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In this paper, we present a mathematical model for the transmission of hantavirus among rodents and its effect on the number of
hantavirus-infected human population. We investigate the model and present a standard analysis in mathematical epidemiology,
such as determining the equilibria of the system and their stability analysis, together with the relationship to the basic
reproduction number. It is found that the endemic equilibrium exists and is locally asymptotically stable when the basic
reproduction number is greater than one; otherwise, the disease-free equilibrium is stable. Later on, we also show that by
constructing a suitable Lyapunov function, the endemic equilibrium is globally asymptotically stable whenever it exists. Based
on the basic reproduction number, we present a critical level of intervention to control the spread of the disease to humans.
We found a significant finding from the present model that if the basic reproduction number is greater than one, then it is
impossible to completely eliminate hantavirus disease in the system by solely focusing on any intervention for humans, like
vaccination and curative action, without paying any attention to interventions for rodent populations. However, we can still
decrease the density of infected humans with those interventions. Hence, we suggest that a combination of several
interventions is needed to obtain effective control in eliminating the hantavirus. This information is useful for further study in
finding an optimal control strategy to reduce or eliminate the transmission of hantavirus to humans.

1. Introduction

Some examples of important zoonoses include zoonotic
influenza, salmonellosis, West Nile virus, plague, rabies,
brucellosis, dengue, and hantavirus. Rats and mice are
among the animals that spread most zoonoses to more
than 35 diseases. The diseases are transmitted to humans
via direct contact with rodents or extensive contact with
rodent excreta-contaminated material [1]. Among the zoo-
noses spread by rodents is the hantavirus disease which is
caused by the Hantaan virus. There are more than one
species of rodents that can transmit hantavirus, including
rats and mice.

Hantavirus pulmonary syndrome (HPS), or shortly han-
tavirus disease, is a fatal disease for humans. The virus is
spread worldwide and is regarded as an important zoonotic
pathogen that may cause severe and adverse effects in
humans. It is transmitted to humans via direct contact with
rodents or indirectly by rodent excreta (feces, urine, and
aerosols). Humans may become infected once they inhale
aerosolized droplets of urine or have extensive contact with
rodent excreta-contaminated materials [2]. The disease is
mainly circulated among rodents of different species and is
also able to transmit from rodents to humans. However,
there is no evidence of human-to-human transmission [3]
or human-to-rodent transmission.
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Hantaviruses are a group of viruses consisting of several
strains that have been identified as infectious agents that can
cause serious illness. Examples of Hantaan viruses are
Dobrava, Puumala (PUU), and Seoul (SEOV) subtypes
which may cause HFRS and Sin Nombre (SNV), Bayou virus
(BAY), Black Canal Creek (BCC), and New York virus (NY)
subtypes which may cause HPS [4]. To date, hantavirus
infection is still regarded as a global zoonotic challenge, with
an estimated more than 20,000 cases of hantavirus disease
occurring annually worldwide, especially in Asia [5]. Sin
Nombre virus, for example, is a type of hantavirus identified
as the infectious agent that caused the deadly outbreak of
hantavirus pulmonary syndrome in southwestern North
America in 1993. Each hantavirus is harbored by an infected
rodent species. Rodents do not lose infection and infect
humans who come into contact with them or with their feces
[6]. Each hantavirus generally associates with a primary
rodent host where substantial coevolutionary adaptation is
possible [7, 8].

There are about 30 different hantaviruses worldwide,
some of which cause infections in humans [9]. Infection in
humans is incidental, usually due to indirect transmission
through contact with infectious rodent feces, but can cause
hantavirus pulmonary syndrome with a mortality rate of
up to 37% [10]. There are two characteristics of hantavirus
infection observed in the field. For the first one, it is reported
that infections can disappear entirely from rodent popula-
tions if environmental conditions are unsuitable, only to
reappear when environmental conditions change and
become favorable. This is a temporary feature. There are also
spatial characteristics in the second one, in which there is
evidence of focal infection. This “refugia” of rodent popula-
tions can be expanded or reduced [11].

The geographical distribution of hantavirus is mainly in
Asia [5], such as in China, the Republic of Korea, and the Far
East Region of the Russia Federation. As the most endemic
country, more than 1,400,000 clinical cases of HFRS caused
by HTNV and Seoul Virus (SEOV), with about 45,000
deaths, were reported in China during the period 1950 to
2001 [12]. This is about 70% to 90% of the total reported
worldwide HFRS cases [13]. The remaining cases are
reported from 18 countries (Asia), 32 countries (Europe)
[13], and 7 countries (America) [14].

Other examples of countries that have already been
invaded by hantavirus are Japan, Indonesia, and India
(doi:10.1038/nindia.2008.104). Among several known
strains of Hantaan viruses, one of them is Puumala (PUU)
which may cause hemorrhagic fever with renal syndrome
(HFRS) and hantavirus pulmonary syndrome (HPS) in
humans [15]. Currently, there are no reported recent HFRS
cases in Japan, but there may be some undiagnostic cases
since infected brown rats are distributed throughout Japan
and grey red-backed voles are massively infected with the
PUU virus in Hokkaido [15]. Indonesia is also home to
approximately 171 species of rats, and 22 species among
them live on Java Island [16]. Wibowo [4] reported that at
least 5 species of rats are among the reservoirs of the hanta-
virus. Recently, Mulyono et al. [17] added 4 more new spe-
cies of rats which act as the reservoir of the hantavirus.

Sendow et al. [18] and the reference therein pointed out
the occurrence of HPS in Indonesia. The first reported cases
of HPS in humans were in 2002, and initially, all the patients
were suspected of contracting DHF [19]. The prevalence of
hantavirus in rodents varies among cities in Indonesia, with
the highest being 28.9% in Maumere, the eastern part of
Indonesia [4]. This high prevalence of hantavirus in rodents
also happens in other parts of the world, indicating the
importance of rodents as a source of hantavirus transmis-
sion to humans and establishing the disease as a rodent-
born disease.

Considering the danger of the disease to humans, some
interventions have been proposed to control the spread of
the disease to humans. This includes prevention and treat-
ment. Prevention is done mainly by avoiding exposure to
materials carrying hantavirus such as rodent’s feces, urine,
bodily secretions, and tissues. People who have a high risk
of this exposure, such as those who are occupationally
exposed to rodents, should take extra precautions to avoid
this exposure. Some apparatus like gloves, goggles, rubber
boots or disposable shoe covers, and coveralls or gowns
may be used during their activities [20, 21], and ventilation
of the room should be sufficiently good [22]. In general,
rodent control to prevent high exposure to hantavirus in
any building or house is recommended [23], which includes
the use of rodent traps and poisons and the removal of pos-
sible nesting sites around the home [22]. Other examples of
prevention have been described by Kerins et al. [24] related
to pet rats, including euthanasia of the entire colony or test-
ing and culling of infected animals. Intervention in humans
to prevent hantavirus infection usually takes the form of vac-
cination, in which an inactivated hantavirus is injected [25].
While some therapeutics, concerned with the treatment of
disease and the action of remedial agents, are given to cure
infected humans [26], safe and effective vaccines and immu-
notherapy as preventives and treatments for hantavirus dis-
ease are still being developed [27, 28].

Hantavirus disease now begins to receive much attention
from scientists, including mathematicians, in the attempt to
understand, to control, and to eliminate it—if possible. In
regard to the application of mathematics in the study of dis-
ease transmission, there are some authors that have con-
structed some mathematical models, such as Abramson
and Kenkre [11, 29], Sauvage et al. [30], Abramson et al.
[29], Allen et al. [31–34], Alvarez et al. [35], Escudero
et al. [36], Chu et al. [37], Wesley [38, 39], Abramson [40],
Rida et al. [41], Goh et al. [42], Karim et al. (2009), Kaplan
et al. [43], Bürger et al. [44], and Yusof et al. [45, 46]. The
most influential work in this area is written by Allen et al.
whose subsequential works on mathematical modeling of
hantavirus transmission have high citations. In this paper,
we propose a new model for the transmission of hantavirus
among rodents and its effect on the number of hantavirus-
infected humans.

2. Formulation of New Model

In this section, we formulate a mathematical model for the
transmission of hantavirus by considering the following
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assumptions: (i) there is only one species of rodents; (ii) the
transmission happens only among rodents and from rodents
to humans, and there is no transmission among humans and
from humans to rodents since there is no evidence of
human-to-human transmission [3]; (iii) transmission from
rodents to humans occurs in two different modes, direct
and indirect. Direct transmission occurs when there is direct
contact between humans and infected rodents that may
cause human infection by rodent bites, while indirect trans-
mission can be done through the contact of humans and
rodents excreta [2]. (iv) The recruitment to both human
and rodent susceptible populations is constant, and (v) there
is no vertical transmission [21].

Let us consider a human population, which, due to the
circulation of hantavirus, is divided into three compart-
ments, namely, the susceptible (SH), the infected (IH), and
the recovered (RH), who are assumed to be immune with
SH t + IH t + RH t =NH t . For all variables in the model
(i.e., X = S, I, R, N), the notation X t means the number of
individuals in X class at time t. The rodent population is also
assumed to have similar compartments with SR denotes the
susceptible rodents, IR denotes the infective rodents, and
RR denotes the recovered rodents with SR t + IR t + RR
t =NR t . A schematic diagram of disease transmission is
shown in Figure 1.

The notations and parameters used in the schematic dia-
gram above are presented in Table 1:

As there are two different routes of infection from rodent
to human, i.e., by rodent biting and by contacting the rodent
excreta, hence, we have the following equations as the gov-
erning hantavirus transmission among rodents and humans:

dSH t
dt

= ΓH − bβbSH t IR t − ε IR t SH t βε − μHSH t ,

1

dIH t
dt

= bβbSH t IR t + ε IR t SH t βε − μH + γH IH t ,

2

dRH t
dt

= γHIH t − μHRH t , 3

dSR t
dt

= ΓR − βRSR t IR t − μRSR t , 4

dIR t
dt

= βRSR t IR t − μR + γR IR t , 5

dRR t
dt

= γRIR t − μRRR t 6

Let us consider the first case in which the number of
rodent excreta is a linear function of the number of infective
rodents, i.e., ε IR t = εIR t . Hence, the per capita success-
ful contact rate between a susceptible and the rodent excreta
rate, with the successful probability of transmission βε, is
given by εIR t βε. Furthermore, if we also assume the suc-
cessful probability of transmissions is the same regardless
of its mode of transmission (via biting by the rodent or con-
tact with rodent excreta and aerosol), i.e., βε = βb = βH , then,
we have the total transmission rate from the two different
modes given by

bβbSH t IR t + ε IR t SH t βε

= bβHSH t IR t + εIR t SH t βH

= b + ε βHSH t IR t = bβHSH t IR t

7

Hence, the complete equations for the SIR-SIR hantavi-
rus transmission in this special case are given by Equations
(3)–(6) plus the following equations:

�H

�R

SH IH RH

SR IR
�RIR

(b�b + ��e)IR
– –

RR

�H �H �H

�H

�R

�R �R �R

Figure 1: A schematic diagram of SIR-SIR transmission of hantavirus between humans and rodents.

Table 1: Parameters and notations used in the model formulation.

ΓH ; ΓR Recruitment rates (human; rodent)

b Number of bites/direct contact with rodent

ε Rodent excreta density

βb; βε
Probability of successful contact
(bites/direct contact; excreta)

βH ; βR
Probability of successful contact

(human; rodent)

μH ; μR Death rates (human; rodent)

γH ; γR Recovery rates (human; rodent)
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dSH t
dt

= ΓH − bβHSH t IR t − μHSR t , 8

dIH t
dt

= bβHSH t IR t − μH + γH IH t 9

In fact, the last two equations can also be derived in
more general ways without assuming βε = βb = βH . In this
case, we let bβH

′ = bβb + εβε . In the subsequent section,
we analyze the model by showing its steady-state solutions,
their stability, and their relation to the basic reproduction
number, which is central in mathematical epidemiology
studies.

3. Results

In this section, we analyze the system of Equations (3)–(6),
(8), and (9) by showing the equilibria and their stability.
The relation of the existence of the equilibria and its stability
to the basic reproduction number is also presented. Further-
more, we present the sensitivity analysis of the equilibria and
the basic reproduction number to the change of parameters
to find the most critical parameters affecting the dynamics of
the system.

3.1. The Equilibria. An endemic-free or nonendemic equilib-
rium always exists for any parameters of the model. How-
ever, we show that there is a threshold that determines the
existence of an endemic equilibrium, say T ε, so that the
endemic equilibrium exists only if T ε is above a certain
value; otherwise, an endemic equilibrium does not exist.
We sum up this property in the following theorem.

Theorem 1. In the SIR-SIR hantavirus model (Equations
(3)–(6) and Equations (8) and (9)), the following properties
hold:

(a) The trivial nonendemic equilibrium of the system
always exists, given by S0H

∗, I0H∗, R0H
∗, S0R∗, I0R∗,

R0R
∗, = ΓH/μH , 0, 0, ΓR/μR, 0, 0

(b) An endemic equilibrium is given by SeH
∗, IeH∗,

ReH
∗, SeR∗, IeR∗, ReR

∗ with S∗eR = ΓR/μRT 0, I∗eR = βR/
μR T 0 − 1 , R∗

eR = γRβR/μ2R T 0 − 1 , S∗eH = βRΓH/b
μRβH T 0 − 1 + μHβR, I∗eH = μRbβH T 0 − 1 /βR
μH + γH S∗H , and R∗

H = γH/μHI∗H , and T 0 = βRΓR/
μR μR + γR is a threshold such that the endemic
equilibrium exists only if T 0 > 1; otherwise, the
endemic equilibrium does not exist.

Proof of Theorem 1. By solving Equations (3)–(6) and Equa-
tions (8) and (9) simultaneously under steady-state condi-
tions (i.e., when all LHSs of the equations are equal to
zero), the system has two equilibria, i.e., S0H

∗, I0H∗, R0H
∗,

S0R
∗, I0R∗, R0R

∗, = ΓH/μH , 0, 0, ΓR/μR, 0, 0 and SeH
∗, IeH∗

, ReH
∗, SeR∗, IeR∗, ReR

∗ given by

(a) S0H
∗, I0H∗, R0H

∗, S0R∗, I0R∗, R0R
∗, = ΓH/μH , 0, 0,

ΓR/μR, 0, 0 which is a nonendemic equilibrium,
since all of the infected classes (I0H

∗ and I0R
∗) are

zero. Clearly, this trivial one always occurs

(b) SeH
∗, IeH∗, ReH

∗, SeR∗, IeR∗, ReR
∗ is an endemic

equilibrium, with S∗eH = βR μR + γR ΓH/bβH −μR μR
+ γR + βRΓR + βR μR + γR μH , I∗eH = bβHΓH −μR
μR + γR + βRΓR / bβH −μR μR + γR + βRΓR + βR
μR + γR μH μH + γH , R∗

eH = bβHΓH −μR μR + γR
+ βRΓR / bβH −μR μR + γR + βRΓR + βR μR + γR
μH μH + γH γH/μH , S∗eR = μR + γR/βR, I∗eR = −μR
μR + γR − βRΓR/βR μR + γR , and R∗

eR = − μR μR +
γR − βRΓR γR/βR μR + γR μR.

To find the condition for the existence of the endemic
equilibrium, let us look for a threshold number, so that
SeH

∗ ≥ 0, I∗eH > 0, R∗
eH > 0, SeR∗ ≥ 0, I∗eR > 0, and R∗

eR > 0. Note
that by using some algebraic manipulation, it is easy to show
that the components of the equilibrium can be rewritten in
the following forms.

(i) First, we focus on S∗eR = μR + γR/βR. This can be
written as S∗eR = μR + γR/βR = ΓR/μR βRΓR/μR μR +
γR . If we define T 0 = βRΓR/μR μR + γR , then we
have S∗eR = ΓR/μRT 0 as required

(ii) Keeping in mind T 0 = βRΓR/μR μR + γR , then, we
have the
following-
I∗eR = −μR μR + γR − βRΓR/βR μR + γR = βR/μR T 0

− 1
(iii) Similarly, R∗

eR = − μR μR + γR − βRΓR γR/βR μR +
γR μR = γRβR/μ2R R0 − 1

(iv) Next, we have S∗eH = βR μR + γR ΓH/bβH −μR μR +
γR + βRΓR + βR μR + γR μH . Let us look at the
inverse which can be manipulated as

1
S∗eH

= bβH −μR μR + γR + βRΓR + βR μR + γR μH
βR μR + γR ΓH

= bβH −μR μR + γR + βRΓR

βR μR + γR ΓH
+ βR μR + γR μH
βR μR + γR ΓH

= bμRβH

βRΓH

−μR μR + γR + βRΓR

μR μR + γR
+ μH
ΓH

= bμRβH

βRΓH
R0 − 1 + μH

ΓH

= bμRβH R0 − 1 + μHβR

βRΓH

10

Hence, S∗eH = βRΓH/bμRβH T 0 − 1 + μHβR as requested.

(v) Next I∗eH = bβHΓH −μR μR + γR + βRΓR / bβH −
μR μR + γR + βRΓR + βR μR + γR μH μH + γH
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can be rewritten as I∗eH = bβHΓH −μR μR + γR + βR

ΓR/μR μR + γR / μH + γH bβH −μR μR + γR + βR
ΓR + βR μR + γR μH /μR μR + γR = bβHΓH T 0 −
1 / μH + γH bβH T 0 − 1 + βRμH/μR as required

(vi) Finally, we have the following algebraic expression

R∗
eH = bβHΓH −μR μR + γR + βRΓR

bβH −μR μR + γR + βRΓR + βR μR + γR μH μH + γH

γH
μH

= γH
μH

I∗H

11

which completes the proof.

3.2. The Basic Reproduction Number and Stability of the
Equilibria. Let us have a look at the form of the threshold
T 0 = βRΓR/μR μR + γR which can be written as T 0 = βR 1
/ γR + μR ΓR 1/μR and can be read verbally as the multi-
plication of four rodent epidemiological factors. The multi-
plication of the four factors mentioned above is (the force
of infection from an infectious rodent to a healthy
rodent)× (the average length of stay of an infective rodent
within the infectious period)× (the life expectancy of a
healthy rodent)× (the constant rate of susceptible rodent
recruitment). Interestingly, here, human epidemiological
factors do not appear in the threshold parameter T 0.

To provide a deeper interpretation of this threshold, let
us consider a clinical intervention. In the health context,
any intentional action designed to obtain an outcome is
called a clinical intervention. If, in the absence of clinical
intervention, we have T 0 > 1 (hence, an endemic equilib-
rium exists), then we could apply a clinical intervention
(such as vaccination), so that it is possible to reduce the
threshold to be less than 1 by changing T 0 to T ε for a cer-
tain choice of ε > 0, resulting in T ε < 1 (removing the
endemic equilibrium from the system). In the case of hanta-
virus, intervention other than clinical intervention is also
possible such as reducing the rodent recruitment rate, reduc-
ing the life expectancy of the rodent, trapping, and culling
infective rodents. This is the basic idea behind controlling/
eliminating contagious diseases from a mathematical point
of view. Finding this kind of threshold is vital in the study
of mathematical epidemiology. In modern literature, this
threshold is usually called the basic reproduction number
(sometimes the basic reproduction/reproductive ratio). It is
not easy to find this number for more complex transmis-
sions of a disease. There are some good and rigorous litera-
ture studies regarding this concept, such as Diekmann and
Heesterbeek [47], Diekmann et al. [48, 49], Van den
Driessche and Watmough [50], and Zhao [51], that provide
a more systematic way of constructing the basic reproduc-
tion number. We prove, by standard theory, that T 0 men-
tioned above are indeed the basic reproduction number.
We begin by defining the basic reproduction number.

The basic reproduction number of an infection is the
expected number of cases produced by one case in a popula-
tion where all the individuals are susceptible to infection.

The authors of [19] (p. 4) defined the basic reproduction
number, with the symbolR0, as the expected number of sec-
ondary cases per primary case in a “virgin” population. In
the same book, they showed that R0 ≔ lim

n⟶∞
Kn 1/n ([47],

p. 75), where K is the next-generation matrix defined
therein. According to the authors, this is a natural definition
of the basic reproduction number from which its value can
be computed. However, there is another way to compute
the basic reproduction number other than from this defini-
tion. In fact, there are some methods that are easier to use
to obtain the basic reproduction number. As an example,
the following method is suggested in Van den Driessche
and Watmough [50]. The authors looked at an epidemic
multicompartment model dxi/dt = f i x =F i x −V i x ,
i = 1,⋯, n (as in Equations (3)–(6) and Equations (8)
and (9) above). They showed that the function f i x can be
decomposed into the rate of appearance of new infections
in the ith compartment, F i x , and the rate of transfer of
individuals from/into the ith compartment, V i x . Further-
more, they defined F and V to be the Jacobian matrix evalu-
ated at the nonendemic equilibrium and showed that the
basic reproduction number can be calculated as the spectral
radius R0 = ρ FV−1 . The following theorem provides the
basic reproduction number of the SIR-SIR hantavirus model
in Equations (3)–(6) and Equations (8) and (9), which in this
case is exactly the same as the threshold T 0 in Theorem 1.

Theorem 2. The SIR-SIR hantavirus model (Equations
(3)–(6) and Equations (8) and (9)) has the basic reproduction
number R0 = βRΓR/μR μR + γR .

Proof of Theorem 2. Following the method in [50], with ref-
erence to Equations (3)–(6) and Equations (8) and (9), we
have the rate of appearance of new infection vectors F x
and the rate of transfer of individual vectors V x :

F =

0
bβHSHIR

0
0

βRSRIR

0

, 12

V =

−ΓH + bβHSHIR + μHSR

μH + γH IH

−γHIH + μHRH

−ΓR + βRSRIR + μRSR

μR + γR IR

−γRIR + μRRR

13
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Next, from the two vectors, we obtain two matrices

F =
0 bβHSH

0 βRSR
, 14

V =
μH + γH 0

0 μR + γR
15

Consequently,

V−1 =

1
μH + γH

0

0 1
μR + γR

, 16

FV−1 =
0 bβHSH

μR + γR

0 βRSR
μR + γR

, 17

which gives rise to the effective reproduction number
R0 = ρ FV−1 = βRSR/μR + γR where SR = ΓR/μR. Hence, R0
= ρ FV−1 = βRΓR/μR μR + γR which completes the proof.

Theorem 3. The SIR-SIR model in Equations (3)–(6) and
Equations (8) and (9) always has a trivial equilibrium, while
the nontrivial equilibrium exists only if the basic reproduction
number is greater than 1, i.e., R0 = βRΓR/μR μR + γR > 1.

Proof of Theorem 3. It is obvious as a consequence of Theo-
rems 1 and 2.

Theorem 4. The nonendemic equilibrium S0H
∗, I0H∗, R0H

∗,
S0R

∗, I0R∗, R0R
∗ of Equations (3)–(6) and Equations (8)

and (9) is locally asymptotically stable whenever R0 = βR
ΓR/μR μR + γR < 1 and unstable otherwise.

Proof of Theorem 4. It is easy to show that the eigenvalues
of the Jacobian matrix at the disease-free are λ1 = −μR,
λ2 = −μH , λ3 = − μH + γH , and βRΓR − μR μR + γR /μR.
The last eigenvalues is certainly negative if R0 = βRΓR/μR
μR + γR < 1.

Theorem 5. If the endemic equilibrium SeH
∗, IeH∗, ReH

∗,
SeR

∗, IeR∗, ReR
∗ of Equations (3)–(6) and Equations (8) and

(9) exists (i.e., whenever R0 = βRΓR/μR μR + γR > 1), then
it is locally asymptotically stable.

Proof of Theorem 5. As before, it can be shown the eigen-
values of the Jacobian matrix at the disease-free are λ1 =
−μR, λ2 = −μH , λ3 = − μH + γH , and λ4 = −bβbH βRΓR −
γRμR − μ2R + βRμH μR + γR /βR μR + γR = −bβbH βRΓR/μR
μR + γR − 1 + βRμH μR + γR /βR μR + γR which is
clearly negative if R0 = βRΓR/μR μR + γR > 1.

Further, we can also show that the endemic equilibrium,
if exists, is globally asymptotically stable as follows.

Theorem 6. If the endemic equilibrium SeH
∗, IeH∗, ReH

∗,
SeR

∗, IeR∗, ReR
∗ of Equations (3)–(6) and Equations (8) and

(9) exists (i.e., whenever R0 = βRΓR/μR μR + γR > 1), then
it is globally asymptotically stable.

Proof of Theorem 6. The system of the last three equations is
the famous SIR model. So, by using a standard Lyapunov
function for the SIR model, we can show that the endemic
equilibrium point of Equations (3)–(6) and Equations (8)
and (9) is globally attractive in Ω defined by

Ω = SH , IH , RH , SR, IR, RR ∈ℝ6
+ SR > 0, IR > 0 18

Note that the following equations are satisfied at the
endemic equilibrium:

ΓR = βRS
∗
eRI

∗
eR + μRS

∗
eR and μR + γR = βRS

∗
eR. Define the

function V Ω⟶ℝ by V SH , IH , RH , SR, IR, RR = SR −
log SR + IR − log IR. The derivative of V along the trajecto-
ries of (3)–(6), (8), and (9) is given by

dV
dt

= 1 − S∗eR
SR

dSR
dt

+ 1 − I∗eR
IR

dIR
dt

= 1 − S∗eR
SR

βRS
∗
eRI

∗
eR + μRS

∗
eR − βRSRIR − μRSR

+ 1 − I∗eR
IR

βRSRIR − βRS
∗
eRIR

= −μR
SR − S∗eR

2

SR
+ βRS

∗
eRI

∗
eR 1 − S∗eR

SR
1 − SRIR

S∗eRI
∗
eR

+ βRS
∗
eRI

∗
eR 1 − I∗eR

IR

SRIR
S∗eRI

∗
eR

−
IR
I∗eR

= −μR
SR − S∗eR

2

SR
+ βRS

∗
eRI

∗
eR 2 − S∗eR

SR
−

SR
S∗eR

19

To proceed with the last expression, 2 − S∗eR/SR − SR/S∗eR,
let us consider the following arithmetic-geometric mean
(AGM) relation x + y/2 ≥ xy, where the equality holds if
and only if x = y. Using this AGM relation x = S∗eR/SR
and y = SR/S∗eR we obtain the expression S∗eR/SR + SR/S∗eR/2
≥ 1 or equivalently 2 − S∗eR/SR + SR/S∗eR ≤ 0, where the
equality holds if and only if S∗eR = SR. Thus, we can conclude
that dV/dt = 0 if and only if S∗eR = SR otherwise dV/dt < 0.
By LaSalle’s invariant principle, the ω-limit set of any trajec-
tory starting inΩ is contained in the maximal invariant set of
Ω. It is straightforward to show that the maximal invariant
set of Ω is the singleton consists of the endemic equilibrium
point. Since every forward orbit inΩ is bounded, we can con-
clude that the endemic equilibrium is globally attractive inΩ.

3.3. The Critical Level of Intervention. When an intervention
is carried out to control the spread of the disease, the basic
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reproduction number R0 = βRΓR/μR μR + γR in Theorem 2
will change to the effective reproduction number Re

0 with
the exact formula depending on the intervention being used.
For example, if we are able to control so that only a portion
of rodents could interact, say by a constant c, or decrease
the probability successful contact from βR to β′R = 1 − c
βR, then the basic reproduction number will reduce to
Re

0 = 1 − c βRΓR/μR μR + γR . To stop the spread of the dis-
ease, we needRe

0 < 1 which is equivalent to c > 1 − 1/R0. We
call c∗ = 1 − 1/R0 as the critical intervention level that will be
able to change the stability of the endemic equilibrium to an
unstable equilibrium whenever R0 > 1.

In the case above, the critical intervention level has a
simple form as a function of the basic reproduction number.
Other forms are also possible, for example, when we take
rodent culling as the intervention then basically it increases

the natural mortality μR to a higher mortality μ′R so that
the effective reproduction number becomes Re

0 = βRΓR/μ′R
μ′R + γR = βRΓR/cμR cμR + γR < 1. In this case, the critical
intervention level c∗ is obtained by solving cμR cμR + γR /
βRΓR > 1, and given by the following, c∗ = −1/2γR + 1/2

4βRΓR + γ2R /μR = γR/2μR 4βRΓR/γ2R + 1 − 1 which is
positive.

We summarize the formulas for the critical intervention
level in the following Table 2.

The critical level of intervention in Table 2 is derived
using the effective reproduction number by equalizing it to
one and solving for c as described in Section 3.3. Hence, it
can only be used to undertake an intervention in the rodent
population since the reproduction number does not contain
parameters for the human population. The critical level of

Table 2: Critical intervention level found by setting the effective reproduction number to be less than one.

Intervention to rodent
population

Objective Critical intervention level

Culling/poisoning/trapping
Increase rodent death rate from μR
to a higher mortality μ′R = cμR

c∗ = γR/2μR 4βRΓR/γ2R + 1 − 1

= γR/2μR μR μR + γR /γ2R 4R0 + 1 − 1

Curing
Increases rodent recovery rate from γR

to a higher recovery γ′R = cγR
c∗ = βRΓR − μ2R/γRμR =R0 γR + μR/γR − μ2R/γRμR

Isolation/transmission
inhibitor

Reduces successful contact rate among rodents
from or infection probability of rodent contact
from βR to a lower contact rate β′R = 1 − c βR,

with 0 < c < 1
c∗ = 1 − 1/R0
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Figure 2: The growth of susceptible humans and rodents in the absence of hantavirus (solid lines) and in the presence of hantavirus (dashes
and dots).
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intervention above is aimed at eliminating the hantavirus
so that the endemic state I∗eR is zero and hence I∗eH also
vanishes. In fact, by observing the endemic state I∗eH = bβH
ΓH −μR μR + γR + βRΓR / bβH −μR μR + γR + βRΓR + βR
μR + γR μH μH + γH , we can only decrease this endemic
state but will not make it vanish without the intervention of
the rodent population. This can be seen as, whenever R0 >
1, I∗eH ≤ 0 only if −μR μR + γR + βRΓR ≤ 1 which is equiva-
lent to either we makeR0 ≤ 1 by doing an intervention to the
rodent population or making one of b, βH , ΓH parameters
zero. The following section gives some numerical examples
to illustrate the results presented above.

4. Numerical Examples

In this section, we present numerical examples to show the
behavior of the SIR-SIR hantavirus model with and without
the presence of clinical/nonclinical intervention (trapping/
culling/poisoning the rodents, educating people to increase

awareness regarding the danger of hantavirus so they avoid
contact with rodents and their excreta, etc.). We use the fol-
lowing parameter values in the simulations:

b = 0 1,

βH = 0 0015,

ΓH = 0 25,

γH = 1
200 ,

μH = 1
65∗365 ,

βR = 0 002,

ΓR = 0 25,

γR = 0 0075,

μR = 0 007
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Figure 3: Transient solution of the system withR0 = 4 926108374 for (a) human subpopulations and (b) rodent subpopulations. The lower
figures show the near equilibrium for (c) human subpopulations and (d) rodent subpopulations.
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For comparison, we initially consider that there are 1,000
human individuals and 100 rodents in an environment. If it
is assumed that there are no hantavirus-infected rats, both
populations grow independently towards their respective
equilibrium, as illustrated in Figure 2. In the absence of han-
tavirus, the growth of healthy human and rodent popula-
tions is depicted in the solid lines in Figures 2(a) and 2(b),
respectively. Now, in the presence of hantavirus, if it is
assumed that there is 1 infected rodent entering the system,
the growth of the healthy or susceptible populations is
shown in dash-dot lines in Figures 2(a) and 2(b), respec-
tively. Compared to the case of the absence of hantavirus

infection, both subpopulations are lower due to the infection
of hantavirus and change their status to infected population.
The dashed lines in the figures show the growth for different
bigger infected rodent initial values (50 individuals). In the
long term, in the presence of hantavirus, all subpopulations
will converge to the equilibrium state as predicted by the sta-
bility theorem of the endemic state.

For the purpose of comparison, the following examples
will assume a high basic reproduction number (chosen by
the appropriate parameters above), and the hantavirus is
heavily circulated among rodents, as indicated by the high
initial value of infected rodents SR 0 = 50, IR 0 = 50, and
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Figure 4: Transient solution of the system with the presence of culling to the rodent so that the death rate of the rodents increases up to
twice the existing death rate, resulting in an effective reproduction number as low as Re

0 = 1 66. However, this level of culling rate is not
sufficient to eliminate the hantavirus.
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Figure 5: The effect of different culling levels of c to the number of infected human and infected rodent subpopulations. The critical culling
level is c = 2 703278061, meaning that culling with a level lower than that level will not be effective in eliminating the hantavirus.
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RR 0 = 1. These initial values are chosen arbitrarily, just for
illustration. The growth of all subpopulations is shown in
Figure 3.

Figure 3 shows the transient solution of the system for
human subpopulations (Figure 3(a)) and rodent subpopula-
tions (Figure 3(b)). The lower figures show a near-
equilibrium solution for human subpopulations (Figure 3(c))
and rodent subpopulations (Figure 3(d)). The resulting basic
reproduction number for the chosen parameters indicates that
the disease will become endemic eventually. To control the
transmission of the hantavirus, we assume that culling is done
to increase the death rate of the rodent up to twice the current

death rate. The resulting solution of the system is shown in
Figure 4 with the effective reproduction number Re

0 = 1 66.
This culling is not effective in eliminating the hantavirus, both
in rodent and human population. This level of culling is not
sufficient to drive the hantavirus to extinction. In fact, by refer-
ring to Table 2 regarding the critical intervention level, to
increase the rodent death rate from μR to a higher mortality
μ′R = cμR, we need to set c > 2 703278061 which makes the
effective reproduction number less than one. Figure 5 shows
the resulting solution of the system when culling as the inter-
vention on the rodent population is undertaken at various
levels of c. Figure 6 shows the resulting solution of the system
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Figure 6: The effect of different curing levels of c to the number of infected human and infected rodent subpopulations. The critical curing
level is c = 8 590476190, meaning that curing with a level lower than that level will not be effective in eliminating the hantavirus.
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Figure 7: The effect of different isolation levels of c to the number of infected human and infected rodent subpopulations. This intervention
can also be interpreted as vaccination. The critical isolation level is c = 0 797.
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for the same parameters as in Figures 4 and 5, when curing as
the intervention to the rodent population is undertaken for
various levels of c, with the critical curing level is c =
8 590476190. This kind of intervention is not common, but
it is feasible in terms of application technique since it is anal-
ogous to poisoning but with a different objective, i.e., to
increase the recovery rate of the infected rodents. Figure 7
shows the resulting solution of the system when isolation to
make contact among rodents is applied for various levels of c
, with a critical isolation level of c = 0 767. This intervention
can be viewedmathematically as similar to vaccination; hence,
the critical isolation level is analogous to herd immunity to
some extent. In reality, this intervention is also uncommon
and difficult to implement since we have to vaccinate at least
76.7% of the rodent population unless vaccination can be
implemented orally in the form of food bait for the rodents.

The results above are derived by assuming a mass action
incidence rate and ignoring the presence of time delays. The
results may be different if we do a fine-tuning to the model
with the inclusion of more detailed and relevant factors. As
an example, we show that if a saturated incidence rate as
in Zhang et al. [52] is used in the present model, the solu-
tions in Figure 3 change to those in Figure 8. Other informa-
tion that also needs to be uncovered is the effect of the
uncertainty of the parameters. In the following section, we
present one way to analyze the effect of parameter uncer-
tainty on the number of infected human population. We
would like to derive the sensitivity indices to see which
parameters are most influential on the results of the model
(in this case, the number of infected human population).

4.1. Sensitivity Analysis. As most of the parameters have
strong uncertainty, we perform a global sensitivity analysis
to identify the most influential parameters of the model. It
is measured against the increasing number of infected indi-
viduals. There are a lot of sensitivity analysis methods, such

as Chitnis et al. [53], Marino et al. [54], and the references
therein. Here, we use Latin hypercube sampling (LHS) in
combination with the partial rank correlation coefficient
(PRCC) [54] since it is among the most popular, reliable,
and efficient sensitivity analyses to provide global sensitivity
indexes. By following the method of Marino et al. [54], we
simulate 2,000 samples, and the result is given in Figure 9.
The range of the parameters used is given in Table 3.
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Figure 8: An example of the effect of saturated incidence on the number of infected human and infected rodent subpopulations. In this
example, we use the functional form βHSH t IR t /1 + αIR t with α = 0 05 instead of βHSH t IR t .
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Figure 9: The PRCC plot shows the probability of successful
contact between rodents βr is the most influential parameter and
has a positive relationship. Meanwhile, the parameters μr and γr
have a negative relationship, which indicates that an increase in
these parameter values results in a decrease in the number of
hantavirus infections.
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Figure 9 shows that the probability of successful contact
between rodents βr is the most influential parameter and has
a positive relationship. This is realistic as the rodent is the
source of infections, and hence, when humans and rodents
interact and they successfully transmit viruses, the number
of hantavirus cases increases. On the other hand, the param-
eters μr and γr have a negative relationship, which indicates
that an increase in these parameter values results in a
decrease in the number of hantavirus infections. An increase
in the death rate of rodents aids in minimizing the number
of hantavirus cases.

The figure shows that the greatest effect of intervention
to control the spread of hantavirus is by reducing the contact
rate between rodents βr and by increasing the death rate and
recovery rate parameters μr and γr . In reality, interventions
to control the contact rate between rodents are difficult to
implement, but increasing the death rate can be done much
easier by nonclinical interventions, such as trapping, culling,
and poisoning. Theoretically, increasing rodent recovery
can also be implemented by using “drug food,” although
uncommon.

5. Conclusion

We have constructed a simple mathematical model for the
transmission of hantavirus among rodents. Apart from the
simpleness of the model, we arrive at the following useful
insight. The analysis of the model shows that if the basic
reproduction number is greater than one, then it is impossi-
ble to completely eliminate hantavirus disease in the system
by solely focusing on any intervention to humans, like vacci-
nation and curative action, without paying any attention to
interventions to the rodent population unless there is no
contact at all between human and rodent or between human
and rodents’ excreta or the successful probability contact
rate is zero. However, we can still decrease the density of
infected humans with those interventions. Hence, we suggest
that a combination of several interventions is needed to
obtain effective control in eliminating the hantavirus. Fur-

ther, to determine the most significant parameters that can
be used as control variables to reduce or eliminate hantavi-
rus transmission, we use the Latin hypercube sampling in
combination with partial rank correlation coefficient sensi-
tivity analysis and found that the contact rate between
rodents, the death rate, and the recovery rate of rodent’s
parameters are among the most significant parameters in
determining both the numbers of infected rodents and
infected humans. This justifies our first finding that solely
focusing on intervention to humans may not succeed in
completely eliminating hantavirus infection in the system.
Moreover, this information is useful for further study in
finding an optimal control strategy to reduce or eliminate
the transmission of hantavirus to humans.
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Malaria has produced health issues in many parts of the world. One of the reason is due to the recurrence phenomenon, which can
happen years after the main infection has appeared in the human body. Furthermore, the fumigation intervention, which has
become a major worry in several regions of the world, has yielded unsatisfactory results, as seen by the high number of cases
reported each year in several African countries. We present a novel mathematical model that integrates tafenoquine treatments
to prevent relapse in the human population and saturation fumigation to control mosquito populations in this study. The
endemic threshold, also known as the basic reproduction number, is calculated analytically, as is the existence and local
stability of the equilibrium points. Through careful investigation, we discovered that the malaria-free equilibrium is locally
asymptotically stable if the basic reproduction number is less than one and unstable if it is greater than one. According to the
sensitivity analysis, the utilization of tafenoquine treatment is inversely proportional to the basic reproduction number.
Although our model never exhibits a backward bifurcation at the basic reproduction number equal to one, we have
demonstrated that it is possible; when the basic reproduction number is greater than one, two stable malaria-endemic
equilibrium can exist. As a result, when the basic reproduction number is more than one, the final state will be determined by
the initial condition of the population. As a result, enormous temporal fumigation can shift the stability of our malaria model
from a big endemic size to a smaller endemic size, which is more advantageous in terms of the malaria prevention strategy.
Despite the fact that this is not a case study, the numerical results presented in this article are intended to support any
theoretical analysis of current malaria eradication tactics in the field.

1. Introduction

Malaria is a vector-borne disease caused by the bite of a
female mosquito that has been infected with Plasmodium.
Of more than 100 species, only five Plasmodium species
cause malaria, namely, Plasmodium vivax, Plasmodium
malaria, Plasmodium falciparum, Plasmodium knowlesi,
and Plasmodium ovale [1]. When this Plasmodium has
entered the human bloodstream, it will attack several vital
organs in the human body, especially the liver and red blood
cells [2]. People who have been infected with malaria will
show a variety of symptoms, including chills, fever, and
headache, which can even result in death in most cases in
the pediatric population.

Until now, there have been many interventions launched
by governments in various countries in the world to tackle

the spread of malaria. These interventions include the use
of vaccines, treatment, use of insecticide-treated bed nets
(ITN), and vector control with fumigation and larvicides
[3]. Among these mentioned interventions, vector control
with fumigation is considered as the most promising and
easiest policy to implement [1]. However, several problems
in its implementation arise, such as the tendency of mosqui-
toes to become resistant to fumigants when the intervention
is not well controlled [4] or the problem of limited imple-
mentation costs. In some cases in the field, the high fumiga-
tion intensity needs to be reduced when infected people are
too high. This is due to the difficulty of implementation in
the field when intervention costs must also be allocated to
treatment for infected individuals in the hospitals.

Vaccines for malaria have become one of the main con-
cerns of governments in many parts of the world and the
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World Health Organization [5]. In 2021, the R21/Matrix-M
vaccine has been investigated to be the second malaria vac-
cine, and it is stated that it has reached the minimum effi-
cacy limit required by WHO, which is a minimum efficacy
of 75% [6]. This type of vaccine has an efficacy level of
77% to reduce the chance of successful infection in humans
due to an infected female Anopheles mosquito bite. In addi-
tion to vaccination, treatment interventions are also needed
to prevent the severity or incidence of relapse in malaria
patients. Until now, it was stated that primaquine was the
primary drug used to avoid relapse in individuals infected
with malaria. However, because this drug has to be taken
on a regular basis (every 14 days), it has resulted in many
treatments not being successful [7]. Therefore, MMV and
GlaxoSmithKline (GSK) collaborated to develop a new
malaria drug known as tafenoquine, which is a single dose
treatment for preventing relapse in malaria-infected individ-
uals [8].

The complexity of malaria has attracted the attention of
many researchers to take part in efforts to understand the
mechanism of spread and the best intervention for malaria.
This is due to the complexity of its infection mechanism,
such as recurrence phenomena (relapse, reinfection, and
recrudescence), to the problem of the most appropriate
intervention. Among these researches, mathematical model-
ing would play an essential role. Many authors have intro-
duced mathematical models to understand how malaria
spreads among human and mosquito populations. The first
mathematical model for malaria was introduced by Ross in
the early 19th century [9], where he introduced the mecha-
nism of malaria transmission involving mosquito and
human populations in his model. Ross’ research was then
continued by Macdonald [10] where he introduced the con-
cept of basic reproduction number in his model. Since then,
many mathematical models have been introduced by
researchers to understand various important factors in the
spread of malaria. Authors in [11] proposed a malaria model
considering immunological memory which boost protection
of reinfection phenomenon. Two host types in malaria
transmission are discussed by author in [12]. Furthermore,
a two-age class model for malaria transmission is discussed
in [13]. A periodic biting rate of malaria mosquitoes is mod-
elled by author in [14]. They used Floquet theory to analyze
the stability of their model. Recently, author in [15] pro-
posed a malaria model with optimal control on saturated
treatment rate. Another new strategy of transmission block-
ing drugs for malaria is modelled by Wu and Hu in [16].
They found that increasing the transmission blocking drugs
is a more pronounced effect compared to treatment inter-
vention. Another important factors have been discussed
through mathematical models such as vector-bias effect
[15, 17], relapse [18, 19], reinfection [20, 21], fumigation
[15, 22], temperature and seasonality [23–25], impact of
Wolbachia [26], and coinfection [27]. However, the best that
we know, there is no mathematical model considering the
impact of potential new treatment (tafenoquine) into their
model.

In this paper, we introduce and investigate a new math-
ematical model on malaria transmission. In this model, we

divide the human population into five epidemiological clas-
ses based on their health status while the mosquito popula-
tion into two epidemiological classes. Several vital factors
were introduced into our model: the effect of a potential
new treatment for malaria to prevent relapse; vector-bias
phenomena where mosquitoes are more attracted to bite
the infected individuals; and fumigation intervention which
depends on the number of infected individuals at time t.
We perform our mathematical analysis to show the existence
of a forward bifurcation and forward hysteresis phenomena
on our model, which allows the possibility of existence of
three different endemic equilibrium, where two of them is
locally stable. Based on this phenomenon, we show from a
numerical simulation that a massive fumigation intervention
in a limited time window can change the dynamic direction
of the system from a large endemic equilibrium to a smaller
endemic point. We also show a sensitivity analysis to deter-
mine the most influential parameter to our model.

This paper is organized as follows. We formulate our
model in Section 2. The stability of the malaria-free equilib-
rium point and the form of the respected basic reproduction
number are shown in Section 3. In Section 4, we analyze the
existence of the malaria-endemic equilibrium point. In addi-
tion, we show the possible forward hysteresis from our
model in this section. Some numerical experiments on the
proposed model are shown in Section 5. Finally, some rele-
vant conclusions are given in the last section.

2. Mathematical Model Formulation

The proposed dynamic model for malaria transmission in
this article is inspired by our previous work in [15], by tak-
ing into account two important factors. The first factor
involved in our new model is the involvement of a malaria
relapse prevention drug intervention (for example, tafeno-
quine [28]). The second factor involves fumigation interven-
tion which is not a monotonous function. We assume that
when the number of humans infected with malaria is
approaching the outbreak, the intervention given can be
quite large. However, when the number of infected people
continues to grow, efforts for fumigation will be reduced
because of the difficulty of intervention during the outbreak.

This model divides the human population based on their
health status and whether they received any malaria treat-
ment or not. Hence, let human population be divided into
five epidemiological classes: susceptible ðSÞ, latent ðEÞ,
infected ðIÞ, exposed treated ðTÞ, and recovered ðRÞ. On
the other hand, we classify mosquito population only into
two classes: susceptible ðUÞ and infected ðWÞ. The latent
individual is an individual who has already been exposed
to malaria and has Plasmodium in their lever. If an individ-
ual in E gets treated with tafenoquine to prevent relapse,
then they will be classified into the class of T . Only infected
individual (I) can transmit the Plasmodium into the suscep-
tible mosquito. Based on this assumption, we have the total
human population which is given by

Nh = S + E + T + I + R, ð1Þ
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and the total mosquito population is given by

Nv =U +W: ð2Þ

The malaria model is governed by the following system
of ordinary differential equations:

dS
dt

=Λh −Πh N ,Wð Þ − μhS + ξR,

dE
dt

=Πh N ,Wð Þ − u1 + η + μhð ÞE,
dT
dt

= u1E − 1 − pð Þδ + pκ + μhð ÞT ,
dI
dt

= 1 − pð ÞδT + ηE − γ + μhð ÞI,
dR
dt

= pκT + γI − μh + ξð ÞR,
dU
dt

=Λv −Πv N ,Uð Þ − μv +Ψ I, u2ð Þð ÞU ,

dW
dt

=Πv N ,Uð Þ − μv +Ψ I, u2ð Þð ÞW,

ð3Þ

where ΠhðN ,WÞ and ΠvðN ,UÞ are the infection rate in
human and mosquito population, respectively, while ΨðI,
u2Þ presents the fumigation effectiveness factors.

The per capita of birth on humans and mosquitoes is
denoted by Λh and Λv, respectively. The natural death rate
of humans and mosquitoes is given by μh and μv, respec-
tively. Furthermore, parameters u1 and u2 present medical
treatment intervention with tafenoquine and vector control
with fumigation, respectively. Letpbe the proportion of
exposed individuals who get tafenoquine and succeeded in
avoiding relapse afterκ−1duration of treatment. On the other
hand, we assume that the 1 − p proportion of individuals in
T failed in treatment. Hence, we have ð1 − pÞδT as the tran-
sition from T to I due to treatment failure, where δ−1 is the
incubation period of Plasmodium with the effect of tafeno-
quine. We denote that the recovery rate from malaria is γ,
while ξ−1 is the duration of temporal immunity.

We construct the force of infection in human ðΠhðN ,
WÞÞ as follows. Let b be the average bite per mosquito per
day. In our model, we take into account the preference of
mosquito to be more attracted to bite infected human, rather
than noninfected human. This phenomenon is commonly
known as “vector-bias” phenomenon [29]. Based on this
“vector-biased” assumption, the probability of a mosquito
encountering a susceptible human is given by S/ðS + E + T
+ αI + RÞ, where α > 1 is the vector-bias parameter. Hence,
total bite of all mosquito per day is given by bWðS/ðS + E
+ T + αI + RÞÞ. Assuming νh as the probability that the bite
of infected mosquito succeeded in infecting susceptible
human, then bνhWðS/ðS + E + T + αI + RÞÞ present the total
of susceptible human who get infected by malaria per time.
Since b and νh are constant parameters with a dimension

of bite/day and 1/ðbite × mosquitoÞ, respectively, we assume
βh ≔ bνh. Therefore, we have that

Πh N ,Wð Þ = βhW
S

S + E + T + αI + R
: ð4Þ

Using a similar approach, let νv be the probability of suc-
cessful infection in mosquitoes; the force of infection on
mosquitoes is given by

Πv N ,Uð Þ = βvU
αI

S + E + T + αI + R
, ð5Þ

where βv ≔ bνv with a dimension of bite/day and 1/ð
bite × humanÞ for b and νv , respectively.

Now, we construct our fumigation term ΨðI, u2Þ. We
assume that the fumigation intervention depends on the
number of infected individuals. Indicators of the endemic
of malaria in the field can not be seen from the number of
infected mosquitoes, but it can be identified by the high
number of infected individuals which is reported in the
media. When the number of infected individuals increases,
then the intensity of fumigation will increase. However,
when the number of infected individuals increases more sig-
nificantly, then the effectiveness of fumigation will decrease
since the policymaker may concentrate more on the number
of infected individuals in the hospital, which makes them
overwhelmed to control vector population in the field.
Hence, we assume that ΨðI, u2Þ should have the following
properties:

(i) When the number of the infected individual is zero,
then the fumigation intervention is zero. Hence, we
have Ψð0, u2Þ = 0

(ii) The fumigation intervention increases at the begin-
ning when the number of infected individual start
to increase but will decrease when the number of
infected individual is sufficiently large. Hence, we
have that ðð∂ΨðI, u2ÞÞ/∂IÞ > 0 for I ∈ ð0, IcriticalÞ and
ðð∂ΨðI, u2ÞÞ/∂IÞ ≤ 0 for I ∈ ½Icritical,∞Þ. Note that
Icritical denote the critical number of I when the pol-
icymaker is already overwhelmed to conduct an
effective fumigation intervention in the field

Based on the above assumption, we model our fumiga-
tion intervention as

Ψ I, u2ð Þ = u2
I

a + I2
, ð6Þ

where a > 0 is the saturated coefficient.
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According to the mentioned assumptions on the infec-
tion and fumigation functions, system (3) now is read as

dS
dt

=Λh − βhW
S

S + E + T + αI + R
− μhS + ξR,

dE
dt

= βhW
S

S + E + T + αI + R
− u1 + η + μhð ÞE,

dT
dt

= u1E − 1 − pð Þδ + pκ + μhð ÞT ,
dI
dt

= 1 − pð ÞδT + ηE − γ + μhð ÞI,
dR
dt

= pκT + γI − μh + ξð ÞR,
dU
dt

=Λv − βvU
αI

S + E + T + αI + R
− μv + u2

I

a + I2

� �
U ,

dW
dt

= βvU
αI

S + E + T + αI + R
− μv + u2

I

a + I2

� �
W,

ð7Þ

with a nonnegative initial conditions given at time t = 0.
Figure 1 depicts the flow chart of our malaria transmission
model. Biological interpretation and the unity of all param-
eters in system (7) are given in Table 1.

Let system (7) have an initial condition in the following
set:

D = S, E, T , I, R,U ,Wð Þ ∈ℝ7
+ S,U > 0, E, T , I, R,W ≥ 0j� �

:

ð8Þ

To describe the feasible solution of system (7) and its
biological interpretation, we have the following theorem.

Theorem 1. For initial values in (8), malaria model in system
(7) has a unique solution and remains in D for all time t ≥ 0.

Proof. Please see Appendix A for the proof.

3. Malaria-Free Equilibrium and the Basic
Reproduction Number

The first equilibrium point of our model is the malaria-free
equilibrium point. This equilibrium present a situation
where all nonsusceptible population do not exist in the equi-
librium condition. For this reason, let E = 0, T = 0, I = 0, R
= 0, and W = 0, and then, malaria-free equilibrium ðMFEÞ
is obtained by the following subsystem:

dS
dt

=Λh − μhS,

dU
dt

=Λv − μvU:

ð9Þ

Taking the right hand side of the above system, it follows
that the malaria-free equilibrium of system (7) is given by

MFE = S∗, E∗, T∗, I∗, R∗,U∗,W∗ð Þ = Λh

μh
, 0, 0, 0, 0, Λv

μv
, 0

� �
:

ð10Þ

To conduct further analysis on the qualitative behaviour
of our model, it is important to determine the related basic
reproduction number of our proposed model. In many epi-
demiological models, basic reproduction number holds an
important role in determining that the diseases die out or
exist in the population [34–38]. Basic reproduction number
is defined as the expected number of secondary cases caused
by one primary case during infection period in a completely
susceptible population [39, 40]. The basic reproduction
number is calculated using the next-generation matrix
approach [41]. From system (7), we have that the infected
compartments consist of E, T , I, and W. The Jacobian
matrix of subsystem of infected compartment on system
(7) evaluated in MFE can be written as F +V , where

F =

0 0 0 βh

0 0 0 0
0 0 0 0

0 0 βvΛvα μh
μvΛh

0

2
6666664

3
7777775
,

V =

−u1 − η − μh 0 0 0
u1 − 1 − pð Þδ − κ p − μh 0 0
η 1 − pð Þδ −γ − μh 0
0 0 0 −μv

2
666664

3
777775,

ð11Þ

𝜇hT

𝜇hS

𝜇hE

𝜇hR

𝜇hI

u1 E
pkT

I

T

E RS
Λh

Λv

ɳE

(1 –p) 𝛿T
𝛾I

𝜉R

IIh (N, W)

IIv (N, U)
(𝜇v + ψ (I, u2)) U (𝜇v + ψ (I, u2)) W

U W

Figure 1: Transmission diagram of malaria model in (7).
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where F and V present the transmission and transition
terms. Using formula in [41], we have the next-generation
matrix ðNGMÞ of system (7) which is given by

NGM = −ETFV −1E =
0 βh

μv

αΛvβvμh δ η p + δ pu1 − η κ p − δ η − δ u1 − η μhð Þ
μvΛh u1 + η + μhð Þ δ p − κ p − δ − μhð Þ γ + μhð Þ 0

2
6664

3
7775,

ð12Þ

where ET is the transpose of E, with

E =

1 0
0 0
0 0
0 1

2
666664

3
777775: ð13Þ

Note that each column of F can be spanned by each col-
umn of E. Hence, the basic reproduction number of system
(7) is given by

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βvΛvα μh δ η + u1ð Þ 1 − pð Þ + η μh + pκð Þð Þβh

Λhμv
2 δ 1 − pð Þ + μh + pκð Þ u1 + η + μhð Þ γ + μhð Þ

s
:

ð14Þ

More example on the method of next-generation matrix
method to determine the basic reproduction number in var-
ious epidemiological models can be seen in [42–44]. The

above expression can be rewritten as a multiplication
between four important component on malaria transmission
on system (7) as follows.

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ×C2 ×C3 ×C4

p
, ð15Þ

where C1 = βh/ðu1 + η + μhÞ present the number of
new latent infected human per infection period of E, C2
= αβv/μv present the number of new infected mosquitoes
per infection period of W, C3 =Nv/Nh present the ratio
of mosquitoes and human, and C4 = η + u1ð1/ð1 + ððpκ +
μhÞ/ðð1 − pÞδÞÞÞÞ present the impact of tafenoquine
intervention.

According to Theorem 2 in [45], we have the following
theorem regarding the local stability criteria of the malaria-
free equilibrium of system (7).

Theorem 2. The malaria-free equilibrium of system (7) is
locally asymptotically stable if R0 < 1 and unstable if R0 >
1.

3.1. Sensitivity Analysis on the Basic Reproduction Number.
In many mathematical epidemiology models, understanding
the impact of key parameters in determining the size of the
basic reproduction number is essential to find the best opti-
mal strategy. Therefore, we study the normalized sensitivity
analysis of the basic reproduction number using the follow-
ing formula [30]:

ΓR0
ρ = ∂R0

∂p
× p
R0

, ð16Þ

Table 1: Biological interpretation of parameters in system (7).

Par Description Dimension Value Ref.

Λh Number of newborn in human per day Human/Day 1000/65 × 365 [15]

Λv Number of newborn in mosquitoes per day Mosquitoes/Day 1000/21 [15]

βh Infection rate of mosquito to human 1/Mosquito × day 0.022 [30, 31]

βv Infection rate of human to mosquito 1/Human × day 0.24 [30, 31]

α Vector-bias coefficient — 4 [32]

u1 Rate of treatment with tafenoquine 1/Day [0,1] Assumed

u2 Vector control with fumigation 1/Day [0,1] Assumed

μh Natural death rate of human 1/Day 1/65 × 365 [15]

μv Natural death rate of mosquito 1/Day 1/21 [30]

η Natural incubation rate 1/day 0.0833 [18]

p Proportion of treated individual who succeeds in treatment — 0.8 Assumed

δ Incubation rate due to use of tafenoquine 1/Day 0.016 Assumed

κ Recovery rate tafenoquine treatment 1/Day 0.0166 Assumed

γ Recovery rate 1/Day 0.0035 [30]

a Saturation coefficient of fumigation Human 10 Assumed

ξ Waning rate of temporal immunity 1/Day 0.005 [33]
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where ρ is any key parameter in malaria model in system (7).
In our paper, we are only interested in the following param-
eters: βh, βv, α, u1, u2, η, δ, p, κ, γ, ξ, and a. Furthermore, we
do not show the partial derivative of these parameters since
it has a long expressions. Using parameter values as in
Table 1, u1 = 0:2, u2 = 0, and p = 0:8; the normalized sensi-
tivity of R0 is given in Table 2 and visualized in Figure 2.

The normalized indices in Table 2 are a nondimen-
sional value, which present the percentage change of R0
for each increase value of parameter ρ for 1%. For an

example, since Γ
R0
p = −0:6477, then increasing probability

of individuals in T to succeed in treatment for 10% will

reduce R0 for 6.477%. On the other hand, since Γ
R0
βh

=
0:5, then increasing βh for 10% will increase R0 for 5%.
From Figure 2, we can see that βh, βv, α, η, and δ are pro-
portional to R0. Increasing these mentioned values will
increase R0. On the other hand, parameters p, γ, u1,
and κ are inversely proportional to R0. Therefore, increas-
ing the value of p, γ, u1, and κ will reduce R0. In addi-
tion, we can see that fumigation ðu2Þ, rate of loss of
immunity ðξÞ, and saturated parameter ðaÞ do not affect
R0. Figure 2 shows the most to the less influential param-
eter to R0 in descending order, from left to the right.

Figure 3 shows the level set of R0 with respect to u1, α,
and p. From Figure 3(a), we can see that increasing the value
of p reduces R0. It means that more people succeed due to
treatment with tafenoquine; then, the possibility to achieve
malaria-free equilibrium is bigger. Same interpretation to
the rate of treatment u1. We can see that more intense inter-
vention of tafenoquine will reduce R0. In addition, we can
see clearly that better quality of tafenoquine will reduce the
burden of intervention in providing tafenoquine treatment
to achieve malaria-free conditions. The effect of vector-bias
on the success of tafenoquine intervention to reduce R0
can be seen in Figure 3(b). We can see that more bias the
mosquito to be more preferring infected human will increase
theR0, which makes the intervention of tafenoquine should
be given more intense to reduce the value of R0.

4. The Malaria-Endemic Equilibrium

4.1. Existence of Malaria-Endemic Equilibrium. The malaria-
endemic equilibrium of system (7) is given by

MEE = S†, E†, T†, I†, R†,U†,W†� �
, ð17Þ

where

S† = Λh

μh
− E† − I† − T† − R†,

E† = I† δ μh + γð Þ 1 − pð Þ + γ + μhð Þ μh + pκð Þð Þ
δ u1 + ηð Þ 1 − pð Þ + η μh + pκð Þ ,

T† = I†u1 γ + μhð Þ
δ u1 + ηð Þ 1 − pð Þ + η μh + pκð Þ ,

R† = δ γ + μhð Þ 1 − pð Þ + γκp η + μhð Þ + μh ηγ + pκu1ð Þð Þ
δ u1 + ηð Þ 1 − pð Þ + η μh + pκð Þð Þ ξ + μhð Þ ,

U† =
Λv S† + E† + αI† + T† + R†� �

a + I†
� �2	 


Σ3
i=0ci

,

W† =
Λv a + I†

� �2	 

u2I

†� �
+ μv a + I†

� �2	 
 −U†,

ð18Þ

with c0 = αμvðS† + E† + T† + R†Þ, c1 = aαðβv + μvÞ + u2ð
S† + E† + T† + R†Þ, c2 = αu2 + μvðS† + E† + T† + R†Þ, and c3
= αðβv + μvÞ. Note that I† is taken from the positive root
of the following polynomial:

G Ω, Ið Þ = 〠
6

j=1
kjI

j = 0, ð19Þ

where Ω is the set of parameter in system (7), and

k6 = −μ2hμv ξ + μhð Þ δ 1 − pð Þ + μh + pκð Þ α − 1ð Þ u1 + η + μhð Þ
� αβv + μv α − 1ð Þð Þ γ + μhð Þ,

k0 =Λhμv
2 δ 1 − pð Þ + μh + pκð Þ u1 + η + μhð Þ γ + μhð Þ R2

0 − 1
� �

,
ð20Þ

while k5, k4, k3, k2, and k1 have a complex form to be
written in this article. It can be seen that whenever I† > 0,
then E†, T†, R†, and U† are also positive. On the other hand,
S† is always positive since Nh ≤ ðΛh/μhÞ (see the proof of
Theorem 1). On the other hand, since

W† =
Λv a + I†

� �2	 

u2I

†� �
+ μv a + I†

� �2	 
 −U† < Λv

μv
−U† ð21Þ

Table 2: Normalized sensitivity indices of R0 with respect to βh,
βv , α, u1, u2, η, δ, p, κ, γ, ξ, and a.

Par (ρ) ΓR0
ρ Par (ρ) ΓR0

ρ Par (ρ) ΓR0
ρ

βh 0.5 βv 0.5 α 0.5

u1 -0.191 u2 0 η 0.191

δ 0.129 p −0:6477 κ -0.120

γ -0.494 ξ 0 a 0
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and Nv ≤ ðΛv/μvÞ (see the proof of Theorem 1), then we can
guarantee that W† is also positive.

From the expression of polynomial in (19), k6 is always
negative since α > 1, k0 > 0⇐R0 > 1, while another coeffi-
cient is difficult to be determined, whether it was positive
or negative. Hence, using the Descartes rules of sign [46],
there exists at least one positive root of polynomial (19)
whenever R0 > 1. According to this result and the expres-
sion of MEE, we have the following result.

Theorem 3. System (7) has at least one malaria-endemic
equilibrium point if R0 > 1.

Since polynomial in (19) is a six-degree polynomial, it
is possible that system (7) have more than one malaria-
endemic equilibrium point. We use Descartes rules of sign
[46] to analyze the maximum possibility of positive root
of polynomial in (19). The result is given in Table 3 for
the case when R0 > 1, and Table 4 for the case when
R0 < 1.

From Table 2, we can confirm the result in Theorem 3
that we always have at least one malaria-endemic
equilibrium when R0 > 1. If R0 > 1, then we always have
an odd number possibility of the positive root of polynomial
(19), i.e., 1, 3, or 5 positive roots. On the other hand,
malaria-endemic equilibrium is possible to vanish only when
R0 < 1. However, we still possible to have 2, 4, or 6 positive
roots of polynomial (19) when R0 < 1.

4.2. Bifurcation Analysis. In this section, we perform the
bifurcation analysis of our proposed malaria model in
system (7). To do this analysis, we use the well-known
Castillo-Song bifurcation theorem [47] (please see [48–51]
for more examples on the use of this theorem on

epidemiological models). First, for numerical calculation
purposes, let us redefine our proposed system (7) as follows:

f1 ≔Λh − βhx6
x1

x1 + x2 + x3 + αx4 + x5
− μhx1 + ξx5,

f2 ≔ βhx6
x1

x1 + x2 + x3 + αx4 + x5
− u1 + η + μhð Þx2,

f3 ≔ u1x2 − 1 − pð Þδ + pκ + μhð Þx3,
f4 ≔ 1 − pð Þδx3 + ηx2 − γ + μhð Þx4,
f5 ≔ pκx3 + γx4 − μh + ξð Þx5,

f6 ≔Λv − βvx6
αx4

x1 + x2 + x3 + αx4 + x5
− μv + u2

x4
a + x24

� �
x6,

f7 ≔ βvx6
αx4

x1 + x2 + x3 + αx4 + x5
− μv + u2

x4
a + x24

� �
x7,

ð22Þ

where xi for i = 1, 2,⋯7 present S, E, T , I, R, U , and W,
respectively, Next, we determine our bifurcation parameter
to replace R0. By solving R0 = 1 with respect to βh, we
obtain the bifurcation parameter, namely, βh = β∗, as
follows:

βh = β∗ = p − 1ð Þδ − κ p − μhð Þ γ + μhð Þ u1 + η + μhð Þμv2Λh

u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð ÞμhβvαΛv
:

ð23Þ
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Figure 2: Histogram of normalized sensitivity analysis of R0:
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The linearization of MFE of system (22) at βh = β∗ is
given by

JjMFE ≔

−μh 0 0 0 ξ 0 c17

0 c22 0 0 0 0 c27

0 u1 c33 0 0 0 0
0 η 1 − pð Þδ −γ − μh 0 0 0
0 0 κ p γ −ξ − μh 0 0
0 0 0 c64 0 −μv 0

0 0 0 βvΛvα μh
μvΛh

0 0 −μv

2
66666666666666664

3
77777777777777775

, ð24Þ

with

c17 = −
p − 1ð Þδ − κ p − μhð Þ γ + μhð Þ u1 + η + μhð Þμv2Λh

u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð ÞμhβvαΛv
,

c22 = −u1 − η − μh,

c27 =
p − 1ð Þδ − κ p − μhð Þ γ + μhð Þ u1 + η + μhð Þμv2Λh

u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð ÞμhβvαΛv
,

c33 = − 1 − pð Þδ − κ p − μh,

c64 = −
βvΛvα μh
μvΛh

−
u2Λv

aμv
: ð25Þ
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Figure 3: Level set of R0 with respect to p, α, and u1.
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The Jacobian matrix JMFE has a simple zero eigenvalue,
and the other three eigenvalues are explicitly negative ð−μh
,−μh,−ðμh + ξÞÞ, while the other three is coming from the
root of the following polynomial:

P λð Þ = c3λ
3 + c2λ

2 + c1λ + c0 = 0, ð26Þ

where

c3 =Λhμv u1 + μv + 3μh + η + γ + pκ + δ 1 − pð Þð Þ,

c2 = δ 1 − pð Þ η + γ + u1 + μv + 2μhð Þ
� 3μ2h + μh 2κp + 2η + 2γ + 3μv + 2u1ð Þ+⋯�

+ μv

� κp + η + γ + u1ð Þ + γ κp + η + u1ð Þ + pκ η + u1ð ÞÞ,

c1 = μ2v 3μ2h + μh 2 1 − pð Þδ + 2κp + η + γ + u1ð Þ + δ 1 − pð Þ��
� η + γ + u1ð Þ + pκ η + γ + u1ð ÞÞ + η + u1 + μhð Þ
� 1 − pð Þδ + pκ + μhð Þ γ + μhð Þ�Λh +Λvαηβ

∗βvμh,

c0 =Λhμ
2
v γ + μhð Þ u1 + η + μhð Þ 1 − pð Þδ + pκ + μhð Þ

+ β∗
hβvμhαΛv δ 1 − pð Þ η + u1ð Þ + pκη + ημhð Þ: ð27Þ

Since ð1 − pÞ > 0, then ci for i = 0, 1, 2, 3 are positive.
Since all the coefficients of PðλÞ are positive, then all other
three eigenvalues of JjMFE are negative. Therefore, we can
continue using the center manifold theory to analyze the
bifurcation phenomena at R0 = 1. Next, we use the
Castillo-Chavez and Song theorem [47] to analyze the bifur-
cation phenomena of system (7) at R0 = 1.

Table 3: Possible number of positive roots of polynomial GðΩ, IÞ,
when R0 > 1.

Case k6 k5 k4 k3 k2 k1 k0 Possible positive roots

1 — + + + + + + 1

2 — + + + + — + 1 or 3

3 — + + + — + + 1 or 3

4 — + + + — — + 1 or 3

5 — + + — + + + 1 or 3

6 — + + — + — + 1, 3, or 5

7 — + + — — + + 1 or 3

8 — + + — — — + 1 or 3

9 — + — + + + + 1 or 3

10 — + — + + — + 1, 3, or 5

11 — + — + — + + 1, 3, or 5

12 — + — + — — + 1, 3, or 5

13 — + — — + + + 1 or 3

14 — + — — + — + 1, 3, or 5

15 — + — — — + + 1 or 3

16 — + — — — — + 1 or 3

17 — — + + + + + 1

18 — — + + + — + 1 or 3

19 — — + + — + + 1 or 3

20 — — + + — — + 1 or 3

21 — — + — + + + 1 or 3

22 — — + — + — + 1, 3, or 5

23 — — + — — + + 1 or 3

24 — — + — — — + 1 or 3

25 — — — + + + + 1

26 — — — + + — + 1 or 3

27 — — — + — + + 1 or 3

28 — — — + — — + 1 or 3

29 — — — — + + + 1

30 — — — — + — + 1 or 3

31 — — — — — + + 1

32 — — — — — — + 1

Table 4: Possible number of positive roots of polynomial GðΩ, IÞ,
when R0 < 1.

Case k6 k5 k4 k3 k2 k1 k0 Possible positive roots

33 — + + + + + — 0 or 2

34 — + + + + — — 0 or 2

35 — + + + — + — 0, 2, or 4

36 — + + + — — — 0 or 2

37 — + + — + + — 0, 2, or 4

38 — + + — + — — 0, 2, or 4

39 — + + — — + — 0, 2, or 4

40 — + + — — — — 0 or 2

41 — + — + + + — 0, 2, or 4

42 — + — + + — — 0, 2, or 4

43 — + — + — + — 0, 2, 4, or 6

44 — + — + — — — 0, 2, or 4

45 — + — — + + — 0, 2, or 4

46 — + — — + — — 0, 2, or 4

47 — + — — — + — 0, 2, or 4

48 — + — — — — — 0 or 2

49 — — + + + + — 0 or 2

50 — — + + + — — 0 or 2

51 — — + + — + — 0, 2, or 4

52 — — + + — — — 0 or 2

53 — — + — + + — 0, 2, or 4

54 — — + — + — — 0, 2, or 4

55 — — + — — + — 0, 2, or 4

56 — — + — — — — 0 or 2

57 — — — + + + — 0 or 2

58 — — — + + — — 0 or 2

59 — — — + — + — 0, 2, or 4

60 — — — + — — — 0 or 2

61 — — — — + + — 0 or 2

62 — — — — + — — 0 or 2

63 — — — — — + — 0 or 2

64 — — — — — — — 0
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First, we calculate the right and left eigenvector of JjMFE
with respect to the zero eigenvalue. The right eigenvector is
given by w = ðw1,w2,w3,w4,w5,w6,w7ÞT , with

w1 =
1

γ + μhð Þ ξ + μhð Þu1
−μh

3 + p − 1ð Þδ − κ p − ξ − η − γ − u1ð Þμh2
�

+ ξ + η + γ + u1ð Þ p − 1ð Þδ − κ ξ + η + γ + u1ð Þpð
+ −ξ − η − u1ð Þγ − ξ u1 + ηð ÞÞμh + p − 1ð Þ ξ + η + u1ð Þγð
+ ξ u1 + ηð ÞÞδ − κ ξ + η + u1ð Þγ + η ξð Þp − γ ξ u1Þ,

w2 = −
δ p − κ p − δ − μhð Þ

u1
,w3 = 1,

w4 = −
δ η p + δ pu1 − η κ p − δ η − δ u1 − η μh

γ + μhð Þu1
,

w5 =
−δ + κð Þp + δð Þu1 − η δ − κð Þp − δ − μhð Þð Þγ + κ pμhu1

γ + μhð Þ ξ + μhð Þu1
,

w6 = −
aα βvμh + u2Λhð Þ − u1 + ηð Þ p − 1ð Þδ + η κ p + μhð Þð Þw3Λv

u1 γ + μhð ÞaΛhμv
2 ,

w7 = −
Λvα βv μh η + u1ð Þ p − 1ð Þδ − η κ p + μhð Þð Þ

Λhμv
2 γ + μhð Þu1

: ð28Þ

On the other hand, the left eigenvector is given by v = ð
v1, v2, v3, v4, v5, v6, v7Þ where

v1 = 0,

v2 =
η + u1ð Þ p − 1ð Þδ − η κ p + μhð Þ

η + u1 + μhð Þδ p − 1ð Þ ,

v3 = 1,

v4 =
p − 1ð Þδ − κ p − μh

p − 1ð Þδ ,

v5 = 0,
v6 = 0,

v7 =
γ + μhð ÞΛhμv p − 1ð Þδ − κ p − μhð Þ

Λvα βvμhδ p − 1ð Þ :

ð29Þ

It is obvious that v1 = v5 = v6 = 0. Furthermore, f3 and f4
are one degree functions. Thus, we only need to consider the
second-order partial derivative of f2 and f7. By algebraic
computation, we obtain the following second-order partial
derivatives which have nonzero values after substituting
the MFE.

∂2 f2
∂x2∂x7

= ∂2 f2
∂x7∂x2

= −
βhμh
Λh

, ∂2 f2
∂x3∂x7

= ∂2 f2
∂x7∂x3

= −
βhμh
Λh

,

∂2 f2
∂x4∂x7

= ∂2 f2
∂x7∂x4

= −
βhμhα

Λh
, ∂2 f2
∂x5∂x7

= ∂2 f2
∂x7∂x5

= −
βhμh
Λh

,

∂2 f7
∂x1∂x4

= ∂2 f7
∂x4∂x1

= −
βvΛvα μh

2

μvΛh
2 , ∂2 f7

∂x2∂x4
= ∂2 f7
∂x4∂x2

= −
βvΛvα μh

2

μvΛh
2 ,

∂2 f7
∂x3∂x4

= ∂2 f7
∂x4∂x3

= −
βvΛvα μh

2

μvΛh
2 , ∂2 f7

∂x5∂x4
= ∂2 f7
∂x4∂x5

= −
βvΛvα μh

2

μvΛh
2 ,

∂2 f7
∂x4∂x6

= ∂2 f7
∂x6∂x4

= βvα μh
Λh

, ∂2 f7
∂x4∂x7

= ∂2 f7
∂x7∂x4

= −
u2
a
,

∂2 f7
∂x4∂x4

= −2 βvΛvα
2μh

2

μvΛh
2 : ð30Þ

For the bifurcation indicators, we calculate A for system
(22) which is expressed by

A = v2 〠
7

i,j=1
wi

∂2 f2
∂xi∂xj

+ v7 〠
7

i=1
wi

∂2 f7
∂xi∂xj

: ð31Þ

We can confirm that A is always negative (please see the
expression of A in Appendix D). Meanwhile, B is given by

B = v2 〠
7

i=1
wi

∂2 f2
∂xi∂βh

= u1 + ηð Þ p − 1ð Þδ − η κ p + μhð Þð Þ2μhβvαΛv

u1 + η + μhð Þδ 1 − pð ÞΛhμv
2 γ + μhð Þu1

:

ð32Þ

Since all parameters are positive, and ð1 − pÞ > 0, then we
have that B > 0. According to Castillo-Chavez and Song
theorem [47], since the quantity of A is negative and B is
positive, then system (22)) indicates a forward bifurcation
at R0 = 1. We state the result in the following theorem.

Theorem 4. System (7) always exhibits a forward bifurcation
at R0 = 1.

4.3. Numerical Experiments on Theorem 4. In this section, we
show the numerical interpretation of Theorem 4. The first
numerical experiment is for the bifurcation diagram of sys-
tem (7), which is given in Figure 4. We use parameter values
as mentioned in Table 1, except that it states differently.
With this set of parameter values, we have R0 = 1 when βh
= 0:0004079. For the case of a = 400, u1 = 0:2, and u2 = 0,
the bifurcation diagram is shown in Figure 4(a). It can be
seen that the forward bifurcation phenomenon appears,
which indicates there always exists a unique endemic equi-
librium point when R0 > 1, and no endemic equilibrium
when R0 < 1. Furthermore, we can see that the malaria-
endemic equilibrium is always stable (solid red) when R0
> 1. The autonomous simulation for various initial condi-
tions is shown in Figure 5. We use Runge-Kutta adaptive
step size method in MATLAB to run the autonomous simu-
lation in this article [52] (please see [53] for further detail on
the method and its algorithm). It can be seen that when
R0 = 0:8 < 1, then the solution from all different initial con-
ditions tends to the malaria-free equilibrium point
(Figure 5). On the other hand, when R0 > 1, then all trajec-
tories tend to the malaria-endemic equilibrium (Figure 6).

The autonomous simulation of system (7) when forward
hysteresis (Figure 4(b)) appears is given in Figures 7 and 8.
The numerical results is using the same parameter values
as in Figure 4(b). We only conduct two cases for this
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scenario, namely, when R0 > 1 but close to one in which
only one stable malaria-endemic appears (Figure 7) and
when two stable malaria-endemic equilibrium appears
(Figure 8) when R0 > 1, but not too far from 1. In the first
case, as shown in Figure 7, we can see that all trajectories
from all different initial conditions tend to the same
malaria-endemic equilibrium. However, when hysteresis
starts to appear, which causes two stable malaria-endemic

equilibrium, the solutions will tend to two different stable
malaria-endemic equilibrium points, depending on their ini-
tial conditions. We can see that when the initial condition is
close enough to the bigger malaria-endemic equilibrium
(blue curve), then the solution tends to the bigger size of
malaria-endemic equilibrium. The same thing happens
when the initial value of infection is small enough, and then,
the solution leads to the smallest stable malaria-endemic
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(a) Forward bifurcation phenomena of system (7) when u2 = 0 and a = 400
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(b) Forward hysteresis phenomena of system (7) when u2 = 0:3 and a = 10

Figure 4: Type of bifurcation phenomena of system (7). The red figure presents I† in MEEE, the blue curve is I∗ in MFE, and the magenta
curve presents the basic reproduction number as a function of βh. The solid and dotted curve present stable and unstable equilibrium point,
respectively.
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Figure 5: Autonomous simulation of Figure 4(a): trajectories of infected compartments for many different initial conditions toward MFE
when R0 = 0:98 < 1. The left figure is simulation for the first 300 days, while the right figure is simulation for days 95000 to 100000.
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equilibrium. These simulation results indicate that fumiga-
tion may trigger the existence of multiple stable malaria-
endemic equilibrium for some value when R0 > 1. Figure 9
confirms the statement. It can be seen that an increase in
fumigation rate increases the interval when multiple stable
malaria-endemic equilibrium appears.

5. Autonomous Simulation

From the previous mathematical analysis, we found that our
proposed malaria model always exhibits a forward bifurca-
tion at R0 = 1. These results indicate that the basic repro-
duction number becomes the only endemic indicator on
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Figure 6: Autonomous simulation of Figure 4(a): trajectories of infected compartments for many different initial conditions toward MEE
when R0 = 4:902 > 1. The left figure is simulation for 300 days, while the right figure is simulation for days 95000 to 100000.
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our proposed model. However, our model may show a mul-
tiple stable endemic equilibrium when R0 > 1. This phe-
nomenon is called a forward hysteresis [54]. We found
that this phenomenon was affected by the intensity of fumi-
gation ðu2Þ and the level of population awareness ðaÞ. Fur-
thermore, our sensitivity analysis indicates how important
is the intervention of tafenoquine to prevent the occurrence

of relapse and fumigation to control the number of Anoph-
eles mosquitoes in the environment. To visualize our men-
tioned results, we perform several numerical simulations
on our autonomous simulations for several scenarios.

5.1. Effect of Vector-Bias. In malaria transmission, vector-
bias has an important role in determining the endemic con-
dition of the population [29]. The larger the vector-bias
values, the more mosquito attracted to hunt infected
humans for their meal. Figure 10 depicts the dynamic of
the solution of our malaria model in (7) for several values
of vector-bias parameter. We use the same parameter values
as in Table 2, except u1 = 0:1, u2 = 0:05, p = 0:8, and varying
α from 1 to 5. With these parameters, R0 is always larger
than 1, which makes the solution of system (7) tends to
the malaria-endemic equilibrium. We can see that an
increased value of the vector-bias parameter at the malaria-
endemic equilibrium situation will increase the total popula-
tion in infected humans but reduce the size of the infected
mosquito population. This means that the more Anopheles
mosquitoes attracted to bite infected humans than healthy
humans can negatively impact the human population, where
the endemic size can increase. Therefore, efforts to control
the mosquito population are essential in this situation.

5.2. Effect of Fumigation Saturation Parameter. The first
autonomous simulation was conducted to show the impact
of the fumigation saturation parameter a. As we mentioned
before, a smaller value a indicates a more prepared commu-
nity to the increasing number of infected individuals. From
the expression of R0 in (15), it can be seen that a does not
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Figure 8: Autonomous simulation of Figure 4(b): trajectories of infected compartments for many different initial conditions toward two
stable MEE when R0 = 3:6769 > 1, depending on the initial conditions. The left figure is simulation for 300 days, while the right figure is
simulation for days 95000 to 100000.

80

70

60

50

40

30

20

10

0
0 0.5 1 1.5 2 2.5

I

R0

Figure 9: The bifurcation diagram of system (7) depends on the
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appear in R0. Hence, we conclude that a does not impact
the size of R0. However, as we have shown in Figure 11, a
smaller value of a reduces the size of total infected humans
and mosquitoes in the malaria-endemic equilibrium point.
Therefore, it can be concluded that although the level of
community readiness to carry out fumigation does not affect
the final state of population (endemic or not), it is clear that
the higher the community readiness (the smaller the value of
a), then the smaller the total size of the infected population
in malaria-endemic equilibrium.

5.3. Effect of Different Fumigation Strategy. As we have men-
tioned in sensitivity analysis on R0, we find that fumigation

does not affect the size of R0, but it can reduce the size of
malaria-endemic equilibrium when fumigation intervention
increases, as shown in Figure 12.

Now, we conduct our simulation with three different sce-
narios, based on the measured fumigation control depending
on the implementation time. In the 1st and the 2nd scenarios,
we choose u2 to be changed depending on the time interval,
using the following step function:

u1
stscenario
2 =

0:3, t ≤ 500,
0:9, 500 ≤ t ≤ 2000,
0:3, 2000 ≤ t ≤ 10000,

0
BB@
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Figure 10: Simulations showing the effect of vector-bias parameter (α) on the total of infected human (left) and mosquitoes (right). We use
same parameter values as in Table 2, except u1 = 0:1, u2 = 0:05, p = 0:8, and α varying: α = 5 (black), α = 4 (red), α = 3 (green), α = 2 (blue),
and α = 1 (cyan).
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Figure 11: Simulations showing the effect of fumigation saturation parameter (a) on the total of infected human (left) and mosquitoes
(right). We use same parameter values as in Table 2, except u1 = 0:1, u2 = 0:2, p = 0:8, and a varying: a = 20 (blue), a = 50 (green), a =
100 (red), a = 200 (cyan), and a = 300 (black). With this set of parameter, we have that R0 = 1:23.
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u2
ndscenario
2 =

0:3, t ≤ 10,
0:9, 10 ≤ t ≤ 1510,
0:3, 1510 ≤ t ≤ 10000,

0
BB@ ð33Þ

while the 3rd scenario when u2 = 0:3 for all time t ∈ ½0,
10000�. The result is given in Figure 13. We can see from
Figure 13 that when there exist two stable malaria-endemic
equilibrium points, then proper fumigation intervention

may change the direction of stability of the system, which
in our numerical experiment is from the large endemic size
into small endemic size. When the improvement of fumiga-
tion is given too early (2nd scenario), then after the fumiga-
tion intervention loosened back into 0:3, then the dynamic
of total infected human goes back to the large endemic size.
On the other hand, when the intervention is given several
times after the first implementation (1st scenario), then the
dynamic of total infected humans is continuously going to
the small endemic equilibrium. Based on this, it is necessary
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Figure 12: Effect of fumigation on the endemic size of total infected human (left) and mosquitoes (right). Three different values of u2 are
given: 0 (red), 0.5 (blue), and 1 (green) do not change the value of R0, which is always 1.77.
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to consider the time for implementing an appropriate
increase in fumigation intervention so that the solution
dynamics can be directed to a smaller endemic point if the
bistability phenomenon appears.

6. Conclusions

Malaria has long been a critical health problem in various
parts of the world. Every year, hundreds of millions of
people are at risk of becoming infected with malaria, with
the majority of cases occurring in Africa. The disease is
spread due to the bite of a female Anopheles mosquito
and is caused by five different types of Plasmodium. Dif-
ferent types of Plasmodium that infect give different
symptoms/serious illness that appears in patients with
malaria. Various interventions have been and are being
researched, such as vaccination, treatment, vector control
with fumigation, and use of insecticide-treated bed net.
The high number of cases in various parts of the world
until now indicates that our understanding of malaria is
still not sufficient to help us optimally control the spread
of malaria.

In this research, we introduce a new malaria model
that considers two important factors: the use of a new
treatment (tafenoquine) to prevent relapse and a saturated
fumigation function. The fundamental properties, the exis-
tence and stability criteria of the equilibrium points, and
how they relate to the basic reproduction number are ana-
lyzed in detail. We use Descartes’s rule of signs to show a
possible number of malaria-endemic equilibrium points
when the basic reproduction is less or larger than one.
We find that it is possible to have more than one endemic
equilibrium when the basic reproduction number is larger
than one. Our bifurcation analysis shows how our model
consistently exhibits a forward bifurcation at the basic
reproduction number equal to one. However, our numeri-
cal simulations show forward bifurcation phenomena with
hysteresis. This phenomenon results in the emergence of
three malaria-endemic equilibrium for a basic reproduc-
tion number larger than one.

Our sensitivity analysis shows that tafenoquine has a
big potential to control the spread of malaria by prevent-
ing the possibility of exposed individuals from relapsing.
Furthermore, we also find that although fumigation does
not affect the basic reproduction number, it can reduce
the number of infected individuals at malaria-endemic
equilibrium. Furthermore, a numerical investigation on
implementing a high intensity of fumigation in a short
time intervention interval may lead to a final switching
condition if the forward with hysteresis phenomena
appears. We find that when fumigation is implemented
in a proper time interval, the direction of endemic equilib-
rium can be “kicked down” into the smaller size of
malaria-endemic equilibrium, which is easier to control
with other intervention strategies. We hope that the results
of our research in this article can provide another perspec-
tive in evaluating the possibility of implementing tafeno-
quine and fumigation in the field.

Appendix

A. Proof of Theorem 1

We proof our theorem by analyzing the behaviour of each
variables on it boundary planes. From malaria model in sys-
tem (7), we have the dynamics on the boundary of ℝ7

+ as fol-
lows.

dS
dt

����
S=0,E≥0,T≥0,I≥0,R≥0,U≥0,W≥0

=Λh > 0,

dE
dt

����
S≥0,E=0,T≥0,I≥0,R≥0,U≥0,W≥0

= βhW
S

S + E + T + αI + R
≥ 0,

dT
dt

����
S≥0,E≥0,T=0,I≥0,R≥0,U≥0,W≥0

= u1E ≥ 0,

dI
dt

����
S≥0,E≥0,T≥0,I=0,R≥0,U≥0,W≥0

= 1 − pð ÞδT + ηE ≥ 0,

dR
dt

����
S≥0,E≥0,T≥0,I≥0,R=0,U≥0,W≥0

= pκT + γI ≥ 0,

dU
dt

����
S≥0,E≥0,T≥0,I≥0,R≥0,U=0,W≥0

=Λv > 0,

dW
dt

����
S≥0,E=0,T≥0,I≥0,R≥0,U≥0,W=0

= βhW
S

S + E + T + αI + R
≥ 0:

ðA:1Þ

It can be seen that all the rates of variables are nonnega-
tive on the boundary of ℝ7

+. Therefore, if we start in the inte-
rior of the nonnegative D, we shall always remain in this
region in view that the direction of the vector field is inward
on the boundary planes. Thus, the nonnegativity of all solu-
tions of system (7) is guaranteed.

Next, we continue to show the uniqueness solution of
system (7) by showing the boundedness of Nh and Nv. Add-
ing the first five equations in system (7) together, we get

dNh tð Þ
dt

=Λh − μh S + E + T + I + Rð Þ, =Λh − μhNh: ðA:2Þ

Solving the above differential equations with respect to
NhðtÞ and with a positive initial condition Nhð0Þ > 0 gives

Nh tð Þ =Nh 0ð Þ exp −μhtð Þ + Λh

μh
: ðA:3Þ

Hence, if we take t⟶∞, then we have that NhðtÞ is
eventually bounded by Λh/μh. To be precise, we have that
the biological feasible region of human population of system
(7) is

0 ≤ S + E + T + I + R ≤
Λh

μh
: ðA:4Þ
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For mosquito population, by adding the last two equa-
tion in system (7), we have

dNv tð Þ
dt

=Λv − μv + u2
I

a + I2

� �
U tð Þ +W tð Þð Þ,

=Λv − μv + u2
I

a + I2

� �
Nv tð Þ,

<Λv − μvNv tð Þ:

ðA:5Þ

Solving the above expression with respect to NvðtÞ and
with positive initial condition Nvð0Þ > 0, we get

Nv tð Þ <Nv 0ð Þ exp −μvtð Þ + Λv

μv
: ðA:6Þ

Hence, if we take t⟶∞, we have that NvðtÞ is eventu-
ally bounded by Λv/μv . Hence, the biological feasible region
of mosquito population is

0 ≤U +W ≤
Λv

μv
: ðA:7Þ

Hence, the proof is complete.

B. Possible Positive Root of Polynomial (7)
when R0 > 1

For an example, substitute parameter values as in Figure 4(b)
and βh = 0:0015 to polynomial GðΩ, IÞ in (19), we have

G Ið Þ = −2:3 × 10−17I6 − 1:2 × 10−14I5

+ 8:3 × 10−13I4 − 4:5 × 10−12I3

+ 3:9 × 10−12I2 − 4:3 × 10−11I + 9:01 × 10−11,
ðB:1Þ

which is the case number 22. Solve GðIÞ = 0 with respect to I,
and then, we have 3 positive roots of I, i.e., 1.91, 6.23, and
53.6.

C. Possible Positive Root of Polynomial (7)
when R0 < 1

For an example, substituting parameter values as in Figure 4
(a) and βh = 0:0002 to polynomial GðΩ, IÞ in (19), we have

G Ið Þ = −2:3 × 10−17I6 − 9:3 × 10−15I5 − 1:9 × 10−13I4

− 7:4 × 10−12I3 − 1:4 × 10−10I2 − 1:4 × 10−9I
− 2:7 × 10−8,

ðC:1Þ

which is the case number 64. Solve GðIÞ = 0 with respect
to I, and then, we have no positive roots.

D. Expression of A

A =A1 +A2, ðD:1Þ

where

A1 = −m12 ημh + δ u1 + ηð Þ 1 − pð Þ + ηpκð Þ2 μ3h + δ 1 − pð Þ + pκ + ηα + ξ + u1 + γ1ð Þμ2h ⋯
�

+ ηα + αu1 + ξ + γ1ð Þ 1 − pð Þδ + pκ ηα + ξ + γ1 + u1ð Þ + γ1 ξ + η + u1ð Þ + ξ ηα + u1ð Þð Þμh ⋯
+ ξ + η + u1ð Þγ1 + ξα η + u1ð Þð Þ 1 − pð Þδ + κ ξ + η + u1ð Þγ1 + ξηαð Þp + γ1ξu1,

A2 = −
1

Λvαβvμhδ 1 − pð Þ γ1 + μhð ÞΛhμv 1 − pð Þδ + pκ + μhð Þ βvΛvαμ
2
h

γ1 + μhð Þ2u21Λ2
h μh + ξð Þμv

2m2m3ð Þ
 "

+ 2 δ 1 − pð Þ + pκ + μhð Þ δ η + u1ð Þ 1 − pð Þ + η pκ + μhð Þð ÞβvΛvαμ
2
h

u21Λ
2
hμv γ1 + μhð Þ ⋯ + 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð ÞβvΛvαμ

2
h

γ1 + μhð Þu1nμvΛ2
h

⋯

+ 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð Þ δγ1 η + u1ð Þ 1 − pð Þ + κpγ1 η + u1ð Þκpμhu1 + ηγ1μhð ÞβvΛvαμ
2
h

γ1 + μhð Þ2u21 μh + ξð ÞμvΛ2
h

⋯

+ 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð Þ αaβvμh + u2Λhð Þ 1 − pð Þ η + u1ð Þδ + η pκ + μhð Þð ÞΛvβvαμh
γ1 + μhð Þ2u21aΛ2

hμ
2
v

⋯

+ 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð ÞΛvαβvμhu2 δ 1 − pð Þ η + u1ð Þ + η pκ + μhð Þð Þ
γ1 + μhð Þ2u21Λhμ

2
va

⋯ + 2 δ η + u1ð Þ 1 − pð Þ + η κp + μhð Þð ÞβvΛvα
2μ2h

γ1 + μhð Þu1μvΛ2
h

!#
,

ðD:2Þ

17Computational and Mathematical Methods in Medicine



with

m1 =
1

δu21Λ
2
hμ

2
v 1 − pð Þ u1 + η + μhð Þ γ1 + μhð Þ2 μh + ξð Þ ,

m2 = μ3h + 1 − pð Þδ + pκ + ξ + η + γ1 + u1ð Þμ2h ⋯ ξ + η + γ1 + u1ð Þ 1 − pð Þδð
+ κ ξ + η + γ1 + u1ð Þp + ξ + η + u1ð Þγ + ξ η + u1ð ÞÞμh
+⋯ 1 − pð Þ ξ + η + u1ð Þγ1 + ξ η + u1ð Þð Þδ
+ κ ξ + η + u1ð Þγ1 + ηξð Þp + γ1ξu1,

m3 = δ η + u1ð Þ 1 − pð Þ + ηκp + ημhð Þ: ðD:3Þ

Since A1 and A2 are negative, then we have A < 0.
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In recent years, there are many new definitions that were proposed related to fractional derivatives, and with the help of these
definitions, mathematical models were established to overcome the various real-life problems. The true purpose of the current
work is to develop and analyze Atangana-Baleanu (AB) with Mittag-Leffler kernel and Atangana-Toufik method (ATM) of
fractional derivative model for the Smoking epidemic. Qualitative analysis has been made to `verify the steady state. Stability
analysis has been made using self-mapping and Banach space as well as fractional system is analyzed locally and globally by
using first derivative of Lyapunov. Also derive a unique solution for fractional-order model which is a new approach for such
type of biological models. A few numerical simulations are done by using the given method of fractional order to explain and
support the theoretical results.

1. Introduction

Mathematics was firstly used in biology in the twelfth cen-
tury when Fibonacci used his popular Fibonacci series to
explain a growing population. Daniel Bernoulli used mathe-
matics to describe the effect of small pox. The term biologi-
cal mathematics was primarily used by Johannes Reinke in
1901. It is aimed at the mathematical image and modeling
of biological processes. It is also used to recognize phenom-
ena in the living organism. Bio math has made major prog-
ress during the last few decades, and this progress will
continue in upcoming decades. Math has played a large role
in natural science but now it also will be more useful in
biology. We should teach basic concepts of bio math at early
stages. The basic steps in mathematical biology are few. The
initial step is to explain the biological process and raise a

question about the basics. The second step is to build up a
mathematical model that represents the underlying biologi-
cal process. The 3rd step is to apply the method and
concepts of math to obtain predictions about the model.
The last step is to check whether this prediction answers
the raised questions. After this, anyone can further explore
the biological question by using mathematical models [1].

Now in the modern world, tobacco smoke is the most
inhaled substance. Tobacco is made by mixing its agricul-
tural form with many substances. The smoke is inhaled
through the lungs. The most dangerous epidemic in the
world is the smoking epidemic. Due to smoking 50% of its
users died. Every year, about 60 million people die due to
smoking. During the last few decades, there has been a huge
boost in deaths. The death rate will rise thrice annually in
2030, almost seventy percent is in developing countries.
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According to WHO, 10 million people will die due to smok-
ing. As compared to other diseases, the death ratio is higher
than all. The person who uses tobacco dies 14 years earlier
than someone who does not smoke [2]. Tobacco smoking
is the major reason for cancer and another disease. About
70% of people died due to tobacco-related diseases in
developing countries [3]. Three million people died due to
smoking yearly.

Nowadays, smoking is the most dangerous habit. The
heart attack ratio is 70 percent more than a nonsmoker.
There are 900 million men smokers and 200 women
smokers in the world. After every 6 seconds, there is a death
due to smoking. Smoking is a major cause of lung and heart
attack in the world. Due to smoking, the chances of other
diseases like heart attack, stroke, especially lung cancer,
throat, mouth, esophagus, and pancreas are increased.
Tobacco causes many tissue-related diseases. Tobacco
smoke is a mixture of several toxic gases. It includes 98 of
which are linked with an increased risk of cardiovascular
disease, 69 of which are known to be carcinogenic. Daily, a
smoker takes 1 or 2 milligrams of nicotine per cigarette.
Thus, if a person smokes 5 cigarettes, it takes at least 5-10
milligrams of nicotine. The effect of smoking is not limited
to the person who but also adverse effects for other people.
It causes 22% of death annually.

The chemical composition of tobacco varies according to
the environment. These leaves are mixed with many chemi-
cals. Tobacco smoke contains a large number of different
chemicals such as benzopyrene, NNK, aldehydes, carbon
monoxide, hydrogen cyanide, phenol, nicotine, and harmala
alkoids. The radioactive element polonium 210 is also
occurring in tobacco. There are almost 4 thousand noxious
substances in smoke which is the main reason for cancer
[4, 5]. The chemical composition of smoke depends on puff
frequency and other materials. Nicotine is the main issue for
disturbing the nervous system, rise in heartbeat, raising
blood pressure, and shrinking the small blood vessels which
are the main basis of wrinkles. The amount of oxygen
decreased in the lungs due to carbon monoxide (CO). The
natural lungs cleaner that is minuscule hairs is destroyed
by hydrogen cyanide. Lead, nickel arsenic, and cadmium
are also present in smoke. Some pesticides like DDT are also
found in smoke. The major reason for skin and lung cancer
is a toxic chemical that is present in smoke. 10 million
deaths will occur in the 20th century and 1 billion in the
21st century due to smoking [6]. Cigarette smoking affects
human fertility badly [7].

The generalization of classical calculus is called frac-
tional calculus which is concerned with the operation of
integration and differentiation of fractional order. In the
19th century, fractional calculus mathematicians introduced
fractional differential equations, fractional dynamics, and
fractional geometry. Fractional calculus is used in almost
every field of science. It is used to model physical as well
as engineering processes. In many cases, standard mathe-
matical models of integer order do not work properly. Due
to this reason, fractional calculus made a major contribution
to the field of mechanics, chemistry, biology, and image pro-
cessing. By using fractional calculus, several physical prob-

lems are solved. By using integer-order derivatives, the
system shows many problems such as history and nonlocal
effects. Primarily, all the studies were dependent on Caputo
fractional-order and Reimann Liouville fractional (RLF)
derivatives. Nowadays, it has been highlighted that these
derivatives have the issue, and the issue is they have a singu-
lar kernel. That is the reason so many new definitions were
presented in the studies [8–16]. These new definitions were
very impactful because they have nonsingular kernels which
are according to their needs. Caputo fractional derivatives
[17], the Caputo-Fabrizio derivative [11], and AB [18] frac-
tional derivative have differed from each other only because
Caputo is defined by a power law, Fabrizio defined by using
exponential decay law, and AB defined by ML law. Tateishi
et al. describe the role of fractional time operator derivative
in a study of anomalous diffusion [12]. With the help of
analytical techniques, Bulut et al. deliberate the role of differ-
ential equations of arbitrary order [19]. The key concepts of
fractional differential equations and their application are
explained by Kilbas et al. [20]. Atangana and Koca examined
the Keller-Segel model about a fractional derivative having a
nonsingular kernel [21]. Fractional logistic maps are newly
introduced by Huang et al. [22]. Zaman studied the qualita-
tive response of the dynamics of giving up smoking [23].
The giving up smoking model linked with Caputo fractional
derivative is a probe by Singh et al. [24].

Numerous studies identified sociodemographic, environ-
mental, and behavioral risk factors such as age, sex,
occupations, indoor air pollutions, smoking, and alcohol
consumption [25–27] as being associated with the develop-
ment of TB in humans. In [28], a simple model for the effect
of tobacco smoking in the in-host dynamics of HIV is
formulated with the aim of studying how tobacco smoking
affects HIV in-host dynamics. Zoonotic tuberculosis (zTB)
knowledge, prevention, and control practices via a survey
in Bangladesh considering impact of smoking are also
in [29].

In this work, we get the approximate solutions of the
fractional smoking model by using the Atangana-Toufik
method.

2. Basic Concepts of Fractional Operators

Definition 1. For a function gðtÞ ∈W1
2ð0, 1Þ, b > a and σ ∈

½0, 1�, the definition of AB derivative in the Caputo sense is
given by

ABC
0 Dσ

t g tð Þ = AB σð Þ
1 − σ

ðt
0

d
dτ

g τð ÞMσ

� −
σ

1 − σ
t − τð Þσ

h i
dτ, n − 1 < σ < n,

ð1Þ

where

AB σð Þ = 1 − σ +
σ

Γ σð Þ : ð2Þ
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By using ST for (1), we obtain

ST ABC
0 Dσ

t g tð Þ� �
sð Þ = q σð Þ

1 − σ
σΓ σ + 1ð ÞMσ −

1
1 − σ

Vσ

� �� �
× ST g tð Þð Þ − g 0ð Þ½ �:

ð3Þ

Definition 2. The Laplace transform (LT) of the Caputo
fractional derivative of a function gðtÞ of order σ > 0 is
defined as

L C
0D

σ
t g tð Þ� �

= sσg sð Þ − 〠
n−1

σ=0
g σð Þ 0ð Þsσ−v−1: ð4Þ

Definition 3. The LT of the function tσ1−1Eσ,σ1ð±μtσÞ is
defined as

L tσ1−1Eσ,σ1 ±μtσð Þ� �
=

sσ−σ1

sσ ∓ μ
, ð5Þ

where Eσ,σ1 is the two-parameter ML function with σ,
σ1 > 0: Further, the ML function satisfies the following
equation [17].

Eσ,σ1 fð Þ = f Eσ,σ+σ1 fð Þ + 1
Γ σ1ð Þ : ð6Þ

Definition 4. Suppose that gðtÞ is continuous on an open
interval ða, bÞ, then the fractal-fractional integral of gðtÞ of
order σ having ML type kernel and given by

FFM J
σ,σ1
0,t g tð Þð Þ = σσ1

AB σð ÞΓ σ1ð Þ
ðt
0
sσ1−1g sð Þ t − sð Þσds

+
σ1 1 − σð Þtσ1−1g tð Þ

AB σð Þ :

ð7Þ

3. Model Formulation

We will study the giving up smoking model for overall
population at time t. We separate the population into 5
groups, potential smokers PðtÞ, occasional smokers LðtÞ,
heavy smokers SðtÞ, temporary quitters QðtÞ, and smokers
who quit permanently RðtÞ specified by TðtÞ = PðtÞ +
LðtÞ + SðtÞ +QðtÞ + RðtÞ. Due to smoking, the chances of
other diseases like heart attack, stroke, especially lung cancer,
throat, mouth, esophagus, and pancreas are increased [24].
The model is developed as follows

dP
dt

= a 1 − Pð Þ − bPS, ð8Þ

dL
dt

= −aL + bPL − cLS, ð9Þ

dS
dt

= − a + dð Þ + cLS + f Q, ð10Þ

dQ
dt

= − a + fð ÞQ + d 1 − eð ÞS, ð11Þ

dR
dt

= −aR + edS: ð12Þ

With the initial conditions

P 0ð Þ = δ1, ð13Þ
L 0ð Þ = δ2, ð14Þ
S 0ð Þ = δ3, ð15Þ
Q 0ð Þ = δ4, ð16Þ
R 0ð Þ = δ5: ð17Þ

The rate of change between potential smoker and
occasional smokers is represented by b, a represents the
rate of natural death, the rate of occasional smoker and
temporary smokers by c, the rate of change between quit-
ters and smoker is shown by f , the rate of giving up
smoking is shown by d, fraction of temporary giving up
smoker is represented by ð1 − eÞ (at the rate of d), e shows
the remaining fraction of smokers who give up smoking for-
ever (at a rate d).

4. Qualitative Analysis

By substituting the values of parameters in given system of
differential equations and the rate of change with respect
to time is zero, we get

a 1 − Pð Þ − bPS = 0, ð18Þ

−aL + bPS − cLS = 0, ð19Þ
− a + dð ÞS + cLS + f Q = 0, ð20Þ
− a + fð ÞQ + d 1 − eð ÞS = 0, ð21Þ

−aR + edS = 0: ð22Þ
By simplifying the above equations, we get disease-free

equilibrium, denoted by E0, i.e., E0 = ð1, 0, 0, 0, 0Þ.
Endemic equilibrium is found in terms of one of the

infected compartment, denoted by E1, i.e., E1 = ðP∗, L∗, S∗,
Q∗, R∗Þ where P∗ = a/a + bS∗, L∗ = ab/ða + bS∗Þða + cS∗Þ,
Q∗ = dð1 − eÞS∗/a + f , R∗ = edS∗/a:

4.1. Stability Analysis and Reproductive Number. It is
important to find the verge conditions to check the status
of population, whether the disease persist or dies out. In
case of disease free equilibrium point, R0 < 1, which shows
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that the disease will die out. In case of endemic equilibrium,
R0 > 1. Consider the Jacobian matrix (JM) as

J =

−a − bS 0 −bP 0 0

bS −a − cS bP − cL 0 0

0 cS −a − d + cL f 0

0 0 d 1 − eð Þ −a − f 0

0 0 ed 0 −a

2
666666664

3
777777775
:

ð23Þ

Since the JM is J = F −V where
We know that K = FV−1 and using the relation jK − λIj

= 0 solving on mathematica for the Eigenvalue λ, which
represents the reproductive number R0, i.e.,

R0 =
df 1 − eð Þ

a + dð Þ a + fð Þ : ð24Þ

Hence, R0 = 0:431034 < 1, according to the given param-
eter values.

Theorem 5. The disease free equilibrium E0 is locally asymp-
totically stable for R0 < 1, if Re ðλÞ < 0, otherwise, unstable.

Proof. E0 of the given system is locally asymptotically
stable if Re ðλÞ < 0 where λ can be evaluated from the
relation jJ0 − λIj = 0.

By using the relation jJ0 − λIj = 0, we get. Re ðλÞ as

λ1 = −a, λ2 =
1
2

−2a − d − f −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 + 2df − 4def + f 2

q	 

< 0,

ð25Þ

λ3 =
1
2

−2a − d − f +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 + 2df − 4def + f2

ph i
< 0λ1:

ð26Þ
All the Eigenvalues are negative real parts which repre-

sent that the given system is locally asymptotically stable.

Theorem 6. When the reproductive number R0 > 1, the
endemic equilibrium points E1 of the PLSQR model is globally
asymptotically stable.

Proof. The Lyapunov function can be written as

M P∗, L∗, S∗,Q∗, R∗ð Þ
= P − P∗ − P∗ log

P∗

P

� �
+ L − L∗ − L∗ log

L∗

L

� �

+ S − S∗ − S∗ log
S∗

S

� �
+ Q −Q∗ −Q∗ log

Q∗

Q

� �

+ R − R∗ − R∗ log
R∗

R

� �
:

ð27Þ

Therefore, applying the derivative respect to t on both
sides yields

dM
dt

= _M = P − P∗

P

� �
_P + L − L∗

L

� �
_L + S − S∗

S

� �
_S

+
Q −Q∗

Q

� �
_Q +

R − R∗

R

� �
_R:

ð28Þ

Now, we can write their values for derivatives as follows

dM
dt

= _M =
P − P∗

P

� �
a 1 − Pð Þ − bPSð Þ

+
L − L∗

L

� �
−aL + bPS − cLSð Þ

+
S − S∗

S

� �
− a + dð ÞS + cLS + f Qð Þ

+
Q −Q∗

Q

� �
− a + fð ÞQ + d 1 − eð ÞSð Þ

+
R − R∗

R

� �
−aR + edSð Þ:

ð29Þ

Putting P = P − P∗, L = L − L∗, S = S − S∗, Q =Q −Q∗,
R = R − R∗ leads to

dM
dt

=
P − P∗

P

� �
a 1 − P − P∗ð Þð Þ − b P − P∗ð Þ S − S∗ð Þð Þ

+
L − L∗

L

� �
−a L − L∗ð Þ + b P − P∗ð Þ S − S∗ð Þð

− c L − L∗ð Þ S − S∗ð ÞÞ + S − S∗

S

� �
− a + dð Þ S − S∗ð Þð

+ c L − L∗ð Þ S − S∗ð Þ + f Q −Q∗ð ÞÞ
+

Q −Q∗

Q

� �
− a + fð Þ Q −Q∗ð Þ + d 1 − eð Þ S − S∗ð Þð Þ

+
R − R∗

R

� �
−a R − R∗ð Þ + ed S − S∗ð Þð Þ:

ð30Þ

We can organize the above as follows

dM
dt

= a −
P∗

P

� �
a −

1
P

P − P∗ð Þ2 − b
P

P − P∗ð Þ2 Sð Þ

+
b
P

P − P∗ð Þ2 S∗ð Þ − a
L

L − L∗ð Þ2 + bPS − bP∗S

+ bP∗S∗ − bPS∗ −
L∗

L

� �
bPS +

L∗

L

� �
bP∗S

−
L∗

L

� �
bP∗S∗ +

L∗

L

� �
bPS∗ −

C
L

L − L∗ð Þ2 Sð Þ

+
C
L

L − L∗ð Þ2 S∗ð Þ − a + dð Þ
S

S − S∗ð Þ2 + c
S

Lð Þ S − S∗ð Þ2
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−
c
S

L∗ð Þ S − S∗ð Þ2 + f Qð Þ − f Q∗ð Þ − S∗

S

� �
f Q

+
S∗

S

� �
f Q∗ −

a + fð Þ
Q

Q −Q∗ð Þ2 + d 1 − eð Þ Sð Þ

− d 1 − eð Þ S∗ð Þ − d 1 − eð Þ Sð Þ Q∗

Q

� �

+ d 1 − eð Þ S∗ð Þ Q∗

Q

� �
−

a
R

R − R∗ð Þ2 + ed Sð Þ − ed S∗ð Þ

− ed Sð Þ R∗

R

� �
+ ed S∗ð Þ R∗

R

� �
:

ð31Þ

To avoid the complexity, the above can be written as

dM
dt

= Σ −Ω, ð32Þ

where

Σ = a +
b
P

P − P∗ð Þ2 S∗ð Þ + bPS + bP∗S∗ +
L∗

L

� �
bP∗S

+
L∗

L

� �
bPS∗ +

C
L

L − L∗ð Þ2 S∗ð Þ + c
S

Lð Þ S − S∗ð Þ2 + f

+
S∗

S

� �
f Q∗ + d 1 − eð Þ Sð Þ + d 1 − eð Þ S∗ð Þ Q∗

Q

� �

+ ed Sð Þ + ed S∗ð Þ R∗

R

� �
,

ð33Þ

Ω =
P∗

P

� �
a +

1
P

P − P∗ð Þ2 + b
P

P − P∗ð Þ2 Sð Þ + a
L

L − L∗ð Þ2

+ bP∗S + bPS∗ +
L∗

L

� �
bPS +

L∗

L

� �
bP∗S∗

+
C
L

L − L∗ð Þ2 Sð Þ + a + dð Þ
S

S − S∗ð Þ2 + c
S

L∗ð Þ S − S∗ð Þ2

+ f Q∗ +
S∗

S

� �
f Q +

a + fð Þ
Q

Q −Q∗ð Þ2 + d 1 − eð Þ S∗ð Þ

+ d 1 − eð Þ Sð Þ Q∗

Q

� �
+

a
R

R − R∗ð Þ2 + ed S∗ð Þ

+ ed Sð Þ R∗

R

� �
:

ð34Þ
It is concluded that if Σ <Ω, this yields, dM/dt < 0,

however when, P = P∗, L = L∗, S = S∗,Q =Q∗, R = R∗

0 = Σ −Ω⇒ dM
dt

= 0: ð35Þ

We can see that the largest compact invariant set for the
suggested model in

P∗, L∗, S∗,Q∗, R∗ð Þ ∈ Γ ;
dM
dt

= 0
� �

, ð36Þ

is the point fE1g the endemic equilibrium of the considered
model. By the help of the Lasalles invariance concept, it fol-
lows that E1 is globally asymptotically stable in Γ if Σ <Ω.

5. Atangana-Baleanu Caputo Sense with
Mittag-Leffler Kernel

By applying AB fractional derivative of order σ and σ ∈ ð0, 1�,
into ML kernel, then, the system (8) becomes

ABC
0 D

σ
t P = a 1 − Pð Þ − bPS, ð37Þ

ABC
0 Dσ

t L = − aL + bPL − cLS, ð38Þ
ABC
0 Dσ

t S = − a + dð ÞS + cLS + f Q, ð39Þ
ABC
0 Dσ

t Q = − a + fð ÞQ + d 1 − eð ÞS, ð40Þ
ABC
0 Dσ

t R = − aR + edS: ð41Þ
The initial conditions associated with the system (37) are

P 0ð Þ = δ1, ð42Þ

L 0ð Þ = δ2, ð43Þ
S 0ð Þ = δ3, ð44Þ
Q 0ð Þ = δ4, ð45Þ
R 0ð Þ = δ5: ð46Þ

We will discuss the numerical value of solution of system
for different values of ρ. With the help of iterative method
and the Padè approximation results are obtained.

We use the values of the parameters a = 0:04, b = 0:23,
c = 0:3, d = 0:2, e = 0:4, and f = 0:25: The initial conditions
are given by P ð0Þ = 0:60301, L ð0Þ = 0:24000, S ð0Þ =
0:10628,Qð0Þ = 0:03260,andRð0Þ = 0:01811.

Taking ST on both sides of (37), we get

q σð ÞσΓ σ + 1ð Þ
1 − σ

Nσ −
1

1 − σ
Vσ

� �
ST P tð Þ − P 0ð Þf g

= ST a 1 − Pð Þ − bPS½ �,
ð47Þ

q σð ÞσΓ σ + 1ð Þ
1 − σ

Nσ −
1

1 − σ
Vσ

� �
ST L tð Þ − L 0ð Þf g

= ST −aL + bPL − cLS½ �,
ð48Þ

q σð ÞσΓ σ + 1ð Þ
1 − σ

Nσ −
1

1 − σ
Vσ

� �
ST S tð Þ − S 0ð Þf g

= ST − a + dð ÞS + cLS + f Q½ �,
ð49Þ
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q σð ÞσΓ σ + 1ð Þ
1 − σ

Nσ −
1

1 − σ
Vσ

� �
ST Q tð Þ −Q 0ð Þf g

= ST − a + fð ÞQ + d 1 − eð ÞS½ �,
ð50Þ

q σð ÞσΓ σ + 1ð Þ
1 − σ

Nσ −
1

1 − σ
Vσ

� �
ST R tð Þ − R 0ð Þf g

= ST −aR + edS½ �:
ð51Þ

Rearranging, we get

ST P tð Þð Þ = P 0ð Þ + 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
� ST a 1 − Pð Þ − bPS½ �,

ð52Þ

ST L tð Þð Þ = L 0ð Þ + 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
� ST −aL + bPL − cLS½ �,

ð53Þ

ST S tð Þð Þ = S 0ð Þ + 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
� ST − a + dð ÞS + cLS + f Q½ �,

ð54Þ

ST Q tð Þð Þ =Q 0ð Þ + 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
� ST − a + fð ÞQ + d 1 − eð ÞS½ �,

ð55Þ

ST R tð Þð Þ = R 0ð Þ + 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
� ST −aR + edS½ �:

ð56Þ

Now taking inverse ST on both sides of equation (52),
we get

P tð Þ = P 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST a 1 − Pð Þ − bPSf g


,

ð57Þ

L tð Þ = L 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aL + bPL − cLSf g


,

ð58Þ

S tð Þ = S 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + dð ÞS + cLS + f Qf g


,

ð59Þ

Q tð Þ =Q 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + fð ÞQ + d 1 − eð ÞSf g


,

ð60Þ

R tð Þ = R 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aR + edSf g


:

ð61Þ
We next attain the following recursive formula.

P n+1ð Þ tð Þ = Pn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST a 1 − Pnð Þ − bPnSnf g


,

ð62Þ

L n+1ð Þ tð Þ = Ln 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aLn + bPnLn − cLnSnf g


,

ð63Þ

Sn+1 tð Þ = Sn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + dð ÞSn + cLnSn + f Qnf g


,

ð64Þ

Q n+1ð Þ tð Þ =Qn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + fð ÞQn + d 1 − eð ÞÞSnf g


,

ð65Þ

R n+1ð Þ tð Þ = Rn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aRn + edSnf g


:

ð66Þ
And the solution of (62) is

P tð Þ = lim
n⟶∞

Pn tð Þ, ð67Þ

L tð Þ = lim
n⟶∞

Ln tð Þ, ð68Þ
S tð Þ = lim

n⟶∞
Sn tð Þ, ð69Þ

Q tð Þ = lim
n⟶∞

Qn tð Þ, ð70Þ
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R tð Þ = lim
n⟶∞

Rn tð Þ: ð71Þ

Theorem 7. Let ðX, j:jÞ be a Banach space and H a self-map
of X satisfying

Hx −Hrk k ≤ θ X −Hxk k + θ x − rk k, ð72Þ

for all x, r ∈ X, and 0 ≤ θ < 1: Suppose that H is Picard H-
stable. Suppose that system (62), we have

Pn+1 tð Þ = Pn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
�

� ST a 1 − Pnð Þ − bPnSn½ �
�
,

ð73Þ

Ln+1 tð Þ = Ln 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
�

� ST −aLn + bPnLn − cLnSn½ �
�
,

ð74Þ

Sn+! tð Þ = Sn 0ð Þ + ST−! 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
�

� ST − a + dð ÞSn + cLnSn + f Qn½ �
�
,

ð75Þ

Qn+1 tð Þ =Qn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
�

� ST − a + fð ÞQn + d 1 − eð ÞSn½ �
�
,

ð76Þ

Rn+1 tð Þ = Rn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
�

� ST −aRn + edSn½ �
�
,

ð77Þ
where 1 − σ/qðσÞσΓðσ + 1ÞNσð−1/1 − σVσÞ is the fractional
Lagrange multiplier.

Theorem 8. Define K be a self-map is given by

K P n+1ð Þ tð Þ
h i

= Pn 0ð Þ + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST a 1 − Pnð Þ − bPnSnf g


,

ð78Þ

K L n+1ð Þ tð Þ
h i

= Ln 0ð Þ + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aLn + bPnLn − cLnSnf g


,

ð79Þ

K Sn+1 tð Þ½ � = Sn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + dð ÞSn + cLnSn + f Qnf g


,

ð80Þ

Q n+1ð Þ tð Þ =Qn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + fð ÞQn + d 1 − eð ÞÞSnf g


,

ð81Þ

R n+1ð Þ tð Þ = Rn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aRn + edSnf g


,

ð82Þ

K Sn+1 tð Þ½ � = Sn 0ð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + dð ÞSn + cLnSn + f Qnf g


,

ð83Þ

K Q n+1ð Þ tð Þ
h i

=Qn 0ð Þ + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + fð ÞQn + d 1 − eð ÞÞSnf g


,

ð84Þ

K R n+1ð Þ tð Þ
h i

= Rn 0ð Þ + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aRn + edSnf g


:

ð85Þ

Proof. In first step, we will show that K is fixed point

∀ m, nð Þ ∈N ×N , ð86Þ
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K Pn tð Þð Þ − K Pm tð Þð Þ
= Pn tð Þ − Pm tð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST a 1 − Pnð Þ − bPnSnf g


− ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST a 1 − Pmð Þ − bPmSmf g


,

ð87Þ

K Ln tð Þð Þ − K Lm tð Þð Þ
= Ln tð Þ − Lm tð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aLn + bPnLn − cLnSnf g


− ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ ST
	

� −aLm + bPmLm − cLmSmf g


,

ð88Þ

K Sn tð Þð Þ − K Sm tð Þð Þ
= Sn tð Þ − Sm tð Þ + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + dð ÞSn + cLnSn + f Qnf g


− ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + dð ÞSm + cLmSm + f Qmf g


,

ð89Þ

K Qn tð Þð Þ − K Qm tð Þð Þ
=Qn tð Þ −Qm tð Þ + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + fð ÞQn + d 1 − eð ÞÞSnf g



− ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + fð ÞQm + d 1 − eð ÞÞSmf g


,

ð90Þ

K Rn tð Þð Þ − K R tð Þð Þ
= Rn tð Þ − Rm tð Þ + ST−1 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aRn + edSnf g


− ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −aRm + edSmf g


:

ð91Þ
Applying the properties of the norm and also using the

triangular inequality, we obtain

K Pn tð Þð Þ − K Pm tð Þð Þk k
≤ Pn tð Þ − Pm tð Þk k ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST a 1 − Pn − Pmð Þð Þk kf + −b PnSn − PmSmð Þk k


,

ð92Þ

K Ln tð Þð Þ − K Lm tð Þð Þk k
≤ Ln tð Þ − Lm tð Þk k + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	
� ST − a Ln − Lmð Þk k + b PnLn − PmLmð Þk kf
+ −c LnSn − LmSmð Þk kg



,

ð93Þ

K Sn tð Þð Þ − K Sm tð Þð Þk k
≤ Sn tð Þ − Sm tð Þk k + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	
� ST − a + dð Þ Sn − Smð Þk k + c LnSn − LmSmð Þk kf
+ f Qn −Qmð Þk kg



,

ð94Þ

K Qn tð Þð Þ − K Qm tð Þð Þk k
≤ Qn tð Þ −Qm tð Þk k + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST − a + fð Þ Qn −Qmð Þk k + d 1 − eð Þ Sn − Smð Þk kf g


,

ð95Þ
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K Rn tð Þð Þ − K Rm tð Þð Þk k
≤ Rn tð Þ − Rm tð Þk k + ST−1

� 1 − σ

q σð ÞσΓ σ + 1ð ÞNσ − 1/1 − σð ÞVσð Þ
	

� ST −a Rn − Rmð Þk k + ed Sn − Smð Þk kf g


:

ð96Þ

K fulfills the conditions associated with Theorem 6,
when

And we add that K is Picard K-stable.

Theorem 9. Prove that system (27) has special solution is
unique.

Proof. Let H be the Hilbert space defined as H = L2ððp, qÞ
× ð0, TÞÞ where

h : p, qð Þ × 0, Tð Þ⟶ℝ,∬ghdgdh <∞: ð98Þ

So, the following operators are considered

θ 0, 0, 0, 0, 0ð Þ, θ =

a 1 − pð Þ − bps,

−aL + bPL − cLS,

− a + dð ÞS + cLS + f Q,

− a + fð ÞQ + d 1 − eð ÞS,
−aR + edS:

8>>>>>>>><
>>>>>>>>:

ð99Þ

We establish the inner product of

where ðS11 − S12, I21 − I22, A31 − A32, T41 − T42, R51 − R52Þ
are the special solutions of the system. By using the inner
function and the norm, we have

a − a P11 − P12ð Þ − b P11 − P12ð Þ S31 − S32ð Þf g
≤ a V1k k + a P11 − P12k k + b P11 − P12k k

× S31 − S32k k V1k k,
ð101Þ

−a L21 − L22ð Þ + b P11 − P12ð Þ L21 − L22ð Þf
− c L21 − L22ð Þ S31 − S32ð Þg

≤ a L21 − L22k k V2k k + b P11 − P12k k L21 − L22k k V2k k
+ c L21 − L22k k S31 − S32k k V2k k,

ð102Þ

− a + dð Þ S31 − S32ð Þ + c L21 − L22ð Þ S31 − S32ð Þf
+ f Q41 −Q42ð Þg

≤ a + dð Þ S31 − S32k k V3k k + c L21 − L22k k S31 − S32k k V3k k
+ f Q31 −Q32k k V3k k,

ð103Þ
− a + fð Þ Q41 −Q42ð Þ + d 1 − eð Þ S31 − S32ð Þf g
≤ a + fð Þ Q31 −Q32k k V4k k + d 1 − eð Þ S31 − S32k k V4k k,

ð104Þ
−a R51 − R52ð Þ + ed S31 − S32ð Þf g
≤ a R31 − R32k k V5k k + ed S31 − S32k k V5k k: ð105Þ

Due to large number of e1, e2, e3, e4, and e5, both
solutions converge to the exact solution. Applying the

θ = 0, 0, 0, 0, 0ð Þ, θ

Pn tð Þ − Pm tð Þk k × −Pn tð Þ − Pm tð Þk k + a 1 − Pn − Pmð Þð Þk k − b PnSn − PmSmð Þk k,
× Ln tð Þ − Lm tð Þk k × −Ln tð Þ − Lm tð Þk k − a Ln tð Þ − Lm tð Þk k + b PnLn − PmLmð Þk k − c LnSn − LmSmð Þk k,
× Sn tð Þ − Sm tð Þk k × −Sn tð Þ − Sm tð Þk k − a + dð Þ Pn − Pmk k + c LnSn − LmSmð Þk k + f Qn −Qmð Þk k,
× Qn tð Þ −Qm tð Þk k × −Qn tð Þ −Qm tð Þk k − a + fð Þ Qn −Qmk k + d 1 − eð Þ d 1 − eð Þ Sn − Smð Þk k,
× Rn tð Þ − Rm tð Þk k × −Rn tð Þ − Rm tð Þk k − a Rn − Rmk k + ed Sn − Smð Þk k:

8>>>>>>>><
>>>>>>>>:

ð97Þ

P P11 − P12, L21 − L22, S31 − S32,Q41 −Q42, R51 − R52ð Þ, V1,V2,V3, V4, V5ð Þð Þ: ð100Þ
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topological idea, we have the very small positive five param-
eters ðχe1

, χe2
, χe3

, χe4
, andχe5

Þ:

P − P11k k, P − P12k k ≤
χe1

ϖ
, ð106Þ

L − L21k k, L − L22k k ≤
χe2

ς
, ð107Þ

S − S31k k, S − S32k k ≤
χe3

υ
, ð108Þ

Q −Q41k k, Q −Q42k k ≤
χe4

κ
, ð109Þ

R − R51k k, R − R52k k ≤
χe5

ϱ
, ð110Þ

ϖ = 5 a + a P11 − P12k k + b P11 − P12k k S31 − S32k kð Þ V1k k,
ð111Þ

ς = 5 a L21 − L22k k + b P11 − P12k k L21 − L22k kð
+ c L21 − L22k k S31 − S32k kÞ V2k k, ð112Þ

υ = 5 a + dð Þ S31 − S32k k + c L21 − L22k k S31 − S32k kð
+ f Q31 −Q32k kÞ V3k k, ð113Þ

κ = 5 a + fð Þ Q31 −Q32k k + d 1 − eð Þ S31 − S32k kð Þ V4k k,
ð114Þ

ϱ = 5 a R31 − R32k k + ed S31 − S32k kð Þ V5k k: ð115Þ
But, it is obvious that

a + a P11 − P12k k + b P11 − P12k k S31 − S32k kð Þ ≠ 0, ð116Þ

a L21 − L22k k + b P11 − P12k k L21 − L22k kð
+ c L21 − L22k k S31 − S32k kÞ ≠ 0,

ð117Þ

a + dð Þ S31 − S32k k + c L21 − L22k k S31 − S32k kð
+ f Q31 −Q32k kÞ ≠ 0,

ð118Þ

a + fð Þ Q31 −Q32k k + d 1 − eð Þ S31 − S32k kð Þ ≠ 0, ð119Þ
a R31 − R32k k + ed S31 − S32k kð Þ ≠ 0, ð120Þ

where kV1k, kV2k, kV3k, kV4k, kV5k ≠ 0:
Therefore, we have

P11 − P12k k = 0, ð121Þ

L21 − L22k k = 0, ð122Þ
S31 − S32k k = 0, ð123Þ
Q41 −Q42k k = 0, ð124Þ
R51 − R52k k = 0: ð125Þ

Which yields that

P11 = P12, ð126Þ

L21 = L22, ð127Þ
S31 = S32, ð128Þ
Q41 =Q42, ð129Þ
R51 = R52: ð130Þ

This completes the proof of uniqueness.

6. New Numerical Scheme

We define the AT proposed scheme for fractional deriva-
tive model (37) for the smoking epidemic. For this pur-
pose, we suppose that we obtain the following results for
system (37)

P tð Þ − P 0ð Þ = 1 − σð Þ
ABC σð Þ a − aP tð Þ − bP tð ÞS tð Þf g

+
σ

Γ σð Þ × ABC σð Þ
�
ðt
0
a − aP τð Þ − bP τð ÞS τð Þf g t − τð Þσ−1dτ,

ð131Þ

L tð Þ − L 0ð Þ = 1 − σð Þ
ABC σð Þ −aL tð Þ + bP tð ÞL tð Þ − cL tð ÞS tð Þf g

+
σ

Γ σð Þ × ABC σð Þ
ðt
0
−aL τð Þ + bP tð ÞL τð Þf

− cL τð ÞS τð Þg t − τð Þσ−1dτ,
ð132Þ

S tð Þ − S 0ð Þ = 1 − σð Þ
ABC σð Þ − a + dð ÞS tð Þ + cL tð ÞS tð Þ + f Q tð Þf g

+
σ

Γ σð Þ × ABC σð Þ
ðt
0
− a + dð ÞS τð Þ + cL tð ÞS τð Þf

+ f Q τð Þg t − τð Þσ−1dτ,
ð133Þ

Q tð Þ −Q 0ð Þ = 1 − σð Þ
ABC σð Þ − a + fð ÞQ tð Þ + d 1 − eð ÞS tð Þf g

+
σ

Γ σð Þ × ABC σð Þ
ðt
0
− a + fð ÞQ τð Þf

+ d 1 − eð ÞS τð Þg t − τð Þσ−1dτ,
ð134Þ

R tð Þ − R 0ð Þ = 1 − σð Þ
ABC σð Þ −aR tð Þ + edS tð Þf g

+
σ

Γ σð Þ × ABC σð Þ
�
ðt
0
−aR τð Þ + edS τð Þf g t − τð Þσ−1dτ:

ð135Þ
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At a given point tn+1, n = 0, 1, 2, 3,⋯, the above equa-
tion is reformulated as

P tð Þ − P 0ð Þ = 1 − σð Þ
ABC σð Þ a − aP tnð Þ − bP tnð ÞS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ
�
ðt
0
a − aP τð Þ − bP τð ÞS τð Þf g t − τð Þσ−1dτ,

ð136Þ

L tð Þ − L 0ð Þ = 1 − σð Þ
ABC σð Þ −aL tnð Þ + bP tnð ÞL tnð Þ − cL tnð ÞS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ
ðt
0
−aL τð Þ + bP τð ÞL τð Þf

− cL τð ÞS τð Þg t − τð Þσ−1dτ,
ð137Þ

S tð Þ − S 0ð Þ = 1 − σð Þ
ABC σð Þ − a + dð ÞS tnð Þ + cL tnð ÞS tnð Þ + f Q tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ
ðt
0
− a + dð ÞS τð Þf

+ cL τð ÞS τð Þ + f Q τð Þg t − τð Þσ−1dτ,
ð138Þ

Q tð Þ −Q 0ð Þ = 1 − σð Þ
ABC σð Þ − a + fð ÞQ tnð Þ + d 1 − eð ÞS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ
ðt
0
− a + fð ÞQ τð Þf

+ d 1 − eð ÞS τð Þg t − τð Þσ−1dτ,
ð139Þ

R tð Þ − R 0ð Þ = 1 − σð Þ
ABC σð Þ −aR tnð Þ + edS tnð Þf g

+ σ

Γ σð Þ × ABC σð Þ
ðt
0
−aR τð Þf

+ edS τð Þg t − τð Þσ−1dτ:

ð140Þ

Also, we have

P tn+1ð Þ − P 0ð Þ = 1 − σð Þ
ABC σð Þ a − aP tnð Þ − bP tnð ÞS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

ðt j+1
t j

a − aP τð Þf

− bP τð ÞS τð Þg tn+1 − τð Þσ−1dτ,
ð141Þ

L tn+1ð Þ − L 0ð Þ = 1 − σð Þ
ABC σð Þ −aL tnð Þ + bP tnð ÞL tnð Þf

− cL tnð ÞS tnð Þ − cL τð ÞS τð Þg

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

ðt j+1
t j

−aL τð Þf

+ bP τð ÞL τð Þ − cL τð ÞS τð Þg tn+1 − τð Þσ−1dτ,
ð142Þ

S tn+1ð Þ − S 0ð Þ
=

1 − σð Þ
ABC σð Þ − a + dð ÞS tnð Þ + cL tnð ÞS tnð Þ + f Q tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

ðt j+1
t j

− a + dð ÞS τð Þ + cL τð ÞS τð Þf

+ f Q τð Þg tn+1 − τð Þσ−1dτ,
ð143Þ

Q tn+1ð Þ −Q 0ð Þ = 1 − σð Þ
ABC σð Þ − a + fð ÞQ tnð Þ + d 1 − eð ÞS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

ðt j+1
t j

− a + fð ÞQ τð Þf

+ d 1 − eð ÞS τð Þg tn+1 − τð Þσ−1dτ,
ð144Þ

R tn+1ð Þ − R 0ð Þ = 1 − σð Þ
ABC σð Þ −aR tnð Þ + edS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ

�〠
n

j=0

ðt j+1
t j

−aR τð Þ + edS τð Þf g tn+1 − τð Þσ−1dτ:

ð145Þ

By using equation (133), we have

Pn+1 = P0 +
1 − σð Þ

ABC σð Þ a − aP tnð Þ − bP tnð ÞS tnð Þf g + σ

Γ σð Þ ×ABC σð Þ

⋅〠
n

j=0

a − aPj − bPjSj
� �

h

 
×
ðt j+1
t j

τ − t j−1

 �

tn+1 − τð Þσ−1dτ

−
a − aPj−1 − bPj−1Sj−1
� �

h
×
ðt j+1
t j

τ − t j

 �

tn+1 − τð Þσ−1dτ
!
,

ð146Þ

11Computational and Mathematical Methods in Medicine



Ln+1 = L0 +
1 − σð Þ

ABC σð Þ −aL tnð Þ + bP tnð ÞL tnð Þ − cL tnð ÞS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

−aLj + bPjLj − cLjSj
� �

h

 

×
ðt j+1
t j

τ − t j−1

 �

tn+1 − τð Þσ−1dτ

−
−aLj−1 + bPj−1Lj−1 − cLj−1Sj−1
� �

h
×
ðt j+1
t j

τ − t j

 �

tn+1 − τð Þσ−1dτ
!
,

ð147Þ

Sn+1 = S0 +
1 − σð Þ

ABC σð Þ − a + dð ÞS tnð Þ + cL tnð ÞS tnð Þ + f Q tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

− a + dð ÞSj + cLjSj + f Qj

� �
h

 

×
ðt j+1
t j

τ − t j−1

 �

tn+1 − τð Þσ−1dτ

−
− a + dð ÞSj−1 + cLj−1Sj−1 + f Qj−1
� �

h
×
ðt j+1
t j

τ − t j

 �

tn+1 − τð Þσ−1dτ
!
,

ð148Þ

Qn+1 =Q0 +
1 − σð Þ

ABC σð Þ − a + fð ÞQ tnð Þ + d 1 − eð ÞS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

− a + fð ÞQj + d 1 − eð ÞSj
� �

h

 

×
ðt j+1
t j

τ − t j−1

 �

tn+1 − τð Þσ−1dτ

−
− a + fð ÞQj−1 + d 1 − eð ÞSj−1
� �

h
×
ðt j+1
t j

τ − t j

 �

tn+1 − τð Þσ−1dτ
!
,

ð149Þ

Rn+1 = R0 +
1 − σð Þ

ABC σð Þ −aR tnð Þ + edS tnð Þf g

+
σ

Γ σð Þ × ABC σð Þ〠
n

j=0

−aRj + edSj
� �

h

 

×
ðt j+1
t j

τ − t j−1

 �

tn+1 − τð Þσ−1dτ

−
−aRj−1 + edSj−1
� �

h
×
ðt j+1
t j

τ − t j

 �

tn+1 − τð Þσ−1dτ
!
:

ð150Þ

By using equations (133) and (144), we get

Pn+1 = P0 +
1 − σð Þ

ABC σð Þ a − aP tnð Þ − bP tnð ÞS tnð Þf g

+
σ

ABC σð Þ〠
n

j=0

hσ a − aPj − bPjSj
� �

Γ σ + 2ð Þ × p1p2 − p3p4f g
 

−
hσ a − aPj−1 − bPj−1Sj−1
� �

Γ σ + 2ð Þ × p5 − p3p6f g
!
,

ð151Þ

Ln+1 = L0 +
1 − σð Þ

ABC σð Þ −aL tnð Þ + bP tnð ÞL tnð Þ − cL tnð ÞS tnð Þf g

+
σ

ABC σð Þ〠
n

j=0

hσ −aLj + bPjLj − cLjSj
� �

Γ σ + 2ð Þ × p1p2 − p3p4f g
 

−
hσ −aLj−1 + bPj−1Lj−1 − cLj−1Sj−1
� �

Γ σ + 2ð Þ × p5 − p3p6f g
!
,

ð152Þ

Sn+1 = S0 +
1 − σð Þ

ABC σð Þ − a + dð ÞS tnð Þ + cL tnð ÞS tnð Þ + f Q tnð Þf g

+
σ

ABC σð Þ〠
n

j=0

hσ − a + dð ÞSj + cLjSj + f Qj

� �
Γ σ + 2ð Þ × p1p2 − p3p4f g

 

−
hσ − a + dð ÞSj−1 + cLj−1Sj−1 + f Qj−1
� �

Γ σ + 2ð Þ × p5 − p3p6f g
!
,

ð153Þ

Qn+1 =Q0 +
1 − σð Þ

ABC σð Þ − a + fð ÞQ tnð Þ + d 1 − eð ÞS tnð Þf g

+
σ

ABC σð Þ〠
n

j=0

hσ − a + fð ÞQj + d 1 − eð ÞSj
� �

Γ σ + 2ð Þ × p1p2 − p3p4f g
 

−
hσ − a + fð ÞQj−1 + d 1 − eð ÞSj−1
� �

Γ σ + 2ð Þ × p5 − p3p6f g
!
,

ð154Þ

Rn+1 = R0 +
1 − σð Þ

ABC σð Þ −aR tnð Þ + edS tnð Þf g

+
σ

ABC σð Þ〠
n

j=0

hσ −aRj + edSj
� �
Γ σ + 2ð Þ × p1p2 − p3p4f g

 

−
hσ −aRj−1 + edSj−1
� �

Γ σ + 2ð Þ × p5 − p3p6f g
!
:

ð155Þ
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where

p1 = m + 1 − jð Þσ, ð156Þ

p2 = m − j + 2 + σð Þ, ð157Þ

p3 = m − jð Þσ, ð158Þ

p4 = m − j + 2 + 2σð Þ, ð159Þ

p5 = m + 1 − jð Þσ+1, ð160Þ

p6 = m − j + 1 + σð Þ: ð161Þ

7. Numerical Results and Discussion

A mathematical study of the nonlinear epidemic model of
smoking has been presented. For checking of parameters
effects on smoking dynamical model, relatively some numer-
ical simulations according to the value of the parameters are
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Figure 1: Simulation of PðtÞ with ABC fractional-order scheme.
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accomplished to confirm the effect of the fractional deriva-
tive on the different compartments. We got mathematical
consequences of the model for different fractional values
with the help of the ATM. If we note the impacts of variables
on the dynamics of the model of fractional order, the end-

time value of the given parameter can be observed in various
numerical ways. We can observe that the results of fractional
value are more accurate as compared to classical derivatives.
Desired results can be achieved to analyze the epidemic that
occurs due to smoking. The graphs of the approximate
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Figure 3: Simulation of S(t) with ABC fractional-order scheme.
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solutions are given in Figures 1–5 against different
fractional-order α. PðtÞ and RðtÞ start decreasing by decreas-
ing the fractional values while LðtÞ, SðtÞ, and QðtÞ start
increasing by decreasing fractional values which can be eas-
ily observed in Figures 1–5. When the fractional values
decrease then the behavior approaches steady-state in all fig-
ures, which shows that the solution will be more effective by
decreasing the fractional values.

8. Conclusion

The advanced numerical scheme of fractional differential
equation has been investigated in this article for smoking
model by using ATM. With the help of fixed point theory
uniqueness and stability of the smoking, the model has been
examined. System is analyzed qualitatively to verify the
steady state position of the dynamic. Proposed system is
analyzed locally; also, global stability has been made using
first derivative of Lyapunov. The arbitrary derivative of frac-
tional order has been taken in ATM with no singular kernel.
Effective results are obtained for the proposed model. Also
discussed some theoretical results and proved the efficiency
of the proposed techniques. Numerical simulations are
carried out to check the actual behavior of the dynamic
using the advanced ATM. These results will be helpful to
understand further analysis and to control different outbreak
caused by smoking.
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Lyme disease is one of the most prominent tick-borne diseases in the United States, and prevalence of the disease has been steadily
increasing over the past several decades due to a number of factors, including climate change. Methods for control of the disease
have been considered, one of which is prescribed burning. In this paper, the effects of prescribed burns on the abundance of ticks
present in a spatial domain are assessed. A spatial stage-structured tick-host model with an impulsive differential equation system
is developed to simulate the effect that controlled burning has on tick populations. Subsequently, a global sensitivity analysis is
performed to evaluate the effect of various model parameters on the prevalence of infectious nymphs. Results indicate that
while ticks can recover relatively quickly following a burn, yearly, high-intensity prescribed burns can reduce the prevalence of
ticks in and around the area that is burned. The use of prescribed burns in preventing the establishment of ticks into new
areas is also explored, and it is observed that frequent burning can slow establishment considerably.

1. Introduction

Since its discovery in the United States in the 1970s, Lyme
disease has become one of the most prevalent tick-borne
diseases therein [1] while the prevalence of tick-borne dis-
eases in general has been increasing around the world [2].
Lyme disease is one of the most debilitating tick-borne
diseases if left untreated [3]. It spreads via a diseased tick
which carries and transmits the bacterium, Borrelia burg-
dorferi. Several Ixodes tick species can transmit the bacte-
rium that causes Lyme disease, including I. pacificus, I.
ricinus, I. persulcatus, and I. scapularis. Ixodes scapularis,
also known as the black-legged tick, is one of the primary
vectors for Lyme disease. These ticks can both carry and
transmit B. burgdorferi and keep Lyme disease endemic
in many parts of the world when combined with their
hosts [2, 4, 5]. B. burgdorferi spreads mostly via ticks
and their hosts, which is significant because ticks are gen-
eralists, meaning that they feed on many hosts, basically
whichever hosts are available in a given environment. This
fact may have also conditioned the bacterium to evolve to

be a generalist pathogen as well, which only adds to the
difficulty of reduction or eradication of Lyme disease [6].

There are about 30,000 cases of Lyme disease reported
each year in the United States, and this number has risen
steadily for over two decades. The actual prevalence of the
disease is estimated to be about 450,000 cases per year [7].
Various factors influence the surveillance of this particular
disease. One such factor is the variability in both symptoms
reported and severity of those symptoms. The short-term
effects of infection vary widely and are generally not very
severe. They include rash or lymph nodes, fever, chills,
fatigue, joint and muscle pain, and erythema (EM) or
bull’s-eye rash. Lyme disease is almost never fatal; however,
the long-term effects of infection can be very detrimental
as they include severe headaches and neck stiffness, an
increase in EM rashes, joint swelling (particularly in large
joints like the knee and elbow), facial palsy, and dizziness,
as well as other neurological effects. Due to these wide-
ranging symptoms, this disease is also difficult to diagnose
and not enough research has been done to develop an effec-
tive vaccine for the disease, although two are currently being
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tested and refined [3]. There is also well-founded fear that
the geographic range of the disease is expanding, and in
addition to that increased public health threat, new tick-
borne pathogens could emerge from mutations of the dis-
ease [2, 7–10]. Though this disease is almost never fatal,
the excess strain on public healthcare systems as well as
the potential of mutation of the disease into a more virulent
strain means that reduction of cases is of paramount
importance.

There are many possible methods of control available for
Lyme disease such as education on best practices when
entering an area where ticks are known to inhabit, culling
of deer, the primary host for adult females, and the use of
pesticides [11]. Each of these methods has its own benefits
and drawbacks, but one method in particular that has seen
rising popularity among researchers in recent decades is pre-
scribed fire [12–17]. This method can significantly reduce
the number of ticks in an area, and it can also destroy forest
litter that ticks typically dwell in, making reestablishment
more difficult. It is relatively cost-effective and easy to imple-
ment and, in some cases, essential to the environment [18].

Several studies have been conducted to determine the
effect of fire on ticks. Some of these studies determined the
effect of fire by the removal or counting of ticks on captured
hosts [17, 19–22]. Other studies focused more on the effects
of burning on ticks in different environments [12, 13, 16,
23–25]. There were studies that analyzed the effects of sea-
sonal burning on tick populations [14, 15, 26]. Overall, these
studies were conducted to elucidate both the short- and
long-term effects of prescribed burns on tick populations.

The majority of these studies showed that in the time
immediately following a prescribed burn there is a consider-
able reduction in the number of ticks at the burn site [12, 13,
16, 23–25]. However, some studies have found contradictory
evidence on this short-term effect, but those studies largely
did not reflect the reality of prescribed burning [13–15, 17,
19, 20, 22, 27]. Those studies focused on small plots of land
and in some cases used previously unburned sites, which is
the opposite of what is typically seen with prescribed burning.
Studies on the long-term effects of prescribed burning are few
and far between. More recent studies have shown that fre-
quent prescribed burns can effectively reduce the prevalence
of ticks and even the prevalence of certain tick-borne diseases
[12, 23].

Regardless of whether or not prescribed burns reduce the
prevalence of disease in ticks, the benefits of greatly reduced
tick populations should not be understated. With a reduc-
tion of the prevalence of ticks in an area, there is also a
reduction in encounter rates with humans and thus a reduc-
tion in the number of humans infected with Lyme disease.
This indicates that regions struggling with Lyme disease that
are also well suited for prescribed burns may have a simple,
effective method for reducing the annual number of cases of
human Lyme disease due to the fact that prescribed burns
lead to a short-term reduction in the prevalence of ticks in
an area.

In this study, we develop a mathematical model that
incorporates the effect of prescribed burning in a spatially
explicit manner in order to investigate both short-term and

long-term effects of burning on tick populations in different
scenarios. Our goal is to study the effect of persistent pre-
scribed burns on the prevalence of ticks over time. A pre-
print of this study is available on medRxiv [28].

The paper is outlined as follows. The mathematical
model is formulated in Section 2. In Section 2.2, the finite
element method used for the numerical exploration is
described, and then, a global sensitivity analysis of the model
parameters is carried out to identify the parameters with the
most impact on the number of infectious nymphs. In Section
3, the effects of prescribed burning and diffusion are exam-
ined in different scenarios that may arise in various environ-
ments in the real world. The results are discussed in Section
4, and the conclusions are drawn from the results of the
numerical simulations and directions for future research
are discussed in Section 5.

2. Materials and Methods

2.1. Model Formulation. The model used in this study is
adapted from Guo and Agusto [29] which investigates the
effect of fire intensity (low and high intensities) and duration
of the burn on tick population and disease prevalence. We
extend their model by adding spatial dependencies on the
model variables. The variables included in this model are
given as follows: eggs SE = SEðx, y, tÞ, susceptible larvae SL
= SLðx, y, tÞ, infectious larvae IL = ILðx, y, tÞ, susceptible
nymphs SN = SNðx, y, tÞ, infectious nymphs IN = INðx, y, tÞ,
susceptible adults SA = SAðx, y, tÞ, infectious adults IA = IAð
x, y, tÞ, susceptible mice SM = SMðx, y, tÞ, and infectious mice
IM = IMðx, y, tÞ. These variables are defined over the two-
dimensional rectangle, Ω = ða, bÞ × ðc, dÞ. Moreover, we add
diffusion into this model in order to evaluate the effect of
movement of populations on the viability of prescribed fire.

To model the dynamics of tick eggs, we assume that both
susceptible and infectious adult female ticks contribute to
egg laying at a rate πT , which is limited by the carrying capac-
ity,K [30, 31]. Maturation of eggs into larvae occurs at the rate
σT , while mortality or inviability is given by the rate μE. There
is no diffusion component for eggs since female often lay eggs
in and under leaf litter after dropping off of the hosts following
successful feeding. There is some evidence for transovarial
transmission of the family of the bacterium that causes Lyme
disease among ticks [32]; however, it seems that B. burgdorferi
is not able to be transmitted [33]; thus, we do not incorporate
an infected egg compartment into the model. Thus, the equa-
tion governing how the susceptible egg population changes
across time and space reads as

∂SE
∂t

= πT 1 − SE
K

� �
SA + IAð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Egg laying rate

− σTSE|ffl{zffl}
Maturation

− μESE|ffl{zffl}
Death

: ð1Þ

Next, we describe the dynamics of the susceptible and
infectious larvae. We assume that the motion of ticks is due
to their attachment to hosts they feed on [2, 34]. The rate of
diffusion for juvenile ticks is denoted by DM . Since diffusion
only occurs when ticks are attached to hosts, the diffusion rate
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for juvenile ticks is the same as the diffusion rate of mice. To
model the movement of the larvae in space, we use the Lapla-
cian operator Δ to denote the sum of the second partial deriv-
atives with respect to each spatial variable, that is,

ΔSL =
∂2SL
∂x2

+ ∂2SL
∂y2

: ð2Þ

We assume that any significant movement of ticks is due
to their attachment to hosts, which is assumed to be Brownian
motion, and it has been shown that the Laplacian operator
approximates Brownianmotion. This is a common simplifica-
tion of the dispersal of organisms [35]. The susceptible larvae
become infected after feeding on an infectious mouse at the
rate λLM , the force of infection which we define as

λLM = βLMIM
SM + IM

, ð3Þ

where the parameter βLM is the probability that a larval tick is
infected when feeding on an infectious mouse. Both suscepti-
ble and infectious larvae mature into nymphs at the rate τT
and die naturally at the rate μL. Hence, the equations govern-
ing susceptible and infectious larval tick populations are given
by

∂SL
∂t

= σTSE + DMΔSL|fflfflfflffl{zfflfflfflffl} − λLMSL|fflfflffl{zfflfflffl} − τTSL|ffl{zffl} − μLSL|ffl{zffl} ,
RandomDiffusiveMotion Infection Maturation Death

∂IL
∂t

= DMΔIL
zfflfflffl}|fflfflffl{

+ λLMIL
zfflffl}|fflffl{

− τTIL
zffl}|ffl{

− μLIL
z}|{

:

ð4Þ

The dynamics and equations of the other tick populations
follow a similar form to the larvae, and we only substitute γT
for the maturation rate of nymphs to adults and μN and μA
for the natural death rates of nymphs and adults, respectively,
so we will not describe them in detail. Note that adult female
ticks preferentially seek out deer for their final blood meal,
which plays an important role in their dispersal and is the rea-
son why adult ticks have a significantly higher rate of diffusion
compared to juvenile ticks [2, 34]. We denote the diffusion
rate for adult ticks as DA. Note that the force of infection for
nymph and adult ticks is given by λNM and λAM , respectively,
and they are formulated similarly to the force of infection for
larval ticks given above. Thus, the equations of the nymphs
and adult ticks are given as

∂SN
∂t

= τTSL +DMΔSN − λNMSN − γT + μNð ÞSN ,
∂IN
∂t

= τTIL +DMΔIN + λNMSN − γT + μNð ÞIN ,
∂SA
∂t

= γTSN +DAΔSA − λAMSA − μASA,

∂IA
∂t

= γTIN +DAΔIA + λAMSA − μAIA:

ð5Þ

For simplicity, we assume that βLM = βNM = βAM = βT ,

and subsequently, λLM = λNM = λAM = λT . Next, we describe
the dynamics and equations of the susceptible and infectious
mouse populations. We assume the mouse populations
increase at a constant rate πM due to birth and move across
the domain at the rate DM . The susceptible mice become
infected if fed on by infectious ticks at the rate λM which is
expressed as

λM = βMLIL + βMNIN + βMAIAð Þ
SM + IM

: ð6Þ

We also assume that βML = βMN = βMA = βM . The parameter
βM denotes the probability that a mouse is infected when
being fed on by an infectious tick. Notice that we consider
all tick life stages (except for eggs) when calculating the force
of infection since ticks at every life stage have a tendency to
feed on mice, especially if other hosts are scarce [2, 34, 36].
The mouse populations diminish due to natural death at the
rate μM . From this, the population dynamics for mice are
described by

∂SM
∂t

= πM|{z} + DMΔSM|fflfflfflffl{zfflfflfflffl} −λMSM|fflffl{zfflffl} − μMSM|fflffl{zfflffl} ,
Birth RandomDiffusiveMotion Infection Death

∂IM
∂t

= DMΔIM
zfflfflfflffl}|fflfflfflffl{

+λMSM
zfflffl}|fflffl{

− μMIM
zfflffl}|fflffl{

:

ð7Þ

To summarize, we have the following partial differential
equation (PDE) model: for t ≠ nT , n = 1, 2,⋯,

∂SE
∂t

= πT 1 − SE
K

� �
SA + IAð Þ − σT + μEð ÞSE,

∂SL
∂t

=DMΔSL + σTSE − λTSL − τT + μLð ÞSL,
∂IL
∂t

=DMΔIL + λTSL − τT + μLð ÞIL,
∂SN
∂t

=DMΔSN + τTSL − λTSN − γT + μNð ÞSN ,
∂IN
∂t

=DMΔIN + τTIL + λTSN − γT + μNð ÞIN ,
∂SA
∂t

=DAΔSA + γTSN − λTSA − μASA,

∂IA
∂t

=DAΔIA + γTIN + λTSA − μAIA,

∂SM
∂t

=DMΔSM + πM − λMSM − μMSM ,

∂IM
∂t

=DMΔIM + λMSM − μMIM:

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð8Þ

To implement prescribed fire, we assume that a certain
proportion (νE, νL, νN , νA, and νM) of the tick and mouse
populations is reduced following a burn in a patch of the
domain Ω once every T period of time. Thus, tick and mouse
populations following a burn at time instant t = nT
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(n = 1, 2,⋯) are given as

SE nT+ð Þ = 1 − νEð ÞSE nT−ð Þ,
SL nT+ð Þ = 1 − νLð ÞSL nT−ð Þ,
IL nT+ð Þ = 1 − νLð ÞIL nT−ð Þ,
SN nT+ð Þ = 1 − νNð ÞSN nT−ð Þ,
IN nT+ð Þ = 1 − νNð ÞSN nT−ð Þ,
SA nT+ð Þ = 1 − νAð ÞSA nT−ð Þ,
IA nT+ð Þ = 1 − νAð ÞIA nT−ð Þ,
SM nT+ð Þ = 1 − νMð ÞSM nT−ð Þ,
IM nT+ð Þ = 1 − νMð ÞIM nT−ð Þ:

0
BBBBBBBBBBBBBBBBBBBB@

ð9Þ

The proportion (νE, νL, νN , νA, and νM) is chosen to be
between zero and one; zero indicated no reduction and one
indicating total loss of the tick and mouse population in the
burned patch. The PDE system (8) is subject to homogeneous
Neumann boundary conditions, viz.,

∂SE
∂n̂

, ∂SL
∂n̂

, ∂IL
∂n̂

, ∂SN
∂n̂

, ∂IN
∂n̂

, ∂SA
∂n̂

, ∂IA
∂n̂

, ∂SM
∂n̂

, ∂IM
∂n̂

= 0, ð10Þ

which means that no ticks are transported in or out of the
domain Ω. The PDE system, the above boundary conditions,
and proper initial conditions form a well-posed boundary-
initial value problem.

A flow diagram for the above model is shown in
Figure 1, and variable and parameter descriptions along with
the values for the parameters and references are listed in
Table 1.

2.2. Numerical Simulations. Our goal is to study the effects of
prescribed burning in a more realistic setting compared to
the ODE model presented in Guo and Agusto [29]. In the
absence of diffusion, our results are the same as the results
of the ODE system in [29]. Moreover, several of the results
from [29] hold in a spatial setting such as the conclusions
that high-intensity burns are more effective than low-
intensity burns and that yearly burning is most effective at
reducing tick populations.

First, we detail the numerical method used to solve our
system of PDEs in Section 2.2.2. We simulate the impulsive
model (8) and (9) using parameter values given in Table 1
and the proportion of ticks and mice reduced due to pre-
scribed fire estimated in Section 2.2.1. However, there is little
data available on the average movement of ticks. Clow et al.
[39] provided an estimation of the northward range front
expansion rate, but did not provide much insight into
westward expansion or establishment. Adult females pref-
erentially seek out deer for their final blood meal, which
plays an important role in their dispersal and is the reason
why adult ticks have a significantly higher rate of diffusion
compared to juvenile ticks. In this work, we assume a rate
of diffusion of 2 km/year for juvenile ticks and 4 km/year
for adult ticks.

2.2.1. Estimating the Proportion of Ticks Reduced due to
Prescribed Fire. There is very limited data available on the
survival rate of ticks following a prescribed burn, so we use
what little data is available and make several assumptions
in order to determine the proportions (νE , νL, νN , νA, and
νM). The data used to calculate the proportions for high-
and low-intensity fires are taken from [25, 38], respectively;
see Table 1. The sites for [38] were located in Hancock
County, Illinois, and consisted of several overstory trees
including white oak and post oak trees. The burns per-
formed during the study were low intensity since the height
of the flames was largely not higher than 1m. 54 I. scapularis
ticks were collected over the study period, and for our calcu-
lations, we assume that these were the ticks remaining fol-
lowing a low-intensity burn. 40 larvae, 12 nymphs, and 2
adults were collected. We divide the number of ticks in each
life stage by the total number of ticks and subtract that pro-
portion from one to get our estimate for the proportion of
ticks reduced following a low-intensity burn (i.e., νL = 1 −
40/54 = 0:2593). No mice or eggs were collected for this
study; thus, we assume that those two populations are
reduced at the same rate as a high-intensity fire, so our
results for low-intensity fires likely overestimate their
effectiveness.

The sites used in the high-intensity fires were located in
Mendocino County, California, and consisted of chaparral
habitat, which is not ideal habitat for ticks, so our estimates
may be higher than the true values. To calculate the propor-
tions for high-intensity fires from the data in [25], we
assume that equal numbers of ticks and mice are in each site
preburn and that any differences in the number of ticks are
due to the burn performed. Then, we subtract the number
of ticks present in the treatment sites from the number of
ticks present in the control sites and divide it by the total
number of ticks in the control sites. Lastly, we subtract these
values from one to give the proportion of ticks reduced fol-
lowing a high-intensity burn, i.e., νL = 1 − ð159 − 118Þ/184
= 0:7421.

2.2.2. Numerical Method. The system of PDEs (8) and (10) is
solved using MMPDElab [40], a package written in Matlab
for adaptive mesh movement and finite element computa-
tion in 1D, 2D, and 3D. The package uses the linear finite
element method to discretize PDE systems in space and an
implicit Runge-Kutta (fifth-order Radau IIA) method in
time with variable time stepping. The linear finite element
method gives second-order convergence in space [41], while
the implicit Runge-Kutta method ensures a strong stability
in the computation [42]. The mesh adaptivity function of
the package is not used in the current work. We use a trian-
gular mesh constructed as follows: the domain Ω is first par-
titioned into small rectangles of same length in each of the x
and y directions. Each small rectangle is subsequently parti-
tioned into four triangles to obtain the final triangular mesh.
In our computation, we use 49 × 49 small rectangles and
thus a total of 9604 triangular elements in the mesh.

2.2.3. Global Sensitivity Analysis. We now perform a global
sensitivity analysis (GSA) to explore which model
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parameters have the greatest effect on model outcomes.
The results of this analysis also inform several parameter
values to be used in the subsequent scenarios. Latin
Hypercube Sampling (LHS) is used to create representa-
tive distributions of each of the model parameters, we
generate 1000 samples for each parameter [43] to create
the LHS matrix, and we subsequently calculate partial

rank correlation coefficients (PRCC) for each of the
parameters [43]. Since there is little data available on
the actual distributions of our parameters, we assume a
uniform distribution for each centered on the baseline
values given in Table 1 with minimums and maximums
for each parameter being minus and plus 20% of the
baseline, respectively.

Ticks

Mice
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Figure 1: The flow diagram for model (8).

Table 1: Description of the variables and parameters for model (8).

Parameter Meaning Value Reference

πM Birthrate of mice 0.02 [30]

μM Death rate of mice 0.01 [30]

βM Probability of infection in mice 0.9 [37]

K Carrying capacity for ticks 5000 [31]

πT Birthrate of ticks 456.36 [30]

μE Death rate of eggs 0.0025 [30]

μL Death rate of larvae 0.015 [30]

μn Death rate of nymphs 0.015 [30]

μA Death rate of adults 0.015 [30]

βT Probability of infection in ticks 0.9 [37]

α Attack rate of ticks on mice 0.002 Assumed

σT Rate at which eggs develop into larvae 0.00677 [30]

τT Rate at which larvae develop into nymphs 0.00618 [30]

γT Rate at which nymphs develop into adults 0.00491 [30]

νE Proportion of eggs reduced following a high- or low-intensity burn 1 [25]

νL Proportion of larvae reduced following a high- or low-intensity burn 0.7421, 0.2593 [25, 38]

νN Proportion of nymphs reduced following a high- or low-intensity burn 1, 0.7778 [25, 38]

νA Proportion of adults reduced following a high- or low-intensity burn 0.5454, 0.9629 [25, 38]

νM Proportion of mice reduced following a high- or low-intensity burn 0.4728 [25]

DM Diffusion coefficient for mice 2, 0.5 Assumed

DA Diffusion coefficient for adults 4, 1 Assumed
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The outcome measure here is the total number of infec-
tious nymphs in one dimension for expediency, and we per-
form this analysis using high-intensity burns and using low-
intensity burns. We perform the analysis for a case with
homogenous initial conditions as well as a case with hetero-
geneous initial conditions. The results are largely the same
aside from slightly more significant PRCC values for diffu-
sion of mice and adults; thus, we only include the heteroge-
neous results here.

We also want to investigate the impact of the number of
burns and the time between burns on the model outcome, so
we sample those parameter values from two Poisson distri-
butions that exclude zero. The number of burns is pulled
from a Poisson distribution centered on 10 since we run
the first scenario for 10 years. The time between burns is
pulled from a Poisson distribution centered on 1 since a
period of 1 year between burns is used for Scenario 3.1. After
creating the initial distributions, any zeros in either sample
are changed to ones to avoid issues with implementing the
burns. These samples are combined with our LHS matrix,
and we subsequently calculate partial rank correlation coef-
ficients (PRCC) for each of the parameters [43]. The results
are given in Figure 2 for low and high intensity, respectively.
We also record in Figure 3 the total number of infectious
nymphs present at the end of each simulation performed
from the parameter space created from the LHS method.

From the result of the sensitivity analysis in Figure 2, we
see that the significant parameters for low- and high-
intensity burns are time between burns, number of burns, car-
rying capacity (K), nymph development rate (γT), tick trans-
mission probability (βT), larva development rate (τT), and
tick birth rate (πT). Diffusion of adults is significant in the
high-intensity analysis, but not in the low-intensity analysis.

Upon a closer look at Figure 2, we observe that the trans-
mission probability is high with high-intensity burns which
will favor more infections. However, the high-intensity envi-
ronment is hostile since vital parameters like tick develop-
mental rates and the carrying capacity have a relatively low
impact on the number of infectious nymphs, unlike the
low-intensity burn domain which has high sensitivity indices
for these parameters.

Looking at the time between burns and number of burns
closely, we see that regardless of whether we are performing
low- or high-intensity burns, the timing between burns
remains crucial, indicated by a PRCC value near one in both
cases. This means that even if there is a case where low-
intensity burning is the only type possible for any reason,
whether that be due to lack of fuel or proximity to homes
or businesses, there is a significant negative effect on the
total number of infectious nymphs present in that habitat
as time between burns decreases. This is reflected in the
results by the large positive PRCC value for time between
burns. This positive value indicates a positively correlated
relationship between this parameter and the model outcome,
so when the value of this parameter increases, so does the
number of infectious nymphs and vice versa.

We also observe that the number of burns being per-
formed over time plays an important role, but less so than

timing between burns. The number of burns plays a slightly
larger role in the high-intensity case since many more
nymphs are killed off with each burn compared to the low-
intensity case (see Figure 3). The negative PRCC value for
this parameter indicates that it has a negatively correlated
relationship with the model outcome, so when this parame-
ter increases, the number of infectious nymphs tends to
decrease.

Considering tick and host diffusion across the domain,
we observe that diffusion of the ticks and hosts does not have
significant effects on the model outcome. It may be that we
have not tested a wide enough range for these parameters
to see their effect.

All these observations help inform some model parame-
ters for the scenarios presented in the following sections,
namely, the use of high-intensity burns and a reasonable
time between burns of one year, unless otherwise stated.
All other parameters are kept at their baseline values for
these scenarios unless otherwise stated.

Now, using the parameters created from the LHS, we see
in Figure 3 as with the results from [29] that in a spatial set-
ting high-intensity burns are more effective than low-
intensity burns at reducing tick populations. Furthermore,
we see that the minimum of the boxplot for low-intensity
burns is more than the maximum from the high-intensity
burns.

3. Results

In this section, we examine the effect of prescribed burns
and diffusion in different scenarios that may arise in various
environments in the real world.

3.1. Scenario 1: Prescribed Fire in a Homogeneous Domain.
The effects of consistent burning and diffusion are addressed
in this scenario where ticks are distributed evenly across the
domain Ω of size 30 km × 30 km and a prescribed burn
occurs in a 10 km × 10 km block in the middle of the domain
every twelve months for ten years. This equates to roughly
2500 acres of burned area, which is a large prescribed fire
typical in larger uniform environments such as oak wood-
lands or grasslands [44]. We assume an initial condition of
500 infectious nymphs at every point in the domain, mean-
ing that Lyme disease is already endemic in this area.
Figure 4 shows the simulation results for this scenario.

From these results, one can see an immediate reduction
in the number of ticks at t = 1 following the burn in
Figure 4(a); unfortunately, this is followed by ticks diffusing
into the burned area and a slow recovery of the burned patch
in terms of the number of ticks. At t = 3 (Figure 4(b)), we
can see just how effective burning is at reducing the number
of ticks in the burn site and the effects of diffusion begin to
become clear. Ticks begin to diffuse into the burned environ-
ment during the year following a burn and increase the
recovery rate of ticks in that area while simultaneously
decreasing the number of ticks in the area surrounding the
burn. The recovery rate of ticks is still low enough that the
number of ticks remains lower in the consistently burned
area even after long periods of time (see Figure 4(c)). By
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the end of the ninth year, just before a burn in the tenth year,
we can see in Figure 4(d) that the number of ticks in and
around the burn site has been reduced significantly com-
pared to the areas near the edge of the domain that were
unaffected by both the burns and the diffusion of ticks into
the burned area.

To further explore the effectiveness of prescribed burns
in a homogeneous domain, we examine the effect of a differ-
ent number of burns and time between burns over a period
of 10 years.

3.1.1. Effects of a Different Number of Burns and Time
between Burns. In Figure 5(a), we examine the effect of the
number of burns. In other words, we perform a set number

of yearly burns and let the simulation run for a total of 10
years to determine whether or not the number of burns
has a significant impact on the number of infectious nymphs
present in the burned area at the end of the simulation. For
example, the case with 4 burns means that 4 yearly burns are
performed starting at t = 1 and no burns are performed for
the rest of the years. The results indicate that consistent pre-
scribed burning is an effective control method for tick pop-
ulations. In addition, we see that there is nearly a linear
relationship between the number of burns performed and
the percentage of ticks that remain at the end of the scenario,
so the more burns that are able to be performed, the better.

Next, in Figure 5(b), we look to the time between burns
to explore the effectiveness of burns at different times since
yearly burning might not be possible in every environment.
Note that the burning pattern in this situation is different
from that considered in Figure 5(b). For example, with the
number of the years between burns being 4, the burn is per-
formed every four years with the first burn occurring at t = 4
and the total number of burns is 2. We observe that the best
case is a yearly burn, this of course agrees with our earlier
result from the sensitivity analysis. Moreover, we see that
burning at any interval is very effective at reducing the num-
ber of ticks in an area where they are endemic. Even a single
burn every five years led to a 30% reduction in the number
of ticks compared to the unburned case.

3.1.2. Effects of Different Burn Patch Sizes. Finally, we explore
the effect of changing the patch size of the burn being per-
formed. To better compare the relative effectiveness of each
size of the burn patch, we divide the number of infectious
nymphs remaining in the burned area at the end of a simu-
lation by the number of infectious nymphs present in a
patch of the same size in a simulation that ran for ten years,
but had no burning occurring. This measure allows us to
compare the effectiveness of burning with larger and smaller
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Figure 2: The partial rank correlation coefficients for the parameters for (a) low-intensity burns and (b) high-intensity burns. Values
significantly greater or less than zero indicate parameters that have the greatest impact on model outcome (number of infectious nymphs).
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Figure 3: Distribution of the total number of infectious nymphs
using the parameters created from the LHS. This graph displays
the distribution of those totals via a boxplot. The median is
shown as the red bar within the box. The upper and lower
quartiles are the upper and lower portions of the box,
respectively. Finally, the maximum and minimums for low and
high intensity are displayed at the ends of the upper and lower
dashed lines, respectively.
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patches. We see in Figure 6 that the bigger the patch, the
more effective burning is at reducing the number of infec-
tious nymphs.

Thus, patch size plays a very important role in determin-
ing the effectiveness of a burn. One may argue that this is
due to the simple fact that we are killing off more ticks as
burn size increases, but notice that the percentage remaining

decreases nonlinearly as the patch size increases. This can be
attributed, in part, to the effect of diffusion. Since nymphs
diffuse at a rate of 2 km/yr, we expect that a burn patch
whose length is less than that rate will be significantly less
effective than one that is greater than that rate and this is
reflected in our results based on the large increase in effec-
tiveness, which is signified by a large decrease in the
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Figure 4: The distribution of infectious nymphs in a homogeneous domain at various times.
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Figure 5: Simulation of model (8) for different numbers of burns and time between burns. (a) The number of burns performed yearly
starting at t = 1 vs. the percentage of ticks that remain after a 10-year simulation. (b) The number of the years between burns vs. the
percentage of ticks that remain after a 10-year simulation.
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percentage of ticks remaining, when moving from a patch
size of 1 km × 1 km to a patch size of 2 km × 2 km. We see
a similar reduction when moving from a patch size of 3 km
× 3 km to 4 km × 4 km. This is due to the effect of adult tick
diffusion, which occurs at a rate of 4 km/yr. There are dimin-
ishing returns as patch size increases, but if the goal of a
burn is reducing the prevalence of ticks, then the larger the
patch, the better. The relationship seen here highlights the
need for additional studies on the aggregate movement of
ticks in the Midwest as this data can inform burning man-
agement strategies.

In the next section, we further explore the effectiveness
of prescribed burns in a heterogeneous domain that captures
different environments that ticks can be found.

3.2. Scenario 2: Prescribed Fire in a Heterogeneous Domain.
In order to explore how burning in different environments
might affect tick populations, Scenario 2 has a nonuniform
domain with x > 15 km being a wooded environment for
ticks, which typically leads to better survival rates and easier
traversal. This is interpreted as the ticks having a higher rate
of diffusion compared to x < 15 km, which is considered
grassland with burns occurring in 10 km × 10 km blocks on
opposite corners of the domain. Grassland is a less suitable
environment for ticks because it generally has higher tem-
perature and lower humidity relative to a wooded environ-
ment, which also tends to have significant leaf litter so
ticks have plenty of space to hide when temperature
increases or humidity drops. Ticks in the wooded environ-
ment have a rate of diffusion 4 times greater than those in
the grassland environment. The relatively low rates of diffu-
sion in both environments mean that there is no significant
effect of the ticks in the wooded environment on the area
that is burned in the grassland environment and vice versa.

Figure 7(a) shows the results of Scenario 2. By the time
of the first burn at t = 1 (Figure 7(c)), we can see that the
results are very similar for the two environments. However,
by t = 5 (Figure 6), there is a clear difference between them.
Since the rate of diffusion is higher for x > 15 km, the num-

ber of ticks surrounding the area that has been burned is
lower compared to the area around the burn for x < 15 km.
At the end of the final year, the effects of burning in a
wooded environment indicate that it is more effective in
reducing the number of ticks when considering the total area
in and around the area that is being burned. To verify this,
we calculated the number of ticks in each area that is burned
as well as the number of ticks present in the regions x < 15
, 15 < y < 30 km and x > 15, y < 15 km (i.e., the upper left
and lower right quadrants, respectively). Interestingly, the
number of ticks present in the grassland burned area was
less than that in the woodland burned area; however, the
number of ticks present in the upper left quadrant was
greater than the number of ticks present in the lower right
quadrant. This is compelling evidence that burning in an
environment that is better suited to ticks is significantly
more effective at reducing the number of ticks both in and
around the area that is burned. As time goes on and burning
continues, this negative effect on ticks becomes more and
more noticeable. On the other hand, if the goal of the burn
is strictly to reduce the number of ticks in the area that is
burned, then burning in the grassland area would lead to a
better outcome. This scenario indicates that careful consid-
eration should be taken when planning prescribed burns as
the goal of the burning will inform the best areas for that
burning to occur.

3.3. Scenario 3: Prescribed Fire at the Invasion Front. In this
final scenario, we explore the effect that prescribed burns
have on the invasion of ticks into a new area. Suppose that
ticks are discovered in high numbers in the region x, y < 5
km and burns are performed for x, y < 10 km in an attempt
to halt the spread of ticks into the rest of the domain. Note
that susceptible hosts are assumed to be present throughout
the domain; otherwise, establishment would not be possible.
These final scenarios (Figures 8 and 9) contain one example
without burns and three different examples with burning in
order to explore the applicability of fire in reducing the
number of ticks invading into a new area. For the latter three
variations, we only show the results at the end of the simu-
lation (that is, at t = 20).

In this last section, we further explore the effectiveness of
prescribed burns at the invasion front where ticks are estab-
lishing in a new environment.

3.3.1. Invasion Front without Prescribed Fire. Figures 8(a)–
8(d) show what occurs after 20 years of uninhibited spread.
A traveling wave is formed and begins to propagate across
the domain. This situation is likely occurring in many places
across the Midwest and further North as ticks continue to
spread across the continent.

When left unchecked, it is clear why tick numbers have
been increasing over the past several decades. The lack of fire
management in many areas combined with the effects of cli-
mate change and an abundance of hosts has made many
areas of the United States prime environments for ticks,
and once they are established, they can spread rapidly. Next,
we analyze the results of the three different burning exam-
ples mentioned previously.
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Figure 6: Scenario 1: the percentage of the number of infectious
nymphs remaining in the burned area after 10 years of yearly,
high-intensity burns is plotted against the patch size.

9Computational and Mathematical Methods in Medicine



3.3.2. Invasion Front with Prescribed Fire. The first burning
regime is one in which prescribed burns are implemented
every 5 years after ticks are discovered in the corner of the
domain. Figure 9(b) displays the results of the simulation
after 20 years. We see that burning every 5 years has a signif-
icant impact on the number of ticks remaining at t = 20
years. Compared to the example without burning, there is
a 23% decrease in the number of ticks remaining. However,
we can also see that burning every 5 years has had almost no
effect on the spread of ticks into the region. The edge of the
wave is in virtually the same position as the case without
burning.

The second burning example, which is depicted in
Figure 9(c), is a case where the high prevalence of ticks in
the corner of the domain is not noticed until the tenth year
of the simulation and a yearly burning regiment is per-
formed for a decade. In this case, it is clear that even after
a decade of burning, burning alone is not entirely effective
at preventing the spread of ticks. There has been a significant
reduction in the percentage of ticks, with 32% of ticks being
killed off compared to the unburned case.

The final case is depicted in Figure 9(d). This is a case
where the invading ticks are detected early in the first
year and a yearly burning regiment is planned and exe-
cuted for one decade. Again, we let this example run until

t = 20 years to evaluate the effectiveness of the approach
compared to the previous examples. By t = 20, we can
see that despite a decade of high-intensity burning, some
of the ticks have survived and made their way to a major-
ity of the rest of the domain. This indicates that if ticks
are noticed early enough, burns may be able to limit the
number of ticks that are able to spread into a new area,
though establishment may be inevitable. Pairing pre-
scribed burns with other forms of tick population man-
agement would likely slow and possibly prevent spread
and establishment. Comparing this with the unburned
example, we have a 42% reduction in the number of ticks
at the end of the simulation. From this, we can conclude
that burning as early as possible is crucial to the effective-
ness of prescribed burns on the invasion of ticks. The
results of this final scenario paint a difficult picture. Many
areas in the Midwestern United States are experiencing or
expect to experience increasing numbers of ticks as the
effects of climate change worsen. If prescribed burning is
to be used as an effective control method, then the time
for action is now as waiting any amount of time gives
these organisms the chance that they need to establish
themselves firmly enough that prescribed fire can only
be used as a mitigation strategy rather than as part of a
strategy for eradication.
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Figure 7: The distribution of infectious nymphs in a heterogeneous domain at various times.
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4. Discussion

As stated previously, one of the primary papers in this study
is Guo and Agusto [29]. This work on the effects of pre-
scribed fire on tick populations provided crucial information
that guided several of the numerical simulations considered,
namely, those in Scenario 1. Since one of the main conclu-
sions of the paper is that high-intensity fires are significantly
more effective than low-intensity fires, we do not need to
explore the two variations too deeply to come to a similar
conclusion. Thus, we performed an extension of the sensitiv-
ity analysis given there and further analyzed the effects of
those results in Scenario 1. Based on the results from
Figures 2 and 3, combined with the results from [29], we
conclude that further testing of the effects of low-intensity
burning, while interesting, has little practical importance
since low-intensity fires are unable to reduce the number
of ticks in an area at a similar rate as high-intensity fires,
so high-intensity fires should be used whenever possible.
Our results have several implications for the future of pre-
scribed fire as a method of control for tick populations. In
particular, Scenario 1 highlights the waning effectiveness of
burning as patch size decreases, which may explain conflict-
ing results observed by several studies conducted on the
topic thus far [13–15, 17, 19, 20, 22, 27]. As stated above,
many of these studies focused on small plots of land and
were sometimes performed on previously unburned sites.

Burning on small plots can have little to no effect depending
on the recovery rate of ticks which is governed by several
factors including the average movement of hosts in the
region as well as the environment in which the burn is being
performed. As the average rate of movement of hosts in and
around the area that is being burned increases, an example
of this being the transition time between winter and spring
when both small and large mammalian hosts become more
active, a larger and larger area is required for a prescribed
burn to significantly reduce the number of ticks in that area.
Burning previously unburned plots of land has increasing
effectiveness as subsequent burns are performed, and if
patch size is large enough and intensity is high enough, there
can be a significant reduction in the number of ticks in the
burned area. Since the site was previously unburned, how-
ever, recovery of ticks can occur relatively quickly since a
single burn does little to reduce the number of ticks around
the area being burned; thus, multiple burns should be per-
formed over longer periods of time to consistently reduce
the number of ticks in and around the area being burned.

Based on our results, we theorize that the effectiveness of
prescribed burning is dependent on the average movement
of hosts in and around the area being burned. The study sites
used in [12, 23] combined with our results from Scenario 2
paint an interesting picture. The plots used in [12, 23]
mostly consisted of pine and mixed-pine forested environ-
ments, and Georgia and Florida have large deer populations
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Figure 8: The distribution of infectious nymphs for Scenario 3 without prescribed fire at various times.
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and few white-footed mice. The lack of this extremely viable
host should further inhibit recovery of ticks following a burn
and that seems to hold true based on the observed results.
Since there was also a reduction in the prevalence of certain
diseases in the population [23] may indicate that a combina-
tion of hosts is required for effective tick and disease reestab-
lishment or that host composition is extremely important
when determining the effectiveness of a prescribed burn.
Thus, several factors need to be considered when deciding
on the best control methods for ticks in an area, including
the type of tick hosts present in and around the area and
their prevalence, the local environment, and the type of burn
(low vs. high) that is able to be performed regularly.

When we look at all of this information alongside the
results presented in Scenario 3, there is major concern for
several areas in the United States. Those states located in
the Great Plains seem to be particularly vulnerable to inva-
sion of ticks. This is due to the various factors mentioned
in the previous paragraph. Since the area is largely covered
by grassland and farmland and these environments are
either not suited for consistent burning or more quickly pro-
vide renewed cover for ticks via fast-growing grasses, pre-
scribed burning as a means of tick population management
in these areas may not be as feasible or effective. This is espe-

cially true considering the limited effect of burning on tick
establishment in our simulations.

5. Conclusions

In this study, we extended the model provided in Guo and
Agusto [29] in order to explore how the effects of prescribed
burning impact tick population dynamics in a spatial setting.
The results of this study indicate that prescribed fire is an
extremely useful tool for tick population management, but
a limited tool for prevention of tick establishment. The rela-
tionship between burn patch size and percentage of ticks
remaining in the burned area was explored, and this rela-
tionship coupled with other results presented here provides
the insight that the effectiveness of prescribed burns can vary
widely depending on biological factors related to the aggre-
gate movement of ticks and their hosts. When the patch
being burned is less than the rate of diffusion of ticks, we
see a less significant effect of burning compared to larger
patch sizes which yield a much lower proportion of ticks
remaining after a decade of regimented burning. The results
from Scenario 2 support the idea that the location of burns is
crucial depending on the goal of the burning. This is due to
the fact that burning in areas where ticks cannot easily
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Figure 9: The distributions of infectious nymphs at t = 20 years for Scenario 3 with different burning patterns. (a) No burns. (b) Burning
implemented every 5 years. (c) 10 years of no burning followed by yearly burning for the remaining decade. (d) Yearly burning implemented
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spread due to increased rates of desiccation or lack of hosts,
such as grasslands which tend to be hotter and drier than
forested environments, is only effective at reducing the num-
ber of ticks in the area that is burned, while burning in a
more advantageous environment leads to a greater overall
reduction in the number of ticks over time both in and
around the area that is burned. Since the location of burns
plays a crucial role in determining the effectiveness of pre-
scribed fire, not all areas that ticks inhabit will be suitable
for this method of control. In those cases, other methods
of control mentioned in the introduction may be more effec-
tive over time. Lastly, Scenario 3 indicates that so long as
hosts are available in an area where ticks are not yet present,
ticks will spread and prescribed fire may need to be used in
conjunction with other control methods for eradication to
have a chance of success. It is our hope that this paper
informs those that perform controlled burns in the future
on how and where those burns should be executed for the
purpose of tick population management.

There are several future directions that are being consid-
ered. First and foremost, incorporation of seasonality into
the model that was used is crucial to ensure that our results
hold when considering a more realistic situation regarding
tick population dynamics. It is likely that if a burn is per-
formed during periods of extremely low tick activity, then
it would be considerably less effective; thus, timing of burns
must be explored once this additional layer of complexity is
added to the current model. A more subtle question in this
vein is regarding the effectiveness of prescribed burns during
peak activity of the different life stages of ticks. Is it more
effective to perform a burn when tick nymphs are more
active, or when larvae are most active, or adults? This is a
very interesting question and one that has no clear answer
since each life stage handles environmental changes differ-
ently. A more realistic incorporation of prescribed fire would
also be beneficial in finding out the level of detail needed to
best model the effects of prescribed fire. For example, [12]
indicates that prescribed burning changes the microclimate
in forested habitats, making it hotter and drier over time.
These changes are important to consider since slight changes
in temperature and humidity can be devastating to the sur-
vival rate of ticks. The changes would likely be incorporated
via a microclimate function that contains all of the relevant
information for calculating temperature and humidity over
time and space including how these are affected by pre-
scribed burning. Lastly, the role that location of burning
may play on the effectiveness of a burn has not been
explored in the current study. This is likely a key consider-
ation particularly in the case where ticks are invading into
a new area and would be worth exploring further. All these
issues will be addressed in future publications.
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In this article, we have developed a deterministic Susceptible-Latent-Infectious-Recovered (SLIR) model for diphtheria outbreaks.
Here, we have studied a case of the diphtheria outbreak in the Rohingya refugee camp in Bangladesh to trace the disease dynamics
and find out the peak value of the infection. Both analytical and numerical investigations have been performed on the model to
find several remarkable behaviors like the positive and bounded solution, basic reproductive ratio, and equilibria such as disease
extinction equilibrium and disease persistence equilibrium which are characterized depending on the basic reproductive ratio and
global stability of the model using Lyapunov function for both equilibria. Parameter estimation has been performed to determine
the values of the parameter from the daily case data using numerical technique and determined the value of the basic reproductive
number for the outbreak as R0 = 5:86.

1. Introduction

Diphtheria is a rapidly spreading disease which is gener-
ated by Corynebacterium diphtheriae. Diphtheria transmits
in the populations, usually through respiratory droplets,
like coughing or sneezing [1, 2]. When the bacteria release
the poison or toxin into the body, then the actual disease
appears. Fever and throat bruises are the initial symptoms
of diphtheria. Besides, a thick grey layer induces the
“croup,” which can block the airway and cause a barking
cough. Anyone can be infected by diphtheria, but 5-7-
aged children who did not receive the appropriate vaccine
are usually infected [3–6]. During 1990-1995, above cases
140,000 and 4000 mortalities have been recorded world-
wide through the Regional Office of World Health Organi-
zation (WHO) for Europe [7–9]. Nowadays, diphtheria is
a rare outbreak in the developed world. However, in
2017, several diphtheria outbreaks occurred in Yemen
and refugee camps in Bangladesh [10, 11]. In the Rohin-
gya refugee camp in Cox’s Bazar, Bangladesh, a massive-
scale diphtheria pestilence was reported. Until December

26, 2017, there were an aggregate number of 2,526 cases
and 27 mortalities [12]. There are diphtheria antitoxins
in diphtheria treatments to stop poisons from the bacteria
and antitoxins to kill the bacteria. The best way to repel
diphtheria is through vaccinations [3, 4, 13]. The three
shots of the diphtheria-tetanus-pertussis (DTP) vaccine
were applied in massive levels to children to control the
diphtheria outbreak. To break the transmission chains of
the diphtheria outbreak in the Rohingya refugee camp in
Bangladesh, emergency vaccination has been applied to
children since December 12, 2017, and at the end of
2017, above 90% overall coverage [12].

Many researchers have studied epidemic or pandemic
disease using mathematical techniques such as Wu and Zhao
[14] who have mathematically analyzed an age-structured
epidemic model of HIV/AIDS with HAART and spatial dif-
fusion. In a discrete-time SIVS model with saturation inci-
dence rate, Parsamanesh and Erfanian [15] investigated the
stability and bifurcations. To examine the impact of an envi-
ronmental toxin on the spread of infectious illnesses in the
population, Saha and Samanta [16] used a toxin-dependent
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dynamical model. In a discrete time epidemic model includ-
ing vaccination and vital dynamics, Parsamanesh et al. [17]
investigated the stability and bifurcations. Kabir et al. [18]
have analyzed the effect of border enforcement measures
and socioeconomic cost in export-importation epidemic
dynamics using game theory. In a random environment,
Samanta and Bera [19] looked at a dynamical model of
Chlamydia illness with changing total population size, bilin-
ear incidence rate, and pulse vaccination approach. Parsa-
manesh and Erfanian [20] looked at the global dynamics of
a model with a standard incidence rate and immunization
approach. Shahrear et al. [21] have predicted and mathemat-
ically analyzed the COVID-19 outbreak in Bangladeshi sce-
nario, and Maugeri et al. [22] have analyzed the
transmission of the COVID-19 pandemic in Saudi Arabia
and Indonesia. By eliciting behavioural reactions in the com-
munity, Saha et al. [23] explored an epidemic model of the
COVID-19 outbreak. Liu and Zhang [24] have analyzed
global stability for a tuberculosis model. Gao and Huang
[25] have investigated a tuberculosis model with optimal
control.

Some of the researchers have also analyzed the diphthe-
ria epidemic, such as Vitek and Wharton [26] who have
studied the potential of the reemergence of diphtheria and
other vaccine-preventable infections. Zakikhany and Efstra-
tiou [27] analyzed the current problems and new challenges
of diphtheria in Europe. Torrea et al. [28] have studied the
diphtheria outbreak with the SIRM model. Ilahi and Widi-
ana [29] have developed an SEIR model for the diphtheria
outbreak and analyze vaccination’s effectiveness against the
outbreak. Matsuyama et al. [30] have analyzed the sensitivity
and ambiguity based on the basic reproductive ratio R0 of
the diphtheria epidemic in the Rohingya refugee camp in
Bangladesh.

Due to the vulnerability of diphtheria epidemics in a
confined area, we propose a controlled Susceptible-Latent-
Infectious-Recovered (SLIR) model, which is an extension
of the simple Susceptible-Infectious-Recovered (SIR) model
by adjoining a compartment (L) that tracks the latent people
in the cohort. Analytical analysis of the proposed model is
performed to prove the existence, uniqueness, positivity,
and bounds of the solution. Equilibria of the system and
the basic reproductive ratio are also evaluated, and the global
stability of the model is proven depending on the basic
reproductive ratio. To illustrate the disease dynamics,
parameter values are estimated from the daily case data of
the outbreak in the Rohingya refugee camp in Bangladesh
and found to be the equilibria of the system.

2. Mathematical Model

In this section, a mathematical model [31] is developed for
the expanse of diphtheria into the populations, which is
shown diagrammatically in Figure 1. The entire population
at time t is indicated by NðtÞ that is partitioned into four
groups: susceptible ðSðtÞÞ, latent (asymptotic) stage ðLðtÞÞ,
individual affected by diphtheria in the acutely infected stage
ðIðtÞÞ, and recovered individuals affected by diphtheria ðRð
tÞÞ; here, we suppose that the recovered people are not fur-

ther contagious. Here, λ is a constant that signifies all
recruitment that enters the susceptible class, and μ is the
natural mortality rate that leaves all classes. The infectious
state has an extra mortality rate due to diseases by α, and δ
is that rate in which latent infection in people becomes an
acute infection. Thus, the people move to state I from state
L at a rate of δL. Infectious people are successfully treated
with a fixed rate γ, listing to the recovered state. Susceptible
people acquire diphtheria infection among active diphtheria
at rate βSI, where β signifies the infection transmission coef-
ficient. Moreover,lsignifies a fraction of susceptible people
that earn diphtheria infection and migrate to the latent diph-
theria stateðLÞ, at ratelβSI, and the residual portion,ð1 − lÞ,
departs to the active diphtheria stateðIÞ. Here, the individ-
uals of the latent class are assumed not to transmit infection.

Assembling all the aforenamed suppositions, the model
concerning the transmission dynamics of diphtheria is pre-
sented by the subsequent system of differential equations:

dS tð Þ
dt

= λ − βS tð ÞI tð Þ − μS tð Þ,
dL tð Þ
dt

= lβS tð ÞI tð Þ − μ + δð ÞL tð Þ,
dI tð Þ
dt

= 1 − lð ÞβS tð ÞI tð Þ + δL tð Þ − μ + γ + αð ÞI tð Þ,
dR tð Þ
dt

= γI tð Þ − μR tð Þ,
N tð Þ = S tð Þ + L tð Þ + I tð Þ + R tð Þ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

with following subsidiary conditions:

S 0ð Þ = S0 > 0, ð2Þ

L 0ð Þ = L0 ≥ 0, ð3Þ

I 0ð Þ = I0 ≥ 0, ð4Þ

λ

μ

μ μ

γ

β

δ

l

S

RL I

1 – l

μ α+

Figure 1: Diagram interaction of each compartment.
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R 0ð Þ = R0 ≥ 0: ð5Þ

3. Some Basic Characteristic of the Model

To retain the model’s biological efficacy, we want to show
the existence, positivity, and boundedness of the solutions
to the differential equations for all time.

Theorem 1 (existence of unique solution). Suppose that S0,
L0, I0, R0 ∈ℝ. Then, there exists continuous differentiable

functions fS; ;L, I, R : ½0, t0Þ⟶ℝg for positive time ðt0 > 0
Þ such that the 4-tuple ðS, L, I, RÞ covers (1) and ðS, L, I, RÞð
0Þ = ðS0, L0, I0, R0Þ.

Proof of Theorem 1. By Picard-Lindelöf theorem, it is nar-
rated that the initial value problem y′ðtÞ = gðyðtÞÞ, yðt0Þ =
y0 has a unique solution yðtÞ for locally Lipschitz and con-
tinuous function g in time t ∈ ½t0 − ϵ, t0 + ϵ�, where ϵ > 0.
As the system (1) is autonomous, it is enough to prove that
the function g : ℝ4 ⟶ℝ4 is locally Lipschitz in y. Here, g is

Table 1: Description and value of the parameters of the diphtheria model.

Parameter Description Value Source

λ The recruitment of susceptible class 200 persons day−1 Estimated

μ Natural mortality rate 0:002 day−1 Estimated

α Disease induced mortality rate 0:0054 day−1 Estimated

β Disease transmission rate 0:000097 persons−1 day−1 Fitted

l The fraction of S tð Þ which moves to L tð Þ 0.95 Estimated

γ Recovered rate 0:156 day−1 Fitted

δ The rate which leaves Lðt) for I tð Þ 0:143 day−1 Estimated
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Figure 2: The diphtheria model (1) simulation in log scale.
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defined as

g yð Þ =

λ − βSI − μS

lβSI − μ + δð ÞL
1 − lð ÞβSI + δL − μ + γ + αð ÞI

γI − μR

0
BBBBB@

1
CCCCCA: ð6Þ

The Jacobian matrix of g is obtained as

∇g yð Þ =

−βI − μ 0 −βS 0
lβI − μ + δð Þ lβS 0

1 − lð ÞβI δ 1 − lð ÞβS − μ + γ + αð Þ 0
0 0 γ −μ

0
BBBBB@

1
CCCCCA:

ð7Þ

This Jacobian is linear in ℝ4. Thus, ∇gðyÞ satisfies the
continuity and differentiability for an interval I ∈ℝ4.
According to the mean value theorem,

g y1ð Þ − g y2ð Þj j
y1 − y2j j ≤ ∇g y∗ð Þj j, ð8Þ

where y∗ ∈ I1. By assuming j∇gðy∗Þj =M, we obtain jgðy1Þ
− gðy2Þj ≤Mjy1 − y2j for y1, y2 ∈ I1 and thus, gðyÞ is
bounded locally for each y ∈ℝ4. Therefore, for all compact
subset of ℝ4, the derivative of g is continuous and bounded
and thus, g is locally Lipschitz. Hence, according to the
Picard-Lindelöf theorem, the initial value problem y′ðtÞ =
gðyðtÞÞ, yð0Þ = y0 for t0 > 0 has a unique solution yðtÞ.

Theorem 2. The proposed model (1) is invariant in the non-
negative orthant ℝ4

+.

Proof. Let Y = ðS, L, I, RÞT ; then, model (1) will take the form

dY tð Þ
dt

= LY + C, ð9Þ

where

L =

− βI tð Þ + μð Þ 0 0 0
lβI tð Þ − μ + δð Þ 0 0

1 − lð ÞβI tð Þ δ − μ + γ + αð Þ 0
0 0 γ −μ

0
BBBBB@

1
CCCCCA,

ð10Þ
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Figure 3: The fitted diphtheria model (1).
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and

C =

λ

0
0
0

0
BBBBB@

1
CCCCCA: ð11Þ

Here, C ≥ 0 and in matrix L, all off-diagonal elements are
greater than or equal zero. Hence, L is a Metzler matrix and
the system (1) is positive invariant in ℝ4

+ [32].

Theorem 3. For t > 0, any solution ðS, L, I, RÞ of the model
(1) with condition (2) is positive.

Proof. The R.H.S. of the model (1) is differentiable; therefore,
connecting it with Cauchy problem covenants that there
exists a unique maximal solution. The solution of the first
equation of system (1) can be figured out alternatively as

dS tð Þ
dt

+ βI tð Þ + μð ÞS tð Þ = λ: ð12Þ

The solution of Equation (12) is

S tð Þ = S0e
− μt+

Ð t

0
βI xð Þdx

� �n o

+ e
− μt+

Ð t

0
βI xð Þdx

� �n o
×
ðt
0
λe

μy+
Ð t

0
βI uð Þdu

n o
dy,

ð13Þ

for all t > 0. Hence, the R.H.S. of Equation (13) is greater
than or equal to zero, i.e., SðtÞ > 0 for all t > 0. In the same
way, the solution of the second, third, and fourth equations
of model (1) is of the form

L tð Þ = L0e
− μ+δð Þtf g + e − μ+δð Þtf g ×

ðt
0
lβS yð ÞI yð Þ e μ+δð Þyf gdy,

I tð Þ = I0e
− μ+γ+αð Þt−

Ð t

0
1−lð ÞβS xð Þdx

� �n o

+ e
− μ+γ+αð Þt−

Ð t

0
1−lð ÞβS xð Þdx

� �n o
×
ðt
0
δL yð Þ e μ+γ+αð Þy−

Ð t

0
1−lð ÞβS uð Þdu

n o
dy,

R tð Þ = R0 e
−μtf g + e −μtf g ×

ðt
0
γI yð Þ e μyf gdy, ð14Þ
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Figure 4: Population dynamics interaction between SðtÞ, LðtÞ, and IðtÞ of diphtheria model (1) when R0 = 5:86 > 1 for different initial
conditions.
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respectively. Those solutions show that all LðtÞ, IðtÞ, and R
ðtÞ are greater than or equal zero ∀t > 0.

Theorem 4 (boundedness). Suppose the model (1) satisfies
S0 > 0, L0 > 0, I0 > 0, and R0 > 0 and has a unique solution
on ½0, t0� for some t0 > 0 by Theorem 1; then, the state func-
tions SðtÞ, LðtÞ, IðtÞ, and RðtÞ will be bounded and be positive
∀t ∈ ½0, t0�.

Proof. Initially, suppose that the values of SðtÞ, LðtÞ, IðtÞ, and
RðtÞ are positive. From Theorem 1, for t > 0, there exists a
solution on ½0, t�. Now, denote the largest time by T ∗ at
which all the populations are positive, or

T ∗ = sup t > 0 : S sð Þ, L sð Þ, I sð Þ, R sð Þ > 0, ∀s ∈ 0, t½ �f g:
ð15Þ

Since all initial conditions are nonnegative and the solu-
tions are continuous, hence, the solutions must be positive
on an interval which is denoted as T ∗ > 0. Therefore, we cal-
culate each term on ½0,T ∗�: instantly, the lower bounds on
L, I, and R can be placed.

dL tð Þ
dt

= lβS tð ÞI tð Þ − μ + δð ÞL tð Þ ≥ − μ + δð ÞL tð Þ, ð16Þ

as the reduction expressions are linear; this achieves

dL tð Þ
L tð Þ ≥ − μ + δð Þdt, ð17Þ

or

ln L tð Þð Þ + ln C ≥ − μ + δð Þt, ð18Þ

or

L tð Þ ≥ Ce− μ+δð Þt: ð19Þ

Applying initial condition, we get

L 0ð Þ ≥ C,

⇒L tð Þ ≥ L 0ð Þe− μ+δð Þt > 0,
ð20Þ

for t ∈ ½0,T ∗�:
Again,

dI tð Þ
dt

= 1 − lð ÞβS tð ÞI tð Þ + δL tð Þ − μ + γ + αð ÞI tð Þ ≥ − μ + γ + αð ÞI tð Þ,
ð21Þ
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Figure 5: System’s phase portrait of diphtheria model (1) in 2D and 3D when R0 = 5:86 > 1 for different initial conditions.
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as the reduction expressions are linear; this achieves

I tð Þ ≥ I 0ð Þe− μ+γ+αð Þt > 0,
∀t ∈ 0,T ∗½ �:

ð22Þ

Further,

dR tð Þ
dt

= γI tð Þ − μR tð Þ ≥ −μR tð Þ, ð23Þ

i.e.,

R tð Þ ≥ R 0ð Þe−μt > 0,
∀t ∈ 0,T ∗½ �:

ð24Þ

Similarly, by placing the upper bound on dS/dt, we get

dS tð Þ
dt

= λ − βS tð ÞI tð Þ − μS tð Þ ≤ λ, ð25Þ

i.e.,

S tð Þ ≤ S 0ð Þ + λt ≤ C 1 + tð Þ, ð26Þ

where C is an arbitrary constant which is depending on the

upper bound of Sð0Þ and λ. Now, by adding the equations
forL, I,andRand placing the bounds on this sum and by the
positivity of these functions, for the upper bound ofSðtÞ,
we get

d
dt

L + I + Rð Þ = βS tð ÞI tð Þ − μL tð Þ − μ + αð ÞI tð Þ − μR tð Þ
≤ βC 1 + tð ÞI tð Þ + μL tð Þ + μ + αð ÞI tð Þ + μR tð Þ
≤ C1 1 + tð Þ L + I + Rð Þ,

ð27Þ

where C1 ≥max fβC, μ, ðμ + αÞg, i.e.,

L + I + Rð Þ tð Þ ≤ C2e
t2 , ð28Þ

where the constant C2 > 0 for t ∈ ½0,T ∗� that only depends
on Lð0Þ, Ið0Þ, Rð0Þ, and C1. For the positivity of LðtÞ, IðtÞ,
and RðtÞ are positive, an upper bound can be placed on both
L, I, and R by

C2e
t2 ≥ L + I + Rð Þ tð Þ ≥ L tð Þ,

C2e
t2 ≥ L + I + Rð Þ tð Þ ≥ I tð Þ,

C2e
t2 ≥ L + I + Rð Þ tð Þ ≥ R tð Þ:

ð29Þ
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Figure 6: Population dynamics interaction between SðtÞ, LðtÞ, and IðtÞ of diphtheria model (1) when R0 = 0:302 < 1 for different initial
conditions.
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Now, SðtÞ can be bounded from below using

dS
dt

= λ − βSI − μS ≥ −βSI − μS ≥ −μS − βC2e
t2S, ≥ −C3 1 + et

2
� �

S,

ð30Þ

where C3 ≥max fβC2, μg,⇒ðdS/dtÞ + C3ð1 + et
2ÞS ≥ 0, i.e.,

S tð Þ ≥ S 0ð Þe−C3
Ð t

0
1+eκ2dκ
� �

> 0: ð31Þ

Therefore, S, L, I, and R remain rigorously positive ∀t ∈
½0,T ∗�. Hence, there exists a t >T ∗ for the continuity, at
which the state variables SðtÞ, LðtÞ, IðtÞ, and RðtÞ are still
positive, which contradicts with the definition of T ∗ and
specifies that SðtÞ, LðtÞ, IðtÞ, and RðtÞ are rigorously positive
on the whole interval ½0, t�. Moreover, all functions remain
bounded with this interval; thus, the existing interval can
be further extended. Actually, the bounds on S, L, I, and R
obtained earlier exist on each compact time interval. For
the extension of the time interval to ½0, t�∀t > 0 at which
the solution endures and of the above discussion, the solu-
tions continue both positive and bounded on ½0, t�.

4. Equilibria of the System

In this section, we trace the presence of steady states for the
dynamical system of nonlinear ODEs (1), describing the
Diphtheria disease dynamics. These steady states can be
obtained by placing the R.H.S. of (1) to zero; we obtain

λ − βSI − μS = 0, ð32Þ

lβSI − μ + δð ÞL = 0, ð33Þ
1 − lð ÞβSI + δL − μ + γ + αð ÞI = 0, ð34Þ

γI − μR = 0: ð35Þ
Moreover, by solving the above equations, we have

found two biologically meaningful equilibrium points. We

can classify these two points to be while the infection is
either terminated from populations, i.e.,L = I = R = 0, or
insists in the populationsðL ≠ 0, I ≠ 0, R ≠ 0Þastgrows large.

We start to determine the equilibria from the nonlinear
intercommunicated terms into Equations (33), (34), and
(35) that give

I 1 − lð Þ μ + δð ÞβS + δlβS − μ + δð Þ μ + γ + αð Þð Þ = 0: ð36Þ

Thus, either I = 0 or S = ðμ + δÞ ðμ + γ + αÞ/ðð1 − lÞμ + δ
Þβ. Using I = 0 in Equations (33), (34), and (35), we get
the disease extinction equilibrium point as

E0 = S0, L0, I0, R0� �
= λ

μ
, 0, 0, 0

� �
: ð37Þ

By setting S = ðμ + δÞðμ + γ + αÞ/ðð1 − lÞμ + δÞβ into
Equations (32) and (35) yields the infectious persistence
equilibrium that exists at the point

E∗ = S, L, I, Rð Þ = μ + δð Þ μ + γ + αð Þ
1 − lð Þμ + δð Þβ , lλ

μ + δð Þ
�

−
lμ μ + γ + αð Þ
β δ + 1 − lð Þμð Þ ,

λ δ + 1 − lð Þμð Þ
μ + δð Þ μ + γ + αð Þ −

μ

β
, γλ δ + 1 − lð Þμð Þ
μ μ + δð Þ μ + γ + αð Þ −

γ

β

�
:

ð38Þ

In the biological sense, E0 is defined as a disease extinc-
tion equilibrium point in which an infection survives for a
short time and then is naturally dispelled from the popula-
tions. The infection is not insisted. The other case, in which
the system incline towards E∗, denoted that the populations
are impotent to remove the disease spontaneously. If it
closes up this remaining fact, then after a particular period,
the diphtheria disease model fails its pertinency as it gets
broader to keep up the populations.

5. Basic Reproductive Ratio

The basic reproductive ratio is also called basic reproductive
rate or basic reproduction number and is denoted by R0. It
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Figure 7: System’s phase of diphtheria model (1) in 3D when R0 = 0:302 < 1 for different initial conditions.
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is a significant threshold value generated in epidemiology to
mathematically identify the doubt of an infectious disease.
This quantity represents the average number of infected per-
sons generated by one infected person introduced into an
entirely uninfected susceptible population. We use the
next-generation method [33, 34] to obtain the basic repro-
ductive ratio R0.

Using the next-generation matrix method on the model
(1), we get

F =
0 lβS0

0 1 − lð ÞβS0

 !
,

V =
μ + δ 0
−δ μ + γ + α

 !
:

ð39Þ

Therefore, we have,

FV −1 =

lδβS0

μ + γ + αð Þ μ + δð Þ
lβS0

μ + γ + αð Þ
1 − lð ÞδβS0

μ + γ + αð Þ μ + δð Þ
1 − lð ÞβS0

μ + γ + αð Þ μ + δð Þ

0
BBB@

1
CCCA:

ð40Þ

Thus, the spectral radius of the matrixFV −1and the
basic reproductive ratioR0are obtained [35].

R0 =
β δ + μ − lμð ÞS0
α + γ + μð Þ δ + μð Þ : ð41Þ

Putting S0 = λ/μ, we obtain,

R0 =
λβ δ + 1 − lð Þμð Þ

μ α + γ + μð Þ δ + μð Þ : ð42Þ

This expression of R0 represents the basic reproductive
ratio for the model (1).

Remark 5. The infectious equilibrium point with the expres-
sion of basic reproduction number R0

S∗, L∗, I∗, R∗ð Þ = λ

μR0
, lλ R0 − 1ð Þ

μ + δð ÞR0
, μ
β

R0 − 1ð Þ, γ
β

R0 − 1ð Þ
� 	

:

ð43Þ

6. Global Stability Analysis

6.1. Global Stability at Infectious Extinction Equilibrium. For
disease extinction equilibrium E0 = ðS0, L0, I0, R0Þ = ðλ/μ, 0,
0, 0Þ, we assume the following Lyapunov function:

U tð Þ = S0
S tð Þ
S0

− 1 − ln S tð Þ
S0

� �
 �
+ δ

1 − lð Þμ + δ
L tð Þ + μ + δ

1 − lð Þμ + δ
I tð Þ:

ð44Þ

By differentiation, we get

dU
dt

= 1 − S0

S

� �
S′ + δ

1 − lð Þμ + δ
L′ + μ + δ

1 − lð Þμ + δ
I ′: ð45Þ

Substituting the values of S′, L′, and I ′ in the above
equation, we have

dU
dt

= 1 − S0

S

� �
λ − βSI − μS½ � + δ

1 − lð Þμ + δ
lβSI − μ + δð ÞL½ �

+ μ + δ

1 − lð Þμ + δ
1 − lð ÞβSI + δL − μ + γ + αð ÞI½ � = λ − μSð Þ 1 − S0

S

� �

+ βS0I −
μ + δð Þ μ + γ + αð Þ
μ 1 − lð Þ + δ

I:

ð46Þ

After substituting the value of S0 = λ/μ, we are left with

dU
dt

= −
λ − μSð Þ2
μS

+ μ + δð Þ μ + γ + αð Þ
μ 1 − lð Þ + δ

R0 − 1ð Þ: ð47Þ

At the disease extinction equilibrium E0, the basic repro-
ductive ratio R0 ≤ 1, and for all positive values of S, L, I, and
R, it is clear that dU/dt ≤ 0. Hence, using LaSalle’s Invari-
ance Principle [36], it is concluded that the model (1) is
globally asymptotically stable.

Lemma 6. The infectious extinction equilibrium ðE0Þ of the
model (1) is globally asymptotically stable when R0 ≤ 1, and
the disease is naturally dispelled from the populations.

6.2. Global Stability at Infectious Persistence Equilibrium.
Since none of the state variables are zero at the infectious
persistence equilibrium E∗ = ðS∗, L∗, I∗, R∗Þ, thus a Lyapu-
nov function is assumed as

U tð Þ = S − S∗ − S∗ ln S
S∗

� �� �
+ B1 L − L∗ − L∗ ln L

L∗

� �� �

+ B2 I − I∗ − I∗ ln I
I∗

� �� �
+ B3 R − R∗ − R∗ ln R

R∗

� �� �
,

ð48Þ

where B1, B2, and B3 are all nonnegative constants to be
obtained. This kind of Lyapunov function has been studied
in [37–40].

The infectious persistence equilibrium E∗ = ðS∗, L∗, I∗,
R∗Þ satisfies the following equations:

λ = βS∗I∗ + μS∗, ð49Þ

μ + δð ÞL∗ = lβS∗I∗, ð50Þ

μ + γ + αð Þ = 1 − lð ÞβS∗I∗ + δL∗, ð51Þ

μR∗ = γI∗: ð52Þ
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Now, differentiate U with respect to time t,

U ′ = 1 − S∗

S

� �
S′ + B1 1 − L∗

L

� �
L′ + B2 1 − I∗

I

� �
I ′ + B3 1 − R∗

R

� �

� R′ = 1 − S∗

S

� �
βS∗I∗ + μS∗ − βSI − μS½ � + B1 1 − L∗

L

� �

� lβSI − B1 μ + δð ÞL + B1 μ + δð ÞL∗ + B2 1 − I∗

I

� �
1 − lð ÞβSI + δL½ � − B2 μ + γ + αð Þ

� I + B2 μ + γ + αð ÞI∗ + B3 1 − R∗

R

� �
γI − B3μR + B3μR

∗,

ð53Þ

which can be further simplified to

U ′ = −μ
S − S∗ð Þ2

S
+ βS∗I∗ 1 − S∗

S

� �
+ SI −β + B1lβ + B2 1 − lð Þβ½ �

+ I −B2 μ + γ + αð Þ + B3γ + βS∗½ � + L −B1 μ + δð Þ + B2δ½ � + R −B3μ½ �
− B1lβSI

L∗

L
+ B1lβS

∗I∗ − B2 1 − lð ÞβSI∗ − B2δL
I∗

I

+ B2 1 − lð ÞβS∗I∗ + B2δL
∗ − B3γI

R∗

R
+ B3γI

∗:

ð54Þ

For the positive constants B1, B2, and B3, the coefficients
of SI, I, L, and R must be zero, that is,

−β + B1lβ + B2 1 − lð Þβ = 0, ð55Þ

−B2 μ + γ + αð Þ + B3γ + βS∗ = 0, ð56Þ
−B1 μ + δð Þ + B2δ = 0, ð57Þ

−B3μ = 0: ð58Þ
By solving, the above equation (55) yields

B1 =
δ

μ + δ
B2,

B2 =
μ + δ

1 − lð Þμ + δ
,

B3 = 0:

ð59Þ

For advantage, we set up new variables x = S/S∗, y = L/
L∗, z = I/I∗, and u = R/R∗ to seek S, L, I, and R and setting
the expressions of B1, B2, and B3 in Equation (54), we have

U ′ = −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − 1

x
− x

� �
+ B1lβS

∗I∗ 2 − 1
x
−
xz
y

� �

+ B2δL
∗ 1 − y

z

� �
+ B3γI

∗ 1 − z
u

� �
:

ð60Þ

Multiplying by B1 to the 2nd equation of (49) and the 3rd
equation of (55) by L∗ yields

B1 μ + δð ÞL∗ = B1lβS
∗I∗,

B1 μ + δð ÞL∗ = B2δL
∗:

ð61Þ

Hence, it follows that

−B1lβS
∗I∗ + B2δL

∗ = 0: ð62Þ

Multiplying byF1ðXÞto the last equation, whereF1ðXÞis
considered as a general function that will be determined later
andX = ðx, y, z, uÞ, yields

−B1lβS
∗I∗F1 Xð Þ + B2δL

∗F1 Xð Þ = 0 ð63Þ

Multiplying the 4th equation of (49) by B3 and the 4th
equation of (55) by R∗ yields

B3μR
∗ = B3γI

∗,
B3μR

∗ = 0:
ð64Þ

Hence, it follows that

B3γI
∗ = 0: ð65Þ

Multiplying byF2ðXÞto the last equation, whereF2ðXÞis
considered as a general function that will be determined later
andX = ðx, y, z, uÞ, yields

B3γI
∗F2 Xð Þ = 0: ð66Þ

From (54) using (63) and (66) yields

U ′ = −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − 1

x
− x

� �

+ B1lβS
∗I∗ 2 − 1

x
−
xz
y

− F1 Xð Þ
� �

+ B2δL
∗ 1 − y

z
+ F1 Xð Þ

� �
+ B3γI

∗ 1 − z
u
+ F2 Xð Þ

� �
:

ð67Þ

Now, the functions F1ðXÞ and F2ðXÞ are taken so that
the coefficients of L∗ and I∗ are zero. For these cases, we get

F1 Xð Þ = y
z
− 1, ð68Þ

and

F2 Xð Þ = z
u
− 1: ð69Þ

Then, Equation (67) becomes

U ′ = −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − 1

x
− x

� �
+ B1lβS

∗I∗ 2 − 1
x
−
xz
y

−
y
z
+ 1

� �

= −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − x −

1
x

� �
+ B1lβS

∗I∗ 3 − 1
x
−
y
z
−
xz
y

� �
:

ð70Þ

By the arithmetic mean-geometric mean inequality, for
equality, if and only ifS = S∗andy = z = u, the last expression
must be less than or equal to zero. Thus, we have U ′ ≤ 0 with
equality if and only if S = S∗ and L/L∗ = I/I∗ = R/R∗. By
LaSalle’s Invariance Principle [36], for each solution, the
omega-limit set remains in an invariant set that is contained
in Ω = fðS, L, I, RÞ: S = S∗, L/L∗ = I/I∗ = R/R∗g. Since S must
be in S∗, S′ turns zero, which implies that I = I∗, L = L∗, and
R = R∗. Thus, there is only invariant set in Ω which is single-
ton fE1g. For each solution that intersects, ℝ4

+0fL = I = R
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= 0g limits to E1, which concludes that the disease persis-
tence equilibrium E∗ of (1) is globally asymptotically stable
in ℝ4

+0fL = I = R = 0g [24].

Lemma 7. The infectious persistence equilibrium ðE∗Þ of the
model (1) is globally asymptotically stable when R0 > 1, and
the disease persists in the populations for a long time.

7. Parameter Estimation

In this section, we obtain the value of the unknown param-
eters for the model (1). To estimate parameter values, we
have assumed the initial condition of the state variables as
ðS0, L0, I0, R0Þ = ð10000, 0, 1, 0Þ. There are seven parameters
in our model which are to be obtained. Among these param-
eters, natural mortality rateμis estimated as 0.002; the
recruitment of susceptible classλ = μS0 = 20; the rate which
leavesLðtÞforIðtÞ, i.e., incubation periodδ = 1/7; and the frac-
tion ofSðtÞwhich moves toLðtÞ;l = 0:95; and disease-induced
mortality rate is estimated asα = 0:0054. These are derived
from the data in the literature [30]. And the rest of the
parameters are disease transmission rate β and the recovered
rate γ which have to be fitted; therefore, θ = ðβ, γÞ. Consider
the initial value of the parameters to be ω0 = ðλ, μ, α, l, β, δ
, γÞ = ð20,0:002,0:0054,0:95,0:0000065, 1/7, 0:005Þ, and the
initial condition of the state variables is ðS0, L0, I0, R0Þ = ð
10000, 0, 1, 0Þ. Using the initial value of the parameters and
the initial conditions of the state variables, the value of the
unknown parameters is fitted to the model (1) with the help
of the nonlinear least square (NLS) method. Table 1 contains
the description and estimated or the best fitted values of the
parameters. Here, we have simulated the cumulative value of
the daily case data, which are illustrated in Figures 2 and 3
that also represent the population dynamic of the suscepti-
ble, latent, and infected population SðtÞ, LðtÞ, and IðtÞ,
respectively. From these figures, it is observed that the
infected population (I-class) increases significantly upon
the infection and arrives at the peak at the 36th day ðIð43Þ
= 3:126 × 103Þ; after that, it is decaying.

8. Numerical Results

To further investigate the behaviour of the model (1), we
conducted various numerical investigations applying the
estimations that are gained and given in Table 1. For this
intention, we consider two parameter sets resembling the
cases of stability of the infectious persistence equilibrium,
where R0 > 1, and disease extinction steady state, where
R0 < 1. The outcomes obtained for both equilibria with sta-
bility analysis are also numerically demonstrated using
MATLAB R2018a.

Using the parameter values from Table 1, the basic
reproductive ratio becomes R0 = 5:86 > 1 thereby signifying
the asymptotic stability of the infected steady state. For this
reason, different initial conditions of ðS0, L0, I0, R0Þ are cho-
sen as IC1 = ð10000, 0, 1, 0Þ, IC2 = ð8000, 0, 2, 0Þ, and IC3 =
ð12000, 0, 3, 0Þ.

Figure 4 illustrates the system dynamics of the suscepti-
ble, latent, and infected population for the three initial con-

ditions within two years, i.e., 730 days. In Figure 4(a), the
susceptible population decays very sharply and reaches the
nadir at 189, 283, and 134 for IC1, IC2, and IC3, respec-
tively. As time increases, they are again increasing together
and reaching a peak point of approximately 2782. Again, it
is decreasing and reaches another nadir at 1525. Further, it
is increasing and asymptotically stable at 1706 within two
years; i.e., susceptible population would be constant. In
Figure 4(b), the latent population increases sharply and
reaches the first peak points 3136, 2200, and 4161 for IC1,
IC2, and IC3, respectively; then, they are decreasing sharply
and reach a nadir at 5 together within 3.67 months and sta-
ble about three months. As time increases, they are again
increasing and reach the second peak at 305 within the next
3 months. Again, they are decaying and reach another nadir
at 51 within the next 3.67 months. Further, they increase and
reach the third peak point of 158 within the next 4 months.
They are decaying further and reach another nadir at 85
within the next 4 months. As time increases, they are
increasing further and asymptotically stable at 109 within 2
years. Moreover, in Figure 4(c), the infected population
increases very sharply and reaches the first peak points at
2383, 1739, and 3058 for the same initial conditions; then,
they are decaying as they are increased and reach a nadir
at 5 together within 4 months and stable about three
months. As time increases, they are again increasing and
reaches the second peak at 280 within the next 3.33 months.
Again, they are decaying and reach another nadir at 47
within the next 3.67 months. Further, they are increasing
and reach the third peak at 145 within the next 4 months.
They are decaying further and reach another nadir at 80
within the next 3.67 months. As time increases, they are
increasing further and asymptotically stable at 100 within 2
years.

Figure 5 illustrates the system’s phase portrait for differ-
ent initial conditions. It represents the relative change of the
susceptible SðtÞ, latent LðtÞ, and infected populations IðtÞ to
one another over time by a single trajectory. It also charac-
terises the stability of the system. For different initial condi-
tions, the trajectories are approaching a single point which
specifies the disease persistence equilibrium point E∗ = ð
1706,109,100,7814Þ when the basic reproduction number
R0 = 5:86 > 1. In this case, the trajectories approach the
long-term steady state, and the disease persists in the popu-
lations for t⟶∞.

For disease-extinction equilibrium, we assume the value
of infection transmission rate β different from Table 1 as β
= 0:000005. Therefore, the basic reproductive ratio is evalu-
ated as R0 = 0:302 < 1. For this case, the disease dynamics
are illustrated in Figure 6 for the same initial conditions.
The latent and infected populations are converged to 0
within 4 months that are illustrated in Figures 6(b) and
6(c), respectively, which indicates that the disease will be
extincted from the populations by itself within 120 days.
However, in Figure 6(a), in the susceptible population, only
positive values remain for the different initial conditions that
indicate the infection-free steady state. Moreover, Figure 7
illustrates the infection-free steady states and the interaction
between the populations by three trajectories for three
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different initial conditions. The trajectories are approaching
a single point defined as infection-free steady-state E0 = ð
10000, 0, 0, 0Þ and remain at this point for t⟶∞.

9. Conclusion

We have proposed a diphtheria epidemic model and found
two steady-state equilibrium points: one is disease extinction
equilibrium point E0 (37), and another is infectious persis-
tence equilibrium point E∗ (38). We have formulated the
basic reproductive number in terms of parameters. We have
also shown analytically that the infectious extinction equilib-
rium (37) is globally asymptotically stable when the basic
reproductive ratio R0 does not exceed unity; the infection
is dispelled by itself from the populations. The infectious
persistence equilibrium (38) is also globally asymptotically
stable when the basic reproductive ratio R0 is more than
unity; the disease persists in the populations at a certain
level. We have fitted the daily case data from November 8,
2017, to December 27, 2017, given in [30] to our model
and have evaluated the parameter’s value. Both equilibria
have been analyzed numerically and found a lot that
matches the real scenario. We have found the first peak at
38 days for IC1 that matches with the real data, and the sec-
ond and third peaks have been found at 310 days and 1.5
years, respectively, which also a lot matches with the real
scenario, like the highest infection found after one month,
given in [30, 41–44]. The enumerated infectious persistence
equilibrium E∗ is ð1706,109,100,7814Þ and infection-free
steady-state E0 is ð10000, 0, 0, 0Þ. A statistical model was
used to calculate the numeric value of the basic reproductive
ratio R0 in [30] and deduced a range of estimates ranging
from 4.7 to 14.8 with a median estimate of 7.2. But in this
study, it has calculated R0 = 5:86 by involving a mathemat-
ical model, which indicates that the infection rate is very
high. This study suggests applying treatments to control
the diphtheria epidemic. Lastly, we hope that this study will
be focused on the assumption of control strategies by con-
stituents and policymakers.
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