
Mobile Information Systems

Multi-Agent Deep Reinforcement
Learning for Unmanned Aerial
Vehicles and the Internet of
Vehicles

Lead Guest Editor: Konglin Zhu
Guest Editors: Yuming Ge and Lingxi Li

Multi-Agent Deep Reinforcement Learning for
Unmanned Aerial Vehicles and the Internet of
Vehicles

Mobile Information Systems

Multi-Agent Deep Reinforcement
Learning for Unmanned Aerial Vehicles
and the Internet of Vehicles

Lead Guest Editor: Konglin Zhu
Guest Editors: Yuming Ge and Lingxi Li

Copyright © 2022 Hindawi Limited. All rights reserved.

is is a special issue published in “Mobile Information Systems.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Chief Editor
Alessandro Bazzi  , Italy

Academic Editors
Mahdi Abbasi  , Iran
Abdullah Alamoodi  , Malaysia
Markos Anastassopoulos, United Kingdom
Marco Anisetti  , Italy
Claudio Agostino Ardagna  , Italy
Ashish Bagwari  , India
Dr. Robin Singh Bhadoria  , India
Nicola Bicocchi  , Italy
Peter Brida  , Slovakia
Puttamadappa C.  , India
Carlos Calafate  , Spain
Pengyun Chen, China
Yuh-Shyan Chen  , Taiwan
Wenchi Cheng, China
Gabriele Civitarese  , Italy
Massimo Condoluci  , Sweden
Rajesh Kumar Dhanaraj, India
Rajesh Kumar Dhanaraj  , India
Almudena Díaz Zayas  , Spain
Filippo Gandino  , Italy
Jorge Garcia Duque  , Spain
Francesco Gringoli  , Italy
Wei Jia, China
Adrian Kliks  , Poland
Adarsh Kumar  , India
Dongming Li, China
Juraj Machaj  , Slovakia
Mirco Marchetti  , Italy
Elio Masciari  , Italy
Zahid Mehmood  , Pakistan
Eduardo Mena  , Spain
Massimo Merro  , Italy
Aniello Minutolo  , Italy
Jose F. Monserrat  , Spain
Raul Montoliu  , Spain
Mario Muñoz-Organero  , Spain
Francesco Palmieri  , Italy
Marco Picone  , Italy
Alessandro Sebastian Podda  , Italy
Maheswar Rajagopal, India
Amon Rapp  , Italy
Filippo Sciarrone, Italy
Floriano Scioscia  , Italy

Mohammed Shuaib  , Malaysia
Michael Vassilakopoulos  , Greece
Ding Xu  , China
Laurence T. Yang  , Canada
Kuo-Hui Yeh  , Taiwan

https://orcid.org/0000-0003-3500-1997
https://orcid.org/0000-0002-5373-5778
https://orcid.org/0000-0003-4393-5570
https://orcid.org/0000-0002-5438-9467
https://orcid.org/0000-0001-7426-4795
https://orcid.org/0000-0002-6232-2772
https://orcid.org/0000-0002-6314-4736
https://orcid.org/0000-0003-4182-1887
https://orcid.org/0000-0002-5442-9246
https://orcid.org/0000-0003-1936-7200
https://orcid.org/0000-0001-5729-3041
https://orcid.org/0000-0002-2784-9616
https://orcid.org/0000-0002-8247-2524
https://orcid.org/0000-0003-4996-6263
https://orcid.org/0000-0002-2038-7359
https://orcid.org/0000-0002-1226-6135
https://orcid.org/0000-0001-5581-1159
https://orcid.org/0000-0001-7239-5863
https://orcid.org/0000-0003-2621-582X
https://orcid.org/0000-0001-6766-7836
https://orcid.org/0000-0003-2919-6302
https://orcid.org/0000-0002-7544-8796
https://orcid.org/0000-0002-7408-6906
https://orcid.org/0000-0002-1778-5321
https://orcid.org/0000-0003-4888-2594
https://orcid.org/0000-0002-7462-0080
https://orcid.org/0000-0002-1712-7492
https://orcid.org/0000-0003-4744-3506
https://orcid.org/0000-0001-8664-6408
https://orcid.org/0000-0002-8467-391X
https://orcid.org/0000-0003-4199-2002
https://orcid.org/0000-0003-1760-5527
https://orcid.org/0000-0001-8902-6909
https://orcid.org/0000-0002-7862-8362
https://orcid.org/0000-0003-3855-9961
https://orcid.org/0000-0002-7859-9602
https://orcid.org/0000-0001-6657-2587
https://orcid.org/0000-0003-2256-5523
https://orcid.org/0000-0002-3759-4805
https://orcid.org/0000-0002-7986-4244
https://orcid.org/0000-0003-0598-761X

Contents

DIMDP: A Driving Intention-Based MDP Service Migration Model under MEC/MSCN Architecture
Lei Ye  , Kaiwen Ling  , Qingwen Han  , Yufei Yan  , Lingqiu Zeng  , Lingfeng Qi  , Li Lin  , and
Junjun Zhang 

Research Article (13 pages), Article ID 4988266, Volume 2022 (2022)

Joint Optimization for MEC Computation Offloading and Resource Allocation in IoV Based on Deep
Reinforcement Learning
Jian Wang  , Yancong Wang  , and Hongchang Ke 

Research Article (11 pages), Article ID 9230521, Volume 2022 (2022)

A Method of Multi-UAV Cooperative Task Assignment Based on Reinforcement Learning
Xiaohu Zhao  , Hanli Jiang  , Chenyang An  , Ruocheng Wu  , Yijun Guo  , and Daquan Yang 

Research Article (9 pages), Article ID 1147819, Volume 2022 (2022)

https://orcid.org/0000-0003-3337-0828
https://orcid.org/0000-0002-4920-0877
https://orcid.org/0000-0002-1517-7701
https://orcid.org/0000-0002-2538-5547
https://orcid.org/0000-0002-5133-4153
https://orcid.org/0000-0001-7787-111X
https://orcid.org/0000-0003-2583-7651
https://orcid.org/0000-0003-2217-0142
https://orcid.org/0000-0003-0091-2918
https://orcid.org/0000-0002-0616-9953
https://orcid.org/0000-0003-0946-9289
https://orcid.org/0000-0003-2880-6607
https://orcid.org/0000-0003-2677-2183
https://orcid.org/0000-0002-2123-1719
https://orcid.org/0000-0002-0267-9120
https://orcid.org/0000-0002-2488-8054
https://orcid.org/0000-0003-1976-8821

Research Article
DIMDP: A Driving Intention-Based MDP Service Migration
Model under MEC/MSCN Architecture

Lei Ye ,1 Kaiwen Ling ,1 Qingwen Han ,1 Yufei Yan ,1 Lingqiu Zeng ,2

Lingfeng Qi ,1 Li Lin ,1 and Junjun Zhang 2

1School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
2College of Computer Science, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Qingwen Han; hqw@cqu.edu.cn

Received 15 July 2022; Accepted 26 September 2022; Published 11 October 2022

Academic Editor: Konglin Zhu

Copyright © 2022 Lei Ye et al. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Service migration is one of the key topics of Internet of Vehicles (IoV). MEC (mobile edge computing), which is carried on the
roadside unit (RSU), could serve as a service provider and provide a V2I (vehicle to infrastructure) cooperation service. To solve
the high migration rate caused by the vehicle’s high mobility feature, MSCN (mobile secondary computing node) framework is
de�ned. To study service migration features under theMSCN framework further, in this paper, road vehicle’s motion features, e.g.,
driving intention and regional tra�c condition, are introduced to construct the Markov decision model, which is used to explain
the service migration decision procedure, while DIMDP (driving intention-based MDP) is de�ned. Corresponding cost functions
are de�ned, while the optimal object is given. A two-way road scenario is selected as a typical scenario. NS3 platform is employed
to ful�ll the simulation process. Simulation results show that the proposed service migration strategy performs well and is
intensive to vehicle density change.

1. Introduction

With the rapid growth of vehicles, road safety has become a
problem faced by countries all over the world. Vehicle safety
applications by means of real-time information exchange
between vehicles are techniques for avoiding tra�c accidents.

Although cooperative vehicle infrastructure system
(CVIS) is considered an e�ective approach to support ve-
hicle safety applications, it has to meet the requirements of
real-time ability, reliability, and service continuity.

For non-local service requests, the traditional centralized
cloud computing network has defects in terms of delay and
throughput. �erefore, in order to match the needs of real-
time driving decision making, scholars have introduced edge
computing technologies such as mobile edge computing
(MEC) and fog computing (FC) into CVIS. Also, the edge
computing server is con�gured on the side close to the user,
deployed at the end of the base station (BS) and roadside unit
(RSU). �e back-end service information can be calculated
and maintained at the edge node, thus providing relatively

adequate computing ability [1] and supporting computa-
tional-intensive and time-sensitive operations or £exible
deployment of applications and services. But for non-local
services, MEC needs to maintain a certain service migration
rate to reduce service delay. However, the high mobility of
vehicle nodes is a negative impact on the e�ciency of
feedback information and service migration rate. �e reason
is that the object vehicle may leave the coverage area of the
previous MEC, which undertakes computing tasks. To
overcome this problem, in our previous work [2], a new
concept, mobile secondary computing nodes (MSCNs), was
de�ned, while a three-layer framework is constructed.

Obviously, the relative speed of MSCN and its sur-
rounding vehicles is lower than that of RSU and its sur-
rounding vehicles and partially solves the service migration
problem. However, the corresponding migration mecha-
nism is di�erent from that of traditional MEC architecture.
Hence, we discussed the service migration problem under
MSCN architecture [3] and proposed a MDP (Markov
decision process)-based service migration strategy.

Hindawi
Mobile Information Systems
Volume 2022, Article ID 4988266, 13 pages
https://doi.org/10.1155/2022/4988266

mailto:hqw@cqu.edu.cn
https://orcid.org/0000-0003-3337-0828
https://orcid.org/0000-0002-4920-0877
https://orcid.org/0000-0002-1517-7701
https://orcid.org/0000-0002-2538-5547
https://orcid.org/0000-0002-5133-4153
https://orcid.org/0000-0001-7787-111X
https://orcid.org/0000-0003-2583-7651
https://orcid.org/0000-0003-2217-0142
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4988266

However, in [3], the service migration strategy was
designed according to the relative distance between vehicles
and did not consider the vehicle’s moving feature and
motion model. Obviously, service migration decision
making is influenced by the traveling trace of the vehicle,
which is the reflection of driving intention and is affected by
regional vehicle density. Since the vehicle prefers to go to
places with good traffic conditions, we can estimate the
vehicle’s intention by considering the vehicle’s moving
feature and motion model.

Furthermore, the MDP model is considered an effective
approach to express service migration progress. By estab-
lishing a state space that conforms to the vehicle’s moving
feature and combining themotionmodel, a trade-off is made
between the cost of migration and the benefits after mi-
gration to obtain the optimal service migration strategy.

,erefore, in this paper, driving intention-based MDP
service migration strategy under MSCN architecture is
proposed. Specifically, our research contributions are as
follows:

According to vehicle driving intention and regional
traffic condition factors over the dynamic feature of
service requirement, a MDP-based service migration
method, DIMDP (driving intention-based MDP), is
proposed.
A two-way road scenario, which includes four mi-
croscopic events, namely, following, turn left, turn
right, and U-turn, is selected as the typical scenario.

,e rest of the paper is structured as follows. Section 2
presents the related work, and Section 3 discusses the
service migration using MDP based on MSCN. ,e service
migration algorithm under MSCN is proposed and applied
to traffic for service migration as an example in Section 4.
,en, experimental simulation and result analysis are
presented in Section 5. Finally, the conclusion is given in
Section 6.

2. Related Work

We briefly investigated the existing literature on service
migration from the perspective of service delay and tra-
jectory prediction.

Yu et al. [4] prioritized MEC services and proposed a
partial dynamic optimization algorithm (PDOA) service
migration strategy calculation algorithm, which calculates
the migration strategy that minimizes the average delay of
long-term service by predicting the mobility of vehicles and
achieves good results when the density of vehicles is small.
However, the algorithm does not consider the impact of
service interruption caused by the long migration time when
the vehicle density is high.

Ge et al. [5] proposed the FEE algorithm to calculate the
best service migration strategy, which takes into account the
current and future time delays in N time slots and the service
migration interface between vehicles and changes the focus
of the migration strategy by setting up weight coefficients for
the delay of each time slot. ,e algorithm can achieve better
results by increasing the number of time slots, which is not

obvious when the number of time slots is 5. However, the
algorithm does not consider the frequency of service re-
quests, so the algorithm may not achieve better results when
services require frequent requests.

Nadembega et al. [6] proposed a mobility-based service
migration prediction (MSMP) model, which split user
requested service into several portions for service migration
by estimating the throughput that the user could receive in
advance.

Xu et al. [7] investigated path selection for seamless
service migration and proposed a path-selection algorithm
to jointly optimize both interests of the network plane and
service plane and designed a distance-based filter strategy to
eliminate undesired switches in advance to improve the
scalability of the proposed algorithm.

Recently, the MDP model is considered an effective
approach to express service migration progress. Corre-
sponding researchers considered both user mobility features
and MEC-based service requirements to establish decision-
making strategies [8]. Moreover, cost function definition
methods are proposed [9]. Combined with MDP and cost
function definition. Taleb et al. [10] proposed a service
migration decision algorithm to verify the effectiveness of
Follow Me Cloud and provided guidelines for the method in
this paper.

However, the existing MDP-based research has not built
a model suitable for the CVIS, which considers the vehicle’s
moving feature and motion model.

In view of traffic simulation, vehicle motion models are
categorized into microscopic [11] and macroscopic [12].
Microscopic models focus on the dynamic features of the
separate vehicles, while macroscopic models consider traffic
features, such as the traffic density, average velocity, flow,
and so on. Hence, in this paper, we introduce density factor
into the vehicle intention prediction model, thus con-
structing amicroscopicmotionmodel. On the other hand, to
establish the MDP model, we borrow from the idea of the
cellular model [13], which has adopted the time-space
discretion method, to construct a microscopic motion
model.

3. Service Migration under MSCN Framework

According to the percentage of migrated content, service
migration can be divided into partial migration and full
migration. Different migration methods bring different
advantages and disadvantages. Since partial migration in-
volves real-time decisions about which part of the data to
migrate, this paper only considers the overall migration of
the service.

3.1. MSCN Framework. ,e MEC-based architecture,
MSCN, proposed in our previous work is shown in Figure 1.

Here MSCN framework includes three layers, which are
MEC layer, MSCN layer, and general vehicle layer. Exper-
imental verification shows that MSCN can provide reliable
RSU-oriented services and significantly improves both
communication performance and computing efficiency [2].

2 Mobile Information Systems

3.1.1. MEC Layer. ,e MEC layer provides computing and
storage resource to road vehicle. Meanwhile, the service
provider could provide vehicle-oriented service via the MEC
interface.

3.1.2. MSCN Layer. Selected vehicle nodes, such as city
buses, taxis, and so on, are used to construct theMSCN layer,
which could provide local computing resources. MSCN
nodes collect BSMs sent by surrounding vehicles, then fulfill
information fusion, and upload corresponding results to the
MEC layer.

3.1.3. General Vehicle Layer. ,e general vehicle layer in-
cludes all road vehicle nodes, which are equipped with
DSRC/LTE-V blocks, and could communicate with each
other and RSU directly.

3.2. MDP Model Based on Two-Way Lane. In this paper, we
select a two-way lane scenario to discuss the service mi-
gration problem.

,e problem involves the following assumption
conditions:

Object region is full C-V2X coverage, which means that
all on-road vehicles could communicate with RSU.
All road vehicles are equipped with a C-V2X module
and communicate with RSU via the PC5 interface.
,ere are enough public traffic vehicles to serve as
MSCNs, which communicate with RSU and other on-
road vehicles via C-V2X technologies.

RSUs communicate with each other via wired net-
works, such as fiber backbone and Ethernet.
,e relationship between users and service providers is
expressed by the distance factor. A service migration
event should occur when d(t)>N. In this paper, the
maximum value of N is set as 10.
MSCN’s dwelling time is subject to an exponential
distribution with a mean value equal to 1/μ.

According to the above assumptions, the two-way lane
MDP model is constructed. State space of service migration
under the MSCN framework is shown in Figure 2(a), while
corresponding state transition progress is denoted in
Figure 2(b). As shown in Figure 3, service migration
progress under MSCN architecture includes two migration
levels, is denoted as social vehicle-oriented migration and
public vehicle-oriented migration.

Social vehicle-oriented migration: a social vehicle
changes its association MSCN (public vehicles), for
example, MSCN1⟶MSCN2 as shown in Figure 3(a).
It should be noted that social vehicle can only migrate
to the MSCN with the same cruising direction.
Public vehicle-oriented migration: a public vehicle
(MSCN) changes its association RSU, for example,
RSU1⟶RSU2 as shown in Figure 3(b).

As shown in Figure 2(b), for an initial state
πn, n ∈ [0, 4N − 1], two inclining migration events are
expressed as

πn+1, n ∈ [0, 2N − 1], cruising forward,

πn+1, n ∈ [2N, 4N − 1], cruising backward.
􏼨 (1)

MSCN

PC5 PC5
PC5

PC5
PC5

PC5

Layer2

Layer3

Layer1

Core Cloud
Data Storage

Data Procession

Network Transmission
Regional Data Storage

Edge cloud (MEC) RSU

Local vehical data
processing

Data Mosaicing

PC5
PC5

PC5
PC5

Figure 1: MSCN framework.

Mobile Information Systems 3

State transition probability matrix is defined as

P �

p01 . . . p0(4N−1)

⋮ ⋱ ⋮

p(4N−1)0 . . . p(4N−1)(4N−1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

where pij, i, j ∈ [0, 4N − 1] is the transition probability of
state i and j. In this paper, we take into account the driving
intention of the vehicle to obtain the transition probability in
the next section.

Assume that state probability of state πn is χn, and

􏽘

4N−1

n�0
χn � 1. (3)

State transition progress could be denoted as
χf � χf · P. (4)

,us, we can obtain the row probability vector χn of states
at the migration strategy N according to equations (3) and (4).

3.3. Vehicle Motion Features. Obviously, service migration
progress is decided by vehicle motion features, e.g., cruising

direction, cruising speed, and relative speed. For MSCN
architecture, two kinds of relative speed, the relative speed
between social vehicles (users) and public vehicles (MSCN)
and relative speed between public vehicles (MSCN) and
RSU, should be considered.

According to [14], for traffic participants, the probability of
the specific event in the time interval [t, t + Δt], is defined as

P(t;Δt) � τ−1
[I(t)]Δt, (5)

where τ− 1 ∈ [0, τ −1
max] is the number of events that occur per

unit time interval under a certain condition and I is the
situation-related risk indicator function.

Although equation (5) is constructed for driving risky
evaluation, it could be used to express state transition
probability. Hence, we define a situation indicator function
Is, assuming that traffic prefers to go to places with better
traffic conditions and regional traffic condition Ctraff ic, to
replace risk indicator function I, as shown as follows:

Is ∼ dI, Ctraffic(􏼁, (6)

where dI is obtained according to path planning information
and Ctraffic ∈ (0, 1] is real-time traffic information, defined as

Data Procession
Data Procession

Data Procession

ServiceA

ServiceA

ServiceB

ServiceB

ServiceC

ServiceC

ServiceD

ServiceD

ServiceA
ServiceB

ServiceC

ServiceD

ServiceA

ServiceA

ServiceB

ServiceB

ServiceC

ServiceC

ServiceD
ServiceD

ServiceA

ServiceA

ServiceB

ServiceB

ServiceC

ServiceC

pb

pf

t0

t1

t1
ServiceD

ServiceD

Data Storage
Data Storage

Data Storage
Core Cloud

Core Cloud
Core Cloud

Local vehical data
processing
MSCN

PC5 PC5 PC5

PC5 PC5 PC5 PC5
PC5 PC5

PC5PC5PC5
PC5

PC5 PC5 PC5

PC5 PC5

d=1

d=1d=1
SA0

Network Transmission
Network Transmission

Network Transmission
Regional Data Storage

Regional Data Storage
Regional Data Storage

Edge cloud (MEC) RSU
Edge cloud (MEC) RSU

Edge cloud (MEC) RSU

Data Mosaicing
Data Mosaicing

Data Mosaicing

(a)

p(2N)b

N-1

N-1 2

N-2

N-2

1

1

0

0

1 N

N
π2N π2N+1 π3N π4N-2

π2N-2

π4N-1

π2N-1πN

π3N-2 π3N-1

π0 π1 πN-2 πN-1
N-1

N-1

p(2N+1)b

p(3N-1) f

p(2N) f

p(3N) fp(2N+1)f

p0b p1b

p(3N−2)b
p(N−2)b pN b

p(3N−1)b

p(N−2) f

p(N−1)b

p3 N b

p(4N−1) f

p(2N−1)b

p(4N−2)b p(4N−1)b
p(2N−2)b

p(2N−2) f

p(N−1) f
p0 f

p(2N−2) f

(b)

Figure 2: MDP model based on two-way lane. (a) State space of service migration. (b) State transition progress.

4 Mobile Information Systems

Data Procession

Data Storage
Core Cloud

Network Transmission
Regional Data Storage

Edge cloud (MEC) RSU

RSU1

Data Mosaicing

ServiceA

ServiceA

ServiceA

ServiceB

ServiceB

ServiceB ServiceB
ServiceB

Virtual region 1 Virtual region 2 Virtual region 3

ServiceB

ServiceB

t1′ pb t0 pf t1

ServiceB

ServiceB

MSCN2

MSCN1MSCN2

ServiceC

ServiceC

ServiceC

ServiceD

ServiceD

ServiceD

(a)

ServiceA

ServiceA

ServiceB

ServiceB Servicec

ServiceB

ServiceC

ServiceC

Network Transmission
Regional Data Storage

Edge cloud (MEC) RSU

Data Mosaicing

Network Transmission
Regional Data Storage
Edge cloud (MEC) RSU

Data Mosaicing
Data Procession

Data Storage
Core Cloud

Data Procession

Data Storage
Core Cloud

ServiceA

ServiceA

ServiceA

ServiceA
ServiceA

ServiceA

Subject vehicle
Subject vehicle

RSU2RSU1

MSCN-oriented migration

MSCN1 MSCN1

(b)

Figure 3: Two levels of service migration under MSCN. (a) Social vehicle-oriented migration. (b) Public vehicle-oriented migration.

Mobile Information Systems 5

Ctraffic(t) �
max e

− vR(t) vMSCN, 0(􏼁

vlimit ,
vR(t) v, vMSCN(􏼁

vR(t) vMSCN, 0(􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, vR vMSCN, 0(􏼁≠ 0,

1, else,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

where vre(t)(v, vMSCN) is the relative speed between social
vehicles (users) for time t and public vehicles (MSCN),
while vre(t)(vMSCN, 0) is the relative speed between public
vehicles (MSCN) and RSUs for time t.vlimit is the maximum
speed limit on road. v is the average cruising speed of
vehicles in coverage of corresponding MSCN. vMSCN is the
average cruising speed of MSCN in coverage of corre-
sponding RSU.

,e worse the traffic condition is, the higher the Ctraffic
value should be. Note here that we assume that path change
is a result of bad traffic conditions.

dI(t + Δt) � dI(t)∗
exp 1 − Ctraffic(t + Δt)/Ctraffic(t)􏼂 􏼃

exp 1 − Ctraff ic(t)(􏼁
.

(8)

In view of service migration, according to vehicle cruising
direction, the migration area could be divided into two parts,
namely, the forward area and the backward area. As men-
tioned earlier, here we consider four kinds of events: the
following, turn left, turn right, andU-turn. Here we categorize
the following, turn left, and turn right as forward area mi-
gration inclining events while U-turn as backward area mi-
gration inclining events.

,en, we define vehicle states as πn, n ∈ [0, M − 1],
where M is the number of states, and pij, i, j ∈ [0, M − 1], is
the state transition probability, which is denoted as

pij � P πΔt � πj | π � πi􏼐 􏼑 ∼ τ−1
dI, Ctraff ic(􏼁Δt, (9)

where πi is the state of time t and πj is that of time (t + Δt).
Considering vehicle’s inclining events, forward or

backward, and with the assumption that traffic prefers to go
to places with better traffic conditions and regional traffic
conditions Ctraff ic, the state transition probability propor-
tional to dI is defined as follows:

pif

d
f
I

�
pib

d
b
I

,

pif + pib � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where pif and pib are occurrence probabilities of forward
event state πf and forward event state πb.

,en, pif and pib could be denoted as

pif �
d

f

I

d
f
I + d

f
I

,

pib �
d

b
I

d
f
I + d

f
I

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Substitute (8) into (11); then,

pif �
exp 1 − C

f

traffic(t + Δt)/Ctraffic(t)􏽨 􏽩

exp 1 − C
b
traff ic(t + Δt)/Ctraff ic(t)􏽨 􏽩 + exp 1 − C

f

traff ic(t + Δt)/Ctraff ic(t)􏽨 􏽩
,

pib �
exp 1 − C

b
traff ic(t + Δt)/Ctraffic(t)􏽨 􏽩

exp 1 − C
b
traffic(t + Δt)/Ctraff ic(t)􏽨 􏽩 + exp 1 − C

f

traff ic(t + Δt)/Ctraff ic(t)􏽨 􏽩
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

4. Service Migration Algorithm and Typical
Applications under DIMDP-Based
MSCN Architecture

4.1. Migration and Transmission Cost. Obviously, the opti-
mization target of the service migration strategy is to
minimize migration and transmission costs, and thus it
could improve service performance.

Here we assume that the dwelling time of vehicle node i

is calculated as

Tdewll,vehicle(i) �
rt,rsu

vvehicle(i)
, (13)

where rt,rsu is the coverage radius of vehicle i’s home RSU
and vvehicle(i) is the cruising speed of vehicle i.

6 Mobile Information Systems

We define two cost functions, namely, transmission cost
function Ctrans(d) and migration cost function Cm(N), as
follows:

Ctrans(d) �
Dtrans(d) · rt,rsu · f

vi

,

Cm(N) � Dm(N) + Im(N),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where Dtrans(d) is the message transmission delay between
the user vehicle node and service provider, at a distance d, (f)
is the packet transmission frequency, and N is the migration
distance. Migration progress should occur if d>N. Dm(N)

is the migration delay function, while Im(N) is the service
interruption function, defined as follows:

Dm(N) �
θm

R
+

(β + 1)λf

R
(N + 1),

Im(N) � exp
Dm(N)

k
􏼠 􏼡 − 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

where R is the data transfer rate, λm is the size of the data
that needs to be transmitted during the service request
process, λf represents the size of data frame structure
waiting to be sent in the queue, and β represents the
number of the frame structure, which is affected by network
congestion.

Message transmission delay is the sum of dissemination
delay Dt(d) as shown in (16) and queuing delay Dq(d), as
shown as

Dt(d) �
λm

R
+ dc,

Dq(d) �
(β + 1)λf

R
d,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where dc, which is a constant, represents the wireless
communication delay between the vehicle and the RSU.

,en, we define Dtrans(d) as

Dtrans(d) � Dt(d) + Dq(d) �
λm

R
+

(β + 1)λf

R
d + dc. (17)

Average total cost function, where the state probability of
state πn, χn, is used as a weight to calculate the weighted
average of cost, is defined as

Ca(N) � 􏽘
N−1

d�1
Ctrans(d) χN−1±d + χ3N−1±d(􏼁

+ Ctrans(N) χ2N + χ2N−1(􏼁

+ Cm(N) χ2Np(2N)f + χ2N−1p(2N−1)f􏼐 􏼑,

(18)

while the optimal objective is to minimize the average total
cost as follows:

P1: S � arg min
N

Ca(n). (19)

,e pseudocode of optimal strategy is shown in Algo-
rithm 1, while corresponding variables and functions are

explained in Table 1. Firstly, the algorithm obtained the state
transition probability matrix P according to vehicle driving
intention and obtained the row probability vector χn

according to (3) and (4) in different migration distance
N. ,en, the average total cost Ca is obtained according to
(18). Finally, we compare the total cost at each migration
distance to obtain the optimal service migration distance
corresponding to the minimum average total cost Ca.

Note here that to avoid the impact of the sudden speed
change on service migration performance, in this paper, we
use regional average speed as the input value of vehicle
speed.

4.2. Service Migration Strategy. ,e proposed MDP-based
service migration strategy under the MSCN framework is
shown in Algorithm 2, and the corresponding variables
and functions are explained in Table 2. First, the current
position of each vehicle is obtained and compared with
the position of the previous moment to determine
whether the MSCN directly under the vehicle has
changed. After that, if the MSCN directly under the ve-
hicle changes, determine whether the RSU directly under
the vehicle has changed. ,en, if the RSU directly under
the vehicle changes, compare the distance from the
current distance with the optimal strategy obtained by
Algorithm 1. Finally, once the distance to the optimal
policy is reached, service migration is performed and P is
updated, with the new service provider as the center. ,is
completes a service migration.

According to the 3GPP suggestion, corresponding pa-
rameters are set as

λm � 1200bit,

θm � 3.5Mb,

λf � 1024bit,

R � 5Mbps,

f � 10Hz.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

,e relationship between migration distance N and
migration cost with different p values is shown in Figure 4.
Here regional average speed is set as 20m/s.

As shown in Figure 4, total cost increases with increasing
p, and thus we verify the validity of the cost function.
Moreover, the optimal object S, which is defined by (19),
varies from 3 to 4.

,e relationship between migration distance N and
migration cost with different regional average speed values is
shown in Figure 5.

As shown in Figure 5, the average total cost increases
with increasing regional average speed, which expresses the
influence of the vehicle’s cruising intention. ,e value range
of optimal object S is [2, 5] and consistent with the result of
Figure 5.

4.3. Intersection Control under the MSCN Framework.
Intersection control in the MSCN framework leverages RSU
collaboration across multiple intersections and decides

Mobile Information Systems 7

Input:
pif, λm, θm, λf, (r), rt,rsu, vvehicle, (f)

Output:
Optimal migration strategy S

Cmin←∞;
S←10;
for N� 1 to 10 do
P← get_Pmatrix (pif, N);
χn← get_state (P, N);
Ca←� get_cost (Cset, χn,N);
if Cmin >Ca

Cmin←Ca;
S←N;

else
break;

end
end
Return S;

ALGORITHM 1: Optimal strategy.

Table 1: Explanation for Algorithm 1’s variables and functions.

Variable/function Explanation
pif Probability set of forward area migration inclining events
λm Service request data size
θm Service migration data size
λf ,e data size of frame structure
rt,rsu ,e coverage radius of RSU
vvehicle Vehicle speed
f Service request frequency
Cmin ,e minimal average total cost Ca

S ,e optimal migration strategy, a service migration event occurring when d(t)≥ S

get_Pmatrix (pif, N) Obtain the state transition probability matrix P according to pif at migration distance N
get_state (P, N) Obtain the row probability vector χn of states at the migration distance N according to (3) and (-4)
Get_cost (Cset, χn, N) Obtain the average total cost Ca(N) according to (18). Cset is λm, θm, λf, rt,rsu, vvehicle, f􏽮 􏽯.

Table 2: Explanation for Algorithm 2’s variables and functions.

Variable/function Explanation
V Vehicle set
(xcn, ycn) Center coordinates of middle cell
t1 Last moment
t2 Current moment
d Distance between service requester and service provider
Cset A set of λm, θm, λf, rt,rsu, vvehicle, f􏽮 􏽯

pif As explained in Table 1
Vtarget ,e vehicle member currently traversed
get_position (V, t) Get the position of vehicle V at time t
get_cellnum ((xt, yt), (xcn, ycn)) Obtain the cell number of coordinate (xt,yt) by taking coordinate (xcn, ycn) as a reference point
get_MSCN (cellnum) Obtain the MSCN id corresponding to cell cellnum
get_rsu (MSCNid) Obtain the RSU id to which MSCNid belongs

mscnMigration Amap< vehicle_id,flag>which represents the vehicle who’s id is vehicle_id will perform or not service
migration at the MSCN level while the flag is true or false

rsuMigration Amap< vehicle_id,flag>which represents the vehicle who’s id is vehicle_id will perform or not service
migration at the RSU level while the flag is true or false

setMigration ,e service migration set {rsuMigration, mscnMigration}
get_strategy (pif, cset) Obtain the optimal strategy according to Algorithm 1 with variable pif and variable Cset

8 Mobile Information Systems

Input:
V, (xcn, ycn), t1, t2, d, Cset, pif

Output:
setMigration {rsuMigration, mscnMigration}

for Vtarget each in V
(xt1,yt1) ← get_position (Vtarget,t1);
(xt2,yt2) ← get_position (Vtarget,t2);
cellnum1 ← getcell_num ((xt1, yt1),(xcn, ycn));
cellnum2 ← getcell_num ((xt2, yt2),(xcn, ycn));
MSCNid1 ← get_MSCN (cellnum1);
MSCNid2 ← get_MSCN (cellnum2);
rsu1 ← get_rsu (MSCNid1);
rsu2 ← get_rsu (MSCNid2);
if (MSCNid1� �MSCNid2) then

rsuMigration.insert (Vtarget, false);
else

mscnMigration.insert (Vtarget, true);
end
if (rsu1� � rsu2) then

rsuMigration.insert (Vtarget, false);
else
S ← get_strategy (pif,Cset);

if (d> S) then
rsuMigration.insert (Vtarget, true);
update pif;

else
rsuMigration.insert (Vtarget, false);

end
end
end for
Return setMigration;

ALGORITHM 2: Service migration under MSCN framework.

0.40

0.35

0.30

0.25

to
ta

l c
os

t

0.20

0.15

0.10
1 2 43 5

migration distance N
6 7 8 9

p = 0.5
p = 0.6

p = 0.7

p = 0.8

p = 0.9
p = 1.0

Figure 4: Total cost vs. migration distance N at different p.

0.8

1.0

0.6

to
ta

l c
os

t

0.4

0.2

1 2 3 54
migration distance N

6 7 8 9

v = 5 m/s
v = 8 m/s
v = 10 m/s

v = 13 m/s
v = 15 m/s
v = 20 m/s

v = 23 m/s
v = 25 m/s
v = 30 m/s

Figure 5: Total cost vs. migration distance (N) at different regional
average speed (v).

Mobile Information Systems 9

whether to perform service migration of applications based
on DIMDP.

Intersection traffic flow detection in the MSCN frame-
work requires to collect three sets of data, including

(1) ,e number of queued vehicles in each lane group
(left-turn, straight turn, and right-turn lane group)
of the main road at intersections.

(2) ,e number of vehicles queued on the branch en-
trance road.

(3) ,e speed of straight-line vehicles exiting the in-
tersection, which can be obtained by the vehicle’s
own speed sensor.

,e intersection control application in the MSCN
framework is shown in Figure 6, in which blue vehicles
represent upcoming right-turn vehicles after passing
through the intersection, red represents upcoming straight-
traffic vehicles, and black represents upcoming left-turn
vehicles. RSUs deploying MEC services are set up between
upstream and downstream intersections, and the distance
between RSUs is determined according to their transmission
range. ,e specific data flow is as follows:

(1) ,e road vehicles decide whether to perform service
migration according to the DIMDP in the MSCN
framework.

(2) ,e road vehicles send application messages (in-
cluding node id, MSCN id, direction information,
vehicle current speed, vehicle current acceleration,
and time stamp information) to the MSCN in the
region through the information distribution mech-
anism in the MSCN framework.

(3) ,e MSCN receives road vehicle information and
performs preliminary calculations and statistics to
obtain Table 3.

(4) ,e MSCN decides whether to perform application
service migration based on the DIMDP optimization
policy.

(5) ,e MSCN sends Table 3 to the optimal RSU.
(6) Optimal RSU assembles and organizes Table 3 from

each cluster and MSCN to obtain Table 4.
(7) ,e adjacent RSUs exchange Table 4 to generate

updating Table 4.
(8) ,e optimal RSU sends updating Table 4 to the traffic

light controller and executes intersection control.

Table 3 shows the preliminary results after MSCN col-
lects all the normal vehicle nodes and its own application
information in its region and conducts statistical sorting.
,en, the MSCN sends Table 3 to the optimal RSU, which
receives Table 3 from each cluster and eachMSCNwithin the
cluster, processes, and counts it to form Table 4.

5. Simulation and Result Analysis

5.1. Simulation Setup. Simulation is done based on the NS-
3.28 platform. Simulation parameters are listed in Table 5.
We excerpted a 600-meter two-way road used in the sim-
ulation as a diagram as shown in Figure 7.

Corresponding communication parameters are listed in
Table 6.

Note here that V2X information is one kind of timeliness
information. Hence, re-transmission procedure is disabled.
Moreover, until today, most C-V2X-based modules do not
support power adjusting function and use fixed transmit
power, valued as 23 dBm.

,ree parameters, average backhaul delay (ABL), packet
delivery rate (PDR), and effective feedback ratio (EFR), are
used to evaluate the performance of the proposedmechanism.

Here effective feedback ratio is defined as the ratio of
received effective service message number to uploaded
BSM number, while the average backhaul delay is defined
as the service response delay, which is the interval between
the source node’s BSM sending time tbsm and destination
node’s service response time tservice. Considering the in-
fluence of BSM dissemination delay, here we employ the

Vehicles about to turn right
Vehicles about to turn right
Vehicles about to go straight

Form 2

Form 1

Form 1

Form 2

Service migration

MSCN

MSCN

M
SCN

M
SCN

Figure 6: Intersection control under MSCN framework.

10 Mobile Information Systems

average BSM dissemination delay to calculate ABL tABL as
follows:

tABL �
1
N

􏽘

N

i�0
tservice − tbsm, (21)

where N is the BSM packet number.

To verify the performance of DIMDP under MSCN
architecture, three others are selected as a contrast.

(i) MDP service migration strategy without driving
intention under MSCN architecture.

(ii) Always migration strategy under MSCN architec-
ture, whose migration condition is set as d (t)≥ 0.

Table 3: MSCN.

Node id MSCN id Sending time Direction Speed (m/s) Acce (m/s2)
1 1 10.23.33 Right 20.5 1.01
8 1 10.23.45 Left 21.2 0.32
3 1 10.23.55 Right 24.3 1.51
2 1 10.23.58 Straight 23.5 0.58
.

Table 4: RSU.

Cluster id MSCN id Receiving time Total right Total left Total straight
1 3 10.32.08 8 3 12
1 1 10.32.13 4 6 8
1 2 10.32.45 5 1 5
3 3 10.32.58 4 6 16
.

Table 5: Simulation parameters.

Parameter Value
Lane number 2
RSU number 5
MSCN number 15
Distance between RSUs 300m
Lane width 3m
Lane length 1500m
Vehicles’ velocity ± 20m/s– ± 25m/s

RSU1

600m

MEC1 MEC2

RSU2

MSCN

Figure 7: ,e diagram of the two-way road used in the simulation.

Table 6: Communication simulation parameters.

Parameter Value
Frequency band 5.9GHz
Channel bandwidth 10MHz
Data rate 5Mbps
Transmit power 23 dBm
Packet size 1200 bit
Packet delivery frequency 10Hz

Mobile Information Systems 11

(iii) DIMDP under pure MEC architecture.

As shown in Figure 8, the p value has no significant
effect on packet delivery rate and backhaul delay. ,e
proposed DIMDP method performs better backhaul delay,
which means the V2X security applications can respond
faster.

As shown in Figure 9, with the increase in road vehicle
density, both the ABL and PDR of the proposed DIMDP

method under MSCN architecture are nearly equal to a
constant and perform better, which means it can still
maintain excellent and stable performance in scenes with
high vehicle density.

As shown in Figure 10, the higher the vehicle velocity is,
the lower the effective feedback ratio should be. Moreover,
the effective feedback ratio of the proposed DIMDP method
under MSCN architecture is higher than that of other
methods.

DIMDP method under MSCN architecture

MDP service migration strategy without
driving intention under MSCN architecture

Always migration strategy under MSCN architecture

DIMDP method under pure MEC architecture

0.5

1.00

1.99

0.98

0.97

0.96

0.95
0.6 0.7

p

pa
ck

et
 d

el
iv

er
y

ra
te

0.8 0.9 1.0

(a)

0.5 0.6 0.7
p

110

100

90

80

70

av
er

ag
e b

ac
kh

au
l d

el
ay

 (m
s)

60

50

40
0.8 0.9 1.0

DIMDP method under MSCN architecture

MDP service migration strategy without
driving intention under MSCN architecture

Always migration strategy under MSCN architecture

DIMDP method under pure MEC architecture

(b)

Figure 8: ,e impact of p value. (a) Packet delivery rate. (b) Average backhaul delay.

1.0

0.9

0.8

0.7

0.6

0.06 0.08

pa
ck

et
 d

el
iv

er
y

ra
te

0.10
vehicle density (v/m)

0.12 0.14

DIMDP method under MSCN architecture
MDP service migration strategy without
driving intention under MSCN architecture
Always migration strategy under MSCN architecture

DIMDP method under pure MEC architecture

(a)

DIMDP method under MSCN architecture

MDP service migration strategy without
driving intention under MSCN architecture

Always migration strategy under MSCN architecture

DIMDP method under pure MEC architecture

0.06 0.08 0.10

av
er

ag
e b

ac
kh

au
l d

el
ay

 (m
s)

0.12 0.14

100

150

200

250

300

vehicle density (v/m)

(b)

Figure 9: ,e impact of vehicle density. (a) Packet delivery rate. (b) Average backhaul delay.

12 Mobile Information Systems

6. Conclusion

V2X safety applications have time-sensitive characteristics,
and their application performance largely depends on the
effectiveness of the information sharing issues. Due to the
high mobility of vehicle nodes, service providers, such as
MEC servers and cloud servers, could not disseminate the
useful messages to vehicle nodes on time. Fortunately, a
reasonable calculation framework and effective transmission
guarantee measure are useful to solve the above problems.

MSCN framework, which uses public vehicles as mobile
service providers, could decrease the service migration rate
and maintain service continuity. On the other hand, al-
though the MDP model could be used to express service
migration progress, the vehicle motion features should be
considered in the construction of the MDP model.

In this paper, we use vehicle driving intention and re-
gional traffic conditions to express the vehicle’s mobile ten-
dency. A complex cost function, which considers both
transmission factor and migration cost, is defined. Simulation
results show that the proposed DIMDP model performs well.

In the future, we shall work on the vehicle motionmodel,
thus further refining our model and improving its
performance.

Data Availability

,e simulation data supporting the system performance
analysis can be obtained from https://github.com/lkw-sssy/
DIMDP-A-Driving-intention-based-MDP-service-migration-
model-under-MEC-MSCN-architecture.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is research was supported by the Special Key Project of
Chongqing Technology Innovation and Application De-
velopment under grant no. csct2021jscx-gksbX0057.

References

[1] D. Grewe, M. Wagner, M. Arumaithurai, I. Psaras, and
D. Kutscher, “Information-centric mobile edge computing for
connected vehicle environments: challenges and research di-
rections,” in Proceedings of the Workshop on Mobile Edge
Communications, pp. 7–12, Los Angeles, CA, USA, August 2017.

[2] Q. Han, X. Zhanga, J. Zhang et al., “Research on resource
scheduling and allocation mechanism of computation and
transmission under MEC framework,” in Proceedings of the
2019 IEEE Intelligent Transportation Systems Conference (ITSC),
pp. 437–442, IEEE, Auckland, New Zealand, October 2019.

[3] Q. Han, L. Lin, L. Zeng, J. Zhang, L. Ye, and K. Ling, “Research
on service migration and typical applications under MSCN
framework,” in Proceedings of the 2021 IEEE International
Intelligent Transportation Systems Conference, pp. 1023–1028,
IEEE, Indianapolis, IN, USA, October 2021.

[4] X. Yu, M. Guan, M. Liao, and X. Fan, “Pre-migration of
vehicle to network services based on priority in mobile edge
computing,” IEEE Access, vol. 7, pp. 3722–3730, 2019.

[5] S. Ge, M. Cheng, and X. Zhou, “Interference aware service
migration in vehicular Fog computing,” IEEE Access, vol. 8,
pp. 84272–84281, 2020.

[6] A. Nadembega, A. S. Hafid, and R. Brisebois, “Mobility
prediction model-based service migration procedure for
follow me cloud to support QoS and QoE,” in Proceedings of
the 2016 IEEE International Conference on Communications
(ICC), pp. 1–6, IEEE, Kuala Lumpur, Malaysia, May 2016.

[7] J. Xu, X. Ma, A. Zhou, Q. Duan, and S.Wang, “Path selection for
seamless service migration in vehicular edge computing,” IEEE
Internet of Cings Journal, vol. 7, no. 9, pp. 9040–9049, 2020.

[8] T. Taleb and A. Ksentini, “An analytical model for follow me
cloud,” in Proceedings of the 2013 IEEE Global Communica-
tions Conference (GLOBECOM), pp. 1291–1296, Georgia, GA,
USA, December 2013.

[9] A. Ksentini, T. Taleb, and M. Chen, “A Markov decision
process-based service migration procedure for follow me
cloud,” in Proceedings of the 2014 IEEE International Con-
ference on Communications (ICC), pp. 1350–1354, IEEE,
Sydney, Australia, June 2014.

[10] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud:
when cloud services follow mobile users,” IEEE Transactions
on Cloud Computing, vol. 7, no. 2, pp. 369–382, 2019.

[11] M.-A. Lèbre, F. LeMouël, and E. Ménard, “On the importance
of real data for microscopic urban vehicular mobility trace,” in
Proceedings of the 2015 14th International Conference on ITS
Telecommunications, pp. 22–26, ITST, Copenhagen, Den-
mark, December 2015.

[12] F. A. Silva, A. Boukerche, T. R. Silva, L. B. Ruiz, and
A. A. Loureiro, “A novel macroscopic mobility model for ve-
hicular networks,”Computer Networks, vol. 79, pp.188–202, 2015.

[13] O. Biham, A. A. Middleton, and D. Levine, “Self-organization
and a dynamical transition in traffic-flow models,” Physical
Review A, vol. 46, no. 10, pp. R6124–R6127, 1992.

[14] J. Eggert and F. Mueller, “A foresighted driver model derived
from integral expected risk,” in Proceedings of the 2019 IEEE
Intelligent Transportation Systems Conference (ITSC),
pp. 1223–1230, Auckland, New Zealand, October 2019.

140

DIMDP method under MSCN architecture
MDP service migration strategy without
driving intention under MSCN architecture

Always migration strategy under MSCN architecture

DIMDP method under pure MEC architecture

120

100

80

EF
R

(%
)

60

40

20

0
20 25 30 35

vehicle speed (m/s)
40 45

Figure 10: EFR vs. vehicle speed of four methods.

Mobile Information Systems 13

https://github.com/lkw-sssy/DIMDP-A-Driving-intention-based-MDP-service-migration-model-under-MEC-MSCN-architecture
https://github.com/lkw-sssy/DIMDP-A-Driving-intention-based-MDP-service-migration-model-under-MEC-MSCN-architecture
https://github.com/lkw-sssy/DIMDP-A-Driving-intention-based-MDP-service-migration-model-under-MEC-MSCN-architecture

Research Article
Joint Optimization for MEC Computation Offloading and
Resource Allocation in IoV Based on Deep
Reinforcement Learning

Jian Wang ,1 Yancong Wang ,1 and Hongchang Ke 2

1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2School of Computer Technology and Engineering, Changchun Institute of Technology, Changchun 130012, China

Correspondence should be addressed to Hongchang Ke; kehongchang1981@163.com

Received 18 June 2022; Accepted 13 July 2022; Published 13 August 2022

Academic Editor: Konglin Zhu

Copyright © 2022 Jian Wang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the Internet of Vehicle (IoV), the limited computing capacity of vehicles hardly processes the intensive computation tasks
locally. �e computation tasks can be o�oaded to multiaccess edge computing (MEC) servers for processing, where MEC
provides the required computing capacity to the nearby vehicles. In this paper, we consider a scenario where there are cooperation
and competition between vehicles, the o�oading decision of any vehicle will a�ect the decisions of the others, and the computing
resource allocation strategies by MEC will dynamically change. �erefore, we propose a joint optimization scheme for com-
putation o�oading decisions and computing resource allocation based on decentralized multiagent deep reinforcement learning.
�e proposed scheme learns the optimal actions to minimize the total weighted cost which is designed as the vehicles’ satisfaction
based on the type of stochastic arrival tasks and dynamic interaction between MEC server and vehicles within di�erent RSUs
coverages. �e numerical results show that the proposed algorithms based on decentralized multiagent deep deterministic policy
gradient (DDPG) which is named De-DDPG can autonomously learn the optimal computation o�oading and resource allocation
policy without a priori knowledge and outperform the other three baseline algorithms in terms of the rewards.

1. Introduction

With the development of wireless communication technology
and the rapid growth of vehicles, Internet of Vehicle (IoV) has
become one of the most important applications of the Internet
of �ings (IoT) [1, 2]. However, due to the limitation of the
computing resource of the vehicles, several tasks cannot be
executed locally within the required delay [3]. To solve this
problem, o�oading IoV tasks to mobile edge computing
(MEC) server is proposed as a feasible solution [4]. MEC is
close proximity to the mobile vehicles, supplying more su£-
cient computation resource to the o�oaded tasks [5, 6].

In recent years, many researches regarding MEC compu-
tation o�oading in IoV have been studied [7, 8]. Some re-
searchers have conducted to develop the optimization scheme in
computation o�oading under certain constraints, such as re-
ducing the delay, computation resource overhead, and energy
consumption [9–11]. Moreover, computation congestion that

a�ects the performance of MEC server and the load balance of
computation resource amongMEC server have been considered
into the computation o�oading problem [12]. Although MEC
server provides vehicles with the resource far beyond theirs, the
resource of the MEC server may also be insu£cient when
massive vehicles access to MEC server simultaneously. �ere-
fore, the rational resource allocation to optimize the perfor-
mance of various objectives is also a signi§cant issue of edge
computing o�oading [13–15]. Because of the high-speed mo-
bility of vehicles and the randomness of tasks, as well as the
cooperation and competition between vehicles in IoV, the
computation resource allocation policy of MEC server based on
di�erent o�oading decisions of vehicles has been discussed by
many researchers. By jointly optimizing resource allocation and
o�oading strategy in IoV, the overall cost of computation re-
source, energy, and the delay is minimized in [16–18]. However,
these methods require a large number of iterations to obtain a
satis§ed local optimum, which is not suitable for application

Hindawi
Mobile Information Systems
Volume 2022, Article ID 9230521, 11 pages
https://doi.org/10.1155/2022/9230521

mailto:kehongchang1981@163.com
https://orcid.org/0000-0003-0091-2918
https://orcid.org/0000-0002-0616-9953
https://orcid.org/0000-0003-0946-9289
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9230521

scenarios where the environment changes rapidly and decisions
need to be made in real time. Meanwhile, solving this type of
optimization problem is usually nonconvex and NP-hard.

Deep reinforcement learning (DRL) which is the combi-
nation of deep learning (DL) and reinforcement learning (RL)
can tackle the nonconvex optimization problem and has been
widely used as an effective approach to optimize different issues
including offloading decision-making and resource allocation
strategy [14, 19–23]. *e previous works make many efforts to
optimize task offloading in IoV. For example, deep Q-network
(DQN) is adopted in multiple vehicles offloading system to
obtain the optimized offloading decisions which maximize the
QoS of digital twinning-empowered IoV system [23]. Similar
work proposesmultiagent DQN-based computation offloading
scheme, in which the uncertainty environment is considered so
that the vehicles can make offloading decisions to achieve an
optimal long-term reward [24]. A dynamic task offloading
scheme based on Q-learning is implemented to minimize the
delay, energy consumption, and total overhead in IoV system
[25]. URLLC-aware task offloading algorithm based on deep
Q-learning is studied to maximize the throughput of vehicles
with satisfied constraints in [26]. Jointly considering the task
priority, vehicles’ service availability, and computation resource
sharing incentive, an optimal offloading policy based on soft
actor-critic (SAC) maximizes both expected reward and the
policy entropy of the offloading tasks in the dynamic vehicular
environment [27]. Moreover, DQN-based joint computation
offloading and task migration optimization are applied to
minimizing the total system cost in a 5G vehicle-aware MEC
network [28]. *e two-stage scheme is designed to joint op-
timization, where DQN is used in the first step to obtain the
offloading strategy and deep deterministic policy gradient
(DDPG) is utilized to generate the transmit power determi-
nation strategy of the vehicles [29]. None of the above re-
searches consider the joint optimization of offloading strategy
and computation resource allocation when multiple agents
interact in a dynamic IoV environment.

Different from the existing works, we propose a
decentralized multiagent deep reinforcement learning-based
method to solve the joint optimization of computation
offloading decision and resource allocation for MEC server
in IoV. *e objective of our work is to minimize the
weighted cost of multiagent. In summary, our main con-
tributions are as follows:

(1) We propose a IoV scenario supported byMEC server
for dynamic task offloading decision and compu-
tation resource allocation in the environment with
multiple RSUs cover multiple vehicles. In this co-
operative scenario, because of the mobility of mul-
tivehicle and the stochastic arrival tasks, the
computation offloading decision and resource allo-
cated to multiple RSUs and multiple vehicles change
in different time slots.

(2) Based on the proposed model, we consider both
offloading decision-making and computation re-
source allocation to gain the minimum weighted
cost, which is related to the end-to-end delay and
computation resource cost. Moreover, we formulate

the problem as a Markov decision process (MDP)
and design the state, action, and reward functions.

(3) In order to effectively solve the abovementioned
problem with continuous variables and meet the
requirement of convergence, a joint optimization
scheme based on decentralized multiagent DDPG
(De-DDPG) is proposed. *e simulation results
show that the convergence of our proposed algo-
rithm is verified and our proposed algorithm has
better performance than other three baseline
algorithms.

*e remaining of this paper is organized as follows: In
Section 2, an MEC framework with multiple RSUs and vehicles
is introduced, and we construct the network model, commu-
nicationmodel, and computationmodel. Section 3 describes the
problem statement of the joint optimization.*e solution based
on decentralized multiagent DDPG (De-DDPG) is proposed in
Section 4. In Section 5, the simulation results and analysis are
presented. Finally, we conclude this paper in Section 6.

2. System Model

2.1. NetworkModel. A three-layer Internet of Vehicle (IoV)
is considered in this paper (see Figure 1), which consists of
an MEC server, M roadside units (RSUs), and N vehicles on
a multilane road of length L.

*e MEC server is connected to M RSUs via the fiber-
optic link for receiving and transmitting the computation
tasks. We assume that the total computing resource of MEC
server is denoted as F. *e RSUs denoted by
M � 1, 2, . . . , M{ } locate along the road with the same
coverage range l. *erefore, we divide the road into M

segments, and all vehicles are randomly and independently
distributed in the segments with arrival rate λ. *e RSU is
responsible for forwarding messages between the MEC
server and the vehicles. A set of vehicles periodically send
messages to RSU within its communication range, which is
denoted as � 1, 2, . . . , N{ }. Vehicles have the same local
computing capacity which is determined by the onboard
unit (OBU) [30]. For each vehicle-i, it sends not only task
messages but also its driving characteristics pi, vi􏼈 􏼉, where pi

and vi represent its 1-D position and speed, respectively.
Here, we assume that the distances between vehicles follow
the exponential distribution and the speeds of the vehicles
are truncated Gaussian distributed, which is more appro-
priate for the actual situation of the road [31, 32]. In ad-
dition, we assume that each vehicle only processes one
computation task within the current time period. *e
computation task of each vehicle is denoted as
Ti � Ci, Din

i , Dout
i , tmax

i􏼈 􏼉, where Ci is the required compu-
tation capacity to complete the task, Din

i and Dout
i are the

data size of the input and output for computing, respectively,
and tmax

i is the maximum tolerable delay for the task
completion. Vehicle needs to execute a computation task
within a tolerable time period, and the task can be either
processed locally or offloaded to the MEC server. We define
the binary offloading strategy of vehicles as
X � xi|xi ∈ 0, 1{ }, i ∈ N􏼈 􏼉, where xi � 0 and xi � 1 means

2 Mobile Information Systems

that the vehicle-i decides to execute the computation tasks
locally or offloads the task to the MEC server, respectively.

Moreover, when the vehicle leaves the coverage of the
RSU, the vehicle will be disconnected from the RSU and can
no longer transmit data to the MEC server through the RSU.
*e time available by the vehicle before leaving the com-
munication range of RSU-j, j � ⌈pi/l⌉, j ∈M, i.e., sojourn
time, can be given as

t
soj
ij �

l⌈pi/l⌉ − pi

v
,

v �
Lλ
N

,

(1)

where v represents the vehicle’s equivalent speed and
min vi􏼈 􏼉≤ v≤max vi􏼈 􏼉, i ∈ N.

2.2. Communication Model. When the vehicles decide to
offload the task toMEC server, the vehicles will transmit data
toMEC server through the RSUs. Generally, the propagation
time of the fiber-optic transmission between RSUs and the
MEC server can be ignored [12]. We consider the V2I
communication between the vehicle and the RSU is based on
IEEE 802.11p in this work [33]. According to [34], the uplink
and downlink transmitting rate (rUL

ij , rDL
ij) of the wireless

communication between vehicle-i and its belonged RSU-j is
expressed as

r
UL/DL
ij �

D
in
i /D

out
i Njτij 1 − τij􏼐 􏼑

Nj− 1

1 − τij􏼐 􏼑
Njσ + T

success
ij Njτij 1 − τij􏼐 􏼑

Nj−1
+ 1 − 1 − τij􏼐 􏼑

Nj
− Njτij 1 − τij􏼐 􏼑

Nj−1
(RTS + AIFS + δ)

. (2)

where Nj is the number of vehicles which decide to offload
task to MEC server via RSU-j. τij represents the probability
that vehicle-i connects to the RSU-j in a random time slot. σ
is the duration of a time slot. RTS stands for request to send
interval, AIFS denotes the arbitration inter-frame spacing
interval, and δ expresses the propagation delay. Tsuccess

ij is
defined as the success transmission period between vehicle-i
and RSU-j, which is written as

T
success
ij � Φ +

D
in
i /D

out
i

ωjlog 1 + Pihij􏼐 􏼑
, (3)

where Φ is specific to the MAC protocol, and it equals
H + SIFS + δ +ACK + AIFS + δ + RTS + SIFS + δ + CTS +

SIFS + δ. H � PHYhead + MAChead represents the packet
header’s overhead. SIFS, ACK, and CTS stand for
short interface space interval, acknowledgment interval, and
CTS interval, respectively. ωj denotes the bandwidth of

RSU-j, Pi is the transmission power of vehicle-i, and hij

stands for the channel gain between vehicle-i and RSU-j.
*e uplink/downlink transmitting time under this sit-

uation is calculated as

t
mec
UL/DL �

D
in
i /D

out
i

r
UL/DL
ij

. (4)

And the two-way transmission time between vehicle and
RSU is given by

t
mec
trans � t

mec
UL + t

mec
DL . (5)

2.3. Computation Model. *e processing time is consid-
ered under two situations: the task is processed locally,
and the task is offloaded to the MEC server for
computing.

Ci, Di
in,

Di
out, ti

max

RSU-1 RSU-M

…

MEC : wired connection

: V2I communication

Task-i

vehicle-i
{pi, vi}

…

l l

L

Figure 1: *e system model of the MEC server and multivehicles.

Mobile Information Systems 3

2.3.1. Local Processing Model. When vehicle-i processes its
computation task locally (xi � 0), the processing time of
vehicle-i tloci is only dependent on its own computing ca-
pacity. *e local execution time tlocexe is formulated as

t
loc
i � t

loc
exe �

Ci

floc
. (6)

Here, floc is denoted as the vehicle’s computation capacity,
which is related to the vehicle’s CPU cycle frequency.

2.3.2. MEC Processing Model. When the task is offloaded to
the MEC server (xi � 1), the end-to-end delay of vehicle-i
includes the task execution time and the transmitting time.
*e execution time of vehicle-i offloading the task to MEC
server is given as

t
mec
exe �

Ci

f
mec
j

, (7)

where fmec
j denotes the computation capacity assigned to

RSU-j which connects to vehicle-i by the MEC server, and
fmec

j denotes the allocated CPU cycle frequency of RSU-j by
the MEC server. *e end-to-end delay between vehicle-i and
the MEC server is obtained by

t
mec
i � t

mec
exe + t

mec
trans. (8)

*e main notations and descriptions are described in
Table 1.

3. Problem Statement

In this section, the optimization problem is formulated by
jointly considering the offloading decision and resource al-
location with the aim of load balance and system cost
minimization. First of all, we define the cost function as
follows.

Cost function is considered to quantify the satisfaction
level of the vehicle’s offloading decision, which is inversely
related to the satisfaction and identified by the delay sen-
sitivity and the cost of computation resource. *e loga-
rithmic function is known as proportional fairness in many
researches [35], which can achieve load balance, and a
logarithm function is used to represent the cost function in
this paper. *e processing delay of a task is generally
considered to be inversely proportional to the satisfaction;
that is, the shorter the task processing delay, the higher the
satisfaction. In addition, if the task is completed within the
maximum tolerable delay, the satisfaction of the vehicle
should be non-negative. But once the completion processing
time of the task exceeds its maximum tolerable delay, the
processing result of the task will lose its value because the
tasks in IoV are extremely tolerant of delays. Here, the
penalty mechanism is brought into consideration. Another
metric in the cost function is the computation resource cost.
It is necessary to pay for the vehicle’s computation resource
when the vehicle processes the task locally. Furthermore,
when the task is offloaded to the MEC server, it takes the
vehicle’s corresponding cost for computation resources

allocated by the MEC server, which will also reduce the
satisfaction of the vehicle. *erefore, the cost function for
vehicle-i to process the task locally is given by

U
l
i �

βlog 1 + t
actual
i − t

loc
i􏼐 􏼑

+
􏼒 􏼓 +(1 − β)ρfloc, t

loc
i ≤ t

max
i ,

P, t
loc
i > t

max
i ,

⎧⎪⎪⎨

⎪⎪⎩

(9)

where β ∈ (0, 1) and 1 − β represent the weights of delay and
computation resource cost, respectively. *e weighted
function provides a flexible scheme for different applica-
tions’ specific requirements by adjusting the weight pa-
rameters. (z)+ � max(z, 0) ensures that Ul

i is non-negative.
ρ is the unit cost of the computing resource. And, P> 0
represents the penalty for the task that is not completed
within its maximum tolerable delay.

Similarly, the cost function of vehicle-i offloaded the task
to the MEC server for processing and can be expressed as

U
mec
i �

βlog 1+ t
actual
i −t

mec
i􏼐 􏼑

+
􏼒 􏼓+(1−β)ρf

mec
i , t

mec
i ≤t

actual
i ,

P, t
mec
i >t

actual
i .

⎧⎪⎪⎨

⎪⎪⎩

(10)

Because when the vehicle leaves the coverage of the RSU,
the vehicle will disconnect to the MEC server through the
RSU regardless of whether the task is processed or not.
tactuali � min t

soj
ij , tmax

i􏽮 􏽯 is used to depict the task’s actual
tolerant delay.

Combining equations (9) and (10), the cost function of
vehicle-i can be expressed as

Ui �
U

loc
i , if xi � 0,

U
mec
i , if xi � 1.

⎧⎨

⎩ (11)

*is work aims to minimize the system cost by jointly
determining the offloading decisions of vehicles and the
computation resource allocation of the MEC server. *e
optimization problem is formulated as

min
X,F

􏽘

N

i�1
Ui,

s.t.C1: 0≤floc <F,

C2: 0≤f
mec
i ≤ xiF,∀i ∈N,∀j ∈M,

C3: 􏽘
M

j�1
f
mec
i ≤F, j ∈M,

C4: xi � 0, 1{ }, i ∈ N.

(12)

Constraint C1 ensures that the available local compu-
tation resource is non-negative and less than the MEC
server. C2 is the constraint of the available computation
resource assigned for each vehicle-i within the coverage of
RSU-j by the MEC server. *e sum of the computation
resource allocated to all the offloading tasks through RSU-j
does not exceed the total computation resource of the MEC

4 Mobile Information Systems

server in the constraint C3. C4 shows the binary offloading
decision constraint for vehicle’s task.

Since the cost function in the above problem involves the
end-to-end delay, which is related to the indicators of the
stochastic arrival tasks Ci, Din

i , Dout
i , the computing resource

is allocated to RSU-j fmec
j and the relative position of vehicle

to RSU based on vehicle’s driving characteristics pi, vi.
*erefore, the computation complexity is an additive change
on all of tasks and the vehicle characteristics. In addition, the
computation complexity also depends on the number of the
generated tasks. In this optimal problem, the offloading
decisions X and the allocated computation resource F are
two main challenges which make the problem into a mixed-
integer nonlinear programming problem that is generally
nonconvex and NP-hard [36]. We adopt a multiagent deep
reinforcement learning approach to feasibly solve the
problem of jointly optimizing the computation offloading
decision and computation resource allocation.

4. DRL for Computation Offloading and
Resource Allocation

4.1. Scheme Design. We assume that the state is determined
by the arrival tasks and the vehicle’s characteristics which are
updated in each step. *e state of the next time slot is related
to the state of the current time slot. *erefore, the formu-
lated problem can be modeled as a Markov decision process

(MDP). MDP is the iterative process in which agents observe
the states in state space from the environment, select an
action from action space, obtain an immediate reward se-
quentially, and then transit to another state, which can be
represented as a tuple <S, A, Ps,a, R, c> , where S is state
space, A is action space, Ps,a is transition probability space, R
is reward space, and c is discount factor. MDP policy is
completely dependent on the current state. *e state space is
designed to accommodate the proposed IoV environment.
Each vehicle acts as the agent. At first, we define the state
space, action space, and reward space as follows.

4.1.1. State Space. *e state at time slot t is corresponding to
the required computation capacity to complete the task Ci,
the input data size of the task Din

i , the output data size of the
task Dout

i , the position of vehicle pi, the speed of vehicle vi,
and the computing resource allocated to RSU-j. *us, the
state si(t)ϵS can be described as

si(t) � Ci(t), D
in
i (t), D

out
i (t), pi(t), vi(t), f

mec
j (t)􏽮 􏽯∀i∈N,∀j∈M.

(13)

4.1.2. Action Space. *e action is the joint decision-making
for the computation offloading and the resource allocation.
*e vehicle needs to decide to process the task locally or

Table 1: Notation description.

Notation Description
L *e length of the selected road
l *e coverage range of the RSU
M, M Set/number of RSUs
N, N Set/number of vehicles
i,j *e vehicle index i ∈N/the RSU index j ∈M
λ *e arrival rate of vehicles
pi, vi Vehicle’s position/speed

Ci, Din
i , Dout

i , tmax
i

Required computation resource/input data size/output data size/maximum
tolerable delay of the computation task Ti

t
soj

ij *e time available by the vehicle before leaving the communication range of RSU--j
v *e equivalent speed of vehicles
rUL

ij , rDL
ij *e available uplink/downlink transmission rate of vehicle-i

Nj *e number of vehicles offloads task to MEC server via RSU-j
τij *e probability of vehicle-i connects to the RSU-j in a random time slot
σ *e duration of a time slot
δ *e propagation delay
Tsuccess

ij *e success transmission period between vehicle-i and RSU-j
ωj *e bandwidth of RSU-j
Pi *e transmission power of vehicle-i
hij *e channel gain between vehicle-i and RSU-j
tmec
UL , tmec

DL *e uplink/downlink transmitting time
tmec
trans *e two-way transmission time between vehicle and RSU

xi, X *e binary offloading strategy of vehicle-i/vehicles
tlocexe, tmec

exe *e task execution time locally/in the MEC server
tloci , tmec

i Total time for processing task Ti locally/in the MEC server
floc, fmec

j , F Computing resource of the vehicle/allocated to MEC-j/the MEC server
Ul

i, Umec
i , Ui *e cost of vehicle-i locally/in MEC processing/vehicle-i under different task offloading decisions

P *e penalty for offloading failure
β *e weighted parameters of delay and computation resource cost
tactuali *e task’s actual tolerant delay
ρ *e unit cost of the computing resource of the MEC server

Mobile Information Systems 5

offload to theMEC server. If the task is offloaded to theMEC
server, the computation resource is allocated to the vehicle
by the MEC server via the linked RSU. *erefore, the action
ai(t)ϵA is composed of the binary offloading decision and
the computation resource allocated to vehicle-i, depicted as

ai(t) � xi(t), f
mec
i (t)􏼈 􏼉∀i∈N􏼈 􏼉. (14)

4.1.3. Reward Space. We assume that all vehicles with the
same functionality can share the same reward function. Each
agent selects its action based on the reward to obtain the
maximum global reward.*e long-termweighted sum of the
cost function of all the tasks is considered as the objective,
and we define the below function to maximize the reward
function (minimize the cost function) during the whole time
period T.

Ri(t) � − lim
T⟶∞

1
T

􏽘

T

t�1
Ui(t)|si(t). (15)

*e average rewards of all agents in time slot t can be
calculated as

R(t) �
1
N

􏽘

N

i�1
Ri(t),∀i ∈N. (16)

Minimizing the weighted cost function of the proposed
model amounts to maximizing the average cumulative re-
ward. *e expectations of future rewards can be used to
measure whether the selected action is appropriate or not.
*e reward is the return of the selected action based on the
state in time slot t.*erefore, the cumulative reward which is
generally indicated as the weighted expectation is maximized
to select the optimal actions, formulated as

Q
π
(s(t), π(t)) � E R(s(t), a(t)) + cQ

π
(s(t + 1), π(t + 1))􏼂 􏼃,

(17)

where c ∈ [0, 1] is the discount factor, π is the policy, and π∗
is the optimal policy. Q∗(s, a) � maxπ∗Qπ(s, π) corresponds
to the agents’ optimal policy π∗ � π∗1 , π∗2 , . . . , π∗N􏼈 􏼉.

4.2. Optimal Scheme Based on Decentralized DDPG. After
formulating the MDP, we propose the optimization strategy
based on the decentralized multiagent DDPG (De-DDPG)
in this subsection, in which each agent is initialized with four
deep neural networks (DNNs): the critic network, the actor
network, and two copies of the actor and critic networks as
target networks, respectively (see Figure 2) [37]. Each agent’s
state, action, and reward are obtained and used to train the
DNNs during the training procedure. After training, each
agent can select the next step strategy by its own actor
network according to the local observation from the
environment.

As shown in Algorithm 1, the process of De-DDPG
algorithm can be divided into three parts: initialization,
interaction, and update. At the beginning of the algorithm,
four networks of each agent and the replay buffer B are

initialed, where the critic network is Q(s, a|θQ
i), the actor

network is μ(s|θμi), the target critic network is Q′(s, a|θQ′
i),

and the target actor network is μ′(s|θμ′i), respectively. In
addition, the replay buffer can be large because the proposed
De-DDPG is an off-policy algorithm, which allows the al-
gorithm to benefit from learning across a set of uncorrelated
transitions [38]. In the interaction procedure, for each ep-
isode, a sampled noise from the random noise processNt is
added to an exploration policy μ′ into the actor policy. *e
reason for introducing random noise is to solve the problem
of insufficient exploration of the environment by the output
actions in deterministic policy algorithms. *e Orn-
stein–Uhlenbeck process is used to generate temporally
correlated exploration for exploration efficiency. *en, the
actions interact with the environment and obtain the cor-
responding rewards and the next step states. According to
the observation, the transitions (si(t), ai(t), Ri(t), si(t + 1))

store in the replay buffer B. When updating, a randommini-
batch of Z transitions is sampled from the replay buffer.
*en, update each agent’s critic network, actor network, and
two target networks in turn. Loop through each episode until
the algorithm ends. In the update process, the critic network
Q(s, a|θQ

i) is updated by minimizing the loss L(θQ) in Al-
gorithm 1 which is the approximation function of other
agent policy by each agent. Here, yi is the predication of the
next action in target actor network in formula (17).*e actor
network μ(s|θμi) is updated by using the sampled policy
gradient ∇θμJ in Algorithm 1 which is the unbiased esti-
mation of the policy gradient expectation calculated by the
mini-batch transitions according to Monte Carlo method.
After training the mini-batch transitions and updating the
weights of critic network and actor network (θQ

i and θμi), the
weights of two target networks for each agent (θQ′

i and θμ′i)
can be soft updated as a running average algorithm, which is
shown in Algorithm 1, respectively.

5. Numerical Results

*is section describes the comprehensive numerical simu-
lation analysis from simulation setup, simulation compar-
ison, and simulation results.

5.1. Simulation Setup. Firstly, we evaluate and verify our
proposed De-DDPG by TensorFlow 1.13.1. A personal
computer with a RTX2070 GPU and 8GB video memory is
used to train and test De-DDPG.

*ere are 20 vehicles driving on the road, 4 RSUs are
located at the stationary region on the roadside, and anMEC
server directly connects with RSUs.*at is to say, 2 groups of
RSUs are set to serve all vehicles. One RSU group includes
the main RSU and a secondary RSU, and the purpose is to
prevent the main RSU from being abnormal due to accidents
(such as power failure and communication blockage).
*erefore, N � 20, M � 4. *e required computation re-
source is set as Ci � 0.54 (G cycles/Mbits). *e size of arrival
tasks follows uniform distribution Din

i ∼ U(1.6, 4.6) Met-
aBits. *e arrival probability of tasks is 0.45. *e maximum
tolerable delay of the computation task is set as tmax

i � 4 time

6 Mobile Information Systems

slots. One time slot t ∈ T is set to t � 1 ms. *e uplink
transmission rate of vehicle-i rULij is between 0.85 and 0.95
Mbits per time slot. *e bandwidth of RSU ωj � 10MHz.
*e transmission power for vehicle-i is Pi � 1W. *e max
computation resource allocated to RSU-j is 3.8 gigacycles.
*e computation resource of each vehicle is 0.5 gigacycles.

In terms of each vehicle-i (i ∈ N), the neural networks
(two actor networks and two critic networks) for De-DDPG
are composed of four layers, i.e., an input layer and two fully
connected layers. Table 2 illustrates the parameters and
values.

5.2. Simulation Comparison. For verifying the performance
of the proposed DE-DDPG, three benchmark algorithms are
set: centralized deep deterministic policy gradient (Ce-
DDPG), all tasks offloaded to RSU(A-RSU), and all tasks
executed by local processor (A-LP), which are described as
follows:

(1) Ce-DDPG: on the MEC side, a centralized controller
captures global information such as tasks generated
from vehicles, computation, and communication
resources of RSUs. *at is to say, there is only one
agent which interacts with the MEC environment. In

order to improve the convergence of Ce-DDPG, the
allocated computation resources by all RSUs are the
same.*e structure of the neural network is the same
as each sub-network of De-DDPG.

(2) A-RSU: all tasks from vehicles are offloaded to RSU
in the corresponding coverage region. Furthermore,
the computation resources allocated for each vehicle
are the same.

(3) A-LP: all tasks are executed by the local processor of
the vehicle.

5.3. Simulation Results. In this section, we analyze the
simulation results in detail from the two aspects: the con-
vergence of proposed De-DDPG and the advantages of De-
DDPG compared to three baseline algorithms.

In terms of De-DDPG’s convergence, the average cu-
mulative reward of De-DDPG in one period (the whole time
slots) for each episode is formulated.

Figure 3 shows the convergence of proposed De-DDPG
with different critics’ learning rate α. *e choice of learning
rates α can obviously affect the convergence effect and speed
of De-DDPG. From Figure 3, it can be observed that De-
DDPG cannot be convergent when α � 0.01. However, from

Environment

Random
Noise

So� Update
θ1

μʹ

So� Update
θN

μʹ

Policy Gradient
w.r.t θ1

μ

Policy Gradient
w.r.t θN

μ

Q Gradient
w.r.t θ1

Q

Q Gradient
w.r.t θN

Q

Update θ1
Q

Update θN
Q

Update θ1
μ

Update θN
μ

So� Update
θ1

Qʹ

So� Update
θN

Qʹ

a1 (t)

aN (t)

μ (s1(t))

μ (sN(t))

s1 (t), r1 (t)

s1 (t), a1 (t)

sN(t), aN(t)

μʹ (s1(t + 1))

μʹ (sN(t + 1))

Random
Noise

…Experience
Replay Buffer

Target Policy Network Target Q Network

Actor

Store
s1 (t), a1 (t),

r1 (t), s1 (t + 1)
Sample mini-batch

(si (t), ai (t), ri (t), si (t + 1))

Store
sN (t), aN (t),

rN (t), sN (t + 1)

sN (t), rN (t)

Critic

Q NetworkPolicy Network

Optimizer Optimizer

Agent-1

Target Policy Network Target Q Network

Actor Critic

Q NetworkPolicy Network

Optimizer Optimizer

Agent-N

yN

y1

1

1

2

2

3

3

5

5

5

5

5

5

6

6

4

7

7

7

7

7

7

8

8

99

9 9

θ1J(μ)

θNJ(μ)

Figure 2: Structure of the proposed multiagent DDPG (De-DDPG) scheme.

Mobile Information Systems 7

the blue curve when α � 0.0001, although De-DDPG can be
eventually convergent, the convergence speed is too slow to
influence the performance of De-DDPG. *erefore, we set
α � 0.001 because De-DDPG is more stable. In terms of
actor’s learning rate, we set α′ � 0.0001.

fmec
j is the total computation resources preallocated to

RSU-j from the MEC server. To ensure the fairness of
computation resources allocation and the robustness of the
proposed De-DDPG, we periodically update the allocated
computation resources of each RSU by adding the fluctu-
ation volatility rate. As shown in Figure 4, when the volatility
rate is set to 1, 3, 5, the convergence and performance of De-
DDPG are different. When λj � 1, the performance of De-
DDPG is better than the other two curves. However, the
stability of De-DDPG is slightly worse. As the volatility rate
increases, the performance of De-DDPG decreases, but we
can see that when the volatility rate is set to 3, the stability
and convergence of the De-DDPG are optimal.

Figure 5 reveals the convergence of De-DDPG with
different control parameters ρ. From formula (10), the
greater the ρ is, the greater the cost is (the less the reward is).
Although the average cumulative rewards of De-DDPG are
worst when ρ � 0.08, the stability is much better than that of
the curves when ρ � 0.04 and ρ � 0.06. From the curves
shown in Figure 5, as the control parameter ρ increases, the
performance of De-DDPG declines less and less. However,
when ρ � 0.08, the convergence effect and training speed of
De-DDPG are obviously improved. *erefore, we set the
control parameter for the cost of computation resource ρ �

0.08 in this paper.
Furthermore, Figures 6–8 will verify the performance

and advantages of the proposed De-DDPG compared to
other baselines Ce-DDPG, A-RSU, and A-LP. *e average
cumulative reward of De-DDPG for all episodes (1000 ep-
isodes) is introduced to show the performance of four
algorithms.

Figure 6 illustrates the comparison of four algorithms
with the different numbers of arrival vehicles. When the
number of vehicles N within the coverage region of each
RSU is 6 or 8, because the computation resources of each
RSU are sufficient to meet the computational demands of the
vehicles for all generated tasks, the performance of De-
DDPG, Ce-DDPG, and A-RSU is not significantly different.
In terms of A-LP, regardless of the number of vehicles, its
local processing ability remains unchanged, and the com-
putation resources of RSUs have no effect on its perfor-
mance. On the contrary, because the computation ability of
the local processor for vehicles is insufficient for arrival tasks,
a large number of penalties P in each episode will be in-
curred due to the incomplete tasks, thus affecting the average

Randomly initialize critic network Q(s, a|θQ
i) and actor μ(s|θQ

i) with weights θQ
i and θQ

i

Initialize target network Q′ and μ′ with weights θQ′
i ←θ

Q
i , θ

μ′
i ←θ

μ
i

Initialize replay buffer B

for for episode k � 1, 2, . . . , K do
Initialize a random process Ns foe action exploration
Receive initial observation state S � si(1), si(2), . . . si(N)􏼈 􏼉

for i � 1, 2, . . . , Ndo
for t � 1, 2, . . . , Tdo

Select action ai(t)μ(st
i |θ

μ
i) + Ns according to the current policy and exploration noise Ns

Execute action ai(t) and observe reward Ri and observe the next state si(t + 1)

Store all transitions (si(t), ai(t)Ri(t), si(t + 1)) in B

Sample a random mini-batch of Z transitions si(t), ai(t)Ri(t), si(t + 1)􏼈 􏼉 from B

Set
yi � Ri(t) + cQπ(si(t), ai(t)|θQ)|

ak+1′
i

�μ′(sk�t
i

)
Update critic network Q(s, a|θQ) by minimizing the loss

L(θQ) � 1/Z􏽐I(yi − Qμ(si, ai(t)|θQ
i))2

Update the actor policy by using the sampled policy gradient
∇θa

i
J ≈ 1/Z􏽐i∇aQ(si(t), ai(t)|θQ

i)|ai�μ(si)
∇θμ

i
μ(si(t)|θμi)

Update the target networks for each agent i:
θQ′

i ←ηθ
Q
i + (1 − η)θQ′

i ,

θμ′i ←ηθ
μ
i + (1 − η)θμ′i .

end for
end for

end for

ALGORITHM 1: Decentralized multiagent DDPG optimization method.

Table 2: Main hyperparameters of the De-DDPG.

Parameters Value
Size of the first hidden layer for actor and critic 300
Size of the second hidden layer for actor and critic 300
Learning rate of actor and critic α′/α 0.0001/0.001
Size of experienced memory B 20000
Parameters for OU noise θ, μ, σ 0.15, 0.15, 0.10
Discount factor c 0.95
Penalty for failed task execution P 8
Total number of all episodes K 1000
Total time periods of one episode T 110

8 Mobile Information Systems

cumulative reward of A-LP. However, when the number of
vehicles N within the coverage region of each RSU is greater
than 10, the computation resources of RSUs are insufficient
for completing all tasks generated by all vehicles, and the
performance of four algorithms degrades significantly. From
the curves, the performance of the proposed De-DDPG is
better than that of the other three algorithms.

*e uplink transmission rate of the wireless commu-
nication between vehicle-i and its belonged RSU-j rULij can
influence the performance of four algorithms. Figure 7
shows the performance of four algorithms with different
uplink transmission rates rULij . We can see that A-LP is not
influenced by the transmission rate rULij because A-LP ex-
ecutes all tasks by its own local processor. For De-DDPG,
Ce-DDPG, and A-RSU, different uplink transmission rates
rULij mean different transmission delays tmec

UL which affairs the

average cumulative rewards of all three algorithms. As
shown in Figure 7, the performance of De-DDPG is obvi-
ously better than that of Ce-DDPG and A-RSU due to the
number of agents participating in training, offloading de-
cisions, and the ratio of resource allocation.

In Figure 8, we describe the comparison of four algo-
rithms with different trade-off coefficients β for latency cost.
From formula (10), β is the weighted parameter of delay cost
and 1 − β computation resource cost. In terms of A-LP, since
the computational resource cost is fixed, the performance of
A-LP decreases as the trade-off coefficient β increases.
However, the other three algorithms consider the trade-off
between delay cost and computation resource cost, so the
performance of De-DDPG, Ce-DDPG, and A-RSU varies

�e index of episodes
0 200 400 600 800 1000

Av
er

ag
e c

um
ul

at
iv

e r
ew

ar
ds

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

De-DDPG-- ρ = 0.04
De-DDPG-- ρ = 0.06
De-DDPG-- ρ = 0.08

Figure 5: Convergence of proposed De-DDPG with different
control parameters ρ.

-1

-2

-3

-4

-5

-6

Av
er

ag
e c

um
ul

at
iv

e r
ew

ar
ds

6 7 8 9 10 11 12 13 14
�e number of vehicles for each RSU

De-DDPG
Ce-DDPG
A-RSU
A-LP

Figure 6: Comparison on all algorithms with the number of
vehicles N.

�e index of episodes

De-DDPG-- α = 0.01
De-DDPG-- α = 0.001
De-DDPG-- α = 0.0001

Av
er

ag
e c

um
ul

at
iv

e r
ew

ar
ds

0 200 400 600 800 1000
-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

Figure 3: Convergence of proposed De-DDPG with different
learning rates α.

�e index of episodes
0 200 400 600 800 1000

Av
er

ag
e c

um
ul

at
iv

e r
ew

ar
ds

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

De-DDPG-- λj = 1
De-DDPG-- λj = 3
De-DDPG-- λj = 5

Figure 4: Convergence of proposed De-DDPG with different
volatility rates λj.

Mobile Information Systems 9

with the changing of β. As shown in Figure 8, in terms of the
average cumulative rewards, the performance of De-DDPG
outperforms that of Ce-DDPG, A-RSU, and A-LP no matter
the size of β.

6. Conclusions

We propose a computation offloading and resource allo-
cation scheme based on DRL for the MEC-assisted multi-
agent with stochastic arrival task model in the IoV
environment. To minimize the total weighted cost of the
proposed model, we adopt a decentralized multiagent
DDPG-based approach (De-DDPG) to solve the nonconvex
joint optimization problem. *e simulation results

demonstrate that our proposed approach has a stable
learning capacity and effectively learns the optimal off-
loading policy and resource allocation to obtain the maxi-
mum reward (minimum cost). Compared with the three
baseline algorithms, our proposed algorithm has better
performance for various parameter configurations. In this
paper, the binary offloading decision is used and the task
priority is not considered. We will improve these two points
in our future work, such as considering partial offloading
and task prioritization in this joint optimization problem.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by China National Natural Science
Foundation (61572229 and 6171101066).

References

[1] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibanez,
“Internet of vehicles: architecture, protocols, and security,”
IEEE Internet of >ings Journal, vol. 5, no. 5, pp. 3701–3709,
2018.

[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A
survey on internet of *ings: architecture, enabling tech-
nologies, security and privacy, and applications,” IEEE In-
ternet of >ings Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[3] O. Kaiwartya, A. H. Abdullah, Y. Cao et al., “Internet of
vehicles: motivation, layered architecture, network model,
challenges, and future aspects,” IEEE Access, vol. 4,
pp. 5356–5373, 2016.

[4] J. Lin, W. Yu, X. Yang, P. Zhao, H. Zhang, and W. Zhao, “An
edge computing based public vehicle system for smart
transportation,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 11, pp. 12635–12651, 2020.

[5] K. Zhu, Z. Chen, Y. Peng, and L. Zhang, “Mobile edge assisted
literal multi-dimensional anomaly detection of in-vehicle
network using LSTM,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 4275–4284, 2019.

[6] J. Lin, L. Huang, H. Zhang, X. Yang, and P. Zhao, “A novel
lyapunov based dynamic resource allocation for UAVs-
assisted edge computing,” Computer Networks, vol. 205, no. C,
pp. 108710–111286, 2022.

[7] S. Wan, R. Gu, T. Umer, K. Salah, and X. Xu, “Toward off-
loading internet of vehicles applications in 5G networks,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 7, pp. 4151–4159, 2021.

[8] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: a promising network
paradigm with predictive off-loading,” IEEE Vehicular
Technology Magazine, vol. 12, no. 2, pp. 36–44, 2017.

[9] Y. Wang, P. Lang, D. Tian et al., “A game-based computation
offloading method in vehicular multiaccess edge computing

The tradeoff parameter
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Av
er

ag
e c

um
ul

at
iv

e r
ew

ar
ds

-1.5

-2.0

-2.5

-3.0

-3.5

De-DDPG
Ce-DDPG
A-RSU
A-LP

Figure 8: Comparison on all algorithms with different trade-off
coefficients β.

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
�e uplink transmission rate between vehicle and RSU

Av
er

ag
e c

um
ul

at
iv

e r
ew

ar
ds

-1.5

-2.0

-2.5

-3.0

-3.5

De-DDPG
Ce-DDPG
A-RSU
A-LP

Figure 7: Comparison on all algorithms with different uplink
transmission rates rULij .

10 Mobile Information Systems

networks,” IEEE Internet of >ings Journal, vol. 7, no. 6,
pp. 4987–4996, 2020.

[10] J. Zhou, D. Tian, Z. Sheng, X. Duan, and X. Shen, “Distributed
task offloading optimization with queueing dynamics in
multiagent mobile-edge computing networks,” IEEE Internet
of >ings Journal, vol. 8, no. 15, pp. 12311–12328, 2021.

[11] H. Wang, Z. Lin, K. Guo, and T. Lv, “Computation offloading
based on game theory in MEC-assisted V2X networks,” in
Proceedings of the 2021 IEEE International Conference on
CommunicationsWorkshops (ICCWorkshops), Montreal, QC,
Canada, June 2021.

[12] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in
vehicular edge computing networks: a load-balancing solu-
tion,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 2, pp. 2092–2104, 2020.

[13] G. Wang, F. Xu, and C. Zhao, “QoS-enabled resource allo-
cation algorithm in internet of vehicles with mobile edge
computing,” IET Communications, vol. 14, no. 14,
pp. 2326–2333, 2020.

[14] H. Ye, G. Y. Li, and B. H. F. Juang, “Deep reinforcement
learning based resource allocation for V2V communications,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 4,
pp. 3163–3173, 2019.

[15] G. Hong, W. Su, Q. Wen, and P. L. Wu, “RAVEC: an optimal
resource allocation mechanism in vehicular MEC systems,”
Journal of Information Science and Engineering, vol. 36, no. 4,
pp. 865–878, 2020.

[16] H. Zhang, Z. Liu, S. Hasan, and Y. Xu, “Joint optimization
strategy of heterogeneous resources in multi-MEC-server
vehicular network,” Wireless Networks, vol. 28, no. 2,
pp. 765–778, 2022.

[17] H. Zhang, Z. Wang, and K. Liu, “V2X offloading and resource
allocation in SDN-assisted MEC-based vehicular networks,”
China Communications, vol. 17, no. 5, pp. 266–283, 2020.

[18] W. Fan, J. Liu, M. Hua, F. Wu, and Y. Liu, “Joint task off-
loading and resource allocation for multi-access edge com-
puting assisted by parked and moving vehicles,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 5,
pp. 5314–5330, 2022.

[19] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching,
and computing for connected vehicles: a deep reinforcement
learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 67, no. 1, pp. 44–55, 2018.

[20] Z. Ning, Y. Li, P. Dong et al., “When deep reinforcement
learning meets 5G-enabled vehicular networks: a distributed
offloading framework for traffic big data,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 2, pp. 1352–1361, 2020.

[21] S. Xiao, S. Wang, J. Zhuang, T. Wang, and J. Liu, “Research on
a task offloading strategy for the internet of vehicles based on
reinforcement learning,” Sensors, vol. 21, no. 18,
pp. 6058–6067, 2021.

[22] T. Liu, B. Tian, Y. Ai, L. Li, D. Cao, and F. Y. Wang, “Parallel
reinforcement learning: a framework and case study,” IEEE-
CAA JOURNAL OF AUTOMATICA SINICA, vol. 5, no. 4,
pp. 827–835, 2018.

[23] X. Xu, B. Shen, S. Ding et al., “Service offloading with deep
Q-network for digital twinning empowered internet of ve-
hicles in edge computing,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 2, pp. 1414–1423, 2022.

[24] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang,
“Multiagent deep reinforcement learning for vehicular
computation offloading in IoT,” IEEE Internet of >ings
Journal, vol. 8, no. 12, pp. 9763–9773, 2021.

[25] D. Zhang, L. Cao, H. Zhu, T. Zhang, J. Du, and K. Jiang, “Task
offloading method of edge computing in internet of vehicles
based on deep reinforcement learning,” Cluster Computing,
vol. 25, no. 2, pp. 1175–1187, 2022.

[26] C. Pan, Z. Wang, Z. Zhou, and X. Ren, “Deep reinforcement
learning-based URLLC-aware task offloading in collaborative
vehicular networks,” China Communications, vol. 18, no. 7,
pp. 134–146, 2021.

[27] J. Shi, J. Du, J. Wang, J. Wang, and J. Yuan, “Priority-aware
task offloading in vehicular fog computing based on deep
reinforcement learning,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 16067–16081, 2020.

[28] Z. Wu and D. Yan, “Deep reinforcement learning-based
computation offloading for 5G vehicle-aware multi-access
edge computing network,” China Communications, vol. 18,
no. 11, pp. 26–41, 2021.

[29] H. Yang, Z. Wei, Z. Feng, X. Chen, Y. Li, and P. Zhang,
“Intelligent computation offloading for MEC-based cooper-
ative vehicle infrastructure system: a deep reinforcement
learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 71, no. 7, pp. 7665–7679, 2022.

[30] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation off-
loading and resource allocation for cloud assisted mobile edge
computing in vehicular networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 7944–7956, 2019.

[31] N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and
O. Tonguz, “Routing in sparse vehicular ad hoc wireless
networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 25, no. 8, pp. 1538–1556, 2007.

[32] S. Durrani, X. Zhou, and A. Chandra, “Effect of vehicle
mobility on connectivity of vehicular ad hoc networks,” in
Proceedings of the 2010 IEEE 72nd Vehicular Technology
Conference - Fall, 2010.

[33] C. Han, M. Dianati, R. Tafazolli, and R. Kernchen,
“*roughput analysis of the IEEE 802.11p enhanced dis-
tributed channel access function in vehicular environment,”
in Proceedings of the 2010 IEEE 72nd Vehicular Technology
Conference (VTC 2010-Fall), Ottawa, Canada, December 2010.

[34] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load bal-
ancing and offloading in vehicular edge computing and
networks,” IEEE Internet of >ings Journal, vol. 6, no. 3,
pp. 4377–4387, 2019.

[35] Z. Su, Y. Hui, and T. H. Luan, “Distributed task allocation to
enable collaborative autonomous driving with network
softwarization,” IEEE Journal on Selected Areas in Commu-
nications, vol. 36, no. 10, pp. 2175–2189, 2018.

[36] K. Zhang, Y. Mao, S. Leng et al., “Energy-efficient offloading
for mobile edge computing in 5G heterogeneous networks,”
IEEE Access, vol. 4, pp. 5896–5907, 2016.

[37] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and
I. Mordatch, “Multi-Agent Actor-Critic for Mixed Cooper-
ative-Competitive Environments,” 2018, https://arxiv.org/
abs/1706.02275.

[38] T. P. Lillicrap, J. J. Hunt, A. Pritzel, D. Silver, and D. Wierstra,
“Continuous Control with Deep Reinforcement Learning,”
2019, https://arxiv.org/abs/1509.02971.

Mobile Information Systems 11

https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1509.02971

Research Article
A Method of Multi-UAV Cooperative Task Assignment Based on
Reinforcement Learning

Xiaohu Zhao ,1,2 Hanli Jiang ,1 Chenyang An ,1 Ruocheng Wu ,1 Yijun Guo ,1

and Daquan Yang 1

1School of Information and Telecommunication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100876, China
2China Academic of Electronics and Information Technology, Beijing 100041, China

Correspondence should be addressed to Yijun Guo; guoyijun@bupt.edu.cn and Daquan Yang; ydq@bupt.edu.cn

Received 26 April 2022; Accepted 29 June 2022; Published 12 August 2022

Academic Editor: Adarsh Kumar

Copyright © 2022 Xiaohu Zhao et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the increasing complexity of UAV application scenarios, the performance of a single UAV cannot meet the mission
requirements. Many complex tasks need the cooperation of multiple UAVs. How to coordinate UAV resources becomes the key to
mission completion. In this paper, a task model including multiple UAVs and unknown obstacles is constructed, and the model is
transformed into a Markov decision process (MDP). In addition, considering the in�uence of strategies among UAVs, a
multiagent reinforcement learning algorithm based on SAC algorithm and centralized training and decentralized execution
framework, MA-SAC (Multi-Agent Soft Actor-Critic), is proposed to solve the MDP. Simulation results show that the algorithm
can e�ectively deal with the task allocation problem of multiple UAVs in this scenario, and its performance is better than other
multiagent reinforcement learning algorithms.

1. Introduction

Unmanned aerial vehicle, also known as UAV, has the
characteristics of strong mobility, low safety risk coe�cient,
no need for personnel to take o�, repeatability, and so on.
UAV was �rst used in military �elds [1], such as reconnais-
sance, target strike, air earlywarning, and electronic jamming.
In recent years,UAVtechnology is developing rapidly, the size
of UAV is decreasing, and the cost is getting lower and lower.
�erefore, UAV is more and more widely used in civil �elds
such as sensing [2], cargo transportation, communication
relay [3], �re monitoring, and aerial mapping.

With the increasingly complex application scenarios,
such as the combination with the Internet of vehicles [4], a
single UAV cannot e�ectively complete complex and diverse
tasks. It is important to make multi-UAV perform tasks
collaboratively not only to meet the requirement of com-
plicated scenarios but also to make the accomplishment of
tasks to cause less time-and-resource consumption.

Task planning is the most important part for the co-
operative execution of multi-UAV, and task allocation is the

basis of task planning. Task assignment refers to the complex
task environment existing in several UAVs; after taking full
account of the energy consumption, load, nature, role, and
other constraints of UAVs, the coordination between UAVs
and various resources is coordinated to assign one or more
orderly tasks to each UAV, so as to minimize the time and
cost and ensure the e�cient and successful completion of
tasks to the maximum extent.

�e task allocation problem is generally approximated
to the path planning problem [5], that is, how to generate
a collision-free path from the starting site to the desti-
nation to ensure the safety of the vehicle [6]. However, in
the multi-UAV environment, not only the collision be-
tween UAVs and obstacles but also the collision between
UAVs should be considered. At the same time, with the
increase of the number of UAVs, the variation of the
environment is also increasing. In addition, every action
decision of each UAV can be regarded as simultaneous,
and no one UAV can know the current decision of other
UAVs, so it is more di�cult to avoid collisions between
UAVs.

Hindawi
Mobile Information Systems
Volume 2022, Article ID 1147819, 9 pages
https://doi.org/10.1155/2022/1147819

mailto:guoyijun@bupt.edu.cn
mailto:ydq@bupt.edu.cn
https://orcid.org/0000-0003-2880-6607
https://orcid.org/0000-0003-2677-2183
https://orcid.org/0000-0002-2123-1719
https://orcid.org/0000-0002-0267-9120
https://orcid.org/0000-0002-2488-8054
https://orcid.org/0000-0003-1976-8821
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1147819

Fortunately, reinforcement learning (RL) techniques are
emerging to help solve the problem of real-time decision-
making in complex and changing environments. *e
technology allows the drone to learn a strategy to maximize
returns or achieve a specific purpose through its constant
interaction with the environment.

In this paper, a UAV task allocation model including
UAV collision and communication energy consumption is
presented; at the same time, an MA-SAC algorithm is
proposed to assign tasks and plan paths to UAVs.

*e specific works of this paper are as follows:

(i) A multi-UAV task assignment model based on
collision and communication energy consumption
is proposed

(ii) Based on this assignment model, the dynamic
process of task assignment is transformed intoMDP

(iii) A multi-agent reinforcement learning algorithm
MA-SAC is proposed to solve the MDP process

*e rest of this article is organized as follows. Section 2
describes the related work. In Section 3, the multi-UAV task
assignment model is presented. Section 4 introduces the task
assignment algorithm proposed in this paper. In Section 5,
simulation is performed and the results are analyzed. Finally,
the works of this paper are summarized in Section 6.

2. Related Work

In the past few years, many researchers have done a lot of
research on multi-UAV task allocation model and the al-
gorithm to solve the model. *ey not only make the model
more close to the increasingly complex reality environment
but also look for high-performance algorithms. *is section
will introduce relevant work from these two aspects.

2.1. Task Allocation Model. In various scenarios, different
task allocation models need to be established based on a
variety of problems that need to be solved by UAV. In the
paper [7], and this problem is modeled as a traveling
salesman problem (TSP), which minimizes the total flight
time and total range of all UAVs by considering the flight
capability of UAVs. Jia et al. [8] construct a heterogeneous
UAV cooperative multitask allocation scenario by consid-
ering kinematic constraints, resource constraints, time
constraints, and vehicle path model. Song et al. [9] describe
the UAV logistics problem as a mixed integer linear pro-
gramming problem considering UAV flight time, load, and
other constraints. In addition, the task allocation problem of
multi-UAV is usually described as multidimensional mul-
tiple choice knapsack problem (MMKP) [10, 11], dynamic
network flow optimization (DNFO) problem [12], and
multiple processors resource allocation (CMTAP) problem
[13, 14].

2.2.TaskAssignmentAlgorithm. Task assignment algorithms
are mainly divided into optimization algorithm, heuristic
algorithm, and reinforcement learning algorithm.

Optimization methods include Hungarian algorithm
[15, 16], branch-and-bound method [17], and other com-
monly used integer linear programming methods. *ese
algorithms are only applicable to scenarios with simple tasks
and small UAV scale. *eir calculations grow exponentially
as the number of UAVs increases, and these algorithms
cannot generate an accurate trajectory for UAVs in complex
environments. Heuristic algorithms are proposed relative to
optimization algorithms, including GA [18], ACO, and PSO
that simulate animal behavior in nature. *ese algorithms
are generally combined with other algorithms to solve task
assignment problems. In [18], GA is combined with clus-
tering algorithm to solve the task allocation and path
planning problems of multiple UAV. In [19], the author
proposed two improved heuristic algorithms to solve TSP
problems, one is IGA algorithm proposed by improving the
coding rules of genetic algorithm, and the other is PSO-ACO
algorithm combining PSO and ACO. In [20], the author
improves swarm gap algorithm and puts forward three al-
gorithms: location loop (AL), sorting and allocation loop
(SAL), and limit and allocation loop (LAL), which solves the
task allocation problem of the UAV team in a military
operation. However, the heuristic algorithm has the dis-
advantage of falling into local optimum easily, and the real-
time performance of the algorithm is worse and worse with
the increase of environment complexity. *erefore, many
researchers began to study the application of reinforcement
learning in task assignment.

Reinforcement learning is a kind of algorithm that makes
an agent learn the optimal strategy through trial and error in
the environment. Reinforcement learning has been widely
used in UAVmission assignment scenarios over the past few
years. In [21], a transaction inspired multiagent reinforce-
ment learning algorithm was proposed to solve the path
planning and coordination problems of UAV clusters. In
reference [22], the author proposed a MADOL algorithm to
enable multiple UAVs to solve the ambiguous BSN allo-
cation problem in an ambiguous boundary scenario. *e
literature [23] has developed a multiagent reinforcement
learning framework, which solves the problem of dynamic
resource allocation of UAV communication network in
uncertain environment and realizes the balance between
performance gain and UAV overhead. In reference [24], the
author proposed a multiagent reinforcement learning al-
gorithm, compound-action actor-critic (CA2C), which
solves the problem that UAVs perform sensing tasks
through cooperative sensing and transmission. In [25], the
author proposed an FTA algorithm by combining DQN
algorithm with priority experience replay, which effectively
solved the problem of UAV task allocation in uncertain
environment. In [11], the author proposed a DDQN-per
algorithm to solve the task assignment problem of MCS.
However, these single-agent algorithms regard the agents in
the environment as independent and cannot train a good
agent cooperation model. *e proposed MADDPG [26]
algorithm adopts the method of centralized training and
distributed deployment, which well solves the problem of
cooperation and competition among multiagent. In [27], the
author proposed an MADDPG algorithm, trained the

2 Mobile Information Systems

MADDPG model offline, and then solved the resource al-
location problem in the UAV-assisted vehicle network
online. However, DDPG algorithm is a deterministic
strategy, which may fall into local optimum due to greed.
*e proposed SAC algorithm [28] introduces entropy, which
requires not only maximum reward but also maximum
entropy to enhance the spatial exploration ability of agents.
Based on the idea of centralized training and separate de-
ployment, this paper applies SAC algorithm to the coop-
erative task assignment environment of multiple UAVs and
proposes an MA-SAC algorithm.

3. Task Assignment Model

Multi-UAV should not only complete each task but also pay
attention to their own safety and energy consumption.
Figure 1 shows the task allocation framework of multi-UAV.
In this paper, the distance from UAV to the mission po-
sitions, the collision of UAV, and the communication be-
tween UAV and base station are comprehensively
considered to establish the task assignment model, and the
specific modeling is as follows.

3.1. *e Distance between the UAV and the Mission. *is
paper considers how to assign multiple UAVs to multiple
task points and plan a safe path so as to achieve the goal of
reducing the total cost while completing the task quickly and
safely. In this paper, the UAV cluster is represented by
V � v1, v2, v3, . . . , vn􏼈 􏼉V � v1, v2, v3, . . . , vn􏼈 􏼉. *e position
and track data of each UAV can be obtained by the GPS
device carried by the UAV itself, and the data will be
transmitted to the MEC layer for calculation. For each UAV
vi ∈ V, (sxi, syi) is used to represent its current position.

*e set of tasks to be completed is represented by
W � w1, w2, w3, . . . , wn􏼈 􏼉. For each task wi ∈W, (swxi, swyi)

is used to represent task position.
*e distance between the UAV vi and the mission lo-

cation wj can be calculated using the following formula:

Lij �

����������������������

sxi − swxi(􏼁
2

+ syj − swyj􏼐 􏼑
2

􏽲

. (1)

3.2. UAV Collision. In order to simulate the real environ-
ment, some obstacles are added to the environment to block
the route of UAV. At the same time, the collision between
UAV and other UAVs is considered. As shown in the
picture, there is a certain safety buffer area between the UAV
and the obstacles.

*e distance between UAVs can be calculated using the
following formula:

Luav �

��������������������

sxi − sxj􏼐 􏼑
2

+ syi − syj􏼐 􏼑
2

􏽲

. (2)

Once the distance between UAVs or between UAVs and
obstacles is less than the safety zone, UAVs are considered to
have a safety risk of collision.

3.3. UAV Communication. In order to grasp the status of
UAV in real time, the communication betweenUAV and base
station needs to be considered, and the position of base station
is represented by (Bx, By). In this paper, UAV’s altitude to the
ground is h,and the straight-line distance between UAV and
base station can be calculated by the following formula:

Luav−base �

������������������������

sxi − Bx(􏼁
2

+ syj − By􏼐 􏼑
2

+ h
2

􏽲

. (3)

Transmitting the data collected by UAV sensors needs to
consume the energy of the sensor node [29]. In order to
study the energy loss of UAV transmission, we consider the
path loss of UAV communication with base station. In Friis
free space model [30], the relationship between signal
transmitting power and signal receiving power can be cal-
culated by the following formula:

PR �
PTGTGRλ

2

(4π)
2
d
2β

, (4)

where PR is the receiving signal power, PT is the transmitting
signal power, GT is the transmitting antenna gain, GR is the
receiving antenna gain, λ is the signal wavelength, β is the
system loss factor unrelated to propagation, and d is the
propagation distance. In this paper, d is the distance between
each time slot UAV and the base station Luav−base.

In order to ensure normal communication, the power of
the attenuated UAV signal needs to be greater than the re-
ceiving power of the base station. *erefore, the signal
transmitting power of each time slot n of UAV vi must meet
the formula

PTi[n]≥
(4π)

2
d
2β

GTGRλ
2 PRi. (5)

*e communication energy consumption of each UAV
vi to complete the task can be expressed as

obstacle

Task1

Task2

Task3

Task4

Figure 1: Multi-UAV task assignment model.

Mobile Information Systems 3

Ecom−i � 􏽘
n∈N

PTi[n]δ, (6)

whereN � (n1, n2, n3, . . . , nt) is the time slot set for the UAV
to complete the task. In this paper, the time slot n is ap-
proximated to each step in the simulation. δ is the duration
of each time slot n. In this model, δ is set to 1.

*e total communication energy consumption of UAV
cluster can be calculated by the formula

Ecom � 􏽘
vi∈V

Ecom−i. (7)

4. Task Assignment Algorithm

In this section, we consider the application of reinforcement
learning in multi-UAV task allocation, apply a soft actor-
critic (SAC) algorithm to multiagent environment, and
propose an MA-SAC algorithm. *is algorithm is usually
used to solve the problem described as Markov decision
process (MDP). So, this section will introduce the MDP of
this model, SAC algorithm and MA-SAC algorithm in turn.

4.1. Markov Decision Process. MDP is usually composed of
state, action, and reward function.*erefore, theMDP of the
model can be described as follows.

4.1.1. State. In this process, the state space is composed of
the position and speed of the UAV, the distance between the
UAV and the destination, and the collision risk of the UAV.

4.1.2. Action. *e action space is usually the optional action
set of all UAVs in different states. In this model, the action
space of UAV is expressed as< front, back, left, right, hover >.

4.1.3. Reward. In this model, when multiple UAVs are faced
with multiple tasks, this paper aims to reasonably allocate
task targets and carry out path planning for each UAV, so
that each task can be completed safely and quickly with the
minimum total energy consumption. *erefore, for UAV vi,
the reward can be described as

Ri � RF + RL + Rc − Ecom−i. (8)

*e task assignment problem can be described as

max 􏽘
vi∈V

Ri, (9)

􏽛

n

i�1
wij � V, (10)

􏽛

n

i�1
vij � W, (11)

where RF is the reward for completing the task, and the value
is constant. Rc is the collision reward. RL is the distance
reward. In order to guide the UAV to the mission point, it can

be expressed as RL � −minLij, j ∈ (1, 2, . . . , n), wij indicates
that the mission wi is carried out by UAV vj, and vij indicates
that UAV vi performs mission wj. Formula (10) means that
only one UAV can be assigned to perform each task, and
formula (11)means that eachUAV can only perform one task.

4.2. SAC Algorithm. SAC algorithm is a kind of off-policy
reinforcement learning algorithm. *is paper is improved
based on SAC algorithm proposed in [31]. *e algorithm
improves the critical network on the first version of SAC
algorithm [32]. It removes the value network and uses two Q
networks. *erefore, the SAC algorithm has one actor
network, two critic networks, and two target-critic networks.
Among them, the actor network is used to give the corre-
sponding action according to the change of state, and the
critic network is used to calculate the Q value to evaluate the
action. In order to solve the overestimation problem, the
SAC algorithm adopts a pair of independent critic network
and takes the smaller value of the two when updating. In
order to stabilize the training of Q network, the SAC al-
gorithm introduces a pair of target-critic networks whose
update frequency is less than the critic network.

In order to prevent the strategy from getting into trouble
due to greed, it is necessary to increase the random ex-
ploration ability of the algorithm, so SAC introduces entropy
regularization. When the strategy distribution is more
uniform, the entropy of the strategy is greater, and the
random exploration ability of the algorithm is stronger.
*erefore, the objective function of SAC algorithm not only
requires the maximum final reward but also the maximum
entropy. Its objective function can be expressed as

J(π) � 􏽘
T

t�0
E st,at()∼ρπ r st, at(􏼁 + αH π · | st(􏼁(􏼁􏼂 􏼃

π∗max � argmaxπ 􏽘

T

t�0
E st,at()∼ρπ r st, at(􏼁 + αH π · | st(􏼁(􏼁􏼂 􏼃,

(12)

where H(π(· | st)) is the entropy of strategy, r(st, at) is the
reward for time t, and π∗max is the optimal strategy.

4.3. MA-SAC Algorithm. Figure 2 shows the MA-SAC al-
gorithm that we proposed by improving SAC algorithm
based on the multi-UAV task allocation model. MA-SAC
algorithm is based on actor-critic network framework. In
this multi-UAV environment, each UAV has an actor
network, a target-actor network, two critic networks, and
two target-critic networks, which are all composed of fully
connected neural networks.

In the multi-UAV environment, UAV itself is not only
an intelligent body but also a part of the environment of
other UAVs. *erefore, for the critic network of each UAV,
we not only input the environmental state into the critic
network. *e actions of other UAVs are also fed into the
critic network to calculate the Q by a part of the overall
environment. SAC, like DDPG and other algorithms, in-
troduces the experience replay mechanism to reduce the

4 Mobile Information Systems

correlation between data. �erefore, the whole training
process is divided into two parts: experience collection and
network training. In the experience gathering phase, the
agent performs the actions generated in each step, and then
stores the tuples that include states, action, next state, and
reward 〈S, A, S′, R〉 into the replay bu�er.

When the data in the replay bu�er reaches the threshold,
the network training stage can be entered. At each step, some
data will be sampled from the replay bu�er to update the
parameters of actor networks and critic networks. �e actor
network is trained by the strategy gradient. For each UAV
vi ∈ V, the actor network update targets are as follows:

J θi()�EX,a∼D α log πi ai |si()()−Qπ
i X,a1,...,an()|ai�πi si()[],

(13)

where πi represents the policy network of the agent i,
θi ∈ θ1, θ2, . . . , θn{ } represents the parameter of the policy
network πi, andX represents the current status of all agents.

Critic networks are updated by minimizing the loss
function as a goal. �e loss function is the mean square error
that can be calculated by the formula:

L�E X,a,r,X′()∼D Qπ
i X,a1, . . . ,an()−yi()2[], (14)

yi � ri +cE Qπ
i X′,a1′, . . . ,an′() |ai′�πθi si′()−α log πθi

ai′ |si′()()[],

(15)

where X′ represents the next status of all agents, ai′ repre-
sents the next action of the agent i, and si′ represents the next
state of the agent i.

To ensure the stability of training, the parameters of
actor networks and critic networks will be copied to the
corresponding target networks in each iteration. Here, the
algorithm adopts the soft update method, so in each step,
some actor and critic network parameters are updated to the
corresponding target network, which can be calculated by
the formula

ψ⟵τψ +(1 − τ)ψ, (16)

θ⟵τθ +(1 − τ)θ, (17)

where ψ is the parameter of target-critic network, ψ is the
parameter of the critic network, and τ is the update ratio.

�e pseudocode of the MA-SAC algorithm is demon-
strated in Algorithm 1, and the meanings of the parameters
are shown in Table 1.

5. Experimental Results and Analysis

In this section, the performance of MA-SAC algorithm in
multi-UAV task assignment environment is studied. We use
the Pytorch deep learning framework to simulate this sce-
nario and compare it with MADDPG algorithm. Table 2
shows the relevant hyperparameters of the algorithm sim-
ulation in this paper.

In this experiment, we constructed an environment in
which multi-UAV cooperate to complete tasks. �e envi-
ronment consists of three UAVs, three mission positions,
one obstacle, and a base station to communicate with the
UAVs. Firstly, the MADDPG algorithm proposed in ref-
erence [26] is selected to compare the convergence per-
formance. Figure 3 shows the convergence process of MA-

Actor Target Actor

Critic1

Critic2

Target Critic1

Target Critic2

Target-Actor Actor

Target Critic1

Target Critic2

Critic1

Critic2

Agent 1 Agent n

……

samplesample

min min

Replay Buffer

Q1

Q2

Q1

Q2

a s as a′a′ s′s′

Figure 2: Actor and critic neural network of MA-SAC.

Mobile Information Systems 5

SAC algorithm and MADDPG algorithm during training in
this environment. In this experiment, we performed 50,000
training episodes and averaged the rewards every 1,000
episodes. By comparing the two algorithms, it can be found
that the proposed MA-SAC algorithm can finally converge
to around 300, while the MADDPG algorithm finally
converges to around 220. It can be seen that the convergence
speed of the two algorithms is similar in this scenario, but the
convergence result of the MA-SAC algorithm is better than
that of the MADDPG algorithm, because the training goal of
the MA-SAC algorithm is not only to maximize the reward
of the drone but also to maximize the entropy of the UAV

strategy. *is increases the ability of the UAV to explore the
space, thereby improving the performance of the algorithm.

To verify the effectiveness of the algorithm in this sce-
nario, we conducted 500 episodes of tests on the MA-SAC
algorithm in this environment and compared it with other

(1) Initialize environment
(2) Initialize critic network and actor network
(3) Initialize max episodes, replay buffer, batch size
(4) for episode ∈ [1, episodes] do
(5) Reset environment
(6) Get current state si for each agent, i

(7) for step ∈ [1, steps] do
(8) Select actions ai for each agent vi

(9) Get all agents next states si
′ and rewards ri

(10) Store < ai, si, si
′, ri > to replay buffer D

(11) if Dsize > Bsize then
(12) Sample batch B from replay buffer D
(13) for vi, where i � 1:N do
(14) Update the critic network
(15) Update the actor network
(16) Update the target network according to formulas (15), (16)
(17) end for
(18) end if
(19) end for
(20) end for

ALGORITHM 1: Algorithm of MA-SAC.

MA-SAC
MADDPG

10000 20000 30000 500000 40000
episodes

100

0

100

200

300

m
ea

n
re

w
ar

d

Figure 3: Reward of different algorithms.

Table 2: *e parameters of simulation.

Parameter Value
Number of UAVs 3
Number of tasks 3
Number of obstacles 1
Number of base stations 1
Steps of episode 35
Capacity of replay buffer 1000000
Number of network neurons 128
Learning rate 0.001
Discount factor of reward 0.99
Update ratio of target network τ 0.001

Table 1: Explanation of variables and functions in the algorithm of MA-SAC.

Variable Explanation
episodes *e maximum number of iterations
steps *e maximum step length for each iteration
Dsize *e amount of data in the replay buffer
Bsize Sampling number

6 Mobile Information Systems

multiagent reinforcement learning algorithms. As shown in
Table 3, the task completion rate of the MA-SAC algorithm
reaches 95.16%, which is a great improvement compared
with that of the COMA and VDN algorithms, and the task

completion rate is also increased by 2.4% compared with the
MADDPG algorithm.

Figure 4 shows the dynamic assignment process of UAVs
in the task area before training. At this time, none of the
three UAVs has learned any strategy, so they are in an
exploration state in the environment. It can be seen from the
route of the UAV in the task assignment process that the
UAV does not have a clear mission target at this time, and
they move randomly in space. UAV 2 even collides with
obstacles.

Figure 5 shows the rendering of the multi-UAV task
assignment process when using the proposed MA-SAC al-
gorithm for 20,000 episodes of training. It can be seen that
although the UAVs have learned to approach the mission
point at this time, there is no coordination between them.
Both UAV 2 and UAV 3 flew to the same mission location,
resulting in not all missions being completed.

Figure 6 shows the effect of the task assignment process
of the UAV when the training reaches 50,000 episodes. At
this point, the trained model can already solve the task
assignment problem in this environment well. UAVs not
only consider their distance when assigning tasks but also
take into account the strategies of other UAVs and cooperate
with each other to complete all tasks in the mission area. At
the same time, UAVs have also learned to stay away from
obstacles to reduce their own risks when completing tasks. It
can be seen that UAV 2 is relatively close to the obstacle at
the beginning, so there is a possibility of collision. In order to
ensure its own safety, it first flies away from the obstacle, and
then flies to the mission location after reaching the safe area.

6. Conclusions

In this paper, a multi-UAV cooperative task assignment
model in complex environment is constructed by considering
UAVdistance, collision, and communication.Meanwhile, we

UAV1
UAV2
UAV3

base station
Task

1.0

0.5

0.0

0.5

1.0

1.5

y

0.75 0.50 0.25 0.00 0.25 0.50 0.751.00
x

Figure 4: Rendering of task assignment during 0w episodes of
training.

UAV1
UAV2
UAV3

base station
Task

0.2

0.0

0.2

0.4

0.6

y

0.75 0.50 0.25 0.500.25 1.000.751.00 0.00
x

Figure 5: Rendering of task assignment during 2w episodes of
training.

UAV1
UAV2
UAV3

base station
Task

1.00

0.75

0.50

0.25

0.00

0.25

0.50

y

0.75 0.50 0.25 0.00 0.25 0.50 0.751.00
x

Figure 6: Rendering of task assignment during 5w episodes of
training.

Table 3: Task completion rate.

Algorithm Task completion rate (%)
MA-SAC 95.16
MADDPG 92.76
COMA 82.67
VDN 68.34

Mobile Information Systems 7

propose an MA-SAC algorithm to solve the model by com-
bining theSACalgorithmofdeep reinforcement learningwith
multiagent framework of centralized training and decen-
tralized execution. Simulation results show that the MA-SAC
algorithm is superior to the MADDPG algorithm in con-
vergence result inmulti-UAV task allocation environment. In
terms of task completion rate, the model trained by the MA-
SAC algorithm also achieved a better result.

In the future work, more complex factors will be
considered in the environment, such as making the com-
munication model more suitable for real scenes and weather
changes. At the same time, it will also study the larger-scale
dynamic task allocation of UAV. Since this paper only
studies the UAV cooperation scenario, the UAV task allo-
cation in the countermeasure scenario will be studied in the
future.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported by National Natural Science
Foundation of China (11974058 and 61901050); Beijing
Nova Program (Z201100006820125) from Beijing Municipal
Science and Technology Commission; Beijing Natural Sci-
ence Foundation (Z210004); and State Key Laboratory of
Information Photonics and Optical Communications
(IPOC2021ZT01), BUPT, China.

References

[1] L. Bertuccelli, H. L. Choi, and P. Cho, “Real-time multi-UAV
task assignment in dynamic and uncertain environments,” in
Proceedings of the AIAA Guidance, Navigation, and Control
Conference, p. 5776, Ontario, Canada, September, 2009.

[2] S. Huang, A. Liu, S. Zhang, N. N. Wang, and N. N. Xiong,
“BD-VTE: a novel baseline data based verifiable trust eval-
uation scheme for smart network systems,” IEEE transactions
on network science and engineering, vol. 8, no. 3, pp. 2087–
2105, 2021.

[3] K. Zhu, X. Xu, and Z. Huang, “Energy-efficient routing al-
gorithms for UAV-assisted mMTC networks,” in Proceedings
of the 2019 IEEE 30th Annual International Symposium on
Personal, Indoor and Mobile Radio Communications
(PIMRC), IEEE, Istanbul, Turkey, September, 2019.

[4] K. Gao, F. Han, P. Dong, N. Xiong, and R Du, “Connected
vehicle as a mobile sensor for real time queue length at
signalized intersections,” Sensors, vol. 19, no. 9, p. 2059, 2019.

[5] X. Tao and A. S. Hafid, “Trajectory design in UAV-aided
mobile crowdsensing: a deep reinforcement learning ap-
proach,” in Pocedings of the IEEE ICC, June, 2021.

[6] H. Li, J. Liu, K.Wu, Z. Yang, R.W. Liu, and N. Xiong, “Spatio-
temporal vessel trajectory clustering based on data mapping
and density,” IEEE Access, vol. 6, Article ID 58939, 2018.

[7] N. Ozalp, U. Oztop, and E. Oztop, “Cooperative multi-task
assignment for heterogonous UAVs,” in Proceedings of the
2015 International Conference on Advanced Robotics (ICAR),
pp. 599–604, (ICAR), Istanbul, Turkey, July, 2015.

[8] Z. Jia, J. Yu, X. Ai, X. Xu, and D. Yang, “Cooperative multiple
task assignment problem with stochastic velocities and time
windows for heterogeneous unmanned aerial vehicles using a
genetic algorithm,” Aerospace Science and Technology, vol. 76,
pp. 112–125, 2018.

[9] B. D. Song, K. Park, and J. Kim, “Persistent UAV delivery
logistics: MILP formulation and efficient heuristic,” Com-
puters & Industrial Engineering, vol. 120, pp. 418–428, 2018.

[10] L. R. Rodrigues, J. P. P. Gomes, and J. F. L. Alcântara,
“Embedding remaining useful life predictions into a modified
receding horizon task assignment algorithm to solve task
allocation problems,” Journal of Intelligent and Robotic Sys-
tems, vol. 90, no. 1-2, pp. 133–145, 2018.

[11] M. Alighanbari and J. How, “Robust decentralized task as-
signment for cooperative UAVs,” in Proceedings of the AIAA
Guidance, Navigation, and Control Conference and Exhibit,
p. 6454, San Francisco, California, August, 2006.

[12] K. E. Nygard, P. R. Chandler, and M. Pachter, “Dynamic
network flow optimization models for air vehicle resource
allocation,” in Proceedings of the American Control Confer-
ence, pp. 1853–1858, Arlington, VA, USA, June, 2001.

[13] S. Fei, C. Yan, and S. Lin-Cheng, “UAV cooperative multi-task
assignment based on ant colony algorithm,” Acta Aeronautica
et Astronautica Sinica, vol. 29, no. 5, pp. 188–s189, 2008.

[14] E. Edison and T. Shima, “Integrated task assignment and path
optimization for cooperating uninhabited aerial vehicles us-
ing genetic algorithms,” Computers & Operations Research,
vol. 38, no. 1, pp. 340–356, 2011.

[15] K. Kim and C. S. Hong, “Optimal task-UAV-edge matching
for computation offloading in UAV assisted mobile edge
computing,” in Proceedings of the 2019 20th Asia-Pacific
Network Operations and Management Symposium
(APNOMS), pp. 1–4, IEEE, Matsue, Japan, September, 2019.

[16] B. S. MirzaeiniaA and M. Hassanalian, “Drone-station
matching in smart cities through Hungarian algorithm: power
minimization and management,” in Proceedings of the AIAA
Propulsion and Energy 2019 Forum, p. 4151, Indianapolis,
August, 2019.

[17] S. J. Rasmussen and T. Shima, “Branch and bound tree search
for assigning cooperating UAVs to multiple tasks,” in Pro-
ceedings of the 2006 American Control Conference, p. 6, June,
2006.

[18] Y. Ma, H. Zhang, Y. Zhang, R. Gao, Z. Yang, and J. Yang,
“Coordinated optimization algorithm combining GA with
cluster for multi-UAVs to multi-tasks task assignment and
path planning,” in Proceedings of the 2019 IEEE 15th Inter-
national Conference on Control and Automation (ICCA),
pp. 1026–1031, Edinburgh, UK, July, 2019.

[19] J. Chen, F. Li, and Y. Li, “Travelling salesman problem for
UAV path planning with two parallel optimization algo-
rithms,” in Proceedings of the 2017 Progress in Electromag-
netics Research Symposium - Fall (PIERS - FALL),
pp. 832–837, Singapore, November, 2017.

[20] J. Schwarzrock, I. Zacarias, A. L. C. Bazzan,
R. Q. de Araujo Fernandes, L. H. Moreira, and E. P. de Freitas,
“Solving task allocation problem in multi Unmanned Aerial
Vehicles systems using Swarm intelligence,” Engineering
Applications of Artificial Intelligence, vol. 72, pp. 10–20, 2018.

8 Mobile Information Systems

[21] A. A. Khalil, A. J. Byrne, and M. A. Rahman, “Efficient uav
trajectory-planning using economic reinforcement learning,”
2021, https://arxiv.org/abs/2103.02676.

[22] Y. Zhang, Z. Mou, F. Gao, L. Xing, J. Jiang, and Z. Han,
“Hierarchical deep reinforcement learning for backscattering
data collection with multiple UAVs,” IEEE Internet of *ings
Journal, vol. 8, no. 5, pp. 3786–3800, 2021.

[23] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement
learning-based resource allocation for UAV networks,” IEEE
Transactions on Wireless Communications, vol. 19, no. 2,
pp. 729–743, 2020.

[24] J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor,
“Cooperative Internet of UAVs: distributed trajectory design
by multi-agent deep reinforcement learning,” IEEE Trans-
actions on Communications, vol. 68, no. 11, pp. 6807–6821,
2020.

[25] X. Zhao, Q. Zong, B. Tian, B. Zhang, and M. You, “Fast task
allocation for heterogeneous unmanned aerial vehicles
through reinforcement learning,” Aerospace Science and
Technology, vol. 92, pp. 588–594, 2019.

[26] H. Qie, D. Shi, T. Shen, X. Xu, Y. Wang, and L. Wang, “Joint
optimization of multi-UAV target assignment and path
planning based on multi-agent reinforcement learning,” IEEE
Access, vol. 7, Article ID 146264, 2019.

[27] H. Peng and X. Shen, “Multi-agent reinforcement learning
based resource management in MEC- and UAV-assisted
vehicular networks,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 1, pp. 131–141, 2021.

[28] R. Lowe, Y. Wu, and A. Tamar, “Multi-agent actor-critic for
mixed cooperative-competitive environments,” 2017, https://
arxiv.org/abs/1706.02275.

[29] M. Wu, L. Tan, and N. Xiong, “A structure fidelity approach
for big data collection in wireless sensor networks,” Sensors,
vol. 15, no. 1, pp. 248–273, 2014.

[30] T. S. Rappaport, Wireless communications -- principles and
practice, Prentice Hall PTR, Hoboken, New Jersey, 2002.

[31] T. Haarnoja, A. Zhou, and K. Hartikainen, “Soft actor-critic
algorithms and applications,” 2018, https://arxiv.org/abs/
1812.05905.

[32] T. Haarnoja, A. Zhou, and P. Abbeel, “Soft actor-critic: off-
policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the International Confer-
ence on Machine Learning, pp. 1861–1870, PMLR, Chengdu,
China, July, 2018.

Mobile Information Systems 9

https://arxiv.org/abs/2103.02676
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905

