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+e artificial neural network reduces humanity and society’s burden to solve complex problems highly efficiently. Artificial neural
networks resemble brain activities based on the acquired training samples used for various applications such as classification,
regression, prediction, smart grid, natural language processing, image processing, medical diagnosis, and so on. +is paper
illustrates the different artificial neural network architectures, types, merits, demerits, and applications. +erefore, this paper
provides valuable information to students and researchers to enrich their knowledge about an artificial neural network and
research it. +is paper also proposed a multilayer-perceptron-neural-network-based solar irradiance forecasting model, an
improved backpropagation neural network-based rainfall forecasting model, and an Elman neural network-based temperature
forecasting model. +e performances of the proposed neural network-based forecasting models are analyzed with various hidden
neurons and validated using the acquired real-time meteorological data.+e proposed neural network forecasting models achieve
rigorous results with reduced errors for the considered applications and aid sustainability.

1. Introduction

In the modern world, ANN is actively replacing the existing
methods; this motivated us to address the issue of ANN and
made interest in the quest of ANN and provided the complete
guideline to the reader about the ANN types, architecture, and
applications of ANN.+e network that resembles or mimics the
biological human brain functions to accomplish a given task is
an artificial neural network. In a neural network, one neuron to
the other neuron connection exists with some strength known as
weight or synaptic weight. +e on and off state of a neuron is
decided by the threshold function. +e perceptron concept was
introduced in 1958 by Frank Rosenblatt [1], which is the ability
to learnwith the single-layer network.+e limitation is if the data
points are not linearly separable, it cannot solve the problem.
Still, many research activities are required to address the per-
ceptron network linear separability issue. Inputs usually are
binary, bipolar, and the real-time value from the environment.
Many forecasting models are attempted in the literature, but

simple, feasible, easy to implement, and accurate forecasting is
one of the thrust research fields. In neural network-based
forecasting, an interpretable machine learning tool is important
[2, 3], and feature selection/extraction is a preprocessingmethod
used to extract important relevant input features [4], data-driven,
hybrid, ensemble, and deep neural network aid effective solu-
tions [5–10]. Recently, some researchers performed data-driven-
based forecasting [11–13]. In forecasting applications, variability
is caused because of the measurement shift and noise. +e
uncertainty aboutmeasurement shift and noise can be overcome
by proper commissioning, data evaluation, quality check, sensor
calibration, and usage of on-site measurement data [9].

1.1. Comparison between the Human Brain and AI (Artificial
Intelligence)

(i) +e machine system involves step-by-step proce-
dures and instructions, but humans have fewer
processing steps because of the massively parallel
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operation. In this aspect, humans are ahead of ar-
tificial intelligence.

(ii) Regarding the size and complexity aspect, the
human biological brain has 1011 numbers of
neurons approximately and 1015 numbers inter-
connecting with that brain size; this is many
neurons. Interconnection is highly impossible
based on AI; hence, complexity exists in the
human brain both outside of dendrites and inside
of cell body computation, but it delays the arti-
ficial intelligence process.

(iii) Regarding the strength (or) the synaptic weight of
interconnection, information has been stored in the
machine having replaceable storage, but the brain
has an adaptable storage system.

(iv) +e brain has a much high fault tolerance ability
compared to a computer and artificial intelligence
machine.

(v) Control mechanisms: the retrieval of corrupted
information is complicated for the human brain
than themachine, so the control mechanism is more
difficult for the human brain than the machine.

1.1.1. Motivation. Practical examples: babies or kids can
differentiate fruit; guava and green apple both are green in
color and shape, but with respect to experience and unique
features, the baby or kid determine green apple and guava if
we include green mango, and green apple baby can identify
similarly ANN-based acquired knowledge about the trained
data sets. It has the generalization ability to identify the
unknown data sets correctly.

+e learning or training process is the stage; the network
can acquire knowledge about the situation or environment.
+e acquired knowledge is stored in the synaptic weights.
According to the structural interlinkages of neurons
(computational elements), activation function, and weight
computation process (learning algorithm), the artificial
neural networks can be classified into various types, starting
from Mcculloch and Pitts network to present hybrid neural
networks.

In a single-layer neural network model, the hidden layer
does not appear, so only single connection linkages exist
from input to output. A multilayer neural network consists
of more than one connection linkage from the input to the
output, which can solve challenging and complex problems.

+e network does not have feedback, and information
can flow from the input layer to the output layer via one or
more hidden layers known as a feedforward neural network.
Examples of feedforward neural networks are back-
propagation, multilayer neural network, radial basis neural
network, etc.

+e neural network consists of feedback, and informa-
tion can flow from the input layer to the output layer via one
or more hidden layers, and vice versa known as a feedback
neural network. Examples of feedback neural networks are
the Hopfield network, Elman network, and so on.

1.2. Contribution. +is paper has the following
contributions:

(i) Give a clear understanding of the comparison be-
tween the human brain and artificial intelligence.

(ii) Discuss the development background of an ANN,
artificial neural network generalized procedural
steps with diagrammatic explanation, typical
structure, and applications of artificial neural
networks.

(iii) Propose various types of artificial neural networks,
like multilayer perceptron neural network, im-
proved backpropagation neural network, and
Elman neural network for solar irradiance fore-
casting, rainfall forecasting, and temperature fore-
casting, respectively, to aid sustainability.

1.3. Highlights of 1is Paper

(i) Acquire knowledge of the primary artificial neural
network types and applications

(ii) Discuss various ANN architectures, types, and
applications

(iii) Propose a solar irradiance forecasting model using
MLPNN (Multilayer perceptron neural network)

(iv) Suggest a rainfall forecasting model using IBPNN
(Improved Backpropagation Neural Network)

(v) Present a temperature forecasting model using
ENN (Elman neural network)

(vi) Carry out various hidden neuron-based analyses
(vii) Propose proved validity of forecasting models in

real-time data
(viii) Achieve rigorous forecasting outcomes with re-

duced errors regarding the proposed forecasting
model

(ix) Analyze the different neural network models and
familiarize the reader with the forecasting
applications

1.4. Development Background of Artificial Neural Network.
+e motivation of Artificial Neural Network (ANN) is the
biological system’s parallel and distributed processing. In
1986, McClelland et al. [14] developed an intelligent ma-
chine with artificial intelligence, but searching for the so-
lution is the problem with this model. Hence, many heuristic
searches address the task accomplishment, and the rule-
based approach addresses the representation problem. Ta-
ble 1 represents the ANN development in the literature for
more clarity.

1.4.1. Second Generation Neural Networks. +e second
generation neural networks are as follows:

(i) Perceptron: for specific learning rules, the network
can learn with known target values (supervised
learning rule)
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(ii) Backpropagation: based on the various learning
methods, the network can learn and adapt the
learning data set to known target values (super-
vised learning rules)

(iii) Kohonen neural network or Self-Organizing Map
(SOM): the network learns without knowing the
target values (unsupervised learning rule)

(iv) Radial basis neural network (supervised learning rule)
(v) Adaptive resonance theory (unsupervised learning rule)
(vi) Elman neural network (supervised learning rule)
(vii) Hopfield neural network (unsupervised learning

rule)
(viii) Special networks (unsupervised and supervised

learning rules) like support vector machine

1.4.2. 1ird Generation Neural Network. Spiking neural
network: in this neural network, the limitation of MLP, like
cycle firing, has been avoided. +is model acquires the firing
of biological neurons based on spikes.

1.4.3. Fourth Generation Neural Network. +e fourth-gen-
eration neural network can be classified into two types as
follows:

(i) Deep learning neural network: the deep learning
neural network can overcome the gradient vanishing
problem over one number of hidden layers

(ii) Hybrid neural network: using both artificial neural
network and optimization algorithms, a combina-
tion of physical and statistical methods, and so on,
makes a hybrid neural network that overcomes the
individual network’s limitations

2. Generalized Algorithm for Artificial
Neural Network

+e algorithm in neural networks is nothing but a step-by-
step procedure to accomplish a specific task. We showed the
generalized algorithm of an artificial neural network in
Figure 1, which comprises the following steps as follows:

Step 1. Start the neural network design phase, choose the
appropriate neural network model of the artificial neural
network (feedforward or feedback, or special neural net-
work, or hybrid model).

Step 2. After selecting a neural network model design, the
proposed model includes the number of input parameters,
the number of hidden layers, the number of hidden neurons,
and so on.

Step 3. After completion of a network design process, ini-
tialize the proposed model.

Step 4. After initialization, for the chosen application,
collect the data set and perform the data normalization
process to eliminate the data discrepancy and missing data
and improve the output accuracy. Meanwhile, divide the
collected data set into two portions: the training phase and
the testing phase.

Step 5. After the data collection and normalization process,
learn the proposed neural network with a training data set.

Step 6. Check the proposed neural network’s output and
whether there is a minimal lead error and verify if the
performance is acceptable or not. If the proposed neural
network model’s performance during the training phase is
satisfactory with minimal error, then go for the testing
phase. Else, the performance was not up to the mark; then
again go to Step 2. +e process continues until a match with
the set goal.

Step 7. After completing the training phase, perform the
proposed neural network model’s testing process on the
testing data set (the testing data sets are unseen raw data
specified during the training phase).

Step 8. After completion of the testing phase, check if the
proposed neural network model can achieve generic per-
formance and generalize it well or not. If it generalizes well,
record the output of the proposed neural network model;
else again perform the remodeling of the neural network to

Table 1: Development of ANN in the literature.

Year Authors Proposed model
1943 Mcculloch and Pitts [15] Perceptron network with two artificial neurons.
1949 Hebb [16] Hebbian learning rule.
1958 Rosenblatt [1, 17] Perceptron network models.
1960 Widrow and Hoff [18] Adaline neural network.
1962 Widrow [19] Madaline neural network.
1964 Zadeh [20] Fuzzy logic.
1982 Hopfield [21] Hopfield network (recurrent).
1986 Rumelhart et al. [22] Backpropagation neural network.
1988 Chang and Yang [23] Cellular neural network (communication exists between only neighboring neurons).
1995 Cortes and Vapnik [24] Support vector machine.
2002 Gerstner and Kistler [25] Spiking neural network.
2012 Hinton [26] Deep learning neural network.
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Figure 1: Generalized algorithm of artificial neural network.

4 Journal of Electrical and Computer Engineering



achieve the generalized outcome (both training and testing
phases lead to an optimal result with minimal error).

Step 9. Stop the process.

3. Applications of Artificial Neural Networks

Artificial neural network applications are not confined to the
specific domain; it has a wide variety of applications. An
artificial neural network has scope for various applications.
Some applications are tabulated in Table 2. +e artificial
neural network has multiple applications, but not limited
content, and it can cover all fields. Hence, it is an inter-
disciplinary field.

Virtual reality, decision support system (medical science
and engineering fields), control engineering, data mining,
computer vision, image, pattern recognition, human-ma-
chine interface, and few ANN applications. A system that
can efficiently and intelligently solve the problem with
computation ease is known as an expert system. It poses the
ability to learn the environment, think, and apply the gained
experience to complete the given task without assistance
from the human being.

+e system with many acquired knowledge based on
many examples, wholly deriving the description of patterns
and acquiring knowledge, is a complex problem in pattern
recognition, natural language processing, speech, and
computer vision applications.+e human recalls the pattern,
but the machine recall of the data pattern can be in the form
of handwriting speech even though the sound of commu-
nication is different at various levels in the case of appro-
priate human identification . +e pattern was not clearly
defined but also was based on the knowledge humans
identified; why not a machine can identify? +is question
arises from the leading research for the development of
existing models in the field of ANN. +e human identifies
and recognizes the pattern or input based on various samples
and examples’ continuous learning ability.

In medical practice, ANN is used for medical disease
diagnostics because identifying the disease is a challenging
task for the medical practitioner and doctor because there
will be an overlap of symptoms of various illnesses. Hence,
there are no specific guidelines about disease identification
based on the medical practice’s experience and knowledge;
doctors are suggesting the appropriate treatment for the
patients. Sometimes, due to human error, patients were
affected and they suffered unfair treatment because of the
diseases’ improper identification. To mitigate the above-said
problems, nowadays, an artificial neural network occurs with
a vital role in diagnosing patients’ conditions.

A game-playing, self-regulated vehicle, self-control ex-
pert system, natural language processing, robotics, etc., are
some thrust research fields of AI.

Forecasting, regression, classification, and diagnosis of
diseases is based on the medical field’s symptoms, computer
vision, natural language processing (NLP), engineering, and
science applications; the artificial neural network is widely
used nowadays because of the promising solution to the
challenging problem.

4. Proposed Various Artificial Neural
Network for Various
Forecasting Applications

Although artificial neural networks are suitable for various
applications, this paper carries out modeling and analyzes
artificial neural networks’ effectiveness in forecasting ap-
plications like solar irradiance forecasting, rainfall fore-
casting, and temperature forecasting to aid sustainability.
+e roadmap of the proposed forecasting model is shown in
Figure 2.

4.1. ProposedMultilayer Perceptron Neural Network for Solar
Irradiance Forecasting. +is paper proposed five meteoro-
logical input parameters based on a multilayer perceptron
neural network [27]. +e multilayer perceptron neural
network (MLPNN) consists of one or over one hidden layer,
which performs better in computational efficiency than a
single-layer perceptron neural network. It belongs to the
feedforward neural network and is associated with a su-
pervised learning rule to explore synaptic weight values, and
it has a complex problem-solving ability.

+e proposed multilayer perceptron neural network is
arranged into an input layer, one or more hidden layers, and
an output layer. Regarding the hidden layers and nonlinear
transfer function, the multilayer perceptron neural network
can handle linear and nonlinear relationships between the
input and output vectors. In the hidden layer, the hyperbolic
tangent sigmoid activation function (nonlinear transfer
function) is adopted, and the proposed neural network is
trained by employing the backpropagation gradient descent
learning rule. +e proposed multilayer neural network in-
duces sped-up convergence because it is a fully connected
network.

+e proposed multilayer perceptron neural network-
based forecasting model for solar irradiance forecasting
considers the solar irradiance impacting parameters as the
inputs such as Solar Irradiance (SI), Temperature (TD),
Wind Speed (WS), Dew Point (DP), and Cloud Cover
(CC). +ese five meteorological input parameters are of
much impact on solar irradiance. Hence, these parameters
are accounted as the input parameters for the proposed
neural network. +e forecasted solar irradiance is viewed as
the output neuron in the single output layer.

+e proposed five input-based multilayer perceptron
neural networks aim to achieve the best solar irradiance
forecast to reduce the minimum error values. +e proposed
five input-based multilayer perceptron neural networks for
solar irradiance structural design are depicted in Figure 3.
Table 3 presents the proposed multilayer perceptron neural
network design parameters. For the proposed neural net-
work, model-independent computation is performed for
each of the layers present in the neural network with respect
to the received data.+e computed outcomes are transferred
to the next immediate layer as an input. +en, the neural
network output is then obtained from the output layer; this
process flow is clearly understood by Figure 3. During the
training process, the involved computations are given as follows.
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+e proposed MLPNN input vector:

K � [SI, TD, WS, DP, CC]. (1)

+e proposed MLPNN output vector:

J � SIf􏽨 􏽩. (2)

+e proposed MLPNN synaptic weight vectors between
the input vector to the hidden vector:

SV �
SV11, SV12, . . . , SV1h, SV21, SV22, . . . , SV2h, SV31, SV32, . . . , SV3h,

SV41, SV42, . . . , SV4h, SV51, SV52, . . . , SV5h

􏼢 􏼣. (3)

Table 2: Applications of ANN in various fields.

Field Application

ANN (Artificial Neural Network)

Computer science and engineering

NLP (natural language processing)
Human machine interface

Image processing
Virtual reality
Data mining

Pattern recognition
Image and pattern classification

Electrical and electronics engineering

Fault identification
Process and control system

Systems integration
Forecasting of energy and power

Civil engineering Design of optimal structure
Material selection and decision making

Mechanical engineering
Robotics

Process optimization
Material design

Aeronautical engineering Aircraft design
Satellite and space application

Medical science Classification, identification, and diagnosis of diseases
Decision support system

Environmental engineering Weather forecasting
Rainfall forecasting

Other fields Economic forecasting
Forex forecasting

ANN-based
forecasting models

Analysis with various
hidden neurons

Proposed 
forecasting model’s 

results with 
reduced forecasting 

errors

Studied different ANN
architecture, types, and

applications

Applications

Multilayer
Perceptron Neural

Network (MLPNN)

Solar Irradiance
forecasting

Improved Back
Propagation Neural
Network (IBPNN)

Elman Neural
Network (ENN)

Rainfall
forecasting

Temperature
forecasting

Figure 2: Proposed forecasting model road map.
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+e proposed MLPNN obtains the net input of the
hidden layer and subsequently the output of the hidden
layer,

Yq � f 􏽘

5

p�1
􏽘

h

q�1
KpSVpq

⎛⎝ ⎞⎠, (4)

where K is the input vector, SV is the synaptic weights
between the input layer and hidden layer, and h is the
number of hidden neurons.

+e proposed MLPNN synaptic weight vectors between
the hidden to output vector:

SW � SW1, SW2, . . . . . . , SWh􏼂 􏼃. (5)

+e proposed MLPNN obtains the net input of the
output layer and subsequently its neural network final
output:

Z � f 􏽘
h

q�1
YqSWq􏼐 􏼑⎛⎝ ⎞⎠,

q � 1, 2, . . . .., h,

(6)

where SW is the synaptic weight between the hidden layer
and output layer, and “f” is the activation function, namely,
the tangent sigmoidal activation function.

4.2. Proposed Improved Backpropagation Neural Network for
Rainfall Forecasting. +e multilayer feedforward neural
network with a momentum-based backpropagation learning
algorithm is known as the proposed Improved Back-
propagation Neural Network (IBPNN) [28]. IBPNN can
balance between generalization and the network’s memo-
rization. +e proposed improved backpropagation neural
network is arranged into the input layer, hidden layer, and
output layer. +e proposed improved backpropagation
neural network training stages are classified into three
phases: feedforward stage, error computation stage, weight
modification, and update stage. +e processing elements
present in the proposed feedforward neural networks per-
form an independent computation based on a considered set
of input data and synaptic weights with a continuous dif-
ferential activation function, and the obtained outcomes are
passed to the successive layers, and then a final output is
achieved from the output layer, which is compared with the
target for error computation. Evaluated error is propagated

… …

Output
Layer

Hidden
Layer

Input
Layer

Input Parameters

Forecast Output

SW

SV

Figure 3: Structural design of the proposed MLPNN.

Table 3: Designed parameters of the proposed various artificial neural networks.

Improved backpropagation neural network Multilayer perceptron neural network Elman neural network
Input neuron� 5 Input neuron� 5 Input neuron� 5
Hidden layer� 1 Hidden layer� 1 Hidden layer� 1
Output neuron� 1 RFf Output neuron� 1 SIf Output neuron� 1 TDf

Epochs� 2000 Epochs� 2000 Epochs� 2000
Learning rate� 0.01 Learning rate� 0.1 Learning rate� 0.1
Momentum factor� 0.9 +reshold� 1 +reshold� 1
+reshold� 1
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backward via the output layer-hidden layer-input layer to
achieve minimal error.

For the proposed improved backpropagation neural
network based on the given set of training inputs and target
pairs, the synaptic weights changed and updated, leading to
accurate rainfall forecasting with minimal error. +e
structural design of the proposed five-input-based improved
backpropagation neural network for rainfall forecasting is
illustrated in Figure 4.

+e rainfall is influenced by various variables such as
temperature, precipitation of water content, wind speed, and
relative humidity. Hence, the proposed neural networks
consider these variables as the neural network’s inputs to
overcome the variance in the atmosphere. +e proposed
improved backpropagation neural network learning algo-
rithm includes a momentum factor, making the neural
network get faster convergence.

(K1, K2, K3, K4, K5: J) � (Rainfall, Precipitation of Wa-
ter Content, Temperature, Relative Humidity, Wind Speed:
Forecasted Rainfall).

K1, K2, K3, K4, K5: J( 􏼁 � RF, PWC, TD, RH, WS: RFf􏼐 􏼑,

(7)

where RFf is the forecasted rainfall.
+e proposed IBPNN input vector:

K � [RF, PWC, T D, RH, WS]. (8)

+e proposed IBPNN output vector:

J � RFf􏽨 􏽩. (9)

+e proposed IBPNN synaptic weight vectors from the
input layer to the hidden layer:

SV �
SV11, SV12, . . . , SV1h, SV21, SV22, . . . , SV2h, SV31, SV32, . . . , SV3h,

SV41, SV42, . . . , SV4h, SV51, SV52, . . . , SV5h

􏼢 􏼣. (10)

+e proposed IBPNN net input of the hidden layer:

Yinq � 􏽘
5

p�1
􏽘

h

q�1
KpSVpq. (11)

+e proposed IBPNN output of the hidden layer:

Yq � f 􏽘
5

p�1
􏽘

h

q�1
KpSVpq

⎛⎝ ⎞⎠. (12)

where K is the input of IBPNN, SV is the synaptic weights
between the input layer and hidden layer, and h is the
number of hidden neurons.

+e proposed IBPNN synaptic weight vectors from the
hidden layer to the output layer:

SW � SW1, SW2, . . . . . . , SWh􏼂 􏼃. (13)

+e proposed IBPNN net input of the output layer:

Zin � 􏽘
h

q�1
YqSWq􏼐 􏼑. (14)

+e proposed IBPNN output:

Z � f 􏽘
h

q�1
YqSWq􏼐 􏼑⎛⎝ ⎞⎠,

q � 1, 2, . . . .., h,

(15)

where SW is the synaptic weight between the hidden
layer and the output layer and f is the activation function.

+e proposed IBPNN computed error in the output layer:

E � Tr − Z( 􏼁f′ Zin( 􏼁, (16)

where f′(Zin) is the derivative of the net input of the output
layer.

+e evaluated error (E) is propagated back to the hidden
layer.

… … Hidden
Layer

Forecast Output

Input
Layer

Output
Layer

Error

Target

SW

SV

Input Parameters

Figure 4: Structural design of IBPNN.
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In the proposed IBPNN, each hidden neuron (Yq, q �

1, 2, . . . ., h) sums its delta inputs from the output layer
neurons:

Einq � 􏽘
h

q�1
ESWq. (17)

+e proposed IBPNN error in the hidden layer:

Eq � Einqf′ Yin q􏼐 􏼑, (18)

where f′(Yinq) is the derivative of the net input of the
hidden layer.

+e computed error (Eq) is propagated back to the input
layer to minimize the error during the backpropagation
stage:

The proposed IBPNN error in the output layer, � [E]. (19)

For the proposed IBPNNerror in the hidden layer, � Ej􏽨 􏽩.

(20)

+e proposed improved backpropagation neural net-
work mathematical equations for the synaptic weight
updating process were as follows:

SWq(n + 1) � SWq(n) + αEYq + η SWq(n) − SWq(n − 1)􏽨 􏽩,

(21)

SVpq(n + 1) � SVpq(n) + αEqkp + η SVpq(n) − SVpq(n − 1)􏽨 􏽩,

(22)

where α is the learning rate and η is the momentum factor.
+e synaptic weights are updated and changed using the

mathematical equations (21) and (22). +e learning stages of
the proposed neural network and weight updating process
are continued in the proposed IBPNN until attaining the
stopping condition (i.e., set value).

4.3. Proposed Elman Neural Network for Temperature
Forecasting. +e feedback neural network has advantages
over the feedforward network; with feedback from the
output, the neural network stability and performance can be
improved. In a feedback neural network, Elman neural
network (ENN) is a famous feedback neural network, which
Elman suggested in 1990 [29–31]. Because of the superior
performance, Elman network can be used for various ap-
plications such as forecasting, speech recognition, modeling,
and control. Like the feedforward neural network arranged
into the input layer, hidden layer, and output layer, onemore
layer is also added into the feedback neural network: the
feedback layer or recurrent layer. +e feedback storage and
memory retaining have been done with the help of the
recurrent layer. It also copies the one-step delay in the
hidden layer. With the help of the internal connection
proposed, Elman neural network dynamic characteristics are
achieved. +e proposed Elman neural network-based fore-
casting model hidden layer is associated with the hyperbolic

tangent sigmoid activation function, and the output layer is
associated with the purelin activation function.

+e proposed temperature forecasting model is devel-
oped using an Elman neural network with five inputs such as
Temperature (T D), Dew Point (DP), Solar Irradiance (SI),
Wind Speed (WS), and Relative Humidity (RH). +e
proposed Elman neural network complexity is reduced to a
single hidden layer with various hidden neurons and one
output layer with a single output neuron, i.e., forecast
temperature. +e proposed Elman neural network’s objec-
tive is to achieve the accurate forecasting of temperature
with reduced convergence time and minimal error. +e
structural design of the Elman neural network is shown in
Figure 5.

During the training process, the involved computations
are given as follows:

(K1, K2, K3, K4, K5: J) � (Temperature, Dew Point, So-
lar Irradiance, Wind Speed, Relative Humidity: Forecast
Temperature).

(K1, K2, K3, K4, K5: J) � (T D, DP , SI, WS, RH: T

Df), where TDf is the Forecast Temperature in Degrees.
Let SVc be the synaptic weights between the context layer

and the input layer.
Let SV be the synaptic weights between the input layer

and the hidden layer.
Let SV2 be the synaptic weights between the hidden layer

and the recurrent link layer.
Let SW be the synaptic weights between the hidden layer

and the output layer.
Let h(·) be the activation function, namely, the hyper-

bolic tangent sigmoid activation function adopted for the
hidden layer.

Let f(·) be the activation function, namely, the
purelin activation function which is adopted for the
output layer.

Figure 5 infers that the proposed Elman neural network
comprising each layer is performing independent compu-
tations on receiving data. +e obtained output is passed to
the next successive layer, and after that, finally, from the
output layer, the neural network output is computed. +e
proposed Elman neural network has the ability that previous
input influences the current input responses. +e input
K(X − 1) passes through the hidden layer that multiplies the
synaptic weight (SV) with the association of the hyperbolic
tangent sigmoid activation function. In addition to the
previous state output SVcKc(X), the current input
SVK(X − 1) was also added, which aids the proposed
feedback neural network to efficiently learn the function.+e
value K(X) is passed through an output layer multiplied by
the synaptic weight SW with the association of the purelin
activation function.

+e proposed ENN input vector:

K � [TD, DP, SI, WS, RH]. (23)

+e proposed ENN output vector:

J � TDf􏽨 􏽩. (24)
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+e proposed ENN synaptic weight vector between
inputs to the hidden vector:

SV �
SV11, SV12, . . . , SV1h, SV21, SV22, . . . , SV2h, SV31, SV32, . . . , SV3h,

SV41, SV42, . . . , SV4h, SV51, SV52. . . . , SV5h

􏼢 􏼣. (25)

+e proposed ENN synaptic weight vector of the re-
current link layer vector:

SV2 � SV21, SV22, . . . ., SV2h􏼂 􏼃. (26)

+e proposed ENN synaptic weight vector of the output
layer vector:

SW � SW11, SW21, . . . ., SWho􏼂 􏼃. (27)

+e proposed ENN Synaptic weight vector of the re-
current link layer with the input vector:

SVc �
SVc11, SVc12, . . . , SVc1h, SVc21, SVc22, . . . , SVc2h, SVc31, SVc32, . . . ,

SVc3h, SVc41, SVc42, . . . , SVc4h, SVc51, SVc52, . . . , SVc5h

􏼢 􏼣. (28)

+e proposed ENN input:

K(X) � h SVcKc(X) + SVK(X − 1)( 􏼁. (29)

+e proposed ENN output:

J(X) � f(SWK(X)). (30)

+e proposed ENN input of the recurrent link layer:

Kc(X) � K(X − 1). (31)

4.4. Proposed Artificial Neural Network Experimental
Implementation. In the current year, forecasting is a vital
tool because people can plan according to it. Solar irradiance
forecasting is a crucial factor in the solar energy system.
Based on the forecasted solar irradiance, solar energy can be
estimated to operate better than the power system and the
possibility of extracting maximum solar power. It carried
out many research works in solar irradiance forecasting
[32–34]. Although a more accurate solar irradiance
forecasting model is still needed, it motivates the authors
to develop multilayer perceptron neural network-based

… …
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Link
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Figure 5: Structural design of ENN.
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solar irradiance forecasting. +e meteorological center
tries to forecast the precise prediction of weather reports
(Temperature) and rainfall. +e predicted output does
not match the current values because these values are
highly influenced by the atmosphere variables like wind
speed, cloud cover, precipitation of water content, etc.
Some researchers endeavor to forecast the rainfall
[35–37] and temperature [38–40] because of the volatile
nature outperforming the generic forecasting model re-
quired. +is fact motivates the development of the high
accurate forecasting model for rainfall and temperature
forecasting based on the proposed feedforward neural
network (i.e., improved backpropagation neural net-
work) and feedback neural network (i.e., Elman neural
network), respectively.

+e design and development stage, training stage,
and testing stage are the three stages of the proposed
artificial neural networks. +e input-related data for the
chosen applications are gathered, normalized into the
range of zero to one through min-max normalization
(variance eliminated), and then the training and testing
process of the designed neural network is carried out
with the acquired training and testing data sets, re-
spectively. +e validity of the proposed neural network-
based forecasting model has been proven and analyzed
based on the computed error validation process. It re-
quires the proper design in neural network modeling
because the improper selection of design parameters
leads to poor performance.

4.4.1. Data Collection. For the considered solar irradiance
forecasting applications, rainfall forecasting and tempera-
ture-related real-time input parameters are acquired from
the National Oceanic and Atmospheric Administration,
United States.

For the considered solar irradiance forecasting, the re-
lated inputs (Solar Irradiance (SI), Temperature (TD),
Wind Speed (WS), Dew Point (DP), and Cloud Cover
(CC)) data samples are acquired from the period of January
2014 to December 2019, which comprise 175200 total
number of data samples of each input.

For the considered rainfall forecasting, the related inputs
(Rainfall (RF), Precipitation of Water Content (PCW),
Temperature (T D), Relative Humidity (RH), and Wind
Speed (WS)) are acquired from the period of April 2014 to
April 2019, which consist of 52560 data samples of each
input.

For the considered temperature forecasting application,
the related input parameters (Temperature (TD) , Dew
Point (DP), Solar Irradiance (SI), Wind Speed (WS), and
Relative Humidity (RH)) are acquired from the period of
March 2012 to April 2019, which consists of 1051200 data
samples of each considered input.

4.4.2. Data Normalization. +e data normalization is re-
quired because the data collected from the resource center
are real-time data that possess the variance with respect to
various ranges and various units to remove the variance of

the acquired real-time data. +e data normalization process,
collecting data irrespective of multiple ranges and different
units, classifies the data in the range from 0 to 1. In data
normalization, various methods are available for this pro-
posed work; min-max normalization adopts the proposed
artificial neural network-based forecasting model. +e
proposed artificial neural network’s numerical computation
and accuracy can be improved by employing data nor-
malization. +e following transformational mathematical
equation is used for the normalization of the real-time
collected data.

Normalized input, Kp
′ �

Kp − Kmin

Kmax − Kmin
􏼠 􏼡 Kmax′ − Kmin′( 􏼁 + Kmin′ ,

(32)

where Kp is the collected real-time input data, Kmin is the
minimal input data, Kmax is the maximum input data, Kmin′
is the minimal target value, and Kmax′ is the maximum target
value.

4.4.3. Proposed Artificial Neural Network Modeling. +e
designed parameters of the proposed artificial neural net-
works are presented in Table 3. +e proposed various ar-
tificial neural networks modeling parameter dimensions
such as the number of input neurons, hidden neurons,
output neurons, the number of epochs, learning rate, mo-
mentum factor, and the threshold value are tabulated in
Table 3.

+e implemented multilayer-perceptron-neural-net-
work- (MLPNN-) based solar irradiance forecasting model
inputs are passed to the hidden layer that is multiplied by
synaptic weight (SV) with hyperbolic tangent sigmoid ac-
tivation function. +e hidden layer’s output is passed to the
output layer that is multiplied by synaptic weight (SW) with
the purelin activation function. We use the Levenberg-
Marquardt training algorithm for the proposed MLPNN-
based solar irradiance forecasting model training process.

+e proposed improved-back-propagation-neural-net-
work- (IBPNN-) based rainfall forecasting model inputs are
transmitted to the hidden layer multiplied by the synaptic
weight (SV) utilizing a hyperbolic tangent sigmoid activa-
tion function.+e hidden layer’s output is transmitted to the
output layer multiplied by the synaptic weight (SW) with the
tangential sigmoid activation function. +e training algo-
rithm used for IBPNN is Levenberg- Marquardt back-
propagation training algorithm. +e momentum factor is
included in the learning algorithm, which leads to speed-up
convergence.

+e designed Elman-neural-network- (ENN-) based
temperature forecasting model and the synaptic input
weights (SV) are interconnected to the hidden layer using
the hyperbolic tangent sigmoid activation function. +e
hidden layer’s output is interconnected to the output layer
with synaptic weight (SW) using the purelin activation
function. As a result of training, the previous inputs get
reflected in the Elman neural network. +e training algo-
rithm used for the proposed Elman neural network is
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gradient descent with momentum and an adaptive linear
backpropagation training algorithm.

For all proposed artificial-neural-network-based fore-
casting models, training and testing are done through the
normalized data set. +e validation process is continued
until the stopping condition is reached.

4.4.4. Selection of Number of Hidden Neurons in the Proposed
Artificial Neural Networks. +e most challenging process
in the artificial neural network is selecting the required
number of hidden neurons to place in the artificial neural
network [41–45]. +ere is no generalized formulation and
criterion available for selecting hidden neurons in an
artificial neural network. +e random selection and trial-
and-error methods also take much more time. If the
hidden neurons are too low and too high, both condition
neural networks do not achieve optimal results. Hence,
the proposed artificial neural network, namely, multilayer
neural network, improved backpropagation neural net-
work, and Elman neural network with a single hidden
layer, is preferred because the neural network with a single
hidden layer can solve the problem with less computa-
tional difficulty. In that single hidden layer, the hidden
neurons are varied from one (1) to fifteen (15). +e
designed neural network is validated for each considered
hidden neuron, and the obtained results are tabulated.
According to Tables 4–6, appropriated numbers of hidden
neurons are identified for the proposed artificial neural
network based on the minimal error and minimal con-
vergence time.

4.4.5. Training and Testing of the Proposed Artificial Neural
Network Performance. +e proposed solar irradiance fore-
casting model is built using the training data set. +e
proposed MLPNN-based solar forecasting model perfor-
mance is verified based on the testing data set. +e acquired
data are classified into two sets, like training and testing. +e
training set comprises 70 percentages of the obtained data
samples, and the testing set comprises the remaining unseen
30 percentages of acquired data samples. For the solar ir-
radiance forecasting, the acquired data samples are 175200
real-time data samples, 70% data samples (122640) are used
for the training stage, and the unseen data samples (52560)
are used for the testing stage of the proposed neural network.

+e proposed rainfall forecasting model is built on the
training data set, and the proposed IBPNN based rainfall
forecasting model performance is verified based on the
testing data set.+e acquired data are classified into two sets,
training and testing, respectively. +e training set comprises
70 percentages of the obtained data samples, and the testing
set consists of the remaining unseen 30 percentages of
obtained data samples. For rainfall forecasting, the acquired
data samples are 52560 real-time data samples, 70% data
samples (36792) are used for the training stage, and the
unseen data samples (15768) are used for the proposed
testing stage neural network.

+e proposed temperature forecasting model is built on
the training data set, and the proposed ENN-based

temperature forecasting model performance is verified based
on the testing data set. +e acquired data are classified into
two sets, like training and testing.+e training set consists of
70 percentages of the obtained data samples, and the testing
set consists of the remaining unseen 30 percentages of ac-
quired data samples. For temperature forecasting, the ac-
quired data samples are 1051200 real-time data samples, 70%
of data samples (735840) are used for the training, and 30%
of the unseen data samples (315360) are used for the testing
stage of the proposed neural network.

+e proposed artificial neural network performance is
validated based on the training and testing set. +e error
qualifiers like R, MAPE, MSE, MAE, RMSE, MRE, and Time
are used to verify the proposed artificial neural network
performance. +e number of hidden neurons that leads to
reduced error is fixed as the optimal number of hidden
neurons in the proposed artificial neural network.

4.4.6. Error Qualifier of the Proposed Artificial Neural
Networks. +e performance of the proposed various arti-
ficial neural networks such as multilayer perceptron neural
network, improved backpropagation neural network, and
Elman neural network is verified by the evaluated error
qualifiers, namely, Correlation Coefficient (R), Mean Ab-
solute Percentage Error (MAPE), Mean Square Error (MSE),
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Mean Relative Error (MRE), and Time in Minutes.
+e proposed artificial neural network effectiveness is
evaluated based on the error qualifiers equations (33)–(38).
+e following mathematical equations are used for the error
computation:

MAPE �
100
N

􏽘

N

p�1

Kp
′ − K

f
p􏼐 􏼑

Kp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (33)

MSE �
1
N

􏽘

N

p�1
Kp
′ − K

f
p􏼐 􏼑

2
, (34)

MAE �
1
N

􏽘

N

p�1
Kp
′ − K

f
p

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (35)
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MRE �
1
N

􏽘
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p�1
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Kp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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p�1 K
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2
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where N is total number of data samples, Kp
′ is target

output, Kpis average target output, and K
f
p is forecasted

output.
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4.5. Validation Experimental Results of the Proposed Artificial
Neural Network for Various Forecasting Applications. +e
proposed artificial-neural-networks-based forecasting
models are experimentally simulated in MATLAB platform
version 2013 running on Acer computers with Pentium (R)
Dual-Core processor running at 2.30GHz with 2GB of
RAM.

4.5.1. Experimental Results of the Proposed Multilayer-Per-
ceptron-Neural-Network-Based Solar Irradiance Forecasting.
+e designed multilayer-perceptron-neural-network-based
solar irradiance forecasting model performance is validated
experimentally, and the got results with various numbers of
hidden neurons (1–15) are tabulated in Table 4 and analyzed.
From the analysis of Table 4, it is observed that the proposed
multilayer-perceptron-neural-network-based solar irradiance

forecasting model performs better for various hidden
neurons.

+e proposed forecasting model output is changed
drastically by varying the hidden neuron in the proposed
multilayer perceptron neural network’s hidden layer. +e
hidden neuron in the hidden layer increases further and
makes the neural network unstable, while decreasing the
hidden neuron further also leads the neural network to
become unstable. Based on the achieved solar irradiance
forecasting results among 1 to 15 hidden neurons, the
proposed multilayer perceptron neural network contains a
single hidden layer that possesses 14 hidden neurons that
provide the best outputs with minimal error and reduced
convergence time.

+erefore, the proposed multilayer perceptron neural
network with five inputs, a single hidden layer, 14 hidden
neurons in the hidden layer, and a single output neuron

Table 4: +e proposed five input-based multilayer perceptron neural network statistical performance analyses with various hidden neurons
for solar irradiance forecasting.

Number of hidden neurons
Error qualifier

R MAPE MSE MAE RMSE MRE Time (min)
1 1 0.0029 7.1344e-05 0.0063 0.0084 2.9047e-05 3.17
2 1 0.0014 1.8264e-05 0.0031 0.0043 1.4451e-05 4.13
3 1 8.2990e-04 7.3104e-06 0.0018 0.0027 8.2990e-06 2.03
4 1 0.0020 4.3011e-05 0.0043 0.0066 1.9727e-05 2.32
5 1 7.2196e-04 5.7284e-06 0.0016 0.0024 7.2196e-06 3.32
6 1 0.0025 7.1011e-05 0.0055 0.0084 2.5175e-05 1.31
7 1 0.0026 7.4721e-05 0.0055 0.0086 2.5515e-05 2.03
8 1 8.2778e-04 7.9809e-06 0.0018 0.0028 8.2778e-06 1.48
9 1 7.3968e-04 6.2360e-06 0.0016 0.0025 7.3968e-06 3.32
10 1 7.5442e-04 6.5662e-06 0.0016 0.0026 7.5442e-06 3.50
11 1 0.0018 3.8319e-05 0.0040 0.0062 1.8279e-05 2.11
12 1 5.1926e-04 3.0656e-06 0.0011 0.0018 5.1926e-06 2.17
13 1 3.2149e-04 1.1717e-06 6.9914e-04 0.0011 3.2149e-06 5.04
14 1 2.3034e-04 5.9791e-07 5.0093e-04 7.7324e-04 2.3034e-06 1.32
15 1 0.0012 1.7649e-05 0.0027 0.0042 1.2348e-05 3.02
Bold implies the best results.

Table 5:+e proposed five inputs based on improved backpropagation neural network statistical performance analysis with various hidden
neurons for rainfall forecasting.

Number of hidden neurons
Error qualifier

R MAPE MSE MAE RMSE MRE Time (min)
1 0.98949 8.9725 657.7246 18.1105 25.6461 0.0897 1.21
2 0.1638 100 7.4967e+04 201.8431 273.8012 1.000 0.01
3 0.99991 0.7373 5.4600 1.4882 2.3367 0.0074 0.57
4 1 0.2696 0.6398 0.5441 0.7999 0.0027 1.59
5 1 0.0945 0.0864 0.1906 0.2939 9.4451e-04 4.15
6 1 0.0344 0.0143 0.0695 0.1194 3.4418e-04 1.54
7 1 0.0158 0.0042 0.0320 0.0645 1.5841e-04 1.24
8 1 0.0203 0.0077 0.0409 0.0880 2.0264e-04 1.36
9 1 0.0199 0.0079 0.0401 0.0869 1.9879e-04 1.49
10 1 0.0170 0.0066 0.0344 0.0815 1.7022e-04 1.52
11 1 0.0357 0.1512 0.0721 0.3889 3.5704e-04 1.13
12 1 0.0283 0.0842 0.0572 0.2902 2.8320e-04 3.47
13 1 0.0231 0.2452 0.0466 0.4956 2.3092e-04 3.10
14 1 0.0191 0.3369 0.0385 0.5804 1.9076e-04 5.40
15 1 0.0255 0.6127 0.0515 0.7828 2.5517e-04 8.31
Bold implies the best results.
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structure is identified as the best framework. +e obtained
output plots based on this structural framework-associated
forecasting model are shown in Figure 6. +e number of data
vs. solar irradiance is presented in Figure 7. +e real-time
target solar irradiance compared with forecasted solar irra-
diance is illustrated in Figure 8. Error vs. number of data is
shown in Figure 9. Relationship between forecast solar ir-
radiance and real-time target solar irradiance, respectively.
Because of the space limitation, portions of the obtained
results are shown in Figures 6–9.+e 14 hidden neuron-based
developed neural network (MLPNN)models forecasting solar
irradiance are much matched with the real-time target solar
irradiance. Hence, the error values are reduced to the min-
imal, clearly understood from Figures 7 and 8, respectively.

Figure 8 shows that the proposed neural network with 14
hidden neurons results in a minimal error on the considered
data samples. +e relationship between forecasted solar
irradiance and real-time target solar irradiance is a linear
relationship that illustrates that the forecasted solar irradi-
ance accurately matches the real-time target. Hence, the
proposed neural network (MLPNN) proved its validity,
which is noticed in Figure 9.

4.5.2. Experimental Results of Proposed Improved Back-
propagation Neural Network-Based Rainfall Forecasting.
+e proposed improved backpropagation neural network-
based rainfall forecasting model performance is validated
experimentally using the collected data, and the obtained
results of the proposed neural network with various
numbers of hidden neurons (1–15) are tabulated in Table 5.
According to the obtained results in Table 5, it is noticed by
careful analyses that the proposed rainfall forecasting
model based on the improved backpropagation neural
network performs very poorly for the hidden neurons 1 and
2 except that for the remaining hidden neurons results in
the good output. +e IBPNN-based forecasting model
achieved outcome is changed drastically with the hidden

neurons changes in the proposed improved back-
propagation neural network’s hidden layer.

In a neural network, the neural network stability and
performance are highly affected by hidden neurons. Based
on the analysis of the obtained results, it is observed that the
proposed improved backpropagation neural network with a
single hidden layer and seven hidden neurons in the hidden-
layer-based design neural network (IBPNN) achieves su-
perior performance in terms of reduced error and reduced
convergence speed compared among other hidden neurons
based on design neural networks.

+erefore, the proposed improved backpropagation
neural network with five inputs, a single hidden layer, seven
hidden neurons in the hidden layer, and a single output layer
with one output neuron has been identified as the optimal
structural framework of the proposed neural network. +e
obtained rainfall forecasting plots with seven hidden neu-
rons-based design IBPNN are depicted in Figure 10. Rainfall
in mm vs. data samples is shown in Figure 11. Original target
rainfall compared with forecast rainfall is illustrated in
Figure 12. Evaluation error metric vs. the number of data
samples is presented in Figure 13, the relationship between
forecast rainfall and original target rainfall, respectively.
Because of the space limitation, portions of the obtained
results are shown in Figures 10–13.

+e considered data sample for the validation of the
neural network is represented in Figure 10. In the seven-
hidden-neurons-based developed backpropagation neural
network model, where the forecast rainfall is a relative value
compared with the original target rainfall, the forecasting
accuracy is better which is understood from Figure 11. It is
observed that the designed IBPNN achieves minimal errors
for more clarity; the evaluation error with respect to the data
samples is depicted in Figure 12. +e relationship between
forecast rainfall and original target rainfall is a linear rela-
tionship, which illustrates that the forecast rainfall is higher,
accurately matched with the original target, which is clearly
observed in Figure 13.

Table 6:+e proposed five input-based Elman neural network statistical performance analyses with various hidden neurons for temperature
forecasting.

Number of hidden neurons
Error qualifier

MAPE MSE MAE RMSE MRE Time (sec)
1 0.6612 0.1299 0.1488 0.3605 0.0066 22
2 1.2701 0.4218 0.2859 0.6494 0.0127 31
3 0.8163 0.1949 0.1837 0.4415 0.0082 29
4 0.6202 0.0684 0.1396 0.2615 0.0062 33
5 1.0752 0.3555 0.2420 0.5962 0.0108 34
6 0.4970 0.0821 0.1119 0.2866 0.0050 33
7 0.1069 0.0035 0.0241 0.0590 0.0011 44
8 0.1013 0.0015 0.0228 0.0384 0.0010 35
9 0.4501 0.0671 0.1013 0.2591 0.0045 42
10 0.9629 0.2676 0.2167 0.5173 0.0096 45
11 0.1023 0.0011 0.0230 0.0332 0.0010 22
12 0.3122 0.0319 0.0703 0.1787 0.0031 46
13 0.1715 0.0025 0.0386 0.0502 0.0017 39
14 0.4440 0.0473 0.0999 0.2175 0.0044 49
15 0.8641 0.2005 0.1945 0.4478 0.0086 51
Bold implies the best results.
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Figure 6: Number of data vs. solar irradiance.
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Figure 7: Real-time target solar irradiance compared with forecasted solar irradiance.
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4.5.3. Experimental Results of the Proposed Elman-Neural-
Network-Based Temperature Forecasting. +e proposed
temperature forecasting models based on Elman neural
network validated with the acquired data samples and
achieved experimental outputs based on different numbers
of hidden neurons from 1 to 15 are tabulated in Table 6.
According to the achieved results in Table 6, it is observed
that the proposed Elman-neural-network-based forecasting
model performs well for all hidden neurons. +e proposed
Elman-neural-network- (ENN-) based temperature fore-
casting model output is changed drastically due to the

number of hidden neurons varying in the proposed Elman
neural network’s hidden layer.

In a feedback neural network, hidden neurons pro-
foundly influence the aspects of neural network stability and
performance convergence. From the result analysis of the
obtained outputs, it is noticed that the designed Elman
neural network with a single hidden layer and 11 hidden
neurons in the hidden layer achieves better performance in
terms of reduced error and reduced convergence speed
compared among other numbers of hidden neurons based
on the designed neural networks. +erefore, the proposed
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temperature forecasting model based on Elman neural
network with five inputs, a single hidden layer, 11 hidden
neurons in the hidden layer, and a single output layer with
one output neuron has been identified as the useful struc-
tural framework of the proposed neural network.

+e obtained temperature forecasting plots with respect
to the 11 hidden neuron-based design ENNs are shown in

Figure 14. Temperature vs. data samples is presented in
Figure 15. Comparison between target and forecasted
temperature is presented in Figure 16. Error vs. number of
data is shown in Figure 17, the relationship between target
and forecast temperature, respectively. Due to the space
limitation, portions of the obtained results are shown in
Figures 14–17.
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+e 11 hidden neurons associated with the single hidden
layer Elman neural network forecast temperature match the
target values. Hence, the error values are the least; it is clearly

understood from Figures 15 and 16, respectively. +e re-
lationship between forecast temperature and the target
temperature is linear; it is noticed from Figure 17.
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5. Conclusion

Nowadays, human expectations and needs are increasing
widely. All are interested in artificial intelligence to make
their work easy and effective.+is paper discusses the history
of artificial neural networks, the generation of artificial
neural networks, the generalized process involved in

artificial neural networks, the various types, structural de-
sign, and artificial neural network applications that are
elucidated in a detailedmanner.+e artificial neural network
can address multiple applications, but this paper forecasting
application is considered for performance analysis.

+e highlights of the differences between the proposed
models and the existing ones are as follows:
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(i) +e proposedmodels were developed with five years,
five years, and seven years’ data sets, respectively, for
solar irradiance, rainfall, and temperature forecast-
ing applications. +us, we overcome the interannual
variability-based uncertainty.

(ii) +e proposed forecasting models possess minimal
design complexity, are feasible to implement, and
result in minor error qualifiers.

+is paper proposed two feedforward neural networks,
such asmultilayer perceptron neural network (MLPNN) and
improved backpropagation neural network (IBPNN), which
could be used for forecasting applications like solar irra-
diance and rainfall forecasting, respectively. Moreover, the
proposed one-feedback neural network, such as Elman
neural network (ENN), can be used for the temperature
forecasting application. +e proposed artificial neural net-
works (MLPNN, IBPNN, and ENN) performances are
statistically analyzed with various hidden neurons. +e
designed neural network–based forecasting model effec-
tiveness is successfully validated using the acquired real-time
training and test data set. Error qualifiers are used to analyze
the performance of the proposed neural networks.
According to the obtained results from the proposed arti-
ficial neural network–based forecasting model, it is observed
that the proposed neural network–based forecasting model
outperforms in all considered applications with much
minimal error and reduced convergence time. +e proposed
multilayer perceptron neural network, which comprises 5
inputs, single hidden layer, and 14 hidden neurons achieves
the minimal errors like R� 1, MAPE� 2.3034e-04,
MSE� 5.9791e-07, MAE� 5.0093e-04, RMSE� 7.7324e-04,
MRE� 2.3034e-06, and Time� 1.32minutes for solar irra-
diance forecasting application. +e suggested improved
backpropagation neural network, which comprises five in-
puts, a single hidden layer, and seven hidden neurons,
achieves minimal errors like R� 1, MAPE� 0.0158,
MSE� 0.0042, MAE� 0.0320, RMSE� 0.0645, MRE�

1.5841e-04, and Time� 1.24minutes for rainfall forecasting
application. Similarly, the proposed Elman neural network,
which comprises five inputs, a single hidden layer, and 11
hidden neurons, achieves minimal errors like MAPE�

0.1023, MSE� 0.0011, MAE� 0.0230, RMSE� 0.0332,
MRE� 0.0010, and Time� 22 sec for temperature forecasting
application. Hence, the proposed neural network–based
forecasting models proved their validity, and they assist
sustainability.

5.1. Proposed ForecastingModel Limitation and FutureWork.
To efficiently handle big data is one limitation of the pro-
posed forecasting model. +us, the authors can implement
improved intelligent model-based forecasting in future
work.

5.2. Recommendation of Future Direction and Research Scope.
+e building blocks of ANNs are neurons, linkages with
weighted connection, activation function, and learning al-
gorithms. Still, many research works focused on neural

network performance improvement. +e appropriated ar-
chitecture selection was lacking in the field of artificial neural
networks. +ere are no general guidelines available for the
architecture framework. Artificial neural networks can ef-
fectively handle nonlinearity but obtain a feasible solution
that is not generic. It can be overcome by the optimization
algorithm associated with an artificial neural network (hy-
brid model). +e readers can focus their research attention
on the deep learning artificial neural network. However,
ANN provided a promising result. Still, it has inefficiencies
in some other applications like smart grid, natural language
processing, speech recognition, computer vision, and so on,
which lead to the quest to identify the optimal modeling of
ANN.

+e barrier to Growth in Artificial Neural Networks:

(i) Unique and privacy rights of the human being lost
by an artificial neural network

(ii) Scarcity of job opportunities
(iii) Possibility to endanger humans and the

environment

Artificial neural networks have many unique features
and advantages; meanwhile, it has some barriers as well.
+erefore, the advent of science and advancement should be
healthy to benefit society, improve the economy and sus-
tainability, and safeguard the environment and other living
things.
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)e ongoing research work on electric vehicles (EVs) as well as the growing concern around the world to ensure a pollution-free
environment is sure to lead to a significant increase in the number of EVs in the near future.)e electrification of automobiles is an
inevitable trend of future development. However, the growth of EVs relies on several elements: autonomy, the charging practice
and infrastructure, the price, and the high amount of energy needed for supplying EV. )is tendency impacts several points in
transportation such as the road infrastructure and electrical power network.)e aim of this article is the integration of new energy
power sources as a part of the microgrid (MG) to supply EV with dynamic wireless charging. )e main goal is to establish an
energymanagement strategy reducing the running cost.)e purpose is suggested for two kinds of operationmode: relying only on
the MG (island mode) or relying on the MG and the large grid (grid-connected). )e optimization problem is solved on the basis
of the particle swarm optimization (PSO) algorithm. We could note that the stability of the microgrid in the off-grid mode is
better, when the load is close to the output power of the distributed power supply. )rough the coordination and cooperation of
the battery output and the other two distributed power generation units, the microgrid can achieve its autonomy and maximize
the economy of the system operation. )anks to our methodology, a better revenue and an enhanced flexible dispatching of the
system were met in the grid-connected mode as well.

1. Introduction

In recent years, EVs have been seen as a significant alter-
native to ensure faster energy transition and low-carbon
footprint. It drew the attention of many researchers and
manufactures. )e electrification of automobiles is an ex-
pected movement for future development. However, EVs’
autonomy and charging have always been an issue limiting
their development. In a recent report [1], MITstates that the
major challenge is to acquire an infrastructure for a na-
tionwide charging of EVs rather than manufacturing bat-
teries with affordable cost. Hence, in order to increase the
penetration rate of EVs, countries are building large
numbers of charging facilities connecting EVs to electric
power system [2].)ere are 57 charging stations in Morocco
counting more than 92 connectors [3]. Currently, EV could
be charged either by a regular cable or by a magnetic field as

wireless charging. Wired charging stations are the most
commonly used for EV energy supply from the grid [4].
)ese types of stations have many disadvantages.)e battery
charging requires plugging and unplugging under artificial
inert conditions, which poses a safety hazard. On the other
hand, the entire charging process requires manual operation
with low automation. )e wireless power transfer WPT
technology [5, 6] uses a noncontact method for power
transmission, which makes up for the shortcomings of the
traditional direct contact power supply method and has
many advantages.

)e wireless charging could be static or dynamic; the
static mode is proceeded when the vehicle is stopped, while
in the other mode the EV is charged during the motion. )e
technic of dynamic wireless power transfer DWPT could be
the sustainable solution needed for EV’s integration on
transportation systems. However, taking into account the
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randomness of EV charging behaviour and assuming high
penetration rate of EV, this solution represents some dif-
ficulties, with impacts on the infrastructures capacity and
electrical network [7].

)ere have been numerous researches about the impact
of EV charging on the grid in order to set an optimal
recharging method, either by dimensioning an electrical
charging station based on renewable energy [8] or by an
integrated storage system as supercapacitor or batteries to
reduce the peak demand [9].)e literature [10, 11] presented
the conception of fast charging station based on renewable
energies and storage systems would decrease the impact on
the electrical network.

Renewable energy sources, such as solar, hydropower,
and wind, have gradually evolved into the most developing
fields in modern electrical engineering and technology [12].
However, the intermittent nature of photovoltaic (PV) and
wind turbine (WT) power has brought some challenges with
their integration into the local/large grid [13]. In addition,
we may need to think about how to maximize the power
generation efficiency of renewable energy and reduce the
impact on the large power grid within the scope of affordable
investment.

Compared with the traditional power grid, the MG
integrates Distributed Power Sources (DPS) (as photovol-
taic, wind, micro gas turbine, etc.), load, energy storage
system, and control device to form an independent system. It
could be independent or connected to the traditional power
grid. )us, the emergence of MGs related to RE could al-
leviate the conflict between large power grids and DPS. )is
minimizes the possibility of large power grids being dam-
aged by DPS, as well as EV’s large demand [14]. At present,
there are three configurations to optimize energy storage:
best index, optimal energy storage capacity, and system
lowest cost [15]. Literature [16] proposes a model for the
optimal operation of MGs, with the optimization goal of
minimizing the total cost of the system, while meeting
customer needs and system security. An efficient algorithm
based on particle swarm optimization minimizes the total
energy consumption and operating cost of the MG by op-
timizing the adjustment of control variables [17]. )e in-
tegration of Bayesian network theory’s advantage and
particle swarm algorithm provides a new strategy for MG
optimization operation based on Bayesian-particle swarm
algorithm [18]. Literature [19] introduces an energy man-
agement strategy that is used in an independent solar-
powered diesel-storage MG system and uses the enhanced
Pareto evolutionary algorithm to calculate the optimal
configuration of the capacity of each distributed unit. )e
energy management system (EMS) has an important role
and benefit for the optimal management of MG [20]. Op-
timization, scheduling structures, and load shifting are the
main EMS’s challenges to deal with. Reference [21] pre-
sented a control method of demand response on smart grids
and emphasized its utility and benefit for the smart grid.
Based on a heuristic algorithm, an optimization and smart
energy system for an MG related to EV permits reducing the
cost of electricity for a population [22]. An investigation on
the contribution of MG and EVs as key enablers for

sustainable development shows that the integration of RE
and management of EVs charging station all contribute to
affordable and reliable energy system [23].

Microgrids can be a suitable energy supply for EV, with
benefits on both the economic and environmental levels of
the energy systems [24]. As a matter of fact, they can ef-
fectively mitigate the possible risks on the power grid that
could be caused by large-scale charging of EVs [25]. MGs
enable also the local consumption of energy which con-
tributes actively in achieving “zero emission” objective [26].
To be environmentally friendly, the EVs should rely on a
green energy supply in order to operate. Implementing
wireless charging of EV and the new power generation into
MGs will surely be beneficial for increasing EV popularity.
Hence, the development of microgrids as a control strategy
for EV wireless charging is crucial. Wider deployment of EV
wireless charging along with new energy sources will cer-
tainly drive a higher capacity of new energy consumption.

On the basis of the previous discussions (role of MG,
emergence of EV, and its impact on the electrical grid), this
paper explores the necessity of MG energy management
system for an efficient and stable operation.)is MG intends
to supply an electrified road dedicated to the DWPT. )e
paper also establishes an optimized dispatch suitable for a
complementary wind-solar-storage system and puts forward
the corresponding energy management strategy. To solve the
optimization model, the PSO algorithm is used. In fact, the
effectiveness and the accuracy of the optimizationmodel and
energy management strategy proposed in this paper are
verified through calculation examples. Dynamic learning
factors and inertia weights are applied to resolve the opti-
mization problem with PSO algorithm. )e strategy of EMS
with the lowest running cost possible is carried out for two
kinds of operation modes (island mode and grid-connected
mode). Finally, the simulation analysis is achieved with two
different load requirements by EV. )e core of this paper is
organized as follows: Section 2 presents the description of
the studied system. Economic operation dispatch model of
MG for both modes is detailed in Section 3. Section 4 covers
the energy management strategy of the system and the
choice of optimization model. )e efficiency of the optimal
scheduling model proposed was proved in Section 5 through
a case study.

2. System Description

In view of the sustainable development and the turning point
of energy generation, RE production is a crucial factor in the
electricity generation system [27]. In addition, the massive
integration of EV in the future would not only disturb the
electrical network but also contribute to the pollution since it
is supplied by the traditional thermal power plant [28].Wind
power and solar power are combined to form a wind-solar
complementary system presenting a good solution [29].
Compared with solar or wind energy independent power
supply systems, this complementarity is greatly enhanced. It
effectively compensates for the utilization defects of wind or
solar independent systems in terms of resources. )e
combination of solar-wind systems can achieve all-weather
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power generation functions; also, it is equipped with energy
storage devices to guarantee uninterrupted power supply
[30].

Many researchers have developed diverse optimization
models to deal with the EMS problem in MG especially
linked to supplying a population [31], a smart home [32], or
charging EV with regular cable in a traditional recharge
station [33]. However, none of them have covered the
subject of EV’s dynamic wireless charging. Supplying the
vehicle in-motion by DWPT offers the option of spreading
the load along the road and therefore reducing the load
power.)e DWPTconsists in directly feeding the engine; no
physical linking is required between the grid and EV. )e
vehicle could be supplied any time on the day by passing
across the electrified road without the necessity for stopping
to recharge. )is technic seems to be a sustainable solution
to be combined in transportation systems to reduce carbon
dioxide emissions in long distance rides.

Our system, as seen in Figure 1, proposes the integration
of RE (solar and wind) to supply an electrified road destined
to the wireless charging of EV. In addition, a storage device
based on a battery is implemented in order to deal with the
problem of solar and wind energies’ intermittence. )is
system offers a reliable combination of MG technology and
wireless power transmission technology for EV charging.
Two modes would be studied:

(i) First mode: it consists of an isolated MG based on
renewable energy sources along with a storage sys-
tem, called island mode

(ii) Second mode: the same configuration of MG as the
first mode is adopted; the only difference resides in
its connection to the large grid, instead of being
isolated

3. Economic Operation Dispatch
Model of Microgrid

When the MG is operating on islands, it does not interact
with the large grid. )e total energy generated by the dis-
tributed power sources in the isolated MG is used for the
operation of its own load within the MG. In this mode, wind
power and PV power generation in the wind-solar hybrid
MG is not dispatchable. At the same time, the MG is not
connected to the electric energy of the large power grid, so
the dispatching variables only exist in the storage system: the
battery.

In grid-connected operation, the microgrid is con-
nected to the external grid through a quick switch. Energy
exchange between the larger grid and the MG is possible:
selling and buying energy can be done in both directions,
thus realizing the interaction between the MG and the
grid. Both modes need to consider the coordination of the
DPS’s power output with the EV’s demand. Nevertheless,
the difference between the two operation modes is that the
grid-connected one focuses on the interaction with the
larger grid. )e model proposed in this paper considers
both off-grid and grid-connected modes and adopts a
time-of-use tariff model in grid-connected mode, so that

the system can have better revenue and more flexible
dispatching methods.

3.1. Optimal Scheduling Model in the Island Operation Mode

3.1.1. Objective Function. )is paper aims to establish an
economic optimization model for the MG with the lowest
operating cost 24 hours a day. In the island mode, the
transaction of electric energy is stopped, and the MG is
isolated from the large power grid. )e optimization goal is
shown in the following formula:

minMop � 􏽘
24

i�1
COM(pvi) + COM(wti) + COM(bat)􏽨 􏽩 + CP

COM(pvi) � KOMpv
∗Ppvi

COM(w di) � KOMwt
∗Pwti

COM(bati) � KOMbat
∗Pbati

Cp � Pvi ∗ k

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Here, Mop represents the operating cost of the MG in
one day of operation, COM(pvi) represents the operating cost
of photovoltaic power generation equipment at the ith hour,
COM(wti) represents the operating cost of wind power
equipment in the ith hour, COM(bati) represents the operating
cost of the battery storage system at the ith hour, KOM is the
operation and maintenance coefficient of each DPS where
KOMpv

� KOMwt
� 0.1095 $/Kw according to [34], and

KOMbat
� 0.204 $/Kw according to [35]. Cp represents the

penalty fee when there is a power shortage, Pvi is the load
power shortage, and Ppvi, Pwti, and Pbati represent the output
of photovoltaic power, wind energy, and battery at the ith
hour. k is the penalty coefficient; its value is related to the
unit price of electricity.

3.1.2. Constraints

(1) Distributed power output constraints:

Ppvmin
≤Ppv ≤Ppvmax

Pwtmin
≤Pwt ≤Pwtmax

Pbatmin
≤Pbat ≤Pbatmax

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Here, Ppv, Pwt, and Pbat are the output power of PV
power generation, WT power generation, and bat-
tery, respectively, and Ppvmin

, Pwtmin
, Pbatmin

, Ppvmax
,

Pwtmax
, and Pbatmax

are the upper and lower limits of
PV power generation, WT power generation, and
battery output power.

(2) Power balance constraints:

Pvi + Ppvi + Pwti + Pbati � Pwpti. (3)

Here, Pwpti is the load demand for charging EV by WPT at
the ith period.
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3.2. Optimal Scheduling Model in the Grid-Connected
Operation Mode

3.2.1. Objective Function. )e fundamental factor that dif-
ferentiates the MG connection from the isolated islands is

the existence of electricity transactions. In addition, the
amount of energy transactions is nonlinear. )e minimum
operating cost is taken as the optimization goal, as shown in
the following equation:

minMop � 􏽘

24

i�1
COM(pvi) + COM(wti) + COM(bat) + Mbuyi − Mselli􏼐 􏼑􏽨 􏽩 + CP

COM(pvi) � KOM ∗Ppvi

COM(wti) � KOM ∗Pwti

COM(bati) � KOM ∗Pbati

Cp � Pvi ∗ k

Mbuyi � d∗Pbuyi

Mselli � h∗Pselli

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Here, Mbuyi means the cost of purchasing electricity
from the grid at a given period i. Pbuyi is the electricity
purchased at that same period, and d is the electricity price,
using the Time-of-Use (TOU) price model [36], as shown in
Table 1. Mselli represents the income from electricity sales in
the ith period; Pselli is the electricity sold in the ith period; h is
the price coefficient of electricity sold, and the value in this
paper is 0.29 $/kwh [37]; Pgri di is the power exchanged with
the large grid in the ith period.

3.2.2. Constraints

(1) Distributed power output constraints:

Ppvmin
≤Ppv ≤Ppvmax

Pwtmin
≤Pw d ≤Pwtmax

Pbatmin
≤Pbat ≤Pbatmax

Pgridmin
≤Pgri d ≤Pgridmax

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Here, Pgridmin
and Pgridmax

, respectively, represent the
minimum power and maximum power interacting
with the large power grid.

(2) Power balance constraints:

Pvi + Ppvi + Pwti + Pbati + Pgri di � Pwpti. (6)

Grid PV solar sources Wind sources

Energy Production
system

Storage Device

Energy Consumption
system

Charging area

Figure 1: Production and consumption system.
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Here, Pgri di is the power value exchanged between the
MG at the ith period and the large grid, which is positive
when purchasing electricity and negative when selling
electricity.

4. Wind-Solar Complementary Microgrid
Energy Dispatch Strategy

)e core issue of energy management for MG is to optimize
the output among power generation units. )erefore, this
paper proposes an ideal dispatch strategy based on battery
charge and discharge status to meet the requirements.
Changing the charging and discharging state of the battery
allows an optimal use of the released electric energy and at
the same time ensures a proper operation of the system. In
MG operation, there are two modes of operation: off-grid
and grid-connected.

4.1. Off-Grid Operation Mode. According to the power
generation data of PV and WT detected in the MG energy
management system, the output of the battery is adjusted in
a timely manner. )e decision variable in this mode is the
charge and discharge power of the battery. )e sum of wind
and solar outputs and the demand for the load of charging
EVs have the three following situations:

(1) Wind and solar combined output cannot reach the
EVs’ load demand

(2) Wind and solar combined output equals the EVs’
load demand

(3) Wind and solar combined output exceeds the EVs’
load demand

When the first situation occurs, the battery is in dis-
charge state, and the discharge amount is determined
according to the electric energy shortage value. If the storage
battery releases all the stored electric energy and still cannot
meet the requirements, the power electronic devices inside
the MG will act to reduce the power supply to EVs or give
priority to EVs in need. As for the second situation, this is
the most ideal state, the battery does not need to be charged
or discharged. Meanwhile, in the third state, the battery
stores electricity and could be used by the system in the first
situation. If there is excess power after the battery is fully
charged, this part of the energy is released into the Earth
through the unloader, or it could be used in the road
lightening.

4.2. Grid-Connected Operation Mode. )ere are also three
situations for the magnitude of the combined wind and solar
output and the demand on the load side:

(i) Ppv + Pwt − Pwpt > 0; the excess power charges the
battery or can be sold directly to the large power
grid. Due to the difference in electricity prices, we
can choose to give priority to large grids when
electricity prices are high in order to earn more
revenue.

(ii) Ppv + Pwt − Pwpt � 0; neither charging or dis-
charging the battery nor trading energy with the
large power grid is possible.

(iii) Ppv + Pwt − Pwpt < 0; we choose either to discharge
the battery or purchase electricity from the large
grid. If the electricity price is high at this time,
priority is given to using battery discharge to make
up for the shortfall; otherwise, priority is given to
purchasing electricity, and the electricity from the
battery is reserved until the electricity price is high.
)e energy stored in the battery could be sold to the
large grid in order to improve the economic benefits
of the entire MG operation [34].

4.3. Application of PSO in Energy Management.
Considering the problem and its size, we have adopted an
optimization based on a heuristic algorithm.We assume that
the PSO is suitable to verify and resolve the objective
functions mentioned above.

)e algorithm is an emerging optimization technology
whose ideas are derived from artificial life and evolutionary
computing theory. PSO completes the optimization by
following the best solution found by the particles and the
best solution of the entire group. It has been successfully
used in function optimization such as system identification
[38], neural network training [39], and other application
fields.

)e steps to apply PSO to the energy management of the
MG start by searching a space identification and initializing
PSO parameters, such as population size N, total number of
iterations MaxDT, inertia weighting factors ωmin and ωmax,
and learning factors C1 and C2. )e number of current
iterations t is initialized at 0 t� 0. After that, we generate N
random particle swarms. )e initial position of each particle
will be randomly set between the maximum and minimum
of the control variable. Objective functions (1) and (4) are
used to evaluate each particle in the initial population. For
each particle swarm, Pbesti(0) � Xi(0) is satisfied. Search for
the optimal value of the objective function, and set the
particles associated with the optimal value to the global
optimal value Gbesti(0). Set the initial value of the inertia
weight to ω (0); the minimum and maximum values of the
inertia weight factor are usually 0.4 and 0.9. All the steps are
shown in Figure 2.

5. Case Study and Simulation

In order to evaluate if the suggested methodology is effective
for enabling the integration of DPS on MG for charging
electric vehicle with WPT, we opted for a load configuration
taking into consideration real predictions of traffic on an
hourly basis. )is prediction used data collection of traffic

Table 1: TOU price list.

Time period Electricity price ($)
Peak time (11 h–17 h) 0.25
Normal time (23 h–7 h) 0.06
Valley time (7 h–11 h) (17 h–23 h) 0.1
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flow of four-month span (January to April 2019), available
on the Open Data Portal of Transport Infrastructure of
Ireland [40].

)e output power curve of the wind-solar hybrid unit
derives from a biprobability-interval optimization model
for wind-solar power day-ahead scheduling under
uncertainties.

5.1. Load Profile. A lot of research has been done to predict
the number of vehicles passing on a highway during a day.
For our study, we were based on the curve given by the
literature [40], which made a study of the traffic flow forecast
hour-by-hour based on real data on the traffic in Dublin’s
metropolitan circle on seven highways.

It assumed a percentage of 1% of the vehicles which will
be electrified and need to be recharged. )e aim of the said
study was to reestablish a pricing methodology for charging
stations in areas rich in renewable energy. )e curve of
number of vehicles to be charged on highways hour-by-hour
is given by Figure 3.

Different projects have tested the efficiency of WPT
with different power transmission levels [41–43]. To
evaluate the methodology and the optimization used in
this paper, we consider 2 scenarios: the first one relies on
an average power demand for each vehicle of 5 kW, while
in the second one the average power demand is 15 kW as
shown in Figure 4.

Figure 5 presents the demand of a single vehicle
following the NEDC driving cycle [11]. As shown in this
figure and from a microscopic standing point, EV load can
create disturbance due to its inherently random load
profile.

From a macroscopic point of view, if we consider the
grid as the unique source of energy, as seen in Figure 4, the
mobility energy needs peak coinciding with existing periods
of grid loads peak. )is situation is very detrimental to the
electrical grid as it overloads it.

For these reasons, supplying the electrified road forWPT
of EV by an MG based on RE would not only help with the
zero emission but also help to avoid the impact on the
electrical grid.

Output best solution

Yes

NoThe conditions
are met ?

Update the global optimal value and find the minimum value in Pbesti

Update the optimal value of the individual, and evaluate each particle
according to its updated position

Update the particle position
xi

k (t + 1) = xi
k (t) + υi

k (t + 1)

Generate N random particle swarms.

Search space identification. Initialize PSO parameters.

Update the nuber of iterations t=t+1. Update the inertia weight ω (t)
by the equation :

ω = (ωmax – (ωmax – ωmin) ∗ t/MaxDT)

υi
k (t + 1) = ω (t) ∗ υi

k (t) + C1r1 (Pbesti (t) – xi
k (t)) + C2r2 (Gbesti (t) – xi

k (t))k k 
Update the particle velocity:

Figure 2: )e steps of PSO.
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Subsequently, we would present the details of the
charging EV by the isolated and grid-connected MG for
different level of charge.

5.2. IslandMode. For our case, to study the electrification of
road for the wireless power transfer of EV, we assume an
output power curve of the wind-solar hybrid unit as shown
in Figure 6 according to [44]; it was based on a biprobability-
interval optimizationmodel for wind-solar power day-ahead
scheduling under uncertainties.

)e upper limit of battery charging and discharging
power is 150 kW, and the lower limit is 100 kW; we consider
the power range of the interaction between the system and
the grid as [−250 kW, 250 kW].

5.2.1. Charge 1: 5 kW. In the island particle swarm opti-
mization algorithm, the maximum number of iterations is
300, and the number of particles is 600.

)e optimized scheduling results show that the oper-
ating cost per day is 194.5 $/day. If we consider that the
electrified road was supplied directly from the grid, and
using the TOU price shown in Table 1, the operating cost per
day would be 360.8 $/day, which gives us a daily gain of 166.3
$ per day with the use of MG.

)e output of each device is shown in Figure 7 and
Figure 8.

Figure 6 presents the curve of the load considering that
the average power demand of each vehicle is 5 kW and Pre

presents the power output of the renewable energy installed
in the microgrid as shown in the following equation:

Pre � Ppv + Pwt. (10)

Figure 7 presents the shortage power or the power
needed after feeding the demand by wind/solar power and
the battery power output. As seen in this figure, the battery
fills in the lack of power in the microgrid.

When there is little difference between wind/solar
combined output and load demand, the optimized result is
ideal. )e effectiveness of optimization is explained by
selecting two typical moments. When the wind and solar
output is smaller than the required amount, it is sufficient to
meet the demand of the load by discharging the battery. It
can be clearly seen in Figure 9 that, at around 18 : 00 in the
evening, the peak power demand of this day is ushered in.
)e combined solar and wind output can no longer meet the
demand of the electrified road, and the difference is about
125 kW. Since the maximum discharge power of the battery
selected in theMG system is 150 kW, it can completely make
up for this part of the shortfall. )erefore, even in the
evening when the load demand is large, there is no need to
remove the load; thus the power supply reliability of the
entire system is maintained. Similarly, at 5 o’clock in the
morning, the combined solar and wind output at this time is
greater than the required amount of electricity, with a
difference of 29 kW. Since the upper limit power of the
battery for charging has reached 100 kW, the extra energy
can be absorbed by the battery itself, and the excess energy

will not be wasted by leaking into the ground. )e rest of the
moments are also in the same situation as the above two
moments. )e battery can always discharge or store the
power. From the definition in the objective function (1), it
can be seen that the penalty fee for the last item is reduced to
the lowest.

Under the premise of ensuring the reliability of power
supply, the operating economy of the wind-solar comple-
mentary MG system is ensured.

5.2.2. Charge 2:15 kW. )e operating cost of the system is
3.09 × 103 $/day. In the event of an important load demand
of EVs or due to a huge power need in an electrified road
destinated to the heavy-duty vehicles, the load profile may
undergo a considerable change as shown in Figure 10. In
short, the huge change in load will make the gap between it
and the combined wind/solar output and load become larger
and larger. By comparing Figure 11 and Figure 12, it can be
clearly seen that the optimized result is not ideal due to the
limitation of battery capacity, and the shortfall value after
optimized scheduling is still relatively large. In this case, we
could also select a typical moment to analyze the optimi-
zation results. At 8 o’clock in the morning, the difference
reached as much as 483 kW.)emaximum discharge power
of the battery is only 100 kW, which is far insufficient to
make up for the shortfall. At this time, the MG can adopt
load shedding measures by assuming a methodology that
requires feeding EVs with a state of charge in battery lower
than 50% or reducing the average power to 10 kW or 5 kW,
for example. However, the penalty cost for load shedding is
quite expensive, and the operating cost has risen from 194.5
to 3099.7 $. Under this circumstance, not only is the reli-
ability of electricity usage not guaranteed, but also it brings
huge losses to the entire power grid.

From the above analysis and research, it can be seen that
when the load demand is close to the output power of the
distributed power supply, the stability of the MG is better.
)rough the coordination and cooperation of the battery’s
output and the other two distributed power generation units,
the self-sufficiency of theMG can be achieved. When there is
a huge difference between the load demand and the output of
DPS, the stability of the entire MG operation and the re-
liability of the power supply will become worse. Relying only
on the supply and storage of batteries could not be useful
under different load changes or to ensure the safety of the
system, in addition to the economic impact. )erefore, in
order to reduce a series of impacts brought by load changes,
the next step will be to analyze the optimal scheduling of
grid-connected operation modes.

5.3. Grid-Connected Mode

5.3.1. Charge 1: 5 kW. In the grid-connected operation
model, there are two optimized variables: one is the charging
and discharging power of the battery, and the other is the
power interacting with the large grid. )erefore, the di-
mensions of the particle swarm optimization algorithm have
become 48.)e first 24 unknowns represent the magnitude of
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the interaction with the electric energy of the large power grid
at each time in 24 hours, and the last 24 unknowns are al-
located to the battery charging or discharging for each hour.

When the electricity price is changed, that is, when the
TOU electricity price is adopted, the optimized results are
shown in Figure 13 and Figure 14. It can be seen that, in this
mode, it can still have good power supply reliability, but the
charging and discharging of the battery and the transaction
with the large power grid have undergone certain changes,
which are caused by changes in electricity prices. At 10
o’clock, on the basis of ensuring the power consumption of
the load, more power is sold to the large power grid through
the battery discharge at 10 o’clock, and the load in the large
power grid is relieved from the power supply pressure
during the peak power consumption. More electricity is

purchased in the parity stage from 23 to 7 hours and it is
stored in batteries for use during peak electricity con-
sumption. After the particle swarm optimization algorithm
runs for one day, the income is about 253.4 $, which has
better returns and a more flexible scheduling method than
the model that does not use the Time-of-Use electricity price
method.

5.3.2. Charge 2: 15 kW. When the super-large load shown in
Figure 3 appears, the optimized results are shown in Fig-
ure 15 and Figure 16. When the electricity price is low, such
as from 23 : 00 in the evening to 7 : 00 in the morning, it
would be better to purchase electricity and store it in the
battery power generation unit. In the time period from 16 :
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Figure 6: Output power curves PV/wind.
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Figure 7: Comparison of wind-PV power output and load demand under the demand of 5 kW in island mode.
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00 to 19 : 00 and 8 : 00 in Figure 13, in order to give priority
to ensuring the reliability of power supply, the battery
discharge and power purchase have reached the upper limit,
but the load demand is still not met, and penalty fees are
incurred during this period. Despite the adoption of the
Time-of-Use electricity price model, the operating cost on
the last day reached 8372.9 $.

6. Discussion

Table 2 summarizes our results. In fact, if the electrified road
was only powered by the electrical network, there will
certainly be no power shortage. )e network will be able to
meet the need perfectly, but the price will be high. In

addition, as previously discussed, such a demand would have
a negative impact on the electricity network.

)e suggested methodology would therefore make it
possible to reduce the huge demand on the network. An
example is shown in Table 2, in which two selected hours (8
a.m. and 7 p.m.) illustrate the importance of adopting anMG
equipped with a suitable EMS in order to reduce the harmful
impact of wireless charging on the electrical grid. We could
see the power shortage, which is significant in the case of the
huge load (15Kw per EV) in the off-grid mode.

Besides, when the load is close to the DPS’s output power
of the MG, there is no need to connect to the grid. )e
stability and autonomy of MG are ensured through the
storage device.
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Figure 8: Battery output power and the shortage power under the demand of 5 kW in island mode.
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Figure 10: Comparison of MG output power and load demand by EV under the demand of 15 kW in island mode.
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Figure 12: EVs load demand and total power supply under the demand of 15 kW in island mode.
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Po
w

er
 (K

w
)

5 10 15 20 250
Time (Hour)

0

100

200

300

400

500

600

Pload
Pre+Pbat+Pgrid

Figure 15: Load demand and total power supply under the demand of 15 kW in grid-connected mode.

Journal of Electrical and Computer Engineering 13



Finally, thanks to the energy management system, the
cost of the system is more viable in the case where the MG is
implemented than when the grid presents the unique source
supply.

7. Conclusions

Starting from the economic functioning of the MG and the
necessity of feeding EVs, this paper has studied the optimal
distribution model of the complementary wind-solar MG.
Given the fact that this MG is supplying an electrified road
for the dynamic wireless charging of EV under the modes of
operation connected to the grid and isolated, the current
paper proposes a corresponding energy management
strategy. On this basis, an improved particle swarm opti-
mization algorithm with dynamic weights and dynamic
learning factors is proposed to give it better self-learning
ability and better social cognitive ability. )e actual calcu-
lation example shows that, in off-grid mode, when the load
demanded by the vehicles is close to the output power of the
distributed power supply, the stability of the MG is better.
)rough the coordination and cooperation of the battery
output and the other two distributed power generation units,
the MG can realize its self-sufficiency and maximize the

economy of system operation. In the grid-connected mode,
the Time-of-Use electricity price model is used to improve
the system’s revenue and dispatching methods flexibility.

Finally, this study could be further completed by an
economic comparison of the various system’s costs incurred
due to a different choice of the optimization model (other
than PSO).
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