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Inflammatory bowel disease (IBD) is a complex chronic immune disease with two subtypes: Crohn’s disease and ulcerative colitis.
Considering the differences in pathogenesis, etiology, clinical presentation, and response to therapy among patients,
gastroenterologists mainly rely on endoscopy to diagnose and treat IBD during clinical practice. However, as exemplified by
the increasingly comprehensive ulcerative colitis endoscopic scoring system, the endoscopic diagnosis, evaluation, and
treatment of IBD still rely on the subjective manipulation and judgment of endoscopists. In recent years, the use of artificial
intelligence (AI) has grown substantially in various medical fields, and an increasing number of studies have investigated the
use of this emerging technology in the field of gastroenterology. Clinical applications of AI have focused on IBD pathogenesis,
etiology, diagnosis, and patient prognosis. Large-scale datasets offer tremendous utility in the development of novel tools to
address the unmet clinical and practice needs for treating patients with IBD. However, significant differences among AI
methodologies, datasets, and clinical findings limit the incorporation of AI technology into clinical practice. In this review, we
discuss practical AI applications in the diagnosis of IBD via gastroenteroscopy and speculate regarding a future in which AI
technology provides value for the diagnosis and treatment of IBD patients.

1. Introduction

Artificial intelligence (AI) represents the capacity of
machines to imitate human intelligence. Major aspects of
AI applications in medicine include computational intelli-
gence, gene sequencing, intelligent diagnosis, and medical
robotics. Currently, the application of AI technology to gas-
trointestinal endoscopy is increasing rapidly. Compared
with professional endoscopists, AI technology has been
found to have superior accuracy for analyzing and process-
ing large volumes of medical data. Machine learning (ML),
which is essential in the implementation of AI, is the process
of using algorithms to guide a computer to use known data
to obtain an appropriate model. This model can then be
used to assess new situations. As a branch of contemporary
statistics, ML is particularly useful for analyzing complex
data [1]. There are four types of ML: supervised learning,
unsupervised learning, semi-supervised learning, and rein-
forcement learning. In supervised learning, an algorithm is
given a dataset that includes questions and correct answers,

and the machine learns how to predict the correct answers
to future questions by analyzing the data. Deep learning
(DL) is a subset of ML [2] that has received attention in
the field of medical imaging science as a fully automated,
fast, and accurate imaging analysis solution. A typical exam-
ple of DL is the convolutional neural network (CNN), which
can be used to address image-based problems in medicine.
Given their great utility, CNNs have become widely applied
in medical imaging [2].

Inflammatory bowel disease (IBD) is a chronic complex
inflammatory disease with increasing incidence globally.
IBD prognosis is closely related to the healthcare system [3].
The two subtypes of IBD, ulcerative colitis (UC) and Crohn’s
disease (CD), are typical complex diseases characterized by
chronic and heterogeneous presentations. They are induced
by interactions between genomic, environmental, microbial,
and immunological factors [4]. The accurate diagnosis of
IBD has long been a challenge for gastroenterologists. How-
ever, new IBD diagnostic techniques include combinations
of methods such as gastrointestinal endoscopy, molecular
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pathology, epigenetics, metabolomics, and proteomics [5].
The state-of-the-art endoscopic imaging techniques and novel
biomarkers provide new approaches to the differential diag-
nosis of IBD. Over the past few years, the importance of
endoscopy in the diagnosis, treatment, and monitoring of
IBD has been established. For example, dye-chromo endos-
copy (DCE) and virtual chromo endoscopy (VCE) are often
used in the endoscopic surveillance of IBD [6]. In DCE, top-
ical dye is sprayed on the colon wall, enhancing the visualiza-
tion of mucosal morphology. This technique is now
recognized as the gold standard for diagnosing hyperplasia
and has been included in the recommendations of interna-
tional diagnosis guidelines. VCE, which is also included in
international guidelines, involves the digitization of endo-
scopic images, enabling tissue surface details to be enhanced
with high accuracy. Accordingly, it can function as an alterna-
tive to DCE. Despite the utility of these techniques, differences
in the specific methods used as well as the quality and subse-
quent interpretation of diagnostic components can signifi-
cantly affect the diagnosis and treatment outcomes of IBD
among gastroenterologists.

Today, progress in AI technology has dramatically
enhanced the ability of clinicians and researchers to analyze,
manipulate, interpret, and apply large data sets. The amount
of data from clinical trials, medical imaging, and genetic
research (genomic, transcriptomic, and proteomic) is rapidly
increasing [7]. Without appropriate methods for interpreta-
tion, it is difficult to combine large amounts of clinical data
with genetic data for detailed analysis in clinical practice.
AI and ML can be used to quickly analyze these datasets,
enabling clinicians to implement stratified management of
patients in terms of risk assessment, diagnosis, treatment,
and prognosis. Thus, AI and ML have enabled more accu-
rate and standardized endoscopic treatment measures. With
the enhanced application of AI in IBD treatment and diag-
nosis, endoscopic procedures have become increasingly spe-
cialized and currently include the evaluation of endoscopic
disease activity, monitoring of cancerous lesions, and cap-
sule endoscopy (CE) for the diagnosis of CD [8]. The pur-
pose of this review is to summarize the current application
of AI techniques to the diagnosis and treatment response
prediction of IBD and to discuss future directions in the
applications of AI to IBD endoscopy.

2. Classification of AI

As a popular research topic, interest in AI has grown rapidly
in the medical community over recent years. Accordingly,
the application of AI to IBD treatment has led to significant
progress in computer-assisted diagnosis and therapy [9].
Many computer algorithms have been developed to assist
in gastroscopy. ML, as a form of AI, can be used to facilitate
algorithmic self-improvement based on experience and
without human supervision. Specifically, the ML algorithm
learns from inputted data sets, and identifies behavior pat-
terns or generates predictive models [10]. The application
of ML in endoscopic IBD monitoring can be realized by ana-
lyzing still images. DL, as a subset of ML, can be used to handle

complicated learning algorithms. CNNs, as a type of DL, are
becoming the leading technology for image processing.

2.1. Machine Learning. In the near future, ML-based models
are expected to be employed by a large number of clinicians
for image recognition and analysis. In the field of IBD
research, ML has been used to determine whether the
mucosa is healing in patients with UC [11] and to classify
subtypes of pediatric colonic IBD [12]. Huang et al. invented
a computer-aided diagnostic system based on ML and DL
(DLML-CAD). The concept underlying the system is related
to transfer learning, in which a classifier is trained to extract
the desired features of images using a network that has been
pre-trained using millions of non-medical images. The
investigators chose the deep neural networks(DNN), sup-
port vector machine, and k-nearest neighbor network
models as classifiers for the DLML-CAD, and classified hun-
dreds of images as Mayo endoscopic subscore (MES) 0–1 or
MES 2–3. The DLML-CAD has reached or even slightly sur-
passed the diagnostic level of IBD endoscopists. The system
can identify and analyze colon endoscopic images to accu-
rately determine the degree of mucosal healing (ML). It
can also be used to evaluate the mucosa in different areas
of the colon during colonoscopies in patients with UC
[11]. Dhaliwal et al. collected clinical, endoscopic, radio-
graphic, and histological data from 74 patients with colonic
IBD, trained a random forest classifier on the complete data-
set, and used ML to identify three histological features and
four endoscopic examinations that could be used to distin-
guish colonic UC from CD [12]. According to the existing
data, the ML model performs very well in the field of IBD
diagnostics and treatment. However, its widespread applica-
tion in clinical settings is still uncertain as it is still in the
clinical trial stage.

2.2. Deep Learning. Given the rigorous training required to
accurately assess endoscopic inflammation and the limited
number of endoscopists with specialized training, DL may
offer many advantages in the clinical evaluation of IBD
patients. According to a relevant study, small bowel ulcers
in patients with CD, as revealed via video CE, can be effec-
tively monitored by DL models when the area under the
receiver operating characteristic curve is between 0.94 and
0.99 [13]. Takenaka et al. also validated the use of DL algo-
rithms for assessing disease activity using a UC endoscopic
severity score [14], and DL algorithms appear to be of
trans-generational significance for the rapid acquisition
and analysis of images during endoscopy.

2.3. Convolutional Neural Networks. CNNs are a type of DL
algorithm that have an enormous impact on the field of
computer vision, with image analysis accuracy comparable
to that of professional physicians. CNNs simulate neuronal
networks in the brain by combining many data inputs,
weights, and biases. These systems are extremely useful in
detecting intestinal ulcers, erosions, and strictures [15, 16].
Ding et al. validated the ability of a CNN-based ML model
to efficiently identify and analyze small bowel capsule endo-
scopic images (SB-CE) and concluded that it could be a
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powerful tool to help experienced endoscopists quickly and
accurately analyze and classify small bowel lesions [17],
whereas Klang et al. monitored endoscopic ulcers in video
capsule endoscopic images and successfully identified CD
patients via an AI system based on CNNs [13]. However,
no algorithms have performed in a superior manner to pro-
fessional endoscopists. Furthermore, AI algorithms for the
long-term monitoring of IBD patients have not yet been
developed. Many such models are in the clinical trial stage
and, thus, are not widely used in large-scale clinical practice.

3. AI in the Diagnosis of IBD

The diagnosis of IBD is a highly sophisticated process,
because it must be carefully discriminated from other dis-
eases. Clinicians must consider the patient’s history and clin-
ical presentation, and conduct a series of endoscopic and
histological examinations. Endoscopic techniques are the
cornerstone of IBD diagnosis, and endoscopists use a variety
of methods to classify and analyze mucosal erosions, inflam-
mation, and ulcers. These include histological examinations
such as microscopic biopsy combined with a series of imag-
ing examinations such as Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI). The endoscopic diag-
nosis of IBD requires highly specialized operators with
extensive training and experience. However, inter-operator
variability in endoscopic evaluation is inevitable. Such varia-
tion may be addressed by AI-based computer-assisted
systems.

3.1. AI in Diagnosing UC. As endoscopic remission is a ther-
apeutic goal for UC patients, endoscopy has been widely
used to assess the activity and efficacy of treatments [18].
Histological remission has also become an increasingly
important therapeutic goal for UC [19]. However, to deter-
mine the status of histological remission targets, pathologists
must evaluate mucosal inflammation. This can result in
observer variability and, thus, data heterogeneity. Computer-
aided systems can help physicians to determine the degree
of inflammation and ML during UC endoscopy, resulting in
a more accurate assessment of histological remission.

One study demonstrated that the predictions of a model
based on DL algorithms regarding the severity of UC during
endoscopy were largely consistent with those of experienced
human evaluators [20]. Thus, such algorithms may improve
the assessment and treatment of UC according to endo-
scopic data. Sutton et al. investigated the use of DL algo-
rithms in differentiating UC from other intestinal diseases
and evaluating the severity of UC endoscopic ulcers [21].
They used a dataset containing 851 images of UC patients
that had been labeled and graded by professional endosco-
pists using the MES. Other studies on the automatic grading
of UC endoscopic images have also shown advantages of DL
models. For instance, Takenaka et al. evaluated endoscopic
images of UC patients using a model based on a DL network
[14]. Their model was highly accurate (90.1%) when evaluat-
ing endoscopic images of 40,758 UC patients with endo-
scopic remission who had received a UC Endoscopic Severity
Index Score (UCEIS) of 0. Similarly, Yao et al. modified the

traditional full-motion video operation model by segmenting
the endoscopic video into 1-frame-per-second image stacks
and then automatically rotating, fragmenting, and pre-
processing the images to conform to a standard scale [22].
The resulting model was able to automatically generate MESs
for patients. Gottlieb et al. utilized CNNs to collate 795 full-
length endoscopic videos, and collected and cleaned the data
so that the endoscopic Mayo score and the UCEIS scores could
be used for prediction and analysis [23]. To reduce the subjec-
tivity of operator-assessed endoscopic image activity scoring,
Bossuyt et al. developed a non-operator-dependent objective
endoscopic scoring system to assess UC disease activity. The
system was based on the red, green, and blue pixel values
and endoscopic image recognition, and it performed UC activ-
ity assessment with high operability and objectivity [24]. More
details can be shown clearly in Table 1.

The DNN model for UC assessment can score endo-
scopic images with very high accuracy. Indeed, many studies
have shown that DNNs can assess the activity and remission
of intestinal mucosal inflammation through endoscopic
images alone, eliminating the need for biopsies and reducing
the need for pathology. The objectivity and consistency of
such systems are comparable to that of professional endos-
copists. However, many challenges must be addressed before
AI can be formally applied to large-scale clinical practice.
For example, the data used to train DNNs are defined, orga-
nized, and structured by humans based on collected images,
which can lead to problems such as the human assessment of
discrepancies.

3.2. AI in Diagnosing CD. Because the intestinal inflamma-
tory permeation in CD includes the small intestine, espe-
cially the terminal ileum, CE is often used to detect CD
when the applications of conventional colonoscopy are lim-
ited. However, CE can generate videos that are 8–10 hours in
length, which makes frame-by-frame inspection and analysis
very time-consuming and labor-intensive for endoscopists
[17]. In response to this, a number of CNN algorithms have
been developed.

In 2019, Ding et al. validated the ability of CNN-based
algorithms to analyze SB-CE images with greater accuracy
and sensitivity than conventional methods and reported a
significantly reduced reading time compared with routine
analysis by gastroenterologists [17]. Indeed, this technique
has substantial benefits for gastroenterologists in terms of
efficiency and convenience in organizing and analyzing
image information. In 2019, Aoki et al. developed a CNN-
based algorithm that could automatically detect erosions
and ulcers from capsule endoscopic images. They tested
their model using 10,440 test images and found the sensitiv-
ity, specificity, and accuracy to be 88.2%, 90.9%, and 90.8%,
respectively [25]. In 2019, Klang et al. designed and trained a
CNN to randomly segment 17,640 capsule endoscopic CD
images [13]. They achieved good results with an area under
the curve of 0.99 and an accuracy of 95.4–96.7%. In 2021,
Klang et al. further evaluated a CNN-based AI system. They
explored the accuracy of the system in comparing CD steno-
sis and different degrees of ulcers and found that such sys-
tems may be capable of automatic identification and
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grading of CD in the near future [26]. In 2021, Barash et al.
successfully developed a DL algorithm for CE that could
automatically grade CD ulcers, demonstrating that CNN-
assisted CE readings have high utility in the diagnoses and
monitoring of CD patients [27]. More details can be shown
clearly in Table 2.

Given the findings mentioned above, AI-based DL algo-
rithms, especially CNNs, appear to strongly improve the
accuracy of CE analysis while greatly reducing the time
required for endoscopists to examine images and videos.
However, these DL-based detection algorithms are per-
formed at the level of individual images but not at the entire
video level. This means that the samples for these experi-
ments are from retrospective studies and do not fully resem-
ble the performance of video CE. Future researchers working
with AI technologies are likely to develop algorithms that
can automatically evaluate CE videos, resulting in accurate
scoring systems that can be widely used in clinical practice.
As the technology continues to advance, the combination
of AI and CE is expected to significantly impact endoscopy.
In the future, AI-assisted CE may be able to perform rapid
and systematic examinations of entire intestinal lesions in
less than 30 minutes. In the meantime, CE systems that facil-
itate patient diagnosis, treatment, and biopsy appear to be
driving a revolution in endoscopy technology.

3.3. AI in Cancer Surveillance of IBD. Given that IBD is a
long-term chronic condition, patients have a greatly
increased risk of colorectal cancer compared with the gen-
eral population. One study revealed that the existence of
low-grade dysplasia (LGD) in the intestine of IBD patients
served as a high-risk factor for progressing to high-grade
dysplasia (HGD) or even colorectal cancer. Therefore, once
LGD is detected, patients should undergo careful endoscopic
screening [28]. In IBD patients, endoscopic screening for
colorectal cancer, LGD, and HGD is currently performed
mainly via stained endoscopy plus endoscopic resection or

biopsy [29]. To date, no AI systems have been developed
for the long-term monitoring of patients with IBD colitis.
In 2020, Maeda et al. reported the first case of AI-assisted
detection of colitis-associated neoplasms [30]. Their patient
was 72 years old and possessed an 18-year history of colitis.
In 2021, Maeda et al. designed an automated AI algorithm-
based polypectomy surveillance system for use during sur-
veillance colonoscopy. Their system was able to clearly and
efficiently identify colonic lesions in non-IBD patients,
which confirmed the feasibility of the system for helping
non-endoscopic specialists identify and detect long-term
heterogeneous growths in IBD patients.

4. AI in the Treatment of IBD

Histological remission has gradually become a therapeutic
goal for UC, replacing previous goals such as endoscopic
and symptomatic remission. Accurate assessments of the
degree of histologic remission and intestinal inflammatory
activity may allow for more precise and efficient treatments
as well as reduce the need for multiple repeated gastrointes-
tinal examinations [9]. Unfortunately, clinical practice is
currently lacking a simple and easy standard for evaluating
histological remission. In 2022, Villanacci et al. developed
a semi-supervised AI inductive transfer learning system con-
sisting of two modules. Their goal was to apply the simpli-
fied neutrophil-only Paddington International virtual
ChromoendoScopy ScOre histological remission index
(PHRI) developed and validated by pathologists to a
computer-aided diagnostic system. When comparing the
evaluation results produced by the AI with those generated
by pathologists, the AI model was found to be highly sensi-
tive and specific in determining the presence of neutrophils,
indicating that it could be an excellent support in determin-
ing whether patients had achieved histological remission
[31]. Gui et al. also developed a CNN-based computer-
aided UC histological diagnosis and scoring system for

Table 1: Endoscopic AI applications in diagnosing UC.

Author Year Data source Purpose Results

Sutton
et al.

2022 851 images of UC patients
To differentiate UC from other intestinal
diseases and to evaluate the severity of

UC endoscopic ulcers

The accuracy (87.50%) and area under the curve
(AUC, 0.90)

Takenaka
et al.

2020

40,758 images of
endoscopies and 6,885
biopsy outcomes of 2012

UC patients

To create a deep neural network system
for analyzing endoscopic images of UC

patients

The remission in endoscopy with 90.1%
accuracy (95% and 89.2–90.9%)

Najarian
et al.

2021
Video of the clinical trial
set with 51 high resolution

and 264 tests

To trial a fully automated video system
for analyzing and grading endoscopic

disease in UC

Automated Mayo endoscopic subscores (MES)
scoring of clinical trial videos correctly

differentiated between remission and active
disease in 83.7% of cases

Gottlieb
et al.

2021
795 full-length endoscopy
videos of 249 patients

To verify a deep learning, algorithm can
be trained to predict levels of UC severity

from full-length endoscopy videos

(0.787–0.901) for endoscopic Mayo Score (eMS)
and 0.855 (95% confidence interval, 0.80–0.91)

for UCEIS

Bossuyt
et al.

2020
29 consecutive patients
with UC and 6 healthy

controls

To develop an operator- independent
computer-based tool to determine UC
activity based on endoscopic images

RD correlated with Robarts histological
index (RHI) (r = 0:74, p < 0:0001), MES
(r = 0:76, p < 0:0001), and UC endoscopic

index of severity scores (r = 0:74, p < 0:0001)
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identifying disease activity in UC patients based on PHRI
item scores. Their system was designed to not only avoid
the subjectivity of pathologists in determining the degree of
inflammatory activity but also to reduce the degree of diffi-
culty of judgments regarding patient status. The PHRI is a
simple and reproducible scoring system that is well suited
for large-scale applications in clinical practice. It is effective
in assessing UC endoscopic activity and also allows physi-
cians to make more accurate conclusions about the status
of histological remission [32]. However, although the studies
reviewed above proposed using the PHRI score as a histolog-
ical diagnostic and grading tool for UC, their work contains
certain limitations. For example, in the study by Gui et al.,
the follow-up protocol excluded endoscopic and histological
reassessment, the duration of the follow-up period was rela-
tively short, and the investigators did not calculate overall
PHRI scores for different regions of the intestine.

Given the complexity and chronicity of IBD as an
immune intestinal disease, as well as the multiple factors that
influence patient outcomes, the goal of many current thera-
pies is symptomatic relief and ML. To this end, various tar-
geted drugs and biological agents have been used in clinical
practice. Maintaining the integrity of the intestinal epithelial
barrier has become a research hotspot and an emerging ther-
apeutic target in the biomedical field. Sahoo et al. used an
ML approach to build a network that identified a pathway
rich in gene clusters that maintain intestinal epithelial bar-
rier integrity, leading to the identification of a top intestinal
barrier protector for the treatment of IBD [33]. Experts in
the field are expected to use similar methods to invent addi-
tional drugs and therapeutics that maintain or repair the
intestinal epithelial barrier, and this is likely to become an
exciting research area.

For many years, minimally invasive techniques have
been used to treat IBD. Currently, robotic surgery is becom-
ing an efficient and precise complement to, and potentially a
future replacement for, minimally invasive surgery. There is
growing evidence indicating that surgical robots have signif-
icant advantages over minimally invasive techniques such as

laparoscopic surgery, including better patient safety, reduced
surgical complications, and shortened prognosis [34]. In
2020, Hota et al. investigated the differences in perioperative
and treatment outcomes between open, laparoscopic, and
robotic surgeries for treating CD [35]. They selected a data-
base containing data from 5,158 patients with CD, utilized
Convolutional point transformer (CPT) codes to determine
the procedures used for patient ileal resection, compared
the incidence of anastomotic fistula between the three surgi-
cal approaches, and applied multivariate analysis to derive a
95% confidence interval for the dominance ratio. They
found that robotic surgery was a non-inferior treatment for
both colonic resection in UC recipients and ileostomy in
CD patients [34, 35].

5. Risks and New Horizons

AI applications focused on disease prediction and cancer
surveillance, and the diagnosis and treatment of IBD have
been found to be extremely reliable and efficient. In the
future, AI technologies may be able to completely replace
endoscopists for decision-making and treatment, or alterna-
tively, endoscopists may act as assistants to AI systems. For
this to occur, prerequisites for the large-scale use of AI algo-
rithms in clinical practice must be met, and ethical guide-
lines regarding patient safety must be put in place.
Endoscopy clinics and academies will also need to develop
emergency measures for malfunctions during AI treatment
and remedies for treatment errors. In addition to the above,
the biases from developers of AI-based algorithms must be
considered, as most datasets are human-trained. Finally,
the impact of different dataset types and analyses must be
compared to accurately predict the status and value of AI
algorithms in IBD clinical practice.

These above-mentioned risk factors should not prevent
us from continuing to research AI algorithms, refine system
functionality, and work to realize the full potential of AI-
assisted medicine. The positive impact of AI and DL in gas-
troenterology is substantial, and many publicly available

Table 2: Endoscopic AI applications in diagnosing CD.

Author Year Data source Purpose Results

Ding
et al.

2019
4,206

abnormalities in
3,280 patients

To analyze SB-CE images with greater accuracy and
sensitivity than conventional methods

99.88% sensitivity in the per-patient analysis
(95% confidence interval [CI], 99.67–99.96)

Aoki
et al.

2019
113,426,569
images from
6,970 patients

To develop a CNN-based algorithm that could
automatically detect erosions and ulcers from capsule

endoscopic images

With 99.88% sensitivity in the per-patient
analysis (95% CI, 99.67–99.96) and 99.90%
sensitivity in the per-lesion analysis (95% CI,

99.74–99.97)

Klang
et al.

2019
17,640 CE

images from 49
patients

To evaluate a deep learning algorithm for the automated
detection of small-bowel ulcers in Crohn’s disease (CD)

on capsule endoscopy (CE) images

AUCs (area under the curve of 0.99 and
accuracies ranging from 95.4–96.7%

Klang
et al.

2021
27,892 CE
images

To prove the ability of deep neural networks to identify
intestinal strictures on CE images of Crohn’s disease

(CD) patients

A differentiation between strictures and
normal mucosa (area under the curve

[AUC], 0.989)

Barash
et al.

2021
17,640 CE

images from 49
patients

To develop a deep learning algorithm for automated
grading of CD ulcers on CE

The accuracy of the algorithm was 0.91 (95%
CI) for distinction of 3 different grades
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datasets are available for further comparison and analysis by
researchers. In terms of future development, new AI algo-
rithms for long-term monitoring of colorectal cancer in
IBD patients are urgently needed to improve the prediction
of cancer risk and time-course of treatment. Furthermore,
randomized controlled trials are necessary to investigate
the benefits and feasibility of using AI in the clinical man-
agement of IBD patients compared with general clinical
management, especially in terms of variations in treatment
measures, outcomes, and treatment costs. Currently, endos-
copists are collaborating with algorithm developers with the
goal of using large data sets for medical imaging AI. Indeed,
the creation of data sets for collecting and training AI to cap-
ture new types of images will require the expertise and expe-
rience of endoscopists.

6. Conclusions

This review summarizes recent applications of AI in the
endoscopic examination and treatment of IBD and predicts
possible future directions for the use of AI in treating
patients with IBD. We expect that AI will soon become a
cornerstone of endoscopy and IBD treatment. Besides, it will
be necessary to translate the large amount of current explor-
atory data into evidence that can be applied to clinical prac-
tice before AI could be widely used in clinical settings. This
will require not only the rapid development of AI but also
the cooperation and commitment of endoscopists, special-
ists, and societies.
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Background and Aims. Diagnosing pediatric intussusception from ultrasound images can be a difficult task in many primary care
hospitals that lack experienced radiologists. To address this challenge, this study developed an artificial intelligence- (AI-) based
system for automatic detection of “concentric circles” signs on ultrasound images, thereby improving the efficiency and accuracy
of pediatric intussusception diagnosis. Methods. A total of 440 cases (373 pediatric intussusception and 67 normal cases) were
retrospectively collected from Children’s Hospital affiliated to Zhejiang University School of Medicine from January 2020 to
December 2020. An improved Faster RCNN deep learning framework was used to detect “concentric circle” signs. Finally,
independent validation set was used to evaluate the performance of the developed AI tool. Results. The data of pediatric
intussusception were divided into a training set and validation set according to the ratio of 8 : 2, with training set (298 pediatric
intussusception) and validation set (75 pediatric intussusception and 67 normal cases). In the “concentric circle” detection
model, the detection rate, recall, specificity, and F1 score assessed by the validation set were 92.8%, 95.0%, 92.2%, and 86.4%,
respectively. Pediatric intussusception was classified by “concentric circle” signs, and the accuracy, recall, specificity, and F1
score were 93.0%, 92.0%, 94.1%, and 93.2% on the validation set, respectively. Conclusion. The model established in this paper
can realize the automatic detection of “concentric circle” signs in the ultrasound images of abdominal intussusception in
children; the AI tool can improve the diagnosis speed of pediatric intussusception. It is necessary to further develop an
artificial intelligence system for real-time detection of “concentric circles” in ultrasound images for the judgment of children
with intussusception.

1. Introduction

Intussusception is a kind of pediatric surgical acute abdomen,
which is relatively common in clinic andmainly affects children
under 2 years old [1–3]. Among the high number of pediatric

emergency abdominal patients, the average annual incidence
of intussusception in children in China is 418.1/100,000 [4, 5],
which has exceeded the global average of 74/100,000 [6]. Intus-
susception mainly refers to the phenomenon of interlocking
two intestinal tubes, early and timely diagnosis and active and
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correct treatment can prevent intestinal necrosis and relieve the
pain of children [7, 8]. Ultrasound (US) as a noninvasive and
painless examination method is easy to be accepted by children
and their families [9, 10]. The ultrasound images of typical chil-
dren intussusception can be summarized as two signs [11]: one
is the “concentric circle” sign on the cross section, and the other
is the “sleeve sign” sign on the vertical section. Doctors mostly
judge whether patients have intussusception problem by identi-
fying the “concentric circle” sign [12]. However, the increasing
ultrasound image data also brings burden to doctors’ diagnosis.
In recent years, with the depth of the study in the field of deep
learning applications, deep learning technology is often used in
the field of fast and intelligent image processing, such as image
classification and detection. Deep learning simulates human
vision mechanism, and has the advantages of fast detection
speed and low cost, especially in the field of medical imaging
has made breakthrough progress. Many studies have shown
that AI achieved surprising results. Qian et al. [13] developed
an explainable deep-learning system based on multimodal
breast-ultrasound images and predicted BI-RADS scores for
breast cancer as accurately as experienced radiologists. Sui
et al. [14] developed a deep-learning AI model (ThyNet) to dif-
ferentiate between malignant tumours and benign thyroid nod-
ules and aimed to investigate how ThyNet could help
radiologists improve diagnostic performance and avoid unnec-
essary fine needle aspiration. Tiyarattanachai et al. [15] devel-
oped a deep learning network for the detection and diagnosis
of focal liver lesions from ultrasound images, AI model detected
and diagnosed common focal liver lesions. For diagnosis of
hepatocellular carcinomas, the AI model yielded sensitivity,
specificity, and negative predictive value of 73.6%, 97.8%, and
96.5% on the internal validation set. Although artificial intelli-
gence is widely used in the detection and classification of lesions
in breast, thyroid, liver and other ultrasound images, the appli-
cation of artificial intelligence in pediatrics is still in its infancy.

Region Convolutional Neural Network features (RCNN)
with convolutional neural network features were proposed for
target detection by Girshick et al. [16] in 2014. Since then, target
detection has started to evolve at an unprecedented rate.
Although RCNN has made great progress, it requires a large
amount of redundant feature computation, resulting in
extremely slow detection. In 2015, Girshick proposed the Fast
RCNNdetector [17], which is a further improvement to RCNN.
Fast RCNN allows us to train both the detector and the bound-
ing box regressor in the same network configuration. The detec-
tion speed is more than 200 times faster than that of RCNN.
Although Fast-RCNN successfully computes the feature map-
ping only once for the whole image, its detection speed is still
limited by region proposal network. In 2015, Ren et al. pro-
posed the Faster RCNN detector [18], which is the first end-
to-end and the first near real-time deep learning detector. Since
then Faster RCNNs have been widely used for detection tasks.

Inspired by the classical detection network Faster RCNN,
this paper developed amodelmore suitable for detecting “con-
centric circles” in ultrasound images. To the best of our knowl-
edge, this is the first attempt that makes use of deep learning to
diagnose intussusception in children, it makes up for the blank
of using deep learning for diagnosing pediatric intussuscep-
tion based on ultrasound images.

2. Material and Method

The retrospective study was approved by institutional ethics
committee of Children’s Hospital Affiliated to Zhejiang Univer-
sity School, and a waiver for informed consent was provided.

2.1. Patient Selection

2.1.1. Selection Criteria

(1) Patients diagnosed with intussusception and normal
cases

(2) The abdominal ultrasound image data were complete

(3) Ultrasound images are clear

2.1.2. Exclusion Criteria

(1) Previous abdominal surgery

(2) There are motion artifacts and foreign bodies in the
ultrasound image

This study retrospectively collected the images and clin-
ical data of pediatric intussusception in admitted to Chil-
dren’s Hospital Affiliated to Zhejiang University School of
Medicine from January 2020 to December 2020. A total of
440 children were included in this study, with 372 pediatric
intussusception and 67 normal children.

2.2. US Image Acquisition. With ultrasound examination
instruments and equipment examination methods: Philip
IE33 and iuEilite color ultrasound instrument used linear array
probe frequency L 5~12 and convex array probe frequency
1~5MHz, the child was in supine position, with a linear array
probe combined with a convex array probe for detailed scan
of the entire abdominal bowel. After the lesions were found,
multisection scanning, such as longitudinal and transverse
resection, was performed to observe the lesions in real time
with the change of body position of the children. After the
lesions were clearly displayed, the location of the mass was
recorded, the diameter of the “concentric circle “ sign and the
length of the “sleeve sign” were measured, and the mesenteric
lymph nodes in the lesions were observed.

The echogram of pediatric intussusception showed “con-
centric circle” signs. Signs of “concentric circles” at different
angles are shown in Figure 1. For naked eye observation,
some “concentric circle” signs are obvious and easy to
observe, such as Figure 1(a). However, the image compari-
son between the target area and background area is too
low and the edge is blurred, and the “concentric circle” signs
are irregular, such as Figure 1(b); these characteristics are
also difficult to be recognized by human experts, so the
detection of “concentric circle” signs is a challenging task.

2.3. Data Processing. All data were static images taken by the
subjects during ultrasound, and the images were stored in
DICOM format. The dataset consists of images from different
scales, with an average image size of 1341 × 864 pixels.
Because of the subjectivity of probe strafing, some of these
images contain “concentric circle” signs, while others do not.
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In the process of image preprocessing, all the subject identifi-
cation information and peripheral regions in the ultrasound
images are cropped to ensure that the cropped image only
contains the fan-shaped ultrasound region.

2.4. AI Model Development. This study is divided into two
parts: the first part includes image preprocessing and detec-
tion of “concentric circle” signs using an improved Faster
RCNN network; the second part is based on the detection
of “concentric circle” signs to complete the classification of
pediatric intussusception and normal cases. The overall flow
chart of this study is shown in Figure 2. The original
DICOM images were first cropped and contrast enhanced;
then, the images after processing were fed into the detection
model for training, and based on the model’s prediction of
the “concentric circle” signs, the final category and its prob-
abilities were predicted to give a higher category probability
and a prediction score for patients with intussusception.

2.5. Design of the Detection Model. Inspired by the classical
detection network Faster RCNN, this paper developed a model
more suitable for detecting “concentric circle” signs in ultra-
sound images. In order to distinguish standard “concentric cir-
cles” and nonstandard “concentric circles” better, this paper
adds a jump connection to the convolutional neural network.
By combining the shallow and deep features of the convolu-
tional neural network with the jumping connection layer, the
detector can detect the regions with insignificant background

differences and no obvious “concentric circles” signs. Based
on the Faster RCNN network model, this paper uses layer con-
nection to connect the features collected at conv3 and conv5
layers of VGG16 [19] (network structure is shown in
Figure 3), so as to fuse shallow information and deep features
to better mine semantic features in images.We changed the last
fully connected layer to predict two categories: the “concentric
circle” area and the background. In addition, we retrain the last
fully connected layer and calculate the coordinates and confi-
dence of the “concentric circle” region and background.

2.6. Experiments. The model was trained by the method of
supervision training. To obtain the corresponding image label,
the position of the “concentric circle” signs in the ultrasound
image was traced by an experienced sonographer and verified
by another expert label to ensure accuracy. We used PyTorch
framework to train the model for 120 iterations (120 epochs,
each with 1000 iterations) on 2 GeForce RTX 1080 Ti GPUs.
For model training, the Batch size was set to 64, and the initial
learning rate was set to 0.01. Use warm restart learning rate to
adjust learning rate [20]. Cosine function can be used to
reduce learning rate. In the cosine function, with the increase
in x, the cosine value decreases slowly at first, then accelerates,
and slowly decreases again. This kind of decline mode can be
combined with the learning rate to produce good results in a
very effective way of calculation. The training time was 1D
0H 24min. The loss curve of model training is shown in

(a) (b)

Figure 1: Signs of “concentric circles” at different angles. A child diagnosed with intussusception (female, 2 years old) presents with
abdominal pain, vomiting, hematochezia, and abdominal mass. The “concentric circle” area is marked with a white cross: (a) easy to
observe and (b) hard to observe.

Deep learning: Detection model

Data set

Train set Test set

Predict model

Training, tuning

US images Detection model Intussusception classificationImages processing 

Input image

Images
processing

-- Crop
-- Contrast

Enhancement

IN

Output image

OUT
Intussusception

Normal

Figure 2: Overall flow chart.
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Figure 4(a). The loss curve shows that when the number of
iterations is 120,000, the model is in the fitting state. On the
other hand, the model is in an ideal training state when
120,000 iterations are reached. The model with 120,000 train-
ing times was selected as the final detector for testing.
Figure 4(b) shows that with the increase in epoch times, each
evaluation index tends to be stable.

2.7. Statistical Analysis. SPSS 22.0 was used to identify differ-
ences in clinical features between patients with intussuscep-
tion and the normal case group. Continuous variables were
expressed as mean ± standard deviation, and the two-sided
Student t-test was used to compare whether there were
significant differences between groups. Discrete variables
were expressed as counts (percentages), and Pearson’s chi-
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proposal network (RPN), and region of interest (ROI) pooling. Input the image into the VGG16 to get the feature map, use RPN to
generate the anchors, after Nonmaximum Suppression (NMS) to obtain ROIs, project the ROIs onto the feature map to get the feature
matrix, scale each feature matrix to 7 × 7 through the ROI pooling, and then flatten the feature map to get the prediction result through
a series of fully connected layers.
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Figure 4: Training details. (a) Loss curves of training sets under different iterations and (b) variation curves of different evaluation index
values of training sets under different epochs.
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square test was used. If P < 0:05, the variables were consid-
ered to be significantly different among different groups.

3. Results

3.1. Clinical Characteristics. According to the criteria, 440
patients (306 males and 134 females, mean age 33:9 ± 29:1
months) were enrolled. The flow chart for data collection
is shown in Figure 5.

A total of 440 patients were included in this study, including
373 patients with intussusception (male : female = 266 : 107,
mean age: 28:6 ± 21:5 months) and 67 patients in the normal
group (male : female = 40 : 27, mean age: 39:1 ± 36:6months).
Table 1 shows the demographics of the two groups. Univariate
analysis of age and sex by independent sample t-test and
Pearson’s chi-square test showed that the patients with
intussusception were younger than normal in demographic
characteristics (P = 0:001). The majority of intussusception
patients were boys (P < 0:001), and the results were statisti-
cally significant.

3.2. Data Split.A total of 440 cases were included in this study,
with 373 pediatric intussusception patients and 67 children.
There were 5 to 10 ultrasound images in each case, no ultra-
sound images with “concentric circle” signs in the normal
group, and 1 to 3 ultrasound images with “concentric circle”
signs in each intussusception patient, and a total of 715 ultra-
sound images with “concentric circle” signs were labeled. The
data set was divided by 8 : 2, with 80% of the data as a training
set (2325 images of 298 pediatric intussusception patients,
including 575 positive samples); 20% of the data (586 images
of 75 pediatric intussusception patients, including 140 positive
samples) were used as a validation set to evaluate the perfor-
mance of the concentric circle signature detection model. 75
pediatric intussusception patients and 67 normal cases were
classified to evaluate the generalization ability of the model

(for detection data, see Table 2, and for classification data,
see Table 3).

3.3. Performance and Evaluation of the Detection Model. The
detection rate of the “concentric circle” signs in each image
was evaluated: if the prediction model generated a boundary
box around the image and the box overlapped with the real
location of the “concentric circle” signs, the “concentric circles”
were judged to be correctly detected. In this study, different con-
fidence levels were used to evaluate the detection effect. The
detection effect of concentric circles varies with different confi-
dence levels, as shown in Table 4. Accuracy (Acc) was calculated
by dividing the true positive (TP) number of correctly detected
concentric circle signs by the total number of concentric circle
signs. When the model outputs a bounding box in an area that
does not contain a “concentric circle” sign, the count is false
positive (FP). Evaluation indicators are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
,

Spe =
TN

TN + FP
,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 score = 2 ×
precision × recall
precision + recall

:

ð1Þ

< Exclusion >
(1) Previous abdominal operation history
(2) Motion artifact, foreign bodies on US

Training set
(N = 298)

Validation set
(N = 75)

8:2

Classification data
(N = 142)

Children (< 6 years old) with abdominal ultrasonography from January 2020 to December 2020
Positive group: Abdomen US of patients who were diagnosed to intussusception
Negative group: Abdomen US of patients who were not diagnosed to intussusception 

Positive group (N = 75)
Negative group (N = 67)

Patients following the inclusion
(N = 440)

Positive group (N = 373) Negative group (N = 67)

Figure 5: Flow chart of data collection.

Table 1: Patient baseline data.

Intussusception Normal P value

All (N = 440)
Patient, n 373 67

Age (months), mean [SD] 28.6 [21.5] 39.1 [36.6] 0.001

Sex, male, n (%) 266 (71.3) 40 (59.7) <0.001
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Finally, 0.5 was used as the cut-off point of confidence
threshold. In the “concentric circle” sign detection model,
the detection rate, recall rate, specificity, and F1 score evalu-
ated by the validation set were 92.8%, 95.0%, 92.2% and
86.4%, respectively. Ultrasound images of pediatric intussus-
ception in the validation data are shown in Figure 6.

ROC curve of the final “concentric circles” sign detection
model on the validation set is shown in Figure 7. The closer
the ROC curve is to the upper left, the better the classifier per-
forms. The Area under the Curve (AUC) of the “concentric
circle” detection results on the validation set in this paper
was 95.1%. After obtaining the ROC curve of the final
“concentric circles” sign detection model, we determined an

optimal threshold of 0.821 according to the maximized You-
den index (sensitivity + specificity − 1) from the validation set.

3.4. Performance and Evaluation of Classification. Based on
the results of the concentric circle detection, the algorithm
used input images one by one to predict whether there was a
dichotomy between normal cases and pediatric intussuscep-
tion. The model gives the predicted pediatric intussusception
score by multiplying the probability of an object’s existence
in ROI by the probability of category, and the class with higher
probability is predicted as the final class and its probability.
The validation set consisted of 75 pediatric intussusception
and 67 normal cases. The confusionmatrices on the validation
set is presented in Figure 8(a). Where the number of true pos-
itive (TP), true negative (TN), false positive (FP), and false
negative (FN) diagnoses were 69, 63, 6, and 4, respectively.
Table 5 shows the comparison of classification performance
on the validation set using different evaluation indexes. The
AUC, accuracy, recall, specificity, and F1 score were 98.6%,
93.0%, 92.0%, 94.1%, and 93.2%, respectively, on the valida-
tion set. ROC curve of classification results is shown in
Figure 8(b). The AUC of pediatric intussusception diagnosis
on the validation set was 98.6%. The results showed that the
dichotomy of normal cases and pediatric intussusception
had good classification performance according to the detec-
tion results of “concentric circle” signs.

4. Discussion

In this paper, an improved Faster RCNN was applied in the
detection of “concentric circle” signs in abdominal ultra-
sound for the diagnosis of pediatric intussusception. The
visualization results show that the model effectively learns
the signs of concentric circles. The detection rate, recall,
specificity, and F1 score of the algorithm evaluated in the
validation set were 92.8%, 95.0%, 92.2%, and 86.4%, respec-
tively. In our study, the algorithm used input images one by
one to predict whether “concentric circle” signs exist to clas-
sify patients as normal cases and pediatric intussusception.
The model through an object exists in the ROI probability
and categories probability multiplication to give prediction
score for pediatric intussusception. The class with the high-
est probability is predicted to be the final class and its prob-
ability. The accuracy, recall, specificity, and F1 score of the
concentric circle signs in the diagnosis of pediatric intussus-
ception were 93.0%, 92.0%, 94.1%, and 93.2% in the internal
test set, respectively.

There are some differences between our study and previ-
ous studies. Kim et al. [21] developed and tested the perfor-
mance of a deep learning-based algorithm to detect ileocolic

Table 2: Division of detection data.

Detection data Total case Total images Positive images Negative images

Train set Intussusception 298 2325 575 1750

Validation set Intussusception 75 586 140 446

Total number 373 2911 715 2196

Table 3: Division of classification data.

Intussusception Normal Total case

Classification data 75 67 142

Table 4: Comparison of evaluation index results under different
confidence thresholds.

Threshold TP TN FP FN Acc Spe Recall Precision

0.0 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.05 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.10 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.15 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.20 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.25 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.30 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.35 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.40 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.45 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.50 133 411 35 7 92.8% 92.2% 95.0% 79.2%

0.55 132 411 35 8 92.7% 92.2% 94.3% 79.0%

0.60 131 411 35 9 92.5% 92.2% 93.6% 78.9%

0.65 131 412 34 9 92.7% 92.4% 93.6% 79.4%

0.70 130 412 34 10 92.5% 92.4% 92.9% 79.3%

0.75 130 412 34 10 92.5% 92.4% 92.9% 79.3%

0.80 128 413 33 12 92.3% 92.6% 91.4% 79.5%

0.85 127 413 33 13 92.1% 92.6% 90.7% 79.4%

0.90 124 415 31 16 92.0% 93.1% 88.6% 80.0%

0.95 122 417 29 18 92.0% 93.5% 87.1% 80.8%
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intussusception using abdominal radiographs of young chil-
dren, and a YOLOv3-based algorithm was developed to rec-
ognize the rectangular area of the right abdomen and to
diagnose intussusception. The sensitivity of the algorithm
was higher compared with that of the radiologists (0.76 vs.

0.46, P = 0:013). Compared with Kim et al.’s work, we used
abdominal ultrasound images of children and the algorithm
of Faster RCNN based on the detection of concentric circle
signs to diagnose intussusception in children; the sensitivity
of the algorithm is higher than that of Kim et al..

Circle 0.98 
Circle 0.99 Circle 0.99 

Circle 0.97 Circle 0.96 Circle 0.95 

Figure 6: Ultrasound images of pediatric intussusception in the validation set.
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Figure 8: Classification results on the validation set. (a) Confusion matrix and (b) ROC curve.
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Our study also had certain limitations: (1) in this study
of deep learning for the diagnosis of intussusception in chil-
dren on abdominal ultrasound images, the amount of data
used by our algorithm is limited. Future work will focus on
improving the result of deep learning for the detection of
intussusception by adding more training data. (2) The data
for this paper came from only one hospital. In the future,
data from multiple medical institutions can be considered
for external validation to verify the generalization perfor-
mance of the model. (3) The interpretability of the deep
learning model has always been criticized. In the follow-up
work, some interpretable features will be added to improve
the interpretability of the model.

5. Conclusion

In summary, this paper has developed a deep learning
framework for the detection of “concentric circle” signs on
ultrasound images. The model has good accuracy and reli-
ability for “concentric circle” detection; in addition, it has a
high accuracy in classifying pediatric intussusception based
on the results of the detection, and a chart review was con-
ducted to confirm that the imaging correctly identified the
diagnosis.
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