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It is our great pleasure to present to you the second edition
of this special issue discussing the analysis and applications
of complex social networks. Similarly to the one published in
this journal last year, this one also turned out to be a great
success as we managed to attract a number of high-quality
researches in the area of complex social networks.

�e research space in complex social networks grows
every year as they are systems with many levels of complex-
ity and there is a constant need to challenge our current
understanding in the field. �e results of the community
research efforts enable the understanding of different social
phenomena including social structures evolution, communi-
ties, spread over networks, and control in and of complex
networks. �is huge interest in the analysis of large-scale
social networks resulted in a lot of new approaches, methods,
and techniques but with every advancement in this area,
we uncover new challenges and new levels of complexity
in the network universe that are far from being explored
and addressed. �e increasing complexity of the tasks to
be performed in terms of network analysis together with
the volume, variety of social data about people and their
interactions, and velocity with which this data is generated in
the online world poses new requirements and challenges on
researchers. One of them is how to build accurate methods
that would be able to cope with these vast amounts of data.
�is issue is a result of an attempt to address these emerging
challenges with a big emphasis on the applicability of the
developed approaches.

One of the goals of this special issue is to show that analy-
sis of large-scale, real-world social networks underpinned by

fundamental research is the direction to takewhen it comes to
the future of complex social network analysis. We emphasize
that in the world of network science fundamental research
and application- and data-driven research are equally impor-
tant and they need to go together to generate significant
academic, societal, and commercial impact.

�e variety of papers published in this special issue
shows that there is a long list of topics that have not yet
been comprehensively researched. �ese papers also show
the future challenges and trends in analysis and applications
of complex social networks. Within this special issue, we
present a wide variety of application-driven studies looking,
for example, at complexity of a microblogging system, trans-
portation systems, an emergency management system, orga-
nizational structure and management, innovation, or food
safety. �e fundamental research that is covered within these
special issues ranges between (i) investigation and analysis of
network structure and metrics, e.g., signed networks, modu-
larity, and communities, (ii) link prediction approaches, (iii)
resilience in complex networks, (iv) diffusion and influence,
and (v) control in networked systems—the topic that is
currently of great interest to the community.

Some of the papers already in this special issue are as
follows: “�e Settlement Structure Is Reflected in Personal
Investments: Distance-Dependent Network Modularity-
Based Measurement of Regional Attractiveness” by L. Gadar
et al.; “Simulation of Knowledge Transfer Process Model
Between Universities: A Perspective of Cluster Innovation
Network” by F. Wei and X. Limin; “Variational Approach
for Learning Community Structures” by J. J. Choong et
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al.; “Complexity of a Microblogging Social Network in the
Framework of Modern Nonlinear Science” by A. Dmitriev
et al.; “More on Spectral Analysis of Signed Networks” by
G. Yu and H. Qu; “Modelling Multilevel Interdependencies
for Resilience in Complex Organisation” by J. Tasic et al.;
“Establishment and Analysis of the Supernetwork Model
for Nanjing Metro Transportation System” by Y. Wei and S.
Ning.

�is special issue also contains the following papers:
“A Semantic Community Detection Algorithm Based on
Quantizing Progress” by X. Han et al.; “Scare Behavior
Diffusion Model of Health Food Safety Based on Complex
Network” by J. Luo et al.; “Examining the Intergovernmental
and Interorganizational Network of Responding to Major
Accidents for Improving the EmergencyManagement System
in China” by P. Tang et al.; “Exponential Synchronization
Control of Discontinuous Nonautonomous Networks and
Autonomous Coupled Networks” by C. Yang et al.; “Crisis
Spreading Model of the Shareholding Networks of Listed
Companies and �eir Main Holders and �eir Controlla-
bility” by Y. Ma and L. Li; “Predicting Missing Links Based
on a New Triangle Structure” by S. Bai et al.; “Competition-
Based Benchmarking of Influence RankingMethods in Social
Networks” by A. Topı̂rceanu.

Published papers show that although all of the presented
topics have been researched for many years now, there is still
space and need for new contributions. Challenges change
their nature as we face vast amounts of heterogeneous data
that are continuously generated. Network resilience, com-
munities, spread and influence analysis, network complexity,
control, and structural properties are topics that are trending
in the research community all over the world. �ose are
very hard problems to address because of their complexity
originating from two sources: (i) system: variety of con-
nections, attributes of nodes and connections, nontrivial
structure, and dynamics of a system; (ii) process: evolution
driven by a variety of factors including external ones that are
very hard to capture, spreading over complex structure of
multiple processes or needed process adaptation connected
with evolving structure. �us, there is a continuous need
to create cross-disciplinary teams that would work on those
challenges with a holistic view of the problem.

So our work does not stop here, and we aim at continuing
to bring together people from different fields to work on the
topics covered within this special issue.
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This paper aims to model multilevel interdependencies in complex organisational systems and proposes application for resilience
analysis.Most of the existing research studied interdependencies only at the single-level andoverlooked theirmultilevel character. In
response to this gap, we propose a multilevel approach to better comprehend the complexity of interdependencies in organisational
systems. More specifically, the study focuses on how interdependencies are shaped across multiple organisational levels. To
understand the research problem, we use multilevel and social network theories to elaborate the concept at five organisational
levels, namely, individual, intraunit, interunit, intraorganisational, and interorganisational. Further, we show the application of
multilevel interdependencies into analysis of organisational resilience. To this end, we construct a multiplex model of a real world
organisational system that comprises formal and informal relations of different social exchange strength. Using the agent-based
simulations of the organisational system, we investigate the relations between organisational interdependencies and organisational
performance in normal and disrupted conditions. With the results, we argue that managing multilevel interdependencies is
crucial to reduce vulnerability of organisational systems. By introducing the multilevel conceptualisation of interdependencies and
presenting their influence on organisational resilience, we hope to pave a path to managing the complexity of interdependencies
and strategic resilience enhancement in organisational systems.

1. Introduction

What are the consequences of interdependencies that occur at
multiple levels on our capacity for responding to disruptions?
This paper examines the emergence of multilevel interdepen-
dencies and how they affect organisational behaviour in mit-
igating crisis. Organisational behaviours have their origins
and consequences at different levels [1, 2]. In analysing this
correlation, most management researchers study individuals,
work groups, organisations, and industry using approaches
in which the structure of interactions of these entities is
typically observed only at one level [3]. Research conducted
at the micro-, meso-, and macro-levels often ignores the fact
that organisational dynamics result from multilevel interac-
tions. This particular aspect is crucial in understanding the
impact of interdependencies on organisational performance.

In management science, interdependencies are understood
as exchange relationships [4, 5] within and between organ-
isations [6]. In general, studies on interdependencies are
divided between those looking at the micro- and mesolevel
and those at the macro one. Studies on the micro- and
mesointerdependencies are firmly grounded in organisa-
tional behaviour and social science theories, which have
been used to explain individual or group behaviour in the
context of task interdependence, workflows, and interper-
sonal or intergroup relations [7–11]. The macro approach has
been usually adopted by economics, sociology, strategy, and
supply chain management scholars. This approach provides
the understandings of interorganisational relations between
companies, supply chain partners, and regulatory and insti-
tutional entities that affect organisational performance [6, 12–
17]. While single-level approaches have their own virtues,
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there is a gap of knowledge in how these levels interact with
one another and what implications they bring on organisa-
tional resilience. Except for the divergent focuses, research
on interdependencies at single levels often uses structural-
functionalism and social exchange theory lenses [14, 18–24]
to investigate interdependencies. However, due to disparate
goals, organisational experts of each of the levels have seldom
merged their perspectives to achieve a bigger picture of
organisational dynamics. As a result, adopting either micro-,
meso-, or macro-lens only yields an incomplete under-
standing of multilevel interactions and their consequences.
It is this lack of knowledge in multilevel organisational
interdependencies that this paper seeks to shed light on.

Grounded in general systems theory [25, 26], a multilevel
view on organisational analysis differs from analysing organi-
sations through a single-level lens. It aims to shift the research
field toward the view of organisations as complex and inter-
connected social systems [27, 28] where the phenomena are
analysed at interlevel domains. Because interdependencies
in organisational systems are too intricate phenomenon to
be explained by only single-level terms, their comprehensive
understanding requires integration of micro-, meso-, and
macro-insights. Nowadays, due to economic and technolog-
ical changes, the degree of interdependencies within and
between organisations constantly grows [29, 30]. In this
light, using the structural approach, we aim to introduce a
preliminary conceptualisation of multilevel interdependen-
cies in organisational systems and present its applications
for resilience analysis. We elaborate the concept using the
multilevel [31] and social network theories [32–34], which help
us to explain in detail how interdependencies are formed and
how they can be measured at each level. We argue that pre-
senting interdependencies as a multilevel construct enables
a more integrated and comprehensive understanding of the
phenomenon’s complexity and dynamics that unfold across
organisational levels, and affect organisational resilience. We
prove it with agent-based simulations of a real organisational
system under the crisis condition.

To achieve this objective, this paper is structured as
follows. The following two sections present the state-of-
art in interdependencies and resilience studies of organi-
sational systems, in which we highlight the key aspects of
interdependencies and resilience studies and identify areas
where multilevel analysis remains lacking. After reviewing
the existing works on organisational interdependencies and
resilience, we begin to introduce a multilevel conceptualisa-
tion of interdependencies in complex organisational systems.
We move then to the empirical application of the concept in
the area of resilience analysis. More specifically, we construct
a multiplex model of a real world organisational system that
comprises weighted formal and informal relations between
and within two organisations. By giving the weights to
multiplex relations we aim to reflect their different social
exchange strength. We establish the weights based on the
system of informal relationships introduced by Luo [35] and
the hierarchical logic of formal employment relationships,
which determine chains of command (authority) and formal
information exchanges (reporting) [36]. We also describe in
details qualitative and quantitative characteristics of existing

edges. Further, we present the relations between multilevel
interdependencies and organisational performance in nor-
mal and disrupted conditions. Next, we discuss the results
and highlight that managing multilevel interdependencies
is crucial to reduce vulnerability and enhances resilience of
organisational systems. The conclusion summarises theoreti-
cal and empirical contributions of the paper.

2. Linking Interdependencies to Resilience

Interdependence began to be a subject of inquiry for organ-
isational research in 1949 when Deutsch introduced a the-
ory of social interdependence, which gained influences on
management research and practices for several decades. Since
then, organisation researchers have examined the nature and
consequence of interdependence from various perspectives.
A dichotomy between micro and macro levels appears to
characterize the study of social interdependencies. In the
micro studies of interdependencies, La Porte [4] defined
the degree of organised system complexity as a function of
number of components, differentiation of components, and
interdependent links between the components. In similar
direction, management science explored interdependencies
with the theory firmly grounded in organisational psychology
and social science to explain human behaviour in the context
of task interdependence, interpersonal relationships and
performance at micro- and mesolevels of analysis [7–11]. At
the macro level, analysis of interdependencies in manage-
ment studies drew theoretical underpinnings on disciplines
such as economics, economic sociology, and supply chain
management to assess interorganisational relations that shape
organisational performance, for instance, flows of goods and
services, trust-based relationships, and industry environment
[6, 12–16]. In this area of research, only a few attempts looked
into interdependencies across levels [37, 38].

In further developments of organisational sciences, inter-
dependencies are understood as social exchange relationships
[4, 5] within and between organisations [6]. At micro level,
Brass [21] underlined that an organisation is composed of
interdependent networks of employees. At mesolevel, the
interdependencies are defined as a relationship between two
or more organisational units that are mutually affected [19].
Following this path, Gulati [39] and Tomkins [14] tracked
down the source of interdependencies in the interorganisa-
tional context by focusing on the role of trust and information
relations as determinants of the interdependent relationship.
Conceptually, the notion of interdependence assumes at
least one exchanged resource per interdependent dyad [4].
However, in real life, the relations become more complex,
due to the multiplex types of independencies. It is extremely
important to note that while organisational relations are
formally maintained, through the existence of rules and
regulations [6, 40, 41], they are also informally shaped,
through social structures, trust, and reciprocity [23, 40, 42].
Informal relations embody interpersonal trust, which lubri-
cates social support and, thus, enables complex transactions
and facilitates collective action.Therefore, structural position
of actor in an organisation is formed by both formal and
emergent informal interdependencies, which interact with
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each other. In this area, interdependencies were analysed
as networks of formal work exchanges [e.g., [21, 43]], and
informal relationships as acquaintance, friendship and famil-
iarity networks [35, 44, 45]. While the formal relationships
are easily identified, the informal interactions are hardly
detectable and often overlooked; however, they do impact
organisational performance [45–48].

There are two commonly distinguished types of ties—in-
strumental and expressive [49]. Instrumental ties are
information and cognition based exchanges of resources
for instrumental purposes (e.g., reporting, acquaintance).
Expressive ties include an affective factor and reflect
common relationship identity as well as social support
(e.g., friendship). In addition, researchers also recognised
existence of mixed ties, which combine features of both types
[35]. According to Luo [35], informal instrumental ties are
based on rules of equity (acquaintance), informal expressive
ties are governed by rules of need (friendship), and mixed
ties by rules of favour (familiarity). Both strong instrumental
and expressive ties have a positive effect on performance;
in contrast weak instrumental ties are less likely to enhance
performance [50].

Overall, the research onorganisational interdependencies
has produced a growing body of knowledge to illuminate the
dynamics of organisational systems as a result of complex
interactions and ever expanding structures. However, as our
review of this body of knowledge above indicates, most of
the research is inclined to pay attention only at interactions
and processes that occur at the same level. Characters and
properties of interdependencies that emerge out of multilevel
dynamics remain to be explored. In addition, the influence of
informal interactions on organisational functioning requires
in-depth analysis.

It is posited in this paper that the multilevel structure
of interdependencies has potential impact on organisational
capacity for responding to crisis, especially large-scale ones.
What remains unclear is how exactly structural interdepen-
dencies will affect organisational resilience. To have a clear
explanation, we first need to have a basic understanding of
what constitutes resilience and what renders organisation to
be resilient. Up to date, the concept of resilience has been
applied in a wide variety of academic fields, including among
others, ecology [51–53], sociology [54], psychology [55],
supply chain management [56], strategic management [57],
disaster mitigation [58, 59], sociotechnical resilience [60, 61],
resilience engineering [62, 63], organisational reliability [29,
64, 65], and resilience management [66–68]. In the following
lines, we describe the concept of resilience with a primary
reference to resilience engineering and management studies,
which constitute the most relevant ground for this paper.

Many scholars acknowledge that resilience offers a poten-
tial solution to overcome disruptions and uncertainties
in organisational systems, and create the environment for
organisational development. In 2006, a group of experts in
industrial and system safety initiated an organisation-centred
paradigm called “resilience engineering” [62]. Recently, the
continuations of those developments led to the following
definition of resilience: “Resilience is an expression of how
people, alone or together, cope with everyday situations –

large and small – by adjusting their performance to the
conditions [69]. Resilience in the field of management is gen-
erally regarded as “an emergent property that relates to the
inherent and adaptive qualities that enable an organisation to
take a proactive approach to threat and risk mitigation” [70].
In general terms, an organisational system “can be seen as
more resilient when it is more robust and less vulnerable to
disruptions and recovers faster from disruptions when they
occur” [71]. To sum up, resilient organisational systems are
proactive in mobilizing their resources, use their abilities and
adapt to effectively perform under a variety of conditions
(both expected and unexpected).

How do organisational structures affect resilience? As
pointed out by a number of researchers, complex systems
organisations are composed of the multiple levels of opera-
tion [72] in which interconnected agents form a network of
nonlinear relationships that give rise to emergent behaviours
[66]. The more complex organisation, the more complex
response to disruptions will become [72]. Similar to safety,
resilience is seen as a systemic property where individual,
group, and organisational levels have a reciprocal influence
on each other [73, 74]. From this vantage point, managing
resilience is “as a matter of a balancing between individual
resilience (individual responses to operational challenges)
and system resilience (the large scale autocatalytic com-
bination of individual behaviour)” [62]. Resilient employ-
ees and units do not guarantee resilient organisation. In
addition, organisations are embedded in interorganisational
relationship, which are crucial for sustaining their oper-
ations [13, 56, 75]. Organisations are more likely to be
resilient if they can effectively mobilise internal and external
resources and capabilities [74].Therefore, interorganisational
resilience is usually described as adaptability, flexibility and
redundancy or diversification [56, 75]. Applying systems
thinking approach, Leveson [63] argued that system safety
is an emergent property and thus must be controlled at the
system level. Therefore, building resilience should be seen as
a collaborative process, which requires continuous learning
and adaptation from all actors, i.e., across individuals, groups,
organisations [68, 76], and interorganisational networks.

The bottom line is that organisational resilience is
strongly related to everyday work and organisational struc-
ture [60, 65, 74, 77]. Well-developed relationships (formal
and informal) within and among organisations are funda-
mental for taking up a joint action during normal and crisis
operations [29, 45, 47, 65]. The informal control instruments
can substitute or complement formal control instruments
in both normal [14, 23, 78–80] and crisis operations [47].
Thus, any resilient organisational system has a strong culture
of awareness and is able to create improvised responsive
networks to mitigate a crisis [47, 59, 65, 67].

3. Multilevel Interdependencies in
Complex Organisation

Multilevel theory in organisational studies has its conceptual
underpinnings in general systems theory [25, 26], which
presents organisations as complex and interconnected social
systems [27, 28, 72, 81]. Complexity of organisational systems
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Figure 1: Nested character of complex organisational systems.

arises from interdependencies of the system components
and emergent behaviour [82]. In this view, an organisa-
tion is conceptualized as a set of subsystems composed of
more elemental components (Figure 1) that are arrayed in a
hierarchical structure [25]. Organisational systems are seen
as tightly coupled and nonlinear structures blended with
bidirectional causal loops [83].

The main assumptions underlying the multilevel ap-
proach are that many phenomena emerge at multiple levels
of analysis, and that organisational entities reside in nested
arrangements [1–3]. The connection between levels of a
system is determined by their couplings, which is the extent to
which properties, dynamics, and processes at one level affect
other levels [25]. Partial analysis of the system can bemislead-
ing, and thus to avoid wrong conclusions multilevel analysis
is extremely crucial to represent all properties of the system
[84]. The implication of the system approach is double-side.
On one side, in line with general system theory, dynamics
and relationships at lower levels emerge over time to higher
levels of a system to yield structure [85]. This view coincides
with theories of complexity, chaos, and self-organisation. On
the other side, many organisational theories postulated that
the contextual factors at higher levels may have direct or
moderating effect on lower levels phenomena [31]. Although,
we acknowledge that interdependencies, as many other phe-
nomena in organisational systems, are a fuzzy concept that
emerges bottom-up and is affected by top-down contextual
processes, in this paper our focus is primarily on the emergent
character of interdependencies in order to open a research
discourse on multilevel character of interdependencies.

In advancing multilevel interdependencies informed by
the theoretical insights described above, we use configural
compilation approach to analyse interdependencies as a mul-
tilevel construct [1, 31, 83, 86]. The compilational approach

rests on the assumption of discontinuity and complex non-
linear processes of emergence. It describes phenomena that
comprise a common domain but are distinctively differ-
ent as they emerge across levels, i.e., simple aggregation
of a construct at multiple levels is impossible [31]. In
compilation processes, concept properties across all levels
are discontinuous—qualitatively different— yet functionally
equivalent—have the same role [1]. In this way, functional
equivalence allows analysing a phenomenon by the elemental
content of different types and amounts but possessing similar
collective properties across levels [87]. Configural properties
of a phenomenon are based on compilation models of
emergence, i.e., phenomenon is nonlinear, not uniformly
distributed, and not isomorphic across levels. They capture
the differential patterns of relationship and variability of
lower-level contributions to yield higher-level properties.
This means unit-level interdependencies are a complex con-
figuration of unique characteristics of unit members that
emerge as a whole. In sum, with application of configu-
ral compilation approach, we argue that interdependencies
across all levels are discontinuous phenomenon that does not
express uniform pattern due to their specific nature.

To further elaborate this concept, the social network
theory [32, 33, 89] is employed to explain in detail how rela-
tional exchanges comprising interdependencies are formed
in organisations, and to depict their pattern at various
levels. The pattern includes both formal and informal struc-
ture of relations that form organisational systems. Formal
relations are prescribed set of interdependencies between
employees established by the organisation that determine
its formal functioning, i.e., authority and reporting relation-
ships. Equally important to underline are informal networks
that comprise of trust-based relationships such as acquain-
tance, friendship and familiarity networks. These informal
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relations influence on individuals, group, organisation and
interorganisational network performance [11, 13, 15, 43, 48,
90, 91]. In addition, informal organisational structure very
often supplements the formal relations, especially in crisis
situations [45, 47].

Applying the system view above, we recognise interde-
pendencies to be nested at five organisational levels: indi-
vidual, intraunit, interunit, intraorganisational and interor-
ganisational. This span of levels represents a hierarchical
structure in which each level represents unique character-
istics of interdependencies between individuals, units, and
organisations. The interdependencies at each level of repre-
sentation are constituted by formal and informal relations.
The interdependencies are coupled across levels and their
content is meaningfully related in the whole network of
relations. While lower levels such as individual and unit are
composed of more elemental components, higher-level inter-
dependencies, especially organisational and interorganisa-
tional, are relatively inclusive and encompass characteristics
of lower-levels. In doing so, we assume that interpersonal
interdependencies constitute individual interdependencies
that contribute to intra- and interunit level interdependen-
cies; intraunit and interunit interdependencies contribute to
intraorganisational-level interdependencies (Figure 2).

As elaborated above, each organisational system is a
system of multiplex networks that comprises formal (report-
ing and authority) and informal (acquaintance, friendship,
and familiarity) relations, which form interdependencies
across all levels of analysis. In the following paragraphs, we
use weighted degree centrality to decompose and describe
the multilevel interdependencies in organisational systems.
Determining the weights depends on the particular analysis
needs and the organisations features such as industry and

organisational culture. In linewith the configural compilation
approach, the applied measures vary across the functional
equivalents at multiple levels due to different characteristics
of interdependencies across the levels (individual, intraunit,
interunit, intraorganisational, and interorganisational net-
work).
(1) Individual interdependencies entail formal and infor-

mal relational exchanges that constituteweighted degree of an
individual, which is the focal point of analysis. Formal rela-
tions (F) comprise relationships predetermined by the organ-
isation, i.e., authority and reporting relationships between the
individual and other directly connected individuals. Formal
weighted individual degree (𝑤[𝐹]𝑖 ) is the sum of weights
associated to all formal edges attached to individual i, where
N is the total number of individuals in the interorganisational
network m

𝑤[𝐹]𝑖 =
𝑁

∑
𝑗=1
𝑗 ̸=𝑖

𝑤[𝐹]𝑖𝑗 (1)

Informal relations (I) capture emergent organisational fea-
tures and are the by-product of formal daily interactions
and interpersonal attachment. They consist of trust-based
networks, which influence on the work behaviour of the
individual, i.e., acquaintance, friendship, and familiarity net-
works [35, 44]. Informal individual degree (𝑤[𝐼]𝑖 ) is the sum of
weights associated to all informal edges attached to individual
i

𝑤[𝐼]𝑖 =
𝑁

∑
𝑗=1
𝑗 ̸=𝑖

𝑤[𝐼]𝑖𝑗 (2)
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Formal and informal relations interact with each other
and affect individual’s behaviour. Therefore, the individual’s
structural position is the result of particular combination of
both formal and informal interdependencies.The individuals
bonded in the direct neighbourhood will be highly interde-
pendent and analysis of interdependencies at this level helps
to assess individuals’ connectedness.
(2) Intraunit interdependencies emerge from the config-

uration of the unit members’ interdependencies that give a
comprehensive picture of interdependent relations within a
unit. The formal (F) and informal (I) exchange relationships
remain the same features as at the individual level; however,
the interdependencies are more complex due to the increased
number of individuals and relationships. Formal intraunit
degree (𝑤[𝐹]𝑢 ) of unit u is the sum of formal edges attached
to individuals within unit u, where 𝐾𝑢 is the number of
individuals in unit u (3). Informal intraunit degree (𝑤[𝐹]𝑢 )
of unit u is the sum of weights associated to informal edges
attached to individuals within unit u (4).

𝑤[𝐹]𝑢 =
𝐾𝑢

∑
𝑖=1

𝐾𝑢

∑
𝑗=1
𝑗 ̸=𝑖

𝑤[𝐹]𝑖𝑗 (3)

𝑤[𝐼]𝑢 =
𝐾𝑢

∑
𝑖=1

𝐾𝑢

∑
𝑗=1
𝑗 ̸=𝑖

𝑤[𝐼]𝑖𝑗 (4)

To allow the comparability of the unit structures between
the units, we construct also the average formal (⟨𝑤[𝐹]𝑢 ⟩) and
informal (⟨𝑤[𝐼]𝑢 ⟩) unit degree of a unit u ( (5) and (6)), which
are calculated by normalization of intraunit degrees by the
number of individuals in a unit u.

⟨𝑤[𝐹]𝑢 ⟩ =
𝑤[𝐹]𝑢
𝐾𝑢

(5)

⟨𝑤[𝐼]𝑢 ⟩ =
𝑤[𝐼]𝑢
𝐾𝑢

(6)

Analysis of interdependencies at this level helps to identify
the crucial individuals on whom the unit performance is
the most dependent both formally and informally. Formal
structure is always well known by the individuals involved
in the unit. The analysis of informal structure helps to
identify hidden unit patterns and notice hidden needs and
opportunities. Formal and informal relations should be well
balanced to facilitate better the unit performance.
(3) Interunit interdependencies encompass formal and

informal relations that emerge from the cross-unit relations
between individuals. Formal interunit degree (𝑤[𝐹]𝑢𝑖𝑛𝑡) of unit
u is the sum of weights of formal edges between individuals
in unit u and individuals in other units (𝐾𝑠) in organisation
o, where 𝑈𝑜 is the number of units in organisation o (7).
Informal interunit degree (𝑤[𝐼]𝑢𝑖𝑛𝑡) of unit u is the sum of

weights of informal edges between individuals in unit u and
individuals in other units (𝐾𝑠) in organisation o (8).

𝑤[𝐹]𝑢𝑖𝑛𝑡 =
𝐾𝑢

∑
𝑖=1

𝑈𝑜

∑
𝑠=1
𝑠 ̸=𝑢

𝐾𝑠

∑
𝑗=1

𝑤[𝐹]𝑖𝑗 (7)

𝑤[𝐼]𝑢𝑖𝑛𝑡 =
𝐾𝑢

∑
𝑖=1

𝑈𝑜

∑
𝑠=1
𝑠 ̸=𝑢

𝐾𝑠

∑
𝑗=1

𝑤[𝐼]𝑖𝑗 (8)

Formal interunit relations determine how units operate and
how much formally interdependent is their work. The units
can be very independent (divisional structure), moderately
interdependent (functional structure), or very interdepen-
dent (matrix). The informal relations, described in the social
network theory as informal boundary spanning, emerge
from informal interunit exchanges of information and sup-
port (acquaintance, friendship, and familiarity relations).
Informal interunit relations crucial for a unit to raise unit
effectiveness and gain access to external resources; however,
they work the best when the unit is well connected externally
and well as internally.

We construct also the average formal (⟨𝑤[𝐹]𝑢𝑖𝑛𝑡⟩) and infor-
mal (⟨𝑤[𝐼]𝑢𝑖𝑛𝑡⟩) interunit degrees of a unit u ((9) and (10)), which
are calculated by normalization of interunit degrees by the
number of individuals in a unit u.

⟨𝑤[𝐹]𝑢𝑖𝑛𝑡⟩ =
𝑤[𝐹]𝑢𝑖𝑛𝑡
𝐾𝑢

(9)

⟨𝑤[𝐼]𝑢𝑖𝑛𝑡⟩ =
𝑤[𝐼]𝑢𝑖𝑛𝑡
𝐾𝑢

(10)

(4) Intraorganisational interdependencies include formal and
informal relationships within and between units of an organ-
isation. Formal intraorganisational degree (𝑤[𝐹]𝑜 ) of an organ-
isation o is the sum of formal intra- and interunit degrees
within this organisation (11). Informal intraorganisational
degree (𝑤[𝐼]𝑜 ) of an organisation o is the sum of informal
intra- and interunit degrees within this organisation (12).The
formal and informal intraorganisational degrees are crucial to
assess internal connectedness of an organisation.

𝑤[𝐹]𝑜 =
𝑈𝑜

∑
𝑢=1

𝑤[𝐹]𝑢𝑖𝑛𝑡 +
𝑈𝑜

∑
𝑢=1

𝑤[𝐹]𝑢 (11)

𝑤[𝐼]𝑜 =
𝑈𝑜

∑
𝑢=1

𝑤[𝐼]𝑢𝑖𝑛𝑡 +
𝑈𝑜

∑
𝑢=1

𝑤[𝐼]𝑢 (12)

The average formal (⟨𝑤[𝐹]𝑜 ⟩) and informal (⟨𝑤[𝐼]𝑜 ⟩) intraorgan-
isational degrees ( (13) and (14)) are calculated by normaliza-
tion of the degrees by the total number of individuals (𝐿𝑜) in
an organisation o.

⟨𝑤[𝐹]𝑜 ⟩ =
𝑤[𝐹]𝑜
𝐿𝑜

(13)
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⟨𝑤[𝐼]𝑜 ⟩ =
𝑤[𝐼]𝑜
𝐿𝑜

(14)

(5) Interorganisational interdependencies comprise formal
and informal relations that emerge from the cross-organisa-
tion exchanges between individuals. Formal interorganisa-
tional degree (𝑤[𝐹]𝑜𝑖𝑛𝑡) is the sum of weights of formal edges
between individuals in organisation o and individuals in
other organisations (𝐿𝑟) in interorganisational network m,
where O is the number of organisations in the interorgani-
sational network m (15). Informal interorganisational degree
(𝑤[𝐼]𝑜𝑖𝑛𝑡) is the sum of weights of informal edges between
individuals in organisation o and individuals in other organ-
isations (𝐿𝑟) in interorganisational network m (16). Interor-
ganisational relations constitute an important part of inter-
dependencies as they may facilitate interorganisational infor-
mation exchange, knowledge sharing, innovation transfer,
and support.

𝑤[𝐹]𝑜𝑖𝑛𝑡 =
𝐿𝑜

∑
𝑖=1

𝑂

∑
𝑟=1
𝑟 ̸=𝑜

𝐿𝑟

∑
𝑗=1

𝑤[𝐹]𝑖𝑗 (15)

𝑤[𝐼]𝑜𝑖𝑛𝑡 =
𝐿𝑜

∑
𝑖=1

𝑂

∑
𝑟=1
𝑟 ̸=𝑜

𝐿𝑟

∑
𝑗=1

𝑤[𝐼]𝑖𝑗 (16)

The average formal (⟨𝑤[𝐹]𝑖𝑛𝑡 ⟩) and informal (⟨𝑤[𝐼]𝑖𝑛𝑡⟩) interor-
ganisational degrees ( (17) and (18)) are calculated by nor-
malization of the degrees by a total of individuals (N) in
interorganisational network m.

⟨𝑤[𝐹]𝑖𝑛𝑡 ⟩ =
∑𝑂𝑜=1𝑤

[𝐹]
𝑜𝑖𝑛𝑡

𝑁
(17)

⟨𝑤[𝐼]𝑖𝑛𝑡⟩ =
∑𝑂𝑜=1𝑤

[𝐼]
𝑜𝑖𝑛𝑡

𝑁
(18)

4. Multilevel Interdependencies Model to
Analyse Organisational Resilience

In this section, we bridge the multilevel conceptualisation of
interdependencies with resilience analysis. More specifically,
we present the application of conceptualisation to investigate
the relation between interdependencies and organisational
performance in normal and disrupted conditions. Based on
the real world data, we construct an agent-based model of
multilevel organisational interdependencies of two organisa-
tions. We demonstrate results of calculated interdependen-
cies measures and performance simulations. The following
research questions guided our analysis:

(1) What type of structure makes an organisational sys-
tem more resilient?

(2) How does the degree of organisational interdepen-
dencies change at multiple levels?

(3) Does higher degree of organisational interdependen-
cies contribute to better performance?

(4) Which of the interdependencies’ levels contribute the
most to the organisational performance?

4.1.Materials andMethods. Weused the agent-basedmethod
and built a model of organisational interdependencies, which
comprised formal and informal relations within and between
two organisations. The model of interdependencies was con-
structed from the sociometric data gathered in August 2017.
The data was collected at individual level (N=54) by roster
questionnaires that were distributed in two collaborating
organisations, which operate within the security services
sector in Southeast Asia. Organisation A is a research,
training, and operational support centre. Organisation B is
an operational support centre to enhance well-being and
operational effectiveness of another organisation’s employee.
Each of the organisations comprised 5 work units. The data
described six multiplex social networks: reporting relation-
ships, authority, acquaintance, friendship, familiarity, and
problem-solving (Table 1).

Following the work of Luo [35], Haythornthwaite [36],
Luo and Cheng [44], Krackhardt and Hanson [45], and Soda
and Zaheer [92], the formal relations in the model consisted
from reporting and authority networks and the informal
interactions comprised acquaintance, friendship and familiar
ties. For informal relations only mutual links (links that were
confirmed by both connected agents) were considered as
reliable and included in the model. The multiplex model was
specified by the vector of the symmetric adjacency matrices
(undirected graph) of formal and informal relations: A =
{A[F],A[I]}. Each of the matrices was constructed through
the aggregation procedure that resulted in multiplex edge
types, which allowed us to specify the simulation parameters
(Appendix A).The pairs of agents are connected by either (1)
both formal and informal edges, or (2) a formal edge, or (3)
an informal edge (Figure 3).

The strength of social exchanges was reflected in the
weight values given to each type of formal and informal edges.
Qualitative and quantitative characteristics of the edges are
described in Table 2. The formal and informal weight values
range from 0 to 1.The weights of informal edges are based on
the system of social relationships introduced by Luo [35] that
governs complex social transactions dependently on propor-
tions of instrumental and expressive exchange dimensions.
According to Luo [35], Luo and Cheng [44] the strongest
and most efficient resource exchanges are facilitated through
familiarity ties (‘rules of favour’), succeeded by friendship
(‘rules of need’), and acquaintance (‘rules of equity’). The
weights of formal edges are aligned with the hierarchical
logic of formal employment relationships reflected in an
organisational chart, which determine chains of command
(authority) and formal information exchanges (reporting)
[36]. In this light, the authority relations, representing for-
mal vertical relations, are defined as the strongest, and are
followed by reporting relationships that include both formal
horizontal and vertical relations. The weights of aggregated
formal and informal links have been sums of single network
weight values (e.g. an edge representing single reporting and
authority has a weight equal to 0.8 which is a sum of 0.2 and
0.6).
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Table 1: Networks data used in the model.

Social Network Questions Relationships Application in
model

(1) With whom do you like to discuss your daily
work? [35]

Acquaintance
(instrumental exchange)

(2) With whom do you talk about your private affairs
during your daily chats? [44]

Friendship
(expressive exchange)

Informal relations
(trust-based)

(3)
Suppose that your colleague asks you to help
his/her friend. Whose friends would you help?

(adapted from Luo [35])

Familiar
(instrumental and expressive exchange)

(4) To whom do you report about you work progress? Reporting
(instrumental exchange)

Formal relations
(5) Who is your direct supervisor? Authority

(instrumental exchange)

(6)
Whom do you ask for help when you encounter a
work-related problem, for which you couldn’t find

a solution yourself?

Problem-solving
(instrumental exchange) Task demand
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Figure 3: Multiplex model of organisational interdependencies. Nodes’ colours represent work units. Node size depicts node strength. Blue
and green edges are formal and informal relations. Individual no. 4 works in both organisations.

4.1.1. Simulations. To investigate how structure of organi-
sational interdependencies affects organisational resilience,
we used the model to conduct series of simulations both
in normal and disrupted conditions. The simulations high-
light two important aspects from the organisational systems
functioning, i.e., task interdependence (agent must cooperate

with other agents to complete a task) and adaptation through
collective problem solving (the agent support each other
directly and indirectly to solve a problem). In all simulations,
more than 80% of all agents are given tasks to complete. All
tasks are specified by tasks demand [T D], which is a list of
resources that agent needs to gather to complete the task.
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Table 2: Quantitative and qualitative characteristics of existing relations.

Structure type Edge types Weight
Social

exchange
strength

Qualitative characteristics

Formal

One way reporting 0.2 Weak

(i) Weak instrumental exchange
(ii) Limited reliability
(iii) No expectation of reciprocation
(iv) Occasional exchanges

Mutual reporting 0.4 Moderate

(i) Moderate instrumental exchange
(ii) Moderate reliability
(iii) Expectation of reciprocation
(iv) Occasional exchanges

Authority 0.6 Strong

(i) Strong instrumental exchange
(ii) High reliability
(iii) No expectation of reciprocation
(iv) Frequent exchanges

Authority, One way
reporting 0.8 Very strong

(i) Strong instrumental exchange
(ii) Very high reliability
(iii) No expectation of reciprocation
(iv) Very frequent exchanges

Authority,
Mutual reporting 1.0 Extremely

strong

(i) Strong instrumental exchange
(ii) Extremely high reliability
(iii) Expectation of reciprocation
(iv) Very frequent exchanges

Informal

Acquaintance 0.1 Weak

(i) Weak instrumental and weak expressive exchange
(ii) Moderate level of trust
(iii) Rules of fair exchange
(iv) Expectation of instant reciprocation
(v) Limited reliability, often insufficient in obtaining
valuable resources
(vi) Occasional exchanges

Friendship 0.3 Moderate

(i) Weak instrumental and strong expressive exchange
(ii) High level of trust
(iii) Rules of need
(iv) Expectation for reciprocation, but not instant
(v) High reliability
(vi) Long-term, occasional exchanges (ad hoc when
needed)

Friendship,
Acquaintance 0.4 Strong

(i) Moderate instrumental and strong expressive
exchange
(ii) High level of trust
(iii) Expectation of reciprocation, but not instant
(iv) High reliability
(v) Long-term, occasional exchanges

Familiarity 0.6 Very strong

(i) Strong instrumental and moderate expressive
exchange
(ii) High level of trust
(iii) Rules of favour exchange
(iv) Expectation of reciprocation, but not instant
(v) Very high reliability
(vi) Long-term and frequent exchanges
(vii) Strong enough to be a bridge to connect to other
agents

Familiarity,
Acquaintance,
Friendship

>= 0.7 Extremely
strong

(i) Strong instrumental and medium or strong
expressive exchange
(ii) High level of trust
(iii) Expectation of reciprocation, but not instant
(iv) Extremely high reliability
(v) Long-term and very frequent exchanges
(vi) Strong enough to be a bridge to connect to other
agents
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Input: tasks, other agents, networks, disrupted agents
Output: agent task completion time
t = 0
(1) for task in tasks do
(2) for other agent in other agents do
(3) if task = other agent[resource] then
(4) if other agent not in disrupted list then
(5) task = 100%
(6) t+= transfer time(other agent, agent)
(7) else
(8) for subs agent in other agent[shared resources] do
(9) if subs agent not in disrupted list then
(10) if distance(subs agent, agent)= 1 then ⊳1 step
(11) agent[task]+ = subs agent[subs resources]
(12) t+ = transfer time(subs agent, agent)
(13) else if distance(subs agent, agent)= 2 then ⊳2 step
(14) if link(1) and link(2) fulfill the 2-step rule then
(15) agent[task]+ = subs agent[subs resources]
(16) t+ = transfer time(subs agent, agent)
(17) if all tasks ≥ 100 then
(18) return t
(19) else
(20) return nan

Algorithm 1: Task completion and resource sharing.

The task demand was generated from the directed problem-
solving network (Table 1) through selecting resources that
belonged to the agents connected by out-going edges (i.e.,
agents that an agent would contact if a work-related problem
occurs). If the number of resources was more than five,
only five resources were randomly selected, so the task
demand lists ranged from one to maximum five resources.
The task is completed when 100% of resources listed on the
task demand are gathered (Algorithm 1). Each agent has a
resource of his own (e.g., agent J has a resource J), and each
network edge possesses a weight value that reflects strength
of the relationship, as described in Table 2. The strength
of relationship is reflected also in the parameter of speed
and, thus, transfer time (Appendix A, Table 3). The transfer
time needed to connect and pass the resource between the
agents is depended on the edge type. For each agent’s step,
the transfer time is calculated by subtracting the sum of
formal and informal edges’ speed values from 100. In each
simulation we calculate the total time based on all transfer
times needed to accomplish tasks to measure performance of
agents, units, organisations, and interorganisational network.
In the resources search, the agent use both formal and
informal structure in the maximum distance of two edges.
Based on social exchange theory, the agent will choose always
the fastest way. To ensure the realism of simulations, the
speed priority is given to all formal types of links (the most
time efficient), so the agent will choose and informal edge
only if there is no formal connection. In line with work
of Luo [35], the 2-step resource sharing is only possible
when two conditions are fulfilled: (1) the first step edge is
at least moderately strong informally (i.e., follows the rules
of need or favour) or weak informally but the condition of

instant reciprocation is fulfilled (rules of equity); and (2) the
second step edge contains the familiarity component (rules of
favour). In this case, the total transfer time is sum of all steps
needed to share the resource (see more details in Algorithm 1
and examples in Appendix B).

On the basis of the task demand lists, we create two types
of major work disruptions:(1) targeted disruption (unavail-
ability) of agents the most needed (i.e. agents with highest
in-degree centrality in each unit; for bigger units at least
20% of agents were disrupted) to complete the task demands
(N=9, 20% of agents with tasks) and (2) random disruption
of agents, which had a resource needed to complete at least
one task demand (N=9, the same number of agents as in
targeted disruptions). While in normal conditions, an agent,
to complete his task, looks for a resource directly from the
original resource (an agent who owns it); in disrupted condi-
tions, the agents are allowed to use the substituting resources
if the original resource is not available anymore (owning
agent disrupted) (see Algorithm 1).The substituting resource
is conditioned by existence of the edge type that comprises
exchange of work-related information, i.e., reporting (formal
relations) and acquaintance (informal relations). To create
substituting resources we considered directed networks of
reporting and acquaintance (only mutual links), in which
incoming edges granted an agent 40% and 20%of substituting
resource respectively. Thus, in case of simultaneous reporting
and acquaintance incoming links, themaximumvalue of sub-
stituting resource in question is 60% (Appendix A, Table 3).
When we disrupt the organisational system, to complete his
task, an agent first checks his available substituting resources
and next looks for other agents who can substitute the needed
resource to reach the needed amount (100%).
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Table 3: Simulation parameters.

Relations Aggregated edge
type

Contained network
edges

No. of existing
multiplex links Weight Speed

Share of other
agents resources
in disruption
condition

(directional)

Contribution to
2-step resource

sharing

Formal

Rep one way One way reporting 55 0.2 40 0.4 .
Rep mutual Mutual reporting 3 0.4 45 0.4 .
Superv Authority 6 0.6 50 . .

Superv rep
one way

Authority,
One way reporting 52 0.8 55 0.4 .

Superv rep mut Authority,
Mutual reporting 4 1.0 60 0.4 .

Informal

Acq Acquaintance 15 0.1 5 0.2 Step 1 + T D
Friend Friendship 12 0.3 10 . Step 1

Acq friend Friendship,
Acquaintance 17 0.4 15 0.2 Step 1

Famil Familiarity 28 0.6 20 . Steps 1 and 2

Acq famil Familiarity,
Acquaintance 6 0.7 25 0.2 Steps 1 and 2

Friend famil Familiarity,
Friendship 11 0.9 30 . Steps 1 and 2

Acq friend famil
Familiarity,
Friendship,
Acquaintance

8 1.0 35 0.2 Steps 1 and 2

4.2. Results. To answer what type of structure makes an
organisational systemmore resilient, we examined the impor-
tance of formal and informal relations in determining the
system behaviour under normal and disrupted conditions
(Figure 4). We conduct simulations of systems including (1)
only formal relations (blue line), (2) only informal relations
(green line), and (3) both formal and informal relations, i.e.,
the overall network (red line). Figure 4 presents average val-
ues from simulations of normal conditions (n=1000), random
disruptions (n=3000), and targeted disruptions (n=1000).We
measure the system performance by number of completed
tasks and time to complete the tasks. The simulations results
showcase that organisational system with the overall struc-
ture (including formal and informal relations) performs bet-
ter than the system, which has only formal structure or only
informal structure. Importantly, the overall structure system
performance is not a sum of formal and informal structures’
performance. In this way, the overall system performance
is not directly related to the number of existing links but
rather their strength (relations quality) and other structural
properties. Furthermore, it is crucial to acknowledge that in
all conditions the formal structure plays a significant role
in system performance and the organisational system that
possesses only informal structure cannot perform well. In
normal condition, all tasks are completed in both systems, but
the system with overall structure completes the tasks faster.
In case of both disruptions, the performance of both systems
drops, as some tasks cannot be completed. However, it is very
important to highlight that during the disturbed conditions,
informal structure complements the formal structure (by 8%

and 15% in random and targeted disruptions respectively).
More specifically, the informal structure supplements the
unavailable formal connections, and this results in higher
number of completed tasks as well as faster completion
of the tasks. In sum, in general terms, the organisational
system with both formal and informal relations performs
better under normal and disrupted conditions, thus is more
resilient.

In addition, to rule out the factor of different links
number and ensure the correct interpretation of the results,
we have sampled formal and informal structures to have
the same number of edges (precisely 90). In this way, we
constructed the new overall structure that comprised 90
formal and 90 informal edges. We revised the task demand
lists in accordance with the agents existing in the new overall
structure. The new structures were sampled five times and
simulations for the three conditions were repeated (n=1000,
n=3000, and n=1000). The average sampling results are
presented in Figure 5. In general, the sampled results are
consistent with the non-sampled (Figure 4). However, due to
the executed changes that resulted in less efficient topology
of new structures (smaller density, smaller transitivity, and
longer average path; see Table 4), we reported performance
drop of sampled formal and informal structures in normal
condition and randomdisruption.Theperformance dropwas
bigger in case of formal than informal structure, especially in
normal condition. That was due to higher deteriorative dis-
crepancy between the sampled and the nonsampled formal
structure in comparison to the sampled and non-sampled
informal structure. In particular, the biggest disadvantages
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Figure 4: Performance of organisational structures in normal and disrupted conditions.

C
om

pl
et

ed
 T

as
k 

(%
)

C
om

pl
et

ed
 T

as
k 

(%
)

C
om

pl
et

ed
 T

as
k 

(%
)

Overall structure
(Formal + Informal)
Formal structure
Informal structure

Random disruption Targeted disruptionNormal condition

500 750 1000 1250 1500 1750250

Time

0

10

20

30

40

50

60

70

80

90

100

500 750 1000 1250 1500 1750250

Time

0

10

20

30

40

50

60

70

80

90

100

500 750 1000 1250 1500 1750250

Time

0

10

20

30

40

50

60

70

80

90

100

Figure 5: Average performance of sampled organisational structures in normal and disrupted conditions.

sampled formal structure concerned smaller transitivity,
longer average path, and longer diameter, which highly
influenced structure dynamics (see Table 4).

In relation to the formal and informal structure, we inves-
tigated which types of edges facilitated most of exchanges in
normal and disrupted conditions structure contributes the
most to the organisational performance (Figure 6).The usage
of all typeswas relatively stable in all conditions. In total,most
of exchanges were facilitated by both formal and informal
edges (on average 46%) or only by formal edges (on average
43%). Approximately 11% of exchanges were conducted by
informal edges. Similar pattern was observed over the sim-
ulation time. These results highlight with more details and
reiterate the important contribution of the informal structure
to the organisational system performance in normal and
disrupted conditions.

Next, we examined the values of the formal and informal
interdependencies degrees at multiple levels (Appendix C,
Tables 5–9). Table 10 presents the summarised results of
the degree analysis. The higher levels of the analysis, the
higher were the values of non-averaged degrees due to
the increasing number of considered network elements and
their complex nature. The nonaveraged values of individual,
intraunit, interunit, intraorganisational, and interorganisa-
tional degrees ranged from 0 to 72.8, and the averaged
degrees ranged from0 to 5.5.While both formal and informal
individual, interunit, and intraorganisational degree values
had moderate dispersion, the informal intraunit (SD = 7.8,
mean = 5.3) and average formal interunit values (SD = 1.6,
mean = 1.4) were characterised by high dispersion; that is, the
degree values were very widely distributed. As data concern
the relations within one interorganisational network, the
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Figure 6: Types of edges used in normal and disrupted conditions.

Table 4: Properties of nonsampled and sampled structures.

Structure No. nodes No. edges Density Transitivity Average path length Diameter
Non-sampled overall 54 217 0.15 0.44 2.66 2.40
Non-sampled formal 54 120 0.08 0.33 2.94 3.00
Non-sampled informal 43 97 0.11 0.43 3.40 3.90
Average sampled overall 53 180 0.13 0.38 2.81 2.66
Average sampled formal 52 90 0.07 0.24 3.31 3.76
Average sampled informal 42 90 0.1 0.39 3.42 3.76

variation at the interorganisational-level interdependencies
was not possible to assess.

Themultilevel interdependence degrees are network cen-
trality measures, i.e., rankings, which can be investigated
by the Spearman’s rank correlation coefficient 𝜌 and the
Kendall’s rank correlation coefficient 𝜏 [93, 94].Using the cor-
relation coefficients we examined if higher degrees contribute
to the better performance, that is, if there is a negative relation
between formal and informal degrees and time to complete

a task at multiple levels (Table 11 and Figure 7). We adjust
the significance values applying the sequential Bonferroni
method [88] to avoid inflated risk of Type 1 error related to
multiple comparisons. Subplots of Figure 7 are attached in the
Supplementary Material for comprehensive image analysis.
As each agent had a task that required different number
of resources, each value of time to complete the task was
normalized by number of demanded resources. In normal
and random disruption conditions, there was a significant
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Table 5: Individual degree.

Agent Id Org. Unit Formal Individual Degree Informal Individual Degree
1 A A3 1.4 4.2
2 B B1 1.2 0.1
3 B B 4.6 0.0
4 A/B A/B 9.4 2.1
5 A A1 1.8 2.4
6 A A3 1.2 2.2
7 A A4 3.6 1.3
8 B B4 1.2 0.1
9 A A1 1.0 2.8
10 B B2 3.8 0.0
11 A A4 2.2 0.0
12 B B3 1.6 1.7
13 B B1 0.8 0.0
14 A A3 8.0 4.9
15 A A3 1.0 0.8
16 B B1 1.0 3.9
17 A A1 6.4 1.2
18 B B1 0.8 2.9
19 A A2 1.2 5.6
20 A A3 4.8 0.1
21 A A2 1.8 0.9
22 B B1 1.2 4.2
23 A A 5.6 0.0
24 B B 0.4 0.0
25 A A3 0.8 3.6
26 A A3 0.8 1.5
28 A A3 1.2 4.2
29 A A3 1.8 2.6
30 A A4 0.8 0.4
31 B B2 1.0 2.4
32 B B1 1.0 0.2
33 B B3 6.0 1.1
34 A A2 5.2 2.0
35 A A3 1.2 4.2
36 A A3 5.4 4.3
37 A A4 1.0 0.8
38 B B3 1.8 6.6
39 B B2 0.2 0.0
40 A A3 1.2 0.4
41 A A4 2.2 0.8
42 B B2 0.8 0.0
43 B B3 1.4 1.1
44 B B3 1.4 3.1
45 B B1 1.6 3.5
46 B B1 6.4 0.0
47 B B1 0.4 0.0
48 A A1 1.6 3.4
49 A A4 2.6 2.9
50 B B 0.4 0.0
51 B B2 1.6 2.3
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Table 5: Continued.

Agent Id Org. Unit Formal Individual Degree Informal Individual Degree
52 B B2 1.4 3.0
54 A A2 1.2 2.7
55 B B4 2.2 0.5
57 B B3 2.2 2.6

Table 6: Intraunit degree.

Unit Formal
Intraunit Degree

Informal
Intraunit Degree

Number of
Individuals

Average Formal
Intraunit Degree

Average
Informal

Intraunit Degree
A 0.4 0.0 2 0.20 0.00
A1 6.8 5.0 4 1.70 1.25
A2 4.8 1.8 4 1.20 0.45
A3 25.2 27.4 12 2.10 2.28
A4 6.4 2.4 6 1.07 0.40
B 1.6 0.0 2 0.80 0.00
B1 12.4 8.2 9 1.38 0.91
B2 7.6 3.0 6 1.27 0.50
B3 10.8 7.6 6 1.80 1.27
B4 3.2 0.2 4 0.80 0.05

Table 7: Interunit degree.

Unit Formal
Interunit Degree

Informal
Interunit Degree

Number of
Individuals

Average Formal
Interunit Degree

Average
Informal

Interunit Degree
A 11.0 1.1 2 5.50 0.55
A1 4.0 4.8 4 1.00 1.20
A2 4.6 7.9 4 1.15 1.97
A3 3.6 4.4 12 0.30 0.37
A4 6.0 3.8 6 1.00 0.63
B 6.6 1.0 2 3.30 0.50
B1 2.0 6.6 9 0.22 0.73
B2 1.2 3.5 6 0.20 0.58
B3 3.6 7.1 6 0.60 1.18
B4 1.0 0.4 4 0.25 0.10

Table 8: Intraorganisational degree.

Org.
Formal

Organisational
Degree

Informal
Organisational

Degree

Number of
Individuals

Average Formal
Organisational

Degree

Average Informal
Organisational

Degree
A 72.8 58.6 28 2.60 2.09
B 50.0 37.6 27 1.85 1.39

Table 9: Interorganisational degree.

Interorg.
network

Formal Interorg.
Degree

Informal Interorg.
Degree

Number of
Individuals

Average Formal
Interorg. Degree

Average Informal
Interorg. Degree

m 0.0 2.7 54 0.00 0.05



16 Complexity

Random disruption Targeted disruptionNormal condition

Inform
al

Time
Formal

2

4

6

8

10

8

6

4

2

0
0

100
120

140
160

180
200

220
240

Inform
al

Time
Formal

2

4

6

8

10

8

6

4

2

0
0

100

120
140

160

180

200

Inform
al

Time
Formal

2

4

6

8

10

8

6

4

2

0
0

100

150

200

250

300

(a) Individual level degrees

Random disruption Targeted disruptionNormal condition

Time

120

130

140

150

160

170

Time

0.5

1.0

1.5

2.0

2.5

2.0

1.5

1.0

0.5

0.0

0.0

0.5

1.0

1.5

2.0

2.5

2.0

1.5

1.0

0.5

0.0
0.0

120

130

140

150

Time

Average Formal

Average Formal

Average Formal

Average Inform
al

Average Inform
al

Average Inform
al

0.5

1.0

1.5

2.0

2.5

2.0

1.5

1.0

0.5

0.0
0.0

120

140

160

180

(b) Average intraunit level degrees

Random disruption Targeted disruptionNormal condition

2.0

1.5

1.0

0.5

0.0

Average Formal

Average Inform
al

Average Formal

Average Inform
al

Average Formal

Average Inform
al

Time

1

2

3

4

5

2.0

1.5

1.0

0.5

0.0

0

120

130

140

170

160

150 Time

1

2

3

5

4

0

120

130

140

150

Time

1

3

2

4

5

2.0

1.5

1.0

0.5

0.0
0

120

140

160

180

(c) Average interunit level degrees

Figure 7: Relation between average interunit level degrees and task performance in normal and disrupted conditions.

negative correlation between informal individual degree and
time to complete a task; i.e., the higher informal individual
degrees (Figure 7(a)) the faster task completion (𝜌 = -.35,𝜌= -
.33). Also, agents with higher formal individual degree tended
to complete tasks faster in targeted disruption (𝜌 = -.26).

At the intraunit level (Figure 7(b)), while in normal
condition and random disruption there was no correlation
between the formal and the informal intraunit degrees and
time, in the targeted disruption both average formal and
informal intraunit degrees were moderately correlated with
better performance (𝜌 = -.44, 𝜌 = -.43). At the interunit
level (Figure 7(c)), in all conditions, units with higher average
formal interunit degree performed better, i.e., needed shorter

time to complete tasks (𝜌 = -.54, 𝜌 = -.46, and 𝜌 = -.43)
than units with lower degrees. At the intraorganisational level
(Table 12), Organisation A with both higher average formal
and informal intraorganisational degrees performed better
than Organisation B, which had lower degrees. As the model
concerns the only one interorganisational network, the rela-
tions between interorganisational degrees and performance
were not possible to assess.

There are three edge levels, which contain unique
information about the organisational interdependencies, i.e.,
intraunit, interunit, and interorganisational. We examined
their usage to assess which of them contribute the most
to the organisational performance (Figure 8). In total, most
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Figure 8: Levels of edges used in normal and disrupted conditions.

of the organisational exchanges were facilitated through the
intraunit (on average 62%) and interunit (on average 34%)
edges. The interorganisational edges constituted only 4% of
the total number of used edges. While the usage of inter-
and intraunit edges was stable in the normal and disrupted
conditions, the usage of interorganisational edges decreased
in the targeted disruption. This was due to the small number
of interorganisational edges and low redundancy, which
made this level prone to the disturbances caused in the
targeted disruption.

5. Discussion and Implications

Organisational interdependence is a multidimensional con-
struct that can be conceptualised at multiple levels. On one
hand, the interdependencies make an organisational system
more complex [30, 95]. On the other hand, the existence of
multiplex relationships that comprise interdependencies is
a natural feature of modern organisations [96, 97]. Because

system’s safety is an emergent property [63] and partial
analysis of the system can be misleading [84], it is crucial
to have an in-depth understanding of the interdependencies’
dynamics that happen atmultiple levels.The analysis of struc-
tural properties of organisational interdependencies helps to
identify patterns and assess needs and opportunities both in
normal and disrupted conditions. By better understanding
multilevel interdependencies we can reduce vulnerability and
increase the ability to withstand dynamic changes and, thus,
enhance organisational resilience.

Resilience is embedded in people’s behaviour, and it is
built by proactive approach to mobilizing resources, abilities
to respond and perform under a variety of conditions. In
this study, we view organisational resilience as a systemic
property, which requires management of relational dynamics
at multiple organisational levels. For that reason, the concept
is highly relevant to resilience analysis in the organisa-
tional context. Our multilevel conceptualisation of inter-
dependencies considered two dimensions of organisational
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Table 10: Summary of interdependence degrees values at multiple levels.

Level Interdependence Degree N SD Mean Max Min

Individual Formal individual 54 2.3 2.4 9.4 0.2
Informal individual 54 1.7 1.9 6.6 0.0

Intraunit

Formal intraunit 10 6.8 7.9 25.2 0.4
Informal intraunit 10 7.8 5.6 27.4 0.0

Average formal intraunit 10 0.5 1.2 2.1 0.2
Average informal intraunit 10 0.7 0.7 2.3 0.0

Interunit

Formal interunit 10 2.8 4.4 11.0 1.0
Informal interunit 10 2.5 4.1 7.9 0.4

Average formal interunit 10 1.6 1.4 5.5 0.2
Average informal interunit 10 0.5 0.8 2.0 0.1

Intraorg.

Formal intraorganisational 2 11.4 61.4 72.8 50.0
Informal intraorganisational 2 10.5 48.1 58.6 37.7

Average formal intraorganisational 2 0.4 2.2 2.6 1.9
Average informal intraorganisational 2 0.4 1.7 2.1 1.4

Interorg.

Formal interorganisational 1 0.0 0.0 0.0 0.0
Informal interorganisational 1 0.0 2.7 2.7 2.7

Average formal organisational degree 1 0.0 0.0 0.0 0.0
Average informal organisational degree 1 0.0 0.05 0.05 0.05

Table 11: Correlation between interdependence degrees and time to complete task.

Degree Time to complete task(s)
Normal condition Random disruption Targeted disruption

Formal individual -.024 (.000) -.098 (-.055) -.262∗ (-.193∗)
Informal individual -.351∗∗(-.252∗∗) -.325∗ (-.239∗) -.174 (-.134)
Average formal intraunit .058 (.068) -.095 (-.023) -.442 (-.295)
Average informal intraunit .073 (.091) -.085 (.000) -.427 (-.273)
Average formal interunit -.537 (-.432∗) -.463 (-.341) -. 427 (-.250)
Average informal interunit .450 (.270) .316 (.180) -. 377 (-.270)

Spearman’s 𝜌 (Kendall’s 𝜏)
Bold correlation values are significant at 𝛼 level corrected by sequential Bonferroni method [88].
∗ p < 0.001 level (1-tailed); ∗p < 0.05 level (1-tailed).

relations—formal and informal—and proposed measures to
investigate their structure across levels. With well-mapped
organisational interdependencies, we can examine how an
organisational system behaves under normal and disturbed
circumstances. The empirical study proved the structure of
interdependencies influences the efficiency of organisational
performance. In the model, in line with the state-of-art liter-
ature [7–9], we highlighted that task interdependence affects
the dynamics and outcomes of organisational relationships.
The results showed that an organisational system with a rich
structure that combined both formal and informal relations
performed better both in normal and disrupted conditions
and thus was more resilient than the system based only on
the formal relations. The formal structure appeared to mean-
ingfully contribute to organisational performance. However,
our results also underlined the importance of informal
structure that substantially complements and substitutes the
formal structure, especially in the disrupted conditions. We
showcased that the trust-based relationships strongly affect
agent’s decision-making and flow of network resources. The

stronger informal relations, the faster transfer time and more
resources are shared, as agents are more willing to provide
assistance to each other. In addition, in most of simulated
exchanges, the actors were connected by both formal and
informal edge at the same time. These results confirm that
well-established relationships (both formal and informal)
within and between organisations condition organisational
performance both in normal and disrupted conditions.

The analysis of introduced multilevel interdependence
degrees can determine the organisation’s ability to both work
as expected, in normal conditions, as well as to create emer-
gent response networks to confront the unexpected, mitigate
consequences and adapt to the ‘new normal’. The degree
of organisational interdependence is not uniformed; rather
it changes depending on the analysed relationship level.
Facing the unexpected, task execution very often has to be
changed and improvised due to unavailability of the needed
resources. Individuals, units or organisations that normally
are loosely coupled can be tightly coupled during a period
of disruption. The interactions’ changes happen at multiple
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Table 12: Relation between average intraorganisational level degrees and task performance in normal and disrupted conditions.

Org.
Average formal

intraorganisational
degree

Average informal
intraorganisational

degree

Time to complete task(s)

Normal condition Random
disruption

Targeted
disruption

A 2.60 2.09 126 118 122
B 1.85 1.36 145 134 157

levels; therefore, it is crucial to not only acknowledge the
importance of individual interdependencies, but also higher
interdependencies levels, such as intraunit, interunit, intraor-
ganisational and interorganisational. Even though shaped
by individuals’ interactions, the higher-level degrees have
unique features and provide new information that is crucial
for resilience analysis of an organisational system. Atmultiple
levels, the results showed there is a negative relation between
the interdependence degrees, the time needed to complete a
task. This was the most evident at the individual, interunit
and organisational levels. Most of the simulated exchanges
were facilitated through intra- or interunit edges, which at
the same time contribute the most to the overall system
performance. The analysis of the multilevel interdependence
degrees indicated also that individuals, units, and organisa-
tions are more structurally embedded in the organisational
system and, thus, potentially can benefit themost to organisa-
tional performance in normal and disrupted conditions and
at the same time contribute to organisational resilience.

The results of this research imply thatwell-managed inter-
dependencies are crucial to ensure resilient organisational
performance. In the following lines, we present a few impli-
cations of this research. From our results, we can conclude
that a resilient organisation should aim to have the dense
and strong of organisational interdependencies, especially
at intra- and interunit levels, which are constituted by the
individuals’ exchanges within the organisation. Some of the
practices to reach this goal could include (1) decentralising
(flattening) the organisational structure, (2) changing the
organisational structure to the matrix model, which imposes
higher number of formal interactions between units, and
(3) nourishing organisational culture and providing environ-
ment that will help to activate formulation of new informal
relations within and between units as well as strengthen the
existing ones (organising social events, retreats, and common
spaces). Furthermore, both formal and informal organisa-
tional structure contribute to organisational performance
during normal and disrupted situations; thus both of them
should be part of in-depth analysis while establishing crisis
management plans, procedures and practices. A resilient
organisation should have balanced amount of formal and
informal interdependencies, which can facilitate complex
relational exchanges when the performance conditions are
both certain and uncertain. The formal structure is very
efficient in enabling the collaborative work; however, it is
prone to the disruptions, and often it is the informal structure
that supplements it during the disruptions. It is important
to stay aware of the differences and advantages of the two
types of relations. The analysis of informal structure can
help to unmask concealed organisational patterns, needs, and

opportunities. This information can be used to eliminate
hidden organisational vulnerabilities and use overlooked
potentials. In practice, the strengths of informal structure
could be recognised by acknowledgment of the role of
informal leaders in emergency preparedness activities (e.g.,
drills and exercises), emergency response plans, contingency
plans, and the business continuity plan.

This article aimed to introduce a new way of conceptu-
alising organisational interdependencies and present its use-
fulness for resilience analysis. Our analysis had limited focus
onmeasuring the direct effects or causality between organisa-
tional interdependencies and organisational performance in
expected and unexpected conditions. Future research should
take up the challenge to broaden analysis of the impact
of organisational interdependencies on system resilience.
The described application of the multilevel perspective on
organisational interdependencies gave new insights into
the structure of organisational interdependencies embedded
in the specific context, which shapes the perceptions and
behaviours of the involved actors. Future studies should
consider cross-disciplinary analyses of the organisational
interdependencies in other organisational contexts and larger
samples in order to build up the comprehensive of how the
interdependencies are shaped in different organisational sys-
tems and how they affect system performance. These future
analyses, along with the preliminary results described in this
paper, should be the insightful base of next practices for
resilient design and management of organisational systems.

6. Conclusion

Organisations are complex interdependent systems, which
require management efforts to remain resilient. As noted
above, we argue for correlation between resilience and organ-
isational interdependencies. Interdependencies in organisa-
tions have been studied from various perspectives; how-
ever, most of the analyses were conducted only at the
single level and overlooked the multilevel character of
interdependencies. In response to this gap, we proposed a
multilevel approach to better comprehend the complexity
of interdependencies in organisational systems. With this
paper we contributed to the study of interdependencies and
resilience by introducing a multilevel conceptualisation of
interdependencies in organisational systems and presenting
its application for resilience analysis. Adapting the most
plausible definition of interdependencies as exchange rela-
tionships, our paper sheds light on how those relationships
are shaped across multiple organisational levels and suggests
how they could be decoupled in order to handle their
complexity. We used the system and multilevel theories
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to explore five organisational levels, including individual,
intraunit, interunit, intraorganisational, and interorganisa-
tional. We argued that interdependencies are a discontinuous
phenomenon across levels that does not express uniform
pattern. Accordingly, we employed the configural compila-
tion approach to describe interdependencies’ features and
proposed their measures at multiple levels. In addition to
formal relationships, our conceptualisation underlines the
significance of informal trust-based relationships, a notion
that provides a new insight on the origins of interdepen-
dence. Furthermore, we applied the multilevel interdepen-
dencies conceptualisation into the analysis of organisational
resilience and presented the relations between interdepen-
dencies and organisational performance at multiple levels
in normal and disrupted conditions. Finally, we discussed
how managing multilevel interdependencies is crucial to
reduce vulnerability and to build up, maintain, and enhance
resilience of organisational systems. By introducing the
multilevel conceptualisation, we hope to pave a preliminary
path to managing the complexity of the interdependencies
in organisational systems. At the same time, we advance the
analysis of the multilevel relationships between interdepen-
dencies and resilience as a promising step towards improving
organisational design and resilience management.

Appendix

A.

See Table 3.

B.

B.1. 1-Step Resource Sharing in Normal Condition
(See Figure 9)

(i) Agent F needs a resource of agent S (T D:[S]): agent S
gives resource to agent F because they are connected

by an acquaintance edge (acq) and agent S has agent
F on his task demand list (T D:[F]); Transfer time =
100 – 5 = 95.

(ii) Agent S needs a resource of agent L (T D:[L]): agent L
gives resource to agent S because they are connected
by a single-way reporting edge; Transfer time: 100 –
40= 60.

B.2. 2-Step Resource Sharing in Normal Condition
(See Figure 10)

Scenario. Agent F needs a resource of agent L (T D : [L]); as
they are not directly connected, he asks agent S for help.

Step 1. If agent S and agent F are connected by an instrumen-
tal tie, i.e., acquaintance (acq), agent S will facilitate resource
sharing only if agent’s F resource is on his task demand list
(T D), that is, when the fair exchange can take place. In case of
other informal links the resource connection will be directly
facilitated.

Step 2. Agent S can ask agent L for a favour to help agent
F only if they are connected by strong instrumental and
expressive ties, i.e., containing familiarity component (famil,
acq famil, friend famil, and acq friend famil)

B.3. Disruption (See Figure 11)

Scenario. Agent F’s task demand is resource J (agent J). Agent
J is disrupted (not available).

(1) Agent F has initial 20% of needed resource of agent
J due to the informal connection (acq friend famil)
comprising exchange of work-related information
(component of ‘acq’).

(2) As agent J reports to agent S, agent F asks agent S
for additional 40% of agent J (superv rep one way).
There is also a parallel informal link (friend) which
facilitates faster transfer; Transfer time= 100 – (55+10)
= 35.

(3) Because agent F and agent S share strong expressive
ties (friends) and agent S and H share strong expres-
sive and instrumental tie (famil), agent S asks agent H
for a favour to help with missing resource part (40%);
Transfer time = (100 – (55+10)) + (100-20) = 35 + 80=
115.

(4) Total transfer time: 150.

C.

See Tables 1–A.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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The semantic social network is a kind of network that contains enormous nodes and complex semantic information, and the
traditional community detection algorithms could not give the ideal cogent communities instead. To solve the issue of detecting
semantic social network, we present a clustering community detection algorithm based on the PSO-LDA model. As the semantic
model is LDAmodel, we use the Gibbs samplingmethod that canmake quantitative parameters map from semantic information to
semantic space. Then, we present a PSO strategy with the semantic relation to solve the overlapping community detection. Finally,
we establish semantic modularity (SimQ) for evaluating the detected semantic communities. The validity and feasibility of the
PSO-LDA model and the semantic modularity are verified by experimental analysis.

1. Introduction

With the development of society and the improvement of
science and technology, semantic social networks are rapidly
developed and many semantic networks, like Twitter and
Weibo, have made an insignificant impact in our life so
far. In these networks, different individuals have different
small social “worlds” which are called communities [1].Thus,
researchers focus attention on community detection not only
to divide networks into modules but also to make a deep
insight into understanding interesting properties within the
semantic social network. In practical application, semantic
communities have a great promotion on intelligent infor-
mation retrieval, marketing management, individual service,
and other informationmanagement domains [2]. Heretofore,
the research on community detection mainly reflects on the
following three categories: topological community detection
[3], community detection on overlapping construction [4],
and semantic community detection.

The topological community detection represents the pio-
neer work, the goal of which is studying the topological
constructions and dividing the social networks into several

separate networks. The representative algorithms contain
Modular Optimization [5], GN [6], and FN [7]. Then,
researchers gradually focus on overlapping communities
which can be more real than previous research networks.
Therefore, CPM [8] was proposed to detect the overlapping
communities. Soon afterwards, community detection on
overlapping construction received more attention in social
networks andmany representative algorithmswere proposed,
including LFM [9], EAGLE [10], COPRA [11], DEMON
[12], and so forth. Neuman and Yair [13] proposed an
agglomerative spectral clustering method with conductance
and edge weights. In theirmethod, themost similar nodes are
agglomerated based on eigenvector space and edge weights.
But this method only is suitable for the nonsemantic social
networks. Then, with the big interest in semantic network,
semantic community detection came into researchers’ eyes.
Yang and McAuley [14] proposed the CESNA model to
develop communities by using edge structure and node
attributes. This method leads to more accurate community
detection as well as improved robustness in the presence of
noise in the network structure. But when this method applies
into semantic network, it performs instable. Reihanian and
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Ali [15] proposed a generic framework for overlapping
community detection in social networks with special focus
on rating-based social networks. This framework considers
the information shared by the users in order to find mean-
ingful communities. The most important feature of semantic
communities is that the nodes in these communities not
only have topological relationships, but also own semantic
context. For the semantic data miningmust be considered on
the text analysis, and many semantic community detection
algorithms applied the LatentDirichlet Allocation (LDA) [16]
model as the core model.

In the last few years, the analysis in semantic social
network has become popular.Most of these algorithms utilize
LDA model as the basic model. The SVM-DTW method
proposed by Solera, Calderara, and Cucchiara [17] can work
on the hierachical networks. This method makes simple
structure and needs less input parameters, but the semantic
context is not considered and the detected community has
less connection with the real semantic network. Li and Ming
and She [18] proposed the GRTM model which not only
simulates users’ interests as latent variables through their
information, but also considers the connections between
users as a result of their information. This method com-
bines the context analysis with topological analysis and the
similarity of the detected community is nearly close to the
real semantic social network, but it is lack in the feature of
sampling that wouldmake some fuzzy irrelevant community.
Xiao and Liu [19] proposed the GLDA-FP model which can
be extended using the prediscretizing method which can
help LDA model detect the topic evolution automatically,
but the calculation required is large. As for the LCTA model
proposed by Yin, Cao, and Gu [20] whichmakes the different
topic distributions in different communities to make the
model reasonable, this method has high accuracy in the
result, but the number of communities needs to be preset and
some hidden parameters need to be set up with experience.

In this paper, we propose a novel community detection
algorithm for the objective of dividing nodes into clusters.
The main characteristic of communities detected by this
algorithm is that members of the same community have
common or similar interests. We take into account the topic
and keywords information in text from individuals’ words
through LDA model, then quantize semantic nodes, and
map them into semantic space. Then, we get ideal virtual
social communities after using Particle Swarm Optimization
algorithm. Last but not least, we build a novel modularmodel
and use the new function 𝑆𝑖𝑚𝑄 to evaluate the virtual social
communities we make.

Compared with other models in semantic social network,
such as lovainmethodmodel [21] and stochastic blockmodel
[22], the LDA model provides the probabilistic method so as
to promote the foundation of mathematics.Then considering
the following sampling, the Gibbs sampling can give an
accurate and powerful mathematical proof for the conver-
gence and solution of the LDA model, which is impossible
to happen in the other semantic models. Combined with the
PSO algorithm, the probability function compiled by LDA
model can be closely integrated with the inertia weight and
the constriction factor of the particles [23]. In performance

measure, we propose a new module detecting evaluation
model based on semantic information using the cosine func-
tion, which enriches the classic semantic detecting evaluation
model.

The rest of the paper is organized as follows: Section 2
introduces LDAmodel in semantic network. Section 3 shows
gibbs sampling and the proposed algorithm. In order to verify
our approach, we conducted extensive experiments on a real
data set. Performance evaluation and experimental results are
shown and discussed in Sections 4 and 5. Finally, in Section 6
we make conclusions and envision further work.

2. Preliminaries

2.1. Community Detection Process. The problem of commu-
nity detection belongs to NP-hard areas [24] which need
initialize solutions at the beginning and optimize solutions
constantly in the way of getting the best satisfying solution.
The main goal of detecting semantic community is to form
communities that individuals share common interests and
probably they have similar characteristic [25]. So we show
a novel idea that we focus on textual data of individuals’
words. According to the complexity of community detection,
we utilize the probabilistic graphical model–LDA to design
network.This model has a most clearly hierarchical structure
[26], and the scale of parameter spatial has no connection
with the number of training documents.

First, we select topics andwords from individuals’ seman-
tic information through LDAmodel.Then, we map semantic
nodes into semantic space via Gibbs sampling method [27].
Last, in order to get more accurate communities, we use Par-
ticle Swarm Optimization (PSO) algorithm to form semantic
communities. The proposed community detection algorithm
is clearly explained in the following steps.

2.1.1. Similar Semantic Information Discovery. Every individ-
ual says different words as each node has its own information
contents in semantic social network [28]. So we abstract
semantic context into topic, and then we extract keywords
from topic. Through semantic information, we convey some
distributions to constrain our mess context [29]. In this
way, dividing communities in semantic social network based
on similar documents, topics, and keywords from social
semantic contents make communities real [30]. The LDA
probability model is shown in Figure 1.

In this section, we research LDA model on information
contents. The relevant mathematical symbols for illustrating
the LDA model are given in Table 1. LDA model assumes the
following generative process for each node:(1) 𝜃 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼). The parameter 𝜃, which pertains to
topic distribution, is subject to the Dirichlet distribution over
a priori parameter 𝛼.(2) 𝜑 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽). The parameter 𝜑, which pertains to
keyword distribution, is subject to the Dirichlet distribution
over a priori parameter 𝛽.

(3) 𝑧𝑖 | 𝜃(𝑑𝑖) ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃(𝑑𝑖)). The topic 𝑧𝑖 is subject
to the multinomial distribution in case of topic distribution
probability 𝜃(𝑑𝑖).
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Table 1: The symbol description.

SYMBOL DESCRIPTION
𝑁 Number of keywords in semantic social network
𝜔 Set of keywords in semantic social network, 𝜔𝑖 is the 𝑖 − 𝑡ℎ keyword in 𝜔
𝑑 Node set corresponding to keywords set 𝜔, 𝑑𝑖 is the 𝑖 − 𝑡ℎ node in the semantic social network
𝑧 Topic set corresponding to keywords set 𝜔, 𝑧𝑖 is the 𝑖 − 𝑡ℎ topic in semantic social network
𝜃(𝑑𝑖) Topic distribution probability vector 𝜃 over node 𝑑𝑖
𝜑(𝑦) Keyword distribution probability vector of topic 𝑦, 𝜑(𝑦)𝜔𝑖 meaning the probability of keyword 𝜔𝑖

specific to topic 𝑦, 𝜑(𝑦)𝜔𝑖 = 𝑃(𝜔𝑖 | 𝑧𝑖 = 𝑦)
𝛼 A priori parameter over topic distribution probability specific to each node
𝛽 A priori parameter over keyword distribution probability specific to a special topic

Topic 
distribution

Topic 

Keyword

Keyword 
distribution

 

zi 

y

(d)

Figure 1: LDA probability model.

(4) 𝜔𝑖 | 𝑧𝑖, 𝜑(𝑧𝑖) ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜min𝑎𝑙(𝜑(𝑧𝑖)). The keyword 𝜔𝑖
is subject to the multinomial distribution in case of keyword
distribution probability 𝜑(𝑧𝑖) over topic 𝑧𝑖.

The process of forming LDA model is shown in Algo-
rithm 1. And 𝑀 means the number of documents in the
process.

3. Gibbs Sampling and PSO Strategy

3.1. Gibbs Sampling. Gibbs sampling [31] is a simple case
of Markov-chain Monte Carlo (MCMC) [32] and aims at
extracting a set of approximate samples from Markov-chain
that is targeted to make a suitable probability distribution for
converging to optimal solutions in high-dimensional models
[33] such as LDA. According to the feature of Markov-
chain, the probability-distribution function becomes the key
to Gibbs sampling [34]. As for LDA in this text, we only
sample topics in semantic social network; that is, we only
need to consider hidden variety 𝑧𝑖. We denote 𝑧¬𝑖 (topic set
besides 𝑧𝑖) and 𝜔¬𝑖 (set of keywords besides 𝜔𝑖) to draw a
posterior probability 𝑃(𝑧𝑖 = 𝑦 | 𝑧¬𝑖, 𝜔𝑖). As for 𝑖, we can
find the corresponding keyword 𝜔𝑖. So the probability can be
described as in the following equation.

𝑃 (𝑧𝑖 = 𝑦 | 𝑧¬𝑖, 𝜔𝑖) ∝ 𝑃 (𝑧𝑖 = 𝑦, 𝜔𝑖 = 𝑡 | 𝜔¬𝑖, 𝑧¬𝑖) (1)

When 𝑧𝑖 = 𝑦 and 𝜔𝑖 = 𝑡 (𝑡 is one of the keywords in𝜔; 𝑦, which corresponds to 𝑡, is one of the topics in 𝑧), the
probability𝑃(𝑧𝑖 = 𝑦, 𝜔𝑖 = 𝑡 | 𝜔¬𝑖, 𝑧¬𝑖) only involves conjugate
distribution of 𝑑 − 𝑡ℎ the document and 𝑘 − 𝑡ℎ topic under
the Dirichlet-multinomial model.

We make 𝑛[𝑘]𝑝 as the number of 𝑘 − 𝑡ℎ topics in 𝑑 − 𝑡ℎ
document, and themultinomial distribution can be described
as

𝑛𝑝 = (𝑛[1]𝑝 , 𝑛[2]𝑝 , . . . 𝑛[𝐾]𝑝 ) (2)

The number of𝑚 − 𝑡ℎ keywords in 𝑘 − 𝑡ℎ topic, named 𝑛[𝑚]𝑞 ,
can be shown as follows under multinomial distribution.

𝑛𝑞 = (𝑛[1]𝑞 , 𝑛[2]𝑞 , . . . 𝑛[𝑀]𝑞 ) (3)

The posterior distribution of 𝜃(𝑑𝑖) and 𝜑(𝑧𝑖) can be obtained in
the following equations.

𝑃 (𝜃(𝑑𝑖) | 𝜔¬𝑖, 𝑧¬𝑖) = 𝐷𝑖𝑟𝑐ℎ𝑙𝑒𝑡 (𝜃(𝑑𝑖) | 𝑛𝑝,¬𝑖 + 𝛼) (4)

𝑃 (𝜑(𝑧𝑖) | 𝜔¬𝑖, 𝑧¬𝑖) = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜑(𝑧𝑖) | 𝑛𝑞,¬𝑖 + 𝛽) (5)

𝑛𝑝,¬𝑖 is the number of topics and 𝑛𝑞,¬𝑖 is the number of
keywords.
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(1) Extract the keyword distribution, and 𝜑 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽);
(2) for each𝑚 ∈ [1,𝑀] do
(3) extract𝑁 keywords, and𝑁 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜑);
(4) Extract topic distribution, and 𝜃 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼);
(5) for each 𝑛 ∈ [1,𝑁] do
(6) Extract a topic, and this topic obeys 𝑧𝑖 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃(𝑑𝑖));
(7) Extract a keyword, and this keyword obeys 𝜔𝑖 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜 min 𝑎𝑙 (𝜑(𝑧𝑖));
(8) end for
(9) end for

Algorithm 1: The generative process of LDA.

The distribution probability 𝑃(𝑧𝑖 = 𝑦, 𝜔𝑖 = 𝑡 | 𝜔¬𝑖, 𝑧¬𝑖)
can be calculated by (6)∼(11).
𝑃 (𝑧𝑖 = 𝑦, 𝜔𝑖 = 𝑡 | 𝜔¬𝑖, 𝑧¬𝑖) = ∫𝑃 (𝑧𝑖 = 𝑦, 𝜔𝑖 = 𝑡, 𝜑(𝑧𝑖),

𝜃(𝑑𝑖) | 𝜔¬𝑖, 𝑧¬𝑖) 𝑑𝜃(𝑑𝑖)𝑑𝜑(𝑧𝑖)
(6)

= ∫𝑃 (𝑧𝑖 = 𝑦, 𝜃(𝑑𝑖) | 𝜔¬𝑖, 𝑧¬𝑖) 𝑃 (𝜔𝑖 = 𝑡, 𝜑(𝑧𝑖) | 𝜔¬𝑖,
𝑧¬𝑖) 𝑑𝜃(𝑑𝑖)𝑑𝜑(𝑧𝑖)

(7)

= ∫𝑃 (𝑧𝑖 = 𝑦 | 𝜃(𝑑𝑖))𝐷𝑖𝑟𝑐ℎ𝑙𝑒𝑡 (𝜃(𝑑𝑖) | 𝑛𝑝,¬𝑖
+ 𝛼) 𝑑𝜃(𝑑𝑖)

(8)

∙ ∫𝑃 (𝜔𝑖 = 𝑡 | 𝜑(𝑧𝑖))𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜑(𝑧𝑖) | 𝑛𝑞,¬𝑖 + 𝛽) 𝑑𝜑(𝑧𝑖) (9)

= 𝑛𝑦𝑝,¬𝑖 + 𝛼
∑𝐾𝑓=1 𝑛𝑓𝑝,¬𝑖 + 𝛼

𝑛𝑡𝑞,¬𝑖 + 𝛽
∑𝑉𝑔=1 𝑛𝑔𝑞,¬𝑖 + 𝛽 (10)

󳨐⇒ 𝑃 (𝑧𝑖 = 𝑦 | 𝑧¬𝑖, 𝜔𝑖) ∝ 𝑛𝑦𝑝,¬𝑖 + 𝛼
∑𝐾𝑓=1 𝑛𝑓𝑝,¬𝑖 + 𝛼

⋅ 𝑛𝑡𝑞,¬𝑖 + 𝛽
∑𝑉𝑔=1 𝑛𝑔𝑞,¬𝑖 + 𝛽

(11)

𝑛𝑦𝑝,¬𝑖 is the amount of topics while 𝑧𝑖 = 𝑦, ∑𝐾𝑓=1 𝑛𝑓𝑝,¬𝑖 is the
amount of topics, 𝑛𝑡𝑞,¬𝑖 is the amount of keywords while 𝜔𝑖 =
𝑡, and ∑𝑉𝑔=1 𝑛𝑔𝑞,¬𝑖 is the amount of keywords.

3.2. PSO Class Dependent LDA (PSO-LDA). Particle Swarm
Optimization (PSO) is an intelligent optimization algorithm.
It was first proposed by J.Kennedy and R.C.Eberhart [35].
PSO algorithm has the advantages of simplified, rather quick
convergence [36] speed and less controlling parameter, and
so forth.

Compared with other optimization algorithms, such as
Genetic Algorithm (GA), Ant Colony Optimization (ACO),
and Simulate Anneal (SA), PSO algorithm has two attractive
features: firstly, PSO optimizes the solution from the local

optimumfirst and runs fast, whichmakes the algorithmmore
adaptable to the evolution of networks; secondly, particles
in PSO can be mapped to nodes in semantic network; the
process of finding the optimal solution in PSO is consistent
with the birth process of the semantic community.

PSO puts a set of random solutions at system startup
time and uses iterative search to find out optimal solutions
[37]. In PSO, a solution of each optimization problem is
called “particle”. Each particle owns fitness value of itself. So
we design a heuristic method to detect communities based
on PSO. Each particle searches for the optimal solution by
sharing social information between individuals.

In PSO-LDA, some LDA semantic feature is put into
PSO. We use nodes in semantic social network mapping to
“particle” in PSO and utilize semantic information vector of
each node mapping to velocity of each particle in PSO. As
for fitness value, we use information similar function instead.
In PSO, we normalize that the nodes in semantic social
network simulate the behavior of a “bird flock”, where social
sharing of information takes place, individuals’ gains from the
discoveries and previous experience of all other nodes during
the search for food [38]. Thus, each node, called particle, in
semantic social network which is called swarm, is assumed to
“fly” over the search place looking for promising regions on
the landscape.

First, we assume the search place is𝐷− dimension space;
and the 𝑖 − 𝑡ℎ particle position of the swarm is denoted as𝐷 − dimension, the vector𝑊𝑖 = (𝑤𝑖1, 𝑤𝑖2, ⋅ ⋅ ⋅ , 𝑤𝑖𝑑, ⋅ ⋅ ⋅ , 𝑤𝑖𝐷).
Each particle has two pieces of message in the process: its
“best” position with the smallest value (i.e., its personal best
position) 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, ⋅ ⋅ ⋅ , 𝑝𝑖𝑑, ⋅ ⋅ ⋅ , 𝑝𝑖𝐷) and the best func-
tion value of global particles in swarm (i.e., the global best
position of all particles) 𝑃𝑔 = (𝑝𝑔1, 𝑝𝑔2, ⋅ ⋅ ⋅ , 𝑝𝑔𝑑, ⋅ ⋅ ⋅ , 𝑝𝑔𝐷). At
each iteration, 𝑖−𝑡ℎ particle of the swarm updates its position
and the velocity 𝑉𝑖 = (V𝑖1, V𝑖2, ⋅ ⋅ ⋅ , V𝑖𝑑, ⋅ ⋅ ⋅ , V𝑖𝐷) according to
the following equation:

V𝑠+1𝑖𝑑 = 𝜂V𝑠𝑖𝑑 + 𝜆1𝑟𝑠1 (𝑝𝑠𝑖𝑑 − 𝑤𝑠𝑖𝑑) + 𝜆2𝑟𝑠2 (𝑝𝑠𝑔𝑑 − 𝑤𝑠𝑖𝑑) (12)

𝑠 is the current iteration, 𝑗 ∈ [1, 2, ⋅ ⋅ ⋅ , 𝐷], 𝑖 ∈ [1, 2, ⋅ ⋅ ⋅ , 𝑁],𝑁 represents the size of population, 𝐷 is the dimension of
the search place, 𝜂 is the inertia weight, and 𝜆1 and 𝜆2 are
two positive constants. 𝑟1 and 𝑟2 are study factors, that is,
two random numbers extracted from the range [0, 1] for each
dimension.
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Input:
The semantic social network gragh disposed by LDA;

Output:
Useful transformable probability matrix;
Step 0. Initialize proper parameters, inertia weight 𝜂 = 0.632, constriction factor 𝜉 = 0.729, study
factors 𝑟1 = 2.8, 𝑟2 = 1.3, population size(the size of network)𝑀 = 200, particle size (the number of
nodes in semantic social network)𝑁 = 1000 and maximum iteration𝑀𝐼 = 200.
Step 1. Initialize all particles and let 𝑠 = 0;
Step 2. Evaluate fitness of each particle;
Step 3. Judge whether the ultimate criteria is satisfied. If 𝑠 > 𝑀𝐼, stop and jump to Final.; otherwise
refresh variables according to the following steps;
Step 4. Refresh 𝑝𝑖𝑑 by comparing the current fitness of each particle with its own historical best position𝑝𝑖𝑑, if 𝑝𝑖𝑑 gets smaller, then change it with the current position;
Step 5. Refresh 𝑝𝑔𝑑 by comparing the current best fitness of all particles with the historical best
position 𝑝𝑔𝑑 of the whole swarm, if 𝑝𝑔𝑑 gets smaller, then change it with the current best position;
Step 6. Refresh V𝑠+1𝑖𝑑 and 𝑤𝑠+1𝑖𝑑 using Eq (12) and Eq (13);
Step 7. 𝑠 = 𝑠 + 1, return Step 2;
Final.

Algorithm 2: Optimization algorithm by PSO.

In the search place, once velocity V𝑠+1𝑖𝑑 updated, the 𝑖 − 𝑡ℎ
particle position 𝑤𝑖𝑑 is changed as in the following equation.

𝑤𝑠+1𝑖𝑑 = 𝑤𝑠𝑖𝑑 + 𝜉V𝑠+1𝑖𝑑 (13)

𝜉 is a constriction factor which manages and regulates the
velocity’s magnitude to maintain a balance between explo-
ration and exploitation and it can be calculated as follows:

𝜉 = 2󵄨󵄨󵄨󵄨󵄨2 − 𝜆 − √𝜆2 − 4𝜆󵄨󵄨󵄨󵄨󵄨 (14)

𝜆 = 𝜆1 + 𝜆2, 𝜆 > 4. The constriction factor has influence on
the proposed algorithm; we discuss the issue in part 4. The
pseudocode for PSO is described in Algorithm 2 [39].

4. Performance Measure

Generally speaking, the performance measure of semantic
social network is mostly based on the topological construc-
tion. And the 𝐸𝑄 model proposed by Shen et al. [40] is
widely used in evaluating overlapping communities, which is
described in the following equation:

𝐸𝑄 = 1
𝑅∑
𝑖

∑
V∈𝐶𝑖 ,𝑤∈𝐶𝑖

1
𝑂V𝑂𝑤 [𝐴V𝑤 − 𝑘V𝑘𝑤𝑅 ] (15)

𝑘V is the degree of node V and 𝑘𝑤 is the degree of node 𝑤,𝑅 = ∑V𝑤 𝐴V𝑤 is the total degree of the network, 𝐴V𝑤 is
the element of adjacency matrix of the network, 𝑂V is the
number of communities which the node V belongs to and𝑂𝑤
is the number of communities which the node 𝑤 belongs to,
and 𝐶𝑖 is the 𝑖 − 𝑡ℎ community in the network. For we use
both topological construction and semantic context to detect
communities, a novel evaluation model named 𝑆𝑖𝑚𝑄, which

we add information similarity into topological evaluation
index, is given by the following equation.

𝑆𝑖𝑚𝑄
= 1
𝑅1∑𝑖,𝑗 ∑

𝑑𝑖∈𝐶𝑖 ,𝑑𝑗∈𝐶𝑗

𝑆𝑖𝑚 (𝑑𝑖, 𝑑𝑗)
𝑂𝑑𝑖𝑂𝑑𝑗 [𝐴𝑑𝑖𝑑𝑗 −

𝑘𝑑𝑖𝑘𝑑𝑗
𝑅1 ] (16)

𝑑𝑖 is the 𝑖 − 𝑡ℎ node and 𝑑𝑗 is the 𝑗 − 𝑡ℎ node, 𝑂𝑑𝑖 is the
number of communities that the node 𝑑𝑖 pertains and 𝑂𝑑𝑗
is the number of communities that the node 𝑑𝑗 pertains,𝑅1 = ∑𝑑𝑖𝑑𝑗 𝐴𝑑𝑖𝑑𝑗 is the total degree of the network, 𝐴𝑑𝑖𝑑𝑗
is the element of adjacency matrix of the network, and the
range of value for 𝑆𝑖𝑚𝑄 is (0, 1). As for the information
similarity 𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗), we give a normal social graph 𝐺 =
(𝐷, 𝐸,𝑋𝐾𝑑𝑖/𝑑𝑗 , 𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗)), where 𝐷 is a set of nodes in the
network and 𝑑𝑖/𝑑𝑗 is the 𝑖/𝑗 − 𝑡ℎ node; 𝐸 is the set of
edges linking to graph nodes. The actual point of 𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗)
is to measure the structural correlation of nodes and add
semantic correlation components at the same time. This is
more suitable for the basic characteristics of the semantic
communities. Each node 𝑑𝑖 has connection with an infor-
mation vector 𝑋𝐾𝑑𝑖 = (𝑥(𝑖)1 , 𝑥(𝑖)2 , . . . , 𝑥(𝑖)𝑛 ); 𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗) is the
information similarity of two neighbor nodes 𝑖 and 𝑗 which
is calculated as

𝑆𝑖𝑚 (𝑑𝑖, 𝑑𝑗) =
∑𝑛𝑖,𝑗=1 (𝑋𝐾𝑑𝑖𝑋𝐾𝑑𝑗)

√(∑𝑛𝑖=1 (𝑋𝐾𝑑𝑖)2) (∑𝑛𝑗=1 (𝑋𝐾𝑑𝑗)
2) (17)

𝐾 is the dimension of the social network. In ourmethod, if the
semantic components of two nodes are close, the projection
angles of these two nodes in two-dimensional space will be
relatively small. On the contrary, the projection vectors are in
contradictory situation.
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Figure 2: The graph of football network.

Figure 3: The graph of polbooks network.

5. Experimental Results

In this part, we would present and discuss the experi-
ments with topics number analysis, evaluation criterion,
real datasets, and different community detection algorithms,
based on three datasets (the American College Football
network dataset, the Krebs polbooks network dataset, and the
dolphins network dataset).

5.1. The Analysis on Topics Number. The number of topics 𝑇,
which is one of the input parameters in PSO-LDAmodel, can
influence the compactedness of communities. So we choose
the following three datasets to verify the effect of topics 𝑇
over the result: (1) The American College Football network
is shown in Figure 2. This network, created by Newman, is
a complex social network about American College Football
league. Nodes are regarded as football teams and one edge,
between two neighbor nodes, represents that two football
teams have played a match. It contains 115 nodes and 616
edges. (2)TheKrebs polbooks network established by V.Kreb
is shown in Figure 3. The nodes represent the politics books
sold on Amazon. Generally, the books on political tendency
are approximately divided into three classes. So in order to get
topic distribution, Newman collected the political tendency
in 3 steps away around each node. (3)The dolphins network
collected by Newman is shown in Figure 4. The dolphins
network is made up of two families, including 62 nodes
and 159 edges. We simulate each node with the semantic
information to fit on Dirichlet distribution.

Figure 4: The dolphins network.

In this section, we use the topic number to experimen-
talize on three datasets (football, polbooks, and dolphins).
Figure 5 shows the comparison of 𝐸𝑄 and 𝑆𝑖𝑚𝑄 on the three
datasets with 𝑇 = (1, 2, ⋅ ⋅ ⋅ , 20). While the topic number𝑇 grows bigger and the topic distribution rises higher, the
number of detected communities gets bigger as 𝑇 rises. In
Figure 5, when the topic number gets larger to a certain
degree, the topic distribution tends to be stable, resulting in
the increment of communities. From the comparison of 𝐸𝑄
and 𝑆𝑖𝑚𝑄, these two performance measure models tend to
decrease as 𝑇 increases, since the topic number 𝑇 arrives at
an optimal point. The optimal value of 𝑇 is 6 in Figure 5.

For the sake of getting communities more intuitive,
Figure 6 shows the detected communities of three datasets
when 𝑇 is 6, 12, and 18.

5.2. The Comparison on Different Optimization Algorithms.
In this section, we do the comparison on different opti-
mization algorithms with three network datasets above
(dolphins, polbooks, and football). We compare the num-
ber of communities, the size of communities, runtime,
and semantic concentration with PSO algorithm, Genetic
Algorithm (GA), Ant Colony Optimization (ACO), and
Simulate Anneal (SA). The result is shown in Figure 7.
From Figure 7, we can see PSO algorithm makes more
numbers of communities and smaller size of communities
than others. As for runtime in PSO algorithm, it runs a
little better than ACO and SA. The semantic concentration
(𝑆𝐶) [41] is a function for measuring and testing degree of
coagulation on specific topic and 𝑆𝐶 is shown in the following
equation:

𝑆𝐶 = ∑𝑖𝑗 𝑆𝑖𝑚 (𝑑𝑖, 𝑑𝑗) ⋅ 𝛿𝑖𝑗
∑𝑖𝑗 𝑆𝑖𝑚 (𝑑𝑖, 𝑑𝑗) (18)

𝛿𝑖𝑗 is the performance measure of communities links, while𝛿𝑖𝑗 = 1 and only if 𝑖 and 𝑗 belong to the same community,
there is a link between 𝑖 and 𝑗. Compared with similarity
function 𝑆𝑖𝑚𝑄, 𝑆𝐶 makes focus on the stability of social
groups in local environment. But what needs to be noted
is that higher 𝑆𝑖𝑚𝑄 does not mean higher 𝑆𝐶 in commu-
nities and higher 𝑆𝐶 does not mean we can get the best
divisions; this is because the overlapping part of communities
can effect the semantic cohesion. So the ideal community
construction should be suitable with 𝑆𝑖𝑚𝑄 and 𝑆𝐶, and this
also fits the performance measure of overall optimization
and local optimization. Compared with GA, ACO, and SA
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Figure 5: The performance of detected communities with 𝑇.

T = 6(football)

T = 6(polbooks)

T = 6(dolphins)

(a)

T = 12(football)

T = 12(polbooks)

T = 12(dolphins)

(b)

T = 18(football)

T = 18(polbooks)

T = 18(dolphins)

(c)

Figure 6: The communities for 𝑇 = {6, 12, 18} (the black nodes are overlapping nodes).
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(a) PSO (b) GA

(c) ACO (d) SA

Figure 8: The comparison on different optimization algorithms on dolphins (the black nodes are overlapping nodes).

in Figure 7, the detected communities by PSO have a little
small size and a bit more community numbers, which is
in accordance with the topic distribution. As for runtime,
PSO runs a bit slower than ACO but much better than

GA and SA. Figure 8 shows four optimization algorithms
run on dolphins network, and as similar as Figure 7, PSO
works much better than other algorithms on community
detection.
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Table 2: The classical nonsemantic algorithms on 𝐸𝑄, 𝑆𝑖𝑚𝑄, and𝑆𝐶.
Algorithms 𝐸𝑄 𝑆𝑖𝑚𝑄 𝑆𝐶
GN 0.4615 0.3573 0.3873
FN 0.4061 0.3174 0.4012
LFM 0.3255 0.2331 0.3625
COPRA 0.5407 0.4115 0.3902
PSO-LDA 0.5132 0.4258 0.4842

5.3. The Comparison on the Constriction Factor with 𝐸𝑄 and𝑆𝑖𝑚𝑄. In this section, we compare 𝐸𝑄 and 𝑆𝑖𝑚𝑄 over three
datasets. The run diagrams, which 𝐸𝑄 and 𝑆𝑖𝑚𝑄 run in
three datasets, are shown in Figure 9. From (16), we put the
similar function of information 𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗) into 𝑆𝑖𝑚𝑄 and𝑆𝑖𝑚(𝑑𝑖, 𝑑𝑗) < 1. So generally, the tendency of𝐸𝑄 diagram can
be higher than 𝑆𝑖𝑚𝑄. The maximum value of 𝐸𝑄 in football
dataset is 0.4233 (𝜉 =0.52) and 𝑆𝑖𝑚𝑄 is 0.4064 (𝜉=0.53); and
there exists bias when 𝜉 =0.53, and the value of 𝐸𝑄 is 0.4112
(not themaximumone).There is also bias in polbooks dataset
and dolphins dataset, and themaximum value of𝐸𝑄 is 0.4154
(𝜉 =0.54) and 𝑆𝑖𝑚𝑄 is 0.3982 (𝜉 =0.55) in polbooks dataset
while themaximumvalue of𝐸𝑄 is 0.4639 (𝜉=0.60) and 𝑆𝑖𝑚𝑄
is 0.4489 (𝜉 =0.62) in dolphins dataset.

5.4. The Comparison on Community Detection Algorithms.
Considering the bias in the semantic community detection,
we utilize classical nonsemantic algorithms to illuminate the
issue with the football dataset, for example.

We choose GN, FN, LFM, COPRA as nonsemantic classi-
cal algorithms, where LFM and COPRA are the overlapping
community detection algorithms. The 𝐸𝑄 and 𝑆𝑖𝑚𝑄 of the
algorithms above are covered in Table 2 and the detection of
communities is shown in Figure 10 with football dataset.

From the result in Table 2, the 𝐸𝑄 of nonsemantic
classical algorithms work higher than that of PSO-LDA
(0.5132), but the 𝑆𝑖𝑚𝑄 works lower than PSO-LDA (0.4258).
So it suggests that the nonsemantic classical algorithmsmake
a higher 𝐸𝑄 in the topological construction detection and
a lower 𝑆𝑖𝑚𝑄 in the semantic detection. There is a bias in
community detection by nonsemantic classical algorithms
compared to semantic algorithms in the way of getting
the ideal communities. On the one hand, we verify the
performance of these algorithms; on the other hand, we
use this experiment to verify the relation above 𝐸𝑄, 𝑆𝑖𝑚𝑄,
and 𝑆𝐶. As for 𝑆𝐶 in Table 2, PSO-LDA performs better in𝑆𝑖𝑚𝑄 and has high 𝐸𝑄, and PSO-LDA is higher than other
algorithms in 𝑆𝐶. This means PSO-LDA performs well in
overall search (𝐸𝑄 and 𝑆𝑖𝑚𝑄) and works better than others
in local search (𝑆𝐶).
5.5. The Comparison on Real Datasets. In this section, we
compare real different datasets, including Quantifying Link
Semantics-Publication (QLSP) dataset (805 nodes), Aca-
demic Social Network (ASN) dataset (extract 2500 nodes)
(https://www.aminer.cn/aminernetwork), extracting 10000
nodes and 20000 nodes from DBLP (December 31, 2014)
dataset (2839219 nodes) (http://dblp.uni-trier.de/ db/) as
DBLP(A) and DBLP(B), and Enron email network (Enron)

https://www.aminer.cn/aminernetwork
http://dblp.uni-trier.de/db/
http://dblp.uni-trier.de/db/
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(c) LFM (d) COPRA

Figure 10: The detected communities with nonclassical algorithms on football.
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Figure 11: The histogram of 𝐸𝑄 with various classical algorithms.

dataset (extract 25000 nodes) (http://snap.stanford.edu/data/
email-Enron.html). The 𝐸𝑄, 𝑆𝑖𝑚𝑄, and 𝑁𝐶(the number
of detected communities) of datasets above detected by
various algorithms are reported in Table 3, as the PSO-LDA
for 𝑇 = 6. The histogram of 𝐸𝑄 is shown in Figure 11
and 𝑆𝑖𝑚𝑄 in Figure 12. From Figures 11 and 12, the PSO-
LDA model can be more suitable to solve the semantic
community detection than the classical nonsemantic algo-
rithms.

6. Conclusion

In this paper, we presented a novel community detection
algorithm PSO-LDA that combines the topological construc-
tion with semantic information. It can avoid the number and
the size of communities. For the Gibbs sampling solving the
hidden parameter in the proposedmodel, the sampling result
approaches to the realistic state.Themain contribution of this
research focuses on how to use different similaritymeasure to

http://snap.stanford.edu/data/email-Enron.html
http://snap.stanford.edu/data/email-Enron.html
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Figure 12: The histogram of 𝑆𝑖𝑚𝑄 with various classical algorithms.

Table 3: The results of classical nonsemantic algorithms under various datasets.

Algorithms 𝐸𝑄/𝑆𝑖𝑚𝑄/𝑁𝐶 QLSP ASN DBLP(A) DBLP(B) Enron

GN
𝐸𝑄 0.3107 0.2103 0.2822 0.3193 0.3256
𝑆𝑖𝑚𝑄 0.2309 0.2054 0.2137 0.2863 0.2874
𝑁𝐶 10 35 17 16 27

FN
𝐸𝑄 0.4215 0.2234 0.3191 0.2618 0.3475
𝑆𝑖𝑚𝑄 0.3134 0.1711 0.2912 0.2561 0.2994
𝑁𝐶 10 33 19 16 26

LFM
𝐸𝑄 0.3668 0.2403 0.4052 0.3613 0.4153
𝑆𝑖𝑚𝑄 0.3167 0.2172 0.3317 0.3121 0.3572
𝑁𝐶 12 29 21 12 30

COPRA
𝐸𝑄 0.4196 0.1213 0.383 0.4112 0.4559
𝑆𝑖𝑚𝑄 0.2891 0.1124 0.2971 0.3217 0.4007
𝑁𝐶 13 31 21 13 26

PSO-LDA
𝐸𝑄 0.3248 0.2112 0.3537 0.2998 0.3401
𝑆𝑖𝑚𝑄 0.3412 0.2734 0.3641 0.3569 0.3989
𝑁𝐶 14 30 23 15 27

measure similarity between nodes based on topological con-
struction and their semantic information. As for future work,
we would apply the model in some fields such as privacy pro-
tection and worm containment in semantic social network.
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Discovering andmodeling community structure exist to be a fundamentally challenging task. In domains such as biology, chemistry,
and physics, researchers often rely on community detection algorithms to uncover community structures from complex systems yet
no unified definition of community structure exists. Furthermore, existing models tend to be oversimplified leading to a neglect of
richer information such as nodal features. Coupled with the surge of user generated information on social networks, a demand for
newer techniques beyond traditional approaches is inevitable. Deep learning techniques such as network representation learning
have shown tremendous promise. More specifically, supervised and semisupervised learning tasks such as link prediction and
node classification have achieved remarkable results. However, unsupervised learning tasks such as community detection remain
widely unexplored. In this paper, a novel deep generative model for community detection is proposed. Extensive experiments
show that the proposed model, empowered with Bayesian deep learning, can provide insights in terms of uncertainty and exploit
nonlinearities which result in better performance in comparison to state-of-the-art community detection methods. Additionally,
unlike traditional methods, the proposed model is community structure definition agnostic. Leveraging on low-dimensional
embeddings of both network topology and feature similarity, it automatically learns the best model configuration for describing
similarities in a community.

1. Introduction

Real-world complex systems are often projected into net-
works to observe complex patterns. Entities in a complex
system can be represented as nodes (vertices) and their
interactions represented as an edge (link). For instance, social
interactions between people can be represented in the form of
a social network. Publications by authors and their respective
publication venues can be represented with a bipartite cita-
tion network.The flexibility of networks and its vast literature
on graph theory make network science very appealing to
researchers. Although networks are merely represented in
forms of nodes and edges, a large complex system could easily
scale from hundreds to millions of nodes and edges. This
poses a very challenging task in machine learning, especially
tasks such as graph clustering or more commonly known
as community detection [1] in the literature of network
science. Given a network (graph) with its node content and
structural (link) information, community detection aims to
partition the nodes in the network into a number of disjoint

groups. These partitions can be formulated depending on
the given definition. For example, in modularity maximiza-
tion [2], each partition is compared against a null model
(random network). A partition is classified as good when
the modularity score is greater than partitioning a random
network. On the other hand, statistical methods such as the
Stochastic Blockmodel (SBM) introduced Bayesian treatment
of uncertainty when partitioning the network. Nodes with
similar statistical similarity have higher probability to cluster
together regardless of the cluster’s density [3]. This is known
as stochastic equivalence. In general, a universal definition
of community structure does not exist. Nevertheless, the
objective remains the same, i.e., to find a group of nodes
that shares some form of similarity between one another.
In this paper, such similarity is defined as latent similarity;
the similarity measure is not predefined. Quantifying such
similarity is arguably subjective and difficult especially when
a given network can be feature-rich or structure-only; there
is no one-size-fits-all solution for community detection
(i.e., the no free lunch theorem). Therefore, it is essential
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that algorithms capture both higher-order information and
structural information. To this end, we look at network
representation learning [4, 5] as a potential solution.

In machine learning, representation learning [6] has
been successfully applied to various fields such as natural
language processing and computer vision. Notably, successes
of deep learning have surpassed human accuracy with ease
[7]. However, these successes are difficult to be explained.
More precisely, it is difficult to explain “why” deep learning
model performs so well. In an attempt to solve this problem,
researchers bridged the understanding gap by introducing
probabilistic deep models (also known as Bayesian Deep
Learning) [8]. Using fundamental building blocks from a
probabilistic perspective, assumptions are given in forms of
noninformative priors and the model is forced to correct
these assumptions while learning. Consequently, the models
become less ambiguous than a typical deep learning model
which is commonly known to be a black-box.

Leveraging on recent advances in representation learning,
network representation learning aims at a similar objective,
but from a network perspective. Given a network, the
objective is to find a latent representation that generalizes
for various machine learning tasks such as classification, link
prediction, and clustering of nodes. Generally, a common
choice for finding community structure in networks often
involves a two-step approach. First, the network is embedded
into a latent space (i.e., Euclidean space). Next, a general
clustering algorithm such as Spectral Clustering [9] or 𝑘-
means is applied to the learned embedding. For instance,
Tian et al. proposed a network representation [10] learning
model to learn a nonlinear mapping of the original net-
work using a Stacked Autoencoder by showing that spectral
clustering and Autoencoders have the same optimization
objectives. Yang et al. considered a Stacked Autoencoder as
a modularity optimization problem and further introduced
a semisupervised approach through must-pair nodes for
increased performance [11]. Assignment of communities is
then obtained through 𝑘-means clustering from the latent
representation that exhibits the highest modularity score.
Inspired fromDenoising Autoencoders [12], Wang et al. pro-
posed Marginalized Graph Autoencoder for Graph Cluster-
ing (MGAE) [13] that artificially corrupts the feature matrix
to increase the number of training data and provides a close-
form solution for optimization. Spectral Clustering is then
applied to the learned latent representation. Clearly, these
methods all employ a two-step approach which is unsuitable
for studying network generation or graph modeling [14].

Instead of a costly two-step approach and ignoring
uncertainty in the modeling process, the problem can be
solved from a Bayesian point of view, by encoding our
latent beliefs and assumptions as probabilistic graphical
models. Specifically, one can assume that nodes and edges are
modeled from amixture model such as the Gaussian Mixture
Model (GMM).This effectively couples the learning of cluster
assignment with respect to its network representation into a
joint probability distribution. Additionally, it helps to capture
network properties exhibited by common networks which
consequently helps in better understanding of real-world
networks.

Concretely, this paper proposes an extension to Varia-
tional Graph Autoencoder (VGAE) [15]. Originally, VGAE
projects graph convolutions into a Univariate Gaussian latent
space and have only been considered for semisupervised task
such as link prediction and graph classification. The pro-
posed model, VGAECD, relaxes this notion by introducing
a Mixture of Gaussian. This is desirable as we would like
to capture higher-order patterns from community structures
and model its generative process. It is worth noting that
similar approaches have been applied toVAE in domains such
as image recognition [16]. However, these approaches are not
readily applicable for networks, especially in a community
detection problem.

To summarize, this paper explores the idea of learn-
ing network representations using Bayesian treatment. We
extend VGAE to include clustering-aware capability specifi-
cally targeting a community detection task. The contribution
of this paper is summarized as follows:

(i) This paper proposes a novel generative model for
community detection which is agnostic to the neces-
sity of a predefined community structure definition.
Through the process of automatic model selection,
nodes are assigned a community based on the crite-
rion that best reduces the loss function.

(ii) The proposed model inherits the benefits of Varia-
tional Autoencoder Framework. The advantages are
threefold: (1) it provides a variational lower bound
which is guaranteed to converge to a local minimum,(2) the lower bound is scalable, and (3) the model is
generative, allowing generation of synthetic networks.

(iii) The proposed model outperforms the state-of-the-
art models in community detection without requiring
additional priors (unlike theDegree-Corrected SBM).

2. Problem Definition

A network pertaining to nodes, edges, and node features can
be formally defined as 𝐺 = (𝑉, 𝐸,𝑋), where 𝑉 = {V𝑖, . . . , V𝑁}
consists of a set of nodes |𝑉| = 𝑁, 𝐸 = {𝑒𝑖𝑗} is a set of
edges, and 𝑋 = {x1, . . . , x𝑁} is the set of node features. Each
x𝑖 ∈ R𝑑 defines a vector of real-values associated with node
V𝑖. From an Autoencoder’s perspective, the inputs are given
in terms of structural information 𝐴 ∈ R𝑁×𝑁, and node
features 𝑋 ∈ R𝑁×𝑑, where 𝐴 denotes the adjacency matrix
of 𝐺, and the node features are content information provided
in forms of vector representation. In this work, we consider
the undirected and unweighted network 𝐺, such that 𝐴 𝑖𝑗 = 1
if 𝑒𝑖𝑗 ∈ 𝐸 and otherwise it is equal to 0.

Given the network 𝐺, the objective of community detec-
tion or graph clustering is to partition the nodes in 𝐺 into𝐾 disjoint groups {𝑐1, 𝑐2, . . . , 𝑐𝐾}, such that nodes grouped
within the same cluster are close to each other while nodes
in different clusters are distant in terms of network structure.
Vertices grouped within the same cluster are more likely to
have similarities in node features.

Additionally, we consider the definition of a generative
model. The discriminative model, 𝑝(𝜃 | X,A), infers the



Complexity 3

model parameters 𝜃 from the observed network 𝐺. Subse-
quently, a network 𝐺󸀠 can be generated from the same set
of parameters. Concretely, 𝑝(A | 𝜃) = 𝐺󸀠. Under the model
selection criterion, the model is said to be good when 𝐺󸀠 ≊ 𝐺
and satisfies the condition of having community structures;
i.e.,𝐺󸀠 is not an Erdős–Rényi network. By definition, genera-
tivemodels can be considered as an ensemble learningmodel.

3. Related Work

Recent work in community detection can be broadly catego-
rized into two types of models, namely, discriminative and
generative models. The former includes a class of methods
that infers communities given an observed network and,
optionally, node features. Meanwhile, the latter considers the
reconstruction of network while exploring plausible models
that explain the observed phenomenon.

3.1. Discriminative Methods and Models. Predominantly,
modularity maximization [2, 17] has been considered as the
most successfulmethod for detecting communities.However,
it suffers from a resolution limit problem [18] and is known
to exhibit degeneracies [19]. In terms of speed, label propa-
gation [20] is capable of detecting communities in large-scale
networks near linear time, though the solutions are usually
nonunique. Additionally, other approaches such as Walk-
Trap [21], Infomap [22], Louvain [23], and their empirical
competitiveness are subjected to trade-off between accuracy
and scalability [24]. Representation learning methods such
as GraRep [25] and CFOND [26] consider the completion
of their adjacency matrix and can be generally considered
as matrix factorization problem. Meanwhile, others like
DeepWalk [27] and node2vec [28] consider representation
of each node via a biased random walk. It assumes that
neighboring nodes share similarities from the pivot node.
Hence, when nodes are clustered together, they tend to co-
occur on short random walks over the network.

Besides standard linear methods mentioned previously,
recent advances in deep learning revisited Autoencoders for
networks. Particularly, GraphEncoder proposed by Tian et
al. shows that optimizing the objective function of Autoen-
coder is similar to finding a solution for Spectral Clustering
[10]. Leveraging on deep learning’s nonlinearity and recent
advances in Convolutional Neural Networks, [29, 30] pro-
posed the Graph Neural Network (GNN) and its generaliza-
tion, the Graph Convolutional Neural Network (GCN) [29].
Defferrard et al. first cast the problem by projecting graph
convolutions into spectral space, and convolving within this
space.

3.2. Generative Methods and Models. Generative models
can be further subdivided into algorithmic and statistical
types. Examples of algorithmic models include the Kronecker
Graphs [31], NetSim [32], and Block Two-Level Erdős-Rényi
(BTER) model [33]. On the other hand, statistical methods
attempt to approximate the true distribution via statistical
inferencing or through statistical models (i.e., benchmark
graphs such as GN [34], LFR [35], and mLFR [36, 37]).

A widely known generative model for capturing networks
with group structure is the Stochastic Blockmodel (SBM) or
also known as the planted partition model. First explored
by Snijders and Nowicki [38] two decades ago, the key idea
behind SBM is stochastic equivalence. The probability that
two nodes 𝑖 and 𝑗 are connected depends exclusively on their
community memberships: two nodes within a community
sharing the same stochasticity. However, the vanilla SBM
exhibits a problemwhere high degree nodes are clustered into
a community of their own. Karrer and Newman proposed
the Degree Corrected (D.C.) SBM [39] which introduces a
normalizing prior. Extensions to SBM include the Mixed
Membership SBM (MMSBM) [40] for identifying mix com-
munity participation and bipartite SBM (biSBM) [41] for
finding communities in bipartite networks. Today, SBM is
well explored and its limitations has been widely studied [42,
43]. However, SBM is not a network representation learning
model. Instead, SBM learns the latent variablesΠ andZwhich
describe the probabilities of cluster connectivity and cluster
assignment, respectively, of a particular node which differs
from common representation learning method.

Contrary to SBM, typically Autoencoders consists of two
nongenerative steps (encoder and decoder). Consequently,
the learned representation cannot be generalized for gen-
eration of networks. To alleviate this problem, most recent
approaches consider generative models for representation
learning such as Generative Adversarial Networks (GAN) or
VariationalAutoencoder (VAE). For graphs, Kipf andWelling
[15] introduced a variant of VAE for link prediction tasks in
graphs and for GAN, and Pan et al. [44] recently introduced
adversarially regularized graph autoencoder (ARGA). In this
work, we only consider the framework of VAE. We discuss
this in Section 4.1.

4. Methodology

4.1. Variational Graph Autoencoder. Variational Graph
Autoencoder (VGAE) [15] extends the problem of learning
network embedding to a generative perspective by leveraging
on the Variational Autoencoder (VAE) framework [45].
Consider a given network 𝐺 with structural information
A and node features X; the inference model of VGAE
parameterized by a two-layer GCN is defined as

𝑞 (Z | X,A) = 𝑁∏
𝑖=1

𝑞 (z𝑖 | X,A) (1)

𝑞 (z𝑖 | X,A) = N (z𝑖 | 𝜇𝑖, diag (𝜎2𝑖 )) . (2)

Here, 𝜇 and 𝜎 denote the mean and standard deviation
vectors for node 𝑖 which is obtained from a GCN layer, 𝜇 =
GCN𝜇(X,A) and log𝜎 = GCN𝜎(X,A). The two-layer GCN
is then defined as

GCN (X,A) = Â𝜏 (ÂXW0)W1, (3)

withW0 andW1 representing the weight matrices for the first
layer and second layer, respectively. W0 is shared between
GCN𝜇(X,A) and GCN𝜎(X,A). 𝜏(⋅) is the nonlinear function
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such as ReLU(⋅) = max(0, ⋅) or sigmoid(𝑡) = 1/(1 + 𝑒−𝑡). Â =
D−1/2AD−1/2 denotes the symmetric normalized adjacency
matrix. The generative model is simply the inner product
between the latent variables:

𝑝 (A | Z) = 𝑁∏
𝑖=1

𝑁∏
𝑗=1

𝑝 (𝐴 𝑖𝑗 = 1 | z𝑖z𝑗) = 𝜏 (z⊤𝑖 z𝑗) . (4)

In accordance to theVAE framework, bothmodels can be tied
together and optimized by maximizing the variational lower
boundL(⋅):

log𝑝𝜃 (X) ≥ L (𝜃,𝜙;X)
= E𝑞𝜙(Z|X,A) [log𝑝𝜃 (A | Z)]

− 𝐷𝐾𝐿 [𝑞𝜙 (Z | X) ‖ 𝑝𝜃 (Z)] .
(5)

𝐷𝐾𝐿[𝑞𝜙(⋅) ‖ 𝑝𝜃(⋅)] defines the Kullback-Leibler (KL) diver-
gence between 𝑞𝜙(⋅) and 𝑝𝜃(⋅). The lower bound can be
maximizedwith respect to the variational parameters (𝜃,𝜙) =
W𝑖 via stochastic gradient descent, performed with a full-
batch size. Here, the prior is defined as 𝑝𝜃(Z) = ∏𝑁𝑖=1N(z𝑖 |0, I), which is the isotropic Gaussian distribution, whose
gradients can backpropagate via a reparametrization trick
[45].

In the absence of node features, X becomes the iden-
tity matrix. This relaxation allows the reconstruction of a
structure-only network. When provided with node features,
the accuracy of VGAE link prediction improves [15].

4.2. Variational Graph Autoencoder for Community Detection
(VGAECD). A major drawback in VGAE’s approach is its
restriction of nodes to be projected in a Univariate Gaussian
space.This restriction suggests that all generated nodes come
from a single clustering space. More specifically, dissimilar
nodes tend to stay away from the Gaussian mean (centroid)
[15]. On the contrary, the mean of the Gaussian should be
a better representative of each respective community such
that nodes which are similar should stay closer to their
represented mean. Thus, nodes that are well represented by
the mean representation hold equivalence in similarity. In
this scenario, we can consider this as a relaxation of SBM
which requires nodes in the same block to uphold stochastic
equivalence.

Utilizing this fact, we consider the unsupervised learning
problem of community detection while adhering to the
VGAE framework. Suppose that eachnode originating froma
particular community is similar in some way; we can encode
their similarity into the node’s representation vector z which
is better described by the mixture’s mean. The generative
process then follows:

(i) For communities 𝐶 = {𝑐1, . . . , 𝑐𝐾}
(a) Obtain a sample 𝑐 ∼ Cat(𝜋)
(b) where𝐾 is the number of clusters hyperparam-

eters and 𝜋𝑘 is the prior probability for cluster𝑘,𝜋 ∈ R𝐾+ ,∑𝐾𝑘=1 𝜋𝑘 = 1. Cat(𝜋) is the categorical
distribution parameterized by 𝜋.

(ii) For nodes Z = {z1, . . . , z𝑁},
(a) Obtain a latent vector z ∼ N(𝜇𝑐,𝜎2𝑐I)
(b) where 𝜇𝑐 and 𝜎

2
𝑐 are the mean and variance

of the multivariate Gaussian distribution corre-
sponding to cluster 𝑐.

(iii) Obtain a sample a by

(a) computing the expectation 𝜇𝑥 = 𝑓(z; 𝜃)
(b) sample a ∼ Bern(𝜇𝑥)

The function 𝑓(z; 𝜃) is optionally a nonlinear function whose
input is z and is parameterized by 𝜃. Particularly, we use the𝜏(z⊤𝑖 z𝑗) inner product decoder. Bern(⋅) denotes themultivari-
ate Bernoulli distribution parameterized by the latent vector
𝜇𝑥. Then, the joint probability 𝑝(a, z, 𝑐) can be factorized as

𝑝 (a, z, 𝑐) = 𝑝 (a | z) 𝑝 (z | 𝑐) 𝑝 (𝑐) , (6)

with A = {a1, . . . , a𝑁}. Since a and 𝑐 are independently
conditioned on z, the factorized probabilities can be defined
as

𝑝 (𝑐) = Cat (𝑐 | 𝜋) (7)

𝑝 (z | 𝑐) = N (z | 𝜇𝑐,𝜎2𝑐I) (8)

𝑝 (a | z) = Bern (a | 𝜇𝑥) (9)

For brevity, 𝑝𝜃(⋅) = 𝑝(⋅) and 𝑞𝜙(⋅) = 𝑞(⋅), L(𝜃,𝜙; x) =
LELBO(x); we can rewrite the lower bound in (5) to include
the new terms:

log𝑝 (x) ≥ LELBO (x) = E𝑞(z,𝑐|x,a) [log 𝑝 (a, z, 𝑐)𝑞 (z, 𝑐 | x, a)] , (10)

where 𝑞(z, 𝑐 | x, a) is the variational posterior which
approximates the true posterior 𝑝(z, 𝑐 | x, a). Under the
mean-field assumption, the approximate distribution can be
factorized as

𝑞 (z, 𝑐 | x, a) = 𝑞 (z | x, a) 𝑞 (𝑐 | x, a) . (11)

Substituting (6) and (11) into (10),LELBO(x) can be rewritten
as

LELBO (x) = E𝑞(z,𝑐|x,a) [log 𝑝 (a, z, 𝑐)𝑞 (z, 𝑐 | x, a)]
= E𝑞(z,𝑐|x,a) [log𝑝 (a, z, 𝑐) − log 𝑞 (z, 𝑐 | x, a)]
= E𝑞(z,𝑐|x,a) [log𝑝 (a | z) + log𝑝 (z | 𝑐) + log𝑝 (𝑐)
− log 𝑞 (z | x, a) − log 𝑞 (𝑐 | x, a)] .

(12)

The inference model 𝑞(z | x, a) is then modeled using a two-
layer GCN as follows:

𝑞 (z | x, a) = N (z;GCN𝜇 (x, a) ,GCN𝜎 (x, a) I)
= N (z; 𝜇̃, log 𝜎̃I) . (13)
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Similar to VGAE, the first layer’s weight matrixW0 is shared
between 𝜇̃ and log 𝜎̃. Substituting the terms,LELBO(x) can be
further rewritten as

LELBO (x) = 1𝐿
𝐿∑
𝑙=1

𝑁∑
𝑖=1

x𝑖 log𝜇
(𝑙)
𝑖

+ (1 − x𝑖) log (1 − 𝜇(𝑙)𝑖 )
− 12
𝐾∑
𝑐=1

𝛾𝑐(log𝜎2𝑐 + 𝜎̃
2

𝜎𝑐
+ (𝜇̃ − 𝜇𝑐)2
𝜎2𝑐

)

+ 𝐾∑
𝑐=1

𝛾𝑐 log 𝜋𝑐𝛾𝑐 +
12 (1 + log 𝜎̃2𝑐) ,

(14)

with 𝐿 being the total number of samples through sampled
using the Monte Carlo Stochastic Gradient Variational Bayes
(SGVB) estimator [45]. x𝑖 is the vector of node 𝑖, 𝐾 is the
number of clusters with 𝜋𝑐 denoting the prior probability of
cluster 𝑐, and 𝛾𝑐 denotes 𝑞(𝑐 | x, a) for brevity.𝜇(𝑙)𝑥 is computed
as

𝜇
(𝑙)
𝑥 = 𝜏 (z⊤𝑖 z𝑗) , (15)

where z(𝑙) is the 𝑙th sample from 𝑞(z | x, a) aswritten in (13). To
allow gradient backpropagation through the stochastic layer,
the reparameterization trick is used; then z(𝑙) can be obtained
via

z(𝑙) = 𝜇̃ + 𝜎̃ ∘ 𝜖(𝑙). (16)

Then, according to [45], 𝜖(𝑙) ∼ N(0, I); ∘ is the Hadamard
product operator. 𝜇̃ and 𝜎̃ are obtained through GCN(⋅).

If we consider regroupingLELBO(x) with like-terms, (12)
can be rewritten as

LELBO (x) = E𝑞(z,𝑐|x,a) [log 𝑝 (a, z, 𝑐)𝑞 (z, 𝑐 | x, a)]
= ∫

z
∑
𝑐

𝑞 (z | x, a) 𝑞 (𝑐 | x, a)
⋅ [log 𝑝 (x, a | z)𝑞 (z | x) + log

𝑝 (𝑐 | z)𝑞 (𝑐 | x) ] 𝑑z
= ∫

z
𝑞 (z | x, a) log 𝑝 (x, a | z) 𝑝 (z)𝑞 (z | x, a) 𝑑z

− ∫
z
𝑞 (z | x, a)𝐷𝐾𝐿 [𝑞 (𝑐 | x) ‖ 𝑝 (𝑐 | z)] 𝑑z.

(17)

The first term in (17) has no dependency on 𝑐 and from
the definition of KL divergence, it is nonnegative. Therefore,
LELBO(x) is maximized when 𝐷𝐾𝐿[𝑞(𝑐 | x) ‖ 𝑝(𝑐 | z)] ≡ 0.
From that, we follow [16], by defining 𝑞(𝑐 | x, a) as

𝑞 (𝑐 | x, a) = 𝑝 (𝑐 | z) ≡ 𝑝 (𝑐) 𝑝 (z | 𝑐)
∑𝐾𝑐󸀠=1 𝑝 (𝑐󸀠) 𝑝 (z | 𝑐󸀠) (18)

From (18) the information loss induced by the mean-field
approximation can be mitigated by forcing its dependency

on the posterior 𝑝(𝑐 | z) and noninformative prior 𝑝(𝑐). The
complete VGAECD algorithm can be found in Algorithm 1
and Figure 1 illustrates the conceptual idea of VGAECD.

5. Experiments

Community detection algorithms are often evaluated against
two kinds of networks: synthetic and empirical datasets.
These are discussed in detail in the following subsections.

5.1. Synthetic Datasets. Two synthetic networks are used in
our evaluation. We consider two most common benchmark
graphs used for benchmarking community detection algo-
rithm. Namely, we used the Girvan-Newman (GN) bench-
mark graph [1, 34, 46] and the LFR benchmark graph [35].
The GN benchmark graph is a variant of the planted 𝑙-
partition. In our experiment, we vary the 𝑧out value from a
range of {1, . . . , 8}. Each node has an average degree of 𝑘 = 16,
with 32 nodes in each community (a total of 128 nodes) and
4 communities in total.

The LFR benchmark graph is an extension of the GN
benchmark graph. It is considered to be more realistic than
the GN benchmark graph. It introduces a skewed degree dis-
tribution and accounts for network heterogeneity, resulting
in communities that are generated in different sizes. The LFR
benchmark graph is generated using default parameters as
suggested by Lancichinetti et al. [35]. These parameters are
number of nodes (𝑁 = 1000), average degree (𝑘 = 15), and
minimum (𝑐𝑚𝑖𝑛 = 30) and maximum (𝑐𝑚𝑎𝑥 = 50) number
of nodes per community. The generation follows the scale-
free parameters settings of exponents 𝜏1 = −2 and 𝜏2 = −1,
respectively. On average, between 20 and 30 communities are
generated.

5.2. Empirical Datasets. The empirical datasets are divided
into two kinds: networks with features and without features.
The datasets are as follows:

(i) Karate: a social network represents friendship among
34 members of a karate club at a US University [47].

(ii) PolBlogs: a network of political blogs assembled by
Adamic and Glance [48]. The nodes are blogs and
web links between them are represented by their edge.
These blogs have known political leanings and were
labelled by hand by Adamic and Glance.

(iii) Cora: a citation network with 2,708 nodes and 5,429
edges. Each node corresponds to a document and the
edges are citation links [49].

(iv) PubMed: A network consisting of 19,717 scientific
publications from PubMed database pertaining to
diabetes was classified into one of three classes
(“Diabetes Mellitus, Experimental”, “Diabetes Melli-
tus Type 1”, “Diabetes Mellitus Type 2”). The citation
network consists of 44,338 links. Each publication in
the dataset is described by a TF-IDF weighted word
vector from a dictionary which consists of 500 unique
words.
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Figure 1: Conceptual illustration of Variational Graph Autoencoder Framework for Community Detection (VGAECD). In the encoding
phase, VGAECD first convolves on the network, learning structural and nodal features in the process. These pieces of information are then
mapped into a latent representation, 𝜇𝑐|𝑖 and 𝜎𝑐|𝑖 which are parameters to Mixture of Gaussian Model. Subsequently, we can then sample
to obtain a latent representation for each node z. Finally, Ã can be reconstructed using a decoding function, 𝑓(⋅). The loss is calculated and
backpropagated to the latent variables.

Input: FeaturesX, Adjacency matrix A,
Hyperparameters: learning rate 𝜖, epochs 𝐿, size of layer 1 and 2.

Output: Community Assignment Probability 𝛾 and Reconstructed Adjacency matrix Ã
𝜋 ∼ U(0, 1)
for 𝑙 = 1, ..., 𝐿 do

for 𝑖 = 1, ..., 𝑁 do
𝜇𝑖 = GCN𝜇(x𝑖, a𝑖)
𝜎𝑖 = GCN𝜎(x𝑖, a𝑖)
Sample 𝑐 ∼ Cat(𝑐 | 𝜋)
Sample z𝑖 ∼ N(𝜇𝑐|𝑖, diag(𝜎2𝑐 |𝑖))
Obtain reconstructed ã𝑖 = 𝜏(z⊤𝑖 z𝑗) ⊳ Decoder
Compute loss,LELBO ⊳ From (14)

and backpropagate gradients.
end for

end for
Extract community assignment 𝛾 via z𝑖 ⊳ From (18)
Return 𝛾, Ã = {ã1, ..., ã𝑁}

Algorithm 1: Variational Graph Autoencoder for Community Detection (VGAECD).

For starters, experiments are performed on datasets in
accordance to Karrer and Newman. These networks (Karate
and PolBlogs) are featureless and only contain structural
information. The Karate network is a commonly studied
empirical benchmark network for community detection.
Similar to [39], only the largest connected component and
its undirected form are considered for Polblogs. Next, two
networks containing features are used (Cora and Pubmed)
[30, 50]. Table 1 summarizes the list of datasets and their
respective properties.

5.3. Baseline Methods. We establish a baseline by comparing
against several state-of-the-art methods. These methods are
divided into two categories. The first category comprises

discriminative methods and the second category comprises
generative methods.

Discriminative Methods

(i) Spectral Clustering [9] is a commonly used approach
for performing graph clustering. By identifying the
Fiedler Vector of the Graph Laplacian, we can divide
the network into two components. Repeating this
process, the graph can be subdivided further, giving
more clusters in the process.

(ii) Louvain [23] is a greedy modularity optimization
method for maximizing modularity score.
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Table 1: Empirical network datasets.

Dataset Type Nodes Edges Clusters (𝐾) Features
Karate Social 34 78 2 N/A
Polblogs Blogs 1,222 16,717 2 N/A
Cora Citation 2,708 5,429 7 1,433
PubMed Citation 19,717 44,338 3 500

(iii) DeepWalk [27], proposed byPerozzi et al., is a network
embeddingmethod that performs a bias randomwalk
on a given network.

(iv) node2vec [28] is a generalization of DeepWalk. It
leverages on homophily and structural roles in
embedding.

Generative Methods

(i) Stochastic Blockmodel (SBM) [38, 39] is a state-of-
the-art generative model. It models the likelihood of
two nodes forming an edge on the basis of stochastic
equivalence. Degree Correction (D.C.) penalizes the
formation of single node modules by normalizing the
node degrees.

(ii) Variational Graph Autoencoder [15] follows the Varia-
tionalAutoencoder framework by leveraging onGCN
layers.

5.4. Evaluation Metrics. Some of the common approaches
to evaluate detected communities are Normalized Mutual
Information (NMI), Variation of Information (VI), andMod-
ularity. In some cases, accuracy can be accurately measured
(i.e., when the number of clusters 𝐾 is 2). Furthermore,
these measures are only possible when ground truth exists.
Hence, we include other forms of measures which consider
the quality of a partition without ground truths.

5.4.1. Ground Truth

(i) Accuracy measures the number of correctly classified
clusters given the ground truth. Formally, given two
sets of community labels, i.e., 𝐶 being the ground
truth and 𝐶󸀠 the detected community label, the
accuracy can be calculated by

𝐴𝐶𝐶 (𝐶󸀠) = ∑|𝐶|𝑖=1 𝛿 (𝑐𝑖, 𝑐󸀠𝑖 )|𝐶| × 100%. (19)

𝑐𝑖 ∈ 𝐶, 𝑐󸀠𝑖 ∈ 𝐶󸀠, where 𝛿(⋅) denotes the Kronecker
delta, 𝛿(𝑐𝑖, 𝑐󸀠𝑖 ) = 1 when both labels match, and| ⋅ | denotes the cardinality of a set. For clustering
tasks, accuracy is usually not emphasized as labels are
known to oscillate between clusters.

(ii) NMI and VI are based on information theory. Essen-
tially, NMI measures the “similarity” between two

community covers, while VI measures their “disim-
ilarity” in terms of uncertainty. Correspondingly, a
higher NMI indicates a better match between both
covers while VI indicates the opposite. Formally [51]

NMI (𝐶, 𝐶󸀠) = 2I (𝐶, 𝐶󸀠)
(H (𝐶) +H (𝐶󸀠)) (20)

and

VI (𝐶, 𝐶󸀠) = H (𝐶) +H (𝐶󸀠) − 2I (𝐶, 𝐶󸀠) , (21)

where H(⋅) is the entropy function and I(𝐶, 𝐶󸀠) =
H(𝐶) + H(𝐶󸀠) − H(𝐶, 𝐶󸀠) is the mutual information
function.

5.4.2. Community Quality

(i) Modularity (Q) [17] measures the quality of a partic-
ular community structure when compared to a null
(random) model. Intuitively, intracommunity links
are expected to be stronger than intercommunity
links. Specifically,

𝑄 = 14𝑚∑
𝑖𝑗

(𝐴 𝑖j − 𝑘𝑖𝑘𝑗4𝑚 )𝛿 (𝑐𝑖, 𝑐𝑗) , (22)

where𝐴 𝑖𝑗−𝑘𝑖𝑘𝑗/4𝑚measures the actual edge connec-
tivity versus the expectation at random and 𝛿(𝑐𝑖, 𝑐𝑗)
defines the Kronecker delta, where 𝛿(𝑐𝑖, 𝑐𝑗) = 1 when
both nodes 𝑖 and 𝑗 belong to the same community,
and 0 otherwise. Essentially, Q approaches 1 when the
partitions are considered good.

(ii) Conductance (CON) [52, 53] measures the separabil-
ity of a community across the fraction of outgoing
local volume of links in the community, which is
defined as

CON (𝐶) = ∑𝑖∈𝐶,𝑗∈𝐶󸀠 𝐴 𝑖𝑗
min (𝑎 (𝐶) , 𝑎 (𝐶󸀠)) , (23)

where the nominator defines the total number of
edges within community 𝐶 and 𝑎(𝐶) = ∑𝑖∈𝐶(𝑗 ∈𝑉) defines the volume of set 𝐶 ⊆ 𝑉. A better
local separability of community is achieved when the
overall conductance value is the smallest.

(iii) Triangle Participation Ratio (TPR) [53] measures the
fraction of triads within the community 𝐶.
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TPR (𝐶) =
󵄨󵄨󵄨󵄨󵄨{V𝑖 ∈ 𝐶, {(V𝑗, V𝑘) : V𝑗, V𝑘 ∈ 𝐶, (V𝑖, V𝑗) , (V𝑗, V𝑘) , (V𝑖, V𝑘) ∈ 𝐸} ̸= 0}󵄨󵄨󵄨󵄨󵄨|𝐶| , (24)

where 𝐸 denotes the total number of edges in the
graph 𝐺. A larger TPR value indicates a denser
community structure.

5.5. Experiment Settings. For discriminative models such as
node2vec and DeepWalk, the latent representation is learned
first. Next, 𝑘-means is applied to the learned latent vector
with 𝐾 given a priori. The parameters used for node2vec
are performed using exhaustive search on variables 𝑝, 𝑞 ∈{0.25, 0.5, 1, 2, 4} as suggested in [28]. Specifically, the param-
eters obtained were (𝑝 = 0.5, 𝑞 = 4), (𝑝 = 0.25, 𝑞 = 0.25),(𝑝 = 1, 𝑞 = 0.25), and (𝑝 = 0.5, 𝑞 = 1) for Karate,
PolBlogs, Cora, and PubMed, respectively. As for DeepWalk,
the parameters used are 𝑑 = 128, 𝑟 = 10, 𝑙 = 80,
and 𝑘 = 10 which were the suggested values [27]. On the
other hand, generative models like SBM (and D.C.) have
several optimization strategies. In this case, we applied the
Expectation-Maximization (EM) algorithm as suggested in
[39].

For a fair comparison between VGAE and VGAECD,
we used identical layer configurations for both models. The
layer configurations are (32-16), (32-16), (32-8), and (32-8)
for Karate, PolBlogs, Cora, and PubMed, respectively. These
configurations are determined empirically as suggested in
[15]. Generally, we found the first layer to be insensitive and
second layer to be sensitive. By reducing the size of the second
layer with respect to the number nodes we found that 8 was
ideal for Cora and PubMed. The hyperparameter 𝐾 is given
a priori for all methods. For a fair comparison, the average
of 10 runs was taken for both discriminative and generative
models. All experiments were conducted on an Ubuntu 16.06
LTSmachinewith 64GB of RAMand twoGeForceGTX 1080
Ti graphics cards.

5.6. Experiment Results. We first compare our result with 8
baseline methods on several state-of-the-art methods that
employ unsupervised network embedding, except SBM: the
only generative model that does learn a network embedding.
Since VGAE is nonclustering, the two-step approach for
clustering was applied, i.e., obtaining the latent vectors
and subsequently applying 𝑘-means. The ∗ symbol denotes
methods that were confined to structural information only.

5.6.1. Synthetic Dataset Performance. Figure 2 depicts the
performance of the proposed model in comparison to other
methods. In Figure 2(a), VGAECD can be seen as a strong
performer when 𝑧out ≥ 4. On the LFR benchmark graph
in Figure 2(b), the performance of VGAECD is comparable
to other methods. When 𝜇 < 0.4, VGAECD is capable of
outperforming other methods. When 𝜇 > 0.55, VGAECD
is seen to exhibit similar performance to other methods.

In both cases, the performance was as expected since the
mixing parameter (𝑧out and 𝜇) is consistent with the study
recoverability limit in planted partitions [42, 43].

5.6.2. Empirical Dataset Performance. Experiments per-
formed on four different empirical datasets are shown in
Tables 2, 3, 4, and 5 for Karate, PolBlogs, Cora, and PubMed,
respectively. We measure the performance of clusters found
using metrics as proposed in the Section 5.4 and the best
values are marked in bold.

Generally, the experiments revealed that ourmethod out-
performs othermethodswhen ground truth is given. In terms
of cluster quality, VGAECD performs relatively well in terms
of modularity score (Q). However, it retains competitiveness
on Conductance (CON) and Triangle Participation Ratroio
(TPR) measures. Since datasets such as Cora and PubMed
have more than 2 clusters (𝐾 > 2), the accuracy of labels can
be affected by label oscillation. Therefore, it is a less accurate
measure for measuring cluster’s label when compared to clas-
sification accuracy measures. However, accurate measures
can still be obtained for datasets with only two clusters such
as Karate and PolBlogs, which revealed that the proposed
method is better than baseline methods. In most cases, the
results of our method are comparable to SBM (D.C.). This
is plausible since SBM (D.C.) has an advantage due to its
prior knowledge on degree normalization. Regardless, when
more than two clusters are given, the modularity score of
VGAECD outperforms SBM (D.C.) as shown in Cora and
PubMed datasets.

5.6.3. Time Complexity Analysis. Since the proposed model
follows theVAE framework, it employs a similar optimization
method using SGVB. Therefore, it follows a linear-time
complexity for one epoch, but requires 𝐿 number of runs
to achieve convergence. The convergence rate of NMI with
respect to the number of epochs can be observed in Figure 3
in comparison to VGAE. In contrast to VGAE, the proposed
method can achieve convergence at a faster rate.

5.6.4. Synthetic Network Generation. The implication of a
generative model is its ability to generate a graph when
prescribed a certain set of parameters. Therefore, a synthetic
network can be generated using the proposed VGAECD
model. Given parameters 𝑐 and 𝜔, we can generate a network
simply by following the generative process specified in Sec-
tion 4.2. However, in order to vary the community structure,
we can follow the planted partition’s approach by including
the mixing of a random network model:

𝜔 = 𝜆𝜔planted + (1 − 𝜆) 𝜔random. (25)
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Table 2: Experimental results on Karate dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)
Spectral Clustering 0.2297 2.0005 0.7353 0.1127 0.3702 0.7363
Louvain 0.4900 1.5205 0.3235 0.4188 0.2879 0.7333
DeepWalk 0.7198 0.8812 0.9353 0.3582 0.1337 0.9353
node2vec 0.8372 0.8050 0.9706 0.1639 0.4239 0.4549
Stochastic Blockmodel 0.0105 1.1032 0.4412 -0.2084 0.7154 0.4034
Stochastic Blockmodel (D.C) 0.8372 0.8050 0.9706 0.3718 0.1282 0.9412
VGAE∗ + 𝑘-means 0.6486 0.8189 0.9647 0.3669 0.1295 0.9407
VGAECD∗ 1.0000 0.6931 1.0000 0.3582 0.1412 0.9412

Table 3: Experimental results on PolBlogs dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)
Spectral Clustering 0.0014 1.1152 0.4828 -0.0578 0.5585 0.7221
Louvain 0.6446 1.0839 0.9149 0.2987 0.8130 0.1922
DeepWalk 0.7367 1.0839 0.9543 0.0980 0.3873 0.6870
node2vec 0.7545 0.8613 0.9586 0.1011 0.3827 0.6863
Stochastic Blockmodel 0.0002 1.2957 0.4905 -0.0235 0.5329 0.5657
Stochastic Blockmodel (D.C) 0.7145 0.8890 0.9496 0.4256 0.0730 0.8101
VGAE∗ + 𝑘-means 0.7361 0.8750 0.9552 0.4238 0.0752 0.8089
VGAECD∗ 0.7583 0.8583 0.9601 0.4112 0.0880 0.7913

Table 4: Experimental results on Cora dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)
Spectral Clustering 0.0651 2.0005 0.1252 0.0189 0.1909 0.6196
Louvain 0.4336 4.0978 0.0081 0.8142 0.0326 0.2821
DeepWalk 0.3796 2.7300 0.1626 0.6595 0.0396 0.4949
node2vec 0.3533 2.9947 0.1359 0.6813 0.1078 0.4902
Stochastic Blockmodel 0.0917 3.5108 0.1639 0.4068 0.4280 0.3376
Stochastic Blockmodel (D.C.) 0.1679 3.4547 0.1176 0.6809 0.1736 0.5112
VGAE∗ + 𝑘-means 0.2384 3.3151 0.1033 0.6911 0.1615 0.4906
VGAE + 𝑘-means 0.3173 3.1277 0.1589 0.6981 0.1517 0.5031
VGAECD∗ 0.2822 3.1606 0.1532 0.6674 0.1808 0.5076
VGAECD 0.5072 2.7787 0.1101 0.7029 0.1371 0.4987

Table 5: Experimental results on PubMed dataset.

NMI (↑) VI (↓) ACC (↑) Q (↑) CON (↓) TPR (↑)
Spectral Clustering 0.0382 1.4341 0.3261 0.0414 0.5645 0.4935
Louvain 0.1983 3.6667 0.0954 0.7726 0.1388 0.1592
DeepWalk 0.2946 1.7865 0.3101 0.5766 0.0499 0.2461
node2vec 0.1197 1.9849 0.2228 0.3501 0.3170 0.2269
Stochastic Blockmodel 0.0004 1.9340 0.3080 -0.1620 0.1038 0.1965
Stochastic Blockmodel (D.C.) 0.1325 2.0035 0.3118 0.5622 0.8121 0.2441
VGAE∗ + 𝑘-means 0.2041 1.8096 0.3724 0.5273 0.1320 0.2898
VGAE + 𝑘-means 0.1981 1.8114 0.2751 0.5297 0.1283 0.2900
VGAECD∗ 0.1642 1.8320 0.1956 0.4966 0.1252 0.2692
VGAECD 0.3252 1.7056 0.4216 0.6878 0.1636 0.4827
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Figure 2: Comparative performance of VGAECD against other methods on synthetic networks.
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Figure 3: NMI convergence comparison.

𝜔planted defines the amount of actual draws from the Gaussian
Mixture model and 𝜔random draws from the random model.
For instance, 𝜔planted can be specified as

𝜔planted = (𝑛1, 𝑛2, 𝑛3, 𝑛4) , (26)

where 𝑛𝑐 denotes the number of draws from the mixture
modelwith 𝜇𝑐 and 𝜎𝑐. In (26), we specify the number of nodes

drawn for four different communities. A generated matrix Ã
can be obtained as shown in decoder part of Algorithm 1.
Ideally, each node is represented by z, and the Hadamard
product between z𝑖 and z𝑗 determines the likelihood of edge
connectivity between nodes 𝑖 and 𝑗 which is obtained after
the nonlinearity 𝜎(⋅) function.
5.6.5. Network Visualization. Community assignments for
Cora dataset are visualized in Figure 4. Since Cora has several
disconnected nodes, only the largest connected component is
visualized. Among them, VGAECD has closer resemblance
to the ground truth’s cluster assignment. Notably VGAECD
is able to recover a community structure in the center of
the network. Additionally, it also has less tendency to cluster
nodes that are far awaywhich is seen in VGAE+ 𝑘-means and
SBM (D.C.). DeepWalk, however, appears to have a resolution
problem, resulting in larger clusters merging together. This
can be seen as the number of clusters depicted in the largest
component is fewer than𝐾 = 7.This problem is not observed
in node2vec since the sampling strategies are generalization
of DeepWalk. This generalization of 𝑝 and 𝑞 allows node2vec
to explore more locations. In contrast, DeepWalk is highly
restricted to visiting nodes within the pivot node’s vicinity.
However, to achieve the observed results, node2vec requires
a costly parameter search which is not ideal. Among the
baseline methods, Spectral Clustering and Louvain appear to
struggle in finding a community structure, even though they
performed verywell on synthetic benchmark graphs. Louvain
in particular had a very competitive NMI score, but visually,
the results are not very satisfactory.
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(a) Ground truth (b) VGAECD (c) Spectral clustering

(d) Louvain (e) DeepWalk (f) VGAE + 𝑘-means

(g) SBM (D.C.) (h) node2vec

Figure 4: Visualization of community assignment on Cora Dataset (largest connected component).

6. Conclusion

In this paper, we propose a novel community detection
algorithm termed Variational Graph Autoencoder for com-
munity detection (VGAECD). It generalizes VGAE for com-
munity detection tasks. The model is capable of learning
both features and structural information and encodes them
into a community-aware latent representation. The low-
dimensional representation learned differs from previous
network representation methods. Concretely, the latent rep-
resentations themselves are parameters to a probabilistic
graphical model, i.e., the Gaussian Mixture Model.Therefore,
this allows us to draw samples from the learned model itself
and generate synthetic graphs like SBM. Additionally, the
flexibility of the proposed method shows that, by leveraging
on more feature information, it is capable of outperforming
other methods in community structure recovery. Unlike

other representation learning methods which require a
two-step approach (applying 𝑘-means as the second step),
VGAECD is a generative model capable of recovering com-
munities in a single step.Moreover, in comparison to existing
state-of-the-art generative models such as SBM, VGAECD is
community structure definition agnostic. Specifically, nodes
are not forced to be similar under a specific similarity mea-
sure. This is an advantage over other community detection
algorithms where the definition of community structures is
always assumed. This is a desirable feature in cases where
networks can have a mixture of community structures, i.e.,
multilayer networks.
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How are ownership relationships distributed in the geographical space? Is physical proximity a significant factor in investment
decisions? What is the impact of the capital city? How can the structure of investment patterns characterize the attractiveness
and development of economic regions? To explore these issues, we analyze the network of company ownership in Hungary and
determine how are connections are distributed in geographical space. Based on the calculation of the internal and external linking
probabilities, we propose several measures to evaluate the attractiveness of towns and geographic regions. Community detection
based on several null models indicates that modules of the network coincide with administrative regions, in which Budapest is the
absolute centre, and where county centres function as hubs. Gravity model-based modularity analysis highlights that, besides the
strong attraction of Budapest, geographical distance has a significant influence over the frequency of connections and the target
nodes play themost significant role in link formation, which confirms that the analysis of the directed company-ownership network
gives a good indication of regional attractiveness.

1. Introduction

Mining valuable information from social networks is a hard
problem due to its dynamic nature [1, 2], complex structure
[3, 4], and multidimensionality [5]. This paper deals with
the structural issues as it tries to evaluate regional attrac-
tiveness based on a set of goal-oriented null models identi-
fied to describe the geographical distributions of company-
ownership relations.

Complex multivariate socioeconomic data is widely used
to monitor regional policy [6, 7]. As the usage of a dif-
ferent set of variables results in various rankings, the def-
inition and selection of socioeconomic variables are the
key issue in these applications. The drawback of these
indicator-based approaches is that although economic behav-
ior is socially constructed and embedded in networks of
interpersonal relations [8] and strong related to location

[9], the network structure of the economy is neglect-
ed.

This paper adds a viewpoint to regional studies based on
the analysis of how the network of personal investments and
the founding of companies relate to the settlement hierarchy.
We assume that the socially embedded economy must have a
network-based imprint in the company-ownership network
which is a good indication of regional attractiveness.

Attractiveness is meaningful in preferential attachment
networks, where the likelihood of a new connection is
proportional to degree [10] and fitness [11] of the node.These
models were generalized to handle initial attractiveness [12]
and latecomer nodes with a higher degree of fitness [11, 13].
It is important to note that these models generate power-
law (degree) distributions that are similar to the distribution
of socioeconomic variables of settlements indicating that
preferential attachment is a process that can be used to
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describe city grow [14–18]. In the case of geographically
distributed networks, the likelihood of link formation is
dependent on distance due to the cost of establishing con-
nections and spatial constraints [19]. Connection costs also
favor the formation of cliques and thus increase the clustering
coefficient [20]. Space is important in social networks as
most individuals connect with their spatial neighbors [20] to
minimize their effort and maintain social ties [21]; e.g., the
majority of our friends are in our spatial neighborhood [22].
The probability 𝑃(𝑑) that distance 𝑑 separates two connected
individuals is found to behave as 𝑃(𝑑) ∼ 𝑑−2 in terms of
Belgian mobile phone data [23], or generally 𝑃(𝑑) ∼ 𝑑−𝛿, as
has been shown in the case of the social network of more than
one million bloggers in the USA [24], in friendship network
of Facebook users, and in email communication networks
[25, 26].

The attractiveness of airports [27], countries for foreign
investments [28], and touristic destinations [29] is evaluated
based on socioeconomic variables. As many origins and
destinations are present in these applications, the theory of
bilateral trade flows accounts for the relative attractiveness
of origin-destination pairs. The gravity model is one of the
most successful empirical models in economics developed
to describe such interactions across the space [30]. Almost
40 years ago, before the emergence of network science,
Anderson suggested that as a force between two mass points,
the number of trips from location 𝑖 to location 𝑗, follows the
(economic version) of the “Gravity” law, 𝐹(𝑑) ∼ 𝑃(𝑑) ∼𝐼𝛼1 𝐼𝛼2 𝑑−𝛿 [31]. Nowadays, many complex networks embedded
in space and spatial constraints may have an effect on their
connectivity patterns such as trade markets [32], migration
[33], traffic flow [34], and mobile communication [23] that
can be successfully modeled by a gravity model, which was
also successfully applied in link prediction [35].

We assume that regions that heavily rely on local
resources consist of more internal connections that form
modules in networks, so the modularity of the networks
which reflect socioeconomic relationships can be used to
measure regional attractiveness. The goal of modularity anal-
ysis is to separate the network into groups of vertices that have
fewer connections between them than inside the communi-
ties [36]. In social network analysis, community detection
is a basic step in understanding the structure, function, and
semantics of networks [4]. Community analysis is performed
in two separate phases: first, detection ofmeaningful commu-
nity structure from a network, and second, evaluation of the
appropriateness of the detected community structure [37].
Systematic deviations from a random configuration allow us
to define a quantity called modularity, that is a measure of the
quality of partitions. Newman-Girvan modularity considers
only the degree of nodes as a nullmodelwhich is equivalent to
rewiring the network whilst preserving the degree sequence
[38, 39]. This random model overlooks the spatial nature of
the network; thus, modules are blind to spatial anomalies and
fails to uncover modules determined by factors other than
mere physical proximity [19], which is the reason why several
distance-dependent null models have been proposed recently
[19, 37, 40, 41].

Our goal is to use the tools of network community
detection to evaluate the attractiveness of the elements of set-
tlement hierarchies (towns, statistical subregions, counties,
and regions) based on their modularities as well as internal
and external connection densities. We study the internal
connections of the ownership network through the point
of view of Newman-Girvan, spatial and gravity-based null
models. As the modularity is based on the difference between
the actual and evaluated values of weight of edges, the real
spatial network more accurately describes the null model,
and the total modularity tends to be zero, so the modules
highlight the hidden structural similarities. We developed a
visualization technique to analyze these unknown effects on
community structure which can explain the attractiveness of
a settlement/region. Besides measuring the attractiveness, we
utilize the Louvain community detection algorithm [42, 43]
to identify closely related regions. We examine the complete
investment network of Hungarian companies to explore how
the ownership connections are geographically distributed,
what is the structure of the network, and what are the
common connection directions, as well as how the extracted
information is correlated to the settlement hierarchy. The
studied database contains information about the owners and
addresses of the companies. The results highlight the fact that
distance dependence of the investment connections is more
significant than was found in online social networks [22,
26, 44]. The analysis shows that the network is hierarchical
and modular as well as shaped according to the settlement
hierarchy, in which Budapest is the absolute center, and the
centers of counties function as hubs.

The outline of this paper is as follows: Section 2.1 presents
the company-ownership network. The metrics related to at-
tractiveness are given in the Appendix. Section 2.2 describes
the null models designed by us to measure modularity as
well as handling physical proximity and presents how closely
related regions can be explored based on the modularity-
related merging of towns and subregions. The results and
discussion are provided in Section 3.

2. Problem Formulation: Settlement
Hierarchy and Community Structure in
Personal Investment Patterns

2.1. Network Representation of Personal Investment Patterns.
The proposed methodology is based on the analysis of a
directed investment network represented by an asymmetric
biadjacency matrix A[𝑝,𝑐𝑜], whose elements are defined as

𝑎[𝑝,𝑐𝑜]𝑖,𝑗

= {{{
1 if the 𝑖-th person owns the 𝑗-th company

0 otherwise.
(1)

As the addresses of the owners and their companies are
known, connections between companies and their owners
define ties between geographic locations.

According to the levels of the settlement hierarchy, a four-
level study can be defined to describe how towns, regions,
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Figure 1: Company-ownership relations connect the elements of the settlement hierarchy (Settlement (LAU 2), statistical subregion (LAU
1), small-region (NUTS 3), and region (NUTS 2)).

or counties are connected through company ownerships (see
Figure 1). Although companies also own shares in other
companies, as we intended to study the attractiveness of
economic regions based onpersonal investment decisions, we
examined only companies that belong to individuals.

The levels of the settlement hierarchy [𝑙] are defined based
on the nomenclature of territorial units for statistics classifi-
cation (NUTS) and the two levels of local administrative units
(LAUs):

𝑙

=
{{{{{{{{{{{{{{{

1 town/settlement - LAU 2, formally NUTS 5 level

2 statistical sub-region - LAU 1, formally NUTS 4 level
3 small regions/counties, NUTS 3 level
4 regions of regional policies, NUTS 2 level

(2)

(Please note that, for simplicity, the term “town” is used for
all cities and villages.)

People and their companies are assigned to geographic
regions by the A[𝑐𝑜,𝑙] and A[𝑝,𝑙] incidence matrices, whose
elements are defined as follows:

(i) 𝑎[𝑐𝑜,𝑙]𝑖,𝑗 with element one if the headquarter of the 𝑖-th
company is situated in the 𝑗-th geographic region at
the level 𝑙 of the settlement hierarchy,

(ii) 𝑎[𝑝,𝑙]𝑖,𝑗 with element one if the 𝑖-th person is situated
in the 𝑗-th geographic region at the level 𝑙 of the
settlement hierarchy,

so the directed weighted network that defines the number of
investment connections between the regions can be defined
as

A[𝑙] = (A[𝑝,𝑙])𝑇 × A[𝑝,𝑐𝑜] × A[𝑐𝑜,𝑙]. (3)

Although companies may have many local divisions, the
links between the towns are defined only by connecting
the permanent addresses of the owners and the location of
the headquarter. This arrangement results in a transparent
and easily interpretable network as people and companies
are assigned to only one location. The resultant network
describes how investments unite the locations; e.g., the
adjacency matrix A[1] defines the number of links between
the towns, and the degrees of the nodes represent the number
of incoming and outgoing investments to the 𝑗-th and from
the 𝑖-th town, respectively:

𝑘[𝑙,𝑖𝑛]𝑗 = ∑
𝑖

𝑎[𝑙]𝑖,𝑗 (4)

𝑘[𝑙,𝑜𝑢𝑡]𝑖 = ∑
𝑗

𝑎[𝑙]𝑖,𝑗 . (5)

The total number of ownership relationships is equal to the
sum of the edge weights of the networks:

𝐿 = ∑
𝑖

∑
𝑗

𝑎[𝑙]𝑖,𝑗 , ∀𝑙, (6)

where 𝑖 and 𝑗 represent the indices of the geographic regions
at the level 𝑙 of the settlement hierarchy.
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It should be noted that as 𝐿 represents the total number
of connections, its value is independent of at which hierarchy
level the edge weights are summarised.

Similarly, the total number of companies and investors
can be calculated by summing the number of companies and
people at any hierarchy level, respectively:

𝑁[𝑐𝑜] = ∑
𝑗=1

𝑛[𝑙,𝑐𝑜]𝑗 ,
𝑁[𝑝] = ∑

𝑗=1

𝑛[𝑙,𝑝]𝑗 ,
∀𝑙,

(7)

where 𝑗 represents the index of the geographic regions at the
level 𝑙 of the settlement hierarchy.

As people and companies are assigned only to one geo-
graphical region with theA[𝑐𝑜,𝑙] andA[𝑝,𝑙] incidence matrices,
the number of people and companies at the 𝑗-th region of the[𝑙]-th level of the settlement hierarchy can be calculated as

𝑛[𝑙,𝑐𝑜]𝑗 = ∑
𝑖

𝑎[𝑐𝑜,𝑙]𝑖,𝑗 (8)

𝑛[𝑙,𝑝]𝑗 = ∑
𝑖

𝑎[𝑝,𝑙]𝑖,𝑗 . (9)

The number of internal and external links of the network
and the analysis of the local densities can be used to measure
the attractiveness of the regions (see the Appendix). The
following main body of the paper focuses on models that can
be used to explore the communities in the network.

2.2. Evaluation of the Community Structure in the Settle-
ment Hierarchy. The key idea of the methodology is that
geographical regions can be interpreted as nonoverlapping
communities of investors and companies as they belong to
exactly one region among the set of these regions on the 𝑙-th
level of the hierarchy, 𝐶[𝑙] = {𝐶[𝑙]1 , 𝐶[𝑙]2 , . . . , 𝐶[𝑙]𝑙 , . . . , 𝐶[𝑙]𝑛𝑐,𝑛𝑘}.

From the view of a community, the external degree is
the number of links that connect the 𝑖-th community to
the rest of the network, while the internal degree is the
number of links between companies and owners in the same
community, in other words, at the same location at the 𝑙-
th level of the hierarchy (for more details see Appendix A).
Recently, a wide variety of 𝑓(𝐶)metrics have been proposed
to evaluate the quality of communities on the basis of the
connectivity of their nodes [37]. The following subsections
will demonstrate how these metrics can be interpreted to
evaluate the attractiveness of geographical regions.

2.2.1. Modularity of a Region and Level of a Settlement Hier-
archy. Classical modularity optimization-based community
detection methods utilize 𝑓(𝐶)metrics that are based on the
difference between the internal number of edges and their
expected number [39, 45]:

𝑓 (𝐶) = (fraction of edges within communities)
− (expected fraction of such edges) . (10)

In the case of the proposed directed network, this differ-
ence can be formulated as

𝑓 (𝐶[𝑙]) = 1𝐿∑𝑖,𝑗 (𝑎
[1]
𝑖,𝑗 − 𝑝[1]𝑖,𝑗 ) 𝛿 (𝐶[𝑙]𝑖 , 𝐶[𝑙]𝑗 ) , (11)

where 𝑝[1]𝑖,𝑗 represents the number of estimated invest-
ments proceeding from the 𝑖-th to the 𝑗-th town and𝛿(𝐶[𝑙]𝑖 , 𝐶[𝑙]𝑗 ) is the Kronecker delta function that is equal to
one, if the 𝑖-th and 𝑗-th towns are assigned to the same region
on the 𝑙-th level of the hierarchy (e.g., 𝛿(𝐶[2]𝐴 , 𝐶[2]𝐵 ) = 1 when
towns A and B are situated in the same statistical subregion).

The modularity of the partition 𝐶[𝑙] can be calculated as
the sum of the modularities of the 𝐶[𝑙]𝑐 , 𝑐 = 1, . . . , 𝑛[𝑙]𝑐 commu-
nities:

𝑀[𝑙]
𝑐 = 1𝐿 ∑

(𝑖,𝑗)∈𝐶[𝑙]𝑐

(𝑎[1]𝑖,𝑗 − 𝑝[1]𝑖,𝑗 ) . (12)

The value of the modularity 𝑀[𝑙]
𝑐 of a cluster/region 𝐶[𝑙]𝑐

can be positive, negative, or zero. Should it be equal to zero,
the community has as many links as the null model predicts.
When themodularity is positive, then the𝐶[𝑙]𝑐 subgraph tends
to be a community that exhibits a stronger degree of internal
cohesion than the model predicts.

Using the proposedmatrix representation, the calculation
of the internal links at a given level of the hierarchy is
straightforward, so the modularity can be easily calculated
based on the diagonal elements of the adjacency matrices of
the network and its null model:

𝑓 (𝐶[𝑙]) = 𝑛[𝑙]𝑐∑
𝑐=1

𝑀[𝑙]
𝑐 = 1𝐿∑𝑐 𝑎[𝑙]𝑐,𝑐 −

1𝐿∑𝑐 𝑝[𝑙]𝑐,𝑐, (13)

where 𝑎[𝑙]𝑐,𝑐 represents the number of internal links in the
𝑐-th community/region on the 𝑙-th hierarchy level while 𝑝[𝑙]𝑐,𝑐
is the expected number of these internal links calculated by
the null model.

2.2.2. Null Models for Representing Regional Attractiveness.
The critical element of the methodology is how the 𝑝[1]𝑖,𝑗 con-
nection probabilities of the towns are calculated. The most
widely applied null model is the random configuration model
which calculates the edge probabilities assuming a random
graph conditioned to preserve the degree sequence of the
original network:

𝑝[1]𝑖,𝑗 = 𝑘
[1,𝑜𝑢𝑡]
𝑖 𝑘[1,𝑖𝑛]𝑗𝐿 . (14)

This randomized null model is inaccurate in most real-
world networks [41].

As we measure the attractiveness of the regions based
on the probability of link formation, it is beneficial to utilize
attractiveness-related variables in the model as well as taking
the distance-dependent link structure into account. Firstly,
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we generalize the model by defining the node importance
measures 𝐼𝑜𝑢𝑡𝑖 and 𝐼𝑖𝑛𝑗 :

𝑝[1]𝑖,𝑗 = 𝛾𝐼𝑜𝑢𝑡𝑖 𝐼𝑖𝑛𝑗 . (15)

As is expected from the null model, to fulfill the following
equality,

∑
𝑖,𝑗

𝑝[1]𝑖,𝑗 = ∑
𝑖,𝑗

𝑎[1]𝑖,𝑗 = 𝐿, (16)

the importance measures are normalized as ∑𝑖 𝐼𝑜𝑢𝑡𝑖 = 1
and ∑𝑗 𝐼𝑖𝑛𝑗 = 1:

𝐼𝑜𝑢𝑡𝑖 = 𝑥𝛼𝑖∑𝑗 𝑥𝛼𝑗 ,

𝐼𝑖𝑛𝑗 = 𝑥𝛽𝑗
∑𝑖 𝑥𝛽𝑖 ,

(17)

where the parameters 𝛼, 𝛽 > 0 reflect the importance
of the 𝑥𝑖 and 𝑥𝑗 variables used to express the probability of
forming an edge from the 𝑖-th to the 𝑗-th node. Please note
that when 𝛼 = 1 and 𝛽 = 1, 𝑥𝑖 = 𝑘[1,𝑜𝑢𝑡]𝑖 , 𝑥𝑗 = 𝑘[1,𝑖𝑛]𝑗 , and𝛾 = 𝐿, the model is identical to the random configuration
model of a weighted directed graph.

To model the probability of distance-dependent link
formation, the model defined by (15) is extended by a
deterrence function𝑓(𝑑𝑖,𝑗)which describes the effect of space
[20]:

𝑝[1]𝑖,𝑗 = 𝛾𝐼𝑜𝑢𝑡𝑖 𝐼𝑖𝑛𝑗 𝑓 (𝑑𝑖,𝑗) . (18)

The function 𝑓(𝑑𝑖,𝑗) can be directly measured from the
data by a binning procedure similar to that used in [19]:

𝑓 (𝑑) = ∑𝑖,𝑗|𝑑𝑖,𝑗=𝑑 𝑎[1]𝑖,𝑗∑𝑖,𝑗|𝑑𝑖,𝑗=𝑑 𝐼𝑜𝑢𝑡𝑖 𝐼𝑖𝑛𝑗 (19)

whose function is proportional to the weighted average of
probability (1/𝛾) 𝑎[1]𝑖,𝑗 /(𝐼𝑜𝑢𝑡𝑖 𝐼𝑖𝑛𝑗 ) of a link existing at distance 𝑑.

When the distance dependence of the connection proba-
bility is handled by an explicit function, variousmodifications
of the gravity law-based configuration model can be defined:𝑓(𝑑) = 1/𝑑𝛿𝑖,𝑗 [34, 46], 𝑓(𝑑) = exp(−𝑑𝑖,𝑗/𝛿) [47], or 𝑓(𝑑) =𝑑−𝛿𝑖,𝑗 exp(−𝑑𝑖,𝑗/𝜅) [48].

To ensure that the sum of the expected number of links
is equal to 𝐿 (see (16)), in this distance-dependent model 𝛾
should be normalized as

𝛾 = 𝐿
∑𝑖,𝑗 𝐼𝑜𝑢𝑡𝑖 𝐼𝑖𝑛𝑗 𝑓 (𝑑𝑖,𝑗) . (20)

Several models can be defined based on what kind of
indicators are selected in the model. When the nodes are
considered to be equally important, in other words, 𝐼𝑖 = 𝐼𝑗 =1, only the distance determine the link formation probability,

𝑓(𝑑𝑖,𝑗). The importance of the nodes can be interpreted as
the number of investors and companies, so 𝐼𝑖 = (𝑛[𝑙,𝑝]𝑖 )𝛼 and𝐼𝑗 = (𝑛[𝑙,𝑐𝑜]𝑗 )𝛽. The null model can be defined based on the
random configuration model, which results in the selection
of the variables as 𝐼𝑖 = (𝑘[𝑙,𝑜𝑢𝑡]𝑖 )𝛼 and 𝐼𝑗 = (𝑘[𝑙,𝑖𝑛]𝑗 )𝛽. Finally,
socioeconomic indicators, like the number of inhabitants, or
their complex combinations can be utilized.

When 𝑓(𝑑) = 1/𝑑𝛿𝑖,𝑗, the parameters 𝛼, 𝛽, 𝛿 can be
estimated as a regression problem.The identified parameters
indicate the sensitivity, i.e., importance, of the variables that
can be sorted by their importance as suggested in classical
gravity law-based studies, like in [20].

2.2.3. Economic Relations of the Regions. Connections that
interlink communities indicate their relationships and possi-
bilities tomergemodules/regions that are strongly connected.
We combine regions and determine the gain of the merged
modularity in a similar way to the Louvain community detec-
tion algorithm [42]. The Δ𝑀𝑖,𝑗 modularity change obtained
by merging the 𝑖-th and 𝑗-th communities can be calculated
as the difference between the actual and predicted number of
interlinking nodes:

Δ𝑀[𝑙]
𝑖,𝑗 = 1𝐿 (𝑎[𝑙]𝑖,𝑗 − 𝑝[𝑙]𝑖,𝑗) + 1𝐿 (𝑎[𝑙]𝑗,𝑖 − 𝑝[𝑙]𝑗,𝑖) . (21)

The resultant symmetric modularity gain matrix can be
calculated as

ΔM[𝑙] = (B[𝑙])𝑇 + B[𝑙], (22)

where B[𝑙] = A[𝑙] − P[𝑙] is the so-called modularity matrix
[38].

The Louvain algorithm moves a node 𝑖 in the community
for which the gain in modularity is the largest. If no positive
gain occurs, 𝑖 remains in its original community. After
merging the nodes/regions, a new network is constructed
whose nodes are in the communities identified earlier. This
method can be used to explore regions (modules) formed by
the elements of the 𝑙-th settlement hierarchy with different
null models. Although model-based communities can be
identified by this approach and compared to regions of a
larger hierarchy level as modules of ground truth, the main
goal of the analysis of M[𝑙] is to measure the strength of
relationships between the regions.

The following section demonstrates the applicability of
the previously presented toolset in the analysis of the network
of Hungarian companies.

3. Results and Discussion

3.1. Description of the Studied Dataset. The studied dataset
represents 𝐿 = 1,077,090 ownership relations between𝑁[𝑝] =531,249 people and 𝑁[𝑐𝑜] = 868,591 Hungarian companies
in 2013. It should be noted that only less than 10% of the
ownership connections are defined based on how companies
possess shares in other companies, so, although only personal
investments are studied, the results reflect the attractiveness



6 Complexity

Table 1: Number of edges inside the settlement hierarchies.

Town-level sub-Region-level County-level Region-level
Number of nodes, N 3,111 175 20 7
Number of internal ties 797,492 846,309 893,559 969,995
Number of external ties 279,598 230,781 183,531 107,095

Figure 2:Map of the town-level company-ownership network. Edges with more than 10 ownership connections are shown. Edges connected
to the capital (Budapest) are denoted by green lines.

of the towns and regions as the generated network covers
more than 90% of the investment-type connections.

The owners and companies were assigned to settlements,
and the related settlement hierarchy covers 3,155 towns (level
LAU 2, formally level NUTS 5), 175 statistical subregions
(level LAU 1, formally level NUTS 4), 20 small regions/
counties in level NUTS 3, and 7 regions in level NUTS 2.74% of the connections remain within the borders of the
towns, which also reflects the high degree ofmodularity of the
network (for more details, see Table 1). 302, 781 connections
are within Budapest and 45, 559 connections point out of
the city, while 89, 944 connections point into the capital. The
map of the regional connections between the people and
companies can be generated using the obtained connectivity
matrix and the latitudes and longitudes of the towns (see
Figure 2). It can be seen that the network reveals a hierar-
chical and modular structure reflecting that the Hungarian
economy is concentrated around the capitals of the counties
and Budapest, the capital of the country. The majority of
the companies are situated in these locations; consequently,
the network follows the structure of online social networks
[44]; in other words, it is also structured according to the
settlement hierarchy, in which Budapest is the absolute center
of the network and the centers of counties also function as
hubs.

3.2. Measuring Attractiveness. The densities inside towns
and regions can highlight the modular structure of the
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Figure 3: Network density as a function of the number of inhabi-
tants on the level LAU 1.

company-ownership network. As shown in Figure 3, these
densities are significantly higher in most subregions and a
negative correlation exists between the size of the regions
and the number of their inner connections (𝑟 = 0.298,𝑝 < 10−4). As illustrated by the results, smaller locations
are much more isolated than larger ones, like Budapest.
The same result is obtained by the analysis of the external
density-based opennes measure which we consider as a main
measure of attractiveness (see Appendix A for more details).
As shown in Figure 4, bigger regions exhibit lager openness
values reflecting their higher degree of attractiveness (𝑟 =0.94, 𝑝 < 10−10).
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Table 2: Performances of distance-dependent null models.

Nodes/Null models 𝑝𝑠𝑝𝑎 𝑝𝛼,𝛽 𝑝𝑔𝑟𝑎V
𝐼𝑜𝑢𝑡𝑖 = 𝐼𝑖𝑛𝑗 = 1 0.28100 0.28113 0.28093
𝐼𝑜𝑢𝑡𝑖 = 𝑁[𝑝], 𝐼𝑖𝑛𝑗 = 𝑁[𝑐𝑜] 0.08915 0.01359 0.00651
𝐼𝑜𝑢𝑡𝑖 = 𝑘[1,𝑜𝑢𝑡]𝑖 , 𝐼𝑖𝑛𝑗 = 𝑘[1,𝑖𝑛]𝑗 0.05759 0.01389 0.00642
𝐼𝑜𝑢𝑡𝑖 = Inhabitants𝑖, 𝐼𝑖𝑛𝑗 = Inhabitants𝑗 0.12106 0.01456 0.00650
𝐼𝑜𝑢𝑡𝑖 = TDI𝑖, 𝐼𝑖𝑛𝑗 = TDI𝑗 0.07142 0.01482 0.00644
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Figure 4: Openness of small regions (LAU 1 level) as a function of
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Figure 5: Empirically derived deterrence function determined by
(19), where 𝐼[𝑖𝑛]𝑖 = 𝑛[1,𝑝]𝑖 , 𝐼[𝑖𝑛]𝑗 = 𝑛[1,𝑐𝑜]𝑗 .

3.3. The Effect of Geographical Distance. To address the
effect of distance decay on link formation, the observed
ties between the towns were compared with their expected
number calculated from a probabilistic model.

A resolution of 10 km was used for binning the distance
distribution (see Figure 5). The exponent of distance decay
according to our data is -1.1057. It should be noted that
the effect of the capital city is so high, the probability of
forming connections with Budapest is slightly less distance-
dependent, and the exponent of distance decay with regard to
these connections is only -0.6385.

The distance-dependent link formation probability can
be explained by the notion that the costs of establishing and

maintaining the connections are also distance-dependent.
This assumption can be confirmed by the fact that the
distance has a much stronger effect on investment ties than
on online social networks in Hungary (where the exponent
of distance decay is -0.6) [44], probably since the cost of
keeping connections is less dependent on distance than the
management of a company far from the permanent address
of the owner.

3.4. Comparison of the Null Models. Based on the utilized
distance function, three different types of models can be
defined. When 𝑓(𝑑) is a deterrence function defined by (19),
the models are denoted as 𝑝𝑠𝑝𝑎 = 𝛾𝐼𝑜𝑢𝑡𝑖 𝐼𝑖𝑛𝑗 𝑓(𝑑). 𝑝𝛼,𝛽 =
𝛾(𝐼𝑜𝑢𝑡𝑖 )𝛼(𝐼𝑖𝑛𝑗 )𝛽𝑓(𝑑) represents the parametric version of this
model, when the exponents 𝛼 and 𝛽 are optimized to achieve
a more accurate approximation of connections between
towns. 𝑝𝑔𝑟𝑎V𝑖,𝑗 = 𝛾(𝐼𝑜𝑢𝑡𝑖 )𝛼(𝐼𝑖𝑛𝑗 )𝛽/𝑑𝛿 represents the gravity-type
models.

Five sets of 𝐼𝑜𝑢𝑡𝑖 , 𝐼𝑖𝑛𝑗 variables were defined, including
simple metrics like the numbers of nodes and edges [1]
in addition to socioeconomic variables, like the number
of inhabitants and Total Domestic Income (total income
received by all sectors of the economy including the sum of
all wages, profits, and taxes, minus subsidies). Based on the
combination of different variables and distance functions, 15
different models were identified:

min
𝛼,𝛽,𝛾

𝐸𝑚 (𝛼, 𝛽, 𝛾) = 1𝐿 󵄩󵄩󵄩󵄩󵄩A[1] − P[1]󵄩󵄩󵄩󵄩󵄩2 . (23)

As summarized in Table 2, by taking the distance into
account, the accuracy of the model is significantly improved.
Among distance-dependent models, the gravity models per-
form best (in comparison, the accuracy of the distance
independent random configuration model is 0.16494).

The Total Domestic Income (TDI) is one of the best
indicators. The identified 𝛼, 𝛽, and 𝛿 parameters reflect the
importance of the 𝐼𝑜𝑢𝑡𝑖 , 𝐼𝑖𝑛𝑗 , and 𝑑 variables in the models (e.g.,
in the case where 𝐼𝑖𝑛𝑗 = 𝑇𝐷𝐼𝑗 and 𝐼𝑜𝑢𝑡𝑖 = 𝑇𝐷𝐼𝑖, the resultant
nonlinear regression model is 𝑝𝑖,𝑗 = 0.12 ⋅ ((𝐼𝑜𝑢𝑡𝑖 )0.37 ⋅
(𝐼𝑖𝑛𝑗 )0.81)/𝑑1.58 (see Table 3)), which can be interpreted as the
notion that the number of connections between location 𝑖 and
location 𝑗 is increased by 0.37% as a result of 1.0% growth
of TDI in location 𝑖. Similarly, the number of connections
between location 𝑖 and location 𝑗 is increased by 0.81% as a
result of 1.0% growth of TDI in location 𝑗. According to the
gravity-type models, the importance of the target/destination
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Table 3: Coefficients of the parametric models that reflect the importance of the variables.

𝑝𝛼,𝛽 = 𝛾 (𝐼𝑜𝑢𝑡𝑖 )𝛼 (𝐼𝑖𝑛𝑗 )𝛽 𝑓(𝑑) 𝑝𝑔𝑟𝑎V𝑖,𝑗 = 𝛾 (𝐼𝑜𝑢𝑡𝑖 )𝛼 (𝐼𝑖𝑛𝑗 )𝛽 /𝑑𝛿
Nodes/Parameters 𝛼 𝛽 𝛼 𝛽 𝛿
𝐼𝑜𝑢𝑡𝑖 = 𝑁[𝑝], 𝐼𝑖𝑛𝑗 = 𝑁[𝑐𝑜] 1.08373 0.91787 0.34984 0.67191 1.63711
𝐼𝑜𝑢𝑡𝑖 = 𝑘[1,𝑜𝑢𝑡]𝑖 , 𝐼𝑖𝑛𝑗 = 𝑘[1,𝑖𝑛]𝑗 1.05439 0.94455 0.35652 0.69045 1.59439
𝐼𝑜𝑢𝑡𝑖 = Inhabitants𝑖, 𝐼𝑖𝑛𝑗 = Inhabitants𝑗 0.99347 1.15642 0.40654 0.88313 1.52391
𝐼𝑜𝑢𝑡i = 𝑇𝐷𝐼𝑖, 𝐼𝑖𝑛𝑗 = 𝑇𝐷𝐼𝑗 0.98571 1.03669 0.37367 0.81425 1.58060
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Figure 6: Comparison between the number of the edge weights 𝑎[1]𝑖,𝑗 and their estimated values 𝑝[1]𝑖,𝑗 generated by different null models on
the town level (LAU 2) settlement hierarchy when 𝐼𝑜𝑢𝑡𝑖 = 𝑘[1,𝑜𝑢𝑡]𝑖 and 𝐼𝑖𝑛𝑗 = 𝑘[1,𝑖𝑛]𝑗 . The + symbols represent the inner connections that form a
separate cluster.This plot directly reflects the goodness of fit as the model estimates the connections of the towns.

locations (𝛽) is greater than the importance of the sources (𝛼)
regardless of how the strengths of the nodes are interpreted.

3.5. Evaluation of the Modularities. As modularity-based
community detection evaluates the set of 𝑎[1]𝑖,𝑗 > 𝑝[1]𝑖,𝑗 edges
(and the related nodes) whose weights are underestimated by
the null model (see (11)), we designed a plot that compares𝑎[1]𝑖,𝑗 with 𝑝[1]𝑖,𝑗 to highlight the set of potential edges that can
be used to form communities.

Four null models based on the 𝐼1 fl 𝑘[1,𝑜𝑢𝑡]𝑖 and 𝐼2 fl 𝑘[1,𝑖𝑛]𝑗

Newman and Girvan model are compared in Figure 6. In
all models, the inner connections (represented by +) form a
separate cluster which confirms that 74% of the connections
remain within the borders of the towns. The first model
(𝑝𝑁𝐺) shows that more inner connections exist than would
be expected based on the random configuration network.
The spatial models 𝑝𝑆𝑝𝑎𝑡 and 𝑝𝛼,𝛽 handle the dependence on
distance of the connections, so a slightly smaller difference
is shown in the number of the experienced and expected
inner connections. It is reflected in Figure 7 that during the
aggregation procedure the qualitative behavior of the models
does not change.

The difference between the expected number of intercon-
nections is higher in the case of smaller settlements which
indicates that small regions are not as attractive as would
be expected from their number of nodes. The gravity model𝑝𝐺𝑟𝑎V well estimates the inner connections thanks to the
exponents 𝛼 = 0.35652 and 𝛽 = 0.69045 whose parameters
effectively represent that the increase in the number of
connections affects the attractiveness in a nonlinear fashion.
This phenomenon ismuchmore interesting when the utilized
variables can be interpreted as economic potentials. When
TDI is applied in the gravity model, 𝛼 = 0.37367 and𝛽 = 0.81425. These values and Figure 8 confirm that gravity-
basedmodels behave similarly and, therefore, reflect the same
mechanism of attractiveness.

3.6. Forming Communities. Connections that interlink com-
munities are indicative of their relationships. The effect of
these interlinks can be studied by the change in modularity
(see (21)) expressed as ΔM[𝑙] = (B[𝑙])𝑇 + B[𝑙].

To determine the community structure, the MATLAB
implementation [49] of the greedy Louvain algorithm [50]
was used. Towns and subregions were used as an initial
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Figure 7: Comparison between the number of the edge weights 𝑎[2]𝑖,𝑗 and their estimated values 𝑝[2]𝑖,𝑗 generated by different null models at level
LAU 1 of the settlement hierarchy when 𝐼𝑜𝑢𝑡𝑖 = 𝑘[1,𝑜𝑢𝑡]𝑖 and 𝐼𝑖𝑛𝑗 = 𝑘[1,𝑖𝑛]𝑗 . The + symbols represent the inner connections that form a separate
cluster. This plot reflects that, during the aggregation procedure, the qualitative behavior of the models does not change; furthermore, the
same phenomena can be observed as in Figure 6.
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Figure 8: Comparison between the number of the edge weights 𝑎[2]𝑖,𝑗
and their estimated values 𝑝[2]𝑖,𝑗 generated by the gravity null model
at level LAU 1 of the settlement hierarchy when 𝐼𝑜𝑢𝑡𝑖 = 𝑇𝐷𝐼𝑖 and𝐼𝑖𝑛𝑗 = 𝑇𝐷𝐼𝑗.The+ symbols represent the inner connections that form
a separate cluster.

partition B[𝑙]. As shown in Figure 9, the community struc-
ture formed based on the null model 𝑝𝑁𝐺 almost per-
fectly reconstructs the counties confirming that the settle-
ment structure is reflected in terms of the personal invest-
ments.

Different null models provide different viewpoints with
regard to community detection. The NG null model does
not handle the distance dependence of the connections
so the matrix B[𝑙] = A[𝑙] − P[𝑙] of the modeling errors
reflects the distance dependence of the connections. There-
fore, the resulting communities form spatial clusters. On the
contrary, communities formed by the gravitational models

reflect distance-dependent differences less. According to the
resultant maps, the attractiveness of Budapest is highlighted
as only small since closed regions were not assigned to the
module of the capital (see Figure 10(a)). It is interesting to
note that all the centers of counties were assigned to the
community of Budapest in gravitational model which also
confirms the hierarchical structure of the network. To high-
light the hierarchical structure and increase the sensitivity of
the model, a resolution parameter was introduced into the
model (see Appendix B) that can be adapted to detect similar
region-pairs as shown in Figure 10(b).

Communities formed with the NG null model (see
Figure 9) and the TDI-based gravity models (see Figure 10)
significantly differ.The interpretation of the communities and
these differences should rely on the understanding of the
concept of the modularity. The utilised modularity detection
algorithm generates partitions in which the links are more
abundant within communities than would be expected from
the employed model.

As the NG null model only uses the basic structural
information encoded in the adjacency matrix, when the
probabilities of the connections are dependent on distance,
the resulting communities will represent closer geographical
regions. As Table 1 and Figures 6 and 7 show, most of the
connections remain within the county borders, so it is natural
that the resultant 30 communities are almost identical to the
counties.

Since the Hungarian road network reflects the admin-
istrative regions, it can be shown that the distance strongly
affects the probability of the connections. This distance
dependence of the connection probability can be incorpo-
rated into the null model by the proposed gravity model.
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(a) Initial nodes are towns (𝑙 = 1)

(b) Initial nodes are subregions (𝑙 = 2)

Figure 9: Communities formed by the Louvain method and Newman-Girvan (NG) null model (𝐼𝑖 = 𝑘𝑜𝑢𝑡𝑖 and 𝐼𝑗 = 𝑘𝑖𝑛𝑗 ) reflect the settlement
hierarchy as the resultant communities are almost identical to the counties.

In this case, the resultant communities will reflect another
unmodelled surplus in the number of connections. When the
attractiveness and the distances are considered in the null
model, the communities will reflect the additional economic
attractiveness/similarity of the regions.

As Figure 10 shows, the algorithm generates a huge
cluster of a well developed regions with Budapest, the larger
cities and county seats with high TDIs, and several small
communities related to isolated and less developed subre-
gions.
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(a) TDI-based gravitational model: Initial nodes are subregions (𝑙 = 2)

(b) The same TDI-based gravitational model at higher resolution 𝛾𝑟 = 1.1

42 520
520 646
646 771
771 897
897 1266

−

−

−

−

−

(c) Spatial distribution of the TDI per capita (in 1000 HUF)

Figure 10: Communities formed by the Louvain method and gravitational null models reflect the attractiveness of Budapest as only less
developed closed regions were not assigned to the module of the capital.
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4. Conclusions

Regional policy-making and monitoring are firm-centered,
incentive-based, and state-driven. Personal investments
define ties between geographical locations. We analyzed
the structure of this ownership network and proposed a
methodology to characterize regional attractiveness based
on a set of null models identified to approximate the
probabilities of link formation. According to the levels of
the settlement hierarchy, a four-level study was conduct-
ed.

Based on the calculation of the internal and exter-
nal network densities, several measures were proposed to
evaluate the attractiveness and development of towns and
geographical regions. The results indicate that small and less
competitive regions have less internal connections, while
larger cities are much more open.

To provide a more in-depth insight into the network,
the dependence of link formation on distance was studied.
The probability of connections between owners and their
companies shows amuchmore rapid degree of distance decay
than experienced in social networks.The attractiveness of the
capital is so high that its connections aremuch less dependent
on distance than other cities.

Based on the combination of three deterrencemodels and
five sets of indicators, 15 different null models were identified
besides the classical Newman-Girvan random configuration
model. Communities statistically have more significant edge
weights that would bewired according to the null model. As it
was highlighted that underestimated link probabilities are the
sources of modularity, a scatter plot was designed to visualize
how the null model approximates the real structure of the
network.

The identification of gravity-type models highlighted
that link formation is nonlinearly dependent on the studied
variables. Furthermore, the target nodes are much more
important when determining the probability of link forma-
tion than the source nodes which also confirms why the
structural analysis of company-ownership networks can be
used to measure regional attractiveness.

We applied the Louvain community detection algorithm
to form clusters of cities and subregions and compared the
resultant communities to administrative regions. When the
null model more closely approximates the real structure of
the network, then the modularity is expected to be lower.
As community detection forms modules whose internal
link densities are significantly higher than what would be
expected from the applied null models, spatial clusters
that were highlighted by the distance independent random
configuration model are almost identical to the counties.
Communities generated based on the gravitational models,
which correctly estimate the number of internal nodes and
the dependence of link formation on distance, exploited the
attractiveness of the capital, as they form a massive cluster
that includes most of the centers of each county, bigger cities,
and the competitive touristic regions, while the remaining
small clusters reflect isolated regions that are less developed
and less attractive.

Appendix

A. Internal and External
Connection-Based Evaluation

Finding community structure means the assignment of the
nodes into groups, where within the nodes are highly con-
nected and across the nodes of the communities they are
much loosely connected to each other [51].

The density of the whole network can be calculated as

𝐷 = 𝐿𝑁[𝑝]𝑁[𝑐𝑜]
. (A.1)

while the internal density of the region is calculated as

𝐷[𝑙,𝑖𝑛]
𝑖 = 𝑎[𝑙]𝑖,𝑖

𝑛[𝑙,𝑝]𝑖 𝑛[𝑙,𝑐𝑜]𝑖

. (A.2)

𝐷[𝑙,𝑖𝑛]
𝑖 /𝐷 compares internal complexity of the regions to the

whole network.
The probability of an external tie, in other words, the

external density, can be calculated in a similar fashion:

𝐷[𝑙,𝑒𝑥]
𝑖 = ∑𝑖 ̸=𝑗 𝑎[𝑙]𝑖,𝑗

𝑁[𝑙,𝑝] (𝑁[𝑙,𝑐𝑜] − 𝑛[𝑙,𝑐𝑜]𝑖 ) , (A.3)

where 𝑁[𝑙,𝑐𝑜] − 𝑛[𝑙,𝑐𝑜]𝑖 represents the number of companies
that are outside of the 𝑖-th region at the [𝑙]-th level of the
settlement hierarchy.

To evaluate the openness as a measure of the attrac-
tiveness of the region, the ratio of the external to internal
probabilities can be defined as

𝑂[𝑙]𝑖 = 𝐷
[𝑙,e𝑥]
𝑖𝐷[𝑙,𝑖𝑛]
𝑖

. (A.4)

Apart from taking into account internal and external
links, the direction of the connections can be considered.
Expansion computes the number of edges pointing outside
the community [37]:

𝐸[𝑙]𝑖 = ∑𝑖 𝑎
[𝑙]
𝑖,𝑗 − ∑𝑖 𝑎[𝑙]𝑖,𝑖
𝑛[𝑙,𝑝]𝑖

. (A.5)

Similarly, the ability of a community to collects links can
be determined by the normalized number of links that point
inside the community:

𝐿𝐶𝐴[𝑙]𝑖 = ∑𝑗 𝑎
[𝑙]
𝑖,𝑗 − 𝑎[𝑙]𝑖,𝑖
𝑛[𝑙,𝑐𝑜]𝑖

. (A.6)

Cut ratio is similar to the internal density as it computes
the fraction of edges pointing out and the number of possible
edges that are pointing outside the community:

𝐶𝑅[𝑙]𝑖 = ∑𝑗 𝑎[𝑙]𝑖,𝑗 − 𝑎[𝑙]𝑖,𝑖
𝑛[𝑙,𝑝]𝑖 (𝑁[𝑙,𝑐𝑜] − 𝑛[𝑙,𝑐𝑜]𝑖 ) . (A.7)
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Table 4: Parameters of the power-law distributions fitted to networks at different settlement hierarchy levels.

Distribution 𝑘𝑠𝑎𝑡 𝑘𝑐𝑢𝑡 𝛾
𝑘[1,𝑖𝑛]𝑗 (LAU 2) 120 15061 1.85
𝑘[1,𝑜𝑢𝑡]𝑗 (LAU 2) 138 19709 1.87
𝑘[2,𝑖𝑛]𝑗 (LAU 1) 1974 392724 2.04
𝑘[2,𝑜𝑢𝑡]𝑗 (LAU 1) 2070 348339 2.04
𝑘[3,𝑖𝑛]𝑗 (NUTS 3) 19693 392724 2.54
𝑘[3,𝑜𝑢𝑡]𝑗 (NUTS 3) 20401 348339 2.49
𝑘[4,𝑖𝑛]𝑗 (NUTS 2) 74161 557112 3.31
𝑘[4,𝑜𝑢𝑡]𝑗 (NUTS 2) 77042 519967 3.35

B. Improvement of the Resolution

The modularity always increases when small communities
are assigned to one group [52]. Modularity optimization with
the null model 𝑝𝑁𝐺 has a resolution threshold which means
it fails to identify small communities in large networks and
communities consisting of less than (√𝐿/2-1) internal links
[53]. Reichardt and Bornholdt (RB) generalized the mod-
ularity function by introducing an adjustable 𝛾𝑟 parameter
[54, 55] to handle this problem, which for our directed and
weighted networks is

𝑀dir
𝑅𝐵 = 1𝐿∑𝑖 ∑𝑗 (𝑎𝑖𝑗 − 𝛾𝑟

𝑘𝑜𝑢𝑡𝑖 𝑘𝑖𝑛𝑗𝐿 )𝛿 (𝐶𝑖, 𝐶𝑗) . (B.1)

Arenas, Fernandez, and Gomez (AFG) also proposed
a multiresolution method by adding 𝑟 self-loops to each
node [56]. This algorithm increases the strength of a node
without altering the topological characteristics of the original
network, as A𝑟 = A + 𝑟 I, where I denotes the identity matrix
and 𝑟 the weight of the self-loops of each node:

𝑀𝐴𝐹𝐺 = 1𝐿󸀠∑𝑖 ∑𝑗 (𝑎
󸀠
𝑖,𝑗 − 𝑘

𝑜𝑢𝑡󸀠
𝑖 𝑘𝑖𝑛󸀠𝑗𝐿󸀠 )𝛿 (𝐶𝑖, 𝐶𝑗) , (B.2)

where𝐿󸀠 = 𝐿+𝑁𝑟, 𝐿 =∑𝑖,𝑗 𝑎𝑖,𝑗, 𝑘𝑜𝑢𝑡󸀠𝑖 = 𝑘𝑜𝑢𝑡𝑖 +𝑟, 𝑘𝑖𝑛󸀠𝑗 = 𝑘𝑖𝑛𝑗 +𝑟,
and

𝑎󸀠𝑖,𝑗 = {{{
𝑎𝑖,𝑗, if 𝑖 ̸= 𝑗,
𝑎𝑖,𝑗 + 𝑟, if 𝑖 = 𝑗. (B.3)

These methods still have the intrinsic limitation, so large
communities may have been split before small communities
became visible. The theoretical results indicated that this
limitation depends on the degree of interconnectedness of
small communities and the difference between the sizes of
the communities, while being independent of the size of the
whole network [52].

It should be noted that the modularity decreases when𝑝𝑖,𝑗 more closely approximates the real 𝑎𝑖,𝑗 values which is
equivalent to finding the null model that most closely fits.

C. Network Topology Analysis

The degree distribution was determined in all levels of the
settlement hierarchy by following themethodology presented

0

−1

−2

−3

−4

lo
Ａ 1

0
Ｊ
Ｅ

loＡ10 k
54320 1

Ｅ
＝Ｏ

Ｎ
=

15
06

0

Ｅ
Ｍ；
Ｎ
=

12
0

 = 1.84

Power-law
Log-normal
Poisson

Figure 11: Distribution of the 𝑘[1,𝑖𝑛]𝑗 edges at the LAU 2 settlement
hierarchy level.

in [13]. Figure 11 shows that the distribution shows small-
degree saturation and high-degree cutoff. Several distribution
functions were fitted.The two-sided Voung’s test statistic [57]
showed that exponential and Poisson distributions which
reflect the randomness of connections could be rejected.
According to this test, the power-law distribution cannot be
rejected. The estimated parameters are shown in Table 4. The
power-law distribution of the incoming and outgoing con-
nections reflects the preferential attachment-type structure of
the network.

In hierarchical networks, nodes with high degree tend to
connect to nodes that are less connected to others [58].There-
fore, the hierarchical structure of the network is reflected by
the dependence of the local clustering coefficient 𝐶(𝑘) on
the degree of the nodes. As Figure 12 shows, 𝐶(𝑘) decreases
with increasing 𝑘 with 𝐶(𝑘) ≈ 𝑘−0.3 which indicates the
hierarchical structure of the network [58, 59].

D. Notations

p: Person/investor who is equivalent to the
owner of a company

co: Company[𝑙]: Level of the settlement hierarchy (see (2))
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Figure 12: Local clustering coefficient as a function of the 𝑘[1,𝑖𝑛]𝑗 node
degrees.

𝑒𝑛𝑡𝑖𝑡𝑦[𝑙]: Aggregation of an 𝑒𝑛𝑡𝑖𝑡𝑦 at level 𝑙 of the
settlement hierarchy

A[𝑝,𝑐𝑜]: Biadjacency matrix of person-company
ownership network𝑎[𝑝,𝑐𝑜]𝑖,𝑗 : An element (edge weight) of the A[𝑝,𝑐𝑜]

biadjacency matrix of person-company
ownership network

A[𝑝,𝑙],A[𝑐𝑜,𝑙]: Incidence matrices of person-location
and company-location bipartite
networks at the level 𝑙 of the settlement
hierarchy

A[𝑙]: Simpler notation of an adjacency matrix
of location network at 𝑙 level of
settlement hierarchy (see (3))𝑘[𝑙,𝑖𝑛]𝑗 : In-degree of the 𝑗-th node (geographic
region) at level 𝑙 of the settlement
hierarchy𝑘[𝑙,𝑜𝑢𝑡]𝑖 : Out-degree of the 𝑖-th node (geographic
region) at level 𝑙 of the settlement
hierarchy𝑛[𝑙,𝑐𝑜]𝑗 , 𝑛[𝑙,𝑝]𝑗 : Numbers of companies and people in
the 𝑗-th region at level 𝑙 of the
settlement hierarchy𝑁[𝑐𝑜], 𝑁[𝑝]: Number of companies and
people/owners/investors in the network𝐿: Number of links in the network𝐶: Set of communities (each node is a
member of exactly one community)𝐶[𝑙]: Set of communities at level 𝑙 of the
settlement hierarchy (𝐶1 denotes the set
of towns)𝑛[𝑙]𝑐 : Number of communities at level 𝑙 of the
settlement hierarchy𝑓(𝐶): Generally a metric as a function of
community structure that indicates the
goodness-of-fit of the community on
the basis of the connectivity of nodes in
it

𝑓(𝐶[𝑙]): Metric of the goodness-of-fit of the
community structure which is the level 𝑙 of
the settlement hierarchy𝑀: A special 𝑓(𝐶) defined by (11) called
modularity of network𝑀𝑐: Modularity of community 𝑐 (sum of the
modularity of each community yields the
modularity𝑀 of the network)𝐷[𝑙,𝑖𝑛]

𝑖 , 𝐷[𝑙,𝑒𝑥]
𝑖 : Internal and external densities of the 𝑖-th

community at level 𝑙 of the settlement
hierarchy, defined by (A.2) and (A.3)𝑂[𝑙]𝑖 : Openness of the 𝑖-th community at level 𝑙
of the settlement hierarchy, defined by
(A.4)𝐸[𝑙]𝑖 : Expansion of the 𝑖-th community at level 𝑙
of the settlement hierarchy, defined by
(A.5)𝐿𝐶𝐴[𝑙]𝑖 : Link-collection ability of 𝑖-th community
at level 𝑙 of the settlement hierarchy,
defined by (A.6)𝐶𝑅[𝑙]𝑖 : Cut ratio of the 𝑖-th community at level 𝑙 of
the settlement hierarchy, defined by (A.7).
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Bankruptcy of listed companies or shareholders delisting usually causes the crisis spreading in stock markets. Based on the
systematic analysis of the epidemic diseases and rumors spreading on the complex networks, the SIRmodel is introduced to research
the crisis spreading in shareholding networks of listed companies and their main holders on the basis of the data about ownership
structure in Chinese StockMarkets.The characteristics of shareholding networks are studied, and the parameters for the SIRmodel
are obtained by empirical approach.Then, the numerical computationmethod is successfully used to analyze the crisis spreading in
the networkswhen the networksmeet random failures or intentional attacks.We find the networks have good robustness against the
random failures. However, the crisis will spread at a high speed and cause catastrophic damage if there are some failures or attacks
on hub vertices in the networks. Under this condition, the networks showobvious vulnerability. Last but not least, the controllability
of the networks under the condition of intentional attacks and random failures is studied. The results show that if the network is
controlled globally, it is more reliable to allow a politically good new or an appropriate exciting economical policy to play the role
in orienting markets under the control of public opinions as the crisis occurs. However, under normal circumstances, controlling a
small part of driver vertices representing listed companies, applying appropriate control strategies, and using its characteristics of
high efficiency of sending information can effectively control the stock market. Our research provides a new reference to further
exploration about the transmission mechanism of the crisis based SIR model and further research on the controllability of crisis
spreading in financial markets.

1. Introduction

Reviewing the long course of human history, each financial
crisis has led to economic disaster. The Great Depression
which started about 1929 and lasted until the late 1930s or
early 1940s swept through all the countries inWestern Europe
and the United States. When the members of Organization
of Arab Petroleum Exporting Countries proclaimed an oil
embargo against the United States along with the fourth
Arab-Israeli War breaking out, the 1973 oil crisis started,
which subsequently led to economic crisis. The Latin Amer-
ican debt crisis occurred in the early 1980s (and for some
countries starting in the 1970s) known as the “lost decade”.
Around 1990s, the Japanese asset price bubble collapsed
because of the great inflation of real estate and stock prices.

TheAsian financial crisis grippedmost area in Asia from 1997
to 1998.

With Chinese joining in the WTO, our financial market
opened to the outsideworld further.The relationship between
Chinese mainland financial system and foreign financial
systems has been getting closer. The Chinese stock markets
can be influenced by various kinds of crises from aboard. For
example, the US subprime mortgage crisis in 2007 triggered
the worldwide financial crisis. The closing price of Shanghai
securities composite index (index code: 000001) falls from the
maximum point 6082.06 CNY/point on October 16, 2007 to
1706.7 CNY/point on November 4, 2008. The closing price
of the Shenzhen composite index (index code: 399106) falls
from the maximum point 1576.5 CNY/point On January
15, 2008 to 456.97 CNY/point on November 4, 2008. The
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samples of the index 000001 and index 399106 include all the
issued shares in Shanghai security exchange and Shenzhen
security exchange, respectively. It means that more than
70% Market Capitalization had vaporized during the year of
2008.

Invariably, each financial crisis will do very serious dam-
age to the country's real economy. If we can completelymaster
the transmission mechanism of financial crisis and exactly
predict the financial crisis, it is possible for government to
take steps to nip the crisis in the bud.

It is well known that the stock markets are the barometer
of national economic development. The stock prices of
listed companies can reflect the capital demand and supply
situation, market demand, current situation, anticipation of
industry development trend, and the unrest of political situa-
tions.The stockmarkets are so sensitive to the economic crisis
and financial crisis that once some abnormal phenomena
occur in the stock market, the real economy of the country
will be affected inevitably and seriously. It is easy for the
abnormality in stock market to trigger a global financial
crisis or economic crisis. On the contrary, if some abnormal
phenomena occur in the real economy, the bubble in the stock
markets will collapse firstly. Then the crisis will penetrate
into every aspect of people's lives rapidly. Therefore, studying
the structural characteristics of stock markets and the crisis
spreading in the stock markets are important.

Along with the study of the transmission mechanism
and the statistical mechanics of complex networks, two far-
reaching spreading models are formed. They are susceptible-
infected-susceptible (SIS) mode [1–4] and SIR model [1, 5–
7]. When talking about SIS and SIR model on networks, the
literature typically refers to epidemiological dynamical pro-
cesses which have been studied for quite a long time. As for
the so-called SIRmodel, itmeans that each vertex in networks
lies in one of the following states: susceptible (healthy state),
infected, removed (or refractory, or recovered). At each step,
the susceptible vertices become infected vertices with certain
probability if they enter in contact with infective vertices
and disease transmission occurs successfully. At the same
time, the infected vertices become removed (or refractory, or
recovered) vertices with certain probability [1, 5–7]. Later, the
SIR and SIS model are also introduced to describe the rumor
spreading process in interpersonal networks since they have
the similar spreading process of epidemiology.

Bankruptcy of listed companies or shareholders delisting
usually causes the crisis spreading in stockmarkets. Based on
the systematic analysis of the epidemic diseases and rumor
spreading on the complex networks, the SIR model will be
introduced to research the crisis spreading in shareholding
networks of listed companies and their main holders.

Compared with the SIR model of epidemic spreading
or rumor spreading on general complex networks, the
susceptible-infected-removed (SIR)model of crisis spreading
shows great differences in the shareholding networks due to
stockmarkets having their own characteristics. The networks
are established by the real data of the mutual investment
relationships between the listed companies and their main
holders, and the shareholding networks are the typically
weighted and directed networks. In order to reduce the

loss, the vertices representing the listed companies or the
main holders make different decisions according to their
different situations. Meanwhile, the decisions made by the
listed companies or the main holders may be obviously
different.Therefore, the susceptible or infected vertices in the
correlated networks will become infected vertices or removed
vertices with no certain given probability, respectively. Not
only is the SIR model beneficial to master the transmission
mechanism of crisis spreading on the stock markets, but also
it can help to reveal the dissemination process and root cause
of financial crisis.

Compared to model research of crisis spreading, perhaps
reflecting the controllability and control strategies for the
crisis aremore concerned.The ultimate goal of studying com-
plex network systems is controlling, or manual intervention.
It involves issues such as controllability, control strategies,
precise control, minimum cost control, and spontaneous
controllability. In 2011, Liu and the control theory community
J. J Slotine and the complex network leader A. L. Barabasi
cooperated to use the linear system structure controllabil-
ity theory and introduced mapping maximum matching
for networks and Kalman’s controllability rank condition
to establish the theory for analyzing the controllability of
complex networks [8]. On the basis of Liu's work, Jia et
al. divide the network vertices into three categories, critical
vertices, intermittent vertices, and redundant vertices, and
further calculate the proportion of the three types of driver
vertices and propose the concept of control capacity [9, 10].
Subsequently, Yuan et al. propose a more accurate concept
of networks controllability based on the PBH rank criterion
and further introduced it into the research of multirelational
networks and multilayer networks [11]. Sun et al. consider
that, in the control design process of practical complex sys-
tems, the control problem of the system is usually considered
based on the energy optimal control, which involves the
calculation of the controllable matrix, and thus controlla-
bility theory based on the singularity of Gramian matrix is
proposed [12]. Based on these three types of controllability
research, many researchers have carried out various kinds of
research.

In this paper, we will not only carry on model research
of crisis spreading by establishing a SIR model of crisis
spreading in stock markets, but also research the control-
lability and controlling strategies of shareholding networks
when the networks meet random failures or intentional
attacks.

This paper can be divided into 7 sections. Section 1 is the
introduction about the related subjects and current research.
The data and the methods of establishing networks in this
paper are elaborated in Section 2. In Section 3, based on the
analysis of crisis spreading in the shareholding networks, the
SIR model in stock markets is established. Section 4 intro-
duces the characteristics of shareholding networks and the
parameters selection for the SIR model. Based on SIR model,
Section 5 simulates the process of crisis spreading when the
networks meet random failures and intentional attacks. And
its controllability of networks has been studied in Section 6.
Themain conclusions and some related discussions are given
in Sections 7 and 8.
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2. Data and Networks

2.1. Data. The data are extracted from the RESSET Financial
Research Database (http://www.resset.cn/), including all the
stocks issued in the Shanghai Stock Exchange and the
Shenzhen Stock Exchange before December 31, 2009. The
documents we selected include the Main Stockholders List
and Ownership Structure and the Yearly Market Capitaliza-
tion (CNY) of all listed companies.

Through the issuance of stocks, the shareholding net-
works between the listed companies and their shareholders
are formed. The shareholders of a listed company may be
other listed companies, funds, non-listed enterprises, indi-
viduals, universities, etc. For each stock, the number of the
shareholders in stock markets is numerous. The shareholders
holding less proportion stocks may buy or sell their stocks
frequently in each trading day. Thus, the shareholders’ infor-
mation constantly changes during exchange hours. To handle
all the information of the listed companies and their holders is
incredible. However, it is worth noting that the proportion of
stocks owned by the major holders of each listed company is
more than 55%.These data can be accessed from the Internet
or related financial database. According to our statistics, the
proportion of average shares of the 10th largest holders of the
listed companies is smaller than 0.42%. Comparatively, the
holders holding share smaller than 0.42% have little influence
on the analysis of the community structures and topological
characteristics of complex networks.

There is no uniformity in naming convention about the
holders’ name for the annual reports in the Securities and
Futures Commission (SFC), such as full name or abbreviated
name, name in Chinese or in English, subsidiary company’s
name or parent company’s name, etc. Therefore, the name of
the same holder must be unified. The names of all domestic
companies are unified in Chinese. The names of all foreign
companies are unified in English. If some different holders
are the subsidiary companies of a certain company, we view
them as the same vertex in the networks. For example,
China Life Insurance Company Limited and China Life
Asset Management Company Limited are the subsidiary
companies of China Life Insurance (Group) Company. Under
this condition, the three companies should be viewed as the
same vertex representing their parent company (China Life
Insurance (Group) Company).

2.2. Networks. In shareholding networks, the listed com-
panies and their main holders are the vertices, which is
different to [13].The shareholding relationships are the edges
of the networks. According to the graph theory [14], the
networks can be indicated by the directed graph 𝐺 =
(𝑉, 𝐸), where 𝑉 is a set of vertices, which represents the
listed companies and their main holders. 𝐸 is the ordered
pair of vertices, called directed edges, which represents the
investment relationships.

For the purpose of indicating the mutual investment
relationships in stock markets, the basic subgraph of share-
holding networks is extracted, as shown in Figure 1.

In Figure 1, the symbol of hexagons denotes a listed
company; the symbol of circles denotes a main holder except

G

e12
e23

e32

e42 e43

1 2 3

4

Figure 1: A subgraph of shareholding networks.

the listed companies (in this paper, denoted as nonlisted
holders). The set 𝑉 includes two kinds of vertices: the set of
listed companies (denoted by𝑉𝐿) and the set of main holders
(denoted by 𝑉𝑆), where 𝑉𝐿 ⊂ 𝑉,𝑉𝑆 ⊆ 𝑉. It is worth noting
that some listed companies can also act as the main holders
of some other listed companies, such as Company 2 and
Company 3 as shown in Figure 1. Thus, we have V2, V3 ∈ 𝑉𝐿
and V1, V2, V3, V4 ∈ 𝑉𝑆.

The set 𝐸 indicates the mutual investment relationships
between the listed companies and their main holders. If
holder 𝑖 holds certain proportion of stocks issued by the listed
company 𝑗, holder 𝑖 has invested in the listed company 𝑗.
In the shareholding networks, the investment relationships
can be represented by the ordered pair 𝑒𝑖𝑗 = (V𝑖, V𝑗); the
direction is from vertex V𝑖 to vertex V𝑗. Meanwhile, the weight
between vertex V𝑖 and vertex V𝑗 is denoted as the symbol
𝑢𝑖𝑗. 𝑢𝑖𝑗 is the proportion of the holding shares of holder 𝑖
to the total issued shares by the listed company 𝑗. 𝑢𝑖𝑗 = 0
indicates that there are no investment relationships between
the holder 𝑖 and the listed company 𝑗. If 𝑒23 ̸= 0 and 𝑒32 ̸= 0,
𝑒23 = (V2, V3) and 𝑒32 = (V3, V2) will represent the difference
investment relationships in the shareholding networks. In
order to indicate the possible existing investment relation-
ships in the shareholding networks, all kinds of shareholding
relationships are listed in Table 1 on the basis of analyzing
Figure 1.

The Yearly Market Capitalization of any listed company
is the price of stocks issued by the listed company multiplied
by the total issued shares. Suppose𝑀𝑗 as the Yearly Market
Capitalization of the listed company 𝑗. The asset of holder 𝑖
investing to listed company 𝑗 is 𝑢𝑖𝑗 multiplied by 𝑀𝑗. Now,
we can define the in-degree assets of listed company 𝑗 as
investment of their holders. We use 𝑠𝑖𝑛𝑗 to represent the in-
degree assets of listed company𝑗, then

𝑠𝑖𝑛𝑗 = (𝑢1𝑗 + 𝑢2𝑗 + ⋅ ⋅ ⋅ + 𝑢𝑖𝑗 + ⋅ ⋅ ⋅ + 𝑢𝑁𝐿𝑗) ×𝑀𝑗

=
𝑁𝐿

∑
𝑖=1

𝑢𝑖𝑗 ×𝑀𝑗
(1)

where𝑁𝐿 is the total number of the listed companies. By the
way, the nonlisted holders have not the in-degree assets.
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Let the out-degree of nonlisted holder (or listed company)
𝑖 as its investment to the other listed companies; we use 𝑠𝑜𝑢𝑡𝑖
to represent the nonlisted holder (or listed company) 𝑖; then

𝑠𝑜𝑢𝑡𝑖 = 𝑢𝑖1 ×𝑀1 + 𝑢𝑖2 ×𝑀2 + ⋅ ⋅ ⋅ + 𝑢𝑖𝑗 ×𝑀𝑗 + ⋅ ⋅ ⋅

+ 𝑢𝑖𝑁𝑠 ×𝑀𝑁𝐿 =
𝑁𝐿

∑
𝑗=1

(𝑢𝑖𝑗 ×𝑀𝑗)
(2)

3. Analysis of Crisis Spreading in Shareholding
Networks and the SIR Model

3.1. Susceptible State, Infected State, and Removed State in
Shareholding Networks. As mentioned above, SIR models
are mainly used to investigate the epidemiological dynam-
ical processes or the rumor spreading processes in social
networks. The similar modeling method is introduced to
research the crisis spreading processes on the basis of the
networks of listed companies and their main holders. Thus,
the definitions of the vertices and edges of the networks
should be carefully illustrated. The vertices represent the
listed companies and the main holders.The objective existent
shareholding relationships are the edges of the networks.
Thus, the susceptible state, infected state, and removed state
in the shareholding networks can be defined as follows.

Susceptible State. For the vertex representing nonlisted hold-
ers, it means that the external investment of the vertex has
not changed. In other words, the out-degree assets of vertex
and the directed edges from vertex to other vertices have
not changed. For the vertex representing listed companies, it
means that the Market Capitalization of the vertex has not
decreased.

Infected State. For the vertex representing nonlisted holders, it
means that the out-degree assets of the vertex have decreased;
meanwhile, the directed edges from vertex to other vertices
may change. For the vertex representing listed companies,
it means that the Market Capitalization of the vertex has
decreased.

Removed State. For the vertex representing nonlisted holders
or listed companies, it means that the vertices are removed
from the networks.

It is noteworthy that the susceptible vertices may become
infected vertices or removed vertices directly when the states
of vertices have changed in the shareholding networks. For
example, the holder 𝑖 only holds the stocks issued by a
certain listed company 𝑗. When the Market Capitalization of
company 𝑗 descend because of mismanagement in business,
the state of the vertex V𝑖 will become susceptible state if the
listed company 𝑗 is still allowed to be listed on the stock
markets. However, the state of the vertices V𝑖 and V𝑗 will
become the removed state if the company goes bankrupt.

In the next sections, each kind of the crisis spreading
in shareholding networks is analyzed carefully, and the
corresponding functions are obtained. To help the reader
understand, this articlewill explain the corresponding change
rules of vertices among susceptible state, infected state, and

removed state in detail on the basis of the typical network in
Figure 1.

3.2. The Existent Failures in Networks. According to graph
theory [14], the existent failures in networks can be divided
into two categories.

3.2.1. Cut Edges. Suppose 𝑒 is an edge in graph 𝐺, and a cut
edge 𝑒 of graph G means deleting the edge 𝑒 from graph G;
it can be denoted by 𝐺 − 𝑒. If 𝑇 = {𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑖, } is an edge
subset of 𝐸 in graph 𝐺 = (𝑉, 𝐸), deleting the edge subset 𝑇
from subgraph 𝐺 can be denoted by 𝐺 − 𝑇.

3.2.2. Cut Vertices. A cut vertex V𝑖 of graph Gmeans deleting
the vertex V𝑖 together with the related incident edges, and the
graph will be denoted by𝐺−V𝑖. Correspondingly, a cut vertex
set 𝐶 = {V1, V2, ⋅ ⋅ ⋅ , V𝑖} of graph Gmeans deleting the vertices
𝐶 = {V1, V2, ⋅ ⋅ ⋅ , V𝑖} together with the related incident edges,
and the subgraph will be denoted by 𝐺 − 𝐶.

3.3. Crisis Spreading Model of SIR in Shareholding Networks.
Compared to the SIR model of epidemic spreading or rumor
spreading in complex networks, the SIR model of crisis
spreading showsno given susceptible or infected probabilities
in shareholding networks, in which the crisis spreading
between any two vertices is influenced by many factors, such
as shareholding proportion, Market Capitalization, in-degree
assets, and out-degree assets. Meanwhile, the crisis spreading
has obvious directions in the shareholding networks because
the networks are established by the real data of the mutual
investment relationships between the listed companies and
their main holders.

After careful analysis, the failure in stock markets can be
divided into 5 categories. Correspondingly, the crisis spread-
ing functions in shareholding networks can be obtained as
follows.

3.3.1. Influence of Nonlisted Holders’ Bankruptcy. Suppose
nonlisted holder 𝑖 goes bankrupt; in shareholding networks
the vertex V𝑖 should be deleted; meanwhile, the edges linking
vertex V𝑖 to other vertices should also be deleted.

According to the proportion 𝑢𝑖𝑗 of the holding shares
of holder 𝑖 to the total issued shares by listed company
𝑗, the listed company 𝑗 may be influenced. This kind of
influence can be denoted by equation 𝐶2(V𝑖, V𝑗, 𝑢𝑖𝑗).Then, the
bankruptcy of nonlisted holder 𝑖 can be described as in

𝐻1 (V𝑖) =
{
{
{

𝐺 − V𝑖
𝐶2 (V𝑖, V𝑗, 𝑢𝑖𝑗)

(3)

where 𝑗 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛, and V𝑗 ∈ 𝑉𝐿; V𝑖 ∈ 𝑉𝑆, V𝑗 ∉ 𝑉𝐿. 𝑛 is the
total number of vertices before we delete the vertex V𝑖. If there
is no investment relationship between the nonlisted holder
𝑖 and listed company 𝑗, 𝑢𝑖𝑗 = 0. Under this condition, let
𝐶2(V𝑖, V𝑗, 𝑢𝑖𝑗) = 0. That is to say, the nonlisted holder 𝑖 which
goes bankrupt has no direct influence on listed company 𝑗.

In order to improve the replicability of this paper and
master the functions and parameters for casual readers, five
figures and many paragraphs are added to illustrate the rules
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Figure 2: Influence of bankruptcy of nonlisted holder 1 on the network.

of crisis spreading in Section 3.3 (Sections 3.3.1 to 3.3.5)
based on simple network of Figure 1. The influence of the
bankruptcy nonlisted holder 1 on the network is expressed
in Figure 2.

Figure 2 shows that the bankruptcy of nonlisted holder
1 deletes the vertex V1 together with the incident edge 𝑒12;
correspondingly, the susceptible state of vertex 1 becomes
removed state directly; it also affects the investment relation-
ship of company 2 linked to holder 1, which is denoted by
𝐶2(V1, V2, 𝑢12).

3.3.2. Bankruptcy of Listed Companies. When listed company
𝑗 goes bankrupt, the vertex V𝑗 and the edges linking vertex V𝑗
to other vertices will be deleted inevitably in the shareholding
networks. At the same time, the vertices linked to vertex V𝑗
will be influenced.

On the one hand, if listed company 𝑗 holds the stocks
issued by another listed company 𝑘, the influence of bankrupt
company 𝑗 on listed company 𝑘 is 𝐶2(V𝑗, V𝑘, 𝑢𝑗𝑘), where 𝑘 =
1, 2, 3, ⋅ ⋅ ⋅ , 𝑛, 𝑘 ̸= 𝑗.

On the other hand, the total assets of the holders of listed
company 𝑗 will decrease inevitably. The loss assets of holder
𝑖, who has invested to listed company 𝑗, can be obtained as
follows:

𝑚𝑖 = 𝑀𝑗 × 𝑢𝑖𝑗 (4)
where 𝑀𝑗 is the Market Capitalization of listed company 𝑗
before going bankrupt.

At this time, holder 𝑖 will make a decision for benefiting
itself according to its situation of loss, which can be described
by equation 𝐻2(V𝑖, 𝑚𝑖), where 𝑖 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛 and V𝑖 ∈ 𝑉𝑆.

As the analysis above, the changes of the shareholding
networks can be described as (5) when the listed company
𝑗 goes bankrupt.
𝐶1 (V𝑗)

=
{{{
{{{
{

𝐺 − V𝑗
𝐻2 (V𝑖, 𝑚𝑖) 𝑖 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛 & 𝑖 ̸= 𝑗
𝐶2 (V𝑗, V𝑘, 𝑢𝑗𝑘) 𝑗 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛 & 𝑘 ̸= 𝑗

(5)

where V𝑖 ∈ 𝑉𝑆 and V𝑗, V𝑘 ∈ 𝑉𝐿.

Using Figure 1 as an example, the influence of the
bankruptcy of listed company 2 is shown in Figure 3.

The bankruptcy of listed company 2 makes the edges
linking vertex V2 to other vertices be deleted inevitably,
including 𝑒12, 𝑒32, 𝑒42, 𝑒23, and the susceptible state of non-
listed holder 1 becomes a removed state because holder 1
only holds the stocks issued by listed company 2 and affects
decision behavior of nonlisted holder 4 and listed company 3
because of their assets decreasing, marked by𝐻2(V2, 𝑚4) and
𝐶2(V2, V3, 𝑢23), respectively.

3.3.3. Analysis of the Decision Behavior of Holders When
Their Assets Decrease. Under the following two conditions,
the assets of holder 𝑖 will decrease inevitably. A Holder
𝑖 holds more than one kind of stocks issued by different
listed companies. The total assets of the holder will decrease
inevitably when one of the listed companies goes bankruptcy.
B If holder 𝑖 holds the stocks issued by listed company 𝑗, the
assets of holder 𝑖 will also be decreased inevitably when the
Market Capitalization of listed company 𝑗 descends because
of mismanagement in business or some other reasons. Under
these two conditions, the holder 𝑖 will make a decision for
benefiting itself, so that it can decrease the losses to a tolerant
level.

Suppose 𝑚 is the loss of assets of holder 𝑖 before making
the decision (𝑚 can be obtained from (6) and (10) for the two
conditions mentioned above, respectively.). The holder 𝑖 will
make the decision according to the proportion of the loss to
the total external investing assets of holder 𝑖 (denoted as 𝑟𝑖 ).
If𝑀𝑗 is the Market Capitalization of listed company 𝑗, 𝑟𝑖 can
be obtained from the following equation:

𝑟𝑖 =
𝑚𝑖

𝑚𝑖 + ∑𝑛𝑗=1
𝑖 ̸=𝑗

(𝑢𝑖𝑗 ×𝑀𝑗) (6)

where V𝑖 ∈ 𝑉𝑆, V𝑗 ∈ 𝑉𝐿, 𝑗 ̸= 𝑖. 𝑛 is the total number of
the listed companies. If holder 𝑖 does not invest in the listed
company 𝑗, 𝑢𝑖𝑗 = 0.

According the value of 𝑟𝑖, the loss of holder 𝑖 can be
divided into 3 kinds: general loss, heavy loss, and catastrophic
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Figure 4: Decision behavior of holder 4 when it suffers a heavy or catastrophic loss.

loss. Correspondently, the decision behavior of holder 𝑖 can
be described by the following equation:

𝐻2 (V𝑖, 𝑚𝑖)

=
{{{{
{{{{
{

0 0 ≤ 𝑟𝑖 < 𝑥1
𝐺 − 𝑒𝑖𝑗 and 𝐶2 (V𝑖, V𝑗, 𝑢𝑖𝑗) 𝑥1 ≤ 𝑟𝑖 < 𝑥2
𝐻1 (V𝑖) 𝑟𝑖 ≥ 𝑥2

(7)

where 𝑖 ̸= 𝑗, V𝑖 ∈ 𝑉𝑆 and V𝑗 ∈ 𝑉𝐿. 𝑥1 and 𝑥2 can be obtained
from Section 4.2.

Equation (7) can be described as follows.
If 𝑟𝑖 < 𝑥1 (general loss), the holder 𝑖 will make no new

decision. Correspondently, the vertex V𝑖 will keep the same
state as before in the shareholding networks.

If 𝑥1 ≤ 𝑟𝑖 < 𝑥2 (heavy loss), holder 𝑖 will sell one kind of
stocks issued by company 𝑗. The assets of holder 𝑖 investing
in listed company 𝑗 are minimum (not including zero)

compared to its investment to other companies. Correspon-
dently, in the networks, the edge 𝑒𝑖𝑗 will be deleted and the
influence of holder 𝑖 selling the stocks issued by company 𝑗 on
company 𝑗 can also be described by equation 𝐶2(V𝑖, V𝑗, 𝑢𝑖𝑗).

If 𝑟𝑖 ≥ 𝑥2 (catastrophic loss), the holder 𝑖 will sell all the
holding stocks. It can be described by equation 𝐻1(V𝑖).

For the last two conditions, they can be mastered by the
example in Figure 4.

The initial state of the networks is the same as Figure 3(a).
Assuming the assets of holder 4 investing in company 2
are smaller than those in company 3, when holder 4 suffers
a heavy loss, it will sell the stocks issued by company 2;
correspondingly, the influence on company 2 expressed by
𝐶2(V4, V2, 𝑢42) and the susceptible state of vertex 4 becomes
an infected state, as shown in Figure 4(a).When holder 4 gets
a catastrophic loss, it will sell all the holding stocks and influ-
ence on the listed companies, as denoted by 𝐶2(V4, V2, 𝑢42)
and 𝐶2(V4, V3, 𝑢43) in Figure 4(b).
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3.3.4. Influence of Holder 𝑖 on the Networks When Holder 𝑖
Goes Bankrupt or Sells the Stocks Issued by Listed Company
𝑗. When holder 𝑖 goes bankrupt or sells the stocks issued by
listed company 𝑗, theMarketCapitalization of listed company
𝑗may be influenced. Suppose𝑀𝑗 is theMarket Capitalization
before holder 𝑖 goes bankrupt or sells the stocks issued by
listed company 𝑗 and 𝑀󸀠𝑗 is the new Market Capitalization
after holder 𝑖 goes bankrupt or sells the stocks issued by listed
company 𝑗. Suppose 𝑅𝑗 is the proportion of𝑀󸀠𝑗 to𝑀𝑗. Then,

𝑅𝑗 =
𝑀󸀠𝑗
𝑀𝑗

(8)

According to the Chinese Stock Exchange Listing Rules,
the behaviors of selling or buying assets of the holders who
hold the proportion of shares more than 5% of a certain listed
company are viewed as major events in stock markets. The
behaviors of the holder, who holds the proportion of shares
more than 50% of a certain listed company, selling or buying
assets are viewed as the behaviors of the listed company [15].
Therefore, we neglect the influence, which the proportion
of single transaction shares of a certain listed company to
its total shares is less than 5%. After careful analysis of the
block trade of stocks in the stock markets, the new Market
Capitalization𝑀󸀠𝑗 is obtained, as shown in (12).

Equation (8) shows 𝑅𝑗 ≥ 0. Moreover, if 𝑅𝑗 is more closer
to 1, the fluctuation of the Market Capitalization of listed
company 𝑗 is smaller, so the damage to company 𝑗 is smaller.
When 𝑅𝑗 is a certain value 𝑥3, the listed company 𝑗 will go
bankrupt. The value of 𝑥3 can be found in Section 4.2.

Therefore, when holder 𝑖 goes bankrupt or sells the stocks
issued by listed company 𝑗, the influence of holder 𝑖 on listed
company 𝑗 can be written as in the following equation:

𝐶2 (V𝑖, V𝑗, 𝑢𝑖𝑗)

=

{{{{{{{
{{{{{{{
{

0 𝑢𝑖𝑗 < 0.05
𝐶1 (V𝑗) 𝑢𝑖𝑗 ≥ 0.05 and 0 ≤ 𝑅𝑗 ≤ 𝑥3
𝐶3 (V𝑗) and 𝐻2 (Vq, 𝑚q) 𝑢𝑖𝑗 ≥ 0.05 and 1 > 𝑅𝑗 > 𝑥3
0 𝑅𝑗 ≥ 1

(9)

where 𝑞 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛, 𝑞 ̸= 𝑗, 𝑖 ̸= 𝑗, 𝑖 ̸= q, V𝑖, V𝑞 ∈ 𝑉𝑆, V𝑗 ∈ 𝑉𝐿.
The meanings of (9) are as follows.
If 𝑢𝑖𝑗 < 0.05, the behaviors of holder 𝑖 going bankrupt

or selling the stocks issued by company 𝑗 will have no direct
influence on company 𝑗.

If 𝑢𝑖𝑗 ≥ 0.05 and 0 ≤ 𝑅𝑗 ≤ 𝑥3, the behaviors of holder 𝑖
going bankrupt or selling the stocks issued by company 𝑗will
make company 𝑗 go bankrupt or be delisted from the stock
markets.

If 𝑢𝑖𝑗 ≥ 0.05 and 1 > R𝑗 > 𝑥3, the behaviors
of holder 𝑖 going bankrupt or selling the stocks issued by
company 𝑗 will make the Market Capitalization of company
𝑗 decrease, but the company 𝑗 will not go bankrupt. At this
time, the company 𝑗 will make different decisions according
to its decrement of Market Capitalization (denoted as 𝐶3(V𝑗),
where, V𝑗 ∈ 𝑉𝐿). Meanwhile, the holders of company 𝑗 will

make different decisions according to its assets decrement,
which is the same as 𝐻2(V𝑞, 𝑚𝑞), where 𝑞 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛,
𝑞 ̸= 𝑗, q ̸= 𝑖 and V𝑞 ∈ 𝑉𝑆.
𝑅𝑗 ≥ 1means that theMarketCapitalization of company 𝑗

has not decreased. Therefore, the vertex V𝑗 will keep the same
state as before in the shareholding networks.

By the way, when 1 > 𝑅𝑗 > 𝑥3, the assets of loss of holder
𝑞 (denoted by 𝑚q in (9)) can be obtained from the following
equation:

𝑚q = (𝑀𝑗 −𝑀󸀠𝑗) × 𝑢𝑞𝑗 (10)

Using the network in Figure 1 as an example, if Holder
4 sells the stocks issued by company 2, the state of vertex
4 will be infected state. The corresponding influence on the
networks can be depicted in Figure 5.

As shown in Figure 5(b), it will not impact on Company
2 when the proportion 𝑢𝑖𝑗 is less than 0.05 or Market Cap-
italization of company 2 has not decreased. However, if the
Market Capitalization of company 2 shows a large decrease
and 𝑢42 ≥ 0.05, company 2 will go bankrupt (see Figure 5(c)).
In addition, there is a middle state between Figures 5(b)
and 5(c). Figure 5(d) shows that holder 4 selling the stocks
issued by company 2 will make the Market Capitalization
of company 2 decrease; i.e., the state of vertex 2 becomes
infected state. It is worth noticing that company 2 can make
a different decision according to its decrease values, marked
by 𝐶3(V2). Furthermore, as one of the holders of company 2,
listed company 3 also will make a decision on account of the
assets decrease, denoted by𝐻2(V3, 𝑚3).

3.3.5. Decision Behavior of Listed Company 𝑗When Its Market
Capitalization Decreases. Because the stock prices are the
barometer of the economic development, which is sensitive to
the general operating conditions, capital supply and demand,
market demand, etc., generally speaking, the stock prices rise
with the improvement of business performance. Therefore,
the highly descent speed of Market Capitalization of listed
companies means bad operation conditions. The phenomena
of reduced cash flow or the fracture of capital chain may
appear. At this time, the listed company may sell the holding
stocks issued by some other listed companies to keep the
company’s normal operating cycle.

As mentioned in (9), if 0 ≤ 𝑅𝑗 ≤ 𝑥3, the company 𝑗
will go bankrupt or be delisted from the stock markets. So
company 𝑗must take measures to avoid𝑅𝑗 approaching to𝑥3.
Therefore, we can set a critical value 𝑥4. If 𝑥3 < 𝑅𝑗 ≤ 𝑥4, the
company 𝑗 will make the corresponding adjustment to avoid
going bankrupt or being delisted from the stock markets.

To sum up, the decision behavior of listed company 𝑗 can
be written as (11) when its Market Capitalization decreases.

𝐶3 (V𝑗)

=
{
{
{

0 𝑢𝑗𝑘 ≡ 0 or 𝑅𝑗 > 𝑥4
𝐺 − 𝑒𝑗𝑘 and 𝐶2 (V𝑗, V𝑘, 𝑢𝑗𝑘) ∃𝑢𝑗𝑘 > 0 and 𝑥3 < 𝑅𝑗 ≤ 𝑥4

(11)

where 𝑘 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛 and V𝑗, V𝑘 ∈ 𝑉𝐿.
The meanings of (11) are as follows.
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Figure 5: Influence of holder 4 on the networks when holder 4 sells the stocks issued by listed company 2.

If the listed company 𝑗 does not hold the stocks issued
by some other listed companies (𝑢𝑗𝑘 ≡ 0) or the assets of
loss are small (𝑅𝑗 > 𝑥4), the company 𝑗 will make no new
decision and the vertex V𝑗 keeps the same step as before in
the shareholding networks. The vertex 𝑗 will inherit the last
state, such as vertex 2 in Figure 6(a).

If 𝑥3 < R𝑗 ≤ 𝑥4 and the listed company 𝑗 holds
stocks issued by some other listed companies, the listed
company 𝑗will sell the stocks issued by company 𝑘 according
to the increase order of the assets which the company 𝑗
invested to other companies. In the shareholding networks,
the edge 𝑒𝑗𝑘 will be deleted and the influence of company 𝑗
on listed company 𝑘 when company 𝑗 sells the stocks issued
by listed company 𝑘, denoted by 𝐶2(V𝑗, V𝑘, 𝑢𝑗𝑘). For example
in Figure 1, when the Market Capitalization of company 2
decreases, it will sell the stocks issued by company 3 in order
to avoid critical funding shortages, as shown in Figure 6(b).

4. Characteristics of the Networks and
Parameters Selection for the SIR Model

4.1. Characteristics of the Shareholding Networks. TheMarket
Capitalization of Yearly End Date of the stock markets
is ¥3.28×1013 in 2007 and ¥1.22×1013 in 2008. It denotes
the Chinese Stock Markets have an obvious shrinkage

phenomenon because of the global financial crisis in 2008,
which had a great influence on the Chinese economy. For
the purpose of researching the robustness and vulnerability
of Chinese stock markets against extreme circumstances, we
will choose the data before and after the economic crisis to
analyze. The data in 2007 is used as the sample in normal
period; the data in 2009 is used as the sample of extreme
circumstances after the crisis. As an example to simulate the
crisis spreading in the networks, the data on December 31,
2007, is selected to establish the correlated networks between
the listed companies and themain holders.Thenetworks have
1534 listed companies, 13596 vertices, and 19326 edges.

First of all, we should judge the type of the networks.
Thus, we did the linear regression analysis between the
in-degree assets (or out-degree assets) and the cumulative
probability value of the in-degree assets (or out-degree assets)
of the vertices of the networks under double logarithmic
coordinates. If we use 𝛾 as the symbol for the slope coefficients
obtained by the linear regression analysis of the cumulative
distribution, the probability distribution will follow a power
law 𝑝(𝑘) ∼ 𝑘−(−𝛾+1) with the exponent −𝛾 + 1. Thus, we use
−𝛾+1 as the symbol for the scale-free index [13, 16, 17]. Table 2
is the coefficients of linear fit in log–log scale.

The correlated coefficients approach to -1 as shown in
Table 2, which indicates that all data points lie on a line
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Figure 6: Decision behavior of listed company 2 when its Market Capitalization decreases.

Table 2: Correlation coefficients and the coefficients of linear fit in log–log scale.

Year In-degree assets Out-degree assets
Correlation 𝛾in Constant Correlation 𝛾out Constant

2007 -0.9272 -1.3195 8.7319 -0.9655 -0.4200 2.7087
2008 -0.9283 -1.3255 8.6392 -0.9637 -0.4198 2.6787
2009 -0.9361 -1.2552 8.7380 -0.9580 -0.4214 2.7476

for which the cumulative probability value of the in-degree
assets (or out-degree assets) decreases as in-degree assets (or
out-degree assets) increases in log-log scale. Therefore, the
networks belong to the scale-free networks [16–18].

The in-degree assets of the vertices mainly reveal the
ability of the listed companies and funds attracting investors.
As shown in Table 2, the indices 𝛾in range from -1.2 to -
1.4; that is to say, the scale-free indices of in-degree assets
of the vertices of the networks are between 2.2 and 2.4. It
means that the in-hub vertices can only possess a small part
of proportion [16]; i.e., the networks have little super listed
companies. The in-hubs mainly represent some large listed
companies in Sector I (Finance, Insurance).

The out-degree assets mainly represent the investments
frommain holders to listed companies and funds. According
to Table 2, the indices 𝛾out range from -0.43 to -0.41, so
the scale-free indices of out-degree assets of the vertices
of the networks are between 1.41 and 1.43. Therefore, the
distribution of the out-degree assets of the vertices of the
networks are also similar to the distribution of the degree
of the vertices in sparse scale-free networks. As we know,
the mean value and variance of the cumulative distribution
function of the degree in sparse scale-free networks are
divergent. It means that there are relatively more out-hub
vertices in the networks, which mainly represent two kinds
of companies: (1) some companies in sector I (Finance,
Insurance), such as the state-owned commercial banks and
insurance companies and (2) some parent company owning
several listed companies. For example, the Aviation Industry

Corporation of China hasmore than 20 subsidiary companies
listing on the stock markets.

4.2. Parameters Selection for the SIR Model through Empirical
Research. In the RESSET Financial Research Database, the
number of stocks with complete information of Market
Capitalization of Yearly End Date is 1636 in 2007 and 1804
in 2009. The number of stocks with complete information of
Market Capitalization of Yearly End Date both in 2007 and
in 2009 is 1628.TheMarket Capitalization of Yearly End Date
of a certain listed company 𝑗 in 2009 divided by its Market
Capitalization of Yearly End Date in 2007 is denoted by 𝛿.
Then we get the scatter diagram of cumulative distribution
of 𝛿, as shown in Figure 7.

According to Figure 7, the index 𝛿 ranges from 0.239
to 79.598. Most of the points range from 0.4 to 2.4. The
point with maximum value of 79.598 represents Qinghai
Salt Lake Industry Group Company Limited (stock code:
000578). By the way, 𝛿 is equal to 79.589, which is not a
normal phenomenon, and the well-known case about salt
lake 4.4 billion Yuan equity is always in inquisition stage until
now.

OnMay 8, 2003, Shanghai Stock Exchange and Shenzhen
Stock Exchange started a warning mechanism for stocks that
is incurring risk of being removed. This is an extra treatment
of the Special Treatment Mechanism, and the original stock
name will be prefixed with ‘∗ST’.The daily price up and down
limit is also 5%. Furthermore, if the ‘∗ST’ stocks continue to
make a loss the next year, they will be temporarily delisted.
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Figure 7: Cumulative probability distribution of 𝛿.

Table 3: Fitting parameters of Market Capitalization of Yearly End Date.

Optimization Algorithm 0.05 ≤ 𝑓 < 0.5 0.5 ≤ 𝑓
Differential Evolution Levenberg-Marquardt Differential Evolution Levenberg-Marquardt

Mean square error 0.204586 0.204586 0.150582 0.150582
Root mean squared error 11.133538 11.133545 0.453501 0.453500
R square 1.000000 1.000000 1.000000 1.000000
𝑎 0.959815 0.959815 0.964046 0.964079
𝑏 -0.013473 -0.013474 -0.054734 -0.055387

Checking the original data, we find that 24 listed compa-
nies are prefixed with ‘∗ST’. 8 listed companies are delisted
from the stock markets (stock code: 000515, 000569, 420058,
600001, 600357, 600627, 600786, and 600840). The data of
Market Capitalization of Yearly End Date in 2009 of them
are not found in the RESSET database. We suppose that
the delisted companies are the worst operating companies
with highly descent speed of Market Capitalization of Yearly
End Date. Therefore, 𝑥3 in (9) is equal to 0.239. Suppose
the operating status of the 34 listed companies prefixed with
‘∗ST’ is worse than the other listed companies in the stock
markets; we can get the critical value 𝑥4 in (11), which will be
equal to 0.419.

If a holder only holds the stocks issued by one listed
company, the holding market value of the holder will become
0.419 times of that in the previous. Under this condition, the
best way to decrease the holder’s losses is selling the stocks.
Therefore, the critical value 𝑥2 in (7) will be equal to 0.419.

For 𝑥1 in (7), Martin Zweig has suggested holders should
sell the stocks when its price declines by 10%∼20% of Bid
Price. So we set 𝑥1 = 0.2 in this paper [19].

As mentioned above, we have proved that the probability
of the weighted degree of vertices, which represents the
Market Capitalization of stocks, followed the power-law.
Therefore, we suppose newly Market Capitalization 𝑀󸀠𝑗,
previous Market Capitalization 𝑀, and the proportion of
single transaction shares of a certain listed company (denoted
by 𝑓) have the following relationships.

lg𝑀󸀠 = 𝑎 × lg𝑀+ 𝑏 × 𝑓 (12)

where 𝑎, 𝑏 are the parameter.

As mentioned above, the data before and after the
Subprime Crisis are selected to analyze the crisis spreading
in the networks. Now, suppose the Market Capitalization of
Yearly End Date in 2007 is𝑀 and in 2009 is𝑀󸀠. The block
trade of stocks with proportion greater than 5% in RESSET
database is used as the sample data. The number of valid
sample data sets is 286. The number of sample data sets with
0.05 ≤ 𝑓 < 0.5 is 266, and the number of sample data sets
with 0.5 ≤ 𝑓 is 20. Two methods have been used to find out
𝑎, 𝑏. The results are listed in Table 3.

As shown in Table 3, the R square approaches to 1 even
retaining 6 decimal places. It denotes that the block trades of
stocks with proportion greater than 5% can induce the listed
companies’ Market Capitalization fluctuation. Meanwhile,
(12) just can reveal the changes.

According to the analysis shown in Table 3, we set the a =
0.959815, b = −0.013473 when 0.05 ≤ 𝑓 < 0.5, and a =
0.964046, b = −0.054734, when 0.5 ≤ 𝑓.

5. Numerical Simulation of Crisis Spreading

TheMATLAB program is used to simulate the crisis spread-
ing in the shareholding networks under the condition of the
networks meeting random failure or intentional attack. The
random failure refers to removing the vertices randomly. The
intentional attack refers that the vertices are removed from
big to small according to the degree of the vertices.

Thenumber of initial failure vertices ranges from0 to 500.
When the number of the initial failure vertices is equal to 500,
it includes 367 listed companies and 133 nonlisted holders
under the condition of the networks meeting intentional
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Figure 8: Relationships between the edges and the initial failure
vertices in the networks.
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Figure 9: Relationships between the total markets value and the
initial failure vertices in the networks.

attack. As for the analysis of crisis spreading under the
condition of the networks meeting random failure, we select
the six sample data, including 48, 56, 57, 51, 52, or 58 listed
companies, respectively.

After carefully analyzing, the relationships between the
edges and the initial failure vertices in the networks are
plotted in Figure 8. The relationships between the total
Market Capitalization and the initial failure vertices in the
networks are shown in Figure 9.

The random failure can reveal that a handful of listed
companies go bankrupt or nonlisted holders are delisted from
the stock market under normal circumstances. As shown in
Figures 8 and 9, we note that the crisis does not widely spread
in the stock markets under this condition. The networks as a
whole have good robustness to the random failures. Evenwith
500 initial failure vertices, the total Market Capitalization of
stock markets has declined a little.

The intentional attack can reveal the breakdown of a
handful of hub vertices which represents large-scale listed
companies and holding companies going bankrupt. Under
this condition, the crisis has widely spread in the stock
markets and produced quite a lot of damage. There is highly

descent speed of total Market Capitalization and the edges
of the networks (see Figures 8 and 9). The network has
changed obviously and collapsed at a tremendous speed
when the number of the initial failure vertices reaches 15.
It denotes that the networks have obvious vulnerability to
the intentional attacks. The breakdown of Fannie Mae and
Freddie Mac which caused the financial crisis in 2007 is
similar to intentional attack in the shareholding networks.

When networks meet random failure and intentional
attack, the number of the susceptible state, infected state,
and removed state of nonlisted shareholders is listed in
Figure 10. The number of the susceptible state, infected state,
and removed state of listed companies is listed in Figure 11.

Generally, both Figures 10(a) and 11(a) show that the
number of susceptible vertices representing nonlisted holders
and listed companies under the condition of the networks
meeting random failure ismore than that under the condition
of the networks meeting intentional attack, respectively. Both
Figures 10(c) and 11(c) show that the number of removed
vertices representing nonlisted holders and listed companies
under the condition of the networks meeting random failure
is less than that under the condition of the networks meeting
intentional attack, respectively. These phenomena coincide
with the phenomena revealed in Figures 8 and 9; i.e., the
networks have good robustness to the random failures and
the obviously vulnerability to the intentional attacks. Such
characters accompany with the existence of the highly linked
hub vertices in scale-free networks, because intentional attack
means removing the vertices beginning with the biggest hub
vertices and the robustness of the networks can be destroyed
easily under the intentional attacks. As mentioned in Ma e
Zhuang et al., 2011, and Section 4, the hub vertices mainly
represent the super-scale state-owned enterprises, commer-
cial banks, and insurance companies. The closed mutual
investment relationships among the hub vertices make them
group rich-club spontaneously. There is little linkage between
the members of rub-club and the other vertices. Thus, the
network shows obviously catastrophic phenomenon. It can
just explain why Figures 8 and 9 present a breakpoint.

As proved in Section 4, the networks belong to the scale-
free networks in which the linkages among vertices are differ-
ent. Most of the listed companies have not closely interacted
together directly. Thus, the number of listed companies at
infected state is small (see Figures 10(b) and 11(b)) either
the network meeting random failure or intentional attack.
As for the intentional attack on the network, it means that
the members of hub-club have been attacked. Under this
condition, the network will take on the phenomenon that
the same listed companies have been attacked repeatedly
because of the closely linkages among the members of hub-
club.Therefore, the number of the vertices at infected state is
relatively small.

The coordinate axes of Figures 10 and 11 are uniformed
by a unified way. Moreover, it is worthy to note that the Y-
axis scales (multiplied by 102 and 103, respectively) are ten
times different, respectively. Actually, more than 88% vertices
in the shareholding networks represent nonlisted holders.
Therefore, Figure 11 can reveal the overall changing trends of
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Figure 10: Crisis spreading when networks meet random failure and intentional attack (nonlisted shareholders).
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Figure 11: Crisis spreading when networks meet random failure and intentional attack (listed companies).

susceptible vertices, infected vertices, and removed vertices
of the networks.

When the number of initial failure vertices is less than
5, the number of susceptible (infected or removed) vertices
representing nonlisted holders and listed companies under
the condition of intentional attack is similar to that under
the condition of the networks meeting random failure,
respectively (see Figures 10 and 11); i.e., a small quan-
tity of hub vertices removing from the networks has not
decreased the scale of the networks obviously. Moreover,
the crisis has not widely spread in the networks when the
number of initial vertices is small. It is mainly because the
large-scale listed companies’ holders are also handing some

other listed companies’ stocks. They have good tolerance
to the failures in stock markets when we only consider
the capital chain between the listed companies and main
holders and neglect the rumor spreading in complex net-
works.

In addition, there is an interesting phenomenon emer-
gence that the fat-tailed degree distribution diverges as the
growth number of removed vertices when the networks
meet intentional attacks. The scale-free properties are not
preserved due to removing the hub vertices continually. Just
asMoore C. et al. [20] and Piccardi C. et al. [21] point that the
scale-free properties may not preserve in the long run if there
is disappearance or death of vertices.
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Table 4: Controllability of the shareholding networks under attacks or failures.

Number of initial failure vertices Intentional Attack Random Failure
𝑛𝐷 𝑛𝐷𝑠 𝑛𝐷𝑐 𝑛𝐷𝐶 𝑛𝐷 𝑛𝐷𝑠 𝑛𝐷𝑐 𝑛𝐷𝐶

0 0.8897 0.9969 0.0031 0.0241 0.8897 0.9969 0.0031 0.0241
50 0.8892 0.9969 0.0031 0.0242 0.8894 0.9969 0.0031 0.0240
100 0.8879 0.9970 0.0030 0.0231 0.8891 0.9969 0.0031 0.0245
150 0.8854 0.9969 0.0031 0.0232 0.8887 0.9969 0.0031 0.0243
200 0.8837 0.9967 0.0033 0.0245 0.8884 0.9968 0.0032 0.0245
250 0.8824 0.9964 0.0036 0.0260 0.8880 0.9968 0.0032 0.0245
300 0.8808 0.9966 0.0034 0.0246 0.8876 0.9968 0.0032 0.0245
350 0.8795 0.9964 0.0036 0.0254 0.8872 0.9968 0.0032 0.0248
400 0.8774 0.9963 0.0037 0.0256 0.8869 0.9968 0.0032 0.0247
450 0.8753 0.9962 0.0038 0.0258 0.8866 0.9968 0.0032 0.0244
500 0.8741 0.9961 0.0039 0.02668 0.8862 0.9967 0.0033 0.0247

6. Controllability of Crisis Spreading

Asmentioned above, random failures and intentional attacks
have striking difference. It has close similarities with dual
strategies of targeted vaccinations for controlling the spread
of infectious diseases [22, 23]. For the purpose of discussing
the difference of controllability of shareholding networks, we
have studied the controllability and controlling strategies of
the shareholding networks when the networks meet random
failures or intentional attacks on basis of structure controlla-
bility theory [8], which is extracted frommapping maximum
matching for networks and Kalman’s controllability rank
condition. The controllability of the networks under the
condition of intentional attacks and random failures is listed
in Table 4.

In Table 4, 𝑛𝐷 denotes the controllablility of the networks,
which is the ratio of the number of minimum number of
driver vertices (denoted by 𝑁𝐷) to the total number of the
vertices in the network. 𝑛𝐷𝑠 and 𝑛𝐷𝑐 are ratio of the number
of driver vertices representing nonlisted holders or listed
companies to 𝑁𝐷, respectively. 𝑛𝐷𝐶 is the number of driver
vertiecs representing the listed companies to the total number
of verties representing the listed companies.

As shown in Table 4, the proportion ofminimumnumber
of driver vertices 𝑛𝐷 is as high as 87%, including the vertices
representing nonlisted holders about 99%. Such a result
seems unreasonable, but we think and consider how things
happen in this way. We should note that this theory of
controllability pays more attention on controllability the
whole networks.Of course, to achieve such an effect, themore
driver vertices involve in it, the better results networks get.
More than 99% driver vertices belong to nonlisted holders
which means that controlling the whole stock markets relies
on some input signals which can act on whole stock markets
directly or can induce holders decision-making in an indirect
way. Maybe a politically good new or an appropriate exciting
economical policy canplay the key role togetherwith a proper
guide of the public opinion when themarkets meet failures or
attacks.

In addition, it is worthy to note that the proportion
of driver vertices representing listed companies is less than

0.4%, and it is also less than 3% of the total number of
the listed companies in the networks. So, a question worth
thinking deeply is how well it works when only controlling
the driver vertices representing listed companies.

To illustrate this problem, the concept of global efficiency
in complex networks is introduced here. It is an associated
concept with the average path length of the network in graph
theory. When the distance between two vertices is shorter,
the efficiency of transmitting information between them is
higher; that is, the efficiency of transmitting information
between two vertices is proportional to the reciprocal of
the distance between them. The average efficiency of all
vertices in the network can reflect the average efficiency
of information sent between vertices in the network. The
efficiency of the network (indicated by 𝜂𝐺) and the average
efficiency (indicated by 𝜂𝐶) of the listed company in the driver
vertices are given in Table 5.

However, under normal circumstances, controlling a
small part of driver vertices representing listed companies,
applying appropriate control strategies, and using its char-
acteristics of high efficiency of sending information, can
effectively control the stock market. Our research provides a
new reference to further exploration about the transmission
mechanismof the crisis based SIRmodel and further research
on the controllability of crisis spreading in financial markets.

As can be seen from Table 5, the global efficiency of the
network is significantly lower. However, it is worth noting
that 𝜂𝐶 is not only obviously high, but also gradually reduced
under intentional attacks. This phenomenon is not obvious
under random failures. In order to clearly illustrate this phe-
nomenon, the ratio of 𝜂𝐶 to 𝜂𝐺 is given in Table 5.This means
that intentional attacks obviously cause substantial damage to
the hub vertices in the network with listed companies as the
core. However, the damage caused by random attacks is not
obvious, and in the case of random attacks, the ratio between
𝜂𝐶 and 𝜂𝐺 is more than 1000 times. Combined with Table 4,
this clearly reveals that the control of 2%-3% driver vertices
representing listed companies, the application of appropriate
control strategies, and the use of its high efficiency of sending
information can effectively control the trends of stockmarket
to a certain degree in case of random failures.
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Table 5: Efficiency of the shareholding networks under attacks or failures.

Number of initial failure vertices Intentional Attack Random Failure
𝜂𝐺 𝜂𝐶 𝜂𝐶/𝜂𝐺 𝜂𝐺 𝜂𝐶 𝜂𝐶/𝜂𝐺

0 2.411E-04 0.2908 1206.1 2.411E-04 0.2908 1206.1
50 1.982E-04 0.1554 784.1 2.420E-04 0.2877 1189.0
100 1.902E-04 0.1427 750.0 2.432E-04 0.2864 1177.6
150 1.993E-04 0.1315 659.8 2.443E-04 0.2849 1166.0
200 2.044E-04 0.1249 611.3 2.459E-04 0.2827 1149.8
250 2.096E-04 0.1216 580.0 2.464E-04 0.2764 1121.6
300 2.134E-04 0.1007 471.9 2.476E-04 0.2720 1098.5
350 2.198E-04 0.0968 440.5 2.492E-04 0.2716 1089.5
400 2.293E-04 0.0932 406.4 2.502E-04 0.2693 1076.2
450 2.420E-04 0.0911 376.4 2.507E-04 0.2652 1057.5
500 2.465E-04 0.0794 322.1 2.514E-04 0.2622 1042.7

Just as shown in Table 5, the small part of driver vertices
representing listed companies, which mainly denote some
large-scale listed companies, has high efficiency of sending
information ability. Thus, the stock prices of many other
listed companies are highly influenced by the stock price
of large-scale listed companies. Meanwhile, as mentioned
in [13], the highly linked hub vertices mainly represent the
super-scale state-owned enterprises, commercial banks, and
insurance companies. These companies are indispensable
for our life. In addition, in our networks, the nonrational
decisions and some other existing nonlinear factors are
neglected.Thus, once the large-scale companies go bankrupt,
the rumor among the ordinary shareholders and some other
unknown factors will accelerate the spreading of the crisis.
The bubble in the stock markets will collapse easily. Then the
phenomenon of domino effect may appear. Correspondingly,
a financial crisis may take place that the US subprime
mortgage crisis in 2007 triggering the worldwide financial
crisis is just a good case in point.Therefore, when some large-
scale listed companies go bankrupt, the government must do
its best to avoid the rumor spreading in the stockmarkets and
prevent the catastrophe.

7. Conclusion

In this paper, themutual influences between listed companies
and their main holders because of the broken financing
chain are studied to reveal the crisis spreading in sharehold-
ing networks of listed companies and their main holders.
The crisis-spreading model of susceptible-infected-removed
(SIR) is established. The numerical computation method has
been successfully used to analyze the crisis spreading in
the shareholding networks and its controllability when the
networks meet random failures or intentional attacks. The
main conclusions are follows.

The crisis spreads at a rapid speed and the total Market
Capitalization has obviously decreased when the networks
meet intentional attack. It means that the intentional attack
on hub vertices produces quite a lot of damage. The overall
trends of crisis spreading in the networks can be viewed
through the changes of the number of vertices in susceptible

state, infected state, and removed state. The descent speed
of the number of susceptible vertices when networks meet
intentional attack is faster than that when networks meet
random failure. The rising speed of the number of infected
vertices (and removed vertices) when networks meet inten-
tional attack is faster than that when networks meet random
failure. Thus, the networks meeting intentional attack show
more obviously vulnerability than the networks meeting ran-
domattack. Itmainly attributes to the enterprises in the sector
of Finance and Insurance, and some super-scale companies.
The relationships among these enterprises and the other
large-scale listed companies or the holding companies are
closed. Therefore, intentional attack has huge damage on the
shareholding networks. At the same time, these companies
are indispensable for our life. Once these companies go
bankrupt, the rumor will accelerate the crisis spreading.
Then the phenomenon of domino effect may appear easily.
Correspondingly, an economic crisis takes place.

Finally, The network-based structural controllability the-
ory conducts controllability research on the network when it
is subjected to intentional attacks and random failures. The
research shows that if the network needs to be controlled
globally, the policy-oriented role and the public opinion
control strategy should be used in the crisis. Under normal
circumstances, controlling a small part of driver vertices
representing listed companies, applying appropriate control
strategies, and using its characteristics of high efficiency of
sending information can effectively control the stock market.
In this way, the government can avoid to get into the financial
whirlpool and speed a lot of funds on relieving the initial
failure listed companies.

8. Further Discussion

As mentioned above, more than 70% of the Market Capital-
ization of Chinese stock markets has vaporized during the
year of 2008. At the same period, the maximum falling range
of Hang Seng Index is 65% during the year of 2007 and 2008,
where the total Market Capitalization of A-shares issued
by some state-owned listed companies including 600019,
600028, 601088, 601857, 601628, 601318, 601600, 601988,
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601601, 601919, and 601111 has vaporized ten trillion CNY
since the end of 2007. Why did so serious vaporized phe-
nomenon of state-owned enterprises appear? Now, we need
to recall that the purpose of founding the Chinese mainland
stock markets is to solve the financing difficulties of state-
owned enterprises. The Market Capitalization of Chinese
mainland stockmarkets is 26 trillion CNYonDecember 2011,
while the Market Capitalization of state-owned enterprises
is 20.3 trillion CNY. Thus, the fluctuation trends of Chinese
mainland stock markets are under the influence of state-
owned enterprises deeply.

Hong Kong stock markets are developed stock markets
and they have a relatively better risk resistance capacity
than mainland stock markets because of highly opening
level and reasonable economic structure. Just as Justin Yifu
Lin (former Chief Economist and Senior Vice President of
the World Bank.) points that many problems in Chinese
financial system are caused by the problem of state-owned
enterprises, we also believed that the poor risk resistance
capacity of Chinese financial system and the current low
levels of Chinese mainland stock markets mainly attribute
to the numerous large-scale listed companies and large-scale
holding companies in Chinese stock markets.

Perhaps only when we solve the problems left over by
history about state-owned enterprises, can we improve the
risk resistance capacity of Chinese financial system. The
initial thought of this paper is to establish a crisis spreading
model to find out effective strategies for controlling the
widely spreading crises in stock markets and to come up
with some policy suggestions for the healthy development
of Chinese stock markets. It is a pity that the current model
established in this paper cannot simulate the crisis spreading
in Chinese stockmarkets accurately. Due to some variables of
the model needing further confirmation and many realistic
circumstances needing consideration, such as the investors’
sentiment and investment behavior, the public opinions, and
some other macroeconomic factors, this model is only a
simplified academic model.

However, it is worth celebrating that this method dis-
cussed in this paper gives us a possible way yet to explore the
crisis speedingmechanism and its controllability. In addition,
the SIR model proposed in this paper is also beneficial to
master the transmissionmechanism of crisis spreading on the
stock markets and decrease the loss of the economic entity.
Further research on the SIR model can help to reveal the
dissemination process and root cause of financial crisis.
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Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The
self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social
network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external
manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time
series of a number ofmicroposts.We offer a newmodel of amicroblogging social network as a nonlinear random dynamical system
with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the
key signs of complexity, making themodel a reasonable evolutionarymodel for amicroblogging social network.Theuse of adiabatic
approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative
noise with the power-law in one-dimensional phase space.

1. Introduction

Social networks have been studied longer than any other
type of networks. It is remarkable that one of the signs of
network complexity—a power law of nodes’ degree distri-
bution [1]—was first empirically formulated by D. Price in
1965 for social networks. In 1999, A. L. Barabasi, a physicist
from the University of Notre Dame (USA), and his graduate
student R. Albert determined [2, 3] that, for many networks,
instead of the expected Poisson probability distribution of
nodes’ degree (i.e., the number of connections a node has to
other nodes), the distribution they obtained approximately
followed a power law as all critical states do. In many real
networks, a small number of nodes have a large number of
connections, whereas a large number of nodes have just a few
connections. Such networks are called scale-free networks.
This name was not invented specifically for this type of
networks. It came from the theory of critical phenomena,
where fluctuations in critical states also follow a power law.
The theory of scale-free networks is considered to be one of
the scenarios complex systems follow when they come into a
critical state. As of late, such networks are more often called
complex networks.

Some other relevant works in this area are those of refs.
[4–8].

An extensive body of research on the modeling of the
structure and functioning of social networks is available
today. This research has two directions. The first direction
relates to the analysis of the social networks data (see one
of the latest reviews [9]), while the second concerns the
development of models of the structure, dynamics, and
evolution of social networks. The distinction between these
two directions is somewhat arbitrary, since in most cases
these directions overlap (see, e.g., [10, 11]).

Starting from the second half of the 20th century, the
ideas andmethods of physics have tended to infiltrate natural
sciences and traditional humanities. Methods of physical
modeling are often used in such areas of science as demo-
graphics, sociology, and linguistics. As a result, sociophysical
models of social networks, such as the Ising model [12–
15], Bose-Einstein condensate model [3, 16], Quantum walk
model [17], Ground state and community detection [18, 19],
among others, were developed.

Despite having a variety of sociophysical models,
the results and theories of nonlinear science, with some
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exclusions (see, e.g., [20, 21]), are not used to model the
evolution of social networks. First of all, we are talking
about the complexity and self-organized criticality theory
describing the mechanism of complexity [22–24]. Mech-
anisms of self-organized criticality in social knowledge
creation process are presented in the paper [25]. It is
noteworthy that the key sign of complexity of a system
regardless of its internal structure, i.e., one based solely on its
external characteristics, was formulated in the framework of
this theory. According to this theory, a system is considered
to be complex if it is able to generate unexpected and/or
extraordinary events (for instance, bursts of values in time
series). This motivated our research. The purpose of the
research is a nonlinear dynamical interpretation of the
complexity of a microblogging network and the development
of an appropriate network model that could explain its
complexity using the third paradigm of nonlinear science
called the complexity paradigm. Another motivation for the
research was the results presented in [26–31] where the time
series of a number of microposts are characterized by the
majority of key signs of the system complexity (a detailed
description of the key signs of the system complexity is
presented in Section 2).

This paper is organized as follows. Section 2 dealswith the
key signs of the system complexity according to the complex-
ity paradigm. Section 3 presents the results of the analysis of
an empiric time series of a number of microposts, including
the results of the calculation of the key signs of the complexity.
Section 4 presents amodel of amicroblogging social network
as a nonlinear deterministic dynamical system including its
capabilities and restrictions. Section 5 presents a generalized
model of a microblogging social network, modified by the
consideration of stochastic sources and a decrease in the
order parameter, as well as the results of an analysis in the
adiabatic approximation. Section 6 contains the main results
of the research and a discussion.

2. Nonlinear Dynamical
Interpretation of Complexity

The development of any branch of science leads to the for-
mulation of paradigms, namely, initial conceptual schemes,
models of problem statements, and solutions of the problems.
At this time, three paradigms have been developed in non-
linear science. The first paradigm is that of self-organization.
The second is the paradigm of deterministic chaos. The most
recent development of nonlinear science is closely linked to
the third paradigm, which could be defined as a paradigm
of complexity that has the theory of self-organized criticality
as its foundation. The paradigm of complexity lies at the
junction of the first two paradigms. If the first two paradigms
deal with order and chaos, respectively, the third is usually
described as “life on the edge of chaos” [32].

Since it is impossible to rigorously define complexity, our
research is limited to consideration of the key signs of system
complexity defined in the publications by Per Bak and co-
authors [22–24], and their application to the interpretation
of the complexity ofmicroblogging social networks. As stated
in the introduction, first of all, we consider the complexity of

external system manifestations regardless of internal struc-
ture. For the purposes of this research, we define “external
systemmanifestations” as signals (the time series of a number
of microposts) of a microblogging social network generated
as a result of nontrivial interactions within a very large pool
of users.

One of the key signs of complexity is its inclination to
the occurrence of catastrophic events—either unexpected
(i.e., nonpredictable) or extraordinary (i.e., prominent among
similar events), or both. Importantly, in either case we can
conclude that the system that has generated such an event is
complex. From simple systems, we could expect predictability
and similarities in their behavior. As for the signals of a
microblogging system, such events qualitatively correspond
to considerable bursts seen on a plot of value increments
of the time series of a number of microposts. One of the
quantitative criteria of the existence of catastrophic events
is the existence of power low of the probability density
function (PDF) for the values of the time series. It is worth
mentioning that, in the majority of cases, the occurrence of
such events on the network signal level corresponds to the
qualitative restructuring of the system, i.e., a transition from
apolycentric state to amonocentric state, and vice versa (such
transitions are thoroughly described in [33]).

Another key sign of complexity is scale invariance,
meaning that events or objects lack their own characteristic
dimensions, durations, energies, etc. At the level of external
manifestations of a microblogging network, scale invariance
means that the time series of a number of microposts
are fractal or multifractal time series (such time series are
described in detail in [34]).

In a general case, a power low for PDF is a statistical
expression of scale invariance of the time series:

𝑝 (𝑥) ∝ 𝑥−𝛼, (1)

where usually 𝛼 ∈ (1, 2]. PDF (1) belongs to the class of
fat-tailed PDFs. For statistical description of catastrophic
events, PDF (1) is a rule with almost no exceptions. PDF (1)
differs from compact distributions (for example, Gaussian
distribution) because the events corresponding to the tail of
the distribution are not rare enough to be neglected. PDF (1)
reflects a strong interdependence of the events. For example,
such distributionmay be caused by an avalanche-like increase
of the number of microposts in the network as a result of a
“chain reaction” caused by reposting.

Another manifestation of the scale invariance of the time
series is the existence of the power spectral density (PSD)
specific for flicker noise:

𝑆 (𝑓) ∝ 𝑓−𝛽, (2)

where 𝛽 ≅ 1. The existence of PSD (2) means that
a considerable part of the energy is linked to very slow
processes. For amicroblogging network, the existence of PSD
(2) means that it is impossible to predict the behavior of the
time series of a number of microposts without considering
global information exchange processes.

The aforementioned features of PDF and PSD are not
the only criteria of scale invariance. Besides PDF and PSD,
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we used a fractal dimension and a Hurst exponent along
with other quantitative measures and criteria. It is important
to stress that the scale invariance and an inclination to
catastrophes are typical only for systems that are far from
equilibrium. Therefore, a nonequilibrium state of the system
and, therefore, a nonlinearity are the necessary conditions for
the complexity of the system.

Lastly, the third key sign that characterizes complex
systems is their integrity. The integral properties of a system
usually are statistically described by power-law space and
time correlations. These correlations are known as distant
space and time correlations. The existence of distant time
correlations or long memory in time series is characterized
by the autocorrelation function (ACF) in the following form
[34]:

𝐴𝐶𝐹𝜏 ∝ 𝜏−𝛾, (3)

where 𝛾 ∈ (0.1). The existence of the relationship (3) implies
the absence of characteristic times at which the information
about the previous events could be lost. A catastrophic
behavior and integrity are connected in the following way: for
the catastrophic behavior, part of the system should be able
to function in coordination. For a microblogging network,
an avalanche-like increase of the number of microposts is
possible when a user and his followers, followers of these
followers, etc., are working in coordination. Integrity is
possible in complex systems only due to the processes of self-
organization. Here we talk about coarse scale properties of
the system, since minor changes in system parameters do not
affect its integrity.

Therefore, a microblogging network is a complex system
when all the key signs of complexity listed above are satisfied.
This statement forms the foundation of our research and is
key to the construction of a model of microblogging network
evolution.

3. Analysis of Empirical Data from Twitter

Empirical data used for our research is a sample of more
than 3 million microposts (tweets, retweets, and links) about
the first US presidential debates of 2016.The sample includes
microposts posted by more than 1 million users from 13:45
on September 26, 2016, to 11:00 on September 27, 2016, with
1-second increments.

Figure 1 shows the total number of microposts vs. time
(Twitter time series, 𝑀𝑃𝑡). It is easy to see that 𝑀𝑃𝑡 has
extraordinary events and unexpected events (bursts).

To estimate the correlation dimension (𝐷𝐶) and embed-
ding dimension (𝑚), we used the Grassberger–Procaccia
algorithm [35]. We obtained 𝐷𝐶 = 3.032 for𝑚 ≤ 6.

Hence, the process leading to the 𝑀𝑃𝑡 series is not
random; it depends on a limited number of key parameters
[36]. The 𝑀𝑃𝑡 series is not stochastic; it is chaotic. For
instance, for a stochastic series corresponding to Gaussian
noise, 𝐷𝐶 = 9.304 for 𝑚 ≤ 13, and if the series corresponds
to generalized Brownian, then noise𝐷𝐶 = 8.165 for𝑚 ≤ 9.

Using the R/S analysis, we obtained the Hurst exponent
(𝐻). To calculate the fractal dimension of a time series (𝐷𝐹)
we used the algorithm presented in [37]. We obtained the
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following results: 𝐻 = 0.801, 𝐷𝐹 = 1.199. Therefore,𝑀𝑃𝑡 is
a fractal time series (the fractal dimension is not an integer
and exceeds the topological dimension of the time series).
Moreover, 𝑀𝑃𝑡 is persistent; i.e. the time series is trend-
resistant (0.5 < 𝐻 < 1). Such a time series has a long memory
and is inclined to follow trends [38].

Figure 2 shows PDF for the increments (returns) of𝑀𝑃𝑡
time series and PDF for a normal distribution.

Empirical probabilities lie outside the normal PDF in the
intervals (−∞,−3𝜎] and [3𝜎, +∞). This means that heavy
tails exist. D’Agostino’s K-squared test [39] also confirms the
possibility to reject the null hypothesis about the normality
of the distribution at the significance level of 0.01 when the
statistics 𝐾2 = 6419.89. Another proof that heavy tails exist
is presented by the fact that the distribution follows a power
law of probability distribution. Figure 3 shows PDF and the
complimentary cumulative distribution function (CCDF).
Both functions are well approximated by linear functions.

Let us determine the type of noise (parameter 𝛽 in
PSD 𝑆(𝑓) = 1/𝑓𝛽) for 𝑀𝑃𝑡. To calculate 𝛽, we used the
detrended fluctuation analysis method (DFA) [40]. After the
calculations, we obtained the scaling exponent 𝛼 = 1.13 and
the PSD parameter 𝛽 = 2𝛼 − 1 = 1.26. The 𝛽 value obtained
corresponds rather to a flicker noise (𝛽 = 1) than to any other
type of noise.Thevalue𝛽 = 1.26 obtained by theDFAmethod
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coincides with the value obtained via the approximation of
the time series PSD by a linear function.The PSD obtained by
applying fast Fourier transform to𝑀𝑃𝑡 is shown in Figure 4
on a log-log scale. A linear fit yields 𝛽 = 1.29.

The autocorrelation function (𝐴𝐶𝐹𝜏) for an 𝑀𝑃𝑡 time
series is described by a decreasing power function (3) with the
exponent 𝛾 = 0.02. Hence, this function has long memory.

Figure 5 presents 𝐴𝐶𝐹𝜏 and its linear approximation on a
log-log scale. A linear fit gives 𝛾 = 0.02.
4. Microblogging Social Network as a
Nonlinear Deterministic Dynamical System

4.1. Main Assumptions for the Model. A social network is a
macroscopic system.The number of users for such a system is
N ≫ 1.This assumption is justified for Twitter, since, accord-
ing to the existing estimations, N ∼108. In the proposed
model, out of all possible degrees of freedom, we choose
and consider just a few macroscopic degrees of freedom
(phase or dynamic variables corresponding to hydrodynamic
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Figure 5: Autocorrelation function for empirical time series𝑀𝑃𝑡.

modes in physics). Such a reduction can be justified by
the synergetic subordination principle. This principle states
that, during the evolution, the hydrodynamicmodes suppress
the behavior of microscopic degrees of freedom and fully
determine the system’s self-organization. As a result, the
cooperative behavior of a system is determined by several
hydrodynamic variables that represent the amplitudes of
hydrodynamic modes. This way we do not need an infinite
number of microscopic degrees of freedom and there is
no need to thoroughly study the microscopic interactions
between the users of a social network.

A social network is modeled as a point autonomous
dynamical system. This model was chosen because it is
possible to compare the results with empirical data provided
by the Twitter time series. Each user of a social network
can be in one of the two possible states: either passive (|𝑝⟩-
state) or active (|𝑎⟩-state). A Twitter user in |𝑎⟩-state can send
microposts to other network users. In this state, a network
user has enough information to send microposts. If a user is
in |𝑝⟩-state (the user does not have enough information), he
or she cannot send microposts.

A microblogging social network is an open nonequi-
librium system. A social network is capable of informa-
tion exchange with the environment. The incoming flow of
external (for the system) information comes into the system
from different sources, for example, from other mass media.
This flow feeds the network with information and creates an
inverse population of states of network users: 𝑁|𝑎⟩ ≫ 𝑁|𝑝⟩,
where 𝑁|𝑎⟩ is the number of network users in |𝑎⟩-state, and𝑁|𝑝⟩ is the number of network users in |𝑝⟩-state.

The distribution of Twitter users can be represented with
good accuracy by a Boltzmann distribution:

𝑁|𝑎⟩ = 𝑁|𝑝⟩ exp[−(𝐼|𝑎⟩ − 𝐼|𝑝⟩)𝜃 ] , (4)

where 𝐼|𝑎⟩ is the amount of information the users in |𝑎⟩-
state possess, 𝐼|𝑝⟩ is the amount of information the users
in |𝑝⟩-state possess, and 𝜃 is a parameter that describes
the average intensity of stochastic interactions between the
network users. A simple analysis (4) allows us to define two
macroscopic network states: a steady state and a nonequilib-
rium state. If 𝐼|𝑎⟩ − 𝐼|𝑝⟩ ≫ 𝜃, then 𝑁|𝑎⟩ ≪ 𝑁|𝑝⟩. In this case
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the network is in a steady state. If 𝐼|𝑎⟩ − 𝐼|𝑝⟩ ≫ 𝜃, then𝑁|𝑎⟩ ≫𝑁|𝑝⟩. In this case the network is in a nonequilibrium state.
Since a social network is constantly fed with information, it
is constantly in a nonequilibrium state, creating an avalanche
of microposts. Because of the constant feed of information, a
steady state can almost never be reached. It is very important
that the existence of chaotic states is a fundamental property
of open nonequilibrium systems.

4.2. Phase Variables and Relationships between Them. Let us
define the phase variables of a dynamical system. These vari-
ableswill be used tomodel Twitter as an opennonequilibrium
system. These variables are as follows: 𝜂𝑡 ≡ 𝑀𝑃𝑡 − 𝑀𝑃0
is the deviation of the number of microposts (𝑀𝑃𝑡) from
the corresponding equilibrium value (𝑀𝑃0 is the number of
microposts in the steady state); ℎ𝑡 ≡ 𝐼𝑡 − 𝐼0 is the deviation
of aggregated intrasystem information (𝐼𝑡) the network users
possess from the corresponding equilibrium value (𝐼0 is
the aggregated intrasystem information the network users
possesswhenTwitter is in steady state); 𝑆𝑡 ≡ 𝑁|𝑎⟩𝑡−𝑁|𝑝⟩𝑡 is the
instantaneous difference at the moment of time 𝑡 between the
numbers of strategically oriented social network users (users
following a particular strategy) in |𝑎⟩-and |𝑝⟩- states. If N
is the difference between the total number of users in |𝑎⟩-
and |𝑝⟩- states, then N − 𝑆𝑡 users act randomly (randomly
oriented users).

According to [41], business users and spam users can be
considered as strategically oriented users.

Business users follow marketing and business agendas
on Twitter. The profile description strongly depicts their
motive, and a similar behavior can be observed in their
tweeting behavior. Spammers mostly postmalicious tweets at
high rates. Automated computer programs (bots) mostly run
behind a spam profile and randomly follow users, expecting
a few users to follow back.

Personal users and professional users can be considered
randomly oriented users. Personal users are casual home
users who create their Twitter profile for fun, learning, to
get news, etc. These users neither strongly advocate any type
of business or product, nor have profiles affiliated with any
organization. Generally, they have a personal profile and
show a low to mild behavior in their social interaction.
Professional users are home users with professional intent on
Twitter. They share useful information about specific topics
and involve in healthy discussion related to their area of
interest and expertise.

Let us determine relationships between the dynamic
variables and their rates of change.

The rate of deviation of the number of microposts is
determined by the relaxation of a social network into a
steady state (−𝜂𝑡) and the change in deviation of aggregated
intrasystem information from the equilibrium value (+𝑎𝜂ℎ𝑡):

𝜏𝜂 ̇𝜂𝑡 = −𝜂𝑡 + 𝑎𝜂ℎ𝑡. (5)

The term −𝜂𝑡 in Eq. (5) is due to the relaxation of the
social network as a nonequilibrium system. According to Le
Chatelier's principle, when a system deviates from the steady
state, this generates “forces” that try to restore the systemback

to the steady state. As follows from Eq. (5), without the term𝑎𝜂ℎ𝑡 the equation takes the following form:

̇𝜂𝑡 = −𝜂𝑡𝜏𝜂 . (6)

The solution to Eq. (6) is given by the function 𝜂𝑡 =𝐴exp(−𝑡/𝜏𝜂). Hence,𝑀𝑃𝑡 󳨀→ 𝑀𝑃0 when 𝑡 󳨀→ ∞ (the social
network tends to its steady state). In Eq. (6), 𝜏𝜂 is the time of
relaxation to the steady state.

The term 𝑎𝜂ℎ𝑡 in Eq. (5) can be easily explained: as the
deviation of aggregated intrasystem information increases,
the rate of the deviation of the number of microposts
increases as well.

The rate of the deviation of the aggregated intrasystem
information from the equilibrium value is determined by the
relaxation of a social network towards a steady state (−ℎ𝑡) and
the product +𝑎ℎ𝜂𝑡𝑆𝑡:

𝜏ℎℎ̇𝑡 = −ℎ𝑡 + 𝑎ℎ𝜂𝑡𝑆𝑡. (7)

The term −ℎ𝑡 in Eq. (7) is also explained by Le Chatelier’s
principle, as in Eq. (6). The term +𝑎ℎ𝜂𝑡𝑆𝑡 appears because the
amount of information each user of a social network acquires
from a stream of microposts is proportional to the deviation
of the number of microposts and depends on the state of the
user in the social network. In other words, the average contri-
bution to the deviation of aggregated intrasystem information
is proportional to the product of the deviation of the number
of microposts and the difference between the numbers of
users in |𝑢⟩- and |𝑙⟩- states.

Finally, the third equation describes the change in inver-
sion of population of strategically oriented users and can be
written as follows:

𝜏𝑆 ̇𝑆𝑡 = (𝑆0 − 𝑆𝑡) − 𝑎𝑆𝜂𝑡ℎ𝑡, (8)

where 𝜏𝑆 is the corresponding relaxation time, and 𝑆0 is
the initial number of strategically oriented users (this value
reflects the intensity of information feeding into the social
network). In other words, 𝑆0 is the difference between the
numbers of strategically oriented users of a social network
which are in |𝑎⟩- and |𝑝⟩-states at the time 𝑡 = 0. The term−𝑎𝑆𝜂𝑡ℎ𝑡 reflects the effective power that a stream of microp-
osts applies to create aggregated intrasystem information in a
social network. This power can be positive or negative.

Thus, the evolution of amicroblogging social network can
be described by the well-known Lorenz system of equations:

𝜏𝜂 ̇𝜂𝑡 = −𝜂𝑡 + 𝑎𝜂ℎ𝑡
𝜏ℎℎ̇𝑡 = −ℎ𝑡 + 𝑎ℎ𝜂𝑡𝑆𝑡
𝜏𝑆 ̇𝑆𝑡 = (𝑆0 − 𝑆𝑡) − 𝑎𝑆𝜂𝑡ℎ𝑡.

(9)

4.3. Synergetic Interpretation of a Nonlinear Dynamical Sys-
tem. The system of self-consistent equations (9) is a well-
known method to describe a self-organizing system. The
Lorenz synergetic model was first developed as a simplifi-
cation of hydrodynamic equations describing the Rayleigh-
Bénard heat convection in the atmosphere; it is now a
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classical model of chaotic dynamics. Further research on the
Lorenz system presented in a series of publications proved
that the system provides an appropriate kinetic picture of
the cooperative behavior of particles in any macroscopic
dynamical system where the actualization of potential order
is possible. Processes in such self-organizing complex systems
in nonequilibrium state lead to the selection of a small
number of parameters from the complete set of variables
that describe the system; all other degrees of freedom adjust
to correspond to these selected parameters. Following the
terminology used in the synergy theory, these parameters are
the order parameter (𝜂𝑡), conjugated field (ℎ𝑡), and control
parameter (𝑆𝑡). According to the Ruelle-Takens theorem,
we can observe a nontrivial self-organization with strange
attractors if the number of selected degrees of freedom is
three or more.

In the system of equations (9) 𝑎𝜂 is a coefficient, and
positive constants 𝑎ℎ, 𝑎𝑆 are measures of feedback in a
social network. Functions 𝜂𝑡/𝜏𝜂, ℎ𝑡/𝜏ℎ, (𝑆0 − 𝑆𝑡)/𝜏𝑆 describe
the autonomous relaxation of the deviation of the number
of microposts, deviations of aggregated information, and
inversion of population of strategically oriented users of a
social network to the stationary values 𝜂𝑡 = 0, ℎ𝑡 = 0, 𝑆𝑡 = 𝑆0
with relaxation times 𝜏𝜂, 𝜏ℎ, 𝜏𝑆.

Eq. (10) takes into account that, in the autonomous
regime, the change in the aforementioned parameters of
a social network is dissipative. In addition, Le Chatelier’s
principle is very important: since the growth of the control
parameter 𝑆𝑡 is the reason for self-organization, the values 𝜂𝑡
and ℎ𝑡 must vary so as to prevent the growth of 𝑆𝑡. Formally,
this fact could be explained as the existence of a feedback
between the order parameter 𝜂𝑡 and the conjugated field ℎ𝑡.
Lastly, a positive feedback between the order parameter 𝜂𝑡
and the control parameter 𝑆𝑡 leading to the growth of the
conjugated field ℎ𝑡 is very important, since this feedback is
the reason for self-organization.

4.4. Capabilities and Restrictions of a Deterministic Model for
the Interpretation of a Social Network’s Complexity. First of all,
we have to note that Eq. (9) was first obtained by Edward
Lorenz in 1963 as a result of some simplifications of the
problem of a liquid layer heated from below. In this problem
Eq. (9) is obtained when the flow velocity and temperature
of the initial hydrodynamic system are presented as two-
dimensional truncated Fourier series and the Boussinesq
approximation is used. For the problem of convection in
a layer, the Lorenz equations serve as a rough, not very
accurate approximation. It is only adequate in the region
of regular modes where uniformly rotating convection cells
are observed. The chaotic regime typical of Eq. (9) does
not describe the turbulent convection. However, the Lorenz
equations became a suitable model for describing systems
and processes of various natures: convection in a closed loop,
single-mode laser, water wheel rotation, financial markets,
transportation flows, dissipative oscillator with nonlinear
excitation, and some others.

How reliable is the model (9) for the description of
the evolution of a microblogging social network? We will
consider the model “reliable” if there is a good correlation

between theoretically predicted and empirically observed key
signs of complexity of the system.The results of the compari-
son of key signs of complexity for the theory-based deviations
of the number of microposts 𝜂𝑡 and the corresponding
empirical data are presented below.

As shown earlier (see Eq. (4)), a steady state of the
network is almost impossible to achieve due to a constant
information feed. Theoretically, a dynamical system (9) has
an asymptotically stable zero stationary point as a node for𝑆0 = 0. In this case, 𝑀𝑃𝑡 ≈ 𝑀𝑃0, 𝐼𝑡 ≈ 𝐼0 and 𝑁|𝑎⟩𝑡 ≈ 𝑁|𝑝⟩𝑡
as 𝑡 󳨀→ ∞. However, in practice, a microblogging network
as an open nonequilibrium system always has a non-zero
difference between the numbers of strategically oriented
users that are in |𝑎⟩-state and in |𝑝⟩-state at the time 𝑡 = 0.
Therefore, despite a theoretical feasibility of the steady state
for a social network, this state cannot be achieved in practice.
When the difference between the numbers of strategically
oriented users that are in |𝑎⟩-state and in |𝑝⟩-state at the
time 𝑡 = 0 reaches some critical value 𝑆0𝑐, Eq. (9) enters a
chaotic regime, and a strange attractor appears. A transitional
state that corresponds to 𝑆0 ∈ (1, 𝑆0𝑐) cannot be realized in
practice.

We will consider 𝑀𝑃0 as constant for a long enough
period of time and compare differentmeasures for theoretical
(𝜂𝑡, the solution of system (9) in chaotic regime) and empir-
ical data 𝑀𝑃𝑡. The model of a social network presented in
the form (9) explains the fractal and chaotic nature of the
observed 𝑀𝑃𝑡: 𝐷𝐶 = 2.067 and 𝐷𝐹 = 1.504. However,
the model (9) cannot explain the observed key signs of
complexity of a social network. Theoretical𝑀𝑃𝑡 constitutes a
time series without memory (𝐴𝐶𝐹𝜏 exponentially decreases);
PSD is constant (white noise, 𝛽 = 0); PDF is multi-modal
with “truncated tails” (see Figure 6).

Compactness and multi-modality of the distribution are
determined by the existence of three stationary points of the
dynamical system (9).

Thus, the Lorenz system (9) is not a reliable model for
the description of the evolution of a microblogging social
network as a complex system.

5. Microblogging Social Network as a
Nonlinear Random Dynamical System

As shown earlier, the nonlinear dynamic model (9) explains
the fractality and chaotic nature of empirical 𝑀𝑃𝑡 as well as
the dissipative nature of the system. On the other hand, Eq.
(9) cannot explain someother phenomena found in empirical
data, and first of all, the key signs of complexity of a social
network: a power law of PDF, 1/𝑓-noise, and long memory.
Let us consider different ways of improving (generalizing) Eq.
(9) in order to adequately describe a microblogging social
network.

Since the correlation dimension and embedding dimen-
sion of the empirical time series (𝐷𝐶 = 3.032, 𝑚 ≤ 6)
exceed the corresponding theoretical values (𝐷𝐶 = 2.067,𝑚 ≤ 4), one of the ways to improve Eq. (9) is to increase
the number of phase variables of the dynamic system.
Another approach to improving Eq. (9) is to consider the
self-consistent behavior of the order parameter, conjugated
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Figure 6: Histogram for the time series𝑀𝑃𝑡.

field, and control parameter taking into account the noise
for each of those parameters. Different generalizations of Eq.
(9) have been proposed and studied by Alexander Olemsky
and collaborators [42–44], in particular, in the context of its
applications to the study of self-organization of continuum,
evolution of financial markets and economical structure of
society, cooperative behavior of active particles, and self-
organized criticality.

Taking into account stochastic terms and the fractionality
of the order parameter, Eq. (9) takes the following form:

𝜏𝜂 ̇𝜂𝑡 = −𝜂𝛼𝑡 + 𝑎𝜂ℎ𝑡 + √𝐼𝜂𝜉𝑡
𝜏ℎℎ̇𝑡 = −ℎ𝑡 + 𝑎ℎ𝜂𝛼𝑡 𝑆𝑡 + √𝐼ℎ𝜉𝑡
𝜏𝑆 ̇𝑆𝑡 = (𝑆0 − 𝑆𝑡) − 𝑎𝑆𝜂𝛼𝑡 ℎ𝑡 + √𝐼𝑆𝜉𝑡.

(10)

In Eq. (10), 𝐼𝑖 are noise intensities for each phase variable; 𝜉𝑡
is white noise, where ⟨𝜉𝑡⟩ = 0, ⟨𝜉𝑡𝜉𝑡󸀠⟩ = 𝛿(𝑡 − 𝑡󸀠); 𝛼 ∈ (0, 1].
The random dynamic system (RDS) (10) is a generalization
of the deterministic dynamic system (9) where stochastic
sources are added, the feedback is weakened, and the order
parameter is relaxed.The replacement of the order parameter𝜂𝑡 by a smaller value 𝜂𝛼𝑡 (𝛼 ≤ 1) means that the process of
ordering influences the self-consistent behavior of the system
to a lesser extent than it does in the ideal case of 𝛼 = 1.

For the convenience of the analysis of Eq. (10) we will
transform it into a dimensionless form.Then time 𝑡, deviation
of the number of microposts (𝜂𝑡), deviation of the aggregated
intrasystem information (ℎ𝑡), the difference between the
numbers of strategically oriented users in different states (𝑆𝑡),
and corresponding noise intensities (𝐼𝑖) will be scaled as
follows:

𝑡𝑐 ≡ 𝜏𝜂 (𝑎𝜂𝑎ℎ)(𝛼−1)/(2𝛼) ,
ℎ𝑐 ≡ (𝑎2𝜂𝑎ℎ𝑎𝑆)−1/2 ,
𝜂𝑐 ≡ (𝑎ℎ𝑎𝑆)−1/(2𝛼) ,
𝑆𝑐 ≡ (𝑎𝜂𝑎ℎ)−1/2 ,

𝐼𝑐𝜂 ≡ (𝑎ℎ𝑎𝑆)−1/𝛼 ,
𝐼𝑐ℎ ≡ (𝑎2𝜂𝑎ℎ𝑎𝑆)−1 ,
𝐼𝑐𝑆 ≡ (𝑎𝜂𝑎ℎ)−1/2 .

(11)

Now Eq. (10) can be written down as follows:

̇𝜂 = −𝜂𝛼 + ℎ + √𝐼𝜂𝜉
𝜏ℎ𝑡𝑐 ℎ̇ = −ℎ + 𝜂

𝛼𝑆 + √𝐼ℎ𝜉
𝜏𝑆𝑡𝑐 ̇𝑆 = (𝑆0 − 𝑆) − 𝜂𝛼ℎ + √𝐼𝑆𝜉.

(12)

Let us analyze RDS (12) in adiabatic approximation when the
characteristic relaxation time of the number of microposts in
a network considerably exceeds the corresponding relaxation
times of aggregated intrasystem information and the number
of strategically oriented users: 𝜏𝜂 ≫ 𝜏ℎ, 𝜏𝑆. This means that
aggregated intrasystem information ℎ ≈ ℎ(𝜂) and the number
of strategically oriented users 𝑆 ≈ 𝑆(𝜂) follow the variation in
the deviation of the number of microposts (𝜂). When 𝜏𝜂 ≫𝜏ℎ, 𝜏𝑆, the subordination principle allows us to set (𝜏ℎ/𝑡𝑐)ℎ̇ =(𝜏𝑆/𝑡𝑐) ̇𝑆 = 0 in Eq. (12), i.e., to disregard the fluctuations inℎ ≈ ℎ(𝜂) and 𝑆 ≈ 𝑆(𝜂).

For a microblogging social network functioning as an
open nonequilibrium system, the adiabatic approximation
means that when the external information feed tends to zero,
the stream of microposts slowly decreases and at the same
time the aggregated intrasystem information and the number
of strategically oriented users in active state decrease as well.

An adiabatic approximation is a necessary condition
for the transformation of the three-dimensional RDS with
additive noise (12) into a one-dimensional RDS with multi-
plicative noise of the following form:

𝜏𝜂 ̇𝜂 = 𝑓 (𝜂) + √𝐼 (𝜂)𝜉. (13)

The terms of Eq. (13) corresponding to the drift and diffusion
(intensity of the chaotic source) have the following form:

𝑓 (𝜂) ≡ −𝜂𝛼 + 𝑆0𝜂𝛼 (1 + 𝜂2𝛼) , (14)

𝐼 (𝜂) ≡ 𝐼𝜂 + (𝐼ℎ + 𝐼𝑆𝜂2𝛼) (1 + 𝜂2𝛼)2 . (15)

The Langevin equation (13) has an infinite set of random
solutions 𝜂.Their probability distribution (𝑝(𝜂, 𝑡)) is given by
the Fokker-Planck equation:

𝜕𝑡𝑝 (𝜂, 𝑡) = 𝜕𝜂 [−𝑓 (𝜂) 𝑝 (𝜂, 𝑡) + 𝜕𝜂 (𝐼 (𝜂) 𝑝 (𝜂, 𝑡))] . (16)

In the stationary case (𝜕𝑡𝑝(𝜂, 𝑡) = 0) the distribution 𝑝(𝜂, 𝑡) is
given by the following relationship:

𝑝 (𝜂) ∝ 𝐼−1 (𝜂) exp [∫ 𝑓 (𝜂)
𝐼 (𝜂) 𝑑𝜂] . (17)
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As a result, the stationary probability distribution density
of the deviation of the number of microposts from the
corresponding equilibrium value has the following form:

𝑝 (𝜂) = 𝑍−1 (1 + 𝜂2𝛼)−2 exp[
[
∫ (1 + 𝜂2𝛼)−2

𝜂𝛼 𝑑𝜂]
]
, (18)

where 𝑍 is a normalization constant.
Before we draw any conclusion about distribution (18),

let us direct our attention to one significant fact that distin-
guishes theory from practice. Distributions of real systems
and processes regardless of their nature cannot have an
infinite expected value or variance. Therefore, power-law
PDFs like 𝑝(𝑥) ∝ 𝑥−2𝛼 (2𝛼 is chosen for the purposes of
analysis of expression (18)) are approximate and not valid
for large 𝑥. The exponential decrease of PDF corresponds
to the intermediate asymptotics, and in practice instead of
heavy tails we should have semi-heavy tails (see distribution
in Figure 2):

𝑝 (𝜂) ∝ 𝜂−2𝛼P( 𝜂𝜂𝑐) , (19)

where the scaling functionP(𝜂/𝜂c ) is approximately constant
at 𝜂 ≅ 𝜂𝑐 and quickly decreases when 𝜂 󳨀→ ∞. Here the
“heaviness of the tail” is shifted toward the intermediate range
of 𝜂 values. Thus, the dimensionless deviation of the number
of microposts 𝜂 scaled for 𝜂𝑐 serves as a scaling variable 𝜂/𝜂𝑐
in (19). Since the integral in Eq. (16) is regular at 𝜂 󳨀→ 0, the
PDF obtained has a power-law form.

The power law for PDF of the deviation of the number
of microposts 𝜂𝑡, which is equivalent to𝑀𝑃𝑡 for large times,
was obtained and justified analytically. However, we could
not obtain analytical expressions for PSD, 𝐴𝐶𝐹𝜏, or the
correlation and fractal dimensions. Therefore, we present
below the results of numerical calculations for a family of
realizations of RDS (13) for 𝛼 = 0.5 based on algorithms
studied and used earlier.

Let us determine the type of noise typical for 𝜂𝑡. We used
the DFA method to calculate 𝛽. We obtained the scaling
exponent 𝛼 = 1.18 and 𝛽 = 2𝛼−1 = 1.36.The value obtained
for 𝛽 corresponds rather to flicker noise (𝛽 = 1) than to any
other type of noise. The value 𝛽 = 1.18 obtained by the DFA
method is close to the value obtained through fitting PSD
time series by a linear function. PSD obtained by applying
fast Fourier transform to 𝜂𝑡 is presented in Figure 7 in log-log
scale. A linear fit gives 𝛽 = 1.34.𝐴𝐶𝐹𝜏 for the time series 𝜂𝑡 decreases by following the
power law (3) with the exponent 𝛾 = 0.04 and hence has
double memory. Figure 8 shows 𝐴𝐶𝐹𝜏 for 𝜂𝑡 in log-log scale.

To estimate the correlation dimension (𝐷𝐶) and embed-
ding dimension (𝑚), we used the Grassberger–Procaccia
algorithm. We obtained 𝐷𝐶 = 2.852 for 𝑚 ≤ 5. Hence,
the process that leads to the series 𝜂𝑡 is not random; it is
controlled by a limited number of key parameters. The series𝜂𝑡 is chaotic rather than stochastic.

Using the results of R/S analysis we determined the Hurst
exponent (𝐻). To calculate the fractal dimension of the time
series (𝐷𝐹) we used the algorithm described in [20]. We
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Figure 8: Autocorrelation function for 𝜂𝑡 time series.

obtained 𝐻 = 0.765, 𝐷𝐹 = 1.235. Hence, 𝜂𝑡 is a persistent
fractal time series. Such time series has a long-term memory
and tends to follow trends.

Therefore, the generalized Lorenz system (12) adequately
models the evolution of a microblogging social network
as a complex system. The characteristics of 𝜂𝑡-realizations
of RDS (12) are quantitatively close to the corresponding
characteristics of empirical time series.

6. Results and Discussion

For the convenience of further discussion, Table 1 presents
the results of calculations of key characteristics and properties
of complex systems (i.e., systems that tend to have unexpected
and/or extraordinary events).

The empirical time series of microposts has all the key
properties of complexity: a power-law PDF, noise that is close
to flicker noise, time correlationswith longmemory, and scale
invariance in a time series of microposts. The existence of
bursts in time series of microposts (see Figure 1) allows us to
conclude that a microblogging network is a complex system,
and it is far from equilibrium.The time series ofmicroposts is
characterized by scale invariance; i.e., it is a fractal time series.
Such time series, in particular, are characterized by power-
law PDFs caused by an avalanche-like increase of the number
of microposts (see bursts in Figure 1) after a “chain reaction”
of reposting. An avalanche-like increase of the number of
microposts is possible if a user coordinates his actions with
his followers, followers of those followers, and so on. This
defines a connection between the catastrophic behavior and
integrity of a microblogging network.
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Table 1: Characteristics of empirical and theoretical time series.

Time Series PDF 𝛽 𝛾 𝐷𝐶 𝑚 𝐷𝐹 𝐻
Empirical Power 1.29 0.02 3.032 6 1.199 0.801

Law
Lorenz Compact 0 Exponential 2.067 4 1.504 0.496
Generalized Power 1.36 0.04 2.852 5 1.235 0.765
Lorenz Law

For a description of the evolution of a microblogging
network, the nonlinear dynamical system model (9) is a
rough, not very accurate approximation. First, the model
does not predict the occurrence of catastrophic values in
a time series of the number of microposts which would
signify the complexity of a microblogging network, or the
existence of long memory or the time series’ tendency to
follow trends. Despite this deficiency, Eq. (9) allows one to
study social networks far from equilibrium (see distribution
(4) and comments thereon), and it also explains the existence
of dynamical chaos in a time series as well as their fractality.

The nonlinear random dynamical system (10) is a gener-
alization of themodel (9) that accounts for external stochastic
sources and the fractionality of the order parameter (weaken-
ing of feedback and relaxation of the order parameter). This
model adequately describes the evolution of a microblogging
system.

Quantitative characteristics of the model (10) in adiabatic
approximation are close to the corresponding characteristics
of the empirical time series of microposts (see Table 1).
An adiabatic approximation allows us to reduce a three-
dimensional random adiabatic system with additive noise
(10) to a one-dimensional random dynamical system with
exponential multiplicative noise (13).

7. Conclusions

The main results of this research were obtained by analyzing
a single time series of microposts whose values however
constitute a representative sample. Similar results of analysis
of an empirical time series of a microblogging network are
presented in [24–29]. We cannot claim that the time series
samples studied by us or other researchers are representative,
which would be essential for a generalization of the results
onto the entire general population. In the framework of this
approach, it is necessary to analyze all the available data on
microposts and users collected since the beginning of the
microblogging network. However, this step could be avoided
if we consider the scale invariance of social networks. This
allows us to extrapolate and interpolate the results of the
network analysis onto any large or small scale. Hence, the
fractality of a sample predetermines the fractality of the entire
network. A justification of the scale invariance for Twitter
is presented in [45]. Therefore, the conclusion about the
complexity of microblogging networks in the framework of
the paradigm of complexity is justified.

What follows from the fact that a microblogging network
is complex? We can give two answers to this question. The
first is connected with the possibility of second-order phase

transitions in a microblogging network; the second concerns
the analysis and prediction of a time series of microposts. Let
us elaborate on each answer.

It has been established that time series of microposts are
characterized by long-range time correlations. This is true
both for empirical time series and for realizations of the
random dynamical system (13). Long-range correlations and
other characteristics of time series discussed above are typical
of critical phenomena such as second order phase transitions.

For simplicity, let us consider the kinetics of a phase
transition in a microblogging network in the framework of
the model (9) taking into account the stochasticity of the
feed (the difference in the initial number of strategically
oriented users in active and passive states 𝑆0). In this case,
it can be shown (a detailed proof lies outside the scope of
this paper) that as 𝑆0 increases and exceeds a certain critical
value, a microblogging network evolves according to the
strategy chosen by a relatively small number of strategically
oriented users. The aforementioned avalanche-like increase
of the number of microposts takes place. The critical value
of 𝑆0 is determined by the geometric mean of the total and
critical values of the number of strategically oriented users. A
formalism that leads to the above result is presented in [42].

The results obtained in this paper are valuable from
both theoretical and practical points of view. Firstly, they
show that the systems under consideration (in this case the
number ofmicroposts) are deterministic despite having noise
components (i.e., they are not stochastic). This allows us to
use the theory of dynamical systems and analyze the time
series of microposts in a different way, using the dimension
theory and the theory of dynamic systems. Secondly, the
values of invariants obtained can help solve the problem of
prediction. For example, the embedding dimension shows
how many terms of a time series determine the next term,
whereas the correlation entropy and the largest Lyapunov
exponent allow us to estimate the time of predictability of the
system.

In conclusion, we would like to mention that there exist
many interesting problems that are not studied yet, such
as critical phenomena of self-organization in microblogging
networks based on the analysis of the nonlinear random
dynamic system (10). This will be the subject of our future
research.

Data Availability

Data was obtained by hydrating a list containing 3,183,202
identifiers of tweets from the set of 12 lists of identifiers
provided by Harvard University. This list is about the 2016
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USA presidential elections: «2016 United States Presidential
Election Tweet Ids» (2016). The list was created by Justin
Littman, Laura Wrubel, and Daniel Kerchner. The authors of
the list used SocialFeed service to gather data after the first
debates. Tweets on the subsequent debates were not included
in the sample.The sample obtained has about 1 million empty
entries. This happened because some users whose identifiers
were in the initial list later removed their tweets or made
them private. The resulting sample has the following charac-
teristics: a micropost can correspond to one hashtag or sev-
eral hashtags (#debate, #debates, #debatenight, #debate2016,
#debates2016); the presence of the micropost’s author in the
list of followers of one or several users (CPD (@debates),
HillaryClinton (@HillaryClinton) KDonald J. Trump (@real-
DonaldTrump)); 2,290,855microposts; 934,656 users; 76,458
time intervals; one-second increments. After the list of tweets
was received, the information was extracted in id:original id
format. Here id is a unique identifier of the user who made
the retweet; the original id is a unique identifier of the user
who made the initial tweet. If a tweet is not a retweet, id and
original id coincide.
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Scale-Free Networks: Application to Twitter,” Entropy, vol. 17,
no. 12, pp. 5848–5867, 2015.



Research Article
Simulation of Knowledge Transfer Process Model Between
Universities: A Perspective of Cluster Innovation Network

FangWei and Xiao Limin

School of Management, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to FangWei; fwx1998@nwpu.edu.cn

Received 10 August 2018; Accepted 12 November 2018; Published 2 December 2018

Guest Editor: Katarzyna Musial

Copyright © 2018 Fang Wei and Xiao Limin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Combined with the basic properties of the cluster innovationnetwork, with the cluster innovationnetwork, which can be composed
of different universities that have knowledge potential difference as the research object, the knowledge transfer process is divided
into four stages: knowledge externalization, knowledge sharing, knowledge innovation, and knowledge internalization, and the
article constructs a knowledge transfer process model through introducing explicit knowledge and tacit knowledge conversion
effectmechanism.According to the theory of complex adaptive system, the principle of network connection oriented the knowledge
potential difference and the characteristic of the explicit knowledge and tacit knowledge within universities. We research the
knowledge transfer process of universities using the system simulation method and focus on the evolution mechanism of the
cluster innovation network’s knowledge level at knowledge externalization and knowledge sharing stage. It further reveals the
basic topology structure and dynamic evolution law of universities cluster innovation network. We find that both knowledge
externalization efficiency and knowledge learning ability have positive correlation with the general knowledge level of network.
The evident small-world network characteristic emerges during the dynamic evolution of universities cluster innovation network.
Meanwhile, there exists a coupling evolution between the knowledge level of universities and the topology structure of the cluster
innovation network.

1. Introduction

In order to enhance the comprehensive strength and inter-
national competitiveness of higher education, China pro-
posed the goal of “Double First-Rate” construction with
world-class universities and world-class disciplines from a
strategic perspective in 2015. Strengthening the capacity for
independent innovation and further increasing the iconic
innovation achievements with significant influence at home
and abroad have become a crucial way to achieve the goal
of “Double First-Rate.” Studies have shown that industrial
clusters can positively enhance knowledge dissemination and
innovation performance [1, 2]; integrating resources through
network relationships can improve innovation performance
[3]. Therefore, universities within the cluster innovation net-
work through cooperation can obtain important innovation
resources to stimulate innovation vitality and improve their
level of knowledge.

In the era of knowledge-based economy, as the environ-
ment changes and the complexity of innovation deepens,
it is difficult for individual innovation to meet innovative
demands. At this time, cooperative innovation under net-
work conditions is becoming more and more popular [4].
Meanwhile, the innovation process shows characteristics
of complex knowledge network [5]. Thus, the knowledge
network connected by knowledge subjects such as univer-
sities, enterprises, and scientific research institutions has
become the core platformof innovation activities. Knowledge
subjects integrate resources and cooperate deeply through
establishing formal and informal relationships to acquire
and share knowledge and information resources embedded
in their internal and external networks, and ultimately
achieve the purpose of creating new knowledge [6]. With the
implementation of the innovation-driven strategy, the cluster
innovationnetwork has become anewmodel andmechanism
for dealing with innovation. Strong cluster collaboration can
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enhance innovation capability and allow organizations to
achieve their goal that could not be achieved alone [7]. As an
important carrier of knowledge flow, the cluster innovation
network is a self-organizing emergence in which internal
and external innovation subjects of the cluster innovation
network adapt to the complexity of innovation [8]. The part-
ner selection behavior of subjects influences the evolution
of the innovation network structure [9]. Network structure
is a crucial factor which influences the knowledge transfer
and innovation performance [10–12]. Therefore, there is a
complex relationship between the knowledge transfer and
the network structure in the innovation network and many
studies have discussed this superficially and deeply.

Many studies showed the surface relationships between
knowledge transfer and network structure: IM Taplin [13]
studied network structure and knowledge transfer in cluster
evolution using the methods of qualitative analysis; Fritsch
M et al. [14] focused on knowledge transfer in a sample of 16
German regional innovation networks with almost 300 firms
and research organizations involved and found that strong
ties are more beneficial for knowledge exchange than weak
ties through the case study; Kim andPark [15] constructed the
knowledge diffusion process of R&D network to investigate
the impact of network structure on the performance of
knowledge diffusion; the results show that the small-world
network is the most efficient and equitable structure toward
effective knowledge diffusion. In addition, many scholars
were aware of the complex network and adaptive system
characteristics of multi-agent cluster cooperative networks.
They analyzed the deep-rooted mechanism of knowledge
transfer process and dynamic evolution law in the innovation
network using modernmulti-intelligent simulation methods;
B He and G Song [16] established the differential dynamic
model of tacit knowledge transfer efficiency and made exam-
ple simulation to research how cluster network structure
feature influences tacit knowledge transfer process;Wang [17]
constructed the knowledge transfer diffusion process model
of the cluster innovation cooperation network and analyzed
the impact of individual motivation on knowledge transfer
and diffusion performance using the intelligent simulation
method; MA Xuejun et al. [18] built the industry alliances
knowledge transfer network model with the quantitative
analysis of the simulation example from a complex network
perspective.

Although most studies have analyzed the relationships
between knowledge transfer and network structure among
enterprises within cluster innovation network from various
aspects, studies on the factors affecting knowledge trans-
fer and network evolution process in universities-oriented
cluster networks are scarce. In addition, a large majority of
researches take the abstract and general knowledge as the
research object; they do not divide the research object into
explicit and tacit knowledge and neglect the transformation
influence mechanism of explicit and tacit knowledge in the
process of knowledge transfer. Moreover, the above lack
quantitative researches on each phase of knowledge transfer.

Therefore, based on the previous researches on knowl-
edge network and knowledge transfer process, this study
establishes the model of knowledge transfer process of

universities from the perspective of the cluster innovation
network and explores quantitatively conversion influence
mechanism of explicit and tacit knowledge from the attribute
dimension of knowledge (explicit and tacit knowledge) using
complex adaptive system theory and system simulation
method. Additionally, this paper focuses on the relation-
ship between the mechanism of partner selection based on
the knowledge potential difference of knowledge subjects,
knowledge level, and the cluster innovation network struc-
ture in the knowledge sharing stage. Moreover, the basic
topology structure and dynamic evolution law of universities
innovation network can be revealed.

2. Theoretical Framework

After the concept of knowledge transfer was first proposed
by Teece [19] in 1977, many scholars at home and abroad
have proposed different knowledge transfer models through
researching and exploring. The most representative is the
SECI model presented by Nonaka and Takeuchi [20]. They
first combine the knowledge attribute dimension (explicit
and tacit knowledge) with knowledge transfer and propose
the organizational knowledge creation spiral which divide
knowledge transfer into socialization, externalization, combi-
nation, and internalization. The nature of this model is spiral
structure in the process of self-transformation and mutual
transformation of explicit and tacit knowledge.

At the same time, the cluster innovation network has
gradually become an important platform and support for
knowledge transfer and knowledge innovation among the
various knowledge subjects in the cluster. Industrial cluster
networks are the context of knowledge transfer between
different subjects [21], so the essence of the cluster innova-
tion network with universal characteristics of the obvious
knowledge network is the knowledge network. The network
structure can present complex evolutionary dynamics when
knowledge transfer is within the innovation network. Mean-
while, some studies have shown that the innovation results
formed by knowledge transfer in the cluster network are often
larger than the results of the individual innovation [22–24].
Thus, the knowledge transfer within the cluster innovation
network is a key link of cluster innovation activities. It is
an important factor of the competitiveness of cluster firms,
innovation, and development of industrial clusters [21]. In
the whole process of transfer, the knowledge subjects in the
network not only enhance knowledge levels, but also change
the breadth and depth of knowledge stock [25] (knowledge
potential difference) through learning, transformation, and
accumulation of explicit and implicit knowledge. Marjolein
CJ [26] points out that knowledge transfer behaviors are
difficult to occur when knowledge potential differences of
diverse subjects are too large or too small. Therefore, the
changed knowledge potential differences can in turn affect
cooperation relationships among subjects, thus leading to the
evolution of the cluster innovation network and its topology
[27], and the cluster innovation network has a significant
small-world phenomenon in the process of dynamic evolu-
tion.
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Figure 1: Universities’ knowledge transfer process model from the cluster innovation network perspective.

In the cluster innovation network, the process of knowl-
edge transfer between subjects is not only an exchange of
knowledge, but also a knowledge innovation and its spi-
ral growth. However, knowledge transfer, knowledge inno-
vation, and knowledge growth are closely related to the
characteristics of innovation subjects. Compared with firms,
universities, as a special knowledge-intensive organization,
have more comprehensive knowledge, more diverse levels,
and more prospective research fields. Universities have large
pieces of explicit knowledge, as academic results, research
data, and so on; they, especially, have formed massive tacit
knowledge over a long period of time, such as campus culture,
trainingmethods, researchmethods, and thinking patterns of
scholars or students [28]. Overall, it is generally considered
that universities have unique characteristics of explicit and
tacit knowledge: their tacit knowledge is a lot richer than
explicit knowledge and they have low level of externalization
of tacit knowledge.

This paper draws on the SECI model and combines
the network connection principle of knowledge potential
difference with the unique explicit and tacit knowledge char-
acteristics of universities to establish the four-stage model
of knowledge transfer from the perspective of universities’
cluster innovation network (Figure 1).

Knowledge externalization is the first stage of knowledge
transfer, which is realized within knowledge subjects. It
mainly converts noncoding tacit knowledge into the explicit
knowledge expressed by words, graphs, formulas, and so on
through coding and simulation. This stage plays a vital role
in the process of knowledge transfer. Meanwhile, it is imper-
ative to make tacit knowledge externalize before knowledge
sharing stage [29], because knowledge sharing requires the
necessary communication and mutual cooperation among
knowledge subjects, but tacit knowledge with highly tacitness
and its characteristics make it hard to be shared.The external-
ization of tacit knowledge can promote knowledge flow and
improve knowledge transfer performance [30].

In the stage of knowledge sharing, this study assumes that
only explicit knowledge can be exchanged between knowl-
edge subjects based on the characteristics of tacit knowledge,
such as tacitness, contingency, and difficulty to circulate.
After the first stage of tacit knowledge externalization, it
has eliminated obstacles that tacit knowledge is difficult to
flow to a certain extent. When the knowledge potential
difference iswithin appropriate range, the knowledge subjects
(universities) in the network establish a learning coopera-
tion relationship to exchange and learn explicit knowledge.
As knowledge exchange constantly goes deeper, both the
knowledge levels and the knowledge similarity of subjects
are getting higher and higher. According to Marjolein CJ
[26], if the innovation subjects’ knowledge levels are too
similar or too different than each other, the cooperation will
be unnecessary in the innovation cluster. At this time, the
knowledge gaps between each other are getting smaller or
wider until cooperation conditions are not met. In order to
break through the current network and further enhance the
level of knowledge, some knowledge subjects will seek new
partners, which will further arouse continuous evolution of
the cluster innovation network. At the same time, there will
be a small-world phenomenon in process of evolution: highly
clustered and small characteristic path length [31].

As the third stage of knowledge transfer, the major task
of knowledge innovation is that each subject analyzes the
knowledge learned from the knowledge sharing stage and
interacts with its own the existing knowledge. The result of
different knowledge interaction can lead to knowledge inno-
vation [20]. Knowledge innovation is based on knowledge
sharing; the new knowledge learned by various knowledge
subjects will have an impact on the explicit knowledge and
tacit knowledge they had before. So at this stage, explicit
knowledge and tacit knowledge will innovate, thereby chang-
ing the overall level and stock of knowledge.

Knowledge internalization, as the last stage, is not only a
value transformation and formation stage of the knowledge
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transfer process, but also a knowledge promotion and appli-
cation stage. It can be regarded as the reverse behavior of
externalization of tacit knowledge in form: implicitization of
explicit knowledge on the basis of innovation. In this stage,
knowledge subjects absorb and digest explicit knowledge and
internalize it into a higher level of tacit knowledge to achieve
mastery and sublimation of knowledge.

3. Model Construction

3.1. Introduction to the Model. According to Valk [32] and
Hermans F [33] et al., the cluster innovation network consists
of nodes, which represent knowledge subjects (universities),
and links, which represent the relationships of knowledge
exchange and cooperation betweenuniversities.This research
assumes that the number of knowledge subjects (nodes) in
the cluster innovation network is𝑁 and the initial network is
connectionless. Based on Pareto principle, 80% of the nodes
represent universities with common level of knowledge and
the remaining 20% represent universities with higher level
of knowledge. The knowledge of node 𝑖 is divided into 𝜆
knowledge dimensions (𝜆 = [1, 10]) and each dimension is
composed of explicit knowledge𝑋𝑖,𝜆 and tacit knowledge 𝑌𝑖,𝜆
according to the different attributes of knowledge.

It is assumed that nodes within the cluster innovation
network have different levels of knowledge at the initial time;
𝑋𝑖,𝜆 and𝑌𝑖,𝜆 of the high-level universities take random values
in the range of [0.8,1], and 𝑋𝑖,𝜆 and 𝑌𝑖,𝜆 of the general-level
universities take random values in the range of [0.4,0.8). In
the whole process of knowledge transfer, we separately take
the average levels of explicit and tacit knowledge within 10
dimensions to simulate (as 𝑋𝑖 and 𝑌𝑖).

As a special learning organization, universities’ core com-
petitiveness lies in tacit knowledge. Compared with explicit
knowledge, universities have a relatively large proportion
of tacit knowledge. Therefore, we assume that the overall
knowledge level of node 𝑖 is 𝑍𝑖: the weight of explicit
knowledge is 𝑚 = 0.3 and the weight of tacit knowledge is(1 − 𝑚) = 0.7.

𝑋𝑖 = 1
10
10∑
𝜆=1

𝑋𝑖,𝜆 (1)

𝑌𝑖 = 1
10
10∑
𝜆=1

𝑌𝑖,𝜆 (2)

Z𝑖 = 𝑚𝑋𝑖 + (1 − 𝑚)𝑌𝑖 (3)

The average knowledge level of the cluster innovation
network as a whole is

𝑍𝐴𝑉𝐺 = 𝑁∑
𝑖=1

𝑍𝑖
𝑁 (4)

3.2. The Simulation Model of Knowledge Transfer Process

3.2.1. Knowledge Externalization. In the process of exter-
nalization, the externalization efficiency of node 𝑖 at time

𝑡 is defined as 𝑝𝑖,𝑡; 𝑝𝑖,𝑡 of each university in the cluster
innovation network at time 𝑡 is equal in order to simplify
the model. Specifically, tacit knowledge cannot be completely
externalized because of the characteristics of universities’
knowledge. This research assumes that the externalization
efficiency 𝑝𝑖,𝑡 is within the scope (0, 1). Meanwhile, with the
continuous externalization of knowledge, 𝑝𝑖,𝑡 will decrease to
a stable limit value according to the following formula (5).

𝑝𝑖,𝑡 = 𝜂𝑒−𝛼𝑡 (5)

𝛼 is the externalization factor and different external-
ization factors (𝛼) correspond to different externalization
efficiencies (𝑝𝑖,𝑡). The larger 𝛼 is, the lower externalization
efficiency 𝑝𝑖,𝑡 is. On account of universities with lower degree
of tacit knowledge’s externalization, the range of value for 𝛼
is [0.7,1]. The value of adjustment coefficient is set to 𝜂 = 0.2
through previous multiple tests and experiments.

In this stage, the levels of explicit and tacit knowledge
and the externalization efficiency 𝑝𝑖,𝑡 of node 𝑖 at time 𝑡
have a combined effect in explicit knowledge level of node
𝑖 at the next moment 𝑡 + 1. Therefore, the tacit knowledge
externalization of node 𝑖 is expressed as follows:

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑝𝑡𝑌𝑖,t (6)

3.2.2. Knowledge Sharing. The stage of knowledge sharing is
mainly the exchange of explicit knowledge among subjects
according to the principle of network connection based
on knowledge potential differences. Some studies point out
that only knowledge potential difference among innovation
subjects in a reasonable range is an important driving force
for knowledge transfer [34]. According to Huang Weiqiang
[9], the cooperation and exchange between two knowledge
subjects in the cluster should ensure that the comprehensive
knowledge gap is within a suitable range. This paper uses
Euclidean distance to express the comprehensive knowledge
potential difference 𝐷(𝑖,𝑗),𝑡 between node 𝑖 and 𝑗 at time 𝑡.

𝐷(𝑖,𝑗),𝑡 = √(𝑋𝑗,𝑡 − 𝑋𝑖,𝑡)2 + (𝑌𝑗,𝑡 − 𝑌𝑖,𝑡)2 (7)

We propose 𝛿1 and 𝛿, respectively, representing the
lower limit and upper limit of the comprehensive knowledge
potential difference. The knowledge potential differences of
the cooperative universities must meet the upper and lower
limits:

𝛿1 ≤ 𝐷(𝑖,𝑗),𝑡 ≤ 𝛿 (8)

This study assumes that initial network is connectionless;
that is, all nodes are independent of each other. Select a node
𝑖 from nodes 𝑁 and calculate the comprehensive knowledge
potential difference between node 𝑖 and the other node 𝑘 in
turn (𝑘 ̸= 𝑖). Additionally, we suppose that the set of node
𝑘 where 𝐷(𝑖,𝑘),𝑡 meet the upper and lower limits is 𝐴. At this
time, the cooperative relationships between node 𝑖 and nodes
in the set 𝐴 will be established, connecting node 𝑖 and nodes
in the set 𝐴 to communicate and learn explicit knowledge. In
addition, the set of nodes where explicit knowledge level of a
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node in the set 𝐴 is greater than node 𝑖 is 𝐵. In the set 𝐵, we
define the node 𝑗whose explicit knowledge level is the highest
as 𝑗max, as shown in formula (9).The explicit knowledge level
of node 𝑖 can achieve ultimate level after exchanging explicit
knowledge with node 𝑗max follows the learning rule.

The explicit knowledge level of the node 𝑖 at time 𝑡 +
1 is associated with the learning ability of node 𝑖, the
comprehensive knowledge potential difference between node
𝑖 and node 𝑗max at time 𝑡, and explicit knowledge levels of
node 𝑖 and 𝑗max at time 𝑡. Therefore, on the premise of these
assumptions, when subjects exchange and learn knowledge,
the learning function of node 𝑖 over time is defined as follows
according to Huangweiqiang’s research [9]:

𝑋𝑗max,t = max (𝑋𝑗,𝑡 | 𝑗 ∈ 𝐵) (9)

𝑑𝑡 = √(𝑋𝑗max,𝑡 − 𝑋𝑖,𝑡)2 + (𝑌𝑗max,𝑡 − 𝑌𝑖,𝑡)2 (10)

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 − 𝜃(𝑋𝑗max,𝑡 − 𝑋𝑖,𝑡 − 𝑑𝑡
2 )
2 + 𝜃 (𝑑𝑡)2

4 (11)

In formula (11), 𝑑𝑡 is the comprehensive knowledge
potential difference between 𝑖 and 𝑗max at time 𝑡,𝑋𝑖,𝑡 indicates
the explicit knowledge level of node 𝑖 at time 𝑡, and 𝜃 is the
learning ability of node 𝑖.

This paper assumes that the knowledge level of knowl-
edge receiver is less than that of knowledge sender. With
the knowledge exchange, the explicit knowledge level of
the receiver can be improved to a certain extent, but the
maximum will not exceed the sender’s level. At the same
time, the level of explicit knowledge of the sender remains
constant. When the nodes that meet the principle of network
connection based on knowledge potential difference establish
cooperative learning relationships, the knowledge levels of
these nodes are improved, and the overall knowledge level
of the cluster network is gradually improved. Meanwhile, the
comprehensive knowledge potential between nodes changes,
which will prompt them to break off the previous cooperative
relationships and seek new partners to continue to learn
and improve the level of knowledge. Thus, at this time, we
disconnect all network relationships in order for it to restore
the connectionless network.Then repeat the above operation
until the comprehensive knowledge potential difference of
all nodes in the cluster innovation network cannot meet
the principle of connection, and knowledge learning and
exchange between nodes stop. The knowledge level of each
node in cluster innovation network gradually converges, and
the average knowledge level of the entire network tends to be
stable.

3.2.3. Knowledge Innovation. The explicit knowledge learned
has a subtle influence on the original explicit and tacit knowl-
edge through knowledge exchange and sharing. Therefore,
explicit and tacit knowledge will, respectively, innovate at
this stage. This study supposes that the innovation ability of
node 𝑖 has a trend of diminishing marginal returns over time,
and the explicit/tacit knowledge level of node 𝑖 at time 𝑡 + 1
is affected by explicit/tacit knowledge level and innovation

ability of node 𝑖 at time 𝑡. According to Li Jinhua [35], the
rule of explicit and tacit knowledge innovation of node 𝑖 is as
follows:

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 (1 + 𝑒−𝜑(𝑡−𝑡󸀠)) (12)

𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 (1 + 𝑒−𝜑(𝑡−𝑡󸀠)) (13)

𝜑 is the innovation factor of node 𝑖. Based on the
knowledge characteristics of the university and previous
multiple tests and simulation, this paper sets 𝜑 equal to 4.
𝑡󸀠 refers to the sum of observation periods of the first two
stages of knowledge transfer (the knowledge externalization
and knowledge sharing).

3.2.4. Knowledge Internalization. After knowledge innova-
tion, the university could continuously integrate and accumu-
late new explicit knowledge and apply it to the daily learning
practice of teachers and students, thereby enhancing the core
competence of insiders and internalizing explicit knowledge
into noncoding tacit resource to improve the independent
innovation ability of universities.

In this stage, the tacit and explicit knowledge level of node𝑖 and the internalization efficiency 𝑞𝑖,𝑡 at time 𝑡 can affect the
tacit knowledge level of node 𝑖 at time 𝑡 + 1. Therefore, the
rule of internalization is as follows:

𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 + 𝑞𝑖,𝑡𝑋𝑖,𝑡 (14)

𝑞𝑖,𝑡 refers to the knowledge internalization efficiency of
node 𝑖 at time 𝑡. In order to simplify the model, this paper
assumes that the knowledge internalization efficiency of each
node in the cluster innovation network has the same value
at time 𝑡, and they take values within the range of (0, 1). In
addition, with the continuous internalization of knowledge,
𝑞𝑖,𝑡 could decrease to a stable limit value according to the
following formula (15).

𝑞𝑖,𝑡 = 𝜇𝑒−𝛽(𝑡−𝑡󸀠󸀠) (15)

𝛽 is an internalization factor that affects the efficiency
of knowledge internalization. 𝜇 is a moderator. Based on
the knowledge characteristics of universities and previous
multiple tests and simulation, we assume 𝜇 = 0.03 and
the range of value for 𝛽 is [0.8, 1]. 𝑡󸀠󸀠 refers to the sum of
observation periods of the first three stages of knowledge
transfer (the stage of knowledge externalization, sharing, and
innovation).

3.3. Network Topology Statistics. Nowadays, many networks
are becomingmore andmore complex. In order to expose the
internal characteristics of these complex networks in detail,
many scholars have proposed descriptive statistical indicators
such as degree, degree distribution, clustering coefficient, and
path length to reflect the network characteristics.

(1) Degree and Degree Distribution. The degree of node 𝑖 is
the number of other individuals connected with node 𝑖 in
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the network. Degree distribution refers to the distribution of
degrees of all nodes in the entire network, recorded as 𝑝(𝑘).
(2) Average Clustering Coefficient. Clustering coefficient, a
local feature of the network, reflects the clustering character-
istics of the entire network.Thedegree of node 𝑖 is 𝑘𝑖 , that is, in
the network the number of other nodes that have cooperative
relationships with 𝑖 is 𝑘𝑖. There are at most 𝑘𝑖(𝑘𝑖 − 1)/2 edges
in these 𝑘𝑖 nodes. The number of cooperation relationships
between 𝑘𝑖 nodes is 𝑒𝑖; that is, the number of edges that
actually exists is 𝑒𝑖. At this time, the clustering coefficient of
node 𝑖 is 𝐶𝑖:

𝐶𝑖 = 2𝑒𝑖
𝑘𝑖 (𝑘𝑖 − 1) (16)

The average clustering coefficient of the entire network is
recorded as 𝐶, as shown in formula (17) (𝑁 is the number of
network nodes):

𝐶 = 1
𝑁
𝑁∑
𝑖=1

𝐶𝑖 (17)

(3) Average Path Length. The minimum number of edges
connecting arbitrary two nodes 𝑖 and 𝑗 in the entire network
is the path length of these two nodes, recorded as 𝑑𝑖,𝑗, and
the average value of all 𝑑𝑖,𝑗 in the network is the average path
length, recorded as 𝐿:

𝐿 = 1
𝑁 (𝑁 − 1)

𝑁∑
𝑖=2

𝑖−1∑
𝑗=1

𝑑𝑖,𝑗 (18)

The average path length reflects the connectivity of the
entire network. It is an important measurable index to
describe the cooperation between the cross-cohesive sub-
groups. The more “cross-distance” connections, the more
“shortcuts” of the network, and the network’s average shortest
path will be greatly reduced.

(4) Small World. According to some researches, many net-
works in the real world have small-world property; that is, the
network has a high clustering coefficient and a short average
path length. Davis et al. [36] compared the parameter index
of the actual network with the parameter index of the random
network with the same number of nodes and the number of
links and proposed the small-world entropy, denoted as𝑅𝑆𝑊.

𝑅𝑆𝑊 = (𝐶𝑎𝑐𝑡𝑢𝑎𝑙
𝐿𝑎𝑐𝑡𝑢𝑎𝑙) ∗ (𝐿𝑟𝑎𝑛𝑑𝑜𝑚

𝐶𝑟𝑎𝑛𝑑𝑜𝑚) (19)

If the average shortest path of the actual network and the
random network are approximately equal and the clustering
coefficient of the actual network is greater than the random
network, the actual network has small-world property. In
other words, when the small-world entropy is significantly
greater than 1, we can judge that the actual network shows
the small-world phenomenon.

4. Simulation Results

According to the above model, this paper quantitatively
analyzes the mechanism of knowledge transfer in universities
and how the cluster innovation network affects knowledge
level using the numerical simulation method to further reveal
the basic topology structure and dynamic evolution discipline
of the cluster innovation network. The knowledge sharing
stage emphasizes cooperative partner selection mechanisms
and interactive learning mechanisms of different knowledge
subjects, and this stage is also the key to the evolution of
innovation network. At the same time, because of the paper’s
space limit, we only select the simulation process and results
of knowledge externalization and knowledge sharing.

This study assumes that the innovation network is con-
nectionless at initial moment, and there are 100 nodes in the
network (𝑁 = 100). According to Baum J A C [37], the
network’s initial average knowledge level within knowledge
sharing phase is different from initial average knowledge level
of the literature [37], so this paper appropriately adjusts the
range of the knowledge potential difference based on the
research in the literature [37], and we take 𝛿 = 0.1, 𝛿1 = 0.068
through multiple tests.

The results of previousmultiple tests and simulation show
that the knowledge level of knowledge externalization and
knowledge sharing stage could converge over a period of
time. Therefore, we suppose that the total observation time
of the first two stages of knowledge transfer is 𝑇 = 1300 and
the observation durations of the first two stages of knowledge
transfer are Δ𝑡1 = 50, Δ𝑡2 = 1250, respectively. In order to
eliminate single-shot errors as much as possible and reflect
the evolutionary trend more scientifically, the simulation
operation is repeated 20 times for each set of the parameters,
and the final result is taken as the average of 20 simulation
results.

4.1. Change Mechanisms of Network’s Average
Knowledge Level in Knowledge Externalization
and Knowledge Sharing Stage

4.1.1. The Impact of Externalization Efficiency on the Net-
work’s Average Knowledge Level. Knowledge externalization
is the initial stage of knowledge transfer within universities.
According to the model, the externalization efficiency 𝑝𝑖,𝑡
is affected by the externalization factor 𝛼. Therefore, the
relationships between the externalization factor 𝛼 and the
average knowledge level of the cluster innovation network
can reflect the impacts of the externalization efficiency 𝑝𝑖,𝑡
on the network’s average knowledge level. Meanwhile, due
to the assumptions of the first stage and lower degree of
tacit knowledge’s externalization of universities, this paper
supposes 𝛼 = 0.7, 0.8, 0.9 through previous multiple tests
with 20 independent simulation operations, respectively,
corresponding to three different externalization efficiencies
𝑝𝑖,𝑡. Figure 2 shows that the larger the externalization factor𝛼, the lower the knowledge externalization efficiency 𝑝𝑖,𝑡.
At this time, the average knowledge level of the innovation
network tends to converge prematurely, and the convergence
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Figure 2: Network’s average knowledge level evolution diagram
under different 𝛼 in knowledge externalization.

value of knowledge level is lower. Overall, the externalization
efficiency 𝑝𝑖,𝑡 shows negative relation with the convergent
speed of network average knowledge level, but𝑝𝑖,𝑡 is positively
associated with the final convergence knowledge level.

4.1.2.The Impact of Learning Ability on the Average Knowledge
Level of Network. With each university finishing externaliza-
tion of tacit knowledge, the overall knowledge level of the
innovation network can increase, and the second stage of
knowledge sharing will begin after the first stage’s knowledge
level is stable and convergent.

In the process of knowledge sharing, the learning abilities
of knowledge subjects are affected by many factors. Knowl-
edge sharing is based on knowledge externalization in this
paper; therefore, the average knowledge level of network
in the final moment of knowledge externalization phase
could affect the initial average knowledge level of knowledge
sharing phase, thus impacting knowledge learning ability. In
order to eliminate the contingency of research results, this
study divides network’s average knowledge level at initial
moment of knowledge sharing stage into two sets of data for
simulation according to externalization factor 𝛼; that is, we
explore the impact of different learning abilities 𝜃 on network’
average knowledge level when 𝛼 = 0.7 and 𝛼 = 0.8 to
determine whether the two sets of results match.

When externalization factor 𝛼 = 0.7, the network’s
average knowledge level at the initial moment of knowledge
sharing stage is around 0.7. We assume learning ability
𝜃 = 2, 5, 7, 8 to analyze the evolving trend of the average
knowledge level of innovation network under these four
different learning abilities (Figure 3). It can be found that
the knowledge levels of universities with different learning
abilities show an increasing trend and converge to stable
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Figure 3: When 𝛼 = 0.7 network average knowledge level evolution
diagram under different 𝜃 values.

values, respectively, over time in Figure 3. When the learning
ability is weak (𝜃 = 2), the network’s average knowledge level
converges the slowest. When the learning ability is strong
(𝜃 = 8), the network’s average knowledge level converges
the fastest. The learning ability has a positive relationship
with the convergence rate of the network’s average knowledge
level; that is, the stronger the learning ability, the faster
the convergence rate. In particular, there is not any purely
positive correlation between the learning ability and the
final convergence value of network’s average knowledge level.
When 𝜃 < 8, the larger the learning ability 𝜃, the higher the
final convergence level. But the convergence level when 𝜃 = 8
is less than that when 𝜃 = 5 and 𝜃 = 7, which is around 0.721.

Figure 4 reveals the evolving trend of the average knowl-
edge level of the cluster innovation networkwhile𝛼 = 0.8 and𝜃 = 2, 5, 7, 8, 9. The network’s average knowledge level at the
initial moment of knowledge sharing stage is around 0.696.
We can find that the trend shown in Figure 4 is consistent
with that in Figure 3. With time, the average knowledge
levels of network with five different learning abilities show an
increasing trend and converge to stable values, respectively,
in Figure 4. The relationship between learning ability 𝜃
and average knowledge level of network is as follows: the
learning ability is positively associated with the convergence
speed of the network’s average knowledge level. Additionally,
the learning ability has a positive correlation with the final
convergence value of network’s average knowledge level when
𝜃 < 9. However, the convergence level when 𝜃 = 9 is
less than that when 𝜃 = 8; at this moment, there is no
positive relationship between the learning ability and the final
convergence level.

The two sets of simulation results above show the same
phenomenon: the average knowledge levels of the cluster
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Table 1: The network topology parameters under different 𝜃 values at 𝑡 = 100 and 𝑡 = 800.
topology structure parameters t 𝜃 = 2 𝜃 = 5 𝜃 = 8

m std m std m std

Average path length (L) t=100 1.7891 0.0682 1.7636 0.1007 1.9871 0.2679
t=800 2.0549 0.2608 2.3643 0.3661 2.4128 0.2851

Average clustering coefficient (C) t=100 0.1725 0.0285 0.1739 0.0361 0.1802 0.0531
t=800 0.1125 0.0504 0.0633 0.0255 0.0551 0.0220

Small world Q (RSW) t=100 5.0311 0.2029 5.0315 0.1871 5.5323 0.3056
t=800 2.3928 0.2842 0.6402 0.1781 0.3501 0.1760

Notes: (1)m (mean values)/std (standard deviation) are shown for 20 replications at each moment for the same parameters; (2) according to Davis G F [36], the
average path length is calculated based on the maximal connected subgraphs of the innovation network. In the calculation formula of the small world quotient
𝑅𝑆𝑊, 𝐿𝑟𝑎𝑛𝑑𝑜𝑚 = ln(𝑁)/ ln(𝑘), 𝐶𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑘/𝑁.
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Figure 4:When 𝛼 = 0.8 network average knowledge level evolution
diagram under different 𝜃 values.

innovation network under different learning abilities increase
progressively with time and finally converge to steady values
separately. It illustrates that knowledge sharing and learning
enhance knowledge level and promote knowledge transfer
performance. However, there is a gradual convergence of the
knowledge levels of some universities in the cluster innova-
tion network and other universities’ knowledge levels have
wider gap. At this time, the knowledge potential differences
between each other are hard to meet the principle of network
connection, so the cooperative relationships between univer-
sities cannot be established and the overall knowledge level of
the innovation network reaches a saturated state.

In addition, Figures 3 and 4 show that the learning
ability 𝜃 is positively correlated with the convergence speed
of the innovation network’s average knowledge level. On the
contrary, the relationship between the learning ability and the
final convergence value of the network’s average knowledge
level is not positive. Only when the learning ability 𝜃 is
within a limited range, the larger the learning ability 𝜃, the

greater the final knowledge convergence level of the cluster
innovation network. If the learning ability exceeds a certain
value, the final convergence value of the network’s average
knowledge level drops off with the increase of the learn-
ing ability. This is because when knowledge subjects have
stronger learning ability, they are satisfied with achieving
the higher knowledge level quickly and lack motivation for
learning new knowledge. On account of the emergence of
“negative emotions,” knowledge subjects will not effectively
learn new knowledge even with the continuous evolution of
the innovation network, so the average knowledge level of the
innovation network reaches convergence.

4.2. Basic Topology of the Cluster Innovation Network. In
the whole process of knowledge transfer, only did the
knowledge sharing stage occur between different univer-
sities, and the other stages are internal activities of the
university.

In particular, in the stage of knowledge sharing, the nodes
establish learning cooperative relationships based on the
principle of network connection-oriented knowledge poten-
tial difference over time. The knowledge levels of subjects
and the cooperation relationships are constantly interacting,
and cooperation relationships and network structures are
constantly and intricately changing before the network’s
average knowledge level converges. In addition, according
to the conclusions of Section 4.1 , the knowledge learning
ability 𝜃 is positively correlated with the final convergence
value of network’s average knowledge level only when 𝜃 is
within a certain range. If 𝜃 exceeds this range, knowledge
subjects should find another way to improve knowledge level.
Therefore, in order to explore how the learning ability and
knowledge level affect network topology and make the con-
clusions bring realistic significance, this paper only discusses
the dynamic evolution law of network basic topology when
learning ability 𝜃 is within the appropriate range in the stage
of knowledge sharing.

Table 1 shows the network topology parameters under
different learning abilities in the earlier period (𝑡 = 100) and
the later period (𝑡 = 800) of knowledge sharing stage when
externalization factor 𝛼 = 0.8 and learning ability 𝜃 = 2, 5, 8.
The data in Table 1 are the average of 20 simulation operations
independently performed.
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Figure 5: The evolution picture of the cluster innovation network
average path length.

Table 1 describes that the small world quotient (RSW)
of each learning ability 𝜃 is greater than 1 at time 𝑡 = 100,
which indicates that the actual network shows the small-
world phenomenon: 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 ≈ 𝐿𝑟𝑎𝑛𝑑𝑜𝑚, 𝐶𝑎𝑐𝑡𝑢𝑎𝑙 >> 𝐶𝑟𝑎𝑛𝑑𝑜𝑚.
However, the small-world quotients under different 𝜃 at time
𝑡 = 800 are less than those at time 𝑡 = 100. We can deduce
that the average clustering coefficient is small and the average
path length is large in the later period of knowledge sharing
stage.The innovation network gradually becomes sparse, and
the network’s small-world property weakens.

Table 1 is only a partial discussion of the network topology
of the prenetwork and postnetwork in knowledge sharing
stage. In order to explore network evolution rule more
systematically and comprehensively, Figures 5, 6, and 7,
respectively, depict the changes of the average path length, the
average clustering coefficient, and small-world quotient of the
innovation network when externalization factor 𝛼 = 0.8 and
learning ability 𝜃 = 2, 5, 8. To eliminate the influences of some
uncertain factors and reveal the trend of each parametermore
accurately, the data in Figures 5, 6, and 7 are the results of 20
moving averages of original data.

The commonalities of the network evolution trends under
different 𝜃 values are as follows:

Figure 5 reveals that, with the evolution of the network
in the process of knowledge sharing, the trends of the
average path length of the innovationnetwork under different
learning abilities are approximately the same; the average
path length increases to the first small peak at the beginning
and decreases slightly soon after. Then the average path
length continuously increases over time until it is stable at a
higher level. Figures 6 and 7 show that, in the earlier period
of knowledge sharing, the average clustering coefficients
and the small-world quotients of different learning abilities
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Figure 6: The evolution picture of the cluster innovation network
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Figure 7: The evolution picture of the cluster innovation network
Small-World quotient.

present consistently the inverse𝑈 evolution of the left-biased
distribution, which increases firstly and then decreases. In the
later period they have stabilized at lower levels, respectively.

We can combine Figures 5, 6, and 7 to explore the
specific evolution of the university innovation network in the
knowledge sharing phase from a global perspective:

(I) The First Period. In the early evolution, the average path
length increases in a shorter period, but the path length at this
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time was at a lower level relative to other moments. Mean-
while, the average clustering coefficient and the small-world
quotient both show the trend of rapidly rising to the peak
and then decreasing. In addition, the clustering coefficient’s
level at the early period is higher than othermoments, and the
small-world quotient is greater than 1.These illustrate that, in
the early stage, there are a large number of universities with
cooperative relationships in the cluster innovation network,
and the network has a relatively high degree of clustering.
Although a minority of key “remote-cooperations” turn into
“adjacent-cooperations” gradually, which makes the average
path length of the network increase slightly, the overall level
of average path length is still relatively short. Therefore, the
innovation network presents the particularly obvious small-
world property during this period.

(II)The SecondPeriod.The average path length begins to show
a small amplitude short-term decline after the initial small-
range rise. Meanwhile, the average clustering coefficient and
the small-world quotient are still in the trend of decline.
During this period, the network has a relatively high degree
of clustering and a short average path length, and the small-
world quotient is still significantly larger than 1. From the
perspective of the shorter average path length and the higher
average clustering coefficient, in this period, the number of
“adjacent-cooperations” in the network reduces slightly, and
the number of “remote-cooperations” has a small increase,
which could lead to a decrease in the average path length and
an increase in the degree of clustering.Thenetwork shows the
significant small-world phenomenon.

(III) TheThird Period. At this period, the average path length
of the network begins to rise, but the increase velocity in the
later stage is getting smaller and smaller. On the contrary, the
average clustering coefficient and the small-world quotient
decrease, and the rate of decline in the later stage is slower
and slower. At the same time, small-world quotient gradually
becomes less than 1 in the process of decline. These show
that the number of “remote-cooperations” and “adjacent-
cooperations” decreases in varying degrees. In addition, the
degree of network clustering reduces, and the compactness
of cooperation relationships between universities is relatively
weak. Overall, the long average path length and the low
average clustering coefficient indicate that the efficiency of
knowledge dissemination in the cluster network is greatly
reduced, and the small-world network is gradually disrupted.

In summary, in the knowledge sharing stage, with the
continuous learning of universities, the innovation network
is constantly evolving and shows a significant small-world
phenomenon in the process of evolution.

4.3. Collaborative Evolution of Knowledge Level and Inno-
vation Network Structure. Universities, important subjects
of innovation network, decide whether to conduct learning
cooperation relationships between each other according to
the knowledge potential difference principle. In the knowl-
edge sharing stage, the knowledge levels of subjects can
affect the comprehensive knowledge potential differences,

further influencing the cooperative decision-making pro-
cesses and the evolution of the innovation network structure.
Meanwhile, cooperation relationships and network structure
change, which in turn affect the knowledge growth perfor-
mance and the average knowledge level of the network.

It can be found from Figures 3, 5, 6, and 7 that the
rising period of the average knowledge level of the innovation
network is the period that small-world property of the
network is significant, and the period when the average
knowledge level of the network tends to be stable is the period
when the small-world network gradually begins to collapse.

When the network with a relatively high clustering
coefficient and small characteristic path length shows the
conspicuous small-world phenomenon, the cluster innova-
tion network cooperation is highly clustered relatively and
the network distance is short. At this moment, knowledge
and information transmission have high efficiency to achieve
high performance of knowledge sharing. It is helpful to
knowledge learning, which can further improve the average
knowledge level of the network. When the small-world
property begins to be inconspicuous or even gradually
disintegrating, the average path length increases and the
average clustering coefficient decreases. At this time, the
number of “adjacent-cooperations” is more than the number
of “remote-cooperations.” The network is gradually sparse. It
is not conducive to knowledge learning and sharing, and the
information transmission is less efficient, which could result
in the average knowledge level of the network not ascend.

Conversely, the level of knowledge also affects the net-
work topology. In the early period of knowledge sharing,
the explicit knowledge levels of universities in the network
are relatively low, so they have a strong desire to improve
their knowledge level. At the same time, because the compre-
hensive knowledge potential differences of most universities
meet the conditions of cooperation, they have a strong con-
nectivity base to establish cooperative relationships. These
connections make the innovation network with the small-
world property: a short average path length and a high
average clustering coefficient.

After a period of knowledge learning and sharing, knowl-
edge levels of many universities are gradually improved and
converge to a stable condition. At this time, the knowledge
potential differences between each other are too big or too
small to meet the conditions for cooperation. The dissem-
ination of knowledge is hindered, which can aggravate the
collapse of the small-world network.

Overall, there is a coevolutionary relationship between
the knowledge level of university and the innovation network
structure in the stage of knowledge sharing.

5. Conclusion

In order to promote the construction of “Double First-Rate,”
strengthening the innovation cooperation of universities is
an important way to improve the abilities of independent
innovation. This requires constant knowledge interaction
and transfer between universities in the cluster innovation
network, and these processes could promote the continuous
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evolution of the network. This paper combines the attribute
dimension of knowledge (explicit and tacit knowledge), the
principle of network connection based on knowledge poten-
tial difference and knowledge transfer process to establish
a four-stage knowledge transfer model within universities
cluster innovation network, and depicts the conversion
influence mechanism of explicit and tacit knowledge and
the internal mechanism of knowledge transfer quantitatively
using the system simulation method to further explore the
basic topology and dynamic evolution rules of the cluster
innovation network in the knowledge sharing phase. The
study draws the following conclusions:

(1) In the stage of knowledge sharing, each university
establishes the cooperative relationship based on the prin-
ciple of network connection-oriented knowledge potential
difference for knowledge learning. The network structure
evolves constantly with the change of cooperative relation-
ships. In addition, the innovation network shows a significant
small-world property in the dynamic evolution process. In
the early period of knowledge sharing, the network has a
short average path length and a relatively high degree of
clustering; meanwhile, the small-world quotient is signifi-
cantly larger than 1.Therefore, the innovation network shows
the obvious small-world phenomenon. After a period of
interaction and learning, the cooperation relationships of
knowledge subjects become very sparse, and the number of
“remote-cooperations” is gradually reduced. At this moment,
the small-world quotient of the network with a long average
path length and a low average clustering coefficient is less than
1. The small-world network begins to gradually collapse.

(2) There is a coevolutionary relationship between the
knowledge level of university and the innovation network: in
the knowledge sharing stage, many universities improve the
levels of explicit knowledge through learning and coopera-
tion and then improve their overall knowledge levels. At this
time, the knowledge gaps between some universities will be
widened or narrowed, which affects the choices of partners
and the evolution of the innovation network. Meanwhile, the
network evolution can change the path length and clustering
coefficient of the network. The short average path length and
high average clustering coefficient appeared in the evolution
enhancing the compactness of network cooperation, which
greatly improves the efficiency of knowledge transfer and
learning, and further affecting the average knowledge level
of the network.

(3) In the knowledge externalization stage, there are
certain correlations between the externalization efficiency
and the average knowledge level of the innovation network:
The network’s average knowledge level increases at first
and then converges to a stable value in the process of
externalization of tacit knowledge. Meanwhile, the knowl-
edge externalization efficiency is negatively correlated with
the convergence speed of the network’s average knowledge
level and positively associated with the final convergence
value. Therefore, universities should improve the efficiency
of knowledge externalization through reducing the exter-
nalization factor appropriately, thus improving the average
knowledge level of the innovation network. For example, in
the stage of knowledge externalization, under the premise of

not infringing on intellectual property, university researchers
can perfect the process of knowledge coding and establish
corresponding knowledge databases actively to distill the
experience and knowledge accumulated in the ordinary
practice process into a clear knowledge mapping structure
and so on for the exchange and sharing of knowledge in the
next stage.

(4) In the knowledge sharing stage, the average knowl-
edge levels of the network under different learning abilities
show a similar trend, increase, and after a certain period
of time converge to a stable value. In addition, the learning
ability has a positive relationship with the convergence speed
of the network’s average knowledge level. Specifically, only
when the learning ability is within a certain range, it is
positively correlated with the final convergence value of the
network’s average knowledge level. If this range exceeded, this
positive relationship does not exist.

Therefore, while universities improve their learning abil-
ities actively, they should pay attention to the fact that when
the learning ability is raised to a certain level, the knowledge
agents lack motivation to learn new knowledge for what they
think that their levels are high enough, because they reach
the higher knowledge level relatively quickly. The average
knowledge level of the cluster innovation network reaches
a saturated state. At this moment, universities should seek
other new partners outside the cluster actively to continue
establishing cooperative relationships.
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With the rapid growth of various complex networks, link prediction has become increasingly important because it can discover the
missing information and predict future interactions between nodes in a network. Recently, the CAR and CCLP indexes have been
presented for link prediction bymeans of different triangle structure information.However, both indexesmay lose the contributions
of some shared neighbors. We propose in this work a new index to make up the weakness and then improve the accuracy of
link prediction. The proposed index focuses on a new triangle structure, i.e., the triangle formed by one seed node, one common
neighbor, and one other node. It emphasizes the importance of these triangles but does not ignore the contribution of any common
neighbor. In addition, the proposed index adopts the theory of resource allocation by penalizing large-degree neighbors.The results
of comparison with CN, AA, RA, ADP, CAR, CAA, CRA, and CCLP on 12 real-world networks show that the proposed index
outperforms the compared methods in terms of AUC and ranking score.

1. Introduction

As a fundamental research hotspot in complex network
analysis, link prediction has a wide range of applications in
both theory and reality, such as analysis of network evolution
[1, 2], recommendation system [3], and checking potential
interactions between proteins in biological networks [4, 5].
The basic task of link prediction is to estimate the missing or
latent existent links between unconnected nodes in a network
[6, 7]. To date, a host of algorithms and models have been
proposed for link prediction [6, 8, 9]. Reference [8] groups
them into twoways: similarity-based approaches and learning-
based approaches. A similarity-based approach computes
similarity scores between unconnected nodes based on the
known information. Then, a ranked list of node pairs in
descending order according to their similarity scores is
obtained and the node pairs at the top are thought most likely
to have links. A learning-based approach formalizes the link
prediction problem into a binary classification task [10] and
usesmachine learning methods to solve the problem.The key
job in a learning-based approach is to construct the feature
vectors of node pairs. In general, learning-based approaches
are more complicated than similarity-based ones.

The hypothesis behind similarity-based approaches is the
more similar that two nodes are, the more likely that a link
exists between them [8]. This idea is simple and intuitive.
Thus, the study of this kind of approaches has become the
mainstream [6, 9]. The Common Neighbors (CN) index [11],
as its name suggests, simply counts the number of common
neighbors between two nodes. The Adamic-Adar (AA) [12]
and Resource Allocation (RA) [13] indexes are two variants of
the CN index; they penalize the contributions of large-degree
common neighbors. These indexes are called local methods
because they only use local structure information. Besides,
some global and quasilocal methods have also been proposed
by researchers, such as Katz [14], SimRank [15], Random
Walks with Restart [16], Local Path [17], FriendLink [18], and
Local RandomWalk [19].

With the increasing growth of sizes of complex networks,
local methods are still good candidates because they are more
efficient in terms of running time than global and quasilocal
methods. Therefore, we focus in this study on local methods.
Recently, Cannistraci et al. proposed the CAR index [20],
which suggests that links between the common neighbors,
i.e., local-community-links (LCLs), are more valuable than
common neighbors in link prediction. In CAR index, a local
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Figure 1: Triangles used in similarity indexes.

community is a triangle passing through two common neigh-
bors and one seed node. In the example network shown in
Figure 1(a), there is one LCL between the common neighbors
of seed nodes 𝑎 and 𝑏 (see Figure 1(b)). Thus, CAR index
assigns a similarity score of four to nodes 𝑎 and 𝑏. However,
if we remove the link between 𝑐 and 𝑑, CAR will assign
a zero similarity score to 𝑎 and 𝑏, even though they have
four common neighbors. In addition, the idea of LCL is also
plugged into AA, RA, and Jaccard indexes [20]. Later, Wu et
al. proposed the CCLP index based on the clustering coef-
ficients of common neighbors. This index considers all tri-
angles passing through a common neighbor. For the example
network in Figure 1(a), there are triangles passing through
nodes 𝑐, 𝑑, and 𝑓, respectively (see Figure 1(c)). Thus, CCLP
index accumulates the clustering coefficients of nodes 𝑐, 𝑑,
and 𝑓 when calculating the similarity between 𝑎 and 𝑏, but
utterly neglects the contribution of node 𝑒. In real-world
networks, it is possible that there are no triangles passing
through some or even all shared neighbors of one node pair.
Thus, CAR and CCLP indexes may assign a very low or even
zero similarity score to the node pair, even if it has many
common neighbors.

In this paper, we defines a new type of triangle structure,
called TRA-triangle, which is formed by one seed node, one
common neighbor, and one other node (see Figure 1(d)).
Based on the TRA-triangle, a new similarity index, namely,
TRA index, is proposed for link prediction. This index
suggests that the common neighbors that can form TRA-tri-
angles with a seed node are more important than others. In
addition, the proposed index also penalizes the large-degree
neighbors, as done in RA index [13]. Although all the
TRA, CAR-based, and CCLP indexes are based on triangle
structures, the intuitions behind themare different.TheCAR-
based indexes believe that LCLs are more valuable than

common neighbors. The CCLP index is inspired by CAR
index but employs all triangles passing through common
neighbors, while the TRA index, which only uses the TRA-
triangles, strikes a balance between CAR and CCLP. Further-
more, as aforementioned, CAR-based and CCLP indexes lose
the contribution of those common neighbors with no trian-
gles passing through them, whereas TRA index counts the
contribution of all kinds of common neighbors. Therefore,
TRA index can achieve better prediction accuracy than CAR-
based indexes and CCLP index. The accuracy of TRA index
is evaluated on 12 real-world networks from various fields.
The experimental results show that our index is far superior
to CAR-based indexes and CCLP index. Take the network
of HEP as an example, which is a very sparse network, the
improvements made by TRA on CAR and CCLP, under the
metric of AUC, are up to 26.9% and 4.2%, respectively.

The rest of the paper is structured as follows. In Section 2,
we give the description of the link prediction problem and the
evaluation metrics, list the compared methods and networks,
and depict the Wilcoxon signed-ranks test. Section 3 intro-
duces the proposed method. In Section 4, the experimental
results and performance analysis of the proposed method are
presented. Finally, Section 5 concludes this work.

2. Preliminaries

2.1. Problem Description and Metric. Given an undirected
and unweighted network 𝐺(𝑉, 𝐸), in which 𝑉 and 𝐸 are the
node set and link set, respectively, in this study, multilinks
and self-loops are not allowed. Let𝑁 = |𝑉| be the number of
nodes in the network, and let𝑈 be the universal possible link
set, which contains𝑁(𝑁−1)/2 possible links.Then, the set of
nonobserved links or nonexisting links is𝑈−𝐸. Suppose there
are some missing links in 𝑈 − 𝐸, the task of link prediction
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is to find those links. A similarity-based approach assigns a
similarity score to each node pair in 𝑈 − 𝐸 and assumes that
the higher score a node pair has, the more likely there is a link
between them.

To test the performance of a similarity index, we ran-
domly divide the link set 𝐸 into two parts: training set 𝐸𝑡𝑟
and testing set 𝐸𝑡𝑠, such that 𝐸 = 𝐸𝑡𝑟 ∪ 𝐸𝑡𝑠 and 𝐸𝑡𝑟 ∩ 𝐸𝑡𝑠 = 0.
𝐸𝑡𝑟 is supposed to be the observed information, and 𝐸𝑡𝑠 is
used for testing. Two parameter-free metrics are employed
to quantify the accuracy of link prediction algorithms: AUC
[6] and ranking score [21, 22]. In this situation, the AUC
score can be interpreted as the probability that a randomly
selected missing link (i.e., a link in 𝐸𝑡𝑠) is given a higher
score than a randomly selected nonexistent link (i.e., a link
in𝑈−𝐸). When implementing, if we perform 𝑛 independent
comparisons, there are 𝑛1 times that the missing link has
higher score and 𝑛2 times that they have the same score. The
AUC value is then computed as

𝐴𝑈𝐶 = 𝑛1 + 0.5𝑛2𝑛 . (1)

Ranking score (RS) takes the ranks of links in testing set
after sorting in descend order according to their similarity
scores into consideration. Let 𝐻 = 𝑈 − 𝐸𝑡𝑟 be the set of
nonobserved links. Let 𝑒𝑖 be a missing link in 𝐸𝑡𝑠 and 𝑟𝑖 be its
rank.The ranking score of 𝑒𝑖 is defined as𝑅𝑆(𝑒𝑖) = 𝑟𝑖/|𝐻|, and
the ranking score of the link prediction result is as follows:

𝑅𝑆 = 1
󵄨󵄨󵄨󵄨𝐸𝑡𝑠
󵄨󵄨󵄨󵄨
∑
𝑒𝑖∈𝐸𝑡𝑠

𝑅𝑆 (𝑒𝑖) =
1
󵄨󵄨󵄨󵄨𝐸𝑡𝑠
󵄨󵄨󵄨󵄨
∑
𝑒𝑖∈𝐸𝑡𝑠

𝑟𝑖
|𝐻| . (2)

Note that the AUC value is the higher the better, whereas
the ranking score is the smaller the better.

2.2. Local Similarity Indexes. As yet, many similarity indexes
have been proposed for link prediction [6, 8, 9]. Here, we
list some local similarity indexes that will be used in our
experiments for the purpose of comparison.
(1) Common Neighbor (CN) index [11] defines the

similarity between 𝑥 and 𝑦 as the number of their common
neighbors, which is

𝐶𝑁(𝑥, 𝑦) = 󵄨󵄨󵄨󵄨Γ (𝑥) ∩ Γ (𝑦)
󵄨󵄨󵄨󵄨 , (3)

where Γ(𝑥) denotes the set of neighbors of node 𝑥.
(2) Adamic-Adar (AA) index [12] is a variant of CN

index, which believes that small-degree neighbors have more
contributions than large-degree neighbors when computing
similarity. Its definition is as follows:

𝐴𝐴 (𝑥, 𝑦) = ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

1
log 𝑘𝑧

, (4)

where 𝑘𝑧 is the degree of node 𝑧.
(3) Resource Allocation (RA) index [13] defines the

similarity between 𝑥 and 𝑦 as the amount of resource that 𝑦
received from 𝑥 through their common neighbors, which is

𝑅𝐴 (𝑥, 𝑦) = ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

1
𝑘𝑧
. (5)

(4) Adaptive Degree Penalization (ADP) index [23]
penalizes a common neighbor according to its degree and the
average clustering coefficient of the network.Therefore, it can
automatically adapt to the network. The definition of ADP
index is as follows:

𝐴𝐷𝑃(𝑥, 𝑦) = ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

𝑘−𝛽𝐶𝑧 , (6)

where 𝛽 is a constant and 𝐶 is the average clustering
coefficient of the network. We set 𝛽 = 2.5, as suggested by
the authors.
(5)CAR index [20] suggests that two seed nodes are more

likely to link together if there are links between their common
neighbors, which is defined as

𝐶𝐴𝑅 (𝑥, 𝑦) = 𝐶𝑁(𝑥, 𝑦) ⋅ ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

𝐿 (𝑧)
2 , (7)

where 𝐿(𝑧) is the number of links between 𝑧 and other
common neighbors of 𝑥 and 𝑦.
(6)CAA and CRA indexes [20] are generated by plugging

the idea of CAR index into the AA and RA indexes, respec-
tively, which are defined as

𝐶𝐴𝐴 (𝑥, 𝑦) = ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

𝐿 (𝑧)
log 𝑘𝑧

, (8)

𝐶𝑅𝐴 (𝑥, 𝑦) = ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

𝐿 (𝑧)
𝑘𝑧
. (9)

(7) CCLP index [24] computes the similarity between 𝑥
and 𝑦 by employing clustering coefficient of common neigh-
bors, which is

𝐶𝐶𝐿𝑃 (𝑥, 𝑦) = ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

𝐶𝐶𝑧, (10)

where𝐶𝐶𝑧 denotes the clustering coefficient of node 𝑧, which
is

𝐶𝐶𝑧 =
2𝑡𝑧

𝑘𝑧 (𝑘𝑧 − 1)
, (11)

in which 𝑡𝑧 is the number of triangles passing through node
𝑧.

2.3. Networks. In this study, we use 12 real-world networks
drawn from various fields to evaluate the effectiveness of link
prediction methods.

(1) Advogato (ADV): a social network whose users are
mainly free and open source software developers [25].

(2) C.elegans (CE): the neural network of a Caenorhab-
ditis elegans worm [26].

(3) Dolphin: a social network of 62 dolphins in a commu-
nity living off Doubtful Sound, New Zealand [27].

(4) Email: a network of email interchanges between
members of a university [28].
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(5) Foodweb (FW): a food web in Florida Bay during the
rainy season [29].

(6) Hamster: a friendship network between users on
hamsterster.com [30].

(7) HEP: the coauthorships network of scientists who
posted preprints on the high-energy theory archive
from 1995 to 1999 [31].

(8) Karate: the social network of a karate club at a US
university [32].

(9) Political blogs (PB): a network of blogs about US poli-
tics [33].

(10) USAir: a network of the US air transportation system
[6].

(11) Word: an adjacency network of common adjectives
and noun in the novel “DavidCopperfield” byCharles
Dickens [34].

(12) Yeast: the protein-protein interaction network of
budding yeast [35].

In this work, all the aforementioned networks are treated
as undirected and unweighted networks, and only the giant
component of each network is used. Table 1 lists the basic
statistics of the giant components of these networks.

Given network 𝐺(𝑉, 𝐸), suppose 𝑥, 𝑦 be two seed nodes.
(𝑥, 𝑦) is called a seed node pair with common neighbors if they
have at least one common neighbor.𝑃Λ denotes the set of seed
node pairs with common neighbors, formally

𝑃Λ = {(𝑥, 𝑦) | (𝑥, 𝑦) ∉ 𝐸 ∧ Γ (𝑥) ∩ Γ (𝑦) ̸= 0} . (12)

Let 𝑥, 𝑦 be two seed nodes, and 𝑧 is one of their common
neighbors. If 𝐶𝐶𝑧 = 0, we call 𝑧 is a zero-triangle-neighbor;
otherwise, 𝑧 is a triangle-neighbor. If 𝐿(𝑧) ̸= 0, 𝑧 is called a
CAR-triangle-neighbor and if △(𝑥, 𝑦; 𝑧) ̸= 0 (see (18)), 𝑧 is
called a TRA-triangle-neighbor. Let 𝑆△ be the set of triangle-
neighbors, and 𝑆𝐶𝐴𝑅, 𝑆𝑇𝑅𝐴 denote the sets of CAR- and TRA-
triangle-neighbors, respectively. Clearly, 𝑆𝐶𝐴𝑅 ⊆ 𝑆𝑇𝑅𝐴 ⊆ 𝑆△.
Let 𝑃∃(𝑆△) and 𝑃∀(𝑆△) be two subsets of 𝑃Λ. For any pair
in 𝑃∃(𝑆△), at least one of their shared neighbors is not a
triangle-neighbor, and for any pair in 𝑃∀(𝑆△), all of their
shared neighbors are not triangle-neighbors. More explicitly,

𝑃∃ (𝑆△)

= {(𝑥, 𝑦) ∈ 𝑃Λ | ∃𝑧 ∈ Γ (𝑥) ∩ Γ (𝑦) ∧ 𝑧 ∉ 𝑆△} ,

𝑃∀ (𝑆△)

= {(𝑥, 𝑦) ∈ 𝑃Λ | ∀𝑧 ∈ Γ (𝑥) ∩ Γ (𝑦) ∧ 𝑧 ∉ 𝑆△} .

(13)

Similarly, we define 𝑃∃(𝑆𝑇𝑅𝐴), 𝑃∀(𝑆𝑇𝑅𝐴), 𝑃∃(𝑆𝐶𝐴𝑅), and
𝑃∀(𝑆𝐶𝐴𝑅), which are

𝑃∃ (𝑆𝑇𝑅𝐴)

= {(𝑥, 𝑦) ∈ 𝑃Λ | ∃𝑧 ∈ Γ (𝑥) ∩ Γ (𝑦) ∧ 𝑧 ∉ 𝑆𝑇𝑅𝐴} ,

𝑃∀ (𝑆𝑇𝑅𝐴)

= {(𝑥, 𝑦) ∈ 𝑃Λ | ∀𝑧 ∈ Γ (𝑥) ∩ Γ (𝑦) ∧ 𝑧 ∉ 𝑆𝑇𝑅𝐴} ,

𝑃∃ (𝑆𝐶𝐴𝑅)

= {(𝑥, 𝑦) ∈ 𝑃Λ | ∃𝑧 ∈ Γ (𝑥) ∩ Γ (𝑦) ∧ 𝑧 ∉ 𝑆𝐶𝐴𝑅} ,

𝑃∀ (𝑆𝐶𝐴𝑅)

= {(𝑥, 𝑦) ∈ 𝑃Λ | ∀𝑧 ∈ Γ (𝑥) ∩ Γ (𝑦) ∧ 𝑧 ∉ 𝑆𝐶𝐴𝑅} .

(14)

Correspondingly, the ratios of those subsets to 𝑃Λ are,
respectively, defined as

𝑅∃ (𝑆△) =
󵄨󵄨󵄨󵄨󵄨𝑃∃ (𝑆△)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃Λ
󵄨󵄨󵄨󵄨
,

𝑅∀ (𝑆△) =
󵄨󵄨󵄨󵄨󵄨𝑃∀ (𝑆△)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃Λ
󵄨󵄨󵄨󵄨
,

𝑅∃ (𝑆𝑇𝑅𝐴) =
󵄨󵄨󵄨󵄨󵄨𝑃∃ (𝑆𝑇𝑅𝐴)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃Λ
󵄨󵄨󵄨󵄨

,

𝑅∀ (𝑆𝑇𝑅𝐴) =
󵄨󵄨󵄨󵄨󵄨𝑃∀ (𝑆𝑇𝑅𝐴)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃Λ
󵄨󵄨󵄨󵄨

,

𝑅∃ (𝑆𝐶𝐴𝑅) =
󵄨󵄨󵄨󵄨󵄨𝑃∃ (𝑆𝐶𝐴𝑅)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃Λ
󵄨󵄨󵄨󵄨

,

𝑅∀ (𝑆𝐶𝐴𝑅) =
󵄨󵄨󵄨󵄨󵄨𝑃∀ (𝑆𝐶𝐴𝑅)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃Λ
󵄨󵄨󵄨󵄨

.

(15)

Table 2 lists these ratios over the 12 networks.

2.4.Wilcoxon Signed-Ranks Test. TheWilcoxon signed-ranks
test is a nonparametric statistical hypothesis test used to
check whether two methods perform equally well over multi-
ple networks [38, 39]. Let 𝑑𝑖 be the difference in performance
scores of two link prediction methods on the 𝑖th network.
The differences are ranked in accordance with their absolute
values; in case of ties, average ranks are assigned. Let 𝑅+
be the sum of ranks for the networks on which the second
method outperformed the first, and 𝑅− the sum of ranks for
the opposite. For a larger number of networks, the statistics

𝑧 = 𝑇 − (1/4)𝑁 (𝑁 + 1)
√(1/24)𝑁 (𝑁 + 1) (2𝑁 + 1) (16)

is distributed approximately normally [39]. In (16), 𝑇 =
min(𝑅+, 𝑅−) and𝑁 is the number of networks.

With 𝛼 = 0.05, if 𝑧 is small than -1.96, we reject the null-
hypothesis, which states that both methods perform equally
well.
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Table 1: The basic structural features of the giant components of the 12 networks. |𝑉| and |𝐸| are the total numbers of nodes and edges,
respectively.𝐷 denotes the density, which is𝐷 = 2|𝐸|/|𝑉|(|𝑉| − 1). ⟨𝑘⟩ and ⟨𝑑⟩ present the average degree and the average shortest distance,
respectively. 𝐶 and 𝑟 indicate the clustering coefficient [26] and assortative coefficient [36], respectively. 𝐻 is the degree heterogeneity [6],
defined as𝐻 = ⟨𝑘2⟩/⟨𝑘⟩2, and 𝑒 is the network efficiency [37].

Networks |𝑉| |𝐸| 𝐷 ⟨𝑘⟩ ⟨𝑑⟩ 𝐶 𝑟 𝐻 𝑒
ADV 5042 39227 3.1E-03 15.560 3.275 0.253 -0.096 5.303 0.324
CE 297 2148 4.9E-02 14.465 2.455 0.292 -0.163 1.801 0.445
Dolphin 62 159 8.4E-02 5.129 3.357 0.259 -0.044 1.327 0.379
Email 1133 5451 8.5E-03 9.622 3.606 0.220 0.078 1.942 0.300
FW 128 2075 2.6E-01 32.422 1.776 0.335 -0.112 1.237 0.622
Hamster 1788 12476 7.8E-03 13.955 3.453 0.143 -0.089 3.264 0.317
HEP 5835 13815 8.1E-04 4.735 7.026 0.506 0.185 1.926 0.155
Karate 34 78 1.4E-01 4.588 2.408 0.571 -0.476 1.693 0.492
PB 1222 16714 2.2E-02 27.355 2.738 0.320 -0.221 2.971 0.398
USAir 332 2126 3.9E-02 12.807 2.738 0.625 -0.208 3.464 0.406
Word 112 425 6.8E-02 7.589 2.536 0.173 -0.129 1.815 0.442
Yeast 2224 6609 2.7E-03 5.943 4.376 0.138 -0.105 2.803 0.246

Table 2: The ratios of various seed pairs over the 12 networks.

Networks 𝑅∃(𝑆△) 𝑅∀(𝑆△) 𝑅∃(𝑆𝐶𝐴𝑅) 𝑅∀(𝑆𝐶𝐴𝑅) 𝑅∃(𝑆𝑇𝑅𝐴) 𝑅∀(𝑆𝑇𝑅𝐴)
ADV 0.001 0.001 0.807 0.750 0.018 0.014
CE 0.001 0.000 0.768 0.670 0.012 0.008
Dolphin 0.020 0.011 0.857 0.817 0.089 0.069
Email 0.008 0.005 0.881 0.841 0.070 0.057
FW 0.000 0.000 0.240 0.136 0.005 0.000
Hamster 0.014 0.005 0.893 0.817 0.074 0.048
HEP 0.007 0.007 0.881 0.876 0.029 0.028
Karate 0.004 0.000 0.743 0.706 0.034 0.011
PB 0.001 0.000 0.577 0.497 0.010 0.007
USAir 0.000 0.000 0.510 0.509 0.005 0.005
Word 0.067 0.028 0.799 0.735 0.108 0.062
Yeast 0.083 0.063 0.945 0.931 0.357 0.324

3. The Proposed Index

The link prediction problem has a familiar relationship with
the network evolvingmechanism [2, 40]. A recently proposed
triangle growth mechanism demonstrates that various key
features observed in most real-world networks can be gener-
ated in simulated networks [41]. Therefore, triangle structure
information has an important effect in link formation.

In this work, we focus on a new triangle structure, namely
TRA-triangle. A TRA-triangle passes through one seed node,
one common neighbor, and one other node. In our opinion,
the commonneighbors that can formTRA-triangles aremore
important than others. Given two nodes 𝑢 and V, we denote
the number of triangles passing through them as △(𝑢, V),
which is

△(𝑢, V) =
{
{
{

𝐶𝑁(𝑢, V) , if (𝑢, V) ∈ 𝐸
0, otherwise

(17)

For the example network in Figure 1(a), the triangles
used for seed nodes 𝑎, 𝑏 are shown in Figure 1(d). Clearly,

△(𝑎, 𝑐) = 2 and △(𝑎, 𝑑) = 1. Thus, node 𝑐 is in more close
contact with 𝑎 than 𝑑. Given seed nodes 𝑥 and 𝑦, 𝑧 is one
of their common neighbors. Function△(𝑥, 𝑦; 𝑧) sums up the
number of TRA-triangles formed by 𝑥, 𝑧, and 𝑦, 𝑧, which is

△(𝑥, 𝑦; 𝑧) = △ (𝑥, 𝑧) + △ (𝑦, 𝑧) . (18)

In this paper, we propose a new similarity index, by
combining the aforementioned triangle structure and the
idea of RA index [13]. For the convenience of statement, we
name our new method TRA index. Its definition is

𝑇𝑅𝐴 (𝑥, 𝑦) = ∑
𝑧∈Γ(𝑥)∩Γ(𝑦)

1 + △ (𝑥, 𝑦; 𝑧) /2
𝑘𝑧

. (19)

In (19), the numerator is 1 + △(𝑥, 𝑦; 𝑧)/2. Therefore, the
TRA index does not miss the effect of any common neighbor.
If all common neighbors are zero-triangle-neighbors, TRA
degenerates to RA. For the example network in Figure 1(a),
𝑇𝑅𝐴(𝑎, 𝑏) = (1+3/2)/4+(1+2/2)/3+(1+0/2)/2+(1+0/2)/4 =
49/24.
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Table 3: The AUC of different methods in 12 networks. The results are the average of 50 independent implementations with |𝐸𝑡𝑠|/|𝐸| = 0.1.
The best performance for each network is emphasized by boldface.

CN AA RA ADP CAR CAA CRA CCLP TRA
ADV 0.8992 0.9026 0.9030 0.9033 0.8054 0.8051 0.8063 0.9011 0.9043
CE 0.8450 0.8613 0.8662 0.8654 0.7657 0.7677 0.7704 0.8625 0.8713
Dolphin 0.7832 0.7863 0.7854 0.7866 0.6475 0.6473 0.6473 0.7804 0.7850
Email 0.8471 0.8491 0.8488 0.8491 0.6994 0.6995 0.6996 0.8452 0.8493
FW 0.6053 0.6071 0.6114 0.6097 0.6192 0.6271 0.6321 0.6323 0.6890
Hamster 0.8037 0.8067 0.8074 0.8067 0.6542 0.6542 0.6543 0.8075 0.8127
HEP 0.8984 0.8987 0.8987 0.8987 0.7079 0.7079 0.7079 0.8624 0.8985
Karate 0.6985 0.7409 0.7523 0.7532 0.5848 0.5881 0.5880 0.7085 0.7755
PB 0.9192 0.9226 0.9239 0.9242 0.8926 0.8929 0.8946 0.9217 0.9282
USAir 0.9357 0.9466 0.9522 0.9523 0.9136 0.9158 0.9202 0.9391 0.9452
Word 0.6656 0.6649 0.6621 0.6651 0.5717 0.5713 0.5714 0.6727 0.6809
Yeast 0.7041 0.7047 0.7045 0.7047 0.5994 0.5994 0.5994 0.6972 0.7054

4. Experimental Results

Table 3 lists the predicted results of different methods in
terms of AUC on the 12 networks. The results are obtained by
averaging over 50 independent realizations for each network
with testing set containing 10% links. The highest AUC value
for each network is highlighted in boldface. Clearly, TRA
index gets nine best results over the 12 networks. Meanwhile,
TRA index outperforms the CAR, CAA, CRA, and CCLP
indexes on all networks.We can see fromTable 2 that, onmost
of the networks, there exist varying degrees of such seed node
pairs with common neighbors that belong to 𝑃∃(𝑆△) and/or
𝑃∀(𝑆△). As stated in Introduction, CCLP index will give lower
or zero similarity scores to those pairs. Furthermore, both
values of 𝑅∃(𝑆𝐶𝐴𝑅) and 𝑅∀(𝑆𝐶𝐴𝑅) are very high on most
of the networks. Particularly, on Dolphin, Email, Hamster,
HEP, and Yeast, the corresponding values of 𝑅∀(𝑆𝐶𝐴𝑅) are
greater than 0.8. This phenomenon indicates that only a very
small fraction of seed node pairs with common neighbors
on those networks can be assigned similarity scores by CAR-
based indexes. Although there are some seed node pairs
belonging to 𝑃∃(𝑆𝑇𝑅𝐴) and/or 𝑃∀(𝑆𝑇𝑅𝐴), TRA index still can
assign reasonable similarity scores to them. Therefore, the
results of TRA index in Table 3 are better than them of
CAR, CAA, CRA, and CCLP indexes. For CN, AA, RA,
and ADP indexes, ADP index performs the best, since it
can penalize common neighbors by automatically adapting
to the network. On Dolphin, HEP, and USAir, ADP index
obtains the best accuracy; the performance of our index
approximates to the best. In addition, TRA index achieves
much better AUC scores than others on FW and Karate. This
result suggests that TRA-triangles play an important role on
these two networks. From Table 1, both networks are dense
ones. Roughly speaking, the probability that there exist TRA-
triangle-neighbors between seed nodes on dense networks is
more than on sparse ones.

To check whether the proposed index is significantly dif-
ferent with compared methods, we appliedWilcoxon signed-
ranks test [39] based on the results in Table 3. The pairwise
test results are presented in Figure 2. From the statistical point

Wilcoxon signed-ranks test
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Figure 2: The results of Wilcoxon signed-ranks test based on
Table 3.With 𝛼 = 0.05, if 𝑧 <= −1.96, the null-hypothesis is rejected.

of view, our index is significantly better than others except
ADP index, because ADP index has the capability of adapting
to the structure of a network automatically. Although there is
no statistical difference between our index and ADP index
according toWilcoxon signed-ranks test, our index performs
better than ADP index in terms of AUC.

Figure 3 exhibits the changes of AUC on 12 networks
when the proportion of 𝐸𝑡𝑠 in 𝐸 increases from 10% to
20%. It is quite evident from Figure 3 that the AUC values
of all indexes show downward trends when the proportion
increases from 10% to 20% except on FW. The reason is that
the increase of 𝐸𝑡𝑠 will decrease the size of training set 𝐸𝑡𝑟
and then will result in the number of common neighbors
between seed nodes becoming small. Consequently, the
difficulty of link prediction will enhance. The FW network,
which possesses high average degree, small average shortest
distance, and small-degree heterogeneity, is a very dense
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Figure 3: The changes of AUC when |𝐸𝑡𝑠|/|𝐸| increases from 10% to 20% on 12 networks. Each point is obtained by averaging over 50
independent realizations.

network. Therefore, the decrease of training set gives slight
influence of accuracy on FW. In addition, we can observe
from Figure 3 that the performance presented by all indexes
on ADV, CE, Dolphin, Email, Hamster, HEP, Karate, Word,
and Yeast is very similar. On these nine networks, the AUC
values of CAR-based indexes are obvious lower than those
of others. On the network of FW, the results of CAR-based
indexes are better than those of CN, AA, RA, and ADP
indexes, because FW is a very dense network in which the
ratio of CAR-triangle-neighbor is very high (see Table 2). On
PB and USAir, the performance of CAR-based indexes is not
as bad as on other nine networks. The reason is both networks
have high average degrees, small average shortest distances,
and high ratio of CAR-triangle-neighbors.

Furthermore, we list the AUC values of different methods
on the 12 networks when |𝐸𝑡𝑠|/|𝐸| = 0.2 in Table 4. The
results of our index outperform others on eight among the

12 networks, while CCLP index achieves the highest value on
CE.

Table 5 gives the results in terms of ranking score. These
results are similar to those in Table 3. The ranking score of
TRA index outperforms others except on Dolphin, HEP, and
USAir. The pairwise Wilcoxon signed-ranks test results are
shown in Figure 4. Similar to the test in Figure 2, TRA index
is significantly better than compared methods except ADP
index. As depicted above, ADP has the adaptive capability
and hence performs better than other compared methods.

Figure 5 describes the changes of ranking score on 12
networks when |𝐸𝑡𝑠|/|𝐸| increases from 10% to 20%. Clearly,
all indexes yield higher ranking scores with the increase of
𝐸𝑡𝑠. Do not forget that higher ranking score means lower
accuracy. As analyzed above, FW is very dense. Thus, the
changes of AUC on FW are very slight (see Figure 3).
However, the changes of ranking score on FW are more
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Figure 4: The results of Wilcoxon signed-ranks test based on Table 5. With 𝛼 = 0.05, if 𝑧 <= −1.96, the null-hypothesis is rejected.
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Figure 5: The changes of ranking score when |𝐸𝑡𝑠|/|𝐸| increases from 10% to 20% on 12 networks. Each point is obtained by averaging over
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Table 4: The AUC of different methods in 12 networks. The results are the average of 50 independent implementations with |𝐸𝑡𝑠|/|𝐸| = 0.2.
The best performance for each network is emphasized by boldface.

CN AA RA ADP CAR CAA CRA CCLP TRA
ADV 0.8830 0.8862 0.8864 0.8867 0.7672 0.7674 0.7676 0.8845 0.8877
CE 0.8210 0.8381 0.8418 0.8407 0.7079 0.7086 0.7104 0.8469 0.8384
Dolphin 0.7468 0.7494 0.7488 0.7497 0.5891 0.5930 0.5890 0.7322 0.7496
Email 0.8221 0.8239 0.8236 0.8239 0.6564 0.6571 0.6565 0.8186 0.8244
FW 0.6075 0.6099 0.6129 0.6117 0.6174 0.6173 0.6280 0.6354 0.6872
Hamster 0.7859 0.7885 0.7890 0.7883 0.6246 0.6246 0.6246 0.7885 0.7937
HEP 0.8587 0.8590 0.8590 0.8590 0.6460 0.6464 0.6460 0.8190 0.8589
Karate 0.6587 0.6900 0.6946 0.6932 0.5647 0.5597 0.5664 0.6582 0.7082
PB 0.9128 0.9160 0.9166 0.9172 0.8736 0.8719 0.8753 0.9152 0.9218
USAir 0.9280 0.9382 0.9428 0.9428 0.8956 0.8960 0.9000 0.9313 0.9378
Word 0.6546 0.6541 0.6522 0.6545 0.5464 0.5461 0.5462 0.6622 0.6672
Yeast 0.6870 0.6874 0.6873 0.6875 0.5793 0.5800 0.5793 0.6785 0.6879

Table 5:The ranking score of differentmethods in 12 networks.The results are the average of 50 independent implementationswith |𝐸𝑡𝑠|/|𝐸| =
0.1. The best performance for each network is emphasized by boldface.

CN AA RA ADP CAR CAA CRA CCLP TRA
ADV 0.1700 0.1663 0.1660 0.1657 0.1727 0.3780 0.3776 0.1690 0.1647
CE 0.1807 0.1613 0.1568 0.1574 0.2015 0.3930 0.3904 0.1603 0.1518
Dolphin 0.3271 0.3223 0.3232 0.3220 0.3338 0.6788 0.6788 0.3311 0.3234
Email 0.2745 0.2727 0.2731 0.2726 0.2771 0.5941 0.5942 0.2793 0.2724
FW 0.3986 0.3965 0.3925 0.3939 0.3844 0.3873 0.3821 0.3722 0.3179
Hamster 0.3323 0.3295 0.3287 0.3295 0.3357 0.6769 0.6768 0.3297 0.3234
HEP 0.2008 0.2005 0.2005 0.2005 0.2009 0.5839 0.5839 0.2729 0.2007
Karate 0.3393 0.3034 0.2922 0.2913 0.3391 0.7424 0.7424 0.3450 0.2708
PB 0.0988 0.0957 0.0944 0.0942 0.1013 0.1675 0.1657 0.0967 0.0899
USAir 0.0795 0.0688 0.0632 0.0632 0.0820 0.1332 0.1290 0.0782 0.0700
Word 0.4396 0.4362 0.4387 0.4360 0.4631 0.7862 0.7860 0.4317 0.4201
Yeast 0.5739 0.5734 0.5735 0.5734 0.5743 0.7989 0.7989 0.5895 0.5727

evident, especially for CAA and CRA indexes. The reason
is that the calculation of ranking score considers all missing
links. In addition, as seen in Figure 5, CAA and CRA indexes
perform worse than CAR index according to ranking score.
From the definitions of these three indexes, we find that both
CAA and CRA indexes can get more negative impact than
CAR index from zero-triangle-neighbors.

Finally, the ranking scores of all methods on the 12
networks with |𝐸𝑡𝑠|/|𝐸| = 0.2 are listed in Table 6. Our index
outperforms all other indexes except on HEP and USAir in
terms of ranking score.These results are consistent with them
of AUC. In contrast with that on FW, the influence of TRA-
triangles on HEP and USAir is small.

From the above results, we can conclude that TRA index
is superior to CAR-based indexes and CCLP index and
performs better than common-neighbor-based methods on
most of networks.

5. Conclusion and Discussion

Link prediction is an important research topic of complex
network analysis and has a wide range of applications in

various fields. Inspired by the triangle growth mechanism in
network evolving [41], this paper proposed the TRA index
for link prediction. When computing the similarity between
two seed nodes, the proposed index not only counts the
contributions of all common neighbors but also emphasizes
the importance of the neighbors that can formTRA-triangles.
To some extent, TRA-triangles reflect the close relationships
between neighbors and seed nodes. In addition, the proposed
index also adopts the theory of resource allocation [13] due to
its effectiveness.

The accuracy of the TRA index is experimentally evalu-
ated over 12 real-world networks from various fields in terms
of AUC and ranking score. The experimental results show
that the proposed index performs far better than CAR-based
indexes. Meanwhile, our index outperforms the CCLP index
because of the superior strategy in our index. For common-
neighbor-based methods, the proposed index yields some
improvements of accuracy onmost of networks.These results
indicate that combining the information of TRA-triangles
and the theory of resource allocation in similarity index is a
helpful idea for link prediction.
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Table 6:The ranking score of differentmethods in 12 networks.The results are the average of 50 independent implementationswith |𝐸𝑡𝑠|/|𝐸| =
0.2. The best performance for each network is emphasized by boldface.

CN AA RA ADP CAR CAA CRA CCLP TRA
ADV 0.2027 0.1993 0.1991 0.1989 0.2058 0.4561 0.4558 0.2024 0.1978
CE 0.2234 0.2033 0.1998 0.2006 0.2473 0.5268 0.5224 0.2029 0.1945
Dolphin 0.4040 0.3998 0.4004 0.3995 0.4108 0.7976 0.8029 0.4315 0.3993
Email 0.3274 0.3257 0.3261 0.3257 0.3298 0.6821 0.6829 0.3352 0.3253
FW 0.4008 0.3989 0.3956 0.3971 0.3900 0.4128 0.4032 0.3749 0.3259
Hamster 0.3721 0.3696 0.3690 0.3697 0.3756 0.7388 0.7387 0.3710 0.3644
HEP 0.2810 0.2808 0.2808 0.2808 0.2811 0.7070 0.7079 0.3609 0.2809
Karate 0.4347 0.4061 0.4017 0.4030 0.4376 0.8301 0.8181 0.4478 0.3893
PB 0.1124 0.1093 0.1085 0.1082 0.1159 0.2109 0.2080 0.1101 0.1034
USAir 0.0960 0.0859 0.0812 0.0812 0.0989 0.1781 0.1734 0.0952 0.0864
Word 0.4796 0.4757 0.4775 0.4753 0.5013 0.8580 0.8580 0.4728 0.4621
Yeast 0.6114 0.6110 0.6111 0.6110 0.6118 0.8392 0.8402 0.6298 0.6104

There are some improved studies for our index in future.
One of them is to analyze the degree of influence of TRA-
triangles on different networks and further to be adaptive to
set the weight of TRA-triangles on different networks. The
second is to study the application of TRA index on other
topics, such as community detection and anomaly detection.
In addition, for learning-based link prediction approaches,
TRA index can be used as a feature for a node pair.
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[6] L. Lü and T. Zhou, “Link prediction in complex networks: a sur-
vey,” Physica A: Statistical Mechanics and its Applications, vol.
390, no. 6, pp. 1150–1170, 2011.

[7] L. Li, L. Qian, X.Wang, S. Luo, andX.Chen, “Accurate similarity
index based on activity and connectivity of node for link pre-
diction,” International Journal of Modern Physics B, vol. 29, no.
17, 1550108, 15 pages, 2015.

[8] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social
networks: the state-of-the-art,” Science China Information Sci-
ences, vol. 58, no. 1, pp. 1–38, 2014.

[9] V. Mart́ınez, F. Berzal, and J.-C. Cubero, “A survey of link pre-
diction in complex networks,”ACMComputing Surveys, vol. 49,
no. 4, pp. 69:1–69:33, 2016.

[10] C. Ahmed, A. ElKorany, and R. Bahgat, “A supervised learning
approach to link prediction in Twitter,” Social Network Analysis
and Mining, vol. 6, no. 1, 2016.

[11] D. Liben-Nowell and J. Kleinberg, “The link-prediction prob-
lem for social networks,” Journal of the Association for Informa-
tion Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[12] L. A. Adamic and E. Adar, “Friends and neighbors on theWeb,”
Social Networks, vol. 25, no. 3, pp. 211–230, 2003.
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In recent years, many researchers have applied complex network theory to urban public transport network to construct complex
network and analyze its network performance. The original analysis method generally uses the Space L and Space R model to
establish a simple link between public sites but ignores the organic link between the overall network system and the line subsystem.
As an important part of urban public transport system, subway plays an important role in alleviating traffic pressure. In this paper,
a supernetwork model of Nanjing metro network is established by using the supernetwork method. Three parameters, node-
hyperedge degree, hyperedge-node degree, and hyperedge degree, are proposed to describe the model. The model is compared
with the traditional Space L and Space P models. The study on the supernetwork model of Nanjing metro complex network shows
that the network density, network centrality, and network clustering coefficient are large, and the average network distance is small,
whichmeets the requirements of traffic planning and design. In this study, the subway line is considered as a subsystem and further
simplified as a node, so that the complex network analysis method can be applied to the new supernetwork model, expanding the
thinking of complex network research.

1. Introduction

With the rapid development of urban construction, more and
more cities in China have opened the subway. As an impor-
tant part of urban public transport system, subway plays
an important role in relieving traffic pressure. Urban public
transport system can be abstracted as complex network com-
posed of stations and routes. The study of subway network
is helpful to understand the evolution mechanism of public
transport system and solve the problem of urban congestion.

Complex networks are characterized by complex struc-
ture and huge number of nodes. Watts and Strogatz were
first proposed to have small world characteristics for complex
networks [1]. Barabasi and Albert proposed scale-free power-
lawdistribution properties [2]. Complex networks are applied
to the construction and analysis of public transport network.
An X L takes the bus line as the network node and uses
Space R method to establish a multiweight bus road network
model. By changing the different weights, the balance of
the whole public transport network system is discussed [3].
From the static point of view of network topology, Bona A
A D uses complex network theory to analyze the structure

of public transport system in Curitiba, and compares it with
the structure of public transport system in three big cities
of China, including Shanghai, Beijing, and Guangzhou [4].
Manitz J proposes two methods for the cause estimation of
delay in public transport networks. The application of the
two methods in simulation research and in German railway
system is examined [5].

Ouyang M takes China Railway System as an example,
chooses three typical models based on complex network,
and analyzes railway accessibility and virtual users based on
traffic [6]. Zhang L has established a complex network of
Jinan public transport lines by using the Space R method.
It is found that the network has small world characteristics
and large average clustering coefficient [7]. Mohmand Y T
studied the structural characteristics of the Pakistani railway
network, whose complex network shows the properties of the
small world [8]. These studies include constructing complex
networks of public transport networks and analyzing their
structure and performance.

Complex network theory is also used to analyze the urban
subway network. Based on the complex network theory, Ding
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R explores the evolution process of Kuala Lumpur public
rail transit network and evaluates the network performance
changes in the face of different attack strategies [9]. Based
on the trip data and operation schedule of Beijing subway
system, Yang Y proposed a multilayer model to analyze
the traffic flow pattern of subway network [10]. Feng J
establishes a multilayer model of the workday and weekend
flow distribution of the subway network based on the Beijing
subway trip data and operation schedule [11].

Wu X established six metro complex networks in Beijing,
London, Paris, Hong Kong, Tokyo, and New York and
evaluated their topological efficiency and robustness [12].
Cats O establishes an evaluation model of public transport
robustness and applies the model to Amsterdam urban rail
transit network and evaluates the robustness of the network
[13].Zhang J analyzed the complex network characteristics of
the subway network in Beijing, Guangzhou, and Shanghai
and studied the vulnerability of the subway network [14].
These studies include the construction of complex urban
subway network, the analysis of its structural performance
and robustness, and the establishment of subway network
traffic flow model.

Supernetwork theory has been applied to various indus-
tries. Wang J P presents an improved hypernetwork model of
knowledge diffusion algorithm and analyzes the performance
of knowledge diffusion [15]. Zhao L constructs the knowledge
supernetwork model of business incubators and studies the
performance differences of knowledge services of different
incubators by simulation [16]. Suo Q applies hypernetwork
method to analyze user ratings in social networks and puts
forward suggestions for collaboration in hypernetworks [17].
Cheng Q proposes a newmethod to reveal the community of
supernetworks, which transforms the problem of community
detection into the problem of DOT partitioning [18].

Wang F, taking WeChat as a sample, proposes an attrac-
tive and node-age inhomogeneous hypernetwork model
[19]. Cheng Y puts forward the concept of supply-demand
matching hypernetwork for manufacturing services in SOM
system and reveals the matching relationship between each
service and each task [20]. Lv T proposes a three-tier
petroleum emergency dispatching network based on super-
network model, which enhances regional emergency corre-
lation by adding transfer management process [21]. Yamada
T proposes a discrete network design problem based on
supernetwork optimization of freight network [22]. The
application of supernetwork analysis is focused onknowledge
propagationmodel, community network analysis, and supply
chain management.

Supernetwork analysis can also be seen in the subway
network. Du W J puts forward a supernetwork model of
urban public transport composed of conventional public
transport network and urban rail transit network. Based on
the external synchronization theory of coupled complex net-
works, the synchronization problem of urban public trans-
port supernetwork model is studied [23]. Suo Q takes station
representation as node and line representation as superedge.
This paper presents a supernetwork model to describe the
evolution mechanism of high-speed railway system [24]. At
present, the analysis of supernetwork in metro network is

limited to abstract network and simulation research, and the
important parameters of metro supernetwork are not put
forward and have not been applied to actual cases.

The complex network theory is used tomodel and analyze
the urban subway network, generally using the Space L
and Spacer methods. Both methods use subway stations as
nodes, the Space L method establishes the links between
adjacent stations on different lines, and the Space R method
establishes the links between stations on the same line. The
complex network model of urban subway is composed of
the links between stations, and then the performance of the
complex network can be analyzed. Once these twomodels are
established, the relationship between the station and the line
is neglected, and the change of the relationship between the
stations is simply analyzed.

The supernetwork model can make up for this deficiency.
Urban subway supernetwork is composed of main system
and subsystem. The stations between the main systems are
connected by some rules, which reflects the overall structure
and performance of urban subway network. At the same
time, the nodes in each subsystem are connected according
to some rules, reflecting the connection between the lines
and stations. When analyzing the performance of the main
network of the metro supernetwork, the control rules of the
line subsystem must be taken into account. In some cases,
the line subsystem can be further simplified as a supernode,
thus reflecting the overall relationship between lines. As an
upgraded version of complex network, supernetwork can
more effectively reflect the real structure and performance of
urban subway network.

In recent years, Nanjing’s public transport system has
developed rapidly, opening a number of subway lines, more
and more subway lines are also under construction. As an
important part of public transport network system, subway
can not only save traffic resources, but also provide a strong
guarantee for the convenience of passengers. In this paper,
the complex network of Nanjing metro is selected as the
object. On the basis of the traditional complex networkmodel
Space L and Space P, the topologymodel of the supernetwork
is constructed. In this paper, the subway supernetwork
is described with the parameters of node degree, node-
hyperedge degree, hyperedge-node degree, and hyperedge
degree, and the network density, center degree, average
distance, and clustering coefficient in complex network are
extended to the theory of supernetwork, and the comparison
with the traditional subway complex network model is made.

The subway can also be called the metro. In the general
description of this article, it is called the subway. And
according to the official name of Nanjing, it is called the
metro. The supernetwork can also be called a hypernetwork.
In the general description of this article, it is called the super-
network. In the specific model, it is called hypernetwork, and
its corresponding edge is also called hyperedge.

2. Nanjing Metro Network

The data of the Nanjing metro network mainly comes from
the latest Nanjing bus line map issued by the Nanjing passen-
ger transport management office and the latest tourism traffic
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Figure 1: Space L spatial model of Nanjing metro complex network.

Figure 2: Space P spatial model of Nanjing metro complex network.

map of 2018 and the city map of Nanjing. The basic assump-
tions of Nanjing metro network topology are as follows.

The subway network is abstracted as an undirected
network. There are differences between the upstream and
downstream stations due to traffic control and other routes.
Without considering the frequency of departure, the network
is abstracted as a nonweighted network. The same name
site is regarded as a docking site, ignoring the differences
caused by the same location of individual sites but different
locations. The temporary bus route diversion caused by road
construction or other reasons, the cancellation or increase of
subway stations, etc. shall not be considered.

There are two ways to describe the traditional traffic
network topology: one is the Space L method, that is, the
traffic site is regarded as a node, and if the two sites on a traffic
line are adjacent, there is a link between them. Another is the
Space P method, that is, the traffic network site as a node,
if there is a direct traffic line between the two stations, they
have a connection. From the definition, we can see that the
network constructed by Space L method is the subnetwork
constructed by Space P method [25].

Figure 1 shows the Space L spatial model of Nanjing
metro complex network. It can be seen from the model that

the number of nodes in the network is not much, and the
topology map is not complex. This is because the subway
network in Nanjing is still in the process of construction, and
there are still more lines to be opened in the future to meet
the needs of the residents. The network presents an obvious
star structure extending from the center to the periphery. At
the core of the network is the core residential area of the city,
surrounded by suburbs and further county towns.

Figure 2 shows the Space P spatial model of Nanjing
metro complex network. It can be seen from the model that
because the model represents all sites on the same line, there
are ten distinct clustering subgraphs, which actually represent
10 subway lines. These lines are linked by important nodes.

3. Hypergraph and Supernetwork Model

The concept of hypergraph is proposed by BERGE in 1970.
This is the first time that the theory of undirected hyper-
graph is established systematically, and the application of
hypergraph theory in operational research is studied by using
matroids. Nodes in a supernetwork represent a given set of
networks, while edges and arcs represent a combined move-
ment and a combination of preferences in a given set, and



4 Complexity

Line1 Line2 

Stations 

Line3 

Figure 3: Supernetwork topology map of Nanjing metro.

the supernetwork uniquely represents all the combination of
mobile and preference dominated by the rules [26].

The definition of hypergraph is as follows: suppose V is a
finite set.

If e𝑖 ̸= 𝐻(𝑖 = 1, 2, . . . , 𝑚),

(1) 𝑚𝑌
𝑖=1

𝑒𝑖 = 𝑉 (1)

The two element relation 𝐻 = (𝑉, 𝐸) is called a
hypergraph.

The element of V, {V1, V2, ⋅ ⋅ ⋅ , V𝑛} is called the vertex
of hypergraph, 𝐸 = {𝐸1, 𝐸2, ⋅ ⋅ ⋅ , 𝐸𝑚} is the edge set of
hypergraph, and the set is called the edge of hypergraph.

Figure 3 shows the supernetwork topology map of Nan-
jing metro. The supernetwork model of the subway network
consists of two parts, one is the subsystem network, which
refers to the local railway lines, the other is the main system
network, which refers to the overall network established
between the railway stations. The main system and subsys-
tems are independent and interrelated. Subsystem networks
of the subway network include line 1, line 2, and line 3. The
site on each route forms a line with certain rules. Lines,
sites, and rules form the so-called hyperedge. Stations in the

main system network of a metro network are associated with
certain rules, such as the Space L and Space R methods for
general complex networkmodels.However, the constraints of
subsystem networks are neglected once the complex network
models using these two methods are established.

The supernetwork model of metro network is different,
and the organic connection between the main system net-
work and the subsystem network is always considered.There-
fore, in the analysis of the supernetworkmodel of subway net-
work, the relationship between nodes-hyperedge, hyperedge-
node, and hyperedge-hyperedge is included. When each
subway line is simplified into a supernode, a new superedge
network model is formed. Unlike Space L and Space R,
each node of the hyperedge network model represents a
specific subway line. A general complex network analy-
sis method is also applicable to the superedge network
model.

In the hypergraph of the supernetwork of Nanjing metro,
the neighborhood matrix A reflects the relationship between
the subway station and the hyperedge of the subway line.The
line of the A represents the subway station, and the column
of the A is the subway line. If the site belongs to a certain line,
there is a relationship between the two, and the assignment is
1 or 0. A is a symmetric matrix.

𝐴𝑚×𝑛 =

𝐸1
𝐸2
𝐸3
𝐸4
...

𝐸𝑚

V1

[[[[[[[[[[[[[
[

0
𝑎21
𝑎31
𝑎41
...

𝑎𝑚1

V2
𝑎12
0
𝑎32
𝑎42
...

𝑎𝑚2

V3
𝑎13
𝑎23
0
𝑎43
...

𝑎𝑚3

V4
𝑎14
𝑎24
𝑎34
0
...

𝑎𝑚4

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

V𝑛
𝑎1𝑛
𝑎2𝑛
𝑎3𝑛
𝑎4𝑛
...
0

]]]]]]]]]]]]]
]

(2)

where N is the number of stations on the subway network
and M is the number of subway lines. V𝑖(𝑖 = 1, 2, 3, 4, ⋅ ⋅ ⋅ , 𝑛)
stands for the subway station,. 𝐸𝑗(𝑗 = 1, 2, 3, 4, ⋅ ⋅ ⋅ , 𝑚)

represents the subway line. 𝑎𝑖𝑗(𝑖 = 1, 2, 3, 4, ⋅ ⋅ ⋅ 𝑛; 𝑗 =
1, 2, 3, 4, ⋅ ⋅ ⋅ , 𝑚) represents the relationship between the site
and the line.
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Figure 4: Topology of hyperedge-hyperedge relation in supernetwork of Nanjing metro.

The study in this paper further simplifies the sub-
way supernetwork and establishes the relationship between
hyperedge and hyperedge. In hypergraph 𝑆 = (𝐸, 𝐸), the
neighborhood matrix B reflects the relationship between the

subway hyperedges.The rows and columns of B represent the
metro lines. If there is the same station between the two lines,
there is a relationship between them.The assignment value is
1, otherwise it is 0. B is a symmetric matrix.

𝑆𝑚×𝑛 =

𝐸1
𝐸2
𝐸3
𝐸4
...

𝐸𝑚

𝐸1
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[
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𝑏21
𝑏31
𝑏41
...

𝑏𝑚1

𝐸2
𝑏12
0
𝑏32
𝑏42
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𝑏𝑚2

𝐸3
𝑏13
𝑏23
0
𝑏43
...

𝑏𝑚3

𝐸4
𝑏14
𝑏24
𝑏34
0
...

𝑏𝑚4

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝐸𝑚
𝑏1𝑚
𝑏2𝑚
𝑏3𝑚
𝑏4𝑚
...
0

]]]]]]]]]]]]
]

(3)

where M is the number of subway lines. 𝐸𝑖(𝑖 = 1, 2,
3, 4, ⋅ ⋅ ⋅ , 𝑚) stands for subway lines, 𝐸𝑗(𝑗 = 1, 2, 3, 4, ⋅ ⋅ ⋅ , 𝑚)
represents subway lines, and 𝑏𝑖𝑗(𝑖 = 1, 2, 3, 4, ⋅ ⋅ ⋅ , 𝑚; 𝑗 =
1, 2, 3, 4, ⋅ ⋅ ⋅ , 𝑚) represents the relationship between the lines.

Figure 4 shows the topology of hyperedge-hyperedge
relation in supernetwork of Nanjing metro. By comparing
Figure 4 with Figure 2, we can see that the model is a sim-
plified version of the Space P spatial model. In supernetwork
model, the nodes are juxtaposed. After simplification, the
hyperedge space model also forms a new complex network in
which the nodes represent a line, the edges of which represent
a common site between the lines. The method of analyzing
general complex networks is applicable to the hyperedge
space model.

4. The Degree of Complex Network

4.1. Node Degree. Those points adjacent to a point become
a node's adjacent point; the number of adjacent points of
a point is called the degree of the point, also known as
the degree of association. The node degree is defined as
the number of other nodes connected to the node. In fact,
the degree of a point is also the number of lines connected
to that point. If the degree of a point is 0, it is called an

outlier. The node degree distribution can be described by the
distribution function p (k), which indicates the probability
that a randomly selected node is exactly k.

Figure 5 shows the probability distribution of node degree
in Space L space of complex network in Nanjing metro. The
formula is fitted to y = 0.271x−1.64 through the data. It can
be seen that the node degree distribution in the bus network
Space L of Nanjing is close to the power-law distribution,
which indicates that the subway network inNanjing is a scale-
free network in Space L.

According to the observation and analysis of the pub-
lic transport network, the urban public transport network
has the characteristics of growth and priority connectivity.
Therefore, the public transport network will eventually form
a scale-free network, and the distribution of the node degree
in Figure 5 confirms this theory. In general, the greater the
degree of a node means the more important the node is. As
can be seen from Figure 5, the degree of most of the nodes is
less than 6, and the node degree is basically 2.This is because
the subway network structure is relatively simple and can not
form a very complex network structure.

Figure 6 shows the probability distribution of node degree
in Space P space of complex network in Nanjing metro.
The formula is fitted to y = 0.421x−0.89 through the data.
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Figure 5: Probability distribution of node degree in Space L space
of complex network in Nanjing metro.
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Figure 6: Probability distribution of node degree in Space P space
of complex network in Nanjing metro.

It can be seen that the node degree distribution in the
subway network Space P of Nanjing is close to the power-
law distribution. As can be seen from Figure 6, the degree
of most of the nodes is less than 60 and the degree of node
concentration is between 10 and 30, which indicates the
number of other sites connected by the node through the
subway line.

4.2. Node-Hyperedge Degree. Node-hyperedge degree is
defined as the number of hyperedges that contain the node.
As shown in Figure 3, we can see that there is a node
belonging to line 1 and line 2, and the node's node-hyperedge
degree is 2. The node-hyperedge degree distribution can be
described by the distribution function P (k), which represents
the probability that the node-hyperedge degree of a randomly
selected node is exactly K.

Figure 7 shows the probability distribution of hypernet-
work node-hyperedge degree in Nanjing metro. The formula
is fitted to y = 0.916x−3.59 through the data. It can be seen
that the probability distribution of node-hyperedge degree of
Nanjing metro network is close to power-law distribution.
From Figure 7, we can see that node-hyperedge degree is
actually 1, 2, and 4. The number of stations containing
stations is usually 1, meaning that most subway stations only
have one route to go through. A few subway stations, as
important transfer sites, have two routes to go through. This
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Figure 7: Probability distribution of hypernetwork node-hyperedge
degree in Nanjing metro.
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Figure 8: Distribution of hyperedge-node degree of hypernetwork
in Nanjing metro.

is determined by the nature of the subway network, the
structure presents star type radiation, and the overlapping
sites are few.

4.3. Hyperedge-Node Degree. The hyperedge-node degree is
defined as the number of nodes contained in a superedge. In
subway hypernetwork, this parameter represents the number
of subway stations contained in a line.

Figure 8 shows the distribution of hyperedge-node degree
of hypernetwork in Nanjing metro. The name of the subway
is 1 to 10, representing Nanjing metro 1, 2, 3, 4, 10, and
suburban railway lines s1, s3, s7, s8, and s9. The degree of
hyperedge-node is between 6 and 29. The subway lines in
the center of the city usually have more stations, and the
distance between stations is shorter, which effectively meets
the needs of the residents in the central area. The suburban
subway lines have fewer stations, and the distance between
stations is longer, connecting the suburbs, remote counties,
and airports.

4.4. Hyperedge Degree. The hyperedge degree refers to the
number of other hyperedges adjacent to the hyperedge,
that is, the number of other hyperedges that have common
nodes with the hyperedge. In subway hyperedge network,
this parameter represents the number of other subway lines
connected by a subway line.
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Table 1: Degree distribution of main sites in Nanjing metro.

Space Space L Space P Node-hyperedge
Ranking Node Degree Node Degree Node Degree

1 Nanjing south
railway station 6 Nanjing south

railway station 78 Nanjing south
railway station 4

2 Yuantong 4 NanJing Railway
Station 53 Yuantong 2

3 Jimingsi 4 Daxinggong 53 Youfangqiao 2

4 NanJing Railway
Station 4 Xinjiekou 51 Xinjiekou 2

5 Jinma Road 4 Jimingsi 45 Xiangyu Road
South 2

6 Taifeng Road 4 Taifeng Road 44 Taifeng Road 2

7 Xinjiekou 4 Youfangqiao 43 NanJing Railway
Station

2

8 Gulou 4 Gulou 43 Lukou airport 2
9 Daxinggong 4 Jinma Road 42 Jinma Road 2

10 Xiangyu Road
South

3 Andemen 39 Jimingsi 2

11 Andemen 3 Yuatong 38 Gulou 2
12 Youfangqiao 3 Chengxin Road 28 Daxinggong 2
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Figure 9: Hyperedge degree distribution of the hypernetwork in
Nanjing metro.

Figure 9 shows the hyperedge degree distribution of the
hypernetwork in Nanjing metro. The name of the subway is 1
to 10, representing Nanjing metro 1, 2, 3, 4, 10, and suburban
railway lines s1, s3, s7, s8, and s9. The value of the superedge
is between 1 and 6. Metro lines 1, 2, and 3 have a higher node-
hyperedge degree and have a better switching function. The
suburban subway s1 has a superedge of 5, because it connects
the suburbs, airports, railway stations, and remote county
towns. Metro line s3 has a superedge of 4, because it connects
some suburban lines.

Figure 10 shows the probability distribution of hypernet-
work hyperedge degree in Nanjing metro. If the hyperedge
degree distribution is described by the distribution function
p (k), the probability of a hyperedge of a randomly selected
hyperedge is exactly k. From the probability distributionmap,
the hyperedge does not obey the power-law distribution, but
it is similar to the two power function after fitting.
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Figure 10: Probability distribution of hypernetwork hyperedge
degree in Nanjing metro.

4.5. Analysis of Public Hub Sites. Table 1 shows the highest
degree of 12 nodes in Space L, Space P, and node-hyperedge
space. These sites, known as public pivot points, play a vital
role in the urban public transport network, connected to not
only a large number of subway stations, but also a number of
bus stations and many of the lines through the site.

It can be seen from Table 1 that the node degree of Space
P space is 6. The maximum node degree of Space P space
is 78, and the range of numerical fluctuation is large. The
node-hyperedge space is 2 except for one node with 4. In the
three spaces, the most important is the Nanjing south railway
station, which connects the suburban, railway station, and the
airport's subway lines, which has played an important role
in the transfer. In the three spaces, the top ranking sites are
basically unchanged. These are important public hub sites.

5. Spatial Characteristics of Metro Network

In this paper, three spatial models of urban subway network
are constructed by using the space L, space R and superedge
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Table 2: Spatial characteristics of the complex network of Nanjing metro.

characteristics Space L Space P Hyperedge Space
Network size 159 159 10
Network density (%) 1.31 13.69 37.78
Network centrality (%) 2.52 36.13 36.11
Network average distance 16.77 2.34 1.82
Network clustering coefficient (%) 0 95.8 67.6

space methods. The superedge network model simplifies
each subway line into a supernode. If each line has the
same station, the supernodes are connected. When analyzing
the performance of Space L and Space R models in sub-
way networks, the general spatial characteristic parameters
include network size, network density, network center degree,
network average distance, and network clustering coefficient
[9, 10].The analysismethod is also applicable to the superedge
network model.

Table 2 shows the spatial characteristics of Nanjing
metro complex network and uses the network size, network
density, network center degree, network average distance, and
network clustering coefficient of five indicators. In this paper,
three models of Space L, Space P, and hyperedge space are
selected for comparison.Thehyperedge spacemodel is shown
in Figure 4. The network size of Space L and Space P space is
159, which means that there are 159 subway stations. The size
of the network in the hyperedge space is 10, whichmeans that
there are 10 subway lines.

5.1. Network Density. Network density refers to the degree of
closeness between nodes in a network. Network G's network
density d (G) is defined as

𝑑 (𝐺) = 2𝑀
[𝑁 (𝑁 − 1)] (4)

where M is the number of connections actually owned in
the network andN is the number of network nodes.The range
of network density is [0, 1]. When the network is completely
connected, the network density is 1, while the actual network
density is usually much less than 1.

As can be seen from Table 2, the network density of
Space L is relatively low, because the subway lines are still
relatively small, and the structure presents a star-shaped loose
structure. The network density of Space P is the result of
the characteristics of the structure model, so the connection
between the stations on each line has been established, and
the density value of the network is improved. In fact, there
are relatively few links between the lines. The density of
network in hyperedge space is relatively high, because the
model reflects the relationship between subway lines, and the
distribution is more balanced in the whole region.

5.2. Network Centrality. Degree centrality is divided into
node centrality and network centrality. The former refers to
the degree of centrality among the nodes in which the nodes
are directly connected to them, while the latter focuses on the
central degree of the whole network, representing the degree

of centralization of the entire network, that is, the extent to
which the entire network organizes the operation around a
node or a group of nodes. The degree centrality 𝐶𝐷 (v𝑖) of
node v𝑖 is defined as

𝐶𝐷 (𝑉𝑖) = 𝑘𝑖
𝑁 − 1 (5)

In all networks containing N nodes, assume that network
Goptimal maxims the following formula:

𝐻 =
𝑁

∑
𝑖=1

[𝐶𝐷 (𝑉max) − 𝐶𝐷 (𝑉𝑖)] (6)

In the formula, v𝑖 is the node of the network Goptimal , and
V max represents the node with the largest degree of centrality
in the network Goptimal .

For a network G containing N nodes, Vmax means that
it has the largest degree of centrality. Figure Goptimal for star
network, the degree centrality 𝐶𝐷 of network G is defined as

𝐶𝐷 = 1
𝑁 − 2

𝑁

∑
𝑖=1

[𝐶𝐷 (𝑉max) − 𝐶𝐷 (𝑉𝑖)] (7)

As can be seen from Table 2, the network centrality of
Space L is relatively small, which is due to loose structure; no
node has a larger degree of node.Thenetwork center of Space
P is relatively large, because the connection between lines is
associated with all sites on different lines and thus presents
better centrality. The network center of the hyperedge space
is relatively large, because some important metro lines are
effectively connected to other suburban metro lines, such as
line 1, line 2, and line 3 of the Nanjing metro.

5.3. Network Average Distance. In mathematics, physics, and
sociology, the small world network is a type of mathematical
graph, in which most of the nodes are not adjacent to each
other, but most of the nodes can arrive at a few steps from
any other point. Small world networks are usually measured
by means of two parameters: average distance and clustering
coefficient. The small world standard has a small network
average distance L and a high clustering coefficient C.

Distance refers to the total number of lines that a node
must pass through in its path to another node, i.e., the length
of the shortcut between two points. Mean distance represents
the average distance between all pairs of points in a graph.The
overall reachability of the network is better than the average
distance, but the connectivity of the whole network cannot be
truly reflected by the connected distance in the case that the
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whole network is not in the connected state, but in the case of
multiple subgraphs. Although many real networks have large
number of nodes, the average distance is surprisingly small.
This is the so-called small world effect.

For the undirected simple graph, the formula is as follows:

𝐿 = 2
𝑁 (𝑁 − 1)

𝑁

∑
𝑖=1

𝑁

∑
𝑗=𝑖+1

𝑑𝑖𝑗 (8)

where L is the average distance of the network, N is the
total number of nodes, and the distance from node i to node
j.

As you can see fromTable 2, the network average distance
of Space L is larger because it represents the length between
one site and another, and the space model’s star structure
determines the distance to the suburb.The average distance of
Space P is 2.34, whichmeans the average transfer is 2.34 times
fromone subway station to another. Considering the shortcut
of the subway, the transfer efficiency is still high. The average
distance in the hyperspace is 1.82, whichmeans that it is more
efficient to transfer from one subway line to another through
1.82.

5.4. Network Clustering Coefficient. According to the graph
theory, the clustering coefficient is the coefficient that repre-
sents the degree of node clustering in a graph. Evidence shows
that in the real network, especially in a specific network, the
nodes tend to establish a set of close organizational systems
because of the relative high density connection points. In
real-world networks, this probability is often greater than
the average probability of randomly setting up a connection
between two nodes.

First of all, we look at the definition of the clustering
coefficient of the nodes. If the node v𝑖 is connected directly
with the 𝑘𝑖 node, the maximum number of possible edges
between the 𝑘𝑖 nodes for the undirected network is 𝑘𝑖 (𝑘𝑖 −1)/2, while the actual number of edges is 𝑀𝑖.

𝐶 =
𝑛

∑
𝑖=1

𝐶𝑖 =
𝑛

∑
𝑖=1

2𝑀𝑖
𝑘𝑖 (𝑘𝑖 − 1) (9)

The network clustering coefficient C is the average clus-
tering coefficient Ci of all nodes i. It is obvious 0 ≤ C ≤ 1,
where 𝑘𝑖 represents the number of all adjacent nodes of node
i and N represents the number of all nodes.

It can be seen from Table 2 that the clustering coefficient
of Space L is zero because of the loose topology of space. Space
P's network clustering coefficient is large because the sites
on each line are set up to connect when building the model.
The network clustering coefficient of the hyperedge space is
relatively large, because the subway lines in some urban areas
have played an important connection with the lines of the
suburbs, airports, and railway stations.

6. Conclusions

When using the general complex network method to analyze
the network, the nodes are often regarded as independent,

ignoring the small group effect of the network. Hypergraph
and hypernetwork method make up for this deficiency to a
certain extent. This paper chooses Nanjing metro complex
network as the research object, establishes the space L,
space P, and hypernetwork model, and compares the three
network structures. The hypernetwork model reflects the
relationship between the subway station and the subway
lines and the relationship between the subway lines. The
analysis shows that the network density, network centrality,
and network centrality of the metro hypernetwork in Nan-
jing are large, and the average distance of the network is
small, which is in line with the ideal traffic planning and
design.

The public transport hub sites extracted from the hyper-
network model are similar to the other two models. This
paper only analyzes the complex network of Nanjing metro
and can further expand to the bus system, shared bicycle sys-
tem, and uses the hypernetwork model to establish a higher
level, more complex system, and analyze the connection. The
application of the hypernetwork model is only an undirected
simple network, and the relationship established is only a
subordinate relationship between the line and the site. The
future hypernetwork model can be extended to a directed
weighted network, to establish a more complex model to
consider travel costs and travel preferences and to apply to
solving other traffic problems.

Appendix

Nanjing Metro Data

The data of the Nanjing metro network mainly comes from
the latest Nanjing bus line map issued by the Nanjing
passenger transportmanagement office and the latest tourism
traffic map of 2018 and the city map of Nanjing. The basic
assumptions of Nanjing metro network topology are as
follows.

ByMay 2018, Nanjing metro network has opened 10 lines,
1, 2, 3, 4, and 10 and the suburban railway lines S1, S3, S7, S8,
S9, which are composed of 159 subway stations. The opening
order is 1, 2, 10, S1, S8, 3, 4, S3, S9, and S7.

The metro data are as follows:
Line 1: maigaoqiao, hongshandongwuyuan, nanjingzhan,

xinmofanmalu, xuanwumen, gulou, zhujianglu, xinjiekou,
zhangfuyuan, sanshanjie, zhonghuamen, andemen, tianlon-
gsi, ruanjiandadao, huashenmiao, nanjingnanzhan, shuan-
glongdadao, hedingqiao, shengtailu, baijiahu, xiaolongwan,
zhushanlu, tianyindadao, longmiandadao, nanyidajiangsu-
jingmaoxueyuanzhan, nanjingjiaoyuan, zhongguoyaokedax-
ue

Line 2: youfangqiao, yurundajie, yuantong, aotidong, xin-
glongdajie, jiqingmendajie, yunjinlu, mochouhu, hanzhong-
men, shanghailu, xinjiekou, daxinggong, xianmen, minggu-
gong,muxuyuan, xiamafang, xiaolingwei, zhonglingjie,maq-
un, jinmalu, xianhemen, xuezelu, xianlinzhongxin, yang-
shangongyuan, nandaxianlinxiaoqu, jingtianlu

Line 3: linchang, xinghuolu, dongdachengxianxueyuan,
taifenglu, tianruncheng, liuzhoudonglu, shangyuanmen,
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wutangguangchang, xiaoshi, nanjingzhan, nanjinglinyedax-
uexinzhuang, jimingsi, fuqiao, daxinggong, changfujie, fuz-
imiao, wudingmen, yuhuamen, qiazimen, daminglu, ming-
faguangchang, nanjingnanzhan, hongyundadao, shengtaix-
ilu, tianyuanxilu, jiulonghu, chengxindadao, dongdajiulong-
huxiaoqu, mozhoudonglu

Line 4: longjiang, nanyiershicaochang, yunnanlu, gulou,
jimingsi, jiuhuashan, gangzicun, jiangwangmiao, wangjiaw-
an, jubaoshan, suningzongbuxuzhuang, jinmalu, huitonglu,
lingshan, dongliu, mengbei, xiganghuashu, xianlinhu

Line 10: andemen, xiaoxing, zhongsheng, yuantong, aot-
izhongxin, mengdudajie, lüboyuan, jiangxinzhou, linjianglu,
pukouwanhuicheng, nanjinggongyedaxue, longhualu, wen-
delu, yushanlu

S1: nanjingnanzhan, cuipingshan, fochengxilu, jiyindad-
ao, zhengfangzhonglu, xiangyulubei, xiangyulunan, lukou-
jichang

S3: gaojiachong, linshan, qiaolinxincheng, shiqihe, shu-
anglong, lanhuatang, maluowei, liucun, tianbao, gaomiaolu,
wuhoujie, pingliangdajie, yongchulu, youfangqiao, jiaxi,
chunjianglu, tiexinqiao, jingmingjiayuan, nanjingnanzhan

S7: lukoujichang, jichangdong, zhetang, zhetangxinqu,
jinshan, tuanshan, lishui, zhongshandonglu, jinlonglu, wuxi-
angshan

S8: taishanxincun, taifenglu, gaoxinkaifaqu, xinxigong-
chengdaxue, xiejiadian, dachang, getang, changlu, huagon-
gyuan, liuhekaifaqu, longchi, xiongzhou, fenghuangshang-
ongyuan, fangzhouguangchang, shenqiao, babaiqiao, jinni-
uhu

S9: xiangyulunan, tongshan, shiqiu, mingjue, tuanjiewei,
gaochun
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The Nanjing metro data used to support the findings of this
study are included within Appendix.
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This study constructs a heterogeneous model of health food safety scare behavior diffusion through a complex network model by
considering health food safety information transparency and health food consumers’ ability to process information. This study
first analyzes the effects of network structure and heterogeneity of health food consumers on the health food safety scare behavior
diffusion using network stochastic dominance theory. Subsequently, a computer mathematical simulation is performed to explore
the characteristics and laws of the evolution of health food safety scare behavior diffusion. The following three major conclusions
can be drawn from the results. First, increases in the health food safety information transparency, the health food consumers’
ability to process information, and the recovery rate of health food consumers can increase the threshold of the rate of health food
safety scare behavior diffusion. The health food safety information transparency and the recovery rate of health food consumers
show marginal incremental rising characteristics in relation to the rate of health food safety scare behavior diffusion, whereas the
health food consumers’ ability to process information shows a marginal diminishing rising characteristic in relation to the rate of
health food safety scare behavior diffusion. Second, increases in the health food safety information transparency, the health food
consumers’ ability to process information, and the recovery rate of health food consumers can decrease the scale of the health
food safety scare behavior diffusion. The health food safety information transparency shows a marginal diminishing decreasing
characteristic in relation to the scale of the health food safety scare behavior diffusion, whereas the health food consumers’ ability
to process information and the recovery rate of the health food consumers show marginal incremental decreasing characteristics
in relation to the scale of the health food safety scare behavior diffusion. Finally, the network structure of health food consumers
significantly affects the health food safety scare behavior diffusion. A high heterogeneity of the health food consumer network
indicates a high threshold of the rate of health food safety scare behavior diffusion and low diffusion scale.

1. Introduction

Theconcept of food safety is continuously developing.Under-
standing food safety is a dynamic development process [1–
5]. Food safety includes not only food security but also food
quality and health safety [3–5]. In recent years, numerous
media reports on food industry emergencies have been per-
sistent, thereby transforming a sudden food safety problem
into a serious public policy and social problem. For example,
incidents related to salt supply safety broke out from March
16, 2011, to March 18, 2011, under the influence of scare
behavior diffusion in China after the 2011 earthquake in

Japan. The food safety scare behavior caused by food safety
accidents can spread through certain media to consumers
in their healthy state as a product of the development and
evolution of emergencies [3–6], thereby provoking panic
behavior with a significant herd effect. Many food safety
accidents are safe in themselves, but the loss induced by
these accidents is much greater than the direct loss from the
accidents themselves [7, 8]. Therefore, food safety accidents
are detrimental to the healthy development of social stability
and food industry [9, 10].

Currently, the party and the government in China intro-
duced the plan “Healthy China 2030.” The development of
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new business forms of the health industry, as an important
part of “Healthy China 2030,”must be considered.The health
food industry, as an emerging health industry, has numerous
apparent shortcomings, including the imperfection of the
industrial system, low level of the industrial system, low coor-
dination effect, and lack of industry standards and norms [11];
consequently, the health food industry has received extensive
attention from the society. Specifically, chaos may result
from health food safety accidents, such as those in which
health food passes off as medicine, health food contains
illegal drug components, and functional efficacy of health
food is inconsistent with reality. The health food safety scare
behavior caused by such accidents has affected the imple-
mentation of China’s strategy of building a healthy China.
Furthermore, existing empirical studies show that improving
the transparency of food safety supervision information can
reduce the adverse effect of food safety accidents [3–5, 12–
17]. Mol [16] investigated to what extent and how China’s
transparency institutions and practices regarding food pro-
duction and products play a role in governing food quality
and safety. Chen et al. [3–5] found that the transparency of
food safety supervision in China is basically qualified but
remains at a poor level; this transparency may be improved
by establishing an index system for food safety supervision
information transparency and evaluating different regulatory
bodies in China. Easing the rumor-driven “herd behavior”
is not conducive to promoting the healthy development of
food industry. The role of food information transparency in
alleviating the food safety problemhas gradually attracted the
attention of numerous scholars given the reinforcement of
food safety management [3–5, 16, 18]. However, health food
is in the primary stage of development in China. Moreover,
research on information transparency in the health food
industry is limited; let alone research on health food safety
scare behavior with consideration of health food information
transparency. Therefore, in accordance with the suggestion
of Chen et al. [3–5], two key factors, namely, health food
information transparency and health food consumers’ ability
to process information, are considered in the current study
by exploring the internal mechanism and evolution law of the
health food safety scare behavior diffusion among health food
consumers. The results of the present study can change the
current situation of health food safety in China to a certain
extent and promote the formation of social cogovernance of
health food safety.

Complex network theory and methods have been devel-
oped in several studies [19–24] and have been applied to
various fields. A network is a collection of nodes and edges.
A complex network is composed of many nodes and edges
of connecting nodes. Its complexity is mainly manifested
in the number and properties of the nodes and edges. It
is usually a high generalization or abstraction of complex
systems and phenomena. Compared with a general network,
a complex network has six unique characteristics that reflect
its complexity. First, a complex network has a complicated
structure. The number of its nodes is large, and the network
structure presents many different characteristics. Second, a
complex network presents network evolution, as reflected in
the emergence and disappearance of nodes or connections.

Third, a complex network has a connection diversity. The
connection weights between nodes vary, and the connections
may be directional. Fourth, a complex network has a dynamic
complexity. A node set may belong to a nonlinear dynamic
system. Fifth, a complex network features a node diversity.
Nodes in complex networks can represent anything. Finally,
a complex network presents multiple-complexity integration.
The complexities that result from the five aforementioned
characteristics influence one another, and their interplay
leads to unpredictable results. In addition to these six com-
plex characteristics, a complex network also has a dynamic
complexity in time and space, and its network behavior is
also complex. Many real-world complex systems, such as
transportation network, the Internet, investment network,
and disease contagion network, can be in the form of a com-
plex network by abstracting, description, characterization,
and analysis. The capability of complex networks to represent
real-world phenomena and their dynamic evolution behav-
iors has prompted science researchers in various fields to
describe, analyze, andmodel complex networks and establish
algorithms thereof in theoretical and empirical studies. By
the end of the 20th century, the WS network proposed by
Watts and Strogatz [19] and the BA network proposed by
Barabási and Albert [20] epitomize the new era of complex
network research. At present, complex network theory, which
is the general methodology for analyzing all types of complex
systems and their complex phenomena in the real world, has
infiltrated studies inmany fields, including statistical physics,
biological sciences, and humanistic social sciences [25–27].
Insights into and methods based on complex networks have
become a research interest in the scientific study community.

The complex network constructed in this study is the
health food consumer network. Currently, health food con-
sumers in China are mainly the elderly, and the health
food consumer network becomes increasingly complex while
the aging population in China expands. On the one hand,
health food consumers exhibit different cognitive perfor-
mances in terms of health food [3–5, 28, 29]. Several health
food consumers are protected from health food safety scare
behavior considering their abundant knowledge of health
food; these consumers can inhibit the spread of this behavior.
By contrast, certain health food consumers are vulnera-
ble to the influence of connected health food consumers,
thereby showing remarkable herd behavior [30]. On the
other hand, various health food consumers possess different
psychological qualities or psychological cognitions. In the
face of health food safety scare behavior, consumers with high
psychological quality can be minimally affected or can even
avoid being affected by this scare behavior. In consideration of
this scenario, this study investigates health food consumers’
ability to process information. Heterogeneity in such a com-
plex network cannot be ignored. Therefore, this study uses
stochastic dominant theory to analyze the health food safety
scare behavior diffusion under different network structures.

The concept of stochastic dominance was first explicitly
proposed by Quirk and Saposnik in 1962 [31], and they
associated it with the traditional expected utility principle.
Since then, stochastic dominance theory has been the basis
of risk decision methods. This theory has been a widely
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Figure 1: Technology roadmap of the article.

recognized decision analysis tool used by economic agents to
make a decision of behavior in uncertainty cases. Stochastic
dominance is a nonparametric decision analysis method
in which various optional results and their corresponding
objective probabilities are analyzed to filter the nondominant
schemes and make risk decisions. Studies on stochastic
dominance date back to Karamata [32]. However, the theory
attracted the attention of the academic community only in
the late 1960s and early 1970s when the studies of Hadar
and Russel [33], Hanoch and Levy [34], and Rothchild
and Stiglitz [35] were reported. Particularly in the 1970s,
numerous studies on stochastic dominance theory and its
applications emerged in the research literature. Several of
these studies proposed decision-makingmethods, such as the
third-order and expectation stochastic dominance. The most
important representatives of these studies is that of Fishburn
[36], who extended the concept of stochastic dominance
to random variables. Jackson [37] adopted the stochastic
dominance method to analyze a social network structure and
investigated the influence of structural characteristics and
network heterogeneity on social behavior. Bian et al. [38]
used the stochastic dominance to explore the evolvement of
investors’ behavior in stock market. In the present study, we
use the same method used by Jackson [37] to analyze the
influence of structure and heterogeneity of the health food
consumer network on the health food safety scare behavior
diffusion.

Health food safety scare behavior diffusion is a typical
proliferation problem, and its mechanism is similar to those
of the spread of infectious diseases. The technology roadmap
of this study is illustrated in Figure 1. We establish a network
diffusion model on the basis of the SIRS model of health food
safety scare behavior and analyze the influences of health food
information transparency, health food consumers’ ability to
process information, and network structure on the mecha-
nism of health food safety scare behavior diffusion.This study
can provide a reference for controlling health food safety
scare behavior diffusion and reducing its effect on the society.

The structure of this study is arranged as follows.
Section 2 discusses the infectious disease principles and
characteristics of health food safety scare behavior diffusion
in two aspects: (1) adaptability of the epidemic model and(2) health food safety scare behavior diffusion mechanism.
Section 3 presents the model constructed for health food
safety scare behavior diffusion and the corresponding the-
oretical analysis. Section 4 presents a computer simulation

analysis of the health food safety scare behavior diffusion.
Section 5 summarizes the conclusion of this study.

2. Infectious Disease Principles and
Characteristics of Health Food Safety
Scare Behavior Diffusion

2.1. Adaptability Analysis of the Epidemic Model. The epi-
demic model, as a classical model of virus transmission, has
been extensively used in studying social behavior diffusion
[3–5, 39–41]. The source of an infectious disease is a virus
carrier or a pathogen, which spreads its own virus by a
contact through a certain medium [42]. Health food safety
scare behavior diffusion, what we define is the interaction
and transmission of the behavior of health food consumers. It
denotes that the scare behavior of health food consumers will
spread through all kinds of media to health food consumers
who are uninfected. The health food safety scare behavior
affects stakeholders like a virus, and many mechanisms
are similar between the processes of diffusion and virus
propagation. The principal representations are as follows:(1) Pathogen-diffusion source. The spread of health food
safety scare mainly stems from the concerns of health food
consumers over health food safety [43]. With the influence of
factors, such as health food information transparency, health
food consumers’ ability to process information, and network
structure, health food consumers who produce health food
safety scare behavior are “pathogens” or diffusion sources that
have the potential to spread. A diffusion source, which is a
prerequisite for health food safety scare behavior diffusion,
will spread health food safety scare behavior to health food
consumers through the diffusion media, thereby presenting a
significant herding effect.(2) Contagion medium-diffusion medium. A diffusion
medium is the carrier of the diffusion source, such as the
Internet, mobile phone, TVs, and other mass media, and
face-to-face communication between health food consumers.
The health food safety information transmitted through the
diffusion media is related to the health and safety of health
food consumers. The transparency of health food safety
information affects the confidence of health food consumers
in health food safety [3–5, 16, 17].(3) Infectiousness. Health food consumers involved in the
health food safety scare deliver their psychological cognition,
behavior deviation, and other information to health food
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Figure 2: Diffusion media and diffusion path of health food safety
scare behavior.

consumers who are in a healthy state through the diffusion
media given the influence of health food safety information
transparency, thereby inducing the latter to divert their
attention and psychological cognition to the health food
safety accident and consequently causing scare behavior.
This mechanism shows that the health food safety scare
behavior has certain infectiousness. In Figure 2, health food
consumers that exhibit health food safety scare behavior will
pass information, such as their own psychological state and
behavioral biases to the external environment, thus affecting
the health food consumers in a normal state and causing them
to panic.(4) Immunity. In the epidemic model, individuals are
immune to pathogens. Health food consumers show different
immunity levels to health food safety scare behavior given
their different degrees of psychological quality and health
food safety knowledge as influenced by the health food
safety regulatory information transparency. If the health food
information transparency is considerable, the psychological
quality of health food consumers is high, and the health food
safety knowledge of health food consumers abounds, then the
health food safety scare behavior diffusion will be suppressed.
Otherwise, the health food safety scare behavior diffusionwill
be accelerated.

Therefore, the scare behavior diffusion process of health
food industry emergencies is characterized by the infectious
disease propagation process, which can be used to analyze
and simulate the process of the scare behavior diffusion
for health food. Therefore, constructing an SIRS epidemic
model of the health food safety scare behavior diffusion is
reasonable.

2.2. Health Food Safety Scare Behavior Diffusion Mechanism.
In a complex network of𝑁 health food consumers, the nodes
represent health food consumers, and the edges represent the
diffusion media between two health food consumers. Several
health food consumers exhibit scare behavior, whereas other
health food consumers have the potential of adopting the
behavior. Accordingly, spreading the health food safety scare
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Figure 3: Health food safety scare behavior diffusion mechanism.

behavior is realized through such a complex network. Degree𝑘 represents the relationship between health food consumers
and also denotes the number of diffusion media and paths.

In the network of health food consumers, each health
food consumer exhibits one of the following states:(1) Normal state 𝑆. This state indicates that health food
consumers are unaffected by the health food safety scare
behavior but may contract it.

(2) Scare state 𝐼. This state indicates that health food
consumers have contracted the health food safety scare
behavior by diffusion and are contagious.

(3) Temporary immunity state 𝑅. This state indicates that
health food consumers have recovered to normal states and
have the ability to be immune from health food safety scare
behavior temporarily; however, these consumers will be in a
vulnerable normal state again after a time and continue to be
affected by the health food safety scare behavior.

At the beginning, no health food safety incident has
occurred in the health food consumer network. A health
food consumer in the network is either in the normal state 𝑆,
scare state 𝐼, or temporary immunity state 𝑅 when a health
food emergency occurs. At moment 𝑡, the proportion of
health food consumers who are in the normal state in the
network is called the normal state health food consumer
density, which is denoted by 𝑠(𝑡).The proportion of the health
food consumers who are in the scare state in the network is
called the scare state health food consumer density, which
is denoted by 𝑖(𝑡). The proportion of health food consumers
who are in the temporary immunity state in the network is
called the temporary immunity state health food consumer
density, which is denoted by 𝑟(𝑡). Therefore, 𝑠(𝑡) + 𝑖(𝑡) +𝑟(𝑡) = 1. The network of health food consumers tends to
be balanced when 𝑡 󳨀→ ∞. 𝐼 is the origin of diffusion that
spreads to 𝑆 at probability 𝜆 (diffusion rate) and recovers
to be 𝑅 at probability 𝜇 (recovery rate) simultaneously. 𝑅
loses immunity at probability 𝛽 (immune failure rate) to be 𝑆
(Figure 3).

The health food safety scare behavior diffusion between
health food consumers is uneven. This unevenness is related
to the behavior diffusion rate, the health food safety informa-
tion transparency, and the health food consumers’ ability to
process information.

(1)Health food safety information transparency. Accord-
ing to Chen et al. [3–5], the transparency of food safety
information is an important factor that affects food safety
risk. Thus, for health food, a high transparency of health
food safety information denotes an improved delivery or
disclosure of the information on health food by the gov-
ernment, enterprises, and media. The spread of health food
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Table 1: Sensitivity analysis of the health food safety information transparency 𝜃 and the degree 𝑘 of health food consumers’ ability to process
information 𝜂𝑘 to the health food safety scare behavior diffusion rate 𝜆𝑘.
𝜃 𝜂𝑘 Expectation Variance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 5.60E-01 3.39E-01 2.10E-01 1.33E-01 8.48E-02 5.46E-02 3.54E-02 2.31E-02 1.52E-02 1.62E-01 3.34E-02
0.2 4.82E-01 2.81E-01 1.72E-01 1.09E-01 7.10E-02 4.69E-02 3.14E-02 2.12E-02 1.45E-02 1.37E-01 2.42E-02
0.3 3.99E-01 2.25E-01 1.38E-01 8.85E-02 5.87E-02 3.99E-02 2.77E-02 1.95E-02 1.39E-02 1.12E-01 1.62E-02
0.4 3.15E-01 1.73E-01 1.07E-01 7.01E-02 4.79E-02 3.37E-02 2.43E-02 1.78E-02 1.33E-02 8.91E-02 9.79E-03
0.5 2.33E-01 1.28E-01 8.03E-02 5.43E-02 3.85E-02 2.82E-02 2.12E-02 1.63E-02 1.27E-02 6.80E-02 5.19E-03
0.6 1.60E-01 8.90E-02 5.81E-02 4.11E-02 3.05E-02 2.34E-02 1.84E-02 1.48E-02 1.21E-02 4.97E-02 2.31E-03
0.7 9.95E-02 5.83E-02 4.04E-02 3.02E-02 2.37E-02 1.92E-02 1.60E-02 1.35E-02 1.15E-02 3.47E-02 8.13E-04
0.8 5.47E-02 3.55E-02 2.68E-02 2.16E-02 1.82E-02 1.56E-02 1.37E-02 1.22E-02 1.10E-02 2.33E-02 2.00E-04
0.9 2.58E-02 1.98E-02 1.69E-02 1.50E-02 1.36E-02 1.26E-02 1.18E-02 1.11E-02 1.05E-02 1.52E-02 2.46E-05

safety scare behavior will be suppressed when health food
consumers provide sufficient information. Otherwise, the
spread of health food safety scare behavior will be promoted.(2) Health food consumers’ ability to process infor-
mation. On the one hand, health food consumers exhibit
different cognitive performances in terms of health food.
Several health food consumers are unaffected by the scare
behavior and inhibit the spread of this behavior given their
knowledge of health food. However, several health food con-
sumers are vulnerable to the influence of connected health
food consumers, thereby demonstrating a remarkable herd
behavior. On the other hand, different health food consumers
possess various mental qualities and therefore show different
psychological qualities and psychological cognitions. Health
food consumers with high psychological quality are less or
even unaffected by scare behavior. Therefore, a high level of
health food consumers’ ability to process information exerts
a certain inhibitory effect on the health food safety scare
behavior diffusion.

The given analysis shows that the diffusion rate in the
proposed model of the health food safety scare behavior is
as follows:

𝜆𝑘 (𝜆0, 𝜃, 𝜂) = 𝜆0𝜃1−𝜂𝑘 , (1)

where𝜆0 denotes the diffusion rate that satisfies the condition0 < 𝜆0 < 1 and 𝜃 denotes the health food safety information
transparency that satisfies the condition 0 < 𝜃 < 1. A high𝜃 indicates a transparent health food safety information. 𝜂𝑘
denotes the degree 𝑘 of health food consumers’ ability to
process information. A high 𝜂𝑘 denotes that health food con-
sumers can process information. To better analyze the diffu-
sion rate mode, we make visualization of the model via Mat-
lab2016b. Based on that, we also make the sensitivity analysis.
The results are shown as in Figure 4 and Table 1 .

Figure 4 depicts the effects of the health food safety
information transparency 𝜃 and the degree 𝑘 of health food
consumers’ ability to process information 𝜂𝑘 on the health
food safety scare behavior diffusion rate 𝜆𝑘. The health food
safety scare behavior diffusion rate 𝜆𝑘 decreases nonlinearly
with an increase in the health food safety information trans-
parency 𝜃 or the degree 𝑘 of health food consumers’ ability to
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Figure 4: Effects of the health food safety information transparency𝜃 and the degree 𝑘 of health food consumers’ ability to process
information 𝜂𝑘 on the health food safety scare behavior diffusion
rate 𝜆𝑘 when 𝜆0 = 0.01 and 𝑘 = 1000.

process information 𝜂𝑘. In the sensitivity analysis displayed
in Table 1, the health food safety information transparency 𝜃
reflects a marginal diminishing decreasing characteristic in
relation to the health food safety scare behavior diffusion rate𝜆𝑘, whereas the degree 𝑘 of health food consumers’ ability
to process information 𝜂𝑘 shows a marginal incremental
decreasing characteristic in relation to the health food safety
scare behavior diffusion rate 𝜆𝑘. These results are consistent
with the facts. Therefore, the established diffusion rate model
on health food safety scare can be reasonably constructed.

3. Diffusion Model of Health Food
Safety Scare Behavior

3.1. Model Construction. If the density of degree 𝑘 of health
food consumers in the scare state is 𝑖𝑘(𝑡) at time 𝑡, then the
density of its equilibrium state is 𝑖𝑘(∞). 𝑠𝑘(∞) and 𝑟𝑘(∞)
have the same definition. According to mean-field theory
(Moreno et al., 2003; Yang et al., 2006), the dynamics model
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of health food safety scare behavior diffusion in this network
is as follows:

𝑠󸀠𝑘 (𝑡) = −𝑘𝜆𝑘Θ (𝑡) 𝑠𝑘 (𝑡) + 𝛽𝑟𝑘 (𝑡)
𝑖󸀠𝑘 (𝑡) = 𝑘𝜆𝑘𝑠𝑘 (𝑡) Θ (𝑡) − 𝜇𝑖𝑘 (𝑡)
𝑟󸀠𝑘 (𝑡) = 𝜇𝑖𝑘 (𝑡) − 𝛽𝑟𝑘 (𝑡) ,

(2)

where Θ(𝑡) represents the probability that a health food
consumer in the normal state is directly linked to a health
food consumer in the scare state. In equilibrium, the stable
value is denoted by Θ(∞). The first term on the right side
of the first line of (2) is the health food safety scare behavior
production item.This term is proportional to the degree 𝑘 of
health food consumers, the health food safety scare behavior
diffusion rate 𝜆𝑘, and the density 𝑠𝑘(𝑡) of degree 𝑘 of health
food consumers in the normal state at time 𝑡.The second term
is the health food safety scare behavior annihilation term,
which is proportional to the immune failure rate 𝛽 and the
density 𝑟𝑘(𝑡) of degree 𝑘 of health food consumers in the
temporary immunity state at time 𝑡.Θ(𝑡) is defined as follows:

Θ (𝑡) = ∑𝑘 𝑘𝑃 (𝑘) 𝑖𝑘 (𝑡)⟨𝑘⟩ . (3)

Equation (3) represents the probability that a health food
consumer in the normal state is directly linked to a health
food consumer in the scare state at time 𝑡; ⟨𝑘⟩ = ∑𝑘 𝑘𝑃(𝑘)
denotes the average degree of the network.

Setting {𝑠
󸀠
𝑘(𝑡)=0

𝑖󸀠𝑘(𝑡)=0

𝑟󸀠𝑘(𝑡)=0

yields the following unsteady solution:

𝑖𝑘 (∞) = 𝜆𝑘𝑘Θ (∞)
𝜆𝑘𝑘Θ (∞) (1 + 𝜇/𝛽) + 𝜇 . (4)

The following equation can be obtained by substituting
(4) into (3):

Θ (∞) = ∑𝑘 𝑘𝑃 (𝑘)⟨𝑘⟩
𝜆𝑘𝑘Θ (∞)

𝜆𝑘𝑘Θ (∞) (1 + 𝜇/𝛽) + 𝜇
= 𝐺 (Θ (∞)) ,

(5)

where Θ(∞) = 0 is a trivial solution in (5); that is,
the health food safety scare behavior does not spread
widely. If the health food safety scare behavior diffusion
occurs, then (5) must have a nontrivial solution that satisfies(𝑑𝐺(Θ(∞))/𝑑Θ(∞))|Θ(∞)=0 ≥ 1. 𝜆𝑘⟨𝑘2⟩/𝜇⟨𝑘⟩ ≥ 1 can be
obtained through simplification.Therefore, the critical condi-
tion of the health food safety scare behavior diffusion rate can
be obtained as follows:

𝜆0𝜃1−𝜂𝑘 = 𝜇 ⟨𝑘⟩
⟨𝑘2⟩ . (6)

Accordingly, we can obtain the threshold of the rate of
health food safety scare behavior diffusion 𝜆0∗ = (𝜇⟨𝑘⟩/
⟨𝑘2⟩)𝜃𝜂𝑘−1 , where ⟨𝑘2⟩ = ∑𝑘 𝑘2𝑃(𝑘). Finally, we can derive the
entire health food consumer network diffusion as follows:

𝑖 (∞) = ∑
𝑘

𝑃 (𝑘) 𝑖𝑘 (∞) . (7)

3.2. Model Analysis. In accordance with the established
model in Section 3.1, this study analyzes the threshold of the
rate of health food safety scare behavior diffusion; that is,
𝜆0∗ = (𝜇⟨𝑘⟩/⟨𝑘2⟩)𝜃𝜂𝑘−1 , in accordance with the following
relationships.

(1) Relationship to the Health Food Safety Information Trans-
parency 𝜃

𝜕𝜆0∗𝜕𝜃 = (𝜂𝑘 − 1) ⋅ (𝜇 ⟨𝑘⟩⟨𝑘2⟩ )
𝜃𝜂𝑘−1

⋅ ln(𝜇 ⟨𝑘⟩⟨𝑘2⟩ ) ⋅ 𝜃𝜂𝑘−2

> 0
(8)

(2) Relationship to the Degree 𝑘 of Health Food Consumers’
Ability to Process Information 𝜂𝑘

𝜕𝜆0∗𝜕𝜂𝑘 = (𝜇 ⟨𝑘⟩⟨𝑘2⟩ )
𝜃𝜂𝑘−1

⋅ ln(𝜇 ⟨𝑘⟩⟨𝑘2⟩ ) ⋅ 𝜃𝜂𝑘−1 ln 𝜃 > 0 (9)

(3) Relationship to the Recovery Rate 𝜇 of Health Food
Consumers

𝜕𝜆0∗𝜕𝜇 = ( ⟨𝑘⟩
⟨𝑘2⟩)

𝜃𝜂𝑘−1

⋅ 𝜃𝜂𝑘−1 ⋅ 𝜇𝜃𝜂𝑘−1−1 > 0 (10)

𝜕2𝜆0∗𝜕𝜇2 = ( ⟨𝑘⟩
⟨𝑘2⟩)

𝜃𝜂𝑘−1

⋅ 𝜃𝜂𝑘−1 ⋅ (𝜃𝜂𝑘−1 − 1) 𝜇𝜃𝜂𝑘−1−2

> 0
(11)

In summary, the following theorem is obtained.

Theorem 1. The threshold 𝜆0∗ of the rate of health food safety
scare behavior diffusion is the monotonically increasing func-
tion of the health food safety information transparency 𝜃, the
degree 𝑘 of health food consumers’ ability to process information𝜂𝑘, and the monotonically increasing convex function of the
recovery rate 𝜇 of health food consumers.

(4) Relationship to Different Network Structures. Let 𝑃󸀠 and𝑃 represent the degree distribution of the two health food
consumer networks 𝐾󸀠 and 𝐾, respectively.𝐺󸀠(Θ(∞)) = ⟨𝑘2⟩𝜆𝑘𝜇/⟨𝑘⟩(𝜆𝑘𝑘Θ(∞)(1 + 𝜇/𝛽) + 𝜇)2 >
0 and 𝐺󸀠󸀠(Θ(∞)) = −⟨𝑘2⟩𝜆𝑘2𝑘(1 + 𝜇/𝛽)/⟨𝑘⟩(𝜆𝑘𝑘Θ(∞)(1 +𝜇/𝛽) + 𝜇)4 < 0. Thus, 𝐺(Θ(∞)) is the monotonically
increasing concave function of Θ(∞). 𝐺(1) = (∑𝑘 𝑘𝑃(𝑘)/⟨𝑘⟩)(𝜆𝑘𝑘/(𝜆𝑘𝑘(1+𝜇/𝛽)+𝜇)) < (∑𝑘 𝑘𝑃(𝑘)/⟨𝑘⟩)(𝜆𝑘𝑘/𝜆𝑘𝑘) = 1
and 𝐺(0) = 0. Thus, 𝐺(Θ(∞)) has at least one fixed point
in the interval [0, 1]. Health food safety scare behavior
spreads to the entire consumer network, and the network
reaches the equilibrium state when 𝜆0 > 𝜆0∗. Simulta-
neously, 𝐺󸀠(Θ(∞))|Θ=0 > 1. Therefore, Θ(∞) = (⟨𝑘2⟩/⟨𝑘⟩)(𝜆𝑘Θ(∞)/(𝜆𝑘𝑘Θ(∞)(1 + 𝜇/𝛽) + 𝜇)) has the only equi-
librium point in the interval [0, 1], and Θ(∞)∗ > 0.

The following theorems can be obtained in accordance
with the criteria of stochastic dominance.

Theorem 2. If the average degree ⟨𝐾󸀠⟩ of the health food
consumer network 𝐾󸀠 is greater than the average degree ⟨𝐾⟩ of
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the health food consumer network 𝐾, then (1) the equilibrium
valueΘ(∞)∗󸀠 of the health food safety scare behavior diffusion
in network 𝐾󸀠 is greater than the equilibrium value Θ(∞)∗ of
the health food safety scare behavior diffusion in network 𝐾
when 𝜆0 > 𝜆0∗; moreover, (2) the scale 𝑖(∞)∗󸀠 of the health
food safety scare behavior diffusion in network 𝐾󸀠 is greater
than the scale 𝑖(∞)∗ of the health food safety scare behavior
diffusion in network 𝐾.
Proof. Theorem 2(1) is untenable. In particular, if the average
degree ⟨𝐾󸀠⟩ of the health food consumer network 𝐾󸀠 is
greater than the average degree ⟨𝐾⟩ of the health food
consumer network 𝐾, then Θ(∞)∗󸀠 ≤ Θ(∞)∗; that is,Θ(∞)∗ ≥ Θ(∞)∗󸀠 = 𝐺󸀠𝑘(Θ(∞)∗). The equilibrium valueΘ(∞)∗ of the health food safety scare behavior diffusion
is unique, and Θ(∞)∗ > 0 when 𝜆0 > 𝜆0∗. If 𝐻(𝑘) =𝜆𝑘𝑘Θ(∞)/⟨𝑘⟩[𝜆𝑘𝑘Θ(∞)(1 + 𝜇/𝛽) + 𝜇], then we can obtain𝜕𝐻(𝑘)/𝜕𝑘 = 𝜇𝜆𝑘Θ(∞)/(⟨𝑘⟩[𝜆𝑘𝑘Θ(∞)(1 + 𝜇/𝛽) + 𝜇])2 >0. Thus, 𝐻(𝑘) is the monotonically increasing function of𝑘.
According to Jackson [37], if the average degree ⟨𝐾󸀠⟩ of
network𝐾󸀠 is greater than the average degree ⟨𝐾⟩ of network𝐾, then 𝑃󸀠 first-order stochastic dominates 𝑃. Thus, if the
average degree ⟨𝐾󸀠⟩ of the health food consumer network𝐾󸀠 is greater than the average degree ⟨𝐾⟩ of the health food
consumer network 𝐾, then ∑𝑘𝐻(𝑘)𝑃󸀠(𝑘) > ∑𝑘𝐻(𝑘)𝑃(𝑘).
According to (5), ∀Θ(∞) > 0, 𝐺󸀠𝑘(Θ(∞)) > 𝐺𝑘(Θ(∞))
can be obtained. Accordingly, ∀Θ(∞)∗ > 0, 𝐺󸀠𝑘(Θ(∞)∗) >
𝐺𝑘(Θ(∞)∗) and Θ(∞)∗ ≥ 𝐺󸀠𝑘(Θ(∞)∗) > 𝐺𝑘(Θ(∞)∗) can be
obtained.This result contradictsΘ(∞)∗ = 𝐺𝑘(Θ(∞)∗).Thus,
our hypothesis is tenable, and Theorem 2(1) is true.

According to Theorem 2(1), Θ(∞)∗󸀠 > Θ(∞)∗ when the
average degree ⟨𝐾󸀠⟩ of the health food consumer network𝐾󸀠 is greater than the average degree ⟨𝐾⟩ of the health
food consumer network 𝐾. Clearly, 𝑖𝑘(∞) = 𝜆𝑘𝑘Θ(∞)/(𝜆𝑘𝑘Θ(∞)(1 + 𝜇/𝛽) + 𝜇) is the monotonically increasing
concave function of Θ(∞). Thus, for any 𝑘 > 0, 𝑖𝑘(∞)∗󸀠 >𝑖𝑘(∞)∗ and ∑𝑘 𝑖𝑘(∞)∗󸀠 > ∑𝑘 𝑖𝑘(∞)∗ can be obtained.
Furthermore, ∑𝑘 𝑃󸀠(𝑘)𝑖𝑘(∞)∗󸀠 > ∑𝑘 𝑃󸀠(𝑘)𝑖𝑘(∞)∗, that is,
𝑖(∞)∗󸀠 > ∑𝑘 𝑃󸀠(𝑘)𝑖𝑘(∞)∗. Apparently, 𝑖𝑘(∞) = 𝜆𝑘𝑘Θ(∞)/(𝜆𝑘𝑘Θ(∞)(1 + 𝜇/𝛽) + 𝜇) is the monotonically increasing
concave function of 𝑘. Jackson [37] noted that if the average
degree ⟨𝐾󸀠⟩ of network 𝐾󸀠 is greater than the average degree⟨𝐾⟩ of network𝐾, then 𝑃󸀠 first-order stochastic dominates 𝑃.
Therefore, ∑𝑘 𝑃󸀠(𝑘)𝑖𝑘(∞)∗ > ∑𝑘 𝑃(𝑘)𝑖𝑘(∞)∗ and 𝑖(∞)∗󸀠 >∑𝑘 𝑃󸀠(𝑘)𝑖𝑘(∞)∗ > ∑𝑘 𝑃(𝑘)𝑖𝑘(∞)∗ = 𝑖(∞)∗ can be obtained.
Thus, Theorem 2(2) is proven.

Theorem 3. If the heterogeneity of the health food consumer
network 𝐾󸀠 is greater than the heterogeneity of the health food
consumer network 𝐾, then the equilibrium value Θ(∞)∗󸀠 of
the health food safety scare behavior diffusion in network 𝐾󸀠
is lower than the equilibrium value Θ(∞)∗ of the health food
safety scare behavior diffusion in network 𝐾 when 𝜆0 > 𝜆0∗.
Proof. Theorem 3 is untenable. In particular, if the hetero-
geneity of the health food consumer 𝐾󸀠 is higher than the
heterogeneity of the health food consumer network 𝐾, thenΘ(∞)∗ ≤ Θ(∞)∗󸀠 = 𝐺󸀠𝑘(Θ(∞)∗) can be obtained. Further-
more, Θ(∞) has the only equilibrium point in the interval

[0, 1] and Θ(∞)∗ > 0. 𝜕2𝐻(𝑘)/𝜕𝑘2 = −2⟨𝑘⟩𝜆𝑘Θ(∞)(1 +𝜇/𝛽)/(⟨𝑘⟩[𝜆𝑘𝑘Θ(∞)(1 + 𝜇/𝛽) + 𝜇])3 < 0 is yielded. Thus,𝐻(𝑘) is a concave function of 𝑘. According to Jackson [37], if
the heterogeneity of the network 𝐾󸀠 is greater than the het-
erogeneity of the network 𝐾, then 𝑃 second-order stochastic
dominates 𝑃󸀠. Therefore, ∑𝑘𝐻(𝑘)𝑃(𝑘) > ∑𝑘𝐻(𝑘)𝑃󸀠(𝑘) can
be obtained. According to (5), ∀Θ(∞) > 0, 𝐺𝑘(Θ(∞)) >𝐺󸀠𝑘(Θ(∞)). Thus, ∀Θ(∞)∗ > 0, 𝐺𝑘(Θ(∞)∗) > 𝐺󸀠𝑘(Θ(∞)∗).
Accordingly,Θ(∞)∗ ≤ Θ(∞)∗󸀠 = 𝐺󸀠𝑘(Θ(∞)∗) < 𝐺𝑘(Θ(∞)∗).
This finding contradicts Θ(∞)∗ = 𝐺𝑘(Θ(∞)∗). Thus, our
hypothesis is tenable, and Theorem 3 is true.

4. Analogue Simulation

Numerical simulation analysis is the most effective means of
testing real-time dynamic data without the requirement for
numerous empirical validations.Therefore, followingChen et
al. [3–5] and He et al. [44], we simulate the health food safety
scare behavior diffusion by using MATLAB 2016b software.

As the network of health food consumers is a complex
network, it is very difficult to obtain the characteristics or the
real datasets of the network. Therefore, we selected the most
representative three heterogeneous networks to theoretically
study the health food safety scare behavior diffusion. BA
scale-free network [20], WS network [19], and Exponential
network were used. We used BA network, WS network,
and Exponential network to describe the feature of different
network structure. In fact, fewer nodes have many direct
connections with other nodes in BA network, but a large
number of nodes have various direct connections with other
nodes in WS network. And the heterogeneity of Exponential
network is between them.

In the three network models, the degree distribution of
BAnetwork is𝑃(𝑘) ∝ 2𝑚2/𝑘3, the degree distribution of long
distance connection of nodes inWS network is equal to 0.05,
and the degree distribution of Exponential network is𝑃(𝑘) ∝
𝑒−𝜀𝑘/2𝑚. Then, let𝑁 = 1000, and let 𝑚0 = 𝑚 = 5, 𝜀 = 2.
4.1. Analysis of the Threshold of the Rate of Health Food Safety
Scare Behavior Diffusion. We analyze the threshold of the
rate of health food safety scare behavior diffusion to depict
the evolution characteristics of the health food safety scare
behavior diffusion under the influence of the health food
safety information transparency and health food consumers’
ability to process information.

Figure 5 demonstrates the effects of the health food safety
information transparency 𝜃 and the degree 𝑘 of health food
consumers’ ability to process information 𝜂𝑘 on the threshold𝜆0∗ of the rate of health food safety scare behavior diffusion
under three network structures.Theorem 1 is verified visually
in Figure 5; that is, the threshold 𝜆0∗ of the rate of health
food safety scare behavior diffusion is the monotonically
increasing function of the health food safety information
transparency 𝜃 and the degree 𝑘 of health food consumers’
ability to process information 𝜂𝑘. An increase in the health
food safety information transparency 𝜃 and the degree 𝑘
of health food consumers’ ability to process information𝜂𝑘 increases the threshold 𝜆0∗ of the rate of health food
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(a) BA network

1
1

0.80.5 0.6

0

0.5

1

1.5

0.4
0.20 0

×10-5


0
∗

Ｅ


(b) WS network
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(c) Exponential network

Figure 5: Change rules in the threshold of the rate of health food safety scare behavior diffusion under three network structures: (a) BA
network, which exerts the effects of the health food safety information transparency 𝜃 and the degree 𝑘 of health food consumers’ ability
to process information 𝜂𝑘 on the threshold of the rate of health food safety scare behavior diffusion 𝜆0∗; (b) WS network, which shows the
effects of the health food safety information transparency 𝜃 and the degree 𝑘 of health food consumers’ ability to process information 𝜂𝑘 on
the threshold of the rate of health food safety scare behavior diffusion 𝜆0∗; (c) Exponential network, which shows the effects of the health
food safety information transparency 𝜃 and the degree 𝑘 of health food consumers’ ability to process information 𝜂𝑘 on the threshold of the
rate of health food safety scare behavior diffusion 𝜆0∗ (where 𝑘 = 1000 and 𝜇 = 0.01).

safety scare behavior diffusion because a high health food
safety information transparency indicates comprehensive
information on health food in the market for health food
consumers. In this scenario, spreading scare behavior when a
health food safety incident occurs is difficult. Similarly, a high
health food consumers’ ability to process informationdenotes
a rational analysis of the health food safety scare behavior.
Consequently, no herd behavior will emerge, and health food
consumers will inhibit spreading or refuse to spread scare
behavior.

A comparison of Figures 5(a), 5(b), and 5(c) indicates
that the thresholds 𝜆0∗ of the rate of health food safety
scare behavior diffusion differ between the three network
structures. The threshold of the rate of health food safety
scare behavior diffusion in the WS network is much lower
than the threshold of the rate of health food safety scare
behavior diffusion in the BA network and the Exponential

network; the threshold of the rate of health food safety scare
behavior diffusion in the Exponential network is lower than
the threshold of the rate of health food safety scare behavior
diffusion in the BA network. These results suggest that the
health food safety scare behavior in the BA network is more
difficult to spread. This phenomenon is attributed to the
improved heterogeneity of the BAnetwork. In a network with
high heterogeneity, the heterogeneity of the connecting edges
of health food consumers and the resistance to and spread of
information are also high. Thus, spreading health food safety
scare behavior is difficult. This phenomenon also reveals that
the structural characteristic of a network significantly affects
the health food safety scare behavior diffusion.

To better analyze the threshold of the rate of health food
safety scare behavior diffusion to depict the evolution char-
acteristics of the health food safety scare behavior diffusion
under the influence of the health food safety information
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Table 2: Sensitivity analysis of the health food safety information transparency 𝜃 and the degree 𝑘 of health food consumers’ ability to process
information 𝜂𝑘 to the rate of health food safety scare behavior diffusion 𝜆0∗ in the BA network.

𝜃 𝜂𝑘 Expectation Variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 4.79E-39 2.92E-21 5.54E-15 9.90E-12 9.95E-10 2.29E-08 2.24E-07 1.27E-06 4.97E-06 7.20E-07 2.71E-12
0.2 3.65E-31 3.30E-18 2.29E-13 9.10E-11 3.99E-09 5.50E-08 3.83E-07 1.71E-06 5.64E-06 3.52E-12 3.52E-12
0.3 6.64E-25 1.31E-15 6.23E-12 6.89E-10 1.46E-08 1.27E-07 6.42E-07 2.29E-06 6.41E-06 4.59E-12 4.59E-12
0.4 6.23E-20 2.13E-13 1.16E-10 4.37E-09 4.88E-08 2.79E-07 1.06E-06 3.05E-06 7.26E-06 6.00E-12 6.00E-12
0.5 5.56E-16 1.63E-11 1.56E-09 2.36E-08 1.51E-07 5.92E-07 1.71E-06 4.04E-06 8.22E-06 7.88E-12 7.88E-12
0.6 7.63E-13 6.55E-10 1.55E-08 1.10E-07 4.31E-07 1.21E-06 2.73E-06 5.31E-06 9.29E-06 1.04E-11 1.04E-11
0.7 2.37E-10 1.52E-08 1.19E-07 4.46E-07 1.15E-06 2.38E-06 4.28E-06 6.95E-06 1.05E-05 1.37E-11 1.37E-11
0.8 2.26E-08 2.21E-07 7.29E-07 1.61E-06 2.87E-06 4.54E-06 6.59E-06 9.03E-06 1.18E-05 1.77E-11 1.77E-11
0.9 8.45E-07 2.16E-06 3.62E-06 5.16E-06 6.76E-06 8.38E-06 1.00E-05 1.17E-05 1.33E-05 1.86E-11 1.86E-11

Table 3: Sensitivity analysis of the health food safety information transparency 𝜃 and the degree 𝑘 of health food consumers’ ability to process
information 𝜂𝑘 to the rate of health food safety scare behavior diffusion 𝜆0∗ in the WS network.

𝜃 𝜂𝑘 Expectation Variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 7.66E-22 4.83E-12 1.39E-08 8.63E-07 1.09E-05 6.17E-05 2.16E-04 5.63E-04 1.19E-03 2.28E-04 1.66E-07
0.2 1.69E-17 2.33E-10 1.08E-07 2.93E-06 2.35E-05 9.99E-05 2.91E-04 6.64E-04 1.28E-03 2.63E-04 1.95E-07
0.3 4.75E-14 6.29E-09 6.69E-07 8.94E-06 4.80E-05 1.58E-04 3.87E-04 7.80E-04 1.37E-03 3.06E-04 2.29E-07
0.4 2.61E-11 1.04E-07 3.35E-06 2.47E-05 9.35E-05 2.44E-04 5.10E-04 9.14E-04 1.47E-03 3.63E-04 2.69E-07
0.5 3.92E-09 1.14E-06 1.40E-05 6.26E-05 1.74E-04 3.70E-04 6.65E-04 1.07E-03 1.58E-03 4.37E-04 3.15E-07
0.6 2.10E-07 8.70E-06 4.98E-05 1.46E-04 3.11E-04 5.48E-04 8.59E-04 1.24E-03 1.69E-03 5.39E-04 3.66E-07
0.7 4.97E-06 4.92E-05 1.53E-04 3.17E-04 5.34E-04 7.97E-04 1.10E-03 1.44E-03 1.80E-03 6.88E-04 4.14E-07
0.8 6.12E-05 2.15E-04 4.15E-04 6.41E-04 8.84E-04 1.14E-03 1.40E-03 1.66E-03 1.93E-03 9.26E-04 4.26E-07
0.9 4.50E-04 7.54E-04 1.00E-03 1.22E-03 1.42E-03 1.59E-03 1.76E-03 1.91E-03 2.06E-03 1.35E-03 2.94E-07

Table 4: Sensitivity analysis of the health food safety information transparency 𝜃 and the degree 𝑘 of health food consumers’ ability to process
information 𝜂𝑘 to the rate of health food safety scare behavior diffusion 𝜆0∗ in the Exponential network.

𝜃 𝜂𝑘 Expectation Variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 3.95E-22 9.16E-13 3.08E-09 2.31E-07 3.43E-06 2.19E-05 8.49E-05 2.40E-04 5.44E-04 9.94E-05 3.40E-08
0.2 6.85E-18 5.03E-11 2.69E-08 8.50E-07 7.78E-06 3.67E-05 1.16E-04 2.85E-04 5.84E-04 1.15E-04 3.99E-08
0.3 1.72E-14 1.55E-09 1.84E-07 2.80E-06 1.67E-05 6.01E-05 1.58E-04 3.38E-04 6.26E-04 1.34E-04 4.68E-08
0.4 9.15E-12 2.90E-08 1.02E-06 8.33E-06 3.42E-05 9.60E-05 2.12E-04 3.99E-04 6.71E-04 1.58E-04 5.51E-08
0.5 1.41E-09 3.56E-07 4.70E-06 2.26E-05 6.69E-05 1.50E-04 2.82E-04 4.70E-04 7.19E-04 1.91E-04 6.47E-08
0.6 7.96E-08 3.04E-06 1.82E-05 5.63E-05 1.25E-04 2.29E-04 3.71E-04 5.51E-04 7.69E-04 2.36E-04 7.55E-08
0.7 2.03E-06 1.91E-05 6.09E-05 1.30E-04 2.25E-04 3.44E-04 4.84E-04 6.45E-04 8.23E-04 3.04E-04 8.60E-08
0.8 2.72E-05 9.17E-05 1.78E-04 2.78E-04 3.88E-04 5.05E-04 6.26E-04 7.52E-04 8.80E-04 4.14E-04 8.90E-08
0.9 2.18E-04 3.52E-04 4.62E-04 5.59E-04 6.47E-04 7.28E-04 8.03E-04 8.73E-04 9.40E-04 6.20E-04 5.93E-08

transparency and health food consumers’ ability to process
information, wemake the sensitivity analysis within the three
networks. The results are shown as in Tables 2, 3, and 4.

The sensitivity analysis results in Tables 2, 3, and 4 show
that the threshold 𝜆0∗ of the rate of health food safety scare
behavior diffusion is the monotonically increasing function
of the health food safety information transparency 𝜃 and
the degree 𝑘 of health food consumers’ ability to process

information 𝜂𝑘. Furthermore, the health food safety informa-
tion transparency 𝜃 shows the characteristics of incremental
margins in relation to the threshold 𝜆0∗ of the rate of health
food safety scare behavior diffusion, whereas the degree 𝑘
of health food consumers’ ability to process information 𝜂𝑘
denotes the characteristics of diminishing margins in relation
to the threshold 𝜆0∗ of the rate of health food safety scare
behavior diffusion.



10 Complexity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1


0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16


0
∗

BA network,
WS network
Exponential network

Figure 6: Effects of the recovery rate 𝜇 of health food consumers
on the threshold 𝜆0∗ of the rate of health food safety scare behavior
diffusion under three network structures (where 𝜃 = 0.5, 𝜂𝑘 = 0.7,
and 𝑘 = 1000).

Then, we simulate the relationship between the recovery
rate 𝜇 and the threshold 𝜆0∗ of the rate of health food safety
scare behavior diffusion. The result is shown as in Figure 6.

Figure 6 displays the effects of the recovery rate 𝜇
of health food consumers on the threshold 𝜆0∗ of the
rate of health food safety scare behavior diffusion under
three network structures. Figure 6 verifies the conclusion of
Theorem 1, that is, the threshold 𝜆0∗ of the rate of health
food safety scare behavior diffusion is the monotonically
increasing function of the recovery rate 𝜇 of health food
consumers. In particular, the threshold 𝜆0∗ of the rate of
health food safety scare behavior diffusion increases with the
recovery rate 𝜇 of health food consumers, and the rate is
low. This outcome is due to a high recovery rate of health
food consumers indicates their improved ability to resist
scare behavior. Thus, the threshold required to achieve the
health food safety scare behavior diffusion must be high. In
addition, Figure 6 illustrates that the threshold of the rate of
health food safety scare behavior diffusion is much lower in
the WS network than in the BA network and Exponential
network. Furthermore, the former tends to zero. And the
change trend in the Exponential network is much smaller
in the BA network, while which in the WS network is the
smallest.

4.2. Analysis of the Scale of the Health Food Safety Scare
Behavior Diffusion. Subsequently, we analyze the scale of the
health food safety scare behavior diffusion. The results are
shown as in Figure 7.

Figure 7 presents the effects of the network structure of
health food consumers, the health food safety information
transparency 𝜃, the degree 𝑘 of health food consumers’ ability
to process information 𝜂𝑘, and the degree 𝑘 of health food

consumers on the scale 𝑖(∞) of the health food safety scare
behavior diffusion. Figures 7(a)–7(f) demonstrate that a high
heterogeneity of a health food consumer network denotes a
low scale of health food safety scare behavior diffusion.

In Figures 7(a) and 7(c), with increasing in the health
food safety information transparency 𝜃, the scale 𝑖(∞) of the
health food safety scare behavior diffusion decreases. That is,
health food safety information transparency exerts inhibitory
effects on health food safety scare behavior diffusion and
shows the characteristics of incremental margins. In addi-
tion, the inhibitory effect of health food safety information
transparency on health food safety scare behavior diffusion is
apparent in the BA network because health food consumers
exhibit few direct edges in the BA network, and a low health
food safety information transparency can exert a strong
inhibitory effect on the health food safety scare behavior
diffusion. By contrast, in the WS network, the direct edges of
health food consumers are relatively large, and their similarity
is high; moreover, a low health food safety information
transparency can hardly exert a strong inhibitory effect
on the health food safety scare behavior diffusion. As for
the Exponential network, the situation is between the BA
network and WS network.

In Figures 7(b) and 7(d), the scale 𝑖(∞) of the health food
safety scare behavior diffusion decreases with an increase
in the degree 𝑘 of health food consumers’ ability to process
information 𝜂𝑘. That is, the degree 𝑘 of health food con-
sumers’ ability to process information 𝜂𝑘 exerts an inhibitory
effect on the health food safety scare behavior diffusion and
shows the characteristics of incremental margins. Similarly,
a high health food consumers’ ability to process information
denotes a strong inhibitory effect on the health food safety
scare behavior diffusion.

In Figures 7(e) and 7(f), the degree 𝑘 of health food con-
sumers indicates a marginal diminishing rising characteristic
in relation to the scale 𝑖(∞) of the health food safety scare
behavior diffusion. Moreover, the scales of the health food
safety scare behavior diffusion under different networks tend
to a steady value with an increase in the degree 𝑘 of health
food consumers.

Last, we simulate the relationship between the recovery
rate 𝜇 and the scale 𝑖(∞) of the health food safety scare
behavior diffusion. The result is shown as in Figure 8.

Figure 8 illustrates the effects of the recovery rate 𝜇 of
health food consumers on the scale 𝑖(∞) of the health food
safety scare behavior diffusion under three kinds of network
structures. The scale 𝑖(∞) of the health food safety scare
behavior diffusion decreases and shows the characteristics
of diminishing margins with the increase in the recovery
rate 𝜇 of health food consumers. Figure 8 also demonstrates
that a high heterogeneity of health food consumer networks
indicates a low scale of the health food safety scare behavior
diffusion.

5. Conclusion

The health food safety scare behavior diffusion is influenced
by various factors. On the basis of the concept of complex
network, this study extends the existing epidemic SIRS
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Figure 7: Continued.
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Figure 7: Change rules of the scale 𝑖(∞) of the health food safety scare behavior diffusion. (a) Effects of the health food safety information
transparency 𝜃 on 𝑖(∞) under different network structures and recovery rates 𝜇 (where 𝜆0 = 0.001, 𝛽 = 0.5, 𝜂𝑘 = 0.7, and 𝑘 = 1000). (b)
Effects of the degree 𝑘 of health food consumers’ ability to process information 𝜂𝑘 on 𝑖(∞) under different network structures and recovery
rates 𝜇 (where 𝜆0 = 0.005, 𝛽 = 0.5, 𝜃 = 0.7, and 𝑘 = 1000). (c) Effects of the health food safety information transparency 𝜃 on 𝑖(∞) under
different network structures and degree 𝑘 of health food consumers’ ability to process information 𝜂𝑘 (where 𝜆0 = 0.001, 𝛽 = 0.5, 𝜇 = 0.9, and𝑘 = 1000). (d) Effects of the degree 𝑘 of health food consumers’ ability to process information 𝜂𝑘 on 𝑖(∞) under different network structures
and health food safety information transparency 𝜃 (where 𝜆0 = 0.001, 𝛽 = 0.5, 𝜇 = 0.9, and 𝑘 = 1000). (e) Effects of the degree 𝑘 of health
food consumers on 𝑖(∞) under different network structures and degree 𝑘 of health food consumers’ ability to process information 𝜂𝑘 (where𝜆0 = 0.001, 𝛽 = 0.5, 𝜇 = 0.9, and 𝜃 = 0.1). (f) Effects of the degree 𝑘 of health food consumers on 𝑖(∞) under different network structures
and health food safety information transparency 𝜃 (where 𝜆0 = 0.001, 𝛽 = 0.5, 𝜇 = 0.9, and 𝜂𝑘 = 0.01).

model and establishes a heterogeneous model of the rate of
health food safety scare behavior diffusion by considering
health food safety information transparency and health food
consumers’ ability to process information. The health food
safety scare behavior diffusion and its influencing factors
are analyzed theoretically using mean-field and network
stochastic dominance theories. Mathematical simulation is
performed to explore the effects of health food safety infor-
mation transparency 𝜃, health food consumers’ ability to
process information 𝜂𝑘, and heterogeneity of health food
consumers’ networks on the change rules of the threshold𝜆0∗
of the rate and scale 𝑖(∞) of health food safety scare behavior
diffusion. From the results, we have drawn the followingmain
conclusions:(1) Increases in the health food safety information trans-
parency, health food consumers’ ability to process informa-
tion, and recovery rate of health food consumers can increase
the threshold of the rate of health food safety scare behavior
diffusion. The health food safety information transparency

and recovery rate of health food consumers show marginal
incremental rising characteristics in relation to the rate of
health food safety scare behavior diffusion, whereas health
food consumers’ ability to process information reflects a
marginal diminishing rising characteristic in relation to the
rate of health food safety scare behavior diffusion.

(2) Increases in the health food safety information trans-
parency, health food consumers’ ability to process infor-
mation, and recovery rate of health food consumers can
decrease the scale of the health food safety scare behavior
diffusion. The health food safety information transparency
displays a marginal diminishing decreasing characteristic in
relation to the scale of health food safety scare behavior
diffusion, whereas the health food consumers’ ability to
process information and the recovery rate of the health
food consumers indicate marginal incremental decreasing
characteristics in relation to the scale of the health food safety
scare behavior diffusion.
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Figure 8: Effects of the recovery rate 𝜇 of health food consumers
on the scale 𝑖(∞) of the health food safety scare behavior diffusion
under three kinds of network structures (where 𝜆0 = 0.005, 𝛽 = 0.5,𝜃 = 0.75, 𝜂𝑘 = 0.15, and 𝑘 = 1000).

(3) The network structure of health food consumers
significantly affects the health food safety scare behavior
diffusion. A high heterogeneity of the health food consumer
network denotes a high threshold of the rate of health
food safety scare behavior diffusion and a low diffusion
scale.

These conclusions are theoretically and practically crucial
to explaining the health food safety scare behavior diffu-
sion. The information processing capacity of health food
consumers can be improved by increasing the health food
information transparency and guiding these consumers in
increasing their health food knowledge. Effective recovery
measures after health food safety accidents must be per-
formed, and the structure of the health food consumer
network must be changed to manage and control the health
food safety scare behavior diffusion.

Data Availability

The method in this article is computer mathematical sim-
ulation. Numerical simulation analysis is the most effective
way to test real-time dynamic data without a large number
of empirical validations. The authors simulate to explore the
characteristics and laws of the evolution of health food safety
scare behavior diffusion by using Matlab2016b software. This
paper does not have the data that can be obtained because
they directly use the plot function of Matlab2016b software
to make the images.
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[22] K. Klemm, M. Á. Serrano, V. M. Eguı́luz, and M. S. Miguel,
“A measure of individual role in collective dynamics,” Scientific
Reports, vol. 2, p. 292, 2012.
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Since the SARS crisis in 2003, institutionalized emergency management systems have been established in each government level for
improving inter-organizational collaboration in China. Major accidents require participation of public organizations affiliated with
multiple government levels, and the lack of collaboration and coordination among the involved organizations within the critical
time constraints during the response process is an existing problem. In this research, a case study of examining the
intergovernmental and cross-sectoral collaboration for responding to a well-known oil pipeline explosion accident in China by a
complex network method is conducted. The aim is to obtain managerial insights in improving the existing emergency
management system in a centralized political-administrative context, such as China. A mixed method of data collection is
applied to identify the participating organizations and to determine the interaction spanning organizational boundaries in both
hierarchical and horizontal dimensions. An emergency response network is built and visualized for representing
intergovernmental and interorganizational collaboration during the response process of the major accident by social network
analysis (SNA) tools. The SNA indicators are used to measure quantitatively the network structure at the levels of the whole
network, subnetwork, and node. The obstacles of achieving intergovernmental collaboration are found, and managerial
suggestions for improving the existing emergency management system are provided. This research indicates that the Chinese
government should pay attention to establishing and sustaining partnerships with private and nonprofit organizations and
conduct a blend of hierarchical, market, and network principles in fostering collaboration for addressing major accidents. The
public organizations in the local government level are shown to be more active than other participators in coordinating their
response operations, and their capability should be emphasized for improvement. Additionally, the interactive relationships
among specific emergency function groups and between the affected communities and organizations performing emergency
command and coordination function should be strengthened.

1. Introduction

Major accidents always cause serious consequences to cities
and overwhelm the capabilities of local governments. When
emergency response extends above the local government to
the provincial and central governments, public organizations
affiliated with multiple government levels, as well as private
and nonprofit sectors, are required to collaborate and inter-
act with each other toward addressing the disastrous situa-
tion [1–3]. Effective response to major accidents depends

on intergovernmental and multiorganizational collaboration
and networks [4, 5]. The dynamic and complex environment
of rapidly evolving emergencies requires a different flexible
approach than the traditional hierarchical mechanism. Legal
authorities, responsibilities, resources, and information
involved in responding to major accidents are currently dis-
persed among sectors affiliated with different governments
in China. Such fragmentationmakes accomplishing common
objectives extremely difficult in emergency management.
Lack of collaboration and coordination among the numerous
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participants is an existing barrier that reduces emergency
response effectiveness [6].

Interorganizational collaboration and networks for
addressing emergencies has become widely accepted in
practice [6, 7]. Since the SARS crisis in 2003, the Chinese
government has been trying to establish an emergency man-
agement system [8]. For fulfilling the jurisdictional emer-
gency management responsibility, each level of government
designed and sustained an emergency management network
consisting of governmental sectors, vertical management
sectors, public companies, and institutions for improving
collaboration among organizations with formal responsibili-
ties and providing continuous emergency services to com-
munities. Successful response to major accidents comprises
rapid participation and collaboration among organizations
from institutionalized emergency management networks in
multiple government levels. As the accident breaks out,
evolving and overwhelming capacities of local governments,
governments at the higher levels activate the network once
the disaster situations are evaluated to satisfy the specified
conditions [9], and an intergovernmental network is formed
for adapting to the dynamic situation. However, whether the
established emergency management networks at multiple
government levels can be induced to converge on the
achievement of common objectives is an existing problem.
Moreover, the function of each government level, as well
as private and nonprofit sectors, should also be examined
and explored.

Examining the intergovernmental network responding to
major accidents provides an effective way to understand the
collaborative process among the diversified participating
organizations from system perspectives and helps to identify
barriers of achieving successful emergency response collabo-
ration. In addition, that will present implication to improve
the existing emergency management system in China and
to promote network-wide integration across government
levels. During a response to major accidents, multiorganiza-
tional collaboration based on interorganizational relation-
ships in both hierarchical and horizontal dimensions is
essential toward addressing the disastrous situation [10]. In
the hierarchical dimension, particularly in the context of
China [11], interorganizational hierarchies specified in the
political-administrative structure provide an important way
to arrange response operations for facilitating collaboration
among participants. Meanwhile, horizontal relationships
among public organizations without formal hierarchical
arrangement, as well as private and nonprofit sectors, are
essential to improve interaction spanning organizational
boundaries [6]. Furthermore, an appropriate emergency
response network structure is essential for improving inter-
action among all the participating organizations, such as
the development of common understanding of emergency
situations and problems to be solved, the commitment to
common incident objectives and plans, the extent to which
all stakeholders are included in the process, and the recogni-
tion and management of interdependence among involved
organizations [12–14].

The well-known oil pipeline explosion accident that
occurred on November 22nd, 2011, in Qingdao City,

Shandong Province, provides a valuable opportunity to
examine the intergovernmental and interorganizational
collaboration in responding to special major accidents in
the Chinese centralized political-administrative context.
The investigation report of the State Council in China reveals
that the failure of information sharing and lack of collabora-
tion led to poor situation assessment and decision-making
which directly caused disastrous consequences. Building on
and contributing to the existing research on interorganiza-
tional collaboration and network analysis in emergency
management, this research investigates the diversified partic-
ipating organizations and varying levels of collaborative
interaction across organizational boundaries in responding
to the aforementioned major accident in China from network
perspectives [15]. It aims to examine how public sectors affil-
iated with multiple government levels, as well as private and
nonprofit sectors, interact and work together toward
addressing major accidents in the context of the existing
emergency management institutional arrangement in China.
The following questions are examined and analyzed in
China: (1) Which organizations participate in the emergency
response process of addressing major accidents? (2)What are
the structural characteristics of the emerged intergovern-
mental emergency response network? (3)What are the obsta-
cles of achieving intergovernmental and cross-sectoral
collaboration in this specific field from network structure
perspectives? (4) How can the institutionalized emergency
management system in China be improved?

The content analysis of multiple data sources was con-
ducted to identify involved organizations and to determine
diversified types of collaborative interaction across organiza-
tional boundaries in both hierarchical and horizontal dimen-
sions in this empirical case. Social network analysis (SNA)
concepts and tools are used to build, visualize, and analyze
the complex emergency response network. The network
structural properties are analyzed quantitatively using an
SNA software tool at the level of the node, subset of nodes,
and whole network. The key organizations involved in the
response process are identified and discussed. In particular,
block analysis is applied to present interactive relationships
among groups of organizations with same attributes and
shows the barriers of interorganizational collaborative
response in the empirical case. Furthermore, the network
analysis results are discussed and the possible improvement
of the existing emergency management system in China is
presented. The rest of this paper is organized as follows. Sec-
tion 2 introduces the literature review of intergovernmental
collaboration and relevant governance mechanisms and the
emergency management network. The existing emergency
management system of addressing major accidents in China
is presented in Section 3 for providing the background of this
research. The conceptual framework of intergovernmental
and interorganizational networks is presented in Section 4.
Section 5 presents the context of the empirical case, data
sources, and research method. In Section 6, the emergency
response network of the “11.22” oil pipeline explosion
accident is built and visualized, and the network structures
are measured and analyzed based on a SNA tool. The charac-
teristics of the network of major accident response are
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discussed and managerial suggestions in providing insight to
improve the current emergency management system are pro-
vided in Section 7. Finally, Section 8 concludes this research.

2. Literature Review

The literature examining intergovernmental collaboration
and the emergency management network provides the theo-
retical basis of this research and is discussed in this section.

2.1. Intergovernmental Collaboration and Governance. Inter-
governmental collaboration across the governmental sector’s
boundaries and interorganizational collaboration among
public, private, and nonprofit sectors are common in emer-
gency management practice and are essential to achieve
effective response to large-scale emergencies [16]. Each
involved sector performs specific roles and responsibilities
and should collaborate with others toward improving infor-
mation communication, resource sharing, and action coor-
dination. The mandated and emerging collaboration in
addressing emergencies relies on the intergovernmental and
cross-sectoral relationships [17]. On the one hand, the exist-
ing institutionalized interorganizational hierarchies specified
in the political-administrative structure are employed to
coordinate multiple organizations to achieve rapid collabora-
tion when responding to major accidents [3]. On the other
hand, responding to major accidents requires collaboration
and coordination among public organizations without hier-
archical relationships, as well as among public, private, and
nonprofit sectors.

From the existing literature, addressing emergencies
involving intergovernmental and cross-sectoral collaboration
uses the combination of all the existing three governance
mechanisms, including hierarchical, market, and network
governance [3]. The first mechanism is the traditional model
and relies on the chain of command, standardized proce-
dures, and supervision. In the market mechanism, the
supervision is less and the price is emphasized to sustain
collaboration. Finally, the network mechanism reflects the
horizontal reciprocal patterns of exchange and interrela-
tionships among entities. The combination of multiple
governance mechanisms necessitates the creation of a
dynamic mixture governance mode to improve collabora-
tion in emergency management.

2.2. Emergency Management Network. The widely existing
intergovernmental and cross-sectoral collaboration forms
the interorganizational network in the field of emergency
management. The network provides an effective tool to
define and understand the interdependence and varying
levels of iteration among public organizations affiliated with
multiple government levels, as well as private and nonprofit
sectors [18]. The latest literature indicates that collaborative
processes and structures work closely together in fostering
effective interorganizational collaboration and determine
the collaborative outcomes [19, 20]. In particular, the collab-
orative process among organizations and their relationships
interacts with and is shaped by network structure arrange-
ments. Therefore, appropriate emergency response network

structures are a necessary condition for facilitating success-
ful interorganizational collaboration. In recent years, there
has been rapid growing research on emergency manage-
ment networks [21]. In particular, the empirical network
research in emergency management using SNA as its
methods is an emerging trend [11, 12, 22]. SNA refers to
a range of methods of visualizing and analyzing interaction
among nodes and provides tools to examine structural and
relational patterns of social system and processes [11]. The
existing research on emergency management networks con-
centrates on examining interorganizational collaborative
processes at the node level, subset node level, and whole
network level.

Despise rapid growth in network research in emergency
management, theory construction, methodological rigor,
and conceptual clarity are lacking. Second, the existing
literature in this field is mainly on conducting research on
interaction and collaboration among participating organiza-
tions in the western political-administrative context. The
centralized political-administrative structure in China
impacts the intergovernmental and multiorganizational
collaboration deeply, which is different from the empirical
emergency management network in most of the existing
literature [11]. The existing research gap motivates us to
examine the intergovernmental and multiorganizational
collaboration in addressing special major accidents which
involves all government levels in the institutionalized
Chinese emergency management system.

3. Background of the Chinese Emergency
Management System

This section introduces the existing emergency manage-
ment system in China. It provides the institutional design
for addressing major accidents, which is a typical interor-
ganizational collaborative arrangement across multiple
government levels.

After the SARS crisis in 2003, the Chinese government
began to establish comprehensive emergency management
systems for addressing both natural and man-made emer-
gencies. For fulfilling the jurisdictional management respon-
sibilities of addressing emergencies, each government
established an emergency management network consisting
of government sectors, departments of party committee,
state-owned enterprises, and public institutions to improve
collaboration among the participants in a jurisdictional area
according to the Act on Addressing Emergencies of the
People’s Republic of China [23]. The specific emergency
management responsibilities and roles of each participating
organization are specified. First, an emergency management
office (EMO) is set up at each government level to coordinate
and manage the network activities of all the involved sectors
as a network administrative organization [24]. An emergency
management committee consisting of representatives from
the main member organizations is established to address
strategic-level problems, thereby leaving the daily operations
to EMO. Second, each government sets up specific emer-
gency command headquarters for coordinating involved
organizations to address particular emergencies with higher
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risk levels which may occur in the jurisdictional area. Fur-
thermore, responsible organizations with similar capacities
are arranged in an emergency function group to streamline
the emergency services. A number of emergency operation
plans have been developed for providing clear ground rules
and processing transparency by arranging the response
works of participators.

Hierarchically, the political-administrative structure in
China consists of four governmental levels: the central,
provincial, municipal, and county (or local) levels. The legal
emergency management responsibilities of various govern-
ment levels are specified according to the severity of conse-
quence of emergencies in China. When a jurisdictional
government evaluates that addressing the current emergency
situation exceeds the capacity of subordinate governments
and satisfies the conditions specified in the emergency oper-
ation plans, it should activate the established emergency
management network in this government level, which is
merged with the existing emergency response network for
adapting to the disastrous situation. As the disastrous
situation evolves and deteriorates, the emergency response
network expands as governments in higher levels participate
in addressing the emergencies. The layered emergency man-
agement institutional arrangement allows for appropriate
response scale for each specific emergency.

In the current time, the emergency management network
is designed and sustained independently within different
government levels. How to leverage and integrate emergency
management networks across multiple government levels
within critical time constraints toward addressing major
accidents together is an existing problem. In addition, the
actual emergency response network should take into account
the emergent characteristics and include a broad enough
spectrum of participators for adapting to the complex
emergency situation [25, 26].

4. The Conceptual Framework of the
Intergovernmental Emergency
Response Network

During major accidents, an emergency response network
consisting of diversified participators emerges and sustains
adapting to the disastrous situation. While performing differ-
ent types of operations, the broad range of participating orga-
nizations interact and collaborate with one another across
the organizational boundaries, which is essential for achiev-
ing successful emergency response. Actually, the involved
interorganizational interactions reflect an intriguing mixture
of collaboration in both hierarchical and horizontal dimen-
sions. In this section, a conceptual framework of an intergov-
ernmental and interorganizational network is presented for
examining the intergovernmental and cross-sectoral collabo-
ration of addressing major accidents as shown in Figure 1.
The participating organizations, both the hierarchical and
horizontal interorganizational relationships, as well as the
involved governance mechanisms [27] of promoting interor-
ganizational collaboration, are discussed. The details are
listed as follows.

4.1. Hierarchical Relationships and the Governance
Mechanisms. In the context of China, the hierarchical
relationships are mainly the interorganizational hierarchies
specified by the institutionalized political-administrative
structure [28] during emergencies. First, the affiliation
relationships between the jurisdictional government and its
subordinate sector, such as governmental sectors, state-
owned companies, and public institutions, are typical hierar-
chical relationships. Second, the administrative supervision
relationships between governments at various levels and
business guidance relationships among the governmental
sectors in different government levels belong to this type of

Central government level

Provincial government level

Country government level

Municipal government level

Sector1 Sector2

Sector3 Sector N

Public organization
Private sectors

E-1

E-2 E-M

Nonprofit organization

P-1

P-2 P-K

Hierarchical relationship

Horizontal relationship

Figure 1: The conceptual framework of an intergovernmental and interorganizational network for responding to major accidents.
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interorganizational relationships. The top-down administra-
tive system consists of the specified interorganizational
hierarchical relationships, and formal authority is extended
along with the hierarchies.

On the basis of interorganizational hierarchies, organiza-
tions with authorities direct and control multiple subordinate
sectors to perform specific operations and resolve possible
conflicts in a timely manner. Hierarchy mechanism is an
essential governance mechanism to coordinate multiple
organizations with these types of interorganizational
relationships. The jurisdictional government mobilizes all
the subordinate sectors to participate in the response process
and achieves rapid coordination at a government level.
Meanwhile, among various government levels, public organi-
zations at a lower level are the first to respond to emergencies
and report the emergency situation to those at the higher
level. Then, the government at the higher level provides
external assistance to local governments, as well as coordi-
nates and supervises all subordinate sectors toward address-
ing a disastrous situation. In China, the provincial and
municipal governments play essential roles as a conduit for
hierarchical collaboration between central and local govern-
ments in large-scale emergency response (Lu, 2016).

4.2. Horizontal Relationships and the Governance
Mechanisms. Horizontal relationships are those between
public organizations without hierarchical relationships,
interjurisdictional relationships, and cross-sectoral relation-
ships between public sectors and those from market and
society. The interjurisdictional relationships are those among
different jurisdictional governments, whereas the other
horizontal relationships focus on the broader relationships
among organizations without hierarchical relationships, such
as those among sectors affiliated with the same jurisdictional
government and those among public, private, and nonprofit
sectors. Horizontal relationships reflect interaction and
exchanges among autonomous organizations, which stress
autonomy, partnership, and voluntary agreements. Respond-
ing to major accidents creates an atmosphere to develop and
improve horizontal relationships, wherein numerous organi-
zations share the common risks and responsibilities. From
the institutional arrangement of each government in China,
the EMO establishes and sustains the horizontal relation-
ships among organizations with formal emergency manage-
ment responsibilities for improving information sharing
and broad collaboration among all involved sectors in the
jurisdiction as discussed in Section 3. The emergency opera-
tion plans of addressing accidents specify the formal respon-
sibilities of each involved organization and group them into
several emergency function groups for providing streamlined
emergency service to impacted communities [29]. Participat-
ing organizations affiliated with the same emergency func-
tion group establish and maintain horizontal relationships
by programing emergency service procedures and excising
together toward improving joint decision-making and
implementation. Finally, jurisdictional governments at
various levels frequently collaborate with one another by
signing mutual aid agreements to build interjurisdictional
partnerships for sharing information and resource or coping

with shared risks efficiently which may spread across
administrative boundaries.

Similar to hierarchical collaboration, interorganizational,
interjurisdictional, and cross-sectoral collaboration and
interaction in the horizontal dimension are also essential to
improve effective response in actual emergency situations.
However, collaboration across organizational boundaries
based on horizontal relationships mainly relies on a network
mechanism and market mechanism to arrange the opera-
tions of involved sectors. The later one allows participants
to use their individual resource to achieve their self-interest,
where the former one emphasizes shared value, trust, and
consensus in improving interorganizational collaboration
and coordination [30]. In particular, network and market
mechanisms are essential to mobilize resources beyond the
government system and integrate capacities of various
sectors from the market and the society toward addressing
major accidents.

As per the above discussion, responding to major acci-
dents involves intergovernmental and cross-sectoral interac-
tions and requires effective integration of hierarchical and
horizontal relationships that complement each other [3].
Hierarchical, market, and network mechanisms are mixed
and embedded in their forms of interorganizational relation-
ships to regulate the behaviors of involved organizations
toward improving collaboration and coordination among
multiple levels of governments, as well as private and non-
profit sectors. How to leverage and combine each activated
emergency management network in various government
levels from both hierarchical and horizontal dimensions to
regulate diversified interorganizational interactions toward
addressing major accident collaboration is an existing prob-
lem, particularly in the centralized political-administrative
structure in China.

5. Context, Data Source, and Research Method

In this research, a case study [31] is conducted to examine the
involved intergovernmental and cross-sectoral collaboration
during the process of responding to the well-known “11.22”
Donghuang oil pipeline explosion accident in China from
network perspectives. In this case study, the analysis unit is
the participating organizations, and various types of interac-
tions across organizational boundaries are recorded for
building the actual emergency response network which
emerged rapidly after the occurrence of the explosion acci-
dent. The case is summarized to provide the context of this
study. Furthermore, the data sources and research method
are also introduced.

5.1. Context of the Study. At 10:25 pm on November 22nd,
2011, an oil spill occurred at the Donghuang petroleum
transmission pipeline, which is located within a highly
urbanized and coastal area in the Economy and Technology
Development Zone of Qingdao City, Shandong Province, in
eastern China. The leaked oil flowed into the municipal pipe
network and caused a huge explosion. This accident killed 62
persons and injured 136 others. Furthermore, it caused
serious damage to the surrounding construction structures,
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and the water, electricity, heat, and gas supplying systems
were destroyed to varying degrees. The leaked oil flowed into
the nearby sea through the municipal pipes, caused serious
environmental pollution in the coastal region, and were
burnt by the explosion, which threatened the safety of the
multiple oil tanks in this city. The direct economic losses
amounted to nearly 750 million RMB.

The consequences of this accident are evaluated to satisfy
the conditions of special major accidents. According to the
institutional arrangements of the emergency management
system in China as introduced in Section 3, as the accidents
occurred and evolved, all of the local, municipal, provincial,
and central governments activated emergency management
networks in each level in sequence and provided support to
the on-scene emergency response operations. Meanwhile,
private and nonprofit organizations also participated in the
response and recovery process of this accident. Furthermore,
a number of emergency response functions are involved,
such as firefighting, search and rescue, medical care, cleaning
of the oil spill pollution in the coastal and land regions, reset-
tlement of the victims, and repairing of water-, electricity-,
gas-, and heat-supplying systems. As a result, responding to
this accident involved a broad array of organizations with
specific responsibilities and capabilities.

The report [32] issued by the investigation team of the
State Council reveals the failure of intergovernmental and
interorganizational interaction and collaboration during
response to this explosion accident. In particular, poor infor-
mation reporting and sharing among sectors affiliated with
local government and between private and public sectors is
the main problems to be identified. Furthermore, the situa-
tion assessment and response behaviors of participating
organizations are impacted by the interorganizational
interactions and caused the disastrous consequences.
Therefore, this real-world accident provides an opportunity
to examine the intergovernmental and cross-sectoral collab-
oration by building and analyzing the emerged emergency
response network in the context of the Chinese centralized
and hierarchical political context. In this research, analyz-
ing the emergency response network of the “11.22” oil
pipeline explosion by SNA tools provides an effective
way to identify the barriers of integrating all the formal
established emergency management networks in each gov-
ernment level and to examine the emerging characteristics
of the response process.

5.2. Data Sources. In this research, mixed methods of data
collection are conducted to identify the involved participat-
ing organizations and interorganizational interactions at
varying levels during the response process to the “11.22” oil
pipeline explosion accident. All the involved participating
organizations are identified and coded by network nodes,
while the diversified interorganizational interactions are
recorded as network ties for building the emergency response
network. First, content analysis of multiple data sources, such
as the activated emergency operation plans during response
process, newspapers, situation reports, and other reports
from official websites and Weibo, was conducted. The
detailed explanation of each data source is listed as below.

(1) The Activated Emergency Operation Plans. Emer-
gency operation plans describe the legal roles and
responsibilities of each organization and provide
guidance for emergency management. The jurisdic-
tional governments at the local, municipal, provincial,
and central levels activated relevant emergency oper-
ation plans during the “11.22” oil pipeline explosion
accident for addressing disastrous situations. Content
analysis of these documents was conducted to identify
the candidates of participating organizations. As a
result, a preliminary list of participating organizations
was established.

(2) Official Accident Investigation Report. After the
explosion accident occurred, the State Council of
China set up an official investigation team and issued
an investigation report on January 11th, 2014. This
official document described the detailed emergency
response process and provide a data source with high
reliability, which specifies the main participating
organizations and interactions spanning organiza-
tional boundaries [32].

(3) Situation Reports from Newspapers, Official Web-
sites, and Weibo. This research also collected related
reports from Qingdao Daily, Qingdao Evening Daily,
and Qingdao Morning Daily. Related electronic
media reports from the official website and Weibo
of the provincial, municipal, and local government
sectors were selected as an authoritative source of
trusted information to track the emergency response
process and to collect data of network nodes and ties.

Second, in-depth interviews of key informants were con-
ducted to complement with the primary data sources.
Numerous public organizations at the municipal and county
government levels participated in the emergency response
process in this case. Two emergency managers from the
Emergency Management Office of Qingdao City, which are
responsible for managing the emergency management net-
work at the municipal government level, were interviewed.
In addition, six managers from sectors affiliated with the
Government of Qingdao Economic and Technological
Development Zone were interviewed to investigate the par-
ticipating organizations and the involved types of interorga-
nizational interactions. The first-hand data complements
with the aforementioned second-hand data sources.

5.3. Research Method. For examining the intergovernmental
and cross-sectoral collaboration among all the participating
organizations, network analysis was conducted to identify
the structural patterns of their relationships and to analyze
the effects of the network structure on the response behaviors
of participators [33]. This research applied the SNA software
tool Netminer [34] to model and visualize the involved orga-
nizations and their interorganizational relationships in both
hierarchical and horizontal dimensions during the respond-
ing process to the “11.22” explosion accident. Meanwhile,
the SNA indicators were applied to measure the network
structure at the levels of the node, subset of nodes, and whole
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network. Furthermore, how the network structure character-
istics affect behaviors of involved organizations was dis-
cussed, and the managerial implications were provided. The
involved network metrics, such as network density, centrality
analysis, and structural block analysis, are focused on and
introduced as follows.

Network density indicates the degree to which a network
is cohesive. The SNA measures, such as density and central-
ization, can be applied to depict the network structural prop-
erties. The density is defined as the number of existing ties
between organizations, with respect to the maximum
number of possible ties.

Centrality measure is used to identify the key actors in the
network or describe the nodes’ position or roles. This indica-
tor reveals interesting characteristics about the network. The
centrality analysis includes degree centrality, betweenness
centrality, closeness centrality, and effect centrality [33].
Degree centrality analysis can be performed to identify which
organization interacts directly with another in the network.
Betweenness centrality is an indicator of the extent to which
a network actor locates within the shortest distance between
a pair of nodes in the network [33]. Its value ranges from 0 to
1. The higher betweenness centrality value for a network
actor indicates that it can better control the information
communication of other nodes in the network. The effect
centrality of a given node is the measure of the effect strength
from this node to all the other ones through every path
between them. It fully captures the concept of embeddedness
because it considers both direct and indirect links. Therefore,
we believe that this concept is a more accurate indicator of
the extent to which an organization is embedded in the net-
work structure comparing with the degree centrality, which
only considers the local area of the network.

In social network analysis, all the nodes can be divided
into different exclusive subsets, called positions. Structural
block analysis can be employed to describe the interactive
relationships among positions [33]. The produced block
model is an abstract representation of the entire network.
For each pair of positions, the structural block analysis
reports whether the ties are present or absent within or
between those pairs. Moreover, the density of a given interac-
tive relationship is the ratio of the number of present lines to
the maximum number of possible ones.

6. Building and Analyzing an Emergency
Response Network for Major Accidents

Responding to major accidents is a highly complex process
that involves numerous response tasks that should be com-
pleted to achieve common incident objectives. An emergency
management network consists of diversified organizations
performing different tasks and interacting with one another.
The interactions and exchanges spanning organizational
boundaries are of varying levels and difficult to identify,
thereby presenting obstacles to build the emergency response
network. The content analysis of the aforementioned data
sources was conducted to identify interorganizational
activities for building an emergency response network of
addressing the “11.22” oil pipeline explosion accident. In fact,

it is an intergovernmental, cross-sectional, and interjurisdic-
tional network for adapting to the complex disastrous
situations. Network analysis based on the SNA tool Netminer
[34] is employed to visualize, measure, and decipher the net-
work. The involved interorganizational collaborative process
is analyzed and understood from network structural perspec-
tives. This section introduces the approach of identifying
response organizations and defining the boundary of the
emergency response network. Also, how to evaluate interor-
ganizational collaborative relationships in the institutional
context of China by tracking the interaction among organiza-
tions during emergencies is presented. Finally, the emergency
response network is visualized and analyzed for examining
characteristics of the involved intergovernmental and cross-
sectoral collaborative process.

6.1. Identifying the Response Organizations. Identifying
organizations that participated in the actual emergency
response process of the “11.22” oil pipeline explosion
accident is the first step to build the emergency response net-
work. Major accidents cause disastrous consequences and
require a broad range of response organizations to perform
diversified tasks toward achieving common objectives. The
emergency response process increasingly involves close
interactions across an array of sectors and different govern-
ment levels [35]. Moreover, the actual emergency response
tends to involve an unpredictable set of organizations rather
than follow expectations in the documented emergency
operation plans [36]. Therefore, identifying all participating
organizations and specifying network boundary remain as
dilemmas in the field of emergency response [37].

The operational criteria for inclusion in this research
requires member organizations to perform tasks or to pro-
vide resources for achieving common objectives of address-
ing the studied accident. First, the candidate participating
organizations were identified by content analysis of the acti-
vated emergency operation plans at each government level,
and then the preliminary response organization list was
formed. These organizations have formal emergency
management responsibilities, and most of them are from
the public sector. However, the emergency response demon-
strates the emergent properties [25]. Most of the private and
nonprofit organizations were not listed in the emergency
operation plans but actually participated in the emergency
response and contributed to the achievement of incident
objectives. Thus, all other data sources were utilized to verify
whether organizations in the preliminary list actually
responded to disastrous situations and to identify other orga-
nizations which satisfy the abovementioned operational
criteria of network members. Several new organizations were
added to the initial organization list. Finally, a total of 209
organizations which participated in the response process to
the “11.22” oil pipeline explosion were identified as shown
in Table 1. Each organization was recorded as a separate
entity, and multiple attributes were encoded, such as organi-
zation number, name, organizational type, responsibilities,
and the main performed tasks. All the response organizations
were classified as belonging to either the public, private, or
nonprofit sector. In addition, the public sectors affiliated with
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various government levels consist of government sectors,
state-owned companies, and public institutions.

6.2. Evaluating Interorganizational Relationships. During
emergency response, all the participating organizations
interact with one another by conducting diversified activities
spanning an organization’s boundaries. Interorganizational
relationships describe which participating organizations
interact with one another and provide abstract representa-
tion of multiple types interorganizational interaction, such
as issuing orders and making commitments; information
reporting; providing resource, service, and expertise;
information sharing; joint decision-making by attending
meetings; sharing resource and knowledge; and working
together when performing common tasks. In this research,
the interorganizational relationships are determined by
identifying interactive activities across the organization’s
boundaries. The content analysis of the aforementioned
data sources in Section 5.2 which records the emergency
response process was conducted to evaluate the interorgani-
zational relationships.

As discussed in Section 4, interorganizational relation-
ships among all the participators consist of hierarchical and
horizontal relationships. Hierarchical relationships are
established and sustained before emergencies and reflect the
hierarchy mechanism. As formal network ties, the prelimi-
nary list of hierarchical relationships among participating
organizations was identified according to the institutional
hierarchical arrangements in the emergency management
system in China. Furthermore, each hierarchical relationship
in the list is verified by identifying interactive activities of
issuing orders and making commitments and reporting
information among the participating organizations in the
actual response process. Only those representing actual inter-
actions spanning organizational boundaries were retained in
the list. On the other hand, interorganizational relationships
in the horizontal dimension are conceptualized as a represen-
tation of interactive activities among the identified participat-
ing organizations without hierarchical arrangements. Most
of the emergent interorganizational interactions belong to
this type. A context analysis of data sources was conducted
to identify collaborative activities across organizational
boundaries, such as issuing orders, making commitments,
information reporting and reception, for determining whether
there exist horizontal relationships among the participating

organizations. Unlike hierarchical relationships, horizontal
ones are determined by formal collaborative arrangements
and emergent interorganizational interaction and exchanges
during emergencies.

In this research, a total of 141 hierarchical relationships
and 521 horizontal relationships among the 209 participating
organizations were identified and verified. The hierarchical
relationships function as stronger network ties compared
with the horizontal ones. Both types of relationships comple-
ment each other and simultaneously improve collaboration
and coordination among all the participating organizations
by applying different governance mechanisms as discussed
in Section 4.

6.3. Visualizing the Emergency Response Network. Effective
response to major accidents depends on the integration of
all the involved partners, which interact with one another
during emergencies. All response organizations should
understand their respective roles and responsibilities, as well
as how to complement each other toward achieving common
incident objectives. The emergency response network of the
“11.22” oil pipeline explosion accident is built and shown in
Figure 2 based on the identified participating organizations
and interorganizational relationships. This interorganiza-
tional network consists of 209 organizations, with 141 links
representing hierarchical relationships and 521 links repre-
senting horizontal ones. This actual emergency response net-
work comprises a combination of organizations from local,
municipal, provincial, and central government levels, as well
as private and nonprofit organizations. In addition, interor-
ganizational relationships in both hierarchical and horizontal
dimensions interweave with each other, and the underlying
governance mechanisms complement each other contribut-
ing to improve the coordination and collaboration among
the involved response organizations [38]. The whole network
is integration of all the activated emergency management
networks in each government level, as well as the emergent
nodes and dyadic ties.

6.4. Analyzing and Deciphering the Network Structure. The
emergency response network of the “11.22” oil pipeline
explosion accident exhibits interorganizational interactions
in both hierarchical and horizontal dimensions; it shapes
the actual collaborative process among all the response
organizations in the Chinese institutional environment of
emergency management. In this section, the quantitative
metrics in SNA are used to analyze the emergency response
network. The characteristics of the emergency response
network are examined at the levels of the whole network,
subnetwork, and node. In addition, how the network charac-
teristics impact the behaviors of these participating organiza-
tions is analyzed and discussed.

6.4.1. Characteristics of the Whole Network. The density of
the aforementioned emergency response network is 0.031,
and its average degree is 6.396. Those network analysis
results indicate that one organization interacts with an
average of six organizations. Network density also shows
the sparse characteristic of the emergency response network.

Table 1: The organizations responding to the “11.22” oil pipeline
explosion.

Organization type Number Percentage

Public organization

Central level 8 3.8%

Provincial level 10 4.8%

Municipal level 34 16.3%

County level 37 17.7%

Private organization 65 31.1%

Nonprofit organization 55 26.3%

All organizations 209 100%
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6.4.2. Centrality Analysis. Centrality analysis is used to
analyze the embeddedness of nodes in the network. As an
important network metric, it determines access to and con-
trol over resources and information in the network structure.
Analyzing how a response organization is embedded into the
whole emergency response network is an effective way to
understand its behaviors during emergencies.

(1) Degree Centrality Analysis. Figure 3 presents a concentric
map of degree centrality. The greater the degree centrality
value of the response organization is, the closer its location
to the center of the map. Table 2 shows the 10 response
organizations with the highest degree centrality value.
Figure 3 indicates that most of the private sector and non-
profit organizations is located at the periphery. The response
organizations in the core are mainly the public organizations.
In particular, public organizations are mainly from the
municipal and district government levels. The municipal

and district governments and sectors affiliated with them
are the main response organizations in the actual emergency
response process of this major accident.

Table 2 shows that EMOs of Huangdao District (O87)
and Qingdao District (O123) keep interaction with most
organizations during emergencies. In the top 10 organiza-
tions with high degree centrality value, 6 are from the district
government level, whereas the remaining 4 are municipal
government level ones.

(2) Betweenness Centrality Analysis. Table 3 shows the top 10
organizations with the highest betweenness centrality. With
the exception of response organization O10, all the organiza-
tions are public organizations at the district, municipal, and
provincial government levels. In particular, the EMOs of
the Qingdao Municipal Government (O123) and Huangdao
District Government have higher betweenness centrality
value than the other organizations. This result indicates that

Municipal-level public sector
Private sector
Nonprofit sector

Country-level public sector
Principal-level public sector

Central-level public sector

Hierarchical relationship Horizontal relationship

Figure 2: Emergency response network of the “11.22” oil pipeline explosion.
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the EMO at the municipal and district levels of the govern-
ment are the information hubs, which play essential roles in
collecting and disseminating information.

(3) Effect Centrality analysis. The weight parameter is set to
be 0.6 in the effect centrality analysis in this study, which
defines the transmitted effect of indirect links on the direct
link. The ten response organizations with the highest effect
centrality are listed in Table 4. As shown, five response
organizations are public organizations at the district gov-
ernment level, four organizations are from the municipal
government level, and only one is from the provincial
government level. The effect centrality analysis shows that

public organizations have a stronger impact on the whole
network.

6.4.3. Structural Block Analysis. In this section, the whole
characteristics of the emergency response network are exam-
ined. Each position represents a mutually exclusive subset of
organizations with the same organizational attribute. The
block model presents interactive ties among all the positions,
which provides an effective way to examine characteristics of
the emergency response network.

(1) Block Analysis of Organizational Types. As discussed in
Section 2, each jurisdictional government establishes and
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Figure 3: Concentric map of the response organizations.
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sustains an emergency management network for facilitating
collaboration among involved organizations in jurisdictional
areas. In this research, the response organizations are
grouped into six groups, such as public organization groups
at the central, provincial, municipal, and county govern-
ment levels, a private organization group, and a nonprofit
organization group. Addressing “11.22” oil pipeline explo-
sion requires effective collaboration and coordination
among all of these groups. However, the motivations, insti-
tutional logic, and accountability mechanisms of response

organizations affiliated with these groups are different,
which impacts the behaviors and interorganizational inter-
action during emergency response [28].

Figure 4 presents the interactive relationships among and
within blocks representing the above groups. The lines repre-
sent interactive relationships and the width and color of the
lines represent the density of network ties, so that a wider
and darker line indicates a higher density of ties among or
within groups. As shown in Figure 4, public organizations
affiliated with different government levels prefer to interact

Table 2: Ten organizations with the highest degree centrality.

Rank Organization code Organization name Degree centrality

1 O87 EMO of the Huangdao District Government 0.2476

2 O123 EMO of the Qingdao Municipal Government 0.2184

3 O88 Huangdao District Public Works Administrative Departments 0.1359

4 O82 Huangdao District Firefighting Bureau 0.1262

5 O77 Huangdao District Police Bureau 0.1068

6 O115 Qingdao Municipal Firefighting Bureau 0.1068

7 O78 Huangdao District Environment Protection Bureau 0.0971

8 O96 Huangdao Street Office 0.0971

9 O125 Qingdao Municipal Health Bureau 0.0971

10 O137 Qingdao Municipal Central Blood Station 0.0971

Table 3: Ten organizations with the highest betweenness centrality.

Rank Organization code Organization name Betweenness centrality

1 O123 EMO of the Qingdao Municipal Government 0.3132

2 O87 EMO of the Huangdao District Government 0.2707

3 O137 Qingdao Municipal Central Blood Station 0.1213

4 O88 Huangdao District Public Works Administrative Departments 0.0961

5 O125 Qingdao Municipal Health Bureau 0.0642

6 O115 Qingdao Municipal Firefighting Bureau 0.0614

7 O124 Qingdao Municipal Business Bureau 0.0597

8 O84 Huangdao Municipal Education Management Bureau 0.0564

9 O153 EMO of the Shandong Principal Government 0.0558

10 O10 China Petroleum and Chemical Corporation 0.0515

Table 4: Ten organizations with the highest effect centrality.

Rank Organization code Organization name Effect centrality

1 O123 EMO of the Qingdao Municipal Government 0.0233

2 O87 EMO of the Huangdao District Government 0.0230

3 O137 Qingdao Municipal Central Blood Station 0.0210

4 O125 Qingdao Municipal Health Bureau 0.0124

5 O88 Huangdao District Public Works Administrative departments 0.0102

6 O96 Huangdao Street Office 0.0099

7 O153 EMO of the Shandong Principal Government 0.0098

8 O77 Huangdao District Police Bureau 0.0096

9 O115 Qingdao Municipal Firefighting Bureau 0.0092

10 O82 Huangdao District Firefighting Bureau 0.0089
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with other ones in the same group. The phenomena indicate
that the established emergency management networks in
each government level improves interorganizational collabo-
ration among public organizations effectively. In addition,
the analysis result indicates that public organizations at the
same government level pay more attention to collaborating
with each other in the same group than with private and
nonprofit organizations and reflects that the cross-section
horizontal relationships among public, private, and nonprofit
organizations are not established, maintained, and nurtured
at the current time. The existing intergovernmental interac-
tions are mainly between jurisdictional governments at adja-
cent levels. In fact, that reflects the hierarchical structure
among public organizations affiliated with different govern-
ment levels and shows that the political-administrative sys-
tem of the Chinese government plays essential roles in
facilitating intergovernmental collaboration and coordina-
tion during this major accident. The private organizations
tend to collaborate with organizations within the same group
and public organizations at the county government level,
which is at the bottom of the Chinese government system.
The interactive relationships between private organizations
and public organizations at the central, provincial, and
municipal government levels are lacking. Finally, close
interactions and links between nonprofit sectors and all other
response organizations are lacking. That reduces the collabo-
ration level and emergency response effectiveness.

(2) Block Analysis of Emergency Function Groups. Similarly,
the response organizations can also be grouped into multiple
exclusive subsets representing different emergency functions
[16]. Response organizations affiliated with an emergency
function group have specific capabilities for providing a

specific emergency service. Moreover, emergency services
provided by various emergency function groups complement
one another and should be integrated to address the disas-
trous situation together. During response process of the
“11.22” oil pipeline explosion accident, each emergency func-
tion group collaborates with others to provide continuous
and coordinated emergency services to achieve common
incident objectives, such as saving human lives, protecting
properties and the environment, stabilizing the incident,
restoring basic services and community functions, and
establishing a safe and secure environment for transition to
recovery. All the participating organizations are classified
into 15 groups in this research. Each group provides specific
emergency response functions and performs relevant tasks
during the emergency response process, as detailed in
Table 5. In addition, the affected communities which
received emergency service and provide self- and mutual
aids to victims are defined as a specific group for conduct-
ing structural block analysis. In this research, structural
block analysis determines whether interactive relationships
exist among these blocks representing emergency function
groups.

Figure 5 presents the block model showing interactive
relationships within and among blocks representing emer-
gency function groups. Similar to Figure 4, the lines represent
the interactive relationships between different emergency
function groups or among response organizations within
the same group. The width and color of the lines represent
the density of network ties, so that a wider and darker line
indicates a higher density of ties among or within the emer-
gency function group. From Figure 5, response organizations
affiliated with the emergency function groups Resident
Resettlement, Psychological Intervention and Mass Care,

Public organization group at central government level

Public organization group at country government level

Nonprofit organization group

Private organization group

p atat ca

te oor

pupgrgrgon g

at cou ver

ou

le

ou

Public organization group at provincial government level

Public organization group of municipal government level

Figure 4: Block model of response organization type.
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and Emergency Medical Care, interact with each other at a
low level, and the interorganizational relationships among
organizations affiliated with the same groups should be
improved to provide more streamlined emergency response
services. As the core of the whole network, there does not
exist dense interactive relationships between the block repre-
senting the Emergency Command and Coordination group
and other groups. That indicates that the former groups can-
not coordinate response organizations in the other group to

achieve better network collaboration. Especially, there are
no interactive relationships between the Emergency Com-
mand and Coordination group and the Affected Commu-
nity group. This observation indicates that information
about the disastrous situation and consequences of this
explosion cannot be collected rapidly and effectively during
the emergency response. Therefore, that presents barriers to
the interorganizational collaboration in the emergency
response process.

Table 5: The involved emergency function groups responding to the “11.22” oil pipeline explosion.

Emergency function group Task description

Traffic Control Manage the traffic

Transportation Transport materials to the accident scene

Resident Resettlement Provide house and food to evacuated residents

Information Issue and Media Management
Issue emergency information to the public and

manage the media personnel on scene

Information Monitoring Collect, analyze, and distribute emergency situation information

Public Works and Engineering Restore and repair electricity, water, and gas supply systems

Emergency Medical Care Provide medical care to victims

Psychological Intervention and Mass Care Provide mental health service to victims

Emergency Command and Coordination
Coordinate incident management and response efforts,

issue mission assignments, and plan the emergency response

Firefighting and Search and Rescue
Search for and rescue victims in the accident; extinguish fire

caused by the explosion in the accident

Life Material Support Provide life materials to the evacuated residents

Oil and Hazardous Material Response Clear the pollution caused by the oil spill on land and in the sea

Guarding and Public Security Block the scene of the accident and maintain public order

Communication Support Maintain and restore telecommunication infrastructure

Affected community

Guarding and Public security

Traffic controlling

Information issue and media management

Information Monitoring

Communication Support

Public Works and Engineering

Firefighting and Search and Rescue

Transportation

Oil and Hazardous Material Reponse
Life Material Support

Emergency Medical care

Psychological Intervention and Mass Care

Emergency Command and Coordination

Resident Resettlement

Figure 5: Block model of emergency response function groups.
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7. Discussions and Managerial Suggestions

Intergovernmental and interorganizational collaboration
taking the form of network ties among response organiza-
tions is necessary to successfully address major accidents
and determine the performance of emergency response to a
great extent. The networked response operations spanning
organizational boundaries are a highly complex assembly of
multiple heterogeneous organizations with different capabil-
ities and functions for achieving common objectives. Reflect-
ing on the response to the “11.22” oil pipeline explosion
accident, responding to a major accident requires that public
organizations affiliated multiple government levels, as well as
private and nonprofit organizations, collaborate and interact
with one another, while still performing tasks within the
boundaries of their own organization. Appropriate structure
is a necessary condition for achieving network effectiveness.
A number of managerial suggestions are drawn from
examining constituents and structural characteristics of an
actual emergency response network for the “11.22” oil pipe-
line explosion accident in China but can also be relevant to
improve the existing emergency management system in the
centralized political-administrative context.

First, in the participating organizations, 31.1% are private
organizations, while 26.3% are from the nonprofit sector.
Thus, both private and nonprofit organizations play essential
roles for addressing major accidents. However, the existing
emergency management network at each government level
emphasizes the responsibilities and functions of public orga-
nizations in emergency response and neglects the participa-
tion of the private and nonprofit sectors. The governments
should plan ahead to effectively establish and sustain partner-
ships between other public, private, and nonprofit organiza-
tions for integrating their capabilities into the existing
emergency management systems at each government level.

Second, from the centrality analysis, public organizations
at the county and municipal government levels play the most
important roles in addressing major accidents and are
located at the central position in the emergency response net-
work. The network analysis results show that governments at
the county and municipal government levels do not only rap-
idly respond to major accidents but also play more important
roles than the principal and central governments. Further-
more, from the structural block analysis in Section 6.4.3,
the interactive relationships between private and public orga-
nizations at the central, provincial, and municipal govern-
ment levels are weaker than those between private and
public sections at the county government level. During
response to major accidents, the participating organizations
at the local government level are faster than others and are
more active than others to coordinate their response opera-
tions. Therefore, network leadership capability of local gov-
ernments should be focused on and enhanced for a
successful response to major accidents. The important lesson
from this empirical research indicates that more investment
should be made at the local government level in the field of
emergency management.

Third, despite network mechanism being considered as
an alternative to the hierarchy mechanism, this case study

reveals that a blend of hierarchical, market, and network
principles and strategies is mixed in fostering intergovern-
mental and interorganizational collaboration during response
to major accidents in China. The involved multiple gover-
nance mechanisms are embedded in the form of diversified
links spanning organizational boundaries as shown in the
map of an emergency response network in Section 6.2.
These governance mechanisms complement each other
for improving the effectiveness of the emergency response
network. In particular, the shadow of interorganizational
hierarchies is apparent in the network according to the
structural block analysis of organizational types in Section
6.4.3. That reveals that the political-administrative system
of the Chinese government plays essential roles in the
networked response operations for addressing major acci-
dents. In fact, it facilitates rapid collaboration and coordi-
nation in these intergovernmental and interorganizational
network environments during emergencies.

Finally, participating organizations affiliated with the
same emergency function group should interact with each
other to provide specific emergency services in this empirical
research. Moreover, all the fourteen emergency function
groups involved in the responding process are required to
keep interaction and collaboration with each other for
providing streamlined services to affected communities and
achieving better network effectiveness. As discussed in
Section 6.4.3, a number of problems are identified from the
block analysis of emergency function groups, which provides
guidance to improve the design of emergency function
groups in the involved emergency operation plans. For exam-
ple, organizations affiliated with the emergency function
groups Resident Resettlement, Psychological Intervention
and Mass Care, and Emergency Medical Care should pay
more attention to establish and sustain partnerships with
each other. The interactive relationships between the
Emergency Command and Coordination group and those
in other groups are weak and should be improved. In partic-
ular, the information reporting relationships from the
affected communities to organizations affiliated with the
Emergency Command and Coordination group should be
established and strengthened for collecting information on
disastrous situations and identifying response requirements
more exactly and quickly.

8. Conclusions and Future Work

Intergovernmental and multiorganizational collaboration
for addressing major accidents involves complex interac-
tions spanning organizational boundaries of public sectors
in multiple government levels, as well as private and non-
profit sectors. Despite the institutionalized emergency man-
agement systems having been established in the last decade,
the lack of interorganizational collaboration and coordina-
tion presents challenges to Chinese governments for
responding to emergencies involving multiple government
levels. In this research, the whole picture of intergovernmen-
tal and cross-sectoral collaboration in responding to the well-
known oil pipeline explosion accident is focused on and
examined from network perspectives to obtain managerial
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insights in improving the existing emergency management
system in the centralized political-administrative context,
such as China.

By conducting mix data collection methods, all the par-
ticipating organizations and numerous interorganizational
relationships in both hierarchical and horizontal dimensions
are identified. The emergency response network is built to
represent the interorganizational collaboration of varying
types involved in the response process. The research facili-
tates the development of theoretical linkages between the
emergency response concepts and social network analysis.
From quantitative analysis results of the emergency response
network based on SNA, a number of findings and managerial
suggestions for improving the existing emergency manage-
ment system in China are proposed. First, the Chinese
government should pay attention to establish and sustain
partnerships with private and nonprofit organizations, and
a blend of hierarchical, market, and network principles and
strategies should be mixed to complement one another in
fostering collaboration among responsible organizations in
the emergency management system in China. Second, the
participating organizations at the local government level are
faster in responding to accidents and are more active than
other participators in coordinating their response operations.
The capabilities of local governments should be emphasized
in emergency management. Finally, the interactive relation-
ships among specific emergency function groups and
between the possible affected communities and organizations
performing the emergency command and coordination func-
tion should be strengthened. Although we focus on a case
study of a major explosion accident, this research provides
insights on how to improve the intergovernmental collabora-
tion involved in addressing complex problems in the central-
ized political-administrative context.

The main limitations of the reported research pertains to
the data sources. Tracking real-world intergovernmental
collaboration to identify all the organizations in the network
boundaries and to determine interorganizational relation-
ships of varying types is an existing problem. Furthermore,
this study focuses on static networks by capturing interac-
tions during the entire response process and disregards the
evolution of the emergency response network over time.
Actually, the intergovernmental and cross-sectoral response
to large-scale emergencies can be reframed as a dynamic
and adaptive network that adjusts for best fitting the
demands of ever-changing disastrous situations. The future
work is to conduct research on the evolution of emergency
response networks.
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This paper concerns complex delayed neural networks with discontinuous activations. Based on the framework of differential
inclusion theory, we design two novel controllers by regulating a parameter σ 0 ≤ σ < 1 which covers both discontinuous and
continuous controllers. Then, we investigate a nonautonomous cellular neural network system and autonomous neural network
with linear coupling, respectively. By choosing a time-dependent Lyapunov-Krasovskii functional candidate and suitable
controllers, some criteria are studied to guarantee the exponential synchronization of the complex delayed dynamical network.
Finally, two numerical examples are given to illustrate our theoretical analysis.

1. Introduction

In the past few decades, the dynamical behavior of synchro-
nization phenomena has attracted much attentions because
of its potential practical application in general complex
networks [1], pattern recognition [2], secure communication
[3], combinational optimization [4], biological systems [5],
and so on. Up to now, several types of synchronization of
complex neural networks have been studied such as asymp-
totic synchronization [6], finite-time synchronization [7],
and exponential synchronization [8–10]. The synchroniza-
tion phenomena of a complex dynamical network are said
to be an important issue in our theoretical analysis and
experimental application.

In real world, there are a large number of nodes in
the real-world complex networks. Cao et al. in [11, 12]
studied the global synchronization of coupled delayed
neural networks with constant and hybrid coupling.
The authors in [13] designed a coupling term by D xj
t − τ t − xi t − τ t and realized the exponential syn-
chronization for complex dynamical networks with sampled
data. After that, some literatures are interested in the

synchronization for neural networks with the coupling term
D xj t − τ t − xi t − τ t ; for example, in [14, 15], the
authors investigated the synchronization of coupled net-
works with hybrid coupling, which were composed of con-
stant coupling and a single coupling delay. By this distance,
a new unloading method is obtained in global convergence
for complete regular coupling configuration. Generally, the
coupling structure is designed by a graph which can be
unconnected, directed, and undirected.

As we know, many valid control techniques have been
extensively applied in the engineering field, such as impulsive
control [16], intermittent control [17], feedback control [18],
and adaptive control [19]. In recent years, many researchers
receive the results on synchronization stabilization of
complex chaotic systems and coupled dynamical networks
by pinning a suitable control, and most of the existing
controllers were designed in the form of −k sign e t
e t σ 0 ≤ σ < 1 ; we can see that the controller is continuous
if 0 <σ< 1 and the controller is discontinuous if σ=0,
where e t is the synchronization error with control
strength k. However, few literatures discuss the two types
of switching controllers concurrently, and the two categories
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are discussed separately or only in the field of Lipschitz con-
ditions. Because there still have been a lot of difficulties in
overcoming the exponential synchronization problem when
the activation functions are discontinuous but the control-
lers are not. However, to the best of our knowledge, few
papers focus on the synchronization issue of complex
networks with nonlinear coupling function, and there are
two kinds of controllers such as continuous case and dis-
continuous case when the activation functions are still
discontinuous.

The neural network system of this paper is a general
nonautonomous neural network system with discontinu-
ous activations, and we also consider the corresponding
autonomous system in this paper. The main contributions
are as follows:

(1) In the existing exponential synchronization research,
the neuron activation functions were restricted to be
continuous and bounded, and the assumptions of
the system were complex. So this paper consider a
more general neural network model and simpler con-
ditions for gaining the exponential synchronization
goal

(2) It is the first time that the exponential synchroniza-
tion control of the nonautonomous systems with
discontinuous activation and the autonomous system
with linear coupling function is considered. The
algorithm in this paper is optimized, where sufficient
conditions formulated by the Lyapunov function are
established to gain the exponential synchronization.
The theoretical results can also be used in a wider
scope

(3) Novel analytical techniques are proposed, and strict
mathematical proofs are given for the global expo-
nential synchronization of the discontinuous neural
network with coupled and time delays. We design
novel discontinuous controllers and continuous con-
trollers in this paper. When both neuron functions
and controllers are discontinuous, there is still a lack
of complete theory of synchronization

(4) The technique skill and control algorithm are
different from those in previous papers (e.g., [20]).
We introduce some novel tools such as exponential
synchronization theorem, differential inclusion in
the sense of Filippov, and generalized Lyapunov
approach under a 1-norm framework, and the
methods proposed in this paper can be extended to
investigate the synchronization of neural network
systems

The structure of this paper is outlined as follows. In the
next section, we design the model and introduce some basic
preliminary lemmas and definitions. In Section 3, we design
a continuous controller to realize the exponential synchroni-
zation of the nonautonomous network system with discon-
tinuous activations and describe a nonlinear coupling
function to guarantee the synchronization issue of the time-

delayed discontinuous neural network by considering a dis-
continuous controller. In Section 4, we give two numerical
examples to illustrate our theoretical results. Finally, we con-
clude this paper in Section 5.

Notation 1. Let ℝn denote the n-dimensional Euclidean
space, and let the superscript T denote the transposition.
Let x = x1, x2,… , xn T and y = y1, y2,… , yn

T ; by x > 0
x ≥ 0 , we mean that xi > 0 xi ≥ 0 for all i = 1, 2,… , n. x,
y =∑n

i=1xiyi, ⋅ , ⋅ denotes the inner product. If x ∈ℝ, x
denotes the vector norm of x, while x 1 =∑n

i=1 xi . Given
the real matrix A = aij n×n, λmax A and λmin A represent
the maximal and minimal eigenvalues of A, respectively. Let
diag ⋯ denote the block diagonal matrix, and let sign ⋅
denote the sign function.

Finally, let g t be the continuous function, and we define
that

gmax = sup
t∈ℝ

g t ,

gmin = inf
t∈ℝ

g t
1

2. Preliminaries

In this section, we give some definitions and preliminary
lemmas. The main references are the framework of Filippov,
set valued maps, differential inclusion, and so on [21–26].
Firstly, we consider the discontinuous function f to intro-
duce the solution of the system, and we denote the closure
of the convex hull of X as K X ; we can expand the property
of the Filippov solution to the system.

By the discussions in Section 1, in this paper, we consider
the following general nonautonomous neural network
system with time-varying delays and discontinuous right-
hand sides:

dxi t
dt

= −ai t xi t + 〠
n

j=1
bij t f j xj t

+ 〠
n

j=1
cij t f j xj t − τij t + Ii t , i = 1, 2,… , n,

2

where xi t corresponds to the state vector of the ith unit
at time t, ai t > 0 denotes the self-inhibition with which
the ith neuron will reset its potential to the resting state
in isolations when disconnected from the network and
inputs, bij t and cij t represent the connection strength
and the delayed connection strength of the jth neuron on
the ith neuron, respectively, f j xj t represents the acti-
vation function and the time-delayed activation function
of jth neuron, Ii t is a constant external input vector,
τij t corresponds to the transmission delay of the ith
unit along the axon of the jth unit at time t and is a
continuously differentiable function, and there exist τ =
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max1≤i,j≤n maxt∈ 0,ω τij t ≥ 0 and a negative constant τDij
satisfying

0 ≤ τij t ≤ τ,

τij t ≤ τDij < 1
3

Moreover, we obtain an autonomous system when
coefficients are reduced to constants corresponding to
model (2) as follows:

dxi t
dt

= −aixi t + 〠
n

j=1
bij f j x t

+ 〠
n

j=1
cij f j xj t − τij t + Ii, i = 1, 2,… , n

4

Equivalently, the differential equation system can be
transformed into the following matrix format:

dx t
dt

= −Ax t + Bf x t + Cf x t − τ t + I, 5

where A = diag a1, a2,… , an , B = bij n×n, and C = cij n×n.
To establish our main results, we assume the follow-

ing basic conditions for the neuron activations in model
(2) or (4):

Assumption 1. For every j = 1, 2,… , n, f j is continuous
except for a countable set of isolate jump discontinuous
points ρk, where there exist finite right and left limits, and
in every compact set of R, it has only a finite number of jump
discontinuous points.

Definition 1. A vector function x = x1, x2,… , xn T −τ, T
→ℝn, T ∈ 0, +∞ , is a state solution of the discontinuous
system (2) on −τ, T if

(1) x is continuous on −τ, T and absolutely continuous
on any compact interval of 0, T

(2) there exists a measurable function γj t ∈ K f j x t
for a.e. t ∈ −τ, T and

dxi t
dt

= −ai t xi t + 〠
n

j=1
bij t γj t

+ 〠
n

j=1
cij t γ j t − τij t + Ii t , t ∈ 0, T

6

Any function γ = γ1, γ2,… , γn
T satisfying (6) is called

an output solution associated with the state x =
x1, x2,… , xn T ; then, in the sense of Filippov, we point

out that the state x is a solution of (2) for a.e. t ∈ 0, T
and we obtain the following differential inclusion:

dxi t
dt ∈ −ai t xi t + 〠

n

j=1
bij t K f j xj t

+ 〠
n

j=1
cij t K f j xj t − τij t + Ii t , t ∈ 0, T

7

Definition 2. The network is said to achieve global
exponential synchronization if there exist some constants
λ > 0, T > 0, and M0 > 0 such that for any initial values
ϕi s i = 1, 2,… , n ,

xj t − xi t ≤M0e
−λt 8

hold for all t > T and for any i, j = 1, 2,… , n.

Lemma 1 (see [10]). If V x : ℝn →ℝ is C-regular and x t :
0, +∞ →ℝn is absolutely continuous on any compact sub-
interval of 0, +∞ . Then, x t and V x t : 0, +∞ →ℝ
are differentiable for almost all t ∈ 0, +∞ and

dV x t
dt

= ς t
dx t
dt

, ∀ς t ∈ ∂V x t 9

Lemma 2 (see [11, 12]). Given an undirected graph F with the
adjacency matrix C = cij and Laplacian matrix L, equality

xTLx = 1
2 〠

n

i,j=1
cij xi − xj

2 10

holds for arbitrary x = x1, x2,… , xn ∈ℝn.
Let F x ≜ K f x = K f1 x , Kf2 x ,… , K f n x ,

where K f i x = min f i x
− , f i x+ , max f i x

− , f i x+
. Then, we assume the neuron activation functions in (2)

or (4) to satisfy the following condition:

Assumption 2. For x, y ∈ℝ, there exist nonnegative constants
α and β such that

F f x − f y = sup
ξ∈F f x −f y

ξ ≤ a x − y + β 11

3. Main Results

In this section, the discontinuous controller and continuous
controller are designed; then, we divide this section into
two parts to derive the global exponential synchronization
conditions of discontinuous nonautonomous networks and
autonomous coupled networks, respectively.

3.1. Exponential Synchronization with the Continuous
Controller. Firstly, we consider the nonautonomous neural
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network model (6) as the driver system, and the controlled
response system can be described as follows:

dyi t
dt

= −ai t yi t + 〠
n

j=1
bij t f j yj t

+ 〠
n

j=1
cij t f j yi t − τi j t + Ii t + ui t , i = 1, 2,… , n,

12

where ui t is the controller to be designed for realizing the
synchronization of the driver response system. The other
parameters are the same as those in model (6).

Our first goal is to drive the response network model (12)
to synchronize with the nonautonomous network model (6)
with continuous controllers. To this end, choose the param-
eter 0 <σ< 1, and the continuous controller ui t is given by

ui t = −k1 yi t − xi t − k2 sign yi t − xi t yi t − xi t
σ

13

Then, by subtracting (6) from (12), let ei t = yi t − xi t .
In view of Assumption 1 and Definition 1, by differential
inclusions and set valued maps, we can see that there exists
a measurable function ξj t ∈ K f j yj t for a.e. t ∈ 0, T
and we can obtain the synchronization error system as
follows:

dei t
dt

= −ai t ei t + 〠
n

j=1
bij t Γj t

+ 〠
n

j=1
cij t Γj t − τij t − k1ei t − k2 sign ei t ei t

σ,

14

where Γj t = ξj t − γj t and Γj t − τij t = ξj t − τij t
− γ j t − τij t .

Then, we give the following theorem to derive the
response network system (6) with 0 <σ< 1 synchronizing
with the driver network system (2). Before doing this, we give
a further condition on the discontinuous activation function
f j as follows:

Theorem 1. If Assumptions 1 and 2 hold, the nonautonomous
discontinuous neural networks achieve global exponential
synchronization under the continuous switching controller
(13) with 0 <σ< 1; if there exist positive ζ1, ζ2,… , ζn and a
very small positive constant ε > 0, for i = 1, 2,… , n, the follow-
ing conditions are satisfied:

lim
t→+∞

sup Qi t < 0, 15

where

Qi t = ζibii t + 〠
n

j=1,j≠i
ζj bij t + 〠

n

j=1
ζje

ετ
cij φ−1

ij t

1 − τij φ−1
ij t

16

Proof 1. Consider the following candidate Lyapunov func-
tion:

V t = eεt 〠
n

i=1
ςi ei t + 〠

n

i,j=1
ςi

×
t

t−τi j t

cij φ−1
ij s

1 − τij φ−1
ij s

Γj s eε s+τ ds,
17

where φ−1
ij is the inverse function of φij t = t − τij t .

Note that the function ei t is locally continuous
(Lipschitz) in ei on R; then, we can see that V e t is regular.
According to the definition of Clarke’s generalized gradi-
ent of the absolute value function ei t at ei t , we obtain
that there exist ∂ ei t = K sign ei t = 1 if ei t < 0, ∂
ei t = K sign ei t = −1 if ei t > 0, and ∂ ei t =

K sign ei t = −1, 1 if ei t = 0. For any ϑi t ∈ K sign
ei t , we have ϑi t = sign ei t , if ei t ≠ 0; ϑi t
can arbitrarily be selected in −1, 1 , if ei t = 0.

Then, by Lemma 1 and calculating the time derivative of
V t , we obtain that

dV t
dt

= εeεt 〠
n

i=1
ςi ei t + eεt 〠

n

i=1
ςi sign ei t ⋅

−ai t ei t + 〠
n

j=1
bij t Γj t

+ 〠
n

j=1
cij t Γj t − τij t − k1 ei t

− k2 sign ei t ei t
σ

+ 〠
n

i,j=1
ςi

cij φ−1
ij t

1 − τij φ−1
ij t

Γj t eε t+τ

− 〠
n

i,j=1
ςi cij t Γj t − τij t eε t+τ−τi j t

≤ −〠
n

i=1
ςie

εt k1 + ai t − ε ei t + 〠
n

i=1
ςie

εtbii t Γj t

+ 〠
n

i=1
〠
n

j≠i
ςie

εt bij t Γj t
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+ 〠
n

i,j=1
ςie

ε t+τ
cij φ−1

ij t

1 − τij φ−1
ij t

Γj t − k2 ei t
σ

= −〠
n

i=1
ςie

εt k1 + ai t − ε ei t

+ eεt 〠
n

i=1
ςibii t + 〠

n

j=1,j≠i
ςi bij t

+ 〠
n

j=1
ςje

εt
cij φ−1

ij t

1 − τij φ−1
ij t

Γj t − k2 ei t
σ

≤ −〠
n

i=1
ςie

εt k1 + amin
i − ε ei t + eεt 〠

n

i=1
Qi t Γi t

− k2 ei t
σ

18

By the assumption of the theorem, ε can be a very small
positive constant, and we can see that there exist positive
constants θi and t0 ≥ 0 such that if t ≥ t0,

Qi t ≤ θi ≤ 0 19

Then, let θ0 = min −θ1, −θ2,… , − θn , and we deduce
that

V t ≤ −min
1≤i≤n

ςi ki + amin
i − ε eεt 〠

n

i=1
ei t

− θ0e
εt 〠

n

i=1
Γi t − k2 ei t

σ ≤ 0,
20

which implies that

〠
n

i=1
ei t ≤

V e0, 0
min ζ1, ζ2,… , ζn

e−εt 21

By Definition 2, the synchronization error e t converges
to zero. That is to say, the nonautonomous discontinuous
and delayed neural networks (2) and (4) can achieve the
global exponential synchronization under the continuous
switching controller (13). The proof is completed.

Remark 1. Unlike the previous studies, a great difference in
our model is that we permit the neuron activation to be dis-
continuous and unbounded. One can see that the nonlinear
function f in this paper may not satisfy the Lipschitz condi-
tion any more. There are few results on the synchronization
problem if the activations are discontinuous and the control-
lers are continuous. Our studies extend the previous
researches.

3.2. Exponential Synchronization with the Discontinuous
Controller. In this part, we describe the following

corresponding N-coupled time-delayed neural networks
of (5):

dzi t
dt

= −Azi t + Bf zi t + Cf zi t − τ + I t

+m〠
N

j=1
dijΦφ zj − zi ,

22

where zi t = zi1 t , zi2 t ,… , zin t T ∈ℝn i = 1, 2,… ,N
denotes the state variable of the ith neuron at time t, m is
the coupling strength, Φ = diag ϕ1, ϕ2,… , ϕn with ϕl > 0,
l = 1, 2,… , n, φ s is the coupling function, D = dij denotes
the adjacency matrix of subsystems, where the corresponding
Laplacian matrix is represented as L, and all of them are
applicable to undirected weighted networks.

Moreover, in order to realize exponential synchroniza-
tion, a suitable coupling function is important to improve
the network performance. Our goal is to derive the coupled
time-delayed neural networks with discontinuous controllers
synchronizing with the isolated neural network (5). To this
end, in this paper, we consider the following coupled neural
networks:

dzi t
dt

= −Azi t + Bf zi t + Cf zi t − τ + I t

+m〠
N

j=1
dijΦφ zi − zi + vi t ,

23

where D = dij N×N ∈ℝN×N with dij > 0 i ≠ j and dij = 0 i,
j = 1, 2,… ,N and vi t is the control algorithm vector sim-
ilar to (13) when σ=0 for the strongly connected network
topology which is given as follows:

vi t = −k1 zi t − x t − k2 sign zi t − x t , 24

where k1 and k2 are the gain coefficients to be determined.
We can see that the controller vi t is discontinuous when
σ = 0.

Then, we choose the discontinuous controller with σ = 0,
and we define the linear coupling function φ ℝn →ℝn as

φ s = s 25

Then, the coupled time-delayed complex network can be
described as follows:

dzi t
dt

= −Azi t + Bf zi t + Cf zi t − τ + I t

+m 〠
N

j=1,j≠i
dijΦzj t + vi t ,

26

where Φ = diag ϕ1, ϕ2,… , ϕn with ϕl > 0, l = 1, 2,… , n.
Similarly, letwi t = zi t − x t , and we choose the novel

discontinuous switching controller (24) and the linear func-
tion (25). Also, by differential inclusions and set valued maps,
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when i = 1, 2,… ,N , we can obtain the error dynamical
system as follows:

dwi t
dt

= −Awi t + Bγi t + Cγi t − τ

+m 〠
N

j=1,j≠i
dijΦwj t − kiwi t − k2SIGN wi t ,

27

where SIGN wi t = SIGN wi t , SIGN wi2 t ,… ,SIGN
win t T with SIGN s = −1 if s < 0, SIGN s = −1, 1 if
s = 0, and SIGN s = 1 if s > 0 and γi t = γi1 t , γi2 t ,… ,
γin t T = ξi1 t − γi1 t , ξi2 t − γi2 t ,… , ξin t − γin t T .

Theorem 2. If Assumptions 1 and 2 hold, we give the further
condition:

Assumption 3. min/ 1 ≤ k ≤ n k1 + ak −∑n
l=1a bkl −∑n

l=1a
ckl > 0 and min/ 1 ≤ k ≤ n k2 −∑n

l=1β bkl − ∑n
l=1β ckl >

0.
Then, by choosing the coupling function (12), the coupled
networks (26), and the isolated model (5), the exponential
synchronization under the discontinuous controller (24)
with σ = 0 can be realized.

Proof 2. Define a candidate Lyapunov function as follows:

V t =V w t = eεt 〠
N

i=1
wi t 1

+ 〠
N

i=1
〠
n

k,l=1

t

t−τ
eε s+τ ckl γil s ds,

28

where wi t 1 =∑n
k=1 wik t . Similar to Proof 1, we denote

dV t
dt

=V e t = εeεt 〠
N

i=1
〠
n

k=1
wik t

+ eεt 〠
N

i=1
〠
n

k=1

dwik t
dt

⋅ ϑik t

+ 〠
N

i=1
〠
n

k,l=1
eε t+τ ckl γil t − 〠

N

i=l
〠
n

k,l=1
eεt ckl γil t − τ

= εeεt 〠
N

i=1
〠
n

k=1
wik t + eεt 〠

N

i=1
〠
n

k=1
sign wik t ⋅

−akwik t + 〠
n

l=1
bklγil t + 〠

n

l=1
cklγil t − τ

+m 〠
N

j=1,j≠i
dijϕkwjk t − k1wik t − k2 sign wik t

+ 〠
N

i=1
〠
n

k,l=1
eε t+τ ckl γil t − 〠

N

i=l
〠
n

k,l=1
eεt ckl γil t − τ

≤ εeεt 〠
N

i=l
〠
n

k=1
wik t + eεt 〠

N

i=1
〠
n

k=1
−ak wik t

+ 〠
n

l=1
bkl γil t sign wik t + 〠

n

l=1
eετ ckl γil t

+m 〠
N

j=1,j≠1
dijϕk wjk t − k1 wik t

− k2 sign wik t ≤ −eεt 〠
N

i=l
〠
n

k=1

k1 + ak − ε − 〠
n

l=1
a bkl − 〠

n

l=1
eεta ckl wik t

+m 〠
N

j=1,j≠i
dijϕk wjk t − eεt 〠

N

i=l
〠
n

k=1

k2 − 〠
n

l=1
β bkl − 〠

n

l=1
βeεt ckl sign wik t

29

By Lemma 2 and the property of adjacency matrix D, we
deduce that

m〠
N

i=l
〠
N

j=1
dijΦwj t ≤m〠

n

k=1
ϕk 〠

N

i=1
〠
N

j=1
dij wjk t

= −m〠
n

k=1
ϕk 〠

N

i=l
〠
N

j=1,j≠i
dij w

T
jk −wT

jk ≤ 0

30

Then, from (30), we deduce that

dV t
dt

≤ −eεt 〠
N

i=1
χ1 wik t − eεt 〠

N

i=l
χ2 sign wik t , 31

where χ1 = min1<k<n k1 + ak − ε − ∑n
l=1a bkl −∑n

l=1e
ετa ckl

and χ2 = min1<k<n k2 −∑n
l=1β bkl − ∑n

l=1βe
ετ ckl . By the

assumption of the theorem, there must exist a small enough
positive l = 1 constant ε, such that χ1 > 0 and χ2 > 0, which
implies

dV t
dt

≤ 0, for a e t ≥ 0, 32

which yields V w t ≤V w 0 , meaning that V w t is
bounded; then, we have

〠
N

i=1
wi t 1 ≤V w0, 0 e−εt 33
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ByDefinition 2, the synchronization errorw t converges
to zero. That is to say, the coupled discontinuous and delayed
neural networks (26) can be globally exponentially synchro-
nized with the isolated model (5) under the discontinuous
switching controller (24). The proof is completed.

Remark 2. In Proof 2, we choose the linear coupling function
φ s = s, without the loss of generality, even if the coupling
function becomes more complex such as nonlinear function
or coupling delay function; many synchronization criteria
for delay dependence were derived under these circum-
stances [20, 27, 28]. In the existing literatures, when the
neuron functions were discontinuous, the only thing
discussed is a single case for either σ = 0 or 0 < σ < 1,
respectively. When both neuron functions and controllers
are discontinuous, there is still no complete conclusion
of the issue of synchronization. In this paper, we discuss
the exponential synchronization problem of the time-
delayed neural network with discontinuous activations
under a unified framework of 0 ≤ σ < 1.

4. Examples and Simulation Experiment

In this section, to show the effectiveness of our proposed
method, two numerical examples are introduced to demon-
strate its validity.

Example 1.We consider the following 2-dimensional nonau-
tonomous complex network system:

dx1 t
dt

= −xi t − 3 + cos t f x1 t

+ 1
4 + 1

4 cos t f x2 t

+ 1
3 + 1

6 sin t f x1 t − τ11 t

+ 1
2 + 1

2 sin t f x2 t − τ12 t + 4,

dx2t
dt

= −x2 t + cos t f x1 t − 3 + sin f x2 t

+ 1
2 sin t f x1 t − τ21 t + 3 + cos t

34

Therefore, we can see that aL1 = aL2 = 1, bM11 = bM22 = −2,
cM11 = cM21 = 1/2, bM21 = cM12 = 1, bM12 = 1/2, and cM22 = 0. The
discontinuous activation function can be described as f s
= s + sign s . Let τij t = 1 i, j = 1, 2 . We choose the

switching continuous controller ui t = −ei t − sign ei t
ei t

1/2. Then, Figure 1 shows the time evolution of variables
x1 t and x2 t for the driver neural networks (34); more-
over, we can see that the exponential synchronization
between the driver system (34) and the corresponding
response system can be achieved in Figure 1, which is suitable
for our results.

Example 2. We consider three-dimensional autonomous
coupled complex dynamical networks as follows:

dx1 t
dt

= −x1 t −
1
2 f x1 t + f x2 t −

1
10 f x1 t − 1

+ 1
4 f x3 t − 1 ,

dx2 t
dt

= −x2 t + 1
3 f x2 t −

1
5 f x3 t + 1

4 f x2 t − 1 ,

dx3 t
dt

= −x3 t + 1
5 f x1 t −

1
8 f x2 t + 1

2 f x3 t

+ 1
6 f x2 t − 1 + 1

4 f x3 t − 1

35

The discontinuous activation functions are taken as

f s
0 1s − 0 5, s ≥ 0,
0 1s + 0 5, s < 0

36

Then, let α = 0 1 and β = 0 5, and it is obvious that the
conditions (Assumptions 1 and 2) are satisfied. Let the
coupling strength be m = 1; we choose random switching
rules for the coupled networks, and their topologies are
illustrated as follows:

1 2

3 4

37

where the adjacency matrix D is easily denoted as

D =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

38

Then, we consider the discontinuous controller vi = −ei t
− 2 sign ei t with 2k1 = k2 = 2; by substituting the above
parameters, we can see that the condition (Assumption 3)
holds. We can see that the exponential synchronization
between the driver system (35) and the corresponding
response system can be depicted in Figure 2, which is suit-
able for our results.

5. Conclusions

In this paper, we investigate the exponential synchronization
of a class of complex dynamical networks based on the
framework of nonsmooth analysis and novel technique
analysis. By adding a continuous switching controller, we
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Figure 1: (a) The three-dimensional trajectory of state variables x1 and x2. (b–c) The time evolution for the driver network system and
corresponding response system (34). (d) The time response of the synchronization error between the driver system (34) and
corresponding response system with the continuous controller.
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Figure 2: (a–c) The time evolution for the driver network system (35) and corresponding response system. (d) The time response of the
synchronization error between the driver system (35) and corresponding response system with the discontinuous controller.
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realize the global exponential synchronization of the nonau-
tonomous discontinuous and delayed neural networks. Then,
we choose a linear coupling function, and the autonomous
complex dynamical network can be globally exponentially
synchronized with the isolated model under the discontinu-
ous switching controller, by constructing a C-regular
Lyapunov-like function which is time-dependent. However,
it is not easy to go beyond the conventional Lyapunov func-
tion for achieving the exponential synchronization goal. This
paper overcomes the limitation of traditional controllers and
proposes some novel discontinuous controllers. Moreover,
the results have been verified by the numerical examples
and computer simulations. In short, our results are provided
with an important application significance in the design of
synchronized complex dynamical networks.
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Spectral graph theory plays a key role in analyzing the structure of social (signed) networks. In this paperwe continue to study some
properties of (normalized) Laplacianmatrix of signed networks. Sufficient and necessary conditions for the singularity of Laplacian
matrix are given. We determine the correspondence between the balance of signed network and the singularity of its Laplacian
matrix. An expression of the determinant of Laplacian matrix is present. The symmetry about 1 of eigenvalues of normalized
Laplacian matrix is discussed. We determine that the integer 2 is an eigenvalue of normalized Laplacian matrix if and only if the
signed network is balanced and bipartite. Finally an expression of the coefficient of normalized Laplacian characteristic polynomial
is present.

1. Introduction

Social networks represent a large proportion of the com-
plex socioeconomic organization in modern society which
represent social entities including countries, corporations, or
people.These entities interconnected through a wide range of
social ties such as political treaties, commercial trade, friend,
and collaboration. To display the ally/enemy, friend/foe, and
trust/distrust relationships, the social system can be well
represented by a signed network in which an edge of the
network is assigned to be positive if two individuals are ally,
friendship, trust, and negative if they are enemy, foe, and
distrust. The origin of the study of signed networks can be
tracked back to the work of Heider [1]. The use of signed
networks was then proposed by Cartwright and Harary [2]
to model the existence of balance/unbalance in the social
networks.

As we know, graphs are very useful ways of presenting
information about signed networks. However, when there
are many actors and/or many kinds of relations, they can
become so visually complicated that it is very difficult to
see patterns. It is also possible to present information about
signed networks in the form of matrices. Representing the
information in this way also allows the application of mathe-
matical and computer tools to summarize and find patterns.

Up to now, some matrices are employed by signed networks
analysts in a number of different ways. This is the so-called
spectral graph theory, which is a branch of mathematical
science. Its idea is to exploit numerous relationship between
the structure of a network (graph) and the spectrum of
some matrix (or collection of matrices) associated with the
network (graph). There are many different matrices that
are employed, including adjacency matrix, Laplacian matrix,
and normalized Laplacian matrix. The goal of this paper
is to investigate some properties of Laplacian matrix and
normalized Laplacian matrix of signed networks and exploit
some relation between these matrices and signed networks.

Let 𝐺 be an undirected network of order 𝑛 with vertex
set 𝑉(𝐺) = {V1, V2, . . . , V𝑛} and edge set 𝐸(𝐺). The adjacency
matrix 𝐴(𝐺) = (𝑎𝑖𝑗)𝑛×𝑛 of 𝐺 is defined as follows: 𝑎𝑖𝑗 = 1
if V𝑖 and V𝑗 are adjacent and 𝑎𝑖𝑗 = 0 otherwise. A signed
network Γ = (𝐺, 𝜎) consists of a network 𝐺 = (𝑉, 𝐸),
referred to as its underlying network, and a sign function𝜎 : 𝐸 󳨀→ {+, −}. The adjacency matrix of Γ is 𝐴(Γ) =(𝑎𝜎𝑖𝑗) with 𝑎𝜎𝑖𝑗 = 𝜎(V𝑖V𝑗)𝑎𝑖𝑗, where 𝑎𝑖𝑗 is an element in the
adjacency matrix of the underlying network 𝐺 and V𝑖V𝑗 is
an edge of 𝐺. If all edges are signed positive, the adjacency
matrix𝐴(𝐺, 𝜎) is exactly the ordinary adjacencymatrix𝐴(𝐺).
Let 𝐷(Γ) = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛) be a diagonal matrix where
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𝑑𝑖 is the degree of vertex V𝑖 in its underlying network. The
Laplacian matrix of Γ, denoted by 𝐿(Γ), is defined as 𝐷(Γ) −𝐴(Γ). The matrix 𝐷−1/2𝐿(Γ)𝐷−1/2 is said to be normalized
Laplacian matrix of Γ, denoted byL(Γ).

A signed 𝑖1-𝑖𝑘-walk𝑊 in a signed network Γ is a sequence
of vertices and edges 𝑊 : V𝑖1𝑒12V𝑖2𝑒23V𝑖3 ⋅ ⋅ ⋅ V𝑖𝑘−1𝑒(𝑘−1)𝑘V𝑖𝑘 such
that 𝑒𝑠(𝑠+1) = V𝑖𝑠V𝑖𝑠+1 ∈ 𝐸(Γ) (𝑠 = 1, 2, . . . , 𝑘 − 1). An 𝑖1-𝑖𝑘-
walk 𝑊 is called even (odd) if 𝑘 is even (odd). The sign of a
signed walk𝑊 = V1𝑒12V2𝑒23 ⋅ ⋅ ⋅ V𝑙 is sgn(𝑊) = 𝑎𝜎12𝑎𝜎23 ⋅ ⋅ ⋅ 𝑎𝜎(𝑙−1)𝑙
and 𝑒𝑖(𝑖+1) = V𝑖V𝑖+1 (𝑖 = 1, 2, . . . , 𝑙 − 1). A signed walk 𝑊
is balanced (unbalanced) if sgn(𝑊) = 1 (sgn(𝑊) = −1). A
signed cycle is called balanced (unbalanced) if its sign is +1
(−1). A signed networks is called balanced (resp. unbalanced)
if each its signed cycle is balanced (resp. unbalanced).

Suppose that Γ = (𝐺, 𝜎) is a signed network. A signed
function 𝜃 : 𝑉 󳨀→ {+1, −1} is a switching function if Γ
is transformed to a new signed network Γ𝜃 = (𝐺, 𝜎𝜃) by 𝜃
such that the underlying graph remains the same and the sign
function is defined by 𝜎𝜃(𝑒) = 𝜃(V𝑖)𝜎(𝑒)𝜃(V𝑗) for an edge𝑒 = V𝑖V𝑗. Let Γ1 = (𝐺, 𝜎1) and Γ2 = (𝐺, 𝜎2) be two signed
networks with the same underlying graph. We call Γ1 andΓ2 switching equivalent and write Γ1 ∼ Γ2, if there exists a
switching function 𝜃 such that Γ2 = Γ𝜃1 . Switching preserves
some signed-graphic invariants such as the sign of cycles
and spectrum of combinatorial matrices (adjacency matrix,
normalized Laplacian matrix).

This paper is organized as follows. In Section 2, we study
some properties of Laplacian matrix of signed networks.
Sufficient and necessary conditions for the singularity of
Laplacian matrix are given. The correspondence between the
balance of signed network and the singularity of its Laplacian
matrix is determined. An expression of the determinant of
Laplacian matrix is present. In Section 3, the symmetry about1 of eigenvalues of normalized Laplacian matrix is discussed.
Sufficient and necessary condition for that the integer 2
is an eigenvalue of normalized Laplacian matrix is given.
An expression of all coefficients of normalized Laplacian
characteristic polynomial is present.

2. Laplacian Matrix and Signed Network

Hou et al. [3] introduced the incidence matrix of a signed
network as follows. Let 𝑆(Γ) = (𝑠𝑖𝑗) be an 𝑛×𝑚matrix indexed
by the vertex and the edge of signed network Γ and

𝑠𝑖𝑗 =
{{{{{{{{{{{{{{{

+1 if V𝑖 is the head of 𝑒𝑗
+1 if V𝑖 is the tail of 𝑒𝑗 and 𝜎 (𝑒𝑗) = +
−1 if V𝑖 is the tail of 𝑒𝑗 and 𝜎 (𝑒𝑗) = −
0 otherwise.

(1)

The following is immediate by the direct calculation.

�eorem 1 (see [3]). Let Γ be a signed network. �en 𝐿(Γ) =𝑆(Γ)𝑆𝑇(Γ) and 𝐿(Γ) is a positive semidefinite matrix.

�eorem 2. Let Γ be a connected signed network on vertices
V1, V2, . . . , V𝑛. �en 𝐿(Γ) is singular if and only if any 1-𝑖-walk

has the same sign. In this case, 0 is a simple eigenvalue with an
eigenvector 𝛼 = (1, sgn(𝑊2), sgn(𝑊3), . . . , sgn(𝑊𝑛))𝑇, where𝑊𝑖 is a 1-𝑖-walk in Γ.
Proof. Let 𝑥𝑇 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐶𝑛. Note that for any
nonzero vector 𝑥, 𝐿(Γ) = 0 if and only if 𝑆𝑇(Γ)𝑥 = 0. By (14),𝑆𝑇(Γ)𝑥 = 0 if and only if 𝑥𝑖 = 𝑎𝜎𝑖𝑗𝑥𝑗 for any edge 𝑒 = V𝑖V𝑗. Let𝑊𝑖 = 𝑢1𝑢2 ⋅ ⋅ ⋅ 𝑢𝑖 be any 1-𝑖-walk and 𝑢1 = V1, 𝑢𝑖 = V𝑖. Suppose
that 𝐿(Γ) = 0. So we have

𝑥1 = 𝑎𝜎12𝑥2 = 𝑎𝜎12𝑎𝜎23𝑥3 = ⋅ ⋅ ⋅ = 𝑎𝜎12𝑎𝜎23 ⋅ ⋅ ⋅ 𝑎𝜎(𝑖−1)𝑖𝑥𝑖
= sgn (𝑊𝑖) 𝑥𝑖, (2)

which implies that each 1-𝑖-walk has the same sign.
Note that sgn−1(𝑊𝑖) = sgn(𝑊𝑖). Hence
𝑥𝑇 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

= (𝑥1, sgn (𝑊2) 𝑥1, sgn (𝑊3) 𝑥1, . . . , sgn (𝑊𝑛) 𝑥1)
= 𝑥1𝛼𝑇.

(3)

This implies that 0 is a simple eigenvalue of 𝐿(Γ) with an
eigenvector 𝛼.

Suppose that any 1-𝑖-walk has the sign. Then for any edge𝑒𝑖𝑗 ∈ 𝐸(Γ), sgn(𝑊𝑗) = sgn(𝑊𝑖) ⋅ 𝑎𝜎𝑖𝑗. Let 𝑥𝑇 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
be a column vector such that 𝑥𝑖 = sgn(𝑊𝑖)𝑥1 (𝑖 = 2, 3, . . . , 𝑛).
Then 𝑥𝑗 = sgn(𝑊𝑗)𝑥1 = sgn(𝑊𝑖) ⋅ 𝑎𝜎𝑖𝑗𝑥1 = 𝑥𝑖𝑎𝜎𝑖𝑗, i.e., 𝑥𝑖 = 𝑎𝜎𝑖𝑗𝑥𝑗.
So we have

𝑥𝑇𝐿 (Γ) 𝑥 = ∑
𝑒𝑖𝑗∈𝐸(Γ)

󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑎𝜎𝑖𝑗𝑥𝑗󵄨󵄨󵄨󵄨󵄨2 = ∑
𝑒𝑖𝑗∈𝐸(Γ)

󵄨󵄨󵄨󵄨󵄨𝑎𝜎𝑖𝑗𝑥𝑗 − 𝑎𝜎𝑖𝑗𝑥𝑗󵄨󵄨󵄨󵄨󵄨2

= 0.
(4)

This implies that 𝐿(Γ) is singular.
Note that for the underlying network it is known that

the multiplicity of the eigenvalue 0 of Laplacian matrix is
equal to the number of components. For signed network, the
following holds from the proof of Theorem 2.

�eorem 3. �e multiplicity of the eigenvalue 0 of Laplacian
matrix of a signed network is the number of components whose
Laplacian matrix is singular.

�eorem 4 (see [4]). A signed network is balanced if and only
if for each pair of distinct vertices V1, V2 all paths joining V1 and
V2 have the same sign.

FromTheorems 2 and 4, we have the following.

�eorem 5. A signed network Γ is balanced if and only if 𝐿(Γ)
is singular.

The following is immediate fromTheorem 5.

�eorem 6. �e Laplacian matrix of a signed network is
singular if and only if the Laplacian matrix of any its cycles
is singular. In particular, the Laplacian matrix of any acyclic
graph is singular.
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In [5], authors determined the determinant of the Lapla-
cian matrix of mixed graphs. Here by the similar method we
shall extend it to the case for signed graphs.

�eorem 7. det𝐿(𝐶) = 2[1 − sgn(𝐶)] for any signed cycle 𝐶.
Proof. Let 𝐶 be a signed cycle with vertex set 𝑉(𝐶) ={V1, V2, . . . , V𝑛} and edge set 𝐸(𝐶) = {𝑒1, 𝑒2, . . . , 𝑒𝑛} such that𝑒𝑖 = V𝑖V𝑖+1 (1 ≤ 𝑖 ≤ 𝑛 − 1) and 𝑒𝑛 = V𝑛V1. For the incidence
matrix 𝑆(𝐶), we expand its the first row

det 𝑆 (𝐶) = 𝑛∏
𝑖=1

𝑠𝑖𝑒𝑖 + (−1)𝑛+1 𝑠1𝑒𝑛
𝑛∏
𝑖=2

𝑠𝑖𝑒𝑖−1 . (5)

By directly calculation and the fact that 𝑠𝑖𝑒𝑖𝑠𝑗𝑒𝑗 = −𝜎(𝑒)𝑎𝑖𝑗 =−𝑎𝜎𝑖𝑗 for any edge 𝑒i = V𝑖V𝑖+1. It follows that

det𝐿 (𝐶) = det 𝑆 (𝐶) ⋅ det 𝑆𝑇 (𝐶) = 2 − 2 sgn (𝐶) . (6)

So the result holds.

�eorem 8. Let Γ be a signed unicyclic network with a cycle𝐶. �en

det𝐿 (Γ) = det 𝐿 (𝐶) = 2 [1 − sgn (𝐶)] . (7)

Proof. By Theorem 7, the results hold if Γ is a signed cycle.
Assume that Γ has a pendant vertex, say 𝑢. Let V be the
unique neighbor of 𝑢 in Γ. Let 𝑒 be the edge joining 𝑢 and
V. After permutations, the first row and the first column of𝑆(Γ) correspond to the vertex 𝑢 and the edge 𝑒, respectively.
Note that 𝑆(Γ) is a square matrix since Γ is unicyclic. We get
the determinant of 𝑆(Γ) by expanding along the first row as
follows:

det 𝑆 (Γ) = 𝑠𝑢𝑒 ⋅ det 𝑆 (Γ󸀠) , (8)

where Γ󸀠 is a signed subgraph obtained from Γ by deleting the
vertex 𝑢. Hence we have

det 𝐿 (Γ) = det 𝑆 (Γ) ⋅ det 𝑆𝑇 (Γ)
= det 𝑆 (Γ󸀠) ⋅ det 𝑆𝑇 (Γ󸀠) = det𝐿 (Γ󸀠) . (9)

Repeating the above finite steps, we have det𝐿(Γ) = det 𝐿(𝐶).
Let Γ be a connected signed network. We call a subnet-

work 𝐻 as an essential spanning subnetwork of Γ if eitherΓ is balanced and 𝐻 is a spanning tree of Γ, or else Γ is
not balanced, 𝑉(Γ) = 𝑉(𝐻) and every component of 𝐻
is a unicyclic signed network in which the unique cycle is
negative. By E(Γ) we denote the set of all essential spanning
subnetworks of Γ.
�eorem 9. Let Γ be a connected signed network. �en

det 𝐿 (Γ) = ∑
𝑙=0

4𝑙𝑏𝑙, (10)

where 𝑏𝑙 is the number of essential spanning subgraphs which
contain 𝑙 unbalanced cycles and 𝑏0 = 0.

Proof. It is evident that the result holds if Γ is a tree. Assume
that Γ contains some cycles. By Cauchy-Binet Theorem [6]
and 𝐿(Γ) = 𝑆(Γ) ⋅ 𝑆𝑇(Γ), we have

det𝐿 (Γ) = ∑
𝐸󸀠⊆𝐸(Γ);|𝐸󸀠|=|𝑉(Γ)|

det 𝑆 [𝑉 (Γ) , 𝐸󸀠]
⋅ det 𝑆𝑇 [𝑉 (Γ) , 𝐸󸀠] ,

(11)

where 𝑆[𝑉(Γ), 𝐸󸀠] is a square submatrix of 𝑆(Γ).
Note that 𝑆[𝑉(Γ), 𝐸󸀠] is the vertex-edge incidence matrix

of a spanning subgraph of Γ, say 𝐻𝐸󸀠 , with the edge set |𝐸󸀠| =|𝑉(Γ)|. Moreover, det𝐿(𝐻𝐸󸀠) = 𝑆[𝑉(Γ), 𝐸󸀠] ⋅ 𝑆𝑇[𝑉(Γ), 𝐸󸀠].
Note that every component of 𝐻𝐸󸀠 is unicyclic and 𝐻𝐸󸀠 ∈
E(Γ). By Theorem 8, we have

det𝐿 (Γ) = ∑
𝐸󸀠⊆𝐸(Γ);|𝐸󸀠|=|𝑉(Γ)|

det 𝑆 [𝑉 (Γ) , 𝐸󸀠]
⋅ det 𝑆𝑇 [𝑉 (Γ) , 𝐸󸀠]

= ∑
𝐸󸀠⊆𝐸(Γ);|𝐸󸀠|=|𝑉(Γ)|

det 𝐿 (𝐻𝐸󸀠)
= ∑
𝐻∈E(Γ)

det𝐿 (𝐻)

= ∑
𝐻∈E(Γ)

𝑏𝑙∏
𝑖=1

2 (1 − sgn (𝐶𝑖 (𝐻)))
where sgn (𝐶𝑖 (𝐻)) = −1 = ∑

𝑙=0

4𝑙𝑏𝑙.

(12)

So the result holds.

The following is immediate from Theorem 9, which is
coincident with the definition of balance of signed network.

�eorem 10. Let Γ be a signed network. �en Γ is balanced if
and only if each cycle of Γ is balanced cycle.
3. Normalized Laplacian Matrix
and Signed Network

For a signed network Γ, the normalized Laplacian matrix
L(Γ) is symmetric and positive semidefinite [7], so its
eigenvalues are real and nonnegative, denoted by 0 ≤ 𝜆1 ≤𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑛. Firstly we recall some properties of normalized
Laplacian matrix.

Lemma 11 (see [7]). Let Γ be a signed network on 𝑛 vertices
with normalized Laplacian eigenvalues 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑛.
�en 𝜆𝑛 ≤ 2.
Lemma 12 (see [3, 7]). Let Γ1 and Γ2 be two signed networks
with the same underlying network. �en Γ1 ∼ Γ2 if and only if
L(Γ1) andL(Γ2) are signature similar.

In [8], the symmetry about 1 of eigenvalues for bipartite
signed network was present as follows. Here we present a
stronger result.
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�eorem 13 (see [8]). Let Γ = (𝐺, 𝜎) be a bipartite signed
network. If 𝜆 is an eigenvalue of L(Γ), then 2 − 𝜆 is also an
eigenvalue ofL(Γ).
�eorem 14. Let Γ be a connected signed network. �en Γ is
bipartite if and only if all eigenvalues of L(Γ) are symmetric
about 1 (including multiplicities); i.e., for each eigenvalue 𝜆𝑖,2 − 𝜆𝑖 is also an eigenvalue ofL(Γ).
Proof. It suffices to verify that 𝐼 −L(Γ) and −(𝐼−L(Γ)) have
the same spectrum. Note that 𝐼 −L(Γ) = 𝐷−1/2𝐴(Γ)𝐷−1/2. Γ
is bipartite if and only if 𝐷−1/2𝐴(Γ)𝐷−1/2 can be expressed as( 0 𝐵
𝐵𝑇 0

). It is evident that
(−𝐼 0

0 𝐼)( 0 −𝐵
−𝐵𝑇 0 )(−𝐼 0

0 𝐼) = ( 0 𝐵
𝐵𝑇 0) . (13)

This yields to the result.

From Lemma 11, the integer 2 is the upper bound of
normalized Laplacian eigenvalues. In this sequel, we give a
sufficient and necessary condition for that the integer 2 is an
eigenvalue of normalized Laplacian matrix.

�eorem 15. Let Γ be a connected signed network. �en 2 is
an eigenvalue of L(Γ) if and only if Γ is a balanced bipartite
signed network.

Proof. By Courant-Fischer theorem, we have

𝜆𝑛 = sup𝑓 ̸=0
∑𝑢∼V (𝑓 (𝑢) − 𝜎 (𝑢V) 𝑓 (V))2

∑V 𝑓2 (V) 𝑑 (V) . (14)

Assume that 2 is an eigenvalue of L(Γ) with nonzero
eigenvector 𝑦𝑇 = (𝑦1, 𝑦2, . . . , 𝑦𝑛). By Lemma 11 and (14),𝑦𝑖 = −𝜎(V𝑖V𝑗)𝑦𝑗 for any edge 𝑒 incident to V𝑖 and V𝑗. So 𝑉(Γ)
can be partitioned into two parts such that no edge existing
between any two vertices in every part. This means that Γ is
bipartite. For any even cycle 𝐶2𝑘 = V1V2 ⋅ ⋅ ⋅ V2𝑘V1, we have

𝑦1 = −𝜎 (V1V2) 𝑦2 = 𝜎 (V1V2) 𝜎 (V2V3) 𝑦3
= −𝜎 (V1V2) 𝜎 (V2V3) 𝜎 (V3V4) 𝑦4 = ⋅ ⋅ ⋅
= −𝜎 (V1V2) 𝜎 (V2V3) ⋅ ⋅ ⋅ 𝜎 (V2𝑘−1V2𝑘) 𝑦2𝑘.

(15)

Moreover, 𝑦1 = −𝜎(V1V2𝑘)𝑦2𝑘. So𝜎(V1V2)𝜎(V2V3) ⋅ ⋅ ⋅ 𝜎(V2𝑘−1V2𝑘) =𝜎(V1V2𝑘) and 𝐶2𝑘 is balanced. This implies that Γ is balanced.
If Γ is balanced bipartite, then 0 is an eigenvalue ofL(Γ).

ByTheorem 14 and Lemma 12, 2 is an eigenvalue ofL(Γ).
As we know, the coefficients of characteristic polynomial

of adjacency (Laplacian) matrix are related to the graph
structure. In [9], expressions of coefficients of (Laplacian)
characteristic polynomial was present. We would present
the expression of the coefficients of normalized Laplacian
characteristic polynomial. Firstly, we recall the Sachs formula
for the coefficients of adjacency characteristic polynomial
of signed networks. Here some definitions are needed. An
elementary figure is the graph𝐾2 or the cycle. A basic figure is
the disjoint union of elementary figures.

Lemma 16 (see [9]). LetΓ = (𝐺, 𝜎) and𝜙(Γ, 𝑥) = 𝑥𝑛+𝑎1𝑥𝑛−1+⋅ ⋅ ⋅ + 𝑎𝑛 be a signed network and its adjacency characteristic
polynomial, respectively. �en

𝑎𝑖 = ∑
𝐵∈B𝑖

(−1)𝑝(𝐵) 2|𝑐(𝐵)|𝜎 (𝐵) , (16)

where B𝑖 is the set of basic figures on 𝑖 vertices in 𝐺, 𝑝(𝐵) is
the number of components of 𝐵, and 𝑐(𝐵) is the set of cycles in𝐵 and 𝜎(𝐵) = ∏𝐶∈𝑐(𝐵) sgn(𝐶).

Let 𝜓(Γ, 𝑥) be the normalized Laplacian characteristic
polynomial of Γ. By the definition of normalized Laplacian
matrix, we have

𝜓 (Γ, 𝑥) = det (𝑥𝐼 −L (Γ))
= det (𝑥𝐼 − 𝐷−1/2𝐿 (Γ)𝐷−1/2)
= det (𝑥𝐼 − 𝐼 + 𝐷−1/2𝐴 (Γ)𝐷−1/2)
= det ((𝑥 − 1) 𝐼 + 𝐷−1/2𝐴 (Γ)𝐷−1/2)
= (𝑥 − 1)𝑛 + 𝑐1 (𝑥 − 1)𝑛−1 + ⋅ ⋅ ⋅ + 𝑐𝑛−1 (𝑥 − 1)

+ 𝑐𝑛.

(17)

�eorem 17. Let Γ be a signed network on 𝑛 vertices and𝜓(Γ, 𝑥) = (𝑥 − 1)𝑛 + 𝑐1(𝑥 − 1)𝑛−1 + ⋅ ⋅ ⋅ + 𝑐𝑛−1(𝑥 − 1) + 𝑐𝑛 be its
normalized Laplacian characteristic polynomial. �en

𝑐𝑘 = ∑
𝐵∈B𝑘

(−1)𝑝(𝐵) 2|𝑐(𝐵)|𝜎 (𝐵) 1𝐷𝑘 , (18)

where B𝑘 is the set of basic figures on 𝑘 vertices in 𝐺, 𝑝(𝐵) is
the number of components of 𝐵, 𝑐(𝐵) is the set of cycles in 𝐵,𝜎(𝐵) = ∏𝐶∈𝑐(𝐵) sgn(𝐶), 𝐷𝑘 = ∏V𝑖∈𝑉(𝐵)𝑑𝑖, and 𝑑𝑖 is the degree
of V𝑖 in Γ.
Proof. Note that

𝜓 (Γ, 𝑥) = det ((𝑥 − 1) 𝐼 + 𝐷−1/2𝐴 (Γ)𝐷−1/2)
= (−1)𝑛 det ((1 − 𝑥) 𝐼 − 𝐷−1/2𝐴 (Γ)𝐷−1/2) . (19)

Set

det ((1 − 𝑥) 𝐼 − 𝐷−1/2𝐴 (Γ)𝐷−1/2)
= (𝑥 − 1)𝑛 + 𝑐󸀠1 (𝑥 − 1)𝑛−1 + ⋅ ⋅ ⋅ + 𝑐󸀠𝑛−1 (𝑥 − 1) + 𝑐󸀠𝑛.

(20)

So 𝑐𝑘 = (−1)𝑘𝑐󸀠𝑘. Moreover, (−1)𝑘𝑐󸀠𝑘 equals to the sum of
all 𝑘 × 𝑘 minors of 𝐷−1/2𝐴(Γ)𝐷−1/2. Then 𝑐𝑘 is the sum
of all 𝑘 × 𝑘 minors of 𝐷−1/2𝐴(Γ)𝐷−1/2. It is evident that
each such 𝑘 × 𝑘 minor of 𝐷−1/2𝐴(Γ)𝐷−1/2 is the product of
the corresponding 𝑘 × 𝑘 minors of 𝐷−1/2, 𝐴(Γ), and 𝐷−1/2,
respectively. Furthermore, any 𝑘 × 𝑘 minor of 𝐴(Γ) is the
determinant of adjacency matrix of an induced subgraph of Γ
with 𝑘 vertices. So this result holds from Lemma 16.
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4. Conclusion

Recently, there are some results on the spectral theory of
signed graphs [10–18]. In this paperwe investigate some prop-
erties of (normalized) Laplacian matrix of signed network
and present a correspondence between the balance of signed
networks and the singularity of Laplacian matrix. Moreover,
we give the expressions of determinant of Laplacian matrix
and coefficients of normalized Laplacian characteristic poly-
nomial, respectively. Actually there are some other aspects
of spectrum of signed graphs, which can be investigated. It
will be left to our future study. In addition, there are many
spectrum-based invariants, which are widely investigated,
such as graph energy (e.g., graph theory [19, 20], incidence
energy [21], and matching energy [22, 23]), HOMO-LUMO
index [24, 25], and inertia [26–29]. In the future, we would
like to study some properties of these spectrum-based indices
of signed networks.
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The development of new methods to identify influential spreaders in complex networks has been a significant challenge in
network science over the last decade. Practical significance spans from graph theory to interdisciplinary fields like biology,
sociology, economics, and marketing. Despite rich literature in this direction, we find small notable effort to consistently
compare and rank existing centralities considering both the topology and the opinion diffusion model, as well as considering
the context of simultaneous spreading. To this end, our study introduces a new benchmarking framework targeting the
scenario of competitive opinion diffusion; our method differs from classic SIR epidemic diffusion, by employing competition-
based spreading supported by the realistic tolerance-based diffusion model. We review a wide range of state-of-the-art node
ranking methods and apply our novel method on large synthetic and real-world datasets. Simulations show that our
methodology offers much higher quantitative differentiation between ranking methods on the same dataset and notably high
granularity for a ranking method over different datasets. We are able to pinpoint—with consistency—which influence the
ranking method performs better against the other one, on a given complex network topology. We consider that our
framework can offer a forward leap when analysing diffusion characterized by real-time competition between agents. These
results can greatly benefit the tackling of social unrest, rumour spreading, political manipulation, and other vital and
challenging applications in social network analysis.

1. Introduction

Estimating node influence can lead to an improved under-
standing of the natural interaction patterns within real-
world populations, biological entities, or technological struc-
tures. The applicability of metrics for quantifying the influ-
ence potential of nodes has wide-ranging interdisciplinary
applications including disease modelling [1–7], information
transmission [8–11], behavioural intelligence [3, 12–15],
business management [16, 17], finances [18, 19], and phar-
macology and drug repurposing [20, 21]. Being able to cor-
rectly determine and rank influential nodes in empirical
networks can have direct applicability in problems like
impeding epidemic outbreaks [22], accelerating innovation
diffusion, evaluating marketing and financial trends [18], dis-
covering new drug targets in pathway networks [20], and

predicting essential proteins in protein interaction networks
and gene regulatory networks [23]. Regardless of the context,
the most common way to capture information on intricate
real-world interactions is a complex network [24–27]. Specif-
ically, social network analysis (SNA), as a subdomain of net-
work science, models social structures characterized by
emergent interaction.

There is considerable effort devoted to assessing the
importance of nodes in many types of complex networks
over the last decade. Novel approaches, combined with clas-
sic graph centrality measures, have led to the emergence of
the three main categories of influence ranking methods.
The first category of scientists argues that the location of a
node is more important than its immediate ego network
and thus proposed k-core decomposition [28, 29], along with
improved variants, such as [30–33]. The second category of
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scientists quantifies the influence of a node based solely on its
local surroundings [34–36]. Finally, the third category of sci-
entists evaluates node influences according to various states of
equilibrium for dynamical processes, such as random
walks [37, 38] or step-wise refinements [39].

Each ranking method, regardless of its nature and cat-
egory, is validated through a state-of-the-art benchmark-
ing methodology, which—in almost all cases of network
science—involves the usage of the SIR epidemic model
[40–42]. This process may be suitable for validating metrics
in an individual context in order to produce a verdict
whether the ranking method is good enough, but often not
more. For SNA, however, collective interplay is inherent
[43] and the aforementioned real-world application contexts
imply competition between multiple opinions, so a one-sided
perspective will often not be reliable. The recent study shows
that the traditional SIR model provides a poor description of
the data for modelling disease dynamics, as it lacks infectious
recovery dynamics, which is a better description of social net-
work dynamics [44]. Consequently, we consider that the SIR
model would be inadequate to apply in our benchmarking
context, as it fails to model competition and opinion

fluctuations. As such, we propose a more robust benchmark-
ing principle that implies simultaneous competition between
two or more information (opinion, rumour) sources, that
is, in the same network and at the same time. To this end,
we make use of the existing tolerance-based diffusion model
[45], which represents, to the best of our knowledge, a novel
benchmarking methodology in SNA.

To better underline the limitations incurred by using a SIR
simulation versus our proposed competition-based bench-
mark, we illustrate a comparative example in Figure 1. In (a)
and (b), we apply two distinct ranking methods (orange
and blue), one at a time, and show that the diffusion pro-
cess is unrestrained, also we suggest that orange manages
to cover the network in time T1, faster than blue with T2,
due to the higher dispersion of three initial orange opinion
sources. In the SIR context, the two simulations may lead to
the conclusion that the orange ranking method is better than
the blue one. In reality, we consider the scenario in (c) as the
more probable one. Opinions will diffuse simultaneously
and face constraints due to competition over each node
(i.e., orange and blue exclude one another). In this case,
we intuitively suggest that blue might win in terms of

Higher dispersion of opinion sources → faster diffusion
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Figure 1: Example of the incurred limitations when benchmarking a diffusion process only from a single opinion’s point of view, when the
real-world context implies simultaneous diffusion and competition between multiple opinions. It is suggested that the orange diffusion time
T1 is shorter (better) than the blue T2 time, due to the higher, more uniform dispersion of orange opinion sources. However, in reality (c),
none of the two opinions may fully cover the network in optimal times T1 or T2, nor will they achieve such high coverages as C1 or C2,
that is, T1 ≈ T2 < T3 and C1 ≈ C2 > C3o, C3b.
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network coverage, as it has a tighter initial cluster forming
around its three opinion sources. Consequently, the main
observations are the following:

(i) None of the two opinions will achieve coverages as
high as in the one-sided scenarios, that is, C3o and
C3b < C1 ≈ C2 .

(ii) Simulation time T3 may be longer than T1 ≈ T2, due
to the need for attaining a state of balance in the
emergent network.

(iii) The final ratio of opinion C3o/C3b is impossible to
determine by one-sided simulations and is only
determinable by the emergence of the two compet-
ing opinions (e.g., initial spreader position, connec-
tivity of the spreaders, and community structure).

In light of these remarks, we propose a novel bench-
marking framework which offers more reliable insights into
comparing ranking methods aimed at real-world applica-
tions of social networks. The paper starts by presenting the
benchmarking methodology in detail, followed by simulation
results. We highlight the overlapping of several popular
ranking methods, in terms of selecting the same initial
seeds, then proceed to compare the ranking methods using
SIR as a reference and then in pairs (one versus one) using
our proposed methodology. Finally, we discuss the results,
the difference in what our testing methodology can offer,
and what are the implications of considering competing
opinion. The Methods section details the used validation
datasets and a brief review of current state-of-the-art ranking
measures used in complex networks.

2. A Novel Competition-Based Influence
Ranking Benchmark

State-of-the-art benchmarking methodologies for spreading
processes on complex networks often rely on the SIR (SIS)
model [40–42]. With this approach, an initial subset of nodes
is infected according to a centrality measure, then the simu-
lation measures how fast surrounding susceptible nodes
become recovered (i.e., including dead). Indeed, if we take
the example of an epidemic, it spreads independently from
other epidemics and has its own temporal evolution. On
the other hand, if we consider opinion between social agents,
it is often exclusive (in regard to other contradicting opin-
ions) and is also dependent on the timing with the spread
of other ideas.

We argue that a SIR model cannot accurately model fluc-
tuations and direct competition between social agents. Also,
as long as the infected nodes survive, they will eventually
tamper with the whole network. Finally, the SIRmodel is sen-
sitive to initial parameters, like infectious probability λ and
recovery duration δ, needing step-wise refinements to obtain
desired results, which may vary easily in other experimental
settings. Alternatively, we find several variants of the SIR
model designed for competitive diffusion processes, such as
the SI1I2S [5], SI1∣2S [6], and SI1SI2S [7] models, but they
are targeting competitive epidemic diffusion.

As a novel, more robust, and more realistic alternative,
we propose the usage of the tolerance-based model [45]
which implies competition between two or more opinion
sources in the same network, at the same time. To the best
of our knowledge, this kind of benchmarking methodology
is novel to literature. Other graph-based predictive diffusion
models [46] include the classic linear threshold LT [47], inde-
pendent cascade IC [48], voter model [49], Axelrod model
[50], and Sznajd model [51]. These models use either fixed
thresholds or thresholds evolving according to simple proba-
bilistic processes that are not driven by the internal state of
the social agents [46]. However, the tolerancemodel is the first
opinion diffusionmodel to propose a truly dynamic threshold
(i.e., a node’s state evolves according to the dynamic interac-
tion patterns). Therefore, based on its novelty and realism
potential, we are encouraged to use the tolerance model in
our paper.

2.1. The Tolerance-Based Opinion DiffusionModel. The toler-
ance model [45] is based on the classic voter model [49],
being a refinement of the stubborn agent model [11, 52], with
the unique addition of a dynamic decision-making threshold,
called tolerance θi, for each node.

We further introduce the specific network science nota-
tions to mathematically define our model. Given a social
network G = V , E , the neighbourhood of node vi ∈ V is
defined as Ni = vj ∣ eij ∈ E . Exemplifying for a context
with two competing opinions, we introduce two disjoint
sets of stubborn agents V0, V1 ∈ V which act as opinion
sources. Stubborn agents never change their opinion, while
all other (regular) agents V \ V0 ∪ V 1 update their opin-
ion based on the opinion of one or more of their direct
neighbours. We represent with xi t the opinion of agent
vi at time t. Normal (regular) agents start with a random
opinion value xi 0 ∈ 0, 1 . We represent with si t the state
of an agent vi at moment t having continuous opinion xi t .
In case of a discrete opinion, representation xi t = si t , and
in case of a continuous opinion, representation si t is given
in the following equation.

si t =

0 if 0 ≤ xi t < 0 5,

none if xi t = 0 5,

1 if 0 5 < xi t ≤ 1

1

In the assumed social network, agents vi and vj are neigh-
bouring nodes if there is an edge eij that connects them. Some
agents may not have an opinion or may not participate in the
diffusion process (i.e., si t = none), so interacting with these
agents will generate no opinion update. A regular node will
periodically poll one random neighbour (simple diffusion)
or all its neighbours (complex diffusion), average the sur-
rounding opinion xNi

t (i.e., vicinity Ni of an arbitrary node
vi, at time point t), and update its opinion xi t using a
weighted combination of the past opinion and that of its
neighbour(s), as

xi t = θi ⋅ xNi
t + 1 − θi ⋅ xi t − 1 2
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The tolerance θi parameter is the amount of accepted
external opinion and changes after each interaction based
on whether a node has faced competing opinion or support-
ing opinion (in a binary context with opinions A and B).
Once a node is in contact with the same opinion for a long
enough time, it becomes intolerant (θi t = 0), so that the
network converges towards a state of balance [53]. Opinion
fluctuates and is transacted by all nodes, but stubborn agents
are the only nodes which do not become influenced in turn,
acting as perpetual sources for the same opinion [11].

The evolution towards both tolerance and intolerance
varies in a nonlinear fashion, as an agent under constant
influence becomes indoctrinated at an increased rate over
time. If that agent faces anopposingopinion, hewill eventually
start to progressively build confidence in the other opinion. As
such, the tolerance model employs a nonlinear fluctuation
function, unlike most models in literature [54, 55]. Based on
realistic sociopsychological considerations in the dynamical
opinion interaction model, we model tolerance evolution as

θi t =
max θi t − 1 − α0ε0, 0 if si t − 1 = sj t ,

min θi t − 1 + α1ε1, 1 , otherwise
3

Tolerance is decreased by −α0ε0 if the state of the agent
before interaction, si t − 1 , is the same as the state of the ran-
domly interacting neighbour sj t . If the states are not iden-
tical (i.e., opposite opinion), then the tolerance will be
increased with the dynamic product of +α1ε1. The two scal-
ing factors, α0 and α1, both initialized with 1, act as weights
(i.e., counters) which are increased to account for every event
in which the initiating agent keeps its old opinion (i.e., toler-
ance decreasing) or changes its old opinion (i.e., tolerance
increasing). Therefore, scaling factor α0 is increased by +1
as long as an agent interacts with another agents having the
same state (i.e., si t − 1 = sj t ) and is reset to 1 otherwise.

Scaling factor α1 is increased as long as the interacting state
is always different from that of the agent and is reset if the
states are identical. We introduced the scaling factors to
model bias and used to increase the magnitude of the two tol-
erance modification ratios ε0 (intolerance modifier weight)
and ε1 (tolerance modifier weight). The two ratios are chosen
with the fixed values of ε0 = 0 002 and ε1 = 0 01. We have
determined these values as explained in [45].

In accordance with this presented mechanism, we des-
ignate two sets of stubborn agents, Va and Vb, to act as
initial spreaders simultaneously. In other words, we let all
chosen centrality metrics compete against each other in a
one-to-one diffusion scenario, where sets Va and Vb con-
sist of the top p% spreaders selected by each two pairs of
centralities. We ensure that Va ∩Vb = 0 and Va = Vb ,
with p = 0 05. We find this approach to offer a good qual-
itative comparison basis for estimating the effectiveness of
node ranking methods.

2.2. Alternate Opinion Assigning Approach. We further find
that most state-of-the-art ranking methods have various
degrees of overlapping in terms of the top spreader nodes
they assign. As such, we introduce an alternate opinion
assigning (AOA) approach in order to distribute nodes in
the two sets of spreaders Va and Vb evenly and equitable
for both ranking methods, say A and B. Figure 2 exemplifies
the AOA approach, where ranking methodA is depicted with
orange and method B is depicted with blue.

AOA means that each one-to-one influence ranking
benchmark consists of two (or multiple of two) independent
simulations. Considering that ranking methods A and B pro-
duce two partially overlapping sets of top p% spreaders, we
alternate the simulations as follows:

(i) In the first simulation, method A (orange) has prior-
ity: one starts by assigning the first (top 1) spreader
from Va as an orange stubborn agent. This implies

Alternate opinion assigning approach to balance propagation odds for both ranking methods ( orangeorange & blue)

Overlapping spreaders

(a) (b) (c)

Orange first Blue first

2 1 1

3 5
4

4 3
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2

2 1

3
3
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1 1 2
3

3
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Figure 2: Example of the alternate opinion assigning approach in order to offer both competing ranking methods even chances of
propagation. The coloured nodes marked with indices 1–5 represent the top 5 orange, respectively, blue spreaders, as determined by the
two ranking methods. Moreover, some of these spreaders overlap ((a) e.g., 3/5 means 3rd best orange spreader and 5th best blue
spreader), so we assign each spreader node one of two opinions (orange/blue) alternatively, starting with orange first (b) then blue first (c).
As such, a simulation of orange versus blue ranking methods translates into two independent simulations, slightly favouring each method
in turn. The assigning of opinion is always evenly distributed in terms of number of nodes, for example, 3 spreaders in this example.
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that the spreader remains inVa and is removed from
Vb, if present.

(ii) Then, the first spreader from Vb is assigned as a blue
stubborn agent, removing it from Va, if present.

(iii) Alternatively, we assign nodes alternative opinion
and filter them out from the other list of spreaders.

(iv) The AOA stops when min Va , Vb = p ×N/2
and discards any extra node so that Va = Vb ,
ensuring that both sets Va and Vb have an equal
number of stubborn agents, namely, half of the
desired p ×N spreader population.

(v) In the second simulation, method B (blue) has prior-
ity: one starts by assigning the first (top 1) spreader
from Vb as a blue stubborn agent. This implies that
the spreader remains in Vb and is removed from
Va, if present.

(vi) The exact same AOA process is repeated, with B
having priority over A.

The impact of AOA is highlighted in Figure 2, as we end
up assigning two significantly different spreader sets for
methods A and B. Methodologically speaking, one bench-
mark must consist of at least two simulations, but for better
experimental results, one may run 2k simulations, ensuring
that AOA is applied (i.e., k simulations favouring method A
and k simulations favouring method B).

3. Results

We set out to discover fundamental drivers in the underlying
graph structure which shape and influence opinion spreading
in complex networks. To this end, our experimental setup is
focused on a comparative benchmark analysis involving the
reviewed node centrality metrics defined in Section 5.2. For
an objective comparison, we make use of two types of data-
sets: synthetic data (10,000 node random, mesh, small-world,
and scale-free networks [56]) and real-world data (consisting
of large, representative complex networks sized between 1900
and 29,000 nodes).

In this section, two sets of results are detailed. First,
we explore the correlations between ranking methods for

assigning top spreaders. Naturally, within the top p% of
nodes ranked by different centralities, we will eventually find
common nodes. As such, we detect the amount of node over-
lapping Oab =Va ∩Vb and express the correlation of the two
measures as corrab = Oab / Va and corrab ∈ 0, 1 . For the
second experimental phase of benchmarking influence rank-
ing methods, we ensure that Va ∩ Vb = 0 by alternatively
assigning a node to each set, while removing it from the list
of candidates of the other centrality, as explained by the
AOA approach (Figure 2).

3.1. Correlations between Influence Ranking Methods. Real-
world datasets can be viewed as topological compositions of
the basic graph properties found in synthetic Erdos-Renyi
random (Rand), Forest-fire mesh (Mesh), Watts-Strogatz
small-world (SW), and Barabasi-Albert scale-free (SF) net-
works [56–58], so we solely rely on measurements on the
synthetic datasets from Table 1. As such, the correlation pro-
cess is applied on the four synthetic network types in order to
better highlight distinguishable characteristic topological
features, like uniform node degree distribution (random
networks), high local clustering and community formation
(mesh networks), and high clustering and long-range links
(small-world), respectively, low average path length, and
hub formation (scale-free).

Figure 3 presents the correlations corrab between 10 × 10
selected pairs of centralities; correlations are measured by
considering the following spreader set sizes: Va = Vb =
p ×N , where p ∈ 0 01, 0 05, 0 1 and N is the size of the
graph, and find that corrab will drop slightly as p increases.
The average changes δ in spreader correlations from p = 0 01
up to p = 0 1 are δRand =−0.289, δMesh =−0.193, δSW =−0.189,
and δSF =−0.088. This overall drop in correlation can be
explained as follows: more of the same nodes are determined
as top spreaders by ranking methods when the spreader sets
are small. As p increases, each ranking method adds more
nodes to the set of spreaders and the chances of overlapping
drop. However, when we look at each individual centrality
measure in turn, we notice that some increase the correlation
amount, while others drop that amount. Section 1 and
Figure 1 in the Supplementary Materials detail and discuss
these measurements for 10 selected ranking methods, over
the four synthetic topologies, as p increases.

Table 1: Graph statistics of the eight datasets detailing the number of nodes, edges, average degree ( k ), maximum degree (kmax), average
path length (APL), average clustering coefficient (ACC), and network diameter (Dmt).

Dataset Nodes Edges k kmax APL ACC Dmt
Random (Rand) 10,000 50,122 5.012 26 3.944 0.002 7

Mesh 10,000 53,896 5.39 44 11.51 0.148 30

Small-world (SW) 10,000 39,998 3.99 13 6.738 0.298 12

Scale-free (SF) 10,000 52,260 5.226 102 5.316 0.679 14

OSN 1899 20,296 10.68 339 3.055 0.138 8

Facebook (FB) 3172 94,458 29.78 470 3.714 0.501 10

LGU-emails (Emails) 12,625 20,362 3.226 576 3.811 0.577 9

POK 28,876 115,324 7.98 4305 4.05 0.076 13
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As a representative overview, we present in Figure 3
only the results for p = 0 1. For each centrality combination,
we provide the numerical correlation and a symmetric
graphical correlation. For example, the correlation degree-
Hirsch index in the random network is corrDeg‐HI = 0 576,
which translates into a mid-blue gradient in the table sym-
metric cell HI‐Deg. The last column in the table expresses
the average correlation on each line. Summing up and
averaging the values on the last column, we obtain the

cumulated correlations for each topology as corrRand = 0 552,
corrMesh = 0 497, corrSW = 0 606, and corrSF = 0 741.

Quantitatively and also intuitively, the highest spreader
correlation is obtained on the scale-free network, as it natu-
rally consists of a very small core of hub nodes. These hubs
act like an invariant to p in the topology and are likely to be
selected as top spreaders by all centrality measures. Even if
p is changed, the correlation remains high (see Supplemen-
tary Materials, Section 1). On the opposite spectrum lie the

Rand Avg

0.665
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EC 0.587

Mesh Avg

0.609
Cls 0.190
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− 0.810 0.836 0.751 0.810 0.349 0.746 0.751
− 0.958 0.894 1.0 0.349 0.847 0.873

− 0.868 0.958 0.349 0.820 0.847
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Figure 3: Ratio of nodes overlapping in the top 10% (N = 10K nodes) of spreader assignment by 10 centrality metrics (degree, closeness,
betweenness, HITS, PageRank, Hirsch index, LeaderRank, k-shell, local centrality, and eigenvector centrality) in an Erdos-Renyi (Rand)
random network, mesh network, small-world (SW), and scale-free (SF) network. The blue colour intensity of a cell corresponds to
the strength of correlation found in the symmetric cell, that is, cellcolour i, j ~cellvalue j, i . A stronger blue intensity denotes a
stronger correlation.
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random and mesh topologies. Both are characterized by uni-
formity in node properties, so that various centralities will
have a higher heterogeneity in their top spreader selection,
leading to the smaller measured correlations. Lastly, the
small-world network borrows the uniformity of meshes and
the long-range links of a random network. Here, we measure
a relatively high average correlation of 0.606, denoting that
this network has a stable core of influential nodes, like the
scale-free network.

Analysing each centrality in turn, we notice that there are
higher correlations between ranking methods of the same
category, for example, diffusion-based HITS, PageRank, and
LeaderRank. Furthermore, some centralities are more suit-
able for some topologies and less efficient for others. For
example, we confirm that degree is considerably more rele-
vant for scale-free networks (correlation of 0.802 with other
centralities), but only marginally relevant for the small-
world network (correlation of 0.437). The same observation
is consistent with closeness and betweenness. To better high-
light the spatial overlapping of spreader nodes, we provide a
visual example in the Supplementary Materials, Section 2.

Arching over the presented results, we motivate the usage
of alternate opinion assigning (AOA), because we find high
node overlapping, ranging between 30% and70%, between
all state-of-the-art centralities.

3.2. Independent SIR Simulations. For a comparative basis,
we first estimate the efficiency of an influence ranking
method by employing classic SIR simulation [41, 42]. In this
sense, we measure both the time needed to infect the majority
of nodes (expressed in simulation iterations τ) and the final
coverage of the infection (expressed as a percentage ρ of the
total network size). We use the following SIR-specific param-
eter values [40, 41]: p = 0 05 (i.e., top 5% nodes selected as
spreaders), k = 0 95 (i.e., at least 95% population to be
infected as a stop condition), λ = 0 05 (i.e., 5% probability
to become infected during an interaction), and δ = 10
(i.e., 10 iteration duration of infectious state for a node).

The simulation results in Table 2 represent averaged
values for τ and ρ by running 10 repeated simulations on
each dataset, for each individual ranking method (i.e., amas-
sing to a total of 10 ⋅ 8 ⋅ 10 = 800 simulations). Through these
results, we want to highlight that running a diffusion process
for each ranking method in an individualmanner (i.e., one by
one), the provided feedback regarding ranking efficiency, is
often limited.

The results for most topologies are very close in terms of
measured τ and ρ, suggesting that differentiation between
ranking methods is unreliable. For instance, analysing the
coverages ρ in Table 2, the average coverage for Rand is
ρRand = 95 47% with a standard deviation of only σRand =
0 082. The measured difference Δ between the most efficient
ranking method (Hirsch index) and least efficient ranking
method (degree) is only ΔRand = 0 3% on the Rand network.
Similarly, the standard deviations σ for real-world networks
are σOSN = 0 214, σFB = 0 042, σEmails = 0 230, and σPOK =
0 273. The differences Δ between the most and least efficient
ranking methods are roughly ΔOSN = 1 4%, ΔFB = 0 4%,
ΔEmails = 2%, and ΔPOK = 5 5%. For a visual representation

of the coverage ρ benchmark results refer to Supplementary
Materials, Section 4.

We consider these simulation results to highlight an
overall lack of perspective regarding which ranking method
is better on a given topology. Likewise, the best ranking
methods are not consistent across datasets. For instance,
HITS turns out to be the most efficient ranking method on
a SW, but the least efficient on a SF network; Deg is least effi-
cient on Rand, 2nd on Mesh, 7th on SW, and 6th on SF, yet it
comes 8th if we average all results; Btw is the 5th on OSN, 4th
on FB, 5th on Emails, and 3rd on POK, and comes 3rd over-
all. This kind of inconsistency further supports our claims for
an improved type of benchmarking methodology.

3.3. Competition-Based Simulations.We let each of the n = 10
selected centrality measures compete in a one-to-one sce-
nario over the 4 synthetic and 4 real-world datasets. Every
dataset comprises a total of n × n − 1 /2 = 45 pairs of simu-
lations, translating into 2 × 45 = 90 individual simulations
due to AOA. For statistical rigour, each experiment is
repeated 10 times, consisting of a simulation batch of 20 sim-
ulations, leading to 45 × 20 = 900 simulations per dataset,
amassing to an overall 8 × 900 = 7200 unique experiments.
The large quantity of numerical results is available in the
Supplementary Materials, Section 3 and Tables 1 and 2.

Table 2: Performance of ranking methods expressed as the time τ
needed to infest a network (lower is better) and the final coverage
ρ, expressed as a percentage of the network size (higher is better),
using SIR benchmarking.

Rand Mesh SW SF OSN FB Emails POK

Time τ

Deg 30.1 40.7 115.3 69.2 31.4 24.7 36.1 64.6

Cls 30.4 54.7 116.2 78.2 32.5 25.1 43.7 66.8

Btw 30.3 51.1 116.4 65.2 32.8 23.9 35.2 62.2

HITS 30.4 43.0 118.2 68.0 32.8 24.5 35.8 61.5

PR 30.2 39.7 117.0 71.9 33.2 26.7 35.3 68.5

HI 30.8 47.1 115.0 69.0 31.8 25.1 34.2 66.8

LR 30.1 41.7 119.1 73.4 33.0 24.6 37.0 62.5

KS 30.1 52.3 117.6 71.0 33.6 26.6 36.9 64.5

CLC 30.4 47.9 121.2 71.2 31.2 26.5 37.0 63.2

EC 30.1 49.2 123.1 73.0 32.6 24.9 36.6 64.9

Cov ρ

Deg 95.31 95.11 80.83 48.77 79.59 95.31 46.92 57.49

Cls 95.42 95.06 80.72 49.58 79.96 95.17 47.42 57.33

Btw 95.51 95.07 80.92 48.91 79.58 95.29 46.91 57.91

HITS 95.54 95.08 81.90 47.95 79.55 95.31 46.86 57.31

PR 95.48 95.09 81.60 48.77 79.35 95.28 47.04 57.67

HI 95.61 95.09 81.75 48.47 79.17 95.28 46.68 57.98

LR 95.50 95.05 80.59 48.78 79.37 95.28 47.01 57.31

KS 95.53 95.05 81.12 48.41 79.58 95.23 46.67 57.68

CLC 95.43 95.11 80.64 49.05 79.60 95.29 46.69 57.79

EC 95.44 95.11 81.03 48.10 79.70 95.25 46.73 57.99
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Condensing the simulation results, we present in Table 3
the average performance of the 10 ranking methods on the 8
datasets. This performance is quantified as an average per-
centage of opinion coverage obtained from the one-to-one
competition benchmarks (e.g., HITS obtains a coverage of
65.23% on the OSN dataset).

Similar to the state-of-the-art SIR epidemic bench-
marking, our obtained results are easy to understand and
offer the possibility of direct comparison between ranking
methods on the same dataset. On the other hand, we
notice two improvements by applying our methodology:

(1) There is much higher variation between measures on
the same dataset. For example, on the FB dataset, we
obtain Deg = 59 31% and Cls = 4 28%, which suggest
an obvious performance difference. On the other
hand, using SIR as benchmark, the coverages are
ρDeg = 95 31% and ρCls = 95 17%.

(2) There is greater emergent granularity between mea-
sures on different datasets. For example, Cls turns
out to be much less efficient on a SF topology
(1.99%) than on a SW topology (18.37%).

Assessing the results in Table 3, we find an objective com-
parison of state-of-the-art ranking methods used in current
social networks research. Figure 4 presents these cumulated
performance indicators; the top three ranking methods,
according to our original proposed methodology, are Leader-
Rank (LR), HITS, and node degree (Deg).

The cumulated results in Figure 4 are based solely on the
8 datasets used throughout the paper. With more datasets
used, the averaged performances will slightly differ. However,
valuable insight is further offered by the visualization of per-
formances on each dataset in turn; these results are detailed
in the Supplementary Materials, Section 5.

Additionally, we provide a suggestive visual example of
the opinion coverages at the end of a simulation, after balan-
cing is attained [53] with our used tolerance diffusion model
[45]. The Mesh topology is exemplified here because it offers

the most intuitive 2D spatial feedback after applying a force-
directed layout. To this end, Figure 5 shows the coverage of
competing centrality measures in three different scenarios:

(i) Two ranking methods with high overlapping and
balanced outcome: Deg (orange) 56.70% and LR
(blue) 43.30% (Figure 5(a)).

(ii) Two ranking methods with moderate overlapping
and inefficient seed selection for one method
(Btw): LR (orange) 74.26% and Btw (blue) 25.74%
(Figure 5(b)).

(iii) Two ranking methods with low overlapping and
extreme outcome: Cls (orange) 5.24% and HI (blue)
94.76% (Figure 5(c)).

The validation of our novel benchmarking methodology
employs a standard strategy for the selection of multiple
spreaders. After a review of the most recent advances in com-
plex network analysis, we find that the method of simply
selecting the top spreaders from the entire network is con-
sistently found throughout literature [35, 37, 38, 59–62].
Nevertheless, there are several alternatives for selecting
multiple spreaders which we detail in the Supplementary
Materials, Section 6.

3.4. Comparison between Benchmarking Methods. To high-
light the superior quantitative power of our competition-
based benchmark, we aggregate the results in Table 4. Here,
we measure the difference Δmin−max between the most and
least efficient ranking methods and the difference Δ1−2
between the top two ranking methods, for each dataset in
turn. Seeking higher overall differences, we find that our
proposed benchmarking methodology is more insightful,
in general, than the classic SIR benchmark. As such, when
measuring Δmin−max, individual SIR benchmarking only
manages to produce differences of ≈0 06 − 1 59% (1.14%
on average) between ranking methods, while our proposed
solution offers differences of ≈80 − 98% (91% on average).
When trying to discern between the top 2 ranking methods
on a particular dataset, SIR manages to place them apart by
only ≈0 − 1 07% (0.31% on average), while our method man-
ages to produce higher differences within ≈0 28 − 8 75%
(3.56% on average).

Another advantage of our proposed method is the over-
all uniformity obtained for the performances of each central-
ity across the 8 selected datasets. For instance, if LR and
HITS result as the most efficient spreading methods on
one topology, their performance is replicated with high con-
fidence on the other topologies as well. When employing SIR
benchmarking, the performances are not consistent across
datasets. This aspect is suggested visually in Figure 6, where
we highlight the most (LR) and least (Cls) efficient centrali-
ties, as they are ranked over the 8 datasets. It is easy to notice
how LR is positioned in the top 3 and Cls in the last 2-3
methods overall. In the individual SIR benchmarking, there
is no such uniformity.

In conclusion, our benchmarking methodology—which
is specifically designed for the competitive social network

Table 3: Average performance of the 10 ranking methods on the 8
datasets. Performance is expressed as opinion coverage (%)
obtained in the one-to-one opinion diffusion competitions with
every other ranking method.

Rand Mesh SW SF OSN FB Emails POK

Deg 66.18 71.26 68.94 61.71 52.76 56.18 63.52 63.28

Cls 23.02 5.47 11.39 1.83 2.55 11.49 2.40 45.78

Btw 66.15 42.93 56.96 62.78 40.37 57.51 58.33 58.27

HITS 66.28 69.32 76.92 61.63 64.42 62.10 63.56 63.09

PR 77.16 65.35 71.93 55.74 41.08 55.99 63.55 63.94

HI 12.13 52.82 33.25 54.72 24.23 41.36 39.60 36.30

LR 76.95 67.57 66.72 61.53 64.39 68.06 63.97 66.87

KS 0.99 39.65 37.87 45.89 28.77 28.87 42.07 13.33

CLC 33.93 52.36 60.24 26.99 44.74 55.91 48.43 48.01

EC 23.12 32.96 39.43 43.09 62.83 44.54 51.49 32.27
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context—provides significantquantitative separationbetween
influence ranking methods on synthetic and real social
network topologies. This numerical separation is over one
order of magnitude greater than the one provided by classic
SIR simulation—a standard methodology used in epidemic
spreading, where the diffusion context is less competitive and
more ego-centred. Therefore, we encourage the use of our pro-
posed method in specific real-world applications of dynamic
social networks.

4. Discussion

One of the significant research challenges in network science
is to rank a node’s ability to spread information in a network
[43]. As spreading is used to model real-world processes such
as epidemic contagion and information propagation [2, 3, 20,
22, 63], our paper aims to improve current methodology in
validating and comparing state-of-the-art ranking methods
in the social network context. Numerous alternative ranking
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Figure 4: Coverage performance (0–100%) of each ranking method cumulated over all synthetic, respectively, all real-world datasets.
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(a)

LeaderRank-Betweenness

(b)

Closeness-Hirsch index
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Figure 5: Three opinion diffusion benchmarks highlighting the final opinion coverage over the Mesh dataset (N = 10,000). Orange nodes are
influenced more by the first ranking method, and blue nodes are influenced more by the second ranking method; whiter nodes are closer to
indecision (50%); larger nodes represent seeders (1% of N).

Table 4: Comparison between individual SIR and our simultaneous competition-based benchmark in terms of how well ranking methods are
differentiated. Δmin−max is the difference (%) between the most and least efficient ranking methods; Δ1−2 is the difference (%) between the top 2
ranking methods on each dataset. Higher differences are better.

(%) Rand Mesh SW SF OSN FB Emails POK

SIR Δmin−max 0.31 0.06 1.59 3.28 0.99 0.15 1.58 1.17

Competition Δmin−max 98.72 92.32 85.19 97.09 96.05 83.12 96.25 80.07

SIR Δ1−2 0.07 0.00 0.18 1.07 0.33 0.00 0.80 0.02

Competition Δ1−2 0.28 2.73 6.5 1.72 2.46 8.76 0.71 5.37
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methods have been developed, relying on classic graph cen-
tralities, localized targets [63], optimal percolation [43], and
so on.While the challenge at hand remains partially unsolved,
it is argued that insights are uncovered only through the opti-
mal collective interplay of all the influencers in a network [43].
This emergent behaviour is also the key to our study, namely,
the introduction of a benchmarking technique employing
simultaneous competition-based spreading.

The main motivation of this paper is the need for
increased realism in the social network context, where real-
world applications imply simultaneous diffusion by their
nature. Nevertheless, our methodology may be tailored to
other interdisciplinary fields of science. One area of research
that can benefit directly from our methodology is network
biology. Specifically, determining node centrality is a hot
topic in biological networks. For instance, a study shows that
the phenotypic consequence of a single gene deletion is
determined by the topological position in the molecular
interaction network [64]; also, the relationship between the
network roles of disease genes and their tolerance to germs
shows that cancer driver genes occupy the most central posi-
tions [65]. Many biological studies rely on the theoretical
results from network science, and they often only employ
degree and betweenness centrality in their analysis. With
our study, we aim to broaden the methodological perspective
for interdisciplinary fields.

We find advantages over existing benchmarking method-
ology relying on the SIR epidemic model. Notably, our
competition-based method offers much greater quantitative
separation between ranking methods on the same dataset
(e.g., degree is roughly 14 times more performant than close-
ness on the Facebook dataset); also, we obtain higher granu-
larity for a ranking method on different datasets (e.g.,
closeness is roughly 9 times less efficient on a scale-free topol-
ogy than on a small-world topology).

Further development ideas of our method are possible.
For instance, one can increase the number of spreaders acting
simultaneously in a network from 2 to k > 2. Accordingly,
alternate opinion assigning (AOA) must be modified to fit
the k opinion sources. The recent study discusses the impor-
tance of targeting specific localized targets, rather than
obtaining a high coverage of the network [63]. Our method
can be easily implemented to measure the target coverage
during or at the end of a spreading simulation. Another study

finds that each complex network may have a small “control
set” of nodes, which, when triggered, will influence the whole
network [66]. These control sets are believed to be surpris-
ingly small (5–10% of nodes) and may also be paired with
our benchmarking methodology.

Finally, we consider that the topology-aggregated
competition-based results we obtained (e.g., in Figure 4 of
the Supplementary Materials) can be used to define a func-
tional fingerprint of real-world networks based on how influ-
ence ranking methods perform on them. Namely, we notice
that the 10 used centrality measures perform in a unique, dis-
tinguishable manner on the four fundamental synthetic
topologymodels. This uniqueness can be quantified as a char-
acteristic vector for random, mesh, small-world, and scale-
free networks. Any real-world dataset can then be compared
to other datasets through these four fingerprint vectors. Over-
all, we believe that our work improves a significant challenge
in the study of opinion spreading phenomena and also serves
as a good starting point for many of the still unsolved prob-
lems and new ideas found in literature.

5. Methods

5.1. Validation Datasets. We motivate the inclusion of syn-
thetic datasets into the study to clearly distinguish between
characteristic topological features of the network that influ-
ences spreading. These features include a normal versus
power-law degree distribution, lower versus higher clustering,
lower versus normal path lengths, existence of long-range
links, or hub formation, respectively. The four chosen net-
work models represent the four fundamental topology types
out of which empirical networks are further built [26, 56, 57].

With a higher interest on influence spreading pertaining
to the field of social network analysis, we choose four undi-
rected (weighted and unweighted) networks consisting of
various types of social relationships. As such, we rely on a
weighted online social network (OSN) with 1899 users [67],
an unweighted Facebook friendship network (FB) consisting
of the 3172 students from a Computer Science faculty in
Romania [68], an unweighted email exchange network
(Emails) from London’s Global University with 12,625 con-
tacts [69], and a weighted friendship network (POK) with
28,876 users from the Slovakian POK platform [70]. On the
other hand, all synthetic networks consist of 10,000 nodes
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and are algorithmically generated using default parameters
found in the state of the art. Table 1 provides the basic statis-
tics for each such network.

5.2. Influence Ranking Methods. In order to define each cen-
trality metric, we make use of the following graph theory-
specific notations. A social network is a graph G = V , E
formed out of V number of nodes and E number of edges.
The edges may also be directed (i.e., eij ≠ eji) or weighted
(i.e., they have weights wij). The connectivity of the graph is
characterized by an adjacency matrix A = aij , where aij = 1
(or wij in weighted context) if nodes vi and vj are connected
and 0 otherwise. Furthermore, the degree of a node vi is
denoted as ki, the neighbourhood of a node is the set of nodes
vj ∈Ni, and the average degree ofG is k = 2E/V .

The reviewed measures considered for benchmarking in
this paper are classified in one of three categories: struc-
ture-based, location-based, and diffusion-based rankings.

5.2.1. Structure-Based Measures. Structure-based measures
require the topological information of the graph—either local
(e.g., ego network, vicinity) or global (e.g., path-based).
Under local measures, we first mention degree centrality
(Deg) ki of a node vi; it is easy to use and efficient but less rel-
evant in some real-world scenarios [34, 38], as some studies
show that Deg fails to identify influential nodes because it is
limited to the ego network of each node [34, 71].

The local centrality (LC) measure was introduced as a
trade-off between the low-relevant degree centrality and
other time-consuming measures [34]. LC of node vi con-
siders both the nearest and the next nearest neighbours and
is defined as

LC vi = 〠
v j∈Ni

Q vj ,

Q vj = 〠
vk∈N j

N vk ,
4

where Ni is the vicinity (set of neighbours) of node vi, N vk
is the number of the nearest and the next nearest neighbours
of node vk, and Q vj is sum of N vk over each node in Ni.
LC can be considered as more effective than degree centrality
because it uses more information from the vicinity of dis-
tance 2 but has much lower computational complexity than
betweenness and closeness centralities.

Another method considered a local ranking measure is
ClusterRank (CR), proposed by Chen et al. [35]. CR quan-
tifies the influence of a node vi by taking into account not
only its direct influence (out-degree kouti ) and influences of
its neighbours (like in the case of PageRank) but also its clus-
tering coefficient ci [56]. Formally, the ClusterRank score C
R vi of a node vi is defined as

CR vi = f ci 〠
vj∈Ni

kouti + 1 , 5

where the term f ci represents the effect of vi’s local cluster-
ing, the term +1 results from the contribution of vj itself, and

Ni is the vicinity of node vi. Based on empirical analysis [35],
the authors propose the exponential function f ci = 10−ci .

The local centrality with a coefficient, denoted as CLC
by Zhao et al. [71], is a combination of the previous CR
and LC methods. The number of neighbouring nodes is
measured to identify cluster centres and is combined with
a decreasing function f for the local clustering coefficient
of nodes, called the coefficient of local centrality c vi ,
namely, f c vi = e−c vi . Mathematically, the influence of
node vi is measured as

CLC vi = f c vi ⋅ LC vi 6

Considering the global information of the graph can
give better insights, so we adopt the widely used between-
ness (Btw) and closeness (Cls) centralities [56]. Between-
ness of a node vi is expressed as the fraction of shortest
paths between node pairs that pass through the node vi
and is defined as [26]

Btw vi = 〠
i≠j≠k∈G

σjk vi
σjk

, 7

where σjk is the number of shortest paths between nodes vj
and vk and σjk vi denotes the number of shortest paths
between vj and vk which pass through node vi.

Closeness centrality of a node vi is defined as the inverse
of the sum of distances to all other nodes in G; it can be con-
sidered as a measure of how long it will take to spread infor-
mation from a given node to other reachable nodes in the
network [56]:

Cls vi = 〠
vj∈G\vi

d vi, vj

−1

8

5.2.2. Location-Based Measures. Location-based measures
also require the structural information of the graph but focus
around the belief that the location of a node in a network is a
more relevant. Driven by the limitations of simple graph
metrics, such as degree centrality, Kitsak et al. propose k-core
decomposition to quantify a node’s influence based on the
assumption that nodes in the same shell have similar influ-
ence, and nodes in higher-level shells are likely to infect
more nodes [28]. To this end, the k-core decomposition
method was validated by several studies [28, 29]. While this
method is often found in literature under both the names of
k-core or k-shell decomposition, the two concepts differ. The
k-core of a graph is the maximal subgraph such that every
vertex has degree at least k. A k-shell (KS), on the other
hand, is the set of vertices that are part of the k-core but
not part of the k + 1 th-core.

Experiments show that by running a diffusion process on
the network (e.g., SIR), the nodes with the same ks values
always have different number of infected nodes, namely,
spreading influence [32]. This phenomenon suggests that
the k-core decomposition method is not appropriate for
ranking the global spreading influence of a network. Liu
et al. [32] propose to solve this observed drawback by taking
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into account the shortest distance between a target node and
the node set with the highest k-core value. In terms of the dis-
tance from a target node vi to the network core Gc, the
spreading influences of the nodes with the same k-core values
can be distinguished using the following equation:

θ vi ks = kmax
s − ks + 1 〠

v j∈Gc

dij, i ∈Gks 9

In (9), kmax
s is the largest k-core value ofG,dij is the shortest

distance from node vi to node vj ∈ Gc, Gc is the network core,
andGks

is the node set whose k-core values equal ks.
In this paper, we also make use of the Hirsch index.

The h-index (HI) [72] is a hybrid location-local-based cen-
trality in which every node needs only a few pieces of
information: the degrees of its neighbours. It was origi-
nally developed as a means to measure the scientific
impact of scholars, but it now finds uses in quantifying
the influence of users in social networks or drugs in phar-
macological interaction maps. The h-index of a node vi is
defined as the largest value h so that vi has at least h
neighbours with a degree ≥h.

The algorithm is intuitive to apply, namely, for a
node vi with vicinity Ni, we order all its neighbours vj ∈Ni

in descending order of their degree kvj . The h-index HI vi
is the position h − 1 in the ordered list of nodes at which
the degree of a neighbour becomes smaller than the posi-
tion in the list. For example, given the list of degrees L
vi = 10, 8, 7, 6, 3, 1, 1 , we deduce HI vi = 4, because L
vi 4 > 4, but L vi 5 < 5.

5.2.3. Diffusion-Based Measures. Diffusion-based measures
are based on obtaining a state of balance in the network after
applying a nondeterministic spreading processes, like a
random walk. We make use of the fundamental eigenvec-
tor centrality (EC), which supposes that the influence of a
node is not only determined by the number of its neigh-
bours (i.e., degree centrality) but also by the influence of
each neighbour [73]. Inspired by EC, there are three addi-
tional algorithms we discuss in this paper.

PageRank (PR) was first implemented as a random walk
on the network of hyperlinks between web pages [74]. A
damping factor d is introduced as the probability for a user
to jump to a random website, and 1 − d is the probability
for the user to continue browsing through hyperlinks. The
influence st vi of a node vi at time t is given by

PR vi =
1 − d
V

+ d 〠
vj∈G

PR vj
koutj

, 10

where V is the number of nodes in G, koutj is the out-degree
of node vj, and d = 0 85, but d requires step-wise optimiza-
tion based on the network.

HITS is similar to PR, based on the concept that good
hub nodes will point to good authority nodes, and good
authorities will point by good hubs [75]. The hub score of

all nodes at time t = 0 is initialized with 1; the authority score
Autt vi , at any moment in time t, is expressed as

Autt vi = 〠
v j∈G

aji ⋅Hubt−1 vj ,

Hubt vi = 〠
v j∈G

aji ⋅Autt vj
11

Finally, the LeaderRank (LR) algorithm represents an
improvement over PR, since the probability parameter is
adaptive, leading to a parameter-free algorithm directly
applicable on any type of the complex network [37]. The
method is applied by adding an additional ground node vg
that is connected to all other nodes, ensuring the graph is
connected. A random walk then adds a score of +1 to each
visited node vi. The ground node starts with sg 0 = 0, and
all other nodes in G have si 0 = 1. Using the notation st vi
at time t for a node vi, the evolving score can be expressed as

st+1 vi = 〠
vj∈G

pijst vj = 〠
vj∈G

aij
kouti

st vj 12

The score st vi is proven to converge towards a steady
state at time tc [37]; the score of the ground node is then
evenly distributed to all other nodes V ∈G to conserve the
scores on the nodes of interest. The final, stable LR score is
expressed as

LR vi = stc vi +
stc vg
V

13
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Figure 1: changes in correlation of node overlapping, for the
10 analysed ranking methods, as the spreader size p is
increased from 1% to 10% of the total network size N . Each
synthetic network has N = 10,000 nodes. Figure 2: spatial dis-
tribution of selected spreader nodes on the mesh network
with N = 10,000 nodes. The top p = 1% nodes are highlighted
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as spreaders, as determined by the degree, closeness,
betweenness, and PageRank centralities, respectively. Table
1: synthetic dataset (i.e., random, mesh, small-world, and
scale-free) benchmark results for pair-wise competition
between centrality measures. Each cell (x, y) contains the
final opinion coverage (0–100%) for centrality x; the sym-
metric cell (y, x) represents the same number on a colour
gradient blue (0%), white (50%), and orange (100%). Table
2: real-world dataset benchmark results for pair-wise com-
petition between centrality measures. Each cell (x, y) contains
the final opinion coverage (0–100%) for centrality x; the sym-
metric cell (y, x) represents the same number on a col-
our gradient blue (0%), white (50%), and orange (100%).
Figure 3: performance of each ranking method (i.e., cov-
erage 0–100%) on the 8 datasets using individual SIR
benchmarking. Figure 4: performance of each ranking
method (i.e., coverage 0–100%) on the 8 datasets using
simultaneous competition-based benchmarking. Figure 5:
comparison between the naïve (a–c) and graph colouring
(d–f) methods using three competitive diffusion examples
on the mesh network (N = 10,000 nodes). Larger nodes rep-
resent spreader nodes. The first centrality in the figure cap-
tions corresponds to orange opinion and the second
centrality to blue opinion. Figure 6: difference in spreader
spacing for closeness (orange) when switching from the naïve
method (a) to the graph colouring method (b). Table 3: com-
parison between the naïve and graph colouring methods in
terms of selecting spreader nodes. Performance is expressed
as percentage (%) for each node centrality in three competi-
tive simulation scenarios. (Supplementary Materials)
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