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The recent prevalence of new technologies and devices for
the fruition of multimedia contents (e.g., head-mounted-
displays, augmented reality devices, smartphones and tablets)
has been changing the modality of accessing and explor-
ing the digital information, by introducing novel human-
computer interactions (HCIs) modalities. The even growing
market demand, on the one hand, has pushed the diffusion
of such technologies; on the other hand, it has hampered a
detailed analysis of their effects on the users. In particular,
perceptual evidence from cognitive sciences and neuro-
sciences has to be considered during the design of HCI
systems in order to decrease visual fatigue and cybersickness
and to lead to natural HCI in virtual and augmented reality
(VR/AR) environments.The use of physiological signal, such
as electroencephalography (EEG), can lead to more effective
multimodal interfaces that, from one hand, allow people
to better handle the VR environment and, on the other
hand, allow the system to anticipate the user’s actions. Such
systems allow us to design VR environment that can be
used in medical applications. Moreover, computer science
and artificial intelligence can provide techniques to design
systems that adapt themselves to the specific characteristics
of each user by producing personalized interfaces that allow a
natural HCI, by taking into account the sensorimotor control
aspects that arise by using such systems.

The articles contained in the present issue include
research articles as well as review articles with a focus on
cognitive aspects and computational intelligence techniques
to improve the HCI systems in order to obtain natural and
ecological ways to interact with digital contents in VR and
AR environments

The contribution by L.M. Alonso-Valerdi and V.R.
Mercado-Garćıa, “Enrichment of Human-Computer Inter-
action in Brain-Computer Interfaces via Virtual Environ-
ments,” provides an extensive review of recent advances and
future perspectives of the use of Virtual Reality for improving
human-computer interaction in highly demanding and inter-
active systems, such as brain-computer interfaces.

In the paper by B. Binias et al., “A machine learning
approach to the detection of pilot’s reaction to unexpected
events based on EEG signals,” the authors discuss the existing
neural network techniques to discriminate between states
of brain activity related to idle but focused anticipation of
visual cue and reaction to it by using electroencephalographic
signals for cognitive cockpits.

HCI and VR technologies represent nowadays a pop-
ular solution for physical rehabilitation and motor control
research. E. D. Oña et al., in their paper “Effectiveness of
Serious Games for Leap Motion on the Functionality of the
Upper Limb in Parkinson’s Disease: A Feasibility Study,”
propose and discuss the design and application of Serious
Games based on the Leap Motion sensor, as a tool to support
the rehabilitation therapies for upper limbs. In particular,
they assess the therapeutic effectiveness of the proposed
system, by defining a protocol of trials with Parkinson’s
patients.Their results are encouraging and go in the direction
of an effective use of VR in clinical practice.

Sensory aspects of HCI are investigated in “Recurrent
Transformation of Prior Knowledge BasedModel for Human
Motion Recognition,” by C. Xu et al. The authors have devel-
oped a novel technique for human activity recognition using
wearable sensor data based on the addition of preliminary

Hindawi
Computational Intelligence and Neuroscience
Volume 2018, Article ID 4127475, 2 pages
https://doi.org/10.1155/2018/4127475

http://orcid.org/0000-0002-8111-0409
http://orcid.org/0000-0003-3098-5894
https://doi.org/10.1155/2018/4127475


2 Computational Intelligence and Neuroscience

conceptual knowledge to a decision tree classifier. Experi-
mental validation shows that the proposed methodology is
able to outperform alternative state of the art methods.

Several EEG-based brain-computer interface systems rely
on Steady-State Visually Evoked Potentials (SSVEP). In their
contribution entitled “Sinc-Windowing and Multiple Cor-
relation Coefficients Improve SSVEP Recognition Based on
Canonical Correlation Analysis,” V. Mondini and colleagues
propose an approach based on a slightly modified Canonical
Correlation Analysis to improve the accuracy of the classifi-
cation algorithm.

In their contribution entitled “Analysis of User Interac-
tion with a Brain-Computer Interface Based on Steady-State
Visually Evoked Potentials: Case Study of a Game,” H. M.
de Arruda Leite and colleagues used a computer game as
case study to evaluate different aspects of a brain-computer
interface (BCI).The game consisted of using the BCI to move
a ball on a board to collect coins. This study allowed the
authors to identify some pitfalls and the overall results are
quite promising.

The contribution of this special issue is of presenting
studies onHCI improvements that can attract attention by the
scientific community to pursue further investigations leading
to VR systems that can be effectively used in real world
situations.

Acknowledgments

We would like to express our appreciation to all the authors
for their informative contributions and the reviewers for their
support and constructive critiques in making this special
issue possible.

Fabio Solari
Manuela Chessa
Eris Chinellato

Jean-Pierre Bresciani



Research Article
Analysis of User Interaction with a Brain-Computer
Interface Based on Steady-State Visually Evoked Potentials:
Case Study of a Game

Harlei Miguel de Arruda Leite ,1,2,3 Sarah Negreiros de Carvalho,2,3

Thiago Bulhões da Silva Costa,1,3 Romis Attux,1,3 Heiko Horst Hornung,4

and Dalton Soares Arantes1

1School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
2Institute of Exact and Applied Sciences, Federal University of Ouro Preto (UFOP), João Monlevade, MG, Brazil
3Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), CEPID-FAPESP, Campinas, SP, Brazil
4Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, Brazil

Correspondence should be addressed to Harlei Miguel de Arruda Leite; hmarrudaleite@gmail.com

Received 22 August 2017; Accepted 5 March 2018; Published 15 April 2018

Academic Editor: Jean-Pierre Bresciani

Copyright © 2018 Harlei Miguel de Arruda Leite et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually
Evoked Potentials (SSVEP).The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view,
by observing how the users interact with the game and evaluating how the interface elements influence the system performance.
The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a
database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual
stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match
using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the
goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct
communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be
implemented to make this innovative technology accessible to the end user.

1. Introduction

ABrain-Computer Interface (BCI) is a system able to directly
associate the brain activity to a command to be operated
by a computer or an electrical device, bypassing the output
pathways (nerves and muscles) of a standard device of
interface, which makes it attractive for the development of
assistive technologies, such as automatic wheelchairs [1, 2],
robotic arms [3], and speller communication [4], as well as
for entertainment applications, such as games, augmented
reality, and virtual reality [5–8].

One of the first BCIs was developed in 1964 by Dr. Grey
Walter. During a surgery for another reason, Dr. Walter
placed electrodes on the motor cortex of a patient and

recorded the brain activity while the patient pushed a button
to advance a slide projector. Subsequently, the system was
connected to a projector and allowed the patient to advance
the slides even before he/she had actually pushed the button
[9]. Since then, BCI systems have been the focus of many
researches that have contributed to the advancement of
technology and understanding of the human brain [10].

Interface devices that mediate the interaction between
humans and computers should be as simple, secure, precise,
and enjoyable as possible. The research field of Human-
Computer Interface (HCI) aims precisely at the development
of such interfaces, so that the user experience occurs in the
best possible way. However, in the context of BCI systems,
the guidelines are not yet consolidated.
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Figure 1: Diagram of a BCI based on SSVEP system.

The present study analyzes a BCI system based on
Steady-State Visually Evoked Potentials (BCI-SSVEP) from
the perspective of HCI, in such a way as to understand
how the elements of the interface affect the user and how
the interaction occurs. For this purpose, a game with four
commands controlled by BCI-SSVEP has been developed
and tested in a controlled experiment involving 30 volunteers.

Results include a large database of brain signals linked to
the users’ perception about various aspects of the graphical
user interface and the interaction with the application.
Qualitative and quantitative considerations about acoustic
feedback; shape, position, and contrast of visual stimuli;
visual fatigue; background music; feeling of control; among
others, are presented and discussed. The whole experiment
and observations constitute a rich and important material to
assist in future projects on BCI systems, especially for BCI-
SSVEP with visual stimulation projected on a screen.

1.1. BCI Based on SSVEP. A BCI is a closed-loop system
that acquires and analyzes brain signals, in such a way as to
establish a communication channel between the brain and
an application, as shown in Figure 1. The development of
a BCI requires multidisciplinary skills, involving knowledge
about functional aspects of the human brain, computer
systems, and engineering. The system can be modularized
as follows: (1) acquisition of brain activity, (2) processing
of brain signals, and (3) generation of the commands to be
executed by an application. In turn, the application performs
some actions perceived by the user, constituting the system
feedback [11].

A BCI system can be classified as exogenous or endoge-
nous, depending on the nature of the recorded signal.
Exogenous BCI systems depend on neuron activity evoked
by external stimuli. In contrast, endogenous systems do
not rely on external stimulus, since they are based mainly
on brain rhythms and other potentials. In this article, the
focus is on exogenous BCI-SSVEP [12]. The SSVEP is a
neurophysiological response to a visual stimulation. When
a user is visually stimulated by a LED, lamp, or an image
projected on a screen that flickers at a well-defined frequency,
the electroencephalographic records from his/her occipital
lobe are synchronized with the frequency of the stimulus.
Therefore, the analysis of the brain signal allows to identify

the frequency of the stimulus to which the user was exposed.
A BCI-SSVEP employs several visual stimuli, each one
flickering at a different frequency and associated with a
command of the application [13].

In the present study, the BCI-SSVEP developed by our
research group in the School of Electrical and Computer
Engineering at the University of Campinas was used to
control our game, called “Get Coins” [14, 15]. The details of
eachmodule of our BCI systemare described in the following.

2. Materials and Methods

2.1. Acquisition of Brain Signals. The acquisition of a brain
signal can be invasive, in which case the electrodes are placed
on the cortex by surgical procedures, or noninvasive, a case
not requiring a brain surgery. The electroencephalography
(EEG) procedure is a usual noninvasive technique employed
to measure brain activity. In this approach, the electrodes
are positioned directly on the scalp [9] and the EEG records
present a signal-to-noise ratio (SNR) lower than that obtained
with invasive techniques.

In the present study, the EEG was employed, since it
does not expose the volunteers to the risks of a surgery, is
cheaper, and allows easy, fast, and safe assembling of the
electrodes. The equipment used for brain signal recording
were the g.SAHARAsys� with 16 dry-electrode and the
g.USBamp� biosignal amplifier [16]. The signal was recorded
at a sample rate of 256Hz using MATLAB�. Before starting
signal acquisition, the following procedures were performed:
channel calibration; verification of the electrode impedance
calibration (not exceeding 5.0 kΩ); connection of the ground
and reference onmastoids; andwaiting for the stabilization of
the signal. The electrodes were arranged at O1, O2, Oz, POz,
Pz, PO4, PO3, PO8, PO7, P2, P1, Cz, C1, C2, CPz, and FCz,
according to the international 10-10 system [17].

Figure 2 shows an example of EEG signal recorded on the
visual cortex (Oz position) when a user was exposed during
12 seconds to a stimulus flickering at 12Hz. Figure 2(a) shows
the signal in the time domain and Figure 2(b) the spectrum
of the signal from which a peak at 12Hz can be identified.

2.2. Brain Signal Processing. The signal processing can be
divided into four stages: preprocessing, feature extraction,
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Figure 2: EEG signal with SSVEP response for a stimulus flickering at 12Hz: (a) time domain and (b) frequency domain.

feature selection, and classification. The purpose of the pre-
processing is to improve signal quality by increasing the SNR.
The feature extraction consists of describing the information
embedded in the brain signal succinctly.The feature selection
realizes a filtering of the most relevant features necessary
to discriminate the classes (stimuli/commands). Finally, the
classifier interprets the brain signal through the features and
generates the control signal for the application.

In the following subsections, we describe how each stage
was designed for this study.

2.2.1. Preprocessing. To remove the smooth displacement and
electromagnetic artifacts, the EEG signal was filtered by an
analog Butterworth bandpass filter (5–60Hz) of order 8 and
by a notch filter (58–62Hz) of order 4. To remove other
artifacts, as eye blinking, the data were then submitted to a
spatial filtering using the CommonAverage Reference (CAR)
method, defined as

𝑉CAR𝑖 = 𝑉
ER
𝑖 −
1
𝑛

𝑛

∑
𝑗=1

𝑉ER𝑗 , (1)

in which 𝑉ER𝑖 is the potential of the 𝑖th electrode measure-
ment with respect to a common reference, and 𝑛 is the
number of electrodes in the array, in our case 𝑛 = 16.
The average value is subtracted from the potential of each
electrode, eliminating artifacts present in most them. As
simple as it may be, CAR is an effective solution to improve
the SNR and the BCI-SSVEP performance [15].

2.2.2. Feature Extraction. The stage of feature extraction is
responsible for representing the input data in a compact
way, reducing their dimensionality. The process is conducted
without loss of the information that allows to discriminate the
stimuli. Indeed, the feature extraction should emphasize the
relevant characteristics of the input signal to facilitate the task
of the classifier.

For EEG signals with SSVEP response, a classical feature
is the spectral amplitude estimated by the Fast Fourier
Transform (FFT) algorithm. In the present case, every two
seconds 512 brain signal samples were recorded on channel
𝑖, generating the following features subvector 𝐴ch𝑖 with four
inputs, corresponding to the peak values of the FFT at
frequencies 6, 10, 12, and 15Hz:
𝐴ch𝑖 = [𝑎6Hz,ch𝑖 𝑎10Hz,ch𝑖 𝑎12Hz,ch𝑖 𝑎15Hz,ch𝑖] . (2)

The following features vector 𝐻, with 64 entries, stores the
four features, for the 16 electrodes, every two seconds of brain
signal recording:

𝐻 = [𝐴ch1 𝐴ch2 ⋅ ⋅ ⋅ 𝐴ch16] . (3)

2.2.3. Feature Selection. Part of the features in vector 𝐻
can be eliminated to further reducing the dimensionality of
the problem. The purpose of feature selection is to use just
the data that provide useful information to discriminate the
classes, eliminating redundant information and those that
may impair classifier performance.

Feature selection can be performed with filter or wrapper
techniques [18, 19]. The filter approach uses statistical mea-
sures to quantify the relevance of each feature, whereas the
wrapper approach ranks the characteristics according to the
classifier performance. For the feature selection problem in
BCI-SSVEP systems, the search in the feature space using
greedy heuristics, called forward wrappers, has been shown
to be quite efficient [15]. This technique considers the set of
features used in the training step together with the classifier
to select the set of features that provides the best performance
for the BCI system. The algorithm used here works as
follows:

(i) Initially, the BCI performance for each subvector𝐴ch𝑖
alone is evaluated; that is, the data coming from each
electrode are tested one by one, individually.

(ii) Subsequently, the subvector 𝐴ch𝑖 that provides the
best accuracy is maintained, and the system perfor-
mance is evaluated by combining 𝐴ch𝑖 with 𝐴ch𝑗 , for
𝑖 ̸= 𝑗.

(iii) The progressive inclusion of new 𝐴ch‘s continues as
long as the system performance increases. The stop-
ping criteria were as follows: (1) when performance
degradation occurs for two consecutive times with
any new combination; (2) when the signals coming
from all 16 electrodes are already employed.

After applying the forward wrappers algorithm, the feature
vector𝐻 is reduced, resulting in a vector 𝐻̃ of order less than
or equal to 64.

2.2.4. Classification. The last stage of the signal processing
module is the classification. The classifier must evaluate the
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characteristics of the vector 𝐻̃ and identify the stimulus to
which those features correspond.

A linear classifier based on the least squares method was
used. This approach is computationally inexpensive and is a
well-established technique in the literature for discriminating
signals with SSVEP response [15].

The classifier comprises two steps: training and operation.
In the first step, the system is fed with the labeled features of
the four classes and the separation hyperplanes are generated
by solving the following equation:

𝜔𝑐 = (𝑋
𝑇𝑋)
−1
𝑋𝑇r𝑐, (4)

in which𝑋 is the feature matrix, composed of several vectors
𝐻̃, 𝑋𝑇 is the transpose of 𝑋, and r𝑐 is the vector of labels of
class 𝑐, with entries +1 for the corresponding class and −1 for
the other classes. In our study,𝑋 has 192 entries, being 48 for
each class (stimulus).

In the operation step, the user is controlling the applica-
tion at run time.The output of the classifier is given by solving
the following expression for each hyperplane:

𝑦𝑐 = 𝐻̂𝜔𝑐, (5)

with

𝐻̂ = [𝐻̃; 1] . (6)

Ideally, the variable 𝑦𝑐 must have a +1 if it belongs to the class
𝑐, and −1 otherwise. As a decision criterion, if more than one
solution 𝑦𝑐 presents positive values, it is decided as the class
with the highest value of 𝑦𝑐 [20].

2.3. Application:TheGame “Get Coins”. Wehave developed a
computer game, here called “Get Coins,” using the Unity3D�
game engine, to evaluate the user interaction with an appli-
cation controlled by the previously presented BCI-SSVEP.
Figure 3 shows the game screen. The main goal of this game
is to collect as many coins as possible by moving the small
ball around the board. The simplicity of the game makes its
objective and mechanisms quite intuitive, allowing an easy
understanding for people with different familiarities with
computer games and thus minimizing the influence of game
characteristics on the study’s objective, which is to evaluate
user interaction with an BCI-SSVEP.

The direction of the small ball is determined by the
four stimuli positioned intuitively on the sides of the board
corresponding with the commands to move the small ball
to the left, right, down, and up. The stimuli are squares
that alternate between black and white in the frequencies
of 6Hz (left), 10Hz (right), 12Hz (down), and 15Hz (up).
The players can give a command every two seconds, during
which time they should gaze at the stimulus corresponding
to the desired command. The period of two seconds was
chosen considering the compromise between the system hit
rate and the user’s visual fatigue. A long time of concentration
in the stimulus leads to a more intense SSVEP response in
the spectral analysis of the signal, which contributes to a
better performance of the system. On the other hand, very

Figure 3: Screenshot of the “Get Coins” game.
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Figure 4: Stimulus at 10Hz generated by a sine wave.

long periods lead to visual fatigue, stressing the user and
compromising the dynamics of the game.

When the player collects a coin, the counter located on
the upper left side of the screen is incremented by 1.Theplayer
has two minutes, corresponding to 60 movements, to collect
the four coins.The game is ended after the player has collected
all coins or after two minutes.

A key point in the development of the interface for
BCI-SSVEP is to guarantee precision in the flickering rate
of stimuli [13]. In the present study, a sine wave has been
generated internally to change the visual stimuli from black
to white and vice versa, in well-defined frequencies. Figure 4
shows a 10Hz sine wave in an interval of 1 s, alternating the
pattern of the stimulus at each zero-crossing of the sine wave,
generating the flickering stimulus in the desired frequency of
10Hz.

Also, two feedback modalities were included: visual and
acoustic.The visual feedback is given by the movement of the
ball, while the acoustic feedback consists of a beep sounded
after each movement.The beep informs that a command was
executed, avoiding that the user loses concentration on the
stimulus to visualize the movement of the ball. During the
game, a log file is generated by fetching the time spent to
collect the coins, the number of steps taken by the ball and
the path traveled by the ball.

Before arriving at the final version of the game presented,
an inspection was conducted by four HCI experts from the
Institute of Computing at the University of Campinas. The
ten usability heuristics for user interface design, proposed by
Nielsen, were used to evaluate the game interface [21]: (1)
visibility of system status; (2)match between system and the
real world; (3) user control and freedom; (4) consistency and
standards; (5) error prevention; (6) recognition rather than
recall; (7) flexibility and efficiency of use; (8) aesthetic and
minimalist design; (9) helping users recognize, diagnose, and
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Figure 5: Experimental setup.

recover from errors; and (10) help and documentation. The
main recommendations were as follows:

(1) Adjust the position of the coins in such a way as to
require a number of steps to collect them compatible
with the time that the players have to complete the
game.

(2) Limit the duration of the game in 120 seconds to avoid
fatigue of the player.

(3) Increase the size of the small ball to allow its visual-
ization through peripheral vision.

(4) Insert a coin counter at the top to guide and motivate
the players about their performance.

2.4. Experimental Setting. A total of 30 volunteers aged from
20 to 45 years, average 29.93 ± 6.11, being 22 males and 8
females, have participated in this study. Half of the volunteers
reported to play digital games frequently and the other 15
stated that they had not played any digital game before. All
of themwere adequately informed about the research and the
experimental protocol and signed the consent form approved
by the Ethics Committee of the University of Campinas
(n. 791/2010). All volunteers were healthy individuals, with
normal or corrected for normal vision.

The experiment was performed in a room with low light
intensity to avoid interference from lightning.The volunteers
were seated at approximately 70 cm from the monitor and
were instructed to remain as motionless as possible to avoid
mechanical artifacts. They made use of an antistatic wrist
strap to discharge electrostatic energy. The cap with 16 dry
electrodes was positioned on the scalp, as shown in Figure 5
with the experimental setup.

The experimental protocol consisted of training, playing,
and answering a personal perception questionnaire. During
the training, a screen with four stimuli, as shown in Figure 6,
was presented. The visual stimulation setup followed the
same standards during training and online procedures. The
volunteers were informed about the need of focusing their
gaze on specific visual stimulus by 12 seconds. The stimulus
to be focused and the initial and final time were informed
orally. The process was repeated eight times for each of the
four stimuli. The recorded brain signal was used to train the
classifier of the BCI and to estimate the expected performance
of the player.

Figure 6: Training screen.

After the training, the game “Get Coins” was introduced
to the volunteer along with a tutorial on how to play.
The volunteers played five versions of the game, each one
evaluating different aspects of interface and interaction, as
shown in Table 1.

All versions of the game were played in a random order
for each volunteer, in such a way as to minimize the bias of
the results due to fatigue or learning of the player. In Version
2, the game was controlled by the keyboard, to compare this
input device with the interaction via BCI.

At the end of eachmatch, volunteers answered a question-
naire with continuous scale items about their perception.The
questions and the ranges are presented in Table 2.

Moreover, the following assertive questions with yes/no
answers were asked:

(i) Did you feel your eyes watering?
(ii) Did you feel dizzy?
(iii) Did you think about quitting in the middle of the

game?
(iv) Did you feel uncomfortable posture?

The questionnaire additionally had an optional field for
comments and suggestions.

This qualitative information together with the quantita-
tive data recorded in the log file (collecting the course of
the ball, number of steps, total time of play, and number
of coin catches) has allowed us to draw a parallel between
the perception of users and their performance in the game.
All data were statistically evaluated and the 𝑝 value was
estimated using the Wilcoxon 𝑡-test for the comparison of
two groups and the ANOVA model for the comparison
of three or more groups. The confidence value was set at
95%.

3. Results and Discussion

The experiment allowed the generation of a brain signal
database from 30 individuals collected during the training
stage, containing 8 repetitions of 12 s for the four frequencies
(6, 10, 12, and 15Hz). Additionally, the users’ perception
about the interface elements and their interaction with
the game were registered. All these data have significantly
supported the present study for a better understanding on
how interaction with BCI-SSVEP occurs.
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Table 1: Versions of the game Get Coins.

Visual stimulus Acoustic feedback Background scenario Background music Control by BCI Control by keyboard
Version 1 Yes Yes

Black

No Yes No
Version 2 No Yes No No Yes
Version 3 Yes Yes Yes Yes No
Version 4 Yes No No Yes No
Version 5 Yes Yes Gray (50%) No Yes No

Table 2: Questionnaire items, translated from Brazilian Portuguese.

Question topic Range limits
Cap comfort 0 very uncomfortable–10 very comfortable
Visual comfort of the stimulus 0 very uncomfortable–10 very comfortable
Fatigue caused by training/by the game 0 very tiring–10 very invigorating
Motivation for training 0 very boring–10 very exciting
Game challenge with BCI/keyboard 0 very easy–10 very challenging
Background color 0 unpleasant–10 pleasant
Pleasantness of the positioning of the stimuli 0 very uncomfortable–10 very comfortable
Pleasantness of background color 0 very uncomfortable–10 very comfortable
Acoustic feedback helps 0 not at all–10 a lot
Background music disturbs 0 not at all–10 a lot
Background music lacks 0 not at all–10 a lot
Intuitiveness of game controls 0 not intuitive at all–10 very intuitive
Dominion of game controls 0 total control–10 no control
Control by keyboard is 0 boring–10 fun
Pleasantness of game 0 unpleasant–10 pleasant

All the 30 volunteers performed the entire experimental
procedure, that is, training, playing of the five matches, and
answering the questionnaire. None of the volunteers have
asked to interrupt the experiment, indicating that eventual
distresses caused by the electrode cap, visual stimulation, or
fatigue were tolerable.The average duration of an experimen-
tal session was 34󸀠38󸀠󸀠 ± 04󸀠51󸀠󸀠.

Despite equal conditions, the hit rate was different for
each volunteer, as expected, since the BCI system depends on
the neurophysiological response and biological and cognitive
factors of the individuals, as well as on their concentration on
stimulus and abilities. Eight volunteers collected all the coins
in at least one of the versions of the game using BCI. Four
of them collected all coins in all game versions. Although the
game is time-limited to 120 seconds, these four individuals
needed an average time of 76.94 ± 16.36 seconds to collect
all coins. On the other hand, four other volunteers did not
collect any coins in exactly one of the game versions, and
one volunteer did not collect any coins in two game versions.
Figure 7 presents the average number of collected coins,
considering just the game versions controlled by BCI.

Considering the five versions of the game separately, the
number of collected coins is shown inTable 3.Only inVersion
2, controlled by keyboard, all the volunteers collected all
the four coins. A statistically significant difference of the
average of collected coins was detected only between Version
2 and each of the other versions (𝑝 < 0.0001). Furthermore,
considering only the versions controlled by BCI, the average
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Figure 7: Histogram of average number of collected coins.

Table 3: Average number of coins collected in each version of the
game.

Version Collected coins
1 2.13 ± 1.22
2 4.00 ± 0.00
3 2.10 ± 1.30
4 2.00 ± 1.39
5 1.97 ± 1.19

number of coins collected was 2.05 ± 1.26, and it remained
constant throughout the game, indicating that the fatigue
and learning factors did not quantitatively influence the
performance of volunteers.
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Figure 8: Relationship between the expected performance using the
training data and the average number of coins collected.

Another important point is that the predicted perfor-
mance using the training data did not always correspond
directly to the performance achieved during the online
application, as shown in Figure 8. Despite a trend in direct
correspondence between the two performances, some users
with high performance in the training session presented
poor performance in the game and vice versa. Some of
the reasons that may explain this behavior are as follows:
in the online version, the volunteer is motivated and has
a well-defined goal; however there is movement of the
eyes for transitions between commands and visual stimuli
and distraction between the stimuli and the game board.
However, these factors act differently for each volunteer.

Regarding the motivation to perform the training stage,
the volunteers indicated that they felt motivated with an
average of 6.98 ± 1.98, regarding a maximum of 10 for
“very motivated.” During the training stage, two volunteers
reported fatigue and one related having experienced invol-
untary spasms in the eyes. In fact, the training stage was
really a “tiring stage,” requiring a concentration of eight
times 12 seconds on each of the four visual stimuli. A
possibility of reducing this fatigue would be to decrease
the number of samples to train the system; however this
could degrade the system performance. To ensure a better
hit rate, and consequently greater controllability of the game,
we had decided to keep the eight repetitions in the training
stage.

About the perception of fatigue caused by the game, there
is a statistically significant difference only between Version 2
of the game and the other versions (𝑝 < 0.0001). The average
values are presented in Table 4 (with 0 being very tiring–10
very invigorating). Thus, we can conclude that the control
via BCI is more tiring than via keyboard, but the fatigue is
acceptable (average of 5.59 ± 1.83). A quantitative analysis
indicates that the users need to execute almost twice as many
commands to complete the goals of the game using the BCI
(average of 49.45 ± 11.29) compared to using the keyboard
(average of 24.60 ± 2.43).

The perceived distress or comfort caused by the visual
stimuli was neutral (an average of 5.84 ± 1.78), that is,
neither very comfortable (10) nor very uncomfortable (0).

Table 4: Average fatigue caused by the game.

Version Fatigue in the game
1 5.58 ± 1.78
2 7.51 ± 2.19
3 5.63 ± 1.83
4 5.46 ± 1.97
5 5.70 ± 1.79

The distress did not change statistically during the sessions,
considering the beginning and the end of the experiment
(𝑝 = 0.6550).

According to the perception of users, the distress/comfort
caused by the cap with electrodes was 6.94 ± 2.01, with 10
being very comfortable and 0 very uncomfortable. Consider-
ing themarkings performed at the beginning and at the end of
the experiment, by each volunteer, this remains constant, and
there is no significant difference (𝑝 = 0.5826). This indicates
that users are likely to accept the regular use of the cap and
electrodes on scalp. However, the EEG acquisition system
would need to be improved for frequent use, since the correct
positioning of the electrodes is not trivial for an ordinary user.
Also, for an actual application, it is unreasonable to require
the user not to move the head. However, this movement
can displace the electrodes or even cause the loss of contact
with the scalp, seriously compromising the BCI performance.
There already exist some solutions like EMOTIV Epoc+
[22] that have prepositioned, fixed electrodes, and the data
transmission of the electrodes is via a wireless channel, which
allows free movement of the head.

The well-defined goal of the game also served as a
motivation, possibly distracting from or reducing the fatigue
and the distress caused by the cap and by visual stimuli.
In fact, some applications may require longer interactions,
so that minimizing visual distress and fatigue should be a
central requirement in designing interfaces for applications
controlled by BCI-SSVEP. Indeed, the fatigue can lead to loss
of concentration, which can compromise the intensity of the
SSVEP response and, consequently, the performance of the
system [23].

Regarding the sense of dominion of game controls, the
players indicated to exercise a medium to low control using
BCI, averaging 5.61 ± 2.73 (0 being total control–10 no
control), against an almost total control with keyboard,
averaging 0.91 ± 2.53 (𝑝 < 0.0001). However, they indicated
a neutral position regarding the fun of the keyboard game
control, compared to an average of 4.99 ± 3.72 (0 being
boring–10 fun) regarding the BCI versions. In the field for
comments and suggestions, nine volunteers had reported
difficulty in moving the ball to the desired direction. The
BCI system sometimes leads to classification errors and ends
up executing a command that does not correspond to the
one desired by the user, leaving the player with a sense of
little control over the game. However, contradictorily, one
among these nine volunteers achieved total success in all the
game versions, collecting all the four coins. In other words, he
presented an excellent control although in his perception he
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felt without control of the game. The keyboard version was
controlled with the directional arrow keys, and the players
indicated this as intuitive, with an average of 8.98 ± 2.05. For
the BCI versions, they also indicated that the placement of the
stimuli on themonitormade the commands intuitive, with an
average of 7.65 ± 2.49 (10 for very intuitive).

In general, the players liked the game in both modes of
control, with an average of 7.09 ± 2.10, for BCI and 7.04 ±
2.01 for keyboard (10 for pleasant). As for the challenge of the
game, the players indicated that the game via the keyboard
is very easy, with an average value 0.88 ± 2.04, and that the
game is more challenging when the control is via BCI, with
an average of 6.01 ± 3.31 (0 very easy–10 very challenging;
𝑝 < 0.0001).

As far as acoustic feedback is concerned, the volunteers
reported that it assists in game control, with a statistically
significant difference (𝑝 = 0.0426) between the versions of
the game with acoustic feedback (1, 3, and 5) and the Version
4 without acoustic feedback. However, the performance in
terms of the number of collected coins was not statistically
different (𝑝 = 0.3810). Although the performance in the
game was not statistically different, acoustic feedback is
important for the player to know what is happening in the
game without losing the focus on the visual stimulus, mainly
for volunteers who had no experience with computer games
(see Figure 9). Also, in the comments/suggestions field of
the questionnaire, two volunteers suggested that different
beeps for each direction of the ball could better assist in
feedback. These observations reiterate the importance of
acoustic feedback.

Still in relation to sound effects, the amount of collected
coins was not significantly different (𝑝 = 0.7188) between
Version 3, with background music, and the other versions of
the game without backgroundmusic. In the perception ques-
tionnaire, the volunteers reported that backgroundmusicwas
almost irrelevant (average of 3.37 ± 2.98, 0 being irrelevant),
but it does not disturb either (average of 6.77 ± 3.33, 10 being
no disturbances).This result is especially interesting, because
it is impossible to control the noise level in a generic envi-
ronment. Results indicate that background sounds tend not
to impact considerably on the performance of individuals,
either quantitatively or qualitatively. However, in the present
study the background music was part of the context of the
application, so further investigation is necessary to check the
impact of random sounds, such as people talking, traffic, and
sudden sounds.

Regarding the background color, we verified that, accord-
ing to the perception of the users, both backgrounds, black
and gray, were pleasant with averages of 6.81 ± 1.94 for black
and 6.26 ± 2.25 for gray (10 for very pleasant), and there was
no statistically significant difference between the perception
of the users in the two cases (𝑝 = 0.3837). Considering
the amount of coins collected, for the black background, the
average number of collected coins was 2.13 ± 1.22, while for
the gray background the average was 1.97 ± 1.19. Although
Version 5 of the game with gray background and a lower
contrast has shown a smaller average of collected coins,
there was no statistically significant difference between the
performances (𝑝 = 0.3629).
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Figure 9: Average number of collected coins in each version of the
game for players and nonplayers volunteers.

The 15 volunteers who affirmed to play computer games
performed slightly better than the other 15 who reported not
to play. This was verified for all the versions of the game
controlled by BCI (Figure 9). However, there is no statistically
significant difference on the average performance between
the two groups at a 95% confidence level (𝑝 = 0.0529).
Possibly, this better performance of the group of players is
because they are accustomed to focus on the screen during
a game and well-acquainted at developing mental strategies
to achieve the goals.

Considering Version 4 of the game (no acoustic feedback
and no background music), which presented the greatest
discrepancy in the average between the two groups, Figure 10
shows the perception of the volunteers regarding the follow-
ing parameters:

(1) Fatigue caused by the game: 0 very tiring–10 very
invigorating

(2) Visual comfort of the stimulus: 0 very uncomforta-
ble–10 very comfortable

(3) Acoustic feedback helps: 0 not at all–10 a lot
(4) Game challenge: 0 very easy–10 very challenging
(5) Intuitiveness of game controls: 0 not intuitive at all–10

very intuitive
(6) Control over the game controls: 0 total control–10 no

control
(7) Fatigue caused by the game: 0 very tiring–10 very

invigorating.

There is no remarkable difference among the average values
between the group of players and nonplayers (𝑝 > 0.05). The
greatest difference between averages is observed at column 6
of Figure 10, about sense of control. Although the volunteers
of the group of players performed better, they paradoxically
reported having a lower perception of control of the game
(4.76 ± 2.07) than the group of nonplayers (6.55 ± 2.85),
but without statistical significance (𝑝 = 0.0529). This is
probably because the volunteers accustomed to play tend to
have a more effective sense of control of game commands
using classic interaction devices, as keyboard, mouse, or
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Figure 10: Comparison between the perception of players and
nonplayers volunteers related in Version 4 of the game.

joystick.This also impacted on the greater sensation of fatigue
reported by the group of players for both training (column 1
of Figure 10) and playing (column 7 of Figure 10).

In relation to gender of volunteers, 8 were women (of
these, 6 were nonplayers) versus 22 men, being 9 nonplayers.
The average of collected coins, considering all versions
controlled by BCI, was 1.81 ± 1.26 for women and 2.14 ±
1.13 for men, without statistically significant difference (𝑝 =
0.4513) between the performances.

Despite the great potentiality of the BCI system, as we
have confirmed here, especially in assistive applications in
which this tool may be the only viable way to control a device,
the information transfer rate is still much smaller than those
provided by conventional input means, such as the keyboard
[9].

In the field for comments and suggestions of the ques-
tionnaire, some volunteers highlighted some contradictory
opinions. For example, a volunteer reported that the interface
with gray backgroundwasmore enjoyable and less tiring than
the black background. Another volunteer reported exactly
the opposite. This indicates that the interface should be, as
far as possible, customizable to suit the preferences of each
user.

4. Conclusions

The possibility of using BCIs to control a device without
need of nerves and muscles makes this technology quite
promising, specially to conceive assistive technologies and
entertainment applications. Despite the potential of this
technology and the encouraging results already achieved
in the scientific community, BCI systems are still at the
developmental stage.

In the present study, 30 volunteers played the “Get Coins”
game. The results have allowed to test several characteristics
of the interface, as well as to analyze the user interaction using
a BCI-SSVEP and to compare system performance and user
interactionwith a classic control device, such as the keyboard.

None of the volunteers had prior experience in control-
ling games by BCI. All volunteers understood the goals of
the game and played five matches, four using the control via
BCI and one using the control via keyboard. All volunteers

collected at least one coin in the matches controlled by BCI,
while four collected all the coins in all game versions. The
total average of the number of collected coins indicates the
feasibility of this technology to control an application. When
the game was controlled by keyboard, all volunteers collected
the four coins. Familiarity with the keyboard, with its high
accuracy and precision, and the simple goals of the game
offered a very low challenge in this mode of control. This
indicates that game concept andmechanismdid not influence
our experimental results.

Regarding the fatigue caused by the game, volunteers
reported that the version of the game controlled by the
keyboardwas less tiring than byBCI,which is understandable
since the matches with keyboard were faster than matches
with control via BCI. Also, the control by keyboard does not
require concentration on stimuli. However, the BCIs may be
the only option for people with reduced mobility, and it is
interesting to note that it is a valid option despite its current
limitations.

About the characteristics of the interface, the volunteers
reported that acoustic feedback helped control, since it
indicates that a command has been executed. However, the
performance in terms of the number of collected coins was
not statistically significant. As for the background music,
users indicated that neither its presence nor its absence
influenced the game play and should therefore be an element
to be optionally offered to each player. This also indicates
that background noise, at reasonable levels, tends to be
irrelevant and does not disturb concentration. The black and
gray background intensity did not result in perceptual visual
fatigue due to higher or lower contrast, nor did it affect the
performance of users. Although three volunteers reported
visual distress at some time during the experiment, they all
decided to continue the experiment to the end. The distress
felt by the volunteers at the beginning and the end of the
experiment were not statistically different, probably because
the matches were only 2 minutes long and possibly due to
the novelty factor. Since none of the volunteers had had
experience in controlling a game by brain signals before, this
could also have minimized the sensation of fatigue caused by
the visual stimuli.

As for the distress caused by the electrode cap, the level
was not significant and remained constant throughout the
experiment, showing that the volunteers did not bother with
this in the experimental context.

Of the 30 volunteers who participated in this experiment,
15 had not played any type of digital game and 15 had
played. Comparing the performance between these two
groups, we observed that there was no significant statistical
difference in performance between them.However, the group
of players performed better than the nonplayers in all game
versions, possible because of the concentration skills acquired
through game playing. Further studies, however, are needed
to understand this relationship.

The results of our study did not consider the impact of the
learning effect on the interaction of users with BCI-SSVEP
systems, as each volunteer took part in a single experimental
session. Moreover, only healthy volunteers participated in
the experiment, assessments with patients with motor, visual,
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mental, and hearing impairment should be better evaluated
in future studies.

This research directs developers to understand users’
difficulties and how the interaction of the user with a
BCI based on SSVEP occurs. Additional research should
aim at understanding more about this, in order to achieve
more complete guidelines on how BCI applications should
be constructed. Different from other interaction devices as
mouse, keyboard, and joystick, BCI systems depend on the
user’s ability to concentrate on visual stimuli, so the interfaces
must be designed to avoid distraction and fatigue. In fact,
the study of BCI systems from the HCI point of the view is
essential to understand the real needs of the individuals and
to overcome the challenges to make BCI systems a reality for
the end user.
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Canonical Correlation Analysis (CCA) is an increasingly used approach in the field of Steady-State Visually Evoked Potential
(SSVEP) recognition. The efficacy of the method has been widely proven, and several variations have been proposed. However,
most CCA variations tend to complicate the method, usually requiring additional user training or increasing computational load.
Taking simple procedures and low computational costs may be, however, a relevant aspect, especially in view of low-cost and high-
portability devices. In addition, it would be desirable that the proposed variations are as general andmodular as possible to facilitate
the translation of results to different algorithms and setups. In this work, we evaluated the impact of two simple, modular variations
of the classical CCA method. The variations involved (i) the number of canonical correlations used for classification and (ii) the
inclusion of a prefiltering step by means of sinc-windowing. We tested ten volunteers in a 4-class SSVEP setup. Both variations
significantly improved classification accuracy when they were used separately or in conjunction and led to accuracy increments up
to 7-8% on average and peak of 25–30%. Additionally, variations had no (variation (i)) or minimal (variation (ii)) impact on the
number of algorithm steps required for each classification. Given the modular nature of the proposed variations and their positive
impact on classification accuracy, they might be easily included in the design of CCA-based algorithms that are even different from
ours.

1. Introduction

ABrain-Computer Interface (BCI) is a system enabling direct
communication between the brain and the outside, as it
directly translates the recorded neural activity into a control
signal for an external device (e.g., a computer, a machine,
or a speller) [1]. Among noninvasive systems, electroen-
cephalography- (EEG-) based BCIs are the most widespread
[2], and they can rely on four possible electrophysiological
sources: slow cortical potentials (SCPs), event-related de-
synchronization/synchronization (ERD/ERS), event-related
potentials (as P300), or Steady-State Visually Evoked Poten-
tials (SSVEPs) [3]. Among these, SSVEP-based BCIs are
appealing for their high accuracies and information transfer
rate (ITR), thanks to the high signal-to-noise ratio of SSVEPs
even without user training [4]. For this reason, SSVEP-based
BCIs have been raising increasing attention over the years
[5, 6].

SSVEPs are periodic brain signals elicited over the occipi-
tal cortex by visual stimulations with frequencies higher than

6Hz [7]. In case different flickering objects (LEDs, symbols,
and squares) are simultaneously presented, an analysis of
the SSVEP spectral content permits to reconstruct which
stimulus the user is focusing on.

Traditionally used methods perform SSVEP recognition
based on power spectral density analysis (PSDA) [7]. In
PSDA-based approaches, spectral powers are estimated from
the EEG spectrum at the target stimulation frequencies and
used as a feature for classification [8–10]. However, PSDA-
based methods can suffer from noise sensitivity if few
channels are acquired, besides requiring relatively long signal
portions (e.g., >3 s) to estimate the spectrum with a sufficient
frequency resolution [11–13]. A promising and increasingly
used approach, which has recently attracted the interest of
researchers [14–17], is the one based on Canonical Correla-
tion Analysis (CCA) [7].

CCA is a multivariate statistical method able to reveal
the underlying correlation between two sets of data [18].
For SSVEP recognition, CCA is performed several times
between the considered EEG segment and a set of sine-cosine
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reference signals modeling the pure SSVEP responses to each
stimulation frequency [7]. The frequency response showing
highest correlation with the analyzed EEG portion is finally
recognized as the observed one.

The efficacy of theCCAapproach has beenwidely proven,
and its superiority to PSDA in terms of speed, accuracy, and
computational load has been shown [19, 20]. For this reason,
several CCA variations have been proposed over the years
[11–13, 15, 21–26].

Some CCA variations, as [11–13, 15, 21, 23], modified
the SSVEP reference signals by including subject-specific
features from each user’s EEG.The work in [24] enriched the
algorithm with incorporating intersubject information from
the signals of multiple subjects. In [25], an effort was made
towards compensating the natural decrease in signal-to-
noise ratio of SSVEPs at higher stimulation frequencies by
correcting classification gains based on the shape of indi-
vidual background EEG. Finally, in [22, 26], CCA was
repeated multiple times for each stimulation frequency,
each time processing the signal with a different IIR band-
pass filter, to combine different aspects of the same EEG
response.

Although each introduced variation produced significant
increments of classification accuracy, all of them tended to
increase the complexity of the algorithm. They indeed either
required additional user training, to incorporate information
from individual EEG data [11–13, 15, 21, 23], or increased
computational load by multiplying the number of CCAs
to assess each stimulation frequency [22, 26]. However,
we believe that even taking simple procedures and low
computational costs may be relevant, especially to favor the
spread of low-cost and high-portability devices. In addition,
it would be desirable that variations are as general or scalable
as possible to facilitate the translation of results to different
setups.

Given these premises, this work presents two simple and
modular variations based on the classical CCA method. The
variations regard (i) the number of correlations considered
for classification and (ii) the preprocessing of the signals.
We show that both modifications can significantly improve
classification accuracy but still leaving the whole procedure
training-free andwith no (variation (i)) orminimal (variation
(ii)) impact on the number of steps required for each SSVEP
identification.

2. Materials and Methods

2.1. The Standard CCA Method for SSVEP Recognition. Ca-
nonical Correlation Analysis (CCA) is a multivariate statis-
tical method [18] used to reveal the underlying correlation
between two sets of data. Given two sets of random variables
X ∈ R𝐼1×𝐽 and Y ∈ R𝐼2×𝐽, CCA finds the two corresponding
setsU =AX ∈ R𝐼1×𝐽 andV = BY ∈ R𝐼2×𝐽 (linear combination
of the original ones through A ∈ R𝐼1 and B ∈ R𝐼2), called
canonical variables, so that the correlation between each pair
or rows (𝑈𝑖, 𝑉𝑖) is maximized:

𝜌𝑖 = max
cov (𝑈𝑖, 𝑉𝑖)√var (𝑈𝑖) var (𝑉𝑖)= max

𝐴,𝐵

cov (𝐴𝑋𝑖, 𝐵𝑌𝑖)√var (𝐴𝑋𝑖) var (𝐵𝑌𝑖)
(1)

with leaving (𝑈𝑖, 𝑉𝑗), (𝑈𝑖, 𝑈𝑗), and (𝑉𝑖, 𝑉𝑗) uncorrelated if 𝑖 ̸=𝑗. Each CCA leads to a number of solutions 𝜌𝑖 equal to the
minimum between the numbers of rows in A (𝐼1) and B(𝐼2). The solutions 𝜌𝑖, sorted in descending order, are called
canonical correlations and are a measure of the similarity
between the two sets of original data.

The use of CCA in the field of SSVEP recognitionwas first
proposed by Lin et al. in [7]. Given𝐾 stimulation frequencies
to be distinguished, CCA is performed𝐾 times, one for each
stimulation frequency 𝑓𝑘, between the multichannel EEG
signal in X ∈ R𝑁ch×𝐽 (𝑁ch acquired channels, 𝐽 time samples)
and a set of sine-cosine reference signals in Y𝑘 ∈ R2𝑁harm×𝐽

modeling the pure SSVEP responses. Each setY𝑘 is composed
as follows:

Y𝑘 =
(((((((((
(

cos (2𝜋𝑓𝑘𝑡)
sin (2𝜋𝑓𝑘𝑡)
cos (2𝜋2𝑓𝑘𝑡)
sin (2𝜋2𝑓𝑘𝑡)...

cos (2𝜋𝑁harm𝑓𝑘𝑡)
sin (2𝜋𝑁harm𝑓𝑘𝑡)

)))))))))
)
, 𝑡 = 1𝐹𝑠 , 2𝐹𝑠 , . . . , 𝐽𝐹𝑠 , (2)

where 𝑓𝑘 is the stimulation frequency, 𝐹𝑠 is the sampling
rate, and 𝑁harm is the number of harmonics included in the
analysis.

Every CCA generates a vector of canonical correlations(𝜌𝑘1, 𝜌𝑘2, . . . , 𝜌𝑘min(𝑁ch ,2𝑁harm)), of which only the first and
largest one, 𝜌𝑘1, is used as a feature for classification. The
analyzed EEG segment in X is indeed assigned to the
stimulation frequency leading to the maximum correlation𝜌𝑘1: 𝑓target = max

𝑓𝑘
𝜌𝑘1. (3)

2.2. Variation 1: Number of Considered Canonical Correla-
tions. Although the efficacy of the CCA method for SSVEP
recognition has been widely proven [14, 16] and many vari-
ations have been proposed [11–13, 15, 21–27], the majority of
approaches consider only the first canonical correlation as a
feature for classification.Nevertheless, as already noted by Lin
et al. [7], since real EEG signalsmay be contaminated by noise
and show phase transitions, the information might be spread
over more than one correlation coefficient.

As a first variation of the algorithm, we evaluated the
impact of taking a combination of more than one correlation
coefficient as a feature for classification, following prelimi-
nary results in [28]. Since the canonical variables in U and
V are estimated so that each couple (𝑈𝑖, 𝑈𝑗) and (𝑉𝑖, 𝑉𝑗)
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are uncorrelated for 𝑖 ̸= 𝑗 and the sine-cosine waves in
the reference signals Y𝑘 are orthogonal between each other,
the information contained in each set of canonical variables
will always be in quadrature with respect to the others.
For this reason, we propose combining the 𝑁corr considered
correlations with using the Euclidean norm:

𝑟𝑘 = √𝑁corr∑
𝑖=1

𝜌2
𝑘𝑖
. (4)

The resulting combination 𝑟𝑘 would be used as a feature for
classification in place of the largest canonical correlation 𝜌𝑘1
only. The number 𝑁corr can range from 1 to the minimum
between 𝑁ch and 2𝑁harm, with 𝑁ch number of acquired
channels and𝑁harm number of considered harmonics. In this
work, we employed𝑁ch = 8EEG channels (see Section 2.4 for
details) and𝑁harm = 3 harmonics, so we explored the impact
of taking all the possible numbers of considered correlations
between 1 and 2𝑁harm.

2.3. Variation 2: Preprocessing with Sinc-Windowing. Another
possible variation with respect to literature may consist in
adding a preprocessing step to the EEG segments before per-
forming CCA. If we exclude the works in [22, 26], employing
IIR filter banks, CCA is indeed typically applied without
any prefiltering of the EEG signals. Nevertheless, we believe
that a narrow-band prefiltering step around the 𝐾 employed
stimulation frequencies and their 𝑁harm harmonics might
be useful to increase the signal-to-noise ratio, expectantly
enhancing classification accuracy.

As a second variation, we evaluated the influence of
such type of prefiltering with using a sinc-windowing imple-
mentation. The technique of sinc-windowing consists in
the convolution of the analyzed signal with an adequately
modulated sinc function. As it is known, the inverse Fourier
transform of an ideal rectangular band-pass filter centered in𝑓0 and with𝑀 bandwidth is

rect(𝑓 − 𝑓0𝑀 ) + rect(𝑓 + 𝑓0𝑀 )
𝐹−1󳨀󳨀→ 2𝑀 sinc (𝑀𝑡) cos (2𝜋𝑓0𝑡) , (5)

where f is the frequency and 𝐹−1 is the inverse Fourier
transform. Thus, the filtering around the 𝑓𝑘 stimulation
frequencies and 𝑁harm harmonics can be accomplished by
means of a convolution with the following function:

ℎ (𝑡) = 2𝑀 sinc (𝑀𝑡)( 𝐾∑
𝑘=1

𝑁harm∑
𝑛=1

cos (2𝜋𝑛𝑓𝑘𝑡)) , (6)

where𝑀 is the bandwidth (in this work,𝑀 = 1Hz),𝑁harm is
the number of harmonics, and 𝑓𝑘 are the 𝐾 stimulation
frequencies.

2.4. Data Acquisition. The EEG was recorded from 8 elec-
trodes (PO7, PO8, PO3, PO4, O1, O2, POz, and Oz),
positioned according to the international 10-20 system. The

signals were acquired using a Brainbox EEG-1166 amplifier,
with a 256Hz sampling frequency and a 50Hz Notch filter
on.

SSVEP stimulationwas provided through four blue LEDs,
arranged around a PC monitor. Each LED flickered at a
different stimulation frequency (𝑓1 = 8Hz, 𝑓2 = 9Hz, 𝑓3 =
10Hz, and 𝑓4 = 11Hz). The four stimulation frequencies were
selected before the beginning of the study and were the same
for all subjects. All stimulations were provided with a 50
percent duty-cycle. The behavior of the LEDs was controlled
by a LabVIEW-Arduino interface.

2.5. Experimental Paradigm. Ten healthy volunteers (aged 22
to 26, 4 males and 6 females) participated in the study. All of
them had normal, or corrected to, normal vision. During the
experiment, the participants sat on a comfortable chair, with
their arms relaxed and their head still, approximately 60 cm
distant from the PC monitor.

The experiment was organized into runs and the runs
were organized into trials. Each participant underwent a total
of 4 runs, each comprising 16 trials. Each trial consisted of
three subsequent phases: a 1 s preamble, a 12 s stimulation,
and a 2 s break period. During the preamble, a yellow square
appeared on the screen indicating the target LED; then all
LEDs started simultaneously flickering during stimulation,
and the trial ended with a break period, where the LEDs
shut off and the square disappeared. The order of the target
LEDs was randomized and counterbalanced in each run, so
that each LED was gazed for the same amount of time. To
summarize, each experiment included a total of 4 runs × 16
trials × 12 seconds = 768 seconds of stimulation, that is, 192
seconds for each class.

2.6. Performance Evaluation. For each subject, we evaluated
the average classification accuracy at the end of each run.
To highlight the impact of the two proposed variations
(composition of the feature vector and sinc-windowing), all
accuracies were recomputed using all the possible combina-
tions of methods, that is, a number of considered correlations
from one to 𝑁corr = 6, with or without sinc-windowing.
To evaluate the influence of considering different lengths
of EEG signal for SSVEP recognition, all accuracies were
recomputed with considering signal portions ranging from
0.5 s to 5 s, although the detailed results of statistical tests will
be reported only in the case of a 1.5 s window length.

Another commonly used measure of BCI performance,
encompassing the concepts of speed, accuracy, and number
of choices, is the measure of information transfer rate (ITR),
expressed in bit/min. For reasons of completeness, ITR was
also provided, and it was computed according to [29]

ITR (bit/min)
= 60𝑇 (log2𝑁 + 𝑝 log2𝑝 + (1 − 𝑝) log2 ( 1 − 𝑝𝑁 − 1)) , (7)

where𝑁 = 4 is the number of choices, 𝑝 is the classification
accuracy (expressed between 0 and 1), and 𝑇 is the epoch
duration (in seconds).
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Figure 1: A boxplot showing the classification accuracy distribu-
tions for all the considered combinations of methods. The asterisks
mark statistical significance, ∗∗𝑝 < 0.01 and ∗∗∗𝑝 < 0.001, while
“n.s.” indicates the absence of significance. The horizontal, dashed
line marks the upper confidence interval for chance level (𝛼 = 1%).

For the sake of comparison with other CCA-based lit-
erature methods that might be related to ours, we finally
recomputed classification accuracies with the method of
Chen et al. in [26], employing IIR filter banks, while we omit
the comparison with [22] as not reasonably adaptable to our
setup.

2.7. Statistical Analyses. At first, we compared each accuracy
to chance level. The value of chance level was obtained by
running the simulations as descripted in [30] in the case of
a 4-class BCI and taking the upper bound of the confidence
interval at 𝛼 = 1% significance, as an analytical expression
of chance level was not available for the multiclass case. As
concerns statistical comparison between methods, we had
to account for the fact that multiple data came from the
same subject; that is, the samples could not be assumed to
be completely independent. For this reason, instead of using
paired-samples 𝑡-test to compare each method against the
others, we ran all evaluations as post hoc tests of a repeated-
measures ANOVA. The ANOVA design included both the
factors “method” (the within-subject factor) and “subject,”
thus taking into consideration all dependencies among data.
Post hoc tests were carried out using Bonferroni correction.
The use of parametric statistical tests was justified by the nor-
mality of data distributions, as confirmed by the application
of a preliminary Kolmogorov-Smirnov test.

3. Results

The classification accuracies of each subject, run, andmethod
are detailed in Table 1 and summarized in Figure 1. The last
two rows of Table 1 indicate the average andpeak increment of

eachmethodwith respect to standardCCA (first column). All
the obtained accuracies were significantly higher than
chance, as the upper bound of the confidence interval for
chance level (with a significance of 𝛼 = 1%) in this particular
setup was 30.27%. In Table 2, the results of the post hoc
comparisons (Bonferroni-corrected) between each pair of
methods are reported. In Figure 2, the accuracy curves of all
the considered methods, evaluated with different windows
lengths, are shown. In order to avoid redundancies, the
detailed ITRs for each subject, run, and method are omitted,
as they can be easily computed from the accuracy results in
Table 1 and according to (7). Nevertheless, Table 3 reports
the average and peak ITR of each combination of methods,
together with the average and peak increment in ITR with
respect to classical CCA, in the same manner as reported in
the last rows of Table 1.

Both proposed variations were able to significantly
improve classification accuracy. As regards variation 1, the
results in Tables 1 and 2 and Figure 1 clearly show how
the consideration of more than one canonical correlation
significantly increases classification accuracy in both the
sinc-windowing and no-sinc-windowing conditions. Never-
theless, while accuracy significantly increases (𝑝 < 0.001,
both with or without sinc-windowing) when switching from
one to two canonical correlations or from two to three
canonical correlations (𝑝 < 0.001, in the no-sinc-windowing
condition), the increment generally becomes insignificant
when taking four, five, or six canonical correlations, with
respect, for example, to three. As concerns variation 2, that
is, the inclusion of a prefiltering step around the 𝐾 stimu-
lation frequencies and 𝑁harm harmonics by means of sinc-
windowing, the results show how this kind of preprocessing
always outperformed (with statistical significances ranging
from 𝑝 < 0.001 to 𝑝 < 0.01) the corresponding version
without processing. Accordingly, when variation 1 and vari-
ation 2 were combined, classification accuracy was a fortiori
significantly (𝑝 < 0.01 or𝑝 < 0.001) increasedwith respect to
the standardCCAmethod. To give an example, the accuracies
obtained with using four canonical correlations and sinc-
windowing were averagely increased by 8.20% with respect
to the standard CCA method, with a peak increment of even
31.25% (in S08, run 2).

When varying the length of the EEG portions used to rec-
ognize the SSVEPs, the behavior of the proposed variations
on classification accuracy tended to be confirmed, with the
only exception of the 0.5 s window length (Figure 2). While
the consideration of more than one canonical correlation
always outperformed the use of the largest one only, the
positive impact of sinc-windowing emerged only for window
lengths greater than 0.5–1 s.

When finally recomputing accuracies with the filter bank
CCAmethod proposed in [26], we confirm that the latter per-
formed significantly (𝑝 < 0.001) better than standard CCA.
However, the increase in accuracy produced by [26] was not
statistically different from some of our proposed variations.
Notably, accuracy results obtained with the combinations of
four, five, or six canonical correlations and sinc-windowing
processing were not statistically different from the results of
filter bank CCA [26].
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Table 2: 𝑝 values from the post hoc comparisons between each pair of methods. The asterisks mark statistical significance: ∗𝑝 < 0.05,
∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.

CCA (1 corr) CCA (2 corr) CCA (3 corr) CCA (4 corr) CCA (5 corr) CCA (6 corr)
CCA (1 corr) — 𝑝 < 10−5∗∗∗ 𝑝 < 10−9∗∗∗ 𝑝 < 10−9∗∗∗ 𝑝 < 10−10∗∗∗ 𝑝 < 10−10∗∗∗
CCA (2 corr) — — 𝑝 < 10−4∗∗∗ 𝑝 < 10−5∗∗∗ 𝑝 < 10−5∗∗∗ 𝑝 < 10−5∗∗∗
CCA (3 corr) — — — 𝑝 = 0.32 𝑝 = 0.13 𝑝 = 0.017∗
CCA (4 corr) — — — — 𝑝 = 1 𝑝 = 0.017∗
CCA (5 corr) — — — — — 𝑝 = 0.90
CCA (6 corr) — — — — — —

CCA (1 corr) + sw CCA (2 corr) + sw CCA (3 corr) + sw CCA (4 corr) + sw CCA (5 corr) + sw CCA (6 corr) + sw
CCA (1 corr) + sw — 𝑝 < 10−3∗∗∗ 𝑝 < 10−5∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−6∗∗∗
CCA (2 corr) + sw — — 𝑝 = 0.21 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 = 0.0022∗∗
CCA (3 corr) + sw — — — 𝑝 = 0.041∗ 𝑝 = 0.053 𝑝 = 0.19
CCA (4 corr) + sw — — — — 𝑝 = 1 𝑝 = 1
CCA (5 corr) + sw — — — — — 𝑝 = 1
CCA (6 corr) + sw — — — — — —

CCA (1 corr) CCA (2 corr) CCA (3 corr) CCA (4 corr) CCA (5 corr) CCA (6 corr)
CCA (1 corr) + sw 𝑝 = 0.0014∗∗ 𝑝 = 1 𝑝 = 1 𝑝 = 1 𝑝 = 1 𝑝 = 1
CCA (2 corr) + sw 𝑝 < 10−8∗∗∗ 𝑝 = 0.0015∗∗ 𝑝 = 0.22 𝑝 = 0.77 𝑝 = 1 𝑝 = 1
CCA (3 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 = 0.0025∗∗ 𝑝 = 0.0082∗∗ 𝑝 = 0.018∗ 𝑝 = 0.042∗
CCA (4 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗
CCA (5 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗
CCA (6 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗
4. Discussion

Our results show how the simple consideration of more
than one canonical correlation can significantly improve the
achievable accuracy without any increment of computational
load. As already suggested by Lin et al. [7], real EEG signals
are affected by noise and can show phase transitions; there-
fore the information might be spread over more than one
correlation coefficient.

From a theoretical point of view, if the EEG signals (in
theXmatrix) were almost unaffected by noise and shared the
same phase across electrodes (i.e., the rows in X), then the
consideration of only the first canonical correlation would
be sufficient to capture the majority of information. As
indeed the sine-cosine waves in the rows of each Y𝑘 are an
orthogonal basis, CCA would be able to find that particular
linear transformation of Y𝑘 able to explain the behavior of
the SSVEP response inX throughmaximizing the correlation
between a linear combination of X (the EEG signals) and
Y𝑘, without leaving information behind. However, as X is a
multichannel set of data, if we suppose that the SSVEP
response might show a different phase across electrodes (i.e.,
X rows), then at least a second set of canonical variables
would be needed to explain the data, and the second set(𝑈2, 𝑉2) would contain a complementary information with
respect to (𝑈1, 𝑉1). If we further suppose that, at the same
EEG location, the different harmonics of the same SSVEP
response might show different delays between each other,
then at least another set of canonical variables (𝑈3, 𝑉3)would
be needed to capture the information of the SSVEP response
not included in the first two sets.

We suggest that all the above-introduced suppositions are
likely to be true in real EEG signals. Supposing indeed that the

SSVEP response is generated in a limited area of the occipital
cortex, it will undergo different delays to reach the different
locations of electrodes, due to a delay in spatial transmission.
However, we suggest that the second supposition also is
reasonable in real EEG. Given indeed the origin of SSVEP in
the occipital cortex, the signal has to pass through multiple
tissue layers (fluids, bone, and skin) before reaching eachEEG
location. This is likely to produce phase distortion between
different frequency components, besides the well-known
spatial blurring effect.

The above-described interpretation fits the experimental
results well; indeed the accuracy significantly increased when
switching from one to three canonical correlations. We
consequently suggest that the consideration of more than
one canonical correlation permits to encompass a more
complete information on the investigated frequency 𝑓𝑘, and
this finally translates in an increased accuracy, revealed in
almost every subject and run. From the third set of canonical
variables on, we hypothesize that the amount of informa-
tion described by each correlation depends on each user’s
individual characteristics, for example, the amount of delay
across different harmonics and electrodes, as well as the dif-
ferential amplitude of the SSVEP response between different
harmonics of the same stimulation frequency. According to
this hypothesis, from the fourth canonical correlation on,
there would not be a group effect anymore, and this would
explainwhy the accuracy increments in the experimental data
are not significant anymore.

Besides recommending the consideration of more than
one canonical correlation, our results also highlight the
positive impact of prefiltering before CCA performance.
The presence of a filtering stage around the 𝐾 stimulation
frequencies and related𝑁harm harmonicsmay have permitted
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Figure 2: Grand average across subjects and runs of the classification accuracies (a) and ITR (b) for all the considered methods. The black-
dashed line indicates the upper confidence interval of the chance level (𝛼 = 1%) (a) and its corresponding ITR (b). Note that chance level is
slightly different for the different time windows, as the consideration of a larger time window implies a reduction in the number of trials per
class.

to enhance the SSVEP response from the background EEG,
and this finally translated in a significantly increased accuracy
in every considered comparison between corresponding ver-
sions of the method, with or without prefiltering. The idea of
exploiting band-pass filters to enhance different SSVEP com-
ponents had been already introduced in the works of Chen et
al. [26] and Islam et al. [22], suggesting the use of IIR filter
banks. However, both algorithm implementations in [22,
26] were proposed to perform multiple prefilterings of the
same EEG portion, thus multiplying the number of CCAs to
assess each stimulation frequency. Despite being able to
produce a significant increase in classification accuracy, this
implies a multiplication of the total number of steps required
in each SSVEP recognition, with a related sensible increment
of computational load. Besides being a novelty with respect
to literature, the implementation of the prefiltering by means
of sinc-windowing has the advantage of being able to filter
multiple frequency components in one single step, by simply

modulating the composition of the convolved function. This
implies that one more single step is added to each SSVEP
recognition independently from the number𝐾 of stimulation
frequencies or 𝑁harm considered harmonics, thus overall
remaining computationally light.

A potential limitation of the sinc-windowing technique
might be related to the length of the considered signal
portions, due to the Gibbs truncation effect [31]. As indeed
shown in Figure 2, while for segment lengths longer than
1 s sinc-windowing increased the achievable accuracy, it
turned to have even a negative impact when considering a
short signal portion of 0.5 s. Figure 2(b) integrates the
information of Figure 2(a), reminding that an increase in
window length may cause a decrease in ITR (as deducible
from (7)), in case the accuracy increase is not enough to
contrast the decrease of number of classifications per time. It
results that the maximum ITR can be achieved, for each
considered comparison, with window lengths of 1.25–1.5 s,
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while the positive impact of sinc-windowing is most evident
up to 2.5–3 s window length. As final comment on the sinc-
windowing technique, it might be noted that its efficacy was
generally confirmed despite the closeness of the chosen
stimulation frequencies (8, 9, 10, and 11Hz).

As regards the obtained accuracies in absolute terms, our
results are in line with literature regarding multiclass SSVEP
recognition with the standard CCA technique [7, 14, 20, 26,
32], although a subject-specific calibration of the stimulation
frequencies and/or their duty cycles [33] could have further
increased the performances. In addition, we verified that the
combination of our proposed variations could produce the
same accuracy increments as other CCA-related methods in
literature and particularly the same improvements as filter
bank CCA of Chen et al. [26].

As a final comment, we believe that, beyond making a
comparison of our methods to literature, the main aim and
contribution of this workwere giving a systematic study of the
effect of two simple, modular, and computationally light vari-
ations of the standard CCA algorithm.These proposed varia-
tions might be intended as modular “algorithm bricks” and
might be flexibly translated to the design of CCA-based
algorithm that is even different from ours in order to increase
the overall accuracy.

5. Conclusion

In this work, we evaluated the impact of two simple andmod-
ular variations of the CCA algorithm in a 4-class SSVEP
recognition setup.The two variations involved (i) the number
of considered canonical correlations and (ii) the inclusion of
a narrow-band prefiltering step around the employed stimu-
lation frequencies and related harmonics by means of sinc-
windowing technique. Our results indicate that even simple
consideration ofmore than one canonical correlation can sig-
nificantly improve accuracy, without any increment of com-
putational load. Notably, there were significant increases in
accuracy when switching from one to three canonical cor-
relations, while the increments were not significant from
the fourth canonical correlation on. An additional narrow-
band prefiltering permitted to gain up to 7-8% of accuracy
on average, with peaks of 25–30%, with respect to classical
CCA. A further advantage of sinc-windowing implementa-
tion is that it permits the enhancement of multiple frequency
components in one single step, by simply modulating the
composition of the sinc-function. Given the modular nature
of the proposed variations and the significant increments in
accuracy, regardless of whether the variations were used sep-
arately or, evenmore, in combination, together with the min-
imal computational costs, we believe that they could easily
represent valid integrations to be included in future CCA-
based designs.
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The design and application of Serious Games (SG) based on the Leap Motion sensor are presented as a tool to support the
rehabilitation therapies for upper limbs. Initially, the design principles and their implementation are described, focusing on
improving both unilateral and bilateral manual dexterity and coordination. The design of the games has been supervised by
specialized therapists. To assess the therapeutic effectiveness of the proposed system, a protocol of trials with Parkinson’s patients has
been defined. Evaluations of the physical condition of the participants in the study, at the beginning and at the end of the treatment,
are carried out using standard tests.The specificmeasurements of each game give the therapist more detailed information about the
patients’ evolution after finishing the planned protocol. The obtained results support the fact that the set of developed video games
can be combined to define different therapy protocols and that the information obtained is richer than the one obtained through
current clinical metrics, serving as method of motor function assessment.

1. Introduction

Parkinson’s disease (PD) is defined as a chronic neurodegen-
erative disorder caused by the destruction of dopaminergic
neurons located at the basal ganglia. These central nervous
system (CNS) neurons are used as primary neurotransmitter
dopamine, which is responsible for transmitting the neces-
sary information for the correct control of movements [1, 2].
It is considered the most frequent neurodegenerative disease
after Alzheimer’s disease and the most common movement
disorders [3, 4].

PD prevalence and incidence present a marked geo-
graphic variation. In the world population, it can be found
that 1-2/1000 people suffer the disease [5]. In Europe, a
prevalence rate of 1.6% of the total European population
is estimated [6, 7]. PD is characterized by a symptomatic
tetrad that consists of resting tremor, stiffness, bradykinesia,
and alteration of the straightening reflexes [2, 8]. It also

presents other symptoms such as decreased facial expression,
sialorrhea, arterial hypotension, depression, and cognitive
impairment, among others, with the nonmotor symptoms of
the disease being important [9]. These symptoms impair the
performance of their daily activities, reducing their level of
independence [10].

Currently, there is no curative treatment for PD. The
treatment focuses on the symptomatology and to prevent
the progression of the disease. The drugs currently used are
indicated to compensate the dopamine deficit [11]. The most
commonly drug used is levodopa, although dopaminergic
agonists, catechol-O-methyltransferase (COMT) inhibitors,
anticholinergics, and amantadine are also used [2, 12].

However, not only can therapies with specific drugs be
improved, as SG have been shown to play an important role.
There is scientific evidence about the benefit of rehabilitation
treatment in PD [13–15]. In the field of neurorehabilitation,
virtual reality (VR) and interactive video games, such as
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immersive VR devices, are beginning to be accepted as
adjunctive therapeutic tools in the treatment of neurological
patients, through real-time simulation andmultiple sensorial
channels, providing the opportunity to perform functional,
repetitive, and rewarding activities [16–19]. Commercial
video game consoles such as the Nintendo Wii, the Play
Station Eye Toy, or Microsoft XBOX with their Kinect device
have been quickly adapted in the clinical setting as low cost
options in rehabilitation treatment in patients with PD with
various studies which support its clinical use.

New devices have appeared on the market as the Leap
Motion Controller (LMC), framed within semi-immersive
RV equipment that records movement of the patient’s upper
extremities without the need to place sensors or devices
on the body. Thus, a virtual image of the upper limbs can
be generated on a computer screen in which the patient
will have to perform movements according to the exercises
purposed (touching and picking up objects, ordering figures,
playing a piano, flipping hands, among others). However,
scientific studies are needed to support its therapeutic use
in the treatment of motor disorders of the upper limbs in
PD, since it is frequent that a wide repertoire of limita-
tions in the development of functional activities appears,
as well as restrictions on participation due to alterations
of the upper limbs, throughout the progression of the
disease.

In this paper, the feasibility of the LMC-based video
games as a rehabilitation tool in the PD treatment is studied.
For that purpose, a pilot study was conducted at Parkinson’s
centerwith patients using a series of LMC-based video games,
during a training protocol defined by therapists. In Section 2,
related works are exposed. The proposed methodology and
the design principles of the games are described in Section 3.
The development of the LMC-based video games and the
functionality of each one are shown in Section 4. The defi-
nition of the treatment protocol and the obtained results are
presented in Section 5.The effectiveness of treatment focused
on the video games contribution is discussed in Section 6.
Finally, the conclusions are summarized in Section 7.

2. Related Works

The use of the Leap Motion Controller (LMC) has been
extended from its initial purpose in the entertainment
industry, towards different applications based on gesture-
recognition such as remote control, sign language translation,
and augmented reality and also in health care. In healthcare
applications, due to the ability to detect with high precision
the finger joints and their movements, the LMC has been
used in systems oriented to the rehabilitation of fine and gross
manual dexterity, enhanced by a virtual environment that
stimulates to the patient.

On the one hand, several works focused on hand motor
recovery using only the LMC and a virtual environment
are found. In [20], the prefrontal cortex haemodynamic
responses during the executions of demanding manual tasks
performed in a semi-immersive VR environment are studied.
The LMC is used to track the hand movements and to
enable subjects to transpose their hand movements within a

virtual 3D task. In [21], the user-centered methodology for
the design of SG based on LMC is presented. The imple-
mented exergame accomplished with both the users and the
therapists considerations for the hand rehabilitation. In [22],
the Fruit Ninja game was modified to use LMC for the finger
individuation training. The results suggest that Fruit Ninja’s
score is a good indicator of the hand function according to
the high correlation with the standard clinical assessment
scores such as Fugl-Meyer (FMA) and Box and Blocks Test
(BBT). In [23], the LMC as a gesture controlled input device
for computer games was studied. The experience with the
LMC into two different game setups was evaluated, inves-
tigating differences between gamers and nongamers with 15
participants. Results indicated the potential in terms of user
engagement and training efforts for short-time experiences.
However, the study results also indicated that gesture-based
controls are rated as exhausting after about 20minutes.While
the suitability for traditional video games was thus described
as limited, users saw potential in gesture-based controls as
training and rehabilitation tools.

Thanks to the portability and low cost of the sensor,
the LMC is appropriated to perform exercises at home and
remotely supervised by clinicians. Thus, for example, a tool
for doctor on which they can prescribe patient to imitate
standard exercise hand motion and get automatic feedback,
such as score, is proposed in [24]. According to similarity
in the scoring, the rehabilitation effect is enhanced. Another
similar study, but focused on the cerebral palsy treatment,
is shown in [25]. Because the purpose of these systems
is to measure the similarity between the standard gestures
and those performed by the patient, an immersive virtual
environment is not necessary. A study for the treatment
of motor and cognitive impairments in children with cere-
bral palsy is addressed in [26]. Integration between patient
and virtual environment occurs through the LMC plus the
electroencephalographic sensor MindWave, responsible for
measuring attention levels during task execution. Based on
results, the level of attention can be correlated with the
evolution of the clinical condition.

Besides, others studies integrate support devices in addi-
tion to the LMC to assist the patient. In [27], the fusion
of the LMC and the Omega.7 haptic sensor with force
feedback capabilities has enabled a bilateral rehabilitation
training therapy. The LMC tracks the healthy hand and the
Omega.7 device haptically interacts with the impaired hand.
It allows bilateral complementary tasks for the training of
the coordinated cooperation of the paretic arm and intact
arm. Other assisted rehabilitation systems are addressed
in [28], using the LMC to visualize in a virtual envi-
ronment the feedback forces sent by a 3D-printed hand
orthosis. The hand orthosis is also commanded by four
servomotors that eases the full development of the proposed
tasks.

On the other hand, the LMC not only has been used
as a rehabilitation tool, but also has been used to automate
the assessment of the functionality of the hand. This issue
is addressed in [29], where an automated system based
on the Simple Test for Evaluating Hand Function (STEF)
was implemented. In the case of the Parkinson treatment,
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Figure 1: Framework for the upper limb rehabilitation.

a novel index of finger-tapping severity, called “PDFTsi,”
was introduced in [30]. This index quantifies the severity of
symptoms related to the finger tapping of PDpatients. Several
works are focused on the use of LMC to measure the hand
tremor. In [31], the authors propose the implementation of
an unobtrusively system to detect tremor, using the LCM
and the Vuzix M100 smart glasses. Similar work but using
only the LMC is studied in [32]. A novel approach of
tremor quantification based on an open-source mobile app
is presented in [33].

Due to the fact that the integration of LMC technology
into healthcare applications has begun to occur rapidly, the
validation of the sensor data output [34] and the feasibility
in neurorehabilitation [35] are important research goals. The
results of these studies provided a proof of concept that LMC
can be a suitable tool for videogame-based therapy in hand
rehabilitation.

3. Material and Methods

The Serious Games (SG) developed for this study try to
imitate exercises included on traditional physical therapy,
such as palmar prehension, fingers’ flexion, and extension
or hand pronation-supination, with the added value that
the immersive virtual environment tries to hook the patient
to the point of not focusing on the fact of being in a
rehabilitation session.This rehabilitation method using SG is
proposed for patients with limitedmobility in order to restore
their ability to independently perform the basic activities
of daily living (ADL) or to recover a lost or diminished
function by performing exercises on a regular basis. To
cover these specific objectives, several video games have been
created to exercise different purposes proposed by healthcare
professionals. These SG not only are beneficial to recover
physical mobility, but also favor the perception of visual
acuity, whether the subject has it atrophied or not.Thismeans
that although the idea of these games is mainly to work at
motor level, they also exercise the cognitive and perceptive
capacities of the users. Although the study was carried out
with patients with PD, the games try to be as less selective as
possible with the target public, being able to be particularized
considering the injuries and physical conditions of each user.
In this way, it has been determined that the games are
favorable for subjects with motor limitations due to suffering
any of the following pathologies: PD, people who have
suffered a stroke, arthritis, osteoarthritis, manual stiffness,
wrist and/or fingers fracture, tennis or golfer elbow, and
shoulder injuries.

3.1. Design Principles. In this section, we expose the methods
used for the creation of the video games, together with a
detailed description of them. The idea was to develop a
flexible game platform that allows the clinics to perform
the rehabilitation sessions. The video games should include
a record of the patients’ progress and a minimum set of
“how to play” instructions and must be able to give feedback
of goals achievement to both patients and therapists. After
deep review of LMC sensing capabilities and discussions
with occupational therapists, a set of design requirements
were chosen to achieve the rehabilitation goals. In Figure 1,
the main components of the proposed framework for the
development of SG for rehabilitation are described. Then, it
was agreed that the implementation of these video games
should fulfill the next specifications.

3.1.1. User Interface. It is essential for the interface to allow
patients run the video games easily and in an intuitive
way, along with simple and clear instructions. For easiness
and portability, a simple laptop should be enough to run
the games. In the design, it has been noticed that voice
instructions complement those shown on screen, so the
games count with guide through messages, images, and
audios to assist favorably to any type of user. Furthermore,
attractive graphics awake interest and help patients to get
involved in the exercises. These games try to influence the
users’ mood while doing rehabilitation by motivating them
in a comfortable and innovative virtual environment.

3.1.2. Game Dynamics. The games’ sessions ought to be
intuitive and straightforward. They are oriented to execute
different tasks in which users will be able to perform free
articular movements, but a few conditions will be imposed
in the way the exercises must be done with the intention that
patients are forced to make specific actions and movements
which will be part of the therapeutic evaluation. To assure
the usability, the games include adjustable features in order
to allow physiotherapists make the games suitable for each
patient’s pathology and conditions. Therapists design the
right set of exercises and the sequence of them to be
performed by the user, generating the specific treatment
protocol scheme as a “recipe” for the specific disease and
patient.This is represented in Figure 1 as therapy component.

3.1.3. User’s Incentive. As the user performs the unilateral
exercises (moving only one arm each time) and bilateral
exercises (using both arms) the games save how much time
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the patient has spent on completing each mission. These
results are shown on screen through a bar chart proportional
to the time, this way the users can compare how long it
has taken to make the exercises with each finger or hand,
depending on the game. This system motivates players to
improve their times, stimulating their progress during the
rehabilitation process.

3.1.4. Clinical Outcomes. An essential outcome to obtain
from this rehabilitation through video games is the clini-
cal data to be analyzed by healthcare professionals. Based
on therapists’ directives, the developed games extract and
store information about the human joints’ trajectories
together with movement ranges during the exercises and
the time it takes to perform each game. This recorded
data informs about the quality of the exercise performance,
the progress of the patient along the sessions, so after its
analysis we could conclude about the utility of the virtual
therapy.

3.1.5. Automatic Data Store. The information obtained in
each session will be automatically stored in the patient’s
record in a format that medical staff can easily handle to
make their evaluations. In this case, CSV files easily match
the specifications required and its content can be simply
managed. This way, it is possible to access to an updated
report of each patient, allowing the physician check remotely
the therapy’s progress. Each patient record is identified by a
code, so their privacy is guaranteed.

3.1.6. Reliable Data Acquisition. Tracking patients’ move-
ments is one of the most important issues in order to
do a diagnosis or evaluation. Including this data in the
generated report allows the therapist to obtain more detailed
data to analyze and follow the patient’s recovery. The video
games technology provides useful way of tracking the patient
movements and automatically registers such information,
giving support to follow closely the patients’ evolution. The
idea is to validate if a low cost and portable device, such as
LMC, is good enough to develop autonomous tool for “at
home” rehabilitation therapies.

3.2. Development Tools. The previous Figure 1 includes the
main components needed to use the developed SG, mainly
a laptop or a PC plus the LMC plugged to its port. Due
to this minimum infrastructure, the system could be used
everywhere.

3.2.1. Hardware Tools. Leap Motion has been chosen as the
most suitable capture instrument for the video games devel-
oped due to its portability and low cost; its good precision
in the tracking of the different parts of the hand, even its
SDK includes functions that facilitate the measurement of
the movements and positions of the joints of the fingers
and the palm of the hand; its clear results; its ease of use,
because thanks to not needing markers for the tracing, it
is not intrusive with the patients and it is quick to install.
Using the LeapMotion device, interaction with the computer
without any physical contact is allowed.
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Figure 2: Flowchart of the videogames execution.

3.2.2. Software Tools. The games were developed using the
game engine Unity and C# scripting for the game scripts.
This open-source engine allows the video games created to be
accessible and free. The source code of the project is hosted
by Github in the link, where also several screen-shots are
available.

4. Games Development

A series of video games focusing on the physical rehabili-
tation of the upper limbs of patients suffering from some
type of motor limitation were designed. According to the
requirements and indications from healthcare professionals,
six games were developed: Piano (PI), Reach Game (RG),
Sequence Game (SG), Grab Game (GG), Pinch Game (PG),
and Flip Game (FG); each one of them focused on diverse
rehabilitation workout.

Users must follow a set of screens in order to accomplish
all the exercises. As showed schematically in Figure 2, the
execution of the games is as follows. The first menu screen
requests for personal information about the subject, the num-
ber of the sessions, which hand is more affected, and what
pathology takes the patient to carry out the rehabilitation
therapy. If the user is already in the DDBB, after login, a
new session identifier is automatically assigned. Once this
data is collected, a set of games is available. Then the game
follows the defined rehabilitation protocol, understood as
the selection of which games, and the proper sequence of
games for each session previously defined by the therapist.
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By default, if no protocol has been defined, the user must
select in a menu the game to play from the ones described
in next section. After the game activation, when the hands are
introduced over the LeapMotion device, theywill be virtually
represented on screen and patients will be required to move
them within the device’s area of detection and to perform
different gestures to execute the different exercises.

This type of rehabilitationwith video games, in contrast to
the traditional one, contributes on a motivating context, pre-
senting rich and functional stimuli for the patient. Therefore,
these games have been created with the purpose of engaging,
thus increasing the active participation of the subject in the
rehabilitation program.

4.1. Implemented Games

4.1.1. Piano Game (PI). This game simulates a piano with ten
keys, each one corresponding to one finger of each hand.Dur-
ing the game, the highlighted key that is indicated must be
pressed by the appropriate finger, keeping the hand open and
lowering the finger that will take down the key until it sounds.
The keys are highlighted first in order, from the pinkie to the
thumb, and then in random sequence. Series will be played in
order of each hand and then for both hands simultaneously.
It seeks to exercise the dissociation of the fingers by situating
each finger over a piano key, stretching them individually
downwards, and then recovering the initial position with the
hand completely open.These fingermovements involve a fine
motor unilateral and bilateral coordination and a finemanual
dexterity. Note that, along the performance of the game, arm
posture control is required, keeping the hand over the Leap
Motion device that virtually places the hands on the piano.
Furthermore, the game includes a section where the patient
must remember a sequence of a certain number of keys that
are illuminated andmust repeat (after the series shown).This
feature adds to the video game the attention and retention
training component.

4.1.2. Reach Game (RG). During this game, the patient’s
virtual finger must touch the indicated cube among several
cubes that appear on screen. As the cubes are reached, they
fall to the floor and the next target cube is indicated until the
last of them has been dropped. The cubes on the screen are
located at different heights and depths.Thus, the sensation of
the patients’ spatial perception is created, making themmove
the arms in the space above the LMC device until the correct
position of the target cube is found. The highlighted one is
the goal to be touched and the rest of them become obstacles
to be avoided. The purpose of this exercise is to motivate the
users tomove the upper limbs of the body to reach the virtual
cube, so they have to make specific movements of extension
of the fingers, contraction, and stretching of the elbows and
abduction and adduction of the shoulders. Also, the subject
trains gross motor unilateral and bilateral coordination.

4.1.3. Sequence Game (SG). In this game, the patient’s objec-
tive is to memorize the sequence that is reproduced through
a color change of the cubes that appear on the screen. At the
end of the sequence, the user must repeat it by reaching the

cubes in the same order in which they were shown. As in the
Reach Game, the physical movements and skills mentioned
before are trained, but this game adds the exercising of visual
sequential memory.

4.1.4. Grab Game (GG). The target of this gamemotivates the
patient to perform the movements of closing and opening
the hand without resistance. A set of cubes is arranged in
a specific layout and a red sphere is shown in the central
part of the screen. The user must reach the indicated cube,
make the gesture of grip with all the fingers flexed, and then
with the fist closed move the grabbed cube to the red sphere
and, once they come into contact, open the hand with all the
fingers stretched to release the cube. In the Grab Game, the
objective is towork both themuscle tension anddistension on
the hands and fingers (i.e., flexion and extension), unilateral
and bilateral gross motor coordination, and gross manual
dexterity due to the grabbing gesture. As in the Reach Game,
the cubes are positioned at different heights and depths.Thus,
the patient will be able to exercise, in addition to hands, the
elbows, and shoulders and spatiality.

4.1.5. Pinch Game (PG). The opposition of the fingers is
an exercise used in occupational therapy to recover fine
motor skills. In this game, the bidigital grip is trained by
performing the pincer movement through the terminal or
subterminal opposition, both of which are valid. The patient
must touch the index finger with the thumb from an initial
position with extended fingers. When making this gesture
close enough to the objective cube, this will acquire smaller
size as the fingers approach until it disappears completely.
As the cubes are reached, unilateral and bilateral gross
motor coordination is trained, and additionally, in order to
perform the specific task of this game, finemanual dexterity is
required.

4.1.6. Flip Game (FG). The user must situate his hand palm
up over the Leap Motion device as a waiter holds a tray.
A small tray filled with a cube appears in the center of the
screen. The patient has to spin the palm downwards. Doing
this tray rotation, the cube detaches from tray and it falls to
the bottom. This game is created due to the need to exercise
pronation and supination of the forearm, but also a posture
control is required because it is necessary to keep the hand
on the tray during the spin. In Figure 3(f), the user hand
holding the small tray and an arrow to indicate the direction
of rotation are shown. Once again unilateral and bilateral
gross motor coordination is needed in order to reach the
objects placed on the virtual space of the game.This exercise,
as the previous ones, is performed individually with each
hand and later the bilateral integration is carried out, taking
part on the game both hands. In this case the user must
coordinate the spinmovement of each hand tray to drop both
cubes at the same time.

4.2. Games Settings for Therapist. The developed games
try to be as less exclusionary as possible with the target
audience and themost adaptable to particularize the exercises
according to each patient. In order to achieve this, a settings
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Figure 3: Serious Games used on protocol: (a) Games Menu, (b) Piano Game, (c) Reach Game, (d) Grab Game, (e) Pinch Game, and (f) Flip
Game.

menu will appear in each game to adjust a set of parameters
to fit the best to the capabilities and needs of the subject.

In the Piano Game, some parameters regarding the
execution of the game can be changed:

(i) Number of repetitions: this will determine howmany
times the user will have to play the piano keys in
order randomly and the number of sets of sequences
to remember.

(ii) Maximum time: this value will define maximum time
period that is allowed without pressing a highlighted
key, before a fail is registered and the game moves on
to the next step. If this field is not filled, the game will
wait as long as it takes until the current active key is
pressed.

(iii) Number of keys to remember during each sequence.

Also, the visual appearance of the Piano Game can be
modified making use of a series of sliders to accommodate
it to each patient:

(i) Hands’ height: this is the height at which the user
feels comfortable (within the Leap Motion’s detection
area) to complete the exercises with the hands in the
air over the device. Once the patient meets the right
position, the virtual hands must be placed, making
use of the corresponding slider, at a height fromwhich
the keys can be pressed by only bringing down each
finger.

(ii) Distance between keys: this distance not only must
be adjusted so the patient executes comfortably the
exercises, but also it will define the dissociation degree
between fingers.

(iii) Key thickness: this variable establishes how much
surface each key will have, thus the area that the user
can touch to press them.

(iv) Pressing height: while using the settings menu, a thin
colored layer appears under the keys. When the keys
are pressed and lowered until they make contact with
this layer, a musical note is played, as it happens
when playing a real piano. The pertinent slider can
be regulated to set how much distance the key must
move down to give the pressing action as valid and
move on to the next one.

On the other hand, the rest of the games (RG, SG,GG, PG,
and FG) can also be adjusted at performance and appearance
levels:

(i) Number of cubes: the number of cubes shown on the
screen is equivalent to the number of repetitions of
each task, because the game will be completed when
the exercise has been performed on each cube and
all of them have fallen down to the virtual floor. In
the case of bimanual exercises, the number of cubes
will be double in order to match the same number of
repetitions as in unilateral exercises, because each task
will be executed on two cubes at a time (one target
object with each hand).

(ii) Size of the cubes: it can be chosen between small,
medium, and big. The therapist can choose among
them with a view to the level of difficulty.

(iii) Depth scenario: it can be selected, depending on the
protocol exercising of the patient, if the cubes appear
at the same plane or at different depth distances. If it is
decided to use deepness in the game, the patient will
have to visually make depth discrimination and then
flex and stretch the elbow to find the correct distance
at which the cube is situated.

(iv) Static or motion cubes: cubes can be arranged at a
fixed position in the screen or in motion, increasing
the level of difficulty. In this last case, the speed of the
movement can also be chosen.
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(v) Number of cubes to remember during the Sequence
Game.

(vi) With which finger or fingers it is valid to touch the
cubes during the Reach Game: it can be selected
between any combination of fingers, according to
what is most appropriate for the patient’s exercising.
The target will be considered as reached just when it
is touched with the virtual fingers which have been
indicated in the settings.

(vii) Fist closing and opening degree in the Grab Game:
since not all the users have the same physical con-
dition, a patient can find it more or less difficult
to perform the grabbing gesture depending on his
pathology. For this reason, the therapist is able to
set up the Grab Game to be played by both a
healthy user and someone who cannot close the fist
completely, validating a closure degree appropriate
to the user’s condition (representing “0” the hand
completely open and “1” totally closed). It can also be
modified according to the patient’s progress or to the
level of difficulty of each session.

(viii) Hand’s spin in the Flip Game: when it comes to carry
out the pronosupination task, the turning angle that
the hand must turn during the game can be set. The
values for the pronation and the supination exercises
can be different between them.

These settings must be fixed before the game begins, but
they can also be accessed during the exercises by pressing the
settings button. This data will be registered in the user’s CSV
file in order to be contemplated in the patient’s evaluation,
but also it is useful to have them noted down in case if
the exercises should be repeated under the same conditions.
Although these options are available for the games, for the
protocol established for the study of the Serious Games on
patients with PD, it has been decided to maintain the same
conditions for all the subjects and during all the sessions,
so the data analysis according to patients and sessions was
comparable.

4.3. Clinical Aspects Covered. These video games are focused
on training different movements associated with daily activ-
ities. But in addition to the physical rehabilitation that is
executed during each exercise and that were detailed before
by each game, it has been noticed that all of them act at
the same time at a cognitive and perceptive level. Table 1
summarizes the clinical aspects.

Relative to the cognitive aspect the following features are
present during the games:

(i) Sustained and divided attention: users must be con-
centrated and follow the instructions that the game
will give through text, images, and voice, all of
them intending to facilitate the comprehension of the
exercises.

(ii) Hand avatar: it is important that users, while playing,
are able to identify and locate their virtual hands with
respect to the other objects represented on screen.

(iii) Sequencing and short-term memory: during the
games that include sequence memorization, users
must remember the order in which the game has
shown the sequence and replicate it just after it
finishes.

(iv) Laterality: all the games take advantage of all the space
that appears on the screen. The patient must be able
to distinguish between the images that appear on the
left, center, and right side of the screen. In unilateral
exercises, the subject must reach the indicated object
with the hand that corresponds on that turn, and in
bilateral exercises the user must use each hand for
the objects that appear on each side, respectively (i.e.,
objects on the left side of the screen must be reached
by the left hand and vice versa).

(v) Executive function: it involves some cognitive pro-
cesses, such as planning, organizing, or problem-
solving that are required to properly perform the
exercises, according to instructions the patients are
given.

Regarding the perceptive factor, these video games con-
tribute to the visuoperceptive coordination that integrate
the movements of the hands and eyes and turn out to
be vital in the activities performed day by day. A figure-
background discrimination to hit the correct object, color
discrimination which indicates targets, hits, and fails, and
depth discrimination in order to find the correct position of
the object to be reached is also required.

In order to compare the dexterity of each hand and its
respective evolution, the exercises will be done unilaterally
first with the hand less or none affected and then with the
most affected. Following, in all games except in the Sequence
Game, the same exercise will be performed bilaterally requir-
ing the involvement of both hands and thus training the
bimanual coordination.

4.4. Outcomes Storage. Rehabilitation with video games is
currently intended to serve as a strong complementary tool
to the traditional rehabilitation therapies. The inclusion of
motion capture systems in the clinical activity provides
the capability of automating some activities such as data
gathering [36] and offers accurate information about the
human skeleton, its joints, and their respective movements
to be analyzed later by the therapist. In each one of the games
created, the main variable that is recorded is the time. The
partial and total times that the patient spends in each exercise
are stored in a CSV file that can be easily imported into Excel,
simplifying the evaluation of the results and the progress of
the patients by the therapist. The user will have to fill in his
details: name and surname, session number, most affected
hand, and reason for the rehabilitation.This information will
be stored in a CSV file named after the user’s name so the
results are always collected in the same file to make each
patient’s analysis easier. On the one hand, in the Piano Game
the time that the user dedicates to press each of the keys is
registered and, based on them, the average of the time spend
with each finger of each hand is recorded at the end of the
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Table 2: Demographics and health status of participants.

Age Gender Affectation Side Taking medication
User 1 72 Male Unilateral Left Yes
User 2 57 Female Unilateral Left Yes
User 3 54 Female Unilateral Left Yes
User 4 55 Male Unilateral Left Yes
User 5 45 Male Unilateral Left Yes

game, facilitating an immediate comparison between each
fingers and both hands performances. On the other hand,
in the rest of the games (i.e., RG, SG, GG, PG, and FG) the
data recorded in the file is the time that the user takes to
perform the corresponding task on each cube and the global
time destined to play with each hand or both. In addition,
in the Grab Game, the average degree of closure of the user’s
hand is computed (with “0” being the hand completely open
and “1” being totally closed) and the game saves this data for
its evaluation.

5. Feasibility Study

To evaluate the feasibility of the use of the LMC as the
main capture device in a rehabilitation process, a pilot study
was carried out at Asociación de Pacientes con Parkinson
(APARKAN) in Alcorcón (Madrid). The main goal of the
study was to validate the effectiveness of the proposed games
in people in a mildmoderated stage of the PD. The pilot
therapy was designed to improve the muscular strength,
coordination, finemotor skills, and functionality of the upper
limb in people with PD. Besides, one part of the study was
focused on gathering the opinion of the participants, related
to the satisfaction and the degree of adherence of them, in
order to evaluate the usability of the system.

The present study obtained the favorable report from the
Ethical Committee of Clinical Research of the King Juan
Carlos University.

5.1. Pilot Trial Design

5.1.1. Participants. Five individuals with PD were chosen by
medical professionals to participate in this study. Participants
were selected according to the following inclusion criteria:
subjects with PD who met the modified diagnostic criteria
of the Brain Bank of the United Kingdom; subjects in
stages II, III, and IV of Hoehn & Yahr scale; sex: men
and women; stable or slightly fluctuating motor response to
pharmacological treatment; not having received at the time
of the study a specific treatment of rehabilitation of the upper
limbs; signature of informed consent form.

The exclusion criteria were diagnosis of other diseases
or serious injuries that limited occupational performance;
patients with other types of parkinsonism than PD; cognitive
impairment affecting the language comprehension ability to
follow the instructions of the study evaluation tools; refusal to
participate in the study; subjects in the evolutionary stage I or
Vof theHoehn&Yahr scale; visual alterations not correctable
with ocular devices.

Demographic data and health status of participants in the
study are summarized in Table 2.

5.1.2. Treatment Protocol. Patients with PD improve their
physical performance and activities of daily living through
exercise, but there is no standardized exercise program
for specific problems associated with PD [37]. Due to the
flexibility and easy usemode of the SGpresented in this paper,
it is possible to make a treatment program to train different
problems of motor function. The configuration of a specific
treatment protocol can be seen as the pieces of a puzzle to
be fitted together, according to the therapist criteria and the
patient needs. Each piece of the puzzle corresponds to each
video game (PI: Piano Game; GG: Grab Game; PG: Pinch
Game; RG: Reach Game; SG: Sequence Game; and FG: Flip
Game).

Considering the rehabilitation features (see previous
Table 1) and the unilateral and bilateral training capability of
each game, an appropriate game combination can be gener-
ated by therapist to deal with different cognitive, perceptual
and motor problems.

The treatment protocol followed in this study is shown
in Figure 4. Training with the LMC-based video games
consisted of 2 sessions a week of 30 minutes each for 6 weeks
(total of 12 sessions), with the presence of a healthcare profes-
sional throughout the process. All the participants received
the treatment in sedestation, with a table at the height of
the middle third of the trunk and with an initial elbows
flexion of 90∘. In those patients who required it, manual help
was provided by the therapists on the most affected side.
The difficulty of the exercises was increased as well as their
number as the protocol progressed, always considering the
particular needs of each patient and respecting rest periods
to avoid fatigue.

5.1.3. Functional Assessment Method. Some standard clinical
tests are used to evaluate the health condition of participants
at the beginning (T0) and at the end (T1) of treatment. All
participants were evaluated in the Laboratorio de Análisis
del Movimiento, Biomecánica, Ergonomı́a y Control Motor
(LAMBECOM) of the King Juan Carlos University (Madrid).

The primary outcome measure of this study was the
variation between the initial (T0) and the final (T1) functional
assessment, in order to quantify the effectiveness of the LMC-
based training in people with PD. For that purpose, the
evaluation used the following tools:

(i) Jamar handgrip dynamometer: it is an instrument to
measure themaximum isometric strength of the hand
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Figure 4: Treatment protocol scheme.

and forearm muscles. It consists of a sealed hydraulic
system with adjustable hand spacing that measures
hand grip force. The strength reading can be viewed
as pounds or kilograms.The dynamometer is used for
testing the hand grip force and for tracking the grip
strength improvements during rehabilitation.

(ii) Box and Blocks Test (BBT): this test is used to
measure unilateral gross manual dexterity in children
and adults. It consists of moving the largest possible
number of cubes from one compartment to another
in a wooden box one by one for one minute. The
results obtained in each extremity are compared.This
manual procedure is automated in [36].

(iii) Purdue pegboard test: the purpose of this test is to
measure unimanual and bimanual finger and hand
dexterity. Initially it was used to evaluate finger skill
and manual precision in the selection of personnel
who had to carry out jobs that required fine dexterity
and coordination for handling small parts. At present,
it is used in the clinical environment to evaluate
manual dexterity. It consists of four tests: the first
one consists of inserting pegs on a board with the
dominant hand; the second one is to insert pegs into
the board with the nondominant hand; the third one
is to insert pegs with both hands; and the fourth
one is to perform an assembly test using both hands
alternately.

Besides, the comparative between the functional assess-
ment results and the video games outcomewill give an idea of

whether the video games outcome, by itself, can be a reliable
indicator of the improvement of the physical condition.

5.1.4. Usability Testing. Secondary outcome measure was
related to the user experience. Participants were invited
to fill in a questionnaire for assessing the usability of the
videogames. Questions were classified on three categories:
utility, playability, and use mode. These games features were
individually evaluated by each user, who expressed their
opinions via a range of satisfaction scores, from −2 (strongly
disagree) to +2 (strongly agree). Regarding the number of
users for a proper usability assessment, five is a proper sample
size for usability testing [38, 39].

5.2. Pilot Trial Results

5.2.1. Games’ Outcome. The results obtained by the video
games usage are shown in this section. On the one hand, the
main outcomewas the time spent to complete the exercises of
each game.The average of the total time results of all users in
each session is shown in Figure 5. Data are plotted according
to the unilateral exercises (right or left arm) and the bilateral
exercises (bimanual), including a trend line to observe the
results tendency. The gaps in the curves are related to the
treatment protocol, since not all the video games were used
in all sessions, with the exception of the Piano Game.

In the case of Piano Game, it may be seen in Figure 5(a)
that the curve corresponding to the left hand (orange line) is
above the curve corresponding to the right hand (blue line).
This implies that participants spent more time performing
the exercises with the left hand, which is the affected hand.
However, a decreasing trend is appreciated throughout the
sessions.

The outcomes obtained with the Reach Game (Fig-
ure 5(b)) presents similar results for both the left and the
right hand. The bimanual tasks required more time to be
completed, as the curve in grey color illustrates.

In the case of Grab Game (Figure 5(c)), it can be seen that
the unilateral exercises for the left hand (orange line) are very
similar to the bilateral exercises (grey line). These curves are
above the curve obtained with the right hand (blue line).

Data showed in Figure 5(d) are obtained by the Pinch
Game. Very little variations among the values of the different
sessions are observed in the case of the right and the left
hand. Also, there is a remarkable variation with respect to the
bimanual task that implies that the bimanual pinching task
was more difficult than the unilateral one. This suggests that
manual coordination was more impaired than the pinching
function.

The results for the Sequence Game are shown in Fig-
ure 5(e). The measurements are very similar for both hands
and it presents a clear decreasing trend. Since this video game
is focused on the cognitive aspect, the results are related to a
memory improvement.

Finally, in the case of the Flip Game (Figure 5(f)) the
results obtained for both the right and the left hand are closely
similar. Bilateral task spent more time as the line above the
unilateral task shows.
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Figure 5: Mean of total time spent to complete the videogames tasks by sessions: (a) Piano Game, (b) Reach Game, (c) Grab Game, (d) Pinch
Game, (e) Sequence Game, and (f) Flip Game.
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Figure 6: Results obtained in the Piano Game for the user 1: (a) time spent by fingers of the right hand, (b) time spent by fingers of the left
hand, and (c) box plot of the partial times obtained in sessions 1 and 12, according to the left and right hand fingers.

On the other hand, other outcomes are the partial times
that the patient spends to respond to a stimulus; for example,
the time spent on reaching a cube in the Reach Game
or pressing a key in the Piano Game. The partial time is
counted from themoment the target is activated until the user
“touches” it.The results obtained for user 1 in the PianoGame
are shown in Figure 6.The averages of the total time spent by
each finger, including unilateral and bilateral exercises, are
shown in Figure 6(a) for the right hand and in Figure 6(b)
for the left hand. It can be noted that the keys corresponding
to both the thumb and the little finger requires more time
than the rest when playing. Moreover, a box plot of the
partial times obtained for the left and right hand fingers in
sessions 1 and 12 is shown in Figure 6(c), to compare the user
performance between the initial and final session. It can be
appreciated that the data dispersion and the average in session

12 were reduced with respect to session 1. This suggests that
the time of response of the fingers to a stimulus was improved
in the participants.

5.2.2. Functional Assessment Results. With respect tomeasure
the efficacy of LMC-based training in PD treatment, the
improvements in terms of hand grip strength, and both gross,
and fine manual dexterity are shown in Tables 3, 4, and 5,
respectively.

In terms of hand strength, given by the Jamar dynamome-
ter measurement, a significant increase was obtained in four
patients for the unaffected hand, while one patient (User 3)
obtained a slight negative value. In the case of the affected
hand, four of the participants also presented a significant
improvement in grip strength, while one of the participants
(User 4) obtained a remarkable negative value (see the left
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Table 3: Jamar handgrip dynamometer scoring in pounds (lb).

User 1

User 2
User 3
User 4
User 5 130,0 120,0 155,0 131,7 25,0 11,7

1

2
3
4
5

15,048,356,728,341,7

16,76,738,333,321,726,7

11,7−1,731,738,320,040,0
−8,31,798,3121,7106,7120,0

ΔRH ΔLH

2520151050−5−10

20,0

Initial assessment Final assessment Variation
Right hand Left hand Right hand Left hand ΔRH ΔLH

Table 4: Box and Blocks Test scoring.

1

2

3

4

5

User 1
User 2
User 3
User 4
User 5

131740492732
7747464039
2944554246
10745493542
131248553543

ΔRH ΔLH
2520151050−5−10

Initial assessment Final assessment Variation
Right hand Left hand Right hand Left hand ΔRH ΔLH

Table 5: Purdue Pegboard Test scoring.

User 1

User 3

User 5 14

ΔRH ΔLH
ΔTH ΔA

20,663,7314,35,66101212,356,39
−0,31,30,4−0,719,38,61111,319,67,310,612User 2

41,62,71,627,69,613,314,623,6810,613
10,31,3−0,627,610,612,31426,610,31114,6User 4
−210,40,629,310,31314,631,39,312,6

1

2

3

4

5

420− 2

Initial assessment Final assessment Variation
Right hand Left hand Right hand Left handTwo hands Assembly Two hands Assembly ΔRH ΔLH ΔTH ΔA

side figure in Table 3). The worsening in the results of user
4 can be attributed to a blow that he received in the left arm
(affected side) days before the final evaluation and that caused
him pain on the day of the evaluation.

Gross manual dexterity improved in all participants,
according to the variation between T0 and T1 assessment in
the number of the blocks that users were able to transfer by
performing the BBT. As may be seen in the right side figure
in Table 4, these variations in the number of blocks are very
similar for both the left and the right arm of each patient,
except for user 3 that is more remarkable.

The analysis of the Purdue scoring shows a general
improvement by the fine manual dexterity and the eye-
hand coordination (see right side figure in Table 5). It is
noted that the fine manual dexterity is increased for the left
hand (affected side) in all participants, while for the right
hand (unaffected side) it was slightly reduced in the case
of users 2 and 4. The bimanual tasks of the Purdue test
require both hands coordination to be completed. Thus, the
results of both the “two hands” and the “assembly” tasks
revealed an improvement in the hand coordination for all

participants, except for user 2 with a slight decrease and
for user 5 with a more negative value in the “assembly”
task.

5.2.3. Usability Results. User experience by using the pro-
posed LMC-based video games was satisfactory. Questions
were classified into three categories and the results are
summarized in Table 6. On the one hand, the best results
were obtained in both categories “utility” and “playability,”
with an average scoring of 1.68 and 1.64, respectively. Thus,
the proposed video games were regarded as a useful tool
to improve the independence of users in their daily living
activities. The intuitive graphical design and the ease of
playing were also highlighted. On the other hand, the “use
mode” category obtained the worst results, with an average
scoring of 0.96. Most of the participants agreed that bilateral
tasks were more difficult than the unilateral ones. Bilateral
exercises required more effort to be performed, and most
especially in the Flip Game where some rest periods were
necessary.
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6. Discussion

The most significant feature is the flexibility of the proposed
games to define a specific therapy protocol that is easy to
customize to the patients particularities. Another relevant
characteristic, in addition to the capability to exercise, is the
potential of the proposed system as an assessment tool, taking
into account the results shown in the previous section. Data
for completion times (see Figure 5) has been compared with
the traditional tests of manual dexterity: Purdue Pegboard
Test and Box and Blocks Test. The decreasing times gathered
in each session by the SG are coherent with the improvement
of the physical condition of the patients, measured by the
traditional tests. Although themeasured times are influenced
by the sensitivity of the sensor and the conditions of fatigue
and mood of the users, the obtained results show a clear
downward trend.This fact is consistent with the appreciation
obtained by the classical metrics.

On the one hand, the improvement in the fine manual
dexterity evaluated by the first part of the Purdue test presents
a clear correspondence with the decrease of the average times
in completing the game of Piano Game and Pinch Game.The
gross manual dexterity trainedmainly by the Grab Game and
Piano Game has been also improved, according to the BBT
results. The results obtained in bilateral execution of all the
games that require bimanual coordination are consistent with
the ones obtained in the second part of the Purdue test that
cover this issue by means of the assembling task.

On the other hand, the fact of moving and holding the
arms entails activation of the set of intrinsic and extrinsic
muscles of the forearm. The training of these muscles is
related to the recovery of hand strength and ability to grasp.
This training of the forearm is especially enhanced by the
Flip Game, thanks to pronation and supination movements.
A continued and more or less intense use of the games could
be related to the recovery of force measured in all the users
by means of the Jamar handgrip dynamometer.

Finally, PD is extremely challenging so future technologi-
cal developments could includemachine learningmethods to
automate the rehabilitation process using LMC, by adapting
the levels of difficulty and exigency of the exercises based
on the subject’s performance and other factors (such as
fatigue, errors and success rate); serving as a complementary
tool to the therapist’s supervision. Additionally, there is
a real challenge related to the acceptance of new tech-
nologies by the elderly population. Knowledge of the user
is as important as system functionality, since without the
user’s cooperation, functionality may be ineffective. In this
regard, a satisfaction survey was designed for gathering the
impressions of participants to assess the acceptance of the
proposed games, taking into account different aspects such as
usability, playability, and use mode. Although, in general, the
proposed video games were positively valued by participants
and clinicians, the survey scores revealed the need to enhance
the use mode. So, future studies should consider the effort,
the difficulty, and the kind of tasks in order to facilitate
the acceptance of these LMC-based video games and the
integration of these technologies in a holistic rehabilitation
context.

7. Conclusions

Despite the outcomes of the LMC-based video games were
different among the training sessions, a clear decreasing trend
is found throughout the treatment protocol. The improve-
ment of health condition of participants was validated by
the clinical assessment tools. The correlation between the
decreasing trend and the increase in the health condi-
tion validates the video game outcomes as an indicator
of improvement. This approach requires more trials to be
consolidated, but it is encouraging.The influence of themood
of participants and the reliability of data acquisition must be
considered also.

The Serious Games implemented in this work are a
versatile tool in rehabilitation processes, since different func-
tional problems can be treated according to the configuration
defined by the therapist. Different treatment protocols can be
created in an easy way.

Based on the user experience, the use of the LMC-
based video games in the treatment of Parkinson’s has been
favorably accepted. The utility and playability of the games
have been highlighted by the users; however there are certain
exercises that have been difficult to perform and required
the help of the therapist or breaks. This situation should be
taken into account by the therapist to define a home treatment
program.

Although the number of patients is not sufficiently repre-
sentative to give a clinical validity to the obtained results, it is
nevertheless convincing about the effectiveness of the use of
these games for a double function, as an evaluation method
as well as a complementary rehabilitation instrument; and it
is also supported by the user experience.
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This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and
enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This
article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety.
Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the
problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to
it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an
experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an
Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common
Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear
Discriminant Analysis, 𝑘-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random
Forests, and Artificial Neural Networks.

1. Introduction

Introduction of automated systems in plane cockpits signifi-
cantly increased flight safety. However, in case of a failure of
such systems or occurrence of the situation in which these
systems are not able to behave correctly, pilots must instantly
and unexpectedly make complex decision [1, 2]. Usually
utilization of such supporting systems puts the pilot in a
passive role; this introduces an additional challenge in case
of issue occurrence that might take place after long period
of autonomous flight, because pilot must switch immediately
to the active role and cope with complex problems that
require quick judgment [3, 4]. In addition, high reliability of
autonomy might reduce focus of the pilots on monitoring
tasks, thus prolonging the time of context switching [5].
Moreover, introduction of automated processes that controls
the plane might reduce orientation in the current state of the
flying process resulting in automation surprises [1, 6] and
some researchers point out that extensive use of autonomy
systems might even decrease flying skills of the pilots [7].

On the other hand, performance of pilots and thereby
safety of flights can be greatly improved and increased thanks
to cognitive cockpit solutions [8, 9]. These systems provide
an adaptive support for decision processes and control tasks
involved in aircraft operations. Such solutions can be highly
profitable both for military and passenger flights. One very
critical feature of such systems applies to the elimination
of human related errors and prevention of disasters that
may result from them. A prominent solution to that can
be found with Man Machine Interaction systems such as
Brain Computer Interfaces (BCI) [10]. These systems are
capable of monitoring and interpreting of brain activity for
computer or prosthesis control, rehabilitation, and other
purposes. Such approach comply with the Human-Centred-
Automation concept [11] in which human interacts with the
controlled system in an efficient way that can be further
improved through supporting of the cockpit logic with infor-
mation about brain activities. Another interesting application
of BCI based systems might involve an assessment of pilots’
mental state and capabilities executed in before-flight-phase
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as well as during pilots’ training process, for example, in
order to train pilots that have tendencies to be less alert. Such
systems can be used, for example, by recruitment agencies to
evaluate the natural predispositions of pilots.

BCI systems are often based on electroencephalographic
(EEG) signals [12]. EEG signals are recorded bymeasurement
sensors that are placed in specific locations over the scalp.
These sensors are referred to as electrodes. Due to charac-
teristics of EEG signals that make them highly susceptible
to noise and artifact disturbances, differential measurement
configurations (uni- or bipolar) are commonly used. As a
result of EEG measurement the electroencephalogram (EEG)
is obtained. A few characteristic frequency bands are often
mentioned in the context of EEG: delta (below 4Hz), theta
(4–8Hz), alpha (8–12Hz), beta (12–28Hz), and gamma (over
30Hz) [13–15]. It is worth mentioning that the frequency
limits of specific waves are conventional as there is no proper
way of determining their exact values. Delta brainwaves are
commonly associated with deep sleep [13]. Theta activity
is present during states of drowsiness. Interestingly, theta
activity has been also observed during cognitive visual
processing [16]. The alpha activity occurs during states of
wakeful relaxation or tiredness and can be induced by closing
eyes [13, 15]. Although being commonly attributed to states of
relaxation, these rhythmsmay increase during some attention
tasks [15]. Beta waves are associated with normal waking
consciousness, alertness, and an active concentration [13,
17]. The role of gamma waves remains an active topic of a
research. The reproducibility of the conducted EEG research
is ensured by utilization of some universally accepted stan-
dards of electrode placement and annotation [13]. Among
most popular systems mentioned can be standard 10-20 as
well as its extensions such as 10-10 and 10-5 [18, 19].

In this research use of EEG signals recorded with inex-
pensive device (Emotiv EPOC+ headset) is evaluated for
the purposes of cognitive cockpit applications. Precisely, the
possibility of discrimination between two states of event-
related activity is tested: (i) brain activity related to idle but
focused anticipation of visual cue (pre-event) and (ii) reaction
to that cue (event-related).

2. Materials and Methods

2.1. Emotiv EPOC+ Headset. Emotiv EPOC+ Headset device
was used for the purpose of recording EEG data during
the experiment. In a study that examined the sensitivity of
few inexpensive, wireless, and/or dry (no gel) electrode EEG
systems, Emotiv has proven to perform well (compared to a
traditional, research-grade EEG system) in tasks concerning
measurement of alpha brain activity and Visual Steady-State
Response (VSSR) [20]. Due to setup problems authors of
that work were not able to provide evidence to support the
use of Emotiv in paradigms that rely on time-locked events.
However, some reports of use of Emotiv EEG systems in such
tasks are available [21].

The recorded signals useful bandwidth is in 0.16–43Hz
range and is sequentially sampled with frequency 128Hz and
14-bit (1 LSB = 0.51 𝜇V) resolution. EPOC+ has built in digital
5th-order Sinc filter and notch filters at 50Hz and 60Hz [22].

14 EEG channels available in Emotiv EPOC+ Headset are
compatible with the following electrodes of the international
10-10montage system:AF3, F7, F3, FC5, T7, P7,O1,O2, P8, T8,
FC6, F4, F8, and AF4, with references in the P3/P4 locations.

The placement of EPOC+ electrodes in the 10-10 config-
uration was marked in Figure 1 [19].

Some special precautions were undertaken to reduce the
contamination of the data by artifacts related to muscle
movements that occur, for example, during motor actions
of limbs, head repositioning, or blinking. All subjects were
seated in a comfortable position and instructed to limit their
movements as much as possible. Additionally, time segments
which were used in this research were visually inspected for
the presence of artifacts. Trials that were assessed to be too
contaminated were removed from the analysis.

2.2. Flight Simulators. Flight Navigational Procedure Train-
ing II (FNPT II) class simulator that passed QTG tests was
utilized during data acquisition phase. Simulator represents
Cessna 172RG plane model. It consists of fully enclosed full
size cockpit that faithfully reproduces internals of Cessna
172RG equipped with glass cockpit. It is characterized by 180
degree panoramic view of the environment that is generated
by three projectors. Simulator is located in an especially des-
ignated room (Virtual Flight Laboratory located at Silesian
University of Technology), without any windows and with
black walls thus no external stimulus can reach the pilot. In
addition air temperature is controlled so every experiment
can be conducted in the same conditions. Presented in
Figure 2 is an interior of the cockpit of used simulator.

2.3. Experiment Description. Through the experimentation
phase, measurements of a human brain activity during
simulated session of short haul flights with activated auto
pilot were acquired.Thepurposewas to obtain brain response
to randomly displayed visual cues that were presented on the
main screen of the simulator.

Participants were selected from the group of people aged
between 20 and 35. All participants claimed that they were
well rested before the session, and all of them gave consent to
utilization of outcomes obtained during the experiment for
the purpose of scientific researches. During experimentation
phase 10 people (all males) were examined. Every experi-
mental session started at the same time of the day around
12:00 (noon). It was ensured that through the experiment no
external factors had influenced its participants. Each session
took around 1 hour. Experiments took place in FNPT II class
simulator. Participants had to observe cockpit instruments as
well as scan the surrounding of the plane so to behave as pilots
during regular flight. They were instructed to stay focused
and maintain awareness in order to be able to instantly react
to the appearance of visual cue by pressing of a specific
button. The placement of button was chosen to minimize the
time required for reaction to visual cue by restraining any
additional movements of pilots body besides their fingers.

In order to maintain consistency between successive
experimental sessions simulated flight on the route between
Frankfurt and London was registered. The same section
of the flight was presented to each participant of the



Computational Intelligence and Neuroscience 3

Nz

＆Ｊ1

＆ＪＴ
＆Ｊ2

！＆7 ！＆3 ！＆Ｔ
！＆4

！＆8

F9 F7 F5 F3 F1 Fz F2
F4

F6
F8

F10

＆４9 ＆４7 ＆＃5 ＆＃3 ＆＃1 ＆＃Ｔ ＆＃2
＆＃4

＆＃6
＆４8

＆４10

４9 ４7 ＃5 ＃3 ＃1 ＃Ｔ ＃2 ＃4 ＃6 ４8 ４10

４０9
４０7

＃０5
＃０3 ＃０1 ＃０Ｔ ＃０2 ＃０4 ＃０6 ４０8 ４０10

０9
０7

０5
０3

＃０1 ０Ｔ ０2 ０4 ０6 ０8 ０10

０／7
０／3

０／Ｔ ０／4 ０／8

／1 ／Ｔ

／2

）Ｔ

Figure 1: Positions of electrodes in the standard 10-10 electrode montage system (own source based on [19]).

Figure 2: Interior of used flight simulator (cockpit) and a simulation
screen.

experiment. The terrain over which flight took place and
cockpit instruments were recorded. During this flight auto
pilot was activated. Flight took place at the average altitude of
6,000 feet. In order to simulate flight with auto pilot activated,
take off and landing were removed from registered material.
Moreover, whole flight that was presented to the participants
took place over land. Importantly sound of engines was also
generated in the cockpit.

Visual cues were displayed randomly with normal distri-
bution characterized by 𝜇 = 2.5 minutes and 𝜎 = 1 minute.
Variance was introduced in order to prevent habituation of
human brain to regular patterns. In addition, for each pilot
distribution of visual cues in time was the same. Visual cue

was represented by solid grey-colored box that overlap 75%
of themain simulator screen that is responsible for displaying
of the terrain.

Bioethical committee of The Jerzy Kukuczka Academy
of Physical Education in Katowice consent was obtained for
conduction of this type of experiment.

2.4. Class Definition. For the purpose of conducted exper-
iment two classes of mental activity were defined. Since
the phenomenon analyzed in this research is related to an
appearance of some visual, the problem is in fact a problem of
event-related activity analysis. Therefore, the following class
definitions were adopted:

(i) Pre-event: a focused anticipation of visual cue
(ii) Event-related: activity related to reaction to the visual

cue
The pre-event trials were calculated from time window

of 1.5 s length containing samples directly preceding the
appearance of visual cue. Trials of event-related class were
determined analogously, from all trials that followed the
presentation of cue and that belonged to 1.5 s long time
window. As a result one trial of each class was obtained for
each event. A concept of pre-event and event-related class
trials extraction is presented in Figure 3.

2.5. Spatial Filtering. To improve and enhance discriminative
characteristics of signals that could have been degraded
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Figure 3: Concept of pre-event and event-related class trials extrac-
tion (own source).

by volume conduction related effect, the Common Spatial
Pattern (CSP) has been used in this research [10]. CSP is
a technique used for analysis, decomposition, and trans-
formation of multichannel EEG recordings containing two
classes of different mental activity. It is a popular method of
spatial filtering, commonly used inBrain-Computer Interface
applications. It has proven to be especially effective with
logarithmic bandpower used as a feature describing the brain
activity. Although it ismost commonly associatedwithmotor
imagery, it might prove to be valuable approach to implement
it in our research in a task related to visual processing. Many
works show the superiority of CSP over classical spatial fil-
tering methods such as Surface Laplacian, Common Average
Reference, ICA, and others, thus justifying the choice of CSP
in this research [12, 23]. Variance of transformed EEG signals
is maximized for trials from one class and simultaneously
minimized for examples from another class. For that purpose
transformation matrix 𝑊 ∈ R𝑁×𝑁 is provided (𝑁 denotes
the number of measurement channels). Matrix 𝑊 consists
of column-wise of optimized spatial filters that correspond
to its eigenvalues. More detailed description of this problem
can be found in [10]. In general, to avoid overfitting only
few pairs of filters from both ends of eigenvalue spectrum
carrying a discriminant information are used. In this work, 3
best CSP filter pairs from each frequency subband were taken
into consideration for each subject.

Let us assume that𝑀 correspond to length of single trial
𝑋 ∈ R𝑀×𝑁 of EEG phenomena.Then, spatially filtered signal
𝑋CSP ∈ R𝑀×𝑁 of a single trial 𝑋 can be calculated with the
use of projection matrix𝑊 as presented in the following:

𝑋CSP = 𝑊𝑇𝑋. (1)

2.6. Bandpass Filtering. It is a well known fact that perfor-
mance of the CSP method depends highly on the frequency
bandwidth in which signals are analyzed. Therefore, signals
must be properly band-pass filtered before applying CSP to
them. Selection of appropriate frequency range is therefore a
critical and difficult task [10]. Many solutions to that problem
have been proposed; however one of the most prominent
approaches up to date remains to be the Filter Bank Common
Spatial Patterns (FBCSP) [23]. In this approach signals are
first filtered into𝐹multiple frequency subbands.Then, CSP is
applied to each of the filtered signals independently. A fixed
number of 𝑃 filter pairs is taken from each band to form a
general set of features. To avoid overfitting a feature extrac-
tion procedure must be then applied. For the purpose of this
article signals will be bandpass filtered into the following
ranges corresponding to specific brainwaves: delta (1–4Hz),
theta (4–8Hz), alpha (8–12Hz), low beta (12–16Hz), middle

beta (16–20Hz), middle-high beta (20–24Hz), high beta
(24–28Hz), two frequency ranges related to lower gamma
frequencies, respectively, gamma 1 (32–36Hz) and gamma 2
(36–40Hz), and 8–30Hz range that is commonly related to
planning ofmotormovement thatwill be referred to asmotor.

For the purpose of bandpass filtering of EEG data a
Kaiser Window Finite Impulse Response (FIR) band-pass
filter constructed of 466 coefficients was used. Since the
analysis was to be performed offline (no requirement of
causality of used algorithms) a zero-phase (nondelaying)
filter could be applied. This operation was implemented by
applying a recursive filter to the original signal both forward
and backward in time [24]. Let𝑥 ∈ R𝑀 be a recorded, discrete
signal consisting of length𝑀 andℎ be the impulse response of
the recursive filter. The output V ∈ R𝑀 of filtering operation
performed on 𝑥 is calculated as in

V = ℎ ∗ 𝑥. (2)

If 𝑥(𝑖) (𝑖 = 1, . . . ,𝑀) denotes a discrete sample o 𝑥, then
the operation of flipping the signal can be defined as in the
following [24].

flip (𝑥 (𝑖)) = 𝑥 (𝑀 − 𝑖) , ∀𝑖 ∈ Z, 𝑖 < 𝑀. (3)

The flip operator reverses the order of samples of a discrete
signal 𝑥 [24]. Considering the above definitions the output of
forward-backward filter𝑦 ∈ R𝑀 can be calculated as present-
ed in the following[24].

𝑦 = flip (ℎ ∗ flip (ℎ ∗ 𝑥)) . (4)

2.7. Feature Extraction. A logarithmof the variance of signal’s
amplitude is a very common feature used for the description
of EEG signal’s power [10, 25]. As mean value of bandpass
filtered EEG signal is close to 0, its power is in fact equivalent
to its variance. The normalization of the feature distribution
is obtained by an application of logarithm operation [25].

The band power features were used for the analysis of
brain activity during the experiment. They were calculated
from a spectrally and spatially filtered signals, individually for
each measurement channel from all samples that belonged to
class-specific time window (either pre-event or event-related).

2.8. Feature Selection. After creating a bank of filters by
bandpass filtering of EEG signals into 𝐹 = 10 subbands
and applying a CSP transformation to each subsignal a set of
𝐾 = 𝐹 × 𝑁ch = 140 features was obtained (𝑁ch = 14 denotes
the number of measurement channels of EPOC+). The most
discriminative subset of features was selected by ranking
all features based on the mutual information (MI) criteria.
MI of features describing two categorical classes (pre-event
and event-related in this work) represents the dependency
between these features. If samples of a given feature are
independent for defined classes theirMI will be equal to zero.
The higher the calculated MI values, the less discriminative
the features. Mutual information for a discrete variables was
obtained with nonparametric methods based on entropy
estimation from 𝑘-nearest neighbors distances [26–28]. In
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this work 𝑁sel of best features from ranking (with biggest
difference in MI) were selected. In implemented feature
selection approach, feature ranking was created only utilizing
a features from a training data independently from classifier.
However, a number 𝑁sel was tuned individually for each
validation session on the basis of classifier performance on
the cross-validation data.Therefore, an implementedmethod
cannot be unambiguously described as a filter approach.
A detailed description of the whole feature selection and
machine learning pipeline implemented in this research can
be found in Section 2.9. Use of MI-based feature selection
methods has been proven to yield highly satisfactory results
in filter bank approaches to EEG signal processing [23].

2.9. Data Classification. To properly evaluate an accuracy of
proposed model a stratified modification of leave-one-out
procedure was implemented. In this approach one sample
from each class is being used as the testing set. Precisely,
one trial from pre-event and one trial from event-related class
related to the same event are selected to form a two-element
test set. Remaining samples are used to create a training set.
Described validation procedure allows taking into considera-
tion the chronological order of the trials. Proposed approach
resembles a real life case where training trials used for the
calibration of pilot aiding system are recorded consequently
during specified time frame. Such examples will share some
common characteristics that might differ for trials recorded
in later stages (i.e., during the operation of the system). The
resemblance of the proposed procedure of data partitioning
to the real applications is a significant advantage over random
choice of trials. This training set is used not only to train
given classifier but also to determine the CSP transformation
matrix 𝑊 and for the purposes of feature selection. This is
dictated by the fact that use of test data for that purposewould
lead to overfitting of themodel and result in biased estimation
of model accuracy. Described steps are repeated for every
event that is available for each subject. Final accuracy of
proposed model is obtained from the mean of all accuracies
achieved in particular cross-validation stages.

In this research an extensive test of different classification
algorithms, such as Linear Discriminant Analysis (LDA),
𝑘-nearest neighbors (kNN), Support Vector Machines with
linear (SVMLIN) and radial basis function (SVMRBF) kernels,
Random Forest (RF), and Artificial Neural Networks (NN)
was performed. A standard pipeline ofmachine learning pro-
cessing implemented for each classifier beginswith extraction
of bandpower features, normalizing their distribution by
application of logarithm transformation, removal of their
mean, and scaling the variance to unitary. Such standardiza-
tion of features is often required for many machine learning
estimators to perform in a satisfactory way. The next step
involves ranking the features by their MI and preliminarily
selecting 9 of them for the stage of classifier tuning. The
final number of features 𝑁sel is selected during the process
of machine learning estimator fine tuning. For that purpose
a cross-validated grid search strategy was utilized. In this
approach, all possible combinations of hyperparameters that
were specified by the user are tested and the combination
that allowed achieving the best accuracy is selected. For that

purpose the training data is furtherly divided into two sub-
sets: one used for training and the other for cross-validating
tested parameters. That was achieved with the 3-fold cross-
validation. After the best combination of hyperparameters
is selected, the estimator is refitted with them on the whole
training dataset.

Presented below are brief summaries of each tested
classification algorithm together with descriptions of sets of
hyperparameters used during the tuning process. For each
subject and each validation session classification model was
created using full training dataset with selected best hyper-
parameters and used to obtain a classification accuracy on
the test data. Achieved results and comparison of classifiers
performances are presented in Section 3.

2.9.1. Linear Discriminant Analysis. LDA is a simple classifier
with a linear decision boundary, obtained by fitting class
conditional densities to the data and using Bayes’ rule. It
is a parameterless estimator that did not require any fine
tuning. Creating a model with LDA requires the estimation
of class covariance matrices. However, in situations where
the number of training examples is small compared to the
number of features the empirical sample covariance is a poor
estimator. In such scenarios use of shrinkage can improve
estimation of covariance matrices. The level of shrinkage
can be controlled by specifying the shrinkage parameter.
For a 0 value of no shrinkage, the empirical covariance
matrix is used. For a value of 1 the diagonal matrix of
variances is used as an estimate for the covariancematrix.The
optimal shrinkage parameter was obtained following lemma
introduced by Ledoit and Wolf [29].

2.9.2. 𝑘-Nearest Neighbors. kNN is a distance based classifier
capable of solving nonlinear machine learning problems. In
this work the number of neighbors was selected from the
range 1 to rounded value of (4(𝑁𝑒 − 1)/3) − 1, where 𝑁𝑒
is a number of events that occurred during the experiment.
For the distance calculation the Minkowski metric was used.
The power parameter of this metric was selected from the
range 1–5. The points in each neighborhood either were
considered with uniform weights or have been assigned
weights proportional to the inverse of their distance from the
analyzed point.

2.9.3. Support Vector Machines with Linear Kernel. SVMLIN
belongs to a group of supervised learning methods used
for classification (or regression). These methods are quite
effective in cases, such as the one presented in this article,
where dimensionality of feature space is greater than the
number of examples. However, if the number of features is
much greater than the number of samples they are prone to
overfitting.

The best value of penalty parameter 𝐶 of the error term
was selected from the set of values evenly spaced on the
logarithmic space from −4 to 50 with step 5. During the
grid search parameter optimization it was determined for
each session whether to use the shrinking heuristic or not.
Tolerance for stopping criterion was selected from the values
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1𝑒−1, 1𝑒−3, 1𝑒−5.The calculations could be also terminated
if the upper limit of iterations 1𝑒 + 5 was reached.

2.9.4. Support Vector Machines with Radial Basis Function
Kernel. SVMRBF is a SVM algorithm that thanks to the
use of nonlinear kernel is capable of solving more complex
problems. Additionally, utilization of RBF kernel can help
avoiding overfitting in situations where dimensionality of
feature space is greater than the number of examples.

TheRBF kernel coefficient’s value, as well as the best value
of penalty parameter 𝐶 of the error term, was chosen during
the fine tuning stage from the set of values evenly spaced
on the logarithmic space from −3 to 20 with step 2. During
the grid search parameter optimization it was determined for
each session whether to use the shrinking heuristic or not.
Tolerance for stopping criterion was selected from the values
1𝑒−1, 1𝑒−3, 1𝑒−5.The calculations could be also terminated
if the upper limit of iterations 1𝑒 + 5 was reached.

2.9.5. Random Forest. RF is an ensemble estimator that
fits a number of decision tree classifiers utilizing variously
subsampled examples from the training dataset in order
to improve the accuracy and avoid overfitting. The final
classification is obtained by taking the majority vote of all
decision trees. In this work, the size of subsampled training
data is always the same as the original input sample size. This
was maintained by the utilization of sample bootstrapping
(sampling with replacement).The nodes of each decision tree
were expanded until all leaves were pure or until all leaves
contain less than some individually tuned minimal number
of samples per each split. This number was selected from the
set of evenly distributed number (with step 3) from range 1 to
15. The quality of splits could be evaluated with either using
the Gini impurity or entropy criteria. The number of trees
in the forest was chosen from the set of evenly distributed
number from range 1 to 100 with step 5 during the grid search
hyperparameter tuning.TheRF classifier creates new training
subsets with bootstrapping. This approach is often referred
to as bagging. As a result, a part of the training set remains
unused and can be utilized for the task of the generalization
error estimation. During that hyperparameter tuning it was
also determined whether or not to use out-of-bag samples to
estimate the generalization accuracy. It must be noted that
due to the fact that RF is a tree-based classifier it is capable
of ranking the features itself. Each feature can evaluate how it
improves the chosen quality of split. Nodes with the greatest
decrease of said measure are most discriminative. Therefore,
by restraining (pruning) trees below a particular node, a
subset of the most important features can be created. The
number of features to consider was fine tuned from range
1 to 140 with step 10 during the grid search hyperparameter
tuning.

2.9.6. Artificial Neural Networks. Feed Forward Artificial
Neural Networks with one hidden layer were evaluated.
During initial phase of tuning process NN with various
numbers of neurons in hidden layer (in the range 1 to 100)
and ReLU activation function were tested. LBFGS solver
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Figure 4: Comparison of classifier performance obtained for all
subjects.

was exploited for the training process. The purpose was to
determine the smallest NN structure that is characterized
by the best recognition properties. Results pointed out that
the best accuracy was delivered by NN with 4 neurons
in hidden layer. Therefore, this structure was selected for
the second phase of NN tuning. Due to the fact that the
results of NN training process are highly dependent on
initial weights between neurons withinNN structure, process
of NN training was repeated independently 100 times. At
the beginning of each training scenario NN weights were
initialized with random values. After execution of the second
phase of the tuning the best NN were selected.

3. Results and Discussion

In Figure 4, performances of classifiers have been compared
and visualized with the help of box plots. Additionally,
accuracies achieved by each of the evaluated classifiers
for each subject obtained from the validation procedure
described in Section 2.9 are presented in Tables 1–6. In Table 7
the distributions of results across all experimental sessions
for each classifier are summarized. For that purpose mean
accuracy 𝜇, standard deviation 𝜎, first quartile 𝑄1, and third
quartiles 𝑄3 were calculated.

The visual inspection of box plots presented in Figure 4,
as well as the analysis of distributions presented in Table 7,
suggests that the performance of a Neural Networks might
be significantly better than that of other algorithms. In order
to evaluate that hypothesis a one-way analysis of variance
(ANOVA) has been performed. The tested hypothesis was
that the means of all accuracies obtained for each subject
by different classifiers are the same against the alternative
hypothesis that the populations means are not all the same.
High 𝑝 value obtained from said ANOVA test (𝑝 = 0.2708)
might suggest that differences in mean accuracies of all
classifiers are not statistically significant.This however might
be attributed to the small size of the populations. One versus
one comparison of Neural Networks against LDA, kNN,



Computational Intelligence and Neuroscience 7

Table 1: Linear Discriminant Analysis: accuracy of classification achieved for each subject (mean accuracy 73.01%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 79.41% 84.21% 78.57% 82.69% 66.67% 69.57% 68.18% 73.21% 66.67% 60.87%

Table 2: 𝑘-Nearest Neighbors: accuracy of classification achieved for each subject (mean accuracy 69.45%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 79.41% 84.21% 59.52% 80.77% 66.67% 56.52% 68.18% 80.36% 66.67% 52.17%

Table 3: Support Vector Machines with linear kernel: accuracy of classification achieved for each subject (mean accuracy 67.29%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 76.47% 84.21% 64.29% 80.77% 63.89% 56.52% 68.18% 69.64% 52.38% 56.52%

Table 4: Support Vector Machines with radial basis function kernel: accuracy of classification achieved for each subject (mean accuracy
69.32%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 73.53% 84.21% 73.81% 84.62% 69.44% 56.52% 73.21% 65.91% 61.90% 50.00%

Table 5: Random Forest: accuracy of classification achieved for each subject (mean accuracy 68.72%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 76.47% 86.84% 54.76% 84.62% 69.44% 60.87% 65.91% 78.57% 61.90% 47.83%

Table 6: Artificial Neural Networks: accuracy of classification achieved for each subject (mean accuracy 77.77%).

Subject 1 2 3 4 5 6 7 8 9 10
Accuracy 88.23% 92.10% 78.57% 86.53% 77.77% 67.39% 68.18% 80.35% 69.04% 69.56%

Table 7: Accuracy of classification achieved for each subject.

Classifier 𝜇 𝜎 𝑄
1

𝑄
3

LDA 73.01% 7.85% 66.67% 79.41%
kNN 69.45% 11.28% 59.52% 80.36%
SVMLIN 67.29% 10.72% 56.52% 76.47%
SVMRBF 69.32% 11.12% 61.90% 73.81%
RF 68.72% 12.85% 60.87% 78.57%
NN 77.77% 9.08% 69.04% 86.53%

SVMLIN, SVMRBF, and RF returned, respectively, following 𝑝
values: 0.2252, 0.0858, 0.0297, 0.0789, and 0.0856. Therefore,
it can be stated that the performance of NN classifier was
significantly better than that of other algorithms, apart from
LDA.

In order to evaluate the individual capabilities and suit-
ability of each subject for the use of pilot aiding system based
on the principle described in this article, a summary of all
accuracies obtained with different classifiers for each subject
has been presented in Figure 5. The low variance of results
achieved for subjects 1, 2, 4, 5, 7, and 9 suggests that these
participants are suitable forworkwith EEG-based pilot aiding
systems. It can be also observed that for subjects 6, 8, and
10 the proper choice of classification algorithm might result
in improved performance, while for subject 3 such selection

is crucial in order to achieve the best results. It is worth
observing that for 10th subject classification accuracies are in
general unsatisfactory, which might suggest that either this
person is not suitable for work with described systems or
the data might have been too noisy due to some unwanted
environmental factors.

4. Conclusions

In this work a methodology of EEG signals processing and
classifier tuning was proposed and evaluated for the purpose
of analyzing data containing states of brain activity related
to idle but focused anticipation of visual cue and reaction
to that cue. Although such methodology has been in use for
many classical BCI paradigms, to the best of our knowledge
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Figure 5: A summary of general accuracies that were obtained for
each subject.

its implementation to the problem posed in this research is a
novelty. Classification accuracies obtained during performed
tests show the significance of proper selection and fine
tuning of classification algorithm. In general case the Neural
Network classifier achieved the best mean accuracy, outper-
forming by almost 5% the LDA and other classifiers by over
8%. However, through the ANOVA tests it was not possible
to prove that any differences in means are significant, if all
classifiers were considered. This might be attributed to the
small number of subjects that participated in the experiment
and suggests that for a more reliable and profound analysis,
evaluation of proposed methodology and experiment with
greater number of participants must be performed.

A very interesting observation was made that, for some
subjects, the proposed methodology was not able to find a
configuration of parameters that would allow achieving a
satisfactory results. This could be attributed to some kind of
data corruption; however, a most likely related explanation
might be related to the phenomena referred to as BCI
illiteracy [30]. Accordingly to research and some documented
cases, some people are not capable of using BCI (Brain-
Computer Interface) systems [30–32]. Such condition must
be taken into consideration in the future works and, even
more importantly, if such solution as described in this article
was to be utilized in real life situations as a part of a pilot
aiding system.

Moreover, obtained results proved the possibility of using
EEG-based BCI systems in cognitive cockpit solutions. Pilot
aiding and reaction enhancing solutions, especially, that are
applicable during flight sessions could potentially highly
benefit from use of such signals. It must be noted that
conducted research was focused mainly on the problem of
discrimination between states of brain activity related to idle
but focused anticipation of visual cue and reaction to it.
Therefore, it should be considered more as an in-depth study
of one of themultiple steps of the functional cognitive cockpit
system rather than as a description of a complete solution.

In order to apply the proposed methods for BCI systems in
cognitive cockpit solution it would be necessary to develop
automaticmethods for the removal of artifacts related to body
movements and EMG.

Data recorded for the purposes of this research was
acquired using a low-cost and consumer available EEG
device with limited number and configuration of electrodes.
Despite that, used signals allowed to discriminate between
defined classes of brain activity. This validates the potential
of utilizing such EEG devices in future work and real life
applications. This is a very important conclusion, since pro-
fessional EEG measurement systems can be very expensive.
Most scientifically and clinically used EEG measurement
systems provide a great number of electrodes (usually over
60 or even 100). Such approach allows achieving a higher
spatial resolution of EEG data. As a result a more accurate
and precise conclusions about areas of brain activation can be
drawn. However, greater number of measurement electrodes
can significantly increase time required for experimental
setup and, even more importantly, decrease a comfort of
BCI systems and restrict the allowed movement range of
subject. Such situation is unacceptable for cognitive cockpit
and general pilot monitoring and aiding systems. Therefore,
the fact this research proved, that smaller number of electrode
channels can be effectively used in such applications, is
valuable in terms of practical solutions. Although there are
some interesting studies regarding the choice of classification
algorithms for the BCI purposes, these are mostly focused on
the classical BCI paradigms. To the best of our knowledge
a review of classification algorithms in the task of classifi-
cation of pre- and postevent related activity has not been
so far conducted, especially for experiment with low-cost
EEG systems. Thanks to the findings of this article a clear
information about the choice of the classification method
in the proposed methodology of EEG signal analysis was
obtained. This will hopefully greatly contribute to the future
research on that subject. Achieved results and conclusions
drawn from performed experiment will serve as a reference
for future works that will be focused not only on digital signal
processing and classification of pilot’s mental states present
during flight session but also on developing of data recording
procedures and hardware setup of measurement devices.
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Motion related human activity recognition using wearable sensors can potentially enable various useful daily applications. So far,
most studies view it as a stand-alone mathematical classification problem without considering the physical nature and temporal
information of human motions. Consequently, they suffer from data dependencies and encounter the curse of dimension and the
overfitting issue. Their models are hard to be intuitively understood. Given a specific motion set, if structured domain knowledge
could be manually obtained, it could be used for better recognizing certain motions. In this study, we start from a deep analysis
on natural physical properties and temporal recurrent transformation possibilities of human motions and then propose a useful
Recurrent Transformation Prior Knowledge-based Decision Tree (RT-PKDT) model for recognition of specific human motions.
RT-PKDT utilizes temporal information and hierarchical classification method, making the most of sensor streaming data and
human knowledge to compensate the possible data inadequacy.The experiment results indicate that the proposedmethod performs
superior to those adopted in related works, such as SVM, BP neural networks, and Bayesian Network, obtaining an accuracy of
96.68%.

1. Introduction

Human motion related activity recognition (HAR) is one
of the most promising research topics for a variety of areas
and has been drawing more and more researchers’ attention.
With the booming of Internet of Things (IoTs), sensors
have been widely used in HAR applications, due to the
advantages of no need to deploy in advance, smaller data
volume, lower cost, and power consumption. Sensors-based
HAR stands out among various technologies [1–3] and has
been drawing tremendous attention and applied into a variety
people centric application areas, such as medical care [1],
emergency rescue [2], and smart home surveillance [3].

However, obtaining sufficient information from sensor
data sequences to recover the parameters of body motion
correctly is a challenging task for two reasons. The first is
the large number of degrees of freedom in human body

configurations, resulting in high computational loading, and
the second is the large variability and uncertainty in motor
movements employed for a given motion.

To solve the first problem, most related works use data-
driven methods which tend to take the advantage of multiple
sensors [4], such as accelerometer, gyroscope, compass sen-
sor, and humidity sensor, to name but a few, to enlarge the
input data set to achieve more information. More than one
sensor node is mounted onto different body-parts to monitor
human motions with multiple degrees of freedom. In [5],
Stiefmeier studied how sensors bounded to different body-
parts, such as Torso, sleeve, arm, and hand, contribute to
the recognition of complex human motions. Above methods
somehow expand the data source; however, the introduction
of redundant data may not only lead to extra burden on
computational capability, but also cause dimension disaster
problem [6] which on the contrary degrades the classifier’s
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performance. Data-driven methods hardly look into the
nature of motions and extract most important features by
empirical analysis or engineering methods [7, 8]. To solve
this problem, more attention should be paid to focus on the
physical nature of human motion characteristics and filter
key information for recognition. Ghasemzadeh and Jafari [8]
introduce a novel classification model that identifies physical
movements from body-worn inertial sensors while taking
collaborative nature and physical combinations of different
body joints into consideration. With physical information,
[8] maintains 93.3% classification accuracy.

To solve the second problem, probability and statistics
methods are introduced to overcome human motion’s uncer-
tainty. HMM [13] and Bayesian Network [7] are the most
widely considered algorithms to solve this problem. Bayesian
Network can cope with uncertainty, erroneous or missing
sensor measurements. Despite the fact that these classifiers
assume conditional independence of the features, the clas-
sifiers yield good accuracy when large amounts of sample
data are provided. The hidden Markov model (HMM) is
probably the most popular generative approach that includes
temporal information. An HMM is a probabilistic model
with a particular structure that makes it easy to learn from
data, to interpret the data once a model is learned, and is
both easy and efficient to implement. Bayesian Network and
HMMs form the basis of statistical temporal models; how-
ever, model for each certain activity should be modeled and
prior probability should be prepared before model is trained.
However, accurate probability is difficult to be obtained due
to the complexity and subjectivity of human motions, as well
as the requirement of large amounts of actual data. Motions
are performed under different environments simultaneously,
such as applications in medical care and emergency rescue
[1, 2, 14].

Data-driven methods may cover most applications but
they may be not suitable for some specific scenarios. As
Bousquet stated in [15], specific knowledge can help improve
generalization performance. Correspondingly, knowledge-
driven methods are more suitable for applications with
specific backgrounds, namely, direct human knowledge.
Knowledge-driven activity recognition is founded upon the
observations that most activities, in particular, take place
in a relatively specific circumstance of time, location, and
space. Knowledge-driven activity modeling and recognition
intend to make use of rich domain knowledge and heuristics
for activity modeling and pattern recognition [16]. The
rationale is to use various methods, in particular, knowl-
edge engineering methodologies and techniques, to acquire
domain knowledge. Comparing with data-driven activity
modeling that learns models from large-scale datasets and
recognizes activities through data intensive processing meth-
ods, knowledge-driven activity modeling avoids a number
of problems, including the requirement for large amounts
of observation data, the inflexibility that arises when each
activity model needs to be computationally learned, and the
lack of reusability that results when one person’s activity
model is different from another’s [16].

For particular applications, target motion set is generally
fixed and structured domain knowledge could be manually

obtained and utilized for better recognizing certain motions.
Motions or activities are completed in a certain sequence.
These rules could be obtained in advance, and we may
use these relations to help recognize the activity. In these
conditions, prior knowledge can enlighten the human activity
recognition on the basis of data-driven methods.

In this paper, we put forward a sequential recognition
method RT-PKDT (Recurrent Transformation Prior Knowl-
edge based Decision Tree) to recognize human motion
related activities, with consideration of a conceptual model.
By deeply mining commonly understanding motions, a con-
ceptual motion model is considered. Temporal information
is considered and a recurrent transformation method is put
forward to realize sequential human motion recognition.
With applying RT-PKDT into motion classification and the
integration of Support Vector Machine (SVM) using RBF
Kernel, it improves the classification performance and makes
up for the inadequacy of data itself. Result shows that our
proposedmethodworks better than traditionalmethods such
as SVM,BP, andBayesianNetwork andhas achieved a general
true classification rate of 96.68%.

2. Construction of PKDT

Prior knowledge plays a big role in the whole classification
process. To solve aforementioned problem, we try to bring
more expert knowledge into the classifier to achieve the goal
of extracting and using key features to improve classification
performance in the motion recognition process. In this
section, we present a new approach, prior knowledge based
decision tree (PKDT), by exploring rich domain knowledge
for activity classification rather than learning them from data
as seen in data-driven approaches.

As there may be lots of different activities in daily life
and we cannot take all into consideration, we turn to the
most frequently appearingmotion formedical care and emer-
gency rescue scenario including Standing, Lying, Walking,
Running, Walking upstairs, Walking downstairs, elevator up
(short for upstairs by elevator), and elevator down (short for
downstairs by elevator). The activity case set can be given by

Activity = {Standing (St), Lying (Ly), Walking (Wa),
Running (Ru), Upstairs (Up), Downstairs (Do),
ElevatorUp (Eu), ElevatorDown (Ed)}

(1)

2.1. Conceptual Motion Model. As for activity recognition
problems, prior knowledge is reflected in our understanding
of motions. It is commonly believed that a human motion
can be described from several attributes, like intensity,
orientation, velocity, and so on. These attributes, in some
aspects, embody characteristics ofmotions and can be related
to a series of key features that most eminently reflect the
physical difference among activities. These key features may
be used to group different kinds of activities into several
subclasses as they have various distribution overlap on the
same attribute. We thus make the most of the common sense
knowledge exploring the physical attributes of daily human
motions to construct a conceptual motion model, as shown
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Figure 1:The conceptualmotionmodel. Eachmotion can be viewed
as a combination of five attributes: intensity, orientation, velocity,
body-position, and duration.

in Figure 1. We model a human motion with attributes of
intensity, orientation, velocity, body-position, and duration.
Each attribute represents human motions in a side view
from a particular angle. Detailed explanation and analysis are
described as follows:

(i) Intensity: different motions behave differently in
the performance of exercise intensity. In everyday
life, activities, such as Walking, Running, Walking
upstairs, and Walking downstairs, consist of a series
of periodic mechanical actions, while activities, such
as Standing, Lying, ElevatorUp, and elevatordown, are
almost relatively static to surrounding environment.
Therefore, taking the difference of intensity attribute
between different activities, we can divide the activity
case set into two subclasses, the former Active activity
and the latterRest activity. Features, likemean value of
acceleration (MeanValueacc, shown in Figure 2(a)) are
to some extent related to activities’ intensity attribute.
Distinction between active and rest activities can be
easily made with the use of intensity related features.

(ii) Orientation: movements’ orientation is also one of
the most intuitive attributes in common knowl-
edge sense. As terrestrial reference coordinate sys-
tem is often thought of as the default coordi-
nate system, everyday activity can be classified
into two subclasses: (1) Vertical Motion, including{WalkingUpstairs, WalkingDownstairs, ElevatorUp,
ElevatorDown}, and (2) Horizonal Motion, including{Standing, Lying, Walking, Running}. The pressure
value got from barometer sensors directly reflects
the characteristics and differences between them.
Features extracted from pressure value, such as the
difference of pressure measurement value in a given
time window (Pressure𝑤, shown in Figure 2(b)) intu-
itively show how pressure, namely, height, changes
over time.

(iii) Velocity: velocity can clearly and effectively describe
how fast humans repeat the motion. Considering the
obvious differences among activities with different

motion velocity, we can group activities intoRelatively
High Velocity Motion and Relatively Low Velocity
Motion, taking Running and Walking as an example.
And it also works on WalkingUpstairs (or Walking-
Downstairs) versus ElevatorUp (or ElevatorDown).
Features like variance of the acceleration (𝜎2acc) and
mean crossing rate of acceleration and gyroscope
(MCRacc) reflect sensor data’s vibration with the going
of activity.

(iv) Body-position: human activities can be seen as a
combination of a series of body-part movements
instead of being performed by one single body-
part, which means distinction may arise from body-
position where sensors are mounted. In other words,
for certain activities, it may have similar distribution
of sensor data from one body-part, while clearly
difference will be seen when several body-parts’
data distribution is viewed together, which can be
made use of to do the distinction. For example,
Standing and Lying are two static activities while
sensors on single body-part are almost invariable. It
is very difficult to separate them from each other
with data from only one body-part. However, if data
from sensor mounted to Ankle and Shoulder are
combined, the pressure difference between these two
position (PressureDifferAS) will contribute greatly to
the distinction of the two activities.

(v) Duration: every activity lasts for a certain time, and
it is easy to be understood that a reasonable time
window is necessary to better distinguish activities.
If we certainly know how long a particular activity
lasts for, we could obtain more useful information
with the help of analyzing the whole activity process.
Previous researches are not unified on determination
of the time window length which is already discussed
in Section 2. In this study, we take an empirical
window length of 2 seconds, in order to avoid the
complexity of the problem and improve the classifier’s
generalization performance.

The above attributes constitute various activities. One
feature may work towards the classification process based on
one attribute but may not towards another. Purpose of the
study in this paper is to make the most of the differences
among activities’ attributes in order to tell them apart.There-
fore we explore the rich common knowledge extracting the
key features to construct a prior knowledge based decision
tree model with analyzing attributes’ distribution in methods
detailed in next section.

2.2. Prior Knowledge-Based Decision Tree. The proposed
conceptual model above establishes links between activities
and conceptual information through activity-based attributes
andmakes it possible to understand and distinguish different
motions in finer perspectives. At the same time, multiclass
classification could be done in steps one of which adopts
one attribute as a basis. In this way, hierarchical relationships
are constructed that link conceptual information with sensor
observations through activity attributes. Above-mentioned
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Figure 2: Boxplot of four features corresponded, respectively, to the attributes demonstrated inmotionmodel. Typical features corresponded,
respectively, to the attributes demonstrated in motion model and are calculated based on collected dataset. (a) is based on mean value
of acceleration; (b) is based on the difference of pressure measurement value in a given time window; (c) is based on the variance of the
acceleration; (d) is based on the pressure difference between Ankle and Shoulder.

considerations similarly make decision tree classifier a first
choice with the advantage of easier to build multilevel
heuristic structure as decision tree is a set of if-then rules
which are successively applied to the input data. Based on the
analysis of activity attributes, we propose a fusion method,
PriorKnowledge-basedDecisionTree (PKDT), to achieve the
goal of classification in a hierarchical way which at the same
time pursues a better generalization performance.

Making use of the characteristics of different attributes,
a typical heuristic decision tree based classification model is
demonstrated in Figure 3. In this binary tree structure, each
internal node is replaced with an activity attribute related
binary classifier, so as that a multiclassification problem
transforms into multiple binary classification problem which
can make the most use of balanced binary tree and internal
binary subclassifiers.

SupportVectorMachine (SVM) [17] is selected as internal
classifier and it may work out the confidence probability (CP)
of each candidate classes via decision values [17], denoted
as
󳨀→𝑑 . The class with the maximum probability is considered

to be the estimated result. For a SVM classifier intending to
classify 𝑁 classes, it may give out the decision value of each
classifier, which can be mapped to confidence probability by
activation function, namely,

CP = 𝑓(󳨀→𝑑) = 1
1 + exp (−󳨀→𝑑 + 1) . (2)

As demonstrated in Figure 3, our proposed PKDT has
3 layers which have 2𝑖 − 1 internal classifiers in the 𝑖th
layer. In the 𝑖th layer, the input instance are further classified
into 2𝑖 subclasses. The 𝑗th classifier in the 𝑖th layer, whose
discrimination function is 𝑔𝑖,𝑗(x𝑡 | 𝜃), gives out decision
values for internal classification results. Decision values
generated in the 𝑖th layer could be denoted as

󳨀→𝑑𝑖, while󳨀→𝑑𝑖 = [𝑑𝑖,1, . . . , 𝑑𝑖,𝑚], 𝑚 = 2𝑖. In bottom layer, final decision
values 𝑑𝑘 for the 𝑘th candidate motion are achieved via
multiplicative 𝑑𝑘 = ∏3𝑖=1𝑑𝑖,𝑘, 𝑘 = 1, . . . , 8. For a specific
instance 𝑥𝑡 at time 𝑡, confidence probability of the 𝑘th human
motion is CP𝑘 (mapped with 𝑓(𝑑𝑘)). The classification result
(𝑅𝑡) is represented with the maximumCP and worked out by
intermediate results 𝑑𝑘 as shown in

𝑅𝑡 = argmax (CP𝑘) , 𝑘 = 1, 2, . . . , 𝑁, (3)

where 𝑅𝑡 is the classification result with the maximum
confidence probability, ranging from 1 to 8 as there are 8
candidate human motions.

Based on the aforementioned fusion method, with the
advantages of hierarchical display, a balanced binary decision
tree is constructed in which each internal node is replaced
with an activity attribute-based binary subclassifier. It is
worth stressing that the five attributes of motion may make
no identical contribution on the activity classification so
that there could be a particular combination method of
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Figure 3: Prior Knowledge-based Decision Tree: A typical classification method according to commonly human sense.

these attributes used in PKDT. Among the five attributes
mentioned above, Duration is viewed as a fixed parameter in
this study. Intensity and Orientation are of certain indicators
that can separate one from the others, while Frequency and
Body-Position attribute have the nature of relativity which
makes them only suitable for local distinguish rather than
global distinguish. Taking another reason into consideration,
attributewith the largest classification performance should be
placed in the root classifier in order to get a better result along
with the latter classification process. By practical validation,
the demonstrated structure is the most effective one.

In PKDT method, a knowledge-driven recognition path
flows from the root node to leaf node, passing by activity
attribute related internal classifier. In this way, the overfitting
problem can be to some extent avoided. However, temporal
information is not yet considered and, in some conditions,
relationship between layers could be utilized for computa-
tional reduction.

3. Recurrent Transformation Model

A complex human motion typically consists of multiple
primitive events happening in parallel or sequentially over a
period of time. Understanding such complexmotion requires
recognizing not only each individual event but also, more
importantly, capturing their temporal dependencies. This is
in particular the case when the detection of individual events
is poor due to poor tracking results, occlusion, background
clutter, and so on. In this section, the transformation rela-
tionship between various human motions is studied and we

propose an hierarchical recurrent transformation model for
human motion recognition.

The model is constructed via two considerations: human
motion’s physical attributes and temporal transition depen-
dencies among human motions. Since the PKDT has already
considered physical information, in this section we mainly
introduce how temporal information could be included in the
motion classification process.

3.1. Temporal Transition Model. We now give a formal
description of an sequential transformation human motion.
Let Σ be a finite alphabet, each element𝑂 of which stands for
a singlemotion.We denote byΣ∗ the set of all possible strings
over Σ. An observation sequence of human activity is a finite
string from Σ∗ denoted by 𝑂 = 𝑜1𝑜2 ⋅ ⋅ ⋅ 𝑜𝑇. These temporal
transition constraints between different motions are acquired
by statistics in HMM and Bayesian Network methods [7, 13].

However, in practice these probabilities are hardly avail-
able because human motions are often stochastic and parox-
ysmal. With this taken into consideration, we take human
knowledge as constraints other than statistical probabilities.
In human common sense, there should be causal connections
between motions. For example, after Running there should
be a “Walking” for a period of time; then it may come
to “Standing” or perhaps “Running” again. However, it is
unreasonable that “Lying” immediately comes after “Run-
ning” (do not take falling into consideration, as there at
least is a conversion process). Without being very particular,
it may be unreasonable to suddenly change from “Lying”



6 Computational Intelligence and Neuroscience

Table 1: Possible Transitions between time 𝑡 − 1 and time 𝑡. The first-order transition matrix is denoted as Trans1(𝑡 − 1, 𝑡).
Trans1(𝑡 − 1, 𝑡) St[𝑡 − 1] Ly[𝑡 − 1] Eu[𝑡 − 1] Ed[𝑡 − 1] Up[𝑡 − 1] Do[𝑡 − 1] Wa[𝑡 − 1] Ru[𝑡 − 1] Tu[𝑡 − 1]
St[𝑡] 1 0 1 1 0 0 1 0 1
Ly[𝑡] 0 1 0 0 0 0 0 0 1
Eu[𝑡] 1 0 1 0 0 0 1 0 0
Ed[𝑡] 1 0 0 1 0 0 1 0 0
Up[𝑡] 0 0 0 0 1 1 1 0 0
Do[𝑡] 0 0 0 0 1 1 1 0 0
Wa[𝑡] 1 0 1 1 1 1 1 1 0
Ru[𝑡] 0 0 0 0 0 0 1 1 0
Tu[𝑡] 1 1 0 0 0 0 0 0 1

to “Downstairs.” Figure 4 simply shows possible transition
relationship according to human sense, in which each arrow
represents possible transitions betweendaily humanmotions.

With these cognitive constrains, more accurate pattern
recognition could be realized and it will be shown in the
following studies. All these possibilities and impossibilities
could be inducted as shown in Figure 4, according to
human prior knowledge. Detailed transition relationship is
demonstrated in Table 1, where “1” stands for transferrable
and “0” stands for nontransferable.

CP is confidence probability of activity classification,
which could be achieved from SVM classifier [17]. Trans1(𝑡 −1, 𝑡) is the transition matrix which indicates the possible
transitions between time 𝑡−1 and time 𝑡.The expected output𝑅𝑡 is the classification result with the maximum confidence
probability. In consideration of last time recognition result𝑅𝑡−1, the constraints described in Table 1 are contained in
transitionmatrix Trans1(𝑡−1, 𝑡), and the supposed impossible
transition is limited to 0 as the confidence is set as 0. By this
means, a classification process is completed at certain time 𝑡.

Furthermore, apart from the transferability, the temporal
connection between motions should be also taken into
classification process. For facilitating the description, we
model the possible transferability between motions with the
constraints demonstrated in Table 1. Possible transitions are
judged by common prior knowledge and do not depend
on data acquisition and statistics in advance. It could be
viewed as a simplified Markov model in which transition
probabilities are set to “0” or “1.” For motion 𝑅𝑡 at a given
time 𝑡, its former motion state 𝑅𝑡−1 is considered. With
the truth Table 1, some unreasonable transitions are ruled
out, and possible transitions are shown in Figure 5. These
possible transitions are drawn by lines, while transition is
unreasonable to common sense where these is no line drawn
between states. Particularly, two red lines are drawn in
Figure 5, which means an intermediate state (“Standing” to
“Lying” or “Lying” to “Standing”) is separately considered as
the process is relatively long compared with other motions.

However, there may still exist some problems. In some
conditions, given a prior state 𝑅𝑡−1, the possible estimated
result of next state is constrained within a certain range.
Current humanmotion is clearly related to historicalmotions
within a time window. Methods mentioned above merge
human knowledge of possible transitions into classification

Walking

Elevator
up

Elevator
down

Upstairs Downstairs

Standing

Running

TurningSTL Lying

Figure 4: Conceptual transformation relationship between human
motions listed in activity.

process; however, temporal information is not being fully
exploited. More historical information can be added to the
classification process.

For the sake of this, a second-order transition model is
proposed as shown in Figure 5. Prior knowledge is considered
that for a certain time 𝑡; its current state is directly related
with both the last state and the next possible state, namely,
states at time 𝑡−1 and 𝑡+1. Possible second-order transitions
between human motions are described in Figure 5. Similarly,
a second-order transitionmatrix Trans(𝑡−1, 𝑡, 𝑡+1) could be
derived, which could be easily calculated if Trans1(𝑡 − 1, 𝑡) is
maintained well. Their relationship could be represented as

Trans (𝑡 − 1, 𝑡, 𝑡 + 1) = Trans1 (𝑡 − 1, 𝑡)
∗ Trans1 (𝑡, 𝑡 + 1) , (4)
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Figure 5: Second-order transition schematic diagram. The possible transferability between motions with the constraints is demonstrated.
(a) demonstrates the possible transitions among activities Standing, TurningSTL, and Lying. (b) demonstrates the possible transitions among
activitiesWalking andRunning. (c) demonstrates the possible transitions among activitiesWalking,Upstairs, andDownstairs. (d) demonstrates
the possible transitions among activities ElevatorUp, Elevatordown, Standing, andWalking.

where Trans1(𝑡 − 1, 𝑡) = Trans1(𝑡, 𝑡 + 1). Namely, the
second-order transition matrix is the square of first order
matrix. Unreasonable judgements are ruled out with second-
order transition matrix considered. It is worthy to mention
that the more temporal information considered, the better
recognition result could be got. But the conceptual model
would be rather complex as the second-ordermodel is already
complicated. So only second transitionmodel is adopted.The
recognition target could then be updated as

𝑅𝑡 = argmax {[CP1 CP2 ⋅ ⋅ ⋅ CP𝑁]∗ Trans (𝑡 − 1, 𝑡, 𝑡 + 1)} . (5)

3.2. Recurrent Prior Knowledge Based Decision Tree. With
sequential transition relationship being ruled as shown in
Figure 5, recognition could be realized with adding these
rules into PKDT method. Combined rules may correct
some misclassification results when transition information

is not taken into consideration. Then a recurrent transition
prior knowledge-based decision tree method (RT-PKDT) is
proposed.This hierarchical rules constrainedmethod utilizes
the temporal information between motions together with
hierarchical classification decision tree, the model of which
is shown in Figure 6.

RT-PKDT synthesizes the advantages of hierarchical clas-
sification and temporal transition method. It is human read-
able and combines the prior knowledge in the classification
process and at the same time takes human motion’s temporal
characteristics into consideration. As shown in Figure 6,
at certain time 𝑡, the classification process is proceeded by
PKDT method. The classification process could be divided
into the following three steps: at time 𝑡:

(1) Raw data is processed in the first place, extracting and
selecting features. Motion transition bounds demon-
strated in Figure 4 are considered. The integration
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Figure 6: RT-PKDT. At certain time 𝑡, the classification process is proceeded by PKDT method.

embodies in the use of result at time 𝑡 − 1 with first
order transition matrix 𝑇1. By this constraint, unrea-
sonable states are ruled out and further classification
is done by PKDT.

(2) With PKDT structure, confidence probability matrix
is worked out. The target motion with maximum CP
is selected as candidate result 𝑅𝑡.

(3) The same operation above is proceeded again at
time 𝑡 + 1 and result 𝑅𝑡+1 is achieved. Then, result
at time 𝑡 is updated with second-order transition
matrix, representing (5). Final classification result is
got which is represented as 𝑅∗𝑡 .

By the above process we can see that, in RPKDTmethod,
final result 𝑅∗𝑡 is bounded to the last time (time 𝑡 − 1) result𝑅𝑡−1 and the next time (time 𝑡 + 1) result 𝑅𝑡+1.
3.3. Feature Selection. In order to have more flexibility and
have a better description on the classification ability of
different features, we bring in a quantification mechanism,
with which the best combination of features needed by
each subclassifier is extracted. Detailed algorithm will be
demonstrated as follows.

3.3.1. FeatureQuantification. As analyzed above, a key feature
should have a less distribution overlap so we bring in the
conception of Divergence [9] to quantize class separability.
While the ratio 𝑃(x𝑡 | 𝐴 𝑖, 𝜃)/𝑃(x𝑡 | 𝐴𝑗, 𝜃) can reflect the
distinguishing capability of feature vector x𝑡 on activity 𝐴 𝑖
and 𝐴𝑗, divergence [9] can be denoted as

𝑑𝑖𝑗 = 𝐷𝑖𝑗 + 𝐷𝑗𝑖
= ∫+∞
−∞

(𝑃 (x𝑡 | 𝐴 𝑖, 𝜃) − 𝑃 (x𝑡 | 𝐴𝑗, 𝜃))
⋅ ln( 𝑃 (x𝑡 | 𝐴 𝑖, 𝜃)𝑃 (x𝑡 | 𝐴𝑗, 𝜃))𝑑x

𝑡

(6)

and one feature’s AverageDivergence is denoted as

𝑑 = 𝑁∑
𝑗=1

𝑁−1∑
𝑖=1&𝑖 ̸=𝑗

𝑃 (𝐴 𝑖) 𝑃 (𝐴𝑗) 𝑑𝑖𝑗, (7)

where 𝑃(𝐴 𝑖) and 𝑃(𝐴𝑗) stand for the probability of activities𝐴 𝑖 and 𝐴𝑗.
The bigger the feature’s AverageDivergence is, the greater

contribution to the separability of activities the feature has
made. As AverageDivergence directly reflects one feature’s
distinguishing capability and has a linear relationship with
classification accuracy, in this study, we take it as a standard
for filtering features.

3.3.2. Feature Selection. In this study, 50 features that are
widely used in related articles [2–7, 13, 15] are chosen for
candidate selection, like mean, variance, interquartile range,
signal magnitude area (SMA), and so on. However, the
number of features applied in one classifier is not the best.
Feature selection can be realized from two aspects: (1) remove
the useless features and (2) remove the related components.
In order to better explain this problem, we propose a
Divergence-based Feature Selection Algorithm (DFSA) on
the basis of floating search method [18]. DFSA is detailed as
follows.

Given a feature set that consists of 𝑁 features (𝑁 = 50
in this paper), we aim to find a feature subset with the best𝑘 (𝑘 = 1, 2, . . . , 𝑙 ≤ 𝑁) features resulting in the largest aver-
age divergence, namely, the best classification performance.
Denote𝑋𝑘 = {x1, x2, . . . , x𝑘} as the combination of the best 𝑘
features and the rest of𝑁−𝑘 features are denoted as𝑌𝑁−𝑘. We
reserve all best subsets of low dimension 𝑋2, 𝑋3, . . . , 𝑋𝑘−1,
respectively, corresponding to 2, 3, . . . , 𝑘 − 1 features. The
important functions 𝐷(∙) are defined to present a feature’s
importance. For features in𝑋𝑘,𝐷(∙) is denoted as

𝐷𝑘−1 (x𝑡) = 𝑑 (𝑋𝑘) − 𝑑 (𝑋𝑘 − x𝑡) , if x𝑡 ∈ 𝑋𝑘. (8)

For features not in𝑋𝑘,𝐷(∙) is denoted as

𝐷𝑘+1 (x𝑡) = 𝑑 (𝑋𝑘 + x𝑡) − 𝑑 (𝑋𝑘) , if x𝑡 ∉ 𝑋𝑘. (9)
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In selected features set 𝑋𝑘, the most important feature x𝑡 is
defined as the feature with the largest divergence contribu-
tion, subjecting to

𝐷𝑘−1 (x𝑡) = max
x𝑡∈𝑋𝑘

𝐷𝑘−1 (x𝑡) ; (10)

the least importance feature x𝑡 is defined as the feature with
the smallest divergence contribution, subjecting to

𝐷𝑘−1 (x𝑡) = min
x𝑡∈𝑋𝑘

𝐷𝑘−1 (x𝑡) . (11)

Similarly, in candidate features set𝑌−𝑋𝑘, themost important
feature x𝑡 is defined as the feature with the largest divergence
contribution, subjecting to

𝐷𝑘+1 (x𝑡) = max
x𝑡∈𝑌−𝑋𝑘

𝐷𝑘+1 (x𝑡) (12)

and the least importance feature x𝑡 is defined as the feature
with the smallest divergence contribution, subjecting to

𝐷𝑘+1 (x𝑡) = min
x𝑡∈𝑌−𝑋𝑘

𝐷𝑘+1 (x𝑡) . (13)

The core of this algorithm is in the next step, by borrowing
a feature from𝑌𝑚−𝑘 construct the (𝑘+1)th, key feature subset𝑋𝑘+1; then turn back to lower dimensional subsets to verify
whether average divergence has been improved while new
feature is added. If so, replace previously selected features
with new one. To obtain the best feature subset to maximize
the classification performance of each classifier, DFSA is
described as shown in Algorithm 1.

4. Experiments and Analysis

This section describes detailed experimental setting and
results that demonstrate the typical classification perfor-
mance of RT-PKDT.Detailed comparison betweenRT-PKDT
and several existing approaches (SVM, BP, and Bayesian
Network) has been carried on to verify the applicability of
RT-PKDT.

4.1. Experimental Setting. Our activity recognition platform
consists of five sensor unitsmounted to different parts of body
listed in Location case set to collectively detect transitional
movements listed in activity case set. Each sensor unit
has a 6-axis sensor (MPU6050, which integrates a triaxial
accelerometer and a triaxial gyroscope), and a barometer
sensor (MS5611). The five sensor units are connected to a
microcontroller (STM32F103) via cable wires for the sake of
sampling efficiency in a rate of 10Hz and data are recorded
to SD card in real-time. The whole system architecture is
demonstrated in Figure 7.

Experiments are conducted over the data set sampled
by the above platform at 10Hz. More than 30000 sam-
ples of each activity listed in activity set are taken and
a 10-fold cross validation is applied to ensure that the
sample set is large enough to guarantee the classification
accuracy and generalization performance. We use the pre-
sented platform for data collection and perform all pro-
cessing work offline in MATLAB with PC (Intel Core i5-
3210M CPU, 8G RAM). Our dataset is open sourced at
https://github.com/Ethan–Xu/PKDT-dataset.

Input: the set of𝑁 features to be selected𝑋 ={x1, x2, . . . , x𝑁}, the variable 𝑘 initialized as 0, and𝑋
initialized as 0.

Output: the set of final selected features𝑋𝑁
(1) x1 = argmaxy∈𝑌𝑁𝐷1(y) /∗ when 𝑘 = 0 ∗/
(2) 𝑋1 = {𝑋0, x1}
(3) x2 = argmaxy∈𝑌𝑁−1𝐷2(y) /∗ when 𝑘 = 1 ∗/
(4) 𝑋2 = {𝑋1, x2}
(5) for 𝑘 = 2 to𝑁 do
(6) /∗ searching forward in candidate features set ∗/
(7) x𝑘+1 = argmaxy∈𝑌𝑁−𝑘𝐷𝑘+1(y)
(8) 𝑋𝑘+1 = {𝑋𝑘, x𝑘+1}
(9) x𝑟 = argminy∈𝑋𝑘+1𝐷𝑘(y)
(10) if x𝑟 == x𝑘+1 then
(11) 𝑘 = 𝑘 + 1
(12) break
(13) end if
(14) 𝑋󸀠𝑘 = 𝑋𝑘+1 − {x𝑟}
(15) if 𝑘 == 2 then
(16) 𝑋𝑘 = 𝑋󸀠𝑘
(17) break
(18) end if/∗ searching backward in selected features set ∗/
(19) while TRUE do
(20) 𝑋󸀠𝑘 = 𝑋𝑘+1 − x𝑟
(21) x𝑠 = argminy∈𝑋󸀠

𝑘

𝑑(𝑋󸀠𝑘 − y)
(22) if 𝑑(𝑋󸀠𝑘 − {x𝑠}) < 𝑑(𝑋𝑘−1) then
(23) /∗ no more redundant features, update ∗/
(24) 𝑋𝑘 = 𝑋󸀠𝑘
(25) break
(26) end if
(27) /∗ roll back selected feature set ∗/
(28) 𝑋󸀠𝑘−1 = 𝑋󸀠𝑘 − {x𝑠}
(29) 𝑘 = 𝑘 − 1
(30) if 𝑘 == 2 then
(31) 𝑋𝑘 = 𝑋󸀠𝑘
(32) break
(33) end if
(34) if 𝑘 > 𝑁 then
(35) break
(36) end if
(37) end while
(38) end for

Algorithm 1: Divergence-based Feature Selection Algorithm.

Furthermore, a publicly available dataset [9] is adopted
for comparison to other approaches. In this dataset, a total
of 16 people, 6 females and 10 males, aged between 23
and 50 years, of different height, weight, and constitution
participated in the acquisition of the test data set. They
were all asked to follow a schedule of which activities to
perform and in which order, to allow us to cover all activities
(containing all activities in activity case). Test candidates were
asked to execute them in their personal style without a strict
choreography. They even were encouraged to perform the
same activities differently and to sometimes perform these
activities in such way that a human observer could just about
identify them accurately. Data were recorded in indoor and

https://github.com/Ethan–Xu/PKDT-dataset
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Table 2: Classification accuracy (%).

On collected data set On public data set [9]
SVM BP BayesianNet RT-PKDT SVM BP BayesianNet RT-PKDT

Standing 97.71 96.90 94.67 99.39 92.76 95.55 89.35 97.22
Lying 100 99.88 98.56 100 99.85 99.88 98.55 99.63
ElevatorUp 92.37 99.15 99.58 94.49 90.33 93.55 97.23 96.21
ClevatorDown 88.44 83.56 97.33 93.78 90.98 91.12 92.88 94.44
Upstairs 94.12 18.82 81.18 98.82 93.32 89.56 84.88 96.55
Downstairs 83.1 69.01 83.10 95.77 89.55 78.43 88.21 94.66
Walking 95.12 90.14 96.14 91.87 96.22 92.98 91.33 93.22
Running 99.16 48.74 100 100 98.84 82.35 98.32 99.35
Turning-St-Ly 84.00 58.67 84.00 96.00 88.76 75.35 86.35 90.05
Average accuracy 92.67 73.87 92.73 96.68 93.40 88.75 91.90 95.70

MCU SD card

SensorUnit

MPU6050

MS5611

Figure 7: Experimental Platform Settings. Each sensor unit is
mounted onto body locations tagged by red circles. MCU and
storage unit is located in place marked with blue box.

outdoor environment under seminaturalistic conditions.The
sensor was placed on the belt of the test candidate either on
the right or the left part of the body.

4.2. Results Analysis. To verify the validity of RT-PKDT on
HAR problem, we take Support Vector Machine, BP neural
work and Bayesian Network algorithms which are the most
widely used algorithms in the study of HAR to make a brute-
force comparison. We used the experimenter environment
in the WEKA toolkit, with or without transition taken into
consideration.

A radial basis kernel (RBF) based SVM is adopted using
LibSVM [17] with automatic parameter selection through
grid searching techniques. For the BP neural work, we take
the standard approach of recursively evaluating values for
the learning rate adopted in [12] and momentum using cross
validation. Method described in [7] is applied as a typical

Bayesian Network example. A 10-fold cross validation is
applied to each classifier independently and the experiment
results are shown in Table 2. From Table 2 we can see that
the four algorithms show different classification accuracy on
both data sets.

According to the performance, on collected data set, they
can be sorted in the following order: RT-PKDT>Bayesian-
Network>SVM>BP. Furthermore, RT-PKDT shows the high-
est global average classification accuracy reflecting a high sta-
bility during the classification. Similar performance are also
presented on public data set [9]. In each independent activity,
RT-PKDT also presents a better performance in classification
accuracy and stability. SVM and Bayesian Network present
similar effectiveness but they both show badly consistency
on the recognition accuracy of different motions. For some
specific human motion, the accuracy is rather low. They did
not perform well as some of the testing activities may have
similar feature distribution leading to fuzzy boundaries in
the classification process. It may be because the training
of multilayer perceptron is relatively complicated in this
recognition problem and leads to overfitting. Besides, the
long-time consumption in training phase of BPmakes it unfit
for real-time application.

For better comparison, Table 3 demonstrates the exper-
iment results of several related works, using the methods of
decision tree, 𝑘-NN, neural networks, and SVM. In contrast
with self-designed algorithms used in Table 2, better results
have been reachedwith improved ones in these relatedworks,
and particularly in [8] accuracy has been as high as 93.3%.
However, our proposed RT-PKDT method still stands out
with a highest accuracy 96.68%. Besides, RT-PKDT makes
the advantage of motions’ physical attributes which makes
it more readable and easy to be understood and at the same
time improves the classification performance with temporal
information taken into consideration.

4.3. Comparison with Deep Learning Method. Apart from
the methods mentioned above, deep learning is a hotspot of
current research. Deep learning refers broadly to a branch of
machine learning based on a set of algorithms that attempt
to model high-level abstractions in data by using a deep
graph with multiple processing layers, composed of multiple
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Table 3: Comparisons with methods in other literatures.

Method Candidate motions Sensors type Sensors location Accuracy
Decision tree [8] 25 actions, Stand-Sit, Sit-Lie, etc. Accelerometer, gyroscope 9, wrist, arm, ankle, etc. 93.3%
K-NN [10] 25 actions, Stand-Sit, Sit-Lie, etc. Accelerometer, gyroscope 8, waist, left-forearm, etc. 92.2%
Neural Networks [11] 12 actions, Standing, Lying, etc. Accelerometer 5, left forearm, trunk, etc. 89.2%

SVM [12] 8 actions, running, upstairs, etc. Accelerometer, gyroscope,
Magnetometer, barometer sensor 1, hand 88.6%

Bayesian Network [7] 7 actions, running, walking, etc. Accelerometer, gyroscope,
Magnetometer 1, belt 90%

proposed RT-PKDT 8 actions, listed in Activity Accelerometer, gyroscope,
barometer sensor 5 body-positions, listed in Location 96.68%

linear and nonlinear transformations. Deep learning tech-
niques have outperformed many conventional methods in
computer vision and audio classification. On human motion
recognition issue, some related research has been done. For
example, Ordóñez and Roggen [19] proposed a generic deep
framework (DeepConvLSTM) for activity recognition based
on convolutional and LSTM recurrent units. LSTM can also
make use of temporal information which is stressed through
this article. The DeepConvLSTM is evaluated on two public
activity recognition datasets and the accuracy is around 90%.

However, problems exist that deep learning method has
a strong dependency on data size. Human motion related
activity recognition can seldom meet the needs of this large
amount of data. Contrast experiment is conducted on the
data collected in this paper by DeepConvLSTM method. An
accuracy of only 22% is achieved, comparing with 96.68% of
RT-PKDT. Results show that deep learningmethod is not that
fit to human motion recognition problem due to its data size
dependency.

5. Conclusion

The major contribution of this work is the proposal of
a knowledge-driven method to recognize motion related
human activities. In this study, we construct a conceptual
model of motion related activities with exploring common
domain knowledge with taken temporal information into
consideration. RT-PKDT can be viewed as a recognition
method with knowledge applied into the dealing of data
which at the same time covers the advantages of data-driven
methods. With a set of hierarchical rules successively applied
to the recognition process, RT-PKDT shows a better recog-
nition accuracy (96.68% on average). Compared with other
algorithms, our proposed HPKDT method has the highest
classification accuracy as well as a rather high efficiency. The
efficiency of RT-PKDT is contributed by the following three
factors. The first factor to promote classification accuracy
is the deep analysis of different activities’ attributes which
concentrated features can far more embody the differences.
The second factor to improve performance is making the
most of temporal dependencies of humanmotions. Besides, a
feedback method is adopted via fixing the estimated result at
time 𝑡 with result at time 𝑡 + 1. The recurrent transition rela-
tionship amongmotions uses the temporal information to the
max extent. RT-PKDT enhances classification performance

with introducing knowledge into classifier and bringing in
a set of hierarchical rules which are successively applied to
the input data. All above reasons contribute to RT-PKDT’s
outstanding performance.
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Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction
(HCI).Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and aremainly related to
spatial memory storage, attention, and perception. VEs havemany distinctive features (e.g., involvement, immersion, and presence)
that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as
a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment.
Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few
years, researchers have argued that main BCI flaws could be associated with HCI issues.The evidence presented thus far shows that
VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation
systems based not only on user intentions but also on user emotions, and (4) regulate usermental state to increase the differentiation
between control and noncontrol modalities.

1. Introduction

Brain-Computer Interfaces (BCI) are systems that attempt
to establish communication between the human brain and a
computer in order to replace the natural connection between
central nervous system (CNS) and musculoskeletal system.
The interest on BCI research has been greatly increased due
to a wide variety of applications, including neurorehabilita-
tion, robotic devices, exoeskeletons, and domotic systems.
Although BCI research started in the sixties, this technology
is not efficient or reliable yet for everyone at any time. Over
the past few years, some researchers such as Fabien Lotte
and Camille Jeunet have argued that main BCI flaws could
be associated with human-computer interaction (HCI) issues
[1–4]. As can be seen in Figure 1, virtual environments (VEs)
have many distinctive features that can significantly improve
HCI in highly demanding and interactive systems such as
BCI.The present paper moves on to describe in greater detail
five key points:

(i) Main characteristics of VEs (Section 2)

(ii) How those characteristics can improve HCI (Sec-
tion 3)

(iii) How the improvement of HCI via VE may help to
overcome several drawbacks of BCI systems (Sec-
tion 4)

(iv) Extensive revision of recent advances in the field
(Section 4)

(v) Strong tendencies of this research area (Section 5).

2. Virtual Environments: System
Requirements and User Concerns

People have an overall clear perception of their environ-
ment in spite of their limited sensory system. Owing to
the extraordinary signal processing of the nervous system,
which constantly updates human reactions, people can carry
out complex activities. For example, a person is capable of
recognizing and classifying a large number of sounds merged
in a surrounding space. It is, therefore, a difficult task to
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Figure 1: Structure of a virtual environment on the basis of two key elements: system requirements and user concerns.

develop VEs that generate synthetic visual, auditory, and
haptic sensations, which could deceive human perception.
A VE has two basic elements: system requirements and
user concerns [5]. Figure 1 provides a summary of all the
components encompassed under these two categories.

With respect to system requirements, a VE generally
requires a 3D generator and a HCI.The 3D generator consists
in modeling and animating 3D objects under the following
criteria: (1) geometry, definition of the visual appearance,
sound, odor, taste, and/or texture of each object in the VE;
(2) perspective, spatial relationship between the geometry and
the user; and (3) motion, geometrical changes in response
to user actions and time progress. Regarding the HCI, there
are output interfaces for stimulating the user senses and
interaction techniques for decoding the user desires. The
output interfaces are classified as auditory, visual, and haptic

devices. Auditory devices foster user awareness, and even
the high quality sound can help in creating a more realistic
and immersive experience. Headphones and speakers are the
most commonly used auditory devices [6–9]. Visual devices
allow users to see around, over, and under objects and also
give users a stereoscopic vision of the VE [10–12].They can be
head-mounted devices or stationary devices such asmonitors
and projectors. Haptic systems are divided into tactibility
and kinesthetic devices. Tactibility devices provide tactile
feedback to perceive the attributes of the environment such as
resistance, mass, texture, or temperature. Kinesthetic devices
provide perception of movement or motor effort [13–15]. The
interaction techniques refer to themode of interactingwith the
VE. The common ones are graphical user interfaces, speech
recognizers, and head/eye/hand tracking systems. Speech
recognizers are suitable for low mental workload situations
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because humans tend to block their auditory channels under
extreme workload situations. Tracking systems are position
sensors that monitor the user movements in the VE. This
allows theVEgenerator to render anddisplay theVE from the
user perspective, achieving the effect of physical immersion
[13–15]. Some examples of tracking systems are as follows: (1)
electromagnetic sensors to determine position and orienta-
tion, (2)mechanical sensors to simulate force effects, (3) opti-
cal sensors to determine 3Dposition, (4) ultrasonic sensors to
calculate distances, and (5) inertial sensors to detect motion
such as gyroscopic force, acceleration, or inclination.

In addition to the technological side, the human side
of these cybersystems (or user concerns) must be also
considered. User concerns are associated with the generation
of a virtual world cognitively equivalent to the real one. The
closest similarity between these two worlds takes place when
users have the sense of being there. Users interact in and with
the virtual space as if they were there; that is, they experience
presence. Presence occurs when users feel immersed in the
VE, feel capable of interacting with it, and have an interest
in undertaking tasks. The three main aspects of presence
are immersion, user characteristics, and involvement [16, 17].
Immersion is brought about when users perceive themselves
to be enveloped by and included in the VE. The stimuli
presentation and the level of interaction are the tools that a
virtual system uses to have a good quality immersion. The
stimuli presentation depends on three factors: (1) quality
of immersion related to the extent of sensory information
presented to VE users, (2) dramatic content and structure
that are implemented in the VE, and (3) awareness of
interfaces that distracts from the VE experience. The level
of interaction is controlled by the possibility of exploring
extensively the VE and the ability to predict and anticipate
what will happen next [18, 19]. The virtual interaction is
highly modified by individuals’ characteristics, and because
they cannot be controlled, they must be considered. User
perception dynamically changes as users move through and
interact with the VE, so this is the first psychological process
to take into account. The cognitive representation of the
VE is another important individual contribution, which
captures the relation between the user body and the objects
in the environment. Finally, user skills vary significantly
across individuals, distorting the virtual interaction. Some
instances of such skills are perceptual-motor abilities, mental
states, traits, needs, preferences, and experience. Last but not
least, the last element of VEs in terms of user concerns is
involvement. The relation between the VE as a space and
the individual body is called involvement. When the level of
control that users have over the virtual sensor mechanisms is
high, and their social interaction with the VE is good, users
focus on the system suppressing possible constraints of the
VE. As a result, users forget the real environment achieving a
complete involvement [20].

3. Improvement of Human-Computer
Interaction via Virtual Environments

As VEs rely on representing real-life traits, objects, and
scenarios, 3D representations of objects and places augment

user experience (UX), in comparison with 2D represen-
tations. Tridimensional representations stimulate cognitive
processes that are the core and foundation of HCI. Those
cognitive processes take place while the user navigates and
explores the VE and are mainly related to spatial memory
storage, attention, and perception. Even more important,
such cognitive processes could be somehowmodulated since
VEs are designed according to both research goals and user
needs [12]. In addition, VEs easily reach user engagement and
UX, two desire factors in a proficient HCI. So far, VEs have
been validated as an effective, safe, and motivating approach
used to enhance the interaction between a user and a system
[21].

VEs cannot, however, contribute to HCI by itself. User
interaction in VEs could become sloppy, redundant, and
frustrating. Along with a realistic and sophisticated design,
VEs must be conceptualized and designed according to
human factors and user characteristics.

4. Integration of Virtual Environments and
Brain-Computer Interfaces

VEs have been widely used in BCI development to increase
motivation and immersion, and a wide variety of scenarios
have been proposed, from daily life situations to video games
[12]. Several applications of VEs in BCI have included the
control of virtual cars [22], navigations through virtual bars
[21] or virtual flats [23], andwalks through virtual streets [24].
One of the most common applications is in domotic systems.
For example, a typical situation is to make an avatar to select
and manipulate 3D virtual objects such as turning on/off
lights, TVs, or lamps [25]. Other applications are wheelchair
control, flying simulators [26], and virtual cities [27]. In
sections that follow, BCI research is summarized, scientific
relevance of BCI is discussed, current shortcomings of BCI
are argued, the VE role in BCI research is justified, and a
review of advances in the field is provided.

4.1. Brain-Computer Interfaces. BCI is as a nonmuscular
communication channel that attempts to reestablish the
interaction between an individual and his/her environment.
A BCI system involves two stages: calibration (offline anal-
ysis) and control (online analysis). The former refers to
training processes of a machine to recognize different brain
patterns of the user, and the latter concerns the control of
a device of interest via the trained machine. The essential
function of a BCI is as follows. The user is who controls
the device in the system by modifying his/her brain state
through external (e.g., visual, auditory, or tactile stimuli) or
internal stimulation (e.g., mental tasks). Such brain activity
modulation is sensed, amplified, processed, displayed, and
saved in two different ways, invasive and noninvasive. The
most commonly used invasive recording method is electro-
corticography, while some examples of noninvasive methods
are electroencephalography (EEG), functional magnetic res-
onance imaging, and near-infrared spectroscopy. EEG has,
however, become thewidely usedmethod in BCI community.
Once brain signals have been acquired, a feature generator
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Figure 2: Block diagram of a brain-computer interface system.

emphasizes relevant neurophysiological features and gener-
ates feature vectors in time, frequency, or space domains, or
even thereof.The feature translator then attempts to differen-
tiate among control and noncontrol states and translates the
classifier output into control commands.The control module
and the device controller convert the control commands into
semantic control signals for a particular device. Figure 2
illustrates the structure of BCI systems [28–34].

According to [35], BCI systems can be classified into
active, reactive, and passive systems. Active systems produce
their outputs from commands modulated directly by users in
a conscious mental state. The most commonly used control
task in active systems is motor imagery (MI), which relies
primarily on the detection of slow cortical potentials, sen-
sorimotor rhythms (SMR), and movement-related cortical
potentials (MRCP). In particular, SMR can be estimated
under two schemes: absolute and relative. In the former
case, SMR are not referenced against a baseline state and
the processing technique is known as band power. In the
latter case, SMR are referenced against a baseline state,
typically extracted in a couple of seconds before MI activity,
and the processing technique is well-known as event-related
(de)synchronization. In both cases, the signal power in 𝜇
(8–12Hz) and 𝛽 (16–24Hz) frequency bands is being quan-
tified. Reactive BCIs produce their outputs from reactions to
external stimuli such as visual, auditory, and tactile. Most of
reactive BCIs rely on the detection of event-related potentials
(ERP) that are brain responses, appearing some hundreds of
milliseconds after stimulus onset, with different polarities,
and at different recording sites. The most widely used ERP
is P300, which is a positive potential, appearing from 300
to 500ms after stimulus onset and frequently over parieto-
occipital area. P300 is a component associated with selective
attention and memory mechanisms. Other types of reactive
BCIs are those based on steady-state evoked potentials, which
are much more responsive to sensory input decoding, rather
than cognitive processes such as P300. Lastly, in passive
BCIs, users’ mind does not control the system directly as
in active and reactive systems. These systems are applied
to detect mental workload, working memory load, fatigue,

self-induced errors, and deception or anticipation errors (and
many other states) when users interact with mobile devices,
vehicles, robots, or any other systems.

4.2. Relevance of Brain-Computer Interfaces. Although BCI
development has been encouraged over the past few years,
there is a general lack of research in portable and reliable
technology to detect brain activity; accurate and efficient
algorithms; direct, relevant, and constructive feedback tech-
niques; and instructive and intuitive interactive methods.
According to [32], BCI research should be conducted on
the basis of three factors: (1) recent appearance of powerful
and inexpensive hardware and software that can perform
complex high speed analysis of brain activity, (2) greater
understanding of the CNS that has emerged from research,
and (3) new recognition of needs and abilities of people
suffering from disorders such as cerebral palsy, spinal cord
injury, stroke, amyotrophic lateral sclerosis, multiple sclero-
sis, and muscular dystrophies. BCI progress has always been
of particular interest for industrial and medical areas, and
applications have been mainly considered in five areas [32]:
(1) replacement, a BCI may replace CNS function in people
with neurodegenerative diseases such as multiple sclerosis;
(2) restorage, a BCI could restoremobility by reconnecting the
peripheral nervous system and the musculoskeletal system
in people with amputations; (3) enhancement, a BCI might
enhance human reactions: for example, it can monitor levels
of attention in order to raise alertness when necessary; (4)
supplementation, a BCI system could supplement natural
CNS output: for example, it can be used to control robotic
arms as an aid in several tasks ranging from computing to
industrial applications; and (5) improvement, a BCI can also
improve the functionality of devices such as orthoses by
monitoring natural CNS outputs and providing feedback that
would lead to control properly and effectively the orthosis of
interest.

4.3. Controversial Issues. Even when promises and expec-
tations on BCIs have increased considerably, these systems
are not a completely working prototype. In accordance with
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[36], BCIs have four potentials pitfalls. Firstly, far too little
attention has been paid to end-user requirements when
designing BCI solutions, particularly those associated with
human aspects, learning strategies, and interactive design. In
this respect, it has been well documented that up to 40% of
healthy users cannot control an active BCI system at all, while
the remaining ones only reach a moderate performance.This
phenomenon is called BCI illiteracy and indicates that the
omission of end-user needs and their cognitive profiles may
be playing a crucial role in BCI shortcomings [37]. Secondly,
researchers in the field seem to neglect that user behavior and
experience in BCI systems largely depend on coping with the
control task, previous sensorimotor abilities, and motivation.
As users must produce stable, clear, and detectable neural
patterns, training procedures, and feedback methods should
facilitate the acquisition of control skills based onmodulation
of EEG signals.Thirdly, real working environments are much
noisier, more dynamic, and unforeseeable in contrast with
well-controlled laboratory environments; therefore, signal
processing and pattern recognition should be versatile and
robust algorithms. Finally, there is a lack of clear metrics to
assess the effective performance of a BCI system. It is not
clear yet how to weight human and machine factors, such
as detection and accuracy, respectively, on metrics that result
from BCI outputs. Up to now, researchers in the field have
reported metrics directly obtained from the performance of
machine learning classifiers, specifically accuracy, and speci-
ficity. Nevertheless, the very own nature of classifier metrics
cannot indicate whether the user has correctly modulated
his/her brain signals or whether he/she is comfortable and
concentrated on the control task in use.

4.4. How Can VE Improve BCI in Terms of HCI? Not only is
a BCI related to the development of the system per se, but
it is also associated with the design of a good quality HCI,
considering that BCI users need to be trained exhaustively.
The key aspects of user training are repetition, feedback, and
motivation [38]. Users must repeat the control tasks over and
over since human beings normally learn by trial and error
practice. This learning process can be accelerated through
feedback and motivation. Feedback provides information
about the performance of the ongoing control task, which
gradually improves the user performance in the forthcoming
repetitions. Motivation creates an encouraging environment,
where the growing fatigue caused by the repetitiveness of the
control tasks can be reduced. The user training eventually
leads to automatizing control tasks, allowing users to confine
their attention on the control device, rather than on the
function of the BCI system.

The assumption of isolating cognitive processes related
to BCI control, along with the disregard of human fac-
tors and environment demands (as discussed above), has
complicated HCI in BCI applications. In recent years, VEs
have become an attractive alternative to enrich HCI in BCI
systems. It has been considered that VEs facilitate the user-
system adaptation in BCIs because they provide user senses
with appropriate feedback. Furthermore, users can learn to
control BCI systems under more realistic conditions because
virtual simulations offer a more direct interaction with the

environment. In general, it has been demonstrated that users
are much more comfortable when they manipulate a BCI
system in a VE. This is because VEs induce motivation and
entertainment, and even more, offer an ample scope on how
to achieve a goal [21, 39, 40].

VEs have become a promising alternative to enrich HCI
in BCI systems since they lead to a higher user performance
[41]; they test BCIs under more realistic situations; they
improve attention, motivation, and learning; they facilitate
prototyping; and they are feasible for diagnostic and thera-
peutic purposes [12]. A more detailed account of these points
is given hereunder.

4.4.1. Higher BCI Performance. It has been considered that
highly immersive VEs induce a high sense of presence, which
in turn facilitates BCI performance because VEs provide
the user senses with appropriate feedback. A better BCI
performance results in a shorter user training and a higher
user confidence. VEs could lead to greater performance due
to their nature of accurately representing elements of real life
in the virtual domain.These representations of environments
and objects permit the elaboration of a virtual scenario which
can map everyday tasks and routines. This mapping allows
establishing a training protocol that can provide feedback
associated with the tasks in use. The current interactive
systems are not explicit enough to become congruent with
the tasks in use.While implementingVEs demands effort and
time, often not available, the payoff relies on the possibility of
representing and contextualizing tasks for users, who see and
become part of something beyond abstract symbols on the
screen. In a VE, users can perceive the ongoing changing of
their mental tasks. For example, if a mental task is to imagine
“kicking a ball,” and then, they see a virtual leg coming from
themselves to kick a ball, they will have sense of propriocep-
tion and agency. VE offers the possibility of being explicit
and accurate. Virtual representations encourage users to
generate and maintain mental images by facilitating sensory
information and providing feedback within a meaningful
context for them [18, 41–45].

4.4.2. BCI Implementation under More Realistic Situations.
Human interaction is a huge limitation in laboratories. As
virtual simulations offer a more direct interaction with the
environment, users can learn to control systems under more
realistic situations. Furthermore, the influences of human
factors (such as mental fatigue, frustration, or idleness) and
distraction sources (such as other people’s conversations,
ambient noises, or household appliances working) on BCI
usability can be studied simultaneously.

The term “realistic situation” does not only refer to high
technological implementations, but it also concerns the VE
relevance for the users [46]. This factor could even have a
higher impact on the system performance. A good example
of this is the work presented in [41]. In such work, the
control task was to imagine the draw of different basic strokes
of Chinese characters. Furthermore, the effectuation of the
control task was as real as possible since users observed the
explicit representation of the drawing process. Researchers
considered that the graphical presentation of imaginary
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movements could promoteMI generation.The research study
was conducted as follows. Fourteen subjects (between 22
and 25 years) were divided into two groups: experimental
and control. The experimental group used the proposed
paradigm based on drawing basic strokes of Chinese char-
acters.The control group used the traditional Graz approach.
On average, the experimental group achieved 79.8% system
accuracy, whereas the control group yielded around 65.1%. In
addition, participants filled in aUXquestionnaire, and results
suggested that the proposed paradigm was easier to use and
more understandable. Overall, this work strengthens the idea
thatVEsmust be contextualized to provide a familiarworking
environment where users can make full use of their previous
knowledge. In this work, it was shown that the modulation
of EEG signals through MI activity could be significantly
improved if appropriate environmental working conditions
are provided.

4.4.3. Improvement of Attention, Motivation, and Learning.
Galliard and collaborators (whose work is cited in [47])
defined a human state as the psychophysiological regulation
of the brain to reach an optimal condition. This process
enables humans to meet environment demands. In this
respect, the readiness to catch relevant stimuli (attention)
and the desire to learn and to explore (motivation [48])
are essential in BCI applications. VEs have proved to be a
potential tool for directing attention, increasing motivation,
and accelerating learning of BCI users.

4.4.4. Laboratory for Prototyping BCI Systems. Virtual exper-
iments can facilitate the development of BCI systems,
and exhaustive testing of BCI prototypes could be also
undertaken. In fact, this might justify the huge expense
of implementing physical devices such as robot arms and
exoeskeletons.

4.4.5. Diagnostic and Therapeutic Purposes. VEs are suitable
for guiding severely paralyzed patients through how to adapt
themselves to their new circumstances (e.g., how to control a
wheelchair) or on how to regain their basic functions such as
walking or talking.

4.5. Advances in the Field. A large number of virtual applica-
tions in BCI systems have already been undertaken. Active
BCIs have been mostly used for navigation purposes [49,
50], and to improve user performance by increasing user
motivation [10, 51]. Reactive BCIs have been used to select
and manipulate objects inside virtual dwelling places. For
example, P300 evoked potentials have been applied to control
the functionality of devices such as TV, lamps, or fans [52,
53]. Another example is the utilization of steady-state visual
evoked potentials (SSVEPs) to control the behavior of virtual
avatars [12, 54]. On simulations of daily applications, VEs and
BCIs interactive system have represented scenarios ranging
from holding a cup and pouring water [43] to identify and
recognize subjects [55]. However, applications have also been
focused onmore engaging experiences such as playing tennis
[39] or even an aesthetic experience provided by a virtual play

[56]. Despite the several directions presented on the advances
on the intersection between BCI systems and VEs, in further
sections trends on this field will be explained and detailed.

In this section, a review about the existing body of
research on VE applications in BCIs is presented, excluding
those related to gaming purposes. Video games are usually
used for entertainment; however, the system contextual-
ization regarding the user requirements is neither speci-
fied nor considered. The review presented in this section
attempts to highlight the enrichment of BCI systems by
means of VEs in terms of human behavior and learning,
user adaptability, significance of virtual scenarios, and user
concerns. Specifically, all those research studies carried out
to facilitate the acquisition of MI skills by providing high
quality of immersion and spatial cognition are of special
interest. A great deal of research into this framework has
focused on augmenting the level of interaction between the
user and the system in order to evoke and maintain clearer
EEG patterns (e.g., MRCPs and SSVEP), thus increasing
the pattern recognition efficiency. Researchers in the field
are aware of the importance of using VEs as interactive
paradigms for HCI enrichment. Their work has shown that
sensory-enriched interfaces, particularly in visual modality,
do not only provide satisfactory system outcomes, but they
also make users feel comfortable and attentive during the
interaction.

It is considered that the user ability to modulate his/her
EEG signals byMI can bemuchmore gainful to enhance BCI
performance, rather than the computational algorithm com-
plexity. Users have been ignored so far, and possibly if nowwe
pave the way for facilitating human learning and adaptation,
they could finally establish a regular communication with
the system. In the following sections, three main topics are
discussed: (1) VEs as working environments and control
panels, (2) VEs for navigation purposes in BCI systems,
and (3) relevance of user mental state in sensory-enriched
environments.Themost purposeful and recent works on this
matter are summarized in Table 1.

4.5.1. Working Environments and Control Panels. Virtual
reality (VR) and augmented reality (AR) have been widely
used in reactive BCIs based on SSVEP since the level of user
attention towards visual stimuli increases significantly. In a
study conducted in [43], three male subjects aged between
25 and 27 years were asked to perform two types of tasks:
VR-based and AR-based. The aim of this study was to assess
AR as a means to emulate not controlled environments
such as patients’ home or hospital. The general task was
to navigate across a virtual room and through an avatar.
Three participants were recruited for the study and their
performances revealed that they had greater difficulty in
controlling the avatar in AR mode. Researchers suggested
that distracting elements in AR scenarios hindered the avatar
manipulation. AR forces users to interact with surroundings
at any time, which definitely complicates the interaction
between user and system. AR may be harnessed to analyze
BCI systems under environments where users’ attention,
immersion, and performance are compromised by external
factors [42].
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On the other hand, VR can be applied to get the BCI
system under control. By way of illustration, in [61], it was
improved the performance of a hybrid BCI by employing
VR technology based on Oculus Rift system. The aim of this
studywas to develop an efficient virtual control panel.TheVE
consisted of three spheres in different colors on which users
must direct their attention. Once users had decided the one
to be selected, they must imagine such sphere approaching to
them. Attention on the spheres was detected via eye-trackers,
but the sphere approximationwas quantified by EEGprocess-
ing.This control mechanism was very efficient because it was
natural and intuitive. Users could understand clearly how to
control a BCI system, even in a highly demanding situation. It
is worth noting that BCI function relies on both user ability
(imagination) and technology aspects (eyes’ position). This
lightened the workload regarding control tasks, and allowed
users interact more easily [57].

4.5.2. Navigation Systems. Typically, VEs have been applied
to navigate in virtual worlds. Researchers in the field have
worked towards twomajor goals: transportation and effects of
vehicular environmental stimuli on human reactions [61–64].
However, the application of navigation systems has recently
gone beyond these two purposes. A notable example of this is
the work presented in [65], who developed aVE usingOculus
Rift system that was controlled through a BCI based on
MRCPs.The key aim of this studywas the pattern recognition
of four different navigational directions (forward, backward,
go right, and go left) decoded in MRCPs of the user. Authors
demonstrated that VEs are quite efficient to train BCI users
and make users generate different EEG patterns for different
movements [58]. Another example of the usage of specific
potentials include SSVEPs, where the authors have relied on
the detection of these potentials in order to select a specific
direction for navigating on a virtual environment; rather than
using motor imagery, this work relied on eye fixation on four
points on the environment representing possible directions
of navigation (forward, backward, go right, and go left).They
later took advantage of the graphic nature of VEs and the
nature of SSVEP for the proposal of a paradigm for navigation
using a BCI system which relies on attending key points of a
graphic representation of a daily environment [65].

Vehicle control is another representative example of
novel application of navigation systems. In [26], a flight
simulation system with brain-computer interacting controls
was implemented. A 53-year-old woman with quadriplegia
was instructed to control a virtual airplane by correlating
airplane movements in full flight with her arm movements.
Researchers concluded that metaphorical interaction and
practice did not lead to one-to-one relationship between arm
and airplane movements. Nevertheless, user attention can be
confined for longer periods of time, resulting in the mastery
of MI based control tasks. The feminine user was able to
control the airplane with no restriction after two training
sessions. Authors argued that the feedback method in use
was sufficiently efficient to instruct user how to modulate her
brain signal using her armmovements [26]. In a similar case,
in [58], a study based on the detection of pilot induced oscil-
lations susceptibility was conducted. Researchers designed a

flight VE with a joystick based control mechanism. Control
tasks were based on boundary avoidance task. That is, users
required flying the plane on a specific trajectory, and whether
they failed to follow the same trajectory, the flight simulation
stopped automatically. Results showed that workload buildup
in boundary avoidance tasks could be successfully decoded
from EEG oscillations in 𝛿, 𝜃, 𝛼, 𝛽, and 𝛾 frequency bands.

Particularly, 𝜃 band over frontocentral recording sites and
𝛾 band over lateralized somatosensory areas were the major
contributors in the EEG pattern recognition [64].

Apart from MI activity, other applications of navigation
systems have played an important role in BCI research.
This can be illustrated in [27], where a VE that rendered
driving environments for children with autistic spectrum
disorders (ASD) was designed. The virtual system consisted
of a car to be driven in a city with full of details in the
surroundings, including buildings, trees, pedestrians, and
traffic lights. Authors claimed that realistic tasks might stim-
ulate neural processes such as workload management, long-
term memory access, visuospatial processing, regulation of
emotions and attention, and decision-making, in children
suffering from ASD. In this study, authors made use of EEG
signals to detect emotions and cognitive states, including
concentration, boredom, frustration, and mental load. As
system performance was between 78% and 95%, this BCI
based on virtual architecture seems to be promising to
treat ASD [27]. In the same line of thinking, in [66], an
emotion detection based on BCI technology to develop a
decision-making system was proposed. Five subjects trained
an intelligent agent by reinforcement learning to navigate
through a virtual city where decision-making was based on
user emotions, rather than user intentions as usual. The VE
rendered a car cabin through which users could explore the
virtual city. Instead of decoding user intentions, an intelligent
agent received BCI outputs concerning human reactions such
as surprise, anxiety, happiness, or concentration. All these
human reactions were learned by the agent, which controlled
the trajectory of the virtual vehicle [59].

Last but not least, navigation through virtual dwelling
places has become one of the most examined applications.
The work presented in [64] is a good exemplification of
HCI enrichment in this type of navigation systems. Those
researchers quantified levels of attention in VEs by detecting
P3b components. The detection of P3b was based on color
coding, and the user propose was to access different rooms in
a virtual house. Authors demonstrated that color coding is a
more proficient way to capture and hold user attention than
the classical Donchin paradigm [63].

4.5.3. User Mental State. User mental state at the moment of
the interaction is a key element to reach a stable performance
system. According to [66], the modulation of EEG signals
using MI activity greatly depends on the user mental balance
since control tasks become much more differentiable. This
can be seen in [11], where an interactive system based on
mindfulness and meditation was designed. By using an
Oculus Rift system to render the VE, a Leap Motion system
to track hand movements, and a Muse headband to record
EEG activity, researchers set up a stimulating environment to
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practice levitation, pyrokinesis, and telekinesis. Their setup
induced great sense of immersion, which, in turn, promoted
meditation and mindfulness, which facilitated MI training
later [11]. Similarly, in [67], a VE where users controlled
an avatar by their levels of concentration was proposed.
By employing RelaWorld software and a ERP based BCI,
authors significantly improved user-system interaction only
prolonging lapse of concentration [60].

4.5.4. Applying VEs to BCI Paradigms. To control a BCI sys-
tem is a skill that must be acquired.The process of learning in
current BCI paradigms generally stimulates only one sensory
pathway, either visual or auditory. However, humans gather
information from five sensory pathways (vision, hearing,
touch, smell, and taste) and react accordingly. It has been
shown that if environments are sensorially enriched, learning
is much more effective. The effects of environmental enrich-
ment are exemplified in the work reported in [67], where two
groups of cortically injured rats were exposed to enriched
and nonenriched environments. The enriched environment
involved a variety of elements, including group housing,
social stimulation, competition for food and water, stress,
greater motor activity, manipulation of objects, and sensory
stimulation augmentation. The nonenriched environment
only involved food and water. The results showed that rats
exposed to environmental enrichment made significantly
fewer errors in their tasks than those in nonenriched condi-
tions. Furthermore, three neurophysiological modifications
were found. First, certain zones of the cerebral cortex, which
are used in complex learning and problem solving processes,
became heavier, deeper, and greater. Second, the neurons
were larger, the synapse to neuron ratio was higher, the
synapses were bigger, and there was more profuse dendritic
branching in those zones. Third, there were clear effects
of enrichment at the level of neurochemistry. An example
of this is the considerable augmentation of the RNA/DNA
ratio, which indicates an increased metabolic rate. In this
work, it was demonstrated that the most important factor
for stimulating brain changes was the enforced interaction
with enriched environments. On the other hand, it has
been found that sensory feedback plays a central role in
the human learning process. The human brain makes use
of sensory feedback to make predictions, thereby modifying
human behaviors [68]. As learning is a process that involves
changes in behavior that arise from interaction with the
environment, it means that sensory feedback does not only
influence behavioral patterns, but it also promotes percep-
tual learning. Recent neuroimaging evidence suggests that
perceptual learning promotes neural plasticity over sensory-
motor cortices and increases connectivity between such areas
of the brain. Furthermore, the effect of perceptual learning
is durable [69, 70]. This means that somatosensory function
plays a vital role in human learning. It is hypothesized that if
sensory feedback is properly given, perceptual learning will
be gained, which in turn will achieve the acquisition of skills
to control a BCI system.

In the light of the above information, it is encouraged
to take advantage of VE features to provide sensorially
enriched environments, which in turn may facilitate the

acquisition of skills to control a BCI system. To work towards
this goal, the adaptation of VEs via interactive methods
for brain-computer communication sounds promising. This
requires a process of conceptualization and design, which
primarily depends on tasks or actions undertaken by users.
The application and integration of VEs along with sensory
stimulation in BCI paradigms rely on four stages: context,
metaphor, design, and evaluation [71, 72].

Context. Considering a VE as an outcome that involves
interactive design, earlier studies must be done to discover
the correlation between the virtual proposal and a group of
items that includes the user context (specifically everyday
tasks), working environments, commonly used technology,
devices, and navigation.These factors determine a metaphor,
which integrates the user context with the set of tasks to be
performed in the interactive system. Thereby, a contextual-
ized scenario is constructed. Although HCI community has
acknowledged the importance of human factors in the design
and conceptualization of interactive systems for several years,
the overlook of these factors has not only produced mislead-
ing interactive models but also inefficient VEs.The context of
BCI systems is important for users since this helps to build
awareness about the relevance of BCI training and control.
So far, the classical example of contextualized applications
is control tasks related to activities of daily living such as
turning on and off lamps and switches [25] and wheelchair
control [26]. A more recent and notorious example of
contextualization is given in [41], where all participants were
Chinese and the MI control task was directly associated with
activities of their daily living, that is, drawing of basis strokes
of Chinese characters.

Metaphor. Once the metaphor is established, the interactive
design and layout of the VE can be proposed. Exploiting the
metaphor leads to find optimal cues, feedback, and actions
to be undertaken inside the VE. It is important to consider
interactive design as a heuristic method to find solutions
to a specific problem, rather than an ultimate solution.
In particular, the metaphor based on concentration and
mindfulness provides users with powerful tools to interact
with the VE, including higher attention, clearer perception,
and better conceptualization [11]. A good example of a
movement metaphor was proposed by [39], where the task
of hitting a tennis ball in a virtual court was used. In
that environment, users could see an explicit outcome of
their mental images. In this case, the metaphor was used to
stimulate the imagination of a movement towards a specific
direction. Another notable example is the metaphor used
in [41], where the task of drawing basic strokes of Chinese
characters was employed. Similar to [39], users observed the
rendering of their imaginary writing.

Design. The overall layout, the model complexity, and the
sensorial features depend on context, user profile, and
available technological resources. Returning to aesthetic
and functional features considered in the context stage, it
is essential to design familiar, stimulating, and favorable
environments for users. Particularly, details are critical when
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emulations of real-life situations are attempted. Lack of detail
and/or emphasis in design might make users feel indifferent
and disinterest. Flight simulators and car navigators are a
good picture of interactive design applications, where details
enrich beautifully the environment [26, 27, 62, 64]. Another
case in point is the one shown in [41]. The black background,
along with the animated image of a hand holding a chalk,
was a close analogy of writing on a blackboard. This design
illustrates the benefits and advantages of VEs in terms of
graphic representation.

Testing. The first testing is an opportunity to gather infor-
mation from potential users about the early version of a
virtual implementation, including interaction flow between
user and system and feedforward and feedback sources and
models. This can come up with relevant interactive and
aesthetic redesigns from users’ perspective. Major changes
based on further testing are advisable. It is essential to go
through an iterative process of design, engaging users from
the beginning and along the whole process. In each iteration,
users’ feedback must be taken in account, and, even more,
it should be implemented properly. Although this iterative
process demands resources and time [36], it could lead to
an optimal and complete interaction between brains and
machines.

5. Conclusion

The first applications of VEs in BCI research concerned the
strength of user motivation, the maintenance of attention
for longer periods, and the implementation of favorable
feedback mechanism. However, virtual technology had been
only seen as a tool to render illusory effects of realism by
means of 3D graphics and electronically equipped helmets,
headphones, goggles, and gloves. At present, tridimensional
representations have become an attractive alternative to
enrich HCI since they stimulate cognitive processes that
take place while the user navigates and explores VEs, which
are mainly associated with workload management, long-
term memory access, visuospatial processing, regulation of
emotions and attention, and decision-making. The evidence
presented thus far shows that VEs can set out working
environmental conditions, maximize the efficiency of BCI
control panels, implement navigation systems based not only
on user intentions but also on user emotions, and regulate
user mental state to increase the differentiation between
control and noncontrol modalities.
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