
Dynamic Neural Networks
for Model-Free Control and
Identification

Guest Editors: Alex Poznyak, Isaac Chairez, Haibo He,
 and Wen Yu

Journal of Control Science and Engineering

Dynamic Neural Networks for Model-Free
Control and Identification

Journal of Control Science and Engineering

Dynamic Neural Networks for Model-Free
Control and Identification

Guest Editors: Alex Poznyak, Isaac Chairez, Haibo He,
and Wen Yu

Copyright © 2012 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in “Journal of Control Science and Engineering.” All articles are open access articles distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Editorial Board

Edwin K. P. Chong, USA
Ricardo Dunia, USA
Nicola Elia, USA
Peilin Fu, USA
Bijoy K. Ghosh, USA
F. Gordillo, Spain
Shinji Hara, Japan

Seul Jung, Republic of Korea
Vladimir Kharitonov, Russia
James Lam, Hong Kong
Derong Liu, China
Tomas McKelvey, Sweden
Silviu-Iulian Niculescu, France
Yoshito Ohta, Japan

Yang Shi, Canada
Zoltan Szabo, Hungary
Onur Toker, Turkey
Xiaofan Wang, China
Jianliang Wang, Singapore
Wen Yu, Mexico
Mohamed A. Zribi, Kuwait

Contents

Dynamic Neural Networks for Model-Free Control and Identification, Alex Poznyak, Isaac Chairez,
Haibo He, and Wen Yu
Volume 2012, Article ID 916340, 2 pages

Experimental Studies of Neural Network Control for One-Wheel Mobile Robot, P. K. Kim and S. Jung
Volume 2012, Article ID 194397, 12 pages

Robust Adaptive Control via Neural Linearization and Compensation, Roberto Carmona Rodrı́guez and
Wen Yu
Volume 2012, Article ID 867178, 9 pages

Dynamics Model Abstraction Scheme Using Radial Basis Functions, Silvia Tolu, Mauricio Vanegas,
Rodrigo Agı́s, Richard Carrillo, and Antonio Cañas
Volume 2012, Article ID 761019, 11 pages

An Output-Recurrent-Neural-Network-Based Iterative Learning Control for Unknown Nonlinear
Dynamic Plants, Ying-Chung Wang and Chiang-Ju Chien
Volume 2012, Article ID 545731, 9 pages

3D Nonparametric Neural Identification, Rita Q. Fuentes, Isaac Chairez, Alexander Poznyak,
and Tatyana Poznyak
Volume 2012, Article ID 618403, 10 pages

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 916340, 2 pages
doi:10.1155/2012/916340

Editorial

Dynamic Neural Networks for Model-Free
Control and Identification

Alex Poznyak,1 Isaac Chairez,2 Haibo He,3 and Wen Yu1

1 Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados, 07360 Mexico City, DF, Mexico
2 UPIBI, Biotechnology Department, National Polytecnical Institute (IPN), 07738 Mexico City, DF, Mexico
3 Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA

Correspondence should be addressed to Alex Poznyak, apoznyak@ctrl.cinvestav.mx

Received 17 December 2012; Accepted 17 December 2012

Copyright © 2012 Alex Poznyak et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neural networks have been used to solve a broad diversity of
problems on different scientific and technological disciplines.
Particularly, control and identification of uncertain systems
have received attention since many years ago by the natural
interest to solve problem such as automatic regulation or
tracking of systems having a high degree of vagueness on
their formal mathematical description. On the other hand,
artificial modeling of uncertain systems (where the pair
output-input is the only available information) has been
exploited by many years with remarkable results.

Within automatic control and identification theory,
neural networks must be designed using a dynamic structure.
Therefore, the so-called dynamic neural network scheme
has emerged as a relevant and interesting field. Dynamic
neural networks have used recurrent and differential forms to
represent the uncertainties of nonlinear models. This couple
of representations has permitted to use the well-developed
mathematical machinery of control theory within the neural
network framework.

The purpose of this special issue is to give an insight
on novel results regarding neural networks having either
recurrent or differential models. This issue has encouraged
application of such type of neural networks on adaptive
control designs or/and no parametric modeling of uncertain
systems.

The contributions of this issue reflect the well-known fact
that neural networks traditionally cover a broad variety of
the thoroughness of techniques deployed for new analysis
and learning methods of neural networks. Based on the
recommendation of the guest editors, a number of authors
were invited to submit their most recent and unpublished

contributions on the aforementioned topics. Finally, five
papers were accepted for publication.

So, the paper of P. K. Kim and S. Jung titled “Experi-
mental studies of neural network control for one-wheel mobile
robot” presents development and control of a disc-typed
one-wheel mobile robot, called GYROBO. Several models
of the one-wheel mobile robot are designed, developed, and
controlled. The current version of GYROBO is successfully
balanced and controlled to follow the straight line. GYROBO
has three actuators to balance and move. Two actuators
are used for balancing control by virtue of gyroeffect and
one actuator for driving movements. Since the space is
limited and weight balance is an important factor for the
successful balancing control, careful mechanical design is
considered. To compensate for uncertainties in robot dynam-
ics, a neural network is added to the nonmodel-based PD-
controlled system. The reference compensation technique
(RCT) is used for the neural network controller to help
GYROBO to improve balancing and tracking performances.
The paper of R. C. Rodrı́guez and W. Yu “Robust adaptive
control via neural linearization and compensation” proposes
a new type of neural adaptive control via dynamic neural
networks. For a class of unknown nonlinear systems, a neural
identifier-based feedback linearization controller is first used.
Dead-zone and projection techniques are applied to assure
the stability of neural identification. Then four types of
compensator are addressed. The stability of closed-loop
system is also proven. “Dynamics model abstraction scheme
using radial basis functions” is presented in the paper of
S. Tolu et al. where a control model for object manipulation
is presented. System dynamics depend on an unobserved

2 Journal of Control Science and Engineering

external context, for example, work load of a robot manipu-
lator. The dynamics of a robot arm change as it manipulates
objects with different physical properties, for example, the
mass, shape, or mass distribution. Active sensing strategies
to acquire object dynamical models with a radial basis
function neural network (RBF) are addressed. The paper
“An output-recurrent-neural-network-based iterative learning
control for unknown nonlinear dynamic plants” presented by
Y.-C. Wang and C.-J. Chien deals with a design method for
iterative learning control system by using an output recurrent
neural network (ORNN). Two ORNNs are employed to
design the learning control structure. The first ORNN, which
is called the output recurrent neural controller (ORNC),
is used as an iterative learning controller to achieve the
learning control objective. To guarantee the convergence
of learning error, some information of plant sensitivity is
required to design a suitable adaptive law for the ORNC.
Therefore, a second ORNN, which is called the output
recurrent neural identifier (ORNI), is used as an identifier to
provide the required information. The problems related to
“3D nonparametric neural identification” are presented in the
paper of R. Q. Fuentes et al., there, the state identification
study of 3D partial differential equations (PDEs) using the
differential neural networks (DNNs) approximation is given.
The adaptive laws for weights ensure the “practical stability”
of the DNN trajectories to the parabolic three-dimensional
(3D) PDE states. To verify the qualitative behavior of the
suggested methodology, a nonparametric modeling problem
for a distributed parameter plant is analyzed.

These papers were exploring dissimilar applications of
neural networks in control and identification from very
different point of view. Despite the number of papers,
the spirit of neural networks as a model-independent tool
has been emphasized. Moreover, the number of practical
examples included in the papers of this issue gives an
additional contribution to the theory of dynamic neural
network.

Acknowledgments

The editors wish to thank the editorial board for providing
the opportunity to edit this special issue on modeling and
adaptive control with dynamic neural networks. The guest
editors wish also to thank the referees who have critically
evaluated the papers within the short stipulated time. Finally
we hope the reader will share our joy and find this special
issue very useful.

Alex Poznyak
Isaac Chairez

Haibo He
Wen Yu

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 194397, 12 pages
doi:10.1155/2012/194397

Research Article

Experimental Studies of Neural Network Control for
One-Wheel Mobile Robot

P. K. Kim and S. Jung

Intelligent Systems and Emotional Engineering (I.S.E.E.) Laboratory, Department of Mechatronics Engineering,
Chungnam National University, Daejeon 305-764, Republic of Korea

Correspondence should be addressed to S. Jung, jungs@cnu.ac.kr

Received 18 July 2011; Revised 28 January 2012; Accepted 14 February 2012

Academic Editor: Haibo He

Copyright © 2012 P. K. Kim and S. Jung. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents development and control of a disc-typed one-wheel mobile robot, called GYROBO. Several models of the one-
wheel mobile robot are designed, developed, and controlled. The current version of GYROBO is successfully balanced and controll-
ed to follow the straight line. GYROBO has three actuators to balance and move. Two actuators are used for balancing control by
virtue of gyro effect and one actuator for driving movements. Since the space is limited and weight balance is an important factor
for the successful balancing control, careful mechanical design is considered. To compensate for uncertainties in robot dynamics,
a neural network is added to the nonmodel-based PD-controlled system. The reference compensation technique (RCT) is used for
the neural network controller to help GYROBO to improve balancing and tracking performances. Experimental studies of a self-
balancing task and a line tracking task are conducted to demonstrate the control performances of GYROBO.

1. Introduction

Mobile robots are considered as quite a useful robot system
for conducting conveying objects, conducting surveillance,
and carrying objects to the desired destination. Service
robots must have the mobility to serve human beings in
many aspects. Most of mobile robots have a two-actuated
wheel structure with three- or four-point contact on the
ground to maintain stable pose on the plane.

Recently, the balancing mechanism becomes an impor-
tant issue in the mobile robot research. Evolving from the in-
verted pendulum system, the mobile-inverted pendulum
system (MIPS) has a combined structure of two systems: an
inverted pendulum system and a mobile robot system. Re-
lying on the balancing mechanism of the MIPS, a personal
transportation vehicle has been introduced [1]. The MIPS
has two-point contact to stabilize itself. Advantages of the
MIPS include robust balancing against small obstacles on the
ground and possible narrow turns while three- or four-point
contact mobile robots are not able to do so.

In research on balancing robots, two-point contact mobile
robots are designed and controlled [1–5]. A series of balanc-
ing robots has been implemented and demonstrated their
performances [3–5]. Currently, successful navigation and
balancing control performances with carrying a human
operator as a transportation vehicle have been reported [5].

More challengingly, one-wheel mobile robots are devel-
oped. A one-wheel robot is a rolling disk that requires
balancing while running on the ground [6]. Gyrover is a
typical disc-typed mobile robot that has been developed and
presented for many years [7–11]. Gyrover is a gyroscopically
stabilized system that uses the gyroscopic motion to balance
the lean angle against falling as shown in Figure 1. Three
actuators are required to make Gyrover stable. Two actuators
are used for balancing and one actuator for driving. Exper-
imental results as well as dynamical modeling analysis on
Gyrover are well summarized in the literature [12].

In other researches on one-wheel robots, different ap-
proaches of modelling dynamics of a one-wheel robot have
been presented [13, 14]. Simulation studies of controlling

2 Journal of Control Science and Engineering

Spin

(Pitch) Input
(Roll)

Output
(Yaw)

Figure 1: Gyro motion of one-wheel robot.

γ̇ f

γ̇

C

l

xb

yb

zb

β f

α̇ f
α̇

β

β̇

B

θ

Y
O

X

Z

A

Figure 2: GYROBO Coordinates.

β

β̇
−

−

+

+ +

βd

β̇d

kpβ

kdβ
uβ

GYROBO

Figure 3: Lean angle control for balancing.

β

α

GYROBO
uf

uβ

uα

+

+

+

+

+

+

+βd

β̇d

−

−

−

−

αd

α̇d

kpβ

kdβ

kpα

kdα

α̇

β̇

Figure 4: Straight line tracking control structure.

(Input layer) (Hidden layer) (Output layer)

eNI

ψj

ψNH

yk

yNo
bk

w11

y1e1

ei
wjk

ψ1

1

Figure 5: Neural network structure.

a Gyrobot along with design and fabrication are presented
[15, 16]. An interesting design of a single spherical-wheel
robot has been presented [17–19]. Successful balancing
control of the spherical-wheel robot has been demonstrated.

In this paper, a one-wheel robot called GYROBO is de-
signed, implemented, and controlled. GYROBO has three
actuators to move forward and backward and to balance
itself. Although aforementioned research results provide
dynamics models for the one-wheel robot, in real physical
system, it is quite difficult to control GYROBO based on
dynamic models due to several reasons. First, modeling the
system is not accurate. Second, it is hard to describe coupling
effects between the body wheel and the flywheel since the
system is nonlinearly coupled. Third, it is a nonholonomic
system.

Therefore, we focus on optimal mechanical design rather
than modeling the system since the dynamic model is
quite complicated. Although we have dynamic models, other
effects from uncertainties and nonmodel dynamics should be
considered as well for the better performance.

Journal of Control Science and Engineering 3

kix dt

kdx

xd

ẋd

uβ

ux

eβ(t)

eβ(t − 1)
eβ(t − 2)

+

+

+ +

+ +

+

+

−

−

−

−

kpx

GYROBO
β

β̇

x
ẋ

Neural
network

βd

β̇d

v

kdβ

kpβ

Figure 6: RCT neural network control structure.

Figure 7: Sphere robot with links.

After several modifications of the design, the successful
design and control of GYROBO are achieved. Since all of
actuators have to be housed inside the one wheel, design and
placement of each part become the most difficult problem.

After careful design of the system, a neural network con-
trol scheme is applied to the model-free-controlled system to
improve balancing performance achieved by linear controll-
ers. First, a simple PD control method is applied to the system
and then a neural network controller is added to help the PD
controller to improve tracking performance. Neural network
has been known for its capabilities of learning and adaptation
for model-free dynamical systems in online fashion [2, 20].

Experimental studies of a self-balancing task and a
straight line tracking task are conducted. Performances by a
PD controller and a neural controller are compared.

2. GYROBO Modelling

GYROBO is described as shown in Figure 2. Three angles
such as spin, lean, and tilt angle are generated by three cor-
responding actuators. The gyro effect is created by the com-
bination of two angle rotations, flywheel spin and tilt mo-
tion.

Table 1: Parameter definition.

α,αf Precession angle of a wheel and a flywheel

β Lean angle of a wheel

β f Tilt angle of a flywheel

γ, γ f Spin angles of a wheel and a flywheel

θ Angle between l and xb axis

mw ,m f Masses of a wheel and a flywheel

m Mass of whole body

R Radius of a wheel

Ixw , Iyw , Izw Wheel moment of inertia about X ,Y , and Z axes

Ix f , Iy f , Iz f Flywheel moment of inertia about X ,Y , and Z

g Gravitational velocity

u1,u2 Drive torque and tilt torque

l Distance between A and B

The dynamics of one-wheel robot system has been pre-
sented in [7, 11, 13]. Table 1 lists parameters of GYROBO.
This paper is focused on the implementation and control of
GYROBO rather than analyzing the dynamics model of the
system since the modeling has been well presented in the
literature [11].

Since the GYROBO is a nonholonomic system, there are
kinematic constraints such that the robot cannot move in the
lateral direction. GYROBO is an underactuated system that
has three actuators to drive more states.

We follow the dynamic equation of the GYROBO des-
cribed in [11]:

M
(
q
)
q̈ + F

(
q, q̇

) = ATλ + Bu, (1)

4 Journal of Control Science and Engineering

(a) First model (b) Second model

(c) Third model (d) Fourth model

Figure 8: Models of GYROBO using gyro effects.

Figure 9: Real design of GYROBO I.

where

M
(
q
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0

0 m 0 0 0 0

0 0 M33 0 IzwSβ 0

0 0 0 Ixw + Ix f +mR2S2β 0 Ix f

0 0 IzwSβ 0 Izw 0

0 0 0 Ix f 0 Ix f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M33 = IywC
2β + IzwS

2β + Iy f C
2
(
β + β f

)
+ Iz f S

2
(
β + β f

)
,

F
(
q, q̇

) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

F3

F4

IzwCβα̇β̇

F6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2)

where

F3 = 2
(
Izw − Iyw

)
CβSβα̇β̇ + IzwCββ̇γ̇

+ 2
(
Iz f − Iy f

)
C
(
β + β f

)
S
(
β + β f

)(
β̇ + β̇ f

)
α̇

+ Iz f C
(
β + β f

)(
β̇ + β̇ f

)
γ f ,

F4 = mR2SβCββ̇2 +
(
Iyw − Izw

)
CβSβα̇2 − IzwCβγ̇α̇

+
(
Iy f − Iz f

)
C
(
β + β f

)
S
(
β + β f

)
α̇2

− Iz f C
(
β + β f

)
γ̇ f α̇−mgRSβ,

F6 =
(
Iy f − Iz f

)
C
(
β + β f

)
S
(
β + β f

)
α̇2 − Iz f C

(
β + β f

)
γ̇ f α̇,

(3)

A =
⎡⎣1 0 −RCαCβ RSαSβ −RCα 0

0 1 −RCβCα −RCαCβ −RSα 0

⎤⎦, (4)

Journal of Control Science and Engineering 5

(a)

(b)

Figure 10: Design of GYROBO II.

Drive motor

Tilt motor
Spin motor

DSP

Motor driver

Flywheel

Figure 11: Real GYROBO II.

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

α

β

γ

β f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, λ =

⎡⎣λ1

λ2

⎤⎦, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

k1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

[
u1

u2

]
,

(5)

where Cα = cos(α), and Sα = sin(α).

Sensor

Tilt motor SCI Motor driver UART

DSP 2812

Flywheel motor
Sensor SCIMotor driver UART

AVR

Drive motor

Figure 12: Control hardware.

Tilt
motorDSP

AVR

Sensor

Joystick

Spin
motor

Drive
motor

SCISCI

UART

SPI

UART

Figure 13: Control hardware block diagram.

3. Linear Control Schemes

The most important aspect of controlling GYROBO is the
stabilization that prevents from falling in the lateral direc-
tion. Stabilization can be achieved by controlling the lean
angle β. The lean angle in the y-axis can be separately con-
trolled by controlling the flywheel while the flywheel rotates
at a high constant speed. Spinning and tilting velocities of the
flywheel induce the precession angle rate that enables
GYROBO to stand up. Therefore, a linear controller is de-
signed for the lean angle separately to generate suitable fly-
wheel tilting motions.

3.1. PD Control for Balancing. The PD control method is
used for balancing of GYROBO. The lean angle error is de-
fined as

eβ = βd − β, (6)

where βd is the desired lean angle value which is 0 for the
balancing purpose and β is the actual lean angle. The angle
error passes through the PD controller and generates the tilt
torque uβ for the flywheel:

uβ = kpβeβ + kdβėβ, (7)

where kpβ and kdβ are controller gains. Figure 3 shows the
PD control block diagram.

3.2. Straight Line Tracking Control. For the GYROBO to fol-
low the straight line, a torque for the body wheel and a torque

6 Journal of Control Science and Engineering

(a) (b)

(c) (d)

(e) (f)

Figure 14: PD control: balancing task (a-b-c-d-e-f in order).

for the flywheel should be separately controlled. The body
wheel rotates to follow the straight line while the lean angle
is controlled to maintain balancing.

The position error detected by an encoder is defined by

ep = xd − x, (8)

where xd is the desired position value and x is the actual
position. The detailed PID controller output becomes

ux = kpxex + kdxėx + kix

∫
exdt, (9)

where kpx, kdx, and kix are controller gains.
Thus line tracking control requires both position control

and angle control. The detailed control block diagram for the
straight line following is shown in Figure 4.

4. Neural Control Schemes

4.1. RBF Neural Network Structure. The purpose of using a
neural network is to improve the performance controlled by
linear controllers. Linear controllers for controlling

GYROBO may have limited performances since GYROBO is
a highly nonlinear and coupled system.

Neural networks have been known for their capabilities
of learning and adaptation of nonlinear functions and used
for nonlinear system control [20]. Successful balancing
control performances of a two-wheel mobile robot have been
presented [2].

One of the advantages of using a neural network as an
auxiliary controller is that the dynamic model of the system is
not required. The neural network can take care of nonlinear
uncertainties in the system by an iterative adaptation process
of internal weights.

Here the radial basis function (RBF) network is used for
an auxiliary controller to compensate for uncertainties caus-
ed by nonlinear dynamics of GYROBO. Figure 5 shows the
structure of the radial basis function.

The Gaussian function used in the hidden layer is

ψj(e) = exp

⎛⎜⎝−
∣∣∣e − μ j∣∣∣2

2σ2
j

⎞⎟⎠, (10)

where e is the input vector, e = [e1e2 · · · eNI]
T , μ j is

Journal of Control Science and Engineering 7

(a) (b)

(c) (d)

(e) (f)

Figure 15: Neural network control: balancing task.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

80

100

120

RCT

PD

−20

Time (ms)

α
(d

eg
)

Figure 16: Heading angle comparison of PD (black dotted line) and
RCT control (blue solid line).

the center value vector of the jth hidden unit, and σ j is the
width of the jth hidden unit.

The forward kth output in the output layer can be cal-
culated as a sum of outputs from the hidden layer:

yk =
NH∑
j=1

ψjwjk + bk, (11)

where ψj is jth output of the hidden layer in (11), wjk is the
weight between the jth hidden unit and kth output, and bk is
the bias weight.

4.2. Neural Network Control. Neural network is utilized to
generate compensating signals to help linear controllers by
minimizing the output errors. Initial stability can be achieved
by linear controllers and further tracking improvement can
be done by neural network in online fashion.

Different compensation location of neural network yields
different neural network control schemes, but they eventu-
ally perform the same goal to minimize the output error.

8 Journal of Control Science and Engineering

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

Time (ms)

Desired

RCT

PD

−10

−15

−5

β
(d

eg
)

Figure 17: Lean angle comparison of PD (black dotted line) and
RCT control (blue solid line).

The reference compensation technique (RCT) is known as
one of neural network control schemes that provides a struc-
tural advantage of not interrupting the predesigned control
structure [3, 4]. Since the output of neural network is added
to the input trajectories of PD controllers as in Figure 4,
tracking performance can be improved. This forms the total-
ly separable control structure as an auxiliary controller
shown in Figure 6:

uβ = kpβ
(
eβ + φ1

)
+ kdβ

(
ėβ + φ2

)
, (12)

where φ1 and φ2 are neural network outputs.
Here, the training signal v is selected as a function of

tracking errors such as a form of PD controller outputs:

v = kpβeβ + kdβėβ. (13)

Then (12) becomes

v = uβ −
(
kpβφ1 + kdβφ2

)
. (14)

To achieve the inverse dynamic control in (14) such as
satisfying the relationship uβ = τ where τ is the dynamics of
GYROBO, we need to drive the training signal of neural
network to satisfy that v → 0. Then the neural network out-
puts become equal to the dynamics of the GYROBO in the
ideal condition. This is known as an inverse dynamics control
scheme. Therefore learning algorithm is developed for the
neural network to minimize output errors in the next section.

4.3. Neural Network Learning. Here neural network does not
require any offline learning process. As an adaptive controll-
er, internal weights in neural network are updated at each
sampling time to minimize errors. Therefore, the selection of

an appropriate training signal for the neural network
becomes an important issue in the neural network control,
even it determines the ultimate control performance.
The objective function is defined as

E = 1
2
v2. (15)

Differentiating (15) and combining with (14) yield the
gradient function required in the back-propagation algo-
rithm:

∂E

∂w
= v

∂v

∂w
= −v

(
kpβ

∂φ1

∂w
+ kdβ

∂φ2

∂w

)
. (16)

The weights are updated as

w(t + 1) = w(t) + ηv

(
kpβ

∂φ1

∂w
+ kdβ

∂φ2

∂w

)
, (17)

where η is the learning rate.

5. Design of One-Wheel Robot

Design of the one-wheel robot becomes the most important
issue due to the limitation of space. Our first model is shown
in Figure 7. The original idea was to balance and control the
sphere robot by differing rotating speeds of two links. Thus,
two rotational links inside the sphere are supposed to balance
itself but failed due to the irregular momentum induced by
two links.

After that, the balancing concept has been changed to use
a flywheel instead of links to generate gyro effect as shown
in Figure 8. Controlling spin and tilt angles of the flywheel
yields gyro effects to make the robot keep upright position.

We have designed and built several models as shown in
Figure 8. However, all of models are not able to balance itself
long enough. Through trial and error processes of designing
models, we have a current version of GYROBO I and II as
shown in Figures 9 and 10. Since the GYROBO I in Figure 9
has a limited space for housing, the second model of
GYROBO has been redesigned as shown in Figure 11.

6. GYROBO Design

Figure 10 shows the CAD design of the GYROBO II. The real
design consists of motors, a flywheel, and necessary hardware
as shown in Figure 11.

GYROBO II is redesigned with several criteria. Locating
motors appropriately in the limited space becomes quite an
important problem to satisfy the mass balance. Thus the size
of the body wheel is increased.

The placement of a flywheel effects the location of the
center of gravity as well. The size of the flywheel is also critical
in the design to generate enough force to make the whole
body upright position. The size of the flywheel is increased.
The frame of the flywheel system is redesigned and located at
the center of the body wheel.

Journal of Control Science and Engineering 9

(a) (b)

(c) (d)

(e) (f)

Figure 18: PD control: line following task.

The drive motor is attached to the wheel so that it directly
controls the movement of the wheel. A tilt motor is mounted
on the center line to change the precession angle of the
gyro effect. A high-speed spin motor is located to rotate the
flywheel through a timing belt.

Control hardware includes a DSP2812 and an AVR as
main processors. The AVR controls drive and spin motors
while DSP controls a tilt motor. The detailed layout is shown
in Figure 12. To detect the lean angle, a gyro sensor is used.
Interface between hardware is shown in Figure 13.

7. Experimental Studies

7.1. Balancing Test at One Point

7.1.1. Scheme 1: PD Control. The speed of the flywheel is set
to 7,000 rpm. The control frequency is 10 ms. When the PD
controller is used, the GYROBO is able to balance itself as
shown in Figure 14. However, the heading angle also rotates
as it balances. Figures 14(d), 14(e), and 14(f) show the

deviation of the heading angle controlled by a PD controller
whose gains are selected as kpβ = 10, and kdβ = 15. PD gains
are selected by empirical studies.

7.1.2. Scheme 2: Neural Network Compensation. The same
balancing test is conducted with the help of the neural net-
work controller. The learning rate is set to 0.0005, and 3
inputs, 4 hidden units, and 2 outputs are used for the neural
network structure. Neural network parameters are found by
empirical studies. The GYROBO balances itself and does not
rotate much comparing with Figure 14. It stays still as shown
in Figure 15. The heading angle is not changed much when
neural network control is applied while it deviates for PD
control. The larger heading angle error means rotation of
GYROBO while balancing which is not desired.

Further clear comparisons of performances between PD
control and neural network control are shown in Figures 16
and 17, which are the corresponding plots of Figures 14 and
15. We clearly see that the heading angle of GYROBO is

10 Journal of Control Science and Engineering

(a) (b)

(c) (d)

(e) (f)

Figure 19: Neural network control: line following.

deviating in the PD control case. We clearly see the larger
oscillation of PD control than that of RCT control.

7.2. Line Tracking Test

7.2.1. Scheme 1: PD Control. Next test is to follow the desired
straight line. Figure 18 shows the line tracking performance
by the PD controller. GYROBO moves forward about 2 m
and then stops.

7.2.2. Scheme 2: Neural Network Compensation. Figure 19
shows the line tracking performance by the neural network
controller.

We see that the GYROBO moves forward while balanc-
ing. Since the GYROBO has to carry a power line, navigation
is stopped within a short distance about 2 m.

Clear distinctions between PD control and neural net-
work control are shown in Figures 20 and 21. Both controll-
ers maintain balance successfully. GYROBO controlled by

a PD control method deviates from the desired straight line
trajectory further as described in Figure 20. In addition, the
oscillatory behaviour is reduced much by the neural network
controller as shown in Figure 21.

8. Conclusion

A one-wheel robot GYROBO is designed and implemented.
After several trial errors of body design, successful design
is presented. An important key issue is the design to
package all materials in one wheel. One important tip in
controlling GYROBO is to reduce the weight so that the
flywheel can generate enough gyro effect because it is not
easy to find suitable motors. Although balancing and line
tracking tasks are successful in this paper, one major problem
has to be solved in the future. The power supply for the
GYROBO should be independent. Since the stand-alone type
of GYROBO is preferred, a battery should be mounted inside

Journal of Control Science and Engineering 11

0 200 400 600 800 1000 1200 1400 1600 1800 2000

RCT

PD

Time (ms)

0

8

6

4

2

−2

−4

−6

−8

α
(d

eg
)

Figure 20: Heading angles of PD (black dotted line) and RCT
control (blue solid line).

Desired

RCT

PD

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (ms)

0

4

2

6

−6

−4

−2

β
(d

eg
)

Figure 21: Lean angles of PD (black dotted line) and RCT control
(blue solid line).

the wheel. Then a room for a battery requires modification of
the body design again.

Acknowledgments

This work was financially supported by the basic research
program (R01-2008-000-10992-0) of the Ministry of Edu-
cation, Science and Technology (MEST) and by Center for
Autonomous Intelligent Manipulation (AIM) under Human
Resources Development Program for Convergence Robot
Specialists (Ministry of Knowledge Economy), Republic of
Korea.

References

[1] “Segway,” http://www.segway.com/.

[2] S. H. Jeong and T. Takayuki, “Wheeled inverted pendulum
type assistant robot: design concept and mobile control,” in
Proceedings of the IEEE International Workshop on Intelligent
Robots and Systems (IROS ’07), p. 1937, 1932, 2007.

[3] S. S. Kim and S. Jung, “Control experiment of a wheel-
driven mobile inverted pendulum using neural network,” IEEE
Transactions on Control Systems Technology, vol. 16, no. 2, pp.
297–303, 2008.

[4] J. S. Noh, G. H. Lee, H. J. Choi, and S. Jung, “Robust control
of a mobile inverted pendulum robot using a RBF neural
network controller,” in Proceedings of the IEEE International
Conference on Robotics and Biomimetics, (ROBIO ’08), pp.
1932–1937, February 2009.

[5] H. J. Lee and S. Jung, “Development of car like mobile inverted
pendulum system : BalBOT VI,” The Korean Robotics Society,
vol. 4, no. 4, pp. 289–297, 2009.

[6] C. Rui and N. H. McClamroch, “Stabilization and asymptotic
path tracking of a rolling disk,” in Proceedings of the 34th IEEE
Conference on Decision and Control, pp. 4294–4299, December
1995.

[7] G. C. Nandy and Y. Xu, “Dynamic model of a gyroscopic
wheel,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 2683–2688, May 1998.

[8] Y. Xu, K. W. Au, G. C. Nandy, and H. B. Brown, “Analysis of
actuation and dynamic balancing for a single wheel robot,”
in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1789–1794, October 1998.

[9] Y. Xu, H. B. Brown, and K. W. Au, “Dynamic mobility with
single-wheel configuration,” International Journal of Robotics
Research, vol. 18, no. 7, pp. 728–738, 1999.

[10] S. J. Tsai, E. D. Ferreira, and C. J. Raredis, “Control of the
gyrover: a single-wheel gyroscopically stabilized robot,” in
Proceedings of the IEEE International Workshop on Intelligent
Robots and Systems (IROS ’99), pp. 179–184, 1999.

[11] Y. Xu and S. K. W. Au, “Stabilization and path following of a
single wheel robot,” IEEE/ASME Transactions on Mechatronics,
vol. 9, no. 2, pp. 407–419, 2004.

[12] Y. S. Xu and Y. S. Ou, Control of One-Wheel Robots, Springer,
2005.

[13] W. Nukulwuthiopas, S. Laowattana, and T. Maneewarn,
“Dynamic modeling of a one-wheel robot by using Kane’s
method,” in Proceedings of the IEEE International Conference
on Industrial Technology, (IEEE ICIT ’02), pp. 524–529, 2002.

[14] A. Alasty and H. Pendar, “Equations of motion of a single-
wheel robot in a rough terrain,” in Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 879–
884, April 2005.

[15] Z. Zhu, A. Al Mamun, P. Vadakkepat, and T. H. Lee, “Line
tracking of the Gyrobot—a gyroscopically stabilized single-
wheeled robot,” in Proceedings of the IEEE International
Conference on Robotics and Biomimetics, (ROBIO ’06), pp.
293–298, December 2006.

[16] Z. Zhu, M. P. Naing, and A. Al-Mamun, “Integrated
ADAMS+MATLAB environment for design of an autonomous
single wheel robot,” in Proceedings of the 35th Annual Confer-
ence of the IEEE Industrial Electronics Society, (IECON ’09), pp.
2253–2258, November 2009.

[17] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically
stable single-wheeled mobile robot with inverse mouse-ball

12 Journal of Control Science and Engineering

drive,” in Proceedings of the IEEE International Conference on
Robotics and Automation, (ICRA ’06), pp. 2884–2889, May
2006.

[18] U. Nagarajan, A. Mampetta, G. A. Kantor, and R. L. Hollis,
“State transition, balancing, station keeping, and yaw control
for a dynamically stable single spherical wheel mobile robot,”
in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA’10), pp. 998–1003, 2009.

[19] U. Nagarajan, G. Kantor, and R. L. Hollis, “Trajectory planning
and control of an underactuated dynamically stable single
spherical wheeled mobile robot,” in Proceedings of the IEEE
International Conference on Robotics and Automation, (ICRA
’09), pp. 3743–3748, May 2009.

[20] P. K. Kim, J. H. Park, and S. Jung, “Experimental studies of
balancing control for a disc-typed mobile robot using a neural
controller: GYROBO,” in Proceedings of the IEEE International
Symposium on Intelligent Control, (ISIC ’10), pp. 1499–1503,
September 2010.

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 867178, 9 pages
doi:10.1155/2012/867178

Research Article

Robust Adaptive Control via Neural Linearization and
Compensation

Roberto Carmona Rodrı́guez and Wen Yu

Departamento de Control Automatico, CINVESTAV-IPN, Avenue.IPN 2508, 07360 Mexico City, DF, Mexico

Correspondence should be addressed to Wen Yu, yuw@ctrl.cinvestav.mx

Received 6 October 2011; Revised 4 January 2012; Accepted 5 January 2012

Academic Editor: Isaac Chairez

Copyright © 2012 R. C. Rodrı́guez and W. Yu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose a new type of neural adaptive control via dynamic neural networks. For a class of unknown nonlinear systems, a
neural identifier-based feedback linearization controller is first used. Dead-zone and projection techniques are applied to assure
the stability of neural identification. Then four types of compensator are addressed. The stability of closed-loop system is also
proven.

1. Introduction

Feedback control of the nonlinear systems is a big challenge
for engineer, especially when we have no complete model
information. A reasonable solution is to identify the non-
linear, then a adaptive feedback controller can be designed
based on the identifier. Neural network technique seems to
be a very effective tool to identify complex nonlinear systems
when we have no complete model information or, even,
consider controlled plants as “black box”.

Neuroidentifier could be classified as static (feed for-
ward) or as dynamic (recurrent) ones [1]. Most of publica-
tions in nonlinear system identification use static networks,
for example multilayer perceptrons, which are implemented
for the approximation of nonlinear function in the right-
side hand of dynamic model equations [2]. The main draw-
back of these networks is that the weight updating utilize
information on the local data structures (local optima) and
the function approximation is sensitive to the training dates
[3]. Dynamic neural networks can successfully overcome this
disadvantage as well as present adequate behavior in presence
of unmodeled dynamics because their structure incorporate
feedback [4–6].

Neurocontrol seems to be a very useful tool for unknown
systems, because it is model-free control, that is, this
controller does not depend on the plant. Many kinds of

neurocontrol were proposed in recent years, for example,
supervised neuro control [7] is able to clone the human
actions. The neural network inputs correspond to sensory
information perceived by the human, and the outputs
correspond to the human control actions. Direct inverse
control [1] uses an inverse model of the plant cascaded with
the plant, so the composed system results in an identity map
between the desired response and the plant one, but the
absence of feedback dismisses its robustness; internal model
neurocontrol [8] that used forward and inverse model is
within the feedback loop. Adaptive neurocontrol has two
kinds of structure: indirect and direct adaptive control.
Direct neuroadaptive may realize the neurocontrol by neural
network directly [1]. The indirect method is the combination
of the neural network identifier and adaptive control, the
controller is derived from the on-line identification [5].

In this paper we extend our previous results in [9, 10].
In [9], the neurocontrol was derived by gradient principal,
so the neural control is local optimal. No any restriction is
needed, because the controller did not include the inverse
of the weights. In [10], we assume the inverse of the
weights exists, so the learning law was normal. The main
contributions of this paper are (1) a special weights updating
law is proposed to assure the existence of neurocontrol. (2)
Four different robust compensators are proposed. By means
of a Lyapunov-like analysis, we derive stability conditions for

2 Journal of Control Science and Engineering

the neuroidentifier and the adaptive controller. We show that
the neuroidentifier-based adaptive control is effective for a
large classes of unknown nonlinear systems.

2. Neuroidentifier

The controlled nonlinear plant is given as

ẋt = f (xt,ut, t), xt ∈ �n, ut ∈ �n, (1)

where f (xt) is unknown vector function. In order to realize
indirect neural control, a parallel neural identifier is used as
in [9, 10] (in [5] the series-parallel structure is used):

˙̂xt = Ax̂t +W1,tσ(x̂t) +W2,tφ(x̂t)γ(ut), (2)

where x̂t ∈ �n is the state of the neural network,W1,t,W2,t ∈
�n×n are the weight matrices, A ∈ �n×n is a stable matrix.
The vector functions σ(·) ∈ �n, φ(·) ∈ �n×n is a diagonal
matrix. Function γ(·) is selected as ‖γ(ut)‖2 ≤ u., for
example γ(·) may be linear saturation function,

γ(ut) =
{
ut, if |ut| < b,

u, if |ut| ≥ b.
(3)

The elements of the weight matrices are selected as mono-
tone increasing functions, a typical presentation is sigmoid
function:

σi(x̂t) = ai
1 + e−bix̂t

− ci, (4)

where ai, bi, ci > 0. In order to avoid φ(x̂t) = 0, we select

φi(x̂t) = ai
1 + e−bix̂t

+ ci. (5)

Remark 1. The dynamic neural network (2) has been
discussed by many authors, for example [4, 5, 9, 10]. It can be
seen that Hopfield model is the special case of this networks
with A = diag{ai}, ai := −1/RiCi, Ri > 0 and Ci > 0. Ri and
Ci are the resistance and capacitance at the ith node of the
network, respectively.

Let us define identification error as

Δt = x̂t − xt . (6)

Generally, dynamic neural network (2) cannot follow the
nonlinear system (1) exactly. The nonlinear system may be
written as

ẋt = Axt +W0
1σ(xt) +W0

2φ(xt)γ(ut)− f̃t, (7)

where W0
1 and W0

2 are initial matrices of W1,t and W2,t

W0
1Λ

−1
1 W0T

1 ≤W1, W0
2Λ

−1
2 W0T

2 ≤W2. (8)

W1 andW2 are prior known matrices, vector function f̃t can
be regarded as modelling error and disturbances. Because

σ(·) and φ(·) are chosen as sigmoid functions, clearly they
satisfy the following Lipschitz property:

σ̃TΛ1σ̃ ≤ ΔTt DσΔt,(
φ̃tγ(ut)

)T
Λ2

(
φ̃tγ(ut)

)
≤ uΔTt DφΔt,

(9)

where σ̃ = σ(x̂t)−σ(xt), φ̃ = φ(x̂t)−φ(xt), Λ1, Λ2, Dσ , and
Dφ are known positive constants matrices. The error dynamic
is obtained from (2) and (7):

Δ̇t = AΔt+W̃1,tσ(x̂t)+W̃2,tφ(x̂t)γ(ut)+W0
1 σ̃+W0

2 φ̃γ(ut)+ f̃t,
(10)

where W̃1,t =W1,t −W0
1 , W̃2,t =W2,t −W0

2 . As in [4, 5, 9,
10], we assume modeling error is bounded.

(A1) the unmodeled dynamic f̃ satisfies

f̃ Tt Λ
−1
f f̃t ≤ η. (11)

Λ f is a known positive constants matrix.
If we define

R =W1 +W2 + Λ f , Q = Dσ + uDφ +Q0, (12)

and the matrices A and Q0 are selected to fulfill the following
conditions:

(1) the pair (A,R1/2) is controllable, the pair (Q1/2,A) is
observable,

(2) local frequency condition [9] satisfies frequency
condition:

ATR−1A−Q ≥ 1
4

[
ATR−1 − R−1A

]
R
[
ATR−1 − R−1A

]T
,

(13)

then the following assumption can be established.

(A2) There exist a stable matrix A and a strictly positive
definite matrix Q0 such that the matrix Riccati
equation:

ATP + PA + PRP +Q = 0 (14)

has a positive solution P = PT > 0.
This condition is easily fulfilled if we select A as stable

diagonal matrix. Next Theorem states the learning procedure
of neuroidentifier.

Theorem 2. Subject to assumptions A1 and A2 being satis-
fied, if the weights W1,t and W2,t are updated as

Ẇ1,t = st
[
−K1PΔtσ

T(x̂t)
]

,

Ẇ2,t = stPr
[
−K2Pφ(x̂t)γ(ut)ΔTt

]
,

(15)

Journal of Control Science and Engineering 3

where K1, K2 > 0, P is the solution of Riccati equation (14),
Pri[ω] (i = 1, 2) are projection functions which are defined as
ω = K2Pφ(x̂t)γ(ut)ΔTt

Pr[−ω] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ω, condition,

−ω +

∥∥∥W̃2,t

∥∥∥2

tr
(
W̃T

2,t(K2P)W̃2,t

)ω otherwise,
(16)

where the “condition” is ‖W̃2,t‖ < r or [‖W̃2,t‖ =
r and tr(−ωW̃2,t) ≤ 0], r < ‖W0

2‖ is a positive constant. st
is a dead-zone function

st =
{

1, if ‖Δt‖2 > λ−1
min(Q0)η,

0, otherwise,
(17)

then the weight matrices and identification error remain
bounded, that is,

Δt ∈ L∞, W1,t ∈ L∞, W2,t ∈ L∞, (18)

for any T > 0 the identification error fulfills the following
tracking performance:

1
T

∫ T
0
‖Δt‖2

Q0
dt ≤ κη +

ΔT0 PΔ0

T
, (19)

where κ is the condition number of Q0 defined as κ =
λmax(Q0)/λmin(Q0).

Proof. Select a Lyapunov function as

Vt = ΔTt PΔt + tr
{
W̃T

1,tK
−1
1 W̃1,t

}
+ tr

{
W̃T

2,tK
−1
2 W̃2,t

}
, (20)

where P ∈ �n×n is positive definite matrix. According to
(10), the derivative is

V̇t = ΔTt
(
PA + ATP

)
Δt + 2ΔTt PW̃1,tσ(x̂t)

+ 2ΔTt PW̃2,tφ(x̂t)γ(ut) + 2ΔTt P f̃t

+ 2ΔTt P
[
W∗

1 σ̃ +W∗
1 φ̃γ(ut)

]
+ 2 tr

{
˙̃W
T

1,tK
−1
1 W̃1,t

}
+ 2 tr

{
˙̃W
T

2,tK
−1
2 W̃2,t

}
.

(21)

Since ΔTt PW
∗
1 σ̃t is scalar, using (9) and matrix inequality

XTY +
(
XTY

)T ≤ XTΛ−1X + YTΛY , (22)

where X ,Y ,Λ ∈ �n×k are any matrices, Λ is any positive
definite matrix, we obtain

2ΔTt PW
∗
1 σ̃t ≤ ΔTt PW

∗
1 Λ

−1
1 W∗T

1 PΔt + σ̃Tt Λ1σ̃t

≤ ΔTt
(
PW1P +Dσ

)
Δt,

2ΔTt PW
∗
2 φ̃tγ(ut) ≤ ΔTt

(
PW2P + uDφ

)
Δt .

(23)

In view of the matrix inequality (22) and (A1),

2ΔTt P f̃t ≤ ΔTt PΛ f PΔt + η. (24)

So we have

V̇t ≤ ΔTt
[
PA + ATP + P

(
W1 +W2 + Λ f

)
P

+
(
Dσ + uDφ +Q0

)]
Δt

+ 2 tr
{

˙̃W
T

1,tK
−1
1 W̃1,t

}
+ 2ΔTt PW̃1,tσ(x̂t) + η − ΔTt Q0Δt

+ 2 tr
{

˙̃W
T

2,tK
−1
2 W̃2,t

}
+ 2ΔTt PW̃2,tφ(x̂t)γ(ut).

(25)

Since ˙̃W1,t = Ẇ1,t and ˙̃W2,t = Ẇ2,t, if we use (A2), we have

V̇t ≤ 2 tr
{[
K−1

1 ẆT
1,t + K1PΔtσ

T(x̂t)
]
W̃1,t

}
+ η − ΔTt Q0Δt

+ 2 tr
{[
K−1

2 Ẇ2,t + Pφ(x̂t)γ(ut)ΔTt
]
W̃2,t

}
.

(26)

(I) if ‖Δt‖2 > λ−1
min(Q0)η, using the updating law as (15)

we can conclude that

V̇t ≤ 2 tr
{[

Pr
[
Pφ(x̂t)γ(ut)ΔTt

]
+ Pφ(x̂t)γ(ut)ΔTt

]
W̃2,t

}
− ΔTt Q0Δt + η,

(27)

(a) if ‖W̃2,t‖ < r or [‖W̃2,t‖ = r and tr(−ωW̃2,t) ≤
0], V̇t ≤ −λmin(Q0)‖Δt‖2 + η < 0,

(b) if ‖W̃2,t‖ = r and tr(−ωW̃2,t) > 0

V̇t ≤ 2 tr

⎧⎪⎨⎪⎩K2P

∥∥∥W̃2,t

∥∥∥2

tr
(
W̃T

2,t(K2P)W̃2,t

)ωW̃2,t

⎫⎪⎬⎪⎭− ΔTt Q0Δt + η

≤ −ΔTt Q0Δt + η < 0.
(28)

Vt is bounded. Integrating (27) from 0 up to T
yields

VT −V0 ≤ −
∫ T

0
ΔTt Q0Δtdt + ηT. (29)

Because κ ≥ 1, we have∫ T
0
ΔTt Q0Δtdt ≤ V0 −VT +

∫ T
0
ΔTt Q0Δtdt ≤ V0 + ηT ,

≤ V0 + κηT ,
(30)

where κ is condition number of Q0

(II) If ‖Δt‖2 ≤ λ−1
min(Q0)η, the weights become constants,

Vt remains bounded. And

∫ T
0
ΔTt Q0Δtdt ≤

∫ T
0
λmax(Q0)‖Δt‖2dt

≤ λmax(Q0)
λmin(Q0)

ηT ≤ V0 + κηT.

(31)

From (I) and (II), Vt is bounded, (18) is realized. From
(20) and W̃1,t =W1,t −W0

1 ,W̃2,t =W2,t −W0
2 we know V0 =

ΔT0 PΔ0. Using (30) and (31), (19) is obtained. The theorem
is proved.

4 Journal of Control Science and Engineering

−̇W2,tW2,t

W∗
2

W0
2

W0
2

W2,t

r

W2,t

Figure 1: Projection algorithm.

Remark 3. The weight update law (15) uses two techniques.
The dead-zone st is applied to overcome the robust problem

caused by unmodeled dynamic f̃t. In presence of distur-
bance or unmodeled dynamics, adaptive procedures may
easily go unstable. The lack of robustness of parameters
identification was demonstrated in [11] and became a hot
issue in 1980s. Dead-zone method is one of simple and
effective tool. The second technique is projection approach
which may guarantee that the parameters remain within
a constrained region and do not alter the properties of
the adaptive law established without projection [12]. The
projection approach proposed in this paper is explained
in Figure 1. We hope to force W2,t inside the ball of
center W0

2 and radius r. If ‖W̃2,t‖ < r, we use the
normal gradient algorithm. When W2,t −W0

2 is on the ball,
and the vector W2,t points either inside or along the ball,

that is, (d/dt)‖W̃2,t‖2 = 2 tr(−ωW̃2,t) ≤ 0, we also keep this

algorithm. If tr(−ωW̃2,t) > 0, tr[(−ω + (‖W̃2,t‖2
/ tr(W̃T

2,t

(K2P)W̃2,t))ω)W̃2,t] < 0, so (d/dt)‖W̃2,t‖2
< 0,W2,t are di-

rected toward the inside or the ball, that is, W2,t will never
leave the ball. Since r < ‖W0

2‖,W2,t /= 0.

Remark 4. Figure 1 and (7) show that the initial conditions
of the weights influence identification accuracy. In order to
find good initial weights, we design an offline method. From
above theorem, we know the weights will convergence to a
zone. We use any initial weights, W0

1 and W0
2, after T0, the

identification error should become smaller, that is,W1,T0 and
W2,T0 are better than W0

1 and W0
2 . We use following steps to

find the initial weights.

(1) Start from any initial value for W0
1 = W1,0, W0

2 =
W2,0.

(2) Do identification until training time arrives T0.

(3) If the ‖Δ(T0)‖ < ‖Δ(0)‖, letW1,T0 ,W2,T0 as a newW0
1

and W0
2 , go to 2 to repeat the identification process.

(4) If the ‖Δ(T0)‖ ≥ ‖Δ(0)‖, stop this offline identifica-
tion, now W1,T0 , W2,T0 are the final initial weights.

Remark 5. Since the updating rate is KiP (i = 1, 2), and Ki
can be selected as any positive matrix, the learning process
of the dynamic neural network (15) is free of the solution of
Riccati equation (14).

Remark 6. Let us notice that the upper bound (19) turns
out to be “sharp”, that is, in the case of not having any

uncertainties (exactly matching case: f̃ = 0) we obtain η = 0
and, hence,

lim sup
T→∞

1
T

∫ T
0
‖Δt‖2

Q0
dt = 0 (32)

from which, for this special situation, the asymptotic stability
property (‖Δt‖ →

t→∞ 0) follows. In general, only the

asymptotic stability “in average” is guaranteed, because the
dead-zone parameter η can be never set zero.

3. Robust Adaptive Controller Based on
Neuro Identifier

From (7) we know that the nonlinear system (1) may be
modeled as

ẋt = Axt +W∗
1 σ(xt) +W∗

2 φ(xt)γ(ut) + f̃

= Axt +W1,tσ(x̂t) +W2,tφ(xt)γ(ut)

+ f̃ +W̃1,tσ(x̂t)+W̃2,tφ(xt)γ(ut)+W∗
1,t σ̃t+W

∗
1 φ̃γ(ut).

(33)

Equation (33) can be rewritten as

ẋt = Axt +W1,tσ(x̂t) +W2,tφ(xt)γ(ut) + dt , (34)

where

dt = f̃ + W̃1,tσ(x̂t) + W̃2,tφ(xt)γ(ut) +W∗
1,tσ̃t +W∗

1 φ̃γ(ut).
(35)

If updated law of W1,t and W2,t is (15), W1,t and W2,t are
bounded. Using the assumption (A1), dt is bounded as d =
supt‖dt‖.

The object of adaptive control is to force the nonlinear
system (1) following a optimal trajectory x∗t ∈ �r which is
assumed to be smooth enough. This trajectory is regarded as
a solution of a nonlinear reference model:

x∗t = ϕ
(
x∗t , t

)
, (36)

with a fixed initial condition. If the trajectory has points
of discontinuity in some fixed moments, we can use any
approximating trajectory which is smooth. In the case of
regulation problem ϕ(x∗t , t) = 0, x∗(0) = c, c is constant.
Let us define the sate trajectory error as

Δ∗t = xt − x∗t . (37)

Journal of Control Science and Engineering 5

From (34) and (36) we have

Δ̇∗t = Axt +W1,tσ(x̂t) +W2,tφ(xt)γ(ut) + dt − ϕ
(
x∗t , t

)
.

(38)

Let us select the control action γ(ut) as linear form

γ(ut) = U1,t +
[
W2,tφ(x̂t)

]−1
U2,t, (39)

where U1,t ∈ �n is direct control part and U2,t ∈ �n is a
compensation of unmodeled dynamic dt . As ϕ(x∗t , t), x∗t ,
W1,tσ(x̂t) and W2,tφ(x̂t) are available, we can select U1,t as

U1,t =
[
W2,tφ(x̂t)

]−1[
ϕ
(
x∗t , t

)− Ax∗t −W1,tσ(x̂t)
]
. (40)

Because φ(x̂t) in (5) is different from zero, and W2,t /= 0 by
the projection approach in Theorem 2. Substitute (39) and
(40) into (38), we have So the error equation is

Δ̇∗t = AΔ∗t +U2,t + dt . (41)

Four robust algorithms may be applied to compensate dt .

(A) Exactly Compensation. From (7) and (2) we have

dt =
(
ẋt − ˙̂xt

)
− A(xt − x̂t). (42)

If ẋt is available, we can select U2,t as Ua
2,t = −dt , that is,

Ua
2,t = A(xt − x̂t)−

(
ẋt − ˙̂xt

)
. (43)

So, the ODE which describes the state trajectory error is

Δ̇∗t = AΔ∗t . (44)

Because A is stable, Δ∗t is globally asymptotically stable.

lim
t→∞Δ

∗
t = 0. (45)

(B) An Approximate Method. If ẋt is not available, an
approximate method may be used as

ẋt = xt − xt−τ
τ

+ δt, (46)

where δt > 0, is the differential approximation error. Let us
select the compensator as

Ub
2,t = A(xt − x̂t)−

(
xt − xt−τ

τ
− ˙̂xt

)
. (47)

So Ub
2,t = Ua

2,t + δt, (44) become

Δ̇∗t = AΔ∗t + δt . (48)

Define Lyapunov-like function as

Vt = Δ∗Tt P2Δ
∗
t , P2 = PT2 > 0. (49)

The time derivative of (49) is

V̇t = Δ∗t
(
ATP2 + P2A

)
Δ∗t + 2Δ∗Tt P2δt, (50)

2ΔTt P2δt can be estimated as

2Δ∗Tt P2δt ≤ Δ∗Tt P2ΛP2Δ
∗
t + δTt Λ

−1δt (51)

where Λ is any positive define matrix. So (50) becomes

V̇t≤Δ∗t
(
ATP2 +P2A+P2ΛP2 +Q2

)
Δ∗t +δTt Λ

−1δt−Δ∗Tt Q2Δ
∗
t ,

(52)

where Q is any positive define matrix. Because A is stable,
there exit Λ and Q2 such that the matrix Riccati equation:

ATP2 + P2A + P2ΛP2 +Q2 = 0 (53)

has positive solution P2 = PT2 > 0. Defining the following
seminorms: ∥∥Δ∗t ∥∥2

Q2
= lim

T→∞
1
T

∫ T
0
Δ∗t Q2Δ

∗
t dt, (54)

where Q2 = Q2 > 0 is the given weighting matrix, the
state trajectory tracking can be formulated as the following
optimization problem:

Jmin = min
ut

J , J = ∥∥xt − x∗t ∥∥2
Q2
. (55)

Note that

lim
T→∞

1
T

(
Δ∗T0 P2Δ

∗
0

)
= 0 (56)

based on the dynamic neural network (2), the control law
(47) can make the trajectory tracking error satisfies the
following property: ∥∥Δ∗t ∥∥2

Q2
≤ ‖δt‖2

Λ−1 . (57)

A suitable selection of Λ and Q2 can make the Riccati
equation (53) has positive solution and make ‖Δ∗t ‖2

Q2
small

enough if τ is small enough.

(C) Sliding Mode Compensation. If ẋt is not available,
the sliding mode technique may be applied. Let us define
Lyapunov-like function as

Vt = Δ∗Tt P3Δ
∗
t , (58)

where P3 is a solution of the Lyapunov equation:

ATP3 + P3A = −I. (59)

Using (41) whose time derivative is

V̇t = Δ∗t
(
ATP3 + P3A

)
Δ∗t + 2Δ∗Tt P3U2,t + 2Δ∗Tt P3dt . (60)

According to sliding mode technique, we may select u2,t as

Uc
2,t = −kP−1

3 sgn
(
Δ∗t
)
, k > 0, (61)

where k is positive constant,

sgn
(
Δ∗t
) =

⎧⎪⎪⎨⎪⎪⎩
1 Δ∗t > 0

0 Δ∗t = 0

−1 Δ∗t < 0

sgn
(
Δ∗t
) = [sgn

(
Δ∗1,t

)
, . . . sgn

(
Δ∗n,t

)]T ∈ �n.

(62)

6 Journal of Control Science and Engineering

Substitute (59) and (61) into (60)

V̇t = −
∥∥Δ∗t ∥∥2 − 2k

∥∥Δ∗t ∥∥ + 2Δ∗Tt Pdt

≤ −∥∥Δ∗t ∥∥2 − 2k
∥∥Δ∗t ∥∥ + 2λmax(P)

∥∥Δ∗t ∥∥‖dt‖
= −∥∥Δ∗t ∥∥2 − 2

∥∥Δ∗t ∥∥(k − λmax(P)‖dt‖).

(63)

If we select

k > λmax(P3)d, (64)

where d is define as (35), then V̇t < 0. So,

lim
t→∞Δ

∗
t = 0. (65)

(D) Local Optimal Control. If ẋt is not available and ẋt is not
approximated as (B). In order to analyze the tracking error
stability, we introduce the following Lyapunov function:

Vt
(
Δ∗t
) = Δ∗t P4Δ

∗
t , P4 = PT4 > 0. (66)

Using (41), whose time derivative is

V t = Δ∗t
(
ATP4 + P4A

)
Δ∗t + 2Δ∗Tt P4U2,t + 2Δ∗Tt P4dt , (67)

2Δ∗Tt P4dt can be estimated as

2Δ∗Tt P4dt ≤ Δ∗t P4Λ
−1
4 P4Δ

∗
t + dTt Λ4dt . (68)

Substituting (68) in (67), adding and subtracting the term
Δ∗Tt Q4Δ

∗
t and UdT

2,t R4U
d
2,t with Q4 = QT

4 > 0 and R4 = RT4 >
0, we formulate

V t ≤ Δ∗t
(
ATP4 + P4A + P4Λ4P4 +Q4

)
Δ∗t

+ 2Δ∗Tt P4U
d
2,t +UdT

2,t R4U
d
2,t + dTt Λ

−1
4 dt − Δ∗t QΔ

∗
t

−UdT
2,t R4U

d
2,t .

(69)

Because A is stable, there exit Λ4 and Q4 such that the matrix
Riccati equation:

ATP4 + P4A + P4Λ4P4 +Q4 = 0. (70)

So (69) is

V t ≤ −
(∥∥Δ∗t ∥∥2

Q4
+
∥∥∥Ud

2,t

∥∥∥2

R4

)
+ Ψ

(
Ud

2,t

)
+ dTt Λ

−1
4 dt, (71)

where

Ψ
(
Ud

2,t

)
= 2Δ∗Tt P4U

d
2,t +UdT

2,t R4U
d
2,t . (72)

We reformulate (71) as∥∥Δ∗t ∥∥2
Q4

+
∥∥∥Ud

2,t

∥∥∥2

R4
≤ Ψ

(
Ud

2,t

)
+ dTt Λ

−1
4 dt −V t . (73)

Then, integrating each term from 0 to τ, dividing each term
by τ, and taking the limit, for τ → ∞ of these integrals’
supreme, we obtain

lim
T→∞

1
T

∫ T
0
Δ∗Tt Q4Δ

∗
t dt + lim

T→∞
1
T

∫ T
0
UdT

2,t R4U
d
2,tdt

≤ lim
T→∞

1
T

∫ T
0
dTt Λ

−1
4 dtdt + lim

T→∞
1
T

∫ T
0
Ψ
(
Ud

2,t

)
dt

+ lim
T→∞

1
T

∫ T
0

[
−V t

]
dt.

(74)

In the view of definitions of the seminorms (55), we have

∥∥Δ∗t ∥∥2
Q4

+
∥∥∥Ud

2,t

∥∥∥2

R4
≤ ‖dt‖2

Λ−1
4

+ lim
T→∞

1
T

∫ T
0
Ψ
(
Ud

2,t

)
dt. (75)

It fixes a tolerance level for the trajectory-tracking error. So,
the control goal now is to minimize Ψ(Ud

2,t) and ‖dt‖2
Λ−1

4
.

To minimize ‖dt‖2
Λ−1

4
, we should minimize Λ−1

4 . From (13),
if select Q4 to make (70) have solution, we can choose the
minimal Λ−1

4 as

Λ−1
4 = A−TQ4A

−1. (76)

To minimizing Ψ(Ud
2,t), we assume that, at the given t

(positive), x∗(t) and x̂(t) are already realized and do not
depend on Ud

2,t. We name the Ud∗
2,t (t) as the locally optimal

control, because it is calculated based only on “local”
information. The solution of this optimization problem is
given by

minΨ
(
ud2,t

)
= 2Δ∗Tt P4u

d
2,t +UdT

2,t R4U
d
2,t .

subject:A0

(
U1,t +Ud

2,t

)
≤ B0.

(77)

It is typical quadratic programming problem. Without
restriction U∗ is selected according to the linear squares
optimal control law:

ud2,t = −2R−1
4 P4Δ

∗
t . (78)

Remark 7. Approaches (A) and (C) are exactly compen-
sations of dt, Approach (A) needs the information of ẋt.
Because Approach (C) uses the sliding mode control Uc

2,t

that is inserted in the closed-loop system, chattering occurs
in the control input which may excite unmodeled high-
frequency dynamics. To eliminate chattering, the boundary
layer compensator can be used, it offers a continuous
approximation to the discontinuous sliding mode control
law inside the boundary layer and guarantees the output
tracking error within any neighborhood of the origin [13].

Finally, we give following design steps for the robust
neurocontrollers proposed in this paper.

(1) According to the dimension of the plant (1), design
a neural networks identifier (2) which has the same
dimension as the plant. In (2), A can be selected a
stable matrix. A will influence the dynamic response
of the neural network. The bigger eigenvalues of
A will make the neural network slower. The initial
conditions for W1,t and W2,t are obtained as in
Remark 4.

(2) Do online identification. The learning algorithm is
(15) with the dead zone in Theorem 2. We assume we
know the upper bound of modeling error, we can give
a value for η. Q0 is chosen such that Riccati equation
(14) has positive defined solution,R can be selected as
any positive defined matrix because Λ−1

1 is arbitrary
positive defined matrix. The updating rate in the
learning algorithm (15) isK1P, andK1 can be selected
as any positive defined matrix, so the learning process

Journal of Control Science and Engineering 7

is free of the solution P of the Riccati equations (14).
The larger K1P is selected, the faster convergence the
neuroidentifier has.

(3) Use robust control (39) and one of compensation of
(43), (47), (61), and (78).

4. Simulation

In this section, a two-link robot manipulator is used to
illustrate the proposed approach. Its dynamics of can be
expressed as follows [14]:

M(θ)
..

θ +V
(
θ, θ̇

)
θ̇ +G(θ) + Fd

(
θ̇
)
= τ, (79)

where θ ∈ �2 consists of the joint variables, θ̇ ∈ �2

denotes the links velocity, τ is the generalized forces, M(θ)
is the intertie matrix, V(θ, θ̇) is centripetal-Coriolis matrix,
and G(θ) is gravity vector, Fd(θ̇) is the friction vector. M(θ)
represents the positive defined inertia matrix. If we define
x1 = θ = [θ1, θ2] is joint position, x2 = θ̇ is joint velocity
of the link, xt = [x1, x2]T , (79) can be rewritten as state space
form [15]:

ẋ1 = x2,

ẋ2 = H(xt,ut),
(80)

where ut = τ is control input,

H(xt,ut) = −M(x1)−1[C(x1, x2)ẋ1 +G(x1) + Fẋ1 + ut].
(81)

Equation (80) can also be rewritten as

ẋ1 =
∫ t

0
H(xτ ,uτ)dτ +H(x0,u0). (82)

So the dynamic of the two-link robot (79) is in form of (1)
with

f (xt,ut, t) =
∫ t

0
H(xτ ,uτ)dτ +H(x0,u0). (83)

The values of the parameters are listed below: m1 = m2 =
1.53 kg, l1 = l2 = 0.365 m, r1 = r2 = 0.1, v1 = v2 =
0.4, k1 = k2 = 0.8. Let define x̂ = [θ̂1, θ̂2]

T
, and u =

[τ1, τ2]T , the neural network for control is represented as

˙̂x = Ax̂ +W1,tσ(x̂t) +W2,tφ(x̂)u. (84)

We select A = [−1.5 0
0 −1

]
, φ(x̂t) = diag(φ1(x̂1),φ2(x̂2)),

σ(x̂t) = [σ2(x̂2), σ2(x̂2)]T

σi(x̂i) = 2(
1 + e−2x̂i

) − 1
2

,

φi(x̂i) = 2(
1 + e−2x̂i

) +
1
2

,
(85)

where i = 1, 2. We used Remark 4 to obtain a suitable W0
1

and W0
2 , start from random values, T0 = 100. After 2 loops,

‖Δ(T0)‖ does not decrease, we let theW1,300 andW2,300 as the

0 500 1000 1500 2000 2500 3000

0

2

4

6

PD control

Neurocontrol

−6

−4

−2

Figure 2: Tracking control of θ1 (method B).

new W0
1 =

[
0.51 3.8
−2.3 1.51

]
and W0

2 =
[

3.12 −2.78
5.52 −4.021

]
. For the update

laws (15), we select η = 0.1, r = 5, K1P = K1P =
[

5 0
0 2

]
. If we

select the generalized forces as

τ1 = 7 sin t, τ2 = 0. (86)

Now we check the neurocontrol. We assume the robot
is changed at t = 480, after that m1 = m2 = 3.5 kg, l1 =
l2 = 0.5 m, and the friction becomes disturbance as
D sin((π/3)t), D is a positive constant. We compare neuro-
control with a PD control as

τPD = −10(θ − θ∗)− 5
(
θ̇ − θ̇∗

)
, (87)

where θ∗1 = 3; θ∗2 is square wave. So ϕ(θ∗) = θ̇∗ = 0.
The neurocontrol is (39)

τneuro =
[
W2,tφ(x̂)

]+[
ϕ
(
x∗t , t

)− Ax∗t −W1,tσ(x̂)
]

+
[
W2,tφ(x̂)

]+
U2,t .

(88)

U2,t is selected to compensate the unmodeled dynamics. Sine
f is unknown method. (A) exactly compensation, cannot be
used.

(B) D = 1. The link velocity θ̇ is measurable, as in (43),

U2,t = A
(
θ − θ̂

)
−
(
θ̇ − ˙̂

θ
)
. (89)

The results are shown in Figures 2 and 3.
(C) D = 0.3. θ̇ is not available, the sliding mode

technique may be applied. we select u2,t as (61).

u2,t = −10× sgn(θ − θ∗). (90)

The results are shown in Figures 4 and 5.
(D) D = 3. We select Q = 1/2, R = 1/20, Λ = 4.5, the

solution of following Riccati equation:

ATP + PA + PΛPt +Q = −Ṗ (91)

is P = [
0.33 0

0 0.33

]
. If without restriction τ, the linear squares

optimal control law:

u2,t = −2R−1P(θ − θ∗) =
[
−20 0

0 −20

]
(θ − θ∗). (92)

8 Journal of Control Science and Engineering

0 500 1000 1500 2000 2500 3000

0

2

4

Neurocontrol

PD control

−10

−8

−6

−2

−4

Figure 3: Tracking control of θ2 (method B).

0 500 1000 1500 2000 2500

0

2

4

6

Neurocontrol

PD control

−6

−4

−2

Figure 4: Tracking control of θ1 (method C).

0 500 1000 1500 2000 2500

0

2

4

6

8

Neurocontrol
PD control

−10

−8

−6

−4

−2

Figure 5: Tracking control of θ2 (method C).

0 100 200 300 400 500 600 700 800

0

2

4

6

8
PD control

Neurocontrol

−6

−4

−2

Figure 6: Tracking control of θ1 (method D).

−10

−8

−6

−4

−2

0 100 200 300 400 500 600 700 800

0

2

4

6

Neurocontrol

PD control

Figure 7: Tracking control of θ2 (method D).

The results of local optimal compensation are shown in
Figures 6 and 7.

We may find that the neurocontrol is robust and effective
when the robot is changed.

5. Conclusion

By means of Lyapunov analysis, we establish bounds for both
the identifier and adaptive controller. The main contribu-
tions of our paper is that we give four different compensation
methods and prove the stability of the neural controllers.

References

[1] K. S. Narendra and K. Parthasarathy, “Identi cation and
control for dynamic systems using neural networks,” IEEE
Transactions on Neural Networks, vol. 1, pp. 4–27, 1990.

[2] S. Jagannathan and F. L. Lewis, “Identi cation of nonlinear
dynamical systems using multilayered neural networks,” Auto-
matica, vol. 32, no. 12, pp. 1707–1712, 1996.

[3] S. Haykin, Neural Networks-A comprehensive Foundation,
Macmillan College, New York, NY, USA, 1994.

Journal of Control Science and Engineering 9

[4] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodou-
lou, and P. A. Ioannou, “High-order neural network structures
for identification of dynamical systems,” IEEE Transactions on
Neural Networks, vol. 6, no. 2, pp. 422–431, 1995.

[5] G. A. Rovithakis and M. A. Christodoulou, “Adaptive control
of unknown plants using dynamical neural networks,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 24, no. 3,
pp. 400–412, 1994.

[6] W. Yu and X. Li, “Some new results on system identi cation
with dynamic neural networks,” IEEE Transactions on Neural
Networks, vol. 12, no. 2, pp. 412–417, 2001.

[7] E. Grant and B. Zhang, “A neural net approach to supervised
learning of pole placement,” in Proceedings of the IEEE
Symposium on Intelligent Control, 1989.

[8] K. J. Hunt and D. Sbarbaro, “Neural networks for nonlinear
internal model control,” IEE Proceedings D—Control Theory
and Applications, vol. 138, no. 5, pp. 431–438, 1991.

[9] A. S. Poznyak, W. Yu, E. N. Sanchez, and J. P. Perez, “Nonlinear
adaptive trajectory tracking using dynamic neural networks,”
IEEE Transactions on Neural Networks, vol. 10, no. 6, pp. 1402–
1411, 1999.

[10] W. Yu and A. S. Poznyak, “Indirect adaptive control via parallel
dynamic neural networks,” IEE Proceedings Control Theory and
Applications, vol. 146, no. 1, pp. 25–30, 1999.

[11] B. Egardt, Stability of Adaptive Controllers, vol. 20 of Lecture
Notes in Control and Information Sciences, Springer, Berlin,
Germany, 1979.

[12] P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice-
Hall, Upper Saddle River, NJ, USA, 1996.

[13] M. J. Corless and G. Leitmann, “Countinuous state feed-
back guaranteeing uniform ultimate boundness for uncertain
dynamic systems,” IEEE Transactions on Automatic Control,
vol. 26, pp. 1139–1144, 1981.

[14] F. L. Lewis, A. Yeşildirek, and K. Liu, “Multilayer neural-net
robot controller with guaranteed tracking performance,” IEEE
Transactions on Neural Networks, vol. 7, no. 2, pp. 388–399,
1996.

[15] S. Nicosia and A. Tornambe, “High-gain observers in the
state and parameter estimation of robots having elastic joins,”
System & Control Letter, vol. 13, pp. 331–337, 1989.

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 761019, 11 pages
doi:10.1155/2012/761019

Research Article

Dynamics Model Abstraction Scheme Using
Radial Basis Functions

Silvia Tolu,1 Mauricio Vanegas,2 Rodrigo Agı́s,1 Richard Carrillo,1 and Antonio Cañas1

1 Department of Computer Architecture and Technology, CITIC ETSI Informática y de Telecomunicación, University of Granada, Spain
2 PSPC Group, Department of Biophysical and Electronic Engineering (DIBE), University of Genoa, Italy

Correspondence should be addressed to Silvia Tolu, stolu@atc.ugr.es

Received 27 July 2011; Accepted 24 January 2012

Academic Editor: Wen Yu

Copyright © 2012 Silvia Tolu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a control model for object manipulation. Properties of objects and environmental conditions influence the
motor control and learning. System dynamics depend on an unobserved external context, for example, work load of a robot
manipulator. The dynamics of a robot arm change as it manipulates objects with different physical properties, for example, the
mass, shape, or mass distribution. We address active sensing strategies to acquire object dynamical models with a radial basis
function neural network (RBF). Experiments are done using a real robot’s arm, and trajectory data are gathered during various
trials manipulating different objects. Biped robots do not have high force joint servos and the control system hardly compensates
all the inertia variation of the adjacent joints and disturbance torque on dynamic gait control. In order to achieve smoother control
and lead to more reliable sensorimotor complexes, we evaluate and compare a sparse velocity-driven versus a dense position-driven
control scheme.

1. Introduction

Current research of biomorphic robots can highly benefit
from simulations of advance learning paradigms [1–5] and
also from knowledge acquired from biological systems [6–8].
The basic control of robot actuators is usually implemented
by adopting a classic scheme [9–14]: (a) the desired trajec-
tory, in joint coordinates, is obtained using the inverse kine-
matics [12, 14, 15] and (b) efficient motor commands drive,
for example, an arm, making use of the inverse dynamics
model or using high power motors to achieve rigid move-
ments. Different controlling schemes using hybrid posi-
tion/velocity and forces have been introduced mainly for
industrial robots [9, 10]. In fact, industrial robots are
equipped with digital controllers, generally of PID type with
no possibility of modifying the control algorithms to im-
prove their performance. Robust control (control using PID
paradigms [12, 14–19]) is very power consuming and highly
reduces autonomy of nonrigid robots. Traditionally, the
major application of industrial robots is related to tasks that
require only position control of the arm. Nevertheless, there
are other important robotic tasks that require interaction

between the robot’s end-effector and the environment. Sys-
tem dynamics depend on an unobserved external context
[3, 20], for example, work load of a robot manipulator.

Biped robots do not have high force joint servos and the
control system hardly compensates all the inertia variation of
the adjacent joints and disturbance torque on dynamic gait
control [21]. Motivated by these concerns and the promising
preliminary results [22], we evaluate a sparse velocity-driven
control scheme. In this case, smooth motion is naturally
achieved, cutting down jerky movements and reducing the
propagation of vibrations along the whole platform. Includ-
ing the dynamic model into the control scheme becomes
important for an accurate manipulation, therefore, it is
crucial to study strategies to acquire it. There are other bioin-
spired model abstraction approaches that could take advan-
tage of this strategy [23–26]. Conventional artificial neural
networks [27, 28] have been also applied to this issue [29–
31]. In biological systems [6–8], the cerebellum [32, 33]
seems to play a crucial role on model extraction tasks dur-
ing manipulation [12, 34–36]. The cerebellar cortex has a
unique, massively parallel modular architecture [34, 37, 38]
that appears to be efficient in the model abstraction [11, 35].

2 Journal of Control Science and Engineering

Human sensorimotor recognition [8, 12, 37] continually
learns from current and past sensory experiences. We set
up an experimental methodology using a biped robot’s arm
[34, 36] which has been equipped, at its last arm-limb, with
three acceleration sensors [39] to capture the dynamics of
the different movements along the three spatial dimensions.
In human body, there are skin sensors specifically sensitive
to acceleration [8, 40]. They represent haptic sensors and
provide acceleration signals during the arm motion. In order
to be able to abstract a model from object manipulation,
accurate data of the movements are required. We acquire
the position and the acceleration along desired trajectories
when manipulating different objects. We feed these data into
the radial basis function network (RBF) [27, 31]. Learning
is done off-line through the knowledge acquisition module.
The RBF learns the dynamic model, that is, it learns to react
by means of the acceleration in response to specific input
forces and to reduce the effects of the uncertainty and non-
linearity of the system dynamics [41, 42].

To sum up, we avoid adopting a classic regular point-
to-point strategy (see Figure 1(b)) with fine PID control
modules [11, 14, 15] that drive the movement along a finely
defined trajectory (position-based). This control scheme
requires high power motors in order to achieve rigid move-
ments (when manipulating heavy objects) and the whole
robot augments vibration artefacts that make difficult accu-
rate control. Furthermore, these platform jerks induce high
noise in the embodied accelerometers. Contrary to this
scheme, we define the trajectory by a reduced set of target
points (Figure 1(c)) and implement a velocity-driven control
strategy that highly reduces jerks.

2. Control Scheme

The motor-driver controller and the communication inter-
face are implemented on an FPGA (Spartan XC31500 [43]
embedded on the robot) (Figure 1(a)). Robonova-I [44] is
a fully articulating mechanical biped robot, 0.3 m, 1.3 kg,
controlled with sixteen motors [44]. We have tested two
control strategies for a specific “L” trajectory previously
defined for the robot’s arm controlled with three motors (one
in the shoulder and two in the arm, see Figure 2. This whole
movement along three joints makes use of three degrees of
freedom during the trajectory. The movement that involves
the motor at the last arm-limb is the dominant one, as is
evidenced from the sensorimotor values in Figure 4(b).

2.1. Control Strategies. The trajectory is defined in different
ways for the two control strategies.

2.1.1. Dense Position-Driven. The desired joint trajectory is
finely defined by a set of target positions (Pi) that regularly
sample the desired movement (see Figure 1(b)).

2.1.2. Sparse Velocity-Driven. In this control strategy, the
joint trajectory definition is carried out by specifying only
positions related to changes in movement direction.

During all straight intervals, between a starting position
P1 and the next change of direction Pcd, we proceed to com-
mand the arm by modulating the velocity towards Pcd

(see Figure 1(c)). Velocities (Vn) are calculated taking into
account the last captured position and the time step in
which the position has been acquired. Each target velocity for
period T is calculated with the following expression, Vn =
(Pcd − Pn)/T . The control scheme applies a force propor-
tional to the target velocity. Figure 1(d(B)) illustrates how a
smoother movement is achieved using sparse velocity-driven
control.

The dense position-driven strategy reveals noisy vibra-
tions and jerks because each motor always tries to get the
desired position in the minimum time, whereas it would be
better to efficiently adjust the velocity according to the whole
target trajectory. The second strategy defines velocities dy-
namically along the trajectory as described above. Therefore,
we need to sample the position regularly to adapt the velocity.

2.2. Modelling Robot Dynamics. The dynamics of a robot arm
have a linear relationship to the inertial properties of the
manipulator joints [45, 46]. In other words, for a specific
context r they can be written in the form (1),

τ = Υ
(
q, q̇, q̈

) · πr , (1)

where q, q̇, and q̈ are joint angles, velocities, and accelerations
respectively. Equation (1), based on fundamentals of robot
dynamics [47], splits the dynamics in two terms. Υ(q, q̇, q̈)
is a term that depends on kinematics properties of the arm
such as direction of the axis of rotation of joints, and link
lengths. Term πr is a high-dimensional vector containing all
inertial parameters of all links of the arm [45]. Now, let us
consider that the manipulated objects are attached at the
end of the arm, so we model the dynamics of the arm as
the manipulated object being the last link of the arm. Then,
manipulating different objects is equivalent to changing the
physical properties of the last link of the arm. The first
term of the equation remains constant in different models.
It means that all kinematic quantities of the arm remain the
same between different contexts. Under this assumption, we
could use a set of models with known inertial parameters
to infer a predictive model (RBF) of dynamics [27, 31, 48]
for any possible context. From another point of view, the
previous dynamic Equation (1) could be written in the form
(2):

τ = A
(
q
)(
q̈
)

+H
(
q, q̇

)
. (2)

Each dynamic term is nonlinear and coupled [49] where
A(q) is the matrix of inertia, symmetric, and positive and
H(q, q̇) includes Coriolis, gravitational, and centrifugal for-
ces. A(q) could be inverted for each robot configuration. Ap-
proximating A(q) = Â(q) and H(q, q̇) = Ĥ(q, q̇), we obtain
(3):

τ̂ = Â
(
q
) · u + Ĥ

(
q, q̇

)
, (3)

Journal of Control Science and Engineering 3

Change of direction

Sparse velocity-driven trajectory
Smooth velocity-driven trajectory

Change of direction
(d.1) (d.2)

P1
Pi P f

T

Δp
P1

T

P f

RobotHardware

FPGA board

Embedded real-time
control

Host

RBF modeling
off-line learning

Software

(a)

(b) (c)

Pi = Pcd

Figure 1: (a) Computing scheme. An FPGA processing platform embeds all the real-time control interfaces. The robot is connected to the
FPGA which receives commands from the host PC. The robot is equipped with three accelerometers in its arm. The computer captures the
sensor data. A RBF is used for learning the objects models from sensorimotor complexes. (b) Dense position-driven scheme. A motor moves
from an initial position P1 to a final position P f temporally targeting each intermediate point Pi along this trajectory. (c) Sparse velocity-
driven scheme. For each position Pi indicated above, a target velocity is calculated for a motor with a time step T of 0.015 s. Using a fixed
sampling frequency for obtaining feedback position, we calculate the distance ΔP from this current position to a position Pcd corresponding
to a change of direction. (d(A)) Dense position-driven trajectory. The trajectory is defined in terms of regularly sampled intermediate points
(dashed line). (d(B)) The thinner continuous line represents the real curve executed by the robot’s arm in the space under the sparse velocity-
driven control. The black arrows indicate points in which changes of direction take place. The thicker continuous line corresponds to the
smooth velocity-driven trajectory executed anticipating the points in which changes of direction are applied before the arm reaches them.

where u is a new control vector. Â(q) and Ĥ(q, q̇) are esti-
mations of the real robot terms. So we have the following
equivalence relation (4):

u = q̈. (4)

Component u is influenced only by a second-order term, it
depends on the joint variables (q, q̇), independently from
the movement of each joint. To sum up, we replaced the
nonlinear and coupled dynamic expressions with a second-
order linear system of noncoupled equations. The inputs to
the RBF network are the positions and velocities of the robot
joints, while the outputs are the accelerations. The input-
output relationship is in accordance with the equations of
motion. In this work, we propose and show the RBF to be
useful in approximating the unknown nonlinearities of the
dynamical systems [41, 42, 50–56] through the control signal
(4) found for the estimation method for the dynamics of the
joints of a robot.

2.3. The RBF-Based Modelling. The RBF function is defined
as (5):

z(x) = φ
(∥∥x − μ∥∥), (5)

where x is the n-dimensional input vector, μ is an n-dimen-
sional vector called centre of the RBF, ‖ · ‖ is the Euclidean
distance, and φ is the RBF outline.

We built our model as a linear combination of N RBF
functions with N centres. The RBF output is given by (6):

ŷ(x) =
N∑
j=1

βjzj(x), (6)

where Bj is the weight of the jth radial function, centered at
μ and with an activation level zj .

RBF has seven inputs: two per each of the three motors
in the robot arm (joints) and one for the label of the tra-
jectory which is executed (Tr). Three inputs encode the
difference between the current joint position and the next

4 Journal of Control Science and Engineering

Position acquisition modules
motor-driver controller circuits

(PWM generation)

Motion plan
synchronisation
batch learning

1

2

3

PWM

Figure 2: Diagram of the whole system architecture. The robot’s picture in the left is showing the different joints of the 3 DOF Robonova arm
involved in the movement. The PC applied appropriate motor commands to each joint of the arm at all times during the movement to follow
the desired trajectory. To relieve the computer from interface computation and allow real-time communication with the robot, an FPGA
board containing position acquisition modules and motor-driver controller circuits with PWM (pulse with modulation) was connected to
the robot. The communication task between devices and the operations described above was synchronised by the computer speeding up the
process. Finally, the batch learning with RBF of sensorimotor data collected during the movements was performed in the PC. The dataset
was split up into training data (75%) and test data (25%).

RBF
network

S1

S2
V1
V2

V3

D1

D2

D3

Tr

In
pu

t

O
u

tp
u

t

(a)

OBJ

S1r S2r

In
pu

t

O
u

tp
u

t
V1
V2

V3

D1

D2
D3

Tr

RBF
network

(b)

Figure 3: RBF inputs and outputs. (a) The network is used for function approximation of the sensor responses to specific inputs along
different trajectories. (b) This network includes an output label (OBJ) for object classification and uses as inputs the actual sensor responses
(connected to the upper part of the block).

target position in each of the joints (D1, D2, and D3). The
other three inputs (V1, V2, and V3) encode the velocity com-
puted on the basis of the previous three inputs. We aim to
model the acceleration sensory outputs (S1 and S2) (S3 does
not provide further information than S2 for the movement
trajectory defined) and we also include one output (label) to
classify different kinds of objects (OBJ). See the illustrative
block in Figure 3(b). Therefore, we use two RBF networks.
The first one (see Figure 3(a)) aims to approximate the

acceleration sensor responses to the input motor commands.
The second one (see Figure 3(b)) aims to discriminate object
models (classification task) using as inputs the motor com-
mands and also the actual acceleration estimations given by
the sensors [57]. During learning, we feed the inputs and
actual outputs of the training set in the network [27, 31].
During the test stage, we evaluate the error obtained from the
sensors [39] that indicates how accurate the acquired model
is and, therefore, how stable, predictable, and repeatable is

Journal of Control Science and Engineering 5

0 500 1000 1500 2000
120

140

160

180

200

Time (ms)

Position-driven versus velocity-driven trajectory

Motor 2

Change motor position

Motor 1

Jo
in

t
co

or
di

n
at

es
 p

os
it

io
n

s
(d

eg
)

m
ot

or
s

1
an

d
2

Position-driven
Velocity-driven

(a)

94

96

98

100

102

104

106
Position-driven versus velocity-driven trajectory

0 500 1000 1500 2000

Time (ms)

Se
n

so
r

1
(d

eg
/s

2
)

Position-driven
Velocity-driven

(b)

50

100

150

200
Position-driven versus velocity-driven trajectory

Motor 2

Motor 3

Change motor position

Jo
in

t
co

or
di

n
at

es
 p

os
it

io
n

s
(d

eg
)

m
ot

or
s

2
an

d
3

0 500 1000 1500 2000
Time (ms)

Position-driven
Velocity-driven

(c)

Position-driven versus velocity-driven trajectory

0 500 1000 1500 2000

Time (ms)

50

100

150

200

Se
n

so
r

2
(d

eg
/s

2
)

Position-driven
Velocity-driven

(d)

Position-driven versus velocity-driven trajectory

Se
n

so
r

3
(d

eg
/s

2
)

0 500 1000 1500 2000

Time (ms)

50

100

150

200

Position-driven
Velocity-driven

(e)

Figure 4: Plots (a) and (c) show the motor commands (in joint coordinates) and plots (b), (d), and (e) show the sensor responses during
the movement. We compare the dense position-driven versus the sparse velocity-driven strategies for the case related to object 0 (see the
experimental results). In (b) (Sensor 1), it can be clearly seen how the sensor responses are directly related with the motor command
changes in plot (a). The sensor responses, obtained using the sparse velocity-driven strategy, are more stable. Motor commands increasing
the derivative of joint coordinates cause increments in sensor 1 response during a certain period, while motor commands decreasing the
derivative of joint coordinates cause decrements in sensor 1 response, plot (b). The piece of trajectory monitored by these plots is mainly
related to sensor 1. It can be seen in the right plots (d) and (e) that the other sensors are not so sensitive to the motions in this example.
Nevertheless, sparse velocity-driven control still leads to much more stable sensor responses. Dense position-driven control causes large
vibrations that highly affect the capability of the neural network to approach the sensor response function.

the object manipulation. The error metric shown in the
result figures (see Figure 5) is the root mean square error
(RMSE) in degrees/s2 of the different sensors along the whole
trajectory. Finally, the classification error (related to the label
output) indicates how accurately the network can classify

a specific object from the positions, velocities, and accel-
erometer responses along the trajectory with a correspond-
ing target output. A lower error in the predicted sensor re-
sponses indicates that the motion is performed in a smoother
and more predictable way. Therefore, as can be seen in

6 Journal of Control Science and Engineering

1.2

1

0.8

0.6

0.4

0.2

0
S1 S2

0 1 2 3 4

R
M

SE
 (

de
g/

s2
)

OBJ

S1 S2 S1 S2 S1 S2 S1 S2

(a)

1.2
1

0.8
0.6
0.4
0.2

0
S1S2

RM
SE

 (d
eg

/s
2
)

S1 S2 S1 S2 S1 S2 S1 S2S1S2 S1S2 S1 S2 S1 S2 S1 S2

A B C D E F G H I J

OBJ

(b)

1.2

1

0.8

0.6

0.4

0.2

0
S1S2

R
M

SE
 (

de
g/

s2
)

S1 S2 S1 S2 S1 S2 S1 S2S1S2 S1S2 S1 S2 S1 S2 S1 S2

A B C D E F G H I J

OBJ

(c)

1.2

1

0.8

0.6

0.4

0.2

0
S1 S2

R
M

SE
 (

de
g/

s2
)

S1 S2 S1 S2S1 S2 S1 S2

A B C D E

OBJ

(d)

1.2

1

0.8

0.6

0.4

0.2

0
S1 S2

R
M

SE
 (

de
g/

s2
)

(e)

Figure 5: RMSE values for predicted data of sensors S1 and S2 for sparse velocity-driven control scheme. The darker colour in the top of the
columns indicates the increment of RMSE in the test stage. (a) Using a different class (model) for each single object. (b) Using a different
class (model) for each set of two objects. Cases (objects): A (0 and 1), B (0 and 2), C (0 and 3), D (0 and 4), E (1 and 2), F (1 and 3), G (1
and 4), H (2 and 3), I (2 and 4), and J (3 and 4). (c) Using a different class (model) for each set of three objects. Cases (objects): A (0, 1, and
2), B (0, 1, and 3), C (0, 1, and 4), D (0, 2, and 3), E (0, 2, and 4), F (0, 3, and 4), G (1, 2, and 3), H (objects 1, 2, and 4), I (1, 3, and 4), and J
(2, 3, and 4). (d) Using a different class for each set of four objects. Cases (objects): A (0, 1, 2, and 4), B (0, 1, 2, and 3), C (0, 1, 3, and 4), D
(0, 2, 3, and 4), E (1, 2, 3, and 4). (e) Using a single class for the only set of five objects. In this case the increment of RMSE in the test stage
is neglectable. Cases (objects): (0, 1, 2, 3, and 4).

Figures 4, 5, and 6, strategies such as sparse velocity-driven
control lead to a more reliable movement control scheme.
Furthermore, this allows a better dynamic characterisation of
different objects. This facilitates the use of adaptation strate-
gies of control gains to achieve more accurate manipulation
skills (although this issue is not specifically addressed in this
work).

3. Results

Studies have shown high correlations between the inertia
tensor and various haptic properties like length, height, ori-
entation of the object, and position of the hand grasp [57–
59]. The inertia tensor has the central role to be the percep-
tual basis for making haptic judgments of object properties.

In order to describe the approach and the pursued move-
ments (several repetitions) and to test different dynamic

models of the whole system (robot arm with object) [60, 61],
the robot hand manipulated objects with different weights,
shapes, and position of grasp. We acquired all the data from
the position and accelerator sensors and we used them for
the RBF off-line training. We considered the following cases
of study:

(0) NO object;

(1) Scissors (0.05 kg, 0.14 m);

(2) Monkey wrench manipulated fixing the centre
(0.07 kg, 0.16 m);

(3) Monkey wrench manipulated fixing an extreme
(0.07 kg, 0.16 m);

(4) Two Allen keys (0.1 kg, 0.10 m).

We repeated manipulation experiments ten times for each
case of study collecting sixty thousand data. We applied

Journal of Control Science and Engineering 7

30

25

20

15

10

5

0

R
M

SE
 (

de
g/

s2
)

A B A

A

B

B
Position-driven
Velocity-driven

S1
S2

(a)

A B

12

10

8

6

4

2

0

R
M

SE
 (

de
g/

s2
)

A B

A
B

Position-driven
Velocity-driven

S1 S2

(b)

Figure 6: Comparison between dense position-driven control scheme (column A) and the sparse velocity-driven control scheme (column
B) for the case related to object 0. RMSE (degrees/s2) of predicted values of the sensors S1 and S2 using a sparse velocity-driven scheme (B)
are always lower than the ones obtained using dense position-driven control (A). The sensor that suffers more significantly from jerks when
using dense position-driven scheme is S2. The darker colour in the top of the columns indicates the increment of RMSE in the test stage.
The test results are always slightly higher. The variance value obtained with the cross-validation method for the test results is also included.
Figures 6(a) and 6(b) are related to the cases of a nonfixed and a fixed robot respectively.

a cross-validation method defining different datasets for the
training and test stages. We used the data of seven experi-
ments out of ten for training and three for the test stage. We
repeated this approach three times shuffling the experiments
of the datasets for training and test. The neural network is
built using the MBC model toolbox of MATLAB [62]. We
chose the following algorithms: TrialWidths [63] for the
width selection and StepItRols for the Lambda and centres
selection [64]. We measured the performance calculating the
RMSE in degrees/s2 in the acceleration sensory outputs (S1

and S2).

We addressed a comparative study evaluating how accu-
rately the neural network can abstract the dynamic model
using a dense position-driven and a sparse velocity-driven
schemes. Plots in Figure 4 illustrate how the motor com-
mands are highly related with specific sensor responses
(mainly in sensor 1 along this piece of trajectory). Figures
4(a) and 4(c) illustrate a piece of movement. Figures 4(b),
4(d) and 4(e) show that sparse velocity-driven control leads
to much more stable sensor responses.

3.1. Abstracting the Dynamic Model during Manipulation.
The goal of the RBF network is to model the sensory outputs
given the motor commands along well defined trajectories
(manipulating several objects). The purpose is to study how
accurate models can be acquired if the neural network is
trained with individual objects or with groups of “sets of
objects” (as a single class). When we select the target “mod-
els” to abstract in the training stage with the neural network,
we can define several target cases: 5 classes for abstracting
single object models (Figure 5(a)), 10 classes for abstracting
models for pairs of objects (Figure 5(b)), 10 classes for

abstracting models of sets of “three objects” (Figure 5(c)),
5 classes for models of sets of “four objects” (Figure 5(d)),
and finally, a single global model for the set of five objects
(Figure 5(e)). The neural network, trained with data of two
objects, presents the minimum of RMSE using 25 neurons in
the hidden layer. For three objects, we used 66–80 neurons
depending on the specific case, and for four objects, 80
neurons. But even with these larger numbers of neurons, the
network was able to accurately classify the objects in the case
of sets of two of them. During manipulation, if the model
prediction significantly deviates from the actual sensory
outputs, the system can assume that the model being applied
is incorrect and should proceed to “switch” to another model
or to “learn modifications” on the current model. In this task,
we evaluate the performance of the “abstraction process”
calculating the RMSE between the model sensor response
and the actual sensor response along the movement. Figure 6
compares the performance achieved between the two control
schemes under study for the cases of a nonfixed (Figure 6(a))
and a fixed robot (Figure 6(b)). Results indicate that the
velocity driven strategy reduces the error to very low values
in both cases.

Results in Figure 5 are obtained using a sparse velocity-
driven control scheme. In Figure 5(a), they show how the
RBF achieves different performance when trying to abstract
models of different objects. For objects 1 and 3, both sensors
lead to similar RMSE values as their dynamic models are
similar. Objects 2 and 4 lead to higher RMSE values since
they have more inertia than others. As we can see (comparing
the results of Figures 5(a) and 5(b), if the network has to
learn the dynamic model of more objects in the same class
(shared model learning) at the same time, the error rate
increases slightly.

8 Journal of Control Science and Engineering

0

1
0.5

−1.5
−1

−0.5

T
h

re
sh

ol
d-

R
M

SE

(O
B

J)

(a)

2 OBJ 3 OBJ 5 OBJ 4 OBJ
0

0.5
1

1.5

2.5
2

T
h

re
sh

ol
d-

R
M

SE

(O
B

J)

0 3

0 1 2 4b

0 2 3 4a 0 1 3 4a 1 2 3 4

0 2 3 4b 0 1 3 4b

1 4

1 3

0 2 2 3

0 1 2 4a
1 2

0 1

2 4

3 4

0 3 4a

0 3 4b

1 2 3

1 2 4a

1 2 4b

1 3 4a

1 3 4b

0 1 2
0 1 3a

0 1 3b

0 1 4a

0 1 4b

0 2 3a

0 2 3b

0 2 4

2 3 4

0 1 2 3

0 4

0 1 2 3 4

(b)

Figure 7: Bars represent the object discrimination power of the
network (RBF) for all combinations of two, three, four, or five
objects respectively (see paragraph 3 for object classification). If the
RMSE (OBJ) value of the label output for a specific set of objects
lies below the discrimination threshold, an accurate classification
of objects can be achieved. Graphs show the result obtained with a
non-fixed robot (Figure 7(a)) and with a fixed robot (Figure 7(b)),
and each bar is associated to a combination of objects listed in
the legend from left to right, respectively. A combination with two
thresholds (i.e., 0 3 4) has two bars and two labels (0 3 4a and 0 3
4b) and bars are joined together in the graph.

3.2. Classifying Objects during Manipulation. In Figure 7,
the discrimination power of the RBF based on the dynamic
model itself is shown. In this case, we evaluate if the RBF
is able to accurately distinguish among different objects
assigning the correct labels (0, 1, 2, 3, and 4) by using only the
inputs of the network (i.e., sensorimotor vectors). Evaluation
of the classification performance is not straightforward and
is based on the difference between the “discrimination
threshold” (half of the distance between the closest target
label values) and the RMSE value of the label output for a
specific set of objects. We have chosen a single dimension
distribution of the classes, therefore, distances between the
different class labels are diverse. For instance, the “distance”
between labels one and two is one, while the distance between
labels one and four is three and the threshold is the half of
that distance. For any set of two or five objects (i.e. A (0 and
1), B (1 and 3), and C (0, 1, 2, 3, and 4)) only one threshold
value exists (Th(A) = 0.5, Th(B) = 1, and Th(C) = [0.5, 0.5,
0.5, 0.5]), while sets of three or four objects (i.e., D (1, 2,
and 3), E (0, 2, and 3), and F (0, 1, 2, and 4), and G (1, 2, 3,
and 4)) may have two threshold values (Th(D) = [0.5, 0.5],
Th(E) = [1, 0.5], Th(F) = [0.5, 0.5, 1], and Th(G) = [0.5, 0.5,
0.5]). We see that the RBF is able to correctly classify the
objects when using only two of them (values above zero)

R
M

SE

3 OBJ 2 OBJ 4 OBJ 5 OBJ

1.6

1

0
0.2
0.4
0.6
0.8

1.2
1.4

1.8

Figure 8: Mean of RMSE for objects (OBJ) using the sparse veloci-
ty-driven control scheme.

but the system becomes unreliable (negative values) when
using three objects or more in the case of a standing robot
(Figure 7(a)), while the RBF always correctly classifies the
objects when the robot is fixed to the ground (Figure 7(b)).

3.3. Accurate Manipulation Strategy: Classification with Cus-
tom Control. We have abstracted dynamic models from ob-
jects and can use them for accurate control (Figure 9).

(a) Direct Control. We control different objects directly. Dur-
ing manipulation, the sensor responses are compared with
a “shared model” to evaluate the performance. We measure
the RMSE comparing the global model output (model of the
sensor outputs of two different manipulated objects) and the
actual sensor outputs.

(b) Classification with Control. Since we are able to accurately
distinguish between two objects (Figure 7(a)), we select the
corresponding individual model from the RBF network (see
Figure 3(a)) to obtain the acceleration values of the object
being manipulated instead of using a shared model with the
data of the two objects. In fact, the individual models of
the five objects were previously learnt. The RMSE is always
lower when single object models are used (Figure 9) (after
an object classification stage). Direct control using a global
(shared) model achieves a lower performance because the
applied model does not take into account the singularities
of each of the individual models.

The classification with control scheme is feasible when
dealing with objects easy to be discriminated and the actual
trajectory of the movement follows more reliably the single
object model than a “shared model.” In Figure 9, the RMSE
is plotted when comparing sensor model response and the
actual sensor responses. Figure 8 shows the accuracy of the
classification task when training the network with different
numbers of objects (classification errors along the trajec-
tory). Nevertheless, we have shown (Figure 7) that with the
objects used in our study, the network can only reliably
classify the object (along the whole trajectory) when we focus
on distinguishing between two objects.

4. Conclusions

The first conclusion of the presented work is that the applied
control scheme is critical to facilitate reliable dynamic model
abstraction. In fact, the dynamic models or computed

Journal of Control Science and Engineering 9

R
M

SE
 (

de
g/

s2
) 1.2

1
0.8
0.6
0.4
0.2

0
A B C D E F G H I J

S1

(a)

0.7
0.8

0.6
0.5
0.4
0.3
0.2
0.1

0

Direct control
Classification + control

A B C D E F G H I J

R
M

SE
 (

de
g/

s2
)

S2

(b)

Figure 9: Comparison between the individual and the shared models related to predicted sensory values S1 and S2. The columns of a lighter
colour indicate RMSE for the direct control while the columns of a darker colour represent RMSE for the controller of a single object once
it is accurately classified. Cases (objects): A (0 and 1), B (0 and 2), C (0 and 3), D (0 and 4), E (1 and 2), F (1 and 3), G (1 and 4), H (2 and
3), I (2 and 4), and J (3 and 4).

torques are used for high performance and compliant robot
control in terms of precision and energy efficiency [3, 65].

We have compared a dense position-driven versus a
sparse velocity-driven control strategy. The second scheme
leads to smoother movements when manipulating different
objects. This produces more stable sensor responses which
allow to model the dynamics of the movement. As model
abstraction engine, we have used a well-known RBF network
(widely used for function approximation tasks) and we
compared its performance for abstracting dynamics models
of the different objects using a sparse velocity-driven scheme
(Figure 5(a)).

In a second part of the work, we have evaluated if the
object classification is feasible. More concretely, we have
checked out if we can perform it using sensorimotor com-
plexes (motor commands, velocities, and local accelerations)
obtained during object manipulation (exploration task) as
inputs. Figure 7(a) shows that only the discrimination be-
tween any pair of two objects was possible. Robots with low
gains will produce different actual movements when manip-
ulating different objects, because these objects affect signif-
icantly their dynamic model. If the robot is controlled with
high gains, the differences in the dynamic model of the robot
are compensated by the high control gains. If the robot is
tightly fixed but is controlled with low gains the actual
movement (sensorimotor representation of an object manip-
ulation) is different for each object (Figure 7(b)). If the robot
is slightly fixed, the control commands produce vibrations
that perturb the dynamic model and, therefore, the different
sensorimotor representations are highly affected by these
noisy artefacts (motor command driven vibrations) (see
Figure 7(a)).

Finally, by assuming that we are able to classify objects
during manipulation and to switch to the best dynamic
model, we have evaluated the accuracy when comparing the
movement’s actual dynamics (actual sensor responses) with
the abstracted ones. Furthermore, we have evaluated the gain
in performance if we compare it with a specific dynamic
model instead of a “global” dynamics model. We have eval-
uated the impact of this two-step control strategy obtaining
an improvement of 30% (Figure 9) in predicting the sensor
outputs along the trajectory. This abstracted model can

be used in predicted control strategies or for stabilisation
purposes.

Summarising, our results prove that the presented robot
and artificial neural network can abstract dynamic models
of objects within the stream sensorimotor primitives during
manipulation tasks. One of the most important results of the
work shown in Figures 6(a) (nonfixed robot) and 6(b) (fixed
robot) indicates that robot platforms can highly benefit
from nonrigid sparse velocity-driven control scheme. The
high error obtained with the dense position-driven control
scheme (Figure 6(a)) is caused by vibrations as the slight
fixation of the robot to the ground is only supported by its
own weight. Furthermore, when we try to abstract a move-
ment model, the performance achieved by the neural net-
work (RBF) also represents a measurement of the stability of
the movements (the repeatability of such trajectories when
applying different control schemes).

Acknowledgments

This work has been supported in part by the EU Grant
SENSOPAC (FP6-IST-028056) and by the Spanish National
Grants DPI-2004-07032 and TEC2010-15396.

References

[1] H. Hoffmann, S. Schaal, and S. Vijayakumar, “Local dimen-
sionality reduction for non-parametric regression,” Neural
Processing Letters, vol. 29, no. 2, pp. 109–131, 2009.

[2] D. Nguyen-Tuong and J. Peters, “Learning robot dynamics
for computed torque control using local Gaussian processes
regression,” in Proceedings of the ECSIS Symposium on Learn-
ing and Adaptive Behaviors for Robotic Systems (LAB-RS ’08),
pp. 59–64, Edinburgh, UK, August 2008.

[3] G. Petkos, M. Toussaint, and S. Vijayakumar, “Learning mul-
tiple models of nonlinear dynamics for control under varying
contexts,” in Proceedings of the International Conference on
Artificial Neural Networks (ICANN ’06), pp. 898–907, Athens,
Greece, 2006.

[4] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental
online learning in high dimensions,” Neural Computation, vol.
17, no. 12, pp. 2602–2634, 2005.

10 Journal of Control Science and Engineering

[5] S. Vijayakumar, A. D’souza, T. Shibata, J. Conradt, and S.
Schaal, “Statistical learning for humanoid robots,” Autono-
mous Robots, vol. 12, no. 1, pp. 55–69, 2002.

[6] R. Miall, “Motor control, biological and theoretical,” in Hand-
book of Brain Theory and Neural Network, M. Arbib, Ed., pp.
686–689, Bradford Books/MIT Press, Cambridge, Mass, USA,
2nd edition, 2003.

[7] S. Schaal and N. Schweighofer, “Computational motor control
in humans and robots,” Current Opinion in Neurobiology, vol.
15, no. 6, pp. 675–682, 2005.

[8] Sensopac, Eu project(SENSOrimotor structuring of Percep-
tion and Action for emergent Cognition), 2010, http://www
.sensopac.org/.

[9] C. Q. Huang, S. J. Shi, X. G. Wang, and W. K. Chung, “Par-
allel force/position controllers for robot manipulators with
uncertain kinematics,” International Journal of Robotics and
Automation, vol. 20, no. 3, pp. 158–167, 2005.

[10] J. Roy and L. L. Whitcomb, “Adaptive force control of position/
velocity controlled robots: theory and experiment,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 2, pp.
121–137, 2002.

[11] M. Kawato, “Internal models for motor control and trajectory
planning,” Current Opinion in Neurobiology, vol. 9, no. 6, pp.
718–727, 1999.

[12] D. M. Wolpert and M. Kawato, “Multiple paired forward and
inverse models for motor control,” Neural Networks, vol. 11,
no. 7-8, pp. 1317–1329, 1998.

[13] D. H. Shin and A. Ollero, “Mobile robot path planning for
fine-grained and smooth path specifications,” Journal of Ro-
botic Systems, vol. 12, no. 7, pp. 491–503, 1995.

[14] M. H. Raibert and J. J. Craig, “Hybrid position/force control
of manipulators,” ASME Journal of Dynamic Systems, Measure-
ment and Control, vol. 103, no. 2, pp. 126–133, 1981.

[15] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot
Modeling and Control, John Wiley & Sons, New York, NY, USA,
2006.

[16] W. Yu and M. A. Moreno-Armendariz, “Robust visual servo-
ing of robot manipulators with neuro compensation,” Journal
of the Franklin Institute, vol. 342, no. 7, pp. 824–838, 2005.

[17] W. Yu and X. Li, “PD control of robot with velocity estimation
and uncertainties compensation,” International Journal of
Robotics and Automation, vol. 21, no. 1, pp. 1–9, 2006.

[18] J. J. de Rubio and L. A. Soriano, “An asymptotic stable pro-
portional derivative control with sliding mode gravity com-
pensation and with a high gain observer for robotic arms,”
International Journal of Innovative Computing, Information
and Control, vol. 6, no. 10, pp. 4513–4525, 2010.

[19] J. de Jesus Rubio, C. Torres, and C. Aguilar, “Optimal control
based in a mathematical model applied to robotic arms,” In-
ternational Journal of Innovative Computing, Information and
Control, vol. 7, no. 8, pp. 5045–5062, 2011.

[20] M. Haruno, D. M. Wolpert, and M. Kawato, “MOSAIC model
for sensorimotor learning and control,” Neural Computation,
vol. 13, no. 10, pp. 2201–2220, 2001.

[21] B. Daya, “Multilayer perceptrons model for the stability of a
bipedal robot,” Neural Processing Letters, vol. 9, no. 3, pp. 221–
227, 1999.

[22] S. Tolu, E. Ros, and R. Agı́s, “Bio-inspired control model for
object manipulation by humanoid robots,” in Proceedings of
the Proceedings of the 9th international work conference on
Artificial neural networks (IWANN ’07), pp. 822–829, San
Sebastián, Spain, June 2007.

[23] R. R. Carrillo, E. Ros, C. Boucheny, and O. J. M. D. Coenen,
“A real-time spiking cerebellum model for learning robot
control,” BioSystems, vol. 94, no. 1-2, pp. 18–27, 2008.

[24] N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J.-M. D. Coenen,
and E. Ros, “Cerebellar input configuration toward object
model abstraction in manipulation tasks,” IEEE Transactions
on Neural Networks, vol. 22, no. 8, pp. 1321–1328, 2011.

[25] N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J.-M. D. Coenen,
and E. Ros, “Cerebellarlike corrective model inference engine
for manipulation tasks,” IEEE Transactions on Systems, Man,
and Cybernetics B, vol. 41, no. 5, pp. 1299–1312, 2011.

[26] N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, and E.
Ros, “Adaptive cerebellar spiking model embedded in the
control loop: context switching and robustness against noise,”
International Journal of Neural Systems, vol. 21, no. 5, pp. 385–
401, 2011.

[27] M. H. Hassoun, Fundamentals of Artificial Neural Networks,
Massachusetts Institute of Technology, Cambridge, Mass,
USA, 1995.

[28] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop,
“Neural networks for control systems—a survey,” Automatica,
vol. 28, no. 6, pp. 1083–1112, 1992.

[29] J. Constantin, C. Nasr, and D. Hamad, “Control of a robot
manipulator and pendubot system using artificial neural
networks,” Robotica, vol. 23, no. 6, pp. 781–784, 2005.

[30] T. D’Silva and R. Miikkulainen, “Learning dynamic obstacle
avoidance for a robot arm using neuroevolution,” Neural Proc-
essing Letters, vol. 30, no. 1, pp. 59–69, 2009.

[31] C. C. Lee, P. C. Chung, J. R. Tsai, and C. I. Chang, “Robust
radial basis function neural networks,” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 29, no. 6, pp. 674–685,
1999.

[32] C. Chez, In Principles of Neural Science, Prentice Hall, London,
UK, 3rd edition, 1991.

[33] M. Ito, “Mechanisms of motor learning in the cerebellum,”
Brain Research, vol. 886, no. 1-2, pp. 237–245, 2000.

[34] C. Assad, S. Trujillo, S. Dastoor, and L. Xu, “Cerebellar dy-
namic state estimation for a biomorphic robot arm,” in Pro-
ceedings of the International Conference on Systems, Man and
Cybernetics, pp. 877–882, Waikoloa, Hawaii, USA, October
2005.

[35] M. Ito, “Control of mental activities by internal models in the
cerebellum,” Nature Reviews Neuroscience, vol. 9, no. 4, pp.
304–313, 2008.

[36] P. Van Der Smagt, “Cerebellar control of robot arms,”
Connection Science, vol. 10, no. 3-4, pp. 301–320, 1998.

[37] R. C. Miall, J. G. Keating, M. Malkmus, and W. T. Thach,
“Simple spike activity predicts occurrence of complex spikes
in cerebellar Purkinje cells,” Nature neuroscience, vol. 1, no. 1,
pp. 13–15, 1998.

[38] R. Apps and M. Garwicz, “Anatomical and physiological
foundations of cerebellar information processing,” Nature
Reviews Neuroscience, vol. 6, no. 4, pp. 297–311, 2005.

[39] Ikarus, “Acceleration sensors,” 2011, http://www.ikarus-mod-
ellbau.de.

[40] V. J. Lumelsky, M. S. Shur, and S. Wagner, “Sensitive skin,”
IEEE Sensors Journal, vol. 1, no. 1, pp. 41–51, 2001.

[41] C. J. Khoh and K. K. Tan, “Adaptive robust control for servo
manipulators,” Neural Computing and Applications, vol. 12,
no. 3-4, pp. 178–184, 2003.

[42] M. Zhihong, X. H. Yu, and H. R. Wu, “An RBF neural network-
based adaptive control for SISO linearisable nonlinear sys-
tems,” Neural Computing and Applications, vol. 7, no. 1, pp.
71–77, 1998.

[43] Celoxica Inc, 2011, http://www.celoxica.com/.
[44] Hitec Robotics Inc, 2011, http://www.robonova.de/store/

home.php.

Journal of Control Science and Engineering 11

[45] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of
inertial parameters of manipulator loads and links,” Interna-
tional Journal of Robotics Research, vol. 5, no. 3, pp. 101–119,
1986.

[46] D. Kubus, T. Kröger, and F. M. Wahl, “On-line rigid object
recognition and pose estimation based on inertial parameters,”
in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’07), pp. 1402–1408, San
Diego, Calif, USA, November 2007.

[47] J. J. Craig, Introduction to Robotics: Mechanics and Control,
Pearson/Prentice Hall, Upper Saddle River, NJ, USA, 3rd edi-
tion, 2005.

[48] M. Krabbes, C. Doschner et al., “Modelling of robot dynamics
based on a multidimensional rbf-like neural network,” in
Proceedings of the International Conference on Information In-
telligence and Systems (ICIIS’99), pp. 180–187, Bethesda, Md,
USA, October/November 1999.

[49] R. J. Shilling, Fundamentals of Robotics: Analysis and Control,
Prentice Hall, Englewood Cliffs, NJ, USA, 1990.

[50] P. Angelov, “Fuzzily connected multimodel systems evolving
autonomously from data streams,” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 41, no. 4, pp. 898–910,
2011.

[51] P. Angelov and D. Filev, “Simpl eTS: a simplified method for
learning evolving Takagi-Sugeno fuzzy models,” in Proceedings
of the IEEE International Conference on Fuzzy Systems, pp.
1068–1073, Reno, Nev, USA, May 2005.

[52] G. P. Liu, V. Kadirkamanathan, and S. A. Billings, “Variable
neural networks for adaptive control of nonlinear systems,”
IEEE Transactions on Systems, Man and Cybernetics C, vol. 29,
no. 1, pp. 34–43, 1999.

[53] H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchan-
dran, “Sequential Adaptive Fuzzy Inference System (SAFIS)
for nonlinear system identification and prediction,” Fuzzy Sets
and Systems, vol. 157, no. 9, pp. 1260–1275, 2006.

[54] J. de Jesús Rubio, D. M. Vázquez, and J. Pacheco, “Back-
propagation to train an evolving radial basis function neural
network,” Evolving Systems, vol. 1, no. 3, pp. 173–180, 2010.

[55] J. J. Rubio, F. Ortiz-Rodriguez, C. Mariaca-Gaspar, and J.
Tovar, “A method for online pattern recognition of abnormal-
eye movements,” Neural Computing & Applications. In press.

[56] D. K. Wedding and A. Eltimsahy, “Flexible link control using
multiple forward paths, multiple RBF neural networks in a
direct control application,” in Proceedings of the IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pp. 2619–
2624, Nashville, Tenn, USA, October 2000.

[57] Z. D. Wang, E. Nakano, and T. Takahashi, “Solving function
distribution and behavior design problem for cooperative
object handling by multiple mobile robots,” IEEE Transactions
on Systems, Man, and Cybernetics A, vol. 33, no. 5, pp. 537–549,
2003.

[58] J. Flanagan, K. Merritt, and R. Johansson, “Predictive mech-
anisms and object representations used in object manipu-
lation,” in Sensorimotor Control of Grasping: Physiology and
Pathophysiology, pp. 161–177, Cambridge University Press,
Cambridge, UK, 2009.

[59] C. C. Pagano, J. M. Kinsella-Shaw, P. E. Cassidy, and M. T.
Turvey, “Role of the inertia tensor in haptically perceiving
where an object is grasped,” Journal of Experimental Psychol-
ogy: Human Perception and Performance, vol. 20, no. 2, pp.
276–285, 1994.

[60] J. S. Bay, “Fully autonomous active sensor-based exploration
concept for shape-sensing robots,” IEEE Transactions on Sys-
tems, Man and Cybernetics, vol. 21, no. 4, pp. 850–860, 1991.

[61] G. Petkos and S. Vijayakumar, “Load estimation and con-
trol using learned dynamics models,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’07), pp. 1527–1532, San Diego, Calif, USA,
November 2007.

[62] Mathworks Inc, 2011, http://www.mathworks.com/products/
matlab.

[63] M. Orr, J. Hallam, K. Takezawa et al., “Combining regression
trees and radial basis function networks,” International Journal
of Neural Systems, vol. 10, no. 6, pp. 453–465, 2000.

[64] S. Chen, E. S. Chng, and K. Alkadhimi, “Regularized orthog-
onal least squares algorithm for constructing radial basis
function networks,” International Journal of Control, vol. 64,
no. 5, pp. 829–837, 1996.

[65] D. Nguyeii-Tuoiig, M. Seeger, and J. Peters, “Computed torque
control with nonparametric regression models,” in Proceedings
of the American Control Conference (ACC ’08), pp. 212–217,
Seattle, Wash, USA, June 2008.

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 545731, 9 pages
doi:10.1155/2012/545731

Research Article

An Output-Recurrent-Neural-Network-Based Iterative Learning
Control for Unknown Nonlinear Dynamic Plants

Ying-Chung Wang and Chiang-Ju Chien

Department of Electronic Engineering, Huafan University, Shihding, New Taipei City 223, Taiwan

Correspondence should be addressed to Chiang-Ju Chien, cjc@cc.hfu.edu.tw

Received 31 July 2011; Revised 9 November 2011; Accepted 1 December 2011

Academic Editor: Isaac Chairez

Copyright © 2012 Y.-C. Wang and C.-J. Chien. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a design method for iterative learning control system by using an output recurrent neural network (ORNN).
Two ORNNs are employed to design the learning control structure. The first ORNN, which is called the output recurrent
neural controller (ORNC), is used as an iterative learning controller to achieve the learning control objective. To guarantee the
convergence of learning error, some information of plant sensitivity is required to design a suitable adaptive law for the ORNC.
Hence, a second ORNN, which is called the output recurrent neural identifier (ORNI), is used as an identifier to provide the
required information. All the weights of ORNC and ORNI will be tuned during the control iteration and identification process,
respectively, in order to achieve a desired learning performance. The adaptive laws for the weights of ORNC and ORNI and
the analysis of learning performances are determined via a Lyapunov like analysis. It is shown that the identification error will
asymptotically converge to zero and repetitive output tracking error will asymptotically converge to zero except the initial resetting
error.

1. Introduction

Iterative learning control (ILC) system has become one of
the most effective control strategies in dealing with repeated
tracking control of nonlinear plants. The ILC system
improves the control performance by a self-tuning process in
the traditional PID-type ILC algorithms for linear plants or
affine nonlinear plants with nonlinearities satisfying global
Lipschitz continuous condition [1–3]. Recently, the ILC
strategies combined with other control methodologies such
as observer-based iterative learning control [4], adaptive iter-
ative learning control [5], robust iterative learning control
[6], or adaptive robust iterative learning control [7], have
been widely studied in order to extend the applications to
more general class of nonlinear systems. However, more and
more restrictions are required in theory to develop these
learning controllers. Among these ILC algorithms, PID-
type ILC algorithms are still attractive to engineers since
they are simple and effective for real implementations and
industry applications. A main problem of the PID-type
ILC algorithms is that a sufficient condition required to

guarantee learning stability and convergence will depend on
plant’s input/output coupling function (matrix). In general,
it is hard to design the learning gain if the nonlinear
dynamic plant is highly nonlinear and unknown. In order
to get the input/output coupling function (matrix), the ILC
using a neural or fuzzy system to solve the learning gain
implementation problem can be found in [8, 9]. A neural
network or a fuzzy system was used to approximate the
inverse of plant’s input/output coupling function (matrix).
The inverse function (matrix) is claimed to be an optimal
choice of the learning gain from a convergent condition point
of view. As the nonlinear system is assumed to be unknown,
some offline adaptive mechanisms are applied to update
the network parameters in order to approximate the ideal
optimal learning gain.

Actually, for control of unknown nonlinear systems,
neural-network-based controller has become an important
strategy in the past two decades. Multilayer neural networks,
recurrent neural networks and dynamic neural network [10–
16] were used for the design of adaptive controllers. On
the other hand, fuzzy logic system, fuzzy neural network,

2 Journal of Control Science and Engineering

recurrent fuzzy neural networks and dynamic fuzzy neural
network were also a popular tool for the design of adaptive
controllers [17–22]. These concepts have also been applied to
the design of adaptive iterative learning control of nonlinear
plants [23–25]. However, few ILC works were developed
for general unknown nonlinear plants, especially nonaffine
nonlinear plants. As the authors can understand, a real-
time recurrent network (RTRN) was developed in [26] for
real-time learning control of general unknown nonlinear
plants. But unfortunately, their learning algorithm depends
on the generalized inverse of weight matrix in the RTRN. If
the generalized inverse of weight matrix does not exist, the
learning control scheme is not implementable.

In this paper, we consider the design of an iterative
learning controller for a class of unknown nonlinear dynamic
plants. Motivated by our previous work in [27], an improved
version of an identifier-based iterative learning controller
is proposed by using an output recurrent neural network
(ORNN). Two ORNNs are used to design an ORNN-based
iterative learning control system. The proposed ORNN-
based ILC system includes an ORNN controller (ORNC)
and an ORNN identifier (ORNI). The ORNC is used as
an iterative learning controller to achieve the repetitive
tracking control objective. The weights of ORNC are tuned
via adaptive laws determined by a Lyapunov-like analysis.
In order to realize the adaptive laws and guarantee the
convergence of learning error, some information of the
unknown plant sensitivity is required for the design of adap-
tive laws. Hence, the ORNI is then applied as an identifier
to provide the required information from plant sensitivity.
In a similar way, the weights of ORNI are tuned via some
adaptive laws determined by a Lyapunov-like analysis. Both
of the proposed ORNC and ORNI update their network
weights along the control iteration and identification process,
respectively. This ORNN-based ILC system can be used to
execute a repetitive control task of a general nonlinear plant.
It is shown that the identification error will asymptotically
converge to zero and repetitive output tracking error will
asymptotically converge to zero except the initial resetting
error.

This paper is organized as follows. The structure of
ORNN is introduced in Section 2. In Section 3, we present
the design of ORNC and ORNI for the ORNN-based ILC
system. The adaptation laws are derived and the learning per-
formance is guaranteed based on a Lyapunov-like analysis.
To illustrate the effectiveness of the proposed ILC system,
a numerical example is used in Section 4 for computer
simulation. Finally a conclusion is made in Section 5.

In the subsequent discussions, the following notations
will be used in all the sections.

(i) |z| denotes the absolute value of a function z.

(ii) ‖v‖ = √(v
v) denotes the usual Euclidean norm of a
vector v = [v1, . . . , vn]
 ∈ Rn.

(iii) ‖A‖ = max1≤i≤n{
∑m

j=1 |ai j|} denotes the norm of a
matrix A = {ai j} ∈ Rn×m.

· · · · · · · · ·

· · ·
Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

D

O(3)(t)

x1(t) xn(t)

Figure 1: Structure of the ORNN.

2. The Output Recurrent Neural Network

In this paper, two ORNNs are used to design an iterative
learning control system. The structure of the ORNN is shown
in Figure 1, which comprises an input layer, a hidden layer,
and an output layer.

(i) Layer 1 (Input Layer): Each node in this layer
represents an input variable, which only transmits
input value to the next layer directly. For the ith input
node, i = 1, . . . ,n + 1,

net(1)
i =

⎧⎨⎩xi, i = 1, . . . ,n

D
[
O(3)

]
, i = n + 1

O(1)
i = f (1)

i

(
net(1)

i

)
= net(1)

i ,

(1)

where xi, i = 1, . . . ,n represents the ith external input
signal to the ith node of layer 1, and D[O(3)] denotes
the delay of ORNN output O(3) whcih can be further
defined as xn+1 = D[O(3)].

(ii) Layer 2 (Hidden Layer): Each node in this layer
performs an activation function whose inputs come
from input layer. For the �th hidden node, a sigmoid
function is adopted here such that the �th node, � =
1, . . . ,M will be represented as

net(2)
� =

n+1∑
i=1

Vi�x
(2)
i ,

O(2)
� = f (2)

�

(
net(2)

�

)
= 1

1 + exp
(
−net(2)

�

) ,
(2)

where x(2)
i = O(1)

i , Vi� is the connective weight
between the input layer and the hidden layer, M is
the number of neuron in the hidden layer.

Journal of Control Science and Engineering 3

(iii) Layer 3 (Output Layer): Each node in this layer
represents an output node, which computes the
overall output as the summation of all input signals
from hidden layer. For the output node,

net(3) =
M∑
�=1

w� · x(3)
� ,

O(3) = f (3)
(

net(3)
)
= net(3),

(3)

where x(3)
� = O(2)

� and w� is the connective weight
between the hidden layer and the output layer.

Let n denotes the dimension of input vector X =
[x1, . . . , xn]
 ∈ Rn×1 of nonlinear function f (X) and M
denotes the number of neurons in the hidden layer, the
ORNN which performs as an approximator of the nonlinear
function f (X) is now described in a matrix form as follows:

O(3)
(

D
[
O(3)

]
,X ,W ,V

)
=W
O(2)(V
Xa), (4)

where W ∈ RM×1 and V ∈ R(n+1)×M are output-
hidden wight matrix and hidden-input weight matrix,
respectively, X ∈ Rn×1 is the external input vector,
Xa ≡ [X
, D[O(3)]]

 ∈ R(n+1)×1 is the augmented neural
input vector, and D[O(3)] denotes the delay of ORNN
output O(3). The activation function vector is defined as

O(2)(V
Xa) ≡ [O(2)
1 (V

1 Xa), . . . ,O(2)
M (V

MXa)]

 ∈ RM×1

whereV = [V1,V2, . . . ,VM] withV� ∈ R(n+1)×1 being the �th

column vector, and O(2)
� (V

� Xa) ≡ 1/(1 + exp(−V

� Xa)) ∈ R,

� = 1, . . . ,M is a sigmoid function.

3. Design of Output-Recurrent-
Neural- Network-Based Iterative
Learning Control System

In this paper, we consider an unknown nonlinear dynamic
plant which can perform a given task repeatedly over a finite
time sequence t = {0, . . . ,N} as follows:

y j(t + 1) = f
(
y j(t), . . . , y j(t − n + 1),uj(t)

)
, (5)

where j ∈ Z+ denotes the index of control iteration number
and t = {0, . . . ,N} denotes the time index. The signals
y j(t) and uj(t) ∈ R are the system output and input,
respectively. f : Rn+1 → R is the unknown continuous
function, n represents the respective output delay order.
Given a specified desired trajectory yd(t), t ∈ {0, . . . ,N},
the control objective is to design an output-recurrent-neural-
network-based iterative learning control system such that
when control iteration number j is large enough, |yd(t) −
y j(t)| will converge to some small positive error tolerance
bounds for all t ∈ {0, . . . ,N} even if there exists an initial
resetting error. Here the initial resetting error means that
yd(0) /= y j(0) for all j ≥ 1. To achieve the control objective,
an iterative learning control system based on ORNN design
is proposed in Figure 2. In this figure, D denotes the delay in
time domain andM denotes the memory in control iteration
domain.

r(t)

ORNC

M

D

ORNI

A.L.

A.L.

Dynamic
plant

Reference model

+
−

uj(t) y j(t + 1)

uj−1(t)

y j(t)

yd(t + 1)

•

+
−

sgn(y
j
u(t))

yu, max(t)

e
j
c (t +1)

ŷk(t + 1)

ekI (t +1)

Figure 2: Block diagram of the ORNN-based ILC system.

Before we state the design steps of the proposed control
structure, some assumptions on the unknown nonlinear
system and desired trajectories are given as follows.

(A1) The nonlinear dynamic plant is a relaxed system
whose input uj(t) and output y j(t) are related by
y j(t) = 0 for all t ∈ {−∞, . . . ,−1}.

(A2) There exists a bounded unknown upper bounding

function yu,max(t) = max∀ j|y ju(t)| such that 0 <

|y ju(t)| ≤ yu,max(t), where the factor y
j
u(t) = ∂y j(t +

1)/∂uj(t) represents the sensitivity of the plant with
respect to its input.

(A3) The reference model is designed to generate
the bounded desired trajectory yd(t + 1) =
fd(yd(t), . . . , yd(t − n + 1), r(t)), which is based
on a specified bounded reference input r(t) with
fd : Rn+1 → R being a continuous function.

The design of the ORNN-based iterative learning control
system is divided into two parts.

3.1. Part 1: Design of ORNC and Corresponding Adaptive
Laws. Based on the assumptions on the nonlinear plant (5),

we define a tracking error e
j
c(t) at jth control iteration as

follows:

e
j
c(t) = yd(t)− y j(t). (6)

It is noted that there exist bounded constants ε
j
c , j ∈ Z+ such

that the initial value of e
j
c(t) will satisfy

∣∣∣e jc(0)
∣∣∣ = ε

j
c . (7)

4 Journal of Control Science and Engineering

The difference of e
j
c(t) between two successive iterations can

be computed as [28]

Δe
j
c(t + 1) = e

j+1
c (t + 1)− e jc(t + 1)

= −
(
y j+1(t + 1)− y j(t + 1)

)
≈ −∂y

j(t + 1)
∂uj(t)

(
uj+1(t)− uj(t)

)
≡ −y ju(t)

(
uj+1(t)− uj(t)

)
.

(8)

The ORNN is used to design an ORNC in order to
achieve the iterative learning control objective. Let nc
be the dimension of the external input vector X

j
c (t) =

[r(t), y j(t),uj−1(t),]

 ∈ Rnc×1 and Mc denote the number

of neurons in hidden layer of the ORNC. The ORNC which
performs as an iterative learning controller is described in a
matrix form as follows:

uj(t) = O(3)
c

(
D
[
O(3)
c

j
(t)
]

,X
j
c (t),W

j
c (t),V

j
c (t)

)
=W

j
c (t)
O(2)

c

(
V

j
c (t)
X j

ca(t)
)

,
(9)

where W
j
c (t) ∈ RMc×1 and V

j
c (t) ∈ R(nc+1)×Mc are output-

hidden wight matrix and hidden-input weight matrix to
be tuned via some suitable adaptive laws, respectively, and

X
j
ca(t) ≡ [X

j
c (t)
, D[O

(3) j
c (t)]]

 ∈ R(nc+1)×1 is the augmented
neural input vector. For the sake of convenience, we define

O(2)
c (V

j
c (t)
X j

ca(t)) ≡ O(2)
c

j
(t). Now substituting (9) into (8),

we will have

Δe
j
c(t + 1) = −y ju(t)

(
W

j+1
c (t)
O(2)

c
j+1

(t)−W j
c (t)
O(2)

c
j
(t)
)
.

(10)

For simplicity, we define ΔX
j
ca(t) = X

j+1
ca (t) − X

j
ca(t),

ΔW
j
c (t) =W

j+1
c (t)−W j

c (t), ΔV
j
c (t) = V

j+1
c (t)−V j

c (t). After

adding and subtractingW
j
c (t)
O(2)

c
j+1

(t) to (10), we can find
that

Δe
j
c(t + 1) = −y ju(t)ΔW

j
c (t)
O(2)

c
j+1

(t)

− y
j
u(t)W

j
c (t)

(
O(2)
c

j+1
(t)−O(2)

c
j
(t)
)
.

(11)

Investigating the second term in the right hand side of (11)
by using the mean-value theorem, we have

O(2)
c

j+1
(t)−O(2)

c
j
(t)

= O(2)
c

′ j
(t)
(
V

j+1
c (t)
X j+1

ca (t)−V j
c (t)
X j

ca(t)
)

= O(2)
c

′ j
(t)
(
V

j+1
c (t)
X j+1

ca (t)−V j
c (t)
X j+1

ca (t)

+V
j
c (t)
X j+1

ca (t)−V j
c (t)
X j

ca(t)
)

= O(2)
c

′ j
(t)
(
ΔV

j
c (t)
X j+1

ca (t) +V
j
c (t)
ΔX j

ca(t)
)

,

(12)

where O(2)
c
′ j

(t) = diag[O(2)
c,1

′ j
(t), . . . ,O(2)′ j

c,Mc
(t)] ∈ RMc×Mc with

O(2)
c,l

′ j
(t) ≡ dO(2)

c,�

j
(Zc,�(t))/dZc,�(t)|Zc,�(t), Zc,�(t) has a value

between V
j+1
c,� (t)
X j+1

ca (t) and V
j
c,�(t)

X j
ca(t), � = 1, . . . ,Mc.

Now if we substitute (12) into (11), we will have

Δe
j
c(t + 1) = −y ju(t)ΔW

j
c (t)
O(2)

c
j+1

(t)

− y
j
u(t)W

j
c (t)
O(2)

c
′ j

(t)

×
(
ΔV

j
c (t)
X j+1

ca (t) +V
j
c (t)
ΔX j

ca(t)
)
.

(13)

The adaptation algorithms for weights W
j+1
c (t) and V

j+1
c (t)

of ORNC at (next) j + 1th control iteration to guarantee the
error convergence are given as follows:

W
j+1
c (t) =W

j
c (t) +

sgn
(
y
j
u(t)

)
e
j
c(t + 1)O(2)

c
j+1

(t)

yu,max(t)Mc
, (14)

V
j+1
c (t) = V

j
c (t)− X

j+1
ca (t)ΔX

j
ca(t)
V j

c (t)∥∥∥X j+1
ca (t)

∥∥∥2 , (15)

where yu,max(t) is defined in assumption (A2). If we substi-
tute adaptation laws (14) and (15) into (13), we can find that

e
j+1
c (t + 1) = e

j
c(t + 1)− e jc(t + 1)

×
∣∣∣y ju(t)

∣∣∣O(2)
c

j+1
(t)
O(2)

c
j+1

(t)

yu,max(t)Mc
.

(16)

Theorem 1. Consider the nonlinear plant (5) which satisfies
assumptions (A1)–(A3). The proposed ORNC (9) and adapta-
tion laws (14) and (15) will ensure the asymptotic convergence
of tracking error as control iteration approaches infinity.

Proof. Let us choose a discrete-type Lyapunov function as

E
j
c (t + 1) = 1

2

(
e
j
c(t + 1)

)2
, (17)

then the change of Lyapunov function is

ΔE
j
c (t + 1) = E

j+1
c (t + 1)− E jc (t + 1)

= 1
2

[(
e
j+1
c (t + 1)

)2 −
(
e
j
c(t + 1)

)2
]
.

(18)

Taking norms on (16), it yields

∣∣∣e j+1
c (t + 1)

∣∣∣ =
∣∣∣∣∣∣∣∣∣e

j
c(t + 1)

⎡⎢⎢⎢⎣1−

∣∣∣y ju(t)
∣∣∣∥∥∥∥O(2)

c
j+1

(t)
∥∥∥∥2

yu,max(t)Mc

⎤⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣

<
∣∣∣e jc(t + 1)

∣∣∣
(19)

for iteration j ≥ 1. This further implies that E
j
c (t + 1) > 0,

ΔE
j
c (t + 1) < 0, for all t ∈ {0, . . . ,N} for j ≥ 1. Using

Lyapunov stability of E
j
c (t + 1) > 0, ΔE

j
c (t + 1) < 0 and (7),

the tracking error e
j
c(t) will satisfy

lim
j→∞

∣∣∣e jc(t)∣∣∣ ={ε∞c , t = 0

0, t /= 0.
(20)

This proves Theorem 1.

Journal of Control Science and Engineering 5

Remark 2. If the plant sensitivity y
j
u(t) is completely known

so that sgn(y
j
u(t)) and yu,max(t) are available, then the control

objective can be achieved by using the adaptation algorithms

(14) and (15). However, the plant sensitivity y
j
u(t) is in

general unknown or only partially known. In part 2, we
will design an ORNN-based identifier (ORNI) to estimate

the unknown plant sensitivity y
j
u(t) and then provide the

sign function and upper bounding function of y
j
u(t) for

adaptation algorithms of ORNC.

3.2. Part 2: Design of ORNI and Corresponding Adaptive
Laws. After each control iteration, the ORNI subsequently
begins to perform identification process. The trained ORNI
will then provide the approximated plant sensitivity to the
ORNC to start the next control iteration. We would like to
emphasize that the ORNI only identifies the nonlinear plant
after each control iteration. This concept is quite different
from traditional control tasks [29] and very important to the
proposed ORNN-based ILC structure.

The structure of ORNN is further applied to design an
ORNI to identify the nonlinear plant after the jth control
iteration. The identification process is stated as follows. After
each trial of controlling the nonlinear system, we collect
the input output data uj(t) and y j(t), t = 0, 1, . . . ,N +
1 as the training data for the identifier. When discussing
the identification, we omit the control iteration index j
and introduce a new identification iteration index k ∈
Z+ to represent the number of identification process. That
is, the notation for the training data uj(t), y j(t) and the
ORNI output ŷ j,k(t) are simplified as u(t), y(t), and ŷk(t),
respectively. For the ORNI, let nI be the dimension of
external input vector XI(t) = [u(t), y(t)]
 ∈ RnI×1 and MI

denote the number of neurons in hidden layer of the ORNI.
The ORNI which performs as an iterative learning identifier
for nonlinear plant (5) is now described in a matrix form as
follows:

ŷk(t + 1) = O(3)
I

(
D
[
O(3)
I

k
(t)
]

,Xk
Ia(t),Wk

I (t),V k
I (t)

)
=Wk

I (t)
O(2)
I

(
V k
I (t)
Xk

Ia(t)
)

,
(21)

where Wk
I (t) ∈ RMI×1 and V k

I (t) ∈ R(nI+1)×MI are output-
hidden wight matrix and hidden-input weight matrix to
be tuned via some suitable adaptive laws, respectively, and

Xk
Ia(t) ≡ [XI(t)

, D[O(3)k
I (t)]]

 ∈ R(nI+1)×1 is the augmented
neural input vector. For the sake of convenience, we define

O(2)
I (V k

I (t)
Xk
Ia(t)) ≡ O(2)

I

k
(t).

Based on the assumptions on the nonlinear plant (5),
we define an identification error ekI (t) at kth identification
process as follows:

ekI (t) = y(t)− ŷk(t). (22)

The difference of ekI (t) between two successive identification
process can be computed as

ΔekI (t + 1) = ek+1
I (t + 1)− ekI (t + 1)

= −
(
ŷk+1(t + 1)− ŷk(t + 1)

)
.

(23)

Now substituting (21) into (23), we will have

ΔekI (t + 1) = −
(
Wk+1

I (t)
O(2)
I

k+1
(t)−Wk

I (t)
O(2)
I

k
(t)
)
.

(24)

For simplicity, we define ΔXk
Ia(t) = Xk+1

Ia (t) − Xk
Ia(t),

ΔWk
I (t) =Wk+1

I (t)−Wk
I (t), ΔV k

I (t) = V k+1
I (t)−V k

I (t). After

adding and subtractingWk
I (t)
O(2)

I

k+1
(t) to (24), we can find

ΔekI (t + 1) = −ΔWk
I (t)
O(2)

I

k+1
(t)

−Wk
I (t)

(
O(2)
I

k+1
(t)−O(2)

I

k
(t)
)
.

(25)

Investigating the second term in the right hand side of (25)
by using the mean-value theorem, we can derive

O(2)
I

k+1
(t)−O(2)

I

k
(t)

= O(2)
I

′k
(t)
(
V k+1
I (t)
Xk+1

Ia (t)−V k
I (t)
Xk

Ia(t)
)

= O(2)
I

′k
(t)
(
V k+1
I (t)
Xk+1

Ia (t)−V k
I (t)
Xk+1

Ia (t)

+V k
I (t)
Xk+1

Ia (t)−V k
I (t)
Xk

Ia(t)
)

= O(2)
I

′k
(t)
(
ΔV k

I (t)
Xk+1
Ia (t) +V k

I (t)
ΔXk
Ia(t)

)
,

(26)

where O(2)
I

′k
(t) = diag[O(2)

I ,1

′k
(t), . . . ,O(3)′k

I ,MI
(t)] ∈ RMI×MI with

O(2)
I ,�

′k
(t) ≡ dO(2)

I ,�

k
(ZI ,�(t))/dZI ,�(t)|ZI ,�(t), ZI ,�(t) has a value

between V k+1
I ,� (t)
Xk+1

Ia (t) and V
j
I ,�(t)

Xk
Ia(t), � = 1, . . . ,MI .

Now if we substitute (26) into (25), we will have

ΔekI (t + 1) = −ΔWk
I (t)
O(2)

I

k+1
(t)

−Wk
I (t)
O(2)

I

′k
(t)

×
(
ΔV k

I (t)
Xk+1
Ia (t) +V k

I (t)
ΔXk
Ia(t)

)
.

(27)

The adaptation algorithms for weights Wk+1
I (t) and

V k+1
I (t) of ORNI at (next) k + 1th identification process are

given as follows:

Wk+1
I (t) =Wk

I (t) +
ekI (t + 1)O(2)

I

k+1
(t)

MI

V k+1
I (t) = V k

I (t)− Xk+1
Ia (t)ΔXk

Ia(t)
V k
I (t)∥∥∥Xk+1

Ia (t)
∥∥∥2 .

(28)

If we substitute adaptation laws (28) into (27), we have

ek+1
I (t + 1) = ekI (t + 1)− ekI (t + 1)

O(2)
I

k+1
(t)
O(2)

I

k+1
(t)

MI
.

(29)

Theorem 3. Consider the nonlinear dynamic plant (5) which
satisfies assumptions (A1)–(A3). The proposed ORNI (21)
and adaptation laws (28) will ensure that the asymptotic
convergence of identification error is guaranteed as the numbers
of identification approach infinity.

6 Journal of Control Science and Engineering

Proof. Let us choose a discrete-type Lyapunov function as

EkI (t + 1) = 1
2

(
ekI (t + 1)

)2
, ∀t ∈ {0, . . . ,N}, (30)

then we can derive the change of Lyapunov function as

ΔEkI (t + 1) = Ek+1
I (t + 1)− EkI (t + 1)

= 1
2

[(
ek+1
I (t + 1)

)2 −
(
ekI (t + 1)

)2
]
.

(31)

Taking norms on (29), we have

∣∣∣ek+1
I (t + 1)

∣∣∣ = ∣∣∣ekI (t + 1)
∣∣∣
∣∣∣∣∣∣∣∣∣1−

∥∥∥∥O(2)
I

k+1
(t)
∥∥∥∥2

MI

∣∣∣∣∣∣∣∣∣
<
∣∣∣ekI (t + 1)

∣∣∣
(32)

for iteration k ≥ 1. This implies that EkI (t + 1) > 0, ΔEkI (t +
1) < 0, for all t ∈ {0, . . . ,N} for k ≥ 1, and hence the
identification error ekI (t) will satisfy limk→∞|ekI (t)| = 0, for
all t ∈ {0, 1, . . . ,N}. This proves Theorem 3.

Remark 4. The ORNN is a promising tool for identification
because it can approximate any “well-behaved” nonlinear
function to any desired accuracy. This good function approx-
imation is applied to estimate the unknown plant sensitivity

in this paper. The plant sensitivity y
j
u(t) in (8) can be

approximated as follows:

y
j
u(t) ≡∂y

j(t + 1)
∂uj(t)

≈ ∂ ŷ j(t + 1)
∂uj(t)

. (33)

Note that the index k in the identifier output ŷk(t) is removed
once the identification process stops. Applying the chain rule
to (21), it yields

∂ ŷ j(t + 1)
∂uj(t)

= ∂O(3)
I

j
(t)

∂uj(t)
=

MI∑
�=1

∂ ŷ j(t + 1)

∂O(2)
I ,�

j
(t)

∂O(2)
I ,�

j
(t)

∂uj(t)

=
MI∑
�=1

w
j
I ,�(t)

∂O(2)
I ,�

j
(t)

∂uj(t)
.

(34)

Also from (21), we have

∂O(2)
I ,�

j
(t)

∂uj(t)
= f (2)

I ,�

′(
net(2)

I ,�

j
(t)
)
∂net(2)

I ,�

j
(t)

∂uj(t)
. (35)

Since the inputs to ORNI are uj(t), y j(t) and D[O(3)
I

j
(t)],

we further have

net(2)
I ,�

j
(t) = V

j
I ,1�(t)u

j(t) +V
j
I ,2�(t)y

j(t)

+V
j
I ,3�(t)D

[
O(3)
I

j
(t)
]
.

(36)

Thus,

∂net(2)
I ,�

j
(t)

∂uj(t)
= V

j
I ,1�(t). (37)

From (34), (35) and (37), we obtain

ŷ
j
u(t) = ∂ ŷ j(t + 1)

∂uj(t)
=

MI∑
�=1

w
j
I ,�(t) f

(2)
I ,�

′(
net(2)

I ,�

j
(t)
)
V

j
I ,1�(t),

(38)

where 0 < f (2)
I ,�

′
(net(2)

I ,�

j
(t)) < 0.5. If we define ‖wj

I (t)‖ ≡
max�|wj

I ,�(t)|, and ‖V j
I ,1(t)‖ ≡ max�|V j

I ,1�(t)|, then

∣∣∣ ŷ ju(t)
∣∣∣ ≤MI

∥∥∥wj
I (t)

∥∥∥∥∥∥∥ f (2)
I ,�

′(
net(2)

I ,�

j
(t)
)
V

j
I ,1(t)

∥∥∥∥
≤ MI

2

∥∥∥wj
I (t)

∥∥∥∥∥∥V j
I ,1(t)

∥∥∥ ≡ ŷ
j
u,max(t).

(39)

The sign function and upper bounding function of plant
sensitivity after finishing the identification process at jth
control iteration can be obtained as follows:

sgn
(
y
j
u(t)

)
= sgn

(
ŷ
j
u(t)

)
yu,max(t) = max

{
ŷ
j
u,max(t), ŷ

j−1
u,max(t)

}
.

(40)

It is noted that we do not need the exact plant sensitivity y
j
u(t)

for the design of adaptive law (14). Even though there may

exist certain approximation error between y
j
u(t) and ŷ

j
u(t),

we can still guarantee the convergence of learning error since
only a upper bounding function is required. Also note that

the value of sgn(y
j
u(t)) (+1 or −1) can be easily determined

from the identification result.

4. Simulation Example

In this section, we use the proposed ORNN-based ILC
to iteratively control an unknown non-BIBO nonlinear
dynamic plant [26, 29]. The difference equation of the
nonlinear dynamic plant is given as

y j(t + 1) = 0.2
(
y j(t)

)2
+ 0.2y j(t − 1)

+ 0.4 sin
(

0.5
(
y j(t − 1) + y j(t)

))
× cos

(
0.5
(
y j(t − 1) + y j(t)

))
+ 1.2uj(t),

(41)

where y j(t) is the system output, uj(t) is the control input.
The reference model is chosen as

yd(t + 1) = 0.6yd(t) + r(t), yd(0) = 0, (42)

where r(t) = sin(2πt/25) + sin(2πt/10) is a bounded
reference input. The control objective is to force y j(t) to
track the desired trajectory yd(t) as close as possible over a
finite time interval t ∈ {1, . . . , 200} except the initial point.
The network weight adaptation for the ORNI and ORNC
is designed according to (14), (15), and (28), respectively.

In the ORNC, we set W
j
c (t) ∈ R2×1 and V

j
c (t) ∈ R4×2,

that is, only two hidden nodes in layer 2 are used to
construct the ORNC. In a similar way, we let Wk

I (t) ∈ R2×1

Journal of Control Science and Engineering 7

1 2 3 4 5 6 7 8 9 10

100

10−5

10−10

∗
∗

∗
∗

∗
∗ ∗ ∗ ∗ ∗

(a)

1 2 3 4 5

10−8

10−9

10−10

10−11

∗

∗
∗

∗ ∗

(b)

0 50 100 150 200

4

2

0

−2

−4

(c)

0 50 100 150 200

4

2

0

−2

−4

(d)

0 50 100 150 200

2

0

−2

−4

(e)

Figure 3: (a) maxt∈{1,...,200}|e jc (t)| versus control iteration j. (b) maxt∈{0,...,200}|e10,k
I (t)| versus identification process k at the 10th control

iteration. (c) y10(t) (dotted line) and yd(t) (solid line) versus time t at the 10th control iteration. (d) ŷ10(t) (dotted line) and y10(t) (solid
line) versus time t at the 10th control iteration. (e) u10(t) at the 10th control iteration versus time t.

and V k
I (t) ∈ R3×2, that is, only two hidden nodes in

layer 2 are used to set up the ORNI. For simplicity, all
the initial conditions of ORNC parameters are set to be
0 at the first control iteration. In addition, the initial
ORNI parameters are set to be 0 at the first identification
process which begins after the first control iteration. We
assume that the plant initial condition satisfies y j(0) =
2 + randn where randn is a generator of random number
with normal distribution, mean = 0 and variance = 1. To
study the effects of learning performances, we first show the

maximum value of tracking error |e jc(t)|, t ∈ {1, . . . , 200}
with respect to control iteration j in Figure 3(a). It is noted

that |e jc(0)| is omitted in calculating the maximum value of
tracking error since it is not controllable. The identification
error at 10th control iteration |e10,k

I (t)| with respect to
identification process k is shown in Figure 3(b). According
to the simulation results, it is clear that the asymptotic

convergence proved in Theorems 1 and 3 is achieved. Since a
reasonable tracking performance is almost observed at the
10th control iteration, the trajectories between the desired
output yd(t) and plant output y10(t) at the 10th control
iteration are shown to demonstrate the control performance
in Figure 3(c). Figure 3(d) shows the comparison between
the identification result of ŷ10(t) and the plant output y10(t).
The nice identification result enables the ORNI to provide
the required information for the design of ORNC. Finally,
the bounded control input u10(t) is plotted in Figure 3(e).

5. Conclusion

For controlling a repeatable nonaffine nonlinear dynamic
plant, we propose an output-recurrent-neural-network-
based iterative learning control system in this paper. The
control structure consists of an ORNC used as an iterative
learning controller and an ORNI used as an identifier.

8 Journal of Control Science and Engineering

The ORNC is the main controller utilized to achieve the
repetitive control task. The ORNI is an auxiliary component
utilized to provide some useful information from plant
sensitivity for the design of ORNC’s adaptive laws. All the
network weights of ORNC and ORNI will be tuned during
the control iteration and identification process so that no
prior plant knowledge is required. The adaptive laws for the
weights of ORNC and ORNI and the analysis of learning
performances are determined via a Lyapunov-like analysis.
We show that if the ORNI can provide the knowledge of
plant sensitivity for ORNC, then output tracking error will
asymptotically converge to zero except an initial resetting
error. We also show that the objective of identification can
be achieved by the ORNI if the number of identifications is
large enough.

Acknowledgment

This work is supported by National Science Council, R.O.C.,
under Grant NSC99-2221-E-211-011-MY2.

References

[1] K. L. Moore and J. X. Xu, “Special issue on iterative learning
control,” International Journal of Control, vol. 73, no. 10, pp.
819–823, 2000.

[2] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of
iterative learning,” IEEE Control Systems Magazine, vol. 26, no.
3, pp. 96–114, 2006.

[3] H. S. Ahn, Y. Q. Chen, and K. L. Moore, “Iterative learning
control: brief survey and categorization,” IEEE Transactions on
Systems, Man and Cybernetics. Part C, vol. 37, no. 6, pp. 1099–
1121, 2007.

[4] J. X. Xu and J. Xu, “Observer based learning control for
a class of nonlinear systems with time-varying parametric
uncertainties,” IEEE Transactions on Automatic Control, vol.
49, no. 2, pp. 275–281, 2004.

[5] I. Rotariu, M. Steinbuch, and R. Ellenbroek, “Adaptive
iterative learning control for high precision motion systems,”
IEEE Transactions on Control Systems Technology, vol. 16, no.
5, pp. 1075–1082, 2008.

[6] A. Tayebi, S. Abdul, M. B. Zaremba, and Y. Ye, “Robust
iterative learning control design: application to a robot
manipulator,” IEEE/ASME Transactions on Mechatronics, vol.
13, no. 5, pp. 608–613, 2008.

[7] J. X. Xu and B. Viswanathan, “Adaptive robust iterative
learning control with dead zone scheme,” Automatica, vol. 36,
no. 1, pp. 91–99, 2000.

[8] J.Y. Choi and H. J. Park, “Neural-based iterative learning
control for unknown systems,” in Proceedings of the 2nd Asian
Control Conference, pp. II243–II246, Seoul, Korea, 1997.

[9] C. J. Chien, “A sampled-data iterative learning control using
fuzzy network design,” International Journal of Control, vol. 73,
no. 10, pp. 902–913, 2000.

[10] J. H. Park, S. H. Huh, S. H. Kim, S. J. Seo, and G. T. Park,
“Direct adaptive controller for nonaffine nonlinear systems
using self-structuring neural networks,” IEEE Transactions on
Neural Networks, vol. 16, no. 2, pp. 414–422, 2005.

[11] J. S. Wang and Y. P. Chen, “A fully automated recurrent
neural network for unknown dynamic system identification

and control,” IEEE Transactions on Circuits and Systems I, vol.
53, no. 6, pp. 1363–1372, 2006.

[12] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive
backstepping control for a class of nonlinear systems,” IEEE
Transactions on Neural Networks, vol. 17, no. 5, pp. 1–9, 2006.

[13] C. M. Lin, L. Y. Chen, and C. H. Chen, “RCMAC hybrid
control for MIMO uncertain nonlinear systems using sliding-
mode technology,” IEEE Transactions on Neural Networks, vol.
18, no. 3, pp. 708–720, 2007.

[14] Z. G. Hou, M. M. Gupta, P. N. Nikiforuk, M. Tan, and L.
Cheng, “A recurrent neural network for hierarchical control of
interconnected dynamic systems,” IEEE Transactions on Neural
Networks, vol. 18, no. 2, pp. 466–481, 2007.

[15] Z. Liu, R. E. Torres, N. Patel, and Q. Wang, “Further
development of input-to-state stabilizing control for dynamic
neural network systems,” IEEE Transactions on Systems, Man,
and Cybernetics Part A: Systems and Humans, vol. 38, no. 6, pp.
1425–1433, 2008.

[16] Z. Liu, S. C. Shih, and Q. Wang, “Global robust stabilizing con-
trol for a dynamic neural network system,” IEEE Transactions
on Systems, Man, and Cybernetics Part A: Systems and Humans,
vol. 39, no. 2, pp. 426–436, 2009.

[17] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Observer-based
direct adaptive fuzzy-neural control for nonaffine nonlinear
systems,” IEEE Transactions on Neural Networks, vol. 16, no. 4,
pp. 853–861, 2005.

[18] S. Labiod and T. M. Guerra, “Adaptive fuzzy control of a class
of SISO nonaffine nonlinear systems,” Fuzzy Sets and Systems,
vol. 158, no. 10, pp. 1126–1137, 2007.

[19] B. Chen, X. Liu, and S. Tong, “Adaptive fuzzy output
tracking control of MIMO nonlinear uncertain systems,” IEEE
Transactions on Fuzzy Systems, vol. 15, no. 2, pp. 287–300,
2007.

[20] Y. J. Liu and W. Wang, “Adaptive fuzzy control for a class of
uncertain nonaffne nonlinear system,” Information Sciences,
vol. 177, no. 18, pp. 3901–3917, 2007.

[21] R. J. Wai and C. M. Liu, “Design of dynamic petri recurrent
fuzzy neural network and its application to path-tracking
control of nonholonomic mobile robot,” IEEE Transactions on
Industrial Electronics, vol. 56, no. 7, pp. 2667–2683, 2009.

[22] C. H. Lee, Y. C. Lee, and F. Y. Chang, “A dynamic fuzzy neural
system design via hybridization of EM and PSO algorithms,”
IAENG International Journal of Computer Science, vol. 37, no.
3, 2010.

[23] W. G. Seo, B. H. Park, and J. S. Lee, “Adaptive fuzzy learning
control for a class of nonlinear dynamic systems,” International
Journal of Intelligent Systems, vol. 15, no. 12, pp. 1157–1175,
2000.

[24] C. J. Chien and L. C. Fu, “Iterative learning control of
nonlinear systems using neural network design,” Asian Journal
of Control, vol. 4, no. 1, pp. 21–29, 2002.

[25] C. J. Chien, “A combined adaptive law for fuzzy iterative
learning control of nonlinear systems with varying control
tasks,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 1, pp.
40–51, 2008.

[26] T. W.S. Chow and Y. Fang, “A recurrent neural-network-
based real-time learning control strategy applying to nonlinear
systems with unknown dynamics,” IEEE Transactions on
Industrial Electronics, vol. 45, no. 1, pp. 151–161, 1998.

[27] Y. C. Wang, C. J. Chien, and D. T. Lee, “An output recurrent
fuzzy neural network based iterative learning control for
nonlinear systems,” in Proceedings of the IEEE International

Journal of Control Science and Engineering 9

Conference on Fuzzy Systems, pp. 1563–1569, Hong Kong,
2008.

[28] Y. C. Wang and C. C. Teng, “Output recurrent fuzzy neural
networks based model reference control for unknown nonlin-
ear systems,” International Journal of Fuzzy Systems, vol. 6, no.
1, pp. 28–37, 2004.

[29] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks
for dynamic systems control,” IEEE Transactions on Neural
Networks, vol. 6, no. 1, pp. 144–156, 1995.

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 618403, 10 pages
doi:10.1155/2012/618403

Research Article

3D Nonparametric Neural Identification

Rita Q. Fuentes,1 Isaac Chairez,2 Alexander Poznyak,1 and Tatyana Poznyak3

1 Automatic Control Department, CINVESTAV-IPN, 07360 México, DF, Mexico
2 Bioprocess Department, UPIBI-IPN, 07360 México, DF, Mexico
3 SEPI, ESIQIE-IPN, 07738 México, DF, Mexico

Correspondence should be addressed to Rita Q. Fuentes, rita.q.fuentes.a@gmail.com

Received 23 August 2011; Accepted 2 October 2011

Academic Editor: Haibo He

Copyright © 2012 Rita Q. Fuentes et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents the state identification study of 3D partial differential equations (PDEs) using the differential neural networks
(DNNs) approximation. There are so many physical situations in applied mathematics and engineering that can be described by
PDEs; these models possess the disadvantage of having many sources of uncertainties around their mathematical representation.
Moreover, to find the exact solutions of those uncertain PDEs is not a trivial task especially if the PDE is described in two or more
dimensions. Given the continuous nature and the temporal evolution of these systems, differential neural networks are an attrac-
tive option as nonparametric identifiers capable of estimating a 3D distributed model. The adaptive laws for weights ensure the
“practical stability” of the DNN trajectories to the parabolic three-dimensional (3D) PDE states. To verify the qualitative behavior
of the suggested methodology, here a nonparametric modeling problem for a distributed parameter plant is analyzed.

1. Introduction

1.1. 3D Partial Differential Equations. Partial differential
equations (PDEs) are of vast importance in applied mathe-
matics, physics, and engineering since so many real physical
situations can be modelled by them. The dynamic descrip-
tion of natural phenomenons are usually described by a set
of differential equations using mathematical modeling rules
[1]. Almost every system described in PDE has already ap-
peared in the one- and two-dimensional situations. Append-
ing a third dimension ascends the dimensional ladder to its
ultimate rung, in physical space at least. For instance, lin-
ear second-order 3D partial differential equations appear in
many problems modeling equilibrium configurations of
solid bodies, the three-dimensional wave equation governing
vibrations of solids, liquids, gases, and electromagnetic
waves, and the three-dimensional heat equation modeling
basic spatial diffusion processes. These equations define a
state representing rectangular coordinates on R3. There are
some basic underlying solution techniques to solve 3D PDEs:
separation of variables and Green’s functions or fundamental
solutions. Unfortunately, the most powerful of the planar

tools, conformal mapping, does not carry over to higher di-
mensions. In this way, many numerical techniques solving
such PDE, for example, the finite difference method (FDM)
and the finite element method (FEM), have been developed
(see [2, 3]). The principal disadvantage of these methods is
that they require the complete mathematical knowledge of
the system to define a mesh (domain discretization), where
the functions are approximated locally. The construction of a
mesh in two or more dimensions is a nontrivial task. Usually,
in practice, only low-order approximations are employed re-
sulting in a continuous approximation of the function across
the mesh but not in its partial derivatives. The approximation
discontinuities of the derivative can adversely affect the stab-
ility of the solution. However, all those methods are well de-
fined if the PDE structure is perfectly known. Actually, the
most of suitable numerical solutions could be achieved only
if the PDE is linear. Nevertheless, there are not so many
methods to solve or approximate the PDE solution when its
structure (even in a linear case) is uncertain. This paper sug-
gests a different numerical solution for uncertain systems
(given by a 3D PDE) based on the Neural Network approach
[4].

2 Journal of Control Science and Engineering

1.2. Application of Neural Networks to Model PDEs. Recent
results show that neural networks techniques seem to be very
effective to identify a wide class or systems when we have no
complete model information, or even when the plant is con-
sidered as a gray box. It is well known that radial basis func-
tion neural networks (RBFNNs) and MultiLayer Perceptrons
(MLPs) are considered as a powerful tool to approximate
nonlinear uncertain functions (see [5]): any continuous fun-
ction defined on a compact set can be approximated to arbit-
rary accuracy by such class of neural networks [6]. Since the
solutions of interesting PDEs are uniformly continuous and
the viable sets that arise in common problems are often com-
pact, neural networks seem like ideal candidates for approxi-
mating viability problems (see [7, 8]). Neural networks may
provide exact approximation for PDE solutions; however,
numerical constraints avoid this possible exactness because it
is almost impossible to simulate NN structures with infinite
number of nodes (see [7, 9, 10]). The Differential Neural
Network (DNN) approach avoids many problems related to
global extremum search converting the learning process to
an adequate feedback design (see [11, 12]). Lyapunov’s stabi-
lity theory has been used within the neural networks frame-
work (see [4, 11, 13]). The contributions given in this paper
regard the development of a nonparametric identifier for 3D
uncertain systems described by partial differential equations.
The method produces an artificial mathematical model in
three dimensions that is able to describe the PDEs dynamics.
The required numerical algorithm to solve the non-para-
metric identifier was also developed.

2. 3D Finite Differences Approximation

The problem requires the proposal of a non-parametric iden-
tifier based on DNN in three dimensions. The problem here
may be treated within the PDEs framework. Therefore, this
section introduces the DNN approximation characteristics to
reconstruct the trajectories profiles for a family of 3D PDEs.

Consider the set of uncertain second-order PDEs

ut = f
(
u,ux,uxx,uy ,uyy ,uz,uzz,uxy ,uyx,uxz,uyz

)
+ ξ, (1)

here uh = uh(x, y, z, t), where h represents t, x, y, z, xx, yy,
zz, xy, xz, yx, yz and u = u(x, y, z, t) has n components
(u(x, y, z, t) ∈ Rn) defined in a domain given by [x, y, z) ∈
[0, 1]×[0, 1]×[0, 1], t ≥ 0, ξ = ξ(x, y, z, t) ∈ Rn is a noise in
the state dynamics. This PDE has a set of initial and boundary
conditions given by

ux
(
0, y, z, t

) = 0 ∈ Rn, u(x, 0, z, t) = u0 ∈ Rn,

u
(
x, y, 0, t

) = u0 ∈ Rn, u
(
x, y, z, 0

) = c ∈ Rn.
(2)

In (1), ut(x, y, z, t) stands for ∂u(x, y, z, t)/∂t.
System (1) armed with boundary and initial conditions

(2) is driven in a Hilbert spaceH equipped with an inner pro-
duct (·, ·). Let us consider a vector function g(t) ∈ H to be
a piecewise continuous in t. By L∞(a, b;H) we denote the
set of H-valued functions g such that (g(·),u) is Lebesgue
measurable for all u ∈ H and essmaxt∈[a,b]‖g(γ, t)‖ < ∞,

γ ∈ Rn. Suppose that the nonlinear function g(γ, t) satisfies
the Lipschitz condition ‖g(γ, t)− g(η, t)‖ ≤ L‖γ − η‖,

∀γ,η ∈ Br
(
γ0
)

:= {γ ∈ Rn | ∥∥γ − γ0
∥∥ ≤ r, ∀t ∈ [t0, t1]

}
,

(3)

where L is positive constant and ‖g‖2 = (g, g) is used just to
ensure that there exists some δ > 0 such that the state equa-
tion γ̇ = g(γ, t) with γ(t0) = γ0 has a unique solution over
[t0, t0 + δ] (see [14]). The norm defined above stands for the
Sobolev space defined in [15] as follows.

Definition 1. Let Ω be an open set in Rn, and let ν ∈ Cm(Ω).
Define the norm of ν(γ) as

‖ν‖m,p :=
∑

0≤|α|≤m

(∫
Ω

∣∣Dαν
(
γ
)∣∣pdγ)1/p

(4)

(1 ≤ p < ∞, Dαν(γ) := (∂α/∂γα)ν(γ)). This is the Sobolev
norm in which the integration is performed in the Lebesgue
sense. The completion of the space of function ν(γ) ∈
Cm(Ω): ‖ν‖m,p < ∞ with respect to ‖ · ‖m,p is the Sobolev
space Hm,p(Ω). For p = 2, the Sobolev space is a Hilbert
space (see [14, 15]).

Below we will use the norm (4) for the functions u(·, t)
for each fixed t.

2.1. Numerical Approximation for Uncertain Functions. Now
consider a function h0(·) in Hm,2(Ω). By [16], h0(·) can be
rewritten as

h0
(
γ, θ∗

) =∑
i

∑
j

∑
k

θ∗i jkΨi jk
(
γ
)
,

θi jk =
∫ +∞

−∞
h0
(
γ
)
Ψi jk

(
γ
)
dγ, ∀i, j, k ∈ Z,

(5)

where {Ψi jk(γ)} are functions constituting a basis in
Hm,2(Ω). Last expression is referred to as a vector function
series expansion of h0(γ, θ∗). Based on this series expansion,
an NN takes the following mathematical structure:

h0
(
γ, θ

)
:=

L2∑
i=L1

M2∑
j=M1

N2∑
k=N1

θi jkΨi jk
(
γ
) = ΘTW

(
γ
)

(6)

that can be used to approximate a nonlinear function
h0(γ, θ∗) ∈ S with an adequate selection of integers L1, L2,
M1, M2, N1, N2 ∈ Z+, where

Θ = [θL1M1N1 , . . . , θL1M1N2 , . . . θL2M1N1 , . . . θL2M2N2

]ᵀ,

W
(
γ
) = [ΨL1M1N1 , . . . ,ΨL1M1N2 , . . .ΨL2M1N1 , . . .ΨL2M2N2

]ᵀ
.

(7)

Following the Stone-Weierstrass Theorem [17], if

ε(L1,L2,M1,M2,N1,N2) = h0
(
γ, θ∗

)− h0
(
γ, θ

)
(8)

is the NN approximation error, then for any arbitrary posi-
tive constant ε there are some constants L1,L2,M1,M2,N1,
N2 ∈ Z such that for all x ∈ X ⊂ R

‖ε(L1,L2,M1,M2,N1,N2)‖2 ≤ ε. (9)

Journal of Control Science and Engineering 3

x = 0

y = 0

x = L

y =
M

k
=

1

k
=
N
−

1

Δ
x

Δz

Δ
y

z
=

0 i = 1

i = L− 1

N
=
z

· · ·

··
·

· ·
·

j =
M −

1

j = 1

Figure 1: Constructed grid for 3 dimensions.

The main idea behind the application of DNN [11] to appro-
ximate the 3D PDEs solution is to use a class of finite-dif-
ference methods but for uncertain nonlinear functions. So,
it is necessary to construct an interior set (commonly called
grid or mesh) that divides the subdomain x ∈ [0, 1] in L
equidistant sections, y ∈ [0, 1] in M, and z ∈ [0, 1] in N
equidistant sections, each one of them (Figure 1) defined as
(xi, y j , zk) in such a way that x0 = y0 = z0 = 0 and xL =
yM = zN = 1.

Using the mesh description, one can use the next defini-
tions:

ui, j,k(t) := u
(
xi, y j , zk, t

)
,

u
i, j,k
t (t) := ∂u

(
x, y, z, t

)
∂t

∣∣∣∣∣
x=xi,y=y j ,z=zk

,

u
i, j,k
x (t) := ux

(
x, y, z, t

)∣∣
x=xi,y=y j ,z=zk ,

u
i, j,k
xx (t) := uxx

(
x, y, z, t

)∣∣
x=xi,y=y j ,z=zk .

(10)

Analogously, we may consider the other cases (uxx, uy ,
uyy , uz, uzz, uxy ,uxz,uyz). Using the mesh description and
applying the finite-difference representation, one gets

u
i, j,k
x (t) � ui, j,k(t)− ui−1, j,k(t)

Δx
,

u
i, j,k
xx (t) � u

i, j,k
x (t)− ui−1, j,k

x (t)
Δ2x

,

(11)

and it follows for all cases such that the (Δx,Δy,Δz)-ap-
proximation of the nonlinear PDE (1) can be represented as

u̇i, j,k(t) = u
i, j,k
t (t)

� Φ
(
ui, j,k,ui−1, j,k,ui−2, j,k,ui, j−1,k,

ui, j−2,k,ui, j,k−1,ui, j,k−2,ui−1, j−1,k,

ui−1, j,k−1,ui, j−1,k−1,ui−1, j−1,k−1
)

(
i = 0, . . . ,L; j = 0, . . . ,M, k = 0, . . . ,N

)
.

(12)

2.2. 3D Approximation for Uncertain PDE. By simple adding
and subtracting the corresponding terms, one can describe
(1) as

ut = Au +
◦
V 1σu +

◦
V 2ϕ

1ux +
◦
V 3γ

1uxx
◦
V 4ϕ

2uy +
◦
V 5γ

2uyy

+
◦
V 6ϕ

3uz +
◦
V 7γ

3uzz +
◦
V 8ψ

1uxy

+
◦
V 9ψ

2uyz
◦
V 10ψ

3uxz +
◦
V 11σ

2uxyz + f̃ ,
(13)

where ut = ut(x, y, z, t), u = u(x, y, z, t), σ = σ(x, y, z), ux =
ux(x, y, z, t), uxx = uxx(x, y, z, t), the same for σ2, ϕi, γi, ψi,
uy , uyy , uz, uzz, uxy , uyz, uxz, and uxyz (i = 1, 3), A ∈ Rn×n,
◦
V 1 ∈ Rn×s1 ,

◦
V 2 ∈ Rn×s2 ,

◦
V 3 ∈ Rn×s3 , f̃ = f̃ (x, y, z, t),

◦
V 4 ∈

Rn×s4 ,
◦
V 5 ∈ Rn×s5 ,

◦
V 6 ∈ Rn×s6 ,

◦
V 7 ∈ Rn×s7 ,

◦
V 8 ∈ Rn×s8 ,

◦
V 9 ∈ Rn×s9 ,

◦
V 10 ∈ Rn×s10 .

Here f̃ (x, t) ∈ Rn represents the modelling error term, A

and
◦
V k (k = 1, 6) any constant matrices and the set of sig-

moidal functions have the corresponding size (σ(x, y, z) ∈
Rs1 , ϕ1(x, y, z) ∈ Rs2 , γ1(x, y, z) ∈ Rs3 , ϕ2(x, y, z) ∈ Rs4 ,
γ2(x, y, z) ∈ Rs5 , ψ1(x, y, z) ∈ Rs6 , ϕ3(x, y, z) ∈ Rs7 ,
γ3(x, y, z) ∈ Rs8 , ψ2(x, y, z) ∈ Rs9 , ψ3(x, y, z) ∈ Rs10 , and
σ2(x, y, z) ∈ Rs11) and are known as the neural network set
of activation functions. These functions obey the following
sector conditions:∥∥σ1(x, y, z)− σ1(x′, y′, z′)

∥∥2

≤ Lσ1

(∥∥x − x′∥∥2 +
∥∥y − y′

∥∥2 +
∥∥z − z′∥∥2

)
,

∥∥σ2(x, y, z)− σ2(x′, y′, z′)
∥∥2

≤ Lσ2

(∥∥x − x′∥∥2 +
∥∥y − y′

∥∥2 +
∥∥z − z′∥∥2

)
,∥∥φs(x, y, z)− φs(x′, y′, z′)∥∥2

≤ Lφs
(∥∥x − x′∥∥2 +

∥∥y − y′
∥∥2 +

∥∥z − z′∥∥2
)

(14)

4 Journal of Control Science and Engineering

which are bounded in x, y, and z, that is,

‖σ(·)‖2 ≤ σ (l−1)+,
∥∥∥ϕl(·)∥∥∥2 ≤ ϕl+,∥∥∥γl(·)∥∥∥2 ≤ γl+,

∥∥∥ψl(·)∥∥∥ ≤ ψl+, l = 1, 3.

(15)

Following the methodology of DNN [11] and applying the
same representation to (12), we get for each i ∈ (1, . . . ,L),
j ∈ (1, . . . ,M), k ∈ (1, . . . ,N) the following robust adaptive
non-parametric identifier:

u
i, j,k
t (t) = Ai, j,kui, j,k(t) +

11∑
p=1

◦
W

i, j,k

p φsU(t) + f̃ i, j,k(t). (16)

In the sum we have that s = 1, 3, φ represents functions σ , ϕ,
γ, ψ, and U can be taken as the corresponding ui, j,k, ui−1, j,k,
ui−2, j,k, ui, j−1,k, ui, j−2,k, ui, j,k−1, ui, j,k−2, ui−1, j−1,k, ui, j−1,k−1,
ui−1, j,k−1, ui−1, j−1,k−1. In this equation the term f̃ i, j,k(t),
which is usually recognized as the modeling error, satisfies
the following identify, and here, it has been omitted the de-
pendence to xi, y j , zk of each sigmoidal function:

f̃ i, j,k(t)

:= Φ
(
ui, j,k,ui−1, j,k,ui−2, j,k,ui, j−1,k,ui, j−2,k,ui, j,k−1,ui, j,k−2,

ui−1, j−1,k,ui−1, j,k−1,ui, j−1,k−1,ui−1, j−1,k−1
)

− Ai, j,kui, j,k(t)−
11∑
p=1

◦
W

i, j,k

p φsU(t),
(17)

where
◦
W

i

p ∈ Rn×sp , p = 1, 11,φs, φ represents functions σ ,

ϕ, γ,ψ and s = 1, 3,U(t) represents the corresponding (ui, j,k,
ui−1, j,k, ui−2, j,k, ui, j−1,k, ui, j−2,k, ui, j,k−1, ui, j,k−2, ui−1, j−1,k,
ui−1, j,k−1, ui, j−1,k−1, ui−1, j−1,k−1).

We will assume that the modeling error terms satisfy the
following.

Assumption 2. The modeling error is absolutely bounded in
Ω: ∥∥∥ f̃ i, j,k∥∥∥2 ≤ f

i, j,k
1 . (18)

Assumption 3. The error modeling gradient

∇s f̃
(
x, y, z, t

)∣∣∣
s=si

:= ∇s f̃
i, j,k (19)

is bounded as ‖∇s f̃ i, j,k‖
2 ≤ f

i, j,k
r , where s = x, y, z and

f
i, j,k
r (r = 1, 3) are constants.

3. DNN Identification for Distributed
Parameters Systems

3.1. DNN Identifier Structure. Based on the DNN methodol-
ogy [11], consider the DNN identifier

d

dt
ûi, j,k = Ai, j,kûi, j,k +

11∑
p=1

W
i, j,k
p (t)φsÛ (20)

for all i = 0, . . . ,L; û−1(t) = û−2(t) = 0, where φ represents
activation functions σ , ϕ, γ, and ψ, s = 1, 3, Û is each one of
the states ûi, j,k, ûi−1, j,k, ûi−2, j,k, ûi, j−1,k, ûi, j−2,k, ûi, j,k−1, ûi, j,k−1,
ûi, j,k−2, ûi−1, j−1,k, ûi−1, j,k−1, ûi−1, j−1,k−1, and Ai, j,k ∈ Rn×n is
a constant matrix to be selected, ûi, j,k(t) is the estimate of
ui, j,k(t). Obviously that proposed methodology implies the
designing of individual DNN identifier for each point xi, yj ,
zk. The collection of such identifiers will constitute a DNN
net containing N × M connected DNN identifiers working
in parallel. Here σ1(xi, y j , zk), ϕ1(xi, y j , zk), ϕ2(xi, y j , zk),
ϕ3(xi, y j , zk), γ1(xi, y j , zk), γ2(xi, y j , zk), γ3(xi, y j , zk), ψ1(xi,
y j , zk), ψ2(xi, y j , zk), ψ3(xi, y j , zk), and σ2(xi, y j , zk) are the
NN activation vectors. This means that the applied DNN-ap-
proximation significantly simplifies the specification of
σ1(·, ·), ϕ1(·, ·), ϕ2(·, ·), ϕ3(·, ·), γ1(·, ·), γ2(·, ·), γ3(·, ·)
and ψ1(·, ·), ψ2(·, ·), ψ3(·, ·), σ2(·, ·) which now are con-
stant for any xi, y j , zk fixed.

3.2. Learning Laws for Identifier’s Weights. For each i = 0,
. . . ,L, j = 0, . . . ,M, k = 0, . . . ,N , define the vector-functions
defining the error between the trajectories produced by the
model and the DNN-identifier as well as their derivatives
with respect to x, y, and z for each i, j, k:

ũi, j,k(t) := ûi, j,k(t)− ui, j,k(t),

ũ
i, j,k
s (t) := û

i, j,k
s (t)− ui, j,ks (t),

s = x, y, z.

(21)

Let W
i, j,k
r (t) ∈ Rn, r = 1, 11 be time-variant matrices. These

matrices satisfy the following nonlinear matrix differential
equations:

Ẇ
i, j,k
r (t) := d

dt
W

i, j,k
r (t) = −αW̃ i, j,k

r (t)

− K−1
r Pi, j,kûi, j,k

(
Û (i, j,k),r

)ᵀ(
Ωr(xi, y j , z j)

)ᵀ

− K−1
r S

i, j,k
1 ũ

i, j,k
x

(
Û (i, j,k),r

)ᵀ(
Ωr
x(xi, y j , z j)

)ᵀ

− K−1
r S

i, j,k
2 ũ

i, j,k
y

(
Û (i, j,k),r

)ᵀ(
Ωr
y(x

i, y j , z j)
)ᵀ

− K−1
r S

i, j,k
3 ũ

i, j,k
z

(
Û (i, j,k),r

)ᵀ(
Ωr
z(x

i, y j , z j)
)ᵀ

,

(22)

where Ωh(xi, y j , z j) = Sl(xi, y j , z j) (h = 1, 10, l = 1, 3) rep-
resents the corresponding sigmoidal functions σ l(xi, y j , z j),
ϕl(xi, y j , z j), γl(xi, y j , z j), and ψl(xi, y j , z j). Here

Û (i, j,k),1(t) = ûi, j,k(t), Ũ (i, j,k),2(t) = ûi−1, j,k(t),

Ũ (i, j,k),3(t) = ûi−2, j,k(t), Ũ (i, j,k),4(t) = ûi, j−1,k(t),

Ũ (i, j,k),5(t) = ûi, j−2,k(t), Ũ (i, j,k),6(t) = ûi−1, j−1,k(t),

Ũ (i, j,k),7(t) = ûi−1, j−1,k(t), Ũ (i, j,k),8(t) = ûi−1, j−1,k(t),

Ũ (i, j,k),9(t) = ûi−1, j−1,k(t), Ũ (i, j,k),10(t) = ûi−1, j−1,k(t),

Ũ (i, j,k),11(t) = ûi−1, j−1,k−1(t)
(23)

Journal of Control Science and Engineering 5

with positive matrices Kr(r = 1, 11) and Pi, j,k, S
i, j,k
1 , and S

i, j,k
2

(i = 0,N ; j = 0,M) which are positive definite solutions

(Pi, j > 0, S
i, j
1 > 0, S

i, j
2 > 0) and S

i, j,k
3 (i = 0,N ; j = 0,M, k =

0,L) of the algebraic Riccati equations defined as follows:

Ric
(
Pi, j,k

)
:= Pi, j,kAi, j,k +

[
Ai, j,k

]ᵀ
Pi, j,k

+ Pi, j,kR
i, j,k
P Pi, j,k +Q

i, j,k
P = 0,

Ric
(
S
i, j,k
1

)
:= S

i, j,k
1 Ai, j,k +

[
Ai, j

]ᵀ
S
i, j,k
1

+ S
i, j,k
1 R

i, j,k
S1

S
i, j,k
1 +Q

i, j,k
S1

= 0,

Ric
(
S
i, j,k
2

)
:= S

i, j,k
2 Ai, j,k +

[
Ai, j,k

]ᵀ
S
i, j,k
2

+ S
i, j,k
2 R

i, j,k
S2

S
i, j,k
2 +Q

i, j,k
S2

= 0,

Ric
(
S
i, j,k
3

)
:= S

i, j,k
3 Ai, j,k +

[
Ai, j,k

]ᵀ
S
i, j,k
3

+ S
i, j,k
3 R

i, j,k
S3

S
i, j,k
3 +Q

i, j,k
S3

= 0,

(24)

where each R
i, j,k
B has the form

R
i, j,k
B :=

11∑
r=1

◦
W

i, j,k

r Λr+b

(
◦
W

i, j,k

r

)ᵀ
+ Λb, (25)

where B can be P, S1, S2, and S3 and b = (7, 14, 21, 28).

Matrices Q
i, j,k
B have the form

Q
i, j,k
B :=

∥∥∥Ω1
m(xi, y j , zk)

∥∥∥2

Λ−1
1

+
∥∥∥Ω2

m(xi−1, y j , zk)
∥∥∥2

Λ−1
2

+
∥∥∥Ω3

m(xi−2, y j , zk)
∥∥∥2

Λ−1
3

+
∥∥∥Ω4

m(xi, y j−1, zk)
∥∥∥2

Λ−1
4

+
∥∥∥Ω5

m(xi, y j−2, zk)
∥∥∥2

Λ−1
5

+
∥∥∥Ω6

m(xi, y j , zk−1)
∥∥∥2

Λ−1
6

+
∥∥∥Ω7

m(xi, y j , zk−2)
∥∥∥2

Λ−1
7

+
∥∥∥Ω8

m(xi−1, y j−1, zk)
∥∥∥2

Λ−1
8

+
∥∥∥Ω9

m(xi, y j−1, zk−1)
∥∥∥2

Λ−1
9

+
∥∥∥Ω10

m (xi−1, y j , zk−1)
∥∥∥2

Λ−1
10

+
∥∥∥Ω11

m (xi−1, y j−1, zk−1)
∥∥∥2

Λ−1
11

+Q
i, j,k
B ,

(26)

where B can be P, S1, S2, or S3, representing the partial deri-
vative; for S1 it is with respect to x, for S2 with respect to y,
and for S3 with respect to z, and Λ−1

l (l = 1, 46), where

Ωr
x

(
xi, yj , zj

)
:= d

dx
Ωr
(
x, y, z

)∣∣∣∣
x=xi,y=yj ,z=zk

,

Ωr
y

(
xi, yj , zj

)
:= d

dy
Ωr
(
x, y, z

)∣∣∣∣∣
x=xi,y=yj ,z=zk

,

Ωr
z

(
xi, yj , zj

)
:= d

dz
Ωr
(
x, y, z

)∣∣∣∣
x=xi,y=yj ,z=zk

.

(27)

Here, W̃
i, j,k
k (t) :=W

i, j,k
k (t)−

◦
W

i, j,k

k , k = 1, 11.
The special class of Riccati equation

PA + ATP + PRP +Q = 0 (28)

has a unique positive solution P if and only if the four con-
ditions given in [11] (page 65, chapter 2 Nonlinear System
Identification: Differential Learning) are fulfilled (see [11]):
(1) matrix A is stable, (2) pair (A,R1/2) is controllable, (3)
pair (Q1/2,A) is observable, and (4) matrices (A,Q,R) should
be selected in such a way to satisfy the following inequality:

1
4

(
AᵀR−1 − R−1A

)
R
(
AᵀR−1 − R−1A

)ᵀ
+Q ≤ AᵀR−1A

(29)

which restricts the largest eigenvalue of R guarantying the
existence of a unique positive solution. The main result ob-
tained in this part is in the practical stability framework.

4. Practical Stability and Stabilization

The following definition and proposition are needed for the
main results of the paper. Consider the following ODE non-
linear system:

żt = g(zt, vt) + �t (30)

with zt ∈ Rn, and vt ∈ Rm, and �t an external perturbation
or uncertainty such that ‖�t‖2 ≤ �+.

Definition 4 (Practical Stability). Assume that a time interval
T and a fixed function v∗t ∈ Rm over T are given. Given
ε > 0, the nonlinear system (30) is said to be ε-practically
stable over T under the presence of �t if there exists a δ > 0
(δ depends on ε and the interval T) such that zt ∈ B[0, ε], for
all 0 ≤ t, whenever zt0 ∈ B[0, δ].

Similarly to the Lyapunov stability theory for nonlinear
systems, it was applied the aforementioned direct method for
the ε-practical stability of nonlinear systems using-practical
Lyapunov-like functions under the presence of external per-
turbations and model uncertainties. Note that these func-
tions have properties differing significantly from the usual
Lyapunov functions in classic stability theory.

The subsequent proposition requires the following lem-
ma.

Lemma 5. Let a nonnegative function V(t) satisfying the fol-
lowing differential inequality:

V̇(t) ≤ −αV(t) + β, (31)

where α > 0 and β ≥ 0. Then[
1− μ√

V(t)

]
+

−→ 0, (32)

with μ =
√
β/α and the function [·]+ defined as

[z]+ :=
⎧⎨⎩z if z ≥ 0,

0 if z < 0.
(33)

6 Journal of Control Science and Engineering

Proof. The proof of this lemma can be obtained directly by
the application of the Gronwall-Bellman Lemma.

Proposition 6. Given a time interval T and a function v(·)
over a continuously differentiable real-valued function V(z, t)
satisfying V(0, t) = 0, for all tεT , is said to be ε-practical Lya-
punov-like function over T under v if there exists a constant
α > 0 such that

V̇(z, t) ≤ −αV(z, t) +H(�+), (34)

with H a bounded nonnegative nonlinear function with upper
bound H+. Moreover, the trajectories of zt belong to the zone
ε := H+/α when t → ∞. In this proposition V̇(zt, t) denotes
the derivative of V(z, t) along zt, that is, V̇(z, t) = Vz(z, t) ·
(g(zt, vt) + �t) +Vt(x, t).

Proof. The proof follows directly from Lemma 5.

Definition 7. Given a time interval T and a function v(·) over
T , nonlinear system (30) is ε-practically stable, T under v
if there exists an ε-practical Lyapunov-like function V(x, t)
over T under v.

5. Identification Problem Formulation

The state identification problem for nonlinear systems (13)
analyzed in this study, could be now stated as follows.

Problem. For the nonlinear system, given by the vector PDE
(20), to study the quality of the DNN identifier supplied with
the adjustment (learning) laws (22), estimate the upper
bound of the identification error δ given by

δ := lim
t→∞

L∑
i=0

M∑
j=0

N∑
k=0

∥∥∥ûi, j,k(t)− ui, j,k(t)
∥∥∥2

Pi, j,k
(35)

(with Pi, j,k from (24)) and, if it is possible, to reduce to its
lowest possible value, selecting free parameters participating
into the DNN identifier (A,Kr , r = 1, 11).

This implicates that the reduction of the identification
error δ means that the differential neural network has con-
verged to the solution of the 3D PDE; this can be observed in
the matching of the DNN to the PDE state.

6. Main Result

The main result of this paper is presented in the following
theorem.

Theorem 8. Consider the nonlinear model (1) (i = 0, . . . ,L;
j = 0, . . . ,M, k = 0, . . . ,N), given by the system of PDEs with
uncertainties (perturbations) in the states, under the border
conditions (2). Let us also suppose that the DNN-identifier is
given by (20) which parameters are adjusted by the learning

laws (22) with parameters α
i, j,k
m (i = 0, . . . ,L; j = 0, . . . ,M; k =

0, . . . ,N). If positive definite matrices Q
i, j,k
1 , Q

i, j,k
2 , and Q

i, j,k
3

provide the existence of positive solutions Pi, j , S
i, j,k
1 , S

i, j,k
2 , and

0
2

4
6

8

0
2

4
6

8

Solution of 3D partial differential equation at time

10

10

10

Coordinate yt

0

10

20

30

40

50

60

Coordinate xt

u
(x

,y
,z

,t
)

Figure 2: Numerical trajectory produced by the mathematical
model described by 3D partial differential equation at time 10 s
along the whole domain.

0
2

4
6

8

0
2

4
6

8 10

10

Coordinate yt

0

10

20

30

40

50

60

Coordinate xt

u
e(
x,
y,
z,
t)

Approximation of 3D differential neural network at time 10

Figure 3: Numerical trajectory produced by the neural network de-
scribed reproducing the model at time 10 s along the whole domain.

Difference between 3D PDE and 3D DNN at time 10

−0.8
−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

0
2

4
6

8

0
2

4
6

8 10

10

Coordinate yt Coordinate xt

−
u

(x
,y

,z
,t

)
u
e(
x,
y,
z,
t)

Figure 4: Error of the approximation. Difference between 3D PDE
numerical solution and 3D DNN approximation at time 10 s along
the whole domain.

Journal of Control Science and Engineering 7

S
i, j,k
3 (i = 0, . . . ,L) to the Riccati equations (24), then for all
i = 0, . . . ,L; j = 0, . . . ,M; k = 0, . . . ,N the following ρ-upper
bound:

lim
t→∞

L∑
i=0

M∑
j=0

×
N∑
k=0

[∥∥∥ûi, j,k(t)− ui, j,k(t)
∥∥∥2

Pi, j,k
+
∥∥∥ûi, j,kx (t)− ui, j,kx (t)

∥∥∥
S
i, j,k
1

+
∥∥∥ûi, j,ky (t)− ui, j,ky (t)

∥∥∥
S
i, j,k
2

+
∥∥∥ûi, j,kz (t)− ui, j,kz (t)

∥∥∥
S
i, j,k
3

]
≤ μ

(36)

is ensured with μ0 := √LMNα−1/2 and

μ := μ0

√
max
i, j,k

Ψ,

Ψ := �
3∑
s=1

f
i, j,k
s

≥
(
f̃ i, j,k(t)

)T
Λ−1

7 f̃ i, j,k(t) +
(
f̃
i, j,k
x (t)

)T
Λ−1

14 f̃
i, j,k
x (t)

+
(
f̃
i, j,k
y (t)

)T
Λ−1

21 f̃
i, j,k
y (t) +

(
f̃
i, j,k
z (t)

)T
Λ−1

28 f̃
i, j,k
z (t),

� := max
{
λmax

(
Λ−1

7

)
, λmax

(
Λ−1

14

)
, λmax

(
Λ−1

21

)
, λmax

(
Λ−1

28

)}
.

(37)

Moreover, the weights Wr,tr = 1, 11 remain bounded being
proportional to μ, that is, ‖Wr,t‖ ≤ Krμ, r = 1, 11.

Proof. The proof is given in the appendix.

7. Simulation Results

7.1. Numerical Example. Below, the numerical smulation
shows the qualitative illustration for a benchmark system.
Therefore, consider the following three-dimensional PDE
described as follows:

ut
(
x, y, z, t

) = −c1uxx
(
x, y, z, t

)− c2uyy
(
x, y, z, t

)
− c3uzz

(
x, y, z, t

)
+ ξ
(
x, y, z, t

)
,

(38)

where c1 = c2 = c3 = 0.15. It is assumed that there is access
to discrete measurements of the state u(x, y, z, t) along the
whole domain, which is feasible in practice. ξ(x, y, z, t) is a
noise in the state dynamics. This model will be used just to
generate the data to test the 3D identifier based on DNN.
Boundary conditions and initial conditions were selected as
follows:

u(0, 0, 0, t) = rand(1), ux(0, 0, 0, t) = 0,

uy(0, 0, 0, t) = 0, uz(0, 0, 0, t) = 0.
(39)

The trajectories of the model can be seen in Figure 3 as well
as the estimated state, produced by the DNN identifier. The

2 3 4 5

5

6 7 8 9

Coordinate zt

3D PDE solution and 3D DNN approximation at time 10

3D PDE solution
3D DNN approximation

0

1

1

0

10

15

20

25

30

35

40

45

50

u
(x

,y
,z

,t
)

an
d
u
e(
x,
y,
z,
t)

Figure 5: Comparison between 3D PDE trajectories and 3D DNN
approximation for coordinate z at time 10 s.

0 50 100 150 200
0

50

100

150

200

250

300

350

400
Index error

t

||u
e(
x,
y,
t)
−
u

(x
,y

,t
)||

2

Figure 6: Index quadratic error for the whole time with coordinates
x, y, and z fixed.

efficiency of the identification process provided by the sug-
gested DNN algorithm shown in Figure 4.

In Figures 5 and 6 there are shown the trajectories of the
PDE and the DNN for the coordinate z and the index error
of the PDE and the DNN at 10 seconds for coordinates x, z,
respectively Figure 2.

7.2. Tumour Growth Example. The mathematical model of
the brain tumour growth is presented in this section based on
the results of [18]. Here the diffusion coefficient is considered
as a constant. Let consider the following three-dimensional

8 Journal of Control Science and Engineering

3D PDE dynamics

xt

yt
4

4

5

5

1

1

2

2

3

3

0

10

20

30

40

50

60

u
(x

,y
,z

,t
)

(a)

xt

yt
4

4

5

5

1

1

2

2

3

3

0

10

20

30

40

50

60

3D DNN identification dynamics

u
e(
x,
y,
z,
t)

(b)

Figure 7: Numerical trajectory produced by the mathematical model described by 3D partial differential equation at time 46 days along the
whole domain.

parabolic equation of the tumour growth described as fol-
lows:

ut
(
x, y, z, t

) = −Pux(x, y, z, t
)− Ruy(x, y, z, t

)
− Suz

(
x, y, z, t

)
+Quxx

(
x, y, z, t

)
+Quyy

(
x, y, z, t

)
+Quzz

(
x, y, z, t

)
+ Γ− Lu(x, y, z, t

)
,

(40)

where u(x, y, z, t) is the growth rate of a brain tumour, Q is
the diffusion coefficient, W = (P,R, S) is the drift velocity
field, Γ = Γ(u) is the proliferation coefficient, and L = L(u)
is the decay coefficient of cells. It is assumed that there is
access to discrete measurements of the state u(x, y, z, t) along
the whole domain, which is feasible in practice by PET-
CT (Positron emission tomography-computed tomography)
technology. The domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1
This model will be used just to generate the data to test the 3D
identifier based on DNN. Boundary conditions and initial
conditions were selected as follows:

u(0, 0, 0, t) = 200± 20μ, ux(0, 0, 0, t) = 0,

uy(0, 0, 0, t) = 0, uz(0, 0, 0, t) = 0.
(41)

The trajectories of the model and the estimate state produced
by the DNN identifier can be seen in Figure 7. The dis-
similarity between both trajectories depends on the learning
period required for adjusting the DNN identifier. The error
between trajectories produced by the model and the pro-
posed identifier is close to zero almost for all x, y, z and all
t that shows the efficiency of the identification process pro-
vided by the suggested DNN algorithm is shown in Figure 8.

In Figures 9 and 10 there are shown the trajectories of
the PDE and the DNN for the coordinate z and the index
error of the PDE and the DNN at 46 days for coordinates x,
z, respectively.

8. Conclusions

The adaptive DNN method proposed here solves the prob-
lem of non-parametric identification of nonlinear systems
(with uncertainties) given by 3D uncertain PDE. Practical
stability for the identification process is demonstrated based
on the Lyapunov-like analysis. The upper bound of the iden-
tification error is explicitly constructed. Numerical examples
demonstrate the estimation efficiency of the suggested meth-
odology.

Journal of Control Science and Engineering 9

0

2

4

6

1

2

3

4

5
−1

−0.5

0

0.5

1

Error dynamics

−
u

(x
,y

,z
,t

)
u
e(
x,
y,
z,
t)

xt
yt

Figure 8: Error of the approximation. Difference between 3D PDE
numerical solution and 3D DNN approximation at time 46 days
along the whole domain.

21 3 4 5 6 7 8 9 10

10

20

30

40

50

60

Coordinate zt

u
(x

,y
,z

,t
)

&
u
e(
x,
y,
z,
t)

3D PDE solution
3D DNN approximation

0

Figure 9: Comparison between 3D PDE trajectories and 3D DNN
approximation for coordinate z at time 46 days.

Appendix

Consider the Lyapunov-like function defined as the compo-
sition of NML individual Lyapunov functions V i, j,k(t) along
the whole space:

V(t) :=
L∑
i=0

M∑
j=0

N∑
k=0

⎡⎣V i, j,k
(t) +

11∑
r=1

tr
{[
W̃ i

r(t)
]T
KrW̃

i
r(t)

}⎤⎦,

V
i, j,k

(t) :=
∥∥∥ũi, j,k(t)

∥∥∥2

Pi, j,k
+
∥∥∥ũi, j,kx (t)

∥∥∥2

S
i, j,k
1

+
∥∥∥ũi, j,ky (t)

∥∥∥2

S
i, j,k
2

+
∥∥∥ũi, j,kz (t)

∥∥∥2

S
i, j,k
3
.

(A.1)

20 40 60 80 100 120 140 160 180 2000
0

50

100

150
Index error

t

||u
e(
x,
y,
t)
−
u

(x
,y

,t
)||

2

Figure 10: Index quadratic error for the whole time with coordi-
nates x, y, and z fixed.

The time derivative V̇(t) of V(t) can be obtained so that

V̇(t) = 2
N∑
i=0

M∑
j=0

L∑
k=0

(
ũi, j,k(t)

)T
(t)Pi· j,k

d

dt
ũi, j,k(t)

+ 2
N∑
i=0

M∑
j=0

L∑
k=0

[
ũ
i, j,k
x (t)

]T
S
i· j,k
1

d

dt
ũ
i. j,k
x (t)

+ 2
N∑
i=0

M∑
j=0

L∑
k=0

[
ũ
i, j,k
y (t)

]T
S
i· j,k
2

d

dt
ũ
i. j,k
y (t)

+ 2
N∑
i=0

M∑
j=0

L∑
k=0

[
ũ
i, j,k
z (t)

]T
S
i· j,k
3

d

dt
ũ
i. j,k
z (t)

+ 2
N∑
i=0

M∑
j=0

L∑
k=0

3∑
r=1

tr
{[
W̃

i, j,k
r (t)

]T
KrẆ

i, j,k
r (t)

}
.

(A.2)

Applying the matrix inequality given in [19]

XYT + YXT ≤ XΛXT + YΛ−1YT (A.3)

valid for any X ,Y ∈ Rr×s and for any 0 < Λ = ΛT ∈ Rs×s

to the terms containing f̃ i(t) and their derivatives. We obtain

V̇(t) ≤ I1(t) + I2(t) + I3(t) + I4(t)

− 2α
11∑
r=1

N∑
i=0

M∑
j=0

L∑
k=0

tr
{(
W̃

i, j
r (t)

)T
KrW

i, j,k
r (t)

}

+ 2α
11∑
r=1

N∑
i=0

M∑
j=0

L∑
k=0

tr
{(
W̃

i, j
r (t)

)T
KrW

i, j,k
r (t)

}

+ 2
11∑
r=1

N∑
i=0

M∑
j=0

L∑
k=0

tr
{(
W̃

i, j
r (t)

)T
K2
r Ẇ

i, j,k
1 (t)

}

−
N∑
i=0

M∑
j=0

L∑
k=0

αV
i, j,k

(t) + �
N∑
i=0

M∑
j=0

L∑
k=0

3∑
s=1

f
i, j,k
s ,

(A.4)

10 Journal of Control Science and Engineering

where

I1(t) :=
N∑
i=0

M∑
j=0

L∑
k=0

(
ũi. j,k(t)

)T
Ric
(
Pi, j
)
ũi, j,k(t),

I2(t) :=
N∑
i=0

M∑
j=0

L∑
k=0

(
ũ
i. j,k
x (t)

)T
Ric
(
S
i, j,k
1

)
ũ
i, j,k
x (t),

I3(t) :=
N∑
i=0

M∑
j=0

L∑
k=0

(
ũ
i. j,k
y (t)

)T
Ric
(
S
i, j
2

)
ũ
i, j,k
y (t),

I4(t) :=
N∑
i=0

M∑
j=0

L∑
k=0

(
ũ
i. j,k
z (t)

)T
Ric
(
S
i, j
3

)
ũ
i, j,k
z (t).

(A.5)

By the Riccati equations, defined in (24), I1(t) = I2(t) =
I3(t) = I4(t) = 0, and in view of the adjust equations of the
weights (22), the previous inequality is simplified to

V̇(t) ≤ −α
N∑
i=0

M∑
j=0

L∑
k=0

V
i, j,k

(t)

+ 2α
11∑
r=1

N∑
i=0

M∑
j=0

L∑
k=0

tr
{(
W̃

i, j
r (t)

)T
KrW

i, j,k
r (t)

}

+ ΨV̇(t) ≤ −α
N∑
i=0

M∑
j=0

L∑
k=0

V i, j,k(t) + Ψ.

(A.6)

Applying Lemma 5, one has [1− (μ/
√
V(t))]+ → 0,

which completes the proof.

References

[1] Y. Pinchover and J. Rubinstein, An Introduction to Partial
Differential Equations, Cambridge University Press, 2008.

[2] G. D. Smith, Numerical Solution of Partial Differential Equa-
tions: Infinite Difference Methods, Clarendon Press, Oxford,
UK, 1978.

[3] T. J. R. Hughes, The Finite Element Method, Prentice Hall, Up-
per Saddle River, NJ, USA, 1987.

[4] R. Fuentes, A. Poznyak, T. Poznyak, and I. Chairez, “Neural
numerical modeling for uncertain distributed parameter sys-
tem,” in Proceedings of the International Joint Conference in
Neural Networks, pp. 909–916, Atlanta, Ga, USA, June 2009.

[5] S. Haykin, Neural Networks. A Comprehensive Foundation,
IEEE Press, Prentice Hall U.S., New York, NY, USA, 2nd edi-
tion, 1999.

[6] G. Cybenko, “Approximation by superposition of sigmoidal
activation function,” Mathematics of Control, Signals and Sys-
tems, vol. 2, pp. 303–314, 1989.

[7] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural net-
works for solving ordinary and partial differential equations,”
IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 987–
1000, 1998.

[8] M. W.M Dissanayake and N. Phan-Thien, “Neural-network-
based approximations for solving partial differential equa-
tions,” Communications in Numerical Methods in Engineering,
vol. 10, no. 3, pp. 195–201, 1994.

[9] N. Mai-Duy and T. Tran-Cong, “Numerical solution of
differential equations using multiquadric radial basis function
networks,” Neural Networks, vol. 14, no. 2, pp. 185–199, 2001.

[10] S. He, K. Reif, and R. Unbehauen, “Multilayer neural networks
for solving a class of partial differential equations,” Neural Net-
works, vol. 13, no. 3, pp. 385–396, 2000.

[11] A. Poznyak, E. Sanchez, and W. Yu, Differential Neural Net-
works for Robust Nonlinear Control (Identification, Estate Esti-
mation an trajectory Tracking), World Scientific, 2001.

[12] F. L. Lewis, A. Yeşildirek, and K. Liu, “Multilayer neural-net
robot controller with guaranteed tracking performance,” IEEE
Transactions on Neural Networks, vol. 7, no. 2, pp. 1–11, 1996.

[13] G. A. Rovithakis and M. A. Christodoulou, “Adaptive control
of unknown plants using dynamical neural networks,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 24, no. 3,
pp. 400–412, 1994.

[14] H. K. Khalil, Nonlinear Systems, Prentice-Hall, Upper Saddle
River, NJ, USA, 2002.

[15] R. A. Adams and J. Fournier, Sobolev Spaces, Academic Press,
New York, NY, USA, 2nd edition, 2003.

[16] B. Delyon, A. Juditsky, and A. Benveniste, “Accuracy analysis
for wavelet approximations,” IEEE Transactions on Neural Net-
works, vol. 6, no. 2, pp. 332–348, 1995.

[17] N. E. Cotter, “The Stone-Weierstrass theorem and its appli-
cation to neural networks,” IEEE Transactions on Neural Net-
works, vol. 1, no. 4, pp. 290–295, 1990.

[18] M. R. Islam and N. Alias, “A case study: 2D Vs 3D partial dif-
ferential equation toward tumour cell visualisation on multi-
core parallel computing atmosphere,” International Journal for
the Advancement of Science and Arts, vol. 10, no. 1, pp. 25–35,
2010.

[19] A. Poznyak, Advanced Mathetical Tools for Automatic Control
Engineers, Deterministic Technique, vol. 1, Elsevier, 2008.

