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The rapid growth of worldwide population in conjunction
with expansion in industry sectors in the world attributed
to huge consumption of limited stock fossil fuels. Hence, this
expected energy crisis forced the world to find a clean renew-
able source of energy instead of consumable fossil fuel one.
Therefore, there are intensive efforts to use solar energy, wind
energy, and hydrogen energy. However, the production, stor-
age, and conversion of these kinds of energy sources require
development of smart materials to facilitate their rapid com-
mercialization. On the other hand, the nanomaterials have
received intensive scientists’ interest for various applications
due to their outstanding chemical, physical, mechanical, elec-
trical, and electronic properties. Hence, the harness of unique
properties of materials and their hybrid nanocomposites will
be much appreciated and demanded to be used in energy-
related applications such as production, storage, and conver-
sion. Therefore, in this special issue, we invited the scientists
and researchers all over the world to submit their original
novel work based on nanomaterials for solar cells, fuel cells,
hydrogen storage and production, hybrid nanocomposites,
and supercapacitors. In conclusion, we are happy to announce
the publication of four original research papers and one
review in the field of nanostructure materials as a promising
route for efficient renewable energy applications.
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Nanocatalysis is an emerging field of research and is applicable to nearly all kinds of catalytic organic conversions. Nanotechnology
is playing an important role in both industrial applications and academic research. The catalytic activities become pronounced as
the size of the catalyst reduces and the surface area-to-volume ratio increases which ultimately enhance the activity and selectivity of
nanocatalysts. Similarly, the morphology of the particles also has a great impact on the activity and selectivity of nanocatalysts.
Moreover, the electronic properties and geometric structure of nanocatalysts can be affected by polar and nonpolar solvents.
Various forms of nanocatalysts have been reported including supported nanocatalysts, Schiff-based nanocatalysts, graphene-
based nanocatalysts, thin-film nanocatalysts, mixed metal oxide nanocatalysts, magnetic nanocatalysts, and core-shell
nanocatalysts. Among a variety of different rare earth and transition metals, palladium-based nanocatalysts have been
extensively studied both in academia and in the industry because of their applications such as in carbon-carbon cross-coupling
reactions, carbon-carbon homocoupling reactions, carbon-heteroatom cross-coupling reactions, and C-H activation,
hydrogenation, esterification, oxidation, and reduction. The current review highlights the recent developments in the synthesis
of palladium and some other metal nanocatalysts and their potential applications in various organic reactions.

1. Introduction

After realizing the unique morphological, structural, and
optoelectrical characteristics of nanomaterials, their wide
range of applications has been explored in various fields
[1]. These include environmental, energy harnessing,
biomedical sector, and catalysis [2–7]. The chemical process
that involves the use of nanomaterials as a catalyst can be
termed as nanocatalysis, while the nanomaterial can be
termed as nanocatalyst. Based on their morphologies,
nanocatalysts can be classified into zero-dimensional (0D),
one-dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) structures [8]. The control dimensions of
these materials induced specific physicochemical characteris-
tics, which make them special for the catalysis industry [9].
More recently, researchers show significant inclination to
use nanocatalysts in advance heterogeneous and homoge-

nous catalysis applications [10]. A number of reviews in the
area gave an insightful view into the prospects of nanostruc-
tured catalysis [11–14]. The catalyst system composed of
nanoparticles/nanocomposites showed greater catalytic
activity and selectivity because of its morphology and nano-
dimensional characteristics. Though many materials have
been utilized as nanocatalysts in industries, transition metal
NPs have received significant attention due to their unique
physicochemical characteristics, abundant availability, and
more importantly, consumer-friendly costs. It is well estab-
lished that the size, morphology, and solvents play a key role
in the catalytic activity, selectivity, and stability of the nano-
catalysts [15].

The present review is an attempt to realize the current
development and prospects in nanostructured catalysts,
especially for organic synthesis. The beginning portion of
the review is dedicated to the effect of various factors on the
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overall performance of nanocatalysts. This is followed by a
critical overview of organic transformations, with a few case
studies on Pd, Pt, Fe, Cu, Ag, Au, and Zn NPs, as well as other
examples. In the later part of the review, some insights are
provided through the Conclusion along with a few future
recommendations about the future potential of nanostruc-
tured catalysts.

2. Factors Affecting the
Performance of Nanocatalysts

There are several factors that affect the performance of nano-
catalysts. However, this section will mainly focus on three
important factors which include particle size, particle shape,
and solvent.

2.1. Particle Size Effect of Nanocatalysts. Over the past few
years, significant research has been conducted to identify
the effect of nanoparticle size on catalytic performance for
various chemical transformations [16]. As the particle size
decreases, their surface area-to-volume ratio is enhanced,
allowing more atoms on the surface to take part in the reac-
tion [17]. As a result, improved catalyst activity and selectiv-
ity can be achieved. The particle size is very important for the
development of highly active and selective catalysts as well as
for the reduction of catalyst loading. Yoo et al. found better
electrocatalytic and electronic properties by decreasing the
size of Pt/TiO2 nanocatalysts [18]. Bond and Thompson
discovered that the catalytic activity of gold nanoparticles
depends on their size, support system, and synthesis methods
[19]. The gold catalyst is composed of very small-sized
particles (<5 nm) and is supported by TiO2. Before such
discovery, gold was assumed to be the least catalytically active
metal. Li et al. synthesized palladium nanoparticle-graphene
hybrids and investigated the catalytic activities of such
Pd-graphene hybrids in Suzuki reaction under aerobic and
aqueous conditions [20]. It was observed that a palladium-
graphene hybrid with a 4 nm particle size of palladium gave
a 100% yield along with 95.5% selectivity. However, a
palladium-graphene hybrid with a 15nm particle size of
palladium gave a 93.7 yield along with 95.2% selectivity.

2.2. Particle Shape Effect of Nanocatalysts. The shaped-con-
trolled synthesis of catalytic materials is widely regarded to
control some important physicochemical properties of nano-
catalysts [21]. Many reports are available in the literature in
this regard. For instance, hemispherical gold nanoparticles
gave better results as compared to spherical-shaped gold
nanoparticles for the oxidation of carbon monoxide (CO)
even at low temperature [22]. In 2005, Henry reported a brief
review with practical examples regarding the effect of nano-
particle shape on their properties in numerous developing
technologies [23]. Narayanan and El-Sayed synthesized tet-
rahedral- and cubic-shaped platinum nanoparticles and
studied the relationship of shape reactivity [24]. Shape
control is significantly reported for photocatalytic applica-
tions in the literature. Khan and Qurashi synthesized
highly controlled platelet-shaped copper vanadate nanoca-
talysts for PEC water splitting and compared the results

with NPs of conventional shape. It was determined that
the shape-controlled copper vanadate enhanced the light
trapping properties of the catalyst and hence enhanced
the photoelectrochemical performance of the catalyst [25].

Similarly, shape-controlled NPs are also found useful in
organic conversion to some extent. As reported by Luo
et al., shape-controlled synthesis of Rh-based nanocrystals
and supported Rh-based nanocatalysts was found efficient
in heterogeneous conversions such as in methane conversion
and olefin hydroformylation [26].

2.3. Solvent Effect on Nanocatalysts. A solvent has a signifi-
cant impact on the reaction pathway, reaction energy, and
activation energy. The geometric structure and the electronic
properties of nanoparticles can be influenced by the interac-
tion of a solvent and metal atoms. Dufour et al. reported the
effects of solvents on the electronic and structural properties
of small gold clusters [27]. Li and Liu demonstrated the geo-
metrical, electronic, and photocatalytic properties of titania
anatase nanoparticles in aqueous media [28]. A comprehen-
sive study of the effects of polar and nonpolar solvents on
electronic and geometrical properties of nanocatalysts was
conducted by Hou et al., and it was noted that a polar solvent
has a great impact on the properties of nanocatalysts. It was
observed that the ionization potential decreased by increas-
ing the polarity of the solvent. Therefore, it was easier for
neutral species to donate an electron in the solvent. More-
over, the electron-donating ability of a neutral species is con-
siderably increased in a polar solvent as compared to that in a
nonpolar solvent [29]. Recently, Chowdhury et al. synthe-
sized palladium nanoparticles in an aqueous dimethyl form-
amide (DMF) solvent with a changing composition of DMF.
Different shapes and geometries of palladium nanoparticles,
such as hexagonal, cuboidal, and triangular plates, were
obtained by varying the composition of DMF. It was empha-
sized that the various geometries of palladium nanoparticles
are due to the blocking and interaction of DMF to some
planes of nanoparticles leading to different geometries [30].

3. Major Nanocatalysts for Organic Synthesis

A huge number of metals have been investigated for organic
transformations, and these metals showed better results in
the formation of pharmaceuticals, fine chemicals, and new
materials [31]. Among the varieties of different rare earth
and transition metals, palladium is one of the most widely
used transition metal for carbon-carbon coupling reactions,
and palladium-based nanocatalysts have been extensively
studied both in academia and in industry because of their
applications such as in sensors, fuel cell catalysts, hydrogen
storage, dechlorination, and organic transformations. There-
fore, we mainly focused on the current development of
palladium-based nanocatalysts for cross-coupling reactions.
However, some other metals which have been successfully
applied in this field have also been highlighted.

3.1. Palladium-Based Nanocatalyst

3.1.1. Palladium-Based Nanocatalysts for Carbon-Carbon
Cross-Coupling Reactions. Palladium-assisted nanocatalysts

2 Journal of Nanomaterials



for carbon-carbon bond formation including Suzuki [32],
Heck [33], Sonogashira [34], Negishi [35], Stille [36],
Kumada [37], and Hiyama [38] cross-coupling reactions
(Scheme 1) have made a huge impact on organic reactions
because of mild reaction conditions and tolerance to various
functional groups [39]. Such kinds of reactions showed
extensive applications in the formation of pharmaceuticals,
agrochemicals, and other important industrial products [40].

Among the various carbon-carbon coupling reactions,
Suzuki, Heck, and Sonogashira reactions are the most impor-
tant reactions and play a central role in the formation of
natural products, pharmaceutical, and agrochemicals [41].
Table 1 lists the various metal nanoparticles for catalyzing
Suzuki, Heck, and Sonogashira cross-coupling reactions.

aIsolated yield. bGC yield. cYield after work-up.
Within the framework of carbon-carbon cross-coupling

reactions, the Suzuki reaction is the most extensively used
reaction and it has been the benchmark for identifying
the catalytic activity of newly prepared metal nanoparticles.
In 2008, Kim et al. synthesized bimetallic nanoparticles
(Pd-Ag, Pd-Ni, and Pd-Cu) on carbon support through the
γ-irradiation technique for Suzuki and Heck cross-coupling

reactions [52]. The catalytic efficiency of these supported
bimetallic nanoparticles in Suzuki reaction were in the order
of Pd − Cu/C > Pd/C > Pd −Ag/C > Pd −Ni/C based on the
reaction yield 97:5% > 96:7% > 92:3% > 38:5%, respectively.

The various metal nanocatalysts used in the Suzuki reac-
tion are listed in Table 2.

aIsolated yield. bGC yield.

3.1.2. Mechanism of Cross-Coupling Reactions. The reactants
meet on a palladium atom and become so close together that
reaction takes place. The major role of palladium and the
other metals is to enable and encourage two coupling part-
ners to undergo a chemical reaction. In 1972, Kumada et al.
suggested that the catalytic cycle of a cross-coupling reaction
occurs in three steps including oxidative addition, transmeta-
lation, and reductive elimination (Scheme 2) [67].

The reaction mechanism usually begins with the zero-
valent palladium (Pdo) which undergoes oxidative addition
(step 1) by reacting with an organic electrophile to form a
Pd (II) species [68]. Usually, step 1 is the rate-determining
step in this three-step catalytic cycle. Subsequently, transme-
talation (step 2) occurs in the presence of a base for the
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transfer of R′ towards a less electropositive metal. In this
step, both coupling partners join the same metal center while
removing the functional groups. At the end (step 3), reduc-
tive elimination occurs which leads to the formation of a

new carbon-carbon bond as well as the regeneration of a
zero-valent palladium species which is ready for another
cycle. An unsaturated organic species was found to undergo
a faster coupling reaction by following the order vinyl −
vinyl > phenyl − phenyl > alkynyl − alkynyl > alkyl − alkyl.

3.1.3. Palladium-Based Nanocatalysts for Carbon-
Heteroatom Cross-Coupling Reactions. Palladium nanocata-
lysts have been successfully applied in carbon-heteroatom
cross-coupling reactions such as in Buchwald-Hartwig ami-
nation. Recently, Panahi et al. reported an immobilized palla-
dium nanocatalyst on a silica-starch substrate (PNP-SSS) as
an effective catalyst for carbon-nitrogen cross-coupling reac-
tions through Buchwald-Hartwig amination with excellent
catalytic activity and reusability [69] (Scheme 3).

Most recently, Hajipour et al. studied the efficiency of a
palladium nanocatalyst supported on cysteine-functionalized
magnetic nanoparticles for N- and O-arylation reactions in
environmentally friendly conditions [70]. The authors claimed
that the synthesized palladium catalyst system exhibited excel-
lent recyclability with no substantial deactivation even after
ten cycles (Scheme 4).

Similarly, Veisi et al. also reported a carbon-heteroatom
cross-coupling reaction using a palladium nanocatalyst
immobilized on carbon nanotubes and observed no change
in catalytic activity for up to six cycles (Scheme 5) [71].

Table 2: Suzuki reaction with various metal nanocatalysts

I + (HO)2B
Nanocatalyst .

Nanocatalyst (amount) PhI PhB(OH)2 Base Solvent T (°C) Time (h) Yield (%) Ref.

Pd-SMU-MNPs (6mg) 1 1 K2CO3 PEG 50 0.5 97a [42]

Cu-C (0.1mol%) 1 1.2 K2CO3 H2O 50 3 96a [53]

Fe3O4NPs/IL/Pd(0) (0.2mol%) 1 1.1 K2CO3 H2O/EtOH (1 : 1) RT 0.25 96a [54]

Au-graphene (1mol%) 1 1.2 NaOH H2O 100 4 85b [55]

Pd/TiO2 (0.7mol%) 1 1.1 Na2CO3 NMP :H2O (2.5 : 1) 120 4 97a [56]

Ru/Al2O3 (5mol%) 1 1.5 NaOH DME/H2O (1 : 1) 60 1 96a [57]

Pd@MWCNTs (1mmol%) 1 1.2 K2CO3 MeOH :H2O (3 : 1) Reflux 2.5 84b [51]

PVP-stabilized Pd-NPs (0.07mol%) 0.5 0.75 K3PO4 H2O : EtOH (3 : 1) 90 24 97b [58]

Pd/NH2-SiO2 (0.05mol%) 1 1.2 K2CO3 H2O (2mL) 60-70 1 96a [44]

Fe3O4@CS-Schiff-based Pd catalyst (10mg) 1 1.2 K2CO3 PEG 80 0.17 98a [43]

Pd-Ni@Fe3O4 (0.0026mol% of Pd and
0.001mol% of Ni))

0.5 0.75 K2CO3 EtOH 80 0.25 94a [59]

Pd/r-GO NP thin film 1 1.2 K2CO3 H2O 80 0.25 >99a [60]

LDH-DS-Pd(0) (0.5mol%) 1 1.2 K2CO3 DMF/H2O 6mL (5 : 1, v/v) 80 5 93a [61]

Pd@MTiO2 (0.03 g) 1 1.2 K2CO3 H2O 70 3 99b [62]

Carbon nanocomposite Pd catalyst (1mol%) 0.5 0.6 K2CO3 DMF/H2O (2 : 1) 100 1.5 97b [63]

Core-shell-like Ni-Pd/CB catalyst
(5.5mg, 0.1mol% Pd)

2.5 2.75 K2CO3 EtOH/H2O (1 : 1) 30 0.5 90a [64]

Au-G nanocomposite (0.05 g) 1 1.5 K2CO3 H2O RT 4 99b [65]

Sr/Alg/CMC/GO/Au (0.005mol%) 2 2.4 NaOH H2O 80 4 98a [66]

OXDH-Pd-NPs (0.0091mmol) 5.41 4.92 Na2CO3 1,4 Dioxane/water (1 : 1) 80 1 98a [45]

Stabilized Pd-NPs (1mol%) 0.5 0.75 KF DMF :H2O (1 : 1) RT 24 93a [41]
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Scheme 2: The proposed mechanism of cross-coupling reactions.
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3.1.4. Palladium-Based Nanocatalysts for Carbon-Carbon
Homocoupling Reactions. The biaryl formation is a very
important reaction in the field of catalysis, total synthesis,
fine chemicals, and supramolecular chemistry [72]. The bond
between two aryl groups is often available in natural
products, dyes, medicine, and agrochemicals. The copper-
catalyzed homocoupling reaction is a well-known method
for the construction of biaryls, but it requires harsh reaction
conditions. Movahed et al. reported palladium nanoparticles
on nitrogen-doped graphene (Pd-NP-HNG) for an Ullmann-
type homocoupling reaction in water (Scheme 6) [48].

Recently, Rafiee et al. reported the synthesis of a palla-
dium nanocatalyst immobilized on a magnetic few-layer
graphene support which they applied on cross- and homo-
coupling reactions [73]. The catalyst system was found to
be active up to six runs with no loss of its catalytic activity
(Scheme 7).

Liu et al. prepared a series of polyaniline-supported palla-
dium nanocatalysts for the Ullmann homocoupling reaction
of aryl iodides to form biaryls. It was observed that the cata-

lyst activity can be tuned by introducing electron-donating
groups (Scheme 8) [74].

3.1.5. Palladium-Based Nanocatalyst for Hydrogenation
Reactions. A palladium catalyst has faster hydrogenation
and dehydrogenation processes and are also used in petro-
leum cracking. A variety of hydrogenation reactions are con-
ducted by palladium nanocatalysts. A palladium nanocatalyst
has the capability to combine with a wide range of ligands for
highly selective organic reactions. Research is more focused
on supported palladium nanoparticles due to their excellent

N
O

+

PNP-SSS
(0.6 mol%)

HN
O

Br

K2CO3, DMF
120ºC, 6 h 97% yield1 mmol 2 mmol

Scheme 3: Buchwald-Hartwig amination using PNP-SSS [69].

I

OH
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KOH, EtOH
60ºC, 0.5 h
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N-Arylation

O

H
N

MNPs@Cys-Pd

KOH, 60ºC, 0.5 h

O
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N O

93% yield

Scheme 4: N- and O-arylation using a cysteine-supported palladium nanocatalyst.

Br

O

H
N

+ N O
MWCNTs/CC-SH/Pd

K2CO3, DMF
100ºC, 8 h

96% yield

Scheme 5: C-N cross-coupling reaction using a palladium nanocatalyst immobilized on carbon nanotubes.

I

Pd-NPs-HNG
(0.25 mol%)

1 mmol
K3PO4, water

100ºC, 18 h 98% yield

Scheme 6: Ullmann homocoupling reaction using Pd-NP-HNG
nanocatalysts [48].
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efficiencies and faster rate of reaction. Chang et al. reported
on palladium nanoparticles entrapped in aluminum oxy-
hydroxide for the hydrogenation of nitroaromatics and solid
alkenes (Scheme 9) [75].

The same catalyst (Pd/AlO(OH) was also used by Fry
and O’Connor with different concentrations for the
hydrogenation of unsaturated esters [76]. The palladium
nanoparticles entrapped in aluminum oxyhydroxide were
found to be selective without reducing other functionalities
in the molecule.

3.1.6. Palladium-Based Nanocatalysts for the Dichromate
Reduction Reaction. In 2013, Tu et al. synthesized
polyvinylpyrrolidone-stabilized palladium nanoparticles
(PVP-Pd) through a chemical reduction protocol for Pd-
catalyzed dichromate reduction [77]. Chromium exists in
two oxidation states which are (Cr-VI) and (Cr-III)
(Scheme 10). Among these two oxidation states, hexavalent
chromium (Cr-VI) is a highly toxic and carcinogenic species.
However, trivalent chromium (Cr-III) is comparatively non-
toxic and even small quantities of (Cr-III) are required by the
human body as an essential nutrient. Many reports appeared
in the literature on the reduction of (Cr-VI) by using iron
nanoparticles, aluminum oxide, titanium oxide, mixed transi-
tion metal nanoparticles, palladium nanoparticles, etc. [78].
Yang et al. demonstrated the application of tobacco mosaic
virus-templated palladium nanoparticles for the reduction
of (Cr-VI) and claimed that such a nanocatalyst system can
be applied in different kinds of catalytic reactions [79].

3.1.7. Supported Palladium Nanoparticles. Palladium nano-
particles can lose their catalytic activity due to aggregation
or precipitation. Therefore, stabilizers such as ligands, poly-
mers, or surfactants are useful to control agglomeration and
precipitation [80]. A variety of palladium nanoparticles that
have appeared in the literature have described the advantages
of supported systems such as carbon nanotubes [81], colloi-
dal support [82], silica [83], metal nanoparticle support
[84], polymers [85], carbon [86], and graphene [87]. Palla-
dium nanoparticles supported onto different materials
increase the surface-to-volume ratio of the composite and
improve the catalytic activity and selectivity of the heteroge-

neous catalyst. Palladium nanoparticles either in colloidal
form or deposited form have been successfully applied as a
catalyst for different kinds of reactions. Liew et al. reported
a new catalyst system of palladium nanoparticles (XL-HGPd)
(Scheme 11) with the help of a cross-linking method [88].
Such a catalyst system was easy to recover and showed excel-
lent recyclability with continuously high catalytic activities.

Liu et al. prepared palladium nanoparticles (1-5 nm) with
the help of a helical backbone containing poly(N,N-dialkyl-
carbodiimide) (PDHC-Pd) as a polymeric gel for stabilizing
a palladium nanocatalyst. Such a composite material was
found to be very active for the Suzuki reaction under regular
heating or microwave irradiation (Scheme 12) [89].

The catalyst was recycled for the second, third, fourth,
and fifth time and reaction yields were 93%, 95%, 92%, and
90%, respectively. Palladium nanocatalysts with carbon
nanomaterial support have been successfully applied for glu-
cose oxidation reaction [90]. Glucose is considered as an
emerging energy source for fuel cell technology improvement
in order to fulfill the green energy requirement.

3.2. Platinum-Based Nanocatalysts. Platinum catalysts have
been extensively used in pharmaceutical, chemical, elec-
tronic, petrochemical, and fuel cell applications [91]. Such
catalysts have shown excellent catalytic and electrical activ-
ities as well as corrosion-resistant properties. Platinum-
based catalysts have been successfully applied in sensors
[92], fuel cells [93], methanol oxidation [94], and petro-
leum industries [95]. Platinum-based nanomaterials have
shown remarkable properties because of their stability in
different conditions. Just like other metal nanocatalysts,
the activities of platinum-based nanocatalysts also depend
on the size and shape of the catalyst. Several methods
are available in the literature for the synthesis of platinum
nanoparticles such as physical methods [96], solvothermal
[97] and hydrothermal [98] approaches, sol-gel [99], and
an electrodeposition [100] process. The morphology and
properties of a platinum-based nanomaterial such as opti-
cal, magnetic, and catalytic properties can be tailored by
changing the starting material and reaction parameters
[101]. Narayanan and El-Sayed reported the Suzuki reac-
tion between iodobenzene and phenylboronic acid to cata-
lyze using platinum nanocatalysts (Scheme 13) [102].

3.3. Iron-Based Nanocatalysts. Iron, as a backbone of infra-
structure, received great interest because of excellent mag-
netic and catalytic properties [103]. Due to their magnetic
property, iron-based nanocatalysts can be easily separated
by an external magnet after the completion of a reaction
[104]. Iron oxide nanoparticles with various structures and
morphologies have been widely used for drug delivery

Cl Br
Fe2O3@FLG@Pdº

K2CO3, DMF
120ºC

Cl Cl

96% yield

Scheme 7: Homocoupling reaction of 4-chloro-1-bromo benzene using a Fe2O3@FLG@Pd
o catalyst.

I
NH2NH2.H2O

Pd@PANI-H

(i-Pr)2NEt, NMP
140ºC, 24 h

65% yield

Scheme 8: Ullmann homocoupling reaction using a Pd@PANI-H
catalyst.
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[105], biosensor [106], medical [107], and water treatment
[108] applications, as well as other applications. Iron oxide
nanoparticles have multiple advantages because of their low
price and inherent biocompatibility. The synthetic scheme
of iron nanoparticles plays a key role in terms of morphol-
ogies and chemical and physical properties [109]. Within
the framework of different nanoparticles, ferromagnetic iron
and cobalt nanoparticles and their oxides and alloys were
found to be the most favorable probes for different applica-
tions [110].

2,4-Dichlorophenol is a toxic material and is present in
both wastewater and soil. Li et al. successfully degraded 2,4-
dichlorophenol by either Fenton oxidation or reductive
dechlorination with the help of various iron-based nanopar-
ticles [111]. In 2005, Park et al. reported a new synthetic way
for the synthesis of monodisperse nanoparticles of iron oxide
with a size of 6-13nm [112]. The synthesis of 6-13 nm parti-
cle size was accomplished by the additional growth of the
monodisperse nanoparticles of iron oxide. There are several
methods available in the literature for the synthesis of iron
nanoparticles; however, iron pentacarbonyl decomposition
is the most widely used method because of ease of handling
and because it only has carbon monoxide as a byproduct.
Some other methods are also available in the literature such
as the reduction of organic or inorganic salts [113], mechan-
ical methods, and decomposition of other unstable iron com-
pounds [114]. Jagadeesh et al. describe the synthesis of iron
oxide-based nanocatalysts for the hydrogenation of nitroar-
enes to anilines with excellent activity and selectivity
(Scheme 14) [115].

3.4. Copper-Based Nanocatalysts. Copper-based nanocata-
lysts have received considerable attention because of their
high activity and low reaction temperature [116]. The activity
of the Cu-based nanocatalyst can be influenced by synthetic
protocol, composition, temperature, pressure, concentration,
and reactor type [117]. Various methods are available in the
literature to synthesize Cu-based nanocatalysts such as
hydrothermal [118], coprecipitation [119], homogenous pre-
cipitation [120], and impregnation [121]. Recently Lamei
et al. reported a green nontoxic catalyst material to comprise
nanowires and nanoparticles embedded in a carbonaceous

matrix [53]. Such a Cu-based ligand-free nanocatalyst system
was applied to the Suzuki coupling reaction with excellent
activity and no significant loss of activity observed even after
four cycles (Scheme 15).

3.5. Gold-Based Nanocatalysts. Since the pioneering studies
of Haruta et al. [122], gold nanocatalysts have become widely
used nanoparticles for oxidation [123], reduction [124],
hydrogenation [125], homocoupling [126], degradation of
organic pollutants [127], and electrochemical sensor applica-
tions [128]. In order to expose more atoms on the surface,
gold nanoparticles are usually dispersed on a suitable support
such as activated carbon [129], starch [130], silica [131],
metal oxide [132], and resin [133]. Gold along with magnetic
nanoparticles such as catalytic support has gained much
attention due to its superparamagnetic properties and envi-
ronmentally friendly nature. The gold-magnetic nanocatalyst
(Au-Fe3O4) has shown excellent catalytic activity in various
organic reactions such as oxidation of CO [134] and reduc-
tion of H2O2 [135]. Lin and Doong synthesized Au-Fe3O4
nanocatalysts through iron-oleate decomposition in the pres-
ence of Au seeds. The catalyst system was successfully
applied in the reduction of nitrophenol with excellent activity
and selectivity (Scheme 16) [136].

3.6. Silver-Based Nanocatalysts. Silver nanoparticles have
been successfully applied in optics, medicine, catalysis, and
sensors [137]. Silver-based nanocatalysts are continuously
being developed due to their strong absorption in the region
of visible light which is easily detectable through a UV-visible
spectrophotometer. In terms of organic reactions, silver
nanocatalysts are used in reduction reactions [138], alkyl-
ation [139], degradation [140], reduction [141], and synthe-
sis of fine chemicals [142]. Recently, Mandi et al. reported
the synthesis of supported silver nanocatalysts via acrylic acid
polymerization and subsequent immobilization with silver
nanoparticles to form nanocomposite Ag-MCP-1. The nano-
composite material was used in a reductive coupling reaction
of nitrobenzene with alcohols in the presence of a hydrogen
source such as glycerol (Scheme 17) [143].

Apart from colloidal Ag nanoparticles, 1D and 2D struc-
tures of Ag and their composites have also shown huge pros-
pects in catalytic conversion. Ag nanowires and copper
oxide-embedded Ag nanowires showed excellent and rapid
catalytic activity [144]. The activity and selectivity of such
composites were reported to be ecofriendly and distin-
guished. However, Ag nanowires possessed 40% conversion
efficiency along with 95% selectivity, and copper oxide-
embedded Ag nanowires showed much higher activity and
stability compared to individual metal oxides or metal nano-
wires [145]. Such demonstration paves way for further

OH
Pd/AlO(OH)

(2 mol%) OH

98% GC yield0.2 mmol

RT, 1 min

Scheme 9: Hydrogenation reaction in the presence of (Pd/AlO(OH)) nanocatalysts [75].

Reduction using
Pd nanoparticles

Hexavalent chromium Trivalent chromium

Cr6+ Cr6+

Scheme 10: Reduction of hexavalent chromium (Cr-VI) to trivalent
chromium (Cr-III).
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efficient designs and innovative applications of metal oxide-
embedded 1D and 2D materials as new nanocatalysts for
organic conversion.

3.7. Zinc-Based Nanocatalysts. The nanocomposite system
containing zinc oxide mixed with other metal oxides has

been a material of choice due to several applications such as
the production of biodiesel [146], CO2 conversion [147],
aldehyde oxidation [148], hydrogen production [118], trans-
esterification [149], wastewater treatment [150], azo dye
decoloration [151], and chemoselective acetylation [152].
The activity and selectivity of the zinc oxide-based

N

N

(0) Pd

O

O

Support

XL-HGPd catalyst [88]

Br

O2N

B
HO

OH

+

XL-HGPd
(0.012 mmol) O2N

94% yield0.75 mmol0.5 mmol
K2CO3, H2O
90ºC, 6 h

Scheme 11: Suzuki reaction catalyzed by an XL-HGPd nanocatalyst [88].

+

I (HO)2B

K2CO3, dioxane
reflux, 20 h

97% yield

PDHC-Pd
(0.5 wt%)

Scheme 12: Suzuki reaction in the presence of PDHC-Pd nanocatalysts [89].
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Scheme 13: Suzuki reaction between iodobenzene and phenylboronic acid catalyze using platinum nanocatalysts [102].
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(4.5 mol%)
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120ºC, 15 h
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Scheme 14: Hydrogenation of nitrobenzene to aniline using iron nanocatalysts [115].
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nanocatalysts rely on size and morphology of the synthesized
material. Different methods are available in the literature to
describe the synthetic procedures for controlling the size
and morphology of the zinc oxide nanocatalysts such as
coprecipitation [119], microwave assisted [153], combustion
[154], ion exchange, and vapor phase transport [155]. In
2015, Saikia et al. reported the synthesis of zinc oxide nano-
catalysts through the leaf extract of Carica papaya and its
application in the synthesis of oxime derivatives [156]. The
reaction was run without a solvent under microwave irradia-
tion to form an oxime with an excellent yield and with a recy-
cle capability up to 5th run (Scheme 18).

4. Future Prospects and Challenges

Carbon-carbon cross-coupling protocols such as Suzuki,
Heck, and Sonogashira reactions are industrially important
reactions, and a review of the literature reveals that these
reactions are catalyzed by precious metals including palla-
dium or gold nanoparticles. Therefore, it is highly anticipated
that the focus of research will be on the development of either
metal-free or nonnoble metal nanocatalysts with high activity
and selectivity for carbon-carbon cross-coupling reactions.
Nanocatalysts are known to have high activity and selectivity,
but they suffer from instability and reusability issues. One
way to achieve high stability and reusability is for the nanoca-
talyst to have a strong interaction with the support system

which can prevent an aggregation problem. To achieve this,
the support system should have chelating properties to bind
the nanoparticles more strongly. Severe conditions such as
high-temperature reactions can cause the leaching of metal
in the nanocatalysts. Initially, it was thought that the leaching
process mainly occurs with nanocatalysts containing the pal-
ladium metal. However, in recent times, a number of reports
appeared in the literature describing the leaching of other
noble metals in nanocatalysts. Therefore, the development
of new nanocatalysts that can bear harsh conditions is highly
desirable. As depicted earlier, the shape and size of the nano-
catalyst have a great impact on their catalytic properties and
stabilities. Hence, new methods with a well-controlled size
and shape of the nanocatalysts need to be developed. The
multistep synthesis using a costly starting material and low
yield hinders their commercial applications. Such synthetic
protocols need to be replaced with a facile route, a green pro-
cess, and large-scale production with high quality.

5. Conclusion

In this review, we highlighted the recent progress on the
design and development of nanocatalysts and discussed their
catalytic application in important organic reactions. The syn-
thetic procedure of nanocatalysts contains various metals
such as Pd, Pt, Fe, Cu, Au, Ag, and Zn and have been
reviewed along with their important applications. Among
the various metals, the palladium-based nanocatalysts are
the most widely investigated material for coupling reactions.
Palladium nanocatalysts either with a suitable support or as
mixed metal oxides are known to increase the surface-to-
volume ratio of the composite and improve the catalytic
activity and selectivity of the heterogeneous catalyst. The
industrially important organic reactions such as carbon-
carbon bond coupling reactions, carbon-heteroatom bond
coupling reactions, carbon-carbon homocoupling reactions,
hydrogenation, reduction, and oxime formation reactions
have been reviewed. Similarly, the Suzuki reaction has been
a benchmark to explore the catalytic activities of newly

Br + (HO)2B
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H3C

H3C

H3CH3C

O

10% yield

10% yield

O

O

99% yield

1 mmol 1 mmol

K2CO3, H2O
80ºC, 5 h

K2CO3, H2O
80ºC, 5 h

K2CO3, H2O
80ºC, 5 h

CuCl2
(0.1 mol%)

Cu(OAc)2
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Cu/C nanocatalysts
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Scheme 15: Suzuki coupling reaction using different copper catalysts [53].
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Scheme 16: Reduction of nitrophenol using gold-magnetic
nanocatalysts (Au-Fe3O4) [136].
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synthesized palladium-based nanocatalysts. The future pros-
pects that need to be addressed, on the basis of literature
review, have also been highlighted at the end. Consequently,
this review article may help on the design and development
of new nanocomposite catalysts containing a well-defined
shape and size with high activity, selectivity, stability, and
reusability. This literature search will also help to identify
the best support system for high-performance supported
nanocatalysts. Due to the ease of synthesis, high activity,
and selectivity, more nanocatalyst systems will be developed
in the near future for organic conversion.
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Current H2-proton exchange membrane fuel cell systems available for commercial applications employ heavy and high-risk
physical hydrogen storage containers. However, these compressed or liquefied H2-containing cylinders are only suitable for
ground-based electric vehicles, because although highly purified H2 can be stored in a cylinder, it is not compatible with
unmanned aerial vehicles (UAVs), which require a lighter and more stable energy source. Here, we introduce a chemical
hydrogen storage composite, composed of ammonia borane (AB) as a hydrogen source and various heterogeneous catalysts, to
elevate the thermal dehydrogenation rate. Nanoscale SiO2 catalysts with a cotton structure dramatically increase the hydrogen
evolution rate on demand, while simultaneously lowering the startup temperature for AB thermolysis. Results show that the
dehydrogenation reaction of AB with a cotton-structured SiO2 nanocatalyst composite occurs below 90°C, the reaction time is
less than a minute, and the hydrogen generation yield is over 12wt%, with an activation energy of 63.9 kJ·mol-1.

1. Introduction

Hydrogen—an abundant element in the universe—is a theo-
retically eco-friendly fuel and a clean energy source for fuel
cells, as it produces no environmentally hazardous exhaust.
Recent interest in hydrogen fuel has centered on how to
safely store hydrogen with enhanced energy density. Essen-
tially, there are two major hydrogen storage methods avail-
able: physical and chemical storage, where the latter
includes sorbents, metal hydrides, and chemical hydrides
[1]. Most commercially available hydrogen fuel cell-driven
automobiles utilize physical storage, which is more reliable
than chemical storage because pure hydrogen molecules are
highly compressed, or even liquefied, to be stored in a phys-
ical storage tank. However, continuously raised safety con-
cerns and the heavy weights of hydrogen fuel containers,
which are absolutely incompatible with aerial vehicles, limit
the employment of physical storage for some ground-based
transportation vehicles.

Chemical hydrides store hydrogen fuel in various hydride
forms such as sodium borohydride, alane, and ammonia

borane (AB). These hydride compounds can be decomposed
thermally or hydrolytically to generate H2 gas. Although
hydrolytic dehydrogenation of chemical hydrides occurs at
temperatures lower than 80°C, the requirement of expensive
catalysts for hydrolysis, the production of ammonia as a
byproduct, and the low H2 yield are practically incompatible
with aerial vehicles [2–8]. Thermolysis of the chemical
hydride does not require a noble metal catalyst and is rela-
tively free of ammonia poisoning [9–11]. The H2 yield
through thermolysis of AB, which is a frequently employed
hydride compound belonging to the chemical hydride group,
can be increased up to 13wt% [9]. In addition, a mixed
approach has been introduced, involving a combination of
both thermolysis and hydrolysis in series for the dehydroge-
nation of the AB-TiO2 composite to enhance the hydrogen
yield to the theoretical maximum [12]. Nevertheless, a high
temperature requirement for the thermal dehydrogenation
reaction and ammonia poisoning through trace amounts of
water content in a reactor or reactants remain challenging.

In accordance with recent demands for unmanned aerial
vehicles (UAVs) for aerial surveys, weather observations,
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radio communication relays, and military purposes [13],
here, we propose AB as a component for a disposable hydro-
gen fuel composite, which can be used for proton exchange
membrane fuel cells (PEMFC). As an alternative energy stor-
age device, a PEMFC powered by hydrogen fuel can immedi-
ately take advantage of the high efficiency of PEMFC (~50%)
and high specific energy density of H2 gas (~39,500Wh·kg-1).
Indeed, a mechanically low-noise H2-PEMFC system will
perform better for a long-distance and low-altitude flight
with UAVs than secondary lithium batteries, which are pres-
ently widely utilized, but commonly suffer from low energy
density (~250Wh·kg-1) [14, 15]. Safe hydrogen storage and
effective hydrogen generation on demand are of consider-
able importance in H2-PEMFC power supply systems.
Although some research on hydrogen storage/generation
methods for PEMFC-based UAVs has been conducted [16,
17], a further enhanced energy density and highly efficient
chemical hydride composite to reduce the weights of UAVs
and effectively optimize PEMFC-based power pack systems
are still required, especially for longer duration flights with
UAVs [18–20].

AB contains 19.6wt% of high hydrogen content per unit
of mass. However, the thermal dehydrogenation temperature
should be increased up to hundreds of degrees Celsius to
obtain the theoretical maximum H2 yield. Finding an appro-
priate catalyst to decrease the working temperature of the
AB decomposition reaction with increased H2 yield is of
considerable importance. In this work, we present a char-
acterization of a specifically designed chemical hydride com-
posite, composed of AB and SiO2 nanopowders (NP). Other
researchers have reported on the availability of silicon-based
catalysts, including quartz wool and mesoporous silica, in the
thermal decomposition of AB. However, the actual working
mechanism is not yet clearly understood [21–25]. Further-
more, the characteristics of the AB-SiO2 NP composite are
compared with those of other AB composites, containing
various catalysts such as zeolites, metal, and metal oxide
NP and boric acid (BA) as an additive. The optimization
of the weight ratio between the AB and the catalysts is
described, as well as the screening of the composites for fast
H2 evolution rate and low dehydrogenation temperature, to
meet the demands of PEMFC-driven UAVs. Fourier trans-
form infrared (FTIR) spectroscopy (ALPHA series, Bruker
Corp.) is utilized to verify the hydrogen evolution of AB
by thermolysis.

2. Materials and Methods

2.1. Catalyst Preparation and Reactor Design. Commercial
zeolite ammonium ZSM-5 powder (CBV2314) is available
from Zeolyst International (PA, USA). Laboratory prepa-
ration of the ZSM-5 in an attempt to remove tetrapropy-
lammonium hydroxide (TPAOH) is as follows: Sodium
aluminate dispersed in a basic aqueous medium is mixed
in a flask with a basic Ludox® AS-40 colloidal silica suspen-
sion (40wt% in H2O) and stirred at room temperature for
3 h. Then, the suspended solution (the weight percentage of
Si to Al is 67) is autoclaved at 190°C and 1.013MPa for
12 h, and finally, the hydrothermally synthesized white

powder-dispersed solution is filtrated and dried at 110°C
overnight to produce the sodium-substituted TPAOH-
free ZSM-5 catalyst (Na-ZSM-5). Na-ZSM-5 can be fur-
ther stirred in a flask with ammonium nitrate at 80°C
for 4 h. After filtration and drying at 110°C, the white
product is calcined in an electric furnace at 600°C for
4 h to obtain hydrogen-substituted ZSM-5 (H-ZSM-5).
The other materials and reagents are of analytical grade and
purchased from Sigma-Aldrich (Milwaukee, USA), unless
stated otherwise.

The laboratory-made hydrogen evolution reactor is
composed of three thermocouples and a pressure gauge
(Figures 1(a) and 1(b)). Thermocouple 1 directly measures
the inside temperature of the vial that actually contains a fuel
composite of AB and various catalysts and is feedback-
controlled for precise control of the working temperature of
the dehydrogenation reaction. Thermocouples 2 and 3 deter-
mine the temperatures of the inside and outside of the reac-
tor, respectively, and the temperature difference between
them gives the approximate energy loss of the reactor. The
pressure gauge determines the amount of hydrogen gas gen-
erated by the heat-liberating AB dehydrogenation reaction.

2.2. Preparation of Fuel Composites. The weight of a fuel
composite is 0.15 g. An AB : SiO2 NP = 6 : 4 composite con-
tains nine portions of AB (0.09 g) and six portions of SiO2
NP (0.06 g). If the ratio were 8 : 2, then the composite would
contain 0.12 g AB and 0.03 g SiO2 NP. All reagent compo-
nents are stored in a desiccator before use, to remove traces
of water. After mixing both components gently in a 2mL vol-
ume vial, the fuel composite is carefully placed in the reactor,
followed by argon gas being blown into the reactor for 1min.
Then, the heating block increases the reactor temperature at a
rate of 2°Cmin-1.

2.3. Thermolysis of Ammonia Borane. The theoretical max-
imum H2 yield from AB is 19.6wt%: one-third of the
hydrogen is generated at around 120°C, another third is
dehydrogenated at around 160°C, and the final third requires
over 500°C [26–28] (see Supplementary Material Fig. S1).
Thermal dehydrogenation of AB can avoid the ammonia poi-
soning commonly observed in catalytic hydrolysis of AB,
which generates one unit of ammonia for every three units
of generated hydrogen. Even a level of ammonia of a few
ppm can poison a PEMFC, depending on the exposure time
to ammonia [29]. Although sodium borohydride (d ≈ 1 074
g cm-3) does not contain any amine or ammonia substituents
and may provide a good alterative hydrogen fuel source with-
out ammonia poisoning, the lighter AB (d ≈ 0 78 g cm-3) is a
better energy source for aerial vehicles.

3. Results and Discussion

Various catalysts with an additive such as SiO2 NP, alumino-
silicate zeolites (CBV2314, H-ZSM-5, and Na-ZSM-5), Ni
NP, metal oxides (ZrO2, TiO2, and Al2O3), and BA are com-
pared in terms of the H2 yield, reaction time, and onset reac-
tion temperature for the thermal dehydrogenation of AB.
The highly exothermic dehydrogenation reaction of AB
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yields a sharp increase in temperature with the release of H2
gas (Figure 2). As an additive, BA, which has achieved the
best known thermal dehydrogenation performance for AB,

produces a H2 yield of 9.56wt%. This means that a 2.15 mole
of H2 gas is generated for one mole of AB, based on the ideal
gas equation of state, considering that the optimized weight
ratio between AB and BA for the hydrogen evolution reactor
employed in this work, shown in Figure 1, is 7 : 3.

The weight ratio optimization of the AB–BA composite
is described in the Supplementary Material, Fig. S2. The
mole-equivalent H2 yield increases to 2.20 with the van der
Waals equation, i.e., P + aN2/V2 V − bN =NRT , where
van der Waal constants a and b are 0.2453 bar·L2·mol-2 and
0.02651 L·mol-1, respectively. The higher the content ratio
of the additives or catalysts in the hydrogen fuel composites,
the faster the hydrogen evolution rate, and usually the lower
the onset temperature of the dehydrogenation reactions.
However, the H2 yield as a weight percentage, defined by
the weight ratio of hydrogen to the total weight of a compos-
ite, decreases as the amount of additive or catalyst in the
composite increases. The onset temperature of the AB-BA
composite is between 94 and 100°C, and the reaction time
duration is less than 3min. The AB-SiO2 NP composite
exhibits a H2 yield of 9.26wt% and a reaction time duration
of 2min, which are comparable with those of the AB-BA
composite. While the temperature curve of the AB-BA com-
posite exhibits a small shoulder peak directly before the
abrupt temperature increase, the AB-SiO2 NP composite
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Figure 1: (a) Schematic drawing of the laboratory-made hydrogen evolution reactor, and (b) photo images. Note that the reactor is composed
of three thermocouples, a pressure gauge (0–700 kPa), and the reactor controller box, which is interfaced with a PC. The inner volume of the
reactor is approximately 44.6mL.
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Figure 2: Thermolytic dehydrogenation of AB in the presence of
various additives or catalysts. The set temperature is 100°C, and
the heating rate is 2°C·min-1. Dehydrogenation of AB is a strong
exothermic reaction, and an increase in temperature is observed
with H2 gas evolution.
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exhibits a single sharp peak. The other catalysts exhibit rela-
tively large and wide shoulder peaks. Table 1 summarizes
thermolytic parameters of the catalytic dehydrogenation of
AB with various additives and catalysts. Only the thermoly-
tic parameters of SiO2 NP are comparable with those of BA,
and the CBV2314 catalyst actually acts as an anticatalyst
in AB thermolysis. The H2 evolution curves of the other
metal or metal oxide NP, including Ni, ZrO2, anatase TiO2,
and Al2O3 are also provided (see Supplementary Material
Fig. S3), but these exhibit poorer H2 yields than that of
SiO2 NP, because the metal and metal oxides are significantly
heavier and probably less porous than SiO2 NP, as shown in
Figure 3 and Supplementary Material Fig. S4.

In general, heat conduction mechanisms in powders
and flake media differ from each other [30, 31]. Heat trans-
fer in a heat conductor is similar to electron transfer in an
electric semiconductor. Electron movement in randomly
oriented bulk NP becomes faster through directional elec-
tron transfer [32, 33]. Similarly, a mechanical arrangement
of AB-based fuel composite can allow a faster heat transfer
rate in the in-plane direction of the composite. Effective
heat transfer during the exothermic dehydrogenation of
AB thermolysis enables enhanced hydrogen evolution com-
pared with a simple powder-based AB composite. Hence, it
can be assumed that a unidirectional compression force
provides the AB-SiO2 NP composite with a favorable orien-
tation for better heat conduction in the fuel composite.
Supplementary Material Fig. S5 illustrates how to prepare
directionally favorable AB-SiO2 NP composite. After gently
mixing both components in a vial, the composite is care-
fully pressed from the top until only half of the original vol-
ume is left.

Even though the compositional optimization of the AB-
SiO2 NP composite shows that the 8 : 2 composite appears
to provide the best H2 yield with a minimized time require-
ment for a given amount of AB composite (Table 1), a greater
H2 yield can be obtained at a different optimized condition
with the unidirectionally pressed AB-SiO2 NP composite
(Figure 4). Note that hydrogen gas is liberated even before
the sharp temperature peaks are observed. A physically
favorable arrangement of the composite increases the H2
yield by over 20% and decreases the reaction time by approx-
imately 50%. Table 2 summarizes the thermolytic parameters
of various AB-SiO2 NP composites.

The AB thermolysis reaction requires heat to initiate
the dehydrogenation reaction, and the set temperature of
the reactor strongly affects the H2 yield, as shown in
Figure 5. No reaction occurs at a set temperature of 50°C,
meaning that the AB-SiO2 NP composite is stable under
normal atmospheric conditions. As the set temperature
increases from 80 to 110°C, the reaction time and H2 yield
increase from 77 to 140 s and 10.37 to 11.67wt%, respec-
tively. Because a typical PEMFC system functions correctly
at a working temperature of around 85°C, it would be rea-
sonable to set the reactor temperature to approximately
the same as the operation temperature of the PEMFC.
Otherwise, additional equipment for insulation is required
to thermally separate the PEMFC system from the hydrogen
fuel supplier. The activation energy (Ea) of the SiO2 NP-
catalyzed dehydrogenation reaction of AB is 63.9 kJ·mol-1

(Supplementary Material Fig. S6). This is just one-third
of the typical activation barrier of 180 kJ·mol-1 to the AB
decomposition reaction [34].

Figure 6 shows the FTIR spectra of the AB-SiO2 NP com-
posite. Boron, nitrogen, and hydrogen atoms in a tetrahedral
backbone with covalent single bonds lead to three character-
istic FTIR bands for AB (Supplementary Material Fig. S7):
the peaks observed in a range of 648–1822 cm-1 are assigned
to B-N stretching vibrations, peaks between 2260 and
2820 cm-1 are assigned to B-H stretching vibrations, and
N-H stretching modes are observed in a range of 3167–
3712 cm-1 [21, 35, 36]. The evolution of hydrogen gas by
heating the composite increases the bond order along the
principal axis of AB. This means that the π-bond character
becomes involved, in addition to the σ-bond character, and
stretching frequencies are upshifted upon the bond order
increase. More importantly, the B-H and N-H stretching
intensities diminish when a large quantity of hydrogen gas
is generated. As shown in Figure 6, both the B-H and N-H
stretching intensities are considerably reduced after the ther-
mal decomposition of AB, and the same result is observed
with additive BA (Supplementary Material Fig. S7).

4. Conclusions

In this work, AB, a stable chemical hydride at room tem-
perature and pressure, was thermally decomposed to pro-
duce hydrogen gas at a temperature of approximately
90°C, in the presence of SiO2 NP. We designed our own
hydrogen evolution reactor and hydrogen fuel composite
to directly compare the results for the AB-SiO2 NP com-
posite with that of AB-BA, which has achieved the best
thermolytic performance in other studies with a composite
ratio of AB : BA of 8 : 2. The H2 yield of the AB-SiO2 NP
composite (AB : SiO2 NP = 7 : 3 in wt%) was 9.26wt%, and
the yield of the mechanically pressed one (8.5 : 1.5 compos-
ite in wt%) was 12wt%, with a reaction time of less than a
minute, which is comparable to that of the AB-BA compos-
ite. In general, chemical hydride-based hydrogen fuel com-
posites for H2-PEMFC for aerial vehicles should satisfy the
following criteria: It should be sufficiently stable not to be
dehydrogenated at a conventional atmospheric condition
(<50°C), have a high capability for hydrogen storage to save

Table 1: Major catalytic parameters of additives and catalysts
involved in the dehydrogenation reaction of AB via thermal
decomposition.

Catalyst/additive
(wt%)a

Onset
temp. (°C)

H2 yield
(wt%)

Reaction
time (s)

BA (30) 94 9.56 50

SiO2 NP (20) 91 9.26 118

Na-ZSM-5 (20) 93 5.70 557

H-ZSM-5 (20) 95 5.70 433

CBV2314 (16.7) 94 4.75 749

No catalyst 98 5.05 588
aContent ratios are optimized for each additive or catalyst.
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weight, achieve a fast hydrogen evolution rate on demand
at a temperature of less than 90°C, and have an in-built
hydrogen fuel filtration system for the sake of ammonia-
susceptible PEMFC (we did not seriously consider the by-
product issue in the present work) [1]. The hydrogen evo-
lution curves of the AB-SiO2 NP composites showed that
none of the compositional ratios investigated in this work
thermally decomposed at a temperature below 50°C. Once
the thermal dehydrogenation of AB occurred, the reaction
ended within a couple of minutes. More precise optimiza-
tion of the weight ratio between the two components, con-

cerning not only compositional optimization but also the
physical shape, density, and molecular orientation, could
additionally enhance the hydrogen storage capability and

500 nm

SiO2 NP AB powder BA

100 𝜇m 100 𝜇m

Figure 3: SEM images of the components of hydrogen fuel composites. SiO2 NP shows much better porosity than those of AB and
BA powders.
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Figure 4: Hydrogen evolution curves and the catalytic parameters
of various compositional ratios between AB and SiO2 NP. The
best result is obtained for the 8.5 : 1.5 composite, achieving
12.00wt% H2 yield, with a reaction time duration of less than 1min.

Table 2: Hydrogen evolution parameters of various AB-SiO2 NP
composites in the dehydrogenation reaction of AB via thermolysis.

Composites
Onset temp.

(°C)
H2 yield
(wt%)a

Reaction time
(s)

AB : SiO2NP = 8 : 2 90 11.59 106

AB : SiO2 NP = 8 5
: 1.5

89 12.00 48

AB : SiO2NP = 9 : 1 91 5.67 95
a1.0217 times increased by data fitting with the van der Waals equation
instead of the ideal gas equation. Note that some harmful byproducts, e.g.,
NH3 gas, may be included at an approximate level of thousands of ppm for
each sample.
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Figure 5: Hydrogen evolution curves at 50°C (black), 80°C (red),
90°C (blue), 100°C (dark yellow), and 110°C (green). The
corresponding Arrhenius plot to measure the activation energy of
the thermal dehydrogenation reaction of AB in the presence of the
SiO2 NP catalyst is also available (Supplementary Material Fig.
S6). Note that mechanically pressed composites were employed, as
shown in Supplementary Material Fig. S5, and the AB content in
each composite is equal to 80wt%.
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Figure 6: FTIR spectra of AB-SiO2 NP composite before (black
solid line) and after (red solid line) the thermal dehydrogenation
reaction. H2 gas evolution increases the bond order along the
principal axis of AB. Therefore, the B-N stretching frequencies are
upshifted, and the B-H and N-H stretching intensities decrease
simultaneously.
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eventually reduce the total weight of a power generation
package for UAVs. Given a thermally shielded fuel car-
tridge, the AB-SiO2 NP composite could lead to the com-
mercialization of disposable hydrogen fuel for UAVs.
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Supplementary Materials

Fig. S1: TGA of pure AB. Thermal behavior of silica gel and
SiO2 NP is also shown for comparison. Notable two peaks
shown at 120 OC and 160 OC stems from formation of poly-
amidoboranes and/or polyimidoboranes by the AB decom-
position. Note that a slight mass loss of silica gel and SiO2
NP is due to evaporation of the surface-adsorbed water vapor
and unspecified polymeric contaminants. Fig. S2: the weight
ratio optimization of the AB-BA composites. The onset tem-
perature and the H2 yield of each composite are as follows,
respectively: 94 OC and 8.21wt% for AB BA = 6 4 com-
posites; 98 OC and 9.56wt% for AB BA = 7 3 composites;
100 OC and 5.55wt% forAB BA = 8 2 composites. Fig. S3:
hydrogen evolution curves of AB composites containing var-
ious metal or metal oxide NP such as Ni (black), ZrO2 (red),
anatase TiO2 (blue), and Al2O3 (green). H2 yield of each
composite is 4.27, 7.44, 3.74, and 3.97wt% in order. Note
that AB content in each composite is the same as 60wt%.
Fig. S4: photo images (×1200) of various metal or metal
oxide NP catalysts including Ni (d ≈ 8 91 g cm-3), ZrO2
(d ≈ 5 68 g cm-3), anatase TiO2 (d ≈ 3 8 g cm-3), and Al2O3
(d ≈ 3 99 g cm-3). Fig. S5: unidirectional compression of
AB-SiO2 NP composite to reduce the volume by half.
Fig. S6: Arrhenius plot based on the hydrogen evolution
curves at 4 different temperatures shown in Figure 5. Note
that the obtained Ea from the slope measures 63.9 kJ·mol-1.
Fig. S7: (a) FTIR spectra of AB flake and AB powder. Both
spectra commonly show 3 characteristic bands, i.e., BN
stretching, BH stretching, and NH stretching bands. (b) FTIR
spectra of AB and BA composites before and after the ther-
mal dehydrogenation reaction. Note that the BH and NH
stretching peaks are simultaneously reduced after the dehy-
drogenation reaction. (Supplementary Materials)
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The capric-myristic acid (CA-MA) binary eutectic mixture phase change material (PCM) was prepared for low-temperature latent
heat thermal energy storage (LHTES). The thermal properties, thermal stability, and long-term cycling reliability of the PCMs were
measured. Differential scanning calorimetry results showed that the CA-MA binary eutectic mixture at the mass ratio (72/28 wt%)
indicated a high-performance PCM for its suitable phase change temperature (Tm: 18.21

°C, T f : 17.40
°C) and high latent heat (Hm:

148.5 J/g, Hf : 134.0 J/g). Thermal gravimetric analysis results indicated that the CA-MA binary eutectic mixture had excellent
thermal stability in its operating temperature range. The thermal cycling tests and Fourier transform infrared spectroscopy
results revealed that the CA-MA binary eutectic mixture had good long-term cycling thermal chemical reliability. In summary,
in terms of thermal property, thermal stability, and reliability, the prepared CA-MA PCM could be applied particularly for low-
temperature LHTES systems and backfill materials of ground source heat pump systems.

1. Introduction

Thermal energy storage technologies have elicited increasing
attention due to its broad application prospects in the fields
of solar energy utilization, electric power peak-load shifting,
industrial waste heat recovery, building heating, and air con-
ditioning [1–5]. Latent heat thermal energy storage (LHTES)
has elicited wide attention and application because of its
larger storage energy density, less temperature change during
energy storage, better stability, and higher safety compared
with other methods [6, 7].

The core technology of LHTES is phase change material
(PCM). Various inorganic, organic, and mixed PCMs, such as
paraffin [8, 9], polyols [10, 11], inorganic salts [12], and fatty
acids [13], have been studied in building energy conservation.
Among these materials, fatty acid is one of the most relevant
organic PCMs because of its several advantages, such as large
latent heat, nontoxicity, suitable phase change temperature, zero
corrosion, low degree of subcooling, no or minimal volume

change, and good thermal stability [14, 15]. Furthermore, fatty
acids can be extracted from oils, animal fat, and plants; thus,
the raw materials are abundant and readily available [16, 17].
In addition, a low phase change temperature may be achieved
by mixing two or more fatty acids on the basis of their eutectic
effect [18–20]. Thus, the phase change temperature can be con-
trolled by selecting an appropriate eutectic system formed by
different fatty acids for several engineering applications.

Numerous recent studies have been conducted on the
performance of fatty acids, such as on their thermal property,
thermal stability, and long-term cycling reliability [21, 22].
Sarı et al. [23, 24] studied the thermal properties of many
binary eutectic mixture systems, such as the mixtures of lau-
ric-stearic, myristic-palmitic, palmitic-stearonic, lauric-myr-
istic, lauric-palmitic, and myristic-stearic acids; the data
measured by differential scanning calorimetry (DSC) showed
that the melting temperatures of those binary systems were
37.00° C, 42.60°C, 52.30°C, 34.20°C, 35.20°C, and 44.10°C,
respectively, and their phase change latent heat values were
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182.70, 169.70, 181.70, 166.80, 166.30, and 182.40 J/g, respec-
tively. Wen et al. [25] prepared a PCM of capric-lauric acid
(CA-LA)/diatomite/EG composite and studied its thermal
properties. Yuan et al. [26] andWei et al. [27] prepared some
ternary fatty acid composite PCMs and studied their thermal
properties. These aforementioned research results prove that
PCMs can be applied for solar energy utilization and building
energy conservation and have a guiding effect on the devel-
opment of eutectic mixture fatty acid.

Most of the aforementioned studies focus on single and
binary or ternary eutectic fatty acids in the temperature range
of 20°C–60°C, mainly used in building energy saving and
solar energy utilization. However, as the backfill material in
the ground source heat pump (GSHP) system, PCM with a
phase change temperature of approximately 19°C has yet to
be reported. GSHP is a heat pump technology that utilizes
shallow geothermal energy. The heat transfer performance
between the buried pipes and around the soil plays a decisive
role in the operational stability and operating efficiency of the
GSHP. The underground soil temperature is unchanged
below 15m. For example, the temperature is approximately
19°C in Shanghai, China [28]. However, after the GSHP sys-
tem operates for a certain period of time, the soil temperature
around the buried pipe will change, thereby reducing the sys-
tem operating rate. Thus, the performance of the backfill
materials around the buried pipe is particularly important.

In this study, the capric-myristic acid (CA-MA) binary
eutectic mixture PCM was prepared for LHTES and as back-
fill materials around the buried pipe of a GSHP system. The
thermal properties and thermal cycling reliability of the
materials were tested via DSC, and the thermal decomposi-
tion stability was investigated via thermal gravimetric analy-
sis (TGA). In addition, Fourier transform infrared (FTIR)
spectroscopy was used to investigate whether the chemical
composition of the PCMs changed before and after prepara-
tion and determine the possible reason that caused the
change of the thermal properties of the materials with the
increase in the thermal cycling number.

2. Experiments

2.1. Materials. Capric acid (CA, ≥98.5% purity) and myristic
acid (MA, ≥98% purity) were purchased from Shanghai Zhu-
nyun Chemical Co. Ltd.

2.2. Preparation of CA-MA PCMs. The solid CA andMAwere
weighed separately at different weight ratios from 0wt% to
100wt%, and the sample weight errors were controlled within
0.1mg. Then, the CA and MA were mixed in a beaker. Then,
the beaker was stored in a vacuum drying oven at a constant
temperature of 80°C for 2h. After completely melting, the fatty
acid mixtures were stirred for 30min at 60°C and 500 r/min in a
magnetic stirrer. The beaker of the molten liquid fatty acid mix-
tures was then placed in an ultrasonic water bath; the tempera-
ture was controlled at 60°C to ensure that the fatty acids were
constantly in the melting state. Furthermore, the time of ultra-
sonic vibration was approximately 2min to ensure that the
two types of fatty acids were sufficiently mixed to form binary

eutectic mixtures. With these methods, a set of CA-MA binary
eutectic mixtures was prepared.

2.3. Characterization. The phase change temperature (melt-
ing temperature (Tm) and freezing temperature (Tf)) and
phase change latent heat (melting latent heat (Hm) and freez-
ing latent heat (Hf)) of the samples were determined by DSC
(TA Q20, USA) calibrated with indium standard in the tem-
perature range of 0°C–80°C. The temperature increasing rate
of DSCmeasurements had a 5°C/min heating rate. DSC mea-
surements of the same samples were conducted three times,
and the accuracy was ±0.1% for phase change temperatures
and ±4% for latent heat.

To investigate the effect of the thermal cycling number on
thermal properties, the CA-MA eutectic mixtures were
heated from solid to liquid state and then cooled from liquid
to solid state by a heating controller. The above thermal
cycling process was conducted continuously until the values
were 500, 1000, and 2000. The changes in the performance
of the mixtures were measured by DSC and FT-IR.

The thermal stability of the CA-MA PCM was analyzed
by TGA (TA Q50, USA) in the temperature range of 20°C–
450°C with a 10°C/min heating rate under nitrogen gas atmo-
sphere and an accuracy of ±0.2%.

The samples of CA, MA, and CA-MA eutectic mixtures
were analyzed by FTIR (Thermo Scientific Nicolet iS5,
USA). The uncycled and cycled samples were measured by
FTIR to explore the reason of the variation of thermal prop-
erties of the CA-MA mixtures after thermal cycling.

3. Results and Discussion

3.1. Thermal Properties of CA and MA Used. The CA-MA
PCM was prepared by mixing CA and MA at different mass
ratios. The phase change temperatures and latent heat of the
CA and MA in some references [29–32] are listed in Table 1.
TheDSC curves of the CA andMAused in this study are shown
in Figure 1. The phase change temperatures and latent heat
from the curves are shown in Table 1. From the table, the melt-
ing points of CA andMA used are 31.17°C and 52.68°C, respec-
tively, and the latent heat values of fusion are 169.4 J/g and
188.6 J/g, respectively. These results suggest that CA and MA
can be used as rawmaterials to produce the CA-MA PCMwith
suitable phase change temperatures and large latent heat.

3.2. Mass Ratio of CA-MA PCM. In a binary system, if the
two solid components are completely immiscible and can
form a eutectic system, then the phase system will become a
eutectic binary system [33]. In a solid-liquid two-phase equi-
librium system of a two-component system whose liquids are
completely mutually soluble while the solids are completely
immiscible, a temperature lower than the phase change tem-
perature of the two pure components will be observed. At this
temperature, the solid mixtures, named the lowest eutectic,
which has the same composition as the liquid phase, will pre-
cipitate, and its temperature is the lowest eutectic tempera-
ture or the lowest eutectic point; similarly, the mechanical
mixture of the two solids can also be melted together at the
minimum eutectic temperature [34].
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Thus, the binary eutectic mixture fatty acids have a lower
phase change point than any of the fatty acids. Zhang et al.
[35] derived the relationship of melting temperature, latent
heat, and content of components A and B and eutectic mix-
tures based on the second law of thermodynamics and phase
equilibrium theory, shown as follows:

−
HA Tm − TA

TA
+ RTm ln 1 − XA +GA,ex = 0,

−
HB Tm − TB

TB
+ RTm ln 1 − XB +GB,ex = 0,

1

where Tm is the phase change temperature of the eutectic
mixtures (K); TA and TB are the melting temperatures of
constituents A and B, respectively (K); HA and HB are the
latent heat of constituents A and B, respectively (J/mol); XA
and XB are the mole percent ratio of constituents A and B of
the eutectic mixture, respectively, (%) and ∑ XA + XB = 1; R

is the gas constant (8.315 J/(mol·K)); and GA,ex and GB,ex are
the excess free enthalpy of constituents A and B, respectively.

For fatty acids, GA,ex =GB,ex = 0 is an excellent approxi-
mation. Accordingly, equation (1) can be rewritten as

Tm = 1
TA

−
R ln XA
HA

−1
,

Tm = 1
TB

−
R ln XB
HB

−1
2

The relevant parameters of CA and MA in Table 1 are
replaced in equation (2), and equation (3) can be obtained.

ln XCA = 11 53 − 3509 6
Tm

,

ln XCA = 15 90 − 5179 9
Tm

3

Table 1: Thermal properties of pure CA, pure MA, and CA-MA binary eutectic mixture.

PCM
Thermal properties

References
Tm (°C) Hm (J/g) T f (

°C) Hf (J/g)

CA 31.53 165.21 32.05 168.43
Sarı et al. [29]

MA 53.51 192.68 53.24 195.36

CA 27.69 164.7 32.06 163.5
Fu et al. [30]

MA 50.78 203.7 55.17 201.0

CA 31.5 155.5 — —
Gao and Qian [31]

MA 51.6 204.5 — —

CA 32.14 156.04 32.53 154.24
Karaipekli et al. [32]

MA 53.86 192.58 53.74 190.11

CA 31.17 169.4 31.69 170.3
This study

MA 52.68 188.6 51.63 193.1

CA-MA eutectic mixture 18.21 148.5 17.40 134.0 This study
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Figure 1: DSC curves of pure CA and pure MA.
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The theoretical phase diagram of the CA-MA eutectic
mixtures can be drawn, and the corresponding theoretical
ratios and phase change temperatures can be determined by
equation (3).

However, experiments have proven that some errors
occur if equation (3) is adopted because the purity of a single
fatty acid supplied may affect the mass ratio and the phase
change temperature. Thus, the actual mass ratios of the
eutectic mixtures must be experimentally determined.

The effects of the composition mass ratios on the melting
temperatures of the CA-MA binary eutectic mixtures are
shown in Figure 2, and the data are taken from our experi-
ments. The melting temperature of the CA-MA binary eutec-
tic mixtures decreases with the increase in the mass ratio of
CA, and the temperature range narrows when the mass ratio
approaches the eutectic mixing ratio. At the eutectic mixing
ratio, the lowest melting temperature is obtained. Then, the
melting temperature of the CA-MA mixture increases again
with the CA mass ratio. As shown in Figure 2, the lowest
melting temperature is 18.21°C at the mass ratio (72%
CA/28% MA w/w). The melting temperature of the CA-
MA PCM is lower than that of any of the pure fatty acids.

3.3. Thermal Property of CA-MA PCM. The DSC curve of the
prepared CA-MA PCM is shown in Figure 3, and the thermal
performance parameters are shown in Table 1. The melting
and freezing temperatures are 18.21°C and 17.40°C, respec-
tively, and the melting and freezing latent heat values are
148.5 J/g and 134.0 J/g, respectively. The indoor comfortable
temperature range is 16°C–25°C; thus, the eutectic mixture
can be used for building LHTES to reduce the load of heating,
ventilation, and air conditioning systems in winter and sum-
mer. The soil temperature around the buried pipe of the
GSHP is approximately 19°C. Therefore, the eutectic mixture
can be used as a backfill material of the geothermal heat
exchanger to enhance the heat transfer effect and improve
the operating efficiency of the GSHP system.

The phase change temperatures and latent heat of the
CA-MA mixtures in some references [29–32] are listed in
Table 2; the values slightly differ from the data in Table 1.

Two causes for the different results are probable. One is that
the single fatty acids supplied contain a certain amount of
impurities, and the other is experimental error [36].

3.4. FTIR Analysis of CA-MA PCM. FTIR spectroscopy was
conducted to ascertain the chemical structure of the CA-
MA PCM. The FTIR spectra of the single fatty acid CA and
MA and the CA-MA mixture are shown in Figure 4.

The infrared spectrum curves of CA and MA in Figure 4
show a strong peak at 1696.66 cm−1 (CA) and 1700.45 cm−1

(MA), which is the absorption of C=O stretching vibration
in the hydroxyl group; this absorption peak is highly typical
for fatty acids. Fatty acids usually exist in the form of bimo-
lecular associations due to the presence of hydrogen bonds,
and its O–H stretching vibration at 3100–2500 cm−1 usually
overlaps with the C–H bond stretching vibration peak of
the aliphatic group. In this characteristic band, the stretching
vibration peak corresponds to –CH3 at 2916.16 cm−1 (CA)
and 2914.45 cm−1 (MA), which correspond to –CH2– at
2844.53 cm−1 (CA) and 2847.70 cm−1 (MA).

The infrared spectrum curve of the CA-MA in Figure 4
shows that 1708.79 cm−1 is the characteristic peak of C=O
of the CA-MA eutectic mixtures, thereby indicating that fatty
acid molecules still exist in the form of a dimer in the binary
eutectic CA-MA. Furthermore, the absorption peak of the –
OH group is in the range of 3050–2800 cm−1. The infrared
spectrum of the binary eutectic mixture is similar to the pure
fatty acids; thus, its molecular structure has not changed and
the phase change heat storage properties and chemical prop-
erties of the fatty acids are maintained.

3.5. Thermal Stability of CA-MA PCM. Thermal stability
refers to the resistance of PCMs to high temperatures. Thus,
whether a significant mass loss occurs in the temperature
range in which the PCMwas used can be determined. Gener-
ally, PCMs, especially organic PCMs, often undergo signifi-
cant mass loss because of oxidation, decomposition, and
volatilization reactions when subjected to high-temperature
tests. Therefore, the temperature range must be controlled
when using those materials. The thermal stability of fatty acid
PCMs is commonly analyzed via TGA.

As shown by the thermal gravimetric (TG) and DTG
curves of the CA-MA PCM in Figure 5, its initial mass loss
temperature is approximately 110°C, which indicates that
the CA-MA eutectic mixture begins to evaporate slowly, the
epitaxial starting temperature is 181.84°C, and the tempera-
ture range of 120°C–230°C is the main mass loss area. The
mass loss is caused by the volatilization of the samples. The
temperature of the maximum mass loss rate is 217.61°C. At
243°C, the weight loss of the samples is nearly 98.5%, and
the samples have almost completely evaporated; the remain-
ing components are impurities in the system. On the basis of
the analysis, the CA-MA eutectic mixture has high thermal
stability below 100°C; however, when the working tempera-
ture rises above this temperature, the CA-MA eutectic mix-
ture easily decomposes and volatilizes, thereby resulting in
high mass loss. The thermal energy storage performance
and the service life of the materials will be greatly affected
if mass loss occurs. Therefore, the CA-MA PCM cannot
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Figure 2: Effects of composition mass ratios (wt%) on the melting
temperatures of CA-MA binary eutectic mixtures.

4 Journal of Nanomaterials



be used in medium–high-temperature phase change ther-
mal energy storage, although it can be applied for low-
temperature phase change thermal energy storage, such as
a building energy conservation system and backfill material
around the buried pipe of the GSHP system.

3.6. Thermal Reliability of CA-MA PCM. The thermal cycle
reliability of PCMs refers to whether the thermal energy stor-

age performance decays after repeated storage/discharge pro-
cesses. The reliability is an important parameter to measure
the service life of PCMs. The thermal cycle reliability of
PCMs is often tested by accelerated thermal cycling to study
the changes of two important thermodynamic parameters,
phase change temperature, and latent heat, before and after
thermal cycling. The DSC curves of the CA-MA PCMs after
500, 1000, and 2000 thermal cycles are shown in Figure 6.

The changes in melting and freezing temperatures of the
CA-MA PCM with the thermal cycling number are shown in
Figure 7. After 500, 1000, and 2000 thermal cycles, the Tm
values change to 0.07°C, 1.21°C, and 0.46°C, respectively,
and the T f values change to −0.75°C, −0.52°C, and− 0.87°C,
respectively. As the thermal cycling number increases, the
variations of the Tm and T f values are irregular and the
change values are extremely small, such that the influence
on the phase change energy storage system is negligible.
Therefore, on the basis of the changes in the melting and
freezing temperatures, the CA-MA PCM has high thermal
cycle reliability.

As the thermal cycling number increases, the variations
of the melting and freezing latent heat values of the CA-
MA PCM are shown in Figure 8. After 500, 1000, and 2000
thermal cycles, the melting latent heat (Hm) values of the

−4

−3

−2

−1

0

1

2

3

4

0 10 20 30 40 50 60

H
ea

t fl
ow

 (m
W

)

Temperature (°C)

DSC cooling curves

DSC heating curves
72%CA/28%MA (wt)

Tf : 17.40 °C
Hf : 134.0 J/g

Hf : 18.21 °C
Hf : 148.5 J/g

Figure 3: DSC curve of the CA-MA binary eutectic mixture.

Table 2: Thermal properties of CA-MA mixtures in this study and other references.

PCM Phase change temperature (°C) Phase change latent heat (J/g) References

CA/MA mixture (75.0/25.0 wt%) 22.17 153.19 Sarı et al. [29]
CA/MA mixture (76.0/24.0 wt%) 23.64 147.70 Fu et al. [30]

CA/MA mixture (78.0/22.0 wt%) 19.65 149.02 Gao and Qian [31]

CA/MA mixture (73.0/27.0 wt%) 21.70 168.37 Karaipekli et al. [32]

CA/MA mixture (72.0/28.0 wt%) 18.21 148.50 This study
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Figure 4: FTIR spectra of CA, MA, and CA-MA.

5Journal of Nanomaterials



mixtures changed by −3.2%, 1.15%, and− 12.1%, respectively,
and the freezing latent heat (Hf ) values changed by 3.7%,
0.5%, and− 4.4%, respectively. As the number of thermal
cycling increases, the variations of Hm and Hf values are
irregular. When the number of thermal cycling increases
from 500 to 4000, the values of Hm and Hf vary between
−12.1% and 3.7%, respectively. These results are acceptable
for PCMs applied to LHTES and GSHP systems.

As shown in Figures 7 and 8, small variations of the ther-
mal properties of the PCMs occur before and after thermal
cycling, which are caused by the following two factors: one
is that the single fatty acids supplied contain a certain
amount of impurities, and the other is that the PCMs may
undergo chemical degradation [36]. The uncycled and cycled
(after 2000 times) samples of CA/MA eutectic mixtures were
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measured by FTIR for the second factor, and the infrared
spectrum is shown in Figure 9. The figure shows that the
peaks of the two spectra are in the same frequency band
and match each other. Thus, the mixtures do not undergo
any chemical degradation after thermal cycling. Thus, as
the thermal cycling number increases, the thermal properties
of the materials change only because the supplied single fatty
acids contain a certain amount of impurities.

4. Conclusion

The CA-MA binary eutectic mixture PCMwas prepared. The
thermal properties, thermal stability, and long-term cycling
reliability of the binary eutectic mixtures were studied.

(1) The DSC results show that the CA-MA PCM is
highly suitable for LHTES and as backfill materials
around the buried pipe for GSHP systems because
of the phase change temperatures (Tm: 18.21

°C, T f :
17.40°C) and latent heat (Hm: 148.5 J/g,Hf : 134.0 J/g)

(2) The TGA results show that the CA-MA PCM has
excellent thermal stability below 100°C. Thermal
cycling tests show that the CA-MA PCM has good

long-term cycling thermal reliability because of the
small variations of phase change temperatures and
latent heat with thermal cycling number

(3) The FTIR results indicate that the molecular struc-
ture of the CA-MA binary eutectic mixture has not
changed; the phase change heat storage perfor-
mance and chemical properties of fatty acid are
maintained. In addition, the CA-MA PCM does
not undergo any chemical degradation after thermal
cycling, and its thermal property changes only
because the single fatty acids supplied contain a cer-
tain amount of impurities

The CA-MA PCM has promising application prospects
in LHTES and as backfill materials around the buried pipe
of GSHP systems due to its good performance.
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Electrochemical deposition as a liquid phase epitaxial growth method is widely used to fabricate different kinds of hierarchical
structures. As a typical heterostructure, TiO2/PbS is widely utilized in the areas of photovoltaics and photocatalysis. Oriented
TiO2 nanorod (NR) arrays can provide direct pathways for the electron transport of photoanode. However, the lattice mismatch
between TiO2 NR sides and PbS is very large; PbS nanoparticles (NPs) only formed on the top of TiO2 NRs. To solve this
problem, TiO2/CdS core/shell nanocables were firstly prepared electrochemically because the lattice ratio between TiO2 and CdS
was 0.916; and then, PbS NPs were successfully deposited over CdS shells (the lattice ratio between CdS and PbS was 0.697) to
form TiO2/CdS/PbS hierarchical heterostructures. Experimental results demonstrated that the CdS interlayer could effectively
promote the growth of PbS NPs on the surface and improve the fill factor and short current density of the photoanodes.

1. Introduction

Various heterostructures have been utilized in the areas of
photovoltaics [1–5] and photocatalysis [6, 7], such as CdS
[8, 9], CdSe [10, 11], CdTe [12], PbS [2, 13], PbSe [14–18],
and AgSe [19] over the surface of TiO2 [20–22] and ZnO
[23–25], with different morphologies such as multilayered
films, core/shell nanocables, and spherical dots. Several dif-
ferent chemical methods, including electrochemistry [12,
26, 27], chemical bath deposition (CBD) [28, 29], assembly
of quantum dots (QDs) by immobilization via organic linkers
[30], and successive ionic layer adsorption and reaction
(SILAR) [31, 32], are commonly used to fabricate these het-
erostructures. Among them, electrochemistry as a liquid-
phase epitaxial growth method is easy to fabricate large-
area devices with facile and labor-saving superiorities, partic-
ularly on nanorod (NR) arrays.

As one of these typical heterostructures, the TiO2/PbS
heterostructure has already been widely studied. Chen and
coworkers used bath deposition to fabricate a TiO2/PbS

counter electrode for QD-sensitized solar cells [33]. Mali
et al. fabricated solar cells via SILAR [34]. Sargent’s group
utilized colloidal PbS QDs to form heterostructure solar cells
[35, 36]. But the separation of the photocarriers in these
structures often does not do well due to the low lattice ratio.

Here, we tried to electrically deposit PbS over TiO2 NR
arrays which could provide direct pathways for photoelec-
tron transporting from the points of injection at the inter-
faces of the heterostructures between the two different
materials to the transparent conducting oxide (TCO) elec-
trodes. However, we found that PbS nanoparticles (NPs)
were only grown on top of the TiO2 NRs due to the low lat-
tice ratio between the sides of TiO2 NR and PbS (about
0.495), so fully covered TiO2/PbS heterostructures were not
realized. CdS/PbS heterostructures are also widely used in
the area of photovoltaics [37, 38]. In this work, we coated
a layer of CdS over TiO2 NRs by electrochemistry because
the lattice ratio between TiO2 nanorod and CdS is only
0.916. Then, PbS QDs were deposited on the surfaces of
core/shell TiO2/CdS nanocables to form TiO2/CdS/PbS
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heterostructures (the lattice ratio between CdS and PbS is
0.697). Due to the existence of the CdS interlayer, the fill fac-
tor and short current density of the photoanodes were
greatly improved.

2. Experimental

2.1. Preparation of TiO2 NR Arrays. TiO2 NR arrays were fab-
ricated through a hydrothermal synthesis [27, 39]. After mix-
ing deionized water and concentrated hydrochloric acid
(mass fraction 36.5-38%) of 60mL each, 2mL of titanium
butoxide was added drop by drop into the solution under vig-
orous stirring at room temperature. A half hour later, 30mL
of the prepared precursor solution was transferred into a
100mL stainless steel autoclave with a Teflon liner. And then,
three pieces of FTO substrates which had been ultrasonically
cleaned by a mixed solution (chloroform, acetone, and 2-
propanol with a volume ratio of 1 : 1 : 1) for 60min were
placed with an angle against the wall (the conductive sides
faced down) in the Teflon liner. The hydrothermal synthesis
took place at 140°C for 14 h. When the autoclave was cooled
to room temperature, the substrates were taken out, rinsed
with deionized water, and dried in an oven at 150°C.

2.2. Preparation of TiO2/PbS Heterostructures. The prepara-
tion of the TiO2/PbS heterostructure was carried out by elec-
trodeposition with a three-electrode system. A Pt sheet, a
standard Ag/AgCl electrode, and the TiO2 NR arrays on
FTO (4.5 cm2 working area) were used as the counter elec-
trode, the reference electrode, and the working electrode,

respectively. An electrolyte containing 0.1M of Pb(NO3)2
and 0.1M of thiourea in dimethyl sulphoxide (DMSO)/water
(a volume ratio of 1 : 1) was kept at 90°C. After depositions
from 2 to 30min with a constant voltage of 0.5V, the sam-
ples were taken out and washed with deionized water and
ethanol, respectively.

2.3. Preparation of TiO2/CdS Heterostructures. The prepara-
tion of the TiO2/CdS heterostructure was carried out by elec-
trodeposition with the same three-electrode system stated
above. An electrolyte containing 0.2M of Cd(NO3)2 and
0.2M of thiourea in dimethyl sulphoxide (DMSO)/water
(volume ratio of 1 : 1) was kept at 90°C. After depositions
from 2 to 30min with a constant voltage of 0.66V, the sam-
ples were taken out and washed with deionized water and
ethanol, respectively.

2.4. Preparation of TiO2/CdS/PbS Heterostructures. Theprep-
aration of the TiO2/PbS/CdS heterostructure was formed in
two steps. (1) Following Section 2.3, the TiO2/CdS hetero-
structure was firstly fabricated. (2) Following Section 2.2,
PbS QDs were deposited over TiO2/CdS nanocables.

2.5. Characterizations. Field emission scanning electron
microscopy (FESEM, JEOL JSM-6700) was used to examine
the microstructures of the samples. Transmission electron
microscope (TEM) and high-resolution TEM (HRTEM)
images of TiO2/CdS heterostructures were taken by a
JEM-2100F high-resolution transmission microscope. The
absorption characterizations of all samples were measured

1 �휇m

(a)

100 nm

(b)

1 �휇m

(c)

100 nm
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Figure 1: (a, b) SEM images of TiO2 NR arrays. (c) SEM images of TiO2/PbS deposited by electrochemistry for 20min. (d) SEM images of the
top of TiO2/PbS.
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with a UV-3150 spectrophotometer. A Rigaku D/max-2500
X-ray diffractometer (XRD) with Cu Kα radiation
(λ = 0 15418 nm) was used at room temperature to analyze
the crystal structures of TiO2 and CdS. With an electrochem-
ical workstation (Corrtest CS150), photoelectrochemical
properties were tested under the three-electrode system
where the samples, Pt sheet, and Ag/AgCl electrode worked
as the working electrode, counter electrode, and reference
electrode, respectively, in a polysulfide redox couple
(S2-/SO3

2-) electrolyte (0.25M Na2S and 0.35M Na2SO3
in deionized water), while a Zolix SS150 Solar Simulator
was used as the illumination source with a power of
100mW/cm2.

3. Results and Discussion

3.1. TiO2/PbS Heterostructures. Vertical TiO2 NR arrays fab-
ricated on FTO by hydrothermal synthesis are shown in
Figure 1(a). The TiO2 NRs grew orderly with a quadrangular
prism morphology indicating well-crystallized structures.
Their sides were very neat and smooth, which were different
from their rugged tops (Figure 1(b)). Therefore, there were a
lot of lattice defects at the tops. These NRs were about 2μm
long, and we could count that the planar density was 8-12
NRs per μm2.

With these as-preparedTiO2NRs, PbSwas deposited elec-
trochemically, and the SEM images show themorphologies of

500 nm
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200 nm

(b)

200 nm

(c)

TiO2NRs

CdS shells

PbS QDs

FTO

Electrochemical
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CdS PbS

CdS
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Figure 2: (a, b) SEM images of TiO2/CdS nanocable arrays. (c) SEM image of TiO2/CdS/Pb. (d) Schematic diagram of the growth process of
the TiO2/CdS/PbS heterostructures. (e) Relative band edges of TiO2, CdS, and PbS (left) and the proposed band edges of TiO2/CdS/PbS
termed by Fermi level alignment (right).
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samples deposited for 20min (Figures 1(c) and 1(d)). In
Figure 1(c), it is clear to see that the quadrangular prism
NRs were covered by PbS NPs (diameter around 300nm)
which were obviously distinguished in the SEM image over
the top of the TiO2 NRs.

3.2. TiO2/CdS/PbS Heterostructures. The CdS/PbS hetero-
structure has already been widely used in the areas of photo-
voltaic and photocatalysis. Here, we would insert a CdS layer
between TiO2 and PbS to fabricate TiO2/CdS/PbS hetero-
structures for our photoanodes.

With the as-prepared TiO2 NRs, CdS was firstly depos-
ited by the electrochemical method. Figures 2(a) and 2(b)
show the morphologies of samples deposited with CdS for
30min. The morphologies of the NRs changed from qua-
drangular prisms to cylinders whose diameters became
~50 nm larger, and the surface was no longer smooth. In
Figure 2(b), it is clear to see that the quadrangular prism
NRs were covered by CdS shells which were easily distin-
guished in the SEM image. Comparing with the smooth sides
of TiO2 NRs, there were more defect centers which could be
good for the epitaxial growth.

Furthermore, we deposited PbS over the prepared TiO2/
CdS nanocables at the same conditions. In Figure 2(c), the
SEM image shows the morphology of the sample deposited
with CdS for 10min and PbS for 10min. It is clear to see that
there are dense PbS QDs adhered all over the TiO2/CdS
nanocables. Through these observations, the growth process
is summarized in Figure 2(d). CdS grew over the surface of
TiO2 NRs, and the core/shell TiO2/CdS structures were

formed. The relative band edges of TiO2, CdS, and PbS are
shown in Figure 2(e) with their band gaps, respectively, to
be 3.20, 2.25, and 1.28 eV. When the TiO2/CdS/PbS hetero-
structure is formed, their band edges at the interfaces would
be termed by Fermi level alignment shown in the right part
of Figure 2(e).
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Figure 3: (a) TEM image of a TiO2 NR coated with a CdS shell. (b) TEM image of TiO2/CdS/PbS. (c) HRTEM image shows the interface and
crystalline structure of TiO2/CdS. (d) HRTEM image shows the interface and crystalline structure of TiO2/CdS/PbS.
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Figure 4: XRD patterns of FTO (black line), TiO2 NRs (blue line),
TiO2/CdS (orange line), TiO2/PbS (green line), and TiO2/CdS/PbS
(red line).

4 Journal of Nanomaterials



The core/shell rod structure (nanocable) could also be
seen from the TEM image with CdS deposited for 15min
(Figure 3(a)), while in the HRTEM image (Figure 3(c)) it is
easy to distinguish the interface between TiO2 core and
CdS shell and the d spacings of TiO2 (001) and CdS (100)
were 0.29 nm and 0.36 nm, respectively. In Figure 3(b), it
shows the TEM image of TiO2/CdS/PbS QDs deposited with
CdS for 10min and PbS for 10min. Except the d spacings of
TiO2 (001) and CdS (100), the d spacing of PbS (200) is
shown to be 0.30 nm (Figure 3(d)).

3.3. Phase Composition and Structure. In Figure 4, there are
two new peaks of the XRD pattern of TiO2 NRs (blue line)
compared with the pattern of FTO (black line), and the two
peaks, respectively, correspond to the different planes of
tetragonal phase rutile TiO2 (JCPDS 88-1175) exhibited as
quadrangular prisms in the SEM images. The two predomi-
nant peaks at 36.4° and 63.2°, respectively, indexed to the
(101) and (002) planes suggesting that the growth of the
TiO2 NRs took place along their c-axis on the FTO substrate
proved in Figure 1(a). When CdS was electrochemically
deposited (shell), two new diffraction peaks (orange line)
appeared at 24.84° and 43.74° which, respectively, indexed
to the (100) and (110) planes of the hexagonal CdS (JCPDS
77-2306). Meanwhile, the intensity of the peak around 36°

was higher, because this peak was not only from the (101)
plane of the tetragonal TiO2 but also from the (102) plane
of the hexagonal CdS. When PbS was deposited (nanoparti-
cle), there were several new diffraction peaks (green line) that
appeared at 25.96°, 30.07°, 43.06°, 50.76°, and 53.41° which,
respectively, indexed to the (111), (200), (220), (311), and
(222) planes of the galena PbS (JCPDS 05-0592). The
red line represents the XRD pattern of the TiO2/CdS/PbS
heterostructure, and the typical peaks of all components
could be found.

3.4. Morphologies Controlled by the Lattice Ratio. From the
SEM and TEM images, TiO2 NRs grew along the [001]
direction. The lattice constants of the TiO2 NRs (JCPDS
88-1175) and PbS NPs (JCPDS 05-0592) shown in
Table 1 are, respectively, a = b = 0 4517 nm, c = 0 294 nm,
and a = b = c = 0 5936 nm. At the sides of the TiO2 NRs,
the lattice ratio between TiO2 (c = 0 294 nm) and PbS
(a = b = c = 0 5936 nm) is 0.495. At the top of TiO2 NRs,
the lattice ratio between TiO2 (a = b = 0 4517 nm) and
PbS (a = b = c = 0 5936 nm) is 0.761. Therefore, PbS NPs
were deposited on the top of TiO2 NRs.

Proved from the XRD pattern, the lattice constants of
the CdS (JCPDS 77-2306) shown in Table 1 are a = b =
0 4136 nm, c = 0 6713 nm. The lattice ratio between TiO2
(a = 0 4517 nm) and CdS (a = b = 0 4136 nm) is 0.916.
Because of the high lattice ratio, CdS could be deposited
all over the TiO2 nanorods and the core/shell TiO2/CdS
nanocables were therefore formed. The lattice ratio between
CdS (a = b = 0 4136 nm) and PbS (a = b = c = 0 5936 nm) is
0.697, so PbS could easily deposit on CdS.

3.5. UV-Vis Absorption. The UV-Vis absorption spectra of all
samples with different treatments are shown in Figure 5.

Comparing the black line (TiO2) and the blue line (deposited
with CdS for 5min), it is clear to see that the absorption range
was broadened from the UV region to the visible light region

Table 1: Lattice constants of TiO2, CdS, and PbS.

Lattice constant a (nm) b (nm) c (nm)

TiO2 0.4517 0.4517 0.294

CdS 0.4163 0.4163 0.6713

PbS 0.5936 0.5936 0.5936
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Figure 5: UV-Vis absorption spectra of TiO2 NRs (black line);
TiO2/CdS deposited with CdS for 5min (blue line), 10min
(green line), and 20min (red line); and TiO2/CdS/PbS deposited
with CdS for 10min and PbS for 10min (wine line). The
electrolyte for CdS contained 0.2M of Cd(NO3)2 and 0.2M of
thiourea; the electrolyte or PbS contained 0.1M of Cd(NO3)2 and
0.1M of thiourea.
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PbS for 20min (orange line); and TiO2/CdS/PbS deposited with
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with CdS over TiO2 NRs. Comparing the blue line (deposited
with CdS for 5min) to the green (deposited with CdS for
10min) and red lines (deposited with CdS for 20min), the
absorption ranges of TiO2/CdS were further broadened with
the increase in deposition time (more CdS). When PbS was
deposited, the absorption range was extended to the near
infrared region shown as the wine line. With a larger area
of absorption range, the photoanode could be excited by
more photons and a higher short current density would
be achieved.

3.6. Photovoltaic Performance of the Electrodes. In Figure 6, it
shows the photocurrent density-output potential difference
(J-V) curves of the photoanodes fabricated by different con-
ditions. When PbS was deposited over TiO2 NRs (orange
line), the photovoltage characteristics are given in Table 2
with the photocurrent density, output potential difference,
and fill factor, respectively, to be 3.36mAcm-2, 0.90V,
and 0.26. The rather low fill factor was consistent with
the SEM images that PbS NPs just grew on the top of
TiO2 NRs and they did not grow on the sides. Shown in
Figure 6 and Table 1, the photocurrent density of TiO2/CdS
increased at first and then decreased and the output poten-
tial differences had no obvious change with more CdS
deposition time. The highest photocurrent density of
TiO2/CdS was 2.17mAcm-2 when CdS was deposited for
20min. After TiO2/CdS/PbS formed, the absorption range
was broadened and PbS NPs densely covered all over the
nanocables. Thus, it is clear to see that the photocurrent
density and fill factor were largely increased from
3.36mAcm-2 to 7.83mAcm-2 and from 0.26 to 0.63
(Figure 6 and Table 2).

4. Conclusions

With a suitable lattice distance between PbS and TiO2, CdS
was selected to coat on the surface of TiO2 nanorods and then
PbS QDs were epitaxially grown all over the surface of
TiO2/CdS nanocables to form a TiO2/CdS/PbS heterostruc-
ture. This strategy solves the difficulty to directly grow PbS
QDs on TiO2 NR arrays and makes use of the optoelectronic
property of PbS QDs for superior photovoltage characteris-
tics of the TiO2/CdS/PbS photoanode.
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We propose a facile and simple synthesis of photoluminescent (PL) carbon dot self-assembled monolayer films (CD-SAMFs) at oil-
water interfaces. By using styrene both as the carbon source and the oil phase medium, we got our amazing CD-SAMFs under the
copper acetate and hydrogen peroxide (Cu(Ac)2-H2O2) catalytic-oxidation system. Without any surface modification, the
spontaneously formed CD-SAMFs exhibit ultrathin thickness (<10 nm), bright luminescence, high transparency, and
hydrophobicity, which have the potential as a new alternative to be used on multifunctional coating films, anticounterfeiting,
displays, sensors, and optical devices.

1. Introduction

The advent of two-dimensional (2D) materials opens up new
opportunities and challenges [1]. Most notably, self-
assembled monolayers (SAMs) have served as an excellent
candidate for the fabrication of technologically important
ultrathin film materials for sensors, optical devices, and mag-
netic storage media [2–7]. In particular, semiconductor
quantum dot (QD: CdTe or CdSe/ZnS) SAMs have advanta-
geous features in the field of luminescent materials [8–10].
However, compared to these traditional quantum dots,
carbon quantum dots (CDs), as a new class of nanomater-
ial, possessed captivating properties such as excellent
photostability, low toxicity, low cost, and easy synthesis
[11, 12]. Recently, the self-assembly monolayers of the car-
bon nanoparticles on metal surfaces hold great potential
for novel electronic and optoelectronic properties [13–16].
However, there is rarely any report about the methods of
CD self-assembled films.

Here, we developed a simple and one-pot synthesis of
carbon dot self-assembled monolayer films (CD-SAMFs).
By using styrene both as the reactant (carbon source) and

oil phase medium, the CD-SAMFs formed at the oil-water
interfaces through copper acetate and hydrogen peroxide
(Cu(Ac)2-H2O2) catalytic oxidation. Without modified
agents or harsh conditions (such as Chemical Vapor Deposi-
tion (CVD), electrophoresis deposition, and layer-by-layer
(LBL) self-assembly) [13–18], the as-produced hydroxyl-
enriched CDs can be spontaneously self-assembled into
the carbon dot monolayer films via hydrogen bond inter-
actions. The ultrathin CD-SAMFS (<10 nm) possessed
brightly luminescent, highly transparent, and hydrophobic
properties. Besides, this method can also help other benzene
series including benzene, benzyl alcohol, and xylene be
converted to CDs under the same conditions, which is an
environmentally friendly way to reuse these volatile organic
compound (VOC) wastes and is very promising for indus-
trial application.

The one-pot synthesis of the CD-SAMFs is as follows:
deionized water, Cu(Ac)2, H2O2, and styrene were added to
a 100mL conical flask with stopper under stirring at 60
degrees Celsius. The system was sealed at the designated
temperature for 12 hours. As shown in Figure 1(a), when
the H2O2 was added into the blue Cu(Ac)2 solution, the color
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Figure 1: Preparation and structural characterization of CD-SAMFs: (a) Synthetic procedure; (b, c) HRTEM images and SAED; (d) AFM
images, inset: height profile of cross-sections of the monolayers, Z: height (nm); s: distance (μm); (e) PL emission spectra based on
different excitation wavelength; (f) Raman spectrum; (g) FTIR spectrum.
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of the solution rapidly turned from blue to red brown, then
became yellow. About one and a half hour later, the solution
turned green eventually. Some cream-colored products were
suspended on the surface of the solution. It is possible that
a lot of copper intermediates of different oxidation state
were produced; meanwhile, a large quantity of CDs was
produced, which then self-assembled to the carbon dot
nanofilms at the oil-water interfaces between the styrene
oil phase and the solution. As shown in Figures 1(b) and
1(c), the high-resolution transmission electron microscopy
(HRTEM) images revealed that the CDs were self-
assembled to the ultrathin carbon dot nanofilms. The CDs
were well dispersed with a Gaussian size distribution and
an average size of 4 75 ± 0 58 nm (Figure S1), which
presented good uniformity. HRTEM images confirmed the
CDs’ crystalline nature and revealed a lattice spacing of
0 203 ± 0 003 nm (Figure 1(c)), which corresponds to the
(111) diffraction plane of the diamond structure [19]. The
atomic force microscope (AFM) images showed that the

ultrathin carbon dot nanofilm was about <10 nm high
(Figure 1(d) inset), which was consistent with the lateral
sizes of the CDs and further demonstrated that the film was
a monolayer. The resultant fluorescence spectra obviously
showed that CD-SAMFs possessed a multiemission nature
depending on the excitation wavelength, which might rely
not only on the energy gap governed by the surface
oxidation states and the size of the CDs [20] but also on the
different emissive sites on each carbon dot [21] (Figure 1(e)
and Figure S2 for other benzene series VOCs). As the
excitation wavelength changed from 300nm to 500nm, the
emission exhibited an obvious red shift from 400 nm to
540 nm correspondingly, which displayed an emission
maximum at 450nm under excitation at wavelength
340 nm. The UV-Vis spectra of benzene series-CDs
presented a broad absorption band (200-600 nm) as
previously reported [21]. A clear shoulder absorption peak
of styrene CDs at 230nm was attributed to the π-electron
system, suggesting the existence of the sp2 aromatic
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Figure 2: PL properties of CD-SAMFs: (a) time-based PL spectrum; (b) temperature-dependent PL spectra from 293 to 353K at 320 nm
excitation; (c) pH-dependent PL spectra; (d) PL emission spectra of CD-SAMFs dispersed in different polar solvents.
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structure units [22], which might originate from the
impurities of the styrene (Figure S2). As shown in
Figure 1(f), a strong Raman signature from the G band
assigned to sp2 carbons appeared at the energy peak of
1590 cm-1. Its intensity was much higher than the sp3

Raman peak (D band at 1338 cm-1), which indicated the
large degree of graphitization of CDs (Figure S3) [23].
FTIR results further indicated that all the CDs are

abundant oxygen-containing functional groups (carbonyl
and hydroxyl group) (Figure 1(g) and Figure S4).

The CD-SAMFs possessed high photostability at 1000s
(Figure 2(a)) and reversible thermosensitivity with the tem-
perature varying from 293K to 393K (Figure 2(b)). Another
interesting phenomenon was the pH-dependent behavior as
the PL intensities increased in solutions with high pH values,
while they almost kept stable when the pH was changed from
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Figure 3: Fluorescent images of CD-SAMFs at different reaction times: (a) 10min, (b) 60min, (c) 12 h, and (d) PL emission spectra of
CD-SAMFs (Ex = 340 nm). Scale: (a, b) 100μm, (c) 200μm.
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1 to 11 (Figure 2(c)). Without any surface passivation, the
acquired CDs exhibited fluorescent properties and well dis-
persion in organic solvents (such as methanol, methylene
chloride, tetrahydrofuran, acetone, acetonitrile, and toluene)
(Figure 2(d)).

The formation mechanism of the CD-SAMFs in the
Cu(Ac)2-H2O2 system is through the catalytic-oxidation
reaction at the oil-water interfaces. Different from the self-
assembled nanospheres via CDs in a copper sulfate and
hydrogen peroxide (CuSO4-H2O2) catalytic-oxidation sys-
tem as our previous work presented [24], copper acetate is
a weak acid and weak base salt (pH4.8), so the divalent
copper ion and the acetate radical were hydrolyzed to form

copper hydroxide and acetic acid firstly (step 1). When
H2O2 was added to the solution, the whole possible reaction
could be proposed as follows:

Cu C2H3O2 2 + 2H2⇌Cu OH 2 + 2CH3COOH 1

Cu OH 2 + H2O2 → CuO2 + 2H2O 2

2CuO2 ≜ 2CuO +O2↑ 3

3CuO + 4CH3COOH + 4H2O→ 2Cu C2H3O2 2
⋅ CuO ⋅ 6H2O
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Figure 4: Optical transmittance and hydrophobicity test. (a) Transmittance of the control (quartz glass) and multilayer CD-SAMFs on the
quartz glass. (b) Water contact angle of the control and CD-SAMFs on the quartz glass. (c) PL emission spectra of CD-SAMFs (Ex = 365 nm).
(d) Photographs of these CD-SAMFs under visible light (top) and UV irradiation (365 nm) (down).
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Then, copper hydroxide reacted with hydrogen peroxide
to form copper peroxide (step 2). With the heating of the
reaction process, the brown copper peroxides decomposed,
accompanied by a large amount of heat and O2 (step 3). In
the weak acid solution, the resulting copper oxide reacted
with acetic acid to form copper acetate. Meanwhile, a large
amount of oxygen produced in the whole process acted as
the oxidant for the oxidation of the styrene, resulting in the
formation of carbon clusters C2, C3, C2H2, other small

molecules, and hydrogen ions, which finally crystallized into
CDs in the solution rather than further be oxidized into COx
owing to the weak oxidation of the O2. In addition, the
brownish copper peroxide gradually disappeared after the
reaction, and the solution became green instead of the
original blue, which means the basic copper acetate salts
([2Cu (C2H3O2)2]·[CuO]·[6H2O]) were formed (step 4).

During the reaction process, more and more CDs are
produced. As the unreacted reactant styrene and the solution
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Figure 5: Degradation of benzene series VOCs by GC-MS test. (a, b) The content and the photograph of the styrene after reaction at different
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formed two phases, self-assembled CD monolayer films
appeared at the oil-water interfaces. As is shown in
Figure 3, the fragments of the CD-SAMFs were first formed
after 60 minutes as observed by the fluorescence microscope
(Figures 3(a) and 3(b)). Then, about 12 hours later, these
small fragments self-assembled into large-scale monolayer
films (Figure 3(c)). In general, the fluorescence of CDs is
always strongly quenched when large quantities of CDs are
deposited on glass, metal, silicon, or plastic substrates owing
to the formation of aggregates. However, the bright emission
of the CD-SAMFs may have resulted from the self-assembly
of the CDs via hydrogen bonding interaction, preventing
aggregation-induced quenching [25, 26]. The fluorescence
spectra also recorded this phenomenon exactly. About 60
minutes later, the fluorescence emission intensity dramati-
cally rose to almost the maximum and then increased gently
within four hours (Figure 3(d)).

Moreover, the CD-SAMFs possessed high transparency
and hydrophobicity. As is shown in Figure 4(a), the transmit-
tance of these CD-SAMFs decreased slowly with the multi-
layer number varying from 2 to 8. And the transmittance of
different numbers of multilayers was all above 80% at the
UV-Vis and near infrared band (>480nm), which indicated
that the CD-SAMFs can become favorable candidates for
optics applications [27]. In addition, it was found that the
water contact angle (WCA) with increasing multilayer CD-
SAMFs was increased from 98° to 108° (>90°), which means
the ultrathin CD nanofilms possessed a hydrophobic surface
(Figure 4(b)). Like the diamond-like carbon (DLC) films, the
good transparency and hydrophobicity of the CD-SAMFs is
possibly attributed to the diamond-like structures of the
CDs [28]. Although small vacancies between adjacent CDs
and the aggregation still existed, the WCA of the multilayer
CD-SAMFs increased with the increasing number of the
multilayers. It is possible that the multilayer CD-SAMFs
make up for those minor defects in the CD monolayer [10].
Moreover, the PL emission spectra of CD-SAMFs showed
that the PL intensities of the fluorescence bands at about
500nm increased gradually with the increasing number of
multilayers n and the CD-SAMFs emitted green light under
UV irradiation (Figures 4(c) and 4(d)). Additionally, it was
noteworthy that there was no significant shift or broadening
of the emission band for different values of n, which demon-
strated that there were no obvious changes in intermolecular
interactions or of the nature of CDs in the whole assembly
process as per previous reports [10].

What is more, this method may also provide a new
approach to highly effectively degrade benzene series VOC
waste water. During the reaction, the higher the temperature,
the more CDs are produced. As is shown in Figure 5, when
the temperature was increasing from 25°Cto 80°C, the styrene
was greatly reduced from 56% to 36% after the reaction for
24 h (Figures 5(a) and 5(b)). Keeping the reaction tempera-
ture at 60°C, Figure 5(c) indicates that the content of styrene
decreased from 51% to 21% along the reaction from 1.5 h to
48 h. Other benzene series VOCs could also be converted to
CDs (Table S1), and the content of the xylene and benzyl
alcohol was about 55% and 45%, respectively, but the
content of benzene was greatly decreased to 12.8% after

24 h reaction at 25°C, which was possibly attributed to the
stronger reducibility than that of other benzene series
(Figures 5(d)–5(f)).

2. Conclusions

In summary, we have developed a facile and one-pot syn-
thesis of PL CD-SAMFs at the oil-water interfaces by
Cu(Ac)2-H2O2 catalytic-oxidation reaction. Different from
the semiconductor QDs, the hydroxyl-enriched CDs can
be spontaneously self-assembled to the carbon dot mono-
layer films via hydrogen bond interactions at the oil-water
interfaces without any surface modification. The as-
produced CD-SAMFs by the diamond-like CDs possessed
ultrathin thickness (<10 nm), which was comparable to the
diamond-like carbon (DLC) films. With increase of the mul-
tilayer number, the PL intensities and the hydrophobicity
were also enhanced. Moreover, their superior performances
with high transparency and hydrophobicity showed potential
application for multifunctional coating films, anticounter-
feiting, displays, sensors, and optical devices. What is more,
it is effective not only for removing organic contaminants
(such as VOCs) but also for reducing the industrial waste
gas CO2 emissions which greatly protects the environment.

Data Availability

(1) The HRTEM, AFM, PL spectra, Raman, FTIR, and fluo-
rescent image data used to support the findings of this study
are included within the article. (2) The additional HRTEM,
UV-Vis spectra, Raman, FTIR, and GC-MS of other benzene
series data used to support the findings of this study are
included within the supplementary information file(s). (3)
Previously reported data were used to support this study
and are available at [doi:10.1039/c8ra03723j]. These prior
studies (and datasets) are cited at relevant places within the
text as references [20].

Additional Points

Notes and References. In a typical procedure, styrene (0.208 g,
Aladdin, purity > 98%) and H2O2 (400μL) were added to
Cu(Ac)2 (0.4g) solution (10mL) at 60°C under stirring for
12 h. The final CD-SAMFs were purified by extracting with
butyl acetate and water several times to remove the impuri-
ties including the residual organic and inorganic molecules.
Then, the purified CD-SAMFs were dried at 60°C for
structural characterization and measurements. The synthetic
procedure for the CDs by using other benzene series VOCs
was similar to that of the styrene CDs except for the addition
of different benzene series in the same media: 0.2mol/L
benzene, 0.2mol/L benzyl alcohol, and 0.2mol/L xylene.
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Supplementary Materials

Figure S1: HRTEM of carbon dot self-assembled monolayer
films (CD-SAMFs). (a, b) The related size distribution of
carbon dots in the CD-SAMFs. Figure S2: UV-Vis spectra
of the benzene series (a) and PL emission spectra of CDs
by other benzene series: (b) benzene, (c) benzyl alcohol,
and (d) xylene. Figure S3: Raman spectra of CDs synthe-
sized by other benzene series. Figure S4: FTIR spectra of
CDs synthesized by other benzene series. Table S1: GC-
MS test. (Supplementary Materials)
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