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In this work, a method is established to calibrate a model that describes the basic dynamics of DNA damage and repair. The model
can be used to extend planning for radiotherapy and hyperthermia in order to include the biological effects. In contrast to
“syntactic” models (e.g., describing molecular kinetics), the model used here describes radiobiological semantics, resulting in a
more powerful model but also in a far more challenging calibration. Model calibration is attempted from clonogenic assay data
(doses of 0-6 Gy) and from time-resolved comet assay data obtained within 6 h after irradiation with 6 Gy. It is demonstrated
that either of those two sources of information alone is insufficient for successful model calibration, and that both sources of
information combined in a holistic approach are necessary to find viable model parameters. Approximate Bayesian computation
(ABC) with simulated annealing is used for parameter search, revealing two aspects that are beneficial to resolving the
calibration problem: (1) assessing posterior parameter distributions instead of point-estimates and (2) combining calibration
runs from different assays by joining posterior distributions instead of running a single calibration run with a combined,
computationally very expensive objective function.

1. Introduction

DNA damage and repair is a critical aspect of radiotherapy,
where tumor cells are killed by irradiation. The radiation
induces DNA damage which eventually leads to cell death if
the damage cannot be repaired successfully. Mild hyperther-
mia is a treatment to boost radiotherapy by heating up the
cancer cells to temperatures between 41°C and 43°C. While
the exact working principles of hyperthermia and its interac-
tion with radiotherapy is still subject to research [1], it has
been shown that hyperthermia acts as a radiosensitizer by
affecting the DNA repair that takes place after an irradiation

event [2-5]. In consequence, knowledge about the dynamics
of DNA damage and repair is essential in order to optimize
hyperthermia treatment plans.

For radiotherapy, in silico modeling is employed to assist
in treatment planning decisions. Such planning is based on
Monte Carlo simulations or kernel methods and deliver
dose-volume histograms [6]. Beyond these geometric dose
calculations, approaches to shape the prescribed radiation
dose according to the biological properties of the tumor have
been proposed but are currently not established [7]. The
prescribed dose of radiation is generally divided into frac-
tions that are delivered in subsequent sessions; however, this
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fractionation scheme is usually not optimized on a patient
level, and the dose prescription is chosen based on clinical
trials and experience. While planning software may include
calculators for biological effective dose (BED) and equivalent
dose (EQD?2), they are not modeling biological effects (such as
DNA damage and repair), but rather, they are tools for com-
paring fractionation schemes. Similarly, for hyperthermia,
planning systems for hyperthermia output temperature or
specific absorption rate (SAR) maps exist [8] and calculators
for equivalent doses have been proposed [9, 10]. Yet, a more
profound understanding and modeling of the aforementioned
radiobiological effects—DNA damage and repair in this con-
text—would yield a better treatment method. For example,
hyperthermia is believed to deactivate DNA repair proteins
for a certain amount of time [2]. If radiation-induced damage
is introduced during this time window, odds of eliminating
the cells increase [11]. Thus, if calibrated correctly, a model
involving DNA damage and repair would be able to quantify
the duration of this window by simulating the de- and reacti-
vation of said proteins.

In this work, a method is established to calibrate a model
that describes the basic dynamics of DNA damage and repair.
This model can then be used to extend planning for radio-
therapy and hyperthermia to include the biological effects
discussed above, i.e., DNA damage and repair: The biological
system is modeled in silico, and a parameter search for model
calibration is performed with the goal to be able to quantify
biological effects for the system of interest. While previous
efforts demonstrated feasibility [12], a thorough analysis of
the calibration process is provided. This analysis reveals that
some parameters remain unidentified. One strength of the
method is that it is able to combine calibration results origi-
nating from different input data sources (i.e., assays). With
this approach, the yet unidentified parameters could be
turther refined.

Model calibration requires data which can be obtained
from number sources which are shown in Figure 1: (1)
immunocytochemical assays such as yH2AX, which quantify
DNA repair [13]; (2) comet assay, which quantifies the
amount of DNA damage [14]; this assay is further discussed
in Section 2.3; (3) clonogenic assay, which quantifies clono-
genicity [15] and is discussed in Section 2.2. (4) In a clinical
setting, DNA damage and repair in tumor cells also affects
response evaluation criteria, tumor volume, patient survival,
tumor progression and growth rate, etc. Thus, these data
(yet quite heterogeneous [7] and thus potentially a poor
choice) could, in theory, also be used for model calibration.

These four different options correspond to the four levels
illustrated in Figure 1 on the left. On the right, suitable
models for these types of readout are depicted. Often, these
models merely attempt to replicate some observed readout.
For example, the cell survival curves discussed above usually
exhibit a parabolic nature in the logarithmic domain [16, 17].
Thus, a quadratic model for log (S) is often used for the dose-
response, without further rationale but just as a method for
fitting the existing data. In the past, this approach has been
expanded to a linear-quadratic-linear relationship [18],
again in a mere attempt to mimic experimentally observed
data. Similarly, biostatistical models for comet assay analysis
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FIGURE 1: Overview of different assays (clonogenic, comet, and
immunocytochemical) capturing different aspects of DNA damage
and repair (cell survival, physical damage, and molecular
pathways). Each assay (left) provides data that correspond with a
suitable model in silico (right). Alternatively, those various aspects
can be captured in a single, holistic model from which synthetic
assay data are derived for comparison. The latter approach is
pursued in this work for emergent cell reactions (clonogenic
assay) and physical DNA fragment repair (comet assay).

are able to describe the assay readout but do not model
actual DNA damage and repair, let alone in a dynamic
fashion [19, 20].

Another class of models go one step further and actually
describe underlying molecular principles instead of the mere
assay readout. For example, the H2AX phosphorylation
discussed above can be modeled using a set of differential
equations [21], and the yH2AX readout is derived from the
model. This approach is mechanistic in the sense that it is
directly modeling the kinetics of the yH2AX pathway and
can be seen as syntactic description of molecular mecha-
nisms. Other models including the lethal-potentially-lethal
(LPL) model by Curtis [22] and the model by Vassiliev [23]
and the I''LQ model [24] all follow radiobiologically moti-
vated approaches but do not consider hyperthermia. The
AlphaR model [25] takes the effect of hyperthermia into
account, albeit for temperatures above 43.5°C which are not
the focus of this work. Going one step further, the multi-
hit-repair (MHR) model describes radiobiological semantics
[26] instead of mechanics. It was used to derive cell survival
curves [12] as well as comet assay readouts [27]. In addition
to the semantic approach, the MHR model was chosen for
this work because it is bioinspired and in the past, its ability
was shown to explain many radiobiological phenomena.

2. Materials and Methods

In the following sections, the experimental setup (Section
2.1), the different biological assays (Section 2.2 and 2.3), the
model used in this work (Section 2.4), the methods to map
the model state to the readout from experimental assays
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(Section 2.5), and the calibration method (Section 2.6) are
introduced, concluding with a brief section about the soft-
ware and its availability (Section 2.7).

2.1. Experimental Setup. Hyperthermia and irradiation was
performed on cells from the Abrams cell line; they were a
kind gift of Prof. Robert Rebhun (University of California,
Davis, California, USA). These canine osteosarcoma cells
were selected because of their radioresistance (SF2: 0.85)
[28], yet they respond well to hyperthermia as a radiosen-
sitizer (a=4.6x107 Gy, f=6.4x107 Gy %, and a/f
=0.72Gy with hyperthermia enhancement-factors (EF)
agp =6.7 and B =1.2 [29] for hyperthermia performed
as indicated below.)

Cells were kept in DMEM at 37°C in a humidified incuba-
tor with 5% CO, (MCO-18AC-PE, Sanyo, Osaka, Japan). In
case of a hyperthermia treatment preceding irradiation, the
cells were transferred to another incubator of the same type,
set to 42°C, and exposed to a heat-up phase of approx.
40 min, followed by another 60 min of treatment time at the
target temperature. The sequence of treatments (hyperther-
mia followed by irradiation) and the treatment time were
chosen to match the clinical practice [30]. To ensure repeat-
ability and quantify thermodynamic effects such as heat
transfer and evaporative cooling, incubators were carefully
calibrated [29]. In case of an experiment without hyperther-
mia treatment, the cells remained in the 37°C incubator.
Upon completion of the hyperthermia treatment time, the
cells were removed from the incubators and irradiated with
a 6 MV linear accelerator (Clinac iX, Varian, Palo Alto,
USA). Adequate dose build-up and optimal homogeneity of
the dose distribution over the irradiation field were ensured
by appropriate layers of Plexiglass. Since the irradiation
device is also used for regular animal patient treatments,
the dose calibration is carried out by a board-certified, qual-
ified medical physicist and is regularly checked with an ioni-
zation chamber calibrated at the Swiss Federal Institute of
Metrology (METAS).

For logistic reasons (transfer time, setup time, and
sequence of irradiation), there was a time-gap of approx.
10 min between the end of the hyperthermia treatment and
the beginning of irradiation. Irradiation occurred at doses
between 0 Gy and 6 Gy with a dose rate of 600 MU, corre-
sponding to approx. 6 Gy/min. Figure 2 illustrates the timeline
of the experiments. It is important to note that while the time-
line may suggest otherwise, any experimental procedure (clo-
nogenic and comet assay) discussed below is destructive to the
cells. Cells used for a given readout can therefore not be used
again for a later or different readout. Thus, the readout origi-
nates from different batches of cells.

2.2. Clonogenic Assay. Clonogenic assay is a method to quan-
tify the fraction of cells that survive a treatment, in this case
an irradiation event [15]. It works by seeding a number of
cells in a dish such that colonies form around these cells
due to cell division. After 10 days, the number of colonies
are counted and related to the number of cells seeded. If a cell
loses clonogenicity due to the treatment, it will not form a
clone, while cells which survive the treatment (in the sense

of maintaining clonogenicity) will form a colony. The dataset
to model clonogenic cell survival in canine osteosarcoma
Abrams cells used here was previously published, and the
details of the experimental protocol are described in [29].

2.3. Comet Assay. Comet assay is a method to quantify phys-
ical DNA damage in individual cells [14] and was performed
as follows: approximately 1.5 x 10°> Abrams cells were seeded
in each well of 6-well plates the day before treatments. Cells
were treated with radiation and/or heat and harvested after
treatments. For this, trypsin was used, and cells were then
resuspended in ice-cold PBS. After centrifugation, cells were
counted in each sample and resuspended in their DMEM
culture medium complemented with 10% DMSO, in an
appropriate volume to reach the concentration of 2 x 10°
cells per mL. Samples for cells used in comet assay were then
stored at -80°C. Experiments were repeated 3 times.

Cells from every repeated experiment were thawed on the
same day and run for comet assay (5 different runs were
needed to run all the samples). After thawing and centrifuga-
tion, DMSO was quickly removed and ice-cold PBS added.
Cells were suspended in molten LMAgarose (CometAssay®
LMAgarose, Trevigen) at a ratio of 1/10 (approximately
1500 cells per sample). Cells were embedded in agarose on
a glass slide and left in the dark for 10 min at 4°C. Slides were
then immersed in a 4°C lysis solution (CometAssay® Lysis
Solution, Trevigen) for 1.5h in a room at 4°C. Slides were
then immersed in the electrophoresis running buffer
(8 mg/mL NaOH, 2mL/mL 0.5M EDTA pHS, in dH,0)
for 10 min at 4°C in the dark. For electrophoresis, slides were
placed in the Trevigen Comet assay tank (CometAssay® Elec-
trophoresis System II, Trevigen) in a cold room, in an exact
volume of 850mL of 4°C electrophoresis solution. Runs
lasted 30 min at 21V and 0.3 A. Care was taken to maintain
the same temperature and volume of solution between runs
to avoid interrun variability. Slides were finally immersed
twice in dH,O for 10min each, then in 70% ethanol for
15min at room temperature. For staining, diluted SYBR
Gold (1:10 000, SYBR Gold Nucleic Acid Gel Stain, Invitro-
gen) was then added to each spot of dried agarose including
cells, for 15 min at room temperature, in the dark. Slides were
rinsed, dried, and stored at room temperature in the dark.

In order to quantify DNA damage, the microscopy
image of the stained comets is analysed with the image
processing software COMET IV, which computes a value
for each cell/comet, indicating the degree of DNA damage.
From the damage metrics offered by the software, the relative
tail intensity (RTI) was chosen because it provides a linear
relationship between the number of DNA strand breaks
and the quantified damage [31, 32]—a property highly
desired for the data-mapping introduced in Section 2.5. The
resulting data was used in a previous publication [27].

2.4. The Multi-Hit-Repair Model. As mentioned in [27], the
MHR model [12] is a dynamic population model where cells
are assigned to populations #; depending on the number of
radiation-induced hits (thus the variable name 7#’) they have
accumulated. The variable H; counts the number of cells in
population 7;. A hit is defined in this work as a lesion that
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FIGURE 2: Graphical representation of the experimental treatment. The timeline at the top depicts an experiment without hyperthermia,
where cells are kept at 37°C, then transferred to the linear accelerator, irradiated (%), and then left to grow clones. Comet assays are
performed prior to irradiation as well as during the =6h of repair time post irradiation. For clonogenic assay, the clones are fixed and
quantified after 10 days. The timeline at the bottom follows the same scheme, but with the additional hyperthermia treatment including
the ramp-up to and treatment at 42°C. The time axis is not drawn to scale.

is hindering the cell from mitosis. In consequence, cells with
one or more hits cannot undergo mitosis until all the hits are
cured by the repair process. Clonogenicity is the ability of
cells to form clones, for which mitosis is a prerequisite. Thus,
only the cells in 7, are clonogenic. Figure 3 provides a
graphical illustration of the model. Cells can accumulate up
to K hits, corresponding to the length of the aforementioned
chain. The chain length could be infinite, but for an imple-
mentation, K has to be limited. The practical limit for K is
chosen such that no congestion at the end of the chain
occurs. This criterion is met at K = 9; thus, the chain length
was chosen accordingly.

During a simulation run, all cells are clonogenic at first;
thus, they are assigned to population 7, counted by the
state variable H,. Hits are induced by radiation with dose rate
R(t), which is set to 0 Gy/min at any time except during irra-
diation. Thus, R(¢) is a square pulse that starts at t = 0 with an
intensity of 6 Gy/min (see Section 2.1); the width of the pulse
corresponds to the administered dose. While R(#) > 0, cells
conceptually travel into the chain as they accumulate hits
according to a radiosensitivity parameter « (« in the context
of the MHR model is unrelated to « as used in the linear-
quadratic model mentioned in Introduction). After irradia-
tion, repair processes inside the cells cure the lesions and
thus, cells travel in the opposite direction where they eventu-
ally may reach 7. This repair is governed by the repair rate
constant ¢, and modulated by a repair function r(-) (see
below). Alternatively, the repair processes may fail, leading
to the death of a cell. This elimination process occurs at a rate
of ¢,H,. Thus, the differential equations for population #’; is

dH;
1 — H
ir aR(t)

-1~ aR(t)H; = r(H;) + r(H;yy) — ¢ H;. (1)

1

DNA repair cannot occur immediately after repair, since
radiation not only induces DNA damage but also damages
the proteins required for repair. The consequent initial
impedance of repair is modeled using the transient biological
dose equivalent (TBDE) I':

I' decays after irradiation and is used in the repair func-
tion to impede repair after irradiation:

r(H;) =c, exp (—upI)H;. (3)

Since some small amount of damage is already present
before irradiation, initial conditions were chosen to reflect
the damage distribution according to Equation (8) in prior
work [27]. Alternatively, it can be assumed that no damage
is present before irradiation; i.e., Hy(0) = 1, H,,(,(0) =0, and
I'(0) = 0. Negligible differences in terms of the model output
were found between these two approaches; thus, the latter,
simpler approach is used in this work. The full set of equa-
tions is given in the supplementary materials; a summary of
the model parameters is presented in Table 1. See [12, 26,
27] for the derivation, validation, and further discussion of
the MHR model.

For hyperthermia, the two variables Y and A are intro-
duced to track the state of active (Y) and inactive (A)
repair proteins. These variables represent the respective
relative amount of repair protein, and thus, they sum up
to 1; ie, Y+ A=1. The activation and inactivation is
governed by the following differential equations:

dy

5 = Y kA, (4)
dA
5 ~RY kA (5)

The rate at which inactive repair protein is reactivated,
k,, is assumed to be constant in prior research [12, 26, 27,
30] and throughout this work. While the reactivation may
be temperature-dependent, the authors are unaware of
any research supporting that hypothesis, thus, following
the principle of assuming simple circumstances whenever
possible and, k, is not a function of temperature.

The inactivation of repair protein, however, is
temperature-dependent [2, 33, 34]. The rate at which this
occurs, k;, incorporates the Arrhenius law [35] as follows:

E E

kj=a-107 exp ( = 2 - = 2 . (6)
R(273.16+37) R(273.16+T)
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FiGure 3: High-level illustration of the MHR model [27]. The boxes depict the chain structure with the populations H; the arrows denote how
cells accumulate hits (to the right), undergo cell death (to the top), or undergo repair (to the left). Below the chaln, comet assay pictures
conceptually illustrate how comets with increasingly high relative tail intensities are mapped to populations with increasingly high

numbers of hits.

TaBLE 1: Summary of model parameters including their search
space. The last column indicates the result of parameter search
(see Section 2.6).

Parameter Description Search space

o Radiosensitivity (Gy 1) [0.17 ;2]

[o Repair rate constant (h ™) [0;10]

C, Elimination rate constant (h ~!) [0;10]

Ur TBDE weighting factor (Gy ™) [0;10]
TBDE rate constant (h ") [0;10]

a Repair protein deactivation rate (h ') [0;2]

k, Repair protein activation rate (h ') [050.1]

Ya Hyperthermia weighing factor [0;5]

The parameter a is introduced for numeric reasons.
R=8.314 J-K'-mol ! is the gas constant, and E, = 1528
kJ-mol ! is the activation energy as published in the liter-
ature [12, 36]. It is important to note that E, may be cell-line
specific; thus, the choice of E, should be revisited in the
future once such data is available for the Abrams cell line
used here. It is easy to show that the equilibrium of Equations
(4) and (5) are Y =1 and A =0, respectively, for T =37°C
Those values therefore serve as initial conditions as it is
assumed that this equilibrium is reached prior to the hyper-
thermia treatment.

The repair function is extended to modulate the DNA
repair rate with the amount of inactive repair proteins:

r(H;) =c, exp (—ppI' — p,  A)H;. (7)

This entails that the rate of repair is reduced both in the
presence of inactive repair protein due to thermal effects (A
) and after irradiation when the TBDE is high (I').

A temperature of T = 42°C is set during the hyperthermia
treatment. Before and after the treatment, the temperature is
set to T =37°C.

2.5. Model/Readout Mapping. Since the MHR model is
describing radiobiological processes instead of assay read-
outs, methods need to be implemented to map the model to
such readouts. For clonogenic assay, this is relatively straight
forward and was introduced in [12]: # is tracking clono-
genic cells by definition; thus, the surviving number of cells
is readily available in H,. Survival S is therefore found by
evaluating H,, at the end of the simulation, provided the
simulation time is chosen such that the repair process has
completed at the end of the simulation.

The mapping to comet data is somewhat more elaborate
and was introduced in [27]: The comet readout at a given
point in time consists of the quantification of DNA damage
in a number of (typically m =100) cells. Depending on the
amount of DNA damage, each cell is assigned to a bin h;:
the first bin A, tracks the cells with little to no damage and
the second bin h, tracks cells with more damage, etc. The cell
count in each bin and population is normalized such that

H,= (8)

M=

=
Il

M=

T
<)
)

<)

Finally, the relative bins /; can be mapped directly to H,
of the MHR model.

In Section 2.4, a hit was defined as an impact on the cell
that bars it from mitosis until cured. The correct mapping
between physical DNA damage as reported by the comet
assay and the model populations #; presumes knowledge
about how much physical DNA damage constitutes one hit.
In other words, the relative tail intensities quantifying DNA
damage must be scaled prior to the mapping to H; to main-
tain the semantics implied by the MHR model (i.e., the
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F1GURE 4: Top: cell survival curves after parameter search with Equation (11) as objective function: & =0.19, ¢, =0.22, ¢, = 0.00, p. = 0.00,
y=3.80, a=1.00, k, =0.01, and p, =3.50 (left); «=0.23, ¢, =5.80, ¢, =0.14, u;. =1.62, y=0.26, a=0.31, k, =1.3- 1074, and Yy =467
(right). The plots at the left result from a parameter search where clonogenic assay data is not considered at all (i.e., comet data only as
published and discussed in [27]). The plots at the right also show results from a parameter search from comet data alone, but the
parameter set producing the best clonogenic cell survival curve (according to Equation (10)) is shown. Since information from clonogenic
assay was used, the left plot exhibits a very poor prediction of experimental data ( =0.12). This shows that the data from comet
assay alone do not capture all information required for a successful parameter search. However, some parameter sets are viable—the plot
at the right does not suffer from this issue (g qnogenic =48 10~*)—suggesting the use of a joint approach where data from both assays is

eclonogenic

used. Bottom: experimental and synthetic comet readout for the same parameter sets.

definition of a hit). In [27], the correct scaling factor was Interestingly, the method failed to reproduce experimen-

unknown, and thus, tail intensities between 0 and 4% were
mapped to 7, arbitrarily (as discussed there, the model
can still be used with a wrong scaling factor, but the param-
eters may lose the meaning they were originally designed
for). In this work, the scaling factor is not fixed to a single,
convenient value arbitrarily. Instead, the procedure is
repeated with different scaling factors within a sensible range.
In order to achieve this, the scaling is formalized by the
variable o which denotes the largest tail intensity that is still
mapped to #,. Hence, 0 = 0.04 in the above example.

tal comet data for small values of 0. For large values of o, the
resulting o parameter values were in violation of the lower
bound stipulated by Equation (9) (see Figure SI1). Only a
small region around ¢ =0.03 was free from these issues;
thus, o = 0.03 was used.

2.6. Approximate Bayesian Computation. Approximate
Bayesian computation (ABC) [37] is used to estimate distri-
butions of model parameters. The method works as follows:
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for each parameter, the range of biologically meaningful
parameter values is estimated. For example, with y =10 h !
(the upper boundary of this parameter), repair proteins reac-
tivate very quickly from the irradiation event; the repair
probability recovers to 94% 30 min post irradiation. This is
unrealistically high given the typical delays observed experi-
mentally (see Figure 4 and [38]). Since no prior information
is available on a given parameter values’ positions within the
search space [a; b], uniform prior distributions with bound-
aries a and b, %[a; b], are chosen. The boundaries are listed
in Table 1 for each parameter. Determining the lower bound
on « presents a special case: it is easy to show that in the
absence of any repair (i.e., 7(H,) =0),

Hy(1) = exp (~aR?) )

for the duration of irradiation. After irradiation, R=0,
and thus, H () remains constant. Because H(t) is mapped
to the fraction of surviving cells (see Section 2.5), a lower
bound for & can be established by solving Equation (9) after
substituting H(t) for S as reported in the clonogenic assay
and setting ¢ to the point in time at which irradiation ends.

At the beginning of the parameter search, # sets of param-
eters are initialized by drawing from the prior distributions.
Predictions are made by running the model in a forward fash-
ion, extracting the predicted readout as described in Section
2.5and comparing it to experimental data. This yields an error
€ according to Equations (10) and (11) (see below).

In each iteration of the search, the parameters are per-
turbed; the new parameter values are kept if € decreases and
are discarded otherwise. In a simulated annealing fashion
[39], the amount of perturbation is gradually decreased as
the search progresses. A cut-off value of ¢ = 1072 was chosen.
In the end, n sets of parameters are left; all of which provide
a satisfactory error. In this work, n = 1000 was chosen with
250 iterations.

The objective function for the parameter search with cell
survival data is

sclonogenic = Z (lOg (SD) - lOg (SAD))Z’ (10)
D

for the radiation doses D, the experimentally obtained
surviving fraction of cells S, and the predicted surviving
fraction of cells S.

Similarly, the objective function for the parameter search
with comet data is

=Y. Y (-0’ (1)

t>0 i=0

for time point ¢, normalized population H,, and normal-
ized comet readout fli as defined in Equation (8). A combined
calibration was attempted with a combined objective func-
tion (see discussion in Section 4).

2.7. Software. The methods discussed above were implemented
in python (version 3.5.2) using the abcpy module [40] for ABC

(version 0.5.3). R version 3.6.0 was used to create the plots; the
code and data are available online (https://github.engineering
.zhaw.ch/weyl/synthetic_comet). The software can be config-
ured to use either input data from clonogenic assay or input
data from comet assay. Depending on this selection, the corre-
sponding objective function €gqogenic OF Ecomer 18 used. The

results shown in Figure 5 are obtained with the software run-
ning on clonogenic mode, ie., evaluating &,pogenic> While
those in Figure 4 are obtained with the software running in

comet mode, i.e., evaluating €_,,...-

3. Results

Two model outputs for cell survival are shown at the top of
Figure 5, as produced by the software running in clonogenic
mode. The examples were chosen according to similar
€dlonogenic: fOT both instances, ~2.5x 1073, Experi-
mentally, it would be very challenging (if not impossible) to
discriminate between the two curves. Yet, the parameters
and the dynamics shown at the bottom are very different
from each other: in the left case, most hits have vanished after
2h, while the same requires 4h in the right case.

With the software running in comet mode (i.e., minimiz-
ing e_()> results are shown in Figure 4. The data on the left
represents a random pick from the parameter result set and
produces a cell survival curve very different from cell survival
found experimentally (€.qp0genic=0.12). The ones on the right
is the curve with the lowest error found in the set
(sclonogenic =438 10_4)'

Figure 6 shows a histogram panel of the parameters unre-
lated to hyperthermia (see Figure S2 for parameters a, k,, and
¢,). In the top row, parameters from the software in
clonogenic mode are shown while in the middle row,
parameters from the software in comet mode are shown.
The bottom row shows the joint distribution, calculated
from the previous two rows. Generally, values for « and ¢,
are centered around one or two peaks, while, e.g,, Y is more
uniformly distributed in the comet case, but clonogenic
assay data suggests that the parameter peaks at low values.

In addition to joining the two posterior distributions for
each parameter, a calibration was attempted where the two
objective functions were combined with a weighting factor &:

sclonogenic

€combined = Sclonogenic + Escomet (12)

In order not to prefer any assay source from the other,
errors from the previous single-assay runs were used to select
& =1.68 x 1073 such that the two terms are of the same order
of magnitude. This attempt failed; the ABC solver never left
its seeding state (see discussion in Section 4).

4. Discussion

The results shown in the previous section clearly call for a
combined approach, where both clonogenic assay and comet
assay data are used as sources of information for parameter
search. However, the traditional approach of combining
two objective functions failed. This is because in the seeding
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F1GURE 5: Top: cell survival curves for two different sets of parameters after parameter search with clonogenic assay data. Two sets with similar

errors were chosen (sclonogenic

=2.5.107%); the curves match experimental data (dots) relatively well and are very similar albeit having vastly

different parameter values. Bottom: corresponding H; values in time (no hyperthermia). While the two parameter sets produce similar
survival curves, the dynamics of repair are very different. Because clonogenic assay captures only the state after repair has completed, no
information about these dynamics is in the data. The parameters are « = 1.32, ¢, =6.89, ¢, =0.25, . = 1.60, y = 6.75, a = 0.92, k, = 0.048,
and p, =1.39 (set 1) and « =0.20, ¢, =4.58, ¢, = 1.31, p; =0.25, y = 0.20, a = 0.38, k, = 0.039, and y,, = 3.20 (set 2).

state, ABC with simulated annealing rejects samples from the
prior that are above a certain threshold (values up to e =10
were tried). Since it is difficult to find parameters that satisfy
both objective functions, the seeding state never completed.
Thus, the computationally much lighter approach with joint
posteriors is proposed, allowing for additional flexibility in
combining further calibration results.

The results in Figure 5 reveal that survival curves lack
sufficient information for MHR model calibration. This is

hardly surprising, as it was argued before that the clonogenic
assay captures information very distant from the process that
is being modeled. On a side-note, any attempt to calibrate a
model with 8 parameters from 5 data points is likely going
to fail, which is yet another reason to include additional data
sources. However, even with this little information, the top
row in Figure 6 reveals regions of interest for some parame-
ters, e.g., for a and c,. On a related note, the resulting
posterior distributions for « and c, are bimodal. This is an
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FIGURE 6: Histograms of parameter values after calibration with the software set to different modes, and at the bottom, the joint
distribution obtained by combining the two posterior sets is shown. Of n=1000 parameter sets, the 75% with the smallest error

Eqlonogenic 18 used to restrict outliers.

important finding that is concealed by a method aiming at
point-estimates, such as differential evolution one used in
[27]. Indeed for the « value, one peak of the histogram corre-
sponds to the range of parameters found in [12], while the
other peak corresponds to the range of parameters found in
[27]. Interestingly, these two regimes also correspond to the
two instances depicted in Figure 5.

Based on the aforementioned rationale, one may assume
that the use of comet assay readouts would cure these issues.
However, Figure 4 demonstrates that this is not the case.
Otherwise, any parameter set would yield an adequate cell
survival curve. Discussing potential explanations for this
observation is critical since the resulting conclusions govern
the choice of further data to address the open issues: for
quantification of the damage, the relative tail intensity is
assessed for approx. 100 cells per assay. This quantification
does not discriminate between cells that have a chance to
reach %), cells that have already initiated apoptosis and will
never reach %, and cells that are on the brink of death for
other reasons. In fact, the quantification may even contain
cells that are already dead but still have DNA that is visible
in the microscopy image. However, the ability to reach %
is essential for producing a survival curve from the model.
Thus, a possible explanation for the inability to achieve suc-
cessful model calibration from comet assay readout alone
could be that the readout does not carry sufficient informa-
tion about the ability to reach 7. Furthermore, dead cells
that have degraded so far as to not have any quantifiable
DNA whatsoever would not be considered for comet assay,
and the normalization of the 100 cells to a relative histogram
would mostly masquerade their existence: the only way for

dead cells to influence the results is in the ratio l:lo/z#o h;,
since a surviving cell would contribute to H,, (thus increasing

H,), but if the same cell had died, it would not contribute to
any H; (thus increasing H, for i # 0).

For the parameters c,, y, and y;. (Figure 6) as well as the
parameters related to hyperthermia (Figure S2), uniform
posterior distributions are obtained. The method thus reveals
that more input data is required to identify these parameters.
Parameters y and . relate to a transient repair inability due
to the irradiation event. From Figure 4, it can be seen that this
effect vanishes approx. 30 min. after irradiation. Thus, further
data within that time frame could yield better estimates for
those parameters. ¢, could be identified by running a series of
clonogenic assays at various dose rates. At low dose rates,
irradiation would not be considered as an event but have a
finite duration and repair may start already during
irradiation. Such dose-rate-dependency was shown in the
past to be reproduced by the MHR model [12], and the rate
of repair ¢, could become identifiable. The hyperthermia
parameters could be refined with data from a study with
varying time-gaps. Such data from clonogenic assay has been
publishedI [9] but not from comet assay and with different
cell lines. As mentioned in Introduction, assessing the repair-
protein reactivation rate constant k, would be of great clinical
use, as it would allow a better assessment about tolerable
time-gaps (and variation thereof) between irradiation and
hyperthermia. Since the order of the two treatments (i.e.,
hyperthermia prior to versus after irradiation) was shown to
have minimal effect on cell survival [9], additional input
data in this regard would likely not improve the calibration
results. Investigating more cell lines would reveal which
parameters may vary by how much between subjects.

Clonogenic cell survival and comet assay measurements
were shown to be repeatable [14, 29]; thus, it is reasonable
to expect repeatable results from patient biopsies [38]. This
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would allow for a per-patient calibration, e.g., to improve the
treatment plan on a per-patient basis. As mentioned in the
previous paragraph, such an endeavour would require data
from appropriate sources to identify the relevant parameters,
rather than just more amounts of data.

In case the model cannot be calibrated at all despite these
efforts, it could be simplified, for example by replacing the
TBDE I with a fixed window of no repair after irradiation,
removing the parameters y. and y. Alternatively, it is con-
ceivable to split the process at the time of the irradiation,
yielding a hyperthermia process that sets up the initial condi-
tions for a subsequent DNA damage and repair process.
Splitting the model in this way could yield closed-form
solutions or approximations thereof for some state variables,
paving the way for a much simpler calibration strategy.

The model and the strategy presented in this work have a
number of potential limitations. First, the model does not
incorporate any mitosis, which occurs without doubt in 7,
until the cells are fixed and the clonogenic assay is performed.
However, one can argue that for a given cell line, any mitosis
would occur at a fixed rate. While the number of cells would
increase, their ratio would remain the same. Because the clo-
nogenic cell survival assays used in this work are normalized,
mitosis cancels out. Some cells may, however die only after a
few cell cycles. This falls in the gap between the last comet
assay and the point in time when clonogenic assay is per-
formed and is not modeled in the MHR model. Second, the
model does not incorporate any effects of direct cytotoxicity,
i.e. thermal cell-killing. This is alleviated by the fact that such
direct cytotoxicity was not observed in any of the control
experiments performed with hyperthermia alone [29]. Third,
the model does not correctly describe inhibition of DNA
repair proteins above a temperature threshold of 42.5°C-
43°C, since those proteins are believed to enter a different
regime above that threshold [35]. While this is a limitation,
it does not affect the work presented here since the highest
temperature applied in vivo and in silico was 42°C.

5. Conclusions

This work demonstrates that a holistic approach is necessary
to calibrate the MHR model parameters. Relying on clono-
genic assay data or comet assay data alone, as it has been
done in the past, proved to be insufficient to establish unam-
biguous model parameters. Even with this combined
approach, some parameters remain unidentified. However,
the ABC method has the advantage of joining existing poste-
rior distributions with distributions obtained from calibra-
tion runs with new input data. This ability is critical since
model calibration with ABC is, despite all its advantages, very
slow. Combining posterior distributions from ABC, however,
is fast. Following this approach, data from different assays
can be combined in a modular fashion without the need of
rerunning the full calibration.

While the application of the method presented is radio-
therapy, hyperthermia, and treatment planning, the method
presented here addresses a more general problem; thus, many
other instances exist where the application of this method
would be of value.
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Methamphetamine is a highly addictive drug of abuse, which will cause a series of abnormal consequences mentally and physically.
This paper is aimed at studying whether the abnormalities of regional homogeneity (ReHo) could be effective features to distinguish
individuals with methamphetamine dependence (MAD) from control subjects using machine-learning methods. We made use of
resting-state fMRI to measure the regional homogeneity of 41 individuals with MAD and 42 age- and sex-matched control subjects
and found that compared with control subjects, individuals with MAD have lower ReHo values in the right medial superior frontal
gyrus but higher ReHo values in the right temporal inferior fusiform. In addition, AdaBoost classifier, a pretty effective ensemble
learning of machine learning, was employed to classify individuals with MAD from control subjects with abnormal ReHo
values. By utilizing the leave-one-out cross-validation method, we got the accuracy more than 84.3%, which means we can
almost distinguish individuals with MAD from the control subjects in ReHo values via machine-learning approaches. In a word,
our research results suggested that the AdaBoost classifier-neuroimaging approach may be a promising way to find whether a
person has been addicted to methamphetamine, and also, this paper shows that resting-state fMRI should be considered as a

biomarker, a noninvasive and effective assistant tool for evaluating MAD.

1. Introduction

Methamphetamine is a type of synthetic stimulant that often
appears white or colorless, and chronic overuse may result in
dependence. There are many researchers claimed that
chronic overuse of methamphetamine brings about adverse
physical reactions and severe psychiatric symptoms, such as
depressive disorder and dysthymic disorder [1, 2], mental
disease [3], and cognitive deficits [4-6], which may attribute
to the reduction of dopamine transporter density that per-
sists after use ceases [7, 8]. Currently, the clinical diagnosis
of individuals with methamphetamine dependence (MAD)

is based on the abnormal presence of MA users, self-
reported symptoms that are subject to their own bias. There
is a lack of validated biomarkers that are highly relative to
MAD. So, we proposed a machine-learning-based method
that may be an effective aided diagnosis system for MAD.
Based on the blood oxygen level-dependent (BOLD) sig-
nal, resting-state functional magnetic resonance imaging (rs-
fMRI) is a useful method for the research of brain activity.
ReHo is a promising method of the study of resting-state
fMRI, which has been successfully used for a volume of
researches of neurological diseases, such as the research of
antisocial personality disorder [9], schizophrenia [10], and
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depression [11]. Hence, in this study, we utilized ReHo to
find the differences between individuals with MAD and con-
trol subjects, and using the abnormal ReHo value in subjects,
we initially employed AdaBoost classifier to distinguish these
two groups—individuals with MAD and control subjects.
AdaBoost classifier is a greatly outstanding ensemble learn-
ing method of machine learning, which even often outper-
forms support vector machine (SVM) [12] in some
situations due to the classification results that are decided
by many classifiers instead of single. We hypothesized that
the abnormal areas showing in ReHo may be biomarkers
for evaluating the MAD.

2. Methods

2.1. Data Acquisition and Preprocessing. Our nuclear mag-
netic resonance data were collected on the same fMRI ins-
trument in the Department of Medical Imaging, Second
Xiangya Hospital of Central South University. Scanning
was performed using a 3.0T magnetic resonance imaging
system from Siemens. A sponge earplug is inserted into the
ear of the subject, and a soundproof ear is worn to reduce
noise. The subjects were placed in a supine position, the
head was placed in a fixed hood, and a foam pad was used
to fix the sides of the head to reduce head movement. And
during data acquisition, the subjects were asked to relax their
minds, to keep their eyes closed, and to move as little as pos-
sible. Functional scans of the whole brain were acquired
using a gradient echo EPI sequence; the parameters are as
follows: TR =2000ms, TE =30 ms, FOV =220 mm, matrix
= 64 x 64, flip angle = 80°, voxel size = 3.4 x 3.4 x 4 mm, slice
thickness =4 mm, and number of slice = 36. We used inter-
layer scanning, even layers first and then odd layers, collecting
225 time points.

Data preprocessing was carried out employing Data Pro-
cessing Assistant for Resting-State fMRI (DPARSF) [13]
(http://www.restfmrinet) and Spm8 (https://www.fiLion
.uclac.uk/spm/) on the Matlab R2017b. For each subject,
because of the magnetic saturation and instability of partici-
pants, we removed the first ten scans of the fMRI time series.
For the remaining images, the preprocessing procedure
included slice timing, head motion correction, and spatial
normalization to standard Montreal Neurological Institute
template with a resampled voxel size of 3 x 3 x 3 mm. Sub-
jects with translation more than 1.5 mm and rotation exceed-
ing 1.5 degrees in any direction were excluded. And then, we
carried out detrending for fMRI data.

2.2. ReHo Calculation. We used DPARSF advanced edition to
carry out ReHo calculation for each subject. The main idea of
ReHo can be summarized as using Kendall’s coeflicient con-
cordance (KCC) to measure the degree of similarity of multi-
ple time courses [14]. The exact details of the method can be
found in [15]. The KCC calculation formula at a certain point
is as follows:

w2 T (R = nx (R)” W

(1/12)k* x (13 — n)
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TaBLe 1: The information of subjects. MAD means
methamphetamine dependence. The average duration of MA
means the average months of individuals with MAD took
methamphetamine.

Types Individuals with Cor.ltrol
MAD subjects
Age (years) 21~46 20~46
Average (years) 325 34.2
Left/right-handed 3/42 2/41
Average duration of MA (months) 60.4 —

where W represents the value of KCC, which is between 0
and 1, k means the number of voxels in a cluster, in our study,
we set k equals to 27, and n represents the time points of
fMRI data. Ri means the total number of 27 voxels at the i
th time point, and obviously, Rmeans the average value of R
i. A pipeline of DPARSF has the function to calculate the
time series consistency of each voxel and its surrounding
voxels in the brain and then obtain the KCC of the voxel.
In this way, we get the KCC value of each voxel in the whole
brain, and we obtained the ReHo map for every subject.

2.3. Discriminative Analysis. Between-group voxel-wise com-
parison of the ReHo was performed using the two-sample ¢
-test. From the result of two-sample ¢-test, we got different
brain areas between individuals with MAD and control sub-
jects. These brain regions were definite as regions of interest
(ROIs). Each ROI was defined as a sphere (a radius of 6 mm)
whose center was at the voxel showing the highest statistical
difference. Then, the mean ReHo value in each ROI for each
individual participant was extracted as features to classify the
MAD group and the control group. AdaBoost classification is
a type of ensemble learning method of machine learning,
which is proposed by Freund and Schapire [16]. The Ada-
Boost algorithm consists of many weak classifiers. In each
iteration, a new weak classifier was added to the algorithm
until the classifier reaches an expected result. During the
training process, we set a value for each training sample,
which represents the probability that the sample is selected
by the new classifier. If the sample is accurately classified in
the previous classifier, its weight will decrease, otherwise
increase, so that we can pay more attention to the sample
of the wrong classification. The final classification result is a
linear combination of multiple classifiers, which is the funda-
mental reason why the AdaBoost classification algorithm is
often better than others. Because of the small amount of data,
we used the method of leave-one-out cross-validation to train
the model, and the ultimate model accuracy is the average of
multiple training.

3. Results

3.1. Subjects. In our study, 41 individuals with MAD come
from The Forced Isolation and Detoxification Center in
Pingtang, Hunan Province, China. 42 control subjects are
recruited from society; we got rid of control subjects that
are diagnosed with mental diseases or subjects that have


http://www.restfmri.net
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/

Computational and Mathematical Methods in Medicine

-19 mm

-20 mm

//' = ™ “

-21 mm e

—-16 my

— -15mm —
o / "

A B g
| L i 4

—-11 mp™ T -10 mm o
> N " 4 \

AT

—14 mm e

-9m m// T

p 427
-17 mm

T ™

-18 mm

» 0
\ |

—13 mm S

. 2

—12 mm__

- -2.89

"

-8 mm .~ ~

N, gl

I -4.30

F1GURE 1: Significant differences in ReHo between individuals with MAD and control subjects. The parts of blue color show where ReHo value
decreased in individuals with MAD compared with control subjects, and the parts of red show the increased ReHo value.

TaBLE 2: Significant between-group differences in regional
homogeneity.

Peak MNI location
Regions LR x y z  Max t-value Cluster size
Temporal [F R 45 -15 -30 3.2546 14
Superior FtG R 18 -12 57 -3.2969 13

Abbreviations: R: right; L: left; MNI: Montreal Neurological Institute; IF:
inferior fusiform; FG: frontal gyrus.

no ability to sign their names because of poor education.
There are two left-handed subjects in control subjects and
three left-handed subjects in individuals with MAD. For
control subjects, they have no history of addictive substance
dependence except nicotine. Participants who took part in
the experiment were between 20 and 46 years old with an
average age of 33.4. Before the data was collected, the doc-
tor signed a written guarantee agreement with each subject,
so this study was subject to approval by the ethics commit-
tee of Central South University. The relevant information
about all the participants is given in Table 1.

3.2. ReHo Results. Figure 1 and Table 2 show meaningful dif-
ferences between individuals with MAD and control subjects
employing a two-sample t-test (after AlphaSim correction,
p=0.05, the minimum cluster size is 13). Compared with
control subjects, individuals with MAD have lower ReHo
values in the right medial superior frontal gyrus, instead,
and they have higher ReHo values in the right temporal infe-
rior fusiform.

3.3. Classification Results. We used AdaBoost classifier to dis-
criminate individuals with MAD from control subjects by
features that are significant differences in ReHo between
two groups. The main idea of the AdaBoost classifier can be
summarized as a linear combination of multiple weaker clas-

sifiers. We tested the number of weaker classifiers (n_estima-
tors) from 2 to 20 and found that the best accuracy was
84.37% (Figure 2) when n_estimators equal to 4. Here, accu-
racy means the number of correctly classified subjects divide
the total number of our subjects. From the classification
result, we can reach the conclusion that AdaBoost classifier
can better distinguish between normal people and individ-
uals with MAD.

4. Discussion

Recently, methamphetamine has been becoming one of the
most highly addictive drugs in the world and continues to
be foremost public health problems [17]. There is an increas-
ing number of people that are suffering from the overuse of
MA, which highly affects their physical and mental health
and brings misfortune to their families. Hence, it is meaning-
ful to identify individuals with MAD and take certain proce-
dures to alleviate their conditions.

In this paper, our purpose was to build an assistant
diagnosis system for MAD based on resting-state fMRI and
machine-learning methods. In our study, we exploited the
approach of ReHo to research resting-state fMRI data, by
computing the discernible differences between the MAD
group and the control group. In addition, an effective
machine-learning  method—AdaBoost  algorithm—was
employed to distinguish individuals with MAD and control
subjects with accuracy equal to 84.3%, which indicates that
the AdaBoost classifier-neuroimaging approach can be a use-
ful assistant diagnosis tool to identify individuals with MAD
and help them alleviate their conditions in time. In our study,
we found that individuals with MAD have lower ReHo values
in their right medial superior frontal gyrus, which is consis-
tent with the findings of Monterosso et al. and Schwartz
et al. [18, 19]. On the other hand, we found that individuals
with MAD have higher ReHo values in the right temporal
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inferior fusiform that is in accordance with Kim et al. [20].
Goldberg et al. found testimonies to prove that the superior
frontal gyrus is relative to self-awareness [21, 22], and Fried
et al. found that superior frontal gyrus is closely associated
with laughter [23], which accord with clinical symptoms of
individuals with MAD. And also, a series of researches
proved that inferior fusiform gyrus is involved in higher pro-
cessing of colors [24-26], which implies that it is often related
to the visual pathway [27]; in other words, inferior fusiform
gyrus is highly about face and body recognition and word
recognition [28-30]; that is why most individuals with
MAD often appear weird facial expressions and behaviors.
Our research suggested that individuals with MAD have
poor self-awareness such as compulsive behavior, anxiety,
and poor ability to recognize face, body, and word [11].
In addition, we effectively distinguish individuals with
MAD from control subjects using AdaBoost classifier that
overrides support vector machine and KNN. Our results
demonstrated a potential biomarker for evaluating MAD.
There are many kinds of research showed that biomarkers
might be employed to effectively diagnosis a variety of dis-
eases in the medical domain [31]. Our results proved that
ReHo could be a robust index for discriminating individ-
uals with MAD from control subjects and machine learn-
ing could be a useful tool for the diagnosis of mental
disease. Although we achieved 84.3% accuracy, we believe
that we still have a big room to improve our model.
And we only used regional homogeneity (ReHo) approach
to estimate MAD; maybe we can transform our model in
functional connectivity in the future. And also, deep learn-
ing outmatches traditional machine-learning algorithms in
large sample data set in recent years, which may inspire us
to get a more accurate result in the future.
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Multimodal medical images are useful for observing tissue structure clearly in clinical practice. To integrate multimodal in-
formation, multimodal registration is significant. The entropy-based registration applies a structure descriptor set to replace the
original multimodal image and compute similarity to express the correlation of images. The accuracy and converging rate of the
registration depend on this set. We propose a new method, logarithmic fuzzy entropy function, to compute the descriptor set. It is
obvious that the proposed method can increase the upper bound value from log(r) to log(r) + A(r) so that a more representative
structural descriptor set is formed. The experiment results show that our method has faster converging rate and wider quantified

range in multimodal medical images registration.

1. Introduction

Multimodal medical images are important for observing
tissue structures clearly in clinical practice, such as MRI/TI,
MRI/T2, and MRI/PD images. To integrate multimodal
information, multimodal registration is important in
practical application [1, 2].

It is hard to find relevant information on multimodal
medical images because of different weighting properties. To
solve this problem, many research works try to find the
potential relationship based on intensity value. Whereupon,
mutual information (MI) [3] has been extensively applied
for multimodal medical image registration. In 2004, Rus-
sakoft et al. used MI on medical images registration [4],
while it is sensitive on implementation decisions as well as
small convergence rate. In 2010, Loeckx et al. used condi-
tional mutual information as a new similarity measure in
nonrigid image registration [5]. However, it has an obvious
drawback in time consumption. There is an alternative
method to decrease the algorithmic complexity, which

simulates one modality with the other. This needs a de-
scriptor set to inherit the structure or richness of original
modality with the other modality’s character expressed. For
example, in 2008, Wein et al. [6] registered ultrasound and
CT with the simulation of ultrasound images. And In 2013,
Xu et al. [7] registered CT image to ultrasound image with
simulating the ultrasound image, which has many objective
restrictions and the accuracy depends on manual landmark.
We are interested in a general structural representation, so
these specific approaches are not applicable. The universal
adaptability and computational complexity seem incom-
patible. However, in 2012, Wachinger and Navab [8] pro-
posed the descriptor set based on middle-type artificial
modality. It has both general adaptability and low com-
plexity, which is the method we will improve in this article.
In the same year, Heinrich et al. computed third-type
modality by MIND descriptor set [9]. The descriptor is
suitable for different modality-group registration. However,
it is affected by rotational variant and cannot recover strong
rotations. The descriptor needs ability to express the
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anatomical feature presented in both modalities. In 2015,
Oktay et al. [10] presented a structural representation, which
is trained by structured decision forest, namely, Probabilistic
Edge Map (PEM). This method lacks a certain generalization
ability, which requires manual intervention to adjust pa-
rameters and repeated training steps alone. In 2016,
Simonovsky et al. [11] applied a deep convolutional neural
network (CNN) algorithm to multimodal image registration
and optimized it with a continuous framework. The trained
network can output the convolutional descriptor set which
can address the binary classification between aligned and
misaligned, although it causes a huge computing cost in
iteration. In 2017, Cao et al. [12] overcame the problem of
CT-MRI pelvic image registration by establishing a bidi-
rectional image synthesis. The shortcoming of synthesis
methods is the feasibility in other image modalities, which
limits their clinical applications. In 2018, Luo et al. computed
the descriptor vector based on a novel variogram-based
outlier screening method [13]. However, it focuses on space
location relationship and loses sight of potential richness.
Most recently, in 2019, Bashiri et al. [14] expressed the
descriptor set in high dimensional space, studying potential
structures of an image through Laplacian eigenmap. Non-
linear dimensionality reduction from manifold space will
result in the loss of original potential information. Since the
registration of medical images from different modalities is
more affected by substantial intensity variations, we prefer
the method that is based on pixel intensity distribution.

1.1. Motivations and Main Contributions. In clinical appli-
cation, different modalities have different display emphases.
In this case, a universally adaptable approach has signifi-
cance in multimodal registration. An alternative method is
transferring both different modalities into third-type arti-
ficial modalities with carrying original potential informa-
tion. Wachinger and Navab computed third-type modality
by entropy [8]. A structure descriptor set was applied to
replace the original multimodal image. It has universality
and lower computation complexity. However, we found that
the above method (entropy function) is only used for
quantifying the uncertainty of patches with limited range.

We propose a logarithmic fuzzy entropy function with
wider quantified range, which increases the upper bound
value from log(r) to log(r) + A(r). The experimental results
show that our method has faster converging rate and wider
quantified range in multimodal medical image registration.

2. Structure Descriptor Set

Descriptor set is a medium to express substantial information of
original image such as edge, corner, texture, and gradient. In this
article, each descriptor is computed by the intensity distribution,
which is generated by a local patch. Furthermore, we find that
the descriptor contains the structure and richness information,
where richness information exists in the form of quantifying its
uncertainty, and then the structure descriptor set consists of
these descriptors. Such structure descriptor sets can assist many
image processing tasks. An accurate structure descriptor set can
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express the structure and intensity distribution information,
reduce the redundant data, and improve the rate of convergence
to the extremum value of algorithm. In addition to the above
three advantages, we also transform the multimodal image into
a third-type modality simultaneously. Finally, under the same
modality, we obtain the similarity value by computing the L1
norm of two corresponding structure descriptor sets.

2.1. Entropy Image. Wachinger and Navab proposed a
structural representation based on the entropy image [8].
The image is divided into many patches, and each patch has
its structural descriptor. Structural descriptors are applied to
form a completely new image, which are called structural
representation. In the new image, every pixel can be cal-
culated as follows:

Dy, =H(I|N,)), (1)

where H is the entropy calculation, I is image, N is the
square neighborhood, which takes x position as centre [ as
side length, and D is structure descriptor value of N ;.
This method quantifies the uncertainty value of the patch
with entropy. But the quantification range is only from 0 to
log(r), which needs to be optimized.

2.2. MIND Descriptor Set. Heinrich et al. proposed the
MIND method (morphological independent neighborhood
descriptor for multimodal registration) [9]. The character-
istics of local self-similarity are used to describe structural
information. In this descriptor set, each pixel value is cal-
culated as follows:

—DP(I,x,x+ r)

1
MIND (I, x,7) = —
(I, x,1) nexp( V)

), reR, (2)

where r is the neighborhood block, D is the correlation
between the neighborhoods, and n is the normalization
constant. Each position x of image will be replaced by a
vector of size |R| when the MIND operation is performed.

3. The Method of Measurement Function

The method proposed in this article is based on intensity
distribution. The essence is to find a function to compute the
descriptors. Each descriptor contains the local information of
original image, such as intensity richness of local neighbor-
hood. Richness information exists in the form of quantifying
the uncertainty value of local neighborhood. Some mea-
surement functions can quantify the uncertainty of set. Buzug
et al. adopted strict convex function instead of Shannon en-
tropy [15]. Subsequently, Pluim et al. proposed F information
measure instead of the entropy value in mutual information
MI calculation [16]. Experiments showed that the registration
results of these F information measurements (strict concave
function) can imitate mutual information, and some of them
have higher precision. These researches prove that there are
some measurement functions that have good performance to
quantify the uncertainty set, such as entropy function in
chapter 3.1 and strict concave function in chapter 3.2.
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3.1. The Entropy (M1). The Shannon entropy of a random
variable “A” with a possible value “a” is defined as follows:

H(A)=-) P(A=i)x logP(A=i). (3)

i€ca

When we calculate the variation of intensity, which
occurs in the same position, image gradient is always used
for image processing [17]. But, it depends on similarity value
and is not suitable for describing the structure detail. A more
general concept is to quantify the uncertainty content or,
analogously, the bound for a lossless compression, as stated
by Shannon’s theorem. The entropy function originates from
the field of thermodynamics at the earliest. It can measure
the uncertainty of variable information. When there are
intersections between two images, the correlation of the two
images can be calculated with I(A,B) = H(A)+ H(B)-
H (A, B). The above theory is derived from the mutual in-
formation MI algorithm [4].

Shannon pointed out that the measurement function of
uncertainty should satisfy the following three prior conditions:

(1) Continuity condition: f{p,, p,, ...
continuity function of (p;, p,, . ..

, Pr) should be a

)pk)'

(2) Monotonicity: under the equal probability f(1/r,
1/r,...,1/r)=g(r). g(r) should be the increasing
function of r.

(3) Additivity condition: when the value of a random
variable is obtained from multiple trials rather than
one trial, the uncertainty of the random variable in
each experiment should be additive.

Condition 1 and 2 mean that the function must have the
ability to quantify the uncertainty of the information.
Condition 3 is used for multiple information sources. For
example, we measure the occurrence probability of each
event in set X as follows: (p;, p,, - . - p,)- The probability of
each event in set Y is as follows: (q;,4,, - - -»4,,). We statistic
the entropy of the joint information source X, and Y is equal
to the sum of the entropy of the information sources X and
Y. H(XY) = H(X) + H(Y).

H,,, (P14 P12 - - > P1Gms P21> - - - > Puim)

= Hy (PP 5 Pu) + Hy (4G5 5 )
ZP:’ =1L
i=1
24=1
j=1
Zzpiq] =1
i=1 j=1
(4)

The purpose of this article is simply to find a function
that can count the uncertainty of a patch (i.e., satisfy con-
ditions 1 and 2). So, it is not necessary to count the joint
uncertainty between any patches.

Entropy is not the only function that can describe the
uncertainty of information. Wierman studied the uncertainty
measure of information entropy under a rough set [18]. Diintsch

and Gediga studied the problem based on knowledge granularity
measurement [19]. Yumin et al. proposed several uncertainty
measures of neighborhood granule, which had good perfor-
mance in neighborhood systems [20]. Huang and Wen found
that the strict concave function can also calculate the uncertainty
of the information and discussed the relationship between the
entropy and strict concave function [21]. Wei et al. discussed the
uncertainty metric based on fuzzy entropy systematically [22]. In
this article, we have introduced three other strict concave
functions for the coming experiment (see 3.2 for details).

3.2. Strict Concave Function. If function f(x) is defined in the
interval I, there are two points x1 and x2 in I. For any 1€(0, 1)
it has

FOx +(1=Dxy) > Af(x)+(1-Nf(x). (5

According to the definition and properties of strict
concave functions, we propose three functions:

1) f(x) = -[xlogx + (1 - x)log(1 - x)],
assign 0 x log0 = 0

(2) fo(x) = x*exp(l-—x) + (1 -x) * exp(x) -1,
x € (0,1]

(3) fi(x) =x/(1+x)-x/2,

f1(x) and f2(x) are fuzzy entropy in the strictly concave
function. f3(x) is just a strictly concave function rather than a
tuzzy entropy function. f1 function was presented by De
et al. and called logarithmic fuzzy entropy function [23]. 2
function was presented by Pal NR et al. and called expo-
nential fuzzy entropy function [24]. The images of four
functions are shown in Figure 1.

x € (0,1],

x € (0,1]

3.3. From Entropy Function to Strict Concave Function

Theorem 1 (see [25]). The intensity value x; i€ {1,2,
3,...,r} According to the definition of entropy function, its
range is 0 < H (A) < log (r).For certaini = [1,r], if P(x;) = 1,
the minimum H(A) = 0. For all i = [1,r], if P(x;) = 1/r,
then maximum H (A) = log(r).

Theorem 1 illustrates that the entropy function can
distinguish the dispersion of the probability distribution. For
example, a monochrome image contains the least amount of
information. And its intensity probability is only distributed
at one point, which proves that the set (i.e., image) contains
the smallest uncertainty of information. So, the minimum of
entropy is 0. We make the hypothesis that there are 256 gray
levels (r=256) in the image. Besides, the number of pixels in
any gray level is equal, and the gray probability distribution
of image satisfies the uniform distribution. At this time, the
set (ie., the image) contains the largest information un-
certainty, and the maximum of entropy is log(256).

Theorem 2 (see [15]). If f(x) is a differentiable strict concave
function, then f(x) has the generalized subadditivity. When
V x,,%,,0 € R and 0 < 0 < x, < x,, the following inequality is
established:
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floey=0)+ fx +0) < f ) + f(x2), (6)

the variable x in the function f(x) represents the probability in
medical image registration, so x € [0,1],Y x; = 1,i € {1,2};
0<x, —0<x;Nx,<x,+0<1; formula (6) shows that
f(x)) + f(x,) has the maximum value at x, = x, = 1/2 and
minimum value at x, =0, x, = 1. So, f(x;)+ f(x,) can
express the measure of the probability distribution. Theorem 3
is obtained when the two sums of the above strictly concave
functions are generalized to the sum of the r terms.

Theorem 3. If the function f(x) has the strict generalized
subadditivity, x; (i = 1,2 .. .,n) indicates the probability of gray
value (i) in the image, and Y. x; =1. Then uncertainty
measurement M = Y, f (x;) can get the maximum value at
x;=1/n, (x; =x,=x;=---=x,) and minimum value at
x;=1ie{l,2,3...,n}.

Theorem 2 and Theorem 3 illustrate that the strict concave
function can discriminate the probability distribution. When the
histogram of the probability distribution is closer to a uniform
distribution, the measured value of the strict concave function is
the largest; if the distribution is concentrated on an individual
point, the measure of the strict concave function is the smallest.

3.4. Advantage of Logarithmic Fuzzy Entropy Function.
This new function improves the performance by extending
the quantification range of patch. Through mathematical
derivation, Wachinger and Navab used entropy to quantify a
single patch, the upper bound is log(r) [8]. However, log-
arithmic fuzzy entropy function has better symmetry, and it
can increase the upper bound from log(r) to log(r) + A(r),
where r = min (12,2") is the variety degree in patch; I is the
side length of patch; n is the bit depth of image; A(r) is
monotone increasing function of r. In most situation, the
magnitude of [* and 2" is depending on the requirement of
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performance. No matter in which situation, logarithmic
fuzzy entropy function has good performance in quantifying
the uncertainty of the patch. Experiments 5.2 and 5.3 show
that logarithmic fuzzy entropy function brings faster con-
vergence rate than entropy in multimodal registration, and
the convergence rate will increase as r increases.

Logarithmic fuzzy entropy function can bring a more
representative structure descriptor set. First of all, we need
assume that when probability p =1 in logarithmic fuzzy
entropy function, namely, M, (1) = 0 x log 0. This situation
means the patch we calculated is a monochrome patch, so we
assign 0 x log0 := 0. The medical image is stored by two
bytes per pixel and the bit depth is n (1 < 16), so the variety
degree of the patch r = min (/2,2"). When probabilities of
intensity p, = p, =--- = p, = 1/r, the uncertainty value of
patch can reach the upper bound. We make a comparison
among the entropy function (M1), logarithmic fuzzy en-
tropy function (M2), exponential fuzzy entropy function
(M3), and strict concave function (M4) in Table 1.

We compare the rate of two functions tending to infinity:

lim log(r)
r—+co log (1) + (r — Dlog (r/r — 1)

>

(r=2"n=0,1,2,...),

(7)
lim A(r)= lim B,(r)-B;(r)
. r _
= rl;ngm(r - 1)10g<r_—1> =1,
(r=2""n=0,12,...)
(8)

The curve diagram is showed in Figure 2. There are no
much differences between the two function curves when r is
less than 256. But in medical image, r is more than 256. The
A(r) becomes more bigger as variety degree r (i.e., r = 2")
increases; however, that difference value A (+) will converge at
1 as shown in formula (8). The larger upper bound brings the
wider quantification range, for example, in 256 gray-scale
images, the M2 can increase 18% quantification range than
M1. Thus, we can compute more representative structure
descriptor set under logarithmic fuzzy entropy function (M2).

Theoretically, logarithmic fuzzy entropy function M, can
compute more representative structure descriptor set because
of the larger quantification upper bound. But, the upper bound
function B, and B, converge at 2.705 and 0.496 early. That
means before the convergence, M5 and M, can quantify the
uncertainty of the image, but when r approaches the value of
convergence, the upper bound cannot increase as r increases.

4. Experiment Process

Figure 3 shows the process of the experiment, where we use
L1 norm to calculate S. The similarity equation can be ab-
stracted as follows:

S = MAD (A, T (B)). (9)
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TaBLE 1: Upper bound table for 4 strict concave functions.

Function Upper bound B oo

M, (p;) = X, pilog p; B, (r) = log(r) +oo

M, (p;) =2, = [plog p; + (1 - p)log(1 - p))] B, (r) =log(r) + (r — Dlogr/r — 1 +00

M, (p;) =Y, [piexp(l—p;)+ (1 - pexp(p;) — 1] By (r) =exp(r—1/r)+ (r = Dexp(1/r) —r 2.705

M, (p;) =Y, [pi/1+ p;— pil2] By(r)=rlr+1-1/2 0.496

Upper bound value
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FIGURE 2: Upper bound function curve. Blue: B, (r); orange: B, (r); green: B; (r); cyan: B, (r), r is variety degree.

Original

L1 norm similarity

FIGURE 3: This figure shows the process from the original image to registration. We use L1 norm as similarity measure.

The most similarity status of images A and B is found by
using the spatial transformation T'and the “MAD” similarity
is measured by using the L1 norm. Our target is to find the
structure descriptor set D*, D? to replace A and B. The
similarity equation is converted to

$ = MAD(D*, D"™). (10)

4.1. Calculate Descriptor Set. A patch N, is formed by
taking pixel x as a centre and [ as the side length. Taking
Figure 4 as an example, patch Y has 81 pixels and the side
length [ equals 9. We statistic the intensity histogram and
substitute the probability of intensity value into four strict
concave functions.



FIGURE 4: 9 X9 patch Y.

M, (x) =) —xlog(x), x¢ (0,1],

1

M, (x) = Z—[xlog(x) +(1-x)log(1-x)], xe€(0,1],

1

M, (x) = Z[xel_x +(1-x)e* - 1], x € (0,1],

1

win=3[53) xeon

(11)

M, is entropy function, M, is based on logarithmic fuzzy
entropy function, M3 is based on exponential fuzzy entropy
function, and M, is based on normal strictly concave
function. We replace (1) with the above four functions and
get (12).

Dy =M (AIN,), k=1,234 (12)

It is available to calculate the uncertainty value of patch Y
by formula (12). The process from original to descriptor set is
shown in Figure 5.

According to the thought of Wachinger and Navab [8],
an image is decomposed into several patches, and the
respective descriptor values of each patch are calculated by
entropy function. In this article, we want to improve the
quantification range of descriptor values by the logarithmic
fuzzy entropy function and verify the relationship between
the quantification range and the speed of convergence.
Logarithmic fuzzy entropy function and other strict con-
cave functions have already been discussed in chapters
3.2-3.4.

4.2. The Weighting and Patch. If two patches have the same
intensity value histogram but the structure is different, it will
result in the same descriptor value such as in Figure 6. To
distinguish that situation, we quote Gaussian weights and
modified weighting (Figure 7) from the original author’s
article [8]. There is a spatial weighting function
w: N, ; — R. Assigning a weight to each patch location,
the histogram update changes to

Vy € N h [I(y)] «—hJ[I(y)] + w(y). (13)

Gaussian weighting formula is w(y) = G, (y —¢). The
modified Gaussian weighting does not have symmetry
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compared with the former. In the experiment, these two
weights improve the performance of computing de-
scriptor values. It can reflect the local specificity of
each point and, at the same time, keep the structure in-
formation in the original image. The result is shown in
Figure 8.

5. Results and Discussion

5.1. Experimental Result of Structure Descriptor Set. We use
all the descriptor values Di’l to replace the x position.
Structural descriptor sets are shown in Figure 9:

In Figure 9, three different modalities are turned into a
third-type artificial modality, and under this modality, we
find that they retain the structural information of the
original image. The structure descriptor set is computed by
four kinds of measurement function. The first row is the
result under MRI/T1 modality; second row is the result
under MRI/T2 modality; and third row is the result under
MRI/PD modality. Each column is the set of structure de-
scriptors calculated under the corresponding measure
function. These structure descriptor sets are computed by
patch N ;, where [ is 7.

In Figure 10, we alter the side length / of the patch,
where [ equals 3, 7, 11, 15, and 19, to calculate the variation
of the structure descriptor set. It is found that the image
becomes blurred as the [ increases, which has a similar
effect to Gaussian blur. Structurally, the smaller the / is, the
more sufficient the detail will be. However, statistically, the
smaller the [ is, the duplicate values D%, will get more
because the probability distribution of repetition will get
more. The bigger the [ is, the more accurate the value will be
because the phenomenon of repeating the probability
distribution will be greatly reduced. We inspect pixel value
in Figure 10 T1-M1(I=3), there are many duplicate values
in it. On the other hand, considering the influence of the
local noise, a large patch has a strong ability to suppress that
influence.

5.2. Anti-Rotation Experiment of Changing the Size of Patch
(I*<2",r =1?). In Figure 11, we verify the relationship
between the patch size and convergence rate. We selected the
size of patch from 3 * 3 to 19 * 19, and the upper bound will
change as patch size changes. In this experiment, we use
entropy function (M1) and logarithmic fuzzy entropy
function (M2) simultaneously. The dashed and solid curves
show that the rate of converging to extremum increases as
patch size increases. For each color pair (i.e., in the same
patch size), the solid curve is faster than the dashed curve. In
this experiment, we keep one image fixed, and the other one
rotates along the centre from -25 to 25 degrees. At each
angle, the similarity of the two images is measured by M1
and M2. We obtain these data sets from DICOM Library
(https://www.dicomlibrary.com). In this data set, there are
two different MRI modalities. The image size is 512 % 512 and
stored by 13 effective bit depths. There are 47 layers in each
modality, so each curve is an average result of 47 layers in
two different modalities.


https://www.dicomlibrary.com
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Original

Descriptor set

FiGure 5: Illustration of the process of computing structure descriptor set. The original image is divided into many patches, and the centre
and neighborhood are selected in each patch. The PDF is generated by the statistical histogram of the patch. All the grayscale probabilities of
single patch are substituted into the measure function M to obtain uncertainty values, namely, descriptor value. Finally, the descriptor value

is stored in the corresponding location to create descriptor set [8].

E m
(a) (b)

FIGURE 6: Two patches with symmetrical structure will generate duplicate values because they have the same histogram.

(a) (b)

FIGURE 7: (a) Gaussian weight map; (b) modified weight map.

When % < 2", according to Table 1, the upper bound of
M1 and M2 are B, (I?) < B, (I*), where each upper bound has
a monotonically increasing relationship with patch size. This
experiment proves that the M2 function has faster con-
vergence rate than M1 in the small patch. It can satisfy the
requirement of decreasing code running time with the small
patch.

5.3. Anti-Rotation Experiment of Compressing the Effective Bit
Depth (I >2", r =2"). In Figure 12, we verify the per-
formance of M2 function when the intensity bit depth »
decrease from 13 to 7. This time, we select the patch size as
65 * 65, because it can contain richer variety. In such a
large patch size, the upper bound will change as the bit

depth changes. According to Figure 2, the difference of the
upper bound of two functions will increase as the variety
degree increases. That means, the M2 function’s result is
better than the M1 function’s result in a lager bit depth.
There are two different MRI modalities. Each modality has
47 layer images, and each layer is stored in 512 * 512, two
bytes, 13 effective bits (i.e., bit depth n is 13). So, we make
an experiment about decreasing the bit depth n from 13
down to 7. They are equal when compressing the inten-
sities down to 1/64, 1/32, 1/16, 1/8, 1/4, and 1/2 of the
original image.

We consider one pair color as one group experiment,
which contains one dashed curve (M1 function) and one
solid curve(M2 function). The different color means dif-
ferent bit depths. For example, the red pair is the original
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FIGURE 8: Accuracy error histogram obtained using three weighting methods, blue: T1-T2 data set; green: T1-PD data set; yellow: T2-PD
data set, y label is accuracy. (a) M1. (b) M2.

T1-M1

FIGURE 9: Descriptor set calculated by M1, M2, M3, and M4 under multimodal (T1, T2, and PD).

image, the blue pair is using 12 effective bits; the green pairis  using 8 effective bits, and the black pair is using 7 effective
using 11 effective bits; the cyan pair is using 10 effective bits;  bits to express the image. Each curve is the average result of
the magenta pair is using 9 effective bits; the yellow pair is 47 couple, and each couple images contain two different
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Figure 10: The first row computes T1 modality with M1 function, and the second row computes T1 modality with M2 function. Each
column has different patch side length, from left to right /=3, 7, 11, 15, and 19, respectively.

Similarity

FIGURE 11: The similarity curves under different patch sizes, red
curve /=3, blue curve /=7, green curve [ =11, cyan curve [ = 15, and
magenta curve [=19. [ is the side length of the patch. The dashed
curve is M1 function and solid curve is M2 function. x label is

-20  -15

MI1-PatchSize =3 x 3
M2-PatchSize =3 % 3
MI-PatchSize =7 * 7
M2-PatchSize =7 * 7
MI-PatchSize = 11 * 11
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——— M2-PatchSize = 11 * 11
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—— M2-PatchSize = 15 * 15

-~ MIl-PatchSize =19 * 19

—— M2-PatchSize = 19 * 19

rotation degree; y label is similarity value.

modalities. We compute the similarity when rotating one
modality image along the centre of the other modality image

from —30 degree to 30 degree.

Figure 12 shows, as the bit depth decreases (from 13 to
7), the rate of converging to extremum is going to decrease.

Similarity

M1-13 bits depth
M2-13 bits depth
M1-12 bits depth
M2-12 bits depth
MI-11 bits depth
M2-11 bits depth

Degree

- =~ MI-10 bits depth
—— M2-10 bits depth
- == MI1-9 bits depth
—— M2-9 bits depth

T T T T T
5L i
4+~ -
N -
~ - ~o ’,’ -
~ N P -
~ N -
L ~ O R L
=== > N 2 - ==
3 == SN yavas =
=~ NN s -
L N - _
~~_ BN \\ Y -
- N\ v 7 -
- — RS N A 7 7z == R
- - SRR . - _—-
~—_ 07 - = s
= RN ;.
o 117, 2=
NN W=
/

______________ BN Z ==
1k ==~ Ni-— i
\wf
¥ a
A 4
/

L L I L L
-30 -20 -10 0 10 20 30

M1-8 bits depth
M2-8 bits depth
- -- MI1-7 bits depth
—— M2-7 bits depth

F1GURE 12: The similarity curves under the condition of different bit
depths. The dashed curve is M1 function and solid curve is M2
function; x label is rotation degree; y label is similarity value.

No matter what bit depth is, the M2 function can bring a
faster converging rate than the M1 function when quanti-
tying the uncertainty of the patch. There are some differences
in minimum part when comparing Figure 12 with Figure 11.
The minimum increases as the bit depth decreases, which
causes the standard deviation of M2 curve to be larger than
M1 curve, especially when the bit depth is large. The red pair
and black pair curves prove that M2 function can quantify
the value of uncertainty in a wider range, which can bring a
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more representative structure descriptor set. This structure
descriptor set is a key point in fast convergence.

5.4. Modality-Group Similarity Experiment on Rigid
Deformation. The purpose of this experiment is to verify
the sensitivity of the algorithm. As slice spacing de-
creases, it is hard to distinguish adjacent slices, which
results in the deviation of many multimodal similarity
algorithms. To verify our method’s validation, we per-
formed modality-group similarity experiment with 4
different methods: (1) the proposed method in [8] using
entropy (M1 function) images, (2) the method using
Laplacian method in manifold learning [14], (3) multi-
modal registration with mutual information (MI) [4],
and (4) traditional method with mean absolute differ-
ences (MAD). The above result of the experiment is il-
lustrated on Tables 2-4.

Finally, we evaluate the performance relationship
between these four functions under the condition of side
length [=15, Parzen-window estimation, and modified
weighting. This data set is from http://www.bic.mni.
mcgill.ca/brainweb/. It includes three modalities: T1,
T2, and PD. The brain MR image we selected on BrainWeb
contains 3% noise and 20% intensity nonuniformity.
There are 177 images in each of the three modalities, and
we search an image in one of the modalities and then
traverse all the images in the remaining modality. We
make a comparison by group experiments to reflect the
superiority of M1, M2, M3, and M4. All data sets provide
standard alignment. Each data set makes 177 times reg-
istrations under each function. The experiment process is
shown in Figure 13.

The blue point moves from left to right, and each
action we calculate 177x values (i.e. similarity values).
Finding the minimum value to judge that if the extreme
value position (ij:f“h) is corresponding to the given
original image position (P;eeifrence) or not. The ground
truth of each data set is available on downloading the data
set. It can be our reference standard state to compare with
our experiment results. And we divide the results of
comparison into 3 levels within the permissible margin of
the error. If the position distance fulfils
psearch _ preference — 41 it js called the right deflection; if

Xext Xext
Pi‘zi‘fd‘ —P;eifrence = -1, it is called the left deflection; if
pigarch — preference — 0 jt is called the zero deflection (best
match) in Figure 14. That means, the extreme value lo-
cation should be the same or close as another modal
location. Take the PD modality no. 3 layer as an example,
we find the most similar image with PD modal from the T1
modal. If the result belongs to any one of no. 2, 3, and 4
layers, we consider these results are in the reasonable error
range. And if 2-3=-1, it deflects one layer toward the
superior; 3 -3 =0, it does not deflect to any layers; the last
3-2=1, it deflects one layer toward the inferior. If
|Pff:lr°h - P;Ceeif'encﬂ > 1, it means the registration is failed.

So, the results are shown in Tables 2-4. (R-right; L-left;
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D-deflection; N-number; P-probability; Z-zero. For ex-
ample, LDN is an abbreviation for “left deflection num-
ber” SUM =RDN +LDN +ZDN). We make 177 times
experiments by each method.

According to the result in Tables 2-4, ZDP has more
strict restriction than SUM probability. For M2, it can
reach 92.66% in ZDP part, whereas M1 can only reach
84.16%. For MI, it has a slight trend in deflection, which
makes LDN and RDN reaching 15 and 12, respectively.
For manifold learning, it has a similar result with MI in
LDN and RDN. For MAD, it is the worst method in
modality-group experiments. The ZNP and SUM prob-
ability in MAD only reach 2.26% and 24.86%,
respectively.

In contrast to the M2 method, it can be seen that the
method has less number in RDN and LDN, which means has
stronger ability to distinguish the adjacent slices. The result
proves that the MAD method is unsuitable to compute the
L2 norm of original multimodal image pairs, especially in
M1-M2 group.

5.5. Modality-Group Similarity Experiment on Nonrigid
Deformation. On the Brainweb databases, we deform one
image in each pair with a deformation d_g regarded as the
ground truth. Then, we estimate deformation d_c by reg-
istering the deformed image and another remained image
with different modality one. We calculate the average Eu-
clidean difference of the deformation fields 7=1/
QY calld, (x) - dg (x)|l for computing the residual error of
the registration.

In Table 5, the configuration for M2 method for de-
formable registration is: 25 * 25 patches, 16 bins, modified
Gaussion weighting, local normalization, Parzen-window
estimation and logarithmic fuzzy entropy core function. It
can be seen that M2 has the lowest errors in 3 group reg-
istration. The results for the M1 (entropy) images are
comparable, while the MAD does not perform well.

To test the effect of our method in nonrigid defor-
mation, we used abdominal image of MRI-T1 and MRI-T2.
The size of image pair is 384 * 384 and a pixel is stored as
12 bits. The result is shown in Figure 15. In each method, we
use a common slice (T1 modality) as fixed image, and the
other corresponding slice is deformed by 200 manually
warping operations such as TPS or affine. In these many
fixed deformations, we use 5 methods (M1, M2, MI,
manifold ling, and MAD) to find the most similar deformed
image of their own. Their most similar result is shown in
the Registered (T2) row of Figure 15. We can see that the
M2 method has better performance on the image fusion
from checkboard.

5.6. Translation Experiment. For the next translation ex-
periment, we compared the performance of M2 (logarithmic
tuzzy entropy function) with M1 (entropy function), MI
(mutual information), and MAD (L1 norm). The results of
the translational experiments under four methods can be
seen in Figure 16.


http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
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TaBLE 2: In the T1-T2 data set, the accuracy is within 5 methods.

Method RDN LDN ZDN SUM ZDP (%) SUM probability (%)
M1 7 15 149 171 84.18 96.61
M2 2 8 164 174 92.66 98.31
MI 15 12 121 148 68.36 83.26
Manifold learning 10 11 139 160 79.66 90.40
MAD 22 18 4 44 2.26 24.86
TaBLE 3: In the T1-PD data set, the accuracy is within 5 methods.
Method RDN LDN ZDN SUM ZDP (%) SUM probability (%)
M1 9 21 140 170 79.10 96.05
M2 3 6 166 175 93.79 98.87
MI 29 24 110 163 62.15 92.09
Manifold learning 21 18 125 164 70.62 92.66
MAD 40 72 18 130 10.17 73.45
TaBLE 4: In the T2-PD data set, the accuracy is within 5 methods.
Method RDN LDN ZDN SUM ZDP (%) SUM probability (%)
M1 13 20 136 169 76.84 95.48
M2 3 3 169 175 95.48 98.87
MI 35 29 99 163 55.93 92.09
Manifold learning 29 29 108 166 61.02 93.78
MAD 42 71 15 128 8.47 72.32

No.3 layer

No.2 layer

No.1 layer

No.1 layer No.2 layer No.3 layer

No.95 layer

No.96 layer No.97 layer

FIGURE 13: Experiment on accuracy verification.

As two images are translated along the x and y axes in
[—40, 40] degrees, the similarity values are calculated by four
methods for each degree. For M1 M2 and MAD, as the result
is closer to 0, we obtained a stronger correlation between the
two images. For MI, as the result is closer to 1, we obtained
a stronger correlation between the two images. It can be
seen from the smoothness of a curve that M1 M2 and MI
are superior to MAD at stability. MI shows a very sharp
peak when the translation difference is in the interval [-20,

20], and the system is relatively sensitive. But in [-40, —20]
U [20, 40], the method MI is not in our expectations be-
cause the similarity between the two images cannot dis-
tinguish clearly.

5.7. Running Time. Finally, we test the average time of 100
experiments during the normal registration. We select
Parzen-windows estimation, modified weighting, and
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PD (reference) T1 (searched)

PD (reference) T2 (searhed) Best match (zero deflection)

FIGURE 14: Optimal registration status under each data set.
TABLE 5: Registration errors 7 in mm for various configurations for M2 method.

Sim T1-T2 T1-PD T2-PD
M1 0.52 0.61 0.58
M2 0.39 0.43 0.38
MI 0.68 0.76 0.70
Manifold learning 0.71 0.75 0.69
MAD 0.99 2.01 1.25

11 x 11 patch size at the experiment. Running time table is
shown in Table 6:

We use MatlabR2016(b) to run code in a normal con-
figuration environment (the process is from the descriptor set
to the L1 norm registration). From Table 6, we can see the time
of M1-M4 are shorter than MAD, which proves that using
structure descriptor sets to calculate the L1 norm similarity is
more efficient than using the original image directly. Besides,
the M2 function has the shortest running time.

6. Discussion

Our proposed logarithmic fuzzy entropy function has a
certain contribution on “transform multimodal into third
modality.” In this process, the ability of quantified patch is
especially important. In Figure 2, we can see that the upper
bound of our function is greater than the original function,
especially in the large intensity level such as medical

images, which can bring us a wide range for quantification.
During the rigid and nonrigid registration experiments,
the proposed method has good performance in measuring
the similarity with an outstanding sensitivity. Regarding
3D, it is inevitable that the computational cost will increase
as the dimension increases from 2D to 3D; however, it is
not what our method worried about because it is not a
complicate job for estimating the PDF (probability density
function) of 3D patches. However, in this article, our
method is to express the richness of the 2D patch with
quantifying the uncertainty by a 1D number. From that
view, our method will lose the location information, so we
make it up by modified Gaussion weighting in chapter 4.2.
If we apply this method on 3D situation, the quantifying
process will plunge from 3D to 1D. Besides, there is no
suitable 3D weighing that can offset the location infor-
mation. So, this method does not have robustness in 3D
multimodal image registration.
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Fixed (T1) Registered (T2) Checkboard
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FIGURE 15: The experiment about one pairwise multimodal (T1-T2) image registration based on abdominal images.
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FIGURE 16: Plot of similarity measures for translation in the x and y directions. (a) M1, T1-T2. (b) M1, T1-PD. (c) M1, T2-PD. (d) M2, T1-T2.
(e) M2, T1-PD. (f) M2, T2-PD. (g) MI, T1-T2. (h) MI, T1-PD. (i) ML, T2-PD. (j) MAD, T1-T2 (k) MAD, T1-PD. (I) MAD, T2-PD.

TaBLE 6: Running time table.

Method Use normal registration framework’s time(s)
M1 0.0048
M2 0.0039
MI 0.0070
Manifold learning 0.0096
MAD 0.0672

7. Conclusion

This article focuses on using the structure descriptor sets
(third-type artificial modality) to perform the L1 norm in
multimodal registration. We propose logarithmic fuzzy
entropy function in the computing structure descriptor set.
Through the mathematical derivation and experimental
result, this function is more suitable than entropy in
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multimodal registration. We also tried out other two strict
concave functions such as M3 and M4, but they performed
worse because of their upper bound curve.

When we quantify the value of a patch by its intensity
distribution, the advantages of logarithmic fuzzy entropy
function are as follows:

(1) Mathematically, it can bring a larger quantification
range.

(2) Experimentally, it can bring a faster convergence rate
in similarity curve.

According to the experiments in chapter 5.4 to 5.6, our
proposed method is an effective evaluating approach in
similarity of multimodal medical images. It has the following
advantages:

(1) Inferior computational complexity, which is the
process from core function to L2 norm.

(2) Universal adaptability, which can work on any
modality pair.

(3) Higher accuracy, which has strong ability to dis-
tinguish similar slices.

This algorithm has an obvious effect when the medical
images are stored by high effective bit depth. Because the
upper bound of quantification range is monotone, the
function of variety degree r increases. To avoid duplicated
values of different patches which have the same intensity
distribution, the patch size will be as large as possible.
However, the patch size influences not only the converging
rate of similarity value but also the running time; a large
patch can increase the running time. Ideally, we want /> and
2" to be equal. But in practice, patch size depends on many
factors such as, original image size, effective bit depth, noise,
and requirement of running time. Whatever size it is, the
logarithmic fuzzy entropy function is a good choice in the
“transfer of multimodal into third-type modality” medical
image registration.
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Visual effects of medical image have a great impact on clinical assistant diagnosis. At present, medical image fusion has become a
powerful means of clinical application. The traditional medical image fusion methods have the problem of poor fusion results due
to the loss of detailed feature information during fusion. To deal with it, this paper proposes a new multimodal medical image
fusion method based on the imaging characteristics of medical images. In the proposed method, the non-subsampled shearlet
transform (NSST) decomposition is first performed on the source images to obtain high-frequency and low-frequency coef-
ficients. The high-frequency coefficients are fused by a parameter-adaptive pulse-coupled neural network (PAPCNN) model. The
method is based on parameter adaptive and optimized connection strength 8 adopted to promote the performance. The low-
frequency coeflicients are merged by the convolutional sparse representation (CSR) model. The experimental results show that the
proposed method solves the problems of difficult parameter setting and poor detail preservation of sparse representation during
image fusion in traditional PCNN algorithms, and it has significant advantages in visual effect and objective indices compared

with the existing mainstream fusion algorithms.

1. Introduction

The diversity of image capture mechanisms allows different
patterns of medical images to reflect different organ and tissue
information categories. For example, computed tomography
(CT) is very sensitive to blood vessels and bones and thus its
imaging is more clearly. Magnetic resonance imaging (MRI)
images provide richer soft-tissue information but lack
boundary information and blur the bone imaging [1].
Emission computed tomography (ECT), which includes
positron emission tomography (PET) and single-photon
emission computed tomography (SPECT), captures projected
data and reconstructs tomography images with high sensi-
tivity but low resolution. The purpose of pixel-level medical
image fusion technology is to obtain more useful and accurate
medical information for the same target by combining the

complementary information in multimodal medical images
through composite image.

In recent years, medical image fusion algorithms have
been greatly developed. However, most medical image fu-
sion methods adopt the framework of multiscale transform
(MST) to achieve better results. The image transformation
method and the fusion strategy of high-frequency coeffi-
cients and low-frequency coefficients are the two key issues
of MST-based fusion methods. A large number of studies
have shown that the performance of MST-based fusion
methods can be significantly improved by selecting ap-
propriate image transform methods and designing effective
fusion strategies. Singh et al. [2] proposed to add the pulse-
coupled neural network (PCNN) to the fusion rule under the
NSST framework to effectively extract the gradient features
and preserve the edge and detail information of the source
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images, but many parameter settings in PCNN are also a
major challenge. Liu et al. [3] raised a convolutional sparse
representation algorithm, which properly solved the two
problems of sparse representation arising in image fusion,
i.e., limited ability to preserve details and high sensitivity to
registration errors [4, 5] and accomplished the image fusion
by implementing a sparse representation of the entire image.
Chen et al. [6] proposed an image segmentation method
based on a simplified PCNN model (SPCNN). This model
can automatically set the size of PCNN-free parameters to
achieve higher segmentation accuracy. Ming et al. [7] im-
proved the SPCNN model and obtained an improved pa-
rameter-adaptive PCNN model (PAPCNN) and applied it to
image fusion. Experiments showed that the PAPCNN model
has a faster convergence rate as well as a preferable effect
when applied to the image fusion experiment.

Aiming at the problems existing in the current PCNN
and NSST methods, an NSST-PAPCNN-CSR algorithm
combining NSST, CSR, and PAPCNN models was proposed.
The innovations of this paper are outlined as follows:

(1) We adopt the parameter-adaptive PCNN (PAPCNN)
to fuse high-frequency coefficients with all the PCNN
parameters adaptively calculated based on the input
bands, which can overcome the difficulty of setting
free parameters in the conventional PCNN models.
Besides, we propose an improved implicit parameter /3
of PAPCNN, and the synchronous ignition charac-
teristics in the PAPCNN model were coordinated to
achieve a better fusion effect.

(2) We introduce the convolutional sparse representa-
tion (CSR) model into the fusion of low-frequency
coefficients. The CSR model overcomes the two key
issues of sparse representation arising in image fu-
sion, i.e., limited ability to preserve details and high
sensitivity to registration errors. In addition, the CSR
is expected to solve the sparseness problem of the
low-frequency coeflicients in the NSST domain.

The rest of this paper is organized as follows. In Section
2, materials and methods used in the paper are briefly in-
troduced. Section 3 gives the experiments and analysis.
Finally, this paper is concluded in Section 4.

2. Materials and Methods
2.1. Related Materials

2.1.1. Non-Subsampled Shearlet Transform (NSST). The
NSST decomposes the source image through the non-sub-
sampled pyramid filter (NSPF) and the shift-invariant shear
filter bank (SFB). NSPF can guarantee the shift-invariance
and suppress the pseudo-Gibbs phenomenon, and SFB can
achieve the directional localization. Figure 1 is a schematic
diagram of the NSST decomposition. NSST is recognized as a
very reliable image fusion method with good local time-
domain features, multidirectionality, and translation in-
variance. It can effectively extract the edge and detail in-
formation in the source image [2, 8]. On account of this,
NSST was selected as the MST method of image fusion.
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FIGURE 1: Schematic diagram of NSST decomposition.

2.1.2. Parameter-Adaptive Pulse-Coupled Neural Network
(PAPCNN) and Improvement of the Parameter f3. The key
challenge in the traditional PCNN model is how to set free
parameters such as connection strength, various ampli-
tudes, and attenuation coefficients. To avoid difficulties in
manually setting free parameters, in this paper, a param-
eter-adaptive PCNN (PAPCNN) model [7] was proposed
to fuse the high-frequency coefficients obtained by NSST

decomposition.
The PAPCNN model is described as follows:
F,‘j[n] :Sij) (1)
Lij [T’l] = VL%Wijlekl[n— 1], (2)

Uyjlnl = e U [n—1] + F;;[n)(1 + BL; [n]),

(3)

v, :1 L, ifUj; [n] >E;;[n-1], @
0, otherwise,

E; [n] = e_“eEij [n-1]+ VY [n]. (5)

In the PAPCNN model mentioned above, Fj; [n] and
L;j[n] represent the input and connection input of the
neurons at the position of the iteration n, respectively.
Figure 2 shows the structure of the PAPCNN model.

There are five parameters in the PAPCNN model: the
attenuation coefficient a, of the dynamic threshold E, the
connection strength f3, the amplitude V; of the connected
input, the attenuation coefficient &, of the internal activity U,
and the amplitude V', of the dynamic threshold E. Also, it can
be observed from (1) to (5) that 3 or V only serves as the
weight of W ;Y g [ — 1], so they can be treated as a whole
BV in the PAPCNN model. Supposing that A = SV rep-
resents the weighted connection strength, we analyze the
value of parameter V; according to the literature [6] and
assume V; = 1 without influence on the final experimental
results; therefore, there are four parameters: a, a,, Vg, and A.
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F1GURE 2: Structure of the PAPCNN model.

In this paper, we have adjusted the parameter S, ie., the
connection strength between neurons. Because the value of V'
is fixed, the larger the value of f3 is, the greater the neuron is
affected by its neighboring neurons, and the more intense the
fluctuation of its internal activity U;; [n]. Generally, the larger
value of 3 tends to cause low-light neurons to ignite; conversely,
the smaller value of 3 may reduce the ability to capture the
neighboring neurons. To coordinate the synchronous ignition
characteristics of the PAPCNN model, an optimization method
is introduced in this paper to search the value of f [9]:

min ilc Z (I, - mc(n))z,

B c=1 xeX,

st. X, ={yIU,m<E,(n-D}nX, (6)

X _X 0<p<1
Z_Xl) = = L

where A, and A, are the weight coefficients, set to 1 and X
indicates the set of neighboring neurons and is generally
calculated by

X ={ij|Li;(n)>0}n{ij| Y;;(n) = 0}, (7)

where m, (n) and m, (n) indicate, respectively, the mean
value corresponding to the unfired and ignition areas, as
shown in the following equation:

2 jea Fij
bl
2 jea 1

where Q, ={ij|Y;;(n—1)=0} and Q, = {ij|Y,;(n—1) = 0}.
It can be seen from equation (6) that 5, as an implicit

m.(n) = c=12, (8)

parameter, changes the optimal value of the objective
function. It essentially regulates the internal ignition activity
U of the neighboring neurons, and later, by comparison with
the threshold E, the neighboring neurons divided into two
categories: X, and X,. To this end, its corresponding gray
value information and the dispersion degree of mean value
in equation (8) were considered to determine the optimal
connection coefficient . To facilitate the calculation, the
search method of increasing the step size A was adopted.

2.1.3.  Convolutional ~ Sparse  Representation  (CSR).
Convolutional sparse representation is a convolutional form
of sparse representation, that is, the convolutional sum of the
filter dictionary and the characteristic response is used in-
stead of the product of the redundancy dictionary and the
sparse coeflicient, so that the image is sparsely coded in the
unit of “entirety.” The convolutional sparse representation
model can be expressed as

2
Yd,©x,—s| +A) x|, (9)
m 2 m

where {d,} represents the M-dimensional convolution
dictionary; ® represents the symbol of the convolution
operation; {x,,} represents the characteristic response; s
represents the source image; the alternating direction
method of multipliers (ADMMs) is a dual convex optimi-
zation algorithm, which can solve the convex programming
problem with separable structure by solving alternately
several subproblems. In [10], considering that the ADMM
algorithm could desirably solve the problem of Basis Pursuit
De-Noising (BPDN), a Fourier domain ADMM algorithm
was proposed to solve the solving problem of the

1
arg minxmi




convolutional sparse model. Among them, dictionary
learning is defined as the optimization problem of

1 b
argmin Y dn®%y = s A %]l
{dubfra}  “llm-1 2 oml (10)
st ldnll, = 1.

The first application of the convolutional sparse repre-
sentation to image fusion is described in the literature [5],
which regards CSR as an alternative form of SR, to achieve
sparse representation of the entire image, rather than partial
image patches. The convolutional sparse representation al-
gorithm overcomes the shortcomings of traditional sparse
representation with limited ability to preserve details and
high sensitivity to registration errors. We believe that it is
also effective for the fusion of low-frequency coefficients. In
particular, the application of the CSR model is very effective
for the fusion of the low-frequency coefficients obtained by
MST. The low-frequency coeflicients obtained after the
NSST decomposition represent the approximate description
of the image, and there is a large number with the ap-
proximation of 0, which can sparsely represent the low-
frequency information of the image. Based on the above
considerations, the CSR model was introduced into the
fusion of MST low-frequency coefficients.

2.2. Implementation of NSST-PAPCNN-CSR. Figure 3 shows
the specific steps of image fusion. The preregistered mul-
timodal source images were fused, and the detailed fusion
method includes four steps: NSST decomposition, fusion of
high-frequency coefficients, fusion of low-frequency coef-
ficients, and NSST reconstruction.

Step 1. NSST decomposition.

The L-level NSST was used to decompose the source
images A and B to obtain their coefficients {H{;k,L A}
and {H%k,LB}, respectively, where Hf&k is a high-fre-
quency coefficient of image A in the decomposition
order [ and the decomposition direction k and L is the
low-frequency coefficient of image A. For image B, H5¢
and Ly had the same meaning.

Step 2. Fusion of high-frequency coeflicients.

The PAPCNN model proposed in Section 2.1.2 was
applied to the fusion of high-frequency coeflicients
[11]. Based on the discussion in Section 2.1.2, the
absolute value graph of high-frequency coeflicients was
taken as the network input, namely, the feed input was
Fj; [n] = |Hi’k|, S € {A, B}. The activity level of high-
frequency coefficients was measured by the total
emission time throughout the iteration. According to
the PAPCNN model described by Formulas (1)-(5), the
trigger time was accumulated by adding the following
steps at the end of each iteration:

Tylnl = Tj;ln-1]+Y;; ). (11)
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The excitation time of each neuron was T; 7 [#] and N is
the total number of iterations, corresponding to high-
frequency coefticients H f;‘k and H5¥. Their PAPCNN time
could be calculated and expressed as Tl;fi i [n] and Tlé’fi i [n].
The fused coefficient was obtained in the following way:

HY G, ),

HE @, j), otherwise.

if T [N > T3, [N],

HY (i, j) = (12)

The above formula shows that the coefficient with the
larger number of ignitions was the final high-frequency
fusion coeflicient. The optimal value of the object
function was acquired by adjusting the size of the
implicit parameter f3, to obtain the optimal high-fre-
quency fusion coefficient.

Step 3. Fusion of low-frequency coefficients.

The fusion strategy of low-frequency coeflicients also
has a great influence on the final fusion quality. The
convolutional sparse representation method was used
to fuse low-frequency coeflicients [12]. Suppose there
were low-frequency coeflicients after the decomposi-
tion of k source images and they were set L,
k € {1,...,K} and suppose a set of dictionary filters d,,,,
m € {1, ..., M}. The specific implementation steps of the
low-frequency coefficients fusion based on CSR are
shown in Figure 3.

Step 4. NSST reconstruction.

Finally, the inverse NSST reconstruction was performed
on the fusion band {H IF’k,LF} to obtain the fused image F.

3. Experiments and Analysis
3.1. Experimental Settings

3.1.1. Source Images. To verify the effectiveness of the pro-
posed algorithm, 70 pairs of source pictures were used in the
experiment. All of these source images are collected from the
database of the Whole Brain Atlas of Harvard Medical School
[13] and the Cancer Imaging Archive (TCIA) [14]. 50 pairs of
source images from the database of Whole Brain Atlas include
10 pairs of CT and MR images, 10 pairs of T1-weighted (MR-
T1) and T2-weighted (MR-T2) images, 15 pairs of MR and
PET images, and 15 pairs of MR and SPECT images. 20 pairs
of source images from the database of TCIA include 10 pairs
of CT and MR images and 10 pairs of T1-weighted (MR-T1)
and T2-weighted (MR-T2) images. All the source images have
the same spatial resolution of 256 x 256 pixels. The source
images in each pair have been accurately registered.

3.1.2. Objective Evaluation Metrics. The evaluation of image
fusion quality is divided into subjective visual evaluation and
objective index evaluation. The objective evaluation metrics
is to select relevant indices to measure the effect of human
visual system on image quality perception. To quantitatively
evaluate the performance of different methods, six accepted
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Figure 4: CT and MR medical image fusion results. (a) CT original image. (b) MR original image. (¢) NSST-PAPCNN. (d) CSR. (e) MST-SR.

(f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

objective fusion evaluation indices were selected in the ex-
periment, i.e., entropy (EN) [15], edge information retention
(QAP/F) [16], mutual information (MI), average gradient (AG),
space frequency (SF), and standard deviation (SD) [17]. En-
tropy characterizes the amount of information available in the
source image and the fused image; edge information retention
characterizes the transfer amount of edge detail information in
the source images injected into the fused image; mutual in-
formation is used to measure the information of the fused

image contained in the used image; average gradient can be
used to represent the sharpness of the image, and the larger the
value, the clearer the image; space frequency reflects the overall
activity of the image in the space domain, and its size is
proportional to the image fusion effect; standard deviation
reflects the dispersion degree of the pixel value and mean value
of the image, and the greater the deviation, the better the quality
of the image. In general, for all the above six metrics, a larger
score indicates a better performance.
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FiGure 5: CT and MR medical image fusion results. (a) CT original image. (b) MR original image. (c¢) NSST-PAPCNN. (d) CSR. (e) MST-SR.

(f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

(& (h)

FIGURE 6: MR-T1 and MR-T2 medical image fusion results. (a) MR-T1 original image. (b) MR-T2 original image. (c) NSST-PAPCNN.
(d) CSR. (e) MST-SR. (f) NSCT-SR-PCNN. (g) SR-PCNN, (h) Proposed.

3.1.3. Methods for Comparison. The proposed fusion method
was compared with the existing five representative methods:
the multimodal image fusion based on parameter-adaptive
pulse-coupled neural network (NSST-PAPCNN) [7], the
multimodal image fusion based on convolutional sparse
representation (CSR) [5], the multimodal image fusion based

on multiscale transform and sparse representation (MST-SR)
[18], the multimodal image fusion based on sparse repre-
sentation and pulse-coupled neural network (SR-PCNN) [19],
and the multimodal image fusion based on non-subsampled
contourlet transform and sparse representation and pulse-
coupled neural network (NSCT-SR-PCNN) [10].
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FiGure 7: MR-T1 and MR-T2 medical image fusion results. (a) MR-T1 original image. (b) MR-T2 original image. (c) NSST-PAPCNN.
(d) CSR. (e) MST-SR. (f) NSCT-SR-PCNN. (g) SR-PCNN, (h) Proposed.

()

FiGUure 8: MR and PET medical image fusion results. (a) MR original image. (b) PET original image. (c) NSST-PAPCNN. (d) CSR. (e) MST-

SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

3.1.4. Clinical Significance. The four types of medical image
fusion have different clinical application value. For ex-
ample, the fusion of CT and MR images can clearly display
the location image of lesions and significantly reduce the
surgical risk of visualized craniocerebral operation and the
side effect of radiotherapy for craniocerebral lesions; the

fusion of MR and SPECT images can determine epilepsy
lesions in the neocortex of the brain based on local cerebral
blood flow changes. Therefore, medical image fusion can
combine the advantages of various imaging techniques and
is of great significance in the diagnosis and treatment of
diseases.
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FIGURE 9: MR and PET medical image fusion results. (a) MR original image. (b) PET original image. (c) NSST-PAPCNN. (d) CSR. (e) MST-

SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

Figure 10: MR and SPECT medical image fusion results. (a) MR original image. (b) SPECT original image. (c) NSST-PAPCNN. (d) CSR.

(e) MST-SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

3.2. Comparison with Other Image Fusion Methods. In this
section, the proposed method (NSST-PAPCNN-CSR) is
compared with other approaches on visual quality and objective
assessment.

3.2.1. Source Images from the Whole Brain Atlas of Harvard
Medical School. The whole brain Atlas of Harvard Medical
School is created by Keith and Johnson from Harvard

Medical School. It includes brain samples of normal brain,
cerebrovascular disease, brain tumor, degenerative disease,
and other brain diseases. The same slice of the same brain is
equipped with the registered CT, MR or MR-T1, MR-T2 or
PET, and SPECT images. Each pair of source images used in
this section are obtained by different imaging methods for
the same slice (slice thickness is generally 3 mm or 5mm) in
the same brain at the same angle.
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Figure 11: MR and SPECT medical image fusion results. (a) MR original image. (b) SPECT original image. (c) NSST-PAPCNN. (d) CSR.

(e) MST-SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

In this experiment, 50 pairs of brain source images in
different states were selected for fusion, including 10 pairs of
CT/MR images, 10 pairs of MR-T1/MR-T2 images, 15 pairs
of MR/PET images, and 15 pairs of MR-SPECT images. We
show the fusion results of some of the source images. The
fused images are shown in Figures 4-11, and their objective
quality evaluation indicators are listed in Table 1.

When the source images come from the whole brain Atlas of
Harvard Medical School, the proposed method performs well
better than other five contrast methods on both energy pres-
ervation, detail extraction, and color preservation, as shown in
Figures 4-11. Table 1 lists the objective assessment of different
fusion methods on four categories of medical image fusion
problems. The average score of each method over all the testing
images in each fusion problem is reported. For each index, its
maximum value is denoted in bold and italics, and the second
biggest value is underlined. In this paper, the RMSE (root-mean-
square error) of each index mean of the algorithm is calculated to
verify the validity of the data of each index mean of the proposed
algorithm. It can be seen from Table 1 that when the source
image comes from the whole brain Atlas of Harvard Medical
School, the RMSE of each index of the proposed algorithm does
not fluctuate more than 1, which has strong data validity. It is
known from the objective indices listed in Table 1 that the
proposed algorithm had better performance in the MI and SD
indices than the other five contrast algorithms. Among them, MI
was 8.6% higher and SD 17.5% higher than the average of the
five contrast algorithms. NSST-PAPCNN-CSR is not always the
best one among the five contrast algorithms in each individual
evaluation indicator, but it never ranked less than the top two.

Opverall, for the various source images from the whole
brain Atlas of Harvard Medical School, the NSST-PAPCNN-
CSR algorithm not only achieved better fusion performance

visually in edge sharpness, change intensity, and contrast but
also performed excellently in objective fusion indicators.

3.2.2. Source Images from the Cancer Imaging Archive
(TCIA). The Cancer Imaging Archive (TCIA) is an open-
access database of medical images for cancer research. It is
usually composed of common diseases (such as lung cancer
and brain cancer). The image morphology includes CT, MR,
and so on. It also provides image related supporting data,
such as the number and date of brain slices. Each pair of
source images used in this section are obtained by different
imaging methods for the same slice in the same brain at the
same angle.

In this experiment, because TCIA has few suitable PET
and SPECT images to do fusion experiments, 10 pairs of CT/
MR and 10 pairs of MR-T1/MR-T2 brain source images in
different states were selected for fusion. We show the fusion
results of some of the source images. The fused images are
shown in Figures 12-15, and their objective quality evalu-
ation indicators are listed in Table 1.

When the source images come from the Cancer Im-
aging Archive (TCIA), the proposed method performs
well better than other five contrast methods on both
energy preservation and detail extraction and color
preservation, as shown in Figures 12-15. The objective
assessments of different fusion methods on two categories
of medical image fusion problems are listed in Table 1. The
average score of each method over all the testing images in
each fusion problem is reported. In this paper, the RMSE
(root-mean-square error) of each index mean of the al-
gorithm is calculated to verify the validity of the data of
each index mean of the proposed algorithm. It can be seen
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TaBLE 1: Objective assessment of different methods on medical image fusion.

. NSST- NSCT-SR- RMSE
The database Images Metrics PAPCNN CSR MST-SR PCNN SR-PCNN  Proposed (proposed)
EN 3.1249 (1) 2.9919 2.8641 3.0749 27759  3.0767 (2) 0.0262
QABIF 0.4587 0.4427 0.4325  0.4801 (2) 0.4408  0.4839 (1) 0.0304
MI 0.8093 0.8079 0.7779  0.8333 (2)  0.7396  0.8599 (1) 0.0156
CT/MR SF 27.8907 28'(‘;;79 27.6372 27.9712 27.4416 29'(31?26 0.6256
AG 6.9390 71364 (2) 7.1117 6.9873 6.5669  7.1671 (1) 0.0392
SD 110.4631 ”0('26)7 6 1097036 1094976  108.0036 111('{))203 0.3939
EN 3.0751 3.0954 31193 31564 (2) 29382  3.2436 (1) 0.0593
QABIF 0.4223 0.4428 0'?13)45 0.4327 0.4241  0.4926 (2) 0.0587
Mrry M 1.0879 1.0932 11119 1.1247 (2) 1.0830  1.1675 (1) 0.1132
MR-T2 SF 26.8878 27'3;43 27.4827 27.3243 22.6816  27.6630 (2) 0.7533
AG 44525  4.9000 (2)  4.8198 4.7360 3.1408  4.9541 (1) 0.3882
The Whole Brain Atlas SD 109.2559  109.3714 109.2907  109.0063 ”0('21)7 40 1”(';1)005 0.2773
Of Harvard Medical 39732
School EN 3.2575 3.1860 ‘ 2) 3.1620 31728 33962 (1) 0.3524
QABIF 0.5213 0.5783  0.6148 (2)  0.5216 0.6125  0.6621 (1) 0.2436
MI 1.6716 (2) 1.6604 1.6708 1.5385 1.6688  1.7078 (1) 0.3849
MR/PET  op 27.0508 29.2171 31'3;84 28.1990 29.5717  30.0488 (2) 0.0968
AG 5.1704 6.3783  6.8126(2)  5.8611 6.5209  7.8436 (1) 0.7054
SD 112.5116 112('5)7 B 118041 1102727 1119179 “4('17)089 0.8578
EN 3.5580 3.5357 3.8857 (1)  3.6305 3.4818  3.6897 (2) 0.5361
QABF 0.4561 0.5465  0.7211(2)  0.5564 0.5521  0.7426 (1) 0.0389
MI 1.3484 1.3491 1.3511  1.3663 (2) 1.3658  1.4261 (1) 0.4157
MR/ 27.7746
SPECT SF 23.9815 25.2731 O 25.1314 24.6361  25.4938 (2) 0.3981
AG 4.1747 4.7093 47542 4.8058 (2)  4.5293  4.9342 (1) 0.6432
SD 109('f)246 108.6124 1094126  109.3390  108.6478 109('25)151 0.8745
EN 2.3873 25588 (1)  2.4780 2.5250 24138 25412 (2) 0.0348
QABIF 0.2823 0.3242 0‘?;1)00 0.3022 0.3083  0.3461 (1) 0.0452
0.5359
MI 0.4202 0.4998 2) 0.5328 0.5302  0.5680 (1) 0.0799
CI/MR 27.1924
SF 23.5399 '(1) 25.3864 24.4104 23.8955  25.5036 (2) 0.5346
AG 5.5653 5.0692 55261 56596 (2)  5.5149  5.6693 (1) 0.0569
111.2382 112.3046
The Cancer Imaging SD 101.6034 ) 103.4071  102.6671  103.8596 ) 0.4832
Archive EN 3.0059 30495 O '(()26)49 2.9463 29340 31736 (1)  0.6203
QAB/F 0.3183 0.4462 O"(l29)28 0.4385 0.4061  0.5103 (1) 0.1108
MR-T1/  MI 0.8798 1.0100  1.1441(1)  1.0069 0.9576  1.1064 (2) 0.7673
MR-T2 SF 22.3876 26'(92§2° 26.0597 26.9641 26.1218 27'(‘518 0.8564
AG 3.4087  5.0089 (2)  4.9964 5.0070 50174  5.1650 (1) 0.1694
SD 106.2062  108.2755 107.4503 109.2019 (2) 108.0475 109.3821 0.8521

@
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F1Gure 12: CT and MR medical image fusion results. (a) CT original image. (b) MR original image. (c) NSST-PAPCNN. (d) CSR. (e) MST-

SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.
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SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

from Table 1 that when the source image comes from the
Cancer Imaging Archive (TCIA), the RMSE of each index
of the proposed algorithm does not fluctuate more than 1,
which has strong data validity. It is known from the
objective indices listed in Table 1 that the proposed al-
gorithm had better performance in the Q*¥F and AG and
SD indices than the other five contrast algorithms. Among

them, Q**F was 17.9% higher, AG 8.8% higher, and SD
7.7% higher than the average of the five contrast algorithms.
NSST-PAPCNN-CSR is not always the best one among the
five contrast algorithms in each individual evaluation indi-
cator, but it never ranked less than the top two.

In summary, for the various source images from the
Whole Brain Atlas of Harvard Medical School and the
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FIGURE 14: MR-T1 and MR-T2 medical image fusion results. (a) MR-T1 original image. (b) MR-T2 original image. (¢) NSST-PAPCNN.
(d) CSR. (e) MST-SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

FIGURE 15: MR-T1 and MR-T2 medical image fusion results. (a) MR-T1 original image. (b) MR-T2 original image. (¢) NSST-PAPCNN.
(d) CSR. (e) MST-SR. (f) NSCT-SR-PCNN. (g) SR-PCNN. (h) Proposed.

Cancer Imaging Archive (TCIA), the NSST-PAPCNN-CSR 4. Conclusion

algorithm not only achieved good fusion effect visually in

terms of edge sharpness, change intensity, and contrast but A novel NSST domain medical image fusion method was
also performed excellently in objective fusion indicators. proposed and there were mainly two innovations. First, a
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PAPCNN model was introduced into the fusion of high-
frequency coefficients. All free parameters in the model were
calculated adaptively according to the input high-frequency
coeflicients; furthermore, the parameter § was adjusted to its
optimal value and the synchronous ignition characteristics
of the PAPCNN model were coordinated even better.
Second, convolutional sparse representation was applied to
low-frequency coeflicient fusion. It solved two problems
existing in sparse representation, namely, limited ability of
detail preservation and high sensitivity to mismatch. Thus, it
was able to fuse low-frequency coeflicients better. 70 pairs of
multimodal source images and five kinds of contrast algo-
rithms were used to conduct experiments. The results show
that the proposed method has excellent performance in
terms of visual perception and objective effect evaluation.
The NSST-PAPCNN-CSR algorithm still has potential ap-
plications in multifocus image fusion, infrared/visible image
fusion, and other image fusion problems.
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The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern
regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server
noise and affect radiologists’ judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods
must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive
performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired
training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of
well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily
available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative
adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this
method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to
NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the
output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the
network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of
content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical in-
formation. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio
(PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN
without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to
both visual inspection and quantitative evaluation.

1. Introduction

X-ray computed tomography (CT) is one of the most sig-
nificant imaging modalities in modern hospitals and clinics.
However, the risk of radiation in CT induces genetic, can-
cerous, and other diseases and has become a critical concern
to patients and operators [1-3]]. A common and effective
strategy to alleviate the risk is to achieve low-dose CT
(LDCT) imaging by reducing the tube current during
scanning and consequently decreasing the number of
photons received by the detector. The dose reduction

increases noise and artifacts in reconstructed CT images,
thereby severely degrading the image quality and jeopard-
izing the clinical diagnosis. To solve this problem, re-
searchers have proposed various noise-reduction strategies,
including iterative reconstruction (IR) [4, 5], sinogram
domain denoising [6-9], and image domain postprocessing
[10-12].

Over the past decades, researchers have focused on
developing new iterative algorithms for LDCT image re-
construction. In general, these algorithms optimize an ob-
jective function, which incorporates a system model [13, 14],
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a statistical noise model, and prior information in the image
domain [4, 15, 16]. Well-known image priors consist of total
variation (TV) and its variants [17-19], dictionary learning
[20, 21], and wavelet frame [22]. These iterative re-
construction algorithms exhibit satisfactory performance in
improving image quality, but their computational burden
and sensitive parameters limit their practical applications.

Image postprocessing is more computationally efficient
compared with iterative reconstruction, which has spawned
a lot of simple and effective methods. Nonlocal means
(NLM) filtering methods estimate noise components by
using multiple patches extracted at different locations in the
image [23] and have been widely used for CT [24]. Moti-
vated by compressed sensing methods, an adaptive K-SVD
method [25] was proposed to reduce artifacts in CT re-
constructions. The block matching 3D (BM3D) method is
also an outstanding method for image postprocessing in CT
imaging fields [26, 27]; this method exploits similarities in
image blocks. These traditional postprocessing methods
have improved the quality of CT images; however, the results
often undergo edge blurring and/or residual artifacts given
the nonuniform distribution of reconstruction noise.

More recently, several supervised machine learning
approaches have been proposed for noise reduction in
LDCT. These methods usually reveal a relation between the
pixel value in the LDCT image and the pixel value at the
same location in a corresponding NDCT image by training
with paired images. Chen et al. [28] designed a deep con-
volutional neural network (CNN) to map LDCT images
toward its relative normal-dose counterparts in a patch-by-
patch manner. Kang et al. [29] used a similar method but
adopted CNN to directional wavelet transform of CT images.
Then, more complex networks were proposed to handle the
LDCT denoising problem such as the residual encoder-
decoder convolutional neural network (RED-CNN) in [30],
which achieves competitive performance relative to state-of-
the-art methods in clinical cases.

Although the abovementioned networks presented im-
pressive denoising results, they all belong to the end-to-end
network, which typically utilizes mean squared errors (MSE)
between the network output and the ground truth as loss
function. However, recent studies [31, 32] indicated that this
per-pixel MSE often suffers from oversmoothed edges and
loss of details. MSE-based approaches tend to take the mean
of high-resolution patches by using Euclidean distance
rather than geodesic distance. Given that the medical images
usually lie in a highly nonlinear manifold [33], the algorithm
is prone to neglect subtle details that are vital for clinical
diagnosis when it tries to minimize per-pixel MSE. To
overcome the limitations of per-pixel regression in noise
reduction, the generative adversarial network (GAN) [34]
based on adversarial loss is introduced to medical image
reconstruction. In 2017, Wolterink et al. [35] were the first to
apply the GAN for cardiac CT image reconstruction. And,
Yang et al. [36] utilized a GAN with Wasserstein distance
(WGAN). In order to enhance the capability of noise re-
duction, perceptual loss is simultaneously used to optimize
the loss function. Yi and Babyn [37] combined an adversarial
trained network and a sharpness detection network to
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mitigate noise in LDCT and achieved satisfactory perfor-
mance. Hence, a general framework for estimating gener-
ative models by using an adversarial process has shown
outstanding performance in medical image reconstruction.

The above-mentioned denoising networks usually re-
quire spatially paired counterparts. However, in medical
imaging, well-paired counterparts are difficult to obtain.
For example, in LDCT imaging, continuously scanning a
patient twice in normal and low dose is impossible under
normal circumstances. The shortage of paired data has been
one of the factors that restrict the wide application of deep
learning in low-dose CT reconstruction. Recently, un-
supervised variants of GANs, such as CycleGAN [38] and
DualGAN [39], have been proposed for mapping different
domains without matching data pairs. Motivated by their
success in image processing, unpaired GANs have been
successfully applied to CS-MRI reconstruction [40] and CT
synthesis based on MR images [41, 42]. For LDCT re-
construction, well-paired clinical scans acquired at different
dose levels are not readily available. Even if we obtain the
same patient data at different dose levels, the data are difficult
to match perfectly due to physical activity and the inevitable
slight movement of the scanning position, which may affect
the denoising ability of the networks.

In this study, we propose an unpaired LDCT denoising
network based on CycleGAN with prior image information.
In the proposed network, the design of cycle-consistent
structure impels the network to learn the mapping re-
lationship between the LDCT image collection and NDCT
image collection (Figure 1(a)), rather than an image pair of
an LDCT image and NDCT image (Figure 1(b)). Therefore,
the proposed network does not need a one-to-one corre-
sponding training dataset and can learn with the unpaired
dataset. Meanwhile, the prior image information extracted
from the preprocessed image by using LDCT is introduced
into the network to supervise the generation of content and
ensure correspondence of the image content. The map of
image collections through cyclic loss and the supervision of
content through prior image loss confer our proposed
method to produce results that have not only lower noise but
also accurate details.

2. Methods

2.1. Noise Reduction Model. In LDCT imaging, serious noise
typically occurs in CT images as the number of photons
received by the detector decreases. One of the effective ways
to improve the image quality is designing a tailored network
to make the input LDCT images as close as possible to the
NDCT images. This process can be classified as an image
denoising problem, which can be described by the following
model:

G:x—y, (1)

where x € RNN denotes an LDCT image and y € RV*N
denotes the corresponding NDCT image. The goal of the
noise reduction process is to obtain a transformation G that
maps x to y.
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FIGURE 1: Schematic diagram of (a) unpaired dataset and (b) paired dataset.

In this process, x can be seen as a sample from the LDCT
distribution P; and y can be seen as a sample from the
NDCT distribution P,. The denoising process transforms x
to a certain distribution P . And, the denoising process aims
to determine an optimal G to make P, close to P,. However,
in the reconstructed LDCT images, noise is complicated and
uniformly distributed over the whole image; as such, dis-
tributions P; and P, have no explicit mathematical re-
lationship up to date [36]. The traditional methods usually
have difficulty in denoising LDCT images. For deep learn-
ing-based methods, the uncertainty of a noise model can be
ignored due to the learning capability of high-level features
and presentation of data distribution by the CNN. Therefore,
designing a tailored CNN is an effective method to suppress
noise in LDCT and improve image quality.

2.2. Introduction of CycleGAN. In 2017, Zhu et al. [38]
proposed an unpaired network named CycleGAN, which
has gained extensive attention. This network can capture the
special characteristics of one image collection and figure out
how these characteristics could be translated into other
image collection without using any paired training exam-
ples; this network has been successfully utilized in style
transfer, object transfiguration, season transfer, and photo
enhancement.

Under the assumption that there is some underlying
relationship between the source domain X and target do-
main Y, the goal of CycleGAN is to learn mapping G :
X — Y so that the distribution of image from G(x) is
indistinguishable from the distribution of image from do-
main Y. This network includes two mapping functions,
namely, G: X — Y and F : Y — X and also introduces
two discriminators, namely, Dy and Dy. Discriminator Dy

aims to distinguish between translated samples G (x) and
real samples y. Discriminator Dy aims to distinguish be-
tween translated samples F ( y) and real samples x. In theory,
adversarial training can identify mappings G and F that
produce outputs identically distributed as target domains Y
and X [34]. However, with its large sufficient capacity, a
network can map the same set of input images to any
random permutation of images in the target domain, where
any of the learned mappings can induce an output distri-
bution that matches the target distribution. Therefore,
adversarial loss alone cannot guarantee that the learned
function can map individual input x to desired y. To further
reduce the space of possible mapping functions, the map-
ping functions G and F should be cycle consistent. As shown
in Figure 2(a), for each image x from domain X, the image
translation cycle should be able to bring x back to the
original image: x — G(x) — F(G(x)) = x, which is
named as forward cycle consistency. Similarly, as demon-
strated in Figure 2(b), for each image y from domain Y, the
image translation cycle should be able to bring y back to the
original image: y — F(y) — G(F(y)) = y, which is
named as backward cycle consistency. The abovementioned
behavior can be incentivized by cycle-consistency loss.

Lcyc (G, F) = IEx~Pdm(x)[”F(G(x)) — x"l] (2)
+Eyp,, 0 [IGF () = ylli ],

where P,y is the distribution of x and Pg,,(y) is the
distribution of y.

In LDCT imaging, although the projection data contain a
lot of noise, it is usually complete. Therefore, the recon-
structed images still contain useful information that is ba-
sically consistent with corresponding NDCT images. This
indicates that there is a close relationship between the LDCT
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FIGURE 2: Structure diagram of CycleGAN. (a) Forward cycle-consistency loss. (b) Backward cycle-consistency loss.

image and NDCT image and satisfies the basic assumption of
CycleGAN. Thus, this study considers using this unpaired
network for LDCT image reconstruction.

Based on its structure, CycleGAN mainly focuses on the
map of distributions. This network is better at the overall
conversion of images and may overlook the correspon-
dence of details. However, for LDCT noise reduction, the
outputs should not only appear similar to an NDCT image
but also retain details as much as possible; more impor-
tantly, the output must not contain false information,
which may cause misdiagnosis. These issues require ad-
ditional supervision and restraint to the network in the
training process to make it more suitable for LDCT re-
construction. In this study, we consider incorporating prior
image information into the network to guarantee content
correspondence and prevent the generation of fake details
during denoising process.

2.3. Unpaired Denoising Network Based on CycleGAN with
Prior Information. Figure 3 shows an overview of our
proposed method. The network contains forward and
backward cycles and two generators and discriminators. In
order to more clearly illustrate the training mechanism of
the proposed network, we randomly selected an LDCT
image from LDCT image collection and an NDCT image
from the NDCT image collection as the input-ground truth
pair. Note that the LDCT image is not corresponding to the
NDCT image, as shown in Figure 4.

In the forward cycle, generator Gy is trained to generate
images that are as close to corresponding NDCT images as
possible (Figure 3(a)). Generator F; is trained to translate
the resulting image G (x) back to the corresponding LDCT
image. In the backward cycle, generator F; is trained to
generate images that are as close to corresponding LDCT
images as possible (Figure 3(b)). Generator Gy is trained to
translate the resulting image F; (y) back to the NDCT image.
In the training process of network, the discriminators Dy
and D; are used to estimate the probability that the sample is

from the real image rather than generating image. At the
same time, the generators Gy and F; attempt to generate
images that are not easily distinguishable by the discrimi-
nators. This paper utilizes the adversarial loss [43] as the
objective function to train the “game” process:

Lgan, (Gy, Dy, X,Y) = By i () [log Dy (»)]
+Eyp,. 0[0g(1 = Dy (Gy (x)))],
Lean, (F, D, X,Y) = E e pe () [log Dy (x)]

+E)pa [log (1 = Dy (F ()]
(3)

In order to reduce the feasible domain space of the
mapping functions, the cycle consistency is introduced to
turther constrain the training process of the network so that
the network can be trained under unpaired data:

Lcyc (GN’ FL) = [Ex'*Pdm (x) ["FL (GN (X)) - x"l]
+Eyp. ) [“GN (FL(») - y"l]'

For this cycle consistency network, the performance of a
generator requires the indirect supervision through the
results of another generator. For example, in the forward
cycle, in addition to discriminator Dy, the performance of
generator Gy also needs to be supervised by the results
F, (Gy (x)) of another generator F;. This mechanism does
not guarantee the accuracy of the final input and may lead to
the occurrence of fake details. For LDCT image re-
construction, the accuracy of the results is critical, and if
false information is generated, it may cause misdiagnosis,
leading to serious consequences. These circumstances re-
quire direct constraints to the generators, especially to
generator Gy, which directly produces the desired outcome.
Therefore, this paper incorporates the prior image in-
formation into the network to directly supervise the gen-
erator Gy, as shown in Figure 3(a). For fear of changing the
unpaired property of the network, the resulting images

(4)
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FIGURE 3: Overview of the proposed method. (a) Forward cycle. (b) Backward cycle.
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FIGURE 4: One input-ground truth pair of the proposed unpaired network.

processed by BM3D method utilizing LDCT images are LgANN (GnsDns X, Y) = E,, () [log Dy ()]

regarded as prior images. And, the mean absolute error

(MAE) between the prior image and the generated image is +E,op, (x)[log(1 ~Dy(x) (5
introduced into the loss function to constrain the training of .

the. network. The adversarial loss of the forward cycle can be + “"GN (x) - Iprior,img”J»

written as



where « is the weight of the MAE. In the training process, the
generator Gy tries to minimize the objective function (5)
while the discriminator Dy tries to maximize it, that is,
minGNmaxDNLgANN (Gy>Dy, X,Y). We denote the pro-
posed network as CycleGAN-BM3D.

Through the above analysis, the total loss function of our
proposed method is

L(Gy,Fp, Dy, Dyp) = LGAN (Gn» Dy, X,Y)
+ Lgan, (F1, D1, Y, X) (6)
+AL_,. (G, F),

cyc
where A is a nonnegative parameter used to balance the
weight of the cycle consistency loss. The total objective
tunction of the proposed CycleGAN-BM3D is

Gy, F] = arg min max L(Gy, F;, Dy, D). )

N>FL DN>DL

2.4. Network Architecture. In the proposed method, the
network of the generator, as shown in Figure 5(a), includes
three submodules: encoder, convertor, and decoder. The
encoder extracts the features from the input image utilizing
CNN. The network of the encoder includes one 7x7
Convolution-InstanceNorm-ReLU layer with 64 filters and
stride 1 denoted as c7sl-64, two 3x3 Convolution-
InstanceNorm-ReLU layers with k filters and stride 2 in
which k equals to 128 and 256, respectively. We denote these
two layers as d128 and d256. The convertor, as shown in
Figure 5(b), is used to convert feature vectors extracted from
the source domain X to the target domain Y. The convertor
contains six residual network (Resnet) blocks [44], and each
block contains two 3 x 3 convolutional layers with 256 filters
on both layers. The decoder includes three layers. The first
two layers are 3 x 3 fractional-strided-Convolution-Instan-
ceNorm-ReLU layers with stride 1/2 and 64 and 32 filters,
respectively. We denote the two layers as u64 and u32. The
third layer is a 7 x 7 Convolution-InstanceNorm-ReLU with
3 filters and stride 1 denoted as c7s1-3. The network of the
discriminator, as shown in Figure 5(c), consists of five
convolution layers. The first four layers are 4 x4 Convo-
lution-InstanceNorm-LeakyReLU layers with stride 2 and
64, 128, 256, and 512 filters, respectively. We denote them as
Ce64, C128, C256, and C512. We use leaky ReLUs with slope
0.2. In the last layer, a 4 x4 convolution layer with 1 filter
and stride 1 is utilized to produce a one-dimensional output.

3. Experiments and Results

3.1. Experimental Dataset and Performance Evaluations.
The CT images of a deceased piglet were selected as the
experimental dataset to verify the performance of the pro-
posed network. The images were scanned by a 64-slice
multidetector GE Healthcare scanner (Discovery CT750
HD) by using 100kV and 0.625 mm slice thickness. Five
different tube currents were set to yield CT images with
different dose levels. The specific scanned parameters and
effective dose of different tube currents are listed in Table 1.
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In each dose level, 906 images with size 512 x 512 were
acquired. As shown in Figure 6, we partitioned the slices by
taking one’s data and then skipping 10 slices. We finally
obtained 360 images reconstructed by FBP using the pro-
jection data of 5% dose as the noisy dataset, that is, source
collection X. And, 180 images were obtained for testing. The
normal dose dataset utilized consists of 360 images, which
are corresponding to the noisy dataset and obtained from the
NDCT images constructed by FBP. The normal dose dataset
is the target collection Y. Given the unpaired property of the
proposed network, the training images and the ground truth
do not require a one-to-one correspondence. The number of
two image datasets can also be different. In the training stage,
we performed an unpaired operation for the inputs and
labels of the network. In addition, each image was divided
into sixteen 128 x 128 images to enlarge the training dataset
to 5760 images.

For comparison, we selected some representative tra-
ditional methods and other networks.

3.1.1. BM3D. This method exhibits outstanding perfor-
mance in noise reduction over other traditional image
denoising methods.

3.1.2. Original CycleGAN. This network is trained without
the constraint of prior image to test the supervised effect of
the prior image. The input dataset and ground truth dataset
are the same as the proposed method CyclGAN-BM3D,
which are not one-to-one correspondence.

Structural similarity (SSIM) [45], peak signal-to-noise
ratio (PSNR), and normalized mean absolute distance
(NMAD) are selected as measures of reconstruction quality
for the quantitative assessment of the proposed network and
abovementioned contrast algorithms. Specifically, PSNR and
NMAD are defined as follows:

2
PSNR = 1010g10< MAX"(f) )

NSNS () - foG)f

YN |fG) = £o ()
YNl

(8)
NMAD =

where f and f, represent the denoising image and ideal
image, respectively, i is the pixel in the image, and N is the
total number of pixels in the image. A higher PSNR indicates
that the image is of higher quality. The NMAD value close to
0 indicates small differences between the ideal image and the
reconstructed results. In general, SSIM <1 and SSIM=1
indicate the exact theoretical reconstruction.

3.2. Implementation Details. In the training process, the
negative log likelihood objective of the first two items in
Lgan,, and Lg,y, is replaced by least squares loss to stabilize
the proposed model [46]. After the replacement, we train Gy
to minimize
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FIGURE 5: Network structure. (a) Diagram of generator’s network structure. (b) Diagram of convertor’s network structure. (c) Diagram of
discriminator’s network structure.

TasLE 1: CT scanning protocol for the experiment.

Normal dose 50% dose 25% dose 10% dose 5% dose
Tube current (mAs) 300 150 75 30 15
Effective dose (mSv) 14.14 7.07 3.54 1.41 0.71
Skipped 10 slices  Skipped 10 slices Skipped 10 slices  Skipped 10 slices
20 training slices 10 testing slices 20 training slices 10 testing slices

FIGURE 6: Schematic diagram of data preparation. The yellow rectangular blocks represent the training data, the green rectangular blocks
represent the test data, and the white rectangular blocks represent the skipped slices.

Ev-pynca| (Ox (G () = 1 4 @Gy (9 ~ Ty img, |-+ DB [(On 0D =]+ B o[ Pa(G 7))
9) minE, , [ (D (x) - 1)2] +E, ., () [DL(FL (y)z)].
We also train F; to minimize (11)
minE,_, [ (DL(FL(y) - 1)2]. (10) For the setting of parameters, A is set as 10. Adam solver

with a batch size of 1 is selected as the optimizer to optimize

For discriminators Dy and D, the objectives are the networks. We keep the same learning rate for the first



10,000 epochs and linearly decay the rate to zero over the
next 10,000 epochs. The proposed network in this paper
trained 40,000 epochs. « is an important parameter for
controlling the weight of prior information during training.
When the value of « is too small, the effect of prior in-
formation will be negligible and cause minimal improve-
ment in image quality. By contrast, a very large a will
overemphasize the role of prior information and, to some
extent, limit the learning ability of the network itself. In this
paper, a series of networks was trained by setting different
values of « to determine a suitable value. For the sake of
fairness, each network has the same parameters’ setting,
except «. We randomly selected 10 LDCT images to test the
performance of different networks. The effect of a was
quantitatively determined by plotting the average SSIM and
NMAD of the denoising images in Figure 7.

From the curves of Figure 7, when a = 10, the SSIM
reaches the maximum, indicating that the denoising images
are most similar to the NDCT images in structure, that is,
under this circumstance, the network has the greatest ability
to retain the details of the LDCT images. NMAD reflects the
accuracy of denoising to some extent. Smaller NMAD in-
dicates that the noise in the LDCT images is removed more
completely. Considering the detail retention and noise re-
duction of the network, this paper set « as 10.

To analyze the potential denoising capability of selected
algorithms and networks, two representative slices and the
corresponding zoomed regions of interest (ROIs) are shown
in Figures 8-10, respectively.

As shown in Figure 8, when using traditional methods
(BM3D) or deep learning-based methods, the noise that ap-
pears in the LDCT image is suppressed to varying degrees. The
classic BM3D method has an outstanding noise suppression
effect but makes the processed image oversmoothed so that
some vital details disappear. As indicated by the red arrows in
RO, the results of BM3D lose some information of the bone.
Although the result of the original CycleGAN is not over-
smoothed, it shows fake details, connecting the unconnected
bones in the NDCT image. The CycleGAN-BM3D, which
introduces prior image information, does not have redundant
details and retains the information that should be retained.

Figure 9 shows the overall second slice of different
methods and the corresponding absolute difference images
between NDCT images and the resulting images. In the
difference images, the darker the color is, the smaller the
error will be. It can be clearly observed that the result of
CycleGAN-BM3D has the smallest difference.

For further analysis of image details, two regions were
selected as ROIs, which are shown in Figure 10. In ROI [, the
tissue pointed by red squares is smeared out in the BM3D
images but is easily identifiable in the CycleGAN and
CylceGAN-BM3D images. As marked by the yellow ellipses
in ROI I, the three black holes in the results of BM3D and
CycleGAN are blurred and inseparable but are recognizable
in the result of CycleGAN-BM3D. Furthermore, the smooth
area below the ROI II of CycleGAN-BM3D is the most
similar to the NDCT image.

Based on the visual effect, the proposed network
CycleGAN-BM3D can not only better suppress noise but
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FIGURE 7: Average SSIM and NMAD of 10 images in different
values of a. The blue line indicates the SSIM curve and the orange
line represents the NMAD curve.

also retain more details than the other networks. More
importantly, after adding the constraint of prior in-
formation, CycleGAN-BM3D can effectively prevent the
generation of fake details compared with the original
CycleGAN without prior information.

For quantitative analysis, the average of PSNR, SSIM,
and NMAD was calculated for 180 slices in the test dataset to
measure performance of the proposed method and the other
compared methods. (Table 2).

In each evaluation item, the results with the best per-
formance are marked black. CycleGAN-BM3D ranks first in
terms of SSIM even with the unpaired training dataset. As
such, the results of CycleGAN-BM3D are the most struc-
turally similar to the NDCT images. In terms of PSNR and
NMAD, CycleGAN-BM3D also exhibits satisfactory per-
formance, indicating that the noise removal is relatively
clean. Compared with the other algorithms, CycleGAN
shows the worst performance because it mainly focuses on
mapping the data distribution from the LDCT to NDCT, and
cyclic loss may not be enough to supervise the generation of
details and suppression of noise. This method needs to add
supervision during training to improve image quality. The
introduction of prior information in CycleGAN-BM3D
enhances the constraints to the image content. That is, in the
proposed CycleGAN-BM3D method, cyclic loss plays a role
in distribution mapping and prior information loss is used to
guarantee the relevance of the content. Therefore, the
proposed method demonstrates good performance in noise
suppression and detail preservation. We note that the nu-
merical results of BM3D are in the front rank. From the
visual effect, the noise removal of BM3D is complete and the
main information of the image is basically retained, as much,
BM3D has a high quantitative evaluation result. That finding
is the reason why we choose the result of BM3D as the prior
information.

4. Discussion and Conclusion

In the modern CT imaging field, the hidden risk of radiation
dose has increased the demand for LDCT. However, LDCT
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(d) CycleGAN, and (e) CycleGAN-BM3D, respectively. The display widow is [800, 1300].
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TaBLE 2: Quantitative evaluation of results by different algorithms
on 180 slices in the test dataset.

PSNR SSIM NMAD
LDCT 27.6514£1.3862 0.8698 +£0.0375 0.1124+0.0174
BM3D 32.2185+£0.9599 0.9271 £0.0245 0.0681 +0.0087
CycleGAN  29.0833 +£0.8661 0.9059+0.0263 0.0890 +0.0096
CycleGAN-
BM3D 34.3577 £0.1475 0.9798 +0.0041 0.0583 +0.0012

images often suffer from serious noise, which degrades
image quality and troubles clinical diagnosis. In the past two
years, deep neural network provides a new idea for LDCT
noise reduction. Most of the existing neural networks for
LDCT reconstruction usually require well-matched datasets
for network training. However, the well-matched CT images
of different dose levels are difficult to obtain. This may affect
the performance of networks and lead to blurred details or
fake information in the resulting images.

To improve the quality of LDCT image and broaden the
application of neural networks in LDCT noise reduction, this
paper proposed an unpaired network based on CycleGAN
with prior image information. In contrast to existing
denoising networks, the proposed network can be trained by
unpaired datasets, thereby alleviating the limitation of paired
dataset requirement. Most GANs used to reduce noise
mainly focus on the distribution mapping from LDCT to
NDCT, and this process may overlook the accurate content
correspondence. To enhance the constraint to the content
and prevent producing fake details, we incorporate the prior
image processed by BM3D into CycleGAN to supervise the
generation of image content. In the experiment of real data,
visual inspection demonstrated that the proposed method
can suppress noise in the LDCT image and prevent the
generation of fake details. The result of quantitative evalu-
ations indicated that, after incorporating prior information,
the PSNR improved more than 3 dB and SSIM also increased
compared with the original CycleGAN without prior in-
formation. The results of qualitative and quantitative eval-
uations indicated that the proposed method -exhibits
reasonable performance and outperforms the original
CycleGAN when applied to LDCT reconstruction.

The validity of prior information affects the performance
of the proposed method. In this work, the LDCT images
processed by traditional methods are obtained as prior in-
formation, which is a simple and efficient way. In the future,
we intend to explore other representative shared features
between LDCT and NDCT images as prior information to
further improve the performance of the proposed network,
such as the sparsity or sharpness information.
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A collection of personal protective equipment (PPE), suitable for use in case of accident in nuclear facilities or radiological
emergencies, was gathered at the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. The shielding
characteristics of the various PPE materials were measured via narrow geometry spectral attenuation measurements with point
radionuclide sources covering a broad range of photon energies. Photon relative penetration and attenuation for relevant energies
of the spectra were the principal experimentally determined quantities for tested PPE. Monte Carlo simulations in the MCNPX™
code were carried out to determine photon attenuation for respective energies in the tested PPE, and the results were compared to
those determined experimentally. Energy depositions in a unit volume of an ORNL phantom were simulated in a radioactive
aerosols atmospheric environment to determine effective doses both for the whole body and in various organs in the human torso
during exposure to different dispersed radioactive aerosols while wearing one of the PPE protecting against X- and gamma-ray. This
work aimed to determine the effective dose and its decrease for individual PPE protecting against X- and gamma-ray.

1. Introduction

Some samples of personal protective equipment (PPE),
protecting against X- and gamma-ray, were collected and
tested at the National Institute for NBC Protection
(SUJCHBO v.v.i.), Czech Republic. This type of PPE can be
used by first responders in emergencies such as an accident
during radioactive material transportation, terrorist in-
cidents involving radiological dispersal devices (RDD) or
nuclear weapons, or by specialised emergency response
workers during accidents in nuclear facilities.

The authors are not aware of any other published studies
concerning X- and gamma-ray attenuation in PPE.

The collection of PPE protecting against X- and gamma-
ray due to the presence of shielding layers comprising heavy
metals or their alloys can be divided into two groups: (a)
body overalls, covering the whole body and (b) local gar-
ments, primarily covering the torso and shielding radiation-
sensitive body organs, together with nonworn equipment,

such as a radiation protection shield. OPCH-90 PPE
(without a shielding layer) was chosen as a reference PPE.
Table 1 presents individual tested PPE together with their
parameters from the manufacturers’ materials and experi-
mentally determined density thicknesses.

Relative penetration and attenuation of X- and gamma-
ray, penetrating the samples and originating from different
radionuclide point sources, were determined for a broad
energy range, together with mass attenuation coefficients,
which describe the attenuating qualities of shielding layer
materials in individual PPE. Corresponding lead equivalents
of individual shielding layers, which express the thickness of
the equally attenuating lead sheet, were calculated as well.

The experimentally determined values of these above-
mentioned quantities for the first part of the collection of
PPE protecting against X- and gamma-ray were presented by
Kozlovska [2].

Together with experimental testing, Monte Carlo (MC)
simulations of selected individual PPE were carried out. The


mailto:kozlovska@sujchbo.cz
https://orcid.org/0000-0003-4296-3238
https://orcid.org/0000-0002-1629-5697
https://orcid.org/0000-0001-7291-001X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1641895

Computational and Mathematical Methods in Medicine

(SAY) $20149p 2AIs12dSIp [ed130[0IPEL PUB (SAHI) $901A9P dAIs0[dxd pastaoxduur jsurede $199301d ., "0 PPUONUOIPEI JO AN G'TeET A31oUd 10§ Jos Judfeamba pea,,,, *[1] uonepossy
uoT22)014 2111 [euoneN ) £q pajuasaid ‘syuawarmbar £007/F66T VAAN 23 SI99A , , . “2uojsawul] 21nd £q pajeaId ‘S[[a0 Jo 2I1nJoNI)s qUIOIAUOY Je[NFaI B (IIM [eLId)ewt ONYIULs Ul pasiadsip skofpe (peay Ajurewrrid)
[e3owr £aeay Jo §1s1SU0D YIIIN YOI .. “(Pe[ 10§ 3do0xd) 3mg Apog [N NOYNAJ SIUOWS[d Joquunu druroje-ysy jo syjes sruediour pue HAJ “qd Jo asodwod rowLjod jydn-sed pue -101em © st NOJINAJ .

(;_u-8)
L6°€E 1971 Lo I'1/80°C L¥'0/9T°0/T€°0 €500 070 €10 €ro SSIWOIY}
Asua(g
Lo Sud Sdd UOIAN 9[IXd} USAOMUON  Jaqqni [Aing aMmXa, Lo Lo 1ake]
USAOMUON JATSIUPENUY  QAISIUPENUY USAOMUON] UAOMUON 90'JING
%G 0T 9SBID %¥'F 9SBAIID wnes O] ww GZ0 sanradoad
uaALs 10N ooﬁ EN ’ B} N& Jsop s ’ /0T uaALB 10N B uaearnbas pea uaAts 10N uaALs 10N Surppr
1 P SO, 9 P SO,¢r Juspeamba pea JUSTBAT peaT IPPIYS
009-9 00%-9 ursaI ur pasiadsip A1d 12qqnr ur pasiadsip [PLIett
ok ¥k . . . B . . .HQNA.N
NOUWHA d4990d01d  ¥dddNdoId ‘udysdunf, ¥/T/T NOYINEA ‘spunodwos pea NOUWHA NOWNHA wSEwEm
vsn vsn

“A3o1ouyday, uedef uedef uedef VSN “A3ojouyoay, A1qnday eutD vsi A3o1ouyoay,

PSS cuonerodio) ‘uonerodio)  “pyT "0d YoIBISNY PPIS TORepEy yoazD) “ors  “py] 01 A3ojouyodsjorg  “A3ojouyday, PPMS 190npoid
coﬁm.%mm OLOWVINVA OLOWVINVA  [edruyd’], eydy ’ o 19301d0oy SueoH noyzduenn  ppRIYS uoneIpEy conm.%mm
aIm3d1g
w55 PPTYS syued Ald ¥/T/1 189 LN
159 - wwy- 9UO 20UAIOJAI  IBIA\ UOTJRIpEY-IIU ymg £po
Ay MMm\WNomwwm 994 007 \EEN-?M HMM,\/ ja oIl HOEbTY Mﬁv om-IUWO %ﬁo%ﬁoag.wmw 1 NVMA Apot 1Ind € :.:m. MOMH\MMQ ddd
dd1 NOYW4dd Ja99nd01d NOIWHEd SSe[D NOYINEd
Aex-ewrwred pue -y jsurede Jurpajord g4d 8007 Aex-ewrwred pue -y jsureSe Junoajord gdd Apoq-ajoym

‘fer-ewrwred pue -x jsurede Sunosjord g4 [e00] pue Apoq S[OYAA T FI4V],



Computational and Mathematical Methods in Medicine

following quantities were simulated: relative penetration and
attenuation of monoenergetic photons by individual
shielding layers and energy deposition in a unit volume of
the ORNL phantom while wearing or not-wearing an in-
dividual PPE protecting against X- and gamma-ray.

The X- and gamma-ray penetration rates in simulated
shielding layer material of individual PPE were determined
for the main energies of the spectra. The decrease of effective
dose both in the whole body and, due to the presence of PPE,
the human torso alone were also assessed by the MC
modelling of a human body during exposure to selected
dispersed radioactive aerosols.

2. Materials and Methods

2.1. Measurement of X- and Gamma-Ray Spectra. The spectra
of X- and gamma-ray, penetrating tested PPE samples and
originating from different radionuclide point sources, were
measured by two handheld spectrometers: an InSpector
1000 with detachable IPROL-1 scintillation LaBr; probe, and
a Falcon 5000 HPGe detector, both manufactured by
Canberra Industries, Inc., USA.

Samples of tested PPE were placed on a holder be-
tween the source and the detector at the defined distance
to meet the lowest possible dead time of the detector and
avoid false pulse coincidence. Photon spectra were
measured on a testing bench, which enables the precise
coaxial narrow beam geometry settings of the source, the
detector, and the set of both outer and inner cylindrical
collimators (Figure 1). Outer collimators were made from
lead, and their outer and inner diameters were 16.5cm
and 6.0 cm, respectively; the lengths were 22.5cm and
40.5 cm, respectively, in the case of IPROL-1 LaBr; probe
measurement, which was inserted into the collimator.
Inner collimators were also made of lead at lengths of
8.5 cm, and their outer and inner aperture diameters were
6.0cm and 1.2 cm, respectively.

The narrow beam geometry setting was used for spectra
measurement to minimise the number of scattered photons
contributing to the measured spectra unwantedly influ-
encing peak areas and causing a build-up effect.

To cover the wide photon energy range from 30.5keV to
1,408 keV, the following radioactive point sources activation
ranging from 9.5 to 40.0 MBq were used: 2 Am, 133Ba, 15%Ey,
%7Cs, and *°Co.

Measurement live times ranged from 120 to 1,800s to
obtain net peak areas for all significant sufficiently high full-
energy peaks, achieving their relative uncertainty below 1%.

Measured spectra were subsequently analysed using
Genie 2000 Gamma Analysis Software v. 3.2, manufactured
by Canberra Industries, Inc. For the primary spectra en-
ergies, corresponding to the main peaks of total absorption,
photon penetration and attenuation rates in a tested PPE
sample were determined. These quantities were determined
via comparing net peak areas in the spectra, measured with
the sample placed between the source and the detector, and
the corresponding net peak areas in the spectra, measured
without any samples, for the same time between the source
and the detector.

FIGURE 1: Spectra measurement arrangement.

The energy dependency of mass attenuation coefficients
was determined from the relative attenuation and experi-
mentally assessed density thicknesses of individual PPE
samples to describe shielding qualities of individual
shielding layer materials. For each tested sample, a lead
equivalent, which sets the thickness of the equally attenu-
ating lead sheet, was determined using the values of the lead
mass attenuation coeflicient, stated by Johnson and Birty [3].
Mean lead equivalents for individual PPE protecting against
X- and gamma-ray was set as mean of lead equivalents
determined for the individual energies of significant peaks,
except for absorption edges.

Together with the spectra of photons penetrating tested
PPE samples, the spectra of photons penetrating a lead sheet
(thickness of 1.25mm) were similarly measured, and the
same quantities were determined to test the measurement
and spectra evaluation methods.

2.2. Radon-Aerosol Chamber. The Radon-Aerosol Chamber
(RAC) at SUJCHBO v.v.i. we used for PPE testing in a
dispersed radioactive atmosphere is a gas-tight testing box of
10 m® volume with dimensions of 250 cm (length) x 200 cm
(width) x 200 cm (height), strictly separated from the am-
bient atmosphere. The RAC enables the creation of a stable
atmosphere containing high concentrations of radioactive or
nonradioactive aerosol particles under various physical
conditions. It is also possible for the created aerosol particles
to be sampled and measured externally. The RAC param-
eters are described by Burian [4].

2.3. Monte Carlo Simulations. Monte Carlo (MC) simula-
tions were performed using the general-purpose MC code
MCNPX™ version 2.7.E [5]. Full photon and electron
transport and the detailed treatment of bremsstrahlung
radiation were considered in the whole volume of the RAC.
Photon transport utilised the MCPLIB04 photoatomic data
library described by White [6], and the low-energy cutoff
was set to 10 keV. Electron transport utilised the el03 library
described by Adams [7], and the low-energy cutoff was set to
50keV.



2.4. Simulations of PPE Materials. The elemental composi-
tions of PPE materials necessary for input to the MC model
were taken from the results of X-ray fluorescence spec-
trometry (XRF) and scanning electron microscopy (SEM)
measurements. In addition, during the later analysis, energy-
dispersive X-ray spectrometry was also applied to collect
additional material information.

A simple MC model consisting of a point source emitting
monoenergetic photons perpendicularly to a layer of PPE
material was used to calculate relative penetration in indi-
vidual PPE samples. Material relative penetration for each
photon energy was obtained using an F1-type tally located
behind the layer counting the number of photons (per one
photon emitted from the source) that did not undergo in-
teraction in the layer. The statistical uncertainty of the F1-
tally results was 0.1%. Consequently, the relative attenuation
and relative penetration at different energies were compared
to those measured experimentally.

For input to the MC model, the mass density of the
samples was determined by finding the best match between
measured and calculated relative penetration, keeping the
elemental composition fixed.

2.5. Simulations of Effective Dose. MC simulations of energy
deposition in a unit volume of an ORNL phantom described
by Eckerman et al. [8] were performed in the chosen dis-
persed radioactive aerosol environment in the RAC. The
ORNL phantom was positioned in a standing position at the
centre of the RAC, and it was modelled to either wear one of
the simulated PPE protecting against X- and gamma-ray
(respectively, the simulated PPE together with a PPE pre-
venting radioactive contamination over it in the case of local
PPE protecting against X- and gamma-ray), or to solely wear
PPE preventing radioactive contamination.

The following dispersed radionuclides were simulated:
#me, P, ¥7Cs, *°La, and **Na. "' and *’Cs radionu-
clides emit both beta particles and gamma-ray of medium
energies, while '**La and **Na radionuclides emit both beta
particles and gamma ray of high energies. However, the
*’™T¢ radionuclide only emits gamma ray of low energy.

Both gamma and beta contributions to the effective
dose were taken into account in the simulations. Energy
distributions were taken from Radiological Toolbox [9],
which contains data from the ICRP 38 publication [10].
Three radiation sources were considered in the RAC: (1)
dispersion of the radionuclide in the air; (2) deposition on
the RAC walls; and (3) deposition on the outer surface of
the tested PPE or covering PPE preventing radioactive
contamination. For the evaluation of the results, it was
assumed that 90% of the total activity was dispersed in the
air and that the surface activity of the RAC walls and PPE
were equal.

The equivalent dose was determined by calculation of the
absorbed dose in the ORNL phantom organs. The deposited
energy in each organ was initially obtained using the *F8-type
tally independently for each of three radiation sources and
both gamma and beta contributions. The deposited energies
in each organ were then recalculated into the equivalent dose
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per unit activity. The equivalent doses were finally weighted
by the tissue weighting factors defined in the ICRP 103
publication [11] and summed into the effective dose.

The resulting calculated values of the whole body ef-
fective dose and equivalent doses on various organs were
compared to the values of the same quantities, simulated in
the same way for the ORNL phantom without the PPE. The
effective dose on the human torso alone was also considered
to compare individual whole-body PPE protecting against
X- and gamma-ray and local ones. The following organs
were included in the effective dose on the human torso
calculation: lungs, stomach, colon, testes and genitalia, liver,
oesophagus, urinary bladder, small intestine, gall bladder,
pancreas, spleen, heart, adrenals, kidneys, and thymus.

The decrease of equivalent dose on various organs, as
well as whole-body effective dose decrease and decrease of
effective dose on the human torso for individual PPE
protecting against X- and gamma-ray, used in atmospheres
of various dispersed radionuclides, were subsequently cal-
culated from the resulting values of corresponding equiv-
alent and effective doses.

3. Results and Discussion

3.1. Measurement of X- and Gamma-Ray Spectra. Figure 2
presents the spectra of the '’Ba radionuclide gamma-ray
without PPE and the penetrating BIORUBBER E-600 Vest PPE
sample. The spectra were measured with an InSpector 1000
spectrometer with a detachable IPROL-1 scintillation LaBr;
probe and smoothed by averaging over three adjacent channels.
A significant decrease of relative attenuation of more energetic
photons, penetrating the sample, is evident from the spectra.

Experimentally determined mean lead equivalents for
individual PPE protecting against X- and gamma-ray, to-
gether with a reference PPE without a shielding layer and a
reference lead sheet, are presented in Figure 3. The mean
lead equivalent for the DEMRON IED RDD Shield was not
determined due to a strong build-up factor in the thick
material, inversely depending on penetrating photon energy.

From the mean lead equivalent values of tested PPE
samples, it is evident that the higher the density thickness of a
tested sample, the higher its lead equivalent (Figure 3 and
Table 1). The mean lead equivalent of some of the tested PPE
protecting against X- and gamma-ray does not even meet the
requirements of 0.35mm, respectively, 0.25 mm, for the lead
equivalent of heavy protective aprons, respectively, light pro-
tective aprons, used by radiological operators, respectively, used
in operating rooms, and specified by CENELEC 1999 [12].

The lead equivalent of the reference OPCH-90 PPE
(without any shielding layer) is almost negligible; the mean lead
equivalent of the reference Pb sheet of 1.22+0.10 mm corre-
sponds to its thickness of 1.25 mm. The experimentally assessed
mean lead equivalent value for HKX 1558 Whole-Body Anti-
Radiation Wear equal to 0.24 +0.02mm corresponds to the
value of 0.25mm stated by the manufacturer (Table 1).

The experimentally determined lead equivalent for Df
Vest W-1mm equal to 0.99+0.10mm at the energy of
1,332.5keV corresponds to the value of 1.0 mm stated by the
manufacturer, while the same quantity for Df Vest W-2 mm
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FIGURE 2: Smoothed spectra of radionuclide '**Ba gamma-ray
without a PPE (black line) and penetrating BIORUBBER E-600
Vest (red line), measured with an InSpector 1000 spectrometer with
a detachable scintillation LaBr; probe IPROL-1.
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FIGURE 3: Mean lead equivalents of tested PPE (the mean lead
equivalent of reference Pb sheet is red) together with CENELEC
requirements for heavy and light aprons. Error bars represent the
standard deviation of measurements.

of 1.71+0.06 mm is 14.5% lower than the value of 2.0 mm
stated by the manufacturer (Table 1). However, lead
equivalent values determined at lower energies for both
these PPE, as well as mean lead equivalents, are lower, which
indicates the presence of a build-up factor in these relatively
thick materials.

4. Monte Carlo Simulations of PPE Material

Figure 4 presents the energy dependence of measured and
simulated photon relative penetration in the BIORUBBER
E-400 Vest and their relative difference. Both measured and
simulated penetration rates are in excellent agreement,

which proves the correctness of (1) the PPE material
composition determined by XRF and SEM measurements
and (2) the estimated density thickness of the material. The
decreased relative photon penetration (and therefore in-
creased attenuation) at the energy of about 88keV corre-
sponds to the lead absorption edge, which occurs at
photoelectric absorption when there is sufficient photon
energy to eject an electron from the K-shell.

Similar agreement between measured and simulated
attenuation and penetration was obtained for all other
studied materials as well.

5. Monte Carlo Simulations of Effective Dose

Figure 5 presents an example of visualisation of simulated
ORNL phantom energy depositions while only wearing PPE
preventing radioactive contamination, and the same PPE
together with the BIORUBBER E-600 Vest under it, in a
dispersed **™Tc aerosol atmosphere. Visualisations for other
PPE or other radionuclides are presented in the electronic
annex.

For the selected dispersed radioactive atmosphere, a
decrease of energy deposition due to the presence of PPE
protecting against X- and gamma-ray depends on the PPE
lead equivalent. On the other hand, the higher the beta and
gamma particle energy emitted by dispersed radionuclide,
the lower the decrease of energy deposition, as higher energy
particles are much less attenuated by PPE (Figure 2).

Table 2 presents decrease of the various organs’ con-
tribution to the effective dose when protected with indi-
vidual tested PPE exposed to the '*'I radionuclide dispersed
in 10 m’ of the atmosphere in the RAC geometry. Numerical
results for other studied radionuclides are presented in the
electronic annex. However, the results for other radionu-
clides are graphically presented in Figure 6, which sum-
marises values of the effective dose decrease on human torso
organs when protected with individual tested PPE exposed
to various radionuclides in the given geometry.

For individual simulated dispersed radionuclides, it is
evident from Figure 6 that the higher the density thickness
(and corresponding lead equivalent) of the PPE protecting
against X- and gamma-ray, the higher the decrease of the
effective dose. On the other hand, the higher the beta and
gamma particle energy emitted by dispersed radionuclides,
the lower the decrease of the effective dose.

For the simulated **™Tc radionuclide, the decrease of the
effective dose on the human torso organs of an ORNL
phantom, protected by individual PPE protecting against X-
and gamma-ray, is significantly higher than the resulting
decrease when protected by the reference PPE OPCH-90
without a shielding layer. However, in the case of other
simulated radionuclides, the decrease of the effective dose on
human torso organs is only significantly higher than that of
the reference PPE if the ORNL phantom is protected by PPE
of a sufficient lead equivalent, which meets the CENELEC
requirements for heavy and light aprons, used to shield
against diagnostic medical X-ray radiation (Figures 6 and 3).

Most of the radiation-sensitive organs of the body are
situated in the human torso, so the decrease of the whole-body
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TaBLE 2: Decrease of various organs’ contribution to the effective dose when protected with individual tested PPE in an atmosphere of
dispersed radionuclide'*'I. Organs included in “torso organs” are listed in the text.

PPE protecting against X- and gamma-ray Torso organs (%) Lungs (%) Testes and genitalia (%) Brain (%) Thyroid (%) Skin (%)

DEMRON Full Body Suit -54 -4.9 -4.8 =15 -1.0 -84.8
DEMRON Class 2 Full Body Suit -5.2 —4.7 —4.5 -1.5 -0.9 —-84.8
HKX 1558 Whole Body Wear -14.3 -13.5 -15.1 -8.0 -11.3 —-88.0
OPCH 90 (the reference one) —4.7 -4.3 -0.5 1.6 3.9 -82.1
DEMRON Torso Vest 2Ply -7.2 -6.3 -85 -1.0 -4.3 -39.2
DEMRON Torso Vest 4Ply -12.3 -11.0 -13.2 -1.6 -7.2 -39.6
DF Vest W-2 mm -38.7 —-34.0 —46.3 -39 -19.7 -50.8
BIORUBBER RSM E400 Torso Vest -15.8 -16.2 =52 -1.9 -9.3 -36.1
BIORUBBER RSM E600 Torso Vest -30.0 -30.9 -7.2 -3.3 -14.3 -35.9
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FIGURE 6: Simulated decrease of effective dose on human torso organs when protected with tested PPE exposed to various radionuclides

dispersed in the atmosphere.

effective dose obtained with vests is similar to the decrease of
human torso effective dose only. For the same decrease of
effective dose, it is more efficient to use vests instead of whole-
body PPE because the vests are much lighter. For example, the
Demron Radiation Torso Vest 4 Ply weighs 4.3 kg, while HKX
1558 Whole-Body Anti-Radiation Wear weighs 10.1kg.
However, the effective dose decrease on human torso organs
gained with these two PPE is comparable.

6. Conclusions

A collection of personal protective equipment protecting
against X- and gamma-ray was gathered and tested at the
National Institute for NBC Protection, Czech Republic. Rel-
ative penetration of X- and gamma-ray in tested samples in the
energy range from 30.5 to 1,408 keV was determined.
Measurements were supported with Monte Carlo simu-
lations in the MCNPX™ code determining relative penetration
and attenuation of PPE. The simulated data resulted in ex-
cellent agreement with measurements. After this validation of
the MC models of tested PPE, simulations of energy

deposition in organs of an ORNL phantom, in the chosen
dispersed radioactive aerosol environment, were performed.
Consequently, to estimate the efficiency of the PPE, whole-
body effective dose and equivalent dose in various organs in
the human torso were calculated and compared to the values
of the same quantities, similarly simulated for the ORNL
phantom without the simulated PPE in the various dispersed
radioactive aerosol atmospheres.

Data Availability

The measured spectra and simulated energy depositions in the
ORNL phantom used to support the findings of this study are
available from the corresponding author upon request. Vis-
ualisations of simulated energy depositions in the ORNL
phantom are presented in the electronix annex.
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