affected by the change of the equivalent
particle diameter.
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4. Conclusions

The sinter vertical cooling technology is conducive to the
realization of the double carbon in the iron and steel indus-
try. To reduce the energy consumption of the new process,
the gas flow resistance in the sinter bed under the layered
distribution pattern was experimentally studied. The effects
of three factors, namely, the layered arrangement mode,
the layer number, and the equivalent particle diameter, are
carefully discussed.

The results show that the gas flow resistance of most of
the layered distribution modes is lower than that of the ran-
dom distribution mode. This indicates that the application
of the layered distribution pattern is beneficial to reduce
the gas resistance in the sinter bed. Among all layered
modes, the layered mode with the particle size increasing
from the bottom-up has the lowest resistance, followed by
the mode with the particle size decreasing from the
bottom-up. Since the operation state of the sinter vertical
cooling process is continuous, these two modes ensure the
feasibility of the application of the layered distribution pat-
tern. Besides, the increase of the layer number not only is
conducive to reduce the gas resistance but also has a more
significant impact on the layered mode with the particle size
increasing from the bottom-up. Moreover, the effect of the
layered distribution pattern on the gas flow resistance pro-
gressively weakens with the increase of the equivalent parti-
cle diameter. What's more, the mode with the particle size
decreasing from the bottom-up is more significantly affected
by the equivalent particle diameter.

This work not only is helpful to understand the effect of
the layered distribution pattern on the gas resistance charac-
teristic but also lays a foundation for the application of the
layered distribution pattern in the moving bed. However,
the bed structure and the mechanism of the gas flow under
the layered distribution pattern are still unclear, which is
an important research direction in the future.

Nomenclature

D: Diameter of the packed bed (m)
d: Particle size of the sinter (m)
dp: Equivalent particle diameter of the sinter (m)
dp,s: Equivalent particle diameter of the monosize sinter

(m)
dp,si: Equivalent particle diameter of a certain monosize

sinter in the sinter mixture (m)
dp,m: Equivalent particle diameter of the sinter mixture (m)
L: Height of the sinter bed (m)
ρa: Apparent density of sinter (kg·m-3)
m1: Mass of the dry sinter (kg)
m2: Mass of the sinter and test basket in water (kg)
m3: Mass of the wet sinter (kg)
m4: Mass of the test basket in water (kg)
M1: Mass of a batch of the sinter and test container (kg)
M2: Mass of the test container (kg)
ρw: Density of the water (kg·m-3)
ms: Mean mass of the single sinter (kg)
ρa,m: Apparent density of the sinter mixture (kg·m-3)

ρa,s: Apparent density of the monosize sinter (kg·m-3)
ρa,si: Apparent density of a certain monosize sinter in the

sinter mixture (kg·m-3)
ρb: Bulk density of the sinter (kg·m-3)
ug: Gas velocity under the standard condition (m·s-1)
V : Volume of the test container (m3)
w: Mass fraction of the sinter (wt.%)
wi: Mass fraction of a certain monosize sinter in the sinter

mixture (wt.%)
ΔP: Gas flow resistance in the sinter packed bed (Pa)
ΔPi

r : The gas flow resistance of a certain gas velocity under
the random distribution mode (Pa)

ΔPi
k: Gas flow resistance of a certain gas velocity under a

certain layered arrangement mode (Pa)
Sk: Ratio of the resistance increase of a certain layered

arrangement mode (%)
Sk

∗: The ratio of the resistance decrease of a certain layered
arrangement mode (%)

Greeks

ρ: Density (kg·m-3)
ε: Voidage

Subscripts

p: Particle
w: Water
g: Gas
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Growing population, depleting fossil fuels, economic expansions, and energy intensive life style demand are resulting in higher
energy prices. We use energy as of heat and electricity, which can directly be obtained from sun using thermal collectors and
solar cells. Solar thermal systems are gaining attention for water and space heating applications due to green aspects of solar
energy. A solar thermal collector is a vital part of solar thermal energy system to absorb radiant energy from the sun. In this
study, a solar water heating (SWH) system has been designed and simulated in the TRNSYS ® software using thermal and
chemical properties of heat transfer fluids using REFPROP for dwellings located on ±31° latitudes (+31 Lahore in Pakistan and
-31° Perth in Australia). We present an efficiency parametric optimization-based model for water and space heating.
Simulation results for four types of solar thermal collectors are presented, and performance is analyzed on the basis of output
temperature (Tout), solar fraction (f ), and collector efficiency (η). This study evaluates the comparative performance of
evacuated tube collector (ETC), flat-plate collector (FPC), compound parabolic concentrator (CPC), and thermosiphon-driven
systems. Our findings conclude the evacuated glass tube collector achieves the highest solar fraction, i.e., 50% of demand
coverage during August in Pakistan and February in Australia, with an overall average of 43% annually.

1. Introduction

Energy demand is increasing globally due to population
growth, fossil fuel depletion, and energy consumptive life
styles [1]. US oil consumption was equal to local oil produc-
tion in the 1950s, double in the 1980s, and equal again in the
2020s due to shale revolution in the 2000s. Energy shortages
in winter, high cost of electricity in summer, depletion of
conventional fossil fuels, and their environmental effects
are leading the world to shift the focus towards renewable
energy resources to empower the people beyond 2050 [2].
More than 72% CO2 emissions are related to energy and
21-37% to food production processes especially tilling, fertil-
izers, and cattle [3]. Heat and electricity account for 31% of
CO2 emissions [4]. Rock dust in soil can remove 2 to 4 bil-
lion tons of CO2 annually whereas as solar energy can decar-

bonize energy sector especially 31% fossil fuels produced
heat and electricity. Solar energy can easily be converted to
useable forms, either solar thermal energy or solar electrical
energy. Renewable energy technologies can easily be used for
industrial and domestic applications [5]. Hydrogen systems
have also shown promising results to be applied as an alterna-
tive fuel for domestic and industrial applications [6, 7]. Solar
thermal systems are efficient to transform incident solar radi-
ations into useful thermal energy in 40-120°C temperature
range [8]. In the near future, application of intermittent
renewable energy resources requires load management, power
quality delivered, and increased focus on energy storage sys-
tems for backup [9–11].

Solar energy can be easily applied at domestic level to
minimize gas and electric energy costs to meet water or
space heating demands [12, 13]. A recent study shows
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1MWe peak load shaving may be attained by installing 1000
solar water heaters each with 100-liter volume [14]. Pakistan
has large potential to utilize irradiant solar energy for meet-
ing domestic hot water (DHW) demand, and Australia has
high sunshine. Wasting coal and gas-fueled plant electricity
in presence of abundant of solar energy is not sustainable
way of life. Solar collector is a vital part of all the system
designs which utilize solar energy, either photovoltaic (PV)
or solar thermal energy [15]. Collectors act as a heat
exchanging element and convert available solar insolation
radiation into beneficial thermal energy. The collected ther-
mal energy is conveyed to thermal storage tank by heat
transfer fluid [16]. Heat transfer fluids may be synthetic yet
natural refrigerants like water are more sustainable. Addi-
tion of table salt in water may increase heat transfer effi-
ciency. The TRNSYS software is used for design of various
types of solar collectors for domestic water heating. Flat-
plate collector, evacuated glass tube collector, parabolic
trough collector, linear Fresnel reflector, and compound par-
abolic collector are used for 45 to 400°C whereas point and
line type solar collectors such as solar tower and parabolic
dish are used for 1000 to 1500°C temperature [17, 18]. Flow
control by optimum TRNSYS model may enhance effective
efficiency up to 7% or more [19]. TRNSYS home models
have demonstrated 37% to 68% solar fractions under diverse
weather conditions [20]. Integration of PV-driven electro-
magnetic heating and phase change material storage
increases lifecycle cost by 4 to 23% reducing CO2 emissions
by 13 to 26.73 tons [21]. Storage of summer heat for winter
heating and winter chill for summer cooling is emerging as
yet a remote reality. Seasonal storage of summer heat holds
key to elixir of decarbonozation at district heating level in
big cities [22].

Thermal collectors are further classified into flat plate,
evacuated tube, and concentrating type of collectors with
the flat plate being least efficient, but economic, whereas
concentrating collectors are employed only for applications
requiring high temperatures. Generally, evacuated tube col-
lectors are employed in most applications due to high effi-
ciency and performance. Photovoltaic collectors branch out
into 3 generations of solar cells each having their own pros
and cons. Generally, in residential applications, only 1st-
generation (mono and polycrystalline) silicon cells are being
employed due to maturity and efficiency. Newer generation
solar cells such as multijunction cells are efficient but cur-
rently used in selected areas as the price tag does not justify
their use for residential applications. Furthermore, organic
cells are promising technology but currently not highly effi-
cient or reliable due to stability issues. Hybrid collectors and
their implementations depend on various factors, and their
role is ambiguous; some studies claim higher performance
as compared to individual technologies, whereas others
claim their findings in the favor of using a combination of
individual collectors instead of hybrid single enclosure-
based collectors. The performance of solar collectors
depends on the selective surface, absorptivity (high), emis-
sivity (low), coverings, spacing, and tilt angles f + 10° or f
+ 15° for domestic water or space heating and f − 10° or f
− 15° for refrigeration/absorption due to dust accumulation

on collectors. Solar water heaters usually employ FPC, ETC,
or CPC with natural or forced circulation. Space heating,
cooling, and refrigeration employ FPC, ETC, or CPC with
forced circulation [23]. Mean energy efficiency of ETC varies
from 80 to 90% compared to FPC from 50 to 60% in high
sun countries [24]. ETC outperforms FTC in colder regions
due to low conduction losses. ETC efficiency in cold regions
is 30-45% but can achieve temperature as high as 170 to
200°C in hot regions. Application of solar energy for cooling
and air-conditioning applications is also getting attention of
the researchers [25, 26].

Water heating demand accounts for a significant amount
of energy consumption in the world. The percentage of
energy demand in the water heating process in a household
is approximately 10–30%. As a result, selecting an adequate
water heating system can have a significant impact on the
increase in energy reserve. Using solar technologies as a
result of increased energy demand has gotten significant
attention because it is a safe, natural, and cost-free process
to roll up hot water with solar energy [27, 28]. The perfor-
mance analysis of solar thermal systems with various collec-
tors, fluids, and conditions is gaining momentum. In this
day and age, solar energy is a vital source of energy supply
among all renewable energy resources. As a result, consider-
able progress is being made in harnessing solar energy
through the use of technologies, such as solar collectors.
Because of its excellent thermal efficiency and good perfor-
mance in adverse weather condition especially in subzero
temperature areas [29], evacuated tube collectors have
received a lot of attention. Recent trends include use of
nanofluids [30–33], enhancement of heat pipe performance,
use of latent heat storage [34], molten salts [35], heat loss
reduction designs/insulations [36], geometric heat pipes
[37, 38], flow control and design [19, 39–41], and proposing
holistic architectures such as CCHP [42–44]. The existing
literature emphasizes on individual detailed energy, exergy,
and economic studies but lacks a comparative performance
of various technologies. This work presents a much needed
parametric performance comparison of various solar collec-
tors. These collectors are studied for a typical dwelling. The
main contributions of this paper include optimized paramet-
ric values for the highest collector efficiency and solar frac-
tion in the specific ambient conditions. This work
advocates the trial of multiple technologies to cater thermal
needs of a specific area and provides evidence of how certain
technologies might not be a good option in one condition
but outperform in all other conditions.

2. Background Literature

Solar water heaters collect solar energy and export this irra-
diant energy to heat transporting medium to warm the water
in a storage tank. These systems are efficient up to 70%, and
this value is quite higher than the efficiency of PV-based sys-
tems, which is around 17% only. Passive and active are two
basic categories of water heating system based on their
working mechanism. Active systems circulate HTF using a
pump, whereas passive systems circulate HTF via gravity
forces. A survey presenting working, efficiency, and
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arrangements of evacuated tube-based collector is presented
in [45]. Al-Joboory compared the enhancement perfor-
mance of evacuated tube solar water heater systems in mul-
tiple configurations [46]. The study employed two identical
solar water heaters with 120-liter capacity tanks and metha-
nol as working fluid. One system incorporated thermosy-
phon and the other with heat pipes. The study revealed
that heat pipe systems were better in performance by
22.5% (no load), 42.5% (intermittent loading), and 32.4%
(continuous loading) conditions. District heating by
employing design of a two-supply/one-return triple pipe
structure was proposed by Prof. Xu and his team. The sim-
ulation analysis unveiled that distance between heating pipes
played a key role in determining total heat loss, i.e., reducing
spacing from 114.1mm to 84.1mm, and total heat loss
reduced from 24.13w/m to 20.16w/m but also increased
heat exchange between water and pipes [47]. Combination
of nanofluids as HTF was tested for two-phase closed ther-
mosyphon (TPCT) by Xu et al. [32] experimentally, and
results showed hybrid nanofluid (Al2O3-TiO2-H2O) showed
superior performance by increasing thermal efficiency and
heat transfer coefficient. Nanofluids can enhance the perfor-
mance of molten salts when used as heat storage fluids [33].
In heat transportation, storage, and conversion, the under-
ground pipeline laying technique has gained attention
recently because of suitability, quick construction, and low
building cost. A study showed heat transfer analysis of large
diameter L-type heat pipe network using the flow heat solid
coupling method in the ANSYS workbench platform [48].

The sun is a gargantuan fusion reactor empowering
wood, water, and wind cycles on earth. More than two-
third solar energy is absorbed by ocean waters and less than
one-third by land mass. Plants use photosynthesis process to
run food supply chain system. The sun uses hydrogen fuel
which is the most abundant element in universe. Star science
inspired energy systems are under intensive research in USA
(NIF), Europe (ITER), and China (EAST). Solar energy con-
sists of light, heat, and radiations. The electromagnetic radi-
ations range from X-rays to radio waves. Solar light
spectrum ranges from ultraviolet to infrared. Solar energy
is available as heat (IR) and light (visible) which we can har-
vest using solar thermal collectors and solar cells. Solar col-
lectors use refrigerants/fluids to drive steam turbines, water
heating systems, and empower refrigeration cycles for cool-
ing. The energy inside solar spectrum is shown in Figure 1.

A solar thermal collector harvests heat by absorbing sun-
light in gas or liquid fluids. Solar collectors are used for tri-
generation, i.e., heating, cooling, and power generation
applications [50]. Flat plate, evacuated tubes, and flat-plate
evacuated solar collectors are preferred for water and space
heating or cooling applications, whereas parabolic troughs,
parabolic dishes, solar chimneys, and power towers are used
for power generation [51]. Concentrating solar power (CSP)
systems use lenses and mirrors to convert light into heat to
drive heat engines or steam turbines. Solar thermal power
plants are usually constructed in remote barren hot regions
like Mojave Desert, USA. Solar photovoltaic panels and solar
thermal collectors may be installed on rooftops for power
generation, water heating, and space cooling in high-sun

areas. Rooftop solar cells are common but solar thermal col-
lectors are now becoming popular due to rising natural gas
prices. Flat-plate and evacuated tube collectors are used to
capture solar heat for water and space heating or cooling
with absorption chillers. Solar hot water panels need no
extra fluids but solar thermal collectors use refrigerants
and heat exchangers to transfer heat to reservoir. All solar
collectors may be used for water heating, air conditioning,
and power plants at homes and industries.

2.1. Flat-Plate Collector. A flat-plate collector (FPC) is the
most common form of solar thermal technology (80°C). It
has insulated glazed absorbing plates that are planted in a
casing with an air gap between glazing and plates to trap
solar radiation. The cover is made up of sheets of glass.
Absorber plates (flay, corrugated, and grooved) are mostly
dull and dark (blackened) to absorb maximum radiations.
The selective surfaces must be highly shortwave absorbent
and transparent to long-wave thermal radiations [52]. Fur-
thermore, the tubes are coated with high absorptive, low
emittance layers to exploit maximum radiations. The tubes
transfer the heat absorbed to a heat-carrying fluid inside
the riser tubes. These riser tubes are connected to main
header tubes at both top/bottom ends of the collector or
another serpentine tube design. The serpentine tubes are
often coupled with a pump as the natural flow is compara-
tively difficult owing to a complex tube shape. Flat-plate col-
lectors are employed to heat water, refrigerants, air, etc. The
collectors have significant life spans but are prone to damage
due to extreme climatic conditions like hailing, floods, or
thermal expansion that might damage glazing. Generally,
copper tubes are the preferred medium of heat transfer
owing to good conductivity properties and less prone to cor-
rosion [53]. New polymer-based transparent insulating glaz-
ing (TIG) is introduced in literature [54] known as
honeycomb collectors. The honeycomb-like structure helps
trap air by ceasing rapid circulation, and polymer blocks
infrared reradiation thus reducing convectional losses [55].

2.2. Evacuated Tube Collector. Evacuated tube collectors
(ETC) employ heat pipes (copper) encapsulated within a
vacuum-sealed tube. The ETC can be considered an
upgraded form of FPC by creating a vacuum space around
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Figure 1: Solar spectrum on PVT collectors (PV 20% and thermal
60%) [49].
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the receiver. The outer tube is transparent, and the inner
tube is selectively coated for maximum absorption. Multiple
tubes are connected to a common manifold to increase the
heat collection area. Fin tubes are used to achieve high tem-
peratures with selective surfaces. Also, evacuated tubes trap
more radiations due to vacuum suppression. The design
captures both direct and diffused radiations at lower inci-
dence angles as compared to flat-plate collectors. The pipe
uses a fluid that undergoes cycles of evaporation/condensa-
tion. Volatile liquid/gas is evaporated with radiations and
converted into vapors which raised and condensed at sink
points releasing its latent energy to another heat transfer
fluid at the manifold. Condensed fluid returns due to gravity
keeping the circuit alive. The heat transfer fluid through
manifold is coupled to a thermal storage tank or directly
used via heat exchangers. Temperature ranges from 100 to
130°C. ETCs are the most adopted thermal collectors world-
wide with a major 77.8% followed by FPC at 17.9%,
unglazed water collectors at 4.1%, and air collectors at
0.2% [56]. The technology is commercially available as
shown in Figure 2.

Abas et al. [29] employed supercritical CO2 as mediating
fluid for a solar water heating system and demonstrated a
10% increase in heat transfer efficiency. The thermal perfor-
mance of ETCs is experimentally investigated by several
researchers [57] under identical conditions. These experi-
ments reveal higher efficiency achieved with evacuated col-
lectors compared to other collectors. Nanofluids in heat
pipes are getting popular in high population countries like
China and India [58, 59]. Water-based CuO was selected
as a carrier fluid, and study revealed that the thermal perfor-
mance of thermosiphon increases by 30% with operating
temperature. Li et al. [60] compared heat transfer perfor-
mance characteristics of nanofluids (ZnO and MgO) in the
solar collector and found ZnO as the most suitable option
for solar energy utilization. Mahendran et al. [61] proposed
a water-titanium oxide nanofluid to increase collector effi-
ciency under clear skies. This study claimed 16.75% increase
in efficiency during peak time 2 : 00 pm. A similar study with
a slight increase in nanofluid volume concentration (1 to
3%) and modified flow rate claimed an efficiency increase
by 42.5%.

2.3. Compound Parabolic Concentrators. Compound para-
bolic concentrators (CPCs) are nonimaging solar collectors.
The CPC collectors use fin type absorbers in the form of flat,
bifacial, wedge, or cylindrical configurations. Normally, CPC
collectors use fin type absorbers. CPC may be designed with
point and line focus and can integrate an inverted or
inclined flat-plate absorber by reflecting light on it. Evacu-
ated tube collectors also may be placed at absorber location
to get more concentrated light. Line focus CPC collectors
are usually preferred for thermal power plants. CPC area
concentration ratio depends on acceptance half angle
(CA = 1/sin θc). The CPC collector is not suitable for domes-
tic water heating.

2.4. Evacuated Flat-Plate Collectors (EFPCs). Evacuated flat-
plate collectors (EFPCs) combine benefits of both FPC and

ETC. An EFPC uses high-vacuum insulation inside and con-
sists of glass and metal materials. EFPCs are most efficient
nonconcentrating solar thermal collectors [62]. CERN made
the first EFPC and simulation studies show it to be the best
solar thermal collectors for air conditioning applications
[63]. Solar collectors, due to their outdoor installation, face
a wide range of environmental stresses. Apart from wind-
blown objects, the collector materials undergo periodic ther-
mal and humidity stresses. Oxidation of collector material
reduces its heat collection efficiency. Silver paint increases
reflectivity but soon suffers surface dullness. Mirrors faint
over time due to humidity. Our experience shows steel col-
lectors perform better than glass and silver-coated materials.
Steel deposits lesser dust on the collector surface that is
washed by rains and winds without affecting its overall per-
formance. Evacuated glass tube collectors do not suffer
weather wear and tear but easily break during hailing. High
windblown objects also strike and break ETC glassware.

Figure 2: Evacuated glass tube collector with U-shape heat removal
tubes.

4 International Journal of Photoenergy



Solar thermal heat collectors use steel and mirror heliostats.
There is an urgent need to research more materials for solar
collectors and storage containers. EFPCs are not commonly
available in market.

2.5. Synthetic and Natural Refrigerants. During the refriger-
ation history spread over 160 years, nearly 50 materials had
been under use as a heat transport medium. With passaging
time, advent of new technologies, and increased environ-
mental concerns, many of them were phased out and rea-
sonable choices remain to be applied depending upon
application. Because of the increased risks to the environ-
ment, including global warming, ozone depletion, and nui-
sance emissions, the global community reached at a
consensus to stop using ozone damaging immediately and
grant a strict time-based permission to replace existing cool-
ing and heating systems with environmentally benign refrig-
erants. The most recent Paris Accord is a collective effort to
limit average global temperature increase below 2°C. [64].
For the achievement of a carbon neutral goal at the earliest,
research on replacement of old and development of new
refrigerants has got significant attention. Requirement of
refrigerants is increasing, and refrigeration technology has
become mature and efficient than before. Resurrection of
natural refrigerants has open new horizons for the
researchers to comply with environmental protection proto-
cols. Every year, 26th June is declared as world refrigeration
day to acknowledge remarkable impact to the society made
by cooling, air conditioning, and refrigeration technologies
[65]. Conventional refrigerants, including chlorofluorocar-
bons (CFCs) and hydrochlorofluorocarbons (HCFCs), are
in use in refrigeration industry for a longer period because
of their excellent chemical and heat transfer capabilities.
But these fluids are banned after the Montreal Protocol
due to damaging effects to the ozone layer and increased
global warming. Global protocols mandate nations to work
in a unified manner for optimum solutions for existing
refrigeration and heating systems [66]. Global Warming
Potential (GWP) is a measurement index for the quantity
of irradiant energy absorbed by the refrigerant. It is defined
as the amount of infrared radiations absorbed by a gas com-
parative to CO2 spread over a period of 100 years [67].

In order to replace CFCs and HCFCs, the incumbent
refrigerants should have lower flammability and toxicity,
smaller atmospheric life span, zero ODP, and ultralow to
zero GWP. For thermal and heat transportation systems
where refrigerants are applied as mediating fluids, primary
parameters for the selection of refrigerant must be GWP
and ODP. In addition to CO2 and NH3 as purely natural
refrigerants, eco-friendly refrigerants R600, R1233zd,
R245fa, R410a, and R447a also exhibit great heat transporta-
tion outcomes without damaging the environment [68]. Low
critical temperature value of 31°C of CO2 causes transcritical
operation and high working pressure. NH3 has a reasonable
pressure range, a high critical value of temperature, and
higher enthalpy of vaporization. But it is limited due to toxic
nature, and extra control mechanism is required for safe
operation. [69]. Hydrocarbons occur naturally and possess
various properties to be suitable refrigerants being energy

efficient, critical point, soluble, and heat transportation.
These have sound potential to be used as alternatives CFCs,
CFCs, and HCFCs and having nearly zero ODP and rela-
tively lower GWP [70].

3. Comparison of Solar Collector

A solar thermal collector captures heat by absorbing sun-
shine using synthetic or natural refrigerant. Role of refriger-
ant is to transfer heat by cooling collector surface. Common
water heaters use water and glycol refrigerants. A simple col-
lector may consist of copper spiral on aluminum plate and a
working fluid often water. Plate and copper tubes are
painted black to capture whole of solar spectrum. Commer-
cial solar collectors may employ control mechanisms to
maintain temperature. A solar collector may be concentrat-
ing or nonconcentrating type. Absorber area of nonconcen-
trating solar collector is the same as sunshine capturing area
but concentrating solar collector has larger area than the
absorber area. Solar air heaters need no refrigerants, and
large-scale towers or parabolic collectors are often used in
power generation industries. Common residential scale
water heating systems employ flat plate [71], evacuated glass
tube [72], and evacuated flat-tube collectors [73].

A flat-plate collector is made up of a plate coated with
black absorbing medium and pipes to transfer heat at the
bottom. A transparent cover is installed at the top and ther-
mally insulated material at the bottom. Black surface absorbs
solar energy, and thermal energy is supplied to tank through
heat transfer fluid. Efficiency of flat-plate collector lowers in
cold, cloudy, and windy environment and further decreases
with decay of tubes and the insulation material by weather
conditions with the passage of time [74]. Evacuated tube
designs among all collector designs have high efficiency
due to ability of heat transport in unpleasant weather condi-
tions particularly. These have low cost, simple construction,
and easy installation and can be applied for thermal energy
requirement ranging from 70 to 120°C [75]. A single evacu-
ated tube is made up of enormously sturdy borosilicate glass
material. Outer tube allows radiation to pass through it with
high transmission power and low reflectivity. Absorption of
radiant heat from sun is increased by applying a layer of
selective coating material on the inner tube which also
decreases the reflection [29]. Compound parabolic concen-
trator is constructed like two meeting parabolic reflectors
having application where temperature demand is over
100°C [76]. These can collect nondirect radiation using less
amount of material in the manufacturing of reflector, and
reflectance is increased two-third times [77]. CPC can collect
radiation received with large angular spread and then con-
centrate it on to linear receivers of lesser transverse width.
Thermosiphon SWHs have wide application for water heat-
ing. These systems work on natural water circulation princi-
ple also called thermosiphon effect. A density difference is
produced by variations in temperature making the warm
water to rise up and the cold water to flow down [78].

This research is intended to perform a comparative anal-
ysis of different types of collectors to analyze efficiency to
select the best type collector for domestic hot water usage
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with higher energy conversion capability. Four types of typ-
ical selected collector models evacuated glass tube (type 71),
flat plate (type 73), compound parabolic concentrator (type
74) and thermosiphon heating loop system (type 45a) are
considered.

4. Thermal Energy Storage

Thermal energy storage be it heat or cold-based employs a
heat transfer fluid (HTF) and a medium to store heat to or
extract heat from. In some cases, the same HTF can also
be employed as a medium. The basic goal of TES is to main-
tain the temperature of the medium temporarily to be used
later. Any increase or decrease of temperature in cold or heat
storage results in lower exergy. Exergy in layman terms is the
net capability of doing work. If heat storage which is
required to maintain heat for a specific purpose loses heat
exergy reduces as the system must be supplied the heat that
is lost, similarly cold storage in which temperature increases,
further electric or other cooling techniques have to be
employed to drop back to the desired temperature. The
energy storage efficiency of a conventional two-tank system
is higher but is not economical as one tank remains empty.
Thermocline tanks have replaced two-tank systems with tra-
deoffs of such as lowered stratification due to water mixing
in the same containment. Convective heat transfer between
a moving fluid and solid medium is proportional to the heat
transfer coefficient, area between fluid, and medium.

_Q = Ah T f − Ts

� �
: ð1Þ

It is an efficient storage technology that stores heating/
cooling in some medium from which it can be extracted
later. The stored energy can be passed through a ranking
cycle to produce electricity, can be employed in thermoelec-
tric effect, or used directly as hydronic heating. It is usually
integrated into distributed generation to promote renewable
energy penetration but can be employed as a standalone sys-
tem in local residential applications as well. This storage
technology is capable of shifting peak energy demand and
is believed to play a significant role in future demand
response protocols [79]. It is also believed that TESS systems
can aid in supply/demand mismatch [80]. TESS systems are
the ideal candidates for domestic/residential hot water
(DHW/RHW) applications, hot water coupled refrigeration
systems, space heating, and cooling. The major challenge
to be addressed is to prolong the storage duration in these
technologies [79] with better insulations, increasing thermal
efficiency, promoting passive heating/cooling, and modified
architectures. Large-scale projects employ molten salt as
storage medium but residential setups use water and directly
use it for mentioned purposes. Large-scale projects employ
concentrating solar panels (CSP) whereas residential appli-
cations employ evacuated glass tube-based solar thermal col-
lectors (STCs) [81]. TESS systems are further classified into
three types sensible energy storage (SES), latent heat storage
(LHS), and thermochemical storage. The grid-connected
capacity of thermal systems is dominated by molten salt
thermal storage (MSTS) at 88.11%, followed by chilled water

thermal storage (CWTS) at 5.1%, heat thermal storage
(HTS) at 4.2%, and ice thermal storage (ITS) at 2.59%
[82]. Comparison of solar thermal energy storage with rest
of developed alternative technologies is shown in Figure 3.

4.1. Sensible Heat Storage. Store heat without phase change
by heating/cooling a material/medium depending on its heat
capacity and thermal diffusivity [83]. The material can be
solid (rockbed), liquid (water), or gas (carbon dioxide), and
mode of heat transfer can be radiative, convective, and con-
ductive. Sensible heat storage systems (SHS) are believed to
be the most appropriate option (70-90% efficient) for storing
solar heat. The process is reversible with have high life cycle,
no environmental concerns, and residential/commercial
deployable technology. The most common residential appli-
cation includes solar water heater (40 to 80°C) with insulated
storage tanks [84] as passive heating as shown in the figure.
The water is heated by solar infrared radiations, and through
thermosiphon action, it starts circulating to storage or/and
heat exchangers. Such setups are coupled with pipes to real-
ize hydronic heating in built environments.

Q =
ðT f
Ti

mCpⅆT =mCρCT f − Ti

!
, ð2Þ

where Q accounts for heat stored is equivalent to prod-
uct of mass of medium and heat capacity integrated over
the difference between initial and final times. Other than
the residential water thermal storage, there are more types
of thermal storage underground thermal storage, molten salt
storage, and aquifer thermal storage (ATS). The most nota-
ble sensible heat storage installation is near London, the
UK, which consists of three 8 boilers and two 2MWth
CHP with storage with a capacity of 2500m3 water provid-
ing hot water services to some 3256 residential buildings,
50 commercial buildings, and 3 schools [85]. Rockbed stor-
age systems have low energy density compared to water,
thus requires large areas (three times) to accommodate the
same amount of heat. A pilot project is presented which
was 300m3 pebble beds which stored surplus heat from solar
collectors during the day to provide hot water and heating
services at night [84, 86].
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Figure 3: Energy storage technology capacity and preferred
installation areas.
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4.2. Stratified Thermal Water Storage. Sensible storages
make use of raising/dropping temperature to increase heat
storage in a particular medium. The medium solid/liquid/
gas should be selected on the basis of high specific heat (c)
and high density such that maximum heat is accumulated
per volume: water (R718) bearing specific heat (4.2 J/kg.C)
and heat content per volume (4.2MJ/m3K) satisfying both
requirements and is potentially harmless. Water-based sen-
sible storage ranges from 0°C to 100°C. Generally employed
storage tanks are made up of stainless steel, concrete, plastic,
watertight encapsulations preferably with lower heat loss
and lower thermal conductivity. Baffle plates are often
employed to reflect and trap a certain amount of heat loss.
An ideal fluid must be capable of operating at high temper-
ature and low pressure to transfer heat from source (solar
collectors) to sink (stratified storage tank).

Hot water storages are designed with few important
characteristics in mind being heat storage capacity, heat loss,
heat exchange rate, heat exchange capacity, and temperature
gradient stratification. Heat content accumulation can be
estimated with the product of heat capacity and temperature
swing (Tmax − Tmin). Maximizing heat content accumulation
reduces storage size. The basic requirement of thermal
energy storage is to employ fluid or material with maximum
(ρ:Cp). A hot fluid at a temperature (TH) with flow rate ( _m)

can deliver heat energy with thermal power ( _QT). We know
that sensible energy storage stores heat by increasing its
internal energy by creating temperature difference.

Q =mcpΔT ,
_QT = _m:Cf TH − TLð Þ,

T2 − T1ð Þ:〠
n

i=1
Mi:Cpo

� �
= T2 − T1ð Þ:〠

n

i=1
Vi:ρi:Cpi

� �
,

ð3Þ

where n is the number of materials, Mi is the mass of
material (kg), Cpi is the specific heat of material (J/kg.K),
and ρi is the density of material (kg/m3). The volume
required to store Q can be calculated using mass of the stor-
age medium and density in (Kg.m3).

V = m
d

= m3� � E
dcpΔT

,

Heating energy stored =V :Q,
Reduction in electrical load

= heating energy stored ∗ peak hour shift
3:6 ,

Annual cost savings
= reduction in demand ∗ demand charges ∗ CoPð Þ,

Payback period = capital investment
annual cost savings ,

ð4Þ

The heat exchange capacity and rate should be high both
while charging and discharging to attain efficient results.

Additionally, stratification in both charging/discharging
periods improves performance, reduces, or eliminates reli-
ance on auxiliary heating. Collector side temperature should
tend to be lower while the extraction side temperature
higher comparatively to maintain good stratification. Tem-
perature and pressure influence certain physical properties
of fluids. When we increase the temperature of water, its
density and viscosity decrease and naturally hot water rises
on top of the storage tank. Similarly, the thermal conductiv-
ity increases with increased temperature, and stratification is
formed quickly. Moreover, it is observed that tall and thin
tanks establish and maintain stratification better than bulky
and short tanks.

Proper placement of thermal bridges strongly influences
the performance of stratified tanks. A thermal bridge applied
on the top node hot water side forces the bridge to maintain
a higher temperature by causing internal convection from
the tank to bridge with higher heat loss at the bridge. The
placement of the thermal bridge at the bottom or cold side
of the tank forms a cold stagnant layer above the thermal
bridge minimizing heat loss. Moreover, rational piping can
also improve or deteriorate the performance of the system.
Piping installed on the top or sides of hot water stores results
in high heat loss through internal circulations, etc. It is sug-
gested to install pipes at the bottom of hot water stores and
directed downwards to circumvent/prevent internal circula-
tions. Additionally, heat traps are introduced outside tanks
to minimize losses. Furthermore, to avoid thermosyphoning
in the pipe loop, it is essential to implement controllable
valves that block the piping in the absence of flow [87].
Coldwater inlets need special design attention as to mini-
mize mixing during inflow and draw-offs, and baffle plates
are often integrated to reduce mixing losses and improve
the overall performance up to 5% [88, 89]. Convective losses
from the main storage tank can be captured and accommo-
dated using another sensible storage layer surrounding the
main storage with fans and blowers to provide space heating.

The most common form of a storage tank is a steel-based
watertight encapsulation for solar domestic hot water (S-
DHW) [90]. Geometric rearrangements and modifications
in parameters such as height, diameter, length, inlet/outlet
positioning, layer thickness, and weight can improve perfor-
mance up to 20% in certain cases. Research shows that
extracting the closest desired temperature from the most
appropriate node of stratified varying temperature ranges

Draw off 1
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Draw off 3

COLD

HOT

Smart
Controller

Inflow

Figure 4: Smart thermal storage tank with auxiliary heater.
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improves the performance. Smart storage tanks can satisfy
variable draw-offs using rule-based algorithms. Research
[88] shows that having multiple draw-off nodes can improve
performance by 5%. Moreover, smart tanks are often
equipped with auxiliary heating units [91] making use of
solar, electric, and gas-based heating in different combina-
tions improving reliability, desirable range of temperatures,
and performance improvement up to 25%. A generic illus-
tration of a smart tank is shown in Figure 4.

An ideal thermal storage tank must have no heat losses
and be able to draw off the same heat as was stored. But real-
istically stratified tanks are employed which mix water upon
draw-off affecting the temperature of the fluid. Floating con-
trollable insulation baffles are integrated as single stratified
tanks to maintain the stored heat and be able to mimic ideal
behavior. A tank with height H and vertical coordinate Z
form an efficiency equation in which numerator denotes real
discharge while denominators denote ideal discharge.

ɳ =
Ð tref
0 T f z=H,tð Þ

− TL

h i
dt

TH − TLð Þ:tref
: ð5Þ

For ideal thermal storage (ƞ = 1:0), the temperature
T f ðz=H,tÞ

should be maintained to value of TH which means

while charging and discharging the fluid, it maintains its
temperature by reducing mixing-based heat losses and other
losses. Temperature degradation after draw-off is inevitable
due to heat exchange rate between storage medium and
fluid. One way if improving efficiency extrinsically is to sup-
port systems by using auxiliary heating to preheat the tank
to TH . The other way is to mathematically evaluate and
design a comparatively larger system that can accumulate
additional heat prior to draw off. Mostly, storage tank is
comparatively at a higher temperature than surrounding
ambient temperature. This large temperature difference
forces heat movement as heat losses. To avoid the losses,
insulation has to be provided with materials that have low
thermal conductivity (<1W/m.K) and can sustain high tem-
peratures without degradation of the material layer itself or
negatively affecting the efficiency of the process. The prime
objective is to minimize losses by regulating temperature.
A range of organic (cotton, wool, pulp, cellulose, cane, poly-
mers, fibers, etc.) and inorganic (glass, tock, vermiculite,
ceramic, etc.) insulation materials exist. The latest trends
include nanostructured aerogels, powdered graphite added
to polystyrenes lowering conductivity by 20% [36, 92]. Sev-
eral commonly employed insulation materials are tabulated
in Table 1.

5. Mathematical Modeling

Mathematical equations of output parameters of collectors
give outlet heat gain of the respective collector. Collector
outlet temperature, storage tank outlet temperature, useful
energy gains, and heat produced are monitored and used
for the calculation of solar fraction (f ) and collector effi-
ciency (η). The thermal performance of ETC array may be
estimated by the following [93]:

η = a0 − a1
ΔΤð Þ
ΙY

− a2
ΔΤð Þ2
ΙY

: ð6Þ

Collector efficiency of a flat-plate collector array is given
by the following equation [93]:

Qu =
A
Ns

〠
Ns

j=1
FR,j IT τ∝ð Þ −UL,j Ti,j − Ta

� �� �
: ð7Þ

Effective reflectance of the compound parabolic concen-
trating reflector system is defined to be

ρeff =
IR

Iin:CR
: ð8Þ

Temperature of thermosiphon system is investigated by
applying Bernoulli’s equation and is given by the following
equation [93]:

TCO = QU

mCp
+ TCi: ð9Þ

The flow rate at the collector outlet for evacuated, flat
plate, and concentric collectors is equal at inlet and outlet
valves:

mdin = mdout: ð10Þ

For the calculation of useful energy gain, the following
equation is used:

Qu =md × Cp × Tout − T inð Þ: ð11Þ

The energy removal rate from the tank of thermosiphon
heating system to supply the load may be given by the fol-
lowing:

Qload = mdload × Cp × T top − Treplace
� �

: ð12Þ

Table 1: Insulation materials employed for stratified tanks.

Material types Composition materials Thermal conductivity (w.k/m) Temperature tolerance

Firebrick Alumina, silica 1 1500K

Foam glass Sand, limestone, soda ash 0.05 750K

Mineral wool Molten glass, stone, slag 0.5 1000K

Silica aerogel Hydrogel siltation 0.01 773K
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The rate of energy transfer from the heat source of ther-
mosiphon heating system to the storage tank may be calcu-
lated by the following:

Qin = mdsource × Cp × Thot − Tsourceð Þ: ð13Þ

The efficiency of a thermal solar collector is calculated
using the Hottel Whillier equation:

η = Qu

AIT
, ð14Þ

where Qu is collected heat and IT is available solar insola-
tion. The solar fraction may be approximated by the follow-
ing [94]:

f = Qload −Qaux
Qaux

: ð15Þ

Here Qload is the heat produced by collector, and Qaux is
the supplementary energy required to meet the DHW
demand. A simulation software gives average flow rates for
a typical heating and cooling system. Solar water heating
and space heating is direct use of solar heat and power in
winter. A solar photovoltaic and thermal model was devel-
oped for combined water and space heating. Two buildings
were selected for water and space heating as shown in
Figure 5.

Electric and thermodynamic equations for this model
may be written as follows [95]:

PPV = IPV × APV × ηPV: ð16Þ

W = P × t; therefore, ∂W/∂t = _W = P,

_WPV = PPV: ð17Þ

Solar thermal [96]

PST = AT Gηo − α Tm − Tað Þ − β Tm − Tað Þ2� �
: ð18Þ

W = P × t; therefore, ∂W/∂t = _W = PST ∂t/∂t = PST ,

_WST = PST : ð19Þ

The mass balance equations ( _min = _mout) for each com-
ponent of the plant are given by [97]

Solar collector

_m1h1 + _WST = _m2h2: ð20Þ

Heat exchanger #1

_m2h2 + _m4h4 = _m5h5 + _m3h3: ð21Þ

Heat exchanger #2

_m3h3 + _m6h6 = _m5h5 + _m9h9: ð22Þ

Fan-driven air heater

_m5h5 + _m8h8 + _WPV = _m7h7 + _m6h6: ð23Þ

Water tank

_m9h9 = __m10h10: ð24Þ

Water pump

_m10h10 + _WPV = _m1h1: ð25Þ

6. System Design and Modeling

A solar-assisted water heating system for a typical dwelling
house is modeled and simulated in TRNSYS® for the
weather of Lahore, Punjab, Pakistan (31.5204° N, 74.3587°

E), which also applies to Perth area in Australia. The pro-
posed SWH system comprises an evacuated glass tube solar
collector, a fluid filled storage tank with an immersed heat
exchanger, and a feed pump to keep heat exchanger fluid
flowing in the loop, as shown in Figure 6.

In order to analyze the performance of various types of
collectors, it set the initial parameters of the proposed
SWH system as a collector area of 5m2, optimized flow rate
of 3 kg/hr.m2, and thermal storage tank of volume 0.3m3.
Water is used as mediating fluid with fluid specific heat
4.19 kJ/kg.K. The hot water inside the thermal storage tank
keeps flowing via the load side of the tank. The hot water
withdrawing from the water tank passes through an auxil-
iary heater which warms water at the demanded temperature
value for human comfort [98]. During summer in Lahore,
ambient temperature is quite high and favorable to harness
solar energy for DHW purpose. Hot water usage profile for
two to three dwellers of a single family residence was
adopted from [99]. Simulations are performed for the met-
rological data of the whole year (1-8760 hours), and results
are presented. Time step for the simulation study is chosen
one hour, and the average of monthly values are picked up
to represent the output graphs. Parameters selected for sys-
tem analysis are solar irradiation, collector energy delivery
rate, tank energy delivery to load, auxiliary heating rate, col-
lector and tank output temperatures (Tout), solar fraction (f
), and collector efficiency (η).

7. Results and Discussions

For the analysis of the system designed with optimized
parameters, output parameters for the calculation of effi-
ciency and solar fraction are selected. To study the efficiency
of the collector and the calculation of solar fraction, temper-
ature at the outlet of the collector, and useful energy gain are
measured on the hourly basis. In the thermal loop from stor-
age tank to hot water delivery, temperature at the outlet of
the storage tank and energy storage rate are observed.
DHW energy requirement, auxiliary heating rate, and solar
irradiance are the parameters which are used for the system
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performance in the mathematical model explained above.
ETC model is employed from standard TESS library type
71 to analyze solar water heater performance under selected
weather. Curves of collector and tank outlet temperatures,
solar fraction, and collector efficiency for ETC are shown
in Figure 7.

A maximum solar fraction value of 0.5 is achieved in
August, resulting a collector efficiency of 54%. Average
monthly temperatures at the collector outlet are noted from

June to September (60-63°C) during peak of summer in
Lahore. Tank outlet temperature which is delivered to load
is 97°C during this time. It is the temperature of the fluid
that flows from the upper half of the stratified storage tank
to be delivered to the load. The maximum value of thermal
efficiency was observed during month of September during
which month wise average of outlet temperatures of the col-
lector and tank attain the maximum values. Significantly
lower efficiency is accomplished in the month of December
with reduced solar fraction (f ) at the value of 0.14 only.
Maximum thermal energy delivery was recorded during
May to September for water heating loop being the peak
summer season having maximum sunshine available.

TRNSYS type 73 module performs a perfect flat-plate
collector in simulation environment dynamically. Keeping
other parameters as fixed, the type 73 is tested for a year
round performance under the same weather to record and
compare the results. Figure 8 shows the solar fraction and
efficiency reaches a peak value of 0.4 in September, and a
good collector efficiency of 88% is observed in May. The
maximum value of monthly temperature at collector outlet
is recorded 51°C during September. The peak monthly value
of fluid temperature that flows towards the outlet node from
the tank top was recorded 90°C during this time. System has
shown maximum efficiency in the September month for hot
water delivery to the residents with the opted parameters.

Various meteorological parameters, including tempera-
ture of the ambient, speed of wind, and available solar inso-
lation, may significantly affect the efficiency of the system for
year round hot water production.

Parabolic curve model concentrating solar collectors
reflects the incident solar radiation on the focal line using
surface-coated reflecting materials. Incident solar irradiant
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Figure 7: Monthly performance of evacuated glass tube collector.
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Figure 8: Flat-plate output curves for system efficiency parameters.
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energy is concentrated towards the receiver, which raises the
temperature of the mediating fluid flowing inside. For
achieving maximum efficiency from CPC, it may be installed
in a longitudinal plane containing the surface azimuth or in
a transverse plane at an angle of 90° from the longitudinal
plane. For the analysis of the contracting collector’s perfor-
mance to provide water heating at the domestic level, type
74 module is simulated in TRNSYS simulations. Results of
the simulation analysis of CPC collector are shown in

Figure 9. The maximum type 74 collector efficiency and
solar fractions are noted as 49% and 0.29 during September,
respectively. Average monthly temperature at collector out-
let is 70°C during September, and the top node temperature
of the tank outlet was recorded 91°C. CPC collectors are also
used along photovoltaic systems as a hybrid collector, desa-
lination, photo degradation of wastewater, and hydrogen
production systems.

Thermosiphon-based system offers more energy effi-
ciency as no need of eternal energy to run the pumps for cir-
culating heat transfer fluid in the loop. Component module
type 45a is modeled and simulated in TRNSYS for the anal-
ysis of the thermosiphon solar water heating system, and
results are presented in Figure 10. Maximum value of collec-
tor efficiency and solar fraction are recorded 0.75 and 0.2,
respectively, in May, thus exhibiting maximum efficiency
of the collector. Maximum monthly temperature at collector
outlet is 38°C during June as the peak of summer in Lahore.
Tank outlet temperature of the fluid to be provided to load is
52°C during this time.

A comparative graph of solar fraction for all the collector
under study is presented in Figure 11. It is observed that the
highest value of solar fraction during whole year is attained
in case of evacuated glass tube solar collector. This is also
validated in literature that evacuated tube-based collectors
exhibit greater efficiency on average as compared to flat plate
and unglazed collectors [100]. With standard solar radiation
available, an EGTC performs 28% more efficiently compared
to a flat-plate water heating system [101]. The FPC and CPC
stand at second and third number, respectively. Thermosi-
phon system has shown relatively lower value of solar frac-
tion. Maximum value of f is 0.5 in case of ETC, so 50% of
the DWH demand is supplied by the solar collector, and
an auxiliary heating unit fulfilled the rest of the demand.
These results are in accordance with the collector perfor-
mance, as reported in literature of previous work.

Solar collector efficiency varies from 45% to 49% with a
water-based system, 50% to 53% with nanofluids like
Al2O3 and 49% to 52% with salty water [102]. Addition of
salt in water lowers the freezing point and slightly raises
the boiling point. Water heats quickly, yet it has some corro-
sive actions. Flat-plate collectors show higher efficiency at
low temperature and low at higher temperature, whereas
conventional evacuated glass tube collectors have moderate
efficiencies at all temperatures. [103]. Performance compar-
ison of flat plate and evacuated glass tube is shown in
Figure 12.

Ti − Ta
°Fð Þ: ð26Þ

Evacuated glass tubes were 10 to 15% more expensive
than flat plate, yet their prices are falling fast. Flat-tube col-
lectors shed ice easily compared to evacuated glass tubes,
yet later perform better in rainy winds because of their lower
resistance. Earlier studies suggest evacuated glass tube col-
lectors because of their higher efficiency and wider tempera-
ture range [104]. Flat-plate collectors heat from 40 to 70°C
whereas evacuated glass tubes heat even better.
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Figure 9: CPC annual performance under Lahore weather.
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8. Conclusions

A comparison to evaluate better performance collector
from evacuated glass tube, flat plate, compound parabolic
concentrating, and thermosiphon is performed on the sim-
ulation grounds. A water heating test rig has been designed,
modeled, and simulated in the TRNSYS software under
weather of Lahore, which are alike Perth, Australia because
of similar latitudes. TRNSYS simulation was conducted in
Australia, and experiments were performed in Lahore,

Pakistan. System performance is studied for parameter
solar irradiation, heating requirement, tank energy delivery,
and auxiliary heating demand. From these parameters, a
mathematical-based model evaluates solar fraction and col-
lector efficiency to fulfill the DHW demand. This TRNSYS
simulation study showed a solar fraction of ETC varied
from 0.4 to 0.50 peaking to 0.52 in August. The perfor-
mance of ETC is better than FPC in high sunshine regions,
whereas FPC does not function in freezing cold regions.
The efficiency at higher temperatures is better for ETC than
for FPC. ETC has lower convection and conduction heat
losses compared to FPC. ETC temperature range is 60 to
120 degrees compared 60 to 80 degrees by FPC. ETC con-
tinues working down to -18°C where FPC freezes and
breaks. It is much easier to replace the glass tube compared
to expensive repair of the FPC requiring additional heat
exchanger. ETC supplies hot water for an average 350 days
per year compared to 300 days by FPC. However, the aver-
age life of ETC is 11 to 12 years compared to 25 years for
FPC. ETC does not require grouting, which is essential for
FPC. Results showed that highest solar fraction and collec-
tor efficiency values are attained in case of evacuated tube
collector compared to flat-tube collector. This system can
provide 50% water heating demand for a residential build-
ing with two to three occupants. It shows comprising
results during the winter season by providing a consider-
able amount of hot water during the cold season. It is con-
cluded from results that ETC better suits to ±31° latitude
metrological conditions worldwide.

Data Availability

Data are available on request.
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In this paper, the feasibility and applicability of the test and evaluation methods for the temperature and energy consumption
coefficient in the cold storage system are tested and verified which is specified in the Beijing local standard “Energy
Conservation Monitoring of Refrigeration Storage.” It also summarizes and analyses the test verification results of the
evaluation index of the location of measuring points of temperature in refrigeration storage, data-collecting time interval of
temperature in refrigeration storage, energy efficiency coefficient of the refrigeration unit, and energy consumption coefficient
of the refrigeration. The study work provides technical support for making the monitor and evaluation methods which applies
to the standard.

1. Introduction

Nowadays, with the rapid development of refrigeration and
logistics industry, the awareness of the food cold chain is
stronger. Refrigeration storage has been the indispensable
facility to the food industry. At the same time, with the rise
of e-commerce and the implementation of national strategy
“One belt and one road,” the business of high-end food
import and export has achieved great growth and has cre-
ated a new revenue plate of the cold chain system—large
logistics cold storage [1]. According to relevant statistics,
the total capacity of cold storage in China has exceeded 43
million tons by the end of 2017. In Beijing, the capital city
of China, with the sustained and high-speed economic
development, the demand for cold storage has also increased
rapidly. It is reported that the capacity of cold storage in Bei-
jing has reached 1574700 tons in 2018 and its capacity and
volume rank first in north China [2]. At present, the total
capacity of cold storage in China is increasing at an annual
average rate of about 20%. Compared with the average

capacity of 200 cubic meters per 1000 people in developed
countries, the total capacity of cold storage in China has
great potential for development [3]. From the view of cold
storage energy consumption, the energy consumption level
of the same type of cold storage in China is much higher
than the average level in developed countries and the energy
consumption is 26% and 46% higher than that of Britain and
Japan [4].

In view of the rapid growth of cold storage and the high
level of energy consumption, the relevant departments in
Beijing have organized and compiled the local standard of
“Energy-saving Monitoring of Cold Storage System” (here-
inafter referred to as “Standard”). The Standard is applicable
to the refrigeration which has been put into use and oper-
ated normally in Beijing area and provides a standard basis
for energy saving monitoring of the refrigeration. In order
to cooperate with the compilation of the Standard, the com-
pilation team, taking into account the characteristics and
actual situation of Beijing, has carried out feasibility and
applicability verification of the monitoring and evaluation
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methods in the Standard under the guidance of full investi-
gation, analysis, experimental research, and experts, which
provides technical basis for the scientific development of
monitoring and evaluation methods in the Standard. The
Standard has been compiled through extensive consultation.

This paper mainly summarizes and analyses the test and
validation of the temperature and energy consumption coef-
ficient in the cold storage as stipulated in the Standard,
including the location of temperature measurement points
in the cold storage, the time interval of temperature collec-
tion in the cold storage, the COP of refrigeration units,
and the evaluation index of energy consumption coefficient
in the refrigeration system. This part of the work is an
important part of the preparation of the Standards, which
provides technical support for the scientific development of
monitoring and evaluation methods of the Standards. At
the same time, the formulation of this evaluation method
also fills in the blank of energy-saving monitoring and eval-
uation method for domestic cold chain logistics enterprises,
which is of great significance to standardize and improve the
overall operation level of the cold storage industry.

2. An Overview of the Test Contents

The test and verification work of the Standard mainly
focuses on the following contents:

(1) Different types of refrigerators with different storage
capacities in Beijing were selected for monitoring
and analysis, including ammonia refrigeration sys-
tem and Freon refrigeration system, as well as civil
cold storage and assembled cold storage. Verify the
feasibility and applicability of the Standard

(2) The comparative test of the same cold storage is car-
ried out according to different seasons, different
recording time intervals, operating temperature,
temperature distribution in the storage, collection
time intervals, and so on, to verify the applicability
of the “Standard” method, test conditions, test time,
and other provisions

(3) The test data of all cold storage systems are classified
and summarized, and the rationality of the indica-
tors is verified by effective data calculation and coin-
cidence analysis of monitoring indicators

(4) The research work includes the arrangement of tem-
perature points in the cold storage, the test verifica-
tion of the collection time interval, the test
verification of COP of the refrigeration unit, and
the evaluation index verification of the energy con-
sumption coefficient of energy-saving monitoring
of the refrigeration system

3. Verification of the In-Storage
Temperature Test

The “Standard” is to monitor the use of cold storage in
operation. Due to the difference of the code and height

of the items in the cold storage, the existing national stan-
dard GB/T30103.1-2013 “Test Method for Thermal Perfor-
mance of Cold Storage Part 1: Temperature and Humidity
Detection” stipulates the location of the measuring points
“at least 3 points in each horizontal direction and at least
3 points in each vertical direction.” When the field test or
the test conditions are not easy to meet or the operation is
not convenient enough and the time interval of current
standard data acquisition is different, factors such as com-
pressor start-stop frequency, cold storage type, and test
time should be considered comprehensively. This valida-
tion work has carried out targeted experimental verifica-
tion on the location of measurement points and the
acquisition time interval.

3.1. Location of Temperature Measuring Points in Cold
Storage. In the cold storage, measuring points are arranged
in horizontal and vertical directions. Finally, the average
values of all measuring points are compared and analyzed
with the average values of measuring points in the central
region of each vertical direction: testing place #3, cold stor-
age of a food company in Beijing; testing time: 17:20 on
November 25, 2017, to 17:20 on November 26, 2017. The
results are shown in Table 1.

Comparisons of test results at different time intervals
and locations are shown in Figures 1–6.

In Table 1 and Figures 1–6, it can be seen that the work-
ing temperature, maximum temperature, and minimum
temperature in the cold storage are basically the same and
the deviation is not more than 0.3°C. The results show that
the average values of all measure points in the height direc-
tion are in good agreement with those in the central region.
Therefore, the “Standard” stipulates that the temperature
measurement point in the height direction is within the
range of 40%–60% of the net height of the cold storage,
while retaining the requirement of “50mm–100mm from
the horizontal end measurement point to the wall” in the
original national standard, which improves the feasibility
of field detection. The test position diagram is shown in
Figure 7.

3.2. Time Interval of Data Collection. In the cold storage,
measuring points are arranged in horizontal and vertical
directions and temperature collection recorders with
5min and 10min collection intervals are arranged at the
same measuring point. Finally, the average values of dif-
ferent collection intervals are compared and analyzed
(including the comparison of different collection intervals
for all measurement points and the comparison of differ-
ent collection intervals for intermediate measurement
points): testing place #3, cold storage of a food company
in Beijing; testing time: 17:20 on November 25, 2017, to
17:20 on November 26, 2017. The results are shown in
Tables 2 and 3.

Tables 2 and 3 show that the working temperature, the
highest temperature, and the lowest temperature in the cold
storage are basically the same after the stable operation of
the cold storage. The maximum deviation is 0.26°C. It
shows that the collection time interval of 5 minutes or 10
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Figure 1: Average temperature and midtemperature of measuring points at vertical position 1.

Table 1: Comparison of the temperature measurement position in storage.

(a)

Collection interval (5min) Average value of all measuring points (°C) Average value of central regional (°C) Deviation (°C)

Working temperature of cold storage −17.41 −17.36 −0.05
Highest temperature of cold storage −14.87 −14.87 0

Lowest temperature of cold storage −18.68 −18.53 −0.15

(b)

Collection interval (10min) Average value of all measuring points (°C) Average value of central regional (°C) Deviation (°C)

Working temperature of cold storage −17.42 −17.37 −0.05
Highest temperature of cold storage −15.13 −14.89 −0.24
Lowest temperature of cold storage −18.62 −18.47 −0.15
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Figure 2: Average temperature and midtemperature of measuring points at vertical position 2.
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minutes has little influence on the results. In the process of
compiling this Standard, taking into account the factors
such as the total test time, compressor operation mode,
temperature fluctuation, and the time required for calculat-
ing the results, the time interval for temperature collection
is stipulated as “not more than 10 minutes, the total test
time is not less than 36 hours, and the temperature in the
storage should be calculated by the continuous 24-hour
data with the minimum temperature difference between
the first and the last.”

4. COP Test Validation of the
Refrigeration Unit

In the process of compiling this standard, the energy con-
sumption coefficient of the cold storage is determined, the
refrigeration unit’s cooling demand is determined by refer-
ring to the calculation method of mechanical load in the
design code of the cold storage, and the boundary value of
refrigeration electric energy consumption (REC) is calcu-
lated based on the relationship with COP. Therefore, the
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Figure 3: Average temperature and midtemperature of measuring points at vertical position 3.
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Figure 4: Average temperature and midtemperature of measuring points at vertical position 4.
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COP value of the refrigeration unit is very important. In
determining the value of COP, this standard adopts the
method of combining theoretical calculation with experi-
mental verification.

4.1. Theoretical Calculation of COP in Different Storage
Temperature and Refrigerants. Considering the influence of
different refrigerant types on COP, the compilation team
investigated the use of refrigerant in the research process.
Understanding that the United States and other developed
countries have been looking beyond the HFC stage, natural

refrigerants like NH3 [5] and CO2 [6, 7] have received
unprecedented attention. Research on CO2 and CO2 and
NH3 cascade refrigeration is deepening. Besides, more and
more practical applications are achieved. Now, there are
more than 60 CO2 systems in operation in the United States
[8]. At present, NH3 and R22 are the most commonly used
refrigerants in the refrigeration system of our country.
Among them, 80% of the refrigerators use ammonia as
refrigerant and 20% of the refrigerators (mostly medium
and small refrigerators) use R22 refrigerant.

According to the previous research results, there are four
kinds of refrigerants commonly used in Beijing refrigerators:
R22, R404 A, R134a, and R717. The theoretical COP of the
four refrigerants at different evaporation and condensation
temperatures is calculated by the compilation group, and
the results are shown in Table 4.

Table 4 shows that COP of the same refrigerant ranges
from 1.4 to 3.5 at different evaporation temperatures, while
that of the same refrigerant is basically the same at different
evaporation temperatures. For example, when the evapora-
tion temperature is −35°C, the COP is 1.37 to 1.47. It can
be seen that the theoretical values of COP for different
refrigerants at the same evaporation and condensation tem-
peratures are similar. Therefore, in the process of formulat-
ing the energy consumption coefficient, this Standard does
not take into account the differences caused by different
refrigerants. The reference values of COP determined are
shown in Table 5.

4.2. COP Reference Value Test Verification. In order to fur-
ther verify the COP reference value of the refrigeration unit
in Table 5, the representative refrigerators were tested in
winter and summer, by the compilation group. The sketch
map of the location of the measuring points is shown in
Figure 8. The seasonal deviation of COP test results and
the deviation between COP test results and COP reference
values are analyzed. The results are shown in Table 6.

Table 6 shows that the COP of different condensing units
shows different trends in winter and summer. For air-cooled
condensing units, COP of the system in summer is signifi-
cantly lower than that in winter. For example, item no. 1 is
an air-cooled condensing unit. The seasonal deviation of
COP test results is 45.88%. For evaporation condensing units,
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Figure 5: Average temperature and midtemperature of measuring
points at vertical position 5.
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Figure 7: Sketch map of the indoor temperature measurement
position.
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the seasonal deviations of COP test results of units with no. 2
and no. 4 refrigerators are 6.01% and 0.54%, respectively, and
the seasonal variation of COP in the system is not obvious.
The deviation between the summer test results and COP ref-
erence values is in the range of −8.33%~7.78%. In practical
use, the summer characteristics of the unit can better reflect
its energy consumption level.

5. Test and Verification of the Energy
Consumption Coefficient of Cold Storage

In the Standard, the energy consumption coefficient of the
cold storage system is defined as “the daily energy consump-
tion per cubic meter storage capacity when the cold storage
system runs steadily.” To obtain this parameter, the total
energy consumption (TEC) of the cold storage system is
needed. The total energy consumption (TEC) of the refriger-
ation system is the sum of refrigeration power consumption
(REC) and direct energy consumption (DEC). The refriger-
ation power consumption (REC) [9–11] is the energy con-
sumption necessary for the refrigeration system within 24
hours, mainly for the refrigeration units and condensers

Table 3: Comparison of the results of different collection time intervals at the intermediate temperature measurement points in the cold
storage.

Collection interval
Average value of all measuring

points in 5 minutes (°C)
Average value of all measuring

points in 10 minutes (°C)
Deviation (°C)

Working temperature of cold storage −17.36 −17.37 0.01

Highest temperature of cold storage −14.87 −14.89 0.02

Lowest temperature of cold storage −18.53 −18.47 −0.06

Table 2: Comparison of the results of different acquisition time intervals at all temperature measurement points in the cold storage.

Collection interval
Average value of all measuring

points in 5 minutes (°C)
Average value of all measuring

points in 10 minutes (°C)
Deviation (°C)

Working temperature of cold storage −17.41 −17.42 0.01

Highest temperature of cold storage −14.87 −15.13 0.26

Lowest temperature of cold storage −18.68 −18.62 −0.06

Table 4: COP calculations of four refrigerants at different storage temperatures.

Refrigerants R22 R134a R404A R717 Average value

Design storage temperature (4°C); evaporation temperature (−6°C) 3.52 3.31 3.06 3.93 3.46

Design storage temperature (−5°C); evaporation temperature (−10°C) 3.12 2.87 2.71 3.34 3.01

Design storage temperature (−18°C); evaporation temperature (−28°C) 1.64 / 1.85 1.74 1.74

Design storage temperature (−25°C); evaporation temperature (−35°C) 1.37 / 1.47 1.42 1.42

The abovementioned data are calculated according to the enthalpy and entropy of refrigerant under different evaporation temperature, suction pressure,
condensation temperature, and hydraulic pressure. 2.R134a is not applicable in the low-temperature zone.

Table 5: COP reference value for calculating energy consumption coefficient.

COP reference value
Design storage temperature

(4°C); evaporation
temperature (−6°C)

Design storage temperature
(−5°C); evaporation
temperature (−10°C)

Design storage temperature
(−18°C); evaporation
temperature (−28°C)

Design storage temperature
(−25°C); evaporation
temperature (−35°C)

3.3 2.3 1.8 1.5

7
1

5
6

8 9 10

3 24

Figure 8: Sketch map of measuring point position where 1:
compressor; 2: testing sensor of inspiration temperature; 3:
evaporator; 4: throttle valve; 5: temperature measurement sensor for
liquid supply after liquid accumulator; 6: refrigerant flow testing
instrument after liquid accumulator; 7: liquid accumulator; 8:
temperature measurement sensor for liquid supply before liquid
accumulator; 9: refrigerant flow testing instrument before liquid
accumulator; and 10: condenser. Refrigerant flow rate and
temperature test should be preferred at 8 and 9 locations. When this
part does not meet the test conditions, choose the location of 5 and 6.
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(energy consumption necessary for the refrigeration system).
Direct electric energy consumption (DEC) refers to the
energy consumption of electrical components within 24
hours, including lighting, air cooler, defrosting, wind cur-
tain, automatic control, auxiliary heating equipment, and
circulating pump to meet the normal operation of the cold
storage system of all ancillary equipment.

5.1. Calculation of the Energy Consumption Coefficient of the
Cold Storage System

(1) The refrigeration power consumption (REC) of the
cold storage system is calculated according to the fol-
lowing formula:

DEC = 〠
n

i=1
Ei, ð1Þ

where DEC is direct power consumption (kWh), Ei is the
cumulative power of the ith meter in 24 hours (kWh), and
n is the total number of direct energy consumption metering
(watt-hour meters)

(2) The direct power consumption (DEC) of the cold
storage system is calculated according to the follow-
ing formula:

REC =Qs ×
Tc − Tmrun

0:34 × Tmrun
, ð2Þ

where REC is refrigeration power consumption (kWh), QS is
the total refrigeration capacity in 24 hours (kWh), Tmrun is
the average evaporation temperature (K), and Tc is the con-
densation temperature (K) (condensation temperature is a
constant, 308.15K)

(3) The total refrigeration capacity QS within 24 hours is
calculated according to the following formula:

QS =
Gρ h2 − h1ð Þ

3600
, ð3Þ

where QS is the 24 h total refrigeration capacity of the refrig-
eration system (kWh), G is the 24 h cumulative refrigerant
flow (m3), ρ is the refrigerant density (kg/m3), h1 is the spe-
cific enthalpy of refrigerant (kJ/kg), and h2 is the specific
enthalpy of refrigerant evaporation (kJ/kg). The average
evaporation temperature is taken as the average suction
temperature

(4) The total energy consumption TEC of the cold stor-
age system for 24 hours is calculated according to the
following formula:

TEC =DEC + REC, ð4Þ

where TEC is the sum of refrigeration power consumption
and direct power consumption (kWh)

(5) The energy consumption coefficient of the cold stor-
age system is calculated according to the following
formula:

ε =
TEC
V

, ð5Þ

where ε is the daily power consumption per cubic meter
(kWh/(m3·24h)) (take the three significant digits after the
decimal point) and V is the total storage capacity of the
refrigerator (m3).

In order to obtain a reasonable evaluation index of
energy consumption coefficient, the cooling requirement of
the unit is determined by referring to the calculation method
of mechanical load in the design code of refrigeration stor-
age and the boundary value of refrigeration power consump-
tion (REC) is calculated according to the relationship
between COP and the unit. According to the experimental
results, the direct energy consumption (DEC) is calculated.
Finally, the total energy consumption (TEC) of the cold stor-
age system is obtained, divided by the storage capacity, and
the energy consumption coefficient is obtained. Refrigera-
tion power consumption (REC) and unit COP are calculated
by theory and verified by test. The index values are validated.
The specified index values in the Standard are shown in
Table 7.

5.2. Verification Results. In order to verify the rationality of
the calculated energy consumption coefficient of Table 7
cold storage, the energy consumption coefficient of typical
cold storage with different storage capacities and design tem-
perature is tested. The results are detailed in Table 8.

In the process of testing, it is completely based on the
test conditions, the layout of test points, the test methods,
the calculation of results, and the evaluation of indicators
stipulated in this Standard. Through testing, the measured
energy consumption coefficients of different refrigerators
are obtained, and finally, reliable test results are obtained
to verify the applicability, operability, and rationality of the
index formulation of this standard. Through the analysis of
the unqualified items in Table 8, the main reasons for the
unqualified items are as follows:

Table 7: Evaluation index value of standard energy consumption
coefficient of “Energy Conservation Monitoring of Refrigeration
Storage System” in Beijing.

Temperature of the
cold storage

Coefficient of energy consumption
(kW·h/(m3·24 h))

<2000 2000–10000 >10000
+10°C~0°C 0.22 0.18 0.16

−1°C~−10°C 0.32 0.25 0.20

−11°C~−20°C 0.45 0.33 0.27

−21°C~−30°C 0.66 0.55 0.48
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(1) Low-temperature reservoir no. 2 and no. 3 with
smaller storage capacity do not meet the minimum
requirements of the recommended values of design
standards because of their poor enclosure structure,
and the test results are larger than the index values

(2) The operation of the no. 6 refrigeration system is
poor (COP is only 1.5), and the enclosure structure
is a rice husk insulation structure. The test results
are larger than the index value

6. Conclusion

The experimental verification work described in this paper is
an important part of the compilation of the Standard.
Through a large number of researches, calculation, analysis,
and experimental verification work, the compilation team
summarized the energy consumption coefficient evaluation
index, which provides a technical basis for the scientific
development of the monitoring and evaluation method of
the Standard. The energy consumption evaluation index
proposed in this Standard will be widely applied to the cold
storage systems of storage companies, catering management
companies, food distribution companies, food refrigeration
plants, and cold chain logistics companies in Beijing. The
implementation of this standard can effectively standardize
the energy consumption status of refrigeration enterprises
in Beijing, and it is of great significance to ensure the
energy-saving and efficient operation of the refrigeration
system in Beijing.
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Table 8: Statistical table of energy consumption coefficient for different seasons and cold storages.

Storage
number

Design of storage
temperature

Volume (m3)
Energy consumption
coefficient in winter
(kWh/(m3·24h))

Energy consumption
coefficient in summer

(kWh/(m3·24h))

Calculated value of energy
consumption coefficient index

(kWh/(m3·24h))
Conclusion

1 −18°C 296 0.288 0.368 0.45 Qualified

2 −18°C 204 / 0.643 0.45 Unqualified

3 −18°C 4847 0.289 0.362 0.33 Unqualified

4 −18°C 131747 0.110 0.213 0.27 Qualified

5 −18°C 84602 / 0.191 0.27 Qualified

6 Mix 72320 / 0.379 0.27 Unqualified

7 4°C 775 / 0.109 0.22 Qualified
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We studied a shipping container integrated with phase change material (PCM) based thermal energy storage (TES) units for cold
chain transportation applications. A 40 ft container was used, which was installed with ten plate-like TES units containing PCM
and a charging loop. An appropriate PCM was selected for meeting the requirement of the transportation of fresh vegetables (7-
12°C). The charging loop was linked to a separate charging facility via quick coupling valves. The discharging performance of the
container under dynamic conditions was investigated. The COP of the system was estimated to be 1.73. Economic analyses
showed that energy and operation costs of the PCM-based container were, respectively, 71.3% and 85.6% lower than the same
container but powered by a diesel engine (called reefer container). The results also showed that the PCM-based container was
able to maintain not only the temperature range (7-12°C) but also the humidity range (85-95%), leading to better quality and
longer shelf-life of the goods.

1. Introduction

Currently, cold chain transportation relies on vapour com-
pression refrigeration cycle which is driven by diesel engines
[1]. Such technology is expensive due to both high fuel and
maintenance costs; it also emits a significant amount of
CO2 and particulate matter thus contributing to global
warming.

Taking the advantage of the high energy density [2] and
the constant temperature during the phase transition [3], the
PCM-based TES is feasible to provide cooling without a con-
stant energy supply. This makes the TES an appropriate
method to balance the demand and supply of energy.
Besides, the TES can integrate renewable energy well [4];
therefore, it has become ever more attractive in recent
years [5].

Some recent studies are using the PCM-based TES for
cold chain applications. Michel et al. [6] experimentally
and numerically studied a composite layer of PU-PCM foam
dedicated to refrigerated vehicles. It was reported that the
heat flux across the wall during the “road delivery period”

could be reduced by 18% by using the PCM. A refrigeration
system incorporating PCM was proposed to achieve the low
temperature required for refrigerated trucks [7, 8]. The TES
unit was charged by a mechanical refrigeration unit located
off the vehicle. When the truck was on duty for delivering
products, the PCM discharged and provided cooling. It
was concluded that the cost of the PCM integrated refriger-
ation unit was 86.4% less than conventional systems. An
improvement in the temperature control with lower temper-
ature fluctuations and the reduced noise level was also
reported.

One can see from the above work when integrating the
TES with the conventional cooling system an energy effi-
ciency improvement and the reduction in temperature fluc-
tuations can be achieved. In this work, we introduced the
PCM-based TES to the shipping container for cold chain
transportation which aimed to investigate the feasibility of
the real applications. There is only limited research on inte-
grating the PCM-based TES with shipping containers. Sepe
et al. [9] proposed a concept for a 20-feet International
Organization Standardization (ISO) container with twelve
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eutectic plates. A −26°C eutectic formula was selected as the
PCM. The air passing through the plates was cooled first and
then cold air was transported for both product freshness
preservation and (+4°C-±1°C) and freeze (−18°C-−20°C).
However, the container was also equipped with a refrigera-
tion unit which limited the flexibility. Besides, the authors
did not reveal the charging rate which is a concerning aspect
for such a container.

A TES container was set up based on the 40 ft ISO ship-
ping container. Up to 10 TES plates containing 1260 kg of
PCM were included in one container. The discharging per-
formance was experimentally investigated. The system per-
formance and the economic analysis of the container
carrying real items were also revealed in this paper. The sys-
tem COP, the power, and the cost reduction compared with
that of the conventional reefer conditioner were presented.

2. Experimental Set-up

2.1. Material. The PCM RT 5 HC is from Rubitherm Com-
pany [10]. It melts at 5°C with a latent heat of 220 kJ/kg. The
main thermo-physical properties of the PCM are listed in
Table 1.

2.2. Thermal Energy Storage Plate. The TES plate was con-
structed on the embedded finned tubes which acted as the
charging fluid loop. The outer size of a single TES plate is
1800(L) ∗ 1000(W) ∗100(H) mm (see Figure 1).

For each plate, 126 kgs of PCM were filled. Three ther-
mocouples were installed inside each cold TES plate. The
location of the thermocouples is shown in Figure 1, with
an immersion depth of 0.05m.

2.3. Container. The dimensions of the container are shown in
Figure 2, with 100mm thickness of polyurethane foam inside
the walls as insulation material. Up to 10 plates were installed
inside each container, with 9 of them located on the ceiling,
and one was installed at the front of the internal wall. There
are eight sensors located in two layers, with the height of the
first layer (numbers 1, 3, 5, and 7) and the second layer (num-
bers 2, 4, 6, and 8) from the bottom at 1.8m and 0.9m, respec-
tively. In the axial perspective, the sensor was annotated with
numbers 7 and 8 located on the door with a distance of 1.2m
from the frame edge. Number 5 and 6 sensors were attached
to the internal surface of the door frame, while numbers 3
and 4 were mounted on the middle of the sidewall. The last
two sensors, annotated as numbers 1 and 2, were fixed on the
frame edge opposite the door. One sensor was placed outside
the container to get the ambient temperature and relative
humidity. For the dynamic experiments with carrying loads,
another three sensors were inserted into the items. The three
sensors were installed at the same level (1.2m to the container
bottom), with numbers 9, 10, and 11 having a distance of
12m, 8m, and 4m from the door, respectively.

A data logger system (Hwa Innovate Technology Co. Ltd)
was used to record the temperature and relative humidity. The
temperature sensors (RTD (PT100) probes) and the RH sen-
sors showed an uncertainty of 1% and 3%, respectively. The
internal photo of the shipping container is shown in Figure 3.

2.4. Charging Process. The charging unit mainly includes an
electricity-powered chiller from BITZER, and a centrifugal
pump which is used to circulate the HTF between the charg-
ing unit and the container. The HTF tank is used to store the
pre-cooled heat transfer fluid. It was filled with 14 m3 EG-
water solution that is identified as the HTF shown in
Table 2.

By connecting the container with the charging unit
through the charging loop, the HTF between the tank and
the plates was circulated. Inside the plates, the cold HTF
transferred the cold energy to PCMs. The temperature of
the outlet and the recirculated HTF was monitored by the
wireless data logger system which was provided by Hwa
Innovate Technology Co. Ltd. The RTD (PT100) probe with
uncertainly at 1%. The flowrate meter with 2% uncertainty
was employed to obtain the flowrate of the HTF. The com-
pletion of the charging was indicated by the temperature of
PCMs which can be obtained by the thermocouples.

3. Performance Index

3.1. Discharging Time. Discharging time is defined as the
period of the inside temperature of the container rising from
7 to 12°C. This is because most of the fruits and vegetables
can retain freshness within this temperature range [11].

3.2. System COP. The total energy released by heat transfer
fluid (HTF, Ethylene glycol-water solution, QEG) is given as
Eq. (1):

QEG = cp,EG ∗mEG ∗ To,EG − Ti,EGð Þ, ð1Þ

where mEG is the HTF mass flow; cp,EG is the specific heat
capacity of the HTF; and To,EG and Ti,EG are the HTF tem-
perature at the return and inlet of the charging unit,
respectively.

Except for the heat loss to the ambient, the energy trans-
ferred by HTF is adsorbed by the PCMs, the moist air inside
the container and the aluminium frame of the TES plates.
The energy stored by PCMs (QPCM) can be given as Eq. (2):

QPCM =mPCM ∗ cp,EG ∗ Te,PCM − Ts,PCMð Þ+ΔHPCM

� �
, ð2Þ

where mPCM , ΔHPCM , and cp,PCM are the mass, latent heat
capacity, and specific heat capacity of the PCM, respectively;
Te,PCM and Ts,PCM are the temperatures of PCM at the end
and initial stage of the experiments.

The energy transferred to the aluminium frame of the
TES plates, QAl, can be achieved by Eq. (3).

QAl =mAl ∗ cp,Al ∗ Te,Al − Ts,Alð Þ, ð3Þ

Table 1: Thermo-physical characteristics of the PCM.

Density
kg/m3

Latent
heat kJ/

kg

Phase
change
point °C

Specific heat
capacity kJ/

kg.K

Thermal
conductivity
W/(m.K)

880 220 5 2.0 ± 0.2 0.2
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wheremAl and cp,Al are the mass and specific heat capacity of
aluminium, respectively. Te,Al and Ts,Al are the temperatures
of aluminium at the end and initial stage of the experiments.

The energy absorbed by the moist air (Qma) is mainly
consisted of two parts, with the first part being dry air (Qa)
and the second part being condensed water (Qw). The Qma
can be obtained through Eqs. (4)~(6) below.

Qma =Qa +Qw, ð4Þ

Qa =ma ∗ cp,a ∗ Te,a − Ts,að Þ, ð5Þ

Qw =mw∗ΔHw, ð6Þ
where ma and cp,a are the mass and specific heat capacity of
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Figure 1: The structural view of a TES plate.
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dry air, respectively. Te,a and Ts,a are the temperatures of dry
air at the end and initial stage of the experiments. The mw
and ΔHw are the mass and condensed enthalpy of water
vapour, respectively.

The system COP is defined by:

COP = QPCM +QAl +Qma +QEG,inside
W

����
���� ð7Þ

where W is total electricity consumption during the
charging process; QPCM , QAl, Qma, and QEG,inside are the cold
energy released by TES units (PCMs and aluminium frame),
the internal moist air, and the sensible cold energy of HTF
left inside the charging loop during the cooling process.
They can be calculated by Eqs. (1)~(6).

3.3. The Energy Saving and Cost Reduction. The energy sav-
ing of the PCM-based TES container compared with that of
diesel-powered reefer container can be obtained by Eq. (8).

Es =
PDiesel − PPCM

PDiesel

� �
∗ 100%, ð8Þ

where Es is the energy saving, PDiesel is power consumption
of diesel-powered reefer container, while PPCM is the power
consumption of the PCM-based container presented in this
study.

The cost reduction of the PCM-based TES container
compared with that of diesel-powered reefer container can
be calculated by Eq. (9).

CR =
CDiesel − CPCM

CDiesel

� �
∗ 100%, ð9Þ

where CR is the cost reduction, CDiesel is the operation cost of

a diesel-powered reefer container, while the CPCM is the
operation cost of the PCM-based container presented in this
study.

4. Results and Discussion

The container was loaded with 22 tons of grapes and was
transferred from Dunhuang to Chengdu, China, on 03/10/
2018-06/10/2018 by road delivery. The loading of grapes
into the container was completed at point A in
Figures 4(a) and 5(a). The delivery distance and duration is
2362 km and 53 hours, see point B to C. The time evolution
of the temperature and RH at the axial and vertical direction
within the container can be seen in Figures 4 and 5,
respectively.

4.1. Time Evolution of the Temperature and RH of the
Container. Figures 4(a) and 4(b), and Figures 5(a) and 5(b)
presented the time evolution of the temperature and relative
humidity of the loaded container in the axial and the vertical
direction, respectively. The temperature (T8) near the door
side is the highest. However, in the perspective of the overall
temperature distribution, the maximum temperature gap
between the sensors is limited to ~2°C which indicates the
uniformity of the overall temperature distribution. Besides,
one can see that the temperatures close to the door are more
sensitive to the door opening. In Figure 4(a), the T8 which is
near the door shows the highest temperature change which
is from 7°C to nearly 25°C.

By comparing Figures 4(b) and 5(b), the internal relative
humidity of the container was found to be between 85% and
95%. The high relative humidity is helpful to keep the fresh-
ness of the carrying items.

4.2. Time Evolution of the Temperature and RH inside the
Item. The time evolution of temperature inside the carrying
items (Figure 6) showed that, during the whole delivery
period, the temperature rose slightly until the completion
of the delivery. When arriving at the destination, the tem-
perature increased sharply after the doors were opened for
unloading. One can notice that there was no obvious fluctu-
ation of temperature in the process of transportation, which
is beneficial to keep the freshness of the carrying items.
Besides, the relative humidity inside the grapes was nearly
100% which means there is no risk of causing excessive
dehydration. Hence, the PCM-based container performs a
better temperature and humidity control compared that of
the conventional refrigeration container which faces temper-
ature fluctuations [12] and excessive dehydration [13] issues.

4.3. The System COP. The system COP for the dynamic
operation carrying item can be calculated by Eq. (7). The
total electricity consumed during the charging process is 82
kWh. It was found that the system COP was 1.73.

4.4. The Energy and Cost Reduction. Table 2 shows the
energy and economic analyses of the diesel-powered con-
tainer and the PCM-based container. The electricity con-
sumption of the PCM-based TES container was obtained
through the electric meter.

Table 2: Comparison of the energy and economic performance of
the TES and diesel-powered container.

Properties
The diesel-
powered

The TES-based

Delivery distance (km) 2362

Delivery duration (hour) 53

Power consumption
(kW)

5.4 [14] 1.55

Energy consumption Diesel(53L) Electircity(82kWh)

Diesel consumption (L/
h)

1 [15] 0

Diesel price($/L)a 0.95

Electricity price($/
kWh)b

0.11

Diesel cost ($) 63.65 0

Electricity cost ($) 0 9.02

Operation cost reduction 85.6%

a: https://www.globalpetrolprices.com/China/diesel_prices/; b: https://www
.ceicdata.com/en/china/electricity-price?page=4.
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The average power consumption of a PCM-based TES
container is 1.55kW, compared with that of the diesel-
powered container, and the energy consumption was
decreased by 71.3%, which is calculated by Eq. (8). Based on
the average electricity tariff and diesel price in China, the cost
can be reduced by 85.6%. This indicates the profitable benefit
of the PCM-based TES container in the perspective of opera-

tion. The payback period was not included in this study as
there is still a lack of yearly operations of the newly proposed
container.

Both the electricity price and the operating strategy affect
the economic performance of the PCM-based container.
More profits could be obtained if the system is applied in a
location with a peak-load shifting mode.
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Figure 4: Time evolution of the temperature and RH inside the loaded conditioner under dynamic conditions (axial direction, a:
temperature, b: relative humidity).
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Figure 5: Time evolution of the temperature and RH inside the loaded conditioner under dynamic conditions (vertical direction, a:
temperature, b: relative humidity).
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5. Conclusions

This work investigated the performance of a phase change
material (PCM) based shipping container for cold chain trans-
portation. The road test performance including the cooling
duration and coefficient of the system (COP) of the container
carrying items has been presented. Both energy and economic
analyses were performed for comparing the diesel-powered
and the PCM-based container scenarios in terms of energy con-
sumption and operational cost. It was found that the system
COP was 1.73 with the power and operation cost reduction at
71.3% and 85.6% when compared with the diesel-powered
reefer container. This indicates the profitable benefit of the
PCM-based TES container in the perspective of operation. Fur-
thermore, the container can maintain at a low temperature
without an external power supply which enables the container
to be transferred flexibly. The improved flexibility and perfor-
mance enhancement allow the container to be feasible for
applications.

Nomenclature

cp: Specific heat capacity (kJ kg-1 K-1)
H: Latent heat (kJ kg-1)
_m: Mass flow rate (kg s-1)
t: Time
m: Mass
T : Temperature (°C K-1)
v: Velocity (m s-1)
ρ: Density (kg (m3)-1)
Q: Energy (kJ)
W: Electrical power (kJ)
$: US dollar.

Subscripts

PCM: Phase change material

TES: Thermal energy storage
i: Inlet
o: Outlet
e: Ending
s: Starting
P: Power
w: Water vapour
a: Air flow
Al: Aluminium
EG: Ethylene glycol
RH: Relative humidity
Ch: Charging
Dis: Discharging.
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In order to further clarify the sunshine stress effect of long-span and wide concrete box girder, the study selected a concrete box
girder with 4 × 42m span and 33.5m width, formed the temperature field load through a field test and numerical simulation,
established a numerical analysis model by using the finite element program of ANSYS, and comprehensively analyzed the
longitudinal temperature stress distribution of a long-span and wide concrete box girder under sunshine. The midspan section
of the first span of the box girder is selected for field stress measure, and the field measure results and numerical analysis
results are compared and analyzed. The research shows that the results of field measurement and numerical simulation are
basically consistent. Sunshine temperature has a great influence on long-span and wide concrete box girder, which should be
paid enough attention.

1. Introduction

With the rapid urban development, a long-span and wide
concrete box girder is more and more widely used. On the
one hand, it has greatly improved the urban operation effi-
ciency and quality of life. On the other hand, it puts for-
ward higher requirements for civil engineering
technology. A long-span and wide-width concrete box
girder is mostly used in outdoor space, such as large
bridge structure and public facility structure, which
requires high-temperature adaptability [1, 2]. At the same
time, due to the complex structure and large temperature
distribution gradient, the influence is more significant
[3]. In this paper, the sunshine stress effect of long-span
and wide concrete box girder is studied in Zhuhai Heng-
qin second bridge project.

2. Model Establishment

The Hengqin second bridge is located in the southwest of
Zhuhai City. Its south approaching bridge is a cast-in-situ

concrete box girder with a standard span of 42m and a
width of 33.5m for the beam top plate and 17.50m for the
bottom plate. The beam height at the center line is 2.5m,
the top plate is 0.25m thick, and the bottom plate is
0.25m thick. It is locally thickened near the fulcrum to meet
the stress needs of the structure. Figure 1 is the cross-section
diagram of the large-span wide concrete box girder.

The longitudinal length of the bridge structure is much
larger than the vertical length and transverse length. If the
three-dimensional conduction property of temperature in
some areas of the bridge structure is ignored, it can be
considered that the temperature change of the bridge
along the length direction is consistent. So the three-
dimensional heat conduction problem can be simplified
to analyze the one-dimensional heat conduction state
along the transverse and vertical directions of the bridge
[4, 5]. Therefore, only one section along the longitudinal
direction of the bridge needs to be selected as a represen-
tative. The middle of the first span of the first part
(4 × 42m) is selected as the temperature and stress mea-
sure section, as shown in section A in Figure 2.
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3. Temperature Field Measure

As shown in Figure 2, the temperature measure section is
A-A. The temperature sensors are arranged and installed
on the upper surface, lower surface, and web of the box
girder [6], and the positions are shown in Figure 3.

According to the construction situation of the project,
the temperature measure is conducted on a hot day for 24
hours [7]. Figure 4 shows the measured temperature results
of the measuring points of the upper surface, lower surface,
and web of the box girder within 24 hours.

Under the action of sunshine, the minimum vertical
temperature difference occurs at 6 a.m. and the maximum
temperature difference occurs at 14 a.m., with a temperature
difference value of about 16°C. The transverse temperature
difference of the upper surface is relatively uniform, and
the maximum temperature difference value is 5°C. The
transverse temperature difference of the lower surface is uni-
form, and the temperature difference value is less than 1°C.
The temperature change law of each measuring point
changes roughly according to the sinusoidal curve. The
internal temperature distribution is uneven, and the temper-
ature of the measuring point near the roof changes greatly
during the day.

In order to facilitate engineering application, this study
directly uses the field measured temperature value of the
boundary as linear interpolation to form the temperature
boundary condition of the outer surface of the box girder
and then obtains the temperature distribution inside the
box girder through steady-state thermal analysis[8, 9]. After
the temperature field of the bridge structure is determined,
the structural temperature load can be formed according to
the thermophysical properties of the material itself [10].

4. Temperature Stress Measure

In order to study the effect of temperature effect, the temper-
ature stress of the box girder is observed while observing the
temperature field. The stress measure section of the box
girder is the same as the temperature measure section [8],
as shown in section A-A in Figure 1.

The layout position of the stress measure sensor is
shown in Figure 5. The sensor is bound with the reinforce-

ment and embedded in the structure before concrete
pouring.

The measure lasted 24 hours from 14:00 p.m. to
14:00 p.m. the next day. A total of 13 measures were
recorded once every two hours. The measure results accu-
rately reflect the change of internal stress of the box girder
in one day.

The measure result takes the result at 14:00 at the
beginning of the test as the zero point, and the subsequent
measure results are the difference from the results at that
time. The greater the positive difference, the more it
decreases. The greater the negative difference, the more it
increases. Therefore, the measured value is not the specific
stress but reflects the stress change caused by sunshine
temperature [11].

5. Stress Time History Variation

The study selected the solid70 thermal analysis unit pro-
vided by ANSYS and ignored the influence of prestressed
reinforcement on temperature distribution. The stress dis-
tribution of the box girder under the temperature field is
calculated and compared with the measured data. The
results are shown in Figure 6.

According to the analysis and statistical results of mea-
sured and calculated values, under the action of 24-hour
solar radiation, the longitudinal compressive stress of the
box girder roof gradually decreases with the continuous
decrease in temperature. On the contrary, when the temper-
ature rises, the longitudinal compressive stress increases
gradually. The variation law and amplitude of measured
and calculated values are basically the same, and the maxi-
mum error is about 15%. At 14:00 p.m. or 16:00 p.m., the
compressive stress at each measuring point of the roof
reaches the maximum value. The compressive stress
decreases rapidly after dusk and remains at a low level at
night and begins to rise rapidly after 8:00 a.m. the next day.

6. Spatial Distribution of Box Girder Stress

6.1. Overall Stress Analysis. Taking 14:00 p.m. with the high-
est roof temperature and 6:00 a.m. with the lowest tempera-
ture difference between roof and floor as examples,
Figures 7–14 describe the stress distribution of the roof,
lower surface, and the middle section of the first span.

It can be seen from the figure that the roof is subjected to
large compressive stress at 14 p.m., the maximum local com-
pressive stress is about 8 × 106 Pa, and the compressive stress
of the bottom plate is about 2 × 106 Pa. It can be seen from
the midspan section that the middle of the web is under
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Figure 1: Cross-section diagram of the large-span wide concrete box girder.
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Figure 2: Diagram of the measure section position.
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the action of tensile stress, and there is a large tensile stress at
the bottom of the top plate, which is more than 2:5 × 106 Pa.
The transverse and longitudinal distribution of stress in the
top plate and bottom plate is uneven.

At 6 a.m., the compressive stress value of the top plate is
small, the bottom plate is partially compressed and partially
tensioned, and the value is small. The horizontal and vertical
distribution of the stress in the box is relatively uniform.

6.2. Analysis of Transverse Distribution of Roof Stress.
According to the time history stress analysis, the maximum
stress of the roof and the maximum vertical stress gradient
appeared at 14 p.m.

Figure 15 shows the calculation results of transverse dis-
tribution of longitudinal stress of roof at 14 p.m. It can be
seen from the results that the roof is in compression, and
the longitudinal compressive stress in the middle is the larg-
est, about 8:4 × 106 Pa. The transverse distribution of stress
is “V” shape as a whole, and the stress decreases gradually
from the middle of the section to both sides.

The main reasons for the uneven transverse distribution
of stress are as follows: (1) the shear lag effect of the box
girder reduces the longitudinal stress of the cantilever sec-
tion and (2) the difference of stiffness between the middle
and both sides of the roof leads to the difference of trans-
verse stress distribution [12].
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Figure 4: Beam temperature measured results.
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Figure 3: Layout diagram of beam temperature measuring points.

Figure 5: Layout diagram of stress sensor (the horizontal coordinate is 0 at the left end of the cross section).

3International Journal of Photoenergy



–0.5
0

0.5
1

1.5

σ
 (M

Pa
) 2

2.5
3

14 16 18 20 22 24 2 4 6 8 10 12 14

Calculated value
Measured value

Time (h)

(a) No. 1 measuring point

σ
 (M

Pa
)

Calculated value
Measured value

0

0.5

1

1.5

2

14 16 18 20 22 24 2 4 6 8 10 12 14
Time (h)

(b) No. 2 measuring point

σ
 (M

Pa
)

Calculated value
Measured value

0

0.5

1

1.5

2

14 16 18 20 22 24 2 4 6 8 10 12 14
Time (h)

(c) No. 3 measuring point
σ

 (M
Pa

)

Calculated value
Measured value

–1
–0.5

0
0.5

1
1.5

2
2.5

3

14 16 18 20 22 24 2 4 6 8 10 12 14

Time (h)

(d) No. 4 measuring point

σ
 (M

Pa
)

Calculated value
Measured value

–1
–0.5

0
0.5

1
1.5

2
2.5

3

14 16 18 20 22 24 2 4 6 8 10 12 14

Time (h)

(e) No. 5 measuring point

σ
 (M

Pa
)

Calculated value
Measured value

–1

–0.5

0

0.5

1

1.5

2

2.5

3

14 16 18 20 22 24 2 4 6 8 10 12 14

Time (h)

(f) No. 6 measuring point

Figure 6: Time history diagram of temperature stress comparison.
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Figure 7: Longitudinal stress distribution at 14 (roof)/Pa.
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Figure 8: Longitudinal stress distribution at 14 (lower surface)/Pa.
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Figure 9: Longitudinal stress distribution at 14 (middle of the first
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Figure 10: Longitudinal stress distribution at 14 (roof of the first
span)/Pa.
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Figure 11: Longitudinal stress distribution at 6 (roof)/Pa.
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Figure 12: Longitudinal stress distribution at 6 (lower surface)/Pa.
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Figure 13: Longitudinal stress distribution at 6 (middle of the first
span)/Pa.
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Figure 14: Longitudinal stress distribution at 6 (roof of the first
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6.3. Vertical Stress Distribution of the Box Girder. As can be
seen from Figure 16, the compressive stress decreases rapidly
with the increase in the distance from the top plate, and the
maximum tensile stress appears at the web, which is about
2 × 106 Pa. The critical height point from compressive stress
to tensile stress is 30 cm away from the top plate.

7. Conclusion

(1) Based on the field measure and numerical simula-
tion, the time history variation of box girder stress
and its uneven spatial distribution are analyzed.
Result shows that the simulated value is basically
consistent with the measured value, and the maxi-
mum error is about 15%. The numerical simulation
method is more practical

(2) At 14 p.m., the compressive stress on the top plate of
the box girder is large and unevenly distributed, the
maximum value of local longitudinal compressive
stress is about 8 × 106 Pa, and the stress of the bot-
tom plate is about 2 × 106 Pa. It is necessary to

strengthen the structural protection management in
different periods of the project site

(3) The transverse distribution of the longitudinal com-
pressive stress of the roof is in a “V” shape as a
whole, and the stress decreases gradually from the
middle of the section to both sides

(4) The middle and top of the box girder web are sub-
jected to tensile stress. The longitudinal tensile stress
at the top of the web is large, exceeding 2:5 × 106 Pa

In short, the sunshine radiation, especially in the case of
superimposed dynamic and static loads, has a great impact
on the long-span and wide concrete box girder, which
should be paid enough attention in the process of design,
construction, and use.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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In this paper, an intelligent energy management system for the smart home that combines the solar energy as well as the energy
from the battery storage devices has been proposed to reduce the dependency on the power grid and make the system to be more
economical. The proposed system manages the energy requirement of the smart home by properly rescheduling and arranging the
power flow between the energy storage devices, grid power, and the photovoltaics. The power grid can absorb the excess power
from the designed system whenever the load requirement is low, and on the other hand, it can supply the power to the load in
case of peak demand. Therefore, in the designed system, a user has the flexibility to sell the extra power for the purpose of
revenue. A thorough simulation of the system has been carried out, and the results obtained show the effectiveness of the
approach in terms of energy management between the different sources.

1. Introduction

Renewable energy resources (RER) are getting popularity
nowadays since they are environmentally friendly and avail-
able in abundance. Also, due to the rapid decline in the con-
ventional energy resources, the renewable sources are the
best alternative to replace them. A home energy manage-
ment (HEM) system is basically a system that has been
designed with the help of renewable energy resources with
an aim to reduce the overall energy consumption. This type
of configuration is usually done in order to reduce the elec-
tricity bill and manage the peak load demand. Apart from it,
the research on converting the power grid into smart grid by
combining the already existing grid with the renewable
energy resources will further reduce the dependency on the
conventional energy resources [1]. In the recent years,
research topics focus on home energy management inte-
grated with storage devices and the photovoltaics [2–9]. In
[2–5], the authors have considered energy cost minimization

as an optimization problem based on the unpredictable
behaviour of the output from the renewable energy
resources. In [6–8], demand response (DR) programs have
been explained for the priority wise rescheduling of the load
based on the prediction of renewable energy (RE) output. In
[9], the dependence on the battery and its characteristics
have been explained and how they can be useful in-home
energy management. In [10, 11], the photovoltaic integrated
with the home energy management is discussed in detail.
Although a lot of discussion on the integration of energy
storage units and photovoltaics with the HEM have been
explained in the literature [12–14], but still there are certain
issues that need to be resolved. For example, how the battery
can play an important role in case the power from the solar
panel is not sufficient to fed the load and how much benefit
the renewable sources of energy can provide in case of peak
load demand. This paper resolves one of the such issues by
proposing an integration of storage devices and photovol-
taics with the HEM that provides surplus power to the grid
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as well as absorb power in case of deficiency. Hence, a per-
fect balance is maintained to make the system more reliable
and economical.

The paper is arranged as per the following sections: Sec-
tion 2 describes the proposed system, Section 3 explains the
obtained simulation results, and Section 4 finally concludes
the paper.

2. Simulation Components of Proposed System

This method explains how the existing HEM model can be
integrated with the renewable energy resources and the bat-
tery storage devices. The block diagram of the above pro-
posed system is given in Figure 1.

Photovoltaics and battery storage devices are working
as a complementary power source for a smart home. The
rating of photovoltaic system is 5 kW and is described by
the current voltage look up table. In order to track the
maximum power point, MPPT control algorithm has been
used which extracts maximum power under variable sys-
tem conditions.

2.1. Photovoltaic (PV) System. In this system, PV and the
storage device models are developed in order to make the
HEM system to operate in integration with the renewable
energy resources. To track the maximum power from the
solar panel, MPPT technique [15] has been applied which
manages the operating point of the array in such a way that
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Figure 1: Block diagram of the system.
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Table 1: Battery specifications.

S. no. Battery parameters Values

(1) Nominal voltage 24 V

(2) Ampere-hour 40 Ah

(3) State of charge (SOC) 80%

(4) Fully charged voltage 232.7 V
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Figure 3: Battery characteristics.
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it always obtains the maximum power in the different vary-
ing conditions.

For photovoltaic system, the energy output or the energy
delivered is given by the following

EB = QρACgtt 1 − δp
� �

1 − δcð Þ, ð1Þ

where Q is the array area in m2, ρA is the average effi-
ciency of an array (%), Cgt is the global radiation, T is the
time period in secs, δp is the PV panel losses (%), and δc is
the power conditioning losses (%).

And the power absorbed by the grid can be defined as
follows:

Egrid = EB ∗ βinv ∗ βabs, ð2Þ

where EB is the energy by PV panel, βinv is the inverter effi-
ciency (%), and βabs is the PV panel energy absorption (%).

Figure 2 shows the output from solar panel which is
around 5 kW.

2.2. Battery Characteristics. A 200V and 40Ah lithium-ion
battery is used as a storage device to provide the power in case
of peak load demand. The battery specifications are men-
tioned in Table 1. The battery is charged and discharged with
the help of bidirectional converter that takes power from the
solar panel while charging and fed the load when solar panel
alone is not enough to feed the total load demand. The battery
model that has been used in the paper is explained in [16]. In
the proposed system, total loads of 3 kW each are taken, and it
was observed that in case when both the loads are ON, the
solar panel was not sufficient to provide power, since the total
capacity of solar photovoltaic is 5 kW.

The battery output power (W) is shown in Figure 3. It is
clear from the figure that from time t = 0 to t = 2 secs and t
= 4 sec to t = 6 secs the battery is not functioning so the extra
power has to be taken from grid for that time instant.
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Figure 4: Simulation of the proposed system.
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3. Simulation Results

Initially, the battery was not connected to the system, and
the loads were also disconnected, so therefore, the total solar
power was transferred to the grid. The power generated by
the panel was almost constant at 5 kW, and it was obtained
by MPPT control algorithm.

Case 1. One of the two loads of 3 kW was turned on, and it
was observed that it was consuming more than half of the
power produced by the solar panel, and therefore, the excess
power is again transferred to the grid.

Case 2. Both the loads are turned on, and the total power
demand reaches to 6 kW, so therefore, the solar panel was
not sufficient, and hence, the power demand was met by
the grid.

Case 3. Now the loads are again disconnected, and the bat-
tery is connected which ensures that the total power as the
combination of solar energy and storage devices is sufficient
to meet the load demand when both the loads are again con-
nected to the system in the same fashion as they were
connected.

Figure 4 shows the simulation of the proposed system
with renewable sources integrated with the power grid.

From Figure 5, it is clear that initially out of the two
loads only one was switched at instant t = 0:5 sec and at t
= 1 secs; both the loads were on, and therefore, the grid
has to supply the extra power to meet the load demand. It

is also clearly visible that between the time instant t = 2
secs to t = 4 secs, the battery was delivering the power, and
hence, the power delivered by the grid was zero. Figure 6
depicts the photovoltaic, grid power, and the load
characteristics.

It can be seen from the figure that at time instant t = 1
sec, the total load demand hits 6 kW as clear from
Figures 6(c) and 6(e) since the total load adds up at that time
instant, but before that, only load 1 was active, and therefore,
the grid that was absorbing the surplus power before t = 1
sec has to now deliver the power that can be clearly visible
from Figure 6(f). But again, at t = 2 sec, both the loads are
in OFF state, and the battery is now in the on state, so there-
fore, the power will now be delivered to the grid, and the
grid remains in off state. Also, Figure 6(d) shows the contin-
uous power variation that indicates the power absorbed as
well as power delivered by the grid for the entire time dura-
tion which depends on the changing load conditions. Simi-
larly, Figures 6(a) and 6(b) give the insight of the
photovoltaic (PV) voltage and current that is continuously
varying according to the solar insolation. Figure 7 depicts
the grid power components, solar power that remains almost
constant throughout the time period, and load demand.

In the above figure, power delivered from the different
renewable energy sources as well as the power absorbed by
the load configuration is shown to have a better clarity of
the proposed system and how it is able to manage the chang-
ing load demand with proper switching between the RER
and grid power. In continuation of the above power flow
diagram, Figure 7(a) shows the power taken by the grid as
well as power supplied in case of changing load conditions
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Figure 6: Load, grid, and solar photovoltaic characteristics.
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and the power availability conditions. Figure 7(b) shows the
variation in battery power and the solar power needed to
feed the load in case of excess load demand. Similarly,
Figure 7(c) illustrates the switching load pattern which
clearly shows the maximum and minimum load demand
in the entire time duration. The different system parameters
and their values are given in Table 2.

4. Conclusion

This paper presents an idea of load management in case of
base and peak load demand by integrating the supply with
the renewable energy resources. It consists of various energy
producing sources that is solar and battery storage devices as

well as different energy consuming devices, called loads.
Here, the switching between the different energy sources is
done for energy management, and the results are shown in
MATLAB. It is clear from the above results that the depen-
dency on the grid is minimized, and even the consumer
can now provide surplus power to the grid which will ulti-
mately increase the overall revenue. The simulation shows
how the HEM integrated with renewable sources is useful
for residential load management, and further studies could
be done in order to allow HEM to manage the different res-
idential loads with respect to time-of-use pricing.
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Table 2: System parameters.
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Inverter controller gain parameters
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